book.tex 836 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586558755885589559055915592559355945595559655975598559956005601560256035604560556065607560856095610561156125613561456155616561756185619562056215622562356245625562656275628562956305631563256335634563556365637563856395640564156425643564456455646564756485649565056515652565356545655565656575658565956605661566256635664566556665667566856695670567156725673567456755676567756785679568056815682568356845685568656875688568956905691569256935694569556965697569856995700570157025703570457055706570757085709571057115712571357145715571657175718571957205721572257235724572557265727572857295730573157325733573457355736573757385739574057415742574357445745574657475748574957505751575257535754575557565757575857595760576157625763576457655766576757685769577057715772577357745775577657775778577957805781578257835784578557865787578857895790579157925793579457955796579757985799580058015802580358045805580658075808580958105811581258135814581558165817581858195820582158225823582458255826582758285829583058315832583358345835583658375838583958405841584258435844584558465847584858495850585158525853585458555856585758585859586058615862586358645865586658675868586958705871587258735874587558765877587858795880588158825883588458855886588758885889589058915892589358945895589658975898589959005901590259035904590559065907590859095910591159125913591459155916591759185919592059215922592359245925592659275928592959305931593259335934593559365937593859395940594159425943594459455946594759485949595059515952595359545955595659575958595959605961596259635964596559665967596859695970597159725973597459755976597759785979598059815982598359845985598659875988598959905991599259935994599559965997599859996000600160026003600460056006600760086009601060116012601360146015601660176018601960206021602260236024602560266027602860296030603160326033603460356036603760386039604060416042604360446045604660476048604960506051605260536054605560566057605860596060606160626063606460656066606760686069607060716072607360746075607660776078607960806081608260836084608560866087608860896090609160926093609460956096609760986099610061016102610361046105610661076108610961106111611261136114611561166117611861196120612161226123612461256126612761286129613061316132613361346135613661376138613961406141614261436144614561466147614861496150615161526153615461556156615761586159616061616162616361646165616661676168616961706171617261736174617561766177617861796180618161826183618461856186618761886189619061916192619361946195619661976198619962006201620262036204620562066207620862096210621162126213621462156216621762186219622062216222622362246225622662276228622962306231623262336234623562366237623862396240624162426243624462456246624762486249625062516252625362546255625662576258625962606261626262636264626562666267626862696270627162726273627462756276627762786279628062816282628362846285628662876288628962906291629262936294629562966297629862996300630163026303630463056306630763086309631063116312631363146315631663176318631963206321632263236324632563266327632863296330633163326333633463356336633763386339634063416342634363446345634663476348634963506351635263536354635563566357635863596360636163626363636463656366636763686369637063716372637363746375637663776378637963806381638263836384638563866387638863896390639163926393639463956396639763986399640064016402640364046405640664076408640964106411641264136414641564166417641864196420642164226423642464256426642764286429643064316432643364346435643664376438643964406441644264436444644564466447644864496450645164526453645464556456645764586459646064616462646364646465646664676468646964706471647264736474647564766477647864796480648164826483648464856486648764886489649064916492649364946495649664976498649965006501650265036504650565066507650865096510651165126513651465156516651765186519652065216522652365246525652665276528652965306531653265336534653565366537653865396540654165426543654465456546654765486549655065516552655365546555655665576558655965606561656265636564656565666567656865696570657165726573657465756576657765786579658065816582658365846585658665876588658965906591659265936594659565966597659865996600660166026603660466056606660766086609661066116612661366146615661666176618661966206621662266236624662566266627662866296630663166326633663466356636663766386639664066416642664366446645664666476648664966506651665266536654665566566657665866596660666166626663666466656666666766686669667066716672667366746675667666776678667966806681668266836684668566866687668866896690669166926693669466956696669766986699670067016702670367046705670667076708670967106711671267136714671567166717671867196720672167226723672467256726672767286729673067316732673367346735673667376738673967406741674267436744674567466747674867496750675167526753675467556756675767586759676067616762676367646765676667676768676967706771677267736774677567766777677867796780678167826783678467856786678767886789679067916792679367946795679667976798679968006801680268036804680568066807680868096810681168126813681468156816681768186819682068216822682368246825682668276828682968306831683268336834683568366837683868396840684168426843684468456846684768486849685068516852685368546855685668576858685968606861686268636864686568666867686868696870687168726873687468756876687768786879688068816882688368846885688668876888688968906891689268936894689568966897689868996900690169026903690469056906690769086909691069116912691369146915691669176918691969206921692269236924692569266927692869296930693169326933693469356936693769386939694069416942694369446945694669476948694969506951695269536954695569566957695869596960696169626963696469656966696769686969697069716972697369746975697669776978697969806981698269836984698569866987698869896990699169926993699469956996699769986999700070017002700370047005700670077008700970107011701270137014701570167017701870197020702170227023702470257026702770287029703070317032703370347035703670377038703970407041704270437044704570467047704870497050705170527053705470557056705770587059706070617062706370647065706670677068706970707071707270737074707570767077707870797080708170827083708470857086708770887089709070917092709370947095709670977098709971007101710271037104710571067107710871097110711171127113711471157116711771187119712071217122712371247125712671277128712971307131713271337134713571367137713871397140714171427143714471457146714771487149715071517152715371547155715671577158715971607161716271637164716571667167716871697170717171727173717471757176717771787179718071817182718371847185718671877188718971907191719271937194719571967197719871997200720172027203720472057206720772087209721072117212721372147215721672177218721972207221722272237224722572267227722872297230723172327233723472357236723772387239724072417242724372447245724672477248724972507251725272537254725572567257725872597260726172627263726472657266726772687269727072717272727372747275727672777278727972807281728272837284728572867287728872897290729172927293729472957296729772987299730073017302730373047305730673077308730973107311731273137314731573167317731873197320732173227323732473257326732773287329733073317332733373347335733673377338733973407341734273437344734573467347734873497350735173527353735473557356735773587359736073617362736373647365736673677368736973707371737273737374737573767377737873797380738173827383738473857386738773887389739073917392739373947395739673977398739974007401740274037404740574067407740874097410741174127413741474157416741774187419742074217422742374247425742674277428742974307431743274337434743574367437743874397440744174427443744474457446744774487449745074517452745374547455745674577458745974607461746274637464746574667467746874697470747174727473747474757476747774787479748074817482748374847485748674877488748974907491749274937494749574967497749874997500750175027503750475057506750775087509751075117512751375147515751675177518751975207521752275237524752575267527752875297530753175327533753475357536753775387539754075417542754375447545754675477548754975507551755275537554755575567557755875597560756175627563756475657566756775687569757075717572757375747575757675777578757975807581758275837584758575867587758875897590759175927593759475957596759775987599760076017602760376047605760676077608760976107611761276137614761576167617761876197620762176227623762476257626762776287629763076317632763376347635763676377638763976407641764276437644764576467647764876497650765176527653765476557656765776587659766076617662766376647665766676677668766976707671767276737674767576767677767876797680768176827683768476857686768776887689769076917692769376947695769676977698769977007701770277037704770577067707770877097710771177127713771477157716771777187719772077217722772377247725772677277728772977307731773277337734773577367737773877397740774177427743774477457746774777487749775077517752775377547755775677577758775977607761776277637764776577667767776877697770777177727773777477757776777777787779778077817782778377847785778677877788778977907791779277937794779577967797779877997800780178027803780478057806780778087809781078117812781378147815781678177818781978207821782278237824782578267827782878297830783178327833783478357836783778387839784078417842784378447845784678477848784978507851785278537854785578567857785878597860786178627863786478657866786778687869787078717872787378747875787678777878787978807881788278837884788578867887788878897890789178927893789478957896789778987899790079017902790379047905790679077908790979107911791279137914791579167917791879197920792179227923792479257926792779287929793079317932793379347935793679377938793979407941794279437944794579467947794879497950795179527953795479557956795779587959796079617962796379647965796679677968796979707971797279737974797579767977797879797980798179827983798479857986798779887989799079917992799379947995799679977998799980008001800280038004800580068007800880098010801180128013801480158016801780188019802080218022802380248025802680278028802980308031803280338034803580368037803880398040804180428043804480458046804780488049805080518052805380548055805680578058805980608061806280638064806580668067806880698070807180728073807480758076807780788079808080818082808380848085808680878088808980908091809280938094809580968097809880998100810181028103810481058106810781088109811081118112811381148115811681178118811981208121812281238124812581268127812881298130813181328133813481358136813781388139814081418142814381448145814681478148814981508151815281538154815581568157815881598160816181628163816481658166816781688169817081718172817381748175817681778178817981808181818281838184818581868187818881898190819181928193819481958196819781988199820082018202820382048205820682078208820982108211821282138214821582168217821882198220822182228223822482258226822782288229823082318232823382348235823682378238823982408241824282438244824582468247824882498250825182528253825482558256825782588259826082618262826382648265826682678268826982708271827282738274827582768277827882798280828182828283828482858286828782888289829082918292829382948295829682978298829983008301830283038304830583068307830883098310831183128313831483158316831783188319832083218322832383248325832683278328832983308331833283338334833583368337833883398340834183428343834483458346834783488349835083518352835383548355835683578358835983608361836283638364836583668367836883698370837183728373837483758376837783788379838083818382838383848385838683878388838983908391839283938394839583968397839883998400840184028403840484058406840784088409841084118412841384148415841684178418841984208421842284238424842584268427842884298430843184328433843484358436843784388439844084418442844384448445844684478448844984508451845284538454845584568457845884598460846184628463846484658466846784688469847084718472847384748475847684778478847984808481848284838484848584868487848884898490849184928493849484958496849784988499850085018502850385048505850685078508850985108511851285138514851585168517851885198520852185228523852485258526852785288529853085318532853385348535853685378538853985408541854285438544854585468547854885498550855185528553855485558556855785588559856085618562856385648565856685678568856985708571857285738574857585768577857885798580858185828583858485858586858785888589859085918592859385948595859685978598859986008601860286038604860586068607860886098610861186128613861486158616861786188619862086218622862386248625862686278628862986308631863286338634863586368637863886398640864186428643864486458646864786488649865086518652865386548655865686578658865986608661866286638664866586668667866886698670867186728673867486758676867786788679868086818682868386848685868686878688868986908691869286938694869586968697869886998700870187028703870487058706870787088709871087118712871387148715871687178718871987208721872287238724872587268727872887298730873187328733873487358736873787388739874087418742874387448745874687478748874987508751875287538754875587568757875887598760876187628763876487658766876787688769877087718772877387748775877687778778877987808781878287838784878587868787878887898790879187928793879487958796879787988799880088018802880388048805880688078808880988108811881288138814881588168817881888198820882188228823882488258826882788288829883088318832883388348835883688378838883988408841884288438844884588468847884888498850885188528853885488558856885788588859886088618862886388648865886688678868886988708871887288738874887588768877887888798880888188828883888488858886888788888889889088918892889388948895889688978898889989008901890289038904890589068907890889098910891189128913891489158916891789188919892089218922892389248925892689278928892989308931893289338934893589368937893889398940894189428943894489458946894789488949895089518952895389548955895689578958895989608961896289638964896589668967896889698970897189728973897489758976897789788979898089818982898389848985898689878988898989908991899289938994899589968997899889999000900190029003900490059006900790089009901090119012901390149015901690179018901990209021902290239024902590269027902890299030903190329033903490359036903790389039904090419042904390449045904690479048904990509051905290539054905590569057905890599060906190629063906490659066906790689069907090719072907390749075907690779078907990809081908290839084908590869087908890899090909190929093909490959096909790989099910091019102910391049105910691079108910991109111911291139114911591169117911891199120912191229123912491259126912791289129913091319132913391349135913691379138913991409141914291439144914591469147914891499150915191529153915491559156915791589159916091619162916391649165916691679168916991709171917291739174917591769177917891799180918191829183918491859186918791889189919091919192919391949195919691979198919992009201920292039204920592069207920892099210921192129213921492159216921792189219922092219222922392249225922692279228922992309231923292339234923592369237923892399240924192429243924492459246924792489249925092519252925392549255925692579258925992609261926292639264926592669267926892699270927192729273927492759276927792789279928092819282928392849285928692879288928992909291929292939294929592969297929892999300930193029303930493059306930793089309931093119312931393149315931693179318931993209321932293239324932593269327932893299330933193329333933493359336933793389339934093419342934393449345934693479348934993509351935293539354935593569357935893599360936193629363936493659366936793689369937093719372937393749375937693779378937993809381938293839384938593869387938893899390939193929393939493959396939793989399940094019402940394049405940694079408940994109411941294139414941594169417941894199420942194229423942494259426942794289429943094319432943394349435943694379438943994409441944294439444944594469447944894499450945194529453945494559456945794589459946094619462946394649465946694679468946994709471947294739474947594769477947894799480948194829483948494859486948794889489949094919492949394949495949694979498949995009501950295039504950595069507950895099510951195129513951495159516951795189519952095219522952395249525952695279528952995309531953295339534953595369537953895399540954195429543954495459546954795489549955095519552955395549555955695579558955995609561956295639564956595669567956895699570957195729573957495759576957795789579958095819582958395849585958695879588958995909591959295939594959595969597959895999600960196029603960496059606960796089609961096119612961396149615961696179618961996209621962296239624962596269627962896299630963196329633963496359636963796389639964096419642964396449645964696479648964996509651965296539654965596569657965896599660966196629663966496659666966796689669967096719672967396749675967696779678967996809681968296839684968596869687968896899690969196929693969496959696969796989699970097019702970397049705970697079708970997109711971297139714971597169717971897199720972197229723972497259726972797289729973097319732973397349735973697379738973997409741974297439744974597469747974897499750975197529753975497559756975797589759976097619762976397649765976697679768976997709771977297739774977597769777977897799780978197829783978497859786978797889789979097919792979397949795979697979798979998009801980298039804980598069807980898099810981198129813981498159816981798189819982098219822982398249825982698279828982998309831983298339834983598369837983898399840984198429843984498459846984798489849985098519852985398549855985698579858985998609861986298639864986598669867986898699870987198729873987498759876987798789879988098819882988398849885988698879888988998909891989298939894989598969897989898999900990199029903990499059906990799089909991099119912991399149915991699179918991999209921992299239924992599269927992899299930993199329933993499359936993799389939994099419942994399449945994699479948994999509951995299539954995599569957995899599960996199629963996499659966996799689969997099719972997399749975997699779978997999809981998299839984998599869987998899899990999199929993999499959996999799989999100001000110002100031000410005100061000710008100091001010011100121001310014100151001610017100181001910020100211002210023100241002510026100271002810029100301003110032100331003410035100361003710038100391004010041100421004310044100451004610047100481004910050100511005210053100541005510056100571005810059100601006110062100631006410065100661006710068100691007010071100721007310074100751007610077100781007910080100811008210083100841008510086100871008810089100901009110092100931009410095100961009710098100991010010101101021010310104101051010610107101081010910110101111011210113101141011510116101171011810119101201012110122101231012410125101261012710128101291013010131101321013310134101351013610137101381013910140101411014210143101441014510146101471014810149101501015110152101531015410155101561015710158101591016010161101621016310164101651016610167101681016910170101711017210173101741017510176101771017810179101801018110182101831018410185101861018710188101891019010191101921019310194101951019610197101981019910200102011020210203102041020510206102071020810209102101021110212102131021410215102161021710218102191022010221102221022310224102251022610227102281022910230102311023210233102341023510236102371023810239102401024110242102431024410245102461024710248102491025010251102521025310254102551025610257102581025910260102611026210263102641026510266102671026810269102701027110272102731027410275102761027710278102791028010281102821028310284102851028610287102881028910290102911029210293102941029510296102971029810299103001030110302103031030410305103061030710308103091031010311103121031310314103151031610317103181031910320103211032210323103241032510326103271032810329103301033110332103331033410335103361033710338103391034010341103421034310344103451034610347103481034910350103511035210353103541035510356103571035810359103601036110362103631036410365103661036710368103691037010371103721037310374103751037610377103781037910380103811038210383103841038510386103871038810389103901039110392103931039410395103961039710398103991040010401104021040310404104051040610407104081040910410104111041210413104141041510416104171041810419104201042110422104231042410425104261042710428104291043010431104321043310434104351043610437104381043910440104411044210443104441044510446104471044810449104501045110452104531045410455104561045710458104591046010461104621046310464104651046610467104681046910470104711047210473104741047510476104771047810479104801048110482104831048410485104861048710488104891049010491104921049310494104951049610497104981049910500105011050210503105041050510506105071050810509105101051110512105131051410515105161051710518105191052010521105221052310524105251052610527105281052910530105311053210533105341053510536105371053810539105401054110542105431054410545105461054710548105491055010551105521055310554105551055610557105581055910560105611056210563105641056510566105671056810569105701057110572105731057410575105761057710578105791058010581105821058310584105851058610587105881058910590105911059210593105941059510596105971059810599106001060110602106031060410605106061060710608106091061010611106121061310614106151061610617106181061910620106211062210623106241062510626106271062810629106301063110632106331063410635106361063710638106391064010641106421064310644106451064610647106481064910650106511065210653106541065510656106571065810659106601066110662106631066410665106661066710668106691067010671106721067310674106751067610677106781067910680106811068210683106841068510686106871068810689106901069110692106931069410695106961069710698106991070010701107021070310704107051070610707107081070910710107111071210713107141071510716107171071810719107201072110722107231072410725107261072710728107291073010731107321073310734107351073610737107381073910740107411074210743107441074510746107471074810749107501075110752107531075410755107561075710758107591076010761107621076310764107651076610767107681076910770107711077210773107741077510776107771077810779107801078110782107831078410785107861078710788107891079010791107921079310794107951079610797107981079910800108011080210803108041080510806108071080810809108101081110812108131081410815108161081710818108191082010821108221082310824108251082610827108281082910830108311083210833108341083510836108371083810839108401084110842108431084410845108461084710848108491085010851108521085310854108551085610857108581085910860108611086210863108641086510866108671086810869108701087110872108731087410875108761087710878108791088010881108821088310884108851088610887108881088910890108911089210893108941089510896108971089810899109001090110902109031090410905109061090710908109091091010911109121091310914109151091610917109181091910920109211092210923109241092510926109271092810929109301093110932109331093410935109361093710938109391094010941109421094310944109451094610947109481094910950109511095210953109541095510956109571095810959109601096110962109631096410965109661096710968109691097010971109721097310974109751097610977109781097910980109811098210983109841098510986109871098810989109901099110992109931099410995109961099710998109991100011001110021100311004110051100611007110081100911010110111101211013110141101511016110171101811019110201102111022110231102411025110261102711028110291103011031110321103311034110351103611037110381103911040110411104211043110441104511046110471104811049110501105111052110531105411055110561105711058110591106011061110621106311064110651106611067110681106911070110711107211073110741107511076110771107811079110801108111082110831108411085110861108711088110891109011091110921109311094110951109611097110981109911100111011110211103111041110511106111071110811109111101111111112111131111411115111161111711118111191112011121111221112311124111251112611127111281112911130111311113211133111341113511136111371113811139111401114111142111431114411145111461114711148111491115011151111521115311154111551115611157111581115911160111611116211163111641116511166111671116811169111701117111172111731117411175111761117711178111791118011181111821118311184111851118611187111881118911190111911119211193111941119511196111971119811199112001120111202112031120411205112061120711208112091121011211112121121311214112151121611217112181121911220112211122211223112241122511226112271122811229112301123111232112331123411235112361123711238112391124011241112421124311244112451124611247112481124911250112511125211253112541125511256112571125811259112601126111262112631126411265112661126711268112691127011271112721127311274112751127611277112781127911280112811128211283112841128511286112871128811289112901129111292112931129411295112961129711298112991130011301113021130311304113051130611307113081130911310113111131211313113141131511316113171131811319113201132111322113231132411325113261132711328113291133011331113321133311334113351133611337113381133911340113411134211343113441134511346113471134811349113501135111352113531135411355113561135711358113591136011361113621136311364113651136611367113681136911370113711137211373113741137511376113771137811379113801138111382113831138411385113861138711388113891139011391113921139311394113951139611397113981139911400114011140211403114041140511406114071140811409114101141111412114131141411415114161141711418114191142011421114221142311424114251142611427114281142911430114311143211433114341143511436114371143811439114401144111442114431144411445114461144711448114491145011451114521145311454114551145611457114581145911460114611146211463114641146511466114671146811469114701147111472114731147411475114761147711478114791148011481114821148311484114851148611487114881148911490114911149211493114941149511496114971149811499115001150111502115031150411505115061150711508115091151011511115121151311514115151151611517115181151911520115211152211523115241152511526115271152811529115301153111532115331153411535115361153711538115391154011541115421154311544115451154611547115481154911550115511155211553115541155511556115571155811559115601156111562115631156411565115661156711568115691157011571115721157311574115751157611577115781157911580115811158211583115841158511586115871158811589115901159111592115931159411595115961159711598115991160011601116021160311604116051160611607116081160911610116111161211613116141161511616116171161811619116201162111622116231162411625116261162711628116291163011631116321163311634116351163611637116381163911640116411164211643116441164511646116471164811649116501165111652116531165411655116561165711658116591166011661116621166311664116651166611667116681166911670116711167211673116741167511676116771167811679116801168111682116831168411685116861168711688116891169011691116921169311694116951169611697116981169911700117011170211703117041170511706117071170811709117101171111712117131171411715117161171711718117191172011721117221172311724117251172611727117281172911730117311173211733117341173511736117371173811739117401174111742117431174411745117461174711748117491175011751117521175311754117551175611757117581175911760117611176211763117641176511766117671176811769117701177111772117731177411775117761177711778117791178011781117821178311784117851178611787117881178911790117911179211793117941179511796117971179811799118001180111802118031180411805118061180711808118091181011811118121181311814118151181611817118181181911820118211182211823118241182511826118271182811829118301183111832118331183411835118361183711838118391184011841118421184311844118451184611847118481184911850118511185211853118541185511856118571185811859118601186111862118631186411865118661186711868118691187011871118721187311874118751187611877118781187911880118811188211883118841188511886118871188811889118901189111892118931189411895118961189711898118991190011901119021190311904119051190611907119081190911910119111191211913119141191511916119171191811919119201192111922119231192411925119261192711928119291193011931119321193311934119351193611937119381193911940119411194211943119441194511946119471194811949119501195111952119531195411955119561195711958119591196011961119621196311964119651196611967119681196911970119711197211973119741197511976119771197811979119801198111982119831198411985119861198711988119891199011991119921199311994119951199611997119981199912000120011200212003120041200512006120071200812009120101201112012120131201412015120161201712018120191202012021120221202312024120251202612027120281202912030120311203212033120341203512036120371203812039120401204112042120431204412045120461204712048120491205012051120521205312054120551205612057120581205912060120611206212063120641206512066120671206812069120701207112072120731207412075120761207712078120791208012081120821208312084120851208612087120881208912090120911209212093120941209512096120971209812099121001210112102121031210412105121061210712108121091211012111121121211312114121151211612117121181211912120121211212212123121241212512126121271212812129121301213112132121331213412135121361213712138121391214012141121421214312144121451214612147121481214912150121511215212153121541215512156121571215812159121601216112162121631216412165121661216712168121691217012171121721217312174121751217612177121781217912180121811218212183121841218512186121871218812189121901219112192121931219412195121961219712198121991220012201122021220312204122051220612207122081220912210122111221212213122141221512216122171221812219122201222112222122231222412225122261222712228122291223012231122321223312234122351223612237122381223912240122411224212243122441224512246122471224812249122501225112252122531225412255122561225712258122591226012261122621226312264122651226612267122681226912270122711227212273122741227512276122771227812279122801228112282122831228412285122861228712288122891229012291122921229312294122951229612297122981229912300123011230212303123041230512306123071230812309123101231112312123131231412315123161231712318123191232012321123221232312324123251232612327123281232912330123311233212333123341233512336123371233812339123401234112342123431234412345123461234712348123491235012351123521235312354123551235612357123581235912360123611236212363123641236512366123671236812369123701237112372123731237412375123761237712378123791238012381123821238312384123851238612387123881238912390123911239212393123941239512396123971239812399124001240112402124031240412405124061240712408124091241012411124121241312414124151241612417124181241912420124211242212423124241242512426124271242812429124301243112432124331243412435124361243712438124391244012441124421244312444124451244612447124481244912450124511245212453124541245512456124571245812459124601246112462124631246412465124661246712468124691247012471124721247312474124751247612477124781247912480124811248212483124841248512486124871248812489124901249112492124931249412495124961249712498124991250012501125021250312504125051250612507125081250912510125111251212513125141251512516125171251812519125201252112522125231252412525125261252712528125291253012531125321253312534125351253612537125381253912540125411254212543125441254512546125471254812549125501255112552125531255412555125561255712558125591256012561125621256312564125651256612567125681256912570125711257212573125741257512576125771257812579125801258112582125831258412585125861258712588125891259012591125921259312594125951259612597125981259912600126011260212603126041260512606126071260812609126101261112612126131261412615126161261712618126191262012621126221262312624126251262612627126281262912630126311263212633126341263512636126371263812639126401264112642126431264412645126461264712648126491265012651126521265312654126551265612657126581265912660126611266212663126641266512666126671266812669126701267112672126731267412675126761267712678126791268012681126821268312684126851268612687126881268912690126911269212693126941269512696126971269812699127001270112702127031270412705127061270712708127091271012711127121271312714127151271612717127181271912720127211272212723127241272512726127271272812729127301273112732127331273412735127361273712738127391274012741127421274312744127451274612747127481274912750127511275212753127541275512756127571275812759127601276112762127631276412765127661276712768127691277012771127721277312774127751277612777127781277912780127811278212783127841278512786127871278812789127901279112792127931279412795127961279712798127991280012801128021280312804128051280612807128081280912810128111281212813128141281512816128171281812819128201282112822128231282412825128261282712828128291283012831128321283312834128351283612837128381283912840128411284212843128441284512846128471284812849128501285112852128531285412855128561285712858128591286012861128621286312864128651286612867128681286912870128711287212873128741287512876128771287812879128801288112882128831288412885128861288712888128891289012891128921289312894128951289612897128981289912900129011290212903129041290512906129071290812909129101291112912129131291412915129161291712918129191292012921129221292312924129251292612927129281292912930129311293212933129341293512936129371293812939129401294112942129431294412945129461294712948129491295012951129521295312954129551295612957129581295912960129611296212963129641296512966129671296812969129701297112972129731297412975129761297712978129791298012981129821298312984129851298612987129881298912990129911299212993129941299512996129971299812999130001300113002130031300413005130061300713008130091301013011130121301313014130151301613017130181301913020130211302213023130241302513026130271302813029130301303113032130331303413035130361303713038130391304013041130421304313044130451304613047130481304913050130511305213053130541305513056130571305813059130601306113062130631306413065130661306713068130691307013071130721307313074130751307613077130781307913080130811308213083130841308513086130871308813089130901309113092130931309413095130961309713098130991310013101131021310313104131051310613107131081310913110131111311213113131141311513116131171311813119131201312113122131231312413125131261312713128131291313013131131321313313134131351313613137131381313913140131411314213143131441314513146131471314813149131501315113152131531315413155131561315713158131591316013161131621316313164131651316613167131681316913170131711317213173131741317513176131771317813179131801318113182131831318413185131861318713188131891319013191131921319313194131951319613197131981319913200132011320213203132041320513206132071320813209132101321113212132131321413215132161321713218132191322013221132221322313224132251322613227132281322913230132311323213233132341323513236132371323813239132401324113242132431324413245132461324713248132491325013251132521325313254132551325613257132581325913260132611326213263132641326513266132671326813269132701327113272132731327413275132761327713278132791328013281132821328313284132851328613287132881328913290132911329213293132941329513296132971329813299133001330113302133031330413305133061330713308133091331013311133121331313314133151331613317133181331913320133211332213323133241332513326133271332813329133301333113332133331333413335133361333713338133391334013341133421334313344133451334613347133481334913350133511335213353133541335513356133571335813359133601336113362133631336413365133661336713368133691337013371133721337313374133751337613377133781337913380133811338213383133841338513386133871338813389133901339113392133931339413395133961339713398133991340013401134021340313404134051340613407134081340913410134111341213413134141341513416134171341813419134201342113422134231342413425134261342713428134291343013431134321343313434134351343613437134381343913440134411344213443134441344513446134471344813449134501345113452134531345413455134561345713458134591346013461134621346313464134651346613467134681346913470134711347213473134741347513476134771347813479134801348113482134831348413485134861348713488134891349013491134921349313494134951349613497134981349913500135011350213503135041350513506135071350813509135101351113512135131351413515135161351713518135191352013521135221352313524135251352613527135281352913530135311353213533135341353513536135371353813539135401354113542135431354413545135461354713548135491355013551135521355313554135551355613557135581355913560135611356213563135641356513566135671356813569135701357113572135731357413575135761357713578135791358013581135821358313584135851358613587135881358913590135911359213593135941359513596135971359813599136001360113602136031360413605136061360713608136091361013611136121361313614136151361613617136181361913620136211362213623136241362513626136271362813629136301363113632136331363413635136361363713638136391364013641136421364313644136451364613647136481364913650136511365213653136541365513656136571365813659136601366113662136631366413665136661366713668136691367013671136721367313674136751367613677136781367913680136811368213683136841368513686136871368813689136901369113692136931369413695136961369713698136991370013701137021370313704137051370613707137081370913710137111371213713137141371513716137171371813719137201372113722137231372413725137261372713728137291373013731137321373313734137351373613737137381373913740137411374213743137441374513746137471374813749137501375113752137531375413755137561375713758137591376013761137621376313764137651376613767137681376913770137711377213773137741377513776137771377813779137801378113782137831378413785137861378713788137891379013791137921379313794137951379613797137981379913800138011380213803138041380513806138071380813809138101381113812138131381413815138161381713818138191382013821138221382313824138251382613827138281382913830138311383213833138341383513836138371383813839138401384113842138431384413845138461384713848138491385013851138521385313854138551385613857138581385913860138611386213863138641386513866138671386813869138701387113872138731387413875138761387713878138791388013881138821388313884138851388613887138881388913890138911389213893138941389513896138971389813899139001390113902139031390413905139061390713908139091391013911139121391313914139151391613917139181391913920139211392213923139241392513926139271392813929139301393113932139331393413935139361393713938139391394013941139421394313944139451394613947139481394913950139511395213953139541395513956139571395813959139601396113962139631396413965139661396713968139691397013971139721397313974139751397613977139781397913980139811398213983139841398513986139871398813989139901399113992139931399413995139961399713998139991400014001140021400314004140051400614007140081400914010140111401214013140141401514016140171401814019140201402114022140231402414025140261402714028140291403014031140321403314034140351403614037140381403914040140411404214043140441404514046140471404814049140501405114052140531405414055140561405714058140591406014061140621406314064140651406614067140681406914070140711407214073140741407514076140771407814079140801408114082140831408414085140861408714088140891409014091140921409314094140951409614097140981409914100141011410214103141041410514106141071410814109141101411114112141131411414115141161411714118141191412014121141221412314124141251412614127141281412914130141311413214133141341413514136141371413814139141401414114142141431414414145141461414714148141491415014151141521415314154141551415614157141581415914160141611416214163141641416514166141671416814169141701417114172141731417414175141761417714178141791418014181141821418314184141851418614187141881418914190141911419214193141941419514196141971419814199142001420114202142031420414205142061420714208142091421014211142121421314214142151421614217142181421914220142211422214223142241422514226142271422814229142301423114232142331423414235142361423714238142391424014241142421424314244142451424614247142481424914250142511425214253142541425514256142571425814259142601426114262142631426414265142661426714268142691427014271142721427314274142751427614277142781427914280142811428214283142841428514286142871428814289142901429114292142931429414295142961429714298142991430014301143021430314304143051430614307143081430914310143111431214313143141431514316143171431814319143201432114322143231432414325143261432714328143291433014331143321433314334143351433614337143381433914340143411434214343143441434514346143471434814349143501435114352143531435414355143561435714358143591436014361143621436314364143651436614367143681436914370143711437214373143741437514376143771437814379143801438114382143831438414385143861438714388143891439014391143921439314394143951439614397143981439914400144011440214403144041440514406144071440814409144101441114412144131441414415144161441714418144191442014421144221442314424144251442614427144281442914430144311443214433144341443514436144371443814439144401444114442144431444414445144461444714448144491445014451144521445314454144551445614457144581445914460144611446214463144641446514466144671446814469144701447114472144731447414475144761447714478144791448014481144821448314484144851448614487144881448914490144911449214493144941449514496144971449814499145001450114502145031450414505145061450714508145091451014511145121451314514145151451614517145181451914520145211452214523145241452514526145271452814529145301453114532145331453414535145361453714538145391454014541145421454314544145451454614547145481454914550145511455214553145541455514556145571455814559145601456114562145631456414565145661456714568145691457014571145721457314574145751457614577145781457914580145811458214583145841458514586145871458814589145901459114592145931459414595145961459714598145991460014601146021460314604146051460614607146081460914610146111461214613146141461514616146171461814619146201462114622146231462414625146261462714628146291463014631146321463314634146351463614637146381463914640146411464214643146441464514646146471464814649146501465114652146531465414655146561465714658146591466014661146621466314664146651466614667146681466914670146711467214673146741467514676146771467814679146801468114682146831468414685146861468714688146891469014691146921469314694146951469614697146981469914700147011470214703147041470514706147071470814709147101471114712147131471414715147161471714718147191472014721147221472314724147251472614727147281472914730147311473214733147341473514736147371473814739147401474114742147431474414745147461474714748147491475014751147521475314754147551475614757147581475914760147611476214763147641476514766147671476814769147701477114772147731477414775147761477714778147791478014781147821478314784147851478614787147881478914790147911479214793147941479514796147971479814799148001480114802148031480414805148061480714808148091481014811148121481314814148151481614817148181481914820148211482214823148241482514826148271482814829148301483114832148331483414835148361483714838148391484014841148421484314844148451484614847148481484914850148511485214853148541485514856148571485814859148601486114862148631486414865148661486714868148691487014871148721487314874148751487614877148781487914880148811488214883148841488514886148871488814889148901489114892148931489414895148961489714898148991490014901149021490314904149051490614907149081490914910149111491214913149141491514916149171491814919149201492114922149231492414925149261492714928149291493014931149321493314934149351493614937149381493914940149411494214943149441494514946149471494814949149501495114952149531495414955149561495714958149591496014961149621496314964149651496614967149681496914970149711497214973149741497514976149771497814979149801498114982149831498414985149861498714988149891499014991149921499314994149951499614997149981499915000150011500215003150041500515006150071500815009150101501115012150131501415015150161501715018150191502015021150221502315024150251502615027150281502915030150311503215033150341503515036150371503815039150401504115042150431504415045150461504715048150491505015051150521505315054150551505615057150581505915060150611506215063150641506515066150671506815069150701507115072150731507415075150761507715078150791508015081150821508315084150851508615087150881508915090150911509215093150941509515096150971509815099151001510115102151031510415105151061510715108151091511015111151121511315114151151511615117151181511915120151211512215123151241512515126151271512815129151301513115132151331513415135151361513715138151391514015141151421514315144151451514615147151481514915150151511515215153151541515515156151571515815159151601516115162151631516415165151661516715168151691517015171151721517315174151751517615177151781517915180151811518215183151841518515186151871518815189151901519115192151931519415195151961519715198151991520015201152021520315204152051520615207152081520915210152111521215213152141521515216152171521815219152201522115222152231522415225152261522715228152291523015231152321523315234152351523615237152381523915240152411524215243152441524515246152471524815249152501525115252152531525415255152561525715258152591526015261152621526315264152651526615267152681526915270152711527215273152741527515276152771527815279152801528115282152831528415285152861528715288152891529015291152921529315294152951529615297152981529915300153011530215303153041530515306153071530815309153101531115312153131531415315153161531715318153191532015321153221532315324153251532615327153281532915330153311533215333153341533515336153371533815339153401534115342153431534415345153461534715348153491535015351153521535315354153551535615357153581535915360153611536215363153641536515366153671536815369153701537115372153731537415375153761537715378153791538015381153821538315384153851538615387153881538915390153911539215393153941539515396153971539815399154001540115402154031540415405154061540715408154091541015411154121541315414154151541615417154181541915420154211542215423154241542515426154271542815429154301543115432154331543415435154361543715438154391544015441154421544315444154451544615447154481544915450154511545215453154541545515456154571545815459154601546115462154631546415465154661546715468154691547015471154721547315474154751547615477154781547915480154811548215483154841548515486154871548815489154901549115492154931549415495154961549715498154991550015501155021550315504155051550615507155081550915510155111551215513155141551515516155171551815519155201552115522155231552415525155261552715528155291553015531155321553315534155351553615537155381553915540155411554215543155441554515546155471554815549155501555115552155531555415555155561555715558155591556015561155621556315564155651556615567155681556915570155711557215573155741557515576155771557815579155801558115582155831558415585155861558715588155891559015591155921559315594155951559615597155981559915600156011560215603156041560515606156071560815609156101561115612156131561415615156161561715618156191562015621156221562315624156251562615627156281562915630156311563215633156341563515636156371563815639156401564115642156431564415645156461564715648156491565015651156521565315654156551565615657156581565915660156611566215663156641566515666156671566815669156701567115672156731567415675156761567715678156791568015681156821568315684156851568615687156881568915690156911569215693156941569515696156971569815699157001570115702157031570415705157061570715708157091571015711157121571315714157151571615717157181571915720157211572215723157241572515726157271572815729157301573115732157331573415735157361573715738157391574015741157421574315744157451574615747157481574915750157511575215753157541575515756157571575815759157601576115762157631576415765157661576715768157691577015771157721577315774157751577615777157781577915780157811578215783157841578515786157871578815789157901579115792157931579415795157961579715798157991580015801158021580315804158051580615807158081580915810158111581215813158141581515816158171581815819158201582115822158231582415825158261582715828158291583015831158321583315834158351583615837158381583915840158411584215843158441584515846158471584815849158501585115852158531585415855158561585715858158591586015861158621586315864158651586615867158681586915870158711587215873158741587515876158771587815879158801588115882158831588415885158861588715888158891589015891158921589315894158951589615897158981589915900159011590215903159041590515906159071590815909159101591115912159131591415915159161591715918159191592015921159221592315924159251592615927159281592915930159311593215933159341593515936159371593815939159401594115942159431594415945159461594715948159491595015951159521595315954159551595615957159581595915960159611596215963159641596515966159671596815969159701597115972159731597415975159761597715978159791598015981159821598315984159851598615987159881598915990159911599215993159941599515996159971599815999160001600116002160031600416005160061600716008160091601016011160121601316014160151601616017160181601916020160211602216023160241602516026160271602816029160301603116032160331603416035160361603716038160391604016041160421604316044160451604616047160481604916050160511605216053160541605516056160571605816059160601606116062160631606416065160661606716068160691607016071160721607316074160751607616077160781607916080160811608216083160841608516086160871608816089160901609116092160931609416095160961609716098160991610016101161021610316104161051610616107161081610916110161111611216113161141611516116161171611816119161201612116122161231612416125161261612716128161291613016131161321613316134161351613616137161381613916140161411614216143161441614516146161471614816149161501615116152161531615416155161561615716158161591616016161161621616316164161651616616167161681616916170161711617216173161741617516176161771617816179161801618116182161831618416185161861618716188161891619016191161921619316194161951619616197161981619916200162011620216203162041620516206162071620816209162101621116212162131621416215162161621716218162191622016221162221622316224162251622616227162281622916230162311623216233162341623516236162371623816239162401624116242162431624416245162461624716248162491625016251162521625316254162551625616257162581625916260162611626216263162641626516266162671626816269162701627116272162731627416275162761627716278162791628016281162821628316284162851628616287162881628916290162911629216293162941629516296162971629816299163001630116302163031630416305163061630716308163091631016311163121631316314163151631616317163181631916320163211632216323163241632516326163271632816329163301633116332163331633416335163361633716338163391634016341163421634316344163451634616347163481634916350163511635216353163541635516356163571635816359163601636116362163631636416365163661636716368163691637016371163721637316374163751637616377163781637916380163811638216383163841638516386163871638816389163901639116392163931639416395163961639716398163991640016401164021640316404164051640616407164081640916410164111641216413164141641516416164171641816419164201642116422164231642416425164261642716428164291643016431164321643316434164351643616437164381643916440164411644216443164441644516446164471644816449164501645116452164531645416455164561645716458164591646016461164621646316464164651646616467164681646916470164711647216473164741647516476164771647816479164801648116482164831648416485164861648716488164891649016491164921649316494164951649616497164981649916500165011650216503165041650516506165071650816509165101651116512165131651416515165161651716518165191652016521165221652316524165251652616527165281652916530165311653216533165341653516536165371653816539165401654116542165431654416545165461654716548165491655016551165521655316554165551655616557165581655916560165611656216563165641656516566165671656816569165701657116572165731657416575165761657716578165791658016581165821658316584165851658616587165881658916590165911659216593165941659516596165971659816599166001660116602166031660416605166061660716608166091661016611166121661316614166151661616617166181661916620166211662216623166241662516626166271662816629166301663116632166331663416635166361663716638166391664016641166421664316644166451664616647166481664916650166511665216653166541665516656166571665816659166601666116662166631666416665166661666716668166691667016671166721667316674166751667616677166781667916680166811668216683166841668516686166871668816689166901669116692166931669416695166961669716698166991670016701167021670316704167051670616707167081670916710167111671216713167141671516716167171671816719167201672116722167231672416725167261672716728167291673016731167321673316734167351673616737167381673916740167411674216743167441674516746167471674816749167501675116752167531675416755167561675716758167591676016761167621676316764167651676616767167681676916770167711677216773167741677516776167771677816779167801678116782167831678416785167861678716788167891679016791167921679316794167951679616797167981679916800168011680216803168041680516806168071680816809168101681116812168131681416815168161681716818168191682016821168221682316824168251682616827168281682916830168311683216833168341683516836168371683816839168401684116842168431684416845168461684716848168491685016851168521685316854168551685616857168581685916860168611686216863168641686516866168671686816869168701687116872168731687416875168761687716878168791688016881168821688316884168851688616887168881688916890168911689216893168941689516896168971689816899169001690116902169031690416905169061690716908169091691016911169121691316914169151691616917169181691916920169211692216923169241692516926169271692816929169301693116932169331693416935169361693716938169391694016941169421694316944169451694616947169481694916950169511695216953169541695516956169571695816959169601696116962169631696416965169661696716968169691697016971169721697316974169751697616977169781697916980169811698216983169841698516986169871698816989169901699116992169931699416995169961699716998169991700017001170021700317004170051700617007170081700917010170111701217013170141701517016170171701817019170201702117022170231702417025170261702717028170291703017031170321703317034170351703617037170381703917040170411704217043170441704517046170471704817049170501705117052170531705417055170561705717058170591706017061170621706317064170651706617067170681706917070170711707217073170741707517076170771707817079170801708117082170831708417085170861708717088170891709017091170921709317094170951709617097170981709917100171011710217103171041710517106171071710817109171101711117112171131711417115171161711717118171191712017121171221712317124171251712617127171281712917130171311713217133171341713517136171371713817139171401714117142171431714417145171461714717148171491715017151171521715317154171551715617157171581715917160171611716217163171641716517166171671716817169171701717117172171731717417175171761717717178171791718017181171821718317184171851718617187171881718917190171911719217193171941719517196171971719817199172001720117202172031720417205172061720717208172091721017211172121721317214172151721617217172181721917220172211722217223172241722517226172271722817229172301723117232172331723417235172361723717238172391724017241172421724317244172451724617247172481724917250172511725217253172541725517256172571725817259172601726117262172631726417265172661726717268172691727017271172721727317274172751727617277172781727917280172811728217283172841728517286172871728817289172901729117292172931729417295172961729717298172991730017301173021730317304173051730617307173081730917310173111731217313173141731517316173171731817319173201732117322173231732417325173261732717328173291733017331173321733317334173351733617337173381733917340173411734217343173441734517346173471734817349173501735117352173531735417355173561735717358173591736017361173621736317364173651736617367173681736917370173711737217373173741737517376173771737817379173801738117382173831738417385173861738717388173891739017391173921739317394173951739617397173981739917400174011740217403174041740517406174071740817409174101741117412174131741417415174161741717418174191742017421174221742317424174251742617427174281742917430174311743217433174341743517436174371743817439174401744117442174431744417445174461744717448174491745017451174521745317454174551745617457174581745917460174611746217463174641746517466174671746817469174701747117472174731747417475174761747717478174791748017481174821748317484174851748617487174881748917490174911749217493174941749517496174971749817499175001750117502175031750417505175061750717508175091751017511175121751317514175151751617517175181751917520175211752217523175241752517526175271752817529175301753117532175331753417535175361753717538175391754017541175421754317544175451754617547175481754917550175511755217553175541755517556175571755817559175601756117562175631756417565175661756717568175691757017571175721757317574175751757617577175781757917580175811758217583175841758517586175871758817589175901759117592175931759417595175961759717598175991760017601176021760317604176051760617607176081760917610176111761217613176141761517616176171761817619176201762117622176231762417625176261762717628176291763017631176321763317634176351763617637176381763917640176411764217643176441764517646176471764817649176501765117652176531765417655176561765717658176591766017661176621766317664176651766617667176681766917670176711767217673176741767517676176771767817679176801768117682176831768417685176861768717688176891769017691176921769317694176951769617697176981769917700177011770217703177041770517706177071770817709177101771117712177131771417715177161771717718177191772017721177221772317724177251772617727177281772917730177311773217733177341773517736177371773817739177401774117742177431774417745177461774717748177491775017751177521775317754177551775617757177581775917760177611776217763177641776517766177671776817769177701777117772177731777417775177761777717778177791778017781177821778317784177851778617787177881778917790177911779217793177941779517796177971779817799178001780117802178031780417805178061780717808178091781017811178121781317814178151781617817178181781917820178211782217823178241782517826178271782817829178301783117832178331783417835178361783717838178391784017841178421784317844178451784617847178481784917850178511785217853178541785517856178571785817859178601786117862178631786417865178661786717868178691787017871178721787317874178751787617877178781787917880178811788217883178841788517886178871788817889178901789117892178931789417895178961789717898178991790017901179021790317904179051790617907179081790917910179111791217913179141791517916179171791817919179201792117922179231792417925179261792717928179291793017931179321793317934179351793617937179381793917940179411794217943179441794517946179471794817949179501795117952179531795417955179561795717958179591796017961179621796317964179651796617967179681796917970179711797217973179741797517976179771797817979179801798117982179831798417985179861798717988179891799017991179921799317994179951799617997179981799918000180011800218003180041800518006180071800818009180101801118012180131801418015180161801718018180191802018021180221802318024180251802618027180281802918030180311803218033180341803518036180371803818039180401804118042180431804418045180461804718048180491805018051180521805318054180551805618057180581805918060180611806218063180641806518066180671806818069180701807118072180731807418075180761807718078180791808018081180821808318084180851808618087180881808918090180911809218093180941809518096180971809818099181001810118102181031810418105181061810718108181091811018111181121811318114181151811618117181181811918120181211812218123181241812518126181271812818129181301813118132181331813418135181361813718138181391814018141181421814318144181451814618147181481814918150181511815218153181541815518156181571815818159181601816118162181631816418165181661816718168181691817018171181721817318174181751817618177181781817918180181811818218183181841818518186181871818818189181901819118192181931819418195181961819718198181991820018201182021820318204182051820618207182081820918210182111821218213182141821518216182171821818219182201822118222182231822418225182261822718228182291823018231182321823318234182351823618237182381823918240182411824218243182441824518246182471824818249182501825118252182531825418255182561825718258182591826018261182621826318264182651826618267182681826918270182711827218273182741827518276182771827818279182801828118282182831828418285182861828718288182891829018291182921829318294182951829618297182981829918300183011830218303183041830518306183071830818309183101831118312183131831418315183161831718318183191832018321183221832318324183251832618327183281832918330183311833218333183341833518336183371833818339183401834118342183431834418345183461834718348183491835018351183521835318354183551835618357183581835918360183611836218363183641836518366183671836818369183701837118372183731837418375183761837718378183791838018381183821838318384183851838618387183881838918390183911839218393183941839518396183971839818399184001840118402184031840418405184061840718408184091841018411184121841318414184151841618417184181841918420184211842218423184241842518426184271842818429184301843118432184331843418435184361843718438184391844018441184421844318444184451844618447184481844918450184511845218453184541845518456184571845818459184601846118462184631846418465184661846718468184691847018471184721847318474184751847618477184781847918480184811848218483184841848518486184871848818489184901849118492184931849418495184961849718498184991850018501185021850318504185051850618507185081850918510185111851218513185141851518516185171851818519185201852118522185231852418525185261852718528185291853018531185321853318534185351853618537185381853918540185411854218543185441854518546185471854818549185501855118552185531855418555185561855718558185591856018561185621856318564185651856618567185681856918570185711857218573185741857518576185771857818579185801858118582185831858418585185861858718588185891859018591185921859318594185951859618597185981859918600186011860218603186041860518606186071860818609186101861118612186131861418615186161861718618186191862018621186221862318624186251862618627186281862918630186311863218633186341863518636186371863818639186401864118642186431864418645186461864718648186491865018651186521865318654186551865618657186581865918660186611866218663186641866518666186671866818669186701867118672186731867418675186761867718678186791868018681186821868318684186851868618687186881868918690186911869218693186941869518696186971869818699187001870118702187031870418705187061870718708187091871018711187121871318714187151871618717187181871918720187211872218723187241872518726187271872818729187301873118732187331873418735187361873718738187391874018741187421874318744187451874618747187481874918750187511875218753187541875518756187571875818759187601876118762187631876418765187661876718768187691877018771187721877318774187751877618777187781877918780187811878218783187841878518786187871878818789187901879118792187931879418795187961879718798187991880018801188021880318804188051880618807188081880918810188111881218813188141881518816188171881818819188201882118822188231882418825188261882718828188291883018831188321883318834188351883618837188381883918840188411884218843188441884518846188471884818849188501885118852188531885418855188561885718858188591886018861188621886318864188651886618867188681886918870188711887218873188741887518876188771887818879188801888118882188831888418885188861888718888188891889018891188921889318894188951889618897188981889918900189011890218903189041890518906189071890818909189101891118912189131891418915189161891718918189191892018921189221892318924189251892618927189281892918930189311893218933189341893518936189371893818939189401894118942189431894418945189461894718948189491895018951189521895318954189551895618957189581895918960189611896218963189641896518966189671896818969189701897118972189731897418975189761897718978189791898018981189821898318984189851898618987189881898918990189911899218993189941899518996189971899818999190001900119002190031900419005190061900719008190091901019011190121901319014190151901619017190181901919020190211902219023190241902519026190271902819029190301903119032190331903419035190361903719038190391904019041190421904319044190451904619047190481904919050190511905219053190541905519056190571905819059190601906119062190631906419065190661906719068190691907019071190721907319074190751907619077190781907919080190811908219083190841908519086190871908819089190901909119092190931909419095190961909719098190991910019101191021910319104191051910619107191081910919110191111911219113191141911519116191171911819119191201912119122191231912419125191261912719128191291913019131191321913319134191351913619137191381913919140191411914219143191441914519146191471914819149191501915119152191531915419155191561915719158191591916019161191621916319164191651916619167191681916919170191711917219173191741917519176191771917819179191801918119182191831918419185191861918719188191891919019191191921919319194191951919619197191981919919200192011920219203192041920519206192071920819209192101921119212192131921419215192161921719218192191922019221192221922319224192251922619227192281922919230192311923219233192341923519236192371923819239192401924119242192431924419245192461924719248192491925019251192521925319254192551925619257192581925919260192611926219263192641926519266192671926819269192701927119272192731927419275192761927719278192791928019281192821928319284192851928619287192881928919290192911929219293192941929519296192971929819299193001930119302193031930419305193061930719308193091931019311193121931319314193151931619317193181931919320193211932219323193241932519326193271932819329193301933119332193331933419335193361933719338193391934019341193421934319344193451934619347193481934919350193511935219353193541935519356193571935819359193601936119362193631936419365193661936719368193691937019371193721937319374193751937619377193781937919380193811938219383193841938519386193871938819389193901939119392193931939419395193961939719398193991940019401194021940319404194051940619407194081940919410194111941219413194141941519416194171941819419194201942119422194231942419425194261942719428194291943019431194321943319434194351943619437194381943919440194411944219443194441944519446194471944819449194501945119452194531945419455194561945719458194591946019461194621946319464194651946619467194681946919470194711947219473194741947519476194771947819479194801948119482194831948419485194861948719488194891949019491194921949319494194951949619497194981949919500195011950219503195041950519506195071950819509195101951119512195131951419515195161951719518195191952019521195221952319524195251952619527195281952919530195311953219533195341953519536195371953819539195401954119542195431954419545195461954719548195491955019551195521955319554195551955619557195581955919560195611956219563195641956519566195671956819569195701957119572195731957419575195761957719578195791958019581195821958319584195851958619587195881958919590195911959219593195941959519596195971959819599196001960119602196031960419605196061960719608196091961019611196121961319614196151961619617196181961919620196211962219623196241962519626196271962819629196301963119632196331963419635196361963719638196391964019641196421964319644196451964619647196481964919650196511965219653196541965519656196571965819659196601966119662196631966419665196661966719668196691967019671196721967319674196751967619677196781967919680196811968219683196841968519686196871968819689196901969119692196931969419695196961969719698196991970019701197021970319704197051970619707197081970919710197111971219713197141971519716197171971819719197201972119722197231972419725197261972719728197291973019731197321973319734197351973619737197381973919740197411974219743197441974519746197471974819749197501975119752197531975419755197561975719758197591976019761197621976319764197651976619767197681976919770197711977219773197741977519776197771977819779197801978119782197831978419785197861978719788197891979019791197921979319794197951979619797197981979919800198011980219803198041980519806198071980819809198101981119812198131981419815198161981719818198191982019821198221982319824198251982619827198281982919830198311983219833198341983519836198371983819839198401984119842198431984419845198461984719848198491985019851198521985319854198551985619857198581985919860198611986219863198641986519866198671986819869198701987119872198731987419875198761987719878198791988019881198821988319884198851988619887198881988919890198911989219893198941989519896198971989819899199001990119902199031990419905199061990719908199091991019911199121991319914199151991619917199181991919920199211992219923199241992519926199271992819929199301993119932199331993419935199361993719938199391994019941199421994319944199451994619947199481994919950199511995219953199541995519956199571995819959199601996119962199631996419965199661996719968199691997019971199721997319974199751997619977199781997919980199811998219983199841998519986199871998819989199901999119992199931999419995199961999719998199992000020001200022000320004200052000620007200082000920010200112001220013200142001520016200172001820019200202002120022200232002420025200262002720028200292003020031200322003320034200352003620037200382003920040200412004220043200442004520046200472004820049200502005120052200532005420055200562005720058200592006020061200622006320064200652006620067200682006920070200712007220073200742007520076200772007820079200802008120082200832008420085200862008720088200892009020091200922009320094200952009620097200982009920100201012010220103201042010520106201072010820109201102011120112201132011420115201162011720118201192012020121201222012320124201252012620127201282012920130201312013220133201342013520136201372013820139201402014120142201432014420145201462014720148201492015020151201522015320154201552015620157201582015920160201612016220163201642016520166201672016820169201702017120172201732017420175201762017720178201792018020181201822018320184201852018620187201882018920190201912019220193201942019520196201972019820199202002020120202202032020420205202062020720208202092021020211202122021320214202152021620217202182021920220202212022220223202242022520226202272022820229202302023120232202332023420235202362023720238202392024020241202422024320244202452024620247202482024920250202512025220253202542025520256202572025820259202602026120262202632026420265202662026720268202692027020271202722027320274202752027620277202782027920280202812028220283202842028520286202872028820289202902029120292202932029420295202962029720298202992030020301203022030320304203052030620307203082030920310203112031220313203142031520316203172031820319203202032120322203232032420325203262032720328203292033020331203322033320334203352033620337203382033920340203412034220343203442034520346203472034820349203502035120352203532035420355203562035720358203592036020361203622036320364203652036620367203682036920370203712037220373203742037520376203772037820379203802038120382203832038420385203862038720388203892039020391203922039320394203952039620397203982039920400204012040220403204042040520406204072040820409204102041120412204132041420415204162041720418204192042020421204222042320424204252042620427204282042920430204312043220433204342043520436204372043820439204402044120442204432044420445204462044720448204492045020451204522045320454204552045620457204582045920460204612046220463204642046520466204672046820469204702047120472204732047420475204762047720478204792048020481204822048320484204852048620487204882048920490204912049220493204942049520496204972049820499205002050120502205032050420505205062050720508205092051020511205122051320514205152051620517205182051920520205212052220523205242052520526205272052820529205302053120532205332053420535205362053720538205392054020541205422054320544205452054620547205482054920550205512055220553205542055520556205572055820559205602056120562205632056420565205662056720568205692057020571205722057320574205752057620577205782057920580205812058220583205842058520586205872058820589205902059120592205932059420595205962059720598205992060020601206022060320604206052060620607206082060920610206112061220613206142061520616206172061820619206202062120622206232062420625206262062720628206292063020631206322063320634206352063620637206382063920640206412064220643206442064520646206472064820649206502065120652206532065420655206562065720658206592066020661206622066320664206652066620667206682066920670206712067220673206742067520676206772067820679206802068120682206832068420685206862068720688206892069020691206922069320694206952069620697206982069920700207012070220703207042070520706207072070820709207102071120712207132071420715207162071720718207192072020721207222072320724207252072620727207282072920730207312073220733207342073520736207372073820739207402074120742207432074420745207462074720748207492075020751207522075320754207552075620757207582075920760207612076220763207642076520766207672076820769207702077120772207732077420775207762077720778207792078020781207822078320784207852078620787207882078920790207912079220793207942079520796207972079820799208002080120802208032080420805208062080720808208092081020811208122081320814208152081620817208182081920820208212082220823208242082520826208272082820829208302083120832208332083420835208362083720838208392084020841208422084320844208452084620847208482084920850208512085220853208542085520856208572085820859208602086120862208632086420865208662086720868208692087020871208722087320874208752087620877208782087920880208812088220883208842088520886208872088820889208902089120892208932089420895208962089720898208992090020901209022090320904209052090620907209082090920910209112091220913209142091520916209172091820919209202092120922209232092420925209262092720928209292093020931209322093320934209352093620937209382093920940209412094220943209442094520946209472094820949209502095120952209532095420955209562095720958209592096020961209622096320964209652096620967209682096920970209712097220973209742097520976209772097820979209802098120982209832098420985209862098720988209892099020991209922099320994209952099620997209982099921000210012100221003210042100521006210072100821009210102101121012210132101421015210162101721018210192102021021210222102321024210252102621027210282102921030210312103221033210342103521036210372103821039210402104121042210432104421045210462104721048210492105021051210522105321054210552105621057210582105921060210612106221063210642106521066210672106821069210702107121072210732107421075210762107721078210792108021081210822108321084210852108621087210882108921090210912109221093210942109521096210972109821099211002110121102211032110421105211062110721108211092111021111211122111321114211152111621117211182111921120211212112221123211242112521126211272112821129211302113121132211332113421135211362113721138211392114021141211422114321144211452114621147211482114921150211512115221153211542115521156211572115821159211602116121162211632116421165211662116721168211692117021171211722117321174211752117621177211782117921180211812118221183211842118521186211872118821189211902119121192211932119421195211962119721198211992120021201212022120321204212052120621207212082120921210212112121221213212142121521216212172121821219212202122121222212232122421225212262122721228212292123021231212322123321234212352123621237212382123921240212412124221243212442124521246212472124821249212502125121252212532125421255212562125721258212592126021261212622126321264212652126621267212682126921270212712127221273212742127521276212772127821279212802128121282212832128421285212862128721288212892129021291212922129321294212952129621297212982129921300213012130221303213042130521306213072130821309213102131121312213132131421315213162131721318213192132021321213222132321324213252132621327213282132921330213312133221333213342133521336213372133821339213402134121342213432134421345213462134721348213492135021351213522135321354213552135621357213582135921360213612136221363213642136521366213672136821369213702137121372213732137421375213762137721378213792138021381213822138321384213852138621387213882138921390213912139221393213942139521396213972139821399214002140121402214032140421405214062140721408214092141021411214122141321414214152141621417214182141921420214212142221423214242142521426214272142821429214302143121432214332143421435214362143721438214392144021441214422144321444214452144621447214482144921450214512145221453214542145521456214572145821459214602146121462214632146421465214662146721468214692147021471214722147321474214752147621477214782147921480214812148221483214842148521486214872148821489214902149121492214932149421495214962149721498214992150021501215022150321504215052150621507215082150921510215112151221513215142151521516215172151821519215202152121522215232152421525215262152721528215292153021531215322153321534215352153621537215382153921540215412154221543215442154521546215472154821549215502155121552215532155421555215562155721558215592156021561215622156321564215652156621567215682156921570215712157221573215742157521576215772157821579215802158121582215832158421585215862158721588215892159021591215922159321594215952159621597215982159921600216012160221603216042160521606216072160821609216102161121612216132161421615216162161721618216192162021621216222162321624216252162621627216282162921630216312163221633216342163521636216372163821639216402164121642216432164421645216462164721648216492165021651216522165321654216552165621657216582165921660216612166221663216642166521666216672166821669216702167121672216732167421675216762167721678216792168021681216822168321684216852168621687216882168921690216912169221693216942169521696216972169821699217002170121702217032170421705217062170721708217092171021711217122171321714217152171621717217182171921720217212172221723217242172521726217272172821729217302173121732217332173421735217362173721738217392174021741217422174321744217452174621747217482174921750217512175221753217542175521756217572175821759217602176121762217632176421765217662176721768217692177021771217722177321774217752177621777217782177921780217812178221783217842178521786217872178821789217902179121792217932179421795217962179721798217992180021801218022180321804218052180621807218082180921810218112181221813218142181521816218172181821819218202182121822218232182421825218262182721828218292183021831218322183321834218352183621837218382183921840218412184221843218442184521846218472184821849218502185121852218532185421855218562185721858218592186021861218622186321864218652186621867218682186921870218712187221873218742187521876218772187821879218802188121882218832188421885218862188721888218892189021891218922189321894218952189621897218982189921900219012190221903219042190521906219072190821909219102191121912219132191421915219162191721918219192192021921219222192321924219252192621927219282192921930219312193221933219342193521936219372193821939219402194121942219432194421945219462194721948219492195021951219522195321954219552195621957219582195921960219612196221963219642196521966219672196821969219702197121972219732197421975219762197721978219792198021981219822198321984219852198621987219882198921990219912199221993219942199521996219972199821999220002200122002220032200422005220062200722008220092201022011220122201322014220152201622017220182201922020220212202222023220242202522026220272202822029220302203122032220332203422035220362203722038220392204022041220422204322044220452204622047220482204922050220512205222053220542205522056220572205822059220602206122062220632206422065220662206722068220692207022071220722207322074220752207622077220782207922080220812208222083220842208522086220872208822089220902209122092220932209422095220962209722098220992210022101221022210322104221052210622107221082210922110221112211222113221142211522116221172211822119221202212122122221232212422125221262212722128221292213022131221322213322134221352213622137221382213922140221412214222143221442214522146221472214822149221502215122152221532215422155221562215722158221592216022161221622216322164221652216622167221682216922170221712217222173221742217522176221772217822179221802218122182221832218422185221862218722188221892219022191221922219322194221952219622197221982219922200222012220222203222042220522206222072220822209222102221122212222132221422215222162221722218222192222022221222222222322224222252222622227222282222922230222312223222233222342223522236222372223822239222402224122242222432224422245222462224722248222492225022251222522225322254222552225622257222582225922260222612226222263222642226522266222672226822269222702227122272222732227422275222762227722278222792228022281222822228322284222852228622287222882228922290222912229222293222942229522296222972229822299223002230122302223032230422305223062230722308223092231022311223122231322314223152231622317223182231922320223212232222323223242232522326223272232822329223302233122332223332233422335223362233722338223392234022341223422234322344223452234622347223482234922350223512235222353223542235522356223572235822359223602236122362223632236422365223662236722368223692237022371223722237322374223752237622377223782237922380223812238222383223842238522386223872238822389223902239122392223932239422395223962239722398223992240022401224022240322404224052240622407224082240922410224112241222413224142241522416224172241822419224202242122422224232242422425224262242722428224292243022431224322243322434224352243622437224382243922440224412244222443224442244522446224472244822449224502245122452224532245422455224562245722458224592246022461224622246322464224652246622467224682246922470224712247222473224742247522476224772247822479224802248122482224832248422485224862248722488224892249022491224922249322494224952249622497224982249922500225012250222503225042250522506225072250822509225102251122512225132251422515225162251722518225192252022521225222252322524225252252622527225282252922530225312253222533225342253522536225372253822539225402254122542225432254422545225462254722548225492255022551225522255322554225552255622557225582255922560225612256222563225642256522566225672256822569225702257122572225732257422575225762257722578225792258022581225822258322584225852258622587225882258922590225912259222593225942259522596225972259822599226002260122602226032260422605226062260722608226092261022611226122261322614226152261622617226182261922620226212262222623226242262522626226272262822629226302263122632226332263422635226362263722638226392264022641226422264322644226452264622647226482264922650226512265222653226542265522656226572265822659226602266122662226632266422665226662266722668226692267022671226722267322674226752267622677226782267922680226812268222683226842268522686226872268822689226902269122692226932269422695226962269722698226992270022701227022270322704227052270622707227082270922710227112271222713227142271522716227172271822719227202272122722227232272422725227262272722728227292273022731227322273322734227352273622737227382273922740227412274222743227442274522746227472274822749227502275122752227532275422755227562275722758227592276022761227622276322764227652276622767227682276922770227712277222773227742277522776227772277822779227802278122782227832278422785227862278722788227892279022791227922279322794227952279622797227982279922800228012280222803228042280522806228072280822809228102281122812228132281422815228162281722818228192282022821228222282322824228252282622827228282282922830228312283222833228342283522836228372283822839228402284122842228432284422845228462284722848228492285022851228522285322854228552285622857228582285922860228612286222863228642286522866228672286822869228702287122872228732287422875228762287722878228792288022881228822288322884228852288622887228882288922890228912289222893228942289522896228972289822899229002290122902229032290422905229062290722908229092291022911229122291322914229152291622917229182291922920229212292222923229242292522926229272292822929229302293122932229332293422935229362293722938229392294022941229422294322944229452294622947229482294922950229512295222953229542295522956229572295822959229602296122962229632296422965229662296722968229692297022971229722297322974229752297622977229782297922980229812298222983229842298522986229872298822989229902299122992229932299422995229962299722998229992300023001230022300323004230052300623007230082300923010230112301223013230142301523016230172301823019230202302123022230232302423025230262302723028230292303023031230322303323034230352303623037230382303923040230412304223043230442304523046230472304823049230502305123052230532305423055230562305723058230592306023061230622306323064230652306623067230682306923070230712307223073230742307523076230772307823079230802308123082230832308423085230862308723088230892309023091230922309323094230952309623097230982309923100231012310223103231042310523106231072310823109231102311123112231132311423115231162311723118231192312023121231222312323124231252312623127231282312923130231312313223133231342313523136231372313823139231402314123142231432314423145231462314723148231492315023151231522315323154231552315623157231582315923160231612316223163231642316523166231672316823169231702317123172231732317423175231762317723178231792318023181231822318323184231852318623187231882318923190231912319223193231942319523196231972319823199232002320123202232032320423205232062320723208232092321023211232122321323214232152321623217232182321923220232212322223223232242322523226232272322823229232302323123232232332323423235232362323723238232392324023241232422324323244232452324623247232482324923250232512325223253232542325523256232572325823259232602326123262232632326423265232662326723268232692327023271232722327323274232752327623277232782327923280232812328223283232842328523286232872328823289232902329123292232932329423295232962329723298232992330023301233022330323304233052330623307233082330923310233112331223313233142331523316233172331823319233202332123322233232332423325233262332723328233292333023331233322333323334233352333623337233382333923340233412334223343233442334523346233472334823349233502335123352233532335423355233562335723358233592336023361233622336323364233652336623367233682336923370233712337223373233742337523376233772337823379233802338123382233832338423385233862338723388233892339023391233922339323394233952339623397233982339923400234012340223403234042340523406234072340823409234102341123412234132341423415234162341723418234192342023421234222342323424234252342623427234282342923430234312343223433234342343523436234372343823439234402344123442234432344423445234462344723448234492345023451234522345323454234552345623457234582345923460234612346223463234642346523466234672346823469234702347123472234732347423475234762347723478234792348023481234822348323484234852348623487234882348923490234912349223493234942349523496234972349823499235002350123502235032350423505235062350723508235092351023511235122351323514235152351623517235182351923520235212352223523235242352523526235272352823529235302353123532235332353423535235362353723538235392354023541235422354323544235452354623547235482354923550235512355223553235542355523556235572355823559235602356123562235632356423565235662356723568235692357023571235722357323574235752357623577235782357923580235812358223583235842358523586235872358823589235902359123592235932359423595235962359723598235992360023601236022360323604236052360623607236082360923610236112361223613236142361523616236172361823619236202362123622236232362423625236262362723628236292363023631236322363323634236352363623637236382363923640236412364223643236442364523646236472364823649236502365123652236532365423655236562365723658236592366023661236622366323664236652366623667236682366923670236712367223673236742367523676236772367823679236802368123682236832368423685236862368723688236892369023691236922369323694236952369623697236982369923700237012370223703237042370523706237072370823709237102371123712237132371423715237162371723718237192372023721237222372323724237252372623727237282372923730237312373223733237342373523736237372373823739237402374123742237432374423745237462374723748237492375023751237522375323754237552375623757237582375923760237612376223763237642376523766237672376823769237702377123772237732377423775237762377723778237792378023781237822378323784237852378623787237882378923790237912379223793237942379523796237972379823799238002380123802238032380423805238062380723808238092381023811238122381323814238152381623817238182381923820238212382223823238242382523826238272382823829238302383123832238332383423835238362383723838238392384023841238422384323844238452384623847238482384923850238512385223853238542385523856238572385823859238602386123862238632386423865238662386723868238692387023871238722387323874238752387623877238782387923880238812388223883238842388523886238872388823889238902389123892238932389423895238962389723898238992390023901239022390323904239052390623907239082390923910239112391223913239142391523916239172391823919239202392123922239232392423925239262392723928239292393023931239322393323934239352393623937239382393923940239412394223943239442394523946239472394823949239502395123952239532395423955239562395723958239592396023961239622396323964239652396623967239682396923970239712397223973239742397523976239772397823979239802398123982239832398423985239862398723988239892399023991239922399323994239952399623997239982399924000
  1. \documentclass[7x10]{TimesAPriori_MIT}%%7x10
  2. % TODO:
  3. %
  4. \usepackage[utf8]{inputenc}
  5. %% \usepackage{setspace}
  6. %% \doublespacing
  7. \usepackage{listings}
  8. \usepackage{verbatim}
  9. \usepackage{amssymb}
  10. \usepackage{lmodern} % better typewriter font for code
  11. %\usepackage{wrapfig}
  12. \usepackage{multirow}
  13. \usepackage{tcolorbox}
  14. \usepackage{color}
  15. %\usepackage{ifthen}
  16. \usepackage{upquote}
  17. \usepackage[all]{xy}
  18. \usepackage{url}
  19. \definecolor{lightgray}{gray}{1}
  20. \newcommand{\black}[1]{{\color{black} #1}}
  21. %\newcommand{\gray}[1]{{\color{lightgray} #1}}
  22. \newcommand{\gray}[1]{{\color{gray} #1}}
  23. \def\racketEd{0}
  24. \def\pythonEd{1}
  25. \def\edition{1}
  26. % material that is specific to the Racket edition of the book
  27. \newcommand{\racket}[1]{{\if\edition\racketEd{#1}\fi}}
  28. % would like a command for: \if\edition\racketEd\color{olive}
  29. % and : \fi\color{black}
  30. %\newcommand{\pythonColor}[0]{\color{purple}}
  31. \newcommand{\pythonColor}[0]{}
  32. % material that is specific to the Python edition of the book
  33. \newcommand{\python}[1]{{\if\edition\pythonEd\pythonColor #1\fi}}
  34. \makeatletter
  35. \newcommand{\captionabove}[2][]{%
  36. \vskip-\abovecaptionskip
  37. \vskip+\belowcaptionskip
  38. \ifx\@nnil#1\@nnil
  39. \caption{#2}%
  40. \else
  41. \caption[#1]{#2}%
  42. \fi
  43. \vskip+\abovecaptionskip
  44. \vskip-\belowcaptionskip
  45. }
  46. %% For multiple indices:
  47. %\usepackage{multind} moved this to the file TimesAPriori_MIT.cls. -Jeremy
  48. \makeindex{subject}
  49. %\makeindex{authors}
  50. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  51. \if\edition\racketEd
  52. \lstset{%
  53. language=Lisp,
  54. basicstyle=\ttfamily\small,
  55. morekeywords={lambda,match,goto,if,else,then,struct,Integer,Boolean,Vector,Void,Any,while,begin,define,public,override,class},
  56. deletekeywords={read,mapping,vector},
  57. escapechar=|,
  58. columns=flexible,
  59. %moredelim=[is][\color{red}]{~}{~},
  60. showstringspaces=false
  61. }
  62. \fi
  63. \if\edition\pythonEd
  64. \lstset{%
  65. language=Python,
  66. basicstyle=\ttfamily\small,
  67. morekeywords={match,case,bool,int,let,begin,if,else,closure},
  68. deletekeywords={},
  69. escapechar=|,
  70. columns=flexible,
  71. %moredelim=[is][\color{red}]{~}{~},
  72. showstringspaces=false
  73. }
  74. \fi
  75. %%% Any shortcut own defined macros place here
  76. %% sample of author macro:
  77. \input{defs}
  78. \newtheorem{exercise}[theorem]{Exercise}
  79. \numberwithin{theorem}{chapter}
  80. \numberwithin{definition}{chapter}
  81. \numberwithin{equation}{chapter}
  82. % Adjusted settings
  83. \setlength{\columnsep}{4pt}
  84. %% \begingroup
  85. %% \setlength{\intextsep}{0pt}%
  86. %% \setlength{\columnsep}{0pt}%
  87. %% \begin{wrapfigure}{r}{0.5\textwidth}
  88. %% \centering\includegraphics[width=\linewidth]{example-image-a}
  89. %% \caption{Basic layout}
  90. %% \end{wrapfigure}
  91. %% \lipsum[1]
  92. %% \endgroup
  93. \newbox\oiintbox
  94. \setbox\oiintbox=\hbox{$\lower2pt\hbox{\huge$\displaystyle\circ$}
  95. \hskip-13pt\displaystyle\int\hskip-7pt\int_{S}\ $}
  96. \def\oiint{\copy\oiintbox}
  97. \def\boldnabla{\hbox{\boldmath$\displaystyle\nabla$}}
  98. %\usepackage{showframe}
  99. \def\ShowFrameLinethickness{0.125pt}
  100. \addbibresource{book.bib}
  101. \if\edition\pythonEd
  102. \addbibresource{python.bib}
  103. \fi
  104. \begin{document}
  105. \frontmatter
  106. %\HalfTitle{Essentials of Compilation \\ An Incremental Approach in \python{Python}\racket{Racket}}
  107. \HalfTitle{Essentials of Compilation}
  108. \halftitlepage
  109. \clearemptydoublepage
  110. \Title{Essentials of Compilation}
  111. \Booksubtitle{An Incremental Approach in \python{Python}\racket{Racket}}
  112. %\edition{First Edition}
  113. \BookAuthor{Jeremy G. Siek}
  114. \imprint{The MIT Press\\
  115. Cambridge, Massachusetts\\
  116. London, England}
  117. \begin{copyrightpage}
  118. \textcopyright\ 2023 Jeremy G. Siek \\[2ex]
  119. This work is subject to a Creative Commons CC-BY-ND-NC license. \\[2ex]
  120. Subject to such license, all rights are reserved. \\[2ex]
  121. \includegraphics{CCBY-logo}
  122. The MIT Press would like to thank the anonymous peer reviewers who
  123. provided comments on drafts of this book. The generous work of
  124. academic experts is essential for establishing the authority and
  125. quality of our publications. We acknowledge with gratitude the
  126. contributions of these otherwise uncredited readers.
  127. This book was set in Times LT Std Roman by the author. Printed and
  128. bound in the United States of America.
  129. {\if\edition\racketEd
  130. Library of Congress Cataloging-in-Publication Data\\
  131. \ \\
  132. Names: Siek, Jeremy, author. \\
  133. Title: Essentials of compilation : an incremental approach in Racket / Jeremy G. Siek. \\
  134. Description: Cambridge, Massachusetts : The MIT Press, [2023] | Includes bibliographical references and index. \\
  135. Identifiers: LCCN 2022015399 (print) | LCCN 2022015400 (ebook) | ISBN 9780262047760 (hardcover) | ISBN 9780262373272 (epub) | ISBN 9780262373289 (pdf) \\
  136. Subjects: LCSH: Racket (Computer program language) | Compilers (Computer programs) \\
  137. Classification: LCC QA76.73.R33 S54 2023 (print) | LCC QA76.73.R33 (ebook) | DDC 005.13/3--dc23/eng/20220705 \\
  138. LC record available at https://lccn.loc.gov/2022015399\\
  139. LC ebook record available at https://lccn.loc.gov/2022015400\\
  140. \ \\
  141. \fi}
  142. %
  143. {\if\edition\pythonEd
  144. Library of Congress Cataloging-in-Publication Data\\
  145. \ \\
  146. Names: Siek, Jeremy, author. \\
  147. Title: Essentials of compilation : an incremental approach in Python / Jeremy G. Siek. \\
  148. Description: Cambridge, Massachusetts : The MIT Press, [2023] | Includes
  149. bibliographical references and index. \\
  150. Identifiers: LCCN 2022043053 (print) | LCCN 2022043054 (ebook) | ISBN
  151. 9780262048248 | ISBN 9780262375542 (epub) | ISBN 9780262375559 (pdf) \\
  152. Subjects: LCSH: Compilers (Computer programs) | Python (Computer program
  153. language) | Programming languages (Electronic computers) | Computer
  154. programming. \\
  155. Classification: LCC QA76.76.C65 S54 2023 (print) | LCC QA76.76.C65
  156. (ebook) | DDC 005.4/53--dc23/eng/20221117 \\
  157. LC record available at https://lccn.loc.gov/2022043053\\
  158. LC ebook record available at https://lccn.loc.gov/2022043054 \\
  159. \ \\
  160. \fi}
  161. 10 9 8 7 6 5 4 3 2 1
  162. %% Jeremy G. Siek. Available for free viewing
  163. %% or personal downloading under the
  164. %% \href{https://creativecommons.org/licenses/by-nc-nd/2.0/uk/}{CC-BY-NC-ND}
  165. %% license.
  166. %% Copyright in this monograph has been licensed exclusively to The MIT
  167. %% Press, \url{http://mitpress.mit.edu}, which will be releasing the final
  168. %% version to the public in 2022. All inquiries regarding rights should
  169. %% be addressed to The MIT Press, Rights and Permissions Department.
  170. %% \textcopyright\ [YEAR] Massachusetts Institute of Technology
  171. %% All rights reserved. No part of this book may be reproduced in any
  172. %% form by any electronic or mechanical means (including photocopying,
  173. %% recording, or information storage and retrieval) without permission in
  174. %% writing from the publisher.
  175. %% This book was set in LaTeX by Jeremy G. Siek. Printed and bound in the
  176. %% United States of America.
  177. %% Library of Congress Cataloging-in-Publication Data is available.
  178. %% ISBN:
  179. %% 10\quad9\quad8\quad7\quad6\quad5\quad4\quad3\quad2\quad1
  180. \end{copyrightpage}
  181. \dedication{This book is dedicated to Katie, my partner in everything,
  182. my children, who grew up during the writing of this book, and the
  183. programming language students at Indiana University, whose
  184. thoughtful questions made this a better book.}
  185. %% \begin{epigraphpage}
  186. %% \epigraph{First Epigraph line goes here}{Mention author name if any,
  187. %% \textit{Book Name if any}}
  188. %% \epigraph{Second Epigraph line goes here}{Mention author name if any}
  189. %% \end{epigraphpage}
  190. \tableofcontents
  191. %\listoffigures
  192. %\listoftables
  193. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  194. \chapter*{Preface}
  195. \addcontentsline{toc}{fmbm}{Preface}
  196. There is a magical moment when a programmer presses the \emph{run}
  197. button and the software begins to execute. Somehow a program written
  198. in a high-level language is running on a computer that is capable only
  199. of shuffling bits. Here we reveal the wizardry that makes that moment
  200. possible. Beginning with the groundbreaking work of Backus and
  201. colleagues in the 1950s, computer scientists developed techniques for
  202. constructing programs called \emph{compilers} that automatically
  203. translate high-level programs into machine code.
  204. We take you on a journey through constructing your own compiler for a
  205. small but powerful language. Along the way we explain the essential
  206. concepts, algorithms, and data structures that underlie compilers. We
  207. develop your understanding of how programs are mapped onto computer
  208. hardware, which is helpful in reasoning about properties at the
  209. junction of hardware and software, such as execution time, software
  210. errors, and security vulnerabilities. For those interested in
  211. pursuing compiler construction as a career, our goal is to provide a
  212. stepping-stone to advanced topics such as just-in-time compilation,
  213. program analysis, and program optimization. For those interested in
  214. designing and implementing programming languages, we connect language
  215. design choices to their impact on the compiler and the generated code.
  216. A compiler is typically organized as a sequence of stages that
  217. progressively translate a program to the code that runs on
  218. hardware. We take this approach to the extreme by partitioning our
  219. compiler into a large number of \emph{nanopasses}, each of which
  220. performs a single task. This enables the testing of each pass in
  221. isolation and focuses our attention, making the compiler far easier to
  222. understand.
  223. The most familiar approach to describing compilers is to dedicate each
  224. chapter to one pass. The problem with that approach is that it
  225. obfuscates how language features motivate design choices in a
  226. compiler. We instead take an \emph{incremental} approach in which we
  227. build a complete compiler in each chapter, starting with a small input
  228. language that includes only arithmetic and variables. We add new
  229. language features in subsequent chapters, extending the compiler as
  230. necessary.
  231. Our choice of language features is designed to elicit fundamental
  232. concepts and algorithms used in compilers.
  233. \begin{itemize}
  234. \item We begin with integer arithmetic and local variables in
  235. chapters~\ref{ch:trees-recur} and \ref{ch:Lvar}, where we introduce
  236. the fundamental tools of compiler construction: \emph{abstract
  237. syntax trees} and \emph{recursive functions}.
  238. {\if\edition\pythonEd\pythonColor
  239. \item In chapter~\ref{ch:parsing} we learn how to use the Lark
  240. parser framework to create a parser for the language of integer
  241. arithmetic and local variables. We learn about the parsing
  242. algorithms inside Lark, including Earley and LALR(1).
  243. %
  244. \fi}
  245. \item In chapter~\ref{ch:register-allocation-Lvar} we apply
  246. \emph{graph coloring} to assign variables to machine registers.
  247. \item Chapter~\ref{ch:Lif} adds conditional expressions, which
  248. motivates an elegant recursive algorithm for translating them into
  249. conditional \code{goto} statements.
  250. \item Chapter~\ref{ch:Lwhile} adds loops\racket{ and mutable
  251. variables}. This elicits the need for \emph{dataflow
  252. analysis} in the register allocator.
  253. \item Chapter~\ref{ch:Lvec} adds heap-allocated tuples, motivating
  254. \emph{garbage collection}.
  255. \item Chapter~\ref{ch:Lfun} adds functions as first-class values
  256. without lexical scoping, similar to functions in the C programming
  257. language~\citep{Kernighan:1988nx}. The reader learns about the
  258. procedure call stack and \emph{calling conventions} and how they interact
  259. with register allocation and garbage collection. The chapter also
  260. describes how to generate efficient tail calls.
  261. \item Chapter~\ref{ch:Llambda} adds anonymous functions with lexical
  262. scoping, that is, \emph{lambda} expressions. The reader learns about
  263. \emph{closure conversion}, in which lambdas are translated into a
  264. combination of functions and tuples.
  265. % Chapter about classes and objects?
  266. \item Chapter~\ref{ch:Ldyn} adds \emph{dynamic typing}. Prior to this
  267. point the input languages are statically typed. The reader extends
  268. the statically typed language with an \code{Any} type that serves
  269. as a target for compiling the dynamically typed language.
  270. %% {\if\edition\pythonEd\pythonColor
  271. %% \item Chapter~\ref{ch:Lobject} adds support for \emph{objects} and
  272. %% \emph{classes}.
  273. %% \fi}
  274. \item Chapter~\ref{ch:Lgrad} uses the \code{Any} type introduced in
  275. chapter~\ref{ch:Ldyn} to implement a \emph{gradually typed language}
  276. in which different regions of a program may be static or dynamically
  277. typed. The reader implements runtime support for \emph{proxies} that
  278. allow values to safely move between regions.
  279. \item Chapter~\ref{ch:Lpoly} adds \emph{generics} with autoboxing,
  280. leveraging the \code{Any} type and type casts developed in chapters
  281. \ref{ch:Ldyn} and \ref{ch:Lgrad}.
  282. \end{itemize}
  283. There are many language features that we do not include. Our choices
  284. balance the incidental complexity of a feature versus the fundamental
  285. concepts that it exposes. For example, we include tuples and not
  286. records because although they both elicit the study of heap allocation and
  287. garbage collection, records come with more incidental complexity.
  288. Since 2009, drafts of this book have served as the textbook for
  289. sixteen-week compiler courses for upper-level undergraduates and
  290. first-year graduate students at the University of Colorado and Indiana
  291. University.
  292. %
  293. Students come into the course having learned the basics of
  294. programming, data structures and algorithms, and discrete
  295. mathematics.
  296. %
  297. At the beginning of the course, students form groups of two to four
  298. people. The groups complete approximately one chapter every two
  299. weeks, starting with chapter~\ref{ch:Lvar} and including chapters
  300. according to the students interests while respecting the dependencies
  301. between chapters shown in
  302. figure~\ref{fig:chapter-dependences}. Chapter~\ref{ch:Lfun}
  303. (functions) depends on chapter~\ref{ch:Lvec} (tuples) only in the
  304. implementation of efficient tail calls.
  305. %
  306. The last two weeks of the course involve a final project in which
  307. students design and implement a compiler extension of their choosing.
  308. The last few chapters can be used in support of these projects. Many
  309. chapters include a challenge problem that we assign to the graduate
  310. students.
  311. For compiler courses at universities on the quarter system
  312. (about ten weeks in length), we recommend completing the course
  313. through chapter~\ref{ch:Lvec} or chapter~\ref{ch:Lfun} and providing
  314. some scaffolding code to the students for each compiler pass.
  315. %
  316. The course can be adapted to emphasize functional languages by
  317. skipping chapter~\ref{ch:Lwhile} (loops) and including
  318. chapter~\ref{ch:Llambda} (lambda). The course can be adapted to
  319. dynamically typed languages by including chapter~\ref{ch:Ldyn}.
  320. %
  321. %% \python{A course that emphasizes object-oriented languages would
  322. %% include Chapter~\ref{ch:Lobject}.}
  323. This book has been used in compiler courses at California Polytechnic
  324. State University, Portland State University, Rose–Hulman Institute of
  325. Technology, University of Freiburg, University of Massachusetts
  326. Lowell, and the University of Vermont.
  327. \begin{figure}[tp]
  328. \begin{tcolorbox}[colback=white]
  329. {\if\edition\racketEd
  330. \begin{tikzpicture}[baseline=(current bounding box.center)]
  331. \node (C1) at (0,1.5) {\small Ch.~\ref{ch:trees-recur} Preliminaries};
  332. \node (C2) at (4,1.5) {\small Ch.~\ref{ch:Lvar} Variables};
  333. \node (C3) at (8,1.5) {\small Ch.~\ref{ch:register-allocation-Lvar} Registers};
  334. \node (C4) at (0,0) {\small Ch.~\ref{ch:Lif} Conditionals};
  335. \node (C5) at (4,0) {\small Ch.~\ref{ch:Lvec} Tuples};
  336. \node (C6) at (8,0) {\small Ch.~\ref{ch:Lfun} Functions};
  337. \node (C9) at (0,-1.5) {\small Ch.~\ref{ch:Lwhile} Loops};
  338. \node (C8) at (4,-1.5) {\small Ch.~\ref{ch:Ldyn} Dynamic};
  339. \node (C7) at (8,-1.5) {\small Ch.~\ref{ch:Llambda} Lambda};
  340. \node (C10) at (4,-3) {\small Ch.~\ref{ch:Lgrad} Gradual Typing};
  341. \node (C11) at (8,-3) {\small Ch.~\ref{ch:Lpoly} Generics};
  342. \path[->] (C1) edge [above] node {} (C2);
  343. \path[->] (C2) edge [above] node {} (C3);
  344. \path[->] (C3) edge [above] node {} (C4);
  345. \path[->] (C4) edge [above] node {} (C5);
  346. \path[->,style=dotted] (C5) edge [above] node {} (C6);
  347. \path[->] (C5) edge [above] node {} (C7);
  348. \path[->] (C6) edge [above] node {} (C7);
  349. \path[->] (C4) edge [above] node {} (C8);
  350. \path[->] (C4) edge [above] node {} (C9);
  351. \path[->] (C7) edge [above] node {} (C10);
  352. \path[->] (C8) edge [above] node {} (C10);
  353. \path[->] (C10) edge [above] node {} (C11);
  354. \end{tikzpicture}
  355. \fi}
  356. {\if\edition\pythonEd\pythonColor
  357. \begin{tikzpicture}[baseline=(current bounding box.center)]
  358. \node (Prelim) at (0,1.5) {\small Ch.~\ref{ch:trees-recur} Preliminaries};
  359. \node (Var) at (4,1.5) {\small Ch.~\ref{ch:Lvar} Variables};
  360. \node (Parse) at (8,1.5) {\small Ch.~\ref{ch:parsing} Parsing};
  361. \node (Reg) at (0,0) {\small Ch.~\ref{ch:register-allocation-Lvar} Registers};
  362. \node (Cond) at (4,0) {\small Ch.~\ref{ch:Lif} Conditionals};
  363. \node (Loop) at (8,0) {\small Ch.~\ref{ch:Lwhile} Loops};
  364. \node (Fun) at (0,-1.5) {\small Ch.~\ref{ch:Lfun} Functions};
  365. \node (Tuple) at (4,-1.5) {\small Ch.~\ref{ch:Lvec} Tuples};
  366. \node (Dyn) at (8,-1.5) {\small Ch.~\ref{ch:Ldyn} Dynamic};
  367. % \node (CO) at (0,-3) {\small Ch.~\ref{ch:Lobject} Objects};
  368. \node (Lam) at (0,-3) {\small Ch.~\ref{ch:Llambda} Lambda};
  369. \node (Gradual) at (4,-3) {\small Ch.~\ref{ch:Lgrad} Gradual Typing};
  370. \node (Generic) at (8,-3) {\small Ch.~\ref{ch:Lpoly} Generics};
  371. \path[->] (Prelim) edge [above] node {} (Var);
  372. \path[->] (Var) edge [above] node {} (Reg);
  373. \path[->] (Var) edge [above] node {} (Parse);
  374. \path[->] (Reg) edge [above] node {} (Cond);
  375. \path[->] (Cond) edge [above] node {} (Tuple);
  376. \path[->,style=dotted] (Tuple) edge [above] node {} (Fun);
  377. \path[->] (Cond) edge [above] node {} (Fun);
  378. \path[->] (Tuple) edge [above] node {} (Lam);
  379. \path[->] (Fun) edge [above] node {} (Lam);
  380. \path[->] (Cond) edge [above] node {} (Dyn);
  381. \path[->] (Cond) edge [above] node {} (Loop);
  382. \path[->] (Lam) edge [above] node {} (Gradual);
  383. \path[->] (Dyn) edge [above] node {} (Gradual);
  384. % \path[->] (Dyn) edge [above] node {} (CO);
  385. \path[->] (Gradual) edge [above] node {} (Generic);
  386. \end{tikzpicture}
  387. \fi}
  388. \end{tcolorbox}
  389. \caption{Diagram of chapter dependencies.}
  390. \label{fig:chapter-dependences}
  391. \end{figure}
  392. \racket{We use the \href{https://racket-lang.org/}{Racket} language both for
  393. the implementation of the compiler and for the input language, so the
  394. reader should be proficient with Racket or Scheme. There are many
  395. excellent resources for learning Scheme and
  396. Racket~\citep{Dybvig:1987aa,Abelson:1996uq,Friedman:1996aa,Felleisen:2001aa,Felleisen:2013aa,Flatt:2014aa}.}
  397. %
  398. \python{This edition of the book uses \href{https://www.python.org/}{Python}
  399. both for the implementation of the compiler and for the input language, so the
  400. reader should be proficient with Python. There are many
  401. excellent resources for learning Python~\citep{Lutz:2013vp,Barry:2016vj,Sweigart:2019vn,Matthes:2019vs}.}%
  402. %
  403. The support code for this book is in the GitHub repository at
  404. the following location:
  405. \begin{center}\small\texttt
  406. https://github.com/IUCompilerCourse/
  407. \end{center}
  408. The compiler targets x86 assembly language~\citep{Intel:2015aa}, so it
  409. is helpful but not necessary for the reader to have taken a computer
  410. systems course~\citep{Bryant:2010aa}. We introduce the parts of x86-64
  411. assembly language that are needed in the compiler.
  412. %
  413. We follow the System V calling
  414. conventions~\citep{Bryant:2005aa,Matz:2013aa}, so the assembly code
  415. that we generate works with the runtime system (written in C) when it
  416. is compiled using the GNU C compiler (\code{gcc}) on Linux and MacOS
  417. operating systems on Intel hardware.
  418. %
  419. On the Windows operating system, \code{gcc} uses the Microsoft x64
  420. calling convention~\citep{Microsoft:2018aa,Microsoft:2020aa}. So the
  421. assembly code that we generate does \emph{not} work with the runtime
  422. system on Windows. One workaround is to use a virtual machine with
  423. Linux as the guest operating system.
  424. \section*{Acknowledgments}
  425. The tradition of compiler construction at Indiana University goes back
  426. to research and courses on programming languages by Daniel Friedman in
  427. the 1970s and 1980s. One of his students, Kent Dybvig, implemented
  428. Chez Scheme~\citep{Dybvig:2006aa}, an efficient, production-quality
  429. compiler for Scheme. Throughout the 1990s and 2000s, Dybvig taught
  430. the compiler course and continued the development of Chez Scheme.
  431. %
  432. The compiler course evolved to incorporate novel pedagogical ideas
  433. while also including elements of real-world compilers. One of
  434. Friedman's ideas was to split the compiler into many small
  435. passes. Another idea, called ``the game,'' was to test the code
  436. generated by each pass using interpreters.
  437. Dybvig, with help from his students Dipanwita Sarkar and Andrew Keep,
  438. developed infrastructure to support this approach and evolved the
  439. course to use even smaller
  440. nanopasses~\citep{Sarkar:2004fk,Keep:2012aa}. Many of the compiler
  441. design decisions in this book are inspired by the assignment
  442. descriptions of \citet{Dybvig:2010aa}. In the mid 2000s, a student of
  443. Dybvig named Abdulaziz Ghuloum observed that the front-to-back
  444. organization of the course made it difficult for students to
  445. understand the rationale for the compiler design. Ghuloum proposed the
  446. incremental approach~\citep{Ghuloum:2006bh} on which this book is
  447. based.
  448. I thank the many students who served as teaching assistants for the
  449. compiler course at IU including Carl Factora, Ryan Scott, Cameron
  450. Swords, and Chris Wailes. I thank Andre Kuhlenschmidt for work on the
  451. garbage collector and x86 interpreter, Michael Vollmer for work on
  452. efficient tail calls, and Michael Vitousek for help with the first
  453. offering of the incremental compiler course at IU.
  454. I thank professors Bor-Yuh Chang, John Clements, Jay McCarthy, Joseph
  455. Near, Ryan Newton, Nate Nystrom, Peter Thiemann, Andrew Tolmach, and
  456. Michael Wollowski for teaching courses based on drafts of this book
  457. and for their feedback. I thank the National Science Foundation for
  458. the grants that helped to support this work: Grant Numbers 1518844,
  459. 1763922, and 1814460.
  460. I thank Ronald Garcia for helping me survive Dybvig's compiler
  461. course in the early 2000s and especially for finding the bug that
  462. sent our garbage collector on a wild goose chase!
  463. \mbox{}\\
  464. \noindent Jeremy G. Siek \\
  465. Bloomington, Indiana
  466. \mainmatter
  467. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  468. \chapter{Preliminaries}
  469. \label{ch:trees-recur}
  470. \setcounter{footnote}{0}
  471. In this chapter we introduce the basic tools needed to implement a
  472. compiler. Programs are typically input by a programmer as text, that
  473. is, a sequence of characters. The program-as-text representation is
  474. called \emph{concrete syntax}. We use concrete syntax to concisely
  475. write down and talk about programs. Inside the compiler, we use
  476. \emph{abstract syntax trees} (ASTs) to represent programs in a way
  477. that efficiently supports the operations that the compiler needs to
  478. perform.\index{subject}{concrete syntax}\index{subject}{abstract
  479. syntax}\index{subject}{abstract syntax
  480. tree}\index{subject}{AST}\index{subject}{program}
  481. The process of translating concrete syntax to abstract syntax is
  482. called \emph{parsing}\index{subject}{parsing}\python{\ and is studied in
  483. chapter~\ref{ch:parsing}}.
  484. \racket{This book does not cover the theory and implementation of parsing.
  485. We refer the readers interested in parsing to the thorough treatment
  486. of parsing by \citet{Aho:2006wb}. }%
  487. %
  488. \racket{A parser is provided in the support code for translating from
  489. concrete to abstract syntax.}%
  490. %
  491. \python{For now we use the \code{parse} function in Python's
  492. \code{ast} module to translate from concrete to abstract syntax.}
  493. ASTs can be represented inside the compiler in many different ways,
  494. depending on the programming language used to write the compiler.
  495. %
  496. \racket{We use Racket's
  497. \href{https://docs.racket-lang.org/guide/define-struct.html}{\code{struct}}
  498. feature to represent ASTs (section~\ref{sec:ast}).}
  499. %
  500. \python{We use Python classes and objects to represent ASTs, especially the
  501. classes defined in the standard \code{ast} module for the Python
  502. source language.}
  503. %
  504. We use grammars to define the abstract syntax of programming languages
  505. (section~\ref{sec:grammar}) and pattern matching to inspect individual
  506. nodes in an AST (section~\ref{sec:pattern-matching}). We use
  507. recursive functions to construct and deconstruct ASTs
  508. (section~\ref{sec:recursion}). This chapter provides a brief
  509. introduction to these components.
  510. \racket{\index{subject}{struct}}
  511. \python{\index{subject}{class}\index{subject}{object}}
  512. \section{Abstract Syntax Trees}
  513. \label{sec:ast}
  514. Compilers use abstract syntax trees to represent programs because they
  515. often need to ask questions such as, for a given part of a program,
  516. what kind of language feature is it? What are its subparts? Consider
  517. the program on the left and the diagram of its AST on the
  518. right~\eqref{eq:arith-prog}. This program is an addition operation
  519. that has two subparts, a \racket{read}\python{input} operation and a
  520. negation. The negation has another subpart, the integer constant
  521. \code{8}. By using a tree to represent the program, we can easily
  522. follow the links to go from one part of a program to its subparts.
  523. \begin{center}
  524. \begin{minipage}{0.4\textwidth}
  525. {\if\edition\racketEd
  526. \begin{lstlisting}
  527. (+ (read) (- 8))
  528. \end{lstlisting}
  529. \fi}
  530. {\if\edition\pythonEd\pythonColor
  531. \begin{lstlisting}
  532. input_int() + -8
  533. \end{lstlisting}
  534. \fi}
  535. \end{minipage}
  536. \begin{minipage}{0.4\textwidth}
  537. \begin{equation}
  538. \begin{tikzpicture}
  539. \node[draw] (plus) at (0 , 0) {\key{+}};
  540. \node[draw] (read) at (-1, -1) {\racket{\footnotesize\key{read}}\python{\key{input\_int()}}};
  541. \node[draw] (minus) at (1 , -1) {$\key{-}$};
  542. \node[draw] (8) at (1 , -2) {\key{8}};
  543. \draw[->] (plus) to (read);
  544. \draw[->] (plus) to (minus);
  545. \draw[->] (minus) to (8);
  546. \end{tikzpicture}
  547. \label{eq:arith-prog}
  548. \end{equation}
  549. \end{minipage}
  550. \end{center}
  551. We use the standard terminology for trees to describe ASTs: each
  552. rectangle above is called a \emph{node}. The arrows connect a node to its
  553. \emph{children}, which are also nodes. The top-most node is the
  554. \emph{root}. Every node except for the root has a \emph{parent} (the
  555. node of which it is the child). If a node has no children, it is a
  556. \emph{leaf} node; otherwise it is an \emph{internal} node.
  557. \index{subject}{node}
  558. \index{subject}{children}
  559. \index{subject}{root}
  560. \index{subject}{parent}
  561. \index{subject}{leaf}
  562. \index{subject}{internal node}
  563. %% Recall that an \emph{symbolic expression} (S-expression) is either
  564. %% \begin{enumerate}
  565. %% \item an atom, or
  566. %% \item a pair of two S-expressions, written $(e_1 \key{.} e_2)$,
  567. %% where $e_1$ and $e_2$ are each an S-expression.
  568. %% \end{enumerate}
  569. %% An \emph{atom} can be a symbol, such as \code{`hello}, a number, the
  570. %% null value \code{'()}, etc. We can create an S-expression in Racket
  571. %% simply by writing a backquote (called a quasi-quote in Racket)
  572. %% followed by the textual representation of the S-expression. It is
  573. %% quite common to use S-expressions to represent a list, such as $a, b
  574. %% ,c$ in the following way:
  575. %% \begin{lstlisting}
  576. %% `(a . (b . (c . ())))
  577. %% \end{lstlisting}
  578. %% Each element of the list is in the first slot of a pair, and the
  579. %% second slot is either the rest of the list or the null value, to mark
  580. %% the end of the list. Such lists are so common that Racket provides
  581. %% special notation for them that removes the need for the periods
  582. %% and so many parenthesis:
  583. %% \begin{lstlisting}
  584. %% `(a b c)
  585. %% \end{lstlisting}
  586. %% The following expression creates an S-expression that represents AST
  587. %% \eqref{eq:arith-prog}.
  588. %% \begin{lstlisting}
  589. %% `(+ (read) (- 8))
  590. %% \end{lstlisting}
  591. %% When using S-expressions to represent ASTs, the convention is to
  592. %% represent each AST node as a list and to put the operation symbol at
  593. %% the front of the list. The rest of the list contains the children. So
  594. %% in the above case, the root AST node has operation \code{`+} and its
  595. %% two children are \code{`(read)} and \code{`(- 8)}, just as in the
  596. %% diagram \eqref{eq:arith-prog}.
  597. %% To build larger S-expressions one often needs to splice together
  598. %% several smaller S-expressions. Racket provides the comma operator to
  599. %% splice an S-expression into a larger one. For example, instead of
  600. %% creating the S-expression for AST \eqref{eq:arith-prog} all at once,
  601. %% we could have first created an S-expression for AST
  602. %% \eqref{eq:arith-neg8} and then spliced that into the addition
  603. %% S-expression.
  604. %% \begin{lstlisting}
  605. %% (define ast1.4 `(- 8))
  606. %% (define ast1_1 `(+ (read) ,ast1.4))
  607. %% \end{lstlisting}
  608. %% In general, the Racket expression that follows the comma (splice)
  609. %% can be any expression that produces an S-expression.
  610. {\if\edition\racketEd
  611. We define a Racket \code{struct} for each kind of node. For this
  612. chapter we require just two kinds of nodes: one for integer constants
  613. (aka literals\index{subject}{literals})
  614. and one for primitive operations. The following is the \code{struct}
  615. definition for integer constants.\footnote{All the AST structures are
  616. defined in the file \code{utilities.rkt} in the support code.}
  617. \begin{lstlisting}
  618. (struct Int (value))
  619. \end{lstlisting}
  620. An integer node contains just one thing: the integer value.
  621. We establish the convention that \code{struct} names, such
  622. as \code{Int}, are capitalized.
  623. To create an AST node for the integer $8$, we write \INT{8}.
  624. \begin{lstlisting}
  625. (define eight (Int 8))
  626. \end{lstlisting}
  627. We say that the value created by \INT{8} is an
  628. \emph{instance} of the
  629. \code{Int} structure.
  630. The following is the \code{struct} definition for primitive operations.
  631. \begin{lstlisting}
  632. (struct Prim (op args))
  633. \end{lstlisting}
  634. A primitive operation node includes an operator symbol \code{op} and a
  635. list of child arguments called \code{args}. For example, to create an
  636. AST that negates the number $8$, we write the following.
  637. \begin{lstlisting}
  638. (define neg-eight (Prim '- (list eight)))
  639. \end{lstlisting}
  640. Primitive operations may have zero or more children. The \code{read}
  641. operator has zero:
  642. \begin{lstlisting}
  643. (define rd (Prim 'read '()))
  644. \end{lstlisting}
  645. The addition operator has two children:
  646. \begin{lstlisting}
  647. (define ast1_1 (Prim '+ (list rd neg-eight)))
  648. \end{lstlisting}
  649. We have made a design choice regarding the \code{Prim} structure.
  650. Instead of using one structure for many different operations
  651. (\code{read}, \code{+}, and \code{-}), we could have instead defined a
  652. structure for each operation, as follows:
  653. \begin{lstlisting}
  654. (struct Read ())
  655. (struct Add (left right))
  656. (struct Neg (value))
  657. \end{lstlisting}
  658. The reason that we choose to use just one structure is that many parts
  659. of the compiler can use the same code for the different primitive
  660. operators, so we might as well just write that code once by using a
  661. single structure.
  662. %
  663. \fi}
  664. {\if\edition\pythonEd\pythonColor
  665. We use a Python \code{class} for each kind of node.
  666. The following is the class definition for
  667. constants (aka literals\index{subject}{literals})
  668. from the Python \code{ast} module.
  669. \begin{lstlisting}
  670. class Constant:
  671. def __init__(self, value):
  672. self.value = value
  673. \end{lstlisting}
  674. An integer constant node includes just one thing: the integer value.
  675. To create an AST node for the integer $8$, we write \INT{8}.
  676. \begin{lstlisting}
  677. eight = Constant(8)
  678. \end{lstlisting}
  679. We say that the value created by \INT{8} is an
  680. \emph{instance} of the \code{Constant} class.
  681. The following is the class definition for unary operators.
  682. \begin{lstlisting}
  683. class UnaryOp:
  684. def __init__(self, op, operand):
  685. self.op = op
  686. self.operand = operand
  687. \end{lstlisting}
  688. The specific operation is specified by the \code{op} parameter. For
  689. example, the class \code{USub} is for unary subtraction.
  690. (More unary operators are introduced in later chapters.) To create an AST that
  691. negates the number $8$, we write the following.
  692. \begin{lstlisting}
  693. neg_eight = UnaryOp(USub(), eight)
  694. \end{lstlisting}
  695. The call to the \code{input\_int} function is represented by the
  696. \code{Call} and \code{Name} classes.
  697. \begin{lstlisting}
  698. class Call:
  699. def __init__(self, func, args):
  700. self.func = func
  701. self.args = args
  702. class Name:
  703. def __init__(self, id):
  704. self.id = id
  705. \end{lstlisting}
  706. To create an AST node that calls \code{input\_int}, we write
  707. \begin{lstlisting}
  708. read = Call(Name('input_int'), [])
  709. \end{lstlisting}
  710. Finally, to represent the addition in \eqref{eq:arith-prog}, we use
  711. the \code{BinOp} class for binary operators.
  712. \begin{lstlisting}
  713. class BinOp:
  714. def __init__(self, left, op, right):
  715. self.op = op
  716. self.left = left
  717. self.right = right
  718. \end{lstlisting}
  719. Similar to \code{UnaryOp}, the specific operation is specified by the
  720. \code{op} parameter, which for now is just an instance of the
  721. \code{Add} class. So to create the AST
  722. node that adds negative eight to some user input, we write the following.
  723. \begin{lstlisting}
  724. ast1_1 = BinOp(read, Add(), neg_eight)
  725. \end{lstlisting}
  726. \fi}
  727. To compile a program such as \eqref{eq:arith-prog}, we need to know
  728. that the operation associated with the root node is addition and we
  729. need to be able to access its two
  730. children. \racket{Racket}\python{Python} provides pattern matching to
  731. support these kinds of queries, as we see in
  732. section~\ref{sec:pattern-matching}.
  733. We often write down the concrete syntax of a program even when we
  734. actually have in mind the AST, because the concrete syntax is more
  735. concise. We recommend that you always think of programs as abstract
  736. syntax trees.
  737. \section{Grammars}
  738. \label{sec:grammar}
  739. \index{subject}{integer}
  740. %\index{subject}{constant}
  741. A programming language can be thought of as a \emph{set} of programs.
  742. The set is infinite (that is, one can always create larger programs),
  743. so one cannot simply describe a language by listing all the
  744. programs in the language. Instead we write down a set of rules, a
  745. \emph{context-free grammar}, for building programs. Grammars are often used to
  746. define the concrete syntax of a language, but they can also be used to
  747. describe the abstract syntax. We write our rules in a variant of
  748. Backus-Naur form (BNF)~\citep{Backus:1960aa,Knuth:1964aa}.
  749. \index{subject}{Backus-Naur form}\index{subject}{BNF} As an example,
  750. we describe a small language, named \LangInt{}, that consists of
  751. integers and arithmetic operations.\index{subject}{grammar}
  752. \index{subject}{context-free grammar}
  753. The first grammar rule for the abstract syntax of \LangInt{} says that an
  754. instance of the \racket{\code{Int} structure}\python{\code{Constant} class} is an expression:
  755. \begin{equation}
  756. \Exp ::= \INT{\Int} \label{eq:arith-int}
  757. \end{equation}
  758. %
  759. Each rule has a left-hand side and a right-hand side.
  760. If you have an AST node that matches the
  761. right-hand side, then you can categorize it according to the
  762. left-hand side.
  763. %
  764. Symbols in typewriter font, such as \racket{\code{Int}}\python{\code{Constant}},
  765. are \emph{terminal} symbols and must literally appear in the program for the
  766. rule to be applicable.\index{subject}{terminal}
  767. %
  768. Our grammars do not mention \emph{white space}, that is, delimiter
  769. characters like spaces, tabs, and new lines. White space may be
  770. inserted between symbols for disambiguation and to improve
  771. readability. \index{subject}{white space}
  772. %
  773. A name such as $\Exp$ that is defined by the grammar rules is a
  774. \emph{nonterminal}. \index{subject}{nonterminal}
  775. %
  776. The name $\Int$ is also a nonterminal, but instead of defining it with
  777. a grammar rule, we define it with the following explanation. An
  778. $\Int$ is a sequence of decimals ($0$ to $9$), possibly starting with
  779. $-$ (for negative integers), such that the sequence of decimals
  780. %
  781. \racket{represents an integer in the range $-2^{62}$ to $2^{62}-1$. This
  782. enables the representation of integers using 63 bits, which simplifies
  783. several aspects of compilation.
  784. %
  785. Thus, these integers correspond to the Racket \texttt{fixnum}
  786. datatype on a 64-bit machine.}
  787. %
  788. \python{represents an integer in the range $-2^{63}$ to $2^{63}-1$. This
  789. enables the representation of integers using 64 bits, which simplifies
  790. several aspects of compilation. In contrast, integers in Python have
  791. unlimited precision, but the techniques needed to handle unlimited
  792. precision fall outside the scope of this book.}
  793. The second grammar rule is the \READOP{} operation, which receives an
  794. input integer from the user of the program.
  795. \begin{equation}
  796. \Exp ::= \READ{} \label{eq:arith-read}
  797. \end{equation}
  798. The third rule categorizes the negation of an $\Exp$ node as an
  799. $\Exp$.
  800. \begin{equation}
  801. \Exp ::= \NEG{\Exp} \label{eq:arith-neg}
  802. \end{equation}
  803. We can apply these rules to categorize the ASTs that are in the
  804. \LangInt{} language. For example, by rule \eqref{eq:arith-int},
  805. \INT{8} is an $\Exp$, and then by rule \eqref{eq:arith-neg} the
  806. following AST is an $\Exp$.
  807. \begin{center}
  808. \begin{minipage}{0.5\textwidth}
  809. \NEG{\INT{\code{8}}}
  810. \end{minipage}
  811. \begin{minipage}{0.25\textwidth}
  812. \begin{equation}
  813. \begin{tikzpicture}
  814. \node[draw, circle] (minus) at (0, 0) {$\text{--}$};
  815. \node[draw, circle] (8) at (0, -1.2) {$8$};
  816. \draw[->] (minus) to (8);
  817. \end{tikzpicture}
  818. \label{eq:arith-neg8}
  819. \end{equation}
  820. \end{minipage}
  821. \end{center}
  822. The next two grammar rules are for addition and subtraction expressions:
  823. \begin{align}
  824. \Exp &::= \ADD{\Exp}{\Exp} \label{eq:arith-add}\\
  825. \Exp &::= \SUB{\Exp}{\Exp} \label{eq:arith-sub}
  826. \end{align}
  827. We can now justify that the AST \eqref{eq:arith-prog} is an $\Exp$ in
  828. \LangInt{}. We know that \READ{} is an $\Exp$ by rule
  829. \eqref{eq:arith-read}, and we have already categorized
  830. \NEG{\INT{\code{8}}} as an $\Exp$, so we apply rule \eqref{eq:arith-add}
  831. to show that
  832. \[
  833. \ADD{\READ{}}{\NEG{\INT{\code{8}}}}
  834. \]
  835. is an $\Exp$ in the \LangInt{} language.
  836. If you have an AST for which these rules do not apply, then the
  837. AST is not in \LangInt{}. For example, the program \racket{\code{(*
  838. (read) 8)}} \python{\code{input\_int() * 8}} is not in \LangInt{}
  839. because there is no rule for the \key{*} operator. Whenever we
  840. define a language with a grammar, the language includes only those
  841. programs that are justified by the grammar rules.
  842. {\if\edition\pythonEd\pythonColor
  843. The language \LangInt{} includes a second nonterminal $\Stmt$ for statements.
  844. There is a statement for printing the value of an expression
  845. \[
  846. \Stmt{} ::= \PRINT{\Exp}
  847. \]
  848. and a statement that evaluates an expression but ignores the result.
  849. \[
  850. \Stmt{} ::= \EXPR{\Exp}
  851. \]
  852. \fi}
  853. {\if\edition\racketEd
  854. The last grammar rule for \LangInt{} states that there is a
  855. \code{Program} node to mark the top of the whole program:
  856. \[
  857. \LangInt{} ::= \PROGRAM{\code{\textquotesingle()}}{\Exp}
  858. \]
  859. The \code{Program} structure is defined as follows:
  860. \begin{lstlisting}
  861. (struct Program (info body))
  862. \end{lstlisting}
  863. where \code{body} is an expression. In further chapters, the \code{info}
  864. part is used to store auxiliary information, but for now it is
  865. just the empty list.
  866. \fi}
  867. {\if\edition\pythonEd\pythonColor
  868. The last grammar rule for \LangInt{} states that there is a
  869. \code{Module} node to mark the top of the whole program:
  870. \[
  871. \LangInt{} ::= \PROGRAM{}{\Stmt^{*}}
  872. \]
  873. The asterisk $*$ indicates a list of the preceding grammar item, in
  874. this case a list of statements.
  875. %
  876. The \code{Module} class is defined as follows:
  877. \begin{lstlisting}
  878. class Module:
  879. def __init__(self, body):
  880. self.body = body
  881. \end{lstlisting}
  882. where \code{body} is a list of statements.
  883. \fi}
  884. It is common to have many grammar rules with the same left-hand side
  885. but different right-hand sides, such as the rules for $\Exp$ in the
  886. grammar of \LangInt{}. As shorthand, a vertical bar can be used to
  887. combine several right-hand sides into a single rule.
  888. The concrete syntax for \LangInt{} is shown in
  889. figure~\ref{fig:r0-concrete-syntax} and the abstract syntax for
  890. \LangInt{} is shown in figure~\ref{fig:r0-syntax}. %
  891. %
  892. \racket{The \code{read-program} function provided in
  893. \code{utilities.rkt} of the support code reads a program from a file
  894. (the sequence of characters in the concrete syntax of Racket) and
  895. parses it into an abstract syntax tree. Refer to the description of
  896. \code{read-program} in appendix~\ref{appendix:utilities} for more
  897. details.}
  898. %
  899. \python{We recommend using the \code{parse} function in Python's
  900. \code{ast} module to convert the concrete syntax into an abstract
  901. syntax tree.}
  902. \newcommand{\LintGrammarRacket}{
  903. \begin{array}{rcl}
  904. \Type &::=& \key{Integer} \\
  905. \Exp{} &::=& \Int{} \MID \CREAD \MID \CNEG{\Exp} \MID \CADD{\Exp}{\Exp}
  906. \MID \CSUB{\Exp}{\Exp}
  907. \end{array}
  908. }
  909. \newcommand{\LintASTRacket}{
  910. \begin{array}{rcl}
  911. \Type &::=& \key{Integer} \\
  912. \Exp{} &::=& \INT{\Int} \MID \READ{} \\
  913. &\MID& \NEG{\Exp} \MID \ADD{\Exp}{\Exp} \MID \SUB{\Exp}{\Exp}
  914. \end{array}
  915. }
  916. \newcommand{\LintGrammarPython}{
  917. \begin{array}{rcl}
  918. \Exp &::=& \Int \MID \key{input\_int}\LP\RP \MID \key{-}\;\Exp \MID \Exp \; \key{+} \; \Exp \MID \Exp \; \key{-} \; \Exp \MID \LP\Exp\RP \\
  919. \Stmt &::=& \key{print}\LP \Exp \RP \MID \Exp
  920. \end{array}
  921. }
  922. \newcommand{\LintASTPython}{
  923. \begin{array}{rcl}
  924. \Exp{} &::=& \INT{\Int} \MID \READ{} \\
  925. &\MID& \UNIOP{\key{USub()}}{\Exp} \MID \BINOP{\Exp}{\key{Add()}}{\Exp}\\
  926. &\MID& \BINOP{\Exp}{\key{Sub()}}{\Exp}\\
  927. \Stmt{} &::=& \PRINT{\Exp} \MID \EXPR{\Exp}
  928. \end{array}
  929. }
  930. \begin{figure}[tp]
  931. \begin{tcolorbox}[colback=white]
  932. {\if\edition\racketEd
  933. \[
  934. \begin{array}{l}
  935. \LintGrammarRacket \\
  936. \begin{array}{rcl}
  937. \LangInt{} &::=& \Exp
  938. \end{array}
  939. \end{array}
  940. \]
  941. \fi}
  942. {\if\edition\pythonEd\pythonColor
  943. \[
  944. \begin{array}{l}
  945. \LintGrammarPython \\
  946. \begin{array}{rcl}
  947. \LangInt{} &::=& \Stmt^{*}
  948. \end{array}
  949. \end{array}
  950. \]
  951. \fi}
  952. \end{tcolorbox}
  953. \caption{The concrete syntax of \LangInt{}.}
  954. \label{fig:r0-concrete-syntax}
  955. \index{subject}{Lint@\LangInt{} concrete syntax}
  956. \end{figure}
  957. \begin{figure}[tp]
  958. \begin{tcolorbox}[colback=white]
  959. {\if\edition\racketEd
  960. \[
  961. \begin{array}{l}
  962. \LintASTRacket{} \\
  963. \begin{array}{rcl}
  964. \LangInt{} &::=& \PROGRAM{\code{'()}}{\Exp}
  965. \end{array}
  966. \end{array}
  967. \]
  968. \fi}
  969. {\if\edition\pythonEd\pythonColor
  970. \[
  971. \begin{array}{l}
  972. \LintASTPython\\
  973. \begin{array}{rcl}
  974. \LangInt{} &::=& \PROGRAM{}{\Stmt^{*}}
  975. \end{array}
  976. \end{array}
  977. \]
  978. \fi}
  979. \end{tcolorbox}
  980. \python{
  981. \index{subject}{Constant@\texttt{Constant}}
  982. \index{subject}{UnaryOp@\texttt{UnaryOp}}
  983. \index{subject}{USub@\texttt{USub}}
  984. \index{subject}{inputint@\texttt{input\_int}}
  985. \index{subject}{Call@\texttt{Call}}
  986. \index{subject}{Name@\texttt{Name}}
  987. \index{subject}{BinOp@\texttt{BinOp}}
  988. \index{subject}{Add@\texttt{Add}}
  989. \index{subject}{Sub@\texttt{Sub}}
  990. \index{subject}{print@\texttt{print}}
  991. \index{subject}{Expr@\texttt{Expr}}
  992. \index{subject}{Module@\texttt{Module}}
  993. }
  994. \caption{The abstract syntax of \LangInt{}.}
  995. \label{fig:r0-syntax}
  996. \index{subject}{Lint@\LangInt{} abstract syntax}
  997. \end{figure}
  998. \section{Pattern Matching}
  999. \label{sec:pattern-matching}
  1000. As mentioned in section~\ref{sec:ast}, compilers often need to access
  1001. the parts of an AST node. \racket{Racket}\python{As of version 3.10, Python}
  1002. provides the \texttt{match} feature to access the parts of a value.
  1003. Consider the following example: \index{subject}{match} \index{subject}{pattern matching}
  1004. \begin{center}
  1005. \begin{minipage}{1.0\textwidth}
  1006. {\if\edition\racketEd
  1007. \begin{lstlisting}
  1008. (match ast1_1
  1009. [(Prim op (list child1 child2))
  1010. (print op)])
  1011. \end{lstlisting}
  1012. \fi}
  1013. {\if\edition\pythonEd\pythonColor
  1014. \begin{lstlisting}
  1015. match ast1_1:
  1016. case BinOp(child1, op, child2):
  1017. print(op)
  1018. \end{lstlisting}
  1019. \fi}
  1020. \end{minipage}
  1021. \end{center}
  1022. {\if\edition\racketEd
  1023. %
  1024. In this example, the \texttt{match} form checks whether the AST
  1025. \eqref{eq:arith-prog} is a binary operator and binds its parts to the
  1026. three pattern variables \texttt{op}, \texttt{child1}, and
  1027. \texttt{child2}. In general, a match clause consists of a
  1028. \emph{pattern} and a \emph{body}.\index{subject}{pattern} Patterns are
  1029. recursively defined to be a pattern variable, a structure name
  1030. followed by a pattern for each of the structure's arguments, or an
  1031. S-expression (a symbol, list, etc.). (See chapter 12 of The Racket
  1032. Guide\footnote{See \url{https://docs.racket-lang.org/guide/match.html}.}
  1033. and chapter 9 of The Racket
  1034. Reference\footnote{See \url{https://docs.racket-lang.org/reference/match.html}.}
  1035. for complete descriptions of \code{match}.)
  1036. %
  1037. The body of a match clause may contain arbitrary Racket code. The
  1038. pattern variables can be used in the scope of the body, such as
  1039. \code{op} in \code{(print op)}.
  1040. %
  1041. \fi}
  1042. %
  1043. %
  1044. {\if\edition\pythonEd\pythonColor
  1045. %
  1046. In the example above, the \texttt{match} form checks whether the AST
  1047. \eqref{eq:arith-prog} is a binary operator and binds its parts to the
  1048. three pattern variables (\texttt{child1}, \texttt{op}, and
  1049. \texttt{child2}). In general, each \code{case} consists of a
  1050. \emph{pattern} and a \emph{body}.\index{subject}{pattern} Patterns are
  1051. recursively defined to be one of the following: a pattern variable, a
  1052. class name followed by a pattern for each of its constructor's
  1053. arguments, or other literals\index{subject}{literals} such as strings
  1054. or lists.
  1055. %
  1056. The body of each \code{case} may contain arbitrary Python code. The
  1057. pattern variables can be used in the body, such as \code{op} in
  1058. \code{print(op)}.
  1059. %
  1060. \fi}
  1061. A \code{match} form may contain several clauses, as in the following
  1062. function \code{leaf} that recognizes when an \LangInt{} node is a leaf in
  1063. the AST. The \code{match} proceeds through the clauses in order,
  1064. checking whether the pattern can match the input AST. The body of the
  1065. first clause that matches is executed. The output of \code{leaf} for
  1066. several ASTs is shown on the right side of the following:
  1067. \begin{center}
  1068. \begin{minipage}{0.6\textwidth}
  1069. {\if\edition\racketEd
  1070. \begin{lstlisting}
  1071. (define (leaf arith)
  1072. (match arith
  1073. [(Int n) #t]
  1074. [(Prim 'read '()) #t]
  1075. [(Prim '- (list e1)) #f]
  1076. [(Prim '+ (list e1 e2)) #f]
  1077. [(Prim '- (list e1 e2)) #f]))
  1078. (leaf (Prim 'read '()))
  1079. (leaf (Prim '- (list (Int 8))))
  1080. (leaf (Int 8))
  1081. \end{lstlisting}
  1082. \fi}
  1083. {\if\edition\pythonEd\pythonColor
  1084. \begin{lstlisting}
  1085. def leaf(arith):
  1086. match arith:
  1087. case Constant(n):
  1088. return True
  1089. case Call(Name('input_int'), []):
  1090. return True
  1091. case UnaryOp(USub(), e1):
  1092. return False
  1093. case BinOp(e1, Add(), e2):
  1094. return False
  1095. case BinOp(e1, Sub(), e2):
  1096. return False
  1097. print(leaf(Call(Name('input_int'), [])))
  1098. print(leaf(UnaryOp(USub(), eight)))
  1099. print(leaf(Constant(8)))
  1100. \end{lstlisting}
  1101. \fi}
  1102. \end{minipage}
  1103. \vrule
  1104. \begin{minipage}{0.25\textwidth}
  1105. {\if\edition\racketEd
  1106. \begin{lstlisting}
  1107. #t
  1108. #f
  1109. #t
  1110. \end{lstlisting}
  1111. \fi}
  1112. {\if\edition\pythonEd\pythonColor
  1113. \begin{lstlisting}
  1114. True
  1115. False
  1116. True
  1117. \end{lstlisting}
  1118. \fi}
  1119. \end{minipage}
  1120. \index{subject}{True@\TRUE{}}
  1121. \index{subject}{False@\FALSE{}}
  1122. \end{center}
  1123. When constructing a \code{match} expression, we refer to the grammar
  1124. definition to identify which nonterminal we are expecting to match
  1125. against, and then we make sure that (1) we have one
  1126. \racket{clause}\python{case} for each alternative of that nonterminal
  1127. and (2) the pattern in each \racket{clause}\python{case}
  1128. corresponds to the corresponding right-hand side of a grammar
  1129. rule. For the \code{match} in the \code{leaf} function, we refer to
  1130. the grammar for \LangInt{} shown in figure~\ref{fig:r0-syntax}. The $\Exp$
  1131. nonterminal has five alternatives, so the \code{match} has five
  1132. \racket{clauses}\python{cases}. The pattern in each
  1133. \racket{clause}\python{case} corresponds to the right-hand side of a
  1134. grammar rule. For example, the pattern \ADDP{\code{e1}}{\code{e2}}
  1135. corresponds to the right-hand side $\ADD{\Exp}{\Exp}$. When
  1136. translating from grammars to patterns, replace nonterminals such as
  1137. $\Exp$ with pattern variables of your choice (such as \code{e1} and
  1138. \code{e2}).
  1139. \section{Recursive Functions}
  1140. \label{sec:recursion}
  1141. \index{subject}{recursive function}
  1142. Programs are inherently recursive. For example, an expression is often
  1143. made of smaller expressions. Thus, the natural way to process an
  1144. entire program is to use a recursive function. As a first example of
  1145. such a recursive function, we define the function \code{is\_exp} as
  1146. shown in figure~\ref{fig:exp-predicate}, to take an arbitrary
  1147. value and determine whether or not it is an expression in \LangInt{}.
  1148. %
  1149. We say that a function is defined by \emph{structural recursion} if
  1150. it is defined using a sequence of match \racket{clauses}\python{cases}
  1151. that correspond to a grammar and the body of each
  1152. \racket{clause}\python{case} makes a recursive call on each child
  1153. node.\footnote{This principle of structuring code according to the
  1154. data definition is advocated in the book \emph{How to Design
  1155. Programs} by \citet{Felleisen:2001aa}.} \python{We define a
  1156. second function, named \code{is\_stmt}, that recognizes whether a value
  1157. is a \LangInt{} statement.} \python{Finally, }
  1158. figure~\ref{fig:exp-predicate} \racket{also} contains the definition of
  1159. \code{is\_Lint}, which determines whether an AST is a program in \LangInt{}.
  1160. In general, we can write one recursive function to handle each
  1161. nonterminal in a grammar.\index{subject}{structural recursion} Of the
  1162. two examples at the bottom of the figure, the first is in
  1163. \LangInt{} and the second is not.
  1164. \begin{figure}[tp]
  1165. \begin{tcolorbox}[colback=white]
  1166. {\if\edition\racketEd
  1167. \begin{lstlisting}
  1168. (define (is_exp ast)
  1169. (match ast
  1170. [(Int n) #t]
  1171. [(Prim 'read '()) #t]
  1172. [(Prim '- (list e)) (is_exp e)]
  1173. [(Prim '+ (list e1 e2))
  1174. (and (is_exp e1) (is_exp e2))]
  1175. [(Prim '- (list e1 e2))
  1176. (and (is_exp e1) (is_exp e2))]
  1177. [else #f]))
  1178. (define (is_Lint ast)
  1179. (match ast
  1180. [(Program '() e) (is_exp e)]
  1181. [else #f]))
  1182. (is_Lint (Program '() ast1_1)
  1183. (is_Lint (Program '()
  1184. (Prim '* (list (Prim 'read '())
  1185. (Prim '+ (list (Int 8)))))))
  1186. \end{lstlisting}
  1187. \fi}
  1188. {\if\edition\pythonEd\pythonColor
  1189. \begin{lstlisting}
  1190. def is_exp(e):
  1191. match e:
  1192. case Constant(n):
  1193. return True
  1194. case Call(Name('input_int'), []):
  1195. return True
  1196. case UnaryOp(USub(), e1):
  1197. return is_exp(e1)
  1198. case BinOp(e1, Add(), e2):
  1199. return is_exp(e1) and is_exp(e2)
  1200. case BinOp(e1, Sub(), e2):
  1201. return is_exp(e1) and is_exp(e2)
  1202. case _:
  1203. return False
  1204. def is_stmt(s):
  1205. match s:
  1206. case Expr(Call(Name('print'), [e])):
  1207. return is_exp(e)
  1208. case Expr(e):
  1209. return is_exp(e)
  1210. case _:
  1211. return False
  1212. def is_Lint(p):
  1213. match p:
  1214. case Module(body):
  1215. return all([is_stmt(s) for s in body])
  1216. case _:
  1217. return False
  1218. print(is_Lint(Module([Expr(ast1_1)])))
  1219. print(is_Lint(Module([Expr(BinOp(read, Sub(),
  1220. UnaryOp(Add(), Constant(8))))])))
  1221. \end{lstlisting}
  1222. \fi}
  1223. \end{tcolorbox}
  1224. \caption{Example of recursive functions for \LangInt{}. These functions
  1225. recognize whether an AST is in \LangInt{}.}
  1226. \label{fig:exp-predicate}
  1227. \end{figure}
  1228. %% You may be tempted to merge the two functions into one, like this:
  1229. %% \begin{center}
  1230. %% \begin{minipage}{0.5\textwidth}
  1231. %% \begin{lstlisting}
  1232. %% (define (Lint ast)
  1233. %% (match ast
  1234. %% [(Int n) #t]
  1235. %% [(Prim 'read '()) #t]
  1236. %% [(Prim '- (list e)) (Lint e)]
  1237. %% [(Prim '+ (list e1 e2)) (and (Lint e1) (Lint e2))]
  1238. %% [(Program '() e) (Lint e)]
  1239. %% [else #f]))
  1240. %% \end{lstlisting}
  1241. %% \end{minipage}
  1242. %% \end{center}
  1243. %% %
  1244. %% Sometimes such a trick will save a few lines of code, especially when
  1245. %% it comes to the \code{Program} wrapper. Yet this style is generally
  1246. %% \emph{not} recommended because it can get you into trouble.
  1247. %% %
  1248. %% For example, the above function is subtly wrong:
  1249. %% \lstinline{(Lint (Program '() (Program '() (Int 3))))}
  1250. %% returns true when it should return false.
  1251. \section{Interpreters}
  1252. \label{sec:interp_Lint}
  1253. \index{subject}{interpreter}
  1254. The behavior of a program is defined by the specification of the
  1255. programming language.
  1256. %
  1257. \racket{For example, the Scheme language is defined in the report by
  1258. \citet{SPERBER:2009aa}. The Racket language is defined in its
  1259. reference manual~\citep{plt-tr}.}
  1260. %
  1261. \python{For example, the Python language is defined in the Python
  1262. language reference~\citep{PSF21:python_ref} and the CPython interpreter~\citep{PSF21:cpython}.}
  1263. %
  1264. In this book we use interpreters to specify each language that we
  1265. consider. An interpreter that is designated as the definition of a
  1266. language is called a \emph{definitional
  1267. interpreter}~\citep{reynolds72:_def_interp}.
  1268. \index{subject}{definitional interpreter} We warm up by creating a
  1269. definitional interpreter for the \LangInt{} language. This interpreter
  1270. serves as a second example of structural recursion. The definition of the
  1271. \code{interp\_Lint} function is shown in
  1272. figure~\ref{fig:interp_Lint}.
  1273. %
  1274. \racket{The body of the function is a match on the input program
  1275. followed by a call to the \lstinline{interp_exp} auxiliary function,
  1276. which in turn has one match clause per grammar rule for \LangInt{}
  1277. expressions.}
  1278. %
  1279. \python{The body of the function matches on the \code{Module} AST node
  1280. and then invokes \code{interp\_stmt} on each statement in the
  1281. module. The \code{interp\_stmt} function includes a case for each
  1282. grammar rule of the \Stmt{} nonterminal, and it calls
  1283. \code{interp\_exp} on each subexpression. The \code{interp\_exp}
  1284. function includes a case for each grammar rule of the \Exp{}
  1285. nonterminal. We use several auxiliary functions such as \code{add64}
  1286. and \code{input\_int} that are defined in the support code for this book.}
  1287. \begin{figure}[tp]
  1288. \begin{tcolorbox}[colback=white]
  1289. {\if\edition\racketEd
  1290. \begin{lstlisting}
  1291. (define (interp_exp e)
  1292. (match e
  1293. [(Int n) n]
  1294. [(Prim 'read '())
  1295. (define r (read))
  1296. (cond [(fixnum? r) r]
  1297. [else (error 'interp_exp "read expected an integer: ~v" r)])]
  1298. [(Prim '- (list e))
  1299. (define v (interp_exp e))
  1300. (fx- 0 v)]
  1301. [(Prim '+ (list e1 e2))
  1302. (define v1 (interp_exp e1))
  1303. (define v2 (interp_exp e2))
  1304. (fx+ v1 v2)]
  1305. [(Prim '- (list e1 e2))
  1306. (define v1 (interp_exp e1))
  1307. (define v2 (interp_exp e2))
  1308. (fx- v1 v2)]))
  1309. (define (interp_Lint p)
  1310. (match p
  1311. [(Program '() e) (interp_exp e)]))
  1312. \end{lstlisting}
  1313. \fi}
  1314. {\if\edition\pythonEd\pythonColor
  1315. \begin{lstlisting}
  1316. def interp_exp(e):
  1317. match e:
  1318. case BinOp(left, Add(), right):
  1319. l = interp_exp(left); r = interp_exp(right)
  1320. return add64(l, r)
  1321. case BinOp(left, Sub(), right):
  1322. l = interp_exp(left); r = interp_exp(right)
  1323. return sub64(l, r)
  1324. case UnaryOp(USub(), v):
  1325. return neg64(interp_exp(v))
  1326. case Constant(value):
  1327. return value
  1328. case Call(Name('input_int'), []):
  1329. return input_int()
  1330. def interp_stmt(s):
  1331. match s:
  1332. case Expr(Call(Name('print'), [arg])):
  1333. print(interp_exp(arg))
  1334. case Expr(value):
  1335. interp_exp(value)
  1336. def interp_Lint(p):
  1337. match p:
  1338. case Module(body):
  1339. for s in body:
  1340. interp_stmt(s)
  1341. \end{lstlisting}
  1342. \fi}
  1343. \end{tcolorbox}
  1344. \caption{Interpreter for the \LangInt{} language.}
  1345. \label{fig:interp_Lint}
  1346. \end{figure}
  1347. Let us consider the result of interpreting a few \LangInt{} programs. The
  1348. following program adds two integers:
  1349. {\if\edition\racketEd
  1350. \begin{lstlisting}
  1351. (+ 10 32)
  1352. \end{lstlisting}
  1353. \fi}
  1354. {\if\edition\pythonEd\pythonColor
  1355. \begin{lstlisting}
  1356. print(10 + 32)
  1357. \end{lstlisting}
  1358. \fi}
  1359. %
  1360. \noindent The result is \key{42}, the answer to life, the universe,
  1361. and everything: \code{42}!\footnote{\emph{The Hitchhiker's Guide to
  1362. the Galaxy} by Douglas Adams.}
  1363. %
  1364. We wrote this program in concrete syntax, whereas the parsed
  1365. abstract syntax is
  1366. {\if\edition\racketEd
  1367. \begin{lstlisting}
  1368. (Program '() (Prim '+ (list (Int 10) (Int 32))))
  1369. \end{lstlisting}
  1370. \fi}
  1371. {\if\edition\pythonEd\pythonColor
  1372. \begin{lstlisting}
  1373. Module([Expr(Call(Name('print'),
  1374. [BinOp(Constant(10), Add(), Constant(32))]))])
  1375. \end{lstlisting}
  1376. \fi}
  1377. The following program demonstrates that expressions may be nested within
  1378. each other, in this case nesting several additions and negations.
  1379. {\if\edition\racketEd
  1380. \begin{lstlisting}
  1381. (+ 10 (- (+ 12 20)))
  1382. \end{lstlisting}
  1383. \fi}
  1384. {\if\edition\pythonEd\pythonColor
  1385. \begin{lstlisting}
  1386. print(10 + -(12 + 20))
  1387. \end{lstlisting}
  1388. \fi}
  1389. %
  1390. \noindent What is the result of this program?
  1391. {\if\edition\racketEd
  1392. As mentioned previously, the \LangInt{} language does not support
  1393. arbitrarily large integers but only $63$-bit integers, so we
  1394. interpret the arithmetic operations of \LangInt{} using fixnum arithmetic
  1395. in Racket.
  1396. Suppose that
  1397. \[
  1398. n = 999999999999999999
  1399. \]
  1400. which indeed fits in $63$ bits. What happens when we run the
  1401. following program in our interpreter?
  1402. \begin{lstlisting}
  1403. (+ (+ (+ |$n$| |$n$|) (+ |$n$| |$n$|)) (+ (+ |$n$| |$n$|) (+ |$n$| |$n$|)))))
  1404. \end{lstlisting}
  1405. It produces the following error:
  1406. \begin{lstlisting}
  1407. fx+: result is not a fixnum
  1408. \end{lstlisting}
  1409. We establish the convention that if running the definitional
  1410. interpreter on a program produces an error, then the meaning of that
  1411. program is \emph{unspecified}\index{subject}{unspecified behavior} unless the
  1412. error is a \code{trapped-error}. A compiler for the language is under
  1413. no obligation regarding programs with unspecified behavior; it does
  1414. not have to produce an executable, and if it does, that executable can
  1415. do anything. On the other hand, if the error is a
  1416. \code{trapped-error}, then the compiler must produce an executable and
  1417. it is required to report that an error occurred. To signal an error,
  1418. exit with a return code of \code{255}. The interpreters in chapters
  1419. \ref{ch:Ldyn} and \ref{ch:Lgrad} and in section \ref{sec:arrays} use
  1420. \code{trapped-error}.
  1421. \fi}
  1422. % TODO: how to deal with too-large integers in the Python interpreter?
  1423. %% This convention applies to the languages defined in this
  1424. %% book, as a way to simplify the student's task of implementing them,
  1425. %% but this convention is not applicable to all programming languages.
  1426. %%
  1427. The last feature of the \LangInt{} language, the \READOP{} operation,
  1428. prompts the user of the program for an integer. Recall that program
  1429. \eqref{eq:arith-prog} requests an integer input and then subtracts
  1430. \code{8}. So, if we run {\if\edition\racketEd
  1431. \begin{lstlisting}
  1432. (interp_Lint (Program '() ast1_1))
  1433. \end{lstlisting}
  1434. \fi}
  1435. {\if\edition\pythonEd\pythonColor
  1436. \begin{lstlisting}
  1437. interp_Lint(Module([Expr(Call(Name('print'), [ast1_1]))]))
  1438. \end{lstlisting}
  1439. \fi}
  1440. \noindent and if the input is \code{50}, the result is \code{42}.
  1441. We include the \READOP{} operation in \LangInt{} so that a clever
  1442. student cannot implement a compiler for \LangInt{} that simply runs
  1443. the interpreter during compilation to obtain the output and then
  1444. generates the trivial code to produce the output.\footnote{Yes, a
  1445. clever student did this in the first instance of this course!}
  1446. The job of a compiler is to translate a program in one language into a
  1447. program in another language so that the output program behaves the
  1448. same way as the input program. This idea is depicted in the
  1449. following diagram. Suppose we have two languages, $\mathcal{L}_1$ and
  1450. $\mathcal{L}_2$, and a definitional interpreter for each language.
  1451. Given a compiler that translates from language $\mathcal{L}_1$ to
  1452. $\mathcal{L}_2$ and given any program $P_1$ in $\mathcal{L}_1$, the
  1453. compiler must translate it into some program $P_2$ such that
  1454. interpreting $P_1$ and $P_2$ on their respective interpreters with
  1455. same input $i$ yields the same output $o$.
  1456. \begin{equation} \label{eq:compile-correct}
  1457. \begin{tikzpicture}[baseline=(current bounding box.center)]
  1458. \node (p1) at (0, 0) {$P_1$};
  1459. \node (p2) at (3, 0) {$P_2$};
  1460. \node (o) at (3, -2.5) {$o$};
  1461. \path[->] (p1) edge [above] node {compile} (p2);
  1462. \path[->] (p2) edge [right] node {interp\_$\mathcal{L}_2$($i$)} (o);
  1463. \path[->] (p1) edge [left] node {interp\_$\mathcal{L}_1$($i$)} (o);
  1464. \end{tikzpicture}
  1465. \end{equation}
  1466. \python{We establish the convention that if running the definitional
  1467. interpreter on a program produces an error, then the meaning of that
  1468. program is \emph{unspecified}\index{subject}{unspecified behavior}
  1469. unless the exception raised is a \code{TrappedError}. A compiler for
  1470. the language is under no obligation regarding programs with
  1471. unspecified behavior; it does not have to produce an executable, and
  1472. if it does, that executable can do anything. On the other hand, if
  1473. the error is a \code{TrappedError}, then the compiler must produce
  1474. an executable and it is required to report that an error
  1475. occurred. To signal an error, exit with a return code of \code{255}.
  1476. The interpreters in chapters \ref{ch:Ldyn} and \ref{ch:Lgrad} and in
  1477. section \ref{sec:arrays} use \code{TrappedError}.}
  1478. In the next section we see our first example of a compiler.
  1479. \section{Example Compiler: A Partial Evaluator}
  1480. \label{sec:partial-evaluation}
  1481. In this section we consider a compiler that translates \LangInt{}
  1482. programs into \LangInt{} programs that may be more efficient. The
  1483. compiler eagerly computes the parts of the program that do not depend
  1484. on any inputs, a process known as \emph{partial
  1485. evaluation}~\citep{Jones:1993uq}.\index{subject}{partialevaluation@partial evaluation}
  1486. For example, given the following program
  1487. {\if\edition\racketEd
  1488. \begin{lstlisting}
  1489. (+ (read) (- (+ 5 3)))
  1490. \end{lstlisting}
  1491. \fi}
  1492. {\if\edition\pythonEd\pythonColor
  1493. \begin{lstlisting}
  1494. print(input_int() + -(5 + 3) )
  1495. \end{lstlisting}
  1496. \fi}
  1497. \noindent our compiler translates it into the program
  1498. {\if\edition\racketEd
  1499. \begin{lstlisting}
  1500. (+ (read) -8)
  1501. \end{lstlisting}
  1502. \fi}
  1503. {\if\edition\pythonEd\pythonColor
  1504. \begin{lstlisting}
  1505. print(input_int() + -8)
  1506. \end{lstlisting}
  1507. \fi}
  1508. Figure~\ref{fig:pe-arith} gives the code for a simple partial
  1509. evaluator for the \LangInt{} language. The output of the partial evaluator
  1510. is a program in \LangInt{}. In figure~\ref{fig:pe-arith}, the structural
  1511. recursion over $\Exp$ is captured in the \code{pe\_exp} function,
  1512. whereas the code for partially evaluating the negation and addition
  1513. operations is factored into three auxiliary functions:
  1514. \code{pe\_neg}, \code{pe\_add} and \code{pe\_sub}. The input to these
  1515. functions is the output of partially evaluating the children.
  1516. The \code{pe\_neg}, \code{pe\_add} and \code{pe\_sub} functions check whether their
  1517. arguments are integers and if they are, perform the appropriate
  1518. arithmetic. Otherwise, they create an AST node for the arithmetic
  1519. operation.
  1520. \begin{figure}[tp]
  1521. \begin{tcolorbox}[colback=white]
  1522. {\if\edition\racketEd
  1523. \begin{lstlisting}
  1524. (define (pe_neg r)
  1525. (match r
  1526. [(Int n) (Int (fx- 0 n))]
  1527. [else (Prim '- (list r))]))
  1528. (define (pe_add r1 r2)
  1529. (match* (r1 r2)
  1530. [((Int n1) (Int n2)) (Int (fx+ n1 n2))]
  1531. [(_ _) (Prim '+ (list r1 r2))]))
  1532. (define (pe_sub r1 r2)
  1533. (match* (r1 r2)
  1534. [((Int n1) (Int n2)) (Int (fx- n1 n2))]
  1535. [(_ _) (Prim '- (list r1 r2))]))
  1536. (define (pe_exp e)
  1537. (match e
  1538. [(Int n) (Int n)]
  1539. [(Prim 'read '()) (Prim 'read '())]
  1540. [(Prim '- (list e1)) (pe_neg (pe_exp e1))]
  1541. [(Prim '+ (list e1 e2)) (pe_add (pe_exp e1) (pe_exp e2))]
  1542. [(Prim '- (list e1 e2)) (pe_sub (pe_exp e1) (pe_exp e2))]))
  1543. (define (pe_Lint p)
  1544. (match p
  1545. [(Program '() e) (Program '() (pe_exp e))]))
  1546. \end{lstlisting}
  1547. \fi}
  1548. {\if\edition\pythonEd\pythonColor
  1549. \begin{lstlisting}
  1550. def pe_neg(r):
  1551. match r:
  1552. case Constant(n):
  1553. return Constant(neg64(n))
  1554. case _:
  1555. return UnaryOp(USub(), r)
  1556. def pe_add(r1, r2):
  1557. match (r1, r2):
  1558. case (Constant(n1), Constant(n2)):
  1559. return Constant(add64(n1, n2))
  1560. case _:
  1561. return BinOp(r1, Add(), r2)
  1562. def pe_sub(r1, r2):
  1563. match (r1, r2):
  1564. case (Constant(n1), Constant(n2)):
  1565. return Constant(sub64(n1, n2))
  1566. case _:
  1567. return BinOp(r1, Sub(), r2)
  1568. def pe_exp(e):
  1569. match e:
  1570. case BinOp(left, Add(), right):
  1571. return pe_add(pe_exp(left), pe_exp(right))
  1572. case BinOp(left, Sub(), right):
  1573. return pe_sub(pe_exp(left), pe_exp(right))
  1574. case UnaryOp(USub(), v):
  1575. return pe_neg(pe_exp(v))
  1576. case Constant(value):
  1577. return e
  1578. case Call(Name('input_int'), []):
  1579. return e
  1580. def pe_stmt(s):
  1581. match s:
  1582. case Expr(Call(Name('print'), [arg])):
  1583. return Expr(Call(Name('print'), [pe_exp(arg)]))
  1584. case Expr(value):
  1585. return Expr(pe_exp(value))
  1586. def pe_P_int(p):
  1587. match p:
  1588. case Module(body):
  1589. new_body = [pe_stmt(s) for s in body]
  1590. return Module(new_body)
  1591. \end{lstlisting}
  1592. \fi}
  1593. \end{tcolorbox}
  1594. \caption{A partial evaluator for \LangInt{}.}
  1595. \label{fig:pe-arith}
  1596. \end{figure}
  1597. To gain some confidence that the partial evaluator is correct, we can
  1598. test whether it produces programs that produce the same result as the
  1599. input programs. That is, we can test whether it satisfies the diagram
  1600. of \eqref{eq:compile-correct}.
  1601. %
  1602. {\if\edition\racketEd
  1603. The following code runs the partial evaluator on several examples and
  1604. tests the output program. The \texttt{parse-program} and
  1605. \texttt{assert} functions are defined in
  1606. appendix~\ref{appendix:utilities}.\\
  1607. \begin{minipage}{1.0\textwidth}
  1608. \begin{lstlisting}
  1609. (define (test_pe p)
  1610. (assert "testing pe_Lint"
  1611. (equal? (interp_Lint p) (interp_Lint (pe_Lint p)))))
  1612. (test_pe (parse-program `(program () (+ 10 (- (+ 5 3))))))
  1613. (test_pe (parse-program `(program () (+ 1 (+ 3 1)))))
  1614. (test_pe (parse-program `(program () (- (+ 3 (- 5))))))
  1615. \end{lstlisting}
  1616. \end{minipage}
  1617. \fi}
  1618. % TODO: python version of testing the PE
  1619. \begin{exercise}\normalfont\normalsize
  1620. Create three programs in the \LangInt{} language and test whether
  1621. partially evaluating them with \code{pe\_Lint} and then
  1622. interpreting them with \code{interp\_Lint} gives the same result
  1623. as directly interpreting them with \code{interp\_Lint}.
  1624. \end{exercise}
  1625. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  1626. \chapter{Integers and Variables}
  1627. \label{ch:Lvar}
  1628. \setcounter{footnote}{0}
  1629. This chapter covers compiling a subset of
  1630. \racket{Racket}\python{Python} to x86-64 assembly
  1631. code~\citep{Intel:2015aa}. The subset, named \LangVar{}, includes
  1632. integer arithmetic and local variables. We often refer to x86-64
  1633. simply as x86. The chapter first describes the \LangVar{} language
  1634. (section~\ref{sec:s0}) and then introduces x86 assembly
  1635. (section~\ref{sec:x86}). Because x86 assembly language is large, we
  1636. discuss only the instructions needed for compiling \LangVar{}. We
  1637. introduce more x86 instructions in subsequent chapters. After
  1638. introducing \LangVar{} and x86, we reflect on their differences and
  1639. create a plan to break down the translation from \LangVar{} to x86
  1640. into a handful of steps (section~\ref{sec:plan-s0-x86}). The rest of
  1641. the chapter gives detailed hints regarding each step. We aim to give
  1642. enough hints that the well-prepared reader, together with a few
  1643. friends, can implement a compiler from \LangVar{} to x86 in a short
  1644. time. To suggest the scale of this first compiler, we note that the
  1645. instructor solution for the \LangVar{} compiler is approximately
  1646. \racket{500}\python{300} lines of code.
  1647. \section{The \LangVar{} Language}
  1648. \label{sec:s0}
  1649. \index{subject}{variable}
  1650. The \LangVar{} language extends the \LangInt{} language with
  1651. variables. The concrete syntax of the \LangVar{} language is defined
  1652. by the grammar presented in figure~\ref{fig:Lvar-concrete-syntax}, and
  1653. the abstract syntax is presented in figure~\ref{fig:Lvar-syntax}. The
  1654. nonterminal \Var{} may be any \racket{Racket}\python{Python}
  1655. identifier. As in \LangInt{}, \READOP{} is a nullary operator,
  1656. \key{-} is a unary operator, and \key{+} is a binary operator.
  1657. Similarly to \LangInt{}, the abstract syntax of \LangVar{} includes the
  1658. \racket{\key{Program} struct}\python{\key{Module} instance} to mark
  1659. the top of the program.
  1660. %% The $\itm{info}$
  1661. %% field of the \key{Program} structure contains an \emph{association
  1662. %% list} (a list of key-value pairs) that is used to communicate
  1663. %% auxiliary data from one compiler pass the next.
  1664. Despite the simplicity of the \LangVar{} language, it is rich enough to
  1665. exhibit several compilation techniques.
  1666. \newcommand{\LvarGrammarRacket}{
  1667. \begin{array}{rcl}
  1668. \Exp &::=& \Var \MID \CLET{\Var}{\Exp}{\Exp}
  1669. \end{array}
  1670. }
  1671. \newcommand{\LvarASTRacket}{
  1672. \begin{array}{rcl}
  1673. \Exp &::=& \VAR{\Var} \MID \LET{\Var}{\Exp}{\Exp}
  1674. \end{array}
  1675. }
  1676. \newcommand{\LvarGrammarPython}{
  1677. \begin{array}{rcl}
  1678. \Exp &::=& \Var{} \\
  1679. \Stmt &::=& \Var\mathop{\key{=}}\Exp
  1680. \end{array}
  1681. }
  1682. \newcommand{\LvarASTPython}{
  1683. \begin{array}{rcl}
  1684. \Exp{} &::=& \VAR{\Var{}} \\
  1685. \Stmt{} &::=& \ASSIGN{\VAR{\Var}}{\Exp}
  1686. \end{array}
  1687. }
  1688. \begin{figure}[tp]
  1689. \centering
  1690. \begin{tcolorbox}[colback=white]
  1691. {\if\edition\racketEd
  1692. \[
  1693. \begin{array}{l}
  1694. \gray{\LintGrammarRacket{}} \\ \hline
  1695. \LvarGrammarRacket{} \\
  1696. \begin{array}{rcl}
  1697. \LangVarM{} &::=& \Exp
  1698. \end{array}
  1699. \end{array}
  1700. \]
  1701. \fi}
  1702. {\if\edition\pythonEd\pythonColor
  1703. \[
  1704. \begin{array}{l}
  1705. \gray{\LintGrammarPython} \\ \hline
  1706. \LvarGrammarPython \\
  1707. \begin{array}{rcl}
  1708. \LangVarM{} &::=& \Stmt^{*}
  1709. \end{array}
  1710. \end{array}
  1711. \]
  1712. \fi}
  1713. \end{tcolorbox}
  1714. \caption{The concrete syntax of \LangVar{}.}
  1715. \label{fig:Lvar-concrete-syntax}
  1716. \index{subject}{Lvar@\LangVar{} concrete syntax}
  1717. \end{figure}
  1718. \begin{figure}[tp]
  1719. \centering
  1720. \begin{tcolorbox}[colback=white]
  1721. {\if\edition\racketEd
  1722. \[
  1723. \begin{array}{l}
  1724. \gray{\LintASTRacket{}} \\ \hline
  1725. \LvarASTRacket \\
  1726. \begin{array}{rcl}
  1727. \LangVarM{} &::=& \PROGRAM{\code{'()}}{\Exp}
  1728. \end{array}
  1729. \end{array}
  1730. \]
  1731. \fi}
  1732. {\if\edition\pythonEd\pythonColor
  1733. \[
  1734. \begin{array}{l}
  1735. \gray{\LintASTPython}\\ \hline
  1736. \LvarASTPython \\
  1737. \begin{array}{rcl}
  1738. \LangVarM{} &::=& \PROGRAM{}{\Stmt^{*}}
  1739. \end{array}
  1740. \end{array}
  1741. \]
  1742. \fi}
  1743. \end{tcolorbox}
  1744. \caption{The abstract syntax of \LangVar{}.}
  1745. \label{fig:Lvar-syntax}
  1746. \index{subject}{Lvar@\LangVar{} abstract syntax}
  1747. \end{figure}
  1748. {\if\edition\racketEd
  1749. Let us dive further into the syntax and semantics of the \LangVar{}
  1750. language. The \key{let} feature defines a variable for use within its
  1751. body and initializes the variable with the value of an expression.
  1752. The abstract syntax for \key{let} is shown in
  1753. figure~\ref{fig:Lvar-syntax}. The concrete syntax for \key{let} is
  1754. \begin{lstlisting}
  1755. (let ([|$\itm{var}$| |$\itm{exp}$|]) |$\itm{exp}$|)
  1756. \end{lstlisting}
  1757. For example, the following program initializes \code{x} to $32$ and then
  1758. evaluates the body \code{(+ 10 x)}, producing $42$.
  1759. \begin{lstlisting}
  1760. (let ([x (+ 12 20)]) (+ 10 x))
  1761. \end{lstlisting}
  1762. \fi}
  1763. %
  1764. {\if\edition\pythonEd\pythonColor
  1765. %
  1766. The \LangVar{} language includes an assignment statement, which defines a
  1767. variable for use in later statements and initializes the variable with
  1768. the value of an expression. The abstract syntax for assignment is
  1769. defined in figure~\ref{fig:Lvar-syntax}. The concrete syntax for
  1770. assignment is \index{subject}{Assign@\texttt{Assign}}
  1771. \begin{lstlisting}
  1772. |$\itm{var}$| = |$\itm{exp}$|
  1773. \end{lstlisting}
  1774. For example, the following program initializes the variable \code{x}
  1775. to $32$ and then prints the result of \code{10 + x}, producing $42$.
  1776. \begin{lstlisting}
  1777. x = 12 + 20
  1778. print(10 + x)
  1779. \end{lstlisting}
  1780. \fi}
  1781. {\if\edition\racketEd
  1782. %
  1783. When there are multiple \key{let}s for the same variable, the closest
  1784. enclosing \key{let} is used. That is, variable definitions overshadow
  1785. prior definitions. Consider the following program with two \key{let}s
  1786. that define two variables named \code{x}. Can you figure out the
  1787. result?
  1788. \begin{lstlisting}
  1789. (let ([x 32]) (+ (let ([x 10]) x) x))
  1790. \end{lstlisting}
  1791. For the purposes of depicting which variable occurrences correspond to
  1792. which definitions, the following shows the \code{x}'s annotated with
  1793. subscripts to distinguish them. Double-check that your answer for the
  1794. previous program is the same as your answer for this annotated version
  1795. of the program.
  1796. \begin{lstlisting}
  1797. (let ([x|$_1$| 32]) (+ (let ([x|$_2$| 10]) x|$_2$|) x|$_1$|))
  1798. \end{lstlisting}
  1799. The initializing expression is always evaluated before the body of the
  1800. \key{let}, so in the following, the \key{read} for \code{x} is
  1801. performed before the \key{read} for \code{y}. Given the input
  1802. $52$ then $10$, the following produces $42$ (not $-42$).
  1803. \begin{lstlisting}
  1804. (let ([x (read)]) (let ([y (read)]) (+ x (- y))))
  1805. \end{lstlisting}
  1806. \fi}
  1807. \subsection{Extensible Interpreters via Method Overriding}
  1808. \label{sec:extensible-interp}
  1809. \index{subject}{method overriding}
  1810. To prepare for discussing the interpreter of \LangVar{}, we explain
  1811. why we implement it in an object-oriented style. Throughout this book
  1812. we define many interpreters, one for each language that we
  1813. study. Because each language builds on the prior one, there is a lot
  1814. of commonality between these interpreters. We want to write down the
  1815. common parts just once instead of many times. A naive interpreter for
  1816. \LangVar{} would handle the \racket{cases for variables and
  1817. \code{let}} \python{case for variables} but dispatch to an
  1818. interpreter for \LangInt{} in the rest of the cases. The following
  1819. code sketches this idea. (We explain the \code{env} parameter in
  1820. section~\ref{sec:interp-Lvar}.)
  1821. \begin{center}
  1822. {\if\edition\racketEd
  1823. \begin{minipage}{0.45\textwidth}
  1824. \begin{lstlisting}
  1825. (define ((interp_Lint env) e)
  1826. (match e
  1827. [(Prim '- (list e1))
  1828. (fx- 0 ((interp_Lint env) e1))]
  1829. ...))
  1830. \end{lstlisting}
  1831. \end{minipage}
  1832. \begin{minipage}{0.45\textwidth}
  1833. \begin{lstlisting}
  1834. (define ((interp_Lvar env) e)
  1835. (match e
  1836. [(Var x)
  1837. (dict-ref env x)]
  1838. [(Let x e body)
  1839. (define v ((interp_Lvar env) e))
  1840. (define env^ (dict-set env x v))
  1841. ((interp_Lvar env^) body)]
  1842. [else ((interp_Lint env) e)]))
  1843. \end{lstlisting}
  1844. \end{minipage}
  1845. \fi}
  1846. {\if\edition\pythonEd\pythonColor
  1847. \begin{minipage}{0.45\textwidth}
  1848. \begin{lstlisting}
  1849. def interp_Lint(e, env):
  1850. match e:
  1851. case UnaryOp(USub(), e1):
  1852. return - interp_Lint(e1, env)
  1853. ...
  1854. \end{lstlisting}
  1855. \end{minipage}
  1856. \begin{minipage}{0.45\textwidth}
  1857. \begin{lstlisting}
  1858. def interp_Lvar(e, env):
  1859. match e:
  1860. case Name(id):
  1861. return env[id]
  1862. case _:
  1863. return interp_Lint(e, env)
  1864. \end{lstlisting}
  1865. \end{minipage}
  1866. \fi}
  1867. \end{center}
  1868. The problem with this naive approach is that it does not handle
  1869. situations in which an \LangVar{} feature, such as a variable, is
  1870. nested inside an \LangInt{} feature, such as the \code{-} operator, as
  1871. in the following program.
  1872. {\if\edition\racketEd
  1873. \begin{lstlisting}
  1874. (Let 'y (Int 10) (Prim '- (list (Var 'y))))
  1875. \end{lstlisting}
  1876. \fi}
  1877. {\if\edition\pythonEd\pythonColor
  1878. \begin{minipage}{1.0\textwidth}
  1879. \begin{lstlisting}
  1880. y = 10
  1881. print(-y)
  1882. \end{lstlisting}
  1883. \end{minipage}
  1884. \fi}
  1885. \noindent If we invoke \code{interp\_Lvar} on this program, it
  1886. dispatches to \code{interp\_Lint} to handle the \code{-} operator, but
  1887. then it recursively calls \code{interp\_Lint} again on its argument.
  1888. Because there is no case for \racket{\code{Var}}\python{\code{Name}} in
  1889. \code{interp\_Lint}, we get an error!
  1890. To make our interpreters extensible we need something called
  1891. \emph{open recursion}\index{subject}{open recursion}, in which the
  1892. tying of the recursive knot is delayed until the functions are
  1893. composed. Object-oriented languages provide open recursion via method
  1894. overriding. The following code uses
  1895. method overriding to interpret \LangInt{} and \LangVar{} using
  1896. %
  1897. \racket{the
  1898. \href{https://docs.racket-lang.org/guide/classes.html}{\code{class}}
  1899. \index{subject}{class} feature of Racket.}%
  1900. %
  1901. \python{Python \code{class} definitions.}
  1902. %
  1903. We define one class for each language and define a method for
  1904. interpreting expressions inside each class. The class for \LangVar{}
  1905. inherits from the class for \LangInt{}, and the method
  1906. \code{interp\_exp} in \LangVar{} overrides the \code{interp\_exp} in
  1907. \LangInt{}. Note that the default case of \code{interp\_exp} in
  1908. \LangVar{} uses \code{super} to invoke \code{interp\_exp}, and because
  1909. \LangVar{} inherits from \LangInt{}, that dispatches to the
  1910. \code{interp\_exp} in \LangInt{}.
  1911. \begin{center}
  1912. \hspace{-20pt}
  1913. {\if\edition\racketEd
  1914. \begin{minipage}{0.45\textwidth}
  1915. \begin{lstlisting}
  1916. (define interp-Lint-class
  1917. (class object%
  1918. (define/public ((interp_exp env) e)
  1919. (match e
  1920. [(Prim '- (list e))
  1921. (fx- 0 ((interp_exp env) e))]
  1922. ...))
  1923. ...))
  1924. \end{lstlisting}
  1925. \end{minipage}
  1926. \begin{minipage}{0.45\textwidth}
  1927. \begin{lstlisting}
  1928. (define interp-Lvar-class
  1929. (class interp-Lint-class
  1930. (define/override ((interp_exp env) e)
  1931. (match e
  1932. [(Var x)
  1933. (dict-ref env x)]
  1934. [(Let x e body)
  1935. (define v ((interp_exp env) e))
  1936. (define env^ (dict-set env x v))
  1937. ((interp_exp env^) body)]
  1938. [else
  1939. ((super interp_exp env) e)]))
  1940. ...
  1941. ))
  1942. \end{lstlisting}
  1943. \end{minipage}
  1944. \fi}
  1945. {\if\edition\pythonEd\pythonColor
  1946. \begin{minipage}{0.45\textwidth}
  1947. \begin{lstlisting}
  1948. class InterpLint:
  1949. def interp_exp(e):
  1950. match e:
  1951. case UnaryOp(USub(), e1):
  1952. return neg64(self.interp_exp(e1))
  1953. ...
  1954. ...
  1955. \end{lstlisting}
  1956. \end{minipage}
  1957. \begin{minipage}{0.45\textwidth}
  1958. \begin{lstlisting}
  1959. def InterpLvar(InterpLint):
  1960. def interp_exp(e):
  1961. match e:
  1962. case Name(id):
  1963. return env[id]
  1964. case _:
  1965. return super().interp_exp(e)
  1966. ...
  1967. \end{lstlisting}
  1968. \end{minipage}
  1969. \fi}
  1970. \end{center}
  1971. We return to the troublesome example, repeated here:
  1972. {\if\edition\racketEd
  1973. \begin{lstlisting}
  1974. (Let 'y (Int 10) (Prim '- (list (Var 'y))))
  1975. \end{lstlisting}
  1976. \fi}
  1977. {\if\edition\pythonEd\pythonColor
  1978. \begin{lstlisting}
  1979. y = 10
  1980. print(-y)
  1981. \end{lstlisting}
  1982. \fi}
  1983. \noindent We can invoke the \code{interp\_exp} method for \LangVar{}
  1984. \racket{on this expression,}%
  1985. \python{on the \code{-y} expression,}
  1986. %
  1987. which we call \code{e0}, by creating an object of the \LangVar{} class
  1988. and calling the \code{interp\_exp} method
  1989. {\if\edition\racketEd
  1990. \begin{lstlisting}
  1991. ((send (new interp-Lvar-class) interp_exp '()) e0)
  1992. \end{lstlisting}
  1993. \fi}
  1994. {\if\edition\pythonEd\pythonColor
  1995. \begin{lstlisting}
  1996. InterpLvar().interp_exp(e0)
  1997. \end{lstlisting}
  1998. \fi}
  1999. \noindent To process the \code{-} operator, the default case of
  2000. \code{interp\_exp} in \LangVar{} dispatches to the \code{interp\_exp}
  2001. method in \LangInt{}. But then for the recursive method call, it
  2002. dispatches to \code{interp\_exp} in \LangVar{}, where the
  2003. \racket{\code{Var}}\python{\code{Name}} node is handled correctly.
  2004. Thus, method overriding gives us the open recursion that we need to
  2005. implement our interpreters in an extensible way.
  2006. \subsection{Definitional Interpreter for \LangVar{}}
  2007. \label{sec:interp-Lvar}
  2008. Having justified the use of classes and methods to implement
  2009. interpreters, we revisit the definitional interpreter for \LangInt{}
  2010. shown in figure~\ref{fig:interp-Lint-class} and then extend it to
  2011. create an interpreter for \LangVar{}, shown in
  2012. figure~\ref{fig:interp-Lvar}.
  2013. %
  2014. \python{We change the \code{interp\_stmt} method in the interpreter
  2015. for \LangInt{} to take two extra parameters named \code{env}, which
  2016. we discuss in the next paragraph, and \code{cont} for
  2017. \emph{continuation}, which is the technical name for what comes
  2018. after a particular point in a program. The \code{cont} parameter is
  2019. the list of statements that follow the current statement. Note
  2020. that \code{interp\_stmts} invokes \code{interp\_stmt} on the first
  2021. statement and passes the rest of the statements as the argument for
  2022. \code{cont}. This organization enables each statement to decide what
  2023. if anything should be evaluated after it, for example, allowing a
  2024. \code{return} statement to exit early from a function (see
  2025. Chapter~\ref{ch:Lfun}).}
  2026. The interpreter for \LangVar{} adds two new cases for
  2027. variables and \racket{\key{let}}\python{assignment}. For
  2028. \racket{\key{let}}\python{assignment}, we need a way to communicate the
  2029. value bound to a variable to all the uses of the variable. To
  2030. accomplish this, we maintain a mapping from variables to values called
  2031. an \emph{environment}\index{subject}{environment}.
  2032. %
  2033. We use
  2034. %
  2035. \racket{an association list (alist) }%
  2036. %
  2037. \python{a Python \href{https://docs.python.org/3.10/library/stdtypes.html\#mapping-types-dict}{dictionary} }%
  2038. %
  2039. to represent the environment.
  2040. %
  2041. \racket{Figure~\ref{fig:alist} gives a brief introduction to alists
  2042. and the \code{racket/dict} package.}
  2043. %
  2044. The \code{interp\_exp} function takes the current environment,
  2045. \code{env}, as an extra parameter. When the interpreter encounters a
  2046. variable, it looks up the corresponding value in the environment. If
  2047. the variable is not in the environment (because the variable was not
  2048. defined) then the lookup will fail and the interpreter will
  2049. halt with an error. Recall that the compiler is not obligated to
  2050. compile such programs (Section~\ref{sec:interp_Lint}).\footnote{In
  2051. Chapter~\ref{ch:Lif} we introduce type checking rules that
  2052. prohibit access to undefined variables.}
  2053. %
  2054. \racket{When the interpreter encounters a \key{Let}, it evaluates the
  2055. initializing expression, extends the environment with the result
  2056. value bound to the variable, using \code{dict-set}, then evaluates
  2057. the body of the \key{Let}.}
  2058. %
  2059. \python{When the interpreter encounters an assignment, it evaluates
  2060. the initializing expression and then associates the resulting value
  2061. with the variable in the environment.}
  2062. \begin{figure}[tp]
  2063. \begin{tcolorbox}[colback=white]
  2064. {\if\edition\racketEd
  2065. \begin{lstlisting}
  2066. (define interp-Lint-class
  2067. (class object%
  2068. (super-new)
  2069. (define/public ((interp_exp env) e)
  2070. (match e
  2071. [(Int n) n]
  2072. [(Prim 'read '())
  2073. (define r (read))
  2074. (cond [(fixnum? r) r]
  2075. [else (error 'interp_exp "expected an integer" r)])]
  2076. [(Prim '- (list e)) (fx- 0 ((interp_exp env) e))]
  2077. [(Prim '+ (list e1 e2))
  2078. (fx+ ((interp_exp env) e1) ((interp_exp env) e2))]
  2079. [(Prim '- (list e1 e2))
  2080. (fx- ((interp_exp env) e1) ((interp_exp env) e2))]))
  2081. (define/public (interp_program p)
  2082. (match p
  2083. [(Program '() e) ((interp_exp '()) e)]))
  2084. ))
  2085. \end{lstlisting}
  2086. \fi}
  2087. {\if\edition\pythonEd\pythonColor
  2088. \begin{lstlisting}
  2089. class InterpLint:
  2090. def interp_exp(self, e, env):
  2091. match e:
  2092. case BinOp(left, Add(), right):
  2093. l = self.interp_exp(left, env)
  2094. r = self.interp_exp(right, env)
  2095. return add64(l, r)
  2096. case BinOp(left, Sub(), right):
  2097. l = self.interp_exp(left, env)
  2098. r = self.interp_exp(right, env)
  2099. return sub64(l, r)
  2100. case UnaryOp(USub(), v):
  2101. return neg64(self.interp_exp(v, env))
  2102. case Constant(value):
  2103. return value
  2104. case Call(Name('input_int'), []):
  2105. return int(input())
  2106. def interp_stmt(self, s, env, cont):
  2107. match s:
  2108. case Expr(Call(Name('print'), [arg])):
  2109. val = self.interp_exp(arg, env)
  2110. print(val, end='')
  2111. return self.interp_stmts(cont, env)
  2112. case Expr(value):
  2113. self.interp_exp(value, env)
  2114. return self.interp_stmts(cont, env)
  2115. case _:
  2116. raise Exception('error in interp_stmt, unexpected ' + repr(s))
  2117. def interp_stmts(self, ss, env):
  2118. match ss:
  2119. case []:
  2120. return 0
  2121. case [s, *ss]:
  2122. return self.interp_stmt(s, env, ss)
  2123. def interp(self, p):
  2124. match p:
  2125. case Module(body):
  2126. self.interp_stmts(body, {})
  2127. def interp_Lint(p):
  2128. return InterpLint().interp(p)
  2129. \end{lstlisting}
  2130. \fi}
  2131. \end{tcolorbox}
  2132. \caption{Interpreter for \LangInt{} as a class.}
  2133. \label{fig:interp-Lint-class}
  2134. \end{figure}
  2135. \begin{figure}[tp]
  2136. \begin{tcolorbox}[colback=white]
  2137. {\if\edition\racketEd
  2138. \begin{lstlisting}
  2139. (define interp-Lvar-class
  2140. (class interp-Lint-class
  2141. (super-new)
  2142. (define/override ((interp_exp env) e)
  2143. (match e
  2144. [(Var x) (dict-ref env x)]
  2145. [(Let x e body)
  2146. (define new-env (dict-set env x ((interp_exp env) e)))
  2147. ((interp_exp new-env) body)]
  2148. [else ((super interp_exp env) e)]))
  2149. ))
  2150. (define (interp_Lvar p)
  2151. (send (new interp-Lvar-class) interp_program p))
  2152. \end{lstlisting}
  2153. \fi}
  2154. {\if\edition\pythonEd\pythonColor
  2155. \begin{lstlisting}
  2156. class InterpLvar(InterpLint):
  2157. def interp_exp(self, e, env):
  2158. match e:
  2159. case Name(id):
  2160. return env[id]
  2161. case _:
  2162. return super().interp_exp(e, env)
  2163. def interp_stmt(self, s, env, cont):
  2164. match s:
  2165. case Assign([Name(id)], value):
  2166. env[id] = self.interp_exp(value, env)
  2167. return self.interp_stmts(cont, env)
  2168. case _:
  2169. return super().interp_stmt(s, env, cont)
  2170. def interp_Lvar(p):
  2171. return InterpLvar().interp(p)
  2172. \end{lstlisting}
  2173. \fi}
  2174. \end{tcolorbox}
  2175. \caption{Interpreter for the \LangVar{} language.}
  2176. \label{fig:interp-Lvar}
  2177. \end{figure}
  2178. {\if\edition\racketEd
  2179. \begin{figure}[tp]
  2180. %\begin{wrapfigure}[26]{r}[0.75in]{0.55\textwidth}
  2181. \small
  2182. \begin{tcolorbox}[title=Association Lists as Dictionaries]
  2183. An \emph{association list} (called an alist) is a list of key-value pairs.
  2184. For example, we can map people to their ages with an alist
  2185. \index{subject}{alist}\index{subject}{association list}
  2186. \begin{lstlisting}[basicstyle=\ttfamily]
  2187. (define ages '((jane . 25) (sam . 24) (kate . 45)))
  2188. \end{lstlisting}
  2189. The \emph{dictionary} interface is for mapping keys to values.
  2190. Every alist implements this interface. \index{subject}{dictionary}
  2191. The package
  2192. \href{https://docs.racket-lang.org/reference/dicts.html}{\code{racket/dict}}
  2193. provides many functions for working with dictionaries, such as
  2194. \begin{description}
  2195. \item[$\LP\key{dict-ref}\,\itm{dict}\,\itm{key}\RP$]
  2196. returns the value associated with the given $\itm{key}$.
  2197. \item[$\LP\key{dict-set}\,\itm{dict}\,\itm{key}\,\itm{val}\RP$]
  2198. returns a new dictionary that maps $\itm{key}$ to $\itm{val}$
  2199. and otherwise is the same as $\itm{dict}$.
  2200. \item[$\LP\code{in-dict}\,\itm{dict}\RP$] returns the
  2201. \href{https://docs.racket-lang.org/reference/sequences.html}{sequence}
  2202. of keys and values in $\itm{dict}$. For example, the following
  2203. creates a new alist in which the ages are incremented:
  2204. \end{description}
  2205. \vspace{-10pt}
  2206. \begin{lstlisting}[basicstyle=\ttfamily]
  2207. (for/list ([(k v) (in-dict ages)])
  2208. (cons k (add1 v)))
  2209. \end{lstlisting}
  2210. \end{tcolorbox}
  2211. %\end{wrapfigure}
  2212. \caption{Association lists implement the dictionary interface.}
  2213. \label{fig:alist}
  2214. \end{figure}
  2215. \fi}
  2216. The goal for this chapter is to implement a compiler that translates
  2217. any program $P_1$ written in the \LangVar{} language into an x86 assembly
  2218. program $P_2$ such that $P_2$ exhibits the same behavior when run on a
  2219. computer as the $P_1$ program interpreted by \code{interp\_Lvar}.
  2220. That is, they output the same integer $n$. We depict this correctness
  2221. criteria in the following diagram:
  2222. \[
  2223. \begin{tikzpicture}[baseline=(current bounding box.center)]
  2224. \node (p1) at (0, 0) {$P_1$};
  2225. \node (p2) at (4, 0) {$P_2$};
  2226. \node (o) at (4, -2) {$n$};
  2227. \path[->] (p1) edge [above] node {\footnotesize compile} (p2);
  2228. \path[->] (p1) edge [left] node {\footnotesize\code{interp\_Lvar}} (o);
  2229. \path[->] (p2) edge [right] node {\footnotesize\code{interp\_x86int}} (o);
  2230. \end{tikzpicture}
  2231. \]
  2232. Next we introduce the \LangXInt{} subset of x86 that suffices for
  2233. compiling \LangVar{}.
  2234. \section{The \LangXInt{} Assembly Language}
  2235. \label{sec:x86}
  2236. \index{subject}{x86}
  2237. Figure~\ref{fig:x86-int-concrete} defines the concrete syntax for
  2238. \LangXInt{}. We use the AT\&T syntax expected by the GNU
  2239. assembler.
  2240. %
  2241. A program begins with a \code{main} label followed by a sequence of
  2242. instructions. The \key{globl} directive makes the \key{main} procedure
  2243. externally visible so that the operating system can call it.
  2244. %
  2245. An x86 program is stored in the computer's memory. For our purposes,
  2246. the computer's memory is a mapping of 64-bit addresses to 64-bit
  2247. values. The computer has a \emph{program counter}
  2248. (PC)\index{subject}{program counter}\index{subject}{PC} stored in the
  2249. \code{rip} register that points to the address of the next instruction
  2250. to be executed. For most instructions, the program counter is
  2251. incremented after the instruction is executed so that it points to the
  2252. next instruction in memory. Most x86 instructions take two operands,
  2253. each of which is an integer constant (called an \emph{immediate
  2254. value}\index{subject}{immediate value}), a
  2255. \emph{register}\index{subject}{register}, or a memory location.
  2256. \newcommand{\allregisters}{\key{rsp} \MID \key{rbp} \MID \key{rax} \MID \key{rbx} \MID \key{rcx}
  2257. \MID \key{rdx} \MID \key{rsi} \MID \key{rdi} \MID \\
  2258. && \key{r8} \MID \key{r9} \MID \key{r10}
  2259. \MID \key{r11} \MID \key{r12} \MID \key{r13}
  2260. \MID \key{r14} \MID \key{r15}}
  2261. \newcommand{\GrammarXIntRacket}{
  2262. \begin{array}{rcl}
  2263. \Reg &::=& \allregisters{} \\
  2264. \Arg &::=& \key{\$}\Int \MID \key{\%}\Reg \MID \Int\key{(}\key{\%}\Reg\key{)}\\
  2265. \Instr &::=& \key{addq} \; \Arg\key{,} \Arg \MID
  2266. \key{subq} \; \Arg\key{,} \Arg \MID
  2267. \key{negq} \; \Arg \MID \key{movq} \; \Arg\key{,} \Arg \MID \\
  2268. && \key{pushq}\;\Arg \MID \key{popq}\;\Arg \MID
  2269. \key{callq} \; \mathit{label} \MID
  2270. \key{retq} \MID
  2271. \key{jmp}\,\itm{label} \MID \\
  2272. && \itm{label}\key{:}\; \Instr
  2273. \end{array}
  2274. }
  2275. \newcommand{\GrammarXIntPython}{
  2276. % no jmp and label in the python version
  2277. \begin{array}{rcl}
  2278. \Reg &::=& \allregisters{} \\
  2279. \Arg &::=& \key{\$}\Int \MID \key{\%}\Reg \MID \Int\key{(}\key{\%}\Reg\key{)}\\
  2280. \Instr &::=& \key{addq} \; \Arg\key{,} \Arg \MID
  2281. \key{subq} \; \Arg\key{,} \Arg \MID
  2282. \key{negq} \; \Arg \MID \key{movq} \; \Arg\key{,} \Arg \MID \\
  2283. && \key{pushq}\;\Arg \MID \key{popq}\;\Arg \MID
  2284. \key{callq} \; \mathit{label} \MID \key{retq}
  2285. \end{array}
  2286. }
  2287. \begin{figure}[tp]
  2288. \begin{tcolorbox}[colback=white]
  2289. {\if\edition\racketEd
  2290. \[
  2291. \begin{array}{l}
  2292. \GrammarXIntRacket \\
  2293. \begin{array}{lcl}
  2294. \LangXIntM{} &::= & \key{.globl main}\\
  2295. & & \key{main:} \; \Instr\ldots
  2296. \end{array}
  2297. \end{array}
  2298. \]
  2299. \fi}
  2300. {\if\edition\pythonEd\pythonColor
  2301. \[
  2302. \begin{array}{lcl}
  2303. \Reg &::=& \allregisters{} \\
  2304. \Arg &::=& \key{\$}\Int \MID \key{\%}\Reg \MID \Int\key{(}\key{\%}\Reg\key{)}\\
  2305. \Instr &::=& \key{addq} \; \Arg\key{,} \Arg \MID
  2306. \key{subq} \; \Arg\key{,} \Arg \MID
  2307. \key{negq} \; \Arg \MID \key{movq} \; \Arg\key{,} \Arg \MID \\
  2308. && \key{callq} \; \mathit{label} \MID
  2309. \key{pushq}\;\Arg \MID \key{popq}\;\Arg \MID \key{retq} \\
  2310. \LangXIntM{} &::= & \key{.globl main}\\
  2311. & & \key{main:} \; \Instr^{*}
  2312. \end{array}
  2313. \]
  2314. \fi}
  2315. \end{tcolorbox}
  2316. \caption{The syntax of the \LangXInt{} assembly language (AT\&T syntax).}
  2317. \label{fig:x86-int-concrete}
  2318. \index{subject}{x86int@\LangXInt{} concrete syntax}
  2319. \end{figure}
  2320. A register is a special kind of variable that holds a 64-bit
  2321. value. There are 16 general-purpose registers in the computer; their
  2322. names are given in figure~\ref{fig:x86-int-concrete}. A register is
  2323. written with a percent sign, \key{\%}, followed by its name,
  2324. for example, \key{\%rax}.
  2325. An immediate value is written using the notation \key{\$}$n$ where $n$
  2326. is an integer.
  2327. %
  2328. %
  2329. An access to memory is specified using the syntax $n(\key{\%}r)$,
  2330. which obtains the address stored in register $r$ and then adds $n$
  2331. bytes to the address. The resulting address is used to load or to store
  2332. to memory depending on whether it occurs as a source or destination
  2333. argument of an instruction.
  2334. An arithmetic instruction such as $\key{addq}\,s\key{,}\,d$ reads from
  2335. the source $s$ and destination $d$, applies the arithmetic operation,
  2336. and then writes the result to the destination $d$. \index{subject}{instruction}
  2337. %
  2338. The move instruction $\key{movq}\,s\key{,}\,d$ reads from $s$ and
  2339. stores the result in $d$.
  2340. %
  2341. The $\key{callq}\,\itm{label}$ instruction jumps to the procedure
  2342. specified by the label, and $\key{retq}$ returns from a procedure to
  2343. its caller.
  2344. %
  2345. We discuss procedure calls in more detail further in this chapter and
  2346. in chapter~\ref{ch:Lfun}.
  2347. %
  2348. The last letter \key{q} indicates that these instructions operate on
  2349. quadwords, which are 64-bit values.
  2350. %
  2351. \racket{The instruction $\key{jmp}\,\itm{label}$ updates the program
  2352. counter to the address of the instruction immediately after the
  2353. specified label.}
  2354. Appendix~\ref{sec:x86-quick-reference} contains a reference for
  2355. all the x86 instructions used in this book.
  2356. Figure~\ref{fig:p0-x86} depicts an x86 program that computes
  2357. \racket{\code{(+ 10 32)}}\python{10 + 32}. The instruction
  2358. \lstinline{movq $10, %rax}
  2359. puts $10$ into register \key{rax}, and then \lstinline{addq $32, %rax}
  2360. adds $32$ to the $10$ in \key{rax} and
  2361. puts the result, $42$, into \key{rax}.
  2362. %
  2363. The last instruction \key{retq} finishes the \key{main} function by
  2364. returning the integer in \key{rax} to the operating system. The
  2365. operating system interprets this integer as the program's exit
  2366. code. By convention, an exit code of 0 indicates that a program has
  2367. completed successfully, and all other exit codes indicate various
  2368. errors.
  2369. %
  2370. \racket{However, in this book we return the result of the program
  2371. as the exit code.}
  2372. \begin{figure}[tbp]
  2373. \begin{minipage}{0.45\textwidth}
  2374. \begin{tcolorbox}[colback=white]
  2375. \begin{lstlisting}
  2376. .globl main
  2377. main:
  2378. movq $10, %rax
  2379. addq $32, %rax
  2380. retq
  2381. \end{lstlisting}
  2382. \end{tcolorbox}
  2383. \end{minipage}
  2384. \caption{An x86 program that computes
  2385. \racket{\code{(+ 10 32)}}\python{10 + 32}.}
  2386. \label{fig:p0-x86}
  2387. \end{figure}
  2388. We exhibit the use of memory for storing intermediate results in the
  2389. next example. Figure~\ref{fig:p1-x86} lists an x86 program that
  2390. computes \racket{\code{(+ 52 (- 10))}}\python{52 + -10}. This program
  2391. uses a region of memory called the \emph{procedure call stack}
  2392. (\emph{stack} for
  2393. short). \index{subject}{stack}\index{subject}{procedure call stack}
  2394. The stack consists of a separate \emph{frame}\index{subject}{frame}
  2395. for each procedure call. The memory layout for an individual frame is
  2396. shown in figure~\ref{fig:frame}. The register \key{rsp} is called the
  2397. \emph{stack pointer}\index{subject}{stack pointer} and contains the
  2398. address of the item at the top of the stack. In general, we use the
  2399. term \emph{pointer}\index{subject}{pointer} for something that
  2400. contains an address. The stack grows downward in memory, so we
  2401. increase the size of the stack by subtracting from the stack pointer.
  2402. In the context of a procedure call, the \emph{return
  2403. address}\index{subject}{return address} is the location of the
  2404. instruction that immediately follows the call instruction on the
  2405. caller side. The function call instruction, \code{callq}, pushes the
  2406. return address onto the stack prior to jumping to the procedure. The
  2407. register \key{rbp} is the \emph{base pointer}\index{subject}{base
  2408. pointer} and is used to access variables that are stored in the
  2409. frame of the current procedure call. The base pointer of the caller
  2410. is stored immediately after the return address.
  2411. Figure~\ref{fig:frame} shows the memory layout of a frame with storage
  2412. for $n$ variables, which are numbered from $1$ to $n$. Variable $1$ is
  2413. stored at address $-8\key{(\%rbp)}$, variable $2$ at
  2414. $-16\key{(\%rbp)}$, and so on.
  2415. \begin{figure}[tbp]
  2416. \begin{minipage}{0.66\textwidth}
  2417. \begin{tcolorbox}[colback=white]
  2418. {\if\edition\racketEd
  2419. \begin{lstlisting}
  2420. start:
  2421. movq $10, -8(%rbp)
  2422. negq -8(%rbp)
  2423. movq -8(%rbp), %rax
  2424. addq $52, %rax
  2425. jmp conclusion
  2426. .globl main
  2427. main:
  2428. pushq %rbp
  2429. movq %rsp, %rbp
  2430. subq $16, %rsp
  2431. jmp start
  2432. conclusion:
  2433. addq $16, %rsp
  2434. popq %rbp
  2435. retq
  2436. \end{lstlisting}
  2437. \fi}
  2438. {\if\edition\pythonEd\pythonColor
  2439. \begin{lstlisting}
  2440. .globl main
  2441. main:
  2442. pushq %rbp
  2443. movq %rsp, %rbp
  2444. subq $16, %rsp
  2445. movq $10, -8(%rbp)
  2446. negq -8(%rbp)
  2447. movq -8(%rbp), %rax
  2448. addq $52, %rax
  2449. addq $16, %rsp
  2450. popq %rbp
  2451. retq
  2452. \end{lstlisting}
  2453. \fi}
  2454. \end{tcolorbox}
  2455. \end{minipage}
  2456. \caption{An x86 program that computes
  2457. \racket{\code{(+ 52 (- 10))}}\python{52 + -10}.}
  2458. \label{fig:p1-x86}
  2459. \end{figure}
  2460. \begin{figure}[tbp]
  2461. \begin{minipage}{0.66\textwidth}
  2462. \begin{tcolorbox}[colback=white]
  2463. \centering
  2464. \begin{tabular}{|r|l|} \hline
  2465. Position & Contents \\ \hline
  2466. $8$(\key{\%rbp}) & return address \\
  2467. $0$(\key{\%rbp}) & old \key{rbp} \\
  2468. $-8$(\key{\%rbp}) & variable $1$ \\
  2469. $-16$(\key{\%rbp}) & variable $2$ \\
  2470. \ldots & \ldots \\
  2471. $0$(\key{\%rsp}) & variable $n$\\ \hline
  2472. \end{tabular}
  2473. \end{tcolorbox}
  2474. \end{minipage}
  2475. \caption{Memory layout of a frame.}
  2476. \label{fig:frame}
  2477. \end{figure}
  2478. In the program shown in figure~\ref{fig:p1-x86}, consider how control
  2479. is transferred from the operating system to the \code{main} function.
  2480. The operating system issues a \code{callq main} instruction that
  2481. pushes its return address on the stack and then jumps to
  2482. \code{main}. In x86-64, the stack pointer \code{rsp} must be divisible
  2483. by 16 bytes prior to the execution of any \code{callq} instruction, so
  2484. that when control arrives at \code{main}, the \code{rsp} is 8 bytes
  2485. out of alignment (because the \code{callq} pushed the return address).
  2486. The first three instructions are the typical
  2487. \emph{prelude}\index{subject}{prelude} for a procedure. The
  2488. instruction \code{pushq \%rbp} first subtracts $8$ from the stack
  2489. pointer \code{rsp} and then saves the base pointer of the caller at
  2490. address \code{rsp} on the stack. The next instruction \code{movq
  2491. \%rsp, \%rbp} sets the base pointer to the current stack pointer,
  2492. which is pointing to the location of the old base pointer. The
  2493. instruction \code{subq \$16, \%rsp} moves the stack pointer down to
  2494. make enough room for storing variables. This program needs one
  2495. variable ($8$ bytes), but we round up to 16 bytes so that \code{rsp} is
  2496. 16-byte-aligned, and then we are ready to make calls to other functions.
  2497. \racket{The last instruction of the prelude is \code{jmp start}, which
  2498. transfers control to the instructions that were generated from the
  2499. expression \racket{\code{(+ 52 (- 10))}}\python{52 + -10}.}
  2500. \racket{The first instruction under the \code{start} label is}
  2501. %
  2502. \python{The first instruction after the prelude is}
  2503. %
  2504. \code{movq \$10, -8(\%rbp)}, which stores $10$ in variable $1$.
  2505. %
  2506. The instruction \code{negq -8(\%rbp)} changes the contents of variable
  2507. $1$ to $-10$.
  2508. %
  2509. The next instruction moves the $-10$ from variable $1$ into the
  2510. \code{rax} register. Finally, \code{addq \$52, \%rax} adds $52$ to
  2511. the value in \code{rax}, updating its contents to $42$.
  2512. \racket{The three instructions under the label \code{conclusion} are the
  2513. typical \emph{conclusion}\index{subject}{conclusion} of a procedure.}
  2514. %
  2515. \python{The \emph{conclusion}\index{subject}{conclusion} of the
  2516. \code{main} function consists of the last three instructions.}
  2517. %
  2518. The first two restore the \code{rsp} and \code{rbp} registers to their
  2519. states at the beginning of the procedure. In particular,
  2520. \key{addq \$16, \%rsp} moves the stack pointer to point to the
  2521. old base pointer. Then \key{popq \%rbp} restores the old base pointer
  2522. to \key{rbp} and adds $8$ to the stack pointer. The last instruction,
  2523. \key{retq}, jumps back to the procedure that called this one and adds
  2524. $8$ to the stack pointer.
  2525. Our compiler needs a convenient representation for manipulating x86
  2526. programs, so we define an abstract syntax for x86, shown in
  2527. figure~\ref{fig:x86-int-ast}. We refer to this language as
  2528. \LangXInt{}.
  2529. %
  2530. {\if\edition\pythonEd\pythonColor%
  2531. The main difference between this and the concrete syntax of \LangXInt{}
  2532. (figure~\ref{fig:x86-int-concrete}) is that labels, instruction
  2533. names, and register names are explicitly represented by strings.
  2534. \fi} %
  2535. {\if\edition\racketEd
  2536. The main difference between this and the concrete syntax of \LangXInt{}
  2537. (figure~\ref{fig:x86-int-concrete}) is that labels are not allowed in
  2538. front of every instruction. Instead instructions are grouped into
  2539. \emph{basic blocks}\index{subject}{basic block} with a
  2540. label associated with every basic block; this is why the \key{X86Program}
  2541. struct includes an alist mapping labels to basic blocks. The reason for this
  2542. organization becomes apparent in chapter~\ref{ch:Lif} when we
  2543. introduce conditional branching. The \code{Block} structure includes
  2544. an $\itm{info}$ field that is not needed in this chapter but becomes
  2545. useful in chapter~\ref{ch:register-allocation-Lvar}. For now, the
  2546. $\itm{info}$ field should contain an empty list.
  2547. \fi}
  2548. %
  2549. Regarding the abstract syntax for \code{callq}, the \code{Callq} AST
  2550. node includes an integer for representing the arity of the function,
  2551. that is, the number of arguments, which is helpful to know during
  2552. register allocation (chapter~\ref{ch:register-allocation-Lvar}).
  2553. \newcommand{\allastregisters}{\skey{rsp} \MID \skey{rbp} \MID \skey{rax} \MID \skey{rbx} \MID \skey{rcx}
  2554. \MID \skey{rdx} \MID \skey{rsi} \MID \skey{rdi} \MID \\
  2555. && \skey{r8} \MID \skey{r9} \MID \skey{r10}
  2556. \MID \skey{r11} \MID \skey{r12} \MID \skey{r13}
  2557. \MID \skey{r14} \MID \skey{r15}}
  2558. \newcommand{\ASTXIntRacket}{
  2559. \begin{array}{lcl}
  2560. \Reg &::=& \allregisters{} \\
  2561. \Arg &::=& \IMM{\Int} \MID \REG{\Reg}
  2562. \MID \DEREF{\Reg}{\Int} \\
  2563. \Instr &::=& \BININSTR{\code{addq}}{\Arg}{\Arg}
  2564. \MID \BININSTR{\code{subq}}{\Arg}{\Arg}\\
  2565. &\MID& \UNIINSTR{\code{negq}}{\Arg}
  2566. \MID \BININSTR{\code{movq}}{\Arg}{\Arg}\\
  2567. &\MID& \PUSHQ{\Arg}
  2568. \MID \POPQ{\Arg} \\
  2569. &\MID& \CALLQ{\itm{label}}{\itm{int}}
  2570. \MID \RETQ{}
  2571. \MID \JMP{\itm{label}} \\
  2572. \Block &::= & \BLOCK{\itm{info}}{\LP\Instr\ldots\RP}
  2573. \end{array}
  2574. }
  2575. \newcommand{\ASTXIntPython}{
  2576. \begin{array}{lcl}
  2577. \Reg &::=& \allregisters{} \\
  2578. \Arg &::=& \IMM{\Int} \MID \REG{\Reg}
  2579. \MID \DEREF{\Reg}{\Int} \\
  2580. \Instr &::=& \BININSTR{\skey{addq}}{\Arg}{\Arg}
  2581. \MID \BININSTR{\skey{subq}}{\Arg}{\Arg}\\
  2582. &\MID& \UNIINSTR{\skey{negq}}{\Arg}
  2583. \MID \BININSTR{\skey{movq}}{\Arg}{\Arg}\\
  2584. &\MID& \PUSHQ{\Arg}
  2585. \MID \POPQ{\Arg} \\
  2586. &\MID& \CALLQ{\itm{label}}{\itm{int}}
  2587. \MID \RETQ{} \\
  2588. \Block &::= & \Instr^{+}
  2589. \end{array}
  2590. }
  2591. \begin{figure}[tp]
  2592. \begin{tcolorbox}[colback=white]
  2593. \small
  2594. {\if\edition\racketEd
  2595. \[\arraycolsep=3pt
  2596. \begin{array}{l}
  2597. \ASTXIntRacket \\
  2598. \begin{array}{lcl}
  2599. \LangXIntM{} &::= & \XPROGRAM{\itm{info}}{\LP\LP\itm{label} \,\key{.}\, \Block \RP\ldots\RP}
  2600. \end{array}
  2601. \end{array}
  2602. \]
  2603. \fi}
  2604. {\if\edition\pythonEd\pythonColor
  2605. \[
  2606. \begin{array}{l}
  2607. \ASTXIntPython \\
  2608. \begin{array}{lcl}
  2609. \LangXIntM{} &::= & \XPROGRAM{}{\Block}{}
  2610. \end{array}
  2611. \end{array}
  2612. \]
  2613. \fi}
  2614. \end{tcolorbox}
  2615. \caption{The abstract syntax of \LangXInt{} assembly.}
  2616. \label{fig:x86-int-ast}
  2617. \index{subject}{x86int@\LangXInt{} abstract syntax}
  2618. \end{figure}
  2619. \section{Planning the Trip to x86}
  2620. \label{sec:plan-s0-x86}
  2621. To compile one language to another, it helps to focus on the
  2622. differences between the two languages because the compiler will need
  2623. to bridge those differences. What are the differences between \LangVar{}
  2624. and x86 assembly? Here are some of the most important ones:
  2625. \begin{enumerate}
  2626. \item x86 arithmetic instructions typically have two arguments and
  2627. update the second argument in place. In contrast, \LangVar{}
  2628. arithmetic operations take two arguments and produce a new value.
  2629. An x86 instruction may have at most one memory-accessing argument.
  2630. Furthermore, some x86 instructions place special restrictions on
  2631. their arguments.
  2632. \item An argument of an \LangVar{} operator can be a deeply nested
  2633. expression, whereas x86 instructions restrict their arguments to be
  2634. integer constants, registers, and memory locations.
  2635. {\if\edition\racketEd
  2636. \item The order of execution in x86 is explicit in the syntax, which
  2637. is a sequence of instructions and jumps to labeled positions,
  2638. whereas in \LangVar{} the order of evaluation is a left-to-right
  2639. depth-first traversal of the abstract syntax tree. \fi}
  2640. \item A program in \LangVar{} can have any number of variables,
  2641. whereas x86 has 16 registers and the procedure call stack.
  2642. {\if\edition\racketEd
  2643. \item Variables in \LangVar{} can shadow other variables with the
  2644. same name. In x86, registers have unique names, and memory locations
  2645. have unique addresses.
  2646. \fi}
  2647. \end{enumerate}
  2648. We ease the challenge of compiling from \LangVar{} to x86 by breaking
  2649. down the problem into several steps, which deal with these differences
  2650. one at a time. Each of these steps is called a \emph{pass} of the
  2651. compiler.\index{subject}{pass}\index{subject}{compiler pass}
  2652. %
  2653. This term indicates that each step passes over, or traverses, the AST
  2654. of the program.
  2655. %
  2656. Furthermore, we follow the nanopass approach, which means that we
  2657. strive for each pass to accomplish one clear objective rather than two
  2658. or three at the same time.
  2659. %
  2660. We begin by sketching how we might implement each pass and give each
  2661. pass a name. We then figure out an ordering of the passes and the
  2662. input/output language for each pass. The very first pass has
  2663. \LangVar{} as its input language, and the last pass has \LangXInt{} as
  2664. its output language. In between these two passes, we can choose
  2665. whichever language is most convenient for expressing the output of
  2666. each pass, whether that be \LangVar{}, \LangXInt{}, or a new
  2667. \emph{intermediate language} of our own design. Finally, to
  2668. implement each pass we write one recursive function per nonterminal in
  2669. the grammar of the input language of the pass.
  2670. \index{subject}{intermediate language}
  2671. Our compiler for \LangVar{} consists of the following passes:
  2672. %
  2673. \begin{description}
  2674. {\if\edition\racketEd
  2675. \item[\key{uniquify}] deals with the shadowing of variables by
  2676. renaming every variable to a unique name.
  2677. \fi}
  2678. \item[\key{remove\_complex\_operands}] ensures that each subexpression
  2679. of a primitive operation or function call is a variable or integer,
  2680. that is, an \emph{atomic} expression. We refer to nonatomic
  2681. expressions as \emph{complex}. This pass introduces temporary
  2682. variables to hold the results of complex
  2683. subexpressions.\index{subject}{atomic
  2684. expression}\index{subject}{complex expression}%
  2685. {\if\edition\racketEd
  2686. \item[\key{explicate\_control}] makes the execution order of the
  2687. program explicit. It converts the abstract syntax tree
  2688. representation into a graph in which each node is a labeled sequence
  2689. of statements and the edges are \code{goto} statements.
  2690. \fi}
  2691. \item[\key{select\_instructions}]\index{subject}{select instructions}
  2692. handles the difference between
  2693. \LangVar{} operations and x86 instructions. This pass converts each
  2694. \LangVar{} operation to a short sequence of instructions that
  2695. accomplishes the same task.
  2696. \item[\key{assign\_homes}] replaces variables with registers or stack
  2697. locations.
  2698. \end{description}
  2699. %
  2700. {\if\edition\racketEd
  2701. %
  2702. Our treatment of \code{remove\_complex\_operands} and
  2703. \code{explicate\_control} as separate passes is an example of the
  2704. nanopass approach.\footnote{For analogous decompositions of the
  2705. translation into continuation passing style, see the work of
  2706. \citet{Lawall:1993} and \citet{Hatcliff:1994ea}.} The traditional
  2707. approach is to combine them into a single step~\citep{Aho:2006wb}.
  2708. %
  2709. \fi}
  2710. The next question is, in what order should we apply these passes? This
  2711. question can be challenging because it is difficult to know ahead of
  2712. time which orderings will be better (that is, will be easier to
  2713. implement, produce more efficient code, and so on), and therefore
  2714. ordering often involves trial and error. Nevertheless, we can plan
  2715. ahead and make educated choices regarding the ordering.
  2716. \racket{What should be the ordering of \key{explicate\_control} with respect to
  2717. \key{uniquify}? The \key{uniquify} pass should come first because
  2718. \key{explicate\_control} changes all the \key{let}-bound variables to
  2719. become local variables whose scope is the entire program, which would
  2720. confuse variables with the same name.}
  2721. %
  2722. \racket{We place \key{remove\_complex\_operands} before \key{explicate\_control}
  2723. because the latter removes the \key{let} form, but it is convenient to
  2724. use \key{let} in the output of \key{remove\_complex\_operands}.}
  2725. %
  2726. \racket{The ordering of \key{uniquify} with respect to
  2727. \key{remove\_complex\_operands} does not matter, so we arbitrarily choose
  2728. \key{uniquify} to come first.}
  2729. The \key{select\_instructions} and \key{assign\_homes} passes are
  2730. intertwined.
  2731. %
  2732. In chapter~\ref{ch:Lfun} we learn that in x86, registers are used for
  2733. passing arguments to functions and that it is preferable to assign
  2734. parameters to their corresponding registers. This suggests that it
  2735. would be better to start with the \key{select\_instructions} pass,
  2736. which generates the instructions for argument passing, before
  2737. performing register allocation.
  2738. %
  2739. On the other hand, by selecting instructions first we may run into a
  2740. dead end in \key{assign\_homes}. Recall that only one argument of an
  2741. x86 instruction may be a memory access, but \key{assign\_homes} might
  2742. be forced to assign both arguments to memory locations.
  2743. %
  2744. A sophisticated approach is to repeat the two passes until a solution
  2745. is found. However, to reduce implementation complexity we recommend
  2746. placing \key{select\_instructions} first, followed by the
  2747. \key{assign\_homes}, and then a third pass named \key{patch\_instructions}
  2748. that uses a reserved register to fix outstanding problems.
  2749. \begin{figure}[tbp]
  2750. \begin{tcolorbox}[colback=white]
  2751. {\if\edition\racketEd
  2752. \begin{tikzpicture}[baseline=(current bounding box.center),scale=0.90]
  2753. \node (Lvar) at (0,2) {\large \LangVar{}};
  2754. \node (Lvar-2) at (3,2) {\large \LangVar{}};
  2755. \node (Lvar-3) at (7,2) {\large \LangVarANF{}};
  2756. %\node (Cvar-1) at (6,0) {\large \LangCVar{}};
  2757. \node (Cvar-2) at (0,0) {\large \LangCVar{}};
  2758. \node (x86-2) at (0,-2) {\large \LangXVar{}};
  2759. \node (x86-3) at (3,-2) {\large \LangXVar{}};
  2760. \node (x86-4) at (7,-2) {\large \LangXInt{}};
  2761. \node (x86-5) at (11,-2) {\large \LangXInt{}};
  2762. \path[->,bend left=15] (Lvar) edge [above] node {\ttfamily\footnotesize uniquify} (Lvar-2);
  2763. \path[->,bend left=15] (Lvar-2) edge [above] node {\ttfamily\footnotesize remove\_complex\_operands} (Lvar-3);
  2764. \path[->,bend left=15] (Lvar-3) edge [right] node {\ttfamily\footnotesize\ \ explicate\_control} (Cvar-2);
  2765. \path[->,bend right=15] (Cvar-2) edge [right] node {\ttfamily\footnotesize select\_instructions} (x86-2);
  2766. \path[->,bend right=15] (x86-2) edge [below] node {\ttfamily\footnotesize assign\_homes} (x86-3);
  2767. \path[->,bend left=15] (x86-3) edge [above] node {\ttfamily\footnotesize patch\_instructions} (x86-4);
  2768. \path[->,bend left=15] (x86-4) edge [above] node {\ttfamily\footnotesize prelude\_and\_conclusion} (x86-5);
  2769. \end{tikzpicture}
  2770. \fi}
  2771. {\if\edition\pythonEd\pythonColor
  2772. \begin{tikzpicture}[baseline=(current bounding box.center),scale=0.85]
  2773. \node (Lvar) at (0,2) {\large \LangVar{}};
  2774. \node (Lvar-2) at (4,2) {\large \LangVarANF{}};
  2775. \node (x86-1) at (0,0) {\large \LangXVar{}};
  2776. \node (x86-2) at (4,0) {\large \LangXVar{}};
  2777. \node (x86-3) at (8,0) {\large \LangXInt{}};
  2778. \node (x86-4) at (12,0) {\large \LangXInt{}};
  2779. \path[->,bend left=15] (Lvar) edge [above] node {\ttfamily\footnotesize remove\_complex\_operands} (Lvar-2);
  2780. \path[->,bend left=15] (Lvar-2) edge [left] node {\ttfamily\footnotesize select\_instructions\ \ } (x86-1);
  2781. \path[->,bend right=15] (x86-1) edge [below] node {\ttfamily\footnotesize assign\_homes} (x86-2);
  2782. \path[->,bend left=15] (x86-2) edge [above] node {\ttfamily\footnotesize patch\_instructions} (x86-3);
  2783. \path[->,bend right=15] (x86-3) edge [below] node {\ttfamily\footnotesize prelude\_and\_conclusion} (x86-4);
  2784. \end{tikzpicture}
  2785. \fi}
  2786. \end{tcolorbox}
  2787. \caption{Diagram of the passes for compiling \LangVar{}. }
  2788. \label{fig:Lvar-passes}
  2789. \end{figure}
  2790. Figure~\ref{fig:Lvar-passes} presents the ordering of the compiler
  2791. passes and identifies the input and output language of each pass.
  2792. %
  2793. The output of the \key{select\_instructions} pass is the \LangXVar{}
  2794. language, which extends \LangXInt{} with an unbounded number of
  2795. program-scope variables and removes the restrictions regarding
  2796. instruction arguments.
  2797. %
  2798. The last pass, \key{prelude\_and\_conclusion}, places the program
  2799. instructions inside a \code{main} function with instructions for the
  2800. prelude and conclusion.
  2801. %
  2802. \racket{In the next section we discuss the \LangCVar{} intermediate
  2803. language that serves as the output of \code{explicate\_control}.}
  2804. %
  2805. The remainder of this chapter provides guidance on the implementation
  2806. of each of the compiler passes represented in
  2807. figure~\ref{fig:Lvar-passes}.
  2808. %% The output of \key{uniquify} and \key{remove-complex-operands}
  2809. %% are programs that are still in the \LangVar{} language, though the
  2810. %% output of the later is a subset of \LangVar{} named \LangVarANF{}
  2811. %% (section~\ref{sec:remove-complex-opera-Lvar}).
  2812. %% %
  2813. %% The output of \code{explicate\_control} is in an intermediate language
  2814. %% \LangCVar{} designed to make the order of evaluation explicit in its
  2815. %% syntax, which we introduce in the next section. The
  2816. %% \key{select-instruction} pass translates from \LangCVar{} to
  2817. %% \LangXVar{}. The \key{assign-homes} and
  2818. %% \key{patch-instructions}
  2819. %% passes input and output variants of x86 assembly.
  2820. \newcommand{\CvarGrammarRacket}{
  2821. \begin{array}{lcl}
  2822. \Atm &::=& \Int \MID \Var \\
  2823. \Exp &::=& \Atm \MID \CREAD{} \MID \CNEG{\Atm} \MID \CADD{\Atm}{\Atm} \MID \CSUB{\Atm}{\Atm}\\
  2824. \Stmt &::=& \CASSIGN{\Var}{\Exp} \\
  2825. \Tail &::= & \CRETURN{\Exp} \MID \Stmt~\Tail
  2826. \end{array}
  2827. }
  2828. \newcommand{\CvarASTRacket}{
  2829. \begin{array}{lcl}
  2830. \Atm &::=& \INT{\Int} \MID \VAR{\Var} \\
  2831. \Exp &::=& \Atm \MID \READ{} \MID \NEG{\Atm} \\
  2832. &\MID& \ADD{\Atm}{\Atm} \MID \SUB{\Atm}{\Atm}\\
  2833. \Stmt &::=& \ASSIGN{\VAR{\Var}}{\Exp} \\
  2834. \Tail &::= & \RETURN{\Exp} \MID \SEQ{\Stmt}{\Tail}
  2835. \end{array}
  2836. }
  2837. {\if\edition\racketEd
  2838. \subsection{The \LangCVar{} Intermediate Language}
  2839. The output of \code{explicate\_control} is similar to the C
  2840. language~\citep{Kernighan:1988nx} in that it has separate syntactic
  2841. categories for expressions and statements, so we name it \LangCVar{}.
  2842. This style of intermediate language is also known as
  2843. \emph{three-address code}, to emphasize that the typical form of a
  2844. statement such as \CASSIGN{\key{x}}{\CADD{\key{y}}{\key{z}}} involves three
  2845. addresses: \code{x}, \code{y}, and \code{z}~\citep{Aho:2006wb}.
  2846. The concrete syntax for \LangCVar{} is shown in
  2847. figure~\ref{fig:c0-concrete-syntax}, and the abstract syntax for
  2848. \LangCVar{} is shown in figure~\ref{fig:c0-syntax}.
  2849. %
  2850. The \LangCVar{} language supports the same operators as \LangVar{} but
  2851. the arguments of operators are restricted to atomic
  2852. expressions. Instead of \key{let} expressions, \LangCVar{} has
  2853. assignment statements that can be executed in sequence using the
  2854. \key{Seq} form. A sequence of statements always ends with
  2855. \key{Return}, a guarantee that is baked into the grammar rules for
  2856. \itm{tail}. The naming of this nonterminal comes from the term
  2857. \emph{tail position}\index{subject}{tail position}, which refers to an
  2858. expression that is the last one to execute within a function or
  2859. program.
  2860. A \LangCVar{} program consists of an alist mapping labels to
  2861. tails. This is more general than necessary for the present chapter, as
  2862. we do not yet introduce \key{goto} for jumping to labels, but it saves
  2863. us from having to change the syntax in chapter~\ref{ch:Lif}. For now
  2864. there is just one label, \key{start}, and the whole program is
  2865. its tail.
  2866. %
  2867. The $\itm{info}$ field of the \key{CProgram} form, after the
  2868. \code{explicate\_control} pass, contains an alist that associates the
  2869. symbol \key{locals} with a list of all the variables used in the
  2870. program. At the start of the program, these variables are
  2871. uninitialized; they become initialized on their first assignment.
  2872. \begin{figure}[tbp]
  2873. \begin{tcolorbox}[colback=white]
  2874. \[
  2875. \begin{array}{l}
  2876. \CvarGrammarRacket \\
  2877. \begin{array}{lcl}
  2878. \LangCVarM{} & ::= & (\itm{label}\key{:}~ \Tail)\ldots
  2879. \end{array}
  2880. \end{array}
  2881. \]
  2882. \end{tcolorbox}
  2883. \caption{The concrete syntax of the \LangCVar{} intermediate language.}
  2884. \label{fig:c0-concrete-syntax}
  2885. \index{subject}{Cvar@\LangCVar{} concrete syntax}
  2886. \end{figure}
  2887. \begin{figure}[tbp]
  2888. \begin{tcolorbox}[colback=white]
  2889. \[
  2890. \begin{array}{l}
  2891. \CvarASTRacket \\
  2892. \begin{array}{lcl}
  2893. \LangCVarM{} & ::= & \CPROGRAM{\itm{info}}{\LP\LP\itm{label}\,\key{.}\,\Tail\RP\ldots\RP}
  2894. \end{array}
  2895. \end{array}
  2896. \]
  2897. \end{tcolorbox}
  2898. \caption{The abstract syntax of the \LangCVar{} intermediate language.}
  2899. \label{fig:c0-syntax}
  2900. \index{subject}{Cvar@\LangCVar{} abstract syntax}
  2901. \end{figure}
  2902. The definitional interpreter for \LangCVar{} is in the support code,
  2903. in the file \code{interp-Cvar.rkt}.
  2904. \fi}
  2905. {\if\edition\racketEd
  2906. \section{Uniquify Variables}
  2907. \label{sec:uniquify-Lvar}
  2908. The \code{uniquify} pass replaces the variable bound by each \key{let}
  2909. with a unique name. Both the input and output of the \code{uniquify}
  2910. pass is the \LangVar{} language. For example, the \code{uniquify} pass
  2911. should translate the program on the left into the program on the
  2912. right.
  2913. \begin{transformation}
  2914. \begin{lstlisting}
  2915. (let ([x 32])
  2916. (+ (let ([x 10]) x) x))
  2917. \end{lstlisting}
  2918. \compilesto
  2919. \begin{lstlisting}
  2920. (let ([x.1 32])
  2921. (+ (let ([x.2 10]) x.2) x.1))
  2922. \end{lstlisting}
  2923. \end{transformation}
  2924. The following is another example translation, this time of a program
  2925. with a \key{let} nested inside the initializing expression of another
  2926. \key{let}.
  2927. \begin{transformation}
  2928. \begin{lstlisting}
  2929. (let ([x (let ([x 4])
  2930. (+ x 1))])
  2931. (+ x 2))
  2932. \end{lstlisting}
  2933. \compilesto
  2934. \begin{lstlisting}
  2935. (let ([x.2 (let ([x.1 4])
  2936. (+ x.1 1))])
  2937. (+ x.2 2))
  2938. \end{lstlisting}
  2939. \end{transformation}
  2940. We recommend implementing \code{uniquify} by creating a structurally
  2941. recursive function named \code{uniquify\_exp} that does little other
  2942. than copy an expression. However, when encountering a \key{let}, it
  2943. should generate a unique name for the variable and associate the old
  2944. name with the new name in an alist.\footnote{The Racket function
  2945. \code{gensym} is handy for generating unique variable names.} The
  2946. \code{uniquify\_exp} function needs to access this alist when it gets
  2947. to a variable reference, so we add a parameter to \code{uniquify\_exp}
  2948. for the alist.
  2949. The skeleton of the \code{uniquify\_exp} function is shown in
  2950. figure~\ref{fig:uniquify-Lvar}.
  2951. %% The function is curried so that it is
  2952. %% convenient to partially apply it to an alist and then apply it to
  2953. %% different expressions, as in the last case for primitive operations in
  2954. %% figure~\ref{fig:uniquify-Lvar}.
  2955. The
  2956. %
  2957. \href{https://docs.racket-lang.org/reference/for.html#%28form._%28%28lib._racket%2Fprivate%2Fbase..rkt%29._for%2Flist%29%29}{\key{for/list}}
  2958. %
  2959. form of Racket is useful for transforming the element of a list to
  2960. produce a new list.\index{subject}{for/list}
  2961. \begin{figure}[tbp]
  2962. \begin{tcolorbox}[colback=white]
  2963. \begin{lstlisting}
  2964. (define (uniquify_exp env)
  2965. (lambda (e)
  2966. (match e
  2967. [(Var x) ___]
  2968. [(Int n) (Int n)]
  2969. [(Let x e body) ___]
  2970. [(Prim op es)
  2971. (Prim op (for/list ([e es]) ((uniquify_exp env) e)))])))
  2972. (define (uniquify p)
  2973. (match p
  2974. [(Program '() e) (Program '() ((uniquify_exp '()) e))]))
  2975. \end{lstlisting}
  2976. \end{tcolorbox}
  2977. \caption{Skeleton for the \key{uniquify} pass.}
  2978. \label{fig:uniquify-Lvar}
  2979. \end{figure}
  2980. \begin{exercise}
  2981. \normalfont\normalsize % I don't like the italics for exercises. -Jeremy
  2982. Complete the \code{uniquify} pass by filling in the blanks in
  2983. figure~\ref{fig:uniquify-Lvar}; that is, implement the cases for
  2984. variables and for the \key{let} form in the file \code{compiler.rkt}
  2985. in the support code.
  2986. \end{exercise}
  2987. \begin{exercise}
  2988. \normalfont\normalsize
  2989. \label{ex:Lvar}
  2990. Create five \LangVar{} programs that exercise the most interesting
  2991. parts of the \key{uniquify} pass; that is, the programs should include
  2992. \key{let} forms, variables, and variables that shadow each other.
  2993. The five programs should be placed in the subdirectory named
  2994. \key{tests}, and the file names should start with \code{var\_test\_}
  2995. followed by a unique integer and end with the file extension
  2996. \key{.rkt}.
  2997. %
  2998. The \key{run-tests.rkt} script in the support code checks whether the
  2999. output programs produce the same result as the input programs. The
  3000. script uses the \key{interp-tests} function
  3001. (appendix~\ref{appendix:utilities}) from \key{utilities.rkt} to test
  3002. your \key{uniquify} pass on the example programs. The \code{passes}
  3003. parameter of \key{interp-tests} is a list that should have one entry
  3004. for each pass in your compiler. For now, define \code{passes} to
  3005. contain just one entry for \code{uniquify} as follows:
  3006. \begin{lstlisting}
  3007. (define passes
  3008. (list (list "uniquify" uniquify interp_Lvar type-check-Lvar)))
  3009. \end{lstlisting}
  3010. Run the \key{run-tests.rkt} script in the support code to check
  3011. whether the output programs produce the same result as the input
  3012. programs.
  3013. \end{exercise}
  3014. \fi}
  3015. \section{Remove Complex Operands}
  3016. \label{sec:remove-complex-opera-Lvar}
  3017. The \code{remove\_complex\_operands} pass compiles \LangVar{} programs
  3018. into a restricted form in which the arguments of operations are atomic
  3019. expressions. Put another way, this pass removes complex
  3020. operands\index{subject}{complex operand}, such as the expression
  3021. \racket{\code{(- 10)}}\python{\code{-10}}
  3022. in the following program. This is accomplished by introducing a new
  3023. temporary variable, assigning the complex operand to the new
  3024. variable, and then using the new variable in place of the complex
  3025. operand, as shown in the output of \code{remove\_complex\_operands} on the
  3026. right.
  3027. {\if\edition\racketEd
  3028. \begin{transformation}
  3029. % var_test_19.rkt
  3030. \begin{lstlisting}
  3031. (let ([x (+ 42 (- 10))])
  3032. (+ x 10))
  3033. \end{lstlisting}
  3034. \compilesto
  3035. \begin{lstlisting}
  3036. (let ([x (let ([tmp.1 (- 10)])
  3037. (+ 42 tmp.1))])
  3038. (+ x 10))
  3039. \end{lstlisting}
  3040. \end{transformation}
  3041. \fi}
  3042. {\if\edition\pythonEd\pythonColor
  3043. \begin{transformation}
  3044. \begin{lstlisting}
  3045. x = 42 + -10
  3046. print(x + 10)
  3047. \end{lstlisting}
  3048. \compilesto
  3049. \begin{lstlisting}
  3050. tmp_0 = -10
  3051. x = 42 + tmp_0
  3052. tmp_1 = x + 10
  3053. print(tmp_1)
  3054. \end{lstlisting}
  3055. \end{transformation}
  3056. \fi}
  3057. \newcommand{\LvarMonadASTRacket}{
  3058. \begin{array}{rcl}
  3059. \Atm &::=& \INT{\Int} \MID \VAR{\Var} \\
  3060. \Exp &::=& \Atm \MID \READ{} \\
  3061. &\MID& \NEG{\Atm} \MID \ADD{\Atm}{\Atm} \MID \SUB{\Atm}{\Atm} \\
  3062. &\MID& \LET{\Var}{\Exp}{\Exp} \\
  3063. \end{array}
  3064. }
  3065. \newcommand{\LvarMonadASTPython}{
  3066. \begin{array}{rcl}
  3067. \Atm &::=& \INT{\Int} \MID \VAR{\Var} \\
  3068. \Exp{} &::=& \Atm \MID \READ{} \\
  3069. &\MID& \UNIOP{\key{USub()}}{\Atm} \MID \BINOP{\Atm}{\key{Add()}}{\Atm} \\
  3070. &\MID& \BINOP{\Atm}{\key{Sub()}}{\Atm} \\
  3071. \Stmt{} &::=& \PRINT{\Atm} \MID \EXPR{\Exp} \\
  3072. &\MID& \ASSIGN{\VAR{\Var}}{\Exp}
  3073. \end{array}
  3074. }
  3075. \begin{figure}[tp]
  3076. \centering
  3077. \begin{tcolorbox}[colback=white]
  3078. {\if\edition\racketEd
  3079. \[
  3080. \begin{array}{l}
  3081. \LvarMonadASTRacket \\
  3082. \begin{array}{rcl}
  3083. \LangVarANFM{} &::=& \PROGRAM{\code{'()}}{\Exp}
  3084. \end{array}
  3085. \end{array}
  3086. \]
  3087. \fi}
  3088. {\if\edition\pythonEd\pythonColor
  3089. \[
  3090. \begin{array}{l}
  3091. \LvarMonadASTPython \\
  3092. \begin{array}{rcl}
  3093. \LangVarANFM{} &::=& \PROGRAM{}{\Stmt^{*}}
  3094. \end{array}
  3095. \end{array}
  3096. \]
  3097. \fi}
  3098. \end{tcolorbox}
  3099. \caption{\LangVarANF{} is \LangVar{} with operands restricted to
  3100. atomic expressions.}
  3101. \label{fig:Lvar-anf-syntax}
  3102. \index{subject}{Lvarmon@\LangVarANF{} abstract syntax}
  3103. \end{figure}
  3104. Figure~\ref{fig:Lvar-anf-syntax} presents the grammar for the output
  3105. of this pass, the language \LangVarANF{}. The only difference is that
  3106. operator arguments are restricted to be atomic expressions that are
  3107. defined by the \Atm{} nonterminal. In particular, integer constants
  3108. and variables are atomic.
  3109. The atomic expressions are pure (they do not cause or depend on side
  3110. effects) whereas complex expressions may have side effects, such as
  3111. \READ{}. A language with this separation between pure expressions
  3112. versus expressions with side effects is said to be in monadic normal
  3113. form~\citep{Moggi:1991in,Danvy:2003fk}, which explains the \textit{mon}
  3114. in the name \LangVarANF{}. An important invariant of the
  3115. \code{remove\_complex\_operands} pass is that the relative ordering
  3116. among complex expressions is not changed, but the relative ordering
  3117. between atomic expressions and complex expressions can change and
  3118. often does. These changes are behavior preserving because
  3119. atomic expressions are pure.
  3120. {\if\edition\racketEd
  3121. Another well-known form for intermediate languages is the
  3122. \emph{administrative normal form}
  3123. (ANF)~\citep{Danvy:1991fk,Flanagan:1993cg}.
  3124. \index{subject}{administrative normal form} \index{subject}{ANF}
  3125. %
  3126. The \LangVarANF{} language is not quite in ANF because it allows the
  3127. right-hand side of a \code{let} to be a complex expression, such as
  3128. another \code{let}. The flattening of nested \code{let} expressions is
  3129. instead one of the responsibilities of the \code{explicate\_control}
  3130. pass.
  3131. \fi}
  3132. {\if\edition\racketEd
  3133. We recommend implementing this pass with two mutually recursive
  3134. functions, \code{rco\_atom} and \code{rco\_exp}. The idea is to apply
  3135. \code{rco\_atom} to subexpressions that need to become atomic and to
  3136. apply \code{rco\_exp} to subexpressions that do not. Both functions
  3137. take an \LangVar{} expression as input. The \code{rco\_exp} function
  3138. returns an expression. The \code{rco\_atom} function returns two
  3139. things: an atomic expression and an alist mapping temporary variables to
  3140. complex subexpressions. You can return multiple things from a function
  3141. using Racket's \key{values} form, and you can receive multiple things
  3142. from a function call using the \key{define-values} form.
  3143. \fi}
  3144. %
  3145. {\if\edition\pythonEd\pythonColor
  3146. %
  3147. We recommend implementing this pass with an auxiliary method named
  3148. \code{rco\_exp} with two parameters: an \LangVar{} expression and a
  3149. Boolean that specifies whether the expression needs to become atomic
  3150. or not. The \code{rco\_exp} method should return a pair consisting of
  3151. the new expression and a list of pairs, associating new temporary
  3152. variables with their initializing expressions.
  3153. %
  3154. \fi}
  3155. {\if\edition\racketEd
  3156. %
  3157. In the example program with the expression \code{(+ 42 (-
  3158. 10))}, the subexpression \code{(- 10)} should be processed using the
  3159. \code{rco\_atom} function because it is an argument of the \code{+}
  3160. operator and therefore needs to become atomic. The output of
  3161. \code{rco\_atom} applied to \code{(- 10)} is as follows:
  3162. \begin{transformation}
  3163. \begin{lstlisting}
  3164. (- 10)
  3165. \end{lstlisting}
  3166. \compilesto
  3167. \begin{lstlisting}
  3168. tmp.1
  3169. ((tmp.1 . (- 10)))
  3170. \end{lstlisting}
  3171. \end{transformation}
  3172. \fi}
  3173. %
  3174. {\if\edition\pythonEd\pythonColor
  3175. %
  3176. Returning to the example program with the expression \code{42 + -10},
  3177. the subexpression \code{-10} should be processed using the
  3178. \code{rco\_exp} function with \code{True} as the second argument,
  3179. because \code{-10} is an argument of the \code{+} operator and
  3180. therefore needs to become atomic. The output of \code{rco\_exp}
  3181. applied to \code{-10} is as follows.
  3182. \begin{transformation}
  3183. \begin{lstlisting}
  3184. -10
  3185. \end{lstlisting}
  3186. \compilesto
  3187. \begin{lstlisting}
  3188. tmp_1
  3189. [(tmp_1, -10)]
  3190. \end{lstlisting}
  3191. \end{transformation}
  3192. %
  3193. \fi}
  3194. Take special care of programs, such as the following, that
  3195. %
  3196. \racket{bind a variable to an atomic expression.}
  3197. %
  3198. \python{assign an atomic expression to a variable.}
  3199. %
  3200. You should leave such \racket{variable bindings}\python{assignments}
  3201. unchanged, as shown in the program on the right:\\
  3202. %
  3203. {\if\edition\racketEd
  3204. \begin{transformation}
  3205. % var_test_20.rkt
  3206. \begin{lstlisting}
  3207. (let ([a 42])
  3208. (let ([b a])
  3209. b))
  3210. \end{lstlisting}
  3211. \compilesto
  3212. \begin{lstlisting}
  3213. (let ([a 42])
  3214. (let ([b a])
  3215. b))
  3216. \end{lstlisting}
  3217. \end{transformation}
  3218. \fi}
  3219. {\if\edition\pythonEd\pythonColor
  3220. \begin{transformation}
  3221. \begin{lstlisting}
  3222. a = 42
  3223. b = a
  3224. print(b)
  3225. \end{lstlisting}
  3226. \compilesto
  3227. \begin{lstlisting}
  3228. a = 42
  3229. b = a
  3230. print(b)
  3231. \end{lstlisting}
  3232. \end{transformation}
  3233. \fi}
  3234. %
  3235. \noindent A careless implementation might produce the following output with
  3236. unnecessary temporary variables.
  3237. \begin{center}
  3238. \begin{minipage}{0.4\textwidth}
  3239. {\if\edition\racketEd
  3240. \begin{lstlisting}
  3241. (let ([tmp.1 42])
  3242. (let ([a tmp.1])
  3243. (let ([tmp.2 a])
  3244. (let ([b tmp.2])
  3245. b))))
  3246. \end{lstlisting}
  3247. \fi}
  3248. {\if\edition\pythonEd\pythonColor
  3249. \begin{lstlisting}
  3250. tmp_1 = 42
  3251. a = tmp_1
  3252. tmp_2 = a
  3253. b = tmp_2
  3254. print(b)
  3255. \end{lstlisting}
  3256. \fi}
  3257. \end{minipage}
  3258. \end{center}
  3259. \begin{exercise}
  3260. \normalfont\normalsize
  3261. {\if\edition\racketEd
  3262. Implement the \code{remove\_complex\_operands} function in
  3263. \code{compiler.rkt}.
  3264. %
  3265. Create three new \LangVar{} programs that exercise the interesting
  3266. code in the \code{remove\_complex\_operands} pass. Follow the guidelines
  3267. regarding file names described in exercise~\ref{ex:Lvar}.
  3268. %
  3269. In the \code{run-tests.rkt} script, add the following entry to the
  3270. list of \code{passes}, and then run the script to test your compiler.
  3271. \begin{lstlisting}
  3272. (list "remove-complex" remove_complex_operands interp_Lvar type-check-Lvar)
  3273. \end{lstlisting}
  3274. In debugging your compiler, it is often useful to see the intermediate
  3275. programs that are output from each pass. To print the intermediate
  3276. programs, place \lstinline{(debug-level 1)} before the call to
  3277. \code{interp-tests} in \code{run-tests.rkt}. \fi}
  3278. %
  3279. {\if\edition\pythonEd\pythonColor
  3280. Implement the \code{remove\_complex\_operands} pass in
  3281. \code{compiler.py}, creating auxiliary functions for each
  3282. nonterminal in the grammar, that is, \code{rco\_exp}
  3283. and \code{rco\_stmt}. We recommend that you use the function
  3284. \code{utils.generate\_name()} to generate fresh names from a stub string.
  3285. \fi}
  3286. \end{exercise}
  3287. {\if\edition\pythonEd\pythonColor
  3288. \begin{exercise}
  3289. \normalfont\normalsize
  3290. \label{ex:Lvar}
  3291. Create five \LangVar{} programs that exercise the most interesting
  3292. parts of the \code{remove\_complex\_operands} pass. The five programs
  3293. should be placed in the subdirectory \key{tests/var}, and the file
  3294. names should end with the file extension \key{.py}. Run the
  3295. \key{run-tests.py} script in the support code to check whether the
  3296. output programs produce the same result as the input programs.
  3297. \end{exercise}
  3298. \fi}
  3299. {\if\edition\racketEd
  3300. \section{Explicate Control}
  3301. \label{sec:explicate-control-Lvar}
  3302. The \code{explicate\_control} pass compiles \LangVar{} programs into \LangCVar{}
  3303. programs that make the order of execution explicit in their
  3304. syntax. For now this amounts to flattening \key{let} constructs into a
  3305. sequence of assignment statements. For example, consider the following
  3306. \LangVar{} program:\\
  3307. % var_test_11.rkt
  3308. \begin{minipage}{0.96\textwidth}
  3309. \begin{lstlisting}
  3310. (let ([y (let ([x 20])
  3311. (+ x (let ([x 22]) x)))])
  3312. y)
  3313. \end{lstlisting}
  3314. \end{minipage}\\
  3315. %
  3316. The output of the previous pass is shown next, on the left, and the
  3317. output of \code{explicate\_control} is on the right. Recall that the
  3318. right-hand side of a \key{let} executes before its body, so that the order
  3319. of evaluation for this program is to assign \code{20} to \code{x.1},
  3320. \code{22} to \code{x.2}, and \code{(+ x.1 x.2)} to \code{y}, and then to
  3321. return \code{y}. Indeed, the output of \code{explicate\_control} makes
  3322. this ordering explicit.
  3323. \begin{transformation}
  3324. \begin{lstlisting}
  3325. (let ([y (let ([x.1 20])
  3326. (let ([x.2 22])
  3327. (+ x.1 x.2)))])
  3328. y)
  3329. \end{lstlisting}
  3330. \compilesto
  3331. \begin{lstlisting}[language=C]
  3332. start:
  3333. x.1 = 20;
  3334. x.2 = 22;
  3335. y = (+ x.1 x.2);
  3336. return y;
  3337. \end{lstlisting}
  3338. \end{transformation}
  3339. \begin{figure}[tbp]
  3340. \begin{tcolorbox}[colback=white]
  3341. \begin{lstlisting}
  3342. (define (explicate_tail e)
  3343. (match e
  3344. [(Var x) ___]
  3345. [(Int n) (Return (Int n))]
  3346. [(Let x rhs body) ___]
  3347. [(Prim op es) ___]
  3348. [else (error "explicate_tail unhandled case" e)]))
  3349. (define (explicate_assign e x cont)
  3350. (match e
  3351. [(Var x) ___]
  3352. [(Int n) (Seq (Assign (Var x) (Int n)) cont)]
  3353. [(Let y rhs body) ___]
  3354. [(Prim op es) ___]
  3355. [else (error "explicate_assign unhandled case" e)]))
  3356. (define (explicate_control p)
  3357. (match p
  3358. [(Program info body) ___]))
  3359. \end{lstlisting}
  3360. \end{tcolorbox}
  3361. \caption{Skeleton for the \code{explicate\_control} pass.}
  3362. \label{fig:explicate-control-Lvar}
  3363. \end{figure}
  3364. The organization of this pass depends on the notion of tail position
  3365. to which we have alluded. Here is the definition.
  3366. \begin{definition}\normalfont
  3367. The following rules define when an expression is in \emph{tail
  3368. position}\index{subject}{tail position} for the language \LangVar{}.
  3369. \begin{enumerate}
  3370. \item In $\PROGRAM{\code{()}}{e}$, expression $e$ is in tail position.
  3371. \item If $\LET{x}{e_1}{e_2}$ is in tail position, then so is $e_2$.
  3372. \end{enumerate}
  3373. \end{definition}
  3374. We recommend implementing \code{explicate\_control} using two
  3375. recursive functions, \code{explicate\_tail} and
  3376. \code{explicate\_assign}, as suggested in the skeleton code shown in
  3377. figure~\ref{fig:explicate-control-Lvar}. The \code{explicate\_tail}
  3378. function should be applied to expressions in tail position, whereas the
  3379. \code{explicate\_assign} should be applied to expressions that occur on
  3380. the right-hand side of a \key{let}.
  3381. %
  3382. The \code{explicate\_tail} function takes an \Exp{} in \LangVar{} as
  3383. input and produces a \Tail{} in \LangCVar{} (see
  3384. figure~\ref{fig:c0-syntax}).
  3385. %
  3386. The \code{explicate\_assign} function takes an \Exp{} in \LangVar{},
  3387. the variable to which it is to be assigned, and a \Tail{} in
  3388. \LangCVar{} for the code that comes after the assignment. The
  3389. \code{explicate\_assign} function returns a $\Tail$ in \LangCVar{}.
  3390. The \code{explicate\_assign} function is in accumulator-passing style:
  3391. the \code{cont} parameter is used for accumulating the output. This
  3392. accumulator-passing style plays an important role in the way that we
  3393. generate high-quality code for conditional expressions in
  3394. chapter~\ref{ch:Lif}. The abbreviation \code{cont} is for
  3395. continuation because it contains the generated code that should come
  3396. after the current assignment. This code organization is also related
  3397. to continuation-passing style, except that \code{cont} is not what
  3398. happens next during compilation but is what happens next in the
  3399. generated code.
  3400. \begin{exercise}\normalfont\normalsize
  3401. %
  3402. Implement the \code{explicate\_control} function in
  3403. \code{compiler.rkt}. Create three new \LangInt{} programs that
  3404. exercise the code in \code{explicate\_control}.
  3405. %
  3406. In the \code{run-tests.rkt} script, add the following entry to the
  3407. list of \code{passes} and then run the script to test your compiler.
  3408. \begin{lstlisting}
  3409. (list "explicate control" explicate_control interp_Cvar type-check-Cvar)
  3410. \end{lstlisting}
  3411. \end{exercise}
  3412. \fi}
  3413. \section{Select Instructions}
  3414. \label{sec:select-Lvar}
  3415. \index{subject}{select instructions}
  3416. In the \code{select\_instructions} pass we begin the work of
  3417. translating \racket{from \LangCVar{}} to \LangXVar{}. The target
  3418. language of this pass, \LangXVar{}, is a variant of x86 that still
  3419. uses variables, so we add an AST node of the form $\XVAR{\itm{var}}$
  3420. to the \Arg{} nonterminal of the \LangXInt{} abstract syntax
  3421. (figure~\ref{fig:x86-int-ast})\index{subject}{x86var@\LangXVar{}}.
  3422. \racket{We recommend implementing the \code{select\_instructions} with
  3423. three auxiliary functions, one for each of the nonterminals of
  3424. \LangCVar{}: $\Atm$, $\Stmt$, and $\Tail$.} \python{We recommend
  3425. implementing an auxiliary function named \code{select\_stmt} for the
  3426. $\Stmt$ nonterminal.}
  3427. \racket{The cases for $\Atm$ are straightforward; variables stay the
  3428. same and integer constants change to immediates; that is, $\INT{n}$
  3429. changes to $\IMM{n}$.}
  3430. Next consider the cases for the $\Stmt$ nonterminal, starting with
  3431. arithmetic operations. For example, consider the following addition
  3432. operation, on the left side. (Let $\Arg_1$ and $\Arg_2$ be the
  3433. translations of $\Atm_1$ and $\Atm_2$, respectively.) There is an
  3434. \key{addq} instruction in x86, but it performs an in-place update.
  3435. %
  3436. So, we could move $\Arg_1$ into the \code{rax} register, then add
  3437. $\Arg_2$ to \code{rax}, and then finally move \code{rax} into \itm{var}.
  3438. \begin{transformation}
  3439. {\if\edition\racketEd
  3440. \begin{lstlisting}
  3441. |$\itm{var}$| = (+ |$\Atm_1$| |$\Atm_2$|);
  3442. \end{lstlisting}
  3443. \fi}
  3444. {\if\edition\pythonEd\pythonColor
  3445. \begin{lstlisting}
  3446. |$\itm{var}$| = |$\Atm_1$| + |$\Atm_2$|
  3447. \end{lstlisting}
  3448. \fi}
  3449. \compilesto
  3450. \begin{lstlisting}
  3451. movq |$\Arg_1$|, %rax
  3452. addq |$\Arg_2$|, %rax
  3453. movq %rax, |$\itm{var}$|
  3454. \end{lstlisting}
  3455. \end{transformation}
  3456. %
  3457. However, with some care we can generate shorter sequences of
  3458. instructions. Suppose that one or more of the arguments of the
  3459. addition is the same variable as the left-hand side of the assignment.
  3460. Then the assignment statement can be translated into a single
  3461. \key{addq} instruction, as follows.
  3462. \begin{transformation}
  3463. {\if\edition\racketEd
  3464. \begin{lstlisting}
  3465. |$\itm{var}$| = (+ |$\Atm_1$| |$\itm{var}$|);
  3466. \end{lstlisting}
  3467. \fi}
  3468. {\if\edition\pythonEd\pythonColor
  3469. \begin{lstlisting}
  3470. |$\itm{var}$| = |$\Atm_1$| + |$\itm{var}$|
  3471. \end{lstlisting}
  3472. \fi}
  3473. \compilesto
  3474. \begin{lstlisting}
  3475. addq |$\Arg_1$|, |$\itm{var}$|
  3476. \end{lstlisting}
  3477. \end{transformation}
  3478. %
  3479. On the other hand, if $\Atm_2$ is not the same variable as the
  3480. left-hand side, then we can move $\Arg_1$ into the left-hand \itm{var}
  3481. and then add $\Arg_2$ to \itm{var}.
  3482. %
  3483. \begin{transformation}
  3484. {\if\edition\racketEd
  3485. \begin{lstlisting}
  3486. |$\itm{var}$| = (+ |$\Atm_1$| |$\Atm_2$|);
  3487. \end{lstlisting}
  3488. \fi}
  3489. {\if\edition\pythonEd\pythonColor
  3490. \begin{lstlisting}
  3491. |$\itm{var}$| = |$\Atm_1$| + |$\Atm_2$|
  3492. \end{lstlisting}
  3493. \fi}
  3494. \compilesto
  3495. \begin{lstlisting}
  3496. movq |$\Arg_1$|, |$\itm{var}$|
  3497. addq |$\Arg_2$|, |$\itm{var}$|
  3498. \end{lstlisting}
  3499. \end{transformation}
  3500. The \READOP{} operation does not have a direct counterpart in x86
  3501. assembly, so we provide this functionality with the function
  3502. \code{read\_int} in the file \code{runtime.c}, written in
  3503. C~\citep{Kernighan:1988nx}. In general, we refer to all the
  3504. functionality in this file as the \emph{runtime system}\index{subject}{runtime
  3505. system}, or simply the \emph{runtime} for short. When compiling your
  3506. generated x86 assembly code, you need to compile \code{runtime.c} to
  3507. \code{runtime.o} (an \emph{object file}, using \code{gcc} with option
  3508. \code{-c}) and link it into the executable. For our purposes of code
  3509. generation, all you need to do is translate an assignment of
  3510. \READOP{} into a call to the \code{read\_int} function followed by a
  3511. move from \code{rax} to the left-hand side variable. (The
  3512. return value of a function is placed in \code{rax}.)
  3513. \begin{transformation}
  3514. {\if\edition\racketEd
  3515. \begin{lstlisting}
  3516. |$\itm{var}$| = (read);
  3517. \end{lstlisting}
  3518. \fi}
  3519. {\if\edition\pythonEd\pythonColor
  3520. \begin{lstlisting}
  3521. |$\itm{var}$| = input_int();
  3522. \end{lstlisting}
  3523. \fi}
  3524. \compilesto
  3525. \begin{lstlisting}
  3526. callq read_int
  3527. movq %rax, |$\itm{var}$|
  3528. \end{lstlisting}
  3529. \end{transformation}
  3530. {\if\edition\pythonEd\pythonColor
  3531. %
  3532. Similarly, we translate the \code{print} operation, shown below, into
  3533. a call to the \code{print\_int} function defined in \code{runtime.c}.
  3534. In x86, the first six arguments to functions are passed in registers,
  3535. with the first argument passed in register \code{rdi}. So we move the
  3536. $\Arg$ into \code{rdi} and then call \code{print\_int} using the
  3537. \code{callq} instruction.
  3538. \begin{transformation}
  3539. \begin{lstlisting}
  3540. print(|$\Atm$|)
  3541. \end{lstlisting}
  3542. \compilesto
  3543. \begin{lstlisting}
  3544. movq |$\Arg$|, %rdi
  3545. callq print_int
  3546. \end{lstlisting}
  3547. \end{transformation}
  3548. %
  3549. \fi}
  3550. {\if\edition\racketEd
  3551. %
  3552. There are two cases for the $\Tail$ nonterminal: \key{Return} and
  3553. \key{Seq}. Regarding \key{Return}, we recommend treating it as an
  3554. assignment to the \key{rax} register followed by a jump to
  3555. the label \key{conclusion}. Later, in Section~\ref{sec:print-x86},
  3556. we discuss the generation of the \key{conclusion} block.
  3557. In the meantime, the interpreter for \LangXVar{} recognizes a jump
  3558. to \key{conclusion} as the end of the program.
  3559. For $\SEQ{s}{t}$, you can translate the statement $s$ and tail $t$
  3560. recursively and then append the resulting instructions.
  3561. %
  3562. \fi}
  3563. {\if\edition\pythonEd\pythonColor
  3564. We recommend that you use the function \code{utils.label\_name} to
  3565. transform strings into labels, for example, in
  3566. the target of the \code{callq} instruction. This practice makes your
  3567. compiler portable across Linux and Mac OS X, which requires an underscore
  3568. prefixed to all labels.
  3569. \fi}
  3570. \begin{exercise}
  3571. \normalfont\normalsize
  3572. {\if\edition\racketEd
  3573. Implement the \code{select\_instructions} pass in
  3574. \code{compiler.rkt}. Create three new example programs that are
  3575. designed to exercise all the interesting cases in this pass.
  3576. %
  3577. In the \code{run-tests.rkt} script, add the following entry to the
  3578. list of \code{passes} and then run the script to test your compiler.
  3579. \begin{lstlisting}
  3580. (list "instruction selection" select_instructions interp_pseudo-x86-0)
  3581. \end{lstlisting}
  3582. \fi}
  3583. {\if\edition\pythonEd\pythonColor
  3584. Implement the \key{select\_instructions} pass in
  3585. \code{compiler.py}. Create three new example programs that are
  3586. designed to exercise all the interesting cases in this pass.
  3587. Run the \code{run-tests.py} script to check
  3588. whether the output programs produce the same result as the input
  3589. programs.
  3590. \fi}
  3591. \end{exercise}
  3592. \section{Assign Homes}
  3593. \label{sec:assign-Lvar}
  3594. The \code{assign\_homes} pass compiles \LangXVar{} programs to
  3595. \LangXVar{} programs that no longer use program variables. Thus, the
  3596. \code{assign\_homes} pass is responsible for placing all the program
  3597. variables in registers or on the stack. For runtime efficiency, it is
  3598. better to place variables in registers, but because there are only
  3599. sixteen registers, some programs must necessarily resort to placing
  3600. some variables on the stack. In this chapter we focus on the mechanics
  3601. of placing variables on the stack. We study an algorithm for placing
  3602. variables in registers in chapter~\ref{ch:register-allocation-Lvar}.
  3603. Consider again the following \LangVar{} program from
  3604. section~\ref{sec:remove-complex-opera-Lvar}:\\
  3605. % var_test_20.rkt
  3606. \begin{minipage}{0.96\textwidth}
  3607. {\if\edition\racketEd
  3608. \begin{lstlisting}
  3609. (let ([a 42])
  3610. (let ([b a])
  3611. b))
  3612. \end{lstlisting}
  3613. \fi}
  3614. {\if\edition\pythonEd\pythonColor
  3615. \begin{lstlisting}
  3616. a = 42
  3617. b = a
  3618. print(b)
  3619. \end{lstlisting}
  3620. \fi}
  3621. \end{minipage}\\
  3622. %
  3623. The output of \code{select\_instructions} is shown next, on the left,
  3624. and the output of \code{assign\_homes} is on the right.
  3625. In this example, we assign variable \code{a} to stack location
  3626. \code{-8(\%rbp)} and variable \code{b} to location \code{-16(\%rbp)}.
  3627. {\if\edition\racketEd
  3628. \begin{transformation}
  3629. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  3630. movq $42, a
  3631. movq a, b
  3632. movq b, %rax
  3633. \end{lstlisting}
  3634. \compilesto
  3635. %stack-space: 16
  3636. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  3637. movq $42, -8(%rbp)
  3638. movq -8(%rbp), -16(%rbp)
  3639. movq -16(%rbp), %rax
  3640. \end{lstlisting}
  3641. \end{transformation}
  3642. \fi}
  3643. {\if\edition\pythonEd
  3644. \begin{transformation}
  3645. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  3646. movq $42, a
  3647. movq a, b
  3648. movq b, %rdi
  3649. callq print_int
  3650. \end{lstlisting}
  3651. \compilesto
  3652. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  3653. movq $42, -8(%rbp)
  3654. movq -8(%rbp), -16(%rbp)
  3655. movq -16(%rbp), %rdi
  3656. callq print_int
  3657. \end{lstlisting}
  3658. \end{transformation}
  3659. \fi}
  3660. \racket{
  3661. The \code{assign\_homes} pass should replace all variables
  3662. with stack locations.
  3663. The list of variables can be obtained from
  3664. the \code{locals-types} entry in the $\itm{info}$ of the
  3665. \code{X86Program} node. The \code{locals-types} entry is an alist
  3666. mapping all the variables in the program to their types
  3667. (for now, just \code{Integer}).
  3668. As an aside, the \code{locals-types} entry is
  3669. computed by \code{type-check-Cvar} in the support code, which
  3670. installs it in the $\itm{info}$ field of the \code{CProgram} node,
  3671. which you should propagate to the \code{X86Program} node.}
  3672. %
  3673. \python{The \code{assign\_homes} pass should replace all uses of
  3674. variables with stack locations.}
  3675. %
  3676. In the process of assigning variables to stack locations, it is
  3677. convenient for you to compute and store the size of the frame (in
  3678. bytes) in
  3679. \racket{the $\itm{info}$ field of the \key{X86Program} node, with the key \code{stack-space},}
  3680. %
  3681. \python{the field \code{stack\_space} of the \key{X86Program} node,}
  3682. %
  3683. which is needed later to generate the conclusion of the \code{main}
  3684. procedure. The x86-64 standard requires the frame size to be a
  3685. multiple of 16 bytes.\index{subject}{frame}
  3686. % TODO: store the number of variables instead? -Jeremy
  3687. \begin{exercise}\normalfont\normalsize
  3688. Implement the \code{assign\_homes} pass in
  3689. \racket{\code{compiler.rkt}}\python{\code{compiler.py}}, defining
  3690. auxiliary functions for each of the nonterminals in the \LangXVar{}
  3691. grammar. We recommend that the auxiliary functions take an extra
  3692. parameter that maps variable names to homes (stack locations for now).
  3693. %
  3694. {\if\edition\racketEd
  3695. In the \code{run-tests.rkt} script, add the following entry to the
  3696. list of \code{passes} and then run the script to test your compiler.
  3697. \begin{lstlisting}
  3698. (list "assign homes" assign-homes interp_x86-0)
  3699. \end{lstlisting}
  3700. \fi}
  3701. {\if\edition\pythonEd\pythonColor
  3702. Run the \code{run-tests.py} script to check
  3703. whether the output programs produce the same result as the input
  3704. programs.
  3705. \fi}
  3706. \end{exercise}
  3707. \section{Patch Instructions}
  3708. \label{sec:patch-s0}
  3709. The \code{patch\_instructions} pass compiles from \LangXVar{} to
  3710. \LangXInt{} by making sure that each instruction adheres to the
  3711. restriction that at most one argument of an instruction may be a
  3712. memory reference.
  3713. We return to the following example.\\
  3714. \begin{minipage}{0.5\textwidth}
  3715. % var_test_20.rkt
  3716. {\if\edition\racketEd
  3717. \begin{lstlisting}
  3718. (let ([a 42])
  3719. (let ([b a])
  3720. b))
  3721. \end{lstlisting}
  3722. \fi}
  3723. {\if\edition\pythonEd\pythonColor
  3724. \begin{lstlisting}
  3725. a = 42
  3726. b = a
  3727. print(b)
  3728. \end{lstlisting}
  3729. \fi}
  3730. \end{minipage}\\
  3731. The \code{assign\_homes} pass produces the following translation. \\
  3732. \begin{minipage}{0.5\textwidth}
  3733. {\if\edition\racketEd
  3734. \begin{lstlisting}
  3735. movq $42, -8(%rbp)
  3736. movq -8(%rbp), -16(%rbp)
  3737. movq -16(%rbp), %rax
  3738. \end{lstlisting}
  3739. \fi}
  3740. {\if\edition\pythonEd\pythonColor
  3741. \begin{lstlisting}
  3742. movq $42, -8(%rbp)
  3743. movq -8(%rbp), -16(%rbp)
  3744. movq -16(%rbp), %rdi
  3745. callq print_int
  3746. \end{lstlisting}
  3747. \fi}
  3748. \end{minipage}\\
  3749. The second \key{movq} instruction is problematic because both
  3750. arguments are stack locations. We suggest fixing this problem by
  3751. moving from the source location to the register \key{rax} and then
  3752. from \key{rax} to the destination location, as follows.
  3753. \begin{lstlisting}
  3754. movq -8(%rbp), %rax
  3755. movq %rax, -16(%rbp)
  3756. \end{lstlisting}
  3757. There is a similar corner case that also needs to be dealt with. If
  3758. one argument is an immediate integer larger than $2^{16}$ and the
  3759. other is a memory reference, then the instruction is invalid. One can
  3760. fix this, for example, by first moving the immediate integer into
  3761. \key{rax} and then using \key{rax} in place of the integer.
  3762. \begin{exercise}
  3763. \normalfont\normalsize Implement the \key{patch\_instructions} pass in
  3764. \racket{\code{compiler.rkt}}\python{\code{compiler.py}}.
  3765. Create three new example programs that are
  3766. designed to exercise all the interesting cases in this pass.
  3767. %
  3768. {\if\edition\racketEd
  3769. In the \code{run-tests.rkt} script, add the following entry to the
  3770. list of \code{passes} and then run the script to test your compiler.
  3771. \begin{lstlisting}
  3772. (list "patch instructions" patch_instructions interp_x86-0)
  3773. \end{lstlisting}
  3774. \fi}
  3775. {\if\edition\pythonEd\pythonColor
  3776. Run the \code{run-tests.py} script to check
  3777. whether the output programs produce the same result as the input
  3778. programs.
  3779. \fi}
  3780. \end{exercise}
  3781. \section{Generate Prelude and Conclusion}
  3782. \label{sec:print-x86}
  3783. \index{subject}{prelude}\index{subject}{conclusion}
  3784. The last step of the compiler from \LangVar{} to x86 is to generate
  3785. the \code{main} function with a prelude and conclusion wrapped around
  3786. the rest of the program, as shown in figure~\ref{fig:p1-x86} and
  3787. discussed in section~\ref{sec:x86}.
  3788. When running on Mac OS X, your compiler should prefix an underscore to
  3789. all labels (for example, changing \key{main} to \key{\_main}).
  3790. %
  3791. \racket{The Racket call \code{(system-type 'os)} is useful for
  3792. determining which operating system the compiler is running on. It
  3793. returns \code{'macosx}, \code{'unix}, or \code{'windows}.}
  3794. %
  3795. \python{The Python \code{platform.system}
  3796. function returns \code{\textquotesingle Linux\textquotesingle},
  3797. \code{\textquotesingle Windows\textquotesingle}, or
  3798. \code{\textquotesingle Darwin\textquotesingle} (for Mac).}
  3799. \begin{exercise}\normalfont\normalsize
  3800. %
  3801. Implement the \key{prelude\_and\_conclusion} pass in
  3802. \racket{\code{compiler.rkt}}\python{\code{compiler.py}}.
  3803. %
  3804. {\if\edition\racketEd
  3805. In the \code{run-tests.rkt} script, add the following entry to the
  3806. list of \code{passes} and then run the script to test your compiler.
  3807. \begin{lstlisting}
  3808. (list "prelude and conclusion" prelude-and-conclusion interp_x86-0)
  3809. \end{lstlisting}
  3810. %
  3811. Uncomment the call to the \key{compiler-tests} function
  3812. (appendix~\ref{appendix:utilities}), which tests your complete
  3813. compiler by executing the generated x86 code. It translates the x86
  3814. AST that you produce into a string by invoking the \code{print-x86}
  3815. method of the \code{print-x86-class} in \code{utilities.rkt}. Compile
  3816. the provided \key{runtime.c} file to \key{runtime.o} using
  3817. \key{gcc}. Run the script to test your compiler.
  3818. %
  3819. \fi}
  3820. {\if\edition\pythonEd\pythonColor
  3821. %
  3822. Run the \code{run-tests.py} script to check whether the output
  3823. programs produce the same result as the input programs. That script
  3824. translates the x86 AST that you produce into a string by invoking the
  3825. \code{repr} method that is implemented by the x86 AST classes in
  3826. \code{x86\_ast.py}.
  3827. %
  3828. \fi}
  3829. \end{exercise}
  3830. \section{Challenge: Partial Evaluator for \LangVar{}}
  3831. \label{sec:pe-Lvar}
  3832. \index{subject}{partialevaluation@partial evaluation}
  3833. This section describes two optional challenge exercises that involve
  3834. adapting and improving the partial evaluator for \LangInt{} that was
  3835. introduced in section~\ref{sec:partial-evaluation}.
  3836. \begin{exercise}\label{ex:pe-Lvar}
  3837. \normalfont\normalsize
  3838. Adapt the partial evaluator from section~\ref{sec:partial-evaluation}
  3839. (figure~\ref{fig:pe-arith}) so that it applies to \LangVar{} programs
  3840. instead of \LangInt{} programs. Recall that \LangVar{} adds variables and
  3841. %
  3842. \racket{\key{let} binding}\python{assignment}
  3843. %
  3844. to the \LangInt{} language, so you will need to add cases for them in
  3845. the \code{pe\_exp}
  3846. %
  3847. \racket{function.}
  3848. %
  3849. \python{and \code{pe\_stmt} functions.}
  3850. %
  3851. Once complete, add the partial evaluation pass to the front of your
  3852. compiler.
  3853. \python{In particular, add a method named \code{partial\_eval} to
  3854. the \code{Compiler} class in \code{compiler.py}.}
  3855. Check that your compiler still passes all the
  3856. tests.
  3857. \end{exercise}
  3858. \begin{exercise}
  3859. \normalfont\normalsize
  3860. Improve on the partial evaluator by replacing the \code{pe\_neg} and
  3861. \code{pe\_add} auxiliary functions with functions that know more about
  3862. arithmetic. For example, your partial evaluator should translate
  3863. {\if\edition\racketEd
  3864. \[
  3865. \code{(+ 1 (+ (read) 1))} \qquad \text{into} \qquad
  3866. \code{(+ 2 (read))}
  3867. \]
  3868. \fi}
  3869. {\if\edition\pythonEd\pythonColor
  3870. \[
  3871. \code{1 + (input\_int() + 1)} \qquad \text{into} \qquad
  3872. \code{2 + input\_int()}
  3873. \]
  3874. \fi}
  3875. %
  3876. To accomplish this, the \code{pe\_exp} function should produce output
  3877. in the form of the $\itm{residual}$ nonterminal of the following
  3878. grammar. The idea is that when processing an addition expression, we
  3879. can always produce one of the following: (1) an integer constant, (2)
  3880. an addition expression with an integer constant on the left-hand side
  3881. but not the right-hand side, or (3) an addition expression in which
  3882. neither subexpression is a constant.
  3883. %
  3884. {\if\edition\racketEd
  3885. \[
  3886. \begin{array}{lcl}
  3887. \itm{inert} &::=& \Var
  3888. \MID \LP\key{read}\RP
  3889. \MID \LP\key{-} ~\Var\RP
  3890. \MID \LP\key{-} ~\LP\key{read}\RP\RP
  3891. \MID \LP\key{+} ~ \itm{inert} ~ \itm{inert}\RP\\
  3892. &\MID& \LP\key{let}~\LP\LS\Var~\itm{residual}\RS\RP~ \itm{residual} \RP \\
  3893. \itm{residual} &::=& \Int
  3894. \MID \LP\key{+}~ \Int~ \itm{inert}\RP
  3895. \MID \itm{inert}
  3896. \end{array}
  3897. \]
  3898. \fi}
  3899. {\if\edition\pythonEd\pythonColor
  3900. \[
  3901. \begin{array}{lcl}
  3902. \itm{inert} &::=& \Var
  3903. \MID \key{input\_int}\LP\RP
  3904. \MID \key{-} \Var
  3905. \MID \key{-} \key{input\_int}\LP\RP
  3906. \MID \itm{inert} ~ \key{+} ~ \itm{inert}\\
  3907. \itm{residual} &::=& \Int
  3908. \MID \Int ~ \key{+} ~ \itm{inert}
  3909. \MID \itm{inert}
  3910. \end{array}
  3911. \]
  3912. \fi}
  3913. The \code{pe\_add} and \code{pe\_neg} functions may assume that their
  3914. inputs are $\itm{residual}$ expressions and they should return
  3915. $\itm{residual}$ expressions. Once the improvements are complete,
  3916. make sure that your compiler still passes all the tests. After
  3917. all, fast code is useless if it produces incorrect results!
  3918. \end{exercise}
  3919. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  3920. {\if\edition\pythonEd\pythonColor
  3921. \chapter{Parsing}
  3922. \label{ch:parsing}
  3923. \setcounter{footnote}{0}
  3924. \index{subject}{parsing}
  3925. In this chapter we learn how to use the Lark parser
  3926. framework~\citep{shinan20:_lark_docs} to translate the concrete syntax
  3927. of \LangInt{} (a sequence of characters) into an abstract syntax tree.
  3928. You are then asked to create a parser for \LangVar{} using Lark.
  3929. We also describe the parsing algorithms used inside Lark, studying the
  3930. \citet{Earley:1970ly} and LALR(1) algorithms~\citep{DeRemer69,Anderson73}.
  3931. A parser framework such as Lark takes in a specification of the
  3932. concrete syntax and an input program and produces a parse tree. Even
  3933. though a parser framework does most of the work for us, using one
  3934. properly requires some knowledge. In particular, we must learn about
  3935. its specification languages and we must learn how to deal with
  3936. ambiguity in our language specifications. Also, some algorithms, such
  3937. as LALR(1), place restrictions on the grammars they can handle, in
  3938. which case knowing the algorithm helps with trying to decipher the
  3939. error messages.
  3940. The process of parsing is traditionally subdivided into two phases:
  3941. \emph{lexical analysis} (also called scanning) and \emph{syntax
  3942. analysis} (also called parsing). The lexical analysis phase
  3943. translates the sequence of characters into a sequence of
  3944. \emph{tokens}, that is, words consisting of several characters. The
  3945. parsing phase organizes the tokens into a \emph{parse tree} that
  3946. captures how the tokens were matched by rules in the grammar of the
  3947. language. The reason for the subdivision into two phases is to enable
  3948. the use of a faster but less powerful algorithm for lexical analysis
  3949. and the use of a slower but more powerful algorithm for parsing.
  3950. %
  3951. %% Likewise, parser generators typical come in pairs, with separate
  3952. %% generators for the lexical analyzer (or lexer for short) and for the
  3953. %% parser. A particularly influential pair of generators were
  3954. %% \texttt{lex} and \texttt{yacc}. The \texttt{lex} generator was written
  3955. %% by \citet{Lesk:1975uq} at Bell Labs. The \texttt{yacc} generator was
  3956. %% written by \citet{Johnson:1979qy} at AT\&T and stands for Yet Another
  3957. %% Compiler Compiler.
  3958. %
  3959. The Lark parser framework that we use in this chapter includes both
  3960. lexical analyzers and parsers. The next section discusses lexical
  3961. analysis, and the remainder of the chapter discusses parsing.
  3962. \section{Lexical Analysis and Regular Expressions}
  3963. \label{sec:lex}
  3964. The lexical analyzers produced by Lark turn a sequence of characters
  3965. (a string) into a sequence of token objects. For example, a Lark
  3966. generated lexer for \LangInt{} converts the string
  3967. \begin{lstlisting}
  3968. 'print(1 + 3)'
  3969. \end{lstlisting}
  3970. \noindent into the following sequence of token objects:
  3971. \begin{center}
  3972. \begin{minipage}{0.95\textwidth}
  3973. \begin{lstlisting}
  3974. Token('PRINT', 'print')
  3975. Token('LPAR', '(')
  3976. Token('INT', '1')
  3977. Token('PLUS', '+')
  3978. Token('INT', '3')
  3979. Token('RPAR', ')')
  3980. Token('NEWLINE', '\n')
  3981. \end{lstlisting}
  3982. \end{minipage}
  3983. \end{center}
  3984. Each token includes a field for its \code{type}, such as \skey{INT},
  3985. and a field for its \code{value}, such as \skey{1}.
  3986. Following in the tradition of \code{lex}~\citep{Lesk:1975uq}, the
  3987. specification language for Lark's lexer is one regular expression for
  3988. each type of token. The term \emph{regular} comes from the term
  3989. \emph{regular languages}, which are the languages that can be
  3990. recognized by a finite state machine. A \emph{regular expression} is a
  3991. pattern formed of the following core elements:\index{subject}{regular
  3992. expression}\footnote{Regular expressions traditionally include the
  3993. empty regular expression that matches any zero-length part of a
  3994. string, but Lark does not support the empty regular expression.}
  3995. \begin{itemize}
  3996. \item A single character $c$ is a regular expression, and it matches
  3997. only itself. For example, the regular expression \code{a} matches
  3998. only the string \skey{a}.
  3999. \item Two regular expressions separated by a vertical bar $R_1 \ttm{|}
  4000. R_2$ form a regular expression that matches any string that matches
  4001. $R_1$ or $R_2$. For example, the regular expression \code{a|c}
  4002. matches the string \skey{a} and the string \skey{c}.
  4003. \item Two regular expressions in sequence $R_1 R_2$ form a regular
  4004. expression that matches any string that can be formed by
  4005. concatenating two strings, where the first string matches $R_1$ and
  4006. the second string matches $R_2$. For example, the regular expression
  4007. \code{(a|c)b} matches the strings \skey{ab} and \skey{cb}.
  4008. (Parentheses can be used to control the grouping of operators within
  4009. a regular expression.)
  4010. \item A regular expression followed by an asterisks $R\ttm{*}$ (called
  4011. Kleene closure) is a regular expression that matches any string that
  4012. can be formed by concatenating zero or more strings that each match
  4013. the regular expression $R$. For example, the regular expression
  4014. \code{((a|c)b)*} matches the string \skey{abcbab} but not
  4015. \skey{abc}.
  4016. \end{itemize}
  4017. For our convenience, Lark also accepts the following extended set of
  4018. regular expressions that are automatically translated into the core
  4019. regular expressions.
  4020. \begin{itemize}
  4021. \item A set of characters enclosed in square brackets $[c_1 c_2 \ldots
  4022. c_n]$ is a regular expression that matches any one of the
  4023. characters. So, $[c_1 c_2 \ldots c_n]$ is equivalent to
  4024. the regular expression $c_1\mid c_2\mid \ldots \mid c_n$.
  4025. \item A range of characters enclosed in square brackets $[c_1\ttm{-}c_2]$ is
  4026. a regular expression that matches any character between $c_1$ and
  4027. $c_2$, inclusive. For example, \code{[a-z]} matches any lowercase
  4028. letter in the alphabet.
  4029. \item A regular expression followed by the plus symbol $R\ttm{+}$
  4030. is a regular expression that matches any string that can
  4031. be formed by concatenating one or more strings that each match $R$.
  4032. So $R+$ is equivalent to $R(R*)$. For example, \code{[a-z]+}
  4033. matches \skey{b} and \skey{bzca}.
  4034. \item A regular expression followed by a question mark $R\ttm{?}$
  4035. is a regular expression that matches any string that either
  4036. matches $R$ or is the empty string.
  4037. For example, \code{a?b} matches both \skey{ab} and \skey{b}.
  4038. \end{itemize}
  4039. In a Lark grammar file, each kind of token is specified by a
  4040. \emph{terminal}\index{subject}{terminal}, which is defined by a rule
  4041. that consists of the name of the terminal followed by a colon followed
  4042. by a sequence of literals. The literals include strings such as
  4043. \code{"abc"}, regular expressions surrounded by \code{/} characters,
  4044. terminal names, and literals composed using the regular expression
  4045. operators ($+$, $*$, etc.). For example, the \code{DIGIT},
  4046. \code{INT}, and \code{NEWLINE} terminals are specified as follows:
  4047. \begin{center}
  4048. \begin{minipage}{0.95\textwidth}
  4049. \begin{lstlisting}
  4050. DIGIT: /[0-9]/
  4051. INT: "-"? DIGIT+
  4052. NEWLINE: (/\r/? /\n/)+
  4053. \end{lstlisting}
  4054. \end{minipage}
  4055. \end{center}
  4056. \section{Grammars and Parse Trees}
  4057. \label{sec:CFG}
  4058. In section~\ref{sec:grammar} we learned how to use grammar rules to
  4059. specify the abstract syntax of a language. We now take a closer look
  4060. at using grammar rules to specify the concrete syntax. Recall that
  4061. each rule has a left-hand side and a right-hand side, where the
  4062. left-hand side is a nonterminal and the right-hand side is a pattern
  4063. that defines what can be parsed as that nonterminal. For concrete
  4064. syntax, each right-hand side expresses a pattern for a string instead
  4065. of a pattern for an abstract syntax tree. In particular, each
  4066. right-hand side is a sequence of
  4067. \emph{symbols}\index{subject}{symbol}, where a symbol is either a
  4068. terminal or a nonterminal. The nonterminals play the same role as in
  4069. the abstract syntax, defining categories of syntax. The nonterminals
  4070. of a grammar include the tokens defined in the lexer and all the
  4071. nonterminals defined by the grammar rules.
  4072. As an example, let us take a closer look at the concrete syntax of the
  4073. \LangInt{} language, repeated here.
  4074. \[
  4075. \begin{array}{l}
  4076. \LintGrammarPython \\
  4077. \begin{array}{rcl}
  4078. \LangInt{} &::=& \Stmt^{*}
  4079. \end{array}
  4080. \end{array}
  4081. \]
  4082. The Lark syntax for grammar rules differs slightly from the variant of
  4083. BNF that we use in this book. In particular, the notation $::=$ is
  4084. replaced by a single colon, and the use of typewriter font for string
  4085. literals is replaced by quotation marks. The following grammar serves
  4086. as a first draft of a Lark grammar for \LangInt{}.
  4087. \begin{center}
  4088. \begin{minipage}{0.95\textwidth}
  4089. \begin{lstlisting}[escapechar=$]
  4090. exp: INT
  4091. | "input_int" "(" ")"
  4092. | "-" exp
  4093. | exp "+" exp
  4094. | exp "-" exp
  4095. | "(" exp ")"
  4096. stmt_list:
  4097. | stmt NEWLINE stmt_list
  4098. lang_int: stmt_list
  4099. \end{lstlisting}
  4100. \end{minipage}
  4101. \end{center}
  4102. Let us begin by discussing the rule \code{exp: INT}, which says that
  4103. if the lexer matches a string to \code{INT}, then the parser also
  4104. categorizes the string as an \code{exp}. Recall that in
  4105. section~\ref{sec:grammar} we defined the corresponding \Int{}
  4106. nonterminal with a sentence in English. Here we specify \code{INT}
  4107. more formally using a type of token \code{INT} and its regular
  4108. expression \code{"-"? DIGIT+}.
  4109. The rule \code{exp: exp "+" exp} says that any string that matches
  4110. \code{exp}, followed by the \code{+} character, followed by another
  4111. string that matches \code{exp}, is itself an \code{exp}. For example,
  4112. the string \lstinline{'1+3'} is an \code{exp} because \lstinline{'1'} and
  4113. \lstinline{'3'} are both \code{exp} by the rule \code{exp: INT}, and then
  4114. the rule for addition applies to categorize \lstinline{'1+3'} as an
  4115. \code{exp}. We can visualize the application of grammar rules to parse
  4116. a string using a \emph{parse tree}\index{subject}{parse tree}. Each
  4117. internal node in the tree is an application of a grammar rule and is
  4118. labeled with its left-hand side nonterminal. Each leaf node is a
  4119. substring of the input program. The parse tree for \lstinline{'1+3'} is
  4120. shown in figure~\ref{fig:simple-parse-tree}.
  4121. \begin{figure}[tbp]
  4122. \begin{tcolorbox}[colback=white]
  4123. \centering
  4124. \includegraphics[width=1.9in]{figs/simple-parse-tree}
  4125. \end{tcolorbox}
  4126. \caption{The parse tree for \lstinline{'1+3'}.}
  4127. \label{fig:simple-parse-tree}
  4128. \end{figure}
  4129. The result of parsing \lstinline{'1+3'} with this Lark grammar is the
  4130. following parse tree as represented by \code{Tree} and \code{Token}
  4131. objects.
  4132. \begin{lstlisting}
  4133. Tree('lang_int',
  4134. [Tree('stmt', [Tree('exp', [Tree('exp', [Token('INT', '1')]),
  4135. Tree('exp', [Token('INT', '3')])])]),
  4136. Token('NEWLINE', '\n')])
  4137. \end{lstlisting}
  4138. The nodes that come from the lexer are \code{Token} objects, whereas
  4139. the nodes from the parser are \code{Tree} objects. Each \code{Tree}
  4140. object has a \code{data} field containing the name of the nonterminal
  4141. for the grammar rule that was applied. Each \code{Tree} object also
  4142. has a \code{children} field that is a list containing trees and/or
  4143. tokens. Note that Lark does not produce nodes for string literals in
  4144. the grammar. For example, the \code{Tree} node for the addition
  4145. expression has only two children for the two integers but is missing
  4146. its middle child for the \code{"+"} terminal. This would be
  4147. problematic except that Lark provides a mechanism for customizing the
  4148. \code{data} field of each \code{Tree} node on the basis of which rule was
  4149. applied. Next to each alternative in a grammar rule, write \code{->}
  4150. followed by a string that you want to appear in the \code{data}
  4151. field. The following is a second draft of a Lark grammar for
  4152. \LangInt{}, this time with more specific labels on the \code{Tree}
  4153. nodes.
  4154. \begin{center}
  4155. \begin{minipage}{0.95\textwidth}
  4156. \begin{lstlisting}[escapechar=$]
  4157. exp: INT -> int
  4158. | "input_int" "(" ")" -> input_int
  4159. | "-" exp -> usub
  4160. | exp "+" exp -> add
  4161. | exp "-" exp -> sub
  4162. | "(" exp ")" -> paren
  4163. stmt: "print" "(" exp ")" -> print
  4164. | exp -> expr
  4165. stmt_list: -> empty_stmt
  4166. | stmt NEWLINE stmt_list -> add_stmt
  4167. lang_int: stmt_list -> module
  4168. \end{lstlisting}
  4169. \end{minipage}
  4170. \end{center}
  4171. Here is the resulting parse tree.
  4172. \begin{lstlisting}
  4173. Tree('module',
  4174. [Tree('expr', [Tree('add', [Tree('int', [Token('INT', '1')]),
  4175. Tree('int', [Token('INT', '3')])])]),
  4176. Token('NEWLINE', '\n')])
  4177. \end{lstlisting}
  4178. \section{Ambiguous Grammars}
  4179. A grammar is \emph{ambiguous}\index{subject}{ambiguous} when a string
  4180. can be parsed in more than one way. For example, consider the string
  4181. \lstinline{'1-2+3'}. This string can be parsed in two different ways using
  4182. our draft grammar, resulting in the two parse trees shown in
  4183. figure~\ref{fig:ambig-parse-tree}. This example is problematic because
  4184. interpreting the second parse tree would yield \code{-4} even through
  4185. the correct answer is \code{2}.
  4186. \begin{figure}[tbp]
  4187. \begin{tcolorbox}[colback=white]
  4188. \centering
  4189. \includegraphics[width=0.95\textwidth]{figs/ambig-parse-tree}
  4190. \end{tcolorbox}
  4191. \caption{The two parse trees for \lstinline{'1-2+3'}.}
  4192. \label{fig:ambig-parse-tree}
  4193. \end{figure}
  4194. To deal with this problem we can change the grammar by categorizing
  4195. the syntax in a more fine-grained fashion. In this case we want to
  4196. disallow the application of the rule \code{exp: exp "-" exp} when the
  4197. child on the right is an addition. To do this we can replace the
  4198. \code{exp} after \code{"-"} with a nonterminal that categorizes all
  4199. the expressions except for addition, as in the following.
  4200. \begin{center}
  4201. \begin{minipage}{0.95\textwidth}
  4202. \begin{lstlisting}[escapechar=$]
  4203. exp: exp "-" exp_no_add -> sub
  4204. | exp "+" exp -> add
  4205. | exp_no_add
  4206. exp_no_add: INT -> int
  4207. | "input_int" "(" ")" -> input_int
  4208. | "-" exp -> usub
  4209. | exp "-" exp_no_add -> sub
  4210. | "(" exp ")" -> paren
  4211. \end{lstlisting}
  4212. \end{minipage}
  4213. \end{center}
  4214. However, there remains some ambiguity in the grammar. For example, the
  4215. string \lstinline{'1-2-3'} can still be parsed in two different ways,
  4216. as \lstinline{'(1-2)-3'} (correct) or \lstinline{'1-(2-3)'}
  4217. (incorrect). That is, subtraction is left associative. Likewise,
  4218. addition in Python is left associative. We also need to consider the
  4219. interaction of unary subtraction with both addition and
  4220. subtraction. How should we parse \lstinline{'-1+2'}? Unary subtraction
  4221. has higher \emph{precedence}\index{subject}{precedence} than addition
  4222. and subtraction, so \lstinline{'-1+2'} should parse the same as
  4223. \lstinline{'(-1)+2'} and not \lstinline{'-(1+2)'}. The grammar in
  4224. figure~\ref{fig:Lint-lark-grammar} handles the associativity of
  4225. addition and subtraction by using the nonterminal \code{exp\_hi} for
  4226. all the other expressions, and it uses \code{exp\_hi} for the second
  4227. child in the rules for addition and subtraction. Furthermore, unary
  4228. subtraction uses \code{exp\_hi} for its child.
  4229. For languages with more operators and more precedence levels, one must
  4230. refine the \code{exp} nonterminal into several nonterminals, one for
  4231. each precedence level.
  4232. \begin{figure}[tbp]
  4233. \begin{tcolorbox}[colback=white]
  4234. \centering
  4235. \begin{lstlisting}[escapechar=$]
  4236. exp: exp "+" exp_hi -> add
  4237. | exp "-" exp_hi -> sub
  4238. | exp_hi
  4239. exp_hi: INT -> int
  4240. | "input_int" "(" ")" -> input_int
  4241. | "-" exp_hi -> usub
  4242. | "(" exp ")" -> paren
  4243. stmt: "print" "(" exp ")" -> print
  4244. | exp -> expr
  4245. stmt_list: -> empty_stmt
  4246. | stmt NEWLINE stmt_list -> add_stmt
  4247. lang_int: stmt_list -> module
  4248. \end{lstlisting}
  4249. \end{tcolorbox}
  4250. \caption{An unambiguous Lark grammar for \LangInt{}.}
  4251. \label{fig:Lint-lark-grammar}
  4252. \end{figure}
  4253. \section{From Parse Trees to Abstract Syntax Trees}
  4254. As we have seen, the output of a Lark parser is a parse tree, that is,
  4255. a tree consisting of \code{Tree} and \code{Token} nodes. So, the next
  4256. step is to convert the parse tree to an abstract syntax tree. This can
  4257. be accomplished with a recursive function that inspects the
  4258. \code{data} field of each node and then constructs the corresponding
  4259. AST node, using recursion to handle its children. The following is an
  4260. excerpt from the \code{parse\_tree\_to\_ast} function for \LangInt{}.
  4261. \begin{center}
  4262. \begin{minipage}{0.95\textwidth}
  4263. \begin{lstlisting}
  4264. def parse_tree_to_ast(e):
  4265. if e.data == 'int':
  4266. return Constant(int(e.children[0].value))
  4267. elif e.data == 'input_int':
  4268. return Call(Name('input_int'), [])
  4269. elif e.data == 'add':
  4270. e1, e2 = e.children
  4271. return BinOp(parse_tree_to_ast(e1), Add(), parse_tree_to_ast(e2))
  4272. ...
  4273. else:
  4274. raise Exception('unhandled parse tree', e)
  4275. \end{lstlisting}
  4276. \end{minipage}
  4277. \end{center}
  4278. \begin{exercise}
  4279. \normalfont\normalsize
  4280. %
  4281. Use Lark to create a lexer and parser for \LangVar{}. Use Lark's
  4282. default parsing algorithm (Earley) with the \code{ambiguity} option
  4283. set to \lstinline{'explicit'} so that if your grammar is ambiguous, the
  4284. output will include multiple parse trees that will indicate to you
  4285. that there is a problem with your grammar. Your parser should ignore
  4286. white space, so we recommend using Lark's \code{\%ignore} directive
  4287. as follows.
  4288. \begin{lstlisting}
  4289. %import common.WS_INLINE
  4290. %ignore WS_INLINE
  4291. \end{lstlisting}
  4292. Change your compiler from chapter~\ref{ch:Lvar} to use your
  4293. Lark parser instead of using the \code{parse} function from
  4294. the \code{ast} module. Test your compiler on all the \LangVar{}
  4295. programs that you have created, and create four additional programs
  4296. that test for ambiguities in your grammar.
  4297. \end{exercise}
  4298. \section{Earley's Algorithm}
  4299. \label{sec:earley}
  4300. In this section we discuss the parsing algorithm of
  4301. \citet{Earley:1970ly}, the default algorithm used by Lark. The
  4302. algorithm is powerful in that it can handle any context-free grammar,
  4303. which makes it easy to use, but it is not a particularly
  4304. efficient parsing algorithm. Earley's algorithm is $O(n^3)$ for
  4305. ambiguous grammars and $O(n^2)$ for unambiguous grammars, where $n$ is
  4306. the number of tokens in the input
  4307. string~\citep{Hopcroft06:_automata}. In section~\ref{sec:lalr} we
  4308. learn about the LALR(1) algorithm, which is more efficient but cannot
  4309. handle all context-free grammars.
  4310. Earley's algorithm can be viewed as an interpreter; it treats the
  4311. grammar as the program being interpreted, and it treats the concrete
  4312. syntax of the program-to-be-parsed as its input. Earley's algorithm
  4313. uses a data structure called a \emph{chart}\index{subject}{chart} to
  4314. keep track of its progress and to store its results. The chart is an
  4315. array with one slot for each position in the input string, where
  4316. position $0$ is before the first character and position $n$ is
  4317. immediately after the last character. So, the array has length $n+1$
  4318. for an input string of length $n$. Each slot in the chart contains a
  4319. set of \emph{dotted rules}. A dotted rule is simply a grammar rule
  4320. with a period indicating how much of its right-hand side has already
  4321. been parsed. For example, the dotted rule
  4322. \begin{lstlisting}
  4323. exp: exp "+" . exp_hi
  4324. \end{lstlisting}
  4325. represents a partial parse that has matched an \code{exp} followed by
  4326. \code{+} but has not yet parsed an \code{exp} to the right of
  4327. \code{+}.
  4328. %
  4329. Earley's algorithm starts with an initialization phase and then
  4330. repeats three actions---prediction, scanning, and completion---for as
  4331. long as opportunities arise. We demonstrate Earley's algorithm on a
  4332. running example, parsing the following program:
  4333. \begin{lstlisting}
  4334. print(1 + 3)
  4335. \end{lstlisting}
  4336. The algorithm's initialization phase creates dotted rules for all the
  4337. grammar rules whose left-hand side is the start symbol and places them
  4338. in slot $0$ of the chart. We also record the starting position of the
  4339. dotted rule in parentheses on the right. For example, given the
  4340. grammar in figure~\ref{fig:Lint-lark-grammar}, we place
  4341. \begin{lstlisting}
  4342. lang_int: . stmt_list (0)
  4343. \end{lstlisting}
  4344. in slot $0$ of the chart. The algorithm then proceeds with
  4345. \emph{prediction} actions in which it adds more dotted rules to the
  4346. chart based on the nonterminals that come immediately after a period. In
  4347. the dotted rule above, the nonterminal \code{stmt\_list} appears after a period,
  4348. so we add all the rules for \code{stmt\_list} to slot $0$, with a
  4349. period at the beginning of their right-hand sides, as follows:
  4350. \begin{lstlisting}
  4351. stmt_list: . (0)
  4352. stmt_list: . stmt NEWLINE stmt_list (0)
  4353. \end{lstlisting}
  4354. We continue to perform prediction actions as more opportunities
  4355. arise. For example, the \code{stmt} nonterminal now appears after a
  4356. period, so we add all the rules for \code{stmt}.
  4357. \begin{lstlisting}
  4358. stmt: . "print" "(" exp ")" (0)
  4359. stmt: . exp (0)
  4360. \end{lstlisting}
  4361. This reveals yet more opportunities for prediction, so we add the grammar
  4362. rules for \code{exp} and \code{exp\_hi} to slot $0$.
  4363. \begin{lstlisting}[escapechar=$]
  4364. exp: . exp "+" exp_hi (0)
  4365. exp: . exp "-" exp_hi (0)
  4366. exp: . exp_hi (0)
  4367. exp_hi: . INT (0)
  4368. exp_hi: . "input_int" "(" ")" (0)
  4369. exp_hi: . "-" exp_hi (0)
  4370. exp_hi: . "(" exp ")" (0)
  4371. \end{lstlisting}
  4372. We have exhausted the opportunities for prediction, so the algorithm
  4373. proceeds to \emph{scanning}, in which we inspect the next input token
  4374. and look for a dotted rule at the current position that has a matching
  4375. terminal immediately following the period. In our running example, the
  4376. first input token is \code{"print"}, so we identify the rule in slot
  4377. $0$ of the chart where \code{"print"} follows the period:
  4378. \begin{lstlisting}
  4379. stmt: . "print" "(" exp ")" (0)
  4380. \end{lstlisting}
  4381. We advance the period past \code{"print"} and add the resulting rule
  4382. to slot $1$:
  4383. \begin{lstlisting}
  4384. stmt: "print" . "(" exp ")" (0)
  4385. \end{lstlisting}
  4386. If the new dotted rule had a nonterminal after the period, we would
  4387. need to carry out a prediction action, adding more dotted rules to
  4388. slot $1$. That is not the case, so we continue scanning. The next
  4389. input token is \code{"("}, so we add the following to slot $2$ of the
  4390. chart.
  4391. \begin{lstlisting}
  4392. stmt: "print" "(" . exp ")" (0)
  4393. \end{lstlisting}
  4394. Now we have a nonterminal after the period, so we carry out several
  4395. prediction actions, adding dotted rules for \code{exp} and
  4396. \code{exp\_hi} to slot $2$ with a period at the beginning and with
  4397. starting position $2$.
  4398. \begin{lstlisting}[escapechar=$]
  4399. exp: . exp "+" exp_hi (2)
  4400. exp: . exp "-" exp_hi (2)
  4401. exp: . exp_hi (2)
  4402. exp_hi: . INT (2)
  4403. exp_hi: . "input_int" "(" ")" (2)
  4404. exp_hi: . "-" exp_hi (2)
  4405. exp_hi: . "(" exp ")" (2)
  4406. \end{lstlisting}
  4407. With this prediction complete, we return to scanning, noting that the
  4408. next input token is \code{"1"}, which the lexer parses as an
  4409. \code{INT}. There is a matching rule in slot $2$:
  4410. \begin{lstlisting}
  4411. exp_hi: . INT (2)
  4412. \end{lstlisting}
  4413. so we advance the period and put the following rule into slot $3$.
  4414. \begin{lstlisting}
  4415. exp_hi: INT . (2)
  4416. \end{lstlisting}
  4417. This brings us to \emph{completion} actions. When the period reaches
  4418. the end of a dotted rule, we recognize that the substring
  4419. has matched the nonterminal on the left-hand side of the rule, in this case
  4420. \code{exp\_hi}. We therefore need to advance the periods in any dotted
  4421. rules into slot $2$ (the starting position for the finished rule) if
  4422. the period is immediately followed by \code{exp\_hi}. So we identify
  4423. \begin{lstlisting}
  4424. exp: . exp_hi (2)
  4425. \end{lstlisting}
  4426. and add the following dotted rule to slot $3$
  4427. \begin{lstlisting}
  4428. exp: exp_hi . (2)
  4429. \end{lstlisting}
  4430. This triggers another completion step for the nonterminal \code{exp},
  4431. adding two more dotted rules to slot $3$.
  4432. \begin{lstlisting}[escapechar=$]
  4433. exp: exp . "+" exp_hi (2)
  4434. exp: exp . "-" exp_hi (2)
  4435. \end{lstlisting}
  4436. Returning to scanning, the next input token is \code{"+"}, so
  4437. we add the following to slot $4$.
  4438. \begin{lstlisting}[escapechar=$]
  4439. exp: exp "+" . exp_hi (2)
  4440. \end{lstlisting}
  4441. The period precedes the nonterminal \code{exp\_hi}, so prediction adds
  4442. the following dotted rules to slot $4$ of the chart.
  4443. \begin{lstlisting}[escapechar=$]
  4444. exp_hi: . INT (4)
  4445. exp_hi: . "input_int" "(" ")" (4)
  4446. exp_hi: . "-" exp_hi (4)
  4447. exp_hi: . "(" exp ")" (4)
  4448. \end{lstlisting}
  4449. The next input token is \code{"3"} which the lexer categorized as an
  4450. \code{INT}, so we advance the period past \code{INT} for the rules in
  4451. slot $4$, of which there is just one, and put the following into slot $5$.
  4452. \begin{lstlisting}[escapechar=$]
  4453. exp_hi: INT . (4)
  4454. \end{lstlisting}
  4455. The period at the end of the rule triggers a completion action for the
  4456. rules in slot $4$, one of which has a period before \code{exp\_hi}.
  4457. So we advance the period and put the following into slot $5$.
  4458. \begin{lstlisting}[escapechar=$]
  4459. exp: exp "+" exp_hi . (2)
  4460. \end{lstlisting}
  4461. This triggers another completion action for the rules in slot $2$ that
  4462. have a period before \code{exp}.
  4463. \begin{lstlisting}[escapechar=$]
  4464. stmt: "print" "(" exp . ")" (0)
  4465. exp: exp . "+" exp_hi (2)
  4466. exp: exp . "-" exp_hi (2)
  4467. \end{lstlisting}
  4468. We scan the next input token \code{")"}, placing the following dotted
  4469. rule into slot $6$.
  4470. \begin{lstlisting}[escapechar=$]
  4471. stmt: "print" "(" exp ")" . (0)
  4472. \end{lstlisting}
  4473. This triggers the completion of \code{stmt} in slot $0$
  4474. \begin{lstlisting}
  4475. stmt_list: stmt . NEWLINE stmt_list (0)
  4476. \end{lstlisting}
  4477. The last input token is a \code{NEWLINE}, so we advance the period
  4478. and place the new dotted rule into slot $7$.
  4479. \begin{lstlisting}
  4480. stmt_list: stmt NEWLINE . stmt_list (0)
  4481. \end{lstlisting}
  4482. We are close to the end of parsing the input!
  4483. The period is before the \code{stmt\_list} nonterminal, so we
  4484. apply prediction for \code{stmt\_list} and then \code{stmt}.
  4485. \begin{lstlisting}
  4486. stmt_list: . (7)
  4487. stmt_list: . stmt NEWLINE stmt_list (7)
  4488. stmt: . "print" "(" exp ")" (7)
  4489. stmt: . exp (7)
  4490. \end{lstlisting}
  4491. There is immediately an opportunity for completion of \code{stmt\_list},
  4492. so we add the following to slot $7$.
  4493. \begin{lstlisting}
  4494. stmt_list: stmt NEWLINE stmt_list . (0)
  4495. \end{lstlisting}
  4496. This triggers another completion action for \code{stmt\_list} in slot $0$
  4497. \begin{lstlisting}
  4498. lang_int: stmt_list . (0)
  4499. \end{lstlisting}
  4500. which in turn completes \code{lang\_int}, the start symbol of the
  4501. grammar, so the parsing of the input is complete.
  4502. For reference, we give a general description of Earley's
  4503. algorithm.
  4504. \begin{enumerate}
  4505. \item The algorithm begins by initializing slot $0$ of the chart with the
  4506. grammar rule for the start symbol, placing a period at the beginning
  4507. of the right-hand side, and recording its starting position as $0$.
  4508. \item The algorithm repeatedly applies the following three kinds of
  4509. actions for as long as there are opportunities to do so.
  4510. \begin{itemize}
  4511. \item Prediction: If there is a rule in slot $k$ whose period comes
  4512. before a nonterminal, add the rules for that nonterminal into slot
  4513. $k$, placing a period at the beginning of their right-hand sides
  4514. and recording their starting position as $k$.
  4515. \item Scanning: If the token at position $k$ of the input string
  4516. matches the symbol after the period in a dotted rule in slot $k$
  4517. of the chart, advance the period in the dotted rule, adding
  4518. the result to slot $k+1$.
  4519. \item Completion: If a dotted rule in slot $k$ has a period at the
  4520. end, inspect the rules in the slot corresponding to the starting
  4521. position of the completed rule. If any of those rules have a
  4522. nonterminal following their period that matches the left-hand side
  4523. of the completed rule, then advance their period, placing the new
  4524. dotted rule in slot $k$.
  4525. \end{itemize}
  4526. While repeating these three actions, take care never to add
  4527. duplicate dotted rules to the chart.
  4528. \end{enumerate}
  4529. We have described how Earley's algorithm recognizes that an input
  4530. string matches a grammar, but we have not described how it builds a
  4531. parse tree. The basic idea is simple, but building parse trees in an
  4532. efficient way is more complex, requiring a data structure called a
  4533. shared packed parse forest~\citep{Tomita:1985qr}. The simple idea is
  4534. to attach a partial parse tree to every dotted rule in the chart.
  4535. Initially, the node associated with a dotted rule has no
  4536. children. As the period moves to the right, the nodes from the
  4537. subparses are added as children to the node.
  4538. As mentioned at the beginning of this section, Earley's algorithm is
  4539. $O(n^2)$ for unambiguous grammars, which means that it can parse input
  4540. files that contain thousands of tokens in a reasonable amount of time,
  4541. but not millions.
  4542. %
  4543. In the next section we discuss the LALR(1) parsing algorithm, which is
  4544. efficient enough to use with even the largest of input files.
  4545. \section{The LALR(1) Algorithm}
  4546. \label{sec:lalr}
  4547. The LALR(1) algorithm~\citep{DeRemer69,Anderson73} can be viewed as a
  4548. two-phase approach in which it first compiles the grammar into a state
  4549. machine and then runs the state machine to parse an input string. The
  4550. second phase has time complexity $O(n)$ where $n$ is the number of
  4551. tokens in the input, so LALR(1) is the best one could hope for with
  4552. respect to efficiency.
  4553. %
  4554. A particularly influential implementation of LALR(1) is the
  4555. \texttt{yacc} parser generator by \citet{Johnson:1979qy};
  4556. \texttt{yacc} stands for ``yet another compiler compiler.''
  4557. %
  4558. The LALR(1) state machine uses a stack to record its progress in
  4559. parsing the input string. Each element of the stack is a pair: a
  4560. state number and a grammar symbol (a terminal or a nonterminal). The
  4561. symbol characterizes the input that has been parsed so far, and the
  4562. state number is used to remember how to proceed once the next
  4563. symbol's worth of input has been parsed. Each state in the machine
  4564. represents where the parser stands in the parsing process with respect
  4565. to certain grammar rules. In particular, each state is associated with
  4566. a set of dotted rules.
  4567. Figure~\ref{fig:shift-reduce} shows an example LALR(1) state machine
  4568. (also called parse table) for the following simple but ambiguous
  4569. grammar:
  4570. \begin{lstlisting}[escapechar=$]
  4571. exp: INT
  4572. | exp "+" exp
  4573. stmt: "print" exp
  4574. start: stmt
  4575. \end{lstlisting}
  4576. Consider state 1 in figure~\ref{fig:shift-reduce}. The parser has just
  4577. read in a \lstinline{"print"} token, so the top of the stack is
  4578. \lstinline{(1,"print")}. The parser is part of the way through parsing
  4579. the input according to grammar rule 1, which is signified by showing
  4580. rule 1 with a period after the \code{"print"} token and before the
  4581. \code{exp} nonterminal. There are two rules that could apply next,
  4582. rules 2 and 3, so state 1 also shows those rules with a period at
  4583. the beginning of their right-hand sides. The edges between states
  4584. indicate which transitions the machine should make depending on the
  4585. next input token. So, for example, if the next input token is
  4586. \code{INT} then the parser will push \code{INT} and the target state 4
  4587. on the stack and transition to state 4. Suppose that we are now at the end
  4588. of the input. State 4 says that we should reduce by rule 3, so we pop
  4589. from the stack the same number of items as the number of symbols in
  4590. the right-hand side of the rule, in this case just one. We then
  4591. momentarily jump to the state at the top of the stack (state 1) and
  4592. then follow the goto edge that corresponds to the left-hand side of
  4593. the rule we just reduced by, in this case \code{exp}, so we arrive at
  4594. state 3. (A slightly longer example parse is shown in
  4595. figure~\ref{fig:shift-reduce}.)
  4596. \begin{figure}[tbp]
  4597. \centering
  4598. \includegraphics[width=5.0in]{figs/shift-reduce-conflict}
  4599. \caption{An LALR(1) parse table and a trace of an example run.}
  4600. \label{fig:shift-reduce}
  4601. \end{figure}
  4602. In general, the algorithm works as follows. First, set the current state to
  4603. state $0$. Then repeat the following, looking at the next input token.
  4604. \begin{itemize}
  4605. \item If there there is a shift edge for the input token in the
  4606. current state, push the edge's target state and the input token onto
  4607. the stack and proceed to the edge's target state.
  4608. \item If there is a reduce action for the input token in the current
  4609. state, pop $k$ elements from the stack, where $k$ is the number of
  4610. symbols in the right-hand side of the rule being reduced. Jump to
  4611. the state at the top of the stack and then follow the goto edge for
  4612. the nonterminal that matches the left-hand side of the rule that we
  4613. are reducing by. Push the edge's target state and the nonterminal on the
  4614. stack.
  4615. \end{itemize}
  4616. Notice that in state 6 of figure~\ref{fig:shift-reduce} there is both
  4617. a shift and a reduce action for the token \lstinline{PLUS}, so the
  4618. algorithm does not know which action to take in this case. When a
  4619. state has both a shift and a reduce action for the same token, we say
  4620. there is a \emph{shift/reduce conflict}. In this case, the conflict
  4621. will arise, for example, in trying to parse the input
  4622. \lstinline{print 1 + 2 + 3}. After having consumed \lstinline{print 1 + 2},
  4623. the parser will be in state 6 and will not know whether to
  4624. reduce to form an \code{exp} of \lstinline{1 + 2} or
  4625. to proceed by shifting the next \lstinline{+} from the input.
  4626. A similar kind of problem, known as a \emph{reduce/reduce} conflict,
  4627. arises when there are two reduce actions in a state for the same
  4628. token. To understand which grammars give rise to shift/reduce and
  4629. reduce/reduce conflicts, it helps to know how the parse table is
  4630. generated from the grammar, which we discuss next.
  4631. The parse table is generated one state at a time. State 0 represents
  4632. the start of the parser. We add the grammar rule for the start symbol
  4633. to this state with a period at the beginning of the right-hand side,
  4634. similarly to the initialization phase of the Earley parser. If the
  4635. period appears immediately before another nonterminal, we add all the
  4636. rules with that nonterminal on the left-hand side. Again, we place a
  4637. period at the beginning of the right-hand side of each new
  4638. rule. This process, called \emph{state closure}, is continued
  4639. until there are no more rules to add (similarly to the prediction
  4640. actions of an Earley parser). We then examine each dotted rule in the
  4641. current state $I$. Suppose that a dotted rule has the form $A ::=
  4642. s_1.\,X \,s_2$, where $A$ and $X$ are symbols and $s_1$ and $s_2$
  4643. are sequences of symbols. We create a new state and call it $J$. If $X$
  4644. is a terminal, we create a shift edge from $I$ to $J$ (analogously to
  4645. scanning in Earley), whereas if $X$ is a nonterminal, we create a
  4646. goto edge from $I$ to $J$. We then need to add some dotted rules to
  4647. state $J$. We start by adding all dotted rules from state $I$ that
  4648. have the form $B ::= s_1.\,X\,s_2$ (where $B$ is any nonterminal and
  4649. $s_1$ and $s_2$ are arbitrary sequences of symbols), with
  4650. the period moved past the $X$. (This is analogous to completion in
  4651. Earley's algorithm.) We then perform state closure on $J$. This
  4652. process repeats until there are no more states or edges to add.
  4653. We then mark states as accepting states if they have a dotted rule
  4654. that is the start rule with a period at the end. Also, to add
  4655. the reduce actions, we look for any state containing a dotted rule
  4656. with a period at the end. Let $n$ be the rule number for this dotted
  4657. rule. We then put a reduce $n$ action into that state for every token
  4658. $Y$. For example, in figure~\ref{fig:shift-reduce} state 4 has a
  4659. dotted rule with a period at the end. We therefore put a reduce by
  4660. rule 3 action into state 4 for every
  4661. token.
  4662. When inserting reduce actions, take care to spot any shift/reduce or
  4663. reduce/reduce conflicts. If there are any, abort the construction of
  4664. the parse table.
  4665. \begin{exercise}
  4666. \normalfont\normalsize
  4667. %
  4668. Working on paper, walk through the parse table generation process for
  4669. the grammar at the top of figure~\ref{fig:shift-reduce}, and check
  4670. your results against the parse table shown in
  4671. figure~\ref{fig:shift-reduce}.
  4672. \end{exercise}
  4673. \begin{exercise}
  4674. \normalfont\normalsize
  4675. %
  4676. Change the parser in your compiler for \LangVar{} to set the
  4677. \code{parser} option of Lark to \lstinline{'lalr'}. Test your compiler on
  4678. all the \LangVar{} programs that you have created. In doing so, Lark
  4679. may signal an error due to shift/reduce or reduce/reduce conflicts
  4680. in your grammar. If so, change your Lark grammar for \LangVar{} to
  4681. remove those conflicts.
  4682. \end{exercise}
  4683. \section{Further Reading}
  4684. In this chapter we have just scratched the surface of the field of
  4685. parsing, with the study of a very general but less efficient algorithm
  4686. (Earley) and with a more limited but highly efficient algorithm
  4687. (LALR). There are many more algorithms and classes of grammars that
  4688. fall between these two ends of the spectrum. We recommend to the reader
  4689. \citet{Aho:2006wb} for a thorough treatment of parsing.
  4690. Regarding lexical analysis, we have described the specification
  4691. language, which are the regular expressions, but not the algorithms
  4692. for recognizing them. In short, regular expressions can be translated
  4693. to nondeterministic finite automata, which in turn are translated to
  4694. finite automata. We refer the reader again to \citet{Aho:2006wb} for
  4695. all the details on lexical analysis.
  4696. \fi}
  4697. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  4698. \chapter{Register Allocation}
  4699. \label{ch:register-allocation-Lvar}
  4700. \setcounter{footnote}{0}
  4701. \index{subject}{register allocation}
  4702. In chapter~\ref{ch:Lvar} we learned how to compile \LangVar{} to x86,
  4703. storing variables on the procedure call stack. The CPU may require tens
  4704. to hundreds of cycles to access a location on the stack, whereas
  4705. accessing a register takes only a single cycle. In this chapter we
  4706. improve the efficiency of our generated code by storing some variables
  4707. in registers. The goal of register allocation is to fit as many
  4708. variables into registers as possible. Some programs have more
  4709. variables than registers, so we cannot always map each variable to a
  4710. different register. Fortunately, it is common for different variables
  4711. to be in use during different periods of time during program
  4712. execution, and in those cases we can map multiple variables to the
  4713. same register.
  4714. The program shown in figure~\ref{fig:reg-eg} serves as a running
  4715. example. The source program is on the left and the output of
  4716. instruction selection\index{subject}{instruction selection}
  4717. is on the right. The program is almost
  4718. completely in the x86 assembly language, but it still uses variables.
  4719. Consider variables \code{x} and \code{z}. After the variable \code{x}
  4720. has been moved to \code{z}, it is no longer in use. Variable \code{z}, on
  4721. the other hand, is used only after this point, so \code{x} and
  4722. \code{z} could share the same register.
  4723. \begin{figure}
  4724. \begin{tcolorbox}[colback=white]
  4725. \begin{minipage}{0.45\textwidth}
  4726. Example \LangVar{} program:
  4727. % var_test_28.rkt
  4728. {\if\edition\racketEd
  4729. \begin{lstlisting}
  4730. (let ([v 1])
  4731. (let ([w 42])
  4732. (let ([x (+ v 7)])
  4733. (let ([y x])
  4734. (let ([z (+ x w)])
  4735. (+ z (- y)))))))
  4736. \end{lstlisting}
  4737. \fi}
  4738. {\if\edition\pythonEd\pythonColor
  4739. \begin{lstlisting}
  4740. v = 1
  4741. w = 42
  4742. x = v + 7
  4743. y = x
  4744. z = x + w
  4745. print(z + (- y))
  4746. \end{lstlisting}
  4747. \fi}
  4748. \end{minipage}
  4749. \begin{minipage}{0.45\textwidth}
  4750. After instruction selection:
  4751. {\if\edition\racketEd
  4752. \begin{lstlisting}
  4753. locals-types:
  4754. x : Integer, y : Integer,
  4755. z : Integer, t : Integer,
  4756. v : Integer, w : Integer
  4757. start:
  4758. movq $1, v
  4759. movq $42, w
  4760. movq v, x
  4761. addq $7, x
  4762. movq x, y
  4763. movq x, z
  4764. addq w, z
  4765. movq y, t
  4766. negq t
  4767. movq z, %rax
  4768. addq t, %rax
  4769. jmp conclusion
  4770. \end{lstlisting}
  4771. \fi}
  4772. {\if\edition\pythonEd\pythonColor
  4773. \begin{lstlisting}
  4774. movq $1, v
  4775. movq $42, w
  4776. movq v, x
  4777. addq $7, x
  4778. movq x, y
  4779. movq x, z
  4780. addq w, z
  4781. movq y, tmp_0
  4782. negq tmp_0
  4783. movq z, tmp_1
  4784. addq tmp_0, tmp_1
  4785. movq tmp_1, %rdi
  4786. callq print_int
  4787. \end{lstlisting}
  4788. \fi}
  4789. \end{minipage}
  4790. \end{tcolorbox}
  4791. \caption{A running example for register allocation.}
  4792. \label{fig:reg-eg}
  4793. \end{figure}
  4794. The topic of section~\ref{sec:liveness-analysis-Lvar} is how to
  4795. compute where a variable is in use. Once we have that information, we
  4796. compute which variables are in use at the same time, that is, which ones
  4797. \emph{interfere}\index{subject}{interfere} with each other, and
  4798. represent this relation as an undirected graph whose vertices are
  4799. variables and edges indicate when two variables interfere
  4800. (section~\ref{sec:build-interference}). We then model register
  4801. allocation as a graph coloring problem
  4802. (section~\ref{sec:graph-coloring}).
  4803. If we run out of registers despite these efforts, we place the
  4804. remaining variables on the stack, similarly to how we handled
  4805. variables in chapter~\ref{ch:Lvar}. It is common to use the verb
  4806. \emph{spill}\index{subject}{spill} for assigning a variable to a stack
  4807. location. The decision to spill a variable is handled as part of the
  4808. graph coloring process.
  4809. We make the simplifying assumption that each variable is assigned to
  4810. one location (a register or stack address). A more sophisticated
  4811. approach is to assign a variable to one or more locations in different
  4812. regions of the program. For example, if a variable is used many times
  4813. in short sequence and then used again only after many other
  4814. instructions, it could be more efficient to assign the variable to a
  4815. register during the initial sequence and then move it to the stack for
  4816. the rest of its lifetime. We refer the interested reader to
  4817. \citet{Cooper:2011aa} (chapter 13) for more information about that
  4818. approach.
  4819. % discuss prioritizing variables based on how much they are used.
  4820. \section{Registers and Calling Conventions}
  4821. \label{sec:calling-conventions}
  4822. \index{subject}{calling conventions}
  4823. As we perform register allocation, we must be aware of the
  4824. \emph{calling conventions} \index{subject}{calling conventions} that
  4825. govern how function calls are performed in x86.
  4826. %
  4827. Even though \LangVar{} does not include programmer-defined functions,
  4828. our generated code includes a \code{main} function that is called by
  4829. the operating system and our generated code contains calls to the
  4830. \code{read\_int} function.
  4831. Function calls require coordination between two pieces of code that
  4832. may be written by different programmers or generated by different
  4833. compilers. Here we follow the System V calling conventions that are
  4834. used by the GNU C compiler on Linux and
  4835. MacOS~\citep{Bryant:2005aa,Matz:2013aa}.
  4836. %
  4837. The calling conventions include rules about how functions share the
  4838. use of registers. In particular, the caller is responsible for freeing
  4839. some registers prior to the function call for use by the callee.
  4840. These are called the \emph{caller-saved registers}
  4841. \index{subject}{caller-saved registers}
  4842. and they are
  4843. \begin{lstlisting}
  4844. rax rcx rdx rsi rdi r8 r9 r10 r11
  4845. \end{lstlisting}
  4846. On the other hand, the callee is responsible for preserving the values
  4847. of the \emph{callee-saved registers}, \index{subject}{callee-saved registers}
  4848. which are
  4849. \begin{lstlisting}
  4850. rsp rbp rbx r12 r13 r14 r15
  4851. \end{lstlisting}
  4852. We can think about this caller/callee convention from two points of
  4853. view, the caller view and the callee view, as follows:
  4854. \begin{itemize}
  4855. \item The caller should assume that all the caller-saved registers get
  4856. overwritten with arbitrary values by the callee. On the other hand,
  4857. the caller can safely assume that all the callee-saved registers
  4858. retain their original values.
  4859. \item The callee can freely use any of the caller-saved registers.
  4860. However, if the callee wants to use a callee-saved register, the
  4861. callee must arrange to put the original value back in the register
  4862. prior to returning to the caller. This can be accomplished by saving
  4863. the value to the stack in the prelude of the function and restoring
  4864. the value in the conclusion of the function.
  4865. \end{itemize}
  4866. In x86, registers are also used for passing arguments to a function
  4867. and for the return value. In particular, the first six arguments of a
  4868. function are passed in the following six registers, in this order.
  4869. \begin{lstlisting}
  4870. rdi rsi rdx rcx r8 r9
  4871. \end{lstlisting}
  4872. We refer to these six registers are the argument-passing registers
  4873. \index{subject}{argument-passing registers}.
  4874. If there are more than six arguments, the convention is to use space
  4875. on the frame of the caller for the rest of the arguments. In
  4876. chapter~\ref{ch:Lfun}, we instead pass a tuple containing the sixth
  4877. argument and the rest of the arguments, which simplifies the treatment
  4878. of efficient tail calls.
  4879. %
  4880. \racket{For now, the only function we care about is \code{read\_int},
  4881. which takes zero arguments.}
  4882. %
  4883. \python{For now, the only functions we care about are \code{read\_int}
  4884. and \code{print\_int}, which take zero and one argument, respectively.}
  4885. %
  4886. The register \code{rax} is used for the return value of a function.
  4887. The next question is how these calling conventions impact register
  4888. allocation. Consider the \LangVar{} program presented in
  4889. figure~\ref{fig:example-calling-conventions}. We first analyze this
  4890. example from the caller point of view and then from the callee point
  4891. of view. We refer to a variable that is in use during a function call
  4892. as a \emph{call-live variable}\index{subject}{call-live variable}.
  4893. The program makes two calls to \READOP{}. The variable \code{x} is
  4894. call-live because it is in use during the second call to \READOP{}; we
  4895. must ensure that the value in \code{x} does not get overwritten during
  4896. the call to \READOP{}. One obvious approach is to save all the values
  4897. that reside in caller-saved registers to the stack prior to each
  4898. function call and to restore them after each call. That way, if the
  4899. register allocator chooses to assign \code{x} to a caller-saved
  4900. register, its value will be preserved across the call to \READOP{}.
  4901. However, saving and restoring to the stack is relatively slow. If
  4902. \code{x} is not used many times, it may be better to assign \code{x}
  4903. to a stack location in the first place. Or better yet, if we can
  4904. arrange for \code{x} to be placed in a callee-saved register, then it
  4905. won't need to be saved and restored during function calls.
  4906. We recommend an approach that captures these issues in the
  4907. interference graph, without complicating the graph coloring algorithm.
  4908. During liveness analysis we know which variables are call-live because
  4909. we compute which variables are in use at every instruction
  4910. (section~\ref{sec:liveness-analysis-Lvar}). When we build the
  4911. interference graph (section~\ref{sec:build-interference}), we can
  4912. place an edge in the interference graph between each call-live
  4913. variable and the caller-saved registers. This will prevent the graph
  4914. coloring algorithm from assigning call-live variables to caller-saved
  4915. registers.
  4916. On the other hand, for variables that are not call-live, we prefer
  4917. placing them in caller-saved registers to leave more room for
  4918. call-live variables in the callee-saved registers. This can also be
  4919. implemented without complicating the graph coloring algorithm. We
  4920. recommend that the graph coloring algorithm assign variables to
  4921. natural numbers, choosing the lowest number for which there is no
  4922. interference. After the coloring is complete, we map the numbers to
  4923. registers and stack locations: mapping the lowest numbers to
  4924. caller-saved registers, the next lowest to callee-saved registers, and
  4925. the largest numbers to stack locations. This ordering gives preference
  4926. to registers over stack locations and to caller-saved registers over
  4927. callee-saved registers.
  4928. Returning to the example in
  4929. figure~\ref{fig:example-calling-conventions}, let us analyze the
  4930. generated x86 code on the right-hand side. Variable \code{x} is
  4931. assigned to \code{rbx}, a callee-saved register. Thus, it is already
  4932. in a safe place during the second call to \code{read\_int}. Next,
  4933. variable \code{y} is assigned to \code{rcx}, a caller-saved register,
  4934. because \code{y} is not a call-live variable.
  4935. We have completed the analysis from the caller point of view, so now
  4936. we switch to the callee point of view, focusing on the prelude and
  4937. conclusion of the \code{main} function. As usual, the prelude begins
  4938. with saving the \code{rbp} register to the stack and setting the
  4939. \code{rbp} to the current stack pointer. We now know why it is
  4940. necessary to save the \code{rbp}: it is a callee-saved register. The
  4941. prelude then pushes \code{rbx} to the stack because (1) \code{rbx} is
  4942. a callee-saved register and (2) \code{rbx} is assigned to a variable
  4943. (\code{x}). The other callee-saved registers are not saved in the
  4944. prelude because they are not used. The prelude subtracts 8 bytes from
  4945. the \code{rsp} to make it 16-byte aligned. Shifting attention to the
  4946. conclusion, we see that \code{rbx} is restored from the stack with a
  4947. \code{popq} instruction.
  4948. \index{subject}{prelude}\index{subject}{conclusion}
  4949. \begin{figure}[tp]
  4950. \begin{tcolorbox}[colback=white]
  4951. \begin{minipage}{0.45\textwidth}
  4952. Example \LangVar{} program:
  4953. %var_test_14.rkt
  4954. {\if\edition\racketEd
  4955. \begin{lstlisting}
  4956. (let ([x (read)])
  4957. (let ([y (read)])
  4958. (+ (+ x y) 42)))
  4959. \end{lstlisting}
  4960. \fi}
  4961. {\if\edition\pythonEd\pythonColor
  4962. \begin{lstlisting}
  4963. x = input_int()
  4964. y = input_int()
  4965. print((x + y) + 42)
  4966. \end{lstlisting}
  4967. \fi}
  4968. \end{minipage}
  4969. \begin{minipage}{0.45\textwidth}
  4970. Generated x86 assembly:
  4971. {\if\edition\racketEd
  4972. \begin{lstlisting}
  4973. start:
  4974. callq read_int
  4975. movq %rax, %rbx
  4976. callq read_int
  4977. movq %rax, %rcx
  4978. addq %rcx, %rbx
  4979. movq %rbx, %rax
  4980. addq $42, %rax
  4981. jmp conclusion
  4982. .globl main
  4983. main:
  4984. pushq %rbp
  4985. movq %rsp, %rbp
  4986. pushq %rbx
  4987. subq $8, %rsp
  4988. jmp start
  4989. conclusion:
  4990. addq $8, %rsp
  4991. popq %rbx
  4992. popq %rbp
  4993. retq
  4994. \end{lstlisting}
  4995. \fi}
  4996. {\if\edition\pythonEd\pythonColor
  4997. \begin{lstlisting}
  4998. .globl main
  4999. main:
  5000. pushq %rbp
  5001. movq %rsp, %rbp
  5002. pushq %rbx
  5003. subq $8, %rsp
  5004. callq read_int
  5005. movq %rax, %rbx
  5006. callq read_int
  5007. movq %rax, %rcx
  5008. movq %rbx, %rdx
  5009. addq %rcx, %rdx
  5010. movq %rdx, %rcx
  5011. addq $42, %rcx
  5012. movq %rcx, %rdi
  5013. callq print_int
  5014. addq $8, %rsp
  5015. popq %rbx
  5016. popq %rbp
  5017. retq
  5018. \end{lstlisting}
  5019. \fi}
  5020. \end{minipage}
  5021. \end{tcolorbox}
  5022. \caption{An example with function calls.}
  5023. \label{fig:example-calling-conventions}
  5024. \end{figure}
  5025. %\clearpage
  5026. \section{Liveness Analysis}
  5027. \label{sec:liveness-analysis-Lvar}
  5028. \index{subject}{liveness analysis}
  5029. The \code{uncover\_live} \racket{pass}\python{function} performs
  5030. \emph{liveness analysis}; that is, it discovers which variables are
  5031. in use in different regions of a program.
  5032. %
  5033. A variable or register is \emph{live} at a program point if its
  5034. current value is used at some later point in the program. We refer to
  5035. variables, stack locations, and registers collectively as
  5036. \emph{locations}.
  5037. %
  5038. Consider the following code fragment in which there are two writes to
  5039. \code{b}. Are variables \code{a} and \code{b} both live at the same
  5040. time?
  5041. \begin{center}
  5042. \begin{minipage}{0.85\textwidth}
  5043. \begin{lstlisting}[numbers=left,numberstyle=\tiny]
  5044. movq $5, a
  5045. movq $30, b
  5046. movq a, c
  5047. movq $10, b
  5048. addq b, c
  5049. \end{lstlisting}
  5050. \end{minipage}
  5051. \end{center}
  5052. The answer is no, because \code{a} is live from line 1 to 3 and
  5053. \code{b} is live from line 4 to 5. The integer written to \code{b} on
  5054. line 2 is never used because it is overwritten (line 4) before the
  5055. next read (line 5).
  5056. The live locations for each instruction can be computed by traversing
  5057. the instruction sequence back to front (i.e., backward in execution
  5058. order). Let $I_1,\ldots, I_n$ be the instruction sequence. We write
  5059. $L_{\mathsf{after}}(k)$ for the set of live locations after
  5060. instruction $I_k$ and write $L_{\mathsf{before}}(k)$ for the set of live
  5061. locations before instruction $I_k$. \racket{We recommend representing
  5062. these sets with the Racket \code{set} data structure described in
  5063. figure~\ref{fig:set}.} \python{We recommend representing these sets
  5064. with the Python
  5065. \href{https://docs.python.org/3.10/library/stdtypes.html\#set-types-set-frozenset}{\code{set}}
  5066. data structure.}
  5067. {\if\edition\racketEd
  5068. \begin{figure}[tp]
  5069. %\begin{wrapfigure}[19]{l}[0.75in]{0.55\textwidth}
  5070. \small
  5071. \begin{tcolorbox}[title=\href{https://docs.racket-lang.org/reference/sets.html}{The Racket Set Package}]
  5072. A \emph{set} is an unordered collection of elements without duplicates.
  5073. Here are some of the operations defined on sets.
  5074. \index{subject}{set}
  5075. \begin{description}
  5076. \item[$\LP\code{set}~v~\ldots\RP$] constructs a set containing the specified elements.
  5077. \item[$\LP\code{set-union}~set_1~set_2\RP$] returns the union of the two sets.
  5078. \item[$\LP\code{set-subtract}~set_1~set_2\RP$] returns the set
  5079. difference of the two sets.
  5080. \item[$\LP\code{set-member?}~set~v\RP$] answers whether element $v$ is in $set$.
  5081. \item[$\LP\code{set-count}~set\RP$] returns the number of unique elements in $set$.
  5082. \item[$\LP\code{set->list}~set\RP$] converts $set$ to a list.
  5083. \end{description}
  5084. \end{tcolorbox}
  5085. %\end{wrapfigure}
  5086. \caption{The \code{set} data structure.}
  5087. \label{fig:set}
  5088. \end{figure}
  5089. \fi}
  5090. % TODO: add a python version of the reference box for sets. -Jeremy
  5091. The locations that are live after an instruction are its
  5092. \emph{live-after}\index{subject}{live-after} set, and the locations
  5093. that are live before an instruction are its
  5094. \emph{live-before}\index{subject}{live-before} set. The live-after
  5095. set of an instruction is always the same as the live-before set of the
  5096. next instruction.
  5097. \begin{equation} \label{eq:live-after-before-next}
  5098. L_{\mathsf{after}}(k) = L_{\mathsf{before}}(k+1)
  5099. \end{equation}
  5100. To start things off, there are no live locations after the last
  5101. instruction, so
  5102. \begin{equation}\label{eq:live-last-empty}
  5103. L_{\mathsf{after}}(n) = \emptyset
  5104. \end{equation}
  5105. We then apply the following rule repeatedly, traversing the
  5106. instruction sequence back to front.
  5107. \begin{equation}\label{eq:live-before-after-minus-writes-plus-reads}
  5108. L_{\mathtt{before}}(k) = (L_{\mathtt{after}}(k) - W(k)) \cup R(k),
  5109. \end{equation}
  5110. where $W(k)$ are the locations written to by instruction $I_k$, and
  5111. $R(k)$ are the locations read by instruction $I_k$.
  5112. {\if\edition\racketEd
  5113. %
  5114. There is a special case for \code{jmp} instructions. The locations
  5115. that are live before a \code{jmp} should be the locations in
  5116. $L_{\mathsf{before}}$ at the target of the jump. So, we recommend
  5117. maintaining an alist named \code{label->live} that maps each label to
  5118. the $L_{\mathsf{before}}$ for the first instruction in its block. For
  5119. now the only \code{jmp} in a \LangXVar{} program is the jump to the
  5120. conclusion. (For example, see figure~\ref{fig:reg-eg}.) The
  5121. conclusion reads from \ttm{rax} and \ttm{rsp}, so the alist should map
  5122. \code{conclusion} to the set $\{\ttm{rax},\ttm{rsp}\}$.
  5123. %
  5124. \fi}
  5125. Let us walk through the previous example, applying these formulas
  5126. starting with the instruction on line 5 of the code fragment. We
  5127. collect the answers in figure~\ref{fig:liveness-example-0}. The
  5128. $L_{\mathsf{after}}$ for the \code{addq b, c} instruction is
  5129. $\emptyset$ because it is the last instruction
  5130. (formula~\eqref{eq:live-last-empty}). The $L_{\mathsf{before}}$ for
  5131. this instruction is $\{\ttm{b},\ttm{c}\}$ because it reads from
  5132. variables \code{b} and \code{c}
  5133. (formula~\eqref{eq:live-before-after-minus-writes-plus-reads}):
  5134. \[
  5135. L_{\mathsf{before}}(5) = (\emptyset - \{\ttm{c}\}) \cup \{ \ttm{b}, \ttm{c} \} = \{ \ttm{b}, \ttm{c} \}
  5136. \]
  5137. Moving on the the instruction \code{movq \$10, b} at line 4, we copy
  5138. the live-before set from line 5 to be the live-after set for this
  5139. instruction (formula~\eqref{eq:live-after-before-next}).
  5140. \[
  5141. L_{\mathsf{after}}(4) = \{ \ttm{b}, \ttm{c} \}
  5142. \]
  5143. This move instruction writes to \code{b} and does not read from any
  5144. variables, so we have the following live-before set
  5145. (formula~\eqref{eq:live-before-after-minus-writes-plus-reads}).
  5146. \[
  5147. L_{\mathsf{before}}(4) = (\{\ttm{b},\ttm{c}\} - \{\ttm{b}\}) \cup \emptyset = \{ \ttm{c} \}
  5148. \]
  5149. The live-before for instruction \code{movq a, c}
  5150. is $\{\ttm{a}\}$ because it writes to $\{\ttm{c}\}$ and reads from $\{\ttm{a}\}$
  5151. (formula~\eqref{eq:live-before-after-minus-writes-plus-reads}). The
  5152. live-before for \code{movq \$30, b} is $\{\ttm{a}\}$ because it writes to a
  5153. variable that is not live and does not read from a variable.
  5154. Finally, the live-before for \code{movq \$5, a} is $\emptyset$
  5155. because it writes to variable \code{a}.
  5156. \begin{figure}[tbp]
  5157. \centering
  5158. \begin{tcolorbox}[colback=white]
  5159. \hspace{10pt}
  5160. \begin{minipage}{0.4\textwidth}
  5161. \begin{lstlisting}[numbers=left,numberstyle=\tiny]
  5162. movq $5, a
  5163. movq $30, b
  5164. movq a, c
  5165. movq $10, b
  5166. addq b, c
  5167. \end{lstlisting}
  5168. \end{minipage}
  5169. \vrule\hspace{10pt}
  5170. \begin{minipage}{0.45\textwidth}
  5171. \begin{align*}
  5172. L_{\mathsf{before}}(1)= \emptyset,
  5173. L_{\mathsf{after}}(1)= \{\ttm{a}\}\\
  5174. L_{\mathsf{before}}(2)= \{\ttm{a}\},
  5175. L_{\mathsf{after}}(2)= \{\ttm{a}\}\\
  5176. L_{\mathsf{before}}(3)= \{\ttm{a}\},
  5177. L_{\mathsf{after}}(3)= \{\ttm{c}\}\\
  5178. L_{\mathsf{before}}(4)= \{\ttm{c}\},
  5179. L_{\mathsf{after}}(4)= \{\ttm{b},\ttm{c}\}\\
  5180. L_{\mathsf{before}}(5)= \{\ttm{b},\ttm{c}\},
  5181. L_{\mathsf{after}}(5)= \emptyset
  5182. \end{align*}
  5183. \end{minipage}
  5184. \end{tcolorbox}
  5185. \caption{Example output of liveness analysis on a short example.}
  5186. \label{fig:liveness-example-0}
  5187. \end{figure}
  5188. \begin{exercise}\normalfont\normalsize
  5189. Perform liveness analysis by hand on the running example in
  5190. figure~\ref{fig:reg-eg}, computing the live-before and live-after
  5191. sets for each instruction. Compare your answers to the solution
  5192. shown in figure~\ref{fig:live-eg}.
  5193. \end{exercise}
  5194. \begin{figure}[tp]
  5195. \hspace{20pt}
  5196. \begin{minipage}{0.55\textwidth}
  5197. \begin{tcolorbox}[colback=white]
  5198. {\if\edition\racketEd
  5199. \begin{lstlisting}
  5200. |$\{\ttm{rsp}\}$|
  5201. movq $1, v
  5202. |$\{\ttm{v},\ttm{rsp}\}$|
  5203. movq $42, w
  5204. |$\{\ttm{v},\ttm{w},\ttm{rsp}\}$|
  5205. movq v, x
  5206. |$\{\ttm{w},\ttm{x},\ttm{rsp}\}$|
  5207. addq $7, x
  5208. |$\{\ttm{w},\ttm{x},\ttm{rsp}\}$|
  5209. movq x, y
  5210. |$\{\ttm{w},\ttm{x},\ttm{y},\ttm{rsp}\}$|
  5211. movq x, z
  5212. |$\{\ttm{w},\ttm{y},\ttm{z},\ttm{rsp}\}$|
  5213. addq w, z
  5214. |$\{\ttm{y},\ttm{z},\ttm{rsp}\}$|
  5215. movq y, t
  5216. |$\{\ttm{t},\ttm{z},\ttm{rsp}\}$|
  5217. negq t
  5218. |$\{\ttm{t},\ttm{z},\ttm{rsp}\}$|
  5219. movq z, %rax
  5220. |$\{\ttm{rax},\ttm{t},\ttm{rsp}\}$|
  5221. addq t, %rax
  5222. |$\{\ttm{rax},\ttm{rsp}\}$|
  5223. jmp conclusion
  5224. \end{lstlisting}
  5225. \fi}
  5226. {\if\edition\pythonEd\pythonColor
  5227. \begin{lstlisting}
  5228. movq $1, v
  5229. |$\{\ttm{v}\}$|
  5230. movq $42, w
  5231. |$\{\ttm{w}, \ttm{v}\}$|
  5232. movq v, x
  5233. |$\{\ttm{w}, \ttm{x}\}$|
  5234. addq $7, x
  5235. |$\{\ttm{w}, \ttm{x}\}$|
  5236. movq x, y
  5237. |$\{\ttm{w}, \ttm{x}, \ttm{y}\}$|
  5238. movq x, z
  5239. |$\{\ttm{w}, \ttm{y}, \ttm{z}\}$|
  5240. addq w, z
  5241. |$\{\ttm{y}, \ttm{z}\}$|
  5242. movq y, tmp_0
  5243. |$\{\ttm{tmp\_0}, \ttm{z}\}$|
  5244. negq tmp_0
  5245. |$\{\ttm{tmp\_0}, \ttm{z}\}$|
  5246. movq z, tmp_1
  5247. |$\{\ttm{tmp\_0}, \ttm{tmp\_1}\}$|
  5248. addq tmp_0, tmp_1
  5249. |$\{\ttm{tmp\_1}\}$|
  5250. movq tmp_1, %rdi
  5251. |$\{\ttm{rdi}\}$|
  5252. callq print_int
  5253. |$\{\}$|
  5254. \end{lstlisting}
  5255. \fi}
  5256. \end{tcolorbox}
  5257. \end{minipage}
  5258. \caption{The running example annotated with live-after sets.}
  5259. \label{fig:live-eg}
  5260. \end{figure}
  5261. \begin{exercise}\normalfont\normalsize
  5262. Implement the \code{uncover\_live} \racket{pass}\python{function}.
  5263. %
  5264. \racket{Store the sequence of live-after sets in the $\itm{info}$
  5265. field of the \code{Block} structure.}
  5266. %
  5267. \python{Return a dictionary that maps each instruction to its
  5268. live-after set.}
  5269. %
  5270. \racket{We recommend creating an auxiliary function that takes a list
  5271. of instructions and an initial live-after set (typically empty) and
  5272. returns the list of live-after sets.}
  5273. %
  5274. We recommend creating auxiliary functions to (1) compute the set
  5275. of locations that appear in an \Arg{}, (2) compute the locations read
  5276. by an instruction (the $R$ function), and (3) the locations written by
  5277. an instruction (the $W$ function). The \code{callq} instruction should
  5278. include all the caller-saved registers in its write set $W$ because
  5279. the calling convention says that those registers may be written to
  5280. during the function call. Likewise, the \code{callq} instruction
  5281. should include the appropriate argument-passing registers in its
  5282. read set $R$, depending on the arity of the function being
  5283. called. (This is why the abstract syntax for \code{callq} includes the
  5284. arity.)
  5285. \end{exercise}
  5286. %\clearpage
  5287. \section{Build the Interference Graph}
  5288. \label{sec:build-interference}
  5289. {\if\edition\racketEd
  5290. \begin{figure}[tp]
  5291. %\begin{wrapfigure}[23]{r}[0.75in]{0.55\textwidth}
  5292. \small
  5293. \begin{tcolorbox}[title=\href{https://docs.racket-lang.org/graph/index.html}{The Racket Graph Library}]
  5294. A \emph{graph} is a collection of vertices and edges where each
  5295. edge connects two vertices. A graph is \emph{directed} if each
  5296. edge points from a source to a target. Otherwise the graph is
  5297. \emph{undirected}.
  5298. \index{subject}{graph}\index{subject}{directed graph}\index{subject}{undirected graph}
  5299. \begin{description}
  5300. %% We currently don't use directed graphs. We instead use
  5301. %% directed multi-graphs. -Jeremy
  5302. \item[$\LP\code{directed-graph}\,\itm{edges}\RP$] constructs a
  5303. directed graph from a list of edges. Each edge is a list
  5304. containing the source and target vertex.
  5305. \item[$\LP\code{undirected-graph}\,\itm{edges}\RP$] constructs a
  5306. undirected graph from a list of edges. Each edge is represented by
  5307. a list containing two vertices.
  5308. \item[$\LP\code{add-vertex!}\,\itm{graph}\,\itm{vertex}\RP$]
  5309. inserts a vertex into the graph.
  5310. \item[$\LP\code{add-edge!}\,\itm{graph}\,\itm{source}\,\itm{target}\RP$]
  5311. inserts an edge between the two vertices.
  5312. \item[$\LP\code{in-neighbors}\,\itm{graph}\,\itm{vertex}\RP$]
  5313. returns a sequence of vertices adjacent to the vertex.
  5314. \item[$\LP\code{in-vertices}\,\itm{graph}\RP$]
  5315. returns a sequence of all vertices in the graph.
  5316. \end{description}
  5317. \end{tcolorbox}
  5318. %\end{wrapfigure}
  5319. \caption{The Racket \code{graph} package.}
  5320. \label{fig:graph}
  5321. \end{figure}
  5322. \fi}
  5323. On the basis of the liveness analysis, we know where each location is
  5324. live. However, during register allocation, we need to answer
  5325. questions of the specific form: are locations $u$ and $v$ live at the
  5326. same time? (If so, they cannot be assigned to the same register.) To
  5327. make this question more efficient to answer, we create an explicit
  5328. data structure, an \emph{interference
  5329. graph}\index{subject}{interference graph}. An interference graph is
  5330. an undirected graph that has a node for every variable and register
  5331. and has an edge between two nodes if they are
  5332. live at the same time, that is, if they interfere with each other.
  5333. %
  5334. \racket{We recommend using the Racket \code{graph} package
  5335. (figure~\ref{fig:graph}) to represent the interference graph.}
  5336. %
  5337. \python{We provide implementations of directed and undirected graph
  5338. data structures in the file \code{graph.py} of the support code.}
  5339. A straightforward way to compute the interference graph is to look at
  5340. the set of live locations between each instruction and add an edge to
  5341. the graph for every pair of variables in the same set. This approach
  5342. is less than ideal for two reasons. First, it can be expensive because
  5343. it takes $O(n^2)$ time to consider every pair in a set of $n$ live
  5344. locations. Second, in the special case in which two locations hold the
  5345. same value (because one was assigned to the other), they can be live
  5346. at the same time without interfering with each other.
  5347. A better way to compute the interference graph is to focus on
  5348. writes~\citep{Appel:2003fk}. The writes performed by an instruction
  5349. must not overwrite something in a live location. So for each
  5350. instruction, we create an edge between the locations being written to
  5351. and the live locations. (However, a location never interferes with
  5352. itself.) For the \key{callq} instruction, we consider all the
  5353. caller-saved registers to have been written to, so an edge is added
  5354. between every live variable and every caller-saved register. Also, for
  5355. \key{movq} there is the special case of two variables holding the same
  5356. value. If a live variable $v$ is the same as the source of the
  5357. \key{movq}, then there is no need to add an edge between $v$ and the
  5358. destination, because they both hold the same value.
  5359. %
  5360. Hence we have the following two rules:
  5361. \begin{enumerate}
  5362. \item If instruction $I_k$ is a move instruction of the form
  5363. \key{movq} $s$\key{,} $d$, then for every $v \in
  5364. L_{\mathsf{after}}(k)$, if $v \neq d$ and $v \neq s$, add the edge
  5365. $(d,v)$.
  5366. \item For any other instruction $I_k$, for every $d \in W(k)$ and
  5367. every $v \in L_{\mathsf{after}}(k)$, if $v \neq d$, add the edge
  5368. $(d,v)$.
  5369. \end{enumerate}
  5370. Working from the top to bottom of figure~\ref{fig:live-eg}, we apply
  5371. these rules to each instruction. We highlight a few of the
  5372. instructions. \racket{The first instruction is \lstinline{movq $1, v},
  5373. and the live-after set is $\{\ttm{v},\ttm{rsp}\}$. Rule 1 applies,
  5374. so \code{v} interferes with \code{rsp}.}
  5375. %
  5376. \python{The first instruction is \lstinline{movq $1, v}, and the
  5377. live-after set is $\{\ttm{v}\}$. Rule 1 applies, but there is
  5378. no interference because $\ttm{v}$ is the destination of the move.}
  5379. %
  5380. \racket{The fourth instruction is \lstinline{addq $7, x}, and the
  5381. live-after set is $\{\ttm{w},\ttm{x},\ttm{rsp}\}$. Rule 2 applies, so
  5382. $\ttm{x}$ interferes with \ttm{w} and \ttm{rsp}.}
  5383. %
  5384. \python{The fourth instruction is \lstinline{addq $7, x}, and the
  5385. live-after set is $\{\ttm{w},\ttm{x}\}$. Rule 2 applies, so
  5386. $\ttm{x}$ interferes with \ttm{w}.}
  5387. %
  5388. \racket{The next instruction is \lstinline{movq x, y}, and the
  5389. live-after set is $\{\ttm{w},\ttm{x},\ttm{y},\ttm{rsp}\}$. Rule 1
  5390. applies, so \ttm{y} interferes with \ttm{w} and \ttm{rsp} but not
  5391. \ttm{x}, because \ttm{x} is the source of the move and therefore
  5392. \ttm{x} and \ttm{y} hold the same value.}
  5393. %
  5394. \python{The next instruction is \lstinline{movq x, y}, and the
  5395. live-after set is $\{\ttm{w},\ttm{x},\ttm{y}\}$. Rule 1
  5396. applies, so \ttm{y} interferes with \ttm{w} but not
  5397. \ttm{x}, because \ttm{x} is the source of the move and therefore
  5398. \ttm{x} and \ttm{y} hold the same value.}
  5399. %
  5400. Figure~\ref{fig:interference-results} lists the interference results
  5401. for all the instructions, and the resulting interference graph is
  5402. shown in figure~\ref{fig:interfere}. We elide the register nodes from
  5403. the interference graph in figure~\ref{fig:interfere} because there
  5404. were no interference edges involving registers and we did not wish to
  5405. clutter the graph, but in general one needs to include all the
  5406. registers in the interference graph.
  5407. \begin{figure}[tbp]
  5408. \begin{tcolorbox}[colback=white]
  5409. \begin{quote}
  5410. {\if\edition\racketEd
  5411. \begin{tabular}{ll}
  5412. \lstinline!movq $1, v!& \ttm{v} interferes with \ttm{rsp},\\
  5413. \lstinline!movq $42, w!& \ttm{w} interferes with \ttm{v} and \ttm{rsp},\\
  5414. \lstinline!movq v, x!& \ttm{x} interferes with \ttm{w} and \ttm{rsp},\\
  5415. \lstinline!addq $7, x!& \ttm{x} interferes with \ttm{w} and \ttm{rsp},\\
  5416. \lstinline!movq x, y!& \ttm{y} interferes with \ttm{w} and \ttm{rsp} but not \ttm{x},\\
  5417. \lstinline!movq x, z!& \ttm{z} interferes with \ttm{w}, \ttm{y}, and \ttm{rsp},\\
  5418. \lstinline!addq w, z!& \ttm{z} interferes with \ttm{y} and \ttm{rsp}, \\
  5419. \lstinline!movq y, t!& \ttm{t} interferes with \ttm{z} and \ttm{rsp}, \\
  5420. \lstinline!negq t!& \ttm{t} interferes with \ttm{z} and \ttm{rsp}, \\
  5421. \lstinline!movq z, %rax! & \ttm{rax} interferes with \ttm{t} and \ttm{rsp}, \\
  5422. \lstinline!addq t, %rax! & \ttm{rax} interferes with \ttm{rsp}. \\
  5423. \lstinline!jmp conclusion!& no interference.
  5424. \end{tabular}
  5425. \fi}
  5426. {\if\edition\pythonEd\pythonColor
  5427. \begin{tabular}{ll}
  5428. \lstinline!movq $1, v!& no interference\\
  5429. \lstinline!movq $42, w!& \ttm{w} interferes with \ttm{v}\\
  5430. \lstinline!movq v, x!& \ttm{x} interferes with \ttm{w}\\
  5431. \lstinline!addq $7, x!& \ttm{x} interferes with \ttm{w}\\
  5432. \lstinline!movq x, y!& \ttm{y} interferes with \ttm{w} but not \ttm{x}\\
  5433. \lstinline!movq x, z!& \ttm{z} interferes with \ttm{w} and \ttm{y}\\
  5434. \lstinline!addq w, z!& \ttm{z} interferes with \ttm{y} \\
  5435. \lstinline!movq y, tmp_0!& \ttm{tmp\_0} interferes with \ttm{z} \\
  5436. \lstinline!negq tmp_0!& \ttm{tmp\_0} interferes with \ttm{z} \\
  5437. \lstinline!movq z, tmp_1! & \ttm{tmp\_0} interferes with \ttm{tmp\_1} \\
  5438. \lstinline!addq tmp_0, tmp_1! & no interference\\
  5439. \lstinline!movq tmp_1, %rdi! & no interference \\
  5440. \lstinline!callq print_int!& no interference.
  5441. \end{tabular}
  5442. \fi}
  5443. \end{quote}
  5444. \end{tcolorbox}
  5445. \caption{Interference results for the running example.}
  5446. \label{fig:interference-results}
  5447. \end{figure}
  5448. \begin{figure}[tbp]
  5449. \begin{tcolorbox}[colback=white]
  5450. \large
  5451. {\if\edition\racketEd
  5452. \[
  5453. \begin{tikzpicture}[baseline=(current bounding box.center)]
  5454. \node (rax) at (0,0) {$\ttm{rax}$};
  5455. \node (rsp) at (9,2) {$\ttm{rsp}$};
  5456. \node (t1) at (0,2) {$\ttm{t}$};
  5457. \node (z) at (3,2) {$\ttm{z}$};
  5458. \node (x) at (6,2) {$\ttm{x}$};
  5459. \node (y) at (3,0) {$\ttm{y}$};
  5460. \node (w) at (6,0) {$\ttm{w}$};
  5461. \node (v) at (9,0) {$\ttm{v}$};
  5462. \draw (t1) to (rax);
  5463. \draw (t1) to (z);
  5464. \draw (z) to (y);
  5465. \draw (z) to (w);
  5466. \draw (x) to (w);
  5467. \draw (y) to (w);
  5468. \draw (v) to (w);
  5469. \draw (v) to (rsp);
  5470. \draw (w) to (rsp);
  5471. \draw (x) to (rsp);
  5472. \draw (y) to (rsp);
  5473. \path[-.,bend left=15] (z) edge node {} (rsp);
  5474. \path[-.,bend left=10] (t1) edge node {} (rsp);
  5475. \draw (rax) to (rsp);
  5476. \end{tikzpicture}
  5477. \]
  5478. \fi}
  5479. {\if\edition\pythonEd\pythonColor
  5480. \[
  5481. \begin{tikzpicture}[baseline=(current bounding box.center),scale=0.9]
  5482. \node (t0) at (0,2) {$\ttm{tmp\_0}$};
  5483. \node (t1) at (0,0) {$\ttm{tmp\_1}$};
  5484. \node (z) at (3,2) {$\ttm{z}$};
  5485. \node (x) at (6,2) {$\ttm{x}$};
  5486. \node (y) at (3,0) {$\ttm{y}$};
  5487. \node (w) at (6,0) {$\ttm{w}$};
  5488. \node (v) at (9,0) {$\ttm{v}$};
  5489. \draw (t0) to (t1);
  5490. \draw (t0) to (z);
  5491. \draw (z) to (y);
  5492. \draw (z) to (w);
  5493. \draw (x) to (w);
  5494. \draw (y) to (w);
  5495. \draw (v) to (w);
  5496. \end{tikzpicture}
  5497. \]
  5498. \fi}
  5499. \end{tcolorbox}
  5500. \caption{The interference graph of the example program.}
  5501. \label{fig:interfere}
  5502. \end{figure}
  5503. \begin{exercise}\normalfont\normalsize
  5504. \racket{Implement the compiler pass named \code{build\_interference} according
  5505. to the algorithm suggested here. We recommend using the Racket
  5506. \code{graph} package to create and inspect the interference graph.
  5507. The output graph of this pass should be stored in the $\itm{info}$ field of
  5508. the program, under the key \code{conflicts}.}
  5509. %
  5510. \python{Implement a function named \code{build\_interference}
  5511. according to the algorithm suggested above that
  5512. returns the interference graph.}
  5513. \end{exercise}
  5514. \section{Graph Coloring via Sudoku}
  5515. \label{sec:graph-coloring}
  5516. \index{subject}{graph coloring}
  5517. \index{subject}{sudoku}
  5518. \index{subject}{color}
  5519. We come to the main event discussed in this chapter, mapping variables
  5520. to registers and stack locations. Variables that interfere with each
  5521. other must be mapped to different locations. In terms of the
  5522. interference graph, this means that adjacent vertices must be mapped
  5523. to different locations. If we think of locations as colors, the
  5524. register allocation problem becomes the graph coloring
  5525. problem~\citep{Balakrishnan:1996ve,Rosen:2002bh}.
  5526. The reader may be more familiar with the graph coloring problem than he
  5527. or she realizes; the popular game of sudoku is an instance of the
  5528. graph coloring problem. The following describes how to build a graph
  5529. out of an initial sudoku board.
  5530. \begin{itemize}
  5531. \item There is one vertex in the graph for each sudoku square.
  5532. \item There is an edge between two vertices if the corresponding squares
  5533. are in the same row, in the same column, or in the same $3\times 3$ region.
  5534. \item Choose nine colors to correspond to the numbers $1$ to $9$.
  5535. \item On the basis of the initial assignment of numbers to squares on the
  5536. sudoku board, assign the corresponding colors to the corresponding
  5537. vertices in the graph.
  5538. \end{itemize}
  5539. If you can color the remaining vertices in the graph with the nine
  5540. colors, then you have also solved the corresponding game of sudoku.
  5541. Figure~\ref{fig:sudoku-graph} shows an initial sudoku game board and
  5542. the corresponding graph with colored vertices. Here we use a
  5543. monochrome representation of colors, mapping the sudoku number 1 to
  5544. black, 2 to white, and 3 to gray. We show edges for only a sampling
  5545. of the vertices (the colored ones) because showing edges for all the
  5546. vertices would make the graph unreadable.
  5547. \begin{figure}[tbp]
  5548. \begin{tcolorbox}[colback=white]
  5549. \includegraphics[width=0.5\textwidth]{figs/sudoku}
  5550. \includegraphics[width=0.5\textwidth]{figs/sudoku-graph-bw}
  5551. \end{tcolorbox}
  5552. \caption{A sudoku game board and the corresponding colored graph.}
  5553. \label{fig:sudoku-graph}
  5554. \end{figure}
  5555. Some techniques for playing sudoku correspond to heuristics used in
  5556. graph coloring algorithms. For example, one of the basic techniques
  5557. for sudoku is called Pencil Marks. The idea is to use a process of
  5558. elimination to determine what numbers are no longer available for a
  5559. square and to write those numbers in the square (writing very
  5560. small). For example, if the number $1$ is assigned to a square, then
  5561. write the pencil mark $1$ in all the squares in the same row, column,
  5562. and region to indicate that $1$ is no longer an option for those other
  5563. squares.
  5564. %
  5565. The Pencil Marks technique corresponds to the notion of
  5566. \emph{saturation}\index{subject}{saturation} due to \citet{Brelaz:1979eu}. The
  5567. saturation of a vertex, in sudoku terms, is the set of numbers that
  5568. are no longer available. In graph terminology, we have the following
  5569. definition:
  5570. \begin{equation*}
  5571. \mathrm{saturation}(u) = \{ c \;|\; \exists v. v \in \mathrm{adjacent}(u)
  5572. \text{ and } \mathrm{color}(v) = c \}
  5573. \end{equation*}
  5574. where $\mathrm{adjacent}(u)$ is the set of vertices that share an
  5575. edge with $u$.
  5576. The Pencil Marks technique leads to a simple strategy for filling in
  5577. numbers: if there is a square with only one possible number left, then
  5578. choose that number! But what if there are no squares with only one
  5579. possibility left? One brute-force approach is to try them all: choose
  5580. the first one, and if that ultimately leads to a solution, great. If
  5581. not, backtrack and choose the next possibility. One good thing about
  5582. Pencil Marks is that it reduces the degree of branching in the search
  5583. tree. Nevertheless, backtracking can be terribly time consuming. One
  5584. way to reduce the amount of backtracking is to use the
  5585. most-constrained-first heuristic (aka minimum remaining
  5586. values)~\citep{Russell2003}. That is, in choosing a square, always
  5587. choose one with the fewest possibilities left (the vertex with the
  5588. highest saturation). The idea is that choosing highly constrained
  5589. squares earlier rather than later is better, because later on there may
  5590. not be any possibilities left in the highly saturated squares.
  5591. However, register allocation is easier than sudoku, because the
  5592. register allocator can fall back to assigning variables to stack
  5593. locations when the registers run out. Thus, it makes sense to replace
  5594. backtracking with greedy search: make the best choice at the time and
  5595. keep going. We still wish to minimize the number of colors needed, so
  5596. we use the most-constrained-first heuristic in the greedy search.
  5597. Figure~\ref{fig:satur-algo} gives the pseudocode for a simple greedy
  5598. algorithm for register allocation based on saturation and the
  5599. most-constrained-first heuristic. It is roughly equivalent to the
  5600. DSATUR graph coloring algorithm~\citep{Brelaz:1979eu}. Just as in
  5601. sudoku, the algorithm represents colors with integers. The integers
  5602. $0$ through $k-1$ correspond to the $k$ registers that we use for
  5603. register allocation. In particular, we recommend the following
  5604. correspondence, with $k=11$.
  5605. \begin{lstlisting}
  5606. 0: rcx, 1: rdx, 2: rsi, 3: rdi, 4: r8, 5: r9,
  5607. 6: r10, 7: rbx, 8: r12, 9: r13, 10: r14
  5608. \end{lstlisting}
  5609. The integers $k$ and larger correspond to stack locations. The
  5610. registers that are not used for register allocation, such as
  5611. \code{rax}, are assigned to negative integers. In particular, we
  5612. recommend the following correspondence.
  5613. \begin{lstlisting}
  5614. -1: rax, -2: rsp, -3: rbp, -4: r11, -5: r15
  5615. \end{lstlisting}
  5616. \begin{figure}[btp]
  5617. \begin{tcolorbox}[colback=white]
  5618. \centering
  5619. \begin{lstlisting}[basicstyle=\rmfamily,deletekeywords={for,from,with,is,not,in,find},morekeywords={while},columns=fullflexible]
  5620. Algorithm: DSATUR
  5621. Input: A graph |$G$|
  5622. Output: An assignment |$\mathrm{color}[v]$| for each vertex |$v \in G$|
  5623. |$W \gets \mathrm{vertices}(G)$|
  5624. while |$W \neq \emptyset$| do
  5625. pick a vertex |$u$| from |$W$| with the highest saturation,
  5626. breaking ties randomly
  5627. find the lowest color |$c$| that is not in |$\{ \mathrm{color}[v] \;:\; v \in \mathrm{adjacent}(u)\}$|
  5628. |$\mathrm{color}[u] \gets c$|
  5629. |$W \gets W - \{u\}$|
  5630. \end{lstlisting}
  5631. \end{tcolorbox}
  5632. \caption{The saturation-based greedy graph coloring algorithm.}
  5633. \label{fig:satur-algo}
  5634. \end{figure}
  5635. {\if\edition\racketEd
  5636. With the DSATUR algorithm in hand, let us return to the running
  5637. example and consider how to color the interference graph shown in
  5638. figure~\ref{fig:interfere}.
  5639. %
  5640. We start by assigning each register node to its own color. For
  5641. example, \code{rax} is assigned the color $-1$, \code{rsp} is assign
  5642. $-2$, \code{rcx} is assigned $0$, and \code{rdx} is assigned $1$.
  5643. (To reduce clutter in the interference graph, we elide nodes
  5644. that do not have interference edges, such as \code{rcx}.)
  5645. The variables are not yet colored, so they are annotated with a dash. We
  5646. then update the saturation for vertices that are adjacent to a
  5647. register, obtaining the following annotated graph. For example, the
  5648. saturation for \code{t} is $\{-1,-2\}$ because it interferes with both
  5649. \code{rax} and \code{rsp}.
  5650. \[
  5651. \begin{tikzpicture}[baseline=(current bounding box.center),scale=0.9]
  5652. \node (rax) at (0,0) {$\ttm{rax}:-1,\{-2\}$};
  5653. \node (rsp) at (10,2) {$\ttm{rsp}:-2,\{-1\}$};
  5654. \node (t1) at (0,2) {$\ttm{t}:-,\{-1,-2\}$};
  5655. \node (z) at (3,2) {$\ttm{z}:-,\{-2\}$};
  5656. \node (x) at (6,2) {$\ttm{x}:-,\{-2\}$};
  5657. \node (y) at (3,0) {$\ttm{y}:-,\{-2\}$};
  5658. \node (w) at (6,0) {$\ttm{w}:-,\{-2\}$};
  5659. \node (v) at (10,0) {$\ttm{v}:-,\{-2\}$};
  5660. \draw (t1) to (rax);
  5661. \draw (t1) to (z);
  5662. \draw (z) to (y);
  5663. \draw (z) to (w);
  5664. \draw (x) to (w);
  5665. \draw (y) to (w);
  5666. \draw (v) to (w);
  5667. \draw (v) to (rsp);
  5668. \draw (w) to (rsp);
  5669. \draw (x) to (rsp);
  5670. \draw (y) to (rsp);
  5671. \path[-.,bend left=15] (z) edge node {} (rsp);
  5672. \path[-.,bend left=10] (t1) edge node {} (rsp);
  5673. \draw (rax) to (rsp);
  5674. \end{tikzpicture}
  5675. \]
  5676. The algorithm says to select a maximally saturated vertex. So, we pick
  5677. $\ttm{t}$ and color it with the first available integer, which is
  5678. $0$. We mark $0$ as no longer available for $\ttm{z}$, $\ttm{rax}$,
  5679. and \ttm{rsp} because they interfere with $\ttm{t}$.
  5680. \[
  5681. \begin{tikzpicture}[baseline=(current bounding box.center),scale=0.9]
  5682. \node (rax) at (0,0) {$\ttm{rax}:-1,\{0,-2\}$};
  5683. \node (rsp) at (10,2) {$\ttm{rsp}:-2,\{-1,0\}$};
  5684. \node (t1) at (0,2) {$\ttm{t}:0,\{-1,-2\}$};
  5685. \node (z) at (3,2) {$\ttm{z}:-,\{0,-2\}$};
  5686. \node (x) at (6,2) {$\ttm{x}:-,\{-2\}$};
  5687. \node (y) at (3,0) {$\ttm{y}:-,\{-2\}$};
  5688. \node (w) at (6,0) {$\ttm{w}:-,\{-2\}$};
  5689. \node (v) at (10,0) {$\ttm{v}:-,\{-2\}$};
  5690. \draw (t1) to (rax);
  5691. \draw (t1) to (z);
  5692. \draw (z) to (y);
  5693. \draw (z) to (w);
  5694. \draw (x) to (w);
  5695. \draw (y) to (w);
  5696. \draw (v) to (w);
  5697. \draw (v) to (rsp);
  5698. \draw (w) to (rsp);
  5699. \draw (x) to (rsp);
  5700. \draw (y) to (rsp);
  5701. \path[-.,bend left=15] (z) edge node {} (rsp);
  5702. \path[-.,bend left=10] (t1) edge node {} (rsp);
  5703. \draw (rax) to (rsp);
  5704. \end{tikzpicture}
  5705. \]
  5706. We repeat the process, selecting a maximally saturated vertex,
  5707. choosing \code{z}, and coloring it with the first available number, which
  5708. is $1$. We add $1$ to the saturation for the neighboring vertices
  5709. \code{t}, \code{y}, \code{w}, and \code{rsp}.
  5710. \[
  5711. \begin{tikzpicture}[baseline=(current bounding box.center),scale=0.9]
  5712. \node (rax) at (0,0) {$\ttm{rax}:-1,\{0,-2\}$};
  5713. \node (rsp) at (10,2) {$\ttm{rsp}:-2,\{-1,0,1\}$};
  5714. \node (t1) at (0,2) {$\ttm{t}:0,\{-1,1,-2\}$};
  5715. \node (z) at (3,2) {$\ttm{z}:1,\{0,-2\}$};
  5716. \node (x) at (6,2) {$\ttm{x}:-,\{-2\}$};
  5717. \node (y) at (3,0) {$\ttm{y}:-,\{1,-2\}$};
  5718. \node (w) at (6,0) {$\ttm{w}:-,\{1,-2\}$};
  5719. \node (v) at (10,0) {$\ttm{v}:-,\{-2\}$};
  5720. \draw (t1) to (rax);
  5721. \draw (t1) to (z);
  5722. \draw (z) to (y);
  5723. \draw (z) to (w);
  5724. \draw (x) to (w);
  5725. \draw (y) to (w);
  5726. \draw (v) to (w);
  5727. \draw (v) to (rsp);
  5728. \draw (w) to (rsp);
  5729. \draw (x) to (rsp);
  5730. \draw (y) to (rsp);
  5731. \path[-.,bend left=15] (z) edge node {} (rsp);
  5732. \path[-.,bend left=10] (t1) edge node {} (rsp);
  5733. \draw (rax) to (rsp);
  5734. \end{tikzpicture}
  5735. \]
  5736. The most saturated vertices are now \code{w} and \code{y}. We color
  5737. \code{w} with the first available color, which is $0$.
  5738. \[
  5739. \begin{tikzpicture}[baseline=(current bounding box.center),scale=0.9]
  5740. \node (rax) at (0,0) {$\ttm{rax}:-1,\{0,-2\}$};
  5741. \node (rsp) at (10,2) {$\ttm{rsp}:-2,\{-1,0,1\}$};
  5742. \node (t1) at (0,2) {$\ttm{t}:0,\{-1,1,-2\}$};
  5743. \node (z) at (3,2) {$\ttm{z}:1,\{0,-2\}$};
  5744. \node (x) at (6,2) {$\ttm{x}:-,\{0,-2\}$};
  5745. \node (y) at (3,0) {$\ttm{y}:-,\{0,1,-2\}$};
  5746. \node (w) at (6,0) {$\ttm{w}:0,\{1,-2\}$};
  5747. \node (v) at (10,0) {$\ttm{v}:-,\{0,-2\}$};
  5748. \draw (t1) to (rax);
  5749. \draw (t1) to (z);
  5750. \draw (z) to (y);
  5751. \draw (z) to (w);
  5752. \draw (x) to (w);
  5753. \draw (y) to (w);
  5754. \draw (v) to (w);
  5755. \draw (v) to (rsp);
  5756. \draw (w) to (rsp);
  5757. \draw (x) to (rsp);
  5758. \draw (y) to (rsp);
  5759. \path[-.,bend left=15] (z) edge node {} (rsp);
  5760. \path[-.,bend left=10] (t1) edge node {} (rsp);
  5761. \draw (rax) to (rsp);
  5762. \end{tikzpicture}
  5763. \]
  5764. Vertex \code{y} is now the most highly saturated, so we color \code{y}
  5765. with $2$. We cannot choose $0$ or $1$ because those numbers are in
  5766. \code{y}'s saturation set. Indeed, \code{y} interferes with \code{w}
  5767. and \code{z}, whose colors are $0$ and $1$ respectively.
  5768. \[
  5769. \begin{tikzpicture}[baseline=(current bounding box.center),scale=0.9]
  5770. \node (rax) at (0,0) {$\ttm{rax}:-1,\{0,-2\}$};
  5771. \node (rsp) at (10,2) {$\ttm{rsp}:-2,\{-1,0,1,2\}$};
  5772. \node (t1) at (0,2) {$\ttm{t}:0,\{-1,1,-2\}$};
  5773. \node (z) at (3,2) {$\ttm{z}:1,\{0,2,-2\}$};
  5774. \node (x) at (6,2) {$\ttm{x}:-,\{0,-2\}$};
  5775. \node (y) at (3,0) {$\ttm{y}:2,\{0,1,-2\}$};
  5776. \node (w) at (6,0) {$\ttm{w}:0,\{1,2,-2\}$};
  5777. \node (v) at (10,0) {$\ttm{v}:-,\{0,-2\}$};
  5778. \draw (t1) to (rax);
  5779. \draw (t1) to (z);
  5780. \draw (z) to (y);
  5781. \draw (z) to (w);
  5782. \draw (x) to (w);
  5783. \draw (y) to (w);
  5784. \draw (v) to (w);
  5785. \draw (v) to (rsp);
  5786. \draw (w) to (rsp);
  5787. \draw (x) to (rsp);
  5788. \draw (y) to (rsp);
  5789. \path[-.,bend left=15] (z) edge node {} (rsp);
  5790. \path[-.,bend left=10] (t1) edge node {} (rsp);
  5791. \draw (rax) to (rsp);
  5792. \end{tikzpicture}
  5793. \]
  5794. Now \code{x} and \code{v} are the most saturated, so we color \code{v} with $1$.
  5795. \[
  5796. \begin{tikzpicture}[baseline=(current bounding box.center),scale=0.9]
  5797. \node (rax) at (0,0) {$\ttm{rax}:-1,\{0,-2\}$};
  5798. \node (rsp) at (10,2) {$\ttm{rsp}:-2,\{-1,0,1,2\}$};
  5799. \node (t1) at (0,2) {$\ttm{t}:0,\{-1,1,-2\}$};
  5800. \node (z) at (3,2) {$\ttm{z}:1,\{0,2,-2\}$};
  5801. \node (x) at (6,2) {$\ttm{x}:-,\{0,-2\}$};
  5802. \node (y) at (3,0) {$\ttm{y}:2,\{0,1,-2\}$};
  5803. \node (w) at (6,0) {$\ttm{w}:0,\{1,2,-2\}$};
  5804. \node (v) at (10,0) {$\ttm{v}:1,\{0,-2\}$};
  5805. \draw (t1) to (rax);
  5806. \draw (t1) to (z);
  5807. \draw (z) to (y);
  5808. \draw (z) to (w);
  5809. \draw (x) to (w);
  5810. \draw (y) to (w);
  5811. \draw (v) to (w);
  5812. \draw (v) to (rsp);
  5813. \draw (w) to (rsp);
  5814. \draw (x) to (rsp);
  5815. \draw (y) to (rsp);
  5816. \path[-.,bend left=15] (z) edge node {} (rsp);
  5817. \path[-.,bend left=10] (t1) edge node {} (rsp);
  5818. \draw (rax) to (rsp);
  5819. \end{tikzpicture}
  5820. \]
  5821. In the last step of the algorithm, we color \code{x} with $1$.
  5822. \[
  5823. \begin{tikzpicture}[baseline=(current bounding box.center),scale=0.9]
  5824. \node (rax) at (0,0) {$\ttm{rax}:-1,\{0,-2\}$};
  5825. \node (rsp) at (10,2) {$\ttm{rsp}:-2,\{-1,0,1,2\}$};
  5826. \node (t1) at (0,2) {$\ttm{t}:0,\{-1,1,-2\}$};
  5827. \node (z) at (3,2) {$\ttm{z}:1,\{0,2,-2\}$};
  5828. \node (x) at (6,2) {$\ttm{x}:1,\{0,-2\}$};
  5829. \node (y) at (3,0) {$\ttm{y}:2,\{0,1,-2\}$};
  5830. \node (w) at (6,0) {$\ttm{w}:0,\{1,2,-2\}$};
  5831. \node (v) at (10,0) {$\ttm{v}:1,\{0,-2\}$};
  5832. \draw (t1) to (rax);
  5833. \draw (t1) to (z);
  5834. \draw (z) to (y);
  5835. \draw (z) to (w);
  5836. \draw (x) to (w);
  5837. \draw (y) to (w);
  5838. \draw (v) to (w);
  5839. \draw (v) to (rsp);
  5840. \draw (w) to (rsp);
  5841. \draw (x) to (rsp);
  5842. \draw (y) to (rsp);
  5843. \path[-.,bend left=15] (z) edge node {} (rsp);
  5844. \path[-.,bend left=10] (t1) edge node {} (rsp);
  5845. \draw (rax) to (rsp);
  5846. \end{tikzpicture}
  5847. \]
  5848. So, we obtain the following coloring:
  5849. \[
  5850. \{
  5851. \ttm{rax} \mapsto -1,
  5852. \ttm{rsp} \mapsto -2,
  5853. \ttm{t} \mapsto 0,
  5854. \ttm{z} \mapsto 1,
  5855. \ttm{x} \mapsto 1,
  5856. \ttm{y} \mapsto 2,
  5857. \ttm{w} \mapsto 0,
  5858. \ttm{v} \mapsto 1
  5859. \}
  5860. \]
  5861. \fi}
  5862. %
  5863. {\if\edition\pythonEd\pythonColor
  5864. %
  5865. With the DSATUR algorithm in hand, let us return to the running
  5866. example and consider how to color the interference graph shown in
  5867. figure~\ref{fig:interfere}. We annotate each variable node with a dash
  5868. to indicate that it has not yet been assigned a color. Each register
  5869. node (not shown) should be assigned the number that the register
  5870. corresponds to, for example, color \code{rcx} with the number \code{0}
  5871. and \code{rdx} with \code{1}. The saturation sets are also shown for
  5872. each node; all of them start as the empty set.
  5873. %
  5874. \[
  5875. \begin{tikzpicture}[baseline=(current bounding box.center),scale=0.9]
  5876. \node (t0) at (0,2) {$\ttm{tmp\_0}: -, \{\}$};
  5877. \node (t1) at (0,0) {$\ttm{tmp\_1}: -, \{\}$};
  5878. \node (z) at (3,2) {$\ttm{z}: -, \{\}$};
  5879. \node (x) at (6,2) {$\ttm{x}: -, \{\}$};
  5880. \node (y) at (3,0) {$\ttm{y}: -, \{\}$};
  5881. \node (w) at (6,0) {$\ttm{w}: -, \{\}$};
  5882. \node (v) at (9,0) {$\ttm{v}: -, \{\}$};
  5883. \draw (t0) to (t1);
  5884. \draw (t0) to (z);
  5885. \draw (z) to (y);
  5886. \draw (z) to (w);
  5887. \draw (x) to (w);
  5888. \draw (y) to (w);
  5889. \draw (v) to (w);
  5890. \end{tikzpicture}
  5891. \]
  5892. The algorithm says to select a maximally saturated vertex, but they
  5893. are all equally saturated. So we flip a coin and pick $\ttm{tmp\_0}$
  5894. and then we color it with the first available integer, which is $0$. We mark
  5895. $0$ as no longer available for $\ttm{tmp\_1}$ and $\ttm{z}$ because
  5896. they interfere with $\ttm{tmp\_0}$.
  5897. \[
  5898. \begin{tikzpicture}[baseline=(current bounding box.center),scale=0.9]
  5899. \node (t0) at (0,2) {$\ttm{tmp\_0}: 0, \{\}$};
  5900. \node (t1) at (0,0) {$\ttm{tmp\_1}: -, \{0\}$};
  5901. \node (z) at (3,2) {$\ttm{z}: -, \{0\}$};
  5902. \node (x) at (6,2) {$\ttm{x}: -, \{\}$};
  5903. \node (y) at (3,0) {$\ttm{y}: -, \{\}$};
  5904. \node (w) at (6,0) {$\ttm{w}: -, \{\}$};
  5905. \node (v) at (9,0) {$\ttm{v}: -, \{\}$};
  5906. \draw (t0) to (t1);
  5907. \draw (t0) to (z);
  5908. \draw (z) to (y);
  5909. \draw (z) to (w);
  5910. \draw (x) to (w);
  5911. \draw (y) to (w);
  5912. \draw (v) to (w);
  5913. \end{tikzpicture}
  5914. \]
  5915. We repeat the process. The most saturated vertices are \code{z} and
  5916. \code{tmp\_1}, so we choose \code{z} and color it with the first
  5917. available number, which is $1$. We add $1$ to the saturation for the
  5918. neighboring vertices \code{tmp\_0}, \code{y}, and \code{w}.
  5919. \[
  5920. \begin{tikzpicture}[baseline=(current bounding box.center),scale=0.9]
  5921. \node (t0) at (0,2) {$\ttm{tmp\_0}: 0, \{1\}$};
  5922. \node (t1) at (0,0) {$\ttm{tmp\_1}: -, \{0\}$};
  5923. \node (z) at (3,2) {$\ttm{z}: 1, \{0\}$};
  5924. \node (x) at (6,2) {$\ttm{x}: -, \{\}$};
  5925. \node (y) at (3,0) {$\ttm{y}: -, \{1\}$};
  5926. \node (w) at (6,0) {$\ttm{w}: -, \{1\}$};
  5927. \node (v) at (9,0) {$\ttm{v}: -, \{\}$};
  5928. \draw (t0) to (t1);
  5929. \draw (t0) to (z);
  5930. \draw (z) to (y);
  5931. \draw (z) to (w);
  5932. \draw (x) to (w);
  5933. \draw (y) to (w);
  5934. \draw (v) to (w);
  5935. \end{tikzpicture}
  5936. \]
  5937. The most saturated vertices are now \code{tmp\_1}, \code{w}, and
  5938. \code{y}. We color \code{w} with the first available color, which
  5939. is $0$.
  5940. \[
  5941. \begin{tikzpicture}[baseline=(current bounding box.center),scale=0.9]
  5942. \node (t0) at (0,2) {$\ttm{tmp\_0}: 0, \{1\}$};
  5943. \node (t1) at (0,0) {$\ttm{tmp\_1}: -, \{0\}$};
  5944. \node (z) at (3,2) {$\ttm{z}: 1, \{0\}$};
  5945. \node (x) at (6,2) {$\ttm{x}: -, \{0\}$};
  5946. \node (y) at (3,0) {$\ttm{y}: -, \{0,1\}$};
  5947. \node (w) at (6,0) {$\ttm{w}: 0, \{1\}$};
  5948. \node (v) at (9,0) {$\ttm{v}: -, \{0\}$};
  5949. \draw (t0) to (t1);
  5950. \draw (t0) to (z);
  5951. \draw (z) to (y);
  5952. \draw (z) to (w);
  5953. \draw (x) to (w);
  5954. \draw (y) to (w);
  5955. \draw (v) to (w);
  5956. \end{tikzpicture}
  5957. \]
  5958. Now \code{y} is the most saturated, so we color it with $2$.
  5959. \[
  5960. \begin{tikzpicture}[baseline=(current bounding box.center),scale=0.9]
  5961. \node (t0) at (0,2) {$\ttm{tmp\_0}: 0, \{1\}$};
  5962. \node (t1) at (0,0) {$\ttm{tmp\_1}: -, \{0\}$};
  5963. \node (z) at (3,2) {$\ttm{z}: 1, \{0,2\}$};
  5964. \node (x) at (6,2) {$\ttm{x}: -, \{0\}$};
  5965. \node (y) at (3,0) {$\ttm{y}: 2, \{0,1\}$};
  5966. \node (w) at (6,0) {$\ttm{w}: 0, \{1,2\}$};
  5967. \node (v) at (9,0) {$\ttm{v}: -, \{0\}$};
  5968. \draw (t0) to (t1);
  5969. \draw (t0) to (z);
  5970. \draw (z) to (y);
  5971. \draw (z) to (w);
  5972. \draw (x) to (w);
  5973. \draw (y) to (w);
  5974. \draw (v) to (w);
  5975. \end{tikzpicture}
  5976. \]
  5977. The most saturated vertices are \code{tmp\_1}, \code{x}, and \code{v}.
  5978. We choose to color \code{v} with $1$.
  5979. \[
  5980. \begin{tikzpicture}[baseline=(current bounding box.center),scale=0.9]
  5981. \node (t0) at (0,2) {$\ttm{tmp\_0}: 0, \{1\}$};
  5982. \node (t1) at (0,0) {$\ttm{tmp\_1}: -, \{0\}$};
  5983. \node (z) at (3,2) {$\ttm{z}: 1, \{0,2\}$};
  5984. \node (x) at (6,2) {$\ttm{x}: -, \{0\}$};
  5985. \node (y) at (3,0) {$\ttm{y}: 2, \{0,1\}$};
  5986. \node (w) at (6,0) {$\ttm{w}: 0, \{1,2\}$};
  5987. \node (v) at (9,0) {$\ttm{v}: 1, \{0\}$};
  5988. \draw (t0) to (t1);
  5989. \draw (t0) to (z);
  5990. \draw (z) to (y);
  5991. \draw (z) to (w);
  5992. \draw (x) to (w);
  5993. \draw (y) to (w);
  5994. \draw (v) to (w);
  5995. \end{tikzpicture}
  5996. \]
  5997. We color the remaining two variables, \code{tmp\_1} and \code{x}, with $1$.
  5998. \[
  5999. \begin{tikzpicture}[baseline=(current bounding box.center),scale=0.9]
  6000. \node (t0) at (0,2) {$\ttm{tmp\_0}: 0, \{1\}$};
  6001. \node (t1) at (0,0) {$\ttm{tmp\_1}: 1, \{0\}$};
  6002. \node (z) at (3,2) {$\ttm{z}: 1, \{0,2\}$};
  6003. \node (x) at (6,2) {$\ttm{x}: 1, \{0\}$};
  6004. \node (y) at (3,0) {$\ttm{y}: 2, \{0,1\}$};
  6005. \node (w) at (6,0) {$\ttm{w}: 0, \{1,2\}$};
  6006. \node (v) at (9,0) {$\ttm{v}: 1, \{0\}$};
  6007. \draw (t0) to (t1);
  6008. \draw (t0) to (z);
  6009. \draw (z) to (y);
  6010. \draw (z) to (w);
  6011. \draw (x) to (w);
  6012. \draw (y) to (w);
  6013. \draw (v) to (w);
  6014. \end{tikzpicture}
  6015. \]
  6016. So, we obtain the following coloring:
  6017. \[
  6018. \{ \ttm{tmp\_0} \mapsto 0,
  6019. \ttm{tmp\_1} \mapsto 1,
  6020. \ttm{z} \mapsto 1,
  6021. \ttm{x} \mapsto 1,
  6022. \ttm{y} \mapsto 2,
  6023. \ttm{w} \mapsto 0,
  6024. \ttm{v} \mapsto 1 \}
  6025. \]
  6026. \fi}
  6027. We recommend creating an auxiliary function named \code{color\_graph}
  6028. that takes an interference graph and a list of all the variables in
  6029. the program. This function should return a mapping of variables to
  6030. their colors (represented as natural numbers). By creating this helper
  6031. function, you will be able to reuse it in chapter~\ref{ch:Lfun}
  6032. when we add support for functions.
  6033. To prioritize the processing of highly saturated nodes inside the
  6034. \code{color\_graph} function, we recommend using the priority queue
  6035. data structure \racket{described in figure~\ref{fig:priority-queue}}\python{in the file \code{priority\_queue.py} of the support code}. \racket{In
  6036. addition, you will need to maintain a mapping from variables to their
  6037. handles in the priority queue so that you can notify the priority
  6038. queue when their saturation changes.}
  6039. {\if\edition\racketEd
  6040. \begin{figure}[tp]
  6041. %\begin{wrapfigure}[25]{r}[0.75in]{0.55\textwidth}
  6042. \small
  6043. \begin{tcolorbox}[title=Priority Queue]
  6044. A \emph{priority queue}\index{subject}{priority queue}
  6045. is a collection of items in which the
  6046. removal of items is governed by priority. In a \emph{min} queue,
  6047. lower priority items are removed first. An implementation is in
  6048. \code{priority\_queue.rkt} of the support code.\index{subject}{min queue}
  6049. \begin{description}
  6050. \item[$\LP\code{make-pqueue}\,\itm{cmp}\RP$] constructs an empty
  6051. priority queue that uses the $\itm{cmp}$ predicate to determine
  6052. whether its first argument has lower or equal priority to its
  6053. second argument.
  6054. \item[$\LP\code{pqueue-count}\,\itm{queue}\RP$] returns the number of
  6055. items in the queue.
  6056. \item[$\LP\code{pqueue-push!}\,\itm{queue}\,\itm{item}\RP$] inserts
  6057. the item into the queue and returns a handle for the item in the
  6058. queue.
  6059. \item[$\LP\code{pqueue-pop!}\,\itm{queue}\RP$] returns the item with
  6060. the lowest priority.
  6061. \item[$\LP\code{pqueue-decrease-key!}\,\itm{queue}\,\itm{handle}\RP$]
  6062. notifies the queue that the priority has decreased for the item
  6063. associated with the given handle.
  6064. \end{description}
  6065. \end{tcolorbox}
  6066. %\end{wrapfigure}
  6067. \caption{The priority queue data structure.}
  6068. \label{fig:priority-queue}
  6069. \end{figure}
  6070. \fi}
  6071. With the coloring complete, we finalize the assignment of variables to
  6072. registers and stack locations. We map the first $k$ colors to the $k$
  6073. registers and the rest of the colors to stack locations. Suppose for
  6074. the moment that we have just one register to use for register
  6075. allocation, \key{rcx}. Then we have the following assignment.
  6076. \[
  6077. \{ 0 \mapsto \key{\%rcx}, \; 1 \mapsto \key{-8(\%rbp)}, \; 2 \mapsto \key{-16(\%rbp)} \}
  6078. \]
  6079. Composing this mapping with the coloring, we arrive at the following
  6080. assignment of variables to locations.
  6081. {\if\edition\racketEd
  6082. \begin{gather*}
  6083. \{ \ttm{v} \mapsto \key{-8(\%rbp)}, \,
  6084. \ttm{w} \mapsto \key{\%rcx}, \,
  6085. \ttm{x} \mapsto \key{-8(\%rbp)}, \,
  6086. \ttm{y} \mapsto \key{-16(\%rbp)}, \\
  6087. \ttm{z} \mapsto \key{-8(\%rbp)}, \,
  6088. \ttm{t} \mapsto \key{\%rcx} \}
  6089. \end{gather*}
  6090. \fi}
  6091. {\if\edition\pythonEd\pythonColor
  6092. \begin{gather*}
  6093. \{ \ttm{v} \mapsto \key{-8(\%rbp)}, \,
  6094. \ttm{w} \mapsto \key{\%rcx}, \,
  6095. \ttm{x} \mapsto \key{-8(\%rbp)}, \,
  6096. \ttm{y} \mapsto \key{-16(\%rbp)}, \\
  6097. \ttm{z} \mapsto \key{-8(\%rbp)}, \,
  6098. \ttm{tmp\_0} \mapsto \key{\%rcx}, \,
  6099. \ttm{tmp\_1} \mapsto \key{-8(\%rbp)} \}
  6100. \end{gather*}
  6101. \fi}
  6102. Adapt the code from the \code{assign\_homes} pass
  6103. (section~\ref{sec:assign-Lvar}) to replace the variables with their
  6104. assigned location. Applying this assignment to our running
  6105. example shown next, on the left, yields the program on the right.
  6106. \begin{center}
  6107. {\if\edition\racketEd
  6108. \begin{minipage}{0.35\textwidth}
  6109. \begin{lstlisting}
  6110. movq $1, v
  6111. movq $42, w
  6112. movq v, x
  6113. addq $7, x
  6114. movq x, y
  6115. movq x, z
  6116. addq w, z
  6117. movq y, t
  6118. negq t
  6119. movq z, %rax
  6120. addq t, %rax
  6121. jmp conclusion
  6122. \end{lstlisting}
  6123. \end{minipage}
  6124. $\Rightarrow\qquad$
  6125. \begin{minipage}{0.45\textwidth}
  6126. \begin{lstlisting}
  6127. movq $1, -8(%rbp)
  6128. movq $42, %rcx
  6129. movq -8(%rbp), -8(%rbp)
  6130. addq $7, -8(%rbp)
  6131. movq -8(%rbp), -16(%rbp)
  6132. movq -8(%rbp), -8(%rbp)
  6133. addq %rcx, -8(%rbp)
  6134. movq -16(%rbp), %rcx
  6135. negq %rcx
  6136. movq -8(%rbp), %rax
  6137. addq %rcx, %rax
  6138. jmp conclusion
  6139. \end{lstlisting}
  6140. \end{minipage}
  6141. \fi}
  6142. {\if\edition\pythonEd\pythonColor
  6143. \begin{minipage}{0.35\textwidth}
  6144. \begin{lstlisting}
  6145. movq $1, v
  6146. movq $42, w
  6147. movq v, x
  6148. addq $7, x
  6149. movq x, y
  6150. movq x, z
  6151. addq w, z
  6152. movq y, tmp_0
  6153. negq tmp_0
  6154. movq z, tmp_1
  6155. addq tmp_0, tmp_1
  6156. movq tmp_1, %rdi
  6157. callq print_int
  6158. \end{lstlisting}
  6159. \end{minipage}
  6160. $\Rightarrow\qquad$
  6161. \begin{minipage}{0.45\textwidth}
  6162. \begin{lstlisting}
  6163. movq $1, -8(%rbp)
  6164. movq $42, %rcx
  6165. movq -8(%rbp), -8(%rbp)
  6166. addq $7, -8(%rbp)
  6167. movq -8(%rbp), -16(%rbp)
  6168. movq -8(%rbp), -8(%rbp)
  6169. addq %rcx, -8(%rbp)
  6170. movq -16(%rbp), %rcx
  6171. negq %rcx
  6172. movq -8(%rbp), -8(%rbp)
  6173. addq %rcx, -8(%rbp)
  6174. movq -8(%rbp), %rdi
  6175. callq print_int
  6176. \end{lstlisting}
  6177. \end{minipage}
  6178. \fi}
  6179. \end{center}
  6180. \begin{exercise}\normalfont\normalsize
  6181. Implement the \code{allocate\_registers} \racket{pass}\python{function}.
  6182. Create five programs that exercise all aspects of the register
  6183. allocation algorithm, including spilling variables to the stack.
  6184. %
  6185. {\if\edition\racketEd
  6186. Replace \code{assign\_homes} in the list of \code{passes} in the
  6187. \code{run-tests.rkt} script with the three new passes:
  6188. \code{uncover\_live}, \code{build\_interference}, and
  6189. \code{allocate\_registers}.
  6190. Temporarily remove the call to \code{compiler-tests}.
  6191. Run the script to test the register allocator.
  6192. \fi}
  6193. %
  6194. {\if\edition\pythonEd\pythonColor
  6195. Update the \code{assign\_homes} pass to make use of
  6196. the functions you have created to perform register allocation:
  6197. \code{uncover\_live}, \code{build\_interference}, and
  6198. \code{allocate\_registers}.
  6199. Run the \code{run-tests.py} script to check whether the
  6200. output programs produce the same result as the input programs.
  6201. Inspect the generated x86 programs to make sure that some variables
  6202. are assigned to registers.
  6203. \fi}
  6204. \end{exercise}
  6205. \section{Patch Instructions}
  6206. \label{sec:patch-instructions}
  6207. The remaining step in the compilation to x86 is to ensure that the
  6208. instructions have at most one argument that is a memory access.
  6209. %
  6210. In the running example, the instruction \code{movq -8(\%rbp),
  6211. -16(\%rbp)} is problematic. Recall from section~\ref{sec:patch-s0}
  6212. that the fix is to first move \code{-8(\%rbp)} into \code{rax} and
  6213. then move \code{rax} into \code{-16(\%rbp)}.
  6214. %
  6215. The moves from \code{-8(\%rbp)} to \code{-8(\%rbp)} are also
  6216. problematic, but they can simply be deleted. In general, we recommend
  6217. deleting all the trivial moves whose source and destination are the
  6218. same location.
  6219. %
  6220. The following is the output of \code{patch\_instructions} on the
  6221. running example.
  6222. \begin{center}
  6223. {\if\edition\racketEd
  6224. \begin{minipage}{0.35\textwidth}
  6225. \begin{lstlisting}
  6226. movq $1, -8(%rbp)
  6227. movq $42, %rcx
  6228. movq -8(%rbp), -8(%rbp)
  6229. addq $7, -8(%rbp)
  6230. movq -8(%rbp), -16(%rbp)
  6231. movq -8(%rbp), -8(%rbp)
  6232. addq %rcx, -8(%rbp)
  6233. movq -16(%rbp), %rcx
  6234. negq %rcx
  6235. movq -8(%rbp), %rax
  6236. addq %rcx, %rax
  6237. jmp conclusion
  6238. \end{lstlisting}
  6239. \end{minipage}
  6240. $\Rightarrow\qquad$
  6241. \begin{minipage}{0.45\textwidth}
  6242. \begin{lstlisting}
  6243. movq $1, -8(%rbp)
  6244. movq $42, %rcx
  6245. addq $7, -8(%rbp)
  6246. movq -8(%rbp), %rax
  6247. movq %rax, -16(%rbp)
  6248. addq %rcx, -8(%rbp)
  6249. movq -16(%rbp), %rcx
  6250. negq %rcx
  6251. movq -8(%rbp), %rax
  6252. addq %rcx, %rax
  6253. jmp conclusion
  6254. \end{lstlisting}
  6255. \end{minipage}
  6256. \fi}
  6257. {\if\edition\pythonEd\pythonColor
  6258. \begin{minipage}{0.35\textwidth}
  6259. \begin{lstlisting}
  6260. movq $1, -8(%rbp)
  6261. movq $42, %rcx
  6262. movq -8(%rbp), -8(%rbp)
  6263. addq $7, -8(%rbp)
  6264. movq -8(%rbp), -16(%rbp)
  6265. movq -8(%rbp), -8(%rbp)
  6266. addq %rcx, -8(%rbp)
  6267. movq -16(%rbp), %rcx
  6268. negq %rcx
  6269. movq -8(%rbp), -8(%rbp)
  6270. addq %rcx, -8(%rbp)
  6271. movq -8(%rbp), %rdi
  6272. callq print_int
  6273. \end{lstlisting}
  6274. \end{minipage}
  6275. $\Rightarrow\qquad$
  6276. \begin{minipage}{0.45\textwidth}
  6277. \begin{lstlisting}
  6278. movq $1, -8(%rbp)
  6279. movq $42, %rcx
  6280. addq $7, -8(%rbp)
  6281. movq -8(%rbp), %rax
  6282. movq %rax, -16(%rbp)
  6283. addq %rcx, -8(%rbp)
  6284. movq -16(%rbp), %rcx
  6285. negq %rcx
  6286. addq %rcx, -8(%rbp)
  6287. movq -8(%rbp), %rdi
  6288. callq print_int
  6289. \end{lstlisting}
  6290. \end{minipage}
  6291. \fi}
  6292. \end{center}
  6293. \begin{exercise}\normalfont\normalsize
  6294. %
  6295. Update the \code{patch\_instructions} compiler pass to delete trivial moves.
  6296. %
  6297. %Insert it after \code{allocate\_registers} in the list of \code{passes}
  6298. %in the \code{run-tests.rkt} script.
  6299. %
  6300. Run the script to test the \code{patch\_instructions} pass.
  6301. \end{exercise}
  6302. \section{Generate Prelude and Conclusion}
  6303. \label{sec:print-x86-reg-alloc}
  6304. \index{subject}{calling conventions}
  6305. \index{subject}{prelude}\index{subject}{conclusion}
  6306. Recall that this pass generates the prelude and conclusion
  6307. instructions to satisfy the x86 calling conventions
  6308. (section~\ref{sec:calling-conventions}). With the addition of the
  6309. register allocator, the callee-saved registers used by the register
  6310. allocator must be saved in the prelude and restored in the conclusion.
  6311. In the \code{allocate\_registers} pass,
  6312. %
  6313. \racket{add an entry to the \itm{info}
  6314. of \code{X86Program} named \code{used\_callee}}
  6315. %
  6316. \python{add a field named \code{used\_callee} to the \code{X86Program} AST node}
  6317. %
  6318. that stores the set of callee-saved registers that were assigned to
  6319. variables. The \code{prelude\_and\_conclusion} pass can then access
  6320. this information to decide which callee-saved registers need to be
  6321. saved and restored.
  6322. %
  6323. When calculating the amount to adjust the \code{rsp} in the prelude,
  6324. make sure to take into account the space used for saving the
  6325. callee-saved registers. Also, remember that the frame needs to be a
  6326. multiple of 16 bytes! We recommend using the following equation for
  6327. the amount $A$ to subtract from the \code{rsp}. Let $S$ be the number
  6328. of stack locations used by spilled variables\footnote{Sometimes two or
  6329. more spilled variables are assigned to the same stack location, so
  6330. $S$ can be less than the number of spilled variables.} and $C$ be
  6331. the number of callee-saved registers that were
  6332. allocated\index{subject}{allocate} to
  6333. variables. The $\itm{align}$ function rounds a number up to the
  6334. nearest 16 bytes.
  6335. \[
  6336. \itm{A} = \itm{align}(8\itm{S} + 8\itm{C}) - 8\itm{C}
  6337. \]
  6338. The reason we subtract $8\itm{C}$ in this equation is that the
  6339. prelude uses \code{pushq} to save each of the callee-saved registers,
  6340. and \code{pushq} subtracts $8$ from the \code{rsp}.
  6341. \racket{An overview of all the passes involved in register
  6342. allocation is shown in figure~\ref{fig:reg-alloc-passes}.}
  6343. {\if\edition\racketEd
  6344. \begin{figure}[tbp]
  6345. \begin{tcolorbox}[colback=white]
  6346. \begin{tikzpicture}[baseline=(current bounding box.center),scale=0.9]
  6347. \node (Lvar) at (0,2) {\large \LangVar{}};
  6348. \node (Lvar-2) at (3,2) {\large \LangVar{}};
  6349. \node (Lvar-3) at (7,2) {\large \LangVarANF{}};
  6350. \node (Cvar-1) at (0,0) {\large \LangCVar{}};
  6351. \node (x86-2) at (0,-2) {\large \LangXVar{}};
  6352. \node (x86-3) at (3,-2) {\large \LangXVar{}};
  6353. \node (x86-4) at (7,-2) {\large \LangXInt{}};
  6354. \node (x86-5) at (7,-4) {\large \LangXInt{}};
  6355. \node (x86-2-1) at (0,-4) {\large \LangXVar{}};
  6356. \node (x86-2-2) at (3,-4) {\large \LangXVar{}};
  6357. \path[->,bend left=15] (Lvar) edge [above] node {\ttfamily\footnotesize uniquify} (Lvar-2);
  6358. \path[->,bend left=15] (Lvar-2) edge [above] node {\ttfamily\footnotesize remove\_complex\_operands} (Lvar-3);
  6359. \path[->,bend left=15] (Lvar-3) edge [right] node {\ttfamily\footnotesize \ \ explicate\_control} (Cvar-1);
  6360. \path[->,bend right=15] (Cvar-1) edge [right] node {\ttfamily\footnotesize select\_instructions} (x86-2);
  6361. \path[->,bend left=15] (x86-2) edge [right] node {\ttfamily\footnotesize uncover\_live} (x86-2-1);
  6362. \path[->,bend right=15] (x86-2-1) edge [below] node {\ttfamily\footnotesize build\_interference} (x86-2-2);
  6363. \path[->,bend right=15] (x86-2-2) edge [right] node {\ttfamily\footnotesize allocate\_registers} (x86-3);
  6364. \path[->,bend left=15] (x86-3) edge [above] node {\ttfamily\footnotesize patch\_instructions} (x86-4);
  6365. \path[->,bend left=15] (x86-4) edge [right] node {\ttfamily\footnotesize prelude\_and\_conclusion} (x86-5);
  6366. \end{tikzpicture}
  6367. \end{tcolorbox}
  6368. \caption{Diagram of the passes for \LangVar{} with register allocation.}
  6369. \label{fig:reg-alloc-passes}
  6370. \end{figure}
  6371. \fi}
  6372. Figure~\ref{fig:running-example-x86} shows the x86 code generated for
  6373. the running example (figure~\ref{fig:reg-eg}). To demonstrate both the
  6374. use of registers and the stack, we limit the register allocator for
  6375. this example to use just two registers: \code{rcx} (color $0$) and
  6376. \code{rbx} (color $1$). In the prelude\index{subject}{prelude} of the
  6377. \code{main} function, we push \code{rbx} onto the stack because it is
  6378. a callee-saved register and it was assigned to a variable by the
  6379. register allocator. We subtract \code{8} from the \code{rsp} at the
  6380. end of the prelude to reserve space for the one spilled variable.
  6381. After that subtraction, the \code{rsp} is aligned to 16 bytes.
  6382. Moving on to the program proper, we see how the registers were
  6383. allocated.
  6384. %
  6385. \racket{Variables \code{v}, \code{x}, and \code{z} were assigned to
  6386. \code{rbx}, and variables \code{w} and \code{t} was assigned to \code{rcx}.}
  6387. %
  6388. \python{Variables \code{v}, \code{x}, \code{y}, and \code{tmp\_0}
  6389. were assigned to \code{rcx}, and variables \code{w} and \code{tmp\_1}
  6390. were assigned to \code{rbx}.}
  6391. %
  6392. Variable \racket{\code{y}}\python{\code{z}} was spilled to the stack
  6393. location \code{-16(\%rbp)}. Recall that the prelude saved the
  6394. callee-save register \code{rbx} onto the stack. The spilled variables
  6395. must be placed lower on the stack than the saved callee-save
  6396. registers, so in this case \racket{\code{y}}\python{z} is placed at
  6397. \code{-16(\%rbp)}.
  6398. In the conclusion\index{subject}{conclusion}, we undo the work that was
  6399. done in the prelude. We move the stack pointer up by \code{8} bytes
  6400. (the room for spilled variables), then pop the old values of
  6401. \code{rbx} and \code{rbp} (callee-saved registers), and finish with
  6402. \code{retq} to return control to the operating system.
  6403. \begin{figure}[tbp]
  6404. \begin{minipage}{0.55\textwidth}
  6405. \begin{tcolorbox}[colback=white]
  6406. % var_test_28.rkt
  6407. % (use-minimal-set-of-registers! #t)
  6408. % 0 -> rcx
  6409. % 1 -> rbx
  6410. %
  6411. % t 0 rcx
  6412. % z 1 rbx
  6413. % w 0 rcx
  6414. % y 2 rbp -16
  6415. % v 1 rbx
  6416. % x 1 rbx
  6417. {\if\edition\racketEd
  6418. \begin{lstlisting}
  6419. start:
  6420. movq $1, %rbx
  6421. movq $42, %rcx
  6422. addq $7, %rbx
  6423. movq %rbx, -16(%rbp)
  6424. addq %rcx, %rbx
  6425. movq -16(%rbp), %rcx
  6426. negq %rcx
  6427. movq %rbx, %rax
  6428. addq %rcx, %rax
  6429. jmp conclusion
  6430. .globl main
  6431. main:
  6432. pushq %rbp
  6433. movq %rsp, %rbp
  6434. pushq %rbx
  6435. subq $8, %rsp
  6436. jmp start
  6437. conclusion:
  6438. addq $8, %rsp
  6439. popq %rbx
  6440. popq %rbp
  6441. retq
  6442. \end{lstlisting}
  6443. \fi}
  6444. {\if\edition\pythonEd\pythonColor
  6445. %{v: %rcx, x: %rcx, z: -16(%rbp), w: %rbx, tmp_1: %rbx, y: %rcx, tmp_0: %rcx}
  6446. \begin{lstlisting}
  6447. .globl main
  6448. main:
  6449. pushq %rbp
  6450. movq %rsp, %rbp
  6451. pushq %rbx
  6452. subq $8, %rsp
  6453. movq $1, %rcx
  6454. movq $42, %rbx
  6455. addq $7, %rcx
  6456. movq %rcx, -16(%rbp)
  6457. addq %rbx, -16(%rbp)
  6458. negq %rcx
  6459. movq -16(%rbp), %rbx
  6460. addq %rcx, %rbx
  6461. movq %rbx, %rdi
  6462. callq print_int
  6463. addq $8, %rsp
  6464. popq %rbx
  6465. popq %rbp
  6466. retq
  6467. \end{lstlisting}
  6468. \fi}
  6469. \end{tcolorbox}
  6470. \end{minipage}
  6471. \caption{The x86 output from the running example
  6472. (figure~\ref{fig:reg-eg}), limiting allocation to just \code{rbx}
  6473. and \code{rcx}.}
  6474. \label{fig:running-example-x86}
  6475. \end{figure}
  6476. \begin{exercise}\normalfont\normalsize
  6477. Update the \code{prelude\_and\_conclusion} pass as described in this section.
  6478. %
  6479. \racket{
  6480. In the \code{run-tests.rkt} script, add \code{prelude\_and\_conclusion} to the
  6481. list of passes and the call to \code{compiler-tests}.}
  6482. %
  6483. Run the script to test the complete compiler for \LangVar{} that
  6484. performs register allocation.
  6485. \end{exercise}
  6486. \section{Challenge: Move Biasing}
  6487. \label{sec:move-biasing}
  6488. \index{subject}{move biasing}
  6489. This section describes an enhancement to the register allocator,
  6490. called move biasing, for students who are looking for an extra
  6491. challenge.
  6492. {\if\edition\racketEd
  6493. To motivate the need for move biasing we return to the running example,
  6494. but this time we use all the general purpose registers. So, we have
  6495. the following mapping of color numbers to registers.
  6496. \[
  6497. \{ 0 \mapsto \key{\%rcx}, \; 1 \mapsto \key{\%rdx}, \; 2 \mapsto \key{\%rsi}, \ldots \}
  6498. \]
  6499. Using the same assignment of variables to color numbers that was
  6500. produced by the register allocator described in the last section, we
  6501. get the following program.
  6502. \begin{center}
  6503. \begin{minipage}{0.35\textwidth}
  6504. \begin{lstlisting}
  6505. movq $1, v
  6506. movq $42, w
  6507. movq v, x
  6508. addq $7, x
  6509. movq x, y
  6510. movq x, z
  6511. addq w, z
  6512. movq y, t
  6513. negq t
  6514. movq z, %rax
  6515. addq t, %rax
  6516. jmp conclusion
  6517. \end{lstlisting}
  6518. \end{minipage}
  6519. $\Rightarrow\qquad$
  6520. \begin{minipage}{0.45\textwidth}
  6521. \begin{lstlisting}
  6522. movq $1, %rdx
  6523. movq $42, %rcx
  6524. movq %rdx, %rdx
  6525. addq $7, %rdx
  6526. movq %rdx, %rsi
  6527. movq %rdx, %rdx
  6528. addq %rcx, %rdx
  6529. movq %rsi, %rcx
  6530. negq %rcx
  6531. movq %rdx, %rax
  6532. addq %rcx, %rax
  6533. jmp conclusion
  6534. \end{lstlisting}
  6535. \end{minipage}
  6536. \end{center}
  6537. In this output code there are two \key{movq} instructions that
  6538. can be removed because their source and target are the same. However,
  6539. if we had put \key{t}, \key{v}, \key{x}, and \key{y} into the same
  6540. register, we could instead remove three \key{movq} instructions. We
  6541. can accomplish this by taking into account which variables appear in
  6542. \key{movq} instructions with which other variables.
  6543. \fi}
  6544. {\if\edition\pythonEd\pythonColor
  6545. %
  6546. To motivate the need for move biasing we return to the running example
  6547. and recall that in section~\ref{sec:patch-instructions} we were able to
  6548. remove three trivial move instructions from the running
  6549. example. However, we could remove another trivial move if we were able
  6550. to allocate \code{y} and \code{tmp\_0} to the same register. \fi}
  6551. We say that two variables $p$ and $q$ are \emph{move
  6552. related}\index{subject}{move related} if they participate together in
  6553. a \key{movq} instruction, that is, \key{movq} $p$\key{,} $q$ or
  6554. \key{movq} $q$\key{,} $p$.
  6555. %
  6556. Recall that we color variables that are more saturated before coloring
  6557. variables that are less saturated, and in the case of equally
  6558. saturated variables, we choose randomly. Now we break such ties by
  6559. giving preference to variables that have an available color that is
  6560. the same as the color of a move-related variable.
  6561. %
  6562. Furthermore, when the register allocator chooses a color for a
  6563. variable, it should prefer a color that has already been used for a
  6564. move-related variable if one exists (and assuming that they do not
  6565. interfere). This preference should not override the preference for
  6566. registers over stack locations. So, this preference should be used as
  6567. a tie breaker in choosing between two registers or in choosing between
  6568. two stack locations.
  6569. We recommend representing the move relationships in a graph, similarly
  6570. to how we represented interference. The following is the \emph{move
  6571. graph} for our example.
  6572. {\if\edition\racketEd
  6573. \[
  6574. \begin{tikzpicture}[baseline=(current bounding box.center),scale=0.9]
  6575. \node (rax) at (0,0) {$\ttm{rax}$};
  6576. \node (rsp) at (9,2) {$\ttm{rsp}$};
  6577. \node (t) at (0,2) {$\ttm{t}$};
  6578. \node (z) at (3,2) {$\ttm{z}$};
  6579. \node (x) at (6,2) {$\ttm{x}$};
  6580. \node (y) at (3,0) {$\ttm{y}$};
  6581. \node (w) at (6,0) {$\ttm{w}$};
  6582. \node (v) at (9,0) {$\ttm{v}$};
  6583. \draw (v) to (x);
  6584. \draw (x) to (y);
  6585. \draw (x) to (z);
  6586. \draw (y) to (t);
  6587. \end{tikzpicture}
  6588. \]
  6589. \fi}
  6590. %
  6591. {\if\edition\pythonEd\pythonColor
  6592. \[
  6593. \begin{tikzpicture}[baseline=(current bounding box.center),scale=0.9]
  6594. \node (t0) at (0,2) {$\ttm{tmp\_0}$};
  6595. \node (t1) at (0,0) {$\ttm{tmp\_1}$};
  6596. \node (z) at (3,2) {$\ttm{z}$};
  6597. \node (x) at (6,2) {$\ttm{x}$};
  6598. \node (y) at (3,0) {$\ttm{y}$};
  6599. \node (w) at (6,0) {$\ttm{w}$};
  6600. \node (v) at (9,0) {$\ttm{v}$};
  6601. \draw (y) to (t0);
  6602. \draw (z) to (x);
  6603. \draw (z) to (t1);
  6604. \draw (x) to (y);
  6605. \draw (x) to (v);
  6606. \end{tikzpicture}
  6607. \]
  6608. \fi}
  6609. {\if\edition\racketEd
  6610. Now we replay the graph coloring, pausing to see the coloring of
  6611. \code{y}. Recall the following configuration. The most saturated vertices
  6612. were \code{w} and \code{y}.
  6613. \[
  6614. \begin{tikzpicture}[baseline=(current bounding box.center),scale=0.9]
  6615. \node (rax) at (0,0) {$\ttm{rax}:-1,\{0,-2\}$};
  6616. \node (rsp) at (9,2) {$\ttm{rsp}:-2,\{-1,0,1,2\}$};
  6617. \node (t1) at (0,2) {$\ttm{t}:0,\{1,-2\}$};
  6618. \node (z) at (3,2) {$\ttm{z}:1,\{0,-2\}$};
  6619. \node (x) at (6,2) {$\ttm{x}:-,\{-2\}$};
  6620. \node (y) at (3,0) {$\ttm{y}:-,\{1,-2\}$};
  6621. \node (w) at (6,0) {$\ttm{w}:-,\{1,-2\}$};
  6622. \node (v) at (9,0) {$\ttm{v}:-,\{-2\}$};
  6623. \draw (t1) to (rax);
  6624. \draw (t1) to (z);
  6625. \draw (z) to (y);
  6626. \draw (z) to (w);
  6627. \draw (x) to (w);
  6628. \draw (y) to (w);
  6629. \draw (v) to (w);
  6630. \draw (v) to (rsp);
  6631. \draw (w) to (rsp);
  6632. \draw (x) to (rsp);
  6633. \draw (y) to (rsp);
  6634. \path[-.,bend left=15] (z) edge node {} (rsp);
  6635. \path[-.,bend left=10] (t1) edge node {} (rsp);
  6636. \draw (rax) to (rsp);
  6637. \end{tikzpicture}
  6638. \]
  6639. %
  6640. The last time, we chose to color \code{w} with $0$. This time, we see
  6641. that \code{w} is not move-related to any vertex, but \code{y} is
  6642. move-related to \code{t}. So we choose to color \code{y} with $0$,
  6643. the same color as \code{t}.
  6644. \[
  6645. \begin{tikzpicture}[baseline=(current bounding box.center),scale=0.9]
  6646. \node (rax) at (0,0) {$\ttm{rax}:-1,\{0,-2\}$};
  6647. \node (rsp) at (9,2) {$\ttm{rsp}:-2,\{-1,0,1,2\}$};
  6648. \node (t1) at (0,2) {$\ttm{t}:0,\{1,-2\}$};
  6649. \node (z) at (3,2) {$\ttm{z}:1,\{0,-2\}$};
  6650. \node (x) at (6,2) {$\ttm{x}:-,\{-2\}$};
  6651. \node (y) at (3,0) {$\ttm{y}:0,\{1,-2\}$};
  6652. \node (w) at (6,0) {$\ttm{w}:-,\{0,1,-2\}$};
  6653. \node (v) at (9,0) {$\ttm{v}:-,\{-2\}$};
  6654. \draw (t1) to (rax);
  6655. \draw (t1) to (z);
  6656. \draw (z) to (y);
  6657. \draw (z) to (w);
  6658. \draw (x) to (w);
  6659. \draw (y) to (w);
  6660. \draw (v) to (w);
  6661. \draw (v) to (rsp);
  6662. \draw (w) to (rsp);
  6663. \draw (x) to (rsp);
  6664. \draw (y) to (rsp);
  6665. \path[-.,bend left=15] (z) edge node {} (rsp);
  6666. \path[-.,bend left=10] (t1) edge node {} (rsp);
  6667. \draw (rax) to (rsp);
  6668. \end{tikzpicture}
  6669. \]
  6670. Now \code{w} is the most saturated, so we color it $2$.
  6671. \[
  6672. \begin{tikzpicture}[baseline=(current bounding box.center),scale=0.9]
  6673. \node (rax) at (0,0) {$\ttm{rax}:-1,\{0,-2\}$};
  6674. \node (rsp) at (9,2) {$\ttm{rsp}:-2,\{-1,0,1,2\}$};
  6675. \node (t1) at (0,2) {$\ttm{t}:0,\{1,-2\}$};
  6676. \node (z) at (3,2) {$\ttm{z}:1,\{0,2,-2\}$};
  6677. \node (x) at (6,2) {$\ttm{x}:-,\{2,-2\}$};
  6678. \node (y) at (3,0) {$\ttm{y}:0,\{1,2,-2\}$};
  6679. \node (w) at (6,0) {$\ttm{w}:2,\{0,1,-2\}$};
  6680. \node (v) at (9,0) {$\ttm{v}:-,\{2,-2\}$};
  6681. \draw (t1) to (rax);
  6682. \draw (t1) to (z);
  6683. \draw (z) to (y);
  6684. \draw (z) to (w);
  6685. \draw (x) to (w);
  6686. \draw (y) to (w);
  6687. \draw (v) to (w);
  6688. \draw (v) to (rsp);
  6689. \draw (w) to (rsp);
  6690. \draw (x) to (rsp);
  6691. \draw (y) to (rsp);
  6692. \path[-.,bend left=15] (z) edge node {} (rsp);
  6693. \path[-.,bend left=10] (t1) edge node {} (rsp);
  6694. \draw (rax) to (rsp);
  6695. \end{tikzpicture}
  6696. \]
  6697. At this point, vertices \code{x} and \code{v} are most saturated, but
  6698. \code{x} is move related to \code{y} and \code{z}, so we color
  6699. \code{x} to $0$ to match \code{y}. Finally, we color \code{v} to $0$.
  6700. \[
  6701. \begin{tikzpicture}[baseline=(current bounding box.center),scale=0.9]
  6702. \node (rax) at (0,0) {$\ttm{rax}:-1,\{0,-2\}$};
  6703. \node (rsp) at (9,2) {$\ttm{rsp}:-2,\{-1,0,1,2\}$};
  6704. \node (t) at (0,2) {$\ttm{t}:0,\{1,-2\}$};
  6705. \node (z) at (3,2) {$\ttm{z}:1,\{0,2,-2\}$};
  6706. \node (x) at (6,2) {$\ttm{x}:0,\{2,-2\}$};
  6707. \node (y) at (3,0) {$\ttm{y}:0,\{1,2,-2\}$};
  6708. \node (w) at (6,0) {$\ttm{w}:2,\{0,1,-2\}$};
  6709. \node (v) at (9,0) {$\ttm{v}:0,\{2,-2\}$};
  6710. \draw (t1) to (rax);
  6711. \draw (t) to (z);
  6712. \draw (z) to (y);
  6713. \draw (z) to (w);
  6714. \draw (x) to (w);
  6715. \draw (y) to (w);
  6716. \draw (v) to (w);
  6717. \draw (v) to (rsp);
  6718. \draw (w) to (rsp);
  6719. \draw (x) to (rsp);
  6720. \draw (y) to (rsp);
  6721. \path[-.,bend left=15] (z) edge node {} (rsp);
  6722. \path[-.,bend left=10] (t1) edge node {} (rsp);
  6723. \draw (rax) to (rsp);
  6724. \end{tikzpicture}
  6725. \]
  6726. \fi}
  6727. %
  6728. {\if\edition\pythonEd\pythonColor
  6729. Now we replay the graph coloring, pausing before the coloring of
  6730. \code{w}. Recall the following configuration. The most saturated vertices
  6731. were \code{tmp\_1}, \code{w}, and \code{y}.
  6732. \[
  6733. \begin{tikzpicture}[baseline=(current bounding box.center),scale=0.9]
  6734. \node (t0) at (0,2) {$\ttm{tmp\_0}: 0, \{1\}$};
  6735. \node (t1) at (0,0) {$\ttm{tmp\_1}: -, \{0\}$};
  6736. \node (z) at (3,2) {$\ttm{z}: 1, \{0\}$};
  6737. \node (x) at (6,2) {$\ttm{x}: -, \{\}$};
  6738. \node (y) at (3,0) {$\ttm{y}: -, \{1\}$};
  6739. \node (w) at (6,0) {$\ttm{w}: -, \{1\}$};
  6740. \node (v) at (9,0) {$\ttm{v}: -, \{\}$};
  6741. \draw (t0) to (t1);
  6742. \draw (t0) to (z);
  6743. \draw (z) to (y);
  6744. \draw (z) to (w);
  6745. \draw (x) to (w);
  6746. \draw (y) to (w);
  6747. \draw (v) to (w);
  6748. \end{tikzpicture}
  6749. \]
  6750. We have arbitrarily chosen to color \code{w} instead of \code{tmp\_1}
  6751. or \code{y}. Note, however, that \code{w} is not move related to any
  6752. variables, whereas \code{y} and \code{tmp\_1} are move related to
  6753. \code{tmp\_0} and \code{z}, respectively. If we instead choose
  6754. \code{y} and color it $0$, we can delete another move instruction.
  6755. \[
  6756. \begin{tikzpicture}[baseline=(current bounding box.center),scale=0.9]
  6757. \node (t0) at (0,2) {$\ttm{tmp\_0}: 0, \{1\}$};
  6758. \node (t1) at (0,0) {$\ttm{tmp\_1}: -, \{0\}$};
  6759. \node (z) at (3,2) {$\ttm{z}: 1, \{0\}$};
  6760. \node (x) at (6,2) {$\ttm{x}: -, \{\}$};
  6761. \node (y) at (3,0) {$\ttm{y}: 0, \{1\}$};
  6762. \node (w) at (6,0) {$\ttm{w}: -, \{0,1\}$};
  6763. \node (v) at (9,0) {$\ttm{v}: -, \{\}$};
  6764. \draw (t0) to (t1);
  6765. \draw (t0) to (z);
  6766. \draw (z) to (y);
  6767. \draw (z) to (w);
  6768. \draw (x) to (w);
  6769. \draw (y) to (w);
  6770. \draw (v) to (w);
  6771. \end{tikzpicture}
  6772. \]
  6773. Now \code{w} is the most saturated, so we color it $2$.
  6774. \[
  6775. \begin{tikzpicture}[baseline=(current bounding box.center),scale=0.9]
  6776. \node (t0) at (0,2) {$\ttm{tmp\_0}: 0, \{1\}$};
  6777. \node (t1) at (0,0) {$\ttm{tmp\_1}: -, \{0\}$};
  6778. \node (z) at (3,2) {$\ttm{z}: 1, \{0\}$};
  6779. \node (x) at (6,2) {$\ttm{x}: -, \{2\}$};
  6780. \node (y) at (3,0) {$\ttm{y}: 0, \{1,2\}$};
  6781. \node (w) at (6,0) {$\ttm{w}: 2, \{0,1\}$};
  6782. \node (v) at (9,0) {$\ttm{v}: -, \{2\}$};
  6783. \draw (t0) to (t1);
  6784. \draw (t0) to (z);
  6785. \draw (z) to (y);
  6786. \draw (z) to (w);
  6787. \draw (x) to (w);
  6788. \draw (y) to (w);
  6789. \draw (v) to (w);
  6790. \end{tikzpicture}
  6791. \]
  6792. To finish the coloring, \code{x} and \code{v} get $0$ and
  6793. \code{tmp\_1} gets $1$.
  6794. \[
  6795. \begin{tikzpicture}[baseline=(current bounding box.center),scale=0.9]
  6796. \node (t0) at (0,2) {$\ttm{tmp\_0}: 0, \{1\}$};
  6797. \node (t1) at (0,0) {$\ttm{tmp\_1}: 1, \{0\}$};
  6798. \node (z) at (3,2) {$\ttm{z}: 1, \{0\}$};
  6799. \node (x) at (6,2) {$\ttm{x}: 0, \{2\}$};
  6800. \node (y) at (3,0) {$\ttm{y}: 0, \{1,2\}$};
  6801. \node (w) at (6,0) {$\ttm{w}: 2, \{0,1\}$};
  6802. \node (v) at (9,0) {$\ttm{v}: 0, \{2\}$};
  6803. \draw (t0) to (t1);
  6804. \draw (t0) to (z);
  6805. \draw (z) to (y);
  6806. \draw (z) to (w);
  6807. \draw (x) to (w);
  6808. \draw (y) to (w);
  6809. \draw (v) to (w);
  6810. \end{tikzpicture}
  6811. \]
  6812. \fi}
  6813. So, we have the following assignment of variables to registers.
  6814. {\if\edition\racketEd
  6815. \begin{gather*}
  6816. \{ \ttm{v} \mapsto \key{\%rcx}, \,
  6817. \ttm{w} \mapsto \key{\%rsi}, \,
  6818. \ttm{x} \mapsto \key{\%rcx}, \,
  6819. \ttm{y} \mapsto \key{\%rcx}, \,
  6820. \ttm{z} \mapsto \key{\%rdx}, \,
  6821. \ttm{t} \mapsto \key{\%rcx} \}
  6822. \end{gather*}
  6823. \fi}
  6824. {\if\edition\pythonEd\pythonColor
  6825. \begin{gather*}
  6826. \{ \ttm{v} \mapsto \key{\%rcx}, \,
  6827. \ttm{w} \mapsto \key{-16(\%rbp)}, \,
  6828. \ttm{x} \mapsto \key{\%rcx}, \,
  6829. \ttm{y} \mapsto \key{\%rcx}, \\
  6830. \ttm{z} \mapsto \key{-8(\%rbp)}, \,
  6831. \ttm{tmp\_0} \mapsto \key{\%rcx}, \,
  6832. \ttm{tmp\_1} \mapsto \key{-8(\%rbp)} \}
  6833. \end{gather*}
  6834. \fi}
  6835. %
  6836. We apply this register assignment to the running example shown next,
  6837. on the left, to obtain the code in the middle. The
  6838. \code{patch\_instructions} then deletes the trivial moves to obtain
  6839. the code on the right.
  6840. {\if\edition\racketEd
  6841. \begin{center}
  6842. \begin{minipage}{0.2\textwidth}
  6843. \begin{lstlisting}
  6844. movq $1, v
  6845. movq $42, w
  6846. movq v, x
  6847. addq $7, x
  6848. movq x, y
  6849. movq x, z
  6850. addq w, z
  6851. movq y, t
  6852. negq t
  6853. movq z, %rax
  6854. addq t, %rax
  6855. jmp conclusion
  6856. \end{lstlisting}
  6857. \end{minipage}
  6858. $\Rightarrow\qquad$
  6859. \begin{minipage}{0.25\textwidth}
  6860. \begin{lstlisting}
  6861. movq $1, %rcx
  6862. movq $42, %rsi
  6863. movq %rcx, %rcx
  6864. addq $7, %rcx
  6865. movq %rcx, %rcx
  6866. movq %rcx, %rdx
  6867. addq %rsi, %rdx
  6868. movq %rcx, %rcx
  6869. negq %rcx
  6870. movq %rdx, %rax
  6871. addq %rcx, %rax
  6872. jmp conclusion
  6873. \end{lstlisting}
  6874. \end{minipage}
  6875. $\Rightarrow\qquad$
  6876. \begin{minipage}{0.23\textwidth}
  6877. \begin{lstlisting}
  6878. movq $1, %rcx
  6879. movq $42, %rsi
  6880. addq $7, %rcx
  6881. movq %rcx, %rdx
  6882. addq %rsi, %rdx
  6883. negq %rcx
  6884. movq %rdx, %rax
  6885. addq %rcx, %rax
  6886. jmp conclusion
  6887. \end{lstlisting}
  6888. \end{minipage}
  6889. \end{center}
  6890. \fi}
  6891. {\if\edition\pythonEd\pythonColor
  6892. \begin{center}
  6893. \begin{minipage}{0.20\textwidth}
  6894. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  6895. movq $1, v
  6896. movq $42, w
  6897. movq v, x
  6898. addq $7, x
  6899. movq x, y
  6900. movq x, z
  6901. addq w, z
  6902. movq y, tmp_0
  6903. negq tmp_0
  6904. movq z, tmp_1
  6905. addq tmp_0, tmp_1
  6906. movq tmp_1, %rdi
  6907. callq _print_int
  6908. \end{lstlisting}
  6909. \end{minipage}
  6910. ${\Rightarrow\qquad}$
  6911. \begin{minipage}{0.35\textwidth}
  6912. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  6913. movq $1, %rcx
  6914. movq $42, -16(%rbp)
  6915. movq %rcx, %rcx
  6916. addq $7, %rcx
  6917. movq %rcx, %rcx
  6918. movq %rcx, -8(%rbp)
  6919. addq -16(%rbp), -8(%rbp)
  6920. movq %rcx, %rcx
  6921. negq %rcx
  6922. movq -8(%rbp), -8(%rbp)
  6923. addq %rcx, -8(%rbp)
  6924. movq -8(%rbp), %rdi
  6925. callq _print_int
  6926. \end{lstlisting}
  6927. \end{minipage}
  6928. ${\Rightarrow\qquad}$
  6929. \begin{minipage}{0.20\textwidth}
  6930. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  6931. movq $1, %rcx
  6932. movq $42, -16(%rbp)
  6933. addq $7, %rcx
  6934. movq %rcx, -8(%rbp)
  6935. movq -16(%rbp), %rax
  6936. addq %rax, -8(%rbp)
  6937. negq %rcx
  6938. addq %rcx, -8(%rbp)
  6939. movq -8(%rbp), %rdi
  6940. callq print_int
  6941. \end{lstlisting}
  6942. \end{minipage}
  6943. \end{center}
  6944. \fi}
  6945. \begin{exercise}\normalfont\normalsize
  6946. Change your implementation of \code{allocate\_registers} to take move
  6947. biasing into account. Create two new tests that include at least one
  6948. opportunity for move biasing, and visually inspect the output x86
  6949. programs to make sure that your move biasing is working properly. Make
  6950. sure that your compiler still passes all the tests.
  6951. \end{exercise}
  6952. %To do: another neat challenge would be to do
  6953. % live range splitting~\citep{Cooper:1998ly}. \\ --Jeremy
  6954. %% \subsection{Output of the Running Example}
  6955. %% \label{sec:reg-alloc-output}
  6956. % challenge: prioritize variables based on execution frequencies
  6957. % and the number of uses of a variable
  6958. % challenge: enhance the coloring algorithm using Chaitin's
  6959. % approach of prioritizing high-degree variables
  6960. % by removing low-degree variables (coloring them later)
  6961. % from the interference graph
  6962. \section{Further Reading}
  6963. \label{sec:register-allocation-further-reading}
  6964. Early register allocation algorithms were developed for Fortran
  6965. compilers in the 1950s~\citep{Horwitz:1966aa,Backus:1978aa}. The use
  6966. of graph coloring began in the late 1970s and early 1980s with the
  6967. work of \citet{Chaitin:1981vl} on an optimizing compiler for PL/I. The
  6968. algorithm is based on the following observation of
  6969. \citet{Kempe:1879aa}. If a graph $G$ has a vertex $v$ with degree
  6970. lower than $k$, then $G$ is $k$ colorable if the subgraph of $G$ with
  6971. $v$ removed is also $k$ colorable. To see why, suppose that the
  6972. subgraph is $k$ colorable. At worst, the neighbors of $v$ are assigned
  6973. different colors, but because there are fewer than $k$ neighbors, there
  6974. will be one or more colors left over to use for coloring $v$ in $G$.
  6975. The algorithm of \citet{Chaitin:1981vl} removes a vertex $v$ of degree
  6976. less than $k$ from the graph and recursively colors the rest of the
  6977. graph. Upon returning from the recursion, it colors $v$ with one of
  6978. the available colors and returns. \citet{Chaitin:1982vn} augments
  6979. this algorithm to handle spilling as follows. If there are no vertices
  6980. of degree lower than $k$ then pick a vertex at random, spill it,
  6981. remove it from the graph, and proceed recursively to color the rest of
  6982. the graph.
  6983. Prior to coloring, \citet{Chaitin:1981vl} merged variables that are
  6984. move-related and that don't interfere with each other, in a process
  6985. called \emph{coalescing}. Although coalescing decreases the number of
  6986. moves, it can make the graph more difficult to
  6987. color. \citet{Briggs:1994kx} proposed \emph{conservative coalescing} in
  6988. which two variables are merged only if they have fewer than $k$
  6989. neighbors of high degree. \citet{George:1996aa} observes that
  6990. conservative coalescing is sometimes too conservative and made it more
  6991. aggressive by iterating the coalescing with the removal of low-degree
  6992. vertices.
  6993. %
  6994. Attacking the problem from a different angle, \citet{Briggs:1994kx}
  6995. also proposed \emph{biased coloring}, in which a variable is assigned to
  6996. the same color as another move-related variable if possible, as
  6997. discussed in section~\ref{sec:move-biasing}.
  6998. %
  6999. The algorithm of \citet{Chaitin:1981vl} and its successors iteratively
  7000. performs coalescing, graph coloring, and spill code insertion until
  7001. all variables have been assigned a location.
  7002. \citet{Briggs:1994kx} observes that \citet{Chaitin:1982vn} sometimes
  7003. spilled variables that don't have to be: a high-degree variable can be
  7004. colorable if many of its neighbors are assigned the same color.
  7005. \citet{Briggs:1994kx} proposed \emph{optimistic coloring}, in which a
  7006. high-degree vertex is not immediately spilled. Instead the decision is
  7007. deferred until after the recursive call, when it is apparent whether
  7008. there is an available color or not. We observe that this algorithm is
  7009. equivalent to the smallest-last ordering
  7010. algorithm~\citep{Matula:1972aa} if one takes the first $k$ colors to
  7011. be registers and the rest to be stack locations.
  7012. %% biased coloring
  7013. Earlier editions of the compiler course at Indiana University
  7014. \citep{Dybvig:2010aa} were based on the algorithm of
  7015. \citet{Briggs:1994kx}.
  7016. The smallest-last ordering algorithm is one of many \emph{greedy}
  7017. coloring algorithms. A greedy coloring algorithm visits all the
  7018. vertices in a particular order and assigns each one the first
  7019. available color. An \emph{offline} greedy algorithm chooses the
  7020. ordering up front, prior to assigning colors. The algorithm of
  7021. \citet{Chaitin:1981vl} should be considered offline because the vertex
  7022. ordering does not depend on the colors assigned. Other orderings are
  7023. possible. For example, \citet{Chow:1984ys} ordered variables according
  7024. to an estimate of runtime cost.
  7025. An \emph{online} greedy coloring algorithm uses information about the
  7026. current assignment of colors to influence the order in which the
  7027. remaining vertices are colored. The saturation-based algorithm
  7028. described in this chapter is one such algorithm. We choose to use
  7029. saturation-based coloring because it is fun to introduce graph
  7030. coloring via sudoku!
  7031. A register allocator may choose to map each variable to just one
  7032. location, as in \citet{Chaitin:1981vl}, or it may choose to map a
  7033. variable to one or more locations. The latter can be achieved by
  7034. \emph{live range splitting}, where a variable is replaced by several
  7035. variables that each handle part of its live
  7036. range~\citep{Chow:1984ys,Briggs:1994kx,Cooper:1998ly}.
  7037. %% 1950s, Sheldon Best, Fortran \cite{Backus:1978aa}, Belady's page
  7038. %% replacement algorithm, bottom-up local
  7039. %% \citep{Horwitz:1966aa} straight-line programs, single basic block,
  7040. %% Cooper: top-down (priority bassed), bottom-up
  7041. %% top-down
  7042. %% order variables by priority (estimated cost)
  7043. %% caveat: split variables into two groups:
  7044. %% constrained (>k neighbors) and unconstrained (<k neighbors)
  7045. %% color the constrained ones first
  7046. %% \citet{Schwartz:1975aa} graph-coloring, no spill
  7047. %% cite J. Cocke for an algorithm that colors variables
  7048. %% in a high-degree first ordering
  7049. %Register Allocation via Usage Counts, Freiburghouse CACM
  7050. \citet{Palsberg:2007si} observes that many of the interference graphs
  7051. that arise from Java programs in the JoeQ compiler are \emph{chordal};
  7052. that is, every cycle with four or more edges has an edge that is not
  7053. part of the cycle but that connects two vertices on the cycle. Such
  7054. graphs can be optimally colored by the greedy algorithm with a vertex
  7055. ordering determined by maximum cardinality search.
  7056. In situations in which compile time is of utmost importance, such as
  7057. in just-in-time compilers, graph coloring algorithms can be too
  7058. expensive, and the linear scan algorithm of \citet{Poletto:1999uq} may
  7059. be more appropriate.
  7060. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  7061. {\if\edition\racketEd
  7062. \addtocontents{toc}{\newpage}
  7063. \fi}
  7064. \chapter{Booleans and Conditionals}
  7065. \label{ch:Lif}
  7066. \setcounter{footnote}{0}
  7067. The \LangVar{} language has only a single kind of value, the
  7068. integers. In this chapter we add a second kind of value, the Booleans,
  7069. to create the \LangIf{} language. In \racket{Racket}\python{Python},
  7070. the Boolean\index{subject}{Boolean} values \emph{true} and \emph{false}
  7071. are written
  7072. \TRUE{}\index{subject}{True@\TRUE{}} and
  7073. \FALSE{}\index{subject}{False@\FALSE{}}, respectively. The \LangIf{}
  7074. language includes several operations that involve Booleans
  7075. (\key{and}\index{subject}{and@\ANDNAME{}},
  7076. \key{or}\index{subject}{or@\ORNAME{}},
  7077. \key{not}\index{subject}{not@\NOTNAME{}},
  7078. \racket{\key{eq?}\index{subject}{equal@\EQNAME{}}}\python{==},
  7079. \key{<}\index{subject}{lessthan@\texttt{<}}, etc.) and the
  7080. \key{if}\index{subject}{IfExp@\IFNAME{}}
  7081. conditional expression\index{subject}{conditional expression}%
  7082. \python{ and statement\index{subject}{IfStmt@\IFSTMTNAME{}}}.
  7083. With the addition of \key{if}, programs can have
  7084. nontrivial control flow\index{subject}{control flow}, which
  7085. %
  7086. \racket{impacts \code{explicate\_control} and liveness analysis.}%
  7087. %
  7088. \python{impacts liveness analysis and motivates a new pass named
  7089. \code{explicate\_control}.}
  7090. %
  7091. Also, because we now have two kinds of values, we need to handle
  7092. programs that apply an operation to the wrong kind of value, such as
  7093. \racket{\code{(not 1)}}\python{\code{not 1}}.
  7094. There are two language design options for such situations. One option
  7095. is to signal an error and the other is to provide a wider
  7096. interpretation of the operation. \racket{The Racket
  7097. language}\python{Python} uses a mixture of these two options,
  7098. depending on the operation and the kind of value. For example, the
  7099. result of \racket{\code{(not 1)}}\python{\code{not 1}} is
  7100. \racket{\code{\#f}}\python{False} because \racket{Racket}\python{Python}
  7101. treats nonzero integers as if they were \racket{\code{\#t}}\python{\code{True}}.
  7102. %
  7103. \racket{On the other hand, \code{(car 1)} results in a runtime error
  7104. in Racket because \code{car} expects a pair.}
  7105. %
  7106. \python{On the other hand, \code{1[0]} results in a runtime error
  7107. in Python because an ``\code{int} object is not subscriptable.''}
  7108. \racket{Typed Racket}\python{The MyPy type checker} makes similar
  7109. design choices as \racket{Racket}\python{Python}, except that much of the
  7110. error detection happens at compile time instead of runtime\python{~\citep{Lehtosalo2021:MyPy}}. \racket{Typed Racket}\python{MyPy}
  7111. accepts \racket{\code{(not 1)}}\python{\code{not 1}}. But in the case
  7112. of \racket{\code{(car 1)}}\python{\code{1[0]}}, \racket{Typed Racket}
  7113. \python{MyPy} reports a compile-time error
  7114. %
  7115. \racket{because Racket expects the type of the argument to be of the form
  7116. \code{(Listof T)} or \code{(Pairof T1 T2)}.}
  7117. %
  7118. \python{stating that a ``value of type \code{int} is not indexable.''}
  7119. The \LangIf{} language performs type checking during compilation just as
  7120. \racket{Typed Racket}\python{MyPy}. In chapter~\ref{ch:Ldyn} we study
  7121. the alternative choice, that is, a dynamically typed language like
  7122. \racket{Racket}\python{Python}. The \LangIf{} language is a subset of
  7123. \racket{Typed Racket}\python{MyPy}; for some operations we are more
  7124. restrictive, for example, rejecting \racket{\code{(not
  7125. 1)}}\python{\code{not 1}}. We keep the type checker for \LangIf{}
  7126. fairly simple because the focus of this book is on compilation and not
  7127. type systems, about which there are already several excellent
  7128. books~\citep{Pierce:2002hj,Pierce:2004fk,Harper2016,Pierce:SF2}.
  7129. This chapter is organized as follows. We begin by defining the syntax
  7130. and interpreter for the \LangIf{} language
  7131. (section~\ref{sec:lang-if}). We then introduce the idea of type
  7132. checking (aka semantic analysis\index{subject}{semantic analysis})
  7133. and define a type checker for \LangIf{}
  7134. (section~\ref{sec:type-check-Lif}).
  7135. %
  7136. \racket{To compile \LangIf{} we need to enlarge the intermediate
  7137. language \LangCVar{} into \LangCIf{} (section~\ref{sec:Cif}) and
  7138. \LangXInt{} into \LangXIf{} (section~\ref{sec:x86-if}).}
  7139. %
  7140. The remaining sections of this chapter discuss how Booleans and
  7141. conditional control flow require changes to the existing compiler
  7142. passes and the addition of new ones. We introduce the \code{shrink}
  7143. pass to translate some operators into others, thereby reducing the
  7144. number of operators that need to be handled in later passes.
  7145. %
  7146. The main event of this chapter is the \code{explicate\_control} pass
  7147. that is responsible for translating \code{if}s into conditional
  7148. \code{goto}s (section~\ref{sec:explicate-control-Lif}).
  7149. %
  7150. Regarding register allocation, there is the interesting question of
  7151. how to handle conditional \code{goto}s during liveness analysis.
  7152. \section{The \LangIf{} Language}
  7153. \label{sec:lang-if}
  7154. Definitions of the concrete syntax and abstract syntax of the
  7155. \LangIf{} language are shown in figures~\ref{fig:Lif-concrete-syntax}
  7156. and~\ref{fig:Lif-syntax}, respectively. The \LangIf{} language
  7157. includes all of \LangVar{} {(shown in gray)}, the Boolean
  7158. literals\index{subject}{literals}
  7159. \TRUE{} and \FALSE{}, \racket{and} the \code{if} expression%
  7160. \python{, and the \code{if} statement}. We expand the set of
  7161. operators to include
  7162. \begin{enumerate}
  7163. \item the logical operators \key{and}, \key{or}, and \key{not},
  7164. \item the \racket{\key{eq?} operation}\python{\key{==} and \key{!=} operations}
  7165. for comparing integers or Booleans for equality, and
  7166. \item the \key{<}, \key{<=}\index{subject}{lessthaneq@\texttt{<=}},
  7167. \key{>}\index{subject}{greaterthan@\texttt{>}}, and
  7168. \key{>=}\index{subject}{greaterthaneq@\texttt{>=}} operations for
  7169. comparing integers.
  7170. \end{enumerate}
  7171. \racket{We reorganize the abstract syntax for the primitive
  7172. operations given in figure~\ref{fig:Lif-syntax}, using only one grammar
  7173. rule for all of them. This means that the grammar no longer checks
  7174. whether the arity of an operator matches the number of
  7175. arguments. That responsibility is moved to the type checker for
  7176. \LangIf{} (section~\ref{sec:type-check-Lif}).}
  7177. \newcommand{\LifGrammarRacket}{
  7178. \begin{array}{lcl}
  7179. \Type &::=& \key{Boolean} \\
  7180. \itm{bool} &::=& \TRUE \MID \FALSE \\
  7181. \itm{cmp} &::= & \key{eq?} \MID \key{<} \MID \key{<=} \MID \key{>} \MID \key{>=} \\
  7182. \Exp &::=& \itm{bool}
  7183. \MID (\key{and}\;\Exp\;\Exp) \MID (\key{or}\;\Exp\;\Exp)
  7184. \MID (\key{not}\;\Exp) \\
  7185. &\MID& (\itm{cmp}\;\Exp\;\Exp) \MID \CIF{\Exp}{\Exp}{\Exp}
  7186. \end{array}
  7187. }
  7188. \newcommand{\LifASTRacket}{
  7189. \begin{array}{lcl}
  7190. \Type &::=& \key{Boolean} \\
  7191. \itm{bool} &::=& \code{\#t} \MID \code{\#f} \\
  7192. \itm{cmp} &::= & \code{eq?} \MID \code{<} \MID \code{<=} \MID \code{>} \MID \code{>=} \\
  7193. \itm{op} &::= & \itm{cmp} \MID \code{and} \MID \code{or} \MID \code{not} \\
  7194. \Exp &::=& \BOOL{\itm{bool}} \MID \IF{\Exp}{\Exp}{\Exp}
  7195. \end{array}
  7196. }
  7197. \newcommand{\LintOpAST}{
  7198. \begin{array}{rcl}
  7199. \Type &::=& \key{Integer} \\
  7200. \itm{op} &::= & \code{read} \MID \code{+} \MID \code{-}\\
  7201. \Exp{} &::=& \INT{\Int} \MID \PRIM{\itm{op}}{\Exp\ldots}
  7202. \end{array}
  7203. }
  7204. \newcommand{\LifGrammarPython}{
  7205. \begin{array}{rcl}
  7206. \itm{cmp} &::= & \key{==} \MID \key{!=} \MID \key{<} \MID \key{<=} \MID \key{>} \MID \key{>=} \\
  7207. \Exp &::=& \TRUE \MID \FALSE \MID \CAND{\Exp}{\Exp} \MID \COR{\Exp}{\Exp}
  7208. \MID \key{not}~\Exp \\
  7209. &\MID& \CCMP{\itm{cmp}}{\Exp}{\Exp}
  7210. \MID \CIF{\Exp}{\Exp}{\Exp} \\
  7211. \Stmt &::=& \key{if}~ \Exp \key{:}~ \Stmt^{+} ~\key{else:}~ \Stmt^{+}
  7212. \end{array}
  7213. }
  7214. \newcommand{\LifASTPython}{
  7215. \begin{array}{lcl}
  7216. \itm{boolop} &::=& \code{And()} \MID \code{Or()} \\
  7217. \itm{cmp} &::= & \code{Eq()} \MID \code{NotEq()} \MID \code{Lt()} \MID \code{LtE()} \MID \code{Gt()} \MID \code{GtE()} \\
  7218. \itm{bool} &::=& \code{True} \MID \code{False} \\
  7219. \Exp &::=& \BOOL{\itm{bool}}
  7220. \MID \BOOLOP{\itm{boolop}}{\Exp}{\Exp}\\
  7221. &\MID& \UNIOP{\key{Not()}}{\Exp}
  7222. \MID \CMP{\Exp}{\itm{cmp}}{\Exp} \\
  7223. &\MID& \IF{\Exp}{\Exp}{\Exp} \\
  7224. \Stmt{} &::=& \IFSTMT{\Exp}{\Stmt^{+}}{\Stmt^{+}}
  7225. \end{array}
  7226. }
  7227. \begin{figure}[tp]
  7228. \centering
  7229. \begin{tcolorbox}[colback=white]
  7230. {\if\edition\racketEd
  7231. \[
  7232. \begin{array}{l}
  7233. \gray{\LintGrammarRacket{}} \\ \hline
  7234. \gray{\LvarGrammarRacket{}} \\ \hline
  7235. \LifGrammarRacket{} \\
  7236. \begin{array}{lcl}
  7237. \LangIfM{} &::=& \Exp
  7238. \end{array}
  7239. \end{array}
  7240. \]
  7241. \fi}
  7242. {\if\edition\pythonEd\pythonColor
  7243. \[
  7244. \begin{array}{l}
  7245. \gray{\LintGrammarPython} \\ \hline
  7246. \gray{\LvarGrammarPython} \\ \hline
  7247. \LifGrammarPython \\
  7248. \begin{array}{rcl}
  7249. \LangIfM{} &::=& \Stmt^{*}
  7250. \end{array}
  7251. \end{array}
  7252. \]
  7253. \fi}
  7254. \end{tcolorbox}
  7255. \caption{The concrete syntax of \LangIf{}, extending \LangVar{}
  7256. (figure~\ref{fig:Lvar-concrete-syntax}) with Booleans and conditionals.}
  7257. \label{fig:Lif-concrete-syntax}
  7258. \index{subject}{Lif@\LangIf{} concrete syntax}
  7259. \end{figure}
  7260. \begin{figure}[tp]
  7261. %\begin{minipage}{0.66\textwidth}
  7262. \begin{tcolorbox}[colback=white]
  7263. \centering
  7264. {\if\edition\racketEd
  7265. \[
  7266. \begin{array}{l}
  7267. \gray{\LintOpAST} \\ \hline
  7268. \gray{\LvarASTRacket{}} \\ \hline
  7269. \LifASTRacket{} \\
  7270. \begin{array}{lcl}
  7271. \LangIfM{} &::=& \PROGRAM{\code{'()}}{\Exp}
  7272. \end{array}
  7273. \end{array}
  7274. \]
  7275. \fi}
  7276. {\if\edition\pythonEd\pythonColor
  7277. \[
  7278. \begin{array}{l}
  7279. \gray{\LintASTPython} \\ \hline
  7280. \gray{\LvarASTPython} \\ \hline
  7281. \LifASTPython \\
  7282. \begin{array}{lcl}
  7283. \LangIfM{} &::=& \PROGRAM{\code{'()}}{\Stmt^{*}}
  7284. \end{array}
  7285. \end{array}
  7286. \]
  7287. \fi}
  7288. \end{tcolorbox}
  7289. %\end{minipage}
  7290. \python{\index{subject}{not equal@\NOTEQNAME{}}}
  7291. \python{
  7292. \index{subject}{BoolOp@\texttt{BoolOp}}
  7293. \index{subject}{Compare@\texttt{Compare}}
  7294. \index{subject}{Lt@\texttt{Lt}}
  7295. \index{subject}{LtE@\texttt{LtE}}
  7296. \index{subject}{Gt@\texttt{Gt}}
  7297. \index{subject}{GtE@\texttt{GtE}}
  7298. }
  7299. \caption{The abstract syntax of \LangIf{}.}
  7300. \label{fig:Lif-syntax}
  7301. \index{subject}{Lif@\LangIf{} abstract syntax}
  7302. \end{figure}
  7303. Figure~\ref{fig:interp-Lif} shows the definition of the interpreter
  7304. for \LangIf{}, which inherits from the interpreter for \LangVar{}
  7305. (figure~\ref{fig:interp-Lvar}). The constants \TRUE{} and \FALSE{}
  7306. evaluate to the corresponding Boolean values, behavior that is
  7307. inherited from the interpreter for \LangInt{}
  7308. (figure~\ref{fig:interp-Lint-class}).
  7309. The conditional expression $\CIF{e_1}{e_2}{\itm{e_3}}$ evaluates
  7310. expression $e_1$ and then either evaluates $e_2$ or $e_3$, depending
  7311. on whether $e_1$ produced \TRUE{} or \FALSE{}. The logical operations
  7312. \code{and}, \code{or}, and \code{not} behave according to propositional
  7313. logic. In addition, the \code{and} and \code{or} operations perform
  7314. \emph{short-circuit evaluation}.
  7315. %
  7316. That is, given the expression $\CAND{e_1}{e_2}$, the expression $e_2$
  7317. is not evaluated if $e_1$ evaluates to \FALSE{}.
  7318. %
  7319. Similarly, given $\COR{e_1}{e_2}$, the expression $e_2$ is not
  7320. evaluated if $e_1$ evaluates to \TRUE{}.
  7321. \racket{With the increase in the number of primitive operations, the
  7322. interpreter would become repetitive without some care. We refactor
  7323. the case for \code{Prim}, moving the code that differs with each
  7324. operation into the \code{interp\_op} method shown in
  7325. figure~\ref{fig:interp-op-Lif}. We handle the \code{and} and
  7326. \code{or} operations separately because of their short-circuiting
  7327. behavior.}
  7328. \begin{figure}[tbp]
  7329. \begin{tcolorbox}[colback=white]
  7330. {\if\edition\racketEd
  7331. \begin{lstlisting}
  7332. (define interp-Lif-class
  7333. (class interp-Lvar-class
  7334. (super-new)
  7335. (define/public (interp_op op) ...)
  7336. (define/override ((interp_exp env) e)
  7337. (define recur (interp_exp env))
  7338. (match e
  7339. [(Bool b) b]
  7340. [(If cnd thn els)
  7341. (match (recur cnd)
  7342. [#t (recur thn)]
  7343. [#f (recur els)])]
  7344. [(Prim 'and (list e1 e2))
  7345. (match (recur e1)
  7346. [#t (match (recur e2) [#t #t] [#f #f])]
  7347. [#f #f])]
  7348. [(Prim 'or (list e1 e2))
  7349. (define v1 (recur e1))
  7350. (match v1
  7351. [#t #t]
  7352. [#f (match (recur e2) [#t #t] [#f #f])])]
  7353. [(Prim op args)
  7354. (apply (interp_op op) (for/list ([e args]) (recur e)))]
  7355. [else ((super interp_exp env) e)]))
  7356. ))
  7357. (define (interp_Lif p)
  7358. (send (new interp-Lif-class) interp_program p))
  7359. \end{lstlisting}
  7360. \fi}
  7361. {\if\edition\pythonEd\pythonColor
  7362. \begin{lstlisting}
  7363. class InterpLif(InterpLvar):
  7364. def interp_exp(self, e, env):
  7365. match e:
  7366. case IfExp(test, body, orelse):
  7367. if self.interp_exp(test, env):
  7368. return self.interp_exp(body, env)
  7369. else:
  7370. return self.interp_exp(orelse, env)
  7371. case UnaryOp(Not(), v):
  7372. return not self.interp_exp(v, env)
  7373. case BoolOp(And(), values):
  7374. if self.interp_exp(values[0], env):
  7375. return self.interp_exp(values[1], env)
  7376. else:
  7377. return False
  7378. case BoolOp(Or(), values):
  7379. if self.interp_exp(values[0], env):
  7380. return True
  7381. else:
  7382. return self.interp_exp(values[1], env)
  7383. case Compare(left, [cmp], [right]):
  7384. l = self.interp_exp(left, env)
  7385. r = self.interp_exp(right, env)
  7386. return self.interp_cmp(cmp)(l, r)
  7387. case _:
  7388. return super().interp_exp(e, env)
  7389. def interp_stmt(self, s, env, cont):
  7390. match s:
  7391. case If(test, body, orelse):
  7392. match self.interp_exp(test, env):
  7393. case True:
  7394. return self.interp_stmts(body + cont, env)
  7395. case False:
  7396. return self.interp_stmts(orelse + cont, env)
  7397. case _:
  7398. return super().interp_stmt(s, env, cont)
  7399. ...
  7400. \end{lstlisting}
  7401. \fi}
  7402. \end{tcolorbox}
  7403. \caption{Interpreter for the \LangIf{} language. \racket{(See
  7404. figure~\ref{fig:interp-op-Lif} for \code{interp-op}.)}
  7405. \python{(See figure~\ref{fig:interp-cmp-Lif} for \code{interp\_cmp}.)}}
  7406. \label{fig:interp-Lif}
  7407. \end{figure}
  7408. {\if\edition\racketEd
  7409. \begin{figure}[tbp]
  7410. \begin{tcolorbox}[colback=white]
  7411. \begin{lstlisting}
  7412. (define/public (interp_op op)
  7413. (match op
  7414. ['+ fx+]
  7415. ['- fx-]
  7416. ['read read-fixnum]
  7417. ['not (lambda (v) (match v [#t #f] [#f #t]))]
  7418. ['eq? (lambda (v1 v2)
  7419. (cond [(or (and (fixnum? v1) (fixnum? v2))
  7420. (and (boolean? v1) (boolean? v2))
  7421. (and (vector? v1) (vector? v2)))
  7422. (eq? v1 v2)]))]
  7423. ['< (lambda (v1 v2)
  7424. (cond [(and (fixnum? v1) (fixnum? v2))
  7425. (< v1 v2)]))]
  7426. ['<= (lambda (v1 v2)
  7427. (cond [(and (fixnum? v1) (fixnum? v2))
  7428. (<= v1 v2)]))]
  7429. ['> (lambda (v1 v2)
  7430. (cond [(and (fixnum? v1) (fixnum? v2))
  7431. (> v1 v2)]))]
  7432. ['>= (lambda (v1 v2)
  7433. (cond [(and (fixnum? v1) (fixnum? v2))
  7434. (>= v1 v2)]))]
  7435. [else (error 'interp_op "unknown operator")]))
  7436. \end{lstlisting}
  7437. \end{tcolorbox}
  7438. \caption{Interpreter for the primitive operators in the \LangIf{} language.}
  7439. \label{fig:interp-op-Lif}
  7440. \end{figure}
  7441. \fi}
  7442. {\if\edition\pythonEd\pythonColor
  7443. \begin{figure}
  7444. \begin{tcolorbox}[colback=white]
  7445. \begin{lstlisting}
  7446. class InterpLif(InterpLvar):
  7447. ...
  7448. def interp_cmp(self, cmp):
  7449. match cmp:
  7450. case Lt():
  7451. return lambda x, y: x < y
  7452. case LtE():
  7453. return lambda x, y: x <= y
  7454. case Gt():
  7455. return lambda x, y: x > y
  7456. case GtE():
  7457. return lambda x, y: x >= y
  7458. case Eq():
  7459. return lambda x, y: x == y
  7460. case NotEq():
  7461. return lambda x, y: x != y
  7462. \end{lstlisting}
  7463. \end{tcolorbox}
  7464. \caption{Interpreter for the comparison operators in the \LangIf{} language.}
  7465. \label{fig:interp-cmp-Lif}
  7466. \end{figure}
  7467. \fi}
  7468. \section{Type Checking \LangIf{} Programs}
  7469. \label{sec:type-check-Lif}
  7470. It is helpful to think about type checking\index{subject}{type
  7471. checking} in two complementary ways. A type checker predicts the
  7472. type of value that will be produced by each expression in the program.
  7473. For \LangIf{}, we have just two types, \INTTY{} and \BOOLTY{}. So, a
  7474. type checker should predict that {\if\edition\racketEd
  7475. \begin{lstlisting}
  7476. (+ 10 (- (+ 12 20)))
  7477. \end{lstlisting}
  7478. \fi}
  7479. {\if\edition\pythonEd\pythonColor
  7480. \begin{lstlisting}
  7481. 10 + -(12 + 20)
  7482. \end{lstlisting}
  7483. \fi}
  7484. \noindent produces a value of type \INTTY{}, whereas
  7485. {\if\edition\racketEd
  7486. \begin{lstlisting}
  7487. (and (not #f) #t)
  7488. \end{lstlisting}
  7489. \fi}
  7490. {\if\edition\pythonEd\pythonColor
  7491. \begin{lstlisting}
  7492. (not False) and True
  7493. \end{lstlisting}
  7494. \fi}
  7495. \noindent produces a value of type \BOOLTY{}.
  7496. A second way to think about type checking is that it enforces a set of
  7497. rules about which operators can be applied to which kinds of
  7498. values. For example, our type checker for \LangIf{} signals an error
  7499. for the following expression:
  7500. %
  7501. {\if\edition\racketEd
  7502. \begin{lstlisting}
  7503. (not (+ 10 (- (+ 12 20))))
  7504. \end{lstlisting}
  7505. \fi}
  7506. {\if\edition\pythonEd\pythonColor
  7507. \begin{lstlisting}
  7508. not (10 + -(12 + 20))
  7509. \end{lstlisting}
  7510. \fi}
  7511. \noindent The subexpression
  7512. \racket{\code{(+ 10 (- (+ 12 20)))}}
  7513. \python{\code{(10 + -(12 + 20))}}
  7514. has type \INTTY{}, but the type checker enforces the rule that the
  7515. argument of \code{not} must be an expression of type \BOOLTY{}.
  7516. We implement type checking using classes and methods because they
  7517. provide the open recursion needed to reuse code as we extend the type
  7518. checker in subsequent chapters, analogous to the use of classes and methods
  7519. for the interpreters (section~\ref{sec:extensible-interp}).
  7520. We separate the type checker for the \LangVar{} subset into its own
  7521. class, shown in figure~\ref{fig:type-check-Lvar}. The type checker for
  7522. \LangIf{} is shown in figure~\ref{fig:type-check-Lif}, and it inherits
  7523. from the type checker for \LangVar{}. These type checkers are in the
  7524. files
  7525. \racket{\code{type-check-Lvar.rkt}}\python{\code{type\_check\_Lvar.py}}
  7526. and
  7527. \racket{\code{type-check-Lif.rkt}}\python{\code{type\_check\_Lif.py}}
  7528. of the support code.
  7529. %
  7530. Each type checker is a structurally recursive function over the AST.
  7531. Given an input expression \code{e}, the type checker either signals an
  7532. error or returns \racket{an expression and its type.}\python{its type.}
  7533. %
  7534. \racket{It returns an expression because there are situations in which
  7535. we want to change or update the expression.}
  7536. Next we discuss the \code{type\_check\_exp} function of \LangVar{}
  7537. shown in figure~\ref{fig:type-check-Lvar}. The type of an integer
  7538. constant is \INTTY{}. To handle variables, the type checker uses the
  7539. environment \code{env} to map variables to types.
  7540. %
  7541. \racket{Consider the case for \key{let}. We type check the
  7542. initializing expression to obtain its type \key{T} and then
  7543. associate type \code{T} with the variable \code{x} in the
  7544. environment used to type check the body of the \key{let}. Thus,
  7545. when the type checker encounters a use of variable \code{x}, it can
  7546. find its type in the environment.}
  7547. %
  7548. \python{Consider the case for assignment. We type check the
  7549. initializing expression to obtain its type \key{t}. If the variable
  7550. \code{id} is already in the environment because there was a
  7551. prior assignment, we check that this initializer has the same type
  7552. as the prior one. If this is the first assignment to the variable,
  7553. we associate type \code{t} with the variable \code{id} in the
  7554. environment. Thus, when the type checker encounters a use of
  7555. variable \code{x}, it can find its type in the environment.}
  7556. %
  7557. \racket{Regarding primitive operators, we recursively analyze the
  7558. arguments and then invoke \code{type\_check\_op} to check whether
  7559. the argument types are allowed.}
  7560. %
  7561. \python{Regarding addition, subtraction, and negation, we recursively analyze the
  7562. arguments, check that they have type \INTTY{}, and return \INTTY{}.}
  7563. \racket{Several auxiliary methods are used in the type checker. The
  7564. method \code{operator-types} defines a dictionary that maps the
  7565. operator names to their parameter and return types. The
  7566. \code{type-equal?} method determines whether two types are equal,
  7567. which for now simply dispatches to \code{equal?} (deep
  7568. equality). The \code{check-type-equal?} method triggers an error if
  7569. the two types are not equal. The \code{type-check-op} method looks
  7570. up the operator in the \code{operator-types} dictionary and then
  7571. checks whether the argument types are equal to the parameter types.
  7572. The result is the return type of the operator.}
  7573. %
  7574. \python{The auxiliary method \code{check\_type\_equal} triggers
  7575. an error if the two types are not equal.}
  7576. \begin{figure}[tbp]
  7577. \begin{tcolorbox}[colback=white]
  7578. {\if\edition\racketEd
  7579. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  7580. (define type-check-Lvar-class
  7581. (class object%
  7582. (super-new)
  7583. (define/public (operator-types)
  7584. '((+ . ((Integer Integer) . Integer))
  7585. (- . ((Integer Integer) . Integer))
  7586. (read . (() . Integer))))
  7587. (define/public (type-equal? t1 t2) (equal? t1 t2))
  7588. (define/public (check-type-equal? t1 t2 e)
  7589. (unless (type-equal? t1 t2)
  7590. (error 'type-check "~a != ~a\nin ~v" t1 t2 e)))
  7591. (define/public (type-check-op op arg-types e)
  7592. (match (dict-ref (operator-types) op)
  7593. [`(,param-types . ,return-type)
  7594. (for ([at arg-types] [pt param-types])
  7595. (check-type-equal? at pt e))
  7596. return-type]
  7597. [else (error 'type-check-op "unrecognized ~a" op)]))
  7598. (define/public (type-check-exp env)
  7599. (lambda (e)
  7600. (match e
  7601. [(Int n) (values (Int n) 'Integer)]
  7602. [(Var x) (values (Var x) (dict-ref env x))]
  7603. [(Let x e body)
  7604. (define-values (e^ Te) ((type-check-exp env) e))
  7605. (define-values (b Tb) ((type-check-exp (dict-set env x Te)) body))
  7606. (values (Let x e^ b) Tb)]
  7607. [(Prim op es)
  7608. (define-values (new-es ts)
  7609. (for/lists (exprs types) ([e es]) ((type-check-exp env) e)))
  7610. (values (Prim op new-es) (type-check-op op ts e))]
  7611. [else (error 'type-check-exp "couldn't match" e)])))
  7612. (define/public (type-check-program e)
  7613. (match e
  7614. [(Program info body)
  7615. (define-values (body^ Tb) ((type-check-exp '()) body))
  7616. (check-type-equal? Tb 'Integer body)
  7617. (Program info body^)]
  7618. [else (error 'type-check-Lvar "couldn't match ~a" e)]))
  7619. ))
  7620. (define (type-check-Lvar p)
  7621. (send (new type-check-Lvar-class) type-check-program p))
  7622. \end{lstlisting}
  7623. \fi}
  7624. {\if\edition\pythonEd\pythonColor
  7625. \begin{lstlisting}[escapechar=`]
  7626. class TypeCheckLvar:
  7627. def check_type_equal(self, t1, t2, e):
  7628. if t1 != t2:
  7629. msg = 'error: ' + repr(t1) + ' != ' + repr(t2) + ' in ' + repr(e)
  7630. raise Exception(msg)
  7631. def type_check_exp(self, e, env):
  7632. match e:
  7633. case BinOp(left, (Add() | Sub()), right):
  7634. l = self.type_check_exp(left, env)
  7635. check_type_equal(l, int, left)
  7636. r = self.type_check_exp(right, env)
  7637. check_type_equal(r, int, right)
  7638. return int
  7639. case UnaryOp(USub(), v):
  7640. t = self.type_check_exp(v, env)
  7641. check_type_equal(t, int, v)
  7642. return int
  7643. case Name(id):
  7644. return env[id]
  7645. case Constant(value) if isinstance(value, int):
  7646. return int
  7647. case Call(Name('input_int'), []):
  7648. return int
  7649. def type_check_stmts(self, ss, env):
  7650. if len(ss) == 0:
  7651. return
  7652. match ss[0]:
  7653. case Assign([Name(id)], value):
  7654. t = self.type_check_exp(value, env)
  7655. if id in env:
  7656. check_type_equal(env[id], t, value)
  7657. else:
  7658. env[id] = t
  7659. return self.type_check_stmts(ss[1:], env)
  7660. case Expr(Call(Name('print'), [arg])):
  7661. t = self.type_check_exp(arg, env)
  7662. check_type_equal(t, int, arg)
  7663. return self.type_check_stmts(ss[1:], env)
  7664. case Expr(value):
  7665. self.type_check_exp(value, env)
  7666. return self.type_check_stmts(ss[1:], env)
  7667. def type_check_P(self, p):
  7668. match p:
  7669. case Module(body):
  7670. self.type_check_stmts(body, {})
  7671. \end{lstlisting}
  7672. \fi}
  7673. \end{tcolorbox}
  7674. \caption{Type checker for the \LangVar{} language.}
  7675. \label{fig:type-check-Lvar}
  7676. \end{figure}
  7677. \begin{figure}[tbp]
  7678. \begin{tcolorbox}[colback=white]
  7679. {\if\edition\racketEd
  7680. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  7681. (define type-check-Lif-class
  7682. (class type-check-Lvar-class
  7683. (super-new)
  7684. (inherit check-type-equal?)
  7685. (define/override (operator-types)
  7686. (append '((and . ((Boolean Boolean) . Boolean))
  7687. (or . ((Boolean Boolean) . Boolean))
  7688. (< . ((Integer Integer) . Boolean))
  7689. (<= . ((Integer Integer) . Boolean))
  7690. (> . ((Integer Integer) . Boolean))
  7691. (>= . ((Integer Integer) . Boolean))
  7692. (not . ((Boolean) . Boolean)))
  7693. (super operator-types)))
  7694. (define/override (type-check-exp env)
  7695. (lambda (e)
  7696. (match e
  7697. [(Bool b) (values (Bool b) 'Boolean)]
  7698. [(Prim 'eq? (list e1 e2))
  7699. (define-values (e1^ T1) ((type-check-exp env) e1))
  7700. (define-values (e2^ T2) ((type-check-exp env) e2))
  7701. (check-type-equal? T1 T2 e)
  7702. (values (Prim 'eq? (list e1^ e2^)) 'Boolean)]
  7703. [(If cnd thn els)
  7704. (define-values (cnd^ Tc) ((type-check-exp env) cnd))
  7705. (define-values (thn^ Tt) ((type-check-exp env) thn))
  7706. (define-values (els^ Te) ((type-check-exp env) els))
  7707. (check-type-equal? Tc 'Boolean e)
  7708. (check-type-equal? Tt Te e)
  7709. (values (If cnd^ thn^ els^) Te)]
  7710. [else ((super type-check-exp env) e)])))
  7711. ))
  7712. (define (type-check-Lif p)
  7713. (send (new type-check-Lif-class) type-check-program p))
  7714. \end{lstlisting}
  7715. \fi}
  7716. {\if\edition\pythonEd\pythonColor
  7717. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  7718. class TypeCheckLif(TypeCheckLvar):
  7719. def type_check_exp(self, e, env):
  7720. match e:
  7721. case Constant(value) if isinstance(value, bool):
  7722. return bool
  7723. case BinOp(left, Sub(), right):
  7724. l = self.type_check_exp(left, env); check_type_equal(l, int, left)
  7725. r = self.type_check_exp(right, env); check_type_equal(r, int, right)
  7726. return int
  7727. case UnaryOp(Not(), v):
  7728. t = self.type_check_exp(v, env); check_type_equal(t, bool, v)
  7729. return bool
  7730. case BoolOp(op, values):
  7731. left = values[0] ; right = values[1]
  7732. l = self.type_check_exp(left, env); check_type_equal(l, bool, left)
  7733. r = self.type_check_exp(right, env); check_type_equal(r, bool, right)
  7734. return bool
  7735. case Compare(left, [cmp], [right]) if isinstance(cmp, Eq) \
  7736. or isinstance(cmp, NotEq):
  7737. l = self.type_check_exp(left, env)
  7738. r = self.type_check_exp(right, env)
  7739. check_type_equal(l, r, e)
  7740. return bool
  7741. case Compare(left, [cmp], [right]):
  7742. l = self.type_check_exp(left, env); check_type_equal(l, int, left)
  7743. r = self.type_check_exp(right, env); check_type_equal(r, int, right)
  7744. return bool
  7745. case IfExp(test, body, orelse):
  7746. t = self.type_check_exp(test, env); check_type_equal(bool, t, test)
  7747. b = self.type_check_exp(body, env)
  7748. o = self.type_check_exp(orelse, env)
  7749. check_type_equal(b, o, e)
  7750. return b
  7751. case _:
  7752. return super().type_check_exp(e, env)
  7753. def type_check_stmts(self, ss, env):
  7754. if len(ss) == 0:
  7755. return
  7756. match ss[0]:
  7757. case If(test, body, orelse):
  7758. t = self.type_check_exp(test, env); check_type_equal(bool, t, test)
  7759. b = self.type_check_stmts(body, env)
  7760. o = self.type_check_stmts(orelse, env)
  7761. check_type_equal(b, o, ss[0])
  7762. return self.type_check_stmts(ss[1:], env)
  7763. case _:
  7764. return super().type_check_stmts(ss, env)
  7765. \end{lstlisting}
  7766. \fi}
  7767. \end{tcolorbox}
  7768. \caption{Type checker for the \LangIf{} language.}
  7769. \label{fig:type-check-Lif}
  7770. \end{figure}
  7771. The definition of the type checker for \LangIf{} is shown in
  7772. figure~\ref{fig:type-check-Lif}.
  7773. %
  7774. The type of a Boolean constant is \BOOLTY{}.
  7775. %
  7776. \racket{The \code{operator-types} function adds dictionary entries for
  7777. the new operators.}
  7778. %
  7779. \python{The logical \code{not} operator requires its argument to be a
  7780. \BOOLTY{} and produces a \BOOLTY{}. Similarly for the logical \code{and}
  7781. and logical \code{or} operators.}
  7782. %
  7783. The equality operator requires the two arguments to have the same type,
  7784. and therefore we handle it separately from the other operators.
  7785. %
  7786. \python{The other comparisons (less-than, etc.) require their
  7787. arguments to be of type \INTTY{}, and they produce a \BOOLTY{}.}
  7788. %
  7789. The condition of an \code{if} must
  7790. be of \BOOLTY{} type, and the two branches must have the same type.
  7791. \begin{exercise}\normalfont\normalsize
  7792. Create ten new test programs in \LangIf{}. Half the programs should
  7793. have a type error.
  7794. \racket{For those programs, create an empty file with the
  7795. same base name and with file extension \code{.tyerr}. For example, if
  7796. the test \code{cond\_test\_14.rkt}
  7797. is expected to error, then create
  7798. an empty file named \code{cond\_test\_14.tyerr}.
  7799. This indicates to \code{interp-tests} and
  7800. \code{compiler-tests} that a type error is expected.}
  7801. %
  7802. The other half of the test programs should not have type errors.
  7803. %
  7804. \racket{In the \code{run-tests.rkt} script, change the second argument
  7805. of \code{interp-tests} and \code{compiler-tests} to
  7806. \code{type-check-Lif}, which causes the type checker to run prior to
  7807. the compiler passes. Temporarily change the \code{passes} to an
  7808. empty list and run the script, thereby checking that the new test
  7809. programs either type check or do not, as intended.}
  7810. %
  7811. Run the test script to check that these test programs type check as
  7812. expected.
  7813. \end{exercise}
  7814. \clearpage
  7815. \section{The \LangCIf{} Intermediate Language}
  7816. \label{sec:Cif}
  7817. {\if\edition\racketEd
  7818. %
  7819. The \LangCIf{} language builds on \LangCVar{} by adding logical and
  7820. comparison operators to the \Exp{} nonterminal and the literals
  7821. \TRUE{} and \FALSE{} to the \Arg{} nonterminal. Regarding control
  7822. flow, \LangCIf{} adds \key{goto} and \code{if} statements to the
  7823. \Tail{} nonterminal. The condition of an \code{if} statement is a
  7824. comparison operation and the branches are \code{goto} statements,
  7825. making it straightforward to compile \code{if} statements to x86. The
  7826. \key{CProgram} construct contains an alist mapping labels to $\Tail$
  7827. expressions. A \code{goto} statement transfers control to the $\Tail$
  7828. expression corresponding to its label.
  7829. %
  7830. Figure~\ref{fig:c1-concrete-syntax} defines the concrete syntax of the
  7831. \LangCIf{} intermediate language, and figure~\ref{fig:c1-syntax}
  7832. defines its abstract syntax.
  7833. %
  7834. \fi}
  7835. %
  7836. {\if\edition\pythonEd\pythonColor
  7837. %
  7838. The output of \key{explicate\_control} is a language similar to the
  7839. $C$ language~\citep{Kernighan:1988nx} in that it has labels and
  7840. \code{goto} statements, so we name it \LangCIf{}.
  7841. %
  7842. The \LangCIf{} language supports most of the operators in \LangIf{}, but
  7843. the arguments of operators are restricted to atomic expressions. The
  7844. \LangCIf{} language does not include \code{if} expressions, but it does
  7845. include a restricted form of \code{if} statement. The condition must be
  7846. a comparison, and the two branches may contain only \code{goto}
  7847. statements. These restrictions make it easier to translate \code{if}
  7848. statements to x86. The \LangCIf{} language also adds a \code{return}
  7849. statement to finish the program with a specified value.
  7850. %
  7851. The \key{CProgram} construct contains a dictionary mapping labels to
  7852. lists of statements that end with a \emph{tail} statement, which is
  7853. either a \code{return} statement, a \code{goto}, or an
  7854. \code{if} statement.
  7855. %
  7856. A \code{goto} transfers control to the sequence of statements
  7857. associated with its label.
  7858. %
  7859. Figure~\ref{fig:c1-concrete-syntax} shows the concrete syntax for \LangCIf{},
  7860. and figure~\ref{fig:c1-syntax} shows its
  7861. abstract syntax.
  7862. %
  7863. \fi}
  7864. %
  7865. \newcommand{\CifGrammarRacket}{
  7866. \begin{array}{lcl}
  7867. \Atm &::=& \itm{bool} \\
  7868. \itm{cmp} &::= & \code{eq?} \MID \code{<} \MID \code{<=} \MID \code{>} \MID \code{>=} \\
  7869. \Exp &::=& \CNOT{\Atm} \MID \LP \itm{cmp}~\Atm~\Atm\RP \\
  7870. \Tail &::= & \key{goto}~\itm{label}\key{;}\\
  7871. &\MID& \key{if}~\LP \itm{cmp}~\Atm~\Atm \RP~ \key{goto}~\itm{label}\key{;} ~\key{else}~\key{goto}~\itm{label}\key{;}
  7872. \end{array}
  7873. }
  7874. \newcommand{\CifASTRacket}{
  7875. \begin{array}{lcl}
  7876. \Atm &::=& \BOOL{\itm{bool}} \\
  7877. \itm{cmp} &::= & \code{eq?} \MID \code{<} \MID \code{<=} \MID \code{>} \MID \code{>=} \\
  7878. \Exp &::= & \UNIOP{\key{'not}}{\Atm} \MID \BINOP{\key{'}\itm{cmp}}{\Atm}{\Atm} \\
  7879. \Tail &::= & \GOTO{\itm{label}} \\
  7880. &\MID& \IFSTMT{\BINOP{\itm{cmp}}{\Atm}{\Atm}}{\GOTO{\itm{label}}}{\GOTO{\itm{label}}}
  7881. \end{array}
  7882. }
  7883. \newcommand{\CifGrammarPython}{
  7884. \begin{array}{lcl}
  7885. \Atm &::=& \Int \MID \Var \MID \itm{bool} \\
  7886. \Exp &::= & \Atm \MID \CREAD{}
  7887. \MID \CUNIOP{\key{-}}{\Atm}
  7888. \MID \CBINOP{\key{+}}{\Atm}{\Atm}
  7889. \MID \CBINOP{\key{-}}{\Atm}{\Atm}
  7890. \MID \CCMP{\itm{cmp}}{\Atm}{\Atm} \\
  7891. \Stmt &::=& \CPRINT{\Atm} \MID \Exp \MID \CASSIGN{\Var}{\Exp} \\
  7892. \Tail &::=& \CRETURN{\Exp} \MID \CGOTO{\itm{label}} \\
  7893. &\MID& \CIFSTMT{\CCMP{\itm{cmp}}{\Atm}{\Atm}}{\CGOTO{\itm{label}}}{\CGOTO{\itm{label}}}
  7894. \end{array}
  7895. }
  7896. \newcommand{\CifASTPython}{
  7897. \begin{array}{lcl}
  7898. \Atm &::=& \INT{\Int} \MID \VAR{\Var} \MID \BOOL{\itm{bool}} \\
  7899. \Exp &::= & \Atm \MID \READ{}
  7900. \MID \UNIOP{\key{USub()}}{\Atm} \\
  7901. &\MID& \BINOP{\Atm}{\key{Sub()}}{\Atm}
  7902. \MID \BINOP{\Atm}{\key{Add()}}{\Atm} \\
  7903. &\MID& \CMP{\Atm}{\itm{cmp}}{\Atm} \\
  7904. \Stmt &::=& \PRINT{\Atm} \MID \EXPR{\Exp} \\
  7905. &\MID& \ASSIGN{\VAR{\Var}}{\Exp} \\
  7906. \Tail &::= & \RETURN{\Exp} \MID \GOTO{\itm{label}} \\
  7907. &\MID& \IFSTMT{\CMP{\Atm}{\itm{cmp}}{\Atm}}{\LS\GOTO{\itm{label}}\RS}{\LS\GOTO{\itm{label}}\RS}
  7908. \end{array}
  7909. }
  7910. \begin{figure}[tbp]
  7911. \begin{tcolorbox}[colback=white]
  7912. \small
  7913. {\if\edition\racketEd
  7914. \[
  7915. \begin{array}{l}
  7916. \gray{\CvarGrammarRacket} \\ \hline
  7917. \CifGrammarRacket \\
  7918. \begin{array}{lcl}
  7919. \LangCIfM{} & ::= & (\itm{label}\key{:}~ \Tail)\ldots
  7920. \end{array}
  7921. \end{array}
  7922. \]
  7923. \fi}
  7924. {\if\edition\pythonEd\pythonColor
  7925. \[
  7926. \begin{array}{l}
  7927. \CifGrammarPython \\
  7928. \begin{array}{lcl}
  7929. \LangCIfM{} & ::= & (\itm{label}\code{:}~\Stmt^{*}\;\Tail) \ldots
  7930. \end{array}
  7931. \end{array}
  7932. \]
  7933. \fi}
  7934. \end{tcolorbox}
  7935. \caption{The concrete syntax of the \LangCIf{} intermediate language%
  7936. \racket{, an extension of \LangCVar{} (figure~\ref{fig:c0-concrete-syntax})}.}
  7937. \label{fig:c1-concrete-syntax}
  7938. \index{subject}{Cif@\LangCIf{} concrete syntax}
  7939. \end{figure}
  7940. \begin{figure}[tp]
  7941. \begin{tcolorbox}[colback=white]
  7942. \small
  7943. {\if\edition\racketEd
  7944. \[
  7945. \begin{array}{l}
  7946. \gray{\CvarASTRacket} \\ \hline
  7947. \CifASTRacket \\
  7948. \begin{array}{lcl}
  7949. \LangCIfM{} & ::= & \CPROGRAM{\itm{info}}{\LP\LP\itm{label}\,\key{.}\,\Tail\RP\ldots\RP}
  7950. \end{array}
  7951. \end{array}
  7952. \]
  7953. \fi}
  7954. {\if\edition\pythonEd\pythonColor
  7955. \[
  7956. \begin{array}{l}
  7957. \CifASTPython \\
  7958. \begin{array}{lcl}
  7959. \LangCIfM{} & ::= & \CPROGRAM{\itm{info}}{\LC\itm{label}\key{:}\,\LS\Stmt,\ldots,\Tail\RS, \ldots \RC}
  7960. \end{array}
  7961. \end{array}
  7962. \]
  7963. \fi}
  7964. \end{tcolorbox}
  7965. \racket{
  7966. \index{subject}{IfStmt@\IFSTMTNAME{}}
  7967. }
  7968. \index{subject}{Goto@\texttt{Goto}}
  7969. \index{subject}{Return@\texttt{Return}}
  7970. \caption{The abstract syntax of \LangCIf{}\racket{, an extension of \LangCVar{}
  7971. (figure~\ref{fig:c0-syntax})}.}
  7972. \label{fig:c1-syntax}
  7973. \index{subject}{Cif@\LangCIf{} abstract syntax}
  7974. \end{figure}
  7975. \section{The \LangXIf{} Language}
  7976. \label{sec:x86-if}
  7977. \index{subject}{x86}
  7978. To implement Booleans, the new logical operations, the
  7979. comparison operations, and the \key{if} expression\python{ and
  7980. statement}, we delve further into the x86
  7981. language. Figures~\ref{fig:x86-1-concrete} and \ref{fig:x86-1} present
  7982. the definitions of the concrete and abstract syntax for the \LangXIf{}
  7983. subset of x86, which includes instructions for logical operations,
  7984. comparisons, and \racket{conditional} jumps.
  7985. %
  7986. \python{The abstract syntax for an \LangXIf{} program contains a
  7987. dictionary mapping labels to sequences of instructions, each of
  7988. which we refer to as a \emph{basic block}\index{subject}{basic
  7989. block}.}
  7990. As x86 does not provide direct support for Booleans, we take the usual
  7991. approach of encoding Booleans as integers, with \code{True} as $1$ and
  7992. \code{False} as $0$.
  7993. Furthermore, x86 does not provide an instruction that directly
  7994. implements logical negation (\code{not} in \LangIf{} and \LangCIf{}).
  7995. However, the \code{xorq} instruction can be used to encode \code{not}.
  7996. The \key{xorq} instruction takes two arguments, performs a pairwise
  7997. exclusive-or ($\mathrm{XOR}$) operation on each bit of its arguments,
  7998. and writes the results into its second argument. Recall the following
  7999. truth table for exclusive-or:
  8000. \begin{center}
  8001. \begin{tabular}{l|cc}
  8002. & 0 & 1 \\ \hline
  8003. 0 & 0 & 1 \\
  8004. 1 & 1 & 0
  8005. \end{tabular}
  8006. \end{center}
  8007. For example, applying $\mathrm{XOR}$ to each bit of the binary numbers
  8008. $0011$ and $0101$ yields $0110$. Notice that in the row of the table
  8009. for the bit $1$, the result is the opposite of the second bit. Thus,
  8010. the \code{not} operation can be implemented by \code{xorq} with $1$ as
  8011. the first argument, as follows, where $\Arg$ is the translation of
  8012. $\Atm$ to x86:
  8013. \[
  8014. \CASSIGN{\Var}{\CUNIOP{\key{not}}{\Atm}}
  8015. \qquad\Rightarrow\qquad
  8016. \begin{array}{l}
  8017. \key{movq}~ \Arg\key{,} \Var\\
  8018. \key{xorq}~ \key{\$1,} \Var
  8019. \end{array}
  8020. \]
  8021. \newcommand{\GrammarXIfRacket}{
  8022. \begin{array}{lcl}
  8023. \itm{bytereg} &::=& \key{ah} \MID \key{al} \MID \key{bh} \MID \key{bl}
  8024. \MID \key{ch} \MID \key{cl} \MID \key{dh} \MID \key{dl} \\
  8025. \Arg &::=& \key{\%}\itm{bytereg}\\
  8026. \itm{cc} & ::= & \key{e} \MID \key{ne} \MID \key{l} \MID \key{le} \MID \key{g} \MID \key{ge} \\
  8027. \Instr &::=& \key{xorq}~\Arg\key{,}~\Arg
  8028. \MID \key{cmpq}~\Arg\key{,}~\Arg
  8029. \MID \key{set}cc~\Arg
  8030. \MID \key{movzbq}~\Arg\key{,}~\Arg \\
  8031. &\MID& \key{j}cc~\itm{label} \\
  8032. \end{array}
  8033. }
  8034. \newcommand{\GrammarXIfPython}{
  8035. \begin{array}{lcl}
  8036. \itm{bytereg} &::=& \key{ah} \MID \key{al} \MID \key{bh} \MID \key{bl}
  8037. \MID \key{ch} \MID \key{cl} \MID \key{dh} \MID \key{dl} \\
  8038. \Arg &::=& \key{\%}\itm{bytereg}\\
  8039. \itm{cc} & ::= & \key{e} \MID \key{ne} \MID \key{l} \MID \key{le} \MID \key{g} \MID \key{ge} \\
  8040. \Instr &::=& \key{xorq}~\Arg\key{,}~\Arg
  8041. \MID \key{cmpq}~\Arg\key{,}~\Arg
  8042. \MID \key{set}cc~\Arg
  8043. \MID \key{movzbq}~\Arg\key{,}~\Arg \\
  8044. &\MID& \key{jmp}\,\itm{label} \MID \key{j}cc~\itm{label}
  8045. \MID \itm{label}\key{:}\; \Instr
  8046. \end{array}
  8047. }
  8048. \begin{figure}[tp]
  8049. \begin{tcolorbox}[colback=white]
  8050. {\if\edition\racketEd
  8051. \[
  8052. \begin{array}{l}
  8053. \gray{\GrammarXIntRacket} \\ \hline
  8054. \GrammarXIfRacket \\
  8055. \begin{array}{lcl}
  8056. \LangXIfM{} &::= & \key{.globl main} \\
  8057. & & \key{main:} \; \Instr\ldots
  8058. \end{array}
  8059. \end{array}
  8060. \]
  8061. \fi}
  8062. {\if\edition\pythonEd
  8063. \[
  8064. \begin{array}{l}
  8065. \gray{\GrammarXIntPython} \\ \hline
  8066. \GrammarXIfPython \\
  8067. \begin{array}{lcl}
  8068. \LangXIfM{} &::= & \key{.globl main} \\
  8069. & & \key{main:} \; \Instr\ldots
  8070. \end{array}
  8071. \end{array}
  8072. \]
  8073. \fi}
  8074. \end{tcolorbox}
  8075. \caption{The concrete syntax of \LangXIf{} (extends \LangXInt{} of figure~\ref{fig:x86-int-concrete}).}
  8076. \label{fig:x86-1-concrete}
  8077. \index{subject}{x86if@\LangXIf{} concrete syntax}
  8078. \end{figure}
  8079. \newcommand{\ASTXIfRacket}{
  8080. \begin{array}{lcl}
  8081. \itm{bytereg} &::=& \key{ah} \MID \key{al} \MID \key{bh} \MID \key{bl}
  8082. \MID \key{ch} \MID \key{cl} \MID \key{dh} \MID \key{dl} \\
  8083. \Arg &::=& \BYTEREG{\itm{bytereg}} \\
  8084. \itm{cc} & ::= & \key{e} \MID \key{l} \MID \key{le} \MID \key{g} \MID \key{ge} \\
  8085. \Instr &::=& \BININSTR{\code{xorq}}{\Arg}{\Arg}
  8086. \MID \BININSTR{\code{cmpq}}{\Arg}{\Arg}\\
  8087. &\MID& \BININSTR{\code{set}}{\itm{cc}}{\Arg}
  8088. \MID \BININSTR{\code{movzbq}}{\Arg}{\Arg}\\
  8089. &\MID& \JMPIF{\itm{cc}}{\itm{label}}
  8090. \end{array}
  8091. }
  8092. \newcommand{\ASTXIfPython}{
  8093. \begin{array}{lcl}
  8094. \itm{bytereg} &::=& \skey{ah} \MID \skey{al} \MID \skey{bh} \MID \skey{bl}
  8095. \MID \skey{ch} \MID \skey{cl} \MID \skey{dh} \MID \skey{dl} \\
  8096. \Arg &::=& \gray{\IMM{\Int} \MID \REG{\Reg} \MID \DEREF{\Reg}{\Int}}
  8097. \MID \BYTEREG{\itm{bytereg}} \\
  8098. \itm{cc} & ::= & \skey{e} \MID \skey{ne} \MID \skey{l} \MID \skey{le} \MID \skey{g} \MID \skey{ge} \\
  8099. \Instr &::=& \BININSTR{\scode{xorq}}{\Arg}{\Arg}
  8100. \MID \BININSTR{\scode{cmpq}}{\Arg}{\Arg}\\
  8101. &\MID& \UNIINSTR{\scode{set}\code{+}\itm{cc}}{\Arg}
  8102. \MID \BININSTR{\scode{movzbq}}{\Arg}{\Arg}\\
  8103. &\MID& \python{\JMP{\itm{label}}} \MID \JMPIF{\itm{cc}}{\itm{label}}
  8104. \end{array}
  8105. }
  8106. \begin{figure}[tp]
  8107. \begin{tcolorbox}[colback=white]
  8108. \small
  8109. {\if\edition\racketEd
  8110. \[\arraycolsep=3pt
  8111. \begin{array}{l}
  8112. \gray{\ASTXIntRacket} \\ \hline
  8113. \ASTXIfRacket \\
  8114. \begin{array}{lcl}
  8115. \LangXIfM{} &::= & \XPROGRAM{\itm{info}}{\LP\LP\itm{label} \,\key{.}\, \Block \RP\ldots\RP}
  8116. \end{array}
  8117. \end{array}
  8118. \]
  8119. \fi}
  8120. %
  8121. {\if\edition\pythonEd\pythonColor
  8122. \[
  8123. \begin{array}{l}
  8124. \gray{\ASTXIntPython} \\ \hline
  8125. \ASTXIfPython \\
  8126. \begin{array}{lcl}
  8127. \LangXIfM{} &::= & \XPROGRAM{\itm{info}}{\LC\itm{label} \,\key{:}\, \Block \key{,} \ldots \RC }
  8128. \end{array}
  8129. \end{array}
  8130. \]
  8131. \fi}
  8132. \end{tcolorbox}
  8133. \caption{The abstract syntax of \LangXIf{} (extends \LangXInt{} shown in figure~\ref{fig:x86-int-ast}).}
  8134. \label{fig:x86-1}
  8135. \index{subject}{x86if@\LangXIf{} abstract syntax}
  8136. \end{figure}
  8137. Next we consider the x86 instructions that are relevant for compiling
  8138. the comparison operations. The \key{cmpq} instruction compares its two
  8139. arguments to determine whether one argument is less than, equal to, or
  8140. greater than the other argument. The \key{cmpq} instruction is unusual
  8141. regarding the order of its arguments and where the result is
  8142. placed. The argument order is backward: if you want to test whether
  8143. $x < y$, then write \code{cmpq} $y$\code{,} $x$. The result of
  8144. \key{cmpq} is placed in the special EFLAGS register. This register
  8145. cannot be accessed directly, but it can be queried by a number of
  8146. instructions, including the \key{set} instruction. The instruction
  8147. $\key{set}cc~d$ puts a \key{1} or \key{0} into the destination $d$,
  8148. depending on whether the contents of the EFLAGS register matches the
  8149. condition code \itm{cc}: \key{e} for equal, \key{l} for less, \key{le}
  8150. for less-or-equal, \key{g} for greater, \key{ge} for greater-or-equal.
  8151. The \key{set} instruction has a quirk in that its destination argument
  8152. must be a single-byte register, such as \code{al} (\code{l} for lower bits) or
  8153. \code{ah} (\code{h} for higher bits), which are part of the \code{rax}
  8154. register. Thankfully, the \key{movzbq} instruction can be used to
  8155. move from a single-byte register to a normal 64-bit register. The
  8156. abstract syntax for the \code{set} instruction differs from the
  8157. concrete syntax in that it separates the instruction name from the
  8158. condition code.
  8159. \python{The x86 instructions for jumping are relevant to the
  8160. compilation of \key{if} expressions.}
  8161. %
  8162. \python{The instruction $\key{jmp}\,\itm{label}$ updates the program
  8163. counter to the address of the instruction after the specified
  8164. label.}
  8165. %
  8166. \racket{The x86 instruction for conditional jump is relevant to the
  8167. compilation of \key{if} expressions.}
  8168. %
  8169. The instruction $\key{j}\itm{cc}~\itm{label}$ updates the program
  8170. counter to point to the instruction after \itm{label}, depending on
  8171. whether the result in the EFLAGS register matches the condition code
  8172. \itm{cc}; otherwise, the jump instruction falls through to the next
  8173. instruction. Like the abstract syntax for \code{set}, the abstract
  8174. syntax for conditional jump separates the instruction name from the
  8175. condition code. For example, \JMPIF{\QUOTE{\code{le}}}{\QUOTE{\code{foo}}}
  8176. corresponds to \code{jle foo}. Because the conditional jump instruction
  8177. relies on the EFLAGS register, it is common for it to be immediately preceded by
  8178. a \key{cmpq} instruction to set the EFLAGS register.
  8179. \section{Shrink the \LangIf{} Language}
  8180. \label{sec:shrink-Lif}
  8181. The \code{shrink} pass translates some of the language features into
  8182. other features, thereby reducing the kinds of expressions in the
  8183. language. For example, the short-circuiting nature of the \code{and}
  8184. and \code{or} logical operators can be expressed using \code{if} as
  8185. follows.
  8186. \begin{align*}
  8187. \CAND{e_1}{e_2} & \quad \Rightarrow \quad \CIF{e_1}{e_2}{\FALSE{}}\\
  8188. \COR{e_1}{e_2} & \quad \Rightarrow \quad \CIF{e_1}{\TRUE{}}{e_2}
  8189. \end{align*}
  8190. By performing these translations in the front end of the compiler,
  8191. subsequent passes of the compiler can be shorter.
  8192. On the other hand, translations sometimes reduce the efficiency of the
  8193. generated code by increasing the number of instructions. For example,
  8194. expressing subtraction in terms of addition and negation
  8195. \[
  8196. \CBINOP{\key{-}}{e_1}{e_2} \quad \Rightarrow \quad
  8197. \CBINOP{\key{+}}{e_1}{ \CUNIOP{\key{-}}{e_2} }
  8198. \]
  8199. produces code with two x86 instructions (\code{negq} and \code{addq})
  8200. instead of just one (\code{subq}). Thus, we do not recommend
  8201. translating subtraction into addition and negation.
  8202. \begin{exercise}\normalfont\normalsize
  8203. %
  8204. Implement the pass \code{shrink} to remove \key{and} and \key{or} from
  8205. the language by translating them to \code{if} expressions in \LangIf{}.
  8206. %
  8207. Create four test programs that involve these operators.
  8208. %
  8209. {\if\edition\racketEd
  8210. In the \code{run-tests.rkt} script, add the following entry for
  8211. \code{shrink} to the list of passes (it should be the only pass at
  8212. this point).
  8213. \begin{lstlisting}
  8214. (list "shrink" shrink interp_Lif type-check-Lif)
  8215. \end{lstlisting}
  8216. This instructs \code{interp-tests} to run the interpreter
  8217. \code{interp\_Lif} and the type checker \code{type-check-Lif} on the
  8218. output of \code{shrink}.
  8219. \fi}
  8220. %
  8221. Run the script to test your compiler on all the test programs.
  8222. \end{exercise}
  8223. {\if\edition\racketEd
  8224. \section{Uniquify Variables}
  8225. \label{sec:uniquify-Lif}
  8226. Add cases to \code{uniquify\_exp} to handle Boolean constants and
  8227. \code{if} expressions.
  8228. \begin{exercise}\normalfont\normalsize
  8229. Update the \code{uniquify\_exp} for \LangIf{} and add the following
  8230. entry to the list of \code{passes} in the \code{run-tests.rkt} script:
  8231. \begin{lstlisting}
  8232. (list "uniquify" uniquify interp_Lif type_check_Lif)
  8233. \end{lstlisting}
  8234. Run the script to test your compiler.
  8235. \end{exercise}
  8236. \fi}
  8237. \section{Remove Complex Operands}
  8238. \label{sec:remove-complex-opera-Lif}
  8239. The output language of \code{remove\_complex\_operands} is
  8240. \LangIfANF{} (figure~\ref{fig:Lif-anf-syntax}), the monadic
  8241. normal form of \LangIf{}. A Boolean constant is an atomic expression,
  8242. but the \code{if} expression is not. All three subexpressions of an
  8243. \code{if} are allowed to be complex expressions, but the operands of
  8244. the \code{not} operator and comparison operators must be atomic.
  8245. %
  8246. \python{We add a new language form, the \code{Begin} expression, to aid
  8247. in the translation of \code{if} expressions. When we recursively
  8248. process the two branches of the \code{if}, we generate temporary
  8249. variables and their initializing expressions. However, these
  8250. expressions may contain side effects and should be executed only
  8251. when the condition of the \code{if} is true (for the ``then''
  8252. branch) or false (for the ``else'' branch). The \code{Begin} expression
  8253. provides a way to initialize the temporary variables within the two branches
  8254. of the \code{if} expression. In general, the $\BEGIN{ss}{e}$
  8255. form executes the statements $ss$ and then returns the result of
  8256. expression $e$.}
  8257. \racket{Add cases to the \code{rco\_exp} and \code{rco\_atom}
  8258. functions for the new features in \LangIf{}. In recursively
  8259. processing subexpressions, recall that you should invoke
  8260. \code{rco\_atom} when the output needs to be an \Atm{} (as specified
  8261. in the grammar for \LangIfANF{}) and invoke \code{rco\_exp} when the
  8262. output should be \Exp{}.}
  8263. %
  8264. \python{Add cases to the \code{rco\_exp} function for the new features
  8265. in \LangIf{}. In recursively processing subexpressions, recall that
  8266. you should invoke \code{rco\_exp} with the extra argument
  8267. \code{True} when the output needs to be an \Atm{} (as specified in
  8268. the grammar for \LangIfANF{}) and \code{False} when the output
  8269. should be \Exp{}.}
  8270. %
  8271. Regarding \code{if}, it is particularly important \emph{not} to
  8272. replace its condition with a temporary variable, because that would
  8273. interfere with the generation of high-quality output in the upcoming
  8274. \code{explicate\_control} pass.
  8275. \newcommand{\LifMonadASTRacket}{
  8276. \begin{array}{rcl}
  8277. \Atm &::=& \BOOL{\itm{bool}}\\
  8278. \Exp &::=& \UNIOP{\key{not}}{\Atm}
  8279. \MID \BINOP{\itm{cmp}}{\Atm}{\Atm}
  8280. \MID \IF{\Exp}{\Exp}{\Exp}
  8281. \end{array}
  8282. }
  8283. \newcommand{\LifMonadASTPython}{
  8284. \begin{array}{rcl}
  8285. \Atm &::=& \BOOL{\itm{bool}}\\
  8286. \Exp &::=& \UNIOP{\key{Not()}}{\Atm}
  8287. \MID \CMP{\Atm}{\itm{cmp}}{\Atm} \\
  8288. &\MID& \IF{\Exp}{\Exp}{\Exp}
  8289. \MID \BEGIN{\Stmt^{*}}{\Exp}\\
  8290. \Stmt{} &::=& \IFSTMT{\Exp}{\Stmt^{*}}{\Stmt^{*}}
  8291. \end{array}
  8292. }
  8293. \begin{figure}[tp]
  8294. \centering
  8295. \begin{tcolorbox}[colback=white]
  8296. {\if\edition\racketEd
  8297. \[
  8298. \begin{array}{l}
  8299. \gray{\LvarMonadASTRacket} \\ \hline
  8300. \LifMonadASTRacket \\
  8301. \begin{array}{rcl}
  8302. \LangIfANF &::=& \PROGRAM{\code{()}}{\Exp}
  8303. \end{array}
  8304. \end{array}
  8305. \]
  8306. \fi}
  8307. {\if\edition\pythonEd\pythonColor
  8308. \[
  8309. \begin{array}{l}
  8310. \gray{\LvarMonadASTPython} \\ \hline
  8311. \LifMonadASTPython \\
  8312. \begin{array}{rcl}
  8313. \LangIfANF &::=& \PROGRAM{\code{()}}{\Stmt^{*}}
  8314. \end{array}
  8315. \end{array}
  8316. \]
  8317. \fi}
  8318. \end{tcolorbox}
  8319. \python{\index{subject}{Begin@\texttt{Begin}}}
  8320. \caption{\LangIfANF{} is \LangIf{} in monadic normal form
  8321. (extends \LangVarANF in figure~\ref{fig:Lvar-anf-syntax}).}
  8322. \label{fig:Lif-anf-syntax}
  8323. \index{subject}{Lifmon@\LangIfANF{} abstract syntax}
  8324. \end{figure}
  8325. \begin{exercise}\normalfont\normalsize
  8326. %
  8327. Add cases for Boolean constants and \code{if} to the \code{rco\_atom}
  8328. and \code{rco\_exp} functions.
  8329. %
  8330. Create three new \LangIf{} programs that exercise the interesting
  8331. code in this pass.
  8332. %
  8333. {\if\edition\racketEd
  8334. In the \code{run-tests.rkt} script, add the following entry to the
  8335. list of \code{passes} and then run the script to test your compiler.
  8336. \begin{lstlisting}
  8337. (list "remove-complex" remove_complex_operands interp-Lif type-check-Lif)
  8338. \end{lstlisting}
  8339. \fi}
  8340. \end{exercise}
  8341. \section{Explicate Control}
  8342. \label{sec:explicate-control-Lif}
  8343. \racket{Recall that the purpose of \code{explicate\_control} is to
  8344. make the order of evaluation explicit in the syntax of the program.
  8345. With the addition of \key{if}, this becomes more interesting.}
  8346. %
  8347. The \code{explicate\_control} pass translates from \LangIf{} to \LangCIf{}.
  8348. %
  8349. The main challenge to overcome is that the condition of an \key{if}
  8350. can be an arbitrary expression in \LangIf{}, whereas in \LangCIf{} the
  8351. condition must be a comparison.
  8352. As a motivating example, consider the following program that has an
  8353. \key{if} expression nested in the condition of another \key{if}:%
  8354. \python{\footnote{Programmers rarely write nested \code{if}
  8355. expressions, but they do write nested expressions involving
  8356. logical \code{and}, which, as we have seen, translates to
  8357. \code{if}.}}
  8358. % cond_test_41.rkt, if_lt_eq.py
  8359. \begin{center}
  8360. \begin{minipage}{0.96\textwidth}
  8361. {\if\edition\racketEd
  8362. \begin{lstlisting}
  8363. (let ([x (read)])
  8364. (let ([y (read)])
  8365. (if (if (< x 1) (eq? x 0) (eq? x 2))
  8366. (+ y 2)
  8367. (+ y 10))))
  8368. \end{lstlisting}
  8369. \fi}
  8370. {\if\edition\pythonEd\pythonColor
  8371. \begin{lstlisting}
  8372. x = input_int()
  8373. y = input_int()
  8374. print(y + 2 if (x == 0 if x < 1 else x == 2) else y + 10)
  8375. \end{lstlisting}
  8376. \fi}
  8377. \end{minipage}
  8378. \end{center}
  8379. %
  8380. The naive way to compile \key{if} and the comparison operations would
  8381. be to handle each of them in isolation, regardless of their context.
  8382. Each comparison would be translated into a \key{cmpq} instruction
  8383. followed by several instructions to move the result from the EFLAGS
  8384. register into a general purpose register or stack location. Each
  8385. \key{if} would be translated into a \key{cmpq} instruction followed by
  8386. a conditional jump. The generated code for the inner \key{if} in this
  8387. example would be as follows:
  8388. \begin{center}
  8389. \begin{minipage}{0.96\textwidth}
  8390. \begin{lstlisting}
  8391. cmpq $1, x
  8392. setl %al
  8393. movzbq %al, tmp
  8394. cmpq $1, tmp
  8395. je then_branch_1
  8396. jmp else_branch_1
  8397. \end{lstlisting}
  8398. \end{minipage}
  8399. \end{center}
  8400. Notice that the three instructions starting with \code{setl} are
  8401. redundant; the conditional jump could come immediately after the first
  8402. \code{cmpq}.
  8403. Our goal is to compile \key{if} expressions so that the relevant
  8404. comparison instruction appears directly before the conditional jump.
  8405. For example, we want to generate the following code for the inner
  8406. \code{if}:
  8407. \begin{center}
  8408. \begin{minipage}{0.96\textwidth}
  8409. \begin{lstlisting}
  8410. cmpq $1, x
  8411. jl then_branch_1
  8412. jmp else_branch_1
  8413. \end{lstlisting}
  8414. \end{minipage}
  8415. \end{center}
  8416. One way to achieve this goal is to reorganize the code at the level of
  8417. \LangIf{}, pushing the outer \key{if} inside the inner one, yielding
  8418. the following code:
  8419. \begin{center}
  8420. \begin{minipage}{0.96\textwidth}
  8421. {\if\edition\racketEd
  8422. \begin{lstlisting}
  8423. (let ([x (read)])
  8424. (let ([y (read)])
  8425. (if (< x 1)
  8426. (if (eq? x 0)
  8427. (+ y 2)
  8428. (+ y 10))
  8429. (if (eq? x 2)
  8430. (+ y 2)
  8431. (+ y 10)))))
  8432. \end{lstlisting}
  8433. \fi}
  8434. {\if\edition\pythonEd\pythonColor
  8435. \begin{lstlisting}
  8436. x = input_int()
  8437. y = input_int()
  8438. print(((y + 2) if x == 0 else (y + 10)) \
  8439. if (x < 1) \
  8440. else ((y + 2) if (x == 2) else (y + 10)))
  8441. \end{lstlisting}
  8442. \fi}
  8443. \end{minipage}
  8444. \end{center}
  8445. Unfortunately, this approach duplicates the two branches from the
  8446. outer \code{if}, and a compiler must never duplicate code! After all,
  8447. the two branches could be very large expressions.
  8448. How can we apply this transformation without duplicating code? In
  8449. other words, how can two different parts of a program refer to one
  8450. piece of code?
  8451. %
  8452. The answer is that we must move away from abstract syntax \emph{trees}
  8453. and instead use \emph{graphs}.
  8454. %
  8455. At the level of x86 assembly, this is straightforward because we can
  8456. label the code for each branch and insert jumps in all the places that
  8457. need to execute the branch. In this way, jump instructions are edges
  8458. in the graph and the basic blocks are the nodes.
  8459. %
  8460. Likewise, our language \LangCIf{} provides the ability to label a
  8461. sequence of statements and to jump to a label via \code{goto}.
  8462. As a preview of what \code{explicate\_control} will do,
  8463. figure~\ref{fig:explicate-control-s1-38} shows the output of
  8464. \code{explicate\_control} on this example. Note how the condition of
  8465. every \code{if} is a comparison operation and that we have not
  8466. duplicated any code but instead have used labels and \code{goto} to
  8467. enable sharing of code.
  8468. \begin{figure}[tbp]
  8469. \begin{tcolorbox}[colback=white]
  8470. {\if\edition\racketEd
  8471. \begin{tabular}{lll}
  8472. \begin{minipage}{0.4\textwidth}
  8473. % cond_test_41.rkt
  8474. \begin{lstlisting}
  8475. (let ([x (read)])
  8476. (let ([y (read)])
  8477. (if (if (< x 1)
  8478. (eq? x 0)
  8479. (eq? x 2))
  8480. (+ y 2)
  8481. (+ y 10))))
  8482. \end{lstlisting}
  8483. \end{minipage}
  8484. &
  8485. $\Rightarrow$
  8486. &
  8487. \begin{minipage}{0.55\textwidth}
  8488. \begin{lstlisting}
  8489. start:
  8490. x = (read);
  8491. y = (read);
  8492. if (< x 1)
  8493. goto block_4;
  8494. else
  8495. goto block_5;
  8496. block_4:
  8497. if (eq? x 0)
  8498. goto block_2;
  8499. else
  8500. goto block_3;
  8501. block_5:
  8502. if (eq? x 2)
  8503. goto block_2;
  8504. else
  8505. goto block_3;
  8506. block_2:
  8507. return (+ y 2);
  8508. block_3:
  8509. return (+ y 10);
  8510. \end{lstlisting}
  8511. \end{minipage}
  8512. \end{tabular}
  8513. \fi}
  8514. {\if\edition\pythonEd\pythonColor
  8515. \begin{tabular}{lll}
  8516. \begin{minipage}{0.4\textwidth}
  8517. % tests/if/if_lt_eq.py
  8518. \begin{lstlisting}
  8519. x = input_int()
  8520. y = input_int()
  8521. print(y + 2 \
  8522. if (x == 0 \
  8523. if x < 1 \
  8524. else x == 2) \
  8525. else y + 10)
  8526. \end{lstlisting}
  8527. \end{minipage}
  8528. &
  8529. $\Rightarrow\qquad$
  8530. &
  8531. \begin{minipage}{0.55\textwidth}
  8532. \begin{lstlisting}
  8533. start:
  8534. x = input_int()
  8535. y = input_int()
  8536. if x < 1:
  8537. goto block_6
  8538. else:
  8539. goto block_7
  8540. block_6:
  8541. if x == 0:
  8542. goto block_4
  8543. else:
  8544. goto block_5
  8545. block_7:
  8546. if x == 2:
  8547. goto block_4
  8548. else:
  8549. goto block_5
  8550. block_4:
  8551. tmp.82 = (y + 2)
  8552. goto block_3
  8553. block_5:
  8554. tmp.82 = (y + 10)
  8555. goto block_3
  8556. block_3:
  8557. print(tmp.82)
  8558. return 0
  8559. \end{lstlisting}
  8560. \end{minipage}
  8561. \end{tabular}
  8562. \fi}
  8563. \end{tcolorbox}
  8564. \caption{Translation from \LangIf{} to \LangCIf{}
  8565. via the \code{explicate\_control}.}
  8566. \label{fig:explicate-control-s1-38}
  8567. \end{figure}
  8568. {\if\edition\racketEd
  8569. %
  8570. Recall that in section~\ref{sec:explicate-control-Lvar} we implement
  8571. \code{explicate\_control} for \LangVar{} using two recursive
  8572. functions, \code{explicate\_tail} and \code{explicate\_assign}. The
  8573. former function translates expressions in tail position, whereas the
  8574. latter function translates expressions on the right-hand side of a
  8575. \key{let}. With the addition of \key{if} expression to \LangIf{} we
  8576. have a new kind of position to deal with: the predicate position of
  8577. the \key{if}. We need another function, \code{explicate\_pred}, that
  8578. decides how to compile an \key{if} by analyzing its condition. So,
  8579. \code{explicate\_pred} takes an \LangIf{} expression and two
  8580. \LangCIf{} tails for the \emph{then} branch and \emph{else} branch
  8581. and outputs a tail. In the following paragraphs we discuss specific
  8582. cases in the \code{explicate\_tail}, \code{explicate\_assign}, and
  8583. \code{explicate\_pred} functions.
  8584. %
  8585. \fi}
  8586. %
  8587. {\if\edition\pythonEd\pythonColor
  8588. %
  8589. We recommend implementing \code{explicate\_control} using the
  8590. following four auxiliary functions.
  8591. \begin{description}
  8592. \item[\code{explicate\_effect}] generates code for expressions as
  8593. statements, so their result is ignored and only their side effects
  8594. matter.
  8595. \item[\code{explicate\_assign}] generates code for expressions
  8596. on the right-hand side of an assignment.
  8597. \item[\code{explicate\_pred}] generates code for an \code{if}
  8598. expression or statement by analyzing the condition expression.
  8599. \item[\code{explicate\_stmt}] generates code for statements.
  8600. \end{description}
  8601. These four functions should build the dictionary of basic blocks. The
  8602. following auxiliary function \code{create\_block} is used to create a
  8603. new basic block from a list of statements. If the list just contains a
  8604. \code{goto}, then \code{create\_block} returns the list. Otherwise
  8605. \code{create\_block} creates a new basic block and returns a
  8606. \code{goto} to its label.
  8607. \begin{center}
  8608. \begin{minipage}{\textwidth}
  8609. \begin{lstlisting}
  8610. def create_block(stmts, basic_blocks):
  8611. match stmts:
  8612. case [Goto(l)]:
  8613. return stmts
  8614. case _:
  8615. label = label_name(generate_name('block'))
  8616. basic_blocks[label] = stmts
  8617. return [Goto(label)]
  8618. \end{lstlisting}
  8619. \end{minipage}
  8620. \end{center}
  8621. Figure~\ref{fig:explicate-control-Lif} provides a skeleton for the
  8622. \code{explicate\_control} pass.
  8623. The \code{explicate\_effect} function has three parameters: (1) the
  8624. expression to be compiled; (2) the already-compiled code for this
  8625. expression's \emph{continuation}, that is, the list of statements that
  8626. should execute after this expression; and (3) the dictionary of
  8627. generated basic blocks. The \code{explicate\_effect} function returns
  8628. a list of \LangCIf{} statements and it may add to the dictionary of
  8629. basic blocks.
  8630. %
  8631. Let's consider a few of the cases for the expression to be compiled.
  8632. If the expression to be compiled is a constant, then it can be
  8633. discarded because it has no side effects. If it's a \CREAD{}, then it
  8634. has a side effect and should be preserved. So the expression should be
  8635. translated into a statement using the \code{Expr} AST class. If the
  8636. expression to be compiled is an \code{if} expression, we translate the
  8637. two branches using \code{explicate\_effect} and then translate the
  8638. condition expression using \code{explicate\_pred}, which generates
  8639. code for the entire \code{if}.
  8640. The \code{explicate\_assign} function has four parameters: (1) the
  8641. right-hand side of the assignment, (2) the left-hand side of the
  8642. assignment (the variable), (3) the continuation, and (4) the dictionary
  8643. of basic blocks. The \code{explicate\_assign} function returns a list
  8644. of \LangCIf{} statements, and it may add to the dictionary of basic
  8645. blocks.
  8646. When the right-hand side is an \code{if} expression, there is some
  8647. work to do. In particular, the two branches should be translated using
  8648. \code{explicate\_assign}, and the condition expression should be
  8649. translated using \code{explicate\_pred}. Otherwise we can simply
  8650. generate an assignment statement, with the given left- and right-hand
  8651. sides, concatenated with its continuation.
  8652. \begin{figure}[tbp]
  8653. \begin{tcolorbox}[colback=white]
  8654. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  8655. def explicate_effect(e, cont, basic_blocks):
  8656. match e:
  8657. case IfExp(test, body, orelse):
  8658. ...
  8659. case Call(func, args):
  8660. ...
  8661. case Begin(body, result):
  8662. ...
  8663. case _:
  8664. ...
  8665. def explicate_assign(rhs, lhs, cont, basic_blocks):
  8666. match rhs:
  8667. case IfExp(test, body, orelse):
  8668. ...
  8669. case Begin(body, result):
  8670. ...
  8671. case _:
  8672. return [Assign([lhs], rhs)] + cont
  8673. def explicate_pred(cnd, thn, els, basic_blocks):
  8674. match cnd:
  8675. case Compare(left, [op], [right]):
  8676. goto_thn = create_block(thn, basic_blocks)
  8677. goto_els = create_block(els, basic_blocks)
  8678. return [If(cnd, goto_thn, goto_els)]
  8679. case Constant(True):
  8680. return thn;
  8681. case Constant(False):
  8682. return els;
  8683. case UnaryOp(Not(), operand):
  8684. ...
  8685. case IfExp(test, body, orelse):
  8686. ...
  8687. case Begin(body, result):
  8688. ...
  8689. case _:
  8690. return [If(Compare(cnd, [Eq()], [Constant(False)]),
  8691. create_block(els, basic_blocks),
  8692. create_block(thn, basic_blocks))]
  8693. def explicate_stmt(s, cont, basic_blocks):
  8694. match s:
  8695. case Assign([lhs], rhs):
  8696. return explicate_assign(rhs, lhs, cont, basic_blocks)
  8697. case Expr(value):
  8698. return explicate_effect(value, cont, basic_blocks)
  8699. case If(test, body, orelse):
  8700. ...
  8701. def explicate_control(p):
  8702. match p:
  8703. case Module(body):
  8704. new_body = [Return(Constant(0))]
  8705. basic_blocks = {}
  8706. for s in reversed(body):
  8707. new_body = explicate_stmt(s, new_body, basic_blocks)
  8708. basic_blocks[label_name('start')] = new_body
  8709. return CProgram(basic_blocks)
  8710. \end{lstlisting}
  8711. \end{tcolorbox}
  8712. \caption{Skeleton for the \code{explicate\_control} pass.}
  8713. \label{fig:explicate-control-Lif}
  8714. \end{figure}
  8715. \fi}
  8716. {\if\edition\racketEd
  8717. \subsection{Explicate Tail and Assign}
  8718. The \code{explicate\_tail} and \code{explicate\_assign} functions need
  8719. additional cases for Boolean constants and \key{if}. The cases for
  8720. \code{if} should recursively compile the two branches using either
  8721. \code{explicate\_tail} or \code{explicate\_assign}, respectively. The
  8722. cases should then invoke \code{explicate\_pred} on the condition
  8723. expression, passing in the generated code for the two branches. For
  8724. example, consider the following program with an \code{if} in tail
  8725. position.
  8726. % cond_test_6.rkt
  8727. \begin{lstlisting}
  8728. (let ([x (read)])
  8729. (if (eq? x 0) 42 777))
  8730. \end{lstlisting}
  8731. The two branches are recursively compiled to return statements. We
  8732. then delegate to \code{explicate\_pred}, passing the condition
  8733. \code{(eq? x 0)} and the two return statements. We return to this
  8734. example shortly when we discuss \code{explicate\_pred}.
  8735. Next let us consider a program with an \code{if} on the right-hand
  8736. side of a \code{let}.
  8737. \begin{lstlisting}
  8738. (let ([y (read)])
  8739. (let ([x (if (eq? y 0) 40 777)])
  8740. (+ x 2)))
  8741. \end{lstlisting}
  8742. Note that the body of the inner \code{let} will have already been
  8743. compiled to \code{return (+ x 2);} and passed as the \code{cont}
  8744. parameter of \code{explicate\_assign}. We'll need to use \code{cont}
  8745. to recursively process both branches of the \code{if}, and we do not
  8746. want to duplicate code, so we generate the following block using an
  8747. auxiliary function named \code{create\_block}, discussed in the next
  8748. section.
  8749. \begin{lstlisting}
  8750. block_6:
  8751. return (+ x 2)
  8752. \end{lstlisting}
  8753. We then use \code{goto block\_6;} as the \code{cont} argument for
  8754. compiling the branches. So the two branches compile to
  8755. \begin{center}
  8756. \begin{minipage}{0.2\textwidth}
  8757. \begin{lstlisting}
  8758. x = 40;
  8759. goto block_6;
  8760. \end{lstlisting}
  8761. \end{minipage}
  8762. \hspace{0.5in} and \hspace{0.5in}
  8763. \begin{minipage}{0.2\textwidth}
  8764. \begin{lstlisting}
  8765. x = 777;
  8766. goto block_6;
  8767. \end{lstlisting}
  8768. \end{minipage}
  8769. \end{center}
  8770. Finally, we delegate to \code{explicate\_pred}, passing the condition
  8771. \code{(eq? y 0)} and the previously presented code for the branches.
  8772. \subsection{Create Block}
  8773. We recommend implementing the \code{create\_block} auxiliary function
  8774. as follows, using a global variable \code{basic-blocks} to store a
  8775. dictionary that maps labels to $\Tail$ expressions. The main idea is
  8776. that \code{create\_block} generates a new label and then associates
  8777. the given \code{tail} with the new label in the \code{basic-blocks}
  8778. dictionary. The result of \code{create\_block} is a \code{Goto} to the
  8779. new label. However, if the given \code{tail} is already a \code{Goto},
  8780. then there is no need to generate a new label and entry in
  8781. \code{basic-blocks}; we can simply return that \code{Goto}.
  8782. %
  8783. \begin{lstlisting}
  8784. (define (create_block tail)
  8785. (match tail
  8786. [(Goto label) (Goto label)]
  8787. [else
  8788. (let ([label (gensym 'block)])
  8789. (set! basic-blocks (cons (cons label tail) basic-blocks))
  8790. (Goto label))]))
  8791. \end{lstlisting}
  8792. \fi}
  8793. {\if\edition\racketEd
  8794. \subsection{Explicate Predicate}
  8795. The skeleton for the \code{explicate\_pred} function is given in
  8796. figure~\ref{fig:explicate-pred}. It takes three parameters: (1)
  8797. \code{cnd}, the condition expression of the \code{if}; (2) \code{thn},
  8798. the code generated by explicate for the \emph{then} branch; and (3)
  8799. \code{els}, the code generated by explicate for the \emph{else}
  8800. branch. The \code{explicate\_pred} function should match on
  8801. \code{cnd} with a case for every kind of expression that can have type
  8802. \BOOLTY{}.
  8803. \begin{figure}[tbp]
  8804. \begin{tcolorbox}[colback=white]
  8805. \begin{lstlisting}
  8806. (define (explicate_pred cnd thn els)
  8807. (match cnd
  8808. [(Var x) ___]
  8809. [(Let x rhs body) ___]
  8810. [(Prim 'not (list e)) ___]
  8811. [(Prim op es) #:when (or (eq? op 'eq?) (eq? op '<))
  8812. (IfStmt (Prim op es) (create_block thn)
  8813. (create_block els))]
  8814. [(Bool b) (if b thn els)]
  8815. [(If cnd^ thn^ els^) ___]
  8816. [else (error "explicate_pred unhandled case" cnd)]))
  8817. \end{lstlisting}
  8818. \end{tcolorbox}
  8819. \caption{Skeleton for the \key{explicate\_pred} auxiliary function.}
  8820. \label{fig:explicate-pred}
  8821. \end{figure}
  8822. \fi}
  8823. %
  8824. {\if\edition\pythonEd\pythonColor
  8825. The \code{explicate\_pred} function has four parameters: (1) the
  8826. condition expression, (2) the generated statements for the \emph{then}
  8827. branch, (3) the generated statements for the \emph{else} branch, and
  8828. (4) the dictionary of basic blocks. The \code{explicate\_pred}
  8829. function returns a list of statements, and it adds to the dictionary
  8830. of basic blocks.
  8831. \fi}
  8832. Consider the case for comparison operators. We translate the
  8833. comparison to an \code{if} statement whose branches are \code{goto}
  8834. statements created by applying \code{create\_block} to the \code{thn}
  8835. and \code{els} parameters. Let us illustrate this translation by
  8836. returning to the program with an \code{if} expression in tail
  8837. position, shown next. We invoke \code{explicate\_pred} on its
  8838. condition \racket{\code{(eq? x 0)}}\python{\code{x == 0}}.
  8839. %
  8840. {\if\edition\racketEd
  8841. \begin{lstlisting}
  8842. (let ([x (read)])
  8843. (if (eq? x 0) 42 777))
  8844. \end{lstlisting}
  8845. \fi}
  8846. %
  8847. {\if\edition\pythonEd\pythonColor
  8848. \begin{lstlisting}
  8849. x = input_int()
  8850. 42 if x == 0 else 777
  8851. \end{lstlisting}
  8852. \fi}
  8853. %
  8854. \noindent The two branches \code{42} and \code{777} were already
  8855. compiled to \code{return} statements, from which we now create the
  8856. following blocks:
  8857. %
  8858. \begin{center}
  8859. \begin{minipage}{\textwidth}
  8860. \begin{lstlisting}
  8861. block_1:
  8862. return 42;
  8863. block_2:
  8864. return 777;
  8865. \end{lstlisting}
  8866. \end{minipage}
  8867. \end{center}
  8868. %
  8869. After that, \code{explicate\_pred} compiles the comparison
  8870. \racket{\code{(eq? x 0)}}
  8871. \python{\code{x == 0}}
  8872. to the following \code{if} statement:
  8873. %
  8874. {\if\edition\racketEd
  8875. \begin{center}
  8876. \begin{minipage}{\textwidth}
  8877. \begin{lstlisting}
  8878. if (eq? x 0)
  8879. goto block_1;
  8880. else
  8881. goto block_2;
  8882. \end{lstlisting}
  8883. \end{minipage}
  8884. \end{center}
  8885. \fi}
  8886. {\if\edition\pythonEd\pythonColor
  8887. \begin{center}
  8888. \begin{minipage}{\textwidth}
  8889. \begin{lstlisting}
  8890. if x == 0:
  8891. goto block_1;
  8892. else
  8893. goto block_2;
  8894. \end{lstlisting}
  8895. \end{minipage}
  8896. \end{center}
  8897. \fi}
  8898. Next consider the case for Boolean constants. We perform a kind of
  8899. partial evaluation\index{subject}{partialevaluation@partial evaluation} and output
  8900. either the \code{thn} or \code{els} parameter, depending on whether the
  8901. constant is \TRUE{} or \FALSE{}. Let us illustrate this with the
  8902. following program:
  8903. {\if\edition\racketEd
  8904. \begin{lstlisting}
  8905. (if #t 42 777)
  8906. \end{lstlisting}
  8907. \fi}
  8908. {\if\edition\pythonEd\pythonColor
  8909. \begin{lstlisting}
  8910. 42 if True else 777
  8911. \end{lstlisting}
  8912. \fi}
  8913. %
  8914. \noindent Again, the two branches \code{42} and \code{777} were
  8915. compiled to \code{return} statements, so \code{explicate\_pred}
  8916. compiles the constant \racket{\code{\#t}} \python{\code{True}} to the
  8917. code for the \emph{then} branch.
  8918. \begin{lstlisting}
  8919. return 42;
  8920. \end{lstlisting}
  8921. This case demonstrates that we sometimes discard the \code{thn} or
  8922. \code{els} blocks that are input to \code{explicate\_pred}.
  8923. The case for \key{if} expressions in \code{explicate\_pred} is
  8924. particularly illuminating because it deals with the challenges
  8925. discussed previously regarding nested \key{if} expressions
  8926. (figure~\ref{fig:explicate-control-s1-38}). The
  8927. \racket{\lstinline{thn^}}\python{\code{body}} and
  8928. \racket{\lstinline{els^}}\python{\code{orelse}} branches of the
  8929. \key{if} inherit their context from the current one, that is,
  8930. predicate context. So, you should recursively apply
  8931. \code{explicate\_pred} to the
  8932. \racket{\lstinline{thn^}}\python{\code{body}} and
  8933. \racket{\lstinline{els^}}\python{\code{orelse}} branches. For both of
  8934. those recursive calls, pass \code{thn} and \code{els} as the extra
  8935. parameters. Thus, \code{thn} and \code{els} may be used twice, once
  8936. inside each recursive call. As discussed previously, to avoid
  8937. duplicating code, we need to add them to the dictionary of basic
  8938. blocks so that we can instead refer to them by name and execute them
  8939. with a \key{goto}.
  8940. {\if\edition\pythonEd\pythonColor
  8941. %
  8942. The last of the auxiliary functions is \code{explicate\_stmt}. It has
  8943. three parameters: (1) the statement to be compiled, (2) the code for its
  8944. continuation, and (3) the dictionary of basic blocks. The
  8945. \code{explicate\_stmt} returns a list of statements, and it may add to
  8946. the dictionary of basic blocks. The cases for assignment and an
  8947. expression-statement are given in full in the skeleton code: they
  8948. simply dispatch to \code{explicate\_assign} and
  8949. \code{explicate\_effect}, respectively. The case for \code{if}
  8950. statements is not given; it is similar to the case for \code{if}
  8951. expressions.
  8952. The \code{explicate\_control} function itself is given in
  8953. figure~\ref{fig:explicate-control-Lif}. It applies
  8954. \code{explicate\_stmt} to each statement in the program, from back to
  8955. front. Thus, the result so far, stored in \code{new\_body}, can be
  8956. used as the continuation parameter in the next call to
  8957. \code{explicate\_stmt}. The \code{new\_body} is initialized to a
  8958. \code{Return} statement. Once complete, we add the \code{new\_body} to
  8959. the dictionary of basic blocks, labeling it the ``start'' block.
  8960. %
  8961. \fi}
  8962. %% Getting back to the case for \code{if} in \code{explicate\_pred}, we
  8963. %% make the recursive calls to \code{explicate\_pred} on the ``then'' and
  8964. %% ``else'' branches with the arguments \code{(create_block} $B_1$\code{)}
  8965. %% and \code{(create_block} $B_2$\code{)}. Let $B_3$ and $B_4$ be the
  8966. %% results from the two recursive calls. We complete the case for
  8967. %% \code{if} by recursively apply \code{explicate\_pred} to the condition
  8968. %% of the \code{if} with the promised blocks $B_3$ and $B_4$ to obtain
  8969. %% the result $B_5$.
  8970. %% \[
  8971. %% (\key{if}\; \itm{cnd}\; \itm{thn}\; \itm{els})
  8972. %% \quad\Rightarrow\quad
  8973. %% B_5
  8974. %% \]
  8975. %% In the case for \code{if} in \code{explicate\_tail}, the two branches
  8976. %% inherit the current context, so they are in tail position. Thus, the
  8977. %% recursive calls on the ``then'' and ``else'' branch should be calls to
  8978. %% \code{explicate\_tail}.
  8979. %% %
  8980. %% We need to pass $B_0$ as the accumulator argument for both of these
  8981. %% recursive calls, but we need to be careful not to duplicate $B_0$.
  8982. %% Thus, we first apply \code{create_block} to $B_0$ so that it gets added
  8983. %% to the control-flow graph and obtain a promised goto $G_0$.
  8984. %% %
  8985. %% Let $B_1$ be the result of \code{explicate\_tail} on the ``then''
  8986. %% branch and $G_0$ and let $B_2$ be the result of \code{explicate\_tail}
  8987. %% on the ``else'' branch and $G_0$. Let $B_3$ be the result of applying
  8988. %% \code{explicate\_pred} to the condition of the \key{if}, $B_1$, and
  8989. %% $B_2$. Then the \key{if} as a whole translates to promise $B_3$.
  8990. %% \[
  8991. %% (\key{if}\; \itm{cnd}\; \itm{thn}\; \itm{els}) \quad\Rightarrow\quad B_3
  8992. %% \]
  8993. %% In the above discussion, we use the metavariables $B_1$, $B_2$, and
  8994. %% $B_3$ to refer to blocks for the purposes of our discussion, but they
  8995. %% should not be confused with the labels for the blocks that appear in
  8996. %% the generated code. We initially construct unlabeled blocks; we only
  8997. %% attach labels to blocks when we add them to the control-flow graph, as
  8998. %% we see in the next case.
  8999. %% Next consider the case for \key{if} in the \code{explicate\_assign}
  9000. %% function. The context of the \key{if} is an assignment to some
  9001. %% variable $x$ and then the control continues to some promised block
  9002. %% $B_1$. The code that we generate for both the ``then'' and ``else''
  9003. %% branches needs to continue to $B_1$, so to avoid duplicating $B_1$ we
  9004. %% apply \code{create_block} to it and obtain a promised goto $G_1$. The
  9005. %% branches of the \key{if} inherit the current context, so they are in
  9006. %% assignment positions. Let $B_2$ be the result of applying
  9007. %% \code{explicate\_assign} to the ``then'' branch, variable $x$, and
  9008. %% $G_1$. Let $B_3$ be the result of applying \code{explicate\_assign} to
  9009. %% the ``else'' branch, variable $x$, and $G_1$. Finally, let $B_4$ be
  9010. %% the result of applying \code{explicate\_pred} to the predicate
  9011. %% $\itm{cnd}$ and the promises $B_2$ and $B_3$. The \key{if} as a whole
  9012. %% translates to the promise $B_4$.
  9013. %% \[
  9014. %% (\key{if}\; \itm{cnd}\; \itm{thn}\; \itm{els}) \quad\Rightarrow\quad B_4
  9015. %% \]
  9016. %% This completes the description of \code{explicate\_control} for \LangIf{}.
  9017. Figure~\ref{fig:explicate-control-s1-38} shows the output of the
  9018. \code{remove\_complex\_operands} pass and then the
  9019. \code{explicate\_control} pass on the example program. We walk through
  9020. the output program.
  9021. %
  9022. Following the order of evaluation in the output of
  9023. \code{remove\_complex\_operands}, we first have two calls to \CREAD{}
  9024. and then the comparison \racket{\code{(< x 1)}}\python{\code{x < 1}}
  9025. in the predicate of the inner \key{if}. In the output of
  9026. \code{explicate\_control}, in the
  9027. block labeled \code{start}, two assignment statements are followed by an
  9028. \code{if} statement that branches to \racket{\code{block\_4}}\python{\code{block\_6}}
  9029. or \racket{\code{block\_5}}\python{\code{block\_7}}.
  9030. The blocks associated with those labels contain the
  9031. translations of the code
  9032. \racket{\code{(eq? x 0)}}\python{\code{x == 0}}
  9033. and
  9034. \racket{\code{(eq? x 2)}}\python{\code{x == 2}},
  9035. respectively. In particular, we start
  9036. \racket{\code{block\_4}}\python{\code{block\_6}}
  9037. with the comparison
  9038. \racket{\code{(eq? x 0)}}\python{\code{x == 0}}
  9039. and then branch to \racket{\code{block\_2}}\python{\code{block\_4}}
  9040. or \racket{\code{block\_3}}\python{\code{block\_5}},
  9041. which correspond to the two branches of the outer \key{if}, that is,
  9042. \racket{\code{(+ y 2)}}\python{\code{y + 2}} and
  9043. \racket{\code{(+ y 10)}}\python{\code{y + 10}}.
  9044. %
  9045. The story for \racket{\code{block\_5}}\python{\code{block\_7}}
  9046. is similar to that of \racket{\code{block\_4}}\python{\code{block\_6}}.
  9047. %
  9048. \python{The \code{block\_3} is the translation of the \code{print} statement.}
  9049. {\if\edition\racketEd
  9050. \subsection{Interactions between Explicate and Shrink}
  9051. The way in which the \code{shrink} pass transforms logical operations
  9052. such as \code{and} and \code{or} can impact the quality of code
  9053. generated by \code{explicate\_control}. For example, consider the
  9054. following program:
  9055. % cond_test_21.rkt, and_eq_input.py
  9056. \begin{lstlisting}
  9057. (if (and (eq? (read) 0) (eq? (read) 1))
  9058. 0
  9059. 42)
  9060. \end{lstlisting}
  9061. The \code{and} operation should transform into something that the
  9062. \code{explicate\_pred} function can analyze and descend through to
  9063. reach the underlying \code{eq?} conditions. Ideally, for this program
  9064. your \code{explicate\_control} pass should generate code similar to
  9065. the following:
  9066. \begin{center}
  9067. \begin{minipage}{\textwidth}
  9068. \begin{lstlisting}
  9069. start:
  9070. tmp1 = (read);
  9071. if (eq? tmp1 0) goto block40;
  9072. else goto block39;
  9073. block40:
  9074. tmp2 = (read);
  9075. if (eq? tmp2 1) goto block38;
  9076. else goto block39;
  9077. block38:
  9078. return 0;
  9079. block39:
  9080. return 42;
  9081. \end{lstlisting}
  9082. \end{minipage}
  9083. \end{center}
  9084. \fi}
  9085. \begin{exercise}\normalfont\normalsize
  9086. \racket{
  9087. Implement the pass \code{explicate\_control} by adding the cases for
  9088. Boolean constants and \key{if} to the \code{explicate\_tail} and
  9089. \code{explicate\_assign} functions. Implement the auxiliary function
  9090. \code{explicate\_pred} for predicate contexts.}
  9091. \python{Implement \code{explicate\_control} pass with its
  9092. four auxiliary functions.}
  9093. %
  9094. Create test cases that exercise all the new cases in the code for
  9095. this pass.
  9096. %
  9097. {\if\edition\racketEd
  9098. Add the following entry to the list of \code{passes} in
  9099. \code{run-tests.rkt}:
  9100. \begin{lstlisting}
  9101. (list "explicate_control" explicate_control interp-Cif type-check-Cif)
  9102. \end{lstlisting}
  9103. and then run \code{run-tests.rkt} to test your compiler.
  9104. \fi}
  9105. \end{exercise}
  9106. \section{Select Instructions}
  9107. \label{sec:select-Lif}
  9108. \index{subject}{select instructions}
  9109. The \code{select\_instructions} pass translates \LangCIf{} to
  9110. \LangXIfVar{}.
  9111. %
  9112. \racket{Recall that we implement this pass using three auxiliary
  9113. functions, one for each of the nonterminals $\Atm$, $\Stmt$, and
  9114. $\Tail$ in \LangCIf{} (figure~\ref{fig:c1-syntax}).}
  9115. %
  9116. \racket{For $\Atm$, we have new cases for the Booleans.}
  9117. %
  9118. \python{We begin with the Boolean constants.}
  9119. As previously discussed, we encode them as integers.
  9120. \[
  9121. \TRUE{} \quad\Rightarrow\quad \key{1}
  9122. \qquad\qquad
  9123. \FALSE{} \quad\Rightarrow\quad \key{0}
  9124. \]
  9125. For translating statements, we discuss some of the cases. The
  9126. \code{not} operation can be implemented in terms of \code{xorq}, as we
  9127. discussed at the beginning of this section. Given an assignment, if
  9128. the left-hand-side variable is the same as the argument of \code{not},
  9129. then just the \code{xorq} instruction suffices.
  9130. \[
  9131. \CASSIGN{\Var}{ \CUNIOP{\key{not}}{\Var} }
  9132. \quad\Rightarrow\quad
  9133. \key{xorq}~\key{\$}1\key{,}~\Var
  9134. \]
  9135. Otherwise, a \key{movq} is needed to adapt to the update-in-place
  9136. semantics of x86. In the following translation, let $\Arg$ be the
  9137. result of translating $\Atm$ to x86.
  9138. \[
  9139. \CASSIGN{\Var}{ \CUNIOP{\key{not}}{\Atm} }
  9140. \quad\Rightarrow\quad
  9141. \begin{array}{l}
  9142. \key{movq}~\Arg\key{,}~\Var\\
  9143. \key{xorq}~\key{\$}1\key{,}~\Var
  9144. \end{array}
  9145. \]
  9146. Next consider the cases for equality comparisons. Translating this
  9147. operation to x86 is slightly involved due to the unusual nature of the
  9148. \key{cmpq} instruction that we discussed in section~\ref{sec:x86-if}.
  9149. We recommend translating an assignment with an equality on the
  9150. right-hand side into a sequence of three instructions. Let $\Arg_1$
  9151. be the translation of $\Atm_1$ to x86 and likewise for $\Arg_2$.\\
  9152. \begin{tabular}{lll}
  9153. \begin{minipage}{0.4\textwidth}
  9154. $\CASSIGN{\Var}{ \LP\CEQ{\Atm_1}{\Atm_2} \RP }$
  9155. \end{minipage}
  9156. &
  9157. $\Rightarrow$
  9158. &
  9159. \begin{minipage}{0.4\textwidth}
  9160. \begin{lstlisting}
  9161. cmpq |$\Arg_2$|, |$\Arg_1$|
  9162. sete %al
  9163. movzbq %al, |$\Var$|
  9164. \end{lstlisting}
  9165. \end{minipage}
  9166. \end{tabular} \\
  9167. The translations for the other comparison operators are similar to
  9168. this but use different condition codes for the \code{set} instruction.
  9169. \racket{Regarding the $\Tail$ nonterminal, we have two new cases:
  9170. \key{goto} and \key{if} statements. Both are straightforward to
  9171. translate to x86.}
  9172. %
  9173. A \key{goto} statement becomes a jump instruction.
  9174. \[
  9175. \key{goto}\; \ell\racket{\key{;}} \quad \Rightarrow \quad \key{jmp}\;\ell
  9176. \]
  9177. %
  9178. An \key{if} statement becomes a compare instruction followed by a
  9179. conditional jump (for the \emph{then} branch), and the fall-through is to
  9180. a regular jump (for the \emph{else} branch). Again, $\Arg_1$ and $\Arg_2$
  9181. are the translations of $\Atm_1$ and $\Atm_2$, respectively.\\
  9182. \begin{tabular}{lll}
  9183. \begin{minipage}{0.4\textwidth}
  9184. \begin{lstlisting}
  9185. if |$\CEQ{\Atm_1}{\Atm_2}$||$\python{\key{:}}$|
  9186. goto |$\ell_1$||$\racket{\key{;}}$|
  9187. else|$\python{\key{:}}$|
  9188. goto |$\ell_2$||$\racket{\key{;}}$|
  9189. \end{lstlisting}
  9190. \end{minipage}
  9191. &
  9192. $\Rightarrow$
  9193. &
  9194. \begin{minipage}{0.4\textwidth}
  9195. \begin{lstlisting}
  9196. cmpq |$\Arg_2$|, |$\Arg_1$|
  9197. je |$\ell_1$|
  9198. jmp |$\ell_2$|
  9199. \end{lstlisting}
  9200. \end{minipage}
  9201. \end{tabular} \\
  9202. Again, the translations for the other comparison operators are similar to this
  9203. but use different condition codes for the conditional jump instruction.
  9204. \python{Regarding the \key{return} statement, we recommend treating it
  9205. as an assignment to the \key{rax} register followed by a jump to the
  9206. conclusion of the \code{main} function. (See section~\ref{sec:prelude-conclusion-cond} for more about the conclusion of \code{main}.)}
  9207. \begin{exercise}\normalfont\normalsize
  9208. Expand your \code{select\_instructions} pass to handle the new
  9209. features of the \LangCIf{} language.
  9210. %
  9211. {\if\edition\racketEd
  9212. Add the following entry to the list of \code{passes} in
  9213. \code{run-tests.rkt}
  9214. \begin{lstlisting}
  9215. (list "select_instructions" select_instructions interp-pseudo-x86-1)
  9216. \end{lstlisting}
  9217. \fi}
  9218. %
  9219. Run the script to test your compiler on all the test programs.
  9220. \end{exercise}
  9221. \section{Register Allocation}
  9222. \label{sec:register-allocation-Lif}
  9223. \index{subject}{register allocation}
  9224. The changes required for compiling \LangIf{} affect liveness analysis,
  9225. building the interference graph, and assigning homes, but the graph
  9226. coloring algorithm itself does not change.
  9227. \subsection{Liveness Analysis}
  9228. \label{sec:liveness-analysis-Lif}
  9229. \index{subject}{liveness analysis}
  9230. Recall that for \LangVar{} we implemented liveness analysis for a
  9231. single basic block (section~\ref{sec:liveness-analysis-Lvar}). With
  9232. the addition of \key{if} expressions to \LangIf{},
  9233. \code{explicate\_control} produces many basic blocks.
  9234. %% We recommend that you create a new auxiliary function named
  9235. %% \code{uncover\_live\_CFG} that applies liveness analysis to a
  9236. %% control-flow graph.
  9237. The first question is, in what order should we process the basic blocks?
  9238. Recall that to perform liveness analysis on a basic block we need to
  9239. know the live-after set for the last instruction in the block. If a
  9240. basic block has no successors (i.e., contains no jumps to other
  9241. blocks), then it has an empty live-after set and we can immediately
  9242. apply liveness analysis to it. If a basic block has some successors,
  9243. then we need to complete liveness analysis on those blocks
  9244. first. These ordering constraints are the reverse of a
  9245. \emph{topological order}\index{subject}{topological order} on a graph
  9246. representation of the program. In particular, the \emph{control flow
  9247. graph} (CFG)\index{subject}{control-flow graph}~\citep{Allen:1970uq}
  9248. of a program has a node for each basic block and an edge for each jump
  9249. from one block to another. It is straightforward to generate a CFG
  9250. from the dictionary of basic blocks. One then transposes the CFG and
  9251. applies the topological sort algorithm.
  9252. %
  9253. %
  9254. \racket{We recommend using the \code{tsort} and \code{transpose}
  9255. functions of the Racket \code{graph} package to accomplish this.}
  9256. %
  9257. \python{We provide implementations of \code{topological\_sort} and
  9258. \code{transpose} in the file \code{graph.py} of the support code.}
  9259. %
  9260. As an aside, a topological ordering is only guaranteed to exist if the
  9261. graph does not contain any cycles. This is the case for the
  9262. control-flow graphs that we generate from \LangIf{} programs.
  9263. However, in chapter~\ref{ch:Lwhile} we add loops to create \LangLoop{}
  9264. and learn how to handle cycles in the control-flow graph.
  9265. \racket{You need to construct a directed graph to represent the
  9266. control-flow graph. Do not use the \code{directed-graph} of the
  9267. \code{graph} package because that allows at most one edge
  9268. between each pair of vertices, whereas a control-flow graph may have
  9269. multiple edges between a pair of vertices. The \code{multigraph.rkt}
  9270. file in the support code implements a graph representation that
  9271. allows multiple edges between a pair of vertices.}
  9272. {\if\edition\racketEd
  9273. The next question is how to analyze jump instructions. Recall that in
  9274. section~\ref{sec:liveness-analysis-Lvar} we maintain an alist named
  9275. \code{label->live} that maps each label to the set of live locations
  9276. at the beginning of its block. We use \code{label->live} to determine
  9277. the live-before set for each $\JMP{\itm{label}}$ instruction. Now
  9278. that we have many basic blocks, \code{label->live} needs to be updated
  9279. as we process the blocks. In particular, after performing liveness
  9280. analysis on a block, we take the live-before set of its first
  9281. instruction and associate that with the block's label in the
  9282. \code{label->live} alist.
  9283. \fi}
  9284. %
  9285. {\if\edition\pythonEd\pythonColor
  9286. %
  9287. The next question is how to analyze jump instructions. The locations
  9288. that are live before a \code{jmp} should be the locations in
  9289. $L_{\mathsf{before}}$ at the target of the jump. So we recommend
  9290. maintaining a dictionary named \code{live\_before\_block} that maps each
  9291. label to the $L_{\mathsf{before}}$ for the first instruction in its
  9292. block. After performing liveness analysis on each block, we take the
  9293. live-before set of its first instruction and associate that with the
  9294. block's label in the \code{live\_before\_block} dictionary.
  9295. %
  9296. \fi}
  9297. In \LangXIfVar{} we also have the conditional jump
  9298. $\JMPIF{\itm{cc}}{\itm{label}}$ to deal with. Liveness analysis for
  9299. this instruction is particularly interesting because during
  9300. compilation, we do not know which way a conditional jump will go. Thus
  9301. we do not know whether to use the live-before set for the block
  9302. associated with the $\itm{label}$ or the live-before set for the
  9303. following instruction. So we use both, by taking the union of the
  9304. live-before sets from the following instruction and from the mapping
  9305. for $\itm{label}$ in
  9306. \racket{\code{label->live}}\python{\code{live\_before\_block}}.
  9307. The auxiliary functions for computing the variables in an
  9308. instruction's argument and for computing the variables read-from ($R$)
  9309. or written-to ($W$) by an instruction need to be updated to handle the
  9310. new kinds of arguments and instructions in \LangXIfVar{}.
  9311. \begin{exercise}\normalfont\normalsize
  9312. {\if\edition\racketEd
  9313. %
  9314. Update the \code{uncover\_live} pass to apply liveness analysis to
  9315. every basic block in the program.
  9316. %
  9317. Add the following entry to the list of \code{passes} in the
  9318. \code{run-tests.rkt} script:
  9319. \begin{lstlisting}
  9320. (list "uncover_live" uncover_live interp-pseudo-x86-1)
  9321. \end{lstlisting}
  9322. \fi}
  9323. {\if\edition\pythonEd\pythonColor
  9324. %
  9325. Update the \code{uncover\_live} function to perform liveness analysis,
  9326. in reverse topological order, on all the basic blocks in the
  9327. program.
  9328. %
  9329. \fi}
  9330. % Check that the live-after sets that you generate for
  9331. % example X matches the following... -Jeremy
  9332. \end{exercise}
  9333. \subsection{Build the Interference Graph}
  9334. \label{sec:build-interference-Lif}
  9335. Many of the new instructions in \LangXIfVar{} can be handled in the
  9336. same way as the instructions in \LangXVar{}.
  9337. % Thus, if your code was
  9338. % already quite general, it will not need to be changed to handle the
  9339. % new instructions. If your code is not general enough, we recommend that
  9340. % you change your code to be more general. For example, you can factor
  9341. % out the computing of the the read and write sets for each kind of
  9342. % instruction into auxiliary functions.
  9343. %
  9344. Some instructions, such as the \key{movzbq} instruction, require special care,
  9345. similar to the \key{movq} instruction. Refer to rule number 1 in
  9346. section~\ref{sec:build-interference}.
  9347. \begin{exercise}\normalfont\normalsize
  9348. Update the \code{build\_interference} pass for \LangXIfVar{}.
  9349. {\if\edition\racketEd
  9350. Add the following entries to the list of \code{passes} in the
  9351. \code{run-tests.rkt} script:
  9352. \begin{lstlisting}
  9353. (list "build_interference" build_interference interp-pseudo-x86-1)
  9354. (list "allocate_registers" allocate_registers interp-pseudo-x86-1)
  9355. \end{lstlisting}
  9356. \fi}
  9357. % Check that the interference graph that you generate for
  9358. % example X matches the following graph G... -Jeremy
  9359. \end{exercise}
  9360. \section{Patch Instructions}
  9361. The new instructions \key{cmpq} and \key{movzbq} have some special
  9362. restrictions that need to be handled in the \code{patch\_instructions}
  9363. pass.
  9364. %
  9365. The second argument of the \key{cmpq} instruction must not be an
  9366. immediate value (such as an integer). So, if you are comparing two
  9367. immediates, we recommend inserting a \key{movq} instruction to put the
  9368. second argument in \key{rax}. On the other hand, if you implemented
  9369. the partial evaluator (section~\ref{sec:pe-Lvar}), you could
  9370. update it for \LangIf{} and then this situation would not arise.
  9371. %
  9372. As usual, \key{cmpq} may have at most one memory reference.
  9373. %
  9374. The second argument of the \key{movzbq} must be a register.
  9375. \begin{exercise}\normalfont\normalsize
  9376. %
  9377. Update \code{patch\_instructions} pass for \LangXIfVar{}.
  9378. %
  9379. {\if\edition\racketEd
  9380. Add the following entry to the list of \code{passes} in
  9381. \code{run-tests.rkt}, and then run this script to test your compiler.
  9382. \begin{lstlisting}
  9383. (list "patch_instructions" patch_instructions interp-x86-1)
  9384. \end{lstlisting}
  9385. \fi}
  9386. \end{exercise}
  9387. {\if\edition\pythonEd\pythonColor
  9388. \section{Generate Prelude and Conclusion}
  9389. \label{sec:prelude-conclusion-cond}
  9390. The generation of the \code{main} function with its prelude and
  9391. conclusion must change to accommodate how the program now consists of
  9392. one or more basic blocks. After the prelude in \code{main}, jump to
  9393. the \code{start} block. Place the conclusion in a basic block labeled
  9394. with \code{conclusion}.
  9395. \fi}
  9396. Figure~\ref{fig:if-example-x86} shows a simple example program in
  9397. \LangIf{} translated to x86, showing the results of
  9398. \code{explicate\_control}, \code{select\_instructions}, and the final
  9399. x86 assembly.
  9400. \begin{figure}[tbp]
  9401. \begin{tcolorbox}[colback=white]
  9402. {\if\edition\racketEd
  9403. \begin{tabular}{lll}
  9404. \begin{minipage}{0.4\textwidth}
  9405. % cond_test_20.rkt, eq_input.py
  9406. \begin{lstlisting}
  9407. (if (eq? (read) 1) 42 0)
  9408. \end{lstlisting}
  9409. $\Downarrow$
  9410. \begin{lstlisting}
  9411. start:
  9412. tmp7951 = (read);
  9413. if (eq? tmp7951 1)
  9414. goto block7952;
  9415. else
  9416. goto block7953;
  9417. block7952:
  9418. return 42;
  9419. block7953:
  9420. return 0;
  9421. \end{lstlisting}
  9422. $\Downarrow$
  9423. \begin{lstlisting}
  9424. start:
  9425. callq read_int
  9426. movq %rax, tmp7951
  9427. cmpq $1, tmp7951
  9428. je block7952
  9429. jmp block7953
  9430. block7953:
  9431. movq $0, %rax
  9432. jmp conclusion
  9433. block7952:
  9434. movq $42, %rax
  9435. jmp conclusion
  9436. \end{lstlisting}
  9437. \end{minipage}
  9438. &
  9439. $\Rightarrow\qquad$
  9440. \begin{minipage}{0.4\textwidth}
  9441. \begin{lstlisting}
  9442. start:
  9443. callq read_int
  9444. movq %rax, %rcx
  9445. cmpq $1, %rcx
  9446. je block7952
  9447. jmp block7953
  9448. block7953:
  9449. movq $0, %rax
  9450. jmp conclusion
  9451. block7952:
  9452. movq $42, %rax
  9453. jmp conclusion
  9454. .globl main
  9455. main:
  9456. pushq %rbp
  9457. movq %rsp, %rbp
  9458. pushq %r13
  9459. pushq %r12
  9460. pushq %rbx
  9461. pushq %r14
  9462. subq $0, %rsp
  9463. jmp start
  9464. conclusion:
  9465. addq $0, %rsp
  9466. popq %r14
  9467. popq %rbx
  9468. popq %r12
  9469. popq %r13
  9470. popq %rbp
  9471. retq
  9472. \end{lstlisting}
  9473. \end{minipage}
  9474. \end{tabular}
  9475. \fi}
  9476. {\if\edition\pythonEd\pythonColor
  9477. \begin{tabular}{lll}
  9478. \begin{minipage}{0.4\textwidth}
  9479. % cond_test_20.rkt, eq_input.py
  9480. \begin{lstlisting}
  9481. print(42 if input_int() == 1 else 0)
  9482. \end{lstlisting}
  9483. $\Downarrow$
  9484. \begin{lstlisting}
  9485. start:
  9486. tmp_0 = input_int()
  9487. if tmp_0 == 1:
  9488. goto block_3
  9489. else:
  9490. goto block_4
  9491. block_3:
  9492. tmp_1 = 42
  9493. goto block_2
  9494. block_4:
  9495. tmp_1 = 0
  9496. goto block_2
  9497. block_2:
  9498. print(tmp_1)
  9499. return 0
  9500. \end{lstlisting}
  9501. $\Downarrow$
  9502. \begin{lstlisting}
  9503. start:
  9504. callq read_int
  9505. movq %rax, tmp_0
  9506. cmpq 1, tmp_0
  9507. je block_3
  9508. jmp block_4
  9509. block_3:
  9510. movq 42, tmp_1
  9511. jmp block_2
  9512. block_4:
  9513. movq 0, tmp_1
  9514. jmp block_2
  9515. block_2:
  9516. movq tmp_1, %rdi
  9517. callq print_int
  9518. movq 0, %rax
  9519. jmp conclusion
  9520. \end{lstlisting}
  9521. \end{minipage}
  9522. &
  9523. $\Rightarrow\qquad$
  9524. \begin{minipage}{0.4\textwidth}
  9525. \begin{lstlisting}
  9526. .globl main
  9527. main:
  9528. pushq %rbp
  9529. movq %rsp, %rbp
  9530. subq $0, %rsp
  9531. jmp start
  9532. start:
  9533. callq read_int
  9534. movq %rax, %rcx
  9535. cmpq $1, %rcx
  9536. je block_3
  9537. jmp block_4
  9538. block_3:
  9539. movq $42, %rcx
  9540. jmp block_2
  9541. block_4:
  9542. movq $0, %rcx
  9543. jmp block_2
  9544. block_2:
  9545. movq %rcx, %rdi
  9546. callq print_int
  9547. movq $0, %rax
  9548. jmp conclusion
  9549. conclusion:
  9550. addq $0, %rsp
  9551. popq %rbp
  9552. retq
  9553. \end{lstlisting}
  9554. \end{minipage}
  9555. \end{tabular}
  9556. \fi}
  9557. \end{tcolorbox}
  9558. \caption{Example compilation of an \key{if} expression to x86, showing
  9559. the results of \code{explicate\_control},
  9560. \code{select\_instructions}, and the final x86 assembly code. }
  9561. \label{fig:if-example-x86}
  9562. \end{figure}
  9563. Figure~\ref{fig:Lif-passes} lists all the passes needed for the
  9564. compilation of \LangIf{}.
  9565. \begin{figure}[htbp]
  9566. \begin{tcolorbox}[colback=white]
  9567. {\if\edition\racketEd
  9568. \begin{tikzpicture}[baseline=(current bounding box.center),scale=0.90]
  9569. \node (Lif-2) at (0,2) {\large \LangIf{}};
  9570. \node (Lif-3) at (3,2) {\large \LangIf{}};
  9571. \node (Lif-4) at (6,2) {\large \LangIf{}};
  9572. \node (Lif-5) at (10,2) {\large \LangIfANF{}};
  9573. \node (C1-1) at (0,0) {\large \LangCIf{}};
  9574. \node (x86-2) at (0,-2) {\large \LangXIfVar{}};
  9575. \node (x86-2-1) at (0,-4) {\large \LangXIfVar{}};
  9576. \node (x86-2-2) at (4,-4) {\large \LangXIfVar{}};
  9577. \node (x86-3) at (4,-2) {\large \LangXIfVar{}};
  9578. \node (x86-4) at (8,-2) {\large \LangXIf{}};
  9579. \node (x86-5) at (8,-4) {\large \LangXIf{}};
  9580. \path[->,bend left=15] (Lif-2) edge [above] node {\ttfamily\footnotesize shrink} (Lif-3);
  9581. \path[->,bend left=15] (Lif-3) edge [above] node {\ttfamily\footnotesize uniquify} (Lif-4);
  9582. \path[->,bend left=15] (Lif-4) edge [above] node {\ttfamily\footnotesize remove\_complex\_operands} (Lif-5);
  9583. \path[->,bend left=10] (Lif-5) edge [right] node {\ttfamily\footnotesize \ \ \ explicate\_control} (C1-1);
  9584. \path[->,bend right=15] (C1-1) edge [right] node {\ttfamily\footnotesize select\_instructions} (x86-2);
  9585. \path[->,bend left=15] (x86-2) edge [right] node {\ttfamily\footnotesize uncover\_live} (x86-2-1);
  9586. \path[->,bend right=15] (x86-2-1) edge [below] node {\ttfamily\footnotesize build\_interference} (x86-2-2);
  9587. \path[->,bend right=15] (x86-2-2) edge [right] node {\ttfamily\footnotesize allocate\_registers} (x86-3);
  9588. \path[->,bend left=15] (x86-3) edge [above] node {\ttfamily\footnotesize patch\_instructions} (x86-4);
  9589. \path[->,bend left=15] (x86-4) edge [right] node {\ttfamily\footnotesize prelude\_and\_conclusion } (x86-5);
  9590. \end{tikzpicture}
  9591. \fi}
  9592. {\if\edition\pythonEd\pythonColor
  9593. \begin{tikzpicture}[baseline=(current bounding box.center),scale=0.90]
  9594. \node (Lif-1) at (0,2) {\large \LangIf{}};
  9595. \node (Lif-2) at (4,2) {\large \LangIf{}};
  9596. \node (Lif-3) at (8,2) {\large \LangIfANF{}};
  9597. \node (C-1) at (0,0) {\large \LangCIf{}};
  9598. \node (x86-1) at (0,-2) {\large \LangXIfVar{}};
  9599. \node (x86-2) at (4,-2) {\large \LangXIfVar{}};
  9600. \node (x86-3) at (8,-2) {\large \LangXIf{}};
  9601. \node (x86-4) at (12,-2) {\large \LangXIf{}};
  9602. \path[->,bend left=15] (Lif-1) edge [above] node {\ttfamily\footnotesize shrink} (Lif-2);
  9603. \path[->,bend left=15] (Lif-2) edge [above] node {\ttfamily\footnotesize remove\_complex\_operands} (Lif-3);
  9604. \path[->,bend left=15] (Lif-3) edge [right] node {\ttfamily\footnotesize \ \ explicate\_control} (C-1);
  9605. \path[->,bend right=15] (C-1) edge [right] node {\ttfamily\footnotesize select\_instructions} (x86-1);
  9606. \path[->,bend right=15] (x86-1) edge [below] node {\ttfamily\footnotesize assign\_homes} (x86-2);
  9607. \path[->,bend left=15] (x86-2) edge [above] node {\ttfamily\footnotesize patch\_instructions} (x86-3);
  9608. \path[->,bend right=15] (x86-3) edge [below] node {\ttfamily\footnotesize prelude\_and\_conclusion} (x86-4);
  9609. \end{tikzpicture}
  9610. \fi}
  9611. \end{tcolorbox}
  9612. \caption{Diagram of the passes for \LangIf{}, a language with conditionals.}
  9613. \label{fig:Lif-passes}
  9614. \end{figure}
  9615. \section{Challenge: Optimize Blocks and Remove Jumps}
  9616. \label{sec:opt-jumps}
  9617. We discuss two challenges that involve optimizing the control-flow of
  9618. the program.
  9619. \subsection{Optimize Blocks}
  9620. The algorithm for \code{explicate\_control} that we discussed in
  9621. section~\ref{sec:explicate-control-Lif} sometimes generates too many
  9622. blocks. It creates a block whenever a continuation \emph{might} get
  9623. used more than once (for example, whenever the \code{cont} parameter
  9624. is passed into two or more recursive calls). However, some
  9625. continuation arguments may not be used at all. Consider the case for
  9626. the constant \TRUE{} in \code{explicate\_pred}, in which we discard
  9627. the \code{els} continuation.
  9628. %
  9629. {\if\edition\racketEd
  9630. The following example program falls into this
  9631. case, and it creates two unused blocks.
  9632. \begin{center}
  9633. \begin{tabular}{lll}
  9634. \begin{minipage}{0.4\textwidth}
  9635. % cond_test_82.rkt
  9636. \begin{lstlisting}
  9637. (let ([y (if #t
  9638. (read)
  9639. (if (eq? (read) 0)
  9640. 777
  9641. (let ([x (read)])
  9642. (+ 1 x))))])
  9643. (+ y 2))
  9644. \end{lstlisting}
  9645. \end{minipage}
  9646. &
  9647. $\Rightarrow$
  9648. &
  9649. \begin{minipage}{0.4\textwidth}
  9650. \begin{lstlisting}
  9651. start:
  9652. y = (read);
  9653. goto block_5;
  9654. block_5:
  9655. return (+ y 2);
  9656. block_6:
  9657. y = 777;
  9658. goto block_5;
  9659. block_7:
  9660. x = (read);
  9661. y = (+ 1 x2);
  9662. goto block_5;
  9663. \end{lstlisting}
  9664. \end{minipage}
  9665. \end{tabular}
  9666. \end{center}
  9667. \fi}
  9668. {\if\edition\pythonEd
  9669. The following example program falls into this
  9670. case, and it creates the unused \code{block\_9}.
  9671. \begin{center}
  9672. \begin{minipage}{0.4\textwidth}
  9673. % if/if_true.py
  9674. \begin{lstlisting}
  9675. if True:
  9676. print(0)
  9677. else:
  9678. x = 1 if False else 2
  9679. print(x)
  9680. \end{lstlisting}
  9681. \end{minipage}
  9682. $\Rightarrow\qquad\qquad$
  9683. \begin{minipage}{0.4\textwidth}
  9684. \begin{lstlisting}
  9685. start:
  9686. print(0)
  9687. goto block_8
  9688. block_9:
  9689. print(x)
  9690. goto block_8
  9691. block_8:
  9692. return 0
  9693. \end{lstlisting}
  9694. \end{minipage}
  9695. \end{center}
  9696. \fi}
  9697. The question is, how can we decide whether to create a basic block?
  9698. \emph{Lazy evaluation}\index{subject}{lazy
  9699. evaluation}~\citep{Friedman:1976aa} can solve this conundrum by
  9700. delaying the creation of a basic block until the point in time at which
  9701. we know that it will be used.
  9702. %
  9703. {\if\edition\racketEd
  9704. %
  9705. Racket provides support for
  9706. lazy evaluation with the
  9707. \href{https://docs.racket-lang.org/reference/Delayed_Evaluation.html}{\code{racket/promise}}
  9708. package. The expression \key{(delay} $e_1 \ldots e_n$\key{)}
  9709. \index{subject}{delay} creates a
  9710. \emph{promise}\index{subject}{promise} in which the evaluation of the
  9711. expressions is postponed. When \key{(force}
  9712. $p$\key{)}\index{subject}{force} is applied to a promise $p$ for the
  9713. first time, the expressions $e_1 \ldots e_n$ are evaluated and the
  9714. result of $e_n$ is cached in the promise and returned. If \code{force}
  9715. is applied again to the same promise, then the cached result is
  9716. returned. If \code{force} is applied to an argument that is not a
  9717. promise, \code{force} simply returns the argument.
  9718. %
  9719. \fi}
  9720. %
  9721. {\if\edition\pythonEd\pythonColor
  9722. %
  9723. Although Python does not provide direct support for lazy evaluation,
  9724. it is easy to mimic. We \emph{delay} the evaluation of a computation
  9725. by wrapping it inside a function with no parameters. We \emph{force}
  9726. its evaluation by calling the function. However, we might need to
  9727. force multiple times, so we store the result of calling the
  9728. function instead of recomputing it each time. The following
  9729. \code{Promise} class handles this memoization process.
  9730. \begin{minipage}{0.8\textwidth}
  9731. \begin{lstlisting}
  9732. @dataclass
  9733. class Promise:
  9734. fun : typing.Any
  9735. cache : list[stmt] = None
  9736. def force(self):
  9737. if self.cache is None:
  9738. self.cache = self.fun(); return self.cache
  9739. else:
  9740. return self.cache
  9741. \end{lstlisting}
  9742. \end{minipage}
  9743. \noindent However, in some cases of \code{explicate\_pred}, we return
  9744. a list of statements, and in other cases we return a function that
  9745. computes a list of statements. To uniformly deal with both regular
  9746. data and promises, we define the following \code{force} function that
  9747. checks whether its input is delayed (i.e., whether it is a
  9748. \code{Promise}) and then either (1) forces the promise or (2) returns
  9749. the input.
  9750. %
  9751. \begin{lstlisting}
  9752. def force(promise):
  9753. if isinstance(promise, Promise):
  9754. return promise.force()
  9755. else:
  9756. return promise
  9757. \end{lstlisting}
  9758. %
  9759. \fi}
  9760. We use promises for the input and output of the functions
  9761. \code{explicate\_pred}, \code{explicate\_assign},
  9762. %
  9763. \racket{ and \code{explicate\_tail}}\python{ \code{explicate\_effect}, and \code{explicate\_stmt}}.
  9764. %
  9765. So, instead of taking and returning \racket{$\Tail$
  9766. expressions}\python{lists of statements}, they take and return
  9767. promises. Furthermore, when we come to a situation in which a
  9768. continuation might be used more than once, as in the case for
  9769. \code{if} in \code{explicate\_pred}, we create a delayed computation
  9770. that creates a basic block for each continuation (if there is not
  9771. already one) and then returns a \code{goto} statement to that basic
  9772. block. When we come to a situation in which we have a promise but need an
  9773. actual piece of code, for example, to create a larger piece of code with a
  9774. constructor such as \code{Seq}, then insert a call to \code{force}.
  9775. %
  9776. {\if\edition\racketEd
  9777. %
  9778. Also, we must modify the \code{create\_block} function to begin with
  9779. \code{delay} to create a promise. When forced, this promise forces the
  9780. original promise. If that returns a \code{Goto} (because the block was
  9781. already added to \code{basic-blocks}), then we return the
  9782. \code{Goto}. Otherwise, we add the block to \code{basic-blocks} and
  9783. return a \code{Goto} to the new label.
  9784. \begin{center}
  9785. \begin{minipage}{\textwidth}
  9786. \begin{lstlisting}
  9787. (define (create_block tail)
  9788. (delay
  9789. (define t (force tail))
  9790. (match t
  9791. [(Goto label) (Goto label)]
  9792. [else
  9793. (let ([label (gensym 'block)])
  9794. (set! basic-blocks (cons (cons label t) basic-blocks))
  9795. (Goto label))])))
  9796. \end{lstlisting}
  9797. \end{minipage}
  9798. \end{center}
  9799. \fi}
  9800. {\if\edition\pythonEd\pythonColor
  9801. %
  9802. Here is the new version of the \code{create\_block} auxiliary function
  9803. that delays the creation of the new basic block.\\
  9804. \begin{minipage}{\textwidth}
  9805. \begin{lstlisting}
  9806. def create_block(promise, basic_blocks):
  9807. def delay():
  9808. stmts = force(promise)
  9809. match stmts:
  9810. case [Goto(l)]:
  9811. return [Goto(l)]
  9812. case _:
  9813. label = label_name(generate_name('block'))
  9814. basic_blocks[label] = stmts
  9815. return [Goto(label)]
  9816. return Promise(delay)
  9817. \end{lstlisting}
  9818. \end{minipage}
  9819. \fi}
  9820. Figure~\ref{fig:explicate-control-challenge} shows the output of
  9821. improved \code{explicate\_control} on this example.
  9822. \racket{As you can see, the number of basic blocks has been reduced
  9823. from four blocks to two blocks.}%
  9824. \python{As you can see, the number of basic blocks has been reduced
  9825. from three blocks to two blocks.}
  9826. \begin{figure}[tbp]
  9827. \begin{tcolorbox}[colback=white]
  9828. {\if\edition\racketEd
  9829. \begin{tabular}{lll}
  9830. \begin{minipage}{0.45\textwidth}
  9831. % cond_test_82.rkt
  9832. \begin{lstlisting}
  9833. (let ([y (if #t
  9834. (read)
  9835. (if (eq? (read) 0)
  9836. 777
  9837. (let ([x (read)])
  9838. (+ 1 x))))])
  9839. (+ y 2))
  9840. \end{lstlisting}
  9841. \end{minipage}
  9842. &
  9843. $\quad\Rightarrow\quad$
  9844. &
  9845. \begin{minipage}{0.4\textwidth}
  9846. \begin{lstlisting}
  9847. start:
  9848. y = (read);
  9849. goto block_5;
  9850. block_5:
  9851. return (+ y 2);
  9852. \end{lstlisting}
  9853. \end{minipage}
  9854. \end{tabular}
  9855. \fi}
  9856. {\if\edition\pythonEd\pythonColor
  9857. \begin{tabular}{lll}
  9858. \begin{minipage}{0.4\textwidth}
  9859. % if/if_true.py
  9860. \begin{lstlisting}
  9861. if True:
  9862. print(0)
  9863. else:
  9864. x = 1 if False else 2
  9865. print(x)
  9866. \end{lstlisting}
  9867. \end{minipage}
  9868. &
  9869. $\Rightarrow$
  9870. &
  9871. \begin{minipage}{0.55\textwidth}
  9872. \begin{lstlisting}
  9873. start:
  9874. print(0)
  9875. goto block_4
  9876. block_4:
  9877. return 0
  9878. \end{lstlisting}
  9879. \end{minipage}
  9880. \end{tabular}
  9881. \fi}
  9882. \end{tcolorbox}
  9883. \caption{Translation from \LangIf{} to \LangCIf{}
  9884. via the improved \code{explicate\_control}.}
  9885. \label{fig:explicate-control-challenge}
  9886. \end{figure}
  9887. %% Recall that in the example output of \code{explicate\_control} in
  9888. %% figure~\ref{fig:explicate-control-s1-38}, \code{block57} through
  9889. %% \code{block60} are trivial blocks, they do nothing but jump to another
  9890. %% block. The first goal of this challenge assignment is to remove those
  9891. %% blocks. Figure~\ref{fig:optimize-jumps} repeats the result of
  9892. %% \code{explicate\_control} on the left and shows the result of bypassing
  9893. %% the trivial blocks on the right. Let us focus on \code{block61}. The
  9894. %% \code{then} branch jumps to \code{block57}, which in turn jumps to
  9895. %% \code{block55}. The optimized code on the right of
  9896. %% figure~\ref{fig:optimize-jumps} bypasses \code{block57}, with the
  9897. %% \code{then} branch jumping directly to \code{block55}. The story is
  9898. %% similar for the \code{else} branch, as well as for the two branches in
  9899. %% \code{block62}. After the jumps in \code{block61} and \code{block62}
  9900. %% have been optimized in this way, there are no longer any jumps to
  9901. %% blocks \code{block57} through \code{block60}, so they can be removed.
  9902. %% \begin{figure}[tbp]
  9903. %% \begin{tabular}{lll}
  9904. %% \begin{minipage}{0.4\textwidth}
  9905. %% \begin{lstlisting}
  9906. %% block62:
  9907. %% tmp54 = (read);
  9908. %% if (eq? tmp54 2) then
  9909. %% goto block59;
  9910. %% else
  9911. %% goto block60;
  9912. %% block61:
  9913. %% tmp53 = (read);
  9914. %% if (eq? tmp53 0) then
  9915. %% goto block57;
  9916. %% else
  9917. %% goto block58;
  9918. %% block60:
  9919. %% goto block56;
  9920. %% block59:
  9921. %% goto block55;
  9922. %% block58:
  9923. %% goto block56;
  9924. %% block57:
  9925. %% goto block55;
  9926. %% block56:
  9927. %% return (+ 700 77);
  9928. %% block55:
  9929. %% return (+ 10 32);
  9930. %% start:
  9931. %% tmp52 = (read);
  9932. %% if (eq? tmp52 1) then
  9933. %% goto block61;
  9934. %% else
  9935. %% goto block62;
  9936. %% \end{lstlisting}
  9937. %% \end{minipage}
  9938. %% &
  9939. %% $\Rightarrow$
  9940. %% &
  9941. %% \begin{minipage}{0.55\textwidth}
  9942. %% \begin{lstlisting}
  9943. %% block62:
  9944. %% tmp54 = (read);
  9945. %% if (eq? tmp54 2) then
  9946. %% goto block55;
  9947. %% else
  9948. %% goto block56;
  9949. %% block61:
  9950. %% tmp53 = (read);
  9951. %% if (eq? tmp53 0) then
  9952. %% goto block55;
  9953. %% else
  9954. %% goto block56;
  9955. %% block56:
  9956. %% return (+ 700 77);
  9957. %% block55:
  9958. %% return (+ 10 32);
  9959. %% start:
  9960. %% tmp52 = (read);
  9961. %% if (eq? tmp52 1) then
  9962. %% goto block61;
  9963. %% else
  9964. %% goto block62;
  9965. %% \end{lstlisting}
  9966. %% \end{minipage}
  9967. %% \end{tabular}
  9968. %% \caption{Optimize jumps by removing trivial blocks.}
  9969. %% \label{fig:optimize-jumps}
  9970. %% \end{figure}
  9971. %% The name of this pass is \code{optimize-jumps}. We recommend
  9972. %% implementing this pass in two phases. The first phrase builds a hash
  9973. %% table that maps labels to possibly improved labels. The second phase
  9974. %% changes the target of each \code{goto} to use the improved label. If
  9975. %% the label is for a trivial block, then the hash table should map the
  9976. %% label to the first non-trivial block that can be reached from this
  9977. %% label by jumping through trivial blocks. If the label is for a
  9978. %% non-trivial block, then the hash table should map the label to itself;
  9979. %% we do not want to change jumps to non-trivial blocks.
  9980. %% The first phase can be accomplished by constructing an empty hash
  9981. %% table, call it \code{short-cut}, and then iterating over the control
  9982. %% flow graph. Each time you encounter a block that is just a \code{goto},
  9983. %% then update the hash table, mapping the block's source to the target
  9984. %% of the \code{goto}. Also, the hash table may already have mapped some
  9985. %% labels to the block's source, to you must iterate through the hash
  9986. %% table and update all of those so that they instead map to the target
  9987. %% of the \code{goto}.
  9988. %% For the second phase, we recommend iterating through the $\Tail$ of
  9989. %% each block in the program, updating the target of every \code{goto}
  9990. %% according to the mapping in \code{short-cut}.
  9991. \begin{exercise}\normalfont\normalsize
  9992. Implement the improvements to the \code{explicate\_control} pass.
  9993. Check that it removes trivial blocks in a few example programs. Then
  9994. check that your compiler still passes all your tests.
  9995. \end{exercise}
  9996. \subsection{Remove Jumps}
  9997. There is an opportunity for removing jumps that is apparent in the
  9998. example of figure~\ref{fig:if-example-x86}. The \code{start} block
  9999. ends with a jump to \racket{\code{block\_5}}\python{\code{block\_4}},
  10000. and there are no other jumps to
  10001. \racket{\code{block\_5}}\python{\code{block\_4}} in the rest of the program.
  10002. In this situation we can avoid the runtime overhead of this jump by merging
  10003. \racket{\code{block\_5}}\python{\code{block\_4}}
  10004. into the preceding block, which in this case is the \code{start} block.
  10005. Figure~\ref{fig:remove-jumps} shows the output of
  10006. \code{allocate\_registers} on the left and the result of this
  10007. optimization on the right.
  10008. \begin{figure}[tbp]
  10009. \begin{tcolorbox}[colback=white]
  10010. {\if\edition\racketEd
  10011. \begin{tabular}{lll}
  10012. \begin{minipage}{0.5\textwidth}
  10013. % cond_test_82.rkt
  10014. \begin{lstlisting}
  10015. start:
  10016. callq read_int
  10017. movq %rax, %rcx
  10018. jmp block_5
  10019. block_5:
  10020. movq %rcx, %rax
  10021. addq $2, %rax
  10022. jmp conclusion
  10023. \end{lstlisting}
  10024. \end{minipage}
  10025. &
  10026. $\Rightarrow\qquad$
  10027. \begin{minipage}{0.4\textwidth}
  10028. \begin{lstlisting}
  10029. start:
  10030. callq read_int
  10031. movq %rax, %rcx
  10032. movq %rcx, %rax
  10033. addq $2, %rax
  10034. jmp conclusion
  10035. \end{lstlisting}
  10036. \end{minipage}
  10037. \end{tabular}
  10038. \fi}
  10039. {\if\edition\pythonEd\pythonColor
  10040. \begin{tabular}{lll}
  10041. \begin{minipage}{0.5\textwidth}
  10042. % cond_test_20.rkt
  10043. \begin{lstlisting}
  10044. start:
  10045. callq read_int
  10046. movq %rax, tmp_0
  10047. cmpq 1, tmp_0
  10048. je block_3
  10049. jmp block_4
  10050. block_3:
  10051. movq 42, tmp_1
  10052. jmp block_2
  10053. block_4:
  10054. movq 0, tmp_1
  10055. jmp block_2
  10056. block_2:
  10057. movq tmp_1, %rdi
  10058. callq print_int
  10059. movq 0, %rax
  10060. jmp conclusion
  10061. \end{lstlisting}
  10062. \end{minipage}
  10063. &
  10064. $\Rightarrow\qquad$
  10065. \begin{minipage}{0.4\textwidth}
  10066. \begin{lstlisting}
  10067. start:
  10068. callq read_int
  10069. movq %rax, tmp_0
  10070. cmpq 1, tmp_0
  10071. je block_3
  10072. movq 0, tmp_1
  10073. jmp block_2
  10074. block_3:
  10075. movq 42, tmp_1
  10076. jmp block_2
  10077. block_2:
  10078. movq tmp_1, %rdi
  10079. callq print_int
  10080. movq 0, %rax
  10081. jmp conclusion
  10082. \end{lstlisting}
  10083. \end{minipage}
  10084. \end{tabular}
  10085. \fi}
  10086. \end{tcolorbox}
  10087. \caption{Merging basic blocks by removing unnecessary jumps.}
  10088. \label{fig:remove-jumps}
  10089. \end{figure}
  10090. \begin{exercise}\normalfont\normalsize
  10091. %
  10092. Implement a pass named \code{remove\_jumps} that merges basic blocks
  10093. into their preceding basic block, when there is only one preceding
  10094. block. The pass should translate from \LangXIfVar{} to \LangXIfVar{}.
  10095. %
  10096. {\if\edition\racketEd
  10097. In the \code{run-tests.rkt} script, add the following entry to the
  10098. list of \code{passes} between \code{allocate\_registers}
  10099. and \code{patch\_instructions}:
  10100. \begin{lstlisting}
  10101. (list "remove_jumps" remove_jumps interp-pseudo-x86-1)
  10102. \end{lstlisting}
  10103. \fi}
  10104. %
  10105. Run the script to test your compiler.
  10106. %
  10107. Check that \code{remove\_jumps} accomplishes the goal of merging basic
  10108. blocks on several test programs.
  10109. \end{exercise}
  10110. \section{Further Reading}
  10111. \label{sec:cond-further-reading}
  10112. The algorithm for \code{explicate\_control} is based on the
  10113. \code{expose-basic-blocks} pass in the course notes of
  10114. \citet{Dybvig:2010aa}.
  10115. %
  10116. It has similarities to the algorithms of \citet{Danvy:2003fk} and
  10117. \citet{Appel:2003fk}, and is related to translations into continuation
  10118. passing
  10119. style~\citep{Wijngaarden:1966,Fischer:1972,reynolds72:_def_interp,Plotkin:1975,Friedman:2001}.
  10120. %
  10121. The treatment of conditionals in the \code{explicate\_control} pass is
  10122. similar to short-cut Boolean
  10123. evaluation~\citep{Logothetis:1981,Aho:2006wb,Clarke:1989,Danvy:2003fk}
  10124. and the case-of-case transformation~\citep{PeytonJones:1998}.
  10125. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  10126. \chapter{Loops and Dataflow Analysis}
  10127. \label{ch:Lwhile}
  10128. \setcounter{footnote}{0}
  10129. % TODO: define R'_8
  10130. % TODO: multi-graph
  10131. {\if\edition\racketEd
  10132. %
  10133. In this chapter we study two features that are the hallmarks of
  10134. imperative programming languages: loops and assignments to local
  10135. variables. The following example demonstrates these new features by
  10136. computing the sum of the first five positive integers:
  10137. % similar to loop_test_1.rkt
  10138. \begin{lstlisting}
  10139. (let ([sum 0])
  10140. (let ([i 5])
  10141. (begin
  10142. (while (> i 0)
  10143. (begin
  10144. (set! sum (+ sum i))
  10145. (set! i (- i 1))))
  10146. sum)))
  10147. \end{lstlisting}
  10148. The \code{while} loop consists of a condition and a
  10149. body.\footnote{The \code{while} loop is not a built-in
  10150. feature of the Racket language, but Racket includes many looping
  10151. constructs and it is straightforward to define \code{while} as a
  10152. macro.} The body is evaluated repeatedly so long as the condition
  10153. remains true.
  10154. %
  10155. The \code{set!} consists of a variable and a right-hand side
  10156. expression. The \code{set!} updates value of the variable to the
  10157. value of the right-hand side.
  10158. %
  10159. The primary purpose of both the \code{while} loop and \code{set!} is
  10160. to cause side effects, so they do not give a meaningful result
  10161. value. Instead, their result is the \code{\#<void>} value. The
  10162. expression \code{(void)} is an explicit way to create the
  10163. \code{\#<void>} value, and it has type \code{Void}. The
  10164. \code{\#<void>} value can be passed around just like other values
  10165. inside an \LangLoop{} program, and it can be compared for equality with
  10166. another \code{\#<void>} value. However, there are no other operations
  10167. specific to the \code{\#<void>} value in \LangLoop{}. In contrast,
  10168. Racket defines the \code{void?} predicate that returns \code{\#t}
  10169. when applied to \code{\#<void>} and \code{\#f} otherwise.%
  10170. %
  10171. \footnote{Racket's \code{Void} type corresponds to what is often
  10172. called the \code{Unit} type. Racket's \code{Void} type is inhabited
  10173. by a single value \code{\#<void>}, which corresponds to \code{unit}
  10174. or \code{()} in the literature~\citep{Pierce:2002hj}.}
  10175. %
  10176. With the addition of side effect-producing features such as
  10177. \code{while} loop and \code{set!}, it is helpful to include a language
  10178. feature for sequencing side effects: the \code{begin} expression. It
  10179. consists of one or more subexpressions that are evaluated
  10180. left to right.
  10181. %
  10182. \fi}
  10183. {\if\edition\pythonEd\pythonColor
  10184. %
  10185. In this chapter we study loops, one of the hallmarks of imperative
  10186. programming languages. The following example demonstrates the
  10187. \code{while} loop by computing the sum of the first five positive
  10188. integers.
  10189. \begin{lstlisting}
  10190. sum = 0
  10191. i = 5
  10192. while i > 0:
  10193. sum = sum + i
  10194. i = i - 1
  10195. print(sum)
  10196. \end{lstlisting}
  10197. The \code{while} loop consists of a condition and a body (a sequence
  10198. of statements). The body is evaluated repeatedly so long as the
  10199. condition remains true.
  10200. %
  10201. \fi}
  10202. \section{The \LangLoop{} Language}
  10203. \newcommand{\LwhileGrammarRacket}{
  10204. \begin{array}{lcl}
  10205. \Type &::=& \key{Void}\\
  10206. \Exp &::=& \CSETBANG{\Var}{\Exp}
  10207. \MID \CBEGIN{\Exp^{*}}{\Exp}
  10208. \MID \CWHILE{\Exp}{\Exp} \MID \LP\key{void}\RP
  10209. \end{array}
  10210. }
  10211. \newcommand{\LwhileASTRacket}{
  10212. \begin{array}{lcl}
  10213. \Type &::=& \key{Void}\\
  10214. \Exp &::=& \SETBANG{\Var}{\Exp}
  10215. \MID \BEGIN{\Exp^{*}}{\Exp}
  10216. \MID \WHILE{\Exp}{\Exp}
  10217. \MID \VOID{}
  10218. \end{array}
  10219. }
  10220. \newcommand{\LwhileGrammarPython}{
  10221. \begin{array}{rcl}
  10222. \Stmt &::=& \key{while}~ \Exp \key{:}~ \Stmt^{+}
  10223. \end{array}
  10224. }
  10225. \newcommand{\LwhileASTPython}{
  10226. \begin{array}{lcl}
  10227. \Stmt{} &::=& \WHILESTMT{\Exp}{\Stmt^{+}}
  10228. \end{array}
  10229. }
  10230. \begin{figure}[tp]
  10231. \centering
  10232. \begin{tcolorbox}[colback=white]
  10233. \small
  10234. {\if\edition\racketEd
  10235. \[
  10236. \begin{array}{l}
  10237. \gray{\LintGrammarRacket{}} \\ \hline
  10238. \gray{\LvarGrammarRacket{}} \\ \hline
  10239. \gray{\LifGrammarRacket{}} \\ \hline
  10240. \LwhileGrammarRacket \\
  10241. \begin{array}{lcl}
  10242. \LangLoopM{} &::=& \Exp
  10243. \end{array}
  10244. \end{array}
  10245. \]
  10246. \fi}
  10247. {\if\edition\pythonEd\pythonColor
  10248. \[
  10249. \begin{array}{l}
  10250. \gray{\LintGrammarPython} \\ \hline
  10251. \gray{\LvarGrammarPython} \\ \hline
  10252. \gray{\LifGrammarPython} \\ \hline
  10253. \LwhileGrammarPython \\
  10254. \begin{array}{rcl}
  10255. \LangLoopM{} &::=& \Stmt^{*}
  10256. \end{array}
  10257. \end{array}
  10258. \]
  10259. \fi}
  10260. \end{tcolorbox}
  10261. \caption{The concrete syntax of \LangLoop{}, extending \LangIf{} (figure~\ref{fig:Lif-concrete-syntax}).}
  10262. \label{fig:Lwhile-concrete-syntax}
  10263. \index{subject}{Lwhile@\LangLoop{} concrete syntax}
  10264. \end{figure}
  10265. \begin{figure}[tp]
  10266. \centering
  10267. \begin{tcolorbox}[colback=white]
  10268. \small
  10269. {\if\edition\racketEd
  10270. \[
  10271. \begin{array}{l}
  10272. \gray{\LintOpAST} \\ \hline
  10273. \gray{\LvarASTRacket{}} \\ \hline
  10274. \gray{\LifASTRacket{}} \\ \hline
  10275. \LwhileASTRacket{} \\
  10276. \begin{array}{lcl}
  10277. \LangLoopM{} &::=& \gray{ \PROGRAM{\code{'()}}{\Exp} }
  10278. \end{array}
  10279. \end{array}
  10280. \]
  10281. \fi}
  10282. {\if\edition\pythonEd\pythonColor
  10283. \[
  10284. \begin{array}{l}
  10285. \gray{\LintASTPython} \\ \hline
  10286. \gray{\LvarASTPython} \\ \hline
  10287. \gray{\LifASTPython} \\ \hline
  10288. \LwhileASTPython \\
  10289. \begin{array}{lcl}
  10290. \LangLoopM{} &::=& \PROGRAM{\code{'()}}{\Stmt^{*}}
  10291. \end{array}
  10292. \end{array}
  10293. \]
  10294. \fi}
  10295. \end{tcolorbox}
  10296. \python{
  10297. \index{subject}{While@\texttt{While}}
  10298. }
  10299. \caption{The abstract syntax of \LangLoop{}, extending \LangIf{} (figure~\ref{fig:Lif-syntax}).}
  10300. \label{fig:Lwhile-syntax}
  10301. \index{subject}{Lwhile@\LangLoop{} abstract syntax}
  10302. \end{figure}
  10303. Figure~\ref{fig:Lwhile-concrete-syntax} shows the definition of the
  10304. concrete syntax of \LangLoop{}, and figure~\ref{fig:Lwhile-syntax}
  10305. shows the definition of its abstract syntax.
  10306. %
  10307. The definitional interpreter for \LangLoop{} is shown in
  10308. figure~\ref{fig:interp-Lwhile}.
  10309. %
  10310. {\if\edition\racketEd
  10311. %
  10312. We add new cases for \code{SetBang}, \code{WhileLoop}, \code{Begin},
  10313. and \code{Void}, and we make changes to the cases for \code{Var} and
  10314. \code{Let} regarding variables. To support assignment to variables and
  10315. to make their lifetimes indefinite (see the second example in
  10316. section~\ref{sec:assignment-scoping}), we box the value that is bound
  10317. to each variable (in \code{Let}). The case for \code{Var} unboxes the
  10318. value.
  10319. %
  10320. Now we discuss the new cases. For \code{SetBang}, we find the
  10321. variable in the environment to obtain a boxed value, and then we change
  10322. it using \code{set-box!} to the result of evaluating the right-hand
  10323. side. The result value of a \code{SetBang} is \code{\#<void>}.
  10324. %
  10325. For the \code{WhileLoop}, we repeatedly (1) evaluate the condition, and
  10326. if the result is true, (2) evaluate the body.
  10327. The result value of a \code{while} loop is also \code{\#<void>}.
  10328. %
  10329. The $\BEGIN{\itm{es}}{\itm{body}}$ expression evaluates the
  10330. subexpressions \itm{es} for their effects and then evaluates
  10331. and returns the result from \itm{body}.
  10332. %
  10333. The $\VOID{}$ expression produces the \code{\#<void>} value.
  10334. %
  10335. \fi}
  10336. {\if\edition\pythonEd\pythonColor
  10337. %
  10338. We add a new case for \code{While} in the \code{interp\_stmts}
  10339. function, in which we repeatedly interpret the \code{body} so long as the
  10340. \code{test} expression remains true.
  10341. %
  10342. \fi}
  10343. \begin{figure}[tbp]
  10344. \begin{tcolorbox}[colback=white]
  10345. {\if\edition\racketEd
  10346. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  10347. (define interp-Lwhile-class
  10348. (class interp-Lif-class
  10349. (super-new)
  10350. (define/override ((interp-exp env) e)
  10351. (define recur (interp-exp env))
  10352. (match e
  10353. [(Let x e body)
  10354. (define new-env (dict-set env x (box (recur e))))
  10355. ((interp-exp new-env) body)]
  10356. [(Var x) (unbox (dict-ref env x))]
  10357. [(SetBang x rhs)
  10358. (set-box! (dict-ref env x) (recur rhs))]
  10359. [(WhileLoop cnd body)
  10360. (define (loop)
  10361. (cond [(recur cnd) (recur body) (loop)]
  10362. [else (void)]))
  10363. (loop)]
  10364. [(Begin es body)
  10365. (for ([e es]) (recur e))
  10366. (recur body)]
  10367. [(Void) (void)]
  10368. [else ((super interp-exp env) e)]))
  10369. ))
  10370. (define (interp-Lwhile p)
  10371. (send (new interp-Lwhile-class) interp-program p))
  10372. \end{lstlisting}
  10373. \fi}
  10374. {\if\edition\pythonEd\pythonColor
  10375. \begin{lstlisting}
  10376. class InterpLwhile(InterpLif):
  10377. def interp_stmt(self, s, env, cont):
  10378. match s:
  10379. case While(test, body, []):
  10380. if self.interp_exp(test, env):
  10381. self.interp_stmts(body + [s] + cont, env)
  10382. else:
  10383. return self.interp_stmts(cont, env)
  10384. case _:
  10385. return super().interp_stmt(s, env, cont)
  10386. \end{lstlisting}
  10387. \fi}
  10388. \end{tcolorbox}
  10389. \caption{Interpreter for \LangLoop{}.}
  10390. \label{fig:interp-Lwhile}
  10391. \end{figure}
  10392. The definition of the type checker for \LangLoop{} is shown in
  10393. figure~\ref{fig:type-check-Lwhile}.
  10394. %
  10395. {\if\edition\racketEd
  10396. %
  10397. The type checking of the \code{SetBang} expression requires the type
  10398. of the variable and the right-hand side to agree. The result type is
  10399. \code{Void}. For \code{while}, the condition must be a \BOOLTY{}
  10400. and the result type is \code{Void}. For \code{Begin}, the result type
  10401. is the type of its last subexpression.
  10402. %
  10403. \fi}
  10404. %
  10405. {\if\edition\pythonEd\pythonColor
  10406. %
  10407. A \code{while} loop is well typed if the type of the \code{test}
  10408. expression is \code{bool} and the statements in the \code{body} are
  10409. well typed.
  10410. %
  10411. \fi}
  10412. \begin{figure}[tbp]
  10413. \begin{tcolorbox}[colback=white]
  10414. {\if\edition\racketEd
  10415. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  10416. (define type-check-Lwhile-class
  10417. (class type-check-Lif-class
  10418. (super-new)
  10419. (inherit check-type-equal?)
  10420. (define/override (type-check-exp env)
  10421. (lambda (e)
  10422. (define recur (type-check-exp env))
  10423. (match e
  10424. [(SetBang x rhs)
  10425. (define-values (rhs^ rhsT) (recur rhs))
  10426. (define varT (dict-ref env x))
  10427. (check-type-equal? rhsT varT e)
  10428. (values (SetBang x rhs^) 'Void)]
  10429. [(WhileLoop cnd body)
  10430. (define-values (cnd^ Tc) (recur cnd))
  10431. (check-type-equal? Tc 'Boolean e)
  10432. (define-values (body^ Tbody) ((type-check-exp env) body))
  10433. (values (WhileLoop cnd^ body^) 'Void)]
  10434. [(Begin es body)
  10435. (define-values (es^ ts)
  10436. (for/lists (l1 l2) ([e es]) (recur e)))
  10437. (define-values (body^ Tbody) (recur body))
  10438. (values (Begin es^ body^) Tbody)]
  10439. [else ((super type-check-exp env) e)])))
  10440. ))
  10441. (define (type-check-Lwhile p)
  10442. (send (new type-check-Lwhile-class) type-check-program p))
  10443. \end{lstlisting}
  10444. \fi}
  10445. {\if\edition\pythonEd\pythonColor
  10446. \begin{lstlisting}
  10447. class TypeCheckLwhile(TypeCheckLif):
  10448. def type_check_stmts(self, ss, env):
  10449. if len(ss) == 0:
  10450. return
  10451. match ss[0]:
  10452. case While(test, body, []):
  10453. test_t = self.type_check_exp(test, env)
  10454. check_type_equal(bool, test_t, test)
  10455. body_t = self.type_check_stmts(body, env)
  10456. return self.type_check_stmts(ss[1:], env)
  10457. case _:
  10458. return super().type_check_stmts(ss, env)
  10459. \end{lstlisting}
  10460. \fi}
  10461. \end{tcolorbox}
  10462. \caption{Type checker for the \LangLoop{} language.}
  10463. \label{fig:type-check-Lwhile}
  10464. \end{figure}
  10465. {\if\edition\racketEd
  10466. %
  10467. At first glance, the translation of these language features to x86
  10468. seems straightforward because the \LangCIf{} intermediate language
  10469. already supports all the ingredients that we need: assignment,
  10470. \code{goto}, conditional branching, and sequencing. However,
  10471. complications arise, which we discuss in the next section. After
  10472. that we introduce the changes necessary to the existing passes.
  10473. %
  10474. \fi}
  10475. {\if\edition\pythonEd\pythonColor
  10476. %
  10477. At first glance, the translation of \code{while} loops to x86 seems
  10478. straightforward because the \LangCIf{} intermediate language already
  10479. supports \code{goto} and conditional branching. However, there are
  10480. complications that arise, which we discuss in the next section. After
  10481. that we introduce the changes necessary to the existing passes.
  10482. %
  10483. \fi}
  10484. \section{Cyclic Control Flow and Dataflow Analysis}
  10485. \label{sec:dataflow-analysis}
  10486. Up until this point, the programs generated in
  10487. \code{explicate\_control} were guaranteed to be acyclic. However, each
  10488. \code{while} loop introduces a cycle. Does that matter?
  10489. %
  10490. Indeed, it does. Recall that for register allocation, the compiler
  10491. performs liveness analysis to determine which variables can share the
  10492. same register. To accomplish this, we analyzed the control-flow graph
  10493. in reverse topological order
  10494. (section~\ref{sec:liveness-analysis-Lif}), but topological order is
  10495. well defined only for acyclic graphs.
  10496. Let us return to the example of computing the sum of the first five
  10497. positive integers. Here is the program after instruction
  10498. selection\index{subject}{instruction selection} but before register
  10499. allocation.
  10500. \begin{center}
  10501. {\if\edition\racketEd
  10502. \begin{minipage}{0.45\textwidth}
  10503. \begin{lstlisting}
  10504. (define (main) : Integer
  10505. mainstart:
  10506. movq $0, sum
  10507. movq $5, i
  10508. jmp block5
  10509. block5:
  10510. movq i, tmp3
  10511. cmpq tmp3, $0
  10512. jl block7
  10513. jmp block8
  10514. \end{lstlisting}
  10515. \end{minipage}
  10516. \begin{minipage}{0.45\textwidth}
  10517. \begin{lstlisting}
  10518. block7:
  10519. addq i, sum
  10520. movq $1, tmp4
  10521. negq tmp4
  10522. addq tmp4, i
  10523. jmp block5
  10524. block8:
  10525. movq $27, %rax
  10526. addq sum, %rax
  10527. jmp mainconclusion)
  10528. \end{lstlisting}
  10529. \end{minipage}
  10530. \fi}
  10531. {\if\edition\pythonEd\pythonColor
  10532. \begin{minipage}{0.45\textwidth}
  10533. \begin{lstlisting}
  10534. mainstart:
  10535. movq $0, sum
  10536. movq $5, i
  10537. jmp block5
  10538. block5:
  10539. cmpq $0, i
  10540. jg block7
  10541. jmp block8
  10542. \end{lstlisting}
  10543. \end{minipage}
  10544. \begin{minipage}{0.45\textwidth}
  10545. \begin{lstlisting}
  10546. block7:
  10547. addq i, sum
  10548. subq $1, i
  10549. jmp block5
  10550. block8:
  10551. movq sum, %rdi
  10552. callq print_int
  10553. movq $0, %rax
  10554. jmp mainconclusion
  10555. \end{lstlisting}
  10556. \end{minipage}
  10557. \fi}
  10558. \end{center}
  10559. Recall that liveness analysis works backward, starting at the end
  10560. of each function. For this example we could start with \code{block8}
  10561. because we know what is live at the beginning of the conclusion:
  10562. only \code{rax} and \code{rsp}. So the live-before set
  10563. for \code{block8} is \code{\{rsp,sum\}}.
  10564. %
  10565. Next we might try to analyze \code{block5} or \code{block7}, but
  10566. \code{block5} jumps to \code{block7} and vice versa, so it seems that
  10567. we are stuck.
  10568. The way out of this impasse is to realize that we can compute an
  10569. underapproximation of each live-before set by starting with empty
  10570. live-after sets. By \emph{underapproximation}, we mean that the set
  10571. contains only variables that are live for some execution of the
  10572. program, but the set may be missing some variables that are live.
  10573. Next, the underapproximations for each block can be improved by (1)
  10574. updating the live-after set for each block using the approximate
  10575. live-before sets from the other blocks, and (2) performing liveness
  10576. analysis again on each block. In fact, by iterating this process, the
  10577. underapproximations eventually become the correct solutions!
  10578. %
  10579. This approach of iteratively analyzing a control-flow graph is
  10580. applicable to many static analysis problems and goes by the name
  10581. \emph{dataflow analysis}\index{subject}{dataflow analysis}. It was invented by
  10582. \citet{Kildall:1973vn} in his PhD thesis at the University of
  10583. Washington.
  10584. Let us apply this approach to the previously presented example. We use
  10585. the empty set for the initial live-before set for each block. Let
  10586. $m_0$ be the following mapping from label names to sets of locations
  10587. (variables and registers):
  10588. \begin{center}
  10589. \begin{lstlisting}
  10590. mainstart: {}, block5: {}, block7: {}, block8: {}
  10591. \end{lstlisting}
  10592. \end{center}
  10593. Using the above live-before approximations, we determine the
  10594. live-after for each block and then apply liveness analysis to each
  10595. block. This produces our next approximation $m_1$ of the live-before
  10596. sets.
  10597. \begin{center}
  10598. \begin{lstlisting}
  10599. mainstart: {}, block5: {i}, block7: {i, sum}, block8: {rsp, sum}
  10600. \end{lstlisting}
  10601. \end{center}
  10602. For the second round, the live-after for \code{mainstart} is the
  10603. current live-before for \code{block5}, which is \code{\{i\}}. Therefore
  10604. the liveness analysis for \code{mainstart} computes the empty set. The
  10605. live-after for \code{block5} is the union of the live-before sets for
  10606. \code{block7} and \code{block8}, which is \code{\{i, rsp, sum\}}.
  10607. So the liveness analysis for \code{block5} computes \code{\{i, rsp,
  10608. sum\}}. The live-after for \code{block7} is the live-before for
  10609. \code{block5} (from the previous iteration), which is \code{\{i\}}.
  10610. So the liveness analysis for \code{block7} remains \code{\{i, sum\}}.
  10611. Together these yield the following approximation $m_2$ of
  10612. the live-before sets:
  10613. \begin{center}
  10614. \begin{lstlisting}
  10615. mainstart: {}, block5: {i, rsp, sum}, block7: {i, sum}, block8: {rsp, sum}
  10616. \end{lstlisting}
  10617. \end{center}
  10618. In the preceding iteration, only \code{block5} changed, so we can
  10619. limit our attention to \code{mainstart} and \code{block7}, the two
  10620. blocks that jump to \code{block5}. As a result, the live-before sets
  10621. for \code{mainstart} and \code{block7} are updated to include
  10622. \code{rsp}, yielding the following approximation $m_3$:
  10623. \begin{center}
  10624. \begin{lstlisting}
  10625. mainstart: {rsp}, block5: {i,rsp,sum}, block7: {i,rsp,sum}, block8: {rsp,sum}
  10626. \end{lstlisting}
  10627. \end{center}
  10628. Because \code{block7} changed, we analyze \code{block5} once more, but
  10629. its live-before set remains \code{\{i,rsp,sum\}}. At this point
  10630. our approximations have converged, so $m_3$ is the solution.
  10631. This iteration process is guaranteed to converge to a solution by the
  10632. Kleene fixed-point theorem, a general theorem about functions on
  10633. lattices~\citep{Kleene:1952aa}. Roughly speaking, a \emph{lattice} is
  10634. any collection that comes with a partial ordering\index{subject}{partialordering@partial ordering} $\sqsubseteq$ on its
  10635. elements, a least element $\bot$ (pronounced \emph{bottom}), and a
  10636. join operator
  10637. $\sqcup$.\index{subject}{lattice}\index{subject}{bottom}\index{subject}{join}\footnote{Technically speaking, we
  10638. will be working with join semilattices.} When two elements are
  10639. ordered $m_i \sqsubseteq m_j$, it means that $m_j$ contains at least
  10640. as much information as $m_i$, so we can think of $m_j$ as a
  10641. better-than-or-equal-to approximation in relation to $m_i$. The
  10642. bottom element $\bot$ represents the complete lack of information,
  10643. that is, the worst approximation. The join operator takes two lattice
  10644. elements and combines their information; that is, it produces the
  10645. least upper bound of the two.\index{subject}{least upper bound}
  10646. A dataflow analysis typically involves two lattices: one lattice to
  10647. represent abstract states and another lattice that aggregates the
  10648. abstract states of all the blocks in the control-flow graph. For
  10649. liveness analysis, an abstract state is a set of locations. We form
  10650. the lattice $L$ by taking its elements to be sets of locations, the
  10651. ordering to be set inclusion ($\subseteq$), the bottom to be the empty
  10652. set, and the join operator to be set union.
  10653. %
  10654. We form a second lattice $M$ by taking its elements to be mappings
  10655. from the block labels to sets of locations (elements of $L$). We
  10656. order the mappings point-wise, using the ordering of $L$. So, given any
  10657. two mappings $m_i$ and $m_j$, $m_i \sqsubseteq_M m_j$ when $m_i(\ell)
  10658. \subseteq m_j(\ell)$ for every block label $\ell$ in the program. The
  10659. bottom element of $M$ is the mapping $\bot_M$ that sends every label
  10660. to the empty set, $\bot_M(\ell) = \emptyset$.
  10661. We can think of one iteration of liveness analysis applied to the
  10662. whole program as being a function $f$ on the lattice $M$. It takes a
  10663. mapping as input and computes a new mapping.
  10664. \[
  10665. f(m_i) = m_{i+1}
  10666. \]
  10667. Next let us think for a moment about what a final solution $m_s$
  10668. should look like. If we perform liveness analysis using the solution
  10669. $m_s$ as input, we should get $m_s$ again as the output. That is, the
  10670. solution should be a \emph{fixed point} of the function $f$.\index{subject}{fixed point}
  10671. \[
  10672. f(m_s) = m_s
  10673. \]
  10674. Furthermore, the solution should include only locations that are
  10675. forced to be there by performing liveness analysis on the program, so
  10676. the solution should be the \emph{least} fixed point.\index{subject}{least fixed point}
  10677. The Kleene fixed-point theorem states that if a function $f$ is
  10678. monotone (better inputs produce better outputs), then the least fixed
  10679. point of $f$ is the least upper bound of the \emph{ascending Kleene
  10680. chain} that starts at $\bot$ and iterates $f$ as
  10681. follows:\index{subject}{Kleene fixed-point theorem}
  10682. \[
  10683. \bot \sqsubseteq f(\bot) \sqsubseteq f(f(\bot)) \sqsubseteq \cdots
  10684. \sqsubseteq f^n(\bot) \sqsubseteq \cdots
  10685. \]
  10686. When a lattice contains only finitely long ascending chains, then
  10687. every Kleene chain tops out at some fixed point after some number of
  10688. iterations of $f$.
  10689. \[
  10690. \bot \sqsubseteq f(\bot) \sqsubseteq f(f(\bot)) \sqsubseteq \cdots
  10691. \sqsubseteq f^k(\bot) = f^{k+1}(\bot) = m_s
  10692. \]
  10693. The liveness analysis is indeed a monotone function and the lattice
  10694. $M$ has finitely long ascending chains because there are only a
  10695. finite number of variables and blocks in the program. Thus we are
  10696. guaranteed that iteratively applying liveness analysis to all blocks
  10697. in the program will eventually produce the least fixed point solution.
  10698. Next let us consider dataflow analysis in general and discuss the
  10699. generic work list algorithm (figure~\ref{fig:generic-dataflow}).
  10700. %
  10701. The algorithm has four parameters: the control-flow graph \code{G}, a
  10702. function \code{transfer} that applies the analysis to one block, and the
  10703. \code{bottom} and \code{join} operators for the lattice of abstract
  10704. states. The \code{analyze\_dataflow} function is formulated as a
  10705. \emph{forward} dataflow analysis; that is, the inputs to the transfer
  10706. function come from the predecessor nodes in the control-flow
  10707. graph. However, liveness analysis is a \emph{backward} dataflow
  10708. analysis, so in that case one must supply the \code{analyze\_dataflow}
  10709. function with the transpose of the control-flow graph.
  10710. The algorithm begins by creating the bottom mapping, represented by a
  10711. hash table. It then pushes all the nodes in the control-flow graph
  10712. onto the work list (a queue). The algorithm repeats the \code{while}
  10713. loop as long as there are items in the work list. In each iteration, a
  10714. node is popped from the work list and processed. The \code{input} for
  10715. the node is computed by taking the join of the abstract states of all
  10716. the predecessor nodes. The \code{transfer} function is then applied to
  10717. obtain the \code{output} abstract state. If the output differs from
  10718. the previous state for this block, the mapping for this block is
  10719. updated and its successor nodes are pushed onto the work list.
  10720. \begin{figure}[tb]
  10721. \begin{tcolorbox}[colback=white]
  10722. {\if\edition\racketEd
  10723. \begin{lstlisting}
  10724. (define (analyze_dataflow G transfer bottom join)
  10725. (define mapping (make-hash))
  10726. (for ([v (in-vertices G)])
  10727. (dict-set! mapping v bottom))
  10728. (define worklist (make-queue))
  10729. (for ([v (in-vertices G)])
  10730. (enqueue! worklist v))
  10731. (define trans-G (transpose G))
  10732. (while (not (queue-empty? worklist))
  10733. (define node (dequeue! worklist))
  10734. (define input (for/fold ([state bottom])
  10735. ([pred (in-neighbors trans-G node)])
  10736. (join state (dict-ref mapping pred))))
  10737. (define output (transfer node input))
  10738. (cond [(not (equal? output (dict-ref mapping node)))
  10739. (dict-set! mapping node output)
  10740. (for ([v (in-neighbors G node)])
  10741. (enqueue! worklist v))]))
  10742. mapping)
  10743. \end{lstlisting}
  10744. \fi}
  10745. {\if\edition\pythonEd\pythonColor
  10746. \begin{lstlisting}
  10747. def analyze_dataflow(G, transfer, bottom, join):
  10748. trans_G = transpose(G)
  10749. mapping = dict((v, bottom) for v in G.vertices())
  10750. worklist = deque(G.vertices)
  10751. while worklist:
  10752. node = worklist.pop()
  10753. inputs = [mapping[v] for v in trans_G.adjacent(node)]
  10754. input = reduce(join, inputs, bottom)
  10755. output = transfer(node, input)
  10756. if output != mapping[node]:
  10757. mapping[node] = output
  10758. worklist.extend(G.adjacent(node))
  10759. \end{lstlisting}
  10760. \fi}
  10761. \end{tcolorbox}
  10762. \caption{Generic work list algorithm for dataflow analysis.}
  10763. \label{fig:generic-dataflow}
  10764. \end{figure}
  10765. {\if\edition\racketEd
  10766. \section{Mutable Variables and Remove Complex Operands}
  10767. There is a subtle interaction between the
  10768. \code{remove\_complex\_operands} pass, the addition of \code{set!},
  10769. and the left-to-right order of evaluation of Racket. Consider the
  10770. following example:
  10771. \begin{lstlisting}
  10772. (let ([x 2])
  10773. (+ x (begin (set! x 40) x)))
  10774. \end{lstlisting}
  10775. The result of this program is \code{42} because the first read from
  10776. \code{x} produces \code{2} and the second produces \code{40}. However,
  10777. if we naively apply the \code{remove\_complex\_operands} pass to this
  10778. example we obtain the following program whose result is \code{80}!
  10779. \begin{lstlisting}
  10780. (let ([x 2])
  10781. (let ([tmp (begin (set! x 40) x)])
  10782. (+ x tmp)))
  10783. \end{lstlisting}
  10784. The problem is that with mutable variables, the ordering between
  10785. reads and writes is important, and the
  10786. \code{remove\_complex\_operands} pass moved the \code{set!} to happen
  10787. before the first read of \code{x}.
  10788. We recommend solving this problem by giving special treatment to reads
  10789. from mutable variables, that is, variables that occur on the left-hand
  10790. side of a \code{set!}. We mark each read from a mutable variable with
  10791. the form \code{get!} (\code{GetBang} in abstract syntax) to indicate
  10792. that the read operation is effectful in that it can produce different
  10793. results at different points in time. Let's apply this idea to the
  10794. following variation that also involves a variable that is not mutated:
  10795. % loop_test_24.rkt
  10796. \begin{lstlisting}
  10797. (let ([x 2])
  10798. (let ([y 0])
  10799. (+ y (+ x (begin (set! x 40) x)))))
  10800. \end{lstlisting}
  10801. We first analyze this program to discover that variable \code{x}
  10802. is mutable but \code{y} is not. We then transform the program as
  10803. follows, replacing each occurrence of \code{x} with \code{(get! x)}:
  10804. \begin{lstlisting}
  10805. (let ([x 2])
  10806. (let ([y 0])
  10807. (+ y (+ (get! x) (begin (set! x 40) (get! x))))))
  10808. \end{lstlisting}
  10809. Now that we have a clear distinction between reads from mutable and
  10810. immutable variables, we can apply the \code{remove\_complex\_operands}
  10811. pass, where reads from immutable variables are still classified as
  10812. atomic expressions but reads from mutable variables are classified as
  10813. complex. Thus, \code{remove\_complex\_operands} yields the following
  10814. program:\\
  10815. \begin{minipage}{\textwidth}
  10816. \begin{lstlisting}
  10817. (let ([x 2])
  10818. (let ([y 0])
  10819. (let ([t1 x])
  10820. (let ([t2 (begin (set! x 40) x)])
  10821. (let ([t3 (+ t1 t2)])
  10822. (+ y t3))))))
  10823. \end{lstlisting}
  10824. \end{minipage}
  10825. The temporary variable \code{t1} gets the value of \code{x} before the
  10826. \code{set!}, so it is \code{2}. The temporary variable \code{t2} gets
  10827. the value of \code{x} after the \code{set!}, so it is \code{40}. We
  10828. do not generate a temporary variable for the occurrence of \code{y}
  10829. because it's an immutable variable. We want to avoid such unnecessary
  10830. extra temporaries because they would needlessly increase the number of
  10831. variables, making it more likely for some of them to be spilled. The
  10832. result of this program is \code{42}, the same as the result prior to
  10833. \code{remove\_complex\_operands}.
  10834. The approach that we've sketched requires only a small
  10835. modification to \code{remove\_complex\_operands} to handle
  10836. \code{get!}. However, it requires a new pass, called
  10837. \code{uncover-get!}, that we discuss in
  10838. section~\ref{sec:uncover-get-bang}.
  10839. As an aside, this problematic interaction between \code{set!} and the
  10840. pass \code{remove\_complex\_operands} is particular to Racket and not
  10841. its predecessor, the Scheme language. The key difference is that
  10842. Scheme does not specify an order of evaluation for the arguments of an
  10843. operator or function call~\citep{SPERBER:2009aa}. Thus, a compiler for
  10844. Scheme is free to choose any ordering: both \code{42} and \code{80}
  10845. would be correct results for the example program. Interestingly,
  10846. Racket is implemented on top of the Chez Scheme
  10847. compiler~\citep{Dybvig:2006aa} and an approach similar to the one
  10848. presented in this section (using extra \code{let} bindings to control
  10849. the order of evaluation) is used in the translation from Racket to
  10850. Scheme~\citep{Flatt:2019tb}.
  10851. \fi} % racket
  10852. Having discussed the complications that arise from adding support for
  10853. assignment and loops, we turn to discussing the individual compilation
  10854. passes.
  10855. {\if\edition\racketEd
  10856. \section{Uncover \texttt{get!}}
  10857. \label{sec:uncover-get-bang}
  10858. The goal of this pass is to mark uses of mutable variables so that
  10859. \code{remove\_complex\_operands} can treat them as complex expressions
  10860. and thereby preserve their ordering relative to the side effects in
  10861. other operands. So, the first step is to collect all the mutable
  10862. variables. We recommend creating an auxiliary function for this,
  10863. named \code{collect-set!}, that recursively traverses expressions,
  10864. returning the set of all variables that occur on the left-hand side of a
  10865. \code{set!}. Here's an excerpt of its implementation.
  10866. \begin{center}
  10867. \begin{minipage}{\textwidth}
  10868. \begin{lstlisting}
  10869. (define (collect-set! e)
  10870. (match e
  10871. [(Var x) (set)]
  10872. [(Int n) (set)]
  10873. [(Let x rhs body)
  10874. (set-union (collect-set! rhs) (collect-set! body))]
  10875. [(SetBang var rhs)
  10876. (set-union (set var) (collect-set! rhs))]
  10877. ...))
  10878. \end{lstlisting}
  10879. \end{minipage}
  10880. \end{center}
  10881. By placing this pass after \code{uniquify}, we need not worry about
  10882. variable shadowing, and our logic for \code{Let} can remain simple, as
  10883. in this excerpt.
  10884. The second step is to mark the occurrences of the mutable variables
  10885. with the new \code{GetBang} AST node (\code{get!} in concrete
  10886. syntax). The following is an excerpt of the \code{uncover-get!-exp}
  10887. function, which takes two parameters: the set of mutable variables
  10888. \code{set!-vars} and the expression \code{e} to be processed. The
  10889. case for \code{(Var x)} replaces it with \code{(GetBang x)} if it is a
  10890. mutable variable or leaves it alone if not.
  10891. \begin{center}
  10892. \begin{minipage}{\textwidth}
  10893. \begin{lstlisting}
  10894. (define ((uncover-get!-exp set!-vars) e)
  10895. (match e
  10896. [(Var x)
  10897. (if (set-member? set!-vars x)
  10898. (GetBang x)
  10899. (Var x))]
  10900. ...))
  10901. \end{lstlisting}
  10902. \end{minipage}
  10903. \end{center}
  10904. To wrap things up, define the \code{uncover-get!} function for
  10905. processing a whole program, using \code{collect-set!} to obtain the
  10906. set of mutable variables and then \code{uncover-get!-exp} to replace
  10907. their occurrences with \code{GetBang}.
  10908. \fi}
  10909. \section{Remove Complex Operands}
  10910. \label{sec:rco-loop}
  10911. {\if\edition\racketEd
  10912. %
  10913. The new language forms, \code{get!}, \code{set!}, \code{begin}, and
  10914. \code{while} are all complex expressions. The subexpressions of
  10915. \code{set!}, \code{begin}, and \code{while} are allowed to be complex.
  10916. %
  10917. \fi}
  10918. {\if\edition\pythonEd\pythonColor
  10919. %
  10920. The change needed for this pass is to add a case for the \code{while}
  10921. statement. The condition of a loop is allowed to be a complex
  10922. expression, just like the condition of the \code{if} statement.
  10923. %
  10924. \fi}
  10925. %
  10926. Figure~\ref{fig:Lwhile-anf-syntax} defines the output language
  10927. \LangLoopANF{} of this pass.
  10928. \newcommand{\LwhileMonadASTRacket}{
  10929. \begin{array}{rcl}
  10930. \Atm &::=& \VOID{} \\
  10931. \Exp &::=& \GETBANG{\Var}
  10932. \MID \SETBANG{\Var}{\Exp}
  10933. \MID \BEGIN{\LP\Exp\ldots\RP}{\Exp} \\
  10934. &\MID& \WHILE{\Exp}{\Exp}
  10935. \end{array}
  10936. }
  10937. \newcommand{\LwhileMonadASTPython}{
  10938. \begin{array}{rcl}
  10939. \Stmt{} &::=& \WHILESTMT{\Exp}{\Stmt^{+}}
  10940. \end{array}
  10941. }
  10942. \begin{figure}[tp]
  10943. \centering
  10944. \begin{tcolorbox}[colback=white]
  10945. \small
  10946. {\if\edition\racketEd
  10947. \[
  10948. \begin{array}{l}
  10949. \gray{\LvarMonadASTRacket} \\ \hline
  10950. \gray{\LifMonadASTRacket} \\ \hline
  10951. \LwhileMonadASTRacket \\
  10952. \begin{array}{rcl}
  10953. \LangLoopANF &::=& \PROGRAM{\code{'()}}{\Exp}
  10954. \end{array}
  10955. \end{array}
  10956. \]
  10957. \fi}
  10958. {\if\edition\pythonEd\pythonColor
  10959. \[
  10960. \begin{array}{l}
  10961. \gray{\LvarMonadASTPython} \\ \hline
  10962. \gray{\LifMonadASTPython} \\ \hline
  10963. \LwhileMonadASTPython \\
  10964. \begin{array}{rcl}
  10965. \LangLoopANF &::=& \PROGRAM{\code{()}}{\Stmt^{*}}
  10966. \end{array}
  10967. \end{array}
  10968. \]
  10969. \fi}
  10970. \end{tcolorbox}
  10971. \caption{\LangLoopANF{} is \LangLoop{} in monadic normal form.}
  10972. \label{fig:Lwhile-anf-syntax}
  10973. \index{subject}{Lwhilemon@\LangLoopANF{} abstract syntax}
  10974. \end{figure}
  10975. {\if\edition\racketEd
  10976. %
  10977. As usual, when a complex expression appears in a grammar position that
  10978. needs to be atomic, such as the argument of a primitive operator, we
  10979. must introduce a temporary variable and bind it to the complex
  10980. expression. This approach applies, unchanged, to handle the new
  10981. language forms. For example, in the following code there are two
  10982. \code{begin} expressions appearing as arguments to the \code{+}
  10983. operator. The output of \code{rco\_exp} is then shown, in which the
  10984. \code{begin} expressions have been bound to temporary
  10985. variables. Recall that \code{let} expressions in \LangLoopANF{} are
  10986. allowed to have arbitrary expressions in their right-hand side
  10987. expression, so it is fine to place \code{begin} there.
  10988. %
  10989. \begin{center}
  10990. \begin{tabular}{lcl}
  10991. \begin{minipage}{0.4\textwidth}
  10992. \begin{lstlisting}
  10993. (let ([x2 10])
  10994. (let ([y3 0])
  10995. (+ (+ (begin
  10996. (set! y3 (read))
  10997. (get! x2))
  10998. (begin
  10999. (set! x2 (read))
  11000. (get! y3)))
  11001. (get! x2))))
  11002. \end{lstlisting}
  11003. \end{minipage}
  11004. &
  11005. $\Rightarrow$
  11006. &
  11007. \begin{minipage}{0.4\textwidth}
  11008. \begin{lstlisting}
  11009. (let ([x2 10])
  11010. (let ([y3 0])
  11011. (let ([tmp4 (begin
  11012. (set! y3 (read))
  11013. x2)])
  11014. (let ([tmp5 (begin
  11015. (set! x2 (read))
  11016. y3)])
  11017. (let ([tmp6 (+ tmp4 tmp5)])
  11018. (let ([tmp7 x2])
  11019. (+ tmp6 tmp7)))))))
  11020. \end{lstlisting}
  11021. \end{minipage}
  11022. \end{tabular}
  11023. \end{center}
  11024. \fi}
  11025. \section{Explicate Control \racket{and \LangCLoop{}}}
  11026. \label{sec:explicate-loop}
  11027. \newcommand{\CloopASTRacket}{
  11028. \begin{array}{lcl}
  11029. \Atm &::=& \VOID \\
  11030. \Stmt &::=& \READ{}
  11031. \end{array}
  11032. }
  11033. {\if\edition\racketEd
  11034. Recall that in the \code{explicate\_control} pass we define one helper
  11035. function for each kind of position in the program. For the \LangVar{}
  11036. language of integers and variables, we needed assignment and tail
  11037. positions. The \code{if} expressions of \LangIf{} introduced predicate
  11038. positions. For \LangLoop{}, the \code{begin} expression introduces yet
  11039. another kind of position: effect position. Except for the last
  11040. subexpression, the subexpressions inside a \code{begin} are evaluated
  11041. only for their effect. Their result values are discarded. We can
  11042. generate better code by taking this fact into account.
  11043. The output language of \code{explicate\_control} is \LangCLoop{}
  11044. (figure~\ref{fig:c7-syntax}), which is nearly identical to
  11045. \LangCIf{}. The only syntactic differences are the addition of \VOID{}
  11046. and that \code{read} may appear as a statement. The most significant
  11047. difference between the programs generated by \code{explicate\_control}
  11048. in chapter~\ref{ch:Lif} versus \code{explicate\_control} in this
  11049. chapter is that the control-flow graphs of the latter may contain
  11050. cycles.
  11051. \begin{figure}[tp]
  11052. \begin{tcolorbox}[colback=white]
  11053. \small
  11054. \[
  11055. \begin{array}{l}
  11056. \gray{\CvarASTRacket} \\ \hline
  11057. \gray{\CifASTRacket} \\ \hline
  11058. \CloopASTRacket \\
  11059. \begin{array}{lcl}
  11060. \LangCLoopM{} & ::= & \CPROGRAM{\itm{info}}{\LP\LP\itm{label}\,\key{.}\,\Tail\RP\ldots\RP}
  11061. \end{array}
  11062. \end{array}
  11063. \]
  11064. \end{tcolorbox}
  11065. \caption{The abstract syntax of \LangCLoop{}, extending \LangCIf{} (figure~\ref{fig:c1-syntax}).}
  11066. \label{fig:c7-syntax}
  11067. \index{subject}{Cwhile@\LangCLoop{} abstract syntax}
  11068. \end{figure}
  11069. The new auxiliary function \code{explicate\_effect} takes an
  11070. expression (in an effect position) and the code for its
  11071. continuation. The function returns a $\Tail$ that includes the
  11072. generated code for the input expression followed by the
  11073. continuation. If the expression is obviously pure, that is, never
  11074. causes side effects, then the expression can be removed, so the result
  11075. is just the continuation.
  11076. %
  11077. The case for $\WHILE{\itm{cnd}}{\itm{body}}$ expressions is
  11078. interesting; the generated code is depicted in the following diagram:
  11079. \begin{center}
  11080. \begin{minipage}{0.3\textwidth}
  11081. \xymatrix{
  11082. *+[F=]{\txt{\code{goto} \itm{loop}}} \ar[r]
  11083. & *+[F]{\txt{\itm{loop}: \\ \itm{cnd'}}} \ar[r]^{else} \ar[d]^{then}
  11084. & *+[F]{\txt{\itm{cont}}} \\
  11085. & *+[F]{\txt{\itm{body'} \\ \code{goto} \itm{loop}}} \ar@/^50pt/[u]
  11086. }
  11087. \end{minipage}
  11088. \end{center}
  11089. We start by creating a fresh label $\itm{loop}$ for the top of the
  11090. loop. Next, recursively process the \itm{body} (in effect position)
  11091. with a \code{goto} to $\itm{loop}$ as the continuation, producing
  11092. \itm{body'}. Process the \itm{cnd} (in predicate position) with
  11093. \itm{body'} as the \emph{then} branch and the continuation block as the
  11094. \emph{else} branch. The result should be added to the dictionary of
  11095. \code{basic-blocks} with the label \itm{loop}. The result for the
  11096. whole \code{while} loop is a \code{goto} to the \itm{loop} label.
  11097. The auxiliary functions for tail, assignment, and predicate positions
  11098. need to be updated. The three new language forms, \code{while},
  11099. \code{set!}, and \code{begin}, can appear in assignment and tail
  11100. positions. Only \code{begin} may appear in predicate positions; the
  11101. other two have result type \code{Void}.
  11102. \fi}
  11103. %
  11104. {\if\edition\pythonEd\pythonColor
  11105. %
  11106. The output of this pass is the language \LangCIf{}. No new language
  11107. features are needed in the output, because a \code{while} loop can be
  11108. expressed in terms of \code{goto} and \code{if} statements, which are
  11109. already in \LangCIf{}.
  11110. %
  11111. Add a case for the \code{while} statement to the
  11112. \code{explicate\_stmt} method, using \code{explicate\_pred} to process
  11113. the condition expression.
  11114. %
  11115. \fi}
  11116. {\if\edition\racketEd
  11117. \section{Select Instructions}
  11118. \label{sec:select-instructions-loop}
  11119. \index{subject}{select instructions}
  11120. Only two small additions are needed in the \code{select\_instructions}
  11121. pass to handle the changes to \LangCLoop{}. First, to handle the
  11122. addition of \VOID{} we simply translate it to \code{0}. Second,
  11123. \code{read} may appear as a stand-alone statement instead of
  11124. appearing only on the right-hand side of an assignment statement. The code
  11125. generation is nearly identical to the one for assignment; just leave
  11126. off the instruction for moving the result into the left-hand side.
  11127. \fi}
  11128. \section{Register Allocation}
  11129. \label{sec:register-allocation-loop}
  11130. As discussed in section~\ref{sec:dataflow-analysis}, the presence of
  11131. loops in \LangLoop{} means that the control-flow graphs may contain cycles,
  11132. which complicates the liveness analysis needed for register
  11133. allocation.
  11134. %
  11135. We recommend using the generic \code{analyze\_dataflow} function that
  11136. was presented at the end of section~\ref{sec:dataflow-analysis} to
  11137. perform liveness analysis, replacing the code in
  11138. \code{uncover\_live} that processed the basic blocks in topological
  11139. order (section~\ref{sec:liveness-analysis-Lif}).
  11140. The \code{analyze\_dataflow} function has the following four parameters.
  11141. \begin{enumerate}
  11142. \item The first parameter \code{G} should be passed the transpose
  11143. of the control-flow graph.
  11144. \item The second parameter \code{transfer} should be passed a function
  11145. that applies liveness analysis to a basic block. It takes two
  11146. parameters: the label for the block to analyze and the live-after
  11147. set for that block. The transfer function should return the
  11148. live-before set for the block.
  11149. %
  11150. \racket{Also, as a side effect, it should update the block's
  11151. $\itm{info}$ with the liveness information for each instruction.}
  11152. %
  11153. \python{Also, as a side effect, it should update the live-before and
  11154. live-after sets for each instruction.}
  11155. %
  11156. To implement the \code{transfer} function, you should be able to
  11157. reuse the code you already have for analyzing basic blocks.
  11158. \item The third and fourth parameters of \code{analyze\_dataflow} are
  11159. \code{bottom} and \code{join} for the lattice of abstract states,
  11160. that is, sets of locations. For liveness analysis, the bottom of the
  11161. lattice is the empty set, and the join operator is set union.
  11162. \end{enumerate}
  11163. \begin{figure}[tp]
  11164. \begin{tcolorbox}[colback=white]
  11165. {\if\edition\racketEd
  11166. \begin{tikzpicture}[baseline=(current bounding box.center),scale=0.90]
  11167. \node (Lfun) at (0,2) {\large \LangLoop{}};
  11168. \node (Lfun-2) at (3,2) {\large \LangLoop{}};
  11169. \node (F1-4) at (6,2) {\large \LangLoop{}};
  11170. \node (F1-5) at (9,2) {\large \LangLoop{}};
  11171. \node (F1-6) at (9,0) {\large \LangLoopANF{}};
  11172. \node (C3-2) at (0,0) {\large \racket{\LangCLoop{}}\python{\LangCIf{}}};
  11173. \node (x86-2) at (0,-2) {\large \LangXIfVar{}};
  11174. \node (x86-2-1) at (0,-4) {\large \LangXIfVar{}};
  11175. \node (x86-2-2) at (4,-4) {\large \LangXIfVar{}};
  11176. \node (x86-3) at (4,-2) {\large \LangXIfVar{}};
  11177. \node (x86-4) at (8,-2) {\large \LangXIf{}};
  11178. \node (x86-5) at (8,-4) {\large \LangXIf{}};
  11179. \path[->,bend left=15] (Lfun) edge [above] node
  11180. {\ttfamily\footnotesize shrink} (Lfun-2);
  11181. \path[->,bend left=15] (Lfun-2) edge [above] node
  11182. {\ttfamily\footnotesize uniquify} (F1-4);
  11183. \path[->,bend left=15] (F1-4) edge [above] node
  11184. {\ttfamily\footnotesize uncover\_get!} (F1-5);
  11185. \path[->,bend left=15] (F1-5) edge [left] node
  11186. {\ttfamily\footnotesize remove\_complex\_operands} (F1-6);
  11187. \path[->,bend left=10] (F1-6) edge [above] node
  11188. {\ttfamily\footnotesize explicate\_control} (C3-2);
  11189. \path[->,bend left=15] (C3-2) edge [right] node
  11190. {\ttfamily\footnotesize select\_instructions} (x86-2);
  11191. \path[->,bend right=15] (x86-2) edge [right] node
  11192. {\ttfamily\footnotesize uncover\_live} (x86-2-1);
  11193. \path[->,bend right=15] (x86-2-1) edge [below] node
  11194. {\ttfamily\footnotesize build\_interference} (x86-2-2);
  11195. \path[->,bend right=15] (x86-2-2) edge [right] node
  11196. {\ttfamily\footnotesize allocate\_registers} (x86-3);
  11197. \path[->,bend left=15] (x86-3) edge [above] node
  11198. {\ttfamily\footnotesize patch\_instructions} (x86-4);
  11199. \path[->,bend left=15] (x86-4) edge [right] node
  11200. {\ttfamily\footnotesize prelude\_and\_conclusion} (x86-5);
  11201. \end{tikzpicture}
  11202. \fi}
  11203. {\if\edition\pythonEd\pythonColor
  11204. \begin{tikzpicture}[baseline=(current bounding box.center),scale=0.90]
  11205. \node (Lfun) at (0,2) {\large \LangLoop{}};
  11206. \node (Lfun-2) at (4,2) {\large \LangLoop{}};
  11207. \node (F1-6) at (8,2) {\large \LangLoopANF{}};
  11208. \node (C3-2) at (0,0) {\large \racket{\LangCLoop{}}\python{\LangCIf{}}};
  11209. \node (x86-2) at (0,-2) {\large \LangXIfVar{}};
  11210. \node (x86-3) at (4,-2) {\large \LangXIfVar{}};
  11211. \node (x86-4) at (8,-2) {\large \LangXIf{}};
  11212. \node (x86-5) at (12,-2) {\large \LangXIf{}};
  11213. \path[->,bend left=15] (Lfun) edge [above] node
  11214. {\ttfamily\footnotesize shrink} (Lfun-2);
  11215. \path[->,bend left=15] (Lfun-2) edge [above] node
  11216. {\ttfamily\footnotesize remove\_complex\_operands} (F1-6);
  11217. \path[->,bend left=10] (F1-6) edge [right] node
  11218. {\ttfamily\footnotesize \ \ explicate\_control} (C3-2);
  11219. \path[->,bend right=15] (C3-2) edge [right] node
  11220. {\ttfamily\footnotesize select\_instructions} (x86-2);
  11221. \path[->,bend right=15] (x86-2) edge [below] node
  11222. {\ttfamily\footnotesize assign\_homes} (x86-3);
  11223. \path[->,bend left=15] (x86-3) edge [above] node
  11224. {\ttfamily\footnotesize patch\_instructions} (x86-4);
  11225. \path[->,bend right=15] (x86-4) edge [below] node
  11226. {\ttfamily\footnotesize prelude\_and\_conclusion} (x86-5);
  11227. \end{tikzpicture}
  11228. \fi}
  11229. \end{tcolorbox}
  11230. \caption{Diagram of the passes for \LangLoop{}.}
  11231. \label{fig:Lwhile-passes}
  11232. \end{figure}
  11233. Figure~\ref{fig:Lwhile-passes} provides an overview of all the passes needed
  11234. for the compilation of \LangLoop{}.
  11235. % Further Reading: dataflow analysis
  11236. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  11237. \chapter{Tuples and Garbage Collection}
  11238. \label{ch:Lvec}
  11239. \index{subject}{tuple}
  11240. \index{subject}{vector}
  11241. \setcounter{footnote}{0}
  11242. %% \margincomment{\scriptsize To do: Flesh out this chapter, e.g., make sure
  11243. %% all the IR grammars are spelled out! \\ --Jeremy}
  11244. %% \margincomment{\scriptsize Be more explicit about how to deal with
  11245. %% the root stack. \\ --Jeremy}
  11246. In this chapter we study the implementation of tuples\racket{, called
  11247. vectors in Racket}. A tuple is a fixed-length sequence of elements
  11248. in which each element may have a different type.
  11249. %
  11250. This language feature is the first to use the computer's
  11251. \emph{heap}\index{subject}{heap}, because the lifetime of a tuple is
  11252. indefinite; that is, a tuple lives forever from the programmer's
  11253. viewpoint. Of course, from an implementer's viewpoint, it is important
  11254. to reclaim the space associated with a tuple when it is no longer
  11255. needed, which is why we also study \emph{garbage collection}
  11256. \index{subject}{garbage collection} techniques in this chapter.
  11257. Section~\ref{sec:r3} introduces the \LangVec{} language, including its
  11258. interpreter and type checker. The \LangVec{} language extends the \LangLoop{}
  11259. language (chapter~\ref{ch:Lwhile}) with tuples.
  11260. %
  11261. Section~\ref{sec:GC} describes a garbage collection algorithm based on
  11262. copying live tuples back and forth between two halves of the heap. The
  11263. garbage collector requires coordination with the compiler so that it
  11264. can find all the live tuples.
  11265. %
  11266. Sections~\ref{sec:expose-allocation} through \ref{sec:print-x86-gc}
  11267. discuss the necessary changes and additions to the compiler passes,
  11268. including a new compiler pass named \code{expose\_allocation}.
  11269. \section{The \LangVec{} Language}
  11270. \label{sec:r3}
  11271. Figure~\ref{fig:Lvec-concrete-syntax} shows the definition of the
  11272. concrete syntax for \LangVec{}, and figure~\ref{fig:Lvec-syntax} shows
  11273. the definition of the abstract syntax.
  11274. %
  11275. \racket{The \LangVec{} language includes the forms \code{vector} for
  11276. creating a tuple, \code{vector-ref} for reading an element of a
  11277. tuple, \code{vector-set!} for writing to an element of a tuple, and
  11278. \code{vector-length} for obtaining the number of elements of a
  11279. tuple.}
  11280. %
  11281. \python{The \LangVec{} language adds (1) tuple creation via a
  11282. comma-separated list of expressions; (2) accessing an element of a
  11283. tuple with the square bracket notation (i.e., \code{t[n]} returns
  11284. the element at index \code{n} of tuple \code{t}); (3) the \code{is}
  11285. comparison operator; and (4) obtaining the number of elements (the
  11286. length) of a tuple. In this chapter, we restrict access indices to
  11287. constant integers.}
  11288. %
  11289. The following program shows an example of the use of tuples. It creates a tuple
  11290. \code{t} containing the elements \code{40},
  11291. \racket{\code{\#t}}\python{\code{True}}, and another tuple that
  11292. contains just \code{2}. The element at index $1$ of \code{t} is
  11293. \racket{\code{\#t}}\python{\code{True}}, so the \emph{then} branch of the
  11294. \key{if} is taken. The element at index $0$ of \code{t} is \code{40},
  11295. to which we add \code{2}, the element at index $0$ of the tuple.
  11296. The result of the program is \code{42}.
  11297. %
  11298. {\if\edition\racketEd
  11299. \begin{lstlisting}
  11300. (let ([t (vector 40 #t (vector 2))])
  11301. (if (vector-ref t 1)
  11302. (+ (vector-ref t 0)
  11303. (vector-ref (vector-ref t 2) 0))
  11304. 44))
  11305. \end{lstlisting}
  11306. \fi}
  11307. {\if\edition\pythonEd\pythonColor
  11308. \begin{lstlisting}
  11309. t = 40, True, (2,)
  11310. print(t[0] + t[2][0] if t[1] else 44)
  11311. \end{lstlisting}
  11312. \fi}
  11313. \newcommand{\LtupGrammarRacket}{
  11314. \begin{array}{lcl}
  11315. \Type &::=& \LP\key{Vector}\;\Type^{*}\RP \\
  11316. \Exp &::=& \LP\key{vector}\;\Exp^{*}\RP
  11317. \MID \LP\key{vector-length}\;\Exp\RP \\
  11318. &\MID& \LP\key{vector-ref}\;\Exp\;\Int\RP
  11319. \MID \LP\key{vector-set!}\;\Exp\;\Int\;\Exp\RP
  11320. \end{array}
  11321. }
  11322. \newcommand{\LtupASTRacket}{
  11323. \begin{array}{lcl}
  11324. \Type &::=& \LP\key{Vector}\;\Type^{*}\RP \\
  11325. \itm{op} &::=& \code{vector} \MID \code{vector-length} \\
  11326. \Exp &::=& \VECREF{\Exp}{\INT{\Int}} \\
  11327. &\MID& \VECSET{\Exp}{\INT{\Int}}{\Exp}
  11328. % &\MID& \LP\key{HasType}~\Exp~\Type \RP
  11329. \end{array}
  11330. }
  11331. \newcommand{\LtupGrammarPython}{
  11332. \begin{array}{rcl}
  11333. \itm{cmp} &::= & \key{is} \\
  11334. \Exp &::=& \Exp \key{,} \ldots \key{,} \Exp \MID \CGET{\Exp}{\Int} \MID \CLEN{\Exp}
  11335. \end{array}
  11336. }
  11337. \newcommand{\LtupASTPython}{
  11338. \begin{array}{lcl}
  11339. \itm{cmp} &::= & \code{Is()} \\
  11340. \Exp &::=& \TUPLE{\Exp^{+}} \MID \GET{\Exp}{\INT{\Int}} \\
  11341. &\MID& \LEN{\Exp}
  11342. \end{array}
  11343. }
  11344. \begin{figure}[tbp]
  11345. \centering
  11346. \begin{tcolorbox}[colback=white]
  11347. \small
  11348. {\if\edition\racketEd
  11349. \[
  11350. \begin{array}{l}
  11351. \gray{\LintGrammarRacket{}} \\ \hline
  11352. \gray{\LvarGrammarRacket{}} \\ \hline
  11353. \gray{\LifGrammarRacket{}} \\ \hline
  11354. \gray{\LwhileGrammarRacket} \\ \hline
  11355. \LtupGrammarRacket \\
  11356. \begin{array}{lcl}
  11357. \LangVecM{} &::=& \Exp
  11358. \end{array}
  11359. \end{array}
  11360. \]
  11361. \fi}
  11362. {\if\edition\pythonEd\pythonColor
  11363. \[
  11364. \begin{array}{l}
  11365. \gray{\LintGrammarPython{}} \\ \hline
  11366. \gray{\LvarGrammarPython{}} \\ \hline
  11367. \gray{\LifGrammarPython{}} \\ \hline
  11368. \gray{\LwhileGrammarPython} \\ \hline
  11369. \LtupGrammarPython \\
  11370. \begin{array}{rcl}
  11371. \LangVecM{} &::=& \Stmt^{*}
  11372. \end{array}
  11373. \end{array}
  11374. \]
  11375. \fi}
  11376. \end{tcolorbox}
  11377. \caption{The concrete syntax of \LangVec{}, extending \LangLoop{}
  11378. (figure~\ref{fig:Lwhile-concrete-syntax}).}
  11379. \label{fig:Lvec-concrete-syntax}
  11380. \index{subject}{Ltup@\LangVec{} concrete syntax}
  11381. \end{figure}
  11382. \begin{figure}[tp]
  11383. \centering
  11384. \begin{tcolorbox}[colback=white]
  11385. \small
  11386. {\if\edition\racketEd
  11387. \[
  11388. \begin{array}{l}
  11389. \gray{\LintOpAST} \\ \hline
  11390. \gray{\LvarASTRacket{}} \\ \hline
  11391. \gray{\LifASTRacket{}} \\ \hline
  11392. \gray{\LwhileASTRacket{}} \\ \hline
  11393. \LtupASTRacket{} \\
  11394. \begin{array}{lcl}
  11395. \LangVecM{} &::=& \PROGRAM{\key{'()}}{\Exp}
  11396. \end{array}
  11397. \end{array}
  11398. \]
  11399. \fi}
  11400. {\if\edition\pythonEd\pythonColor
  11401. \[
  11402. \begin{array}{l}
  11403. \gray{\LintASTPython} \\ \hline
  11404. \gray{\LvarASTPython} \\ \hline
  11405. \gray{\LifASTPython} \\ \hline
  11406. \gray{\LwhileASTPython} \\ \hline
  11407. \LtupASTPython \\
  11408. \begin{array}{lcl}
  11409. \LangVecM{} &::=& \PROGRAM{\code{'()}}{\Stmt^{*}}
  11410. \end{array}
  11411. \end{array}
  11412. \]
  11413. \fi}
  11414. \end{tcolorbox}
  11415. \caption{The abstract syntax of \LangVec{}.}
  11416. \label{fig:Lvec-syntax}
  11417. \index{subject}{Ltup@\LangVec{} abstract syntax}
  11418. \end{figure}
  11419. Tuples raise several interesting new issues. First, variable binding
  11420. performs a shallow copy in dealing with tuples, which means that
  11421. different variables can refer to the same tuple; that is, two
  11422. variables can be \emph{aliases}\index{subject}{alias} for the same
  11423. entity. Consider the following example, in which \code{t1} and
  11424. \code{t2} refer to the same tuple value and \code{t3} refers to a
  11425. different tuple value with equal elements. The result of the
  11426. program is \code{42}.
  11427. \begin{center}
  11428. \begin{minipage}{0.96\textwidth}
  11429. {\if\edition\racketEd
  11430. \begin{lstlisting}
  11431. (let ([t1 (vector 3 7)])
  11432. (let ([t2 t1])
  11433. (let ([t3 (vector 3 7)])
  11434. (if (and (eq? t1 t2) (not (eq? t1 t3)))
  11435. 42
  11436. 0))))
  11437. \end{lstlisting}
  11438. \fi}
  11439. {\if\edition\pythonEd\pythonColor
  11440. \begin{lstlisting}
  11441. t1 = 3, 7
  11442. t2 = t1
  11443. t3 = 3, 7
  11444. print(42 if (t1 is t2) and not (t1 is t3) else 0)
  11445. \end{lstlisting}
  11446. \fi}
  11447. \end{minipage}
  11448. \end{center}
  11449. {\if\edition\racketEd
  11450. Whether two variables are aliased or not affects what happens
  11451. when the underlying tuple is mutated\index{subject}{mutation}.
  11452. Consider the following example in which \code{t1} and \code{t2}
  11453. again refer to the same tuple value.
  11454. \begin{center}
  11455. \begin{minipage}{0.96\textwidth}
  11456. \begin{lstlisting}
  11457. (let ([t1 (vector 3 7)])
  11458. (let ([t2 t1])
  11459. (let ([_ (vector-set! t2 0 42)])
  11460. (vector-ref t1 0))))
  11461. \end{lstlisting}
  11462. \end{minipage}
  11463. \end{center}
  11464. The mutation through \code{t2} is visible in referencing the tuple
  11465. from \code{t1}, so the result of this program is \code{42}.
  11466. \fi}
  11467. The next issue concerns the lifetime of tuples. When does a tuple's
  11468. lifetime end? Notice that \LangVec{} does not include an operation
  11469. for deleting tuples. Furthermore, the lifetime of a tuple is not tied
  11470. to any notion of static scoping.
  11471. %
  11472. {\if\edition\racketEd
  11473. %
  11474. For example, the following program returns \code{42} even though the
  11475. variable \code{w} goes out of scope prior to the \code{vector-ref}
  11476. that reads from the vector to which it was bound.
  11477. \begin{center}
  11478. \begin{minipage}{0.96\textwidth}
  11479. \begin{lstlisting}
  11480. (let ([v (vector (vector 44))])
  11481. (let ([x (let ([w (vector 42)])
  11482. (let ([_ (vector-set! v 0 w)])
  11483. 0))])
  11484. (+ x (vector-ref (vector-ref v 0) 0))))
  11485. \end{lstlisting}
  11486. \end{minipage}
  11487. \end{center}
  11488. \fi}
  11489. %
  11490. {\if\edition\pythonEd\pythonColor
  11491. %
  11492. For example, the following program returns \code{42} even though the
  11493. variable \code{x} goes out of scope when the function returns, prior
  11494. to reading the tuple element at index $0$. (We study the compilation
  11495. of functions in chapter~\ref{ch:Lfun}.)
  11496. %
  11497. \begin{center}
  11498. \begin{minipage}{0.96\textwidth}
  11499. \begin{lstlisting}
  11500. def f():
  11501. x = 42, 43
  11502. return x
  11503. t = f()
  11504. print(t[0])
  11505. \end{lstlisting}
  11506. \end{minipage}
  11507. \end{center}
  11508. \fi}
  11509. %
  11510. From the perspective of programmer-observable behavior, tuples live
  11511. forever. However, if they really lived forever then many long-running
  11512. programs would run out of memory. To solve this problem, the
  11513. language's runtime system performs automatic garbage collection.
  11514. Figure~\ref{fig:interp-Lvec} shows the definitional interpreter for the
  11515. \LangVec{} language.
  11516. %
  11517. \racket{We define the \code{vector}, \code{vector-ref},
  11518. \code{vector-set!}, and \code{vector-length} operations for
  11519. \LangVec{} in terms of the corresponding operations in Racket. One
  11520. subtle point is that the \code{vector-set!} operation returns the
  11521. \code{\#<void>} value.}
  11522. %
  11523. \python{We represent tuples with Python lists in the interpreter
  11524. because we need to write to them
  11525. (section~\ref{sec:expose-allocation}). (Python tuples are
  11526. immutable.) We define element access, the \code{is} operator, and
  11527. the \code{len} operator for \LangVec{} in terms of the corresponding
  11528. operations in Python.}
  11529. \begin{figure}[tbp]
  11530. \begin{tcolorbox}[colback=white]
  11531. {\if\edition\racketEd
  11532. \begin{lstlisting}
  11533. (define interp-Lvec-class
  11534. (class interp-Lwhile-class
  11535. (super-new)
  11536. (define/override (interp-op op)
  11537. (match op
  11538. ['eq? (lambda (v1 v2)
  11539. (cond [(or (and (fixnum? v1) (fixnum? v2))
  11540. (and (boolean? v1) (boolean? v2))
  11541. (and (vector? v1) (vector? v2))
  11542. (and (void? v1) (void? v2)))
  11543. (eq? v1 v2)]))]
  11544. ['vector vector]
  11545. ['vector-length vector-length]
  11546. ['vector-ref vector-ref]
  11547. ['vector-set! vector-set!]
  11548. [else (super interp-op op)]
  11549. ))
  11550. (define/override ((interp-exp env) e)
  11551. (match e
  11552. [(HasType e t) ((interp-exp env) e)]
  11553. [else ((super interp-exp env) e)]
  11554. ))
  11555. ))
  11556. (define (interp-Lvec p)
  11557. (send (new interp-Lvec-class) interp-program p))
  11558. \end{lstlisting}
  11559. \fi}
  11560. %
  11561. {\if\edition\pythonEd\pythonColor
  11562. \begin{lstlisting}
  11563. class InterpLtup(InterpLwhile):
  11564. def interp_cmp(self, cmp):
  11565. match cmp:
  11566. case Is():
  11567. return lambda x, y: x is y
  11568. case _:
  11569. return super().interp_cmp(cmp)
  11570. def interp_exp(self, e, env):
  11571. match e:
  11572. case Tuple(es, Load()):
  11573. return tuple([self.interp_exp(e, env) for e in es])
  11574. case Subscript(tup, index, Load()):
  11575. t = self.interp_exp(tup, env)
  11576. n = self.interp_exp(index, env)
  11577. return t[n]
  11578. case _:
  11579. return super().interp_exp(e, env)
  11580. \end{lstlisting}
  11581. \fi}
  11582. \end{tcolorbox}
  11583. \caption{Interpreter for the \LangVec{} language.}
  11584. \label{fig:interp-Lvec}
  11585. \end{figure}
  11586. Figure~\ref{fig:type-check-Lvec} shows the type checker for
  11587. \LangVec{}.
  11588. %
  11589. The type of a tuple is a
  11590. \racket{\code{Vector}}\python{\code{TupleType}} type that contains a
  11591. type for each of its elements.
  11592. %
  11593. \racket{To create the s-expression for the \code{Vector} type, we use the
  11594. \href{https://docs.racket-lang.org/reference/quasiquote.html}{unquote-splicing
  11595. operator} \code{,@} to insert the list \code{t*} without its usual
  11596. start and end parentheses. \index{subject}{unquote-splicing}}
  11597. %
  11598. The type of accessing the ith element of a tuple is the ith element
  11599. type of the tuple's type, if there is one. If not, an error is
  11600. signaled. Note that the index \code{i} is required to be a constant
  11601. integer (and not, for example, a call to
  11602. \racket{\code{read}}\python{\code{input\_int}}) so that the type checker
  11603. can determine the element's type given the tuple type.
  11604. %
  11605. \racket{
  11606. Regarding writing an element to a tuple, the element's type must
  11607. be equal to the ith element type of the tuple's type.
  11608. The result type is \code{Void}.}
  11609. %% When allocating a tuple,
  11610. %% we need to know which elements of the tuple are themselves tuples for
  11611. %% the purposes of garbage collection. We can obtain this information
  11612. %% during type checking. The type checker shown in
  11613. %% figure~\ref{fig:type-check-Lvec} not only computes the type of an
  11614. %% expression; it also
  11615. %% %
  11616. %% \racket{wraps every tuple creation with the form $(\key{HasType}~e~T)$,
  11617. %% where $T$ is the tuple's type.
  11618. %
  11619. %records the type of each tuple expression in a new field named \code{has\_type}.
  11620. \begin{figure}[tp]
  11621. \begin{tcolorbox}[colback=white]
  11622. {\if\edition\racketEd
  11623. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  11624. (define type-check-Lvec-class
  11625. (class type-check-Lif-class
  11626. (super-new)
  11627. (inherit check-type-equal?)
  11628. (define/override (type-check-exp env)
  11629. (lambda (e)
  11630. (define recur (type-check-exp env))
  11631. (match e
  11632. [(Prim 'vector es)
  11633. (define-values (e* t*) (for/lists (e* t*) ([e es]) (recur e)))
  11634. (define t `(Vector ,@t*))
  11635. (values (Prim 'vector e*) t)]
  11636. [(Prim 'vector-ref (list e1 (Int i)))
  11637. (define-values (e1^ t) (recur e1))
  11638. (match t
  11639. [`(Vector ,ts ...)
  11640. (unless (and (0 . <= . i) (i . < . (length ts)))
  11641. (error 'type-check "index ~a out of bounds\nin ~v" i e))
  11642. (values (Prim 'vector-ref (list e1^ (Int i))) (list-ref ts i))]
  11643. [else (error 'type-check "expect Vector, not ~a\nin ~v" t e)])]
  11644. [(Prim 'vector-set! (list e1 (Int i) elt) )
  11645. (define-values (e-vec t-vec) (recur e1))
  11646. (define-values (e-elt^ t-elt) (recur elt))
  11647. (match t-vec
  11648. [`(Vector ,ts ...)
  11649. (unless (and (0 . <= . i) (i . < . (length ts)))
  11650. (error 'type-check "index ~a out of bounds\nin ~v" i e))
  11651. (check-type-equal? (list-ref ts i) t-elt e)
  11652. (values (Prim 'vector-set! (list e-vec (Int i) e-elt^)) 'Void)]
  11653. [else (error 'type-check "expect Vector, not ~a\nin ~v" t-vec e)])]
  11654. [(Prim 'vector-length (list e))
  11655. (define-values (e^ t) (recur e))
  11656. (match t
  11657. [`(Vector ,ts ...)
  11658. (values (Prim 'vector-length (list e^)) 'Integer)]
  11659. [else (error 'type-check "expect Vector, not ~a\nin ~v" t e)])]
  11660. [(Prim 'eq? (list arg1 arg2))
  11661. (define-values (e1 t1) (recur arg1))
  11662. (define-values (e2 t2) (recur arg2))
  11663. (match* (t1 t2)
  11664. [(`(Vector ,ts1 ...) `(Vector ,ts2 ...)) (void)]
  11665. [(other wise) (check-type-equal? t1 t2 e)])
  11666. (values (Prim 'eq? (list e1 e2)) 'Boolean)]
  11667. [else ((super type-check-exp env) e)]
  11668. )))
  11669. ))
  11670. (define (type-check-Lvec p)
  11671. (send (new type-check-Lvec-class) type-check-program p))
  11672. \end{lstlisting}
  11673. \fi}
  11674. {\if\edition\pythonEd\pythonColor
  11675. \begin{lstlisting}
  11676. class TypeCheckLtup(TypeCheckLwhile):
  11677. def type_check_exp(self, e, env):
  11678. match e:
  11679. case Compare(left, [cmp], [right]) if isinstance(cmp, Is):
  11680. l = self.type_check_exp(left, env)
  11681. r = self.type_check_exp(right, env)
  11682. check_type_equal(l, r, e)
  11683. return bool
  11684. case Tuple(es, Load()):
  11685. ts = [self.type_check_exp(e, env) for e in es]
  11686. e.has_type = TupleType(ts)
  11687. return e.has_type
  11688. case Subscript(tup, Constant(i), Load()):
  11689. tup_ty = self.type_check_exp(tup, env)
  11690. i_ty = self.type_check_exp(Constant(i), env)
  11691. check_type_equal(i_ty, int, i)
  11692. match tup_ty:
  11693. case TupleType(ts):
  11694. return ts[i]
  11695. case _:
  11696. raise Exception('expected a tuple, not ' + repr(tup_ty))
  11697. case _:
  11698. return super().type_check_exp(e, env)
  11699. \end{lstlisting}
  11700. \fi}
  11701. \end{tcolorbox}
  11702. \caption{Type checker for the \LangVec{} language.}
  11703. \label{fig:type-check-Lvec}
  11704. \end{figure}
  11705. \section{Garbage Collection}
  11706. \label{sec:GC}
  11707. Garbage collection is a runtime technique for reclaiming space on the
  11708. heap that will not be used in the future of the running program. We
  11709. use the term \emph{object}\index{subject}{object} to refer to any
  11710. value that is stored in the heap, which for now includes only
  11711. tuples.%
  11712. %
  11713. \footnote{The term \emph{object} as it is used in the context of
  11714. object-oriented programming has a more specific meaning than the
  11715. way in which we use the term here.}
  11716. %
  11717. Unfortunately, it is impossible to know precisely which objects will
  11718. be accessed in the future and which will not. Instead, garbage
  11719. collectors overapproximate the set of objects that will be accessed by
  11720. identifying which objects can possibly be accessed. The running
  11721. program can directly access objects that are in registers and on the
  11722. procedure call stack. It can also transitively access the elements of
  11723. tuples, starting with a tuple whose address is in a register or on the
  11724. procedure call stack. We define the \emph{root
  11725. set}\index{subject}{root set} to be all the tuple addresses that are
  11726. in registers or on the procedure call stack. We define the \emph{live
  11727. objects}\index{subject}{live objects} to be the objects that are
  11728. reachable from the root set. Garbage collectors reclaim the space that
  11729. is allocated to objects that are no longer live. \index{subject}{allocate}
  11730. That means that some objects may not get reclaimed as soon as they could be,
  11731. but at least
  11732. garbage collectors do not reclaim the space dedicated to objects that
  11733. will be accessed in the future! The programmer can influence which
  11734. objects get reclaimed by causing them to become unreachable.
  11735. So the goal of the garbage collector is twofold:
  11736. \begin{enumerate}
  11737. \item to preserve all the live objects, and
  11738. \item to reclaim the memory of everything else, that is, the \emph{garbage}.
  11739. \end{enumerate}
  11740. \subsection{Two-Space Copying Collector}
  11741. Here we study a relatively simple algorithm for garbage collection
  11742. that is the basis of many state-of-the-art garbage
  11743. collectors~\citep{Lieberman:1983aa,Ungar:1984aa,Jones:1996aa,Detlefs:2004aa,Dybvig:2006aa,Tene:2011kx}. In
  11744. particular, we describe a two-space copying
  11745. collector~\citep{Wilson:1992fk} that uses Cheney's algorithm to
  11746. perform the copy~\citep{Cheney:1970aa}. \index{subject}{copying
  11747. collector} \index{subject}{two-space copying collector}
  11748. Figure~\ref{fig:copying-collector} gives a coarse-grained depiction of
  11749. what happens in a two-space collector, showing two time steps, prior
  11750. to garbage collection (on the top) and after garbage collection (on
  11751. the bottom). In a two-space collector, the heap is divided into two
  11752. parts named the FromSpace\index{subject}{FromSpace} and the
  11753. ToSpace\index{subject}{ToSpace}. Initially, all allocations go to the
  11754. FromSpace until there is not enough room for the next allocation
  11755. request. At that point, the garbage collector goes to work to make
  11756. room for the next allocation.
  11757. A copying collector makes more room by copying all the live objects
  11758. from the FromSpace into the ToSpace and then performs a sleight of
  11759. hand, treating the ToSpace as the new FromSpace and the old FromSpace
  11760. as the new ToSpace. In the example shown in
  11761. figure~\ref{fig:copying-collector}, the root set consists of three
  11762. pointers, one in a register and two on the stack. All the live
  11763. objects have been copied to the ToSpace (the right-hand side of
  11764. figure~\ref{fig:copying-collector}) in a way that preserves the
  11765. pointer relationships. For example, the pointer in the register still
  11766. points to a tuple that in turn points to two other tuples. There are
  11767. four tuples that are not reachable from the root set and therefore do
  11768. not get copied into the ToSpace.
  11769. The exact situation shown in figure~\ref{fig:copying-collector} cannot be
  11770. created by a well-typed program in \LangVec{} because it contains a
  11771. cycle. However, creating cycles will be possible once we get to
  11772. \LangDyn{} (chapter~\ref{ch:Ldyn}). We design the garbage collector
  11773. to deal with cycles to begin with, so we will not need to revisit this
  11774. issue.
  11775. \begin{figure}[tbp]
  11776. \centering
  11777. \begin{tcolorbox}[colback=white]
  11778. \racket{\includegraphics[width=\textwidth]{figs/copy-collect-1}}
  11779. \python{\includegraphics[width=\textwidth]{figs/copy-collect-1-python}}
  11780. \\[5ex]
  11781. \racket{\includegraphics[width=\textwidth]{figs/copy-collect-2}}
  11782. \python{\includegraphics[width=\textwidth]{figs/copy-collect-2-python}}
  11783. \end{tcolorbox}
  11784. \caption{A copying collector in action.}
  11785. \label{fig:copying-collector}
  11786. \end{figure}
  11787. \subsection{Graph Copying via Cheney's Algorithm}
  11788. \label{sec:cheney}
  11789. \index{subject}{Cheney's algorithm}
  11790. Let us take a closer look at the copying of the live objects. The
  11791. allocated\index{subject}{allocate} objects and pointers can be viewed
  11792. as a graph, and we need to copy the part of the graph that is
  11793. reachable from the root set. To make sure that we copy all the
  11794. reachable vertices in the graph, we need an exhaustive graph traversal
  11795. algorithm, such as depth-first search or breadth-first
  11796. search~\citep{Moore:1959aa,Cormen:2001uq}. Recall that such algorithms
  11797. take into account the possibility of cycles by marking which vertices
  11798. have already been visited, so to ensure termination of the
  11799. algorithm. These search algorithms also use a data structure such as a
  11800. stack or queue as a to-do list to keep track of the vertices that need
  11801. to be visited. We use breadth-first search and a trick due to
  11802. \citet{Cheney:1970aa} for simultaneously representing the queue and
  11803. copying tuples into the ToSpace.
  11804. Figure~\ref{fig:cheney} shows several snapshots of the ToSpace as the
  11805. copy progresses. The queue is represented by a chunk of contiguous
  11806. memory at the beginning of the ToSpace, using two pointers to track
  11807. the front and the back of the queue, called the \emph{free pointer}
  11808. and the \emph{scan pointer}, respectively. The algorithm starts by
  11809. copying all tuples that are immediately reachable from the root set
  11810. into the ToSpace to form the initial queue. When we copy a tuple, we
  11811. mark the old tuple to indicate that it has been visited. We discuss
  11812. how this marking is accomplished in section~\ref{sec:data-rep-gc}. Note
  11813. that any pointers inside the copied tuples in the queue still point
  11814. back to the FromSpace. Once the initial queue has been created, the
  11815. algorithm enters a loop in which it repeatedly processes the tuple at
  11816. the front of the queue and pops it off the queue. To process a tuple,
  11817. the algorithm copies all the objects that are directly reachable from it
  11818. to the ToSpace, placing them at the back of the queue. The algorithm
  11819. then updates the pointers in the popped tuple so that they point to the
  11820. newly copied objects.
  11821. \begin{figure}[tbp]
  11822. \centering
  11823. \begin{tcolorbox}[colback=white]
  11824. \racket{\includegraphics[width=0.8\textwidth]{figs/cheney}}
  11825. \python{\includegraphics[width=0.8\textwidth]{figs/cheney-python}}
  11826. \end{tcolorbox}
  11827. \caption{Depiction of the Cheney algorithm copying the live tuples.}
  11828. \label{fig:cheney}
  11829. \end{figure}
  11830. As shown in figure~\ref{fig:cheney}, in the first step we copy the
  11831. tuple whose second element is $42$ to the back of the queue. The other
  11832. pointer goes to a tuple that has already been copied, so we do not
  11833. need to copy it again, but we do need to update the pointer to the new
  11834. location. This can be accomplished by storing a \emph{forwarding
  11835. pointer}\index{subject}{forwarding pointer} to the new location in the
  11836. old tuple, when we initially copied the tuple into the
  11837. ToSpace. This completes one step of the algorithm. The algorithm
  11838. continues in this way until the queue is empty; that is, when the scan
  11839. pointer catches up with the free pointer.
  11840. \subsection{Data Representation}
  11841. \label{sec:data-rep-gc}
  11842. The garbage collector places some requirements on the data
  11843. representations used by our compiler. First, the garbage collector
  11844. needs to distinguish between pointers and other kinds of data such as
  11845. integers. The following are three ways to accomplish this:
  11846. \begin{enumerate}
  11847. \item Attach a tag to each object that identifies what type of
  11848. object it is~\citep{McCarthy:1960dz}.
  11849. \item Store different types of objects in different
  11850. regions~\citep{Steele:1977ab}.
  11851. \item Use type information from the program to either (a) generate
  11852. type-specific code for collecting, or (b) generate tables that
  11853. guide the collector~\citep{Appel:1989aa,Goldberg:1991aa,Diwan:1992aa}.
  11854. \end{enumerate}
  11855. Dynamically typed languages, such as \racket{Racket}\python{Python},
  11856. need to tag objects in any case, so option 1 is a natural choice for those
  11857. languages. However, \LangVec{} is a statically typed language, so it
  11858. would be unfortunate to require tags on every object, especially small
  11859. and pervasive objects like integers and Booleans. Option 3 is the
  11860. best-performing choice for statically typed languages, but it comes with
  11861. a relatively high implementation complexity. To keep this chapter
  11862. within a reasonable scope of complexity, we recommend a combination of options
  11863. 1 and 2, using separate strategies for the stack and the heap.
  11864. Regarding the stack, we recommend using a separate stack for pointers,
  11865. which we call the \emph{root stack}\index{subject}{root stack}
  11866. (aka \emph{shadow stack})~\citep{Siebert:2001aa,Henderson:2002aa,Baker:2009aa}.
  11867. That is, when a local variable needs to be spilled and is of type
  11868. \racket{\code{Vector}}\python{\code{TupleType}}, we put it on the
  11869. root stack instead of putting it on the procedure call
  11870. stack. Furthermore, we always spill tuple-typed variables if they are
  11871. live during a call to the collector, thereby ensuring that no pointers
  11872. are in registers during a collection. Figure~\ref{fig:shadow-stack}
  11873. reproduces the example shown in figure~\ref{fig:copying-collector} and
  11874. contrasts it with the data layout using a root stack. The root stack
  11875. contains the two pointers from the regular stack and also the pointer
  11876. in the second register.
  11877. \begin{figure}[tbp]
  11878. \centering
  11879. \begin{tcolorbox}[colback=white]
  11880. \racket{\includegraphics[width=0.60\textwidth]{figs/root-stack}}
  11881. \python{\includegraphics[width=0.60\textwidth]{figs/root-stack-python}}
  11882. \end{tcolorbox}
  11883. \caption{Maintaining a root stack to facilitate garbage collection.}
  11884. \label{fig:shadow-stack}
  11885. \end{figure}
  11886. The problem of distinguishing between pointers and other kinds of data
  11887. also arises inside each tuple on the heap. We solve this problem by
  11888. attaching a tag, an extra 64 bits, to each
  11889. tuple. Figure~\ref{fig:tuple-rep} shows a zoomed-in view of the tags for
  11890. two of the tuples in the example given in figure~\ref{fig:copying-collector}.
  11891. Note that we have drawn the bits in a big-endian way, from right to left,
  11892. with bit location 0 (the least significant bit) on the far right,
  11893. which corresponds to the direction of the x86 shifting instructions
  11894. \key{salq} (shift left) and \key{sarq} (shift right). Part of each tag
  11895. is dedicated to specifying which elements of the tuple are pointers,
  11896. the part labeled \emph{pointer mask}. Within the pointer mask, a 1 bit
  11897. indicates that there is a pointer, and a 0 bit indicates some other kind of
  11898. data. The pointer mask starts at bit location 7. We limit tuples to a
  11899. maximum size of fifty elements, so we need 50 bits for the pointer
  11900. mask.%
  11901. %
  11902. \footnote{A production-quality compiler would handle
  11903. arbitrarily sized tuples and use a more complex approach.}
  11904. %
  11905. The tag also contains two other pieces of information. The length of
  11906. the tuple (number of elements) is stored in bits at locations 1 through
  11907. 6. Finally, the bit at location 0 indicates whether the tuple has yet
  11908. to be copied to the ToSpace. If the bit has value 1, then this tuple
  11909. has not yet been copied. If the bit has value 0, then the entire tag
  11910. is a forwarding pointer. (The lower 3 bits of a pointer are always
  11911. zero in any case, because our tuples are 8-byte aligned.)
  11912. \begin{figure}[tbp]
  11913. \centering
  11914. \begin{tcolorbox}[colback=white]
  11915. \includegraphics[width=0.8\textwidth]{figs/tuple-rep}
  11916. \end{tcolorbox}
  11917. \caption{Representation of tuples in the heap.}
  11918. \label{fig:tuple-rep}
  11919. \end{figure}
  11920. \subsection{Implementation of the Garbage Collector}
  11921. \label{sec:organize-gz}
  11922. \index{subject}{prelude}
  11923. An implementation of the copying collector is provided in the
  11924. \code{runtime.c} file. Figure~\ref{fig:gc-header} defines the
  11925. interface to the garbage collector that is used by the compiler. The
  11926. \code{initialize} function creates the FromSpace, ToSpace, and root
  11927. stack and should be called in the prelude of the \code{main}
  11928. function. The arguments of \code{initialize} are the root stack size
  11929. and the heap size. Both need to be multiples of sixty-four, and $16,384$ is a
  11930. good choice for both. The \code{initialize} function puts the address
  11931. of the beginning of the FromSpace into the global variable
  11932. \code{free\_ptr}. The global variable \code{fromspace\_end} points to
  11933. the address that is one past the last element of the FromSpace. We use
  11934. half-open intervals to represent chunks of
  11935. memory~\citep{Dijkstra:1982aa}. The \code{rootstack\_begin} variable
  11936. points to the first element of the root stack.
  11937. As long as there is room left in the FromSpace, your generated code
  11938. can allocate\index{subject}{allocate} tuples simply by moving the
  11939. \code{free\_ptr} forward.
  11940. %
  11941. The amount of room left in the FromSpace is the difference between the
  11942. \code{fromspace\_end} and the \code{free\_ptr}. The \code{collect}
  11943. function should be called when there is not enough room left in the
  11944. FromSpace for the next allocation. The \code{collect} function takes
  11945. a pointer to the current top of the root stack (one past the last item
  11946. that was pushed) and the number of bytes that need to be
  11947. allocated. The \code{collect} function performs the copying collection
  11948. and leaves the heap in a state such that there is enough room for the
  11949. next allocation.
  11950. \begin{figure}[tbp]
  11951. \begin{tcolorbox}[colback=white]
  11952. \begin{lstlisting}
  11953. void initialize(uint64_t rootstack_size, uint64_t heap_size);
  11954. void collect(int64_t** rootstack_ptr, uint64_t bytes_requested);
  11955. int64_t* free_ptr;
  11956. int64_t* fromspace_begin;
  11957. int64_t* fromspace_end;
  11958. int64_t** rootstack_begin;
  11959. \end{lstlisting}
  11960. \end{tcolorbox}
  11961. \caption{The compiler's interface to the garbage collector.}
  11962. \label{fig:gc-header}
  11963. \end{figure}
  11964. %% \begin{exercise}
  11965. %% In the file \code{runtime.c} you will find the implementation of
  11966. %% \code{initialize} and a partial implementation of \code{collect}.
  11967. %% The \code{collect} function calls another function, \code{cheney},
  11968. %% to perform the actual copy, and that function is left to the reader
  11969. %% to implement. The following is the prototype for \code{cheney}.
  11970. %% \begin{lstlisting}
  11971. %% static void cheney(int64_t** rootstack_ptr);
  11972. %% \end{lstlisting}
  11973. %% The parameter \code{rootstack\_ptr} is a pointer to the top of the
  11974. %% rootstack (which is an array of pointers). The \code{cheney} function
  11975. %% also communicates with \code{collect} through the global
  11976. %% variables \code{fromspace\_begin} and \code{fromspace\_end}
  11977. %% mentioned in figure~\ref{fig:gc-header} as well as the pointers for
  11978. %% the ToSpace:
  11979. %% \begin{lstlisting}
  11980. %% static int64_t* tospace_begin;
  11981. %% static int64_t* tospace_end;
  11982. %% \end{lstlisting}
  11983. %% The job of the \code{cheney} function is to copy all the live
  11984. %% objects (reachable from the root stack) into the ToSpace, update
  11985. %% \code{free\_ptr} to point to the next unused spot in the ToSpace,
  11986. %% update the root stack so that it points to the objects in the
  11987. %% ToSpace, and finally to swap the global pointers for the FromSpace
  11988. %% and ToSpace.
  11989. %% \end{exercise}
  11990. The introduction of garbage collection has a nontrivial impact on our
  11991. compiler passes. We introduce a new compiler pass named
  11992. \code{expose\_allocation} that elaborates the code for allocating
  11993. tuples. We also make significant changes to
  11994. \code{select\_instructions}, \code{build\_interference},
  11995. \code{allocate\_registers}, and \code{prelude\_and\_conclusion} and
  11996. make minor changes in several more passes.
  11997. The following program serves as our running example. It creates
  11998. two tuples, one nested inside the other. Both tuples have length
  11999. one. The program accesses the element in the inner tuple.
  12000. % tests/vectors_test_17.rkt
  12001. {\if\edition\racketEd
  12002. \begin{lstlisting}
  12003. (vector-ref (vector-ref (vector (vector 42)) 0) 0)
  12004. \end{lstlisting}
  12005. \fi}
  12006. % tests/tuple/get_get.py
  12007. {\if\edition\pythonEd\pythonColor
  12008. \begin{lstlisting}
  12009. v1 = (42,)
  12010. v2 = (v1,)
  12011. print(v2[0][0])
  12012. \end{lstlisting}
  12013. \fi}
  12014. %% {\if\edition\racketEd
  12015. %% \section{Shrink}
  12016. %% \label{sec:shrink-Lvec}
  12017. %% Recall that the \code{shrink} pass translates the primitives operators
  12018. %% into a smaller set of primitives.
  12019. %% %
  12020. %% This pass comes after type checking, and the type checker adds a
  12021. %% \code{HasType} AST node around each \code{vector} AST node, so you'll
  12022. %% need to add a case for \code{HasType} to the \code{shrink} pass.
  12023. %% \fi}
  12024. \section{Expose Allocation}
  12025. \label{sec:expose-allocation}
  12026. The pass \code{expose\_allocation} lowers tuple creation into making a
  12027. conditional call to the collector followed by allocating the
  12028. appropriate amount of memory and initializing it. We choose to place
  12029. the \code{expose\_allocation} pass before
  12030. \code{remove\_complex\_operands} because it generates code that
  12031. contains complex operands. However, with some care it can also be
  12032. placed after \code{remove\_complex\_operands}, which would simplify
  12033. tuple creation by removing the need to assign the initializing
  12034. expressions to temporary variables (see below).
  12035. The output of \code{expose\_allocation} is a language \LangAlloc{}
  12036. that replaces tuple creation with new lower-level forms that we use in the
  12037. translation of tuple creation\index{subject}{Lalloc@\LangAlloc{}}.
  12038. %
  12039. {\if\edition\racketEd
  12040. \[
  12041. \begin{array}{lcl}
  12042. \Exp &::=& (\key{collect} \,\itm{int})
  12043. \MID (\key{allocate} \,\itm{int}\,\itm{type})
  12044. \MID (\key{global-value} \,\itm{name})
  12045. \end{array}
  12046. \]
  12047. \fi}
  12048. {\if\edition\pythonEd\pythonColor
  12049. \[
  12050. \begin{array}{lcl}
  12051. \Exp &::=& \key{collect}(\itm{int})
  12052. \MID \key{allocate}(\itm{int},\itm{type})
  12053. \MID \key{global\_value}(\itm{name}) \\
  12054. \Stmt &::= & \CASSIGN{\CPUT{\Exp}{\itm{int}}}{\Exp}
  12055. \end{array}
  12056. \]
  12057. \fi}
  12058. %
  12059. The \CCOLLECT{$n$} form runs the garbage collector, requesting that
  12060. there be $n$ bytes ready to be allocated. During instruction
  12061. selection\index{subject}{instruction selection}, the \CCOLLECT{$n$}
  12062. form will become a call to the \code{collect} function in
  12063. \code{runtime.c}.
  12064. %
  12065. The \CALLOCATE{$n$}{$\itm{type}$} form obtains memory for $n$ elements (and
  12066. space at the front for the 64-bit tag), but the elements are not
  12067. initialized. \index{subject}{allocate} The $\itm{type}$ parameter is the type
  12068. of the tuple:
  12069. %
  12070. \VECTY{\racket{$\Type_1 \ldots \Type_n$}\python{$\Type_1, \ldots, \Type_n$}}
  12071. %
  12072. where $\Type_i$ is the type of the $i$th element.
  12073. %
  12074. The \CGLOBALVALUE{\itm{name}} form reads the value of a global
  12075. variable, such as \code{free\_ptr}.
  12076. \racket{
  12077. The type information that you need for \CALLOCATE{$n$}{$\itm{type}$}
  12078. can be obtained by running the
  12079. \code{type-check-Lvec-has-type} type checker immediately before the
  12080. \code{expose\_allocation} pass. This version of the type checker
  12081. places a special AST node of the form $(\key{HasType}~e~\itm{type})$
  12082. around each tuple creation. The concrete syntax
  12083. for \code{HasType} is \code{has-type}.}
  12084. The following shows the transformation of tuple creation into (1) a
  12085. sequence of temporary variable bindings for the initializing
  12086. expressions, (2) a conditional call to \code{collect}, (3) a call to
  12087. \code{allocate}, and (4) the initialization of the tuple. The
  12088. \itm{len} placeholder refers to the length of the tuple, and
  12089. \itm{bytes} is the total number of bytes that need to be allocated for
  12090. the tuple, which is 8 for the tag plus \itm{len} times 8.
  12091. %
  12092. \python{The \itm{type} needed for the second argument of the
  12093. \code{allocate} form can be obtained from the \code{has\_type} field
  12094. of the tuple AST node, which is stored there by running the type
  12095. checker for \LangVec{} immediately before this pass.}
  12096. %
  12097. \begin{center}
  12098. \begin{minipage}{\textwidth}
  12099. {\if\edition\racketEd
  12100. \begin{lstlisting}
  12101. (has-type (vector |$e_0 \ldots e_{n-1}$|) |\itm{type}|)
  12102. |$\Longrightarrow$|
  12103. (let ([|$x_0$| |$e_0$|]) ... (let ([|$x_{n-1}$| |$e_{n-1}$|])
  12104. (let ([_ (if (< (+ (global-value free_ptr) |\itm{bytes}|)
  12105. (global-value fromspace_end))
  12106. (void)
  12107. (collect |\itm{bytes}|))])
  12108. (let ([|$v$| (allocate |\itm{len}| |\itm{type}|)])
  12109. (let ([_ (vector-set! |$v$| |$0$| |$x_0$|)]) ...
  12110. (let ([_ (vector-set! |$v$| |$n-1$| |$x_{n-1}$|)])
  12111. |$v$|) ... )))) ...)
  12112. \end{lstlisting}
  12113. \fi}
  12114. {\if\edition\pythonEd\pythonColor
  12115. \begin{lstlisting}
  12116. (|$e_0$|, |$\ldots$|, |$e_{n-1}$|)
  12117. |$\Longrightarrow$|
  12118. begin:
  12119. |$x_0$| = |$e_0$|
  12120. |$\vdots$|
  12121. |$x_{n-1}$| = |$e_{n-1}$|
  12122. if global_value(free_ptr) + |\itm{bytes}| < global_value(fromspace_end):
  12123. 0
  12124. else:
  12125. collect(|\itm{bytes}|)
  12126. |$v$| = allocate(|\itm{len}|, |\itm{type}|)
  12127. |$v$|[0] = |$x_0$|
  12128. |$\vdots$|
  12129. |$v$|[|$n-1$|] = |$x_{n-1}$|
  12130. |$v$|
  12131. \end{lstlisting}
  12132. \fi}
  12133. \end{minipage}
  12134. \end{center}
  12135. %
  12136. \noindent The sequencing of the initializing expressions
  12137. $e_0,\ldots,e_{n-1}$ prior to the \code{allocate} is important because
  12138. they may trigger garbage collection and we cannot have an allocated
  12139. but uninitialized tuple on the heap during a collection.
  12140. Figure~\ref{fig:expose-alloc-output} shows the output of the
  12141. \code{expose\_allocation} pass on our running example.
  12142. \begin{figure}[tbp]
  12143. \begin{tcolorbox}[colback=white]
  12144. % tests/s2_17.rkt
  12145. {\if\edition\racketEd
  12146. \begin{lstlisting}
  12147. (vector-ref
  12148. (vector-ref
  12149. (let ([vecinit6
  12150. (let ([_4 (if (< (+ (global-value free_ptr) 16)
  12151. (global-value fromspace_end))
  12152. (void)
  12153. (collect 16))])
  12154. (let ([alloc2 (allocate 1 (Vector Integer))])
  12155. (let ([_3 (vector-set! alloc2 0 42)])
  12156. alloc2)))])
  12157. (let ([_8 (if (< (+ (global-value free_ptr) 16)
  12158. (global-value fromspace_end))
  12159. (void)
  12160. (collect 16))])
  12161. (let ([alloc5 (allocate 1 (Vector (Vector Integer)))])
  12162. (let ([_7 (vector-set! alloc5 0 vecinit6)])
  12163. alloc5))))
  12164. 0)
  12165. 0)
  12166. \end{lstlisting}
  12167. \fi}
  12168. {\if\edition\pythonEd\pythonColor
  12169. \begin{lstlisting}
  12170. v1 = begin:
  12171. init.514 = 42
  12172. if (free_ptr + 16) < fromspace_end:
  12173. else:
  12174. collect(16)
  12175. alloc.513 = allocate(1,tuple[int])
  12176. alloc.513[0] = init.514
  12177. alloc.513
  12178. v2 = begin:
  12179. init.516 = v1
  12180. if (free_ptr + 16) < fromspace_end:
  12181. else:
  12182. collect(16)
  12183. alloc.515 = allocate(1,tuple[tuple[int]])
  12184. alloc.515[0] = init.516
  12185. alloc.515
  12186. print(v2[0][0])
  12187. \end{lstlisting}
  12188. \fi}
  12189. \end{tcolorbox}
  12190. \caption{Output of the \code{expose\_allocation} pass.}
  12191. \label{fig:expose-alloc-output}
  12192. \end{figure}
  12193. \section{Remove Complex Operands}
  12194. \label{sec:remove-complex-opera-Lvec}
  12195. {\if\edition\racketEd
  12196. %
  12197. The forms \code{collect}, \code{allocate}, and \code{global\_value}
  12198. should be treated as complex operands.
  12199. %
  12200. \fi}
  12201. %
  12202. {\if\edition\pythonEd\pythonColor
  12203. %
  12204. The expressions \code{allocate}, \code{begin},
  12205. and tuple access should be treated as complex operands. The
  12206. subexpressions of tuple access must be atomic.
  12207. The \code{global\_value} AST node is atomic.
  12208. %
  12209. \fi}
  12210. %% A new case for
  12211. %% \code{HasType} is needed and the case for \code{Prim} needs to be
  12212. %% handled carefully to prevent the \code{Prim} node from being separated
  12213. %% from its enclosing \code{HasType}.
  12214. Figure~\ref{fig:Lvec-anf-syntax}
  12215. shows the grammar for the output language \LangAllocANF{} of this
  12216. pass, which is \LangAlloc{} in monadic normal form.
  12217. \newcommand{\LtupMonadASTRacket}{
  12218. \begin{array}{rcl}
  12219. \Exp &::=& \COLLECT{\Int} \RP \MID \ALLOCATE{\Int}{\Type}
  12220. \MID \GLOBALVALUE{\Var}
  12221. \end{array}
  12222. }
  12223. \newcommand{\LtupMonadASTPython}{
  12224. \begin{array}{rcl}
  12225. \Atm &::=& \GLOBALVALUE{\Var} \\
  12226. \Exp &::=& \GET{\Atm}{\Atm}
  12227. \MID \LEN{\Atm}\\
  12228. &\MID& \ALLOCATE{\Int}{\Type}\\
  12229. \Stmt{} &::=& \ASSIGN{\PUT{\Atm}{\Atm}}{\Atm} \\
  12230. &\MID& \COLLECT{\Int}
  12231. \end{array}
  12232. }
  12233. \begin{figure}[tp]
  12234. \centering
  12235. \begin{tcolorbox}[colback=white]
  12236. \small
  12237. {\if\edition\racketEd
  12238. \[
  12239. \begin{array}{l}
  12240. \gray{\LvarMonadASTRacket} \\ \hline
  12241. \gray{\LifMonadASTRacket} \\ \hline
  12242. \gray{\LwhileMonadASTRacket} \\ \hline
  12243. \LtupMonadASTRacket \\
  12244. \begin{array}{rcl}
  12245. \LangAllocANFM{} &::=& \PROGRAM{\code{'()}}{\Exp}
  12246. \end{array}
  12247. \end{array}
  12248. \]
  12249. \fi}
  12250. {\if\edition\pythonEd\pythonColor
  12251. \[
  12252. \begin{array}{l}
  12253. \gray{\LvarMonadASTPython} \\ \hline
  12254. \gray{\LifMonadASTPython} \\ \hline
  12255. \gray{\LwhileMonadASTPython} \\ \hline
  12256. \LtupMonadASTPython \\
  12257. \begin{array}{rcl}
  12258. \LangAllocANFM{} &::=& \PROGRAM{\code{'()}}{\Stmt^{*}}
  12259. \end{array}
  12260. \end{array}
  12261. \]
  12262. \fi}
  12263. \end{tcolorbox}
  12264. \caption{\LangAllocANF{} is \LangAlloc{} in monadic normal form.}
  12265. \label{fig:Lvec-anf-syntax}
  12266. \index{subject}{Ltupmon@\LangAllocANF{} abstract syntax}
  12267. \end{figure}
  12268. \section{Explicate Control and the \LangCVec{} Language}
  12269. \label{sec:explicate-control-r3}
  12270. \newcommand{\CtupASTRacket}{
  12271. \begin{array}{lcl}
  12272. \Exp &::= & \LP\key{Allocate} \,\itm{int}\,\itm{type}\RP \\
  12273. &\MID& \VECREF{\Atm}{\INT{\Int}} \\
  12274. &\MID& \VECSET{\Atm}{\INT{\Int}}{\Atm} \\
  12275. &\MID& \VECLEN{\Atm} \\
  12276. &\MID& \GLOBALVALUE{\Var} \\
  12277. \Stmt &::=& \VECSET{\Atm}{\INT{\Int}}{\Atm} \\
  12278. &\MID& \LP\key{Collect} \,\itm{int}\RP
  12279. \end{array}
  12280. }
  12281. \newcommand{\CtupASTPython}{
  12282. \begin{array}{lcl}
  12283. \Atm &::=& \GLOBALVALUE{\Var} \\
  12284. \Exp &::=& \GET{\Atm}{\Atm} \MID \ALLOCATE{\Int}{\Type} \\
  12285. &\MID& \LEN{\Atm} \\
  12286. \Stmt &::=& \COLLECT{\Int}
  12287. \MID \ASSIGN{\PUT{\Atm}{\Atm}}{\Atm}
  12288. \end{array}
  12289. }
  12290. \begin{figure}[tp]
  12291. \begin{tcolorbox}[colback=white]
  12292. \small
  12293. {\if\edition\racketEd
  12294. \[
  12295. \begin{array}{l}
  12296. \gray{\CvarASTRacket} \\ \hline
  12297. \gray{\CifASTRacket} \\ \hline
  12298. \gray{\CloopASTRacket} \\ \hline
  12299. \CtupASTRacket \\
  12300. \begin{array}{lcl}
  12301. \LangCVecM{} & ::= & \CPROGRAM{\itm{info}}{\LP\LP\itm{label}\,\key{.}\,\Tail\RP\ldots\RP}
  12302. \end{array}
  12303. \end{array}
  12304. \]
  12305. \fi}
  12306. {\if\edition\pythonEd\pythonColor
  12307. \[
  12308. \begin{array}{l}
  12309. \gray{\CifASTPython} \\ \hline
  12310. \CtupASTPython \\
  12311. \begin{array}{lcl}
  12312. \LangCVecM{} & ::= & \CPROGRAM{\itm{info}}{\LC\itm{label}\key{:}\,\Stmt^{*}\;\Tail, \ldots \RC}
  12313. \end{array}
  12314. \end{array}
  12315. \]
  12316. \fi}
  12317. \end{tcolorbox}
  12318. \caption{The abstract syntax of \LangCVec{}, extending
  12319. \racket{\LangCLoop{} (figure~\ref{fig:c7-syntax})}\python{\LangCIf{}
  12320. (figure~\ref{fig:c1-syntax})}.}
  12321. \label{fig:c2-syntax}
  12322. \index{subject}{Cvec@\LangCVec{} abstract syntax}
  12323. \end{figure}
  12324. The output of \code{explicate\_control} is a program in the
  12325. intermediate language \LangCVec{}, for which figure~\ref{fig:c2-syntax}
  12326. shows the definition of the abstract syntax.
  12327. %
  12328. %% \racket{(The concrete syntax is defined in
  12329. %% figure~\ref{fig:c2-concrete-syntax} of the Appendix.)}
  12330. %
  12331. The new expressions of \LangCVec{} include \key{allocate},
  12332. %
  12333. \racket{\key{vector-ref}, and \key{vector-set!},}
  12334. %
  12335. \python{accessing tuple elements,}
  12336. %
  12337. and \key{global\_value}.
  12338. %
  12339. \python{\LangCVec{} also includes the \code{collect} statement and
  12340. assignment to a tuple element.}
  12341. %
  12342. \racket{\LangCVec{} also includes the new \code{collect} statement.}
  12343. %
  12344. The \code{explicate\_control} pass can treat these new forms much like
  12345. the other forms that we've already encountered. The output of the
  12346. \code{explicate\_control} pass on the running example is shown on the
  12347. left side of figure~\ref{fig:select-instr-output-gc} in the next
  12348. section.
  12349. \section{Select Instructions and the \LangXGlobal{} Language}
  12350. \label{sec:select-instructions-gc}
  12351. \index{subject}{select instructions}
  12352. %% void (rep as zero)
  12353. %% allocate
  12354. %% collect (callq collect)
  12355. %% vector-ref
  12356. %% vector-set!
  12357. %% vector-length
  12358. %% global (postpone)
  12359. In this pass we generate x86 code for most of the new operations that
  12360. are needed to compile tuples, including \code{Allocate},
  12361. \code{Collect}, accessing tuple elements, and the \code{Is}
  12362. comparison.
  12363. %
  12364. We compile \code{GlobalValue} to \code{Global} because the latter has a
  12365. different concrete syntax (see figures~\ref{fig:x86-2-concrete} and
  12366. \ref{fig:x86-2}). \index{subject}{x86}
  12367. The tuple read and write forms translate into \code{movq}
  12368. instructions. (The $+1$ in the offset serves to move past the tag at the
  12369. beginning of the tuple representation.)
  12370. %
  12371. \begin{center}
  12372. \begin{minipage}{\textwidth}
  12373. {\if\edition\racketEd
  12374. \begin{lstlisting}
  12375. |$\itm{lhs}$| = (vector-ref |$\itm{tup}$| |$n$|);
  12376. |$\Longrightarrow$|
  12377. movq |$\itm{tup}'$|, %r11
  12378. movq |$8(n+1)$|(%r11), |$\itm{lhs'}$|
  12379. |$\itm{lhs}$| = (vector-set! |$\itm{tup}$| |$n$| |$\itm{rhs}$|);
  12380. |$\Longrightarrow$|
  12381. movq |$\itm{tup}'$|, %r11
  12382. movq |$\itm{rhs}'$|, |$8(n+1)$|(%r11)
  12383. movq $0, |$\itm{lhs'}$|
  12384. \end{lstlisting}
  12385. \fi}
  12386. {\if\edition\pythonEd\pythonColor
  12387. \begin{lstlisting}
  12388. |$\itm{lhs}$| = |$\itm{tup}$|[|$n$|]
  12389. |$\Longrightarrow$|
  12390. movq |$\itm{tup}'$|, %r11
  12391. movq |$8(n+1)$|(%r11), |$\itm{lhs'}$|
  12392. |$\itm{tup}$|[|$n$|] = |$\itm{rhs}$|
  12393. |$\Longrightarrow$|
  12394. movq |$\itm{tup}'$|, %r11
  12395. movq |$\itm{rhs}'$|, |$8(n+1)$|(%r11)
  12396. \end{lstlisting}
  12397. \fi}
  12398. \end{minipage}
  12399. \end{center}
  12400. \racket{The $\itm{lhs}'$, $\itm{tup}'$, and $\itm{rhs}'$}
  12401. \python{The $\itm{tup}'$ and $\itm{rhs}'$}
  12402. are obtained by translating from \LangCVec{} to x86.
  12403. %
  12404. The move of $\itm{tup}'$ to
  12405. register \code{r11} ensures that the offset expression
  12406. \code{$8(n+1)$(\%r11)} contains a register operand. This requires
  12407. removing \code{r11} from consideration by the register allocator.
  12408. Why not use \code{rax} instead of \code{r11}? Suppose that we instead used
  12409. \code{rax}. Then the generated code for tuple assignment would be
  12410. \begin{lstlisting}
  12411. movq |$\itm{tup}'$|, %rax
  12412. movq |$\itm{rhs}'$|, |$8(n+1)$|(%rax)
  12413. \end{lstlisting}
  12414. Next, suppose that $\itm{rhs}'$ ends up as a stack location, so
  12415. \code{patch\_instructions} would insert a move through \code{rax}
  12416. as follows:
  12417. \begin{lstlisting}
  12418. movq |$\itm{tup}'$|, %rax
  12419. movq |$\itm{rhs}'$|, %rax
  12420. movq %rax, |$8(n+1)$|(%rax)
  12421. \end{lstlisting}
  12422. However, this sequence of instructions does not work because we're
  12423. trying to use \code{rax} for two different values ($\itm{tup}'$ and
  12424. $\itm{rhs}'$) at the same time!
  12425. The \racket{\code{vector-length}}\python{\code{len}} operation should
  12426. be translated into a sequence of instructions that read the tag of the
  12427. tuple and extract the 6 bits that represent the tuple length, which
  12428. are the bits starting at index 1 and going up to and including bit 6.
  12429. The x86 instructions \code{andq} (for bitwise-and) and \code{sarq}
  12430. (shift right) can be used to accomplish this.
  12431. We compile the \code{allocate} form to operations on the
  12432. \code{free\_ptr}, as shown next. This approach is called
  12433. \emph{inline allocation} because it implements allocation without a
  12434. function call by simply incrementing the allocation pointer. It is much
  12435. more efficient than calling a function for each allocation. The
  12436. address in the \code{free\_ptr} is the next free address in the
  12437. FromSpace, so we copy it into \code{r11} and then move it forward by
  12438. enough space for the tuple being allocated, which is $8(\itm{len}+1)$
  12439. bytes because each element is 8 bytes (64 bits) and we use 8 bytes for
  12440. the tag. We then initialize the \itm{tag} and finally copy the
  12441. address in \code{r11} to the left-hand side. Refer to
  12442. figure~\ref{fig:tuple-rep} to see how the tag is organized.
  12443. %
  12444. \racket{We recommend using the Racket operations
  12445. \code{bitwise-ior} and \code{arithmetic-shift} to compute the tag
  12446. during compilation.}
  12447. %
  12448. \python{We recommend using the bitwise-or operator \code{|} and the
  12449. shift-left operator \code{<<} to compute the tag during
  12450. compilation.}
  12451. %
  12452. The type annotation in the \code{allocate} form is used to determine
  12453. the pointer mask region of the tag.
  12454. %
  12455. The addressing mode \verb!free_ptr(%rip)! essentially stands for the
  12456. address of the \code{free\_ptr} global variable using a special
  12457. instruction-pointer-relative addressing mode of the x86-64 processor.
  12458. In particular, the assembler computes the distance $d$ between the
  12459. address of \code{free\_ptr} and where the \code{rip} would be at that
  12460. moment and then changes the \code{free\_ptr(\%rip)} argument to
  12461. \code{$d$(\%rip)}, which at runtime will compute the address of
  12462. \code{free\_ptr}.
  12463. %
  12464. {\if\edition\racketEd
  12465. \begin{lstlisting}
  12466. |$\itm{lhs}$| = (allocate |$\itm{len}$| (Vector |$\itm{type} \ldots$|));
  12467. |$\Longrightarrow$|
  12468. movq free_ptr(%rip), %r11
  12469. addq |$8(\itm{len}+1)$|, free_ptr(%rip)
  12470. movq $|$\itm{tag}$|, 0(%r11)
  12471. movq %r11, |$\itm{lhs}'$|
  12472. \end{lstlisting}
  12473. \fi}
  12474. {\if\edition\pythonEd\pythonColor
  12475. \begin{lstlisting}
  12476. |$\itm{lhs}$| = allocate(|$\itm{len}$|, TupleType([|$\itm{type}, \ldots$])|);
  12477. |$\Longrightarrow$|
  12478. movq free_ptr(%rip), %r11
  12479. addq |$8(\itm{len}+1)$|, free_ptr(%rip)
  12480. movq $|$\itm{tag}$|, 0(%r11)
  12481. movq %r11, |$\itm{lhs}'$|
  12482. \end{lstlisting}
  12483. \fi}
  12484. %
  12485. The \code{collect} form is compiled to a call to the \code{collect}
  12486. function in the runtime. The arguments to \code{collect} are (1) the
  12487. top of the root stack, and (2) the number of bytes that need to be
  12488. allocated. We use another dedicated register, \code{r15}, to store
  12489. the pointer to the top of the root stack. Therefore \code{r15} is not
  12490. available for use by the register allocator.
  12491. %
  12492. {\if\edition\racketEd
  12493. \begin{lstlisting}
  12494. (collect |$\itm{bytes}$|)
  12495. |$\Longrightarrow$|
  12496. movq %r15, %rdi
  12497. movq $|\itm{bytes}|, %rsi
  12498. callq collect
  12499. \end{lstlisting}
  12500. \fi}
  12501. {\if\edition\pythonEd\pythonColor
  12502. \begin{lstlisting}
  12503. collect(|$\itm{bytes}$|)
  12504. |$\Longrightarrow$|
  12505. movq %r15, %rdi
  12506. movq $|\itm{bytes}|, %rsi
  12507. callq collect
  12508. \end{lstlisting}
  12509. \fi}
  12510. {\if\edition\pythonEd\pythonColor
  12511. The \code{is} comparison is compiled similarly to the other comparison
  12512. operators, using the \code{cmpq} instruction. Because the value of a
  12513. tuple is its address, we can translate \code{is} into a simple check
  12514. for equality using the \code{e} condition code. \\
  12515. \begin{tabular}{lll}
  12516. \begin{minipage}{0.4\textwidth}
  12517. $\CASSIGN{\Var}{ \LP\CIS{\Atm_1}{\Atm_2} \RP }$
  12518. \end{minipage}
  12519. &
  12520. $\Rightarrow$
  12521. &
  12522. \begin{minipage}{0.4\textwidth}
  12523. \begin{lstlisting}
  12524. cmpq |$\Arg_2$|, |$\Arg_1$|
  12525. sete %al
  12526. movzbq %al, |$\Var$|
  12527. \end{lstlisting}
  12528. \end{minipage}
  12529. \end{tabular}
  12530. \fi}
  12531. \newcommand{\GrammarXGlobal}{
  12532. \begin{array}{lcl}
  12533. \Arg &::=& \itm{label} \key{(\%rip)}
  12534. \end{array}
  12535. }
  12536. \newcommand{\ASTXGlobalRacket}{
  12537. \begin{array}{lcl}
  12538. \Arg &::=& \GLOBAL{\itm{label}}
  12539. \end{array}
  12540. }
  12541. \begin{figure}[tp]
  12542. \begin{tcolorbox}[colback=white]
  12543. {\if\edition\racketEd
  12544. \[
  12545. \begin{array}{l}
  12546. \gray{\GrammarXIntRacket} \\ \hline
  12547. \gray{\GrammarXIfRacket} \\ \hline
  12548. \GrammarXGlobal \\
  12549. \begin{array}{lcl}
  12550. \LangXGlobalM{} &::= & \key{.globl main} \\
  12551. & & \key{main:} \; \Instr^{*}
  12552. \end{array}
  12553. \end{array}
  12554. \]
  12555. \fi}
  12556. {\if\edition\pythonEd\pythonColor
  12557. \[
  12558. \begin{array}{l}
  12559. \gray{\GrammarXIntPython} \\ \hline
  12560. \gray{\GrammarXIfPython} \\ \hline
  12561. \GrammarXGlobal \\
  12562. \begin{array}{lcl}
  12563. \LangXGlobalM{} &::= & \key{.globl main} \\
  12564. & & \key{main:} \; \Instr^{*}
  12565. \end{array}
  12566. \end{array}
  12567. \]
  12568. \fi}
  12569. \end{tcolorbox}
  12570. \caption{The concrete syntax of \LangXGlobal{} (extends \LangXIf{} shown in figure~\ref{fig:x86-1-concrete}).}
  12571. \label{fig:x86-2-concrete}
  12572. \end{figure}
  12573. \begin{figure}[tp]
  12574. \begin{tcolorbox}[colback=white]
  12575. \small
  12576. {\if\edition\racketEd
  12577. \[
  12578. \begin{array}{l}
  12579. \gray{\ASTXIntRacket} \\ \hline
  12580. \gray{\ASTXIfRacket} \\ \hline
  12581. \ASTXGlobalRacket \\
  12582. \begin{array}{lcl}
  12583. \LangXGlobalM{} &::= & \XPROGRAM{\itm{info}}{\LP\LP\itm{label} \,\key{.}\, \Block \RP\ldots\RP}
  12584. \end{array}
  12585. \end{array}
  12586. \]
  12587. \fi}
  12588. {\if\edition\pythonEd\pythonColor
  12589. \[
  12590. \begin{array}{l}
  12591. \gray{\ASTXIntPython} \\ \hline
  12592. \gray{\ASTXIfPython} \\ \hline
  12593. \ASTXGlobalRacket \\
  12594. \begin{array}{lcl}
  12595. \LangXGlobalM{} &::= & \XPROGRAM{\itm{info}}{\LC\itm{label} \,\key{:}\, \Block \key{,} \ldots \RC }
  12596. \end{array}
  12597. \end{array}
  12598. \]
  12599. \fi}
  12600. \end{tcolorbox}
  12601. \caption{The abstract syntax of \LangXGlobal{} (extends \LangXIf{} shown in figure~\ref{fig:x86-1}).}
  12602. \label{fig:x86-2}
  12603. \end{figure}
  12604. The definitions of the concrete and abstract syntax of the
  12605. \LangXGlobal{} language are shown in figures~\ref{fig:x86-2-concrete}
  12606. and \ref{fig:x86-2}. It differs from \LangXIf{} only in the addition
  12607. of global variables.
  12608. %
  12609. Figure~\ref{fig:select-instr-output-gc} shows the output of the
  12610. \code{select\_instructions} pass on the running example.
  12611. \begin{figure}[tbp]
  12612. \centering
  12613. \begin{tcolorbox}[colback=white]
  12614. {\if\edition\racketEd
  12615. % tests/s2_17.rkt
  12616. \begin{tabular}{lll}
  12617. \begin{minipage}{0.5\textwidth}
  12618. \begin{lstlisting}[basicstyle=\ttfamily\scriptsize]
  12619. start:
  12620. tmp9 = (global-value free_ptr);
  12621. tmp0 = (+ tmp9 16);
  12622. tmp1 = (global-value fromspace_end);
  12623. if (< tmp0 tmp1)
  12624. goto block0;
  12625. else
  12626. goto block1;
  12627. block0:
  12628. _4 = (void);
  12629. goto block9;
  12630. block1:
  12631. (collect 16)
  12632. goto block9;
  12633. block9:
  12634. alloc2 = (allocate 1 (Vector Integer));
  12635. _3 = (vector-set! alloc2 0 42);
  12636. vecinit6 = alloc2;
  12637. tmp2 = (global-value free_ptr);
  12638. tmp3 = (+ tmp2 16);
  12639. tmp4 = (global-value fromspace_end);
  12640. if (< tmp3 tmp4)
  12641. goto block7;
  12642. else
  12643. goto block8;
  12644. block7:
  12645. _8 = (void);
  12646. goto block6;
  12647. block8:
  12648. (collect 16)
  12649. goto block6;
  12650. block6:
  12651. alloc5 = (allocate 1 (Vector (Vector Integer)));
  12652. _7 = (vector-set! alloc5 0 vecinit6);
  12653. tmp5 = (vector-ref alloc5 0);
  12654. return (vector-ref tmp5 0);
  12655. \end{lstlisting}
  12656. \end{minipage}
  12657. &$\Rightarrow$&
  12658. \begin{minipage}{0.4\textwidth}
  12659. \begin{lstlisting}[basicstyle=\ttfamily\scriptsize]
  12660. start:
  12661. movq free_ptr(%rip), tmp9
  12662. movq tmp9, tmp0
  12663. addq $16, tmp0
  12664. movq fromspace_end(%rip), tmp1
  12665. cmpq tmp1, tmp0
  12666. jl block0
  12667. jmp block1
  12668. block0:
  12669. movq $0, _4
  12670. jmp block9
  12671. block1:
  12672. movq %r15, %rdi
  12673. movq $16, %rsi
  12674. callq collect
  12675. jmp block9
  12676. block9:
  12677. movq free_ptr(%rip), %r11
  12678. addq $16, free_ptr(%rip)
  12679. movq $3, 0(%r11)
  12680. movq %r11, alloc2
  12681. movq alloc2, %r11
  12682. movq $42, 8(%r11)
  12683. movq $0, _3
  12684. movq alloc2, vecinit6
  12685. movq free_ptr(%rip), tmp2
  12686. movq tmp2, tmp3
  12687. addq $16, tmp3
  12688. movq fromspace_end(%rip), tmp4
  12689. cmpq tmp4, tmp3
  12690. jl block7
  12691. jmp block8
  12692. block7:
  12693. movq $0, _8
  12694. jmp block6
  12695. block8:
  12696. movq %r15, %rdi
  12697. movq $16, %rsi
  12698. callq collect
  12699. jmp block6
  12700. block6:
  12701. movq free_ptr(%rip), %r11
  12702. addq $16, free_ptr(%rip)
  12703. movq $131, 0(%r11)
  12704. movq %r11, alloc5
  12705. movq alloc5, %r11
  12706. movq vecinit6, 8(%r11)
  12707. movq $0, _7
  12708. movq alloc5, %r11
  12709. movq 8(%r11), tmp5
  12710. movq tmp5, %r11
  12711. movq 8(%r11), %rax
  12712. jmp conclusion
  12713. \end{lstlisting}
  12714. \end{minipage}
  12715. \end{tabular}
  12716. \fi}
  12717. {\if\edition\pythonEd
  12718. % tests/tuple/get_get.py
  12719. \begin{tabular}{lll}
  12720. \begin{minipage}{0.5\textwidth}
  12721. \begin{lstlisting}[basicstyle=\ttfamily\scriptsize]
  12722. start:
  12723. init.514 = 42
  12724. tmp.517 = free_ptr
  12725. tmp.518 = (tmp.517 + 16)
  12726. tmp.519 = fromspace_end
  12727. if tmp.518 < tmp.519:
  12728. goto block.529
  12729. else:
  12730. goto block.530
  12731. block.529:
  12732. goto block.528
  12733. block.530:
  12734. collect(16)
  12735. goto block.528
  12736. block.528:
  12737. alloc.513 = allocate(1,tuple[int])
  12738. alloc.513:tuple[int][0] = init.514
  12739. v1 = alloc.513
  12740. init.516 = v1
  12741. tmp.520 = free_ptr
  12742. tmp.521 = (tmp.520 + 16)
  12743. tmp.522 = fromspace_end
  12744. if tmp.521 < tmp.522:
  12745. goto block.526
  12746. else:
  12747. goto block.527
  12748. block.526:
  12749. goto block.525
  12750. block.527:
  12751. collect(16)
  12752. goto block.525
  12753. block.525:
  12754. alloc.515 = allocate(1,tuple[tuple[int]])
  12755. alloc.515:tuple[tuple[int]][0] = init.516
  12756. v2 = alloc.515
  12757. tmp.523 = v2[0]
  12758. tmp.524 = tmp.523[0]
  12759. print(tmp.524)
  12760. return 0
  12761. \end{lstlisting}
  12762. \end{minipage}
  12763. &$\Rightarrow$&
  12764. \begin{minipage}{0.4\textwidth}
  12765. \begin{lstlisting}[basicstyle=\ttfamily\scriptsize]
  12766. start:
  12767. movq $42, init.514
  12768. movq free_ptr(%rip), tmp.517
  12769. movq tmp.517, tmp.518
  12770. addq $16, tmp.518
  12771. movq fromspace_end(%rip), tmp.519
  12772. cmpq tmp.519, tmp.518
  12773. jl block.529
  12774. jmp block.530
  12775. block.529:
  12776. jmp block.528
  12777. block.530:
  12778. movq %r15, %rdi
  12779. movq $16, %rsi
  12780. callq collect
  12781. jmp block.528
  12782. block.528:
  12783. movq free_ptr(%rip), %r11
  12784. addq $16, free_ptr(%rip)
  12785. movq $3, 0(%r11)
  12786. movq %r11, alloc.513
  12787. movq alloc.513, %r11
  12788. movq init.514, 8(%r11)
  12789. movq alloc.513, v1
  12790. movq v1, init.516
  12791. movq free_ptr(%rip), tmp.520
  12792. movq tmp.520, tmp.521
  12793. addq $16, tmp.521
  12794. movq fromspace_end(%rip), tmp.522
  12795. cmpq tmp.522, tmp.521
  12796. jl block.526
  12797. jmp block.527
  12798. block.526:
  12799. jmp block.525
  12800. block.527:
  12801. movq %r15, %rdi
  12802. movq $16, %rsi
  12803. callq collect
  12804. jmp block.525
  12805. block.525:
  12806. movq free_ptr(%rip), %r11
  12807. addq $16, free_ptr(%rip)
  12808. movq $131, 0(%r11)
  12809. movq %r11, alloc.515
  12810. movq alloc.515, %r11
  12811. movq init.516, 8(%r11)
  12812. movq alloc.515, v2
  12813. movq v2, %r11
  12814. movq 8(%r11), %r11
  12815. movq %r11, tmp.523
  12816. movq tmp.523, %r11
  12817. movq 8(%r11), %r11
  12818. movq %r11, tmp.524
  12819. movq tmp.524, %rdi
  12820. callq print_int
  12821. movq $0, %rax
  12822. jmp conclusion
  12823. \end{lstlisting}
  12824. \end{minipage}
  12825. \end{tabular}
  12826. \fi}
  12827. \end{tcolorbox}
  12828. \caption{Output of \code{explicate\_control} (\emph{left}) and
  12829. \code{select\_instructions} (\emph{right}) on the running example.}
  12830. \label{fig:select-instr-output-gc}
  12831. \end{figure}
  12832. \clearpage
  12833. \section{Register Allocation}
  12834. \label{sec:reg-alloc-gc}
  12835. \index{subject}{register allocation}
  12836. As discussed previously in this chapter, the garbage collector needs to
  12837. access all the pointers in the root set, that is, all variables that
  12838. are tuples. It will be the responsibility of the register allocator
  12839. to make sure that
  12840. \begin{enumerate}
  12841. \item the root stack is used for spilling tuple-typed variables, and
  12842. \item if a tuple-typed variable is live during a call to the
  12843. collector, it must be spilled to ensure that it is visible to the
  12844. collector.
  12845. \end{enumerate}
  12846. The latter responsibility can be handled during construction of the
  12847. interference graph, by adding interference edges between the call-live
  12848. tuple-typed variables and all the callee-saved registers. (They
  12849. already interfere with the caller-saved registers.)
  12850. %
  12851. \racket{The type information for variables is in the \code{Program}
  12852. form, so we recommend adding another parameter to the
  12853. \code{build\_interference} function to communicate this alist.}
  12854. %
  12855. \python{The type information for variables is generated by the type
  12856. checker for \LangCVec{}, stored in a field named \code{var\_types} in
  12857. the \code{CProgram} AST mode. You'll need to propagate that
  12858. information so that it is available in this pass.}
  12859. The spilling of tuple-typed variables to the root stack can be handled
  12860. after graph coloring, in choosing how to assign the colors
  12861. (integers) to registers and stack locations. The
  12862. \racket{\code{Program}}\python{\code{CProgram}} output of this pass
  12863. changes to also record the number of spills to the root stack.
  12864. % build-interference
  12865. %
  12866. % callq
  12867. % extra parameter for var->type assoc. list
  12868. % update 'program' and 'if'
  12869. % allocate-registers
  12870. % allocate spilled vectors to the rootstack
  12871. % don't change color-graph
  12872. % TODO:
  12873. %\section{Patch Instructions}
  12874. %[mention that global variables are memory references]
  12875. \section{Generate Prelude and Conclusion}
  12876. \label{sec:print-x86-gc}
  12877. \label{sec:prelude-conclusion-x86-gc}
  12878. \index{subject}{prelude}\index{subject}{conclusion}
  12879. Figure~\ref{fig:print-x86-output-gc} shows the output of the
  12880. \code{prelude\_and\_conclusion} pass on the running example. In the
  12881. prelude of the \code{main} function, we allocate space
  12882. on the root stack to make room for the spills of tuple-typed
  12883. variables. We do so by incrementing the root stack pointer (\code{r15}),
  12884. taking care that the root stack grows up instead of down. For the
  12885. running example, there was just one spill, so we increment \code{r15}
  12886. by 8 bytes. In the conclusion we subtract 8 bytes from \code{r15}.
  12887. One issue that deserves special care is that there may be a call to
  12888. \code{collect} prior to the initializing assignments for all the
  12889. variables in the root stack. We do not want the garbage collector to
  12890. mistakenly determine that some uninitialized variable is a pointer that
  12891. needs to be followed. Thus, we zero out all locations on the root
  12892. stack in the prelude of \code{main}. In
  12893. figure~\ref{fig:print-x86-output-gc}, the instruction
  12894. %
  12895. \lstinline{movq $0, 0(%r15)}
  12896. %
  12897. is sufficient to accomplish this task because there is only one spill.
  12898. In general, we have to clear as many words as there are spills of
  12899. tuple-typed variables. The garbage collector tests each root to see
  12900. if it is null prior to dereferencing it.
  12901. \begin{figure}[htbp]
  12902. \begin{tcolorbox}[colback=white]
  12903. {\if\edition\racketEd
  12904. \begin{minipage}[t]{0.5\textwidth}
  12905. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  12906. .globl main
  12907. main:
  12908. pushq %rbp
  12909. movq %rsp, %rbp
  12910. subq $0, %rsp
  12911. movq $65536, %rdi
  12912. movq $65536, %rsi
  12913. callq initialize
  12914. movq rootstack_begin(%rip), %r15
  12915. movq $0, 0(%r15)
  12916. addq $8, %r15
  12917. jmp start
  12918. conclusion:
  12919. subq $8, %r15
  12920. addq $0, %rsp
  12921. popq %rbp
  12922. retq
  12923. \end{lstlisting}
  12924. \end{minipage}
  12925. \fi}
  12926. {\if\edition\pythonEd
  12927. \begin{minipage}[t]{0.5\textwidth}
  12928. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  12929. .globl main
  12930. main:
  12931. pushq %rbp
  12932. movq %rsp, %rbp
  12933. pushq %rbx
  12934. subq $8, %rsp
  12935. movq $65536, %rdi
  12936. movq $16, %rsi
  12937. callq initialize
  12938. movq rootstack_begin(%rip), %r15
  12939. movq $0, 0(%r15)
  12940. addq $8, %r15
  12941. jmp start
  12942. conclusion:
  12943. subq $8, %r15
  12944. addq $8, %rsp
  12945. popq %rbx
  12946. popq %rbp
  12947. retq
  12948. \end{lstlisting}
  12949. \end{minipage}
  12950. \fi}
  12951. \end{tcolorbox}
  12952. \caption{The prelude and conclusion for the running example.}
  12953. \label{fig:print-x86-output-gc}
  12954. \end{figure}
  12955. \begin{figure}[tbp]
  12956. \begin{tcolorbox}[colback=white]
  12957. {\if\edition\racketEd
  12958. \begin{tikzpicture}[baseline=(current bounding box.center),scale=0.90]
  12959. \node (Lvec) at (0,2) {\large \LangVec{}};
  12960. \node (Lvec-2) at (3,2) {\large \LangVec{}};
  12961. \node (Lvec-3) at (6,2) {\large \LangVec{}};
  12962. \node (Lvec-4) at (10,2) {\large \LangAlloc{}};
  12963. \node (Lvec-5) at (10,0) {\large \LangAlloc{}};
  12964. \node (Lvec-6) at (5,0) {\large \LangAllocANF{}};
  12965. \node (C2-4) at (0,0) {\large \LangCVec{}};
  12966. \node (x86-2) at (0,-2) {\large \LangXGlobalVar{}};
  12967. \node (x86-2-1) at (0,-4) {\large \LangXGlobalVar{}};
  12968. \node (x86-2-2) at (4,-4) {\large \LangXGlobalVar{}};
  12969. \node (x86-3) at (4,-2) {\large \LangXGlobalVar{}};
  12970. \node (x86-4) at (8,-2) {\large \LangXGlobal{}};
  12971. \node (x86-5) at (8,-4) {\large \LangXGlobal{}};
  12972. \path[->,bend left=15] (Lvec) edge [above] node {\ttfamily\footnotesize shrink} (Lvec-2);
  12973. \path[->,bend left=15] (Lvec-2) edge [above] node {\ttfamily\footnotesize uniquify} (Lvec-3);
  12974. \path[->,bend left=15] (Lvec-3) edge [above] node {\ttfamily\footnotesize expose\_allocation} (Lvec-4);
  12975. \path[->,bend left=15] (Lvec-4) edge [right] node
  12976. {\ttfamily\footnotesize uncover\_get!} (Lvec-5);
  12977. \path[->,bend left=10] (Lvec-5) edge [below] node {\ttfamily\footnotesize remove\_complex\_operands} (Lvec-6);
  12978. \path[->,bend right=10] (Lvec-6) edge [above] node {\ttfamily\footnotesize explicate\_control} (C2-4);
  12979. \path[->,bend left=15] (C2-4) edge [right] node {\ttfamily\footnotesize select\_instructions} (x86-2);
  12980. \path[->,bend right=15] (x86-2) edge [right] node {\ttfamily\footnotesize uncover\_live} (x86-2-1);
  12981. \path[->,bend right=15] (x86-2-1) edge [below] node {\ttfamily\footnotesize build\_interference} (x86-2-2);
  12982. \path[->,bend right=15] (x86-2-2) edge [right] node {\ttfamily\footnotesize allocate\_registers} (x86-3);
  12983. \path[->,bend left=10] (x86-3) edge [above] node {\ttfamily\footnotesize patch\_instructions} (x86-4);
  12984. \path[->,bend left=15] (x86-4) edge [right] node {\ttfamily\footnotesize prelude\_and\_conclusion} (x86-5);
  12985. \end{tikzpicture}
  12986. \fi}
  12987. {\if\edition\pythonEd\pythonColor
  12988. \begin{tikzpicture}[baseline=(current bounding box.center),scale=0.85]
  12989. \node (Lvec) at (0,2) {\large \LangVec{}};
  12990. \node (Lvec-2) at (4,2) {\large \LangVec{}};
  12991. \node (Lvec-5) at (8,2) {\large \LangAlloc{}};
  12992. \node (Lvec-6) at (12,2) {\large \LangAllocANF{}};
  12993. \node (C2-4) at (0,0) {\large \LangCVec{}};
  12994. \node (x86-2) at (0,-2) {\large \LangXGlobalVar{}};
  12995. \node (x86-3) at (4,-2) {\large \LangXGlobalVar{}};
  12996. \node (x86-4) at (8,-2) {\large \LangXGlobal{}};
  12997. \node (x86-5) at (12,-2) {\large \LangXGlobal{}};
  12998. \path[->,bend left=15] (Lvec) edge [above] node {\ttfamily\footnotesize shrink} (Lvec-2);
  12999. \path[->,bend left=15] (Lvec-2) edge [above] node {\ttfamily\footnotesize expose\_allocation} (Lvec-5);
  13000. \path[->,bend left=15] (Lvec-5) edge [above] node {\ttfamily\footnotesize remove\_complex\_operands} (Lvec-6);
  13001. \path[->,bend left=10] (Lvec-6) edge [right] node {\ttfamily\footnotesize \ \ \ explicate\_control} (C2-4);
  13002. \path[->,bend left=15] (C2-4) edge [right] node {\ttfamily\footnotesize select\_instructions} (x86-2);
  13003. \path[->,bend right=15] (x86-2) edge [below] node {\ttfamily\footnotesize assign\_homes} (x86-3);
  13004. \path[->,bend left=15] (x86-3) edge [above] node {\ttfamily\footnotesize patch\_instructions} (x86-4);
  13005. \path[->,bend right=15] (x86-4) edge [below] node {\ttfamily\footnotesize prelude\_and\_conclusion} (x86-5);
  13006. \end{tikzpicture}
  13007. \fi}
  13008. \end{tcolorbox}
  13009. \caption{Diagram of the passes for \LangVec{}, a language with tuples.}
  13010. \label{fig:Lvec-passes}
  13011. \end{figure}
  13012. Figure~\ref{fig:Lvec-passes} gives an overview of all the passes needed
  13013. for the compilation of \LangVec{}.
  13014. \clearpage
  13015. {\if\edition\racketEd
  13016. \section{Challenge: Simple Structures}
  13017. \label{sec:simple-structures}
  13018. \index{subject}{struct}
  13019. \index{subject}{structure}
  13020. The language \LangStruct{} extends \LangVec{} with support for simple
  13021. structures. The definition of its concrete syntax is shown in
  13022. figure~\ref{fig:Lstruct-concrete-syntax}, and the abstract syntax is
  13023. shown in figure~\ref{fig:Lstruct-syntax}. Recall that a \code{struct}
  13024. in Typed Racket is a user-defined data type that contains named fields
  13025. and that is heap allocated\index{subject}{heap allocated},
  13026. similarly to a vector. The following is an
  13027. example of a structure definition, in this case the definition of a
  13028. \code{point} type:
  13029. \begin{lstlisting}
  13030. (struct point ([x : Integer] [y : Integer]) #:mutable)
  13031. \end{lstlisting}
  13032. \newcommand{\LstructGrammarRacket}{
  13033. \begin{array}{lcl}
  13034. \Type &::=& \Var \\
  13035. \Exp &::=& (\Var\;\Exp \ldots)\\
  13036. \Def &::=& (\key{struct}\; \Var \; ([\Var \,\key{:}\, \Type] \ldots)\; \code{\#:mutable})\\
  13037. \end{array}
  13038. }
  13039. \newcommand{\LstructASTRacket}{
  13040. \begin{array}{lcl}
  13041. \Type &::=& \VAR{\Var} \\
  13042. \Exp &::=& \APPLY{\Var}{\Exp\ldots} \\
  13043. \Def &::=& \LP\key{StructDef}\; \Var \; \LP\LS\Var \,\key{:}\, \Type\RS \ldots\RP\RP
  13044. \end{array}
  13045. }
  13046. \begin{figure}[tbp]
  13047. \centering
  13048. \begin{tcolorbox}[colback=white]
  13049. \[
  13050. \begin{array}{l}
  13051. \gray{\LintGrammarRacket{}} \\ \hline
  13052. \gray{\LvarGrammarRacket{}} \\ \hline
  13053. \gray{\LifGrammarRacket{}} \\ \hline
  13054. \gray{\LwhileGrammarRacket} \\ \hline
  13055. \gray{\LtupGrammarRacket} \\ \hline
  13056. \LstructGrammarRacket \\
  13057. \begin{array}{lcl}
  13058. \LangStruct{} &::=& \Def \ldots \; \Exp
  13059. \end{array}
  13060. \end{array}
  13061. \]
  13062. \end{tcolorbox}
  13063. \caption{The concrete syntax of \LangStruct{}, extending \LangVec{}
  13064. (figure~\ref{fig:Lvec-concrete-syntax}).}
  13065. \label{fig:Lstruct-concrete-syntax}
  13066. \index{subject}{Lstruct@\LangStruct{} concrete syntax}
  13067. \end{figure}
  13068. \begin{figure}[tbp]
  13069. \centering
  13070. \begin{tcolorbox}[colback=white]
  13071. \small
  13072. \[
  13073. \begin{array}{l}
  13074. \gray{\LintASTRacket{}} \\ \hline
  13075. \gray{\LvarASTRacket{}} \\ \hline
  13076. \gray{\LifASTRacket{}} \\ \hline
  13077. \gray{\LwhileASTRacket} \\ \hline
  13078. \gray{\LtupASTRacket} \\ \hline
  13079. \LstructASTRacket \\
  13080. \begin{array}{lcl}
  13081. \LangStruct{} &::=& \PROGRAMDEFSEXP{\code{'()}}{\LP\Def\ldots\RP)}{\Exp}
  13082. \end{array}
  13083. \end{array}
  13084. \]
  13085. \end{tcolorbox}
  13086. \caption{The abstract syntax of \LangStruct{}, extending \LangVec{}
  13087. (figure~\ref{fig:Lvec-syntax}).}
  13088. \label{fig:Lstruct-syntax}
  13089. \index{subject}{Lstruct@\LangStruct{} abstract syntax}
  13090. \end{figure}
  13091. An instance of a structure is created using function-call syntax, with
  13092. the name of the structure in the function position, as follows:
  13093. \begin{lstlisting}
  13094. (point 7 12)
  13095. \end{lstlisting}
  13096. Function-call syntax is also used to read a field of a structure. The
  13097. function name is formed by the structure name, a dash, and the field
  13098. name. The following example uses \code{point-x} and \code{point-y} to
  13099. access the \code{x} and \code{y} fields of two point instances:
  13100. \begin{center}
  13101. \begin{lstlisting}
  13102. (let ([pt1 (point 7 12)])
  13103. (let ([pt2 (point 4 3)])
  13104. (+ (- (point-x pt1) (point-x pt2))
  13105. (- (point-y pt1) (point-y pt2)))))
  13106. \end{lstlisting}
  13107. \end{center}
  13108. Similarly, to write to a field of a structure, use its set function,
  13109. whose name starts with \code{set-}, followed by the structure name,
  13110. then a dash, then the field name, and finally with an exclamation
  13111. mark. The following example uses \code{set-point-x!} to change the
  13112. \code{x} field from \code{7} to \code{42}:
  13113. \begin{center}
  13114. \begin{lstlisting}
  13115. (let ([pt (point 7 12)])
  13116. (let ([_ (set-point-x! pt 42)])
  13117. (point-x pt)))
  13118. \end{lstlisting}
  13119. \end{center}
  13120. \begin{exercise}\normalfont\normalsize
  13121. Create a type checker for \LangStruct{} by extending the type
  13122. checker for \LangVec{}. Extend your compiler with support for simple
  13123. structures, compiling \LangStruct{} to x86 assembly code. Create
  13124. five new test cases that use structures, and test your compiler.
  13125. \end{exercise}
  13126. % TODO: create an interpreter for L_struct
  13127. \clearpage
  13128. \fi}
  13129. \section{Challenge: Arrays}
  13130. \label{sec:arrays}
  13131. % TODO mention trapped-error
  13132. In this chapter we have studied tuples, that is, heterogeneous
  13133. sequences of elements whose length is determined at compile time. This
  13134. challenge is also about sequences, but this time the length is
  13135. determined at runtime and all the elements have the same type (they
  13136. are homogeneous). We use the traditional term \emph{array} for this
  13137. latter kind of sequence.
  13138. %
  13139. \racket{
  13140. The Racket language does not distinguish between tuples and arrays;
  13141. they are both represented by vectors. However, Typed Racket
  13142. distinguishes between tuples and arrays: the \code{Vector} type is for
  13143. tuples, and the \code{Vectorof} type is for arrays.}%
  13144. \python{Arrays correspond to the \code{list} type in the Python language.}
  13145. Figure~\ref{fig:Lvecof-concrete-syntax} presents the definition of the
  13146. concrete syntax for \LangArray{}, and figure~\ref{fig:Lvecof-syntax}
  13147. presents the definition of the abstract syntax, extending \LangVec{}
  13148. with the \racket{\code{Vectorof}}\python{\code{list}} type and the
  13149. \racket{\code{make-vector} primitive operator for creating an array,
  13150. whose arguments are the length of the array and an initial value for
  13151. all the elements in the array.}%
  13152. \python{bracket notation for creating an array literal.}
  13153. \racket{The \code{vector-length},
  13154. \code{vector-ref}, and \code{vector-ref!} operators that we defined
  13155. for tuples become overloaded for use with arrays.}
  13156. \python{
  13157. The subscript operator becomes overloaded for use with arrays and tuples
  13158. and now may appear on the left-hand side of an assignment.
  13159. Note that the index of the subscript, when applied to an array, may be an
  13160. arbitrary expression and not exclusively a constant integer.
  13161. The \code{len} function is also applicable to arrays.
  13162. }
  13163. %
  13164. We include integer multiplication in \LangArray{} because it is
  13165. useful in many examples involving arrays such as computing the
  13166. inner product of two arrays (figure~\ref{fig:inner_product}).
  13167. \newcommand{\LarrayGrammarRacket}{
  13168. \begin{array}{lcl}
  13169. \Type &::=& \LP \key{Vectorof}~\Type \RP \\
  13170. \Exp &::=& \CMUL{\Exp}{\Exp}
  13171. \MID \CMAKEVEC{\Exp}{\Exp}
  13172. \end{array}
  13173. }
  13174. \newcommand{\LarrayASTRacket}{
  13175. \begin{array}{lcl}
  13176. \Type &::=& \LP \key{Vectorof}~\Type \RP \\
  13177. \Exp &::=& \MUL{\Exp}{\Exp}
  13178. \MID \MAKEVEC{\Exp}{\Exp}
  13179. \end{array}
  13180. }
  13181. \newcommand{\LarrayGrammarPython}{
  13182. \begin{array}{lcl}
  13183. \Type &::=& \key{list}\LS\Type\RS \\
  13184. \Exp &::=& \CMUL{\Exp}{\Exp}
  13185. \MID \CGET{\Exp}{\Exp}
  13186. \MID \LS \Exp \code{,} \ldots \RS \\
  13187. \Stmt &::= & \CGET{\Exp}{\Exp} \mathop{\key{=}}\Exp
  13188. \end{array}
  13189. }
  13190. \newcommand{\LarrayASTPython}{
  13191. \begin{array}{lcl}
  13192. \Type &::=& \key{ListType}\LP\Type\RP \\
  13193. \Exp &::=& \MUL{\Exp}{\Exp}
  13194. \MID \GET{\Exp}{\Exp} \\
  13195. &\MID& \key{List}\LP \Exp \code{,} \ldots \code{, } \code{Load()} \RP \\
  13196. \Stmt &::= & \ASSIGN{ \PUT{\Exp}{\Exp} }{\Exp}
  13197. \end{array}
  13198. }
  13199. \begin{figure}[tp]
  13200. \centering
  13201. \begin{tcolorbox}[colback=white]
  13202. \small
  13203. {\if\edition\racketEd
  13204. \[
  13205. \begin{array}{l}
  13206. \gray{\LintGrammarRacket{}} \\ \hline
  13207. \gray{\LvarGrammarRacket{}} \\ \hline
  13208. \gray{\LifGrammarRacket{}} \\ \hline
  13209. \gray{\LwhileGrammarRacket} \\ \hline
  13210. \gray{\LtupGrammarRacket} \\ \hline
  13211. \LarrayGrammarRacket \\
  13212. \begin{array}{lcl}
  13213. \LangArray{} &::=& \Exp
  13214. \end{array}
  13215. \end{array}
  13216. \]
  13217. \fi}
  13218. {\if\edition\pythonEd\pythonColor
  13219. \[
  13220. \begin{array}{l}
  13221. \gray{\LintGrammarPython{}} \\ \hline
  13222. \gray{\LvarGrammarPython{}} \\ \hline
  13223. \gray{\LifGrammarPython{}} \\ \hline
  13224. \gray{\LwhileGrammarPython} \\ \hline
  13225. \gray{\LtupGrammarPython} \\ \hline
  13226. \LarrayGrammarPython \\
  13227. \begin{array}{rcl}
  13228. \LangArrayM{} &::=& \Stmt^{*}
  13229. \end{array}
  13230. \end{array}
  13231. \]
  13232. \fi}
  13233. \end{tcolorbox}
  13234. \caption{The concrete syntax of \LangArray{}, extending \LangVec{} (figure~\ref{fig:Lvec-concrete-syntax}).}
  13235. \label{fig:Lvecof-concrete-syntax}
  13236. \index{subject}{Larray@\LangArray{} concrete syntax}
  13237. \end{figure}
  13238. \begin{figure}[tp]
  13239. \centering
  13240. \begin{tcolorbox}[colback=white]
  13241. \small
  13242. {\if\edition\racketEd
  13243. \[
  13244. \begin{array}{l}
  13245. \gray{\LintASTRacket{}} \\ \hline
  13246. \gray{\LvarASTRacket{}} \\ \hline
  13247. \gray{\LifASTRacket{}} \\ \hline
  13248. \gray{\LwhileASTRacket} \\ \hline
  13249. \gray{\LtupASTRacket} \\ \hline
  13250. \LarrayASTRacket \\
  13251. \begin{array}{lcl}
  13252. \LangArray{} &::=& \Exp
  13253. \end{array}
  13254. \end{array}
  13255. \]
  13256. \fi}
  13257. {\if\edition\pythonEd\pythonColor
  13258. \[
  13259. \begin{array}{l}
  13260. \gray{\LintASTPython{}} \\ \hline
  13261. \gray{\LvarASTPython{}} \\ \hline
  13262. \gray{\LifASTPython{}} \\ \hline
  13263. \gray{\LwhileASTPython} \\ \hline
  13264. \gray{\LtupASTPython} \\ \hline
  13265. \LarrayASTPython \\
  13266. \begin{array}{rcl}
  13267. \LangArrayM{} &::=& \Stmt^{*}
  13268. \end{array}
  13269. \end{array}
  13270. \]
  13271. \fi}
  13272. \end{tcolorbox}
  13273. \caption{The abstract syntax of \LangArray{}, extending \LangVec{} (figure~\ref{fig:Lvec-syntax}).}
  13274. \label{fig:Lvecof-syntax}
  13275. \index{subject}{Larray@\LangArray{} abstract syntax}
  13276. \end{figure}
  13277. \begin{figure}[tp]
  13278. \begin{tcolorbox}[colback=white]
  13279. {\if\edition\racketEd
  13280. \begin{lstlisting}
  13281. (let ([A (make-vector 2 2)])
  13282. (let ([B (make-vector 2 3)])
  13283. (let ([i 0])
  13284. (let ([prod 0])
  13285. (begin
  13286. (while (< i (vector-length A))
  13287. (begin
  13288. (set! prod (+ prod (* (vector-ref A i)
  13289. (vector-ref B i))))
  13290. (set! i (+ i 1))))
  13291. prod)))))
  13292. \end{lstlisting}
  13293. \fi}
  13294. {\if\edition\pythonEd\pythonColor
  13295. \begin{lstlisting}
  13296. A = [2, 2]
  13297. B = [3, 3]
  13298. i = 0
  13299. prod = 0
  13300. while i != len(A):
  13301. prod = prod + A[i] * B[i]
  13302. i = i + 1
  13303. print(prod)
  13304. \end{lstlisting}
  13305. \fi}
  13306. \end{tcolorbox}
  13307. \caption{Example program that computes the inner product.}
  13308. \label{fig:inner_product}
  13309. \end{figure}
  13310. {\if\edition\racketEd
  13311. %
  13312. Figure~\ref{fig:type-check-Lvecof} shows the definition of the type
  13313. checker for \LangArray{}. The result type of
  13314. \code{make-vector} is \code{(Vectorof T)}, where \code{T} is the type
  13315. of the initializing expression. The length expression is required to
  13316. have type \code{Integer}. The type checking of the operators
  13317. \code{vector-length}, \code{vector-ref}, and \code{vector-set!} is
  13318. updated to handle the situation in which the vector has type
  13319. \code{Vectorof}. In these cases we translate the operators to their
  13320. \code{vectorof} form so that later passes can easily distinguish
  13321. between operations on tuples versus arrays. We override the
  13322. \code{operator-types} method to provide the type signature for
  13323. multiplication: it takes two integers and returns an integer.
  13324. \fi}
  13325. %
  13326. {\if\edition\pythonEd\pythonColor
  13327. %
  13328. The type checker for \LangArray{} is defined in
  13329. figures~\ref{fig:type-check-Lvecof} and
  13330. \ref{fig:type-check-Lvecof-part2}. The result type of a list literal
  13331. is \code{list[T]}, where \code{T} is the type of the initializing
  13332. expressions. The type checking of the \code{len} function and the
  13333. subscript operator are updated to handle lists. The type checker now
  13334. also handles a subscript on the left-hand side of an assignment.
  13335. Regarding multiplication, it takes two integers and returns an
  13336. integer.
  13337. %
  13338. \fi}
  13339. \begin{figure}[tbp]
  13340. \begin{tcolorbox}[colback=white]
  13341. {\if\edition\racketEd
  13342. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  13343. (define type-check-Lvecof-class
  13344. (class type-check-Lvec-class
  13345. (super-new)
  13346. (inherit check-type-equal?)
  13347. (define/override (operator-types)
  13348. (append '((* . ((Integer Integer) . Integer)))
  13349. (super operator-types)))
  13350. (define/override (type-check-exp env)
  13351. (lambda (e)
  13352. (define recur (type-check-exp env))
  13353. (match e
  13354. [(Prim 'make-vector (list e1 e2))
  13355. (define-values (e1^ t1) (recur e1))
  13356. (define-values (e2^ elt-type) (recur e2))
  13357. (define vec-type `(Vectorof ,elt-type))
  13358. (values (Prim 'make-vector (list e1^ e2^)) vec-type)]
  13359. [(Prim 'vector-ref (list e1 e2))
  13360. (define-values (e1^ t1) (recur e1))
  13361. (define-values (e2^ t2) (recur e2))
  13362. (match* (t1 t2)
  13363. [(`(Vectorof ,elt-type) 'Integer)
  13364. (values (Prim 'vectorof-ref (list e1^ e2^)) elt-type)]
  13365. [(other wise) ((super type-check-exp env) e)])]
  13366. [(Prim 'vector-set! (list e1 e2 e3) )
  13367. (define-values (e-vec t-vec) (recur e1))
  13368. (define-values (e2^ t2) (recur e2))
  13369. (define-values (e-arg^ t-arg) (recur e3))
  13370. (match t-vec
  13371. [`(Vectorof ,elt-type)
  13372. (check-type-equal? elt-type t-arg e)
  13373. (values (Prim 'vectorof-set! (list e-vec e2^ e-arg^)) 'Void)]
  13374. [else ((super type-check-exp env) e)])]
  13375. [(Prim 'vector-length (list e1))
  13376. (define-values (e1^ t1) (recur e1))
  13377. (match t1
  13378. [`(Vectorof ,t)
  13379. (values (Prim 'vectorof-length (list e1^)) 'Integer)]
  13380. [else ((super type-check-exp env) e)])]
  13381. [else ((super type-check-exp env) e)])))
  13382. ))
  13383. (define (type-check-Lvecof p)
  13384. (send (new type-check-Lvecof-class) type-check-program p))
  13385. \end{lstlisting}
  13386. \fi}
  13387. {\if\edition\pythonEd\pythonColor
  13388. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  13389. class TypeCheckLarray(TypeCheckLtup):
  13390. def type_check_exp(self, e, env):
  13391. match e:
  13392. case ast.List(es, Load()):
  13393. ts = [self.type_check_exp(e, env) for e in es]
  13394. elt_ty = ts[0]
  13395. for (ty, elt) in zip(ts, es):
  13396. self.check_type_equal(elt_ty, ty, elt)
  13397. e.has_type = ListType(elt_ty)
  13398. return e.has_type
  13399. case Call(Name('len'), [tup]):
  13400. tup_t = self.type_check_exp(tup, env)
  13401. tup.has_type = tup_t
  13402. match tup_t:
  13403. case TupleType(ts):
  13404. return IntType()
  13405. case ListType(ty):
  13406. return IntType()
  13407. case _:
  13408. raise Exception('len expected a tuple, not ' + repr(tup_t))
  13409. case Subscript(tup, index, Load()):
  13410. tup_ty = self.type_check_exp(tup, env)
  13411. tup.has_type = tup_ty
  13412. index_ty = self.type_check_exp(index, env)
  13413. self.check_type_equal(index_ty, IntType(), index)
  13414. match tup_ty:
  13415. case TupleType(ts):
  13416. match index:
  13417. case Constant(i):
  13418. return ts[i]
  13419. case _:
  13420. raise Exception('subscript required constant integer index')
  13421. case ListType(ty):
  13422. return ty
  13423. case _:
  13424. raise Exception('subscript expected a tuple, not ' + repr(tup_ty))
  13425. case BinOp(left, Mult(), right):
  13426. l = self.type_check_exp(left, env)
  13427. self.check_type_equal(l, IntType(), left)
  13428. r = self.type_check_exp(right, env)
  13429. self.check_type_equal(r, IntType(), right)
  13430. return IntType()
  13431. case _:
  13432. return super().type_check_exp(e, env)
  13433. \end{lstlisting}
  13434. \fi}
  13435. \end{tcolorbox}
  13436. \caption{Type checker for the \LangArray{} language\python{, part 1}.}
  13437. \label{fig:type-check-Lvecof}
  13438. \end{figure}
  13439. {\if\edition\pythonEd
  13440. \begin{figure}[tbp]
  13441. \begin{tcolorbox}[colback=white]
  13442. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  13443. def type_check_stmts(self, ss, env):
  13444. if len(ss) == 0:
  13445. return VoidType()
  13446. match ss[0]:
  13447. case Assign([Subscript(tup, index, Store())], value):
  13448. tup_t = self.type_check_exp(tup, env)
  13449. tup.has_type = tup_t
  13450. value_t = self.type_check_exp(value, env)
  13451. index_ty = self.type_check_exp(index, env)
  13452. self.check_type_equal(index_ty, IntType(), index)
  13453. match tup_t:
  13454. case ListType(ty):
  13455. self.check_type_equal(ty, value_t, ss[0])
  13456. case TupleType(ts):
  13457. return self.type_check_stmts(ss, env)
  13458. case _:
  13459. raise Exception('type_check_stmts: '
  13460. 'expected tuple or list, not ' + repr(tup_t))
  13461. return self.type_check_stmts(ss[1:], env)
  13462. case _:
  13463. return super().type_check_stmts(ss, env)
  13464. \end{lstlisting}
  13465. \end{tcolorbox}
  13466. \caption{Type checker for the \LangArray{} language, part 2.}
  13467. \label{fig:type-check-Lvecof-part2}
  13468. \end{figure}
  13469. \fi}
  13470. The definition of the interpreter for \LangArray{} is shown in
  13471. \racket{figure~\ref{fig:interp-Lvecof}}
  13472. \python{figure~\ref{fig:interp-Lvecof}}.
  13473. \racket{The \code{make-vector} operator is
  13474. interpreted using Racket's \code{make-vector} function,
  13475. and multiplication is interpreted using \code{fx*},
  13476. which is multiplication for \code{fixnum} integers.
  13477. In the \code{resolve} pass (section~\ref{sec:array-resolution})
  13478. we translate array access operations
  13479. into \code{vectorof-ref} and \code{vectorof-set!} operations,
  13480. which we interpret using \code{vector} operations with additional
  13481. bounds checks that signal a \code{trapped-error}.
  13482. }
  13483. %
  13484. \python{We implement array creation with a Python list comprehension,
  13485. and multiplication is implemented with 64-bit multiplication. We
  13486. add a case for a subscript on the left-hand side of
  13487. assignment. Other uses of subscript can be handled by the existing
  13488. code for tuples.}
  13489. \begin{figure}[tbp]
  13490. \begin{tcolorbox}[colback=white]
  13491. {\if\edition\racketEd
  13492. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  13493. (define interp-Lvecof-class
  13494. (class interp-Lvec-class
  13495. (super-new)
  13496. (define/override (interp-op op)
  13497. (match op
  13498. ['make-vector make-vector]
  13499. ['vectorof-length vector-length]
  13500. ['vectorof-ref
  13501. (lambda (v i)
  13502. (if (< i (vector-length v))
  13503. (vector-ref v i)
  13504. (error 'trapped-error "index ~a out of bounds\nin ~v" i v)))]
  13505. ['vectorof-set!
  13506. (lambda (v i e)
  13507. (if (< i (vector-length v))
  13508. (vector-set! v i e)
  13509. (error 'trapped-error "index ~a out of bounds\nin ~v" i v)))]
  13510. [else (super interp-op op)]))
  13511. ))
  13512. (define (interp-Lvecof p)
  13513. (send (new interp-Lvecof-class) interp-program p))
  13514. \end{lstlisting}
  13515. \fi}
  13516. {\if\edition\pythonEd\pythonColor
  13517. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  13518. class InterpLarray(InterpLtup):
  13519. def interp_exp(self, e, env):
  13520. match e:
  13521. case ast.List(es, Load()):
  13522. return [self.interp_exp(e, env) for e in es]
  13523. case BinOp(left, Mult(), right):
  13524. l = self.interp_exp(left, env)
  13525. r = self.interp_exp(right, env)
  13526. return mul64(l, r)
  13527. case Subscript(tup, index, Load()):
  13528. t = self.interp_exp(tup, env)
  13529. n = self.interp_exp(index, env)
  13530. if n < len(t):
  13531. return t[n]
  13532. else:
  13533. raise TrappedError('array index out of bounds')
  13534. case _:
  13535. return super().interp_exp(e, env)
  13536. def interp_stmt(self, s, env, cont):
  13537. match s:
  13538. case Assign([Subscript(tup, index)], value):
  13539. t = self.interp_exp(tup, env)
  13540. n = self.interp_exp(index, env)
  13541. if n < len(t):
  13542. t[n] = self.interp_exp(value, env)
  13543. else:
  13544. raise TrappedError('array index out of bounds')
  13545. return self.interp_stmts(cont, env)
  13546. case _:
  13547. return super().interp_stmt(s, env, cont)
  13548. \end{lstlisting}
  13549. \fi}
  13550. \end{tcolorbox}
  13551. \caption{Interpreter for \LangArray{}.}
  13552. \label{fig:interp-Lvecof}
  13553. \end{figure}
  13554. \subsection{Data Representation}
  13555. \label{sec:array-rep}
  13556. Just as with tuples, we store arrays on the heap, which means that the
  13557. garbage collector will need to inspect arrays. An immediate thought is
  13558. to use the same representation for arrays that we use for tuples.
  13559. However, we limit tuples to a length of fifty so that their length and
  13560. pointer mask can fit into the 64-bit tag at the beginning of each
  13561. tuple (section~\ref{sec:data-rep-gc}). We intend arrays to allow
  13562. millions of elements, so we need more bits to store the length.
  13563. However, because arrays are homogeneous, we need only 1 bit for the
  13564. pointer mask instead of 1 bit per array element. Finally, the
  13565. garbage collector must be able to distinguish between tuples
  13566. and arrays, so we need to reserve one bit for that purpose. We
  13567. arrive at the following layout for the 64-bit tag at the beginning of
  13568. an array:
  13569. \begin{itemize}
  13570. \item The right-most bit is the forwarding bit, just as in a tuple.
  13571. A $0$ indicates that it is a forwarding pointer, and a $1$ indicates
  13572. that it is not.
  13573. \item The next bit to the left is the pointer mask. A $0$ indicates
  13574. that none of the elements are pointers, and a $1$ indicates that all
  13575. the elements are pointers.
  13576. \item The next $60$ bits store the length of the array.
  13577. \item The bit at position $62$ distinguishes between a tuple ($0$)
  13578. and an array ($1$).
  13579. \item The left-most bit is reserved as explained in
  13580. chapter~\ref{ch:Lgrad}.
  13581. \end{itemize}
  13582. %% Recall that in chapter~\ref{ch:Ldyn}, we use a $3$-bit tag to
  13583. %% differentiate the kinds of values that have been injected into the
  13584. %% \code{Any} type. We use the bit pattern \code{110} (or $6$ in decimal)
  13585. %% to indicate that the value is an array.
  13586. In the following subsections we provide hints regarding how to update
  13587. the passes to handle arrays.
  13588. \subsection{Overload Resolution}
  13589. \label{sec:array-resolution}
  13590. As noted previously, with the addition of arrays, several operators
  13591. have become \emph{overloaded}; that is, they can be applied to values
  13592. of more than one type. In this case, the element access and length
  13593. operators can be applied to both tuples and arrays. This kind of
  13594. overloading is quite common in programming languages, so many
  13595. compilers perform \emph{overload resolution}\index{subject}{overload
  13596. resolution} to handle it. The idea is to translate each overloaded
  13597. operator into different operators for the different types.
  13598. Implement a new pass named \code{resolve}.
  13599. Translate the reading of an array element to
  13600. \racket{\code{vectorof-ref}}\python{\code{array\_load}}
  13601. and the writing of an array element to
  13602. \racket{\code{vectorof-set!}}\python{\code{array\_store}}.
  13603. Translate calls to \racket{\code{vector-length}}\python{\code{len}}
  13604. into \racket{\code{vectorof-length}}\python{\code{array\_len}}.
  13605. When these operators are applied to tuples, leave them as is.
  13606. %
  13607. \python{The type checker for \LangArray{} adds a \code{has\_type}
  13608. field, which can be inspected to determine whether the operator
  13609. is applied to a tuple or an array.}
  13610. \subsection{Bounds Checking}
  13611. Recall that the interpreter for \LangArray{} signals a
  13612. \racket{\code{trapped-error}}\python{\code{TrappedError}}
  13613. when there is an array access that is out of
  13614. bounds. Therefore your compiler is obliged to also catch these errors
  13615. during execution and halt, signaling an error. We recommend inserting
  13616. a new pass named \code{check\_bounds} that inserts code around each
  13617. \racket{\code{vectorof-ref} and \code{vectorof-set!}}
  13618. \python{subscript} operation to ensure that the index is greater than
  13619. or equal to zero and less than the array's length. If not, the program
  13620. should halt, for which we recommend using a new primitive operation
  13621. named \code{exit}.
  13622. %% \subsection{Reveal Casts}
  13623. %% The array-access operators \code{vectorof-ref} and
  13624. %% \code{vectorof-set!} are similar to the \code{any-vector-ref} and
  13625. %% \code{any-vector-set!} operators of chapter~\ref{ch:Ldyn} in
  13626. %% that the type checker cannot tell whether the index will be in bounds,
  13627. %% so the bounds check must be performed at run time. Recall that the
  13628. %% \code{reveal-casts} pass (section~\ref{sec:reveal-casts-Rany}) wraps
  13629. %% an \code{If} around a vector reference for update to check whether
  13630. %% the index is less than the length. You should do the same for
  13631. %% \code{vectorof-ref} and \code{vectorof-set!} .
  13632. %% In addition, the handling of the \code{any-vector} operators in
  13633. %% \code{reveal-casts} needs to be updated to account for arrays that are
  13634. %% injected to \code{Any}. For the \code{any-vector-length} operator, the
  13635. %% generated code should test whether the tag is for tuples (\code{010})
  13636. %% or arrays (\code{110}) and then dispatch to either
  13637. %% \code{any-vector-length} or \code{any-vectorof-length}. For the later
  13638. %% we add a case in \code{select\_instructions} to generate the
  13639. %% appropriate instructions for accessing the array length from the
  13640. %% header of an array.
  13641. %% For the \code{any-vector-ref} and \code{any-vector-set!} operators,
  13642. %% the generated code needs to check that the index is less than the
  13643. %% vector length, so like the code for \code{any-vector-length}, check
  13644. %% the tag to determine whether to use \code{any-vector-length} or
  13645. %% \code{any-vectorof-length} for this purpose. Once the bounds checking
  13646. %% is complete, the generated code can use \code{any-vector-ref} and
  13647. %% \code{any-vector-set!} for both tuples and arrays because the
  13648. %% instructions used for those operators do not look at the tag at the
  13649. %% front of the tuple or array.
  13650. \subsection{Expose Allocation}
  13651. % TODO: add figure for C_array
  13652. This pass should translate array creation into lower-level
  13653. operations. In particular, the new AST node \ALLOCARRAY{\Int}{\Type}
  13654. is analogous to the \code{Allocate} AST node for tuples. The $\Type$
  13655. argument must be \ARRAYTY{T}, where $T$ is the element type for the
  13656. array. The \code{AllocateArray} AST node allocates an array of the
  13657. length specified by the $\Exp$ (of type \INTTY), but does not
  13658. initialize the elements of the array. Generate code in this pass to
  13659. initialize the elements analogous to the case for tuples.
  13660. {\if\edition\racketEd
  13661. \subsection{Uncover \texttt{get!}}
  13662. \label{sec:uncover-get-bang-vecof}
  13663. Add cases for \code{AllocateArray} to \code{collect-set!} and
  13664. \code{uncover-get!-exp}.
  13665. \fi}
  13666. \subsection{Remove Complex Operands}
  13667. Add cases in the \code{rco\_atom} and \code{rco\_exp} for
  13668. \code{AllocateArray}. In particular, an \code{AllocateArray} node is
  13669. complex, and its subexpression must be atomic.
  13670. \subsection{Explicate Control}
  13671. Add cases for \code{AllocateArray} to \code{explicate\_tail} and
  13672. \code{explicate\_assign}.
  13673. \subsection{Select Instructions}
  13674. \index{subject}{select instructions}
  13675. Generate instructions for \code{AllocateArray} similar to those for
  13676. \code{Allocate} given in section~\ref{sec:select-instructions-gc}
  13677. except that the tag at the front of the array should instead use the
  13678. representation discussed in section~\ref{sec:array-rep}.
  13679. Regarding \racket{\code{vectorof-length}}\python{\code{array\_len}},
  13680. extract the length from the tag.
  13681. The instructions generated for accessing an element of an array differ
  13682. from those for a tuple (section~\ref{sec:select-instructions-gc}) in
  13683. that the index is not a constant so you need to generate instructions
  13684. that compute the offset at runtime.
  13685. Compile the \code{exit} primitive into a call to the \code{exit}
  13686. function of the C standard library, with an argument of $255$.
  13687. %% Also, note that assignment to an array element may appear in
  13688. %% as a stand-alone statement, so make sure to handle that situation in
  13689. %% this pass.
  13690. %% Finally, the instructions for \code{any-vectorof-length} should be
  13691. %% similar to those for \code{vectorof-length}, except that one must
  13692. %% first project the array by writing zeroes into the $3$-bit tag
  13693. \begin{exercise}\normalfont\normalsize
  13694. Implement a compiler for the \LangArray{} language by extending your
  13695. compiler for \LangLoop{}. Test your compiler on a half dozen new
  13696. programs, including the one shown in figure~\ref{fig:inner_product}
  13697. and also a program that multiplies two matrices. Note that although
  13698. matrices are two-dimensional arrays, they can be encoded into
  13699. one-dimensional arrays by laying out each row in the array, one after
  13700. the next.
  13701. \end{exercise}
  13702. {\if\edition\racketEd
  13703. \section{Challenge: Generational Collection}
  13704. The copying collector described in section~\ref{sec:GC} can incur
  13705. significant runtime overhead because the call to \code{collect} takes
  13706. time proportional to all the live data. One way to reduce this
  13707. overhead is to reduce how much data is inspected in each call to
  13708. \code{collect}. In particular, researchers have observed that recently
  13709. allocated data is more likely to become garbage then data that has
  13710. survived one or more previous calls to \code{collect}. This insight
  13711. motivated the creation of \emph{generational garbage collectors}
  13712. \index{subject}{generational garbage collector} that
  13713. (1) segregate data according to its age into two or more generations;
  13714. (2) allocate less space for younger generations, so collecting them is
  13715. faster, and more space for the older generations; and (3) perform
  13716. collection on the younger generations more frequently than on older
  13717. generations~\citep{Wilson:1992fk}.
  13718. For this challenge assignment, the goal is to adapt the copying
  13719. collector implemented in \code{runtime.c} to use two generations, one
  13720. for young data and one for old data. Each generation consists of a
  13721. FromSpace and a ToSpace. The following is a sketch of how to adapt the
  13722. \code{collect} function to use the two generations:
  13723. \begin{enumerate}
  13724. \item Copy the young generation's FromSpace to its ToSpace and then
  13725. switch the role of the ToSpace and FromSpace.
  13726. \item If there is enough space for the requested number of bytes in
  13727. the young FromSpace, then return from \code{collect}.
  13728. \item If there is not enough space in the young FromSpace for the
  13729. requested bytes, then move the data from the young generation to the
  13730. old one with the following steps:
  13731. \begin{enumerate}
  13732. \item[a.] If there is enough room in the old FromSpace, copy the young
  13733. FromSpace to the old FromSpace and then return.
  13734. \item[b.] If there is not enough room in the old FromSpace, then collect
  13735. the old generation by copying the old FromSpace to the old ToSpace
  13736. and swap the roles of the old FromSpace and ToSpace.
  13737. \item[c.] If there is enough room now, copy the young FromSpace to the
  13738. old FromSpace and return. Otherwise, allocate a larger FromSpace
  13739. and ToSpace for the old generation. Copy the young FromSpace and
  13740. the old FromSpace into the larger FromSpace for the old
  13741. generation and then return.
  13742. \end{enumerate}
  13743. \end{enumerate}
  13744. We recommend that you generalize the \code{cheney} function so that it
  13745. can be used for all the copies mentioned: between the young FromSpace
  13746. and ToSpace, between the old FromSpace and ToSpace, and between the
  13747. young FromSpace and old FromSpace. This can be accomplished by adding
  13748. parameters to \code{cheney} that replace its use of the global
  13749. variables \code{fromspace\_begin}, \code{fromspace\_end},
  13750. \code{tospace\_begin}, and \code{tospace\_end}.
  13751. Note that the collection of the young generation does not traverse the
  13752. old generation. This introduces a potential problem: there may be
  13753. young data that is reachable only through pointers in the old
  13754. generation. If these pointers are not taken into account, the
  13755. collector could throw away young data that is live! One solution,
  13756. called \emph{pointer recording}, is to maintain a set of all the
  13757. pointers from the old generation into the new generation and consider
  13758. this set as part of the root set. To maintain this set, the compiler
  13759. must insert extra instructions around every \code{vector-set!}. If the
  13760. vector being modified is in the old generation, and if the value being
  13761. written is a pointer into the new generation, then that pointer must
  13762. be added to the set. Also, if the value being overwritten was a
  13763. pointer into the new generation, then that pointer should be removed
  13764. from the set.
  13765. \begin{exercise}\normalfont\normalsize
  13766. Adapt the \code{collect} function in \code{runtime.c} to implement
  13767. generational garbage collection, as outlined in this section.
  13768. Update the code generation for \code{vector-set!} to implement
  13769. pointer recording. Make sure that your new compiler and runtime
  13770. execute without error on your test suite.
  13771. \end{exercise}
  13772. \fi}
  13773. \section{Further Reading}
  13774. \citet{Appel90} describes many data representation approaches
  13775. including the ones used in the compilation of Standard ML.
  13776. There are many alternatives to copying collectors (and their bigger
  13777. siblings, the generational collectors) with regard to garbage
  13778. collection, such as mark-and-sweep~\citep{McCarthy:1960dz} and
  13779. reference counting~\citep{Collins:1960aa}. The strengths of copying
  13780. collectors are that allocation is fast (just a comparison and pointer
  13781. increment), there is no fragmentation, cyclic garbage is collected,
  13782. and the time complexity of collection depends only on the amount of
  13783. live data and not on the amount of garbage~\citep{Wilson:1992fk}. The
  13784. main disadvantages of a two-space copying collector is that it uses a
  13785. lot of extra space and takes a long time to perform the copy, though
  13786. these problems are ameliorated in generational collectors.
  13787. \racket{Racket}\python{Object-oriented} programs tend to allocate many
  13788. small objects and generate a lot of garbage, so copying and
  13789. generational collectors are a good fit\python{~\citep{Dieckmann99}}.
  13790. Garbage collection is an active research topic, especially concurrent
  13791. garbage collection~\citep{Tene:2011kx}. Researchers are continuously
  13792. developing new techniques and revisiting old
  13793. trade-offs~\citep{Blackburn:2004aa,Jones:2011aa,Shahriyar:2013aa,Cutler:2015aa,Shidal:2015aa,Osterlund:2016aa,Jacek:2019aa,Gamari:2020aa}. Researchers
  13794. meet every year at the International Symposium on Memory Management to
  13795. present these findings.
  13796. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  13797. \chapter{Functions}
  13798. \label{ch:Lfun}
  13799. \index{subject}{function}
  13800. \setcounter{footnote}{0}
  13801. This chapter studies the compilation of a subset of \racket{Typed
  13802. Racket}\python{Python} in which only top-level function definitions
  13803. are allowed. This kind of function appears in the C programming
  13804. language, and it serves as an important stepping-stone to implementing
  13805. lexically scoped functions in the form of \key{lambda}\index{subject}{lambda}
  13806. abstractions, which is the topic of chapter~\ref{ch:Llambda}.
  13807. \section{The \LangFun{} Language}
  13808. The concrete syntax and abstract syntax for function definitions and
  13809. function application are shown in
  13810. figures~\ref{fig:Lfun-concrete-syntax} and \ref{fig:Lfun-syntax}, with
  13811. which we define the \LangFun{} language. Programs in \LangFun{} begin
  13812. with zero or more function definitions. The function names from these
  13813. definitions are in scope for the entire program, including all the
  13814. function definitions, and therefore the ordering of function
  13815. definitions does not matter.
  13816. %
  13817. \python{The abstract syntax for function parameters in
  13818. figure~\ref{fig:Lfun-syntax} is a list of pairs, each of which
  13819. consists of a parameter name and its type. This design differs from
  13820. Python's \code{ast} module, which has a more complex structure for
  13821. function parameters to handle keyword parameters,
  13822. defaults, and so on. The type checker in \code{type\_check\_Lfun} converts the
  13823. complex Python abstract syntax into the simpler syntax shown in
  13824. figure~\ref{fig:Lfun-syntax}. The fourth and sixth parameters of the
  13825. \code{FunctionDef} constructor are for decorators and a type
  13826. comment, neither of which are used by our compiler. We recommend
  13827. replacing them with \code{None} in the \code{shrink} pass.
  13828. }
  13829. %
  13830. The concrete syntax for function application
  13831. \index{subject}{function application}
  13832. is \python{$\CAPPLY{\Exp}{\Exp\code{,} \ldots}$}\racket{$\CAPPLY{\Exp}{\Exp \ldots}$},
  13833. where the first expression
  13834. must evaluate to a function and the remaining expressions are the arguments. The
  13835. abstract syntax for function application is
  13836. $\APPLY{\Exp}{\Exp^*}$.
  13837. %% The syntax for function application does not include an explicit
  13838. %% keyword, which is error prone when using \code{match}. To alleviate
  13839. %% this problem, we translate the syntax from $(\Exp \; \Exp \ldots)$ to
  13840. %% $(\key{app}\; \Exp \; \Exp \ldots)$ during type checking.
  13841. Functions are first-class in the sense that a function pointer
  13842. \index{subject}{function pointer} is data and can be stored in memory or passed
  13843. as a parameter to another function. Thus, there is a function
  13844. type, written
  13845. {\if\edition\racketEd
  13846. \begin{lstlisting}
  13847. (|$\Type_1$| |$\cdots$| |$\Type_n$| -> |$\Type_r$|)
  13848. \end{lstlisting}
  13849. \fi}
  13850. {\if\edition\pythonEd\pythonColor
  13851. \begin{lstlisting}
  13852. Callable[[|$\Type_1$|,|$\cdots$|,|$\Type_n$|], |$\Type_R$|]
  13853. \end{lstlisting}
  13854. \fi}
  13855. %
  13856. \noindent for a function whose $n$ parameters have the types $\Type_1$
  13857. through $\Type_n$ and whose return type is $\Type_R$. The main
  13858. limitation of these functions (with respect to
  13859. \racket{Racket}\python{Python} functions) is that they are not
  13860. lexically scoped. That is, the only external entities that can be
  13861. referenced from inside a function body are other globally defined
  13862. functions. The syntax of \LangFun{} prevents function definitions from
  13863. being nested inside each other.
  13864. \newcommand{\LfunGrammarRacket}{
  13865. \begin{array}{lcl}
  13866. \Type &::=& (\Type \ldots \; \key{->}\; \Type) \\
  13867. \Exp &::=& \LP\Exp \; \Exp \ldots\RP \\
  13868. \Def &::=& \CDEF{\Var}{\LS\Var \key{:} \Type\RS \ldots}{\Type}{\Exp} \\
  13869. \end{array}
  13870. }
  13871. \newcommand{\LfunASTRacket}{
  13872. \begin{array}{lcl}
  13873. \Type &::=& (\Type \ldots \; \key{->}\; \Type) \\
  13874. \Exp &::=& \APPLY{\Exp}{\Exp\ldots}\\
  13875. \Def &::=& \FUNDEF{\Var}{\LP[\Var \code{:} \Type]\ldots\RP}{\Type}{\code{'()}}{\Exp}
  13876. \end{array}
  13877. }
  13878. \newcommand{\LfunGrammarPython}{
  13879. \begin{array}{lcl}
  13880. \Type &::=& \key{int}
  13881. \MID \key{bool} \MID \key{void}
  13882. \MID \key{tuple}\LS \Type^+ \RS
  13883. \MID \key{Callable}\LS \LS \Type \key{,} \ldots \RS \key{, } \Type \RS \\
  13884. \Exp &::=& \CAPPLY{\Exp}{\Exp\code{,} \ldots} \\
  13885. \Stmt &::=& \CRETURN{\Exp} \\
  13886. \Def &::=& \CDEF{\Var}{\Var \key{:} \Type\key{,} \ldots}{\Type}{\Stmt^{+}}
  13887. \end{array}
  13888. }
  13889. \newcommand{\LfunASTPython}{
  13890. \begin{array}{lcl}
  13891. \Type &::=& \key{IntType()} \MID \key{BoolType()} \MID \key{VoidType()}
  13892. \MID \key{TupleType}\LS\Type^+\RS\\
  13893. &\MID& \key{FunctionType}\LP \Type^{*} \key{, } \Type \RP \\
  13894. \Exp &::=& \CALL{\Exp}{\Exp^{*}}\\
  13895. \Stmt &::=& \RETURN{\Exp} \\
  13896. \Params &::=& \LP\Var\key{,}\Type\RP^* \\
  13897. \Def &::=& \FUNDEF{\Var}{\Params}{\Type}{}{\Stmt^{+}}
  13898. \end{array}
  13899. }
  13900. \begin{figure}[tp]
  13901. \centering
  13902. \begin{tcolorbox}[colback=white]
  13903. \small
  13904. {\if\edition\racketEd
  13905. \[
  13906. \begin{array}{l}
  13907. \gray{\LintGrammarRacket{}} \\ \hline
  13908. \gray{\LvarGrammarRacket{}} \\ \hline
  13909. \gray{\LifGrammarRacket{}} \\ \hline
  13910. \gray{\LwhileGrammarRacket} \\ \hline
  13911. \gray{\LtupGrammarRacket} \\ \hline
  13912. \LfunGrammarRacket \\
  13913. \begin{array}{lcl}
  13914. \LangFunM{} &::=& \Def \ldots \; \Exp
  13915. \end{array}
  13916. \end{array}
  13917. \]
  13918. \fi}
  13919. {\if\edition\pythonEd\pythonColor
  13920. \[
  13921. \begin{array}{l}
  13922. \gray{\LintGrammarPython{}} \\ \hline
  13923. \gray{\LvarGrammarPython{}} \\ \hline
  13924. \gray{\LifGrammarPython{}} \\ \hline
  13925. \gray{\LwhileGrammarPython} \\ \hline
  13926. \gray{\LtupGrammarPython} \\ \hline
  13927. \LfunGrammarPython \\
  13928. \begin{array}{rcl}
  13929. \LangFunM{} &::=& \Def\ldots \Stmt\ldots
  13930. \end{array}
  13931. \end{array}
  13932. \]
  13933. \fi}
  13934. \end{tcolorbox}
  13935. \caption{The concrete syntax of \LangFun{}, extending \LangVec{} (figure~\ref{fig:Lvec-concrete-syntax}).}
  13936. \label{fig:Lfun-concrete-syntax}
  13937. \index{subject}{Lfun@\LangFun{} concrete syntax}
  13938. \end{figure}
  13939. \begin{figure}[tp]
  13940. \centering
  13941. \begin{tcolorbox}[colback=white]
  13942. \small
  13943. {\if\edition\racketEd
  13944. \[
  13945. \begin{array}{l}
  13946. \gray{\LintOpAST} \\ \hline
  13947. \gray{\LvarASTRacket{}} \\ \hline
  13948. \gray{\LifASTRacket{}} \\ \hline
  13949. \gray{\LwhileASTRacket{}} \\ \hline
  13950. \gray{\LtupASTRacket{}} \\ \hline
  13951. \LfunASTRacket \\
  13952. \begin{array}{lcl}
  13953. \LangFunM{} &::=& \PROGRAMDEFSEXP{\code{'()}}{\LP\Def\ldots\RP)}{\Exp}
  13954. \end{array}
  13955. \end{array}
  13956. \]
  13957. \fi}
  13958. {\if\edition\pythonEd\pythonColor
  13959. \[
  13960. \begin{array}{l}
  13961. \gray{\LintASTPython{}} \\ \hline
  13962. \gray{\LvarASTPython{}} \\ \hline
  13963. \gray{\LifASTPython{}} \\ \hline
  13964. \gray{\LwhileASTPython} \\ \hline
  13965. \gray{\LtupASTPython} \\ \hline
  13966. \LfunASTPython \\
  13967. \begin{array}{rcl}
  13968. \LangFunM{} &::=& \PROGRAM{}{\LS \Def \ldots \Stmt \ldots \RS}
  13969. \end{array}
  13970. \end{array}
  13971. \]
  13972. \fi}
  13973. \end{tcolorbox}
  13974. \caption{The abstract syntax of \LangFun{}, extending \LangVec{} (figure~\ref{fig:Lvec-syntax}).}
  13975. \label{fig:Lfun-syntax}
  13976. \index{subject}{Lfun@\LangFun{} abstract syntax}
  13977. \end{figure}
  13978. The program shown in figure~\ref{fig:Lfun-function-example} is a
  13979. representative example of defining and using functions in \LangFun{}.
  13980. We define a function \code{map} that applies some other function
  13981. \code{f} to both elements of a tuple and returns a new tuple
  13982. containing the results. We also define a function \code{inc}. The
  13983. program applies \code{map} to \code{inc} and
  13984. %
  13985. \racket{\code{(vector 0 41)}}\python{\code{(0, 41)}}.
  13986. %
  13987. The result is \racket{\code{(vector 1 42)}}\python{\code{(1, 42)}},
  13988. %
  13989. from which we return \code{42}.
  13990. \begin{figure}[tbp]
  13991. \begin{tcolorbox}[colback=white]
  13992. {\if\edition\racketEd
  13993. \begin{lstlisting}
  13994. (define (map [f : (Integer -> Integer)] [v : (Vector Integer Integer)])
  13995. : (Vector Integer Integer)
  13996. (vector (f (vector-ref v 0)) (f (vector-ref v 1))))
  13997. (define (inc [x : Integer]) : Integer
  13998. (+ x 1))
  13999. (vector-ref (map inc (vector 0 41)) 1)
  14000. \end{lstlisting}
  14001. \fi}
  14002. {\if\edition\pythonEd\pythonColor
  14003. \begin{lstlisting}
  14004. def map(f : Callable[[int], int], v : tuple[int,int]) -> tuple[int,int]:
  14005. return f(v[0]), f(v[1])
  14006. def inc(x : int) -> int:
  14007. return x + 1
  14008. print(map(inc, (0, 41))[1])
  14009. \end{lstlisting}
  14010. \fi}
  14011. \end{tcolorbox}
  14012. \caption{Example of using functions in \LangFun{}.}
  14013. \label{fig:Lfun-function-example}
  14014. \end{figure}
  14015. The definitional interpreter for \LangFun{} is shown in
  14016. figure~\ref{fig:interp-Lfun}. The case for the
  14017. %
  14018. \racket{\code{ProgramDefsExp}}\python{\code{Module}}
  14019. %
  14020. AST is responsible for setting up the mutual recursion between the
  14021. top-level function definitions.
  14022. %
  14023. \racket{We use the classic back-patching
  14024. \index{subject}{back-patching} approach that uses mutable variables
  14025. and makes two passes over the function
  14026. definitions~\citep{Kelsey:1998di}. In the first pass we set up the
  14027. top-level environment using a mutable cons cell for each function
  14028. definition. Note that the \code{lambda}\index{subject}{lambda} value
  14029. for each function is incomplete; it does not yet include the environment.
  14030. Once the top-level environment has been constructed, we iterate over it and
  14031. update the \code{lambda} values to use the top-level environment.}
  14032. %
  14033. \python{We create a dictionary named \code{env} and fill it in
  14034. by mapping each function name to a new \code{Function} value,
  14035. each of which stores a reference to the \code{env}.
  14036. (We define the class \code{Function} for this purpose.)}
  14037. %
  14038. To interpret a function \racket{application}\python{call}, we match
  14039. the result of the function expression to obtain a function value. We
  14040. then extend the function's environment with the mapping of parameters to
  14041. argument values. Finally, we interpret the body of the function in
  14042. this extended environment.
  14043. \begin{figure}[tp]
  14044. \begin{tcolorbox}[colback=white]
  14045. {\if\edition\racketEd
  14046. \begin{lstlisting}
  14047. (define interp-Lfun-class
  14048. (class interp-Lvec-class
  14049. (super-new)
  14050. (define/override ((interp-exp env) e)
  14051. (define recur (interp-exp env))
  14052. (match e
  14053. [(Apply fun args)
  14054. (define fun-val (recur fun))
  14055. (define arg-vals (for/list ([e args]) (recur e)))
  14056. (match fun-val
  14057. [`(function (,xs ...) ,body ,fun-env)
  14058. (define params-args (for/list ([x xs] [arg arg-vals])
  14059. (cons x (box arg))))
  14060. (define new-env (append params-args fun-env))
  14061. ((interp-exp new-env) body)]
  14062. [else
  14063. (error 'interp-exp "expected function, not ~a" fun-val)])]
  14064. [else ((super interp-exp env) e)]
  14065. ))
  14066. (define/public (interp-def d)
  14067. (match d
  14068. [(Def f (list `[,xs : ,ps] ...) rt _ body)
  14069. (cons f (box `(function ,xs ,body ())))]))
  14070. (define/override (interp-program p)
  14071. (match p
  14072. [(ProgramDefsExp info ds body)
  14073. (let ([top-level (for/list ([d ds]) (interp-def d))])
  14074. (for/list ([f (in-dict-values top-level)])
  14075. (set-box! f (match (unbox f)
  14076. [`(function ,xs ,body ())
  14077. `(function ,xs ,body ,top-level)])))
  14078. ((interp-exp top-level) body))]))
  14079. ))
  14080. (define (interp-Lfun p)
  14081. (send (new interp-Lfun-class) interp-program p))
  14082. \end{lstlisting}
  14083. \fi}
  14084. {\if\edition\pythonEd\pythonColor
  14085. \begin{lstlisting}
  14086. class InterpLfun(InterpLtup):
  14087. def apply_fun(self, fun, args, e):
  14088. match fun:
  14089. case Function(name, xs, body, env):
  14090. new_env = env.copy().update(zip(xs, args))
  14091. return self.interp_stmts(body, new_env)
  14092. case _:
  14093. raise Exception('apply_fun: unexpected: ' + repr(fun))
  14094. def interp_exp(self, e, env):
  14095. match e:
  14096. case Call(Name('input_int'), []):
  14097. return super().interp_exp(e, env)
  14098. case Call(func, args):
  14099. f = self.interp_exp(func, env)
  14100. vs = [self.interp_exp(arg, env) for arg in args]
  14101. return self.apply_fun(f, vs, e)
  14102. case _:
  14103. return super().interp_exp(e, env)
  14104. def interp_stmt(self, s, env, cont):
  14105. match s:
  14106. case Return(value):
  14107. return self.interp_exp(value, env)
  14108. case FunctionDef(name, params, bod, dl, returns, comment):
  14109. if isinstance(params, ast.arguments):
  14110. ps = [p.arg for p in params.args]
  14111. else:
  14112. ps = [x for (x,t) in params]
  14113. env[name] = Function(name, ps, bod, env)
  14114. return self.interp_stmts(cont, env)
  14115. case _:
  14116. return super().interp_stmt(s, env, cont)
  14117. def interp(self, p):
  14118. match p:
  14119. case Module(ss):
  14120. env = {}
  14121. self.interp_stmts(ss, env)
  14122. if 'main' in env.keys():
  14123. self.apply_fun(env['main'], [], None)
  14124. case _:
  14125. raise Exception('interp: unexpected ' + repr(p))
  14126. \end{lstlisting}
  14127. \fi}
  14128. \end{tcolorbox}
  14129. \caption{Interpreter for the \LangFun{} language.}
  14130. \label{fig:interp-Lfun}
  14131. \end{figure}
  14132. %\margincomment{TODO: explain type checker}
  14133. The type checker for \LangFun{} is shown in
  14134. figure~\ref{fig:type-check-Lfun}.
  14135. %
  14136. \python{(We omit the code that parses function parameters into the
  14137. simpler abstract syntax.)}
  14138. %
  14139. Similarly to the interpreter, the case for the
  14140. \racket{\code{ProgramDefsExp}}\python{\code{Module}}
  14141. %
  14142. AST is responsible for setting up the mutual recursion between the
  14143. top-level function definitions. We begin by creating a mapping
  14144. \code{env} from every function name to its type. We then type check
  14145. the program using this mapping.
  14146. %
  14147. \python{To check a function definition, we copy and extend the
  14148. \code{env} with the parameters of the function. We then type check
  14149. the body of the function and obtain the actual return type
  14150. \code{rt}, which is either the type of the expression in a
  14151. \code{return} statement or the \code{VoidType} if control reaches
  14152. the end of the function without a \code{return} statement. (If
  14153. there are multiple \code{return} statements, the types of their
  14154. expressions must agree.) Finally, we check that the actual return
  14155. type \code{rt} is equal to the declared return type \code{returns}.}
  14156. %
  14157. To check a function \racket{application}\python{call}, we match
  14158. the type of the function expression to a function type and check that
  14159. the types of the argument expressions are equal to the function's
  14160. parameter types. The type of the \racket{application}\python{call} as
  14161. a whole is the return type from the function type.
  14162. \begin{figure}[tp]
  14163. \begin{tcolorbox}[colback=white]
  14164. {\if\edition\racketEd
  14165. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  14166. (define type-check-Lfun-class
  14167. (class type-check-Lvec-class
  14168. (super-new)
  14169. (inherit check-type-equal?)
  14170. (define/public (type-check-apply env e es)
  14171. (define-values (e^ ty) ((type-check-exp env) e))
  14172. (define-values (e* ty*) (for/lists (e* ty*) ([e (in-list es)])
  14173. ((type-check-exp env) e)))
  14174. (match ty
  14175. [`(,ty^* ... -> ,rt)
  14176. (for ([arg-ty ty*] [param-ty ty^*])
  14177. (check-type-equal? arg-ty param-ty (Apply e es)))
  14178. (values e^ e* rt)]))
  14179. (define/override (type-check-exp env)
  14180. (lambda (e)
  14181. (match e
  14182. [(FunRef f n)
  14183. (values (FunRef f n) (dict-ref env f))]
  14184. [(Apply e es)
  14185. (define-values (e^ es^ rt) (type-check-apply env e es))
  14186. (values (Apply e^ es^) rt)]
  14187. [(Call e es)
  14188. (define-values (e^ es^ rt) (type-check-apply env e es))
  14189. (values (Call e^ es^) rt)]
  14190. [else ((super type-check-exp env) e)])))
  14191. (define/public (type-check-def env)
  14192. (lambda (e)
  14193. (match e
  14194. [(Def f (and p:t* (list `[,xs : ,ps] ...)) rt info body)
  14195. (define new-env (append (map cons xs ps) env))
  14196. (define-values (body^ ty^) ((type-check-exp new-env) body))
  14197. (check-type-equal? ty^ rt body)
  14198. (Def f p:t* rt info body^)])))
  14199. (define/public (fun-def-type d)
  14200. (match d
  14201. [(Def f (list `[,xs : ,ps] ...) rt info body) `(,@ps -> ,rt)]))
  14202. (define/override (type-check-program e)
  14203. (match e
  14204. [(ProgramDefsExp info ds body)
  14205. (define env (for/list ([d ds])
  14206. (cons (Def-name d) (fun-def-type d))))
  14207. (define ds^ (for/list ([d ds]) ((type-check-def env) d)))
  14208. (define-values (body^ ty) ((type-check-exp env) body))
  14209. (check-type-equal? ty 'Integer body)
  14210. (ProgramDefsExp info ds^ body^)]))))
  14211. (define (type-check-Lfun p)
  14212. (send (new type-check-Lfun-class) type-check-program p))
  14213. \end{lstlisting}
  14214. \fi}
  14215. {\if\edition\pythonEd\pythonColor
  14216. \begin{lstlisting}
  14217. class TypeCheckLfun(TypeCheckLtup):
  14218. def type_check_exp(self, e, env):
  14219. match e:
  14220. case Call(Name('input_int'), []):
  14221. return super().type_check_exp(e, env)
  14222. case Call(func, args):
  14223. func_t = self.type_check_exp(func, env)
  14224. args_t = [self.type_check_exp(arg, env) for arg in args]
  14225. match func_t:
  14226. case FunctionType(params_t, return_t):
  14227. for (arg_t, param_t) in zip(args_t, params_t):
  14228. check_type_equal(param_t, arg_t, e)
  14229. return return_t
  14230. case _:
  14231. raise Exception('type_check_exp: in call, unexpected ' +
  14232. repr(func_t))
  14233. case _:
  14234. return super().type_check_exp(e, env)
  14235. def type_check_stmts(self, ss, env):
  14236. if len(ss) == 0:
  14237. return VoidType()
  14238. match ss[0]:
  14239. case FunctionDef(name, params, body, dl, returns, comment):
  14240. new_env = env.copy().update(params)
  14241. rt = self.type_check_stmts(body, new_env)
  14242. check_type_equal(returns, rt, ss[0])
  14243. return self.type_check_stmts(ss[1:], env)
  14244. case Return(value):
  14245. return self.type_check_exp(value, env)
  14246. case _:
  14247. return super().type_check_stmts(ss, env)
  14248. def type_check(self, p):
  14249. match p:
  14250. case Module(body):
  14251. env = {}
  14252. for s in body:
  14253. match s:
  14254. case FunctionDef(name, params, bod, dl, returns, comment):
  14255. if name in env:
  14256. raise Exception('type_check: function ' +
  14257. repr(name) + ' defined twice')
  14258. params_t = [t for (x,t) in params]
  14259. env[name] = FunctionType(params_t, returns)
  14260. self.type_check_stmts(body, env)
  14261. case _:
  14262. raise Exception('type_check: unexpected ' + repr(p))
  14263. \end{lstlisting}
  14264. \fi}
  14265. \end{tcolorbox}
  14266. \caption{Type checker for the \LangFun{} language.}
  14267. \label{fig:type-check-Lfun}
  14268. \end{figure}
  14269. \clearpage
  14270. \section{Functions in x86}
  14271. \label{sec:fun-x86}
  14272. %% \margincomment{\tiny Make sure callee-saved registers are discussed
  14273. %% in enough depth, especially updating Fig 6.4 \\ --Jeremy }
  14274. %% \margincomment{\tiny Talk about the return address on the
  14275. %% stack and what callq and retq does.\\ --Jeremy }
  14276. The x86 architecture provides a few features to support the
  14277. implementation of functions. We have already seen that there are
  14278. labels in x86 so that one can refer to the location of an instruction,
  14279. as is needed for jump instructions. Labels can also be used to mark
  14280. the beginning of the instructions for a function. Going further, we
  14281. can obtain the address of a label by using the \key{leaq}
  14282. instruction. For example, the following puts the address of the
  14283. \code{inc} label into the \code{rbx} register:
  14284. \begin{lstlisting}
  14285. leaq inc(%rip), %rbx
  14286. \end{lstlisting}
  14287. Recall from section~\ref{sec:select-instructions-gc} that
  14288. \verb!inc(%rip)! is an example of instruction-pointer-relative
  14289. addressing.
  14290. In section~\ref{sec:x86} we used the \code{callq} instruction to jump
  14291. to functions whose locations were given by a label, such as
  14292. \code{read\_int}. To support function calls in this chapter we instead
  14293. jump to functions whose location are given by an address in
  14294. a register; that is, we use \emph{indirect function calls}. The
  14295. x86 syntax for this is a \code{callq} instruction that requires an asterisk
  14296. before the register name.\index{subject}{indirect function call}
  14297. \begin{lstlisting}
  14298. callq *%rbx
  14299. \end{lstlisting}
  14300. \subsection{Calling Conventions}
  14301. \label{sec:calling-conventions-fun}
  14302. \index{subject}{calling conventions}
  14303. The \code{callq} instruction provides partial support for implementing
  14304. functions: it pushes the return address on the stack and it jumps to
  14305. the target. However, \code{callq} does not handle
  14306. \begin{enumerate}
  14307. \item parameter passing,
  14308. \item pushing frames on the procedure call stack and popping them off,
  14309. or
  14310. \item determining how registers are shared by different functions.
  14311. \end{enumerate}
  14312. Regarding parameter passing, recall that the x86-64 calling
  14313. convention for Unix-based systems uses the following six registers to
  14314. pass arguments to a function, in the given order:
  14315. \begin{lstlisting}
  14316. rdi rsi rdx rcx r8 r9
  14317. \end{lstlisting}
  14318. If there are more than six arguments, then the calling convention
  14319. mandates using space on the frame of the caller for the rest of the
  14320. arguments. However, to ease the implementation of efficient tail calls
  14321. (section~\ref{sec:tail-call}), we arrange never to need more than six
  14322. arguments.
  14323. %
  14324. The return value of the function is stored in register \code{rax}.
  14325. Regarding frames \index{subject}{frame} and the procedure call stack,
  14326. \index{subject}{procedure call stack} recall from
  14327. section~\ref{sec:x86} that the stack grows down and each function call
  14328. uses a chunk of space on the stack called a frame. The caller sets the
  14329. stack pointer, register \code{rsp}, to the last data item in its
  14330. frame. The callee must not change anything in the caller's frame, that
  14331. is, anything that is at or above the stack pointer. The callee is free
  14332. to use locations that are below the stack pointer.
  14333. Recall that we store variables of tuple type on the root stack. So,
  14334. the prelude\index{subject}{prelude} of a function needs to move the
  14335. root stack pointer \code{r15} up according to the number of variables
  14336. of tuple type and the conclusion\index{subject}{conclusion} needs to
  14337. move the root stack pointer back down. Also, the prelude must
  14338. initialize to \code{0} this frame's slots in the root stack to signal
  14339. to the garbage collector that those slots do not yet contain a valid
  14340. pointer. Otherwise the garbage collector will interpret the garbage
  14341. bits in those slots as memory addresses and try to traverse them,
  14342. causing serious mayhem!
  14343. Regarding the sharing of registers between different functions, recall
  14344. from section~\ref{sec:calling-conventions} that the registers are
  14345. divided into two groups, the caller-saved registers and the
  14346. callee-saved registers. The caller should assume that all the
  14347. caller-saved registers are overwritten with arbitrary values by the
  14348. callee. For that reason we recommend in
  14349. section~\ref{sec:calling-conventions} that variables that are live
  14350. during a function call should not be assigned to caller-saved
  14351. registers.
  14352. On the flip side, if the callee wants to use a callee-saved register,
  14353. the callee must save the contents of those registers on their stack
  14354. frame and then put them back prior to returning to the caller. For
  14355. that reason we recommend in section~\ref{sec:calling-conventions} that if
  14356. the register allocator assigns a variable to a callee-saved register,
  14357. then the prelude of the \code{main} function must save that register
  14358. to the stack and the conclusion of \code{main} must restore it. This
  14359. recommendation now generalizes to all functions.
  14360. Recall that the base pointer, register \code{rbp}, is used as a
  14361. point of reference within a frame, so that each local variable can be
  14362. accessed at a fixed offset from the base pointer
  14363. (section~\ref{sec:x86}).
  14364. %
  14365. Figure~\ref{fig:call-frames} shows the layout of the caller and callee
  14366. frames.
  14367. \begin{figure}[tbp]
  14368. \centering
  14369. \begin{tcolorbox}[colback=white]
  14370. \begin{tabular}{r|r|l|l} \hline
  14371. Caller View & Callee View & Contents & Frame \\ \hline
  14372. 8(\key{\%rbp}) & & return address & \multirow{5}{*}{Caller}\\
  14373. 0(\key{\%rbp}) & & old \key{rbp} \\
  14374. -8(\key{\%rbp}) & & callee-saved $1$ \\
  14375. \ldots & & \ldots \\
  14376. $-8j$(\key{\%rbp}) & & callee-saved $j$ \\
  14377. $-8(j+1)$(\key{\%rbp}) & & local variable $1$ \\
  14378. \ldots & & \ldots \\
  14379. $-8(j+k)$(\key{\%rbp}) & & local variable $k$ \\
  14380. %% & & \\
  14381. %% $8n-8$\key{(\%rsp)} & $8n+8$(\key{\%rbp})& argument $n$ \\
  14382. %% & \ldots & \ldots \\
  14383. %% 0\key{(\%rsp)} & 16(\key{\%rbp}) & argument $1$ & \\
  14384. \hline
  14385. & 8(\key{\%rbp}) & return address & \multirow{5}{*}{Callee}\\
  14386. & 0(\key{\%rbp}) & old \key{rbp} \\
  14387. & -8(\key{\%rbp}) & callee-saved $1$ \\
  14388. & \ldots & \ldots \\
  14389. & $-8n$(\key{\%rbp}) & callee-saved $n$ \\
  14390. & $-8(n+1)$(\key{\%rbp}) & local variable $1$ \\
  14391. & \ldots & \ldots \\
  14392. & $-8(n+m)$(\key{\%rbp}) & local variable $m$\\ \hline
  14393. \end{tabular}
  14394. \end{tcolorbox}
  14395. \caption{Memory layout of caller and callee frames.}
  14396. \label{fig:call-frames}
  14397. \end{figure}
  14398. %% Recall from section~\ref{sec:x86} that the stack is also used for
  14399. %% local variables and for storing the values of callee-saved registers
  14400. %% (we shall refer to all of these collectively as ``locals''), and that
  14401. %% at the beginning of a function we move the stack pointer \code{rsp}
  14402. %% down to make room for them.
  14403. %% We recommend storing the local variables
  14404. %% first and then the callee-saved registers, so that the local variables
  14405. %% can be accessed using \code{rbp} the same as before the addition of
  14406. %% functions.
  14407. %% To make additional room for passing arguments, we shall
  14408. %% move the stack pointer even further down. We count how many stack
  14409. %% arguments are needed for each function call that occurs inside the
  14410. %% body of the function and find their maximum. Adding this number to the
  14411. %% number of locals gives us how much the \code{rsp} should be moved at
  14412. %% the beginning of the function. In preparation for a function call, we
  14413. %% offset from \code{rsp} to set up the stack arguments. We put the first
  14414. %% stack argument in \code{0(\%rsp)}, the second in \code{8(\%rsp)}, and
  14415. %% so on.
  14416. %% Upon calling the function, the stack arguments are retrieved by the
  14417. %% callee using the base pointer \code{rbp}. The address \code{16(\%rbp)}
  14418. %% is the location of the first stack argument, \code{24(\%rbp)} is the
  14419. %% address of the second, and so on. Figure~\ref{fig:call-frames} shows
  14420. %% the layout of the caller and callee frames. Notice how important it is
  14421. %% that we correctly compute the maximum number of arguments needed for
  14422. %% function calls; if that number is too small then the arguments and
  14423. %% local variables will smash into each other!
  14424. \subsection{Efficient Tail Calls}
  14425. \label{sec:tail-call}
  14426. In general, the amount of stack space used by a program is determined
  14427. by the longest chain of nested function calls. That is, if function
  14428. $f_1$ calls $f_2$, $f_2$ calls $f_3$, and so on to $f_n$, then the
  14429. amount of stack space is linear in $n$. The depth $n$ can grow quite
  14430. large if functions are recursive. However, in some cases we can
  14431. arrange to use only a constant amount of space for a long chain of
  14432. nested function calls.
  14433. A \emph{tail call}\index{subject}{tail call} is a function call that
  14434. happens as the last action in a function body. For example, in the
  14435. following program, the recursive call to \code{tail\_sum} is a tail
  14436. call:
  14437. \begin{center}
  14438. {\if\edition\racketEd
  14439. \begin{lstlisting}
  14440. (define (tail_sum [n : Integer] [r : Integer]) : Integer
  14441. (if (eq? n 0)
  14442. r
  14443. (tail_sum (- n 1) (+ n r))))
  14444. (+ (tail_sum 3 0) 36)
  14445. \end{lstlisting}
  14446. \fi}
  14447. {\if\edition\pythonEd\pythonColor
  14448. \begin{lstlisting}
  14449. def tail_sum(n : int, r : int) -> int:
  14450. if n == 0:
  14451. return r
  14452. else:
  14453. return tail_sum(n - 1, n + r)
  14454. print(tail_sum(3, 0) + 36)
  14455. \end{lstlisting}
  14456. \fi}
  14457. \end{center}
  14458. At a tail call, the frame of the caller is no longer needed, so we can
  14459. pop the caller's frame before making the tail
  14460. call. \index{subject}{frame} With this approach, a recursive function
  14461. that makes only tail calls ends up using a constant amount of stack
  14462. space. \racket{Functional languages like Racket rely heavily on
  14463. recursive functions, so the definition of Racket \emph{requires}
  14464. that all tail calls be optimized in this way.}
  14465. Some care is needed with regard to argument passing in tail calls. As
  14466. mentioned, for arguments beyond the sixth, the convention is to use
  14467. space in the caller's frame for passing arguments. However, for a
  14468. tail call we pop the caller's frame and can no longer use it. An
  14469. alternative is to use space in the callee's frame for passing
  14470. arguments. However, this option is also problematic because the caller
  14471. and callee's frames overlap in memory. As we begin to copy the
  14472. arguments from their sources in the caller's frame, the target
  14473. locations in the callee's frame might collide with the sources for
  14474. later arguments! We solve this problem by using the heap instead of
  14475. the stack for passing more than six arguments
  14476. (section~\ref{sec:limit-functions-r4}).
  14477. As mentioned, for a tail call we pop the caller's frame prior to
  14478. making the tail call. The instructions for popping a frame are the
  14479. instructions that we usually place in the conclusion of a
  14480. function. Thus, we also need to place such code immediately before
  14481. each tail call. These instructions include restoring the callee-saved
  14482. registers, so it is fortunate that the argument passing registers are
  14483. all caller-saved registers.
  14484. One note remains regarding which instruction to use to make the tail
  14485. call. When the callee is finished, it should not return to the current
  14486. function but instead return to the function that called the current
  14487. one. Thus, the return address that is already on the stack is the
  14488. right one, and we should not use \key{callq} to make the tail call
  14489. because that would overwrite the return address. Instead we simply use
  14490. the \key{jmp} instruction. As with the indirect function call, we write
  14491. an \emph{indirect jump}\index{subject}{indirect jump} with a register
  14492. prefixed with an asterisk. We recommend using \code{rax} to hold the
  14493. jump target because the conclusion can overwrite just about everything
  14494. else.
  14495. \begin{lstlisting}
  14496. jmp *%rax
  14497. \end{lstlisting}
  14498. \section{Shrink \LangFun{}}
  14499. \label{sec:shrink-r4}
  14500. The \code{shrink} pass performs a minor modification to ease the
  14501. later passes. This pass introduces an explicit \code{main} function
  14502. that gobbles up all the top-level statements of the module.
  14503. %
  14504. \racket{It also changes the top \code{ProgramDefsExp} form to
  14505. \code{ProgramDefs}.}
  14506. {\if\edition\racketEd
  14507. \begin{lstlisting}
  14508. (ProgramDefsExp |$\itm{info}$| (|$\Def\ldots$|) |$\Exp$|)
  14509. |$\Rightarrow$| (ProgramDefs |$\itm{info}$| (|$\Def\ldots$| |$\itm{mainDef}$|))
  14510. \end{lstlisting}
  14511. where $\itm{mainDef}$ is
  14512. \begin{lstlisting}
  14513. (Def 'main '() 'Integer '() |$\Exp'$|)
  14514. \end{lstlisting}
  14515. \fi}
  14516. {\if\edition\pythonEd\pythonColor
  14517. \begin{lstlisting}
  14518. Module(|$\Def\ldots\Stmt\ldots$|)
  14519. |$\Rightarrow$| Module(|$\Def\ldots\itm{mainDef}$|)
  14520. \end{lstlisting}
  14521. where $\itm{mainDef}$ is
  14522. \begin{lstlisting}
  14523. FunctionDef('main', [], |$\Stmt\ldots$|Return(Constant(0)), None, IntType(), None)
  14524. \end{lstlisting}
  14525. \fi}
  14526. \section{Reveal Functions and the \LangFunRef{} Language}
  14527. \label{sec:reveal-functions-r4}
  14528. The syntax of \LangFun{} is inconvenient for purposes of compilation
  14529. in that it conflates the use of function names and local
  14530. variables. This is a problem because we need to compile the use of a
  14531. function name differently from the use of a local variable. In
  14532. particular, we use \code{leaq} to convert the function name (a label
  14533. in x86) to an address in a register. Thus, we create a new pass that
  14534. changes function references from $\VAR{f}$ to $\FUNREF{f}{n}$ where
  14535. $n$ is the arity of the function.\python{\footnote{The arity is not
  14536. needed in this chapter but is used in chapter~\ref{ch:Ldyn}.}}
  14537. This pass is named \code{reveal\_functions} and the output language
  14538. is \LangFunRef{}\index{subject}{Lfunref@\LangFunRef{}}.
  14539. %is defined in figure~\ref{fig:f1-syntax}.
  14540. %% The concrete syntax for a
  14541. %% function reference is $\CFUNREF{f}$.
  14542. %% \begin{figure}[tp]
  14543. %% \centering
  14544. %% \fbox{
  14545. %% \begin{minipage}{0.96\textwidth}
  14546. %% {\if\edition\racketEd
  14547. %% \[
  14548. %% \begin{array}{lcl}
  14549. %% \Exp &::=& \ldots \MID \FUNREF{\Var}{\Int}\\
  14550. %% \Def &::=& \gray{ \FUNDEF{\Var}{([\Var \code{:} \Type]\ldots)}{\Type}{\code{'()}}{\Exp} }\\
  14551. %% \LangFunRefM{} &::=& \PROGRAMDEFS{\code{'()}}{\LP \Def\ldots \RP}
  14552. %% \end{array}
  14553. %% \]
  14554. %% \fi}
  14555. %% {\if\edition\pythonEd\pythonColor
  14556. %% \[
  14557. %% \begin{array}{lcl}
  14558. %% \Exp &::=& \FUNREF{\Var}{\Int}\\
  14559. %% \LangFunRefM{} &::=& \PROGRAM{}{\LS \Def \code{,} \ldots \RS}
  14560. %% \end{array}
  14561. %% \]
  14562. %% \fi}
  14563. %% \end{minipage}
  14564. %% }
  14565. %% \caption{The abstract syntax \LangFunRef{}, an extension of \LangFun{}
  14566. %% (figure~\ref{fig:Lfun-syntax}).}
  14567. %% \label{fig:f1-syntax}
  14568. %% \end{figure}
  14569. %% Distinguishing between calls in tail position and non-tail position
  14570. %% requires the pass to have some notion of context. We recommend using
  14571. %% two mutually recursive functions, one for processing expressions in
  14572. %% tail position and another for the rest.
  14573. \racket{Placing this pass after \code{uniquify} will make sure that
  14574. there are no local variables and functions that share the same
  14575. name.}
  14576. %
  14577. The \code{reveal\_functions} pass should come before the
  14578. \code{remove\_complex\_operands} pass because function references
  14579. should be categorized as complex expressions.
  14580. \section{Limit Functions}
  14581. \label{sec:limit-functions-r4}
  14582. Recall that we wish to limit the number of function parameters to six
  14583. so that we do not need to use the stack for argument passing, which
  14584. makes it easier to implement efficient tail calls. However, because
  14585. the input language \LangFun{} supports arbitrary numbers of function
  14586. arguments, we have some work to do! The \code{limit\_functions} pass
  14587. transforms functions and function calls that involve more than six
  14588. arguments to pass the first five arguments as usual, but it packs the
  14589. rest of the arguments into a tuple and passes it as the sixth
  14590. argument.\footnote{The implementation this pass can be postponed to
  14591. last because you can test the rest of the passes on functions with
  14592. six or fewer parameters.}
  14593. Each function definition with seven or more parameters is transformed as
  14594. follows:
  14595. {\if\edition\racketEd
  14596. \begin{lstlisting}
  14597. (Def |$f$| ([|$x_1$|:|$T_1$|] |$\ldots$| [|$x_n$|:|$T_n$|]) |$T_r$| |$\itm{info}$| |$\itm{body}$|)
  14598. |$\Rightarrow$|
  14599. (Def |$f$| ([|$x_1$|:|$T_1$|] |$\ldots$| [|$x_5$|:|$T_5$|] [tup : (Vector |$T_6 \ldots T_n$|)]) |$T_r$| |$\itm{info}$| |$\itm{body}'$|)
  14600. \end{lstlisting}
  14601. \fi}
  14602. {\if\edition\pythonEd\pythonColor
  14603. \begin{lstlisting}
  14604. FunctionDef(|$f$|, [(|$x_1$|,|$T_1$|),|$\ldots$|,(|$x_n$|,|$T_n$|)], |$T_r$|, None, |$\itm{body}$|, None)
  14605. |$\Rightarrow$|
  14606. FunctionDef(|$f$|, [(|$x_1$|,|$T_1$|),|$\ldots$|,(|$x_5$|,|$T_5$|),(tup,TupleType([|$T_6, \ldots, T_n$|]))],
  14607. |$T_r$|, None, |$\itm{body}'$|, None)
  14608. \end{lstlisting}
  14609. \fi}
  14610. %
  14611. \noindent where the $\itm{body}$ is transformed into $\itm{body}'$ by
  14612. replacing the occurrences of each parameter $x_i$ where $i > 5$ with
  14613. the $k$th element of the tuple, where $k = i - 6$.
  14614. %
  14615. {\if\edition\racketEd
  14616. \begin{lstlisting}
  14617. (Var |$x_i$|) |$\Rightarrow$| (Prim 'vector-ref (list tup (Int |$k$|)))
  14618. \end{lstlisting}
  14619. \fi}
  14620. {\if\edition\pythonEd\pythonColor
  14621. \begin{lstlisting}
  14622. Name(|$x_i$|) |$\Rightarrow$| Subscript(tup, Constant(|$k$|), Load())
  14623. \end{lstlisting}
  14624. \fi}
  14625. For function calls with too many arguments, the \code{limit\_functions}
  14626. pass transforms them in the following way:
  14627. \begin{tabular}{lll}
  14628. \begin{minipage}{0.3\textwidth}
  14629. {\if\edition\racketEd
  14630. \begin{lstlisting}
  14631. (|$e_0$| |$e_1$| |$\ldots$| |$e_n$|)
  14632. \end{lstlisting}
  14633. \fi}
  14634. {\if\edition\pythonEd\pythonColor
  14635. \begin{lstlisting}
  14636. Call(|$e_0$|, [|$e_1,\ldots,e_n$|])
  14637. \end{lstlisting}
  14638. \fi}
  14639. \end{minipage}
  14640. &
  14641. $\Rightarrow$
  14642. &
  14643. \begin{minipage}{0.5\textwidth}
  14644. {\if\edition\racketEd
  14645. \begin{lstlisting}
  14646. (|$e_0$| |$e_1 \ldots e_5$| (vector |$e_6 \ldots e_n$|))
  14647. \end{lstlisting}
  14648. \fi}
  14649. {\if\edition\pythonEd\pythonColor
  14650. \begin{lstlisting}
  14651. Call(|$e_0$|, [|$e_1,\ldots,e_5$|,Tuple([|$e_6,\ldots,e_n$|])])
  14652. \end{lstlisting}
  14653. \fi}
  14654. \end{minipage}
  14655. \end{tabular}
  14656. \section{Remove Complex Operands}
  14657. \label{sec:rco-r4}
  14658. The primary decisions to make for this pass are whether to classify
  14659. \code{FunRef} and \racket{\code{Apply}}\python{\code{Call}} as either
  14660. atomic or complex expressions. Recall that an atomic expression
  14661. ends up as an immediate argument of an x86 instruction. Function
  14662. application translates to a sequence of instructions, so
  14663. \racket{\code{Apply}}\python{\code{Call}} must be classified as
  14664. a complex expression. On the other hand, the arguments of
  14665. \racket{\code{Apply}}\python{\code{Call}} should be atomic
  14666. expressions.
  14667. %
  14668. Regarding \code{FunRef}, as discussed previously, the function label
  14669. needs to be converted to an address using the \code{leaq}
  14670. instruction. Thus, even though \code{FunRef} seems rather simple, it
  14671. needs to be classified as a complex expression so that we generate an
  14672. assignment statement with a left-hand side that can serve as the
  14673. target of the \code{leaq}.
  14674. The output of this pass, \LangFunANF{} (figure~\ref{fig:Lfun-anf-syntax}),
  14675. extends \LangAllocANF{} (figure~\ref{fig:Lvec-anf-syntax}) with \code{FunRef}
  14676. and \racket{\code{Apply}}\python{\code{Call}} in the grammar for expressions
  14677. and augments programs to include a list of function definitions.
  14678. %
  14679. \python{Also, \LangFunANF{} adds \code{Return} to the grammar for statements.}
  14680. \newcommand{\LfunMonadASTRacket}{
  14681. \begin{array}{lcl}
  14682. \Type &::=& (\Type \ldots \; \key{->}\; \Type) \\
  14683. \Exp &::=& \FUNREF{\itm{label}}{\Int} \MID \APPLY{\Atm}{\Atm\ldots}\\
  14684. \Def &::=& \FUNDEF{\Var}{\LP[\Var \code{:} \Type]\ldots\RP}{\Type}{\code{'()}}{\Exp}
  14685. \end{array}
  14686. }
  14687. \newcommand{\LfunMonadASTPython}{
  14688. \begin{array}{lcl}
  14689. \Type &::=& \key{IntType()} \MID \key{BoolType()} \MID \key{VoidType()}
  14690. \MID \key{TupleType}\LS\Type^+\RS\\
  14691. &\MID& \key{FunctionType}\LP \Type^{*} \key{, } \Type \RP \\
  14692. \Exp &::=& \FUNREF{\itm{label}}{\Int} \MID \CALL{\Atm}{\Atm^{*}}\\
  14693. \Stmt &::=& \RETURN{\Exp} \\
  14694. \Params &::=& \LP\Var\key{,}\Type\RP^* \\
  14695. \Def &::=& \FUNDEF{\Var}{\Params}{\Type}{}{\Stmt^{+}}
  14696. \end{array}
  14697. }
  14698. \begin{figure}[tp]
  14699. \centering
  14700. \begin{tcolorbox}[colback=white]
  14701. \footnotesize
  14702. {\if\edition\racketEd
  14703. \[
  14704. \begin{array}{l}
  14705. \gray{\LvarMonadASTRacket} \\ \hline
  14706. \gray{\LifMonadASTRacket} \\ \hline
  14707. \gray{\LwhileMonadASTRacket} \\ \hline
  14708. \gray{\LtupMonadASTRacket} \\ \hline
  14709. \LfunMonadASTRacket \\
  14710. \begin{array}{rcl}
  14711. \LangFunANFM{} &::=& \PROGRAMDEFSEXP{\code{'()}}{\LP\Def\ldots\RP)}{\Exp}
  14712. \end{array}
  14713. \end{array}
  14714. \]
  14715. \fi}
  14716. {\if\edition\pythonEd\pythonColor
  14717. \[
  14718. \begin{array}{l}
  14719. \gray{\LvarMonadASTPython} \\ \hline
  14720. \gray{\LifMonadASTPython} \\ \hline
  14721. \gray{\LwhileMonadASTPython} \\ \hline
  14722. \gray{\LtupMonadASTPython} \\ \hline
  14723. \LfunMonadASTPython \\
  14724. \begin{array}{rcl}
  14725. \LangFunANFM{} &::=& \PROGRAM{}{\LS \Def \ldots \Stmt \ldots \RS}
  14726. \end{array}
  14727. \end{array}
  14728. \]
  14729. \fi}
  14730. \end{tcolorbox}
  14731. \caption{\LangFunANF{} is \LangFunRef{} in monadic normal form.}
  14732. \label{fig:Lfun-anf-syntax}
  14733. \index{subject}{Lfunmon@\LangFunANF{} abstract syntax}
  14734. \end{figure}
  14735. %% Figure~\ref{fig:Lfun-anf-syntax} defines the output language
  14736. %% \LangFunANF{} of this pass.
  14737. %% \begin{figure}[tp]
  14738. %% \centering
  14739. %% \fbox{
  14740. %% \begin{minipage}{0.96\textwidth}
  14741. %% \small
  14742. %% \[
  14743. %% \begin{array}{rcl}
  14744. %% \Atm &::=& \gray{ \INT{\Int} \MID \VAR{\Var} \MID \BOOL{\itm{bool}}
  14745. %% \MID \VOID{} } \\
  14746. %% \Exp &::=& \gray{ \Atm \MID \READ{} } \\
  14747. %% &\MID& \gray{ \NEG{\Atm} \MID \ADD{\Atm}{\Atm} } \\
  14748. %% &\MID& \gray{ \LET{\Var}{\Exp}{\Exp} } \\
  14749. %% &\MID& \gray{ \UNIOP{\key{'not}}{\Atm} } \\
  14750. %% &\MID& \gray{ \BINOP{\itm{cmp}}{\Atm}{\Atm} \MID \IF{\Exp}{\Exp}{\Exp} }\\
  14751. %% &\MID& \gray{ \LP\key{Collect}~\Int\RP \MID \LP\key{Allocate}~\Int~\Type\RP
  14752. %% \MID \LP\key{GlobalValue}~\Var\RP }\\
  14753. %% &\MID& \FUNREF{\Var} \MID \APPLY{\Atm}{\Atm\ldots}\\
  14754. %% \Def &::=& \gray{ \FUNDEF{\Var}{([\Var \code{:} \Type]\ldots)}{\Type}{\code{'()}}{\Exp} }\\
  14755. %% R^{\dagger}_4 &::=& \gray{ \PROGRAMDEFS{\code{'()}}{\Def} }
  14756. %% \end{array}
  14757. %% \]
  14758. %% \end{minipage}
  14759. %% }
  14760. %% \caption{\LangFunANF{} is \LangFunRefAlloc{} in monadic normal form.}
  14761. %% \label{fig:Lfun-anf-syntax}
  14762. %% \end{figure}
  14763. \section{Explicate Control and the \LangCFun{} Language}
  14764. \label{sec:explicate-control-r4}
  14765. Figure~\ref{fig:c3-syntax} defines the abstract syntax for \LangCFun{}, the
  14766. output of \code{explicate\_control}.
  14767. %
  14768. %% \racket{(The concrete syntax is given in
  14769. %% figure~\ref{fig:c3-concrete-syntax} of the Appendix.)}
  14770. %
  14771. \racket{The auxiliary functions for assignment and tail contexts should
  14772. be updated with cases for \code{Apply} and \code{FunRef}.}
  14773. The auxiliary function for predicate context should be updated for
  14774. \racket{\code{Apply}}\python{\code{Call}} but not \code{FunRef}. (A
  14775. \code{FunRef} cannot be a Boolean.)
  14776. %
  14777. \racket{In assignment and predicate contexts,
  14778. \code{Apply} becomes \code{Call}, whereas
  14779. in tail position \code{Apply} becomes \code{TailCall}.}
  14780. %
  14781. We recommend defining a new auxiliary function for processing function
  14782. definitions. This code is similar to the case for \code{Program} in
  14783. \LangVec{}. The top-level \code{explicate\_control} function that
  14784. handles the \code{ProgramDefs} form of \LangFun{} can apply this
  14785. new function to all function definitions.
  14786. {\if\edition\pythonEd\pythonColor
  14787. The translation of \code{Return} statements requires a new auxiliary
  14788. function to handle expressions in tail context, called
  14789. \code{explicate\_tail}. The function should take an expression and the
  14790. dictionary of basic blocks and produce a list of statements in the
  14791. \LangCFun{} language. The \code{explicate\_tail} function should
  14792. include cases for \code{Begin}, \code{IfExp}, and \code{Call},
  14793. and a default case for other kinds of expressions. The default case
  14794. should produce a \code{Return} statement. The case for \code{Call}
  14795. should change it into \code{TailCall}. The other cases should
  14796. recursively process their subexpressions and statements, choosing the
  14797. appropriate explicate functions for the various contexts.
  14798. \fi}
  14799. \newcommand{\CfunASTRacket}{
  14800. \begin{array}{lcl}
  14801. \Exp &::= & \FUNREF{\itm{label}}{\Int} \MID \CALL{\Atm}{\LP\Atm\ldots\RP} \\
  14802. \Tail &::= & \TAILCALL{\Atm}{\Atm\ldots} \\
  14803. \Def &::=& \DEF{\itm{label}}{\LP[\Var\key{:}\Type]\ldots\RP}{\Type}{\itm{info}}{\LP\LP\itm{label}\,\key{.}\,\Tail\RP\ldots\RP}
  14804. \end{array}
  14805. }
  14806. \newcommand{\CfunASTPython}{
  14807. \begin{array}{lcl}
  14808. \Exp &::= & \FUNREF{\itm{label}}{\Int} \MID \CALL{\Atm}{\Atm^{*}} \\
  14809. \Tail &::= & \TAILCALL{\Atm}{\Atm^{*}} \\
  14810. \Params &::=& \LS\LP\Var\key{,}\Type\RP\code{,}\ldots\RS \\
  14811. \Block &::=& \itm{label}\key{:} \Stmt^{*}\;\Tail \\
  14812. \Def &::=& \DEF{\itm{label}}{\Params}{\LC\Block\code{,}\ldots\RC}{\key{None}}{\Type}{\key{None}}
  14813. \end{array}
  14814. }
  14815. \begin{figure}[tp]
  14816. \begin{tcolorbox}[colback=white]
  14817. \footnotesize
  14818. {\if\edition\racketEd
  14819. \[
  14820. \begin{array}{l}
  14821. \gray{\CvarASTRacket} \\ \hline
  14822. \gray{\CifASTRacket} \\ \hline
  14823. \gray{\CloopASTRacket} \\ \hline
  14824. \gray{\CtupASTRacket} \\ \hline
  14825. \CfunASTRacket \\
  14826. \begin{array}{lcl}
  14827. \LangCFunM{} & ::= & \PROGRAMDEFS{\itm{info}}{\LP\Def\ldots\RP}
  14828. \end{array}
  14829. \end{array}
  14830. \]
  14831. \fi}
  14832. {\if\edition\pythonEd\pythonColor
  14833. \[
  14834. \begin{array}{l}
  14835. \gray{\CifASTPython} \\ \hline
  14836. \gray{\CtupASTPython} \\ \hline
  14837. \CfunASTPython \\
  14838. \begin{array}{lcl}
  14839. \LangCFunM{} & ::= & \CPROGRAMDEFS{\LS\Def\code{,}\ldots\RS}
  14840. \end{array}
  14841. \end{array}
  14842. \]
  14843. \fi}
  14844. \end{tcolorbox}
  14845. \caption{The abstract syntax of \LangCFun{}, extending \LangCVec{} (figure~\ref{fig:c2-syntax}).}
  14846. \label{fig:c3-syntax}
  14847. \index{subject}{Cfun@\LangCFun{} abstract syntax}
  14848. \end{figure}
  14849. \clearpage
  14850. \section{Select Instructions and the \LangXIndCall{} Language}
  14851. \label{sec:select-r4}
  14852. \index{subject}{select instructions}
  14853. The output of select instructions is a program in the \LangXIndCall{}
  14854. language; the definition of its concrete syntax is shown in
  14855. figure~\ref{fig:x86-3-concrete}, and the definition of its abstract
  14856. syntax is shown in figure~\ref{fig:x86-3}. We use the \code{align}
  14857. directive on the labels of function definitions to make sure the
  14858. bottom three bits are zero, which we put to use in
  14859. chapter~\ref{ch:Ldyn}. We discuss the new instructions as needed in
  14860. this section. \index{subject}{x86}
  14861. \newcommand{\GrammarXIndCall}{
  14862. \begin{array}{lcl}
  14863. \Instr &::=& \key{callq}\;\key{*}\Arg \MID \key{tailjmp}\;\Arg
  14864. \MID \key{leaq}\;\Arg\key{,}\;\key{\%}\Reg \\
  14865. \Block &::= & \Instr^{+} \\
  14866. \Def &::= & \code{.globl}\,\code{.align 8}\,\itm{label}\; (\itm{label}\key{:}\, \Block)^{*}
  14867. \end{array}
  14868. }
  14869. \newcommand{\ASTXIndCallRacket}{
  14870. \begin{array}{lcl}
  14871. \Instr &::=& \INDCALLQ{\Arg}{\itm{int}}
  14872. \MID \TAILJMP{\Arg}{\itm{int}}\\
  14873. &\MID& \BININSTR{\code{'leaq}}{\Arg}{\REG{\Reg}}\\
  14874. \Block &::= & \BLOCK{\itm{info}}{\LP\Instr\ldots\RP}\\
  14875. \Def &::= & \DEF{\itm{label}}{\code{'()}}{\Type}{\itm{info}}{\LP\LP\itm{label}\,\key{.}\,\Block\RP\ldots\RP}
  14876. \end{array}
  14877. }
  14878. \begin{figure}[tp]
  14879. \begin{tcolorbox}[colback=white]
  14880. \small
  14881. {\if\edition\racketEd
  14882. \[
  14883. \begin{array}{l}
  14884. \gray{\GrammarXIntRacket} \\ \hline
  14885. \gray{\GrammarXIfRacket} \\ \hline
  14886. \gray{\GrammarXGlobal} \\ \hline
  14887. \GrammarXIndCall \\
  14888. \begin{array}{lcl}
  14889. \LangXIndCallM{} &::= & \Def^{*}
  14890. \end{array}
  14891. \end{array}
  14892. \]
  14893. \fi}
  14894. {\if\edition\pythonEd
  14895. \[
  14896. \begin{array}{l}
  14897. \gray{\GrammarXIntPython} \\ \hline
  14898. \gray{\GrammarXIfPython} \\ \hline
  14899. \gray{\GrammarXGlobal} \\ \hline
  14900. \GrammarXIndCall \\
  14901. \begin{array}{lcl}
  14902. \LangXIndCallM{} &::= & \Def^{*}
  14903. \end{array}
  14904. \end{array}
  14905. \]
  14906. \fi}
  14907. \end{tcolorbox}
  14908. \caption{The concrete syntax of \LangXIndCall{} (extends \LangXGlobal{} of figure~\ref{fig:x86-2-concrete}).}
  14909. \label{fig:x86-3-concrete}
  14910. \end{figure}
  14911. \begin{figure}[tp]
  14912. \begin{tcolorbox}[colback=white]
  14913. \small
  14914. {\if\edition\racketEd
  14915. \[\arraycolsep=3pt
  14916. \begin{array}{l}
  14917. \gray{\ASTXIntRacket} \\ \hline
  14918. \gray{\ASTXIfRacket} \\ \hline
  14919. \gray{\ASTXGlobalRacket} \\ \hline
  14920. \ASTXIndCallRacket \\
  14921. \begin{array}{lcl}
  14922. \LangXIndCallM{} &::= & \XPROGRAMDEFS{\itm{info}}{\LP\Def\ldots\RP}
  14923. \end{array}
  14924. \end{array}
  14925. \]
  14926. \fi}
  14927. {\if\edition\pythonEd\pythonColor
  14928. \[
  14929. \begin{array}{lcl}
  14930. \Arg &::=& \gray{ \INT{\Int} \MID \REG{\Reg} \MID \DEREF{\Reg}{\Int}
  14931. \MID \BYTEREG{\Reg} } \\
  14932. &\MID& \gray{ \GLOBAL{\itm{label}} } \MID \FUNREF{\itm{label}}{\Int} \\
  14933. \Instr &::=& \ldots \MID \INDCALLQ{\Arg}{\itm{int}}
  14934. \MID \TAILJMP{\Arg}{\itm{int}}\\
  14935. &\MID& \BININSTR{\scode{leaq}}{\Arg}{\REG{\Reg}}\\
  14936. \Block &::=&\itm{label}\key{:}\,\Instr^{*} \\
  14937. \Def &::= & \DEF{\itm{label}}{\LS\RS}{\LC\Block\code{,}\ldots\RC}{\_}{\Type}{\_} \\
  14938. \LangXIndCallM{} &::= & \XPROGRAMDEFS{\LS\Def\code{,}\ldots\RS}
  14939. \end{array}
  14940. \]
  14941. \fi}
  14942. \end{tcolorbox}
  14943. \caption{The abstract syntax of \LangXIndCall{} (extends
  14944. \LangXGlobal{} of figure~\ref{fig:x86-2}).}
  14945. \label{fig:x86-3}
  14946. \end{figure}
  14947. An assignment of a function reference to a variable becomes a
  14948. load-effective-address instruction as follows, where $\itm{lhs}'$ is
  14949. the translation of $\itm{lhs}$ from \Atm{} in \LangCFun{} to \Arg{} in
  14950. \LangXIndCallVar{}. The \code{FunRef} becomes a \code{Global} AST
  14951. node, whose concrete syntax is instruction-pointer-relative
  14952. addressing.
  14953. \begin{center}
  14954. \begin{tabular}{lcl}
  14955. \begin{minipage}{0.35\textwidth}
  14956. {\if\edition\racketEd
  14957. \begin{lstlisting}
  14958. |$\itm{lhs}$| = (fun-ref |$f$| |$n$|);
  14959. \end{lstlisting}
  14960. \fi}
  14961. {\if\edition\pythonEd\pythonColor
  14962. \begin{lstlisting}
  14963. |$\itm{lhs}$| = FunRef(|$f$| |$n$|);
  14964. \end{lstlisting}
  14965. \fi}
  14966. \end{minipage}
  14967. &
  14968. $\Rightarrow$\qquad\qquad
  14969. &
  14970. \begin{minipage}{0.3\textwidth}
  14971. \begin{lstlisting}
  14972. leaq |$f$|(%rip), |$\itm{lhs}'$|
  14973. \end{lstlisting}
  14974. \end{minipage}
  14975. \end{tabular}
  14976. \end{center}
  14977. Regarding function definitions, we need to remove the parameters and
  14978. instead perform parameter passing using the conventions discussed in
  14979. section~\ref{sec:fun-x86}. That is, the arguments are passed in
  14980. registers. We recommend turning the parameters into local variables
  14981. and generating instructions at the beginning of the function to move
  14982. from the argument-passing registers
  14983. (section~\ref{sec:calling-conventions-fun}) to these local variables.
  14984. {\if\edition\racketEd
  14985. \begin{lstlisting}
  14986. (Def |$f$| '([|$x_1$| : |$T_1$|] [|$x_2$| : |$T_2$|] |$\ldots$| ) |$T_r$| |$\itm{info}$| |$B$|)
  14987. |$\Rightarrow$|
  14988. (Def |$f$| '() 'Integer |$\itm{info}'$| |$B'$|)
  14989. \end{lstlisting}
  14990. \fi}
  14991. {\if\edition\pythonEd\pythonColor
  14992. \begin{lstlisting}
  14993. FunctionDef(|$f$|, [|$(x_1,T_1),\ldots$|], |$B$|, _, |$T_r$|, _)
  14994. |$\Rightarrow$|
  14995. FunctionDef(|$f$|, [], |$B'$|, _, int, _)
  14996. \end{lstlisting}
  14997. \fi}
  14998. The basic blocks $B'$ are the same as $B$ except that the
  14999. \code{start} block is modified to add the instructions for moving from
  15000. the argument registers to the parameter variables. So the \code{start}
  15001. block of $B$ shown on the left of the following is changed to the code
  15002. on the right:
  15003. \begin{center}
  15004. \begin{minipage}{0.3\textwidth}
  15005. \begin{lstlisting}
  15006. start:
  15007. |$\itm{instr}_1$|
  15008. |$\cdots$|
  15009. |$\itm{instr}_n$|
  15010. \end{lstlisting}
  15011. \end{minipage}
  15012. $\Rightarrow$
  15013. \begin{minipage}{0.3\textwidth}
  15014. \begin{lstlisting}
  15015. |$f$|start:
  15016. movq %rdi, |$x_1$|
  15017. movq %rsi, |$x_2$|
  15018. |$\cdots$|
  15019. |$\itm{instr}_1$|
  15020. |$\cdots$|
  15021. |$\itm{instr}_n$|
  15022. \end{lstlisting}
  15023. \end{minipage}
  15024. \end{center}
  15025. Recall that we use the label \code{start} for the initial block of a
  15026. program, and in section~\ref{sec:select-Lvar} we recommend labeling
  15027. the conclusion of the program with \code{conclusion}, so that
  15028. $\RETURN{Arg}$ can be compiled to an assignment to \code{rax} followed
  15029. by a jump to \code{conclusion}. With the addition of function
  15030. definitions, there is a start block and conclusion for each function,
  15031. but their labels need to be unique. We recommend prepending the
  15032. function's name to \code{start} and \code{conclusion}, respectively,
  15033. to obtain unique labels.
  15034. \racket{The interpreter for \LangXIndCall{} needs to be given the
  15035. number of parameters the function expects, but the parameters are no
  15036. longer in the syntax of function definitions. Instead, add an entry
  15037. to $\itm{info}$ that maps \code{num-params} to the number of
  15038. parameters to construct $\itm{info}'$.}
  15039. By changing the parameters to local variables, we are giving the
  15040. register allocator control over which registers or stack locations to
  15041. use for them. If you implement the move-biasing challenge
  15042. (section~\ref{sec:move-biasing}), the register allocator will try to
  15043. assign the parameter variables to the corresponding argument register,
  15044. in which case the \code{patch\_instructions} pass will remove the
  15045. \code{movq} instruction. This happens in the example translation given
  15046. in figure~\ref{fig:add-fun} in section~\ref{sec:functions-example}, in
  15047. the \code{add} function.
  15048. %
  15049. Also, note that the register allocator will perform liveness analysis
  15050. on this sequence of move instructions and build the interference
  15051. graph. So, for example, $x_1$ will be marked as interfering with
  15052. \code{rsi}, and that will prevent the mapping of $x_1$ to \code{rsi},
  15053. which is good because otherwise the first \code{movq} would overwrite
  15054. the argument in \code{rsi} that is needed for $x_2$.
  15055. Next, consider the compilation of function calls. In the mirror image
  15056. of the handling of parameters in function definitions, the arguments
  15057. are moved to the argument-passing registers. Note that the function
  15058. is not given as a label, but its address is produced by the argument
  15059. $\itm{arg}_0$. So, we translate the call into an indirect function
  15060. call. The return value from the function is stored in \code{rax}, so
  15061. it needs to be moved into the \itm{lhs}.
  15062. \begin{lstlisting}
  15063. |\itm{lhs}| = |$\CALL{\itm{arg}_0}{\python{\LS}\itm{arg}_1~\itm{arg}_2 \ldots\python{\RS}}$|
  15064. |$\Rightarrow$|
  15065. movq |$\itm{arg}_1$|, %rdi
  15066. movq |$\itm{arg}_2$|, %rsi
  15067. |$\vdots$|
  15068. callq *|$\itm{arg}_0$|
  15069. movq %rax, |$\itm{lhs}$|
  15070. \end{lstlisting}
  15071. The \code{IndirectCallq} AST node includes an integer for the arity of
  15072. the function, that is, the number of parameters. That information is
  15073. useful in the \code{uncover\_live} pass for determining which
  15074. argument-passing registers are potentially read during the call.
  15075. For tail calls, the parameter passing is the same as non-tail calls:
  15076. generate instructions to move the arguments into the argument-passing
  15077. registers. After that we need to pop the frame from the procedure
  15078. call stack. However, we do not yet know how big the frame is; that
  15079. gets determined during register allocation. So, instead of generating
  15080. those instructions here, we invent a new instruction that means ``pop
  15081. the frame and then do an indirect jump,'' which we name
  15082. \code{TailJmp}. The abstract syntax for this instruction includes an
  15083. argument that specifies where to jump and an integer that represents
  15084. the arity of the function being called.
  15085. \section{Register Allocation}
  15086. \label{sec:register-allocation-r4}
  15087. The addition of functions requires some changes to all three aspects
  15088. of register allocation, which we discuss in the following subsections.
  15089. \subsection{Liveness Analysis}
  15090. \label{sec:liveness-analysis-r4}
  15091. \index{subject}{liveness analysis}
  15092. %% The rest of the passes need only minor modifications to handle the new
  15093. %% kinds of AST nodes: \code{fun-ref}, \code{indirect-callq}, and
  15094. %% \code{leaq}.
  15095. The \code{IndirectCallq} instruction should be treated like
  15096. \code{Callq} regarding its written locations $W$, in that they should
  15097. include all the caller-saved registers. Recall that the reason for
  15098. that is to force variables that are live across a function call to be assigned to callee-saved
  15099. registers or to be spilled to the stack.
  15100. Regarding the set of read locations $R$, the arity fields of
  15101. \code{TailJmp} and \code{IndirectCallq} determine how many of the
  15102. argument-passing registers should be considered as read by those
  15103. instructions. Also, the target field of \code{TailJmp} and
  15104. \code{IndirectCallq} should be included in the set of read locations
  15105. $R$.
  15106. \subsection{Build Interference Graph}
  15107. \label{sec:build-interference-r4}
  15108. With the addition of function definitions, we compute a separate interference
  15109. graph for each function (not just one for the whole program).
  15110. Recall that in section~\ref{sec:reg-alloc-gc} we discussed the need to
  15111. spill tuple-typed variables that are live during a call to
  15112. \code{collect}, the garbage collector. With the addition of functions
  15113. to our language, we need to revisit this issue. Functions that perform
  15114. allocation contain calls to the collector. Thus, we should not only
  15115. spill a tuple-typed variable when it is live during a call to
  15116. \code{collect}, but we should spill the variable if it is live during
  15117. a call to any user-defined function. Thus, in the
  15118. \code{build\_interference} pass, we recommend adding interference
  15119. edges between call-live tuple-typed variables and the callee-saved
  15120. registers (in addition to creating edges between
  15121. call-live variables and the caller-saved registers).
  15122. \subsection{Allocate Registers}
  15123. The primary change to the \code{allocate\_registers} pass is adding an
  15124. auxiliary function for handling definitions (the \Def{} nonterminal
  15125. shown in figure~\ref{fig:x86-3}) with one case for function
  15126. definitions. The logic is the same as described in
  15127. chapter~\ref{ch:register-allocation-Lvar} except that now register
  15128. allocation is performed many times, once for each function definition,
  15129. instead of just once for the whole program.
  15130. \section{Patch Instructions}
  15131. In \code{patch\_instructions}, you should deal with the x86
  15132. idiosyncrasy that the destination argument of \code{leaq} must be a
  15133. register. Additionally, you should ensure that the argument of
  15134. \code{TailJmp} is \itm{rax}, our reserved register---because we
  15135. trample many other registers before the tail call, as explained in the
  15136. next section.
  15137. \section{Generate Prelude and Conclusion}
  15138. Now that register allocation is complete, we can translate the
  15139. \code{TailJmp} into a sequence of instructions. A naive translation of
  15140. \code{TailJmp} would simply be \code{jmp *$\itm{arg}$}. However,
  15141. before the jump we need to pop the current frame to achieve efficient
  15142. tail calls. This sequence of instructions is the same as the code for
  15143. the conclusion of a function, except that the \code{retq} is replaced with
  15144. \code{jmp *$\itm{arg}$}.
  15145. Regarding function definitions, we generate a prelude and conclusion
  15146. for each one. This code is similar to the prelude and conclusion
  15147. generated for the \code{main} function presented in
  15148. chapter~\ref{ch:Lvec}. To review, the prelude of every function should
  15149. carry out the following steps:
  15150. % TODO: .align the functions!
  15151. \begin{enumerate}
  15152. %% \item Start with \code{.global} and \code{.align} directives followed
  15153. %% by the label for the function. (See figure~\ref{fig:add-fun} for an
  15154. %% example.)
  15155. \item Push \code{rbp} to the stack and set \code{rbp} to current stack
  15156. pointer.
  15157. \item Push to the stack all the callee-saved registers that were
  15158. used for register allocation.
  15159. \item Move the stack pointer \code{rsp} down to make room for the
  15160. regular spills (aligned to 16 bytes).
  15161. \item Move the root stack pointer \code{r15} up by the size of the
  15162. root-stack frame for this function, which depends on the number of
  15163. spilled tuple-typed variables. \label{root-stack-init}
  15164. \item Initialize to zero all new entries in the root-stack frame.
  15165. \item Jump to the start block.
  15166. \end{enumerate}
  15167. The prelude of the \code{main} function has an additional task: call
  15168. the \code{initialize} function to set up the garbage collector, and
  15169. then move the value of the global \code{rootstack\_begin} in
  15170. \code{r15}. This initialization should happen before step
  15171. \ref{root-stack-init}, which depends on \code{r15}.
  15172. The conclusion of every function should do the following:
  15173. \begin{enumerate}
  15174. \item Move the stack pointer back up past the regular spills.
  15175. \item Restore the callee-saved registers by popping them from the
  15176. stack.
  15177. \item Move the root stack pointer back down by the size of the
  15178. root-stack frame for this function.
  15179. \item Restore \code{rbp} by popping it from the stack.
  15180. \item Return to the caller with the \code{retq} instruction.
  15181. \end{enumerate}
  15182. The output of this pass is \LangXIndCallFlat{}, which differs from
  15183. \LangXIndCall{} in that there is no longer an AST node for function
  15184. definitions. Instead, a program is just
  15185. \racket{an association list}\python{a dictionary}
  15186. of basic blocks, as in \LangXGlobal{}. So we have the following grammar rule:
  15187. {\if\edition\racketEd
  15188. \[
  15189. \LangXIndCallFlatM{} ::= \XPROGRAM{\itm{info}}{\LP\LP\itm{label} \,\key{.}\, \Block \RP\ldots\RP}
  15190. \]
  15191. \fi}
  15192. {\if\edition\pythonEd
  15193. \[
  15194. \LangXIndCallFlatM{} ::= \XPROGRAM{\itm{info}}{\LC\itm{label}\key{:}\,\Instr^{*}\code{,}\ldots\RC}
  15195. \]
  15196. \fi}
  15197. Figure~\ref{fig:Lfun-passes} gives an overview of the passes for
  15198. compiling \LangFun{} to x86.
  15199. \begin{exercise}\normalfont\normalsize
  15200. Expand your compiler to handle \LangFun{} as outlined in this chapter.
  15201. Create eight new programs that use functions including examples that
  15202. pass functions and return functions from other functions, recursive
  15203. functions, functions that create tuples, and functions that make tail
  15204. calls. Test your compiler on these new programs and all your
  15205. previously created test programs.
  15206. \end{exercise}
  15207. \begin{figure}[tbp]
  15208. \begin{tcolorbox}[colback=white]
  15209. {\if\edition\racketEd
  15210. \begin{tikzpicture}[baseline=(current bounding box.center),scale=0.90]
  15211. \node (Lfun) at (0,2) {\large \LangFun{}};
  15212. \node (Lfun-1) at (4,2) {\large \LangFun{}};
  15213. \node (Lfun-2) at (7,2) {\large \LangFun{}};
  15214. \node (F1-1) at (11,2) {\large \LangFunRef{}};
  15215. \node (F1-2) at (11,0) {\large \LangFunRef{}};
  15216. \node (F1-3) at (7,0) {\large \LangFunRefAlloc{}};
  15217. \node (F1-4) at (4,0) {\large \LangFunRefAlloc{}};
  15218. \node (F1-5) at (0,0) {\large \LangFunANF{}};
  15219. \node (C3-2) at (0,-2) {\large \LangCFun{}};
  15220. \node (x86-2) at (0,-4) {\large \LangXIndCallVar{}};
  15221. \node (x86-3) at (4,-4) {\large \LangXIndCallVar{}};
  15222. \node (x86-4) at (8,-4) {\large \LangXIndCall{}};
  15223. \node (x86-5) at (8,-6) {\large \LangXIndCallFlat{}};
  15224. \node (x86-2-1) at (0,-6) {\large \LangXIndCallVar{}};
  15225. \node (x86-2-2) at (4,-6) {\large \LangXIndCallVar{}};
  15226. \path[->,bend left=15] (Lfun) edge [above] node
  15227. {\ttfamily\footnotesize shrink} (Lfun-1);
  15228. \path[->,bend left=15] (Lfun-1) edge [above] node
  15229. {\ttfamily\footnotesize uniquify} (Lfun-2);
  15230. \path[->,bend left=15] (Lfun-2) edge [above] node
  15231. {\ttfamily\footnotesize ~~reveal\_functions} (F1-1);
  15232. \path[->,bend left=15] (F1-1) edge [left] node
  15233. {\ttfamily\footnotesize limit\_functions} (F1-2);
  15234. \path[->,bend left=15] (F1-2) edge [below] node
  15235. {\ttfamily\footnotesize expose\_allocation} (F1-3);
  15236. \path[->,bend left=15] (F1-3) edge [below] node
  15237. {\ttfamily\footnotesize uncover\_get!} (F1-4);
  15238. \path[->,bend right=15] (F1-4) edge [above] node
  15239. {\ttfamily\footnotesize remove\_complex\_operands} (F1-5);
  15240. \path[->,bend right=15] (F1-5) edge [right] node
  15241. {\ttfamily\footnotesize explicate\_control} (C3-2);
  15242. \path[->,bend right=15] (C3-2) edge [right] node
  15243. {\ttfamily\footnotesize select\_instructions} (x86-2);
  15244. \path[->,bend left=15] (x86-2) edge [right] node
  15245. {\ttfamily\footnotesize uncover\_live} (x86-2-1);
  15246. \path[->,bend right=15] (x86-2-1) edge [below] node
  15247. {\ttfamily\footnotesize build\_interference} (x86-2-2);
  15248. \path[->,bend right=15] (x86-2-2) edge [right] node
  15249. {\ttfamily\footnotesize allocate\_registers} (x86-3);
  15250. \path[->,bend left=15] (x86-3) edge [above] node
  15251. {\ttfamily\footnotesize patch\_instructions} (x86-4);
  15252. \path[->,bend right=15] (x86-4) edge [right] node {\ttfamily\footnotesize prelude\_and\_conclusion} (x86-5);
  15253. \end{tikzpicture}
  15254. \fi}
  15255. {\if\edition\pythonEd\pythonColor
  15256. \begin{tikzpicture}[baseline=(current bounding box.center),scale=0.85]
  15257. \node (Lfun) at (0,2) {\large \LangFun{}};
  15258. \node (Lfun-2) at (4,2) {\large \LangFun{}};
  15259. \node (F1-1) at (8,2) {\large \LangFunRef{}};
  15260. \node (F1-2) at (12,2) {\large \LangFunRef{}};
  15261. \node (F1-4) at (4,0) {\large \LangFunRefAlloc{}};
  15262. \node (F1-5) at (0,0) {\large \LangFunANF{}};
  15263. \node (C3-2) at (0,-2) {\large \LangCFun{}};
  15264. \node (x86-2) at (0,-4) {\large \LangXIndCallVar{}};
  15265. \node (x86-3) at (4,-4) {\large \LangXIndCallVar{}};
  15266. \node (x86-4) at (8,-4) {\large \LangXIndCall{}};
  15267. \node (x86-5) at (12,-4) {\large \LangXIndCallFlat{}};
  15268. \path[->,bend left=15] (Lfun) edge [above] node
  15269. {\ttfamily\footnotesize shrink} (Lfun-2);
  15270. \path[->,bend left=15] (Lfun-2) edge [above] node
  15271. {\ttfamily\footnotesize ~~reveal\_functions} (F1-1);
  15272. \path[->,bend left=15] (F1-1) edge [above] node
  15273. {\ttfamily\footnotesize limit\_functions} (F1-2);
  15274. \path[->,bend left=15] (F1-2) edge [right] node
  15275. {\ttfamily\footnotesize \ \ expose\_allocation} (F1-4);
  15276. \path[->,bend right=15] (F1-4) edge [above] node
  15277. {\ttfamily\footnotesize remove\_complex\_operands} (F1-5);
  15278. \path[->,bend right=15] (F1-5) edge [right] node
  15279. {\ttfamily\footnotesize explicate\_control} (C3-2);
  15280. \path[->,bend left=15] (C3-2) edge [right] node
  15281. {\ttfamily\footnotesize select\_instructions} (x86-2);
  15282. \path[->,bend right=15] (x86-2) edge [below] node
  15283. {\ttfamily\footnotesize assign\_homes} (x86-3);
  15284. \path[->,bend left=15] (x86-3) edge [above] node
  15285. {\ttfamily\footnotesize patch\_instructions} (x86-4);
  15286. \path[->,bend right=15] (x86-4) edge [below] node {\ttfamily\footnotesize prelude\_and\_conclusion} (x86-5);
  15287. \end{tikzpicture}
  15288. \fi}
  15289. \end{tcolorbox}
  15290. \caption{Diagram of the passes for \LangFun{}, a language with functions.}
  15291. \label{fig:Lfun-passes}
  15292. \end{figure}
  15293. \section{An Example Translation}
  15294. \label{sec:functions-example}
  15295. Figure~\ref{fig:add-fun} shows an example translation of a simple
  15296. function in \LangFun{} to x86. The figure includes the results of
  15297. \code{explicate\_control} and \code{select\_instructions}.
  15298. \begin{figure}[hbtp]
  15299. \begin{tcolorbox}[colback=white]
  15300. \begin{tabular}{ll}
  15301. \begin{minipage}{0.4\textwidth}
  15302. % s3_2.rkt
  15303. {\if\edition\racketEd
  15304. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  15305. (define (add [x : Integer]
  15306. [y : Integer])
  15307. : Integer
  15308. (+ x y))
  15309. (add 40 2)
  15310. \end{lstlisting}
  15311. \fi}
  15312. {\if\edition\pythonEd\pythonColor
  15313. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  15314. def add(x:int, y:int) -> int:
  15315. return x + y
  15316. print(add(40, 2))
  15317. \end{lstlisting}
  15318. \fi}
  15319. $\Downarrow$
  15320. {\if\edition\racketEd
  15321. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  15322. (define (add86 [x87 : Integer]
  15323. [y88 : Integer])
  15324. : Integer
  15325. add86start:
  15326. return (+ x87 y88);
  15327. )
  15328. (define (main) : Integer ()
  15329. mainstart:
  15330. tmp89 = (fun-ref add86 2);
  15331. (tail-call tmp89 40 2)
  15332. )
  15333. \end{lstlisting}
  15334. \fi}
  15335. {\if\edition\pythonEd\pythonColor
  15336. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  15337. def add(x:int, y:int) -> int:
  15338. addstart:
  15339. return x + y
  15340. def main() -> int:
  15341. mainstart:
  15342. fun.0 = add
  15343. tmp.1 = fun.0(40, 2)
  15344. print(tmp.1)
  15345. return 0
  15346. \end{lstlisting}
  15347. \fi}
  15348. \end{minipage}
  15349. &
  15350. $\Rightarrow$
  15351. \begin{minipage}{0.5\textwidth}
  15352. {\if\edition\racketEd
  15353. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  15354. (define (add86) : Integer
  15355. add86start:
  15356. movq %rdi, x87
  15357. movq %rsi, y88
  15358. movq x87, %rax
  15359. addq y88, %rax
  15360. jmp inc1389conclusion
  15361. )
  15362. (define (main) : Integer
  15363. mainstart:
  15364. leaq (fun-ref add86 2), tmp89
  15365. movq $40, %rdi
  15366. movq $2, %rsi
  15367. tail-jmp tmp89
  15368. )
  15369. \end{lstlisting}
  15370. \fi}
  15371. {\if\edition\pythonEd\pythonColor
  15372. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  15373. def add() -> int:
  15374. addstart:
  15375. movq %rdi, x
  15376. movq %rsi, y
  15377. movq x, %rax
  15378. addq y, %rax
  15379. jmp addconclusion
  15380. def main() -> int:
  15381. mainstart:
  15382. leaq add, fun.0
  15383. movq $40, %rdi
  15384. movq $2, %rsi
  15385. callq *fun.0
  15386. movq %rax, tmp.1
  15387. movq tmp.1, %rdi
  15388. callq print_int
  15389. movq $0, %rax
  15390. jmp mainconclusion
  15391. \end{lstlisting}
  15392. \fi}
  15393. $\Downarrow$
  15394. \end{minipage}
  15395. \end{tabular}
  15396. \begin{tabular}{ll}
  15397. \begin{minipage}{0.3\textwidth}
  15398. {\if\edition\racketEd
  15399. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  15400. .globl add86
  15401. .align 8
  15402. add86:
  15403. pushq %rbp
  15404. movq %rsp, %rbp
  15405. jmp add86start
  15406. add86start:
  15407. movq %rdi, %rax
  15408. addq %rsi, %rax
  15409. jmp add86conclusion
  15410. add86conclusion:
  15411. popq %rbp
  15412. retq
  15413. \end{lstlisting}
  15414. \fi}
  15415. {\if\edition\pythonEd\pythonColor
  15416. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  15417. .align 8
  15418. add:
  15419. pushq %rbp
  15420. movq %rsp, %rbp
  15421. subq $0, %rsp
  15422. jmp addstart
  15423. addstart:
  15424. movq %rdi, %rdx
  15425. movq %rsi, %rcx
  15426. movq %rdx, %rax
  15427. addq %rcx, %rax
  15428. jmp addconclusion
  15429. addconclusion:
  15430. subq $0, %r15
  15431. addq $0, %rsp
  15432. popq %rbp
  15433. retq
  15434. \end{lstlisting}
  15435. \fi}
  15436. \end{minipage}
  15437. &
  15438. \begin{minipage}{0.5\textwidth}
  15439. {\if\edition\racketEd
  15440. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  15441. .globl main
  15442. .align 8
  15443. main:
  15444. pushq %rbp
  15445. movq %rsp, %rbp
  15446. movq $16384, %rdi
  15447. movq $16384, %rsi
  15448. callq initialize
  15449. movq rootstack_begin(%rip), %r15
  15450. jmp mainstart
  15451. mainstart:
  15452. leaq add86(%rip), %rcx
  15453. movq $40, %rdi
  15454. movq $2, %rsi
  15455. movq %rcx, %rax
  15456. popq %rbp
  15457. jmp *%rax
  15458. mainconclusion:
  15459. popq %rbp
  15460. retq
  15461. \end{lstlisting}
  15462. \fi}
  15463. {\if\edition\pythonEd\pythonColor
  15464. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  15465. .globl main
  15466. .align 8
  15467. main:
  15468. pushq %rbp
  15469. movq %rsp, %rbp
  15470. subq $0, %rsp
  15471. movq $65536, %rdi
  15472. movq $65536, %rsi
  15473. callq initialize
  15474. movq rootstack_begin(%rip), %r15
  15475. jmp mainstart
  15476. mainstart:
  15477. leaq add(%rip), %rcx
  15478. movq $40, %rdi
  15479. movq $2, %rsi
  15480. callq *%rcx
  15481. movq %rax, %rcx
  15482. movq %rcx, %rdi
  15483. callq print_int
  15484. movq $0, %rax
  15485. jmp mainconclusion
  15486. mainconclusion:
  15487. subq $0, %r15
  15488. addq $0, %rsp
  15489. popq %rbp
  15490. retq
  15491. \end{lstlisting}
  15492. \fi}
  15493. \end{minipage}
  15494. \end{tabular}
  15495. \end{tcolorbox}
  15496. \caption{Example compilation of a simple function to x86.}
  15497. \label{fig:add-fun}
  15498. \end{figure}
  15499. % Challenge idea: inlining! (simple version)
  15500. % Further Reading
  15501. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  15502. \chapter{Lexically Scoped Functions}
  15503. \label{ch:Llambda}
  15504. \setcounter{footnote}{0}
  15505. This chapter studies lexically scoped functions. Lexical
  15506. scoping\index{subject}{lexical scoping} means that a function's body
  15507. may refer to variables whose binding site is outside of the function,
  15508. in an enclosing scope.
  15509. %
  15510. Consider the example shown in figure~\ref{fig:lexical-scoping} written
  15511. in \LangLam{}, which extends \LangFun{} with the
  15512. \key{lambda}\index{subject}{lambda} form for creating lexically scoped
  15513. functions. The body of the \key{lambda} refers to three variables:
  15514. \code{x}, \code{y}, and \code{z}. The binding sites for \code{x} and
  15515. \code{y} are outside of the \key{lambda}. Variable \code{y} is
  15516. \racket{bound by the enclosing \key{let}}\python{a local variable of
  15517. function \code{f}}, and \code{x} is a parameter of function
  15518. \code{f}. Note that function \code{f} returns the \key{lambda} as its
  15519. result value. The main expression of the program includes two calls to
  15520. \code{f} with different arguments for \code{x}: first \code{5} and
  15521. then \code{3}. The functions returned from \code{f} are bound to
  15522. variables \code{g} and \code{h}. Even though these two functions were
  15523. created by the same \code{lambda}, they are really different functions
  15524. because they use different values for \code{x}. Applying \code{g} to
  15525. \code{11} produces \code{20} whereas applying \code{h} to \code{15}
  15526. produces \code{22}, so the result of the program is \code{42}.
  15527. \begin{figure}[btp]
  15528. \begin{tcolorbox}[colback=white]
  15529. {\if\edition\racketEd
  15530. % lambda_test_21.rkt
  15531. \begin{lstlisting}
  15532. (define (f [x : Integer]) : (Integer -> Integer)
  15533. (let ([y 4])
  15534. (lambda: ([z : Integer]) : Integer
  15535. (+ x (+ y z)))))
  15536. (let ([g (f 5)])
  15537. (let ([h (f 3)])
  15538. (+ (g 11) (h 15))))
  15539. \end{lstlisting}
  15540. \fi}
  15541. {\if\edition\pythonEd\pythonColor
  15542. \begin{lstlisting}
  15543. def f(x : int) -> Callable[[int], int]:
  15544. y = 4
  15545. return lambda z: x + y + z
  15546. g = f(5)
  15547. h = f(3)
  15548. print(g(11) + h(15))
  15549. \end{lstlisting}
  15550. \fi}
  15551. \end{tcolorbox}
  15552. \caption{Example of a lexically scoped function.}
  15553. \label{fig:lexical-scoping}
  15554. \end{figure}
  15555. The approach that we take for implementing lexically scoped functions
  15556. is to compile them into top-level function definitions, translating
  15557. from \LangLam{} into \LangFun{}. However, the compiler must give
  15558. special treatment to variable occurrences such as \code{x} and
  15559. \code{y} in the body of the \code{lambda} shown in
  15560. figure~\ref{fig:lexical-scoping}. After all, an \LangFun{} function
  15561. may not refer to variables defined outside of it. To identify such
  15562. variable occurrences, we review the standard notion of free variable.
  15563. \begin{definition}\normalfont
  15564. A variable is \emph{free in expression} $e$ if the variable occurs
  15565. inside $e$ but does not have an enclosing definition that is also in
  15566. $e$.\index{subject}{free variable}
  15567. \end{definition}
  15568. For example, in the expression
  15569. \racket{\code{(+ x (+ y z))}}\python{\code{x + y + z}}
  15570. the variables \code{x}, \code{y}, and \code{z} are all free. On the other hand,
  15571. only \code{x} and \code{y} are free in the following expression,
  15572. because \code{z} is defined by the \code{lambda}
  15573. {\if\edition\racketEd
  15574. \begin{lstlisting}
  15575. (lambda: ([z : Integer]) : Integer
  15576. (+ x (+ y z)))
  15577. \end{lstlisting}
  15578. \fi}
  15579. {\if\edition\pythonEd\pythonColor
  15580. \begin{lstlisting}
  15581. lambda z: x + y + z
  15582. \end{lstlisting}
  15583. \fi}
  15584. %
  15585. \noindent Thus the free variables of a \code{lambda} are the ones that
  15586. need special treatment. We need to transport at runtime the values
  15587. of those variables from the point where the \code{lambda} was created
  15588. to the point where the \code{lambda} is applied. An efficient solution
  15589. to the problem, due to \citet{Cardelli:1983aa}, is to bundle the
  15590. values of the free variables together with a function pointer into a
  15591. tuple, an arrangement called a \emph{flat closure} (which we shorten
  15592. to just \emph{closure}).\index{subject}{closure}\index{subject}{flat
  15593. closure}
  15594. %
  15595. By design, we have all the ingredients to make closures:
  15596. chapter~\ref{ch:Lvec} gave us tuples, and chapter~\ref{ch:Lfun} gave us
  15597. function pointers. The function pointer resides at index $0$, and the
  15598. values for the free variables fill in the rest of the tuple.
  15599. Let us revisit the example shown in figure~\ref{fig:lexical-scoping}
  15600. to see how closures work. It is a three-step dance. The program calls
  15601. function \code{f}, which creates a closure for the \code{lambda}. The
  15602. closure is a tuple whose first element is a pointer to the top-level
  15603. function that we will generate for the \code{lambda}; the second
  15604. element is the value of \code{x}, which is \code{5}; and the third
  15605. element is \code{4}, the value of \code{y}. The closure does not
  15606. contain an element for \code{z} because \code{z} is not a free
  15607. variable of the \code{lambda}. Creating the closure is step 1 of the
  15608. dance. The closure is returned from \code{f} and bound to \code{g}, as
  15609. shown in figure~\ref{fig:closures}.
  15610. %
  15611. The second call to \code{f} creates another closure, this time with
  15612. \code{3} in the second slot (for \code{x}). This closure is also
  15613. returned from \code{f} but bound to \code{h}, which is also shown in
  15614. figure~\ref{fig:closures}.
  15615. \begin{figure}[tbp]
  15616. \centering
  15617. \begin{minipage}{0.65\textwidth}
  15618. \begin{tcolorbox}[colback=white]
  15619. \includegraphics[width=\textwidth]{figs/closures}
  15620. \end{tcolorbox}
  15621. \end{minipage}
  15622. \caption{Flat closure representations for the two functions
  15623. produced by the \key{lambda} in figure~\ref{fig:lexical-scoping}.}
  15624. \label{fig:closures}
  15625. \end{figure}
  15626. Continuing with the example, consider the application of \code{g} to
  15627. \code{11} shown in figure~\ref{fig:lexical-scoping}. To apply a
  15628. closure, we obtain the function pointer from the first element of the
  15629. closure and call it, passing in the closure itself and then the
  15630. regular arguments, in this case \code{11}. This technique for applying
  15631. a closure is step 2 of the dance.
  15632. %
  15633. But doesn't this \code{lambda} take only one argument, for parameter
  15634. \code{z}? The third and final step of the dance is generating a
  15635. top-level function for a \code{lambda}. We add an additional
  15636. parameter for the closure and insert an initialization at the beginning
  15637. of the function for each free variable, to bind those variables to the
  15638. appropriate elements from the closure parameter.
  15639. %
  15640. This three-step dance is known as \emph{closure
  15641. conversion}\index{subject}{closure conversion}. We discuss the
  15642. details of closure conversion in section~\ref{sec:closure-conversion}
  15643. and show the code generated from the example in
  15644. section~\ref{sec:example-lambda}. First, we define the syntax and
  15645. semantics of \LangLam{} in section~\ref{sec:r5}.
  15646. \section{The \LangLam{} Language}
  15647. \label{sec:r5}
  15648. The definitions of the concrete syntax and abstract syntax for
  15649. \LangLam{}, a language with anonymous functions and lexical scoping,
  15650. are shown in figures~\ref{fig:Llam-concrete-syntax} and
  15651. \ref{fig:Llam-syntax}. They add the \key{lambda} form to the grammar
  15652. for \LangFun{}, which already has syntax for function application.
  15653. %
  15654. \python{The syntax also includes an assignment statement that includes
  15655. a type annotation for the variable on the left-hand side, which
  15656. facilitates the type checking of \code{lambda} expressions that we
  15657. discuss later in this section.}
  15658. %
  15659. \racket{The \code{procedure-arity} operation returns the number of parameters
  15660. of a given function, an operation that we need for the translation
  15661. of dynamic typing that is discussed in chapter~\ref{ch:Ldyn}.}
  15662. %
  15663. \python{The \code{arity} operation returns the number of parameters of
  15664. a given function, an operation that we need for the translation
  15665. of dynamic typing that is discussed in chapter~\ref{ch:Ldyn}.
  15666. The \code{arity} operation is not in Python, but the same functionality
  15667. is available in a more complex form. We include \code{arity} in the
  15668. \LangLam{} source language to enable testing.}
  15669. \newcommand{\LlambdaGrammarRacket}{
  15670. \begin{array}{lcl}
  15671. \Exp &::=& \CLAMBDA{\LP\LS\Var \key{:} \Type\RS\ldots\RP}{\Type}{\Exp} \\
  15672. &\MID& \LP \key{procedure-arity}~\Exp\RP
  15673. \end{array}
  15674. }
  15675. \newcommand{\LlambdaASTRacket}{
  15676. \begin{array}{lcl}
  15677. \Exp &::=& \LAMBDA{\LP\LS\Var\code{:}\Type\RS\ldots\RP}{\Type}{\Exp}\\
  15678. \itm{op} &::=& \code{procedure-arity}
  15679. \end{array}
  15680. }
  15681. \newcommand{\LlambdaGrammarPython}{
  15682. \begin{array}{lcl}
  15683. \Exp &::=& \CLAMBDA{\Var\code{, }\ldots}{\Exp} \MID \CARITY{\Exp} \\
  15684. \Stmt &::=& \CANNASSIGN{\Var}{\Type}{\Exp}
  15685. \end{array}
  15686. }
  15687. \newcommand{\LlambdaASTPython}{
  15688. \begin{array}{lcl}
  15689. \Exp &::=& \LAMBDA{\Var^{*}}{\Exp} \MID \ARITY{\Exp} \\
  15690. \Stmt &::=& \ANNASSIGN{\Var}{\Type}{\Exp}
  15691. \end{array}
  15692. }
  15693. % include AnnAssign in ASTPython
  15694. \begin{figure}[tp]
  15695. \centering
  15696. \begin{tcolorbox}[colback=white]
  15697. \small
  15698. {\if\edition\racketEd
  15699. \[
  15700. \begin{array}{l}
  15701. \gray{\LintGrammarRacket{}} \\ \hline
  15702. \gray{\LvarGrammarRacket{}} \\ \hline
  15703. \gray{\LifGrammarRacket{}} \\ \hline
  15704. \gray{\LwhileGrammarRacket} \\ \hline
  15705. \gray{\LtupGrammarRacket} \\ \hline
  15706. \gray{\LfunGrammarRacket} \\ \hline
  15707. \LlambdaGrammarRacket \\
  15708. \begin{array}{lcl}
  15709. \LangLamM{} &::=& \Def\ldots \; \Exp
  15710. \end{array}
  15711. \end{array}
  15712. \]
  15713. \fi}
  15714. {\if\edition\pythonEd\pythonColor
  15715. \[
  15716. \begin{array}{l}
  15717. \gray{\LintGrammarPython{}} \\ \hline
  15718. \gray{\LvarGrammarPython{}} \\ \hline
  15719. \gray{\LifGrammarPython{}} \\ \hline
  15720. \gray{\LwhileGrammarPython} \\ \hline
  15721. \gray{\LtupGrammarPython} \\ \hline
  15722. \gray{\LfunGrammarPython} \\ \hline
  15723. \LlambdaGrammarPython \\
  15724. \begin{array}{lcl}
  15725. \LangFunM{} &::=& \Def\ldots \Stmt\ldots
  15726. \end{array}
  15727. \end{array}
  15728. \]
  15729. \fi}
  15730. \end{tcolorbox}
  15731. \caption{The concrete syntax of \LangLam{}, extending \LangFun{} (figure~\ref{fig:Lfun-concrete-syntax})
  15732. with \key{lambda}.}
  15733. \label{fig:Llam-concrete-syntax}
  15734. \index{subject}{Llambda@\LangLam{} concrete syntax}
  15735. \end{figure}
  15736. \begin{figure}[tp]
  15737. \centering
  15738. \begin{tcolorbox}[colback=white]
  15739. \small
  15740. {\if\edition\racketEd
  15741. \[\arraycolsep=3pt
  15742. \begin{array}{l}
  15743. \gray{\LintOpAST} \\ \hline
  15744. \gray{\LvarASTRacket{}} \\ \hline
  15745. \gray{\LifASTRacket{}} \\ \hline
  15746. \gray{\LwhileASTRacket{}} \\ \hline
  15747. \gray{\LtupASTRacket{}} \\ \hline
  15748. \gray{\LfunASTRacket} \\ \hline
  15749. \LlambdaASTRacket \\
  15750. \begin{array}{lcl}
  15751. \LangLamM{} &::=& \PROGRAMDEFSEXP{\code{'()}}{\LP\Def\ldots\RP}{\Exp}
  15752. \end{array}
  15753. \end{array}
  15754. \]
  15755. \fi}
  15756. {\if\edition\pythonEd\pythonColor
  15757. \[
  15758. \begin{array}{l}
  15759. \gray{\LintASTPython} \\ \hline
  15760. \gray{\LvarASTPython{}} \\ \hline
  15761. \gray{\LifASTPython{}} \\ \hline
  15762. \gray{\LwhileASTPython{}} \\ \hline
  15763. \gray{\LtupASTPython{}} \\ \hline
  15764. \gray{\LfunASTPython} \\ \hline
  15765. \LlambdaASTPython \\
  15766. \begin{array}{lcl}
  15767. \LangLamM{} &::=& \PROGRAM{}{\LS \Def \ldots \Stmt \ldots \RS}
  15768. \end{array}
  15769. \end{array}
  15770. \]
  15771. \fi}
  15772. \end{tcolorbox}
  15773. \caption{The abstract syntax of \LangLam{}, extending \LangFun{} (figure~\ref{fig:Lfun-syntax}).}
  15774. \label{fig:Llam-syntax}
  15775. \index{subject}{Llambda@\LangLam{} abstract syntax}
  15776. \end{figure}
  15777. Figure~\ref{fig:interp-Llambda} shows the definitional
  15778. interpreter\index{subject}{interpreter} for \LangLam{}. The case for
  15779. \key{Lambda} saves the current environment inside the returned
  15780. function value. Recall that during function application, the
  15781. environment stored in the function value, extended with the mapping of
  15782. parameters to argument values, is used to interpret the body of the
  15783. function.
  15784. \begin{figure}[tbp]
  15785. \begin{tcolorbox}[colback=white]
  15786. {\if\edition\racketEd
  15787. \begin{lstlisting}
  15788. (define interp-Llambda-class
  15789. (class interp-Lfun-class
  15790. (super-new)
  15791. (define/override (interp-op op)
  15792. (match op
  15793. ['procedure-arity
  15794. (lambda (v)
  15795. (match v
  15796. [`(function (,xs ...) ,body ,lam-env) (length xs)]
  15797. [else (error 'interp-op "expected a function, not ~a" v)]))]
  15798. [else (super interp-op op)]))
  15799. (define/override ((interp-exp env) e)
  15800. (define recur (interp-exp env))
  15801. (match e
  15802. [(Lambda (list `[,xs : ,Ts] ...) rT body)
  15803. `(function ,xs ,body ,env)]
  15804. [else ((super interp-exp env) e)]))
  15805. ))
  15806. (define (interp-Llambda p)
  15807. (send (new interp-Llambda-class) interp-program p))
  15808. \end{lstlisting}
  15809. \fi}
  15810. {\if\edition\pythonEd\pythonColor
  15811. \begin{lstlisting}
  15812. class InterpLlambda(InterpLfun):
  15813. def arity(self, v):
  15814. match v:
  15815. case Function(name, params, body, env):
  15816. return len(params)
  15817. case _:
  15818. raise Exception('Llambda arity unexpected ' + repr(v))
  15819. def interp_exp(self, e, env):
  15820. match e:
  15821. case Call(Name('arity'), [fun]):
  15822. f = self.interp_exp(fun, env)
  15823. return self.arity(f)
  15824. case Lambda(params, body):
  15825. return Function('lambda', params, [Return(body)], env)
  15826. case _:
  15827. return super().interp_exp(e, env)
  15828. def interp_stmt(self, s, env, cont):
  15829. match s:
  15830. case AnnAssign(lhs, typ, value, simple):
  15831. env[lhs.id] = self.interp_exp(value, env)
  15832. return self.interp_stmts(cont, env)
  15833. case Pass():
  15834. return self.interp_stmts(cont, env)
  15835. case _:
  15836. return super().interp_stmt(s, env, cont)
  15837. \end{lstlisting}
  15838. \fi}
  15839. \end{tcolorbox}
  15840. \caption{Interpreter for \LangLam{}.}
  15841. \label{fig:interp-Llambda}
  15842. \end{figure}
  15843. {\if\edition\racketEd
  15844. %
  15845. Figure~\ref{fig:type-check-Llambda} shows how to type check the new
  15846. \key{lambda} form. The body of the \key{lambda} is checked in an
  15847. environment that includes the current environment (because it is
  15848. lexically scoped) and also includes the \key{lambda}'s parameters. We
  15849. require the body's type to match the declared return type.
  15850. %
  15851. \fi}
  15852. {\if\edition\pythonEd\pythonColor
  15853. %
  15854. Figures~\ref{fig:type-check-Llambda} and
  15855. \ref{fig:type-check-Llambda-part2} define the type checker for
  15856. \LangLam{}, which is more complex than one might expect. The reason
  15857. for the added complexity is that the syntax of \key{lambda} does not
  15858. include type annotations for the parameters or return type. Instead
  15859. they must be inferred. There are many approaches to type inference
  15860. from which to choose, of varying degrees of complexity. We choose one
  15861. of the simpler approaches, bidirectional type
  15862. inference~\citep{Pierce:2000,Dunfield:2021}, because the focus of this
  15863. book is compilation, not type inference.
  15864. The main idea of bidirectional type inference is to add an auxiliary
  15865. function, here named \code{check\_exp}, that takes an expected type
  15866. and checks whether the given expression is of that type. Thus, in
  15867. \code{check\_exp}, type information flows in a top-down manner with
  15868. respect to the AST, in contrast to the regular \code{type\_check\_exp}
  15869. function, where type information flows in a primarily bottom-up
  15870. manner.
  15871. %
  15872. The idea then is to use \code{check\_exp} in all the places where we
  15873. already know what the type of an expression should be, such as in the
  15874. \code{return} statement of a top-level function definition or on the
  15875. right-hand side of an annotated assignment statement.
  15876. With regard to \code{lambda}, it is straightforward to check a
  15877. \code{lambda} inside \code{check\_exp} because the expected type
  15878. provides the parameter types and the return type. On the other hand,
  15879. inside \code{type\_check\_exp} we disallow \code{lambda}, which means
  15880. that we do not allow \code{lambda} in contexts in which we don't already
  15881. know its type. This restriction does not incur a loss of
  15882. expressiveness for \LangLam{} because it is straightforward to modify
  15883. a program to sidestep the restriction, for example, by using an
  15884. annotated assignment statement to assign the \code{lambda} to a
  15885. temporary variable.
  15886. Note that for the \code{Name} and \code{Lambda} AST nodes, the type
  15887. checker records their type in a \code{has\_type} field. This type
  15888. information is used further on in this chapter.
  15889. %
  15890. \fi}
  15891. \begin{figure}[tbp]
  15892. \begin{tcolorbox}[colback=white]
  15893. {\if\edition\racketEd
  15894. \begin{lstlisting}
  15895. (define (type-check-Llambda env)
  15896. (lambda (e)
  15897. (match e
  15898. [(Lambda (and params `([,xs : ,Ts] ...)) rT body)
  15899. (define-values (new-body bodyT)
  15900. ((type-check-exp (append (map cons xs Ts) env)) body))
  15901. (define ty `(,@Ts -> ,rT))
  15902. (cond
  15903. [(equal? rT bodyT)
  15904. (values (HasType (Lambda params rT new-body) ty) ty)]
  15905. [else
  15906. (error "mismatch in return type" bodyT rT)])]
  15907. ...
  15908. )))
  15909. \end{lstlisting}
  15910. \fi}
  15911. {\if\edition\pythonEd\pythonColor
  15912. \begin{lstlisting}
  15913. class TypeCheckLlambda(TypeCheckLfun):
  15914. def type_check_exp(self, e, env):
  15915. match e:
  15916. case Name(id):
  15917. e.has_type = env[id]
  15918. return env[id]
  15919. case Lambda(params, body):
  15920. raise Exception('cannot synthesize a type for a lambda')
  15921. case Call(Name('arity'), [func]):
  15922. func_t = self.type_check_exp(func, env)
  15923. match func_t:
  15924. case FunctionType(params_t, return_t):
  15925. return IntType()
  15926. case _:
  15927. raise Exception('in arity, unexpected ' + repr(func_t))
  15928. case _:
  15929. return super().type_check_exp(e, env)
  15930. def check_exp(self, e, ty, env):
  15931. match e:
  15932. case Lambda(params, body):
  15933. e.has_type = ty
  15934. match ty:
  15935. case FunctionType(params_t, return_t):
  15936. new_env = env.copy().update(zip(params, params_t))
  15937. self.check_exp(body, return_t, new_env)
  15938. case _:
  15939. raise Exception('lambda does not have type ' + str(ty))
  15940. case Call(func, args):
  15941. func_t = self.type_check_exp(func, env)
  15942. match func_t:
  15943. case FunctionType(params_t, return_t):
  15944. for (arg, param_t) in zip(args, params_t):
  15945. self.check_exp(arg, param_t, env)
  15946. self.check_type_equal(return_t, ty, e)
  15947. case _:
  15948. raise Exception('type_check_exp: in call, unexpected ' + \
  15949. repr(func_t))
  15950. case _:
  15951. t = self.type_check_exp(e, env)
  15952. self.check_type_equal(t, ty, e)
  15953. \end{lstlisting}
  15954. \fi}
  15955. \end{tcolorbox}
  15956. \caption{Type checking \LangLam{}\python{, part 1}.}
  15957. \label{fig:type-check-Llambda}
  15958. \end{figure}
  15959. {\if\edition\pythonEd\pythonColor
  15960. \begin{figure}[tbp]
  15961. \begin{tcolorbox}[colback=white]
  15962. \begin{lstlisting}
  15963. def check_stmts(self, ss, return_ty, env):
  15964. if len(ss) == 0:
  15965. return
  15966. match ss[0]:
  15967. case FunctionDef(name, params, body, dl, returns, comment):
  15968. new_env = env.copy().update(params)
  15969. rt = self.check_stmts(body, returns, new_env)
  15970. self.check_stmts(ss[1:], return_ty, env)
  15971. case Return(value):
  15972. self.check_exp(value, return_ty, env)
  15973. case Assign([Name(id)], value):
  15974. if id in env:
  15975. self.check_exp(value, env[id], env)
  15976. else:
  15977. env[id] = self.type_check_exp(value, env)
  15978. self.check_stmts(ss[1:], return_ty, env)
  15979. case Assign([Subscript(tup, Constant(index), Store())], value):
  15980. tup_t = self.type_check_exp(tup, env)
  15981. match tup_t:
  15982. case TupleType(ts):
  15983. self.check_exp(value, ts[index], env)
  15984. case _:
  15985. raise Exception('expected a tuple, not ' + repr(tup_t))
  15986. self.check_stmts(ss[1:], return_ty, env)
  15987. case AnnAssign(Name(id), ty_annot, value, simple):
  15988. ss[0].annotation = ty_annot
  15989. if id in env:
  15990. self.check_type_equal(env[id], ty_annot)
  15991. else:
  15992. env[id] = ty_annot
  15993. self.check_exp(value, ty_annot, env)
  15994. self.check_stmts(ss[1:], return_ty, env)
  15995. case _:
  15996. self.type_check_stmts(ss, env)
  15997. def type_check(self, p):
  15998. match p:
  15999. case Module(body):
  16000. env = {}
  16001. for s in body:
  16002. match s:
  16003. case FunctionDef(name, params, bod, dl, returns, comment):
  16004. params_t = [t for (x,t) in params]
  16005. env[name] = FunctionType(params_t, returns)
  16006. self.check_stmts(body, int, env)
  16007. \end{lstlisting}
  16008. \end{tcolorbox}
  16009. \caption{Type checking the \key{lambda}'s in \LangLam{}, part 2.}
  16010. \label{fig:type-check-Llambda-part2}
  16011. \end{figure}
  16012. \fi}
  16013. \clearpage
  16014. \section{Assignment and Lexically Scoped Functions}
  16015. \label{sec:assignment-scoping}
  16016. The combination of lexically scoped functions and assignment to
  16017. variables raises a challenge with the flat-closure approach to
  16018. implementing lexically scoped functions. Consider the following
  16019. example in which function \code{f} has a free variable \code{x} that
  16020. is changed after \code{f} is created but before the call to \code{f}.
  16021. % loop_test_11.rkt
  16022. {\if\edition\racketEd
  16023. \begin{lstlisting}
  16024. (let ([x 0])
  16025. (let ([y 0])
  16026. (let ([z 20])
  16027. (let ([f (lambda: ([a : Integer]) : Integer (+ a (+ x z)))])
  16028. (begin
  16029. (set! x 10)
  16030. (set! y 12)
  16031. (f y))))))
  16032. \end{lstlisting}
  16033. \fi}
  16034. {\if\edition\pythonEd\pythonColor
  16035. % box_free_assign.py
  16036. \begin{lstlisting}
  16037. def g(z : int) -> int:
  16038. x = 0
  16039. y = 0
  16040. f : Callable[[int],int] = lambda a: a + x + z
  16041. x = 10
  16042. y = 12
  16043. return f(y)
  16044. print(g(20))
  16045. \end{lstlisting}
  16046. \fi} The correct output for this example is \code{42} because the call
  16047. to \code{f} is required to use the current value of \code{x} (which is
  16048. \code{10}). Unfortunately, the closure conversion pass
  16049. (section~\ref{sec:closure-conversion}) generates code for the
  16050. \code{lambda} that copies the old value of \code{x} into a
  16051. closure. Thus, if we naively applied closure conversion, the output of
  16052. this program would be \code{32}.
  16053. A first attempt at solving this problem would be to save a pointer to
  16054. \code{x} in the closure and change the occurrences of \code{x} inside
  16055. the lambda to dereference the pointer. Of course, this would require
  16056. assigning \code{x} to the stack and not to a register. However, the
  16057. problem goes a bit deeper.
  16058. Consider the following example that returns a function that refers to
  16059. a local variable of the enclosing function:
  16060. \begin{center}
  16061. \begin{minipage}{\textwidth}
  16062. {\if\edition\racketEd
  16063. \begin{lstlisting}
  16064. (define (f) : ( -> Integer)
  16065. (let ([x 0])
  16066. (let ([g (lambda: () : Integer x)])
  16067. (begin
  16068. (set! x 42)
  16069. g))))
  16070. ((f))
  16071. \end{lstlisting}
  16072. \fi}
  16073. {\if\edition\pythonEd\pythonColor
  16074. % counter.py
  16075. \begin{lstlisting}
  16076. def f():
  16077. x = 0
  16078. g = lambda: x
  16079. x = 42
  16080. return g
  16081. print(f()())
  16082. \end{lstlisting}
  16083. \fi}
  16084. \end{minipage}
  16085. \end{center}
  16086. In this example, the lifetime of \code{x} extends beyond the lifetime
  16087. of the call to \code{f}. Thus, if we were to store \code{x} on the
  16088. stack frame for the call to \code{f}, it would be gone by the time we
  16089. called \code{g}, leaving us with dangling pointers for
  16090. \code{x}. This example demonstrates that when a variable occurs free
  16091. inside a function, its lifetime becomes indefinite. Thus, the value of
  16092. the variable needs to live on the heap. The verb
  16093. \emph{box}\index{subject}{box} is often used for allocating a single
  16094. value on the heap, producing a pointer, and
  16095. \emph{unbox}\index{subject}{unbox} for dereferencing the pointer.
  16096. %
  16097. We introduce a new pass named \code{convert\_assignments} to address
  16098. this challenge.
  16099. %
  16100. \python{But before diving into that, we have one more
  16101. problem to discuss.}
  16102. {\if\edition\pythonEd\pythonColor
  16103. \section{Uniquify Variables}
  16104. \label{sec:uniquify-lambda}
  16105. With the addition of \code{lambda} we have a complication to deal
  16106. with: name shadowing. Consider the following program with a function
  16107. \code{f} that has a parameter \code{x}. Inside \code{f} there are two
  16108. \code{lambda} expressions. The first \code{lambda} has a parameter
  16109. that is also named \code{x}.
  16110. \begin{lstlisting}
  16111. def f(x:int, y:int) -> Callable[[int], int]:
  16112. g : Callable[[int],int] = (lambda x: x + y)
  16113. h : Callable[[int],int] = (lambda y: x + y)
  16114. x = input_int()
  16115. return g
  16116. print(f(0, 10)(32))
  16117. \end{lstlisting}
  16118. Many of our compiler passes rely on being able to connect variable
  16119. uses with their definitions using just the name of the
  16120. variable. However, in the example above, the name of the variable does
  16121. not uniquely determine its definition. To solve this problem we
  16122. recommend implementing a pass named \code{uniquify} that renames every
  16123. variable in the program to make sure that they are all unique.
  16124. The following shows the result of \code{uniquify} for the example
  16125. above. The \code{x} parameter of function \code{f} is renamed to
  16126. \code{x\_0}, and the \code{x} parameter of the first \code{lambda} is
  16127. renamed to \code{x\_4}.
  16128. \begin{lstlisting}
  16129. def f(x_0:int, y_1:int) -> Callable[[int], int] :
  16130. g_2 : Callable[[int], int] = (lambda x_4: x_4 + y_1)
  16131. h_3 : Callable[[int], int] = (lambda y_5: x_0 + y_5)
  16132. x_0 = input_int()
  16133. return g_2
  16134. def main() -> int :
  16135. print(f(0, 10)(32))
  16136. return 0
  16137. \end{lstlisting}
  16138. \fi} % pythonEd
  16139. %% \section{Reveal Functions}
  16140. %% \label{sec:reveal-functions-r5}
  16141. %% \racket{To support the \code{procedure-arity} operator we need to
  16142. %% communicate the arity of a function to the point of closure
  16143. %% creation.}
  16144. %% %
  16145. %% \python{In chapter~\ref{ch:Ldyn} we need to access the arity of a
  16146. %% function at runtime. Thus, we need to communicate the arity of a
  16147. %% function to the point of closure creation.}
  16148. %% %
  16149. %% We can accomplish this by replacing the $\FUNREF{\Var}{\Int}$ AST node with
  16150. %% one that has a second field for the arity: $\FUNREFARITY{\Var}{\Int}$.
  16151. %% \[
  16152. %% \begin{array}{lcl}
  16153. %% \Exp &::=& \FUNREFARITY{\Var}{\Int}
  16154. %% \end{array}
  16155. %% \]
  16156. \section{Assignment Conversion}
  16157. \label{sec:convert-assignments}
  16158. The purpose of the \code{convert\_assignments} pass is to address the
  16159. challenge regarding the interaction between variable assignments and
  16160. closure conversion. First we identify which variables need to be
  16161. boxed, and then we transform the program to box those variables. In
  16162. general, boxing introduces runtime overhead that we would like to
  16163. avoid, so we should box as few variables as possible. We recommend
  16164. boxing the variables in the intersection of the following two sets of
  16165. variables:
  16166. \begin{enumerate}
  16167. \item The variables that are free in a \code{lambda}.
  16168. \item The variables that appear on the left-hand side of an
  16169. assignment.
  16170. \end{enumerate}
  16171. The first condition is a must but the second condition is
  16172. conservative. It is possible to develop a more liberal condition using
  16173. static program analysis.
  16174. Consider again the first example from
  16175. section~\ref{sec:assignment-scoping}:
  16176. %
  16177. {\if\edition\racketEd
  16178. \begin{lstlisting}
  16179. (let ([x 0])
  16180. (let ([y 0])
  16181. (let ([z 20])
  16182. (let ([f (lambda: ([a : Integer]) : Integer (+ a (+ x z)))])
  16183. (begin
  16184. (set! x 10)
  16185. (set! y 12)
  16186. (f y))))))
  16187. \end{lstlisting}
  16188. \fi}
  16189. {\if\edition\pythonEd\pythonColor
  16190. \begin{lstlisting}
  16191. def g(z : int) -> int:
  16192. x = 0
  16193. y = 0
  16194. f : Callable[[int],int] = lambda a: a + x + z
  16195. x = 10
  16196. y = 12
  16197. return f(y)
  16198. print(g(20))
  16199. \end{lstlisting}
  16200. \fi}
  16201. %
  16202. \noindent The variables \code{x} and \code{y} appear on the left-hand
  16203. side of assignments. The variables \code{x} and \code{z} occur free
  16204. inside the \code{lambda}. Thus, variable \code{x} needs to be boxed
  16205. but not \code{y} or \code{z}. The boxing of \code{x} consists of
  16206. three transformations: initialize \code{x} with a tuple whose element
  16207. is uninitialized, replace reads from \code{x} with tuple reads, and
  16208. replace each assignment to \code{x} with a tuple write. The output of
  16209. \code{convert\_assignments} for this example is as follows:
  16210. %
  16211. {\if\edition\racketEd
  16212. \begin{lstlisting}
  16213. (define (main) : Integer
  16214. (let ([x0 (vector 0)])
  16215. (let ([y1 0])
  16216. (let ([z2 20])
  16217. (let ([f4 (lambda: ([a3 : Integer]) : Integer
  16218. (+ a3 (+ (vector-ref x0 0) z2)))])
  16219. (begin
  16220. (vector-set! x0 0 10)
  16221. (set! y1 12)
  16222. (f4 y1)))))))
  16223. \end{lstlisting}
  16224. \fi}
  16225. %
  16226. {\if\edition\pythonEd\pythonColor
  16227. \begin{lstlisting}
  16228. def g(z : int)-> int:
  16229. x = (uninitialized(int),)
  16230. x[0] = 0
  16231. y = 0
  16232. f : Callable[[int], int] = (lambda a: a + x[0] + z)
  16233. x[0] = 10
  16234. y = 12
  16235. return f(y)
  16236. def main() -> int:
  16237. print(g(20))
  16238. return 0
  16239. \end{lstlisting}
  16240. \fi}
  16241. To compute the free variables of all the \code{lambda} expressions, we
  16242. recommend defining the following two auxiliary functions:
  16243. \begin{enumerate}
  16244. \item \code{free\_variables} computes the free variables of an expression, and
  16245. \item \code{free\_in\_lambda} collects all the variables that are
  16246. free in any of the \code{lambda} expressions, using
  16247. \code{free\_variables} in the case for each \code{lambda}.
  16248. \end{enumerate}
  16249. {\if\edition\racketEd
  16250. %
  16251. To compute the variables that are assigned to, we recommend updating
  16252. the \code{collect-set!} function that we introduced in
  16253. section~\ref{sec:uncover-get-bang} to include the new AST forms such
  16254. as \code{Lambda}.
  16255. %
  16256. \fi}
  16257. {\if\edition\pythonEd\pythonColor
  16258. %
  16259. To compute the variables that are assigned to, we recommend defining
  16260. an auxiliary function named \code{assigned\_vars\_stmt} that returns
  16261. the set of variables that occur in the left-hand side of an assignment
  16262. statement and otherwise returns the empty set.
  16263. %
  16264. \fi}
  16265. Let $\mathit{AF}$ be the intersection of the set of variables that are
  16266. free in a \code{lambda} and that are assigned to in the enclosing
  16267. function definition.
  16268. Next we discuss the \code{convert\_assignments} pass. In the case for
  16269. $\VAR{x}$, if $x$ is in $\mathit{AF}$, then unbox it by translating
  16270. $\VAR{x}$ to a tuple read.
  16271. %
  16272. {\if\edition\racketEd
  16273. \begin{lstlisting}
  16274. (Var |$x$|)
  16275. |$\Rightarrow$|
  16276. (Prim 'vector-ref (list (Var |$x$|) (Int 0)))
  16277. \end{lstlisting}
  16278. \fi}
  16279. %
  16280. {\if\edition\pythonEd\pythonColor
  16281. \begin{lstlisting}
  16282. Name(|$x$|)
  16283. |$\Rightarrow$|
  16284. Subscript(Name(|$x$|), Constant(0), Load())
  16285. \end{lstlisting}
  16286. \fi}
  16287. %
  16288. \noindent In the case for assignment, recursively process the
  16289. right-hand side \itm{rhs} to obtain \itm{rhs'}. If the left-hand side
  16290. $x$ is in $\mathit{AF}$, translate the assignment into a tuple write
  16291. as follows:
  16292. %
  16293. {\if\edition\racketEd
  16294. \begin{lstlisting}
  16295. (SetBang |$x$| |$\itm{rhs}$|)
  16296. |$\Rightarrow$|
  16297. (Prim 'vector-set! (list (Var |$x$|) (Int 0) |$\itm{rhs'}$|))
  16298. \end{lstlisting}
  16299. \fi}
  16300. {\if\edition\pythonEd\pythonColor
  16301. \begin{lstlisting}
  16302. Assign([Name(|$x$|)],|$\itm{rhs}$|)
  16303. |$\Rightarrow$|
  16304. Assign([Subscript(Name(|$x$|), Constant(0), Store())], |$\itm{rhs'}$|)
  16305. \end{lstlisting}
  16306. \fi}
  16307. %
  16308. {\if\edition\racketEd
  16309. The case for \code{Lambda} is nontrivial, but it is similar to the
  16310. case for function definitions, which we discuss next.
  16311. \fi}
  16312. %
  16313. To translate a function definition, we first compute $\mathit{AF}$,
  16314. the intersection of the variables that are free in a \code{lambda} and
  16315. that are assigned to. We then apply assignment conversion to the body
  16316. of the function definition. Finally, we box the parameters of this
  16317. function definition that are in $\mathit{AF}$. For example,
  16318. the parameter \code{x} of the following function \code{g}
  16319. needs to be boxed:
  16320. {\if\edition\racketEd
  16321. \begin{lstlisting}
  16322. (define (g [x : Integer]) : Integer
  16323. (let ([f (lambda: ([a : Integer]) : Integer (+ a x))])
  16324. (begin
  16325. (set! x 10)
  16326. (f 32))))
  16327. \end{lstlisting}
  16328. \fi}
  16329. %
  16330. {\if\edition\pythonEd\pythonColor
  16331. \begin{lstlisting}
  16332. def g(x : int) -> int:
  16333. f : Callable[[int],int] = lambda a: a + x
  16334. x = 10
  16335. return f(32)
  16336. \end{lstlisting}
  16337. \fi}
  16338. %
  16339. \noindent We box parameter \code{x} by creating a local variable named
  16340. \code{x} that is initialized to a tuple whose contents is the value of
  16341. the parameter, which is renamed to \code{x\_0}.
  16342. %
  16343. {\if\edition\racketEd
  16344. \begin{lstlisting}
  16345. (define (g [x_0 : Integer]) : Integer
  16346. (let ([x (vector x_0)])
  16347. (let ([f (lambda: ([a : Integer]) : Integer
  16348. (+ a (vector-ref x 0)))])
  16349. (begin
  16350. (vector-set! x 0 10)
  16351. (f 32)))))
  16352. \end{lstlisting}
  16353. \fi}
  16354. %
  16355. {\if\edition\pythonEd\pythonColor
  16356. \begin{lstlisting}
  16357. def g(x_0 : int)-> int:
  16358. x = (x_0,)
  16359. f : Callable[[int], int] = (lambda a: a + x[0])
  16360. x[0] = 10
  16361. return f(32)
  16362. \end{lstlisting}
  16363. \fi}
  16364. \section{Closure Conversion}
  16365. \label{sec:closure-conversion}
  16366. \index{subject}{closure conversion}
  16367. The compiling of lexically scoped functions into top-level function
  16368. definitions and flat closures is accomplished in the pass
  16369. \code{convert\_to\_closures} that comes after \code{reveal\_functions}
  16370. and before \code{limit\_functions}.
  16371. As usual, we implement the pass as a recursive function over the
  16372. AST. The interesting cases are for \key{lambda} and function
  16373. application. We transform a \key{lambda} expression into an expression
  16374. that creates a closure, that is, a tuple for which the first element
  16375. is a function pointer and the rest of the elements are the values of
  16376. the free variables of the \key{lambda}.
  16377. %
  16378. However, we use the \code{Closure} AST node instead of using a tuple
  16379. so that we can record the arity.
  16380. %
  16381. In the generated code that follows, \itm{fvs} is the list of free
  16382. variables of the lambda and \itm{name} is a unique symbol generated to
  16383. identify the lambda.
  16384. %
  16385. \racket{The \itm{arity} is the number of parameters (the length of
  16386. \itm{ps}).}
  16387. %
  16388. {\if\edition\racketEd
  16389. \begin{lstlisting}
  16390. (Lambda |\itm{ps}| |\itm{rt}| |\itm{body}|)
  16391. |$\Rightarrow$|
  16392. (Closure |\itm{arity}| (cons (FunRef |\itm{name}| |\itm{arity}|) |\itm{fvs}|))
  16393. \end{lstlisting}
  16394. \fi}
  16395. %
  16396. {\if\edition\pythonEd\pythonColor
  16397. \begin{lstlisting}
  16398. Lambda([|$x_1,\ldots,x_n$|], |\itm{body}|)
  16399. |$\Rightarrow$|
  16400. Closure(|$n$|, [FunRef(|\itm{name}|, |$n$|), |$\itm{fvs}_1$, \ldots, $\itm{fvs}_m$|])
  16401. \end{lstlisting}
  16402. \fi}
  16403. %
  16404. In addition to transforming each \key{Lambda} AST node into a
  16405. tuple, we create a top-level function definition for each
  16406. \key{Lambda}, as shown next.\\
  16407. \begin{minipage}{0.8\textwidth}
  16408. {\if\edition\racketEd
  16409. \begin{lstlisting}
  16410. (Def |\itm{name}| ([clos : (Vector _ |\itm{fvts}| ...)] |\itm{ps'}| ...) |\itm{rt'}|
  16411. (Let |$\itm{fvs}_1$| (Prim 'vector-ref (list (Var clos) (Int 1)))
  16412. ...
  16413. (Let |$\itm{fvs}_n$| (Prim 'vector-ref (list (Var clos) (Int |$n$|)))
  16414. |\itm{body'}|)...))
  16415. \end{lstlisting}
  16416. \fi}
  16417. {\if\edition\pythonEd\pythonColor
  16418. \begin{lstlisting}
  16419. def |\itm{name}|(clos : |\itm{closTy}|, |$\itm{x}_1 : T'_1$, \ldots, $\itm{x}_n : T'_n$|) -> |\itm{rt'}|:
  16420. |$\itm{fvs}_1$| = clos[1]
  16421. |$\ldots$|
  16422. |$\itm{fvs}_m$| = clos[|$m$|]
  16423. |\itm{body'}|
  16424. \end{lstlisting}
  16425. \fi}
  16426. \end{minipage}\\
  16427. %
  16428. The \code{clos} parameter refers to the closure. The type
  16429. \itm{closTy} is a tuple type for which the first element type is
  16430. \python{\code{Bottom()}}\racket{\code{\_} (the dummy type)} and the
  16431. rest of the element types are the types of the free variables in the
  16432. lambda. We use \python{\code{Bottom()}}\racket{\code{\_}} because it
  16433. is nontrivial to give a type to the function in the closure's
  16434. type.\footnote{To give an accurate type to a closure, we would need to
  16435. add existential types to the type checker~\citep{Minamide:1996ys}.}
  16436. %
  16437. \racket{Translate the type
  16438. annotations in \itm{ps} and the return type \itm{rt}, as discussed in
  16439. the next paragraph, to obtain \itm{ps'} and \itm{rt'}.}%
  16440. \python{The \code{has\_type} field of the \code{Lambda} AST node
  16441. is of the form \code{FunctionType([$x_1:T_1,\ldots, x_n:T_n$], $rt$)}.
  16442. Translate the parameter types $T_1,\ldots,T_n$ and return type $\itm{rt}$
  16443. to obtain $T'_1,\ldots, T'_n$ and $\itm{rt'}$.}
  16444. %% The dummy type is considered to be equal to any other type during type
  16445. %% checking.
  16446. The free variables become local variables that are initialized with
  16447. their values in the closure.
  16448. Closure conversion turns every function into a tuple, so the type
  16449. annotations in the program must also be translated. We recommend
  16450. defining an auxiliary recursive function for this purpose. Function
  16451. types should be translated as follows:
  16452. %
  16453. {\if\edition\racketEd
  16454. \begin{lstlisting}
  16455. (|$T_1, \ldots, T_n$| -> |$T_r$|)
  16456. |$\Rightarrow$|
  16457. (Vector ((Vector) |$T'_1, \ldots, T'_n$| -> |$T'_r$|))
  16458. \end{lstlisting}
  16459. \fi}
  16460. {\if\edition\pythonEd\pythonColor
  16461. \begin{lstlisting}
  16462. FunctionType([|$T_1, \ldots, T_n$|], |$T_r$|)
  16463. |$\Rightarrow$|
  16464. TupleType([FunctionType([TupleType([]), |$T'_1, \ldots, T'_n$|], |$T'_r$|)])
  16465. \end{lstlisting}
  16466. \fi}
  16467. %
  16468. This type indicates that the first thing in the tuple is a
  16469. function. The first parameter of the function is a tuple (a closure)
  16470. and the rest of the parameters are the ones from the original
  16471. function, with types $T'_1, \ldots, T'_n$. The type for the closure
  16472. omits the types of the free variables because (1) those types are not
  16473. available in this context, and (2) we do not need them in the code that
  16474. is generated for function application. So this type describes only the
  16475. first component of the closure tuple. At runtime the tuple may have
  16476. more components, but we ignore them at this point.
  16477. We transform function application into code that retrieves the
  16478. function from the closure and then calls the function, passing the
  16479. closure as the first argument. We place $e'$ in a temporary variable
  16480. to avoid code duplication.
  16481. \begin{center}
  16482. \begin{minipage}{\textwidth}
  16483. {\if\edition\racketEd
  16484. \begin{lstlisting}
  16485. (Apply |$e$| |$\itm{es}$|)
  16486. |$\Rightarrow$|
  16487. (Let |$\itm{tmp}$| |$e'$|
  16488. (Apply (Prim 'vector-ref (list (Var |$\itm{tmp}$|) (Int 0))) (cons (Var |$\itm{tmp}$|) |$\itm{es'}$|)))
  16489. \end{lstlisting}
  16490. \fi}
  16491. %
  16492. {\if\edition\pythonEd\pythonColor
  16493. \begin{lstlisting}
  16494. Call(|$e$|, [|$e_1, \ldots, e_n$|])
  16495. |$\Rightarrow$|
  16496. Begin([Assign([|$\itm{tmp}$|], |$e'$|)],
  16497. Call(Subscript(Name(|$\itm{tmp}$|), Constant(0)),
  16498. [|$\itm{tmp}$|, |$e'_1, \ldots, e'_n$|]))
  16499. \end{lstlisting}
  16500. \fi}
  16501. \end{minipage}
  16502. \end{center}
  16503. There is also the question of what to do with references to top-level
  16504. function definitions. To maintain a uniform translation of function
  16505. application, we turn function references into closures.
  16506. \begin{tabular}{lll}
  16507. \begin{minipage}{0.2\textwidth}
  16508. {\if\edition\racketEd
  16509. \begin{lstlisting}
  16510. (FunRef |$f$| |$n$|)
  16511. \end{lstlisting}
  16512. \fi}
  16513. {\if\edition\pythonEd\pythonColor
  16514. \begin{lstlisting}
  16515. FunRef(|$f$|, |$n$|)
  16516. \end{lstlisting}
  16517. \fi}
  16518. \end{minipage}
  16519. &
  16520. $\Rightarrow\qquad$
  16521. &
  16522. \begin{minipage}{0.5\textwidth}
  16523. {\if\edition\racketEd
  16524. \begin{lstlisting}
  16525. (Closure |$n$| (FunRef |$f$| |$n$|) '())
  16526. \end{lstlisting}
  16527. \fi}
  16528. {\if\edition\pythonEd\pythonColor
  16529. \begin{lstlisting}
  16530. Closure(|$n$|, [FunRef(|$f$| |$n$|)])
  16531. \end{lstlisting}
  16532. \fi}
  16533. \end{minipage}
  16534. \end{tabular} \\
  16535. We no longer need the annotated assignment statement \code{AnnAssign}
  16536. to support the type checking of \code{lambda} expressions, so we
  16537. translate it to a regular \code{Assign} statement.
  16538. The top-level function definitions need to be updated to take an extra
  16539. closure parameter, but that parameter is ignored in the body of those
  16540. functions.
  16541. \subsection{An Example Translation}
  16542. \label{sec:example-lambda}
  16543. Figure~\ref{fig:lexical-functions-example} shows the result of
  16544. \code{reveal\_functions} and \code{convert\_to\_closures} for the example
  16545. program demonstrating lexical scoping that we discussed at the
  16546. beginning of this chapter.
  16547. \begin{figure}[tbp]
  16548. \begin{tcolorbox}[colback=white]
  16549. \begin{minipage}{0.8\textwidth}
  16550. {\if\edition\racketEd
  16551. % tests/lambda_test_6.rkt
  16552. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  16553. (define (f6 [x7 : Integer]) : (Integer -> Integer)
  16554. (let ([y8 4])
  16555. (lambda: ([z9 : Integer]) : Integer
  16556. (+ x7 (+ y8 z9)))))
  16557. (define (main) : Integer
  16558. (let ([g0 ((fun-ref f6 1) 5)])
  16559. (let ([h1 ((fun-ref f6 1) 3)])
  16560. (+ (g0 11) (h1 15)))))
  16561. \end{lstlisting}
  16562. $\Rightarrow$
  16563. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  16564. (define (f6 [fvs4 : _] [x7 : Integer]) : (Vector ((Vector _) Integer -> Integer))
  16565. (let ([y8 4])
  16566. (closure 1 (list (fun-ref lambda2 1) x7 y8))))
  16567. (define (lambda2 [fvs3 : (Vector _ Integer Integer)] [z9 : Integer]) : Integer
  16568. (let ([x7 (vector-ref fvs3 1)])
  16569. (let ([y8 (vector-ref fvs3 2)])
  16570. (+ x7 (+ y8 z9)))))
  16571. (define (main) : Integer
  16572. (let ([g0 (let ([clos5 (closure 1 (list (fun-ref f6 1)))])
  16573. ((vector-ref clos5 0) clos5 5))])
  16574. (let ([h1 (let ([clos6 (closure 1 (list (fun-ref f6 1)))])
  16575. ((vector-ref clos6 0) clos6 3))])
  16576. (+ ((vector-ref g0 0) g0 11) ((vector-ref h1 0) h1 15)))))
  16577. \end{lstlisting}
  16578. \fi}
  16579. %
  16580. {\if\edition\pythonEd\pythonColor
  16581. % free_var.py
  16582. \begin{lstlisting}
  16583. def f(x: int) -> Callable[[int],int]:
  16584. y = 4
  16585. return lambda z: x + y + z
  16586. g = f(5)
  16587. h = f(3)
  16588. print(g(11) + h(15))
  16589. \end{lstlisting}
  16590. $\Rightarrow$
  16591. \begin{lstlisting}
  16592. def lambda_0(fvs_1: tuple[bot,int,tuple[int]], z: int) -> int:
  16593. x = fvs_1[1]
  16594. y = fvs_1[2]
  16595. return (x + y[0] + z)
  16596. def f(fvs_2: tuple[bot], x: int) -> tuple[Callable[[tuple[],int],int]]:
  16597. y = (uninitialized(int),)
  16598. y[0] = 4
  16599. return closure{1}({lambda_0}, x, y)
  16600. def main() -> int:
  16601. g = (begin: clos_3 = closure{1}({f})
  16602. clos_3[0](clos_3, 5))
  16603. h = (begin: clos_4 = closure{1}({f})
  16604. clos_4[0](clos_4, 3))
  16605. print((begin: clos_5 = g
  16606. clos_5[0](clos_5, 11))
  16607. + (begin: clos_6 = h
  16608. clos_6[0](clos_6, 15)))
  16609. return 0
  16610. \end{lstlisting}
  16611. \fi}
  16612. \end{minipage}
  16613. \end{tcolorbox}
  16614. \caption{Example of closure conversion.}
  16615. \label{fig:lexical-functions-example}
  16616. \end{figure}
  16617. \begin{exercise}\normalfont\normalsize
  16618. Expand your compiler to handle \LangLam{} as outlined in this chapter.
  16619. Create five new programs that use \key{lambda} functions and make use of
  16620. lexical scoping. Test your compiler on these new programs and all
  16621. your previously created test programs.
  16622. \end{exercise}
  16623. \section{Expose Allocation}
  16624. \label{sec:expose-allocation-r5}
  16625. Compile the $\CLOSURE{\itm{arity}}{\Exp^{*}}$ form into code that
  16626. allocates and initializes a tuple, similar to the translation of the
  16627. tuple creation in section~\ref{sec:expose-allocation}. The main
  16628. difference is replacing the use of \ALLOC{\itm{len}}{\itm{type}} with
  16629. \ALLOCCLOS{\itm{len}}{\itm{type}}{\itm{arity}}. The result type of
  16630. the translation of $\CLOSURE{\itm{arity}}{\Exp^{*}}$ should be a tuple
  16631. type, but only a single element tuple type. The types of the tuple
  16632. elements that correspond to the free variables of the closure should
  16633. not appear in the tuple type. The new AST class \code{UncheckedCast}
  16634. can be used to adjust the result type.
  16635. \section{Explicate Control and \LangCLam{}}
  16636. \label{sec:explicate-r5}
  16637. The output language of \code{explicate\_control} is \LangCLam{}; the
  16638. definition of its abstract syntax is shown in
  16639. figure~\ref{fig:Clam-syntax}.
  16640. %
  16641. \racket{The only differences with respect to \LangCFun{} are the
  16642. addition of the \code{AllocateClosure} form to the grammar for
  16643. $\Exp$ and the \code{procedure-arity} operator. The handling of
  16644. \code{AllocateClosure} in the \code{explicate\_control} pass is
  16645. similar to the handling of other expressions such as primitive
  16646. operators.}
  16647. %
  16648. \python{The differences with respect to \LangCFun{} are the
  16649. additions of \code{Uninitialized}, \code{AllocateClosure},
  16650. and \code{arity} to the grammar for $\Exp$. The handling of them in the
  16651. \code{explicate\_control} pass is similar to the handling of other
  16652. expressions such as primitive operators.}
  16653. \newcommand{\ClambdaASTRacket}{
  16654. \begin{array}{lcl}
  16655. \Exp &::= & \ALLOCCLOS{\Int}{\Type}{\Int} \\
  16656. \itm{op} &::= & \code{procedure-arity}
  16657. \end{array}
  16658. }
  16659. \newcommand{\ClambdaASTPython}{
  16660. \begin{array}{lcl}
  16661. \Exp &::=& \key{Uninitialized}\LP \Type \RP
  16662. \MID \key{AllocateClosure}\LP\itm{len},\Type, \itm{arity}\RP \\
  16663. &\MID& \ARITY{\Atm}
  16664. \MID \key{UncheckedCast}\LP\Exp,\Type\RP
  16665. \end{array}
  16666. }
  16667. \begin{figure}[tp]
  16668. \begin{tcolorbox}[colback=white]
  16669. \small
  16670. {\if\edition\racketEd
  16671. \[
  16672. \begin{array}{l}
  16673. \gray{\CvarASTRacket} \\ \hline
  16674. \gray{\CifASTRacket} \\ \hline
  16675. \gray{\CloopASTRacket} \\ \hline
  16676. \gray{\CtupASTRacket} \\ \hline
  16677. \gray{\CfunASTRacket} \\ \hline
  16678. \ClambdaASTRacket \\
  16679. \begin{array}{lcl}
  16680. \LangCLamM{} & ::= & \PROGRAMDEFS{\itm{info}}{\Def^{*}}
  16681. \end{array}
  16682. \end{array}
  16683. \]
  16684. \fi}
  16685. {\if\edition\pythonEd\pythonColor
  16686. \[
  16687. \begin{array}{l}
  16688. \gray{\CifASTPython} \\ \hline
  16689. \gray{\CtupASTPython} \\ \hline
  16690. \gray{\CfunASTPython} \\ \hline
  16691. \ClambdaASTPython \\
  16692. \begin{array}{lcl}
  16693. \LangCLamM{} & ::= & \CPROGRAMDEFS{\LS\Def\code{,}\ldots\RS}
  16694. \end{array}
  16695. \end{array}
  16696. \]
  16697. \fi}
  16698. \end{tcolorbox}
  16699. \caption{The abstract syntax of \LangCLam{}, extending \LangCFun{} (figure~\ref{fig:c3-syntax}).}
  16700. \label{fig:Clam-syntax}
  16701. \index{subject}{Clambda@\LangCLam{} abstract syntax}
  16702. \end{figure}
  16703. \section{Select Instructions}
  16704. \label{sec:select-instructions-Llambda}
  16705. \index{subject}{select instructions}
  16706. Compile \ALLOCCLOS{\itm{len}}{\itm{type}}{\itm{arity}} in almost the
  16707. same way as the \ALLOC{\itm{len}}{\itm{type}} form
  16708. (section~\ref{sec:select-instructions-gc}). The only difference is
  16709. that you should place the \itm{arity} in the tag that is stored at
  16710. position $0$ of the tuple. Recall that in
  16711. section~\ref{sec:select-instructions-gc} a portion of the 64-bit tag
  16712. was not used. We store the arity in the $5$ bits starting at position
  16713. $58$.
  16714. \racket{Compile the \code{procedure-arity} operator into a sequence of
  16715. instructions that access the tag from position $0$ of the vector and
  16716. extract the $5$ bits starting at position $58$ from the tag.}
  16717. %
  16718. \python{Compile a call to the \code{arity} operator to a sequence of
  16719. instructions that access the tag from position $0$ of the tuple
  16720. (representing a closure) and extract the $5$ bits starting at position
  16721. $58$ from the tag.}
  16722. Figure~\ref{fig:Llambda-passes} provides an overview of the passes
  16723. needed for the compilation of \LangLam{}.
  16724. \begin{figure}[bthp]
  16725. \begin{tcolorbox}[colback=white]
  16726. {\if\edition\racketEd
  16727. \begin{tikzpicture}[baseline=(current bounding box.center),scale=0.85]
  16728. \node (Lfun) at (0,2) {\large \LangLam{}};
  16729. \node (Lfun-2) at (4,2) {\large \LangLam{}};
  16730. \node (Lfun-3) at (8,2) {\large \LangLam{}};
  16731. \node (F1-0) at (12,2) {\large \LangLamFunRef{}};
  16732. \node (F1-1) at (12,0) {\large \LangLamFunRef{}};
  16733. \node (F1-2) at (8,0) {\large \LangFunRef{}};
  16734. \node (F1-3) at (4,0) {\large \LangFunRef{}};
  16735. \node (F1-4) at (0,0) {\large \LangFunRefAlloc{}};
  16736. \node (F1-5) at (0,-2) {\large \LangFunRefAlloc{}};
  16737. \node (F1-6) at (4,-2) {\large \LangFunANF{}};
  16738. \node (C3-2) at (8,-2) {\large \LangCFun{}};
  16739. \node (x86-2) at (0,-5) {\large \LangXIndCallVar{}};
  16740. \node (x86-2-1) at (0,-7) {\large \LangXIndCallVar{}};
  16741. \node (x86-2-2) at (4,-7) {\large \LangXIndCallVar{}};
  16742. \node (x86-3) at (4,-5) {\large \LangXIndCallVar{}};
  16743. \node (x86-4) at (8,-5) {\large \LangXIndCall{}};
  16744. \node (x86-5) at (8,-7) {\large \LangXIndCall{}};
  16745. \path[->,bend left=15] (Lfun) edge [above] node
  16746. {\ttfamily\footnotesize shrink} (Lfun-2);
  16747. \path[->,bend left=15] (Lfun-2) edge [above] node
  16748. {\ttfamily\footnotesize uniquify} (Lfun-3);
  16749. \path[->,bend left=15] (Lfun-3) edge [above] node
  16750. {\ttfamily\footnotesize reveal\_functions} (F1-0);
  16751. \path[->,bend left=15] (F1-0) edge [left] node
  16752. {\ttfamily\footnotesize convert\_assignments} (F1-1);
  16753. \path[->,bend left=15] (F1-1) edge [below] node
  16754. {\ttfamily\footnotesize convert\_to\_closures} (F1-2);
  16755. \path[->,bend right=15] (F1-2) edge [above] node
  16756. {\ttfamily\footnotesize limit\_functions} (F1-3);
  16757. \path[->,bend right=15] (F1-3) edge [above] node
  16758. {\ttfamily\footnotesize expose\_allocation} (F1-4);
  16759. \path[->,bend left=15] (F1-4) edge [right] node
  16760. {\ttfamily\footnotesize uncover\_get!} (F1-5);
  16761. \path[->,bend right=15] (F1-5) edge [below] node
  16762. {\ttfamily\footnotesize remove\_complex\_operands} (F1-6);
  16763. \path[->,bend left=15] (F1-6) edge [above] node
  16764. {\ttfamily\footnotesize explicate\_control} (C3-2);
  16765. \path[->] (C3-2) edge [right] node
  16766. {\ttfamily\footnotesize \ \ select\_instructions} (x86-2);
  16767. \path[->,bend right=15] (x86-2) edge [right] node
  16768. {\ttfamily\footnotesize uncover\_live} (x86-2-1);
  16769. \path[->,bend right=15] (x86-2-1) edge [below] node
  16770. {\ttfamily\footnotesize build\_interference} (x86-2-2);
  16771. \path[->,bend right=15] (x86-2-2) edge [right] node
  16772. {\ttfamily\footnotesize allocate\_registers} (x86-3);
  16773. \path[->,bend left=15] (x86-3) edge [above] node
  16774. {\ttfamily\footnotesize patch\_instructions} (x86-4);
  16775. \path[->,bend left=15] (x86-4) edge [right] node
  16776. {\ttfamily\footnotesize prelude\_and\_conclusion} (x86-5);
  16777. \end{tikzpicture}
  16778. \fi}
  16779. {\if\edition\pythonEd\pythonColor
  16780. \begin{tikzpicture}[baseline=(current bounding box.center),scale=0.85]
  16781. \node (Lfun) at (0,2) {\large \LangLam{}};
  16782. \node (Lfun-2) at (4,2) {\large \LangLam{}};
  16783. \node (Lfun-3) at (8,2) {\large \LangLam{}};
  16784. \node (F1-0) at (12,2) {\large \LangLamFunRef{}};
  16785. \node (F1-1) at (12,0) {\large \LangLamFunRef{}};
  16786. \node (F1-2) at (8,0) {\large \LangFunRef{}};
  16787. \node (F1-3) at (4,0) {\large \LangFunRef{}};
  16788. \node (F1-5) at (0,0) {\large \LangFunRefAlloc{}};
  16789. \node (F1-6) at (0,-2) {\large \LangFunANF{}};
  16790. \node (C3-2) at (0,-4) {\large \LangCFun{}};
  16791. \node (x86-2) at (0,-6) {\large \LangXIndCallVar{}};
  16792. \node (x86-3) at (4,-6) {\large \LangXIndCallVar{}};
  16793. \node (x86-4) at (8,-6) {\large \LangXIndCall{}};
  16794. \node (x86-5) at (12,-6) {\large \LangXIndCall{}};
  16795. \path[->,bend left=15] (Lfun) edge [above] node
  16796. {\ttfamily\footnotesize shrink} (Lfun-2);
  16797. \path[->,bend left=15] (Lfun-2) edge [above] node
  16798. {\ttfamily\footnotesize uniquify} (Lfun-3);
  16799. \path[->,bend left=15] (Lfun-3) edge [above] node
  16800. {\ttfamily\footnotesize reveal\_functions} (F1-0);
  16801. \path[->,bend left=15] (F1-0) edge [left] node
  16802. {\ttfamily\footnotesize convert\_assignments} (F1-1);
  16803. \path[->,bend left=15] (F1-1) edge [below] node
  16804. {\ttfamily\footnotesize convert\_to\_closures} (F1-2);
  16805. \path[->,bend left=15] (F1-2) edge [below] node
  16806. {\ttfamily\footnotesize limit\_functions} (F1-3);
  16807. \path[->,bend right=15] (F1-3) edge [above] node
  16808. {\ttfamily\footnotesize expose\_allocation} (F1-5);
  16809. \path[->,bend right=15] (F1-5) edge [right] node
  16810. {\ttfamily\footnotesize remove\_complex\_operands} (F1-6);
  16811. \path[->,bend left=15] (F1-6) edge [right] node
  16812. {\ttfamily\footnotesize explicate\_control} (C3-2);
  16813. \path[->,bend right=15] (C3-2) edge [right] node
  16814. {\ttfamily\footnotesize select\_instructions} (x86-2);
  16815. \path[->,bend right=15] (x86-2) edge [below] node
  16816. {\ttfamily\footnotesize assign\_homes} (x86-3);
  16817. \path[->,bend right=15] (x86-3) edge [below] node
  16818. {\ttfamily\footnotesize patch\_instructions} (x86-4);
  16819. \path[->,bend left=15] (x86-4) edge [above] node
  16820. {\ttfamily\footnotesize prelude\_and\_conclusion} (x86-5);
  16821. \end{tikzpicture}
  16822. \fi}
  16823. \end{tcolorbox}
  16824. \caption{Diagram of the passes for \LangLam{}, a language with lexically scoped
  16825. functions.}
  16826. \label{fig:Llambda-passes}
  16827. \end{figure}
  16828. \clearpage
  16829. \section{Challenge: Optimize Closures}
  16830. \label{sec:optimize-closures}
  16831. In this chapter we compile lexically scoped functions into a
  16832. relatively efficient representation: flat closures. However, even this
  16833. representation comes with some overhead. For example, consider the
  16834. following program with a function \code{tail\_sum} that does not have
  16835. any free variables and where all the uses of \code{tail\_sum} are in
  16836. applications in which we know that only \code{tail\_sum} is being applied
  16837. (and not any other functions):
  16838. \begin{center}
  16839. \begin{minipage}{0.95\textwidth}
  16840. {\if\edition\racketEd
  16841. \begin{lstlisting}
  16842. (define (tail_sum [n : Integer] [s : Integer]) : Integer
  16843. (if (eq? n 0)
  16844. s
  16845. (tail_sum (- n 1) (+ n s))))
  16846. (+ (tail_sum 3 0) 36)
  16847. \end{lstlisting}
  16848. \fi}
  16849. {\if\edition\pythonEd\pythonColor
  16850. \begin{lstlisting}
  16851. def tail_sum(n : int, s : int) -> int:
  16852. if n == 0:
  16853. return s
  16854. else:
  16855. return tail_sum(n - 1, n + s)
  16856. print(tail_sum(3, 0) + 36)
  16857. \end{lstlisting}
  16858. \fi}
  16859. \end{minipage}
  16860. \end{center}
  16861. As described in this chapter, we uniformly apply closure conversion to
  16862. all functions, obtaining the following output for this program:
  16863. \begin{center}
  16864. \begin{minipage}{0.95\textwidth}
  16865. {\if\edition\racketEd
  16866. \begin{lstlisting}
  16867. (define (tail_sum1 [fvs5 : _] [n2 : Integer] [s3 : Integer]) : Integer
  16868. (if (eq? n2 0)
  16869. s3
  16870. (let ([clos4 (closure (list (fun-ref tail_sum1 2)))])
  16871. ((vector-ref clos4 0) clos4 (+ n2 -1) (+ n2 s3)))))
  16872. (define (main) : Integer
  16873. (+ (let ([clos6 (closure (list (fun-ref tail_sum1 2)))])
  16874. ((vector-ref clos6 0) clos6 3 0)) 27))
  16875. \end{lstlisting}
  16876. \fi}
  16877. {\if\edition\pythonEd\pythonColor
  16878. \begin{lstlisting}
  16879. def tail_sum(fvs_3:bot,n_0:int,s_1:int) -> int :
  16880. if n_0 == 0:
  16881. return s_1
  16882. else:
  16883. return (begin: clos_2 = (tail_sum,)
  16884. clos_2[0](clos_2, n_0 - 1, n_0 + s_1))
  16885. def main() -> int :
  16886. print((begin: clos_4 = (tail_sum,)
  16887. clos_4[0](clos_4, 3, 0)) + 36)
  16888. return 0
  16889. \end{lstlisting}
  16890. \fi}
  16891. \end{minipage}
  16892. \end{center}
  16893. If this program were compiled according to the previous chapter, there
  16894. would be no allocation and the calls to \code{tail\_sum} would be
  16895. direct calls. In contrast, the program presented here allocates memory
  16896. for each closure and the calls to \code{tail\_sum} are indirect. These
  16897. two differences incur considerable overhead in a program such as this,
  16898. in which the allocations and indirect calls occur inside a tight loop.
  16899. One might think that this problem is trivial to solve: can't we just
  16900. recognize calls of the form \APPLY{\FUNREF{$f$}{$n$}}{$\mathit{args}$}
  16901. and compile them to direct calls instead of treating it like a call to
  16902. a closure? We would also drop the new \code{fvs} parameter of
  16903. \code{tail\_sum}.
  16904. %
  16905. However, this problem is not so trivial, because a global function may
  16906. \emph{escape} and become involved in applications that also involve
  16907. closures. Consider the following example in which the application
  16908. \CAPPLY{\code{f}}{\code{41}} needs to be compiled into a closure
  16909. application because the \code{lambda} may flow into \code{f}, but the
  16910. \code{inc} function might also flow into \code{f}:
  16911. \begin{center}
  16912. \begin{minipage}{\textwidth}
  16913. % lambda_test_30.rkt
  16914. {\if\edition\racketEd
  16915. \begin{lstlisting}
  16916. (define (inc [x : Integer]) : Integer
  16917. (+ x 1))
  16918. (let ([y (read)])
  16919. (let ([f (if (eq? (read) 0)
  16920. inc
  16921. (lambda: ([x : Integer]) : Integer (- x y)))])
  16922. (f 41)))
  16923. \end{lstlisting}
  16924. \fi}
  16925. {\if\edition\pythonEd\pythonColor
  16926. \begin{lstlisting}
  16927. def add1(x : int) -> int:
  16928. return x + 1
  16929. y = input_int()
  16930. g : Callable[[int], int] = lambda x: x - y
  16931. f = add1 if input_int() == 0 else g
  16932. print(f(41))
  16933. \end{lstlisting}
  16934. \fi}
  16935. \end{minipage}
  16936. \end{center}
  16937. If a global function name is used in any way other than as the
  16938. operator in a direct call, then we say that the function
  16939. \emph{escapes}. If a global function does not escape, then we do not
  16940. need to perform closure conversion on the function.
  16941. \begin{exercise}\normalfont\normalsize
  16942. Implement an auxiliary function for detecting which global
  16943. functions escape. Using that function, implement an improved version
  16944. of closure conversion that does not apply closure conversion to
  16945. global functions that do not escape but instead compiles them as
  16946. regular functions. Create several new test cases that check whether
  16947. your compiler properly detects whether global functions escape or not.
  16948. \end{exercise}
  16949. So far we have reduced the overhead of calling global functions, but
  16950. it would also be nice to reduce the overhead of calling a
  16951. \code{lambda} when we can determine at compile time which
  16952. \code{lambda} will be called. We refer to such calls as \emph{known
  16953. calls}. Consider the following example in which a \code{lambda} is
  16954. bound to \code{f} and then applied.
  16955. {\if\edition\racketEd
  16956. % lambda_test_9.rkt
  16957. \begin{lstlisting}
  16958. (let ([y (read)])
  16959. (let ([f (lambda: ([x : Integer]) : Integer
  16960. (+ x y))])
  16961. (f 21)))
  16962. \end{lstlisting}
  16963. \fi}
  16964. {\if\edition\pythonEd\pythonColor
  16965. \begin{lstlisting}
  16966. y = input_int()
  16967. f : Callable[[int],int] = lambda x: x + y
  16968. print(f(21))
  16969. \end{lstlisting}
  16970. \fi}
  16971. %
  16972. \noindent Closure conversion compiles the application
  16973. \CAPPLY{\code{f}}{\code{21}} into an indirect call, as follows:
  16974. %
  16975. {\if\edition\racketEd
  16976. \begin{lstlisting}
  16977. (define (lambda5 [fvs6 : (Vector _ Integer)] [x3 : Integer]) : Integer
  16978. (let ([y2 (vector-ref fvs6 1)])
  16979. (+ x3 y2)))
  16980. (define (main) : Integer
  16981. (let ([y2 (read)])
  16982. (let ([f4 (Closure 1 (list (fun-ref lambda5 1) y2))])
  16983. ((vector-ref f4 0) f4 21))))
  16984. \end{lstlisting}
  16985. \fi}
  16986. {\if\edition\pythonEd\pythonColor
  16987. \begin{lstlisting}
  16988. def lambda_3(fvs_4:tuple[bot,tuple[int]], x_2:int) -> int:
  16989. y_1 = fvs_4[1]
  16990. return x_2 + y_1[0]
  16991. def main() -> int:
  16992. y_1 = (777,)
  16993. y_1[0] = input_int()
  16994. f_0 = (lambda_3, y_1)
  16995. print((let clos_5 = f_0 in clos_5[0](clos_5, 21)))
  16996. return 0
  16997. \end{lstlisting}
  16998. \fi}
  16999. %
  17000. \noindent However, we can instead compile the application
  17001. \CAPPLY{\code{f}}{\code{21}} into a direct call, as follows:
  17002. %
  17003. {\if\edition\racketEd
  17004. \begin{lstlisting}
  17005. (define (main) : Integer
  17006. (let ([y2 (read)])
  17007. (let ([f4 (Closure 1 (list (fun-ref lambda5 1) y2))])
  17008. ((fun-ref lambda5 1) f4 21))))
  17009. \end{lstlisting}
  17010. \fi}
  17011. {\if\edition\pythonEd\pythonColor
  17012. \begin{lstlisting}
  17013. def main() -> int:
  17014. y_1 = (777,)
  17015. y_1[0] = input_int()
  17016. f_0 = (lambda_3, y_1)
  17017. print(lambda_3(f_0, 21))
  17018. return 0
  17019. \end{lstlisting}
  17020. \fi}
  17021. The problem of determining which \code{lambda} will be called from a
  17022. particular application is quite challenging in general and the topic
  17023. of considerable research~\citep{Shivers:1988aa,Gilray:2016aa}. For the
  17024. following exercise we recommend that you compile an application to a
  17025. direct call when the operator is a variable and \racket{the variable
  17026. is \code{let}-bound to a closure}\python{the previous assignment to
  17027. the variable is a closure}. This can be accomplished by maintaining
  17028. an environment that maps variables to function names. Extend the
  17029. environment whenever you encounter a closure on the right-hand side of
  17030. \racket{a \code{let}}\python{an assignment}, mapping the variable to the
  17031. name of the global function for the closure. This pass should come
  17032. after closure conversion.
  17033. \begin{exercise}\normalfont\normalsize
  17034. Implement a compiler pass, named \code{optimize\_known\_calls}, that
  17035. compiles known calls into direct calls. Verify that your compiler is
  17036. successful in this regard on several example programs.
  17037. \end{exercise}
  17038. These exercises only scratch the surface of closure optimization. A
  17039. good next step for the interested reader is to look at the work of
  17040. \citet{Keep:2012ab}.
  17041. \section{Further Reading}
  17042. The notion of lexically scoped functions predates modern computers by
  17043. about a decade. They were invented by \citet{Church:1932aa}, who
  17044. proposed the lambda calculus as a foundation for logic. Anonymous
  17045. functions were included in the LISP~\citep{McCarthy:1960dz}
  17046. programming language but were initially dynamically scoped. The Scheme
  17047. dialect of LISP adopted lexical scoping, and
  17048. \citet{Guy-L.-Steele:1978yq} demonstrated how to efficiently compile
  17049. Scheme programs. However, environments were represented as linked
  17050. lists, so variable look-up was linear in the size of the
  17051. environment. \citet{Appel91} gives a detailed description of several
  17052. closure representations. In this chapter we represent environments
  17053. using flat closures, which were invented by
  17054. \citet{Cardelli:1983aa,Cardelli:1984aa} for the purpose of compiling
  17055. the ML language~\citep{Gordon:1978aa,Milner:1990fk}. With flat
  17056. closures, variable look-up is constant time but the time to create a
  17057. closure is proportional to the number of its free variables. Flat
  17058. closures were reinvented by \citet{Dybvig:1987ab} in his PhD thesis
  17059. and used in Chez Scheme version 1~\citep{Dybvig:2006aa}.
  17060. % todo: related work on assignment conversion (e.g. orbit and rabbit
  17061. % compilers)
  17062. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  17063. \chapter{Dynamic Typing}
  17064. \label{ch:Ldyn}
  17065. \index{subject}{dynamic typing}
  17066. \setcounter{footnote}{0}
  17067. In this chapter we learn how to compile \LangDyn{}, a dynamically
  17068. typed language that is a subset of \racket{Racket}\python{Python}. The
  17069. focus on dynamic typing is in contrast to the previous chapters, which
  17070. have studied the compilation of statically typed languages. In
  17071. dynamically typed languages such as \LangDyn{}, a particular
  17072. expression may produce a value of a different type each time it is
  17073. executed. Consider the following example with a conditional \code{if}
  17074. expression that may return a Boolean or an integer depending on the
  17075. input to the program:
  17076. % part of dynamic_test_25.rkt
  17077. {\if\edition\racketEd
  17078. \begin{lstlisting}
  17079. (not (if (eq? (read) 1) #f 0))
  17080. \end{lstlisting}
  17081. \fi}
  17082. {\if\edition\pythonEd\pythonColor
  17083. \begin{lstlisting}
  17084. not (False if input_int() == 1 else 0)
  17085. \end{lstlisting}
  17086. \fi}
  17087. Languages that allow expressions to produce different kinds of values
  17088. are called \emph{polymorphic}, a word composed of the Greek roots
  17089. \emph{poly}, meaning \emph{many}, and \emph{morph}, meaning \emph{form}.
  17090. There are several kinds of polymorphism in programming languages, such as
  17091. subtype polymorphism\index{subject}{subtype polymorphism} and
  17092. parametric polymorphism\index{subject}{parametric polymorphism}
  17093. (aka generics)~\citep{Cardelli:1985kx}. The kind of polymorphism that we
  17094. study in this chapter does not have a special name; it is the kind
  17095. that arises in dynamically typed languages.
  17096. Another characteristic of dynamically typed languages is that
  17097. their primitive operations, such as \code{not}, are often defined to operate
  17098. on many different types of values. In fact, in
  17099. \racket{Racket}\python{Python}, the \code{not} operator produces a
  17100. result for any kind of value: given \FALSE{} it returns \TRUE{}, and
  17101. given anything else it returns \FALSE{}.
  17102. Furthermore, even when primitive operations restrict their inputs to
  17103. values of a certain type, this restriction is enforced at runtime
  17104. instead of during compilation. For example, the tuple read
  17105. operation \racket{\code{(vector-ref \#t 0)}}\python{\code{True[0]}}
  17106. results in a runtime error because the first argument must
  17107. be a tuple, not a Boolean.
  17108. \section{The \LangDyn{} Language}
  17109. \newcommand{\LdynGrammarRacket}{
  17110. \begin{array}{rcl}
  17111. \Exp &::=& \LP\Exp \; \Exp\ldots\RP
  17112. \MID \LP\key{lambda}\;\LP\Var\ldots\RP\;\Exp\RP \\
  17113. & \MID & \LP\key{boolean?}\;\Exp\RP \MID \LP\key{integer?}\;\Exp\RP\\
  17114. & \MID & \LP\key{vector?}\;\Exp\RP \MID \LP\key{procedure?}\;\Exp\RP \MID \LP\key{void?}\;\Exp\RP \\
  17115. \Def &::=& \LP\key{define}\; \LP\Var \; \Var\ldots\RP \; \Exp\RP
  17116. \end{array}
  17117. }
  17118. \newcommand{\LdynASTRacket}{
  17119. \begin{array}{lcl}
  17120. \Exp &::=& \APPLY{\Exp}{\Exp\ldots}
  17121. \MID \LAMBDA{\LP\Var\ldots\RP}{\code{'Any}}{\Exp}\\
  17122. \Def &::=& \FUNDEF{\Var}{\LP\Var\ldots\RP}{\code{'Any}}{\code{'()}}{\Exp}
  17123. \end{array}
  17124. }
  17125. \begin{figure}[tp]
  17126. \centering
  17127. \begin{tcolorbox}[colback=white]
  17128. \small
  17129. {\if\edition\racketEd
  17130. \[
  17131. \begin{array}{l}
  17132. \gray{\LintGrammarRacket{}} \\ \hline
  17133. \gray{\LvarGrammarRacket{}} \\ \hline
  17134. \gray{\LifGrammarRacket{}} \\ \hline
  17135. \gray{\LwhileGrammarRacket} \\ \hline
  17136. \gray{\LtupGrammarRacket} \\ \hline
  17137. \LdynGrammarRacket \\
  17138. \begin{array}{rcl}
  17139. \LangDynM{} &::=& \Def\ldots\; \Exp
  17140. \end{array}
  17141. \end{array}
  17142. \]
  17143. \fi}
  17144. {\if\edition\pythonEd\pythonColor
  17145. \[
  17146. \begin{array}{rcl}
  17147. \itm{cmp} &::= & \key{==} \MID \key{!=} \MID \key{<} \MID \key{<=} \MID \key{>} \MID \key{>=} \MID \key{is} \\
  17148. \Exp &::=& \Int \MID \key{input\_int}\LP\RP \MID \key{-}\;\Exp \MID \Exp \; \key{+} \; \Exp \MID \Exp \; \key{-} \; \Exp \MID \LP\Exp\RP \\
  17149. &\MID& \Var{} \MID \TRUE \MID \FALSE \MID \CAND{\Exp}{\Exp}
  17150. \MID \COR{\Exp}{\Exp} \MID \key{not}~\Exp \\
  17151. &\MID& \CCMP{\itm{cmp}}{\Exp}{\Exp}
  17152. \MID \CIF{\Exp}{\Exp}{\Exp} \\
  17153. &\MID& \Exp \key{,} \ldots \key{,} \Exp \MID \CGET{\Exp}{\Exp}
  17154. \MID \CLEN{\Exp} \\
  17155. &\MID& \CAPPLY{\Exp}{\Exp\code{,} \ldots}
  17156. \MID \CLAMBDA{\Var\code{, }\ldots}{\Exp}\\
  17157. \Stmt &::=& \key{print}\LP \Exp \RP \MID \Exp
  17158. \MID \Var\mathop{\key{=}}\Exp \\
  17159. &\MID& \key{if}~ \Exp \key{:}~ \Stmt^{+} ~\key{else:}~ \Stmt^{+}
  17160. \MID \key{while}~ \Exp \key{:}~ \Stmt^{+} \\
  17161. &\MID& \CRETURN{\Exp} \\
  17162. \Def &::=& \CDEFU{\Var}{\Var{,} \ldots}{\Stmt^{+}} \\
  17163. \LangDynM{} &::=& \Def\ldots \Stmt\ldots
  17164. \end{array}
  17165. \]
  17166. \fi}
  17167. \end{tcolorbox}
  17168. \caption{Syntax of \LangDyn{}, an untyped language (a subset of \racket{Racket}\python{Python}).}
  17169. \label{fig:r7-concrete-syntax}
  17170. \index{subject}{Ldyn@\LangDyn{} concrete syntax}
  17171. \end{figure}
  17172. \begin{figure}[tp]
  17173. \centering
  17174. \begin{tcolorbox}[colback=white]
  17175. \small
  17176. {\if\edition\racketEd
  17177. \[
  17178. \begin{array}{l}
  17179. \gray{\LintASTRacket{}} \\ \hline
  17180. \gray{\LvarASTRacket{}} \\ \hline
  17181. \gray{\LifASTRacket{}} \\ \hline
  17182. \gray{\LwhileASTRacket} \\ \hline
  17183. \gray{\LtupASTRacket} \\ \hline
  17184. \LdynASTRacket \\
  17185. \begin{array}{lcl}
  17186. \LangDynM{} &::=& \PROGRAMDEFSEXP{\code{'()}}{\LP\Def\ldots\RP}{\Exp}
  17187. \end{array}
  17188. \end{array}
  17189. \]
  17190. \fi}
  17191. {\if\edition\pythonEd\pythonColor
  17192. \[
  17193. \begin{array}{rcl}
  17194. \itm{boolop} &::=& \code{And()} \MID \code{Or()} \\
  17195. \itm{cmp} &::= & \code{Eq()} \MID \code{NotEq()} \MID \code{Lt()}
  17196. \MID \code{LtE()} \MID \code{Gt()} \MID \code{GtE()}
  17197. \MID \code{Is()} \\
  17198. \itm{bool} &::=& \code{True} \MID \code{False} \\
  17199. \Exp{} &::=& \INT{\Int} \MID \READ{} \\
  17200. &\MID& \UNIOP{\key{USub()}}{\Exp}\\
  17201. &\MID& \BINOP{\Exp}{\key{Add()}}{\Exp}
  17202. \MID \BINOP{\Exp}{\key{Sub()}}{\Exp} \\
  17203. &\MID& \VAR{\Var{}}
  17204. \MID \BOOL{\itm{bool}}
  17205. \MID \BOOLOP{\itm{boolop}}{\Exp}{\Exp}\\
  17206. &\MID& \CMP{\Exp}{\itm{cmp}}{\Exp} \MID \IF{\Exp}{\Exp}{\Exp} \\
  17207. &\MID& \TUPLE{\Exp^{+}} \MID \GET{\Exp}{\Exp} \\
  17208. &\MID& \LEN{\Exp} \\
  17209. &\MID& \CALL{\Exp}{\Exp^{*}} \MID \LAMBDA{\Var^{*}}{\Exp} \\
  17210. \Stmt{} &::=& \PRINT{\Exp} \MID \EXPR{\Exp} \\
  17211. &\MID& \ASSIGN{\VAR{\Var}}{\Exp}\\
  17212. &\MID& \IFSTMT{\Exp}{\Stmt^{+}}{\Stmt^{+}}
  17213. \MID \WHILESTMT{\Exp}{\Stmt^{+}}\\
  17214. &\MID& \RETURN{\Exp} \\
  17215. \Params &::=& \LP\Var\key{,}\code{AnyType()}\RP^* \\
  17216. \Def &::=& \FUNDEF{\Var}{\Params}{\code{AnyType()}}{}{\Stmt^{+}} \\
  17217. \LangDynM{} &::=& \PROGRAM{}{\LS \Def \ldots \Stmt \ldots \RS}
  17218. \end{array}
  17219. \]
  17220. \fi}
  17221. \end{tcolorbox}
  17222. \caption{The abstract syntax of \LangDyn{}.}
  17223. \label{fig:r7-syntax}
  17224. \index{subject}{Ldyn@\LangDyn{} abstract syntax}
  17225. \end{figure}
  17226. The definitions of the concrete and abstract syntax of \LangDyn{} are
  17227. shown in figures~\ref{fig:r7-concrete-syntax} and \ref{fig:r7-syntax}.
  17228. %
  17229. There is no type checker for \LangDyn{} because it checks types only
  17230. at runtime.
  17231. The definitional interpreter for \LangDyn{} is presented in
  17232. \racket{figure~\ref{fig:interp-Ldyn}}\python{figures~\ref{fig:interp-Ldyn} and \ref{fig:interp-Ldyn-2}}, and definitions of its auxiliary functions
  17233. are shown in figure~\ref{fig:interp-Ldyn-aux}. Consider the match case for
  17234. \INT{n}. Instead of simply returning the integer \code{n} (as
  17235. in the interpreter for \LangVar{} in figure~\ref{fig:interp-Lvar}), the
  17236. interpreter for \LangDyn{} creates a \emph{tagged value}\index{subject}{tagged
  17237. value} that combines an underlying value with a tag that identifies
  17238. what kind of value it is. We define the following \racket{struct}\python{class}
  17239. to represent tagged values:
  17240. %
  17241. {\if\edition\racketEd
  17242. \begin{lstlisting}
  17243. (struct Tagged (value tag) #:transparent)
  17244. \end{lstlisting}
  17245. \fi}
  17246. {\if\edition\pythonEd\pythonColor
  17247. \begin{minipage}{\textwidth}
  17248. \begin{lstlisting}
  17249. @dataclass(eq=True)
  17250. class Tagged(Value):
  17251. value : Value
  17252. tag : str
  17253. def __str__(self):
  17254. return str(self.value)
  17255. \end{lstlisting}
  17256. \end{minipage}
  17257. \fi}
  17258. %
  17259. \racket{The tags are \code{Integer}, \BOOLTY{}, \code{Void},
  17260. \code{Vector}, and \code{Procedure}.}
  17261. %
  17262. \python{The tags are \skey{int}, \skey{bool}, \skey{none},
  17263. \skey{tuple}, and \skey{function}.}
  17264. %
  17265. Tags are closely related to types but do not always capture all the
  17266. information that a type does.
  17267. %
  17268. \racket{For example, a vector of type \code{(Vector Any Any)} is
  17269. tagged with \code{Vector}, and a procedure of type \code{(Any Any ->
  17270. Any)} is tagged with \code{Procedure}.}
  17271. %
  17272. \python{For example, a tuple of type \code{TupleType([AnyType(),AnyType()])}
  17273. is tagged with \skey{tuple} and a function of type
  17274. \code{FunctionType([AnyType(), AnyType()], AnyType())}
  17275. is tagged with \skey{function}.}
  17276. Next consider the match case for accessing the element of a tuple.
  17277. The \racket{\code{check-tag}}\python{\code{untag}} auxiliary function
  17278. (figure~\ref{fig:interp-Ldyn-aux}) is used to ensure that the first
  17279. argument is a tuple and the second is an integer.
  17280. \racket{
  17281. If they are not, a \code{trapped-error} is raised. Recall from
  17282. section~\ref{sec:interp_Lint} that when a definition interpreter
  17283. raises a \code{trapped-error} error, the compiled code must also
  17284. signal an error by exiting with return code \code{255}. A
  17285. \code{trapped-error} is also raised if the index is not less than the
  17286. length of the vector.
  17287. }
  17288. %
  17289. \python{If they are not, an exception is raised. The compiled code
  17290. must also signal an error by exiting with return code \code{255}. A
  17291. exception is also raised if the index is not less than the length of the
  17292. tuple or if it is negative.}
  17293. \begin{figure}[tbp]
  17294. \begin{tcolorbox}[colback=white]
  17295. {\if\edition\racketEd
  17296. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  17297. (define ((interp-Ldyn-exp env) ast)
  17298. (define recur (interp-Ldyn-exp env))
  17299. (match ast
  17300. [(Var x) (unbox (lookup x env)]
  17301. [(Int n) (Tagged n 'Integer)]
  17302. [(Bool b) (Tagged b 'Boolean)]
  17303. [(Lambda xs rt body)
  17304. (Tagged `(function ,xs ,body ,env) 'Procedure)]
  17305. [(Prim 'vector es)
  17306. (Tagged (apply vector (for/list ([e es]) (recur e))) 'Vector)]
  17307. [(Prim 'vector-ref (list e1 e2))
  17308. (define vec (recur e1)) (define i (recur e2))
  17309. (check-tag vec 'Vector ast) (check-tag i 'Integer ast)
  17310. (unless (< (Tagged-value i) (vector-length (Tagged-value vec)))
  17311. (error 'trapped-error "index ~a too big\nin ~v" (Tagged-value i) ast))
  17312. (vector-ref (Tagged-value vec) (Tagged-value i))]
  17313. [(Prim 'vector-set! (list e1 e2 e3))
  17314. (define vec (recur e1)) (define i (recur e2)) (define arg (recur e3))
  17315. (check-tag vec 'Vector ast) (check-tag i 'Integer ast)
  17316. (unless (< (Tagged-value i) (vector-length (Tagged-value vec)))
  17317. (error 'trapped-error "index ~a too big\nin ~v" (Tagged-value i) ast))
  17318. (vector-set! (Tagged-value vec) (Tagged-value i) arg)
  17319. (Tagged (void) 'Void)]
  17320. [(Let x e body) ((interp-Ldyn-exp (cons (cons x (recur e)) env)) body)]
  17321. [(Prim 'and (list e1 e2)) (recur (If e1 e2 (Bool #f)))]
  17322. [(Prim 'or (list e1 e2))
  17323. (define v1 (recur e1))
  17324. (match (Tagged-value v1) [#f (recur e2)] [else v1])]
  17325. [(Prim 'eq? (list l r)) (Tagged (equal? (recur l) (recur r)) 'Boolean)]
  17326. [(Prim op (list e1))
  17327. #:when (set-member? type-predicates op)
  17328. (tag-value ((interp-op op) (Tagged-value (recur e1))))]
  17329. [(Prim op es)
  17330. (define args (map recur es))
  17331. (define tags (for/list ([arg args]) (Tagged-tag arg)))
  17332. (unless (for/or ([expected-tags (op-tags op)])
  17333. (equal? expected-tags tags))
  17334. (error 'trapped-error "illegal argument tags ~a\nin ~v" tags ast))
  17335. (tag-value
  17336. (apply (interp-op op) (for/list ([a args]) (Tagged-value a))))]
  17337. [(If q t f)
  17338. (match (Tagged-value (recur q)) [#f (recur f)] [else (recur t)])]
  17339. [(Apply f es)
  17340. (define new-f (recur f)) (define args (map recur es))
  17341. (check-tag new-f 'Procedure ast) (define f-val (Tagged-value new-f))
  17342. (match f-val
  17343. [`(function ,xs ,body ,lam-env)
  17344. (unless (eq? (length xs) (length args))
  17345. (error 'trapped-error "~a != ~a\nin ~v" (length args) (length xs) ast))
  17346. (define new-env (append (map cons xs args) lam-env))
  17347. ((interp-Ldyn-exp new-env) body)]
  17348. [else (error "interp-Ldyn-exp, expected function, not" f-val)])]))
  17349. \end{lstlisting}
  17350. \fi}
  17351. {\if\edition\pythonEd\pythonColor
  17352. \begin{lstlisting}[basicstyle=\ttfamily\scriptsize]
  17353. class InterpLdyn(InterpLlambda):
  17354. def interp_exp(self, e, env):
  17355. match e:
  17356. case Constant(n):
  17357. return self.tag(super().interp_exp(e, env))
  17358. case Tuple(es, Load()):
  17359. return self.tag(super().interp_exp(e, env))
  17360. case Lambda(params, body):
  17361. return self.tag(super().interp_exp(e, env))
  17362. case Call(Name('input_int'), []):
  17363. return self.tag(super().interp_exp(e, env))
  17364. case BinOp(left, Add(), right):
  17365. l = self.interp_exp(left, env); r = self.interp_exp(right, env)
  17366. return self.tag(self.untag(l, 'int', e) + self.untag(r, 'int', e))
  17367. case BinOp(left, Sub(), right):
  17368. l = self.interp_exp(left, env); r = self.interp_exp(right, env)
  17369. return self.tag(self.untag(l, 'int', e) - self.untag(r, 'int', e))
  17370. case UnaryOp(USub(), e1):
  17371. v = self.interp_exp(e1, env)
  17372. return self.tag(- self.untag(v, 'int', e))
  17373. case IfExp(test, body, orelse):
  17374. v = self.interp_exp(test, env)
  17375. if self.untag(v, 'bool', e):
  17376. return self.interp_exp(body, env)
  17377. else:
  17378. return self.interp_exp(orelse, env)
  17379. case UnaryOp(Not(), e1):
  17380. v = self.interp_exp(e1, env)
  17381. return self.tag(not self.untag(v, 'bool', e))
  17382. case BoolOp(And(), values):
  17383. left = values[0]; right = values[1]
  17384. l = self.interp_exp(left, env)
  17385. if self.untag(l, 'bool', e):
  17386. return self.interp_exp(right, env)
  17387. else:
  17388. return self.tag(False)
  17389. case BoolOp(Or(), values):
  17390. left = values[0]; right = values[1]
  17391. l = self.interp_exp(left, env)
  17392. if self.untag(l, 'bool', e):
  17393. return self.tag(True)
  17394. else:
  17395. return self.interp_exp(right, env)
  17396. \end{lstlisting}
  17397. \fi}
  17398. \end{tcolorbox}
  17399. \caption{Interpreter for the \LangDyn{} language\python{, part 1}.}
  17400. \label{fig:interp-Ldyn}
  17401. \end{figure}
  17402. {\if\edition\pythonEd\pythonColor
  17403. \begin{figure}[tbp]
  17404. \begin{tcolorbox}[colback=white]
  17405. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  17406. # interp_exp continued
  17407. case Compare(left, [cmp], [right]):
  17408. l = self.interp_exp(left, env)
  17409. r = self.interp_exp(right, env)
  17410. if l.tag == r.tag:
  17411. return self.tag(self.interp_cmp(cmp)(l.value, r.value))
  17412. else:
  17413. raise Exception('interp Compare unexpected '
  17414. + repr(l) + ' ' + repr(r))
  17415. case Subscript(tup, index, Load()):
  17416. t = self.interp_exp(tup, env)
  17417. n = self.interp_exp(index, env)
  17418. return self.untag(t, 'tuple', e)[self.untag(n, 'int', e)]
  17419. case Call(Name('len'), [tup]):
  17420. t = self.interp_exp(tup, env)
  17421. return self.tag(len(self.untag(t, 'tuple', e)))
  17422. case _:
  17423. return self.tag(super().interp_exp(e, env))
  17424. def interp_stmt(self, s, env, cont):
  17425. match s:
  17426. case If(test, body, orelse):
  17427. v = self.interp_exp(test, env)
  17428. match self.untag(v, 'bool', s):
  17429. case True:
  17430. return self.interp_stmts(body + cont, env)
  17431. case False:
  17432. return self.interp_stmts(orelse + cont, env)
  17433. case While(test, body, []):
  17434. v = self.interp_exp(test, env)
  17435. if self.untag(v, 'bool', test):
  17436. self.interp_stmts(body + [s] + cont, env)
  17437. else:
  17438. return self.interp_stmts(cont, env)
  17439. case Assign([Subscript(tup, index)], value):
  17440. tup = self.interp_exp(tup, env)
  17441. index = self.interp_exp(index, env)
  17442. tup_v = self.untag(tup, 'tuple', s)
  17443. index_v = self.untag(index, 'int', s)
  17444. tup_v[index_v] = self.interp_exp(value, env)
  17445. return self.interp_stmts(cont, env)
  17446. case FunctionDef(name, params, bod, dl, returns, comment):
  17447. if isinstance(params, ast.arguments):
  17448. ps = [p.arg for p in params.args]
  17449. else:
  17450. ps = [x for (x,t) in params]
  17451. env[name] = self.tag(Function(name, ps, bod, env))
  17452. return self.interp_stmts(cont, env)
  17453. case _:
  17454. return super().interp_stmt(s, env, cont)
  17455. \end{lstlisting}
  17456. \end{tcolorbox}
  17457. \caption{Interpreter for the \LangDyn{} language\python{, part 2}.}
  17458. \label{fig:interp-Ldyn-2}
  17459. \end{figure}
  17460. \fi}
  17461. \begin{figure}[tbp]
  17462. \begin{tcolorbox}[colback=white]
  17463. {\if\edition\racketEd
  17464. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  17465. (define (interp-op op)
  17466. (match op
  17467. ['+ fx+]
  17468. ['- fx-]
  17469. ['read read-fixnum]
  17470. ['not (lambda (v) (match v [#t #f] [#f #t]))]
  17471. ['< (lambda (v1 v2)
  17472. (cond [(and (fixnum? v1) (fixnum? v2)) (< v1 v2)]))]
  17473. ['<= (lambda (v1 v2)
  17474. (cond [(and (fixnum? v1) (fixnum? v2)) (<= v1 v2)]))]
  17475. ['> (lambda (v1 v2)
  17476. (cond [(and (fixnum? v1) (fixnum? v2)) (> v1 v2)]))]
  17477. ['>= (lambda (v1 v2)
  17478. (cond [(and (fixnum? v1) (fixnum? v2)) (>= v1 v2)]))]
  17479. ['boolean? boolean?]
  17480. ['integer? fixnum?]
  17481. ['void? void?]
  17482. ['vector? vector?]
  17483. ['vector-length vector-length]
  17484. ['procedure? (match-lambda
  17485. [`(functions ,xs ,body ,env) #t] [else #f])]
  17486. [else (error 'interp-op "unknown operator" op)]))
  17487. (define (op-tags op)
  17488. (match op
  17489. ['+ '((Integer Integer))]
  17490. ['- '((Integer Integer) (Integer))]
  17491. ['read '(())]
  17492. ['not '((Boolean))]
  17493. ['< '((Integer Integer))]
  17494. ['<= '((Integer Integer))]
  17495. ['> '((Integer Integer))]
  17496. ['>= '((Integer Integer))]
  17497. ['vector-length '((Vector))]))
  17498. (define type-predicates
  17499. (set 'boolean? 'integer? 'vector? 'procedure? 'void?))
  17500. (define (tag-value v)
  17501. (cond [(boolean? v) (Tagged v 'Boolean)]
  17502. [(fixnum? v) (Tagged v 'Integer)]
  17503. [(procedure? v) (Tagged v 'Procedure)]
  17504. [(vector? v) (Tagged v 'Vector)]
  17505. [(void? v) (Tagged v 'Void)]
  17506. [else (error 'tag-value "unidentified value ~a" v)]))
  17507. (define (check-tag val expected ast)
  17508. (define tag (Tagged-tag val))
  17509. (unless (eq? tag expected)
  17510. (error 'trapped-error "expected ~a, not ~a\nin ~v" expected tag ast)))
  17511. \end{lstlisting}
  17512. \fi}
  17513. {\if\edition\pythonEd\pythonColor
  17514. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  17515. class InterpLdyn(InterpLlambda):
  17516. def tag(self, v):
  17517. if v is True or v is False:
  17518. return Tagged(v, 'bool')
  17519. elif isinstance(v, int):
  17520. return Tagged(v, 'int')
  17521. elif isinstance(v, Function):
  17522. return Tagged(v, 'function')
  17523. elif isinstance(v, tuple):
  17524. return Tagged(v, 'tuple')
  17525. elif isinstance(v, type(None)):
  17526. return Tagged(v, 'none')
  17527. else:
  17528. raise Exception('tag: unexpected ' + repr(v))
  17529. def untag(self, v, expected_tag, ast):
  17530. match v:
  17531. case Tagged(val, tag) if tag == expected_tag:
  17532. return val
  17533. case _:
  17534. raise TrappedError('expected Tagged value with '
  17535. + expected_tag + ', not ' + ' ' + repr(v))
  17536. def apply_fun(self, fun, args, e):
  17537. f = self.untag(fun, 'function', e)
  17538. return super().apply_fun(f, args, e)
  17539. \end{lstlisting}
  17540. \fi}
  17541. \end{tcolorbox}
  17542. \caption{Auxiliary functions for the \LangDyn{} interpreter.}
  17543. \label{fig:interp-Ldyn-aux}
  17544. \end{figure}
  17545. %\clearpage
  17546. \section{Representation of Tagged Values}
  17547. The interpreter for \LangDyn{} introduced a new kind of value: the
  17548. tagged value. To compile \LangDyn{} to x86 we must decide how to
  17549. represent tagged values at the bit level. Because almost every
  17550. operation in \LangDyn{} involves manipulating tagged values, the
  17551. representation must be efficient. Recall that all our values are 64
  17552. bits. We shall steal the right-most $3$ bits to encode the tag. We use
  17553. $001$ to identify integers, $100$ for Booleans, $010$ for tuples,
  17554. $011$ for procedures, and $101$ for the void value\python{,
  17555. \key{None}}. We define the following auxiliary function for mapping
  17556. types to tag codes:
  17557. %
  17558. {\if\edition\racketEd
  17559. \begin{align*}
  17560. \itm{tagof}(\key{Integer}) &= 001 \\
  17561. \itm{tagof}(\key{Boolean}) &= 100 \\
  17562. \itm{tagof}(\LP\key{Vector} \ldots\RP) &= 010 \\
  17563. \itm{tagof}(\LP\ldots \key{->} \ldots\RP) &= 011 \\
  17564. \itm{tagof}(\key{Void}) &= 101
  17565. \end{align*}
  17566. \fi}
  17567. {\if\edition\pythonEd\pythonColor
  17568. \begin{align*}
  17569. \itm{tagof}(\key{IntType()}) &= 001 \\
  17570. \itm{tagof}(\key{BoolType()}) &= 100 \\
  17571. \itm{tagof}(\key{TupleType(ts)}) &= 010 \\
  17572. \itm{tagof}(\key{FunctionType(ps, rt)}) &= 011 \\
  17573. \itm{tagof}(\key{type(None)}) &= 101
  17574. \end{align*}
  17575. \fi}
  17576. %
  17577. This stealing of 3 bits comes at some price: integers are now restricted
  17578. to the range $-2^{60}$ to $2^{60}-1$. The stealing does not adversely
  17579. affect tuples and procedures because those values are addresses, and
  17580. our addresses are 8-byte aligned so the rightmost 3 bits are unused;
  17581. they are always $000$. Thus, we do not lose information by overwriting
  17582. the rightmost 3 bits with the tag, and we can simply zero out the tag
  17583. to recover the original address.
  17584. To make tagged values into first-class entities, we can give them a
  17585. type called \racket{\code{Any}}\python{\code{AnyType}} and define
  17586. operations such as \code{Inject} and \code{Project} for creating and
  17587. using them, yielding the statically typed \LangAny{} intermediate
  17588. language. We describe how to compile \LangDyn{} to \LangAny{} in
  17589. section~\ref{sec:compile-r7}; in the next section we describe the
  17590. \LangAny{} language in greater detail.
  17591. \section{The \LangAny{} Language}
  17592. \label{sec:Rany-lang}
  17593. \newcommand{\LanyASTRacket}{
  17594. \begin{array}{lcl}
  17595. \Type &::= & \ANYTY \\
  17596. \FType &::=& \key{Integer} \MID \key{Boolean} \MID \key{Void}
  17597. \MID \LP\key{Vector}\; \ANYTY\ldots\RP
  17598. \MID \LP\ANYTY\ldots \; \key{->}\; \ANYTY\RP\\
  17599. \itm{op} &::= & \code{any-vector-length}
  17600. \MID \code{any-vector-ref} \MID \code{any-vector-set!}\\
  17601. &\MID& \code{boolean?} \MID \code{integer?} \MID \code{vector?}
  17602. \MID \code{procedure?} \MID \code{void?} \\
  17603. \Exp &::=& \INJECT{\Exp}{\FType} \MID \PROJECT{\Exp}{\FType}
  17604. \end{array}
  17605. }
  17606. \newcommand{\LanyASTPython}{
  17607. \begin{array}{lcl}
  17608. \Type &::= & \key{AnyType()} \\
  17609. \FType &::=& \key{IntType()} \MID \key{BoolType()} \MID \key{VoidType()}
  17610. \MID \key{TupleType}\LS\key{AnyType()}^+\RS \\
  17611. &\MID& \key{FunctionType}\LP \key{AnyType()}^{*}\key{, }\key{AnyType()}\RP \\
  17612. \Exp & ::= & \INJECT{\Exp}{\FType} \MID \PROJECT{\Exp}{\FType} \\
  17613. &\MID& \CALL{\VAR{\skey{any\_tuple\_load}}}{\LS\Exp\key{, }\Exp\RS}\\
  17614. &\MID& \CALL{\VAR{\skey{any\_len}}}{\LS\Exp\RS} \\
  17615. &\MID& \CALL{\VAR{\skey{arity}}}{\LS\Exp\RS} \\
  17616. &\MID& \CALL{\VAR{\skey{make\_any}}}{\LS\Exp\key{, }\INT{\Int}\RS}
  17617. %% &\MID& \CALL{\VAR{\skey{is\_int}}}{\Exp}
  17618. %% \MID \CALL{\VAR{\skey{is\_bool}}}{\Exp} \\
  17619. %% &\MID& \CALL{\VAR{\skey{is\_none}}}{\Exp}
  17620. %% \MID \CALL{\VAR{\skey{is\_tuple}}}{\Exp} \\
  17621. %% &\MID& \CALL{\VAR{\skey{is\_function}}}{\Exp}
  17622. \end{array}
  17623. }
  17624. \begin{figure}[tp]
  17625. \centering
  17626. \begin{tcolorbox}[colback=white]
  17627. \small
  17628. {\if\edition\racketEd
  17629. \[
  17630. \begin{array}{l}
  17631. \gray{\LintOpAST} \\ \hline
  17632. \gray{\LvarASTRacket{}} \\ \hline
  17633. \gray{\LifASTRacket{}} \\ \hline
  17634. \gray{\LwhileASTRacket{}} \\ \hline
  17635. \gray{\LtupASTRacket{}} \\ \hline
  17636. \gray{\LfunASTRacket} \\ \hline
  17637. \gray{\LlambdaASTRacket} \\ \hline
  17638. \LanyASTRacket \\
  17639. \begin{array}{lcl}
  17640. \LangAnyM{} &::=& \PROGRAMDEFSEXP{\code{'()}}{\LP\Def\ldots\RP}{\Exp}
  17641. \end{array}
  17642. \end{array}
  17643. \]
  17644. \fi}
  17645. {\if\edition\pythonEd\pythonColor
  17646. \[
  17647. \begin{array}{l}
  17648. \gray{\LintASTPython} \\ \hline
  17649. \gray{\LvarASTPython{}} \\ \hline
  17650. \gray{\LifASTPython{}} \\ \hline
  17651. \gray{\LwhileASTPython{}} \\ \hline
  17652. \gray{\LtupASTPython{}} \\ \hline
  17653. \gray{\LfunASTPython} \\ \hline
  17654. \gray{\LlambdaASTPython} \\ \hline
  17655. \LanyASTPython \\
  17656. \begin{array}{lcl}
  17657. \LangAnyM{} &::=& \PROGRAM{}{\LS \Def \ldots \Stmt \ldots \RS}
  17658. \end{array}
  17659. \end{array}
  17660. \]
  17661. \fi}
  17662. \end{tcolorbox}
  17663. \caption{The abstract syntax of \LangAny{}, extending \LangLam{} (figure~\ref{fig:Llam-syntax}).}
  17664. \label{fig:Lany-syntax}
  17665. \index{subject}{Lany@\LangAny{} abstract syntax}
  17666. \end{figure}
  17667. The definition of the abstract syntax of \LangAny{} is given in
  17668. figure~\ref{fig:Lany-syntax}.
  17669. %% \racket{(The concrete syntax of \LangAny{} is in the Appendix,
  17670. %% figure~\ref{fig:Lany-concrete-syntax}.)}
  17671. The $\INJECT{e}{T}$ form converts the value produced by expression $e$
  17672. of type $T$ into a tagged value. The $\PROJECT{e}{T}$ form either
  17673. converts the tagged value produced by expression $e$ into a value of
  17674. type $T$ or halts the program if the type tag does not match $T$.
  17675. %
  17676. Note that in both \code{Inject} and \code{Project}, the type $T$ is
  17677. restricted to be a flat type (the nonterminal $\FType$) which
  17678. simplifies the implementation and complies with the needs for
  17679. compiling \LangDyn{}.
  17680. The \racket{\code{any-vector}} operators
  17681. \python{\code{any\_tuple\_load} and \code{any\_len}} adapt the tuple
  17682. operations so that they can be applied to a value of type
  17683. \racket{\code{Any}}\python{\code{AnyType}}. They also generalize the
  17684. tuple operations in that the index is not restricted to a literal
  17685. integer in the grammar but is allowed to be any expression.
  17686. \racket{The type predicates such as
  17687. \racket{\key{boolean?}}\python{\key{is\_bool}} expect their argument
  17688. to produce a tagged value; they return {\TRUE} if the tag corresponds to
  17689. the predicate and return {\FALSE} otherwise.}
  17690. \racket{The type checker for \LangAny{} is shown in figure~\ref{fig:type-check-Lany}
  17691. and it uses the auxiliary functions presented in figure~\ref{fig:type-check-Lany-aux}.}
  17692. \python{The type checker for \LangAny{} is shown in figure~\ref{fig:type-check-Lany}.}
  17693. The interpreter for \LangAny{} is shown in figure~\ref{fig:interp-Lany} and
  17694. its auxiliary functions are shown in figure~\ref{fig:interp-Lany-aux}.
  17695. \begin{figure}[btp]
  17696. \begin{tcolorbox}[colback=white]
  17697. {\if\edition\racketEd
  17698. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  17699. (define type-check-Lany-class
  17700. (class type-check-Llambda-class
  17701. (super-new)
  17702. (inherit check-type-equal?)
  17703. (define/override (type-check-exp env)
  17704. (lambda (e)
  17705. (define recur (type-check-exp env))
  17706. (match e
  17707. [(Inject e1 ty)
  17708. (unless (flat-ty? ty)
  17709. (error 'type-check "may only inject from flat type, not ~a" ty))
  17710. (define-values (new-e1 e-ty) (recur e1))
  17711. (check-type-equal? e-ty ty e)
  17712. (values (Inject new-e1 ty) 'Any)]
  17713. [(Project e1 ty)
  17714. (unless (flat-ty? ty)
  17715. (error 'type-check "may only project to flat type, not ~a" ty))
  17716. (define-values (new-e1 e-ty) (recur e1))
  17717. (check-type-equal? e-ty 'Any e)
  17718. (values (Project new-e1 ty) ty)]
  17719. [(Prim 'any-vector-length (list e1))
  17720. (define-values (e1^ t1) (recur e1))
  17721. (check-type-equal? t1 'Any e)
  17722. (values (Prim 'any-vector-length (list e1^)) 'Integer)]
  17723. [(Prim 'any-vector-ref (list e1 e2))
  17724. (define-values (e1^ t1) (recur e1))
  17725. (define-values (e2^ t2) (recur e2))
  17726. (check-type-equal? t1 'Any e)
  17727. (check-type-equal? t2 'Integer e)
  17728. (values (Prim 'any-vector-ref (list e1^ e2^)) 'Any)]
  17729. [(Prim 'any-vector-set! (list e1 e2 e3))
  17730. (define-values (e1^ t1) (recur e1))
  17731. (define-values (e2^ t2) (recur e2))
  17732. (define-values (e3^ t3) (recur e3))
  17733. (check-type-equal? t1 'Any e)
  17734. (check-type-equal? t2 'Integer e)
  17735. (check-type-equal? t3 'Any e)
  17736. (values (Prim 'any-vector-set! (list e1^ e2^ e3^)) 'Void)]
  17737. [(Prim pred (list e1))
  17738. #:when (set-member? (type-predicates) pred)
  17739. (define-values (new-e1 e-ty) (recur e1))
  17740. (check-type-equal? e-ty 'Any e)
  17741. (values (Prim pred (list new-e1)) 'Boolean)]
  17742. [(Prim 'eq? (list arg1 arg2))
  17743. (define-values (e1 t1) (recur arg1))
  17744. (define-values (e2 t2) (recur arg2))
  17745. (match* (t1 t2)
  17746. [(`(Vector ,ts1 ...) `(Vector ,ts2 ...)) (void)]
  17747. [(other wise) (check-type-equal? t1 t2 e)])
  17748. (values (Prim 'eq? (list e1 e2)) 'Boolean)]
  17749. [else ((super type-check-exp env) e)])))
  17750. ))
  17751. \end{lstlisting}
  17752. \fi}
  17753. {\if\edition\pythonEd\pythonColor
  17754. \begin{lstlisting}
  17755. class TypeCheckLany(TypeCheckLlambda):
  17756. def type_check_exp(self, e, env):
  17757. match e:
  17758. case Inject(value, typ):
  17759. self.check_exp(value, typ, env)
  17760. return AnyType()
  17761. case Project(value, typ):
  17762. self.check_exp(value, AnyType(), env)
  17763. return typ
  17764. case Call(Name('any_tuple_load'), [tup, index]):
  17765. self.check_exp(tup, AnyType(), env)
  17766. self.check_exp(index, IntType(), env)
  17767. return AnyType()
  17768. case Call(Name('any_len'), [tup]):
  17769. self.check_exp(tup, AnyType(), env)
  17770. return IntType()
  17771. case Call(Name('arity'), [fun]):
  17772. ty = self.type_check_exp(fun, env)
  17773. match ty:
  17774. case FunctionType(ps, rt):
  17775. return IntType()
  17776. case TupleType([FunctionType(ps,rs)]):
  17777. return IntType()
  17778. case _:
  17779. raise Exception('type check arity unexpected ' + repr(ty))
  17780. case Call(Name('make_any'), [value, tag]):
  17781. self.type_check_exp(value, env)
  17782. self.check_exp(tag, IntType(), env)
  17783. return AnyType()
  17784. case AnnLambda(params, returns, body):
  17785. new_env = {x:t for (x,t) in env.items()}
  17786. for (x,t) in params:
  17787. new_env[x] = t
  17788. return_t = self.type_check_exp(body, new_env)
  17789. self.check_type_equal(returns, return_t, e)
  17790. return FunctionType([t for (x,t) in params], return_t)
  17791. case _:
  17792. return super().type_check_exp(e, env)
  17793. \end{lstlisting}
  17794. \fi}
  17795. \end{tcolorbox}
  17796. \caption{Type checker for the \LangAny{} language.}
  17797. \label{fig:type-check-Lany}
  17798. \end{figure}
  17799. {\if\edition\racketEd
  17800. \begin{figure}[tbp]
  17801. \begin{tcolorbox}[colback=white]
  17802. \begin{lstlisting}
  17803. (define/override (operator-types)
  17804. (append
  17805. '((integer? . ((Any) . Boolean))
  17806. (vector? . ((Any) . Boolean))
  17807. (procedure? . ((Any) . Boolean))
  17808. (void? . ((Any) . Boolean)))
  17809. (super operator-types)))
  17810. (define/public (type-predicates)
  17811. (set 'boolean? 'integer? 'vector? 'procedure? 'void?))
  17812. (define/public (flat-ty? ty)
  17813. (match ty
  17814. [(or `Integer `Boolean `Void) #t]
  17815. [`(Vector ,ts ...) (for/and ([t ts]) (eq? t 'Any))]
  17816. [`(,ts ... -> ,rt)
  17817. (and (eq? rt 'Any) (for/and ([t ts]) (eq? t 'Any)))]
  17818. [else #f]))
  17819. \end{lstlisting}
  17820. \end{tcolorbox}
  17821. \caption{Auxiliary methods for type checking \LangAny{}.}
  17822. \label{fig:type-check-Lany-aux}
  17823. \end{figure}
  17824. \fi}
  17825. \begin{figure}[tbp]
  17826. \begin{tcolorbox}[colback=white]
  17827. {\if\edition\racketEd
  17828. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  17829. (define interp-Lany-class
  17830. (class interp-Llambda-class
  17831. (super-new)
  17832. (define/override (interp-op op)
  17833. (match op
  17834. ['boolean? (match-lambda
  17835. [`(tagged ,v1 ,tg) (equal? tg (any-tag 'Boolean))]
  17836. [else #f])]
  17837. ['integer? (match-lambda
  17838. [`(tagged ,v1 ,tg) (equal? tg (any-tag 'Integer))]
  17839. [else #f])]
  17840. ['vector? (match-lambda
  17841. [`(tagged ,v1 ,tg) (equal? tg (any-tag `(Vector Any)))]
  17842. [else #f])]
  17843. ['procedure? (match-lambda
  17844. [`(tagged ,v1 ,tg) (equal? tg (any-tag `(Any -> Any)))]
  17845. [else #f])]
  17846. ['eq? (match-lambda*
  17847. [`((tagged ,v1^ ,tg1) (tagged ,v2^ ,tg2))
  17848. (and (eq? v1^ v2^) (equal? tg1 tg2))]
  17849. [ls (apply (super interp-op op) ls)])]
  17850. ['any-vector-ref (lambda (v i)
  17851. (match v [`(tagged ,v^ ,tg) (vector-ref v^ i)]))]
  17852. ['any-vector-set! (lambda (v i a)
  17853. (match v [`(tagged ,v^ ,tg) (vector-set! v^ i a)]))]
  17854. ['any-vector-length (lambda (v)
  17855. (match v [`(tagged ,v^ ,tg) (vector-length v^)]))]
  17856. [else (super interp-op op)]))
  17857. (define/override ((interp-exp env) e)
  17858. (define recur (interp-exp env))
  17859. (match e
  17860. [(Inject e ty) `(tagged ,(recur e) ,(any-tag ty))]
  17861. [(Project e ty2) (apply-project (recur e) ty2)]
  17862. [else ((super interp-exp env) e)]))
  17863. ))
  17864. (define (interp-Lany p)
  17865. (send (new interp-Lany-class) interp-program p))
  17866. \end{lstlisting}
  17867. \fi}
  17868. {\if\edition\pythonEd\pythonColor
  17869. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  17870. class InterpLany(InterpLlambda):
  17871. def interp_exp(self, e, env):
  17872. match e:
  17873. case Inject(value, typ):
  17874. return Tagged(self.interp_exp(value, env), self.type_to_tag(typ))
  17875. case Project(value, typ):
  17876. match self.interp_exp(value, env):
  17877. case Tagged(val, tag) if self.type_to_tag(typ) == tag:
  17878. return val
  17879. case _:
  17880. raise Exception('failed project to ' + self.type_to_tag(typ))
  17881. case Call(Name('any_tuple_load'), [tup, index]):
  17882. match self.interp_exp(tup, env):
  17883. case Tagged(v, tag):
  17884. return v[self.interp_exp(index, env)]
  17885. case _:
  17886. raise Exception('in any_tuple_load untagged value')
  17887. case Call(Name('any_len'), [value]):
  17888. match self.interp_exp(value, env):
  17889. case Tagged(value, tag):
  17890. return len(value)
  17891. case _:
  17892. raise Exception('interp any_len untagged value')
  17893. case Call(Name('arity'), [fun]):
  17894. return self.arity(self.interp_exp(fun, env))
  17895. case _:
  17896. return super().interp_exp(e, env)
  17897. \end{lstlisting}
  17898. \fi}
  17899. \end{tcolorbox}
  17900. \caption{Interpreter for \LangAny{}.}
  17901. \label{fig:interp-Lany}
  17902. \end{figure}
  17903. \begin{figure}[btp]
  17904. \begin{tcolorbox}[colback=white]
  17905. {\if\edition\racketEd
  17906. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  17907. (define/public (apply-inject v tg) (Tagged v tg))
  17908. (define/public (apply-project v ty2)
  17909. (define tag2 (any-tag ty2))
  17910. (match v
  17911. [(Tagged v1 tag1)
  17912. (cond
  17913. [(eq? tag1 tag2)
  17914. (match ty2
  17915. [`(Vector ,ts ...)
  17916. (define l1 ((interp-op 'vector-length) v1))
  17917. (cond
  17918. [(eq? l1 (length ts)) v1]
  17919. [else (error 'apply-project "vector length mismatch, ~a != ~a"
  17920. l1 (length ts))])]
  17921. [`(,ts ... -> ,rt)
  17922. (match v1
  17923. [`(function ,xs ,body ,env)
  17924. (cond [(eq? (length xs) (length ts)) v1]
  17925. [else
  17926. (error 'apply-project "arity mismatch ~a != ~a"
  17927. (length xs) (length ts))])]
  17928. [else (error 'apply-project "expected function not ~a" v1)])]
  17929. [else v1])]
  17930. [else (error 'apply-project "tag mismatch ~a != ~a" tag1 tag2)])]
  17931. [else (error 'apply-project "expected tagged value, not ~a" v)]))
  17932. \end{lstlisting}
  17933. \fi}
  17934. {\if\edition\pythonEd\pythonColor
  17935. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  17936. class InterpLany(InterpLlambda):
  17937. def type_to_tag(self, typ):
  17938. match typ:
  17939. case FunctionType(params, rt):
  17940. return 'function'
  17941. case TupleType(fields):
  17942. return 'tuple'
  17943. case IntType():
  17944. return 'int'
  17945. case BoolType():
  17946. return 'bool'
  17947. case _:
  17948. raise Exception('type_to_tag unexpected ' + repr(typ))
  17949. def arity(self, v):
  17950. match v:
  17951. case Function(name, params, body, env):
  17952. return len(params)
  17953. case _:
  17954. raise Exception('Lany arity unexpected ' + repr(v))
  17955. \end{lstlisting}
  17956. \fi}
  17957. \end{tcolorbox}
  17958. \caption{Auxiliary functions for interpreting \LangAny{}.}
  17959. \label{fig:interp-Lany-aux}
  17960. \end{figure}
  17961. \clearpage
  17962. \section{Cast Insertion: Compiling \LangDyn{} to \LangAny{}}
  17963. \label{sec:compile-r7}
  17964. The \code{cast\_insert} pass compiles from \LangDyn{} to \LangAny{}.
  17965. Figure~\ref{fig:compile-r7-Lany} shows the compilation of many of the
  17966. \LangDyn{} forms into \LangAny{}. An important invariant of this pass
  17967. is that given any subexpression $e$ in the \LangDyn{} program, the
  17968. pass will produce an expression $e'$ in \LangAny{} that has type
  17969. \ANYTY{}. For example, the first row in
  17970. figure~\ref{fig:compile-r7-Lany} shows the compilation of the Boolean
  17971. \TRUE{}, which must be injected to produce an expression of type
  17972. \ANYTY{}.
  17973. %
  17974. The compilation of addition is shown in the second row of
  17975. figure~\ref{fig:compile-r7-Lany}. The compilation of addition is
  17976. representative of many primitive operations: the arguments have type
  17977. \ANYTY{} and must be projected to \INTTYPE{} before the addition can
  17978. be performed.
  17979. The compilation of \key{lambda} (third row of
  17980. figure~\ref{fig:compile-r7-Lany}) shows what happens when we need to
  17981. produce type annotations: we simply use \ANYTY{}.
  17982. %
  17983. % TODO:update the following for python, and the tests and interpreter. -Jeremy
  17984. \racket{The compilation of \code{if} and \code{eq?} demonstrate how
  17985. this pass has to account for some differences in behavior between
  17986. \LangDyn{} and \LangAny{}. The \LangDyn{} language is more
  17987. permissive than \LangAny{} regarding what kind of values can be used
  17988. in various places. For example, the condition of an \key{if} does
  17989. not have to be a Boolean. For \key{eq?}, the arguments need not be
  17990. of the same type (in that case the result is \code{\#f}).}
  17991. \begin{figure}[btp]
  17992. \centering
  17993. \begin{tcolorbox}[colback=white]
  17994. {\if\edition\racketEd
  17995. \begin{tabular}{lll}
  17996. \begin{minipage}{0.27\textwidth}
  17997. \begin{lstlisting}
  17998. #t
  17999. \end{lstlisting}
  18000. \end{minipage}
  18001. &
  18002. $\Rightarrow$
  18003. &
  18004. \begin{minipage}{0.65\textwidth}
  18005. \begin{lstlisting}
  18006. (inject #t Boolean)
  18007. \end{lstlisting}
  18008. \end{minipage}
  18009. \\[2ex]\hline
  18010. \begin{minipage}{0.27\textwidth}
  18011. \begin{lstlisting}
  18012. (+ |$e_1$| |$e_2$|)
  18013. \end{lstlisting}
  18014. \end{minipage}
  18015. &
  18016. $\Rightarrow$
  18017. &
  18018. \begin{minipage}{0.65\textwidth}
  18019. \begin{lstlisting}
  18020. (inject
  18021. (+ (project |$e'_1$| Integer)
  18022. (project |$e'_2$| Integer))
  18023. Integer)
  18024. \end{lstlisting}
  18025. \end{minipage}
  18026. \\[2ex]\hline
  18027. \begin{minipage}{0.27\textwidth}
  18028. \begin{lstlisting}
  18029. (lambda (|$x_1 \ldots$|) |$e$|)
  18030. \end{lstlisting}
  18031. \end{minipage}
  18032. &
  18033. $\Rightarrow$
  18034. &
  18035. \begin{minipage}{0.65\textwidth}
  18036. \begin{lstlisting}
  18037. (inject
  18038. (lambda: ([|$x_1$|:Any]|$\ldots$|):Any |$e'$|)
  18039. (Any|$\ldots$|Any -> Any))
  18040. \end{lstlisting}
  18041. \end{minipage}
  18042. \\[2ex]\hline
  18043. \begin{minipage}{0.27\textwidth}
  18044. \begin{lstlisting}
  18045. (|$e_0$| |$e_1 \ldots e_n$|)
  18046. \end{lstlisting}
  18047. \end{minipage}
  18048. &
  18049. $\Rightarrow$
  18050. &
  18051. \begin{minipage}{0.65\textwidth}
  18052. \begin{lstlisting}
  18053. ((project |$e'_0$| (Any|$\ldots$|Any -> Any)) |$e'_1 \ldots e'_n$|)
  18054. \end{lstlisting}
  18055. \end{minipage}
  18056. \\[2ex]\hline
  18057. \begin{minipage}{0.27\textwidth}
  18058. \begin{lstlisting}
  18059. (vector-ref |$e_1$| |$e_2$|)
  18060. \end{lstlisting}
  18061. \end{minipage}
  18062. &
  18063. $\Rightarrow$
  18064. &
  18065. \begin{minipage}{0.65\textwidth}
  18066. \begin{lstlisting}
  18067. (any-vector-ref |$e_1'$| (project |$e'_2$| Integer))
  18068. \end{lstlisting}
  18069. \end{minipage}
  18070. \\[2ex]\hline
  18071. \begin{minipage}{0.27\textwidth}
  18072. \begin{lstlisting}
  18073. (if |$e_1$| |$e_2$| |$e_3$|)
  18074. \end{lstlisting}
  18075. \end{minipage}
  18076. &
  18077. $\Rightarrow$
  18078. &
  18079. \begin{minipage}{0.65\textwidth}
  18080. \begin{lstlisting}
  18081. (if (eq? |$e'_1$| (inject #f Boolean)) |$e'_3$| |$e'_2$|)
  18082. \end{lstlisting}
  18083. \end{minipage}
  18084. \\[2ex]\hline
  18085. \begin{minipage}{0.27\textwidth}
  18086. \begin{lstlisting}
  18087. (eq? |$e_1$| |$e_2$|)
  18088. \end{lstlisting}
  18089. \end{minipage}
  18090. &
  18091. $\Rightarrow$
  18092. &
  18093. \begin{minipage}{0.65\textwidth}
  18094. \begin{lstlisting}
  18095. (inject (eq? |$e'_1$| |$e'_2$|) Boolean)
  18096. \end{lstlisting}
  18097. \end{minipage}
  18098. \\[2ex]\hline
  18099. \begin{minipage}{0.27\textwidth}
  18100. \begin{lstlisting}
  18101. (not |$e_1$|)
  18102. \end{lstlisting}
  18103. \end{minipage}
  18104. &
  18105. $\Rightarrow$
  18106. &
  18107. \begin{minipage}{0.65\textwidth}
  18108. \begin{lstlisting}
  18109. (if (eq? |$e'_1$| (inject #f Boolean))
  18110. (inject #t Boolean) (inject #f Boolean))
  18111. \end{lstlisting}
  18112. \end{minipage}
  18113. \end{tabular}
  18114. \fi}
  18115. {\if\edition\pythonEd\pythonColor
  18116. \hspace{-0.8em}\begin{tabular}{|lll|} \hline
  18117. \begin{minipage}{0.23\textwidth}
  18118. \begin{lstlisting}
  18119. True
  18120. \end{lstlisting}
  18121. \end{minipage}
  18122. &
  18123. $\Rightarrow$
  18124. &
  18125. \begin{minipage}{0.7\textwidth}
  18126. \begin{lstlisting}
  18127. Inject(True, BoolType())
  18128. \end{lstlisting}
  18129. \end{minipage}
  18130. \\[2ex]\hline
  18131. \begin{minipage}{0.23\textwidth}
  18132. \begin{lstlisting}
  18133. |$e_1$| + |$e_2$|
  18134. \end{lstlisting}
  18135. \end{minipage}
  18136. &
  18137. $\Rightarrow$
  18138. &
  18139. \begin{minipage}{0.7\textwidth}
  18140. \begin{lstlisting}
  18141. Inject(Project(|$e'_1$|, IntType())
  18142. + Project(|$e'_2$|, IntType()),
  18143. IntType())
  18144. \end{lstlisting}
  18145. \end{minipage}
  18146. \\[2ex]\hline
  18147. \begin{minipage}{0.23\textwidth}
  18148. \begin{lstlisting}
  18149. lambda |$x_1 \ldots$|: |$e$|
  18150. \end{lstlisting}
  18151. \end{minipage}
  18152. &
  18153. $\Rightarrow$
  18154. &
  18155. \begin{minipage}{0.7\textwidth}
  18156. \begin{lstlisting}
  18157. Inject(Lambda([(|$x_1$|,AnyType),|$\ldots$|], |$e'$|)
  18158. FunctionType([AnyType(),|$\ldots$|], AnyType()))
  18159. \end{lstlisting}
  18160. \end{minipage}
  18161. \\[2ex]\hline
  18162. \begin{minipage}{0.23\textwidth}
  18163. \begin{lstlisting}
  18164. |$e_0$|(|$e_1 \ldots e_n$|)
  18165. \end{lstlisting}
  18166. \end{minipage}
  18167. &
  18168. $\Rightarrow$
  18169. &
  18170. \begin{minipage}{0.7\textwidth}
  18171. \begin{lstlisting}
  18172. Call(Project(|$e'_0$|, FunctionType([AnyType(),|$\ldots$|],
  18173. AnyType())), |$e'_1, \ldots, e'_n$|)
  18174. \end{lstlisting}
  18175. \end{minipage}
  18176. \\[2ex]\hline
  18177. \begin{minipage}{0.23\textwidth}
  18178. \begin{lstlisting}
  18179. |$e_1$|[|$e_2$|]
  18180. \end{lstlisting}
  18181. \end{minipage}
  18182. &
  18183. $\Rightarrow$
  18184. &
  18185. \begin{minipage}{0.7\textwidth}
  18186. \begin{lstlisting}
  18187. Call(Name('any_tuple_load'),
  18188. [|$e_1'$|, Project(|$e_2'$|, IntType())])
  18189. \end{lstlisting}
  18190. \end{minipage}
  18191. %% \begin{minipage}{0.23\textwidth}
  18192. %% \begin{lstlisting}
  18193. %% |$e_2$| if |$e_1$| else |$e_3$|
  18194. %% \end{lstlisting}
  18195. %% \end{minipage}
  18196. %% &
  18197. %% $\Rightarrow$
  18198. %% &
  18199. %% \begin{minipage}{0.7\textwidth}
  18200. %% \begin{lstlisting}
  18201. %% (if (eq? |$e'_1$| (inject #f Boolean)) |$e'_3$| |$e'_2$|)
  18202. %% \end{lstlisting}
  18203. %% \end{minipage}
  18204. %% \\[2ex]\hline
  18205. %% \begin{minipage}{0.23\textwidth}
  18206. %% \begin{lstlisting}
  18207. %% (eq? |$e_1$| |$e_2$|)
  18208. %% \end{lstlisting}
  18209. %% \end{minipage}
  18210. %% &
  18211. %% $\Rightarrow$
  18212. %% &
  18213. %% \begin{minipage}{0.7\textwidth}
  18214. %% \begin{lstlisting}
  18215. %% (inject (eq? |$e'_1$| |$e'_2$|) Boolean)
  18216. %% \end{lstlisting}
  18217. %% \end{minipage}
  18218. %% \\[2ex]\hline
  18219. %% \begin{minipage}{0.23\textwidth}
  18220. %% \begin{lstlisting}
  18221. %% (not |$e_1$|)
  18222. %% \end{lstlisting}
  18223. %% \end{minipage}
  18224. %% &
  18225. %% $\Rightarrow$
  18226. %% &
  18227. %% \begin{minipage}{0.7\textwidth}
  18228. %% \begin{lstlisting}
  18229. %% (if (eq? |$e'_1$| (inject #f Boolean))
  18230. %% (inject #t Boolean) (inject #f Boolean))
  18231. %% \end{lstlisting}
  18232. %% \end{minipage}
  18233. %% \\[2ex]\hline
  18234. \\\hline
  18235. \end{tabular}
  18236. \fi}
  18237. \end{tcolorbox}
  18238. \caption{Cast insertion.}
  18239. \label{fig:compile-r7-Lany}
  18240. \end{figure}
  18241. \section{Reveal Casts}
  18242. \label{sec:reveal-casts-Lany}
  18243. % TODO: define R'_6
  18244. In the \code{reveal\_casts} pass, we recommend compiling
  18245. \code{Project} into a conditional expression that checks whether the
  18246. value's tag matches the target type; if it does, the value is
  18247. converted to a value of the target type by removing the tag; if it
  18248. does not, the program exits.
  18249. %
  18250. {\if\edition\racketEd
  18251. %
  18252. To perform these actions we need a new primitive operation,
  18253. \code{tag-of-any}, and a new form, \code{ValueOf}.
  18254. The \code{tag-of-any} operation retrieves the type tag from a tagged
  18255. value of type \code{Any}. The \code{ValueOf} form retrieves the
  18256. underlying value from a tagged value. The \code{ValueOf} form
  18257. includes the type for the underlying value that is used by the type
  18258. checker.
  18259. %
  18260. \fi}
  18261. %
  18262. {\if\edition\pythonEd\pythonColor
  18263. %
  18264. To perform these actions we need two new AST classes: \code{TagOf} and
  18265. \code{ValueOf}. The \code{TagOf} operation retrieves the type tag from a
  18266. tagged value of type \ANYTY{}. The \code{ValueOf} operation retrieves
  18267. the underlying value from a tagged value. The \code{ValueOf}
  18268. operation includes the type for the underlying value that is used by
  18269. the type checker.
  18270. %
  18271. \fi}
  18272. If the target type of the projection is \BOOLTY{} or \INTTY{}, then
  18273. \code{Project} can be translated as follows:
  18274. \begin{center}
  18275. \begin{minipage}{1.0\textwidth}
  18276. {\if\edition\racketEd
  18277. \begin{lstlisting}
  18278. (Project |$e$| |$\FType$|)
  18279. |$\Rightarrow$|
  18280. (Let |$\itm{tmp}$| |$e'$|
  18281. (If (Prim 'eq? (list (Prim 'tag-of-any (list (Var |$\itm{tmp}$|)))
  18282. (Int |$\itm{tagof}(\FType)$|)))
  18283. (ValueOf |$\itm{tmp}$| |$\FType$|)
  18284. (Exit)))
  18285. \end{lstlisting}
  18286. \fi}
  18287. {\if\edition\pythonEd\pythonColor
  18288. \begin{lstlisting}
  18289. Project(|$e$|, |$\FType$|)
  18290. |$\Rightarrow$|
  18291. Begin([Assign([|$\itm{tmp}$|], |$e'$|)],
  18292. IfExp(Compare(TagOf(|$\itm{tmp}$|),[Eq()],
  18293. [Constant(|$\itm{tagof}(\FType)$|)]),
  18294. ValueOf(|$\itm{tmp}$|, |$\FType$|)
  18295. Call(Name('exit'), [])))
  18296. \end{lstlisting}
  18297. \fi}
  18298. \end{minipage}
  18299. \end{center}
  18300. If the target type of the projection is a tuple or function type, then
  18301. there is a bit more work to do. For tuples, check that the length of
  18302. the tuple type matches the length of the tuple. For functions, check
  18303. that the number of parameters in the function type matches the
  18304. function's arity.
  18305. Regarding \code{Inject}, we recommend compiling it to a slightly
  18306. lower-level primitive operation named \racket{\code{make-any}}\python{\code{make\_any}}. This operation
  18307. takes a tag instead of a type.
  18308. \begin{center}
  18309. \begin{minipage}{1.0\textwidth}
  18310. {\if\edition\racketEd
  18311. \begin{lstlisting}
  18312. (Inject |$e$| |$\FType$|)
  18313. |$\Rightarrow$|
  18314. (Prim 'make-any (list |$e'$| (Int |$\itm{tagof}(\FType)$|)))
  18315. \end{lstlisting}
  18316. \fi}
  18317. {\if\edition\pythonEd\pythonColor
  18318. \begin{lstlisting}
  18319. Inject(|$e$|, |$\FType$|)
  18320. |$\Rightarrow$|
  18321. Call(Name('make_any'), [|$e'$|, Constant(|$\itm{tagof}(\FType)$|)])
  18322. \end{lstlisting}
  18323. \fi}
  18324. \end{minipage}
  18325. \end{center}
  18326. {\if\edition\pythonEd\pythonColor
  18327. %
  18328. The introduction of \code{make\_any} makes it difficult to use
  18329. bidirectional type checking because we no longer have an expected type
  18330. to use for type checking the expression $e'$. Thus, we run into
  18331. difficulty if $e'$ is a \code{Lambda} expression. We recommend
  18332. translating \code{Lambda} to a new AST class \code{AnnLambda} (for
  18333. annotated lambda) that contains its return type and the types of its
  18334. parameters.
  18335. %
  18336. \fi}
  18337. \racket{The type predicates (\code{boolean?}, etc.) can be translated into
  18338. uses of \code{tag-of-any} and \code{eq?} in a similar way as in the
  18339. translation of \code{Project}.}
  18340. {\if\edition\racketEd
  18341. The \code{any-vector-ref} and \code{any-vector-set!} operations
  18342. combine the projection action with the vector operation. Also, the
  18343. read and write operations allow arbitrary expressions for the index, so
  18344. the type checker for \LangAny{} (figure~\ref{fig:type-check-Lany})
  18345. cannot guarantee that the index is within bounds. Thus, we insert code
  18346. to perform bounds checking at runtime. The translation for
  18347. \code{any-vector-ref} is as follows, and the other two operations are
  18348. translated in a similar way:
  18349. \begin{center}
  18350. \begin{minipage}{0.95\textwidth}
  18351. \begin{lstlisting}
  18352. (Prim 'any-vector-ref (list |$e_1$| |$e_2$|))
  18353. |$\Rightarrow$|
  18354. (Let |$v$| |$e'_1$|
  18355. (Let |$i$| |$e'_2$|
  18356. (If (Prim 'eq? (list (Prim 'tag-of-any (list (Var |$v$|))) (Int 2)))
  18357. (If (Prim '< (list (Var |$i$|) (Prim 'any-vector-length (list (Var |$v$|)))))
  18358. (Prim 'any-vector-ref (list (Var |$v$|) (Var |$i$|)))
  18359. (Exit))
  18360. (Exit))))
  18361. \end{lstlisting}
  18362. \end{minipage}
  18363. \end{center}
  18364. \fi}
  18365. %
  18366. {\if\edition\pythonEd\pythonColor
  18367. %
  18368. The \code{any\_tuple\_load} operation combines the projection action
  18369. with the load operation. Also, the load operation allows arbitrary
  18370. expressions for the index, so the type checker for \LangAny{}
  18371. (figure~\ref{fig:type-check-Lany}) cannot guarantee that the index is
  18372. within bounds. Thus, we insert code to perform bounds checking at
  18373. runtime. The translation for \code{any\_tuple\_load} is as follows.
  18374. \begin{lstlisting}
  18375. Call(Name('any_tuple_load'), [|$e_1$|,|$e_2$|])
  18376. |$\Rightarrow$|
  18377. Block([Assign([|$t$|], |$e'_1$|), Assign([|$i$|], |$e'_2$|)],
  18378. IfExp(Compare(TagOf(|$t$|), [Eq()], [Constant(2)]),
  18379. IfExp(Compare(|$i$|, [Lt()], [Call(Name('any_len'), [|$t$|])]),
  18380. Call(Name('any_tuple_load_unsafe'), [|$t$|, |$i$|]),
  18381. Call(Name('exit'), [])),
  18382. Call(Name('exit'), [])))
  18383. \end{lstlisting}
  18384. \fi}
  18385. {\if\edition\pythonEd\pythonColor
  18386. \section{Assignment Conversion}
  18387. \label{sec:convert-assignments-Lany}
  18388. Update this pass to handle the \code{TagOf}, \code{ValueOf}, and
  18389. \code{AnnLambda} AST classes.
  18390. \section{Closure Conversion}
  18391. \label{sec:closure-conversion-Lany}
  18392. Update this pass to handle the \code{TagOf}, \code{ValueOf}, and
  18393. \code{AnnLambda} AST classes.
  18394. \fi}
  18395. \section{Remove Complex Operands}
  18396. \label{sec:rco-Lany}
  18397. \racket{The \code{ValueOf} and \code{Exit} forms are both complex
  18398. expressions. The subexpression of \code{ValueOf} must be atomic.}
  18399. %
  18400. \python{The \code{ValueOf} and \code{TagOf} operations are both
  18401. complex expressions. Their subexpressions must be atomic.}
  18402. \section{Explicate Control and \LangCAny{}}
  18403. \label{sec:explicate-Lany}
  18404. The output of \code{explicate\_control} is the \LangCAny{} language,
  18405. whose syntax definition is shown in figure~\ref{fig:c5-syntax}.
  18406. %
  18407. \racket{The \code{ValueOf} form that we added to \LangAny{} remains an
  18408. expression and the \code{Exit} expression becomes a $\Tail$. Also,
  18409. note that the index argument of \code{vector-ref} and
  18410. \code{vector-set!} is an $\Atm$, instead of an integer as it was in
  18411. \LangCVec{} (figure~\ref{fig:c2-syntax}).}
  18412. %
  18413. \python{Update the auxiliary functions \code{explicate\_tail},
  18414. \code{explicate\_effect}, and \code{explicate\_pred} as
  18415. appropriate to handle the new expressions in \LangCAny{}. }
  18416. \newcommand{\CanyASTPython}{
  18417. \begin{array}{lcl}
  18418. \Exp &::=& \CALL{\VAR{\skey{make\_any}}}{\LS \Atm,\Atm \RS}\\
  18419. &\MID& \key{TagOf}\LP \Atm \RP
  18420. \MID \key{ValueOf}\LP \Atm , \FType \RP \\
  18421. &\MID& \CALL{\VAR{\skey{any\_tuple\_load\_unsafe}}}{\LS \Atm,\Atm \RS}\\
  18422. &\MID& \CALL{\VAR{\skey{any\_len}}}{\LS \Atm \RS} \\
  18423. &\MID& \CALL{\VAR{\skey{exit}}}{\LS\RS}
  18424. \end{array}
  18425. }
  18426. \newcommand{\CanyASTRacket}{
  18427. \begin{array}{lcl}
  18428. \Exp &::= & \BINOP{\key{'any-vector-ref}}{\Atm}{\Atm} \\
  18429. &\MID& (\key{Prim}~\key{'any-vector-set!}\,(\key{list}\,\Atm\,\Atm\,\Atm))\\
  18430. &\MID& \VALUEOF{\Atm}{\FType} \\
  18431. \Tail &::= & \LP\key{Exit}\RP
  18432. \end{array}
  18433. }
  18434. \begin{figure}[tp]
  18435. \begin{tcolorbox}[colback=white]
  18436. \small
  18437. {\if\edition\racketEd
  18438. \[
  18439. \begin{array}{l}
  18440. \gray{\CvarASTRacket} \\ \hline
  18441. \gray{\CifASTRacket} \\ \hline
  18442. \gray{\CloopASTRacket} \\ \hline
  18443. \gray{\CtupASTRacket} \\ \hline
  18444. \gray{\CfunASTRacket} \\ \hline
  18445. \gray{\ClambdaASTRacket} \\ \hline
  18446. \CanyASTRacket \\
  18447. \begin{array}{lcl}
  18448. \LangCAnyM{} & ::= & \PROGRAMDEFS{\itm{info}}{\LP\Def\ldots\RP}
  18449. \end{array}
  18450. \end{array}
  18451. \]
  18452. \fi}
  18453. {\if\edition\pythonEd\pythonColor
  18454. \[
  18455. \begin{array}{l}
  18456. \gray{\CifASTPython} \\ \hline
  18457. \gray{\CtupASTPython} \\ \hline
  18458. \gray{\CfunASTPython} \\ \hline
  18459. \gray{\ClambdaASTPython} \\ \hline
  18460. \CanyASTPython \\
  18461. \begin{array}{lcl}
  18462. \LangCAnyM{} & ::= & \CPROGRAMDEFS{\LS\Def\code{,}\ldots\RS}
  18463. \end{array}
  18464. \end{array}
  18465. \]
  18466. \fi}
  18467. \end{tcolorbox}
  18468. \caption{The abstract syntax of \LangCAny{}, extending \LangCLam{} (figure~\ref{fig:Clam-syntax}).}
  18469. \label{fig:c5-syntax}
  18470. \index{subject}{Cany@\LangCAny{} abstract syntax}
  18471. \end{figure}
  18472. \section{Select Instructions}
  18473. \label{sec:select-Lany}
  18474. \index{subject}{select instructions}
  18475. In the \code{select\_instructions} pass, we translate the primitive
  18476. operations on the \ANYTY{} type to x86 instructions that manipulate
  18477. the three tag bits of the tagged value. In the following descriptions,
  18478. given an atom $e$ we use a primed variable $e'$ to refer to the result
  18479. of translating $e$ into an x86 argument:
  18480. \paragraph{\racket{\code{make-any}}\python{\code{make\_any}}}
  18481. We recommend compiling the
  18482. \racket{\code{make-any}}\python{\code{make\_any}} operation as follows
  18483. if the tag is for \INTTY{} or \BOOLTY{}. The \key{salq} instruction
  18484. shifts the destination to the left by the number of bits specified by its
  18485. source argument (in this case three, the length of the tag), and it
  18486. preserves the sign of the integer. We use the \key{orq} instruction to
  18487. combine the tag and the value to form the tagged value.
  18488. {\if\edition\racketEd
  18489. \begin{lstlisting}
  18490. (Assign |\itm{lhs}| (Prim 'make-any (list |$e$| (Int |$\itm{tag}$|))))
  18491. |$\Rightarrow$|
  18492. movq |$e'$|, |\itm{lhs'}|
  18493. salq $3, |\itm{lhs'}|
  18494. orq $|$\itm{tag}$|, |\itm{lhs'}|
  18495. \end{lstlisting}
  18496. \fi}
  18497. %
  18498. {\if\edition\pythonEd\pythonColor
  18499. \begin{lstlisting}
  18500. Assign([|\itm{lhs}|], Call(Name('make_any'), [|$e$|, Constant(|$\itm{tag}$|)]))
  18501. |$\Rightarrow$|
  18502. movq |$e'$|, |\itm{lhs'}|
  18503. salq $3, |\itm{lhs'}|
  18504. orq $|$\itm{tag}$|, |\itm{lhs'}|
  18505. \end{lstlisting}
  18506. \fi}
  18507. %
  18508. The instruction selection\index{subject}{instruction selection} for
  18509. tuples and procedures is different because there is no need to shift
  18510. them to the left. The rightmost 3 bits are already zeros, so we simply
  18511. combine the value and the tag using \key{orq}. \\
  18512. %
  18513. {\if\edition\racketEd
  18514. \begin{center}
  18515. \begin{minipage}{\textwidth}
  18516. \begin{lstlisting}
  18517. (Assign |\itm{lhs}| (Prim 'make-any (list |$e$| (Int |$\itm{tag}$|))))
  18518. |$\Rightarrow$|
  18519. movq |$e'$|, |\itm{lhs'}|
  18520. orq $|$\itm{tag}$|, |\itm{lhs'}|
  18521. \end{lstlisting}
  18522. \end{minipage}
  18523. \end{center}
  18524. \fi}
  18525. %
  18526. {\if\edition\pythonEd\pythonColor
  18527. \begin{lstlisting}
  18528. Assign([|\itm{lhs}|], Call(Name('make_any'), [|$e$|, Constant(|$\itm{tag}$|)]))
  18529. |$\Rightarrow$|
  18530. movq |$e'$|, |\itm{lhs'}|
  18531. orq $|$\itm{tag}$|, |\itm{lhs'}|
  18532. \end{lstlisting}
  18533. \fi}
  18534. \paragraph{\racket{\code{tag-of-any}}\python{\code{TagOf}}}
  18535. Recall that the \racket{\code{tag-of-any}}\python{\code{TagOf}}
  18536. operation extracts the type tag from a value of type \ANYTY{}. The
  18537. type tag is the bottom $3$ bits, so we obtain the tag by taking the
  18538. bitwise-and of the value with $111$ ($7$ decimal).
  18539. %
  18540. {\if\edition\racketEd
  18541. \begin{lstlisting}
  18542. (Assign |\itm{lhs}| (Prim 'tag-of-any (list |$e$|)))
  18543. |$\Rightarrow$|
  18544. movq |$e'$|, |\itm{lhs'}|
  18545. andq $7, |\itm{lhs'}|
  18546. \end{lstlisting}
  18547. \fi}
  18548. %
  18549. {\if\edition\pythonEd\pythonColor
  18550. \begin{lstlisting}
  18551. Assign([|\itm{lhs}|], TagOf(|$e$|))
  18552. |$\Rightarrow$|
  18553. movq |$e'$|, |\itm{lhs'}|
  18554. andq $7, |\itm{lhs'}|
  18555. \end{lstlisting}
  18556. \fi}
  18557. \paragraph{\code{ValueOf}}
  18558. The instructions for \key{ValueOf} also differ, depending on whether
  18559. the type $T$ is a pointer (tuple or function) or not (integer or
  18560. Boolean). The following shows the instruction
  18561. selection for integers and
  18562. Booleans, in which we produce an untagged value by shifting it to the
  18563. right by 3 bits:
  18564. %
  18565. {\if\edition\racketEd
  18566. \begin{lstlisting}
  18567. (Assign |\itm{lhs}| (ValueOf |$e$| |$T$|))
  18568. |$\Rightarrow$|
  18569. movq |$e'$|, |\itm{lhs'}|
  18570. sarq $3, |\itm{lhs'}|
  18571. \end{lstlisting}
  18572. \fi}
  18573. %
  18574. {\if\edition\pythonEd\pythonColor
  18575. \begin{lstlisting}
  18576. Assign([|\itm{lhs}|], ValueOf(|$e$|, |$T$|))
  18577. |$\Rightarrow$|
  18578. movq |$e'$|, |\itm{lhs'}|
  18579. sarq $3, |\itm{lhs'}|
  18580. \end{lstlisting}
  18581. \fi}
  18582. %
  18583. In the case for tuples and procedures, we zero out the rightmost 3
  18584. bits. We accomplish this by creating the bit pattern $\ldots 0111$
  18585. ($7$ decimal) and apply bitwise-not to obtain $\ldots 11111000$ (-8
  18586. decimal), which we \code{movq} into the destination $\itm{lhs'}$.
  18587. Finally, we apply \code{andq} with the tagged value to get the desired
  18588. result.
  18589. %
  18590. {\if\edition\racketEd
  18591. \begin{lstlisting}
  18592. (Assign |\itm{lhs}| (ValueOf |$e$| |$T$|))
  18593. |$\Rightarrow$|
  18594. movq $|$-8$|, |\itm{lhs'}|
  18595. andq |$e'$|, |\itm{lhs'}|
  18596. \end{lstlisting}
  18597. \fi}
  18598. %
  18599. {\if\edition\pythonEd\pythonColor
  18600. \begin{lstlisting}
  18601. Assign([|\itm{lhs}|], ValueOf(|$e$|, |$T$|))
  18602. |$\Rightarrow$|
  18603. movq $|$-8$|, |\itm{lhs'}|
  18604. andq |$e'$|, |\itm{lhs'}|
  18605. \end{lstlisting}
  18606. \fi}
  18607. %% \paragraph{Type Predicates} We leave it to the reader to
  18608. %% devise a sequence of instructions to implement the type predicates
  18609. %% \key{boolean?}, \key{integer?}, \key{vector?}, and \key{procedure?}.
  18610. \paragraph{\racket{\code{any-vector-length}}\python{\code{any\_len}}}
  18611. The \racket{\code{any-vector-length}}\python{\code{any\_len}}
  18612. operation combines the effect of \code{ValueOf} with accessing the
  18613. length of a tuple from the tag stored at the zero index of the tuple.
  18614. {\if\edition\racketEd
  18615. \begin{lstlisting}
  18616. (Assign |$\itm{lhs}$| (Prim 'any-vector-length (list |$e_1$|)))
  18617. |$\Longrightarrow$|
  18618. movq $|$-8$|, %r11
  18619. andq |$e_1'$|, %r11
  18620. movq 0(%r11), %r11
  18621. andq $126, %r11
  18622. sarq $1, %r11
  18623. movq %r11, |$\itm{lhs'}$|
  18624. \end{lstlisting}
  18625. \fi}
  18626. {\if\edition\pythonEd\pythonColor
  18627. \begin{lstlisting}
  18628. Assign([|$\itm{lhs}$|], Call(Name('any_len'), [|$e_1$|]))
  18629. |$\Longrightarrow$|
  18630. movq $|$-8$|, %r11
  18631. andq |$e_1'$|, %r11
  18632. movq 0(%r11), %r11
  18633. andq $126, %r11
  18634. sarq $1, %r11
  18635. movq %r11, |$\itm{lhs'}$|
  18636. \end{lstlisting}
  18637. \fi}
  18638. \paragraph{\racket{\code{any-vector-ref}}\python{\code{\code{any\_tuple\_load\_unsafe}}}}
  18639. This operation combines the effect of \code{ValueOf} with reading an
  18640. element of the tuple (see
  18641. section~\ref{sec:select-instructions-gc}). However, the index may be
  18642. an arbitrary atom, so instead of computing the offset at compile time,
  18643. we must generate instructions to compute the offset at runtime as
  18644. follows. Note the use of the new instruction \code{imulq}.
  18645. \begin{center}
  18646. \begin{minipage}{0.96\textwidth}
  18647. {\if\edition\racketEd
  18648. \begin{lstlisting}
  18649. (Assign |$\itm{lhs}$| (Prim 'any-vector-ref (list |$e_1$| |$e_2$|)))
  18650. |$\Longrightarrow$|
  18651. movq |$\neg 111$|, %r11
  18652. andq |$e_1'$|, %r11
  18653. movq |$e_2'$|, %rax
  18654. addq $1, %rax
  18655. imulq $8, %rax
  18656. addq %rax, %r11
  18657. movq 0(%r11) |$\itm{lhs'}$|
  18658. \end{lstlisting}
  18659. \fi}
  18660. %
  18661. {\if\edition\pythonEd\pythonColor
  18662. \begin{lstlisting}
  18663. Assign([|$\itm{lhs}$|], Call(Name('any_tuple_load_unsafe'), [|$e_1$|,|$e_2$|]))
  18664. |$\Longrightarrow$|
  18665. movq $|$-8$|, %r11
  18666. andq |$e_1'$|, %r11
  18667. movq |$e_2'$|, %rax
  18668. addq $1, %rax
  18669. imulq $8, %rax
  18670. addq %rax, %r11
  18671. movq 0(%r11) |$\itm{lhs'}$|
  18672. \end{lstlisting}
  18673. \fi}
  18674. \end{minipage}
  18675. \end{center}
  18676. % $ pacify font lock
  18677. %% \paragraph{\racket{\code{any-vector-set!}}\python{\code{any\_tuple\_store}}}
  18678. %% The code generation for
  18679. %% \racket{\code{any-vector-set!}}\python{\code{any\_tuple\_store}} is
  18680. %% analogous to the above translation for reading from a tuple.
  18681. \section{Register Allocation for \LangAny{} }
  18682. \label{sec:register-allocation-Lany}
  18683. \index{subject}{register allocation}
  18684. There is an interesting interaction between tagged values and garbage
  18685. collection that has an impact on register allocation. A variable of
  18686. type \ANYTY{} might refer to a tuple, and therefore it might be a root
  18687. that needs to be inspected and copied during garbage collection. Thus,
  18688. we need to treat variables of type \ANYTY{} in a similar way to
  18689. variables of tuple type for purposes of register allocation,
  18690. with particular attention to the following:
  18691. \begin{itemize}
  18692. \item If a variable of type \ANYTY{} is live during a function call,
  18693. then it must be spilled. This can be accomplished by changing
  18694. \code{build\_interference} to mark all variables of type \ANYTY{}
  18695. that are live after a \code{callq} to be interfering with all the
  18696. registers.
  18697. \item If a variable of type \ANYTY{} is spilled, it must be spilled to
  18698. the root stack instead of the normal procedure call stack.
  18699. \end{itemize}
  18700. Another concern regarding the root stack is that the garbage collector
  18701. needs to differentiate among (1) plain old pointers to tuples, (2) a
  18702. tagged value that points to a tuple, and (3) a tagged value that is
  18703. not a tuple. We enable this differentiation by choosing not to use the
  18704. tag $000$ in the $\itm{tagof}$ function. Instead, that bit pattern is
  18705. reserved for identifying plain old pointers to tuples. That way, if
  18706. one of the first three bits is set, then we have a tagged value and
  18707. inspecting the tag can differentiate between tuples ($010$) and the
  18708. other kinds of values.
  18709. %% \begin{exercise}\normalfont
  18710. %% Expand your compiler to handle \LangAny{} as discussed in the last few
  18711. %% sections. Create 5 new programs that use the \ANYTY{} type and the
  18712. %% new operations (\code{Inject}, \code{Project}, etc.). Test your
  18713. %% compiler on these new programs and all of your previously created test
  18714. %% programs.
  18715. %% \end{exercise}
  18716. \begin{exercise}\normalfont\normalsize
  18717. Expand your compiler to handle \LangDyn{} as outlined in this chapter.
  18718. Create tests for \LangDyn{} by adapting ten of your previous test programs
  18719. by removing type annotations. Add five more test programs that
  18720. specifically rely on the language being dynamically typed. That is,
  18721. they should not be legal programs in a statically typed language, but
  18722. nevertheless they should be valid \LangDyn{} programs that run to
  18723. completion without error.
  18724. \end{exercise}
  18725. Figure~\ref{fig:Ldyn-passes} gives an overview of the passes needed
  18726. for the compilation of \LangDyn{}.
  18727. \begin{figure}[bthp]
  18728. \begin{tcolorbox}[colback=white]
  18729. {\if\edition\racketEd
  18730. \begin{tikzpicture}[baseline=(current bounding box.center),scale=0.85]
  18731. \node (Lfun) at (0,4) {\large \LangDyn{}};
  18732. \node (Lfun-2) at (4,4) {\large \LangDyn{}};
  18733. \node (Lfun-3) at (8,4) {\large \LangDyn{}};
  18734. \node (Lfun-4) at (12,4) {\large \LangDynFunRef{}};
  18735. \node (Lfun-5) at (12,2) {\large \LangAnyFunRef{}};
  18736. \node (Lfun-6) at (8,2) {\large \LangAnyFunRef{}};
  18737. \node (Lfun-7) at (4,2) {\large \LangAnyFunRef{}};
  18738. \node (F1-2) at (0,2) {\large \LangAnyFunRef{}};
  18739. \node (F1-3) at (0,0) {\large \LangAnyFunRef{}};
  18740. \node (F1-4) at (4,0) {\large \LangAnyAlloc{}};
  18741. \node (F1-5) at (8,0) {\large \LangAnyAlloc{}};
  18742. \node (F1-6) at (12,0) {\large \LangAnyAlloc{}};
  18743. \node (C3-2) at (0,-2) {\large \LangCAny{}};
  18744. \node (x86-2) at (0,-4) {\large \LangXIndCallVar{}};
  18745. \node (x86-2-1) at (0,-6) {\large \LangXIndCallVar{}};
  18746. \node (x86-2-2) at (4,-6) {\large \LangXIndCallVar{}};
  18747. \node (x86-3) at (4,-4) {\large \LangXIndCallVar{}};
  18748. \node (x86-4) at (8,-4) {\large \LangXIndCall{}};
  18749. \node (x86-5) at (8,-6) {\large \LangXIndCall{}};
  18750. \path[->,bend left=15] (Lfun) edge [above] node
  18751. {\ttfamily\footnotesize shrink} (Lfun-2);
  18752. \path[->,bend left=15] (Lfun-2) edge [above] node
  18753. {\ttfamily\footnotesize uniquify} (Lfun-3);
  18754. \path[->,bend left=15] (Lfun-3) edge [above] node
  18755. {\ttfamily\footnotesize reveal\_functions} (Lfun-4);
  18756. \path[->,bend left=15] (Lfun-4) edge [left] node
  18757. {\ttfamily\footnotesize cast\_insert} (Lfun-5);
  18758. \path[->,bend left=15] (Lfun-5) edge [below] node
  18759. {\ttfamily\footnotesize reveal\_casts} (Lfun-6);
  18760. \path[->,bend left=15] (Lfun-6) edge [below] node
  18761. {\ttfamily\footnotesize convert\_assignments} (Lfun-7);
  18762. \path[->,bend right=15] (Lfun-7) edge [above] node
  18763. {\ttfamily\footnotesize convert\_to\_closures} (F1-2);
  18764. \path[->,bend right=15] (F1-2) edge [right] node
  18765. {\ttfamily\footnotesize limit\_functions} (F1-3);
  18766. \path[->,bend right=15] (F1-3) edge [below] node
  18767. {\ttfamily\footnotesize expose\_allocation} (F1-4);
  18768. \path[->,bend right=15] (F1-4) edge [below] node
  18769. {\ttfamily\footnotesize uncover\_get!} (F1-5);
  18770. \path[->,bend left=15] (F1-5) edge [above] node
  18771. {\ttfamily\footnotesize remove\_complex\_operands} (F1-6);
  18772. \path[->,bend left=10] (F1-6) edge [below] node
  18773. {\ttfamily\footnotesize \ \ \ \ \ explicate\_control} (C3-2);
  18774. \path[->,bend left=15] (C3-2) edge [right] node
  18775. {\ttfamily\footnotesize select\_instructions} (x86-2);
  18776. \path[->,bend right=15] (x86-2) edge [right] node
  18777. {\ttfamily\footnotesize uncover\_live} (x86-2-1);
  18778. \path[->,bend right=15] (x86-2-1) edge [below] node
  18779. {\ttfamily\footnotesize build\_interference} (x86-2-2);
  18780. \path[->,bend right=15] (x86-2-2) edge [right] node
  18781. {\ttfamily\footnotesize allocate\_registers} (x86-3);
  18782. \path[->,bend left=15] (x86-3) edge [above] node
  18783. {\ttfamily\footnotesize patch\_instructions} (x86-4);
  18784. \path[->,bend left=15] (x86-4) edge [right] node
  18785. {\ttfamily\footnotesize prelude\_and\_conclusion} (x86-5);
  18786. \end{tikzpicture}
  18787. \fi}
  18788. {\if\edition\pythonEd\pythonColor
  18789. \begin{tikzpicture}[baseline=(current bounding box.center),scale=0.85]
  18790. \node (Lfun) at (0,4) {\large \LangDyn{}};
  18791. \node (Lfun-2) at (4,4) {\large \LangDyn{}};
  18792. \node (Lfun-3) at (8,4) {\large \LangDyn{}};
  18793. \node (Lfun-4) at (12,4) {\large \LangDynFunRef{}};
  18794. \node (Lfun-5) at (12,2) {\large \LangAnyFunRef{}};
  18795. \node (Lfun-6) at (8,2) {\large \LangAnyFunRef{}};
  18796. \node (Lfun-7) at (4,2) {\large \LangAnyFunRef{}};
  18797. \node (F1-2) at (0,2) {\large \LangAnyFunRef{}};
  18798. \node (F1-3) at (0,0) {\large \LangAnyFunRef{}};
  18799. \node (F1-5) at (4,0) {\large \LangAnyAlloc{}};
  18800. \node (F1-6) at (8,0) {\large \LangAnyAlloc{}};
  18801. \node (C3-2) at (0,-2) {\large \LangCAny{}};
  18802. \node (x86-2) at (0,-4) {\large \LangXIndCallVar{}};
  18803. \node (x86-3) at (4,-4) {\large \LangXIndCallVar{}};
  18804. \node (x86-4) at (8,-4) {\large \LangXIndCall{}};
  18805. \node (x86-5) at (12,-4) {\large \LangXIndCall{}};
  18806. \path[->,bend left=15] (Lfun) edge [above] node
  18807. {\ttfamily\footnotesize shrink} (Lfun-2);
  18808. \path[->,bend left=15] (Lfun-2) edge [above] node
  18809. {\ttfamily\footnotesize uniquify} (Lfun-3);
  18810. \path[->,bend left=15] (Lfun-3) edge [above] node
  18811. {\ttfamily\footnotesize reveal\_functions} (Lfun-4);
  18812. \path[->,bend left=15] (Lfun-4) edge [left] node
  18813. {\ttfamily\footnotesize cast\_insert} (Lfun-5);
  18814. \path[->,bend left=15] (Lfun-5) edge [below] node
  18815. {\ttfamily\footnotesize reveal\_casts} (Lfun-6);
  18816. \path[->,bend right=15] (Lfun-6) edge [above] node
  18817. {\ttfamily\footnotesize convert\_assignments} (Lfun-7);
  18818. \path[->,bend right=15] (Lfun-7) edge [above] node
  18819. {\ttfamily\footnotesize convert\_to\_closures} (F1-2);
  18820. \path[->,bend right=15] (F1-2) edge [right] node
  18821. {\ttfamily\footnotesize limit\_functions} (F1-3);
  18822. \path[->,bend right=15] (F1-3) edge [below] node
  18823. {\ttfamily\footnotesize expose\_allocation} (F1-5);
  18824. \path[->,bend left=15] (F1-5) edge [above] node
  18825. {\ttfamily\footnotesize remove\_complex\_operands} (F1-6);
  18826. \path[->,bend left=10] (F1-6) edge [below] node
  18827. {\ttfamily\footnotesize \ \ \ \ \ \ \ \ explicate\_control} (C3-2);
  18828. \path[->,bend right=15] (C3-2) edge [right] node
  18829. {\ttfamily\footnotesize select\_instructions} (x86-2);
  18830. \path[->,bend right=15] (x86-2) edge [below] node
  18831. {\ttfamily\footnotesize assign\_homes} (x86-3);
  18832. \path[->,bend right=15] (x86-3) edge [below] node
  18833. {\ttfamily\footnotesize patch\_instructions} (x86-4);
  18834. \path[->,bend left=15] (x86-4) edge [above] node
  18835. {\ttfamily\footnotesize prelude\_and\_conclusion} (x86-5);
  18836. \end{tikzpicture}
  18837. \fi}
  18838. \end{tcolorbox}
  18839. \caption{Diagram of the passes for \LangDyn{}, a dynamically typed language.}
  18840. \label{fig:Ldyn-passes}
  18841. \end{figure}
  18842. % Further Reading
  18843. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  18844. %% {\if\edition\pythonEd\pythonColor
  18845. %% \chapter{Objects}
  18846. %% \label{ch:Lobject}
  18847. %% \index{subject}{objects}
  18848. %% \index{subject}{classes}
  18849. %% \setcounter{footnote}{0}
  18850. %% \fi}
  18851. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  18852. \chapter{Gradual Typing}
  18853. \label{ch:Lgrad}
  18854. \index{subject}{gradual typing}
  18855. \setcounter{footnote}{0}
  18856. This chapter studies the language \LangGrad{}, in which the programmer
  18857. can choose between static and dynamic type checking in different parts
  18858. of a program, thereby mixing the statically typed \LangLam{} language
  18859. with the dynamically typed \LangDyn{}. There are several approaches to
  18860. mixing static and dynamic typing, including multilanguage
  18861. integration~\citep{Tobin-Hochstadt:2006fk,Matthews:2007zr} and hybrid
  18862. type checking~\citep{Flanagan:2006mn,Gronski:2006uq}. In this chapter
  18863. we focus on \emph{gradual typing}\index{subject}{gradual typing}, in which the
  18864. programmer controls the amount of static versus dynamic checking by
  18865. adding or removing type annotations on parameters and
  18866. variables~\citep{Anderson:2002kd,Siek:2006bh}.
  18867. The definition of the concrete syntax of \LangGrad{} is shown in
  18868. figure~\ref{fig:Lgrad-concrete-syntax}, and the definition of its
  18869. abstract syntax is shown in figure~\ref{fig:Lgrad-syntax}. The main
  18870. syntactic difference between \LangLam{} and \LangGrad{} is that type
  18871. annotations are optional, which is specified in the grammar using the
  18872. \Param{} and \itm{ret} nonterminals. In the abstract syntax, type
  18873. annotations are not optional, but we use the \CANYTY{} type when a type
  18874. annotation is absent.
  18875. %
  18876. Both the type checker and the interpreter for \LangGrad{} require some
  18877. interesting changes to enable gradual typing, which we discuss in the
  18878. next two sections.
  18879. \newcommand{\LgradGrammarRacket}{
  18880. \begin{array}{lcl}
  18881. \Type &::=& \LP\Type \ldots \; \key{->}\; \Type\RP \\
  18882. \Param &::=& \Var \MID \LS\Var \key{:} \Type\RS \\
  18883. \itm{ret} &::=& \epsilon \MID \key{:} \Type \\
  18884. \Exp &::=& \LP\Exp \; \Exp \ldots\RP
  18885. \MID \CGLAMBDA{\LP\Param\ldots\RP}{\itm{ret}}{\Exp} \\
  18886. &\MID& \LP \key{procedure-arity}~\Exp\RP \\
  18887. \Def &::=& \CGDEF{\Var}{\Param\ldots}{\itm{ret}}{\Exp}
  18888. \end{array}
  18889. }
  18890. \newcommand{\LgradASTRacket}{
  18891. \begin{array}{lcl}
  18892. \Type &::=& \LP\Type \ldots \; \key{->}\; \Type\RP \\
  18893. \Param &::=& \Var \MID \LS\Var \key{:} \Type\RS \\
  18894. \Exp &::=& \APPLY{\Exp}{\Exp\ldots}
  18895. \MID \LAMBDA{\LP\Param\ldots\RP}{\Type}{\Exp} \\
  18896. \itm{op} &::=& \code{procedure-arity} \\
  18897. \Def &::=& \FUNDEF{\Var}{\LP\Param\ldots\RP}{\Type}{\code{'()}}{\Exp}
  18898. \end{array}
  18899. }
  18900. \newcommand{\LgradGrammarPython}{
  18901. \begin{array}{lcl}
  18902. \Type &::=& \key{Any}
  18903. \MID \key{int}
  18904. \MID \key{bool}
  18905. \MID \key{tuple}\LS \Type \code{, } \ldots \RS
  18906. \MID \key{Callable}\LS \LS \Type \key{,} \ldots \RS \key{, } \Type \RS \\
  18907. \Exp &::=& \CAPPLY{\Exp}{\Exp\code{,} \ldots}
  18908. \MID \CLAMBDA{\Var\code{, }\ldots}{\Exp}
  18909. \MID \CARITY{\Exp} \\
  18910. \Stmt &::=& \CANNASSIGN{\Var}{\Type}{\Exp} \MID \CRETURN{\Exp} \\
  18911. \Param &::=& \Var \MID \Var \key{:} \Type \\
  18912. \itm{ret} &::=& \epsilon \MID \key{->}~\Type \\
  18913. \Def &::=& \CGDEF{\Var}{\Param\key{, }\ldots}{\itm{ret}}{\Stmt^{+}}
  18914. \end{array}
  18915. }
  18916. \newcommand{\LgradASTPython}{
  18917. \begin{array}{lcl}
  18918. \Type &::=& \key{AnyType()} \MID \key{IntType()} \MID \key{BoolType()} \MID \key{VoidType()}\\
  18919. &\MID& \key{TupleType}\LP\Type^{*}\RP
  18920. \MID \key{FunctionType}\LP \Type^{*} \key{, } \Type \RP \\
  18921. \Exp &::=& \CALL{\Exp}{\Exp^{*}} \MID \LAMBDA{\Var^{*}}{\Exp}\\
  18922. &\MID& \ARITY{\Exp} \\
  18923. \Stmt &::=& \ANNASSIGN{\Var}{\Type}{\Exp}
  18924. \MID \RETURN{\Exp} \\
  18925. \Param &::=& \LP\Var\key{,}\Type\RP \\
  18926. \Def &::=& \FUNDEF{\Var}{\Param^{*}}{\Type}{}{\Stmt^{+}}
  18927. \end{array}
  18928. }
  18929. \begin{figure}[tbp]
  18930. \centering
  18931. \begin{tcolorbox}[colback=white]
  18932. \vspace{-5pt}
  18933. \small
  18934. {\if\edition\racketEd
  18935. \[
  18936. \begin{array}{l}
  18937. \gray{\LintGrammarRacket{}} \\ \hline
  18938. \gray{\LvarGrammarRacket{}} \\ \hline
  18939. \gray{\LifGrammarRacket{}} \\ \hline
  18940. \gray{\LwhileGrammarRacket} \\ \hline
  18941. \gray{\LtupGrammarRacket} \\ \hline
  18942. \LgradGrammarRacket \\
  18943. \begin{array}{lcl}
  18944. \LangGradM{} &::=& \gray{\Def\ldots \; \Exp}
  18945. \end{array}
  18946. \end{array}
  18947. \]
  18948. \fi}
  18949. {\if\edition\pythonEd\pythonColor
  18950. \[
  18951. \begin{array}{l}
  18952. \gray{\LintGrammarPython{}} \\ \hline
  18953. \gray{\LvarGrammarPython{}} \\ \hline
  18954. \gray{\LifGrammarPython{}} \\ \hline
  18955. \gray{\LwhileGrammarPython} \\ \hline
  18956. \gray{\LtupGrammarPython} \\ \hline
  18957. \LgradGrammarPython \\
  18958. \begin{array}{lcl}
  18959. \LangGradM{} &::=& \Def\ldots \Stmt\ldots
  18960. \end{array}
  18961. \end{array}
  18962. \]
  18963. \fi}
  18964. \end{tcolorbox}
  18965. \caption{The concrete syntax of \LangGrad{}, extending \LangVec{} (figure~\ref{fig:Lvec-concrete-syntax}).}
  18966. \label{fig:Lgrad-concrete-syntax}
  18967. \index{subject}{L?@\LangGrad{} concrete syntax}
  18968. \end{figure}
  18969. \begin{figure}[tbp]
  18970. \centering
  18971. \begin{tcolorbox}[colback=white]
  18972. \small
  18973. {\if\edition\racketEd
  18974. \[
  18975. \begin{array}{l}
  18976. \gray{\LintOpAST} \\ \hline
  18977. \gray{\LvarASTRacket{}} \\ \hline
  18978. \gray{\LifASTRacket{}} \\ \hline
  18979. \gray{\LwhileASTRacket{}} \\ \hline
  18980. \gray{\LtupASTRacket{}} \\ \hline
  18981. \LgradASTRacket \\
  18982. \begin{array}{lcl}
  18983. \LangGradM{} &::=& \PROGRAMDEFSEXP{\code{'()}}{\LP\Def\ldots\RP}{\Exp}
  18984. \end{array}
  18985. \end{array}
  18986. \]
  18987. \fi}
  18988. {\if\edition\pythonEd\pythonColor
  18989. \[
  18990. \begin{array}{l}
  18991. \gray{\LintASTPython{}} \\ \hline
  18992. \gray{\LvarASTPython{}} \\ \hline
  18993. \gray{\LifASTPython{}} \\ \hline
  18994. \gray{\LwhileASTPython} \\ \hline
  18995. \gray{\LtupASTPython} \\ \hline
  18996. \LgradASTPython \\
  18997. \begin{array}{lcl}
  18998. \LangGradM{} &::=& \PROGRAM{}{\LS \Def \ldots \Stmt \ldots \RS}
  18999. \end{array}
  19000. \end{array}
  19001. \]
  19002. \fi}
  19003. \end{tcolorbox}
  19004. \caption{The abstract syntax of \LangGrad{}, extending \LangVec{} (figure~\ref{fig:Lvec-syntax}).}
  19005. \label{fig:Lgrad-syntax}
  19006. \index{subject}{L?@\LangGrad{} abstract syntax}
  19007. \end{figure}
  19008. % TODO: more road map -Jeremy
  19009. %\clearpage
  19010. \section{Type Checking \LangGrad{}}
  19011. \label{sec:gradual-type-check}
  19012. We begin by discussing the type checking of a partially typed variant
  19013. of the \code{map} example from chapter~\ref{ch:Lfun}, shown in
  19014. figure~\ref{fig:gradual-map}. The \code{map} function itself is
  19015. statically typed, so there is nothing special happening there with
  19016. respect to type checking. On the other hand, the \code{inc} function
  19017. does not have type annotations, so the type checker assigns the type
  19018. \CANYTY{} to parameter \code{x} and the return type. Now consider the
  19019. \code{+} operator inside \code{inc}. It expects both arguments to have
  19020. type \INTTY{}, but its first argument \code{x} has type \CANYTY{}. In
  19021. a gradually typed language, such differences are allowed so long as
  19022. the types are \emph{consistent}; that is, they are equal except in
  19023. places where there is an \CANYTY{} type. That is, the type \CANYTY{}
  19024. is consistent with every other type. Figure~\ref{fig:consistent}
  19025. shows the definition of the
  19026. \racket{\code{consistent?}}\python{\code{consistent}} method.
  19027. %
  19028. So the type checker allows the \code{+} operator to be applied
  19029. to \code{x} because \CANYTY{} is consistent with \INTTY{}.
  19030. %
  19031. Next consider the call to the \code{map} function shown in
  19032. figure~\ref{fig:gradual-map} with the arguments \code{inc} and a
  19033. tuple. The \code{inc} function has type
  19034. \racket{\code{(Any -> Any)}}\python{\code{Callable[[Any],Any]}},
  19035. but parameter \code{f} of \code{map} has type
  19036. \racket{\code{(Integer -> Integer)}}\python{\code{Callable[[int],int]}}.
  19037. The type checker for \LangGrad{} accepts this call because the two types are
  19038. consistent.
  19039. \begin{figure}[hbtp]
  19040. % gradual_test_9.rkt
  19041. \begin{tcolorbox}[colback=white]
  19042. {\if\edition\racketEd
  19043. \begin{lstlisting}
  19044. (define (map [f : (Integer -> Integer)]
  19045. [v : (Vector Integer Integer)])
  19046. : (Vector Integer Integer)
  19047. (vector (f (vector-ref v 0)) (f (vector-ref v 1))))
  19048. (define (inc x) (+ x 1))
  19049. (vector-ref (map inc (vector 0 41)) 1)
  19050. \end{lstlisting}
  19051. \fi}
  19052. {\if\edition\pythonEd\pythonColor
  19053. \begin{lstlisting}
  19054. def map(f : Callable[[int], int], v : tuple[int,int]) -> tuple[int,int]:
  19055. return f(v[0]), f(v[1])
  19056. def inc(x):
  19057. return x + 1
  19058. t = map(inc, (0, 41))
  19059. print(t[1])
  19060. \end{lstlisting}
  19061. \fi}
  19062. \end{tcolorbox}
  19063. \caption{A partially typed version of the \code{map} example.}
  19064. \label{fig:gradual-map}
  19065. \end{figure}
  19066. \begin{figure}[tbp]
  19067. \begin{tcolorbox}[colback=white]
  19068. {\if\edition\racketEd
  19069. \begin{lstlisting}
  19070. (define/public (consistent? t1 t2)
  19071. (match* (t1 t2)
  19072. [('Integer 'Integer) #t]
  19073. [('Boolean 'Boolean) #t]
  19074. [('Void 'Void) #t]
  19075. [('Any t2) #t]
  19076. [(t1 'Any) #t]
  19077. [(`(Vector ,ts1 ...) `(Vector ,ts2 ...))
  19078. (for/and ([t1 ts1] [t2 ts2]) (consistent? t1 t2))]
  19079. [(`(,ts1 ... -> ,rt1) `(,ts2 ... -> ,rt2))
  19080. (and (for/and ([t1 ts1] [t2 ts2]) (consistent? t1 t2))
  19081. (consistent? rt1 rt2))]
  19082. [(other wise) #f]))
  19083. \end{lstlisting}
  19084. \fi}
  19085. {\if\edition\pythonEd\pythonColor
  19086. \begin{lstlisting}
  19087. def consistent(self, t1, t2):
  19088. match (t1, t2):
  19089. case (AnyType(), _):
  19090. return True
  19091. case (_, AnyType()):
  19092. return True
  19093. case (FunctionType(ps1, rt1), FunctionType(ps2, rt2)):
  19094. return all(map(self.consistent, ps1, ps2)) and consistent(rt1, rt2)
  19095. case (TupleType(ts1), TupleType(ts2)):
  19096. return all(map(self.consistent, ts1, ts2))
  19097. case (_, _):
  19098. return t1 == t2
  19099. \end{lstlisting}
  19100. \fi}
  19101. \vspace{-5pt}
  19102. \end{tcolorbox}
  19103. \caption{The consistency method on types.}
  19104. \label{fig:consistent}
  19105. \end{figure}
  19106. It is also helpful to consider how gradual typing handles programs with an
  19107. error, such as applying \code{map} to a function that sometimes
  19108. returns a Boolean, as shown in figure~\ref{fig:map-maybe_inc}. The
  19109. type checker for \LangGrad{} accepts this program because the type of
  19110. \code{maybe\_inc} is consistent with the type of parameter \code{f} of
  19111. \code{map}; that is,
  19112. \racket{\code{(Any -> Any)}}\python{\code{Callable[[Any],Any]}}
  19113. is consistent with
  19114. \racket{\code{(Integer -> Integer)}}\python{\code{Callable[[int],int]}}.
  19115. One might say that a gradual type checker is optimistic in that it
  19116. accepts programs that might execute without a runtime type error.
  19117. %
  19118. The definition of the type checker for \LangGrad{} is shown in
  19119. figures~\ref{fig:type-check-Lgradual-1}, \ref{fig:type-check-Lgradual-2},
  19120. and \ref{fig:type-check-Lgradual-3}.
  19121. %% \begin{figure}[tp]
  19122. %% \centering
  19123. %% \fbox{
  19124. %% \begin{minipage}{0.96\textwidth}
  19125. %% \small
  19126. %% \[
  19127. %% \begin{array}{lcl}
  19128. %% \Exp &::=& \ldots \MID \CAST{\Exp}{\Type}{\Type} \\
  19129. %% \LangCastM{} &::=& \gray{ \PROGRAMDEFSEXP{\code{'()}}{\LP\Def\ldots\RP}{\Exp} }
  19130. %% \end{array}
  19131. %% \]
  19132. %% \end{minipage}
  19133. %% }
  19134. %% \caption{The abstract syntax of \LangCast{}, extending \LangLam{} (figure~\ref{fig:Lwhile-syntax}).}
  19135. %% \label{fig:Lgrad-prime-syntax}
  19136. %% \end{figure}
  19137. \begin{figure}[tbp]
  19138. \begin{tcolorbox}[colback=white]
  19139. {\if\edition\racketEd
  19140. \begin{lstlisting}
  19141. (define (map [f : (Integer -> Integer)]
  19142. [v : (Vector Integer Integer)])
  19143. : (Vector Integer Integer)
  19144. (vector (f (vector-ref v 0)) (f (vector-ref v 1))))
  19145. (define (inc x) (+ x 1))
  19146. (define (true) #t)
  19147. (define (maybe_inc x) (if (eq? 0 (read)) (inc x) (true)))
  19148. (vector-ref (map maybe_inc (vector 0 41)) 0)
  19149. \end{lstlisting}
  19150. \fi}
  19151. {\if\edition\pythonEd\pythonColor
  19152. \begin{lstlisting}
  19153. def map(f : Callable[[int], int], v : tuple[int,int]) -> tuple[int,int]:
  19154. return f(v[0]), f(v[1])
  19155. def inc(x):
  19156. return x + 1
  19157. def true():
  19158. return True
  19159. def maybe_inc(x):
  19160. return inc(x) if input_int() == 0 else true()
  19161. t = map(maybe_inc, (0, 41))
  19162. print(t[1])
  19163. \end{lstlisting}
  19164. \fi}
  19165. \vspace{-5pt}
  19166. \end{tcolorbox}
  19167. \caption{A variant of the \code{map} example with an error.}
  19168. \label{fig:map-maybe_inc}
  19169. \end{figure}
  19170. Running this program with input \code{1} triggers an
  19171. error when the \code{maybe\_inc} function returns
  19172. \racket{\code{\#t}}\python{\code{True}}. The \LangGrad{} language
  19173. performs checking at runtime to ensure the integrity of the static
  19174. types, such as the
  19175. \racket{\code{(Integer -> Integer)}}\python{\code{Callable[[int],int]}}
  19176. annotation on
  19177. parameter \code{f} of \code{map}.
  19178. Here we give a preview of how the runtime checking is accomplished;
  19179. the following sections provide the details.
  19180. The runtime checking is carried out by a new \code{Cast} AST node that
  19181. is generated in a new pass named \code{cast\_insert}. The output of
  19182. \code{cast\_insert} is a program in the \LangCast{} language, which
  19183. simply adds \code{Cast} and \CANYTY{} to \LangLam{}.
  19184. %
  19185. Figure~\ref{fig:map-cast} shows the output of \code{cast\_insert} for
  19186. \code{map} and \code{maybe\_inc}. The idea is that \code{Cast} is
  19187. inserted every time the type checker encounters two types that are
  19188. consistent but not equal. In the \code{inc} function, \code{x} is
  19189. cast to \INTTY{} and the result of the \code{+} is cast to
  19190. \CANYTY{}. In the call to \code{map}, the \code{inc} argument
  19191. is cast from
  19192. \racket{\code{(Any -> Any)}}
  19193. \python{\code{Callable[[Any], Any]}}
  19194. to
  19195. \racket{\code{(Integer -> Integer)}}\python{\code{Callable[[int],int]}}.
  19196. %
  19197. In the next section we see how to interpret the \code{Cast} node.
  19198. \begin{figure}[btp]
  19199. \begin{tcolorbox}[colback=white]
  19200. {\if\edition\racketEd
  19201. \begin{lstlisting}
  19202. (define (map [f : (Integer -> Integer)] [v : (Vector Integer Integer)])
  19203. : (Vector Integer Integer)
  19204. (vector (f (vector-ref v 0)) (f (vector-ref v 1))))
  19205. (define (inc [x : Any]) : Any
  19206. (cast (+ (cast x Any Integer) 1) Integer Any))
  19207. (define (true) : Any (cast #t Boolean Any))
  19208. (define (maybe_inc [x : Any]) : Any
  19209. (if (eq? 0 (read)) (inc x) (true)))
  19210. (vector-ref (map (cast maybe_inc (Any -> Any) (Integer -> Integer))
  19211. (vector 0 41)) 0)
  19212. \end{lstlisting}
  19213. \fi}
  19214. {\if\edition\pythonEd\pythonColor
  19215. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  19216. def map(f : Callable[[int], int], v : tuple[int,int]) -> tuple[int,int]:
  19217. return f(v[0]), f(v[1])
  19218. def inc(x : Any) -> Any:
  19219. return Cast(Cast(x, Any, int) + 1, int, Any)
  19220. def true() -> Any:
  19221. return Cast(True, bool, Any)
  19222. def maybe_inc(x : Any) -> Any:
  19223. return inc(x) if input_int() == 0 else true()
  19224. t = map(Cast(maybe_inc, Callable[[Any], Any], Callable[[int], int]),
  19225. (0, 41))
  19226. print(t[1])
  19227. \end{lstlisting}
  19228. \fi}
  19229. \vspace{-5pt}
  19230. \end{tcolorbox}
  19231. \caption{Output of the \code{cast\_insert} pass for the \code{map}
  19232. and \code{maybe\_inc} example.}
  19233. \label{fig:map-cast}
  19234. \end{figure}
  19235. {\if\edition\pythonEd\pythonColor
  19236. \begin{figure}[tbp]
  19237. \begin{tcolorbox}[colback=white]
  19238. \begin{lstlisting}
  19239. class TypeCheckLgrad(TypeCheckLlambda):
  19240. def type_check_exp(self, e, env) -> Type:
  19241. match e:
  19242. case Name(id):
  19243. return env[id]
  19244. case Constant(value) if isinstance(value, bool):
  19245. return BoolType()
  19246. case Constant(value) if isinstance(value, int):
  19247. return IntType()
  19248. case Call(Name('input_int'), []):
  19249. return IntType()
  19250. case BinOp(left, op, right):
  19251. left_type = self.type_check_exp(left, env)
  19252. self.check_consistent(left_type, IntType(), left)
  19253. right_type = self.type_check_exp(right, env)
  19254. self.check_consistent(right_type, IntType(), right)
  19255. return IntType()
  19256. case IfExp(test, body, orelse):
  19257. test_t = self.type_check_exp(test, env)
  19258. self.check_consistent(test_t, BoolType(), test)
  19259. body_t = self.type_check_exp(body, env)
  19260. orelse_t = self.type_check_exp(orelse, env)
  19261. self.check_consistent(body_t, orelse_t, e)
  19262. return self.join_types(body_t, orelse_t)
  19263. case Call(func, args):
  19264. func_t = self.type_check_exp(func, env)
  19265. args_t = [self.type_check_exp(arg, env) for arg in args]
  19266. match func_t:
  19267. case FunctionType(params_t, return_t) \
  19268. if len(params_t) == len(args_t):
  19269. for (arg_t, param_t) in zip(args_t, params_t):
  19270. self.check_consistent(param_t, arg_t, e)
  19271. return return_t
  19272. case AnyType():
  19273. return AnyType()
  19274. case _:
  19275. raise Exception('type_check_exp: in call, unexpected '
  19276. + repr(func_t))
  19277. ...
  19278. case _:
  19279. raise Exception('type_check_exp: unexpected ' + repr(e))
  19280. \end{lstlisting}
  19281. \end{tcolorbox}
  19282. \caption{Type checking expressions in the \LangGrad{} language.}
  19283. \label{fig:type-check-Lgradual-1}
  19284. \end{figure}
  19285. \begin{figure}[tbp]
  19286. \begin{tcolorbox}[colback=white]
  19287. \begin{lstlisting}
  19288. def check_exp(self, e, expected_ty, env):
  19289. match e:
  19290. case Lambda(params, body):
  19291. match expected_ty:
  19292. case FunctionType(params_t, return_t):
  19293. new_env = env.copy().update(zip(params, params_t))
  19294. e.has_type = expected_ty
  19295. body_ty = self.type_check_exp(body, new_env)
  19296. self.check_consistent(body_ty, return_t)
  19297. case AnyType():
  19298. new_env = env.copy().update((p, AnyType()) for p in params)
  19299. e.has_type = FunctionType([AnyType()for _ in params],AnyType())
  19300. body_ty = self.type_check_exp(body, new_env)
  19301. case _:
  19302. raise Exception('lambda is not of type ' + str(expected_ty))
  19303. case _:
  19304. e_ty = self.type_check_exp(e, env)
  19305. self.check_consistent(e_ty, expected_ty, e)
  19306. \end{lstlisting}
  19307. \end{tcolorbox}
  19308. \caption{Checking expressions with respect to a type in the \LangGrad{} language.}
  19309. \label{fig:type-check-Lgradual-2}
  19310. \end{figure}
  19311. \begin{figure}[tbp]
  19312. \begin{tcolorbox}[colback=white]
  19313. \begin{lstlisting}
  19314. def type_check_stmt(self, s, env, return_type):
  19315. match s:
  19316. case Assign([Name(id)], value):
  19317. value_ty = self.type_check_exp(value, env)
  19318. if id in env:
  19319. self.check_consistent(env[id], value_ty, value)
  19320. else:
  19321. env[id] = value_ty
  19322. ...
  19323. case _:
  19324. raise Exception('type_check_stmts: unexpected ' + repr(ss))
  19325. def type_check_stmts(self, ss, env, return_type):
  19326. for s in ss:
  19327. self.type_check_stmt(s, env, return_type)
  19328. \end{lstlisting}
  19329. \end{tcolorbox}
  19330. \caption{Type checking statements in the \LangGrad{} language.}
  19331. \label{fig:type-check-Lgradual-3}
  19332. \end{figure}
  19333. \clearpage
  19334. \begin{figure}[tbp]
  19335. \begin{tcolorbox}[colback=white]
  19336. \begin{lstlisting}
  19337. def join_types(self, t1, t2):
  19338. match (t1, t2):
  19339. case (AnyType(), _):
  19340. return t2
  19341. case (_, AnyType()):
  19342. return t1
  19343. case (FunctionType(ps1, rt1), FunctionType(ps2, rt2)):
  19344. return FunctionType(list(map(self.join_types, ps1, ps2)),
  19345. self.join_types(rt1,rt2))
  19346. case (TupleType(ts1), TupleType(ts2)):
  19347. return TupleType(list(map(self.join_types, ts1, ts2)))
  19348. case (_, _):
  19349. return t1
  19350. def check_consistent(self, t1, t2, e):
  19351. if not self.consistent(t1, t2):
  19352. raise Exception('error: ' + repr(t1) + ' inconsistent with ' \
  19353. + repr(t2) + ' in ' + repr(e))
  19354. \end{lstlisting}
  19355. \end{tcolorbox}
  19356. \caption{Auxiliary methods for type checking \LangGrad{}.}
  19357. \label{fig:type-check-Lgradual-aux}
  19358. \end{figure}
  19359. \fi}
  19360. {\if\edition\racketEd
  19361. \begin{figure}[tbp]
  19362. \begin{tcolorbox}[colback=white]
  19363. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  19364. (define/override (type-check-exp env)
  19365. (lambda (e)
  19366. (define recur (type-check-exp env))
  19367. (match e
  19368. [(Prim op es) #:when (not (set-member? explicit-prim-ops op))
  19369. (define-values (new-es ts)
  19370. (for/lists (exprs types) ([e es])
  19371. (recur e)))
  19372. (define t-ret (type-check-op op ts e))
  19373. (values (Prim op new-es) t-ret)]
  19374. [(Prim 'eq? (list e1 e2))
  19375. (define-values (e1^ t1) (recur e1))
  19376. (define-values (e2^ t2) (recur e2))
  19377. (check-consistent? t1 t2 e)
  19378. (define T (meet t1 t2))
  19379. (values (Prim 'eq? (list e1^ e2^)) 'Boolean)]
  19380. [(Prim 'and (list e1 e2))
  19381. (recur (If e1 e2 (Bool #f)))]
  19382. [(Prim 'or (list e1 e2))
  19383. (define tmp (gensym 'tmp))
  19384. (recur (Let tmp e1 (If (Var tmp) (Var tmp) e2)))]
  19385. [(If e1 e2 e3)
  19386. (define-values (e1^ T1) (recur e1))
  19387. (define-values (e2^ T2) (recur e2))
  19388. (define-values (e3^ T3) (recur e3))
  19389. (check-consistent? T1 'Boolean e)
  19390. (check-consistent? T2 T3 e)
  19391. (define Tif (meet T2 T3))
  19392. (values (If e1^ e2^ e3^) Tif)]
  19393. [(SetBang x e1)
  19394. (define-values (e1^ T1) (recur e1))
  19395. (define varT (dict-ref env x))
  19396. (check-consistent? T1 varT e)
  19397. (values (SetBang x e1^) 'Void)]
  19398. [(WhileLoop e1 e2)
  19399. (define-values (e1^ T1) (recur e1))
  19400. (check-consistent? T1 'Boolean e)
  19401. (define-values (e2^ T2) ((type-check-exp env) e2))
  19402. (values (WhileLoop e1^ e2^) 'Void)]
  19403. [(Prim 'vector-length (list e1))
  19404. (define-values (e1^ t) (recur e1))
  19405. (match t
  19406. [`(Vector ,ts ...)
  19407. (values (Prim 'vector-length (list e1^)) 'Integer)]
  19408. ['Any (values (Prim 'vector-length (list e1^)) 'Integer)])]
  19409. \end{lstlisting}
  19410. \end{tcolorbox}
  19411. \caption{Type checker for the \LangGrad{} language, part 1.}
  19412. \label{fig:type-check-Lgradual-1}
  19413. \end{figure}
  19414. \begin{figure}[tbp]
  19415. \begin{tcolorbox}[colback=white]
  19416. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  19417. [(Prim 'vector-ref (list e1 e2))
  19418. (define-values (e1^ t1) (recur e1))
  19419. (define-values (e2^ t2) (recur e2))
  19420. (check-consistent? t2 'Integer e)
  19421. (match t1
  19422. [`(Vector ,ts ...)
  19423. (match e2^
  19424. [(Int i)
  19425. (unless (and (0 . <= . i) (i . < . (length ts)))
  19426. (error 'type-check "invalid index ~a in ~a" i e))
  19427. (values (Prim 'vector-ref (list e1^ (Int i))) (list-ref ts i))]
  19428. [else (values (Prim 'vector-ref (list e1^ e2^)) 'Any)])]
  19429. ['Any (values (Prim 'vector-ref (list e1^ e2^)) 'Any)]
  19430. [else (error 'type-check "expected vector not ~a\nin ~v" t1 e)])]
  19431. [(Prim 'vector-set! (list e1 e2 e3) )
  19432. (define-values (e1^ t1) (recur e1))
  19433. (define-values (e2^ t2) (recur e2))
  19434. (define-values (e3^ t3) (recur e3))
  19435. (check-consistent? t2 'Integer e)
  19436. (match t1
  19437. [`(Vector ,ts ...)
  19438. (match e2^
  19439. [(Int i)
  19440. (unless (and (0 . <= . i) (i . < . (length ts)))
  19441. (error 'type-check "invalid index ~a in ~a" i e))
  19442. (check-consistent? (list-ref ts i) t3 e)
  19443. (values (Prim 'vector-set! (list e1^ (Int i) e3^)) 'Void)]
  19444. [else (values (Prim 'vector-set! (list e1^ e2^ e3^)) 'Void)])]
  19445. ['Any (values (Prim 'vector-set! (list e1^ e2^ e3^)) 'Void)]
  19446. [else (error 'type-check "expected vector not ~a\nin ~v" t1 e)])]
  19447. [(Apply e1 e2s)
  19448. (define-values (e1^ T1) (recur e1))
  19449. (define-values (e2s^ T2s) (for/lists (e* ty*) ([e2 e2s]) (recur e2)))
  19450. (match T1
  19451. [`(,T1ps ... -> ,T1rt)
  19452. (for ([T2 T2s] [Tp T1ps])
  19453. (check-consistent? T2 Tp e))
  19454. (values (Apply e1^ e2s^) T1rt)]
  19455. [`Any (values (Apply e1^ e2s^) 'Any)]
  19456. [else (error 'type-check "expected function not ~a\nin ~v" T1 e)])]
  19457. [(Lambda params Tr e1)
  19458. (define-values (xs Ts) (for/lists (l1 l2) ([p params])
  19459. (match p
  19460. [`[,x : ,T] (values x T)]
  19461. [(? symbol? x) (values x 'Any)])))
  19462. (define-values (e1^ T1)
  19463. ((type-check-exp (append (map cons xs Ts) env)) e1))
  19464. (check-consistent? Tr T1 e)
  19465. (values (Lambda (for/list ([x xs] [T Ts]) `[,x : ,T]) Tr e1^)
  19466. `(,@Ts -> ,Tr))]
  19467. [else ((super type-check-exp env) e)]
  19468. )))
  19469. \end{lstlisting}
  19470. \end{tcolorbox}
  19471. \caption{Type checker for the \LangGrad{} language, part 2.}
  19472. \label{fig:type-check-Lgradual-2}
  19473. \end{figure}
  19474. \begin{figure}[tbp]
  19475. \begin{tcolorbox}[colback=white]
  19476. \begin{lstlisting}
  19477. (define/override (type-check-def env)
  19478. (lambda (e)
  19479. (match e
  19480. [(Def f params rt info body)
  19481. (define-values (xs ps) (for/lists (l1 l2) ([p params])
  19482. (match p
  19483. [`[,x : ,T] (values x T)]
  19484. [(? symbol? x) (values x 'Any)])))
  19485. (define new-env (append (map cons xs ps) env))
  19486. (define-values (body^ ty^) ((type-check-exp new-env) body))
  19487. (check-consistent? ty^ rt e)
  19488. (Def f (for/list ([x xs] [T ps]) `[,x : ,T]) rt info body^)]
  19489. [else (error 'type-check "ill-formed function definition ~a" e)]
  19490. )))
  19491. (define/override (type-check-program e)
  19492. (match e
  19493. [(Program info body)
  19494. (define-values (body^ ty) ((type-check-exp '()) body))
  19495. (check-consistent? ty 'Integer e)
  19496. (ProgramDefsExp info '() body^)]
  19497. [(ProgramDefsExp info ds body)
  19498. (define new-env (for/list ([d ds])
  19499. (cons (Def-name d) (fun-def-type d))))
  19500. (define ds^ (for/list ([d ds])
  19501. ((type-check-def new-env) d)))
  19502. (define-values (body^ ty) ((type-check-exp new-env) body))
  19503. (check-consistent? ty 'Integer e)
  19504. (ProgramDefsExp info ds^ body^)]
  19505. [else (super type-check-program e)]))
  19506. \end{lstlisting}
  19507. \end{tcolorbox}
  19508. \caption{Type checker for the \LangGrad{} language, part 3.}
  19509. \label{fig:type-check-Lgradual-3}
  19510. \end{figure}
  19511. \begin{figure}[tbp]
  19512. \begin{tcolorbox}[colback=white]
  19513. \begin{lstlisting}
  19514. (define/public (join t1 t2)
  19515. (match* (t1 t2)
  19516. [('Integer 'Integer) 'Integer]
  19517. [('Boolean 'Boolean) 'Boolean]
  19518. [('Void 'Void) 'Void]
  19519. [('Any t2) t2]
  19520. [(t1 'Any) t1]
  19521. [(`(Vector ,ts1 ...) `(Vector ,ts2 ...))
  19522. `(Vector ,@(for/list ([t1 ts1] [t2 ts2]) (join t1 t2)))]
  19523. [(`(,ts1 ... -> ,rt1) `(,ts2 ... -> ,rt2))
  19524. `(,@(for/list ([t1 ts1] [t2 ts2]) (join t1 t2))
  19525. -> ,(join rt1 rt2))]))
  19526. (define/public (meet t1 t2)
  19527. (match* (t1 t2)
  19528. [('Integer 'Integer) 'Integer]
  19529. [('Boolean 'Boolean) 'Boolean]
  19530. [('Void 'Void) 'Void]
  19531. [('Any t2) 'Any]
  19532. [(t1 'Any) 'Any]
  19533. [(`(Vector ,ts1 ...) `(Vector ,ts2 ...))
  19534. `(Vector ,@(for/list ([t1 ts1] [t2 ts2]) (meet t1 t2)))]
  19535. [(`(,ts1 ... -> ,rt1) `(,ts2 ... -> ,rt2))
  19536. `(,@(for/list ([t1 ts1] [t2 ts2]) (meet t1 t2))
  19537. -> ,(meet rt1 rt2))]))
  19538. (define/public (check-consistent? t1 t2 e)
  19539. (unless (consistent? t1 t2)
  19540. (error 'type-check "~a is inconsistent with ~a\nin ~v" t1 t2 e)))
  19541. (define explicit-prim-ops
  19542. (set-union
  19543. (type-predicates)
  19544. (set 'procedure-arity 'eq? 'not 'and 'or
  19545. 'vector 'vector-length 'vector-ref 'vector-set!
  19546. 'any-vector-length 'any-vector-ref 'any-vector-set!)))
  19547. (define/override (fun-def-type d)
  19548. (match d
  19549. [(Def f params rt info body)
  19550. (define ps
  19551. (for/list ([p params])
  19552. (match p
  19553. [`[,x : ,T] T]
  19554. [(? symbol?) 'Any]
  19555. [else (error 'fun-def-type "unmatched parameter ~a" p)])))
  19556. `(,@ps -> ,rt)]
  19557. [else (error 'fun-def-type "ill-formed definition in ~a" d)]))
  19558. \end{lstlisting}
  19559. \end{tcolorbox}
  19560. \caption{Auxiliary functions for type checking \LangGrad{}.}
  19561. \label{fig:type-check-Lgradual-aux}
  19562. \end{figure}
  19563. \fi}
  19564. \section{Interpreting \LangCast{} }
  19565. \label{sec:interp-casts}
  19566. The runtime behavior of casts involving simple types such as
  19567. \INTTY{} and \BOOLTY{} is straightforward. For example, a
  19568. cast from \INTTY{} to \CANYTY{} can be accomplished with the
  19569. \code{Inject} operator of \LangAny{}, which puts the integer into a
  19570. tagged value (figure~\ref{fig:interp-Lany}). Similarly, a cast from
  19571. \CANYTY{} to \INTTY{} is accomplished with the \code{Project}
  19572. operator, by checking the value's tag and either retrieving
  19573. the underlying integer or signaling an error if the tag is not the
  19574. one for integers (figure~\ref{fig:interp-Lany-aux}).
  19575. %
  19576. Things get more interesting with casts involving
  19577. \racket{function and tuple types}\python{function, tuple, and array types}.
  19578. Consider the cast of the function \code{maybe\_inc} from
  19579. \racket{\code{(Any -> Any)}}\python{\code{Callable[[Any], Any]}}
  19580. to
  19581. \racket{\code{(Integer -> Integer)}}\python{\code{Callable[[int], int]}}
  19582. shown in figure~\ref{fig:map-maybe_inc}.
  19583. When the \code{maybe\_inc} function flows through
  19584. this cast at runtime, we don't know whether it will return
  19585. an integer, because that depends on the input from the user.
  19586. The \LangCast{} interpreter therefore delays the checking
  19587. of the cast until the function is applied. To do so it
  19588. wraps \code{maybe\_inc} in a new function that casts its parameter
  19589. from \INTTY{} to \CANYTY{}, applies \code{maybe\_inc}, and then
  19590. casts the return value from \CANYTY{} to \INTTY{}.
  19591. {\if\edition\pythonEd\pythonColor
  19592. %
  19593. There are further complications regarding casts on mutable data,
  19594. such as the \code{list} type introduced in
  19595. the challenge assignment of section~\ref{sec:arrays}.
  19596. %
  19597. \fi}
  19598. %
  19599. Consider the example presented in figure~\ref{fig:map-bang} that
  19600. defines a partially typed version of \code{map} whose parameter
  19601. \code{v} has type
  19602. \racket{\code{(Vector Any Any)}}\python{\code{list[Any]}}
  19603. and that updates \code{v} in place
  19604. instead of returning a new tuple. We name this function
  19605. \code{map\_inplace}. We apply \code{map\_inplace} to
  19606. \racket{a tuple}\python{an array} of integers, so the type checker
  19607. inserts a cast from
  19608. \racket{\code{(Vector Integer Integer)}}\python{\code{list[int]}}
  19609. to
  19610. \racket{\code{(Vector Any Any)}}\python{\code{list[Any]}}.
  19611. A naive way for the \LangCast{} interpreter to cast between
  19612. \racket{tuple}\python{array} types would be to build a new
  19613. \racket{tuple}\python{array} whose elements are the result
  19614. of casting each of the original elements to the target
  19615. type. However, this approach is not valid for mutable data structures.
  19616. In the example of figure~\ref{fig:map-bang},
  19617. if the cast created a new \racket{tuple}\python{array}, then the updates inside
  19618. \code{map\_inplace} would happen to the new \racket{tuple}\python{array} and not
  19619. the original one.
  19620. Instead the interpreter needs to create a new kind of value, a
  19621. \emph{proxy}, that intercepts every \racket{tuple}\python{array} operation.
  19622. On a read, the proxy reads from the underlying \racket{tuple}\python{array}
  19623. and then applies a
  19624. cast to the resulting value. On a write, the proxy casts the argument
  19625. value and then performs the write to the underlying \racket{tuple}\python{array}.
  19626. \racket{
  19627. For the first \code{(vector-ref v 0)} in \code{map\_inplace}, the proxy casts
  19628. \code{0} from \INTTY{} to \CANYTY{}.
  19629. For the first \code{vector-set!}, the proxy casts a tagged \code{1}
  19630. from \CANYTY{} to \INTTY{}.
  19631. }
  19632. \python{
  19633. For the subscript \code{v[i]} in \code{f(v[i])} of \code{map\_inplace},
  19634. the proxy casts the integer from \INTTY{} to \CANYTY{}.
  19635. For the subscript on the left of the assignment,
  19636. the proxy casts the tagged value from \CANYTY{} to \INTTY{}.
  19637. }
  19638. Finally we consider casts between the \CANYTY{} type and higher-order types
  19639. such as functions and \racket{tuples}\python{lists}. Figure~\ref{fig:map-any}
  19640. shows a variant of \code{map\_inplace} in which parameter \code{v} does not
  19641. have a type annotation, so it is given type \CANYTY{}. In the call to
  19642. \code{map\_inplace}, the \racket{tuple}\python{list} has type
  19643. \racket{\code{(Vector Integer Integer)}}\python{\code{list[int]}},
  19644. so the type checker inserts a cast to \CANYTY{}. A first thought is to use
  19645. \code{Inject}, but that doesn't work because
  19646. \racket{\code{(Vector Integer Integer)}}\python{\code{list[int]}} is not
  19647. a flat type. Instead, we must first cast to
  19648. \racket{\code{(Vector Any Any)}}\python{\code{list[Any]}}, which is flat,
  19649. and then inject to \CANYTY{}.
  19650. \begin{figure}[tbp]
  19651. \begin{tcolorbox}[colback=white]
  19652. % gradual_test_11.rkt
  19653. {\if\edition\racketEd
  19654. \begin{lstlisting}
  19655. (define (map_inplace [f : (Any -> Any)]
  19656. [v : (Vector Any Any)]) : Void
  19657. (begin
  19658. (vector-set! v 0 (f (vector-ref v 0)))
  19659. (vector-set! v 1 (f (vector-ref v 1)))))
  19660. (define (inc x) (+ x 1))
  19661. (let ([v (vector 0 41)])
  19662. (begin (map_inplace inc v) (vector-ref v 1)))
  19663. \end{lstlisting}
  19664. \fi}
  19665. {\if\edition\pythonEd\pythonColor
  19666. \begin{lstlisting}
  19667. def map_inplace(f : Callable[[int], int], v : list[Any]) -> None:
  19668. i = 0
  19669. while i != len(v):
  19670. v[i] = f(v[i])
  19671. i = i + 1
  19672. def inc(x : int) -> int:
  19673. return x + 1
  19674. v = [0, 41]
  19675. map_inplace(inc, v)
  19676. print(v[1])
  19677. \end{lstlisting}
  19678. \fi}
  19679. \end{tcolorbox}
  19680. \caption{An example involving casts on arrays.}
  19681. \label{fig:map-bang}
  19682. \end{figure}
  19683. \begin{figure}[btp]
  19684. \begin{tcolorbox}[colback=white]
  19685. {\if\edition\racketEd
  19686. \begin{lstlisting}
  19687. (define (map_inplace [f : (Any -> Any)] v) : Void
  19688. (begin
  19689. (vector-set! v 0 (f (vector-ref v 0)))
  19690. (vector-set! v 1 (f (vector-ref v 1)))))
  19691. (define (inc x) (+ x 1))
  19692. (let ([v (vector 0 41)])
  19693. (begin (map_inplace inc v) (vector-ref v 1)))
  19694. \end{lstlisting}
  19695. \fi}
  19696. {\if\edition\pythonEd\pythonColor
  19697. \begin{lstlisting}
  19698. def map_inplace(f : Callable[[Any], Any], v) -> None:
  19699. i = 0
  19700. while i != len(v):
  19701. v[i] = f(v[i])
  19702. i = i + 1
  19703. def inc(x):
  19704. return x + 1
  19705. v = [0, 41]
  19706. map_inplace(inc, v)
  19707. print(v[1])
  19708. \end{lstlisting}
  19709. \fi}
  19710. \end{tcolorbox}
  19711. \caption{Casting \racket{a tuple}\python{an array} to \CANYTY{}.}
  19712. \label{fig:map-any}
  19713. \end{figure}
  19714. \begin{figure}[tbp]
  19715. \begin{tcolorbox}[colback=white]
  19716. {\if\edition\racketEd
  19717. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  19718. (define/public (apply_cast v s t)
  19719. (match* (s t)
  19720. [(t1 t2) #:when (equal? t1 t2) v]
  19721. [('Any t2)
  19722. (match t2
  19723. [`(,ts ... -> ,rt)
  19724. (define any->any `(,@(for/list ([t ts]) 'Any) -> Any))
  19725. (define v^ (apply-project v any->any))
  19726. (apply_cast v^ any->any `(,@ts -> ,rt))]
  19727. [`(Vector ,ts ...)
  19728. (define vec-any `(Vector ,@(for/list ([t ts]) 'Any)))
  19729. (define v^ (apply-project v vec-any))
  19730. (apply_cast v^ vec-any `(Vector ,@ts))]
  19731. [else (apply-project v t2)])]
  19732. [(t1 'Any)
  19733. (match t1
  19734. [`(,ts ... -> ,rt)
  19735. (define any->any `(,@(for/list ([t ts]) 'Any) -> Any))
  19736. (define v^ (apply_cast v `(,@ts -> ,rt) any->any))
  19737. (apply-inject v^ (any-tag any->any))]
  19738. [`(Vector ,ts ...)
  19739. (define vec-any `(Vector ,@(for/list ([t ts]) 'Any)))
  19740. (define v^ (apply_cast v `(Vector ,@ts) vec-any))
  19741. (apply-inject v^ (any-tag vec-any))]
  19742. [else (apply-inject v (any-tag t1))])]
  19743. [(`(Vector ,ts1 ...) `(Vector ,ts2 ...))
  19744. (define x (gensym 'x))
  19745. (define cast-reads (for/list ([t1 ts1] [t2 ts2])
  19746. `(function (,x) ,(Cast (Var x) t1 t2) ())))
  19747. (define cast-writes
  19748. (for/list ([t1 ts1] [t2 ts2])
  19749. `(function (,x) ,(Cast (Var x) t2 t1) ())))
  19750. `(vector-proxy ,(vector v (apply vector cast-reads)
  19751. (apply vector cast-writes)))]
  19752. [(`(,ts1 ... -> ,rt1) `(,ts2 ... -> ,rt2))
  19753. (define xs (for/list ([t2 ts2]) (gensym 'x)))
  19754. `(function ,xs ,(Cast
  19755. (Apply (Value v)
  19756. (for/list ([x xs][t1 ts1][t2 ts2])
  19757. (Cast (Var x) t2 t1)))
  19758. rt1 rt2) ())]
  19759. ))
  19760. \end{lstlisting}
  19761. \fi}
  19762. {\if\edition\pythonEd\pythonColor
  19763. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  19764. def apply_cast(self, value, src, tgt):
  19765. match (src, tgt):
  19766. case (AnyType(), FunctionType(ps2, rt2)):
  19767. anyfun = FunctionType([AnyType() for p in ps2], AnyType())
  19768. return self.apply_cast(self.apply_project(value, anyfun), anyfun, tgt)
  19769. case (AnyType(), TupleType(ts2)):
  19770. anytup = TupleType([AnyType() for t1 in ts2])
  19771. return self.apply_cast(self.apply_project(value, anytup), anytup, tgt)
  19772. case (AnyType(), ListType(t2)):
  19773. anylist = ListType([AnyType() for t1 in ts2])
  19774. return self.apply_cast(self.apply_project(value, anylist), anylist, tgt)
  19775. case (AnyType(), AnyType()):
  19776. return value
  19777. case (AnyType(), _):
  19778. return self.apply_project(value, tgt)
  19779. case (FunctionType(ps1,rt1), AnyType()):
  19780. anyfun = FunctionType([AnyType() for p in ps1], AnyType())
  19781. return self.apply_inject(self.apply_cast(value, src, anyfun), anyfun)
  19782. case (TupleType(ts1), AnyType()):
  19783. anytup = TupleType([AnyType() for t1 in ts1])
  19784. return self.apply_inject(self.apply_cast(value, src, anytup), anytup)
  19785. case (ListType(t1), AnyType()):
  19786. anylist = ListType(AnyType())
  19787. return self.apply_inject(self.apply_cast(value,src,anylist), anylist)
  19788. case (_, AnyType()):
  19789. return self.apply_inject(value, src)
  19790. case (FunctionType(ps1, rt1), FunctionType(ps2, rt2)):
  19791. params = [generate_name('x') for p in ps2]
  19792. args = [Cast(Name(x), t2, t1)
  19793. for (x,t1,t2) in zip(params, ps1, ps2)]
  19794. body = Cast(Call(ValueExp(value), args), rt1, rt2)
  19795. return Function('cast', params, [Return(body)], {})
  19796. case (TupleType(ts1), TupleType(ts2)):
  19797. x = generate_name('x')
  19798. reads = [Function('cast', [x], [Return(Cast(Name(x), t1, t2))], {})
  19799. for (t1,t2) in zip(ts1,ts2)]
  19800. return ProxiedTuple(value, reads)
  19801. case (ListType(t1), ListType(t2)):
  19802. x = generate_name('x')
  19803. read = Function('cast', [x], [Return(Cast(Name(x), t1, t2))], {})
  19804. write = Function('cast', [x], [Return(Cast(Name(x), t2, t1))], {})
  19805. return ProxiedList(value, read, write)
  19806. case (t1, t2) if t1 == t2:
  19807. return value
  19808. case (t1, t2):
  19809. raise Exception('apply_cast unexpected ' + repr(src) + ' ' + repr(tgt))
  19810. def apply_inject(self, value, src):
  19811. return Tagged(value, self.type_to_tag(src))
  19812. def apply_project(self, value, tgt):
  19813. match value:
  19814. case Tagged(val, tag) if self.type_to_tag(tgt) == tag:
  19815. return val
  19816. case _:
  19817. raise Exception('apply_project, unexpected ' + repr(value))
  19818. \end{lstlisting}
  19819. \fi}
  19820. \end{tcolorbox}
  19821. \caption{The \code{apply\_cast} auxiliary method.}
  19822. \label{fig:apply_cast}
  19823. \end{figure}
  19824. The \LangCast{} interpreter uses an auxiliary function named
  19825. \code{apply\_cast} to cast a value from a source type to a target type,
  19826. shown in figure~\ref{fig:apply_cast}. You'll find that it handles all
  19827. the kinds of casts that we've discussed in this section.
  19828. %
  19829. The definition of the interpreter for \LangCast{} is shown in
  19830. figure~\ref{fig:interp-Lcast}, with the case for \code{Cast}
  19831. dispatching to \code{apply\_cast}.
  19832. \racket{To handle the addition of tuple
  19833. proxies, we update the tuple primitives in \code{interp-op} using the
  19834. functions given in figure~\ref{fig:guarded-tuple}.}
  19835. Next we turn to the individual passes needed for compiling \LangGrad{}.
  19836. \begin{figure}[tbp]
  19837. \begin{tcolorbox}[colback=white]
  19838. {\if\edition\racketEd
  19839. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  19840. (define interp-Lcast-class
  19841. (class interp-Llambda-class
  19842. (super-new)
  19843. (inherit apply-fun apply-inject apply-project)
  19844. (define/override (interp-op op)
  19845. (match op
  19846. ['vector-length guarded-vector-length]
  19847. ['vector-ref guarded-vector-ref]
  19848. ['vector-set! guarded-vector-set!]
  19849. ['any-vector-ref (lambda (v i)
  19850. (match v [`(tagged ,v^ ,tg)
  19851. (guarded-vector-ref v^ i)]))]
  19852. ['any-vector-set! (lambda (v i a)
  19853. (match v [`(tagged ,v^ ,tg)
  19854. (guarded-vector-set! v^ i a)]))]
  19855. ['any-vector-length (lambda (v)
  19856. (match v [`(tagged ,v^ ,tg)
  19857. (guarded-vector-length v^)]))]
  19858. [else (super interp-op op)]
  19859. ))
  19860. (define/override ((interp-exp env) e)
  19861. (define (recur e) ((interp-exp env) e))
  19862. (match e
  19863. [(Value v) v]
  19864. [(Cast e src tgt) (apply_cast (recur e) src tgt)]
  19865. [else ((super interp-exp env) e)]))
  19866. ))
  19867. (define (interp-Lcast p)
  19868. (send (new interp-Lcast-class) interp-program p))
  19869. \end{lstlisting}
  19870. \fi}
  19871. {\if\edition\pythonEd\pythonColor
  19872. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  19873. class InterpLcast(InterpLany):
  19874. def interp_exp(self, e, env):
  19875. match e:
  19876. case Cast(value, src, tgt):
  19877. v = self.interp_exp(value, env)
  19878. return self.apply_cast(v, src, tgt)
  19879. case ValueExp(value):
  19880. return value
  19881. ...
  19882. case _:
  19883. return super().interp_exp(e, env)
  19884. \end{lstlisting}
  19885. \fi}
  19886. \end{tcolorbox}
  19887. \caption{The interpreter for \LangCast{}.}
  19888. \label{fig:interp-Lcast}
  19889. \end{figure}
  19890. {\if\edition\racketEd
  19891. \begin{figure}[tbp]
  19892. \begin{tcolorbox}[colback=white]
  19893. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  19894. (define (guarded-vector-ref vec i)
  19895. (match vec
  19896. [`(vector-proxy ,proxy)
  19897. (define val (guarded-vector-ref (vector-ref proxy 0) i))
  19898. (define rd (vector-ref (vector-ref proxy 1) i))
  19899. (apply-fun rd (list val) 'guarded-vector-ref)]
  19900. [else (vector-ref vec i)]))
  19901. (define (guarded-vector-set! vec i arg)
  19902. (match vec
  19903. [`(vector-proxy ,proxy)
  19904. (define wr (vector-ref (vector-ref proxy 2) i))
  19905. (define arg^ (apply-fun wr (list arg) 'guarded-vector-set!))
  19906. (guarded-vector-set! (vector-ref proxy 0) i arg^)]
  19907. [else (vector-set! vec i arg)]))
  19908. (define (guarded-vector-length vec)
  19909. (match vec
  19910. [`(vector-proxy ,proxy)
  19911. (guarded-vector-length (vector-ref proxy 0))]
  19912. [else (vector-length vec)]))
  19913. \end{lstlisting}
  19914. %% {\if\edition\pythonEd\pythonColor
  19915. %% \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  19916. %% UNDER CONSTRUCTION
  19917. %% \end{lstlisting}
  19918. %% \fi}
  19919. \end{tcolorbox}
  19920. \caption{The \code{guarded-vector} auxiliary functions.}
  19921. \label{fig:guarded-tuple}
  19922. \end{figure}
  19923. \fi}
  19924. {\if\edition\pythonEd\pythonColor
  19925. \section{Overload Resolution }
  19926. \label{sec:gradual-resolution}
  19927. Recall that when we added support for arrays in
  19928. section~\ref{sec:arrays}, the syntax for the array operations were the
  19929. same as for tuple operations (for example, accessing an element and
  19930. getting the length). So we performed overload resolution, with a pass
  19931. named \code{resolve}, to separate the array and tuple operations. In
  19932. particular, we introduced the primitives \code{array\_load},
  19933. \code{array\_store}, and \code{array\_len}.
  19934. For gradual typing, we further overload these operators to work on
  19935. values of type \CANYTY{}. Thus, the \code{resolve} pass should be
  19936. updated with new cases for the \CANYTY{} type, translating the element
  19937. access and length operations to the primitives \code{any\_load},
  19938. \code{any\_store}, and \code{any\_len}.
  19939. \fi}
  19940. \section{Cast Insertion }
  19941. \label{sec:gradual-insert-casts}
  19942. In our discussion of type checking of \LangGrad{}, we mentioned how
  19943. the runtime aspect of type checking is carried out by the \code{Cast}
  19944. AST node, which is added to the program by a new pass named
  19945. \code{cast\_insert}. The target of this pass is the \LangCast{}
  19946. language. We now discuss the details of this pass.
  19947. The \code{cast\_insert} pass is closely related to the type checker
  19948. for \LangGrad{} (starting in figure~\ref{fig:type-check-Lgradual-1}).
  19949. In particular, the type checker allows implicit casts between
  19950. consistent types. The job of the \code{cast\_insert} pass is to make
  19951. those casts explicit. It does so by inserting
  19952. \code{Cast} nodes into the AST.
  19953. %
  19954. For the most part, the implicit casts occur in places where the type
  19955. checker checks two types for consistency. Consider the case for
  19956. binary operators in figure~\ref{fig:type-check-Lgradual-1}. The type
  19957. checker requires that the type of the left operand is consistent with
  19958. \INTTY{}. Thus, the \code{cast\_insert} pass should insert a
  19959. \code{Cast} around the left operand, converting from its type to
  19960. \INTTY{}. The story is similar for the right operand. It is not always
  19961. necessary to insert a cast, for example, if the left operand already has type
  19962. \INTTY{} then there is no need for a \code{Cast}.
  19963. Some of the implicit casts are not as straightforward. One such case
  19964. arises with the
  19965. conditional expression. In figure~\ref{fig:type-check-Lgradual-1} we
  19966. see that the type checker requires that the two branches have
  19967. consistent types and that type of the conditional expression is the
  19968. meet of the branches' types. In the target language \LangCast{}, both
  19969. branches will need to have the same type, and that type
  19970. will be the type of the conditional expression. Thus, each branch requires
  19971. a \code{Cast} to convert from its type to the meet of the branches' types.
  19972. The case for the function call exhibits another interesting situation. If
  19973. the function expression is of type \CANYTY{}, then it needs to be cast
  19974. to a function type so that it can be used in a function call in
  19975. \LangCast{}. Which function type should it be cast to? The parameter
  19976. and return types are unknown, so we can simply use \CANYTY{} for all
  19977. of them. Furthermore, in \LangCast{} the argument types will need to
  19978. exactly match the parameter types, so we must cast all the arguments
  19979. to type \CANYTY{} (if they are not already of that type).
  19980. {\if\edition\racketEd
  19981. %
  19982. Likewise, the cases for the tuple operators \code{vector-length},
  19983. \code{vector-ref}, and \code{vector-set!} need to handle the situation
  19984. where the tuple expression is of type \CANYTY{}. Instead of
  19985. handling these situations with casts, we recommend translating
  19986. the special-purpose variants of the tuple operators that handle
  19987. tuples of type \CANYTY{}: \code{any-vector-length},
  19988. \code{any-vector-ref}, and \code{any-vector-set!}.
  19989. %
  19990. \fi}
  19991. \section{Lower Casts }
  19992. \label{sec:lower_casts}
  19993. The next step in the journey toward x86 is the \code{lower\_casts}
  19994. pass that translates the casts in \LangCast{} to the lower-level
  19995. \code{Inject} and \code{Project} operators and new operators for
  19996. proxies, extending the \LangLam{} language to \LangProxy{}.
  19997. The \LangProxy{} language can also be described as an extension of
  19998. \LangAny{}, with the addition of proxies. We recommend creating an
  19999. auxiliary function named \code{lower\_cast} that takes an expression
  20000. (in \LangCast{}), a source type, and a target type and translates it
  20001. to an expression in \LangProxy{}.
  20002. The \code{lower\_cast} function can follow a code structure similar to
  20003. the \code{apply\_cast} function (figure~\ref{fig:apply_cast}) used in
  20004. the interpreter for \LangCast{}, because it must handle the same cases
  20005. as \code{apply\_cast} and it needs to mimic the behavior of
  20006. \code{apply\_cast}. The most interesting cases concern
  20007. the casts involving \racket{tuple and function types}\python{tuple, array, and function types}.
  20008. {\if\edition\racketEd
  20009. As mentioned in section~\ref{sec:interp-casts}, a cast from one tuple
  20010. type to another tuple type is accomplished by creating a proxy that
  20011. intercepts the operations on the underlying tuple. Here we make the
  20012. creation of the proxy explicit with the \code{vector-proxy} AST
  20013. node. It takes three arguments: the first is an expression for the
  20014. tuple, the second is a tuple of functions for casting an element that is
  20015. being read from the tuple, and the third is a tuple of functions for
  20016. casting an element that is being written to the array. You can create
  20017. the functions for reading and writing using lambda expressions. Also,
  20018. as we show in the next section, we need to differentiate these tuples
  20019. of functions from the user-created ones, so we recommend using a new
  20020. AST node named \code{raw-vector} instead of \code{vector}.
  20021. %
  20022. Figure~\ref{fig:map-bang-lower-cast} shows the output of
  20023. \code{lower\_casts} on the example given in figure~\ref{fig:map-bang}
  20024. that involved casting a tuple of integers to a tuple of \CANYTY{}.
  20025. \fi}
  20026. {\if\edition\pythonEd\pythonColor
  20027. As mentioned in section~\ref{sec:interp-casts}, a cast from one array
  20028. type to another array type is accomplished by creating a proxy that
  20029. intercepts the operations on the underlying array. Here we make the
  20030. creation of the proxy explicit with the \code{ListProxy} AST node. It
  20031. takes fives arguments: the first is an expression for the array, the
  20032. second is a function for casting an element that is being read from
  20033. the array, the third is a function for casting an element that is
  20034. being written to the array, the fourth is the type of the underlying
  20035. array, and the fifth is the type of the proxied array. You can create
  20036. the functions for reading and writing using lambda expressions.
  20037. A cast between two tuple types can be handled in a similar manner. We
  20038. create a proxy with the \code{TupleProxy} AST node. Tuples are
  20039. immutable, so there is no need for a function to cast the value during
  20040. a write. Because there is a separate element type for each slot in
  20041. the tuple, we need more than one function for casting during a read:
  20042. we need a tuple of functions.
  20043. %
  20044. Also, as we show in the next section, we need to differentiate these
  20045. tuples from the user-created ones, so we recommend using a new AST
  20046. node named \code{RawTuple} instead of \code{Tuple} to create the
  20047. tuples of functions.
  20048. %
  20049. Figure~\ref{fig:map-bang-lower-cast} shows the output of
  20050. \code{lower\_casts} on the example given in figure~\ref{fig:map-bang}
  20051. that involves casting an array of integers to an array of \CANYTY{}.
  20052. \fi}
  20053. \begin{figure}[tbp]
  20054. \begin{tcolorbox}[colback=white]
  20055. {\if\edition\racketEd
  20056. \begin{lstlisting}
  20057. (define (map_inplace [f : (Any -> Any)] [v : (Vector Any Any)]) : Void
  20058. (begin
  20059. (vector-set! v 0 (f (vector-ref v 0)))
  20060. (vector-set! v 1 (f (vector-ref v 1)))))
  20061. (define (inc [x : Any]) : Any
  20062. (inject (+ (project x Integer) 1) Integer))
  20063. (let ([v (vector 0 41)])
  20064. (begin
  20065. (map_inplace inc (vector-proxy v
  20066. (raw-vector (lambda: ([x9 : Integer]) : Any
  20067. (inject x9 Integer))
  20068. (lambda: ([x9 : Integer]) : Any
  20069. (inject x9 Integer)))
  20070. (raw-vector (lambda: ([x9 : Any]) : Integer
  20071. (project x9 Integer))
  20072. (lambda: ([x9 : Any]) : Integer
  20073. (project x9 Integer)))))
  20074. (vector-ref v 1)))
  20075. \end{lstlisting}
  20076. \fi}
  20077. {\if\edition\pythonEd\pythonColor
  20078. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  20079. def map_inplace(f : Callable[[int], int], v : list[Any]) -> void:
  20080. i = 0
  20081. while i != array_len(v):
  20082. array_store(v, i, inject(f(project(array_load(v, i), int)), int))
  20083. i = (i + 1)
  20084. def inc(x : int) -> int:
  20085. return (x + 1)
  20086. def main() -> int:
  20087. v = [0, 41]
  20088. map_inplace(inc, array_proxy(v, list[int], list[Any]))
  20089. print(array_load(v, 1))
  20090. return 0
  20091. \end{lstlisting}
  20092. \fi}
  20093. \end{tcolorbox}
  20094. \caption{Output of \code{lower\_casts} on the example shown in
  20095. figure~\ref{fig:map-bang}.}
  20096. \label{fig:map-bang-lower-cast}
  20097. \end{figure}
  20098. A cast from one function type to another function type is accomplished
  20099. by generating a \code{lambda} whose parameter and return types match
  20100. the target function type. The body of the \code{lambda} should cast
  20101. the parameters from the target type to the source type. (Yes,
  20102. backward! Functions are contravariant\index{subject}{contravariant}
  20103. in the parameters.) Afterward, call the underlying function and then
  20104. cast the result from the source return type to the target return type.
  20105. Figure~\ref{fig:map-lower-cast} shows the output of the
  20106. \code{lower\_casts} pass on the \code{map} example given in
  20107. figure~\ref{fig:gradual-map}. Note that the \code{inc} argument in the
  20108. call to \code{map} is wrapped in a \code{lambda}.
  20109. \begin{figure}[tbp]
  20110. \begin{tcolorbox}[colback=white]
  20111. {\if\edition\racketEd
  20112. \begin{lstlisting}
  20113. (define (map [f : (Integer -> Integer)]
  20114. [v : (Vector Integer Integer)])
  20115. : (Vector Integer Integer)
  20116. (vector (f (vector-ref v 0)) (f (vector-ref v 1))))
  20117. (define (inc [x : Any]) : Any
  20118. (inject (+ (project x Integer) 1) Integer))
  20119. (vector-ref (map (lambda: ([x9 : Integer]) : Integer
  20120. (project (inc (inject x9 Integer)) Integer))
  20121. (vector 0 41)) 1)
  20122. \end{lstlisting}
  20123. \fi}
  20124. {\if\edition\pythonEd\pythonColor
  20125. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  20126. def map(f : Callable[[int], int], v : tuple[int,int]) -> tuple[int,int]:
  20127. return (f(v[0]), f(v[1]),)
  20128. def inc(x : any) -> any:
  20129. return inject((project(x, int) + 1), int)
  20130. def main() -> int:
  20131. t = map(lambda x: project(inc(inject(x, int)), int), (0, 41,))
  20132. print(t[1])
  20133. return 0
  20134. \end{lstlisting}
  20135. \fi}
  20136. \end{tcolorbox}
  20137. \caption{Output of \code{lower\_casts} on the example shown in
  20138. figure~\ref{fig:gradual-map}.}
  20139. \label{fig:map-lower-cast}
  20140. \end{figure}
  20141. %\pagebreak
  20142. \section{Differentiate Proxies }
  20143. \label{sec:differentiate-proxies}
  20144. So far, the responsibility of differentiating tuples and tuple proxies
  20145. has been the job of the interpreter.
  20146. %
  20147. \racket{For example, the interpreter for \LangCast{} implements
  20148. \code{vector-ref} using the \code{guarded-vector-ref} function shown in
  20149. figure~\ref{fig:guarded-tuple}.}
  20150. %
  20151. In the \code{differentiate\_proxies} pass we shift this responsibility
  20152. to the generated code.
  20153. We begin by designing the output language \LangPVec{}. In \LangGrad{}
  20154. we used the type \TUPLETYPENAME{} for both
  20155. real tuples and tuple proxies.
  20156. \python{Similarly, we use the type \code{list} for both arrays and
  20157. array proxies.}
  20158. In \LangPVec{} we return the
  20159. \TUPLETYPENAME{} type to its original
  20160. meaning, as the type of just tuples, and we introduce a new type,
  20161. \PTUPLETYNAME{}, whose values
  20162. can be either real tuples or tuple
  20163. proxies.
  20164. %
  20165. {\if\edition\pythonEd\pythonColor
  20166. Likewise, we return the
  20167. \ARRAYTYPENAME{} type to its original
  20168. meaning, as the type of arrays, and we introduce a new type,
  20169. \PARRAYTYNAME{}, whose values
  20170. can be either arrays or array proxies.
  20171. These new types come with a suite of new primitive operations.
  20172. \fi}
  20173. {\if\edition\racketEd
  20174. A tuple proxy is represented by a tuple containing three things: (1) the
  20175. underlying tuple, (2) a tuple of functions for casting elements that
  20176. are read from the tuple, and (3) a tuple of functions for casting
  20177. values to be written to the tuple. So, we define the following
  20178. abbreviation for the type of a tuple proxy:
  20179. \[
  20180. \itm{TupleProxy} (T\ldots \Rightarrow T'\ldots)
  20181. = (\ttm{Vector}~\PTUPLETY{T\ldots} ~R~ W)
  20182. \]
  20183. where $R = (\ttm{Vector}~(T\to T') \ldots)$ and
  20184. $W = (\ttm{Vector}~(T'\to T) \ldots)$.
  20185. %
  20186. Next we describe each of the new primitive operations.
  20187. \begin{description}
  20188. \item[\code{inject-vector} : (\key{Vector} $T \ldots$) $\to$
  20189. (\key{PVector} $T \ldots$)]\ \\
  20190. %
  20191. This operation brands a vector as a value of the \code{PVector} type.
  20192. \item[\code{inject-proxy} : $\itm{TupleProxy}(T\ldots \Rightarrow T'\ldots)$
  20193. $\to$ (\key{PVector} $T' \ldots$)]\ \\
  20194. %
  20195. This operation brands a vector proxy as value of the \code{PVector} type.
  20196. \item[\code{proxy?} : (\key{PVector} $T \ldots$) $\to$
  20197. \BOOLTY{}] \ \\
  20198. %
  20199. This returns true if the value is a tuple proxy and false if it is a
  20200. real tuple.
  20201. \item[\code{project-vector} : (\key{PVector} $T \ldots$) $\to$
  20202. (\key{Vector} $T \ldots$)]\ \\
  20203. %
  20204. Assuming that the input is a tuple, this operation returns the
  20205. tuple.
  20206. \item[\code{proxy-vector-length} : (\key{PVector} $T \ldots$)
  20207. $\to$ \INTTY{}]\ \\
  20208. %
  20209. Given a tuple proxy, this operation returns the length of the tuple.
  20210. \item[\code{proxy-vector-ref} : (\key{PVector} $T \ldots$)
  20211. $\to$ ($i$ : \INTTY{}) $\to$ $T_i$]\ \\
  20212. %
  20213. Given a tuple proxy, this operation returns the $i$th element of the
  20214. tuple.
  20215. \item[\code{proxy-vector-set!} : (\key{PVector} $T \ldots$) $\to$ ($i$
  20216. : \INTTY{}) $\to$ $T_i$ $\to$ \key{Void}]\ \\
  20217. Given a tuple proxy, this operation writes a value to the $i$th element
  20218. of the tuple.
  20219. \end{description}
  20220. \fi}
  20221. {\if\edition\pythonEd\pythonColor
  20222. %
  20223. A tuple proxy is represented by a tuple containing (1) the underlying
  20224. tuple and (2) a tuple of functions for casting elements that are read
  20225. from the tuple. The \LangPVec{} language includes the following AST
  20226. classes and primitive functions.
  20227. \begin{description}
  20228. \item[\code{InjectTuple}] \ \\
  20229. %
  20230. This AST node brands a tuple as a value of the \PTUPLETYNAME{} type.
  20231. \item[\code{InjectTupleProxy}]\ \\
  20232. %
  20233. This AST node brands a tuple proxy as value of the \PTUPLETYNAME{} type.
  20234. \item[\code{is\_tuple\_proxy}]\ \\
  20235. %
  20236. This primitive returns true if the value is a tuple proxy and false
  20237. if it is a tuple.
  20238. \item[\code{project\_tuple}]\ \\
  20239. %
  20240. Converts a tuple that is branded as \PTUPLETYNAME{}
  20241. back to a tuple.
  20242. \item[\code{proxy\_tuple\_len}]\ \\
  20243. %
  20244. Given a tuple proxy, returns the length of the underlying tuple.
  20245. \item[\code{proxy\_tuple\_load}]\ \\
  20246. %
  20247. Given a tuple proxy, returns the $i$th element of the underlying
  20248. tuple.
  20249. \end{description}
  20250. An array proxy is represented by a tuple containing (1) the underlying
  20251. array, (2) a function for casting elements that are read from the
  20252. array, and (3) a function for casting elements that are written to the
  20253. array. The \LangPVec{} language includes the following AST classes
  20254. and primitive functions.
  20255. \begin{description}
  20256. \item[\code{InjectList}]\ \\
  20257. This AST node brands an array as a value of the \PARRAYTYNAME{} type.
  20258. \item[\code{InjectListProxy}]\ \\
  20259. %
  20260. This AST node brands an array proxy as a value of the \PARRAYTYNAME{} type.
  20261. \item[\code{is\_array\_proxy}]\ \\
  20262. %
  20263. Returns true if the value is an array proxy and false if it is an
  20264. array.
  20265. \item[\code{project\_array}]\ \\
  20266. %
  20267. Converts an array that is branded as \PARRAYTYNAME{} back to an
  20268. array.
  20269. \item[\code{proxy\_array\_len}]\ \\
  20270. %
  20271. Given an array proxy, returns the length of the underlying array.
  20272. \item[\code{proxy\_array\_load}]\ \\
  20273. %
  20274. Given an array proxy, returns the $i$th element of the underlying
  20275. array.
  20276. \item[\code{proxy\_array\_store}]\ \\
  20277. %
  20278. Given an array proxy, writes a value to the $i$th element of the
  20279. underlying array.
  20280. \end{description}
  20281. \fi}
  20282. Now we discuss the translation that differentiates tuples and arrays
  20283. from proxies. First, every type annotation in the program is
  20284. translated (recursively) to replace \TUPLETYPENAME{} with \PTUPLETYNAME{}.
  20285. Next, we insert uses of \PTUPLETYNAME{} operations in the appropriate
  20286. places. For example, we wrap every tuple creation with an
  20287. \racket{\code{inject-vector}}\python{\code{InjectTuple}}.
  20288. %
  20289. {\if\edition\racketEd
  20290. \begin{minipage}{0.96\textwidth}
  20291. \begin{lstlisting}
  20292. (vector |$e_1 \ldots e_n$|)
  20293. |$\Rightarrow$|
  20294. (inject-vector (vector |$e'_1 \ldots e'_n$|))
  20295. \end{lstlisting}
  20296. \end{minipage}
  20297. \fi}
  20298. {\if\edition\pythonEd\pythonColor
  20299. \begin{lstlisting}
  20300. Tuple(|$e_1, \ldots, e_n$|)
  20301. |$\Rightarrow$|
  20302. InjectTuple(Tuple(|$e'_1, \ldots, e'_n$|))
  20303. \end{lstlisting}
  20304. \fi}
  20305. The \racket{\code{raw-vector}}\python{\code{RawTuple}}
  20306. AST node that we introduced in the previous
  20307. section does not get injected.
  20308. {\if\edition\racketEd
  20309. \begin{lstlisting}
  20310. (raw-vector |$e_1 \ldots e_n$|)
  20311. |$\Rightarrow$|
  20312. (vector |$e'_1 \ldots e'_n$|)
  20313. \end{lstlisting}
  20314. \fi}
  20315. {\if\edition\pythonEd\pythonColor
  20316. \begin{lstlisting}
  20317. RawTuple(|$e_1, \ldots, e_n$|)
  20318. |$\Rightarrow$|
  20319. Tuple(|$e'_1, \ldots, e'_n$|)
  20320. \end{lstlisting}
  20321. \fi}
  20322. The \racket{\code{vector-proxy}}\python{\code{TupleProxy}} AST
  20323. translates as follows:
  20324. %
  20325. {\if\edition\racketEd
  20326. \begin{lstlisting}
  20327. (vector-proxy |$e_1~e_2~e_3$|)
  20328. |$\Rightarrow$|
  20329. (inject-proxy (vector |$e'_1~e'_2~e'_3$|))
  20330. \end{lstlisting}
  20331. \fi}
  20332. {\if\edition\pythonEd\pythonColor
  20333. \begin{lstlisting}
  20334. TupleProxy(|$e_1, e_2, T_1, T_2$|)
  20335. |$\Rightarrow$|
  20336. InjectTupleProxy(Tuple(|$e'_1,e'_2, T'_1, T'_2$|))
  20337. \end{lstlisting}
  20338. \fi}
  20339. We translate the element access operations into conditional
  20340. expressions that check whether the value is a proxy and then dispatch
  20341. to either the appropriate proxy tuple operation or the regular tuple
  20342. operation.
  20343. {\if\edition\racketEd
  20344. \begin{lstlisting}
  20345. (vector-ref |$e_1$| |$i$|)
  20346. |$\Rightarrow$|
  20347. (let ([|$v~e_1$|])
  20348. (if (proxy? |$v$|)
  20349. (proxy-vector-ref |$v$| |$i$|)
  20350. (vector-ref (project-vector |$v$|) |$i$|)
  20351. \end{lstlisting}
  20352. \fi}
  20353. %
  20354. Note that in the branch for a tuple, we must apply
  20355. \racket{\code{project-vector}}\python{\code{project\_tuple}} before reading
  20356. from the tuple.
  20357. The translation of array operations is similar to the ones for tuples.
  20358. \section{Reveal Casts }
  20359. \label{sec:reveal-casts-gradual}
  20360. {\if\edition\racketEd
  20361. Recall that the \code{reveal\_casts} pass
  20362. (section~\ref{sec:reveal-casts-Lany}) is responsible for lowering
  20363. \code{Inject} and \code{Project} into lower-level operations.
  20364. %
  20365. In particular, \code{Project} turns into a conditional expression that
  20366. inspects the tag and retrieves the underlying value. Here we need to
  20367. augment the translation of \code{Project} to handle the situation in which
  20368. the target type is \code{PVector}. Instead of using
  20369. \code{vector-length} we need to use \code{proxy-vector-length}.
  20370. \begin{lstlisting}
  20371. (project |$e$| (PVector Any|$_1$| |$\ldots$| Any|$_n$|))
  20372. |$\Rightarrow$|
  20373. (let |$\itm{tmp}$| |$e'$|
  20374. (if (eq? (tag-of-any |$\itm{tmp}$| 2))
  20375. (let |$\itm{tup}$| (value-of |$\itm{tmp}$| (PVector Any |$\ldots$| Any))
  20376. (if (eq? (proxy-vector-length |$\itm{tup}$|) |$n$|) |$\itm{tup}$| (exit)))
  20377. (exit)))
  20378. \end{lstlisting}
  20379. \fi}
  20380. %
  20381. {\if\edition\pythonEd\pythonColor
  20382. Recall that the $\itm{tagof}$ function determines the bits used to
  20383. identify values of different types, and it is used in the \code{reveal\_casts}
  20384. pass in the translation of \code{Project}. The \PTUPLETYNAME{} and
  20385. \PARRAYTYNAME{} types can be mapped to $010$ in binary ($2$ in
  20386. decimal), just like the tuple and array types.
  20387. \fi}
  20388. %
  20389. Otherwise, the only other changes are adding cases that copy the new AST nodes.
  20390. \pagebreak
  20391. \section{Closure Conversion }
  20392. \label{sec:closure-conversion-gradual}
  20393. The auxiliary function that translates type annotations needs to be
  20394. updated to handle the \PTUPLETYNAME{}
  20395. \racket{type}\python{and \PARRAYTYNAME{} types}.
  20396. %
  20397. Otherwise, the only other changes are adding cases that copy the new
  20398. AST nodes.
  20399. \section{Select Instructions }
  20400. \label{sec:select-instructions-gradual}
  20401. \index{subject}{select instructions}
  20402. Recall that the \code{select\_instructions} pass is responsible for
  20403. lowering the primitive operations into x86 instructions. So, we need
  20404. to translate the new operations on \PTUPLETYNAME{} \python{and \PARRAYTYNAME{}}
  20405. to x86. To do so, the first question we need to answer is how to
  20406. differentiate between tuple and tuple proxies\python{, and likewise for
  20407. arrays and array proxies}. We need just one bit to accomplish this;
  20408. we use the bit in position $63$ of the 64-bit tag at the front of
  20409. every tuple (see figure~\ref{fig:tuple-rep})\python{ or array
  20410. (section~\ref{sec:array-rep})}. So far, this bit has been set to $0$,
  20411. so for \racket{\code{inject-vector}}\python{\code{InjectTuple}} we leave
  20412. it that way.
  20413. {\if\edition\racketEd
  20414. \begin{lstlisting}
  20415. (Assign |$\itm{lhs}$| (Prim 'inject-vector (list |$e_1$|)))
  20416. |$\Rightarrow$|
  20417. movq |$e'_1$|, |$\itm{lhs'}$|
  20418. \end{lstlisting}
  20419. \fi}
  20420. {\if\edition\pythonEd\pythonColor
  20421. \begin{lstlisting}
  20422. Assign([|$\itm{lhs}$|], InjectTuple(|$e_1$|))
  20423. |$\Rightarrow$|
  20424. movq |$e'_1$|, |$\itm{lhs'}$|
  20425. \end{lstlisting}
  20426. \fi}
  20427. \python{The translation for \code{InjectList} is also a move instruction.}
  20428. \noindent On the other hand,
  20429. \racket{\code{inject-proxy}}\python{\code{InjectTupleProxy}} sets bit
  20430. $63$ to $1$.
  20431. %
  20432. {\if\edition\racketEd
  20433. \begin{lstlisting}
  20434. (Assign |$\itm{lhs}$| (Prim 'inject-proxy (list |$e_1$|)))
  20435. |$\Rightarrow$|
  20436. movq |$e'_1$|, %r11
  20437. movq |$(1 << 63)$|, %rax
  20438. orq 0(%r11), %rax
  20439. movq %rax, 0(%r11)
  20440. movq %r11, |$\itm{lhs'}$|
  20441. \end{lstlisting}
  20442. \fi}
  20443. {\if\edition\pythonEd\pythonColor
  20444. \begin{lstlisting}
  20445. Assign([|$\itm{lhs}$|], InjectTupleProxy(|$e_1$|))
  20446. |$\Rightarrow$|
  20447. movq |$e'_1$|, %r11
  20448. movq |$(1 << 63)$|, %rax
  20449. orq 0(%r11), %rax
  20450. movq %rax, 0(%r11)
  20451. movq %r11, |$\itm{lhs'}$|
  20452. \end{lstlisting}
  20453. \fi}
  20454. \python{\noindent The translation for \code{InjectListProxy} should set bit $63$
  20455. of the tag and also bit $62$, to differentiate between arrays and tuples.}
  20456. The \racket{\code{proxy?} operation consumes}%
  20457. \python{\code{is\_tuple\_proxy} and \code{is\_array\_proxy} operations
  20458. consume}
  20459. the information so carefully stashed away by the injections. It
  20460. isolates bit $63$ to tell whether the value is a proxy.
  20461. %
  20462. {\if\edition\racketEd
  20463. \begin{lstlisting}
  20464. (Assign |$\itm{lhs}$| (Prim 'proxy? (list |$e_1$|)))
  20465. |$\Rightarrow$|
  20466. movq |$e_1'$|, %r11
  20467. movq 0(%r11), %rax
  20468. sarq $63, %rax
  20469. andq $1, %rax
  20470. movq %rax, |$\itm{lhs'}$|
  20471. \end{lstlisting}
  20472. \fi}%
  20473. %
  20474. {\if\edition\pythonEd\pythonColor
  20475. \begin{lstlisting}
  20476. Assign([|$\itm{lhs}$|], Call(Name('is_tuple_proxy'), [|$e_1$|]))
  20477. |$\Rightarrow$|
  20478. movq |$e_1'$|, %r11
  20479. movq 0(%r11), %rax
  20480. sarq $63, %rax
  20481. andq $1, %rax
  20482. movq %rax, |$\itm{lhs'}$|
  20483. \end{lstlisting}
  20484. \fi}%
  20485. %
  20486. The \racket{\code{project-vector} operation is}
  20487. \python{\code{project\_tuple} and \code{project\_array} operations are}
  20488. straightforward to translate, so we leave that to the reader.
  20489. Regarding the element access operations for tuples\python{ and arrays}, the
  20490. runtime provides procedures that implement them (they are recursive
  20491. functions!), so here we simply need to translate these tuple
  20492. operations into the appropriate function call. For example, here is
  20493. the translation for
  20494. \racket{\code{proxy-vector-ref}}\python{\code{proxy\_tuple\_load}}.
  20495. {\if\edition\racketEd
  20496. \begin{minipage}{0.96\textwidth}
  20497. \begin{lstlisting}
  20498. (Assign |$\itm{lhs}$| (Prim 'proxy-vector-ref (list |$e_1$| |$e_2$|)))
  20499. |$\Rightarrow$|
  20500. movq |$e_1'$|, %rdi
  20501. movq |$e_2'$|, %rsi
  20502. callq proxy_vector_ref
  20503. movq %rax, |$\itm{lhs'}$|
  20504. \end{lstlisting}
  20505. \end{minipage}
  20506. \fi}
  20507. {\if\edition\pythonEd\pythonColor
  20508. \begin{lstlisting}
  20509. Assign([|$\itm{lhs}$|], Call(Name('proxy_tuple_load'), [|$e_1$|, |$e_2$|]))
  20510. |$\Rightarrow$|
  20511. movq |$e_1'$|, %rdi
  20512. movq |$e_2'$|, %rsi
  20513. callq proxy_vector_ref
  20514. movq %rax, |$\itm{lhs'}$|
  20515. \end{lstlisting}
  20516. \fi}
  20517. {\if\edition\pythonEd\pythonColor
  20518. % TODO: revisit the names vecof for python -Jeremy
  20519. We translate
  20520. \code{proxy\_array\_load} to \code{proxy\_vecof\_ref},
  20521. \code{proxy\_array\_store} to \code{proxy\_vecof\_set}, and
  20522. \code{proxy\_array\_len} to \code{proxy\_vecof\_length}.
  20523. \fi}
  20524. We have another batch of operations to deal with: those for the
  20525. \CANYTY{} type. Recall that we generate an
  20526. \racket{\code{any-vector-ref}}\python{\code{any\_load\_unsafe}} when
  20527. there is a element access on something of type \CANYTY{}, and
  20528. similarly for
  20529. \racket{\code{any-vector-set!}}\python{\code{any\_store\_unsafe}} and
  20530. \racket{\code{any-vector-length}}\python{\code{any\_len}}. In
  20531. section~\ref{sec:select-Lany} we selected instructions for these
  20532. operations on the basis of the idea that the underlying value was a tuple or
  20533. array. But in the current setting, the underlying value is of type
  20534. \PTUPLETYNAME{}\python{ or \PARRAYTYNAME{}}. We have added three runtime
  20535. functions to deal with this:
  20536. \code{proxy\_vector\_ref},
  20537. \code{proxy\_vector\_set}, and
  20538. \code{proxy\_vector\_length} that inspect bit $62$ of the tag
  20539. to determine whether the value is a proxy, and then
  20540. dispatches to the the appropriate code.
  20541. %
  20542. So \racket{\code{any-vector-ref}}\python{\code{any\_load\_unsafe}}
  20543. can be translated as follows.
  20544. We begin by projecting the underlying value out of the tagged value and
  20545. then call the \code{proxy\_vector\_ref} procedure in the runtime.
  20546. {\if\edition\racketEd
  20547. \begin{lstlisting}
  20548. (Assign |$\itm{lhs}$| (Prim 'any-vector-ref (list |$e_1$| |$e_2$|)))
  20549. |$\Rightarrow$|
  20550. movq |$\neg 111$|, %rdi
  20551. andq |$e_1'$|, %rdi
  20552. movq |$e_2'$|, %rsi
  20553. callq proxy_vector_ref
  20554. movq %rax, |$\itm{lhs'}$|
  20555. \end{lstlisting}
  20556. \fi}
  20557. {\if\edition\pythonEd\pythonColor
  20558. \begin{lstlisting}
  20559. Assign([|$\itm{lhs}$|], Call(Name('any_load_unsafe'), [|$e_1$|, |$e_2$|]))
  20560. |$\Rightarrow$|
  20561. movq |$\neg 111$|, %rdi
  20562. andq |$e_1'$|, %rdi
  20563. movq |$e_2'$|, %rsi
  20564. callq proxy_vector_ref
  20565. movq %rax, |$\itm{lhs'}$|
  20566. \end{lstlisting}
  20567. \fi}
  20568. \noindent The \racket{\code{any-vector-set!}}\python{\code{any\_store\_unsafe}}
  20569. and \racket{\code{any-vector-length}}\python{\code{any\_len}} operators
  20570. are translated in a similar way. Alternatively, you could generate
  20571. instructions to open-code
  20572. the \code{proxy\_vector\_ref}, \code{proxy\_vector\_set},
  20573. and \code{proxy\_vector\_length} functions.
  20574. \begin{exercise}\normalfont\normalsize
  20575. Implement a compiler for the gradually typed \LangGrad{} language by
  20576. extending and adapting your compiler for \LangLam{}. Create ten new
  20577. partially typed test programs. In addition to testing with these
  20578. new programs, test your compiler on all the tests for \LangLam{}
  20579. and for \LangDyn{}.
  20580. %
  20581. \racket{Sometimes you may get a type-checking error on the
  20582. \LangDyn{} programs, but you can adapt them by inserting a cast to
  20583. the \CANYTY{} type around each subexpression that has caused a type
  20584. error. Although \LangDyn{} does not have explicit casts, you can
  20585. induce one by wrapping the subexpression \code{e} with a call to
  20586. an unannotated identity function, as follows: \code{((lambda (x) x) e)}.}
  20587. %
  20588. \python{Sometimes you may get a type-checking error on the
  20589. \LangDyn{} programs, but you can adapt them by inserting a
  20590. temporary variable of type \CANYTY{} that is initialized with the
  20591. troublesome expression.}
  20592. \end{exercise}
  20593. \begin{figure}[t]
  20594. \begin{tcolorbox}[colback=white]
  20595. {\if\edition\racketEd
  20596. \begin{tikzpicture}[baseline=(current bounding box.center),scale=0.85]
  20597. \node (Lgradual) at (0,4) {\large \LangGrad{}};
  20598. \node (Lgradual2) at (4,4) {\large \LangCast{}};
  20599. \node (Lgradual3) at (8,4) {\large \LangProxy{}};
  20600. \node (Lgradual4) at (12,4) {\large \LangPVec{}};
  20601. \node (Lgradualr) at (12,2) {\large \LangPVec{}};
  20602. \node (Lgradualp) at (8,2) {\large \LangPVec{}};
  20603. \node (Llambdapp) at (4,2) {\large \LangPVecFunRef{}};
  20604. \node (Llambdaproxy-4) at (0,2) {\large \LangPVecFunRef{}};
  20605. \node (Llambdaproxy-5) at (0,0) {\large \LangPVecFunRef{}};
  20606. %\node (F1-1) at (4,0) {\large \LangPVecFunRef{}};
  20607. \node (F1-2) at (8,0) {\large \LangPVecFunRef{}};
  20608. \node (F1-3) at (12,0) {\large \LangPVecFunRef{}};
  20609. \node (F1-4) at (12,-2) {\large \LangPVecAlloc{}};
  20610. \node (F1-5) at (8,-2) {\large \LangPVecAlloc{}};
  20611. \node (F1-6) at (4,-2) {\large \LangPVecAlloc{}};
  20612. \node (C3-2) at (0,-2) {\large \LangCLoopPVec{}};
  20613. \node (x86-2) at (0,-4) {\large \LangXIndCallVar{}};
  20614. \node (x86-2-1) at (0,-6) {\large \LangXIndCallVar{}};
  20615. \node (x86-2-2) at (4,-6) {\large \LangXIndCallVar{}};
  20616. \node (x86-3) at (4,-4) {\large \LangXIndCallVar{}};
  20617. \node (x86-4) at (8,-4) {\large \LangXIndCall{}};
  20618. \node (x86-5) at (8,-6) {\large \LangXIndCall{}};
  20619. \path[->,bend left=15] (Lgradual) edge [above] node
  20620. {\ttfamily\footnotesize cast\_insert} (Lgradual2);
  20621. \path[->,bend left=15] (Lgradual2) edge [above] node
  20622. {\ttfamily\footnotesize lower\_casts} (Lgradual3);
  20623. \path[->,bend left=15] (Lgradual3) edge [above] node
  20624. {\ttfamily\footnotesize differentiate\_proxies} (Lgradual4);
  20625. \path[->,bend left=15] (Lgradual4) edge [left] node
  20626. {\ttfamily\footnotesize shrink} (Lgradualr);
  20627. \path[->,bend left=15] (Lgradualr) edge [above] node
  20628. {\ttfamily\footnotesize uniquify} (Lgradualp);
  20629. \path[->,bend right=15] (Lgradualp) edge [above] node
  20630. {\ttfamily\footnotesize reveal\_functions} (Llambdapp);
  20631. %% \path[->,bend left=15] (Llambdaproxy-4) edge [left] node
  20632. %% {\ttfamily\footnotesize resolve} (Lgradualr);
  20633. \path[->,bend right=15] (Llambdapp) edge [above] node
  20634. {\ttfamily\footnotesize reveal\_casts} (Llambdaproxy-4);
  20635. \path[->,bend right=15] (Llambdaproxy-4) edge [right] node
  20636. {\ttfamily\footnotesize convert\_assignments} (Llambdaproxy-5);
  20637. \path[->,bend right=10] (Llambdaproxy-5) edge [above] node
  20638. {\ttfamily\footnotesize convert\_to\_closures} (F1-2);
  20639. \path[->,bend left=15] (F1-2) edge [above] node
  20640. {\ttfamily\footnotesize limit\_functions} (F1-3);
  20641. \path[->,bend left=15] (F1-3) edge [left] node
  20642. {\ttfamily\footnotesize expose\_allocation} (F1-4);
  20643. \path[->,bend left=15] (F1-4) edge [below] node
  20644. {\ttfamily\footnotesize uncover\_get!} (F1-5);
  20645. \path[->,bend right=15] (F1-5) edge [above] node
  20646. {\ttfamily\footnotesize remove\_complex\_operands} (F1-6);
  20647. \path[->,bend right=15] (F1-6) edge [above] node
  20648. {\ttfamily\footnotesize explicate\_control} (C3-2);
  20649. \path[->,bend right=15] (C3-2) edge [right] node
  20650. {\ttfamily\footnotesize select\_instructions} (x86-2);
  20651. \path[->,bend right=15] (x86-2) edge [right] node
  20652. {\ttfamily\footnotesize uncover\_live} (x86-2-1);
  20653. \path[->,bend right=15] (x86-2-1) edge [below] node
  20654. {\ttfamily\footnotesize build\_interference} (x86-2-2);
  20655. \path[->,bend right=15] (x86-2-2) edge [right] node
  20656. {\ttfamily\footnotesize allocate\_registers} (x86-3);
  20657. \path[->,bend left=15] (x86-3) edge [above] node
  20658. {\ttfamily\footnotesize patch\_instructions} (x86-4);
  20659. \path[->,bend left=15] (x86-4) edge [right] node {\ttfamily\footnotesize prelude\_and\_conclusion} (x86-5);
  20660. \end{tikzpicture}
  20661. \fi}
  20662. {\if\edition\pythonEd\pythonColor
  20663. \begin{tikzpicture}[baseline=(current bounding box.center),scale=0.80]
  20664. \node (Lgradual) at (0,4) {\large \LangGrad{}};
  20665. \node (Lgradual2) at (4,4) {\large \LangGrad{}};
  20666. \node (Lgradual3) at (8,4) {\large \LangCast{}};
  20667. \node (Lgradual4) at (12,4) {\large \LangProxy{}};
  20668. \node (Lgradualr) at (12,2) {\large \LangPVec{}};
  20669. \node (Lgradualp) at (8,2) {\large \LangPVec{}};
  20670. \node (Llambdapp) at (4,2) {\large \LangPVec{}};
  20671. \node (Llambdaproxy-4) at (0,2) {\large \LangPVecFunRef{}};
  20672. \node (Llambdaproxy-5) at (0,0) {\large \LangPVecFunRef{}};
  20673. \node (F1-1) at (4,0) {\large \LangPVecFunRef{}};
  20674. \node (F1-2) at (8,0) {\large \LangPVecFunRef{}};
  20675. \node (F1-3) at (12,0) {\large \LangPVecFunRef{}};
  20676. \node (F1-5) at (8,-2) {\large \LangPVecAlloc{}};
  20677. \node (F1-6) at (4,-2) {\large \LangPVecAlloc{}};
  20678. \node (C3-2) at (0,-2) {\large \LangCLoopPVec{}};
  20679. \node (x86-2) at (0,-4) {\large \LangXIndCallVar{}};
  20680. \node (x86-3) at (4,-4) {\large \LangXIndCallVar{}};
  20681. \node (x86-4) at (8,-4) {\large \LangXIndCall{}};
  20682. \node (x86-5) at (12,-4) {\large \LangXIndCall{}};
  20683. \path[->,bend left=15] (Lgradual) edge [above] node
  20684. {\ttfamily\footnotesize shrink} (Lgradual2);
  20685. \path[->,bend left=15] (Lgradual2) edge [above] node
  20686. {\ttfamily\footnotesize uniquify} (Lgradual3);
  20687. \path[->,bend left=15] (Lgradual3) edge [above] node
  20688. {\ttfamily\footnotesize reveal\_functions} (Lgradual4);
  20689. \path[->,bend left=15] (Lgradual4) edge [left] node
  20690. {\ttfamily\footnotesize resolve} (Lgradualr);
  20691. \path[->,bend left=15] (Lgradualr) edge [below] node
  20692. {\ttfamily\footnotesize cast\_insert} (Lgradualp);
  20693. \path[->,bend right=15] (Lgradualp) edge [above] node
  20694. {\ttfamily\footnotesize lower\_casts} (Llambdapp);
  20695. \path[->,bend right=15] (Llambdapp) edge [above] node
  20696. {\ttfamily\footnotesize differentiate\_proxies} (Llambdaproxy-4);
  20697. \path[->,bend right=15] (Llambdaproxy-4) edge [right] node
  20698. {\ttfamily\footnotesize reveal\_casts} (Llambdaproxy-5);
  20699. \path[->,bend right=15] (Llambdaproxy-5) edge [below] node
  20700. {\ttfamily\footnotesize convert\_assignments} (F1-1);
  20701. \path[->,bend left=15] (F1-1) edge [above] node
  20702. {\ttfamily\footnotesize convert\_to\_closures} (F1-2);
  20703. \path[->,bend left=15] (F1-2) edge [above] node
  20704. {\ttfamily\footnotesize limit\_functions} (F1-3);
  20705. \path[->,bend left=15] (F1-3) edge [right] node
  20706. {\ttfamily\footnotesize expose\_allocation} (F1-5);
  20707. \path[->,bend right=15] (F1-5) edge [above] node
  20708. {\ttfamily\footnotesize remove\_complex\_operands} (F1-6);
  20709. \path[->,bend right=15] (F1-6) edge [above] node
  20710. {\ttfamily\footnotesize explicate\_control} (C3-2);
  20711. \path[->,bend right=15] (C3-2) edge [right] node
  20712. {\ttfamily\footnotesize select\_instructions} (x86-2);
  20713. \path[->,bend right=15] (x86-2) edge [below] node
  20714. {\ttfamily\footnotesize assign\_homes} (x86-3);
  20715. \path[->,bend right=15] (x86-3) edge [below] node
  20716. {\ttfamily\footnotesize patch\_instructions} (x86-4);
  20717. \path[->,bend left=15] (x86-4) edge [above] node {\ttfamily\footnotesize prelude\_and\_conclusion} (x86-5);
  20718. \end{tikzpicture}
  20719. \fi}
  20720. \end{tcolorbox}
  20721. \caption{Diagram of the passes for \LangGrad{} (gradual typing).}
  20722. \label{fig:Lgradual-passes}
  20723. \end{figure}
  20724. Figure~\ref{fig:Lgradual-passes} provides an overview of the passes
  20725. needed for the compilation of \LangGrad{}.
  20726. \section{Further Reading}
  20727. This chapter just scratches the surface of gradual typing. The basic
  20728. approach described here is missing two key ingredients that one would
  20729. want in an implementation of gradual typing: blame
  20730. tracking~\citep{Tobin-Hochstadt:2006fk,Wadler:2009qv} and
  20731. space-efficient casts~\citep{Herman:2006uq,Herman:2010aa}. The
  20732. problem addressed by blame tracking is that when a cast on a
  20733. higher-order value fails, it often does so at a point in the program
  20734. that is far removed from the original cast. Blame tracking is a
  20735. technique for propagating extra information through casts and proxies
  20736. so that when a cast fails, the error message can point back to the
  20737. original location of the cast in the source program.
  20738. The problem addressed by space-efficient casts also relates to
  20739. higher-order casts. It turns out that in partially typed programs, a
  20740. function or tuple can flow through a great many casts at runtime. With
  20741. the approach described in this chapter, each cast adds another
  20742. \code{lambda} wrapper or a tuple proxy. Not only does this take up
  20743. considerable space, but it also makes the function calls and tuple
  20744. operations slow. For example, a partially typed version of quicksort
  20745. could, in the worst case, build a chain of proxies of length $O(n)$
  20746. around the tuple, changing the overall time complexity of the
  20747. algorithm from $O(n^2)$ to $O(n^3)$! \citet{Herman:2006uq} suggested a
  20748. solution to this problem by representing casts using the coercion
  20749. calculus of \citet{Henglein:1994nz}, which prevents the creation of
  20750. long chains of proxies by compressing them into a concise normal
  20751. form. \citet{Siek:2015ab} give an algorithm for compressing coercions,
  20752. and \citet{Kuhlenschmidt:2019aa} show how to implement these ideas in
  20753. the Grift compiler:
  20754. \begin{center}
  20755. \url{https://github.com/Gradual-Typing/Grift}
  20756. \end{center}
  20757. There are also interesting interactions between gradual typing and
  20758. other language features, such as generics, information-flow types, and
  20759. type inference, to name a few. We recommend to the reader the
  20760. online gradual typing bibliography for more material:
  20761. \begin{center}
  20762. \url{http://samth.github.io/gradual-typing-bib/}
  20763. \end{center}
  20764. % TODO: challenge problem:
  20765. % type analysis and type specialization?
  20766. % coercions?
  20767. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  20768. \chapter{Generics}
  20769. \label{ch:Lpoly}
  20770. \setcounter{footnote}{0}
  20771. This chapter studies the compilation of
  20772. generics\index{subject}{generics} (aka parametric
  20773. polymorphism\index{subject}{parametric polymorphism}), compiling the
  20774. \LangPoly{} subset of \racket{Typed Racket}\python{Python}. Generics
  20775. enable programmers to make code more reusable by parameterizing
  20776. functions and data structures with respect to the types on which they
  20777. operate. For example, figure~\ref{fig:map-poly} revisits the
  20778. \code{map} example and this time gives it a more fitting type. This
  20779. \code{map} function is parameterized with respect to the element type
  20780. of the tuple. The type of \code{map} is the following generic type
  20781. specified by the \code{All} type with parameter \code{T}:
  20782. {\if\edition\racketEd
  20783. \begin{lstlisting}
  20784. (All (T) ((T -> T) (Vector T T) -> (Vector T T)))
  20785. \end{lstlisting}
  20786. \fi}
  20787. {\if\edition\pythonEd\pythonColor
  20788. \begin{lstlisting}
  20789. All[[T], Callable[[Callable[[T],T], tuple[T,T]], tuple[T,T]]]
  20790. \end{lstlisting}
  20791. \fi}
  20792. %
  20793. The idea is that \code{map} can be used at \emph{all} choices of a
  20794. type for parameter \code{T}. In the example shown in
  20795. figure~\ref{fig:map-poly} we apply \code{map} to a tuple of integers,
  20796. implicitly choosing \racket{\code{Integer}}\python{\code{int}} for
  20797. \code{T}, but we could have just as well applied \code{map} to a tuple
  20798. of Booleans.
  20799. %
  20800. A \emph{monomorphic} function is simply one that is not generic.
  20801. %
  20802. We use the term \emph{instantiation} for the process (within the
  20803. language implementation) of turning a generic function into a
  20804. monomorphic one, where the type parameters have been replaced by
  20805. types.
  20806. {\if\edition\pythonEd\pythonColor
  20807. %
  20808. In Python, when writing a generic function such as \code{map}, one
  20809. does not explicitly write its generic type (using \code{All}).
  20810. Instead, that the function is generic is implied by the use of type
  20811. variables (such as \code{T}) in the type annotations of its
  20812. parameters.
  20813. %
  20814. \fi}
  20815. \begin{figure}[tbp]
  20816. % poly_test_2.rkt
  20817. \begin{tcolorbox}[colback=white]
  20818. {\if\edition\racketEd
  20819. \begin{lstlisting}
  20820. (: map (All (T) ((T -> T) (Vector T T) -> (Vector T T))))
  20821. (define (map f v)
  20822. (vector (f (vector-ref v 0)) (f (vector-ref v 1))))
  20823. (define (inc [x : Integer]) : Integer (+ x 1))
  20824. (vector-ref (map inc (vector 0 41)) 1)
  20825. \end{lstlisting}
  20826. \fi}
  20827. {\if\edition\pythonEd\pythonColor
  20828. \begin{lstlisting}
  20829. def map(f : Callable[[T],T], tup : tuple[T,T]) -> tuple[T,T]:
  20830. return (f(tup[0]), f(tup[1]))
  20831. def add1(x : int) -> int:
  20832. return x + 1
  20833. t = map(add1, (0, 41))
  20834. print(t[1])
  20835. \end{lstlisting}
  20836. \fi}
  20837. \end{tcolorbox}
  20838. \caption{A generic version of the \code{map} function.}
  20839. \label{fig:map-poly}
  20840. \end{figure}
  20841. Figure~\ref{fig:Lpoly-concrete-syntax} presents the definition of the
  20842. concrete syntax of \LangPoly{}, and figure~\ref{fig:Lpoly-syntax}
  20843. shows the definition of the abstract syntax.
  20844. %
  20845. {\if\edition\racketEd
  20846. We add a second form for function definitions in which a type
  20847. declaration comes before the \code{define}. In the abstract syntax,
  20848. the return type in the \code{Def} is \CANYTY{}, but that should be
  20849. ignored in favor of the return type in the type declaration. (The
  20850. \CANYTY{} comes from using the same parser as discussed in
  20851. chapter~\ref{ch:Ldyn}.) The presence of a type declaration
  20852. enables the use of an \code{All} type for a function, thereby making
  20853. it generic.
  20854. \fi}
  20855. %
  20856. The grammar for types is extended to include the type of a generic
  20857. (\code{All}) and type variables\python{\ (\code{GenericVar} in the
  20858. abstract syntax)}.
  20859. \newcommand{\LpolyGrammarRacket}{
  20860. \begin{array}{lcl}
  20861. \Type &::=& \LP\key{All}~\LP\Var\ldots\RP~ \Type\RP \MID \Var \\
  20862. \Def &::=& \LP\key{:}~\Var~\Type\RP \\
  20863. && \LP\key{define}~ \LP\Var ~ \Var\ldots\RP ~ \Exp\RP
  20864. \end{array}
  20865. }
  20866. \newcommand{\LpolyASTRacket}{
  20867. \begin{array}{lcl}
  20868. \Type &::=& \LP\key{All}~\LP\Var\ldots\RP~ \Type\RP \MID \Var \\
  20869. \Def &::=& \DECL{\Var}{\Type} \\
  20870. && \DEF{\Var}{\LP\Var \ldots\RP}{\key{'Any}}{\code{'()}}{\Exp}
  20871. \end{array}
  20872. }
  20873. \newcommand{\LpolyGrammarPython}{
  20874. \begin{array}{lcl}
  20875. \Type &::=& \key{All}\LS \LS\Var\ldots\RS,\Type\RS \MID \Var
  20876. \end{array}
  20877. }
  20878. \newcommand{\LpolyASTPython}{
  20879. \begin{array}{lcl}
  20880. \Type &::=& \key{AllType}\LP\LS\Var\ldots\RS, \Type\RP
  20881. \MID \key{GenericVar}\LP\Var\RP
  20882. \end{array}
  20883. }
  20884. \begin{figure}[tp]
  20885. \centering
  20886. \begin{tcolorbox}[colback=white]
  20887. \footnotesize
  20888. {\if\edition\racketEd
  20889. \[
  20890. \begin{array}{l}
  20891. \gray{\LintGrammarRacket{}} \\ \hline
  20892. \gray{\LvarGrammarRacket{}} \\ \hline
  20893. \gray{\LifGrammarRacket{}} \\ \hline
  20894. \gray{\LwhileGrammarRacket} \\ \hline
  20895. \gray{\LtupGrammarRacket} \\ \hline
  20896. \gray{\LfunGrammarRacket} \\ \hline
  20897. \gray{\LlambdaGrammarRacket} \\ \hline
  20898. \LpolyGrammarRacket \\
  20899. \begin{array}{lcl}
  20900. \LangPoly{} &::=& \Def \ldots ~ \Exp
  20901. \end{array}
  20902. \end{array}
  20903. \]
  20904. \fi}
  20905. {\if\edition\pythonEd\pythonColor
  20906. \[
  20907. \begin{array}{l}
  20908. \gray{\LintGrammarPython{}} \\ \hline
  20909. \gray{\LvarGrammarPython{}} \\ \hline
  20910. \gray{\LifGrammarPython{}} \\ \hline
  20911. \gray{\LwhileGrammarPython} \\ \hline
  20912. \gray{\LtupGrammarPython} \\ \hline
  20913. \gray{\LfunGrammarPython} \\ \hline
  20914. \gray{\LlambdaGrammarPython} \\\hline
  20915. \LpolyGrammarPython \\
  20916. \begin{array}{lcl}
  20917. \LangPoly{} &::=& \Def\ldots \Stmt\ldots
  20918. \end{array}
  20919. \end{array}
  20920. \]
  20921. \fi}
  20922. \end{tcolorbox}
  20923. \caption{The concrete syntax of \LangPoly{}, extending \LangLam{}
  20924. (figure~\ref{fig:Llam-concrete-syntax}).}
  20925. \label{fig:Lpoly-concrete-syntax}
  20926. \index{subject}{Lgen@\LangPoly{} concrete syntax}
  20927. \end{figure}
  20928. \begin{figure}[tp]
  20929. \centering
  20930. \begin{tcolorbox}[colback=white]
  20931. \footnotesize
  20932. {\if\edition\racketEd
  20933. \[
  20934. \begin{array}{l}
  20935. \gray{\LintOpAST} \\ \hline
  20936. \gray{\LvarASTRacket{}} \\ \hline
  20937. \gray{\LifASTRacket{}} \\ \hline
  20938. \gray{\LwhileASTRacket{}} \\ \hline
  20939. \gray{\LtupASTRacket{}} \\ \hline
  20940. \gray{\LfunASTRacket} \\ \hline
  20941. \gray{\LlambdaASTRacket} \\ \hline
  20942. \LpolyASTRacket \\
  20943. \begin{array}{lcl}
  20944. \LangPoly{} &::=& \PROGRAMDEFSEXP{\code{'()}}{\LP\Def\ldots\RP}{\Exp}
  20945. \end{array}
  20946. \end{array}
  20947. \]
  20948. \fi}
  20949. {\if\edition\pythonEd\pythonColor
  20950. \[
  20951. \begin{array}{l}
  20952. \gray{\LintASTPython} \\ \hline
  20953. \gray{\LvarASTPython{}} \\ \hline
  20954. \gray{\LifASTPython{}} \\ \hline
  20955. \gray{\LwhileASTPython{}} \\ \hline
  20956. \gray{\LtupASTPython{}} \\ \hline
  20957. \gray{\LfunASTPython} \\ \hline
  20958. \gray{\LlambdaASTPython} \\ \hline
  20959. \LpolyASTPython \\
  20960. \begin{array}{lcl}
  20961. \LangPoly{} &::=& \PROGRAM{}{\LS \Def \ldots \Stmt \ldots \RS}
  20962. \end{array}
  20963. \end{array}
  20964. \]
  20965. \fi}
  20966. \end{tcolorbox}
  20967. \caption{The abstract syntax of \LangPoly{}, extending \LangLam{}
  20968. (figure~\ref{fig:Llam-syntax}).}
  20969. \label{fig:Lpoly-syntax}
  20970. \index{subject}{Lgen@\LangPoly{} abstract syntax}
  20971. \end{figure}
  20972. By including the \code{All} type in the $\Type$ nonterminal of the
  20973. grammar we choose to make generics first class, which has interesting
  20974. repercussions on the compiler.\footnote{The Python \code{typing} library does
  20975. not include syntax for the \code{All} type. It is inferred for functions whose
  20976. type annotations contain type variables.} Many languages with generics, such as
  20977. C++~\citep{stroustrup88:_param_types} and Standard
  20978. ML~\citep{Milner:1990fk}, support only second-class generics, so it
  20979. may be helpful to see an example of first-class generics in action. In
  20980. figure~\ref{fig:apply-twice} we define a function \code{apply\_twice}
  20981. whose parameter is a generic function. Indeed, because the grammar for
  20982. $\Type$ includes the \code{All} type, a generic function may also be
  20983. returned from a function or stored inside a tuple. The body of
  20984. \code{apply\_twice} applies the generic function \code{f} to a Boolean
  20985. and also to an integer, which would not be possible if \code{f} were
  20986. not generic.
  20987. \begin{figure}[tbp]
  20988. \begin{tcolorbox}[colback=white]
  20989. {\if\edition\racketEd
  20990. \begin{lstlisting}
  20991. (: apply_twice ((All (U) (U -> U)) -> Integer))
  20992. (define (apply_twice f)
  20993. (if (f #t) (f 42) (f 777)))
  20994. (: id (All (T) (T -> T)))
  20995. (define (id x) x)
  20996. (apply_twice id)
  20997. \end{lstlisting}
  20998. \fi}
  20999. {\if\edition\pythonEd\pythonColor
  21000. \begin{lstlisting}
  21001. def apply_twice(f : All[[U], Callable[[U],U]]) -> int:
  21002. if f(True):
  21003. return f(42)
  21004. else:
  21005. return f(777)
  21006. def id(x: T) -> T:
  21007. return x
  21008. print(apply_twice(id))
  21009. \end{lstlisting}
  21010. \fi}
  21011. \end{tcolorbox}
  21012. \caption{An example illustrating first-class generics.}
  21013. \label{fig:apply-twice}
  21014. \end{figure}
  21015. The type checker for \LangPoly{} shown in
  21016. figure~\ref{fig:type-check-Lpoly} has several new responsibilities
  21017. (compared to \LangLam{}) which we discuss in the following paragraphs.
  21018. {\if\edition\pythonEd\pythonColor
  21019. %
  21020. Regarding function definitions, if the type annotations on its
  21021. parameters contain generic variables, then the function is generic and
  21022. therefore its type is an \code{All} type wrapped around a function
  21023. type. Otherwise the function is monomorphic and its type is simply
  21024. a function type.
  21025. %
  21026. \fi}
  21027. The type checking of a function application is extended to handle the
  21028. case in which the operator expression is a generic function. In that case
  21029. the type arguments are deduced by matching the types of the parameters
  21030. with the types of the arguments.
  21031. %
  21032. The \code{match\_types} auxiliary function
  21033. (figure~\ref{fig:type-check-Lpoly-aux}) carries out this deduction by
  21034. recursively descending through a parameter type \code{param\_ty} and
  21035. the corresponding argument type \code{arg\_ty}, making sure that they
  21036. are equal except when there is a type parameter in the parameter
  21037. type. Upon encountering a type parameter for the first time, the
  21038. algorithm deduces an association of the type parameter to the
  21039. corresponding part of the argument type. If it is not the first time
  21040. that the type parameter has been encountered, the algorithm looks up
  21041. its deduced type and makes sure that it is equal to the corresponding
  21042. part of the argument type. The return type of the application is the
  21043. return type of the generic function with the type parameters
  21044. replaced by the deduced type arguments, using the
  21045. \code{substitute\_type} auxiliary function, which is also listed in
  21046. figure~\ref{fig:type-check-Lpoly-aux}.
  21047. The type checker extends type equality to handle the \code{All} type.
  21048. This is not quite as simple as for other types, such as function and
  21049. tuple types, because two \code{All} types can be syntactically
  21050. different even though they are equivalent. For example,
  21051. \begin{center}
  21052. \racket{\code{(All (T) (T -> T))}}\python{\code{All[[T], Callable[[T], T]]}}
  21053. \end{center}
  21054. is equivalent to
  21055. \begin{center}
  21056. \racket{\code{(All (U) (U -> U))}}\python{\code{All[[U], Callable[[U], U]]}}.
  21057. \end{center}
  21058. Two generic types are equal if they differ only in
  21059. the choice of the names of the type parameters. The definition of type
  21060. equality shown in figure~\ref{fig:type-check-Lpoly-aux} renames the type
  21061. parameters in one type to match the type parameters of the other type.
  21062. {\if\edition\racketEd
  21063. %
  21064. The type checker also ensures that only defined type variables appear
  21065. in type annotations. The \code{check\_well\_formed} function for which
  21066. the definition is shown in figure~\ref{fig:well-formed-types}
  21067. recursively inspects a type, making sure that each type variable has
  21068. been defined.
  21069. %
  21070. \fi}
  21071. \begin{figure}[tbp]
  21072. \begin{tcolorbox}[colback=white]
  21073. {\if\edition\racketEd
  21074. \begin{lstlisting}[basicstyle=\ttfamily\scriptsize]
  21075. (define type-check-poly-class
  21076. (class type-check-Llambda-class
  21077. (super-new)
  21078. (inherit check-type-equal?)
  21079. (define/override (type-check-apply env e1 es)
  21080. (define-values (e^ ty) ((type-check-exp env) e1))
  21081. (define-values (es^ ty*) (for/lists (es^ ty*) ([e (in-list es)])
  21082. ((type-check-exp env) e)))
  21083. (match ty
  21084. [`(,ty^* ... -> ,rt)
  21085. (for ([arg-ty ty*] [param-ty ty^*])
  21086. (check-type-equal? arg-ty param-ty (Apply e1 es)))
  21087. (values e^ es^ rt)]
  21088. [`(All ,xs (,tys ... -> ,rt))
  21089. (define env^ (append (for/list ([x xs]) (cons x 'Type)) env))
  21090. (define env^^ (for/fold ([env^^ env^]) ([arg-ty ty*] [param-ty tys])
  21091. (match_types env^^ param-ty arg-ty)))
  21092. (define targs
  21093. (for/list ([x xs])
  21094. (match (dict-ref env^^ x (lambda () #f))
  21095. [#f (error 'type-check "type variable ~a not deduced\nin ~v"
  21096. x (Apply e1 es))]
  21097. [ty ty])))
  21098. (values (Inst e^ ty targs) es^ (substitute_type env^^ rt))]
  21099. [else (error 'type-check "expected a function, not ~a" ty)]))
  21100. (define/override ((type-check-exp env) e)
  21101. (match e
  21102. [(Lambda `([,xs : ,Ts] ...) rT body)
  21103. (for ([T Ts]) ((check_well_formed env) T))
  21104. ((check_well_formed env) rT)
  21105. ((super type-check-exp env) e)]
  21106. [(HasType e1 ty)
  21107. ((check_well_formed env) ty)
  21108. ((super type-check-exp env) e)]
  21109. [else ((super type-check-exp env) e)]))
  21110. (define/override ((type-check-def env) d)
  21111. (verbose 'type-check "poly/def" d)
  21112. (match d
  21113. [(Generic ts (Def f (and p:t* (list `[,xs : ,ps] ...)) rt info body))
  21114. (define ts-env (for/list ([t ts]) (cons t 'Type)))
  21115. (for ([p ps]) ((check_well_formed ts-env) p))
  21116. ((check_well_formed ts-env) rt)
  21117. (define new-env (append ts-env (map cons xs ps) env))
  21118. (define-values (body^ ty^) ((type-check-exp new-env) body))
  21119. (check-type-equal? ty^ rt body)
  21120. (Generic ts (Def f p:t* rt info body^))]
  21121. [else ((super type-check-def env) d)]))
  21122. (define/override (type-check-program p)
  21123. (match p
  21124. [(Program info body)
  21125. (type-check-program (ProgramDefsExp info '() body))]
  21126. [(ProgramDefsExp info ds body)
  21127. (define ds^ (combine-decls-defs ds))
  21128. (define new-env (for/list ([d ds^])
  21129. (cons (def-name d) (fun-def-type d))))
  21130. (define ds^^ (for/list ([d ds^]) ((type-check-def new-env) d)))
  21131. (define-values (body^ ty) ((type-check-exp new-env) body))
  21132. (check-type-equal? ty 'Integer body)
  21133. (ProgramDefsExp info ds^^ body^)]))
  21134. ))
  21135. \end{lstlisting}
  21136. \fi}
  21137. {\if\edition\pythonEd\pythonColor
  21138. \begin{lstlisting}[basicstyle=\ttfamily\small]
  21139. def type_check_exp(self, e, env):
  21140. match e:
  21141. case Call(Name(f), args) if f in builtin_functions:
  21142. return super().type_check_exp(e, env)
  21143. case Call(func, args):
  21144. func_t = self.type_check_exp(func, env)
  21145. func.has_type = func_t
  21146. match func_t:
  21147. case AllType(ps, FunctionType(p_tys, rt)):
  21148. for arg in args:
  21149. arg.has_type = self.type_check_exp(arg, env)
  21150. arg_tys = [arg.has_type for arg in args]
  21151. deduced = {}
  21152. for (p, a) in zip(p_tys, arg_tys):
  21153. self.match_types(p, a, deduced, e)
  21154. return self.substitute_type(rt, deduced)
  21155. case _:
  21156. return super().type_check_exp(e, env)
  21157. case _:
  21158. return super().type_check_exp(e, env)
  21159. def type_check(self, p):
  21160. match p:
  21161. case Module(body):
  21162. env = {}
  21163. for s in body:
  21164. match s:
  21165. case FunctionDef(name, params, bod, dl, returns, comment):
  21166. params_t = [t for (x,t) in params]
  21167. ty_params = set()
  21168. for t in params_t:
  21169. ty_params |$\mid$|= self.generic_variables(t)
  21170. ty = FunctionType(params_t, returns)
  21171. if len(ty_params) > 0:
  21172. ty = AllType(list(ty_params), ty)
  21173. env[name] = ty
  21174. self.check_stmts(body, IntType(), env)
  21175. case _:
  21176. raise Exception('type_check: unexpected ' + repr(p))
  21177. \end{lstlisting}
  21178. \fi}
  21179. \end{tcolorbox}
  21180. \caption{Type checker for the \LangPoly{} language.}
  21181. \label{fig:type-check-Lpoly}
  21182. \end{figure}
  21183. \begin{figure}[tbp]
  21184. \begin{tcolorbox}[colback=white]
  21185. {\if\edition\racketEd
  21186. \begin{lstlisting}[basicstyle=\ttfamily\scriptsize]
  21187. (define/override (type-equal? t1 t2)
  21188. (match* (t1 t2)
  21189. [(`(All ,xs ,T1) `(All ,ys ,T2))
  21190. (define env (map cons xs ys))
  21191. (type-equal? (substitute_type env T1) T2)]
  21192. [(other wise)
  21193. (super type-equal? t1 t2)]))
  21194. (define/public (match_types env pt at)
  21195. (match* (pt at)
  21196. [('Integer 'Integer) env] [('Boolean 'Boolean) env]
  21197. [('Void 'Void) env] [('Any 'Any) env]
  21198. [(`(Vector ,pts ...) `(Vector ,ats ...))
  21199. (for/fold ([env^ env]) ([pt1 pts] [at1 ats])
  21200. (match_types env^ pt1 at1))]
  21201. [(`(,pts ... -> ,prt) `(,ats ... -> ,art))
  21202. (define env^ (match_types env prt art))
  21203. (for/fold ([env^^ env^]) ([pt1 pts] [at1 ats])
  21204. (match_types env^^ pt1 at1))]
  21205. [(`(All ,pxs ,pt1) `(All ,axs ,at1))
  21206. (define env^ (append (map cons pxs axs) env))
  21207. (match_types env^ pt1 at1)]
  21208. [((? symbol? x) at)
  21209. (match (dict-ref env x (lambda () #f))
  21210. [#f (error 'type-check "undefined type variable ~a" x)]
  21211. ['Type (cons (cons x at) env)]
  21212. [t^ (check-type-equal? at t^ 'matching) env])]
  21213. [(other wise) (error 'type-check "mismatch ~a != a" pt at)]))
  21214. (define/public (substitute_type env pt)
  21215. (match pt
  21216. ['Integer 'Integer] ['Boolean 'Boolean]
  21217. ['Void 'Void] ['Any 'Any]
  21218. [`(Vector ,ts ...)
  21219. `(Vector ,@(for/list ([t ts]) (substitute_type env t)))]
  21220. [`(,ts ... -> ,rt)
  21221. `(,@(for/list ([t ts]) (substitute_type env t)) -> ,(substitute_type env rt))]
  21222. [`(All ,xs ,t)
  21223. `(All ,xs ,(substitute_type (append (map cons xs xs) env) t))]
  21224. [(? symbol? x) (dict-ref env x)]
  21225. [else (error 'type-check "expected a type not ~a" pt)]))
  21226. (define/public (combine-decls-defs ds)
  21227. (match ds
  21228. ['() '()]
  21229. [`(,(Decl name type) . (,(Def f params _ info body) . ,ds^))
  21230. (unless (equal? name f)
  21231. (error 'type-check "name mismatch, ~a != ~a" name f))
  21232. (match type
  21233. [`(All ,xs (,ps ... -> ,rt))
  21234. (define params^ (for/list ([x params] [T ps]) `[,x : ,T]))
  21235. (cons (Generic xs (Def name params^ rt info body))
  21236. (combine-decls-defs ds^))]
  21237. [`(,ps ... -> ,rt)
  21238. (define params^ (for/list ([x params] [T ps]) `[,x : ,T]))
  21239. (cons (Def name params^ rt info body) (combine-decls-defs ds^))]
  21240. [else (error 'type-check "expected a function type, not ~a" type) ])]
  21241. [`(,(Def f params rt info body) . ,ds^)
  21242. (cons (Def f params rt info body) (combine-decls-defs ds^))]))
  21243. \end{lstlisting}
  21244. \fi}
  21245. {\if\edition\pythonEd\pythonColor
  21246. \begin{lstlisting}[basicstyle=\ttfamily\scriptsize]
  21247. def match_types(self, param_ty, arg_ty, deduced, e):
  21248. match (param_ty, arg_ty):
  21249. case (GenericVar(id), _):
  21250. if id in deduced:
  21251. self.check_type_equal(arg_ty, deduced[id], e)
  21252. else:
  21253. deduced[id] = arg_ty
  21254. case (AllType(ps, ty), AllType(arg_ps, arg_ty)):
  21255. rename = {ap:p for (ap,p) in zip(arg_ps, ps)}
  21256. new_arg_ty = self.substitute_type(arg_ty, rename)
  21257. self.match_types(ty, new_arg_ty, deduced, e)
  21258. case (TupleType(ps), TupleType(ts)):
  21259. for (p, a) in zip(ps, ts):
  21260. self.match_types(p, a, deduced, e)
  21261. case (ListType(p), ListType(a)):
  21262. self.match_types(p, a, deduced, e)
  21263. case (FunctionType(pps, prt), FunctionType(aps, art)):
  21264. for (pp, ap) in zip(pps, aps):
  21265. self.match_types(pp, ap, deduced, e)
  21266. self.match_types(prt, art, deduced, e)
  21267. case (IntType(), IntType()):
  21268. pass
  21269. case (BoolType(), BoolType()):
  21270. pass
  21271. case _:
  21272. raise Exception('mismatch: ' + str(param_ty) + '\n!= ' + str(arg_ty))
  21273. def substitute_type(self, ty, var_map):
  21274. match ty:
  21275. case GenericVar(id):
  21276. return var_map[id]
  21277. case AllType(ps, ty):
  21278. new_map = copy.deepcopy(var_map)
  21279. for p in ps:
  21280. new_map[p] = GenericVar(p)
  21281. return AllType(ps, self.substitute_type(ty, new_map))
  21282. case TupleType(ts):
  21283. return TupleType([self.substitute_type(t, var_map) for t in ts])
  21284. case ListType(ty):
  21285. return ListType(self.substitute_type(ty, var_map))
  21286. case FunctionType(pts, rt):
  21287. return FunctionType([self.substitute_type(p, var_map) for p in pts],
  21288. self.substitute_type(rt, var_map))
  21289. case IntType():
  21290. return IntType()
  21291. case BoolType():
  21292. return BoolType()
  21293. case _:
  21294. raise Exception('substitute_type: unexpected ' + repr(ty))
  21295. def check_type_equal(self, t1, t2, e):
  21296. match (t1, t2):
  21297. case (AllType(ps1, ty1), AllType(ps2, ty2)):
  21298. rename = {p2: GenericVar(p1) for (p1,p2) in zip(ps1,ps2)}
  21299. return self.check_type_equal(ty1, self.substitute_type(ty2, rename), e)
  21300. case (_, _):
  21301. return super().check_type_equal(t1, t2, e)
  21302. \end{lstlisting}
  21303. \fi}
  21304. \end{tcolorbox}
  21305. \caption{Auxiliary functions for type checking \LangPoly{}.}
  21306. \label{fig:type-check-Lpoly-aux}
  21307. \end{figure}
  21308. {\if\edition\racketEd
  21309. \begin{figure}[tbp]
  21310. \begin{tcolorbox}[colback=white]
  21311. \begin{lstlisting}
  21312. (define/public ((check_well_formed env) ty)
  21313. (match ty
  21314. ['Integer (void)]
  21315. ['Boolean (void)]
  21316. ['Void (void)]
  21317. [(? symbol? a)
  21318. (match (dict-ref env a (lambda () #f))
  21319. ['Type (void)]
  21320. [else (error 'type-check "undefined type variable ~a" a)])]
  21321. [`(Vector ,ts ...)
  21322. (for ([t ts]) ((check_well_formed env) t))]
  21323. [`(,ts ... -> ,t)
  21324. (for ([t ts]) ((check_well_formed env) t))
  21325. ((check_well_formed env) t)]
  21326. [`(All ,xs ,t)
  21327. (define env^ (append (for/list ([x xs]) (cons x 'Type)) env))
  21328. ((check_well_formed env^) t)]
  21329. [else (error 'type-check "unrecognized type ~a" ty)]))
  21330. \end{lstlisting}
  21331. \end{tcolorbox}
  21332. \caption{Well-formed types.}
  21333. \label{fig:well-formed-types}
  21334. \end{figure}
  21335. \fi}
  21336. % TODO: interpreter for R'_10
  21337. \clearpage
  21338. \section{Compiling Generics}
  21339. \label{sec:compiling-poly}
  21340. Broadly speaking, there are four approaches to compiling generics, as
  21341. follows:
  21342. \begin{description}
  21343. \item[Monomorphization] generates a different version of a generic
  21344. function for each set of type arguments with which it is used,
  21345. producing type-specialized code. This approach results in the most
  21346. efficient code but requires whole-program compilation (no separate
  21347. compilation) and may increase code size. Unfortunately,
  21348. monomorphization is incompatible with first-class generics because
  21349. it is not always possible to determine which generic functions are
  21350. used with which type arguments during compilation. (It can be done
  21351. at runtime with just-in-time compilation.) Monomorphization is
  21352. used to compile C++ templates~\citep{stroustrup88:_param_types} and
  21353. generic functions in NESL~\citep{Blelloch:1993aa} and
  21354. ML~\citep{Weeks:2006aa}.
  21355. \item[Uniform representation] generates one version of each generic
  21356. function and requires all values to have a common \emph{boxed} format,
  21357. such as the tagged values of type \CANYTY{} in \LangAny{}. Both
  21358. generic and monomorphic code is compiled similarly to code in a
  21359. dynamically typed language (like \LangDyn{}), in which primitive
  21360. operators require their arguments to be projected from \CANYTY{} and
  21361. their results to be injected into \CANYTY{}. (In object-oriented
  21362. languages, the projection is accomplished via virtual method
  21363. dispatch.) The uniform representation approach is compatible with
  21364. separate compilation and with first-class generics. However, it
  21365. produces the least efficient code because it introduces overhead in
  21366. the entire program. This approach is used in
  21367. Java~\citep{Bracha:1998fk},
  21368. CLU~\citep{liskov79:_clu_ref,Liskov:1993dk}, and some implementations
  21369. of ML~\citep{Cardelli:1984aa,Appel:1987aa}.
  21370. \item[Mixed representation] generates one version of each generic
  21371. function, using a boxed representation for type variables. However,
  21372. monomorphic code is compiled as usual (as in \LangLam{}), and
  21373. conversions are performed at the boundaries between monomorphic code
  21374. and polymorphic code (for example, when a generic function is instantiated
  21375. and called). This approach is compatible with separate compilation
  21376. and first-class generics and maintains efficiency in monomorphic
  21377. code. The trade-off is increased overhead at the boundary between
  21378. monomorphic and generic code. This approach is used in
  21379. implementations of ML~\citep{Leroy:1992qb} and Java, starting in
  21380. Java 5 with the addition of autoboxing.
  21381. \item[Type passing] uses the unboxed representation in both
  21382. monomorphic and generic code. Each generic function is compiled to a
  21383. single function with extra parameters that describe the type
  21384. arguments. The type information is used by the generated code to
  21385. determine how to access the unboxed values at runtime. This approach is
  21386. used in implementation of Napier88~\citep{Morrison:1991aa} and
  21387. ML~\citep{Harper:1995um}. Type passing is compatible with separate
  21388. compilation and first-class generics and maintains the
  21389. efficiency for monomorphic code. There is runtime overhead in
  21390. polymorphic code from dispatching on type information.
  21391. \end{description}
  21392. In this chapter we use the mixed representation approach, partly
  21393. because of its favorable attributes and partly because it is
  21394. straightforward to implement using the tools that we have already
  21395. built to support gradual typing. The work of compiling generic
  21396. functions is performed in two passes, \code{resolve} and
  21397. \code{erase\_types}, that we discuss next. The output of
  21398. \code{erase\_types} is \LangCast{}
  21399. (section~\ref{sec:gradual-insert-casts}), so the rest of the
  21400. compilation is handled by the compiler of chapter~\ref{ch:Lgrad}.
  21401. \section{Resolve Instantiation}
  21402. \label{sec:generic-resolve}
  21403. Recall that the type checker for \LangPoly{} deduces the type
  21404. arguments at call sites to a generic function. The purpose of the
  21405. \code{resolve} pass is to turn this implicit instantiation into an
  21406. explicit one, by adding \code{inst} nodes to the syntax of the
  21407. intermediate language. An \code{inst} node records the mapping of
  21408. type parameters to type arguments. The semantics of the \code{inst}
  21409. node is to instantiate the result of its first argument, a generic
  21410. function, to produce a monomorphic function. However, because the
  21411. interpreter never analyzes type annotations, instantiation can be a
  21412. no-op and simply return the generic function.
  21413. %
  21414. The output language of the \code{resolve} pass is \LangInst{},
  21415. for which the definition is shown in figure~\ref{fig:Lpoly-prime-syntax}.
  21416. {\if\edition\racketEd
  21417. The \code{resolve} pass combines the type declaration and polymorphic
  21418. function into a single definition, using the \code{Poly} form, to make
  21419. polymorphic functions more convenient to process in the next pass of the
  21420. compiler.
  21421. \fi}
  21422. \newcommand{\LinstASTRacket}{
  21423. \begin{array}{lcl}
  21424. \Type &::=& \LP\key{All}~\LP\Var\ldots\RP~ \Type\RP \MID \Var \\
  21425. \Exp &::=& \INST{\Exp}{\Type}{\LP\Type\ldots\RP} \\
  21426. \Def &::=& \gray{ \DEF{\Var}{\LP\LS\Var \key{:} \Type\RS \ldots\RP}{\Type}{\code{'()}}{\Exp} } \\
  21427. &\MID& \LP\key{Poly}~\LP\Var\ldots\RP~ \DEF{\Var}{\LP\LS\Var \key{:} \Type\RS \ldots\RP}{\Type}{\code{'()}}{\Exp}\RP
  21428. \end{array}
  21429. }
  21430. \newcommand{\LinstASTPython}{
  21431. \begin{array}{lcl}
  21432. \Type &::=& \key{AllType}\LP\LS\Var\ldots\RS, \Type\RP \MID \Var \\
  21433. \Exp &::=& \INST{\Exp}{\LC\Var\key{:}\Type\ldots\RC}
  21434. \end{array}
  21435. }
  21436. \begin{figure}[tp]
  21437. \centering
  21438. \begin{tcolorbox}[colback=white]
  21439. \small
  21440. {\if\edition\racketEd
  21441. \[
  21442. \begin{array}{l}
  21443. \gray{\LintOpAST} \\ \hline
  21444. \gray{\LvarASTRacket{}} \\ \hline
  21445. \gray{\LifASTRacket{}} \\ \hline
  21446. \gray{\LwhileASTRacket{}} \\ \hline
  21447. \gray{\LtupASTRacket{}} \\ \hline
  21448. \gray{\LfunASTRacket} \\ \hline
  21449. \gray{\LlambdaASTRacket} \\ \hline
  21450. \LinstASTRacket \\
  21451. \begin{array}{lcl}
  21452. \LangInst{} &::=& \PROGRAMDEFSEXP{\code{'()}}{\LP\Def\ldots\RP}{\Exp}
  21453. \end{array}
  21454. \end{array}
  21455. \]
  21456. \fi}
  21457. {\if\edition\pythonEd\pythonColor
  21458. \[
  21459. \begin{array}{l}
  21460. \gray{\LintASTPython} \\ \hline
  21461. \gray{\LvarASTPython{}} \\ \hline
  21462. \gray{\LifASTPython{}} \\ \hline
  21463. \gray{\LwhileASTPython{}} \\ \hline
  21464. \gray{\LtupASTPython{}} \\ \hline
  21465. \gray{\LfunASTPython} \\ \hline
  21466. \gray{\LlambdaASTPython} \\ \hline
  21467. \LinstASTPython \\
  21468. \begin{array}{lcl}
  21469. \LangInst{} &::=& \PROGRAM{}{\LS \Def \ldots \Stmt \ldots \RS}
  21470. \end{array}
  21471. \end{array}
  21472. \]
  21473. \fi}
  21474. \end{tcolorbox}
  21475. \caption{The abstract syntax of \LangInst{}, extending \LangLam{}
  21476. (figure~\ref{fig:Llam-syntax}).}
  21477. \label{fig:Lpoly-prime-syntax}
  21478. \index{subject}{Linst@\LangInst{} abstract syntax}
  21479. \end{figure}
  21480. The output of the \code{resolve} pass on the generic \code{map}
  21481. example is listed in figure~\ref{fig:map-resolve}. Note that the use
  21482. of \code{map} is wrapped in an \code{inst} node, with the parameter
  21483. \code{T} chosen to be \racket{\code{Integer}}\python{\code{int}}.
  21484. \begin{figure}[tbp]
  21485. % poly_test_2.rkt
  21486. \begin{tcolorbox}[colback=white]
  21487. {\if\edition\racketEd
  21488. \begin{lstlisting}
  21489. (poly (T) (define (map [f : (T -> T)] [v : (Vector T T)]) : (Vector T T)
  21490. (vector (f (vector-ref v 0)) (f (vector-ref v 1)))))
  21491. (define (inc [x : Integer]) : Integer (+ x 1))
  21492. (vector-ref ((inst map (All (T) ((T -> T) (Vector T T) -> (Vector T T)))
  21493. (Integer))
  21494. inc (vector 0 41)) 1)
  21495. \end{lstlisting}
  21496. \fi}
  21497. {\if\edition\pythonEd\pythonColor
  21498. \begin{lstlisting}
  21499. def map(f : Callable[[T],T], tup : tuple[T,T]) -> tuple[T,T]:
  21500. return (f(tup[0]), f(tup[1]))
  21501. def add1(x : int) -> int:
  21502. return x + 1
  21503. t = inst(map, {T: int})(add1, (0, 41))
  21504. print(t[1])
  21505. \end{lstlisting}
  21506. \fi}
  21507. \end{tcolorbox}
  21508. \caption{Output of the \code{resolve} pass on the \code{map} example.}
  21509. \label{fig:map-resolve}
  21510. \end{figure}
  21511. \section{Erase Generic Types}
  21512. \label{sec:erase_types}
  21513. We use the \CANYTY{} type presented in chapter~\ref{ch:Ldyn} to
  21514. represent type variables. For example, figure~\ref{fig:map-erase}
  21515. shows the output of the \code{erase\_types} pass on the generic
  21516. \code{map} (figure~\ref{fig:map-poly}). The occurrences of
  21517. type parameter \code{T} are replaced by \CANYTY{}, and the generic
  21518. \code{All} types are removed from the type of \code{map}.
  21519. \begin{figure}[tbp]
  21520. \begin{tcolorbox}[colback=white]
  21521. {\if\edition\racketEd
  21522. \begin{lstlisting}
  21523. (define (map [f : (Any -> Any)] [v : (Vector Any Any)])
  21524. : (Vector Any Any)
  21525. (vector (f (vector-ref v 0)) (f (vector-ref v 1))))
  21526. (define (inc [x : Integer]) : Integer (+ x 1))
  21527. (vector-ref ((cast map
  21528. ((Any -> Any) (Vector Any Any) -> (Vector Any Any))
  21529. ((Integer -> Integer) (Vector Integer Integer)
  21530. -> (Vector Integer Integer)))
  21531. inc (vector 0 41)) 1)
  21532. \end{lstlisting}
  21533. \fi}
  21534. {\if\edition\pythonEd\pythonColor
  21535. \begin{lstlisting}
  21536. def map(f : Callable[[Any],Any], tup : tuple[Any,Any])-> tuple[Any,Any]:
  21537. return (f(tup[0]), f(tup[1]))
  21538. def add1(x : int) -> int:
  21539. return (x + 1)
  21540. def main() -> int:
  21541. t = cast(map, |$T_1$|, |$T_2$|)(add1, (0, 41))
  21542. print(t[1])
  21543. return 0
  21544. \end{lstlisting}
  21545. {\small
  21546. where\\
  21547. $T_1 = $ \code{Callable[[Callable[[Any], Any],tuple[Any,Any]], tuple[Any,Any]]}\\
  21548. $T_2 = $ \code{Callable[[Callable[[int], int],tuple[int,int]], tuple[int,int]]}
  21549. }
  21550. \fi}
  21551. \end{tcolorbox}
  21552. \caption{The generic \code{map} example after type erasure.}
  21553. \label{fig:map-erase}
  21554. \end{figure}
  21555. This process of type erasure creates a challenge at points of
  21556. instantiation. For example, consider the instantiation of
  21557. \code{map} shown in figure~\ref{fig:map-resolve}.
  21558. The type of \code{map} is
  21559. %
  21560. {\if\edition\racketEd
  21561. \begin{lstlisting}
  21562. (All (T) ((T -> T) (Vector T T) -> (Vector T T)))
  21563. \end{lstlisting}
  21564. \fi}
  21565. {\if\edition\pythonEd\pythonColor
  21566. \begin{lstlisting}
  21567. All[[T], Callable[[Callable[[T], T], tuple[T, T]], tuple[T, T]]]
  21568. \end{lstlisting}
  21569. \fi}
  21570. %
  21571. \noindent and it is instantiated to
  21572. %
  21573. {\if\edition\racketEd
  21574. \begin{lstlisting}
  21575. ((Integer -> Integer) (Vector Integer Integer)
  21576. -> (Vector Integer Integer))
  21577. \end{lstlisting}
  21578. \fi}
  21579. {\if\edition\pythonEd\pythonColor
  21580. \begin{lstlisting}
  21581. Callable[[Callable[[int], int], tuple[int, int]], tuple[int, int]]
  21582. \end{lstlisting}
  21583. \fi}
  21584. %
  21585. \noindent After erasure, the type of \code{map} is
  21586. %
  21587. {\if\edition\racketEd
  21588. \begin{lstlisting}
  21589. ((Any -> Any) (Vector Any Any) -> (Vector Any Any))
  21590. \end{lstlisting}
  21591. \fi}
  21592. {\if\edition\pythonEd\pythonColor
  21593. \begin{lstlisting}
  21594. Callable[[Callable[[Any], Any], tuple[Any, Any]], tuple[Any, Any]]
  21595. \end{lstlisting}
  21596. \fi}
  21597. %
  21598. \noindent but we need to convert it to the instantiated type. This is
  21599. easy to do in the language \LangCast{} with a single \code{cast}. In
  21600. the example shown in figure~\ref{fig:map-erase}, the instantiation of
  21601. \code{map} has been compiled to a \code{cast} from the type of
  21602. \code{map} to the instantiated type. The source and the target type of
  21603. a cast must be consistent (figure~\ref{fig:consistent}), which indeed
  21604. is the case because both the source and target are obtained from the
  21605. same generic type of \code{map}, replacing the type parameters with
  21606. \CANYTY{} in the former and with the deduced type arguments in the
  21607. latter. (Recall that the \CANYTY{} type is consistent with any type.)
  21608. To implement the \code{erase\_types} pass, we first recommend defining
  21609. a recursive function that translates types, named
  21610. \code{erase\_type}. It replaces type variables with \CANYTY{} as
  21611. follows.
  21612. %
  21613. {\if\edition\racketEd
  21614. \begin{lstlisting}
  21615. |$T$|
  21616. |$\Rightarrow$|
  21617. Any
  21618. \end{lstlisting}
  21619. \fi}
  21620. {\if\edition\pythonEd\pythonColor
  21621. \begin{lstlisting}
  21622. GenericVar(|$T$|)
  21623. |$\Rightarrow$|
  21624. Any
  21625. \end{lstlisting}
  21626. \fi}
  21627. %
  21628. \noindent The \code{erase\_type} function also removes the generic
  21629. \code{All} types.
  21630. %
  21631. {\if\edition\racketEd
  21632. \begin{lstlisting}
  21633. (All |$xs$| |$T_1$|)
  21634. |$\Rightarrow$|
  21635. |$T'_1$|
  21636. \end{lstlisting}
  21637. \fi}
  21638. {\if\edition\pythonEd\pythonColor
  21639. \begin{lstlisting}
  21640. AllType(|$xs$|, |$T_1$|)
  21641. |$\Rightarrow$|
  21642. |$T'_1$|
  21643. \end{lstlisting}
  21644. \fi}
  21645. \noindent where $T'_1$ is the result of applying \code{erase\_type} to
  21646. $T_1$.
  21647. %
  21648. In this compiler pass, apply the \code{erase\_type} function to all
  21649. the type annotations in the program.
  21650. Regarding the translation of expressions, the case for \code{Inst} is
  21651. the interesting one. We translate it into a \code{Cast}, as shown
  21652. next.
  21653. The type of the subexpression $e$ is a generic type of the form
  21654. \racket{$\LP\key{All}~\itm{xs}~T\RP$}\python{$\key{AllType}\LP\itm{xs}, T\RP$}.
  21655. The source type of the cast is the erasure of $T$, the type $T_s$.
  21656. %
  21657. {\if\edition\racketEd
  21658. %
  21659. The target type $T_t$ is the result of substituting the argument types
  21660. $ts$ for the type parameters $xs$ in $T$ and then performing type
  21661. erasure.
  21662. %
  21663. \begin{lstlisting}
  21664. (Inst |$e$| (All |$xs$| |$T$|) |$ts$|)
  21665. |$\Rightarrow$|
  21666. (Cast |$e'$| |$T_s$| |$T_t$|)
  21667. \end{lstlisting}
  21668. %
  21669. where $T_t = \LP\code{erase\_type}~\LP\code{substitute\_type}~s~T\RP\RP$,
  21670. and $s = \LP\code{map}~\code{cons}~xs~ts\RP$.
  21671. \fi}
  21672. {\if\edition\pythonEd\pythonColor
  21673. %
  21674. The target type $T_t$ is the result of substituting the deduced
  21675. argument types $d$ in $T$ and then performing type erasure.
  21676. %
  21677. \begin{lstlisting}
  21678. Inst(|$e$|, |$d$|)
  21679. |$\Rightarrow$|
  21680. Cast(|$e'$|, |$T_s$|, |$T_t$|)
  21681. \end{lstlisting}
  21682. %
  21683. where
  21684. $T_t = \code{erase\_type}\LP\code{substitute\_type}\LP d, T\RP\RP$.
  21685. \fi}
  21686. Finally, each generic function is translated to a regular
  21687. function in which type erasure has been applied to all the type
  21688. annotations and the body.
  21689. %% \begin{lstlisting}
  21690. %% (Poly |$ts$| (Def |$f$| ([|$x_1$| : |$T_1$|] |$\ldots$|) |$T_r$| |$\itm{info}$| |$e$|))
  21691. %% |$\Rightarrow$|
  21692. %% (Def |$f$| ([|$x_1$| : |$T'_1$|] |$\ldots$|) |$T'_r$| |$\itm{info}$| |$e'$|)
  21693. %% \end{lstlisting}
  21694. \begin{exercise}\normalfont\normalsize
  21695. Implement a compiler for the polymorphic language \LangPoly{} by
  21696. extending and adapting your compiler for \LangGrad{}. Create six new
  21697. test programs that use polymorphic functions. Some of them should
  21698. make use of first-class generics.
  21699. \end{exercise}
  21700. \begin{figure}[tbp]
  21701. \begin{tcolorbox}[colback=white]
  21702. {\if\edition\racketEd
  21703. \begin{tikzpicture}[baseline=(current bounding box.center),scale=0.85]
  21704. \node (Lpoly) at (0,4) {\large \LangPoly{}};
  21705. \node (Lpolyp) at (4,4) {\large \LangInst{}};
  21706. \node (Lgradualp) at (8,4) {\large \LangCast{}};
  21707. \node (Llambdapp) at (12,4) {\large \LangProxy{}};
  21708. \node (Llambdaproxy) at (12,2) {\large \LangPVec{}};
  21709. \node (Llambdaproxy-2) at (8,2) {\large \LangPVec{}};
  21710. \node (Llambdaproxy-3) at (4,2) {\large \LangPVec{}};
  21711. \node (Llambdaproxy-4) at (0,2) {\large \LangPVecFunRef{}};
  21712. \node (Llambdaproxy-5) at (0,0) {\large \LangPVecFunRef{}};
  21713. \node (F1-1) at (4,0) {\large \LangPVecFunRef{}};
  21714. \node (F1-2) at (8,0) {\large \LangPVecFunRef{}};
  21715. \node (F1-3) at (12,0) {\large \LangPVecFunRef{}};
  21716. \node (F1-4) at (12,-2) {\large \LangPVecAlloc{}};
  21717. \node (F1-5) at (8,-2) {\large \LangPVecAlloc{}};
  21718. \node (F1-6) at (4,-2) {\large \LangPVecAlloc{}};
  21719. \node (C3-2) at (0,-2) {\large \LangCLoopPVec{}};
  21720. \node (x86-2) at (0,-4) {\large \LangXIndCallVar{}};
  21721. \node (x86-2-1) at (0,-6) {\large \LangXIndCallVar{}};
  21722. \node (x86-2-2) at (4,-6) {\large \LangXIndCallVar{}};
  21723. \node (x86-3) at (4,-4) {\large \LangXIndCallVar{}};
  21724. \node (x86-4) at (8,-4) {\large \LangXIndCall{}};
  21725. \node (x86-5) at (8,-6) {\large \LangXIndCall{}};
  21726. \path[->,bend left=15] (Lpoly) edge [above] node
  21727. {\ttfamily\footnotesize resolve} (Lpolyp);
  21728. \path[->,bend left=15] (Lpolyp) edge [above] node
  21729. {\ttfamily\footnotesize erase\_types} (Lgradualp);
  21730. \path[->,bend left=15] (Lgradualp) edge [above] node
  21731. {\ttfamily\footnotesize lower\_casts} (Llambdapp);
  21732. \path[->,bend left=15] (Llambdapp) edge [left] node
  21733. {\ttfamily\footnotesize differentiate\_proxies} (Llambdaproxy);
  21734. \path[->,bend left=15] (Llambdaproxy) edge [below] node
  21735. {\ttfamily\footnotesize shrink} (Llambdaproxy-2);
  21736. \path[->,bend right=15] (Llambdaproxy-2) edge [above] node
  21737. {\ttfamily\footnotesize uniquify} (Llambdaproxy-3);
  21738. \path[->,bend right=15] (Llambdaproxy-3) edge [above] node
  21739. {\ttfamily\footnotesize reveal\_functions} (Llambdaproxy-4);
  21740. \path[->,bend right=15] (Llambdaproxy-4) edge [right] node
  21741. {\ttfamily\footnotesize reveal\_casts} (Llambdaproxy-5);
  21742. \path[->,bend right=15] (Llambdaproxy-5) edge [below] node
  21743. {\ttfamily\footnotesize convert\_assignments} (F1-1);
  21744. \path[->,bend left=15] (F1-1) edge [above] node
  21745. {\ttfamily\footnotesize convert\_to\_closures} (F1-2);
  21746. \path[->,bend left=15] (F1-2) edge [above] node
  21747. {\ttfamily\footnotesize limit\_functions} (F1-3);
  21748. \path[->,bend left=15] (F1-3) edge [left] node
  21749. {\ttfamily\footnotesize expose\_allocation} (F1-4);
  21750. \path[->,bend left=15] (F1-4) edge [below] node
  21751. {\ttfamily\footnotesize uncover\_get!} (F1-5);
  21752. \path[->,bend right=15] (F1-5) edge [above] node
  21753. {\ttfamily\footnotesize remove\_complex\_operands} (F1-6);
  21754. \path[->,bend right=15] (F1-6) edge [above] node
  21755. {\ttfamily\footnotesize explicate\_control} (C3-2);
  21756. \path[->,bend right=15] (C3-2) edge [right] node
  21757. {\ttfamily\footnotesize select\_instructions} (x86-2);
  21758. \path[->,bend right=15] (x86-2) edge [right] node
  21759. {\ttfamily\footnotesize uncover\_live} (x86-2-1);
  21760. \path[->,bend right=15] (x86-2-1) edge [below] node
  21761. {\ttfamily\footnotesize build\_interference} (x86-2-2);
  21762. \path[->,bend right=15] (x86-2-2) edge [right] node
  21763. {\ttfamily\footnotesize allocate\_registers} (x86-3);
  21764. \path[->,bend left=15] (x86-3) edge [above] node
  21765. {\ttfamily\footnotesize patch\_instructions} (x86-4);
  21766. \path[->,bend left=15] (x86-4) edge [right] node {\ttfamily\footnotesize prelude\_and\_conclusion} (x86-5);
  21767. \end{tikzpicture}
  21768. \fi}
  21769. {\if\edition\pythonEd\pythonColor
  21770. \begin{tikzpicture}[baseline=(current bounding box.center),scale=0.85]
  21771. \node (Lgradual) at (0,4) {\large \LangPoly{}};
  21772. \node (Lgradual2) at (4,4) {\large \LangPoly{}};
  21773. \node (Lgradual3) at (8,4) {\large \LangPoly{}};
  21774. \node (Lgradual4) at (12,4) {\large \LangPoly{}};
  21775. \node (Lgradualr) at (12,2) {\large \LangInst{}};
  21776. \node (Llambdapp) at (8,2) {\large \LangCast{}};
  21777. \node (Llambdaproxy-4) at (4,2) {\large \LangPVec{}};
  21778. \node (Llambdaproxy-5) at (0,2) {\large \LangPVec{}};
  21779. \node (F1-1) at (0,0) {\large \LangPVec{}};
  21780. \node (F1-2) at (4,0) {\large \LangPVec{}};
  21781. \node (F1-3) at (8,0) {\large \LangPVec{}};
  21782. \node (F1-5) at (12,0) {\large \LangPVecAlloc{}};
  21783. \node (F1-6) at (12,-2) {\large \LangPVecAlloc{}};
  21784. \node (C3-2) at (0,-2) {\large \LangCLoopPVec{}};
  21785. \node (x86-2) at (0,-4) {\large \LangXIndCallVar{}};
  21786. \node (x86-3) at (4,-4) {\large \LangXIndCallVar{}};
  21787. \node (x86-4) at (8,-4) {\large \LangXIndCall{}};
  21788. \node (x86-5) at (12,-4) {\large \LangXIndCall{}};
  21789. \path[->,bend left=15] (Lgradual) edge [above] node
  21790. {\ttfamily\footnotesize shrink} (Lgradual2);
  21791. \path[->,bend left=15] (Lgradual2) edge [above] node
  21792. {\ttfamily\footnotesize uniquify} (Lgradual3);
  21793. \path[->,bend left=15] (Lgradual3) edge [above] node
  21794. {\ttfamily\footnotesize reveal\_functions} (Lgradual4);
  21795. \path[->,bend left=15] (Lgradual4) edge [left] node
  21796. {\ttfamily\footnotesize resolve} (Lgradualr);
  21797. \path[->,bend left=15] (Lgradualr) edge [below] node
  21798. {\ttfamily\footnotesize erase\_types} (Llambdapp);
  21799. \path[->,bend right=15] (Llambdapp) edge [above] node
  21800. {\ttfamily\footnotesize differentiate\_proxies} (Llambdaproxy-4);
  21801. \path[->,bend right=15] (Llambdaproxy-4) edge [above] node
  21802. {\ttfamily\footnotesize reveal\_casts} (Llambdaproxy-5);
  21803. \path[->,bend right=15] (Llambdaproxy-5) edge [right] node
  21804. {\ttfamily\footnotesize convert\_assignments} (F1-1);
  21805. \path[->,bend right=15] (F1-1) edge [below] node
  21806. {\ttfamily\footnotesize convert\_to\_closures} (F1-2);
  21807. \path[->,bend right=15] (F1-2) edge [below] node
  21808. {\ttfamily\footnotesize limit\_functions} (F1-3);
  21809. \path[->,bend left=15] (F1-3) edge [above] node
  21810. {\ttfamily\footnotesize expose\_allocation} (F1-5);
  21811. \path[->,bend left=15] (F1-5) edge [left] node
  21812. {\ttfamily\footnotesize remove\_complex\_operands} (F1-6);
  21813. \path[->,bend left=5] (F1-6) edge [below] node
  21814. {\ttfamily\footnotesize explicate\_control} (C3-2);
  21815. \path[->,bend right=15] (C3-2) edge [right] node
  21816. {\ttfamily\footnotesize select\_instructions} (x86-2);
  21817. \path[->,bend right=15] (x86-2) edge [below] node
  21818. {\ttfamily\footnotesize assign\_homes} (x86-3);
  21819. \path[->,bend right=15] (x86-3) edge [below] node
  21820. {\ttfamily\footnotesize patch\_instructions} (x86-4);
  21821. \path[->,bend left=15] (x86-4) edge [above] node
  21822. {\ttfamily\footnotesize prelude\_and\_conclusion} (x86-5);
  21823. \end{tikzpicture}
  21824. \fi}
  21825. \end{tcolorbox}
  21826. \caption{Diagram of the passes for \LangPoly{} (generics).}
  21827. \label{fig:Lpoly-passes}
  21828. \end{figure}
  21829. Figure~\ref{fig:Lpoly-passes} provides an overview of the passes
  21830. needed to compile \LangPoly{}.
  21831. % TODO: challenge problem: specialization of instantiations
  21832. % Further Reading
  21833. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  21834. \clearpage
  21835. \appendix
  21836. \chapter{Appendix}
  21837. \setcounter{footnote}{0}
  21838. {\if\edition\racketEd
  21839. \section{Interpreters}
  21840. \label{appendix:interp}
  21841. \index{subject}{interpreter}
  21842. We provide interpreters for each of the source languages \LangInt{},
  21843. \LangVar{}, $\ldots$ in the files \code{interp-Lint.rkt},
  21844. \code{interp-Lvar.rkt}, and so on. The interpreters for the
  21845. intermediate languages \LangCVar{} and \LangCIf{} are in
  21846. \code{interp-Cvar.rkt} and \code{interp-C1.rkt}. The interpreters for
  21847. \LangCVec{}, \LangCFun{}, pseudo-x86, and x86 are in the
  21848. \key{interp.rkt} file.
  21849. \section{Utility Functions}
  21850. \label{appendix:utilities}
  21851. The utility functions described in this section are in the
  21852. \key{utilities.rkt} file of the support code.
  21853. \paragraph{\code{interp-tests}}
  21854. This function runs the compiler passes and the interpreters on each of
  21855. the specified tests to check whether each pass is correct. The
  21856. \key{interp-tests} function has the following parameters:
  21857. \begin{description}
  21858. \item[name (a string)] A name to identify the compiler.
  21859. \item[typechecker] A function of exactly one argument that either
  21860. raises an error using the \code{error} function when it encounters a
  21861. type error, or returns \code{\#f} when it encounters a type
  21862. error. If there is no type error, the type checker returns the
  21863. program.
  21864. \item[passes] A list with one entry per pass. An entry is a list
  21865. consisting of four things:
  21866. \begin{enumerate}
  21867. \item a string giving the name of the pass;
  21868. \item the function that implements the pass (a translator from AST
  21869. to AST);
  21870. \item a function that implements the interpreter (a function from
  21871. AST to result value) for the output language; and,
  21872. \item a type checker for the output language. Type checkers for
  21873. all the $\Lang{}$ and $\CLang{}$ languages are provided in the support code.
  21874. For example, the type checkers for \LangVar{} and \LangCVar{} are in
  21875. \code{type-check-Lvar.rkt} and \code{type-check-Cvar.rkt}. The
  21876. type checker entry is optional. The support code does not provide
  21877. type checkers for the x86 languages.
  21878. \end{enumerate}
  21879. \item[source-interp] An interpreter for the source language. The
  21880. interpreters from appendix~\ref{appendix:interp} make a good choice.
  21881. \item[test-family (a string)] For example, \code{"var"} or \code{"cond"}.
  21882. \item[tests] A list of test numbers that specifies which tests to
  21883. run (explained next).
  21884. \end{description}
  21885. %
  21886. The \key{interp-tests} function assumes that the subdirectory
  21887. \key{tests} has a collection of Racket programs whose names all start
  21888. with the family name, followed by an underscore and then the test
  21889. number, and ending with the file extension \key{.rkt}. Also, for each test
  21890. program that calls \code{read} one or more times, there is a file with
  21891. the same name except that the file extension is \key{.in}, which
  21892. provides the input for the Racket program. If the test program is
  21893. expected to fail type checking, then there should be an empty file of
  21894. the same name with extension \key{.tyerr}.
  21895. \paragraph{\code{compiler-tests}}
  21896. This function runs the compiler passes to generate x86 (a \key{.s}
  21897. file) and then runs the GNU C compiler (gcc) to generate machine code.
  21898. It runs the machine code and checks that the output is $42$. The
  21899. parameters to the \code{compiler-tests} function are similar to those
  21900. of the \code{interp-tests} function, and they consist of
  21901. \begin{itemize}
  21902. \item a compiler name (a string),
  21903. \item a type checker,
  21904. \item description of the passes,
  21905. \item name of a test-family, and
  21906. \item a list of test numbers.
  21907. \end{itemize}
  21908. \paragraph{\code{compile-file}}
  21909. This function takes a description of the compiler passes (see the
  21910. comment for \key{interp-tests}) and returns a function that, given a
  21911. program file name (a string ending in \key{.rkt}), applies all the
  21912. passes and writes the output to a file whose name is the same as the
  21913. program file name with extension \key{.rkt} replaced by \key{.s}.
  21914. \paragraph{\code{read-program}}
  21915. This function takes a file path and parses that file (it must be a
  21916. Racket program) into an abstract syntax tree.
  21917. \paragraph{\code{parse-program}}
  21918. This function takes an S-expression representation of an abstract
  21919. syntax tree and converts it into the struct-based representation.
  21920. \paragraph{\code{assert}}
  21921. This function takes two parameters, a string (\code{msg}) and Boolean
  21922. (\code{bool}), and displays the message \key{msg} if the Boolean
  21923. \key{bool} is false.
  21924. \paragraph{\code{lookup}}
  21925. % remove discussion of lookup? -Jeremy
  21926. This function takes a key and an alist and returns the first value that is
  21927. associated with the given key, if there is one. If not, an error is
  21928. triggered. The alist may contain both immutable pairs (built with
  21929. \key{cons}) and mutable pairs (built with \key{mcons}).
  21930. %The \key{map2} function ...
  21931. \fi} %\racketEd
  21932. \section{x86 Instruction Set Quick Reference}
  21933. \label{sec:x86-quick-reference}
  21934. \index{subject}{x86}
  21935. Table~\ref{tab:x86-instr} lists some x86 instructions and what they
  21936. do. We write $A \to B$ to mean that the value of $A$ is written into
  21937. location $B$. Address offsets are given in bytes. The instruction
  21938. arguments $A, B, C$ can be immediate constants (such as \code{\$4}),
  21939. registers (such as \code{\%rax}), or memory references (such as
  21940. \code{-4(\%ebp)}). Most x86 instructions allow at most one memory
  21941. reference per instruction. Other operands must be immediates or
  21942. registers.
  21943. \begin{table}[tbp]
  21944. \captionabove{Quick reference for the x86 instructions used in this book.}
  21945. \label{tab:x86-instr}
  21946. \centering
  21947. \begin{tabular}{l|l}
  21948. \textbf{Instruction} & \textbf{Operation} \\ \hline
  21949. \texttt{addq} $A$, $B$ & $A + B \to B$\\
  21950. \texttt{negq} $A$ & $- A \to A$ \\
  21951. \texttt{subq} $A$, $B$ & $B - A \to B$\\
  21952. \texttt{imulq} $A$, $B$ & $A \times B \to B$ ($B$ must be a register).\\
  21953. \texttt{callq} $L$ & Pushes the return address and jumps to label $L$. \\
  21954. \texttt{callq} \texttt{*}$A$ & Pushes the return address and jumps to the address in $A$. \\
  21955. \texttt{retq} & Pops the return address and jumps to it. \\
  21956. \texttt{popq} $A$ & $*\texttt{rsp} \to A;\, \texttt{rsp} + 8 \to \texttt{rsp}$ \\
  21957. \texttt{pushq} $A$ & $\texttt{rsp} - 8 \to \texttt{rsp};\, A \to *\texttt{rsp}$\\
  21958. \texttt{leaq} $A$, $B$ & $A \to B$ ($B$ must be a register.) \\
  21959. \texttt{cmpq} $A$, $B$ & \multirow{2}{3.7in}{Compare $A$ and $B$ and set the flag register ($B$ must not be an immediate).} \\
  21960. & \\
  21961. \texttt{je} $L$ & \multirow{5}{3.7in}{Jump to label $L$ if the flag register
  21962. matches the condition code of the instruction; otherwise go to the
  21963. next instructions. The condition codes are \key{e} for \emph{equal},
  21964. \key{l} for \emph{less}, \key{le} for \emph{less or equal}, \key{g}
  21965. for \emph{greater}, and \key{ge} for \emph{greater or equal}.} \\
  21966. \texttt{jl} $L$ & \\
  21967. \texttt{jle} $L$ & \\
  21968. \texttt{jg} $L$ & \\
  21969. \texttt{jge} $L$ & \\
  21970. \texttt{jmp} $L$ & Jump to label $L$. \\
  21971. \texttt{movq} $A$, $B$ & $A \to B$ \\
  21972. \texttt{movzbq} $A$, $B$ &
  21973. \multirow{3}{3.7in}{$A \to B$, \text{where } $A$ is a single-byte register
  21974. (e.g., \texttt{al} or \texttt{cl}), $B$ is an 8-byte register,
  21975. and the extra bytes of $B$ are set to zero.} \\
  21976. & \\
  21977. & \\
  21978. \texttt{notq} $A$ & $\sim A \to A$ (bitwise complement)\\
  21979. \texttt{orq} $A$, $B$ & $A \mid B \to B$ (bitwise-or)\\
  21980. \texttt{andq} $A$, $B$ & $A \& B \to B$ (bitwise-and)\\
  21981. \texttt{salq} $A$, $B$ & $B$ \texttt{<<} $A \to B$ (arithmetic shift left, where $A$ is a constant)\\
  21982. \texttt{sarq} $A$, $B$ & $B$ \texttt{>>} $A \to B$ (arithmetic shift right, where $A$ is a constant)\\
  21983. \texttt{sete} $A$ & \multirow{5}{3.7in}{If the flag matches the condition code,
  21984. then $1 \to A$; else $0 \to A$. Refer to \texttt{je} for the
  21985. description of the condition codes. $A$ must be a single byte register
  21986. (e.g., \texttt{al} or \texttt{cl}).} \\
  21987. \texttt{setl} $A$ & \\
  21988. \texttt{setle} $A$ & \\
  21989. \texttt{setg} $A$ & \\
  21990. \texttt{setge} $A$ &
  21991. \end{tabular}
  21992. \end{table}
  21993. \backmatter
  21994. \addtocontents{toc}{\vspace{11pt}}
  21995. \cleardoublepage % needed for right page number in TOC for References
  21996. %% \nocite{*} is a way to get all the entries in the .bib file to
  21997. %% print in the bibliography:
  21998. \nocite{*}\let\bibname\refname
  21999. \addcontentsline{toc}{fmbm}{\refname}
  22000. \printbibliography
  22001. %\printindex{authors}{Author Index}
  22002. \printindex{subject}{Index}
  22003. \end{document}
  22004. % LocalWords: Nano Siek CC NC ISBN wonks wizardry Backus nanopasses
  22005. % LocalWords: dataflow nx generics autoboxing Hulman Ch CO Dybvig aa
  22006. % LocalWords: Abelson uq Felleisen Flatt Lutz vp vj Sweigart vn Matz
  22007. % LocalWords: Matthes github gcc MacOS Chez Friedman's Dipanwita fk
  22008. % LocalWords: Sarkar Dybvig's Abdulaziz Ghuloum bh IU Factora Bor qf
  22009. % LocalWords: Cameron Kuhlenschmidt Vollmer Vitousek Yuh Nystrom AST
  22010. % LocalWords: Tolmach Wollowski ASTs Aho ast struct int backquote op
  22011. % LocalWords: args neg def init UnaryOp USub func BinOp Naur BNF rkt
  22012. % LocalWords: fixnum datatype structure's arith exp stmt Num Expr tr
  22013. % LocalWords: plt PSF ref CPython cpython reynolds interp cond fx pe
  22014. % LocalWords: arg Hitchhiker's TODO nullary Lvar Lif cnd thn var sam
  22015. % LocalWords: IfExp Bool InterpLvar InterpLif InterpRVar alist jane
  22016. % LocalWords: basicstyle kate dict alists env stmts ss len lhs globl
  22017. % LocalWords: rsp rbp rax rbx rcx rdx rsi rdi movq retq callq jmp es
  22018. % LocalWords: pushq subq popq negq addq arity uniquify Cvar instr cg
  22019. % LocalWords: Seq CProgram gensym lib Fprivate Flist tmp ANF Danvy
  22020. % LocalWords: rco Flists py rhs unhandled cont immediates lstlisting
  22021. % LocalWords: numberstyle Cormen sudoku Balakrishnan ve aka DSATUR
  22022. % LocalWords: Brelaz eu Gebremedhin Omari deletekeywords min JGS wb
  22023. % LocalWords: morekeywords fullflexible goto allocator tuples Wailes
  22024. % LocalWords: Kernighan runtime Freiburg Thiemann Bloomington unary
  22025. % LocalWords: eq prog rcl definitional Evaluator os Earley's mul
  22026. % LocalWords: subexpression evaluator InterpLint lcl quadwords concl
  22027. % LocalWords: nanopass subexpressions decompositions Lawall Hatcliff
  22028. % LocalWords: subdirectory monadic Moggi mon utils macosx unix repr
  22029. % LocalWords: Uncomment undirected vertices callee Liveness liveness
  22030. % LocalWords: frozenset unordered Appel Rosen pqueue cmp Fortran vl
  22031. % LocalWords: Horwitz Kempe colorable subgraph kx iteratively Matula
  22032. % LocalWords: ys ly Palsberg si JoeQ cardinality Poletto Booleans hj
  22033. % LocalWords: subscriptable MyPy Lehtosalo Listof Pairof indexable
  22034. % LocalWords: bool boolop NotEq LtE GtE refactor els orelse BoolOp
  22035. % LocalWords: boolean initializer param exprs TypeCheckLvar msg Tt
  22036. % LocalWords: isinstance TypeCheckLif tyerr xorq bytereg al dh dl ne
  22037. % LocalWords: le ge cmpq movzbq EFLAGS jle inlined setl je jl Cif
  22038. % LocalWords: lll pred IfStmt sete CFG tsort multigraph FunctionType
  22039. % LocalWords: Wijngaarden Plotkin Logothetis PeytonJones SetBang Ph
  22040. % LocalWords: WhileLoop unboxes Lwhile unbox InterpLwhile rhsT varT
  22041. % LocalWords: Tbody TypeCheckLwhile acyclic mainstart mainconclusion
  22042. % LocalWords: versa Kildall Kleene worklist enqueue dequeue deque tb
  22043. % LocalWords: GetBang effectful SPERBER Lfun tuple implementer's tup
  22044. % LocalWords: indices HasType Lvec InterpLtup tuple's vec ty Ungar
  22045. % LocalWords: TypeCheckLtup Detlefs Tene FromSpace ToSpace Diwan ptr
  22046. % LocalWords: Siebert TupleType endian salq sarq fromspace rootstack
  22047. % LocalWords: uint th vecinit alloc GlobalValue andq bitwise ior elt
  22048. % LocalWords: dereferencing StructDef Vectorof vectorof Lvecof Jacek
  22049. % LocalWords: AllocateArray cheney tospace Dieckmann Shahriyar di xs
  22050. % LocalWords: Shidal Osterlund Gamari lexically FunctionDef IntType
  22051. % LocalWords: BoolType VoidType ProgramDefsExp vals params ps ds num
  22052. % LocalWords: InterpLfun FunRef TypeCheckLfun leaq callee's mainDef
  22053. % LocalWords: ProgramDefs TailCall tailjmp IndirectCallq TailJmp rT
  22054. % LocalWords: prepending addstart addconclusion Cardelli Llambda typ
  22055. % LocalWords: Llambda InterpLlambda AnnAssign Dunfield bodyT str fvs
  22056. % LocalWords: TypeCheckLlambda annot dereference clos fvts closTy tg
  22057. % LocalWords: Minamide AllocateClosure Gilray Milner morphos subtype
  22058. % LocalWords: polymorphism untyped AnyType dataclass untag Ldyn conc
  22059. % LocalWords: lookup InterpLdyn elif tagof Lany TypeCheckLany tv orq
  22060. % LocalWords: AnnLambda InterpLany ClosureTuple ValueOf TagOf imulq
  22061. % LocalWords: untagged multi Tobin Hochstadt zr mn Gronski kd ret Tp
  22062. % LocalWords: Tif src tgt Lcast wr contravariant PVector un Lgradual
  22063. % LocalWords: Lgradualp Llambdapp Llambdaproxy Wadler qv quicksort
  22064. % LocalWords: Henglein nz coercions Grift parametetric parameterized
  22065. % LocalWords: parameterizing stroustrup subst tys targs decls defs
  22066. % LocalWords: pts ats prt pxs axs Decl Monomorphization NESL CLU qb
  22067. % LocalWords: monomorphization Blelloch monomorphic Bracha unboxed
  22068. % LocalWords: instantiation Lpoly Lpolyp typechecker mcons ebp jge
  22069. % LocalWords: notq setle setg setge uncredited LT Std groundbreaking
  22070. % LocalWords: colback GitHub inputint nonatomic ea tcolorbox bassed
  22071. % LocalWords: tikzpicture Chaitin's Belady's Cocke Freiburghouse Lt
  22072. % LocalWords: lessthan lessthaneq greaterthan greaterthaneq Gt pt Te
  22073. % LocalWords: ts escapechar Tc bl ch cl cc foo lt metavariables vars
  22074. % LocalWords: trans naively IR rep assoc ListType TypeCheckLarray dz
  22075. % LocalWords: Mult InterpLarray lst array's generation's Collins inc
  22076. % LocalWords: Cutler Kelsey val rt bod conflates reg inlining lam AF
  22077. % LocalWords: ASTPython body's bot todo rs ls TypeCheckLgrad ops ab
  22078. % LocalWords: value's inplace anyfun anytup anylist ValueExp proxied
  22079. % LocalWords: ProxiedTuple ProxiedList InterpLcast ListProxy vectof
  22080. % LocalWords: TupleProxy RawTuple InjectTuple InjectTupleProxy vecof
  22081. % LocalWords: InjectList InjectListProxy unannotated Lgradualr poly
  22082. % LocalWords: GenericVar AllType Inst builtin ap pps aps pp deepcopy
  22083. % LocalWords: liskov clu Liskov dk Napier um inst popl jg seq ith qy
  22084. % LocalWords: racketEd subparts subpart nonterminal nonterminals Dyn
  22085. % LocalWords: pseudocode underapproximation underapproximations LALR
  22086. % LocalWords: semilattices overapproximate incrementing Earley docs
  22087. % LocalWords: multilanguage Prelim shinan DeRemer lexer Lesk LPAR cb
  22088. % LocalWords: RPAR abcbab abc bzca usub paren expr lang WS Tomita qr
  22089. % LocalWords: subparses LCCN ebook hardcover epub pdf LCSH LCC DDC
  22090. % LocalWords: LC partialevaluation pythonEd TOC TrappedError