book.tex 579 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137613861396140614161426143614461456146614761486149615061516152615361546155615661576158615961606161616261636164616561666167616861696170617161726173617461756176617761786179618061816182618361846185618661876188618961906191619261936194619561966197619861996200620162026203620462056206620762086209621062116212621362146215621662176218621962206221622262236224622562266227622862296230623162326233623462356236623762386239624062416242624362446245624662476248624962506251625262536254625562566257625862596260626162626263626462656266626762686269627062716272627362746275627662776278627962806281628262836284628562866287628862896290629162926293629462956296629762986299630063016302630363046305630663076308630963106311631263136314631563166317631863196320632163226323632463256326632763286329633063316332633363346335633663376338633963406341634263436344634563466347634863496350635163526353635463556356635763586359636063616362636363646365636663676368636963706371637263736374637563766377637863796380638163826383638463856386638763886389639063916392639363946395639663976398639964006401640264036404640564066407640864096410641164126413641464156416641764186419642064216422642364246425642664276428642964306431643264336434643564366437643864396440644164426443644464456446644764486449645064516452645364546455645664576458645964606461646264636464646564666467646864696470647164726473647464756476647764786479648064816482648364846485648664876488648964906491649264936494649564966497649864996500650165026503650465056506650765086509651065116512651365146515651665176518651965206521652265236524652565266527652865296530653165326533653465356536653765386539654065416542654365446545654665476548654965506551655265536554655565566557655865596560656165626563656465656566656765686569657065716572657365746575657665776578657965806581658265836584658565866587658865896590659165926593659465956596659765986599660066016602660366046605660666076608660966106611661266136614661566166617661866196620662166226623662466256626662766286629663066316632663366346635663666376638663966406641664266436644664566466647664866496650665166526653665466556656665766586659666066616662666366646665666666676668666966706671667266736674667566766677667866796680668166826683668466856686668766886689669066916692669366946695669666976698669967006701670267036704670567066707670867096710671167126713671467156716671767186719672067216722672367246725672667276728672967306731673267336734673567366737673867396740674167426743674467456746674767486749675067516752675367546755675667576758675967606761676267636764676567666767676867696770677167726773677467756776677767786779678067816782678367846785678667876788678967906791679267936794679567966797679867996800680168026803680468056806680768086809681068116812681368146815681668176818681968206821682268236824682568266827682868296830683168326833683468356836683768386839684068416842684368446845684668476848684968506851685268536854685568566857685868596860686168626863686468656866686768686869687068716872687368746875687668776878687968806881688268836884688568866887688868896890689168926893689468956896689768986899690069016902690369046905690669076908690969106911691269136914691569166917691869196920692169226923692469256926692769286929693069316932693369346935693669376938693969406941694269436944694569466947694869496950695169526953695469556956695769586959696069616962696369646965696669676968696969706971697269736974697569766977697869796980698169826983698469856986698769886989699069916992699369946995699669976998699970007001700270037004700570067007700870097010701170127013701470157016701770187019702070217022702370247025702670277028702970307031703270337034703570367037703870397040704170427043704470457046704770487049705070517052705370547055705670577058705970607061706270637064706570667067706870697070707170727073707470757076707770787079708070817082708370847085708670877088708970907091709270937094709570967097709870997100710171027103710471057106710771087109711071117112711371147115711671177118711971207121712271237124712571267127712871297130713171327133713471357136713771387139714071417142714371447145714671477148714971507151715271537154715571567157715871597160716171627163716471657166716771687169717071717172717371747175717671777178717971807181718271837184718571867187718871897190719171927193719471957196719771987199720072017202720372047205720672077208720972107211721272137214721572167217721872197220722172227223722472257226722772287229723072317232723372347235723672377238723972407241724272437244724572467247724872497250725172527253725472557256725772587259726072617262726372647265726672677268726972707271727272737274727572767277727872797280728172827283728472857286728772887289729072917292729372947295729672977298729973007301730273037304730573067307730873097310731173127313731473157316731773187319732073217322732373247325732673277328732973307331733273337334733573367337733873397340734173427343734473457346734773487349735073517352735373547355735673577358735973607361736273637364736573667367736873697370737173727373737473757376737773787379738073817382738373847385738673877388738973907391739273937394739573967397739873997400740174027403740474057406740774087409741074117412741374147415741674177418741974207421742274237424742574267427742874297430743174327433743474357436743774387439744074417442744374447445744674477448744974507451745274537454745574567457745874597460746174627463746474657466746774687469747074717472747374747475747674777478747974807481748274837484748574867487748874897490749174927493749474957496749774987499750075017502750375047505750675077508750975107511751275137514751575167517751875197520752175227523752475257526752775287529753075317532753375347535753675377538753975407541754275437544754575467547754875497550755175527553755475557556755775587559756075617562756375647565756675677568756975707571757275737574757575767577757875797580758175827583758475857586758775887589759075917592759375947595759675977598759976007601760276037604760576067607760876097610761176127613761476157616761776187619762076217622762376247625762676277628762976307631763276337634763576367637763876397640764176427643764476457646764776487649765076517652765376547655765676577658765976607661766276637664766576667667766876697670767176727673767476757676767776787679768076817682768376847685768676877688768976907691769276937694769576967697769876997700770177027703770477057706770777087709771077117712771377147715771677177718771977207721772277237724772577267727772877297730773177327733773477357736773777387739774077417742774377447745774677477748774977507751775277537754775577567757775877597760776177627763776477657766776777687769777077717772777377747775777677777778777977807781778277837784778577867787778877897790779177927793779477957796779777987799780078017802780378047805780678077808780978107811781278137814781578167817781878197820782178227823782478257826782778287829783078317832783378347835783678377838783978407841784278437844784578467847784878497850785178527853785478557856785778587859786078617862786378647865786678677868786978707871787278737874787578767877787878797880788178827883788478857886788778887889789078917892789378947895789678977898789979007901790279037904790579067907790879097910791179127913791479157916791779187919792079217922792379247925792679277928792979307931793279337934793579367937793879397940794179427943794479457946794779487949795079517952795379547955795679577958795979607961796279637964796579667967796879697970797179727973797479757976797779787979798079817982798379847985798679877988798979907991799279937994799579967997799879998000800180028003800480058006800780088009801080118012801380148015801680178018801980208021802280238024802580268027802880298030803180328033803480358036803780388039804080418042804380448045804680478048804980508051805280538054805580568057805880598060806180628063806480658066806780688069807080718072807380748075807680778078807980808081808280838084808580868087808880898090809180928093809480958096809780988099810081018102810381048105810681078108810981108111811281138114811581168117811881198120812181228123812481258126812781288129813081318132813381348135813681378138813981408141814281438144814581468147814881498150815181528153815481558156815781588159816081618162816381648165816681678168816981708171817281738174817581768177817881798180818181828183818481858186818781888189819081918192819381948195819681978198819982008201820282038204820582068207820882098210821182128213821482158216821782188219822082218222822382248225822682278228822982308231823282338234823582368237823882398240824182428243824482458246824782488249825082518252825382548255825682578258825982608261826282638264826582668267826882698270827182728273827482758276827782788279828082818282828382848285828682878288828982908291829282938294829582968297829882998300830183028303830483058306830783088309831083118312831383148315831683178318831983208321832283238324832583268327832883298330833183328333833483358336833783388339834083418342834383448345834683478348834983508351835283538354835583568357835883598360836183628363836483658366836783688369837083718372837383748375837683778378837983808381838283838384838583868387838883898390839183928393839483958396839783988399840084018402840384048405840684078408840984108411841284138414841584168417841884198420842184228423842484258426842784288429843084318432843384348435843684378438843984408441844284438444844584468447844884498450845184528453845484558456845784588459846084618462846384648465846684678468846984708471847284738474847584768477847884798480848184828483848484858486848784888489849084918492849384948495849684978498849985008501850285038504850585068507850885098510851185128513851485158516851785188519852085218522852385248525852685278528852985308531853285338534853585368537853885398540854185428543854485458546854785488549855085518552855385548555855685578558855985608561856285638564856585668567856885698570857185728573857485758576857785788579858085818582858385848585858685878588858985908591859285938594859585968597859885998600860186028603860486058606860786088609861086118612861386148615861686178618861986208621862286238624862586268627862886298630863186328633863486358636863786388639864086418642864386448645864686478648864986508651865286538654865586568657865886598660866186628663866486658666866786688669867086718672867386748675867686778678867986808681868286838684868586868687868886898690869186928693869486958696869786988699870087018702870387048705870687078708870987108711871287138714871587168717871887198720872187228723872487258726872787288729873087318732873387348735873687378738873987408741874287438744874587468747874887498750875187528753875487558756875787588759876087618762876387648765876687678768876987708771877287738774877587768777877887798780878187828783878487858786878787888789879087918792879387948795879687978798879988008801880288038804880588068807880888098810881188128813881488158816881788188819882088218822882388248825882688278828882988308831883288338834883588368837883888398840884188428843884488458846884788488849885088518852885388548855885688578858885988608861886288638864886588668867886888698870887188728873887488758876887788788879888088818882888388848885888688878888888988908891889288938894889588968897889888998900890189028903890489058906890789088909891089118912891389148915891689178918891989208921892289238924892589268927892889298930893189328933893489358936893789388939894089418942894389448945894689478948894989508951895289538954895589568957895889598960896189628963896489658966896789688969897089718972897389748975897689778978897989808981898289838984898589868987898889898990899189928993899489958996899789988999900090019002900390049005900690079008900990109011901290139014901590169017901890199020902190229023902490259026902790289029903090319032903390349035903690379038903990409041904290439044904590469047904890499050905190529053905490559056905790589059906090619062906390649065906690679068906990709071907290739074907590769077907890799080908190829083908490859086908790889089909090919092909390949095909690979098909991009101910291039104910591069107910891099110911191129113911491159116911791189119912091219122912391249125912691279128912991309131913291339134913591369137913891399140914191429143914491459146914791489149915091519152915391549155915691579158915991609161916291639164916591669167916891699170917191729173917491759176917791789179918091819182918391849185918691879188918991909191919291939194919591969197919891999200920192029203920492059206920792089209921092119212921392149215921692179218921992209221922292239224922592269227922892299230923192329233923492359236923792389239924092419242924392449245924692479248924992509251925292539254925592569257925892599260926192629263926492659266926792689269927092719272927392749275927692779278927992809281928292839284928592869287928892899290929192929293929492959296929792989299930093019302930393049305930693079308930993109311931293139314931593169317931893199320932193229323932493259326932793289329933093319332933393349335933693379338933993409341934293439344934593469347934893499350935193529353935493559356935793589359936093619362936393649365936693679368936993709371937293739374937593769377937893799380938193829383938493859386938793889389939093919392939393949395939693979398939994009401940294039404940594069407940894099410941194129413941494159416941794189419942094219422942394249425942694279428942994309431943294339434943594369437943894399440944194429443944494459446944794489449945094519452945394549455945694579458945994609461946294639464946594669467946894699470947194729473947494759476947794789479948094819482948394849485948694879488948994909491949294939494949594969497949894999500950195029503950495059506950795089509951095119512951395149515951695179518951995209521952295239524952595269527952895299530953195329533953495359536953795389539954095419542954395449545954695479548954995509551955295539554955595569557955895599560956195629563956495659566956795689569957095719572957395749575957695779578957995809581958295839584958595869587958895899590959195929593959495959596959795989599960096019602960396049605960696079608960996109611961296139614961596169617961896199620962196229623962496259626962796289629963096319632963396349635963696379638963996409641964296439644964596469647964896499650965196529653965496559656965796589659966096619662966396649665966696679668966996709671967296739674967596769677967896799680968196829683968496859686968796889689969096919692969396949695969696979698969997009701970297039704970597069707970897099710971197129713971497159716971797189719972097219722972397249725972697279728972997309731973297339734973597369737973897399740974197429743974497459746974797489749975097519752975397549755975697579758975997609761976297639764976597669767976897699770977197729773977497759776977797789779978097819782978397849785978697879788978997909791979297939794979597969797979897999800980198029803980498059806980798089809981098119812981398149815981698179818981998209821982298239824982598269827982898299830983198329833983498359836983798389839984098419842984398449845984698479848984998509851985298539854985598569857985898599860986198629863986498659866986798689869987098719872987398749875987698779878987998809881988298839884988598869887988898899890989198929893989498959896989798989899990099019902990399049905990699079908990999109911991299139914991599169917991899199920992199229923992499259926992799289929993099319932993399349935993699379938993999409941994299439944994599469947994899499950995199529953995499559956995799589959996099619962996399649965996699679968996999709971997299739974997599769977997899799980998199829983998499859986998799889989999099919992999399949995999699979998999910000100011000210003100041000510006100071000810009100101001110012100131001410015100161001710018100191002010021100221002310024100251002610027100281002910030100311003210033100341003510036100371003810039100401004110042100431004410045100461004710048100491005010051100521005310054100551005610057100581005910060100611006210063100641006510066100671006810069100701007110072100731007410075100761007710078100791008010081100821008310084100851008610087100881008910090100911009210093100941009510096100971009810099101001010110102101031010410105101061010710108101091011010111101121011310114101151011610117101181011910120101211012210123101241012510126101271012810129101301013110132101331013410135101361013710138101391014010141101421014310144101451014610147101481014910150101511015210153101541015510156101571015810159101601016110162101631016410165101661016710168101691017010171101721017310174101751017610177101781017910180101811018210183101841018510186101871018810189101901019110192101931019410195101961019710198101991020010201102021020310204102051020610207102081020910210102111021210213102141021510216102171021810219102201022110222102231022410225102261022710228102291023010231102321023310234102351023610237102381023910240102411024210243102441024510246102471024810249102501025110252102531025410255102561025710258102591026010261102621026310264102651026610267102681026910270102711027210273102741027510276102771027810279102801028110282102831028410285102861028710288102891029010291102921029310294102951029610297102981029910300103011030210303103041030510306103071030810309103101031110312103131031410315103161031710318103191032010321103221032310324103251032610327103281032910330103311033210333103341033510336103371033810339103401034110342103431034410345103461034710348103491035010351103521035310354103551035610357103581035910360103611036210363103641036510366103671036810369103701037110372103731037410375103761037710378103791038010381103821038310384103851038610387103881038910390103911039210393103941039510396103971039810399104001040110402104031040410405104061040710408104091041010411104121041310414104151041610417104181041910420104211042210423104241042510426104271042810429104301043110432104331043410435104361043710438104391044010441104421044310444104451044610447104481044910450104511045210453104541045510456104571045810459104601046110462104631046410465104661046710468104691047010471104721047310474104751047610477104781047910480104811048210483104841048510486104871048810489104901049110492104931049410495104961049710498104991050010501105021050310504105051050610507105081050910510105111051210513105141051510516105171051810519105201052110522105231052410525105261052710528105291053010531105321053310534105351053610537105381053910540105411054210543105441054510546105471054810549105501055110552105531055410555105561055710558105591056010561105621056310564105651056610567105681056910570105711057210573105741057510576105771057810579105801058110582105831058410585105861058710588105891059010591105921059310594105951059610597105981059910600106011060210603106041060510606106071060810609106101061110612106131061410615106161061710618106191062010621106221062310624106251062610627106281062910630106311063210633106341063510636106371063810639106401064110642106431064410645106461064710648106491065010651106521065310654106551065610657106581065910660106611066210663106641066510666106671066810669106701067110672106731067410675106761067710678106791068010681106821068310684106851068610687106881068910690106911069210693106941069510696106971069810699107001070110702107031070410705107061070710708107091071010711107121071310714107151071610717107181071910720107211072210723107241072510726107271072810729107301073110732107331073410735107361073710738107391074010741107421074310744107451074610747107481074910750107511075210753107541075510756107571075810759107601076110762107631076410765107661076710768107691077010771107721077310774107751077610777107781077910780107811078210783107841078510786107871078810789107901079110792107931079410795107961079710798107991080010801108021080310804108051080610807108081080910810108111081210813108141081510816108171081810819108201082110822108231082410825108261082710828108291083010831108321083310834108351083610837108381083910840108411084210843108441084510846108471084810849108501085110852108531085410855108561085710858108591086010861108621086310864108651086610867108681086910870108711087210873108741087510876108771087810879108801088110882108831088410885108861088710888108891089010891108921089310894108951089610897108981089910900109011090210903109041090510906109071090810909109101091110912109131091410915109161091710918109191092010921109221092310924109251092610927109281092910930109311093210933109341093510936109371093810939109401094110942109431094410945109461094710948109491095010951109521095310954109551095610957109581095910960109611096210963109641096510966109671096810969109701097110972109731097410975109761097710978109791098010981109821098310984109851098610987109881098910990109911099210993109941099510996109971099810999110001100111002110031100411005110061100711008110091101011011110121101311014110151101611017110181101911020110211102211023110241102511026110271102811029110301103111032110331103411035110361103711038110391104011041110421104311044110451104611047110481104911050110511105211053110541105511056110571105811059110601106111062110631106411065110661106711068110691107011071110721107311074110751107611077110781107911080110811108211083110841108511086110871108811089110901109111092110931109411095110961109711098110991110011101111021110311104111051110611107111081110911110111111111211113111141111511116111171111811119111201112111122111231112411125111261112711128111291113011131111321113311134111351113611137111381113911140111411114211143111441114511146111471114811149111501115111152111531115411155111561115711158111591116011161111621116311164111651116611167111681116911170111711117211173111741117511176111771117811179111801118111182111831118411185111861118711188111891119011191111921119311194111951119611197111981119911200112011120211203112041120511206112071120811209112101121111212112131121411215112161121711218112191122011221112221122311224112251122611227112281122911230112311123211233112341123511236112371123811239112401124111242112431124411245112461124711248112491125011251112521125311254112551125611257112581125911260112611126211263112641126511266112671126811269112701127111272112731127411275112761127711278112791128011281112821128311284112851128611287112881128911290112911129211293112941129511296112971129811299113001130111302113031130411305113061130711308113091131011311113121131311314113151131611317113181131911320113211132211323113241132511326113271132811329113301133111332113331133411335113361133711338113391134011341113421134311344113451134611347113481134911350113511135211353113541135511356113571135811359113601136111362113631136411365113661136711368113691137011371113721137311374113751137611377113781137911380113811138211383113841138511386113871138811389113901139111392113931139411395113961139711398113991140011401114021140311404114051140611407114081140911410114111141211413114141141511416114171141811419114201142111422114231142411425114261142711428114291143011431114321143311434114351143611437114381143911440114411144211443114441144511446114471144811449114501145111452114531145411455114561145711458114591146011461114621146311464114651146611467114681146911470114711147211473114741147511476114771147811479114801148111482114831148411485114861148711488114891149011491114921149311494114951149611497114981149911500115011150211503115041150511506115071150811509115101151111512115131151411515115161151711518115191152011521115221152311524115251152611527115281152911530115311153211533115341153511536115371153811539115401154111542115431154411545115461154711548115491155011551115521155311554115551155611557115581155911560115611156211563115641156511566115671156811569115701157111572115731157411575115761157711578115791158011581115821158311584115851158611587115881158911590115911159211593115941159511596115971159811599116001160111602116031160411605116061160711608116091161011611116121161311614116151161611617116181161911620116211162211623116241162511626116271162811629116301163111632116331163411635116361163711638116391164011641116421164311644116451164611647116481164911650116511165211653116541165511656116571165811659116601166111662116631166411665116661166711668116691167011671116721167311674116751167611677116781167911680116811168211683116841168511686116871168811689116901169111692116931169411695116961169711698116991170011701117021170311704117051170611707117081170911710117111171211713117141171511716117171171811719117201172111722117231172411725117261172711728117291173011731117321173311734117351173611737117381173911740117411174211743117441174511746117471174811749117501175111752117531175411755117561175711758117591176011761117621176311764117651176611767117681176911770117711177211773117741177511776117771177811779117801178111782117831178411785117861178711788117891179011791117921179311794117951179611797117981179911800118011180211803118041180511806118071180811809118101181111812118131181411815118161181711818118191182011821118221182311824118251182611827118281182911830118311183211833118341183511836118371183811839118401184111842118431184411845118461184711848118491185011851118521185311854118551185611857118581185911860118611186211863118641186511866118671186811869118701187111872118731187411875118761187711878118791188011881118821188311884118851188611887118881188911890118911189211893118941189511896118971189811899119001190111902119031190411905119061190711908119091191011911119121191311914119151191611917119181191911920119211192211923119241192511926119271192811929119301193111932119331193411935119361193711938119391194011941119421194311944119451194611947119481194911950119511195211953119541195511956119571195811959119601196111962119631196411965119661196711968119691197011971119721197311974119751197611977119781197911980119811198211983119841198511986119871198811989119901199111992119931199411995119961199711998119991200012001120021200312004120051200612007120081200912010120111201212013120141201512016120171201812019120201202112022120231202412025120261202712028120291203012031120321203312034120351203612037120381203912040120411204212043120441204512046120471204812049120501205112052120531205412055120561205712058120591206012061120621206312064120651206612067120681206912070120711207212073120741207512076120771207812079120801208112082120831208412085120861208712088120891209012091120921209312094120951209612097120981209912100121011210212103121041210512106121071210812109121101211112112121131211412115121161211712118121191212012121121221212312124121251212612127121281212912130121311213212133121341213512136121371213812139121401214112142121431214412145121461214712148121491215012151121521215312154121551215612157121581215912160121611216212163121641216512166121671216812169121701217112172121731217412175121761217712178121791218012181121821218312184121851218612187121881218912190121911219212193121941219512196121971219812199122001220112202122031220412205122061220712208122091221012211122121221312214122151221612217122181221912220122211222212223122241222512226122271222812229122301223112232122331223412235122361223712238122391224012241122421224312244122451224612247122481224912250122511225212253122541225512256122571225812259122601226112262122631226412265122661226712268122691227012271122721227312274122751227612277122781227912280122811228212283122841228512286122871228812289122901229112292122931229412295122961229712298122991230012301123021230312304123051230612307123081230912310123111231212313123141231512316123171231812319123201232112322123231232412325123261232712328123291233012331123321233312334123351233612337123381233912340123411234212343123441234512346123471234812349123501235112352123531235412355123561235712358123591236012361123621236312364123651236612367123681236912370123711237212373123741237512376123771237812379123801238112382123831238412385123861238712388123891239012391123921239312394123951239612397123981239912400124011240212403124041240512406124071240812409124101241112412124131241412415124161241712418124191242012421124221242312424124251242612427124281242912430124311243212433124341243512436124371243812439124401244112442124431244412445124461244712448124491245012451124521245312454124551245612457124581245912460124611246212463124641246512466124671246812469124701247112472124731247412475124761247712478124791248012481124821248312484124851248612487124881248912490124911249212493124941249512496124971249812499125001250112502125031250412505125061250712508125091251012511125121251312514125151251612517125181251912520125211252212523125241252512526125271252812529125301253112532125331253412535125361253712538125391254012541125421254312544125451254612547125481254912550125511255212553125541255512556125571255812559125601256112562125631256412565125661256712568125691257012571125721257312574125751257612577125781257912580125811258212583125841258512586125871258812589125901259112592125931259412595125961259712598125991260012601126021260312604126051260612607126081260912610126111261212613126141261512616126171261812619126201262112622126231262412625126261262712628126291263012631126321263312634126351263612637126381263912640126411264212643126441264512646126471264812649126501265112652126531265412655126561265712658126591266012661126621266312664126651266612667126681266912670126711267212673126741267512676126771267812679126801268112682126831268412685126861268712688126891269012691126921269312694126951269612697126981269912700127011270212703127041270512706127071270812709127101271112712127131271412715127161271712718127191272012721127221272312724127251272612727127281272912730127311273212733127341273512736127371273812739127401274112742127431274412745127461274712748127491275012751127521275312754127551275612757127581275912760127611276212763127641276512766127671276812769127701277112772127731277412775127761277712778127791278012781127821278312784127851278612787127881278912790127911279212793127941279512796127971279812799128001280112802128031280412805128061280712808128091281012811128121281312814128151281612817128181281912820128211282212823128241282512826128271282812829128301283112832128331283412835128361283712838128391284012841128421284312844128451284612847128481284912850128511285212853128541285512856128571285812859128601286112862128631286412865128661286712868128691287012871128721287312874128751287612877128781287912880128811288212883128841288512886128871288812889128901289112892128931289412895128961289712898128991290012901129021290312904129051290612907129081290912910129111291212913129141291512916129171291812919129201292112922129231292412925129261292712928129291293012931129321293312934129351293612937129381293912940129411294212943129441294512946129471294812949129501295112952129531295412955129561295712958129591296012961129621296312964129651296612967129681296912970129711297212973129741297512976129771297812979129801298112982129831298412985129861298712988129891299012991129921299312994129951299612997129981299913000130011300213003130041300513006130071300813009130101301113012130131301413015130161301713018130191302013021130221302313024130251302613027130281302913030130311303213033130341303513036130371303813039130401304113042130431304413045130461304713048130491305013051130521305313054130551305613057130581305913060130611306213063130641306513066130671306813069130701307113072130731307413075130761307713078130791308013081130821308313084130851308613087130881308913090130911309213093130941309513096130971309813099131001310113102131031310413105131061310713108131091311013111131121311313114131151311613117131181311913120131211312213123131241312513126131271312813129131301313113132131331313413135131361313713138131391314013141131421314313144131451314613147131481314913150131511315213153131541315513156131571315813159131601316113162131631316413165131661316713168131691317013171131721317313174131751317613177131781317913180131811318213183131841318513186131871318813189131901319113192131931319413195131961319713198131991320013201132021320313204132051320613207132081320913210132111321213213132141321513216132171321813219132201322113222132231322413225132261322713228132291323013231132321323313234132351323613237132381323913240132411324213243132441324513246132471324813249132501325113252132531325413255132561325713258132591326013261132621326313264132651326613267132681326913270132711327213273132741327513276132771327813279132801328113282132831328413285132861328713288132891329013291132921329313294132951329613297132981329913300133011330213303133041330513306133071330813309133101331113312133131331413315133161331713318133191332013321133221332313324133251332613327133281332913330133311333213333133341333513336133371333813339133401334113342133431334413345133461334713348133491335013351133521335313354133551335613357133581335913360133611336213363133641336513366133671336813369133701337113372133731337413375133761337713378133791338013381133821338313384133851338613387133881338913390133911339213393133941339513396133971339813399134001340113402134031340413405134061340713408134091341013411134121341313414134151341613417134181341913420134211342213423134241342513426134271342813429134301343113432134331343413435134361343713438134391344013441134421344313444134451344613447134481344913450134511345213453134541345513456134571345813459134601346113462134631346413465134661346713468134691347013471134721347313474134751347613477134781347913480134811348213483134841348513486134871348813489134901349113492134931349413495134961349713498134991350013501135021350313504135051350613507135081350913510135111351213513135141351513516135171351813519135201352113522135231352413525135261352713528135291353013531135321353313534135351353613537135381353913540135411354213543135441354513546135471354813549135501355113552135531355413555135561355713558135591356013561135621356313564135651356613567135681356913570135711357213573135741357513576135771357813579135801358113582135831358413585135861358713588135891359013591135921359313594135951359613597135981359913600136011360213603136041360513606136071360813609136101361113612136131361413615136161361713618136191362013621136221362313624136251362613627136281362913630136311363213633136341363513636136371363813639136401364113642136431364413645136461364713648136491365013651136521365313654136551365613657136581365913660136611366213663136641366513666136671366813669136701367113672136731367413675136761367713678136791368013681136821368313684136851368613687136881368913690136911369213693136941369513696136971369813699137001370113702137031370413705137061370713708137091371013711137121371313714137151371613717137181371913720137211372213723137241372513726137271372813729137301373113732137331373413735137361373713738137391374013741137421374313744137451374613747137481374913750137511375213753137541375513756137571375813759137601376113762137631376413765137661376713768137691377013771137721377313774137751377613777137781377913780137811378213783137841378513786137871378813789137901379113792137931379413795137961379713798137991380013801138021380313804138051380613807138081380913810138111381213813138141381513816138171381813819138201382113822138231382413825138261382713828138291383013831138321383313834138351383613837138381383913840138411384213843138441384513846138471384813849138501385113852138531385413855138561385713858138591386013861138621386313864138651386613867138681386913870138711387213873138741387513876138771387813879138801388113882138831388413885138861388713888138891389013891138921389313894138951389613897138981389913900139011390213903139041390513906139071390813909139101391113912139131391413915139161391713918139191392013921139221392313924139251392613927139281392913930139311393213933139341393513936139371393813939139401394113942139431394413945139461394713948139491395013951139521395313954139551395613957139581395913960139611396213963139641396513966139671396813969139701397113972139731397413975139761397713978139791398013981139821398313984139851398613987139881398913990139911399213993139941399513996139971399813999140001400114002140031400414005140061400714008140091401014011140121401314014140151401614017140181401914020140211402214023140241402514026140271402814029140301403114032140331403414035140361403714038140391404014041140421404314044140451404614047140481404914050140511405214053140541405514056140571405814059140601406114062140631406414065140661406714068140691407014071140721407314074140751407614077140781407914080140811408214083140841408514086140871408814089140901409114092140931409414095140961409714098140991410014101141021410314104141051410614107141081410914110141111411214113141141411514116141171411814119141201412114122141231412414125141261412714128141291413014131141321413314134141351413614137141381413914140141411414214143141441414514146141471414814149141501415114152141531415414155141561415714158141591416014161141621416314164141651416614167141681416914170141711417214173141741417514176141771417814179141801418114182141831418414185141861418714188141891419014191141921419314194141951419614197141981419914200142011420214203142041420514206142071420814209142101421114212142131421414215142161421714218142191422014221142221422314224142251422614227142281422914230142311423214233142341423514236142371423814239142401424114242142431424414245142461424714248142491425014251142521425314254142551425614257142581425914260142611426214263142641426514266142671426814269142701427114272142731427414275142761427714278142791428014281142821428314284142851428614287142881428914290142911429214293142941429514296142971429814299143001430114302143031430414305143061430714308143091431014311143121431314314143151431614317143181431914320143211432214323143241432514326143271432814329143301433114332143331433414335143361433714338143391434014341143421434314344143451434614347143481434914350143511435214353143541435514356143571435814359143601436114362143631436414365143661436714368143691437014371143721437314374143751437614377143781437914380143811438214383143841438514386143871438814389143901439114392143931439414395143961439714398143991440014401144021440314404144051440614407144081440914410144111441214413144141441514416144171441814419144201442114422144231442414425144261442714428144291443014431144321443314434144351443614437144381443914440144411444214443144441444514446144471444814449144501445114452144531445414455144561445714458144591446014461144621446314464144651446614467144681446914470144711447214473144741447514476144771447814479144801448114482144831448414485144861448714488144891449014491144921449314494144951449614497144981449914500145011450214503145041450514506145071450814509145101451114512145131451414515145161451714518145191452014521145221452314524145251452614527145281452914530145311453214533145341453514536145371453814539145401454114542145431454414545145461454714548145491455014551145521455314554145551455614557145581455914560145611456214563145641456514566145671456814569145701457114572145731457414575145761457714578145791458014581145821458314584145851458614587145881458914590145911459214593145941459514596145971459814599146001460114602146031460414605146061460714608146091461014611146121461314614146151461614617146181461914620146211462214623146241462514626146271462814629146301463114632146331463414635146361463714638146391464014641146421464314644146451464614647146481464914650146511465214653146541465514656146571465814659146601466114662146631466414665146661466714668146691467014671146721467314674146751467614677146781467914680146811468214683146841468514686146871468814689146901469114692146931469414695146961469714698146991470014701147021470314704147051470614707147081470914710147111471214713147141471514716147171471814719147201472114722147231472414725147261472714728147291473014731147321473314734147351473614737147381473914740147411474214743147441474514746147471474814749147501475114752147531475414755147561475714758147591476014761147621476314764147651476614767147681476914770147711477214773147741477514776147771477814779147801478114782147831478414785147861478714788147891479014791147921479314794147951479614797147981479914800148011480214803148041480514806148071480814809148101481114812148131481414815148161481714818148191482014821148221482314824148251482614827148281482914830148311483214833148341483514836148371483814839148401484114842148431484414845148461484714848148491485014851148521485314854148551485614857148581485914860148611486214863148641486514866148671486814869148701487114872148731487414875148761487714878148791488014881148821488314884148851488614887
  1. % Why direct style instead of continuation passing style?
  2. %% Student project ideas:
  3. %% * high-level optimizations like procedure inlining, etc.
  4. %% * closure optimization
  5. %% * adding letrec to the language
  6. %% (Thought: in the book and regular course, replace top-level defines
  7. %% with letrec.)
  8. %% * alternative back ends (ARM!, LLVM)
  9. %% * alternative calling convention (a la Dybvig)
  10. %% * lazy evaluation
  11. %% * continuations (frames in heap a la SML or segmented stack a la Dybvig)
  12. %% * exceptions
  13. %% * self hosting
  14. %% * I/O
  15. %% * foreign function interface
  16. %% * quasi-quote and unquote
  17. %% * macros (too difficult?)
  18. %% * alternative garbage collector
  19. %% * alternative register allocator
  20. %% * type classes
  21. %% * loop optimization (fusion, etc.)
  22. %% * deforestation
  23. %% * records with subtyping
  24. %% * object-oriented features
  25. %% - objects, object types, and structural subtyping (e.g. Abadi & Cardelli)
  26. %% - class-based objects and nominal subtyping (e.g. Featherweight Java)
  27. %% * multi-threading, fork join, futures, implicit parallelism
  28. %% * type analysis and specialization
  29. \documentclass[11pt]{book}
  30. \usepackage[T1]{fontenc}
  31. \usepackage[utf8]{inputenc}
  32. \usepackage{lmodern}
  33. \usepackage{hyperref}
  34. \usepackage{graphicx}
  35. \usepackage[english]{babel}
  36. \usepackage{listings}
  37. \usepackage{amsmath}
  38. \usepackage{amsthm}
  39. \usepackage{amssymb}
  40. \usepackage[numbers]{natbib}
  41. \usepackage{stmaryrd}
  42. \usepackage{xypic}
  43. \usepackage{semantic}
  44. \usepackage{wrapfig}
  45. \usepackage{tcolorbox}
  46. \usepackage{multirow}
  47. \usepackage{color}
  48. \usepackage{upquote}
  49. \usepackage{makeidx}
  50. \makeindex
  51. \definecolor{lightgray}{gray}{1}
  52. \newcommand{\black}[1]{{\color{black} #1}}
  53. %\newcommand{\gray}[1]{{\color{lightgray} #1}}
  54. \newcommand{\gray}[1]{{\color{gray} #1}}
  55. %% For pictures
  56. \usepackage{tikz}
  57. \usetikzlibrary{arrows.meta}
  58. \tikzset{baseline=(current bounding box.center), >/.tip={Triangle[scale=1.4]}}
  59. % Computer Modern is already the default. -Jeremy
  60. %\renewcommand{\ttdefault}{cmtt}
  61. \definecolor{comment-red}{rgb}{0.8,0,0}
  62. \if01
  63. \newcommand{\rn}[1]{{\color{comment-red}{(RRN: #1)}}}
  64. \newcommand{\margincomment}[1]{\marginpar{\color{comment-red}\tiny #1}}
  65. \else
  66. \newcommand{\rn}[1]{}
  67. \newcommand{\margincomment}[1]{}
  68. \fi
  69. \newcommand{\ocaml}[1]{{\color{blue}{#1}}}
  70. \newenvironment{ocamlx}{
  71. \begin{color}{blue}
  72. }
  73. {
  74. \end{color}
  75. }
  76. \definecolor{BLUE}{rgb}{0,0,1} % no idea why we need this
  77. \lstdefinestyle{racket}{
  78. language=Lisp,
  79. basicstyle=\ttfamily\small,
  80. morekeywords={seq,assign,program,block,define,lambda,match,goto,if,else,then,struct,Integer,Boolean,Vector,Void,Any,while,begin,define,public,override,class},
  81. deletekeywords={read,mapping,vector},
  82. escapechar=|,
  83. columns=flexible,
  84. moredelim=[is][\color{red}]{~}{~},
  85. showstringspaces=false
  86. }
  87. \lstset{style=racket}
  88. \lstdefinestyle{ocaml}{
  89. language=[Objective]Caml,
  90. basicstyle=\ttfamily\small\color{blue},
  91. columns=flexible,
  92. escapechar=~,
  93. showstringspaces=false
  94. }
  95. \newtheorem{theorem}{Theorem}
  96. \newtheorem{lemma}[theorem]{Lemma}
  97. \newtheorem{corollary}[theorem]{Corollary}
  98. \newtheorem{proposition}[theorem]{Proposition}
  99. \newtheorem{constraint}[theorem]{Constraint}
  100. \newtheorem{definition}[theorem]{Definition}
  101. \newtheorem{exercise}[theorem]{Exercise}
  102. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  103. % 'dedication' environment: To add a dedication paragraph at the start of book %
  104. % Source: http://www.tug.org/pipermail/texhax/2010-June/015184.html %
  105. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  106. \newenvironment{dedication}
  107. {
  108. \cleardoublepage
  109. \thispagestyle{empty}
  110. \vspace*{\stretch{1}}
  111. \hfill\begin{minipage}[t]{0.66\textwidth}
  112. \raggedright
  113. }
  114. {
  115. \end{minipage}
  116. \vspace*{\stretch{3}}
  117. \clearpage
  118. }
  119. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  120. % Chapter quote at the start of chapter %
  121. % Source: http://tex.stackexchange.com/a/53380 %
  122. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  123. \makeatletter
  124. \renewcommand{\@chapapp}{}% Not necessary...
  125. \newenvironment{chapquote}[2][2em]
  126. {\setlength{\@tempdima}{#1}%
  127. \def\chapquote@author{#2}%
  128. \parshape 1 \@tempdima \dimexpr\textwidth-2\@tempdima\relax%
  129. \itshape}
  130. {\par\normalfont\hfill--\ \chapquote@author\hspace*{\@tempdima}\par\bigskip}
  131. \makeatother
  132. \input{defs}
  133. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  134. \title{\Huge \textbf{Essentials of Compilation} \\
  135. \huge The Incremental, Nano-Pass Approach}
  136. \author{\textsc{Jeremy G. Siek} \\
  137. %\thanks{\url{http://homes.soic.indiana.edu/jsiek/}} \\
  138. Indiana University \\
  139. \\
  140. with contributions from: \\
  141. Carl Factora \\
  142. Andre Kuhlenschmidt \\
  143. Ryan R. Newton \\
  144. Ryan Scott \\
  145. Cameron Swords \\
  146. Michael M. Vitousek \\
  147. Michael Vollmer \\
  148. \\
  149. \ocaml{OCaml version:} \\
  150. \ocaml{Andrew Tolmach} \\
  151. \ocaml{(with inspiration from a Haskell version by Ian Winter)}
  152. }
  153. \begin{document}
  154. \frontmatter
  155. \maketitle
  156. \begin{dedication}
  157. This book is dedicated to the programming language wonks at Indiana
  158. University.
  159. \end{dedication}
  160. \tableofcontents
  161. \listoffigures
  162. %\listoftables
  163. \mainmatter
  164. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  165. \chapter*{Preface}
  166. There is a magical moment when a programmer presses the ``run'' button
  167. and the software begins to execute. Somehow a program written in a
  168. high-level language is running on a computer that is only capable of
  169. shuffling bits. Here we reveal the wizardry that makes that moment
  170. possible. Beginning with the groundbreaking work of Backus and
  171. colleagues in the 1950s, computer scientists discovered techniques for
  172. constructing programs, called \emph{compilers}, that automatically
  173. translate high-level programs into machine code.
  174. We take you on a journey by constructing your own compiler for a small
  175. but powerful language. Along the way we explain the essential
  176. concepts, algorithms, and data structures that underlie compilers. We
  177. develop your understanding of how programs are mapped onto computer
  178. hardware, which is helpful when reasoning about properties at the
  179. junction between hardware and software such as execution time,
  180. software errors, and security vulnerabilities. For those interested
  181. in pursuing compiler construction, our goal is to provide a
  182. stepping-stone to advanced topics such as just-in-time compilation,
  183. program analysis, and program optimization. For those interested in
  184. designing and implementing their own programming languages, we connect
  185. language design choices to their impact on the compiler its generated
  186. code.
  187. A compiler is typically organized as a sequence of stages that
  188. progressively translates a program to code that runs on hardware. We
  189. take this approach to the extreme by partitioning our compiler into a
  190. large number of \emph{nanopasses}, each of which performs a single
  191. task. This allows us to test the output of each pass in isolation, and
  192. furthermore, allows us to focus our attention making the compiler far
  193. easier to understand.
  194. %% [TODO: easier to understand/debug for those maintaining the compiler,
  195. %% proving correctness]
  196. The most familiar approach to describing compilers is with one pass
  197. per chapter. The problem with that is it obfuscates how language
  198. features motivate design choices in a compiler. We take an
  199. \emph{incremental} approach in which we build a complete compiler in
  200. each chapter, starting with arithmetic and variables and add new
  201. features in subsequent chapters.
  202. Our choice of language features is designed to elicit the fundamental
  203. concepts and algorithms used in compilers.
  204. \begin{itemize}
  205. \item We begin with integer arithmetic and local variables in
  206. Chapters~\ref{ch:trees-recur} and \ref{ch:Rvar}, where we introduce
  207. the fundamental tools of compiler construction: \emph{abstract
  208. syntax trees} and \emph{recursive functions}.
  209. \item In Chapter~\ref{ch:register-allocation-Rvar} we apply
  210. \emph{graph coloring} to assign variables to machine registers.
  211. \item Chapter~\ref{ch:Rif} adds \code{if} expressions, which motivates
  212. an elegant recursive algorithm for mapping expressions to
  213. \emph{control-flow graphs}.
  214. \item Chapter~\ref{ch:Rvec} adds heap-allocated tuples, motivating
  215. \emph{garbage collection}.
  216. \item Chapter~\ref{ch:Rfun} adds functions that are first-class values
  217. but lack lexical scoping, similar to the C programming
  218. language~\citep{Kernighan:1988nx} except that we generate efficient
  219. tail calls. The reader learns about the procedure call stack,
  220. \emph{calling conventions}, and their interaction with register
  221. allocation and garbage collection.
  222. \item Chapter~\ref{ch:Rlam} adds anonymous functions with lexical
  223. scoping, i.e., \emph{lambda abstraction}. The reader learns about
  224. \emph{closure conversion}, in which lambdas are translated into a
  225. combination of functions and tuples.
  226. \item Chapter~\ref{ch:Rdyn} adds \emph{dynamic typing}. Prior to this
  227. point the input languages are statically typed. The reader extends
  228. the statically typed language with an \code{Any} type which serves
  229. as a target for compiling the dynamically typed language.
  230. \item Chapter~\ref{ch:Rwhile} fleshes out support for imperative
  231. programming languages with the addition of loops and mutable
  232. variables. These additions elicit the need for \emph{dataflow
  233. analysis} in the register allocator.
  234. \item Chapter~\ref{ch:Rgrad} uses the \code{Any} type of
  235. Chapter~\ref{ch:Rdyn} to implement a \emph{gradually typed language}
  236. in which different regions of a program may be static or dynamically
  237. typed. The reader implements runtime support for \emph{proxies} that
  238. allow values to safely move between regions.
  239. \item Chapter~\ref{ch:Rpoly} adds \emph{generics} with autoboxing,
  240. leveraging the \code{Any} type and type casts developed in Chapters
  241. \ref{ch:Rdyn} and \ref{ch:Rgrad}.
  242. \end{itemize}
  243. There are many language features that we do not include. Our choices
  244. weigh the incidental complexity of a feature against the fundamental
  245. concepts that it exposes. For example, we include tuples and not
  246. records because they both elicit the study of heap allocation and
  247. garbage collection but records come with more incidental complexity.
  248. Since 2016 this book has served as the textbook for the compiler
  249. course at Indiana University, a 16-week course for upper-level
  250. undergraduates and first-year graduate students.
  251. %
  252. Prior to this course, students learn to program in both imperative and
  253. functional languages, study data structures and algorithms, and take
  254. discrete mathematics.
  255. %
  256. At the beginning of the course, students form groups of 2-4 people.
  257. The groups complete one chapter every two weeks, starting with
  258. Chapter~\ref{ch:Rvar} and finishing with Chapter~\ref{ch:Rdyn}. Many
  259. chapters include a challenge problem that we assign to the graduate
  260. students. The last two weeks of the course involve a final project in
  261. which students design and implement a compiler extension of their
  262. choosing. Chapters~\ref{ch:Rwhile}, \ref{ch:Rgrad}, and
  263. \ref{ch:Rpoly} can be used in support of these projects or they can
  264. replace some of the earlier chapters. For example, a course with an
  265. emphasis on statically-typed imperative languages would skip
  266. Chapter~\ref{ch:Rdyn} in favor of
  267. Chapter~\ref{ch:Rwhile}. Figure~\ref{fig:chapter-dependences} depicts
  268. the dependencies between chapters.
  269. This book has also been used in compiler courses at California
  270. Polytechnic State University, Rose–Hulman Institute of Technology, and
  271. University of Massachusetts Lowell.
  272. \begin{figure}[tp]
  273. \begin{tikzpicture}[baseline=(current bounding box.center)]
  274. \node (C1) at (0,1.5) {\small Ch.~\ref{ch:trees-recur} Preliminaries};
  275. \node (C2) at (4,1.5) {\small Ch.~\ref{ch:Rvar} Variables};
  276. \node (C3) at (8,1.5) {\small Ch.~\ref{ch:register-allocation-Rvar} Registers};
  277. \node (C4) at (0,0) {\small Ch.~\ref{ch:Rif} Control Flow};
  278. \node (C5) at (4,0) {\small Ch.~\ref{ch:Rvec} Tuples};
  279. \node (C6) at (8,0) {\small Ch.~\ref{ch:Rfun} Functions};
  280. \node (C9) at (0,-1.5) {\small Ch.~\ref{ch:Rwhile} Loops};
  281. \node (C8) at (4,-1.5) {\small Ch.~\ref{ch:Rdyn} Dynamic};
  282. \node (C7) at (8,-1.5) {\small Ch.~\ref{ch:Rlam} Lambda};
  283. \node (C10) at (4,-3) {\small Ch.~\ref{ch:Rgrad} Gradual};
  284. \node (C11) at (8,-3) {\small Ch.~\ref{ch:Rpoly} Generics};
  285. \path[->] (C1) edge [above] node {} (C2);
  286. \path[->] (C2) edge [above] node {} (C3);
  287. \path[->] (C3) edge [above] node {} (C4);
  288. \path[->] (C4) edge [above] node {} (C5);
  289. \path[->] (C5) edge [above] node {} (C6);
  290. \path[->] (C6) edge [above] node {} (C7);
  291. \path[->] (C4) edge [above] node {} (C8);
  292. \path[->] (C4) edge [above] node {} (C9);
  293. \path[->] (C8) edge [above] node {} (C10);
  294. \path[->] (C10) edge [above] node {} (C11);
  295. \end{tikzpicture}
  296. \caption{Diagram of chapter dependencies.}
  297. \label{fig:chapter-dependences}
  298. \end{figure}
  299. We use the \href{https://racket-lang.org/}{Racket} language both for
  300. the implementation of the compiler and for the input language, so the
  301. reader should be proficient with Racket or Scheme. There are many
  302. excellent resources for learning Scheme and
  303. Racket~\citep{Dybvig:1987aa,Abelson:1996uq,Friedman:1996aa,Felleisen:2001aa,Felleisen:2013aa,Flatt:2014aa}. The
  304. support code for this book is in the \code{github} repository at the
  305. following URL:
  306. \begin{center}\small
  307. \url{https://github.com/IUCompilerCourse/public-student-support-code}
  308. \end{center}
  309. The compiler targets x86 assembly language~\citep{Intel:2015aa}, so it
  310. is helpful but not necessary for the reader to have taken a computer
  311. systems course~\citep{Bryant:2010aa}. This book introduces the parts
  312. of x86-64 assembly language that are needed.
  313. %
  314. We follow the System V calling
  315. conventions~\citep{Bryant:2005aa,Matz:2013aa}, so the assembly code
  316. that we generate works with the runtime system (written in C) when it
  317. is compiled using the GNU C compiler (\code{gcc}) on Linux and MacOS
  318. operating systems.
  319. %
  320. On the Windows operating system, \code{gcc} uses the Microsoft x64
  321. calling convention~\citep{Microsoft:2018aa,Microsoft:2020aa}. So the
  322. assembly code that we generate does \emph{not} work with the runtime
  323. system on Windows. One workaround is to use a virtual machine with
  324. Linux as the guest operating system.
  325. \section*{Acknowledgments}
  326. The tradition of compiler construction at Indiana University goes back
  327. to research and courses on programming languages by Daniel Friedman in
  328. the 1970's and 1980's. One of his students, Kent Dybvig, implemented
  329. Chez Scheme~\citep{Dybvig:2006aa}, a production-quality, efficient
  330. compiler for Scheme. Throughout the 1990's and 2000's, Dybvig taught
  331. the compiler course and continued the development of Chez Scheme.
  332. %
  333. The compiler course evolved to incorporate novel pedagogical ideas
  334. while also including elements of efficient real-world compilers. One
  335. of Friedman's ideas was to split the compiler into many small
  336. passes. Another idea, called ``the game'', was to test the code
  337. generated by each pass on interpreters.
  338. Dybvig, with help from his students Dipanwita Sarkar and Andrew Keep,
  339. developed infrastructure to support this approach and evolved the
  340. course to use even smaller
  341. nanopasses~\citep{Sarkar:2004fk,Keep:2012aa}. Many of the compiler
  342. design decisions in this book are inspired by the assignment
  343. descriptions of \citet{Dybvig:2010aa}. In the mid 2000's a student of
  344. Dybvig's named Abdulaziz Ghuloum observed that the front-to-back
  345. organization of the course made it difficult for students to
  346. understand the rationale for the compiler design. Ghuloum proposed the
  347. incremental approach~\citep{Ghuloum:2006bh}.
  348. We thank Bor-Yuh Chang, John Clements, Jay McCarthy, Joseph Near, Nate
  349. Nystrom, and Michael Wollowski for teaching courses based on early
  350. drafts.
  351. We thank Ronald Garcia for being Jeremy's partner when they took the
  352. compiler course in the early 2000's and especially for finding the bug
  353. that sent the garbage collector on a wild goose chase!
  354. \mbox{}\\
  355. \noindent Jeremy G. Siek \\
  356. Bloomington, Indiana
  357. %Oscar Waddell ??
  358. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  359. \chapter{Preliminaries}
  360. \label{ch:trees-recur}
  361. \begin{ocamlx}
  362. Text in blue, like this, represents additions to the original book
  363. text to support the use of OCaml rather than Racket as our compiler
  364. implementation language. The original text is never changed, so you
  365. can see both the Racket and OCaml versions in parallel. The main
  366. motivation for this is to save a lot of rote editing: the bulk of
  367. the story being told in this book is substantially the same
  368. regardless of implementation language, so most of what has been
  369. written about the Racket version applies directly to OCaml
  370. with just small mental adjustments between the syntaxes of the two
  371. languages. A secondary motivation is that it is sometimes easier to
  372. see key underlying ideas when they are expressed in more than one
  373. way.
  374. In many respects, Racket and OCaml are very similar languages: they
  375. both encourage a purely functional style of programming while also supporting
  376. imperative programming, provide higher-order functions, use
  377. garbage collection to guarantee memory safety, etc. Indeed, the
  378. ``back ends'' of Racket and OCaml implementations are nearly
  379. interchangeable. By far the most fundamental difference between them is
  380. that OCaml uses static typing, whereas Racket uses runtime typing.
  381. The latter can provide useful flexibility, but the former has the
  382. big advantage of providing compile-time feedback on type errors.
  383. This is our main motivation for using OCaml.
  384. \end{ocamlx}
  385. In this chapter we review the basic tools that are needed to implement
  386. a compiler. Programs are typically input by a programmer as text,
  387. i.e., a sequence of characters. The program-as-text representation is
  388. called \emph{concrete syntax}. We use concrete syntax to concisely
  389. write down and talk about programs. Inside the compiler, we use
  390. \emph{abstract syntax trees} (ASTs) to represent programs in a way
  391. that efficiently supports the operations that the compiler needs to
  392. perform.\index{concrete syntax}\index{abstract syntax}\index{abstract
  393. syntax tree}\index{AST}\index{program}\index{parse} The translation
  394. from concrete syntax to abstract syntax is a process called
  395. \emph{parsing}~\citep{Aho:1986qf}. We do not cover the theory and
  396. implementation of parsing in this book. A parser is provided in the
  397. support code for translating from concrete to abstract syntax.
  398. ASTs can be represented in many different ways inside the compiler,
  399. depending on the programming language used to write the compiler.
  400. %
  401. We use Racket's
  402. \href{https://docs.racket-lang.org/guide/define-struct.html}{\code{struct}}
  403. feature to represent ASTs (Section~\ref{sec:ast}).
  404. \ocaml{OCaml: we use \emph{variants} (also called algebraic data types) to
  405. represent ASTs.}
  406. We use grammars to
  407. define the abstract syntax of programming languages
  408. (Section~\ref{sec:grammar}) and pattern matching to inspect individual
  409. nodes in an AST (Section~\ref{sec:pattern-matching}). We use
  410. recursive functions to construct and deconstruct ASTs
  411. (Section~\ref{sec:recursion}). This chapter provides an brief
  412. introduction to these ideas. \index{struct}
  413. \section{Abstract Syntax Trees and Racket Structures \ocaml{/ OCaml Variants}}
  414. \label{sec:ast}
  415. Compilers use abstract syntax trees to represent programs because they
  416. often need to ask questions like: for a given part of a program, what
  417. kind of language feature is it? What are its sub-parts? Consider the
  418. program on the left and its AST on the right.
  419. \begin{ocamlx}
  420. This program is
  421. itself in Racket; in addition to using Racket as the compiler implementation
  422. language, the original version of this book uses subsets of Racket as the
  423. \emph{source} languages that we compile. In the OCaml version we will be using
  424. ad-hoc source languages that look a lot like subsets of Racket, but sometimes
  425. made simpler (because there is no particular advantage to matching the messier details
  426. of Racket syntax). The code on the left will be valid in all of our source languages too.
  427. \end{ocamlx}
  428. This program is an
  429. addition operation and it has two sub-parts, a read operation and a
  430. negation. The negation has another sub-part, the integer constant
  431. \code{8}. By using a tree to represent the program, we can easily
  432. follow the links to go from one part of a program to its sub-parts.
  433. \begin{center}
  434. \begin{minipage}{0.4\textwidth}
  435. \begin{lstlisting}
  436. (+ (read) (- 8))
  437. \end{lstlisting}
  438. \end{minipage}
  439. \begin{minipage}{0.4\textwidth}
  440. \begin{equation}
  441. \begin{tikzpicture}
  442. \node[draw, circle] (plus) at (0 , 0) {\key{+}};
  443. \node[draw, circle] (read) at (-1, -1.5) {{\footnotesize\key{read}}};
  444. \node[draw, circle] (minus) at (1 , -1.5) {$\key{-}$};
  445. \node[draw, circle] (8) at (1 , -3) {\key{8}};
  446. \draw[->] (plus) to (read);
  447. \draw[->] (plus) to (minus);
  448. \draw[->] (minus) to (8);
  449. \end{tikzpicture}
  450. \label{eq:arith-prog}
  451. \end{equation}
  452. \end{minipage}
  453. \end{center}
  454. We use the standard terminology for trees to describe ASTs: each
  455. circle above is called a \emph{node}. The arrows connect a node to its
  456. \emph{children} (which are also nodes). The top-most node is the
  457. \emph{root}. Every node except for the root has a \emph{parent} (the
  458. node it is the child of). If a node has no children, it is a
  459. \emph{leaf} node. Otherwise it is an \emph{internal} node.
  460. \index{node}
  461. \index{children}
  462. \index{root}
  463. \index{parent}
  464. \index{leaf}
  465. \index{internal node}
  466. %% Recall that an \emph{symbolic expression} (S-expression) is either
  467. %% \begin{enumerate}
  468. %% \item an atom, or
  469. %% \item a pair of two S-expressions, written $(e_1 \key{.} e_2)$,
  470. %% where $e_1$ and $e_2$ are each an S-expression.
  471. %% \end{enumerate}
  472. %% An \emph{atom} can be a symbol, such as \code{`hello}, a number, the
  473. %% null value \code{'()}, etc. We can create an S-expression in Racket
  474. %% simply by writing a backquote (called a quasi-quote in Racket)
  475. %% followed by the textual representation of the S-expression. It is
  476. %% quite common to use S-expressions to represent a list, such as $a, b
  477. %% ,c$ in the following way:
  478. %% \begin{lstlisting}
  479. %% `(a . (b . (c . ())))
  480. %% \end{lstlisting}
  481. %% Each element of the list is in the first slot of a pair, and the
  482. %% second slot is either the rest of the list or the null value, to mark
  483. %% the end of the list. Such lists are so common that Racket provides
  484. %% special notation for them that removes the need for the periods
  485. %% and so many parenthesis:
  486. %% \begin{lstlisting}
  487. %% `(a b c)
  488. %% \end{lstlisting}
  489. %% The following expression creates an S-expression that represents AST
  490. %% \eqref{eq:arith-prog}.
  491. %% \begin{lstlisting}
  492. %% `(+ (read) (- 8))
  493. %% \end{lstlisting}
  494. %% When using S-expressions to represent ASTs, the convention is to
  495. %% represent each AST node as a list and to put the operation symbol at
  496. %% the front of the list. The rest of the list contains the children. So
  497. %% in the above case, the root AST node has operation \code{`+} and its
  498. %% two children are \code{`(read)} and \code{`(- 8)}, just as in the
  499. %% diagram \eqref{eq:arith-prog}.
  500. %% To build larger S-expressions one often needs to splice together
  501. %% several smaller S-expressions. Racket provides the comma operator to
  502. %% splice an S-expression into a larger one. For example, instead of
  503. %% creating the S-expression for AST \eqref{eq:arith-prog} all at once,
  504. %% we could have first created an S-expression for AST
  505. %% \eqref{eq:arith-neg8} and then spliced that into the addition
  506. %% S-expression.
  507. %% \begin{lstlisting}
  508. %% (define ast1.4 `(- 8))
  509. %% (define ast1.1 `(+ (read) ,ast1.4))
  510. %% \end{lstlisting}
  511. %% In general, the Racket expression that follows the comma (splice)
  512. %% can be any expression that produces an S-expression.
  513. We define a Racket \code{struct} for each kind of node. For this
  514. chapter we require just two kinds of nodes: one for integer constants
  515. and one for primitive operations. The following is the \code{struct}
  516. definition for integer constants.
  517. \begin{lstlisting}
  518. (struct Int (value))
  519. \end{lstlisting}
  520. An integer node includes just one thing: the integer value.
  521. To create a AST node for the integer $8$, we write \code{(Int 8)}.
  522. \begin{lstlisting}
  523. (define eight (Int 8))
  524. \end{lstlisting}
  525. We say that the value created by \code{(Int 8)} is an
  526. \emph{instance} of the \code{Int} structure.
  527. The following is the \code{struct} definition for primitives operations.
  528. \begin{lstlisting}
  529. (struct Prim (op args))
  530. \end{lstlisting}
  531. A primitive operation node includes an operator symbol \code{op}
  532. and a list of children \code{args}. For example, to create
  533. an AST that negates the number $8$, we write \code{(Prim '- (list eight))}.
  534. \begin{lstlisting}
  535. (define neg-eight (Prim '- (list eight)))
  536. \end{lstlisting}
  537. Primitive operations may have zero or more children. The \code{read}
  538. operator has zero children:
  539. \begin{lstlisting}
  540. (define rd (Prim 'read '()))
  541. \end{lstlisting}
  542. whereas the addition operator has two children:
  543. \begin{lstlisting}
  544. (define ast1.1 (Prim '+ (list rd neg-eight)))
  545. \end{lstlisting}
  546. \begin{ocamlx}
  547. We define an OCaml variant type for ASTs, with a different constructor for each
  548. kind of node:
  549. \begin{lstlisting}[style=ocaml]
  550. type exp =
  551. Int of int
  552. | Prim of primop * exp list
  553. \end{lstlisting}
  554. This definition depends on the definition of another variant type that enumerates the possible primops
  555. (in place of the single-quoted symbols used in Racket):
  556. \begin{lstlisting}[style=ocaml]
  557. type primop =
  558. Read
  559. | Neg
  560. | Add
  561. \end{lstlisting}
  562. To create an AST node for the integer 8, we write \code{Int 8}.
  563. To create an AST that negates
  564. the number 8, we write \code{Prim(Neg,[Int 8])}, and so on:
  565. \begin{lstlisting}[style=ocaml]
  566. let eight = Int 8
  567. let neg_eight = Prim(Neg,[eight])
  568. let rd = Prim(Read,[])
  569. let ast1_1 = Prim(Add,[rd,neg_eight])
  570. \end{lstlisting}
  571. Note that OCaml identifiers are more restricted in form than those of Racket; we will typically replace uses of dash (\code{-}), dot (\code{.}), etc. by underscores (\code{\_}).
  572. \end{ocamlx}
  573. We have made a design choice regarding the \code{Prim} structure.
  574. Instead of using one structure for many different operations
  575. (\code{read}, \code{+}, and \code{-}), we could have instead defined a
  576. structure for each operation, as follows.
  577. \begin{lstlisting}
  578. (struct Read ())
  579. (struct Add (left right))
  580. (struct Neg (value))
  581. \end{lstlisting}
  582. The reason we choose to use just one structure is that in many parts
  583. of the compiler the code for the different primitive operators is the
  584. same, so we might as well just write that code once, which is enabled
  585. by using a single structure.
  586. \begin{ocamlx}
  587. We have made a similar design choice in OCaml. The corresponding
  588. alternative would have been to define our AST type as
  589. \begin{lstlisting}[style=ocaml]
  590. type exp =
  591. Int of int
  592. | Read
  593. | Add of exp * exp
  594. | Neg of exp
  595. \end{lstlisting}
  596. Note that one advantage of using this alternative is that it would explicitly enforce
  597. that each primitive operator is given the correct number of arguments (its \emph{arity});
  598. this restriction is not captured in the list-based version.
  599. \end{ocamlx}
  600. When compiling a program such as \eqref{eq:arith-prog}, we need to
  601. know that the operation associated with the root node is addition and
  602. we need to be able to access its two children. Racket provides pattern
  603. matching to support these kinds of queries, as we see in
  604. Section~\ref{sec:pattern-matching}. \ocaml{So does OCaml.}
  605. In this book, we often write down the concrete syntax of a program
  606. even when we really have in mind the AST because the concrete syntax
  607. is more concise. We recommend that, in your mind, you always think of
  608. programs as abstract syntax trees.
  609. \section{Grammars}
  610. \label{sec:grammar}
  611. \index{integer}
  612. \index{literal}
  613. \index{constant}
  614. A programming language can be thought of as a \emph{set} of programs.
  615. The set is typically infinite (one can always create larger and larger
  616. programs), so one cannot simply describe a language by listing all of
  617. the programs in the language. Instead we write down a set of rules, a
  618. \emph{grammar}, for building programs. Grammars are often used to
  619. define the concrete syntax of a language, but they can also be used to
  620. describe the abstract syntax. We write our rules in a variant of
  621. Backus-Naur Form (BNF)~\citep{Backus:1960aa,Knuth:1964aa}.
  622. \index{Backus-Naur Form}\index{BNF}
  623. As an example, we describe a small language, named \LangInt{}, that consists of
  624. integers and arithmetic operations.
  625. \index{grammar}
  626. \begin{ocamlx}
  627. Using a grammar to describe abstract syntax is less useful in OCaml than in
  628. Racket, because our variant type definition for ASTs already serves to specify
  629. the legal forms of tree (except that it is overly flexible about the arity of
  630. primops, as mentioned above). So don't worry too much about the details of
  631. the AST grammar here---but do make sure you understand how the same ideas
  632. are applied to \emph{concrete} grammars, below.
  633. \end{ocamlx}
  634. The first grammar rule for the abstract syntax of \LangInt{} says that an
  635. instance of the \code{Int} structure is an expression:
  636. \begin{equation}
  637. \Exp ::= \INT{\Int} \label{eq:arith-int}
  638. \end{equation}
  639. %
  640. Each rule has a left-hand-side and a right-hand-side. The way to read
  641. a rule is that if you have an AST node that matches the
  642. right-hand-side, then you can categorize it according to the
  643. left-hand-side.
  644. %
  645. A name such as $\Exp$ that is defined by the grammar rules is a
  646. \emph{non-terminal}. \index{non-terminal}
  647. %
  648. The name $\Int$ is a also a non-terminal, but instead of defining it
  649. with a grammar rule, we define it with the following explanation. We
  650. make the simplifying design decision that all of the languages in this
  651. book only handle machine-representable integers. On most modern
  652. machines this corresponds to integers represented with 64-bits, i.e.,
  653. the in range $-2^{63}$ to $2^{63}-1$. We restrict this range further
  654. to match the Racket \texttt{fixnum} datatype, which allows 63-bit
  655. integers on a 64-bit machine. So an $\Int$ is a sequence of decimals
  656. ($0$ to $9$), possibly starting with $-$ (for negative integers), such
  657. that the sequence of decimals represent an integer in range $-2^{62}$
  658. to $2^{62}-1$.
  659. \ocaml{As it happens, OCaml's standard integer type
  660. (\code{int}) is also 63 bits on a 64-bit machine. Initially, we
  661. will adopt the corresponding convention that $\Int$ is a 63-bit integer,
  662. but soon we will move to full 64-bit integers.}
  663. The second grammar rule is the \texttt{read} operation that receives
  664. an input integer from the user of the program.
  665. \begin{equation}
  666. \Exp ::= \READ{} \label{eq:arith-read}
  667. \end{equation}
  668. The third rule says that, given an $\Exp$ node, the negation of that
  669. node is also an $\Exp$.
  670. \begin{equation}
  671. \Exp ::= \NEG{\Exp} \label{eq:arith-neg}
  672. \end{equation}
  673. Symbols in typewriter font such as \key{-} and \key{read} are
  674. \emph{terminal} symbols and must literally appear in the program for
  675. the rule to be applicable.
  676. \index{terminal}
  677. We can apply these rules to categorize the ASTs that are in the
  678. \LangInt{} language. For example, by rule \eqref{eq:arith-int}
  679. \texttt{(Int 8)} is an $\Exp$, then by rule \eqref{eq:arith-neg} the
  680. following AST is an $\Exp$.
  681. \begin{center}
  682. \begin{minipage}{0.4\textwidth}
  683. \begin{lstlisting}
  684. (Prim '- (list (Int 8)))
  685. \end{lstlisting}
  686. \end{minipage}
  687. \begin{minipage}{0.25\textwidth}
  688. \begin{equation}
  689. \begin{tikzpicture}
  690. \node[draw, circle] (minus) at (0, 0) {$\text{--}$};
  691. \node[draw, circle] (8) at (0, -1.2) {$8$};
  692. \draw[->] (minus) to (8);
  693. \end{tikzpicture}
  694. \label{eq:arith-neg8}
  695. \end{equation}
  696. \end{minipage}
  697. \end{center}
  698. \begin{ocamlx}
  699. The corresponding OCaml AST expression is \code{Prim(Neg,[Int 8])}.
  700. \end{ocamlx}
  701. The next grammar rule is for addition expressions:
  702. \begin{equation}
  703. \Exp ::= \ADD{\Exp}{\Exp} \label{eq:arith-add}
  704. \end{equation}
  705. We can now justify that the AST \eqref{eq:arith-prog} is an $\Exp$ in
  706. \LangInt{}. We know that \lstinline{(Prim 'read '())} is an $\Exp$ by rule
  707. \eqref{eq:arith-read} and we have already categorized \code{(Prim '-
  708. (list (Int 8)))} as an $\Exp$, so we apply rule \eqref{eq:arith-add}
  709. to show that
  710. \begin{lstlisting}
  711. (Prim '+ (list (Prim 'read '()) (Prim '- (list (Int 8)))))
  712. \end{lstlisting}
  713. is an $\Exp$ in the \LangInt{} language.
  714. \ocaml{\\ OCaml: \code{Prim(Add,[Prim(Read,[]);Prim(Neg,[Int 8])])}.}
  715. If you have an AST for which the above rules do not apply, then the
  716. AST is not in \LangInt{}. For example, the program \code{(- (read) (+ 8))}
  717. is not in \LangInt{} because there are no rules for \code{+} with only one
  718. argument, nor for \key{-} with two arguments. Whenever we define a
  719. language with a grammar, the language only includes those programs
  720. that are justified by the rules.
  721. The last grammar rule for \LangInt{} states that there is a \code{Program}
  722. node to mark the top of the whole program:
  723. \[
  724. \LangInt{} ::= \PROGRAM{\code{'()}}{\Exp}
  725. \]
  726. The \code{Program} structure is defined as follows
  727. \begin{lstlisting}
  728. (struct Program (info body))
  729. \end{lstlisting}
  730. where \code{body} is an expression. In later chapters, the \code{info}
  731. part will be used to store auxiliary information but for now it is
  732. just the empty list.
  733. \begin{ocamlx}
  734. In OCaml:
  735. \begin{lstlisting}[style=ocaml]
  736. type 'info program = Program of 'info * exp
  737. \end{lstlisting}
  738. Again, we represent the structure as a variant type
  739. (\code{rint\_program}), this time just with one constructor
  740. (\code{Program)}. We \emph{parameterize} \code{program} by a
  741. \emph{type variable} \code{'info} (type variables are distinguished by having
  742. a leading tick mark). This says that \code{rint\_program} is a family of types which can
  743. be instantiated to represent programs holding a particular kind of auxiliary information.
  744. For now, we'll just instantiate \code{'info}
  745. with the \emph{unit} type, written \code{unit}, whose sole (boring)
  746. value is written \code{()}.
  747. \begin{lstlisting}[style=ocaml]
  748. let p : unit program = Program () body
  749. \end{lstlisting}
  750. Here the colon (\code{:}) introduces an explicit type annotation on \code{p}; it can be read ``has type.''
  751. \end{ocamlx}
  752. It is common to have many grammar rules with the same left-hand side
  753. but different right-hand sides, such as the rules for $\Exp$ in the
  754. grammar of \LangInt{}. As a short-hand, a vertical bar can be used to
  755. combine several right-hand-sides into a single rule.
  756. We collect all of the grammar rules for the abstract syntax of \LangInt{}
  757. in Figure~\ref{fig:r0-syntax} \ocaml{along with the corresponding OCaml type definitions}.
  758. The concrete syntax for \LangInt{} is
  759. defined in Figure~\ref{fig:r0-concrete-syntax}.
  760. The \code{read-program} function provided in \code{utilities.rkt} of
  761. the support code reads a program in from a file (the sequence of
  762. characters in the concrete syntax of Racket) and parses it into an
  763. abstract syntax tree. See the description of \code{read-program} in
  764. Appendix~\ref{appendix:utilities} for more details.
  765. \begin{ocamlx}
  766. As noted above, the concrete syntaxes we will use are similar to Racket's own syntax.
  767. In particular, programs are described as \emph{S-expressions}. An S-expression can be
  768. either an atom (an integer, symbol, or quoted string) or a list of S-expressions enclosed in
  769. parentheses. You can see that the concrete syntax for \LangInt{} is written as
  770. S-expressions where the symbols used are \code{read},\code{-}, and \code{+}, and
  771. a primitive operation invocation is described by a list whose first element is
  772. the operation symbol and whose remaining elements (0 or more of them) are
  773. S-expressions representing the arguments (which can themselves be lists).
  774. All the source languages we consider in this book will be written as S-expressions in
  775. a similar style; the details of which symbols and shapes of list are allowed
  776. will vary from language to language.
  777. To handle all this neatly in OCaml, we split the parsing of concrete
  778. programs into two phases. First, the \code{parse} function provided
  779. in \code{sexpr.ml} of the support code reads text from a file and
  780. parses it into a generic S-expression data type. (This code is a
  781. bit complicated and messy, but you don't have to understand its
  782. internals in order to use it.) Then, a source-language-specific
  783. program is used to convert the S-expression into the abstract syntax
  784. of that particular language. We will see later on that OCaml's pattern
  785. matching facilities make it very easy to write such conversion
  786. routines. This is particularly true because the S-expression format
  787. we use for our concrete source languages is already very close to an
  788. abstract syntax, which means the conversion has very little work to
  789. do. For example, as you have seen, primitive operations are all
  790. written in prefix, rather than infix, notation, so there is no need
  791. to worry about issues like precedence and associativity of operators
  792. in an expression like \code{(2 * 3 + 4)}: the S-expression syntax
  793. will be either \code{(+ (* 2 3) 4)} or \code{(* 2 (+ 3 4))}, so
  794. there is no possible ambiguity. The downside is that source programs
  795. are a bit more tedious to write, and may sometimes seem to be drowning in
  796. parentheses.
  797. The OCaml representation of generic S-expressions is just another
  798. variant type:
  799. \begin{lstlisting}[style=ocaml]
  800. type sexp =
  801. | SList of sexp list
  802. (* list of expressions delimited by parentheses *)
  803. | SNum of Int64.t
  804. (* 64-bit integers *)
  805. | SSym of string
  806. (* character sequence starting with non-digit,
  807. delimited by white space *)
  808. | SString of string
  809. (* arbitrary character sequence delimited by double quotes *)
  810. \end{lstlisting}
  811. The generic S-expression parser handles (nestable) comments delimited by
  812. curly braces (\code{\{} and \code{\}}). Symbols must start with a non-digit
  813. character and can contain any
  814. non-whitespace characters except parentheses, curly braces, and
  815. the back tick (\code{\`}); this last exclusion is handy when we want to
  816. generate internal names during compilation and be sure they don't clash
  817. with a user-defined symbol.
  818. \end{ocamlx}
  819. \begin{figure}[tp]
  820. \fbox{
  821. \begin{minipage}{0.96\textwidth}
  822. \[
  823. \begin{array}{rcl}
  824. \begin{array}{rcl}
  825. \Exp &::=& \Int \mid \LP\key{read}\RP \mid \LP\key{-}\;\Exp\RP \mid \LP\key{+} \; \Exp\;\Exp\RP\\
  826. \LangInt{} &::=& \Exp
  827. \end{array}
  828. \end{array}
  829. \]
  830. \end{minipage}
  831. }
  832. \caption{The concrete syntax of \LangInt{}.}
  833. \label{fig:r0-concrete-syntax}
  834. \end{figure}
  835. \begin{figure}[tp]
  836. \fbox{
  837. \begin{minipage}{0.96\textwidth}
  838. \[
  839. \begin{array}{rcl}
  840. \Exp &::=& \INT{\Int} \mid \READ{} \mid \NEG{\Exp} \\
  841. &\mid& \ADD{\Exp}{\Exp} \\
  842. \LangInt{} &::=& \PROGRAM{\code{'()}}{\Exp}
  843. \end{array}
  844. \]
  845. \end{minipage}
  846. }
  847. \begin{minipage}{0.96\textwidth}
  848. \begin{lstlisting}[style=ocaml,frame=single]
  849. type primop =
  850. Read
  851. | Neg
  852. | Add
  853. type exp =
  854. Int of int
  855. | Prim of primop * exp list
  856. type 'info program = Program of 'info * exp
  857. \end{lstlisting}
  858. \end{minipage}
  859. \caption{The abstract syntax of \LangInt{}.}
  860. \label{fig:r0-syntax}
  861. \end{figure}
  862. \section{Pattern Matching}
  863. \label{sec:pattern-matching}
  864. As mentioned in Section~\ref{sec:ast}, compilers often need to access
  865. the parts of an AST node. Racket provides the \texttt{match} form to
  866. access the parts of a structure. Consider the following example and
  867. the output on the right. \index{match} \index{pattern matching}
  868. \begin{center}
  869. \begin{minipage}{0.5\textwidth}
  870. \begin{lstlisting}
  871. (match ast1.1
  872. [(Prim op (list child1 child2))
  873. (print op)])
  874. \end{lstlisting}
  875. \end{minipage}
  876. \vrule
  877. \begin{minipage}{0.25\textwidth}
  878. \begin{lstlisting}
  879. '+
  880. \end{lstlisting}
  881. \end{minipage}
  882. \end{center}
  883. In the above example, the \texttt{match} form takes an AST
  884. \eqref{eq:arith-prog} and binds its parts to the three pattern
  885. variables \texttt{op}, \texttt{child1}, and \texttt{child2}, and then
  886. prints out the operator. In general, a match clause consists of a
  887. \emph{pattern} and a \emph{body}.\index{pattern} Patterns are
  888. recursively defined to be either a pattern variable, a structure name
  889. followed by a pattern for each of the structure's arguments, or an
  890. S-expression (symbols, lists, etc.). (See Chapter 12 of The Racket
  891. Guide\footnote{\url{https://docs.racket-lang.org/guide/match.html}}
  892. and Chapter 9 of The Racket
  893. Reference\footnote{\url{https://docs.racket-lang.org/reference/match.html}}
  894. for a complete description of \code{match}.)
  895. %
  896. The body of a match clause may contain arbitrary Racket code. The
  897. pattern variables can be used in the scope of the body, such as
  898. \code{op} in \code{(print op)}.
  899. \begin{ocamlx}
  900. Here is the OCaml version, which is quite similar:
  901. \begin{center}
  902. \begin{minipage}{0.5\textwidth}
  903. \begin{lstlisting}[style=ocaml]
  904. match ast1_1 with
  905. | Prim(op,[child1;child2]) -> op
  906. \end{lstlisting}
  907. \end{minipage}
  908. \vrule
  909. \begin{minipage}{0.25\textwidth}
  910. \begin{lstlisting}[style=ocaml]
  911. Add
  912. \end{lstlisting}
  913. \end{minipage}
  914. \end{center}
  915. \end{ocamlx}
  916. A \code{match} form may contain several clauses, as in the following
  917. function \code{leaf?} that recognizes when an \LangInt{} node is a leaf in
  918. the AST. The \code{match} proceeds through the clauses in order,
  919. checking whether the pattern can match the input AST. The body of the
  920. first clause that matches is executed.
  921. \begin{ocamlx}
  922. In fact, in OCaml, we will get a warning message about the code above, because the \code{match} only contains
  923. a clause for a {\tt Prim} with two children, not for other other possible forms of \code{exp}.
  924. Although in this particular instance, that's OK (because of the value of \code{ast1\_1}), in general
  925. it suggests a possible error. Getting warnings like this is one of the advantages of static typing.
  926. \end{ocamlx}
  927. The output of \code{leaf?} for
  928. several ASTs is shown on the right.
  929. \begin{center}
  930. \begin{minipage}{0.6\textwidth}
  931. \begin{lstlisting}
  932. (define (leaf? arith)
  933. (match arith
  934. [(Int n) #t]
  935. [(Prim 'read '()) #t]
  936. [(Prim '- (list e1)) #f]
  937. [(Prim '+ (list e1 e2)) #f]))
  938. (leaf? (Prim 'read '()))
  939. (leaf? (Prim '- (list (Int 8))))
  940. (leaf? (Int 8))
  941. \end{lstlisting}
  942. \end{minipage}
  943. \vrule
  944. \begin{minipage}{0.25\textwidth}
  945. \begin{lstlisting}
  946. #t
  947. #f
  948. #t
  949. \end{lstlisting}
  950. \end{minipage}
  951. \end{center}
  952. When writing a \code{match}, we refer to the grammar definition to
  953. identify which non-terminal we are expecting to match against, then we
  954. make sure that 1) we have one clause for each alternative of that
  955. non-terminal and 2) that the pattern in each clause corresponds to the
  956. corresponding right-hand side of a grammar rule. For the \code{match}
  957. in the \code{leaf?} function, we refer to the grammar for \LangInt{} in
  958. Figure~\ref{fig:r0-syntax}. The $\Exp$ non-terminal has 4
  959. alternatives, so the \code{match} has 4 clauses. The pattern in each
  960. clause corresponds to the right-hand side of a grammar rule. For
  961. example, the pattern \code{(Prim '+ (list e1 e2))} corresponds to the
  962. right-hand side $\ADD{\Exp}{\Exp}$. When translating from grammars to
  963. patterns, replace non-terminals such as $\Exp$ with pattern variables
  964. of your choice (e.g. \code{e1} and \code{e2}).
  965. \begin{ocamlx}
  966. Here is the directly corresponding OCaml version.
  967. \begin{center}
  968. \begin{minipage}{0.6\textwidth}
  969. \begin{lstlisting}[style=ocaml]
  970. let is_leaf arith =
  971. match arith with
  972. | Int n -> true
  973. | Prim(Read,[]) -> true
  974. | Prim(Neg,[e1]) -> false
  975. | Prim(Add,[e1;e2]) -> false
  976. | _ -> assert false
  977. is_leaf (Prim(Read,[]))
  978. is_leaf (Prim(Neg,[Int 8]))
  979. is_leaf (Int 8)
  980. \end{lstlisting}
  981. \end{minipage}
  982. \vrule
  983. \begin{minipage}{0.25\textwidth}
  984. \begin{lstlisting}[style=ocaml]
  985. true
  986. false
  987. true
  988. \end{lstlisting}
  989. \end{minipage}
  990. \end{center}
  991. The final clause uses a wildcard pattern {\tt \_}, which matches anything of type \code{exp},
  992. to cover the (ill-formed) cases where a primop is given the wrong number of arguments;
  993. otherwise, the compiler will again issue a warning that not all cases have been considered.
  994. The \code{assert false} causes OCaml execution to halt with an uncaught exception message.
  995. In this particular case, we can use wildcards to write a more idiomatic version of
  996. \code{is\_leaf} that doesn't require a catch-all case (and is also ``future-proof''
  997. against later additions to the \code{primop} type). We also make use of the following
  998. short-cut: a function that takes an argument $arg$ and then immediately performs
  999. a \code{match} over $arg$ can be written more concisely using the \code{function} keyword.
  1000. \begin{center}
  1001. \begin{minipage}{0.5\textwidth}
  1002. \begin{lstlisting}[style=ocaml]
  1003. let is_leaf = function
  1004. | Int _ -> true
  1005. | Prim(_,[]) -> true
  1006. | _ -> false
  1007. \end{lstlisting}
  1008. \end{minipage}
  1009. \end{center}
  1010. \end{ocamlx}
  1011. \section{Recursive Functions}
  1012. \label{sec:recursion}
  1013. \index{recursive function}
  1014. Programs are inherently recursive. For example, an \LangInt{} expression is
  1015. often made of smaller expressions. Thus, the natural way to process an
  1016. entire program is with a recursive function. As a first example of
  1017. such a recursive function, we define \texttt{exp?} below, which takes
  1018. an arbitrary value and determines whether or not it is an \LangInt{}
  1019. expression.
  1020. %
  1021. We say that a function is defined by \emph{structural recursion} when
  1022. it is defined using a sequence of match clauses that correspond to a
  1023. grammar, and the body of each clause makes a recursive call on each
  1024. child node.\footnote{This principle of structuring code according to
  1025. the data definition is advocated in the book \emph{How to Design
  1026. Programs} \url{http://www.ccs.neu.edu/home/matthias/HtDP2e/}.}.
  1027. Below we also define a second function, named \code{Rint?}, that
  1028. determines whether an AST is an \LangInt{} program. In general we can
  1029. expect to write one recursive function to handle each non-terminal in
  1030. a grammar.\index{structural recursion}
  1031. %
  1032. \begin{center}
  1033. \begin{minipage}{0.7\textwidth}
  1034. \begin{lstlisting}
  1035. (define (exp? ast)
  1036. (match ast
  1037. [(Int n) #t]
  1038. [(Prim 'read '()) #t]
  1039. [(Prim '- (list e)) (exp? e)]
  1040. [(Prim '+ (list e1 e2))
  1041. (and (exp? e1) (exp? e2))]
  1042. [else #f]))
  1043. (define (Rint? ast)
  1044. (match ast
  1045. [(Program '() e) (exp? e)]
  1046. [else #f]))
  1047. (Rint? (Program '() ast1.1)
  1048. (Rint? (Program '()
  1049. (Prim '- (list (Prim 'read '())
  1050. (Prim '+ (list (Num 8)))))))
  1051. \end{lstlisting}
  1052. \end{minipage}
  1053. \vrule
  1054. \begin{minipage}{0.25\textwidth}
  1055. \begin{lstlisting}
  1056. #t
  1057. #f
  1058. \end{lstlisting}
  1059. \end{minipage}
  1060. \end{center}
  1061. You may be tempted to merge the two functions into one, like this:
  1062. \begin{center}
  1063. \begin{minipage}{0.5\textwidth}
  1064. \begin{lstlisting}
  1065. (define (Rint? ast)
  1066. (match ast
  1067. [(Int n) #t]
  1068. [(Prim 'read '()) #t]
  1069. [(Prim '- (list e)) (Rint? e)]
  1070. [(Prim '+ (list e1 e2)) (and (Rint? e1) (Rint? e2))]
  1071. [(Program '() e) (Rint? e)]
  1072. [else #f]))
  1073. \end{lstlisting}
  1074. \end{minipage}
  1075. \end{center}
  1076. %
  1077. Sometimes such a trick will save a few lines of code, especially when
  1078. it comes to the \code{Program} wrapper. Yet this style is generally
  1079. \emph{not} recommended because it can get you into trouble.
  1080. %
  1081. For example, the above function is subtly wrong:
  1082. \lstinline{(Rint? (Program '() (Program '() (Int 3))))}
  1083. returns true when it should return false.
  1084. \begin{ocamlx}
  1085. There is almost no point in writing OCaml analogs to \code{exp?} or \code{Rint?}, because static
  1086. typing guarantees that values claimed to be in type \code{exp} or \code{rint\_program} really are
  1087. (or the OCaml program will not pass the OCaml typechecker). However, it is still worth
  1088. writing a function to check that primops are applied to the right number of arguments.
  1089. Here is an idiomatic way to do that:
  1090. \begin{center}
  1091. \begin{minipage}{0.85\textwidth}
  1092. \begin{lstlisting}[style=ocaml]
  1093. let arity = function
  1094. | Read -> 0
  1095. | Neg -> 1
  1096. | Add -> 2
  1097. let rec check_exp = function
  1098. | Int _ -> true
  1099. | Prim(op,args) ->
  1100. List.length args = arity op && check_exps args
  1101. and check_exps = function
  1102. | [] -> true
  1103. | (exp::exps') -> check_exp exp && check_exps exps'
  1104. let check_program (Program(_,e)) = check_exp e
  1105. check_program (Program((),ast1_1))
  1106. check_program (Program((),Prim(Neg,[Prim(Read,[]);
  1107. Prim(Plus,[Int 8])])))
  1108. \end{lstlisting}
  1109. \end{minipage}
  1110. \vrule
  1111. \begin{minipage}{0.1\textwidth}
  1112. \begin{lstlisting}[style=ocaml]
  1113. true
  1114. false
  1115. \end{lstlisting}
  1116. \end{minipage}
  1117. \end{center}
  1118. In the definition of \code{check\_program}, since the argument type \code{rint\_program}
  1119. has only one constructor, we can write a pattern \code{Program(\_,e)} which matches that constructor directly in
  1120. place of an argument name; this binds the variable(s) (here \code{e}) of the pattern in the body of the function.
  1121. Note that \code{check\_exp} is declared to be recursive by using the \code{rec} keyword;
  1122. in fact, \code{check\_exp} and \code{check\_exps} are \emph{mutually} recursive because
  1123. their definitions are connected by the \code{and} keyword. \code{List.length} is a library
  1124. function that returns the length of a list. Actually, the library also has a handy higher-order
  1125. function \code{List.for\_all} that applies a specified boolean-value function to a list and returns
  1126. whether it is true on all elements. Using that, we could rewrite the \code{Prim}
  1127. clause of \code{check\_exp} as
  1128. \begin{lstlisting}[style=ocaml]
  1129. | Prim(op,args) ->
  1130. List.length args = arity op && List.for_all check_exp args
  1131. \end{lstlisting}
  1132. and dispense with \code{check\_exps} altogether. Being able to operate on entire lists
  1133. uniformly like this is one of the payoffs for using a single generic \code{Prim} constructor.
  1134. \end{ocamlx}
  1135. \section{Interpreters}
  1136. \label{sec:interp-Rint}
  1137. \index{interpreter}
  1138. In general, the intended behavior of a program is defined by the
  1139. specification of the language. For example, the Scheme language is
  1140. defined in the report by \cite{SPERBER:2009aa}. The Racket language is
  1141. defined in its reference manual~\citep{plt-tr}. In this book we use
  1142. interpreters to specify each language that we consider. An interpreter
  1143. that is designated as the definition of a language is called a
  1144. \emph{definitional interpreter}~\citep{reynolds72:_def_interp}.
  1145. \index{definitional interpreter} We warm up by creating a definitional
  1146. interpreter for the \LangInt{} language, which serves as a second example
  1147. of structural recursion. The \texttt{interp-Rint} function is defined in
  1148. Figure~\ref{fig:interp-Rint}. The body of the function is a match on the
  1149. input program followed by a call to the \lstinline{interp-exp} helper
  1150. function, which in turn has one match clause per grammar rule for
  1151. \LangInt{} expressions. \ocaml{The OCaml version is in Figure~\ref{fig:ocaml-interp-Rint}.}
  1152. \begin{figure}[tp]
  1153. \begin{lstlisting}
  1154. (define (interp-exp e)
  1155. (match e
  1156. [(Int n) n]
  1157. [(Prim 'read '())
  1158. (define r (read))
  1159. (cond [(fixnum? r) r]
  1160. [else (error 'interp-exp "read expected an integer" r)])]
  1161. [(Prim '- (list e))
  1162. (define v (interp-exp e))
  1163. (fx- 0 v)]
  1164. [(Prim '+ (list e1 e2))
  1165. (define v1 (interp-exp e1))
  1166. (define v2 (interp-exp e2))
  1167. (fx+ v1 v2)]))
  1168. (define (interp-Rint p)
  1169. (match p
  1170. [(Program '() e) (interp-exp e)]))
  1171. \end{lstlisting}
  1172. \caption{Interpreter for the \LangInt{} language.}
  1173. \label{fig:interp-Rint}
  1174. \end{figure}
  1175. \begin{figure}[tp]
  1176. \begin{lstlisting}[style=ocaml]
  1177. let interp_exp exp =
  1178. match exp with
  1179. | Int n -> n
  1180. | Prim(Read,[]) -> read_int()
  1181. | Prim(Neg,[e]) -> - (interp_exp e)
  1182. | Prim(Add,[e1;e2]) ->
  1183. (* must explicitly sequence evaluation order! *)
  1184. let v1 = interp_exp e1 in
  1185. let v2 = interp_exp e2 in
  1186. v1 + v2
  1187. | _ -> assert false (* arity mismatch *)
  1188. let interp_program (Program(_,e)) = interp_exp e
  1189. \end{lstlisting}
  1190. \caption{\ocaml{OCaml interpreter for the \LangInt{} language.}}
  1191. \label{fig:ocaml-interp-Rint}
  1192. \end{figure}
  1193. Let us consider the result of interpreting a few \LangInt{} programs. The
  1194. following program adds two integers.
  1195. \begin{lstlisting}
  1196. (+ 10 32)
  1197. \end{lstlisting}
  1198. The result is \key{42}, the answer to life, the universe, and
  1199. everything: \code{42}!\footnote{\emph{The Hitchhiker's Guide to the
  1200. Galaxy} by Douglas Adams.}.
  1201. %
  1202. We wrote the above program in concrete syntax whereas the parsed
  1203. abstract syntax is:
  1204. \begin{lstlisting}
  1205. (Program '() (Prim '+ (list (Int 10) (Int 32))))
  1206. \end{lstlisting}
  1207. \begin{ocamlx}
  1208. Ocaml:
  1209. \begin{lstlisting}[style=ocaml]
  1210. Program((),Prim(Add,[Int 10; Int 32]))
  1211. \end{lstlisting}
  1212. \end{ocamlx}
  1213. The next example demonstrates that expressions may be nested within
  1214. each other, in this case nesting several additions and negations.
  1215. \begin{lstlisting}
  1216. (+ 10 (- (+ 12 20)))
  1217. \end{lstlisting}
  1218. What is the result of the above program?
  1219. As mentioned previously, the \LangInt{} language does not support
  1220. arbitrarily-large integers, but only $63$-bit integers, so we
  1221. interpret the arithmetic operations of \LangInt{} using fixnum arithmetic
  1222. in Racket.
  1223. Suppose
  1224. \[
  1225. n = 999999999999999999
  1226. \]
  1227. which indeed fits in $63$-bits. What happens when we run the
  1228. following program in our interpreter?
  1229. \begin{lstlisting}
  1230. (+ (+ (+ |$n$| |$n$|) (+ |$n$| |$n$|)) (+ (+ |$n$| |$n$|) (+ |$n$| |$n$|)))))
  1231. \end{lstlisting}
  1232. It produces an error:
  1233. \begin{lstlisting}
  1234. fx+: result is not a fixnum
  1235. \end{lstlisting}
  1236. We establish the convention that if running the definitional
  1237. interpreter on a program produces an error then the meaning of that
  1238. program is \emph{unspecified}\index{unspecified behavior}, unless the
  1239. error is a \code{trapped-error}. A compiler for the language is under
  1240. no obligations regarding programs with unspecified behavior; it does
  1241. not have to produce an executable, and if it does, that executable can
  1242. do anything. On the other hand, if the error is a
  1243. \code{trapped-error}, then the compiler must produce an executable and
  1244. it is required to report that an error occurred. To signal an error,
  1245. exit with a return code of \code{255}. The interpreters in chapters
  1246. \ref{ch:Rdyn} and \ref{ch:Rgrad} use
  1247. \code{trapped-error}.
  1248. \begin{ocamlx}
  1249. In OCaml, overflow does not cause a trap; instead values ``wrap around''
  1250. to produce results modulo $2^{63}$. The result of this program is
  1251. \key{-1223372036854775816}. We will embrace this wrap-around behavior
  1252. as the intended one for \LangInt{}, so the OCaml version will have
  1253. no undefined behaviors due to overflow.
  1254. \end{ocamlx}
  1255. %% This convention applies to the languages defined in this
  1256. %% book, as a way to simplify the student's task of implementing them,
  1257. %% but this convention is not applicable to all programming languages.
  1258. %%
  1259. Moving on to the last feature of the \LangInt{} language, the \key{read}
  1260. operation prompts the user of the program for an integer. \ocaml{The \code{read\_int}
  1261. function is in the standard library.} Recall that
  1262. program \eqref{eq:arith-prog} performs a \key{read} and then subtracts
  1263. \code{8}. So if we run
  1264. \begin{lstlisting}
  1265. (interp-Rint (Program '() ast1.1))
  1266. \end{lstlisting}
  1267. and if the input is \code{50}, the result is \code{42}.
  1268. We include the \key{read} operation in \LangInt{} so a clever student
  1269. cannot implement a compiler for \LangInt{} that simply runs the interpreter
  1270. during compilation to obtain the output and then generates the trivial
  1271. code to produce the output. (Yes, a clever student did this in the
  1272. first instance of this course.)
  1273. The job of a compiler is to translate a program in one language into a
  1274. program in another language so that the output program behaves the
  1275. same way as the input program does. This idea is depicted in the
  1276. following diagram. Suppose we have two languages, $\mathcal{L}_1$ and
  1277. $\mathcal{L}_2$, and a definitional interpreter for each language.
  1278. Given a compiler that translates from language $\mathcal{L}_1$ to
  1279. $\mathcal{L}_2$ and given any program $P_1$ in $\mathcal{L}_1$, the
  1280. compiler must translate it into some program $P_2$ such that
  1281. interpreting $P_1$ and $P_2$ on their respective interpreters with
  1282. same input $i$ yields the same output $o$.
  1283. \begin{equation} \label{eq:compile-correct}
  1284. \begin{tikzpicture}[baseline=(current bounding box.center)]
  1285. \node (p1) at (0, 0) {$P_1$};
  1286. \node (p2) at (3, 0) {$P_2$};
  1287. \node (o) at (3, -2.5) {$o$};
  1288. \path[->] (p1) edge [above] node {compile} (p2);
  1289. \path[->] (p2) edge [right] node {interp-$\mathcal{L}_2$($i$)} (o);
  1290. \path[->] (p1) edge [left] node {interp-$\mathcal{L}_1$($i$)} (o);
  1291. \end{tikzpicture}
  1292. \end{equation}
  1293. In the next section we see our first example of a compiler.
  1294. \section{Example Compiler: a Partial Evaluator}
  1295. \label{sec:partial-evaluation}
  1296. In this section we consider a compiler that translates \LangInt{} programs
  1297. into \LangInt{} programs that may be more efficient, that is, this compiler
  1298. is an optimizer. This optimizer eagerly computes the parts of the
  1299. program that do not depend on any inputs, a process known as
  1300. \emph{partial evaluation}~\citep{Jones:1993uq}.
  1301. \index{partial evaluation}
  1302. For example, given the following program
  1303. \begin{lstlisting}
  1304. (+ (read) (- (+ 5 3)))
  1305. \end{lstlisting}
  1306. our compiler will translate it into the program
  1307. \begin{lstlisting}
  1308. (+ (read) -8)
  1309. \end{lstlisting}
  1310. Figure~\ref{fig:pe-arith} gives the code for a simple partial
  1311. evaluator for the \LangInt{} language. The output of the partial evaluator
  1312. is an \LangInt{} program. In Figure~\ref{fig:pe-arith}, the structural
  1313. recursion over $\Exp$ is captured in the \code{pe-exp} function
  1314. whereas the code for partially evaluating the negation and addition
  1315. operations is factored into two separate helper functions:
  1316. \code{pe-neg} and \code{pe-add}. The input to these helper
  1317. functions is the output of partially evaluating the children.
  1318. \begin{figure}[tp]
  1319. \begin{lstlisting}
  1320. (define (pe-neg r)
  1321. (match r
  1322. [(Int n) (Int (fx- 0 n))]
  1323. [else (Prim '- (list r))]))
  1324. (define (pe-add r1 r2)
  1325. (match* (r1 r2)
  1326. [((Int n1) (Int n2)) (Int (fx+ n1 n2))]
  1327. [(_ _) (Prim '+ (list r1 r2))]))
  1328. (define (pe-exp e)
  1329. (match e
  1330. [(Int n) (Int n)]
  1331. [(Prim 'read '()) (Prim 'read '())]
  1332. [(Prim '- (list e1)) (pe-neg (pe-exp e1))]
  1333. [(Prim '+ (list e1 e2)) (pe-add (pe-exp e1) (pe-exp e2))]))
  1334. (define (pe-Rint p)
  1335. (match p
  1336. [(Program '() e) (Program '() (pe-exp e))]))
  1337. \end{lstlisting}
  1338. \caption{A partial evaluator for \LangInt{}.}
  1339. \label{fig:pe-arith}
  1340. \end{figure}
  1341. The \texttt{pe-neg} and \texttt{pe-add} functions check whether their
  1342. arguments are integers and if they are, perform the appropriate
  1343. arithmetic. Otherwise, they create an AST node for the arithmetic
  1344. operation.
  1345. \begin{ocamlx}
  1346. The corresponding OCaml code is in Figure~\ref{fig:ocaml-pe-arith}. In \code{pe\_add}, note
  1347. the syntax for matching over a pair of values simultaneously.
  1348. \begin{figure}[tp]
  1349. \begin{lstlisting}[style=ocaml]
  1350. let pe_neg = function
  1351. Int n -> Int (-n)
  1352. | e -> Prim(Neg,[e])
  1353. let pe_add e1 e2 =
  1354. match e1,e2 with
  1355. Int n1,Int n2 -> Int (n1+n2)
  1356. | e1,e2 -> Prim(Add,[e1;e2])
  1357. let rec pe_exp = function
  1358. Prim(Neg,[e]) -> pe_neg (pe_exp e)
  1359. | Prim(Add,[e1;e2]) -> pe_add (pe_exp e1) (pe_exp e2)
  1360. | e -> e
  1361. let pe_program (Program(info,e)) = Program(info,pe_exp e)
  1362. \end{lstlisting}
  1363. \caption{\ocaml{An OCaml partial evaluator for \LangInt{}}.}
  1364. \label{fig:ocaml-pe-arith}
  1365. \end{figure}
  1366. \end{ocamlx}
  1367. To gain some confidence that the partial evaluator is correct, we can
  1368. test whether it produces programs that get the same result as the
  1369. input programs. That is, we can test whether it satisfies Diagram
  1370. \ref{eq:compile-correct}. The following code runs the partial
  1371. evaluator on several examples and tests the output program. The
  1372. \texttt{parse-program} and \texttt{assert} functions are defined in
  1373. Appendix~\ref{appendix:utilities}.\\
  1374. \begin{minipage}{1.0\textwidth}
  1375. \begin{lstlisting}
  1376. (define (test-pe p)
  1377. (assert "testing pe-Rint"
  1378. (equal? (interp-Rint p) (interp-Rint (pe-Rint p)))))
  1379. (test-pe (parse-program `(program () (+ 10 (- (+ 5 3))))))
  1380. (test-pe (parse-program `(program () (+ 1 (+ 3 1)))))
  1381. (test-pe (parse-program `(program () (- (+ 3 (- 5))))))
  1382. \end{lstlisting}
  1383. \end{minipage}
  1384. \begin{ocamlx}
  1385. We can perform a similar kind of test in OCaml using a utility
  1386. function called \code{interp\_from\_string} which is in the support
  1387. code for this chapter (not yet in the Appendix).
  1388. Note, however, that comparing
  1389. results like this isn't a very satisfactory way of testing programs
  1390. that use \code{Read} anyhow, because it requires us to input the
  1391. same values twice, once for each execution, or the test will fail!
  1392. A more straightforward approach is to know what result value we
  1393. expect from each test program on a given set of input, and simply check
  1394. that the partially evaluated program still produces that result.
  1395. The support code also contains a simple driver that implements this approach.
  1396. \end{ocamlx}
  1397. \begin{ocamlx}
  1398. {\bf Warmup Exercises}
  1399. 1. Extend the concrete language and implementation for \LangInt{} with an additional arity-2 primop that
  1400. performs subtraction. The concrete form for this is \code{(- $e_1$ $e_2$)} where
  1401. $e_1$ and $e_2$ are expressions. Note that there are several ways to do this: you can add
  1402. an additional primop \code{Sub} to the AST, and add new code to check and interpret it,
  1403. or you can choose to ``de-sugar'' the new form into a combination of existing primops when
  1404. converting S-expressions to ASTs. Either way, make sure that you understand why the concrete
  1405. language remains unambiguous even though (a) we already have a unary negation operaror that is also written
  1406. with \code{-}, and (b) unlike addition, subtraction is not an associative operator, i.e.
  1407. $((a-b)-c$ is not generally the same thing as $(a-(b-c))$.
  1408. 2. Make some non-trivial improvement to the partial evaluator. This task is intentionally open-ended, but here
  1409. are some suggestions, in increasing order of difficulty.
  1410. \begin{itemize}
  1411. \item
  1412. If you added a new primop for subtraction in part 1, add support for
  1413. partially evaluating subtractions involving constants, analogous to what is already there
  1414. for addition.
  1415. \item
  1416. Add support for simplifying expressions
  1417. based on simple algebraic identities, e.g. $x + 0 = x$ for all $x$.
  1418. \item Try to simplify expressions to
  1419. the point where they contain no more than one \code{Int} leaf expression (the remaining leaves should all be
  1420. \code{Read}s).
  1421. \end{itemize}
  1422. 3. Change the AST, interpreter and (improved) partial evaluator for \LangInt{} so that they
  1423. use true 64-bit integers throughout.
  1424. (Currently, these are used in S-expressions in the front end, but everything else uses 63-bit integers instead.)
  1425. This will bring our interpreter and partial evaluator in line with X86-64 machine code, our ultimate
  1426. compilation target.
  1427. The point of this exercise is to get you familiar with exploring an OCaml library, in this case \code{Int64},
  1428. which is documented at \url{https://ocaml.org/releases/4.12/api/Int64.html}.
  1429. \end{ocamlx}
  1430. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  1431. \chapter{Integers and Variables}
  1432. \label{ch:Rvar}
  1433. This chapter is about compiling a subset of Racket to x86-64 assembly
  1434. code~\citep{Intel:2015aa}. The subset, named \LangVar{}, includes
  1435. integer arithmetic and local variable binding. We often refer to
  1436. x86-64 simply as x86. The chapter begins with a description of the
  1437. \LangVar{} language (Section~\ref{sec:s0}) followed by an introduction
  1438. to of x86 assembly (Section~\ref{sec:x86}). The x86 assembly language
  1439. is large so we discuss only the instructions needed for compiling
  1440. \LangVar{}. We introduce more x86 instructions in later chapters.
  1441. After introducing \LangVar{} and x86, we reflect on their differences
  1442. and come up with a plan to break down the translation from \LangVar{}
  1443. to x86 into a handful of steps (Section~\ref{sec:plan-s0-x86}). The
  1444. rest of the sections in this chapter give detailed hints regarding
  1445. each step (Sections~\ref{sec:uniquify-Rvar} through \ref{sec:patch-s0}).
  1446. We hope to give enough hints that the well-prepared reader, together
  1447. with a few friends, can implement a compiler from \LangVar{} to x86 in
  1448. a couple weeks. To give the reader a feeling for the scale of this
  1449. first compiler, the instructor solution for the \LangVar{} compiler is
  1450. approximately 500 lines of code. \ocaml{For the OCaml-based course,
  1451. several pieces of the compiler will be provided for you, leaving enough
  1452. work for a week-long assignment. The instructor solution for
  1453. the tasks left to you is under 200 lines of code.
  1454. However, in return for not writing so much code,
  1455. you will need to \emph{read} more existing code.}
  1456. \section{The \LangVar{} Language}
  1457. \label{sec:s0}
  1458. \index{variable}
  1459. The \LangVar{} language extends the \LangInt{} language with variable
  1460. definitions. The concrete syntax of the \LangVar{} language is defined by
  1461. the grammar in Figure~\ref{fig:r1-concrete-syntax} and the abstract
  1462. syntax is defined in Figure~\ref{fig:r1-syntax}. \ocaml{For the OCaml
  1463. version, we don't feel the need to match the syntax of Racket exactly,
  1464. so we can simplify the concrete syntax of \key{let} bindings.} The non-terminal
  1465. \Var{} may be any Racket identifier. \ocaml{For OCaml, it can be any S-expression symbol.}
  1466. As in \LangInt{}, \key{read} is a
  1467. nullary operator, \key{-} is a unary operator, and \key{+} is a binary
  1468. operator. \ocaml{We also add \key{-} as a binary subtraction operator in
  1469. the concrete syntax, but not in the abstract syntax:
  1470. we will ``de-sugar'' substraction into a combination
  1471. of addition and negation.}Similar to \LangInt{}, the abstract syntax of \LangVar{} includes the
  1472. \key{Program} struct to mark the top of the program.
  1473. %% The $\itm{info}$
  1474. %% field of the \key{Program} structure contains an \emph{association
  1475. %% list} (a list of key-value pairs) that is used to communicate
  1476. %% auxiliary data from one compiler pass the next.
  1477. Despite the simplicity of the \LangVar{} language, it is rich enough to
  1478. exhibit several compilation techniques.
  1479. \begin{figure}[tp]
  1480. \centering
  1481. \fbox{
  1482. \begin{minipage}{0.96\textwidth}
  1483. \[
  1484. \begin{array}{rcl}
  1485. \Exp &::=& \Int \mid \CREAD{} \mid \CNEG{\Exp} \mid \CADD{\Exp}{\Exp}\\
  1486. &\mid& \Var \mid \CLET{\Var}{\Exp}{\Exp} \\
  1487. \LangVar{} &::=& \Exp
  1488. \end{array}
  1489. \]
  1490. \end{minipage}
  1491. }
  1492. \begin{ocamlx}
  1493. \fbox{
  1494. \begin{minipage}{0.96\textwidth}
  1495. \[
  1496. \begin{array}{rcl}
  1497. \Exp &::=& \Int \mid \CREAD{} \mid \CNEG{\Exp} \mid \CADD{\Exp}{\Exp} \mid \CSUB{\Exp}{\Exp}\\
  1498. &\mid& \Var \mid \code{(let $\Var$ $\Exp$ $\Exp$)}\\
  1499. \LangVar{} &::=& \Exp
  1500. \end{array}
  1501. \]
  1502. \end{minipage}
  1503. }
  1504. \end{ocamlx}
  1505. \caption{The concrete syntax of \LangVar{} \ocaml{in OCaml}.}
  1506. \label{fig:r1-concrete-syntax}
  1507. \end{figure}
  1508. \begin{figure}[tp]
  1509. \centering
  1510. \fbox{
  1511. \begin{minipage}{0.96\textwidth}
  1512. \[
  1513. \begin{array}{rcl}
  1514. \Exp &::=& \INT{\Int} \mid \READ{} \\
  1515. &\mid& \NEG{\Exp} \mid \ADD{\Exp}{\Exp} \\
  1516. &\mid& \VAR{\Var} \mid \LET{\Var}{\Exp}{\Exp} \\
  1517. \LangVar{} &::=& \PROGRAM{\code{'()}}{\Exp}
  1518. \end{array}
  1519. \]
  1520. \end{minipage}
  1521. }
  1522. \begin{lstlisting}[style=ocaml,frame=single]
  1523. type primop =
  1524. Read
  1525. | Neg
  1526. | Add
  1527. type var = string
  1528. type exp =
  1529. Int of int64
  1530. | Prim of primop * exp list
  1531. | Var of var
  1532. | Let of var * exp * exp
  1533. type 'info program = Program of 'info * exp
  1534. \end{lstlisting}
  1535. \caption{The abstract syntax of \LangVar{}.}
  1536. \label{fig:r1-syntax}
  1537. \end{figure}
  1538. Let us dive further into the syntax and semantics of the \LangVar{}
  1539. language. The \key{let} feature defines a variable for use within its
  1540. body and initializes the variable with the value of an expression.
  1541. The abstract syntax for \key{let} is defined in
  1542. Figure~\ref{fig:r1-syntax}. The concrete syntax for \key{let} is
  1543. \begin{lstlisting}
  1544. (let ([|$\itm{var}$| |$\itm{exp}$|]) |$\itm{exp}$|)
  1545. \end{lstlisting}
  1546. \begin{lstlisting}[style=ocaml]
  1547. (let ~$\itm{var}$~ ~$\itm{exp}$~ ~$\itm{exp}$~)
  1548. \end{lstlisting}
  1549. For example, the following program initializes \code{x} to $32$ and then
  1550. evaluates the body \code{(+ 10 x)}, producing $42$.
  1551. \begin{lstlisting}
  1552. (let ([x (+ 12 20)]) (+ 10 x))
  1553. \end{lstlisting}
  1554. \begin{lstlisting}[style=ocaml]
  1555. (let x (+ 12 20) (+ 10 x))
  1556. \end{lstlisting}
  1557. When there are multiple \key{let}'s for the same variable, the closest
  1558. enclosing \key{let} is used. That is, variable definitions overshadow
  1559. prior definitions. Consider the following program with two \key{let}'s
  1560. that define variables named \code{x}. Can you figure out the result?
  1561. \begin{lstlisting}
  1562. (let ([x 32]) (+ (let ([x 10]) x) x))
  1563. \end{lstlisting}
  1564. \begin{lstlisting}[style=ocaml]
  1565. (let x 32 (+ (let x 10 x) x))
  1566. \end{lstlisting}
  1567. For the purposes of depicting which variable uses correspond to which
  1568. definitions, the following shows the \code{x}'s annotated with
  1569. subscripts to distinguish them. Double check that your answer for the
  1570. above is the same as your answer for this annotated version of the
  1571. program.
  1572. \begin{lstlisting}
  1573. (let ([x|$_1$| 32]) (+ (let ([x|$_2$| 10]) x|$_2$|) x|$_1$|))
  1574. \end{lstlisting}
  1575. \begin{lstlisting}[style=ocaml]
  1576. (let x~$_1$~ 32 (+ (let x~$_2$~ 10 x~$_2$~) x~$_1$~))
  1577. \end{lstlisting}
  1578. The initializing expression is always evaluated before the body of the
  1579. \key{let}, so in the following, the \key{read} for \code{x} is
  1580. performed before the \key{read} for \code{y}. Given the input
  1581. $52$ then $10$, the following produces $42$ (not $-42$).
  1582. \begin{lstlisting}
  1583. (let ([x (read)]) (let ([y (read)]) (+ x (- y))))
  1584. \end{lstlisting}
  1585. \begin{lstlisting}[style=ocaml]
  1586. (let x (read) (let y (read) (+ x (- y)))))
  1587. \end{lstlisting}
  1588. \subsection{Extensible Interpreters via Method Overriding}
  1589. \label{sec:extensible-interp}
  1590. \begin{ocamlx}
  1591. We are not going to bother with making our OCaml interpreters
  1592. extensible, although there are several mechanisms in OCaml that
  1593. we could use to acheive this. The languages involved here just
  1594. don't seem big enough to warrant the added complexity.
  1595. We will, however, break out the definition and interpretation of
  1596. primops into a separate module, so that this can be easily shared among
  1597. different languages.
  1598. \end{ocamlx}
  1599. To prepare for discussing the interpreter for \LangVar{}, we need to
  1600. explain why we choose to implement the interpreter using
  1601. object-oriented programming, that is, as a collection of methods
  1602. inside of a class. Throughout this book we define many interpreters,
  1603. one for each of the languages that we study. Because each language
  1604. builds on the prior one, there is a lot of commonality between their
  1605. interpreters. We want to write down those common parts just once
  1606. instead of many times. A naive approach would be to have, for example,
  1607. the interpreter for \LangIf{} handle all of the new features in that
  1608. language and then have a default case that dispatches to the
  1609. interpreter for \LangVar{}. The following code sketches this idea.
  1610. \begin{center}
  1611. \begin{minipage}{0.45\textwidth}
  1612. \begin{lstlisting}
  1613. (define (interp-Rvar e)
  1614. (match e
  1615. [(Prim '- (list e))
  1616. (fx- 0 (interp-Rvar e))]
  1617. ...))
  1618. \end{lstlisting}
  1619. \end{minipage}
  1620. \begin{minipage}{0.45\textwidth}
  1621. \begin{lstlisting}
  1622. (define (interp-Rif e)
  1623. (match e
  1624. [(If cnd thn els)
  1625. (match (interp-Rif cnd)
  1626. [#t (interp-Rif thn)]
  1627. [#f (interp-Rif els)])]
  1628. ...
  1629. [else (interp-Rvar e)]))
  1630. \end{lstlisting}
  1631. \end{minipage}
  1632. \end{center}
  1633. The problem with this approach is that it does not handle situations
  1634. in which an \LangIf{} feature, like \code{If}, is nested inside an \LangVar{}
  1635. feature, like the \code{-} operator, as in the following program.
  1636. \begin{lstlisting}
  1637. (Prim '- (list (If (Bool #t) (Int 42) (Int 0))))
  1638. \end{lstlisting}
  1639. If we invoke \code{interp-Rif} on this program, it dispatches to
  1640. \code{interp-Rvar} to handle the \code{-} operator, but then it
  1641. recurisvely calls \code{interp-Rvar} again on the argument of \code{-},
  1642. which is an \code{If}. But there is no case for \code{If} in
  1643. \code{interp-Rvar}, so we get an error!
  1644. To make our interpreters extensible we need something called
  1645. \emph{open recursion}\index{open recursion}, where the tying of the
  1646. recursive knot is delayed to when the functions are
  1647. composed. Object-oriented languages provide open recursion with the
  1648. late-binding of overridden methods\index{method overriding}. The
  1649. following code sketches this idea for interpreting \LangVar{} and
  1650. \LangIf{} using the
  1651. \href{https://docs.racket-lang.org/guide/classes.html}{\code{class}}
  1652. \index{class} feature of Racket. We define one class for each
  1653. language and define a method for interpreting expressions inside each
  1654. class. The class for \LangIf{} inherits from the class for \LangVar{}
  1655. and the method \code{interp-exp} in \LangIf{} overrides the
  1656. \code{interp-exp} in \LangVar{}. Note that the default case of
  1657. \code{interp-exp} in \LangIf{} uses \code{super} to invoke
  1658. \code{interp-exp}, and because \LangIf{} inherits from \LangVar{},
  1659. that dispatches to the \code{interp-exp} in \LangVar{}.
  1660. \begin{center}
  1661. \begin{minipage}{0.45\textwidth}
  1662. \begin{lstlisting}
  1663. (define interp-Rvar-class
  1664. (class object%
  1665. (define/public (interp-exp e)
  1666. (match e
  1667. [(Prim '- (list e))
  1668. (fx- 0 (interp-exp e))]
  1669. ...))
  1670. ...))
  1671. \end{lstlisting}
  1672. \end{minipage}
  1673. \begin{minipage}{0.45\textwidth}
  1674. \begin{lstlisting}
  1675. (define interp-Rif-class
  1676. (class interp-Rvar-class
  1677. (define/override (interp-exp e)
  1678. (match e
  1679. [(If cnd thn els)
  1680. (match (interp-exp cnd)
  1681. [#t (interp-exp thn)]
  1682. [#f (interp-exp els)])]
  1683. ...
  1684. [else (super interp-exp e)]))
  1685. ...
  1686. ))
  1687. \end{lstlisting}
  1688. \end{minipage}
  1689. \end{center}
  1690. Getting back to the troublesome example, repeated here:
  1691. \begin{lstlisting}
  1692. (define e0 (Prim '- (list (If (Bool #t) (Int 42) (Int 0)))))
  1693. \end{lstlisting}
  1694. We can invoke the \code{interp-exp} method for \LangIf{} on this
  1695. expression by creating an object of the \LangIf{} class and sending it the
  1696. \code{interp-exp} method with the argument \code{e0}.
  1697. \begin{lstlisting}
  1698. (send (new interp-Rif-class) interp-exp e0)
  1699. \end{lstlisting}
  1700. The default case of \code{interp-exp} in \LangIf{} handles it by
  1701. dispatching to the \code{interp-exp} method in \LangVar{}, which
  1702. handles the \code{-} operator. But then for the recursive method call,
  1703. it dispatches back to \code{interp-exp} in \LangIf{}, where the
  1704. \code{If} is handled correctly. Thus, method overriding gives us the
  1705. open recursion that we need to implement our interpreters in an
  1706. extensible way.
  1707. \newpage
  1708. \subsection{Definitional Interpreter for \LangVar{}}
  1709. \begin{wrapfigure}[25]{r}[1.0in]{0.6\textwidth}
  1710. \small
  1711. \begin{tcolorbox}[title=Association Lists as Dictionaries]
  1712. An \emph{association list} (alist) is a list of key-value pairs.
  1713. For example, we can map people to their ages with an alist.
  1714. \index{alist}\index{association list}
  1715. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  1716. (define ages
  1717. '((jane . 25) (sam . 24) (kate . 45)))
  1718. \end{lstlisting}
  1719. The \emph{dictionary} interface is for mapping keys to values.
  1720. Every alist implements this interface. \index{dictionary} The package
  1721. \href{https://docs.racket-lang.org/reference/dicts.html}{\code{racket/dict}}
  1722. provides many functions for working with dictionaries. Here
  1723. are a few of them:
  1724. \begin{description}
  1725. \item[$\LP\key{dict-ref}\,\itm{dict}\,\itm{key}\RP$]
  1726. returns the value associated with the given $\itm{key}$.
  1727. \item[$\LP\key{dict-set}\,\itm{dict}\,\itm{key}\,\itm{val}\RP$]
  1728. returns a new dictionary that maps $\itm{key}$ to $\itm{val}$
  1729. but otherwise is the same as $\itm{dict}$.
  1730. \item[$\LP\code{in-dict}\,\itm{dict}\RP$] returns the
  1731. \href{https://docs.racket-lang.org/reference/sequences.html}{sequence}
  1732. of keys and values in $\itm{dict}$. For example, the following
  1733. creates a new alist in which the ages are incremented.
  1734. \end{description}
  1735. \vspace{-10pt}
  1736. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  1737. (for/list ([(k v) (in-dict ages)])
  1738. (cons k (add1 v)))
  1739. \end{lstlisting}
  1740. \end{tcolorbox}
  1741. \end{wrapfigure}
  1742. Having justified the use of classes and methods to implement
  1743. interpreters \ocaml{(or not)}, we turn to the definitional interpreter for \LangVar{}
  1744. in Figure~\ref{fig:interp-Rvar} \ocaml{(Figure~\ref{fig:interp-Rvar-ocaml})}.
  1745. It is similar to the interpreter for
  1746. \LangInt{} but adds two new \key{match} cases for variables and
  1747. \key{let}. \ocaml{Also, the code for performing primops has been split out
  1748. into a separate function. We rely on the fact that
  1749. \code{List.map} processes list elements from left to right to
  1750. enforce the intended order of evaluation of primop subexpressions.}
  1751. For \key{let} we need a way to communicate the value bound
  1752. to a variable to all the uses of the variable. To accomplish this, we
  1753. maintain a mapping from variables to values. Throughout the compiler
  1754. we often need to map variables to information about them. We refer to
  1755. these mappings as
  1756. \emph{environments}\index{environment}.\footnote{Another common term
  1757. for environment in the compiler literature is \emph{symbol
  1758. table}\index{symbol table}.}
  1759. %
  1760. For simplicity, we use an association list (alist) to represent the
  1761. environment. The sidebar to the right gives a brief introduction to
  1762. alists and the \code{racket/dict} package. The \code{interp-exp}
  1763. function takes the current environment, \code{env}, as an extra
  1764. parameter. When the interpreter encounters a variable, it finds the
  1765. corresponding value using the \code{dict-ref} function. When the
  1766. interpreter encounters a \key{Let}, it evaluates the initializing
  1767. expression, extends the environment with the result value bound to the
  1768. variable, using \code{dict-set}, then evaluates the body of the
  1769. \key{Let}.
  1770. \begin{ocamlx}
  1771. In OCaml, we thread environments in the same way, but
  1772. it is convenient to represent environments using
  1773. the \code{Map} library module, which provides efficient
  1774. mappings from keys to values (using balanced binary trees,
  1775. although that is an implementation detail we don't need to
  1776. know about). \code{Map} is an example of a module that
  1777. is \emph{parameterized} by another module signature; this
  1778. is sometimes called a \emph{functor}. Here we use \code{Map.Make}
  1779. to \emph{apply} the functor, thereby defining a module \code{Env} that provides operations
  1780. specialized to \code{string} keys (suitable for variables).
  1781. The type of environments is written \code{'a Env.t}; it is
  1782. parametric in the type \code{'a} of values stored in the map.
  1783. Here we will be using \LangVar{}
  1784. values, i.e. \code{int64}s, so the type is \code{int64 Env.t}.
  1785. \code{Env.empty} represents an empty environment.
  1786. \code{Env.find $x$ $env$} returns the value associated with
  1787. variable $x$ in $env$ (throwing an exception if $x$ is not found).
  1788. \code{Env.add $x$ $v$ $env$} produces a new environment
  1789. that is the same as $env$ except that variable $x$ is associated to
  1790. value $v$. Note that these operations are \emph{pure}; that is, they
  1791. do not mutate any environment.
  1792. \end{ocamlx}
  1793. \begin{ocamlx}
  1794. The OCaml code for \LangVar{} ASTs, concrete parsing and printing (for debug purposes),
  1795. and interpretation are in file \texttt{RVar.ml}, which also imports
  1796. from file \texttt{Primops.ml}. These files also contain code for
  1797. static checking of \LangVar{} programs. The checker makes sure that
  1798. (i) every use of a variable is in the scope of a corresponding \code{let} binding;
  1799. and (ii) each primop is applied to the correct number of arguments.
  1800. Note that if a source program fails the checker for reason (i), this is a static user error
  1801. that should be reported as such. (Violations of (ii) in user programs
  1802. should be caught by the parser; parse errors are always reported as user errors.)
  1803. Your compiler should stop trying to process a file as soon as it reports a static user
  1804. error! (That's what the provided test driver will do.)
  1805. However, if a program initially passes
  1806. the checker but is subsequently transformed by the compiler and then
  1807. fails a re-check, this indicates that the problem is the compiler's fault.
  1808. In this case, the compiler itself should halt with a suitable error message.
  1809. The checker has a boolean flag to distinguish these cases.
  1810. \end{ocamlx}
  1811. \begin{figure}[tp]
  1812. \begin{lstlisting}
  1813. (define interp-Rvar-class
  1814. (class object%
  1815. (super-new)
  1816. (define/public ((interp-exp env) e)
  1817. (match e
  1818. [(Int n) n]
  1819. [(Prim 'read '())
  1820. (define r (read))
  1821. (cond [(fixnum? r) r]
  1822. [else (error 'interp-exp "expected an integer" r)])]
  1823. [(Prim '- (list e)) (fx- 0 ((interp-exp env) e))]
  1824. [(Prim '+ (list e1 e2))
  1825. (fx+ ((interp-exp env) e1) ((interp-exp env) e2))]
  1826. [(Var x) (dict-ref env x)]
  1827. [(Let x e body)
  1828. (define new-env (dict-set env x ((interp-exp env) e)))
  1829. ((interp-exp new-env) body)]))
  1830. (define/public (interp-program p)
  1831. (match p
  1832. [(Program '() e) ((interp-exp '()) e)]))
  1833. ))
  1834. (define (interp-Rvar p)
  1835. (send (new interp-Rvar-class) interp-program p))
  1836. \end{lstlisting}
  1837. \caption{Interpreter for the \LangVar{} language.}
  1838. \label{fig:interp-Rvar}
  1839. \end{figure}
  1840. \begin{figure}[tp]
  1841. \begin{lstlisting}[style=ocaml]
  1842. type value = int64
  1843. let interp_primop (op:primop) (args: value list) : value =
  1844. match op,args with
  1845. Read,[] -> read_int()
  1846. | Neg,[v] -> Int64.neg v
  1847. | Add,[v1;v2] -> Int64.add v1 v2
  1848. | _,_ -> assert false (* arity mismatch *)
  1849. module StringKey = struct type t = string let compare = String.compare end
  1850. module Env = Map.Make(StringKey)
  1851. let rec interp_exp (env:value Env.t) = function
  1852. Int n -> n
  1853. | Prim(op,args) -> interp_primop op (List.map (interp_exp env) args)
  1854. | Var x -> Env.find x env
  1855. | Let (x,e1,e2) -> interp_exp (Env.add x (interp_exp env e1) env) e2
  1856. let interp_program (Program(_,e)) = interp_exp Env.empty e
  1857. \end{lstlisting}
  1858. \caption{\ocaml{Ocaml interpreter for the \LangVar{} language.}}
  1859. \label{fig:interp-Rvar-ocaml}
  1860. \end{figure}
  1861. The goal for this chapter is to implement a compiler that translates
  1862. any program $P_1$ written in the \LangVar{} language into an x86 assembly
  1863. program $P_2$ such that $P_2$ exhibits the same behavior when run on a
  1864. computer as the $P_1$ program interpreted by \code{interp-Rvar}. That
  1865. is, they output the same integer $n$. We depict this correctness
  1866. criteria in the following diagram.
  1867. \[
  1868. \begin{tikzpicture}[baseline=(current bounding box.center)]
  1869. \node (p1) at (0, 0) {$P_1$};
  1870. \node (p2) at (4, 0) {$P_2$};
  1871. \node (o) at (4, -2) {$n$};
  1872. \path[->] (p1) edge [above] node {\footnotesize compile} (p2);
  1873. \path[->] (p1) edge [left] node {\footnotesize\code{interp-Rvar}} (o);
  1874. \path[->] (p2) edge [right] node {\footnotesize\code{interp-x86int}} (o);
  1875. \end{tikzpicture}
  1876. \]
  1877. In the next section we introduce the \LangXInt{} subset of x86 that
  1878. suffices for compiling \LangVar{}.
  1879. \section{The \LangXInt{} Assembly Language}
  1880. \label{sec:x86}
  1881. \index{x86}
  1882. Figure~\ref{fig:x86-int-concrete} defines the concrete syntax for
  1883. \LangXInt{}. We use the AT\&T syntax expected by the GNU
  1884. assembler.
  1885. %
  1886. A program begins with a \code{main} label followed by a sequence of
  1887. instructions. The \key{globl} directive says that the \key{main}
  1888. procedure is externally visible, which is necessary so that the
  1889. operating system can call it. In the grammar, ellipses such as
  1890. $\ldots$ are used to indicate a sequence of items, e.g., $\Instr
  1891. \ldots$ is a sequence of instructions.\index{instruction}
  1892. %
  1893. An x86 program is stored in the computer's memory. For our purposes,
  1894. the computer's memory is as a mapping of 64-bit addresses to 64-bit
  1895. values. The computer has a \emph{program counter} (PC)\index{program
  1896. counter}\index{PC} stored in the \code{rip} register that points to
  1897. the address of the next instruction to be executed. For most
  1898. instructions, the program counter is incremented after the instruction
  1899. is executed, so it points to the next instruction in memory. Most x86
  1900. instructions take two operands, where each operand is either an
  1901. integer constant (called \emph{immediate value}\index{immediate
  1902. value}), a \emph{register}\index{register}, or a memory location.
  1903. \newcommand{\allregisters}{\key{rsp} \mid \key{rbp} \mid \key{rax} \mid \key{rbx} \mid \key{rcx}
  1904. \mid \key{rdx} \mid \key{rsi} \mid \key{rdi} \mid \\
  1905. && \key{r8} \mid \key{r9} \mid \key{r10}
  1906. \mid \key{r11} \mid \key{r12} \mid \key{r13}
  1907. \mid \key{r14} \mid \key{r15}}
  1908. \begin{figure}[tp]
  1909. \fbox{
  1910. \begin{minipage}{0.96\textwidth}
  1911. \[
  1912. \begin{array}{lcl}
  1913. \Reg &::=& \allregisters{} \\
  1914. \Arg &::=& \key{\$}\Int \mid \key{\%}\Reg \mid \Int\key{(}\key{\%}\Reg\key{)}\\
  1915. \Instr &::=& \key{addq} \; \Arg\key{,} \Arg \mid
  1916. \key{subq} \; \Arg\key{,} \Arg \mid
  1917. \key{negq} \; \Arg \mid \\
  1918. && \key{movq} \; \Arg\key{,} \Arg \mid \ocaml{\key{movabsq} \; \Arg\key{,} \Arg \mid} \\
  1919. && \key{callq} \; \mathit{label} \mid
  1920. \key{pushq}\;\Arg \mid \key{popq}\;\Arg \mid \key{retq} \mid \key{jmp}\,\itm{label} \\
  1921. && \itm{label}\key{:}\; \Instr \\
  1922. \LangXInt{} &::= & \key{.globl main}\\
  1923. & & \key{main:} \; \Instr\ldots
  1924. \end{array}
  1925. \]
  1926. \end{minipage}
  1927. }
  1928. \caption{The syntax of the \LangXInt{} assembly language (AT\&T syntax).}
  1929. \label{fig:x86-int-concrete}
  1930. \end{figure}
  1931. A register is a special kind of variable. Each one holds a 64-bit
  1932. value; there are 16 general-purpose registers in the computer and
  1933. their names are given in Figure~\ref{fig:x86-int-concrete}. A register
  1934. is written with a \key{\%} followed by the register name, such as
  1935. \key{\%rax}.
  1936. An immediate value is written using the notation \key{\$}$n$ where $n$
  1937. is an integer.
  1938. %
  1939. %
  1940. An access to memory is specified using the syntax $n(\key{\%}r)$,
  1941. which obtains the address stored in register $r$ and then adds $n$
  1942. bytes to the address. The resulting address is used to load or store
  1943. to memory depending on whether it occurs as a source or destination
  1944. argument of an instruction.
  1945. An arithmetic instruction such as $\key{addq}\,s\key{,}\,d$ reads from the
  1946. source $s$ and destination $d$, applies the arithmetic operation, then
  1947. writes the result back to the destination $d$.
  1948. %
  1949. The move instruction $\key{movq}\,s\key{,}\,d$ reads from $s$ and
  1950. stores the result in $d$.
  1951. %
  1952. The $\key{callq}\,\itm{label}$ instruction jumps to the procedure
  1953. specified by the label and $\key{retq}$ returns from a procedure to
  1954. its caller.
  1955. %
  1956. We discuss procedure calls in more detail later in this chapter and in
  1957. Chapter~\ref{ch:Rfun}. The instruction $\key{jmp}\,\itm{label}$
  1958. updates the program counter to the address of the instruction after
  1959. the specified label.
  1960. Appendix~\ref{sec:x86-quick-reference} contains a quick-reference for
  1961. all of the x86 instructions used in this book.
  1962. Figure~\ref{fig:p0-x86} depicts an x86 program that is equivalent to
  1963. \code{(+ 10 32)}. The instruction \lstinline{movq $10, %rax}
  1964. puts $10$ into register \key{rax} and then \lstinline{addq $32, %rax}
  1965. adds $32$ to the $10$ in \key{rax} and
  1966. puts the result, $42$, back into \key{rax}.
  1967. %
  1968. The last instruction, \key{retq}, finishes the \key{main} function by
  1969. returning the integer in \key{rax} to the operating system. The
  1970. operating system interprets this integer as the program's exit
  1971. code. By convention, an exit code of 0 indicates that a program
  1972. completed successfully, and all other exit codes indicate various
  1973. errors. \ocaml{Also, exit codes are unsigned bytes, so they cannot accurately represent
  1974. arbitrary \code{int64}s.} Nevertheless, in this book we return the result of the program
  1975. as the exit code. \ocaml{(Incidentally, if you run a program at the unix shell
  1976. prompt, you can retrieve its exit code by typing \texttt{echo \$?} as the very next command.)}
  1977. \begin{figure}[tbp]
  1978. \begin{lstlisting}
  1979. .globl main
  1980. main:
  1981. movq $10, %rax
  1982. addq $32, %rax
  1983. retq
  1984. \end{lstlisting}
  1985. \caption{An x86 program equivalent to \code{(+ 10 32)}.}
  1986. \label{fig:p0-x86}
  1987. \end{figure}
  1988. The x86 assembly language varies in a couple ways depending on what
  1989. operating system it is assembled in. The code examples shown here are
  1990. correct on Linux and most Unix-like platforms, but when assembled on
  1991. Mac OS X, labels like \key{main} must be prefixed with an underscore,
  1992. as in \key{\_main}. \ocaml{There is a utility function \code{get\_ostype}
  1993. provided in the \texttt{utils.ml} module provided with the support materials.}
  1994. We exhibit the use of memory for storing intermediate results in the
  1995. next example. Figure~\ref{fig:p1-x86} lists an x86 program that is
  1996. equivalent to \code{(+ 52 (- 10))}. This program uses a region of
  1997. memory called the \emph{procedure call stack} (or \emph{stack} for
  1998. short). \index{stack}\index{procedure call stack} The stack consists
  1999. of a separate \emph{frame}\index{frame} for each procedure call. The
  2000. memory layout for an individual frame is shown in
  2001. Figure~\ref{fig:frame}. The register \key{rsp} is called the
  2002. \emph{stack pointer}\index{stack pointer} and points to the item at
  2003. the top of the stack. The stack grows downward in memory, so we
  2004. increase the size of the stack by subtracting from the stack pointer.
  2005. In the context of a procedure call, the \emph{return
  2006. address}\index{return address} is the instruction after the call
  2007. instruction on the caller side. The function call instruction,
  2008. \code{callq}, pushes the return address onto the stack prior to
  2009. jumping to the procedure. The register \key{rbp} is the \emph{base
  2010. pointer}\index{base pointer} and is used to access variables that
  2011. are stored in the frame of the current procedure call. The base
  2012. pointer of the caller is pushed onto the stack after the return
  2013. address and then the base pointer is set to the location of the old
  2014. base pointer. In Figure~\ref{fig:frame} we number the variables from
  2015. $1$ to $n$. Variable $1$ is stored at address $-8\key{(\%rbp)}$,
  2016. variable $2$ at $-16\key{(\%rbp)}$, etc.
  2017. \begin{figure}[tbp]
  2018. \begin{lstlisting}
  2019. start:
  2020. movq $10, -8(%rbp)
  2021. negq -8(%rbp)
  2022. movq -8(%rbp), %rax
  2023. addq $52, %rax
  2024. jmp conclusion
  2025. .globl main
  2026. main:
  2027. pushq %rbp
  2028. movq %rsp, %rbp
  2029. subq $16, %rsp
  2030. jmp start
  2031. conclusion:
  2032. addq $16, %rsp
  2033. popq %rbp
  2034. retq
  2035. \end{lstlisting}
  2036. \caption{An x86 program equivalent to \code{(+ 52 (- 10))}.}
  2037. \label{fig:p1-x86}
  2038. \end{figure}
  2039. \begin{figure}[tbp]
  2040. \centering
  2041. \begin{tabular}{|r|l|} \hline
  2042. Position & Contents \\ \hline
  2043. 8(\key{\%rbp}) & return address \\
  2044. 0(\key{\%rbp}) & old \key{rbp} \\
  2045. -8(\key{\%rbp}) & variable $1$ \\
  2046. -16(\key{\%rbp}) & variable $2$ \\
  2047. \ldots & \ldots \\
  2048. 0(\key{\%rsp}) & variable $n$\\ \hline
  2049. \end{tabular}
  2050. \caption{Memory layout of a frame.}
  2051. \label{fig:frame}
  2052. \end{figure}
  2053. Getting back to the program in Figure~\ref{fig:p1-x86}, consider how
  2054. control is transferred from the operating system to the \code{main}
  2055. function. The operating system issues a \code{callq main} instruction
  2056. which pushes its return address on the stack and then jumps to
  2057. \code{main}. In x86-64, the stack pointer \code{rsp} must be divisible
  2058. by 16 bytes prior to the execution of any \code{callq} instruction, so
  2059. when control arrives at \code{main}, the \code{rsp} is 8 bytes out of
  2060. alignment (because the \code{callq} pushed the return address). The
  2061. first three instructions are the typical \emph{prelude}\index{prelude}
  2062. for a procedure. The instruction \code{pushq \%rbp} saves the base
  2063. pointer for the caller onto the stack and subtracts $8$ from the stack
  2064. pointer. The second instruction \code{movq \%rsp, \%rbp} changes the
  2065. base pointer so that it points the location of the old base
  2066. pointer. The instruction \code{subq \$16, \%rsp} moves the stack
  2067. pointer down to make enough room for storing variables. This program
  2068. needs one variable ($8$ bytes) but we round up to 16 bytes so that
  2069. \code{rsp} is 16-byte aligned and we're ready to make calls to other
  2070. functions. The last instruction of the prelude is \code{jmp start},
  2071. which transfers control to the instructions that were generated from
  2072. the Racket expression \code{(+ 52 (- 10))}.
  2073. The first instruction under the \code{start} label is
  2074. \code{movq \$10, -8(\%rbp)}, which stores $10$ in variable $1$.
  2075. %
  2076. The instruction \code{negq -8(\%rbp)} changes variable $1$ to $-10$.
  2077. %
  2078. The next instruction moves the $-10$ from variable $1$ into the
  2079. \code{rax} register. Finally, \code{addq \$52, \%rax} adds $52$ to
  2080. the value in \code{rax}, updating its contents to $42$.
  2081. The three instructions under the label \code{conclusion} are the
  2082. typical \emph{conclusion}\index{conclusion} of a procedure. The first
  2083. two instructions restore the \code{rsp} and \code{rbp} registers to
  2084. the state they were in at the beginning of the procedure. The
  2085. instruction \key{addq \$16, \%rsp} moves the stack pointer back to
  2086. point at the old base pointer. Then \key{popq \%rbp} returns the old
  2087. base pointer to \key{rbp} and adds $8$ to the stack pointer. The last
  2088. instruction, \key{retq}, jumps back to the procedure that called this
  2089. one and adds $8$ to the stack pointer.
  2090. The compiler needs a convenient representation for manipulating x86
  2091. programs, so we define an abstract syntax for x86 in
  2092. Figure~\ref{fig:x86-int-ast}. We refer to this language as
  2093. \LangXInt{}. The main difference compared to the concrete syntax of
  2094. \LangXInt{} (Figure~\ref{fig:x86-int-concrete}) is that labels are not
  2095. allowed in front of every instructions. Instead instructions are
  2096. grouped into \emph{blocks}\index{block}\index{basic block} with a
  2097. label associated with every block, which is why the \key{X86Program}
  2098. struct includes an alist mapping labels to blocks. The reason for this
  2099. organization becomes apparent in Chapter~\ref{ch:Rif} when we
  2100. introduce conditional branching. The \code{Block} structure includes
  2101. an $\itm{info}$ field that is not needed for this chapter, but becomes
  2102. useful in Chapter~\ref{ch:register-allocation-Rvar}. For now, the
  2103. $\itm{info}$ field should contain an empty list. \ocaml{The \code{'binfo}
  2104. type parameter should be instantiated with \code{unit}.}
  2105. Also, regarding the
  2106. abstract syntax for \code{callq}, the \code{Callq} struct includes an
  2107. integer for representing the arity of the function, i.e., the number
  2108. of arguments, which is helpful to know during register allocation
  2109. (Chapter~\ref{ch:register-allocation-Rvar}).
  2110. \begin{ocamlx}
  2111. The OCaml code for \LangXInt{} AST, printing, and checking is
  2112. in file \texttt{X86Int.ml}. Printing is used to produce \texttt{.s} files that
  2113. can be input to the system assembler; it can also be useful for debugging.
  2114. File \texttt{utils.ml} contains functions for invoking the assembler and linker and
  2115. running the resulting executables from inside OCaml; these are invoked
  2116. from the test drivers also defined in that file.
  2117. \end{ocamlx}
  2118. \begin{figure}[tp]
  2119. \fbox{
  2120. \begin{minipage}{0.98\textwidth}
  2121. \small
  2122. \[
  2123. \begin{array}{lcl}
  2124. \Reg &::=& \allregisters{} \\
  2125. \Arg &::=& \IMM{\Int} \mid \REG{\Reg}
  2126. \mid \DEREF{\Reg}{\Int} \\
  2127. \Instr &::=& \BININSTR{\code{addq}}{\Arg}{\Arg}
  2128. \mid \BININSTR{\code{subq}}{\Arg}{\Arg} \\
  2129. &\mid& \UNIINSTR{\code{negq}}{\Arg}\\
  2130. &\mid& \BININSTR{\code{movq}}{\Arg}{\Arg}
  2131. \ocaml{\mid \BININSTR{\code{movabsq}}{\Arg}{\Arg}} \\
  2132. &\mid& \CALLQ{\itm{label}}{\itm{int}} \mid \RETQ{}
  2133. \mid \PUSHQ{\Arg} \mid \POPQ{\Arg} \mid \JMP{\itm{label}} \\
  2134. \Block &::= & \BLOCK{\itm{info}}{\LP\Instr\ldots\RP} \\
  2135. \LangXInt{} &::= & \XPROGRAM{\itm{info}}{\LP\LP\itm{label} \,\key{.}\, \Block \RP\ldots\RP}
  2136. \end{array}
  2137. \]
  2138. \end{minipage}
  2139. }
  2140. \begin{lstlisting}[style=ocaml,frame=single]
  2141. type reg =
  2142. RSP | RBP | RAX | RBX | RCX | RDX | RSI | RDI
  2143. | R8 | R9 | R10 | R11 | R12 | R13 | R14 | R15
  2144. type label = string
  2145. type arg =
  2146. Imm of int64 (* in most cases must actually be an int32 *)
  2147. | Reg of reg
  2148. | Deref of reg*int32
  2149. | Var of string (* a pseudo-argument for ~$\LangXVar{}$~ *)
  2150. type instr =
  2151. Addq of arg*arg | Subq of arg*arg | Negq of arg
  2152. | Movq of arg*arg | Movabsq of arg*arg | Callq of label*int
  2153. | Retq | Pushq of arg | Popq of arg | Jmp of label
  2154. type 'binfo block = Block of 'binfo * instr list
  2155. type ('pinfo,'binfo) program =
  2156. Program of 'pinfo * (label * 'binfo block) list
  2157. \end{lstlisting}
  2158. \caption{The abstract syntax of \LangXInt{} \ocaml{and \LangXVar{}} assembly.}
  2159. \label{fig:x86-int-ast}
  2160. \end{figure}
  2161. \section{Planning the trip to x86 via the \LangCVar{} language}
  2162. \label{sec:plan-s0-x86}
  2163. To compile one language to another it helps to focus on the
  2164. differences between the two languages because the compiler will need
  2165. to bridge those differences. What are the differences between \LangVar{}
  2166. and x86 assembly? Here are some of the most important ones:
  2167. \begin{enumerate}
  2168. \item[(a)] x86 arithmetic instructions typically have two arguments
  2169. and update the second argument in place. In contrast, \LangVar{}
  2170. arithmetic operations take two arguments and produce a new value.
  2171. An x86 instruction may have at most one memory-accessing argument.
  2172. Furthermore, some instructions place special restrictions on their
  2173. arguments. \ocaml{For example, immediate operands are usually restricted
  2174. to fit in 32 bits (except for the \code{movabsq} instruction).}
  2175. \item[(b)] An argument of an \LangVar{} operator can be a deeply-nested
  2176. expression, whereas x86 instructions restrict their arguments to be
  2177. integers constants, registers, and memory locations.
  2178. \item[(c)] The order of execution in x86 is explicit in the syntax: a
  2179. sequence of instructions and jumps to labeled positions, whereas in
  2180. \LangVar{} the order of evaluation is a left-to-right depth-first
  2181. traversal of the abstract syntax tree.
  2182. \item[(d)] A program in \LangVar{} can have any number of variables
  2183. whereas x86 has 16 registers and the procedure calls stack.
  2184. \item[(e)] Variables in \LangVar{} can overshadow other variables with the
  2185. same name. In x86, registers have unique names and memory locations
  2186. have unique addresses.
  2187. \end{enumerate}
  2188. We ease the challenge of compiling from \LangVar{} to x86 by breaking down
  2189. the problem into several steps, dealing with the above differences one
  2190. at a time. Each of these steps is called a \emph{pass} of the
  2191. compiler.\index{pass}\index{compiler pass}
  2192. %
  2193. This terminology comes from the way each step passes over the AST of
  2194. the program.
  2195. %
  2196. We begin by sketching how we might implement each pass, and give them
  2197. names. We then figure out an ordering of the passes and the
  2198. input/output language for each pass. The very first pass has
  2199. \LangVar{} as its input language and the last pass has \LangXInt{} as
  2200. its output language. In between we can choose whichever language is
  2201. most convenient for expressing the output of each pass, whether that
  2202. be \LangVar{}, \LangXInt{}, or new \emph{intermediate languages} of
  2203. our own design. Finally, to implement each pass we write one
  2204. recursive function per non-terminal in the grammar of the input
  2205. language of the pass. \index{intermediate language}
  2206. \begin{description}
  2207. \item[\key{select-instructions}] handles the difference between
  2208. \LangVar{} operations and x86 instructions. This pass converts each
  2209. \LangVar{} operation to a short sequence of instructions that
  2210. accomplishes the same task.
  2211. \item[\key{remove-complex-opera*}] ensures that each subexpression of
  2212. a primitive operation is a variable or integer, that is, an
  2213. \emph{atomic} expression. We refer to non-atomic expressions as
  2214. \emph{complex}. This pass introduces temporary variables to hold
  2215. the results of complex subexpressions.\index{atomic
  2216. expression}\index{complex expression}%
  2217. \footnote{The subexpressions of an operation are often called
  2218. operators and operands which explains the presence of
  2219. \code{opera*} in the name of this pass.}
  2220. \item[\key{explicate-control}] makes the execution order of the
  2221. program explicit. It convert the abstract syntax tree representation
  2222. into a control-flow graph in which each node contains a sequence of
  2223. statements and the edges between nodes say which nodes contain jumps
  2224. to other nodes.
  2225. \item[\key{assign-homes}] replaces the variables in \LangVar{} with
  2226. registers or stack locations in x86.
  2227. \item[\key{uniquify}] deals with the shadowing of variables by
  2228. renaming every variable to a unique name.
  2229. \end{description}
  2230. The next question is: in what order should we apply these passes? This
  2231. question can be challenging because it is difficult to know ahead of
  2232. time which orderings will be better (easier to implement, produce more
  2233. efficient code, etc.) so oftentimes trial-and-error is
  2234. involved. Nevertheless, we can try to plan ahead and make educated
  2235. choices regarding the ordering.
  2236. What should be the ordering of \key{explicate-control} with respect to
  2237. \key{uniquify}? The \key{uniquify} pass should come first because
  2238. \key{explicate-control} changes all the \key{let}-bound variables to
  2239. become local variables whose scope is the entire program, which would
  2240. confuse variables with the same name.
  2241. %
  2242. We place \key{remove-complex-opera*} before \key{explicate-control}
  2243. because the latter removes the \key{let} form, but it is convenient to
  2244. use \key{let} in the output of \key{remove-complex-opera*}.
  2245. %
  2246. The ordering of \key{uniquify} with respect to
  2247. \key{remove-complex-opera*} does not matter so we arbitrarily choose
  2248. \key{uniquify} to come first.
  2249. Last, we consider \key{select-instructions} and \key{assign-homes}.
  2250. These two passes are intertwined. In Chapter~\ref{ch:Rfun} we
  2251. learn that, in x86, registers are used for passing arguments to
  2252. functions and it is preferable to assign parameters to their
  2253. corresponding registers. On the other hand, by selecting instructions
  2254. first we may run into a dead end in \key{assign-homes}. Recall that
  2255. only one argument of an x86 instruction may be a memory access but
  2256. \key{assign-homes} might fail to assign even one of them to a
  2257. register.
  2258. %
  2259. A sophisticated approach is to iteratively repeat the two passes until
  2260. a solution is found. However, to reduce implementation complexity we
  2261. recommend a simpler approach in which \key{select-instructions} comes
  2262. first, followed by the \key{assign-homes}, then a third pass named
  2263. \key{patch-instructions} that uses a reserved register to fix
  2264. outstanding problems.
  2265. \begin{figure}[tbp]
  2266. \begin{tikzpicture}[baseline=(current bounding box.center)]
  2267. \node (Rvar) at (0,2) {\large \LangVar{}};
  2268. \node (Rvar-2) at (3,2) {\large \LangVar{}};
  2269. \node (Rvar-3) at (6,2) {\large \LangVarANF{}};
  2270. %\node (Cvar-1) at (6,0) {\large \LangCVar{}};
  2271. \node (Cvar-2) at (3,0) {\large \LangCVar{}};
  2272. \node (x86-2) at (3,-2) {\large \LangXVar{}};
  2273. \node (x86-3) at (6,-2) {\large \LangXVar{}};
  2274. \node (x86-4) at (9,-2) {\large \LangXInt{}};
  2275. \node (x86-5) at (12,-2) {\large \LangXInt{}};
  2276. \path[->,bend left=15] (Rvar) edge [above] node {\ttfamily\footnotesize uniquify} (Rvar-2);
  2277. \path[->,bend left=15] (Rvar-2) edge [above] node {\ttfamily\footnotesize remove-complex.} (Rvar-3);
  2278. \path[->,bend left=15] (Rvar-3) edge [right] node {\ttfamily\footnotesize explicate-control} (Cvar-2);
  2279. \path[->,bend right=15] (Cvar-2) edge [left] node {\ttfamily\footnotesize select-instr.} (x86-2);
  2280. \path[->,bend left=15] (x86-2) edge [above] node {\ttfamily\footnotesize assign-homes} (x86-3);
  2281. \path[->,bend left=15] (x86-3) edge [above] node {\ttfamily\footnotesize patch-instr.} (x86-4);
  2282. \path[->,bend left=15] (x86-4) edge [above] node {\ttfamily\footnotesize print-x86} (x86-5);
  2283. \end{tikzpicture}
  2284. \caption{Diagram of the passes for compiling \LangVar{}. }
  2285. \label{fig:Rvar-passes}
  2286. \end{figure}
  2287. Figure~\ref{fig:Rvar-passes} presents the ordering of the compiler
  2288. passes and identifies the input and output language of each pass. The
  2289. last pass, \key{print-x86}, converts from the abstract syntax of
  2290. \LangXInt{} to the concrete syntax. In the following two sections
  2291. we discuss the \LangCVar{} intermediate language and the \LangXVar{}
  2292. dialect of x86. The remainder of this chapter gives hints regarding
  2293. the implementation of each of the compiler passes in
  2294. Figure~\ref{fig:Rvar-passes}.
  2295. %% The output of \key{uniquify} and \key{remove-complex-opera*}
  2296. %% are programs that are still in the \LangVar{} language, though the
  2297. %% output of the later is a subset of \LangVar{} named \LangVarANF{}
  2298. %% (Section~\ref{sec:remove-complex-opera-Rvar}).
  2299. %% %
  2300. %% The output of \key{explicate-control} is in an intermediate language
  2301. %% \LangCVar{} designed to make the order of evaluation explicit in its
  2302. %% syntax, which we introduce in the next section. The
  2303. %% \key{select-instruction} pass translates from \LangCVar{} to
  2304. %% \LangXVar{}. The \key{assign-homes} and
  2305. %% \key{patch-instructions}
  2306. %% passes input and output variants of x86 assembly.
  2307. \subsection{The \LangCVar{} Intermediate Language}
  2308. The output of \key{explicate-control} is similar to the $C$
  2309. language~\citep{Kernighan:1988nx} in that it has separate syntactic
  2310. categories for expressions and statements, so we name it \LangCVar{}. The
  2311. abstract syntax for \LangCVar{} is defined in Figure~\ref{fig:c0-syntax}.
  2312. (The concrete syntax for \LangCVar{} is in the Appendix,
  2313. Figure~\ref{fig:c0-concrete-syntax}. \ocaml{(This appendix is not quite accurate
  2314. for the OCaml version, but the details of the concrete syntax of
  2315. an IR like this don't matter much, since it will normally be used
  2316. only to dump out information when debugging; it won't be parsed.})
  2317. %
  2318. The \LangCVar{} language supports the same operators as \LangVar{} but
  2319. the arguments of operators are restricted to atomic
  2320. expressions. Instead of \key{let} expressions, \LangCVar{} has
  2321. assignment statements which can be executed in sequence using the
  2322. \key{Seq} form. A sequence of statements always ends with
  2323. \key{Return}, a guarantee that is baked into the grammar rules for
  2324. \itm{tail}. The naming of this non-terminal comes from the term
  2325. \emph{tail position}\index{tail position}, which refers to an
  2326. expression that is the last one to execute within a function.
  2327. A \LangCVar{} program consists of a control-flow graph represented as
  2328. an alist mapping labels to tails \ocaml{(that is, a list of \code{(label*tail)} pairs)}.
  2329. This is more general than necessary
  2330. for the present chapter, as we do not yet introduce \key{goto} for
  2331. jumping to labels, but it saves us from having to change the syntax in
  2332. Chapter~\ref{ch:Rif}. For now there will be just one label,
  2333. \key{start}, and the whole program \ocaml{body} is its tail.
  2334. %
  2335. The $\itm{info}$ field of the \key{CProgram} form, after the
  2336. \key{explicate-control} pass, contains a mapping from the symbol
  2337. \key{locals} to a list of variables, that is, a list of all the
  2338. variables used in the program. \ocaml{It is represented as a \code{unit Env.t},
  2339. a kind of degenerate map that effectively acts like a set.}
  2340. At the start of the program, these
  2341. variables are uninitialized; they become initialized on their first
  2342. assignment.
  2343. \begin{figure}[tbp]
  2344. \fbox{
  2345. \begin{minipage}{0.96\textwidth}
  2346. \[
  2347. \begin{array}{lcl}
  2348. \Atm &::=& \INT{\Int} \mid \VAR{\Var} \\
  2349. \Exp &::=& \Atm \mid \READ{} \mid \NEG{\Atm} \\
  2350. &\mid& \ADD{\Atm}{\Atm}\\
  2351. \Stmt &::=& \ASSIGN{\VAR{\Var}}{\Exp} \\
  2352. \Tail &::= & \RETURN{\Exp} \mid \SEQ{\Stmt}{\Tail} \\
  2353. \LangCVar{} & ::= & \CPROGRAM{\itm{info}}{\LP\LP\itm{label}\,\key{.}\,\Tail\RP\ldots\RP}
  2354. \end{array}
  2355. \]
  2356. \end{minipage}
  2357. }
  2358. \begin{lstlisting}[style=ocaml,frame=single]
  2359. type var = string
  2360. type label = string
  2361. type atm =
  2362. Int of int64
  2363. | Var of var
  2364. type exp =
  2365. Atom of atm
  2366. | Prim of primop * atm list
  2367. type stmt =
  2368. Assign of var * exp
  2369. type tail =
  2370. Return of exp
  2371. | Seq of stmt*tail
  2372. type 'pinfo program = Program of 'pinfo * (label*tail) list
  2373. \end{lstlisting}
  2374. \caption{The abstract syntax of the \LangCVar{} intermediate language.}
  2375. \label{fig:c0-syntax}
  2376. \end{figure}
  2377. The definitional interpreter for \LangCVar{} is in the support code,
  2378. in the file \code{interp-Cvar.rkt}.
  2379. \begin{ocamlx}
  2380. The OCaml code for \LangCVar{} AST, checking, printing (for debug purposes),
  2381. and interpretation is in file \texttt{CVar.ml}.
  2382. \end{ocamlx}
  2383. \subsection{The \LangXVar{} dialect}
  2384. The \LangXVar{} language is the output of the pass
  2385. \key{select-instructions}. It extends \LangXInt{} with an unbounded
  2386. number of program-scope variables and removes the restrictions
  2387. regarding instruction arguments.
  2388. \begin{ocamlx}
  2389. For simplicity, we treat \LangXInt{} and \LangXVar{} as the same
  2390. language, defined in \texttt{X86Int.ml}. In particular, we allow \code{Var}
  2391. as one of the possible forms for an instruction argument (\code{arg}).
  2392. We provide two different check routines.
  2393. \begin{itemize}
  2394. \item \code{CheckLabels.check\_program}
  2395. just checks that all label
  2396. declarations are unique and that all jump targets are defined; this
  2397. is suitable for checking the code produced from the \key{select-instructions}
  2398. pass, which will use \code{Var} arguments freely.
  2399. \item
  2400. \code{CheckArgs.check\_program} checks that all arguments are legal for the
  2401. actual X86-64 machine (in particular, that they are not \code{Var} arguments);
  2402. this is suitable for checking the output of the \key{patch-instr} pass.
  2403. \end{itemize}
  2404. \end{ocamlx}
  2405. \section{Uniquify Variables}
  2406. \label{sec:uniquify-Rvar}
  2407. The \code{uniquify} pass compiles \LangVar{} programs into \LangVar{}
  2408. programs in which every \key{let} binds a unique variable name. For
  2409. example, the \code{uniquify} pass should translate the program on the
  2410. left into the program on the right. \\
  2411. \begin{tabular}{lll}
  2412. \begin{minipage}{0.4\textwidth}
  2413. \begin{lstlisting}
  2414. (let ([x 32])
  2415. (+ (let ([x 10]) x) x))
  2416. \end{lstlisting}
  2417. \end{minipage}
  2418. &
  2419. $\Rightarrow$
  2420. &
  2421. \begin{minipage}{0.4\textwidth}
  2422. \begin{lstlisting}
  2423. (let ([x.1 32])
  2424. (+ (let ([x.2 10]) x.2) x.1))
  2425. \end{lstlisting}
  2426. \end{minipage}
  2427. \end{tabular} \\
  2428. %
  2429. \begin{tabular}{lll}
  2430. \begin{minipage}{0.4\textwidth}
  2431. \begin{lstlisting}[style=ocaml]
  2432. (let x 32
  2433. (+ (let x 10 x) x))
  2434. \end{lstlisting}
  2435. \end{minipage}
  2436. &
  2437. \ocaml{$\Rightarrow$}
  2438. &
  2439. \begin{minipage}{0.4\textwidth}
  2440. \begin{lstlisting}[style=ocaml]
  2441. (let x.1 32
  2442. (+ (let x.2 10 x.2) x.1))
  2443. \end{lstlisting}
  2444. \end{minipage}
  2445. \end{tabular} \\
  2446. %
  2447. The following is another example translation, this time of a program
  2448. with a \key{let} nested inside the initializing expression of another
  2449. \key{let}.\\
  2450. \begin{tabular}{lll}
  2451. \begin{minipage}{0.4\textwidth}
  2452. \begin{lstlisting}
  2453. (let ([x (let ([x 4])
  2454. (+ x 1))])
  2455. (+ x 2))
  2456. \end{lstlisting}
  2457. \end{minipage}
  2458. &
  2459. $\Rightarrow$
  2460. &
  2461. \begin{minipage}{0.4\textwidth}
  2462. \begin{lstlisting}
  2463. (let ([x.2 (let ([x.1 4])
  2464. (+ x.1 1))])
  2465. (+ x.2 2))
  2466. \end{lstlisting}
  2467. \end{minipage}
  2468. \end{tabular}
  2469. \ocaml{You can transliterate examples like this for yourself by now...}
  2470. We recommend implementing \code{uniquify} by creating a structurally
  2471. recursive function named \code{uniquify-exp} that mostly just copies
  2472. an expression. However, when encountering a \key{let}, it should
  2473. generate a unique name for the variable and associate the old name
  2474. with the new name in an alist \ocaml{(Ocaml: \key{Env})}.\footnote{The Racket function
  2475. \code{gensym} is handy for generating unique variable names. \ocaml{There is a similar
  2476. function defined in \texttt{utils.ml}.}} The
  2477. \code{uniquify-exp} function needs to access this alist \ocaml{(\key{Env})} when it gets
  2478. to a variable reference, so we add a parameter to \code{uniquify-exp}
  2479. for the alist \ocaml{(\key{Env})} .
  2480. The skeleton of the \code{uniquify-exp} function is shown in
  2481. Figure~\ref{fig:uniquify-Rvar}. The function is curried so that it is
  2482. convenient to partially apply it to an alist \ocaml{(\key{Env})} and then apply it to
  2483. different expressions, as in the last case for primitive operations in
  2484. Figure~\ref{fig:uniquify-Rvar}. The
  2485. %
  2486. \href{https://docs.racket-lang.org/reference/for.html#%28form._%28%28lib._racket%2Fprivate%2Fbase..rkt%29._for%2Flist%29%29}{\key{for/list}}
  2487. %
  2488. form of Racket is useful for transforming each element of a list to
  2489. produce a new list.\index{for/list}
  2490. \ocaml{The \code{List.map} function is similar.}
  2491. \ocaml{In addition to writing the \code{uniquify} transformation, it is worthwhile
  2492. to write a \emph{checker} to make sure that the result obeys any invariants we
  2493. expect to hold. (Sometimes these invariants are baked into the abstract syntax
  2494. of the target, but that's not the case here.) Our checker should re-traverse the
  2495. result AST and make sure that no identifier is bound more than once. It should also
  2496. re-run the \LangVar{} checker defined in module \code{RVar} to make sure that
  2497. all variables uses are in the scope of a binding (something we might easily have
  2498. messed up) and that we have not accidentally introduced a primop arity error (much
  2499. less likely, but still possible).
  2500. }
  2501. \begin{exercise}
  2502. \normalfont % I don't like the italics for exercises. -Jeremy
  2503. Complete the \code{uniquify} pass by filling in the blanks in
  2504. Figure~\ref{fig:uniquify-Rvar}, that is, implement the cases for
  2505. variables and for the \key{let} form in the file \code{compiler.rkt}
  2506. in the support code. \ocaml{This exercise is done for you, in the
  2507. \code{Uniquify} module of file \code{Chapter2.ml}.}
  2508. \end{exercise}
  2509. \begin{figure}[tbp]
  2510. \begin{lstlisting}
  2511. (define (uniquify-exp env)
  2512. (lambda (e)
  2513. (match e
  2514. [(Var x) ___]
  2515. [(Int n) (Int n)]
  2516. [(Let x e body) ___]
  2517. [(Prim op es)
  2518. (Prim op (for/list ([e es]) ((uniquify-exp env) e)))])))
  2519. (define (uniquify p)
  2520. (match p
  2521. [(Program '() e) (Program '() ((uniquify-exp '()) e))]))
  2522. \end{lstlisting}
  2523. \caption{Skeleton for the \key{uniquify} pass.}
  2524. \label{fig:uniquify-Rvar}
  2525. \end{figure}
  2526. \begin{exercise}
  2527. \normalfont % I don't like the italics for exercises. -Jeremy
  2528. Create five \LangVar{} programs that exercise the most interesting
  2529. parts of the \key{uniquify} pass, that is, the programs should include
  2530. \key{let} forms, variables, and variables that overshadow each other.
  2531. The five programs should be placed in the subdirectory named
  2532. \key{tests} and the file names should start with \code{var\_test\_}
  2533. followed by a unique integer and end with the file extension
  2534. \key{.rkt}. \ocaml{OCaml: use extension \key{.r}.}
  2535. %
  2536. The \key{run-tests.rkt} script in the support code \ocaml{(\key{test\_files}
  2537. function in \code{Chapter2.ml}, which is invoked by the \code{driver}
  2538. executable)} checks whether the
  2539. output programs produce the same result as the input programs. The
  2540. script uses the \key{interp-tests} function
  2541. (Appendix~\ref{appendix:utilities}) from \key{utilities.rkt} \ocaml{(\key{test\_files}
  2542. function from \code{utils.ml})} to test
  2543. your \key{uniquify} pass on the example programs. The \code{passes}
  2544. parameter of \key{interp-tests} is a list that should have one entry
  2545. for each pass in your compiler. For now, define \code{passes} to
  2546. contain just one entry for \code{uniquify} \ocaml{(plus the fixed initial pass)} as follows.
  2547. \begin{lstlisting}
  2548. (define passes
  2549. (list (list "uniquify" uniquify interp-Rvar type-check-Rvar)))
  2550. \end{lstlisting}
  2551. \begin{ocamlx}
  2552. \begin{lstlisting}{style=ocaml}
  2553. let passes = PCons(initial_pass,
  2554. PCons(Uniquify.pass,PNil))
  2555. \end{lstlisting}
  2556. \end{ocamlx}
  2557. Run the \key{run-tests.rkt} script in the support code
  2558. \ocaml{(the \key{driver} executable)} to check
  2559. whether the output programs produce the same result as the input
  2560. programs.
  2561. \end{exercise}
  2562. \section{Remove Complex Operands}
  2563. \label{sec:remove-complex-opera-Rvar}
  2564. The \code{remove-complex-opera*} pass compiles \LangVar{} programs
  2565. into a restricted form in which the arguments of operations are atomic
  2566. expressions. Put another way, this pass removes complex
  2567. operands\index{complex operand}, such as the expression \code{(- 10)}
  2568. in the program below. This is accomplished by introducing a new
  2569. \key{let}-bound variable, binding the complex operand to the new
  2570. variable, and then using the new variable in place of the complex
  2571. operand, as shown in the output of \code{remove-complex-opera*} on the
  2572. right.\\
  2573. \begin{tabular}{lll}
  2574. \begin{minipage}{0.4\textwidth}
  2575. % var_test_19.rkt
  2576. \begin{lstlisting}
  2577. (+ 52 (- 10))
  2578. \end{lstlisting}
  2579. \end{minipage}
  2580. &
  2581. $\Rightarrow$
  2582. &
  2583. \begin{minipage}{0.4\textwidth}
  2584. \begin{lstlisting}
  2585. (let ([tmp.1 (- 10)])
  2586. (+ 52 tmp.1))
  2587. \end{lstlisting}
  2588. \end{minipage}
  2589. \end{tabular}
  2590. \begin{ocamlx}
  2591. We suggest generating temporary names that begin with a back-tick (\verb'`')
  2592. since these are illegal as S-expression symbols, and so cannot conflict with existing
  2593. user-defined names.
  2594. \end{ocamlx}
  2595. \begin{figure}[tp]
  2596. \centering
  2597. \fbox{
  2598. \begin{minipage}{0.96\textwidth}
  2599. \[
  2600. \begin{array}{rcl}
  2601. \Atm &::=& \INT{\Int} \mid \VAR{\Var} \\
  2602. \Exp &::=& \Atm \mid \READ{} \\
  2603. &\mid& \NEG{\Atm} \mid \ADD{\Atm}{\Atm} \\
  2604. &\mid& \LET{\Var}{\Exp}{\Exp} \\
  2605. R^{\dagger}_1 &::=& \PROGRAM{\code{'()}}{\Exp}
  2606. \end{array}
  2607. \]
  2608. \end{minipage}
  2609. }
  2610. \caption{\LangVarANF{} is \LangVar{} in administrative normal form (ANF).}
  2611. \label{fig:r1-anf-syntax}
  2612. \end{figure}
  2613. Figure~\ref{fig:r1-anf-syntax} presents the grammar for the output of
  2614. this pass, the language \LangVarANF{}. The only difference is that
  2615. operator arguments are restricted to be atomic expressions that are
  2616. defined by the \Atm{} non-terminal. In particular, integer constants
  2617. and variables are atomic. In the literature, restricting arguments to
  2618. be atomic expressions is called \emph{administrative normal form}, or
  2619. ANF for short~\citep{Danvy:1991fk,Flanagan:1993cg}.
  2620. \index{administrative normal form} \index{ANF}
  2621. \ocaml{Actually, ANF
  2622. as defined in~\citep{Flanagan:1993cg}
  2623. refers to a more restricted form in which the defining expressions of
  2624. \code{let}s cannot themselves contain \code{lets}s. This essentially
  2625. corresponds to the \LangCVar{} language.}
  2626. We recommend implementing this pass with two mutually recursive
  2627. functions, \code{rco-atom} and \code{rco-exp}. The idea is to apply
  2628. \code{rco-atom} to subexpressions that need to become atomic and to
  2629. apply \code{rco-exp} to subexpressions that do not. Both functions
  2630. take an \LangVar{} expression as input. The \code{rco-exp} function
  2631. returns an expression. The \code{rco-atom} function returns two
  2632. things: an atomic expression and alist \ocaml{(i.e. list of pairs)} mapping temporary variables to
  2633. complex subexpressions. You can return multiple things from a function
  2634. using Racket's \key{values} form and you can receive multiple things
  2635. from a function call using the \key{define-values} form. If you are
  2636. not familiar with these features, review the Racket documentation.
  2637. Also, the
  2638. \href{https://docs.racket-lang.org/reference/for.html#%28form._%28%28lib._racket%2Fprivate%2Fbase..rkt%29._for%2Flists%29%29}{\code{for/lists}}
  2639. form is useful for applying a function to each element of a list, in
  2640. the case where the function returns multiple values.
  2641. \index{for/lists}
  2642. \ocaml{OCaml: You can return multiple things from a function using a tuple
  2643. and binding the return value to a tuple pattern. Again, the \code{List.map}
  2644. function is handy.}
  2645. Returning to the example program \code{(+ 52 (- 10))}, the
  2646. subexpression \code{(- 10)} should be processed using the
  2647. \code{rco-atom} function because it is an argument of the \code{+} and
  2648. therefore needs to become atomic. The output of \code{rco-atom}
  2649. applied to \code{(- 10)} is as follows.
  2650. \begin{tabular}{lll}
  2651. \begin{minipage}{0.4\textwidth}
  2652. \begin{lstlisting}
  2653. (- 10)
  2654. \end{lstlisting}
  2655. \end{minipage}
  2656. &
  2657. $\Rightarrow$
  2658. &
  2659. \begin{minipage}{0.4\textwidth}
  2660. \begin{lstlisting}
  2661. tmp.1
  2662. ((tmp.1 . (- 10)))
  2663. \end{lstlisting}
  2664. \end{minipage}
  2665. \end{tabular}
  2666. Take special care of programs such as the following one that binds a
  2667. variable to an atomic expression. You should leave such variable
  2668. bindings unchanged, as shown in to the program on the right \\
  2669. \begin{tabular}{lll}
  2670. \begin{minipage}{0.4\textwidth}
  2671. % var_test_20.rkt
  2672. \begin{lstlisting}
  2673. (let ([a 42])
  2674. (let ([b a])
  2675. b))
  2676. \end{lstlisting}
  2677. \end{minipage}
  2678. &
  2679. $\Rightarrow$
  2680. &
  2681. \begin{minipage}{0.4\textwidth}
  2682. \begin{lstlisting}
  2683. (let ([a 42])
  2684. (let ([b a])
  2685. b))
  2686. \end{lstlisting}
  2687. \end{minipage}
  2688. \end{tabular} \\
  2689. A careless implementation of \key{rco-exp} and \key{rco-atom} might
  2690. produce the following output with unnecessary temporary variables.\\
  2691. \begin{minipage}{0.4\textwidth}
  2692. \begin{lstlisting}
  2693. (let ([tmp.1 42])
  2694. (let ([a tmp.1])
  2695. (let ([tmp.2 a])
  2696. (let ([b tmp.2])
  2697. b))))
  2698. \end{lstlisting}
  2699. \end{minipage}
  2700. \begin{exercise}\normalfont
  2701. %
  2702. Implement the \code{remove-complex-opera*} function in
  2703. \code{compiler.rkt}. \ocaml{Fill in the RemoveComplexOperations submodule in \code{Chapter2.ml}.
  2704. Be sure to include a checker that re-traverses the target AST to make sure that
  2705. all primop arguments are indeed now atomic, and that we haven't broken any of the
  2706. other invariants we expect to hold of \LangInt{} programs at this point.
  2707. Fill in the {\tt pass} definition appropriately.
  2708. }
  2709. %
  2710. Create three new \LangInt{} programs that exercise the interesting
  2711. code in the \code{remove-complex-opera*} pass (Following the same file
  2712. name guidelines as before.).
  2713. %
  2714. In the \code{run-tests.rkt} script, add the following entry to the
  2715. list of \code{passes} and then run the script to test your compiler.
  2716. \begin{lstlisting}
  2717. (list "remove-complex" remove-complex-opera* interp-Rvar type-check-Rvar)
  2718. \end{lstlisting}
  2719. \begin{ocamlx}
  2720. In \code{Chapter2.ml}, add an additional entry to the {\tt passes} list:
  2721. \begin{lstlisting}[style=ocaml]
  2722. let passes =
  2723. PCons(initial_pass,
  2724. PCons(Uniquify.pass,
  2725. PCons(RemoveComplexOperands.pass, PNil)))
  2726. \end{lstlisting}
  2727. \end{ocamlx}
  2728. While debugging your compiler, it is often useful to see the
  2729. intermediate programs that are output from each pass. To print the
  2730. intermediate programs, place the following before the call to
  2731. \code{interp-tests} in \code{run-tests.rkt}.
  2732. \begin{lstlisting}
  2733. (debug-level 1)
  2734. \end{lstlisting}
  2735. \begin{ocamlx}
  2736. Adjust the assignment near the bottom of \code{Chapter2.ml}:
  2737. \begin{lstlisting}[style=ocaml]
  2738. let _ = Util.debug_level := 2
  2739. \end{lstlisting}
  2740. \end{ocamlx}
  2741. \end{exercise}
  2742. \section{Explicate Control}
  2743. \label{sec:explicate-control-Rvar}
  2744. The \code{explicate-control} pass compiles \LangVar{} programs into \LangCVar{}
  2745. programs that make the order of execution explicit in their
  2746. syntax. For now this amounts to flattening \key{let} constructs into a
  2747. sequence of assignment statements. For example, consider the following
  2748. \LangVar{} program.\\
  2749. % var_test_11.rkt
  2750. \begin{minipage}{0.96\textwidth}
  2751. \begin{lstlisting}
  2752. (let ([y (let ([x 20])
  2753. (+ x (let ([x 22]) x)))])
  2754. y)
  2755. \end{lstlisting}
  2756. \end{minipage}\\
  2757. %
  2758. The output of the previous pass and of \code{explicate-control} is
  2759. shown below. Recall that the right-hand-side of a \key{let} executes
  2760. before its body, so the order of evaluation for this program is to
  2761. assign \code{20} to \code{x.1}, \code{22} to \code{x.2}, and
  2762. \code{(+ x.1 x.2)} to \code{y}, then return \code{y}. Indeed, the
  2763. output of \code{explicate-control} makes this ordering explicit.\\
  2764. \begin{tabular}{lll}
  2765. \begin{minipage}{0.4\textwidth}
  2766. \begin{lstlisting}
  2767. (let ([y (let ([x.1 20])
  2768. (let ([x.2 22])
  2769. (+ x.1 x.2)))])
  2770. y)
  2771. \end{lstlisting}
  2772. \end{minipage}
  2773. &
  2774. $\Rightarrow$
  2775. &
  2776. \begin{minipage}{0.4\textwidth}
  2777. \begin{lstlisting}[language=C]
  2778. start:
  2779. x.1 = 20;
  2780. x.2 = 22;
  2781. y = (+ x.1 x.2);
  2782. return y;
  2783. \end{lstlisting}
  2784. \end{minipage}
  2785. \end{tabular}
  2786. %
  2787. \begin{figure}[tbp]
  2788. \begin{lstlisting}
  2789. (define (explicate-tail e)
  2790. (match e
  2791. [(Var x) ___]
  2792. [(Int n) (Return (Int n))]
  2793. [(Let x rhs body) ___]
  2794. [(Prim op es) ___]
  2795. [else (error "explicate-tail unhandled case" e)]))
  2796. (define (explicate-assign e x cont)
  2797. (match e
  2798. [(Var x) ___]
  2799. [(Int n) (Seq (Assign (Var x) (Int n)) cont)]
  2800. [(Let y rhs body) ___]
  2801. [(Prim op es) ___]
  2802. [else (error "explicate-assign unhandled case" e)]))
  2803. (define (explicate-control p)
  2804. (match p
  2805. [(Program info body) ___]))
  2806. \end{lstlisting}
  2807. \caption{Skeleton for the \key{explicate-control} pass.}
  2808. \label{fig:explicate-control-Rvar}
  2809. \end{figure}
  2810. The organization of this pass depends on the notion of tail position
  2811. that we have alluded to earlier. Formally, \emph{tail
  2812. position}\index{tail position} in the context of \LangVar{} is
  2813. defined recursively by the following two rules.
  2814. \begin{enumerate}
  2815. \item In $\PROGRAM{\code{()}}{e}$, expression $e$ is in tail position.
  2816. \item If $\LET{x}{e_1}{e_2}$ is in tail position, then so is $e_2$.
  2817. \end{enumerate}
  2818. We recommend implementing \code{explicate-control} using two mutually
  2819. recursive functions, \code{explicate-tail} and
  2820. \code{explicate-assign}, as suggested in the skeleton code in
  2821. Figure~\ref{fig:explicate-control-Rvar}. The \code{explicate-tail}
  2822. function should be applied to expressions in tail position whereas the
  2823. \code{explicate-assign} should be applied to expressions that occur on
  2824. the right-hand-side of a \key{let}.
  2825. %
  2826. The \code{explicate-tail} function takes an \Exp{} in \LangVar{} as
  2827. input and produces a \Tail{} in \LangCVar{} (see
  2828. Figure~\ref{fig:c0-syntax}).
  2829. %
  2830. The \code{explicate-assign} function takes an \Exp{} in \LangVar{},
  2831. the variable that it is to be assigned to, and a \Tail{} in
  2832. \LangCVar{} for the code that will come after the assignment. The
  2833. \code{explicate-assign} function returns a $\Tail$ in \LangCVar{}.
  2834. The \code{explicate-assign} function is in accumulator-passing style
  2835. in that the \code{cont} parameter is used for accumulating the
  2836. output. The reader might be tempted to instead organize
  2837. \code{explicate-assign} in a more direct fashion, without the
  2838. \code{cont} parameter and perhaps using \code{append} to combine
  2839. statements. We warn against that alternative because the
  2840. accumulator-passing style is key to how we generate high-quality code
  2841. for conditional expressions in Chapter~\ref{ch:Rif}.
  2842. \begin{ocamlx}
  2843. Don't take this advice too seriously. Organize things in the cleanest way you
  2844. can find; it will always be possible to adjust your approach in later chapters.
  2845. \end{ocamlx}
  2846. \begin{exercise}\normalfont
  2847. %
  2848. Implement the \code{explicate-control} function in
  2849. \code{compiler.rkt}. \ocaml{Fill in the \code{ExplicateControl} submodule
  2850. of \code{Chapter2.ml} by implementing the \code{do\_program} function.
  2851. The checking field of this pass should invoke \code{CVar.check\_program},
  2852. which checks that the target code is properly bound (and also fills in
  2853. some information about the set of bound variables in the \code{'pinfo}
  2854. field of the program that will be useful in a later pass).}
  2855. %
  2856. Create three new \LangInt{} programs that
  2857. exercise the code in \code{explicate-control}.
  2858. %
  2859. In the \code{run-tests.rkt} script, add the following entry to the
  2860. list of \code{passes} and then run the script to test your compiler.
  2861. \begin{lstlisting}
  2862. (list "explicate control" explicate-control interp-Cvar type-check-Cvar)
  2863. \end{lstlisting}
  2864. \ocaml{Make the analogous change to the \code{passes} list in \code{Chapter2.ml}.}
  2865. \end{exercise}
  2866. \section{Select Instructions}
  2867. \label{sec:select-Rvar}
  2868. \index{instruction selection}
  2869. In the \code{select-instructions} pass we begin the work of
  2870. translating from \LangCVar{} to \LangXVar{}. The target language of
  2871. this pass is a variant of x86 that still uses variables, so we add an
  2872. AST node of the form $\VAR{\itm{var}}$ to the \Arg{} non-terminal of
  2873. the \LangXInt{} abstract syntax (Figure~\ref{fig:x86-int-ast}). \ocaml{Recall that
  2874. we use the same module to define \LangXInt{} and \LangXVar{}.}
  2875. We recommend implementing the \code{select-instructions} with
  2876. three auxiliary functions, one for each of the non-terminals of
  2877. \LangCVar{}: $\Atm$, $\Stmt$, and $\Tail$.
  2878. The cases for $\Atm$ are straightforward, variables stay
  2879. the same and integer constants are changed to immediates:
  2880. $\INT{n}$ changes to $\IMM{n}$.
  2881. Next we consider the cases for $\Stmt$, starting with arithmetic
  2882. operations. For example, consider the addition operation. We can use
  2883. the \key{addq} instruction, but it performs an in-place update. So we
  2884. could move $\itm{arg}_1$ into the left-hand side \itm{var} and then
  2885. add $\itm{arg}_2$ to \itm{var}. \\
  2886. \begin{tabular}{lll}
  2887. \begin{minipage}{0.4\textwidth}
  2888. \begin{lstlisting}
  2889. |$\itm{var}$| = (+ |$\itm{arg}_1$| |$\itm{arg}_2$|);
  2890. \end{lstlisting}
  2891. \end{minipage}
  2892. &
  2893. $\Rightarrow$
  2894. &
  2895. \begin{minipage}{0.4\textwidth}
  2896. \begin{lstlisting}
  2897. movq |$\itm{arg}_1$|, |$\itm{var}$|
  2898. addq |$\itm{arg}_2$|, |$\itm{var}$|
  2899. \end{lstlisting}
  2900. \end{minipage}
  2901. \end{tabular} \\
  2902. %
  2903. There are also cases that require special care to avoid generating
  2904. needlessly complicated code. For example, if one of the arguments of
  2905. the addition is the same variable as the left-hand side of the
  2906. assignment, then there is no need for the extra move instruction. The
  2907. assignment statement can be translated into a single \key{addq}
  2908. instruction as follows.\\
  2909. \begin{tabular}{lll}
  2910. \begin{minipage}{0.4\textwidth}
  2911. \begin{lstlisting}
  2912. |$\itm{var}$| = (+ |$\itm{arg}_1$| |$\itm{var}$|);
  2913. \end{lstlisting}
  2914. \end{minipage}
  2915. &
  2916. $\Rightarrow$
  2917. &
  2918. \begin{minipage}{0.4\textwidth}
  2919. \begin{lstlisting}
  2920. addq |$\itm{arg}_1$|, |$\itm{var}$|
  2921. \end{lstlisting}
  2922. \end{minipage}
  2923. \end{tabular}
  2924. The \key{read} operation does not have a direct counterpart in x86
  2925. assembly, so we provide this functionality with the function
  2926. \code{read\_int} in the file \code{runtime.c}, written in
  2927. C~\citep{Kernighan:1988nx}. In general, we refer to all of the
  2928. functionality in this file as the \emph{runtime system}\index{runtime
  2929. system}, or simply the \emph{runtime} for short. When compiling your
  2930. generated x86 assembly code, you need to compile \code{runtime.c} to
  2931. \code{runtime.o} (an ``object file'', using \code{gcc} option
  2932. \code{-c}) and link it into the executable. For our purposes of code
  2933. generation, all you need to do is translate an assignment of
  2934. \key{read} into a call to the \code{read\_int} function followed by a
  2935. move from \code{rax} to the left-hand-side variable. (Recall that the
  2936. return value of a function goes into \code{rax}.) \\
  2937. \begin{tabular}{lll}
  2938. \begin{minipage}{0.3\textwidth}
  2939. \begin{lstlisting}
  2940. |$\itm{var}$| = (read);
  2941. \end{lstlisting}
  2942. \end{minipage}
  2943. &
  2944. $\Rightarrow$
  2945. &
  2946. \begin{minipage}{0.3\textwidth}
  2947. \begin{lstlisting}
  2948. callq read_int
  2949. movq %rax, |$\itm{var}$|
  2950. \end{lstlisting}
  2951. \end{minipage}
  2952. \end{tabular}
  2953. There are two cases for the $\Tail$ non-terminal: \key{Return} and
  2954. \key{Seq}. Regarding \key{Return}, we recommend treating it as an
  2955. assignment to the \key{rax} register followed by a jump to the
  2956. conclusion of the program (so the conclusion needs to be labeled).
  2957. For $\SEQ{s}{t}$, you can translate the statement $s$ and tail $t$
  2958. recursively and then append the resulting instructions.
  2959. \begin{exercise}
  2960. \normalfont Implement the \key{select-instructions} pass in
  2961. \code{compiler.rkt}. \ocaml{Fill out the \code{SelectInstructions} submodule
  2962. of \code{Chapter2.ml}. The checking field of this pass should invoke
  2963. \code{X86Int.CheckLabels.check\_program}, passing a list of externally
  2964. defined labels (just \code{["read\_int"]}).}
  2965. Create three new example programs that are
  2966. designed to exercise all of the interesting cases in this pass.
  2967. %
  2968. In the \code{run-tests.rkt} script, add the following entry to the
  2969. list of \code{passes} and then run the script to test your compiler.
  2970. \begin{lstlisting}
  2971. (list "instruction selection" select-instructions interp-pseudo-x86-0)
  2972. \end{lstlisting}
  2973. \ocaml{Make the analogous change to the \code{passes} list in \code{Chapter2.ml}.}
  2974. \end{exercise}
  2975. \section{Assign Homes}
  2976. \label{sec:assign-Rvar}
  2977. The \key{assign-homes} pass compiles \LangXVar{} programs to
  2978. \LangXVar{} programs that no longer use program variables.
  2979. Thus, the \key{assign-homes} pass is responsible for placing all of
  2980. the program variables in registers or on the stack. For runtime
  2981. efficiency, it is better to place variables in registers, but as there
  2982. are only 16 registers, some programs must necessarily resort to
  2983. placing some variables on the stack. In this chapter we focus on the
  2984. mechanics of placing variables on the stack. We study an algorithm for
  2985. placing variables in registers in
  2986. Chapter~\ref{ch:register-allocation-Rvar}.
  2987. Consider again the following \LangVar{} program from
  2988. Section~\ref{sec:remove-complex-opera-Rvar}.
  2989. % var_test_20.rkt
  2990. \begin{lstlisting}
  2991. (let ([a 42])
  2992. (let ([b a])
  2993. b))
  2994. \end{lstlisting}
  2995. The output of \code{select-instructions} is shown on the left and the
  2996. output of \code{assign-homes} on the right. In this example, we
  2997. assign variable \code{a} to stack location \code{-8(\%rbp)} and
  2998. variable \code{b} to location \code{-16(\%rbp)}.\\
  2999. \begin{tabular}{l}
  3000. \begin{minipage}{0.4\textwidth}
  3001. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  3002. locals-types:
  3003. a : Integer, b : Integer
  3004. start:
  3005. movq $42, a
  3006. movq a, b
  3007. movq b, %rax
  3008. jmp conclusion
  3009. \end{lstlisting}
  3010. \end{minipage}
  3011. {$\Rightarrow$}
  3012. \begin{minipage}{0.4\textwidth}
  3013. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  3014. stack-space: 16
  3015. start:
  3016. movq $42, -8(%rbp)
  3017. movq -8(%rbp), -16(%rbp)
  3018. movq -16(%rbp), %rax
  3019. jmp conclusion
  3020. \end{lstlisting}
  3021. \end{minipage}
  3022. \end{tabular}
  3023. The \code{locals-types} entry in the $\itm{info}$ of the
  3024. \code{X86Program} node is an alist mapping all the variables in the
  3025. program to their types (for now just \code{Integer}). The
  3026. \code{assign-homes} pass should replace all uses of those variables
  3027. with stack locations. As an aside, the \code{locals-types} entry is
  3028. computed by \code{type-check-Cvar} in the support code, which installs
  3029. it in the $\itm{info}$ field of the \code{CProgram} node, which should
  3030. be propagated to the \code{X86Program} node.
  3031. \ocaml{The locals sets is represented as a \code{unit Env.t}.}
  3032. In the process of assigning variables to stack locations, it is
  3033. convenient for you to compute and store the size of the frame (in
  3034. bytes) in the $\itm{info}$ field of the \key{X86Program} node, with
  3035. the key \code{stack-space}, which is needed later to generate the
  3036. conclusion of the \code{main} procedure. The x86-64 standard requires
  3037. the frame size to be a multiple of 16 bytes.\index{frame}
  3038. \ocaml{The \code{'pinfo} parameter should be instantiated with an \code{int}
  3039. representing the frame size.}
  3040. \begin{exercise}\normalfont
  3041. Implement the \key{assign-homes} pass in \code{compiler.rkt}, defining
  3042. auxiliary functions for the non-terminals \Arg{}, \Instr{}, and
  3043. \Block{}. \ocaml{Fill in the definition of submodule \code{AssignHomes}.}
  3044. We recommend that the auxiliary functions take an extra
  3045. parameter that is an alist \ocaml{(\code{arg Env.t})} mapping variable names to homes (stack
  3046. locations for now). \ocaml{Use the same checker as in the previous pass.}
  3047. %
  3048. In the \code{run-tests.rkt} script, add the following entry to the
  3049. list of \code{passes} and then run the script to test your compiler.
  3050. \begin{lstlisting}
  3051. (list "assign homes" assign-homes interp-x86-0)
  3052. \end{lstlisting}
  3053. \ocaml{Make the analogous change to the \code{passes} list in \code{Chapter2.ml}.}
  3054. \end{exercise}
  3055. \section{Patch Instructions}
  3056. \label{sec:patch-s0}
  3057. The \code{patch-instructions} pass compiles from \LangXVar{} to
  3058. \LangXInt{} by making sure that each instruction adheres to the
  3059. restriction that at most one argument of an instruction may be a
  3060. memory reference. \ocaml{It also ensures that no immediate operand
  3061. to an ordinary instruction exceeds 32 bits, by introducing \code{movabsq}
  3062. instructions as needed. \code{movabsq} is the sole instruction that
  3063. allows a 64-bit immediate source operand; its destination must be a register.}
  3064. We return to the following example.
  3065. % var_test_20.rkt
  3066. \begin{lstlisting}
  3067. (let ([a 42])
  3068. (let ([b a])
  3069. b))
  3070. \end{lstlisting}
  3071. The \key{assign-homes} pass produces the following output
  3072. for this program. \\
  3073. \begin{minipage}{0.5\textwidth}
  3074. \begin{lstlisting}
  3075. stack-space: 16
  3076. start:
  3077. movq $42, -8(%rbp)
  3078. movq -8(%rbp), -16(%rbp)
  3079. movq -16(%rbp), %rax
  3080. jmp conclusion
  3081. \end{lstlisting}
  3082. \end{minipage}\\
  3083. The second \key{movq} instruction is problematic because both
  3084. arguments are stack locations. We suggest fixing this problem by
  3085. moving from the source location to the register \key{rax} and then
  3086. from \key{rax} to the destination location, as follows.
  3087. \begin{lstlisting}
  3088. movq -8(%rbp), %rax
  3089. movq %rax, -16(%rbp)
  3090. \end{lstlisting}
  3091. \begin{exercise}
  3092. \normalfont Implement the \key{patch-instructions} pass in
  3093. \code{compiler.rkt}. \ocaml{This task has been done for you, in the \code{PatchInstructions} submodule
  3094. of \code{Chapter2}.}
  3095. Create three new example programs that are
  3096. designed to exercise all of the interesting cases in this pass.
  3097. %
  3098. In the \code{run-tests.rkt} script, add the following entry to the
  3099. list of \code{passes} and then run the script to test your compiler.
  3100. \begin{lstlisting}
  3101. (list "patch instructions" patch-instructions interp-x86-0)
  3102. \end{lstlisting}
  3103. \end{exercise}
  3104. \section{Print x86}
  3105. \label{sec:print-x86}
  3106. The last step of the compiler from \LangVar{} to x86 is to convert the
  3107. \LangXInt{} AST (defined in Figure~\ref{fig:x86-int-ast}) to the
  3108. string representation (defined in
  3109. Figure~\ref{fig:x86-int-concrete}). The Racket \key{format} and
  3110. \key{string-append} functions are useful in this regard. \ocaml{The \code{Printf}
  3111. library is useful here.} The main work
  3112. that this step needs to perform is to create the \key{main} function
  3113. and the standard instructions for its prelude and conclusion, as shown
  3114. in Figure~\ref{fig:p1-x86} of Section~\ref{sec:x86}. You will need to
  3115. know the amount of space needed for the stack frame, which you can
  3116. obtain from the \code{stack-space} entry in the $\itm{info}$ field of
  3117. the \key{X86Program} node.
  3118. When running on Mac OS X, you compiler should prefix an underscore to
  3119. labels like \key{main}. The Racket call \code{(system-type 'os)} is
  3120. useful for determining which operating system the compiler is running
  3121. on. It returns \code{'macosx}, \code{'unix}, or \code{'windows}.
  3122. \ocaml{There is a similar utility function \code{get\_ostype}
  3123. provided in the \texttt{utils.ml} module.}
  3124. \begin{exercise}\normalfont
  3125. %
  3126. Implement the \key{print-x86} pass in \code{compiler.rkt}.
  3127. \ocaml{This task has been done for you; the relevant printing
  3128. code is in module \code{X86Int}.}
  3129. %
  3130. In the \code{run-tests.rkt} script, add the following entry to the
  3131. list of \code{passes} and then run the script to test your compiler.
  3132. \begin{lstlisting}
  3133. (list "print x86" print-x86 #f)
  3134. \end{lstlisting}
  3135. %
  3136. Uncomment the call to the \key{compiler-tests} function
  3137. (Appendix~\ref{appendix:utilities}), which tests your complete
  3138. compiler by executing the generated x86 code. Compile the provided
  3139. \key{runtime.c} file to \key{runtime.o} using \key{gcc}. Run the
  3140. script to test your compiler.
  3141. \ocaml{The OCaml version packages the process of emitting, assembling,
  3142. linking, and executing the assembly code as just another pass
  3143. (the \code{execute\_pass} defined in \code{Chapter2.ml}).
  3144. To emit code but not process it further, you can use the
  3145. \code{emit\_pass} instead; note that in this case, the test driver
  3146. should be configured not to compare initial and final values (since
  3147. there will be no useful final value).}
  3148. \end{exercise}
  3149. \section{Challenge: Partial Evaluator for \LangVar{}}
  3150. \label{sec:pe-Rvar}
  3151. \index{partial evaluation}
  3152. This section describes optional challenge exercises that involve
  3153. adapting and improving the partial evaluator for \LangInt{} that was
  3154. introduced in Section~\ref{sec:partial-evaluation}.
  3155. \begin{exercise}\label{ex:pe-Rvar}
  3156. \normalfont
  3157. Adapt the partial evaluator from Section~\ref{sec:partial-evaluation}
  3158. (Figure~\ref{fig:pe-arith}) so that it applies to \LangVar{} programs
  3159. instead of \LangInt{} programs. Recall that \LangVar{} adds \key{let} binding
  3160. and variables to the \LangInt{} language, so you will need to add cases for
  3161. them in the \code{pe-exp} function. Once complete, add the partial
  3162. evaluation pass to the front of your compiler and make sure that your
  3163. compiler still passes all of the tests.
  3164. \end{exercise}
  3165. The next exercise builds on Exercise~\ref{ex:pe-Rvar}.
  3166. \begin{exercise}
  3167. \normalfont
  3168. Improve on the partial evaluator by replacing the \code{pe-neg} and
  3169. \code{pe-add} auxiliary functions with functions that know more about
  3170. arithmetic. For example, your partial evaluator should translate
  3171. \[
  3172. \code{(+ 1 (+ (read) 1))} \qquad \text{into} \qquad
  3173. \code{(+ 2 (read))}
  3174. \]
  3175. To accomplish this, the \code{pe-exp} function should produce output
  3176. in the form of the $\itm{residual}$ non-terminal of the following
  3177. grammar. The idea is that when processing an addition expression, we
  3178. can always produce either 1) an integer constant, 2) and addition
  3179. expression with an integer constant on the left-hand side but not the
  3180. right-hand side, or 3) or an addition expression in which neither
  3181. subexpression is a constant.
  3182. \[
  3183. \begin{array}{lcl}
  3184. \itm{inert} &::=& \Var \mid \LP\key{read}\RP \mid \LP\key{-} \;\Var\RP
  3185. \mid \LP\key{-} \;\LP\key{read}\RP\RP
  3186. \mid \LP\key{+} \; \itm{inert} \; \itm{inert}\RP\\
  3187. &\mid& \LP\key{let}~\LP\LS\Var~\itm{inert}\RS\RP~ \itm{inert} \RP \\
  3188. \itm{residual} &::=& \Int \mid \LP\key{+}\; \Int\; \itm{inert}\RP \mid \itm{inert}
  3189. \end{array}
  3190. \]
  3191. The \code{pe-add} and \code{pe-neg} functions may assume that their
  3192. inputs are $\itm{residual}$ expressions and they should return
  3193. $\itm{residual}$ expressions. Once the improvements are complete,
  3194. make sure that your compiler still passes all of the tests. After
  3195. all, fast code is useless if it produces incorrect results!
  3196. \end{exercise}
  3197. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  3198. \chapter{Register Allocation}
  3199. \label{ch:register-allocation-Rvar}
  3200. \index{register allocation}
  3201. In Chapter~\ref{ch:Rvar} we learned how to store variables on the
  3202. stack. In this Chapter we learn how to improve the performance of the
  3203. generated code by placing some variables into registers. The CPU can
  3204. access a register in a single cycle, whereas accessing the stack can
  3205. take 10s to 100s of cycles. The program in Figure~\ref{fig:reg-eg}
  3206. serves as a running example. The source program is on the left and the
  3207. output of instruction selection is on the right. The program is almost
  3208. in the x86 assembly language but it still uses variables.
  3209. \begin{figure}
  3210. \begin{minipage}{0.45\textwidth}
  3211. Example \LangVar{} program:
  3212. % var_test_28.rkt
  3213. \begin{lstlisting}
  3214. (let ([v 1])
  3215. (let ([w 42])
  3216. (let ([x (+ v 7)])
  3217. (let ([y x])
  3218. (let ([z (+ x w)])
  3219. (+ z (- y)))))))
  3220. \end{lstlisting}
  3221. \end{minipage}
  3222. \begin{minipage}{0.45\textwidth}
  3223. After instruction selection:
  3224. \begin{lstlisting}
  3225. locals-types:
  3226. x : Integer, y : Integer,
  3227. z : Integer, t : Integer,
  3228. v : Integer, w : Integer
  3229. start:
  3230. movq $1, v
  3231. movq $42, w
  3232. movq v, x
  3233. addq $7, x
  3234. movq x, y
  3235. movq x, z
  3236. addq w, z
  3237. movq y, t
  3238. negq t
  3239. movq z, %rax
  3240. addq t, %rax
  3241. jmp conclusion
  3242. \end{lstlisting}
  3243. \end{minipage}
  3244. \caption{A running example for register allocation.}
  3245. \label{fig:reg-eg}
  3246. \end{figure}
  3247. The goal of register allocation is to fit as many variables into
  3248. registers as possible. Some programs have more variables than
  3249. registers so we cannot always map each variable to a different
  3250. register. Fortunately, it is common for different variables to be
  3251. needed during different periods of time during program execution, and
  3252. in such cases several variables can be mapped to the same register.
  3253. Consider variables \code{x} and \code{z} in Figure~\ref{fig:reg-eg}.
  3254. After the variable \code{x} is moved to \code{z} it is no longer
  3255. needed. Variable \code{z}, on the other hand, is used only after this
  3256. point, so \code{x} and \code{z} could share the same register. The
  3257. topic of Section~\ref{sec:liveness-analysis-Rvar} is how to compute
  3258. where a variable is needed. Once we have that information, we compute
  3259. which variables are needed at the same time, i.e., which ones
  3260. \emph{interfere} with each other, and represent this relation as an
  3261. undirected graph whose vertices are variables and edges indicate when
  3262. two variables interfere (Section~\ref{sec:build-interference}). We
  3263. then model register allocation as a graph coloring problem
  3264. (Section~\ref{sec:graph-coloring}).
  3265. If we run out of registers despite these efforts, we place the
  3266. remaining variables on the stack, similar to what we did in
  3267. Chapter~\ref{ch:Rvar}. It is common to use the verb \emph{spill}
  3268. for assigning a variable to a stack location. The decision to spill a
  3269. variable is handled as part of the graph coloring process
  3270. (Section~\ref{sec:graph-coloring}).
  3271. We make the simplifying assumption that each variable is assigned to
  3272. one location (a register or stack address). A more sophisticated
  3273. approach is to assign a variable to one or more locations in different
  3274. regions of the program. For example, if a variable is used many times
  3275. in short sequence and then only used again after many other
  3276. instructions, it could be more efficient to assign the variable to a
  3277. register during the initial sequence and then move it to the stack for
  3278. the rest of its lifetime. We refer the interested reader to
  3279. \citet{Cooper:2011aa} for more information about that approach.
  3280. % discuss prioritizing variables based on how much they are used.
  3281. \section{Registers and Calling Conventions}
  3282. \label{sec:calling-conventions}
  3283. \index{calling conventions}
  3284. As we perform register allocation, we need to be aware of the
  3285. \emph{calling conventions} \index{calling conventions} that govern how
  3286. functions calls are performed in x86.
  3287. %
  3288. Even though \LangVar{} does not include programmer-defined functions,
  3289. our generated code includes a \code{main} function that is called by
  3290. the operating system and our generated code contains calls to the
  3291. \code{read\_int} function.
  3292. Function calls require coordination between two pieces of code that
  3293. may be written by different programmers or generated by different
  3294. compilers. Here we follow the System V calling conventions that are
  3295. used by the GNU C compiler on Linux and
  3296. MacOS~\citep{Bryant:2005aa,Matz:2013aa}.
  3297. %
  3298. The calling conventions include rules about how functions share the
  3299. use of registers. In particular, the caller is responsible for freeing
  3300. up some registers prior to the function call for use by the callee.
  3301. These are called the \emph{caller-saved registers}
  3302. \index{caller-saved registers}
  3303. and they are
  3304. \begin{lstlisting}
  3305. rax rcx rdx rsi rdi r8 r9 r10 r11
  3306. \end{lstlisting}
  3307. On the other hand, the callee is responsible for preserving the values
  3308. of the \emph{callee-saved registers}, \index{callee-saved registers}
  3309. which are
  3310. \begin{lstlisting}
  3311. rsp rbp rbx r12 r13 r14 r15
  3312. \end{lstlisting}
  3313. We can think about this caller/callee convention from two points of
  3314. view, the caller view and the callee view:
  3315. \begin{itemize}
  3316. \item The caller should assume that all the caller-saved registers get
  3317. overwritten with arbitrary values by the callee. On the other hand,
  3318. the caller can safely assume that all the callee-saved registers
  3319. contain the same values after the call that they did before the
  3320. call.
  3321. \item The callee can freely use any of the caller-saved registers.
  3322. However, if the callee wants to use a callee-saved register, the
  3323. callee must arrange to put the original value back in the register
  3324. prior to returning to the caller. This can be accomplished by saving
  3325. the value to the stack in the prelude of the function and restoring
  3326. the value in the conclusion of the function.
  3327. \end{itemize}
  3328. In x86, registers are also used for passing arguments to a function
  3329. and for the return value. In particular, the first six arguments to a
  3330. function are passed in the following six registers, in this order.
  3331. \begin{lstlisting}
  3332. rdi rsi rdx rcx r8 r9
  3333. \end{lstlisting}
  3334. If there are more than six arguments, then the convention is to use
  3335. space on the frame of the caller for the rest of the
  3336. arguments. However, in Chapter~\ref{ch:Rfun} we arrange never to
  3337. need more than six arguments. For now, the only function we care about
  3338. is \code{read\_int} and it takes zero arguments.
  3339. %
  3340. The register \code{rax} is used for the return value of a function.
  3341. The next question is how these calling conventions impact register
  3342. allocation. Consider the \LangVar{} program in
  3343. Figure~\ref{fig:example-calling-conventions}. We first analyze this
  3344. example from the caller point of view and then from the callee point
  3345. of view.
  3346. The program makes two calls to the \code{read} function. Also, the
  3347. variable \code{x} is in use during the second call to \code{read}, so
  3348. we need to make sure that the value in \code{x} does not get
  3349. accidentally wiped out by the call to \code{read}. One obvious
  3350. approach is to save all the values in caller-saved registers to the
  3351. stack prior to each function call, and restore them after each
  3352. call. That way, if the register allocator chooses to assign \code{x}
  3353. to a caller-saved register, its value will be preserved across the
  3354. call to \code{read}. However, saving and restoring to the stack is
  3355. relatively slow. If \code{x} is not used many times, it may be better
  3356. to assign \code{x} to a stack location in the first place. Or better
  3357. yet, if we can arrange for \code{x} to be placed in a callee-saved
  3358. register, then it won't need to be saved and restored during function
  3359. calls. \ocaml{(By the caller, that is. The callee might still need to save the
  3360. register, but only if it actually needs to make use of that register for
  3361. its own purposes.)}
  3362. The approach that we recommend for variables that are in use during a
  3363. function call is to either assign them to callee-saved registers or to
  3364. spill them to the stack. On the other hand, for variables that are not
  3365. in use during a function call, we try the following alternatives in
  3366. order 1) look for an available caller-saved register (to leave room
  3367. for other variables in the callee-saved register), 2) look for a
  3368. callee-saved register, and 3) spill the variable to the stack.
  3369. \ocaml{To summarize all this in a slightly different way: our goal
  3370. is to assign variables to callee-save and caller-save
  3371. registers so as to minimize the chances that we actually need to
  3372. save and restore them at all! We need to do this on a per-function basis,
  3373. by processing each caller independently without knowledge of
  3374. the callee's internals. If a variable does does \emph{not}
  3375. need to be preserved across a call, it is best to put it in a
  3376. caller-save register, because we definitely know we won't actually
  3377. need to save and restore it. If a variable \emph{does} need to be
  3378. preserved, it's best to put it in a callee-save register, because
  3379. there is a chance that the callee won't need to save and restore
  3380. it.}
  3381. It is straightforward to implement this approach in a graph coloring
  3382. register allocator. First, we know which variables are in use during
  3383. every function call because we compute that information for every
  3384. instruction (Section~\ref{sec:liveness-analysis-Rvar}). Second, when we
  3385. build the interference graph (Section~\ref{sec:build-interference}),
  3386. we can place an edge between each of these variables and the
  3387. caller-saved registers in the interference graph. This will prevent
  3388. the graph coloring algorithm from assigning those variables to
  3389. caller-saved registers.
  3390. Returning to the example in
  3391. Figure~\ref{fig:example-calling-conventions}, let us analyze the
  3392. generated x86 code on the right-hand side, focusing on the
  3393. \code{start} block. Notice that variable \code{x} is assigned to
  3394. \code{rbx}, a callee-saved register. Thus, it is already in a safe
  3395. place during the second call to \code{read\_int}. Next, notice that
  3396. variable \code{y} is assigned to \code{rcx}, a caller-saved register,
  3397. because there are no function calls in the remainder of the block.
  3398. Next we analyze the example from the callee point of view, focusing on
  3399. the prelude and conclusion of the \code{main} function. As usual the
  3400. prelude begins with saving the \code{rbp} register to the stack and
  3401. setting the \code{rbp} to the current stack pointer. We now know why
  3402. it is necessary to save the \code{rbp}: it is a callee-saved register.
  3403. The prelude then pushes \code{rbx} to the stack because 1) \code{rbx}
  3404. is a callee-saved register and 2) \code{rbx} is assigned to a variable
  3405. (\code{x}). The other callee-saved registers are not saved in the
  3406. prelude because they are not used. The prelude subtracts 8 bytes from
  3407. the \code{rsp} to make it 16-byte aligned and then jumps to the
  3408. \code{start} block. Shifting attention to the \code{conclusion}, we
  3409. see that \code{rbx} is restored from the stack with a \code{popq}
  3410. instruction. \index{prelude}\index{conclusion}
  3411. \begin{figure}[tp]
  3412. \begin{minipage}{0.45\textwidth}
  3413. Example \LangVar{} program:
  3414. %var_test_14.rkt
  3415. \begin{lstlisting}
  3416. (let ([x (read)])
  3417. (let ([y (read)])
  3418. (+ (+ x y) 42)))
  3419. \end{lstlisting}
  3420. \end{minipage}
  3421. \begin{minipage}{0.45\textwidth}
  3422. Generated x86 assembly:
  3423. \begin{lstlisting}
  3424. start:
  3425. callq read_int
  3426. movq %rax, %rbx
  3427. callq read_int
  3428. movq %rax, %rcx
  3429. addq %rcx, %rbx
  3430. movq %rbx, %rax
  3431. addq $42, %rax
  3432. jmp _conclusion
  3433. .globl main
  3434. main:
  3435. pushq %rbp
  3436. movq %rsp, %rbp
  3437. pushq %rbx
  3438. subq $8, %rsp
  3439. jmp start
  3440. conclusion:
  3441. addq $8, %rsp
  3442. popq %rbx
  3443. popq %rbp
  3444. retq
  3445. \end{lstlisting}
  3446. \end{minipage}
  3447. \caption{An example with function calls.}
  3448. \label{fig:example-calling-conventions}
  3449. \end{figure}
  3450. \clearpage
  3451. \section{Liveness Analysis}
  3452. \label{sec:liveness-analysis-Rvar}
  3453. \index{liveness analysis}
  3454. The \code{uncover-live} pass performs \emph{liveness analysis}, that
  3455. is, it discovers which variables are in-use in different regions of a
  3456. program.
  3457. %
  3458. A variable or register is \emph{live} at a program point if its
  3459. current value is used at some later point in the program. We
  3460. refer to variables and registers collectively as \emph{locations}.
  3461. %
  3462. Consider the following code fragment in which there are two writes to
  3463. \code{b}. Are \code{a} and \code{b} both live at the same time?
  3464. \begin{center}
  3465. \begin{minipage}{0.96\textwidth}
  3466. \begin{lstlisting}[numbers=left,numberstyle=\tiny]
  3467. movq $5, a
  3468. movq $30, b
  3469. movq a, c
  3470. movq $10, b
  3471. addq b, c
  3472. \end{lstlisting}
  3473. \end{minipage}
  3474. \end{center}
  3475. The answer is no because \code{a} is live from line 1 to 3 and
  3476. \code{b} is live from line 4 to 5. The integer written to \code{b} on
  3477. line 2 is never used because it is overwritten (line 4) before the
  3478. next read (line 5).
  3479. \begin{wrapfigure}[19]{l}[1.0in]{0.6\textwidth}
  3480. \small
  3481. \begin{tcolorbox}[title=\href{https://docs.racket-lang.org/reference/sets.html}{The Racket Set Package}]
  3482. A \emph{set} is an unordered collection of elements without duplicates.
  3483. \index{set}
  3484. \begin{description}
  3485. \item[$\LP\code{set}\,v\,\ldots\RP$] constructs a set containing the specified elements.
  3486. \item[$\LP\code{set-union}\,set_1\,set_2\RP$] returns the union of the two sets.
  3487. \item[$\LP\code{set-subtract}\,set_1\,set_2\RP$] returns the difference of the two sets.
  3488. \item[$\LP\code{set-member?}\,set\,v\RP$] is element $v$ in $set$?
  3489. \item[$\LP\code{set-count}\,set\RP$] how many unique elements are in $set$?
  3490. \item[$\LP\code{set->list}\,set\RP$] converts the set to a list.
  3491. \end{description}
  3492. \end{tcolorbox}
  3493. \end{wrapfigure}
  3494. The live locations can be computed by traversing the instruction
  3495. sequence back to front (i.e., backwards in execution order). Let
  3496. $I_1,\ldots, I_n$ be the instruction sequence. We write
  3497. $L_{\mathsf{after}}(k)$ for the set of live locations after
  3498. instruction $I_k$ and $L_{\mathsf{before}}(k)$ for the set of live
  3499. locations before instruction $I_k$. The live locations after an
  3500. instruction are always the same as the live locations before the next
  3501. instruction. \index{live-after} \index{live-before}
  3502. \begin{equation} \label{eq:live-after-before-next}
  3503. L_{\mathsf{after}}(k) = L_{\mathsf{before}}(k+1)
  3504. \end{equation}
  3505. To start things off, there are no live locations after the last
  3506. instruction, so
  3507. \begin{equation}\label{eq:live-last-empty}
  3508. L_{\mathsf{after}}(n) = \emptyset
  3509. \end{equation}
  3510. We then apply the following rule repeatedly, traversing the
  3511. instruction sequence back to front.
  3512. \begin{equation}\label{eq:live-before-after-minus-writes-plus-reads}
  3513. L_{\mathtt{before}}(k) = (L_{\mathtt{after}}(k) - W(k)) \cup R(k),
  3514. \end{equation}
  3515. where $W(k)$ are the locations written to by instruction $I_k$ and
  3516. $R(k)$ are the locations read by instruction $I_k$.
  3517. \begin{ocamlx}
  3518. \noindent\fbox{%
  3519. \parbox{\textwidth}{%
  3520. The OCaml \code{Set} module is described in the standard library.
  3521. Like the \code{Map} module, it is a functor that must be instantiated
  3522. on the type of set elements. An appropriate definition for a module
  3523. \code{Locs} for repersenting sets of locations is at the top
  3524. of \code{Chapter3.ml}.
  3525. }%
  3526. }
  3527. \end{ocamlx}
  3528. There is a special case for \code{jmp} instructions. The locations
  3529. that are live before a \code{jmp} should be the locations in
  3530. $L_{\mathtt{before}}$ at the target of the jump. So we recommend
  3531. maintaining an alist named \code{label->live} \ocaml{(or a \code{liveset Env.t})} that maps each label to
  3532. the $L_{\mathtt{before}}$ for the first instruction in its block. For
  3533. now the only \code{jmp} in a \LangXVar{} program is the one at the
  3534. end, to the conclusion. (For example, see Figure~\ref{fig:reg-eg}.)
  3535. The conclusion reads from \ttm{rax} {\ocaml{(in the sense that it is where
  3536. the caller will find the return value after \code{retq})} and \ttm{rsp} \ocaml{(both
  3537. explicitly and implicitly via \code{popq} and \code{retq})}, so the alist should
  3538. map \code{conclusion} to the set $\{\ttm{rax},\ttm{rsp}\}$.
  3539. \ocaml{Since the OCaml version treats the entry and exit sequences as explicit parts
  3540. of the program, we could actually calculate this by processing the \code{conclusion}
  3541. block, assuming that $\ttm{rax}$ and $\ttm{rsp}$ are live before \code{retq}.
  3542. There is also another jump, from the \code{main} entry sequence to
  3543. the \code{start} label, and in principle we could also calculate liveness for
  3544. the \code{main} block, though only after calculating $L_{\mathtt{before}}$ for the
  3545. first instruction of the \code{start} block (which, for \LangXVar{}, will
  3546. always turn out to be just $\{\ttm{rsp}\}$) . In practice, since we
  3547. already have assigned fixed registers to all the arguments in the \code{main}
  3548. and \code{conclusion} blocks, there is no need to calculate liveness for them, and
  3549. in fact we should avoid doing so.}
  3550. Let us walk through the above example, applying these formulas
  3551. starting with the instruction on line 5. We collect the answers in
  3552. Figure~\ref{fig:liveness-example-0}. The $L_{\mathsf{after}}$ for the
  3553. \code{addq b, c} instruction is $\emptyset$ because it is the last
  3554. instruction (formula~\ref{eq:live-last-empty}). The
  3555. $L_{\mathsf{before}}$ for this instruction is $\{\ttm{b},\ttm{c}\}$
  3556. because it reads from variables \code{b} and \code{c}
  3557. (formula~\ref{eq:live-before-after-minus-writes-plus-reads}), that is
  3558. \[
  3559. L_{\mathsf{before}}(5) = (\emptyset - \{\ttm{c}\}) \cup \{ \ttm{b}, \ttm{c} \} = \{ \ttm{b}, \ttm{c} \}
  3560. \]
  3561. Moving on the the instruction \code{movq \$10, b} at line 4, we copy
  3562. the live-before set from line 5 to be the live-after set for this
  3563. instruction (formula~\ref{eq:live-after-before-next}).
  3564. \[
  3565. L_{\mathsf{after}}(4) = \{ \ttm{b}, \ttm{c} \}
  3566. \]
  3567. This move instruction writes to \code{b} and does not read from any
  3568. variables, so we have the following live-before set
  3569. (formula~\ref{eq:live-before-after-minus-writes-plus-reads}).
  3570. \[
  3571. L_{\mathsf{before}}(4) = (\{\ttm{b},\ttm{c}\} - \{\ttm{b}\}) \cup \emptyset = \{ \ttm{c} \}
  3572. \]
  3573. The live-before for instruction \code{movq a, c}
  3574. is $\{\ttm{a}\}$ because it writes to $\{\ttm{c}\}$ and reads from $\{\ttm{a}\}$
  3575. (formula~\ref{eq:live-before-after-minus-writes-plus-reads}). The
  3576. live-before for \code{movq \$30, b} is $\{\ttm{a}\}$ because it writes to a
  3577. variable that is not live and does not read from a variable.
  3578. Finally, the live-before for \code{movq \$5, a} is $\emptyset$
  3579. because it writes to variable \code{a}.
  3580. \begin{figure}[tbp]
  3581. \begin{minipage}{0.45\textwidth}
  3582. \begin{lstlisting}[numbers=left,numberstyle=\tiny]
  3583. movq $5, a
  3584. movq $30, b
  3585. movq a, c
  3586. movq $10, b
  3587. addq b, c
  3588. \end{lstlisting}
  3589. \end{minipage}
  3590. \vrule\hspace{10pt}
  3591. \begin{minipage}{0.45\textwidth}
  3592. \begin{align*}
  3593. L_{\mathsf{before}}(1)= \emptyset,
  3594. L_{\mathsf{after}}(1)= \{\ttm{a}\}\\
  3595. L_{\mathsf{before}}(2)= \{\ttm{a}\},
  3596. L_{\mathsf{after}}(2)= \{\ttm{a}\}\\
  3597. L_{\mathsf{before}}(3)= \{\ttm{a}\},
  3598. L_{\mathsf{after}}(2)= \{\ttm{c}\}\\
  3599. L_{\mathsf{before}}(4)= \{\ttm{c}\},
  3600. L_{\mathsf{after}}(4)= \{\ttm{b},\ttm{c}\}\\
  3601. L_{\mathsf{before}}(5)= \{\ttm{b},\ttm{c}\},
  3602. L_{\mathsf{after}}(5)= \emptyset
  3603. \end{align*}
  3604. \end{minipage}
  3605. \caption{Example output of liveness analysis on a short example.}
  3606. \label{fig:liveness-example-0}
  3607. \end{figure}
  3608. \begin{exercise}\normalfont
  3609. Perform liveness analysis on the running example in
  3610. Figure~\ref{fig:reg-eg}, computing the live-before and live-after
  3611. sets for each instruction. Compare your answers to the solution
  3612. shown in Figure~\ref{fig:live-eg}.
  3613. \end{exercise}
  3614. \begin{figure}[tp]
  3615. \hspace{20pt}
  3616. \begin{minipage}{0.45\textwidth}
  3617. \begin{lstlisting}
  3618. |$\{\ttm{rsp}\}$|
  3619. movq $1, v
  3620. |$\{\ttm{v},\ttm{rsp}\}$|
  3621. movq $42, w
  3622. |$\{\ttm{v},\ttm{w},\ttm{rsp}\}$|
  3623. movq v, x
  3624. |$\{\ttm{w},\ttm{x},\ttm{rsp}\}$|
  3625. addq $7, x
  3626. |$\{\ttm{w},\ttm{x},\ttm{rsp}\}$|
  3627. movq x, y
  3628. |$\{\ttm{w},\ttm{x},\ttm{y},\ttm{rsp}\}$|
  3629. movq x, z
  3630. |$\{\ttm{w},\ttm{y},\ttm{z},\ttm{rsp}\}$|
  3631. addq w, z
  3632. |$\{\ttm{y},\ttm{z},\ttm{rsp}\}$|
  3633. movq y, t
  3634. |$\{\ttm{t},\ttm{z},\ttm{rsp}\}$|
  3635. negq t
  3636. |$\{\ttm{t},\ttm{z},\ttm{rsp}\}$|
  3637. movq z, %rax
  3638. |$\{\ttm{rax},\ttm{t},\ttm{rsp}\}$|
  3639. addq t, %rax
  3640. |$\{\ttm{rax},\ttm{rsp}\}$|
  3641. jmp conclusion
  3642. \end{lstlisting}
  3643. \end{minipage}
  3644. \caption{The running example annotated with live-after sets.}
  3645. \label{fig:live-eg}
  3646. \end{figure}
  3647. \begin{exercise}\normalfont
  3648. Implement the \code{uncover-live} pass. Store the sequence of
  3649. live-after sets in the $\itm{info}$ field of the \code{Block}
  3650. structure. \ocaml{Put your implementation inside the
  3651. \code{UncoverLive} submodule in \code{Chapter3.ml} and
  3652. fill in the \code{pass} definition.
  3653. Instantiate the \code{'binfo} type
  3654. parameter with {\tt Locs.t list}, where {\tt Locs.t} is the
  3655. type of sets of locations. Only compute live-after sets for
  3656. the \code{"start"} block (not the \code{"main"} or \code{"conclusion"} blocks).
  3657. Do not attempt to do any extra checking on this pass.}
  3658. %
  3659. We recommend creating an auxiliary function that takes a list of
  3660. instructions and an initial live-after set (typically empty) and
  3661. returns the list of live-after sets.
  3662. %
  3663. We also recommend creating auxiliary functions to 1) compute the set
  3664. of locations that appear in an \Arg{}, 2) compute the locations read
  3665. by an instruction (the $R$ function), and 3) the locations written by
  3666. an instruction (the $W$ function). The \code{callq} instruction should
  3667. include all of the caller-saved registers in its write-set $W$ because
  3668. the calling convention says that those registers may be written to
  3669. during the function call. Likewise, the \code{callq} instruction
  3670. should include the appropriate argument-passing registers in its
  3671. read-set $R$, depending on the arity of the function being
  3672. called. (This is why the abstract syntax for \code{callq} includes the
  3673. arity.)
  3674. \end{exercise}
  3675. \clearpage
  3676. \section{Build the Interference Graph}
  3677. \label{sec:build-interference}
  3678. \begin{wrapfigure}[25]{r}[1.0in]{0.6\textwidth}
  3679. \small
  3680. \begin{tcolorbox}[title=\href{https://docs.racket-lang.org/graph/index.html}{The Racket Graph Library}]
  3681. A \emph{graph} is a collection of vertices and edges where each
  3682. edge connects two vertices. A graph is \emph{directed} if each
  3683. edge points from a source to a target. Otherwise the graph is
  3684. \emph{undirected}.
  3685. \index{graph}\index{directed graph}\index{undirected graph}
  3686. \begin{description}
  3687. %% We currently don't use directed graphs. We instead use
  3688. %% directed multi-graphs. -Jeremy
  3689. %% \item[$\LP\code{directed-graph}\,\itm{edges}\RP$] constructs a
  3690. %% directed graph from a list of edges. Each edge is a list
  3691. %% containing the source and target vertex.
  3692. \item[$\LP\code{undirected-graph}\,\itm{edges}\RP$] constructs a
  3693. undirected graph from a list of edges. Each edge is represented by
  3694. a list containing two vertices.
  3695. \item[$\LP\code{add-vertex!}\,\itm{graph}\,\itm{vertex}\RP$]
  3696. inserts a vertex into the graph.
  3697. \item[$\LP\code{add-edge!}\,\itm{graph}\,\itm{source}\,\itm{target}\RP$]
  3698. inserts an edge between the two vertices into the graph.
  3699. \item[$\LP\code{in-neighbors}\,\itm{graph}\,\itm{vertex}\RP$]
  3700. returns a sequence of all the neighbors of the given vertex.
  3701. \item[$\LP\code{in-vertices}\,\itm{graph}\RP$]
  3702. returns a sequence of all the vertices in the graph.
  3703. \end{description}
  3704. \end{tcolorbox}
  3705. \end{wrapfigure}
  3706. Based on the liveness analysis, we know where each location is live.
  3707. However, during register allocation, we need to answer questions of
  3708. the specific form: are locations $u$ and $v$ live at the same time?
  3709. (And therefore cannot be assigned to the same register.) To make this
  3710. question more efficient to answer, we create an explicit data
  3711. structure, an \emph{interference graph}\index{interference graph}. An
  3712. interference graph is an undirected graph that has an edge between two
  3713. locations if they are live at the same time, that is, if they
  3714. interfere with each other.
  3715. An obvious way to compute the interference graph is to look at the set
  3716. of live locations between each instruction and the next and add an edge to the graph
  3717. for every pair of variables in the same set. This approach is less
  3718. than ideal for two reasons. First, it can be expensive because it
  3719. takes $O(n^2)$ time to consider at every pair in a set of $n$ live
  3720. locations. Second, in the special case where two locations hold the
  3721. same value (because one was assigned to the other), they can be live
  3722. at the same time without interfering with each other.
  3723. A better way to compute the interference graph is to focus on
  3724. writes~\citep{Appel:2003fk}. The writes performed by an instruction
  3725. must not overwrite something in a live location. So for each
  3726. instruction, we create an edge between the locations being written to
  3727. and the live locations. (Except that one should not create self
  3728. edges.) Note that for the \key{callq} instruction, we consider all of
  3729. the caller-saved registers as being written to, so an edge is added
  3730. between every live variable and every caller-saved register. For
  3731. \key{movq}, we deal with the above-mentioned special case by not
  3732. adding an edge between a live variable $v$ and the destination if $v$
  3733. matches the source. So we have the following two rules.
  3734. \begin{enumerate}
  3735. \item If instruction $I_k$ is a move such as \key{movq} $s$\key{,}
  3736. $d$, then add the edge $(d,v)$ for every $v \in
  3737. L_{\mathsf{after}}(k)$ unless $v = d$ or $v = s$.
  3738. \item For any other instruction $I_k$, for every $d \in W(k)$
  3739. add an edge $(d,v)$ for every $v \in L_{\mathsf{after}}(k)$ unless $v = d$.
  3740. %% \item If instruction $I_k$ is an arithmetic instruction such as
  3741. %% \code{addq} $s$\key{,} $d$, then add the edge $(d,v)$ for every $v \in
  3742. %% L_{\mathsf{after}}(k)$ unless $v = d$.
  3743. %% \item If instruction $I_k$ is of the form \key{callq}
  3744. %% $\mathit{label}$, then add an edge $(r,v)$ for every caller-saved
  3745. %% register $r$ and every variable $v \in L_{\mathsf{after}}(k)$.
  3746. \end{enumerate}
  3747. Working from the top to bottom of Figure~\ref{fig:live-eg}, we apply
  3748. the above rules to each instruction. We highlight a few of the
  3749. instructions. The first instruction is \lstinline{movq $1, v} and the
  3750. live-after set is $\{\ttm{v},\ttm{rsp}\}$. Rule 1 applies, so \code{v}
  3751. interferes with \code{rsp}.
  3752. %
  3753. The fourth instruction is \lstinline{addq $7, x} and the live-after
  3754. set is $\{\ttm{w},\ttm{x},\ttm{rsp}\}$. Rule 2 applies so $\ttm{x}$
  3755. interferes with \ttm{w} and \ttm{rsp}.
  3756. %
  3757. The next instruction is \lstinline{movq x, y} and the live-after set
  3758. is $\{\ttm{w},\ttm{x},\ttm{y},\ttm{rsp}\}$. Rule 1 applies, so \ttm{y}
  3759. interferes with \ttm{w} and \ttm{rsp} but not \ttm{x} because \ttm{x}
  3760. is the source of the move and therefore \ttm{x} and \ttm{y} hold the
  3761. same value. Figure~\ref{fig:interference-results} lists the
  3762. interference results for all of the instructions and the resulting
  3763. interference graph is shown in Figure~\ref{fig:interfere}.
  3764. \begin{figure}[tbp]
  3765. \begin{quote}
  3766. \begin{tabular}{ll}
  3767. \lstinline!movq $1, v!& \ttm{v} interferes with \ttm{rsp},\\
  3768. \lstinline!movq $42, w!& \ttm{w} interferes with \ttm{v} and \ttm{rsp},\\
  3769. \lstinline!movq v, x!& \ttm{x} interferes with \ttm{w} and \ttm{rsp},\\
  3770. \lstinline!addq $7, x!& \ttm{x} interferes with \ttm{w} and \ttm{rsp},\\
  3771. \lstinline!movq x, y!& \ttm{y} interferes with \ttm{w} and \ttm{rsp} but not \ttm{x},\\
  3772. \lstinline!movq x, z!& \ttm{z} interferes with \ttm{w}, \ttm{y}, and \ttm{rsp},\\
  3773. \lstinline!addq w, z!& \ttm{z} interferes with \ttm{y} and \ttm{rsp}, \\
  3774. \lstinline!movq y, t!& \ttm{t} interferes with \ttm{z} and \ttm{rsp}, \\
  3775. \lstinline!negq t!& \ttm{t} interferes with \ttm{z} and \ttm{rsp}, \\
  3776. \lstinline!movq z, %rax! & \ttm{rax} interferes with \ttm{t} and \ttm{rsp}, \\
  3777. \lstinline!addq t, %rax! & \ttm{rax} interferes with \ttm{rsp}. \\
  3778. \lstinline!jmp conclusion!& no interference.
  3779. \end{tabular}
  3780. \end{quote}
  3781. \caption{Interference results for the running example.}
  3782. \label{fig:interference-results}
  3783. \end{figure}
  3784. \begin{figure}[tbp]
  3785. \large
  3786. \[
  3787. \begin{tikzpicture}[baseline=(current bounding box.center)]
  3788. \node (rax) at (0,0) {$\ttm{rax}$};
  3789. \node (rsp) at (9,2) {$\ttm{rsp}$};
  3790. \node (t1) at (0,2) {$\ttm{t}$};
  3791. \node (z) at (3,2) {$\ttm{z}$};
  3792. \node (x) at (6,2) {$\ttm{x}$};
  3793. \node (y) at (3,0) {$\ttm{y}$};
  3794. \node (w) at (6,0) {$\ttm{w}$};
  3795. \node (v) at (9,0) {$\ttm{v}$};
  3796. \draw (t1) to (rax);
  3797. \draw (t1) to (z);
  3798. \draw (z) to (y);
  3799. \draw (z) to (w);
  3800. \draw (x) to (w);
  3801. \draw (y) to (w);
  3802. \draw (v) to (w);
  3803. \draw (v) to (rsp);
  3804. \draw (w) to (rsp);
  3805. \draw (x) to (rsp);
  3806. \draw (y) to (rsp);
  3807. \path[-.,bend left=15] (z) edge node {} (rsp);
  3808. \path[-.,bend left=10] (t1) edge node {} (rsp);
  3809. \draw (rax) to (rsp);
  3810. \end{tikzpicture}
  3811. \]
  3812. \caption{The interference graph of the example program.}
  3813. \label{fig:interfere}
  3814. \end{figure}
  3815. %% Our next concern is to choose a data structure for representing the
  3816. %% interference graph. There are many choices for how to represent a
  3817. %% graph, for example, \emph{adjacency matrix}, \emph{adjacency list},
  3818. %% and \emph{edge set}~\citep{Cormen:2001uq}. The right way to choose a
  3819. %% data structure is to study the algorithm that uses the data structure,
  3820. %% determine what operations need to be performed, and then choose the
  3821. %% data structure that provide the most efficient implementations of
  3822. %% those operations. Often times the choice of data structure can have an
  3823. %% effect on the time complexity of the algorithm, as it does here. If
  3824. %% you skim the next section, you will see that the register allocation
  3825. %% algorithm needs to ask the graph for all of its vertices and, given a
  3826. %% vertex, it needs to known all of the adjacent vertices. Thus, the
  3827. %% correct choice of graph representation is that of an adjacency
  3828. %% list. There are helper functions in \code{utilities.rkt} for
  3829. %% representing graphs using the adjacency list representation:
  3830. %% \code{make-graph}, \code{add-edge}, and \code{adjacent}
  3831. %% (Appendix~\ref{appendix:utilities}).
  3832. %% %
  3833. %% \margincomment{\footnotesize To do: change to use the
  3834. %% Racket graph library. \\ --Jeremy}
  3835. %% %
  3836. %% In particular, those functions use a hash table to map each vertex to
  3837. %% the set of adjacent vertices, and the sets are represented using
  3838. %% Racket's \key{set}, which is also a hash table.
  3839. \begin{exercise}\normalfont
  3840. Implement the compiler pass named \code{build-interference} according
  3841. to the algorithm suggested above. We recommend using the \code{graph}
  3842. package to create and inspect the interference graph. The output
  3843. graph of this pass should be stored in the $\itm{info}$ field of the
  3844. program, under the key \code{conflicts}. \ocaml{Put your
  3845. implementation in the \code{BuildInterferenceGraph} submodule
  3846. in \code{Chapter3.ml} and fill in the \code{pass} definition.
  3847. Use the provided
  3848. \code{Graph} library (in {\tt graph.ml}) to represent graphs. Note that these
  3849. are \emph{immutable} graphs. Suitable declarations for
  3850. instantiating this graph package to a module \code{LocGraph} with a vertex type of locations
  3851. (\code{X86Int.arg}s) is in \code{Chapter3.ml}.
  3852. The output of this pass should be stored
  3853. in the \code{'pinfo} field of the program, paired with the existing
  3854. piece of information, the environment enumerating the program's variables.
  3855. This pass should only change the \code{'pinfo}, not the program code.
  3856. The graph you build should only describe the \code{"start"} block
  3857. (not the \code{"main"} or \code{"conclusion"} blocks). Do not attempt
  3858. to do any extra checking on this pass.}
  3859. \end{exercise}
  3860. \section{Graph Coloring via Sudoku}
  3861. \label{sec:graph-coloring}
  3862. \index{graph coloring}
  3863. \index{Sudoku}
  3864. \index{color}
  3865. We come to the main event, mapping variables to registers and stack
  3866. locations. Variables that interfere with each other must be mapped to
  3867. different locations. In terms of the interference graph, this means
  3868. that adjacent vertices must be mapped to different locations. If we
  3869. think of locations as colors, the register allocation problem becomes
  3870. the graph coloring problem~\citep{Balakrishnan:1996ve,Rosen:2002bh}.
  3871. The reader may be more familiar with the graph coloring problem than he
  3872. or she realizes; the popular game of Sudoku is an instance of the
  3873. graph coloring problem. The following describes how to build a graph
  3874. out of an initial Sudoku board.
  3875. \begin{itemize}
  3876. \item There is one vertex in the graph for each Sudoku square.
  3877. \item There is an edge between two vertices if the corresponding squares
  3878. are in the same row, in the same column, or if the squares are in
  3879. the same $3\times 3$ region.
  3880. \item Choose nine colors to correspond to the numbers $1$ to $9$.
  3881. \item Based on the initial assignment of numbers to squares in the
  3882. Sudoku board, assign the corresponding colors to the corresponding
  3883. vertices in the graph.
  3884. \end{itemize}
  3885. If you can color the remaining vertices in the graph with the nine
  3886. colors, then you have also solved the corresponding game of Sudoku.
  3887. Figure~\ref{fig:sudoku-graph} shows an initial Sudoku game board and
  3888. the corresponding graph with colored vertices. We map the Sudoku
  3889. number 1 to blue, 2 to yellow, and 3 to red. We only show edges for a
  3890. sampling of the vertices (the colored ones) because showing edges for
  3891. all of the vertices would make the graph unreadable.
  3892. \begin{figure}[tbp]
  3893. \includegraphics[width=0.45\textwidth]{figs/sudoku}
  3894. \includegraphics[width=0.5\textwidth]{figs/sudoku-graph}
  3895. \caption{A Sudoku game board and the corresponding colored graph.}
  3896. \label{fig:sudoku-graph}
  3897. \end{figure}
  3898. It turns out that some techniques for playing Sudoku correspond to
  3899. heuristics used in graph coloring algorithms. For example, one of the
  3900. basic techniques for Sudoku is called Pencil Marks. The idea is to use
  3901. a process of elimination to determine what numbers are no longer
  3902. available for a square and write down those numbers in the square
  3903. (writing very small). For example, if the number $1$ is assigned to a
  3904. square, then write the pencil mark $1$ in all the squares in the same
  3905. row, column, and region.
  3906. %
  3907. The Pencil Marks technique corresponds to the notion of
  3908. \emph{saturation}\index{saturation} due to \cite{Brelaz:1979eu}. The
  3909. saturation of a vertex, in Sudoku terms, is the set of numbers that
  3910. are no longer available. In graph terminology, we have the following
  3911. definition:
  3912. \begin{equation*}
  3913. \mathrm{saturation}(u) = \{ c \mid \exists v. v \in \mathrm{neighbors}(u)
  3914. \text{ and } \mathrm{color}(v) = c \}
  3915. \end{equation*}
  3916. where $\mathrm{neighbors}(u)$ is the set of vertices that share an
  3917. edge with $u$.
  3918. Using the Pencil Marks technique leads to a simple strategy for
  3919. filling in numbers: if there is a square with only one possible number
  3920. left, then choose that number! But what if there are no squares with
  3921. only one possibility left? One brute-force approach is to try them
  3922. all: choose the first one and if it ultimately leads to a solution,
  3923. great. If not, backtrack and choose the next possibility. One good
  3924. thing about Pencil Marks is that it reduces the degree of branching in
  3925. the search tree. Nevertheless, backtracking can be horribly time
  3926. consuming. One way to reduce the amount of backtracking is to use the
  3927. most-constrained-first heuristic. That is, when choosing a square,
  3928. always choose one with the fewest possibilities left (the vertex with
  3929. the highest saturation). The idea is that choosing highly constrained
  3930. squares earlier rather than later is better because later on there may
  3931. not be any possibilities left in the highly saturated squares.
  3932. However, register allocation is easier than Sudoku because the
  3933. register allocator can map variables to stack locations when the
  3934. registers run out. Thus, it makes sense to replace backtracking with
  3935. greedy search: make the best choice at the time and keep going. We
  3936. still wish to minimize the number of colors needed, so we use the
  3937. most-constrained-first heuristic in the greedy search.
  3938. Figure~\ref{fig:satur-algo} gives the pseudo-code for a simple greedy
  3939. algorithm for register allocation based on saturation and the
  3940. most-constrained-first heuristic. It is roughly equivalent to the
  3941. DSATUR
  3942. algorithm~\citep{Brelaz:1979eu,Gebremedhin:1999fk,Omari:2006uq}. Just
  3943. as in Sudoku, the algorithm represents colors with integers. The
  3944. integers $0$ through $k-1$ correspond to the $k$ registers that we use
  3945. for register allocation. The integers $k$ and larger correspond to
  3946. stack locations. The registers that are not used for register
  3947. allocation, such as \code{rax}, are assigned to negative integers. In
  3948. particular, we assign $-1$ to \code{rax} and $-2$ to \code{rsp}.
  3949. %% One might wonder why we include registers at all in the liveness
  3950. %% analysis and interference graph. For example, we never allocate a
  3951. %% variable to \code{rax} and \code{rsp}, so it would be harmless to
  3952. %% leave them out. As we see in Chapter~\ref{ch:Rvec}, when we begin
  3953. %% to use register for passing arguments to functions, it will be
  3954. %% necessary for those registers to appear in the interference graph
  3955. %% because those registers will also be assigned to variables, and we
  3956. %% don't want those two uses to encroach on each other. Regarding
  3957. %% registers such as \code{rax} and \code{rsp} that are not used for
  3958. %% variables, we could omit them from the interference graph but that
  3959. %% would require adding special cases to our algorithm, which would
  3960. %% complicate the logic for little gain.
  3961. \begin{figure}[btp]
  3962. \centering
  3963. \begin{lstlisting}[basicstyle=\rmfamily,deletekeywords={for,from,with,is,not,in,find},morekeywords={while},columns=fullflexible]
  3964. Algorithm: DSATUR
  3965. Input: a graph |$G$|
  3966. Output: an assignment |$\mathrm{color}[v]$| for each vertex |$v \in G$|
  3967. |$W \gets \mathrm{vertices}(G)$|
  3968. while |$W \neq \emptyset$| do
  3969. pick a vertex |$u$| from |$W$| with the highest saturation,
  3970. breaking ties randomly
  3971. find the lowest color |$c$| that is not in |$\{ \mathrm{color}[v] \;:\; v \in \mathrm{adjacent}(u)\}$|
  3972. |$\mathrm{color}[u] \gets c$|
  3973. |$W \gets W - \{u\}$|
  3974. \end{lstlisting}
  3975. \caption{The saturation-based greedy graph coloring algorithm.}
  3976. \label{fig:satur-algo}
  3977. \end{figure}
  3978. With the DSATUR algorithm in hand, let us return to the running
  3979. example and consider how to color the interference graph in
  3980. Figure~\ref{fig:interfere}.
  3981. %
  3982. We start by assigning the register nodes to their own color. For
  3983. example, \code{rax} is assigned the color $-1$ and \code{rsp} is
  3984. assigned $-2$. The variables are not yet colored, so they are
  3985. annotated with a dash. We then update the saturation for vertices that
  3986. are adjacent to a register, obtaining the following annotated
  3987. graph. For example, the saturation for \code{t} is $\{-1,-2\}$ because
  3988. it interferes with both \code{rax} and \code{rsp}.
  3989. \[
  3990. \begin{tikzpicture}[baseline=(current bounding box.center)]
  3991. \node (rax) at (0,0) {$\ttm{rax}:-1,\{-2\}$};
  3992. \node (rsp) at (10,2) {$\ttm{rsp}:-2,\{-1\}$};
  3993. \node (t1) at (0,2) {$\ttm{t}:-,\{-1,-2\}$};
  3994. \node (z) at (3,2) {$\ttm{z}:-,\{-2\}$};
  3995. \node (x) at (6,2) {$\ttm{x}:-,\{-2\}$};
  3996. \node (y) at (3,0) {$\ttm{y}:-,\{-2\}$};
  3997. \node (w) at (6,0) {$\ttm{w}:-,\{-2\}$};
  3998. \node (v) at (10,0) {$\ttm{v}:-,\{-2\}$};
  3999. \draw (t1) to (rax);
  4000. \draw (t1) to (z);
  4001. \draw (z) to (y);
  4002. \draw (z) to (w);
  4003. \draw (x) to (w);
  4004. \draw (y) to (w);
  4005. \draw (v) to (w);
  4006. \draw (v) to (rsp);
  4007. \draw (w) to (rsp);
  4008. \draw (x) to (rsp);
  4009. \draw (y) to (rsp);
  4010. \path[-.,bend left=15] (z) edge node {} (rsp);
  4011. \path[-.,bend left=10] (t1) edge node {} (rsp);
  4012. \draw (rax) to (rsp);
  4013. \end{tikzpicture}
  4014. \]
  4015. The algorithm says to select a maximally saturated vertex. So we pick
  4016. $\ttm{t}$ and color it with the first available integer, which is
  4017. $0$. We mark $0$ as no longer available for $\ttm{z}$, $\ttm{rax}$,
  4018. and \ttm{rsp} because they interfere with $\ttm{t}$.
  4019. \[
  4020. \begin{tikzpicture}[baseline=(current bounding box.center)]
  4021. \node (rax) at (0,0) {$\ttm{rax}:-1,\{0,-2\}$};
  4022. \node (rsp) at (10,2) {$\ttm{rsp}:-2,\{-1,0\}$};
  4023. \node (t1) at (0,2) {$\ttm{t}:0,\{-1,-2\}$};
  4024. \node (z) at (3,2) {$\ttm{z}:-,\{0,-2\}$};
  4025. \node (x) at (6,2) {$\ttm{x}:-,\{-2\}$};
  4026. \node (y) at (3,0) {$\ttm{y}:-,\{-2\}$};
  4027. \node (w) at (6,0) {$\ttm{w}:-,\{-2\}$};
  4028. \node (v) at (10,0) {$\ttm{v}:-,\{-2\}$};
  4029. \draw (t1) to (rax);
  4030. \draw (t1) to (z);
  4031. \draw (z) to (y);
  4032. \draw (z) to (w);
  4033. \draw (x) to (w);
  4034. \draw (y) to (w);
  4035. \draw (v) to (w);
  4036. \draw (v) to (rsp);
  4037. \draw (w) to (rsp);
  4038. \draw (x) to (rsp);
  4039. \draw (y) to (rsp);
  4040. \path[-.,bend left=15] (z) edge node {} (rsp);
  4041. \path[-.,bend left=10] (t1) edge node {} (rsp);
  4042. \draw (rax) to (rsp);
  4043. \end{tikzpicture}
  4044. \]
  4045. We repeat the process, selecting the next maximally saturated vertex,
  4046. which is \code{z}, and color it with the first available number, which
  4047. is $1$. We add $1$ to the saturation for the neighboring vertices
  4048. \code{t}, \code{y}, \code{w}, and \code{rsp}.
  4049. \[
  4050. \begin{tikzpicture}[baseline=(current bounding box.center)]
  4051. \node (rax) at (0,0) {$\ttm{rax}:-1,\{0,-2\}$};
  4052. \node (rsp) at (10,2) {$\ttm{rsp}:-2,\{-1,0,1\}$};
  4053. \node (t1) at (0,2) {$\ttm{t}:0,\{-1,1,-2\}$};
  4054. \node (z) at (3,2) {$\ttm{z}:1,\{0,-2\}$};
  4055. \node (x) at (6,2) {$\ttm{x}:-,\{-2\}$};
  4056. \node (y) at (3,0) {$\ttm{y}:-,\{1,-2\}$};
  4057. \node (w) at (6,0) {$\ttm{w}:-,\{1,-2\}$};
  4058. \node (v) at (10,0) {$\ttm{v}:-,\{-2\}$};
  4059. \draw (t1) to (rax);
  4060. \draw (t1) to (z);
  4061. \draw (z) to (y);
  4062. \draw (z) to (w);
  4063. \draw (x) to (w);
  4064. \draw (y) to (w);
  4065. \draw (v) to (w);
  4066. \draw (v) to (rsp);
  4067. \draw (w) to (rsp);
  4068. \draw (x) to (rsp);
  4069. \draw (y) to (rsp);
  4070. \path[-.,bend left=15] (z) edge node {} (rsp);
  4071. \path[-.,bend left=10] (t1) edge node {} (rsp);
  4072. \draw (rax) to (rsp);
  4073. \end{tikzpicture}
  4074. \]
  4075. The most saturated vertices are now \code{w} and \code{y}. We color
  4076. \code{w} with the first available color, which is $0$.
  4077. \[
  4078. \begin{tikzpicture}[baseline=(current bounding box.center)]
  4079. \node (rax) at (0,0) {$\ttm{rax}:-1,\{0,-2\}$};
  4080. \node (rsp) at (10,2) {$\ttm{rsp}:-2,\{-1,0,1\}$};
  4081. \node (t1) at (0,2) {$\ttm{t}:0,\{-1,1,-2\}$};
  4082. \node (z) at (3,2) {$\ttm{z}:1,\{0,-2\}$};
  4083. \node (x) at (6,2) {$\ttm{x}:-,\{0,-2\}$};
  4084. \node (y) at (3,0) {$\ttm{y}:-,\{0,1,-2\}$};
  4085. \node (w) at (6,0) {$\ttm{w}:0,\{1,-2\}$};
  4086. \node (v) at (10,0) {$\ttm{v}:-,\{0,-2\}$};
  4087. \draw (t1) to (rax);
  4088. \draw (t1) to (z);
  4089. \draw (z) to (y);
  4090. \draw (z) to (w);
  4091. \draw (x) to (w);
  4092. \draw (y) to (w);
  4093. \draw (v) to (w);
  4094. \draw (v) to (rsp);
  4095. \draw (w) to (rsp);
  4096. \draw (x) to (rsp);
  4097. \draw (y) to (rsp);
  4098. \path[-.,bend left=15] (z) edge node {} (rsp);
  4099. \path[-.,bend left=10] (t1) edge node {} (rsp);
  4100. \draw (rax) to (rsp);
  4101. \end{tikzpicture}
  4102. \]
  4103. Vertex \code{y} is now the most highly saturated, so we color \code{y}
  4104. with $2$. We cannot choose $0$ or $1$ because those numbers are in
  4105. \code{y}'s saturation set. Indeed, \code{y} interferes with \code{w}
  4106. and \code{z}, whose colors are $0$ and $1$ respectively.
  4107. \[
  4108. \begin{tikzpicture}[baseline=(current bounding box.center)]
  4109. \node (rax) at (0,0) {$\ttm{rax}:-1,\{0,-2\}$};
  4110. \node (rsp) at (10,2) {$\ttm{rsp}:-2,\{-1,0,1,2\}$};
  4111. \node (t1) at (0,2) {$\ttm{t}:0,\{-1,1,-2\}$};
  4112. \node (z) at (3,2) {$\ttm{z}:1,\{0,2,-2\}$};
  4113. \node (x) at (6,2) {$\ttm{x}:-,\{0,-2\}$};
  4114. \node (y) at (3,0) {$\ttm{y}:2,\{0,1,-2\}$};
  4115. \node (w) at (6,0) {$\ttm{w}:0,\{1,2,-2\}$};
  4116. \node (v) at (10,0) {$\ttm{v}:-,\{0,-2\}$};
  4117. \draw (t1) to (rax);
  4118. \draw (t1) to (z);
  4119. \draw (z) to (y);
  4120. \draw (z) to (w);
  4121. \draw (x) to (w);
  4122. \draw (y) to (w);
  4123. \draw (v) to (w);
  4124. \draw (v) to (rsp);
  4125. \draw (w) to (rsp);
  4126. \draw (x) to (rsp);
  4127. \draw (y) to (rsp);
  4128. \path[-.,bend left=15] (z) edge node {} (rsp);
  4129. \path[-.,bend left=10] (t1) edge node {} (rsp);
  4130. \draw (rax) to (rsp);
  4131. \end{tikzpicture}
  4132. \]
  4133. Now \code{x} and \code{v} are the most saturated, so we color \code{v} with $1$.
  4134. \[
  4135. \begin{tikzpicture}[baseline=(current bounding box.center)]
  4136. \node (rax) at (0,0) {$\ttm{rax}:-1,\{0,-2\}$};
  4137. \node (rsp) at (10,2) {$\ttm{rsp}:-2,\{-1,0,1,2\}$};
  4138. \node (t1) at (0,2) {$\ttm{t}:0,\{-1,1,-2\}$};
  4139. \node (z) at (3,2) {$\ttm{z}:1,\{0,2,-2\}$};
  4140. \node (x) at (6,2) {$\ttm{x}:-,\{0,-2\}$};
  4141. \node (y) at (3,0) {$\ttm{y}:2,\{0,1,-2\}$};
  4142. \node (w) at (6,0) {$\ttm{w}:0,\{1,2,-2\}$};
  4143. \node (v) at (10,0) {$\ttm{v}:1,\{0,-2\}$};
  4144. \draw (t1) to (rax);
  4145. \draw (t1) to (z);
  4146. \draw (z) to (y);
  4147. \draw (z) to (w);
  4148. \draw (x) to (w);
  4149. \draw (y) to (w);
  4150. \draw (v) to (w);
  4151. \draw (v) to (rsp);
  4152. \draw (w) to (rsp);
  4153. \draw (x) to (rsp);
  4154. \draw (y) to (rsp);
  4155. \path[-.,bend left=15] (z) edge node {} (rsp);
  4156. \path[-.,bend left=10] (t1) edge node {} (rsp);
  4157. \draw (rax) to (rsp);
  4158. \end{tikzpicture}
  4159. \]
  4160. In the last step of the algorithm, we color \code{x} with $1$.
  4161. \[
  4162. \begin{tikzpicture}[baseline=(current bounding box.center)]
  4163. \node (rax) at (0,0) {$\ttm{rax}:-1,\{0,-2\}$};
  4164. \node (rsp) at (10,2) {$\ttm{rsp}:-2,\{-1,0,1,2\}$};
  4165. \node (t1) at (0,2) {$\ttm{t}:0,\{-1,1,-2\}$};
  4166. \node (z) at (3,2) {$\ttm{z}:1,\{0,2,-2\}$};
  4167. \node (x) at (6,2) {$\ttm{x}:1,\{0,-2\}$};
  4168. \node (y) at (3,0) {$\ttm{y}:2,\{0,1,-2\}$};
  4169. \node (w) at (6,0) {$\ttm{w}:0,\{1,2,-2\}$};
  4170. \node (v) at (10,0) {$\ttm{v}:1,\{0,-2\}$};
  4171. \draw (t1) to (rax);
  4172. \draw (t1) to (z);
  4173. \draw (z) to (y);
  4174. \draw (z) to (w);
  4175. \draw (x) to (w);
  4176. \draw (y) to (w);
  4177. \draw (v) to (w);
  4178. \draw (v) to (rsp);
  4179. \draw (w) to (rsp);
  4180. \draw (x) to (rsp);
  4181. \draw (y) to (rsp);
  4182. \path[-.,bend left=15] (z) edge node {} (rsp);
  4183. \path[-.,bend left=10] (t1) edge node {} (rsp);
  4184. \draw (rax) to (rsp);
  4185. \end{tikzpicture}
  4186. \]
  4187. \begin{wrapfigure}[25]{r}[1.0in]{0.6\textwidth}
  4188. \small
  4189. \begin{tcolorbox}[title=Priority Queue]
  4190. A \emph{priority queue} is a collection of items in which the
  4191. removal of items is governed by priority. In a ``min'' queue,
  4192. lower priority items are removed first. An implementation is in
  4193. \code{priority\_queue.rkt} of the support code. \index{priority
  4194. queue} \index{minimum priority queue}
  4195. \begin{description}
  4196. \item[$\LP\code{make-pqueue}\,\itm{cmp}\RP$] constructs an empty
  4197. priority queue that uses the $\itm{cmp}$ predicate to determine
  4198. whether its first argument has lower or equal priority to its
  4199. second argument.
  4200. \item[$\LP\code{pqueue-count}\,\itm{queue}\RP$] returns the number of
  4201. items in the queue.
  4202. \item[$\LP\code{pqueue-push!}\,\itm{queue}\,\itm{item}\RP$] inserts
  4203. the item into the queue and returns a handle for the item in the
  4204. queue.
  4205. \item[$\LP\code{pqueue-pop!}\,\itm{queue}\RP$] returns the item with
  4206. the lowest priority.
  4207. \item[$\LP\code{pqueue-decrease-key!}\,\itm{queue}\,\itm{handle}\RP$]
  4208. notifies the queue that the priority has decreased for the item
  4209. associated with the given handle.
  4210. \end{description}
  4211. \end{tcolorbox}
  4212. \end{wrapfigure}
  4213. We recommend creating an auxiliary function named \code{color-graph}
  4214. that takes an interference graph and a list of all the variables in
  4215. the program. This function should return a mapping of variables to
  4216. their colors (represented as natural numbers). By creating this helper
  4217. function, you will be able to reuse it in Chapter~\ref{ch:Rfun}
  4218. when we add support for functions.
  4219. To prioritize the processing of highly saturated nodes inside the
  4220. \code{color-graph} function, we recommend using the priority queue
  4221. data structure (see the side bar on the right). In addition, you will
  4222. need to maintain a mapping from variables to their ``handles'' in the
  4223. priority queue so that you can notify the priority queue when their
  4224. saturation changes.
  4225. With the coloring complete, we finalize the assignment of variables to
  4226. registers and stack locations. We map the first $k$ colors to the $k$
  4227. registers and the rest of the colors to stack locations. Suppose for
  4228. the moment that we have just one register to use for register
  4229. allocation, \key{rcx}. Then we have the following map from colors to
  4230. locations.
  4231. \[
  4232. \{ 0 \mapsto \key{\%rcx}, \; 1 \mapsto \key{-8(\%rbp)}, \; 2 \mapsto \key{-16(\%rbp)} \}
  4233. \]
  4234. Composing this mapping with the coloring, we arrive at the following
  4235. assignment of variables to locations.
  4236. \begin{gather*}
  4237. \{ \ttm{v} \mapsto \key{-8(\%rbp)}, \,
  4238. \ttm{w} \mapsto \key{\%rcx}, \,
  4239. \ttm{x} \mapsto \key{-8(\%rbp)}, \,
  4240. \ttm{y} \mapsto \key{-16(\%rbp)}, \\
  4241. \ttm{z} \mapsto \key{-8(\%rbp)}, \,
  4242. \ttm{t} \mapsto \key{\%rcx} \}
  4243. \end{gather*}
  4244. Adapt the code from the \code{assign-homes} pass
  4245. (Section~\ref{sec:assign-Rvar}) to replace the variables with their
  4246. assigned location. Applying the above assignment to our running
  4247. example, on the left, yields the program on the right.
  4248. % why frame size of 32? -JGS
  4249. \begin{center}
  4250. \begin{minipage}{0.3\textwidth}
  4251. \begin{lstlisting}
  4252. movq $1, v
  4253. movq $42, w
  4254. movq v, x
  4255. addq $7, x
  4256. movq x, y
  4257. movq x, z
  4258. addq w, z
  4259. movq y, t
  4260. negq t
  4261. movq z, %rax
  4262. addq t, %rax
  4263. jmp conclusion
  4264. \end{lstlisting}
  4265. \end{minipage}
  4266. $\Rightarrow\qquad$
  4267. \begin{minipage}{0.45\textwidth}
  4268. \begin{lstlisting}
  4269. movq $1, -8(%rbp)
  4270. movq $42, %rcx
  4271. movq -8(%rbp), -8(%rbp)
  4272. addq $7, -8(%rbp)
  4273. movq -8(%rbp), -16(%rbp)
  4274. movq -8(%rbp), -8(%rbp)
  4275. addq %rcx, -8(%rbp)
  4276. movq -16(%rbp), %rcx
  4277. negq %rcx
  4278. movq -8(%rbp), %rax
  4279. addq %rcx, %rax
  4280. jmp conclusion
  4281. \end{lstlisting}
  4282. \end{minipage}
  4283. \end{center}
  4284. \begin{exercise}\normalfont
  4285. %
  4286. Implement the compiler pass \code{allocate-registers}.
  4287. %
  4288. \begin{ocamlx}
  4289. Put your solution in the \code{AllocateRegisters} submodule
  4290. of \code{Chapter3.ml}.
  4291. The graph coloring part of this exercise has been
  4292. done for you. The \code{Graph} library defines a function
  4293. \code{color : coloring -> Graph.t -> coloring}
  4294. \noindent
  4295. where \code{coloring} is a \code{Map} whose keys are vertices
  4296. and whose values are integer colors. The \code{color}
  4297. function takes a graph and an initial precoloring, which should be
  4298. used to pre-set colors for vertices that already represent
  4299. registers. (The registers you never want to used for storing variables
  4300. should be given negative numbers: these include \code{rax} and \code{rsp}.
  4301. The other registers that might appear in the graph are the caller-save
  4302. registers---if you have constructed the graph correctly, there will be
  4303. vertices for all the caller-save registers \emph{if} there are one or
  4304. more \code{callq} instructions in the function. These caller-save registers
  4305. should be pre-assigned colors $0,1,2,3,\ldots$. Can you see why?)
  4306. It then colors the remaining
  4307. vertices with colors 0,1,$\ldots$, trying to assign the smallest
  4308. possible color to each vertex. (The implementation of \code{color}
  4309. follows the general approach described in the book, but dispenses
  4310. with a priority queue.) The resulting coloring can be
  4311. printed out for debugging purposes using the \code{print\_coloring}
  4312. function.
  4313. The remaining tasks for you in this exercise are to compute
  4314. the precoloring, invoke the \code{color} function,
  4315. construct an assignment environment (mapping variable names to locations)
  4316. from the resulting coloring, and use this environment to map
  4317. variable arguments to registers and stack locations just as in
  4318. the \code{AssignHomes} pass in \code{Chapter2.ml}.
  4319. Your assignment construction should be parameterized by the reference
  4320. variable \code{max\_regs}, which says how many registers (0 to 13) to
  4321. use. Variables assigned to colors beyond this limit must be placed
  4322. in stack slots rather than registers. It can be very useful to try different values of this number when
  4323. debugging. The driver code (now in \code{driver.ml}) includes a flag to allow
  4324. the value of this variable to be set from the command line when testing.
  4325. You also need to compute the list of used callee-save registers; this should
  4326. then be passed to the function \code{X86Int.adjust\_entry\_exit}, which
  4327. will modify the \code{main} and \code{conclusion} blocks to include
  4328. code for spilling and reloading these registers.
  4329. The \code{'pinfo} field of the resulting program is an \code{int}
  4330. reperesnting the total size of the frame, including space for
  4331. any spilled callee-saves. Don't foret that the frame needs to
  4332. be a multiple of 16 bytes1
  4333. We do not recommend that you attempt to do any extra checking on the output
  4334. of this pass.
  4335. \end{ocamlx}
  4336. %
  4337. Create five programs that exercise all of the register allocation
  4338. algorithm, including spilling variables to the stack.
  4339. %
  4340. Replace \code{assign-homes} in the list of \code{passes} in the
  4341. \code{run-tests.rkt} script with the three new passes:
  4342. \code{uncover-live}, \code{build-interference}, and
  4343. \code{allocate-registers}.
  4344. %
  4345. \ocaml{Make the analogous changes in the \code{pass} list. Note
  4346. that this list has been moved to {\tt driver.ml} to make it
  4347. easier to combine passes from different chapters.}
  4348. %
  4349. Temporarily remove the \code{print-x86} pass from the list of passes
  4350. and the call to \code{compiler-tests}.
  4351. %
  4352. Run the script to test the register allocator.
  4353. \end{exercise}
  4354. \section{Patch Instructions}
  4355. \label{sec:patch-instructions}
  4356. The remaining step in the compilation to x86 is to ensure that the
  4357. instructions have at most one argument that is a memory access.
  4358. In the running example, the instruction \code{movq -8(\%rbp), -16(\%rbp)}
  4359. is problematic. The fix is to first move \code{-8(\%rbp)}
  4360. into \code{rax} and then move \code{rax} into \code{-16(\%rbp)}.
  4361. %
  4362. The two moves from \code{-8(\%rbp)} to \code{-8(\%rbp)} are also
  4363. problematic, but they can be fixed by simply deleting them. In
  4364. general, we recommend deleting all the trivial moves whose source and
  4365. destination are the same location.
  4366. %
  4367. The following is the output of \code{patch-instructions} on the
  4368. running example.
  4369. \begin{center}
  4370. \begin{minipage}{0.4\textwidth}
  4371. \begin{lstlisting}
  4372. movq $1, -8(%rbp)
  4373. movq $42, %rcx
  4374. movq -8(%rbp), -8(%rbp)
  4375. addq $7, -8(%rbp)
  4376. movq -8(%rbp), -16(%rbp)
  4377. movq -8(%rbp), -8(%rbp)
  4378. addq %rcx, -8(%rbp)
  4379. movq -16(%rbp), %rcx
  4380. negq %rcx
  4381. movq -8(%rbp), %rax
  4382. addq %rcx, %rax
  4383. jmp conclusion
  4384. \end{lstlisting}
  4385. \end{minipage}
  4386. $\Rightarrow\qquad$
  4387. \begin{minipage}{0.45\textwidth}
  4388. \begin{lstlisting}
  4389. movq $1, -8(%rbp)
  4390. movq $42, %rcx
  4391. addq $7, -8(%rbp)
  4392. movq -8(%rbp), %rax
  4393. movq %rax, -16(%rbp)
  4394. addq %rcx, -8(%rbp)
  4395. movq -16(%rbp), %rcx
  4396. negq %rcx
  4397. movq -8(%rbp), %rax
  4398. addq %rcx, %rax
  4399. jmp conclusion
  4400. \end{lstlisting}
  4401. \end{minipage}
  4402. \end{center}
  4403. \begin{exercise}\normalfont
  4404. %
  4405. Implement the \code{patch-instructions} compiler pass.\ocaml{This
  4406. exercise has been done for you; the code is provided in \code{Chapter3.ml}
  4407. (only slightly different from the version in \code{Chapter2.ml}).}
  4408. %
  4409. Insert it after \code{allocate-registers} in the list of \code{passes}
  4410. in the \code{run-tests.rkt} script.
  4411. %
  4412. Run the script to test the \code{patch-instructions} pass.
  4413. \end{exercise}
  4414. \section{Print x86}
  4415. \label{sec:print-x86-reg-alloc}
  4416. \index{calling conventions}
  4417. \index{prelude}\index{conclusion}
  4418. Recall that the \code{print-x86} pass generates the prelude and
  4419. conclusion instructions to satisfy the x86 calling conventions
  4420. (Section~\ref{sec:calling-conventions}). With the addition of the
  4421. register allocator, the callee-saved registers used by the register
  4422. allocator must be saved in the prelude and restored in the conclusion.
  4423. In the \code{allocate-registers} pass, add an entry to the \itm{info}
  4424. of \code{X86Program} named \code{used-callee} that stores the set of
  4425. callee-saved registers that were assigned to variables. The
  4426. \code{print-x86} pass can then access this information to decide which
  4427. callee-saved registers need to be saved and restored.
  4428. \ocaml{Storing this information in the program
  4429. is not necessary in the OCaml version, because the spilling and
  4430. reloading code is inserted into the X86 program AST rather than being
  4431. added at printing time.}
  4432. %
  4433. When calculating the size of the frame to adjust the \code{rsp} in the
  4434. prelude, make sure to take into account the space used for saving the
  4435. callee-saved registers. Also, don't forget that the frame needs to be
  4436. a multiple of 16 bytes! \ocaml{You do still need to compute this,
  4437. as part of the \code{AllocateRegisters} exercise.}
  4438. An overview of all of the passes involved in register allocation is
  4439. shown in Figure~\ref{fig:reg-alloc-passes}.
  4440. \begin{figure}[tbp]
  4441. \begin{tikzpicture}[baseline=(current bounding box.center)]
  4442. \node (Rvar) at (0,2) {\large \LangVar{}};
  4443. \node (Rvar-2) at (3,2) {\large \LangVar{}};
  4444. \node (Rvar-3) at (6,2) {\large \LangVar{}};
  4445. \node (Cvar-1) at (3,0) {\large \LangCVar{}};
  4446. \node (x86-2) at (3,-2) {\large \LangXVar{}};
  4447. \node (x86-3) at (6,-2) {\large \LangXVar{}};
  4448. \node (x86-4) at (9,-2) {\large \LangXInt{}};
  4449. \node (x86-5) at (9,-4) {\large \LangXInt{}};
  4450. \node (x86-2-1) at (3,-4) {\large \LangXVar{}};
  4451. \node (x86-2-2) at (6,-4) {\large \LangXVar{}};
  4452. \path[->,bend left=15] (Rvar) edge [above] node {\ttfamily\footnotesize uniquify} (Rvar-2);
  4453. \path[->,bend left=15] (Rvar-2) edge [above] node {\ttfamily\footnotesize remove-complex.} (Rvar-3);
  4454. \path[->,bend left=15] (Rvar-3) edge [right] node {\ttfamily\footnotesize explicate-control} (Cvar-1);
  4455. \path[->,bend right=15] (Cvar-1) edge [left] node {\ttfamily\footnotesize select-instr.} (x86-2);
  4456. \path[->,bend left=15] (x86-2) edge [right] node {\ttfamily\footnotesize uncover-live} (x86-2-1);
  4457. \path[->,bend right=15] (x86-2-1) edge [below] node {\ttfamily\footnotesize build-inter.} (x86-2-2);
  4458. \path[->,bend right=15] (x86-2-2) edge [right] node {\ttfamily\footnotesize allocate-reg.} (x86-3);
  4459. \path[->,bend left=15] (x86-3) edge [above] node {\ttfamily\footnotesize patch-instr.} (x86-4);
  4460. \path[->,bend left=15] (x86-4) edge [right] node {\ttfamily\footnotesize print-x86} (x86-5);
  4461. \end{tikzpicture}
  4462. \caption{Diagram of the passes for \LangVar{} with register allocation.}
  4463. \label{fig:reg-alloc-passes}
  4464. \end{figure}
  4465. \begin{exercise}\normalfont
  4466. Update the \code{print-x86} pass as described in this section.
  4467. \ocaml{This exercise has been done for you; the printing code is
  4468. in \code{X86Int} as before.}
  4469. %
  4470. In the \code{run-tests.rkt} script, reinstate \code{print-x86} in the
  4471. list of passes and the call to \code{compiler-tests}.
  4472. %
  4473. Run the script to test the complete compiler for \LangVar{} that
  4474. performs register allocation.
  4475. \end{exercise}
  4476. \section{Challenge: Move Biasing}
  4477. \label{sec:move-biasing}
  4478. \index{move biasing}
  4479. This section describes an enhancement to the register allocator for
  4480. students looking for an extra challenge or who have a deeper interest
  4481. in register allocation.
  4482. To motivate the need for move biasing we return to the running example
  4483. but this time use all of the general purpose registers. So we have
  4484. the following mapping of color numbers to registers.
  4485. \[
  4486. \{ 0 \mapsto \key{\%rcx}, \; 1 \mapsto \key{\%rdx}, \; 2 \mapsto \key{\%rsi} \}
  4487. \]
  4488. Using the same assignment of variables to color numbers that was
  4489. produced by the register allocator described in the last section, we
  4490. get the following program.
  4491. \begin{center}
  4492. \begin{minipage}{0.3\textwidth}
  4493. \begin{lstlisting}
  4494. movq $1, v
  4495. movq $42, w
  4496. movq v, x
  4497. addq $7, x
  4498. movq x, y
  4499. movq x, z
  4500. addq w, z
  4501. movq y, t
  4502. negq t
  4503. movq z, %rax
  4504. addq t, %rax
  4505. jmp conclusion
  4506. \end{lstlisting}
  4507. \end{minipage}
  4508. $\Rightarrow\qquad$
  4509. \begin{minipage}{0.45\textwidth}
  4510. \begin{lstlisting}
  4511. movq $1, %rdx
  4512. movq $42, %rcx
  4513. movq %rdx, %rdx
  4514. addq $7, %rdx
  4515. movq %rdx, %rsi
  4516. movq %rdx, %rdx
  4517. addq %rcx, %rdx
  4518. movq %rsi, %rcx
  4519. negq %rcx
  4520. movq %rdx, %rax
  4521. addq %rcx, %rax
  4522. jmp conclusion
  4523. \end{lstlisting}
  4524. \end{minipage}
  4525. \end{center}
  4526. In the above output code there are two \key{movq} instructions that
  4527. can be removed because their source and target are the same. However,
  4528. if we had put \key{t}, \key{v}, \key{x}, and \key{y} into the same
  4529. register, we could instead remove three \key{movq} instructions. We
  4530. can accomplish this by taking into account which variables appear in
  4531. \key{movq} instructions with which other variables.
  4532. We say that two variables $p$ and $q$ are \emph{move
  4533. related}\index{move related} if they participate together in a
  4534. \key{movq} instruction, that is, \key{movq} $p$\key{,} $q$ or
  4535. \key{movq} $q$\key{,} $p$. When the register allocator chooses a color
  4536. for a variable, it should prefer a color that has already been used
  4537. for a move-related variable (assuming that they do not interfere). Of
  4538. course, this preference should not override the preference for
  4539. registers over stack locations. This preference should be used as a
  4540. tie breaker when choosing between registers or when choosing between
  4541. stack locations.
  4542. We recommend representing the move relationships in a graph, similar
  4543. to how we represented interference. The following is the \emph{move
  4544. graph} for our running example.
  4545. \[
  4546. \begin{tikzpicture}[baseline=(current bounding box.center)]
  4547. \node (rax) at (0,0) {$\ttm{rax}$};
  4548. \node (rsp) at (9,2) {$\ttm{rsp}$};
  4549. \node (t) at (0,2) {$\ttm{t}$};
  4550. \node (z) at (3,2) {$\ttm{z}$};
  4551. \node (x) at (6,2) {$\ttm{x}$};
  4552. \node (y) at (3,0) {$\ttm{y}$};
  4553. \node (w) at (6,0) {$\ttm{w}$};
  4554. \node (v) at (9,0) {$\ttm{v}$};
  4555. \draw (v) to (x);
  4556. \draw (x) to (y);
  4557. \draw (x) to (z);
  4558. \draw (y) to (t);
  4559. \end{tikzpicture}
  4560. \]
  4561. Now we replay the graph coloring, pausing to see the coloring of
  4562. \code{y}. Recall the following configuration. The most saturated vertices
  4563. were \code{w} and \code{y}.
  4564. \[
  4565. \begin{tikzpicture}[baseline=(current bounding box.center)]
  4566. \node (rax) at (0,0) {$\ttm{rax}:-1,\{0,-2\}$};
  4567. \node (rsp) at (9,2) {$\ttm{rsp}:-2,\{-1,0,1,2\}$};
  4568. \node (t1) at (0,2) {$\ttm{t}:0,\{1,-2\}$};
  4569. \node (z) at (3,2) {$\ttm{z}:1,\{0,-2\}$};
  4570. \node (x) at (6,2) {$\ttm{x}:-,\{-2\}$};
  4571. \node (y) at (3,0) {$\ttm{y}:-,\{1,-2\}$};
  4572. \node (w) at (6,0) {$\ttm{w}:-,\{1,-2\}$};
  4573. \node (v) at (9,0) {$\ttm{v}:-,\{-2\}$};
  4574. \draw (t1) to (rax);
  4575. \draw (t1) to (z);
  4576. \draw (z) to (y);
  4577. \draw (z) to (w);
  4578. \draw (x) to (w);
  4579. \draw (y) to (w);
  4580. \draw (v) to (w);
  4581. \draw (v) to (rsp);
  4582. \draw (w) to (rsp);
  4583. \draw (x) to (rsp);
  4584. \draw (y) to (rsp);
  4585. \path[-.,bend left=15] (z) edge node {} (rsp);
  4586. \path[-.,bend left=10] (t1) edge node {} (rsp);
  4587. \draw (rax) to (rsp);
  4588. \end{tikzpicture}
  4589. \]
  4590. %
  4591. Last time we chose to color \code{w} with $0$. But this time we see
  4592. that \code{w} is not move related to any vertex, but \code{y} is move
  4593. related to \code{t}. So we choose to color \code{y} the same color as
  4594. \code{t}, $0$.
  4595. \[
  4596. \begin{tikzpicture}[baseline=(current bounding box.center)]
  4597. \node (rax) at (0,0) {$\ttm{rax}:-1,\{0,-2\}$};
  4598. \node (rsp) at (9,2) {$\ttm{rsp}:-2,\{-1,0,1,2\}$};
  4599. \node (t1) at (0,2) {$\ttm{t}:0,\{1,-2\}$};
  4600. \node (z) at (3,2) {$\ttm{z}:1,\{0,-2\}$};
  4601. \node (x) at (6,2) {$\ttm{x}:-,\{-2\}$};
  4602. \node (y) at (3,0) {$\ttm{y}:0,\{1,-2\}$};
  4603. \node (w) at (6,0) {$\ttm{w}:-,\{0,1,-2\}$};
  4604. \node (v) at (9,0) {$\ttm{v}:-,\{-2\}$};
  4605. \draw (t1) to (rax);
  4606. \draw (t1) to (z);
  4607. \draw (z) to (y);
  4608. \draw (z) to (w);
  4609. \draw (x) to (w);
  4610. \draw (y) to (w);
  4611. \draw (v) to (w);
  4612. \draw (v) to (rsp);
  4613. \draw (w) to (rsp);
  4614. \draw (x) to (rsp);
  4615. \draw (y) to (rsp);
  4616. \path[-.,bend left=15] (z) edge node {} (rsp);
  4617. \path[-.,bend left=10] (t1) edge node {} (rsp);
  4618. \draw (rax) to (rsp);
  4619. \end{tikzpicture}
  4620. \]
  4621. Now \code{w} is the most saturated, so we color it $2$.
  4622. \[
  4623. \begin{tikzpicture}[baseline=(current bounding box.center)]
  4624. \node (rax) at (0,0) {$\ttm{rax}:-1,\{0,-2\}$};
  4625. \node (rsp) at (9,2) {$\ttm{rsp}:-2,\{-1,0,1,2\}$};
  4626. \node (t1) at (0,2) {$\ttm{t}:0,\{1,-2\}$};
  4627. \node (z) at (3,2) {$\ttm{z}:1,\{0,2,-2\}$};
  4628. \node (x) at (6,2) {$\ttm{x}:-,\{2,-2\}$};
  4629. \node (y) at (3,0) {$\ttm{y}:0,\{1,2,-2\}$};
  4630. \node (w) at (6,0) {$\ttm{w}:2,\{0,1,-2\}$};
  4631. \node (v) at (9,0) {$\ttm{v}:-,\{2,-2\}$};
  4632. \draw (t1) to (rax);
  4633. \draw (t1) to (z);
  4634. \draw (z) to (y);
  4635. \draw (z) to (w);
  4636. \draw (x) to (w);
  4637. \draw (y) to (w);
  4638. \draw (v) to (w);
  4639. \draw (v) to (rsp);
  4640. \draw (w) to (rsp);
  4641. \draw (x) to (rsp);
  4642. \draw (y) to (rsp);
  4643. \path[-.,bend left=15] (z) edge node {} (rsp);
  4644. \path[-.,bend left=10] (t1) edge node {} (rsp);
  4645. \draw (rax) to (rsp);
  4646. \end{tikzpicture}
  4647. \]
  4648. At this point, vertices \code{x} and \code{v} are most saturated, but
  4649. \code{x} is move related to \code{y} and \code{z}, so we color
  4650. \code{x} to $0$ to match \code{y}. Finally, we color \code{v} to $0$.
  4651. \[
  4652. \begin{tikzpicture}[baseline=(current bounding box.center)]
  4653. \node (rax) at (0,0) {$\ttm{rax}:-1,\{0,-2\}$};
  4654. \node (rsp) at (9,2) {$\ttm{rsp}:-2,\{-1,0,1,2\}$};
  4655. \node (t) at (0,2) {$\ttm{t}:0,\{1,-2\}$};
  4656. \node (z) at (3,2) {$\ttm{z}:1,\{0,2,-2\}$};
  4657. \node (x) at (6,2) {$\ttm{x}:0,\{2,-2\}$};
  4658. \node (y) at (3,0) {$\ttm{y}:0,\{1,2,-2\}$};
  4659. \node (w) at (6,0) {$\ttm{w}:2,\{0,1,-2\}$};
  4660. \node (v) at (9,0) {$\ttm{v}:0,\{2,-2\}$};
  4661. \draw (t1) to (rax);
  4662. \draw (t) to (z);
  4663. \draw (z) to (y);
  4664. \draw (z) to (w);
  4665. \draw (x) to (w);
  4666. \draw (y) to (w);
  4667. \draw (v) to (w);
  4668. \draw (v) to (rsp);
  4669. \draw (w) to (rsp);
  4670. \draw (x) to (rsp);
  4671. \draw (y) to (rsp);
  4672. \path[-.,bend left=15] (z) edge node {} (rsp);
  4673. \path[-.,bend left=10] (t1) edge node {} (rsp);
  4674. \draw (rax) to (rsp);
  4675. \end{tikzpicture}
  4676. \]
  4677. So we have the following assignment of variables to registers.
  4678. \begin{gather*}
  4679. \{ \ttm{v} \mapsto \key{\%rcx}, \,
  4680. \ttm{w} \mapsto \key{\%rsi}, \,
  4681. \ttm{x} \mapsto \key{\%rcx}, \,
  4682. \ttm{y} \mapsto \key{\%rcx}, \,
  4683. \ttm{z} \mapsto \key{\%rdx}, \,
  4684. \ttm{t} \mapsto \key{\%rcx} \}
  4685. \end{gather*}
  4686. We apply this register assignment to the running example, on the left,
  4687. to obtain the code in the middle. The \code{patch-instructions} then
  4688. removes the three trivial moves to obtain the code on the right.
  4689. \begin{minipage}{0.25\textwidth}
  4690. \begin{lstlisting}
  4691. movq $1, v
  4692. movq $42, w
  4693. movq v, x
  4694. addq $7, x
  4695. movq x, y
  4696. movq x, z
  4697. addq w, z
  4698. movq y, t
  4699. negq t
  4700. movq z, %rax
  4701. addq t, %rax
  4702. jmp conclusion
  4703. \end{lstlisting}
  4704. \end{minipage}
  4705. $\Rightarrow\qquad$
  4706. \begin{minipage}{0.25\textwidth}
  4707. \begin{lstlisting}
  4708. movq $1, %rcx
  4709. movq $42, %rsi
  4710. movq %rcx, %rcx
  4711. addq $7, %rcx
  4712. movq %rcx, %rcx
  4713. movq %rcx, %rdx
  4714. addq %rsi, %rdx
  4715. movq %rcx, %rcx
  4716. negq %rcx
  4717. movq %rdx, %rax
  4718. addq %rcx, %rax
  4719. jmp conclusion
  4720. \end{lstlisting}
  4721. \end{minipage}
  4722. $\Rightarrow\qquad$
  4723. \begin{minipage}{0.25\textwidth}
  4724. \begin{lstlisting}
  4725. movq $1, %rcx
  4726. movq $42, %rsi
  4727. addq $7, %rcx
  4728. movq %rcx, %rdx
  4729. addq %rsi, %rdx
  4730. negq %rcx
  4731. movq %rdx, %rax
  4732. addq %rcx, %rax
  4733. jmp conclusion
  4734. \end{lstlisting}
  4735. \end{minipage}
  4736. \begin{exercise}\normalfont
  4737. Change your implementation of \code{allocate-registers} to take move
  4738. biasing into account. Create two new tests that include at least one
  4739. opportunity for move biasing and visually inspect the output x86
  4740. programs to make sure that your move biasing is working properly. Make
  4741. sure that your compiler still passes all of the tests.
  4742. \end{exercise}
  4743. \margincomment{\footnotesize To do: another neat challenge would be to do
  4744. live range splitting~\citep{Cooper:1998ly}. \\ --Jeremy}
  4745. %% \subsection{Output of the Running Example}
  4746. %% \label{sec:reg-alloc-output}
  4747. Figure~\ref{fig:running-example-x86} shows the x86 code generated for
  4748. the running example (Figure~\ref{fig:reg-eg}) with register allocation
  4749. and move biasing. To demonstrate both the use of registers and the
  4750. stack, we have limited the register allocator to use just two
  4751. registers: \code{rbx} and \code{rcx}. In the prelude\index{prelude}
  4752. of the \code{main} function, we push \code{rbx} onto the stack because
  4753. it is a callee-saved register and it was assigned to variable by the
  4754. register allocator. We subtract \code{8} from the \code{rsp} at the
  4755. end of the prelude to reserve space for the one spilled variable.
  4756. After that subtraction, the \code{rsp} is aligned to 16 bytes.
  4757. Moving on the the \code{start} block, we see how the registers were
  4758. allocated. Variables \code{v}, \code{x}, and \code{y} were assigned to
  4759. \code{rbx} and variable \code{z} was assigned to \code{rcx}. Variable
  4760. \code{w} was spilled to the stack location \code{-16(\%rbp)}. Recall
  4761. that the prelude saved the callee-save register \code{rbx} onto the
  4762. stack. The spilled variables must be placed lower on the stack than
  4763. the saved callee-save registers, so in this case \code{w} is placed at
  4764. \code{-16(\%rbp)}.
  4765. In the \code{conclusion}\index{conclusion}, we undo the work that was
  4766. done in the prelude. We move the stack pointer up by \code{8} bytes
  4767. (the room for spilled variables), then we pop the old values of
  4768. \code{rbx} and \code{rbp} (callee-saved registers), and finish with
  4769. \code{retq} to return control to the operating system.
  4770. \begin{figure}[tbp]
  4771. % var_test_28.rkt
  4772. % (use-minimal-set-of-registers! #t)
  4773. % and only rbx rcx
  4774. % tmp 0 rbx
  4775. % z 1 rcx
  4776. % y 0 rbx
  4777. % w 2 16(%rbp)
  4778. % v 0 rbx
  4779. % x 0 rbx
  4780. \begin{lstlisting}
  4781. start:
  4782. movq $1, %rbx
  4783. movq $42, -16(%rbp)
  4784. addq $7, %rbx
  4785. movq %rbx, %rcx
  4786. addq -16(%rbp), %rcx
  4787. negq %rbx
  4788. movq %rcx, %rax
  4789. addq %rbx, %rax
  4790. jmp conclusion
  4791. .globl main
  4792. main:
  4793. pushq %rbp
  4794. movq %rsp, %rbp
  4795. pushq %rbx
  4796. subq $8, %rsp
  4797. jmp start
  4798. conclusion:
  4799. addq $8, %rsp
  4800. popq %rbx
  4801. popq %rbp
  4802. retq
  4803. \end{lstlisting}
  4804. \caption{The x86 output from the running example (Figure~\ref{fig:reg-eg}).}
  4805. \label{fig:running-example-x86}
  4806. \end{figure}
  4807. % challenge: prioritize variables based on execution frequencies
  4808. % and the number of uses of a variable
  4809. % challenge: enhance the coloring algorithm using Chaitin's
  4810. % approach of prioritizing high-degree variables
  4811. % by removing low-degree variables (coloring them later)
  4812. % from the interference graph
  4813. \section{Further Reading}
  4814. \label{sec:register-allocation-further-reading}
  4815. Early register allocation algorithms were developed for Fortran
  4816. compilers in the 1950s~\citep{Horwitz:1966aa,Backus:1978aa}. The use
  4817. of graph coloring began in the late 1970s and early 1980s with the
  4818. work of \citet{Chaitin:1981vl} on an optimizing compiler for PL/I. The
  4819. algorithm is based on the following observation of
  4820. \citet{Kempe:1879aa} from the 1870s. If a graph $G$ has a vertex $v$
  4821. with degree lower than $k$, then $G$ is $k$ colorable if the subgraph
  4822. of $G$ with $v$ removed is also $k$ colorable. Suppose that the
  4823. subgraph is $k$ colorable. At worst the neighbors of $v$ are assigned
  4824. different colors, but since there are less than $k$ of them, there
  4825. will be one or more colors left over to use for coloring $v$ in $G$.
  4826. The algorithm of \citet{Chaitin:1981vl} removes a vertex $v$ of degree
  4827. less than $k$ from the graph and recursively colors the rest of the
  4828. graph. Upon returning from the recursion, it colors $v$ with one of
  4829. the available colors and returns. \citet{Chaitin:1982vn} augments
  4830. this algorithm to handle spilling as follows. If there are no vertices
  4831. of degree lower than $k$ then pick a vertex at random, spill it,
  4832. remove it from the graph, and proceed recursively to color the rest of
  4833. the graph.
  4834. Prior to coloring, \citet{Chaitin:1981vl} merge variables that are
  4835. move-related and that don't interfere with each other, a process
  4836. called \emph{coalescing}. While coalescing decreases the number of
  4837. moves, it can make the graph more difficult to
  4838. color. \citet{Briggs:1994kx} propose \emph{conservative coalescing} in
  4839. which two variables are merged only if they have fewer than $k$
  4840. neighbors of high degree. \citet{George:1996aa} observe that
  4841. conservative coalescing is sometimes too conservative and make it more
  4842. aggressive by iterating the coalescing with the removal of low-degree
  4843. vertices.
  4844. %
  4845. Attacking the problem from a different angle, \citet{Briggs:1994kx}
  4846. also propose \emph{biased coloring} in which a variable is assigned to
  4847. the same color as another move-related variable if possible, as
  4848. discussed in Section~\ref{sec:move-biasing}.
  4849. %
  4850. The algorithm of \citet{Chaitin:1981vl} and its successors iteratively
  4851. performs coalescing, graph coloring, and spill code insertion until
  4852. all variables have been assigned a location.
  4853. \citet{Briggs:1994kx} observes that \citet{Chaitin:1982vn} sometimes
  4854. spills variables that don't have to be: a high-degree variable can be
  4855. colorable if many of its neighbors are assigned the same color.
  4856. \citet{Briggs:1994kx} propose \emph{optimistic coloring}, in which a
  4857. high-degree vertex is not immediately spilled. Instead the decision is
  4858. deferred until after the recursive call, at which point it is apparent
  4859. whether there is actually an available color or not. We observe that
  4860. this algorithm is equivalent to the smallest-last ordering
  4861. algorithm~\citep{Matula:1972aa} if one takes the first $k$ colors to
  4862. be registers and the rest to be stack locations.
  4863. %% biased coloring
  4864. Earlier editions of the compiler course at Indiana University
  4865. \citep{Dybvig:2010aa} were based on the algorithm of
  4866. \citet{Briggs:1994kx}.
  4867. The smallest-last ordering algorithm is one of many \emph{greedy}
  4868. coloring algorithms. A greedy coloring algorithm visits all the
  4869. vertices in a particular order and assigns each one the first
  4870. available color. An \emph{offline} greedy algorithm chooses the
  4871. ordering up-front, prior to assigning colors. The algorithm of
  4872. \citet{Chaitin:1981vl} should be considered offline because the vertex
  4873. ordering does not depend on the colors assigned, so the algorithm
  4874. could be split into two phases. Other orderings are possible. For
  4875. example, \citet{Chow:1984ys} order variables according an estimate of
  4876. runtime cost.
  4877. An \emph{online} greedy coloring algorithm uses information about the
  4878. current assignment of colors to influence the order in which the
  4879. remaining vertices are colored. The saturation-based algorithm
  4880. described in this chapter is one such algorithm. We choose to use
  4881. saturation-based coloring is because it is fun to introduce graph
  4882. coloring via Sudoku.
  4883. A register allocator may choose to map each variable to just one
  4884. location, as in \citet{Chaitin:1981vl}, or it may choose to map a
  4885. variable to one or more locations. The later can be achieved by
  4886. \emph{live range splitting}, where a variable is replaced by several
  4887. variables that each handle part of its live
  4888. range~\citep{Chow:1984ys,Briggs:1994kx,Cooper:1998ly}.
  4889. %% 1950s, Sheldon Best, Fortran \cite{Backus:1978aa}, Belady's page
  4890. %% replacement algorithm, bottom-up local
  4891. %% \citep{Horwitz:1966aa} straight-line programs, single basic block,
  4892. %% Cooper: top-down (priority bassed), bottom-up
  4893. %% top-down
  4894. %% order variables by priority (estimated cost)
  4895. %% caveat: split variables into two groups:
  4896. %% constrained (>k neighbors) and unconstrained (<k neighbors)
  4897. %% color the constrained ones first
  4898. %% \citet{Schwartz:1975aa} graph-coloring, no spill
  4899. %% cite J. Cocke for an algorithm that colors variables
  4900. %% in a high-degree first ordering
  4901. %Register Allocation via Usage Counts, Freiburghouse CACM
  4902. \citet{Palsberg:2007si} observe that many of the interference graphs
  4903. that arise from Java programs in the JoeQ compiler are \emph{chordal},
  4904. that is, every cycle with four or more edges has an edge which is not
  4905. part of the cycle but which connects two vertices on the cycle. Such
  4906. graphs can be optimally colored by the greedy algorithm with a vertex
  4907. ordering determined by maximum cardinality search.
  4908. In situations where compile time is of utmost importance, such as in
  4909. just-in-time compilers, graph coloring algorithms can be too expensive
  4910. and the linear scan of \citet{Poletto:1999uq} may be more appropriate.
  4911. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  4912. \chapter{Booleans and Control Flow}
  4913. \label{ch:Rif}
  4914. \index{Boolean}
  4915. \index{control flow}
  4916. \index{conditional expression}
  4917. The \LangInt{} and \LangVar{} languages only have a single kind of
  4918. value, integers. In this chapter we add a second kind of value, the
  4919. Booleans, to create the \LangIf{} language. The Boolean values
  4920. \emph{true} and \emph{false} are written \key{\#t} and \key{\#f}
  4921. respectively in Racket. The \LangIf{} language includes several
  4922. operations that involve Booleans (\key{and}, \key{not}, \key{eq?},
  4923. \key{<}, etc.) and the conditional \key{if} expression. With the
  4924. addition of \key{if}, programs can have non-trivial control flow which
  4925. impacts \code{explicate-control} and liveness analysis. Also, because
  4926. we now have two kinds of values, we need to handle programs that apply
  4927. an operation to the wrong kind of value, such as \code{(not 1)}.
  4928. There are two language design options for such situations. One option
  4929. is to signal an error and the other is to provide a wider
  4930. interpretation of the operation. The Racket language uses a mixture of
  4931. these two options, depending on the operation and the kind of
  4932. value. For example, the result of \code{(not 1)} in Racket is
  4933. \code{\#f} because Racket treats non-zero integers as if they were
  4934. \code{\#t}. On the other hand, \code{(car 1)} results in a run-time
  4935. error in Racket because \code{car} expects a pair.
  4936. Typed Racket makes similar design choices as Racket, except much of
  4937. the error detection happens at compile time instead of run time. Typed
  4938. Racket accepts and runs \code{(not 1)}, producing \code{\#f}. But in
  4939. the case of \code{(car 1)}, Typed Racket reports a compile-time error
  4940. because Typed Racket expects the type of the argument to be of the
  4941. form \code{(Listof T)} or \code{(Pairof T1 T2)}.
  4942. The \LangIf{} language performs type checking during compilation like
  4943. Typed Racket. In Chapter~\ref{ch:Rdyn} we study the
  4944. alternative choice, that is, a dynamically typed language like Racket.
  4945. The \LangIf{} language is a subset of Typed Racket; for some
  4946. operations we are more restrictive, for example, rejecting
  4947. \code{(not 1)}.
  4948. This chapter is organized as follows. We begin by defining the syntax
  4949. and interpreter for the \LangIf{} language
  4950. (Section~\ref{sec:lang-if}). We then introduce the idea of type
  4951. checking and build a type checker for \LangIf{}
  4952. (Section~\ref{sec:type-check-Rif}). To compile \LangIf{} we need to
  4953. enlarge the intermediate language \LangCVar{} into \LangCIf{}
  4954. (Section~\ref{sec:Cif}) and \LangXInt{} into \LangXIf{}
  4955. (Section~\ref{sec:x86-if}). The remaining sections of this chapter
  4956. discuss how our compiler passes change to accommodate Booleans and
  4957. conditional control flow. There is one new pass, named \code{shrink},
  4958. that translates some operators into others, thereby reducing the
  4959. number of operators that need to be handled in later passes. The
  4960. largest changes occur in \code{explicate-control}, to translate
  4961. \code{if} expressions into control-flow graphs
  4962. (Section~\ref{sec:explicate-control-Rif}). Regarding register
  4963. allocation, the liveness analysis now has multiple basic blocks to
  4964. process and there is the interesting question of how to handle
  4965. conditional jumps.
  4966. \section{The \LangIf{} Language}
  4967. \label{sec:lang-if}
  4968. The concrete syntax of the \LangIf{} language is defined in
  4969. Figure~\ref{fig:Rif-concrete-syntax} and the abstract syntax is defined
  4970. in Figure~\ref{fig:Rif-syntax}. The \LangIf{} language includes all of
  4971. \LangVar{} (shown in gray), the Boolean literals \code{\#t} and
  4972. \code{\#f}, and the conditional \code{if} expression. We expand the
  4973. operators to include
  4974. \begin{enumerate}
  4975. \item subtraction on integers,
  4976. \item the logical operators \key{and}, \key{or} and \key{not},
  4977. \item the \key{eq?} operation for comparing two integers or two Booleans, and
  4978. \item the \key{<}, \key{<=}, \key{>}, and \key{>=} operations for
  4979. comparing integers.
  4980. \end{enumerate}
  4981. We reorganize the abstract syntax for the primitive operations in
  4982. Figure~\ref{fig:Rif-syntax}, using only one grammar rule for all of
  4983. them. This means that the grammar no longer checks whether the arity
  4984. of an operators matches the number of arguments. That responsibility
  4985. is moved to the type checker for \LangIf{}, which we introduce in
  4986. Section~\ref{sec:type-check-Rif}.
  4987. \begin{figure}[tp]
  4988. \centering
  4989. \fbox{
  4990. \begin{minipage}{0.96\textwidth}
  4991. \[
  4992. \begin{array}{lcl}
  4993. \itm{bool} &::=& \key{\#t} \mid \key{\#f} \\
  4994. \itm{cmp} &::= & \key{eq?} \mid \key{<} \mid \key{<=} \mid \key{>} \mid \key{>=} \\
  4995. \Exp &::=& \gray{ \Int \mid \CREAD{} \mid \CNEG{\Exp} \mid \CADD{\Exp}{\Exp} } \mid \CSUB{\Exp}{\Exp} \\
  4996. &\mid& \gray{ \Var \mid \CLET{\Var}{\Exp}{\Exp} } \\
  4997. &\mid& \itm{bool}
  4998. \mid (\key{and}\;\Exp\;\Exp) \mid (\key{or}\;\Exp\;\Exp)
  4999. \mid (\key{not}\;\Exp) \\
  5000. &\mid& (\itm{cmp}\;\Exp\;\Exp) \mid \CIF{\Exp}{\Exp}{\Exp} \\
  5001. \LangIf{} &::=& \Exp
  5002. \end{array}
  5003. \]
  5004. \end{minipage}
  5005. }
  5006. \caption{The concrete syntax of \LangIf{}, extending \LangVar{}
  5007. (Figure~\ref{fig:r1-concrete-syntax}) with Booleans and conditionals.}
  5008. \label{fig:Rif-concrete-syntax}
  5009. \end{figure}
  5010. \begin{figure}[tp]
  5011. \centering
  5012. \fbox{
  5013. \begin{minipage}{0.96\textwidth}
  5014. \[
  5015. \begin{array}{lcl}
  5016. \itm{bool} &::=& \code{\#t} \mid \code{\#f} \\
  5017. \itm{cmp} &::= & \code{eq?} \mid \code{<} \mid \code{<=} \mid \code{>} \mid \code{>=} \\
  5018. \itm{op} &::= & \itm{cmp} \mid \code{read} \mid \code{+} \mid \code{-}
  5019. \mid \code{and} \mid \code{or} \mid \code{not} \\
  5020. \Exp &::=& \gray{ \INT{\Int} \mid \VAR{\Var} \mid \LET{\Var}{\Exp}{\Exp} } \\
  5021. &\mid& \PRIM{\itm{op}}{\Exp\ldots}\\
  5022. &\mid& \BOOL{\itm{bool}} \mid \IF{\Exp}{\Exp}{\Exp} \\
  5023. \LangIf{} &::=& \PROGRAM{\code{'()}}{\Exp}
  5024. \end{array}
  5025. \]
  5026. \end{minipage}
  5027. }
  5028. \caption{The abstract syntax of \LangIf{}.}
  5029. \label{fig:Rif-syntax}
  5030. \end{figure}
  5031. Figure~\ref{fig:interp-Rif} defines the interpreter for \LangIf{},
  5032. which inherits from the interpreter for \LangVar{}
  5033. (Figure~\ref{fig:interp-Rvar}). The literals \code{\#t} and \code{\#f}
  5034. evaluate to the corresponding Boolean values. The conditional
  5035. expression $(\key{if}\, \itm{cnd}\,\itm{thn}\,\itm{els})$ evaluates
  5036. \itm{cnd} and then either evaluates \itm{thn} or \itm{els} depending
  5037. on whether \itm{cnd} produced \code{\#t} or \code{\#f}. The logical
  5038. operations \code{not} and \code{and} behave as you might expect, but
  5039. note that the \code{and} operation is short-circuiting. That is, given
  5040. the expression $(\key{and}\,e_1\,e_2)$, the expression $e_2$ is not
  5041. evaluated if $e_1$ evaluates to \code{\#f}.
  5042. With the increase in the number of primitive operations, the
  5043. interpreter would become repetitive without some care. We refactor
  5044. the case for \code{Prim}, moving the code that differs with each
  5045. operation into the \code{interp-op} method shown in in
  5046. Figure~\ref{fig:interp-op-Rif}. We handle the \code{and} operation
  5047. separately because of its short-circuiting behavior.
  5048. \begin{figure}[tbp]
  5049. \begin{lstlisting}
  5050. (define interp-Rif-class
  5051. (class interp-Rvar-class
  5052. (super-new)
  5053. (define/public (interp-op op) ...)
  5054. (define/override ((interp-exp env) e)
  5055. (define recur (interp-exp env))
  5056. (match e
  5057. [(Bool b) b]
  5058. [(If cnd thn els)
  5059. (match (recur cnd)
  5060. [#t (recur thn)]
  5061. [#f (recur els)])]
  5062. [(Prim 'and (list e1 e2))
  5063. (match (recur e1)
  5064. [#t (match (recur e2) [#t #t] [#f #f])]
  5065. [#f #f])]
  5066. [(Prim op args)
  5067. (apply (interp-op op) (for/list ([e args]) (recur e)))]
  5068. [else ((super interp-exp env) e)]))
  5069. ))
  5070. (define (interp-Rif p)
  5071. (send (new interp-Rif-class) interp-program p))
  5072. \end{lstlisting}
  5073. \caption{Interpreter for the \LangIf{} language. (See
  5074. Figure~\ref{fig:interp-op-Rif} for \code{interp-op}.)}
  5075. \label{fig:interp-Rif}
  5076. \end{figure}
  5077. \begin{figure}[tbp]
  5078. \begin{lstlisting}
  5079. (define/public (interp-op op)
  5080. (match op
  5081. ['+ fx+]
  5082. ['- fx-]
  5083. ['read read-fixnum]
  5084. ['not (lambda (v) (match v [#t #f] [#f #t]))]
  5085. ['or (lambda (v1 v2)
  5086. (cond [(and (boolean? v1) (boolean? v2))
  5087. (or v1 v2)]))]
  5088. ['eq? (lambda (v1 v2)
  5089. (cond [(or (and (fixnum? v1) (fixnum? v2))
  5090. (and (boolean? v1) (boolean? v2))
  5091. (and (vector? v1) (vector? v2)))
  5092. (eq? v1 v2)]))]
  5093. ['< (lambda (v1 v2)
  5094. (cond [(and (fixnum? v1) (fixnum? v2))
  5095. (< v1 v2)]))]
  5096. ['<= (lambda (v1 v2)
  5097. (cond [(and (fixnum? v1) (fixnum? v2))
  5098. (<= v1 v2)]))]
  5099. ['> (lambda (v1 v2)
  5100. (cond [(and (fixnum? v1) (fixnum? v2))
  5101. (> v1 v2)]))]
  5102. ['>= (lambda (v1 v2)
  5103. (cond [(and (fixnum? v1) (fixnum? v2))
  5104. (>= v1 v2)]))]
  5105. [else (error 'interp-op "unknown operator")]))
  5106. \end{lstlisting}
  5107. \caption{Interpreter for the primitive operators in the \LangIf{} language.}
  5108. \label{fig:interp-op-Rif}
  5109. \end{figure}
  5110. \section{Type Checking \LangIf{} Programs}
  5111. \label{sec:type-check-Rif}
  5112. \index{type checking}
  5113. \index{semantic analysis}
  5114. It is helpful to think about type checking in two complementary
  5115. ways. A type checker predicts the type of value that will be produced
  5116. by each expression in the program. For \LangIf{}, we have just two types,
  5117. \key{Integer} and \key{Boolean}. So a type checker should predict that
  5118. \begin{lstlisting}
  5119. (+ 10 (- (+ 12 20)))
  5120. \end{lstlisting}
  5121. produces an \key{Integer} while
  5122. \begin{lstlisting}
  5123. (and (not #f) #t)
  5124. \end{lstlisting}
  5125. produces a \key{Boolean}.
  5126. Another way to think about type checking is that it enforces a set of
  5127. rules about which operators can be applied to which kinds of
  5128. values. For example, our type checker for \LangIf{} signals an error
  5129. for the below expression
  5130. \begin{lstlisting}
  5131. (not (+ 10 (- (+ 12 20))))
  5132. \end{lstlisting}
  5133. The subexpression \code{(+ 10 (- (+ 12 20)))} has type \key{Integer}
  5134. but the type checker enforces the rule that the argument of \code{not}
  5135. must be a \key{Boolean}.
  5136. We implement type checking using classes and methods because they
  5137. provide the open recursion needed to reuse code as we extend the type
  5138. checker in later chapters, analogous to the use of classes and methods
  5139. for the interpreters (Section~\ref{sec:extensible-interp}).
  5140. We separate the type checker for the \LangVar{} fragment into its own
  5141. class, shown in Figure~\ref{fig:type-check-Rvar}. The type checker for
  5142. \LangIf{} is shown in Figure~\ref{fig:type-check-Rif} and it inherits
  5143. from the type checker for \LangVar{}. These type checkers are in the
  5144. files \code{type-check-Rvar.rkt} and \code{type-check-Rif.rkt} of the
  5145. support code.
  5146. %
  5147. Each type checker is a structurally recursive function over the AST.
  5148. Given an input expression \code{e}, the type checker either signals an
  5149. error or returns an expression and its type (\key{Integer} or
  5150. \key{Boolean}). It returns an expression because there are situations
  5151. in which we want to change or update the expression.
  5152. Next we discuss the \code{match} cases in \code{type-check-exp} of
  5153. Figure~\ref{fig:type-check-Rvar}. The type of an integer constant is
  5154. \code{Integer}. To handle variables, the type checker uses the
  5155. environment \code{env} to map variables to types. Consider the case
  5156. for \key{let}. We type check the initializing expression to obtain
  5157. its type \key{T} and then associate type \code{T} with the variable
  5158. \code{x} in the environment used to type check the body of the
  5159. \key{let}. Thus, when the type checker encounters a use of variable
  5160. \code{x}, it can find its type in the environment. Regarding
  5161. primitive operators, we recursively analyze the arguments and then
  5162. invoke \code{type-check-op} to check whether the argument types are
  5163. allowed.
  5164. Several auxiliary methods are used in the type checker. The method
  5165. \code{operator-types} defines a dictionary that maps the operator
  5166. names to their parameter and return types. The \code{type-equal?}
  5167. method determines whether two types are equal, which for now simply
  5168. dispatches to \code{equal?} (deep equality). The
  5169. \code{check-type-equal?} method triggers an error if the two types are
  5170. not equal. The \code{type-check-op} method looks up the operator in
  5171. the \code{operator-types} dictionary and then checks whether the
  5172. argument types are equal to the parameter types. The result is the
  5173. return type of the operator.
  5174. \begin{figure}[tbp]
  5175. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  5176. (define type-check-Rvar-class
  5177. (class object%
  5178. (super-new)
  5179. (define/public (operator-types)
  5180. '((+ . ((Integer Integer) . Integer))
  5181. (- . ((Integer) . Integer))
  5182. (read . (() . Integer))))
  5183. (define/public (type-equal? t1 t2) (equal? t1 t2))
  5184. (define/public (check-type-equal? t1 t2 e)
  5185. (unless (type-equal? t1 t2)
  5186. (error 'type-check "~a != ~a\nin ~v" t1 t2 e)))
  5187. (define/public (type-check-op op arg-types e)
  5188. (match (dict-ref (operator-types) op)
  5189. [`(,param-types . ,return-type)
  5190. (for ([at arg-types] [pt param-types])
  5191. (check-type-equal? at pt e))
  5192. return-type]
  5193. [else (error 'type-check-op "unrecognized ~a" op)]))
  5194. (define/public (type-check-exp env)
  5195. (lambda (e)
  5196. (match e
  5197. [(Int n) (values (Int n) 'Integer)]
  5198. [(Var x) (values (Var x) (dict-ref env x))]
  5199. [(Let x e body)
  5200. (define-values (e^ Te) ((type-check-exp env) e))
  5201. (define-values (b Tb) ((type-check-exp (dict-set env x Te)) body))
  5202. (values (Let x e^ b) Tb)]
  5203. [(Prim op es)
  5204. (define-values (new-es ts)
  5205. (for/lists (exprs types) ([e es]) ((type-check-exp env) e)))
  5206. (values (Prim op new-es) (type-check-op op ts e))]
  5207. [else (error 'type-check-exp "couldn't match" e)])))
  5208. (define/public (type-check-program e)
  5209. (match e
  5210. [(Program info body)
  5211. (define-values (body^ Tb) ((type-check-exp '()) body))
  5212. (check-type-equal? Tb 'Integer body)
  5213. (Program info body^)]
  5214. [else (error 'type-check-Rvar "couldn't match ~a" e)]))
  5215. ))
  5216. (define (type-check-Rvar p)
  5217. (send (new type-check-Rvar-class) type-check-program p))
  5218. \end{lstlisting}
  5219. \caption{Type checker for the \LangVar{} language.}
  5220. \label{fig:type-check-Rvar}
  5221. \end{figure}
  5222. \begin{figure}[tbp]
  5223. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  5224. (define type-check-Rif-class
  5225. (class type-check-Rvar-class
  5226. (super-new)
  5227. (inherit check-type-equal?)
  5228. (define/override (operator-types)
  5229. (append '((- . ((Integer Integer) . Integer))
  5230. (and . ((Boolean Boolean) . Boolean))
  5231. (or . ((Boolean Boolean) . Boolean))
  5232. (< . ((Integer Integer) . Boolean))
  5233. (<= . ((Integer Integer) . Boolean))
  5234. (> . ((Integer Integer) . Boolean))
  5235. (>= . ((Integer Integer) . Boolean))
  5236. (not . ((Boolean) . Boolean))
  5237. )
  5238. (super operator-types)))
  5239. (define/override (type-check-exp env)
  5240. (lambda (e)
  5241. (match e
  5242. [(Prim 'eq? (list e1 e2))
  5243. (define-values (e1^ T1) ((type-check-exp env) e1))
  5244. (define-values (e2^ T2) ((type-check-exp env) e2))
  5245. (check-type-equal? T1 T2 e)
  5246. (values (Prim 'eq? (list e1^ e2^)) 'Boolean)]
  5247. [(Bool b) (values (Bool b) 'Boolean)]
  5248. [(If cnd thn els)
  5249. (define-values (cnd^ Tc) ((type-check-exp env) cnd))
  5250. (define-values (thn^ Tt) ((type-check-exp env) thn))
  5251. (define-values (els^ Te) ((type-check-exp env) els))
  5252. (check-type-equal? Tc 'Boolean e)
  5253. (check-type-equal? Tt Te e)
  5254. (values (If cnd^ thn^ els^) Te)]
  5255. [else ((super type-check-exp env) e)])))
  5256. ))
  5257. (define (type-check-Rif p)
  5258. (send (new type-check-Rif-class) type-check-program p))
  5259. \end{lstlisting}
  5260. \caption{Type checker for the \LangIf{} language.}
  5261. \label{fig:type-check-Rif}
  5262. \end{figure}
  5263. Next we discuss the type checker for \LangIf{} in
  5264. Figure~\ref{fig:type-check-Rif}. The operator \code{eq?} requires the
  5265. two arguments to have the same type. The type of a Boolean constant is
  5266. \code{Boolean}. The condition of an \code{if} must be of
  5267. \code{Boolean} type and the two branches must have the same type. The
  5268. \code{operator-types} function adds dictionary entries for the other
  5269. new operators.
  5270. \begin{exercise}\normalfont
  5271. Create 10 new test programs in \LangIf{}. Half of the programs should
  5272. have a type error. For those programs, create an empty file with the
  5273. same base name but with file extension \code{.tyerr}. For example, if
  5274. the test \code{cond\_test\_14.rkt} is expected to error, then create
  5275. an empty file named \code{cond\_test\_14.tyerr}. This indicates to
  5276. \code{interp-tests} and \code{compiler-tests} that a type error is
  5277. expected. The other half of the test programs should not have type
  5278. errors.
  5279. In the \code{run-tests.rkt} script, change the second argument of
  5280. \code{interp-tests} and \code{compiler-tests} to
  5281. \code{type-check-Rif}, which causes the type checker to run prior to
  5282. the compiler passes. Temporarily change the \code{passes} to an empty
  5283. list and run the script, thereby checking that the new test programs
  5284. either type check or not as intended.
  5285. \end{exercise}
  5286. \section{The \LangCIf{} Intermediate Language}
  5287. \label{sec:Cif}
  5288. Figure~\ref{fig:c1-syntax} defines the abstract syntax of the
  5289. \LangCIf{} intermediate language. (The concrete syntax is in the
  5290. Appendix, Figure~\ref{fig:c1-concrete-syntax}.) Compared to
  5291. \LangCVar{}, the \LangCIf{} language adds logical and comparison
  5292. operators to the \Exp{} non-terminal and the literals \key{\#t} and
  5293. \key{\#f} to the \Arg{} non-terminal.
  5294. Regarding control flow, \LangCIf{} adds \key{goto} and \code{if}
  5295. statements to the \Tail{} non-terminal. The condition of an \code{if}
  5296. statement is a comparison operation and the branches are \code{goto}
  5297. statements, making it straightforward to compile \code{if} statements
  5298. to x86.
  5299. \begin{figure}[tp]
  5300. \fbox{
  5301. \begin{minipage}{0.96\textwidth}
  5302. \small
  5303. \[
  5304. \begin{array}{lcl}
  5305. \Atm &::=& \gray{\INT{\Int} \mid \VAR{\Var}} \mid \BOOL{\itm{bool}} \\
  5306. \itm{cmp} &::= & \key{eq?} \mid \key{<} \\
  5307. \Exp &::= & \gray{ \Atm \mid \READ{} }\\
  5308. &\mid& \gray{ \NEG{\Atm} \mid \ADD{\Atm}{\Atm} } \\
  5309. &\mid& \UNIOP{\key{'not}}{\Atm}
  5310. \mid \BINOP{\key{'}\itm{cmp}}{\Atm}{\Atm} \\
  5311. \Stmt &::=& \gray{ \ASSIGN{\VAR{\Var}}{\Exp} } \\
  5312. \Tail &::= & \gray{\RETURN{\Exp} \mid \SEQ{\Stmt}{\Tail} }
  5313. \mid \GOTO{\itm{label}} \\
  5314. &\mid& \IFSTMT{\BINOP{\itm{cmp}}{\Atm}{\Atm}}{\GOTO{\itm{label}}}{\GOTO{\itm{label}}} \\
  5315. \LangCIf{} & ::= & \gray{\CPROGRAM{\itm{info}}{\LP\LP\itm{label}\,\key{.}\,\Tail\RP\ldots\RP}}
  5316. \end{array}
  5317. \]
  5318. \end{minipage}
  5319. }
  5320. \caption{The abstract syntax of \LangCIf{}, an extension of \LangCVar{}
  5321. (Figure~\ref{fig:c0-syntax}).}
  5322. \label{fig:c1-syntax}
  5323. \end{figure}
  5324. \section{The \LangXIf{} Language}
  5325. \label{sec:x86-if}
  5326. \index{x86} To implement the new logical operations, the comparison
  5327. operations, and the \key{if} expression, we need to delve further into
  5328. the x86 language. Figures~\ref{fig:x86-1-concrete} and \ref{fig:x86-1}
  5329. define the concrete and abstract syntax for the \LangXIf{} subset
  5330. of x86, which includes instructions for logical operations,
  5331. comparisons, and conditional jumps.
  5332. One challenge is that x86 does not provide an instruction that
  5333. directly implements logical negation (\code{not} in \LangIf{} and
  5334. \LangCIf{}). However, the \code{xorq} instruction can be used to
  5335. encode \code{not}. The \key{xorq} instruction takes two arguments,
  5336. performs a pairwise exclusive-or ($\mathrm{XOR}$) operation on each
  5337. bit of its arguments, and writes the results into its second argument.
  5338. Recall the truth table for exclusive-or:
  5339. \begin{center}
  5340. \begin{tabular}{l|cc}
  5341. & 0 & 1 \\ \hline
  5342. 0 & 0 & 1 \\
  5343. 1 & 1 & 0
  5344. \end{tabular}
  5345. \end{center}
  5346. For example, applying $\mathrm{XOR}$ to each bit of the binary numbers
  5347. $0011$ and $0101$ yields $0110$. Notice that in the row of the table
  5348. for the bit $1$, the result is the opposite of the second bit. Thus,
  5349. the \code{not} operation can be implemented by \code{xorq} with $1$ as
  5350. the first argument:
  5351. \[
  5352. \Var~ \key{=}~ \LP\key{not}~\Arg\RP\key{;}
  5353. \qquad\Rightarrow\qquad
  5354. \begin{array}{l}
  5355. \key{movq}~ \Arg\key{,} \Var\\
  5356. \key{xorq}~ \key{\$1,} \Var
  5357. \end{array}
  5358. \]
  5359. \begin{figure}[tp]
  5360. \fbox{
  5361. \begin{minipage}{0.96\textwidth}
  5362. \[
  5363. \begin{array}{lcl}
  5364. \itm{bytereg} &::=& \key{ah} \mid \key{al} \mid \key{bh} \mid \key{bl}
  5365. \mid \key{ch} \mid \key{cl} \mid \key{dh} \mid \key{dl} \\
  5366. \Arg &::=& \gray{ \key{\$}\Int \mid \key{\%}\Reg \mid \Int\key{(}\key{\%}\Reg\key{)} } \mid \key{\%}\itm{bytereg}\\
  5367. \itm{cc} & ::= & \key{e} \mid \key{l} \mid \key{le} \mid \key{g} \mid \key{ge} \\
  5368. \Instr &::=& \gray{ \key{addq} \; \Arg\key{,} \Arg \mid
  5369. \key{subq} \; \Arg\key{,} \Arg \mid
  5370. \key{negq} \; \Arg \mid \key{movq} \; \Arg\key{,} \Arg \mid } \\
  5371. && \gray{ \key{callq} \; \itm{label} \mid
  5372. \key{pushq}\;\Arg \mid \key{popq}\;\Arg \mid \key{retq} \mid \key{jmp}\,\itm{label} } \\
  5373. && \gray{ \itm{label}\key{:}\; \Instr }
  5374. \mid \key{xorq}~\Arg\key{,}~\Arg
  5375. \mid \key{cmpq}~\Arg\key{,}~\Arg \mid \\
  5376. && \key{set}cc~\Arg
  5377. \mid \key{movzbq}~\Arg\key{,}~\Arg
  5378. \mid \key{j}cc~\itm{label}
  5379. \\
  5380. \LangXIf{} &::= & \gray{ \key{.globl main} }\\
  5381. & & \gray{ \key{main:} \; \Instr\ldots }
  5382. \end{array}
  5383. \]
  5384. \end{minipage}
  5385. }
  5386. \caption{The concrete syntax of \LangXIf{} (extends \LangXInt{} of Figure~\ref{fig:x86-int-concrete}).}
  5387. \label{fig:x86-1-concrete}
  5388. \end{figure}
  5389. \begin{figure}[tp]
  5390. \fbox{
  5391. \begin{minipage}{0.98\textwidth}
  5392. \small
  5393. \[
  5394. \begin{array}{lcl}
  5395. \itm{bytereg} &::=& \key{ah} \mid \key{al} \mid \key{bh} \mid \key{bl}
  5396. \mid \key{ch} \mid \key{cl} \mid \key{dh} \mid \key{dl} \\
  5397. \Arg &::=& \gray{\IMM{\Int} \mid \REG{\Reg} \mid \DEREF{\Reg}{\Int}}
  5398. \mid \BYTEREG{\itm{bytereg}} \\
  5399. \itm{cc} & ::= & \key{e} \mid \key{l} \mid \key{le} \mid \key{g} \mid \key{ge} \\
  5400. \Instr &::=& \gray{ \BININSTR{\code{addq}}{\Arg}{\Arg}
  5401. \mid \BININSTR{\code{subq}}{\Arg}{\Arg} } \\
  5402. &\mid& \gray{ \BININSTR{\code{'movq}}{\Arg}{\Arg}
  5403. \mid \UNIINSTR{\code{negq}}{\Arg} } \\
  5404. &\mid& \gray{ \CALLQ{\itm{label}}{\itm{int}} \mid \RETQ{}
  5405. \mid \PUSHQ{\Arg} \mid \POPQ{\Arg} \mid \JMP{\itm{label}} } \\
  5406. &\mid& \BININSTR{\code{xorq}}{\Arg}{\Arg}
  5407. \mid \BININSTR{\code{cmpq}}{\Arg}{\Arg}\\
  5408. &\mid& \BININSTR{\code{set}}{\itm{cc}}{\Arg}
  5409. \mid \BININSTR{\code{movzbq}}{\Arg}{\Arg}\\
  5410. &\mid& \JMPIF{\itm{cc}}{\itm{label}} \\
  5411. \Block &::= & \gray{\BLOCK{\itm{info}}{\LP\Instr\ldots\RP}} \\
  5412. \LangXIf{} &::= & \gray{\XPROGRAM{\itm{info}}{\LP\LP\itm{label} \,\key{.}\, \Block \RP\ldots\RP}}
  5413. \end{array}
  5414. \]
  5415. \end{minipage}
  5416. }
  5417. \caption{The abstract syntax of \LangXIf{} (extends \LangXInt{} of Figure~\ref{fig:x86-int-ast}).}
  5418. \label{fig:x86-1}
  5419. \end{figure}
  5420. Next we consider the x86 instructions that are relevant for compiling
  5421. the comparison operations. The \key{cmpq} instruction compares its two
  5422. arguments to determine whether one argument is less than, equal, or
  5423. greater than the other argument. The \key{cmpq} instruction is unusual
  5424. regarding the order of its arguments and where the result is
  5425. placed. The argument order is backwards: if you want to test whether
  5426. $x < y$, then write \code{cmpq} $y$\code{,} $x$. The result of
  5427. \key{cmpq} is placed in the special EFLAGS register. This register
  5428. cannot be accessed directly but it can be queried by a number of
  5429. instructions, including the \key{set} instruction. The instruction
  5430. $\key{set}cc~d$ puts a \key{1} or \key{0} into the destination $d$
  5431. depending on whether the comparison comes out according to the
  5432. condition code \itm{cc} (\key{e} for equal, \key{l} for less, \key{le}
  5433. for less-or-equal, \key{g} for greater, \key{ge} for
  5434. greater-or-equal). The \key{set} instruction has an annoying quirk in
  5435. that its destination argument must be single byte register, such as
  5436. \code{al} (L for lower bits) or \code{ah} (H for higher bits), which
  5437. are part of the \code{rax} register. Thankfully, the \key{movzbq}
  5438. instruction can be used to move from a single byte register to a
  5439. normal 64-bit register. The abstract syntax for the \code{set}
  5440. instruction differs from the concrete syntax in that it separates the
  5441. instruction name from the condition code.
  5442. The x86 instruction for conditional jump is relevant to the
  5443. compilation of \key{if} expressions. The instruction
  5444. $\key{j}\itm{cc}~\itm{label}$ updates the program counter to point to
  5445. the instruction after \itm{label} depending on whether the result in
  5446. the EFLAGS register matches the condition code \itm{cc}, otherwise the
  5447. jump instruction falls through to the next instruction. Like the
  5448. abstract syntax for \code{set}, the abstract syntax for conditional
  5449. jump separates the instruction name from the condition code. For
  5450. example, \code{(JmpIf le foo)} corresponds to \code{jle foo}. Because
  5451. the conditional jump instruction relies on the EFLAGS register, it is
  5452. common for it to be immediately preceded by a \key{cmpq} instruction
  5453. to set the EFLAGS register.
  5454. \section{Shrink the \LangIf{} Language}
  5455. \label{sec:shrink-Rif}
  5456. The \LangIf{} language includes several operators that are easily
  5457. expressible with other operators. For example, subtraction is
  5458. expressible using addition and negation.
  5459. \[
  5460. \key{(-}\; e_1 \; e_2\key{)} \quad \Rightarrow \quad \LP\key{+} \; e_1 \; \LP\key{-} \; e_2\RP\RP
  5461. \]
  5462. Several of the comparison operations are expressible using less-than
  5463. and logical negation.
  5464. \[
  5465. \LP\key{<=}\; e_1 \; e_2\RP \quad \Rightarrow \quad
  5466. \LP\key{let}~\LP\LS\key{tmp.1}~e_1\RS\RP~\LP\key{not}\;\LP\key{<}\;e_2\;\key{tmp.1})\RP\RP
  5467. \]
  5468. The \key{let} is needed in the above translation to ensure that
  5469. expression $e_1$ is evaluated before $e_2$.
  5470. By performing these translations in the front-end of the compiler, the
  5471. later passes of the compiler do not need to deal with these operators,
  5472. making the passes shorter.
  5473. %% On the other hand, sometimes
  5474. %% these translations make it more difficult to generate the most
  5475. %% efficient code with respect to the number of instructions. However,
  5476. %% these differences typically do not affect the number of accesses to
  5477. %% memory, which is the primary factor that determines execution time on
  5478. %% modern computer architectures.
  5479. \begin{exercise}\normalfont
  5480. Implement the pass \code{shrink} to remove subtraction, \key{and},
  5481. \key{or}, \key{<=}, \key{>}, and \key{>=} from the language by
  5482. translating them to other constructs in \LangIf{}.
  5483. %
  5484. Create six test programs that involve these operators.
  5485. %
  5486. In the \code{run-tests.rkt} script, add the following entry for
  5487. \code{shrink} to the list of passes (it should be the only pass at
  5488. this point).
  5489. \begin{lstlisting}
  5490. (list "shrink" shrink interp-Rif type-check-Rif)
  5491. \end{lstlisting}
  5492. This instructs \code{interp-tests} to run the intepreter
  5493. \code{interp-Rif} and the type checker \code{type-check-Rif} on the
  5494. output of \code{shrink}.
  5495. %
  5496. Run the script to test your compiler on all the test programs.
  5497. \end{exercise}
  5498. \section{Uniquify Variables}
  5499. \label{sec:uniquify-Rif}
  5500. Add cases to \code{uniquify-exp} to handle Boolean constants and
  5501. \code{if} expressions.
  5502. \begin{exercise}\normalfont
  5503. Update the \code{uniquify-exp} for \LangIf{} and add the following
  5504. entry to the list of \code{passes} in the \code{run-tests.rkt} script.
  5505. \begin{lstlisting}
  5506. (list "uniquify" uniquify interp-Rif type-check-Rif)
  5507. \end{lstlisting}
  5508. Run the script to test your compiler.
  5509. \end{exercise}
  5510. \section{Remove Complex Operands}
  5511. \label{sec:remove-complex-opera-Rif}
  5512. The output language for this pass is \LangIfANF{}
  5513. (Figure~\ref{fig:Rif-anf-syntax}), the administrative normal form of
  5514. \LangIf{}. The \code{Bool} form is an atomic expressions but
  5515. \code{If} is not. All three sub-expressions of an \code{If} are
  5516. allowed to be complex expressions but the operands of \code{not} and
  5517. the comparisons must be atoms.
  5518. Add cases for \code{Bool} and \code{If} to the \code{rco-exp} and
  5519. \code{rco-atom} functions according to whether the output needs to be
  5520. \Exp{} or \Atm{} as specified in the grammar for \LangIfANF{}.
  5521. Regarding \code{If}, it is particularly important to \textbf{not}
  5522. replace its condition with a temporary variable because that would
  5523. interfere with the generation of high-quality output in the
  5524. \code{explicate-control} pass.
  5525. \begin{figure}[tp]
  5526. \centering
  5527. \fbox{
  5528. \begin{minipage}{0.96\textwidth}
  5529. \[
  5530. \begin{array}{rcl}
  5531. \Atm &::=& \gray{ \INT{\Int} \mid \VAR{\Var} } \mid \BOOL{\itm{bool}}\\
  5532. \Exp &::=& \gray{ \Atm \mid \READ{} } \\
  5533. &\mid& \gray{ \NEG{\Atm} \mid \ADD{\Atm}{\Atm} } \\
  5534. &\mid& \gray{ \LET{\Var}{\Exp}{\Exp} } \\
  5535. &\mid& \UNIOP{\key{not}}{\Atm} \\
  5536. &\mid& \BINOP{\itm{cmp}}{\Atm}{\Atm} \mid \IF{\Exp}{\Exp}{\Exp} \\
  5537. R^{\dagger}_2 &::=& \PROGRAM{\code{()}}{\Exp}
  5538. \end{array}
  5539. \]
  5540. \end{minipage}
  5541. }
  5542. \caption{\LangIfANF{} is \LangIf{} in administrative normal form (ANF).}
  5543. \label{fig:Rif-anf-syntax}
  5544. \end{figure}
  5545. \begin{exercise}\normalfont
  5546. %
  5547. Add cases for Boolean constants and \code{if} to the \code{rco-atom}
  5548. and \code{rco-exp} functions in \code{compiler.rkt}.
  5549. %
  5550. Create three new \LangInt{} programs that exercise the interesting
  5551. code in this pass.
  5552. %
  5553. In the \code{run-tests.rkt} script, add the following entry to the
  5554. list of \code{passes} and then run the script to test your compiler.
  5555. \begin{lstlisting}
  5556. (list "remove-complex" remove-complex-opera* interp-Rif type-check-Rif)
  5557. \end{lstlisting}
  5558. \end{exercise}
  5559. \section{Explicate Control}
  5560. \label{sec:explicate-control-Rif}
  5561. Recall that the purpose of \code{explicate-control} is to make the
  5562. order of evaluation explicit in the syntax of the program. With the
  5563. addition of \key{if} this get more interesting.
  5564. As a motivating example, consider the following program that has an
  5565. \key{if} expression nested in the predicate of another \key{if}.
  5566. % cond_test_41.rkt
  5567. \begin{center}
  5568. \begin{minipage}{0.96\textwidth}
  5569. \begin{lstlisting}
  5570. (let ([x (read)])
  5571. (let ([y (read)])
  5572. (if (if (< x 1) (eq? x 0) (eq? x 2))
  5573. (+ y 2)
  5574. (+ y 10))))
  5575. \end{lstlisting}
  5576. \end{minipage}
  5577. \end{center}
  5578. %
  5579. The naive way to compile \key{if} and the comparison would be to
  5580. handle each of them in isolation, regardless of their context. Each
  5581. comparison would be translated into a \key{cmpq} instruction followed
  5582. by a couple instructions to move the result from the EFLAGS register
  5583. into a general purpose register or stack location. Each \key{if} would
  5584. be translated into a \key{cmpq} instruction followed by a conditional
  5585. jump. The generated code for the inner \key{if} in the above example
  5586. would be as follows.
  5587. \begin{center}
  5588. \begin{minipage}{0.96\textwidth}
  5589. \begin{lstlisting}
  5590. ...
  5591. cmpq $1, x ;; (< x 1)
  5592. setl %al
  5593. movzbq %al, tmp
  5594. cmpq $1, tmp ;; (if ...)
  5595. je then_branch_1
  5596. jmp else_branch_1
  5597. ...
  5598. \end{lstlisting}
  5599. \end{minipage}
  5600. \end{center}
  5601. However, if we take context into account we can do better and reduce
  5602. the use of \key{cmpq} instructions for accessing the EFLAG register.
  5603. Our goal will be compile \key{if} expressions so that the relevant
  5604. comparison instruction appears directly before the conditional jump.
  5605. For example, we want to generate the following code for the inner
  5606. \code{if}.
  5607. \begin{center}
  5608. \begin{minipage}{0.96\textwidth}
  5609. \begin{lstlisting}
  5610. ...
  5611. cmpq $1, x
  5612. je then_branch_1
  5613. jmp else_branch_1
  5614. ...
  5615. \end{lstlisting}
  5616. \end{minipage}
  5617. \end{center}
  5618. One way to achieve this is to reorganize the code at the level of
  5619. \LangIf{}, pushing the outer \key{if} inside the inner one, yielding
  5620. the following code.
  5621. \begin{center}
  5622. \begin{minipage}{0.96\textwidth}
  5623. \begin{lstlisting}
  5624. (let ([x (read)])
  5625. (let ([y (read)])
  5626. (if (< x 1)
  5627. (if (eq? x 0)
  5628. (+ y 2)
  5629. (+ y 10))
  5630. (if (eq? x 2)
  5631. (+ y 2)
  5632. (+ y 10)))))
  5633. \end{lstlisting}
  5634. \end{minipage}
  5635. \end{center}
  5636. Unfortunately, this approach duplicates the two branches from the
  5637. outer \code{if} and a compiler must never duplicate code!
  5638. We need a way to perform the above transformation but without
  5639. duplicating code. That is, we need a way for different parts of a
  5640. program to refer to the same piece of code. At the level of x86
  5641. assembly this is straightforward because we can label the code for
  5642. each branch and insert jumps in all the places that need to execute
  5643. the branch. In our intermediate language, we need to move away from
  5644. abstract syntax \emph{trees} and instead use \emph{graphs}. In
  5645. particular, we use a standard program representation called a
  5646. \emph{control flow graph} (CFG), due to Frances Elizabeth
  5647. \citet{Allen:1970uq}. \index{control-flow graph} Each vertex is a
  5648. labeled sequence of code, called a \emph{basic block}, and each edge
  5649. represents a jump to another block. The \key{CProgram} construct of
  5650. \LangCVar{} and \LangCIf{} contains a control flow graph represented
  5651. as an alist mapping labels to basic blocks. Each basic block is
  5652. represented by the $\Tail$ non-terminal.
  5653. Figure~\ref{fig:explicate-control-s1-38} shows the output of the
  5654. \code{remove-complex-opera*} pass and then the
  5655. \code{explicate-control} pass on the example program. We walk through
  5656. the output program and then discuss the algorithm.
  5657. %
  5658. Following the order of evaluation in the output of
  5659. \code{remove-complex-opera*}, we first have two calls to \code{(read)}
  5660. and then the comparison \lstinline{(< x 1)} in the predicate of the
  5661. inner \key{if}. In the output of \code{explicate-control}, in the
  5662. block labeled \code{start}, is two assignment statements followed by a
  5663. \code{if} statement that branches to \code{block40} or
  5664. \code{block41}. The blocks associated with those labels contain the
  5665. translations of the code \lstinline{(eq? x 0)} and \lstinline{(eq? x 2)},
  5666. respectively. In particular, we start \code{block40} with the
  5667. comparison \lstinline{(eq? x 0)} and then branch to \code{block38} or
  5668. \code{block39}, the two branches of the outer \key{if}, i.e.,
  5669. \lstinline{(+ y 2)} and \lstinline{(+ y 10)}. The story for
  5670. \code{block41} is similar.
  5671. \begin{figure}[tbp]
  5672. \begin{tabular}{lll}
  5673. \begin{minipage}{0.4\textwidth}
  5674. % cond_test_41.rkt
  5675. \begin{lstlisting}
  5676. (let ([x (read)])
  5677. (let ([y (read)])
  5678. (if (if (< x 1)
  5679. (eq? x 0)
  5680. (eq? x 2))
  5681. (+ y 2)
  5682. (+ y 10))))
  5683. \end{lstlisting}
  5684. \hspace{40pt}$\Downarrow$
  5685. \begin{lstlisting}
  5686. (let ([x (read)])
  5687. (let ([y (read)])
  5688. (if (if (< x 1)
  5689. (eq? x 0)
  5690. (eq? x 2))
  5691. (+ y 2)
  5692. (+ y 10))))
  5693. \end{lstlisting}
  5694. \end{minipage}
  5695. &
  5696. $\Rightarrow$
  5697. &
  5698. \begin{minipage}{0.55\textwidth}
  5699. \begin{lstlisting}
  5700. start:
  5701. x = (read);
  5702. y = (read);
  5703. if (< x 1) goto block40;
  5704. else goto block41;
  5705. block40:
  5706. if (eq? x 0) goto block38;
  5707. else goto block39;
  5708. block41:
  5709. if (eq? x 2) goto block38;
  5710. else goto block39;
  5711. block38:
  5712. return (+ y 2);
  5713. block39:
  5714. return (+ y 10);
  5715. \end{lstlisting}
  5716. \end{minipage}
  5717. \end{tabular}
  5718. \caption{Translation from \LangIf{} to \LangCIf{}
  5719. via the \code{explicate-control}.}
  5720. \label{fig:explicate-control-s1-38}
  5721. \end{figure}
  5722. %% The nice thing about the output of \code{explicate-control} is that
  5723. %% there are no unnecessary comparisons and every comparison is part of a
  5724. %% conditional jump.
  5725. %% The down-side of this output is that it includes
  5726. %% trivial blocks, such as the blocks labeled \code{block92} through
  5727. %% \code{block95}, that only jump to another block. We discuss a solution
  5728. %% to this problem in Section~\ref{sec:opt-jumps}.
  5729. Recall that in Section~\ref{sec:explicate-control-Rvar} we implement
  5730. \code{explicate-control} for \LangVar{} using two mutually recursive
  5731. functions, \code{explicate-tail} and \code{explicate-assign}. The
  5732. former function translates expressions in tail position whereas the
  5733. later function translates expressions on the right-hand-side of a
  5734. \key{let}. With the addition of \key{if} expression in \LangIf{} we
  5735. have a new kind of position to deal with: the predicate position of
  5736. the \key{if}. We need another function, \code{explicate-pred}, that
  5737. takes an \LangIf{} expression and two blocks for the then-branch and
  5738. else-branch. The output of \code{explicate-pred} is a block.
  5739. %
  5740. In the following paragraphs we discuss specific cases in the
  5741. \code{explicate-pred} function as well as additions to the
  5742. \code{explicate-tail} and \code{explicate-assign} functions.
  5743. \begin{figure}[tbp]
  5744. \begin{lstlisting}
  5745. (define (explicate-pred cnd thn els)
  5746. (match cnd
  5747. [(Var x) ___]
  5748. [(Let x rhs body) ___]
  5749. [(Prim 'not (list e)) ___]
  5750. [(Prim op es) #:when (or (eq? op 'eq?) (eq? op '<))
  5751. (IfStmt (Prim op arg*) (force (block->goto thn))
  5752. (force (block->goto els)))]
  5753. [(Bool b) (if b thn els)]
  5754. [(If cnd^ thn^ els^) ___]
  5755. [else (error "explicate-pred unhandled case" cnd)]))
  5756. \end{lstlisting}
  5757. \caption{Skeleton for the \key{explicate-pred} auxiliary function.}
  5758. \label{fig:explicate-pred}
  5759. \end{figure}
  5760. The skeleton for the \code{explicate-pred} function is given in
  5761. Figure~\ref{fig:explicate-pred}. It has a case for every expression
  5762. that can have type \code{Boolean}. We detail a few cases here and
  5763. leave the rest for the reader. The input to this function is an
  5764. expression and two blocks, \code{thn} and \code{els}, for the two
  5765. branches of the enclosing \key{if}.
  5766. %
  5767. Consider the case for Boolean constants in
  5768. Figure~\ref{fig:explicate-pred}. We perform a kind of partial
  5769. evaluation\index{partial evaluation} and output either the \code{thn}
  5770. or \code{els} branch depending on whether the constant is true or
  5771. false. This case demonstrates that we sometimes discard the \code{thn}
  5772. or \code{els} blocks that are input to \code{explicate-pred}.
  5773. The case for \key{if} in \code{explicate-pred} is particularly
  5774. illuminating because it deals with the challenges we discussed above
  5775. regarding nested \key{if} expressions
  5776. (Figure~\ref{fig:explicate-control-s1-38}). The \lstinline{thn^} and
  5777. \lstinline{els^} branches of the \key{if} inherit their context from
  5778. the current one, that is, predicate context. So you should recursively
  5779. apply \code{explicate-pred} to the \lstinline{thn^} and
  5780. \lstinline{els^} branches. For both of those recursive calls, pass
  5781. \code{thn} and \code{els} as the extra parameters. Thus, \code{thn}
  5782. and \code{els} may get used twice, once inside each recursive call. As
  5783. discussed above, to avoid duplicating code, we need to add them to the
  5784. control-flow graph so that we can instead refer to them by name and
  5785. execute them with a \key{goto}. However, as we saw in the cases above
  5786. for Boolean constants, the blocks \code{thn} and \code{els} may not
  5787. get used at all and we don't want to prematurely add them to the
  5788. control-flow graph if they end up being discarded.
  5789. The solution to this conundrum is to use \emph{lazy
  5790. evaluation}\index{lazy evaluation}\citep{Friedman:1976aa} to delay
  5791. adding the blocks to the control-flow graph until the points where we
  5792. know they will be used. Racket provides support for lazy evaluation
  5793. with the
  5794. \href{https://docs.racket-lang.org/reference/Delayed_Evaluation.html}{\code{racket/promise}}
  5795. package. The expression \key{(delay} $e_1 \ldots e_n$\key{)}
  5796. \index{delay} creates a \emph{promise}\index{promise} in which the
  5797. evaluation of the expressions is postponed. When \key{(force}
  5798. $p$\key{)}\index{force} is applied to a promise $p$ for the first
  5799. time, the expressions $e_1 \ldots e_n$ are evaluated and the result of
  5800. $e_n$ is cached in the promise and returned. If \code{force} is
  5801. applied again to the same promise, then the cached result is returned.
  5802. If \code{force} is applied to an argument that is not a promise,
  5803. \code{force} simply returns the argument.
  5804. We use lazy evaluation for the input and output blocks of the
  5805. functions \code{explicate-pred} and \code{explicate-assign} and for
  5806. the output block of \code{explicate-tail}. So instead of taking and
  5807. returning blocks, they take and return promises. Furthermore, when we
  5808. come to a situation in which we a block might be used more than once,
  5809. as in the case for \code{if} in \code{explicate-pred}, we transform
  5810. the promise into a new promise that will add the block to the
  5811. control-flow graph and return a \code{goto}. The following auxiliary
  5812. function named \code{block->goto} accomplishes this task. It begins
  5813. with \code{delay} to create a promise. When forced, this promise will
  5814. force the original promise. If that returns a \code{goto} (because the
  5815. block was already added to the control-flow graph), then we return the
  5816. \code{goto}. Otherwise we add the block to the control-flow graph with
  5817. another auxiliary function named \code{add-node}. That function
  5818. returns the label for the new block, which we use to create a
  5819. \code{goto}.
  5820. \begin{lstlisting}
  5821. (define (block->goto block)
  5822. (delay
  5823. (define b (force block))
  5824. (match b
  5825. [(Goto label) (Goto label)]
  5826. [else (Goto (add-node b))])))
  5827. \end{lstlisting}
  5828. Returning to the discussion of \code{explicate-pred}
  5829. (Figure~\ref{fig:explicate-pred}), consider the case for comparison
  5830. operators. This is one of the base cases of the recursive function so
  5831. we translate the comparison to an \code{if} statement. We apply
  5832. \code{block->goto} to \code{thn} and \code{els} to obtain two promises
  5833. that will add then to the control-flow graph, which we can immediately
  5834. \code{force} to obtain the two goto's that form the branches of the
  5835. \code{if} statement.
  5836. %% Getting back to the case for \code{if} in \code{explicate-pred}, we
  5837. %% make the recursive calls to \code{explicate-pred} on the ``then'' and
  5838. %% ``else'' branches with the arguments \code{(block->goto} $B_1$\code{)}
  5839. %% and \code{(block->goto} $B_2$\code{)}. Let $B_3$ and $B_4$ be the
  5840. %% results from the two recursive calls. We complete the case for
  5841. %% \code{if} by recursively apply \code{explicate-pred} to the condition
  5842. %% of the \code{if} with the promised blocks $B_3$ and $B_4$ to obtain
  5843. %% the result $B_5$.
  5844. %% \[
  5845. %% (\key{if}\; \itm{cnd}\; \itm{thn}\; \itm{els})
  5846. %% \quad\Rightarrow\quad
  5847. %% B_5
  5848. %% \]
  5849. The \code{explicate-tail} and \code{explicate-assign} functions need
  5850. additional cases for Boolean constants and \key{if}.
  5851. %
  5852. In the cases for \code{if}, the two branches inherit the current
  5853. context, so in \code{explicate-tail} they are in tail position and in
  5854. \code{explicate-assign} they are in assignment position. The
  5855. \code{cont} parameter of \code{explicate-assign} is used in both
  5856. recursive calls, so make sure to use \code{block->goto} on it.
  5857. %% In the case for \code{if} in \code{explicate-tail}, the two branches
  5858. %% inherit the current context, so they are in tail position. Thus, the
  5859. %% recursive calls on the ``then'' and ``else'' branch should be calls to
  5860. %% \code{explicate-tail}.
  5861. %% %
  5862. %% We need to pass $B_0$ as the accumulator argument for both of these
  5863. %% recursive calls, but we need to be careful not to duplicate $B_0$.
  5864. %% Thus, we first apply \code{block->goto} to $B_0$ so that it gets added
  5865. %% to the control-flow graph and obtain a promised goto $G_0$.
  5866. %% %
  5867. %% Let $B_1$ be the result of \code{explicate-tail} on the ``then''
  5868. %% branch and $G_0$ and let $B_2$ be the result of \code{explicate-tail}
  5869. %% on the ``else'' branch and $G_0$. Let $B_3$ be the result of applying
  5870. %% \code{explicate-pred} to the condition of the \key{if}, $B_1$, and
  5871. %% $B_2$. Then the \key{if} as a whole translates to promise $B_3$.
  5872. %% \[
  5873. %% (\key{if}\; \itm{cnd}\; \itm{thn}\; \itm{els}) \quad\Rightarrow\quad B_3
  5874. %% \]
  5875. %% In the above discussion, we use the metavariables $B_1$, $B_2$, and
  5876. %% $B_3$ to refer to blocks for the purposes of our discussion, but they
  5877. %% should not be confused with the labels for the blocks that appear in
  5878. %% the generated code. We initially construct unlabeled blocks; we only
  5879. %% attach labels to blocks when we add them to the control-flow graph, as
  5880. %% we see in the next case.
  5881. %% Next consider the case for \key{if} in the \code{explicate-assign}
  5882. %% function. The context of the \key{if} is an assignment to some
  5883. %% variable $x$ and then the control continues to some promised block
  5884. %% $B_1$. The code that we generate for both the ``then'' and ``else''
  5885. %% branches needs to continue to $B_1$, so to avoid duplicating $B_1$ we
  5886. %% apply \code{block->goto} to it and obtain a promised goto $G_1$. The
  5887. %% branches of the \key{if} inherit the current context, so they are in
  5888. %% assignment positions. Let $B_2$ be the result of applying
  5889. %% \code{explicate-assign} to the ``then'' branch, variable $x$, and
  5890. %% $G_1$. Let $B_3$ be the result of applying \code{explicate-assign} to
  5891. %% the ``else'' branch, variable $x$, and $G_1$. Finally, let $B_4$ be
  5892. %% the result of applying \code{explicate-pred} to the predicate
  5893. %% $\itm{cnd}$ and the promises $B_2$ and $B_3$. The \key{if} as a whole
  5894. %% translates to the promise $B_4$.
  5895. %% \[
  5896. %% (\key{if}\; \itm{cnd}\; \itm{thn}\; \itm{els}) \quad\Rightarrow\quad B_4
  5897. %% \]
  5898. %% This completes the description of \code{explicate-control} for \LangIf{}.
  5899. The way in which the \code{shrink} pass transforms logical operations
  5900. such as \code{and} and \code{or} can impact the quality of code
  5901. generated by \code{explicate-control}. For example, consider the
  5902. following program.
  5903. % cond_test_21.rkt
  5904. \begin{lstlisting}
  5905. (if (and (eq? (read) 0) (eq? (read) 1))
  5906. 0
  5907. 42)
  5908. \end{lstlisting}
  5909. The \code{and} operation should transform into something that the
  5910. \code{explicate-pred} function can still analyze and descend through to
  5911. reach the underlying \code{eq?} conditions. Ideally, your
  5912. \code{explicate-control} pass should generate code similar to the
  5913. following for the above program.
  5914. \begin{center}
  5915. \begin{lstlisting}
  5916. start:
  5917. tmp1 = (read);
  5918. if (eq? tmp1 0) goto block40;
  5919. else goto block39;
  5920. block40:
  5921. tmp2 = (read);
  5922. if (eq? tmp2 1) goto block38;
  5923. else goto block39;
  5924. block38:
  5925. return 0;
  5926. block39:
  5927. return 42;
  5928. \end{lstlisting}
  5929. \end{center}
  5930. \begin{exercise}\normalfont
  5931. Implement the pass \code{explicate-control} by adding the cases for
  5932. Boolean constants and \key{if} to the \code{explicate-tail} and
  5933. \code{explicate-assign}. Implement the auxiliary function
  5934. \code{explicate-pred} for predicate contexts.
  5935. %
  5936. Create test cases that exercise all of the new cases in the code for
  5937. this pass.
  5938. %
  5939. Add the following entry to the list of \code{passes} in
  5940. \code{run-tests.rkt} and then run this script to test your compiler.
  5941. \begin{lstlisting}
  5942. (list "explicate-control" explicate-control interp-Cif type-check-Cif)
  5943. \end{lstlisting}
  5944. \end{exercise}
  5945. \section{Select Instructions}
  5946. \label{sec:select-Rif}
  5947. \index{instruction selection}
  5948. The \code{select-instructions} pass translate \LangCIf{} to
  5949. \LangXIfVar{}. Recall that we implement this pass using three
  5950. auxiliary functions, one for each of the non-terminals $\Atm$,
  5951. $\Stmt$, and $\Tail$.
  5952. For $\Atm$, we have new cases for the Booleans. We take the usual
  5953. approach of encoding them as integers, with true as 1 and false as 0.
  5954. \[
  5955. \key{\#t} \Rightarrow \key{1}
  5956. \qquad
  5957. \key{\#f} \Rightarrow \key{0}
  5958. \]
  5959. For $\Stmt$, we discuss a couple cases. The \code{not} operation can
  5960. be implemented in terms of \code{xorq} as we discussed at the
  5961. beginning of this section. Given an assignment
  5962. $\itm{var}$ \key{=} \key{(not} $\Atm$\key{);},
  5963. if the left-hand side $\itm{var}$ is
  5964. the same as $\Atm$, then just the \code{xorq} suffices.
  5965. \[
  5966. \Var~\key{=}~ \key{(not}\; \Var\key{);}
  5967. \quad\Rightarrow\quad
  5968. \key{xorq}~\key{\$}1\key{,}~\Var
  5969. \]
  5970. Otherwise, a \key{movq} is needed to adapt to the update-in-place
  5971. semantics of x86. Let $\Arg$ be the result of translating $\Atm$ to
  5972. x86. Then we have
  5973. \[
  5974. \Var~\key{=}~ \key{(not}\; \Atm\key{);}
  5975. \quad\Rightarrow\quad
  5976. \begin{array}{l}
  5977. \key{movq}~\Arg\key{,}~\Var\\
  5978. \key{xorq}~\key{\$}1\key{,}~\Var
  5979. \end{array}
  5980. \]
  5981. Next consider the cases for \code{eq?} and less-than comparison.
  5982. Translating these operations to x86 is slightly involved due to the
  5983. unusual nature of the \key{cmpq} instruction discussed above. We
  5984. recommend translating an assignment from \code{eq?} into the following
  5985. sequence of three instructions. \\
  5986. \begin{tabular}{lll}
  5987. \begin{minipage}{0.4\textwidth}
  5988. \begin{lstlisting}
  5989. |$\Var$| = (eq? |$\Atm_1$| |$\Atm_2$|);
  5990. \end{lstlisting}
  5991. \end{minipage}
  5992. &
  5993. $\Rightarrow$
  5994. &
  5995. \begin{minipage}{0.4\textwidth}
  5996. \begin{lstlisting}
  5997. cmpq |$\Arg_2$|, |$\Arg_1$|
  5998. sete %al
  5999. movzbq %al, |$\Var$|
  6000. \end{lstlisting}
  6001. \end{minipage}
  6002. \end{tabular} \\
  6003. Regarding the $\Tail$ non-terminal, we have two new cases: \key{goto}
  6004. and \key{if} statements. Both are straightforward to translate to
  6005. x86. A \key{goto} becomes a jump instruction.
  6006. \[
  6007. \key{goto}\; \ell\key{;} \quad \Rightarrow \quad \key{jmp}\;\ell
  6008. \]
  6009. An \key{if} statement becomes a compare instruction followed by a
  6010. conditional jump (for the ``then'' branch) and the fall-through is to
  6011. a regular jump (for the ``else'' branch).\\
  6012. \begin{tabular}{lll}
  6013. \begin{minipage}{0.4\textwidth}
  6014. \begin{lstlisting}
  6015. if (eq? |$\Atm_1$| |$\Atm_2$|) goto |$\ell_1$|;
  6016. else goto |$\ell_2$|;
  6017. \end{lstlisting}
  6018. \end{minipage}
  6019. &
  6020. $\Rightarrow$
  6021. &
  6022. \begin{minipage}{0.4\textwidth}
  6023. \begin{lstlisting}
  6024. cmpq |$\Arg_2$|, |$\Arg_1$|
  6025. je |$\ell_1$|
  6026. jmp |$\ell_2$|
  6027. \end{lstlisting}
  6028. \end{minipage}
  6029. \end{tabular} \\
  6030. \begin{exercise}\normalfont
  6031. Expand your \code{select-instructions} pass to handle the new features
  6032. of the \LangIf{} language.
  6033. %
  6034. Add the following entry to the list of \code{passes} in
  6035. \code{run-tests.rkt}
  6036. \begin{lstlisting}
  6037. (list "select-instructions" select-instructions interp-pseudo-x86-1)
  6038. \end{lstlisting}
  6039. %
  6040. Run the script to test your compiler on all the test programs.
  6041. \end{exercise}
  6042. \section{Register Allocation}
  6043. \label{sec:register-allocation-Rif}
  6044. \index{register allocation}
  6045. The changes required for \LangIf{} affect liveness analysis, building the
  6046. interference graph, and assigning homes, but the graph coloring
  6047. algorithm itself does not change.
  6048. \subsection{Liveness Analysis}
  6049. \label{sec:liveness-analysis-Rif}
  6050. \index{liveness analysis}
  6051. Recall that for \LangVar{} we implemented liveness analysis for a single
  6052. basic block (Section~\ref{sec:liveness-analysis-Rvar}). With the
  6053. addition of \key{if} expressions to \LangIf{}, \code{explicate-control}
  6054. produces many basic blocks arranged in a control-flow graph. We
  6055. recommend that you create a new auxiliary function named
  6056. \code{uncover-live-CFG} that applies liveness analysis to a
  6057. control-flow graph.
  6058. The first question we is: what order should we process the basic
  6059. blocks in the control-flow graph? Recall that to perform liveness
  6060. analysis on a basic block we need to know its live-after set. If a
  6061. basic block has no successors (i.e. no out-edges in the control flow
  6062. graph), then it has an empty live-after set and we can immediately
  6063. apply liveness analysis to it. If a basic block has some successors,
  6064. then we need to complete liveness analysis on those blocks first. In
  6065. graph theory, a sequence of nodes is in \emph{topological
  6066. order}\index{topological order} if each vertex comes before its
  6067. successors. We need the opposite, so we can transpose the graph
  6068. before computing a topological order.
  6069. %
  6070. Use the \code{tsort} and \code{transpose} functions of the Racket
  6071. \code{graph} package to accomplish this.
  6072. %
  6073. As an aside, a topological ordering is only guaranteed to exist if the
  6074. graph does not contain any cycles. That is indeed the case for the
  6075. control-flow graphs that we generate from \LangIf{} programs.
  6076. However, in Chapter~\ref{ch:Rwhile} we add loops to \LangLoop{} and
  6077. learn how to handle cycles in the control-flow graph.
  6078. You'll need to construct a directed graph to represent the
  6079. control-flow graph. Do not use the \code{directed-graph} of the
  6080. \code{graph} package because that only allows at most one edge between
  6081. each pair of vertices, but a control-flow graph may have multiple
  6082. edges between a pair of vertices. The \code{multigraph.rkt} file in
  6083. the support code implements a graph representation that allows
  6084. multiple edges between a pair of vertices.
  6085. The next question is how to analyze jump instructions. Recall that in
  6086. Section~\ref{sec:liveness-analysis-Rvar} we maintain an alist named
  6087. \code{label->live} that maps each label to the set of live locations
  6088. at the beginning of its block. We use \code{label->live} to determine
  6089. the live-before set for each $\JMP{\itm{label}}$ instruction. Now
  6090. that we have many basic blocks, \code{label->live} needs to be updated
  6091. as we process the blocks. In particular, after performing liveness
  6092. analysis on a block, we take the live-before set of its first
  6093. instruction and associate that with the block's label in the
  6094. \code{label->live}.
  6095. In \LangXIfVar{} we also have the conditional jump
  6096. $\JMPIF{\itm{cc}}{\itm{label}}$ to deal with. Liveness analysis for
  6097. this instruction is particularly interesting because during
  6098. compilation we do not know which way a conditional jump will go. So
  6099. we do not know whether to use the live-before set for the following
  6100. instruction or the live-before set for the $\itm{label}$. However,
  6101. there is no harm to the correctness of the compiler if we classify
  6102. more locations as live than the ones that are truly live during a
  6103. particular execution of the instruction. Thus, we can take the union
  6104. of the live-before sets from the following instruction and from the
  6105. mapping for $\itm{label}$ in \code{label->live}.
  6106. The auxiliary functions for computing the variables in an
  6107. instruction's argument and for computing the variables read-from ($R$)
  6108. or written-to ($W$) by an instruction need to be updated to handle the
  6109. new kinds of arguments and instructions in \LangXIfVar{}.
  6110. \begin{exercise}\normalfont
  6111. Update the \code{uncover-live} pass and implement the
  6112. \code{uncover-live-CFG} auxiliary function to apply liveness analysis
  6113. to the control-flow graph. Add the following entry to the list of
  6114. \code{passes} in the \code{run-tests.rkt} script.
  6115. \begin{lstlisting}
  6116. (list "uncover-live" uncover-live interp-pseudo-x86-1)
  6117. \end{lstlisting}
  6118. \end{exercise}
  6119. \subsection{Build the Interference Graph}
  6120. \label{sec:build-interference-Rif}
  6121. Many of the new instructions in \LangXIfVar{} can be handled in the
  6122. same way as the instructions in \LangXVar{}. Thus, if your code was
  6123. already quite general, it will not need to be changed to handle the
  6124. new instructions. If you code is not general enough, we recommend that
  6125. you change your code to be more general. For example, you can factor
  6126. out the computing of the the read and write sets for each kind of
  6127. instruction into two auxiliary functions.
  6128. Note that the \key{movzbq} instruction requires some special care,
  6129. similar to the \key{movq} instruction. See rule number 1 in
  6130. Section~\ref{sec:build-interference}.
  6131. \begin{exercise}\normalfont
  6132. Update the \code{build-interference} pass for \LangXIfVar{} and add the
  6133. following entries to the list of \code{passes} in the
  6134. \code{run-tests.rkt} script.
  6135. \begin{lstlisting}
  6136. (list "build-interference" build-interference interp-pseudo-x86-1)
  6137. (list "allocate-registers" allocate-registers interp-x86-1)
  6138. \end{lstlisting}
  6139. Run the script to test your compiler on all the \LangIf{} test
  6140. programs.
  6141. \end{exercise}
  6142. \section{Patch Instructions}
  6143. The second argument of the \key{cmpq} instruction must not be an
  6144. immediate value (such as an integer). So if you are comparing two
  6145. immediates, we recommend inserting a \key{movq} instruction to put the
  6146. second argument in \key{rax}. Also, recall that instructions may have
  6147. at most one memory reference.
  6148. %
  6149. The second argument of the \key{movzbq} must be a register.
  6150. %
  6151. There are no special restrictions on the jump instructions.
  6152. \begin{exercise}\normalfont
  6153. %
  6154. Update \code{patch-instructions} pass for \LangXIfVar{}.
  6155. %
  6156. Add the following entry to the list of \code{passes} in
  6157. \code{run-tests.rkt} and then run this script to test your compiler.
  6158. \begin{lstlisting}
  6159. (list "patch-instructions" patch-instructions interp-x86-1)
  6160. \end{lstlisting}
  6161. \end{exercise}
  6162. the \begin{figure}[tbp]
  6163. \begin{tikzpicture}[baseline=(current bounding box.center)]
  6164. \node (Rif) at (0,2) {\large \LangIf{}};
  6165. \node (Rif-2) at (3,2) {\large \LangIf{}};
  6166. \node (Rif-3) at (6,2) {\large \LangIf{}};
  6167. \node (Rif-4) at (9,2) {\large \LangIf{}};
  6168. \node (Rif-5) at (12,2) {\large \LangIf{}};
  6169. \node (C1-1) at (3,0) {\large \LangCIf{}};
  6170. \node (x86-2) at (3,-2) {\large \LangXIfVar{}};
  6171. \node (x86-2-1) at (3,-4) {\large \LangXIfVar{}};
  6172. \node (x86-2-2) at (6,-4) {\large \LangXIfVar{}};
  6173. \node (x86-3) at (6,-2) {\large \LangXIfVar{}};
  6174. \node (x86-4) at (9,-2) {\large \LangXIf{}};
  6175. \node (x86-5) at (9,-4) {\large \LangXIf{}};
  6176. \path[->,bend left=15] (Rif) edge [above] node {\ttfamily\footnotesize type-check} (Rif-2);
  6177. \path[->,bend left=15] (Rif-2) edge [above] node {\ttfamily\footnotesize shrink} (Rif-3);
  6178. \path[->,bend left=15] (Rif-3) edge [above] node {\ttfamily\footnotesize uniquify} (Rif-4);
  6179. \path[->,bend left=15] (Rif-4) edge [above] node {\ttfamily\footnotesize remove-complex.} (Rif-5);
  6180. \path[->,bend left=15] (Rif-5) edge [left] node {\ttfamily\footnotesize explicate-control} (C1-1);
  6181. \path[->,bend right=15] (C1-1) edge [left] node {\ttfamily\footnotesize select-instructions} (x86-2);
  6182. \path[->,bend left=15] (x86-2) edge [right] node {\ttfamily\footnotesize uncover-live} (x86-2-1);
  6183. \path[->,bend right=15] (x86-2-1) edge [below] node {\ttfamily\footnotesize build-inter.} (x86-2-2);
  6184. \path[->,bend right=15] (x86-2-2) edge [right] node {\ttfamily\footnotesize allocate-reg.} (x86-3);
  6185. \path[->,bend left=15] (x86-3) edge [above] node {\ttfamily\footnotesize patch-instr.} (x86-4);
  6186. \path[->,bend left=15] (x86-4) edge [right] node {\ttfamily\footnotesize print-x86 } (x86-5);
  6187. \end{tikzpicture}
  6188. \caption{Diagram of the passes for \LangIf{}, a language with conditionals.}
  6189. \label{fig:Rif-passes}
  6190. \end{figure}
  6191. Figure~\ref{fig:Rif-passes} lists all the passes needed for the
  6192. compilation of \LangIf{}.
  6193. \section{An Example Translation}
  6194. Figure~\ref{fig:if-example-x86} shows a simple example program in
  6195. \LangIf{} translated to x86, showing the results of
  6196. \code{explicate-control}, \code{select-instructions}, and the final
  6197. x86 assembly code.
  6198. \begin{figure}[tbp]
  6199. \begin{tabular}{lll}
  6200. \begin{minipage}{0.4\textwidth}
  6201. % cond_test_20.rkt
  6202. \begin{lstlisting}
  6203. (if (eq? (read) 1) 42 0)
  6204. \end{lstlisting}
  6205. $\Downarrow$
  6206. \begin{lstlisting}
  6207. start:
  6208. tmp7951 = (read);
  6209. if (eq? tmp7951 1)
  6210. goto block7952;
  6211. else
  6212. goto block7953;
  6213. block7952:
  6214. return 42;
  6215. block7953:
  6216. return 0;
  6217. \end{lstlisting}
  6218. $\Downarrow$
  6219. \begin{lstlisting}
  6220. start:
  6221. callq read_int
  6222. movq %rax, tmp7951
  6223. cmpq $1, tmp7951
  6224. je block7952
  6225. jmp block7953
  6226. block7953:
  6227. movq $0, %rax
  6228. jmp conclusion
  6229. block7952:
  6230. movq $42, %rax
  6231. jmp conclusion
  6232. \end{lstlisting}
  6233. \end{minipage}
  6234. &
  6235. $\Rightarrow\qquad$
  6236. \begin{minipage}{0.4\textwidth}
  6237. \begin{lstlisting}
  6238. start:
  6239. callq read_int
  6240. movq %rax, %rcx
  6241. cmpq $1, %rcx
  6242. je block7952
  6243. jmp block7953
  6244. block7953:
  6245. movq $0, %rax
  6246. jmp conclusion
  6247. block7952:
  6248. movq $42, %rax
  6249. jmp conclusion
  6250. .globl main
  6251. main:
  6252. pushq %rbp
  6253. movq %rsp, %rbp
  6254. pushq %r13
  6255. pushq %r12
  6256. pushq %rbx
  6257. pushq %r14
  6258. subq $0, %rsp
  6259. jmp start
  6260. conclusion:
  6261. addq $0, %rsp
  6262. popq %r14
  6263. popq %rbx
  6264. popq %r12
  6265. popq %r13
  6266. popq %rbp
  6267. retq
  6268. \end{lstlisting}
  6269. \end{minipage}
  6270. \end{tabular}
  6271. \caption{Example compilation of an \key{if} expression to x86.}
  6272. \label{fig:if-example-x86}
  6273. \end{figure}
  6274. \section{Challenge: Remove Jumps}
  6275. \label{sec:opt-jumps}
  6276. %% Recall that in the example output of \code{explicate-control} in
  6277. %% Figure~\ref{fig:explicate-control-s1-38}, \code{block57} through
  6278. %% \code{block60} are trivial blocks, they do nothing but jump to another
  6279. %% block. The first goal of this challenge assignment is to remove those
  6280. %% blocks. Figure~\ref{fig:optimize-jumps} repeats the result of
  6281. %% \code{explicate-control} on the left and shows the result of bypassing
  6282. %% the trivial blocks on the right. Let us focus on \code{block61}. The
  6283. %% \code{then} branch jumps to \code{block57}, which in turn jumps to
  6284. %% \code{block55}. The optimized code on the right of
  6285. %% Figure~\ref{fig:optimize-jumps} bypasses \code{block57}, with the
  6286. %% \code{then} branch jumping directly to \code{block55}. The story is
  6287. %% similar for the \code{else} branch, as well as for the two branches in
  6288. %% \code{block62}. After the jumps in \code{block61} and \code{block62}
  6289. %% have been optimized in this way, there are no longer any jumps to
  6290. %% blocks \code{block57} through \code{block60}, so they can be removed.
  6291. %% \begin{figure}[tbp]
  6292. %% \begin{tabular}{lll}
  6293. %% \begin{minipage}{0.4\textwidth}
  6294. %% \begin{lstlisting}
  6295. %% block62:
  6296. %% tmp54 = (read);
  6297. %% if (eq? tmp54 2) then
  6298. %% goto block59;
  6299. %% else
  6300. %% goto block60;
  6301. %% block61:
  6302. %% tmp53 = (read);
  6303. %% if (eq? tmp53 0) then
  6304. %% goto block57;
  6305. %% else
  6306. %% goto block58;
  6307. %% block60:
  6308. %% goto block56;
  6309. %% block59:
  6310. %% goto block55;
  6311. %% block58:
  6312. %% goto block56;
  6313. %% block57:
  6314. %% goto block55;
  6315. %% block56:
  6316. %% return (+ 700 77);
  6317. %% block55:
  6318. %% return (+ 10 32);
  6319. %% start:
  6320. %% tmp52 = (read);
  6321. %% if (eq? tmp52 1) then
  6322. %% goto block61;
  6323. %% else
  6324. %% goto block62;
  6325. %% \end{lstlisting}
  6326. %% \end{minipage}
  6327. %% &
  6328. %% $\Rightarrow$
  6329. %% &
  6330. %% \begin{minipage}{0.55\textwidth}
  6331. %% \begin{lstlisting}
  6332. %% block62:
  6333. %% tmp54 = (read);
  6334. %% if (eq? tmp54 2) then
  6335. %% goto block55;
  6336. %% else
  6337. %% goto block56;
  6338. %% block61:
  6339. %% tmp53 = (read);
  6340. %% if (eq? tmp53 0) then
  6341. %% goto block55;
  6342. %% else
  6343. %% goto block56;
  6344. %% block56:
  6345. %% return (+ 700 77);
  6346. %% block55:
  6347. %% return (+ 10 32);
  6348. %% start:
  6349. %% tmp52 = (read);
  6350. %% if (eq? tmp52 1) then
  6351. %% goto block61;
  6352. %% else
  6353. %% goto block62;
  6354. %% \end{lstlisting}
  6355. %% \end{minipage}
  6356. %% \end{tabular}
  6357. %% \caption{Optimize jumps by removing trivial blocks.}
  6358. %% \label{fig:optimize-jumps}
  6359. %% \end{figure}
  6360. %% The name of this pass is \code{optimize-jumps}. We recommend
  6361. %% implementing this pass in two phases. The first phrase builds a hash
  6362. %% table that maps labels to possibly improved labels. The second phase
  6363. %% changes the target of each \code{goto} to use the improved label. If
  6364. %% the label is for a trivial block, then the hash table should map the
  6365. %% label to the first non-trivial block that can be reached from this
  6366. %% label by jumping through trivial blocks. If the label is for a
  6367. %% non-trivial block, then the hash table should map the label to itself;
  6368. %% we do not want to change jumps to non-trivial blocks.
  6369. %% The first phase can be accomplished by constructing an empty hash
  6370. %% table, call it \code{short-cut}, and then iterating over the control
  6371. %% flow graph. Each time you encouter a block that is just a \code{goto},
  6372. %% then update the hash table, mapping the block's source to the target
  6373. %% of the \code{goto}. Also, the hash table may already have mapped some
  6374. %% labels to the block's source, to you must iterate through the hash
  6375. %% table and update all of those so that they instead map to the target
  6376. %% of the \code{goto}.
  6377. %% For the second phase, we recommend iterating through the $\Tail$ of
  6378. %% each block in the program, updating the target of every \code{goto}
  6379. %% according to the mapping in \code{short-cut}.
  6380. %% \begin{exercise}\normalfont
  6381. %% Implement the \code{optimize-jumps} pass as a transformation from
  6382. %% \LangCIf{} to \LangCIf{}, coming after the \code{explicate-control} pass.
  6383. %% Check that \code{optimize-jumps} removes trivial blocks in a few
  6384. %% example programs. Then check that your compiler still passes all of
  6385. %% your tests.
  6386. %% \end{exercise}
  6387. There is an opportunity for optimizing jumps that is apparent in the
  6388. example of Figure~\ref{fig:if-example-x86}. The \code{start} block
  6389. ends with a jump to \code{block7953} and there are no other jumps to
  6390. \code{block7953} in the rest of the program. In this situation we can
  6391. avoid the runtime overhead of this jump by merging \code{block7953}
  6392. into the preceding block, in this case the \code{start} block.
  6393. Figure~\ref{fig:remove-jumps} shows the output of
  6394. \code{select-instructions} on the left and the result of this
  6395. optimization on the right.
  6396. \begin{figure}[tbp]
  6397. \begin{tabular}{lll}
  6398. \begin{minipage}{0.5\textwidth}
  6399. % cond_test_20.rkt
  6400. \begin{lstlisting}
  6401. start:
  6402. callq read_int
  6403. movq %rax, tmp7951
  6404. cmpq $1, tmp7951
  6405. je block7952
  6406. jmp block7953
  6407. block7953:
  6408. movq $0, %rax
  6409. jmp conclusion
  6410. block7952:
  6411. movq $42, %rax
  6412. jmp conclusion
  6413. \end{lstlisting}
  6414. \end{minipage}
  6415. &
  6416. $\Rightarrow\qquad$
  6417. \begin{minipage}{0.4\textwidth}
  6418. \begin{lstlisting}
  6419. start:
  6420. callq read_int
  6421. movq %rax, tmp7951
  6422. cmpq $1, tmp7951
  6423. je block7952
  6424. movq $0, %rax
  6425. jmp conclusion
  6426. block7952:
  6427. movq $42, %rax
  6428. jmp conclusion
  6429. \end{lstlisting}
  6430. \end{minipage}
  6431. \end{tabular}
  6432. \caption{Merging basic blocks by removing unnecessary jumps.}
  6433. \label{fig:remove-jumps}
  6434. \end{figure}
  6435. \begin{exercise}\normalfont
  6436. %
  6437. Implement a pass named \code{remove-jumps} that merges basic blocks
  6438. into their preceding basic block, when there is only one preceding
  6439. block. The pass should translate from \LangXIfVar{} to \LangXIfVar{}.
  6440. %
  6441. In the \code{run-tests.rkt} script, add the following entry to the
  6442. list of \code{passes} between \code{allocate-registers}
  6443. and \code{patch-instructions}.
  6444. \begin{lstlisting}
  6445. (list "remove-jumps" remove-jumps interp-pseudo-x86-1)
  6446. \end{lstlisting}
  6447. Run this script to test your compiler.
  6448. %
  6449. Check that \code{remove-jumps} accomplishes the goal of merging basic
  6450. blocks on several test programs.
  6451. \end{exercise}
  6452. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  6453. \chapter{Tuples and Garbage Collection}
  6454. \label{ch:Rvec}
  6455. \index{tuple}
  6456. \index{vector}
  6457. \margincomment{\scriptsize To do: Flesh out this chapter, e.g., make sure
  6458. all the IR grammars are spelled out! \\ --Jeremy}
  6459. \margincomment{\scriptsize Be more explicit about how to deal with
  6460. the root stack. \\ --Jeremy}
  6461. In this chapter we study the implementation of mutable tuples, called
  6462. vectors in Racket. This language feature is the first to use the
  6463. computer's \emph{heap}\index{heap} because the lifetime of a Racket
  6464. tuple is indefinite, that is, a tuple lives forever from the
  6465. programmer's viewpoint. Of course, from an implementer's viewpoint, it
  6466. is important to reclaim the space associated with a tuple when it is
  6467. no longer needed, which is why we also study \emph{garbage collection}
  6468. \emph{garbage collection} techniques in this chapter.
  6469. Section~\ref{sec:r3} introduces the \LangVec{} language including its
  6470. interpreter and type checker. The \LangVec{} language extends the \LangIf{}
  6471. language of Chapter~\ref{ch:Rif} with vectors and Racket's
  6472. \code{void} value. The reason for including the later is that the
  6473. \code{vector-set!} operation returns a value of type
  6474. \code{Void}\footnote{Racket's \code{Void} type corresponds to what is
  6475. called the \code{Unit} type in the programming languages
  6476. literature. Racket's \code{Void} type is inhabited by a single value
  6477. \code{void} which corresponds to \code{unit} or \code{()} in the
  6478. literature~\citep{Pierce:2002hj}.}.
  6479. Section~\ref{sec:GC} describes a garbage collection algorithm based on
  6480. copying live objects back and forth between two halves of the
  6481. heap. The garbage collector requires coordination with the compiler so
  6482. that it can see all of the \emph{root} pointers, that is, pointers in
  6483. registers or on the procedure call stack.
  6484. Sections~\ref{sec:expose-allocation} through \ref{sec:print-x86-gc}
  6485. discuss all the necessary changes and additions to the compiler
  6486. passes, including a new compiler pass named \code{expose-allocation}.
  6487. \section{The \LangVec{} Language}
  6488. \label{sec:r3}
  6489. Figure~\ref{fig:Rvec-concrete-syntax} defines the concrete syntax for
  6490. \LangVec{} and Figure~\ref{fig:Rvec-syntax} defines the abstract syntax. The
  6491. \LangVec{} language includes three new forms: \code{vector} for creating a
  6492. tuple, \code{vector-ref} for reading an element of a tuple, and
  6493. \code{vector-set!} for writing to an element of a tuple. The program
  6494. in Figure~\ref{fig:vector-eg} shows the usage of tuples in Racket. We
  6495. create a 3-tuple \code{t} and a 1-tuple that is stored at index $2$ of
  6496. the 3-tuple, demonstrating that tuples are first-class values. The
  6497. element at index $1$ of \code{t} is \code{\#t}, so the ``then'' branch
  6498. of the \key{if} is taken. The element at index $0$ of \code{t} is
  6499. \code{40}, to which we add \code{2}, the element at index $0$ of the
  6500. 1-tuple. So the result of the program is \code{42}.
  6501. \begin{figure}[tbp]
  6502. \centering
  6503. \fbox{
  6504. \begin{minipage}{0.96\textwidth}
  6505. \[
  6506. \begin{array}{lcl}
  6507. \Type &::=& \gray{\key{Integer} \mid \key{Boolean}}
  6508. \mid \LP\key{Vector}\;\Type\ldots\RP \mid \key{Void}\\
  6509. \Exp &::=& \gray{ \Int \mid \CREAD{} \mid \CNEG{\Exp} \mid \CADD{\Exp}{\Exp} \mid \CSUB{\Exp}{\Exp} } \\
  6510. &\mid& \gray{ \Var \mid \CLET{\Var}{\Exp}{\Exp} }\\
  6511. &\mid& \gray{ \key{\#t} \mid \key{\#f}
  6512. \mid \LP\key{and}\;\Exp\;\Exp\RP
  6513. \mid \LP\key{or}\;\Exp\;\Exp\RP
  6514. \mid \LP\key{not}\;\Exp\RP } \\
  6515. &\mid& \gray{ \LP\itm{cmp}\;\Exp\;\Exp\RP
  6516. \mid \CIF{\Exp}{\Exp}{\Exp} } \\
  6517. &\mid& \LP\key{vector}\;\Exp\ldots\RP
  6518. \mid \LP\key{vector-length}\;\Exp\RP \\
  6519. &\mid& \LP\key{vector-ref}\;\Exp\;\Int\RP
  6520. \mid \LP\key{vector-set!}\;\Exp\;\Int\;\Exp\RP \\
  6521. &\mid& \LP\key{void}\RP \mid \LP\key{has-type}~\Exp~\Type\RP\\
  6522. \LangVec{} &::=& \Exp
  6523. \end{array}
  6524. \]
  6525. \end{minipage}
  6526. }
  6527. \caption{The concrete syntax of \LangVec{}, extending \LangIf{}
  6528. (Figure~\ref{fig:Rif-concrete-syntax}).}
  6529. \label{fig:Rvec-concrete-syntax}
  6530. \end{figure}
  6531. \begin{figure}[tbp]
  6532. \begin{lstlisting}
  6533. (let ([t (vector 40 #t (vector 2))])
  6534. (if (vector-ref t 1)
  6535. (+ (vector-ref t 0)
  6536. (vector-ref (vector-ref t 2) 0))
  6537. 44))
  6538. \end{lstlisting}
  6539. \caption{Example program that creates tuples and reads from them.}
  6540. \label{fig:vector-eg}
  6541. \end{figure}
  6542. \begin{figure}[tp]
  6543. \centering
  6544. \fbox{
  6545. \begin{minipage}{0.96\textwidth}
  6546. \[
  6547. \begin{array}{lcl}
  6548. \itm{op} &::=& \ldots \mid \code{vector} \mid \code{vector-length} \\
  6549. \Exp &::=& \gray{ \INT{\Int} \mid \VAR{\Var} \mid \LET{\Var}{\Exp}{\Exp} } \\
  6550. &\mid& \gray{ \PRIM{\itm{op}}{\Exp\ldots}
  6551. \mid \BOOL{\itm{bool}}
  6552. \mid \IF{\Exp}{\Exp}{\Exp} } \\
  6553. &\mid& \VECREF{\Exp}{\INT{\Int}}\\
  6554. &\mid& \VECSET{\Exp}{\INT{\Int}}{\Exp} \\
  6555. &\mid& \VOID{} \mid \LP\key{HasType}~\Exp~\Type \RP \\
  6556. \LangVec{} &::=& \PROGRAM{\key{'()}}{\Exp}
  6557. \end{array}
  6558. \]
  6559. \end{minipage}
  6560. }
  6561. \caption{The abstract syntax of \LangVec{}.}
  6562. \label{fig:Rvec-syntax}
  6563. \end{figure}
  6564. \index{allocate}
  6565. \index{heap allocate}
  6566. Tuples are our first encounter with heap-allocated data, which raises
  6567. several interesting issues. First, variable binding performs a
  6568. shallow-copy when dealing with tuples, which means that different
  6569. variables can refer to the same tuple, that is, different variables
  6570. can be \emph{aliases} for the same entity. Consider the following
  6571. example in which both \code{t1} and \code{t2} refer to the same tuple.
  6572. Thus, the mutation through \code{t2} is visible when referencing the
  6573. tuple from \code{t1}, so the result of this program is \code{42}.
  6574. \index{alias}\index{mutation}
  6575. \begin{center}
  6576. \begin{minipage}{0.96\textwidth}
  6577. \begin{lstlisting}
  6578. (let ([t1 (vector 3 7)])
  6579. (let ([t2 t1])
  6580. (let ([_ (vector-set! t2 0 42)])
  6581. (vector-ref t1 0))))
  6582. \end{lstlisting}
  6583. \end{minipage}
  6584. \end{center}
  6585. The next issue concerns the lifetime of tuples. Of course, they are
  6586. created by the \code{vector} form, but when does their lifetime end?
  6587. Notice that \LangVec{} does not include an operation for deleting
  6588. tuples. Furthermore, the lifetime of a tuple is not tied to any notion
  6589. of static scoping. For example, the following program returns
  6590. \code{42} even though the variable \code{w} goes out of scope prior to
  6591. the \code{vector-ref} that reads from the vector it was bound to.
  6592. \begin{center}
  6593. \begin{minipage}{0.96\textwidth}
  6594. \begin{lstlisting}
  6595. (let ([v (vector (vector 44))])
  6596. (let ([x (let ([w (vector 42)])
  6597. (let ([_ (vector-set! v 0 w)])
  6598. 0))])
  6599. (+ x (vector-ref (vector-ref v 0) 0))))
  6600. \end{lstlisting}
  6601. \end{minipage}
  6602. \end{center}
  6603. From the perspective of programmer-observable behavior, tuples live
  6604. forever. Of course, if they really lived forever, then many programs
  6605. would run out of memory.\footnote{The \LangVec{} language does not have
  6606. looping or recursive functions, so it is nigh impossible to write a
  6607. program in \LangVec{} that will run out of memory. However, we add
  6608. recursive functions in the next Chapter!} A Racket implementation
  6609. must therefore perform automatic garbage collection.
  6610. Figure~\ref{fig:interp-Rvec} shows the definitional interpreter for the
  6611. \LangVec{} language. We define the \code{vector}, \code{vector-length},
  6612. \code{vector-ref}, and \code{vector-set!} operations for \LangVec{} in
  6613. terms of the corresponding operations in Racket. One subtle point is
  6614. that the \code{vector-set!} operation returns the \code{\#<void>}
  6615. value. The \code{\#<void>} value can be passed around just like other
  6616. values inside an \LangVec{} program and a \code{\#<void>} value can be
  6617. compared for equality with another \code{\#<void>} value. However,
  6618. there are no other operations specific to the the \code{\#<void>}
  6619. value in \LangVec{}. In contrast, Racket defines the \code{void?} predicate
  6620. that returns \code{\#t} when applied to \code{\#<void>} and \code{\#f}
  6621. otherwise.
  6622. \begin{figure}[tbp]
  6623. \begin{lstlisting}
  6624. (define interp-Rvec-class
  6625. (class interp-Rif-class
  6626. (super-new)
  6627. (define/override (interp-op op)
  6628. (match op
  6629. ['eq? (lambda (v1 v2)
  6630. (cond [(or (and (fixnum? v1) (fixnum? v2))
  6631. (and (boolean? v1) (boolean? v2))
  6632. (and (vector? v1) (vector? v2))
  6633. (and (void? v1) (void? v2)))
  6634. (eq? v1 v2)]))]
  6635. ['vector vector]
  6636. ['vector-length vector-length]
  6637. ['vector-ref vector-ref]
  6638. ['vector-set! vector-set!]
  6639. [else (super interp-op op)]
  6640. ))
  6641. (define/override ((interp-exp env) e)
  6642. (define recur (interp-exp env))
  6643. (match e
  6644. [(HasType e t) (recur e)]
  6645. [(Void) (void)]
  6646. [else ((super interp-exp env) e)]
  6647. ))
  6648. ))
  6649. (define (interp-Rvec p)
  6650. (send (new interp-Rvec-class) interp-program p))
  6651. \end{lstlisting}
  6652. \caption{Interpreter for the \LangVec{} language.}
  6653. \label{fig:interp-Rvec}
  6654. \end{figure}
  6655. Figure~\ref{fig:type-check-Rvec} shows the type checker for \LangVec{}, which
  6656. deserves some explanation. When allocating a vector, we need to know
  6657. which elements of the vector are pointers (i.e. are also vectors). We
  6658. can obtain this information during type checking. The type checker in
  6659. Figure~\ref{fig:type-check-Rvec} not only computes the type of an
  6660. expression, it also wraps every \key{vector} creation with the form
  6661. $(\key{HasType}~e~T)$, where $T$ is the vector's type.
  6662. %
  6663. To create the s-expression for the \code{Vector} type in
  6664. Figure~\ref{fig:type-check-Rvec}, we use the
  6665. \href{https://docs.racket-lang.org/reference/quasiquote.html}{unquote-splicing
  6666. operator} \code{,@} to insert the list \code{t*} without its usual
  6667. start and end parentheses. \index{unquote-slicing}
  6668. \begin{figure}[tp]
  6669. \begin{lstlisting}[basicstyle=\ttfamily\scriptsize]
  6670. (define type-check-Rvec-class
  6671. (class type-check-Rif-class
  6672. (super-new)
  6673. (inherit check-type-equal?)
  6674. (define/override (type-check-exp env)
  6675. (lambda (e)
  6676. (define recur (type-check-exp env))
  6677. (match e
  6678. [(Void) (values (Void) 'Void)]
  6679. [(Prim 'vector es)
  6680. (define-values (e* t*) (for/lists (e* t*) ([e es]) (recur e)))
  6681. (define t `(Vector ,@t*))
  6682. (values (HasType (Prim 'vector e*) t) t)]
  6683. [(Prim 'vector-ref (list e1 (Int i)))
  6684. (define-values (e1^ t) (recur e1))
  6685. (match t
  6686. [`(Vector ,ts ...)
  6687. (unless (and (0 . <= . i) (i . < . (length ts)))
  6688. (error 'type-check "index ~a out of bounds\nin ~v" i e))
  6689. (values (Prim 'vector-ref (list e1^ (Int i))) (list-ref ts i))]
  6690. [else (error 'type-check "expect Vector, not ~a\nin ~v" t e)])]
  6691. [(Prim 'vector-set! (list e1 (Int i) arg) )
  6692. (define-values (e-vec t-vec) (recur e1))
  6693. (define-values (e-arg^ t-arg) (recur arg))
  6694. (match t-vec
  6695. [`(Vector ,ts ...)
  6696. (unless (and (0 . <= . i) (i . < . (length ts)))
  6697. (error 'type-check "index ~a out of bounds\nin ~v" i e))
  6698. (check-type-equal? (list-ref ts i) t-arg e)
  6699. (values (Prim 'vector-set! (list e-vec (Int i) e-arg^)) 'Void)]
  6700. [else (error 'type-check "expect Vector, not ~a\nin ~v" t-vec e)])]
  6701. [(Prim 'vector-length (list e))
  6702. (define-values (e^ t) (recur e))
  6703. (match t
  6704. [`(Vector ,ts ...)
  6705. (values (Prim 'vector-length (list e^)) 'Integer)]
  6706. [else (error 'type-check "expect Vector, not ~a\nin ~v" t e)])]
  6707. [(Prim 'eq? (list arg1 arg2))
  6708. (define-values (e1 t1) (recur arg1))
  6709. (define-values (e2 t2) (recur arg2))
  6710. (match* (t1 t2)
  6711. [(`(Vector ,ts1 ...) `(Vector ,ts2 ...)) (void)]
  6712. [(other wise) (check-type-equal? t1 t2 e)])
  6713. (values (Prim 'eq? (list e1 e2)) 'Boolean)]
  6714. [(HasType (Prim 'vector es) t)
  6715. ((type-check-exp env) (Prim 'vector es))]
  6716. [(HasType e1 t)
  6717. (define-values (e1^ t^) (recur e1))
  6718. (check-type-equal? t t^ e)
  6719. (values (HasType e1^ t) t)]
  6720. [else ((super type-check-exp env) e)]
  6721. )))
  6722. ))
  6723. (define (type-check-Rvec p)
  6724. (send (new type-check-Rvec-class) type-check-program p))
  6725. \end{lstlisting}
  6726. \caption{Type checker for the \LangVec{} language.}
  6727. \label{fig:type-check-Rvec}
  6728. \end{figure}
  6729. \section{Garbage Collection}
  6730. \label{sec:GC}
  6731. Here we study a relatively simple algorithm for garbage collection
  6732. that is the basis of state-of-the-art garbage
  6733. collectors~\citep{Lieberman:1983aa,Ungar:1984aa,Jones:1996aa,Detlefs:2004aa,Dybvig:2006aa,Tene:2011kx}. In
  6734. particular, we describe a two-space copying
  6735. collector~\citep{Wilson:1992fk} that uses Cheney's algorithm to
  6736. perform the
  6737. copy~\citep{Cheney:1970aa}.
  6738. \index{copying collector}
  6739. \index{two-space copying collector}
  6740. Figure~\ref{fig:copying-collector} gives a
  6741. coarse-grained depiction of what happens in a two-space collector,
  6742. showing two time steps, prior to garbage collection (on the top) and
  6743. after garbage collection (on the bottom). In a two-space collector,
  6744. the heap is divided into two parts named the FromSpace and the
  6745. ToSpace. Initially, all allocations go to the FromSpace until there is
  6746. not enough room for the next allocation request. At that point, the
  6747. garbage collector goes to work to make more room.
  6748. \index{ToSpace}
  6749. \index{FromSpace}
  6750. The garbage collector must be careful not to reclaim tuples that will
  6751. be used by the program in the future. Of course, it is impossible in
  6752. general to predict what a program will do, but we can over approximate
  6753. the will-be-used tuples by preserving all tuples that could be
  6754. accessed by \emph{any} program given the current computer state. A
  6755. program could access any tuple whose address is in a register or on
  6756. the procedure call stack. These addresses are called the \emph{root
  6757. set}\index{root set}. In addition, a program could access any tuple that is
  6758. transitively reachable from the root set. Thus, it is safe for the
  6759. garbage collector to reclaim the tuples that are not reachable in this
  6760. way.
  6761. So the goal of the garbage collector is twofold:
  6762. \begin{enumerate}
  6763. \item preserve all tuple that are reachable from the root set via a
  6764. path of pointers, that is, the \emph{live} tuples, and
  6765. \item reclaim the memory of everything else, that is, the
  6766. \emph{garbage}.
  6767. \end{enumerate}
  6768. A copying collector accomplishes this by copying all of the live
  6769. objects from the FromSpace into the ToSpace and then performs a sleight
  6770. of hand, treating the ToSpace as the new FromSpace and the old
  6771. FromSpace as the new ToSpace. In the example of
  6772. Figure~\ref{fig:copying-collector}, there are three pointers in the
  6773. root set, one in a register and two on the stack. All of the live
  6774. objects have been copied to the ToSpace (the right-hand side of
  6775. Figure~\ref{fig:copying-collector}) in a way that preserves the
  6776. pointer relationships. For example, the pointer in the register still
  6777. points to a 2-tuple whose first element is a 3-tuple and whose second
  6778. element is a 2-tuple. There are four tuples that are not reachable
  6779. from the root set and therefore do not get copied into the ToSpace.
  6780. The exact situation in Figure~\ref{fig:copying-collector} cannot be
  6781. created by a well-typed program in \LangVec{} because it contains a
  6782. cycle. However, creating cycles will be possible once we get to \LangAny{}.
  6783. We design the garbage collector to deal with cycles to begin with so
  6784. we will not need to revisit this issue.
  6785. \begin{figure}[tbp]
  6786. \centering
  6787. \includegraphics[width=\textwidth]{figs/copy-collect-1} \\[5ex]
  6788. \includegraphics[width=\textwidth]{figs/copy-collect-2}
  6789. \caption{A copying collector in action.}
  6790. \label{fig:copying-collector}
  6791. \end{figure}
  6792. There are many alternatives to copying collectors (and their bigger
  6793. siblings, the generational collectors) when its comes to garbage
  6794. collection, such as mark-and-sweep~\citep{McCarthy:1960dz} and
  6795. reference counting~\citep{Collins:1960aa}. The strengths of copying
  6796. collectors are that allocation is fast (just a comparison and pointer
  6797. increment), there is no fragmentation, cyclic garbage is collected,
  6798. and the time complexity of collection only depends on the amount of
  6799. live data, and not on the amount of garbage~\citep{Wilson:1992fk}. The
  6800. main disadvantages of a two-space copying collector is that it uses a
  6801. lot of space and takes a long time to perform the copy, though these
  6802. problems are ameliorated in generational collectors. Racket and
  6803. Scheme programs tend to allocate many small objects and generate a lot
  6804. of garbage, so copying and generational collectors are a good fit.
  6805. Garbage collection is an active research topic, especially concurrent
  6806. garbage collection~\citep{Tene:2011kx}. Researchers are continuously
  6807. developing new techniques and revisiting old
  6808. trade-offs~\citep{Blackburn:2004aa,Jones:2011aa,Shahriyar:2013aa,Cutler:2015aa,Shidal:2015aa,Osterlund:2016aa,Jacek:2019aa,Gamari:2020aa}. Researchers
  6809. meet every year at the International Symposium on Memory Management to
  6810. present these findings.
  6811. \subsection{Graph Copying via Cheney's Algorithm}
  6812. \label{sec:cheney}
  6813. \index{Cheney's algorithm}
  6814. Let us take a closer look at the copying of the live objects. The
  6815. allocated objects and pointers can be viewed as a graph and we need to
  6816. copy the part of the graph that is reachable from the root set. To
  6817. make sure we copy all of the reachable vertices in the graph, we need
  6818. an exhaustive graph traversal algorithm, such as depth-first search or
  6819. breadth-first search~\citep{Moore:1959aa,Cormen:2001uq}. Recall that
  6820. such algorithms take into account the possibility of cycles by marking
  6821. which vertices have already been visited, so as to ensure termination
  6822. of the algorithm. These search algorithms also use a data structure
  6823. such as a stack or queue as a to-do list to keep track of the vertices
  6824. that need to be visited. We use breadth-first search and a trick
  6825. due to \citet{Cheney:1970aa} for simultaneously representing the queue
  6826. and copying tuples into the ToSpace.
  6827. Figure~\ref{fig:cheney} shows several snapshots of the ToSpace as the
  6828. copy progresses. The queue is represented by a chunk of contiguous
  6829. memory at the beginning of the ToSpace, using two pointers to track
  6830. the front and the back of the queue. The algorithm starts by copying
  6831. all tuples that are immediately reachable from the root set into the
  6832. ToSpace to form the initial queue. When we copy a tuple, we mark the
  6833. old tuple to indicate that it has been visited. We discuss how this
  6834. marking is accomplish in Section~\ref{sec:data-rep-gc}. Note that any
  6835. pointers inside the copied tuples in the queue still point back to the
  6836. FromSpace. Once the initial queue has been created, the algorithm
  6837. enters a loop in which it repeatedly processes the tuple at the front
  6838. of the queue and pops it off the queue. To process a tuple, the
  6839. algorithm copies all the tuple that are directly reachable from it to
  6840. the ToSpace, placing them at the back of the queue. The algorithm then
  6841. updates the pointers in the popped tuple so they point to the newly
  6842. copied tuples.
  6843. \begin{figure}[tbp]
  6844. \centering \includegraphics[width=0.9\textwidth]{figs/cheney}
  6845. \caption{Depiction of the Cheney algorithm copying the live tuples.}
  6846. \label{fig:cheney}
  6847. \end{figure}
  6848. Getting back to Figure~\ref{fig:cheney}, in the first step we copy the
  6849. tuple whose second element is $42$ to the back of the queue. The other
  6850. pointer goes to a tuple that has already been copied, so we do not
  6851. need to copy it again, but we do need to update the pointer to the new
  6852. location. This can be accomplished by storing a \emph{forwarding
  6853. pointer} to the new location in the old tuple, back when we initially
  6854. copied the tuple into the ToSpace. This completes one step of the
  6855. algorithm. The algorithm continues in this way until the front of the
  6856. queue is empty, that is, until the front catches up with the back.
  6857. \subsection{Data Representation}
  6858. \label{sec:data-rep-gc}
  6859. The garbage collector places some requirements on the data
  6860. representations used by our compiler. First, the garbage collector
  6861. needs to distinguish between pointers and other kinds of data. There
  6862. are several ways to accomplish this.
  6863. \begin{enumerate}
  6864. \item Attached a tag to each object that identifies what type of
  6865. object it is~\citep{McCarthy:1960dz}.
  6866. \item Store different types of objects in different
  6867. regions~\citep{Steele:1977ab}.
  6868. \item Use type information from the program to either generate
  6869. type-specific code for collecting or to generate tables that can
  6870. guide the
  6871. collector~\citep{Appel:1989aa,Goldberg:1991aa,Diwan:1992aa}.
  6872. \end{enumerate}
  6873. Dynamically typed languages, such as Lisp, need to tag objects
  6874. anyways, so option 1 is a natural choice for those languages.
  6875. However, \LangVec{} is a statically typed language, so it would be
  6876. unfortunate to require tags on every object, especially small and
  6877. pervasive objects like integers and Booleans. Option 3 is the
  6878. best-performing choice for statically typed languages, but comes with
  6879. a relatively high implementation complexity. To keep this chapter
  6880. within a 2-week time budget, we recommend a combination of options 1
  6881. and 2, using separate strategies for the stack and the heap.
  6882. Regarding the stack, we recommend using a separate stack for pointers,
  6883. which we call a \emph{root stack}\index{root stack} (a.k.a. ``shadow
  6884. stack'')~\citep{Siebert:2001aa,Henderson:2002aa,Baker:2009aa}. That
  6885. is, when a local variable needs to be spilled and is of type
  6886. \code{(Vector $\Type_1 \ldots \Type_n$)}, then we put it on the root
  6887. stack instead of the normal procedure call stack. Furthermore, we
  6888. always spill vector-typed variables if they are live during a call to
  6889. the collector, thereby ensuring that no pointers are in registers
  6890. during a collection. Figure~\ref{fig:shadow-stack} reproduces the
  6891. example from Figure~\ref{fig:copying-collector} and contrasts it with
  6892. the data layout using a root stack. The root stack contains the two
  6893. pointers from the regular stack and also the pointer in the second
  6894. register.
  6895. \begin{figure}[tbp]
  6896. \centering \includegraphics[width=0.60\textwidth]{figs/root-stack}
  6897. \caption{Maintaining a root stack to facilitate garbage collection.}
  6898. \label{fig:shadow-stack}
  6899. \end{figure}
  6900. The problem of distinguishing between pointers and other kinds of data
  6901. also arises inside of each tuple on the heap. We solve this problem by
  6902. attaching a tag, an extra 64-bits, to each
  6903. tuple. Figure~\ref{fig:tuple-rep} zooms in on the tags for two of the
  6904. tuples in the example from Figure~\ref{fig:copying-collector}. Note
  6905. that we have drawn the bits in a big-endian way, from right-to-left,
  6906. with bit location 0 (the least significant bit) on the far right,
  6907. which corresponds to the direction of the x86 shifting instructions
  6908. \key{salq} (shift left) and \key{sarq} (shift right). Part of each tag
  6909. is dedicated to specifying which elements of the tuple are pointers,
  6910. the part labeled ``pointer mask''. Within the pointer mask, a 1 bit
  6911. indicates there is a pointer and a 0 bit indicates some other kind of
  6912. data. The pointer mask starts at bit location 7. We have limited
  6913. tuples to a maximum size of 50 elements, so we just need 50 bits for
  6914. the pointer mask. The tag also contains two other pieces of
  6915. information. The length of the tuple (number of elements) is stored in
  6916. bits location 1 through 6. Finally, the bit at location 0 indicates
  6917. whether the tuple has yet to be copied to the ToSpace. If the bit has
  6918. value 1, then this tuple has not yet been copied. If the bit has
  6919. value 0 then the entire tag is a forwarding pointer. (The lower 3 bits
  6920. of a pointer are always zero anyways because our tuples are 8-byte
  6921. aligned.)
  6922. \begin{figure}[tbp]
  6923. \centering \includegraphics[width=0.8\textwidth]{figs/tuple-rep}
  6924. \caption{Representation of tuples in the heap.}
  6925. \label{fig:tuple-rep}
  6926. \end{figure}
  6927. \subsection{Implementation of the Garbage Collector}
  6928. \label{sec:organize-gz}
  6929. \index{prelude}
  6930. An implementation of the copying collector is provided in the
  6931. \code{runtime.c} file. Figure~\ref{fig:gc-header} defines the
  6932. interface to the garbage collector that is used by the compiler. The
  6933. \code{initialize} function creates the FromSpace, ToSpace, and root
  6934. stack and should be called in the prelude of the \code{main}
  6935. function. The arguments of \code{initialize} are the root stack size
  6936. and the heap size. Both need to be multiples of $64$ and $16384$ is a
  6937. good choice for both. The \code{initialize} function puts the address
  6938. of the beginning of the FromSpace into the global variable
  6939. \code{free\_ptr}. The global variable \code{fromspace\_end} points to
  6940. the address that is 1-past the last element of the FromSpace. (We use
  6941. half-open intervals to represent chunks of
  6942. memory~\citep{Dijkstra:1982aa}.) The \code{rootstack\_begin} variable
  6943. points to the first element of the root stack.
  6944. As long as there is room left in the FromSpace, your generated code
  6945. can allocate tuples simply by moving the \code{free\_ptr} forward.
  6946. %
  6947. The amount of room left in FromSpace is the difference between the
  6948. \code{fromspace\_end} and the \code{free\_ptr}. The \code{collect}
  6949. function should be called when there is not enough room left in the
  6950. FromSpace for the next allocation. The \code{collect} function takes
  6951. a pointer to the current top of the root stack (one past the last item
  6952. that was pushed) and the number of bytes that need to be
  6953. allocated. The \code{collect} function performs the copying collection
  6954. and leaves the heap in a state such that the next allocation will
  6955. succeed.
  6956. \begin{figure}[tbp]
  6957. \begin{lstlisting}
  6958. void initialize(uint64_t rootstack_size, uint64_t heap_size);
  6959. void collect(int64_t** rootstack_ptr, uint64_t bytes_requested);
  6960. int64_t* free_ptr;
  6961. int64_t* fromspace_begin;
  6962. int64_t* fromspace_end;
  6963. int64_t** rootstack_begin;
  6964. \end{lstlisting}
  6965. \caption{The compiler's interface to the garbage collector.}
  6966. \label{fig:gc-header}
  6967. \end{figure}
  6968. %% \begin{exercise}
  6969. %% In the file \code{runtime.c} you will find the implementation of
  6970. %% \code{initialize} and a partial implementation of \code{collect}.
  6971. %% The \code{collect} function calls another function, \code{cheney},
  6972. %% to perform the actual copy, and that function is left to the reader
  6973. %% to implement. The following is the prototype for \code{cheney}.
  6974. %% \begin{lstlisting}
  6975. %% static void cheney(int64_t** rootstack_ptr);
  6976. %% \end{lstlisting}
  6977. %% The parameter \code{rootstack\_ptr} is a pointer to the top of the
  6978. %% rootstack (which is an array of pointers). The \code{cheney} function
  6979. %% also communicates with \code{collect} through the global
  6980. %% variables \code{fromspace\_begin} and \code{fromspace\_end}
  6981. %% mentioned in Figure~\ref{fig:gc-header} as well as the pointers for
  6982. %% the ToSpace:
  6983. %% \begin{lstlisting}
  6984. %% static int64_t* tospace_begin;
  6985. %% static int64_t* tospace_end;
  6986. %% \end{lstlisting}
  6987. %% The job of the \code{cheney} function is to copy all the live
  6988. %% objects (reachable from the root stack) into the ToSpace, update
  6989. %% \code{free\_ptr} to point to the next unused spot in the ToSpace,
  6990. %% update the root stack so that it points to the objects in the
  6991. %% ToSpace, and finally to swap the global pointers for the FromSpace
  6992. %% and ToSpace.
  6993. %% \end{exercise}
  6994. %% \section{Compiler Passes}
  6995. %% \label{sec:code-generation-gc}
  6996. The introduction of garbage collection has a non-trivial impact on our
  6997. compiler passes. We introduce a new compiler pass named
  6998. \code{expose-allocation}. We make
  6999. significant changes to \code{select-instructions},
  7000. \code{build-interference}, \code{allocate-registers}, and
  7001. \code{print-x86} and make minor changes in several more passes. The
  7002. following program will serve as our running example. It creates two
  7003. tuples, one nested inside the other. Both tuples have length one. The
  7004. program accesses the element in the inner tuple tuple via two vector
  7005. references.
  7006. % tests/s2_17.rkt
  7007. \begin{lstlisting}
  7008. (vector-ref (vector-ref (vector (vector 42)) 0) 0)
  7009. \end{lstlisting}
  7010. \section{Shrink}
  7011. \label{sec:shrink-Rvec}
  7012. Recall that the \code{shrink} pass translates the primitives operators
  7013. into a smaller set of primitives. Because this pass comes after type
  7014. checking, but before the passes that require the type information in
  7015. the \code{HasType} AST nodes, the \code{shrink} pass must be modified
  7016. to wrap \code{HasType} around each AST node that it generates.
  7017. \section{Expose Allocation}
  7018. \label{sec:expose-allocation}
  7019. The pass \code{expose-allocation} lowers the \code{vector} creation
  7020. form into a conditional call to the collector followed by the
  7021. allocation. We choose to place the \code{expose-allocation} pass
  7022. before \code{remove-complex-opera*} because the code generated by
  7023. \code{expose-allocation} contains complex operands. We also place
  7024. \code{expose-allocation} before \code{explicate-control} because
  7025. \code{expose-allocation} introduces new variables using \code{let},
  7026. but \code{let} is gone after \code{explicate-control}.
  7027. The output of \code{expose-allocation} is a language \LangAlloc{} that
  7028. extends \LangVec{} with the three new forms that we use in the translation
  7029. of the \code{vector} form.
  7030. \[
  7031. \begin{array}{lcl}
  7032. \Exp &::=& \cdots
  7033. \mid (\key{collect} \,\itm{int})
  7034. \mid (\key{allocate} \,\itm{int}\,\itm{type})
  7035. \mid (\key{global-value} \,\itm{name})
  7036. \end{array}
  7037. \]
  7038. The $(\key{collect}\,n)$ form runs the garbage collector, requesting
  7039. $n$ bytes. It will become a call to the \code{collect} function in
  7040. \code{runtime.c} in \code{select-instructions}. The
  7041. $(\key{allocate}\,n\,T)$ form creates an tuple of $n$ elements.
  7042. \index{allocate}
  7043. The $T$ parameter is the type of the tuple: \code{(Vector $\Type_1 \ldots
  7044. \Type_n$)} where $\Type_i$ is the type of the $i$th element in the
  7045. tuple. The $(\key{global-value}\,\itm{name})$ form reads the value of
  7046. a global variable, such as \code{free\_ptr}.
  7047. In the following, we show the transformation for the \code{vector}
  7048. form into 1) a sequence of let-bindings for the initializing
  7049. expressions, 2) a conditional call to \code{collect}, 3) a call to
  7050. \code{allocate}, and 4) the initialization of the vector. In the
  7051. following, \itm{len} refers to the length of the vector and
  7052. \itm{bytes} is how many total bytes need to be allocated for the
  7053. vector, which is 8 for the tag plus \itm{len} times 8.
  7054. \begin{lstlisting}
  7055. (has-type (vector |$e_0 \ldots e_{n-1}$|) |\itm{type}|)
  7056. |$\Longrightarrow$|
  7057. (let ([|$x_0$| |$e_0$|]) ... (let ([|$x_{n-1}$| |$e_{n-1}$|])
  7058. (let ([_ (if (< (+ (global-value free_ptr) |\itm{bytes}|)
  7059. (global-value fromspace_end))
  7060. (void)
  7061. (collect |\itm{bytes}|))])
  7062. (let ([|$v$| (allocate |\itm{len}| |\itm{type}|)])
  7063. (let ([_ (vector-set! |$v$| |$0$| |$x_0$|)]) ...
  7064. (let ([_ (vector-set! |$v$| |$n-1$| |$x_{n-1}$|)])
  7065. |$v$|) ... )))) ...)
  7066. \end{lstlisting}
  7067. In the above, we suppressed all of the \code{has-type} forms in the
  7068. output for the sake of readability. The placement of the initializing
  7069. expressions $e_0,\ldots,e_{n-1}$ prior to the \code{allocate} and the
  7070. sequence of \code{vector-set!} is important, as those expressions may
  7071. trigger garbage collection and we cannot have an allocated but
  7072. uninitialized tuple on the heap during a collection.
  7073. Figure~\ref{fig:expose-alloc-output} shows the output of the
  7074. \code{expose-allocation} pass on our running example.
  7075. \begin{figure}[tbp]
  7076. % tests/s2_17.rkt
  7077. \begin{lstlisting}
  7078. (vector-ref
  7079. (vector-ref
  7080. (let ([vecinit7976
  7081. (let ([vecinit7972 42])
  7082. (let ([collectret7974
  7083. (if (< (+ (global-value free_ptr) 16)
  7084. (global-value fromspace_end))
  7085. (void)
  7086. (collect 16)
  7087. )])
  7088. (let ([alloc7971 (allocate 1 (Vector Integer))])
  7089. (let ([initret7973 (vector-set! alloc7971 0 vecinit7972)])
  7090. alloc7971)
  7091. )
  7092. )
  7093. )
  7094. ])
  7095. (let ([collectret7978
  7096. (if (< (+ (global-value free_ptr) 16)
  7097. (global-value fromspace_end))
  7098. (void)
  7099. (collect 16)
  7100. )])
  7101. (let ([alloc7975 (allocate 1 (Vector (Vector Integer)))])
  7102. (let ([initret7977 (vector-set! alloc7975 0 vecinit7976)])
  7103. alloc7975)
  7104. )
  7105. )
  7106. )
  7107. 0)
  7108. 0)
  7109. \end{lstlisting}
  7110. \caption{Output of the \code{expose-allocation} pass, minus
  7111. all of the \code{has-type} forms.}
  7112. \label{fig:expose-alloc-output}
  7113. \end{figure}
  7114. \section{Remove Complex Operands}
  7115. \label{sec:remove-complex-opera-Rvec}
  7116. The new forms \code{collect}, \code{allocate}, and \code{global-value}
  7117. should all be treated as complex operands.
  7118. %% A new case for
  7119. %% \code{HasType} is needed and the case for \code{Prim} needs to be
  7120. %% handled carefully to prevent the \code{Prim} node from being separated
  7121. %% from its enclosing \code{HasType}.
  7122. Figure~\ref{fig:Rvec-anf-syntax}
  7123. shows the grammar for the output language \LangVecANF{} of this
  7124. pass, which is \LangVec{} in administrative normal form.
  7125. \begin{figure}[tp]
  7126. \centering
  7127. \fbox{
  7128. \begin{minipage}{0.96\textwidth}
  7129. \small
  7130. \[
  7131. \begin{array}{rcl}
  7132. \Atm &::=& \gray{ \INT{\Int} \mid \VAR{\Var} \mid \BOOL{\itm{bool}} }
  7133. \mid \VOID{} \\
  7134. \Exp &::=& \gray{ \Atm \mid \READ{} } \\
  7135. &\mid& \gray{ \NEG{\Atm} \mid \ADD{\Atm}{\Atm} } \\
  7136. &\mid& \gray{ \LET{\Var}{\Exp}{\Exp} } \\
  7137. &\mid& \gray{ \UNIOP{\key{'not}}{\Atm} } \\
  7138. &\mid& \gray{ \BINOP{\itm{cmp}}{\Atm}{\Atm} \mid \IF{\Exp}{\Exp}{\Exp} }\\
  7139. &\mid& \LP\key{Collect}~\Int\RP \mid \LP\key{Allocate}~\Int~\Type\RP
  7140. \mid \LP\key{GlobalValue}~\Var\RP\\
  7141. % &\mid& \LP\key{HasType}~\Exp~\Type\RP \\
  7142. R^{\dagger}_3 &::=& \gray{ \PROGRAM{\code{'()}}{\Exp} }
  7143. \end{array}
  7144. \]
  7145. \end{minipage}
  7146. }
  7147. \caption{\LangVecANF{} is \LangVec{} in administrative normal form (ANF).}
  7148. \label{fig:Rvec-anf-syntax}
  7149. \end{figure}
  7150. \section{Explicate Control and the \LangCVec{} language}
  7151. \label{sec:explicate-control-r3}
  7152. \begin{figure}[tp]
  7153. \fbox{
  7154. \begin{minipage}{0.96\textwidth}
  7155. \small
  7156. \[
  7157. \begin{array}{lcl}
  7158. \Atm &::=& \gray{ \INT{\Int} \mid \VAR{\Var} \mid \BOOL{\itm{bool}} }\\
  7159. \itm{cmp} &::= & \gray{ \key{eq?} \mid \key{<} } \\
  7160. \Exp &::= & \gray{ \Atm \mid \READ{} } \\
  7161. &\mid& \gray{ \NEG{\Atm} \mid \ADD{\Atm}{\Atm} }\\
  7162. &\mid& \gray{ \UNIOP{\key{not}}{\Atm} \mid \BINOP{\itm{cmp}}{\Atm}{\Atm} } \\
  7163. &\mid& \LP\key{Allocate} \,\itm{int}\,\itm{type}\RP \\
  7164. &\mid& \BINOP{\key{'vector-ref}}{\Atm}{\INT{\Int}} \\
  7165. &\mid& \LP\key{Prim}~\key{'vector-set!}\,\LP\Atm\,\INT{\Int}\,\Atm\RP\RP\\
  7166. &\mid& \LP\key{GlobalValue} \,\Var\RP \mid \LP\key{Void}\RP\\
  7167. \Stmt &::=& \gray{ \ASSIGN{\VAR{\Var}}{\Exp} }
  7168. \mid \LP\key{Collect} \,\itm{int}\RP \\
  7169. \Tail &::= & \gray{ \RETURN{\Exp} \mid \SEQ{\Stmt}{\Tail}
  7170. \mid \GOTO{\itm{label}} } \\
  7171. &\mid& \gray{ \IFSTMT{\BINOP{\itm{cmp}}{\Atm}{\Atm}}{\GOTO{\itm{label}}}{\GOTO{\itm{label}}} }\\
  7172. \LangCVec{} & ::= & \gray{ \CPROGRAM{\itm{info}}{\LP\LP\itm{label}\,\key{.}\,\Tail\RP\ldots\RP} }
  7173. \end{array}
  7174. \]
  7175. \end{minipage}
  7176. }
  7177. \caption{The abstract syntax of \LangCVec{}, extending \LangCIf{}
  7178. (Figure~\ref{fig:c1-syntax}).}
  7179. \label{fig:c2-syntax}
  7180. \end{figure}
  7181. The output of \code{explicate-control} is a program in the
  7182. intermediate language \LangCVec{}, whose abstract syntax is defined in
  7183. Figure~\ref{fig:c2-syntax}. (The concrete syntax is defined in
  7184. Figure~\ref{fig:c2-concrete-syntax} of the Appendix.) The new forms
  7185. of \LangCVec{} include the \key{allocate}, \key{vector-ref}, and
  7186. \key{vector-set!}, and \key{global-value} expressions and the
  7187. \code{collect} statement. The \code{explicate-control} pass can treat
  7188. these new forms much like the other expression forms that we've
  7189. already encoutered.
  7190. \section{Select Instructions and the \LangXGlobal{} Language}
  7191. \label{sec:select-instructions-gc}
  7192. \index{instruction selection}
  7193. %% void (rep as zero)
  7194. %% allocate
  7195. %% collect (callq collect)
  7196. %% vector-ref
  7197. %% vector-set!
  7198. %% global (postpone)
  7199. In this pass we generate x86 code for most of the new operations that
  7200. were needed to compile tuples, including \code{Allocate},
  7201. \code{Collect}, \code{vector-ref}, \code{vector-set!}, and
  7202. \code{void}. We compile \code{GlobalValue} to \code{Global} because
  7203. the later has a different concrete syntax (see
  7204. Figures~\ref{fig:x86-2-concrete} and \ref{fig:x86-2}).
  7205. \index{x86}
  7206. The \code{vector-ref} and \code{vector-set!} forms translate into
  7207. \code{movq} instructions. (The plus one in the offset is to get past
  7208. the tag at the beginning of the tuple representation.)
  7209. \begin{lstlisting}
  7210. |$\itm{lhs}$| = (vector-ref |$\itm{vec}$| |$n$|);
  7211. |$\Longrightarrow$|
  7212. movq |$\itm{vec}'$|, %r11
  7213. movq |$8(n+1)$|(%r11), |$\itm{lhs'}$|
  7214. |$\itm{lhs}$| = (vector-set! |$\itm{vec}$| |$n$| |$\itm{arg}$|);
  7215. |$\Longrightarrow$|
  7216. movq |$\itm{vec}'$|, %r11
  7217. movq |$\itm{arg}'$|, |$8(n+1)$|(%r11)
  7218. movq $0, |$\itm{lhs'}$|
  7219. \end{lstlisting}
  7220. The $\itm{lhs}'$, $\itm{vec}'$, and $\itm{arg}'$ are obtained by
  7221. translating $\itm{vec}$ and $\itm{arg}$ to x86. The move of $\itm{vec}'$ to
  7222. register \code{r11} ensures that offset expression
  7223. \code{$-8(n+1)$(\%r11)} contains a register operand. This requires
  7224. removing \code{r11} from consideration by the register allocating.
  7225. Why not use \code{rax} instead of \code{r11}? Suppose we instead used
  7226. \code{rax}. Then the generated code for \code{vector-set!} would be
  7227. \begin{lstlisting}
  7228. movq |$\itm{vec}'$|, %rax
  7229. movq |$\itm{arg}'$|, |$8(n+1)$|(%rax)
  7230. movq $0, |$\itm{lhs}'$|
  7231. \end{lstlisting}
  7232. Next, suppose that $\itm{arg}'$ ends up as a stack location, so
  7233. \code{patch-instructions} would insert a move through \code{rax}
  7234. as follows.
  7235. \begin{lstlisting}
  7236. movq |$\itm{vec}'$|, %rax
  7237. movq |$\itm{arg}'$|, %rax
  7238. movq %rax, |$8(n+1)$|(%rax)
  7239. movq $0, |$\itm{lhs}'$|
  7240. \end{lstlisting}
  7241. But the above sequence of instructions does not work because we're
  7242. trying to use \code{rax} for two different values ($\itm{vec}'$ and
  7243. $\itm{arg}'$) at the same time!
  7244. We compile the \code{allocate} form to operations on the
  7245. \code{free\_ptr}, as shown below. The address in the \code{free\_ptr}
  7246. is the next free address in the FromSpace, so we copy it into
  7247. \code{r11} and then move it forward by enough space for the tuple
  7248. being allocated, which is $8(\itm{len}+1)$ bytes because each element
  7249. is 8 bytes (64 bits) and we use 8 bytes for the tag. We then
  7250. initialize the \itm{tag} and finally copy the address in \code{r11} to
  7251. the left-hand-side. Refer to Figure~\ref{fig:tuple-rep} to see how the
  7252. tag is organized. We recommend using the Racket operations
  7253. \code{bitwise-ior} and \code{arithmetic-shift} to compute the tag
  7254. during compilation. The type annotation in the \code{vector} form is
  7255. used to determine the pointer mask region of the tag.
  7256. \begin{lstlisting}
  7257. |$\itm{lhs}$| = (allocate |$\itm{len}$| (Vector |$\itm{type} \ldots$|));
  7258. |$\Longrightarrow$|
  7259. movq free_ptr(%rip), %r11
  7260. addq |$8(\itm{len}+1)$|, free_ptr(%rip)
  7261. movq $|$\itm{tag}$|, 0(%r11)
  7262. movq %r11, |$\itm{lhs}'$|
  7263. \end{lstlisting}
  7264. The \code{collect} form is compiled to a call to the \code{collect}
  7265. function in the runtime. The arguments to \code{collect} are 1) the
  7266. top of the root stack and 2) the number of bytes that need to be
  7267. allocated. We use another dedicated register, \code{r15}, to
  7268. store the pointer to the top of the root stack. So \code{r15} is not
  7269. available for use by the register allocator.
  7270. \begin{lstlisting}
  7271. (collect |$\itm{bytes}$|)
  7272. |$\Longrightarrow$|
  7273. movq %r15, %rdi
  7274. movq $|\itm{bytes}|, %rsi
  7275. callq collect
  7276. \end{lstlisting}
  7277. \begin{figure}[tp]
  7278. \fbox{
  7279. \begin{minipage}{0.96\textwidth}
  7280. \[
  7281. \begin{array}{lcl}
  7282. \Arg &::=& \gray{ \key{\$}\Int \mid \key{\%}\Reg \mid \Int\key{(}\key{\%}\Reg\key{)} \mid \key{\%}\itm{bytereg} } \mid \Var \key{(\%rip)} \\
  7283. \LangXGlobal{} &::= & \gray{ \key{.globl main} }\\
  7284. & & \gray{ \key{main:} \; \Instr\ldots }
  7285. \end{array}
  7286. \]
  7287. \end{minipage}
  7288. }
  7289. \caption{The concrete syntax of \LangXGlobal{} (extends \LangXIf{} of Figure~\ref{fig:x86-1-concrete}).}
  7290. \label{fig:x86-2-concrete}
  7291. \end{figure}
  7292. \begin{figure}[tp]
  7293. \fbox{
  7294. \begin{minipage}{0.96\textwidth}
  7295. \small
  7296. \[
  7297. \begin{array}{lcl}
  7298. \Arg &::=& \gray{ \INT{\Int} \mid \REG{\Reg} \mid \DEREF{\Reg}{\Int}
  7299. \mid \BYTEREG{\Reg}} \\
  7300. &\mid& (\key{Global}~\Var) \\
  7301. \LangXGlobal{} &::= & \gray{ \XPROGRAM{\itm{info}}{\LP\LP\itm{label} \,\key{.}\, \Block \RP\ldots\RP} }
  7302. \end{array}
  7303. \]
  7304. \end{minipage}
  7305. }
  7306. \caption{The abstract syntax of \LangXGlobal{} (extends \LangXIf{} of Figure~\ref{fig:x86-1}).}
  7307. \label{fig:x86-2}
  7308. \end{figure}
  7309. The concrete and abstract syntax of the \LangXGlobal{} language is
  7310. defined in Figures~\ref{fig:x86-2-concrete} and \ref{fig:x86-2}. It
  7311. differs from \LangXIf{} just in the addition of the form for global
  7312. variables.
  7313. %
  7314. Figure~\ref{fig:select-instr-output-gc} shows the output of the
  7315. \code{select-instructions} pass on the running example.
  7316. \begin{figure}[tbp]
  7317. \centering
  7318. % tests/s2_17.rkt
  7319. \begin{minipage}[t]{0.5\textwidth}
  7320. \begin{lstlisting}[basicstyle=\ttfamily\scriptsize]
  7321. block35:
  7322. movq free_ptr(%rip), alloc9024
  7323. addq $16, free_ptr(%rip)
  7324. movq alloc9024, %r11
  7325. movq $131, 0(%r11)
  7326. movq alloc9024, %r11
  7327. movq vecinit9025, 8(%r11)
  7328. movq $0, initret9026
  7329. movq alloc9024, %r11
  7330. movq 8(%r11), tmp9034
  7331. movq tmp9034, %r11
  7332. movq 8(%r11), %rax
  7333. jmp conclusion
  7334. block36:
  7335. movq $0, collectret9027
  7336. jmp block35
  7337. block38:
  7338. movq free_ptr(%rip), alloc9020
  7339. addq $16, free_ptr(%rip)
  7340. movq alloc9020, %r11
  7341. movq $3, 0(%r11)
  7342. movq alloc9020, %r11
  7343. movq vecinit9021, 8(%r11)
  7344. movq $0, initret9022
  7345. movq alloc9020, vecinit9025
  7346. movq free_ptr(%rip), tmp9031
  7347. movq tmp9031, tmp9032
  7348. addq $16, tmp9032
  7349. movq fromspace_end(%rip), tmp9033
  7350. cmpq tmp9033, tmp9032
  7351. jl block36
  7352. jmp block37
  7353. block37:
  7354. movq %r15, %rdi
  7355. movq $16, %rsi
  7356. callq 'collect
  7357. jmp block35
  7358. block39:
  7359. movq $0, collectret9023
  7360. jmp block38
  7361. \end{lstlisting}
  7362. \end{minipage}
  7363. \begin{minipage}[t]{0.45\textwidth}
  7364. \begin{lstlisting}[basicstyle=\ttfamily\scriptsize]
  7365. start:
  7366. movq $42, vecinit9021
  7367. movq free_ptr(%rip), tmp9028
  7368. movq tmp9028, tmp9029
  7369. addq $16, tmp9029
  7370. movq fromspace_end(%rip), tmp9030
  7371. cmpq tmp9030, tmp9029
  7372. jl block39
  7373. jmp block40
  7374. block40:
  7375. movq %r15, %rdi
  7376. movq $16, %rsi
  7377. callq 'collect
  7378. jmp block38
  7379. \end{lstlisting}
  7380. \end{minipage}
  7381. \caption{Output of the \code{select-instructions} pass.}
  7382. \label{fig:select-instr-output-gc}
  7383. \end{figure}
  7384. \clearpage
  7385. \section{Register Allocation}
  7386. \label{sec:reg-alloc-gc}
  7387. \index{register allocation}
  7388. As discussed earlier in this chapter, the garbage collector needs to
  7389. access all the pointers in the root set, that is, all variables that
  7390. are vectors. It will be the responsibility of the register allocator
  7391. to make sure that:
  7392. \begin{enumerate}
  7393. \item the root stack is used for spilling vector-typed variables, and
  7394. \item if a vector-typed variable is live during a call to the
  7395. collector, it must be spilled to ensure it is visible to the
  7396. collector.
  7397. \end{enumerate}
  7398. The later responsibility can be handled during construction of the
  7399. interference graph, by adding interference edges between the call-live
  7400. vector-typed variables and all the callee-saved registers. (They
  7401. already interfere with the caller-saved registers.) The type
  7402. information for variables is in the \code{Program} form, so we
  7403. recommend adding another parameter to the \code{build-interference}
  7404. function to communicate this alist.
  7405. The spilling of vector-typed variables to the root stack can be
  7406. handled after graph coloring, when choosing how to assign the colors
  7407. (integers) to registers and stack locations. The \code{Program} output
  7408. of this pass changes to also record the number of spills to the root
  7409. stack.
  7410. % build-interference
  7411. %
  7412. % callq
  7413. % extra parameter for var->type assoc. list
  7414. % update 'program' and 'if'
  7415. % allocate-registers
  7416. % allocate spilled vectors to the rootstack
  7417. % don't change color-graph
  7418. \section{Print x86}
  7419. \label{sec:print-x86-gc}
  7420. \index{prelude}\index{conclusion}
  7421. Figure~\ref{fig:print-x86-output-gc} shows the output of the
  7422. \code{print-x86} pass on the running example. In the prelude and
  7423. conclusion of the \code{main} function, we treat the root stack very
  7424. much like the regular stack in that we move the root stack pointer
  7425. (\code{r15}) to make room for the spills to the root stack, except
  7426. that the root stack grows up instead of down. For the running
  7427. example, there was just one spill so we increment \code{r15} by 8
  7428. bytes. In the conclusion we decrement \code{r15} by 8 bytes.
  7429. One issue that deserves special care is that there may be a call to
  7430. \code{collect} prior to the initializing assignments for all the
  7431. variables in the root stack. We do not want the garbage collector to
  7432. accidentally think that some uninitialized variable is a pointer that
  7433. needs to be followed. Thus, we zero-out all locations on the root
  7434. stack in the prelude of \code{main}. In
  7435. Figure~\ref{fig:print-x86-output-gc}, the instruction
  7436. %
  7437. \lstinline{movq $0, (%r15)}
  7438. %
  7439. accomplishes this task. The garbage collector tests each root to see
  7440. if it is null prior to dereferencing it.
  7441. \begin{figure}[htbp]
  7442. \begin{minipage}[t]{0.5\textwidth}
  7443. \begin{lstlisting}[basicstyle=\ttfamily\scriptsize]
  7444. block35:
  7445. movq free_ptr(%rip), %rcx
  7446. addq $16, free_ptr(%rip)
  7447. movq %rcx, %r11
  7448. movq $131, 0(%r11)
  7449. movq %rcx, %r11
  7450. movq -8(%r15), %rax
  7451. movq %rax, 8(%r11)
  7452. movq $0, %rdx
  7453. movq %rcx, %r11
  7454. movq 8(%r11), %rcx
  7455. movq %rcx, %r11
  7456. movq 8(%r11), %rax
  7457. jmp conclusion
  7458. block36:
  7459. movq $0, %rcx
  7460. jmp block35
  7461. block38:
  7462. movq free_ptr(%rip), %rcx
  7463. addq $16, free_ptr(%rip)
  7464. movq %rcx, %r11
  7465. movq $3, 0(%r11)
  7466. movq %rcx, %r11
  7467. movq %rbx, 8(%r11)
  7468. movq $0, %rdx
  7469. movq %rcx, -8(%r15)
  7470. movq free_ptr(%rip), %rcx
  7471. addq $16, %rcx
  7472. movq fromspace_end(%rip), %rdx
  7473. cmpq %rdx, %rcx
  7474. jl block36
  7475. movq %r15, %rdi
  7476. movq $16, %rsi
  7477. callq collect
  7478. jmp block35
  7479. block39:
  7480. movq $0, %rcx
  7481. jmp block38
  7482. \end{lstlisting}
  7483. \end{minipage}
  7484. \begin{minipage}[t]{0.45\textwidth}
  7485. \begin{lstlisting}[basicstyle=\ttfamily\scriptsize]
  7486. start:
  7487. movq $42, %rbx
  7488. movq free_ptr(%rip), %rdx
  7489. addq $16, %rdx
  7490. movq fromspace_end(%rip), %rcx
  7491. cmpq %rcx, %rdx
  7492. jl block39
  7493. movq %r15, %rdi
  7494. movq $16, %rsi
  7495. callq collect
  7496. jmp block38
  7497. .globl main
  7498. main:
  7499. pushq %rbp
  7500. movq %rsp, %rbp
  7501. pushq %r13
  7502. pushq %r12
  7503. pushq %rbx
  7504. pushq %r14
  7505. subq $0, %rsp
  7506. movq $16384, %rdi
  7507. movq $16384, %rsi
  7508. callq initialize
  7509. movq rootstack_begin(%rip), %r15
  7510. movq $0, (%r15)
  7511. addq $8, %r15
  7512. jmp start
  7513. conclusion:
  7514. subq $8, %r15
  7515. addq $0, %rsp
  7516. popq %r14
  7517. popq %rbx
  7518. popq %r12
  7519. popq %r13
  7520. popq %rbp
  7521. retq
  7522. \end{lstlisting}
  7523. \end{minipage}
  7524. \caption{Output of the \code{print-x86} pass.}
  7525. \label{fig:print-x86-output-gc}
  7526. \end{figure}
  7527. \begin{figure}[p]
  7528. \begin{tikzpicture}[baseline=(current bounding box.center)]
  7529. \node (Rvec) at (0,2) {\large \LangVec{}};
  7530. \node (Rvec-2) at (3,2) {\large \LangVec{}};
  7531. \node (Rvec-3) at (6,2) {\large \LangVec{}};
  7532. \node (Rvec-4) at (9,2) {\large \LangVec{}};
  7533. \node (Rvec-5) at (12,2) {\large \LangAlloc{}};
  7534. \node (C2-4) at (3,0) {\large \LangCVec{}};
  7535. \node (x86-2) at (3,-2) {\large \LangXGlobalVar{}};
  7536. \node (x86-2-1) at (3,-4) {\large \LangXGlobalVar{}};
  7537. \node (x86-2-2) at (6,-4) {\large \LangXGlobalVar{}};
  7538. \node (x86-3) at (6,-2) {\large \LangXGlobalVar{}};
  7539. \node (x86-4) at (9,-2) {\large \LangXGlobal{}};
  7540. \node (x86-5) at (9,-4) {\large \LangXGlobal{}};
  7541. %\path[->,bend left=15] (Rvec) edge [above] node {\ttfamily\footnotesize type-check} (Rvec-2);
  7542. \path[->,bend left=15] (Rvec) edge [above] node {\ttfamily\footnotesize shrink} (Rvec-2);
  7543. \path[->,bend left=15] (Rvec-2) edge [above] node {\ttfamily\footnotesize uniquify} (Rvec-3);
  7544. \path[->,bend left=15] (Rvec-3) edge [above] node {\ttfamily\footnotesize expose-alloc.} (Rvec-4);
  7545. \path[->,bend left=15] (Rvec-4) edge [above] node {\ttfamily\footnotesize remove-complex.} (Rvec-5);
  7546. \path[->,bend left=20] (Rvec-5) edge [left] node {\ttfamily\footnotesize explicate-control} (C2-4);
  7547. \path[->,bend left=15] (C2-4) edge [right] node {\ttfamily\footnotesize select-instr.} (x86-2);
  7548. \path[->,bend right=15] (x86-2) edge [left] node {\ttfamily\footnotesize uncover-live} (x86-2-1);
  7549. \path[->,bend right=15] (x86-2-1) edge [below] node {\ttfamily\footnotesize build-inter.} (x86-2-2);
  7550. \path[->,bend right=15] (x86-2-2) edge [right] node {\ttfamily\footnotesize allocate-reg.} (x86-3);
  7551. \path[->,bend left=15] (x86-3) edge [above] node {\ttfamily\footnotesize patch-instr.} (x86-4);
  7552. \path[->,bend left=15] (x86-4) edge [right] node {\ttfamily\footnotesize print-x86} (x86-5);
  7553. \end{tikzpicture}
  7554. \caption{Diagram of the passes for \LangVec{}, a language with tuples.}
  7555. \label{fig:Rvec-passes}
  7556. \end{figure}
  7557. Figure~\ref{fig:Rvec-passes} gives an overview of all the passes needed
  7558. for the compilation of \LangVec{}.
  7559. \section{Challenge: Simple Structures}
  7560. \label{sec:simple-structures}
  7561. \index{struct}
  7562. \index{structure}
  7563. Figure~\ref{fig:r3s-concrete-syntax} defines the concrete syntax for
  7564. \LangStruct{}, which extends \LangVec{} with support for simple structures.
  7565. Recall that a \code{struct} in Typed Racket is a user-defined data
  7566. type that contains named fields and that is heap allocated, similar to
  7567. a vector. The following is an example of a structure definition, in
  7568. this case the definition of a \code{point} type.
  7569. \begin{lstlisting}
  7570. (struct point ([x : Integer] [y : Integer]) #:mutable)
  7571. \end{lstlisting}
  7572. \begin{figure}[tbp]
  7573. \centering
  7574. \fbox{
  7575. \begin{minipage}{0.96\textwidth}
  7576. \[
  7577. \begin{array}{lcl}
  7578. \Type &::=& \gray{\key{Integer} \mid \key{Boolean}
  7579. \mid (\key{Vector}\;\Type \ldots) \mid \key{Void} } \mid \Var \\
  7580. \itm{cmp} &::= & \gray{ \key{eq?} \mid \key{<} \mid \key{<=} \mid \key{>} \mid \key{>=} } \\
  7581. \Exp &::=& \gray{ \Int \mid (\key{read}) \mid (\key{-}\;\Exp) \mid (\key{+} \; \Exp\;\Exp) \mid (\key{-}\;\Exp\;\Exp) } \\
  7582. &\mid& \gray{ \Var \mid (\key{let}~([\Var~\Exp])~\Exp) }\\
  7583. &\mid& \gray{ \key{\#t} \mid \key{\#f}
  7584. \mid (\key{and}\;\Exp\;\Exp)
  7585. \mid (\key{or}\;\Exp\;\Exp)
  7586. \mid (\key{not}\;\Exp) } \\
  7587. &\mid& \gray{ (\itm{cmp}\;\Exp\;\Exp)
  7588. \mid (\key{if}~\Exp~\Exp~\Exp) } \\
  7589. &\mid& \gray{ (\key{vector}\;\Exp \ldots)
  7590. \mid (\key{vector-ref}\;\Exp\;\Int) } \\
  7591. &\mid& \gray{ (\key{vector-set!}\;\Exp\;\Int\;\Exp) }\\
  7592. &\mid& \gray{ (\key{void}) } \mid (\Var\;\Exp \ldots)\\
  7593. \Def &::=& (\key{struct}\; \Var \; ([\Var \,\key{:}\, \Type] \ldots)\; \code{\#:mutable})\\
  7594. \LangStruct{} &::=& \Def \ldots \; \Exp
  7595. \end{array}
  7596. \]
  7597. \end{minipage}
  7598. }
  7599. \caption{The concrete syntax of \LangStruct{}, extending \LangVec{}
  7600. (Figure~\ref{fig:Rvec-concrete-syntax}).}
  7601. \label{fig:r3s-concrete-syntax}
  7602. \end{figure}
  7603. An instance of a structure is created using function call syntax, with
  7604. the name of the structure in the function position:
  7605. \begin{lstlisting}
  7606. (point 7 12)
  7607. \end{lstlisting}
  7608. Function-call syntax is also used to read the value in a field of a
  7609. structure. The function name is formed by the structure name, a dash,
  7610. and the field name. The following example uses \code{point-x} and
  7611. \code{point-y} to access the \code{x} and \code{y} fields of two point
  7612. instances.
  7613. \begin{center}
  7614. \begin{lstlisting}
  7615. (let ([pt1 (point 7 12)])
  7616. (let ([pt2 (point 4 3)])
  7617. (+ (- (point-x pt1) (point-x pt2))
  7618. (- (point-y pt1) (point-y pt2)))))
  7619. \end{lstlisting}
  7620. \end{center}
  7621. Similarly, to write to a field of a structure, use its set function,
  7622. whose name starts with \code{set-}, followed by the structure name,
  7623. then a dash, then the field name, and concluded with an exclamation
  7624. mark. The following example uses \code{set-point-x!} to change the
  7625. \code{x} field from \code{7} to \code{42}.
  7626. \begin{center}
  7627. \begin{lstlisting}
  7628. (let ([pt (point 7 12)])
  7629. (let ([_ (set-point-x! pt 42)])
  7630. (point-x pt)))
  7631. \end{lstlisting}
  7632. \end{center}
  7633. \begin{exercise}\normalfont
  7634. Extend your compiler with support for simple structures, compiling
  7635. \LangStruct{} to x86 assembly code. Create five new test cases that use
  7636. structures and test your compiler.
  7637. \end{exercise}
  7638. \section{Challenge: Generational Collection}
  7639. The copying collector described in Section~\ref{sec:GC} can incur
  7640. significant runtime overhead because the call to \code{collect} takes
  7641. time proportional to all of the live data. One way to reduce this
  7642. overhead is to reduce how much data is inspected in each call to
  7643. \code{collect}. In particular, researchers have observed that recently
  7644. allocated data is more likely to become garbage then data that has
  7645. survived one or more previous calls to \code{collect}. This insight
  7646. motivated the creation of \emph{generational garbage collectors}
  7647. \index{generational garbage collector} that
  7648. 1) segregates data according to its age into two or more generations,
  7649. 2) allocates less space for younger generations, so collecting them is
  7650. faster, and more space for the older generations, and 3) performs
  7651. collection on the younger generations more frequently then for older
  7652. generations~\citep{Wilson:1992fk}.
  7653. For this challenge assignment, the goal is to adapt the copying
  7654. collector implemented in \code{runtime.c} to use two generations, one
  7655. for young data and one for old data. Each generation consists of a
  7656. FromSpace and a ToSpace. The following is a sketch of how to adapt the
  7657. \code{collect} function to use the two generations.
  7658. \begin{enumerate}
  7659. \item Copy the young generation's FromSpace to its ToSpace then switch
  7660. the role of the ToSpace and FromSpace
  7661. \item If there is enough space for the requested number of bytes in
  7662. the young FromSpace, then return from \code{collect}.
  7663. \item If there is not enough space in the young FromSpace for the
  7664. requested bytes, then move the data from the young generation to the
  7665. old one with the following steps:
  7666. \begin{enumerate}
  7667. \item If there is enough room in the old FromSpace, copy the young
  7668. FromSpace to the old FromSpace and then return.
  7669. \item If there is not enough room in the old FromSpace, then collect
  7670. the old generation by copying the old FromSpace to the old ToSpace
  7671. and swap the roles of the old FromSpace and ToSpace.
  7672. \item If there is enough room now, copy the young FromSpace to the
  7673. old FromSpace and return. Otherwise, allocate a larger FromSpace
  7674. and ToSpace for the old generation. Copy the young FromSpace and
  7675. the old FromSpace into the larger FromSpace for the old
  7676. generation and then return.
  7677. \end{enumerate}
  7678. \end{enumerate}
  7679. We recommend that you generalize the \code{cheney} function so that it
  7680. can be used for all the copies mentioned above: between the young
  7681. FromSpace and ToSpace, between the old FromSpace and ToSpace, and
  7682. between the young FromSpace and old FromSpace. This can be
  7683. accomplished by adding parameters to \code{cheney} that replace its
  7684. use of the global variables \code{fromspace\_begin},
  7685. \code{fromspace\_end}, \code{tospace\_begin}, and \code{tospace\_end}.
  7686. Note that the collection of the young generation does not traverse the
  7687. old generation. This introduces a potential problem: there may be
  7688. young data that is only reachable through pointers in the old
  7689. generation. If these pointers are not taken into account, the
  7690. collector could throw away young data that is live! One solution,
  7691. called \emph{pointer recording}, is to maintain a set of all the
  7692. pointers from the old generation into the new generation and consider
  7693. this set as part of the root set. To maintain this set, the compiler
  7694. must insert extra instructions around every \code{vector-set!}. If the
  7695. vector being modified is in the old generation, and if the value being
  7696. written is a pointer into the new generation, than that pointer must
  7697. be added to the set. Also, if the value being overwritten was a
  7698. pointer into the new generation, then that pointer should be removed
  7699. from the set.
  7700. \begin{exercise}\normalfont
  7701. Adapt the \code{collect} function in \code{runtime.c} to implement
  7702. generational garbage collection, as outlined in this section.
  7703. Update the code generation for \code{vector-set!} to implement
  7704. pointer recording. Make sure that your new compiler and runtime
  7705. passes your test suite.
  7706. \end{exercise}
  7707. % Further Reading
  7708. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  7709. \chapter{Functions}
  7710. \label{ch:Rfun}
  7711. \index{function}
  7712. This chapter studies the compilation of functions similar to those
  7713. found in the C language. This corresponds to a subset of Typed Racket
  7714. in which only top-level function definitions are allowed. This kind of
  7715. function is an important stepping stone to implementing
  7716. lexically-scoped functions, that is, \key{lambda} abstractions, which
  7717. is the topic of Chapter~\ref{ch:Rlam}.
  7718. \section{The \LangFun{} Language}
  7719. The concrete and abstract syntax for function definitions and function
  7720. application is shown in Figures~\ref{fig:Rfun-concrete-syntax} and
  7721. \ref{fig:Rfun-syntax}, where we define the \LangFun{} language. Programs in
  7722. \LangFun{} begin with zero or more function definitions. The function
  7723. names from these definitions are in-scope for the entire program,
  7724. including all other function definitions (so the ordering of function
  7725. definitions does not matter). The concrete syntax for function
  7726. application\index{function application} is $(\Exp \; \Exp \ldots)$
  7727. where the first expression must
  7728. evaluate to a function and the rest are the arguments.
  7729. The abstract syntax for function application is
  7730. $\APPLY{\Exp}{\Exp\ldots}$.
  7731. %% The syntax for function application does not include an explicit
  7732. %% keyword, which is error prone when using \code{match}. To alleviate
  7733. %% this problem, we translate the syntax from $(\Exp \; \Exp \ldots)$ to
  7734. %% $(\key{app}\; \Exp \; \Exp \ldots)$ during type checking.
  7735. Functions are first-class in the sense that a function pointer
  7736. \index{function pointer} is data and can be stored in memory or passed
  7737. as a parameter to another function. Thus, we introduce a function
  7738. type, written
  7739. \begin{lstlisting}
  7740. (|$\Type_1$| |$\cdots$| |$\Type_n$| -> |$\Type_r$|)
  7741. \end{lstlisting}
  7742. for a function whose $n$ parameters have the types $\Type_1$ through
  7743. $\Type_n$ and whose return type is $\Type_r$. The main limitation of
  7744. these functions (with respect to Racket functions) is that they are
  7745. not lexically scoped. That is, the only external entities that can be
  7746. referenced from inside a function body are other globally-defined
  7747. functions. The syntax of \LangFun{} prevents functions from being nested
  7748. inside each other.
  7749. \begin{figure}[tp]
  7750. \centering
  7751. \fbox{
  7752. \begin{minipage}{0.96\textwidth}
  7753. \small
  7754. \[
  7755. \begin{array}{lcl}
  7756. \Type &::=& \gray{ \key{Integer} \mid \key{Boolean}
  7757. \mid (\key{Vector}\;\Type\ldots) \mid \key{Void} } \mid (\Type \ldots \; \key{->}\; \Type) \\
  7758. \itm{cmp} &::= & \gray{ \key{eq?} \mid \key{<} \mid \key{<=} \mid \key{>} \mid \key{>=} } \\
  7759. \Exp &::=& \gray{ \Int \mid \CREAD{} \mid \CNEG{\Exp} \mid \CADD{\Exp}{\Exp} \mid \CSUB{\Exp}{\Exp} } \\
  7760. &\mid& \gray{ \Var \mid \CLET{\Var}{\Exp}{\Exp} }\\
  7761. &\mid& \gray{ \key{\#t} \mid \key{\#f}
  7762. \mid (\key{and}\;\Exp\;\Exp)
  7763. \mid (\key{or}\;\Exp\;\Exp)
  7764. \mid (\key{not}\;\Exp)} \\
  7765. &\mid& \gray{(\itm{cmp}\;\Exp\;\Exp) \mid \CIF{\Exp}{\Exp}{\Exp} } \\
  7766. &\mid& \gray{(\key{vector}\;\Exp\ldots) \mid
  7767. (\key{vector-ref}\;\Exp\;\Int)} \\
  7768. &\mid& \gray{(\key{vector-set!}\;\Exp\;\Int\;\Exp)\mid (\key{void})
  7769. \mid \LP\key{has-type}~\Exp~\Type\RP } \\
  7770. &\mid& \LP\Exp \; \Exp \ldots\RP \\
  7771. \Def &::=& \CDEF{\Var}{\LS\Var \key{:} \Type\RS \ldots}{\Type}{\Exp} \\
  7772. \LangFun{} &::=& \Def \ldots \; \Exp
  7773. \end{array}
  7774. \]
  7775. \end{minipage}
  7776. }
  7777. \caption{The concrete syntax of \LangFun{}, extending \LangVec{} (Figure~\ref{fig:Rvec-concrete-syntax}).}
  7778. \label{fig:Rfun-concrete-syntax}
  7779. \end{figure}
  7780. \begin{figure}[tp]
  7781. \centering
  7782. \fbox{
  7783. \begin{minipage}{0.96\textwidth}
  7784. \small
  7785. \[
  7786. \begin{array}{lcl}
  7787. \Exp &::=& \gray{ \INT{\Int} \VAR{\Var} \mid \LET{\Var}{\Exp}{\Exp} } \\
  7788. &\mid& \gray{ \PRIM{\itm{op}}{\Exp\ldots} }\\
  7789. &\mid& \gray{ \BOOL{\itm{bool}}
  7790. \mid \IF{\Exp}{\Exp}{\Exp} } \\
  7791. &\mid& \gray{ \VOID{} \mid \LP\key{HasType}~\Exp~\Type \RP }
  7792. \mid \APPLY{\Exp}{\Exp\ldots}\\
  7793. \Def &::=& \FUNDEF{\Var}{\LP[\Var \code{:} \Type]\ldots\RP}{\Type}{\code{'()}}{\Exp}\\
  7794. \LangFun{} &::=& \PROGRAMDEFSEXP{\code{'()}}{\LP\Def\ldots\RP)}{\Exp}
  7795. \end{array}
  7796. \]
  7797. \end{minipage}
  7798. }
  7799. \caption{The abstract syntax of \LangFun{}, extending \LangVec{} (Figure~\ref{fig:Rvec-syntax}).}
  7800. \label{fig:Rfun-syntax}
  7801. \end{figure}
  7802. The program in Figure~\ref{fig:Rfun-function-example} is a
  7803. representative example of defining and using functions in \LangFun{}. We
  7804. define a function \code{map-vec} that applies some other function
  7805. \code{f} to both elements of a vector and returns a new
  7806. vector containing the results. We also define a function \code{add1}.
  7807. The program applies
  7808. \code{map-vec} to \code{add1} and \code{(vector 0 41)}. The result is
  7809. \code{(vector 1 42)}, from which we return the \code{42}.
  7810. \begin{figure}[tbp]
  7811. \begin{lstlisting}
  7812. (define (map-vec [f : (Integer -> Integer)]
  7813. [v : (Vector Integer Integer)])
  7814. : (Vector Integer Integer)
  7815. (vector (f (vector-ref v 0)) (f (vector-ref v 1))))
  7816. (define (add1 [x : Integer]) : Integer
  7817. (+ x 1))
  7818. (vector-ref (map-vec add1 (vector 0 41)) 1)
  7819. \end{lstlisting}
  7820. \caption{Example of using functions in \LangFun{}.}
  7821. \label{fig:Rfun-function-example}
  7822. \end{figure}
  7823. The definitional interpreter for \LangFun{} is in
  7824. Figure~\ref{fig:interp-Rfun}. The case for the \code{ProgramDefsExp} form is
  7825. responsible for setting up the mutual recursion between the top-level
  7826. function definitions. We use the classic back-patching \index{back-patching}
  7827. approach that uses mutable variables and makes two passes over the function
  7828. definitions~\citep{Kelsey:1998di}. In the first pass we set up the
  7829. top-level environment using a mutable cons cell for each function
  7830. definition. Note that the \code{lambda} value for each function is
  7831. incomplete; it does not yet include the environment. Once the
  7832. top-level environment is constructed, we then iterate over it and
  7833. update the \code{lambda} values to use the top-level environment.
  7834. \begin{figure}[tp]
  7835. \begin{lstlisting}
  7836. (define interp-Rfun-class
  7837. (class interp-Rvec-class
  7838. (super-new)
  7839. (define/override ((interp-exp env) e)
  7840. (define recur (interp-exp env))
  7841. (match e
  7842. [(Var x) (unbox (dict-ref env x))]
  7843. [(Let x e body)
  7844. (define new-env (dict-set env x (box (recur e))))
  7845. ((interp-exp new-env) body)]
  7846. [(Apply fun args)
  7847. (define fun-val (recur fun))
  7848. (define arg-vals (for/list ([e args]) (recur e)))
  7849. (match fun-val
  7850. [`(function (,xs ...) ,body ,fun-env)
  7851. (define params-args (for/list ([x xs] [arg arg-vals])
  7852. (cons x (box arg))))
  7853. (define new-env (append params-args fun-env))
  7854. ((interp-exp new-env) body)]
  7855. [else (error 'interp-exp "expected function, not ~a" fun-val)])]
  7856. [else ((super interp-exp env) e)]
  7857. ))
  7858. (define/public (interp-def d)
  7859. (match d
  7860. [(Def f (list `[,xs : ,ps] ...) rt _ body)
  7861. (cons f (box `(function ,xs ,body ())))]))
  7862. (define/override (interp-program p)
  7863. (match p
  7864. [(ProgramDefsExp info ds body)
  7865. (let ([top-level (for/list ([d ds]) (interp-def d))])
  7866. (for/list ([f (in-dict-values top-level)])
  7867. (set-box! f (match (unbox f)
  7868. [`(function ,xs ,body ())
  7869. `(function ,xs ,body ,top-level)])))
  7870. ((interp-exp top-level) body))]))
  7871. ))
  7872. (define (interp-Rfun p)
  7873. (send (new interp-Rfun-class) interp-program p))
  7874. \end{lstlisting}
  7875. \caption{Interpreter for the \LangFun{} language.}
  7876. \label{fig:interp-Rfun}
  7877. \end{figure}
  7878. \margincomment{TODO: explain type checker}
  7879. The type checker for \LangFun{} is is in Figure~\ref{fig:type-check-Rfun}.
  7880. \begin{figure}[tp]
  7881. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  7882. (define type-check-Rfun-class
  7883. (class type-check-Rvec-class
  7884. (super-new)
  7885. (inherit check-type-equal?)
  7886. (define/public (type-check-apply env e es)
  7887. (define-values (e^ ty) ((type-check-exp env) e))
  7888. (define-values (e* ty*) (for/lists (e* ty*) ([e (in-list es)])
  7889. ((type-check-exp env) e)))
  7890. (match ty
  7891. [`(,ty^* ... -> ,rt)
  7892. (for ([arg-ty ty*] [param-ty ty^*])
  7893. (check-type-equal? arg-ty param-ty (Apply e es)))
  7894. (values e^ e* rt)]))
  7895. (define/override (type-check-exp env)
  7896. (lambda (e)
  7897. (match e
  7898. [(FunRef f)
  7899. (values (FunRef f) (dict-ref env f))]
  7900. [(Apply e es)
  7901. (define-values (e^ es^ rt) (type-check-apply env e es))
  7902. (values (Apply e^ es^) rt)]
  7903. [(Call e es)
  7904. (define-values (e^ es^ rt) (type-check-apply env e es))
  7905. (values (Call e^ es^) rt)]
  7906. [else ((super type-check-exp env) e)])))
  7907. (define/public (type-check-def env)
  7908. (lambda (e)
  7909. (match e
  7910. [(Def f (and p:t* (list `[,xs : ,ps] ...)) rt info body)
  7911. (define new-env (append (map cons xs ps) env))
  7912. (define-values (body^ ty^) ((type-check-exp new-env) body))
  7913. (check-type-equal? ty^ rt body)
  7914. (Def f p:t* rt info body^)])))
  7915. (define/public (fun-def-type d)
  7916. (match d
  7917. [(Def f (list `[,xs : ,ps] ...) rt info body) `(,@ps -> ,rt)]))
  7918. (define/override (type-check-program e)
  7919. (match e
  7920. [(ProgramDefsExp info ds body)
  7921. (define new-env (for/list ([d ds])
  7922. (cons (Def-name d) (fun-def-type d))))
  7923. (define ds^ (for/list ([d ds]) ((type-check-def new-env) d)))
  7924. (define-values (body^ ty) ((type-check-exp new-env) body))
  7925. (check-type-equal? ty 'Integer body)
  7926. (ProgramDefsExp info ds^ body^)]))))
  7927. (define (type-check-Rfun p)
  7928. (send (new type-check-Rfun-class) type-check-program p))
  7929. \end{lstlisting}
  7930. \caption{Type checker for the \LangFun{} language.}
  7931. \label{fig:type-check-Rfun}
  7932. \end{figure}
  7933. \section{Functions in x86}
  7934. \label{sec:fun-x86}
  7935. \margincomment{\tiny Make sure callee-saved registers are discussed
  7936. in enough depth, especially updating Fig 6.4 \\ --Jeremy }
  7937. \margincomment{\tiny Talk about the return address on the
  7938. stack and what callq and retq does.\\ --Jeremy }
  7939. The x86 architecture provides a few features to support the
  7940. implementation of functions. We have already seen that x86 provides
  7941. labels so that one can refer to the location of an instruction, as is
  7942. needed for jump instructions. Labels can also be used to mark the
  7943. beginning of the instructions for a function. Going further, we can
  7944. obtain the address of a label by using the \key{leaq} instruction and
  7945. PC-relative addressing. For example, the following puts the
  7946. address of the \code{add1} label into the \code{rbx} register.
  7947. \begin{lstlisting}
  7948. leaq add1(%rip), %rbx
  7949. \end{lstlisting}
  7950. The instruction pointer register \key{rip} (aka. the program counter
  7951. \index{program counter}) always points to the next instruction to be
  7952. executed. When combined with an label, as in \code{add1(\%rip)}, the
  7953. linker computes the distance $d$ between the address of \code{add1}
  7954. and where the \code{rip} would be at that moment and then changes
  7955. \code{add1(\%rip)} to \code{$d$(\%rip)}, which at runtime will compute
  7956. the address of \code{add1}.
  7957. In Section~\ref{sec:x86} we used of the \code{callq} instruction to
  7958. jump to a function whose location is given by a label. To support
  7959. function calls in this chapter we instead will be jumping to a
  7960. function whose location is given by an address in a register, that is,
  7961. we need to make an \emph{indirect function call}. The x86 syntax for
  7962. this is a \code{callq} instruction but with an asterisk before the
  7963. register name.\index{indirect function call}
  7964. \begin{lstlisting}
  7965. callq *%rbx
  7966. \end{lstlisting}
  7967. \subsection{Calling Conventions}
  7968. \index{calling conventions}
  7969. The \code{callq} instruction provides partial support for implementing
  7970. functions: it pushes the return address on the stack and it jumps to
  7971. the target. However, \code{callq} does not handle
  7972. \begin{enumerate}
  7973. \item parameter passing,
  7974. \item pushing frames on the procedure call stack and popping them off,
  7975. or
  7976. \item determining how registers are shared by different functions.
  7977. \end{enumerate}
  7978. Regarding (1) parameter passing, recall that the following six
  7979. registers are used to pass arguments to a function, in this order.
  7980. \begin{lstlisting}
  7981. rdi rsi rdx rcx r8 r9
  7982. \end{lstlisting}
  7983. If there are
  7984. more than six arguments, then the convention is to use space on the
  7985. frame of the caller for the rest of the arguments. However, to ease
  7986. the implementation of efficient tail calls
  7987. (Section~\ref{sec:tail-call}), we arrange never to need more than six
  7988. arguments.
  7989. %
  7990. Also recall that the register \code{rax} is for the return value of
  7991. the function.
  7992. \index{prelude}\index{conclusion}
  7993. Regarding (2) frames \index{frame} and the procedure call stack,
  7994. \index{procedure call stack} recall from Section~\ref{sec:x86} that
  7995. the stack grows down, with each function call using a chunk of space
  7996. called a frame. The caller sets the stack pointer, register
  7997. \code{rsp}, to the last data item in its frame. The callee must not
  7998. change anything in the caller's frame, that is, anything that is at or
  7999. above the stack pointer. The callee is free to use locations that are
  8000. below the stack pointer.
  8001. Recall that we are storing variables of vector type on the root stack.
  8002. So the prelude needs to move the root stack pointer \code{r15} up and
  8003. the conclusion needs to move the root stack pointer back down. Also,
  8004. the prelude must initialize to \code{0} this frame's slots in the root
  8005. stack to signal to the garbage collector that those slots do not yet
  8006. contain a pointer to a vector. Otherwise the garbage collector will
  8007. interpret the garbage bits in those slots as memory addresses and try
  8008. to traverse them, causing serious mayhem!
  8009. Regarding (3) the sharing of registers between different functions,
  8010. recall from Section~\ref{sec:calling-conventions} that the registers
  8011. are divided into two groups, the caller-saved registers and the
  8012. callee-saved registers. The caller should assume that all the
  8013. caller-saved registers get overwritten with arbitrary values by the
  8014. callee. That is why we recommend in
  8015. Section~\ref{sec:calling-conventions} that variables that are live
  8016. during a function call should not be assigned to caller-saved
  8017. registers.
  8018. On the flip side, if the callee wants to use a callee-saved register,
  8019. the callee must save the contents of those registers on their stack
  8020. frame and then put them back prior to returning to the caller. That
  8021. is why we recommended in Section~\ref{sec:calling-conventions} that if
  8022. the register allocator assigns a variable to a callee-saved register,
  8023. then the prelude of the \code{main} function must save that register
  8024. to the stack and the conclusion of \code{main} must restore it. This
  8025. recommendation now generalizes to all functions.
  8026. Also recall that the base pointer, register \code{rbp}, is used as a
  8027. point-of-reference within a frame, so that each local variable can be
  8028. accessed at a fixed offset from the base pointer
  8029. (Section~\ref{sec:x86}).
  8030. %
  8031. Figure~\ref{fig:call-frames} shows the general layout of the caller
  8032. and callee frames.
  8033. \begin{figure}[tbp]
  8034. \centering
  8035. \begin{tabular}{r|r|l|l} \hline
  8036. Caller View & Callee View & Contents & Frame \\ \hline
  8037. 8(\key{\%rbp}) & & return address & \multirow{5}{*}{Caller}\\
  8038. 0(\key{\%rbp}) & & old \key{rbp} \\
  8039. -8(\key{\%rbp}) & & callee-saved $1$ \\
  8040. \ldots & & \ldots \\
  8041. $-8j$(\key{\%rbp}) & & callee-saved $j$ \\
  8042. $-8(j+1)$(\key{\%rbp}) & & local variable $1$ \\
  8043. \ldots & & \ldots \\
  8044. $-8(j+k)$(\key{\%rbp}) & & local variable $k$ \\
  8045. %% & & \\
  8046. %% $8n-8$\key{(\%rsp)} & $8n+8$(\key{\%rbp})& argument $n$ \\
  8047. %% & \ldots & \ldots \\
  8048. %% 0\key{(\%rsp)} & 16(\key{\%rbp}) & argument $1$ & \\
  8049. \hline
  8050. & 8(\key{\%rbp}) & return address & \multirow{5}{*}{Callee}\\
  8051. & 0(\key{\%rbp}) & old \key{rbp} \\
  8052. & -8(\key{\%rbp}) & callee-saved $1$ \\
  8053. & \ldots & \ldots \\
  8054. & $-8n$(\key{\%rbp}) & callee-saved $n$ \\
  8055. & $-8(n+1)$(\key{\%rbp}) & local variable $1$ \\
  8056. & \ldots & \ldots \\
  8057. & $-8(n+m)$(\key{\%rsp}) & local variable $m$\\ \hline
  8058. \end{tabular}
  8059. \caption{Memory layout of caller and callee frames.}
  8060. \label{fig:call-frames}
  8061. \end{figure}
  8062. %% Recall from Section~\ref{sec:x86} that the stack is also used for
  8063. %% local variables and for storing the values of callee-saved registers
  8064. %% (we shall refer to all of these collectively as ``locals''), and that
  8065. %% at the beginning of a function we move the stack pointer \code{rsp}
  8066. %% down to make room for them.
  8067. %% We recommend storing the local variables
  8068. %% first and then the callee-saved registers, so that the local variables
  8069. %% can be accessed using \code{rbp} the same as before the addition of
  8070. %% functions.
  8071. %% To make additional room for passing arguments, we shall
  8072. %% move the stack pointer even further down. We count how many stack
  8073. %% arguments are needed for each function call that occurs inside the
  8074. %% body of the function and find their maximum. Adding this number to the
  8075. %% number of locals gives us how much the \code{rsp} should be moved at
  8076. %% the beginning of the function. In preparation for a function call, we
  8077. %% offset from \code{rsp} to set up the stack arguments. We put the first
  8078. %% stack argument in \code{0(\%rsp)}, the second in \code{8(\%rsp)}, and
  8079. %% so on.
  8080. %% Upon calling the function, the stack arguments are retrieved by the
  8081. %% callee using the base pointer \code{rbp}. The address \code{16(\%rbp)}
  8082. %% is the location of the first stack argument, \code{24(\%rbp)} is the
  8083. %% address of the second, and so on. Figure~\ref{fig:call-frames} shows
  8084. %% the layout of the caller and callee frames. Notice how important it is
  8085. %% that we correctly compute the maximum number of arguments needed for
  8086. %% function calls; if that number is too small then the arguments and
  8087. %% local variables will smash into each other!
  8088. \subsection{Efficient Tail Calls}
  8089. \label{sec:tail-call}
  8090. In general, the amount of stack space used by a program is determined
  8091. by the longest chain of nested function calls. That is, if function
  8092. $f_1$ calls $f_2$, $f_2$ calls $f_3$, $\ldots$, and $f_{n-1}$ calls
  8093. $f_n$, then the amount of stack space is bounded by $O(n)$. The depth
  8094. $n$ can grow quite large in the case of recursive or mutually
  8095. recursive functions. However, in some cases we can arrange to use only
  8096. constant space, i.e. $O(1)$, instead of $O(n)$.
  8097. If a function call is the last action in a function body, then that
  8098. call is said to be a \emph{tail call}\index{tail call}.
  8099. For example, in the following
  8100. program, the recursive call to \code{tail-sum} is a tail call.
  8101. \begin{center}
  8102. \begin{lstlisting}
  8103. (define (tail-sum [n : Integer] [r : Integer]) : Integer
  8104. (if (eq? n 0)
  8105. r
  8106. (tail-sum (- n 1) (+ n r))))
  8107. (+ (tail-sum 5 0) 27)
  8108. \end{lstlisting}
  8109. \end{center}
  8110. At a tail call, the frame of the caller is no longer needed, so we
  8111. can pop the caller's frame before making the tail call. With this
  8112. approach, a recursive function that only makes tail calls will only
  8113. use $O(1)$ stack space. Functional languages like Racket typically
  8114. rely heavily on recursive functions, so they typically guarantee that
  8115. all tail calls will be optimized in this way.
  8116. \index{frame}
  8117. However, some care is needed with regards to argument passing in tail
  8118. calls. As mentioned above, for arguments beyond the sixth, the
  8119. convention is to use space in the caller's frame for passing
  8120. arguments. But for a tail call we pop the caller's frame and can no
  8121. longer use it. Another alternative is to use space in the callee's
  8122. frame for passing arguments. However, this option is also problematic
  8123. because the caller and callee's frame overlap in memory. As we begin
  8124. to copy the arguments from their sources in the caller's frame, the
  8125. target locations in the callee's frame might overlap with the sources
  8126. for later arguments! We solve this problem by not using the stack for
  8127. passing more than six arguments but instead using the heap, as we
  8128. describe in the Section~\ref{sec:limit-functions-r4}.
  8129. As mentioned above, for a tail call we pop the caller's frame prior to
  8130. making the tail call. The instructions for popping a frame are the
  8131. instructions that we usually place in the conclusion of a
  8132. function. Thus, we also need to place such code immediately before
  8133. each tail call. These instructions include restoring the callee-saved
  8134. registers, so it is good that the argument passing registers are all
  8135. caller-saved registers.
  8136. One last note regarding which instruction to use to make the tail
  8137. call. When the callee is finished, it should not return to the current
  8138. function, but it should return to the function that called the current
  8139. one. Thus, the return address that is already on the stack is the
  8140. right one, and we should not use \key{callq} to make the tail call, as
  8141. that would unnecessarily overwrite the return address. Instead we can
  8142. simply use the \key{jmp} instruction. Like the indirect function call,
  8143. we write an \emph{indirect jump}\index{indirect jump} with a register
  8144. prefixed with an asterisk. We recommend using \code{rax} to hold the
  8145. jump target because the preceding conclusion overwrites just about
  8146. everything else.
  8147. \begin{lstlisting}
  8148. jmp *%rax
  8149. \end{lstlisting}
  8150. \section{Shrink \LangFun{}}
  8151. \label{sec:shrink-r4}
  8152. The \code{shrink} pass performs a minor modification to ease the
  8153. later passes. This pass introduces an explicit \code{main} function
  8154. and changes the top \code{ProgramDefsExp} form to
  8155. \code{ProgramDefs} as follows.
  8156. \begin{lstlisting}
  8157. (ProgramDefsExp |$\itm{info}$| (|$\Def\ldots$|) |$\Exp$|)
  8158. |$\Rightarrow$| (ProgramDefs |$\itm{info}$| (|$\Def\ldots$| |$\itm{mainDef}$|))
  8159. \end{lstlisting}
  8160. where $\itm{mainDef}$ is
  8161. \begin{lstlisting}
  8162. (Def 'main '() 'Integer '() |$\Exp'$|)
  8163. \end{lstlisting}
  8164. \section{Reveal Functions and the \LangFunRef{} language}
  8165. \label{sec:reveal-functions-r4}
  8166. The syntax of \LangFun{} is inconvenient for purposes of compilation in one
  8167. respect: it conflates the use of function names and local
  8168. variables. This is a problem because we need to compile the use of a
  8169. function name differently than the use of a local variable; we need to
  8170. use \code{leaq} to convert the function name (a label in x86) to an
  8171. address in a register. Thus, it is a good idea to create a new pass
  8172. that changes function references from just a symbol $f$ to
  8173. $\FUNREF{f}$. This pass is named \code{reveal-functions} and the
  8174. output language, \LangFunRef{}, is defined in Figure~\ref{fig:f1-syntax}.
  8175. The concrete syntax for a function reference is $\CFUNREF{f}$.
  8176. \begin{figure}[tp]
  8177. \centering
  8178. \fbox{
  8179. \begin{minipage}{0.96\textwidth}
  8180. \[
  8181. \begin{array}{lcl}
  8182. \Exp &::=& \ldots \mid \FUNREF{\Var}\\
  8183. \Def &::=& \gray{ \FUNDEF{\Var}{([\Var \code{:} \Type]\ldots)}{\Type}{\code{'()}}{\Exp} }\\
  8184. \LangFunRef{} &::=& \PROGRAMDEFS{\code{'()}}{\LP \Def\ldots \RP}
  8185. \end{array}
  8186. \]
  8187. \end{minipage}
  8188. }
  8189. \caption{The abstract syntax \LangFunRef{}, an extension of \LangFun{}
  8190. (Figure~\ref{fig:Rfun-syntax}).}
  8191. \label{fig:f1-syntax}
  8192. \end{figure}
  8193. %% Distinguishing between calls in tail position and non-tail position
  8194. %% requires the pass to have some notion of context. We recommend using
  8195. %% two mutually recursive functions, one for processing expressions in
  8196. %% tail position and another for the rest.
  8197. Placing this pass after \code{uniquify} will make sure that there are
  8198. no local variables and functions that share the same name. On the
  8199. other hand, \code{reveal-functions} needs to come before the
  8200. \code{explicate-control} pass because that pass helps us compile
  8201. \code{FunRef} forms into assignment statements.
  8202. \section{Limit Functions}
  8203. \label{sec:limit-functions-r4}
  8204. Recall that we wish to limit the number of function parameters to six
  8205. so that we do not need to use the stack for argument passing, which
  8206. makes it easier to implement efficient tail calls. However, because
  8207. the input language \LangFun{} supports arbitrary numbers of function
  8208. arguments, we have some work to do!
  8209. This pass transforms functions and function calls that involve more
  8210. than six arguments to pass the first five arguments as usual, but it
  8211. packs the rest of the arguments into a vector and passes it as the
  8212. sixth argument.
  8213. Each function definition with too many parameters is transformed as
  8214. follows.
  8215. \begin{lstlisting}
  8216. (Def |$f$| ([|$x_1$|:|$T_1$|] |$\ldots$| [|$x_n$|:|$T_n$|]) |$T_r$| |$\itm{info}$| |$\itm{body}$|)
  8217. |$\Rightarrow$|
  8218. (Def |$f$| ([|$x_1$|:|$T_1$|] |$\ldots$| [|$x_5$|:|$T_5$|] [vec : (Vector |$T_6 \ldots T_n$|)]) |$T_r$| |$\itm{info}$| |$\itm{body}'$|)
  8219. \end{lstlisting}
  8220. where the $\itm{body}$ is transformed into $\itm{body}'$ by replacing
  8221. the occurrences of the later parameters with vector references.
  8222. \begin{lstlisting}
  8223. (Var |$x_i$|) |$\Rightarrow$| (Prim 'vector-ref (list vec (Int |$(i - 6)$|)))
  8224. \end{lstlisting}
  8225. For function calls with too many arguments, the \code{limit-functions}
  8226. pass transforms them in the following way.
  8227. \begin{tabular}{lll}
  8228. \begin{minipage}{0.2\textwidth}
  8229. \begin{lstlisting}
  8230. (|$e_0$| |$e_1$| |$\ldots$| |$e_n$|)
  8231. \end{lstlisting}
  8232. \end{minipage}
  8233. &
  8234. $\Rightarrow$
  8235. &
  8236. \begin{minipage}{0.4\textwidth}
  8237. \begin{lstlisting}
  8238. (|$e_0$| |$e_1 \ldots e_5$| (vector |$e_6 \ldots e_n$|))
  8239. \end{lstlisting}
  8240. \end{minipage}
  8241. \end{tabular}
  8242. \section{Remove Complex Operands}
  8243. \label{sec:rco-r4}
  8244. The primary decisions to make for this pass is whether to classify
  8245. \code{FunRef} and \code{Apply} as either atomic or complex
  8246. expressions. Recall that a simple expression will eventually end up as
  8247. just an immediate argument of an x86 instruction. Function
  8248. application will be translated to a sequence of instructions, so
  8249. \code{Apply} must be classified as complex expression.
  8250. On the other hand, the arguments of \code{Apply} should be
  8251. atomic expressions.
  8252. %
  8253. Regarding \code{FunRef}, as discussed above, the function label needs
  8254. to be converted to an address using the \code{leaq} instruction. Thus,
  8255. even though \code{FunRef} seems rather simple, it needs to be
  8256. classified as a complex expression so that we generate an assignment
  8257. statement with a left-hand side that can serve as the target of the
  8258. \code{leaq}. Figure~\ref{fig:Rfun-anf-syntax} defines the
  8259. output language \LangFunANF{} of this pass.
  8260. \begin{figure}[tp]
  8261. \centering
  8262. \fbox{
  8263. \begin{minipage}{0.96\textwidth}
  8264. \small
  8265. \[
  8266. \begin{array}{rcl}
  8267. \Atm &::=& \gray{ \INT{\Int} \mid \VAR{\Var} \mid \BOOL{\itm{bool}}
  8268. \mid \VOID{} } \\
  8269. \Exp &::=& \gray{ \Atm \mid \READ{} } \\
  8270. &\mid& \gray{ \NEG{\Atm} \mid \ADD{\Atm}{\Atm} } \\
  8271. &\mid& \gray{ \LET{\Var}{\Exp}{\Exp} } \\
  8272. &\mid& \gray{ \UNIOP{\key{'not}}{\Atm} } \\
  8273. &\mid& \gray{ \BINOP{\itm{cmp}}{\Atm}{\Atm} \mid \IF{\Exp}{\Exp}{\Exp} }\\
  8274. &\mid& \gray{ \LP\key{Collect}~\Int\RP \mid \LP\key{Allocate}~\Int~\Type\RP
  8275. \mid \LP\key{GlobalValue}~\Var\RP }\\
  8276. &\mid& \FUNREF{\Var} \mid \APPLY{\Atm}{\Atm\ldots}\\
  8277. \Def &::=& \gray{ \FUNDEF{\Var}{([\Var \code{:} \Type]\ldots)}{\Type}{\code{'()}}{\Exp} }\\
  8278. R^{\dagger}_4 &::=& \gray{ \PROGRAMDEFS{\code{'()}}{\Def} }
  8279. \end{array}
  8280. \]
  8281. \end{minipage}
  8282. }
  8283. \caption{\LangFunANF{} is \LangFun{} in administrative normal form (ANF).}
  8284. \label{fig:Rfun-anf-syntax}
  8285. \end{figure}
  8286. \section{Explicate Control and the \LangCFun{} language}
  8287. \label{sec:explicate-control-r4}
  8288. Figure~\ref{fig:c3-syntax} defines the abstract syntax for \LangCFun{}, the
  8289. output of \key{explicate-control}. (The concrete syntax is given in
  8290. Figure~\ref{fig:c3-concrete-syntax} of the Appendix.) The auxiliary
  8291. functions for assignment and tail contexts should be updated with
  8292. cases for \code{Apply} and \code{FunRef} and the function for
  8293. predicate context should be updated for \code{Apply} but not
  8294. \code{FunRef}. (A \code{FunRef} can't be a Boolean.) In assignment
  8295. and predicate contexts, \code{Apply} becomes \code{Call}, whereas in
  8296. tail position \code{Apply} becomes \code{TailCall}. We recommend
  8297. defining a new auxiliary function for processing function definitions.
  8298. This code is similar to the case for \code{Program} in \LangVec{}. The
  8299. top-level \code{explicate-control} function that handles the
  8300. \code{ProgramDefs} form of \LangFun{} can then apply this new function to
  8301. all the function definitions.
  8302. \begin{figure}[tp]
  8303. \fbox{
  8304. \begin{minipage}{0.96\textwidth}
  8305. \small
  8306. \[
  8307. \begin{array}{lcl}
  8308. \Atm &::=& \gray{ \INT{\Int} \mid \VAR{\Var} \mid \BOOL{\itm{bool}} }\\
  8309. \itm{cmp} &::= & \gray{ \key{eq?} \mid \key{<} } \\
  8310. \Exp &::= & \gray{ \Atm \mid \READ{} } \\
  8311. &\mid& \gray{ \NEG{\Atm} \mid \ADD{\Atm}{\Atm} }\\
  8312. &\mid& \gray{ \UNIOP{\key{not}}{\Atm} \mid \BINOP{\itm{cmp}}{\Atm}{\Atm} } \\
  8313. &\mid& \gray{ \LP\key{Allocate} \,\itm{int}\,\itm{type}\RP } \\
  8314. &\mid& \gray{ \BINOP{\key{'vector-ref}}{\Atm}{\INT{\Int}} }\\
  8315. &\mid& \gray{ \LP\key{Prim}~\key{'vector-set!}\,\LP\key{list}\,\Atm\,\INT{\Int}\,\Atm\RP\RP }\\
  8316. &\mid& \gray{ \LP\key{GlobalValue} \,\Var\RP \mid \LP\key{Void}\RP }\\
  8317. &\mid& \FUNREF{\itm{label}} \mid \CALL{\Atm}{\LP\Atm\ldots\RP} \\
  8318. \Stmt &::=& \gray{ \ASSIGN{\VAR{\Var}}{\Exp}
  8319. \mid \LP\key{Collect} \,\itm{int}\RP } \\
  8320. \Tail &::= & \gray{ \RETURN{\Exp} \mid \SEQ{\Stmt}{\Tail}
  8321. \mid \GOTO{\itm{label}} } \\
  8322. &\mid& \gray{ \IFSTMT{\BINOP{\itm{cmp}}{\Atm}{\Atm}}{\GOTO{\itm{label}}}{\GOTO{\itm{label}}} }\\
  8323. &\mid& \TAILCALL{\Atm}{\Atm\ldots} \\
  8324. \Def &::=& \DEF{\itm{label}}{\LP[\Var\key{:}\Type]\ldots\RP}{\Type}{\itm{info}}{\LP\LP\itm{label}\,\key{.}\,\Tail\RP\ldots\RP}\\
  8325. \LangCFun{} & ::= & \PROGRAMDEFS{\itm{info}}{\LP\Def\ldots\RP}
  8326. \end{array}
  8327. \]
  8328. \end{minipage}
  8329. }
  8330. \caption{The abstract syntax of \LangCFun{}, extending \LangCVec{} (Figure~\ref{fig:c2-syntax}).}
  8331. \label{fig:c3-syntax}
  8332. \end{figure}
  8333. \section{Select Instructions and the \LangXIndCall{} Language}
  8334. \label{sec:select-r4}
  8335. \index{instruction selection}
  8336. The output of select instructions is a program in the \LangXIndCall{}
  8337. language, whose syntax is defined in Figure~\ref{fig:x86-3}.
  8338. \index{x86}
  8339. \begin{figure}[tp]
  8340. \fbox{
  8341. \begin{minipage}{0.96\textwidth}
  8342. \small
  8343. \[
  8344. \begin{array}{lcl}
  8345. \Arg &::=& \gray{ \key{\$}\Int \mid \key{\%}\Reg \mid \Int\key{(}\key{\%}\Reg\key{)} \mid \key{\%}\itm{bytereg} } \mid \Var \key{(\%rip)}
  8346. \mid \LP\key{fun-ref}\; \itm{label}\RP\\
  8347. \itm{cc} & ::= & \gray{ \key{e} \mid \key{l} \mid \key{le} \mid \key{g} \mid \key{ge} } \\
  8348. \Instr &::=& \ldots
  8349. \mid \key{callq}\;\key{*}\Arg \mid \key{tailjmp}\;\Arg
  8350. \mid \key{leaq}\;\Arg\key{,}\;\key{\%}\Reg \\
  8351. \Block &::= & \Instr\ldots \\
  8352. \Def &::= & \LP\key{define} \; \LP\itm{label}\RP \;\LP\LP\itm{label} \,\key{.}\, \Block\RP\ldots\RP\RP\\
  8353. \LangXIndCall{} &::= & \Def\ldots
  8354. \end{array}
  8355. \]
  8356. \end{minipage}
  8357. }
  8358. \caption{The concrete syntax of \LangXIndCall{} (extends \LangXGlobal{} of Figure~\ref{fig:x86-2-concrete}).}
  8359. \label{fig:x86-3-concrete}
  8360. \end{figure}
  8361. \begin{figure}[tp]
  8362. \fbox{
  8363. \begin{minipage}{0.96\textwidth}
  8364. \small
  8365. \[
  8366. \begin{array}{lcl}
  8367. \Arg &::=& \gray{ \INT{\Int} \mid \REG{\Reg} \mid \DEREF{\Reg}{\Int}
  8368. \mid \BYTEREG{\Reg} } \\
  8369. &\mid& \gray{ (\key{Global}~\Var) } \mid \FUNREF{\itm{label}} \\
  8370. \Instr &::=& \ldots \mid \INDCALLQ{\Arg}{\itm{int}}
  8371. \mid \TAILJMP{\Arg}{\itm{int}}\\
  8372. &\mid& \BININSTR{\code{'leaq}}{\Arg}{\REG{\Reg}}\\
  8373. \Block &::= & \BLOCK{\itm{info}}{\LP\Instr\ldots\RP}\\
  8374. \Def &::= & \DEF{\itm{label}}{\code{'()}}{\Type}{\itm{info}}{\LP\LP\itm{label}\,\key{.}\,\Block\RP\ldots\RP} \\
  8375. \LangXIndCall{} &::= & \PROGRAMDEFS{\itm{info}}{\LP\Def\ldots\RP}
  8376. \end{array}
  8377. \]
  8378. \end{minipage}
  8379. }
  8380. \caption{The abstract syntax of \LangXIndCall{} (extends
  8381. \LangXGlobal{} of Figure~\ref{fig:x86-2}).}
  8382. \label{fig:x86-3}
  8383. \end{figure}
  8384. An assignment of a function reference to a variable becomes a
  8385. load-effective-address instruction as follows: \\
  8386. \begin{tabular}{lcl}
  8387. \begin{minipage}{0.35\textwidth}
  8388. \begin{lstlisting}
  8389. |$\itm{lhs}$| = (fun-ref |$f$|);
  8390. \end{lstlisting}
  8391. \end{minipage}
  8392. &
  8393. $\Rightarrow$\qquad\qquad
  8394. &
  8395. \begin{minipage}{0.3\textwidth}
  8396. \begin{lstlisting}
  8397. leaq (fun-ref |$f$|), |$\itm{lhs}'$|
  8398. \end{lstlisting}
  8399. \end{minipage}
  8400. \end{tabular} \\
  8401. Regarding function definitions, we need to remove the parameters and
  8402. instead perform parameter passing using the conventions discussed in
  8403. Section~\ref{sec:fun-x86}. That is, the arguments are passed in
  8404. registers. We recommend turning the parameters into local variables
  8405. and generating instructions at the beginning of the function to move
  8406. from the argument passing registers to these local variables.
  8407. \begin{lstlisting}
  8408. (Def |$f$| '([|$x_1$| : |$T_1$|] [|$x_2$| : |$T_2$|] |$\ldots$| ) |$T_r$| |$\itm{info}$| |$G$|)
  8409. |$\Rightarrow$|
  8410. (Def |$f$| '() 'Integer |$\itm{info}'$| |$G'$|)
  8411. \end{lstlisting}
  8412. The $G'$ control-flow graph is the same as $G$ except that the
  8413. \code{start} block is modified to add the instructions for moving from
  8414. the argument registers to the parameter variables. So the \code{start}
  8415. block of $G$ shown on the left is changed to the code on the right.
  8416. \begin{center}
  8417. \begin{minipage}{0.3\textwidth}
  8418. \begin{lstlisting}
  8419. start:
  8420. |$\itm{instr}_1$|
  8421. |$\vdots$|
  8422. |$\itm{instr}_n$|
  8423. \end{lstlisting}
  8424. \end{minipage}
  8425. $\Rightarrow$
  8426. \begin{minipage}{0.3\textwidth}
  8427. \begin{lstlisting}
  8428. start:
  8429. movq %rdi, |$x_1$|
  8430. movq %rsi, |$x_2$|
  8431. |$\vdots$|
  8432. |$\itm{instr}_1$|
  8433. |$\vdots$|
  8434. |$\itm{instr}_n$|
  8435. \end{lstlisting}
  8436. \end{minipage}
  8437. \end{center}
  8438. By changing the parameters to local variables, we are giving the
  8439. register allocator control over which registers or stack locations to
  8440. use for them. If you implemented the move-biasing challenge
  8441. (Section~\ref{sec:move-biasing}), the register allocator will try to
  8442. assign the parameter variables to the corresponding argument register,
  8443. in which case the \code{patch-instructions} pass will remove the
  8444. \code{movq} instruction. This happens in the example translation in
  8445. Figure~\ref{fig:add-fun} of Section~\ref{sec:functions-example}, in
  8446. the \code{add} function.
  8447. %
  8448. Also, note that the register allocator will perform liveness analysis
  8449. on this sequence of move instructions and build the interference
  8450. graph. So, for example, $x_1$ will be marked as interfering with
  8451. \code{rsi} and that will prevent the assignment of $x_1$ to
  8452. \code{rsi}, which is good, because that would overwrite the argument
  8453. that needs to move into $x_2$.
  8454. Next, consider the compilation of function calls. In the mirror image
  8455. of handling the parameters of function definitions, the arguments need
  8456. to be moved to the argument passing registers. The function call
  8457. itself is performed with an indirect function call. The return value
  8458. from the function is stored in \code{rax}, so it needs to be moved
  8459. into the \itm{lhs}.
  8460. \begin{lstlisting}
  8461. |\itm{lhs}| = (call |\itm{fun}| |$\itm{arg}_1~\itm{arg}_2\ldots$|));
  8462. |$\Rightarrow$|
  8463. movq |$\itm{arg}_1$|, %rdi
  8464. movq |$\itm{arg}_2$|, %rsi
  8465. |$\vdots$|
  8466. callq *|\itm{fun}|
  8467. movq %rax, |\itm{lhs}|
  8468. \end{lstlisting}
  8469. The \code{IndirectCallq} AST node includes an integer for the arity of
  8470. the function, i.e., the number of parameters. That information is
  8471. useful in the \code{uncover-live} pass for determining which
  8472. argument-passing registers are potentially read during the call.
  8473. For tail calls, the parameter passing is the same as non-tail calls:
  8474. generate instructions to move the arguments into to the argument
  8475. passing registers. After that we need to pop the frame from the
  8476. procedure call stack. However, we do not yet know how big the frame
  8477. is; that gets determined during register allocation. So instead of
  8478. generating those instructions here, we invent a new instruction that
  8479. means ``pop the frame and then do an indirect jump'', which we name
  8480. \code{TailJmp}. The abstract syntax for this instruction includes an
  8481. argument that specifies where to jump and an integer that represents
  8482. the arity of the function being called.
  8483. Recall that in Section~\ref{sec:explicate-control-Rvar} we recommended
  8484. using the label \code{start} for the initial block of a program, and
  8485. in Section~\ref{sec:select-Rvar} we recommended labeling the conclusion
  8486. of the program with \code{conclusion}, so that $(\key{Return}\;\Arg)$
  8487. can be compiled to an assignment to \code{rax} followed by a jump to
  8488. \code{conclusion}. With the addition of function definitions, we will
  8489. have a starting block and conclusion for each function, but their
  8490. labels need to be unique. We recommend prepending the function's name
  8491. to \code{start} and \code{conclusion}, respectively, to obtain unique
  8492. labels. (Alternatively, one could \code{gensym} labels for the start
  8493. and conclusion and store them in the $\itm{info}$ field of the
  8494. function definition.)
  8495. \section{Register Allocation}
  8496. \label{sec:register-allocation-r4}
  8497. \subsection{Liveness Analysis}
  8498. \label{sec:liveness-analysis-r4}
  8499. \index{liveness analysis}
  8500. %% The rest of the passes need only minor modifications to handle the new
  8501. %% kinds of AST nodes: \code{fun-ref}, \code{indirect-callq}, and
  8502. %% \code{leaq}.
  8503. The \code{IndirectCallq} instruction should be treated like
  8504. \code{Callq} regarding its written locations $W$, in that they should
  8505. include all the caller-saved registers. Recall that the reason for
  8506. that is to force call-live variables to be assigned to callee-saved
  8507. registers or to be spilled to the stack.
  8508. Regarding the set of read locations $R$ the arity field of
  8509. \code{TailJmp} and \code{IndirectCallq} determines how many of the
  8510. argument-passing registers should be considered as read by those
  8511. instructions.
  8512. \subsection{Build Interference Graph}
  8513. \label{sec:build-interference-r4}
  8514. With the addition of function definitions, we compute an interference
  8515. graph for each function (not just one for the whole program).
  8516. Recall that in Section~\ref{sec:reg-alloc-gc} we discussed the need to
  8517. spill vector-typed variables that are live during a call to the
  8518. \code{collect}. With the addition of functions to our language, we
  8519. need to revisit this issue. Many functions perform allocation and
  8520. therefore have calls to the collector inside of them. Thus, we should
  8521. not only spill a vector-typed variable when it is live during a call
  8522. to \code{collect}, but we should spill the variable if it is live
  8523. during any function call. Thus, in the \code{build-interference} pass,
  8524. we recommend adding interference edges between call-live vector-typed
  8525. variables and the callee-saved registers (in addition to the usual
  8526. addition of edges between call-live variables and the caller-saved
  8527. registers).
  8528. \subsection{Allocate Registers}
  8529. The primary change to the \code{allocate-registers} pass is adding an
  8530. auxiliary function for handling definitions (the \Def{} non-terminal
  8531. in Figure~\ref{fig:x86-3}) with one case for function definitions. The
  8532. logic is the same as described in
  8533. Chapter~\ref{ch:register-allocation-Rvar}, except now register
  8534. allocation is performed many times, once for each function definition,
  8535. instead of just once for the whole program.
  8536. \section{Patch Instructions}
  8537. In \code{patch-instructions}, you should deal with the x86
  8538. idiosyncrasy that the destination argument of \code{leaq} must be a
  8539. register. Additionally, you should ensure that the argument of
  8540. \code{TailJmp} is \itm{rax}, our reserved register---this is to make
  8541. code generation more convenient, because we trample many registers
  8542. before the tail call (as explained in the next section).
  8543. \section{Print x86}
  8544. For the \code{print-x86} pass, the cases for \code{FunRef} and
  8545. \code{IndirectCallq} are straightforward: output their concrete
  8546. syntax.
  8547. \begin{lstlisting}
  8548. (FunRef |\itm{label}|) |$\Rightarrow$| |\itm{label}|(%rip)
  8549. (IndirectCallq |\itm{arg}| |\itm{int}|) |$\Rightarrow$| callq *|\itm{arg}'|
  8550. \end{lstlisting}
  8551. The \code{TailJmp} node requires a bit work. A straightforward
  8552. translation of \code{TailJmp} would be \code{jmp *$\itm{arg}$}, but
  8553. before the jump we need to pop the current frame. This sequence of
  8554. instructions is the same as the code for the conclusion of a function,
  8555. except the \code{retq} is replaced with \code{jmp *$\itm{arg}$}.
  8556. Regarding function definitions, you will need to generate a prelude
  8557. and conclusion for each one. This code is similar to the prelude and
  8558. conclusion that you generated for the \code{main} function in
  8559. Chapter~\ref{ch:Rvec}. To review, the prelude of every function
  8560. should carry out the following steps.
  8561. \begin{enumerate}
  8562. \item Start with \code{.global} and \code{.align} directives followed
  8563. by the label for the function. (See Figure~\ref{fig:add-fun} for an
  8564. example.)
  8565. \item Push \code{rbp} to the stack and set \code{rbp} to current stack
  8566. pointer.
  8567. \item Push to the stack all of the callee-saved registers that were
  8568. used for register allocation.
  8569. \item Move the stack pointer \code{rsp} down by the size of the stack
  8570. frame for this function, which depends on the number of regular
  8571. spills. (Aligned to 16 bytes.)
  8572. \item Move the root stack pointer \code{r15} up by the size of the
  8573. root-stack frame for this function, which depends on the number of
  8574. spilled vectors. \label{root-stack-init}
  8575. \item Initialize to zero all of the entries in the root-stack frame.
  8576. \item Jump to the start block.
  8577. \end{enumerate}
  8578. The prelude of the \code{main} function has one additional task: call
  8579. the \code{initialize} function to set up the garbage collector and
  8580. move the value of the global \code{rootstack\_begin} in
  8581. \code{r15}. This should happen before step \ref{root-stack-init}
  8582. above, which depends on \code{r15}.
  8583. The conclusion of every function should do the following.
  8584. \begin{enumerate}
  8585. \item Move the stack pointer back up by the size of the stack frame
  8586. for this function.
  8587. \item Restore the callee-saved registers by popping them from the
  8588. stack.
  8589. \item Move the root stack pointer back down by the size of the
  8590. root-stack frame for this function.
  8591. \item Restore \code{rbp} by popping it from the stack.
  8592. \item Return to the caller with the \code{retq} instruction.
  8593. \end{enumerate}
  8594. \begin{exercise}\normalfont
  8595. Expand your compiler to handle \LangFun{} as outlined in this chapter.
  8596. Create 5 new programs that use functions, including examples that pass
  8597. functions and return functions from other functions, recursive
  8598. functions, functions that create vectors, and functions that make tail
  8599. calls. Test your compiler on these new programs and all of your
  8600. previously created test programs.
  8601. \end{exercise}
  8602. \begin{figure}[tbp]
  8603. \begin{tikzpicture}[baseline=(current bounding box.center)]
  8604. \node (Rfun) at (0,2) {\large \LangFun{}};
  8605. \node (Rfun-1) at (3,2) {\large \LangFun{}};
  8606. \node (Rfun-2) at (6,2) {\large \LangFun{}};
  8607. \node (F1-1) at (12,0) {\large \LangFunRef{}};
  8608. \node (F1-2) at (9,0) {\large \LangFunRef{}};
  8609. \node (F1-3) at (6,0) {\large \LangFunRefAlloc{}};
  8610. \node (F1-4) at (3,0) {\large \LangFunRefAlloc{}};
  8611. \node (C3-2) at (3,-2) {\large \LangCFun{}};
  8612. \node (x86-2) at (3,-4) {\large \LangXIndCallVar{}};
  8613. \node (x86-3) at (6,-4) {\large \LangXIndCallVar{}};
  8614. \node (x86-4) at (9,-4) {\large \LangXIndCall{}};
  8615. \node (x86-5) at (9,-6) {\large \LangXIndCall{}};
  8616. \node (x86-2-1) at (3,-6) {\large \LangXIndCallVar{}};
  8617. \node (x86-2-2) at (6,-6) {\large \LangXIndCallVar{}};
  8618. \path[->,bend left=15] (Rfun) edge [above] node
  8619. {\ttfamily\footnotesize shrink} (Rfun-1);
  8620. \path[->,bend left=15] (Rfun-1) edge [above] node
  8621. {\ttfamily\footnotesize uniquify} (Rfun-2);
  8622. \path[->,bend left=15] (Rfun-2) edge [right] node
  8623. {\ttfamily\footnotesize ~~reveal-functions} (F1-1);
  8624. \path[->,bend left=15] (F1-1) edge [below] node
  8625. {\ttfamily\footnotesize limit-functions} (F1-2);
  8626. \path[->,bend right=15] (F1-2) edge [above] node
  8627. {\ttfamily\footnotesize expose-alloc.} (F1-3);
  8628. \path[->,bend right=15] (F1-3) edge [above] node
  8629. {\ttfamily\footnotesize remove-complex.} (F1-4);
  8630. \path[->,bend left=15] (F1-4) edge [right] node
  8631. {\ttfamily\footnotesize explicate-control} (C3-2);
  8632. \path[->,bend right=15] (C3-2) edge [left] node
  8633. {\ttfamily\footnotesize select-instr.} (x86-2);
  8634. \path[->,bend left=15] (x86-2) edge [left] node
  8635. {\ttfamily\footnotesize uncover-live} (x86-2-1);
  8636. \path[->,bend right=15] (x86-2-1) edge [below] node
  8637. {\ttfamily\footnotesize build-inter.} (x86-2-2);
  8638. \path[->,bend right=15] (x86-2-2) edge [left] node
  8639. {\ttfamily\footnotesize allocate-reg.} (x86-3);
  8640. \path[->,bend left=15] (x86-3) edge [above] node
  8641. {\ttfamily\footnotesize patch-instr.} (x86-4);
  8642. \path[->,bend right=15] (x86-4) edge [left] node {\ttfamily\footnotesize print-x86} (x86-5);
  8643. \end{tikzpicture}
  8644. \caption{Diagram of the passes for \LangFun{}, a language with functions.}
  8645. \label{fig:Rfun-passes}
  8646. \end{figure}
  8647. Figure~\ref{fig:Rfun-passes} gives an overview of the passes for
  8648. compiling \LangFun{} to x86.
  8649. \section{An Example Translation}
  8650. \label{sec:functions-example}
  8651. Figure~\ref{fig:add-fun} shows an example translation of a simple
  8652. function in \LangFun{} to x86. The figure also includes the results of the
  8653. \code{explicate-control} and \code{select-instructions} passes.
  8654. \begin{figure}[htbp]
  8655. \begin{tabular}{ll}
  8656. \begin{minipage}{0.5\textwidth}
  8657. % s3_2.rkt
  8658. \begin{lstlisting}[basicstyle=\ttfamily\scriptsize]
  8659. (define (add [x : Integer] [y : Integer])
  8660. : Integer
  8661. (+ x y))
  8662. (add 40 2)
  8663. \end{lstlisting}
  8664. $\Downarrow$
  8665. \begin{lstlisting}[basicstyle=\ttfamily\scriptsize]
  8666. (define (add86 [x87 : Integer]
  8667. [y88 : Integer]) : Integer
  8668. add86start:
  8669. return (+ x87 y88);
  8670. )
  8671. (define (main) : Integer ()
  8672. mainstart:
  8673. tmp89 = (fun-ref add86);
  8674. (tail-call tmp89 40 2)
  8675. )
  8676. \end{lstlisting}
  8677. \end{minipage}
  8678. &
  8679. $\Rightarrow$
  8680. \begin{minipage}{0.5\textwidth}
  8681. \begin{lstlisting}[basicstyle=\ttfamily\scriptsize]
  8682. (define (add86) : Integer
  8683. add86start:
  8684. movq %rdi, x87
  8685. movq %rsi, y88
  8686. movq x87, %rax
  8687. addq y88, %rax
  8688. jmp add11389conclusion
  8689. )
  8690. (define (main) : Integer
  8691. mainstart:
  8692. leaq (fun-ref add86), tmp89
  8693. movq $40, %rdi
  8694. movq $2, %rsi
  8695. tail-jmp tmp89
  8696. )
  8697. \end{lstlisting}
  8698. $\Downarrow$
  8699. \end{minipage}
  8700. \end{tabular}
  8701. \begin{tabular}{ll}
  8702. \begin{minipage}{0.3\textwidth}
  8703. \begin{lstlisting}[basicstyle=\ttfamily\scriptsize]
  8704. .globl add86
  8705. .align 16
  8706. add86:
  8707. pushq %rbp
  8708. movq %rsp, %rbp
  8709. jmp add86start
  8710. add86start:
  8711. movq %rdi, %rax
  8712. addq %rsi, %rax
  8713. jmp add86conclusion
  8714. add86conclusion:
  8715. popq %rbp
  8716. retq
  8717. \end{lstlisting}
  8718. \end{minipage}
  8719. &
  8720. \begin{minipage}{0.5\textwidth}
  8721. \begin{lstlisting}[basicstyle=\ttfamily\scriptsize]
  8722. .globl main
  8723. .align 16
  8724. main:
  8725. pushq %rbp
  8726. movq %rsp, %rbp
  8727. movq $16384, %rdi
  8728. movq $16384, %rsi
  8729. callq initialize
  8730. movq rootstack_begin(%rip), %r15
  8731. jmp mainstart
  8732. mainstart:
  8733. leaq add86(%rip), %rcx
  8734. movq $40, %rdi
  8735. movq $2, %rsi
  8736. movq %rcx, %rax
  8737. popq %rbp
  8738. jmp *%rax
  8739. mainconclusion:
  8740. popq %rbp
  8741. retq
  8742. \end{lstlisting}
  8743. \end{minipage}
  8744. \end{tabular}
  8745. \caption{Example compilation of a simple function to x86.}
  8746. \label{fig:add-fun}
  8747. \end{figure}
  8748. % Challenge idea: inlining! (simple version)
  8749. % Further Reading
  8750. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  8751. \chapter{Lexically Scoped Functions}
  8752. \label{ch:Rlam}
  8753. \index{lambda}
  8754. \index{lexical scoping}
  8755. This chapter studies lexically scoped functions as they appear in
  8756. functional languages such as Racket. By lexical scoping we mean that a
  8757. function's body may refer to variables whose binding site is outside
  8758. of the function, in an enclosing scope.
  8759. %
  8760. Consider the example in Figure~\ref{fig:lexical-scoping} written in
  8761. \LangLam{}, which extends \LangFun{} with anonymous functions using the
  8762. \key{lambda} form. The body of the \key{lambda}, refers to three
  8763. variables: \code{x}, \code{y}, and \code{z}. The binding sites for
  8764. \code{x} and \code{y} are outside of the \key{lambda}. Variable
  8765. \code{y} is bound by the enclosing \key{let} and \code{x} is a
  8766. parameter of function \code{f}. The \key{lambda} is returned from the
  8767. function \code{f}. The main expression of the program includes two
  8768. calls to \code{f} with different arguments for \code{x}, first
  8769. \code{5} then \code{3}. The functions returned from \code{f} are bound
  8770. to variables \code{g} and \code{h}. Even though these two functions
  8771. were created by the same \code{lambda}, they are really different
  8772. functions because they use different values for \code{x}. Applying
  8773. \code{g} to \code{11} produces \code{20} whereas applying \code{h} to
  8774. \code{15} produces \code{22}. The result of this program is \code{42}.
  8775. \begin{figure}[btp]
  8776. % s4_6.rkt
  8777. \begin{lstlisting}
  8778. (define (f [x : Integer]) : (Integer -> Integer)
  8779. (let ([y 4])
  8780. (lambda: ([z : Integer]) : Integer
  8781. (+ x (+ y z)))))
  8782. (let ([g (f 5)])
  8783. (let ([h (f 3)])
  8784. (+ (g 11) (h 15))))
  8785. \end{lstlisting}
  8786. \caption{Example of a lexically scoped function.}
  8787. \label{fig:lexical-scoping}
  8788. \end{figure}
  8789. The approach that we take for implementing lexically scoped
  8790. functions is to compile them into top-level function definitions,
  8791. translating from \LangLam{} into \LangFun{}. However, the compiler will need to
  8792. provide special treatment for variable occurrences such as \code{x}
  8793. and \code{y} in the body of the \code{lambda} of
  8794. Figure~\ref{fig:lexical-scoping}. After all, an \LangFun{} function may not
  8795. refer to variables defined outside of it. To identify such variable
  8796. occurrences, we review the standard notion of free variable.
  8797. \begin{definition}
  8798. A variable is \emph{free in expression} $e$ if the variable occurs
  8799. inside $e$ but does not have an enclosing binding in $e$.\index{free
  8800. variable}
  8801. \end{definition}
  8802. For example, in the expression \code{(+ x (+ y z))} the variables
  8803. \code{x}, \code{y}, and \code{z} are all free. On the other hand,
  8804. only \code{x} and \code{y} are free in the following expression
  8805. because \code{z} is bound by the \code{lambda}.
  8806. \begin{lstlisting}
  8807. (lambda: ([z : Integer]) : Integer
  8808. (+ x (+ y z)))
  8809. \end{lstlisting}
  8810. So the free variables of a \code{lambda} are the ones that will need
  8811. special treatment. We need to arrange for some way to transport, at
  8812. runtime, the values of those variables from the point where the
  8813. \code{lambda} was created to the point where the \code{lambda} is
  8814. applied. An efficient solution to the problem, due to
  8815. \citet{Cardelli:1983aa}, is to bundle into a vector the values of the
  8816. free variables together with the function pointer for the lambda's
  8817. code, an arrangement called a \emph{flat closure} (which we shorten to
  8818. just ``closure''). \index{closure}\index{flat closure} Fortunately,
  8819. we have all the ingredients to make closures, Chapter~\ref{ch:Rvec}
  8820. gave us vectors and Chapter~\ref{ch:Rfun} gave us function
  8821. pointers. The function pointer resides at index $0$ and the
  8822. values for the free variables will fill in the rest of the vector.
  8823. Let us revisit the example in Figure~\ref{fig:lexical-scoping} to see
  8824. how closures work. It's a three-step dance. The program first calls
  8825. function \code{f}, which creates a closure for the \code{lambda}. The
  8826. closure is a vector whose first element is a pointer to the top-level
  8827. function that we will generate for the \code{lambda}, the second
  8828. element is the value of \code{x}, which is \code{5}, and the third
  8829. element is \code{4}, the value of \code{y}. The closure does not
  8830. contain an element for \code{z} because \code{z} is not a free
  8831. variable of the \code{lambda}. Creating the closure is step 1 of the
  8832. dance. The closure is returned from \code{f} and bound to \code{g}, as
  8833. shown in Figure~\ref{fig:closures}.
  8834. %
  8835. The second call to \code{f} creates another closure, this time with
  8836. \code{3} in the second slot (for \code{x}). This closure is also
  8837. returned from \code{f} but bound to \code{h}, which is also shown in
  8838. Figure~\ref{fig:closures}.
  8839. \begin{figure}[tbp]
  8840. \centering \includegraphics[width=0.6\textwidth]{figs/closures}
  8841. \caption{Example closure representation for the \key{lambda}'s
  8842. in Figure~\ref{fig:lexical-scoping}.}
  8843. \label{fig:closures}
  8844. \end{figure}
  8845. Continuing with the example, consider the application of \code{g} to
  8846. \code{11} in Figure~\ref{fig:lexical-scoping}. To apply a closure, we
  8847. obtain the function pointer in the first element of the closure and
  8848. call it, passing in the closure itself and then the regular arguments,
  8849. in this case \code{11}. This technique for applying a closure is step
  8850. 2 of the dance.
  8851. %
  8852. But doesn't this \code{lambda} only take 1 argument, for parameter
  8853. \code{z}? The third and final step of the dance is generating a
  8854. top-level function for a \code{lambda}. We add an additional
  8855. parameter for the closure and we insert a \code{let} at the beginning
  8856. of the function for each free variable, to bind those variables to the
  8857. appropriate elements from the closure parameter.
  8858. %
  8859. This three-step dance is known as \emph{closure conversion}. We
  8860. discuss the details of closure conversion in
  8861. Section~\ref{sec:closure-conversion} and the code generated from the
  8862. example in Section~\ref{sec:example-lambda}. But first we define the
  8863. syntax and semantics of \LangLam{} in Section~\ref{sec:r5}.
  8864. \section{The \LangLam{} Language}
  8865. \label{sec:r5}
  8866. The concrete and abstract syntax for \LangLam{}, a language with anonymous
  8867. functions and lexical scoping, is defined in
  8868. Figures~\ref{fig:Rlam-concrete-syntax} and ~\ref{fig:Rlam-syntax}. It adds
  8869. the \key{lambda} form to the grammar for \LangFun{}, which already has
  8870. syntax for function application.
  8871. \begin{figure}[tp]
  8872. \centering
  8873. \fbox{
  8874. \begin{minipage}{0.96\textwidth}
  8875. \small
  8876. \[
  8877. \begin{array}{lcl}
  8878. \Type &::=& \gray{\key{Integer} \mid \key{Boolean}
  8879. \mid (\key{Vector}\;\Type\ldots) \mid \key{Void}
  8880. \mid (\Type\ldots \; \key{->}\; \Type)} \\
  8881. \Exp &::=& \gray{ \Int \mid \CREAD{} \mid \CNEG{\Exp}
  8882. \mid \CADD{\Exp}{\Exp} \mid \CSUB{\Exp}{\Exp} } \\
  8883. &\mid& \gray{ \Var \mid \CLET{\Var}{\Exp}{\Exp} }\\
  8884. &\mid& \gray{\key{\#t} \mid \key{\#f}
  8885. \mid (\key{and}\;\Exp\;\Exp)
  8886. \mid (\key{or}\;\Exp\;\Exp)
  8887. \mid (\key{not}\;\Exp) } \\
  8888. &\mid& \gray{ (\key{eq?}\;\Exp\;\Exp) \mid \CIF{\Exp}{\Exp}{\Exp} } \\
  8889. &\mid& \gray{ (\key{vector}\;\Exp\ldots) \mid
  8890. (\key{vector-ref}\;\Exp\;\Int)} \\
  8891. &\mid& \gray{(\key{vector-set!}\;\Exp\;\Int\;\Exp)\mid (\key{void})
  8892. \mid (\Exp \; \Exp\ldots) } \\
  8893. &\mid& \LP \key{procedure-arity}~\Exp\RP \\
  8894. &\mid& \CLAMBDA{\LP\LS\Var \key{:} \Type\RS\ldots\RP}{\Type}{\Exp} \\
  8895. \Def &::=& \gray{ \CDEF{\Var}{\LS\Var \key{:} \Type\RS\ldots}{\Type}{\Exp} } \\
  8896. \LangLam{} &::=& \gray{\Def\ldots \; \Exp}
  8897. \end{array}
  8898. \]
  8899. \end{minipage}
  8900. }
  8901. \caption{The concrete syntax of \LangLam{}, extending \LangFun{} (Figure~\ref{fig:Rfun-concrete-syntax})
  8902. with \key{lambda}.}
  8903. \label{fig:Rlam-concrete-syntax}
  8904. \end{figure}
  8905. \begin{figure}[tp]
  8906. \centering
  8907. \fbox{
  8908. \begin{minipage}{0.96\textwidth}
  8909. \small
  8910. \[
  8911. \begin{array}{lcl}
  8912. \itm{op} &::=& \ldots \mid \code{procedure-arity} \\
  8913. \Exp &::=& \gray{ \INT{\Int} \VAR{\Var} \mid \LET{\Var}{\Exp}{\Exp} } \\
  8914. &\mid& \gray{ \PRIM{\itm{op}}{\Exp\ldots} }\\
  8915. &\mid& \gray{ \BOOL{\itm{bool}}
  8916. \mid \IF{\Exp}{\Exp}{\Exp} } \\
  8917. &\mid& \gray{ \VOID{} \mid \LP\key{HasType}~\Exp~\Type \RP
  8918. \mid \APPLY{\Exp}{\Exp\ldots} }\\
  8919. &\mid& \LAMBDA{\LP\LS\Var\code{:}\Type\RS\ldots\RP}{\Type}{\Exp}\\
  8920. \Def &::=& \gray{ \FUNDEF{\Var}{\LP\LS\Var \code{:} \Type\RS\ldots\RP}{\Type}{\code{'()}}{\Exp} }\\
  8921. \LangLam{} &::=& \gray{ \PROGRAMDEFSEXP{\code{'()}}{\LP\Def\ldots\RP}{\Exp} }
  8922. \end{array}
  8923. \]
  8924. \end{minipage}
  8925. }
  8926. \caption{The abstract syntax of \LangLam{}, extending \LangFun{} (Figure~\ref{fig:Rfun-syntax}).}
  8927. \label{fig:Rlam-syntax}
  8928. \end{figure}
  8929. \index{interpreter}
  8930. \label{sec:interp-Rlambda}
  8931. Figure~\ref{fig:interp-Rlambda} shows the definitional interpreter for
  8932. \LangLam{}. The case for \key{lambda} saves the current environment
  8933. inside the returned \key{lambda}. Then the case for \key{Apply} uses
  8934. the environment from the \key{lambda}, the \code{lam-env}, when
  8935. interpreting the body of the \key{lambda}. The \code{lam-env}
  8936. environment is extended with the mapping of parameters to argument
  8937. values.
  8938. \begin{figure}[tbp]
  8939. \begin{lstlisting}
  8940. (define interp-Rlambda-class
  8941. (class interp-Rfun-class
  8942. (super-new)
  8943. (define/override (interp-op op)
  8944. (match op
  8945. ['procedure-arity
  8946. (lambda (v)
  8947. (match v
  8948. [`(function (,xs ...) ,body ,lam-env) (length xs)]
  8949. [else (error 'interp-op "expected a function, not ~a" v)]))]
  8950. [else (super interp-op op)]))
  8951. (define/override ((interp-exp env) e)
  8952. (define recur (interp-exp env))
  8953. (match e
  8954. [(Lambda (list `[,xs : ,Ts] ...) rT body)
  8955. `(function ,xs ,body ,env)]
  8956. [else ((super interp-exp env) e)]))
  8957. ))
  8958. (define (interp-Rlambda p)
  8959. (send (new interp-Rlambda-class) interp-program p))
  8960. \end{lstlisting}
  8961. \caption{Interpreter for \LangLam{}.}
  8962. \label{fig:interp-Rlambda}
  8963. \end{figure}
  8964. \label{sec:type-check-r5}
  8965. \index{type checking}
  8966. Figure~\ref{fig:type-check-Rlambda} shows how to type check the new
  8967. \key{lambda} form. The body of the \key{lambda} is checked in an
  8968. environment that includes the current environment (because it is
  8969. lexically scoped) and also includes the \key{lambda}'s parameters. We
  8970. require the body's type to match the declared return type.
  8971. \begin{figure}[tbp]
  8972. \begin{lstlisting}
  8973. (define (type-check-Rlambda env)
  8974. (lambda (e)
  8975. (match e
  8976. [(Lambda (and params `([,xs : ,Ts] ...)) rT body)
  8977. (define-values (new-body bodyT)
  8978. ((type-check-exp (append (map cons xs Ts) env)) body))
  8979. (define ty `(,@Ts -> ,rT))
  8980. (cond
  8981. [(equal? rT bodyT)
  8982. (values (HasType (Lambda params rT new-body) ty) ty)]
  8983. [else
  8984. (error "mismatch in return type" bodyT rT)])]
  8985. ...
  8986. )))
  8987. \end{lstlisting}
  8988. \caption{Type checking the \key{lambda}'s in \LangLam{}.}
  8989. \label{fig:type-check-Rlambda}
  8990. \end{figure}
  8991. \section{Reveal Functions and the $F_2$ language}
  8992. \label{sec:reveal-functions-r5}
  8993. To support the \code{procedure-arity} operator we need to communicate
  8994. the arity of a function to the point of closure creation. We can
  8995. accomplish this by replacing the $\FUNREF{\Var}$ struct with one that
  8996. has a second field for the arity: $\FUNREFARITY{\Var}{\Int}$. The
  8997. output of this pass is the language $F_2$, whose syntax is defined in
  8998. Figure~\ref{fig:f2-syntax}.
  8999. \begin{figure}[tp]
  9000. \centering
  9001. \fbox{
  9002. \begin{minipage}{0.96\textwidth}
  9003. \[
  9004. \begin{array}{lcl}
  9005. \Exp &::=& \ldots \mid \FUNREFARITY{\Var}{\Int}\\
  9006. \Def &::=& \gray{ \FUNDEF{\Var}{([\Var \code{:} \Type]\ldots)}{\Type}{\code{'()}}{\Exp} }\\
  9007. F_2 &::=& \gray{\PROGRAMDEFS{\code{'()}}{\LP \Def\ldots \RP}}
  9008. \end{array}
  9009. \]
  9010. \end{minipage}
  9011. }
  9012. \caption{The abstract syntax $F_2$, an extension of \LangLam{}
  9013. (Figure~\ref{fig:Rlam-syntax}).}
  9014. \label{fig:f2-syntax}
  9015. \end{figure}
  9016. \section{Closure Conversion}
  9017. \label{sec:closure-conversion}
  9018. \index{closure conversion}
  9019. The compiling of lexically-scoped functions into top-level function
  9020. definitions is accomplished in the pass \code{convert-to-closures}
  9021. that comes after \code{reveal-functions} and before
  9022. \code{limit-functions}.
  9023. As usual, we implement the pass as a recursive function over the
  9024. AST. All of the action is in the cases for \key{Lambda} and
  9025. \key{Apply}. We transform a \key{Lambda} expression into an expression
  9026. that creates a closure, that is, a vector whose first element is a
  9027. function pointer and the rest of the elements are the free variables
  9028. of the \key{Lambda}. We use the struct \code{Closure} here instead of
  9029. using \code{vector} so that we can distinguish closures from vectors
  9030. in Section~\ref{sec:optimize-closures} and to record the arity. In
  9031. the generated code below, the \itm{name} is a unique symbol generated
  9032. to identify the function and the \itm{arity} is the number of
  9033. parameters (the length of \itm{ps}).
  9034. \begin{lstlisting}
  9035. (Lambda |\itm{ps}| |\itm{rt}| |\itm{body}|)
  9036. |$\Rightarrow$|
  9037. (Closure |\itm{arity}| (cons (FunRef |\itm{name}|) |\itm{fvs}|))
  9038. \end{lstlisting}
  9039. In addition to transforming each \key{Lambda} into a \key{Closure}, we
  9040. create a top-level function definition for each \key{Lambda}, as
  9041. shown below.\\
  9042. \begin{minipage}{0.8\textwidth}
  9043. \begin{lstlisting}
  9044. (Def |\itm{name}| ([clos : (Vector _ |\itm{fvts}| ...)] |\itm{ps'}| ...) |\itm{rt'}|
  9045. (Let |$\itm{fvs}_1$| (Prim 'vector-ref (list (Var clos) (Int 1)))
  9046. ...
  9047. (Let |$\itm{fvs}_n$| (Prim 'vector-ref (list (Var clos) (Int |$n$|)))
  9048. |\itm{body'}|)...))
  9049. \end{lstlisting}
  9050. \end{minipage}\\
  9051. The \code{clos} parameter refers to the closure. Translate the type
  9052. annotations in \itm{ps} and the return type \itm{rt}, as discussed in
  9053. the next paragraph, to obtain \itm{ps'} and \itm{rt'}. The types
  9054. $\itm{fvts}$ are the types of the free variables in the lambda and the
  9055. underscore \code{\_} is a dummy type that we use because it is rather
  9056. difficult to give a type to the function in the closure's
  9057. type.\footnote{To give an accurate type to a closure, we would need to
  9058. add existential types to the type checker~\citep{Minamide:1996ys}.}
  9059. The dummy type is considered to be equal to any other type during type
  9060. checking. The sequence of \key{Let} forms bind the free variables to
  9061. their values obtained from the closure.
  9062. Closure conversion turns functions into vectors, so the type
  9063. annotations in the program must also be translated. We recommend
  9064. defining a auxiliary recursive function for this purpose. Function
  9065. types should be translated as follows.
  9066. \begin{lstlisting}
  9067. (|$T_1, \ldots, T_n$| -> |$T_r$|)
  9068. |$\Rightarrow$|
  9069. (Vector ((Vector _) |$T'_1, \ldots, T'_n$| -> |$T'_r$|))
  9070. \end{lstlisting}
  9071. The above type says that the first thing in the vector is a function
  9072. pointer. The first parameter of the function pointer is a vector (a
  9073. closure) and the rest of the parameters are the ones from the original
  9074. function, with types $T'_1, \ldots, T'_n$. The \code{Vector} type for
  9075. the closure omits the types of the free variables because 1) those
  9076. types are not available in this context and 2) we do not need them in
  9077. the code that is generated for function application.
  9078. We transform function application into code that retrieves the
  9079. function pointer from the closure and then calls the function, passing
  9080. in the closure as the first argument. We bind $e'$ to a temporary
  9081. variable to avoid code duplication.
  9082. \begin{lstlisting}
  9083. (Apply |$e$| |\itm{es}|)
  9084. |$\Rightarrow$|
  9085. (Let |\itm{tmp}| |$e'$|
  9086. (Apply (Prim 'vector-ref (list (Var |\itm{tmp}|) (Int 0))) (cons |\itm{tmp}| |\itm{es'}|)))
  9087. \end{lstlisting}
  9088. There is also the question of what to do with references top-level
  9089. function definitions. To maintain a uniform translation of function
  9090. application, we turn function references into closures.
  9091. \begin{tabular}{lll}
  9092. \begin{minipage}{0.3\textwidth}
  9093. \begin{lstlisting}
  9094. (FunRefArity |$f$| |$n$|)
  9095. \end{lstlisting}
  9096. \end{minipage}
  9097. &
  9098. $\Rightarrow$
  9099. &
  9100. \begin{minipage}{0.5\textwidth}
  9101. \begin{lstlisting}
  9102. (Closure |$n$| (FunRef |$f$|) '())
  9103. \end{lstlisting}
  9104. \end{minipage}
  9105. \end{tabular} \\
  9106. %
  9107. The top-level function definitions need to be updated as well to take
  9108. an extra closure parameter.
  9109. \section{An Example Translation}
  9110. \label{sec:example-lambda}
  9111. Figure~\ref{fig:lexical-functions-example} shows the result of
  9112. \code{reveal-functions} and \code{convert-to-closures} for the example
  9113. program demonstrating lexical scoping that we discussed at the
  9114. beginning of this chapter.
  9115. \begin{figure}[tbp]
  9116. \begin{minipage}{0.8\textwidth}
  9117. % tests/lambda_test_6.rkt
  9118. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  9119. (define (f6 [x7 : Integer]) : (Integer -> Integer)
  9120. (let ([y8 4])
  9121. (lambda: ([z9 : Integer]) : Integer
  9122. (+ x7 (+ y8 z9)))))
  9123. (define (main) : Integer
  9124. (let ([g0 ((fun-ref-arity f6 1) 5)])
  9125. (let ([h1 ((fun-ref-arity f6 1) 3)])
  9126. (+ (g0 11) (h1 15)))))
  9127. \end{lstlisting}
  9128. $\Rightarrow$
  9129. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  9130. (define (f6 [fvs4 : _] [x7 : Integer]) : (Vector ((Vector _) Integer -> Integer))
  9131. (let ([y8 4])
  9132. (closure 1 (list (fun-ref lambda2) x7 y8))))
  9133. (define (lambda2 [fvs3 : (Vector _ Integer Integer)] [z9 : Integer]) : Integer
  9134. (let ([x7 (vector-ref fvs3 1)])
  9135. (let ([y8 (vector-ref fvs3 2)])
  9136. (+ x7 (+ y8 z9)))))
  9137. (define (main) : Integer
  9138. (let ([g0 (let ([clos5 (closure 1 (list (fun-ref f6)))])
  9139. ((vector-ref clos5 0) clos5 5))])
  9140. (let ([h1 (let ([clos6 (closure 1 (list (fun-ref f6)))])
  9141. ((vector-ref clos6 0) clos6 3))])
  9142. (+ ((vector-ref g0 0) g0 11) ((vector-ref h1 0) h1 15)))))
  9143. \end{lstlisting}
  9144. \end{minipage}
  9145. \caption{Example of closure conversion.}
  9146. \label{fig:lexical-functions-example}
  9147. \end{figure}
  9148. \begin{exercise}\normalfont
  9149. Expand your compiler to handle \LangLam{} as outlined in this chapter.
  9150. Create 5 new programs that use \key{lambda} functions and make use of
  9151. lexical scoping. Test your compiler on these new programs and all of
  9152. your previously created test programs.
  9153. \end{exercise}
  9154. \section{Expose Allocation}
  9155. \label{sec:expose-allocation-r5}
  9156. Compile the $\CLOSURE{\itm{arity}}{\LP\Exp\ldots\RP}$ form into code
  9157. that allocates and initializes a vector, similar to the translation of
  9158. the \code{vector} operator in Section~\ref{sec:expose-allocation}.
  9159. The only difference is replacing the use of
  9160. \ALLOC{\itm{len}}{\itm{type}} with
  9161. \ALLOCCLOS{\itm{len}}{\itm{type}}{\itm{arity}}.
  9162. \section{Explicate Control and \LangCLam{}}
  9163. \label{sec:explicate-r5}
  9164. The output language of \code{explicate-control} is \LangCLam{} whose
  9165. abstract syntax is defined in Figure~\ref{fig:c4-syntax}. The only
  9166. difference with respect to \LangCFun{} is the addition of the
  9167. \code{AllocateClosure} form to the grammar for $\Exp$. The handling
  9168. of \code{AllocateClosure} in the \code{explicate-control} pass is
  9169. similar to the handling of other expressions such as primitive
  9170. operators.
  9171. \begin{figure}[tp]
  9172. \fbox{
  9173. \begin{minipage}{0.96\textwidth}
  9174. \small
  9175. \[
  9176. \begin{array}{lcl}
  9177. \Exp &::= & \ldots
  9178. \mid \ALLOCCLOS{\Int}{\Type}{\Int} \\
  9179. \Stmt &::=& \gray{ \ASSIGN{\VAR{\Var}}{\Exp}
  9180. \mid \LP\key{Collect} \,\itm{int}\RP } \\
  9181. \Tail &::= & \gray{ \RETURN{\Exp} \mid \SEQ{\Stmt}{\Tail}
  9182. \mid \GOTO{\itm{label}} } \\
  9183. &\mid& \gray{ \IFSTMT{\BINOP{\itm{cmp}}{\Atm}{\Atm}}{\GOTO{\itm{label}}}{\GOTO{\itm{label}}} }\\
  9184. &\mid& \gray{ \TAILCALL{\Atm}{\Atm\ldots} } \\
  9185. \Def &::=& \gray{ \DEF{\itm{label}}{\LP[\Var\key{:}\Type]\ldots\RP}{\Type}{\itm{info}}{\LP\LP\itm{label}\,\key{.}\,\Tail\RP\ldots\RP} }\\
  9186. \LangCLam{} & ::= & \gray{ \PROGRAMDEFS{\itm{info}}{\LP\Def\ldots\RP} }
  9187. \end{array}
  9188. \]
  9189. \end{minipage}
  9190. }
  9191. \caption{The abstract syntax of \LangCLam{}, extending \LangCFun{} (Figure~\ref{fig:c3-syntax}).}
  9192. \label{fig:c4-syntax}
  9193. \end{figure}
  9194. \section{Select Instructions}
  9195. \label{sec:select-instructions-Rlambda}
  9196. Compile \ALLOCCLOS{\itm{len}}{\itm{type}}{\itm{arity}} in almost the
  9197. same way as the \ALLOC{\itm{len}}{\itm{type}} form
  9198. (Section~\ref{sec:select-instructions-gc}). The only difference is
  9199. that you should place the \itm{arity} in the tag that is stored at
  9200. position $0$ of the vector. Recall that in
  9201. Section~\ref{sec:select-instructions-gc} a portion of the 64-bit tag
  9202. was not used. We store the arity in the $5$ bits starting at position
  9203. $58$.
  9204. Compile the \code{procedure-arity} operator into a sequence of
  9205. instructions that access the tag from position $0$ of the vector and
  9206. extract the $5$-bits starting at position $58$ from the tag.
  9207. \begin{figure}[p]
  9208. \begin{tikzpicture}[baseline=(current bounding box.center)]
  9209. \node (Rfun) at (0,2) {\large \LangFun{}};
  9210. \node (Rfun-2) at (3,2) {\large \LangFun{}};
  9211. \node (Rfun-3) at (6,2) {\large \LangFun{}};
  9212. \node (F1-1) at (12,0) {\large \LangFunRef{}};
  9213. \node (F1-2) at (9,0) {\large \LangFunRef{}};
  9214. \node (F1-3) at (6,0) {\large $F_1$};
  9215. \node (F1-4) at (3,0) {\large $F_1$};
  9216. \node (F1-5) at (0,0) {\large $F_1$};
  9217. \node (C3-2) at (3,-2) {\large \LangCFun{}};
  9218. \node (x86-2) at (3,-4) {\large \LangXIndCallVar{}};
  9219. \node (x86-2-1) at (3,-6) {\large \LangXIndCallVar{}};
  9220. \node (x86-2-2) at (6,-6) {\large \LangXIndCallVar{}};
  9221. \node (x86-3) at (6,-4) {\large \LangXIndCallVar{}};
  9222. \node (x86-4) at (9,-4) {\large \LangXIndCall{}};
  9223. \node (x86-5) at (9,-6) {\large \LangXIndCall{}};
  9224. \path[->,bend left=15] (Rfun) edge [above] node
  9225. {\ttfamily\footnotesize shrink} (Rfun-2);
  9226. \path[->,bend left=15] (Rfun-2) edge [above] node
  9227. {\ttfamily\footnotesize uniquify} (Rfun-3);
  9228. \path[->,bend left=15] (Rfun-3) edge [right] node
  9229. {\ttfamily\footnotesize reveal-functions} (F1-1);
  9230. \path[->,bend left=15] (F1-1) edge [below] node
  9231. {\ttfamily\footnotesize convert-to-clos.} (F1-2);
  9232. \path[->,bend right=15] (F1-2) edge [above] node
  9233. {\ttfamily\footnotesize limit-fun.} (F1-3);
  9234. \path[->,bend right=15] (F1-3) edge [above] node
  9235. {\ttfamily\footnotesize expose-alloc.} (F1-4);
  9236. \path[->,bend right=15] (F1-4) edge [above] node
  9237. {\ttfamily\footnotesize remove-complex.} (F1-5);
  9238. \path[->,bend right=15] (F1-5) edge [right] node
  9239. {\ttfamily\footnotesize explicate-control} (C3-2);
  9240. \path[->,bend left=15] (C3-2) edge [left] node
  9241. {\ttfamily\footnotesize select-instr.} (x86-2);
  9242. \path[->,bend right=15] (x86-2) edge [left] node
  9243. {\ttfamily\footnotesize uncover-live} (x86-2-1);
  9244. \path[->,bend right=15] (x86-2-1) edge [below] node
  9245. {\ttfamily\footnotesize build-inter.} (x86-2-2);
  9246. \path[->,bend right=15] (x86-2-2) edge [left] node
  9247. {\ttfamily\footnotesize allocate-reg.} (x86-3);
  9248. \path[->,bend left=15] (x86-3) edge [above] node
  9249. {\ttfamily\footnotesize patch-instr.} (x86-4);
  9250. \path[->,bend left=15] (x86-4) edge [right] node
  9251. {\ttfamily\footnotesize print-x86} (x86-5);
  9252. \end{tikzpicture}
  9253. \caption{Diagram of the passes for \LangLam{}, a language with lexically-scoped
  9254. functions.}
  9255. \label{fig:Rlambda-passes}
  9256. \end{figure}
  9257. Figure~\ref{fig:Rlambda-passes} provides an overview of all the passes needed
  9258. for the compilation of \LangLam{}.
  9259. \clearpage
  9260. \section{Challenge: Optimize Closures}
  9261. \label{sec:optimize-closures}
  9262. In this chapter we compiled lexically-scoped functions into a
  9263. relatively efficient representation: flat closures. However, even this
  9264. representation comes with some overhead. For example, consider the
  9265. following program with a function \code{tail-sum} that does not have
  9266. any free variables and where all the uses of \code{tail-sum} are in
  9267. applications where we know that only \code{tail-sum} is being applied
  9268. (and not any other functions).
  9269. \begin{center}
  9270. \begin{minipage}{0.95\textwidth}
  9271. \begin{lstlisting}
  9272. (define (tail-sum [n : Integer] [r : Integer]) : Integer
  9273. (if (eq? n 0)
  9274. r
  9275. (tail-sum (- n 1) (+ n r))))
  9276. (+ (tail-sum 5 0) 27)
  9277. \end{lstlisting}
  9278. \end{minipage}
  9279. \end{center}
  9280. As described in this chapter, we uniformly apply closure conversion to
  9281. all functions, obtaining the following output for this program.
  9282. \begin{center}
  9283. \begin{minipage}{0.95\textwidth}
  9284. \begin{lstlisting}
  9285. (define (tail_sum1 [fvs5 : _] [n2 : Integer] [r3 : Integer]) : Integer
  9286. (if (eq? n2 0)
  9287. r3
  9288. (let ([clos4 (closure (list (fun-ref tail_sum1)))])
  9289. ((vector-ref clos4 0) clos4 (+ n2 -1) (+ n2 r3)))))
  9290. (define (main) : Integer
  9291. (+ (let ([clos6 (closure (list (fun-ref tail_sum1)))])
  9292. ((vector-ref clos6 0) clos6 5 0)) 27))
  9293. \end{lstlisting}
  9294. \end{minipage}
  9295. \end{center}
  9296. In the previous Chapter, there would be no allocation in the program
  9297. and the calls to \code{tail-sum} would be direct calls. In contrast,
  9298. the above program allocates memory for each \code{closure} and the
  9299. calls to \code{tail-sum} are indirect. These two differences incur
  9300. considerable overhead in a program such as this one, where the
  9301. allocations and indirect calls occur inside a tight loop.
  9302. One might think that this problem is trivial to solve: can't we just
  9303. recognize calls of the form \code{((fun-ref $f$) $e_1 \ldots e_n$)}
  9304. and compile them to direct calls \code{((fun-ref $f$) $e'_1 \ldots
  9305. e'_n$)} instead of treating it like a call to a closure? We would
  9306. also drop the \code{fvs5} parameter of \code{tail\_sum1}.
  9307. %
  9308. However, this problem is not so trivial because a global function may
  9309. ``escape'' and become involved in applications that also involve
  9310. closures. Consider the following example in which the application
  9311. \code{(f 41)} needs to be compiled into a closure application, because
  9312. the \code{lambda} may get bound to \code{f}, but the \code{add1}
  9313. function might also get bound to \code{f}.
  9314. \begin{lstlisting}
  9315. (define (add1 [x : Integer]) : Integer
  9316. (+ x 1))
  9317. (let ([y (read)])
  9318. (let ([f (if (eq? (read) 0)
  9319. add1
  9320. (lambda: ([x : Integer]) : Integer (- x y)))])
  9321. (f 41)))
  9322. \end{lstlisting}
  9323. If a global function name is used in any way other than as the
  9324. operator in a direct call, then we say that the function
  9325. \emph{escapes}. If a global function does not escape, then we do not
  9326. need to perform closure conversion on the function.
  9327. \begin{exercise}\normalfont
  9328. Implement an auxiliary function for detecting which global
  9329. functions escape. Using that function, implement an improved version
  9330. of closure conversion that does not apply closure conversion to
  9331. global functions that do not escape but instead compiles them as
  9332. regular functions. Create several new test cases that check whether
  9333. you properly detect whether global functions escape or not.
  9334. \end{exercise}
  9335. So far we have reduced the overhead of calling global functions, but
  9336. it would also be nice to reduce the overhead of calling a
  9337. \code{lambda} when we can determine at compile time which
  9338. \code{lambda} will be called. We refer to such calls as \emph{known
  9339. calls}. Consider the following example in which a \code{lambda} is
  9340. bound to \code{f} and then applied.
  9341. \begin{lstlisting}
  9342. (let ([y (read)])
  9343. (let ([f (lambda: ([x : Integer]) : Integer
  9344. (+ x y))])
  9345. (f 21)))
  9346. \end{lstlisting}
  9347. Closure conversion compiles \code{(f 21)} into an indirect call:
  9348. \begin{lstlisting}
  9349. (define (lambda5 [fvs6 : (Vector _ Integer)] [x3 : Integer]) : Integer
  9350. (let ([y2 (vector-ref fvs6 1)])
  9351. (+ x3 y2)))
  9352. (define (main) : Integer
  9353. (let ([y2 (read)])
  9354. (let ([f4 (Closure 1 (list (fun-ref lambda5) y2))])
  9355. ((vector-ref f4 0) f4 21))))
  9356. \end{lstlisting}
  9357. but we can instead compile the application \code{(f 21)} into a direct call
  9358. to \code{lambda5}:
  9359. \begin{lstlisting}
  9360. (define (main) : Integer
  9361. (let ([y2 (read)])
  9362. (let ([f4 (Closure 1 (list (fun-ref lambda5) y2))])
  9363. ((fun-ref lambda5) f4 21))))
  9364. \end{lstlisting}
  9365. The problem of determining which lambda will be called from a
  9366. particular application is quite challenging in general and the topic
  9367. of considerable research~\citep{Shivers:1988aa,Gilray:2016aa}. For the
  9368. following exercise we recommend that you compile an application to a
  9369. direct call when the operator is a variable and the variable is
  9370. \code{let}-bound to a closure. This can be accomplished by maintaining
  9371. an environment mapping \code{let}-bound variables to function names.
  9372. Extend the environment whenever you encounter a closure on the
  9373. right-hand side of a \code{let}, mapping the \code{let}-bound variable
  9374. to the name of the global function for the closure. This pass should
  9375. come after closure conversion.
  9376. \begin{exercise}\normalfont
  9377. Implement a compiler pass, named \code{optimize-known-calls}, that
  9378. compiles known calls into direct calls. Verify that your compiler is
  9379. successful in this regard on several example programs.
  9380. \end{exercise}
  9381. These exercises only scratches the surface of optimizing of
  9382. closures. A good next step for the interested reader is to look at the
  9383. work of \citet{Keep:2012ab}.
  9384. \section{Further Reading}
  9385. The notion of lexically scoped anonymous functions predates modern
  9386. computers by about a decade. They were invented by
  9387. \citet{Church:1932aa}, who proposed the $\lambda$ calculus as a
  9388. foundation for logic. Anonymous functions were included in the
  9389. LISP~\citep{McCarthy:1960dz} programming language but were initially
  9390. dynamically scoped. The Scheme dialect of LISP adopted lexical scoping
  9391. and \citet{Guy-L.-Steele:1978yq} demonstrated how to efficiently
  9392. compile Scheme programs. However, environments were represented as
  9393. linked lists, so variable lookup was linear in the size of the
  9394. environment. In this chapter we represent environments using flat
  9395. closures, which were invented by
  9396. \citet{Cardelli:1983aa,Cardelli:1984aa} for the purposes of compiling
  9397. the ML language~\citep{Gordon:1978aa,Milner:1990fk}. With flat
  9398. closures, variable lookup is constant time but the time to create a
  9399. closure is proportional to the number of its free variables. Flat
  9400. closures were reinvented by \citet{Dybvig:1987ab} in his Ph.D. thesis
  9401. and used in Chez Scheme version 1~\citep{Dybvig:2006aa}.
  9402. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  9403. \chapter{Dynamic Typing}
  9404. \label{ch:Rdyn}
  9405. \index{dynamic typing}
  9406. In this chapter we discuss the compilation of \LangDyn{}, a dynamically
  9407. typed language that is a subset of Racket. This is in contrast to the
  9408. previous chapters, which have studied the compilation of Typed
  9409. Racket. In dynamically typed languages such as \LangDyn{}, a given
  9410. expression may produce a value of a different type each time it is
  9411. executed. Consider the following example with a conditional \code{if}
  9412. expression that may return a Boolean or an integer depending on the
  9413. input to the program.
  9414. % part of dynamic_test_25.rkt
  9415. \begin{lstlisting}
  9416. (not (if (eq? (read) 1) #f 0))
  9417. \end{lstlisting}
  9418. Languages that allow expressions to produce different kinds of values
  9419. are called \emph{polymorphic}, a word composed of the Greek roots
  9420. ``poly'', meaning ``many'', and ``morph'', meaning ``shape''. There
  9421. are several kinds of polymorphism in programming languages, such as
  9422. subtype polymorphism and parametric
  9423. polymorphism~\citep{Cardelli:1985kx}. The kind of polymorphism we
  9424. study in this chapter does not have a special name but it is the kind
  9425. that arises in dynamically typed languages.
  9426. Another characteristic of dynamically typed languages is that
  9427. primitive operations, such as \code{not}, are often defined to operate
  9428. on many different types of values. In fact, in Racket, the \code{not}
  9429. operator produces a result for any kind of value: given \code{\#f} it
  9430. returns \code{\#t} and given anything else it returns \code{\#f}.
  9431. Furthermore, even when primitive operations restrict their inputs to
  9432. values of a certain type, this restriction is enforced at runtime
  9433. instead of during compilation. For example, the following vector
  9434. reference results in a run-time contract violation because the index
  9435. must be in integer, not a Boolean such as \code{\#t}.
  9436. \begin{lstlisting}
  9437. (vector-ref (vector 42) #t)
  9438. \end{lstlisting}
  9439. \begin{figure}[tp]
  9440. \centering
  9441. \fbox{
  9442. \begin{minipage}{0.97\textwidth}
  9443. \[
  9444. \begin{array}{rcl}
  9445. \itm{cmp} &::= & \key{eq?} \mid \key{<} \mid \key{<=} \mid \key{>} \mid \key{>=} \\
  9446. \Exp &::=& \Int \mid \CREAD{} \mid \CNEG{\Exp}
  9447. \mid \CADD{\Exp}{\Exp} \mid \CSUB{\Exp}{\Exp} \\
  9448. &\mid& \Var \mid \CLET{\Var}{\Exp}{\Exp} \\
  9449. &\mid& \key{\#t} \mid \key{\#f}
  9450. \mid \CBINOP{\key{and}}{\Exp}{\Exp}
  9451. \mid \CBINOP{\key{or}}{\Exp}{\Exp}
  9452. \mid \CUNIOP{\key{not}}{\Exp} \\
  9453. &\mid& \LP\itm{cmp}\;\Exp\;\Exp\RP \mid \CIF{\Exp}{\Exp}{\Exp} \\
  9454. &\mid& \LP\key{vector}\;\Exp\ldots\RP \mid
  9455. \LP\key{vector-ref}\;\Exp\;\Exp\RP \\
  9456. &\mid& \LP\key{vector-set!}\;\Exp\;\Exp\;\Exp\RP \mid \LP\key{void}\RP \\
  9457. &\mid& \LP\Exp \; \Exp\ldots\RP
  9458. \mid \LP\key{lambda}\;\LP\Var\ldots\RP\;\Exp\RP \\
  9459. & \mid & \LP\key{boolean?}\;\Exp\RP \mid \LP\key{integer?}\;\Exp\RP\\
  9460. & \mid & \LP\key{vector?}\;\Exp\RP \mid \LP\key{procedure?}\;\Exp\RP \mid \LP\key{void?}\;\Exp\RP \\
  9461. \Def &::=& \LP\key{define}\; \LP\Var \; \Var\ldots\RP \; \Exp\RP \\
  9462. \LangDyn{} &::=& \Def\ldots\; \Exp
  9463. \end{array}
  9464. \]
  9465. \end{minipage}
  9466. }
  9467. \caption{Syntax of \LangDyn{}, an untyped language (a subset of Racket).}
  9468. \label{fig:r7-concrete-syntax}
  9469. \end{figure}
  9470. \begin{figure}[tp]
  9471. \centering
  9472. \fbox{
  9473. \begin{minipage}{0.96\textwidth}
  9474. \small
  9475. \[
  9476. \begin{array}{lcl}
  9477. \Exp &::=& \INT{\Int} \mid \VAR{\Var} \mid \LET{\Var}{\Exp}{\Exp} \\
  9478. &\mid& \PRIM{\itm{op}}{\Exp\ldots} \\
  9479. &\mid& \BOOL{\itm{bool}}
  9480. \mid \IF{\Exp}{\Exp}{\Exp} \\
  9481. &\mid& \VOID{} \mid \APPLY{\Exp}{\Exp\ldots} \\
  9482. &\mid& \LAMBDA{\LP\Var\ldots\RP}{\code{'Any}}{\Exp}\\
  9483. \Def &::=& \FUNDEF{\Var}{\LP\Var\ldots\RP}{\code{'Any}}{\code{'()}}{\Exp} \\
  9484. \LangDyn{} &::=& \PROGRAMDEFSEXP{\code{'()}}{\LP\Def\ldots\RP}{\Exp}
  9485. \end{array}
  9486. \]
  9487. \end{minipage}
  9488. }
  9489. \caption{The abstract syntax of \LangDyn{}.}
  9490. \label{fig:r7-syntax}
  9491. \end{figure}
  9492. The concrete and abstract syntax of \LangDyn{}, our subset of Racket, is
  9493. defined in Figures~\ref{fig:r7-concrete-syntax} and
  9494. \ref{fig:r7-syntax}.
  9495. %
  9496. There is no type checker for \LangDyn{} because it is not a statically
  9497. typed language (it's dynamically typed!).
  9498. The definitional interpreter for \LangDyn{} is presented in
  9499. Figure~\ref{fig:interp-Rdyn} and its auxiliary functions are defined i
  9500. Figure~\ref{fig:interp-Rdyn-aux}. Consider the match case for
  9501. \code{(Int n)}. Instead of simply returning the integer \code{n} (as
  9502. in the interpreter for \LangVar{} in Figure~\ref{fig:interp-Rvar}), the
  9503. interpreter for \LangDyn{} creates a \emph{tagged value}\index{tagged
  9504. value} that combines an underlying value with a tag that identifies
  9505. what kind of value it is. We define the following struct
  9506. to represented tagged values.
  9507. \begin{lstlisting}
  9508. (struct Tagged (value tag) #:transparent)
  9509. \end{lstlisting}
  9510. The tags are \code{Integer}, \code{Boolean}, \code{Void},
  9511. \code{Vector}, and \code{Procedure}. Tags are closely related to types
  9512. but don't always capture all the information that a type does. For
  9513. example, a vector of type \code{(Vector Any Any)} is tagged with
  9514. \code{Vector} and a procedure of type \code{(Any Any -> Any)}
  9515. is tagged with \code{Procedure}.
  9516. Next consider the match case for \code{vector-ref}. The
  9517. \code{check-tag} auxiliary function (Figure~\ref{fig:interp-Rdyn-aux})
  9518. is used to ensure that the first argument is a vector and the second
  9519. is an integer. If they are not, a \code{trapped-error} is raised.
  9520. Recall from Section~\ref{sec:interp-Rint} that when a definition
  9521. interpreter raises a \code{trapped-error} error, the compiled code
  9522. must also signal an error by exiting with return code \code{255}. A
  9523. \code{trapped-error} is also raised if the index is not less than
  9524. length of the vector.
  9525. \begin{figure}[tbp]
  9526. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  9527. (define ((interp-Rdyn-exp env) ast)
  9528. (define recur (interp-Rdyn-exp env))
  9529. (match ast
  9530. [(Var x) (lookup x env)]
  9531. [(Int n) (Tagged n 'Integer)]
  9532. [(Bool b) (Tagged b 'Boolean)]
  9533. [(Lambda xs rt body)
  9534. (Tagged `(function ,xs ,body ,env) 'Procedure)]
  9535. [(Prim 'vector es)
  9536. (Tagged (apply vector (for/list ([e es]) (recur e))) 'Vector)]
  9537. [(Prim 'vector-ref (list e1 e2))
  9538. (define vec (recur e1)) (define i (recur e2))
  9539. (check-tag vec 'Vector ast) (check-tag i 'Integer ast)
  9540. (unless (< (Tagged-value i) (vector-length (Tagged-value vec)))
  9541. (error 'trapped-error "index ~a too big\nin ~v" (Tagged-value i) ast))
  9542. (vector-ref (Tagged-value vec) (Tagged-value i))]
  9543. [(Prim 'vector-set! (list e1 e2 e3))
  9544. (define vec (recur e1)) (define i (recur e2)) (define arg (recur e3))
  9545. (check-tag vec 'Vector ast) (check-tag i 'Integer ast)
  9546. (unless (< (Tagged-value i) (vector-length (Tagged-value vec)))
  9547. (error 'trapped-error "index ~a too big\nin ~v" (Tagged-value i) ast))
  9548. (vector-set! (Tagged-value vec) (Tagged-value i) arg)
  9549. (Tagged (void) 'Void)]
  9550. [(Let x e body) ((interp-Rdyn-exp (cons (cons x (recur e)) env)) body)]
  9551. [(Prim 'and (list e1 e2)) (recur (If e1 e2 (Bool #f)))]
  9552. [(Prim 'or (list e1 e2))
  9553. (define v1 (recur e1))
  9554. (match (Tagged-value v1) [#f (recur e2)] [else v1])]
  9555. [(Prim 'eq? (list l r)) (Tagged (equal? (recur l) (recur r)) 'Boolean)]
  9556. [(Prim op (list e1))
  9557. #:when (set-member? type-predicates op)
  9558. (tag-value ((interp-op op) (Tagged-value (recur e1))))]
  9559. [(Prim op es)
  9560. (define args (map recur es))
  9561. (define tags (for/list ([arg args]) (Tagged-tag arg)))
  9562. (unless (for/or ([expected-tags (op-tags op)])
  9563. (equal? expected-tags tags))
  9564. (error 'trapped-error "illegal argument tags ~a\nin ~v" tags ast))
  9565. (tag-value
  9566. (apply (interp-op op) (for/list ([a args]) (Tagged-value a))))]
  9567. [(If q t f)
  9568. (match (Tagged-value (recur q)) [#f (recur f)] [else (recur t)])]
  9569. [(Apply f es)
  9570. (define new-f (recur f)) (define args (map recur es))
  9571. (check-tag new-f 'Procedure ast) (define f-val (Tagged-value new-f))
  9572. (match f-val
  9573. [`(function ,xs ,body ,lam-env)
  9574. (unless (eq? (length xs) (length args))
  9575. (error 'trapped-error "~a != ~a\nin ~v" (length args) (length xs) ast))
  9576. (define new-env (append (map cons xs args) lam-env))
  9577. ((interp-Rdyn-exp new-env) body)]
  9578. [else (error "interp-Rdyn-exp, expected function, not" f-val)])]))
  9579. \end{lstlisting}
  9580. \caption{Interpreter for the \LangDyn{} language.}
  9581. \label{fig:interp-Rdyn}
  9582. \end{figure}
  9583. \begin{figure}[tbp]
  9584. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  9585. (define (interp-op op)
  9586. (match op
  9587. ['+ fx+]
  9588. ['- fx-]
  9589. ['read read-fixnum]
  9590. ['not (lambda (v) (match v [#t #f] [#f #t]))]
  9591. ['< (lambda (v1 v2)
  9592. (cond [(and (fixnum? v1) (fixnum? v2)) (< v1 v2)]))]
  9593. ['<= (lambda (v1 v2)
  9594. (cond [(and (fixnum? v1) (fixnum? v2)) (<= v1 v2)]))]
  9595. ['> (lambda (v1 v2)
  9596. (cond [(and (fixnum? v1) (fixnum? v2)) (> v1 v2)]))]
  9597. ['>= (lambda (v1 v2)
  9598. (cond [(and (fixnum? v1) (fixnum? v2)) (>= v1 v2)]))]
  9599. ['boolean? boolean?]
  9600. ['integer? fixnum?]
  9601. ['void? void?]
  9602. ['vector? vector?]
  9603. ['vector-length vector-length]
  9604. ['procedure? (match-lambda
  9605. [`(functions ,xs ,body ,env) #t] [else #f])]
  9606. [else (error 'interp-op "unknown operator" op)]))
  9607. (define (op-tags op)
  9608. (match op
  9609. ['+ '((Integer Integer))]
  9610. ['- '((Integer Integer) (Integer))]
  9611. ['read '(())]
  9612. ['not '((Boolean))]
  9613. ['< '((Integer Integer))]
  9614. ['<= '((Integer Integer))]
  9615. ['> '((Integer Integer))]
  9616. ['>= '((Integer Integer))]
  9617. ['vector-length '((Vector))]))
  9618. (define type-predicates
  9619. (set 'boolean? 'integer? 'vector? 'procedure? 'void?))
  9620. (define (tag-value v)
  9621. (cond [(boolean? v) (Tagged v 'Boolean)]
  9622. [(fixnum? v) (Tagged v 'Integer)]
  9623. [(procedure? v) (Tagged v 'Procedure)]
  9624. [(vector? v) (Tagged v 'Vector)]
  9625. [(void? v) (Tagged v 'Void)]
  9626. [else (error 'tag-value "unidentified value ~a" v)]))
  9627. (define (check-tag val expected ast)
  9628. (define tag (Tagged-tag val))
  9629. (unless (eq? tag expected)
  9630. (error 'trapped-error "expected ~a, not ~a\nin ~v" expected tag ast)))
  9631. \end{lstlisting}
  9632. \caption{Auxiliary functions for the \LangDyn{} interpreter.}
  9633. \label{fig:interp-Rdyn-aux}
  9634. \end{figure}
  9635. \clearpage
  9636. \section{Representation of Tagged Values}
  9637. The interpreter for \LangDyn{} introduced a new kind of value, a tagged
  9638. value. To compile \LangDyn{} to x86 we must decide how to represent tagged
  9639. values at the bit level. Because almost every operation in \LangDyn{}
  9640. involves manipulating tagged values, the representation must be
  9641. efficient. Recall that all of our values are 64 bits. We shall steal
  9642. the 3 right-most bits to encode the tag. We use $001$ to identify
  9643. integers, $100$ for Booleans, $010$ for vectors, $011$ for procedures,
  9644. and $101$ for the void value. We define the following auxiliary
  9645. function for mapping types to tag codes.
  9646. \begin{align*}
  9647. \itm{tagof}(\key{Integer}) &= 001 \\
  9648. \itm{tagof}(\key{Boolean}) &= 100 \\
  9649. \itm{tagof}((\key{Vector} \ldots)) &= 010 \\
  9650. \itm{tagof}((\ldots \key{->} \ldots)) &= 011 \\
  9651. \itm{tagof}(\key{Void}) &= 101
  9652. \end{align*}
  9653. This stealing of 3 bits comes at some price: our integers are reduced
  9654. to ranging from $-2^{60}$ to $2^{60}$. The stealing does not adversely
  9655. affect vectors and procedures because those values are addresses, and
  9656. our addresses are 8-byte aligned so the rightmost 3 bits are unused,
  9657. they are always $000$. Thus, we do not lose information by overwriting
  9658. the rightmost 3 bits with the tag and we can simply zero-out the tag
  9659. to recover the original address.
  9660. To make tagged values into first-class entities, we can give them a
  9661. type, called \code{Any}, and define operations such as \code{Inject}
  9662. and \code{Project} for creating and using them, yielding the \LangAny{}
  9663. intermediate language. We describe how to compile \LangDyn{} to \LangAny{} in
  9664. Section~\ref{sec:compile-r7} but first we describe the \LangAny{} language
  9665. in greater detail.
  9666. \section{The \LangAny{} Language}
  9667. \label{sec:Rany-lang}
  9668. \begin{figure}[tp]
  9669. \centering
  9670. \fbox{
  9671. \begin{minipage}{0.96\textwidth}
  9672. \small
  9673. \[
  9674. \begin{array}{lcl}
  9675. \Type &::= & \ldots \mid \key{Any} \\
  9676. \itm{op} &::= & \ldots \mid \code{any-vector-length}
  9677. \mid \code{any-vector-ref} \mid \code{any-vector-set!}\\
  9678. &\mid& \code{boolean?} \mid \code{integer?} \mid \code{vector?}
  9679. \mid \code{procedure?} \mid \code{void?} \\
  9680. \Exp &::=& \ldots
  9681. \mid \gray{ \PRIM{\itm{op}}{\Exp\ldots} } \\
  9682. &\mid& \INJECT{\Exp}{\FType} \mid \PROJECT{\Exp}{\FType} \\
  9683. \Def &::=& \gray{ \FUNDEF{\Var}{\LP[\Var \code{:} \Type]\ldots\RP}{\Type}{\code{'()}}{\Exp} }\\
  9684. \LangAny{} &::=& \gray{ \PROGRAMDEFSEXP{\code{'()}}{\LP\Def\ldots\RP}{\Exp} }
  9685. \end{array}
  9686. \]
  9687. \end{minipage}
  9688. }
  9689. \caption{The abstract syntax of \LangAny{}, extending \LangLam{} (Figure~\ref{fig:Rlam-syntax}).}
  9690. \label{fig:Rany-syntax}
  9691. \end{figure}
  9692. The abstract syntax of \LangAny{} is defined in Figure~\ref{fig:Rany-syntax}.
  9693. (The concrete syntax of \LangAny{} is in the Appendix,
  9694. Figure~\ref{fig:Rany-concrete-syntax}.) The $\INJECT{e}{T}$ form
  9695. converts the value produced by expression $e$ of type $T$ into a
  9696. tagged value. The $\PROJECT{e}{T}$ form converts the tagged value
  9697. produced by expression $e$ into a value of type $T$ or else halts the
  9698. program if the type tag is not equivalent to $T$.
  9699. %
  9700. Note that in both \code{Inject} and \code{Project}, the type $T$ is
  9701. restricted to a flat type $\FType$, which simplifies the
  9702. implementation and corresponds with what is needed for compiling \LangDyn{}.
  9703. The \code{any-vector} operators adapt the vector operations so that
  9704. they can be applied to a value of type \code{Any}. They also
  9705. generalize the vector operations in that the index is not restricted
  9706. to be a literal integer in the grammar but is allowed to be any
  9707. expression.
  9708. The type predicates such as \key{boolean?} expect their argument to
  9709. produce a tagged value; they return \key{\#t} if the tag corresponds
  9710. to the predicate and they return \key{\#f} otherwise.
  9711. The type checker for \LangAny{} is shown in
  9712. Figures~\ref{fig:type-check-Rany-part-1} and
  9713. \ref{fig:type-check-Rany-part-2} and uses the auxiliary functions in
  9714. Figure~\ref{fig:type-check-Rany-aux}.
  9715. %
  9716. The interpreter for \LangAny{} is in Figure~\ref{fig:interp-Rany} and the
  9717. auxiliary functions \code{apply-inject} and \code{apply-project} are
  9718. in Figure~\ref{fig:apply-project}.
  9719. \begin{figure}[btp]
  9720. \begin{lstlisting}[basicstyle=\ttfamily\small]
  9721. (define type-check-Rany-class
  9722. (class type-check-Rlambda-class
  9723. (super-new)
  9724. (inherit check-type-equal?)
  9725. (define/override (type-check-exp env)
  9726. (lambda (e)
  9727. (define recur (type-check-exp env))
  9728. (match e
  9729. [(Inject e1 ty)
  9730. (unless (flat-ty? ty)
  9731. (error 'type-check "may only inject from flat type, not ~a" ty))
  9732. (define-values (new-e1 e-ty) (recur e1))
  9733. (check-type-equal? e-ty ty e)
  9734. (values (Inject new-e1 ty) 'Any)]
  9735. [(Project e1 ty)
  9736. (unless (flat-ty? ty)
  9737. (error 'type-check "may only project to flat type, not ~a" ty))
  9738. (define-values (new-e1 e-ty) (recur e1))
  9739. (check-type-equal? e-ty 'Any e)
  9740. (values (Project new-e1 ty) ty)]
  9741. [(Prim 'any-vector-length (list e1))
  9742. (define-values (e1^ t1) (recur e1))
  9743. (check-type-equal? t1 'Any e)
  9744. (values (Prim 'any-vector-length (list e1^)) 'Integer)]
  9745. [(Prim 'any-vector-ref (list e1 e2))
  9746. (define-values (e1^ t1) (recur e1))
  9747. (define-values (e2^ t2) (recur e2))
  9748. (check-type-equal? t1 'Any e)
  9749. (check-type-equal? t2 'Integer e)
  9750. (values (Prim 'any-vector-ref (list e1^ e2^)) 'Any)]
  9751. [(Prim 'any-vector-set! (list e1 e2 e3))
  9752. (define-values (e1^ t1) (recur e1))
  9753. (define-values (e2^ t2) (recur e2))
  9754. (define-values (e3^ t3) (recur e3))
  9755. (check-type-equal? t1 'Any e)
  9756. (check-type-equal? t2 'Integer e)
  9757. (check-type-equal? t3 'Any e)
  9758. (values (Prim 'any-vector-set! (list e1^ e2^ e3^)) 'Void)]
  9759. \end{lstlisting}
  9760. \caption{Type checker for the \LangAny{} language, part 1.}
  9761. \label{fig:type-check-Rany-part-1}
  9762. \end{figure}
  9763. \begin{figure}[btp]
  9764. \begin{lstlisting}[basicstyle=\ttfamily\small]
  9765. [(ValueOf e ty)
  9766. (define-values (new-e e-ty) (recur e))
  9767. (values (ValueOf new-e ty) ty)]
  9768. [(Prim pred (list e1))
  9769. #:when (set-member? (type-predicates) pred)
  9770. (define-values (new-e1 e-ty) (recur e1))
  9771. (check-type-equal? e-ty 'Any e)
  9772. (values (Prim pred (list new-e1)) 'Boolean)]
  9773. [(If cnd thn els)
  9774. (define-values (cnd^ Tc) (recur cnd))
  9775. (define-values (thn^ Tt) (recur thn))
  9776. (define-values (els^ Te) (recur els))
  9777. (check-type-equal? Tc 'Boolean cnd)
  9778. (check-type-equal? Tt Te e)
  9779. (values (If cnd^ thn^ els^) (combine-types Tt Te))]
  9780. [(Exit) (values (Exit) '_)]
  9781. [(Prim 'eq? (list arg1 arg2))
  9782. (define-values (e1 t1) (recur arg1))
  9783. (define-values (e2 t2) (recur arg2))
  9784. (match* (t1 t2)
  9785. [(`(Vector ,ts1 ...) `(Vector ,ts2 ...)) (void)]
  9786. [(other wise) (check-type-equal? t1 t2 e)])
  9787. (values (Prim 'eq? (list e1 e2)) 'Boolean)]
  9788. [else ((super type-check-exp env) e)])))
  9789. ))
  9790. \end{lstlisting}
  9791. \caption{Type checker for the \LangAny{} language, part 2.}
  9792. \label{fig:type-check-Rany-part-2}
  9793. \end{figure}
  9794. \begin{figure}[tbp]
  9795. \begin{lstlisting}
  9796. (define/override (operator-types)
  9797. (append
  9798. '((integer? . ((Any) . Boolean))
  9799. (vector? . ((Any) . Boolean))
  9800. (procedure? . ((Any) . Boolean))
  9801. (void? . ((Any) . Boolean))
  9802. (tag-of-any . ((Any) . Integer))
  9803. (make-any . ((_ Integer) . Any))
  9804. )
  9805. (super operator-types)))
  9806. (define/public (type-predicates)
  9807. (set 'boolean? 'integer? 'vector? 'procedure? 'void?))
  9808. (define/public (combine-types t1 t2)
  9809. (match (list t1 t2)
  9810. [(list '_ t2) t2]
  9811. [(list t1 '_) t1]
  9812. [(list `(Vector ,ts1 ...)
  9813. `(Vector ,ts2 ...))
  9814. `(Vector ,@(for/list ([t1 ts1] [t2 ts2])
  9815. (combine-types t1 t2)))]
  9816. [(list `(,ts1 ... -> ,rt1)
  9817. `(,ts2 ... -> ,rt2))
  9818. `(,@(for/list ([t1 ts1] [t2 ts2])
  9819. (combine-types t1 t2))
  9820. -> ,(combine-types rt1 rt2))]
  9821. [else t1]))
  9822. (define/public (flat-ty? ty)
  9823. (match ty
  9824. [(or `Integer `Boolean '_ `Void) #t]
  9825. [`(Vector ,ts ...) (for/and ([t ts]) (eq? t 'Any))]
  9826. [`(,ts ... -> ,rt)
  9827. (and (eq? rt 'Any) (for/and ([t ts]) (eq? t 'Any)))]
  9828. [else #f]))
  9829. \end{lstlisting}
  9830. \caption{Auxiliary methods for type checking \LangAny{}.}
  9831. \label{fig:type-check-Rany-aux}
  9832. \end{figure}
  9833. \begin{figure}[btp]
  9834. \begin{lstlisting}
  9835. (define interp-Rany-class
  9836. (class interp-Rlambda-class
  9837. (super-new)
  9838. (define/override (interp-op op)
  9839. (match op
  9840. ['boolean? (match-lambda
  9841. [`(tagged ,v1 ,tg) (equal? tg (any-tag 'Boolean))]
  9842. [else #f])]
  9843. ['integer? (match-lambda
  9844. [`(tagged ,v1 ,tg) (equal? tg (any-tag 'Integer))]
  9845. [else #f])]
  9846. ['vector? (match-lambda
  9847. [`(tagged ,v1 ,tg) (equal? tg (any-tag `(Vector Any)))]
  9848. [else #f])]
  9849. ['procedure? (match-lambda
  9850. [`(tagged ,v1 ,tg) (equal? tg (any-tag `(Any -> Any)))]
  9851. [else #f])]
  9852. ['eq? (match-lambda*
  9853. [`((tagged ,v1^ ,tg1) (tagged ,v2^ ,tg2))
  9854. (and (eq? v1^ v2^) (equal? tg1 tg2))]
  9855. [ls (apply (super interp-op op) ls)])]
  9856. ['any-vector-ref (lambda (v i)
  9857. (match v [`(tagged ,v^ ,tg) (vector-ref v^ i)]))]
  9858. ['any-vector-set! (lambda (v i a)
  9859. (match v [`(tagged ,v^ ,tg) (vector-set! v^ i a)]))]
  9860. ['any-vector-length (lambda (v)
  9861. (match v [`(tagged ,v^ ,tg) (vector-length v^)]))]
  9862. [else (super interp-op op)]))
  9863. (define/override ((interp-exp env) e)
  9864. (define recur (interp-exp env))
  9865. (match e
  9866. [(Inject e ty) `(tagged ,(recur e) ,(any-tag ty))]
  9867. [(Project e ty2) (apply-project (recur e) ty2)]
  9868. [else ((super interp-exp env) e)]))
  9869. ))
  9870. (define (interp-Rany p)
  9871. (send (new interp-Rany-class) interp-program p))
  9872. \end{lstlisting}
  9873. \caption{Interpreter for \LangAny{}.}
  9874. \label{fig:interp-Rany}
  9875. \end{figure}
  9876. \begin{figure}[tbp]
  9877. \begin{lstlisting}
  9878. (define/public (apply-inject v tg) (Tagged v tg))
  9879. (define/public (apply-project v ty2)
  9880. (define tag2 (any-tag ty2))
  9881. (match v
  9882. [(Tagged v1 tag1)
  9883. (cond
  9884. [(eq? tag1 tag2)
  9885. (match ty2
  9886. [`(Vector ,ts ...)
  9887. (define l1 ((interp-op 'vector-length) v1))
  9888. (cond
  9889. [(eq? l1 (length ts)) v1]
  9890. [else (error 'apply-project "vector length mismatch, ~a != ~a"
  9891. l1 (length ts))])]
  9892. [`(,ts ... -> ,rt)
  9893. (match v1
  9894. [`(function ,xs ,body ,env)
  9895. (cond [(eq? (length xs) (length ts)) v1]
  9896. [else
  9897. (error 'apply-project "arity mismatch ~a != ~a"
  9898. (length xs) (length ts))])]
  9899. [else (error 'apply-project "expected function not ~a" v1)])]
  9900. [else v1])]
  9901. [else (error 'apply-project "tag mismatch ~a != ~a" tag1 tag2)])]
  9902. [else (error 'apply-project "expected tagged value, not ~a" v)]))
  9903. \end{lstlisting}
  9904. \caption{Auxiliary functions for injection and projection.}
  9905. \label{fig:apply-project}
  9906. \end{figure}
  9907. \clearpage
  9908. \section{Cast Insertion: Compiling \LangDyn{} to \LangAny{}}
  9909. \label{sec:compile-r7}
  9910. The \code{cast-insert} pass compiles from \LangDyn{} to \LangAny{}.
  9911. Figure~\ref{fig:compile-r7-Rany} shows the compilation of many of the
  9912. \LangDyn{} forms into \LangAny{}. An important invariant of this pass is that
  9913. given a subexpression $e$ in the \LangDyn{} program, the pass will produce
  9914. an expression $e'$ in \LangAny{} that has type \key{Any}. For example, the
  9915. first row in Figure~\ref{fig:compile-r7-Rany} shows the compilation of
  9916. the Boolean \code{\#t}, which must be injected to produce an
  9917. expression of type \key{Any}.
  9918. %
  9919. The second row of Figure~\ref{fig:compile-r7-Rany}, the compilation of
  9920. addition, is representative of compilation for many primitive
  9921. operations: the arguments have type \key{Any} and must be projected to
  9922. \key{Integer} before the addition can be performed.
  9923. The compilation of \key{lambda} (third row of
  9924. Figure~\ref{fig:compile-r7-Rany}) shows what happens when we need to
  9925. produce type annotations: we simply use \key{Any}.
  9926. %
  9927. The compilation of \code{if} and \code{eq?} demonstrate how this pass
  9928. has to account for some differences in behavior between \LangDyn{} and
  9929. \LangAny{}. The \LangDyn{} language is more permissive than \LangAny{} regarding what
  9930. kind of values can be used in various places. For example, the
  9931. condition of an \key{if} does not have to be a Boolean. For \key{eq?},
  9932. the arguments need not be of the same type (in that case the
  9933. result is \code{\#f}).
  9934. \begin{figure}[btp]
  9935. \centering
  9936. \begin{tabular}{|lll|} \hline
  9937. \begin{minipage}{0.27\textwidth}
  9938. \begin{lstlisting}
  9939. #t
  9940. \end{lstlisting}
  9941. \end{minipage}
  9942. &
  9943. $\Rightarrow$
  9944. &
  9945. \begin{minipage}{0.65\textwidth}
  9946. \begin{lstlisting}
  9947. (inject #t Boolean)
  9948. \end{lstlisting}
  9949. \end{minipage}
  9950. \\[2ex]\hline
  9951. \begin{minipage}{0.27\textwidth}
  9952. \begin{lstlisting}
  9953. (+ |$e_1$| |$e_2$|)
  9954. \end{lstlisting}
  9955. \end{minipage}
  9956. &
  9957. $\Rightarrow$
  9958. &
  9959. \begin{minipage}{0.65\textwidth}
  9960. \begin{lstlisting}
  9961. (inject
  9962. (+ (project |$e'_1$| Integer)
  9963. (project |$e'_2$| Integer))
  9964. Integer)
  9965. \end{lstlisting}
  9966. \end{minipage}
  9967. \\[2ex]\hline
  9968. \begin{minipage}{0.27\textwidth}
  9969. \begin{lstlisting}
  9970. (lambda (|$x_1 \ldots x_n$|) |$e$|)
  9971. \end{lstlisting}
  9972. \end{minipage}
  9973. &
  9974. $\Rightarrow$
  9975. &
  9976. \begin{minipage}{0.65\textwidth}
  9977. \begin{lstlisting}
  9978. (inject
  9979. (lambda: ([|$x_1$|:Any]|$\ldots$|[|$x_n$|:Any]):Any |$e'$|)
  9980. (Any|$\ldots$|Any -> Any))
  9981. \end{lstlisting}
  9982. \end{minipage}
  9983. \\[2ex]\hline
  9984. \begin{minipage}{0.27\textwidth}
  9985. \begin{lstlisting}
  9986. (|$e_0$| |$e_1 \ldots e_n$|)
  9987. \end{lstlisting}
  9988. \end{minipage}
  9989. &
  9990. $\Rightarrow$
  9991. &
  9992. \begin{minipage}{0.65\textwidth}
  9993. \begin{lstlisting}
  9994. ((project |$e'_0$| (Any|$\ldots$|Any -> Any)) |$e'_1 \ldots e'_n$|)
  9995. \end{lstlisting}
  9996. \end{minipage}
  9997. \\[2ex]\hline
  9998. \begin{minipage}{0.27\textwidth}
  9999. \begin{lstlisting}
  10000. (vector-ref |$e_1$| |$e_2$|)
  10001. \end{lstlisting}
  10002. \end{minipage}
  10003. &
  10004. $\Rightarrow$
  10005. &
  10006. \begin{minipage}{0.65\textwidth}
  10007. \begin{lstlisting}
  10008. (any-vector-ref |$e_1'$| |$e_2'$|)
  10009. \end{lstlisting}
  10010. \end{minipage}
  10011. \\[2ex]\hline
  10012. \begin{minipage}{0.27\textwidth}
  10013. \begin{lstlisting}
  10014. (if |$e_1$| |$e_2$| |$e_3$|)
  10015. \end{lstlisting}
  10016. \end{minipage}
  10017. &
  10018. $\Rightarrow$
  10019. &
  10020. \begin{minipage}{0.65\textwidth}
  10021. \begin{lstlisting}
  10022. (if (eq? |$e'_1$| (inject #f Boolean)) |$e'_3$| |$e'_2$|)
  10023. \end{lstlisting}
  10024. \end{minipage}
  10025. \\[2ex]\hline
  10026. \begin{minipage}{0.27\textwidth}
  10027. \begin{lstlisting}
  10028. (eq? |$e_1$| |$e_2$|)
  10029. \end{lstlisting}
  10030. \end{minipage}
  10031. &
  10032. $\Rightarrow$
  10033. &
  10034. \begin{minipage}{0.65\textwidth}
  10035. \begin{lstlisting}
  10036. (inject (eq? |$e'_1$| |$e'_2$|) Boolean)
  10037. \end{lstlisting}
  10038. \end{minipage}
  10039. \\[2ex]\hline
  10040. \begin{minipage}{0.27\textwidth}
  10041. \begin{lstlisting}
  10042. (not |$e_1$|)
  10043. \end{lstlisting}
  10044. \end{minipage}
  10045. &
  10046. $\Rightarrow$
  10047. &
  10048. \begin{minipage}{0.65\textwidth}
  10049. \begin{lstlisting}
  10050. (if (eq? |$e'_1$| (inject #f Boolean))
  10051. (inject #t Boolean) (inject #f Boolean))
  10052. \end{lstlisting}
  10053. \end{minipage}
  10054. \\[2ex]\hline
  10055. \end{tabular}
  10056. \caption{Cast Insertion}
  10057. \label{fig:compile-r7-Rany}
  10058. \end{figure}
  10059. \section{Reveal Casts}
  10060. \label{sec:reveal-casts-Rany}
  10061. % TODO: define R'_6
  10062. In the \code{reveal-casts} pass we recommend compiling \code{project}
  10063. into an \code{if} expression that checks whether the value's tag
  10064. matches the target type; if it does, the value is converted to a value
  10065. of the target type by removing the tag; if it does not, the program
  10066. exits. To perform these actions we need a new primitive operation,
  10067. \code{tag-of-any}, and two new forms, \code{ValueOf} and \code{Exit}.
  10068. The \code{tag-of-any} operation retrieves the type tag from a tagged
  10069. value of type \code{Any}. The \code{ValueOf} form retrieves the
  10070. underlying value from a tagged value. The \code{ValueOf} form
  10071. includes the type for the underlying value which is used by the type
  10072. checker. Finally, the \code{Exit} form ends the execution of the
  10073. program.
  10074. If the target type of the projection is \code{Boolean} or
  10075. \code{Integer}, then \code{Project} can be translated as follows.
  10076. \begin{center}
  10077. \begin{minipage}{1.0\textwidth}
  10078. \begin{lstlisting}
  10079. (Project |$e$| |$\FType$|)
  10080. |$\Rightarrow$|
  10081. (Let |$\itm{tmp}$| |$e'$|
  10082. (If (Prim 'eq? (list (Prim 'tag-of-any (list (Var |$\itm{tmp}$|)))
  10083. (Int |$\itm{tagof}(\FType)$|)))
  10084. (ValueOf |$\itm{tmp}$| |$\FType$|)
  10085. (Exit)))
  10086. \end{lstlisting}
  10087. \end{minipage}
  10088. \end{center}
  10089. If the target type of the projection is a vector or function type,
  10090. then there is a bit more work to do. For vectors, check that the
  10091. length of the vector type matches the length of the vector (using the
  10092. \code{vector-length} primitive). For functions, check that the number
  10093. of parameters in the function type matches the function's arity (using
  10094. \code{procedure-arity}).
  10095. Regarding \code{inject}, we recommend compiling it to a slightly
  10096. lower-level primitive operation named \code{make-any}. This operation
  10097. takes a tag instead of a type.
  10098. \begin{center}
  10099. \begin{minipage}{1.0\textwidth}
  10100. \begin{lstlisting}
  10101. (Inject |$e$| |$\FType$|)
  10102. |$\Rightarrow$|
  10103. (Prim 'make-any (list |$e'$| (Int |$\itm{tagof}(\FType)$|)))
  10104. \end{lstlisting}
  10105. \end{minipage}
  10106. \end{center}
  10107. The type predicates (\code{boolean?}, etc.) can be translated into
  10108. uses of \code{tag-of-any} and \code{eq?} in a similar way as in the
  10109. translation of \code{Project}.
  10110. The \code{any-vector-ref} and \code{any-vector-set!} operations
  10111. combine the projection action with the vector operation. Also, the
  10112. read and write operations allow arbitrary expressions for the index so
  10113. the type checker for \LangAny{} (Figure~\ref{fig:type-check-Rany-part-1})
  10114. cannot guarantee that the index is within bounds. Thus, we insert code
  10115. to perform bounds checking at runtime. The translation for
  10116. \code{any-vector-ref} is as follows and the other two operations are
  10117. translated in a similar way.
  10118. \begin{lstlisting}
  10119. (Prim 'any-vector-ref (list |$e_1$| |$e_2$|))
  10120. |$\Rightarrow$|
  10121. (Let |$v$| |$e'_1$|
  10122. (Let |$i$| |$e'_2$|
  10123. (If (Prim 'eq? (list (Prim 'tag-of-any (list (Var |$v$|))) (Int 2)))
  10124. (If (Prim '< (list (Var |$i$|)
  10125. (Prim 'any-vector-length (list (Var |$v$|)))))
  10126. (Prim 'any-vector-ref (list (Var |$v$|) (Var |$i$|)))
  10127. (Exit))))
  10128. \end{lstlisting}
  10129. \section{Remove Complex Operands}
  10130. \label{sec:rco-Rany}
  10131. The \code{ValueOf} and \code{Exit} forms are both complex expressions.
  10132. The subexpression of \code{ValueOf} must be atomic.
  10133. \section{Explicate Control and \LangCAny{}}
  10134. \label{sec:explicate-Rany}
  10135. The output of \code{explicate-control} is the \LangCAny{} language whose
  10136. syntax is defined in Figure~\ref{fig:c5-syntax}. The \code{ValueOf}
  10137. form that we added to \LangAny{} remains an expression and the \code{Exit}
  10138. expression becomes a $\Tail$. Also, note that the index argument of
  10139. \code{vector-ref} and \code{vector-set!} is an $\Atm$ instead
  10140. of an integer, as in \LangCVec{} (Figure~\ref{fig:c2-syntax}).
  10141. \begin{figure}[tp]
  10142. \fbox{
  10143. \begin{minipage}{0.96\textwidth}
  10144. \small
  10145. \[
  10146. \begin{array}{lcl}
  10147. \Exp &::= & \ldots
  10148. \mid \BINOP{\key{'any-vector-ref}}{\Atm}{\Atm} \\
  10149. &\mid& (\key{Prim}~\key{'any-vector-set!}\,(\key{list}\,\Atm\,\Atm\,\Atm))\\
  10150. &\mid& \VALUEOF{\Exp}{\FType} \\
  10151. \Stmt &::=& \gray{ \ASSIGN{\VAR{\Var}}{\Exp}
  10152. \mid \LP\key{Collect} \,\itm{int}\RP }\\
  10153. \Tail &::= & \gray{ \RETURN{\Exp} \mid \SEQ{\Stmt}{\Tail}
  10154. \mid \GOTO{\itm{label}} } \\
  10155. &\mid& \gray{ \IFSTMT{\BINOP{\itm{cmp}}{\Atm}{\Atm}}{\GOTO{\itm{label}}}{\GOTO{\itm{label}}} }\\
  10156. &\mid& \gray{ \TAILCALL{\Atm}{\Atm\ldots} }
  10157. \mid \LP\key{Exit}\RP \\
  10158. \Def &::=& \gray{ \DEF{\itm{label}}{\LP[\Var\key{:}\Type]\ldots\RP}{\Type}{\itm{info}}{\LP\LP\itm{label}\,\key{.}\,\Tail\RP\ldots\RP} }\\
  10159. \LangCLam{} & ::= & \gray{ \PROGRAMDEFS{\itm{info}}{\LP\Def\ldots\RP} }
  10160. \end{array}
  10161. \]
  10162. \end{minipage}
  10163. }
  10164. \caption{The abstract syntax of \LangCAny{}, extending \LangCLam{} (Figure~\ref{fig:c4-syntax}).}
  10165. \label{fig:c5-syntax}
  10166. \end{figure}
  10167. \section{Select Instructions}
  10168. \label{sec:select-Rany}
  10169. In the \code{select-instructions} pass we translate the primitive
  10170. operations on the \code{Any} type to x86 instructions that involve
  10171. manipulating the 3 tag bits of the tagged value.
  10172. \paragraph{Make-any}
  10173. We recommend compiling the \key{make-any} primitive as follows if the
  10174. tag is for \key{Integer} or \key{Boolean}. The \key{salq} instruction
  10175. shifts the destination to the left by the number of bits specified its
  10176. source argument (in this case $3$, the length of the tag) and it
  10177. preserves the sign of the integer. We use the \key{orq} instruction to
  10178. combine the tag and the value to form the tagged value. \\
  10179. \begin{lstlisting}
  10180. (Assign |\itm{lhs}| (Prim 'make-any (list |$e$| (Int |$\itm{tag}$|))))
  10181. |$\Rightarrow$|
  10182. movq |$e'$|, |\itm{lhs'}|
  10183. salq $3, |\itm{lhs'}|
  10184. orq $|$\itm{tag}$|, |\itm{lhs'}|
  10185. \end{lstlisting}
  10186. The instruction selection for vectors and procedures is different
  10187. because their is no need to shift them to the left. The rightmost 3
  10188. bits are already zeros as described at the beginning of this
  10189. chapter. So we just combine the value and the tag using \key{orq}. \\
  10190. \begin{lstlisting}
  10191. (Assign |\itm{lhs}| (Prim 'make-any (list |$e$| (Int |$\itm{tag}$|))))
  10192. |$\Rightarrow$|
  10193. movq |$e'$|, |\itm{lhs'}|
  10194. orq $|$\itm{tag}$|, |\itm{lhs'}|
  10195. \end{lstlisting}
  10196. \paragraph{Tag-of-any}
  10197. Recall that the \code{tag-of-any} operation extracts the type tag from
  10198. a value of type \code{Any}. The type tag is the bottom three bits, so
  10199. we obtain the tag by taking the bitwise-and of the value with $111$
  10200. ($7$ in decimal).
  10201. \begin{lstlisting}
  10202. (Assign |\itm{lhs}| (Prim 'tag-of-any (list |$e$|)))
  10203. |$\Rightarrow$|
  10204. movq |$e'$|, |\itm{lhs'}|
  10205. andq $7, |\itm{lhs'}|
  10206. \end{lstlisting}
  10207. \paragraph{ValueOf}
  10208. Like \key{make-any}, the instructions for \key{ValueOf} are different
  10209. depending on whether the type $T$ is a pointer (vector or procedure)
  10210. or not (Integer or Boolean). The following shows the instruction
  10211. selection for Integer and Boolean. We produce an untagged value by
  10212. shifting it to the right by 3 bits.
  10213. \begin{lstlisting}
  10214. (Assign |\itm{lhs}| (ValueOf |$e$| |$T$|))
  10215. |$\Rightarrow$|
  10216. movq |$e'$|, |\itm{lhs'}|
  10217. sarq $3, |\itm{lhs'}|
  10218. \end{lstlisting}
  10219. %
  10220. In the case for vectors and procedures, there is no need to
  10221. shift. Instead we just need to zero-out the rightmost 3 bits. We
  10222. accomplish this by creating the bit pattern $\ldots 0111$ ($7$ in
  10223. decimal) and apply \code{bitwise-not} to obtain $\ldots 11111000$ (-8
  10224. in decimal) which we \code{movq} into the destination $\itm{lhs}$. We
  10225. then apply \code{andq} with the tagged value to get the desired
  10226. result. \\
  10227. \begin{lstlisting}
  10228. (Assign |\itm{lhs}| (ValueOf |$e$| |$T$|))
  10229. |$\Rightarrow$|
  10230. movq $|$-8$|, |\itm{lhs'}|
  10231. andq |$e'$|, |\itm{lhs'}|
  10232. \end{lstlisting}
  10233. %% \paragraph{Type Predicates} We leave it to the reader to
  10234. %% devise a sequence of instructions to implement the type predicates
  10235. %% \key{boolean?}, \key{integer?}, \key{vector?}, and \key{procedure?}.
  10236. \paragraph{Any-vector-length}
  10237. \begin{lstlisting}
  10238. (Assign |$\itm{lhs}$| (Prim 'any-vector-length (list |$a_1$|)))
  10239. |$\Longrightarrow$|
  10240. movq |$\neg 111$|, %r11
  10241. andq |$a_1'$|, %r11
  10242. movq 0(%r11), %r11
  10243. andq $126, %r11
  10244. sarq $1, %r11
  10245. movq %r11, |$\itm{lhs'}$|
  10246. \end{lstlisting}
  10247. \paragraph{Any-vector-ref}
  10248. The index may be an arbitrary atom so instead of computing the offset
  10249. at compile time, instructions need to be generated to compute the
  10250. offset at runtime as follows. Note the use of the new instruction
  10251. \code{imulq}.
  10252. \begin{center}
  10253. \begin{minipage}{0.96\textwidth}
  10254. \begin{lstlisting}
  10255. (Assign |$\itm{lhs}$| (Prim 'any-vector-ref (list |$a_1$| |$a_2$|)))
  10256. |$\Longrightarrow$|
  10257. movq |$\neg 111$|, %r11
  10258. andq |$a_1'$|, %r11
  10259. movq |$a_2'$|, %rax
  10260. addq $1, %rax
  10261. imulq $8, %rax
  10262. addq %rax, %r11
  10263. movq 0(%r11) |$\itm{lhs'}$|
  10264. \end{lstlisting}
  10265. \end{minipage}
  10266. \end{center}
  10267. \paragraph{Any-vector-set!}
  10268. The code generation for \code{any-vector-set!} is similar to the other
  10269. \code{any-vector} operations.
  10270. \section{Register Allocation for \LangAny{}}
  10271. \label{sec:register-allocation-Rany}
  10272. \index{register allocation}
  10273. There is an interesting interaction between tagged values and garbage
  10274. collection that has an impact on register allocation. A variable of
  10275. type \code{Any} might refer to a vector and therefore it might be a
  10276. root that needs to be inspected and copied during garbage
  10277. collection. Thus, we need to treat variables of type \code{Any} in a
  10278. similar way to variables of type \code{Vector} for purposes of
  10279. register allocation. In particular,
  10280. \begin{itemize}
  10281. \item If a variable of type \code{Any} is live during a function call,
  10282. then it must be spilled. This can be accomplished by changing
  10283. \code{build-interference} to mark all variables of type \code{Any}
  10284. that are live after a \code{callq} as interfering with all the
  10285. registers.
  10286. \item If a variable of type \code{Any} is spilled, it must be spilled
  10287. to the root stack instead of the normal procedure call stack.
  10288. \end{itemize}
  10289. Another concern regarding the root stack is that the garbage collector
  10290. needs to differentiate between (1) plain old pointers to tuples, (2) a
  10291. tagged value that points to a tuple, and (3) a tagged value that is
  10292. not a tuple. We enable this differentiation by choosing not to use the
  10293. tag $000$ in the $\itm{tagof}$ function. Instead, that bit pattern is
  10294. reserved for identifying plain old pointers to tuples. That way, if
  10295. one of the first three bits is set, then we have a tagged value and
  10296. inspecting the tag can differentiation between vectors ($010$) and the
  10297. other kinds of values.
  10298. \begin{exercise}\normalfont
  10299. Expand your compiler to handle \LangAny{} as discussed in the last few
  10300. sections. Create 5 new programs that use the \code{Any} type and the
  10301. new operations (\code{inject}, \code{project}, \code{boolean?},
  10302. etc.). Test your compiler on these new programs and all of your
  10303. previously created test programs.
  10304. \end{exercise}
  10305. \begin{exercise}\normalfont
  10306. Expand your compiler to handle \LangDyn{} as outlined in this chapter.
  10307. Create tests for \LangDyn{} by adapting ten of your previous test programs
  10308. by removing type annotations. Add 5 more tests programs that
  10309. specifically rely on the language being dynamically typed. That is,
  10310. they should not be legal programs in a statically typed language, but
  10311. nevertheless, they should be valid \LangDyn{} programs that run to
  10312. completion without error.
  10313. \end{exercise}
  10314. \begin{figure}[p]
  10315. \begin{tikzpicture}[baseline=(current bounding box.center)]
  10316. \node (Rfun) at (0,4) {\large \LangDyn{}};
  10317. \node (Rfun-2) at (3,4) {\large \LangDyn{}};
  10318. \node (Rfun-3) at (6,4) {\large \LangDyn{}};
  10319. \node (Rfun-4) at (9,4) {\large \LangDynFunRef{}};
  10320. \node (Rfun-5) at (9,2) {\large \LangAnyFunRef{}};
  10321. \node (Rfun-6) at (12,2) {\large \LangAnyFunRef{}};
  10322. \node (Rfun-7) at (12,0) {\large \LangAnyFunRef{}};
  10323. \node (F1-2) at (9,0) {\large \LangAnyFunRef{}};
  10324. \node (F1-3) at (6,0) {\large \LangAnyFunRef{}};
  10325. \node (F1-4) at (3,0) {\large \LangAnyAlloc{}};
  10326. \node (F1-5) at (0,0) {\large \LangAnyAlloc{}};
  10327. \node (C3-2) at (3,-2) {\large \LangCAny{}};
  10328. \node (x86-2) at (3,-4) {\large \LangXIndCallVar{}};
  10329. \node (x86-2-1) at (3,-6) {\large \LangXIndCallVar{}};
  10330. \node (x86-2-2) at (6,-6) {\large \LangXIndCallVar{}};
  10331. \node (x86-3) at (6,-4) {\large \LangXIndCallVar{}};
  10332. \node (x86-4) at (9,-4) {\large \LangXIndCall{}};
  10333. \node (x86-5) at (9,-6) {\large \LangXIndCall{}};
  10334. \path[->,bend left=15] (Rfun) edge [above] node
  10335. {\ttfamily\footnotesize shrink} (Rfun-2);
  10336. \path[->,bend left=15] (Rfun-2) edge [above] node
  10337. {\ttfamily\footnotesize uniquify} (Rfun-3);
  10338. \path[->,bend left=15] (Rfun-3) edge [above] node
  10339. {\ttfamily\footnotesize reveal-functions} (Rfun-4);
  10340. \path[->,bend right=15] (Rfun-4) edge [left] node
  10341. {\ttfamily\footnotesize cast-insert} (Rfun-5);
  10342. \path[->,bend left=15] (Rfun-5) edge [above] node
  10343. {\ttfamily\footnotesize check-bounds} (Rfun-6);
  10344. \path[->,bend left=15] (Rfun-6) edge [left] node
  10345. {\ttfamily\footnotesize reveal-casts} (Rfun-7);
  10346. \path[->,bend left=15] (Rfun-7) edge [below] node
  10347. {\ttfamily\footnotesize convert-to-clos.} (F1-2);
  10348. \path[->,bend right=15] (F1-2) edge [above] node
  10349. {\ttfamily\footnotesize limit-fun.} (F1-3);
  10350. \path[->,bend right=15] (F1-3) edge [above] node
  10351. {\ttfamily\footnotesize expose-alloc.} (F1-4);
  10352. \path[->,bend right=15] (F1-4) edge [above] node
  10353. {\ttfamily\footnotesize remove-complex.} (F1-5);
  10354. \path[->,bend right=15] (F1-5) edge [right] node
  10355. {\ttfamily\footnotesize explicate-control} (C3-2);
  10356. \path[->,bend left=15] (C3-2) edge [left] node
  10357. {\ttfamily\footnotesize select-instr.} (x86-2);
  10358. \path[->,bend right=15] (x86-2) edge [left] node
  10359. {\ttfamily\footnotesize uncover-live} (x86-2-1);
  10360. \path[->,bend right=15] (x86-2-1) edge [below] node
  10361. {\ttfamily\footnotesize build-inter.} (x86-2-2);
  10362. \path[->,bend right=15] (x86-2-2) edge [left] node
  10363. {\ttfamily\footnotesize allocate-reg.} (x86-3);
  10364. \path[->,bend left=15] (x86-3) edge [above] node
  10365. {\ttfamily\footnotesize patch-instr.} (x86-4);
  10366. \path[->,bend left=15] (x86-4) edge [right] node
  10367. {\ttfamily\footnotesize print-x86} (x86-5);
  10368. \end{tikzpicture}
  10369. \caption{Diagram of the passes for \LangDyn{}, a dynamically typed language.}
  10370. \label{fig:Rdyn-passes}
  10371. \end{figure}
  10372. Figure~\ref{fig:Rdyn-passes} provides an overview of all the passes needed
  10373. for the compilation of \LangDyn{}.
  10374. % Further Reading
  10375. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  10376. \chapter{Loops and Assignment}
  10377. \label{ch:Rwhile}
  10378. % TODO: define R'_8
  10379. % TODO: multi-graph
  10380. In this chapter we study two features that are the hallmarks of
  10381. imperative programming languages: loops and assignments to local
  10382. variables. The following example demonstrates these new features by
  10383. computing the sum of the first five positive integers.
  10384. % similar to loop_test_1.rkt
  10385. \begin{lstlisting}
  10386. (let ([sum 0])
  10387. (let ([i 5])
  10388. (begin
  10389. (while (> i 0)
  10390. (begin
  10391. (set! sum (+ sum i))
  10392. (set! i (- i 1))))
  10393. sum)))
  10394. \end{lstlisting}
  10395. The \code{while} loop consists of a condition and a body.
  10396. %
  10397. The \code{set!} consists of a variable and a right-hand-side expression.
  10398. %
  10399. The primary purpose of both the \code{while} loop and \code{set!} is
  10400. to cause side effects, so it is convenient to also include in a
  10401. language feature for sequencing side effects: the \code{begin}
  10402. expression. It consists of one or more subexpressions that are
  10403. evaluated left-to-right.
  10404. \section{The \LangLoop{} Language}
  10405. \begin{figure}[tp]
  10406. \centering
  10407. \fbox{
  10408. \begin{minipage}{0.96\textwidth}
  10409. \small
  10410. \[
  10411. \begin{array}{lcl}
  10412. \Exp &::=& \gray{ \Int \mid \CREAD{} \mid \CNEG{\Exp}
  10413. \mid \CADD{\Exp}{\Exp} \mid \CSUB{\Exp}{\Exp} } \\
  10414. &\mid& \gray{ \Var \mid \CLET{\Var}{\Exp}{\Exp} }\\
  10415. &\mid& \gray{\key{\#t} \mid \key{\#f}
  10416. \mid (\key{and}\;\Exp\;\Exp)
  10417. \mid (\key{or}\;\Exp\;\Exp)
  10418. \mid (\key{not}\;\Exp) } \\
  10419. &\mid& \gray{ (\key{eq?}\;\Exp\;\Exp) \mid \CIF{\Exp}{\Exp}{\Exp} } \\
  10420. &\mid& \gray{ (\key{vector}\;\Exp\ldots) \mid
  10421. (\key{vector-ref}\;\Exp\;\Int)} \\
  10422. &\mid& \gray{(\key{vector-set!}\;\Exp\;\Int\;\Exp)\mid (\key{void})
  10423. \mid (\Exp \; \Exp\ldots) } \\
  10424. &\mid& \gray{ \LP \key{procedure-arity}~\Exp\RP
  10425. \mid \CLAMBDA{\LP\LS\Var \key{:} \Type\RS\ldots\RP}{\Type}{\Exp} } \\
  10426. &\mid& \CSETBANG{\Var}{\Exp}
  10427. \mid \CBEGIN{\Exp\ldots}{\Exp}
  10428. \mid \CWHILE{\Exp}{\Exp} \\
  10429. \Def &::=& \gray{ \CDEF{\Var}{\LS\Var \key{:} \Type\RS\ldots}{\Type}{\Exp} } \\
  10430. \LangLoop{} &::=& \gray{\Def\ldots \; \Exp}
  10431. \end{array}
  10432. \]
  10433. \end{minipage}
  10434. }
  10435. \caption{The concrete syntax of \LangLoop{}, extending \LangAny{} (Figure~\ref{fig:Rany-concrete-syntax}).}
  10436. \label{fig:Rwhile-concrete-syntax}
  10437. \end{figure}
  10438. \begin{figure}[tp]
  10439. \centering
  10440. \fbox{
  10441. \begin{minipage}{0.96\textwidth}
  10442. \small
  10443. \[
  10444. \begin{array}{lcl}
  10445. \Exp &::=& \gray{ \INT{\Int} \VAR{\Var} \mid \LET{\Var}{\Exp}{\Exp} } \\
  10446. &\mid& \gray{ \PRIM{\itm{op}}{\Exp\ldots} }\\
  10447. &\mid& \gray{ \BOOL{\itm{bool}}
  10448. \mid \IF{\Exp}{\Exp}{\Exp} } \\
  10449. &\mid& \gray{ \VOID{} \mid \LP\key{HasType}~\Exp~\Type \RP
  10450. \mid \APPLY{\Exp}{\Exp\ldots} }\\
  10451. &\mid& \gray{ \LAMBDA{\LP\LS\Var\code{:}\Type\RS\ldots\RP}{\Type}{\Exp} }\\
  10452. &\mid& \SETBANG{\Var}{\Exp} \mid \BEGIN{\LP\Exp\ldots\RP}{\Exp}
  10453. \mid \WHILE{\Exp}{\Exp} \\
  10454. \Def &::=& \gray{ \FUNDEF{\Var}{\LP\LS\Var \code{:} \Type\RS\ldots\RP}{\Type}{\code{'()}}{\Exp} }\\
  10455. \LangLoop{} &::=& \gray{ \PROGRAMDEFSEXP{\code{'()}}{\LP\Def\ldots\RP}{\Exp} }
  10456. \end{array}
  10457. \]
  10458. \end{minipage}
  10459. }
  10460. \caption{The abstract syntax of \LangLoop{}, extending \LangAny{} (Figure~\ref{fig:Rany-syntax}).}
  10461. \label{fig:Rwhile-syntax}
  10462. \end{figure}
  10463. The concrete syntax of \LangLoop{} is defined in
  10464. Figure~\ref{fig:Rwhile-concrete-syntax} and its abstract syntax is defined
  10465. in Figure~\ref{fig:Rwhile-syntax}.
  10466. %
  10467. The definitional interpreter for \LangLoop{} is shown in
  10468. Figure~\ref{fig:interp-Rwhile}. We add three new cases for \code{SetBang},
  10469. \code{WhileLoop}, and \code{Begin} and we make changes to the cases
  10470. for \code{Var}, \code{Let}, and \code{Apply} regarding variables. To
  10471. support assignment to variables and to make their lifetimes indefinite
  10472. (see the second example in Section~\ref{sec:assignment-scoping}), we
  10473. box the value that is bound to each variable (in \code{Let}) and
  10474. function parameter (in \code{Apply}). The case for \code{Var} unboxes
  10475. the value.
  10476. %
  10477. Now to discuss the new cases. For \code{SetBang}, we lookup the
  10478. variable in the environment to obtain a boxed value and then we change
  10479. it using \code{set-box!} to the result of evaluating the right-hand
  10480. side. The result value of a \code{SetBang} is \code{void}.
  10481. %
  10482. For the \code{WhileLoop}, we repeatedly 1) evaluate the condition, and
  10483. if the result is true, 2) evaluate the body.
  10484. The result value of a \code{while} loop is also \code{void}.
  10485. %
  10486. Finally, the $\BEGIN{\itm{es}}{\itm{body}}$ expression evaluates the
  10487. subexpressions \itm{es} for their effects and then evaluates
  10488. and returns the result from \itm{body}.
  10489. \begin{figure}[tbp]
  10490. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  10491. (define interp-Rwhile-class
  10492. (class interp-Rany-class
  10493. (super-new)
  10494. (define/override ((interp-exp env) e)
  10495. (define recur (interp-exp env))
  10496. (match e
  10497. [(SetBang x rhs)
  10498. (set-box! (lookup x env) (recur rhs))]
  10499. [(WhileLoop cnd body)
  10500. (define (loop)
  10501. (cond [(recur cnd) (recur body) (loop)]
  10502. [else (void)]))
  10503. (loop)]
  10504. [(Begin es body)
  10505. (for ([e es]) (recur e))
  10506. (recur body)]
  10507. [else ((super interp-exp env) e)]))
  10508. ))
  10509. (define (interp-Rwhile p)
  10510. (send (new interp-Rwhile-class) interp-program p))
  10511. \end{lstlisting}
  10512. \caption{Interpreter for \LangLoop{}.}
  10513. \label{fig:interp-Rwhile}
  10514. \end{figure}
  10515. The type checker for \LangLoop{} is define in
  10516. Figure~\ref{fig:type-check-Rwhile}. For \code{SetBang}, the type of the
  10517. variable and the right-hand-side must agree. The result type is
  10518. \code{Void}. For the \code{WhileLoop}, the condition must be a
  10519. \code{Boolean}. The result type is also \code{Void}. For
  10520. \code{Begin}, the result type is the type of its last subexpression.
  10521. \begin{figure}[tbp]
  10522. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  10523. (define type-check-Rwhile-class
  10524. (class type-check-Rany-class
  10525. (super-new)
  10526. (inherit check-type-equal?)
  10527. (define/override (type-check-exp env)
  10528. (lambda (e)
  10529. (define recur (type-check-exp env))
  10530. (match e
  10531. [(SetBang x rhs)
  10532. (define-values (rhs^ rhsT) (recur rhs))
  10533. (define varT (dict-ref env x))
  10534. (check-type-equal? rhsT varT e)
  10535. (values (SetBang x rhs^) 'Void)]
  10536. [(WhileLoop cnd body)
  10537. (define-values (cnd^ Tc) (recur cnd))
  10538. (check-type-equal? Tc 'Boolean e)
  10539. (define-values (body^ Tbody) ((type-check-exp env) body))
  10540. (values (WhileLoop cnd^ body^) 'Void)]
  10541. [(Begin es body)
  10542. (define-values (es^ ts)
  10543. (for/lists (l1 l2) ([e es]) (recur e)))
  10544. (define-values (body^ Tbody) (recur body))
  10545. (values (Begin es^ body^) Tbody)]
  10546. [else ((super type-check-exp env) e)])))
  10547. ))
  10548. (define (type-check-Rwhile p)
  10549. (send (new type-check-Rwhile-class) type-check-program p))
  10550. \end{lstlisting}
  10551. \caption{Type checking \key{SetBang}, \key{WhileLoop},
  10552. and \code{Begin} in \LangLoop{}.}
  10553. \label{fig:type-check-Rwhile}
  10554. \end{figure}
  10555. At first glance, the translation of these language features to x86
  10556. seems straightforward because the \LangCFun{} intermediate language already
  10557. supports all of the ingredients that we need: assignment, \code{goto},
  10558. conditional branching, and sequencing. However, there are two
  10559. complications that arise which we discuss in the next two
  10560. sections. After that we introduce one new compiler pass and the
  10561. changes necessary to the existing passes.
  10562. \section{Assignment and Lexically Scoped Functions}
  10563. \label{sec:assignment-scoping}
  10564. The addition of assignment raises a problem with our approach to
  10565. implementing lexically-scoped functions. Consider the following
  10566. example in which function \code{f} has a free variable \code{x} that
  10567. is changed after \code{f} is created but before the call to \code{f}.
  10568. % loop_test_11.rkt
  10569. \begin{lstlisting}
  10570. (let ([x 0])
  10571. (let ([y 0])
  10572. (let ([z 20])
  10573. (let ([f (lambda: ([a : Integer]) : Integer (+ a (+ x z)))])
  10574. (begin
  10575. (set! x 10)
  10576. (set! y 12)
  10577. (f y))))))
  10578. \end{lstlisting}
  10579. The correct output for this example is \code{42} because the call to
  10580. \code{f} is required to use the current value of \code{x} (which is
  10581. \code{10}). Unfortunately, the closure conversion pass
  10582. (Section~\ref{sec:closure-conversion}) generates code for the
  10583. \code{lambda} that copies the old value of \code{x} into a
  10584. closure. Thus, if we naively add support for assignment to our current
  10585. compiler, the output of this program would be \code{32}.
  10586. A first attempt at solving this problem would be to save a pointer to
  10587. \code{x} in the closure and change the occurrences of \code{x} inside
  10588. the lambda to dereference the pointer. Of course, this would require
  10589. assigning \code{x} to the stack and not to a register. However, the
  10590. problem goes a bit deeper. Consider the following example in which we
  10591. create a counter abstraction by creating a pair of functions that
  10592. share the free variable \code{x}.
  10593. % similar to loop_test_10.rkt
  10594. \begin{lstlisting}
  10595. (define (f [x : Integer]) : (Vector ( -> Integer) ( -> Void))
  10596. (vector
  10597. (lambda: () : Integer x)
  10598. (lambda: () : Void (set! x (+ 1 x)))))
  10599. (let ([counter (f 0)])
  10600. (let ([get (vector-ref counter 0)])
  10601. (let ([inc (vector-ref counter 1)])
  10602. (begin
  10603. (inc)
  10604. (get)))))
  10605. \end{lstlisting}
  10606. In this example, the lifetime of \code{x} extends beyond the lifetime
  10607. of the call to \code{f}. Thus, if we were to store \code{x} on the
  10608. stack frame for the call to \code{f}, it would be gone by the time we
  10609. call \code{inc} and \code{get}, leaving us with dangling pointers for
  10610. \code{x}. This example demonstrates that when a variable occurs free
  10611. inside a \code{lambda}, its lifetime becomes indefinite. Thus, the
  10612. value of the variable needs to live on the heap. The verb ``box'' is
  10613. often used for allocating a single value on the heap, producing a
  10614. pointer, and ``unbox'' for dereferencing the pointer.
  10615. We recommend solving these problems by ``boxing'' the local variables
  10616. that are in the intersection of 1) variables that appear on the
  10617. left-hand-side of a \code{set!} and 2) variables that occur free
  10618. inside a \code{lambda}. We shall introduce a new pass named
  10619. \code{convert-assignments} in Section~\ref{sec:convert-assignments} to
  10620. perform this translation. But before diving into the compiler passes,
  10621. we one more problem to discuss.
  10622. \section{Cyclic Control Flow and Dataflow Analysis}
  10623. \label{sec:dataflow-analysis}
  10624. Up until this point the control-flow graphs generated in
  10625. \code{explicate-control} were guaranteed to be acyclic. However, each
  10626. \code{while} loop introduces a cycle in the control-flow graph.
  10627. But does that matter?
  10628. %
  10629. Indeed it does. Recall that for register allocation, the compiler
  10630. performs liveness analysis to determine which variables can share the
  10631. same register. In Section~\ref{sec:liveness-analysis-Rif} we analyze
  10632. the control-flow graph in reverse topological order, but topological
  10633. order is only well-defined for acyclic graphs.
  10634. Let us return to the example of computing the sum of the first five
  10635. positive integers. Here is the program after instruction selection but
  10636. before register allocation.
  10637. \begin{center}
  10638. \begin{minipage}{0.45\textwidth}
  10639. \begin{lstlisting}
  10640. (define (main) : Integer
  10641. mainstart:
  10642. movq $0, sum1
  10643. movq $5, i2
  10644. jmp block5
  10645. block5:
  10646. movq i2, tmp3
  10647. cmpq tmp3, $0
  10648. jl block7
  10649. jmp block8
  10650. \end{lstlisting}
  10651. \end{minipage}
  10652. \begin{minipage}{0.45\textwidth}
  10653. \begin{lstlisting}
  10654. block7:
  10655. addq i2, sum1
  10656. movq $1, tmp4
  10657. negq tmp4
  10658. addq tmp4, i2
  10659. jmp block5
  10660. block8:
  10661. movq $27, %rax
  10662. addq sum1, %rax
  10663. jmp mainconclusion
  10664. )
  10665. \end{lstlisting}
  10666. \end{minipage}
  10667. \end{center}
  10668. Recall that liveness analysis works backwards, starting at the end
  10669. of each function. For this example we could start with \code{block8}
  10670. because we know what is live at the beginning of the conclusion,
  10671. just \code{rax} and \code{rsp}. So the live-before set
  10672. for \code{block8} is $\{\ttm{rsp},\ttm{sum1}\}$.
  10673. %
  10674. Next we might try to analyze \code{block5} or \code{block7}, but
  10675. \code{block5} jumps to \code{block7} and vice versa, so it seems that
  10676. we are stuck.
  10677. The way out of this impasse comes from the realization that one can
  10678. perform liveness analysis starting with an empty live-after set to
  10679. compute an under-approximation of the live-before set. By
  10680. \emph{under-approximation}, we mean that the set only contains
  10681. variables that are really live, but it may be missing some. Next, the
  10682. under-approximations for each block can be improved by 1) updating the
  10683. live-after set for each block using the approximate live-before sets
  10684. from the other blocks and 2) perform liveness analysis again on each
  10685. block. In fact, by iterating this process, the under-approximations
  10686. eventually become the correct solutions!
  10687. %
  10688. This approach of iteratively analyzing a control-flow graph is
  10689. applicable to many static analysis problems and goes by the name
  10690. \emph{dataflow analysis}\index{dataflow analysis}. It was invented by
  10691. \citet{Kildall:1973vn} in his Ph.D. thesis at the University of
  10692. Washington.
  10693. Let us apply this approach to the above example. We use the empty set
  10694. for the initial live-before set for each block. Let $m_0$ be the
  10695. following mapping from label names to sets of locations (variables and
  10696. registers).
  10697. \begin{center}
  10698. \begin{lstlisting}
  10699. mainstart: {}
  10700. block5: {}
  10701. block7: {}
  10702. block8: {}
  10703. \end{lstlisting}
  10704. \end{center}
  10705. Using the above live-before approximations, we determine the
  10706. live-after for each block and then apply liveness analysis to each
  10707. block. This produces our next approximation $m_1$ of the live-before
  10708. sets.
  10709. \begin{center}
  10710. \begin{lstlisting}
  10711. mainstart: {}
  10712. block5: {i2}
  10713. block7: {i2, sum1}
  10714. block8: {rsp, sum1}
  10715. \end{lstlisting}
  10716. \end{center}
  10717. For the second round, the live-after for \code{mainstart} is the
  10718. current live-before for \code{block5}, which is \code{\{i2\}}. So the
  10719. liveness analysis for \code{mainstart} computes the empty set. The
  10720. live-after for \code{block5} is the union of the live-before sets for
  10721. \code{block7} and \code{block8}, which is \code{\{i2 , rsp, sum1\}}.
  10722. So the liveness analysis for \code{block5} computes \code{\{i2 , rsp,
  10723. sum1\}}. The live-after for \code{block7} is the live-before for
  10724. \code{block5} (from the previous iteration), which is \code{\{i2\}}.
  10725. So the liveness analysis for \code{block7} remains \code{\{i2,
  10726. sum1\}}. Together these yield the following approximation $m_2$ of
  10727. the live-before sets.
  10728. \begin{center}
  10729. \begin{lstlisting}
  10730. mainstart: {}
  10731. block5: {i2, rsp, sum1}
  10732. block7: {i2, sum1}
  10733. block8: {rsp, sum1}
  10734. \end{lstlisting}
  10735. \end{center}
  10736. In the preceding iteration, only \code{block5} changed, so we can
  10737. limit our attention to \code{mainstart} and \code{block7}, the two
  10738. blocks that jump to \code{block5}. As a result, the live-before sets
  10739. for \code{mainstart} and \code{block7} are updated to include
  10740. \code{rsp}, yielding the following approximation $m_3$.
  10741. \begin{center}
  10742. \begin{lstlisting}
  10743. mainstart: {rsp}
  10744. block5: {i2, rsp, sum1}
  10745. block7: {i2, rsp, sum1}
  10746. block8: {rsp, sum1}
  10747. \end{lstlisting}
  10748. \end{center}
  10749. Because \code{block7} changed, we analyze \code{block5} once more, but
  10750. its live-before set remains \code{\{ i2, rsp, sum1 \}}. At this point
  10751. our approximations have converged, so $m_3$ is the solution.
  10752. This iteration process is guaranteed to converge to a solution by the
  10753. Kleene Fixed-Point Theorem, a general theorem about functions on
  10754. lattices~\citep{Kleene:1952aa}. Roughly speaking, a \emph{lattice} is
  10755. any collection that comes with a partial ordering $\sqsubseteq$ on its
  10756. elements, a least element $\bot$ (pronounced bottom), and a join
  10757. operator $\sqcup$.\index{lattice}\index{bottom}\index{partial
  10758. ordering}\index{join}\footnote{Technically speaking, we will be
  10759. working with join semi-lattices.} When two elements are ordered $m_i
  10760. \sqsubseteq m_j$, it means that $m_j$ contains at least as much
  10761. information as $m_i$, so we can think of $m_j$ as a better-or-equal
  10762. approximation than $m_i$. The bottom element $\bot$ represents the
  10763. complete lack of information, i.e., the worst approximation. The join
  10764. operator takes two lattice elements and combines their information,
  10765. i.e., it produces the least upper bound of the two.\index{least upper
  10766. bound}
  10767. A dataflow analysis typically involves two lattices: one lattice to
  10768. represent abstract states and another lattice that aggregates the
  10769. abstract states of all the blocks in the control-flow graph. For
  10770. liveness analysis, an abstract state is a set of locations. We form
  10771. the lattice $L$ by taking its elements to be sets of locations, the
  10772. ordering to be set inclusion ($\subseteq$), the bottom to be the empty
  10773. set, and the join operator to be set union.
  10774. %
  10775. We form a second lattice $M$ by taking its elements to be mappings
  10776. from the block labels to sets of locations (elements of $L$). We
  10777. order the mappings point-wise, using the ordering of $L$. So given any
  10778. two mappings $m_i$ and $m_j$, $m_i \sqsubseteq_M m_j$ when $m_i(\ell)
  10779. \subseteq m_j(\ell)$ for every block label $\ell$ in the program. The
  10780. bottom element of $M$ is the mapping $\bot_M$ that sends every label
  10781. to the empty set, i.e., $\bot_M(\ell) = \emptyset$.
  10782. We can think of one iteration of liveness analysis as being a function
  10783. $f$ on the lattice $M$. It takes a mapping as input and computes a new
  10784. mapping.
  10785. \[
  10786. f(m_i) = m_{i+1}
  10787. \]
  10788. Next let us think for a moment about what a final solution $m_s$
  10789. should look like. If we perform liveness analysis using the solution
  10790. $m_s$ as input, we should get $m_s$ again as the output. That is, the
  10791. solution should be a \emph{fixed point} of the function $f$.\index{fixed point}
  10792. \[
  10793. f(m_s) = m_s
  10794. \]
  10795. Furthermore, the solution should only include locations that are
  10796. forced to be there by performing liveness analysis on the program, so
  10797. the solution should be the \emph{least} fixed point.\index{least fixed point}
  10798. The Kleene Fixed-Point Theorem states that if a function $f$ is
  10799. monotone (better inputs produce better outputs), then the least fixed
  10800. point of $f$ is the least upper bound of the \emph{ascending Kleene
  10801. chain} obtained by starting at $\bot$ and iterating $f$ as
  10802. follows.\index{Kleene Fixed-Point Theorem}
  10803. \[
  10804. \bot \sqsubseteq f(\bot) \sqsubseteq f(f(\bot)) \sqsubseteq \cdots
  10805. \sqsubseteq f^n(\bot) \sqsubseteq \cdots
  10806. \]
  10807. When a lattice contains only finitely-long ascending chains, then
  10808. every Kleene chain tops out at some fixed point after a number of
  10809. iterations of $f$. So that fixed point is also a least upper
  10810. bound of the chain.
  10811. \[
  10812. \bot \sqsubseteq f(\bot) \sqsubseteq f(f(\bot)) \sqsubseteq \cdots
  10813. \sqsubseteq f^k(\bot) = f^{k+1}(\bot) = m_s
  10814. \]
  10815. The liveness analysis is indeed a monotone function and the lattice
  10816. $M$ only has finitely-long ascending chains because there are only a
  10817. finite number of variables and blocks in the program. Thus we are
  10818. guaranteed that iteratively applying liveness analysis to all blocks
  10819. in the program will eventually produce the least fixed point solution.
  10820. Next let us consider dataflow analysis in general and discuss the
  10821. generic work list algorithm (Figure~\ref{fig:generic-dataflow}).
  10822. %
  10823. The algorithm has four parameters: the control-flow graph \code{G}, a
  10824. function \code{transfer} that applies the analysis to one block, the
  10825. \code{bottom} and \code{join} operator for the lattice of abstract
  10826. states. The algorithm begins by creating the bottom mapping,
  10827. represented by a hash table. It then pushes all of the nodes in the
  10828. control-flow graph onto the work list (a queue). The algorithm repeats
  10829. the \code{while} loop as long as there are items in the work list. In
  10830. each iteration, a node is popped from the work list and processed. The
  10831. \code{input} for the node is computed by taking the join of the
  10832. abstract states of all the predecessor nodes. The \code{transfer}
  10833. function is then applied to obtain the \code{output} abstract
  10834. state. If the output differs from the previous state for this block,
  10835. the mapping for this block is updated and its successor nodes are
  10836. pushed onto the work list.
  10837. \begin{figure}[tb]
  10838. \begin{lstlisting}
  10839. (define (analyze-dataflow G transfer bottom join)
  10840. (define mapping (make-hash))
  10841. (for ([v (in-vertices G)])
  10842. (dict-set! mapping v bottom))
  10843. (define worklist (make-queue))
  10844. (for ([v (in-vertices G)])
  10845. (enqueue! worklist v))
  10846. (define trans-G (transpose G))
  10847. (while (not (queue-empty? worklist))
  10848. (define node (dequeue! worklist))
  10849. (define input (for/fold ([state bottom])
  10850. ([pred (in-neighbors trans-G node)])
  10851. (join state (dict-ref mapping pred))))
  10852. (define output (transfer node input))
  10853. (cond [(not (equal? output (dict-ref mapping node)))
  10854. (dict-set! mapping node output)
  10855. (for ([v (in-neighbors G node)])
  10856. (enqueue! worklist v))]))
  10857. mapping)
  10858. \end{lstlisting}
  10859. \caption{Generic work list algorithm for dataflow analysis}
  10860. \label{fig:generic-dataflow}
  10861. \end{figure}
  10862. Having discussed the two complications that arise from adding support
  10863. for assignment and loops, we turn to discussing the one new compiler
  10864. pass and the significant changes to existing passes.
  10865. \section{Convert Assignments}
  10866. \label{sec:convert-assignments}
  10867. Recall that in Section~\ref{sec:assignment-scoping} we learned that
  10868. the combination of assignments and lexically-scoped functions requires
  10869. that we box those variables that are both assigned-to and that appear
  10870. free inside a \code{lambda}. The purpose of the
  10871. \code{convert-assignments} pass is to carry out that transformation.
  10872. We recommend placing this pass after \code{uniquify} but before
  10873. \code{reveal-functions}.
  10874. Consider again the first example from
  10875. Section~\ref{sec:assignment-scoping}:
  10876. \begin{lstlisting}
  10877. (let ([x 0])
  10878. (let ([y 0])
  10879. (let ([z 20])
  10880. (let ([f (lambda: ([a : Integer]) : Integer (+ a (+ x z)))])
  10881. (begin
  10882. (set! x 10)
  10883. (set! y 12)
  10884. (f y))))))
  10885. \end{lstlisting}
  10886. The variables \code{x} and \code{y} are assigned-to. The variables
  10887. \code{x} and \code{z} occur free inside the \code{lambda}. Thus,
  10888. variable \code{x} needs to be boxed but not \code{y} and \code{z}.
  10889. The boxing of \code{x} consists of three transformations: initialize
  10890. \code{x} with a vector, replace reads from \code{x} with
  10891. \code{vector-ref}'s, and replace each \code{set!} on \code{x} with a
  10892. \code{vector-set!}. The output of \code{convert-assignments} for this
  10893. example is as follows.
  10894. \begin{lstlisting}
  10895. (define (main) : Integer
  10896. (let ([x0 (vector 0)])
  10897. (let ([y1 0])
  10898. (let ([z2 20])
  10899. (let ([f4 (lambda: ([a3 : Integer]) : Integer
  10900. (+ a3 (+ (vector-ref x0 0) z2)))])
  10901. (begin
  10902. (vector-set! x0 0 10)
  10903. (set! y1 12)
  10904. (f4 y1)))))))
  10905. \end{lstlisting}
  10906. \paragraph{Assigned \& Free}
  10907. We recommend defining an auxiliary function named
  10908. \code{assigned\&free} that takes an expression and simultaneously
  10909. computes 1) a set of assigned variables $A$, 2) a set $F$ of variables
  10910. that occur free within lambda's, and 3) a new version of the
  10911. expression that records which bound variables occurred in the
  10912. intersection of $A$ and $F$. You can use the struct
  10913. \code{AssignedFree} to do this. Consider the case for
  10914. $\LET{x}{\itm{rhs}}{\itm{body}}$. Suppose the the recursive call on
  10915. $\itm{rhs}$ produces $\itm{rhs}'$, $A_r$, and $F_r$ and the recursive
  10916. call on the $\itm{body}$ produces $\itm{body}'$, $A_b$, and $F_b$. If
  10917. $x$ is in $A_b\cap F_b$, then transforms the \code{Let} as follows.
  10918. \begin{lstlisting}
  10919. (Let |$x$| |$rhs$| |$body$|)
  10920. |$\Rightarrow$|
  10921. (Let (AssignedFree |$x$|) |$rhs'$| |$body'$|)
  10922. \end{lstlisting}
  10923. If $x$ is not in $A_b\cap F_b$ then omit the use of \code{AssignedFree}.
  10924. The set of assigned variables for this \code{Let} is
  10925. $A_r \cup (A_b - \{x\})$
  10926. and the set of variables free in lambda's is
  10927. $F_r \cup (F_b - \{x\})$.
  10928. The case for $\SETBANG{x}{\itm{rhs}}$ is straightforward but
  10929. important. Recursively process \itm{rhs} to obtain \itm{rhs'}, $A_r$,
  10930. and $F_r$. The result is $\SETBANG{x}{\itm{rhs'}}$, $\{x\} \cup A_r$,
  10931. and $F_r$.
  10932. The case for $\LAMBDA{\itm{params}}{T}{\itm{body}}$ is a bit more
  10933. involved. Let \itm{body'}, $A_b$, and $F_b$ be the result of
  10934. recursively processing \itm{body}. Wrap each of parameter that occurs
  10935. in $A_b \cap F_b$ with \code{AssignedFree} to produce \itm{params'}.
  10936. Let $P$ be the set of parameter names in \itm{params}. The result is
  10937. $\LAMBDA{\itm{params'}}{T}{\itm{body'}}$, $A_b - P$, and $(F_b \cup
  10938. \mathrm{FV}(\itm{body})) - P$, where $\mathrm{FV}$ computes the free
  10939. variables of an expression (see Chapter~\ref{ch:Rlam}).
  10940. \paragraph{Convert Assignments}
  10941. Next we discuss the \code{convert-assignment} pass with its auxiliary
  10942. functions for expressions and definitions. The function for
  10943. expressions, \code{cnvt-assign-exp}, should take an expression and a
  10944. set of assigned-and-free variables (obtained from the result of
  10945. \code{assigned\&free}. In the case for $\VAR{x}$, if $x$ is
  10946. assigned-and-free, then unbox it by translating $\VAR{x}$ to a
  10947. \code{vector-ref}.
  10948. \begin{lstlisting}
  10949. (Var |$x$|)
  10950. |$\Rightarrow$|
  10951. (Prim 'vector-ref (list (Var |$x$|) (Int 0)))
  10952. \end{lstlisting}
  10953. %
  10954. In the case for $\LET{\LP\code{AssignedFree}\,
  10955. x\RP}{\itm{rhs}}{\itm{body}}$, recursively process \itm{rhs} to
  10956. obtain \itm{rhs'}. Next, recursively process \itm{body} to obtain
  10957. \itm{body'} but with $x$ added to the set of assigned-and-free
  10958. variables. Translate the let-expression as follows to bind $x$ to a
  10959. boxed value.
  10960. \begin{lstlisting}
  10961. (Let (AssignedFree |$x$|) |$rhs$| |$body$|)
  10962. |$\Rightarrow$|
  10963. (Let |$x$| (Prim 'vector (list |$rhs'$|)) |$body'$|)
  10964. \end{lstlisting}
  10965. %
  10966. In the case for $\SETBANG{x}{\itm{rhs}}$, recursively process
  10967. \itm{rhs} to obtain \itm{rhs'}. If $x$ is in the assigned-and-free
  10968. variables, translate the \code{set!} into a \code{vector-set!}
  10969. as follows.
  10970. \begin{lstlisting}
  10971. (SetBang |$x$| |$\itm{rhs}$|)
  10972. |$\Rightarrow$|
  10973. (Prim 'vector-set! (list (Var |$x$|) (Int 0) |$\itm{rhs'}$|))
  10974. \end{lstlisting}
  10975. %
  10976. The case for \code{Lambda} is non-trivial, but it is similar to the
  10977. case for function definitions, which we discuss next.
  10978. The auxiliary function for definitions, \code{cnvt-assign-def},
  10979. applies assignment conversion to function definitions.
  10980. We translate a function definition as follows.
  10981. \begin{lstlisting}
  10982. (Def |$f$| |$\itm{params}$| |$T$| |$\itm{info}$| |$\itm{body_1}$|)
  10983. |$\Rightarrow$|
  10984. (Def |$f$| |$\itm{params'}$| |$T$| |$\itm{info}$| |$\itm{body_4}$|)
  10985. \end{lstlisting}
  10986. So it remains to explain \itm{params'} and $\itm{body}_4$.
  10987. Let \itm{body_2}, $A_b$, and $F_b$ be the result of
  10988. \code{assigned\&free} on $\itm{body_1}$.
  10989. Let $P$ be the parameter names in \itm{params}.
  10990. We then apply \code{cnvt-assign-exp} to $\itm{body_2}$ to
  10991. obtain \itm{body_3}, passing $A_b \cap F_b \cap P$
  10992. as the set of assigned-and-free variables.
  10993. Finally, we obtain \itm{body_4} by wrapping \itm{body_3}
  10994. in a sequence of let-expressions that box the parameters
  10995. that are in $A_b \cap F_b$.
  10996. %
  10997. Regarding \itm{params'}, change the names of the parameters that are
  10998. in $A_b \cap F_b$ to maintain uniqueness (and so the let-bound
  10999. variables can retain the original names). Recall the second example in
  11000. Section~\ref{sec:assignment-scoping} involving a counter
  11001. abstraction. The following is the output of assignment version for
  11002. function \code{f}.
  11003. \begin{lstlisting}
  11004. (define (f0 [x1 : Integer]) : (Vector ( -> Integer) ( -> Void))
  11005. (vector
  11006. (lambda: () : Integer x1)
  11007. (lambda: () : Void (set! x1 (+ 1 x1)))))
  11008. |$\Rightarrow$|
  11009. (define (f0 [param_x1 : Integer]) : (Vector (-> Integer) (-> Void))
  11010. (let ([x1 (vector param_x1)])
  11011. (vector (lambda: () : Integer (vector-ref x1 0))
  11012. (lambda: () : Void
  11013. (vector-set! x1 0 (+ 1 (vector-ref x1 0)))))))
  11014. \end{lstlisting}
  11015. \section{Remove Complex Operands}
  11016. \label{sec:rco-loop}
  11017. The three new language forms, \code{while}, \code{set!}, and
  11018. \code{begin} are all complex expressions and their subexpressions are
  11019. allowed to be complex. Figure~\ref{fig:Rfun-anf-syntax} defines the
  11020. output language \LangFunANF{} of this pass.
  11021. \begin{figure}[tp]
  11022. \centering
  11023. \fbox{
  11024. \begin{minipage}{0.96\textwidth}
  11025. \small
  11026. \[
  11027. \begin{array}{rcl}
  11028. \Atm &::=& \gray{ \INT{\Int} \mid \VAR{\Var} \mid \BOOL{\itm{bool}}
  11029. \mid \VOID{} } \\
  11030. \Exp &::=& \ldots \mid \gray{ \LET{\Var}{\Exp}{\Exp} } \\
  11031. &\mid& \WHILE{\Exp}{\Exp} \mid \SETBANG{\Var}{\Exp}
  11032. \mid \BEGIN{\LP\Exp\ldots\RP}{\Exp} \\
  11033. \Def &::=& \gray{ \FUNDEF{\Var}{([\Var \code{:} \Type]\ldots)}{\Type}{\code{'()}}{\Exp} }\\
  11034. R^{\dagger}_8 &::=& \gray{ \PROGRAMDEFS{\code{'()}}{\Def} }
  11035. \end{array}
  11036. \]
  11037. \end{minipage}
  11038. }
  11039. \caption{\LangLoopANF{} is \LangLoop{} in administrative normal form (ANF).}
  11040. \label{fig:Rwhile-anf-syntax}
  11041. \end{figure}
  11042. As usual, when a complex expression appears in a grammar position that
  11043. needs to be atomic, such as the argument of a primitive operator, we
  11044. must introduce a temporary variable and bind it to the complex
  11045. expression. This approach applies, unchanged, to handle the new
  11046. language forms. For example, in the following code there are two
  11047. \code{begin} expressions appearing as arguments to \code{+}. The
  11048. output of \code{rco-exp} is shown below, in which the \code{begin}
  11049. expressions have been bound to temporary variables. Recall that
  11050. \code{let} expressions in \LangLoopANF{} are allowed to have
  11051. arbitrary expressions in their right-hand-side expression, so it is
  11052. fine to place \code{begin} there.
  11053. \begin{lstlisting}
  11054. (let ([x0 10])
  11055. (let ([y1 0])
  11056. (+ (+ (begin (set! y1 (read)) x0)
  11057. (begin (set! x0 (read)) y1))
  11058. x0)))
  11059. |$\Rightarrow$|
  11060. (let ([x0 10])
  11061. (let ([y1 0])
  11062. (let ([tmp2 (begin (set! y1 (read)) x0)])
  11063. (let ([tmp3 (begin (set! x0 (read)) y1)])
  11064. (let ([tmp4 (+ tmp2 tmp3)])
  11065. (+ tmp4 x0))))))
  11066. \end{lstlisting}
  11067. \section{Explicate Control and \LangCLoop{}}
  11068. \label{sec:explicate-loop}
  11069. Recall that in the \code{explicate-control} pass we define one helper
  11070. function for each kind of position in the program. For the \LangVar{}
  11071. language of integers and variables we needed kinds of positions:
  11072. assignment and tail. The \code{if} expressions of \LangIf{} introduced
  11073. predicate positions. For \LangLoop{}, the \code{begin} expression introduces
  11074. yet another kind of position: effect position. Except for the last
  11075. subexpression, the subexpressions inside a \code{begin} are evaluated
  11076. only for their effect. Their result values are discarded. We can
  11077. generate better code by taking this fact into account.
  11078. The output language of \code{explicate-control} is \LangCLoop{}
  11079. (Figure~\ref{fig:c7-syntax}), which is nearly identical to
  11080. \LangCLam{}. The only syntactic difference is that \code{Call},
  11081. \code{vector-set!}, and \code{read} may also appear as statements.
  11082. The most significant difference between \LangCLam{} and \LangCLoop{}
  11083. is that the control-flow graphs of the later may contain cycles.
  11084. \begin{figure}[tp]
  11085. \fbox{
  11086. \begin{minipage}{0.96\textwidth}
  11087. \small
  11088. \[
  11089. \begin{array}{lcl}
  11090. \Stmt &::=& \gray{ \ASSIGN{\VAR{\Var}}{\Exp}
  11091. \mid \LP\key{Collect} \,\itm{int}\RP } \\
  11092. &\mid& \CALL{\Atm}{\LP\Atm\ldots\RP} \mid \READ{}\\
  11093. &\mid& \LP\key{Prim}~\key{'vector-set!}\,\LP\key{list}\,\Atm\,\INT{\Int}\,\Atm\RP\RP \\
  11094. \Def &::=& \DEF{\itm{label}}{\LP\LS\Var\key{:}\Type\RS\ldots\RP}{\Type}{\itm{info}}{\LP\LP\itm{label}\,\key{.}\,\Tail\RP\ldots\RP}\\
  11095. \LangCLoop{} & ::= & \PROGRAMDEFS{\itm{info}}{\LP\Def\ldots\RP}
  11096. \end{array}
  11097. \]
  11098. \end{minipage}
  11099. }
  11100. \caption{The abstract syntax of \LangCLoop{}, extending \LangCLam{} (Figure~\ref{fig:c4-syntax}).}
  11101. \label{fig:c7-syntax}
  11102. \end{figure}
  11103. The new auxiliary function \code{explicate-effect} takes an expression
  11104. (in an effect position) and a promise of a continuation block. The
  11105. function returns a promise for a $\Tail$ that includes the generated
  11106. code for the input expression followed by the continuation block. If
  11107. the expression is obviously pure, that is, never causes side effects,
  11108. then the expression can be removed, so the result is just the
  11109. continuation block.
  11110. %
  11111. The $\WHILE{\itm{cnd}}{\itm{body}}$ expression is the most interesting
  11112. case. First, you will need a fresh label $\itm{loop}$ for the top of
  11113. the loop. Recursively process the \itm{body} (in effect position)
  11114. with the a \code{goto} to $\itm{loop}$ as the continuation, producing
  11115. \itm{body'}. Next, process the \itm{cnd} (in predicate position) with
  11116. \itm{body'} as the then-branch and the continuation block as the
  11117. else-branch. The result should be added to the control-flow graph with
  11118. the label \itm{loop}. The result for the whole \code{while} loop is a
  11119. \code{goto} to the \itm{loop} label. Note that the loop should only be
  11120. added to the control-flow graph if the loop is indeed used, which can
  11121. be accomplished using \code{delay}.
  11122. The auxiliary functions for tail, assignment, and predicate positions
  11123. need to be updated. The three new language forms, \code{while},
  11124. \code{set!}, and \code{begin}, can appear in assignment and tail
  11125. positions. Only \code{begin} may appear in predicate positions; the
  11126. other two have result type \code{Void}.
  11127. \section{Select Instructions}
  11128. \label{sec:select-instructions-loop}
  11129. Only three small additions are needed in the
  11130. \code{select-instructions} pass to handle the changes to \LangCLoop{}. That
  11131. is, \code{Call}, \code{read}, and \code{vector-set!} may now appear as
  11132. stand-alone statements instead of only appearing on the right-hand
  11133. side of an assignment statement. The code generation is nearly
  11134. identical; just leave off the instruction for moving the result into
  11135. the left-hand side.
  11136. \section{Register Allocation}
  11137. \label{sec:register-allocation-loop}
  11138. As discussed in Section~\ref{sec:dataflow-analysis}, the presence of
  11139. loops in \LangLoop{} means that the control-flow graphs may contain cycles,
  11140. which complicates the liveness analysis needed for register
  11141. allocation.
  11142. \subsection{Liveness Analysis}
  11143. \label{sec:liveness-analysis-r8}
  11144. We recommend using the generic \code{analyze-dataflow} function that
  11145. was presented at the end of Section~\ref{sec:dataflow-analysis} to
  11146. perform liveness analysis, replacing the code in
  11147. \code{uncover-live-CFG} that processed the basic blocks in topological
  11148. order (Section~\ref{sec:liveness-analysis-Rif}).
  11149. The \code{analyze-dataflow} function has four parameters.
  11150. \begin{enumerate}
  11151. \item The first parameter \code{G} should be a directed graph from the
  11152. \code{racket/graph} package (see the sidebar in
  11153. Section~\ref{sec:build-interference}) that represents the
  11154. control-flow graph.
  11155. \item The second parameter \code{transfer} is a function that applies
  11156. liveness analysis to a basic block. It takes two parameters: the
  11157. label for the block to analyze and the live-after set for that
  11158. block. The transfer function should return the live-before set for
  11159. the block. Also, as a side-effect, it should update the block's
  11160. $\itm{info}$ with the liveness information for each instruction. To
  11161. implement the \code{transfer} function, you should be able to reuse
  11162. the code you already have for analyzing basic blocks.
  11163. \item The third and fourth parameters of \code{analyze-dataflow} are
  11164. \code{bottom} and \code{join} for the lattice of abstract states,
  11165. i.e. sets of locations. The bottom of the lattice is the empty set
  11166. \code{(set)} and the join operator is \code{set-union}.
  11167. \end{enumerate}
  11168. \begin{figure}[p]
  11169. \begin{tikzpicture}[baseline=(current bounding box.center)]
  11170. \node (Rfun) at (0,2) {\large \LangLoop{}};
  11171. \node (Rfun-2) at (3,2) {\large \LangLoop{}};
  11172. \node (Rfun-3) at (6,2) {\large \LangLoop{}};
  11173. \node (Rfun-4) at (9,2) {\large \LangLoopFunRef{}};
  11174. \node (F1-1) at (12,0) {\large \LangLoopFunRef{}};
  11175. \node (F1-2) at (9,0) {\large \LangLoopFunRef{}};
  11176. \node (F1-3) at (6,0) {\large \LangLoopFunRef{}};
  11177. \node (F1-4) at (3,0) {\large \LangLoopAlloc{}};
  11178. \node (F1-5) at (0,0) {\large \LangLoopAlloc{}};
  11179. \node (C3-2) at (3,-2) {\large \LangCLoop{}};
  11180. \node (x86-2) at (3,-4) {\large \LangXIndCallVar{}};
  11181. \node (x86-2-1) at (3,-6) {\large \LangXIndCallVar{}};
  11182. \node (x86-2-2) at (6,-6) {\large \LangXIndCallVar{}};
  11183. \node (x86-3) at (6,-4) {\large \LangXIndCallVar{}};
  11184. \node (x86-4) at (9,-4) {\large \LangXIndCall{}};
  11185. \node (x86-5) at (9,-6) {\large \LangXIndCall{}};
  11186. %% \path[->,bend left=15] (Rfun) edge [above] node
  11187. %% {\ttfamily\footnotesize type-check} (Rfun-2);
  11188. \path[->,bend left=15] (Rfun) edge [above] node
  11189. {\ttfamily\footnotesize shrink} (Rfun-2);
  11190. \path[->,bend left=15] (Rfun-2) edge [above] node
  11191. {\ttfamily\footnotesize uniquify} (Rfun-3);
  11192. \path[->,bend left=15] (Rfun-3) edge [above] node
  11193. {\ttfamily\footnotesize reveal-functions} (Rfun-4);
  11194. \path[->,bend left=15] (Rfun-4) edge [right] node
  11195. {\ttfamily\footnotesize convert-assignments} (F1-1);
  11196. \path[->,bend left=15] (F1-1) edge [below] node
  11197. {\ttfamily\footnotesize convert-to-clos.} (F1-2);
  11198. \path[->,bend right=15] (F1-2) edge [above] node
  11199. {\ttfamily\footnotesize limit-fun.} (F1-3);
  11200. \path[->,bend right=15] (F1-3) edge [above] node
  11201. {\ttfamily\footnotesize expose-alloc.} (F1-4);
  11202. \path[->,bend right=15] (F1-4) edge [above] node
  11203. {\ttfamily\footnotesize remove-complex.} (F1-5);
  11204. \path[->,bend right=15] (F1-5) edge [right] node
  11205. {\ttfamily\footnotesize explicate-control} (C3-2);
  11206. \path[->,bend left=15] (C3-2) edge [left] node
  11207. {\ttfamily\footnotesize select-instr.} (x86-2);
  11208. \path[->,bend right=15] (x86-2) edge [left] node
  11209. {\ttfamily\footnotesize uncover-live} (x86-2-1);
  11210. \path[->,bend right=15] (x86-2-1) edge [below] node
  11211. {\ttfamily\footnotesize build-inter.} (x86-2-2);
  11212. \path[->,bend right=15] (x86-2-2) edge [left] node
  11213. {\ttfamily\footnotesize allocate-reg.} (x86-3);
  11214. \path[->,bend left=15] (x86-3) edge [above] node
  11215. {\ttfamily\footnotesize patch-instr.} (x86-4);
  11216. \path[->,bend left=15] (x86-4) edge [right] node {\ttfamily\footnotesize print-x86} (x86-5);
  11217. \end{tikzpicture}
  11218. \caption{Diagram of the passes for \LangLoop{} (loops and assignment).}
  11219. \label{fig:Rwhile-passes}
  11220. \end{figure}
  11221. Figure~\ref{fig:Rwhile-passes} provides an overview of all the passes needed
  11222. for the compilation of \LangLoop{}.
  11223. \section{Challenge: Arrays}
  11224. \label{sec:arrays}
  11225. In Chapter~\ref{ch:Rvec} we studied tuples, that is, sequences of
  11226. elements whose length is determined at compile-time and where each
  11227. element of a tuple may have a different type (they are
  11228. heterogeous). This challenge is also about sequences, but this time
  11229. the length is determined at run-time and all the elements have the same
  11230. type (they are homogeneous). We use the term ``array'' for this later
  11231. kind of sequence.
  11232. The Racket language does not distinguish between tuples and arrays,
  11233. they are both represented by vectors. However, Typed Racket
  11234. distinguishes between tuples and arrays: the \code{Vector} type is for
  11235. tuples and the \code{Vectorof} type is for arrays.
  11236. %
  11237. Figure~\ref{fig:Rvecof-concrete-syntax} defines the concrete syntax
  11238. for \LangArray{}, extending \LangLoop{} with the \code{Vectorof} type
  11239. and the \code{make-vector} primitive operator for creating an array,
  11240. whose arguments are the length of the array and an initial value for
  11241. all the elements in the array. The \code{vector-length},
  11242. \code{vector-ref}, and \code{vector-ref!} operators that we defined
  11243. for tuples become overloaded for use with arrays.
  11244. %
  11245. We also include integer multiplication in \LangArray{}, as it is
  11246. useful in many examples involving arrays such as computing the
  11247. inner-product of two arrays (Figure~\ref{fig:inner-product}).
  11248. \begin{figure}[tp]
  11249. \centering
  11250. \fbox{
  11251. \begin{minipage}{0.96\textwidth}
  11252. \small
  11253. \[
  11254. \begin{array}{lcl}
  11255. \Type &::=& \ldots \mid \LP \key{Vectorof}~\Type \RP \\
  11256. \Exp &::=& \gray{ \Int \mid \CREAD{} \mid \CNEG{\Exp}
  11257. \mid \CADD{\Exp}{\Exp} \mid \CSUB{\Exp}{\Exp} } \mid \CMUL{\Exp}{\Exp}\\
  11258. &\mid& \gray{ \Var \mid \CLET{\Var}{\Exp}{\Exp} }\\
  11259. &\mid& \gray{\key{\#t} \mid \key{\#f}
  11260. \mid \LP\key{and}\;\Exp\;\Exp\RP
  11261. \mid \LP\key{or}\;\Exp\;\Exp\RP
  11262. \mid \LP\key{not}\;\Exp\RP } \\
  11263. &\mid& \gray{ \LP\key{eq?}\;\Exp\;\Exp\RP \mid \CIF{\Exp}{\Exp}{\Exp} } \\
  11264. &\mid& \gray{ \LP\key{vector}\;\Exp\ldots\RP \mid
  11265. \LP\key{vector-ref}\;\Exp\;\Int\RP} \\
  11266. &\mid& \gray{\LP\key{vector-set!}\;\Exp\;\Int\;\Exp\RP\mid \LP\key{void}\RP
  11267. \mid \LP\Exp \; \Exp\ldots\RP } \\
  11268. &\mid& \gray{ \LP \key{procedure-arity}~\Exp\RP
  11269. \mid \CLAMBDA{\LP\LS\Var \key{:} \Type\RS\ldots\RP}{\Type}{\Exp} } \\
  11270. &\mid& \gray{ \CSETBANG{\Var}{\Exp}
  11271. \mid \CBEGIN{\Exp\ldots}{\Exp}
  11272. \mid \CWHILE{\Exp}{\Exp} } \\
  11273. &\mid& \CMAKEVEC{\Exp}{\Exp} \\
  11274. \Def &::=& \gray{ \CDEF{\Var}{\LS\Var \key{:} \Type\RS\ldots}{\Type}{\Exp} } \\
  11275. \LangArray{} &::=& \gray{\Def\ldots \; \Exp}
  11276. \end{array}
  11277. \]
  11278. \end{minipage}
  11279. }
  11280. \caption{The concrete syntax of \LangArray{}, extending \LangLoop{} (Figure~\ref{fig:Rwhile-concrete-syntax}).}
  11281. \label{fig:Rvecof-concrete-syntax}
  11282. \end{figure}
  11283. \begin{figure}[tp]
  11284. \begin{lstlisting}
  11285. (define (inner-product [A : (Vectorof Integer)] [B : (Vectorof Integer)]
  11286. [n : Integer]) : Integer
  11287. (let ([i 0])
  11288. (let ([prod 0])
  11289. (begin
  11290. (while (< i n)
  11291. (begin
  11292. (set! prod (+ prod (* (vector-ref A i)
  11293. (vector-ref B i))))
  11294. (set! i (+ i 1))
  11295. ))
  11296. prod))))
  11297. (let ([A (make-vector 2 2)])
  11298. (let ([B (make-vector 2 3)])
  11299. (+ (inner-product A B 2)
  11300. 30)))
  11301. \end{lstlisting}
  11302. \caption{Example program that computes the inner-product.}
  11303. \label{fig:inner-product}
  11304. \end{figure}
  11305. The type checker for \LangArray{} is define in
  11306. Figure~\ref{fig:type-check-Rvecof}. The result type of
  11307. \code{make-vector} is \code{(Vectorof T)} where \code{T} is the type
  11308. of the intializing expression. The length expression is required to
  11309. have type \code{Integer}. The type checking of the operators
  11310. \code{vector-length}, \code{vector-ref}, and \code{vector-set!} is
  11311. updated to handle the situation where the vector has type
  11312. \code{Vectorof}. In these cases we translate the operators to their
  11313. \code{vectorof} form so that later passes can easily distinguish
  11314. between operations on tuples versus arrays. We override the
  11315. \code{operator-types} method to provide the type signature for
  11316. multiplication: it takes two integers and returns an integer. To
  11317. support injection and projection of arrays to the \code{Any} type
  11318. (Section~\ref{sec:Rany-lang}), we also override the \code{flat-ty?}
  11319. predicate.
  11320. \begin{figure}[tbp]
  11321. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  11322. (define type-check-Rvecof-class
  11323. (class type-check-Rwhile-class
  11324. (super-new)
  11325. (inherit check-type-equal?)
  11326. (define/override (flat-ty? ty)
  11327. (match ty
  11328. ['(Vectorof Any) #t]
  11329. [else (super flat-ty? ty)]))
  11330. (define/override (operator-types)
  11331. (append '((* . ((Integer Integer) . Integer)))
  11332. (super operator-types)))
  11333. (define/override (type-check-exp env)
  11334. (lambda (e)
  11335. (define recur (type-check-exp env))
  11336. (match e
  11337. [(Prim 'make-vector (list e1 e2))
  11338. (define-values (e1^ t1) (recur e1))
  11339. (define-values (e2^ elt-type) (recur e2))
  11340. (define vec-type `(Vectorof ,elt-type))
  11341. (values (HasType (Prim 'make-vector (list e1^ e2^)) vec-type)
  11342. vec-type)]
  11343. [(Prim 'vector-ref (list e1 e2))
  11344. (define-values (e1^ t1) (recur e1))
  11345. (define-values (e2^ t2) (recur e2))
  11346. (match* (t1 t2)
  11347. [(`(Vectorof ,elt-type) 'Integer)
  11348. (values (Prim 'vectorof-ref (list e1^ e2^)) elt-type)]
  11349. [(other wise) ((super type-check-exp env) e)])]
  11350. [(Prim 'vector-set! (list e1 e2 e3) )
  11351. (define-values (e-vec t-vec) (recur e1))
  11352. (define-values (e2^ t2) (recur e2))
  11353. (define-values (e-arg^ t-arg) (recur e3))
  11354. (match t-vec
  11355. [`(Vectorof ,elt-type)
  11356. (check-type-equal? elt-type t-arg e)
  11357. (values (Prim 'vectorof-set! (list e-vec e2^ e-arg^)) 'Void)]
  11358. [else ((super type-check-exp env) e)])]
  11359. [(Prim 'vector-length (list e1))
  11360. (define-values (e1^ t1) (recur e1))
  11361. (match t1
  11362. [`(Vectorof ,t)
  11363. (values (Prim 'vectorof-length (list e1^)) 'Integer)]
  11364. [else ((super type-check-exp env) e)])]
  11365. [else ((super type-check-exp env) e)])))
  11366. ))
  11367. (define (type-check-Rvecof p)
  11368. (send (new type-check-Rvecof-class) type-check-program p))
  11369. \end{lstlisting}
  11370. \caption{Type checker for the \LangArray{} language.}
  11371. \label{fig:type-check-Rvecof}
  11372. \end{figure}
  11373. The interpreter for \LangArray{} is defined in
  11374. Figure~\ref{fig:interp-Rvecof}. The \code{make-vector} operator is
  11375. implemented with Racket's \code{make-vector} function and
  11376. multiplication is \code{fx*}, multiplication for \code{fixnum}
  11377. integers.
  11378. \begin{figure}[tbp]
  11379. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  11380. (define interp-Rvecof-class
  11381. (class interp-Rwhile-class
  11382. (super-new)
  11383. (define/override (interp-op op)
  11384. (verbose "Rvecof/interp-op" op)
  11385. (match op
  11386. ['make-vector make-vector]
  11387. ['* fx*]
  11388. [else (super interp-op op)]))
  11389. ))
  11390. (define (interp-Rvecof p)
  11391. (send (new interp-Rvecof-class) interp-program p))
  11392. \end{lstlisting}
  11393. \caption{Interpreter for \LangArray{}.}
  11394. \label{fig:interp-Rvecof}
  11395. \end{figure}
  11396. \subsection{Data Representation}
  11397. \label{sec:array-rep}
  11398. Just like tuples, we store arrays on the heap which means that the
  11399. garbage collector will need to inspect arrays. An immediate thought is
  11400. to use the same representation for arrays that we use for tuples.
  11401. However, we limit tuples to a length of $50$ so that their length and
  11402. pointer mask can fit into the 64-bit tag at the beginning of each
  11403. tuple (Section~\ref{sec:data-rep-gc}). We intend arrays to allow
  11404. millions of elements, so we need more bits to store the length.
  11405. However, because arrays are homogeneous, we only need $1$ bit for the
  11406. pointer mask instead of one bit per array elements. Finally, the
  11407. garbage collector will need to be able to distinguish between tuples
  11408. and arrays, so we need to reserve $1$ bit for that purpose. So we
  11409. arrive at the following layout for the 64-bit tag at the beginning of
  11410. an array:
  11411. \begin{itemize}
  11412. \item The right-most bit is the forwarding bit, just like in a tuple.
  11413. A $0$ indicates it is a forwarding pointer and a $1$ indicates
  11414. it is not.
  11415. \item The next bit to the left is the pointer mask. A $0$ indicates
  11416. that none of the elements are pointers to the heap and a $1$
  11417. indicates that all of the elements are pointers.
  11418. \item The next $61$ bits store the length of the array.
  11419. \item The left-most bit distinguishes between a tuple ($0$) versus an
  11420. array ($1$).
  11421. \end{itemize}
  11422. Recall that in Chapter~\ref{ch:Rdyn}, we use a $3$-bit tag to
  11423. differentiate the kinds of values that have been injected into the
  11424. \code{Any} type. We use the bit pattern \code{110} (or $6$ in decimal)
  11425. to indicate that the value is an array.
  11426. In the following subsections we provide hints regarding how to update
  11427. the passes to handle arrays.
  11428. \subsection{Reveal Casts}
  11429. The array-access operators \code{vectorof-ref} and
  11430. \code{vectorof-set!} are similar to the \code{any-vector-ref} and
  11431. \code{any-vector-set!} operators of Chapter~\ref{ch:Rdyn} in
  11432. that the type checker cannot tell whether the index will be in bounds,
  11433. so the bounds check must be performed at run time. Recall that the
  11434. \code{reveal-casts} pass (Section~\ref{sec:reveal-casts-Rany}) wraps
  11435. an \code{If} arround a vector reference for update to check whether
  11436. the index is less than the length. You should do the same for
  11437. \code{vectorof-ref} and \code{vectorof-set!} .
  11438. In addition, the handling of the \code{any-vector} operators in
  11439. \code{reveal-casts} needs to be updated to account for arrays that are
  11440. injected to \code{Any}. For the \code{any-vector-length} operator, the
  11441. generated code should test whether the tag is for tuples (\code{010})
  11442. or arrays (\code{110}) and then dispatch to either
  11443. \code{any-vector-length} or \code{any-vectorof-length}. For the later
  11444. we add a case in \code{select-instructions} to generate the
  11445. appropriate instructions for accessing the array length from the
  11446. header of an array.
  11447. For the \code{any-vector-ref} and \code{any-vector-set!} operators,
  11448. the generated code needs to check that the index is less than the
  11449. vector length, so like the code for \code{any-vector-length}, check
  11450. the tag to determine whether to use \code{any-vector-length} or
  11451. \code{any-vectorof-length} for this purpose. Once the bounds checking
  11452. is complete, the generated code can use \code{any-vector-ref} and
  11453. \code{any-vector-set!} for both tuples and arrays because the
  11454. instructions used for those operators do not look at the tag at the
  11455. front of the tuple or array.
  11456. \subsection{Expose Allocation}
  11457. This pass should translate the \code{make-vector} operator into
  11458. lower-level operations. In particular, the new AST node
  11459. $\LP\key{AllocateArray}~\Exp~\Type\RP$ allocates an array of the
  11460. length specified by the $\Exp$, but does not initialize the elements
  11461. of the array. (Analogous to the \code{Allocate} AST node for tuples.)
  11462. The $\Type$ argument must be $\LP\key{Vectorof}~T\RP$ where $T$ is the
  11463. element type for the array. Regarding the initialization of the array,
  11464. we recommend generated a \code{while} loop that uses
  11465. \code{vector-set!} to put the initializing value into every element of
  11466. the array.
  11467. \subsection{Remove Complex Operands}
  11468. Add cases in the \code{rco-atom} and \code{rco-exp} for
  11469. \code{AllocateArray}. In particular, an \code{AllocateArray} node is
  11470. complex and its subexpression must be atomic.
  11471. \subsection{Explicate Control}
  11472. Add cases for \code{AllocateArray} to \code{explicate-tail} and
  11473. \code{explicate-assign}.
  11474. \subsection{Select Instructions}
  11475. Generate instructions for \code{AllocateArray} similar to those for
  11476. \code{Allocate} in Section~\ref{sec:select-instructions-gc} except
  11477. that the tag at the front of the array should instead use the
  11478. representation discussed in Section~\ref{sec:array-rep}.
  11479. Regarding \code{vectorof-length}, extract the length from the tag
  11480. according to the representation discussed in
  11481. Section~\ref{sec:array-rep}.
  11482. The instructions generated for \code{vectorof-ref} differ from those
  11483. for \code{vector-ref} (Section~\ref{sec:select-instructions-gc}) in
  11484. that the index is not a constant so the offset must be computed at
  11485. runtime, similar to the instructions generated for
  11486. \code{any-vector-of-ref} (Section~\ref{sec:select-Rany}). The same is
  11487. true for \code{vectorof-set!}. Also, the \code{vectorof-set!} may
  11488. appear in an assignment and as a stand-alone statement, so make sure
  11489. to handle both situations in this pass.
  11490. Finally, the instructions for \code{any-vectorof-length} should be
  11491. similar to those for \code{vectorof-length}, except that one must
  11492. first project the array by writing zeroes into the $3$-bit tag
  11493. \begin{exercise}\normalfont
  11494. Implement a compiler for the \LangArray{} language by extending your
  11495. compiler for \LangLoop{}. Test your compiler on a half dozen new
  11496. programs, including the one in Figure~\ref{fig:inner-product} and also
  11497. a program that multiplies two matrices. Note that matrices are
  11498. 2-dimensional arrays, but those can be encoded into 1-dimensional
  11499. arrays by laying out each row in the array, one after the next.
  11500. \end{exercise}
  11501. % Further Reading: dataflow analysis
  11502. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  11503. \chapter{Gradual Typing}
  11504. \label{ch:Rgrad}
  11505. \index{gradual typing}
  11506. This chapter studies a language, \LangGrad{}, in which the programmer
  11507. can choose between static and dynamic type checking in different parts
  11508. of a program, thereby mixing the statically typed \LangLoop{} language
  11509. with the dynamically typed \LangDyn{}. There are several approaches to
  11510. mixing static and dynamic typing, including multi-language
  11511. integration~\citep{Tobin-Hochstadt:2006fk,Matthews:2007zr} and hybrid
  11512. type checking~\citep{Flanagan:2006mn,Gronski:2006uq}. In this chapter
  11513. we focus on \emph{gradual typing}\index{gradual typing}, in which the
  11514. programmer controls the amount of static versus dynamic checking by
  11515. adding or removing type annotations on parameters and
  11516. variables~\citep{Anderson:2002kd,Siek:2006bh}.
  11517. %
  11518. The concrete syntax of \LangGrad{} is defined in
  11519. Figure~\ref{fig:Rgrad-concrete-syntax} and its abstract syntax is defined
  11520. in Figure~\ref{fig:Rgrad-syntax}. The main syntactic difference between
  11521. \LangLoop{} and \LangGrad{} is the additional \itm{param} and \itm{ret}
  11522. non-terminals that make type annotations optional. The return types
  11523. are not optional in the abstract syntax; the parser fills in
  11524. \code{Any} when the return type is not specified in the concrete
  11525. syntax.
  11526. \begin{figure}[tp]
  11527. \centering
  11528. \fbox{
  11529. \begin{minipage}{0.96\textwidth}
  11530. \small
  11531. \[
  11532. \begin{array}{lcl}
  11533. \itm{param} &::=& \Var \mid \LS\Var \key{:} \Type\RS \\
  11534. \itm{ret} &::=& \epsilon \mid \key{:} \Type \\
  11535. \Exp &::=& \gray{ \Int \mid \CREAD{} \mid \CNEG{\Exp}
  11536. \mid \CADD{\Exp}{\Exp} \mid \CSUB{\Exp}{\Exp} } \\
  11537. &\mid& \gray{ \Var \mid \CLET{\Var}{\Exp}{\Exp} }\\
  11538. &\mid& \gray{\key{\#t} \mid \key{\#f}
  11539. \mid (\key{and}\;\Exp\;\Exp)
  11540. \mid (\key{or}\;\Exp\;\Exp)
  11541. \mid (\key{not}\;\Exp) } \\
  11542. &\mid& \gray{ (\key{eq?}\;\Exp\;\Exp) \mid \CIF{\Exp}{\Exp}{\Exp} } \\
  11543. &\mid& \gray{ (\key{vector}\;\Exp\ldots) \mid
  11544. (\key{vector-ref}\;\Exp\;\Int)} \\
  11545. &\mid& \gray{(\key{vector-set!}\;\Exp\;\Int\;\Exp)\mid (\key{void})
  11546. \mid (\Exp \; \Exp\ldots) } \\
  11547. &\mid& \gray{ \LP \key{procedure-arity}~\Exp\RP }
  11548. \mid \CGLAMBDA{\LP\itm{param}\ldots\RP}{\itm{ret}}{\Exp} \\
  11549. &\mid& \gray{ \CSETBANG{\Var}{\Exp}
  11550. \mid \CBEGIN{\Exp\ldots}{\Exp}
  11551. \mid \CWHILE{\Exp}{\Exp} } \\
  11552. \Def &::=& \CGDEF{\Var}{\itm{param}\ldots}{\itm{ret}}{\Exp} \\
  11553. \LangGrad{} &::=& \gray{\Def\ldots \; \Exp}
  11554. \end{array}
  11555. \]
  11556. \end{minipage}
  11557. }
  11558. \caption{The concrete syntax of \LangGrad{}, extending \LangLoop{} (Figure~\ref{fig:Rwhile-concrete-syntax}).}
  11559. \label{fig:Rgrad-concrete-syntax}
  11560. \end{figure}
  11561. \begin{figure}[tp]
  11562. \centering
  11563. \fbox{
  11564. \begin{minipage}{0.96\textwidth}
  11565. \small
  11566. \[
  11567. \begin{array}{lcl}
  11568. \itm{param} &::=& \Var \mid \LS\Var \key{:} \Type\RS \\
  11569. \Exp &::=& \gray{ \INT{\Int} \VAR{\Var} \mid \LET{\Var}{\Exp}{\Exp} } \\
  11570. &\mid& \gray{ \PRIM{\itm{op}}{\Exp\ldots} }\\
  11571. &\mid& \gray{ \BOOL{\itm{bool}}
  11572. \mid \IF{\Exp}{\Exp}{\Exp} } \\
  11573. &\mid& \gray{ \VOID{} \mid \LP\key{HasType}~\Exp~\Type \RP
  11574. \mid \APPLY{\Exp}{\Exp\ldots} }\\
  11575. &\mid& \LAMBDA{\LP\itm{param}\ldots\RP}{\Type}{\Exp} \\
  11576. &\mid& \gray{ \SETBANG{\Var}{\Exp} \mid \BEGIN{\LP\Exp\ldots\RP}{\Exp} } \\
  11577. &\mid& \gray{ \WHILE{\Exp}{\Exp} } \\
  11578. \Def &::=& \FUNDEF{\Var}{\LP\itm{param}\ldots\RP}{\Type}{\code{'()}}{\Exp} \\
  11579. \LangGrad{} &::=& \gray{ \PROGRAMDEFSEXP{\code{'()}}{\LP\Def\ldots\RP}{\Exp} }
  11580. \end{array}
  11581. \]
  11582. \end{minipage}
  11583. }
  11584. \caption{The abstract syntax of \LangGrad{}, extending \LangLoop{} (Figure~\ref{fig:Rwhile-syntax}).}
  11585. \label{fig:Rgrad-syntax}
  11586. \end{figure}
  11587. Both the type checker and the interpreter for \LangGrad{} require some
  11588. interesting changes to enable gradual typing, which we discuss in the
  11589. next two sections in the context of the \code{map-vec} example from
  11590. Chapter~\ref{ch:Rfun}. In Figure~\ref{fig:gradual-map-vec} we
  11591. revised the \code{map-vec} example, omitting the type annotations from
  11592. the \code{add1} function.
  11593. \begin{figure}[btp]
  11594. % gradual_test_9.rkt
  11595. \begin{lstlisting}
  11596. (define (map-vec [f : (Integer -> Integer)]
  11597. [v : (Vector Integer Integer)])
  11598. : (Vector Integer Integer)
  11599. (vector (f (vector-ref v 0)) (f (vector-ref v 1))))
  11600. (define (add1 x) (+ x 1))
  11601. (vector-ref (map-vec add1 (vector 0 41)) 1)
  11602. \end{lstlisting}
  11603. \caption{A partially-typed version of the \code{map-vec} example.}
  11604. \label{fig:gradual-map-vec}
  11605. \end{figure}
  11606. \section{Type Checking \LangGrad{}, Casts, and \LangCast{}}
  11607. \label{sec:gradual-type-check}
  11608. The type checker for \LangGrad{} uses the \code{Any} type for missing
  11609. parameter and return types. For example, the \code{x} parameter of
  11610. \code{add1} in Figure~\ref{fig:gradual-map-vec} is given the type
  11611. \code{Any} and the return type of \code{add1} is \code{Any}. Next
  11612. consider the \code{+} operator inside \code{add1}. It expects both
  11613. arguments to have type \code{Integer}, but its first argument \code{x}
  11614. has type \code{Any}. In a gradually typed language, such differences
  11615. are allowed so long as the types are \emph{consistent}, that is, they
  11616. are equal except in places where there is an \code{Any} type. The type
  11617. \code{Any} is consistent with every other type.
  11618. Figure~\ref{fig:consistent} defines the \code{consistent?} predicate.
  11619. \begin{figure}[tbp]
  11620. \begin{lstlisting}
  11621. (define/public (consistent? t1 t2)
  11622. (match* (t1 t2)
  11623. [('Integer 'Integer) #t]
  11624. [('Boolean 'Boolean) #t]
  11625. [('Void 'Void) #t]
  11626. [('Any t2) #t]
  11627. [(t1 'Any) #t]
  11628. [(`(Vector ,ts1 ...) `(Vector ,ts2 ...))
  11629. (for/and ([t1 ts1] [t2 ts2]) (consistent? t1 t2))]
  11630. [(`(,ts1 ... -> ,rt1) `(,ts2 ... -> ,rt2))
  11631. (and (for/and ([t1 ts1] [t2 ts2]) (consistent? t1 t2))
  11632. (consistent? rt1 rt2))]
  11633. [(other wise) #f]))
  11634. \end{lstlisting}
  11635. \caption{The consistency predicate on types.}
  11636. \label{fig:consistent}
  11637. \end{figure}
  11638. Returning to the \code{map-vec} example of
  11639. Figure~\ref{fig:gradual-map-vec}, the \code{add1} function has type
  11640. \code{(Any -> Any)} but parameter \code{f} of \code{map-vec} has type
  11641. \code{(Integer -> Integer)}. The type checker for \LangGrad{} allows this
  11642. because the two types are consistent. In particular, \code{->} is
  11643. equal to \code{->} and because \code{Any} is consistent with
  11644. \code{Integer}.
  11645. Next consider a program with an error, such as applying the
  11646. \code{map-vec} to a function that sometimes returns a Boolean, as
  11647. shown in Figure~\ref{fig:map-vec-maybe-add1}. The type checker for
  11648. \LangGrad{} accepts this program because the type of \code{maybe-add1} is
  11649. consistent with the type of parameter \code{f} of \code{map-vec}, that
  11650. is, \code{(Any -> Any)} is consistent with \code{(Integer ->
  11651. Integer)}. One might say that a gradual type checker is optimistic
  11652. in that it accepts programs that might execute without a runtime type
  11653. error.
  11654. %
  11655. Unfortunately, running this program with input \code{1} triggers an
  11656. error when the \code{maybe-add1} function returns \code{\#t}. \LangGrad{}
  11657. performs checking at runtime to ensure the integrity of the static
  11658. types, such as the \code{(Integer -> Integer)} annotation on parameter
  11659. \code{f} of \code{map-vec}. This runtime checking is carried out by a
  11660. new \code{Cast} form that is inserted by the type checker. Thus, the
  11661. output of the type checker is a program in the \LangCast{} language, which
  11662. adds \code{Cast} to \LangLoop{}, as shown in
  11663. Figure~\ref{fig:Rgrad-prime-syntax}.
  11664. \begin{figure}[tp]
  11665. \centering
  11666. \fbox{
  11667. \begin{minipage}{0.96\textwidth}
  11668. \small
  11669. \[
  11670. \begin{array}{lcl}
  11671. \Exp &::=& \ldots \mid \CAST{\Exp}{\Type}{\Type} \\
  11672. \LangCast{} &::=& \gray{ \PROGRAMDEFSEXP{\code{'()}}{\LP\Def\ldots\RP}{\Exp} }
  11673. \end{array}
  11674. \]
  11675. \end{minipage}
  11676. }
  11677. \caption{The abstract syntax of \LangCast{}, extending \LangLoop{} (Figure~\ref{fig:Rwhile-syntax}).}
  11678. \label{fig:Rgrad-prime-syntax}
  11679. \end{figure}
  11680. \begin{figure}[tbp]
  11681. \begin{lstlisting}
  11682. (define (map-vec [f : (Integer -> Integer)]
  11683. [v : (Vector Integer Integer)])
  11684. : (Vector Integer Integer)
  11685. (vector (f (vector-ref v 0)) (f (vector-ref v 1))))
  11686. (define (add1 x) (+ x 1))
  11687. (define (true) #t)
  11688. (define (maybe-add1 x) (if (eq? 0 (read)) (add1 x) (true)))
  11689. (vector-ref (map-vec maybe-add1 (vector 0 41)) 0)
  11690. \end{lstlisting}
  11691. \caption{A variant of the \code{map-vec} example with an error.}
  11692. \label{fig:map-vec-maybe-add1}
  11693. \end{figure}
  11694. Figure~\ref{fig:map-vec-cast} shows the output of the type checker for
  11695. \code{map-vec} and \code{maybe-add1}. The idea is that \code{Cast} is
  11696. inserted every time the type checker sees two types that are
  11697. consistent but not equal. In the \code{add1} function, \code{x} is
  11698. cast to \code{Integer} and the result of the \code{+} is cast to
  11699. \code{Any}. In the call to \code{map-vec}, the \code{add1} argument
  11700. is cast from \code{(Any -> Any)} to \code{(Integer -> Integer)}.
  11701. \begin{figure}[btp]
  11702. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  11703. (define (map-vec [f : (Integer -> Integer)] [v : (Vector Integer Integer)])
  11704. : (Vector Integer Integer)
  11705. (vector (f (vector-ref v 0)) (f (vector-ref v 1))))
  11706. (define (add1 [x : Any]) : Any
  11707. (cast (+ (cast x Any Integer) 1) Integer Any))
  11708. (define (true) : Any (cast #t Boolean Any))
  11709. (define (maybe-add1 [x : Any]) : Any
  11710. (if (eq? 0 (read)) (add1 x) (true)))
  11711. (vector-ref (map-vec (cast maybe-add1 (Any -> Any) (Integer -> Integer))
  11712. (vector 0 41)) 0)
  11713. \end{lstlisting}
  11714. \caption{Output of type checking \code{map-vec}
  11715. and \code{maybe-add1}.}
  11716. \label{fig:map-vec-cast}
  11717. \end{figure}
  11718. The type checker for \LangGrad{} is defined in
  11719. Figures~\ref{fig:type-check-Rgradual-1}, \ref{fig:type-check-Rgradual-2},
  11720. and \ref{fig:type-check-Rgradual-3}.
  11721. \begin{figure}[tbp]
  11722. \begin{lstlisting}[basicstyle=\ttfamily\scriptsize]
  11723. (define type-check-gradual-class
  11724. (class type-check-Rwhile-class
  11725. (super-new)
  11726. (inherit operator-types type-predicates)
  11727. (define/override (type-check-exp env)
  11728. (lambda (e)
  11729. (define recur (type-check-exp env))
  11730. (match e
  11731. [(Prim 'vector-length (list e1))
  11732. (define-values (e1^ t) (recur e1))
  11733. (match t
  11734. [`(Vector ,ts ...)
  11735. (values (Prim 'vector-length (list e1^)) 'Integer)]
  11736. ['Any (values (Prim 'any-vector-length (list e1^)) 'Integer)])]
  11737. [(Prim 'vector-ref (list e1 e2))
  11738. (define-values (e1^ t1) (recur e1))
  11739. (define-values (e2^ t2) (recur e2))
  11740. (check-consistent? t2 'Integer e)
  11741. (match t1
  11742. [`(Vector ,ts ...)
  11743. (match e2^
  11744. [(Int i)
  11745. (unless (and (0 . <= . i) (i . < . (length ts)))
  11746. (error 'type-check "invalid index ~a in ~a" i e))
  11747. (values (Prim 'vector-ref (list e1^ (Int i))) (list-ref ts i))]
  11748. [else (define e1^^ (make-cast e1^ t1 'Any))
  11749. (define e2^^ (make-cast e2^ t2 'Integer))
  11750. (values (Prim 'any-vector-ref (list e1^^ e2^^)) 'Any)])]
  11751. ['Any
  11752. (define e2^^ (make-cast e2^ t2 'Integer))
  11753. (values (Prim 'any-vector-ref (list e1^ e2^^)) 'Any)]
  11754. [else (error 'type-check "expected vector not ~a\nin ~v" t1 e)])]
  11755. [(Prim 'vector-set! (list e1 e2 e3) )
  11756. (define-values (e1^ t1) (recur e1))
  11757. (define-values (e2^ t2) (recur e2))
  11758. (define-values (e3^ t3) (recur e3))
  11759. (check-consistent? t2 'Integer e)
  11760. (match t1
  11761. [`(Vector ,ts ...)
  11762. (match e2^
  11763. [(Int i)
  11764. (unless (and (0 . <= . i) (i . < . (length ts)))
  11765. (error 'type-check "invalid index ~a in ~a" i e))
  11766. (check-consistent? (list-ref ts i) t3 e)
  11767. (define e3^^ (make-cast e3^ t3 (list-ref ts i)))
  11768. (values (Prim 'vector-set! (list e1^ (Int i) e3^^)) 'Void)]
  11769. [else
  11770. (define e1^^ (make-cast e1^ t1 'Any))
  11771. (define e2^^ (make-cast e2^ t2 'Integer))
  11772. (define e3^^ (make-cast e3^ t3 'Any))
  11773. (values (Prim 'any-vector-set! (list e1^^ e2^^ e3^^)) 'Void)])]
  11774. ['Any
  11775. (define e2^^ (make-cast e2^ t2 'Integer))
  11776. (define e3^^ (make-cast e3^ t3 'Any))
  11777. (values (Prim 'any-vector-set! (list e1^ e2^^ e3^^)) 'Void)]
  11778. [else (error 'type-check "expected vector not ~a\nin ~v" t1 e)])]
  11779. \end{lstlisting}
  11780. \caption{Type checker for the \LangGrad{} language, part 1.}
  11781. \label{fig:type-check-Rgradual-1}
  11782. \end{figure}
  11783. \begin{figure}[tbp]
  11784. \begin{lstlisting}[basicstyle=\ttfamily\scriptsize]
  11785. [(Prim 'eq? (list e1 e2))
  11786. (define-values (e1^ t1) (recur e1))
  11787. (define-values (e2^ t2) (recur e2))
  11788. (check-consistent? t1 t2 e)
  11789. (define T (meet t1 t2))
  11790. (values (Prim 'eq? (list (make-cast e1^ t1 T) (make-cast e2^ t2 T)))
  11791. 'Boolean)]
  11792. [(Prim 'not (list e1))
  11793. (define-values (e1^ t1) (recur e1))
  11794. (match t1
  11795. ['Any
  11796. (recur (If (Prim 'eq? (list e1 (Inject (Bool #f) 'Boolean)))
  11797. (Bool #t) (Bool #f)))]
  11798. [else
  11799. (define-values (t-ret new-es^)
  11800. (type-check-op 'not (list t1) (list e1^) e))
  11801. (values (Prim 'not new-es^) t-ret)])]
  11802. [(Prim 'and (list e1 e2))
  11803. (recur (If e1 e2 (Bool #f)))]
  11804. [(Prim 'or (list e1 e2))
  11805. (define tmp (gensym 'tmp))
  11806. (recur (Let tmp e1 (If (Var tmp) (Var tmp) e2)))]
  11807. [(Prim op es)
  11808. #:when (not (set-member? explicit-prim-ops op))
  11809. (define-values (new-es ts)
  11810. (for/lists (exprs types) ([e es])
  11811. (recur e)))
  11812. (define-values (t-ret new-es^) (type-check-op op ts new-es e))
  11813. (values (Prim op new-es^) t-ret)]
  11814. [(If e1 e2 e3)
  11815. (define-values (e1^ T1) (recur e1))
  11816. (define-values (e2^ T2) (recur e2))
  11817. (define-values (e3^ T3) (recur e3))
  11818. (check-consistent? T2 T3 e)
  11819. (match T1
  11820. ['Boolean
  11821. (define Tif (join T2 T3))
  11822. (values (If e1^ (make-cast e2^ T2 Tif)
  11823. (make-cast e3^ T3 Tif)) Tif)]
  11824. ['Any
  11825. (define Tif (meet T2 T3))
  11826. (values (If (Prim 'eq? (list e1^ (Inject (Bool #f) 'Boolean)))
  11827. (make-cast e3^ T3 Tif) (make-cast e2^ T2 Tif))
  11828. Tif)]
  11829. [else (error 'type-check "expected Boolean not ~a\nin ~v" T1 e)])]
  11830. [(HasType e1 T)
  11831. (define-values (e1^ T1) (recur e1))
  11832. (check-consistent? T1 T)
  11833. (values (make-cast e1^ T1 T) T)]
  11834. [(SetBang x e1)
  11835. (define-values (e1^ T1) (recur e1))
  11836. (define varT (dict-ref env x))
  11837. (check-consistent? T1 varT e)
  11838. (values (SetBang x (make-cast e1^ T1 varT)) 'Void)]
  11839. [(WhileLoop e1 e2)
  11840. (define-values (e1^ T1) (recur e1))
  11841. (check-consistent? T1 'Boolean e)
  11842. (define-values (e2^ T2) ((type-check-exp env) e2))
  11843. (values (WhileLoop (make-cast e1^ T1 'Boolean) e2^) 'Void)]
  11844. \end{lstlisting}
  11845. \caption{Type checker for the \LangGrad{} language, part 2.}
  11846. \label{fig:type-check-Rgradual-2}
  11847. \end{figure}
  11848. \begin{figure}[tbp]
  11849. \begin{lstlisting}[basicstyle=\ttfamily\scriptsize]
  11850. [(Apply e1 e2s)
  11851. (define-values (e1^ T1) (recur e1))
  11852. (define-values (e2s^ T2s) (for/lists (e* ty*) ([e2 e2s]) (recur e2)))
  11853. (match T1
  11854. [`(,T1ps ... -> ,T1rt)
  11855. (for ([T2 T2s] [Tp T1ps])
  11856. (check-consistent? T2 Tp e))
  11857. (define e2s^^ (for/list ([e2 e2s^] [src T2s] [tgt T1ps])
  11858. (make-cast e2 src tgt)))
  11859. (values (Apply e1^ e2s^^) T1rt)]
  11860. [`Any
  11861. (define e1^^ (make-cast e1^ 'Any
  11862. `(,@(for/list ([e e2s]) 'Any) -> Any)))
  11863. (define e2s^^ (for/list ([e2 e2s^] [src T2s])
  11864. (make-cast e2 src 'Any)))
  11865. (values (Apply e1^^ e2s^^) 'Any)]
  11866. [else (error 'type-check "expected function not ~a\nin ~v" T1 e)])]
  11867. [(Lambda params Tr e1)
  11868. (define-values (xs Ts) (for/lists (l1 l2) ([p params])
  11869. (match p
  11870. [`[,x : ,T] (values x T)]
  11871. [(? symbol? x) (values x 'Any)])))
  11872. (define-values (e1^ T1)
  11873. ((type-check-exp (append (map cons xs Ts) env)) e1))
  11874. (check-consistent? Tr T1 e)
  11875. (values (Lambda (for/list ([x xs] [T Ts]) `[,x : ,T]) Tr
  11876. (make-cast e1^ T1 Tr)) `(,@Ts -> ,Tr))]
  11877. [else ((super type-check-exp env) e)]
  11878. )))
  11879. \end{lstlisting}
  11880. \caption{Type checker for the \LangGrad{} language, part 3.}
  11881. \label{fig:type-check-Rgradual-3}
  11882. \end{figure}
  11883. \begin{figure}[tbp]
  11884. \begin{lstlisting}[basicstyle=\ttfamily\scriptsize]
  11885. (define/public (join t1 t2)
  11886. (match* (t1 t2)
  11887. [('Integer 'Integer) 'Integer]
  11888. [('Boolean 'Boolean) 'Boolean]
  11889. [('Void 'Void) 'Void]
  11890. [('Any t2) t2]
  11891. [(t1 'Any) t1]
  11892. [(`(Vector ,ts1 ...) `(Vector ,ts2 ...))
  11893. `(Vector ,@(for/list ([t1 ts1] [t2 ts2]) (join t1 t2)))]
  11894. [(`(,ts1 ... -> ,rt1) `(,ts2 ... -> ,rt2))
  11895. `(,@(for/list ([t1 ts1] [t2 ts2]) (join t1 t2))
  11896. -> ,(join rt1 rt2))]))
  11897. (define/public (meet t1 t2)
  11898. (match* (t1 t2)
  11899. [('Integer 'Integer) 'Integer]
  11900. [('Boolean 'Boolean) 'Boolean]
  11901. [('Void 'Void) 'Void]
  11902. [('Any t2) 'Any]
  11903. [(t1 'Any) 'Any]
  11904. [(`(Vector ,ts1 ...) `(Vector ,ts2 ...))
  11905. `(Vector ,@(for/list ([t1 ts1] [t2 ts2]) (meet t1 t2)))]
  11906. [(`(,ts1 ... -> ,rt1) `(,ts2 ... -> ,rt2))
  11907. `(,@(for/list ([t1 ts1] [t2 ts2]) (meet t1 t2))
  11908. -> ,(meet rt1 rt2))]))
  11909. (define/public (make-cast e src tgt)
  11910. (cond [(equal? src tgt) e] [else (Cast e src tgt)]))
  11911. (define/public (check-consistent? t1 t2 e)
  11912. (unless (consistent? t1 t2)
  11913. (error 'type-check "~a is inconsistent with ~a\nin ~v" t1 t2 e)))
  11914. (define/override (type-check-op op arg-types args e)
  11915. (match (dict-ref (operator-types) op)
  11916. [`(,param-types . ,return-type)
  11917. (for ([at arg-types] [pt param-types])
  11918. (check-consistent? at pt e))
  11919. (values return-type
  11920. (for/list ([e args] [s arg-types] [t param-types])
  11921. (make-cast e s t)))]
  11922. [else (error 'type-check-op "unrecognized ~a" op)]))
  11923. (define explicit-prim-ops
  11924. (set-union
  11925. (type-predicates)
  11926. (set 'procedure-arity 'eq?
  11927. 'vector 'vector-length 'vector-ref 'vector-set!
  11928. 'any-vector-length 'any-vector-ref 'any-vector-set!)))
  11929. (define/override (fun-def-type d)
  11930. (match d
  11931. [(Def f params rt info body)
  11932. (define ps
  11933. (for/list ([p params])
  11934. (match p
  11935. [`[,x : ,T] T]
  11936. [(? symbol?) 'Any]
  11937. [else (error 'fun-def-type "unmatched parameter ~a" p)])))
  11938. `(,@ps -> ,rt)]
  11939. [else (error 'fun-def-type "ill-formed function definition in ~a" d)]))
  11940. \end{lstlisting}
  11941. \caption{Auxiliary functions for type checking \LangGrad{}.}
  11942. \label{fig:type-check-Rgradual-aux}
  11943. \end{figure}
  11944. \clearpage
  11945. \section{Interpreting \LangCast{}}
  11946. \label{sec:interp-casts}
  11947. The runtime behavior of first-order casts is straightforward, that is,
  11948. casts involving simple types such as \code{Integer} and
  11949. \code{Boolean}. For example, a cast from \code{Integer} to \code{Any}
  11950. can be accomplished with the \code{Inject} operator of \LangAny{}, which
  11951. puts the integer into a tagged value
  11952. (Figure~\ref{fig:interp-Rany}). Similarly, a cast from \code{Any} to
  11953. \code{Integer} is accomplished with the \code{Project} operator, that
  11954. is, by checking the value's tag and either retrieving the underlying
  11955. integer or signaling an error if it the tag is not the one for
  11956. integers (Figure~\ref{fig:apply-project}).
  11957. %
  11958. Things get more interesting for higher-order casts, that is, casts
  11959. involving function or vector types.
  11960. Consider the cast of the function \code{maybe-add1} from \code{(Any ->
  11961. Any)} to \code{(Integer -> Integer)}. When a function flows through
  11962. this cast at runtime, we can't know in general whether the function
  11963. will always return an integer.\footnote{Predicting the return value of
  11964. a function is equivalent to the halting problem, which is
  11965. undecidable.} The \LangCast{} interpreter therefore delays the checking
  11966. of the cast until the function is applied. This is accomplished by
  11967. wrapping \code{maybe-add1} in a new function that casts its parameter
  11968. from \code{Integer} to \code{Any}, applies \code{maybe-add1}, and then
  11969. casts the return value from \code{Any} to \code{Integer}.
  11970. Turning our attention to casts involving vector types, we consider the
  11971. example in Figure~\ref{fig:map-vec-bang} that defines a
  11972. partially-typed version of \code{map-vec} whose parameter \code{v} has
  11973. type \code{(Vector Any Any)} and that updates \code{v} in place
  11974. instead of returning a new vector. So we name this function
  11975. \code{map-vec!}. We apply \code{map-vec!} to a vector of integers, so
  11976. the type checker inserts a cast from \code{(Vector Integer Integer)}
  11977. to \code{(Vector Any Any)}. A naive way for the \LangCast{} interpreter to
  11978. cast between vector types would be a build a new vector whose elements
  11979. are the result of casting each of the original elements to the
  11980. appropriate target type. However, this approach is only valid for
  11981. immutable vectors; and our vectors are mutable. In the example of
  11982. Figure~\ref{fig:map-vec-bang}, if the cast created a new vector, then
  11983. the updates inside of \code{map-vec!} would happen to the new vector
  11984. and not the original one.
  11985. \begin{figure}[tbp]
  11986. % gradual_test_11.rkt
  11987. \begin{lstlisting}
  11988. (define (map-vec! [f : (Any -> Any)]
  11989. [v : (Vector Any Any)]) : Void
  11990. (begin
  11991. (vector-set! v 0 (f (vector-ref v 0)))
  11992. (vector-set! v 1 (f (vector-ref v 1)))))
  11993. (define (add1 x) (+ x 1))
  11994. (let ([v (vector 0 41)])
  11995. (begin (map-vec! add1 v) (vector-ref v 1)))
  11996. \end{lstlisting}
  11997. \caption{An example involving casts on vectors.}
  11998. \label{fig:map-vec-bang}
  11999. \end{figure}
  12000. Instead the interpreter needs to create a new kind of value, a
  12001. \emph{vector proxy}, that intercepts every vector operation. On a
  12002. read, the proxy reads from the underlying vector and then applies a
  12003. cast to the resulting value. On a write, the proxy casts the argument
  12004. value and then performs the write to the underlying vector. For the
  12005. first \code{(vector-ref v 0)} in \code{map-vec!}, the proxy casts
  12006. \code{0} from \code{Integer} to \code{Any}. For the first
  12007. \code{vector-set!}, the proxy casts a tagged \code{1} from \code{Any}
  12008. to \code{Integer}.
  12009. The final category of cast that we need to consider are casts between
  12010. the \code{Any} type and either a function or a vector
  12011. type. Figure~\ref{fig:map-vec-any} shows a variant of \code{map-vec!}
  12012. in which parameter \code{v} does not have a type annotation, so it is
  12013. given type \code{Any}. In the call to \code{map-vec!}, the vector has
  12014. type \code{(Vector Integer Integer)} so the type checker inserts a
  12015. cast from \code{(Vector Integer Integer)} to \code{Any}. A first
  12016. thought is to use \code{Inject}, but that doesn't work because
  12017. \code{(Vector Integer Integer)} is not a flat type. Instead, we must
  12018. first cast to \code{(Vector Any Any)} (which is flat) and then inject
  12019. to \code{Any}.
  12020. \begin{figure}[tbp]
  12021. \begin{lstlisting}
  12022. (define (map-vec! [f : (Any -> Any)] v) : Void
  12023. (begin
  12024. (vector-set! v 0 (f (vector-ref v 0)))
  12025. (vector-set! v 1 (f (vector-ref v 1)))))
  12026. (define (add1 x) (+ x 1))
  12027. (let ([v (vector 0 41)])
  12028. (begin (map-vec! add1 v) (vector-ref v 1)))
  12029. \end{lstlisting}
  12030. \caption{Casting a vector to \code{Any}.}
  12031. \label{fig:map-vec-any}
  12032. \end{figure}
  12033. The \LangCast{} interpreter uses an auxiliary function named
  12034. \code{apply-cast} to cast a value from a source type to a target type,
  12035. shown in Figure~\ref{fig:apply-cast}. You'll find that it handles all
  12036. of the kinds of casts that we've discussed in this section.
  12037. \begin{figure}[tbp]
  12038. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  12039. (define/public (apply-cast v s t)
  12040. (match* (s t)
  12041. [(t1 t2) #:when (equal? t1 t2) v]
  12042. [('Any t2)
  12043. (match t2
  12044. [`(,ts ... -> ,rt)
  12045. (define any->any `(,@(for/list ([t ts]) 'Any) -> Any))
  12046. (define v^ (apply-project v any->any))
  12047. (apply-cast v^ any->any `(,@ts -> ,rt))]
  12048. [`(Vector ,ts ...)
  12049. (define vec-any `(Vector ,@(for/list ([t ts]) 'Any)))
  12050. (define v^ (apply-project v vec-any))
  12051. (apply-cast v^ vec-any `(Vector ,@ts))]
  12052. [else (apply-project v t2)])]
  12053. [(t1 'Any)
  12054. (match t1
  12055. [`(,ts ... -> ,rt)
  12056. (define any->any `(,@(for/list ([t ts]) 'Any) -> Any))
  12057. (define v^ (apply-cast v `(,@ts -> ,rt) any->any))
  12058. (apply-inject v^ (any-tag any->any))]
  12059. [`(Vector ,ts ...)
  12060. (define vec-any `(Vector ,@(for/list ([t ts]) 'Any)))
  12061. (define v^ (apply-cast v `(Vector ,@ts) vec-any))
  12062. (apply-inject v^ (any-tag vec-any))]
  12063. [else (apply-inject v (any-tag t1))])]
  12064. [(`(Vector ,ts1 ...) `(Vector ,ts2 ...))
  12065. (define x (gensym 'x))
  12066. (define cast-reads (for/list ([t1 ts1] [t2 ts2])
  12067. `(function (,x) ,(Cast (Var x) t1 t2) ())))
  12068. (define cast-writes
  12069. (for/list ([t1 ts1] [t2 ts2])
  12070. `(function (,x) ,(Cast (Var x) t2 t1) ())))
  12071. `(vector-proxy ,(vector v (apply vector cast-reads)
  12072. (apply vector cast-writes)))]
  12073. [(`(,ts1 ... -> ,rt1) `(,ts2 ... -> ,rt2))
  12074. (define xs (for/list ([t2 ts2]) (gensym 'x)))
  12075. `(function ,xs ,(Cast
  12076. (Apply (Value v)
  12077. (for/list ([x xs][t1 ts1][t2 ts2])
  12078. (Cast (Var x) t2 t1)))
  12079. rt1 rt2) ())]
  12080. ))
  12081. \end{lstlisting}
  12082. \caption{The \code{apply-cast} auxiliary method.}
  12083. \label{fig:apply-cast}
  12084. \end{figure}
  12085. The interpreter for \LangCast{} is defined in
  12086. Figure~\ref{fig:interp-Rcast}, with the case for \code{Cast}
  12087. dispatching to \code{apply-cast}. To handle the addition of vector
  12088. proxies, we update the vector primitives in \code{interp-op} using the
  12089. functions in Figure~\ref{fig:guarded-vector}.
  12090. \begin{figure}[tbp]
  12091. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  12092. (define interp-Rcast-class
  12093. (class interp-Rwhile-class
  12094. (super-new)
  12095. (inherit apply-fun apply-inject apply-project)
  12096. (define/override (interp-op op)
  12097. (match op
  12098. ['vector-length guarded-vector-length]
  12099. ['vector-ref guarded-vector-ref]
  12100. ['vector-set! guarded-vector-set!]
  12101. ['any-vector-ref (lambda (v i)
  12102. (match v [`(tagged ,v^ ,tg)
  12103. (guarded-vector-ref v^ i)]))]
  12104. ['any-vector-set! (lambda (v i a)
  12105. (match v [`(tagged ,v^ ,tg)
  12106. (guarded-vector-set! v^ i a)]))]
  12107. ['any-vector-length (lambda (v)
  12108. (match v [`(tagged ,v^ ,tg)
  12109. (guarded-vector-length v^)]))]
  12110. [else (super interp-op op)]
  12111. ))
  12112. (define/override ((interp-exp env) e)
  12113. (define (recur e) ((interp-exp env) e))
  12114. (match e
  12115. [(Value v) v]
  12116. [(Cast e src tgt) (apply-cast (recur e) src tgt)]
  12117. [else ((super interp-exp env) e)]))
  12118. ))
  12119. (define (interp-Rcast p)
  12120. (send (new interp-Rcast-class) interp-program p))
  12121. \end{lstlisting}
  12122. \caption{The interpreter for \LangCast{}.}
  12123. \label{fig:interp-Rcast}
  12124. \end{figure}
  12125. \begin{figure}[tbp]
  12126. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  12127. (define (guarded-vector-ref vec i)
  12128. (match vec
  12129. [`(vector-proxy ,proxy)
  12130. (define val (guarded-vector-ref (vector-ref proxy 0) i))
  12131. (define rd (vector-ref (vector-ref proxy 1) i))
  12132. (apply-fun rd (list val) 'guarded-vector-ref)]
  12133. [else (vector-ref vec i)]))
  12134. (define (guarded-vector-set! vec i arg)
  12135. (match vec
  12136. [`(vector-proxy ,proxy)
  12137. (define wr (vector-ref (vector-ref proxy 2) i))
  12138. (define arg^ (apply-fun wr (list arg) 'guarded-vector-set!))
  12139. (guarded-vector-set! (vector-ref proxy 0) i arg^)]
  12140. [else (vector-set! vec i arg)]))
  12141. (define (guarded-vector-length vec)
  12142. (match vec
  12143. [`(vector-proxy ,proxy)
  12144. (guarded-vector-length (vector-ref proxy 0))]
  12145. [else (vector-length vec)]))
  12146. \end{lstlisting}
  12147. \caption{The guarded-vector auxiliary functions.}
  12148. \label{fig:guarded-vector}
  12149. \end{figure}
  12150. \section{Lower Casts}
  12151. \label{sec:lower-casts}
  12152. The next step in the journey towards x86 is the \code{lower-casts}
  12153. pass that translates the casts in \LangCast{} to the lower-level
  12154. \code{Inject} and \code{Project} operators and a new operator for
  12155. creating vector proxies, extending the \LangLoop{} language to create
  12156. \LangProxy{}. We recommend creating an auxiliary function named
  12157. \code{lower-cast} that takes an expression (in \LangCast{}), a source type,
  12158. and a target type, and translates it to expression in \LangProxy{} that has
  12159. the same behavior as casting the expression from the source to the
  12160. target type in the interpreter.
  12161. The \code{lower-cast} function can follow a code structure similar to
  12162. the \code{apply-cast} function (Figure~\ref{fig:apply-cast}) used in
  12163. the interpreter for \LangCast{} because it must handle the same cases as
  12164. \code{apply-cast} and it needs to mimic the behavior of
  12165. \code{apply-cast}. The most interesting cases are those concerning the
  12166. casts between two vector types and between two function types.
  12167. As mentioned in Section~\ref{sec:interp-casts}, a cast from one vector
  12168. type to another vector type is accomplished by creating a proxy that
  12169. intercepts the operations on the underlying vector. Here we make the
  12170. creation of the proxy explicit with the \code{vector-proxy} primitive
  12171. operation. It takes three arguments, the first is an expression for
  12172. the vector, the second is a vector of functions for casting an element
  12173. that is being read from the vector, and the third is a vector of
  12174. functions for casting an element that is being written to the vector.
  12175. You can create the functions using \code{Lambda}. Also, as we shall
  12176. see in the next section, we need to differentiate these vectors from
  12177. the user-created ones, so we recommend using a new primitive operator
  12178. named \code{raw-vector} instead of \code{vector} to create these
  12179. vectors of functions. Figure~\ref{fig:map-vec-bang-lower-cast} shows
  12180. the output of \code{lower-casts} on the example in
  12181. Figure~\ref{fig:map-vec-bang} that involved casting a vector of
  12182. integers to a vector of \code{Any}.
  12183. \begin{figure}[tbp]
  12184. \begin{lstlisting}
  12185. (define (map-vec! [f : (Any -> Any)] [v : (Vector Any Any)]) : Void
  12186. (begin
  12187. (vector-set! v 0 (f (vector-ref v 0)))
  12188. (vector-set! v 1 (f (vector-ref v 1)))))
  12189. (define (add1 [x : Any]) : Any
  12190. (inject (+ (project x Integer) 1) Integer))
  12191. (let ([v (vector 0 41)])
  12192. (begin
  12193. (map-vec! add1 (vector-proxy v
  12194. (raw-vector (lambda: ([x9 : Integer]) : Any
  12195. (inject x9 Integer))
  12196. (lambda: ([x9 : Integer]) : Any
  12197. (inject x9 Integer)))
  12198. (raw-vector (lambda: ([x9 : Any]) : Integer
  12199. (project x9 Integer))
  12200. (lambda: ([x9 : Any]) : Integer
  12201. (project x9 Integer)))))
  12202. (vector-ref v 1)))
  12203. \end{lstlisting}
  12204. \caption{Output of \code{lower-casts} on the example in
  12205. Figure~\ref{fig:map-vec-bang}.}
  12206. \label{fig:map-vec-bang-lower-cast}
  12207. \end{figure}
  12208. A cast from one function type to another function type is accomplished
  12209. by generating a \code{Lambda} whose parameter and return types match
  12210. the target function type. The body of the \code{Lambda} should cast
  12211. the parameters from the target type to the source type (yes,
  12212. backwards! functions are contravariant\index{contravariant} in the
  12213. parameters), then call the underlying function, and finally cast the
  12214. result from the source return type to the target return type.
  12215. Figure~\ref{fig:map-vec-lower-cast} shows the output of the
  12216. \code{lower-casts} pass on the \code{map-vec} example in
  12217. Figure~\ref{fig:gradual-map-vec}. Note that the \code{add1} argument
  12218. in the call to \code{map-vec} is wrapped in a \code{lambda}.
  12219. \begin{figure}[tbp]
  12220. \begin{lstlisting}
  12221. (define (map-vec [f : (Integer -> Integer)]
  12222. [v : (Vector Integer Integer)])
  12223. : (Vector Integer Integer)
  12224. (vector (f (vector-ref v 0)) (f (vector-ref v 1))))
  12225. (define (add1 [x : Any]) : Any
  12226. (inject (+ (project x Integer) 1) Integer))
  12227. (vector-ref (map-vec (lambda: ([x9 : Integer]) : Integer
  12228. (project (add1 (inject x9 Integer)) Integer))
  12229. (vector 0 41)) 1)
  12230. \end{lstlisting}
  12231. \caption{Output of \code{lower-casts} on the example in
  12232. Figure~\ref{fig:gradual-map-vec}.}
  12233. \label{fig:map-vec-lower-cast}
  12234. \end{figure}
  12235. \section{Differentiate Proxies}
  12236. \label{sec:differentiate-proxies}
  12237. So far the job of differentiating vectors and vector proxies has been
  12238. the job of the interpreter. For example, the interpreter for \LangCast{}
  12239. implements \code{vector-ref} using the \code{guarded-vector-ref}
  12240. function in Figure~\ref{fig:guarded-vector}. In the
  12241. \code{differentiate-proxies} pass we shift this responsibility to the
  12242. generated code.
  12243. We begin by designing the output language $R^p_8$. In
  12244. \LangGrad{} we used the type \code{Vector} for both real vectors and vector
  12245. proxies. In $R^p_8$ we return the \code{Vector} type to
  12246. its original meaning, as the type of real vectors, and we introduce a
  12247. new type, \code{PVector}, whose values can be either real vectors or
  12248. vector proxies. This new type comes with a suite of new primitive
  12249. operations for creating and using values of type \code{PVector}. We
  12250. don't need to introduce a new type to represent vector proxies. A
  12251. proxy is represented by a vector containing three things: 1) the
  12252. underlying vector, 2) a vector of functions for casting elements that
  12253. are read from the vector, and 3) a vector of functions for casting
  12254. values to be written to the vector. So we define the following
  12255. abbreviation for the type of a vector proxy:
  12256. \[
  12257. \itm{Proxy} (T\ldots \Rightarrow T'\ldots)
  12258. = (\ttm{Vector}~(\ttm{PVector}~ T\ldots) ~R~ W)
  12259. \to (\key{PVector}~ T' \ldots)
  12260. \]
  12261. where $R = (\ttm{Vector}~(T\to T') \ldots)$ and
  12262. $W = (\ttm{Vector}~(T'\to T) \ldots)$.
  12263. %
  12264. Next we describe each of the new primitive operations.
  12265. \begin{description}
  12266. \item[\code{inject-vector} : (\key{Vector} $T \ldots$) $\to$
  12267. (\key{PVector} $T \ldots$)]\ \\
  12268. %
  12269. This operation brands a vector as a value of the \code{PVector} type.
  12270. \item[\code{inject-proxy} : $\itm{Proxy}(T\ldots \Rightarrow T'\ldots)$
  12271. $\to$ (\key{PVector} $T' \ldots$)]\ \\
  12272. %
  12273. This operation brands a vector proxy as value of the \code{PVector} type.
  12274. \item[\code{proxy?} : (\key{PVector} $T \ldots$) $\to$
  12275. \code{Boolean}] \ \\
  12276. %
  12277. returns true if the value is a vector proxy and false if it is a
  12278. real vector.
  12279. \item[\code{project-vector} : (\key{PVector} $T \ldots$) $\to$
  12280. (\key{Vector} $T \ldots$)]\ \\
  12281. %
  12282. Assuming that the input is a vector (and not a proxy), this
  12283. operation returns the vector.
  12284. \item[\code{proxy-vector-length} : (\key{PVector} $T \ldots$)
  12285. $\to$ \code{Boolean}]\ \\
  12286. %
  12287. Given a vector proxy, this operation returns the length of the
  12288. underlying vector.
  12289. \item[\code{proxy-vector-ref} : (\key{PVector} $T \ldots$)
  12290. $\to$ ($i$ : \code{Integer}) $\to$ $T_i$]\ \\
  12291. %
  12292. Given a vector proxy, this operation returns the $i$th element of
  12293. the underlying vector.
  12294. \item[\code{proxy-vector-set!} : (\key{PVector} $T \ldots$) $\to$ ($i$
  12295. : \code{Integer}) $\to$ $T_i$ $\to$ \key{Void}]\ \\ Given a vector
  12296. proxy, this operation writes a value to the $i$th element of the
  12297. underlying vector.
  12298. \end{description}
  12299. Now to discuss the translation that differentiates vectors from
  12300. proxies. First, every type annotation in the program must be
  12301. translated (recursively) to replace \code{Vector} with \code{PVector}.
  12302. Next, we must insert uses of \code{PVector} operations in the
  12303. appropriate places. For example, we wrap every vector creation with an
  12304. \code{inject-vector}.
  12305. \begin{lstlisting}
  12306. (vector |$e_1 \ldots e_n$|)
  12307. |$\Rightarrow$|
  12308. (inject-vector (vector |$e'_1 \ldots e'_n$|))
  12309. \end{lstlisting}
  12310. The \code{raw-vector} operator that we introduced in the previous
  12311. section does not get injected.
  12312. \begin{lstlisting}
  12313. (raw-vector |$e_1 \ldots e_n$|)
  12314. |$\Rightarrow$|
  12315. (vector |$e'_1 \ldots e'_n$|)
  12316. \end{lstlisting}
  12317. The \code{vector-proxy} primitive translates as follows.
  12318. \begin{lstlisting}
  12319. (vector-proxy |$e_1~e_2~e_3$|)
  12320. |$\Rightarrow$|
  12321. (inject-proxy (vector |$e'_1~e'_2~e'_3$|))
  12322. \end{lstlisting}
  12323. We translate the vector operations into conditional expressions that
  12324. check whether the value is a proxy and then dispatch to either the
  12325. appropriate proxy vector operation or the regular vector operation.
  12326. For example, the following is the translation for \code{vector-ref}.
  12327. \begin{lstlisting}
  12328. (vector-ref |$e_1$| |$i$|)
  12329. |$\Rightarrow$|
  12330. (let ([|$v~e_1$|])
  12331. (if (proxy? |$v$|)
  12332. (proxy-vector-ref |$v$| |$i$|)
  12333. (vector-ref (project-vector |$v$|) |$i$|)
  12334. \end{lstlisting}
  12335. Note in the case of a real vector, we must apply \code{project-vector}
  12336. before the \code{vector-ref}.
  12337. \section{Reveal Casts}
  12338. \label{sec:reveal-casts-gradual}
  12339. Recall that the \code{reveal-casts} pass
  12340. (Section~\ref{sec:reveal-casts-Rany}) is responsible for lowering
  12341. \code{Inject} and \code{Project} into lower-level operations. In
  12342. particular, \code{Project} turns into a conditional expression that
  12343. inspects the tag and retrieves the underlying value. Here we need to
  12344. augment the translation of \code{Project} to handle the situation when
  12345. the target type is \code{PVector}. Instead of using
  12346. \code{vector-length} we need to use \code{proxy-vector-length}.
  12347. \begin{lstlisting}
  12348. (project |$e$| (PVector Any|$_1$| |$\ldots$| Any|$_n$|))
  12349. |$\Rightarrow$|
  12350. (let |$\itm{tmp}$| |$e'$|
  12351. (if (eq? (tag-of-any |$\itm{tmp}$| 2))
  12352. (let |$\itm{vec}$| (value-of |$\itm{tmp}$| (PVector Any |$\ldots$| Any))
  12353. (if (eq? (proxy-vector-length |$\itm{vec}$|) |$n$|) |$\itm{vec}$| (exit)))
  12354. (exit)))
  12355. \end{lstlisting}
  12356. \section{Closure Conversion}
  12357. \label{sec:closure-conversion-gradual}
  12358. The closure conversion pass only requires one minor adjustment. The
  12359. auxiliary function that translates type annotations needs to be
  12360. updated to handle the \code{PVector} type.
  12361. \section{Explicate Control}
  12362. \label{sec:explicate-control-gradual}
  12363. Update the \code{explicate-control} pass to handle the new primitive
  12364. operations on the \code{PVector} type.
  12365. \section{Select Instructions}
  12366. \label{sec:select-instructions-gradual}
  12367. Recall that the \code{select-instructions} pass is responsible for
  12368. lowering the primitive operations into x86 instructions. So we need
  12369. to translate the new \code{PVector} operations to x86. To do so, the
  12370. first question we need to answer is how will we differentiate the two
  12371. kinds of values (vectors and proxies) that can inhabit \code{PVector}.
  12372. We need just one bit to accomplish this, and use the bit in position
  12373. $57$ of the 64-bit tag at the front of every vector (see
  12374. Figure~\ref{fig:tuple-rep}). So far, this bit has been set to $0$, so
  12375. for \code{inject-vector} we leave it that way.
  12376. \begin{lstlisting}
  12377. (Assign |$\itm{lhs}$| (Prim 'inject-vector (list |$e_1$|)))
  12378. |$\Rightarrow$|
  12379. movq |$e'_1$|, |$\itm{lhs'}$|
  12380. \end{lstlisting}
  12381. On the other hand, \code{inject-proxy} sets bit $57$ to $1$.
  12382. \begin{lstlisting}
  12383. (Assign |$\itm{lhs}$| (Prim 'inject-proxy (list |$e_1$|)))
  12384. |$\Rightarrow$|
  12385. movq |$e'_1$|, %r11
  12386. movq |$(1 << 57)$|, %rax
  12387. orq 0(%r11), %rax
  12388. movq %rax, 0(%r11)
  12389. movq %r11, |$\itm{lhs'}$|
  12390. \end{lstlisting}
  12391. The \code{proxy?} operation consumes the information so carefully
  12392. stashed away by \code{inject-vector} and \code{inject-proxy}. It
  12393. isolates the $57$th bit to tell whether the value is a real vector or
  12394. a proxy.
  12395. \begin{lstlisting}
  12396. (Assign |$\itm{lhs}$| (Prim 'proxy? (list e)))
  12397. |$\Rightarrow$|
  12398. movq |$e_1'$|, %r11
  12399. movq 0(%r11), %rax
  12400. sarq $57, %rax
  12401. andq $1, %rax
  12402. movq %rax, |$\itm{lhs'}$|
  12403. \end{lstlisting}
  12404. The \code{project-vector} operation is straightforward to translate,
  12405. so we leave it up to the reader.
  12406. Regarding the \code{proxy-vector} operations, the runtime provides
  12407. procedures that implement them (they are recursive functions!) so
  12408. here we simply need to translate these vector operations into the
  12409. appropriate function call. For example, here is the translation for
  12410. \code{proxy-vector-ref}.
  12411. \begin{lstlisting}
  12412. (Assign |$\itm{lhs}$| (Prim 'proxy-vector-ref (list |$e_1$| |$e_2$|)))
  12413. |$\Rightarrow$|
  12414. movq |$e_1'$|, %rdi
  12415. movq |$e_2'$|, %rsi
  12416. callq proxy_vector_ref
  12417. movq %rax, |$\itm{lhs'}$|
  12418. \end{lstlisting}
  12419. We have another batch of vector operations to deal with, those for the
  12420. \code{Any} type. Recall that the type checker for \LangGrad{} generates an
  12421. \code{any-vector-ref} when there is a \code{vector-ref} on something
  12422. of type \code{Any}, and similarly for \code{any-vector-set!} and
  12423. \code{any-vector-length} (Figure~\ref{fig:type-check-Rgradual-1}). In
  12424. Section~\ref{sec:select-Rany} we selected instructions for these
  12425. operations based on the idea that the underlying value was a real
  12426. vector. But in the current setting, the underlying value is of type
  12427. \code{PVector}. So \code{any-vector-ref} can be translates to
  12428. pseudo-x86 as follows. We begin by projecting the underlying value out
  12429. of the tagged value and then call the \code{proxy\_vector\_ref}
  12430. procedure in the runtime.
  12431. \begin{lstlisting}
  12432. (Assign |$\itm{lhs}$| (Prim 'any-vector-ref (list |$e_1$| |$e_2$|)))
  12433. movq |$\neg 111$|, %rdi
  12434. andq |$e_1'$|, %rdi
  12435. movq |$e_2'$|, %rsi
  12436. callq proxy_vector_ref
  12437. movq %rax, |$\itm{lhs'}$|
  12438. \end{lstlisting}
  12439. The \code{any-vector-set!} and \code{any-vector-length} operators can
  12440. be translated in a similar way.
  12441. \begin{exercise}\normalfont
  12442. Implement a compiler for the gradually-typed \LangGrad{} language by
  12443. extending and adapting your compiler for \LangLoop{}. Create 10 new
  12444. partially-typed test programs. In addition to testing with these
  12445. new programs, also test your compiler on all the tests for \LangLoop{}
  12446. and tests for \LangDyn{}. Sometimes you may get a type checking error
  12447. on the \LangDyn{} programs but you can adapt them by inserting
  12448. a cast to the \code{Any} type around each subexpression
  12449. causing a type error. While \LangDyn{} doesn't have explicit casts,
  12450. you can induce one by wrapping the subexpression \code{e}
  12451. with a call to an un-annotated identity function, like this:
  12452. \code{((lambda (x) x) e)}.
  12453. \end{exercise}
  12454. \begin{figure}[p]
  12455. \begin{tikzpicture}[baseline=(current bounding box.center)]
  12456. \node (Rgradual) at (6,4) {\large \LangGrad{}};
  12457. \node (Rgradualp) at (3,4) {\large \LangCast{}};
  12458. \node (Rwhilepp) at (0,4) {\large \LangProxy{}};
  12459. \node (Rwhileproxy) at (0,2) {\large \LangPVec{}};
  12460. \node (Rwhileproxy-2) at (3,2) {\large \LangPVec{}};
  12461. \node (Rwhileproxy-3) at (6,2) {\large \LangPVec{}};
  12462. \node (Rwhileproxy-4) at (9,2) {\large \LangPVecFunRef{}};
  12463. \node (Rwhileproxy-5) at (12,2) {\large \LangPVecFunRef{}};
  12464. \node (F1-1) at (12,0) {\large \LangPVecFunRef{}};
  12465. \node (F1-2) at (9,0) {\large \LangPVecFunRef{}};
  12466. \node (F1-3) at (6,0) {\large \LangPVecFunRef{}};
  12467. \node (F1-4) at (3,0) {\large \LangPVecAlloc{}};
  12468. \node (F1-5) at (0,0) {\large \LangPVecAlloc{}};
  12469. \node (C3-2) at (3,-2) {\large \LangCLoopPVec{}};
  12470. \node (x86-2) at (3,-4) {\large \LangXIndCallVar{}};
  12471. \node (x86-2-1) at (3,-6) {\large \LangXIndCallVar{}};
  12472. \node (x86-2-2) at (6,-6) {\large \LangXIndCallVar{}};
  12473. \node (x86-3) at (6,-4) {\large \LangXIndCallVar{}};
  12474. \node (x86-4) at (9,-4) {\large \LangXIndCall{}};
  12475. \node (x86-5) at (9,-6) {\large \LangXIndCall{}};
  12476. \path[->,bend right=15] (Rgradual) edge [above] node
  12477. {\ttfamily\footnotesize type-check} (Rgradualp);
  12478. \path[->,bend right=15] (Rgradualp) edge [above] node
  12479. {\ttfamily\footnotesize lower-casts} (Rwhilepp);
  12480. \path[->,bend right=15] (Rwhilepp) edge [right] node
  12481. {\ttfamily\footnotesize differentiate-proxies} (Rwhileproxy);
  12482. \path[->,bend left=15] (Rwhileproxy) edge [above] node
  12483. {\ttfamily\footnotesize shrink} (Rwhileproxy-2);
  12484. \path[->,bend left=15] (Rwhileproxy-2) edge [above] node
  12485. {\ttfamily\footnotesize uniquify} (Rwhileproxy-3);
  12486. \path[->,bend left=15] (Rwhileproxy-3) edge [above] node
  12487. {\ttfamily\footnotesize reveal-functions} (Rwhileproxy-4);
  12488. \path[->,bend left=15] (Rwhileproxy-4) edge [above] node
  12489. {\ttfamily\footnotesize reveal-casts} (Rwhileproxy-5);
  12490. \path[->,bend left=15] (Rwhileproxy-5) edge [left] node
  12491. {\ttfamily\footnotesize convert-assignments} (F1-1);
  12492. \path[->,bend left=15] (F1-1) edge [below] node
  12493. {\ttfamily\footnotesize convert-to-clos.} (F1-2);
  12494. \path[->,bend right=15] (F1-2) edge [above] node
  12495. {\ttfamily\footnotesize limit-fun.} (F1-3);
  12496. \path[->,bend right=15] (F1-3) edge [above] node
  12497. {\ttfamily\footnotesize expose-alloc.} (F1-4);
  12498. \path[->,bend right=15] (F1-4) edge [above] node
  12499. {\ttfamily\footnotesize remove-complex.} (F1-5);
  12500. \path[->,bend right=15] (F1-5) edge [right] node
  12501. {\ttfamily\footnotesize explicate-control} (C3-2);
  12502. \path[->,bend left=15] (C3-2) edge [left] node
  12503. {\ttfamily\footnotesize select-instr.} (x86-2);
  12504. \path[->,bend right=15] (x86-2) edge [left] node
  12505. {\ttfamily\footnotesize uncover-live} (x86-2-1);
  12506. \path[->,bend right=15] (x86-2-1) edge [below] node
  12507. {\ttfamily\footnotesize build-inter.} (x86-2-2);
  12508. \path[->,bend right=15] (x86-2-2) edge [left] node
  12509. {\ttfamily\footnotesize allocate-reg.} (x86-3);
  12510. \path[->,bend left=15] (x86-3) edge [above] node
  12511. {\ttfamily\footnotesize patch-instr.} (x86-4);
  12512. \path[->,bend left=15] (x86-4) edge [right] node {\ttfamily\footnotesize print-x86} (x86-5);
  12513. \end{tikzpicture}
  12514. \caption{Diagram of the passes for \LangGrad{} (gradual typing).}
  12515. \label{fig:Rgradual-passes}
  12516. \end{figure}
  12517. Figure~\ref{fig:Rgradual-passes} provides an overview of all the passes needed
  12518. for the compilation of \LangGrad{}.
  12519. \section{Further Reading}
  12520. This chapter just scratches the surface of gradual typing. The basic
  12521. approach described here is missing two key ingredients that one would
  12522. want in a implementation of gradual typing: blame
  12523. tracking~\citep{Tobin-Hochstadt:2006fk,Wadler:2009qv} and
  12524. space-efficient casts~\citep{Herman:2006uq,Herman:2010aa}. The
  12525. problem addressed by blame tracking is that when a cast on a
  12526. higher-order value fails, it often does so at a point in the program
  12527. that is far removed from the original cast. Blame tracking is a
  12528. technique for propagating extra information through casts and proxies
  12529. so that when a cast fails, the error message can point back to the
  12530. original location of the cast in the source program.
  12531. The problem addressed by space-efficient casts also relates to
  12532. higher-order casts. It turns out that in partially typed programs, a
  12533. function or vector can flow through very-many casts at runtime. With
  12534. the approach described in this chapter, each cast adds another
  12535. \code{lambda} wrapper or a vector proxy. Not only does this take up
  12536. considerable space, but it also makes the function calls and vector
  12537. operations slow. For example, a partially-typed version of quicksort
  12538. could, in the worst case, build a chain of proxies of length $O(n)$
  12539. around the vector, changing the overall time complexity of the
  12540. algorithm from $O(n^2)$ to $O(n^3)$! \citet{Herman:2006uq} suggested a
  12541. solution to this problem by representing casts using the coercion
  12542. calculus of \citet{Henglein:1994nz}, which prevents the creation of
  12543. long chains of proxies by compressing them into a concise normal
  12544. form. \citet{Siek:2015ab} give and algorithm for compressing coercions
  12545. and \citet{Kuhlenschmidt:2019aa} show how to implement these ideas in
  12546. the Grift compiler.
  12547. \begin{center}
  12548. \url{https://github.com/Gradual-Typing/Grift}
  12549. \end{center}
  12550. There are also interesting interactions between gradual typing and
  12551. other language features, such as parametetric polymorphism,
  12552. information-flow types, and type inference, to name a few. We
  12553. recommend the reader to the online gradual typing bibliography:
  12554. \begin{center}
  12555. \url{http://samth.github.io/gradual-typing-bib/}
  12556. \end{center}
  12557. % TODO: challenge problem:
  12558. % type analysis and type specialization?
  12559. % coercions?
  12560. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  12561. \chapter{Parametric Polymorphism}
  12562. \label{ch:Rpoly}
  12563. \index{parametric polymorphism}
  12564. \index{generics}
  12565. This chapter studies the compilation of parametric
  12566. polymorphism\index{parametric polymorphism}
  12567. (aka. generics\index{generics}) in the subset \LangPoly{} of Typed
  12568. Racket. Parametric polymorphism enables improved code reuse by
  12569. parameterizing functions and data structures with respect to the types
  12570. that they operate on. For example, Figure~\ref{fig:map-vec-poly}
  12571. revisits the \code{map-vec} example but this time gives it a more
  12572. fitting type. This \code{map-vec} function is parameterized with
  12573. respect to the element type of the vector. The type of \code{map-vec}
  12574. is the following polymorphic type as specified by the \code{All} and
  12575. the type parameter \code{a}.
  12576. \begin{lstlisting}
  12577. (All (a) ((a -> a) (Vector a a) -> (Vector a a)))
  12578. \end{lstlisting}
  12579. The idea is that \code{map-vec} can be used at \emph{all} choices of a
  12580. type for parameter \code{a}. In Figure~\ref{fig:map-vec-poly} we apply
  12581. \code{map-vec} to a vector of integers, a choice of \code{Integer} for
  12582. \code{a}, but we could have just as well applied \code{map-vec} to a
  12583. vector of Booleans (and a function on Booleans).
  12584. \begin{figure}[tbp]
  12585. % poly_test_2.rkt
  12586. \begin{lstlisting}
  12587. (: map-vec (All (a) ((a -> a) (Vector a a) -> (Vector a a))))
  12588. (define (map-vec f v)
  12589. (vector (f (vector-ref v 0)) (f (vector-ref v 1))))
  12590. (define (add1 [x : Integer]) : Integer (+ x 1))
  12591. (vector-ref (map-vec add1 (vector 0 41)) 1)
  12592. \end{lstlisting}
  12593. \caption{The \code{map-vec} example using parametric polymorphism.}
  12594. \label{fig:map-vec-poly}
  12595. \end{figure}
  12596. Figure~\ref{fig:Rpoly-concrete-syntax} defines the concrete syntax of
  12597. \LangPoly{} and Figure~\ref{fig:Rpoly-syntax} defines the abstract
  12598. syntax. We add a second form for function definitions in which a type
  12599. declaration comes before the \code{define}. In the abstract syntax,
  12600. the return type in the \code{Def} is \code{Any}, but that should be
  12601. ignored in favor of the return type in the type declaration. (The
  12602. \code{Any} comes from using the same parser as in
  12603. Chapter~\ref{ch:Rdyn}.) The presence of a type declaration
  12604. enables the use of an \code{All} type for a function, thereby making
  12605. it polymorphic. The grammar for types is extended to include
  12606. polymorphic types and type variables.
  12607. \begin{figure}[tp]
  12608. \centering
  12609. \fbox{
  12610. \begin{minipage}{0.96\textwidth}
  12611. \small
  12612. \[
  12613. \begin{array}{lcl}
  12614. \Type &::=& \ldots \mid \LP\key{All}~\LP\Var\ldots\RP~ \Type\RP \mid \Var \\
  12615. \Def &::=& \gray{ \CDEF{\Var}{\LS\Var \key{:} \Type\RS \ldots}{\Type}{\Exp} } \\
  12616. &\mid& \LP\key{:}~\Var~\Type\RP \\
  12617. && \LP\key{define}~ \LP\Var ~ \Var\ldots\RP ~ \Exp\RP \\
  12618. \LangPoly{} &::=& \gray{ \Def \ldots ~ \Exp }
  12619. \end{array}
  12620. \]
  12621. \end{minipage}
  12622. }
  12623. \caption{The concrete syntax of \LangPoly{}, extending \LangLoop{}
  12624. (Figure~\ref{fig:Rwhile-concrete-syntax}).}
  12625. \label{fig:Rpoly-concrete-syntax}
  12626. \end{figure}
  12627. \begin{figure}[tp]
  12628. \centering
  12629. \fbox{
  12630. \begin{minipage}{0.96\textwidth}
  12631. \small
  12632. \[
  12633. \begin{array}{lcl}
  12634. \Type &::=& \ldots \mid \LP\key{All}~\LP\Var\ldots\RP~ \Type\RP \mid \Var \\
  12635. \Def &::=& \gray{ \DEF{\Var}{\LP\LS\Var \key{:} \Type\RS \ldots\RP}{\Type}{\code{'()}}{\Exp} } \\
  12636. &\mid& \DECL{\Var}{\Type} \\
  12637. && \DEF{\Var}{\LP\Var \ldots\RP}{\key{'Any}}{\code{'()}}{\Exp} \\
  12638. \LangPoly{} &::=& \gray{ \PROGRAMDEFSEXP{\code{'()}}{\LP\Def\ldots\RP}{\Exp} }
  12639. \end{array}
  12640. \]
  12641. \end{minipage}
  12642. }
  12643. \caption{The abstract syntax of \LangPoly{}, extending \LangLoop{}
  12644. (Figure~\ref{fig:Rwhile-syntax}).}
  12645. \label{fig:Rpoly-syntax}
  12646. \end{figure}
  12647. By including polymorphic types in the $\Type$ non-terminal we choose
  12648. to make them first-class which has interesting repercussions on the
  12649. compiler. Many languages with polymorphism, such as
  12650. C++~\citep{stroustrup88:_param_types} and Standard
  12651. ML~\citep{Milner:1990fk}, only support second-class polymorphism, so
  12652. it is useful to see an example of first-class polymorphism. In
  12653. Figure~\ref{fig:apply-twice} we define a function \code{apply-twice}
  12654. whose parameter is a polymorphic function. The occurrence of a
  12655. polymorphic type underneath a function type is enabled by the normal
  12656. recursive structure of the grammar for $\Type$ and the categorization
  12657. of the \code{All} type as a $\Type$. The body of \code{apply-twice}
  12658. applies the polymorphic function to a Boolean and to an integer.
  12659. \begin{figure}[tbp]
  12660. \begin{lstlisting}
  12661. (: apply-twice ((All (b) (b -> b)) -> Integer))
  12662. (define (apply-twice f)
  12663. (if (f #t) (f 42) (f 777)))
  12664. (: id (All (a) (a -> a)))
  12665. (define (id x) x)
  12666. (apply-twice id)
  12667. \end{lstlisting}
  12668. \caption{An example illustrating first-class polymorphism.}
  12669. \label{fig:apply-twice}
  12670. \end{figure}
  12671. The type checker for \LangPoly{} in Figure~\ref{fig:type-check-Rvar0} has
  12672. three new responsibilities (compared to \LangLoop{}). The type checking of
  12673. function application is extended to handle the case where the operator
  12674. expression is a polymorphic function. In that case the type arguments
  12675. are deduced by matching the type of the parameters with the types of
  12676. the arguments.
  12677. %
  12678. The \code{match-types} auxiliary function carries out this deduction
  12679. by recursively descending through a parameter type \code{pt} and the
  12680. corresponding argument type \code{at}, making sure that they are equal
  12681. except when there is a type parameter on the left (in the parameter
  12682. type). If it's the first time that the type parameter has been
  12683. encountered, then the algorithm deduces an association of the type
  12684. parameter to the corresponding type on the right (in the argument
  12685. type). If it's not the first time that the type parameter has been
  12686. encountered, the algorithm looks up its deduced type and makes sure
  12687. that it is equal to the type on the right.
  12688. %
  12689. Once the type arguments are deduced, the operator expression is
  12690. wrapped in an \code{Inst} AST node (for instantiate) that records the
  12691. type of the operator, but more importantly, records the deduced type
  12692. arguments. The return type of the application is the return type of
  12693. the polymorphic function, but with the type parameters replaced by the
  12694. deduced type arguments, using the \code{subst-type} function.
  12695. The second responsibility of the type checker is extending the
  12696. function \code{type-equal?} to handle the \code{All} type. This is
  12697. not quite a simple as equal on other types, such as function and
  12698. vector types, because two polymorphic types can be syntactically
  12699. different even though they are equivalent types. For example,
  12700. \code{(All (a) (a -> a))} is equivalent to \code{(All (b) (b -> b))}.
  12701. Two polymorphic types should be considered equal if they differ only
  12702. in the choice of the names of the type parameters. The
  12703. \code{type-equal?} function in Figure~\ref{fig:type-check-Rvar0-aux}
  12704. renames the type parameters of the first type to match the type
  12705. parameters of the second type.
  12706. The third responsibility of the type checker is making sure that only
  12707. defined type variables appear in type annotations. The
  12708. \code{check-well-formed} function defined in
  12709. Figure~\ref{fig:well-formed-types} recursively inspects a type, making
  12710. sure that each type variable has been defined.
  12711. The output language of the type checker is \LangInst{}, defined in
  12712. Figure~\ref{fig:Rpoly-prime-syntax}. The type checker combines the type
  12713. declaration and polymorphic function into a single definition, using
  12714. the \code{Poly} form, to make polymorphic functions more convenient to
  12715. process in next pass of the compiler.
  12716. \begin{figure}[tp]
  12717. \centering
  12718. \fbox{
  12719. \begin{minipage}{0.96\textwidth}
  12720. \small
  12721. \[
  12722. \begin{array}{lcl}
  12723. \Type &::=& \ldots \mid \LP\key{All}~\LP\Var\ldots\RP~ \Type\RP \mid \Var \\
  12724. \Exp &::=& \ldots \mid \INST{\Exp}{\Type}{\LP\Type\ldots\RP} \\
  12725. \Def &::=& \gray{ \DEF{\Var}{\LP\LS\Var \key{:} \Type\RS \ldots\RP}{\Type}{\code{'()}}{\Exp} } \\
  12726. &\mid& \LP\key{Poly}~\LP\Var\ldots\RP~ \DEF{\Var}{\LP\LS\Var \key{:} \Type\RS \ldots\RP}{\Type}{\code{'()}}{\Exp}\RP \\
  12727. \LangInst{} &::=& \gray{ \PROGRAMDEFSEXP{\code{'()}}{\LP\Def\ldots\RP}{\Exp} }
  12728. \end{array}
  12729. \]
  12730. \end{minipage}
  12731. }
  12732. \caption{The abstract syntax of \LangInst{}, extending \LangLoop{}
  12733. (Figure~\ref{fig:Rwhile-syntax}).}
  12734. \label{fig:Rpoly-prime-syntax}
  12735. \end{figure}
  12736. The output of the type checker on the polymorphic \code{map-vec}
  12737. example is listed in Figure~\ref{fig:map-vec-type-check}.
  12738. \begin{figure}[tbp]
  12739. % poly_test_2.rkt
  12740. \begin{lstlisting}
  12741. (poly (a) (define (map-vec [f : (a -> a)] [v : (Vector a a)]) : (Vector a a)
  12742. (vector (f (vector-ref v 0)) (f (vector-ref v 1)))))
  12743. (define (add1 [x : Integer]) : Integer (+ x 1))
  12744. (vector-ref ((inst map-vec (All (a) ((a -> a) (Vector a a) -> (Vector a a)))
  12745. (Integer))
  12746. add1 (vector 0 41)) 1)
  12747. \end{lstlisting}
  12748. \caption{Output of the type checker on the \code{map-vec} example.}
  12749. \label{fig:map-vec-type-check}
  12750. \end{figure}
  12751. \begin{figure}[tbp]
  12752. \begin{lstlisting}[basicstyle=\ttfamily\scriptsize]
  12753. (define type-check-poly-class
  12754. (class type-check-Rwhile-class
  12755. (super-new)
  12756. (inherit check-type-equal?)
  12757. (define/override (type-check-apply env e1 es)
  12758. (define-values (e^ ty) ((type-check-exp env) e1))
  12759. (define-values (es^ ty*) (for/lists (es^ ty*) ([e (in-list es)])
  12760. ((type-check-exp env) e)))
  12761. (match ty
  12762. [`(,ty^* ... -> ,rt)
  12763. (for ([arg-ty ty*] [param-ty ty^*])
  12764. (check-type-equal? arg-ty param-ty (Apply e1 es)))
  12765. (values e^ es^ rt)]
  12766. [`(All ,xs (,tys ... -> ,rt))
  12767. (define env^ (append (for/list ([x xs]) (cons x 'Type)) env))
  12768. (define env^^ (for/fold ([env^^ env^]) ([arg-ty ty*] [param-ty tys])
  12769. (match-types env^^ param-ty arg-ty)))
  12770. (define targs
  12771. (for/list ([x xs])
  12772. (match (dict-ref env^^ x (lambda () #f))
  12773. [#f (error 'type-check "type variable ~a not deduced\nin ~v"
  12774. x (Apply e1 es))]
  12775. [ty ty])))
  12776. (values (Inst e^ ty targs) es^ (subst-type env^^ rt))]
  12777. [else (error 'type-check "expected a function, not ~a" ty)]))
  12778. (define/override ((type-check-exp env) e)
  12779. (match e
  12780. [(Lambda `([,xs : ,Ts] ...) rT body)
  12781. (for ([T Ts]) ((check-well-formed env) T))
  12782. ((check-well-formed env) rT)
  12783. ((super type-check-exp env) e)]
  12784. [(HasType e1 ty)
  12785. ((check-well-formed env) ty)
  12786. ((super type-check-exp env) e)]
  12787. [else ((super type-check-exp env) e)]))
  12788. (define/override ((type-check-def env) d)
  12789. (verbose 'type-check "poly/def" d)
  12790. (match d
  12791. [(Generic ts (Def f (and p:t* (list `[,xs : ,ps] ...)) rt info body))
  12792. (define ts-env (for/list ([t ts]) (cons t 'Type)))
  12793. (for ([p ps]) ((check-well-formed ts-env) p))
  12794. ((check-well-formed ts-env) rt)
  12795. (define new-env (append ts-env (map cons xs ps) env))
  12796. (define-values (body^ ty^) ((type-check-exp new-env) body))
  12797. (check-type-equal? ty^ rt body)
  12798. (Generic ts (Def f p:t* rt info body^))]
  12799. [else ((super type-check-def env) d)]))
  12800. (define/override (type-check-program p)
  12801. (match p
  12802. [(Program info body)
  12803. (type-check-program (ProgramDefsExp info '() body))]
  12804. [(ProgramDefsExp info ds body)
  12805. (define ds^ (combine-decls-defs ds))
  12806. (define new-env (for/list ([d ds^])
  12807. (cons (def-name d) (fun-def-type d))))
  12808. (define ds^^ (for/list ([d ds^]) ((type-check-def new-env) d)))
  12809. (define-values (body^ ty) ((type-check-exp new-env) body))
  12810. (check-type-equal? ty 'Integer body)
  12811. (ProgramDefsExp info ds^^ body^)]))
  12812. ))
  12813. \end{lstlisting}
  12814. \caption{Type checker for the \LangPoly{} language.}
  12815. \label{fig:type-check-Rvar0}
  12816. \end{figure}
  12817. \begin{figure}[tbp]
  12818. \begin{lstlisting}[basicstyle=\ttfamily\scriptsize]
  12819. (define/override (type-equal? t1 t2)
  12820. (match* (t1 t2)
  12821. [(`(All ,xs ,T1) `(All ,ys ,T2))
  12822. (define env (map cons xs ys))
  12823. (type-equal? (subst-type env T1) T2)]
  12824. [(other wise)
  12825. (super type-equal? t1 t2)]))
  12826. (define/public (match-types env pt at)
  12827. (match* (pt at)
  12828. [('Integer 'Integer) env] [('Boolean 'Boolean) env]
  12829. [('Void 'Void) env] [('Any 'Any) env]
  12830. [(`(Vector ,pts ...) `(Vector ,ats ...))
  12831. (for/fold ([env^ env]) ([pt1 pts] [at1 ats])
  12832. (match-types env^ pt1 at1))]
  12833. [(`(,pts ... -> ,prt) `(,ats ... -> ,art))
  12834. (define env^ (match-types env prt art))
  12835. (for/fold ([env^^ env^]) ([pt1 pts] [at1 ats])
  12836. (match-types env^^ pt1 at1))]
  12837. [(`(All ,pxs ,pt1) `(All ,axs ,at1))
  12838. (define env^ (append (map cons pxs axs) env))
  12839. (match-types env^ pt1 at1)]
  12840. [((? symbol? x) at)
  12841. (match (dict-ref env x (lambda () #f))
  12842. [#f (error 'type-check "undefined type variable ~a" x)]
  12843. ['Type (cons (cons x at) env)]
  12844. [t^ (check-type-equal? at t^ 'matching) env])]
  12845. [(other wise) (error 'type-check "mismatch ~a != a" pt at)]))
  12846. (define/public (subst-type env pt)
  12847. (match pt
  12848. ['Integer 'Integer] ['Boolean 'Boolean]
  12849. ['Void 'Void] ['Any 'Any]
  12850. [`(Vector ,ts ...)
  12851. `(Vector ,@(for/list ([t ts]) (subst-type env t)))]
  12852. [`(,ts ... -> ,rt)
  12853. `(,@(for/list ([t ts]) (subst-type env t)) -> ,(subst-type env rt))]
  12854. [`(All ,xs ,t)
  12855. `(All ,xs ,(subst-type (append (map cons xs xs) env) t))]
  12856. [(? symbol? x) (dict-ref env x)]
  12857. [else (error 'type-check "expected a type not ~a" pt)]))
  12858. (define/public (combine-decls-defs ds)
  12859. (match ds
  12860. ['() '()]
  12861. [`(,(Decl name type) . (,(Def f params _ info body) . ,ds^))
  12862. (unless (equal? name f)
  12863. (error 'type-check "name mismatch, ~a != ~a" name f))
  12864. (match type
  12865. [`(All ,xs (,ps ... -> ,rt))
  12866. (define params^ (for/list ([x params] [T ps]) `[,x : ,T]))
  12867. (cons (Generic xs (Def name params^ rt info body))
  12868. (combine-decls-defs ds^))]
  12869. [`(,ps ... -> ,rt)
  12870. (define params^ (for/list ([x params] [T ps]) `[,x : ,T]))
  12871. (cons (Def name params^ rt info body) (combine-decls-defs ds^))]
  12872. [else (error 'type-check "expected a function type, not ~a" type) ])]
  12873. [`(,(Def f params rt info body) . ,ds^)
  12874. (cons (Def f params rt info body) (combine-decls-defs ds^))]))
  12875. \end{lstlisting}
  12876. \caption{Auxiliary functions for type checking \LangPoly{}.}
  12877. \label{fig:type-check-Rvar0-aux}
  12878. \end{figure}
  12879. \begin{figure}[tbp]
  12880. \begin{lstlisting}%[basicstyle=\ttfamily\scriptsize]
  12881. (define/public ((check-well-formed env) ty)
  12882. (match ty
  12883. ['Integer (void)]
  12884. ['Boolean (void)]
  12885. ['Void (void)]
  12886. [(? symbol? a)
  12887. (match (dict-ref env a (lambda () #f))
  12888. ['Type (void)]
  12889. [else (error 'type-check "undefined type variable ~a" a)])]
  12890. [`(Vector ,ts ...)
  12891. (for ([t ts]) ((check-well-formed env) t))]
  12892. [`(,ts ... -> ,t)
  12893. (for ([t ts]) ((check-well-formed env) t))
  12894. ((check-well-formed env) t)]
  12895. [`(All ,xs ,t)
  12896. (define env^ (append (for/list ([x xs]) (cons x 'Type)) env))
  12897. ((check-well-formed env^) t)]
  12898. [else (error 'type-check "unrecognized type ~a" ty)]))
  12899. \end{lstlisting}
  12900. \caption{Well-formed types.}
  12901. \label{fig:well-formed-types}
  12902. \end{figure}
  12903. % TODO: interpreter for R'_10
  12904. \section{Compiling Polymorphism}
  12905. \label{sec:compiling-poly}
  12906. Broadly speaking, there are four approaches to compiling parametric
  12907. polymorphism, which we describe below.
  12908. \begin{description}
  12909. \item[Monomorphization] generates a different version of a polymorphic
  12910. function for each set of type arguments that it is used with,
  12911. producing type-specialized code. This approach results in the most
  12912. efficient code but requires whole-program compilation (no separate
  12913. compilation) and increases code size. For our current purposes
  12914. monomorphization is a non-starter because, with first-class
  12915. polymorphism, it is sometimes not possible to determine which
  12916. generic functions are used with which type arguments during
  12917. compilation. (It can be done at runtime, with just-in-time
  12918. compilation.) This approach is used to compile C++
  12919. templates~\citep{stroustrup88:_param_types} and polymorphic
  12920. functions in NESL~\citep{Blelloch:1993aa} and
  12921. ML~\citep{Weeks:2006aa}.
  12922. \item[Uniform representation] generates one version of each
  12923. polymorphic function but requires all values have a common ``boxed''
  12924. format, such as the tagged values of type \code{Any} in
  12925. \LangAny{}. Non-polymorphic code (i.e. monomorphic code) is compiled
  12926. similarly to code in a dynamically typed language (like \LangDyn{}),
  12927. in which primitive operators require their arguments to be projected
  12928. from \code{Any} and their results are injected into \code{Any}. (In
  12929. object-oriented languages, the projection is accomplished via
  12930. virtual method dispatch.) The uniform representation approach is
  12931. compatible with separate compilation and with first-class
  12932. polymorphism. However, it produces the least-efficient code because
  12933. it introduces overhead in the entire program, including
  12934. non-polymorphic code. This approach is used in implementations of
  12935. CLU~\cite{liskov79:_clu_ref,Liskov:1993dk},
  12936. ML~\citep{Cardelli:1984aa,Appel:1987aa}, and
  12937. Java~\citep{Bracha:1998fk}.
  12938. \item[Mixed representation] generates one version of each polymorphic
  12939. function, using a boxed representation for type
  12940. variables. Monomorphic code is compiled as usual (as in \LangLoop{})
  12941. and conversions are performed at the boundaries between monomorphic
  12942. and polymorphic (e.g. when a polymorphic function is instantiated
  12943. and called). This approach is compatible with separate compilation
  12944. and first-class polymorphism and maintains the efficiency of
  12945. monomorphic code. The tradeoff is increased overhead at the boundary
  12946. between monomorphic and polymorphic code. This approach is used in
  12947. implementations of ML~\citep{Leroy:1992qb} and Java, starting in
  12948. Java 5 with the addition of autoboxing.
  12949. \item[Type passing] uses the unboxed representation in both
  12950. monomorphic and polymorphic code. Each polymorphic function is
  12951. compiled to a single function with extra parameters that describe
  12952. the type arguments. The type information is used by the generated
  12953. code to know how to access the unboxed values at runtime. This
  12954. approach is used in implementation of the Napier88
  12955. language~\citep{Morrison:1991aa} and ML~\citep{Harper:1995um}. Type
  12956. passing is compatible with separate compilation and first-class
  12957. polymorphism and maintains the efficiency for monomorphic
  12958. code. There is runtime overhead in polymorphic code from dispatching
  12959. on type information.
  12960. \end{description}
  12961. In this chapter we use the mixed representation approach, partly
  12962. because of its favorable attributes, and partly because it is
  12963. straightforward to implement using the tools that we have already
  12964. built to support gradual typing. To compile polymorphic functions, we
  12965. add just one new pass, \code{erase-types}, to compile \LangInst{} to
  12966. \LangCast{}.
  12967. \section{Erase Types}
  12968. \label{sec:erase-types}
  12969. We use the \code{Any} type from Chapter~\ref{ch:Rdyn} to
  12970. represent type variables. For example, Figure~\ref{fig:map-vec-erase}
  12971. shows the output of the \code{erase-types} pass on the polymorphic
  12972. \code{map-vec} (Figure~\ref{fig:map-vec-poly}). The occurrences of
  12973. type parameter \code{a} are replaced by \code{Any} and the polymorphic
  12974. \code{All} types are removed from the type of \code{map-vec}.
  12975. \begin{figure}[tbp]
  12976. \begin{lstlisting}
  12977. (define (map-vec [f : (Any -> Any)] [v : (Vector Any Any)])
  12978. : (Vector Any Any)
  12979. (vector (f (vector-ref v 0)) (f (vector-ref v 1))))
  12980. (define (add1 [x : Integer]) : Integer (+ x 1))
  12981. (vector-ref ((cast map-vec
  12982. ((Any -> Any) (Vector Any Any) -> (Vector Any Any))
  12983. ((Integer -> Integer) (Vector Integer Integer)
  12984. -> (Vector Integer Integer)))
  12985. add1 (vector 0 41)) 1)
  12986. \end{lstlisting}
  12987. \caption{The polymorphic \code{map-vec} example after type erasure.}
  12988. \label{fig:map-vec-erase}
  12989. \end{figure}
  12990. This process of type erasure creates a challenge at points of
  12991. instantiation. For example, consider the instantiation of
  12992. \code{map-vec} in Figure~\ref{fig:map-vec-type-check}.
  12993. The type of \code{map-vec} is
  12994. \begin{lstlisting}
  12995. (All (a) ((a -> a) (Vector a a) -> (Vector a a)))
  12996. \end{lstlisting}
  12997. and it is instantiated to
  12998. \begin{lstlisting}
  12999. ((Integer -> Integer) (Vector Integer Integer)
  13000. -> (Vector Integer Integer))
  13001. \end{lstlisting}
  13002. After erasure, the type of \code{map-vec} is
  13003. \begin{lstlisting}
  13004. ((Any -> Any) (Vector Any Any) -> (Vector Any Any))
  13005. \end{lstlisting}
  13006. but we need to convert it to the instantiated type. This is easy to
  13007. do in the target language \LangCast{} with a single \code{cast}. In
  13008. Figure~\ref{fig:map-vec-erase}, the instantiation of \code{map-vec}
  13009. has been compiled to a \code{cast} from the type of \code{map-vec} to
  13010. the instantiated type. The source and target type of a cast must be
  13011. consistent (Figure~\ref{fig:consistent}), which indeed is the case
  13012. because both the source and target are obtained from the same
  13013. polymorphic type of \code{map-vec}, replacing the type parameters with
  13014. \code{Any} in the former and with the deduced type arguments in the
  13015. later. (Recall that the \code{Any} type is consistent with any type.)
  13016. To implement the \code{erase-types} pass, we recommend defining a
  13017. recursive auxiliary function named \code{erase-type} that applies the
  13018. following two transformations. It replaces type variables with
  13019. \code{Any}
  13020. \begin{lstlisting}
  13021. |$x$|
  13022. |$\Rightarrow$|
  13023. Any
  13024. \end{lstlisting}
  13025. and it removes the polymorphic \code{All} types.
  13026. \begin{lstlisting}
  13027. (All |$xs$| |$T_1$|)
  13028. |$\Rightarrow$|
  13029. |$T'_1$|
  13030. \end{lstlisting}
  13031. Apply the \code{erase-type} function to all of the type annotations in
  13032. the program.
  13033. Regarding the translation of expressions, the case for \code{Inst} is
  13034. the interesting one. We translate it into a \code{Cast}, as shown
  13035. below. The type of the subexpression $e$ is the polymorphic type
  13036. $\LP\key{All} xs T\RP$. The source type of the cast is the erasure of
  13037. $T$, the type $T'$. The target type $T''$ is the result of
  13038. substituting the arguments types $ts$ for the type parameters $xs$ in
  13039. $T$ followed by doing type erasure.
  13040. \begin{lstlisting}
  13041. (Inst |$e$| (All |$xs$| |$T$|) |$ts$|)
  13042. |$\Rightarrow$|
  13043. (Cast |$e'$| |$T'$| |$T''$|)
  13044. \end{lstlisting}
  13045. where $T'' = \LP\code{erase-type}~\LP\code{subst-type}~s~T\RP\RP$
  13046. and $s = \LP\code{map}~\code{cons}~xs~ts\RP$.
  13047. Finally, each polymorphic function is translated to a regular
  13048. functions in which type erasure has been applied to all the type
  13049. annotations and the body.
  13050. \begin{lstlisting}
  13051. (Poly |$ts$| (Def |$f$| ([|$x_1$| : |$T_1$|] |$\ldots$|) |$T_r$| |$\itm{info}$| |$e$|))
  13052. |$\Rightarrow$|
  13053. (Def |$f$| ([|$x_1$| : |$T'_1$|] |$\ldots$|) |$T'_r$| |$\itm{info}$| |$e'$|)
  13054. \end{lstlisting}
  13055. \begin{exercise}\normalfont
  13056. Implement a compiler for the polymorphic language \LangPoly{} by
  13057. extending and adapting your compiler for \LangGrad{}. Create 6 new test
  13058. programs that use polymorphic functions. Some of them should make
  13059. use of first-class polymorphism.
  13060. \end{exercise}
  13061. \begin{figure}[p]
  13062. \begin{tikzpicture}[baseline=(current bounding box.center)]
  13063. \node (Rpoly) at (9,4) {\large \LangPoly{}};
  13064. \node (Rpolyp) at (6,4) {\large \LangInst{}};
  13065. \node (Rgradualp) at (3,4) {\large \LangCast{}};
  13066. \node (Rwhilepp) at (0,4) {\large \LangProxy{}};
  13067. \node (Rwhileproxy) at (0,2) {\large \LangPVec{}};
  13068. \node (Rwhileproxy-2) at (3,2) {\large \LangPVec{}};
  13069. \node (Rwhileproxy-3) at (6,2) {\large \LangPVec{}};
  13070. \node (Rwhileproxy-4) at (9,2) {\large \LangPVecFunRef{}};
  13071. \node (Rwhileproxy-5) at (12,2) {\large \LangPVecFunRef{}};
  13072. \node (F1-1) at (12,0) {\large \LangPVecFunRef{}};
  13073. \node (F1-2) at (9,0) {\large \LangPVecFunRef{}};
  13074. \node (F1-3) at (6,0) {\large \LangPVecFunRef{}};
  13075. \node (F1-4) at (3,0) {\large \LangPVecAlloc{}};
  13076. \node (F1-5) at (0,0) {\large \LangPVecAlloc{}};
  13077. \node (C3-2) at (3,-2) {\large \LangCLoopPVec{}};
  13078. \node (x86-2) at (3,-4) {\large \LangXIndCallVar{}};
  13079. \node (x86-2-1) at (3,-6) {\large \LangXIndCallVar{}};
  13080. \node (x86-2-2) at (6,-6) {\large \LangXIndCallVar{}};
  13081. \node (x86-3) at (6,-4) {\large \LangXIndCallVar{}};
  13082. \node (x86-4) at (9,-4) {\large \LangXIndCall{}};
  13083. \node (x86-5) at (9,-6) {\large \LangXIndCall{}};
  13084. \path[->,bend right=15] (Rpoly) edge [above] node
  13085. {\ttfamily\footnotesize type-check} (Rpolyp);
  13086. \path[->,bend right=15] (Rpolyp) edge [above] node
  13087. {\ttfamily\footnotesize erase-types} (Rgradualp);
  13088. \path[->,bend right=15] (Rgradualp) edge [above] node
  13089. {\ttfamily\footnotesize lower-casts} (Rwhilepp);
  13090. \path[->,bend right=15] (Rwhilepp) edge [right] node
  13091. {\ttfamily\footnotesize differentiate-proxies} (Rwhileproxy);
  13092. \path[->,bend left=15] (Rwhileproxy) edge [above] node
  13093. {\ttfamily\footnotesize shrink} (Rwhileproxy-2);
  13094. \path[->,bend left=15] (Rwhileproxy-2) edge [above] node
  13095. {\ttfamily\footnotesize uniquify} (Rwhileproxy-3);
  13096. \path[->,bend left=15] (Rwhileproxy-3) edge [above] node
  13097. {\ttfamily\footnotesize reveal-functions} (Rwhileproxy-4);
  13098. \path[->,bend left=15] (Rwhileproxy-4) edge [above] node
  13099. {\ttfamily\footnotesize reveal-casts} (Rwhileproxy-5);
  13100. \path[->,bend left=15] (Rwhileproxy-5) edge [left] node
  13101. {\ttfamily\footnotesize convert-assignments} (F1-1);
  13102. \path[->,bend left=15] (F1-1) edge [below] node
  13103. {\ttfamily\footnotesize convert-to-clos.} (F1-2);
  13104. \path[->,bend right=15] (F1-2) edge [above] node
  13105. {\ttfamily\footnotesize limit-fun.} (F1-3);
  13106. \path[->,bend right=15] (F1-3) edge [above] node
  13107. {\ttfamily\footnotesize expose-alloc.} (F1-4);
  13108. \path[->,bend right=15] (F1-4) edge [above] node
  13109. {\ttfamily\footnotesize remove-complex.} (F1-5);
  13110. \path[->,bend right=15] (F1-5) edge [right] node
  13111. {\ttfamily\footnotesize explicate-control} (C3-2);
  13112. \path[->,bend left=15] (C3-2) edge [left] node
  13113. {\ttfamily\footnotesize select-instr.} (x86-2);
  13114. \path[->,bend right=15] (x86-2) edge [left] node
  13115. {\ttfamily\footnotesize uncover-live} (x86-2-1);
  13116. \path[->,bend right=15] (x86-2-1) edge [below] node
  13117. {\ttfamily\footnotesize build-inter.} (x86-2-2);
  13118. \path[->,bend right=15] (x86-2-2) edge [left] node
  13119. {\ttfamily\footnotesize allocate-reg.} (x86-3);
  13120. \path[->,bend left=15] (x86-3) edge [above] node
  13121. {\ttfamily\footnotesize patch-instr.} (x86-4);
  13122. \path[->,bend left=15] (x86-4) edge [right] node {\ttfamily\footnotesize print-x86} (x86-5);
  13123. \end{tikzpicture}
  13124. \caption{Diagram of the passes for \LangPoly{} (parametric polymorphism).}
  13125. \label{fig:Rpoly-passes}
  13126. \end{figure}
  13127. Figure~\ref{fig:Rpoly-passes} provides an overview of all the passes needed
  13128. for the compilation of \LangPoly{}.
  13129. % TODO: challenge problem: specialization of instantiations
  13130. % Further Reading
  13131. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  13132. \chapter{Appendix}
  13133. \section{Interpreters}
  13134. \label{appendix:interp}
  13135. \index{interpreter}
  13136. We provide interpreters for each of the source languages \LangInt{},
  13137. \LangVar{}, $\ldots$ in the files \code{interp-Rint.rkt},
  13138. \code{interp-Rvar.rkt}, etc. The interpreters for the intermediate
  13139. languages \LangCVar{} and \LangCIf{} are in \code{interp-Cvar.rkt} and
  13140. \code{interp-C1.rkt}. The interpreters for \LangCVec{}, \LangCFun{}, pseudo-x86,
  13141. and x86 are in the \key{interp.rkt} file.
  13142. \section{Utility Functions}
  13143. \label{appendix:utilities}
  13144. The utility functions described in this section are in the
  13145. \key{utilities.rkt} file of the support code.
  13146. \paragraph{\code{interp-tests}}
  13147. The \key{interp-tests} function runs the compiler passes and the
  13148. interpreters on each of the specified tests to check whether each pass
  13149. is correct. The \key{interp-tests} function has the following
  13150. parameters:
  13151. \begin{description}
  13152. \item[name (a string)] a name to identify the compiler,
  13153. \item[typechecker] a function of exactly one argument that either
  13154. raises an error using the \code{error} function when it encounters a
  13155. type error, or returns \code{\#f} when it encounters a type
  13156. error. If there is no type error, the type checker returns the
  13157. program.
  13158. \item[passes] a list with one entry per pass. An entry is a list with
  13159. four things:
  13160. \begin{enumerate}
  13161. \item a string giving the name of the pass,
  13162. \item the function that implements the pass (a translator from AST
  13163. to AST),
  13164. \item a function that implements the interpreter (a function from
  13165. AST to result value) for the output language,
  13166. \item and a type checker for the output language. Type checkers for
  13167. the $R$ and $C$ languages are provided in the support code. For
  13168. example, the type checkers for \LangVar{} and \LangCVar{} are in
  13169. \code{type-check-Rvar.rkt} and \code{type-check-Cvar.rkt}. The
  13170. type checker entry is optional. The support code does not provide
  13171. type checkers for the x86 languages.
  13172. \end{enumerate}
  13173. \item[source-interp] an interpreter for the source language. The
  13174. interpreters from Appendix~\ref{appendix:interp} make a good choice.
  13175. \item[test-family (a string)] for example, \code{"r1"}, \code{"r2"}, etc.
  13176. \item[tests] a list of test numbers that specifies which tests to
  13177. run. (see below)
  13178. \end{description}
  13179. %
  13180. The \key{interp-tests} function assumes that the subdirectory
  13181. \key{tests} has a collection of Racket programs whose names all start
  13182. with the family name, followed by an underscore and then the test
  13183. number, ending with the file extension \key{.rkt}. Also, for each test
  13184. program that calls \code{read} one or more times, there is a file with
  13185. the same name except that the file extension is \key{.in} that
  13186. provides the input for the Racket program. If the test program is
  13187. expected to fail type checking, then there should be an empty file of
  13188. the same name but with extension \key{.tyerr}.
  13189. \paragraph{\code{compiler-tests}}
  13190. runs the compiler passes to generate x86 (a \key{.s} file) and then
  13191. runs the GNU C compiler (gcc) to generate machine code. It runs the
  13192. machine code and checks that the output is $42$. The parameters to the
  13193. \code{compiler-tests} function are similar to those of the
  13194. \code{interp-tests} function, and consist of
  13195. \begin{itemize}
  13196. \item a compiler name (a string),
  13197. \item a type checker,
  13198. \item description of the passes,
  13199. \item name of a test-family, and
  13200. \item a list of test numbers.
  13201. \end{itemize}
  13202. \paragraph{\code{compile-file}}
  13203. takes a description of the compiler passes (see the comment for
  13204. \key{interp-tests}) and returns a function that, given a program file
  13205. name (a string ending in \key{.rkt}), applies all of the passes and
  13206. writes the output to a file whose name is the same as the program file
  13207. name but with \key{.rkt} replaced with \key{.s}.
  13208. \paragraph{\code{read-program}}
  13209. takes a file path and parses that file (it must be a Racket program)
  13210. into an abstract syntax tree.
  13211. \paragraph{\code{parse-program}}
  13212. takes an S-expression representation of an abstract syntax tree and converts it into
  13213. the struct-based representation.
  13214. \paragraph{\code{assert}}
  13215. takes two parameters, a string (\code{msg}) and Boolean (\code{bool}),
  13216. and displays the message \key{msg} if the Boolean \key{bool} is false.
  13217. \paragraph{\code{lookup}}
  13218. % remove discussion of lookup? -Jeremy
  13219. takes a key and an alist, and returns the first value that is
  13220. associated with the given key, if there is one. If not, an error is
  13221. triggered. The alist may contain both immutable pairs (built with
  13222. \key{cons}) and mutable pairs (built with \key{mcons}).
  13223. %The \key{map2} function ...
  13224. \section{x86 Instruction Set Quick-Reference}
  13225. \label{sec:x86-quick-reference}
  13226. \index{x86}
  13227. Table~\ref{tab:x86-instr} lists some x86 instructions and what they
  13228. do. We write $A \to B$ to mean that the value of $A$ is written into
  13229. location $B$. Address offsets are given in bytes. The instruction
  13230. arguments $A, B, C$ can be immediate constants (such as \code{\$4}),
  13231. registers (such as \code{\%rax}), or memory references (such as
  13232. \code{-4(\%ebp)}). Most x86 instructions only allow at most one memory
  13233. reference per instruction. Other operands must be immediates or
  13234. registers.
  13235. \begin{table}[tbp]
  13236. \centering
  13237. \begin{tabular}{l|l}
  13238. \textbf{Instruction} & \textbf{Operation} \\ \hline
  13239. \texttt{addq} $A$, $B$ & $A + B \to B$\\
  13240. \texttt{negq} $A$ & $- A \to A$ \\
  13241. \texttt{subq} $A$, $B$ & $B - A \to B$\\
  13242. \texttt{imulq} $A$, $B$ & $A \times B \to B$\\
  13243. \texttt{callq} $L$ & Pushes the return address and jumps to label $L$ \\
  13244. \texttt{callq} \texttt{*}$A$ & Calls the function at the address $A$. \\
  13245. %\texttt{leave} & $\texttt{ebp} \to \texttt{esp};$ \texttt{popl \%ebp} \\
  13246. \texttt{retq} & Pops the return address and jumps to it \\
  13247. \texttt{popq} $A$ & $*\mathtt{rsp} \to A; \mathtt{rsp} + 8 \to \mathtt{rsp}$ \\
  13248. \texttt{pushq} $A$ & $\texttt{rsp} - 8 \to \texttt{rsp}; A \to *\texttt{rsp}$\\
  13249. \texttt{leaq} $A$,$B$ & $A \to B$ ($B$ must be a register) \\
  13250. \texttt{cmpq} $A$, $B$ & compare $A$ and $B$ and set the flag register ($B$ must not
  13251. be an immediate) \\
  13252. \texttt{je} $L$ & \multirow{5}{3.7in}{Jump to label $L$ if the flag register
  13253. matches the condition code of the instruction, otherwise go to the
  13254. next instructions. The condition codes are \key{e} for ``equal'',
  13255. \key{l} for ``less'', \key{le} for ``less or equal'', \key{g}
  13256. for ``greater'', and \key{ge} for ``greater or equal''.} \\
  13257. \texttt{jl} $L$ & \\
  13258. \texttt{jle} $L$ & \\
  13259. \texttt{jg} $L$ & \\
  13260. \texttt{jge} $L$ & \\
  13261. \texttt{jmp} $L$ & Jump to label $L$ \\
  13262. \texttt{movq} $A$, $B$ & $A \to B$ \\
  13263. \texttt{movzbq} $A$, $B$ &
  13264. \multirow{3}{3.7in}{$A \to B$, \text{where } $A$ is a single-byte register
  13265. (e.g., \texttt{al} or \texttt{cl}), $B$ is a 8-byte register,
  13266. and the extra bytes of $B$ are set to zero.} \\
  13267. & \\
  13268. & \\
  13269. \texttt{notq} $A$ & $\sim A \to A$ \qquad (bitwise complement)\\
  13270. \texttt{orq} $A$, $B$ & $A | B \to B$ \qquad (bitwise-or)\\
  13271. \texttt{andq} $A$, $B$ & $A \& B \to B$ \qquad (bitwise-and)\\
  13272. \texttt{salq} $A$, $B$ & $B$ \texttt{<<} $A \to B$ (arithmetic shift left, where $A$ is a constant)\\
  13273. \texttt{sarq} $A$, $B$ & $B$ \texttt{>>} $A \to B$ (arithmetic shift right, where $A$ is a constant)\\
  13274. \texttt{sete} $A$ & \multirow{5}{3.7in}{If the flag matches the condition code,
  13275. then $1 \to A$, else $0 \to A$. Refer to \texttt{je} above for the
  13276. description of the condition codes. $A$ must be a single byte register
  13277. (e.g., \texttt{al} or \texttt{cl}).} \\
  13278. \texttt{setl} $A$ & \\
  13279. \texttt{setle} $A$ & \\
  13280. \texttt{setg} $A$ & \\
  13281. \texttt{setge} $A$ &
  13282. \end{tabular}
  13283. \vspace{5pt}
  13284. \caption{Quick-reference for the x86 instructions used in this book.}
  13285. \label{tab:x86-instr}
  13286. \end{table}
  13287. \cleardoublepage
  13288. \section{Concrete Syntax for Intermediate Languages}
  13289. The concrete syntax of \LangAny{} is defined in
  13290. Figure~\ref{fig:Rany-concrete-syntax}.
  13291. \begin{figure}[tp]
  13292. \centering
  13293. \fbox{
  13294. \begin{minipage}{0.97\textwidth}\small
  13295. \[
  13296. \begin{array}{lcl}
  13297. \Type &::=& \gray{\key{Integer} \mid \key{Boolean}
  13298. \mid \LP\key{Vector}\;\Type\ldots\RP \mid \key{Void}} \\
  13299. &\mid& \gray{\LP\Type\ldots \; \key{->}\; \Type\RP} \mid \key{Any} \\
  13300. \FType &::=& \key{Integer} \mid \key{Boolean} \mid \key{Void}
  13301. \mid \LP\key{Vector}\; \key{Any}\ldots\RP \\
  13302. &\mid& \LP\key{Any}\ldots \; \key{->}\; \key{Any}\RP\\
  13303. \Exp &::=& \ldots \CINJECT{\Exp}{\FType}\RP \mid \CPROJECT{\Exp}{\FType}\\
  13304. &\mid& \LP\key{any-vector-length}\;\Exp\RP
  13305. \mid \LP\key{any-vector-ref}\;\Exp\;\Exp\RP \\
  13306. &\mid& \LP\key{any-vector-set!}\;\Exp\;\Exp\;\Exp\RP\\
  13307. &\mid& \LP\key{boolean?}\;\Exp\RP \mid \LP\key{integer?}\;\Exp\RP
  13308. \mid \LP\key{void?}\;\Exp\RP \\
  13309. &\mid& \LP\key{vector?}\;\Exp\RP \mid \LP\key{procedure?}\;\Exp\RP \\
  13310. \Def &::=& \gray{ \CDEF{\Var}{\LS\Var \key{:} \Type\RS\ldots}{\Type}{\Exp} } \\
  13311. \LangAny{} &::=& \gray{\Def\ldots \; \Exp}
  13312. \end{array}
  13313. \]
  13314. \end{minipage}
  13315. }
  13316. \caption{The concrete syntax of \LangAny{}, extending \LangLam{}
  13317. (Figure~\ref{fig:Rlam-syntax}).}
  13318. \label{fig:Rany-concrete-syntax}
  13319. \end{figure}
  13320. The concrete syntax for \LangCVar{}, \LangCIf{}, \LangCVec{} and \LangCFun{} is
  13321. defined in Figures~\ref{fig:c0-concrete-syntax},
  13322. \ref{fig:c1-concrete-syntax}, \ref{fig:c2-concrete-syntax},
  13323. and \ref{fig:c3-concrete-syntax}, respectively.
  13324. \begin{figure}[tbp]
  13325. \fbox{
  13326. \begin{minipage}{0.96\textwidth}
  13327. \[
  13328. \begin{array}{lcl}
  13329. \Atm &::=& \Int \mid \Var \\
  13330. \Exp &::=& \Atm \mid \key{(read)} \mid \key{(-}~\Atm\key{)} \mid \key{(+}~\Atm~\Atm\key{)}\\
  13331. \Stmt &::=& \Var~\key{=}~\Exp\key{;} \\
  13332. \Tail &::= & \key{return}~\Exp\key{;} \mid \Stmt~\Tail \\
  13333. \LangCVar{} & ::= & (\itm{label}\key{:}~ \Tail)\ldots
  13334. \end{array}
  13335. \]
  13336. \end{minipage}
  13337. }
  13338. \caption{The concrete syntax of the \LangCVar{} intermediate language.}
  13339. \label{fig:c0-concrete-syntax}
  13340. \end{figure}
  13341. \begin{figure}[tbp]
  13342. \fbox{
  13343. \begin{minipage}{0.96\textwidth}
  13344. \small
  13345. \[
  13346. \begin{array}{lcl}
  13347. \Atm &::=& \gray{ \Int \mid \Var } \mid \itm{bool} \\
  13348. \itm{cmp} &::= & \key{eq?} \mid \key{<} \\
  13349. \Exp &::=& \gray{ \Atm \mid \key{(read)} \mid \key{(-}~\Atm\key{)} \mid \key{(+}~\Atm~\Atm\key{)} } \\
  13350. &\mid& \LP \key{not}~\Atm \RP \mid \LP \itm{cmp}~\Atm~\Atm\RP \\
  13351. \Stmt &::=& \gray{ \Var~\key{=}~\Exp\key{;} } \\
  13352. \Tail &::= & \gray{ \key{return}~\Exp\key{;} \mid \Stmt~\Tail }
  13353. \mid \key{goto}~\itm{label}\key{;}\\
  13354. &\mid& \key{if}~\LP \itm{cmp}~\Atm~\Atm \RP~ \key{goto}~\itm{label}\key{;} ~\key{else}~\key{goto}~\itm{label}\key{;} \\
  13355. \LangCIf{} & ::= & \gray{ (\itm{label}\key{:}~ \Tail)\ldots }
  13356. \end{array}
  13357. \]
  13358. \end{minipage}
  13359. }
  13360. \caption{The concrete syntax of the \LangCIf{} intermediate language.}
  13361. \label{fig:c1-concrete-syntax}
  13362. \end{figure}
  13363. \begin{figure}[tbp]
  13364. \fbox{
  13365. \begin{minipage}{0.96\textwidth}
  13366. \small
  13367. \[
  13368. \begin{array}{lcl}
  13369. \Atm &::=& \gray{ \Int \mid \Var \mid \itm{bool} } \\
  13370. \itm{cmp} &::= & \gray{ \key{eq?} \mid \key{<} } \\
  13371. \Exp &::=& \gray{ \Atm \mid \key{(read)} \mid \key{(-}~\Atm\key{)} \mid \key{(+}~\Atm~\Atm\key{)} } \\
  13372. &\mid& \gray{ \LP \key{not}~\Atm \RP \mid \LP \itm{cmp}~\Atm~\Atm\RP } \\
  13373. &\mid& \LP \key{allocate}~\Int~\Type \RP \\
  13374. &\mid& (\key{vector-ref}\;\Atm\;\Int) \mid (\key{vector-set!}\;\Atm\;\Int\;\Atm)\\
  13375. &\mid& \LP \key{global-value}~\Var \RP \mid \LP \key{void} \RP \\
  13376. \Stmt &::=& \gray{ \Var~\key{=}~\Exp\key{;} } \mid \LP\key{collect}~\Int \RP\\
  13377. \Tail &::= & \gray{ \key{return}~\Exp\key{;} \mid \Stmt~\Tail }
  13378. \mid \gray{ \key{goto}~\itm{label}\key{;} }\\
  13379. &\mid& \gray{ \key{if}~\LP \itm{cmp}~\Atm~\Atm \RP~ \key{goto}~\itm{label}\key{;} ~\key{else}~\key{goto}~\itm{label}\key{;} } \\
  13380. \LangCVec{} & ::= & \gray{ (\itm{label}\key{:}~ \Tail)\ldots }
  13381. \end{array}
  13382. \]
  13383. \end{minipage}
  13384. }
  13385. \caption{The concrete syntax of the \LangCVec{} intermediate language.}
  13386. \label{fig:c2-concrete-syntax}
  13387. \end{figure}
  13388. \begin{figure}[tp]
  13389. \fbox{
  13390. \begin{minipage}{0.96\textwidth}
  13391. \small
  13392. \[
  13393. \begin{array}{lcl}
  13394. \Atm &::=& \gray{ \Int \mid \Var \mid \key{\#t} \mid \key{\#f} }
  13395. \\
  13396. \itm{cmp} &::= & \gray{ \key{eq?} \mid \key{<} } \\
  13397. \Exp &::= & \gray{ \Atm \mid \LP\key{read}\RP \mid \LP\key{-}\;\Atm\RP \mid \LP\key{+} \; \Atm\;\Atm\RP
  13398. \mid \LP\key{not}\;\Atm\RP \mid \LP\itm{cmp}\;\Atm\;\Atm\RP } \\
  13399. &\mid& \gray{ \LP\key{allocate}\,\Int\,\Type\RP
  13400. \mid \LP\key{vector-ref}\, \Atm\, \Int\RP } \\
  13401. &\mid& \gray{ \LP\key{vector-set!}\,\Atm\,\Int\,\Atm\RP \mid \LP\key{global-value} \,\itm{name}\RP \mid \LP\key{void}\RP } \\
  13402. &\mid& \LP\key{fun-ref}~\itm{label}\RP \mid \LP\key{call} \,\Atm\,\Atm\ldots\RP \\
  13403. \Stmt &::=& \gray{ \ASSIGN{\Var}{\Exp} \mid \RETURN{\Exp}
  13404. \mid \LP\key{collect} \,\itm{int}\RP }\\
  13405. \Tail &::= & \gray{\RETURN{\Exp} \mid \LP\key{seq}\;\Stmt\;\Tail\RP} \\
  13406. &\mid& \gray{\LP\key{goto}\,\itm{label}\RP
  13407. \mid \IF{\LP\itm{cmp}\, \Atm\,\Atm\RP}{\LP\key{goto}\,\itm{label}\RP}{\LP\key{goto}\,\itm{label}\RP}} \\
  13408. &\mid& \LP\key{tail-call}\,\Atm\,\Atm\ldots\RP \\
  13409. \Def &::=& \LP\key{define}\; \LP\itm{label} \; [\Var \key{:} \Type]\ldots\RP \key{:} \Type \; \LP\LP\itm{label}\,\key{.}\,\Tail\RP\ldots\RP\RP \\
  13410. \LangCFun{} & ::= & \Def\ldots
  13411. \end{array}
  13412. \]
  13413. \end{minipage}
  13414. }
  13415. \caption{The \LangCFun{} language, extending \LangCVec{} (Figure~\ref{fig:c2-concrete-syntax}) with functions.}
  13416. \label{fig:c3-concrete-syntax}
  13417. \end{figure}
  13418. \cleardoublepage
  13419. \addcontentsline{toc}{chapter}{Index}
  13420. \printindex
  13421. \cleardoublepage
  13422. \bibliographystyle{plainnat}
  13423. \bibliography{all}
  13424. \addcontentsline{toc}{chapter}{Bibliography}
  13425. \end{document}
  13426. %% LocalWords: Dybvig Waddell Abdulaziz Ghuloum Dipanwita Sussman
  13427. %% LocalWords: Sarkar lcl Matz aa representable Chez Ph Dan's nano
  13428. %% LocalWords: fk bh Siek plt uq Felleisen Bor Yuh ASTs AST Naur eq
  13429. %% LocalWords: BNF fixnum datatype arith prog backquote quasiquote
  13430. %% LocalWords: ast Reynold's reynolds interp cond fx evaluator jane
  13431. %% LocalWords: quasiquotes pe nullary unary rcl env lookup gcc rax
  13432. %% LocalWords: addq movq callq rsp rbp rbx rcx rdx rsi rdi subq nx
  13433. %% LocalWords: negq pushq popq retq globl Kernighan uniquify lll ve
  13434. %% LocalWords: allocator gensym env subdirectory scm rkt tmp lhs Tt
  13435. %% LocalWords: runtime Liveness liveness undirected Balakrishnan je
  13436. %% LocalWords: Rosen DSATUR SDO Gebremedhin Omari morekeywords cnd
  13437. %% LocalWords: fullflexible vertices Booleans Listof Pairof thn els
  13438. %% LocalWords: boolean type-check notq cmpq sete movzbq jmp al xorq
  13439. %% LocalWords: EFLAGS thns elss elselabel endlabel Tuples tuples os
  13440. %% LocalWords: tuple args lexically leaq Polymorphism msg bool nums
  13441. %% LocalWords: macosx unix Cormen vec callee xs maxStack numParams
  13442. %% LocalWords: arg bitwise XOR'd thenlabel immediates optimizations
  13443. %% LocalWords: deallocating Ungar Detlefs Tene kx FromSpace ToSpace
  13444. %% LocalWords: Appel Diwan Siebert ptr fromspace rootstack typedef
  13445. %% LocalWords: len prev rootlen heaplen setl lt Kohlbecker dk multi
  13446. % LocalWords: Bloomington Wollowski definitional whitespace deref JM
  13447. % LocalWords: subexpression subexpressions iteratively ANF Danvy rco
  13448. % LocalWords: goto stmt JS ly cmp ty le ge jle goto's EFLAG CFG pred
  13449. % LocalWords: acyclic worklist Aho qf tsort implementer's hj Shidal
  13450. % LocalWords: nonnegative Shahriyar endian salq sarq uint cheney ior
  13451. % LocalWords: tospace vecinit collectret alloc initret decrement jl
  13452. % LocalWords: dereferencing GC di vals ps mcons ds mcdr callee's th
  13453. % LocalWords: mainDef tailcall prepending mainstart num params rT qb
  13454. % LocalWords: mainconclusion Cardelli bodyT fvs clos fvts subtype uj
  13455. % LocalWords: polymorphism untyped elts tys tagof Vectorof tyeq orq
  13456. % LocalWords: andq untagged Shao inlining ebp jge setle setg setge
  13457. % LocalWords: struct Friedman's MacOS Nystrom alist sam kate
  13458. % LocalWords: alists arity github unordered pqueue exprs ret param
  13459. % LocalWords: tyerr bytereg dh dl JmpIf HasType Osterlund Jacek TODO
  13460. % LocalWords: Gamari GlobalValue ProgramDefsExp prm ProgramDefs vn
  13461. % LocalWords: FunRef TailCall tailjmp IndirectCallq TailJmp Gilray
  13462. % LocalWords: dereference unbox Dataflow versa dataflow Kildall rhs
  13463. % LocalWords: Kleene enqueue dequeue AssignedFree FV cnvt SetBang tg
  13464. % LocalWords: ValueOf typechecker