book.tex 620 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137613861396140614161426143614461456146614761486149615061516152615361546155615661576158615961606161616261636164616561666167616861696170617161726173617461756176617761786179618061816182618361846185618661876188618961906191619261936194619561966197619861996200620162026203620462056206620762086209621062116212621362146215621662176218621962206221622262236224622562266227622862296230623162326233623462356236623762386239624062416242624362446245624662476248624962506251625262536254625562566257625862596260626162626263626462656266626762686269627062716272627362746275627662776278627962806281628262836284628562866287628862896290629162926293629462956296629762986299630063016302630363046305630663076308630963106311631263136314631563166317631863196320632163226323632463256326632763286329633063316332633363346335633663376338633963406341634263436344634563466347634863496350635163526353635463556356635763586359636063616362636363646365636663676368636963706371637263736374637563766377637863796380638163826383638463856386638763886389639063916392639363946395639663976398639964006401640264036404640564066407640864096410641164126413641464156416641764186419642064216422642364246425642664276428642964306431643264336434643564366437643864396440644164426443644464456446644764486449645064516452645364546455645664576458645964606461646264636464646564666467646864696470647164726473647464756476647764786479648064816482648364846485648664876488648964906491649264936494649564966497649864996500650165026503650465056506650765086509651065116512651365146515651665176518651965206521652265236524652565266527652865296530653165326533653465356536653765386539654065416542654365446545654665476548654965506551655265536554655565566557655865596560656165626563656465656566656765686569657065716572657365746575657665776578657965806581658265836584658565866587658865896590659165926593659465956596659765986599660066016602660366046605660666076608660966106611661266136614661566166617661866196620662166226623662466256626662766286629663066316632663366346635663666376638663966406641664266436644664566466647664866496650665166526653665466556656665766586659666066616662666366646665666666676668666966706671667266736674667566766677667866796680668166826683668466856686668766886689669066916692669366946695669666976698669967006701670267036704670567066707670867096710671167126713671467156716671767186719672067216722672367246725672667276728672967306731673267336734673567366737673867396740674167426743674467456746674767486749675067516752675367546755675667576758675967606761676267636764676567666767676867696770677167726773677467756776677767786779678067816782678367846785678667876788678967906791679267936794679567966797679867996800680168026803680468056806680768086809681068116812681368146815681668176818681968206821682268236824682568266827682868296830683168326833683468356836683768386839684068416842684368446845684668476848684968506851685268536854685568566857685868596860686168626863686468656866686768686869687068716872687368746875687668776878687968806881688268836884688568866887688868896890689168926893689468956896689768986899690069016902690369046905690669076908690969106911691269136914691569166917691869196920692169226923692469256926692769286929693069316932693369346935693669376938693969406941694269436944694569466947694869496950695169526953695469556956695769586959696069616962696369646965696669676968696969706971697269736974697569766977697869796980698169826983698469856986698769886989699069916992699369946995699669976998699970007001700270037004700570067007700870097010701170127013701470157016701770187019702070217022702370247025702670277028702970307031703270337034703570367037703870397040704170427043704470457046704770487049705070517052705370547055705670577058705970607061706270637064706570667067706870697070707170727073707470757076707770787079708070817082708370847085708670877088708970907091709270937094709570967097709870997100710171027103710471057106710771087109711071117112711371147115711671177118711971207121712271237124712571267127712871297130713171327133713471357136713771387139714071417142714371447145714671477148714971507151715271537154715571567157715871597160716171627163716471657166716771687169717071717172717371747175717671777178717971807181718271837184718571867187718871897190719171927193719471957196719771987199720072017202720372047205720672077208720972107211721272137214721572167217721872197220722172227223722472257226722772287229723072317232723372347235723672377238723972407241724272437244724572467247724872497250725172527253725472557256725772587259726072617262726372647265726672677268726972707271727272737274727572767277727872797280728172827283728472857286728772887289729072917292729372947295729672977298729973007301730273037304730573067307730873097310731173127313731473157316731773187319732073217322732373247325732673277328732973307331733273337334733573367337733873397340734173427343734473457346734773487349735073517352735373547355735673577358735973607361736273637364736573667367736873697370737173727373737473757376737773787379738073817382738373847385738673877388738973907391739273937394739573967397739873997400740174027403740474057406740774087409741074117412741374147415741674177418741974207421742274237424742574267427742874297430743174327433743474357436743774387439744074417442744374447445744674477448744974507451745274537454745574567457745874597460746174627463746474657466746774687469747074717472747374747475747674777478747974807481748274837484748574867487748874897490749174927493749474957496749774987499750075017502750375047505750675077508750975107511751275137514751575167517751875197520752175227523752475257526752775287529753075317532753375347535753675377538753975407541754275437544754575467547754875497550755175527553755475557556755775587559756075617562756375647565756675677568756975707571757275737574757575767577757875797580758175827583758475857586758775887589759075917592759375947595759675977598759976007601760276037604760576067607760876097610761176127613761476157616761776187619762076217622762376247625762676277628762976307631763276337634763576367637763876397640764176427643764476457646764776487649765076517652765376547655765676577658765976607661766276637664766576667667766876697670767176727673767476757676767776787679768076817682768376847685768676877688768976907691769276937694769576967697769876997700770177027703770477057706770777087709771077117712771377147715771677177718771977207721772277237724772577267727772877297730773177327733773477357736773777387739774077417742774377447745774677477748774977507751775277537754775577567757775877597760776177627763776477657766776777687769777077717772777377747775777677777778777977807781778277837784778577867787778877897790779177927793779477957796779777987799780078017802780378047805780678077808780978107811781278137814781578167817781878197820782178227823782478257826782778287829783078317832783378347835783678377838783978407841784278437844784578467847784878497850785178527853785478557856785778587859786078617862786378647865786678677868786978707871787278737874787578767877787878797880788178827883788478857886788778887889789078917892789378947895789678977898789979007901790279037904790579067907790879097910791179127913791479157916791779187919792079217922792379247925792679277928792979307931793279337934793579367937793879397940794179427943794479457946794779487949795079517952795379547955795679577958795979607961796279637964796579667967796879697970797179727973797479757976797779787979798079817982798379847985798679877988798979907991799279937994799579967997799879998000800180028003800480058006800780088009801080118012801380148015801680178018801980208021802280238024802580268027802880298030803180328033803480358036803780388039804080418042804380448045804680478048804980508051805280538054805580568057805880598060806180628063806480658066806780688069807080718072807380748075807680778078807980808081808280838084808580868087808880898090809180928093809480958096809780988099810081018102810381048105810681078108810981108111811281138114811581168117811881198120812181228123812481258126812781288129813081318132813381348135813681378138813981408141814281438144814581468147814881498150815181528153815481558156815781588159816081618162816381648165816681678168816981708171817281738174817581768177817881798180818181828183818481858186818781888189819081918192819381948195819681978198819982008201820282038204820582068207820882098210821182128213821482158216821782188219822082218222822382248225822682278228822982308231823282338234823582368237823882398240824182428243824482458246824782488249825082518252825382548255825682578258825982608261826282638264826582668267826882698270827182728273827482758276827782788279828082818282828382848285828682878288828982908291829282938294829582968297829882998300830183028303830483058306830783088309831083118312831383148315831683178318831983208321832283238324832583268327832883298330833183328333833483358336833783388339834083418342834383448345834683478348834983508351835283538354835583568357835883598360836183628363836483658366836783688369837083718372837383748375837683778378837983808381838283838384838583868387838883898390839183928393839483958396839783988399840084018402840384048405840684078408840984108411841284138414841584168417841884198420842184228423842484258426842784288429843084318432843384348435843684378438843984408441844284438444844584468447844884498450845184528453845484558456845784588459846084618462846384648465846684678468846984708471847284738474847584768477847884798480848184828483848484858486848784888489849084918492849384948495849684978498849985008501850285038504850585068507850885098510851185128513851485158516851785188519852085218522852385248525852685278528852985308531853285338534853585368537853885398540854185428543854485458546854785488549855085518552855385548555855685578558855985608561856285638564856585668567856885698570857185728573857485758576857785788579858085818582858385848585858685878588858985908591859285938594859585968597859885998600860186028603860486058606860786088609861086118612861386148615861686178618861986208621862286238624862586268627862886298630863186328633863486358636863786388639864086418642864386448645864686478648864986508651865286538654865586568657865886598660866186628663866486658666866786688669867086718672867386748675867686778678867986808681868286838684868586868687868886898690869186928693869486958696869786988699870087018702870387048705870687078708870987108711871287138714871587168717871887198720872187228723872487258726872787288729873087318732873387348735873687378738873987408741874287438744874587468747874887498750875187528753875487558756875787588759876087618762876387648765876687678768876987708771877287738774877587768777877887798780878187828783878487858786878787888789879087918792879387948795879687978798879988008801880288038804880588068807880888098810881188128813881488158816881788188819882088218822882388248825882688278828882988308831883288338834883588368837883888398840884188428843884488458846884788488849885088518852885388548855885688578858885988608861886288638864886588668867886888698870887188728873887488758876887788788879888088818882888388848885888688878888888988908891889288938894889588968897889888998900890189028903890489058906890789088909891089118912891389148915891689178918891989208921892289238924892589268927892889298930893189328933893489358936893789388939894089418942894389448945894689478948894989508951895289538954895589568957895889598960896189628963896489658966896789688969897089718972897389748975897689778978897989808981898289838984898589868987898889898990899189928993899489958996899789988999900090019002900390049005900690079008900990109011901290139014901590169017901890199020902190229023902490259026902790289029903090319032903390349035903690379038903990409041904290439044904590469047904890499050905190529053905490559056905790589059906090619062906390649065906690679068906990709071907290739074907590769077907890799080908190829083908490859086908790889089909090919092909390949095909690979098909991009101910291039104910591069107910891099110911191129113911491159116911791189119912091219122912391249125912691279128912991309131913291339134913591369137913891399140914191429143914491459146914791489149915091519152915391549155915691579158915991609161916291639164916591669167916891699170917191729173917491759176917791789179918091819182918391849185918691879188918991909191919291939194919591969197919891999200920192029203920492059206920792089209921092119212921392149215921692179218921992209221922292239224922592269227922892299230923192329233923492359236923792389239924092419242924392449245924692479248924992509251925292539254925592569257925892599260926192629263926492659266926792689269927092719272927392749275927692779278927992809281928292839284928592869287928892899290929192929293929492959296929792989299930093019302930393049305930693079308930993109311931293139314931593169317931893199320932193229323932493259326932793289329933093319332933393349335933693379338933993409341934293439344934593469347934893499350935193529353935493559356935793589359936093619362936393649365936693679368936993709371937293739374937593769377937893799380938193829383938493859386938793889389939093919392939393949395939693979398939994009401940294039404940594069407940894099410941194129413941494159416941794189419942094219422942394249425942694279428942994309431943294339434943594369437943894399440944194429443944494459446944794489449945094519452945394549455945694579458945994609461946294639464946594669467946894699470947194729473947494759476947794789479948094819482948394849485948694879488948994909491949294939494949594969497949894999500950195029503950495059506950795089509951095119512951395149515951695179518951995209521952295239524952595269527952895299530953195329533953495359536953795389539954095419542954395449545954695479548954995509551955295539554955595569557955895599560956195629563956495659566956795689569957095719572957395749575957695779578957995809581958295839584958595869587958895899590959195929593959495959596959795989599960096019602960396049605960696079608960996109611961296139614961596169617961896199620962196229623962496259626962796289629963096319632963396349635963696379638963996409641964296439644964596469647964896499650965196529653965496559656965796589659966096619662966396649665966696679668966996709671967296739674967596769677967896799680968196829683968496859686968796889689969096919692969396949695969696979698969997009701970297039704970597069707970897099710971197129713971497159716971797189719972097219722972397249725972697279728972997309731973297339734973597369737973897399740974197429743974497459746974797489749975097519752975397549755975697579758975997609761976297639764976597669767976897699770977197729773977497759776977797789779978097819782978397849785978697879788978997909791979297939794979597969797979897999800980198029803980498059806980798089809981098119812981398149815981698179818981998209821982298239824982598269827982898299830983198329833983498359836983798389839984098419842984398449845984698479848984998509851985298539854985598569857985898599860986198629863986498659866986798689869987098719872987398749875987698779878987998809881988298839884988598869887988898899890989198929893989498959896989798989899990099019902990399049905990699079908990999109911991299139914991599169917991899199920992199229923992499259926992799289929993099319932993399349935993699379938993999409941994299439944994599469947994899499950995199529953995499559956995799589959996099619962996399649965996699679968996999709971997299739974997599769977997899799980998199829983998499859986998799889989999099919992999399949995999699979998999910000100011000210003100041000510006100071000810009100101001110012100131001410015100161001710018100191002010021100221002310024100251002610027100281002910030100311003210033100341003510036100371003810039100401004110042100431004410045100461004710048100491005010051100521005310054100551005610057100581005910060100611006210063100641006510066100671006810069100701007110072100731007410075100761007710078100791008010081100821008310084100851008610087100881008910090100911009210093100941009510096100971009810099101001010110102101031010410105101061010710108101091011010111101121011310114101151011610117101181011910120101211012210123101241012510126101271012810129101301013110132101331013410135101361013710138101391014010141101421014310144101451014610147101481014910150101511015210153101541015510156101571015810159101601016110162101631016410165101661016710168101691017010171101721017310174101751017610177101781017910180101811018210183101841018510186101871018810189101901019110192101931019410195101961019710198101991020010201102021020310204102051020610207102081020910210102111021210213102141021510216102171021810219102201022110222102231022410225102261022710228102291023010231102321023310234102351023610237102381023910240102411024210243102441024510246102471024810249102501025110252102531025410255102561025710258102591026010261102621026310264102651026610267102681026910270102711027210273102741027510276102771027810279102801028110282102831028410285102861028710288102891029010291102921029310294102951029610297102981029910300103011030210303103041030510306103071030810309103101031110312103131031410315103161031710318103191032010321103221032310324103251032610327103281032910330103311033210333103341033510336103371033810339103401034110342103431034410345103461034710348103491035010351103521035310354103551035610357103581035910360103611036210363103641036510366103671036810369103701037110372103731037410375103761037710378103791038010381103821038310384103851038610387103881038910390103911039210393103941039510396103971039810399104001040110402104031040410405104061040710408104091041010411104121041310414104151041610417104181041910420104211042210423104241042510426104271042810429104301043110432104331043410435104361043710438104391044010441104421044310444104451044610447104481044910450104511045210453104541045510456104571045810459104601046110462104631046410465104661046710468104691047010471104721047310474104751047610477104781047910480104811048210483104841048510486104871048810489104901049110492104931049410495104961049710498104991050010501105021050310504105051050610507105081050910510105111051210513105141051510516105171051810519105201052110522105231052410525105261052710528105291053010531105321053310534105351053610537105381053910540105411054210543105441054510546105471054810549105501055110552105531055410555105561055710558105591056010561105621056310564105651056610567105681056910570105711057210573105741057510576105771057810579105801058110582105831058410585105861058710588105891059010591105921059310594105951059610597105981059910600106011060210603106041060510606106071060810609106101061110612106131061410615106161061710618106191062010621106221062310624106251062610627106281062910630106311063210633106341063510636106371063810639106401064110642106431064410645106461064710648106491065010651106521065310654106551065610657106581065910660106611066210663106641066510666106671066810669106701067110672106731067410675106761067710678106791068010681106821068310684106851068610687106881068910690106911069210693106941069510696106971069810699107001070110702107031070410705107061070710708107091071010711107121071310714107151071610717107181071910720107211072210723107241072510726107271072810729107301073110732107331073410735107361073710738107391074010741107421074310744107451074610747107481074910750107511075210753107541075510756107571075810759107601076110762107631076410765107661076710768107691077010771107721077310774107751077610777107781077910780107811078210783107841078510786107871078810789107901079110792107931079410795107961079710798107991080010801108021080310804108051080610807108081080910810108111081210813108141081510816108171081810819108201082110822108231082410825108261082710828108291083010831108321083310834108351083610837108381083910840108411084210843108441084510846108471084810849108501085110852108531085410855108561085710858108591086010861108621086310864108651086610867108681086910870108711087210873108741087510876108771087810879108801088110882108831088410885108861088710888108891089010891108921089310894108951089610897108981089910900109011090210903109041090510906109071090810909109101091110912109131091410915109161091710918109191092010921109221092310924109251092610927109281092910930109311093210933109341093510936109371093810939109401094110942109431094410945109461094710948109491095010951109521095310954109551095610957109581095910960109611096210963109641096510966109671096810969109701097110972109731097410975109761097710978109791098010981109821098310984109851098610987109881098910990109911099210993109941099510996109971099810999110001100111002110031100411005110061100711008110091101011011110121101311014110151101611017110181101911020110211102211023110241102511026110271102811029110301103111032110331103411035110361103711038110391104011041110421104311044110451104611047110481104911050110511105211053110541105511056110571105811059110601106111062110631106411065110661106711068110691107011071110721107311074110751107611077110781107911080110811108211083110841108511086110871108811089110901109111092110931109411095110961109711098110991110011101111021110311104111051110611107111081110911110111111111211113111141111511116111171111811119111201112111122111231112411125111261112711128111291113011131111321113311134111351113611137111381113911140111411114211143111441114511146111471114811149111501115111152111531115411155111561115711158111591116011161111621116311164111651116611167111681116911170111711117211173111741117511176111771117811179111801118111182111831118411185111861118711188111891119011191111921119311194111951119611197111981119911200112011120211203112041120511206112071120811209112101121111212112131121411215112161121711218112191122011221112221122311224112251122611227112281122911230112311123211233112341123511236112371123811239112401124111242112431124411245112461124711248112491125011251112521125311254112551125611257112581125911260112611126211263112641126511266112671126811269112701127111272112731127411275112761127711278112791128011281112821128311284112851128611287112881128911290112911129211293112941129511296112971129811299113001130111302113031130411305113061130711308113091131011311113121131311314113151131611317113181131911320113211132211323113241132511326113271132811329113301133111332113331133411335113361133711338113391134011341113421134311344113451134611347113481134911350113511135211353113541135511356113571135811359113601136111362113631136411365113661136711368113691137011371113721137311374113751137611377113781137911380113811138211383113841138511386113871138811389113901139111392113931139411395113961139711398113991140011401114021140311404114051140611407114081140911410114111141211413114141141511416114171141811419114201142111422114231142411425114261142711428114291143011431114321143311434114351143611437114381143911440114411144211443114441144511446114471144811449114501145111452114531145411455114561145711458114591146011461114621146311464114651146611467114681146911470114711147211473114741147511476114771147811479114801148111482114831148411485114861148711488114891149011491114921149311494114951149611497114981149911500115011150211503115041150511506115071150811509115101151111512115131151411515115161151711518115191152011521115221152311524115251152611527115281152911530115311153211533115341153511536115371153811539115401154111542115431154411545115461154711548115491155011551115521155311554115551155611557115581155911560115611156211563115641156511566115671156811569115701157111572115731157411575115761157711578115791158011581115821158311584115851158611587115881158911590115911159211593115941159511596115971159811599116001160111602116031160411605116061160711608116091161011611116121161311614116151161611617116181161911620116211162211623116241162511626116271162811629116301163111632116331163411635116361163711638116391164011641116421164311644116451164611647116481164911650116511165211653116541165511656116571165811659116601166111662116631166411665116661166711668116691167011671116721167311674116751167611677116781167911680116811168211683116841168511686116871168811689116901169111692116931169411695116961169711698116991170011701117021170311704117051170611707117081170911710117111171211713117141171511716117171171811719117201172111722117231172411725117261172711728117291173011731117321173311734117351173611737117381173911740117411174211743117441174511746117471174811749117501175111752117531175411755117561175711758117591176011761117621176311764117651176611767117681176911770117711177211773117741177511776117771177811779117801178111782117831178411785117861178711788117891179011791117921179311794117951179611797117981179911800118011180211803118041180511806118071180811809118101181111812118131181411815118161181711818118191182011821118221182311824118251182611827118281182911830118311183211833118341183511836118371183811839118401184111842118431184411845118461184711848118491185011851118521185311854118551185611857118581185911860118611186211863118641186511866118671186811869118701187111872118731187411875118761187711878118791188011881118821188311884118851188611887118881188911890118911189211893118941189511896118971189811899119001190111902119031190411905119061190711908119091191011911119121191311914119151191611917119181191911920119211192211923119241192511926119271192811929119301193111932119331193411935119361193711938119391194011941119421194311944119451194611947119481194911950119511195211953119541195511956119571195811959119601196111962119631196411965119661196711968119691197011971119721197311974119751197611977119781197911980119811198211983119841198511986119871198811989119901199111992119931199411995119961199711998119991200012001120021200312004120051200612007120081200912010120111201212013120141201512016120171201812019120201202112022120231202412025120261202712028120291203012031120321203312034120351203612037120381203912040120411204212043120441204512046120471204812049120501205112052120531205412055120561205712058120591206012061120621206312064120651206612067120681206912070120711207212073120741207512076120771207812079120801208112082120831208412085120861208712088120891209012091120921209312094120951209612097120981209912100121011210212103121041210512106121071210812109121101211112112121131211412115121161211712118121191212012121121221212312124121251212612127121281212912130121311213212133121341213512136121371213812139121401214112142121431214412145121461214712148121491215012151121521215312154121551215612157121581215912160121611216212163121641216512166121671216812169121701217112172121731217412175121761217712178121791218012181121821218312184121851218612187121881218912190121911219212193121941219512196121971219812199122001220112202122031220412205122061220712208122091221012211122121221312214122151221612217122181221912220122211222212223122241222512226122271222812229122301223112232122331223412235122361223712238122391224012241122421224312244122451224612247122481224912250122511225212253122541225512256122571225812259122601226112262122631226412265122661226712268122691227012271122721227312274122751227612277122781227912280122811228212283122841228512286122871228812289122901229112292122931229412295122961229712298122991230012301123021230312304123051230612307123081230912310123111231212313123141231512316123171231812319123201232112322123231232412325123261232712328123291233012331123321233312334123351233612337123381233912340123411234212343123441234512346123471234812349123501235112352123531235412355123561235712358123591236012361123621236312364123651236612367123681236912370123711237212373123741237512376123771237812379123801238112382123831238412385123861238712388123891239012391123921239312394123951239612397123981239912400124011240212403124041240512406124071240812409124101241112412124131241412415124161241712418124191242012421124221242312424124251242612427124281242912430124311243212433124341243512436124371243812439124401244112442124431244412445124461244712448124491245012451124521245312454124551245612457124581245912460124611246212463124641246512466124671246812469124701247112472124731247412475124761247712478124791248012481124821248312484124851248612487124881248912490124911249212493124941249512496124971249812499125001250112502125031250412505125061250712508125091251012511125121251312514125151251612517125181251912520125211252212523125241252512526125271252812529125301253112532125331253412535125361253712538125391254012541125421254312544125451254612547125481254912550125511255212553125541255512556125571255812559125601256112562125631256412565125661256712568125691257012571125721257312574125751257612577125781257912580125811258212583125841258512586125871258812589125901259112592125931259412595125961259712598125991260012601126021260312604126051260612607126081260912610126111261212613126141261512616126171261812619126201262112622126231262412625126261262712628126291263012631126321263312634126351263612637126381263912640126411264212643126441264512646126471264812649126501265112652126531265412655126561265712658126591266012661126621266312664126651266612667126681266912670126711267212673126741267512676126771267812679126801268112682126831268412685126861268712688126891269012691126921269312694126951269612697126981269912700127011270212703127041270512706127071270812709127101271112712127131271412715127161271712718127191272012721127221272312724127251272612727127281272912730127311273212733127341273512736127371273812739127401274112742127431274412745127461274712748127491275012751127521275312754127551275612757127581275912760127611276212763127641276512766127671276812769127701277112772127731277412775127761277712778127791278012781127821278312784127851278612787127881278912790127911279212793127941279512796127971279812799128001280112802128031280412805128061280712808128091281012811128121281312814128151281612817128181281912820128211282212823128241282512826128271282812829128301283112832128331283412835128361283712838128391284012841128421284312844128451284612847128481284912850128511285212853128541285512856128571285812859128601286112862128631286412865128661286712868128691287012871128721287312874128751287612877128781287912880128811288212883128841288512886128871288812889128901289112892128931289412895128961289712898128991290012901129021290312904129051290612907129081290912910129111291212913129141291512916129171291812919129201292112922129231292412925129261292712928129291293012931129321293312934129351293612937129381293912940129411294212943129441294512946129471294812949129501295112952129531295412955129561295712958129591296012961129621296312964129651296612967129681296912970129711297212973129741297512976129771297812979129801298112982129831298412985129861298712988129891299012991129921299312994129951299612997129981299913000130011300213003130041300513006130071300813009130101301113012130131301413015130161301713018130191302013021130221302313024130251302613027130281302913030130311303213033130341303513036130371303813039130401304113042130431304413045130461304713048130491305013051130521305313054130551305613057130581305913060130611306213063130641306513066130671306813069130701307113072130731307413075130761307713078130791308013081130821308313084130851308613087130881308913090130911309213093130941309513096130971309813099131001310113102131031310413105131061310713108131091311013111131121311313114131151311613117131181311913120131211312213123131241312513126131271312813129131301313113132131331313413135131361313713138131391314013141131421314313144131451314613147131481314913150131511315213153131541315513156131571315813159131601316113162131631316413165131661316713168131691317013171131721317313174131751317613177131781317913180131811318213183131841318513186131871318813189131901319113192131931319413195131961319713198131991320013201132021320313204132051320613207132081320913210132111321213213132141321513216132171321813219132201322113222132231322413225132261322713228132291323013231132321323313234132351323613237132381323913240132411324213243132441324513246132471324813249132501325113252132531325413255132561325713258132591326013261132621326313264132651326613267132681326913270132711327213273132741327513276132771327813279132801328113282132831328413285132861328713288132891329013291132921329313294132951329613297132981329913300133011330213303133041330513306133071330813309133101331113312133131331413315133161331713318133191332013321133221332313324133251332613327133281332913330133311333213333133341333513336133371333813339133401334113342133431334413345133461334713348133491335013351133521335313354133551335613357133581335913360133611336213363133641336513366133671336813369133701337113372133731337413375133761337713378133791338013381133821338313384133851338613387133881338913390133911339213393133941339513396133971339813399134001340113402134031340413405134061340713408134091341013411134121341313414134151341613417134181341913420134211342213423134241342513426134271342813429134301343113432134331343413435134361343713438134391344013441134421344313444134451344613447134481344913450134511345213453134541345513456134571345813459134601346113462134631346413465134661346713468134691347013471134721347313474134751347613477134781347913480134811348213483134841348513486134871348813489134901349113492134931349413495134961349713498134991350013501135021350313504135051350613507135081350913510135111351213513135141351513516135171351813519135201352113522135231352413525135261352713528135291353013531135321353313534135351353613537135381353913540135411354213543135441354513546135471354813549135501355113552135531355413555135561355713558135591356013561135621356313564135651356613567135681356913570135711357213573135741357513576135771357813579135801358113582135831358413585135861358713588135891359013591135921359313594135951359613597135981359913600136011360213603136041360513606136071360813609136101361113612136131361413615136161361713618136191362013621136221362313624136251362613627136281362913630136311363213633136341363513636136371363813639136401364113642136431364413645136461364713648136491365013651136521365313654136551365613657136581365913660136611366213663136641366513666136671366813669136701367113672136731367413675136761367713678136791368013681136821368313684136851368613687136881368913690136911369213693136941369513696136971369813699137001370113702137031370413705137061370713708137091371013711137121371313714137151371613717137181371913720137211372213723137241372513726137271372813729137301373113732137331373413735137361373713738137391374013741137421374313744137451374613747137481374913750137511375213753137541375513756137571375813759137601376113762137631376413765137661376713768137691377013771137721377313774137751377613777137781377913780137811378213783137841378513786137871378813789137901379113792137931379413795137961379713798137991380013801138021380313804138051380613807138081380913810138111381213813138141381513816138171381813819138201382113822138231382413825138261382713828138291383013831138321383313834138351383613837138381383913840138411384213843138441384513846138471384813849138501385113852138531385413855138561385713858138591386013861138621386313864138651386613867138681386913870138711387213873138741387513876138771387813879138801388113882138831388413885138861388713888138891389013891138921389313894138951389613897138981389913900139011390213903139041390513906139071390813909139101391113912139131391413915139161391713918139191392013921139221392313924139251392613927139281392913930139311393213933139341393513936139371393813939139401394113942139431394413945139461394713948139491395013951139521395313954139551395613957139581395913960139611396213963139641396513966139671396813969139701397113972139731397413975139761397713978139791398013981139821398313984139851398613987139881398913990139911399213993139941399513996139971399813999140001400114002140031400414005140061400714008140091401014011140121401314014140151401614017140181401914020140211402214023140241402514026140271402814029140301403114032140331403414035140361403714038140391404014041140421404314044140451404614047140481404914050140511405214053140541405514056140571405814059140601406114062140631406414065140661406714068140691407014071140721407314074140751407614077140781407914080140811408214083140841408514086140871408814089140901409114092140931409414095140961409714098140991410014101141021410314104141051410614107141081410914110141111411214113141141411514116141171411814119141201412114122141231412414125141261412714128141291413014131141321413314134141351413614137141381413914140141411414214143141441414514146141471414814149141501415114152141531415414155141561415714158141591416014161141621416314164141651416614167141681416914170141711417214173141741417514176141771417814179141801418114182141831418414185141861418714188141891419014191141921419314194141951419614197141981419914200142011420214203142041420514206142071420814209142101421114212142131421414215142161421714218142191422014221142221422314224142251422614227142281422914230142311423214233142341423514236142371423814239142401424114242142431424414245142461424714248142491425014251142521425314254142551425614257142581425914260142611426214263142641426514266142671426814269142701427114272142731427414275142761427714278142791428014281142821428314284142851428614287142881428914290142911429214293142941429514296142971429814299143001430114302143031430414305143061430714308143091431014311143121431314314143151431614317143181431914320143211432214323143241432514326143271432814329143301433114332143331433414335143361433714338143391434014341143421434314344143451434614347143481434914350143511435214353143541435514356143571435814359143601436114362143631436414365143661436714368143691437014371143721437314374143751437614377143781437914380143811438214383143841438514386143871438814389143901439114392143931439414395143961439714398143991440014401144021440314404144051440614407144081440914410144111441214413144141441514416144171441814419144201442114422144231442414425144261442714428144291443014431144321443314434144351443614437144381443914440144411444214443144441444514446144471444814449144501445114452144531445414455144561445714458144591446014461144621446314464144651446614467144681446914470144711447214473144741447514476144771447814479144801448114482144831448414485144861448714488144891449014491144921449314494144951449614497144981449914500145011450214503145041450514506145071450814509145101451114512145131451414515145161451714518145191452014521145221452314524145251452614527145281452914530145311453214533145341453514536145371453814539145401454114542145431454414545145461454714548145491455014551145521455314554145551455614557145581455914560145611456214563145641456514566145671456814569145701457114572145731457414575145761457714578145791458014581145821458314584145851458614587145881458914590145911459214593145941459514596145971459814599146001460114602146031460414605146061460714608146091461014611146121461314614146151461614617146181461914620146211462214623146241462514626146271462814629146301463114632146331463414635146361463714638146391464014641146421464314644146451464614647146481464914650146511465214653146541465514656146571465814659146601466114662146631466414665146661466714668146691467014671146721467314674146751467614677146781467914680146811468214683146841468514686146871468814689146901469114692146931469414695146961469714698146991470014701147021470314704147051470614707147081470914710147111471214713147141471514716147171471814719147201472114722147231472414725147261472714728147291473014731147321473314734147351473614737147381473914740147411474214743147441474514746147471474814749147501475114752147531475414755147561475714758147591476014761147621476314764147651476614767147681476914770147711477214773147741477514776147771477814779147801478114782147831478414785147861478714788147891479014791147921479314794147951479614797147981479914800148011480214803148041480514806148071480814809148101481114812148131481414815148161481714818148191482014821148221482314824148251482614827148281482914830148311483214833148341483514836148371483814839148401484114842148431484414845148461484714848148491485014851148521485314854148551485614857148581485914860148611486214863148641486514866148671486814869148701487114872148731487414875148761487714878148791488014881148821488314884148851488614887148881488914890148911489214893148941489514896148971489814899149001490114902149031490414905149061490714908149091491014911149121491314914149151491614917149181491914920149211492214923149241492514926149271492814929149301493114932149331493414935149361493714938149391494014941149421494314944149451494614947149481494914950149511495214953149541495514956149571495814959149601496114962149631496414965149661496714968149691497014971149721497314974149751497614977149781497914980149811498214983149841498514986149871498814989149901499114992149931499414995149961499714998149991500015001150021500315004150051500615007150081500915010150111501215013150141501515016150171501815019150201502115022150231502415025150261502715028150291503015031150321503315034150351503615037150381503915040150411504215043150441504515046150471504815049150501505115052150531505415055150561505715058150591506015061150621506315064150651506615067150681506915070150711507215073150741507515076150771507815079150801508115082150831508415085150861508715088150891509015091150921509315094150951509615097150981509915100151011510215103151041510515106151071510815109151101511115112151131511415115151161511715118151191512015121151221512315124151251512615127151281512915130151311513215133151341513515136151371513815139151401514115142151431514415145151461514715148151491515015151151521515315154151551515615157151581515915160151611516215163151641516515166151671516815169151701517115172151731517415175151761517715178151791518015181151821518315184151851518615187151881518915190151911519215193151941519515196151971519815199152001520115202152031520415205152061520715208152091521015211152121521315214152151521615217152181521915220152211522215223152241522515226152271522815229152301523115232152331523415235152361523715238152391524015241152421524315244152451524615247152481524915250152511525215253152541525515256152571525815259152601526115262152631526415265152661526715268152691527015271152721527315274152751527615277152781527915280152811528215283152841528515286152871528815289152901529115292152931529415295152961529715298152991530015301153021530315304153051530615307153081530915310153111531215313153141531515316153171531815319153201532115322153231532415325153261532715328153291533015331153321533315334153351533615337153381533915340153411534215343153441534515346153471534815349153501535115352153531535415355153561535715358153591536015361153621536315364153651536615367153681536915370153711537215373153741537515376153771537815379153801538115382153831538415385153861538715388153891539015391153921539315394153951539615397153981539915400154011540215403154041540515406154071540815409154101541115412154131541415415154161541715418154191542015421154221542315424154251542615427154281542915430154311543215433154341543515436154371543815439154401544115442154431544415445154461544715448154491545015451154521545315454154551545615457154581545915460154611546215463154641546515466154671546815469154701547115472154731547415475154761547715478154791548015481154821548315484154851548615487154881548915490154911549215493154941549515496154971549815499155001550115502155031550415505155061550715508155091551015511155121551315514155151551615517155181551915520155211552215523155241552515526155271552815529155301553115532155331553415535155361553715538155391554015541155421554315544155451554615547155481554915550155511555215553155541555515556155571555815559155601556115562155631556415565155661556715568155691557015571155721557315574155751557615577155781557915580155811558215583155841558515586155871558815589155901559115592155931559415595155961559715598155991560015601156021560315604156051560615607156081560915610156111561215613156141561515616156171561815619156201562115622156231562415625156261562715628156291563015631156321563315634156351563615637156381563915640156411564215643156441564515646156471564815649156501565115652156531565415655156561565715658156591566015661156621566315664156651566615667156681566915670156711567215673156741567515676156771567815679156801568115682156831568415685156861568715688156891569015691156921569315694156951569615697156981569915700157011570215703157041570515706157071570815709157101571115712157131571415715157161571715718157191572015721157221572315724157251572615727157281572915730157311573215733157341573515736157371573815739157401574115742157431574415745157461574715748157491575015751157521575315754157551575615757157581575915760157611576215763157641576515766157671576815769157701577115772157731577415775157761577715778157791578015781157821578315784157851578615787157881578915790157911579215793157941579515796157971579815799158001580115802158031580415805158061580715808158091581015811158121581315814158151581615817158181581915820158211582215823158241582515826158271582815829158301583115832158331583415835158361583715838158391584015841158421584315844158451584615847158481584915850158511585215853158541585515856158571585815859158601586115862158631586415865158661586715868158691587015871158721587315874158751587615877158781587915880158811588215883158841588515886158871588815889158901589115892158931589415895158961589715898158991590015901159021590315904159051590615907159081590915910159111591215913159141591515916159171591815919159201592115922159231592415925159261592715928159291593015931159321593315934159351593615937159381593915940159411594215943159441594515946159471594815949159501595115952159531595415955159561595715958159591596015961159621596315964159651596615967159681596915970159711597215973159741597515976159771597815979159801598115982159831598415985159861598715988159891599015991159921599315994159951599615997159981599916000160011600216003160041600516006160071600816009160101601116012160131601416015160161601716018160191602016021160221602316024160251602616027160281602916030160311603216033160341603516036160371603816039160401604116042160431604416045160461604716048160491605016051160521605316054160551605616057160581605916060160611606216063160641606516066160671606816069160701607116072160731607416075160761607716078160791608016081160821608316084160851608616087160881608916090160911609216093160941609516096160971609816099161001610116102161031610416105161061610716108161091611016111161121611316114161151611616117161181611916120161211612216123161241612516126161271612816129161301613116132161331613416135161361613716138161391614016141161421614316144161451614616147161481614916150161511615216153161541615516156161571615816159161601616116162161631616416165161661616716168161691617016171161721617316174161751617616177161781617916180161811618216183161841618516186161871618816189161901619116192161931619416195161961619716198161991620016201162021620316204162051620616207162081620916210162111621216213162141621516216162171621816219162201622116222162231622416225162261622716228162291623016231162321623316234162351623616237162381623916240162411624216243162441624516246162471624816249162501625116252162531625416255162561625716258162591626016261162621626316264162651626616267162681626916270162711627216273162741627516276162771627816279162801628116282162831628416285162861628716288162891629016291162921629316294162951629616297162981629916300163011630216303163041630516306163071630816309163101631116312163131631416315163161631716318163191632016321163221632316324163251632616327163281632916330163311633216333163341633516336163371633816339163401634116342163431634416345163461634716348163491635016351163521635316354163551635616357163581635916360163611636216363163641636516366163671636816369163701637116372163731637416375163761637716378163791638016381163821638316384163851638616387163881638916390163911639216393163941639516396163971639816399164001640116402164031640416405164061640716408164091641016411164121641316414164151641616417164181641916420164211642216423164241642516426164271642816429164301643116432164331643416435164361643716438164391644016441164421644316444164451644616447164481644916450164511645216453164541645516456164571645816459164601646116462164631646416465164661646716468164691647016471164721647316474164751647616477164781647916480164811648216483164841648516486164871648816489164901649116492164931649416495164961649716498164991650016501165021650316504165051650616507165081650916510165111651216513165141651516516165171651816519165201652116522165231652416525165261652716528165291653016531165321653316534165351653616537165381653916540165411654216543165441654516546165471654816549165501655116552165531655416555165561655716558165591656016561165621656316564165651656616567165681656916570165711657216573165741657516576165771657816579165801658116582165831658416585165861658716588165891659016591165921659316594165951659616597165981659916600166011660216603166041660516606166071660816609166101661116612166131661416615166161661716618166191662016621166221662316624166251662616627166281662916630166311663216633166341663516636166371663816639166401664116642166431664416645166461664716648166491665016651166521665316654166551665616657166581665916660166611666216663166641666516666166671666816669166701667116672166731667416675166761667716678166791668016681166821668316684166851668616687166881668916690166911669216693166941669516696166971669816699167001670116702167031670416705167061670716708167091671016711167121671316714167151671616717167181671916720167211672216723167241672516726167271672816729167301673116732167331673416735167361673716738167391674016741167421674316744167451674616747167481674916750167511675216753167541675516756167571675816759167601676116762167631676416765167661676716768167691677016771167721677316774167751677616777167781677916780167811678216783167841678516786167871678816789167901679116792167931679416795167961679716798167991680016801168021680316804168051680616807168081680916810168111681216813168141681516816168171681816819168201682116822168231682416825168261682716828168291683016831168321683316834168351683616837168381683916840168411684216843168441684516846168471684816849168501685116852168531685416855168561685716858168591686016861168621686316864168651686616867168681686916870168711687216873168741687516876
  1. %\documentclass[]{TimesAPriori_MIT}%%6x9
  2. \documentclass[7x10]{TimesAPriori_MIT}%%7x10
  3. %\documentclass[8x10]{TimesAPriori_MIT}%%8x10
  4. \usepackage[utf8]{inputenc}
  5. %% \usepackage{setspace}
  6. %% \doublespacing
  7. \usepackage{listings}
  8. \usepackage{verbatim}
  9. \usepackage{amssymb}
  10. \usepackage{lmodern} % better typewriter font for code
  11. %\usepackage{wrapfig}
  12. \usepackage{multirow}
  13. \usepackage{tcolorbox}
  14. \usepackage{color}
  15. %\usepackage{ifthen}
  16. \definecolor{lightgray}{gray}{1}
  17. \newcommand{\black}[1]{{\color{black} #1}}
  18. %\newcommand{\gray}[1]{{\color{lightgray} #1}}
  19. \newcommand{\gray}[1]{{\color{gray} #1}}
  20. \def\racketEd{0}
  21. \def\pythonEd{1}
  22. \def\edition{1}
  23. % material that is specific to the Racket edition of the book
  24. \newcommand{\racket}[1]{{\if\edition\racketEd\color{olive}{#1}\fi}}
  25. % would like a command for: \if\edition\racketEd\color{olive}
  26. % and : \fi\color{black}
  27. % material that is specific to the Python edition of the book
  28. \newcommand{\python}[1]{{\if\edition\pythonEd #1\fi}}
  29. %% For multiple indices:
  30. \usepackage{multind}
  31. \makeindex{subject}
  32. \makeindex{authors}
  33. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  34. \if\edition\racketEd
  35. \lstset{%
  36. language=Lisp,
  37. basicstyle=\ttfamily\small,
  38. morekeywords={seq,assign,program,block,define,lambda,match,goto,if,else,then,struct,Integer,Boolean,Vector,Void,Any,while,begin,define,public,override,class},
  39. deletekeywords={read,mapping,vector},
  40. escapechar=|,
  41. columns=flexible,
  42. moredelim=[is][\color{red}]{~}{~},
  43. showstringspaces=false
  44. }
  45. \fi
  46. \if\edition\pythonEd
  47. \lstset{%
  48. language=Python,
  49. basicstyle=\ttfamily\small,
  50. morekeywords={match,case,bool,int},
  51. deletekeywords={},
  52. escapechar=|,
  53. columns=flexible,
  54. moredelim=[is][\color{red}]{~}{~},
  55. showstringspaces=false
  56. }
  57. \fi
  58. %%% Any shortcut own defined macros place here
  59. %% sample of author macro:
  60. \input{defs}
  61. \newtheorem{exercise}[theorem]{Exercise}
  62. % Adjusted settings
  63. \setlength{\columnsep}{4pt}
  64. %% \begingroup
  65. %% \setlength{\intextsep}{0pt}%
  66. %% \setlength{\columnsep}{0pt}%
  67. %% \begin{wrapfigure}{r}{0.5\textwidth}
  68. %% \centering\includegraphics[width=\linewidth]{example-image-a}
  69. %% \caption{Basic layout}
  70. %% \end{wrapfigure}
  71. %% \lipsum[1]
  72. %% \endgroup
  73. \newbox\oiintbox
  74. \setbox\oiintbox=\hbox{$\lower2pt\hbox{\huge$\displaystyle\circ$}
  75. \hskip-13pt\displaystyle\int\hskip-7pt\int_{S}\ $}
  76. \def\oiint{\copy\oiintbox}
  77. \def\boldnabla{\hbox{\boldmath$\displaystyle\nabla$}}
  78. %\usepackage{showframe}
  79. \def\ShowFrameLinethickness{0.125pt}
  80. \addbibresource{book.bib}
  81. \begin{document}
  82. \frontmatter
  83. \HalfTitle{Essentials of Compilation, Python Edition}
  84. \halftitlepage
  85. \Title{Essentials of Compilation, Python Edition}
  86. \Booksubtitle{The Incremental, Nano-Pass Approach}
  87. %\edition{First Edition}
  88. \BookAuthor{Jeremy G. Siek}
  89. \imprint{The MIT Press\\
  90. Cambridge, Massachusetts\\
  91. London, England}
  92. \begin{copyrightpage}
  93. \textcopyright\ 2021 Jeremy G. Siek. Available for free viewing
  94. or personal downloading under the
  95. \href{https://creativecommons.org/licenses/by-nc-nd/2.0/uk/}{CC-BY-NC-ND}
  96. license.
  97. Copyright in this monograph has been licensed exclusively to The MIT
  98. Press, \url{http://mitpress.mit.edu}, which will be releasing the final
  99. version to the public in 2022. All inquiries regarding rights should
  100. be addressed to The MIT Press, Rights and Permissions Department.
  101. %% \textcopyright\ [YEAR] Massachusetts Institute of Technology
  102. %% All rights reserved. No part of this book may be reproduced in any
  103. %% form by any electronic or mechanical means (including photocopying,
  104. %% recording, or information storage and retrieval) without permission in
  105. %% writing from the publisher.
  106. %% This book was set in LaTeX by Jeremy G. Siek. Printed and bound in the
  107. %% United States of America.
  108. %% Library of Congress Cataloging-in-Publication Data is available.
  109. %% ISBN:
  110. %% 10\quad9\quad8\quad7\quad6\quad5\quad4\quad3\quad2\quad1
  111. \end{copyrightpage}
  112. \dedication{This book is dedicated to the programming language wonks
  113. at Indiana University.}
  114. %% \begin{epigraphpage}
  115. %% \epigraph{First Epigraph line goes here}{Mention author name if any,
  116. %% \textit{Book Name if any}}
  117. %% \epigraph{Second Epigraph line goes here}{Mention author name if any}
  118. %% \end{epigraphpage}
  119. \tableofcontents
  120. %\listoffigures
  121. %\listoftables
  122. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  123. \chapter*{Preface}
  124. \addcontentsline{toc}{fmbm}{Preface}
  125. There is a magical moment when a programmer presses the ``run'' button
  126. and the software begins to execute. Somehow a program written in a
  127. high-level language is running on a computer that is only capable of
  128. shuffling bits. Here we reveal the wizardry that makes that moment
  129. possible. Beginning with the ground breaking work of Backus and
  130. colleagues in the 1950s, computer scientists discovered techniques for
  131. constructing programs, called \emph{compilers}, that automatically
  132. translate high-level programs into machine code.
  133. We take you on a journey by constructing your own compiler for a small
  134. but powerful language. Along the way we explain the essential
  135. concepts, algorithms, and data structures that underlie compilers. We
  136. develop your understanding of how programs are mapped onto computer
  137. hardware, which is helpful when reasoning about properties at the
  138. junction between hardware and software such as execution time,
  139. software errors, and security vulnerabilities. For those interested
  140. in pursuing compiler construction, our goal is to provide a
  141. stepping-stone to advanced topics such as just-in-time compilation,
  142. program analysis, and program optimization. For those interested in
  143. designing and implementing programming languages, we connect
  144. language design choices to their impact on the compiler and the generated
  145. code.
  146. A compiler is typically organized as a sequence of stages that
  147. progressively translate a program to code that runs on hardware. We
  148. take this approach to the extreme by partitioning our compiler into a
  149. large number of \emph{nanopasses}, each of which performs a single
  150. task. This allows us to test the output of each pass in isolation, and
  151. furthermore, allows us to focus our attention which makes the compiler
  152. far easier to understand.
  153. The most familiar approach to describing compilers is with one pass
  154. per chapter. The problem with that approach is it obfuscates how
  155. language features motivate design choices in a compiler. We take an
  156. \emph{incremental} approach in which we build a complete compiler in
  157. each chapter, starting with a small input language that includes only
  158. arithmetic and variables and we add new language features in
  159. subsequent chapters.
  160. Our choice of language features is designed to elicit the fundamental
  161. concepts and algorithms used in compilers.
  162. \begin{itemize}
  163. \item We begin with integer arithmetic and local variables in
  164. Chapters~\ref{ch:trees-recur} and \ref{ch:Lvar}, where we introduce
  165. the fundamental tools of compiler construction: \emph{abstract
  166. syntax trees} and \emph{recursive functions}.
  167. \item In Chapter~\ref{ch:register-allocation-Lvar} we apply
  168. \emph{graph coloring} to assign variables to machine registers.
  169. \item Chapter~\ref{ch:Lif} adds \code{if} expressions, which motivates
  170. an elegant recursive algorithm for translating them into conditional
  171. \code{goto}'s.
  172. \item Chapter~\ref{ch:Rwhile} fleshes out support for imperative
  173. programming languages with the addition of loops\racket{ and mutable
  174. variables}. This elicits the need for \emph{dataflow
  175. analysis} in the register allocator.
  176. \item Chapter~\ref{ch:Rvec} adds heap-allocated tuples, motivating
  177. \emph{garbage collection}.
  178. \item Chapter~\ref{ch:Rfun} adds functions that are first-class values
  179. but lack lexical scoping, similar to the C programming
  180. language~\citep{Kernighan:1988nx} except that we generate efficient
  181. tail calls. The reader learns about the procedure call stack,
  182. \emph{calling conventions}, and their interaction with register
  183. allocation and garbage collection.
  184. \item Chapter~\ref{ch:Rlam} adds anonymous functions with lexical
  185. scoping, i.e., \emph{lambda abstraction}. The reader learns about
  186. \emph{closure conversion}, in which lambdas are translated into a
  187. combination of functions and tuples.
  188. % Chapter about classes and objects?
  189. \item Chapter~\ref{ch:Rdyn} adds \emph{dynamic typing}. Prior to this
  190. point the input languages are statically typed. The reader extends
  191. the statically typed language with an \code{Any} type which serves
  192. as a target for compiling the dynamically typed language.
  193. {\if\edition\pythonEd
  194. \item Chapter~\ref{ch:Robject} adds support for \emph{objects} and
  195. \emph{classes}.
  196. \fi}
  197. \item Chapter~\ref{ch:Rgrad} uses the \code{Any} type of
  198. Chapter~\ref{ch:Rdyn} to implement a \emph{gradually typed language}
  199. in which different regions of a program may be static or dynamically
  200. typed. The reader implements runtime support for \emph{proxies} that
  201. allow values to safely move between regions.
  202. \item Chapter~\ref{ch:Rpoly} adds \emph{generics} with autoboxing,
  203. leveraging the \code{Any} type and type casts developed in Chapters
  204. \ref{ch:Rdyn} and \ref{ch:Rgrad}.
  205. \end{itemize}
  206. There are many language features that we do not include. Our choices
  207. balance the incidental complexity of a feature versus the fundamental
  208. concepts that it exposes. For example, we include tuples and not
  209. records because they both elicit the study of heap allocation and
  210. garbage collection but records come with more incidental complexity.
  211. Since 2009 drafts of this book have served as the textbook for 16-week
  212. compiler courses for upper-level undergraduates and first-year
  213. graduate students at the University of Colorado and Indiana
  214. University.
  215. %
  216. Students come into the course having learned the basics of
  217. programming, data structures and algorithms, and discrete
  218. mathematics.
  219. %
  220. At the beginning of the course, students form groups of 2-4 people.
  221. The groups complete one chapter every two weeks, starting with
  222. Chapter~\ref{ch:Lvar}. Many chapters include a challenge problem that
  223. we assign to the graduate students. The last two weeks of the course
  224. involve a final project in which students design and implement a
  225. compiler extension of their choosing. Chapters~\ref{ch:Rgrad} and
  226. \ref{ch:Rpoly} can be used in support of these projects or they can
  227. replace some of the other chapters. For example, a course with an
  228. emphasis on statically-typed imperative languages could include
  229. Chapter~\ref{ch:Rpoly} but skip Chapter~\ref{ch:Rdyn}. For compiler
  230. courses at universities on the quarter system, with 10 weeks, we
  231. recommend completing up through Chapter~\ref{ch:Rfun}. (If pressed
  232. for time, one can skip Chapter~\ref{ch:Rvec} but still include
  233. Chapter~\ref{ch:Rfun} by limiting the number of parameters allowed in
  234. functions.) Figure~\ref{fig:chapter-dependences} depicts the
  235. dependencies between chapters.
  236. This book has also been used in compiler courses at California
  237. Polytechnic State University, Portland State University, Rose–Hulman
  238. Institute of Technology, University of Massachusetts Lowell, and the
  239. University of Vermont.
  240. \begin{figure}[tp]
  241. {\if\edition\racketEd
  242. \begin{tikzpicture}[baseline=(current bounding box.center)]
  243. \node (C1) at (0,1.5) {\small Ch.~\ref{ch:trees-recur} Preliminaries};
  244. \node (C2) at (4,1.5) {\small Ch.~\ref{ch:Lvar} Variables};
  245. \node (C3) at (8,1.5) {\small Ch.~\ref{ch:register-allocation-Lvar} Registers};
  246. \node (C4) at (0,0) {\small Ch.~\ref{ch:Lif} Conditionals};
  247. \node (C5) at (4,0) {\small Ch.~\ref{ch:Rvec} Tuples};
  248. \node (C6) at (8,0) {\small Ch.~\ref{ch:Rfun} Functions};
  249. \node (C9) at (0,-1.5) {\small Ch.~\ref{ch:Rwhile} Loops};
  250. \node (C8) at (4,-1.5) {\small Ch.~\ref{ch:Rdyn} Dynamic};
  251. \node (C7) at (8,-1.5) {\small Ch.~\ref{ch:Rlam} Lambda};
  252. \node (C10) at (4,-3) {\small Ch.~\ref{ch:Rgrad} Gradual Typing};
  253. \node (C11) at (8,-3) {\small Ch.~\ref{ch:Rpoly} Generics};
  254. \path[->] (C1) edge [above] node {} (C2);
  255. \path[->] (C2) edge [above] node {} (C3);
  256. \path[->] (C3) edge [above] node {} (C4);
  257. \path[->] (C4) edge [above] node {} (C5);
  258. \path[->] (C5) edge [above] node {} (C6);
  259. \path[->] (C6) edge [above] node {} (C7);
  260. \path[->] (C4) edge [above] node {} (C8);
  261. \path[->] (C4) edge [above] node {} (C9);
  262. \path[->] (C8) edge [above] node {} (C10);
  263. \path[->] (C10) edge [above] node {} (C11);
  264. \end{tikzpicture}
  265. \fi}
  266. {\if\edition\pythonEd
  267. \begin{tikzpicture}[baseline=(current bounding box.center)]
  268. \node (C1) at (0,1.5) {\small Ch.~\ref{ch:trees-recur} Preliminaries};
  269. \node (C2) at (4,1.5) {\small Ch.~\ref{ch:Lvar} Variables};
  270. \node (C3) at (8,1.5) {\small Ch.~\ref{ch:register-allocation-Lvar} Registers};
  271. \node (C4) at (0,0) {\small Ch.~\ref{ch:Lif} Conditionals};
  272. \node (C5) at (4,0) {\small Ch.~\ref{ch:Rvec} Tuples};
  273. \node (C6) at (8,0) {\small Ch.~\ref{ch:Rfun} Functions};
  274. \node (C9) at (0,-1.5) {\small Ch.~\ref{ch:Rwhile} Loops};
  275. \node (C8) at (4,-1.5) {\small Ch.~\ref{ch:Rdyn} Dynamic};
  276. \node (CO) at (0,-3) {\small Ch.~\ref{ch:Robject} Objects};
  277. \node (C7) at (8,-1.5) {\small Ch.~\ref{ch:Rlam} Lambda};
  278. \node (C10) at (4,-3) {\small Ch.~\ref{ch:Rgrad} Gradual Typing};
  279. \node (C11) at (8,-3) {\small Ch.~\ref{ch:Rpoly} Generics};
  280. \path[->] (C1) edge [above] node {} (C2);
  281. \path[->] (C2) edge [above] node {} (C3);
  282. \path[->] (C3) edge [above] node {} (C4);
  283. \path[->] (C4) edge [above] node {} (C5);
  284. \path[->] (C5) edge [above] node {} (C6);
  285. \path[->] (C6) edge [above] node {} (C7);
  286. \path[->] (C4) edge [above] node {} (C8);
  287. \path[->] (C4) edge [above] node {} (C9);
  288. \path[->] (C8) edge [above] node {} (C10);
  289. \path[->] (C8) edge [above] node {} (CO);
  290. \path[->] (C10) edge [above] node {} (C11);
  291. \end{tikzpicture}
  292. \fi}
  293. \caption{Diagram of chapter dependencies.}
  294. \label{fig:chapter-dependences}
  295. \end{figure}
  296. \racket{
  297. We use the \href{https://racket-lang.org/}{Racket} language both for
  298. the implementation of the compiler and for the input language, so the
  299. reader should be proficient with Racket or Scheme. There are many
  300. excellent resources for learning Scheme and
  301. Racket~\citep{Dybvig:1987aa,Abelson:1996uq,Friedman:1996aa,Felleisen:2001aa,Felleisen:2013aa,Flatt:2014aa}.
  302. }
  303. \python{
  304. This edition of the book uses \href{https://www.python.org/}{Python}
  305. both for the implementation of the compiler and for the input language, so the
  306. reader should be proficient with Python. There are many
  307. excellent resources for learning Python~\citep{Lutz:2013vp,Barry:2016vj,Sweigart:2019vn,Matthes:2019vs}.
  308. }
  309. The support code for this book is in the \code{github} repository at
  310. the following URL:
  311. \if\edition\racketEd
  312. \begin{center}\small
  313. \url{https://github.com/IUCompilerCourse/public-student-support-code}
  314. \end{center}
  315. \fi
  316. \if\edition\pythonEd
  317. \begin{center}\small
  318. \url{https://github.com/IUCompilerCourse/}
  319. \end{center}
  320. \fi
  321. The compiler targets x86 assembly language~\citep{Intel:2015aa}, so it
  322. is helpful but not necessary for the reader to have taken a computer
  323. systems course~\citep{Bryant:2010aa}. This book introduces the parts
  324. of x86-64 assembly language that are needed.
  325. %
  326. We follow the System V calling
  327. conventions~\citep{Bryant:2005aa,Matz:2013aa}, so the assembly code
  328. that we generate works with the runtime system (written in C) when it
  329. is compiled using the GNU C compiler (\code{gcc}) on Linux and MacOS
  330. operating systems on Intel hardware.
  331. %
  332. On the Windows operating system, \code{gcc} uses the Microsoft x64
  333. calling convention~\citep{Microsoft:2018aa,Microsoft:2020aa}. So the
  334. assembly code that we generate does \emph{not} work with the runtime
  335. system on Windows. One workaround is to use a virtual machine with
  336. Linux as the guest operating system.
  337. \section*{Acknowledgments}
  338. The tradition of compiler construction at Indiana University goes back
  339. to research and courses on programming languages by Daniel Friedman in
  340. the 1970's and 1980's. One of his students, Kent Dybvig, implemented
  341. Chez Scheme~\citep{Dybvig:2006aa}, an efficient, production-quality
  342. compiler for Scheme. Throughout the 1990's and 2000's, Dybvig taught
  343. the compiler course and continued the development of Chez Scheme.
  344. %
  345. The compiler course evolved to incorporate novel pedagogical ideas
  346. while also including elements of real-world compilers. One of
  347. Friedman's ideas was to split the compiler into many small
  348. passes. Another idea, called ``the game'', was to test the code
  349. generated by each pass using interpreters.
  350. Dybvig, with help from his students Dipanwita Sarkar and Andrew Keep,
  351. developed infrastructure to support this approach and evolved the
  352. course to use even smaller
  353. nanopasses~\citep{Sarkar:2004fk,Keep:2012aa}. Many of the compiler
  354. design decisions in this book are inspired by the assignment
  355. descriptions of \citet{Dybvig:2010aa}. In the mid 2000's a student of
  356. Dybvig's named Abdulaziz Ghuloum observed that the front-to-back
  357. organization of the course made it difficult for students to
  358. understand the rationale for the compiler design. Ghuloum proposed the
  359. incremental approach~\citep{Ghuloum:2006bh} that this book is based
  360. on.
  361. We thank the many students who served as teaching assistants for the
  362. compiler course at IU and made suggestions for improving the book
  363. including Carl Factora, Ryan Scott, and Cameron Swords. We especially
  364. thank Andre Kuhlenschmidt for his work on the garbage collector,
  365. Michael Vollmer for his work on efficient tail calls, and Michael
  366. Vitousek for his help running the first offering of the incremental
  367. compiler course at IU.
  368. We thank professors Bor-Yuh Chang, John Clements, Jay McCarthy, Joseph
  369. Near, Ryan Newton, Nate Nystrom, Andrew Tolmach, and Michael Wollowski
  370. for teaching courses based on drafts of this book and for their
  371. invaluable feedback.
  372. We thank Ronald Garcia for helping Jeremy survive Dybvig's compiler
  373. course in the early 2000's and especially for finding the bug that
  374. sent our garbage collector on a wild goose chase!
  375. \mbox{}\\
  376. \noindent Jeremy G. Siek \\
  377. Bloomington, Indiana
  378. \mainmatter
  379. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  380. \chapter{Preliminaries}
  381. \label{ch:trees-recur}
  382. In this chapter we review the basic tools that are needed to implement
  383. a compiler. Programs are typically input by a programmer as text,
  384. i.e., a sequence of characters. The program-as-text representation is
  385. called \emph{concrete syntax}. We use concrete syntax to concisely
  386. write down and talk about programs. Inside the compiler, we use
  387. \emph{abstract syntax trees} (ASTs) to represent programs in a way
  388. that efficiently supports the operations that the compiler needs to
  389. perform.\index{subject}{concrete syntax}\index{subject}{abstract syntax}\index{subject}{abstract
  390. syntax tree}\index{subject}{AST}\index{subject}{program}\index{subject}{parse} The translation
  391. from concrete syntax to abstract syntax is a process called
  392. \emph{parsing}~\citep{Aho:1986qf}. We do not cover the theory and
  393. implementation of parsing in this book.
  394. %
  395. \racket{A parser is provided in the support code for translating from
  396. concrete to abstract syntax.}
  397. %
  398. \python{We use Python's \code{ast} module to translate from concrete
  399. to abstract syntax.}
  400. ASTs can be represented in many different ways inside the compiler,
  401. depending on the programming language used to write the compiler.
  402. %
  403. \racket{We use Racket's
  404. \href{https://docs.racket-lang.org/guide/define-struct.html}{\code{struct}}
  405. feature to represent ASTs (Section~\ref{sec:ast}).}
  406. %
  407. \python{We use Python classes and objects to represent ASTs, especially the
  408. classes defined in the standard \code{ast} module for the Python
  409. source language.}
  410. %
  411. We use grammars to define the abstract syntax of programming languages
  412. (Section~\ref{sec:grammar}) and pattern matching to inspect individual
  413. nodes in an AST (Section~\ref{sec:pattern-matching}). We use
  414. recursive functions to construct and deconstruct ASTs
  415. (Section~\ref{sec:recursion}). This chapter provides an brief
  416. introduction to these ideas.
  417. \racket{\index{subject}{struct}}
  418. \python{\index{subject}{class}\index{subject}{object}}
  419. \section{Abstract Syntax Trees}
  420. \label{sec:ast}
  421. Compilers use abstract syntax trees to represent programs because they
  422. often need to ask questions like: for a given part of a program, what
  423. kind of language feature is it? What are its sub-parts? Consider the
  424. program on the left and its AST on the right. This program is an
  425. addition operation and it has two sub-parts, a
  426. \racket{read}\python{input} operation and a negation. The negation has
  427. another sub-part, the integer constant \code{8}. By using a tree to
  428. represent the program, we can easily follow the links to go from one
  429. part of a program to its sub-parts.
  430. \begin{center}
  431. \begin{minipage}{0.4\textwidth}
  432. \if\edition\racketEd
  433. \begin{lstlisting}
  434. (+ (read) (- 8))
  435. \end{lstlisting}
  436. \fi
  437. \if\edition\pythonEd
  438. \begin{lstlisting}
  439. input_int() + -8
  440. \end{lstlisting}
  441. \fi
  442. \end{minipage}
  443. \begin{minipage}{0.4\textwidth}
  444. \begin{equation}
  445. \begin{tikzpicture}
  446. \node[draw] (plus) at (0 , 0) {\key{+}};
  447. \node[draw] (read) at (-1, -1.5) {{\if\edition\racketEd\footnotesize\key{read}\fi\if\edition\pythonEd\key{input\_int()}\fi}};
  448. \node[draw] (minus) at (1 , -1.5) {$\key{-}$};
  449. \node[draw] (8) at (1 , -3) {\key{8}};
  450. \draw[->] (plus) to (read);
  451. \draw[->] (plus) to (minus);
  452. \draw[->] (minus) to (8);
  453. \end{tikzpicture}
  454. \label{eq:arith-prog}
  455. \end{equation}
  456. \end{minipage}
  457. \end{center}
  458. We use the standard terminology for trees to describe ASTs: each
  459. rectangle above is called a \emph{node}. The arrows connect a node to its
  460. \emph{children} (which are also nodes). The top-most node is the
  461. \emph{root}. Every node except for the root has a \emph{parent} (the
  462. node it is the child of). If a node has no children, it is a
  463. \emph{leaf} node. Otherwise it is an \emph{internal} node.
  464. \index{subject}{node}
  465. \index{subject}{children}
  466. \index{subject}{root}
  467. \index{subject}{parent}
  468. \index{subject}{leaf}
  469. \index{subject}{internal node}
  470. %% Recall that an \emph{symbolic expression} (S-expression) is either
  471. %% \begin{enumerate}
  472. %% \item an atom, or
  473. %% \item a pair of two S-expressions, written $(e_1 \key{.} e_2)$,
  474. %% where $e_1$ and $e_2$ are each an S-expression.
  475. %% \end{enumerate}
  476. %% An \emph{atom} can be a symbol, such as \code{`hello}, a number, the
  477. %% null value \code{'()}, etc. We can create an S-expression in Racket
  478. %% simply by writing a backquote (called a quasi-quote in Racket)
  479. %% followed by the textual representation of the S-expression. It is
  480. %% quite common to use S-expressions to represent a list, such as $a, b
  481. %% ,c$ in the following way:
  482. %% \begin{lstlisting}
  483. %% `(a . (b . (c . ())))
  484. %% \end{lstlisting}
  485. %% Each element of the list is in the first slot of a pair, and the
  486. %% second slot is either the rest of the list or the null value, to mark
  487. %% the end of the list. Such lists are so common that Racket provides
  488. %% special notation for them that removes the need for the periods
  489. %% and so many parenthesis:
  490. %% \begin{lstlisting}
  491. %% `(a b c)
  492. %% \end{lstlisting}
  493. %% The following expression creates an S-expression that represents AST
  494. %% \eqref{eq:arith-prog}.
  495. %% \begin{lstlisting}
  496. %% `(+ (read) (- 8))
  497. %% \end{lstlisting}
  498. %% When using S-expressions to represent ASTs, the convention is to
  499. %% represent each AST node as a list and to put the operation symbol at
  500. %% the front of the list. The rest of the list contains the children. So
  501. %% in the above case, the root AST node has operation \code{`+} and its
  502. %% two children are \code{`(read)} and \code{`(- 8)}, just as in the
  503. %% diagram \eqref{eq:arith-prog}.
  504. %% To build larger S-expressions one often needs to splice together
  505. %% several smaller S-expressions. Racket provides the comma operator to
  506. %% splice an S-expression into a larger one. For example, instead of
  507. %% creating the S-expression for AST \eqref{eq:arith-prog} all at once,
  508. %% we could have first created an S-expression for AST
  509. %% \eqref{eq:arith-neg8} and then spliced that into the addition
  510. %% S-expression.
  511. %% \begin{lstlisting}
  512. %% (define ast1.4 `(- 8))
  513. %% (define ast1_1 `(+ (read) ,ast1.4))
  514. %% \end{lstlisting}
  515. %% In general, the Racket expression that follows the comma (splice)
  516. %% can be any expression that produces an S-expression.
  517. {\if\edition\racketEd\color{olive}
  518. We define a Racket \code{struct} for each kind of node. For this
  519. chapter we require just two kinds of nodes: one for integer constants
  520. and one for primitive operations. The following is the \code{struct}
  521. definition for integer constants.
  522. \begin{lstlisting}
  523. (struct Int (value))
  524. \end{lstlisting}
  525. An integer node includes just one thing: the integer value.
  526. To create an AST node for the integer $8$, we write \INT{8}.
  527. \begin{lstlisting}
  528. (define eight (Int 8))
  529. \end{lstlisting}
  530. We say that the value created by \INT{8} is an
  531. \emph{instance} of the
  532. \code{Int} structure.
  533. The following is the \code{struct} definition for primitive operations.
  534. \begin{lstlisting}
  535. (struct Prim (op args))
  536. \end{lstlisting}
  537. A primitive operation node includes an operator symbol \code{op} and a
  538. list of child \code{args}. For example, to create an AST that negates
  539. the number $8$, we write \code{(Prim '- (list eight))}.
  540. \begin{lstlisting}
  541. (define neg-eight (Prim '- (list eight)))
  542. \end{lstlisting}
  543. Primitive operations may have zero or more children. The \code{read}
  544. operator has zero children:
  545. \begin{lstlisting}
  546. (define rd (Prim 'read '()))
  547. \end{lstlisting}
  548. whereas the addition operator has two children:
  549. \begin{lstlisting}
  550. (define ast1_1 (Prim '+ (list rd neg-eight)))
  551. \end{lstlisting}
  552. We have made a design choice regarding the \code{Prim} structure.
  553. Instead of using one structure for many different operations
  554. (\code{read}, \code{+}, and \code{-}), we could have instead defined a
  555. structure for each operation, as follows.
  556. \begin{lstlisting}
  557. (struct Read ())
  558. (struct Add (left right))
  559. (struct Neg (value))
  560. \end{lstlisting}
  561. The reason we choose to use just one structure is that in many parts
  562. of the compiler the code for the different primitive operators is the
  563. same, so we might as well just write that code once, which is enabled
  564. by using a single structure.
  565. \fi}
  566. {\if\edition\pythonEd
  567. We use a Python \code{class} for each kind of node.
  568. The following is the class definition for constants.
  569. \begin{lstlisting}
  570. class Constant:
  571. def __init__(self, value):
  572. self.value = value
  573. \end{lstlisting}
  574. An integer constant node includes just one thing: the integer value.
  575. To create an AST node for the integer $8$, we write \INT{8}.
  576. \begin{lstlisting}
  577. eight = Constant(8)
  578. \end{lstlisting}
  579. We say that the value created by \INT{8} is an
  580. \emph{instance} of the \code{Constant} class.
  581. The following is the class definition for unary operators.
  582. \begin{lstlisting}
  583. class UnaryOp:
  584. def __init__(self, op, operand):
  585. self.op = op
  586. self.operand = operand
  587. \end{lstlisting}
  588. The specific operation is specified by the \code{op} parameter. For
  589. example, the class \code{USub} is for unary subtraction. (More unary
  590. operators are introduced in later chapters.) To create an AST that
  591. negates the number $8$, we write the following.
  592. \begin{lstlisting}
  593. neg_eight = UnaryOp(USub(), eight)
  594. \end{lstlisting}
  595. The call to the \code{input\_int} function is represented by the
  596. \code{Call} and \code{Name} classes.
  597. \begin{lstlisting}
  598. class Call:
  599. def __init__(self, func, args):
  600. self.func = func
  601. self.args = args
  602. class Name:
  603. def __init__(self, id):
  604. self.id = id
  605. \end{lstlisting}
  606. To create an AST node that calls \code{input\_int}, we write
  607. \begin{lstlisting}
  608. read = Call(Name('input_int'), [])
  609. \end{lstlisting}
  610. Finally, to represent the addition in \eqref{eq:arith-prog}, we use
  611. the \code{BinOp} class for binary operators.
  612. \begin{lstlisting}
  613. class BinOp:
  614. def __init__(self, left, op, right):
  615. self.op = op
  616. self.left = left
  617. self.right = right
  618. \end{lstlisting}
  619. Similar to \code{UnaryOp}, the specific operation is specified by the
  620. \code{op} parameter, which for now is just an instance of the
  621. \code{Add} class. So to create the AST node that adds negative eight
  622. to some user input, we write the following.
  623. \begin{lstlisting}
  624. ast1_1 = BinOp(read, Add(), neg_eight)
  625. \end{lstlisting}
  626. \fi}
  627. When compiling a program such as \eqref{eq:arith-prog}, we need to
  628. know that the operation associated with the root node is addition and
  629. we need to be able to access its two children. \racket{Racket}\python{Python}
  630. provides pattern matching to support these kinds of queries, as we see in
  631. Section~\ref{sec:pattern-matching}.
  632. In this book, we often write down the concrete syntax of a program
  633. even when we really have in mind the AST because the concrete syntax
  634. is more concise. We recommend that, in your mind, you always think of
  635. programs as abstract syntax trees.
  636. \section{Grammars}
  637. \label{sec:grammar}
  638. \index{subject}{integer}
  639. \index{subject}{literal}
  640. \index{subject}{constant}
  641. A programming language can be thought of as a \emph{set} of programs.
  642. The set is typically infinite (one can always create larger and larger
  643. programs), so one cannot simply describe a language by listing all of
  644. the programs in the language. Instead we write down a set of rules, a
  645. \emph{grammar}, for building programs. Grammars are often used to
  646. define the concrete syntax of a language, but they can also be used to
  647. describe the abstract syntax. We write our rules in a variant of
  648. Backus-Naur Form (BNF)~\citep{Backus:1960aa,Knuth:1964aa}.
  649. \index{subject}{Backus-Naur Form}\index{subject}{BNF}
  650. As an example, we describe a small language, named \LangInt{}, that consists of
  651. integers and arithmetic operations.
  652. \index{subject}{grammar}
  653. The first grammar rule for the abstract syntax of \LangInt{} says that an
  654. instance of the \racket{\code{Int} structure}\python{\code{Constant} class} is an expression:
  655. \begin{equation}
  656. \Exp ::= \INT{\Int} \label{eq:arith-int}
  657. \end{equation}
  658. %
  659. Each rule has a left-hand-side and a right-hand-side.
  660. If you have an AST node that matches the
  661. right-hand-side, then you can categorize it according to the
  662. left-hand-side.
  663. %
  664. A name such as $\Exp$ that is defined by the grammar rules is a
  665. \emph{non-terminal}. \index{subject}{non-terminal}
  666. %
  667. The name $\Int$ is also a non-terminal, but instead of defining it
  668. with a grammar rule, we define it with the following explanation. An
  669. $\Int$ is a sequence of decimals ($0$ to $9$), possibly starting with
  670. $-$ (for negative integers), such that the sequence of decimals
  671. represent an integer in range $-2^{62}$ to $2^{62}-1$. This enables
  672. the representation of integers using 63 bits, which simplifies several
  673. aspects of compilation. \racket{Thus, these integers corresponds to
  674. the Racket \texttt{fixnum} datatype on a 64-bit machine.}
  675. \python{In contrast, integers in Python have unlimited precision, but
  676. the techniques need to handle unlimited precision fall outside the
  677. scope of this book.}
  678. The second grammar rule is the \READOP{} operation that receives an
  679. input integer from the user of the program.
  680. \begin{equation}
  681. \Exp ::= \READ{} \label{eq:arith-read}
  682. \end{equation}
  683. The third rule says that, given an $\Exp$ node, the negation of that
  684. node is also an $\Exp$.
  685. \begin{equation}
  686. \Exp ::= \NEG{\Exp} \label{eq:arith-neg}
  687. \end{equation}
  688. Symbols in typewriter font are \emph{terminal} symbols and must
  689. literally appear in the program for the rule to be applicable.
  690. \index{subject}{terminal}
  691. We can apply these rules to categorize the ASTs that are in the
  692. \LangInt{} language. For example, by rule \eqref{eq:arith-int}
  693. \INT{8} is an $\Exp$, then by rule \eqref{eq:arith-neg} the
  694. following AST is an $\Exp$.
  695. \begin{center}
  696. \begin{minipage}{0.5\textwidth}
  697. \NEG{\INT{\code{8}}}
  698. \end{minipage}
  699. \begin{minipage}{0.25\textwidth}
  700. \begin{equation}
  701. \begin{tikzpicture}
  702. \node[draw, circle] (minus) at (0, 0) {$\text{--}$};
  703. \node[draw, circle] (8) at (0, -1.2) {$8$};
  704. \draw[->] (minus) to (8);
  705. \end{tikzpicture}
  706. \label{eq:arith-neg8}
  707. \end{equation}
  708. \end{minipage}
  709. \end{center}
  710. The next grammar rule is for addition expressions:
  711. \begin{equation}
  712. \Exp ::= \ADD{\Exp}{\Exp} \label{eq:arith-add}
  713. \end{equation}
  714. We can now justify that the AST \eqref{eq:arith-prog} is an $\Exp$ in
  715. \LangInt{}. We know that \READ{} is an $\Exp$ by rule
  716. \eqref{eq:arith-read} and we have already categorized
  717. \NEG{\INT{\code{8}}} as an $\Exp$, so we apply rule \eqref{eq:arith-add}
  718. to show that
  719. \[
  720. \ADD{\READ{}}{\NEG{\INT{\code{8}}}}
  721. \]
  722. is an $\Exp$ in the \LangInt{} language.
  723. If you have an AST for which the above rules do not apply, then the
  724. AST is not in \LangInt{}. For example, the program \racket{\code{(-
  725. (read) 8)}} \python{\code{input\_int() - 8}} is not in \LangInt{}
  726. because there are no rules for the \key{-} operator with two
  727. arguments. Whenever we define a language with a grammar, the language
  728. only includes those programs that are justified by the grammar rules.
  729. {\if\edition\pythonEd
  730. The language \LangInt{} includes a second non-terminal $\Stmt$ for statements.
  731. There is a statement for printing the value of an expression
  732. \[
  733. \Stmt{} ::= \PRINT{\Exp}
  734. \]
  735. and a statement that evaluates an expression but ignores the result.
  736. \[
  737. \Stmt{} ::= \EXPR{\Exp}
  738. \]
  739. \fi}
  740. {\if\edition\racketEd\color{olive}
  741. The last grammar rule for \LangInt{} states that there is a
  742. \code{Program} node to mark the top of the whole program:
  743. \[
  744. \LangInt{} ::= \PROGRAM{\code{'()}}{\Exp}
  745. \]
  746. The \code{Program} structure is defined as follows
  747. \begin{lstlisting}
  748. (struct Program (info body))
  749. \end{lstlisting}
  750. where \code{body} is an expression. In later chapters, the \code{info}
  751. part will be used to store auxiliary information but for now it is
  752. just the empty list.
  753. \fi}
  754. {\if\edition\pythonEd
  755. The last grammar rule for \LangInt{} states that there is a
  756. \code{Module} node to mark the top of the whole program:
  757. \[
  758. \LangInt{} ::= \PROGRAM{}{\Stmt^{*}}
  759. \]
  760. The asterisk symbol $*$ indicates a list of the preceding grammar item, in
  761. this case, a list of statements.
  762. %
  763. The \code{Module} class is defined as follows
  764. \begin{lstlisting}
  765. class Module:
  766. def __init__(self, body):
  767. self.body = body
  768. \end{lstlisting}
  769. where \code{body} is a list of statements.
  770. \fi}
  771. It is common to have many grammar rules with the same left-hand side
  772. but different right-hand sides, such as the rules for $\Exp$ in the
  773. grammar of \LangInt{}. As a short-hand, a vertical bar can be used to
  774. combine several right-hand-sides into a single rule.
  775. We collect all of the grammar rules for the abstract syntax of \LangInt{}
  776. in Figure~\ref{fig:r0-syntax}. The concrete syntax for \LangInt{} is
  777. defined in Figure~\ref{fig:r0-concrete-syntax}.
  778. \racket{The \code{read-program} function provided in
  779. \code{utilities.rkt} of the support code reads a program in from a
  780. file (the sequence of characters in the concrete syntax of Racket)
  781. and parses it into an abstract syntax tree. See the description of
  782. \code{read-program} in Appendix~\ref{appendix:utilities} for more
  783. details.}
  784. \python{The \code{parse} function in Python's \code{ast} module
  785. converts the concrete syntax (represented as a string) into an
  786. abstract syntax tree.}
  787. \begin{figure}[tp]
  788. \fbox{
  789. \begin{minipage}{0.96\textwidth}
  790. {\if\edition\racketEd\color{olive}
  791. \[
  792. \begin{array}{rcl}
  793. \Exp &::=& \Int \MID \LP\key{read}\RP \MID \LP\key{-}\;\Exp\RP \MID \LP\key{+} \; \Exp\;\Exp\RP\\
  794. \LangInt{} &::=& \Exp
  795. \end{array}
  796. \]
  797. \fi}
  798. {\if\edition\pythonEd
  799. \[
  800. \begin{array}{rcl}
  801. \Exp &::=& \Int \MID \key{input\_int}\LP\RP \MID \key{-}\;\Exp \MID \Exp \; \key{+} \; \Exp\\
  802. \Stmt &::=& \key{print}\LP \Exp \RP \MID \Exp\\
  803. \LangInt{} &::=& \Stmt^{*}
  804. \end{array}
  805. \]
  806. \fi}
  807. \end{minipage}
  808. }
  809. \caption{The concrete syntax of \LangInt{}.}
  810. \label{fig:r0-concrete-syntax}
  811. \end{figure}
  812. \begin{figure}[tp]
  813. \fbox{
  814. \begin{minipage}{0.96\textwidth}
  815. {\if\edition\racketEd\color{olive}
  816. \[
  817. \begin{array}{rcl}
  818. \Exp &::=& \INT{\Int} \MID \READ{} \MID \NEG{\Exp} \\
  819. &\MID& \ADD{\Exp}{\Exp} \\
  820. \LangInt{} &::=& \PROGRAM{\code{'()}}{\Exp}
  821. \end{array}
  822. \]
  823. \fi}
  824. {\if\edition\pythonEd
  825. \[
  826. \begin{array}{rcl}
  827. \Exp{} &::=& \INT{\Int} \MID \READ{} \\
  828. &\MID& \NEG{\Exp} \MID \ADD{\Exp}{\Exp} \\
  829. \Stmt{} &::=& \PRINT{\Exp} \MID \EXPR{\Exp} \\
  830. \LangInt{} &::=& \PROGRAM{}{\Stmt^{*}}
  831. \end{array}
  832. \]
  833. \fi}
  834. \end{minipage}
  835. }
  836. \caption{The abstract syntax of \LangInt{}.}
  837. \label{fig:r0-syntax}
  838. \end{figure}
  839. \section{Pattern Matching}
  840. \label{sec:pattern-matching}
  841. As mentioned in Section~\ref{sec:ast}, compilers often need to access
  842. the parts of an AST node. \racket{Racket}\python{As of version 3.10, Python} provides the
  843. \texttt{match} feature to access the parts of a value.
  844. Consider the following example. \index{subject}{match} \index{subject}{pattern matching}
  845. \begin{center}
  846. \begin{minipage}{0.5\textwidth}
  847. {\if\edition\racketEd\color{olive}
  848. \begin{lstlisting}
  849. (match ast1_1
  850. [(Prim op (list child1 child2))
  851. (print op)])
  852. \end{lstlisting}
  853. \fi}
  854. {\if\edition\pythonEd
  855. \begin{lstlisting}
  856. match ast1_1:
  857. case BinOp(child1, op, child2):
  858. print(op)
  859. \end{lstlisting}
  860. \fi}
  861. \end{minipage}
  862. \end{center}
  863. {\if\edition\racketEd\color{olive}
  864. %
  865. In the above example, the \texttt{match} form checks whether the AST
  866. \eqref{eq:arith-prog} is a binary operator and binds its parts to the
  867. three pattern variables \texttt{op}, \texttt{child1}, and
  868. \texttt{child2}, and then prints out the operator. In general, a match
  869. clause consists of a \emph{pattern} and a
  870. \emph{body}.\index{subject}{pattern} Patterns are recursively defined
  871. to be either a pattern variable, a structure name followed by a
  872. pattern for each of the structure's arguments, or an S-expression
  873. (symbols, lists, etc.). (See Chapter 12 of The Racket
  874. Guide\footnote{\url{https://docs.racket-lang.org/guide/match.html}}
  875. and Chapter 9 of The Racket
  876. Reference\footnote{\url{https://docs.racket-lang.org/reference/match.html}}
  877. for a complete description of \code{match}.)
  878. %
  879. The body of a match clause may contain arbitrary Racket code. The
  880. pattern variables can be used in the scope of the body, such as
  881. \code{op} in \code{(print op)}.
  882. %
  883. \fi}
  884. %
  885. %
  886. {\if\edition\pythonEd
  887. %
  888. In the above example, the \texttt{match} form checks whether the AST
  889. \eqref{eq:arith-prog} is a binary operator and binds its parts to the
  890. three pattern variables \texttt{child1}, \texttt{op}, and
  891. \texttt{child2}, and then prints out the operator. In general, each
  892. \code{case} consists of a \emph{pattern} and a
  893. \emph{body}.\index{subject}{pattern} Patterns are recursively defined
  894. to be either a pattern variable, a class name followed by a pattern
  895. for each of its constructor's arguments, or other literals such as
  896. strings, lists, etc.
  897. %
  898. The body of each \code{case} may contain arbitrary Python code. The
  899. pattern variables can be used in the body, such as \code{op} in
  900. \code{print(op)}.
  901. %
  902. \fi}
  903. A \code{match} form may contain several clauses, as in the following
  904. function \code{leaf} that recognizes when an \LangInt{} node is a leaf in
  905. the AST. The \code{match} proceeds through the clauses in order,
  906. checking whether the pattern can match the input AST. The body of the
  907. first clause that matches is executed. The output of \code{leaf} for
  908. several ASTs is shown on the right.
  909. \begin{center}
  910. \begin{minipage}{0.6\textwidth}
  911. {\if\edition\racketEd\color{olive}
  912. \begin{lstlisting}
  913. (define (leaf arith)
  914. (match arith
  915. [(Int n) #t]
  916. [(Prim 'read '()) #t]
  917. [(Prim '- (list e1)) #f]
  918. [(Prim '+ (list e1 e2)) #f]))
  919. (leaf (Prim 'read '()))
  920. (leaf (Prim '- (list (Int 8))))
  921. (leaf (Int 8))
  922. \end{lstlisting}
  923. \fi}
  924. {\if\edition\pythonEd
  925. \begin{lstlisting}
  926. def leaf(arith):
  927. match arith:
  928. case Constant(n):
  929. return True
  930. case Call(Name('input_int'), []):
  931. return True
  932. case UnaryOp(USub(), e1):
  933. return False
  934. case BinOp(e1, Add(), e2):
  935. return False
  936. print(leaf(Call(Name('input_int'), [])))
  937. print(leaf(UnaryOp(USub(), eight)))
  938. print(leaf(Constant(8)))
  939. \end{lstlisting}
  940. \fi}
  941. \end{minipage}
  942. \vrule
  943. \begin{minipage}{0.25\textwidth}
  944. {\if\edition\racketEd\color{olive}
  945. \begin{lstlisting}
  946. #t
  947. #f
  948. #t
  949. \end{lstlisting}
  950. \fi}
  951. {\if\edition\pythonEd
  952. \begin{lstlisting}
  953. True
  954. False
  955. True
  956. \end{lstlisting}
  957. \fi}
  958. \end{minipage}
  959. \end{center}
  960. When writing a \code{match}, we refer to the grammar definition to
  961. identify which non-terminal we are expecting to match against, then we
  962. make sure that 1) we have one \racket{clause}\python{case} for each alternative of that
  963. non-terminal and 2) that the pattern in each \racket{clause}\python{case} corresponds to the
  964. corresponding right-hand side of a grammar rule. For the \code{match}
  965. in the \code{leaf} function, we refer to the grammar for \LangInt{} in
  966. Figure~\ref{fig:r0-syntax}. The $\Exp$ non-terminal has 4
  967. alternatives, so the \code{match} has 4 \racket{clauses}\python{cases}.
  968. The pattern in each \racket{clause}\python{case} corresponds to the right-hand side
  969. of a grammar rule. For example, the pattern \ADD{\code{e1}}{\code{e2}} corresponds to the
  970. right-hand side $\ADD{\Exp}{\Exp}$. When translating from grammars to
  971. patterns, replace non-terminals such as $\Exp$ with pattern variables
  972. of your choice (e.g. \code{e1} and \code{e2}).
  973. \section{Recursive Functions}
  974. \label{sec:recursion}
  975. \index{subject}{recursive function}
  976. Programs are inherently recursive. For example, an expression is often
  977. made of smaller expressions. Thus, the natural way to process an
  978. entire program is with a recursive function. As a first example of
  979. such a recursive function, we define the function \code{exp} in
  980. Figure~\ref{fig:exp-predicate}, which takes an arbitrary value and
  981. determines whether or not it is an expression in \LangInt{}.
  982. %
  983. We say that a function is defined by \emph{structural recursion} when
  984. it is defined using a sequence of match \racket{clauses}\python{cases}
  985. that correspond to a grammar, and the body of each \racket{clause}\python{case}
  986. makes a recursive call on each
  987. child node.\footnote{This principle of structuring code according to
  988. the data definition is advocated in the book \emph{How to Design
  989. Programs} \url{https://htdp.org/2020-8-1/Book/index.html}.}.
  990. \python{We define a second function, named \code{stmt}, that recognizes
  991. whether a value is a \LangInt{} statement.}
  992. \python{Finally, }
  993. Figure~\ref{fig:exp-predicate} \racket{also} defines \code{Lint}, which
  994. determines whether an AST is a program in \LangInt{}. In general we can
  995. expect to write one recursive function to handle each non-terminal in
  996. a grammar.\index{subject}{structural recursion}
  997. \begin{figure}[tp]
  998. {\if\edition\racketEd\color{olive}
  999. \begin{minipage}{0.7\textwidth}
  1000. \begin{lstlisting}
  1001. (define (exp ast)
  1002. (match ast
  1003. [(Int n) #t]
  1004. [(Prim 'read '()) #t]
  1005. [(Prim '- (list e)) (exp e)]
  1006. [(Prim '+ (list e1 e2))
  1007. (and (exp e1) (exp e2))]
  1008. [else #f]))
  1009. (define (Lint ast)
  1010. (match ast
  1011. [(Program '() e) (exp e)]
  1012. [else #f]))
  1013. (Lint (Program '() ast1_1)
  1014. (Lint (Program '()
  1015. (Prim '- (list (Prim 'read '())
  1016. (Prim '+ (list (Num 8)))))))
  1017. \end{lstlisting}
  1018. \end{minipage}
  1019. \vrule
  1020. \begin{minipage}{0.25\textwidth}
  1021. \begin{lstlisting}
  1022. #t
  1023. #f
  1024. \end{lstlisting}
  1025. \end{minipage}
  1026. \fi}
  1027. {\if\edition\pythonEd
  1028. \begin{minipage}{0.7\textwidth}
  1029. \begin{lstlisting}
  1030. def exp(e):
  1031. match e:
  1032. case Constant(n):
  1033. return True
  1034. case Call(Name('input_int'), []):
  1035. return True
  1036. case UnaryOp(USub(), e1):
  1037. return exp(e1)
  1038. case BinOp(e1, Add(), e2):
  1039. return exp(e1) and exp(e2)
  1040. case _:
  1041. return False
  1042. def stmt(s):
  1043. match s:
  1044. case Call(Name('print'), [e]):
  1045. return exp(e)
  1046. case Expr(e):
  1047. return exp(e)
  1048. case _:
  1049. return False
  1050. def Lint(p):
  1051. match p:
  1052. case Module(body):
  1053. return all([stmt(s) for s in body])
  1054. case _:
  1055. return False
  1056. print(Lint(Module([Expr(ast1_1)])))
  1057. print(Lint(Module([Expr(BinOp(read, Sub(),
  1058. UnaryOp(Add(), Constant(8))))])))
  1059. \end{lstlisting}
  1060. \end{minipage}
  1061. \vrule
  1062. \begin{minipage}{0.25\textwidth}
  1063. \begin{lstlisting}
  1064. True
  1065. False
  1066. \end{lstlisting}
  1067. \end{minipage}
  1068. \fi}
  1069. \caption{Example of recursive functions for \LangInt{}. These functions
  1070. recognize whether an AST is in \LangInt{}.}
  1071. \label{fig:exp-predicate}
  1072. \end{figure}
  1073. %% You may be tempted to merge the two functions into one, like this:
  1074. %% \begin{center}
  1075. %% \begin{minipage}{0.5\textwidth}
  1076. %% \begin{lstlisting}
  1077. %% (define (Lint ast)
  1078. %% (match ast
  1079. %% [(Int n) #t]
  1080. %% [(Prim 'read '()) #t]
  1081. %% [(Prim '- (list e)) (Lint e)]
  1082. %% [(Prim '+ (list e1 e2)) (and (Lint e1) (Lint e2))]
  1083. %% [(Program '() e) (Lint e)]
  1084. %% [else #f]))
  1085. %% \end{lstlisting}
  1086. %% \end{minipage}
  1087. %% \end{center}
  1088. %% %
  1089. %% Sometimes such a trick will save a few lines of code, especially when
  1090. %% it comes to the \code{Program} wrapper. Yet this style is generally
  1091. %% \emph{not} recommended because it can get you into trouble.
  1092. %% %
  1093. %% For example, the above function is subtly wrong:
  1094. %% \lstinline{(Lint (Program '() (Program '() (Int 3))))}
  1095. %% returns true when it should return false.
  1096. \section{Interpreters}
  1097. \label{sec:interp_Lint}
  1098. \index{subject}{interpreter}
  1099. The behavior of a program is defined by the specification of the
  1100. programming language.
  1101. %
  1102. \racket{For example, the Scheme language is defined in the report by
  1103. \cite{SPERBER:2009aa}. The Racket language is defined in its
  1104. reference manual~\citep{plt-tr}.}
  1105. %
  1106. \python{For example, the Python language is defined in the Python
  1107. Language Reference~\citep{PSF21:python_ref} and the CPython interpreter~\citep{PSF21:cpython}.}
  1108. %
  1109. In this book we use interpreters
  1110. to specify each language that we consider. An interpreter that is
  1111. designated as the definition of a language is called a
  1112. \emph{definitional interpreter}~\citep{reynolds72:_def_interp}.
  1113. \index{subject}{definitional interpreter} We warm up by creating a
  1114. definitional interpreter for the \LangInt{} language, which serves as
  1115. a second example of structural recursion. The \code{interp\_Lint}
  1116. function is defined in Figure~\ref{fig:interp_Lint}.
  1117. %
  1118. \racket{The body of the function is a match on the input program
  1119. followed by a call to the \lstinline{interp_exp} helper function,
  1120. which in turn has one match clause per grammar rule for \LangInt{}
  1121. expressions.}
  1122. %
  1123. \python{The body of the function matches on the \code{Module} AST node
  1124. and then invokes \code{interp\_stmt} on each statement in the
  1125. module. The \code{interp\_stmt} function includes a case for each
  1126. grammar rule of the \Stmt{} non-terminal and it calls
  1127. \code{interp\_exp} on each subexpression. The \code{interp\_exp}
  1128. function includes a case for each grammar rule of the \Exp{}
  1129. non-terminal.}
  1130. \begin{figure}[tp]
  1131. {\if\edition\racketEd\color{olive}
  1132. \begin{lstlisting}
  1133. (define (interp_exp e)
  1134. (match e
  1135. [(Int n) n]
  1136. [(Prim 'read '())
  1137. (define r (read))
  1138. (cond [(fixnum? r) r]
  1139. [else (error 'interp_exp "read expected an integer" r)])]
  1140. [(Prim '- (list e))
  1141. (define v (interp_exp e))
  1142. (fx- 0 v)]
  1143. [(Prim '+ (list e1 e2))
  1144. (define v1 (interp_exp e1))
  1145. (define v2 (interp_exp e2))
  1146. (fx+ v1 v2)]))
  1147. (define (interp_Lint p)
  1148. (match p
  1149. [(Program '() e) (interp_exp e)]))
  1150. \end{lstlisting}
  1151. \fi}
  1152. {\if\edition\pythonEd
  1153. \begin{lstlisting}
  1154. def interp_exp(e):
  1155. match e:
  1156. case BinOp(left, Add(), right):
  1157. l = interp_exp(left)
  1158. r = interp_exp(right)
  1159. return l + r
  1160. case UnaryOp(USub(), v):
  1161. return - interp_exp(v)
  1162. case Constant(value):
  1163. return value
  1164. case Call(Name('input_int'), []):
  1165. return int(input())
  1166. def interp_stmt(s):
  1167. match s:
  1168. case Expr(Call(Name('print'), [arg])):
  1169. print(interp_exp(arg))
  1170. case Expr(value):
  1171. interp_exp(value)
  1172. def interp_Lint(p):
  1173. match p:
  1174. case Module(body):
  1175. for s in body:
  1176. interp_stmt(s)
  1177. \end{lstlisting}
  1178. \fi}
  1179. \caption{Interpreter for the \LangInt{} language.}
  1180. \label{fig:interp_Lint}
  1181. \end{figure}
  1182. Let us consider the result of interpreting a few \LangInt{} programs. The
  1183. following program adds two integers.
  1184. {\if\edition\racketEd\color{olive}
  1185. \begin{lstlisting}
  1186. (+ 10 32)
  1187. \end{lstlisting}
  1188. \fi}
  1189. {\if\edition\pythonEd
  1190. \begin{lstlisting}
  1191. print(10 + 32)
  1192. \end{lstlisting}
  1193. \fi}
  1194. The result is \key{42}, the answer to life, the universe, and
  1195. everything: \code{42}!\footnote{\emph{The Hitchhiker's Guide to the
  1196. Galaxy} by Douglas Adams.}.
  1197. %
  1198. We wrote the above program in concrete syntax whereas the parsed
  1199. abstract syntax is:
  1200. {\if\edition\racketEd\color{olive}
  1201. \begin{lstlisting}
  1202. (Program '() (Prim '+ (list (Int 10) (Int 32))))
  1203. \end{lstlisting}
  1204. \fi}
  1205. {\if\edition\pythonEd
  1206. \begin{lstlisting}
  1207. Module([Expr(Call(Name('print'), [BinOp(Constant(10), Add(), Constant(32))]))])
  1208. \end{lstlisting}
  1209. \fi}
  1210. The next example demonstrates that expressions may be nested within
  1211. each other, in this case nesting several additions and negations.
  1212. {\if\edition\racketEd\color{olive}
  1213. \begin{lstlisting}
  1214. (+ 10 (- (+ 12 20)))
  1215. \end{lstlisting}
  1216. \fi}
  1217. {\if\edition\pythonEd
  1218. \begin{lstlisting}
  1219. print(10 + -(12 + 20))
  1220. \end{lstlisting}
  1221. \fi}
  1222. %
  1223. \noindent What is the result of the above program?
  1224. {\if\edition\racketEd\color{olive}
  1225. As mentioned previously, the \LangInt{} language does not support
  1226. arbitrarily-large integers, but only $63$-bit integers, so we
  1227. interpret the arithmetic operations of \LangInt{} using fixnum arithmetic
  1228. in Racket.
  1229. Suppose
  1230. \[
  1231. n = 999999999999999999
  1232. \]
  1233. which indeed fits in $63$-bits. What happens when we run the
  1234. following program in our interpreter?
  1235. \begin{lstlisting}
  1236. (+ (+ (+ |$n$| |$n$|) (+ |$n$| |$n$|)) (+ (+ |$n$| |$n$|) (+ |$n$| |$n$|)))))
  1237. \end{lstlisting}
  1238. It produces an error:
  1239. \begin{lstlisting}
  1240. fx+: result is not a fixnum
  1241. \end{lstlisting}
  1242. We establish the convention that if running the definitional
  1243. interpreter on a program produces an error then the meaning of that
  1244. program is \emph{unspecified}\index{subject}{unspecified behavior}, unless the
  1245. error is a \code{trapped-error}. A compiler for the language is under
  1246. no obligations regarding programs with unspecified behavior; it does
  1247. not have to produce an executable, and if it does, that executable can
  1248. do anything. On the other hand, if the error is a
  1249. \code{trapped-error}, then the compiler must produce an executable and
  1250. it is required to report that an error occurred. To signal an error,
  1251. exit with a return code of \code{255}. The interpreters in chapters
  1252. \ref{ch:Rdyn} and \ref{ch:Rgrad} use
  1253. \code{trapped-error}.
  1254. \fi}
  1255. % TODO: how to deal with too-large integers in the Python interpreter?
  1256. %% This convention applies to the languages defined in this
  1257. %% book, as a way to simplify the student's task of implementing them,
  1258. %% but this convention is not applicable to all programming languages.
  1259. %%
  1260. Moving on to the last feature of the \LangInt{} language, the
  1261. \READOP{} operation prompts the user of the program for an integer.
  1262. Recall that program \eqref{eq:arith-prog} requests an integer input
  1263. and then subtracts \code{8}. So if we run
  1264. {\if\edition\racketEd\color{olive}
  1265. \begin{lstlisting}
  1266. (interp_Lint (Program '() ast1_1))
  1267. \end{lstlisting}
  1268. \fi}
  1269. {\if\edition\pythonEd
  1270. \begin{lstlisting}
  1271. interp_Lint(Module([Expr(Call(Name('print'), [ast1_1]))]))
  1272. \end{lstlisting}
  1273. \fi}
  1274. \noindent and if the input is \code{50}, the result is \code{42}.
  1275. We include the \READOP{} operation in \LangInt{} so a clever student
  1276. cannot implement a compiler for \LangInt{} that simply runs the interpreter
  1277. during compilation to obtain the output and then generates the trivial
  1278. code to produce the output.\footnote{Yes, a clever student did this in the
  1279. first instance of this course!}
  1280. The job of a compiler is to translate a program in one language into a
  1281. program in another language so that the output program behaves the
  1282. same way as the input program. This idea is depicted in the
  1283. following diagram. Suppose we have two languages, $\mathcal{L}_1$ and
  1284. $\mathcal{L}_2$, and a definitional interpreter for each language.
  1285. Given a compiler that translates from language $\mathcal{L}_1$ to
  1286. $\mathcal{L}_2$ and given any program $P_1$ in $\mathcal{L}_1$, the
  1287. compiler must translate it into some program $P_2$ such that
  1288. interpreting $P_1$ and $P_2$ on their respective interpreters with
  1289. same input $i$ yields the same output $o$.
  1290. \begin{equation} \label{eq:compile-correct}
  1291. \begin{tikzpicture}[baseline=(current bounding box.center)]
  1292. \node (p1) at (0, 0) {$P_1$};
  1293. \node (p2) at (3, 0) {$P_2$};
  1294. \node (o) at (3, -2.5) {$o$};
  1295. \path[->] (p1) edge [above] node {compile} (p2);
  1296. \path[->] (p2) edge [right] node {interp\_$\mathcal{L}_2$($i$)} (o);
  1297. \path[->] (p1) edge [left] node {interp\_$\mathcal{L}_1$($i$)} (o);
  1298. \end{tikzpicture}
  1299. \end{equation}
  1300. In the next section we see our first example of a compiler.
  1301. \section{Example Compiler: a Partial Evaluator}
  1302. \label{sec:partial-evaluation}
  1303. In this section we consider a compiler that translates \LangInt{}
  1304. programs into \LangInt{} programs that may be more efficient. The
  1305. compiler eagerly computes the parts of the program that do not depend
  1306. on any inputs, a process known as \emph{partial
  1307. evaluation}~\citep{Jones:1993uq}. \index{subject}{partial evaluation}
  1308. For example, given the following program
  1309. {\if\edition\racketEd\color{olive}
  1310. \begin{lstlisting}
  1311. (+ (read) (- (+ 5 3)))
  1312. \end{lstlisting}
  1313. \fi}
  1314. {\if\edition\pythonEd
  1315. \begin{lstlisting}
  1316. print(input_int() + -(5 + 3) )
  1317. \end{lstlisting}
  1318. \fi}
  1319. \noindent our compiler translates it into the program
  1320. {\if\edition\racketEd\color{olive}
  1321. \begin{lstlisting}
  1322. (+ (read) -8)
  1323. \end{lstlisting}
  1324. \fi}
  1325. {\if\edition\pythonEd
  1326. \begin{lstlisting}
  1327. print(input_int() + -8)
  1328. \end{lstlisting}
  1329. \fi}
  1330. Figure~\ref{fig:pe-arith} gives the code for a simple partial
  1331. evaluator for the \LangInt{} language. The output of the partial evaluator
  1332. is a program in \LangInt{}. In Figure~\ref{fig:pe-arith}, the structural
  1333. recursion over $\Exp$ is captured in the \code{pe\_exp} function
  1334. whereas the code for partially evaluating the negation and addition
  1335. operations is factored into two auxiliary functions:
  1336. \code{pe\_neg} and \code{pe\_add}. The input to these
  1337. functions is the output of partially evaluating the children.
  1338. The \code{pe\_neg} and \code{pe\_add} functions check whether their
  1339. arguments are integers and if they are, perform the appropriate
  1340. arithmetic. Otherwise, they create an AST node for the arithmetic
  1341. operation.
  1342. \begin{figure}[tp]
  1343. {\if\edition\racketEd\color{olive}
  1344. \begin{lstlisting}
  1345. (define (pe_neg r)
  1346. (match r
  1347. [(Int n) (Int (fx- 0 n))]
  1348. [else (Prim '- (list r))]))
  1349. (define (pe_add r1 r2)
  1350. (match* (r1 r2)
  1351. [((Int n1) (Int n2)) (Int (fx+ n1 n2))]
  1352. [(_ _) (Prim '+ (list r1 r2))]))
  1353. (define (pe_exp e)
  1354. (match e
  1355. [(Int n) (Int n)]
  1356. [(Prim 'read '()) (Prim 'read '())]
  1357. [(Prim '- (list e1)) (pe_neg (pe_exp e1))]
  1358. [(Prim '+ (list e1 e2)) (pe_add (pe_exp e1) (pe_exp e2))]))
  1359. (define (pe_Lint p)
  1360. (match p
  1361. [(Program '() e) (Program '() (pe_exp e))]))
  1362. \end{lstlisting}
  1363. \fi}
  1364. {\if\edition\pythonEd
  1365. \begin{lstlisting}
  1366. def pe_neg(r):
  1367. match r:
  1368. case Constant(n):
  1369. return Constant(-n)
  1370. case _:
  1371. return UnaryOp(USub(), r)
  1372. def pe_add(r1, r2):
  1373. match (r1, r2):
  1374. case (Constant(n1), Constant(n2)):
  1375. return Constant(n1 + n2)
  1376. case _:
  1377. return BinOp(r1, Add(), r2)
  1378. def pe_exp(e):
  1379. match e:
  1380. case BinOp(left, Add(), right):
  1381. return pe_add(pe_exp(left), pe_exp(right))
  1382. case UnaryOp(USub(), v):
  1383. return pe_neg(pe_exp(v))
  1384. case Constant(value):
  1385. return e
  1386. case Call(Name('input_int'), []):
  1387. return e
  1388. def pe_stmt(s):
  1389. match s:
  1390. case Expr(Call(Name('print'), [arg])):
  1391. return Expr(Call(Name('print'), [pe_exp(arg)]))
  1392. case Expr(value):
  1393. return Expr(pe_exp(value))
  1394. def pe_P_int(p):
  1395. match p:
  1396. case Module(body):
  1397. new_body = [pe_stmt(s) for s in body]
  1398. return Module(new_body)
  1399. \end{lstlisting}
  1400. \fi}
  1401. \caption{A partial evaluator for \LangInt{}.}
  1402. \label{fig:pe-arith}
  1403. \end{figure}
  1404. To gain some confidence that the partial evaluator is correct, we can
  1405. test whether it produces programs that get the same result as the
  1406. input programs. That is, we can test whether it satisfies Diagram
  1407. \ref{eq:compile-correct}.
  1408. %
  1409. {\if\edition\racketEd\color{olive}
  1410. The following code runs the partial evaluator on several examples and
  1411. tests the output program. The \texttt{parse-program} and
  1412. \texttt{assert} functions are defined in
  1413. Appendix~\ref{appendix:utilities}.\\
  1414. \begin{minipage}{1.0\textwidth}
  1415. \begin{lstlisting}
  1416. (define (test_pe p)
  1417. (assert "testing pe_Lint"
  1418. (equal? (interp_Lint p) (interp_Lint (pe_Lint p)))))
  1419. (test_pe (parse-program `(program () (+ 10 (- (+ 5 3))))))
  1420. (test_pe (parse-program `(program () (+ 1 (+ 3 1)))))
  1421. (test_pe (parse-program `(program () (- (+ 3 (- 5))))))
  1422. \end{lstlisting}
  1423. \end{minipage}
  1424. \fi}
  1425. % TODO: python version of testing the PE
  1426. \begin{exercise}\normalfont
  1427. Create three programs in the \LangInt{} language and test whether
  1428. partially evaluating them with \code{pe\_Lint} and then
  1429. interpreting them with \code{interp\_Lint} gives the same result
  1430. as directly interpreting them with \code{interp\_Lint}.
  1431. \end{exercise}
  1432. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  1433. \chapter{Integers and Variables}
  1434. \label{ch:Lvar}
  1435. This chapter is about compiling a subset of
  1436. \racket{Racket}\python{Python} to x86-64 assembly
  1437. code~\citep{Intel:2015aa}. The subset, named \LangVar{}, includes
  1438. integer arithmetic and local variables. We often refer to x86-64
  1439. simply as x86. The chapter begins with a description of the
  1440. \LangVar{} language (Section~\ref{sec:s0}) followed by an introduction
  1441. to x86 assembly (Section~\ref{sec:x86}). The x86 assembly language is
  1442. large so we discuss only the instructions needed for compiling
  1443. \LangVar{}. We introduce more x86 instructions in later chapters.
  1444. After introducing \LangVar{} and x86, we reflect on their differences
  1445. and come up with a plan to break down the translation from \LangVar{}
  1446. to x86 into a handful of steps (Section~\ref{sec:plan-s0-x86}). The
  1447. rest of the sections in this chapter give detailed hints regarding
  1448. each step. We hope to give enough hints that the well-prepared
  1449. reader, together with a few friends, can implement a compiler from
  1450. \LangVar{} to x86 in a couple weeks. To give the reader a feeling for
  1451. the scale of this first compiler, the instructor solution for the
  1452. \LangVar{} compiler is approximately \racket{500}\python{300} lines of
  1453. code.
  1454. \section{The \LangVar{} Language}
  1455. \label{sec:s0}
  1456. \index{subject}{variable}
  1457. The \LangVar{} language extends the \LangInt{} language with
  1458. variables. The concrete syntax of the \LangVar{} language is defined
  1459. by the grammar in Figure~\ref{fig:Lvar-concrete-syntax} and the
  1460. abstract syntax is defined in Figure~\ref{fig:Lvar-syntax}. The
  1461. non-terminal \Var{} may be any \racket{Racket}\python{Python} identifier.
  1462. As in \LangInt{}, \READOP{} is a nullary operator, \key{-} is a unary operator, and
  1463. \key{+} is a binary operator. Similar to \LangInt{}, the abstract
  1464. syntax of \LangVar{} includes the \racket{\key{Program}
  1465. struct}\python{\key{Module} instance} to mark the top of the
  1466. program.
  1467. %% The $\itm{info}$
  1468. %% field of the \key{Program} structure contains an \emph{association
  1469. %% list} (a list of key-value pairs) that is used to communicate
  1470. %% auxiliary data from one compiler pass the next.
  1471. Despite the simplicity of the \LangVar{} language, it is rich enough to
  1472. exhibit several compilation techniques.
  1473. \begin{figure}[tp]
  1474. \centering
  1475. \fbox{
  1476. \begin{minipage}{0.96\textwidth}
  1477. {\if\edition\racketEd\color{olive}
  1478. \[
  1479. \begin{array}{rcl}
  1480. \Exp &::=& \Int{} \MID \CREAD{} \MID \CNEG{\Exp} \MID \CADD{\Exp}{\Exp}\\
  1481. &\MID& \Var{} \MID \CLET{\Var}{\Exp}{\Exp} \\
  1482. \LangVarM{} &::=& \Exp
  1483. \end{array}
  1484. \]
  1485. \fi}
  1486. {\if\edition\pythonEd
  1487. \[
  1488. \begin{array}{rcl}
  1489. \Exp &::=& \Int \MID \key{input\_int}\LP\RP \MID \key{-}\;\Exp \MID \Exp \; \key{+} \; \Exp \MID \Var{} \\
  1490. \Stmt &::=& \key{print}\LP \Exp \RP \MID \Exp \MID \Var\mathop{\key{=}}\Exp\\
  1491. \LangVarM{} &::=& \Stmt^{*}
  1492. \end{array}
  1493. \]
  1494. \fi}
  1495. \end{minipage}
  1496. }
  1497. \caption{The concrete syntax of \LangVar{}.}
  1498. \label{fig:Lvar-concrete-syntax}
  1499. \end{figure}
  1500. \begin{figure}[tp]
  1501. \centering
  1502. \fbox{
  1503. \begin{minipage}{0.96\textwidth}
  1504. {\if\edition\racketEd\color{olive}
  1505. \[
  1506. \begin{array}{rcl}
  1507. \Exp &::=& \INT{\Int} \MID \READ{} \\
  1508. &\MID& \NEG{\Exp} \MID \ADD{\Exp}{\Exp} \\
  1509. &\MID& \VAR{\Var} \MID \LET{\Var}{\Exp}{\Exp} \\
  1510. \LangVarM{} &::=& \PROGRAM{\code{'()}}{\Exp}
  1511. \end{array}
  1512. \]
  1513. \fi}
  1514. {\if\edition\pythonEd
  1515. \[
  1516. \begin{array}{rcl}
  1517. \Exp{} &::=& \INT{\Int} \MID \READ{} \\
  1518. &\MID& \NEG{\Exp} \MID \ADD{\Exp}{\Exp} \MID \VAR{\Var{}} \\
  1519. \Stmt{} &::=& \PRINT{\Exp} \MID \EXPR{\Exp} \\
  1520. &\MID& \ASSIGN{\VAR{\Var}}{\Exp}\\
  1521. \LangVarM{} &::=& \PROGRAM{}{\Stmt^{*}}
  1522. \end{array}
  1523. \]
  1524. \fi}
  1525. \end{minipage}
  1526. }
  1527. \caption{The abstract syntax of \LangVar{}.}
  1528. \label{fig:Lvar-syntax}
  1529. \end{figure}
  1530. {\if\edition\racketEd\color{olive}
  1531. Let us dive further into the syntax and semantics of the \LangVar{}
  1532. language. The \key{let} feature defines a variable for use within its
  1533. body and initializes the variable with the value of an expression.
  1534. The abstract syntax for \key{let} is defined in
  1535. Figure~\ref{fig:Lvar-syntax}. The concrete syntax for \key{let} is
  1536. \begin{lstlisting}
  1537. (let ([|$\itm{var}$| |$\itm{exp}$|]) |$\itm{exp}$|)
  1538. \end{lstlisting}
  1539. For example, the following program initializes \code{x} to $32$ and then
  1540. evaluates the body \code{(+ 10 x)}, producing $42$.
  1541. \begin{lstlisting}
  1542. (let ([x (+ 12 20)]) (+ 10 x))
  1543. \end{lstlisting}
  1544. \fi}
  1545. %
  1546. {\if\edition\pythonEd
  1547. %
  1548. The \LangVar{} language includes assignment statements, which define a
  1549. variable for use in later statements and initializes the variable with
  1550. the value of an expression. The abstract syntax for assignment is
  1551. defined in Figure~\ref{fig:Lvar-syntax}. The concrete syntax for
  1552. assignment is
  1553. \begin{lstlisting}
  1554. |$\itm{var}$| = |$\itm{exp}$|
  1555. \end{lstlisting}
  1556. For example, the following program initializes the variable \code{x}
  1557. to $32$ and then prints the result of \code{10 + x}, producing $42$.
  1558. \begin{lstlisting}
  1559. x = 12 + 20
  1560. print(10 + x)
  1561. \end{lstlisting}
  1562. \fi}
  1563. {\if\edition\racketEd\color{olive}
  1564. %
  1565. When there are multiple \key{let}'s for the same variable, the closest
  1566. enclosing \key{let} is used. That is, variable definitions overshadow
  1567. prior definitions. Consider the following program with two \key{let}'s
  1568. that define variables named \code{x}. Can you figure out the result?
  1569. \begin{lstlisting}
  1570. (let ([x 32]) (+ (let ([x 10]) x) x))
  1571. \end{lstlisting}
  1572. For the purposes of depicting which variable uses correspond to which
  1573. definitions, the following shows the \code{x}'s annotated with
  1574. subscripts to distinguish them. Double check that your answer for the
  1575. above is the same as your answer for this annotated version of the
  1576. program.
  1577. \begin{lstlisting}
  1578. (let ([x|$_1$| 32]) (+ (let ([x|$_2$| 10]) x|$_2$|) x|$_1$|))
  1579. \end{lstlisting}
  1580. The initializing expression is always evaluated before the body of the
  1581. \key{let}, so in the following, the \key{read} for \code{x} is
  1582. performed before the \key{read} for \code{y}. Given the input
  1583. $52$ then $10$, the following produces $42$ (not $-42$).
  1584. \begin{lstlisting}
  1585. (let ([x (read)]) (let ([y (read)]) (+ x (- y))))
  1586. \end{lstlisting}
  1587. \fi}
  1588. \subsection{Extensible Interpreters via Method Overriding}
  1589. \label{sec:extensible-interp}
  1590. To prepare for discussing the interpreter for \LangVar{}, we
  1591. explain why we to implement the interpreter using
  1592. object-oriented programming, that is, as a collection of methods
  1593. inside of a class. Throughout this book we define many interpreters,
  1594. one for each of the languages that we study. Because each language
  1595. builds on the prior one, there is a lot of commonality between these
  1596. interpreters. We want to write down the common parts just once
  1597. instead of many times. A naive approach would be to have, for example,
  1598. the interpreter for \LangIf{} handle all of the new features in that
  1599. language and then have a default case that dispatches to the
  1600. interpreter for \LangVar{}. The following code sketches this idea.
  1601. \begin{center}
  1602. {\if\edition\racketEd\color{olive}
  1603. \begin{minipage}{0.45\textwidth}
  1604. \begin{lstlisting}
  1605. (define (interp_Lvar_exp e)
  1606. (match e
  1607. [(Prim '- (list e1))
  1608. (fx- 0 (interp_Lvar_exp e1))]
  1609. ...))
  1610. \end{lstlisting}
  1611. \end{minipage}
  1612. \begin{minipage}{0.45\textwidth}
  1613. \begin{lstlisting}
  1614. (define (interp_Lif_exp e)
  1615. (match e
  1616. [(If cnd thn els)
  1617. (match (interp_Lif_exp cnd)
  1618. [#t (interp_Lif_exp thn)]
  1619. [#f (interp_Lif_exp els)])]
  1620. ...
  1621. [else (interp_Lvar_exp e)]))
  1622. \end{lstlisting}
  1623. \end{minipage}
  1624. \fi}
  1625. {\if\edition\pythonEd
  1626. \begin{minipage}{0.45\textwidth}
  1627. \begin{lstlisting}
  1628. def interp_Lvar_exp(e):
  1629. match e:
  1630. case UnaryOp(USub(), e1):
  1631. return - interp_Lvar_exp(e1)
  1632. ...
  1633. \end{lstlisting}
  1634. \end{minipage}
  1635. \begin{minipage}{0.45\textwidth}
  1636. \begin{lstlisting}
  1637. def interp_Lif_exp(e):
  1638. match e:
  1639. case IfExp(cnd, thn, els):
  1640. match interp_Lif_exp(cnd):
  1641. case True:
  1642. return interp_Lif_exp(thn)
  1643. case False:
  1644. return interp_Lif_exp(els)
  1645. ...
  1646. case _:
  1647. return interp_Lvar_exp(e)
  1648. \end{lstlisting}
  1649. \end{minipage}
  1650. \fi}
  1651. \end{center}
  1652. The problem with this approach is that it does not handle situations
  1653. in which an \LangIf{} feature, such as a conditional expression, is
  1654. nested inside an \LangVar{} feature, like the \code{-} operator, as in
  1655. the following program.
  1656. {\if\edition\racketEd\color{olive}
  1657. \begin{lstlisting}
  1658. (Prim '- (list (If (Bool #t) (Int 42) (Int 0))))
  1659. \end{lstlisting}
  1660. \fi}
  1661. {\if\edition\pythonEd
  1662. \begin{lstlisting}
  1663. print(-(42 if True else 0))
  1664. \end{lstlisting}
  1665. \fi}
  1666. %
  1667. If we invoke \code{interp\_Lif\_exp} on this program, it dispatches to
  1668. \code{interp\_Lvar\_exp} to handle the \code{-} operator, but then it
  1669. recursively calls \code{interp\_Lvar\_exp} again on the argument of
  1670. \code{-}, which is an \code{If}. But there is no case for \code{If}
  1671. in \code{interp\_Lvar\_exp} so we get an error!
  1672. To make our interpreters extensible we need something called
  1673. \emph{open recursion}\index{subject}{open recursion}, where the tying of the
  1674. recursive knot is delayed to when the functions are
  1675. composed. Object-oriented languages provide open recursion via
  1676. method overriding\index{subject}{method overriding}. The
  1677. following code uses method overriding to interpret \LangVar{} and
  1678. \LangIf{} using
  1679. %
  1680. \racket{the
  1681. \href{https://docs.racket-lang.org/guide/classes.html}{\code{class}}
  1682. \index{subject}{class} feature of Racket}
  1683. %
  1684. \python{a Python \code{class} definition}.
  1685. %
  1686. We define one class for each language and define a method for
  1687. interpreting expressions inside each class. The class for \LangIf{}
  1688. inherits from the class for \LangVar{} and the method
  1689. \code{interp\_exp} in \LangIf{} overrides the \code{interp\_exp} in
  1690. \LangVar{}. Note that the default case of \code{interp\_exp} in
  1691. \LangIf{} uses \code{super} to invoke \code{interp\_exp}, and because
  1692. \LangIf{} inherits from \LangVar{}, that dispatches to the
  1693. \code{interp\_exp} in \LangVar{}.
  1694. \begin{center}
  1695. {\if\edition\racketEd\color{olive}
  1696. \begin{minipage}{0.45\textwidth}
  1697. \begin{lstlisting}
  1698. (define interp_Lvar_class
  1699. (class object%
  1700. (define/public (interp_exp e)
  1701. (match e
  1702. [(Prim '- (list e))
  1703. (fx- 0 (interp_exp e))]
  1704. ...))
  1705. ...))
  1706. \end{lstlisting}
  1707. \end{minipage}
  1708. \begin{minipage}{0.45\textwidth}
  1709. \begin{lstlisting}
  1710. (define interp_Lif_class
  1711. (class interp_Lvar_class
  1712. (define/override (interp_exp e)
  1713. (match e
  1714. [(If cnd thn els)
  1715. (match (interp_exp cnd)
  1716. [#t (interp_exp thn)]
  1717. [#f (interp_exp els)])]
  1718. ...
  1719. [else (super interp_exp e)]))
  1720. ...
  1721. ))
  1722. \end{lstlisting}
  1723. \end{minipage}
  1724. \fi}
  1725. {\if\edition\pythonEd
  1726. \begin{minipage}{0.45\textwidth}
  1727. \begin{lstlisting}
  1728. class InterpLvar:
  1729. def interp_exp(e):
  1730. match e:
  1731. case UnaryOp(USub(), e1):
  1732. return -self.interp_exp(e1)
  1733. ...
  1734. ...
  1735. \end{lstlisting}
  1736. \end{minipage}
  1737. \begin{minipage}{0.45\textwidth}
  1738. \begin{lstlisting}
  1739. def InterpLif(InterpRVar):
  1740. def interp_exp(e):
  1741. match e:
  1742. case IfExp(cnd, thn, els):
  1743. match self.interp_exp(cnd):
  1744. case True:
  1745. return self.interp_exp(thn)
  1746. case False:
  1747. return self.interp_exp(els)
  1748. ...
  1749. case _:
  1750. return super().interp_exp(e)
  1751. ...
  1752. \end{lstlisting}
  1753. \end{minipage}
  1754. \fi}
  1755. \end{center}
  1756. Getting back to the troublesome example, repeated here:
  1757. {\if\edition\racketEd\color{olive}
  1758. \begin{lstlisting}
  1759. (define e0 (Prim '- (list (If (Bool #t) (Int 42) (Int 0)))))
  1760. \end{lstlisting}
  1761. \fi}
  1762. {\if\edition\pythonEd
  1763. \begin{lstlisting}
  1764. -(42 if True else 0)
  1765. \end{lstlisting}
  1766. \fi}
  1767. \noindent We can invoke the \code{interp\_exp} method for \LangIf{} on this
  1768. expression, call it \code{e0}, by creating an object of the \LangIf{} class
  1769. and calling the \code{interp\_exp} method.
  1770. {\if\edition\racketEd\color{olive}
  1771. \begin{lstlisting}
  1772. (send (new interp_Lif_class) interp_exp e0)
  1773. \end{lstlisting}
  1774. \fi}
  1775. {\if\edition\pythonEd
  1776. \begin{lstlisting}
  1777. InterpLif().interp_exp(e0)
  1778. \end{lstlisting}
  1779. \fi}
  1780. \noindent The default case of \code{interp\_exp} in \LangIf{} handles it by
  1781. dispatching to the \code{interp\_exp} method in \LangVar{}, which
  1782. handles the \code{-} operator. But then for the recursive method call,
  1783. it dispatches back to \code{interp\_exp} in \LangIf{}, where the
  1784. \code{If} is handled correctly. Thus, method overriding gives us the
  1785. open recursion that we need to implement our interpreters in an
  1786. extensible way.
  1787. \subsection{Definitional Interpreter for \LangVar{}}
  1788. {\if\edition\racketEd\color{olive}
  1789. \begin{figure}[tp]
  1790. %\begin{wrapfigure}[26]{r}[0.75in]{0.55\textwidth}
  1791. \small
  1792. \begin{tcolorbox}[title=Association Lists as Dictionaries]
  1793. An \emph{association list} (alist) is a list of key-value pairs.
  1794. For example, we can map people to their ages with an alist.
  1795. \index{subject}{alist}\index{subject}{association list}
  1796. \begin{lstlisting}[basicstyle=\ttfamily]
  1797. (define ages '((jane . 25) (sam . 24) (kate . 45)))
  1798. \end{lstlisting}
  1799. The \emph{dictionary} interface is for mapping keys to values.
  1800. Every alist implements this interface. \index{subject}{dictionary} The package
  1801. \href{https://docs.racket-lang.org/reference/dicts.html}{\code{racket/dict}}
  1802. provides many functions for working with dictionaries. Here
  1803. are a few of them:
  1804. \begin{description}
  1805. \item[$\LP\key{dict-ref}\,\itm{dict}\,\itm{key}\RP$]
  1806. returns the value associated with the given $\itm{key}$.
  1807. \item[$\LP\key{dict-set}\,\itm{dict}\,\itm{key}\,\itm{val}\RP$]
  1808. returns a new dictionary that maps $\itm{key}$ to $\itm{val}$
  1809. but otherwise is the same as $\itm{dict}$.
  1810. \item[$\LP\code{in-dict}\,\itm{dict}\RP$] returns the
  1811. \href{https://docs.racket-lang.org/reference/sequences.html}{sequence}
  1812. of keys and values in $\itm{dict}$. For example, the following
  1813. creates a new alist in which the ages are incremented.
  1814. \end{description}
  1815. \vspace{-10pt}
  1816. \begin{lstlisting}[basicstyle=\ttfamily]
  1817. (for/list ([(k v) (in-dict ages)])
  1818. (cons k (add1 v)))
  1819. \end{lstlisting}
  1820. \end{tcolorbox}
  1821. %\end{wrapfigure}
  1822. \caption{Association lists implement the dictionary interface.}
  1823. \label{fig:alist}
  1824. \end{figure}
  1825. \fi}
  1826. Having justified the use of classes and methods to implement
  1827. interpreters, we turn to the definitional interpreter for \LangVar{}
  1828. in Figure~\ref{fig:interp-Lvar}. It is similar to the interpreter for
  1829. \LangInt{} but adds two new \key{match} cases for variables and
  1830. \racket{\key{let}}\python{assignment}. For
  1831. \racket{\key{let}}\python{assignment} we need a way to communicate the
  1832. value bound to a variable to all the uses of the variable. To
  1833. accomplish this, we maintain a mapping from variables to
  1834. values. Throughout the compiler we often need to map variables to
  1835. information about them. We refer to these mappings as
  1836. \emph{environments}\index{subject}{environment}.\footnote{Another
  1837. common term for environment in the compiler literature is \emph{symbol
  1838. table}\index{subject}{symbol table}.}
  1839. %
  1840. We use%
  1841. %
  1842. \racket{an association list (alist)}
  1843. %
  1844. \python{a Python \href{https://docs.python.org/3.10/library/stdtypes.html\#mapping-types-dict}{dictionary}}
  1845. to represent the environment.
  1846. %
  1847. \racket{Figure~\ref{fig:alist} gives a brief introduction to alists
  1848. and the \code{racket/dict} package.}
  1849. %
  1850. The \code{interp\_exp} function takes the current environment,
  1851. \code{env}, as an extra parameter. When the interpreter encounters a
  1852. variable, it looks up the corresponding value in the dictionary.
  1853. %
  1854. \racket{When the interpreter encounters a \key{Let}, it evaluates the
  1855. initializing expression, extends the environment with the result
  1856. value bound to the variable, using \code{dict-set}, then evaluates
  1857. the body of the \key{Let}.}
  1858. %
  1859. \python{When the interpreter encounters an assignment, it evaluates
  1860. the initializing expression and then associates the resulting value
  1861. with the variable in the environment.}
  1862. \begin{figure}[tp]
  1863. {\if\edition\racketEd
  1864. \begin{lstlisting}
  1865. (define interp_Lvar_class
  1866. (class object%
  1867. (super-new)
  1868. (define/public ((interp_exp env) e)
  1869. (match e
  1870. [(Int n) n]
  1871. [(Prim 'read '())
  1872. (define r (read))
  1873. (cond [(fixnum? r) r]
  1874. [else (error 'interp_exp "expected an integer" r)])]
  1875. [(Prim '- (list e)) (fx- 0 ((interp_exp env) e))]
  1876. [(Prim '+ (list e1 e2))
  1877. (fx+ ((interp_exp env) e1) ((interp_exp env) e2))]
  1878. [(Var x) (dict-ref env x)]
  1879. [(Let x e body)
  1880. (define new-env (dict-set env x ((interp_exp env) e)))
  1881. ((interp_exp new-env) body)]))
  1882. (define/public (interp_program p)
  1883. (match p
  1884. [(Program '() e) ((interp_exp '()) e)]))
  1885. ))
  1886. (define (interp_Lvar p)
  1887. (send (new interp_Lvar_class) interp_program p))
  1888. \end{lstlisting}
  1889. \fi}
  1890. {\if\edition\pythonEd
  1891. \begin{lstlisting}
  1892. class InterpLvar:
  1893. def interp_exp(self, e, env):
  1894. match e:
  1895. case BinOp(left, Add(), right):
  1896. return self.interp_exp(left, env) + self.interp_exp(right, env)
  1897. case UnaryOp(USub(), v):
  1898. return - self.interp_exp(v, env)
  1899. case Name(id):
  1900. return env[id]
  1901. case Constant(value):
  1902. return value
  1903. case Call(Name('input_int'), []):
  1904. return int(input())
  1905. def interp_stmts(self, ss, env):
  1906. if len(ss) == 0:
  1907. return
  1908. match ss[0]:
  1909. case Assign([lhs], value):
  1910. env[lhs.id] = self.interp_exp(value, env)
  1911. return self.interp_stmts(ss[1:], env)
  1912. case Expr(Call(Name('print'), [arg])):
  1913. print(self.interp_exp(arg, env), end='')
  1914. return self.interp_stmts(ss[1:], env)
  1915. case Expr(value):
  1916. self.interp_exp(value, env)
  1917. return self.interp_stmts(ss[1:], env)
  1918. def interp_P(self, p):
  1919. match p:
  1920. case Module(body):
  1921. self.interp_stmts(body, {})
  1922. \end{lstlisting}
  1923. \fi}
  1924. \caption{Interpreter for the \LangVar{} language.}
  1925. \label{fig:interp-Lvar}
  1926. \end{figure}
  1927. The goal for this chapter is to implement a compiler that translates
  1928. any program $P_1$ written in the \LangVar{} language into an x86 assembly
  1929. program $P_2$ such that $P_2$ exhibits the same behavior when run on a
  1930. computer as the $P_1$ program interpreted by \code{interp\_Lvar}.
  1931. That is, they output the same integer $n$. We depict this correctness
  1932. criteria in the following diagram.
  1933. \[
  1934. \begin{tikzpicture}[baseline=(current bounding box.center)]
  1935. \node (p1) at (0, 0) {$P_1$};
  1936. \node (p2) at (4, 0) {$P_2$};
  1937. \node (o) at (4, -2) {$n$};
  1938. \path[->] (p1) edge [above] node {\footnotesize compile} (p2);
  1939. \path[->] (p1) edge [left] node {\footnotesize\code{interp\_Lvar}} (o);
  1940. \path[->] (p2) edge [right] node {\footnotesize\code{interp\_x86int}} (o);
  1941. \end{tikzpicture}
  1942. \]
  1943. In the next section we introduce the \LangXInt{} subset of x86 that
  1944. suffices for compiling \LangVar{}.
  1945. \section{The \LangXInt{} Assembly Language}
  1946. \label{sec:x86}
  1947. \index{subject}{x86}
  1948. Figure~\ref{fig:x86-int-concrete} defines the concrete syntax for
  1949. \LangXInt{}. We use the AT\&T syntax expected by the GNU
  1950. assembler.
  1951. %
  1952. A program begins with a \code{main} label followed by a sequence of
  1953. instructions. The \key{globl} directive says that the \key{main}
  1954. procedure is externally visible, which is necessary so that the
  1955. operating system can call it.
  1956. %
  1957. An x86 program is stored in the computer's memory. For our purposes,
  1958. the computer's memory is a mapping of 64-bit addresses to 64-bit
  1959. values. The computer has a \emph{program counter} (PC)\index{subject}{program
  1960. counter}\index{subject}{PC} stored in the \code{rip} register that points to
  1961. the address of the next instruction to be executed. For most
  1962. instructions, the program counter is incremented after the instruction
  1963. is executed, so it points to the next instruction in memory. Most x86
  1964. instructions take two operands, where each operand is either an
  1965. integer constant (called an \emph{immediate value}\index{subject}{immediate
  1966. value}), a \emph{register}\index{subject}{register}, or a memory location.
  1967. \newcommand{\allregisters}{\key{rsp} \MID \key{rbp} \MID \key{rax} \MID \key{rbx} \MID \key{rcx}
  1968. \MID \key{rdx} \MID \key{rsi} \MID \key{rdi} \MID \\
  1969. && \key{r8} \MID \key{r9} \MID \key{r10}
  1970. \MID \key{r11} \MID \key{r12} \MID \key{r13}
  1971. \MID \key{r14} \MID \key{r15}}
  1972. \begin{figure}[tp]
  1973. \fbox{
  1974. \begin{minipage}{0.96\textwidth}
  1975. {\if\edition\racketEd
  1976. \[
  1977. \begin{array}{lcl}
  1978. \Reg &::=& \allregisters{} \\
  1979. \Arg &::=& \key{\$}\Int \MID \key{\%}\Reg \MID \Int\key{(}\key{\%}\Reg\key{)}\\
  1980. \Instr &::=& \key{addq} \; \Arg\key{,} \Arg \MID
  1981. \key{subq} \; \Arg\key{,} \Arg \MID
  1982. \key{negq} \; \Arg \MID \key{movq} \; \Arg\key{,} \Arg \MID \\
  1983. && \key{callq} \; \mathit{label} \MID
  1984. \key{pushq}\;\Arg \MID \key{popq}\;\Arg \MID \key{retq} \MID \key{jmp}\,\itm{label} \\
  1985. && \itm{label}\key{:}\; \Instr \\
  1986. \LangXIntM{} &::= & \key{.globl main}\\
  1987. & & \key{main:} \; \Instr\ldots
  1988. \end{array}
  1989. \]
  1990. \fi}
  1991. {\if\edition\pythonEd
  1992. \[
  1993. \begin{array}{lcl}
  1994. \Reg &::=& \allregisters{} \\
  1995. \Arg &::=& \key{\$}\Int \MID \key{\%}\Reg \MID \Int\key{(}\key{\%}\Reg\key{)}\\
  1996. \Instr &::=& \key{addq} \; \Arg\key{,} \Arg \MID
  1997. \key{subq} \; \Arg\key{,} \Arg \MID
  1998. \key{negq} \; \Arg \MID \key{movq} \; \Arg\key{,} \Arg \MID \\
  1999. && \key{callq} \; \mathit{label} \MID
  2000. \key{pushq}\;\Arg \MID \key{popq}\;\Arg \MID \key{retq} \\
  2001. \LangXIntM{} &::= & \key{.globl main}\\
  2002. & & \key{main:} \; \Instr^{*}
  2003. \end{array}
  2004. \]
  2005. \fi}
  2006. \end{minipage}
  2007. }
  2008. \caption{The syntax of the \LangXInt{} assembly language (AT\&T syntax).}
  2009. \label{fig:x86-int-concrete}
  2010. \end{figure}
  2011. A register is a special kind of variable that holds a 64-bit
  2012. value. There are 16 general-purpose registers in the computer and
  2013. their names are given in Figure~\ref{fig:x86-int-concrete}. A register
  2014. is written with a \key{\%} followed by the register name, such as
  2015. \key{\%rax}.
  2016. An immediate value is written using the notation \key{\$}$n$ where $n$
  2017. is an integer.
  2018. %
  2019. %
  2020. An access to memory is specified using the syntax $n(\key{\%}r)$,
  2021. which obtains the address stored in register $r$ and then adds $n$
  2022. bytes to the address. The resulting address is used to load or store
  2023. to memory depending on whether it occurs as a source or destination
  2024. argument of an instruction.
  2025. An arithmetic instruction such as $\key{addq}\,s\key{,}\,d$ reads from the
  2026. source $s$ and destination $d$, applies the arithmetic operation, then
  2027. writes the result back to the destination $d$. \index{subject}{instruction}
  2028. %
  2029. The move instruction $\key{movq}\,s\key{,}\,d$ reads from $s$ and
  2030. stores the result in $d$.
  2031. %
  2032. The $\key{callq}\,\itm{label}$ instruction jumps to the procedure
  2033. specified by the label and $\key{retq}$ returns from a procedure to
  2034. its caller.
  2035. %
  2036. We discuss procedure calls in more detail later in this chapter and in
  2037. Chapter~\ref{ch:Rfun}.
  2038. %
  2039. \racket{The instruction $\key{jmp}\,\itm{label}$ updates the program
  2040. counter to the address of the instruction after the specified
  2041. label.}
  2042. Appendix~\ref{sec:x86-quick-reference} contains a quick-reference for
  2043. all of the x86 instructions used in this book.
  2044. Figure~\ref{fig:p0-x86} depicts an x86 program that computes
  2045. \racket{\code{(+ 10 32)}}\python{10 + 32}. The instruction
  2046. \lstinline{movq $10, %rax}
  2047. puts $10$ into register \key{rax} and then \lstinline{addq $32, %rax}
  2048. adds $32$ to the $10$ in \key{rax} and
  2049. puts the result, $42$, back into \key{rax}.
  2050. %
  2051. The last instruction, \key{retq}, finishes the \key{main} function by
  2052. returning the integer in \key{rax} to the operating system. The
  2053. operating system interprets this integer as the program's exit
  2054. code. By convention, an exit code of 0 indicates that a program
  2055. completed successfully, and all other exit codes indicate various
  2056. errors.
  2057. %
  2058. \racket{Nevertheless, in this book we return the result of the program
  2059. as the exit code.}
  2060. \begin{figure}[tbp]
  2061. \begin{lstlisting}
  2062. .globl main
  2063. main:
  2064. movq $10, %rax
  2065. addq $32, %rax
  2066. retq
  2067. \end{lstlisting}
  2068. \caption{An x86 program that computes
  2069. \racket{\code{(+ 10 32)}}\python{10 + 32}.}
  2070. \label{fig:p0-x86}
  2071. \end{figure}
  2072. We exhibit the use of memory for storing intermediate results in the
  2073. next example. Figure~\ref{fig:p1-x86} lists an x86 program that
  2074. computes \racket{\code{(+ 52 (- 10))}}\python{52 + -10}. This program
  2075. uses a region of memory called the \emph{procedure call stack} (or
  2076. \emph{stack} for
  2077. short). \index{subject}{stack}\index{subject}{procedure call stack}
  2078. The stack consists of a separate \emph{frame}\index{subject}{frame}
  2079. for each procedure call. The memory layout for an individual frame is
  2080. shown in Figure~\ref{fig:frame}. The register \key{rsp} is called the
  2081. \emph{stack pointer}\index{subject}{stack pointer} and points to the
  2082. item at the top of the stack. The stack grows downward in memory, so
  2083. we increase the size of the stack by subtracting from the stack
  2084. pointer. In the context of a procedure call, the \emph{return
  2085. address}\index{subject}{return address} is the instruction after the
  2086. call instruction on the caller side. The function call instruction,
  2087. \code{callq}, pushes the return address onto the stack prior to
  2088. jumping to the procedure. The register \key{rbp} is the \emph{base
  2089. pointer}\index{subject}{base pointer} and is used to access variables
  2090. that are stored in the frame of the current procedure call. The base
  2091. pointer of the caller is store after the return address. In
  2092. Figure~\ref{fig:frame} we number the variables from $1$ to
  2093. $n$. Variable $1$ is stored at address $-8\key{(\%rbp)}$, variable $2$
  2094. at $-16\key{(\%rbp)}$, etc.
  2095. \begin{figure}[tbp]
  2096. {\if\edition\racketEd
  2097. \begin{lstlisting}
  2098. start:
  2099. movq $10, -8(%rbp)
  2100. negq -8(%rbp)
  2101. movq -8(%rbp), %rax
  2102. addq $52, %rax
  2103. jmp conclusion
  2104. .globl main
  2105. main:
  2106. pushq %rbp
  2107. movq %rsp, %rbp
  2108. subq $16, %rsp
  2109. jmp start
  2110. conclusion:
  2111. addq $16, %rsp
  2112. popq %rbp
  2113. retq
  2114. \end{lstlisting}
  2115. \fi}
  2116. {\if\edition\pythonEd
  2117. \begin{lstlisting}
  2118. .globl main
  2119. main:
  2120. pushq %rbp
  2121. movq %rsp, %rbp
  2122. subq $16, %rsp
  2123. movq $10, -8(%rbp)
  2124. negq -8(%rbp)
  2125. movq -8(%rbp), %rax
  2126. addq $52, %rax
  2127. addq $16, %rsp
  2128. popq %rbp
  2129. retq
  2130. \end{lstlisting}
  2131. \fi}
  2132. \caption{An x86 program that computes
  2133. \racket{\code{(+ 52 (- 10))}}\python{52 + -10}.}
  2134. \label{fig:p1-x86}
  2135. \end{figure}
  2136. \begin{figure}[tbp]
  2137. \centering
  2138. \begin{tabular}{|r|l|} \hline
  2139. Position & Contents \\ \hline
  2140. 8(\key{\%rbp}) & return address \\
  2141. 0(\key{\%rbp}) & old \key{rbp} \\
  2142. -8(\key{\%rbp}) & variable $1$ \\
  2143. -16(\key{\%rbp}) & variable $2$ \\
  2144. \ldots & \ldots \\
  2145. 0(\key{\%rsp}) & variable $n$\\ \hline
  2146. \end{tabular}
  2147. \caption{Memory layout of a frame.}
  2148. \label{fig:frame}
  2149. \end{figure}
  2150. Getting back to the program in Figure~\ref{fig:p1-x86}, consider how
  2151. control is transferred from the operating system to the \code{main}
  2152. function. The operating system issues a \code{callq main} instruction
  2153. which pushes its return address on the stack and then jumps to
  2154. \code{main}. In x86-64, the stack pointer \code{rsp} must be divisible
  2155. by 16 bytes prior to the execution of any \code{callq} instruction, so
  2156. when control arrives at \code{main}, the \code{rsp} is 8 bytes out of
  2157. alignment (because the \code{callq} pushed the return address). The
  2158. first three instructions are the typical \emph{prelude}\index{subject}{prelude}
  2159. for a procedure. The instruction \code{pushq \%rbp} saves the base
  2160. pointer for the caller onto the stack and subtracts $8$ from the stack
  2161. pointer. The next instruction \code{movq \%rsp, \%rbp} sets the
  2162. base pointer to the current stack pointer, which is pointing at the location
  2163. of the old base pointer. The instruction \code{subq \$16, \%rsp} moves the stack
  2164. pointer down to make enough room for storing variables. This program
  2165. needs one variable ($8$ bytes) but we round up to 16 bytes so that
  2166. \code{rsp} is 16-byte aligned and we're ready to make calls to other
  2167. functions.
  2168. \racket{The last instruction of the prelude is \code{jmp start},
  2169. which transfers control to the instructions that were generated from
  2170. the expression \racket{\code{(+ 52 (- 10))}}\python{52 + -10}.}
  2171. \racket{The first instruction under the \code{start} label is}
  2172. %
  2173. \python{The first instruction after the prelude is}
  2174. %
  2175. \code{movq \$10, -8(\%rbp)}, which stores $10$ in variable $1$.
  2176. %
  2177. The instruction \code{negq -8(\%rbp)} changes variable $1$ to $-10$.
  2178. %
  2179. The next instruction moves the $-10$ from variable $1$ into the
  2180. \code{rax} register. Finally, \code{addq \$52, \%rax} adds $52$ to
  2181. the value in \code{rax}, updating its contents to $42$.
  2182. \racket{The three instructions under the label \code{conclusion} are the
  2183. typical \emph{conclusion}\index{subject}{conclusion} of a procedure.}
  2184. %
  2185. \python{The \emph{conclusion}\index{subject}{conclusion} of the
  2186. \code{main} function consists of the last three instructions.}
  2187. %
  2188. The first two restore the \code{rsp} and \code{rbp} registers to the
  2189. state they were in at the beginning of the procedure. In particular,
  2190. \key{addq \$16, \%rsp} moves the stack pointer back to point at the
  2191. old base pointer. Then \key{popq \%rbp} returns the old base pointer
  2192. to \key{rbp} and adds $8$ to the stack pointer. The last instruction,
  2193. \key{retq}, jumps back to the procedure that called this one and adds
  2194. $8$ to the stack pointer.
  2195. Our compiler needs a convenient representation for manipulating x86
  2196. programs, so we define an abstract syntax for x86 in
  2197. Figure~\ref{fig:x86-int-ast}. We refer to this language as
  2198. \LangXInt{}.
  2199. %
  2200. {\if\edition\racketEd\color{olive}
  2201. The main difference compared to the concrete syntax of \LangXInt{}
  2202. (Figure~\ref{fig:x86-int-concrete}) is that labels are not allowed in
  2203. front of every instruction. Instead instructions are grouped into
  2204. \emph{blocks}\index{subject}{block}\index{subject}{basic block} with a
  2205. label associated with every block, which is why the \key{X86Program}
  2206. struct includes an alist mapping labels to blocks. The reason for this
  2207. organization becomes apparent in Chapter~\ref{ch:Lif} when we
  2208. introduce conditional branching. The \code{Block} structure includes
  2209. an $\itm{info}$ field that is not needed for this chapter, but becomes
  2210. useful in Chapter~\ref{ch:register-allocation-Lvar}. For now, the
  2211. $\itm{info}$ field should contain an empty list.
  2212. \fi}
  2213. %
  2214. Regarding the abstract syntax for \code{callq}, the \code{Callq} AST
  2215. node includes an integer for representing the arity of the function,
  2216. i.e., the number of arguments, which is helpful to know during
  2217. register allocation (Chapter~\ref{ch:register-allocation-Lvar}).
  2218. \begin{figure}[tp]
  2219. \fbox{
  2220. \begin{minipage}{0.98\textwidth}
  2221. \small
  2222. {\if\edition\racketEd\color{olive}
  2223. \[
  2224. \begin{array}{lcl}
  2225. \Reg &::=& \allregisters{} \\
  2226. \Arg &::=& \IMM{\Int} \MID \REG{\Reg}
  2227. \MID \DEREF{\Reg}{\Int} \\
  2228. \Instr &::=& \BININSTR{\code{addq}}{\Arg}{\Arg}
  2229. \MID \BININSTR{\code{subq}}{\Arg}{\Arg} \\
  2230. &\MID& \BININSTR{\code{movq}}{\Arg}{\Arg}
  2231. \MID \UNIINSTR{\code{negq}}{\Arg}\\
  2232. &\MID& \CALLQ{\itm{label}}{\itm{int}} \MID \RETQ{}
  2233. \MID \PUSHQ{\Arg} \MID \POPQ{\Arg} \MID \JMP{\itm{label}} \\
  2234. \Block &::= & \BLOCK{\itm{info}}{\LP\Instr\ldots\RP} \\
  2235. \LangXIntM{} &::= & \XPROGRAM{\itm{info}}{\LP\LP\itm{label} \,\key{.}\, \Block \RP\ldots\RP}
  2236. \end{array}
  2237. \]
  2238. \fi}
  2239. {\if\edition\pythonEd
  2240. \[
  2241. \begin{array}{lcl}
  2242. \Reg &::=& \allregisters{} \\
  2243. \Arg &::=& \IMM{\Int} \MID \REG{\Reg}
  2244. \MID \DEREF{\Reg}{\Int} \\
  2245. \Instr &::=& \BININSTR{\code{addq}}{\Arg}{\Arg}
  2246. \MID \BININSTR{\code{subq}}{\Arg}{\Arg} \\
  2247. &\MID& \BININSTR{\code{movq}}{\Arg}{\Arg}
  2248. \MID \UNIINSTR{\code{negq}}{\Arg}\\
  2249. &\MID& \CALLQ{\itm{label}}{\itm{int}} \MID \RETQ{}
  2250. \MID \PUSHQ{\Arg} \MID \POPQ{\Arg} \MID \JMP{\itm{label}} \\
  2251. \LangXIntM{} &::= & \XPROGRAM{}{\Instr^{*}}{}
  2252. \end{array}
  2253. \]
  2254. \fi}
  2255. \end{minipage}
  2256. }
  2257. \caption{The abstract syntax of \LangXInt{} assembly.}
  2258. \label{fig:x86-int-ast}
  2259. \end{figure}
  2260. \section{Planning the trip to x86}
  2261. \label{sec:plan-s0-x86}
  2262. To compile one language to another it helps to focus on the
  2263. differences between the two languages because the compiler will need
  2264. to bridge those differences. What are the differences between \LangVar{}
  2265. and x86 assembly? Here are some of the most important ones:
  2266. \begin{enumerate}
  2267. \item x86 arithmetic instructions typically have two arguments
  2268. and update the second argument in place. In contrast, \LangVar{}
  2269. arithmetic operations take two arguments and produce a new value.
  2270. An x86 instruction may have at most one memory-accessing argument.
  2271. Furthermore, some instructions place special restrictions on their
  2272. arguments.
  2273. \item An argument of an \LangVar{} operator can be a deeply-nested
  2274. expression, whereas x86 instructions restrict their arguments to be
  2275. integer constants, registers, and memory locations.
  2276. {\if\edition\racketEd\color{olive}
  2277. \item[(c)] The order of execution in x86 is explicit in the syntax: a
  2278. sequence of instructions and jumps to labeled positions, whereas in
  2279. \LangVar{} the order of evaluation is a left-to-right depth-first
  2280. traversal of the abstract syntax tree.
  2281. \fi}
  2282. \item A program in \LangVar{} can have any number of variables
  2283. whereas x86 has 16 registers and the procedure call stack.
  2284. {\if\edition\racketEd\color{olive}
  2285. \item Variables in \LangVar{} can shadow other variables with the
  2286. same name. In x86, registers have unique names and memory locations
  2287. have unique addresses.
  2288. \fi}
  2289. \end{enumerate}
  2290. We ease the challenge of compiling from \LangVar{} to x86 by breaking down
  2291. the problem into several steps, dealing with the above differences one
  2292. at a time. Each of these steps is called a \emph{pass} of the
  2293. compiler.\index{subject}{pass}\index{subject}{compiler pass}
  2294. %
  2295. This terminology comes from the way each step passes over the AST of
  2296. the program.
  2297. %
  2298. We begin by sketching how we might implement each pass, and give them
  2299. names. We then figure out an ordering of the passes and the
  2300. input/output language for each pass. The very first pass has
  2301. \LangVar{} as its input language and the last pass has \LangXInt{} as
  2302. its output language. In between we can choose whichever language is
  2303. most convenient for expressing the output of each pass, whether that
  2304. be \LangVar{}, \LangXInt{}, or new \emph{intermediate languages} of
  2305. our own design. Finally, to implement each pass we write one
  2306. recursive function per non-terminal in the grammar of the input
  2307. language of the pass. \index{subject}{intermediate language}
  2308. \begin{description}
  2309. {\if\edition\racketEd\color{olive}
  2310. \item[\key{uniquify}] deals with the shadowing of variables by
  2311. renaming every variable to a unique name.
  2312. \fi}
  2313. \item[\key{remove\_complex\_operands}] ensures that each subexpression
  2314. of a primitive operation or function call is a variable or integer,
  2315. that is, an \emph{atomic} expression. We refer to non-atomic
  2316. expressions as \emph{complex}. This pass introduces temporary
  2317. variables to hold the results of complex
  2318. subexpressions.\index{subject}{atomic
  2319. expression}\index{subject}{complex expression}%
  2320. {\if\edition\racketEd\color{olive}
  2321. \item[\key{explicate\_control}] makes the execution order of the
  2322. program explicit. It convert the abstract syntax tree representation
  2323. into a control-flow graph in which each node contains a sequence of
  2324. statements and the edges between nodes say which nodes contain jumps
  2325. to other nodes.
  2326. \fi}
  2327. \item[\key{select\_instructions}] handles the difference between
  2328. \LangVar{} operations and x86 instructions. This pass converts each
  2329. \LangVar{} operation to a short sequence of instructions that
  2330. accomplishes the same task.
  2331. \item[\key{assign\_homes}] replaces the variables in \LangVar{} with
  2332. registers or stack locations in x86.
  2333. \end{description}
  2334. The next question is: in what order should we apply these passes? This
  2335. question can be challenging because it is difficult to know ahead of
  2336. time which orderings will be better (easier to implement, produce more
  2337. efficient code, etc.) so oftentimes trial-and-error is
  2338. involved. Nevertheless, we can try to plan ahead and make educated
  2339. choices regarding the ordering.
  2340. \racket{What should be the ordering of \key{explicate\_control} with respect to
  2341. \key{uniquify}? The \key{uniquify} pass should come first because
  2342. \key{explicate\_control} changes all the \key{let}-bound variables to
  2343. become local variables whose scope is the entire program, which would
  2344. confuse variables with the same name.}
  2345. %
  2346. \racket{We place \key{remove\_complex\_opera*} before \key{explicate\_control}
  2347. because the later removes the \key{let} form, but it is convenient to
  2348. use \key{let} in the output of \key{remove\_complex\_opera*}.}
  2349. %
  2350. \racket{The ordering of \key{uniquify} with respect to
  2351. \key{remove\_complex\_opera*} does not matter so we arbitrarily choose
  2352. \key{uniquify} to come first.}
  2353. The \key{select\_instructions} and \key{assign\_homes} passes are
  2354. intertwined.
  2355. %
  2356. In Chapter~\ref{ch:Rfun} we learn that, in x86, registers are used for
  2357. passing arguments to functions and it is preferable to assign
  2358. parameters to their corresponding registers. This suggests that it
  2359. would be better to start with the \key{select\_instructions} pass,
  2360. which generates the instructions for argument passing, before
  2361. performing register allocation.
  2362. %
  2363. On the other hand, by selecting instructions first we may run into a
  2364. dead end in \key{assign\_homes}. Recall that only one argument of an
  2365. x86 instruction may be a memory access but \key{assign\_homes} might
  2366. be forced to assign both arguments to memory locations.
  2367. %
  2368. A sophisticated approach is to iteratively repeat the two passes until
  2369. a solution is found. However, to reduce implementation complexity we
  2370. recommend a simpler approach in which \key{select\_instructions} comes
  2371. first, followed by the \key{assign\_homes}, then a third pass named
  2372. \key{patch\_instructions} that uses a reserved register to fix
  2373. outstanding problems.
  2374. \begin{figure}[tbp]
  2375. {\if\edition\racketEd\color{olive}
  2376. \begin{tikzpicture}[baseline=(current bounding box.center)]
  2377. \node (Lvar) at (0,2) {\large \LangVar{}};
  2378. \node (Lvar-2) at (3,2) {\large \LangVar{}};
  2379. \node (Lvar-3) at (6,2) {\large \LangVarANF{}};
  2380. %\node (Cvar-1) at (6,0) {\large \LangCVar{}};
  2381. \node (Cvar-2) at (3,0) {\large \LangCVar{}};
  2382. \node (x86-2) at (3,-2) {\large \LangXVar{}};
  2383. \node (x86-3) at (6,-2) {\large \LangXVar{}};
  2384. \node (x86-4) at (9,-2) {\large \LangXInt{}};
  2385. \node (x86-5) at (12,-2) {\large \LangXInt{}};
  2386. \path[->,bend left=15] (Lvar) edge [above] node {\ttfamily\footnotesize uniquify} (Lvar-2);
  2387. \path[->,bend left=15] (Lvar-2) edge [above] node {\ttfamily\footnotesize remove\_complex.} (Lvar-3);
  2388. \path[->,bend left=15] (Lvar-3) edge [right] node {\ttfamily\footnotesize explicate\_control} (Cvar-2);
  2389. \path[->,bend right=15] (Cvar-2) edge [left] node {\ttfamily\footnotesize select\_instr.} (x86-2);
  2390. \path[->,bend left=15] (x86-2) edge [above] node {\ttfamily\footnotesize assign\_homes} (x86-3);
  2391. \path[->,bend left=15] (x86-3) edge [above] node {\ttfamily\footnotesize patch\_instr.} (x86-4);
  2392. \path[->,bend left=15] (x86-4) edge [above] node {\ttfamily\footnotesize print\_x86} (x86-5);
  2393. \end{tikzpicture}
  2394. \fi}
  2395. {\if\edition\pythonEd
  2396. \begin{tikzpicture}[baseline=(current bounding box.center)]
  2397. \node (Lvar) at (0,2) {\large \LangVar{}};
  2398. \node (Lvar-2) at (3,2) {\large \LangVar{}};
  2399. \node (x86-1) at (3,0) {\large \LangXVar{}};
  2400. \node (x86-2) at (6,0) {\large \LangXVar{}};
  2401. \node (x86-3) at (9,0) {\large \LangXInt{}};
  2402. \node (x86-4) at (12,0) {\large \LangXInt{}};
  2403. \path[->,bend left=15] (Lvar) edge [above] node {\ttfamily\footnotesize remove\_complex.} (Lvar-2);
  2404. \path[->,bend right=15] (Lvar-2) edge [left] node {\ttfamily\footnotesize select\_instr.} (x86-1);
  2405. \path[->,bend right=15] (x86-1) edge [below] node {\ttfamily\footnotesize assign\_homes} (x86-2);
  2406. \path[->,bend left=15] (x86-2) edge [above] node {\ttfamily\footnotesize patch\_instr.} (x86-3);
  2407. \path[->,bend right=15] (x86-3) edge [below] node {\ttfamily\footnotesize print\_x86} (x86-4);
  2408. \end{tikzpicture}
  2409. \fi}
  2410. \caption{Diagram of the passes for compiling \LangVar{}. }
  2411. \label{fig:Lvar-passes}
  2412. \end{figure}
  2413. Figure~\ref{fig:Lvar-passes} presents the ordering of the compiler
  2414. passes and identifies the input and output language of each pass.
  2415. %
  2416. The output of the \key{select\_instructions} pass is the \LangXVar{}
  2417. language, which extends \LangXInt{} with an unbounded number of
  2418. program-scope variables and removes the restrictions regarding
  2419. instruction arguments.
  2420. %
  2421. The last pass, \key{print\_x86}, converts from the abstract syntax of
  2422. \LangXInt{} to the concrete syntax.
  2423. %
  2424. \racket{In the following section we discuss the \LangCVar{}
  2425. intermediate language.}
  2426. %
  2427. The remainder of this chapter provides guidance on the implementation
  2428. of each of the compiler passes in Figure~\ref{fig:Lvar-passes}.
  2429. %% The output of \key{uniquify} and \key{remove-complex-opera*}
  2430. %% are programs that are still in the \LangVar{} language, though the
  2431. %% output of the later is a subset of \LangVar{} named \LangVarANF{}
  2432. %% (Section~\ref{sec:remove-complex-opera-Lvar}).
  2433. %% %
  2434. %% The output of \code{explicate\_control} is in an intermediate language
  2435. %% \LangCVar{} designed to make the order of evaluation explicit in its
  2436. %% syntax, which we introduce in the next section. The
  2437. %% \key{select-instruction} pass translates from \LangCVar{} to
  2438. %% \LangXVar{}. The \key{assign-homes} and
  2439. %% \key{patch-instructions}
  2440. %% passes input and output variants of x86 assembly.
  2441. {\if\edition\racketEd\color{olive}
  2442. \subsection{The \LangCVar{} Intermediate Language}
  2443. The output of \code{explicate\_control} is similar to the $C$
  2444. language~\citep{Kernighan:1988nx} in that it has separate syntactic
  2445. categories for expressions and statements, so we name it \LangCVar{}. The
  2446. abstract syntax for \LangCVar{} is defined in Figure~\ref{fig:c0-syntax}.
  2447. \racket{(The concrete syntax for \LangCVar{} is in the Appendix,
  2448. Figure~\ref{fig:c0-concrete-syntax}.)}
  2449. %
  2450. The \LangCVar{} language supports the same operators as \LangVar{} but
  2451. the arguments of operators are restricted to atomic
  2452. expressions. Instead of \key{let} expressions, \LangCVar{} has
  2453. assignment statements which can be executed in sequence using the
  2454. \key{Seq} form. A sequence of statements always ends with
  2455. \key{Return}, a guarantee that is baked into the grammar rules for
  2456. \itm{tail}. The naming of this non-terminal comes from the term
  2457. \emph{tail position}\index{subject}{tail position}, which refers to an
  2458. expression that is the last one to execute within a function.
  2459. A \LangCVar{} program consists of a control-flow graph represented as
  2460. an alist mapping labels to tails. This is more general than necessary
  2461. for the present chapter, as we do not yet introduce \key{goto} for
  2462. jumping to labels, but it saves us from having to change the syntax in
  2463. Chapter~\ref{ch:Lif}. For now there will be just one label,
  2464. \key{start}, and the whole program is its tail.
  2465. %
  2466. The $\itm{info}$ field of the \key{CProgram} form, after the
  2467. \code{explicate\_control} pass, contains a mapping from the symbol
  2468. \key{locals} to a list of variables, that is, a list of all the
  2469. variables used in the program. At the start of the program, these
  2470. variables are uninitialized; they become initialized on their first
  2471. assignment.
  2472. \begin{figure}[tbp]
  2473. \fbox{
  2474. \begin{minipage}{0.96\textwidth}
  2475. \[
  2476. \begin{array}{lcl}
  2477. \Atm &::=& \INT{\Int} \MID \VAR{\Var} \\
  2478. \Exp &::=& \Atm \MID \READ{} \MID \NEG{\Atm} \\
  2479. &\MID& \ADD{\Atm}{\Atm}\\
  2480. \Stmt &::=& \ASSIGN{\VAR{\Var}}{\Exp} \\
  2481. \Tail &::= & \RETURN{\Exp} \MID \SEQ{\Stmt}{\Tail} \\
  2482. \LangCVarM{} & ::= & \CPROGRAM{\itm{info}}{\LP\LP\itm{label}\,\key{.}\,\Tail\RP\ldots\RP}
  2483. \end{array}
  2484. \]
  2485. \end{minipage}
  2486. }
  2487. \caption{The abstract syntax of the \LangCVar{} intermediate language.}
  2488. \label{fig:c0-syntax}
  2489. \end{figure}
  2490. The definitional interpreter for \LangCVar{} is in the support code,
  2491. in the file \code{interp-Cvar.rkt}.
  2492. \fi}
  2493. {\if\edition\racketEd\color{olive}
  2494. \section{Uniquify Variables}
  2495. \label{sec:uniquify-Lvar}
  2496. The \code{uniquify} pass compiles \LangVar{} programs into \LangVar{}
  2497. programs in which every \key{let} binds a unique variable name. For
  2498. example, the \code{uniquify} pass should translate the program on the
  2499. left into the program on the right.
  2500. \begin{transformation}
  2501. \begin{lstlisting}
  2502. (let ([x 32])
  2503. (+ (let ([x 10]) x) x))
  2504. \end{lstlisting}
  2505. \compilesto
  2506. \begin{lstlisting}
  2507. (let ([x.1 32])
  2508. (+ (let ([x.2 10]) x.2) x.1))
  2509. \end{lstlisting}
  2510. \end{transformation}
  2511. The following is another example translation, this time of a program
  2512. with a \key{let} nested inside the initializing expression of another
  2513. \key{let}.
  2514. \begin{transformation}
  2515. \begin{lstlisting}
  2516. (let ([x (let ([x 4])
  2517. (+ x 1))])
  2518. (+ x 2))
  2519. \end{lstlisting}
  2520. \compilesto
  2521. \begin{lstlisting}
  2522. (let ([x.2 (let ([x.1 4])
  2523. (+ x.1 1))])
  2524. (+ x.2 2))
  2525. \end{lstlisting}
  2526. \end{transformation}
  2527. We recommend implementing \code{uniquify} by creating a structurally
  2528. recursive function named \code{uniquify-exp} that mostly just copies
  2529. an expression. However, when encountering a \key{let}, it should
  2530. generate a unique name for the variable and associate the old name
  2531. with the new name in an alist.\footnote{The Racket function
  2532. \code{gensym} is handy for generating unique variable names.} The
  2533. \code{uniquify-exp} function needs to access this alist when it gets
  2534. to a variable reference, so we add a parameter to \code{uniquify-exp}
  2535. for the alist.
  2536. The skeleton of the \code{uniquify-exp} function is shown in
  2537. Figure~\ref{fig:uniquify-Lvar}. The function is curried so that it is
  2538. convenient to partially apply it to an alist and then apply it to
  2539. different expressions, as in the last case for primitive operations in
  2540. Figure~\ref{fig:uniquify-Lvar}. The
  2541. %
  2542. \href{https://docs.racket-lang.org/reference/for.html#%28form._%28%28lib._racket%2Fprivate%2Fbase..rkt%29._for%2Flist%29%29}{\key{for/list}}
  2543. %
  2544. form of Racket is useful for transforming each element of a list to
  2545. produce a new list.\index{subject}{for/list}
  2546. \begin{figure}[tbp]
  2547. \begin{lstlisting}
  2548. (define (uniquify-exp env)
  2549. (lambda (e)
  2550. (match e
  2551. [(Var x) ___]
  2552. [(Int n) (Int n)]
  2553. [(Let x e body) ___]
  2554. [(Prim op es)
  2555. (Prim op (for/list ([e es]) ((uniquify-exp env) e)))])))
  2556. (define (uniquify p)
  2557. (match p
  2558. [(Program '() e) (Program '() ((uniquify-exp '()) e))]))
  2559. \end{lstlisting}
  2560. \caption{Skeleton for the \key{uniquify} pass.}
  2561. \label{fig:uniquify-Lvar}
  2562. \end{figure}
  2563. \begin{exercise}
  2564. \normalfont % I don't like the italics for exercises. -Jeremy
  2565. Complete the \code{uniquify} pass by filling in the blanks in
  2566. Figure~\ref{fig:uniquify-Lvar}, that is, implement the cases for
  2567. variables and for the \key{let} form in the file \code{compiler.rkt}
  2568. in the support code.
  2569. \end{exercise}
  2570. \begin{exercise}
  2571. \normalfont % I don't like the italics for exercises. -Jeremy
  2572. \label{ex:Lvar}
  2573. Create five \LangVar{} programs that exercise the most interesting
  2574. parts of the \key{uniquify} pass, that is, the programs should include
  2575. \key{let} forms, variables, and variables that shadow each other.
  2576. The five programs should be placed in the subdirectory named
  2577. \key{tests} and the file names should start with \code{var\_test\_}
  2578. followed by a unique integer and end with the file extension
  2579. \key{.rkt}.
  2580. %
  2581. The \key{run-tests.rkt} script in the support code checks whether the
  2582. output programs produce the same result as the input programs. The
  2583. script uses the \key{interp-tests} function
  2584. (Appendix~\ref{appendix:utilities}) from \key{utilities.rkt} to test
  2585. your \key{uniquify} pass on the example programs. The \code{passes}
  2586. parameter of \key{interp-tests} is a list that should have one entry
  2587. for each pass in your compiler. For now, define \code{passes} to
  2588. contain just one entry for \code{uniquify} as shown below.
  2589. \begin{lstlisting}
  2590. (define passes
  2591. (list (list "uniquify" uniquify interp_Lvar type-check-Lvar)))
  2592. \end{lstlisting}
  2593. Run the \key{run-tests.rkt} script in the support code to check
  2594. whether the output programs produce the same result as the input
  2595. programs.
  2596. \end{exercise}
  2597. \fi}
  2598. \section{Remove Complex Operands}
  2599. \label{sec:remove-complex-opera-Lvar}
  2600. The \code{remove\_complex\_operands} pass compiles \LangVar{} programs
  2601. into a restricted form in which the arguments of operations are atomic
  2602. expressions. Put another way, this pass removes complex
  2603. operands\index{subject}{complex operand}, such as the expression
  2604. \racket{\code{(- 10)}}\python{\code{-10}}
  2605. in the program below. This is accomplished by introducing a new
  2606. temporary variable, assigning the complex operand to the new
  2607. variable, and then using the new variable in place of the complex
  2608. operand, as shown in the output of \code{remove\_complex\_operands} on the
  2609. right.
  2610. {\if\edition\racketEd\color{olive}
  2611. \begin{transformation}
  2612. % var_test_19.rkt
  2613. \begin{lstlisting}
  2614. (let ([x (+ 42 (- 10))])
  2615. (+ x 10))
  2616. \end{lstlisting}
  2617. \compilesto
  2618. \begin{lstlisting}
  2619. (let ([x (let ([tmp.1 (- 10)])
  2620. (+ 42 tmp.1))])
  2621. (+ x 10))
  2622. \end{lstlisting}
  2623. \end{transformation}
  2624. \fi}
  2625. {\if\edition\pythonEd
  2626. \begin{transformation}
  2627. \begin{lstlisting}
  2628. x = 42 + -10
  2629. print(x + 10)
  2630. \end{lstlisting}
  2631. \compilesto
  2632. \begin{lstlisting}
  2633. tmp_0 = -10
  2634. x = 42 + tmp_0
  2635. tmp_1 = x + 10
  2636. print(tmp_1)
  2637. \end{lstlisting}
  2638. \end{transformation}
  2639. \fi}
  2640. \begin{figure}[tp]
  2641. \centering
  2642. \fbox{
  2643. \begin{minipage}{0.96\textwidth}
  2644. {\if\edition\racketEd\color{olive}
  2645. \[
  2646. \begin{array}{rcl}
  2647. \Atm &::=& \INT{\Int} \MID \VAR{\Var} \\
  2648. \Exp &::=& \Atm \MID \READ{} \\
  2649. &\MID& \NEG{\Atm} \MID \ADD{\Atm}{\Atm} \\
  2650. &\MID& \LET{\Var}{\Exp}{\Exp} \\
  2651. \LangVarANFM{} &::=& \PROGRAM{\code{'()}}{\Exp}
  2652. \end{array}
  2653. \]
  2654. \fi}
  2655. {\if\edition\pythonEd
  2656. \[
  2657. \begin{array}{rcl}
  2658. \Atm &::=& \INT{\Int} \MID \VAR{\Var} \\
  2659. \Exp{} &::=& \Atm \MID \READ{} \\
  2660. &\MID& \NEG{\Atm} \MID \ADD{\Atm}{\Atm} \\
  2661. \Stmt{} &::=& \PRINT{\Atm} \MID \EXPR{\Exp} \\
  2662. &\MID& \ASSIGN{\VAR{\Var}}{\Exp}\\
  2663. \LangVarANFM{} &::=& \PROGRAM{}{\Stmt^{*}}
  2664. \end{array}
  2665. \]
  2666. \fi}
  2667. \end{minipage}
  2668. }
  2669. \caption{\LangVarANF{} is \LangVar{} with operands restricted to
  2670. atomic expressions, like administrative normal form (ANF).}
  2671. \label{fig:Lvar-anf-syntax}
  2672. \end{figure}
  2673. Figure~\ref{fig:Lvar-anf-syntax} presents the grammar for the output of
  2674. this pass, the language \LangVarANF{}. The only difference is that
  2675. operator arguments are restricted to be atomic expressions that are
  2676. defined by the \Atm{} non-terminal. In particular, integer constants
  2677. and variables are atomic. In the literature, restricting arguments to
  2678. be atomic expressions is one of the ideas in \emph{administrative
  2679. normal form}, or ANF for short~\citep{Danvy:1991fk,Flanagan:1993cg}.
  2680. \index{subject}{administrative normal form} \index{subject}{ANF}
  2681. {\if\edition\racketEd\color{olive}
  2682. We recommend implementing this pass with two mutually recursive
  2683. functions, \code{rco\_atom} and \code{rco\_exp}. The idea is to apply
  2684. \code{rco\_atom} to subexpressions that need to become atomic and to
  2685. apply \code{rco\_exp} to subexpressions that do not. Both functions
  2686. take an \LangVar{} expression as input. The \code{rco\_exp} function
  2687. returns an expression. The \code{rco\_atom} function returns two
  2688. things: an atomic expression and an alist mapping temporary variables to
  2689. complex subexpressions. You can return multiple things from a function
  2690. using Racket's \key{values} form and you can receive multiple things
  2691. from a function call using the \key{define-values} form.
  2692. Also, the
  2693. \href{https://docs.racket-lang.org/reference/for.html#%28form._%28%28lib._racket%2Fprivate%2Fbase..rkt%29._for%2Flists%29%29}{\code{for/lists}}
  2694. form is useful for applying a function to each element of a list, in
  2695. the case where the function returns multiple values.
  2696. \index{subject}{for/lists}
  2697. \fi}
  2698. %
  2699. {\if\edition\pythonEd
  2700. %
  2701. We recommend implementing this pass with an auxiliary method named
  2702. \code{rco\_exp} with two parameters: an \LangVar{} expression and a
  2703. Boolean that specifies whether the expression needs to become atomic
  2704. or not. The \code{rco\_exp} method should return a pair consisting of
  2705. the new expression and a list of pairs, associating new temporary
  2706. variables with their initializing expressions.
  2707. %
  2708. \fi}
  2709. {\if\edition\racketEd\color{olive}
  2710. Returning to the example program with the expression \code{(+ 42 (-
  2711. 10))}, the subexpression \code{(- 10)} should be processed using the
  2712. \code{rco\_atom} function because it is an argument of the \code{+} and
  2713. therefore needs to become atomic. The output of \code{rco\_atom}
  2714. applied to \code{(- 10)} is as follows.
  2715. \begin{transformation}
  2716. \begin{lstlisting}
  2717. (- 10)
  2718. \end{lstlisting}
  2719. \compilesto
  2720. \begin{lstlisting}
  2721. tmp.1
  2722. ((tmp.1 . (- 10)))
  2723. \end{lstlisting}
  2724. \end{transformation}
  2725. \fi}
  2726. %
  2727. {\if\edition\pythonEd
  2728. %
  2729. Returning to the example program with the expression \code{42 + -10},
  2730. the subexpression \code{-10} should be processed using the
  2731. \code{rco\_exp} function with \code{True} as the second argument
  2732. because \code{-10} is an argument of the \code{+} operator and
  2733. therefore needs to become atomic. The output of \code{rco\_exp}
  2734. applied to \code{-10} is as follows.
  2735. \begin{transformation}
  2736. \begin{lstlisting}
  2737. -10
  2738. \end{lstlisting}
  2739. \compilesto
  2740. \begin{lstlisting}
  2741. tmp_1
  2742. [(tmp_1, -10)]
  2743. \end{lstlisting}
  2744. \end{transformation}
  2745. %
  2746. \fi}
  2747. Take special care of programs such as the following that
  2748. %
  2749. \racket{bind a variable to an atomic expression}
  2750. %
  2751. \python{assign an atomic expression to a variable}.
  2752. %
  2753. You should leave such \racket{variable bindings}\python{assignments}
  2754. unchanged, as shown in the program on the right\\
  2755. %
  2756. {\if\edition\racketEd\color{olive}
  2757. \begin{transformation}
  2758. % var_test_20.rkt
  2759. \begin{lstlisting}
  2760. (let ([a 42])
  2761. (let ([b a])
  2762. b))
  2763. \end{lstlisting}
  2764. \compilesto
  2765. \begin{lstlisting}
  2766. (let ([a 42])
  2767. (let ([b a])
  2768. b))
  2769. \end{lstlisting}
  2770. \end{transformation}
  2771. \fi}
  2772. {\if\edition\pythonEd
  2773. \begin{transformation}
  2774. \begin{lstlisting}
  2775. a = 42
  2776. b = a
  2777. print(b)
  2778. \end{lstlisting}
  2779. \compilesto
  2780. \begin{lstlisting}
  2781. a = 42
  2782. b = a
  2783. print(b)
  2784. \end{lstlisting}
  2785. \end{transformation}
  2786. \fi}
  2787. %
  2788. \noindent A careless implementation might produce the following output with
  2789. unnecessary temporary variables.
  2790. \begin{center}
  2791. \begin{minipage}{0.4\textwidth}
  2792. {\if\edition\racketEd\color{olive}
  2793. \begin{lstlisting}
  2794. (let ([tmp.1 42])
  2795. (let ([a tmp.1])
  2796. (let ([tmp.2 a])
  2797. (let ([b tmp.2])
  2798. b))))
  2799. \end{lstlisting}
  2800. \fi}
  2801. {\if\edition\pythonEd
  2802. \begin{lstlisting}
  2803. tmp_1 = 42
  2804. a = tmp_1
  2805. tmp_2 = a
  2806. b = tmp_2
  2807. print(b)
  2808. \end{lstlisting}
  2809. \fi}
  2810. \end{minipage}
  2811. \end{center}
  2812. \begin{exercise}
  2813. \normalfont
  2814. {\if\edition\racketEd\color{olive}
  2815. Implement the \code{remove\_complex\_operands} function in
  2816. \code{compiler.rkt}.
  2817. %
  2818. Create three new \LangVar{} programs that exercise the interesting
  2819. code in the \code{remove\_complex\_operands} pass. Follow the guidelines
  2820. regarding file names described in Exercise~\ref{ex:Lvar}.
  2821. %
  2822. In the \code{run-tests.rkt} script, add the following entry to the
  2823. list of \code{passes} and then run the script to test your compiler.
  2824. \begin{lstlisting}
  2825. (list "remove-complex" remove-complex-opera* interp_Lvar type-check-Lvar)
  2826. \end{lstlisting}
  2827. While debugging your compiler, it is often useful to see the
  2828. intermediate programs that are output from each pass. To print the
  2829. intermediate programs, place \lstinline{(debug-level 1)} before the call to
  2830. \code{interp-tests} in \code{run-tests.rkt}.
  2831. \fi}
  2832. %
  2833. {\if\edition\pythonEd
  2834. Implement the \code{remove\_complex\_operands} pass in
  2835. \code{compiler.py}, creating auxiliary functions for each
  2836. non-terminal in the grammar, i.e., \code{rco\_exp}
  2837. and \code{rco\_stmt}.
  2838. \fi}
  2839. \end{exercise}
  2840. {\if\edition\pythonEd
  2841. \begin{exercise}
  2842. \normalfont % I don't like the italics for exercises. -Jeremy
  2843. \label{ex:Lvar}
  2844. Create five \LangVar{} programs that exercise the most interesting
  2845. parts of the \code{remove\_complex\_operands} pass. The five programs
  2846. should be placed in the subdirectory named \key{tests} and the file
  2847. names should start with \code{var\_test\_} followed by a unique
  2848. integer and end with the file extension \key{.py}.
  2849. %% The \key{run-tests.rkt} script in the support code checks whether the
  2850. %% output programs produce the same result as the input programs. The
  2851. %% script uses the \key{interp-tests} function
  2852. %% (Appendix~\ref{appendix:utilities}) from \key{utilities.rkt} to test
  2853. %% your \key{uniquify} pass on the example programs. The \code{passes}
  2854. %% parameter of \key{interp-tests} is a list that should have one entry
  2855. %% for each pass in your compiler. For now, define \code{passes} to
  2856. %% contain just one entry for \code{uniquify} as shown below.
  2857. %% \begin{lstlisting}
  2858. %% (define passes
  2859. %% (list (list "uniquify" uniquify interp_Lvar type-check-Lvar)))
  2860. %% \end{lstlisting}
  2861. Run the \key{run-tests.py} script in the support code to check
  2862. whether the output programs produce the same result as the input
  2863. programs.
  2864. \end{exercise}
  2865. \fi}
  2866. {\if\edition\racketEd\color{olive}
  2867. \section{Explicate Control}
  2868. \label{sec:explicate-control-Lvar}
  2869. The \code{explicate\_control} pass compiles \LangVar{} programs into \LangCVar{}
  2870. programs that make the order of execution explicit in their
  2871. syntax. For now this amounts to flattening \key{let} constructs into a
  2872. sequence of assignment statements. For example, consider the following
  2873. \LangVar{} program.\\
  2874. % var_test_11.rkt
  2875. \begin{minipage}{0.96\textwidth}
  2876. \begin{lstlisting}
  2877. (let ([y (let ([x 20])
  2878. (+ x (let ([x 22]) x)))])
  2879. y)
  2880. \end{lstlisting}
  2881. \end{minipage}\\
  2882. %
  2883. The output of the previous pass and of \code{explicate\_control} is
  2884. shown below. Recall that the right-hand-side of a \key{let} executes
  2885. before its body, so the order of evaluation for this program is to
  2886. assign \code{20} to \code{x.1}, \code{22} to \code{x.2}, and
  2887. \code{(+ x.1 x.2)} to \code{y}, then return \code{y}. Indeed, the
  2888. output of \code{explicate\_control} makes this ordering explicit.
  2889. \begin{transformation}
  2890. \begin{lstlisting}
  2891. (let ([y (let ([x.1 20])
  2892. (let ([x.2 22])
  2893. (+ x.1 x.2)))])
  2894. y)
  2895. \end{lstlisting}
  2896. \compilesto
  2897. \begin{lstlisting}[language=C]
  2898. start:
  2899. x.1 = 20;
  2900. x.2 = 22;
  2901. y = (+ x.1 x.2);
  2902. return y;
  2903. \end{lstlisting}
  2904. \end{transformation}
  2905. \begin{figure}[tbp]
  2906. \begin{lstlisting}
  2907. (define (explicate-tail e)
  2908. (match e
  2909. [(Var x) ___]
  2910. [(Int n) (Return (Int n))]
  2911. [(Let x rhs body) ___]
  2912. [(Prim op es) ___]
  2913. [else (error "explicate-tail unhandled case" e)]))
  2914. (define (explicate-assign e x cont)
  2915. (match e
  2916. [(Var x) ___]
  2917. [(Int n) (Seq (Assign (Var x) (Int n)) cont)]
  2918. [(Let y rhs body) ___]
  2919. [(Prim op es) ___]
  2920. [else (error "explicate-assign unhandled case" e)]))
  2921. (define (explicate-control p)
  2922. (match p
  2923. [(Program info body) ___]))
  2924. \end{lstlisting}
  2925. \caption{Skeleton for the \code{explicate\_control} pass.}
  2926. \label{fig:explicate-control-Lvar}
  2927. \end{figure}
  2928. The organization of this pass depends on the notion of tail position
  2929. that we have alluded to earlier.
  2930. \begin{definition}
  2931. The following rules define when an expression is in \textbf{\emph{tail
  2932. position}}\index{subject}{tail position} for the language \LangVar{}.
  2933. \begin{enumerate}
  2934. \item In $\PROGRAM{\code{()}}{e}$, expression $e$ is in tail position.
  2935. \item If $\LET{x}{e_1}{e_2}$ is in tail position, then so is $e_2$.
  2936. \end{enumerate}
  2937. \end{definition}
  2938. We recommend implementing \code{explicate\_control} using two mutually
  2939. recursive functions, \code{explicate-tail} and
  2940. \code{explicate-assign}, as suggested in the skeleton code in
  2941. Figure~\ref{fig:explicate-control-Lvar}. The \code{explicate-tail}
  2942. function should be applied to expressions in tail position whereas the
  2943. \code{explicate-assign} should be applied to expressions that occur on
  2944. the right-hand-side of a \key{let}.
  2945. %
  2946. The \code{explicate-tail} function takes an \Exp{} in \LangVar{} as
  2947. input and produces a \Tail{} in \LangCVar{} (see
  2948. Figure~\ref{fig:c0-syntax}).
  2949. %
  2950. The \code{explicate-assign} function takes an \Exp{} in \LangVar{},
  2951. the variable that it is to be assigned to, and a \Tail{} in
  2952. \LangCVar{} for the code that comes after the assignment. The
  2953. \code{explicate-assign} function returns a $\Tail$ in \LangCVar{}.
  2954. The \code{explicate-assign} function is in accumulator-passing style:
  2955. the \code{cont} parameter is used for accumulating the output. This
  2956. accumulator-passing style plays an important role in how we generate
  2957. high-quality code for conditional expressions in Chapter~\ref{ch:Lif}.
  2958. \begin{exercise}\normalfont
  2959. %
  2960. Implement the \code{explicate\_control} function in
  2961. \code{compiler.rkt}. Create three new \LangInt{} programs that
  2962. exercise the code in \code{explicate\_control}.
  2963. %
  2964. In the \code{run-tests.rkt} script, add the following entry to the
  2965. list of \code{passes} and then run the script to test your compiler.
  2966. \begin{lstlisting}
  2967. (list "explicate control" explicate-control interp_Cvar type-check-Cvar)
  2968. \end{lstlisting}
  2969. \end{exercise}
  2970. \fi}
  2971. \section{Select Instructions}
  2972. \label{sec:select-Lvar}
  2973. \index{subject}{instruction selection}
  2974. In the \code{select\_instructions} pass we begin the work of
  2975. translating \racket{from \LangCVar{}} to \LangXVar{}. The target
  2976. language of this pass is a variant of x86 that still uses variables,
  2977. so we add an AST node of the form $\VAR{\itm{var}}$ to the \Arg{}
  2978. non-terminal of the \LangXInt{} abstract syntax
  2979. (Figure~\ref{fig:x86-int-ast}).
  2980. \racket{We recommend implementing the
  2981. \code{select\_instructions} with three auxiliary functions, one for
  2982. each of the non-terminals of \LangCVar{}: $\Atm$, $\Stmt$, and
  2983. $\Tail$.}
  2984. \python{We recommend implementing an auxiliary function
  2985. named \code{select\_stmt} for the $\Stmt$ non-terminal.}
  2986. \racket{
  2987. The cases for $\Atm$ are straightforward; variables stay
  2988. the same and integer constants change to immediates:
  2989. $\INT{n}$ changes to $\IMM{n}$.}
  2990. We consider the cases for the $\Stmt$ non-terminal, starting with
  2991. arithmetic operations. For example, consider the addition operation
  2992. below, on the left side. There is an \key{addq} instruction in x86,
  2993. but it performs an in-place update. So we could move $\Arg_1$
  2994. into the left-hand side \itm{var} and then add $\Arg_2$ to
  2995. \itm{var}, where $\Arg_1$ and $\Arg_2$ are the translations of
  2996. $\Atm_1$ and $\Atm_2$ respectively.
  2997. \begin{transformation}
  2998. {\if\edition\racketEd\color{olive}
  2999. \begin{lstlisting}
  3000. |$\itm{var}$| = (+ |$\Atm_1$| |$\Atm_2$|);
  3001. \end{lstlisting}
  3002. \fi}
  3003. {\if\edition\pythonEd
  3004. \begin{lstlisting}
  3005. |$\itm{var}$| = |$\Atm_1$| + |$\Atm_2$|
  3006. \end{lstlisting}
  3007. \fi}
  3008. \compilesto
  3009. \begin{lstlisting}
  3010. movq |$\Arg_1$|, |$\itm{var}$|
  3011. addq |$\Arg_2$|, |$\itm{var}$|
  3012. \end{lstlisting}
  3013. \end{transformation}
  3014. There are also cases that require special care to avoid generating
  3015. needlessly complicated code. For example, if one of the arguments of
  3016. the addition is the same variable as the left-hand side of the
  3017. assignment, as shown below, then there is no need for the extra move
  3018. instruction. The assignment statement can be translated into a single
  3019. \key{addq} instruction as follows.
  3020. \begin{transformation}
  3021. {\if\edition\racketEd\color{olive}
  3022. \begin{lstlisting}
  3023. |$\itm{var}$| = (+ |$\Atm_1$| |$\itm{var}$|);
  3024. \end{lstlisting}
  3025. \fi}
  3026. {\if\edition\pythonEd
  3027. \begin{lstlisting}
  3028. |$\itm{var}$| = |$\Atm_1$| + |$\itm{var}$|
  3029. \end{lstlisting}
  3030. \fi}
  3031. \compilesto
  3032. \begin{lstlisting}
  3033. addq |$\Arg_1$|, |$\itm{var}$|
  3034. \end{lstlisting}
  3035. \end{transformation}
  3036. The \READOP{} operation does not have a direct counterpart in x86
  3037. assembly, so we provide this functionality with the function
  3038. \code{read\_int} in the file \code{runtime.c}, written in
  3039. C~\citep{Kernighan:1988nx}. In general, we refer to all of the
  3040. functionality in this file as the \emph{runtime system}\index{subject}{runtime
  3041. system}, or simply the \emph{runtime} for short. When compiling your
  3042. generated x86 assembly code, you need to compile \code{runtime.c} to
  3043. \code{runtime.o} (an ``object file'', using \code{gcc} with option
  3044. \code{-c}) and link it into the executable. For our purposes of code
  3045. generation, all you need to do is translate an assignment of
  3046. \READOP{} into a call to the \code{read\_int} function followed by a
  3047. move from \code{rax} to the left-hand-side variable. (Recall that the
  3048. return value of a function goes into \code{rax}.)
  3049. \begin{transformation}
  3050. {\if\edition\racketEd\color{olive}
  3051. \begin{lstlisting}
  3052. |$\itm{var}$| = (read);
  3053. \end{lstlisting}
  3054. \fi}
  3055. {\if\edition\pythonEd
  3056. \begin{lstlisting}
  3057. |$\itm{var}$| = input_int();
  3058. \end{lstlisting}
  3059. \fi}
  3060. \compilesto
  3061. \begin{lstlisting}
  3062. callq read_int
  3063. movq %rax, |$\itm{var}$|
  3064. \end{lstlisting}
  3065. \end{transformation}
  3066. {\if\edition\pythonEd
  3067. %
  3068. Similarly, we translate the \code{print} operation, shown below, into
  3069. a call to the \code{print\_int} function defined in \code{runtime.c}.
  3070. In x86, the first six arguments to functions are passed in registers,
  3071. with the first argument passed in register \code{rdi}. So we move the
  3072. $\Arg$ into \code{rdi} and then call \code{print\_int} using the
  3073. \code{callq} instruction.
  3074. \begin{transformation}
  3075. \begin{lstlisting}
  3076. print(|$\Atm$|)
  3077. \end{lstlisting}
  3078. \compilesto
  3079. \begin{lstlisting}
  3080. movq |$\Arg$|, %rdi
  3081. callq print_int
  3082. \end{lstlisting}
  3083. \end{transformation}
  3084. %
  3085. \fi}
  3086. {\if\edition\racketEd\color{olive}
  3087. There are two cases for the $\Tail$ non-terminal: \key{Return} and
  3088. \key{Seq}. Regarding \key{Return}, we recommend treating it as an
  3089. assignment to the \key{rax} register followed by a jump to the
  3090. conclusion of the program (so the conclusion needs to be labeled).
  3091. For $\SEQ{s}{t}$, you can translate the statement $s$ and tail $t$
  3092. recursively and then append the resulting instructions.
  3093. \fi}
  3094. \begin{exercise}
  3095. \normalfont
  3096. {\if\edition\racketEd\color{olive}
  3097. Implement the \key{select-instructions} pass in
  3098. \code{compiler.rkt}. Create three new example programs that are
  3099. designed to exercise all of the interesting cases in this pass.
  3100. %
  3101. In the \code{run-tests.rkt} script, add the following entry to the
  3102. list of \code{passes} and then run the script to test your compiler.
  3103. \begin{lstlisting}
  3104. (list "instruction selection" select-instructions interp_pseudo-x86-0)
  3105. \end{lstlisting}
  3106. \fi}
  3107. {\if\edition\pythonEd
  3108. Implement the \key{select\_instructions} pass in
  3109. \code{compiler.py}. Create three new example programs that are
  3110. designed to exercise all of the interesting cases in this pass.
  3111. Run the \code{run-tests.py} script to to check
  3112. whether the output programs produce the same result as the input
  3113. programs.
  3114. \fi}
  3115. \end{exercise}
  3116. \section{Assign Homes}
  3117. \label{sec:assign-Lvar}
  3118. The \key{assign\_homes} pass compiles \LangXVar{} programs to
  3119. \LangXVar{} programs that no longer use program variables.
  3120. Thus, the \key{assign-homes} pass is responsible for placing all of
  3121. the program variables in registers or on the stack. For runtime
  3122. efficiency, it is better to place variables in registers, but as there
  3123. are only 16 registers, some programs must necessarily resort to
  3124. placing some variables on the stack. In this chapter we focus on the
  3125. mechanics of placing variables on the stack. We study an algorithm for
  3126. placing variables in registers in
  3127. Chapter~\ref{ch:register-allocation-Lvar}.
  3128. Consider again the following \LangVar{} program from
  3129. Section~\ref{sec:remove-complex-opera-Lvar}.
  3130. % var_test_20.rkt
  3131. {\if\edition\racketEd\color{olive}
  3132. \begin{lstlisting}
  3133. (let ([a 42])
  3134. (let ([b a])
  3135. b))
  3136. \end{lstlisting}
  3137. \fi}
  3138. {\if\edition\pythonEd
  3139. \begin{lstlisting}
  3140. a = 42
  3141. b = a
  3142. print(b)
  3143. \end{lstlisting}
  3144. \fi}
  3145. %
  3146. The output of \code{select\_instructions} is shown below, on the left,
  3147. and the output of \code{assign\_homes} is on the right. In this
  3148. example, we assign variable \code{a} to stack location
  3149. \code{-8(\%rbp)} and variable \code{b} to location \code{-16(\%rbp)}.
  3150. \begin{transformation}
  3151. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  3152. movq $42, a
  3153. movq a, b
  3154. movq b, %rax
  3155. \end{lstlisting}
  3156. \compilesto
  3157. %stack-space: 16
  3158. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  3159. movq $42, -8(%rbp)
  3160. movq -8(%rbp), -16(%rbp)
  3161. movq -16(%rbp), %rax
  3162. \end{lstlisting}
  3163. \end{transformation}
  3164. \racket{The \code{locals-types} entry in the $\itm{info}$ of the
  3165. \code{X86Program} node is an alist mapping all the variables in the
  3166. program to their types (for now just \code{Integer}). The
  3167. \code{assign\_homes} pass should replace all uses of those variables
  3168. with stack locations. As an aside, the \code{locals-types} entry is
  3169. computed by \code{type-check-Cvar} in the support code, which
  3170. installs it in the $\itm{info}$ field of the \code{CProgram} node,
  3171. which should be propagated to the \code{X86Program} node.}
  3172. %
  3173. \python{The \code{assign\_homes} pass should replace all uses of
  3174. variables with stack locations.}
  3175. %
  3176. In the process of assigning variables to stack locations, it is
  3177. convenient for you to compute and store the size of the frame (in
  3178. bytes) in%
  3179. \racket{the $\itm{info}$ field of the \key{X86Program} node, with the key \code{stack-space}}
  3180. %
  3181. \python{the field \code{stack\_space} of the \key{X86Program} node},
  3182. which is needed later to generate the conclusion of the \code{main}
  3183. procedure. The x86-64 standard requires the frame size to be a
  3184. multiple of 16 bytes.\index{subject}{frame}
  3185. % TODO: store the number of variables instead? -Jeremy
  3186. \begin{exercise}\normalfont
  3187. Implement the \key{assign\_homes} pass in
  3188. \racket{\code{compiler.rkt}}\python{\code{compiler.py}}, defining
  3189. auxiliary functions for each of the non-terminals in the \LangXVar{}
  3190. grammar. We recommend that the auxiliary functions take an extra
  3191. parameter that maps variable names to homes (stack locations for now).
  3192. %
  3193. {\if\edition\racketEd\color{olive}
  3194. In the \code{run-tests.rkt} script, add the following entry to the
  3195. list of \code{passes} and then run the script to test your compiler.
  3196. \begin{lstlisting}
  3197. (list "assign homes" assign-homes interp_x86-0)
  3198. \end{lstlisting}
  3199. \fi}
  3200. {\if\edition\pythonEd
  3201. Run the \code{run-tests.py} script to to check
  3202. whether the output programs produce the same result as the input
  3203. programs.
  3204. \fi}
  3205. \end{exercise}
  3206. \section{Patch Instructions}
  3207. \label{sec:patch-s0}
  3208. The \code{patch\_instructions} pass compiles from \LangXVar{} to
  3209. \LangXInt{} by making sure that each instruction adheres to the
  3210. restriction that at most one argument of an instruction may be a
  3211. memory reference.
  3212. We return to the following example.\\
  3213. \begin{minipage}{0.5\textwidth}
  3214. % var_test_20.rkt
  3215. {\if\edition\racketEd\color{olive}
  3216. \begin{lstlisting}
  3217. (let ([a 42])
  3218. (let ([b a])
  3219. b))
  3220. \end{lstlisting}
  3221. \fi}
  3222. {\if\edition\pythonEd
  3223. \begin{lstlisting}
  3224. a = 42
  3225. b = a
  3226. print(b)
  3227. \end{lstlisting}
  3228. \fi}
  3229. \end{minipage}\\
  3230. The \key{assign\_homes} pass produces the following translation. \\
  3231. \begin{minipage}{0.5\textwidth}
  3232. {\if\edition\racketEd\color{olive}
  3233. \begin{lstlisting}
  3234. movq $42, -8(%rbp)
  3235. movq -8(%rbp), -16(%rbp)
  3236. movq -16(%rbp), %rax
  3237. \end{lstlisting}
  3238. \fi}
  3239. {\if\edition\pythonEd
  3240. \begin{lstlisting}
  3241. movq 42, -8(%rbp)
  3242. movq -8(%rbp), -16(%rbp)
  3243. movq -16(%rbp), %rdi
  3244. callq print_int
  3245. \end{lstlisting}
  3246. \fi}
  3247. \end{minipage}\\
  3248. The second \key{movq} instruction is problematic because both
  3249. arguments are stack locations. We suggest fixing this problem by
  3250. moving from the source location to the register \key{rax} and then
  3251. from \key{rax} to the destination location, as follows.
  3252. \begin{lstlisting}
  3253. movq -8(%rbp), %rax
  3254. movq %rax, -16(%rbp)
  3255. \end{lstlisting}
  3256. \begin{exercise}
  3257. \normalfont Implement the \key{patch\_instructions} pass in
  3258. \racket{\code{compiler.rkt}}\python{\code{compiler.py}}.
  3259. Create three new example programs that are
  3260. designed to exercise all of the interesting cases in this pass.
  3261. %
  3262. {\if\edition\racketEd\color{olive}
  3263. In the \code{run-tests.rkt} script, add the following entry to the
  3264. list of \code{passes} and then run the script to test your compiler.
  3265. \begin{lstlisting}
  3266. (list "patch instructions" patch-instructions interp_x86-0)
  3267. \end{lstlisting}
  3268. \fi}
  3269. {\if\edition\pythonEd
  3270. Run the \code{run-tests.py} script to to check
  3271. whether the output programs produce the same result as the input
  3272. programs.
  3273. \fi}
  3274. \end{exercise}
  3275. \section{Print x86}
  3276. \label{sec:print-x86}
  3277. The last step of the compiler from \LangVar{} to x86 is to convert the
  3278. \LangXInt{} AST (defined in Figure~\ref{fig:x86-int-ast}) to the
  3279. string representation (defined in
  3280. Figure~\ref{fig:x86-int-concrete}).
  3281. %
  3282. \racket{The Racket \key{format} and \key{string-append} functions are
  3283. useful in this regard.}
  3284. %
  3285. This pass creates the \key{main} function and the standard
  3286. instructions for its prelude and conclusion, as shown in
  3287. Figure~\ref{fig:p1-x86} of Section~\ref{sec:x86}. You will need to
  3288. know the amount of space needed for the stack frame, which you can
  3289. obtain from the
  3290. %
  3291. \racket{\code{stack-space} entry in the $\itm{info}$ field}
  3292. %
  3293. \python{\code{stack\_space} field}
  3294. %
  3295. of the \key{X86Program} node.
  3296. When running on Mac OS X, your compiler should prefix an underscore to
  3297. all labels, e.g., changing \key{main} to \key{\_main}.
  3298. %
  3299. \racket{The Racket call \code{(system-type 'os)} is useful for
  3300. determining which operating system the compiler is running on. It
  3301. returns \code{'macosx}, \code{'unix}, or \code{'windows}.}
  3302. %
  3303. \python{The Python \code{platform} library includes a \code{system()}
  3304. function that returns \code{'Linux'}, \code{'Windows'}, or
  3305. \code{'Darwin'} (for Mac).}
  3306. \begin{exercise}\normalfont
  3307. %
  3308. Implement the \key{print\_x86} pass in \racket{\code{compiler.rkt}}\python{\code{compiler.py}}.
  3309. %
  3310. {\if\edition\racketEd\color{olive}
  3311. In the \code{run-tests.rkt} script, add the following entry to the
  3312. list of \code{passes} and then run the script to test your compiler.
  3313. \begin{lstlisting}
  3314. (list "print x86" print-x86 #f)
  3315. \end{lstlisting}
  3316. %
  3317. Uncomment the call to the \key{compiler-tests} function
  3318. (Appendix~\ref{appendix:utilities}), which tests your complete
  3319. compiler by executing the generated x86 code. Compile the provided
  3320. \key{runtime.c} file to \key{runtime.o} using \key{gcc}. Run the
  3321. script to test your compiler.
  3322. \fi}
  3323. {\if\edition\pythonEd
  3324. Run the \code{run-tests.py} script to to check
  3325. whether the output programs produce the same result as the input
  3326. programs.
  3327. \fi}
  3328. \end{exercise}
  3329. \section{Challenge: Partial Evaluator for \LangVar{}}
  3330. \label{sec:pe-Lvar}
  3331. \index{subject}{partial evaluation}
  3332. This section describes two optional challenge exercises that involve
  3333. adapting and improving the partial evaluator for \LangInt{} that was
  3334. introduced in Section~\ref{sec:partial-evaluation}.
  3335. \begin{exercise}\label{ex:pe-Lvar}
  3336. \normalfont
  3337. Adapt the partial evaluator from Section~\ref{sec:partial-evaluation}
  3338. (Figure~\ref{fig:pe-arith}) so that it applies to \LangVar{} programs
  3339. instead of \LangInt{} programs. Recall that \LangVar{} adds variables and
  3340. %
  3341. \racket{\key{let} binding}\python{assignment}
  3342. %
  3343. to the \LangInt{} language, so you will need to add cases for them in
  3344. the \code{pe\_exp}
  3345. %
  3346. \racket{function}
  3347. %
  3348. \python{and \code{pe\_stmt} functions}.
  3349. %
  3350. Once complete, add the partial evaluation pass to the front of your
  3351. compiler and make sure that your compiler still passes all of the
  3352. tests.
  3353. \end{exercise}
  3354. \begin{exercise}
  3355. \normalfont
  3356. Improve on the partial evaluator by replacing the \code{pe\_neg} and
  3357. \code{pe\_add} auxiliary functions with functions that know more about
  3358. arithmetic. For example, your partial evaluator should translate
  3359. {\if\edition\racketEd\color{olive}
  3360. \[
  3361. \code{(+ 1 (+ (read) 1))} \qquad \text{into} \qquad
  3362. \code{(+ 2 (read))}
  3363. \]
  3364. \fi}
  3365. {\if\edition\pythonEd
  3366. \[
  3367. \code{1 + (input\_int() + 1)} \qquad \text{into} \qquad
  3368. \code{2 + input\_int()}
  3369. \]
  3370. \fi}
  3371. To accomplish this, the \code{pe\_exp} function should produce output
  3372. in the form of the $\itm{residual}$ non-terminal of the following
  3373. grammar. The idea is that when processing an addition expression, we
  3374. can always produce either 1) an integer constant, 2) an addition
  3375. expression with an integer constant on the left-hand side but not the
  3376. right-hand side, or 3) or an addition expression in which neither
  3377. subexpression is a constant.
  3378. {\if\edition\racketEd\color{olive}
  3379. \[
  3380. \begin{array}{lcl}
  3381. \itm{inert} &::=& \Var
  3382. \MID \LP\key{read}\RP
  3383. \MID \LP\key{-} ~\Var\RP
  3384. \MID \LP\key{-} ~\LP\key{read}\RP\RP
  3385. \MID \LP\key{+} ~ \itm{inert} ~ \itm{inert}\RP\\
  3386. &\MID& \LP\key{let}~\LP\LS\Var~\itm{residual}\RS\RP~ \itm{residual} \RP \\
  3387. \itm{residual} &::=& \Int
  3388. \MID \LP\key{+}~ \Int~ \itm{inert}\RP
  3389. \MID \itm{inert}
  3390. \end{array}
  3391. \]
  3392. \fi}
  3393. {\if\edition\pythonEd
  3394. \[
  3395. \begin{array}{lcl}
  3396. \itm{inert} &::=& \Var
  3397. \MID \key{input\_int}\LP\RP
  3398. \MID \key{-} \Var
  3399. \MID \key{-} \key{input\_int}\LP\RP
  3400. \MID \itm{inert} ~ \key{+} ~ \itm{inert}\\
  3401. \itm{residual} &::=& \Int
  3402. \MID \LP\key{+}~ \Int~ \itm{inert}\RP
  3403. \MID \itm{inert}
  3404. \end{array}
  3405. \]
  3406. \fi}
  3407. The \code{pe\_add} and \code{pe\_neg} functions may assume that their
  3408. inputs are $\itm{residual}$ expressions and they should return
  3409. $\itm{residual}$ expressions. Once the improvements are complete,
  3410. make sure that your compiler still passes all of the tests. After
  3411. all, fast code is useless if it produces incorrect results!
  3412. \end{exercise}
  3413. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  3414. \chapter{Register Allocation}
  3415. \label{ch:register-allocation-Lvar}
  3416. \index{subject}{register allocation}
  3417. In Chapter~\ref{ch:Lvar} we learned how to store variables on the
  3418. stack. In this chapter we learn how to improve the performance of the
  3419. generated code by assigning some variables to registers. The CPU can
  3420. access a register in a single cycle, whereas accessing the stack can
  3421. take 10s to 100s of cycles. The program in Figure~\ref{fig:reg-eg}
  3422. serves as a running example. The source program is on the left and the
  3423. output of instruction selection is on the right. The program is almost
  3424. in the x86 assembly language but it still uses variables.
  3425. \begin{figure}
  3426. \begin{minipage}{0.45\textwidth}
  3427. Example \LangVar{} program:
  3428. % var_test_28.rkt
  3429. {\if\edition\racketEd\color{olive}
  3430. \begin{lstlisting}
  3431. (let ([v 1])
  3432. (let ([w 42])
  3433. (let ([x (+ v 7)])
  3434. (let ([y x])
  3435. (let ([z (+ x w)])
  3436. (+ z (- y)))))))
  3437. \end{lstlisting}
  3438. \fi}
  3439. {\if\edition\pythonEd
  3440. \begin{lstlisting}
  3441. v = 1
  3442. w = 42
  3443. x = v + 7
  3444. y = x
  3445. z = x + w
  3446. print(z + (- y))
  3447. \end{lstlisting}
  3448. \fi}
  3449. \end{minipage}
  3450. \begin{minipage}{0.45\textwidth}
  3451. After instruction selection:
  3452. {\if\edition\racketEd\color{olive}
  3453. \begin{lstlisting}
  3454. locals-types:
  3455. x : Integer, y : Integer,
  3456. z : Integer, t : Integer,
  3457. v : Integer, w : Integer
  3458. start:
  3459. movq $1, v
  3460. movq $42, w
  3461. movq v, x
  3462. addq $7, x
  3463. movq x, y
  3464. movq x, z
  3465. addq w, z
  3466. movq y, t
  3467. negq t
  3468. movq z, %rax
  3469. addq t, %rax
  3470. jmp conclusion
  3471. \end{lstlisting}
  3472. \fi}
  3473. {\if\edition\pythonEd
  3474. \begin{lstlisting}
  3475. movq $1, v
  3476. movq $42, w
  3477. movq v, x
  3478. addq $7, x
  3479. movq x, y
  3480. movq x, z
  3481. addq w, z
  3482. movq y, tmp_0
  3483. negq tmp_0
  3484. movq z, tmp_1
  3485. addq tmp_0, tmp_1
  3486. movq tmp_1, %rdi
  3487. callq print_int
  3488. \end{lstlisting}
  3489. \fi}
  3490. \end{minipage}
  3491. \caption{A running example for register allocation.}
  3492. \label{fig:reg-eg}
  3493. \end{figure}
  3494. The goal of register allocation is to fit as many variables into
  3495. registers as possible. Some programs have more variables than
  3496. registers so we cannot always map each variable to a different
  3497. register. Fortunately, it is common for different variables to be
  3498. needed during different periods of time during program execution, and
  3499. in such cases several variables can be mapped to the same register.
  3500. Consider variables \code{x} and \code{z} in Figure~\ref{fig:reg-eg}.
  3501. After the variable \code{x} is moved to \code{z} it is no longer
  3502. needed. Variable \code{z}, on the other hand, is used only after this
  3503. point, so \code{x} and \code{z} could share the same register. The
  3504. topic of Section~\ref{sec:liveness-analysis-Lvar} is how to compute
  3505. where a variable is needed. Once we have that information, we compute
  3506. which variables are needed at the same time, i.e., which ones
  3507. \emph{interfere} with each other, and represent this relation as an
  3508. undirected graph whose vertices are variables and edges indicate when
  3509. two variables interfere (Section~\ref{sec:build-interference}). We
  3510. then model register allocation as a graph coloring problem
  3511. (Section~\ref{sec:graph-coloring}).
  3512. If we run out of registers despite these efforts, we place the
  3513. remaining variables on the stack, similar to what we did in
  3514. Chapter~\ref{ch:Lvar}. It is common to use the verb \emph{spill} for
  3515. assigning a variable to a stack location. The decision to spill a
  3516. variable is handled as part of the graph coloring process.
  3517. We make the simplifying assumption that each variable is assigned to
  3518. one location (a register or stack address). A more sophisticated
  3519. approach is to assign a variable to one or more locations in different
  3520. regions of the program. For example, if a variable is used many times
  3521. in short sequence and then only used again after many other
  3522. instructions, it could be more efficient to assign the variable to a
  3523. register during the initial sequence and then move it to the stack for
  3524. the rest of its lifetime. We refer the interested reader to
  3525. \citet{Cooper:2011aa} Chapter 13 for more information about that
  3526. approach.
  3527. % discuss prioritizing variables based on how much they are used.
  3528. \section{Registers and Calling Conventions}
  3529. \label{sec:calling-conventions}
  3530. \index{subject}{calling conventions}
  3531. As we perform register allocation, we need to be aware of the
  3532. \emph{calling conventions} \index{subject}{calling conventions} that govern how
  3533. functions calls are performed in x86.
  3534. %
  3535. Even though \LangVar{} does not include programmer-defined functions,
  3536. our generated code includes a \code{main} function that is called by
  3537. the operating system and our generated code contains calls to the
  3538. \code{read\_int} function.
  3539. Function calls require coordination between two pieces of code that
  3540. may be written by different programmers or generated by different
  3541. compilers. Here we follow the System V calling conventions that are
  3542. used by the GNU C compiler on Linux and
  3543. MacOS~\citep{Bryant:2005aa,Matz:2013aa}.
  3544. %
  3545. The calling conventions include rules about how functions share the
  3546. use of registers. In particular, the caller is responsible for freeing
  3547. up some registers prior to the function call for use by the callee.
  3548. These are called the \emph{caller-saved registers}
  3549. \index{subject}{caller-saved registers}
  3550. and they are
  3551. \begin{lstlisting}
  3552. rax rcx rdx rsi rdi r8 r9 r10 r11
  3553. \end{lstlisting}
  3554. On the other hand, the callee is responsible for preserving the values
  3555. of the \emph{callee-saved registers}, \index{subject}{callee-saved registers}
  3556. which are
  3557. \begin{lstlisting}
  3558. rsp rbp rbx r12 r13 r14 r15
  3559. \end{lstlisting}
  3560. We can think about this caller/callee convention from two points of
  3561. view, the caller view and the callee view:
  3562. \begin{itemize}
  3563. \item The caller should assume that all the caller-saved registers get
  3564. overwritten with arbitrary values by the callee. On the other hand,
  3565. the caller can safely assume that all the callee-saved registers
  3566. contain the same values after the call that they did before the
  3567. call.
  3568. \item The callee can freely use any of the caller-saved registers.
  3569. However, if the callee wants to use a callee-saved register, the
  3570. callee must arrange to put the original value back in the register
  3571. prior to returning to the caller. This can be accomplished by saving
  3572. the value to the stack in the prelude of the function and restoring
  3573. the value in the conclusion of the function.
  3574. \end{itemize}
  3575. In x86, registers are also used for passing arguments to a function
  3576. and for the return value. In particular, the first six arguments to a
  3577. function are passed in the following six registers, in this order.
  3578. \begin{lstlisting}
  3579. rdi rsi rdx rcx r8 r9
  3580. \end{lstlisting}
  3581. If there are more than six arguments, then the convention is to use
  3582. space on the frame of the caller for the rest of the
  3583. arguments. However, in Chapter~\ref{ch:Rfun} we arrange never to
  3584. need more than six arguments.
  3585. %
  3586. \racket{For now, the only function we care about is \code{read\_int}
  3587. and it takes zero arguments.}
  3588. %
  3589. \python{For now, the only functions we care about are \code{read\_int}
  3590. and \code{print\_int}, which take zero and one argument, respectively.}
  3591. %
  3592. The register \code{rax} is used for the return value of a function.
  3593. The next question is how these calling conventions impact register
  3594. allocation. Consider the \LangVar{} program in
  3595. Figure~\ref{fig:example-calling-conventions}. We first analyze this
  3596. example from the caller point of view and then from the callee point
  3597. of view.
  3598. The program makes two calls to \READOP{}. Also, the variable \code{x}
  3599. is in use during the second call to \READOP{}, so we need to make sure
  3600. that the value in \code{x} does not get accidentally wiped out by the
  3601. call to \READOP{}. One obvious approach is to save all the values in
  3602. caller-saved registers to the stack prior to each function call, and
  3603. restore them after each call. That way, if the register allocator
  3604. chooses to assign \code{x} to a caller-saved register, its value will
  3605. be preserved across the call to \READOP{}. However, saving and
  3606. restoring to the stack is relatively slow. If \code{x} is not used
  3607. many times, it may be better to assign \code{x} to a stack location in
  3608. the first place. Or better yet, if we can arrange for \code{x} to be
  3609. placed in a callee-saved register, then it won't need to be saved and
  3610. restored during function calls.
  3611. The approach that we recommend for variables that are in use during a
  3612. function call is to either assign them to callee-saved registers or to
  3613. spill them to the stack. On the other hand, for variables that are not
  3614. in use during a function call, we try the following alternatives in
  3615. order 1) look for an available caller-saved register (to leave room
  3616. for other variables in the callee-saved register), 2) look for a
  3617. callee-saved register, and 3) spill the variable to the stack.
  3618. It is straightforward to implement this approach in a graph coloring
  3619. register allocator. First, we know which variables are in use during
  3620. every function call because we compute that information for every
  3621. instruction (Section~\ref{sec:liveness-analysis-Lvar}). Second, when
  3622. we build the interference graph
  3623. (Section~\ref{sec:build-interference}), we can place an edge between
  3624. each of these call-live variables and the caller-saved registers in
  3625. the interference graph. This will prevent the graph coloring algorithm
  3626. from assigning them to caller-saved registers.
  3627. Returning to the example in
  3628. Figure~\ref{fig:example-calling-conventions}, let us analyze the
  3629. generated x86 code on the right-hand side. Notice that variable
  3630. \code{x} is assigned to \code{rbx}, a callee-saved register. Thus, it
  3631. is already in a safe place during the second call to
  3632. \code{read\_int}. Next, notice that variable \code{y} is assigned to
  3633. \code{rcx}, a caller-saved register, because there are no function
  3634. calls in the remainder of the block.
  3635. Next we analyze the example from the callee point of view, focusing on
  3636. the prelude and conclusion of the \code{main} function. As usual the
  3637. prelude begins with saving the \code{rbp} register to the stack and
  3638. setting the \code{rbp} to the current stack pointer. We now know why
  3639. it is necessary to save the \code{rbp}: it is a callee-saved register.
  3640. The prelude then pushes \code{rbx} to the stack because 1) \code{rbx}
  3641. is a callee-saved register and 2) \code{rbx} is assigned to a variable
  3642. (\code{x}). The other callee-saved registers are not saved in the
  3643. prelude because they are not used. The prelude subtracts 8 bytes from
  3644. the \code{rsp} to make it 16-byte aligned. Shifting attention to the
  3645. conclusion, we see that \code{rbx} is restored from the stack with a
  3646. \code{popq} instruction.
  3647. \index{subject}{prelude}\index{subject}{conclusion}
  3648. \begin{figure}[tp]
  3649. \begin{minipage}{0.45\textwidth}
  3650. Example \LangVar{} program:
  3651. %var_test_14.rkt
  3652. {\if\edition\racketEd\color{olive}
  3653. \begin{lstlisting}
  3654. (let ([x (read)])
  3655. (let ([y (read)])
  3656. (+ (+ x y) 42)))
  3657. \end{lstlisting}
  3658. \fi}
  3659. {\if\edition\pythonEd
  3660. \begin{lstlisting}
  3661. x = input_int()
  3662. y = input_int()
  3663. print((x + y) + 42)
  3664. \end{lstlisting}
  3665. \fi}
  3666. \end{minipage}
  3667. \begin{minipage}{0.45\textwidth}
  3668. Generated x86 assembly:
  3669. {\if\edition\racketEd\color{olive}
  3670. \begin{lstlisting}
  3671. start:
  3672. callq read_int
  3673. movq %rax, %rbx
  3674. callq read_int
  3675. movq %rax, %rcx
  3676. addq %rcx, %rbx
  3677. movq %rbx, %rax
  3678. addq $42, %rax
  3679. jmp _conclusion
  3680. .globl main
  3681. main:
  3682. pushq %rbp
  3683. movq %rsp, %rbp
  3684. pushq %rbx
  3685. subq $8, %rsp
  3686. jmp start
  3687. conclusion:
  3688. addq $8, %rsp
  3689. popq %rbx
  3690. popq %rbp
  3691. retq
  3692. \end{lstlisting}
  3693. \fi}
  3694. {\if\edition\pythonEd
  3695. \begin{lstlisting}
  3696. .globl main
  3697. main:
  3698. pushq %rbp
  3699. movq %rsp, %rbp
  3700. pushq %rbx
  3701. subq $8, %rsp
  3702. callq read_int
  3703. movq %rax, %rbx
  3704. callq read_int
  3705. movq %rax, %rcx
  3706. movq %rbx, %rdx
  3707. addq %rcx, %rdx
  3708. movq %rdx, %rcx
  3709. addq $42, %rcx
  3710. movq %rcx, %rdi
  3711. callq print_int
  3712. addq $8, %rsp
  3713. popq %rbx
  3714. popq %rbp
  3715. retq
  3716. \end{lstlisting}
  3717. \fi}
  3718. \end{minipage}
  3719. \caption{An example with function calls.}
  3720. \label{fig:example-calling-conventions}
  3721. \end{figure}
  3722. %\clearpage
  3723. \section{Liveness Analysis}
  3724. \label{sec:liveness-analysis-Lvar}
  3725. \index{subject}{liveness analysis}
  3726. The \code{uncover\_live} \racket{pass}\python{function}
  3727. performs \emph{liveness analysis}, that
  3728. is, it discovers which variables are in-use in different regions of a
  3729. program.
  3730. %
  3731. A variable or register is \emph{live} at a program point if its
  3732. current value is used at some later point in the program. We refer to
  3733. variables, stack locations, and registers collectively as
  3734. \emph{locations}.
  3735. %
  3736. Consider the following code fragment in which there are two writes to
  3737. \code{b}. Are \code{a} and \code{b} both live at the same time?
  3738. \begin{center}
  3739. \begin{minipage}{0.96\textwidth}
  3740. \begin{lstlisting}[numbers=left,numberstyle=\tiny]
  3741. movq $5, a
  3742. movq $30, b
  3743. movq a, c
  3744. movq $10, b
  3745. addq b, c
  3746. \end{lstlisting}
  3747. \end{minipage}
  3748. \end{center}
  3749. The answer is no because \code{a} is live from line 1 to 3 and
  3750. \code{b} is live from line 4 to 5. The integer written to \code{b} on
  3751. line 2 is never used because it is overwritten (line 4) before the
  3752. next read (line 5).
  3753. The live locations can be computed by traversing the instruction
  3754. sequence back to front (i.e., backwards in execution order). Let
  3755. $I_1,\ldots, I_n$ be the instruction sequence. We write
  3756. $L_{\mathsf{after}}(k)$ for the set of live locations after
  3757. instruction $I_k$ and $L_{\mathsf{before}}(k)$ for the set of live
  3758. locations before instruction $I_k$.
  3759. \racket{We recommend representing these
  3760. sets with the Racket \code{set} data structure described in
  3761. Figure~\ref{fig:set}.}
  3762. \python{We recommend representing these sets with the Python
  3763. \href{https://docs.python.org/3.10/library/stdtypes.html\#set-types-set-frozenset}{\code{set}}
  3764. data structure.}
  3765. {\if\edition\racketEd\color{olive}
  3766. \begin{figure}[tp]
  3767. %\begin{wrapfigure}[19]{l}[0.75in]{0.55\textwidth}
  3768. \small
  3769. \begin{tcolorbox}[title=\href{https://docs.racket-lang.org/reference/sets.html}{The Racket Set Package}]
  3770. A \emph{set} is an unordered collection of elements without duplicates.
  3771. Here are some of the operations defined on sets.
  3772. \index{subject}{set}
  3773. \begin{description}
  3774. \item[$\LP\code{set}~v~\ldots\RP$] constructs a set containing the specified elements.
  3775. \item[$\LP\code{set-union}~set_1~set_2\RP$] returns the union of the two sets.
  3776. \item[$\LP\code{set-subtract}~set_1~set_2\RP$] returns the set
  3777. difference of the two sets.
  3778. \item[$\LP\code{set-member?}~set~v\RP$] answers whether element $v$ is in $set$.
  3779. \item[$\LP\code{set-count}~set\RP$] returns the number of unique elements in $set$.
  3780. \item[$\LP\code{set->list}~set\RP$] converts $set$ to a list.
  3781. \end{description}
  3782. \end{tcolorbox}
  3783. %\end{wrapfigure}
  3784. \caption{The \code{set} data structure.}
  3785. \label{fig:set}
  3786. \end{figure}
  3787. \fi}
  3788. The live locations after an instruction are always the same as the
  3789. live locations before the next instruction.
  3790. \index{subject}{live-after} \index{subject}{live-before}
  3791. \begin{equation} \label{eq:live-after-before-next}
  3792. L_{\mathsf{after}}(k) = L_{\mathsf{before}}(k+1)
  3793. \end{equation}
  3794. To start things off, there are no live locations after the last
  3795. instruction, so
  3796. \begin{equation}\label{eq:live-last-empty}
  3797. L_{\mathsf{after}}(n) = \emptyset
  3798. \end{equation}
  3799. We then apply the following rule repeatedly, traversing the
  3800. instruction sequence back to front.
  3801. \begin{equation}\label{eq:live-before-after-minus-writes-plus-reads}
  3802. L_{\mathtt{before}}(k) = (L_{\mathtt{after}}(k) - W(k)) \cup R(k),
  3803. \end{equation}
  3804. where $W(k)$ are the locations written to by instruction $I_k$ and
  3805. $R(k)$ are the locations read by instruction $I_k$.
  3806. {\if\edition\racketEd\color{olive}
  3807. There is a special case for \code{jmp} instructions. The locations
  3808. that are live before a \code{jmp} should be the locations in
  3809. $L_{\mathtt{before}}$ at the target of the jump. So we recommend
  3810. maintaining an alist named \code{label->live} that maps each label to
  3811. the $L_{\mathtt{before}}$ for the first instruction in its block. For
  3812. now the only \code{jmp} in a \LangXVar{} program is the one at the
  3813. end, to the conclusion. (For example, see Figure~\ref{fig:reg-eg}.)
  3814. The conclusion reads from \ttm{rax} and \ttm{rsp}, so the alist should
  3815. map \code{conclusion} to the set $\{\ttm{rax},\ttm{rsp}\}$.
  3816. \fi}
  3817. Let us walk through the above example, applying these formulas
  3818. starting with the instruction on line 5. We collect the answers in
  3819. Figure~\ref{fig:liveness-example-0}. The $L_{\mathsf{after}}$ for the
  3820. \code{addq b, c} instruction is $\emptyset$ because it is the last
  3821. instruction (formula~\ref{eq:live-last-empty}). The
  3822. $L_{\mathsf{before}}$ for this instruction is $\{\ttm{b},\ttm{c}\}$
  3823. because it reads from variables \code{b} and \code{c}
  3824. (formula~\ref{eq:live-before-after-minus-writes-plus-reads}), that is
  3825. \[
  3826. L_{\mathsf{before}}(5) = (\emptyset - \{\ttm{c}\}) \cup \{ \ttm{b}, \ttm{c} \} = \{ \ttm{b}, \ttm{c} \}
  3827. \]
  3828. Moving on the the instruction \code{movq \$10, b} at line 4, we copy
  3829. the live-before set from line 5 to be the live-after set for this
  3830. instruction (formula~\ref{eq:live-after-before-next}).
  3831. \[
  3832. L_{\mathsf{after}}(4) = \{ \ttm{b}, \ttm{c} \}
  3833. \]
  3834. This move instruction writes to \code{b} and does not read from any
  3835. variables, so we have the following live-before set
  3836. (formula~\ref{eq:live-before-after-minus-writes-plus-reads}).
  3837. \[
  3838. L_{\mathsf{before}}(4) = (\{\ttm{b},\ttm{c}\} - \{\ttm{b}\}) \cup \emptyset = \{ \ttm{c} \}
  3839. \]
  3840. The live-before for instruction \code{movq a, c}
  3841. is $\{\ttm{a}\}$ because it writes to $\{\ttm{c}\}$ and reads from $\{\ttm{a}\}$
  3842. (formula~\ref{eq:live-before-after-minus-writes-plus-reads}). The
  3843. live-before for \code{movq \$30, b} is $\{\ttm{a}\}$ because it writes to a
  3844. variable that is not live and does not read from a variable.
  3845. Finally, the live-before for \code{movq \$5, a} is $\emptyset$
  3846. because it writes to variable \code{a}.
  3847. \begin{figure}[tbp]
  3848. \begin{minipage}{0.45\textwidth}
  3849. \begin{lstlisting}[numbers=left,numberstyle=\tiny]
  3850. movq $5, a
  3851. movq $30, b
  3852. movq a, c
  3853. movq $10, b
  3854. addq b, c
  3855. \end{lstlisting}
  3856. \end{minipage}
  3857. \vrule\hspace{10pt}
  3858. \begin{minipage}{0.45\textwidth}
  3859. \begin{align*}
  3860. L_{\mathsf{before}}(1)= \emptyset,
  3861. L_{\mathsf{after}}(1)= \{\ttm{a}\}\\
  3862. L_{\mathsf{before}}(2)= \{\ttm{a}\},
  3863. L_{\mathsf{after}}(2)= \{\ttm{a}\}\\
  3864. L_{\mathsf{before}}(3)= \{\ttm{a}\},
  3865. L_{\mathsf{after}}(2)= \{\ttm{c}\}\\
  3866. L_{\mathsf{before}}(4)= \{\ttm{c}\},
  3867. L_{\mathsf{after}}(4)= \{\ttm{b},\ttm{c}\}\\
  3868. L_{\mathsf{before}}(5)= \{\ttm{b},\ttm{c}\},
  3869. L_{\mathsf{after}}(5)= \emptyset
  3870. \end{align*}
  3871. \end{minipage}
  3872. \caption{Example output of liveness analysis on a short example.}
  3873. \label{fig:liveness-example-0}
  3874. \end{figure}
  3875. \begin{exercise}\normalfont
  3876. Perform liveness analysis on the running example in
  3877. Figure~\ref{fig:reg-eg}, computing the live-before and live-after
  3878. sets for each instruction. Compare your answers to the solution
  3879. shown in Figure~\ref{fig:live-eg}.
  3880. \end{exercise}
  3881. \begin{figure}[tp]
  3882. \hspace{20pt}
  3883. \begin{minipage}{0.45\textwidth}
  3884. {\if\edition\racketEd\color{olive}
  3885. \begin{lstlisting}
  3886. |$\{\ttm{rsp}\}$|
  3887. movq $1, v
  3888. |$\{\ttm{v},\ttm{rsp}\}$|
  3889. movq $42, w
  3890. |$\{\ttm{v},\ttm{w},\ttm{rsp}\}$|
  3891. movq v, x
  3892. |$\{\ttm{w},\ttm{x},\ttm{rsp}\}$|
  3893. addq $7, x
  3894. |$\{\ttm{w},\ttm{x},\ttm{rsp}\}$|
  3895. movq x, y
  3896. |$\{\ttm{w},\ttm{x},\ttm{y},\ttm{rsp}\}$|
  3897. movq x, z
  3898. |$\{\ttm{w},\ttm{y},\ttm{z},\ttm{rsp}\}$|
  3899. addq w, z
  3900. |$\{\ttm{y},\ttm{z},\ttm{rsp}\}$|
  3901. movq y, t
  3902. |$\{\ttm{t},\ttm{z},\ttm{rsp}\}$|
  3903. negq t
  3904. |$\{\ttm{t},\ttm{z},\ttm{rsp}\}$|
  3905. movq z, %rax
  3906. |$\{\ttm{rax},\ttm{t},\ttm{rsp}\}$|
  3907. addq t, %rax
  3908. |$\{\ttm{rax},\ttm{rsp}\}$|
  3909. jmp conclusion
  3910. \end{lstlisting}
  3911. \fi}
  3912. {\if\edition\pythonEd
  3913. \begin{lstlisting}
  3914. movq $1, v
  3915. |$\{\ttm{v}\}$|
  3916. movq $42, w
  3917. |$\{\ttm{w}, \ttm{v}\}$|
  3918. movq v, x
  3919. |$\{\ttm{w}, \ttm{x}\}$|
  3920. addq $7, x
  3921. |$\{\ttm{w}, \ttm{x}\}$|
  3922. movq x, y
  3923. |$\{\ttm{w}, \ttm{x}, \ttm{y}\}$|
  3924. movq x, z
  3925. |$\{\ttm{w}, \ttm{y}, \ttm{z}\}$|
  3926. addq w, z
  3927. |$\{\ttm{y}, \ttm{z}\}$|
  3928. movq y, tmp_0
  3929. |$\{\ttm{tmp\_0}, \ttm{z}\}$|
  3930. negq tmp_0
  3931. |$\{\ttm{tmp\_0}, \ttm{z}\}$|
  3932. movq z, tmp_1
  3933. |$\{\ttm{tmp\_0}, \ttm{tmp\_1}\}$|
  3934. addq tmp_0, tmp_1
  3935. |$\{\ttm{tmp\_1}\}$|
  3936. movq tmp_1, %rdi
  3937. |$\{\ttm{rdi}\}$|
  3938. callq print_int
  3939. |$\{\}$|
  3940. \end{lstlisting}
  3941. \fi}
  3942. \end{minipage}
  3943. \caption{The running example annotated with live-after sets.}
  3944. \label{fig:live-eg}
  3945. \end{figure}
  3946. \begin{exercise}\normalfont
  3947. Implement the \code{uncover\_live} \racket{pass}\python{function}.
  3948. %
  3949. \racket{Store the sequence of live-after sets in the $\itm{info}$
  3950. field of the \code{Block} structure.}
  3951. %
  3952. \python{Return a dictionary that maps each instruction to its
  3953. live-after set.}
  3954. %
  3955. \racket{We recommend creating an auxiliary function that takes a list
  3956. of instructions and an initial live-after set (typically empty) and
  3957. returns the list of live-after sets.}
  3958. %
  3959. We recommend creating auxiliary functions to 1) compute the set
  3960. of locations that appear in an \Arg{}, 2) compute the locations read
  3961. by an instruction (the $R$ function), and 3) the locations written by
  3962. an instruction (the $W$ function). The \code{callq} instruction should
  3963. include all of the caller-saved registers in its write-set $W$ because
  3964. the calling convention says that those registers may be written to
  3965. during the function call. Likewise, the \code{callq} instruction
  3966. should include the appropriate argument-passing registers in its
  3967. read-set $R$, depending on the arity of the function being
  3968. called. (This is why the abstract syntax for \code{callq} includes the
  3969. arity.)
  3970. \end{exercise}
  3971. %\clearpage
  3972. \section{Build the Interference Graph}
  3973. \label{sec:build-interference}
  3974. {\if\edition\racketEd\color{olive}
  3975. \begin{figure}[tp]
  3976. %\begin{wrapfigure}[23]{r}[0.75in]{0.55\textwidth}
  3977. \small
  3978. \begin{tcolorbox}[title=\href{https://docs.racket-lang.org/graph/index.html}{The Racket Graph Library}]
  3979. A \emph{graph} is a collection of vertices and edges where each
  3980. edge connects two vertices. A graph is \emph{directed} if each
  3981. edge points from a source to a target. Otherwise the graph is
  3982. \emph{undirected}.
  3983. \index{subject}{graph}\index{subject}{directed graph}\index{subject}{undirected graph}
  3984. \begin{description}
  3985. %% We currently don't use directed graphs. We instead use
  3986. %% directed multi-graphs. -Jeremy
  3987. \item[$\LP\code{directed-graph}\,\itm{edges}\RP$] constructs a
  3988. directed graph from a list of edges. Each edge is a list
  3989. containing the source and target vertex.
  3990. \item[$\LP\code{undirected-graph}\,\itm{edges}\RP$] constructs a
  3991. undirected graph from a list of edges. Each edge is represented by
  3992. a list containing two vertices.
  3993. \item[$\LP\code{add-vertex!}\,\itm{graph}\,\itm{vertex}\RP$]
  3994. inserts a vertex into the graph.
  3995. \item[$\LP\code{add-edge!}\,\itm{graph}\,\itm{source}\,\itm{target}\RP$]
  3996. inserts an edge between the two vertices.
  3997. \item[$\LP\code{in-neighbors}\,\itm{graph}\,\itm{vertex}\RP$]
  3998. returns a sequence of vertices adjacent to the vertex.
  3999. \item[$\LP\code{in-vertices}\,\itm{graph}\RP$]
  4000. returns a sequence of all vertices in the graph.
  4001. \end{description}
  4002. \end{tcolorbox}
  4003. %\end{wrapfigure}
  4004. \caption{The Racket \code{graph} package.}
  4005. \label{fig:graph}
  4006. \end{figure}
  4007. \fi}
  4008. Based on the liveness analysis, we know where each location is live.
  4009. However, during register allocation, we need to answer questions of
  4010. the specific form: are locations $u$ and $v$ live at the same time?
  4011. (And therefore cannot be assigned to the same register.) To make this
  4012. question more efficient to answer, we create an explicit data
  4013. structure, an \emph{interference graph}\index{subject}{interference
  4014. graph}. An interference graph is an undirected graph that has an
  4015. edge between two locations if they are live at the same time, that is,
  4016. if they interfere with each other.
  4017. %
  4018. \racket{We recommend using the Racket \code{graph} package
  4019. (Figure~\ref{fig:graph}) to represent the interference graph.}
  4020. %
  4021. \python{We provide implementations of directed and undirected graph
  4022. data structures in the file \code{graph.py} of the support code.}
  4023. A straightforward way to compute the interference graph is to look at
  4024. the set of live locations between each instruction and add an edge to
  4025. the graph for every pair of variables in the same set. This approach
  4026. is less than ideal for two reasons. First, it can be expensive because
  4027. it takes $O(n^2)$ time to consider at every pair in a set of $n$ live
  4028. locations. Second, in the special case where two locations hold the
  4029. same value (because one was assigned to the other), they can be live
  4030. at the same time without interfering with each other.
  4031. A better way to compute the interference graph is to focus on
  4032. writes~\citep{Appel:2003fk}. The writes performed by an instruction
  4033. must not overwrite something in a live location. So for each
  4034. instruction, we create an edge between the locations being written to
  4035. and the live locations. (Except that one should not create self
  4036. edges.) Note that for the \key{callq} instruction, we consider all of
  4037. the caller-saved registers as being written to, so an edge is added
  4038. between every live variable and every caller-saved register. Also, for
  4039. \key{movq} there is the above-mentioned special case to deal with. If
  4040. a live variable $v$ is the same as the source of the \key{movq}, then
  4041. there is no need to add an edge between $v$ and the destination,
  4042. because they both hold the same value.
  4043. %
  4044. So we have the following two rules.
  4045. \begin{enumerate}
  4046. \item If instruction $I_k$ is a move instruction, \key{movq} $s$\key{,}
  4047. $d$, then add the edge $(d,v)$ for every $v \in
  4048. L_{\mathsf{after}}(k)$ unless $v = d$ or $v = s$.
  4049. \item For any other instruction $I_k$, for every $d \in W(k)$
  4050. add an edge $(d,v)$ for every $v \in L_{\mathsf{after}}(k)$ unless $v = d$.
  4051. %% \item If instruction $I_k$ is an arithmetic instruction such as
  4052. %% \code{addq} $s$\key{,} $d$, then add the edge $(d,v)$ for every $v \in
  4053. %% L_{\mathsf{after}}(k)$ unless $v = d$.
  4054. %% \item If instruction $I_k$ is of the form \key{callq}
  4055. %% $\mathit{label}$, then add an edge $(r,v)$ for every caller-saved
  4056. %% register $r$ and every variable $v \in L_{\mathsf{after}}(k)$.
  4057. \end{enumerate}
  4058. Working from the top to bottom of Figure~\ref{fig:live-eg}, we apply
  4059. the above rules to each instruction. We highlight a few of the
  4060. instructions. \racket{The first instruction is \lstinline{movq $1, v}
  4061. and the live-after set is $\{\ttm{v},\ttm{rsp}\}$. Rule 1 applies,
  4062. so \code{v} interferes with \code{rsp}.}
  4063. %
  4064. \python{The first instruction is \lstinline{movq $1, v} and the
  4065. live-after set is $\{\ttm{v}\}$. Rule 1 applies but there is
  4066. no interference because $\ttm{v}$ is the destination of the move.}
  4067. %
  4068. \racket{The fourth instruction is \lstinline{addq $7, x} and the
  4069. live-after set is $\{\ttm{w},\ttm{x},\ttm{rsp}\}$. Rule 2 applies so
  4070. $\ttm{x}$ interferes with \ttm{w} and \ttm{rsp}.}
  4071. %
  4072. \python{The fourth instruction is \lstinline{addq $7, x} and the
  4073. live-after set is $\{\ttm{w},\ttm{x}\}$. Rule 2 applies so
  4074. $\ttm{x}$ interferes with \ttm{w}.}
  4075. %
  4076. \racket{The next instruction is \lstinline{movq x, y} and the
  4077. live-after set is $\{\ttm{w},\ttm{x},\ttm{y},\ttm{rsp}\}$. Rule 1
  4078. applies, so \ttm{y} interferes with \ttm{w} and \ttm{rsp} but not
  4079. \ttm{x} because \ttm{x} is the source of the move and therefore
  4080. \ttm{x} and \ttm{y} hold the same value.}
  4081. %
  4082. \python{The next instruction is \lstinline{movq x, y} and the
  4083. live-after set is $\{\ttm{w},\ttm{x},\ttm{y}\}$. Rule 1
  4084. applies, so \ttm{y} interferes with \ttm{w} but not
  4085. \ttm{x} because \ttm{x} is the source of the move and therefore
  4086. \ttm{x} and \ttm{y} hold the same value.}
  4087. %
  4088. Figure~\ref{fig:interference-results} lists the interference results
  4089. for all of the instructions and the resulting interference graph is
  4090. shown in Figure~\ref{fig:interfere}.
  4091. \begin{figure}[tbp]
  4092. \begin{quote}
  4093. {\if\edition\racketEd\color{olive}
  4094. \begin{tabular}{ll}
  4095. \lstinline!movq $1, v!& \ttm{v} interferes with \ttm{rsp},\\
  4096. \lstinline!movq $42, w!& \ttm{w} interferes with \ttm{v} and \ttm{rsp},\\
  4097. \lstinline!movq v, x!& \ttm{x} interferes with \ttm{w} and \ttm{rsp},\\
  4098. \lstinline!addq $7, x!& \ttm{x} interferes with \ttm{w} and \ttm{rsp},\\
  4099. \lstinline!movq x, y!& \ttm{y} interferes with \ttm{w} and \ttm{rsp} but not \ttm{x},\\
  4100. \lstinline!movq x, z!& \ttm{z} interferes with \ttm{w}, \ttm{y}, and \ttm{rsp},\\
  4101. \lstinline!addq w, z!& \ttm{z} interferes with \ttm{y} and \ttm{rsp}, \\
  4102. \lstinline!movq y, t!& \ttm{t} interferes with \ttm{z} and \ttm{rsp}, \\
  4103. \lstinline!negq t!& \ttm{t} interferes with \ttm{z} and \ttm{rsp}, \\
  4104. \lstinline!movq z, %rax! & \ttm{rax} interferes with \ttm{t} and \ttm{rsp}, \\
  4105. \lstinline!addq t, %rax! & \ttm{rax} interferes with \ttm{rsp}. \\
  4106. \lstinline!jmp conclusion!& no interference.
  4107. \end{tabular}
  4108. \fi}
  4109. {\if\edition\pythonEd
  4110. \begin{tabular}{ll}
  4111. \lstinline!movq $1, v!& no interference\\
  4112. \lstinline!movq $42, w!& \ttm{w} interferes with \ttm{v}\\
  4113. \lstinline!movq v, x!& \ttm{x} interferes with \ttm{w}\\
  4114. \lstinline!addq $7, x!& \ttm{x} interferes with \ttm{w}\\
  4115. \lstinline!movq x, y!& \ttm{y} interferes with \ttm{w} but not \ttm{x}\\
  4116. \lstinline!movq x, z!& \ttm{z} interferes with \ttm{w} and \ttm{y}\\
  4117. \lstinline!addq w, z!& \ttm{z} interferes with \ttm{y} \\
  4118. \lstinline!movq y, tmp_0!& \ttm{t} interferes with \ttm{z} \\
  4119. \lstinline!negq tmp_0!& \ttm{t} interferes with \ttm{z} \\
  4120. \lstinline!movq z, tmp_1! & \ttm{tmp\_0} interferes with \ttm{tmp\_1} \\
  4121. \lstinline!addq tmp_0, tmp_1! & no interference\\
  4122. \lstinline!movq tmp_1, %rdi! & no interference \\
  4123. \lstinline!callq print_int!& no interference.
  4124. \end{tabular}
  4125. \fi}
  4126. \end{quote}
  4127. \caption{Interference results for the running example.}
  4128. \label{fig:interference-results}
  4129. \end{figure}
  4130. \begin{figure}[tbp]
  4131. \large
  4132. {\if\edition\racketEd\color{olive}
  4133. \[
  4134. \begin{tikzpicture}[baseline=(current bounding box.center)]
  4135. \node (rax) at (0,0) {$\ttm{rax}$};
  4136. \node (rsp) at (9,2) {$\ttm{rsp}$};
  4137. \node (t1) at (0,2) {$\ttm{t}$};
  4138. \node (z) at (3,2) {$\ttm{z}$};
  4139. \node (x) at (6,2) {$\ttm{x}$};
  4140. \node (y) at (3,0) {$\ttm{y}$};
  4141. \node (w) at (6,0) {$\ttm{w}$};
  4142. \node (v) at (9,0) {$\ttm{v}$};
  4143. \draw (t1) to (rax);
  4144. \draw (t1) to (z);
  4145. \draw (z) to (y);
  4146. \draw (z) to (w);
  4147. \draw (x) to (w);
  4148. \draw (y) to (w);
  4149. \draw (v) to (w);
  4150. \draw (v) to (rsp);
  4151. \draw (w) to (rsp);
  4152. \draw (x) to (rsp);
  4153. \draw (y) to (rsp);
  4154. \path[-.,bend left=15] (z) edge node {} (rsp);
  4155. \path[-.,bend left=10] (t1) edge node {} (rsp);
  4156. \draw (rax) to (rsp);
  4157. \end{tikzpicture}
  4158. \]
  4159. \fi}
  4160. {\if\edition\pythonEd
  4161. \[
  4162. \begin{tikzpicture}[baseline=(current bounding box.center)]
  4163. \node (t0) at (0,2) {$\ttm{tmp\_0}$};
  4164. \node (t1) at (0,0) {$\ttm{tmp\_1}$};
  4165. \node (z) at (3,2) {$\ttm{z}$};
  4166. \node (x) at (6,2) {$\ttm{x}$};
  4167. \node (y) at (3,0) {$\ttm{y}$};
  4168. \node (w) at (6,0) {$\ttm{w}$};
  4169. \node (v) at (9,0) {$\ttm{v}$};
  4170. \draw (t0) to (t1);
  4171. \draw (t0) to (z);
  4172. \draw (z) to (y);
  4173. \draw (z) to (w);
  4174. \draw (x) to (w);
  4175. \draw (y) to (w);
  4176. \draw (v) to (w);
  4177. \end{tikzpicture}
  4178. \]
  4179. \fi}
  4180. \caption{The interference graph of the example program.}
  4181. \label{fig:interfere}
  4182. \end{figure}
  4183. %% Our next concern is to choose a data structure for representing the
  4184. %% interference graph. There are many choices for how to represent a
  4185. %% graph, for example, \emph{adjacency matrix}, \emph{adjacency list},
  4186. %% and \emph{edge set}~\citep{Cormen:2001uq}. The right way to choose a
  4187. %% data structure is to study the algorithm that uses the data structure,
  4188. %% determine what operations need to be performed, and then choose the
  4189. %% data structure that provide the most efficient implementations of
  4190. %% those operations. Often times the choice of data structure can have an
  4191. %% effect on the time complexity of the algorithm, as it does here. If
  4192. %% you skim the next section, you will see that the register allocation
  4193. %% algorithm needs to ask the graph for all of its vertices and, given a
  4194. %% vertex, it needs to known all of the adjacent vertices. Thus, the
  4195. %% correct choice of graph representation is that of an adjacency
  4196. %% list. There are helper functions in \code{utilities.rkt} for
  4197. %% representing graphs using the adjacency list representation:
  4198. %% \code{make-graph}, \code{add-edge}, and \code{adjacent}
  4199. %% (Appendix~\ref{appendix:utilities}).
  4200. %% %
  4201. %% \margincomment{\footnotesize To do: change to use the
  4202. %% Racket graph library. \\ --Jeremy}
  4203. %% %
  4204. %% In particular, those functions use a hash table to map each vertex to
  4205. %% the set of adjacent vertices, and the sets are represented using
  4206. %% Racket's \key{set}, which is also a hash table.
  4207. \begin{exercise}\normalfont
  4208. \racket{Implement the compiler pass named \code{build\_interference} according
  4209. to the algorithm suggested above. We recommend using the Racket
  4210. \code{graph} package to create and inspect the interference graph.
  4211. The output graph of this pass should be stored in the $\itm{info}$ field of
  4212. the program, under the key \code{conflicts}.}
  4213. %
  4214. \python{Implement a function named \code{build\_interference}
  4215. according to the algorithm suggested above that
  4216. returns the interference graph.}
  4217. \end{exercise}
  4218. \section{Graph Coloring via Sudoku}
  4219. \label{sec:graph-coloring}
  4220. \index{subject}{graph coloring}
  4221. \index{subject}{Sudoku}
  4222. \index{subject}{color}
  4223. We come to the main event, mapping variables to registers and stack
  4224. locations. Variables that interfere with each other must be mapped to
  4225. different locations. In terms of the interference graph, this means
  4226. that adjacent vertices must be mapped to different locations. If we
  4227. think of locations as colors, the register allocation problem becomes
  4228. the graph coloring problem~\citep{Balakrishnan:1996ve,Rosen:2002bh}.
  4229. The reader may be more familiar with the graph coloring problem than he
  4230. or she realizes; the popular game of Sudoku is an instance of the
  4231. graph coloring problem. The following describes how to build a graph
  4232. out of an initial Sudoku board.
  4233. \begin{itemize}
  4234. \item There is one vertex in the graph for each Sudoku square.
  4235. \item There is an edge between two vertices if the corresponding squares
  4236. are in the same row, in the same column, or if the squares are in
  4237. the same $3\times 3$ region.
  4238. \item Choose nine colors to correspond to the numbers $1$ to $9$.
  4239. \item Based on the initial assignment of numbers to squares in the
  4240. Sudoku board, assign the corresponding colors to the corresponding
  4241. vertices in the graph.
  4242. \end{itemize}
  4243. If you can color the remaining vertices in the graph with the nine
  4244. colors, then you have also solved the corresponding game of Sudoku.
  4245. Figure~\ref{fig:sudoku-graph} shows an initial Sudoku game board and
  4246. the corresponding graph with colored vertices. We map the Sudoku
  4247. number 1 to black, 2 to white, and 3 to gray. We only show edges for a
  4248. sampling of the vertices (the colored ones) because showing edges for
  4249. all of the vertices would make the graph unreadable.
  4250. \begin{figure}[tbp]
  4251. \includegraphics[width=0.45\textwidth]{figs/sudoku}
  4252. \includegraphics[width=0.5\textwidth]{figs/sudoku-graph-bw}
  4253. \caption{A Sudoku game board and the corresponding colored graph.}
  4254. \label{fig:sudoku-graph}
  4255. \end{figure}
  4256. Some techniques for playing Sudoku correspond to heuristics used in
  4257. graph coloring algorithms. For example, one of the basic techniques
  4258. for Sudoku is called Pencil Marks. The idea is to use a process of
  4259. elimination to determine what numbers are no longer available for a
  4260. square and write down those numbers in the square (writing very
  4261. small). For example, if the number $1$ is assigned to a square, then
  4262. write the pencil mark $1$ in all the squares in the same row, column,
  4263. and region to indicate that $1$ is no longer an option for those other
  4264. squares.
  4265. %
  4266. The Pencil Marks technique corresponds to the notion of
  4267. \emph{saturation}\index{subject}{saturation} due to \cite{Brelaz:1979eu}. The
  4268. saturation of a vertex, in Sudoku terms, is the set of numbers that
  4269. are no longer available. In graph terminology, we have the following
  4270. definition:
  4271. \begin{equation*}
  4272. \mathrm{saturation}(u) = \{ c \;|\; \exists v. v \in \mathrm{adjacent}(u)
  4273. \text{ and } \mathrm{color}(v) = c \}
  4274. \end{equation*}
  4275. where $\mathrm{adjacent}(u)$ is the set of vertices that share an
  4276. edge with $u$.
  4277. The Pencil Marks technique leads to a simple strategy for filling in
  4278. numbers: if there is a square with only one possible number left, then
  4279. choose that number! But what if there are no squares with only one
  4280. possibility left? One brute-force approach is to try them all: choose
  4281. the first one and if that ultimately leads to a solution, great. If
  4282. not, backtrack and choose the next possibility. One good thing about
  4283. Pencil Marks is that it reduces the degree of branching in the search
  4284. tree. Nevertheless, backtracking can be terribly time consuming. One
  4285. way to reduce the amount of backtracking is to use the
  4286. most-constrained-first heuristic (aka. minimum remaining
  4287. values)~\citep{Russell2003}. That is, when choosing a square, always
  4288. choose one with the fewest possibilities left (the vertex with the
  4289. highest saturation). The idea is that choosing highly constrained
  4290. squares earlier rather than later is better because later on there may
  4291. not be any possibilities left in the highly saturated squares.
  4292. However, register allocation is easier than Sudoku because the
  4293. register allocator can fall back to assigning variables to stack
  4294. locations when the registers run out. Thus, it makes sense to replace
  4295. backtracking with greedy search: make the best choice at the time and
  4296. keep going. We still wish to minimize the number of colors needed, so
  4297. we use the most-constrained-first heuristic in the greedy search.
  4298. Figure~\ref{fig:satur-algo} gives the pseudo-code for a simple greedy
  4299. algorithm for register allocation based on saturation and the
  4300. most-constrained-first heuristic. It is roughly equivalent to the
  4301. DSATUR graph coloring algorithm~\citep{Brelaz:1979eu}.
  4302. %,Gebremedhin:1999fk,Omari:2006uq
  4303. Just as in Sudoku, the algorithm represents colors with integers. The
  4304. integers $0$ through $k-1$ correspond to the $k$ registers that we use
  4305. for register allocation. The integers $k$ and larger correspond to
  4306. stack locations. The registers that are not used for register
  4307. allocation, such as \code{rax}, are assigned to negative integers. In
  4308. particular, we assign $-1$ to \code{rax} and $-2$ to \code{rsp}.
  4309. %% One might wonder why we include registers at all in the liveness
  4310. %% analysis and interference graph. For example, we never allocate a
  4311. %% variable to \code{rax} and \code{rsp}, so it would be harmless to
  4312. %% leave them out. As we see in Chapter~\ref{ch:Rvec}, when we begin
  4313. %% to use register for passing arguments to functions, it will be
  4314. %% necessary for those registers to appear in the interference graph
  4315. %% because those registers will also be assigned to variables, and we
  4316. %% don't want those two uses to encroach on each other. Regarding
  4317. %% registers such as \code{rax} and \code{rsp} that are not used for
  4318. %% variables, we could omit them from the interference graph but that
  4319. %% would require adding special cases to our algorithm, which would
  4320. %% complicate the logic for little gain.
  4321. \begin{figure}[btp]
  4322. \centering
  4323. \begin{lstlisting}[basicstyle=\rmfamily,deletekeywords={for,from,with,is,not,in,find},morekeywords={while},columns=fullflexible]
  4324. Algorithm: DSATUR
  4325. Input: a graph |$G$|
  4326. Output: an assignment |$\mathrm{color}[v]$| for each vertex |$v \in G$|
  4327. |$W \gets \mathrm{vertices}(G)$|
  4328. while |$W \neq \emptyset$| do
  4329. pick a vertex |$u$| from |$W$| with the highest saturation,
  4330. breaking ties randomly
  4331. find the lowest color |$c$| that is not in |$\{ \mathrm{color}[v] \;:\; v \in \mathrm{adjacent}(u)\}$|
  4332. |$\mathrm{color}[u] \gets c$|
  4333. |$W \gets W - \{u\}$|
  4334. \end{lstlisting}
  4335. \caption{The saturation-based greedy graph coloring algorithm.}
  4336. \label{fig:satur-algo}
  4337. \end{figure}
  4338. {\if\edition\racketEd\color{olive}
  4339. With the DSATUR algorithm in hand, let us return to the running
  4340. example and consider how to color the interference graph in
  4341. Figure~\ref{fig:interfere}.
  4342. %
  4343. We start by assigning the register nodes to their own color. For
  4344. example, \code{rax} is assigned the color $-1$ and \code{rsp} is
  4345. assigned $-2$. The variables are not yet colored, so they are
  4346. annotated with a dash. We then update the saturation for vertices that
  4347. are adjacent to a register, obtaining the following annotated
  4348. graph. For example, the saturation for \code{t} is $\{-1,-2\}$ because
  4349. it interferes with both \code{rax} and \code{rsp}.
  4350. \[
  4351. \begin{tikzpicture}[baseline=(current bounding box.center)]
  4352. \node (rax) at (0,0) {$\ttm{rax}:-1,\{-2\}$};
  4353. \node (rsp) at (10,2) {$\ttm{rsp}:-2,\{-1\}$};
  4354. \node (t1) at (0,2) {$\ttm{t}:-,\{-1,-2\}$};
  4355. \node (z) at (3,2) {$\ttm{z}:-,\{-2\}$};
  4356. \node (x) at (6,2) {$\ttm{x}:-,\{-2\}$};
  4357. \node (y) at (3,0) {$\ttm{y}:-,\{-2\}$};
  4358. \node (w) at (6,0) {$\ttm{w}:-,\{-2\}$};
  4359. \node (v) at (10,0) {$\ttm{v}:-,\{-2\}$};
  4360. \draw (t1) to (rax);
  4361. \draw (t1) to (z);
  4362. \draw (z) to (y);
  4363. \draw (z) to (w);
  4364. \draw (x) to (w);
  4365. \draw (y) to (w);
  4366. \draw (v) to (w);
  4367. \draw (v) to (rsp);
  4368. \draw (w) to (rsp);
  4369. \draw (x) to (rsp);
  4370. \draw (y) to (rsp);
  4371. \path[-.,bend left=15] (z) edge node {} (rsp);
  4372. \path[-.,bend left=10] (t1) edge node {} (rsp);
  4373. \draw (rax) to (rsp);
  4374. \end{tikzpicture}
  4375. \]
  4376. The algorithm says to select a maximally saturated vertex. So we pick
  4377. $\ttm{t}$ and color it with the first available integer, which is
  4378. $0$. We mark $0$ as no longer available for $\ttm{z}$, $\ttm{rax}$,
  4379. and \ttm{rsp} because they interfere with $\ttm{t}$.
  4380. \[
  4381. \begin{tikzpicture}[baseline=(current bounding box.center)]
  4382. \node (rax) at (0,0) {$\ttm{rax}:-1,\{0,-2\}$};
  4383. \node (rsp) at (10,2) {$\ttm{rsp}:-2,\{-1,0\}$};
  4384. \node (t1) at (0,2) {$\ttm{t}:0,\{-1,-2\}$};
  4385. \node (z) at (3,2) {$\ttm{z}:-,\{0,-2\}$};
  4386. \node (x) at (6,2) {$\ttm{x}:-,\{-2\}$};
  4387. \node (y) at (3,0) {$\ttm{y}:-,\{-2\}$};
  4388. \node (w) at (6,0) {$\ttm{w}:-,\{-2\}$};
  4389. \node (v) at (10,0) {$\ttm{v}:-,\{-2\}$};
  4390. \draw (t1) to (rax);
  4391. \draw (t1) to (z);
  4392. \draw (z) to (y);
  4393. \draw (z) to (w);
  4394. \draw (x) to (w);
  4395. \draw (y) to (w);
  4396. \draw (v) to (w);
  4397. \draw (v) to (rsp);
  4398. \draw (w) to (rsp);
  4399. \draw (x) to (rsp);
  4400. \draw (y) to (rsp);
  4401. \path[-.,bend left=15] (z) edge node {} (rsp);
  4402. \path[-.,bend left=10] (t1) edge node {} (rsp);
  4403. \draw (rax) to (rsp);
  4404. \end{tikzpicture}
  4405. \]
  4406. We repeat the process, selecting a maximally saturated vertex,
  4407. choosing is \code{z}, and color it with the first available number, which
  4408. is $1$. We add $1$ to the saturation for the neighboring vertices
  4409. \code{t}, \code{y}, \code{w}, and \code{rsp}.
  4410. \[
  4411. \begin{tikzpicture}[baseline=(current bounding box.center)]
  4412. \node (rax) at (0,0) {$\ttm{rax}:-1,\{0,-2\}$};
  4413. \node (rsp) at (10,2) {$\ttm{rsp}:-2,\{-1,0,1\}$};
  4414. \node (t1) at (0,2) {$\ttm{t}:0,\{-1,1,-2\}$};
  4415. \node (z) at (3,2) {$\ttm{z}:1,\{0,-2\}$};
  4416. \node (x) at (6,2) {$\ttm{x}:-,\{-2\}$};
  4417. \node (y) at (3,0) {$\ttm{y}:-,\{1,-2\}$};
  4418. \node (w) at (6,0) {$\ttm{w}:-,\{1,-2\}$};
  4419. \node (v) at (10,0) {$\ttm{v}:-,\{-2\}$};
  4420. \draw (t1) to (rax);
  4421. \draw (t1) to (z);
  4422. \draw (z) to (y);
  4423. \draw (z) to (w);
  4424. \draw (x) to (w);
  4425. \draw (y) to (w);
  4426. \draw (v) to (w);
  4427. \draw (v) to (rsp);
  4428. \draw (w) to (rsp);
  4429. \draw (x) to (rsp);
  4430. \draw (y) to (rsp);
  4431. \path[-.,bend left=15] (z) edge node {} (rsp);
  4432. \path[-.,bend left=10] (t1) edge node {} (rsp);
  4433. \draw (rax) to (rsp);
  4434. \end{tikzpicture}
  4435. \]
  4436. The most saturated vertices are now \code{w} and \code{y}. We color
  4437. \code{w} with the first available color, which is $0$.
  4438. \[
  4439. \begin{tikzpicture}[baseline=(current bounding box.center)]
  4440. \node (rax) at (0,0) {$\ttm{rax}:-1,\{0,-2\}$};
  4441. \node (rsp) at (10,2) {$\ttm{rsp}:-2,\{-1,0,1\}$};
  4442. \node (t1) at (0,2) {$\ttm{t}:0,\{-1,1,-2\}$};
  4443. \node (z) at (3,2) {$\ttm{z}:1,\{0,-2\}$};
  4444. \node (x) at (6,2) {$\ttm{x}:-,\{0,-2\}$};
  4445. \node (y) at (3,0) {$\ttm{y}:-,\{0,1,-2\}$};
  4446. \node (w) at (6,0) {$\ttm{w}:0,\{1,-2\}$};
  4447. \node (v) at (10,0) {$\ttm{v}:-,\{0,-2\}$};
  4448. \draw (t1) to (rax);
  4449. \draw (t1) to (z);
  4450. \draw (z) to (y);
  4451. \draw (z) to (w);
  4452. \draw (x) to (w);
  4453. \draw (y) to (w);
  4454. \draw (v) to (w);
  4455. \draw (v) to (rsp);
  4456. \draw (w) to (rsp);
  4457. \draw (x) to (rsp);
  4458. \draw (y) to (rsp);
  4459. \path[-.,bend left=15] (z) edge node {} (rsp);
  4460. \path[-.,bend left=10] (t1) edge node {} (rsp);
  4461. \draw (rax) to (rsp);
  4462. \end{tikzpicture}
  4463. \]
  4464. Vertex \code{y} is now the most highly saturated, so we color \code{y}
  4465. with $2$. We cannot choose $0$ or $1$ because those numbers are in
  4466. \code{y}'s saturation set. Indeed, \code{y} interferes with \code{w}
  4467. and \code{z}, whose colors are $0$ and $1$ respectively.
  4468. \[
  4469. \begin{tikzpicture}[baseline=(current bounding box.center)]
  4470. \node (rax) at (0,0) {$\ttm{rax}:-1,\{0,-2\}$};
  4471. \node (rsp) at (10,2) {$\ttm{rsp}:-2,\{-1,0,1,2\}$};
  4472. \node (t1) at (0,2) {$\ttm{t}:0,\{-1,1,-2\}$};
  4473. \node (z) at (3,2) {$\ttm{z}:1,\{0,2,-2\}$};
  4474. \node (x) at (6,2) {$\ttm{x}:-,\{0,-2\}$};
  4475. \node (y) at (3,0) {$\ttm{y}:2,\{0,1,-2\}$};
  4476. \node (w) at (6,0) {$\ttm{w}:0,\{1,2,-2\}$};
  4477. \node (v) at (10,0) {$\ttm{v}:-,\{0,-2\}$};
  4478. \draw (t1) to (rax);
  4479. \draw (t1) to (z);
  4480. \draw (z) to (y);
  4481. \draw (z) to (w);
  4482. \draw (x) to (w);
  4483. \draw (y) to (w);
  4484. \draw (v) to (w);
  4485. \draw (v) to (rsp);
  4486. \draw (w) to (rsp);
  4487. \draw (x) to (rsp);
  4488. \draw (y) to (rsp);
  4489. \path[-.,bend left=15] (z) edge node {} (rsp);
  4490. \path[-.,bend left=10] (t1) edge node {} (rsp);
  4491. \draw (rax) to (rsp);
  4492. \end{tikzpicture}
  4493. \]
  4494. Now \code{x} and \code{v} are the most saturated, so we color \code{v} with $1$.
  4495. \[
  4496. \begin{tikzpicture}[baseline=(current bounding box.center)]
  4497. \node (rax) at (0,0) {$\ttm{rax}:-1,\{0,-2\}$};
  4498. \node (rsp) at (10,2) {$\ttm{rsp}:-2,\{-1,0,1,2\}$};
  4499. \node (t1) at (0,2) {$\ttm{t}:0,\{-1,1,-2\}$};
  4500. \node (z) at (3,2) {$\ttm{z}:1,\{0,2,-2\}$};
  4501. \node (x) at (6,2) {$\ttm{x}:-,\{0,-2\}$};
  4502. \node (y) at (3,0) {$\ttm{y}:2,\{0,1,-2\}$};
  4503. \node (w) at (6,0) {$\ttm{w}:0,\{1,2,-2\}$};
  4504. \node (v) at (10,0) {$\ttm{v}:1,\{0,-2\}$};
  4505. \draw (t1) to (rax);
  4506. \draw (t1) to (z);
  4507. \draw (z) to (y);
  4508. \draw (z) to (w);
  4509. \draw (x) to (w);
  4510. \draw (y) to (w);
  4511. \draw (v) to (w);
  4512. \draw (v) to (rsp);
  4513. \draw (w) to (rsp);
  4514. \draw (x) to (rsp);
  4515. \draw (y) to (rsp);
  4516. \path[-.,bend left=15] (z) edge node {} (rsp);
  4517. \path[-.,bend left=10] (t1) edge node {} (rsp);
  4518. \draw (rax) to (rsp);
  4519. \end{tikzpicture}
  4520. \]
  4521. In the last step of the algorithm, we color \code{x} with $1$.
  4522. \[
  4523. \begin{tikzpicture}[baseline=(current bounding box.center)]
  4524. \node (rax) at (0,0) {$\ttm{rax}:-1,\{0,-2\}$};
  4525. \node (rsp) at (10,2) {$\ttm{rsp}:-2,\{-1,0,1,2\}$};
  4526. \node (t1) at (0,2) {$\ttm{t}:0,\{-1,1,-2\}$};
  4527. \node (z) at (3,2) {$\ttm{z}:1,\{0,2,-2\}$};
  4528. \node (x) at (6,2) {$\ttm{x}:1,\{0,-2\}$};
  4529. \node (y) at (3,0) {$\ttm{y}:2,\{0,1,-2\}$};
  4530. \node (w) at (6,0) {$\ttm{w}:0,\{1,2,-2\}$};
  4531. \node (v) at (10,0) {$\ttm{v}:1,\{0,-2\}$};
  4532. \draw (t1) to (rax);
  4533. \draw (t1) to (z);
  4534. \draw (z) to (y);
  4535. \draw (z) to (w);
  4536. \draw (x) to (w);
  4537. \draw (y) to (w);
  4538. \draw (v) to (w);
  4539. \draw (v) to (rsp);
  4540. \draw (w) to (rsp);
  4541. \draw (x) to (rsp);
  4542. \draw (y) to (rsp);
  4543. \path[-.,bend left=15] (z) edge node {} (rsp);
  4544. \path[-.,bend left=10] (t1) edge node {} (rsp);
  4545. \draw (rax) to (rsp);
  4546. \end{tikzpicture}
  4547. \]
  4548. So we obtain the following coloring:
  4549. \[
  4550. \{
  4551. \ttm{rax} \mapsto -1,
  4552. \ttm{rsp} \mapsto -2,
  4553. \ttm{t} \mapsto 0,
  4554. \ttm{z} \mapsto 1,
  4555. \ttm{x} \mapsto 1,
  4556. \ttm{y} \mapsto 2,
  4557. \ttm{w} \mapsto 0,
  4558. \ttm{v} \mapsto 1
  4559. \}
  4560. \]
  4561. \fi}
  4562. %
  4563. {\if\edition\pythonEd
  4564. %
  4565. With the DSATUR algorithm in hand, let us return to the running
  4566. example and consider how to color the interference graph in
  4567. Figure~\ref{fig:interfere}. We annotate each variable node with a dash
  4568. to indicate that it has not yet been assigned a color. The saturation
  4569. sets are also shown for each node; all of them start as the empty set.
  4570. (We do not include the register nodes in the graph below because there
  4571. were no interference edges involving registers in this program, but in
  4572. general there can be.)
  4573. %
  4574. \[
  4575. \begin{tikzpicture}[baseline=(current bounding box.center)]
  4576. \node (t0) at (0,2) {$\ttm{tmp\_0}: -, \{\}$};
  4577. \node (t1) at (0,0) {$\ttm{tmp\_1}: -, \{\}$};
  4578. \node (z) at (3,2) {$\ttm{z}: -, \{\}$};
  4579. \node (x) at (6,2) {$\ttm{x}: -, \{\}$};
  4580. \node (y) at (3,0) {$\ttm{y}: -, \{\}$};
  4581. \node (w) at (6,0) {$\ttm{w}: -, \{\}$};
  4582. \node (v) at (9,0) {$\ttm{v}: -, \{\}$};
  4583. \draw (t0) to (t1);
  4584. \draw (t0) to (z);
  4585. \draw (z) to (y);
  4586. \draw (z) to (w);
  4587. \draw (x) to (w);
  4588. \draw (y) to (w);
  4589. \draw (v) to (w);
  4590. \end{tikzpicture}
  4591. \]
  4592. The algorithm says to select a maximally saturated vertex, but they
  4593. are all equally saturated. So we flip a coin and pick $\ttm{tmp\_0}$
  4594. then color it with the first available integer, which is $0$. We mark
  4595. $0$ as no longer available for $\ttm{tmp\_1}$ and $\ttm{z}$ because
  4596. they interfere with $\ttm{tmp\_0}$.
  4597. \[
  4598. \begin{tikzpicture}[baseline=(current bounding box.center)]
  4599. \node (t0) at (0,2) {$\ttm{tmp\_0}: 0, \{\}$};
  4600. \node (t1) at (0,0) {$\ttm{tmp\_1}: -, \{0\}$};
  4601. \node (z) at (3,2) {$\ttm{z}: -, \{0\}$};
  4602. \node (x) at (6,2) {$\ttm{x}: -, \{\}$};
  4603. \node (y) at (3,0) {$\ttm{y}: -, \{\}$};
  4604. \node (w) at (6,0) {$\ttm{w}: -, \{\}$};
  4605. \node (v) at (9,0) {$\ttm{v}: -, \{\}$};
  4606. \draw (t0) to (t1);
  4607. \draw (t0) to (z);
  4608. \draw (z) to (y);
  4609. \draw (z) to (w);
  4610. \draw (x) to (w);
  4611. \draw (y) to (w);
  4612. \draw (v) to (w);
  4613. \end{tikzpicture}
  4614. \]
  4615. We repeat the process. The most saturated vertices are \code{z} and
  4616. \code{tmp\_1}, so we choose \code{z} and color it with the first
  4617. available number, which is $1$. We add $1$ to the saturation for the
  4618. neighboring vertices \code{tmp\_0}, \code{y}, and \code{w}.
  4619. \[
  4620. \begin{tikzpicture}[baseline=(current bounding box.center)]
  4621. \node (t0) at (0,2) {$\ttm{tmp\_0}: 0, \{1\}$};
  4622. \node (t1) at (0,0) {$\ttm{tmp\_1}: -, \{0\}$};
  4623. \node (z) at (3,2) {$\ttm{z}: 1, \{0\}$};
  4624. \node (x) at (6,2) {$\ttm{x}: -, \{\}$};
  4625. \node (y) at (3,0) {$\ttm{y}: -, \{1\}$};
  4626. \node (w) at (6,0) {$\ttm{w}: -, \{1\}$};
  4627. \node (v) at (9,0) {$\ttm{v}: -, \{\}$};
  4628. \draw (t0) to (t1);
  4629. \draw (t0) to (z);
  4630. \draw (z) to (y);
  4631. \draw (z) to (w);
  4632. \draw (x) to (w);
  4633. \draw (y) to (w);
  4634. \draw (v) to (w);
  4635. \end{tikzpicture}
  4636. \]
  4637. The most saturated vertices are now \code{tmp\_1}, \code{w}, and
  4638. \code{y}. We color \code{w} with the first available color, which
  4639. is $0$.
  4640. \[
  4641. \begin{tikzpicture}[baseline=(current bounding box.center)]
  4642. \node (t0) at (0,2) {$\ttm{tmp\_0}: 0, \{1\}$};
  4643. \node (t1) at (0,0) {$\ttm{tmp\_1}: -, \{0\}$};
  4644. \node (z) at (3,2) {$\ttm{z}: 1, \{0\}$};
  4645. \node (x) at (6,2) {$\ttm{x}: -, \{0\}$};
  4646. \node (y) at (3,0) {$\ttm{y}: -, \{0,1\}$};
  4647. \node (w) at (6,0) {$\ttm{w}: 0, \{1\}$};
  4648. \node (v) at (9,0) {$\ttm{v}: -, \{0\}$};
  4649. \draw (t0) to (t1);
  4650. \draw (t0) to (z);
  4651. \draw (z) to (y);
  4652. \draw (z) to (w);
  4653. \draw (x) to (w);
  4654. \draw (y) to (w);
  4655. \draw (v) to (w);
  4656. \end{tikzpicture}
  4657. \]
  4658. Now \code{y} is the most saturated, so we color it with $2$.
  4659. \[
  4660. \begin{tikzpicture}[baseline=(current bounding box.center)]
  4661. \node (t0) at (0,2) {$\ttm{tmp\_0}: 0, \{1\}$};
  4662. \node (t1) at (0,0) {$\ttm{tmp\_1}: -, \{0\}$};
  4663. \node (z) at (3,2) {$\ttm{z}: 1, \{0,2\}$};
  4664. \node (x) at (6,2) {$\ttm{x}: -, \{0\}$};
  4665. \node (y) at (3,0) {$\ttm{y}: 2, \{0,1\}$};
  4666. \node (w) at (6,0) {$\ttm{w}: 0, \{1,2\}$};
  4667. \node (v) at (9,0) {$\ttm{v}: -, \{0\}$};
  4668. \draw (t0) to (t1);
  4669. \draw (t0) to (z);
  4670. \draw (z) to (y);
  4671. \draw (z) to (w);
  4672. \draw (x) to (w);
  4673. \draw (y) to (w);
  4674. \draw (v) to (w);
  4675. \end{tikzpicture}
  4676. \]
  4677. The most saturated vertices are \code{tmp\_1}, \code{x}, and \code{v}.
  4678. We choose to color \code{v} with $1$.
  4679. \[
  4680. \begin{tikzpicture}[baseline=(current bounding box.center)]
  4681. \node (t0) at (0,2) {$\ttm{tmp\_0}: 0, \{1\}$};
  4682. \node (t1) at (0,0) {$\ttm{tmp\_1}: -, \{0\}$};
  4683. \node (z) at (3,2) {$\ttm{z}: 1, \{0,2\}$};
  4684. \node (x) at (6,2) {$\ttm{x}: -, \{0\}$};
  4685. \node (y) at (3,0) {$\ttm{y}: 2, \{0,1\}$};
  4686. \node (w) at (6,0) {$\ttm{w}: 0, \{1,2\}$};
  4687. \node (v) at (9,0) {$\ttm{v}: 1, \{0\}$};
  4688. \draw (t0) to (t1);
  4689. \draw (t0) to (z);
  4690. \draw (z) to (y);
  4691. \draw (z) to (w);
  4692. \draw (x) to (w);
  4693. \draw (y) to (w);
  4694. \draw (v) to (w);
  4695. \end{tikzpicture}
  4696. \]
  4697. We color the remaining two variables, \code{tmp\_1} and \code{x}, with $1$.
  4698. \[
  4699. \begin{tikzpicture}[baseline=(current bounding box.center)]
  4700. \node (t0) at (0,2) {$\ttm{tmp\_0}: 0, \{1\}$};
  4701. \node (t1) at (0,0) {$\ttm{tmp\_1}: 1, \{0\}$};
  4702. \node (z) at (3,2) {$\ttm{z}: 1, \{0,2\}$};
  4703. \node (x) at (6,2) {$\ttm{x}: 1, \{0\}$};
  4704. \node (y) at (3,0) {$\ttm{y}: 2, \{0,1\}$};
  4705. \node (w) at (6,0) {$\ttm{w}: 0, \{1,2\}$};
  4706. \node (v) at (9,0) {$\ttm{v}: 1, \{0\}$};
  4707. \draw (t0) to (t1);
  4708. \draw (t0) to (z);
  4709. \draw (z) to (y);
  4710. \draw (z) to (w);
  4711. \draw (x) to (w);
  4712. \draw (y) to (w);
  4713. \draw (v) to (w);
  4714. \end{tikzpicture}
  4715. \]
  4716. So we obtain the following coloring:
  4717. \[
  4718. \{ \ttm{tmp\_0} \mapsto 0,
  4719. \ttm{tmp\_1} \mapsto 1,
  4720. \ttm{z} \mapsto 1,
  4721. \ttm{x} \mapsto 1,
  4722. \ttm{y} \mapsto 2,
  4723. \ttm{w} \mapsto 0,
  4724. \ttm{v} \mapsto 1 \}
  4725. \]
  4726. \fi}
  4727. We recommend creating an auxiliary function named \code{color\_graph}
  4728. that takes an interference graph and a list of all the variables in
  4729. the program. This function should return a mapping of variables to
  4730. their colors (represented as natural numbers). By creating this helper
  4731. function, you will be able to reuse it in Chapter~\ref{ch:Rfun}
  4732. when we add support for functions.
  4733. To prioritize the processing of highly saturated nodes inside the
  4734. \code{color\_graph} function, we recommend using the priority queue
  4735. data structure \racket{described in Figure~\ref{fig:priority-queue}}\python{in the file \code{priority\_queue.py} of the support code}. \racket{In
  4736. addition, you will need to maintain a mapping from variables to their
  4737. ``handles'' in the priority queue so that you can notify the priority
  4738. queue when their saturation changes.}
  4739. {\if\edition\racketEd\color{olive}
  4740. \begin{figure}[tp]
  4741. %\begin{wrapfigure}[25]{r}[0.75in]{0.55\textwidth}
  4742. \small
  4743. \begin{tcolorbox}[title=Priority Queue]
  4744. A \emph{priority queue} is a collection of items in which the
  4745. removal of items is governed by priority. In a ``min'' queue,
  4746. lower priority items are removed first. An implementation is in
  4747. \code{priority\_queue.rkt} of the support code. \index{subject}{priority
  4748. queue} \index{subject}{minimum priority queue}
  4749. \begin{description}
  4750. \item[$\LP\code{make-pqueue}\,\itm{cmp}\RP$] constructs an empty
  4751. priority queue that uses the $\itm{cmp}$ predicate to determine
  4752. whether its first argument has lower or equal priority to its
  4753. second argument.
  4754. \item[$\LP\code{pqueue-count}\,\itm{queue}\RP$] returns the number of
  4755. items in the queue.
  4756. \item[$\LP\code{pqueue-push!}\,\itm{queue}\,\itm{item}\RP$] inserts
  4757. the item into the queue and returns a handle for the item in the
  4758. queue.
  4759. \item[$\LP\code{pqueue-pop!}\,\itm{queue}\RP$] returns the item with
  4760. the lowest priority.
  4761. \item[$\LP\code{pqueue-decrease-key!}\,\itm{queue}\,\itm{handle}\RP$]
  4762. notifies the queue that the priority has decreased for the item
  4763. associated with the given handle.
  4764. \end{description}
  4765. \end{tcolorbox}
  4766. %\end{wrapfigure}
  4767. \caption{The priority queue data structure.}
  4768. \label{fig:priority-queue}
  4769. \end{figure}
  4770. \fi}
  4771. With the coloring complete, we finalize the assignment of variables to
  4772. registers and stack locations. We map the first $k$ colors to the $k$
  4773. registers and the rest of the colors to stack locations. Suppose for
  4774. the moment that we have just one register to use for register
  4775. allocation, \key{rcx}. Then we have the following map from colors to
  4776. locations.
  4777. \[
  4778. \{ 0 \mapsto \key{\%rcx}, \; 1 \mapsto \key{-8(\%rbp)}, \; 2 \mapsto \key{-16(\%rbp)} \}
  4779. \]
  4780. Composing this mapping with the coloring, we arrive at the following
  4781. assignment of variables to locations.
  4782. {\if\edition\racketEd\color{olive}
  4783. \begin{gather*}
  4784. \{ \ttm{v} \mapsto \key{-8(\%rbp)}, \,
  4785. \ttm{w} \mapsto \key{\%rcx}, \,
  4786. \ttm{x} \mapsto \key{-8(\%rbp)}, \,
  4787. \ttm{y} \mapsto \key{-16(\%rbp)}, \\
  4788. \ttm{z} \mapsto \key{-8(\%rbp)}, \,
  4789. \ttm{t} \mapsto \key{\%rcx} \}
  4790. \end{gather*}
  4791. \fi}
  4792. {\if\edition\pythonEd
  4793. \begin{gather*}
  4794. \{ \ttm{v} \mapsto \key{-8(\%rbp)}, \,
  4795. \ttm{w} \mapsto \key{\%rcx}, \,
  4796. \ttm{x} \mapsto \key{-8(\%rbp)}, \,
  4797. \ttm{y} \mapsto \key{-16(\%rbp)}, \\
  4798. \ttm{z} \mapsto \key{-8(\%rbp)}, \,
  4799. \ttm{tmp\_0} \mapsto \key{\%rcx}, \,
  4800. \ttm{tmp\_1} \mapsto \key{-8(\%rbp)} \}
  4801. \end{gather*}
  4802. \fi}
  4803. Adapt the code from the \code{assign\_homes} pass
  4804. (Section~\ref{sec:assign-Lvar}) to replace the variables with their
  4805. assigned location. Applying the above assignment to our running
  4806. example, on the left, yields the program on the right.
  4807. % why frame size of 32? -JGS
  4808. \begin{center}
  4809. {\if\edition\racketEd\color{olive}
  4810. \begin{minipage}{0.3\textwidth}
  4811. \begin{lstlisting}
  4812. movq $1, v
  4813. movq $42, w
  4814. movq v, x
  4815. addq $7, x
  4816. movq x, y
  4817. movq x, z
  4818. addq w, z
  4819. movq y, t
  4820. negq t
  4821. movq z, %rax
  4822. addq t, %rax
  4823. jmp conclusion
  4824. \end{lstlisting}
  4825. \end{minipage}
  4826. $\Rightarrow\qquad$
  4827. \begin{minipage}{0.45\textwidth}
  4828. \begin{lstlisting}
  4829. movq $1, -8(%rbp)
  4830. movq $42, %rcx
  4831. movq -8(%rbp), -8(%rbp)
  4832. addq $7, -8(%rbp)
  4833. movq -8(%rbp), -16(%rbp)
  4834. movq -8(%rbp), -8(%rbp)
  4835. addq %rcx, -8(%rbp)
  4836. movq -16(%rbp), %rcx
  4837. negq %rcx
  4838. movq -8(%rbp), %rax
  4839. addq %rcx, %rax
  4840. jmp conclusion
  4841. \end{lstlisting}
  4842. \end{minipage}
  4843. \fi}
  4844. {\if\edition\pythonEd
  4845. \begin{minipage}{0.3\textwidth}
  4846. \begin{lstlisting}
  4847. movq $1, v
  4848. movq $42, w
  4849. movq v, x
  4850. addq $7, x
  4851. movq x, y
  4852. movq x, z
  4853. addq w, z
  4854. movq y, tmp_0
  4855. negq tmp_0
  4856. movq z, tmp_1
  4857. addq tmp_0, tmp_1
  4858. movq tmp_1, %rdi
  4859. callq print_int
  4860. \end{lstlisting}
  4861. \end{minipage}
  4862. $\Rightarrow\qquad$
  4863. \begin{minipage}{0.45\textwidth}
  4864. \begin{lstlisting}
  4865. movq $1, -8(%rbp)
  4866. movq $42, %rcx
  4867. movq -8(%rbp), -8(%rbp)
  4868. addq $7, -8(%rbp)
  4869. movq -8(%rbp), -16(%rbp)
  4870. movq -8(%rbp), -8(%rbp)
  4871. addq %rcx, -8(%rbp)
  4872. movq -16(%rbp), %rcx
  4873. negq %rcx
  4874. movq -8(%rbp), -8(%rbp)
  4875. addq %rcx, -8(%rbp)
  4876. movq -8(%rbp), %rdi
  4877. callq print_int
  4878. \end{lstlisting}
  4879. \end{minipage}
  4880. \fi}
  4881. \end{center}
  4882. \begin{exercise}\normalfont
  4883. %
  4884. Implement the compiler pass \code{allocate\_registers}.
  4885. %
  4886. Create five programs that exercise all aspects of the register
  4887. allocation algorithm, including spilling variables to the stack.
  4888. %
  4889. \racket{Replace \code{assign\_homes} in the list of \code{passes} in the
  4890. \code{run-tests.rkt} script with the three new passes:
  4891. \code{uncover\_live}, \code{build\_interference}, and
  4892. \code{allocate\_registers}.
  4893. %
  4894. Temporarily remove the \code{print\_x86} pass from the list of passes
  4895. and the call to \code{compiler-tests}.
  4896. Run the script to test the register allocator.
  4897. }
  4898. %
  4899. \python{Run the \code{run-tests.py} script to to check whether the
  4900. output programs produce the same result as the input programs.}
  4901. \end{exercise}
  4902. \section{Patch Instructions}
  4903. \label{sec:patch-instructions}
  4904. The remaining step in the compilation to x86 is to ensure that the
  4905. instructions have at most one argument that is a memory access.
  4906. %
  4907. In the running example, the instruction \code{movq -8(\%rbp),
  4908. -16(\%rbp)} is problematic. Recall from Section~\ref{sec:patch-s0}
  4909. that the fix is to first move \code{-8(\%rbp)} into \code{rax} and
  4910. then move \code{rax} into \code{-16(\%rbp)}.
  4911. %
  4912. The moves from \code{-8(\%rbp)} to \code{-8(\%rbp)} are also
  4913. problematic, but they can simply be deleted. In general, we recommend
  4914. deleting all the trivial moves whose source and destination are the
  4915. same location.
  4916. %
  4917. The following is the output of \code{patch\_instructions} on the
  4918. running example.
  4919. \begin{center}
  4920. {\if\edition\racketEd\color{olive}
  4921. \begin{minipage}{0.4\textwidth}
  4922. \begin{lstlisting}
  4923. movq $1, -8(%rbp)
  4924. movq $42, %rcx
  4925. movq -8(%rbp), -8(%rbp)
  4926. addq $7, -8(%rbp)
  4927. movq -8(%rbp), -16(%rbp)
  4928. movq -8(%rbp), -8(%rbp)
  4929. addq %rcx, -8(%rbp)
  4930. movq -16(%rbp), %rcx
  4931. negq %rcx
  4932. movq -8(%rbp), %rax
  4933. addq %rcx, %rax
  4934. jmp conclusion
  4935. \end{lstlisting}
  4936. \end{minipage}
  4937. $\Rightarrow\qquad$
  4938. \begin{minipage}{0.45\textwidth}
  4939. \begin{lstlisting}
  4940. movq $1, -8(%rbp)
  4941. movq $42, %rcx
  4942. addq $7, -8(%rbp)
  4943. movq -8(%rbp), %rax
  4944. movq %rax, -16(%rbp)
  4945. addq %rcx, -8(%rbp)
  4946. movq -16(%rbp), %rcx
  4947. negq %rcx
  4948. movq -8(%rbp), %rax
  4949. addq %rcx, %rax
  4950. jmp conclusion
  4951. \end{lstlisting}
  4952. \end{minipage}
  4953. \fi}
  4954. {\if\edition\pythonEd
  4955. \begin{minipage}{0.4\textwidth}
  4956. \begin{lstlisting}
  4957. movq $1, -8(%rbp)
  4958. movq $42, %rcx
  4959. movq -8(%rbp), -8(%rbp)
  4960. addq $7, -8(%rbp)
  4961. movq -8(%rbp), -16(%rbp)
  4962. movq -8(%rbp), -8(%rbp)
  4963. addq %rcx, -8(%rbp)
  4964. movq -16(%rbp), %rcx
  4965. negq %rcx
  4966. movq -8(%rbp), -8(%rbp)
  4967. addq %rcx, -8(%rbp)
  4968. movq -8(%rbp), %rdi
  4969. callq print_int
  4970. \end{lstlisting}
  4971. \end{minipage}
  4972. $\Rightarrow\qquad$
  4973. \begin{minipage}{0.45\textwidth}
  4974. \begin{lstlisting}
  4975. movq $1, -8(%rbp)
  4976. movq $42, %rcx
  4977. addq $7, -8(%rbp)
  4978. movq -8(%rbp), %rax
  4979. movq %rax, -16(%rbp)
  4980. addq %rcx, -8(%rbp)
  4981. movq -16(%rbp), %rcx
  4982. negq %rcx
  4983. addq %rcx, -8(%rbp)
  4984. movq -8(%rbp), %rdi
  4985. callq print_int
  4986. \end{lstlisting}
  4987. \end{minipage}
  4988. \fi}
  4989. \end{center}
  4990. \begin{exercise}\normalfont
  4991. %
  4992. Update the \code{patch\_instructions} compiler pass to delete trivial moves.
  4993. %
  4994. %Insert it after \code{allocate\_registers} in the list of \code{passes}
  4995. %in the \code{run-tests.rkt} script.
  4996. %
  4997. Run the script to test the \code{patch\_instructions} pass.
  4998. \end{exercise}
  4999. \section{Print x86}
  5000. \label{sec:print-x86-reg-alloc}
  5001. \index{subject}{calling conventions}
  5002. \index{subject}{prelude}\index{subject}{conclusion}
  5003. Recall that the \code{print\_x86} pass generates the prelude and
  5004. conclusion instructions to satisfy the x86 calling conventions
  5005. (Section~\ref{sec:calling-conventions}). With the addition of the
  5006. register allocator, the callee-saved registers used by the register
  5007. allocator must be saved in the prelude and restored in the conclusion.
  5008. In the \code{allocate\_registers} pass,
  5009. %
  5010. \racket{add an entry to the \itm{info}
  5011. of \code{X86Program} named \code{used\_callee}}
  5012. %
  5013. \python{add a field named \code{used\_callee} to the \code{X86Program} AST node}
  5014. %
  5015. that stores the set of
  5016. callee-saved registers that were assigned to variables. The
  5017. \code{print\_x86} pass can then access this information to decide which
  5018. callee-saved registers need to be saved and restored.
  5019. %
  5020. When calculating the size of the frame to adjust the \code{rsp} in the
  5021. prelude, make sure to take into account the space used for saving the
  5022. callee-saved registers. Also, don't forget that the frame needs to be
  5023. a multiple of 16 bytes!
  5024. \racket{An overview of all of the passes involved in register
  5025. allocation is shown in Figure~\ref{fig:reg-alloc-passes}.}
  5026. {\if\edition\racketEd\color{olive}
  5027. \begin{figure}[tbp]
  5028. \begin{tikzpicture}[baseline=(current bounding box.center)]
  5029. \node (Lvar) at (0,2) {\large \LangVar{}};
  5030. \node (Lvar-2) at (3,2) {\large \LangVar{}};
  5031. \node (Lvar-3) at (6,2) {\large \LangVar{}};
  5032. \node (Cvar-1) at (3,0) {\large \LangCVar{}};
  5033. \node (x86-2) at (3,-2) {\large \LangXVar{}};
  5034. \node (x86-3) at (6,-2) {\large \LangXVar{}};
  5035. \node (x86-4) at (9,-2) {\large \LangXInt{}};
  5036. \node (x86-5) at (9,-4) {\large \LangXInt{}};
  5037. \node (x86-2-1) at (3,-4) {\large \LangXVar{}};
  5038. \node (x86-2-2) at (6,-4) {\large \LangXVar{}};
  5039. \path[->,bend left=15] (Lvar) edge [above] node {\ttfamily\footnotesize uniquify} (Lvar-2);
  5040. \path[->,bend left=15] (Lvar-2) edge [above] node {\ttfamily\footnotesize remove\_complex.} (Lvar-3);
  5041. \path[->,bend left=15] (Lvar-3) edge [right] node {\ttfamily\footnotesize explicate\_control} (Cvar-1);
  5042. \path[->,bend right=15] (Cvar-1) edge [left] node {\ttfamily\footnotesize select\_instr.} (x86-2);
  5043. \path[->,bend left=15] (x86-2) edge [right] node {\ttfamily\footnotesize uncover\_live} (x86-2-1);
  5044. \path[->,bend right=15] (x86-2-1) edge [below] node {\ttfamily\footnotesize build\_inter.} (x86-2-2);
  5045. \path[->,bend right=15] (x86-2-2) edge [right] node {\ttfamily\footnotesize allocate\_reg.} (x86-3);
  5046. \path[->,bend left=15] (x86-3) edge [above] node {\ttfamily\footnotesize patch\_instr.} (x86-4);
  5047. \path[->,bend left=15] (x86-4) edge [right] node {\ttfamily\footnotesize print\_x86} (x86-5);
  5048. \end{tikzpicture}
  5049. \caption{Diagram of the passes for \LangVar{} with register allocation.}
  5050. \label{fig:reg-alloc-passes}
  5051. \end{figure}
  5052. \fi}
  5053. Figure~\ref{fig:running-example-x86} shows the x86 code generated for
  5054. the running example (Figure~\ref{fig:reg-eg}). To demonstrate both the
  5055. use of registers and the stack, we limit the register allocator for
  5056. this example to use just two registers: \code{rbx} and \code{rcx}. In
  5057. the prelude\index{subject}{prelude} of the \code{main} function, we
  5058. push \code{rbx} onto the stack because it is a callee-saved register
  5059. and it was assigned to variable by the register allocator. We
  5060. subtract \code{8} from the \code{rsp} at the end of the prelude to
  5061. reserve space for the one spilled variable. After that subtraction,
  5062. the \code{rsp} is aligned to 16 bytes.
  5063. Moving on to the program proper, we see how the registers were
  5064. allocated.
  5065. %
  5066. \racket{Variables \code{v}, \code{x}, and \code{y} were assigned to
  5067. \code{rbx} and variable \code{z} was assigned to \code{rcx}.}
  5068. %
  5069. \python{Variables \code{v}, \code{x}, \code{y}, and \code{tmp\_0}
  5070. were assigned to \code{rcx} and variables \code{w} and \code{tmp\_1}
  5071. were assigned to \code{rbx}.}
  5072. %
  5073. Variable \racket{\code{w}}\python{\code{z}} was spilled to the stack
  5074. location \code{-16(\%rbp)}. Recall that the prelude saved the
  5075. callee-save register \code{rbx} onto the stack. The spilled variables
  5076. must be placed lower on the stack than the saved callee-save
  5077. registers, so in this case \racket{\code{w}}\python{z} is placed at
  5078. \code{-16(\%rbp)}.
  5079. In the conclusion\index{subject}{conclusion}, we undo the work that was
  5080. done in the prelude. We move the stack pointer up by \code{8} bytes
  5081. (the room for spilled variables), then we pop the old values of
  5082. \code{rbx} and \code{rbp} (callee-saved registers), and finish with
  5083. \code{retq} to return control to the operating system.
  5084. \begin{figure}[tbp]
  5085. % var_test_28.rkt
  5086. % (use-minimal-set-of-registers! #t)
  5087. % and only rbx rcx
  5088. % tmp 0 rbx
  5089. % z 1 rcx
  5090. % y 0 rbx
  5091. % w 2 16(%rbp)
  5092. % v 0 rbx
  5093. % x 0 rbx
  5094. {\if\edition\racketEd\color{olive}
  5095. \begin{lstlisting}
  5096. start:
  5097. movq $1, %rbx
  5098. movq $42, -16(%rbp)
  5099. addq $7, %rbx
  5100. movq %rbx, %rcx
  5101. addq -16(%rbp), %rcx
  5102. negq %rbx
  5103. movq %rcx, %rax
  5104. addq %rbx, %rax
  5105. jmp conclusion
  5106. .globl main
  5107. main:
  5108. pushq %rbp
  5109. movq %rsp, %rbp
  5110. pushq %rbx
  5111. subq $8, %rsp
  5112. jmp start
  5113. conclusion:
  5114. addq $8, %rsp
  5115. popq %rbx
  5116. popq %rbp
  5117. retq
  5118. \end{lstlisting}
  5119. \fi}
  5120. {\if\edition\pythonEd
  5121. %{v: %rcx, x: %rcx, z: -16(%rbp), w: %rbx, tmp_1: %rbx, y: %rcx, tmp_0: %rcx}
  5122. \begin{lstlisting}
  5123. .globl main
  5124. main:
  5125. pushq %rbp
  5126. movq %rsp, %rbp
  5127. pushq %rbx
  5128. subq $8, %rsp
  5129. movq $1, %rcx
  5130. movq $42, %rbx
  5131. addq $7, %rcx
  5132. movq %rcx, -16(%rbp)
  5133. addq %rbx, -16(%rbp)
  5134. negq %rcx
  5135. movq -16(%rbp), %rbx
  5136. addq %rcx, %rbx
  5137. movq %rbx, %rdi
  5138. callq print_int
  5139. addq $8, %rsp
  5140. popq %rbx
  5141. popq %rbp
  5142. retq
  5143. \end{lstlisting}
  5144. \fi}
  5145. \caption{The x86 output from the running example
  5146. (Figure~\ref{fig:reg-eg}), limiting allocation to just \code{rbx}
  5147. and \code{rcx}.}
  5148. \label{fig:running-example-x86}
  5149. \end{figure}
  5150. \begin{exercise}\normalfont
  5151. Update the \code{print\_x86} pass as described in this section.
  5152. %
  5153. \racket{
  5154. In the \code{run-tests.rkt} script, reinstate \code{print\_x86} in the
  5155. list of passes and the call to \code{compiler-tests}.}
  5156. %
  5157. Run the script to test the complete compiler for \LangVar{} that
  5158. performs register allocation.
  5159. \end{exercise}
  5160. \section{Challenge: Move Biasing}
  5161. \label{sec:move-biasing}
  5162. \index{subject}{move biasing}
  5163. This section describes an enhancement to the register allocator,
  5164. called move biasing, for students who are looking for an extra
  5165. challenge.
  5166. {\if\edition\racketEd\color{olive}
  5167. To motivate the need for move biasing we return to the running example
  5168. but this time use all of the general purpose registers. So we have
  5169. the following mapping of color numbers to registers.
  5170. \[
  5171. \{ 0 \mapsto \key{\%rcx}, \; 1 \mapsto \key{\%rdx}, \; 2 \mapsto \key{\%rsi} \}
  5172. \]
  5173. Using the same assignment of variables to color numbers that was
  5174. produced by the register allocator described in the last section, we
  5175. get the following program.
  5176. \begin{center}
  5177. \begin{minipage}{0.3\textwidth}
  5178. \begin{lstlisting}
  5179. movq $1, v
  5180. movq $42, w
  5181. movq v, x
  5182. addq $7, x
  5183. movq x, y
  5184. movq x, z
  5185. addq w, z
  5186. movq y, t
  5187. negq t
  5188. movq z, %rax
  5189. addq t, %rax
  5190. jmp conclusion
  5191. \end{lstlisting}
  5192. \end{minipage}
  5193. $\Rightarrow\qquad$
  5194. \begin{minipage}{0.45\textwidth}
  5195. \begin{lstlisting}
  5196. movq $1, %rdx
  5197. movq $42, %rcx
  5198. movq %rdx, %rdx
  5199. addq $7, %rdx
  5200. movq %rdx, %rsi
  5201. movq %rdx, %rdx
  5202. addq %rcx, %rdx
  5203. movq %rsi, %rcx
  5204. negq %rcx
  5205. movq %rdx, %rax
  5206. addq %rcx, %rax
  5207. jmp conclusion
  5208. \end{lstlisting}
  5209. \end{minipage}
  5210. \end{center}
  5211. In the above output code there are two \key{movq} instructions that
  5212. can be removed because their source and target are the same. However,
  5213. if we had put \key{t}, \key{v}, \key{x}, and \key{y} into the same
  5214. register, we could instead remove three \key{movq} instructions. We
  5215. can accomplish this by taking into account which variables appear in
  5216. \key{movq} instructions with which other variables.
  5217. \fi}
  5218. {\if\edition\pythonEd
  5219. %
  5220. To motivate the need for move biasing we return to the running example
  5221. and recall that in Section~\ref{sec:patch-instructions} we were able to
  5222. remove three trivial move instructions from the running
  5223. example. However, we could remove another trivial move if we were able
  5224. to allocate \code{y} and \code{tmp\_0} to the same register. \fi}
  5225. We say that two variables $p$ and $q$ are \emph{move
  5226. related}\index{subject}{move related} if they participate together in
  5227. a \key{movq} instruction, that is, \key{movq} $p$\key{,} $q$ or
  5228. \key{movq} $q$\key{,} $p$. When deciding which variable to color next,
  5229. when there are multiple variables with the same saturation, prefer
  5230. variables that can be assigned to a color that is the same as the
  5231. color of a move related variable. Furthermore, when the register
  5232. allocator chooses a color for a variable, it should prefer a color
  5233. that has already been used for a move-related variable (assuming that
  5234. they do not interfere). Of course, this preference should not override
  5235. the preference for registers over stack locations. So this preference
  5236. should be used as a tie breaker when choosing between registers or
  5237. when choosing between stack locations.
  5238. We recommend representing the move relationships in a graph, similar
  5239. to how we represented interference. The following is the \emph{move
  5240. graph} for our running example.
  5241. {\if\edition\racketEd\color{olive}
  5242. \[
  5243. \begin{tikzpicture}[baseline=(current bounding box.center)]
  5244. \node (rax) at (0,0) {$\ttm{rax}$};
  5245. \node (rsp) at (9,2) {$\ttm{rsp}$};
  5246. \node (t) at (0,2) {$\ttm{t}$};
  5247. \node (z) at (3,2) {$\ttm{z}$};
  5248. \node (x) at (6,2) {$\ttm{x}$};
  5249. \node (y) at (3,0) {$\ttm{y}$};
  5250. \node (w) at (6,0) {$\ttm{w}$};
  5251. \node (v) at (9,0) {$\ttm{v}$};
  5252. \draw (v) to (x);
  5253. \draw (x) to (y);
  5254. \draw (x) to (z);
  5255. \draw (y) to (t);
  5256. \end{tikzpicture}
  5257. \]
  5258. \fi}
  5259. %
  5260. {\if\edition\pythonEd
  5261. \[
  5262. \begin{tikzpicture}[baseline=(current bounding box.center)]
  5263. \node (t0) at (0,2) {$\ttm{tmp\_0}$};
  5264. \node (t1) at (0,0) {$\ttm{tmp\_1}$};
  5265. \node (z) at (3,2) {$\ttm{z}$};
  5266. \node (x) at (6,2) {$\ttm{x}$};
  5267. \node (y) at (3,0) {$\ttm{y}$};
  5268. \node (w) at (6,0) {$\ttm{w}$};
  5269. \node (v) at (9,0) {$\ttm{v}$};
  5270. \draw (y) to (t0);
  5271. \draw (z) to (x);
  5272. \draw (z) to (t1);
  5273. \draw (x) to (y);
  5274. \draw (x) to (v);
  5275. \end{tikzpicture}
  5276. \]
  5277. \fi}
  5278. {\if\edition\racketEd\color{olive}
  5279. Now we replay the graph coloring, pausing to see the coloring of
  5280. \code{y}. Recall the following configuration. The most saturated vertices
  5281. were \code{w} and \code{y}.
  5282. \[
  5283. \begin{tikzpicture}[baseline=(current bounding box.center)]
  5284. \node (rax) at (0,0) {$\ttm{rax}:-1,\{0,-2\}$};
  5285. \node (rsp) at (9,2) {$\ttm{rsp}:-2,\{-1,0,1,2\}$};
  5286. \node (t1) at (0,2) {$\ttm{t}:0,\{1,-2\}$};
  5287. \node (z) at (3,2) {$\ttm{z}:1,\{0,-2\}$};
  5288. \node (x) at (6,2) {$\ttm{x}:-,\{-2\}$};
  5289. \node (y) at (3,0) {$\ttm{y}:-,\{1,-2\}$};
  5290. \node (w) at (6,0) {$\ttm{w}:-,\{1,-2\}$};
  5291. \node (v) at (9,0) {$\ttm{v}:-,\{-2\}$};
  5292. \draw (t1) to (rax);
  5293. \draw (t1) to (z);
  5294. \draw (z) to (y);
  5295. \draw (z) to (w);
  5296. \draw (x) to (w);
  5297. \draw (y) to (w);
  5298. \draw (v) to (w);
  5299. \draw (v) to (rsp);
  5300. \draw (w) to (rsp);
  5301. \draw (x) to (rsp);
  5302. \draw (y) to (rsp);
  5303. \path[-.,bend left=15] (z) edge node {} (rsp);
  5304. \path[-.,bend left=10] (t1) edge node {} (rsp);
  5305. \draw (rax) to (rsp);
  5306. \end{tikzpicture}
  5307. \]
  5308. %
  5309. Last time we chose to color \code{w} with $0$. But this time we see
  5310. that \code{w} is not move related to any vertex, but \code{y} is move
  5311. related to \code{t}. So we choose to color \code{y} the same color as
  5312. \code{t}, $0$.
  5313. \[
  5314. \begin{tikzpicture}[baseline=(current bounding box.center)]
  5315. \node (rax) at (0,0) {$\ttm{rax}:-1,\{0,-2\}$};
  5316. \node (rsp) at (9,2) {$\ttm{rsp}:-2,\{-1,0,1,2\}$};
  5317. \node (t1) at (0,2) {$\ttm{t}:0,\{1,-2\}$};
  5318. \node (z) at (3,2) {$\ttm{z}:1,\{0,-2\}$};
  5319. \node (x) at (6,2) {$\ttm{x}:-,\{-2\}$};
  5320. \node (y) at (3,0) {$\ttm{y}:0,\{1,-2\}$};
  5321. \node (w) at (6,0) {$\ttm{w}:-,\{0,1,-2\}$};
  5322. \node (v) at (9,0) {$\ttm{v}:-,\{-2\}$};
  5323. \draw (t1) to (rax);
  5324. \draw (t1) to (z);
  5325. \draw (z) to (y);
  5326. \draw (z) to (w);
  5327. \draw (x) to (w);
  5328. \draw (y) to (w);
  5329. \draw (v) to (w);
  5330. \draw (v) to (rsp);
  5331. \draw (w) to (rsp);
  5332. \draw (x) to (rsp);
  5333. \draw (y) to (rsp);
  5334. \path[-.,bend left=15] (z) edge node {} (rsp);
  5335. \path[-.,bend left=10] (t1) edge node {} (rsp);
  5336. \draw (rax) to (rsp);
  5337. \end{tikzpicture}
  5338. \]
  5339. Now \code{w} is the most saturated, so we color it $2$.
  5340. \[
  5341. \begin{tikzpicture}[baseline=(current bounding box.center)]
  5342. \node (rax) at (0,0) {$\ttm{rax}:-1,\{0,-2\}$};
  5343. \node (rsp) at (9,2) {$\ttm{rsp}:-2,\{-1,0,1,2\}$};
  5344. \node (t1) at (0,2) {$\ttm{t}:0,\{1,-2\}$};
  5345. \node (z) at (3,2) {$\ttm{z}:1,\{0,2,-2\}$};
  5346. \node (x) at (6,2) {$\ttm{x}:-,\{2,-2\}$};
  5347. \node (y) at (3,0) {$\ttm{y}:0,\{1,2,-2\}$};
  5348. \node (w) at (6,0) {$\ttm{w}:2,\{0,1,-2\}$};
  5349. \node (v) at (9,0) {$\ttm{v}:-,\{2,-2\}$};
  5350. \draw (t1) to (rax);
  5351. \draw (t1) to (z);
  5352. \draw (z) to (y);
  5353. \draw (z) to (w);
  5354. \draw (x) to (w);
  5355. \draw (y) to (w);
  5356. \draw (v) to (w);
  5357. \draw (v) to (rsp);
  5358. \draw (w) to (rsp);
  5359. \draw (x) to (rsp);
  5360. \draw (y) to (rsp);
  5361. \path[-.,bend left=15] (z) edge node {} (rsp);
  5362. \path[-.,bend left=10] (t1) edge node {} (rsp);
  5363. \draw (rax) to (rsp);
  5364. \end{tikzpicture}
  5365. \]
  5366. At this point, vertices \code{x} and \code{v} are most saturated, but
  5367. \code{x} is move related to \code{y} and \code{z}, so we color
  5368. \code{x} to $0$ to match \code{y}. Finally, we color \code{v} to $0$.
  5369. \[
  5370. \begin{tikzpicture}[baseline=(current bounding box.center)]
  5371. \node (rax) at (0,0) {$\ttm{rax}:-1,\{0,-2\}$};
  5372. \node (rsp) at (9,2) {$\ttm{rsp}:-2,\{-1,0,1,2\}$};
  5373. \node (t) at (0,2) {$\ttm{t}:0,\{1,-2\}$};
  5374. \node (z) at (3,2) {$\ttm{z}:1,\{0,2,-2\}$};
  5375. \node (x) at (6,2) {$\ttm{x}:0,\{2,-2\}$};
  5376. \node (y) at (3,0) {$\ttm{y}:0,\{1,2,-2\}$};
  5377. \node (w) at (6,0) {$\ttm{w}:2,\{0,1,-2\}$};
  5378. \node (v) at (9,0) {$\ttm{v}:0,\{2,-2\}$};
  5379. \draw (t1) to (rax);
  5380. \draw (t) to (z);
  5381. \draw (z) to (y);
  5382. \draw (z) to (w);
  5383. \draw (x) to (w);
  5384. \draw (y) to (w);
  5385. \draw (v) to (w);
  5386. \draw (v) to (rsp);
  5387. \draw (w) to (rsp);
  5388. \draw (x) to (rsp);
  5389. \draw (y) to (rsp);
  5390. \path[-.,bend left=15] (z) edge node {} (rsp);
  5391. \path[-.,bend left=10] (t1) edge node {} (rsp);
  5392. \draw (rax) to (rsp);
  5393. \end{tikzpicture}
  5394. \]
  5395. \fi}
  5396. %
  5397. {\if\edition\pythonEd
  5398. Now we replay the graph coloring, pausing before the coloring of
  5399. \code{w}. Recall the following configuration. The most saturated vertices
  5400. were \code{tmp\_1}, \code{w}, and \code{y}.
  5401. \[
  5402. \begin{tikzpicture}[baseline=(current bounding box.center)]
  5403. \node (t0) at (0,2) {$\ttm{tmp\_0}: 0, \{1\}$};
  5404. \node (t1) at (0,0) {$\ttm{tmp\_1}: -, \{0\}$};
  5405. \node (z) at (3,2) {$\ttm{z}: 1, \{0\}$};
  5406. \node (x) at (6,2) {$\ttm{x}: -, \{\}$};
  5407. \node (y) at (3,0) {$\ttm{y}: -, \{1\}$};
  5408. \node (w) at (6,0) {$\ttm{w}: -, \{1\}$};
  5409. \node (v) at (9,0) {$\ttm{v}: -, \{\}$};
  5410. \draw (t0) to (t1);
  5411. \draw (t0) to (z);
  5412. \draw (z) to (y);
  5413. \draw (z) to (w);
  5414. \draw (x) to (w);
  5415. \draw (y) to (w);
  5416. \draw (v) to (w);
  5417. \end{tikzpicture}
  5418. \]
  5419. We have arbitrarily chosen to color \code{w} instead of \code{tmp\_1}
  5420. or \code{y}, but note that \code{w} is not move related to any
  5421. variables, whereas \code{y} and \code{tmp\_1} are move related to
  5422. \code{tmp\_0} and \code{z}, respectively. If we instead choose
  5423. \code{y} and color it $0$, we can delete another move instruction.
  5424. \[
  5425. \begin{tikzpicture}[baseline=(current bounding box.center)]
  5426. \node (t0) at (0,2) {$\ttm{tmp\_0}: 0, \{1\}$};
  5427. \node (t1) at (0,0) {$\ttm{tmp\_1}: -, \{0\}$};
  5428. \node (z) at (3,2) {$\ttm{z}: 1, \{0\}$};
  5429. \node (x) at (6,2) {$\ttm{x}: -, \{\}$};
  5430. \node (y) at (3,0) {$\ttm{y}: 0, \{1\}$};
  5431. \node (w) at (6,0) {$\ttm{w}: -, \{0,1\}$};
  5432. \node (v) at (9,0) {$\ttm{v}: -, \{\}$};
  5433. \draw (t0) to (t1);
  5434. \draw (t0) to (z);
  5435. \draw (z) to (y);
  5436. \draw (z) to (w);
  5437. \draw (x) to (w);
  5438. \draw (y) to (w);
  5439. \draw (v) to (w);
  5440. \end{tikzpicture}
  5441. \]
  5442. Now \code{w} is the most saturated, so we color it $2$.
  5443. \[
  5444. \begin{tikzpicture}[baseline=(current bounding box.center)]
  5445. \node (t0) at (0,2) {$\ttm{tmp\_0}: 0, \{1\}$};
  5446. \node (t1) at (0,0) {$\ttm{tmp\_1}: -, \{0\}$};
  5447. \node (z) at (3,2) {$\ttm{z}: 1, \{0\}$};
  5448. \node (x) at (6,2) {$\ttm{x}: -, \{2\}$};
  5449. \node (y) at (3,0) {$\ttm{y}: 0, \{1,2\}$};
  5450. \node (w) at (6,0) {$\ttm{w}: 2, \{0,1\}$};
  5451. \node (v) at (9,0) {$\ttm{v}: -, \{2\}$};
  5452. \draw (t0) to (t1);
  5453. \draw (t0) to (z);
  5454. \draw (z) to (y);
  5455. \draw (z) to (w);
  5456. \draw (x) to (w);
  5457. \draw (y) to (w);
  5458. \draw (v) to (w);
  5459. \end{tikzpicture}
  5460. \]
  5461. To finish the coloring, \code{x} and \code{v} get $0$ and
  5462. \code{tmp\_1} gets $1$.
  5463. \[
  5464. \begin{tikzpicture}[baseline=(current bounding box.center)]
  5465. \node (t0) at (0,2) {$\ttm{tmp\_0}: 0, \{1\}$};
  5466. \node (t1) at (0,0) {$\ttm{tmp\_1}: 1, \{0\}$};
  5467. \node (z) at (3,2) {$\ttm{z}: 1, \{0\}$};
  5468. \node (x) at (6,2) {$\ttm{x}: 0, \{2\}$};
  5469. \node (y) at (3,0) {$\ttm{y}: 0, \{1,2\}$};
  5470. \node (w) at (6,0) {$\ttm{w}: 2, \{0,1\}$};
  5471. \node (v) at (9,0) {$\ttm{v}: 0, \{2\}$};
  5472. \draw (t0) to (t1);
  5473. \draw (t0) to (z);
  5474. \draw (z) to (y);
  5475. \draw (z) to (w);
  5476. \draw (x) to (w);
  5477. \draw (y) to (w);
  5478. \draw (v) to (w);
  5479. \end{tikzpicture}
  5480. \]
  5481. \fi}
  5482. So we have the following assignment of variables to registers.
  5483. {\if\edition\racketEd\color{olive}
  5484. \begin{gather*}
  5485. \{ \ttm{v} \mapsto \key{\%rcx}, \,
  5486. \ttm{w} \mapsto \key{\%rsi}, \,
  5487. \ttm{x} \mapsto \key{\%rcx}, \,
  5488. \ttm{y} \mapsto \key{\%rcx}, \,
  5489. \ttm{z} \mapsto \key{\%rdx}, \,
  5490. \ttm{t} \mapsto \key{\%rcx} \}
  5491. \end{gather*}
  5492. \fi}
  5493. {\if\edition\pythonEd
  5494. \begin{gather*}
  5495. \{ \ttm{v} \mapsto \key{\%rcx}, \,
  5496. \ttm{w} \mapsto \key{-16(\%rbp)}, \,
  5497. \ttm{x} \mapsto \key{\%rcx}, \,
  5498. \ttm{y} \mapsto \key{\%rcx}, \\
  5499. \ttm{z} \mapsto \key{-8(\%rbp)}, \,
  5500. \ttm{tmp\_0} \mapsto \key{\%rcx}, \,
  5501. \ttm{tmp\_1} \mapsto \key{-8(\%rbp)} \}
  5502. \end{gather*}
  5503. \fi}
  5504. We apply this register assignment to the running example, on the left,
  5505. to obtain the code in the middle. The \code{patch\_instructions} then
  5506. deletes the trivial moves to obtain the code on the right.
  5507. {\if\edition\racketEd\color{olive}
  5508. \begin{minipage}{0.25\textwidth}
  5509. \begin{lstlisting}
  5510. movq $1, v
  5511. movq $42, w
  5512. movq v, x
  5513. addq $7, x
  5514. movq x, y
  5515. movq x, z
  5516. addq w, z
  5517. movq y, t
  5518. negq t
  5519. movq z, %rax
  5520. addq t, %rax
  5521. jmp conclusion
  5522. \end{lstlisting}
  5523. \end{minipage}
  5524. $\Rightarrow\qquad$
  5525. \begin{minipage}{0.25\textwidth}
  5526. \begin{lstlisting}
  5527. movq $1, %rcx
  5528. movq $42, %rsi
  5529. movq %rcx, %rcx
  5530. addq $7, %rcx
  5531. movq %rcx, %rcx
  5532. movq %rcx, %rdx
  5533. addq %rsi, %rdx
  5534. movq %rcx, %rcx
  5535. negq %rcx
  5536. movq %rdx, %rax
  5537. addq %rcx, %rax
  5538. jmp conclusion
  5539. \end{lstlisting}
  5540. \end{minipage}
  5541. $\Rightarrow\qquad$
  5542. \begin{minipage}{0.25\textwidth}
  5543. \begin{lstlisting}
  5544. movq $1, %rcx
  5545. movq $42, %rsi
  5546. addq $7, %rcx
  5547. movq %rcx, %rdx
  5548. addq %rsi, %rdx
  5549. negq %rcx
  5550. movq %rdx, %rax
  5551. addq %rcx, %rax
  5552. jmp conclusion
  5553. \end{lstlisting}
  5554. \end{minipage}
  5555. \fi}
  5556. {\if\edition\pythonEd
  5557. \begin{minipage}{0.20\textwidth}
  5558. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  5559. movq $1, v
  5560. movq $42, w
  5561. movq v, x
  5562. addq $7, x
  5563. movq x, y
  5564. movq x, z
  5565. addq w, z
  5566. movq y, tmp_0
  5567. negq tmp_0
  5568. movq z, tmp_1
  5569. addq tmp_0, tmp_1
  5570. movq tmp_1, %rdi
  5571. callq _print_int
  5572. \end{lstlisting}
  5573. \end{minipage}
  5574. ${\Rightarrow\qquad}$
  5575. \begin{minipage}{0.30\textwidth}
  5576. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  5577. movq $1, %rcx
  5578. movq $42, -16(%rbp)
  5579. movq %rcx, %rcx
  5580. addq $7, %rcx
  5581. movq %rcx, %rcx
  5582. movq %rcx, -8(%rbp)
  5583. addq -16(%rbp), -8(%rbp)
  5584. movq %rcx, %rcx
  5585. negq %rcx
  5586. movq -8(%rbp), -8(%rbp)
  5587. addq %rcx, -8(%rbp)
  5588. movq -8(%rbp), %rdi
  5589. callq _print_int
  5590. \end{lstlisting}
  5591. \end{minipage}
  5592. ${\Rightarrow\qquad}$
  5593. \begin{minipage}{0.20\textwidth}
  5594. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  5595. movq $1, %rcx
  5596. movq $42, -16(%rbp)
  5597. addq $7, %rcx
  5598. movq %rcx, -8(%rbp)
  5599. movq -16(%rbp), %rax
  5600. addq %rax, -8(%rbp)
  5601. negq %rcx
  5602. addq %rcx, -8(%rbp)
  5603. movq -8(%rbp), %rdi
  5604. callq print_int
  5605. \end{lstlisting}
  5606. \end{minipage}
  5607. \fi}
  5608. \begin{exercise}\normalfont
  5609. Change your implementation of \code{allocate\_registers} to take move
  5610. biasing into account. Create two new tests that include at least one
  5611. opportunity for move biasing and visually inspect the output x86
  5612. programs to make sure that your move biasing is working properly. Make
  5613. sure that your compiler still passes all of the tests.
  5614. \end{exercise}
  5615. %To do: another neat challenge would be to do
  5616. % live range splitting~\citep{Cooper:1998ly}. \\ --Jeremy
  5617. %% \subsection{Output of the Running Example}
  5618. %% \label{sec:reg-alloc-output}
  5619. % challenge: prioritize variables based on execution frequencies
  5620. % and the number of uses of a variable
  5621. % challenge: enhance the coloring algorithm using Chaitin's
  5622. % approach of prioritizing high-degree variables
  5623. % by removing low-degree variables (coloring them later)
  5624. % from the interference graph
  5625. \section{Further Reading}
  5626. \label{sec:register-allocation-further-reading}
  5627. Early register allocation algorithms were developed for Fortran
  5628. compilers in the 1950s~\citep{Horwitz:1966aa,Backus:1978aa}. The use
  5629. of graph coloring began in the late 1970s and early 1980s with the
  5630. work of \citet{Chaitin:1981vl} on an optimizing compiler for PL/I. The
  5631. algorithm is based on the following observation of
  5632. \citet{Kempe:1879aa}. If a graph $G$ has a vertex $v$ with degree
  5633. lower than $k$, then $G$ is $k$ colorable if the subgraph of $G$ with
  5634. $v$ removed is also $k$ colorable. To see why, suppose that the
  5635. subgraph is $k$ colorable. At worst the neighbors of $v$ are assigned
  5636. different colors, but since there are less than $k$ neighbors, there
  5637. will be one or more colors left over to use for coloring $v$ in $G$.
  5638. The algorithm of \citet{Chaitin:1981vl} removes a vertex $v$ of degree
  5639. less than $k$ from the graph and recursively colors the rest of the
  5640. graph. Upon returning from the recursion, it colors $v$ with one of
  5641. the available colors and returns. \citet{Chaitin:1982vn} augments
  5642. this algorithm to handle spilling as follows. If there are no vertices
  5643. of degree lower than $k$ then pick a vertex at random, spill it,
  5644. remove it from the graph, and proceed recursively to color the rest of
  5645. the graph.
  5646. Prior to coloring, \citet{Chaitin:1981vl} merge variables that are
  5647. move-related and that don't interfere with each other, a process
  5648. called \emph{coalescing}. While coalescing decreases the number of
  5649. moves, it can make the graph more difficult to
  5650. color. \citet{Briggs:1994kx} propose \emph{conservative coalescing} in
  5651. which two variables are merged only if they have fewer than $k$
  5652. neighbors of high degree. \citet{George:1996aa} observe that
  5653. conservative coalescing is sometimes too conservative and make it more
  5654. aggressive by iterating the coalescing with the removal of low-degree
  5655. vertices.
  5656. %
  5657. Attacking the problem from a different angle, \citet{Briggs:1994kx}
  5658. also propose \emph{biased coloring} in which a variable is assigned to
  5659. the same color as another move-related variable if possible, as
  5660. discussed in Section~\ref{sec:move-biasing}.
  5661. %
  5662. The algorithm of \citet{Chaitin:1981vl} and its successors iteratively
  5663. performs coalescing, graph coloring, and spill code insertion until
  5664. all variables have been assigned a location.
  5665. \citet{Briggs:1994kx} observes that \citet{Chaitin:1982vn} sometimes
  5666. spills variables that don't have to be: a high-degree variable can be
  5667. colorable if many of its neighbors are assigned the same color.
  5668. \citet{Briggs:1994kx} propose \emph{optimistic coloring}, in which a
  5669. high-degree vertex is not immediately spilled. Instead the decision is
  5670. deferred until after the recursive call, at which point it is apparent
  5671. whether there is actually an available color or not. We observe that
  5672. this algorithm is equivalent to the smallest-last ordering
  5673. algorithm~\citep{Matula:1972aa} if one takes the first $k$ colors to
  5674. be registers and the rest to be stack locations.
  5675. %% biased coloring
  5676. Earlier editions of the compiler course at Indiana University
  5677. \citep{Dybvig:2010aa} were based on the algorithm of
  5678. \citet{Briggs:1994kx}.
  5679. The smallest-last ordering algorithm is one of many \emph{greedy}
  5680. coloring algorithms. A greedy coloring algorithm visits all the
  5681. vertices in a particular order and assigns each one the first
  5682. available color. An \emph{offline} greedy algorithm chooses the
  5683. ordering up-front, prior to assigning colors. The algorithm of
  5684. \citet{Chaitin:1981vl} should be considered offline because the vertex
  5685. ordering does not depend on the colors assigned. Other orderings are
  5686. possible. For example, \citet{Chow:1984ys} order variables according
  5687. to an estimate of runtime cost.
  5688. An \emph{online} greedy coloring algorithm uses information about the
  5689. current assignment of colors to influence the order in which the
  5690. remaining vertices are colored. The saturation-based algorithm
  5691. described in this chapter is one such algorithm. We choose to use
  5692. saturation-based coloring because it is fun to introduce graph
  5693. coloring via Sudoku!
  5694. A register allocator may choose to map each variable to just one
  5695. location, as in \citet{Chaitin:1981vl}, or it may choose to map a
  5696. variable to one or more locations. The later can be achieved by
  5697. \emph{live range splitting}, where a variable is replaced by several
  5698. variables that each handle part of its live
  5699. range~\citep{Chow:1984ys,Briggs:1994kx,Cooper:1998ly}.
  5700. %% 1950s, Sheldon Best, Fortran \cite{Backus:1978aa}, Belady's page
  5701. %% replacement algorithm, bottom-up local
  5702. %% \citep{Horwitz:1966aa} straight-line programs, single basic block,
  5703. %% Cooper: top-down (priority bassed), bottom-up
  5704. %% top-down
  5705. %% order variables by priority (estimated cost)
  5706. %% caveat: split variables into two groups:
  5707. %% constrained (>k neighbors) and unconstrained (<k neighbors)
  5708. %% color the constrained ones first
  5709. %% \citet{Schwartz:1975aa} graph-coloring, no spill
  5710. %% cite J. Cocke for an algorithm that colors variables
  5711. %% in a high-degree first ordering
  5712. %Register Allocation via Usage Counts, Freiburghouse CACM
  5713. \citet{Palsberg:2007si} observe that many of the interference graphs
  5714. that arise from Java programs in the JoeQ compiler are \emph{chordal},
  5715. that is, every cycle with four or more edges has an edge which is not
  5716. part of the cycle but which connects two vertices on the cycle. Such
  5717. graphs can be optimally colored by the greedy algorithm with a vertex
  5718. ordering determined by maximum cardinality search.
  5719. In situations where compile time is of utmost importance, such as in
  5720. just-in-time compilers, graph coloring algorithms can be too expensive
  5721. and the linear scan algorithm of \citet{Poletto:1999uq} may be more
  5722. appropriate.
  5723. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  5724. \chapter{Booleans and Conditionals}
  5725. \label{ch:Lif}
  5726. \index{subject}{Boolean}
  5727. \index{subject}{control flow}
  5728. \index{subject}{conditional expression}
  5729. The \LangInt{} and \LangVar{} languages only have a single kind of
  5730. value, the integers. In this chapter we add a second kind of value,
  5731. the Booleans, to create the \LangIf{} language. The Boolean values
  5732. \emph{true} and \emph{false} are written \TRUE{} and \FALSE{}
  5733. respectively in \racket{Racket}\python{Python}. The \LangIf{}
  5734. language includes several operations that involve Booleans (\key{and},
  5735. \key{not}, \racket{\key{eq?}}\python{==}, \key{<}, etc.) and the
  5736. \key{if} expression \python{and statement}. With the addition of
  5737. \key{if}, programs can have non-trivial control flow which
  5738. %
  5739. \racket{impacts \code{explicate\_control} and liveness analysis}
  5740. %
  5741. \python{impacts liveness analysis and motivates a new pass named
  5742. \code{explicate\_control}}.
  5743. %
  5744. Also, because we now have two kinds of values, we need to handle
  5745. programs that apply an operation to the wrong kind of value, such as
  5746. \racket{\code{(not 1)}}\python{\code{not 1}}.
  5747. There are two language design options for such situations. One option
  5748. is to signal an error and the other is to provide a wider
  5749. interpretation of the operation. \racket{The Racket
  5750. language}\python{Python} uses a mixture of these two options,
  5751. depending on the operation and the kind of value. For example, the
  5752. result of \racket{\code{(not 1)}}\python{\code{not 1}} is
  5753. \racket{\code{\#f}}\python{False} because \racket{Racket}\python{Python}
  5754. treats non-zero integers as if they were \racket{\code{\#t}}\python{\code{True}}.
  5755. %
  5756. \racket{On the other hand, \code{(car 1)} results in a run-time error
  5757. in Racket because \code{car} expects a pair.}
  5758. %
  5759. \python{On the other hand, \code{1[0]} results in a run-time error
  5760. in Python because an ``\code{int} object is not subscriptable''.}
  5761. \racket{Typed Racket}\python{The MyPy type checker} makes similar
  5762. design choices as \racket{Racket}\python{Python}, except much of the
  5763. error detection happens at compile time instead of run
  5764. time\python{~\citep{Lehtosalo2021:MyPy}}. \racket{Typed Racket}\python{MyPy}
  5765. accepts \racket{\code{(not 1)}}\python{\code{not 1}}. But in the case
  5766. of \racket{\code{(car 1)}}\python{\code{1[0]}}, \racket{Typed
  5767. Racket}\python{MyPy} reports a compile-time error
  5768. %
  5769. \racket{because Racket expects the type of the argument to be of the form
  5770. \code{(Listof T)} or \code{(Pairof T1 T2)}.}
  5771. %
  5772. \python{stating that a ``value of type \code{int} is not indexable''.}
  5773. The \LangIf{} language performs type checking during compilation like
  5774. \racket{Typed Racket}\python{MyPy}. In Chapter~\ref{ch:Rdyn} we study the
  5775. alternative choice, that is, a dynamically typed language like
  5776. \racket{Racket}\python{Python}.
  5777. The \LangIf{} language is a subset of \racket{Typed Racket}\python{MyPy};
  5778. for some operations we are more restrictive, for example, rejecting
  5779. \racket{\code{(not 1)}}\python{\code{not 1}}.
  5780. This chapter is organized as follows. We begin by defining the syntax
  5781. and interpreter for the \LangIf{} language
  5782. (Section~\ref{sec:lang-if}). We then introduce the idea of type
  5783. checking and build a type checker for \LangIf{}
  5784. (Section~\ref{sec:type-check-Lif}).
  5785. %
  5786. \racket{To compile \LangIf{} we need to enlarge the intermediate
  5787. language \LangCVar{} into \LangCIf{} (Section~\ref{sec:Cif}) and
  5788. \LangXInt{} into \LangXIf{} (Section~\ref{sec:x86-if}).}
  5789. %
  5790. The remaining sections of this chapter discuss how the addition of
  5791. Booleans and conditional control flow to the language requires changes
  5792. to the existing compiler passes and the addition of new ones. In
  5793. particular, we introduce the \code{shrink} pass to translates some
  5794. operators into others, thereby reducing the number of operators that
  5795. need to be handled in later passes.
  5796. %
  5797. The main event of this chapter is the \code{explicate\_control} pass
  5798. that is responsible for translating \code{if}'s into conditional
  5799. \code{goto}'s (Section~\ref{sec:explicate-control-Lif}).
  5800. %
  5801. Regarding register allocation, there is the interesting question of
  5802. how to handle conditional \code{goto}'s during liveness analysis.
  5803. \section{The \LangIf{} Language}
  5804. \label{sec:lang-if}
  5805. The concrete syntax of the \LangIf{} language is defined in
  5806. Figure~\ref{fig:Lif-concrete-syntax} and the abstract syntax is defined
  5807. in Figure~\ref{fig:Lif-syntax}. The \LangIf{} language includes all of
  5808. \LangVar{}\racket{(shown in gray)}, the Boolean literals \TRUE{} and
  5809. \FALSE{}, and the \code{if} expression \python{and statement}. We expand the
  5810. operators to include
  5811. \begin{enumerate}
  5812. \item subtraction on integers,
  5813. \item the logical operators \key{and}, \key{or} and \key{not},
  5814. \item the \racket{\key{eq?} operation}\python{\key{==} and \key{!=} operations}
  5815. for comparing integers or Booleans for equality, and
  5816. \item the \key{<}, \key{<=}, \key{>}, and \key{>=} operations for
  5817. comparing integers.
  5818. \end{enumerate}
  5819. \racket{We reorganize the abstract syntax for the primitive
  5820. operations in Figure~\ref{fig:Lif-syntax}, using only one grammar
  5821. rule for all of them. This means that the grammar no longer checks
  5822. whether the arity of an operators matches the number of
  5823. arguments. That responsibility is moved to the type checker for
  5824. \LangIf{}, which we introduce in Section~\ref{sec:type-check-Lif}.}
  5825. \begin{figure}[tp]
  5826. \centering
  5827. \fbox{
  5828. \begin{minipage}{0.96\textwidth}
  5829. {\if\edition\racketEd\color{olive}
  5830. \[
  5831. \begin{array}{lcl}
  5832. \itm{bool} &::=& \TRUE \MID \FALSE \\
  5833. \itm{cmp} &::= & \key{eq?} \MID \key{<} \MID \key{<=} \MID \key{>} \MID \key{>=} \\
  5834. \Exp &::=& \gray{ \Int \MID \CREAD{} \MID \CNEG{\Exp} \MID \CADD{\Exp}{\Exp} } \MID \CSUB{\Exp}{\Exp} \\
  5835. &\MID& \gray{ \Var \MID \CLET{\Var}{\Exp}{\Exp} } \\
  5836. &\MID& \itm{bool}
  5837. \MID (\key{and}\;\Exp\;\Exp) \MID (\key{or}\;\Exp\;\Exp)
  5838. \MID (\key{not}\;\Exp) \\
  5839. &\MID& (\itm{cmp}\;\Exp\;\Exp) \MID \CIF{\Exp}{\Exp}{\Exp} \\
  5840. \LangIfM{} &::=& \Exp
  5841. \end{array}
  5842. \]
  5843. \fi}
  5844. {\if\edition\pythonEd
  5845. \[
  5846. \begin{array}{rcl}
  5847. \itm{binop} &::= & \key{+} \MID \key{-} \MID \key{==} \MID \key{!=} \MID \key{<} \MID \key{<=} \MID \key{>} \MID \key{>=} \\
  5848. \itm{uniop} &::= & \key{-} \MID \key{not} \\
  5849. \Exp &::=& \Int \MID \key{input\_int}\LP\RP \MID \CUNIOP{\itm{uniop}}{\Exp} \MID \CBINOP{\itm{binop}}{\Exp}{\Exp} \MID \Var{} \\
  5850. &\MID& \TRUE \MID \FALSE \MID \CIF{\Exp}{\Exp}{\Exp} \\
  5851. \Stmt &::=& \key{print}\LP \Exp \RP \MID \Exp \MID \CASSIGN{\Var}{\Exp}
  5852. \MID \key{if}~ \Exp \key{:}~ \Stmt^{+} ~\key{else:}~ \Stmt^{+}\\
  5853. \LangVarM{} &::=& \Stmt^{*}
  5854. \end{array}
  5855. \]
  5856. \fi}
  5857. \end{minipage}
  5858. }
  5859. \caption{The concrete syntax of \LangIf{}, extending \LangVar{}
  5860. (Figure~\ref{fig:Lvar-concrete-syntax}) with Booleans and conditionals.}
  5861. \label{fig:Lif-concrete-syntax}
  5862. \end{figure}
  5863. \begin{figure}[tp]
  5864. \centering
  5865. \fbox{
  5866. \begin{minipage}{0.96\textwidth}
  5867. {\if\edition\racketEd\color{olive}
  5868. \[
  5869. \begin{array}{lcl}
  5870. \itm{bool} &::=& \code{\#t} \MID \code{\#f} \\
  5871. \itm{cmp} &::= & \code{eq?} \MID \code{<} \MID \code{<=} \MID \code{>} \MID \code{>=} \\
  5872. \itm{op} &::= & \itm{cmp} \MID \code{read} \MID \code{+} \MID \code{-}
  5873. \MID \code{and} \MID \code{or} \MID \code{not} \\
  5874. \Exp &::=& \gray{ \INT{\Int} \MID \VAR{\Var} \MID \LET{\Var}{\Exp}{\Exp} } \\
  5875. &\MID& \PRIM{\itm{op}}{\Exp\ldots}\\
  5876. &\MID& \BOOL{\itm{bool}} \MID \IF{\Exp}{\Exp}{\Exp} \\
  5877. \LangIfM{} &::=& \PROGRAM{\code{'()}}{\Exp}
  5878. \end{array}
  5879. \]
  5880. \fi}
  5881. {\if\edition\pythonEd
  5882. \[
  5883. \begin{array}{lcl}
  5884. \itm{binop} &::=& \code{Add()} \MID \code{Sub()} \\
  5885. \itm{uniop} &::=& \code{USub()} \MID \code{Not()} \\
  5886. \itm{bool} &::=& \code{True} \MID \code{False} \\
  5887. \itm{boolop} &::=& \code{And()} \MID \code{Or()} \\
  5888. \itm{cmp} &::= & \code{Eq()} \MID \code{NotEq()} \MID \code{Lt()} \MID \code{LtE()} \MID \code{Gt()} \MID \code{GtE()} \\
  5889. \Exp &::=& \INT{\Int} \MID \READ{} \MID \VAR{\Var} \\
  5890. &\MID& \BINOP{\Exp}{\itm{binop}}{\Exp}
  5891. \MID \UNIOP{\itm{uniop}}{\Exp}\\
  5892. &\MID& \CMP{\Exp}{\itm{cmp}}{\Exp}
  5893. \MID \BOOLOP{\itm{boolop}}{\Exp}{\Exp}\\
  5894. &\MID& \BOOL{\itm{bool}} \MID \IF{\Exp}{\Exp}{\Exp} \\
  5895. \Stmt{} &::=& \PRINT{\Exp} \MID \EXPR{\Exp} \\
  5896. &\MID& \ASSIGN{\VAR{\Var}}{\Exp} \MID \IFSTMT{\Exp}{\Stmt^{*}}{\Stmt^{*}}\\
  5897. \LangIfM{} &::=& \PROGRAM{\code{'()}}{\Stmt^{*}}
  5898. \end{array}
  5899. \]
  5900. \fi}
  5901. \end{minipage}
  5902. }
  5903. \caption{The abstract syntax of \LangIf{}.}
  5904. \label{fig:Lif-syntax}
  5905. \end{figure}
  5906. Figure~\ref{fig:interp-Lif} defines the interpreter for \LangIf{},
  5907. which inherits from the interpreter for \LangVar{}
  5908. (Figure~\ref{fig:interp-Lvar}). The literals \TRUE{} and \FALSE{}
  5909. evaluate to the corresponding Boolean values. The conditional
  5910. expression $(\CIF{e_1}{e_2}{\itm{e_3}})$ evaluates expression $e_1$
  5911. and then either evaluates $e_2$ or $e_3$ depending on whether
  5912. $e_1$ produced \TRUE{} or \FALSE{}. The logical operations
  5913. \code{and}, \code{or}, and \code{not} behave as you might expect, but
  5914. note that the \code{and} and \code{or} operations are
  5915. short-circuiting.
  5916. %
  5917. That is, given the expression $\CAND{e_1}{e_2}$, the expression $e_2$
  5918. is not evaluated if $e_1$ evaluates to \FALSE{}.
  5919. %
  5920. Similarly, given $\COR{e_1}{e_2}$, the expression $e_2$ is not
  5921. evaluated if $e_1$ evaluates to \TRUE{}.
  5922. \racket{With the increase in the number of primitive operations, the
  5923. interpreter would become repetitive without some care. We refactor
  5924. the case for \code{Prim}, moving the code that differs with each
  5925. operation into the \code{interp\_op} method shown in in
  5926. Figure~\ref{fig:interp-op-Lif}. We handle the \code{and} operation
  5927. separately because of its short-circuiting behavior.}
  5928. \begin{figure}[tbp]
  5929. {\if\edition\racketEd\color{olive}
  5930. \begin{lstlisting}
  5931. (define interp_Lif_class
  5932. (class interp_Lvar_class
  5933. (super-new)
  5934. (define/public (interp_op op) ...)
  5935. (define/override ((interp_exp env) e)
  5936. (define recur (interp_exp env))
  5937. (match e
  5938. [(Bool b) b]
  5939. [(If cnd thn els)
  5940. (match (recur cnd)
  5941. [#t (recur thn)]
  5942. [#f (recur els)])]
  5943. [(Prim 'and (list e1 e2))
  5944. (match (recur e1)
  5945. [#t (match (recur e2) [#t #t] [#f #f])]
  5946. [#f #f])]
  5947. [(Prim op args)
  5948. (apply (interp_op op) (for/list ([e args]) (recur e)))]
  5949. [else ((super interp_exp env) e)]))
  5950. ))
  5951. (define (interp_Lif p)
  5952. (send (new interp_Lif_class) interp_program p))
  5953. \end{lstlisting}
  5954. \fi}
  5955. {\if\edition\pythonEd
  5956. \begin{lstlisting}
  5957. class InterpLif(InterpLvar):
  5958. def interp_exp(self, e, env):
  5959. match e:
  5960. case IfExp(test, body, orelse):
  5961. if self.interp_exp(test, env):
  5962. return self.interp_exp(body, env)
  5963. else:
  5964. return self.interp_exp(orelse, env)
  5965. case BinOp(left, Sub(), right):
  5966. return self.interp_exp(left, env) - self.interp_exp(right, env)
  5967. case UnaryOp(Not(), v):
  5968. return not self.interp_exp(v, env)
  5969. case BoolOp(And(), values):
  5970. if self.interp_exp(values[0], env):
  5971. return self.interp_exp(values[0], env)
  5972. else:
  5973. return False
  5974. case BoolOp(Or(), values):
  5975. if self.interp_exp(values[0], env):
  5976. return True
  5977. else:
  5978. return self.interp_exp(values[1], env)
  5979. case Compare(left, [cmp], [right]):
  5980. l = self.interp_exp(left, env)
  5981. r = self.interp_exp(right, env)
  5982. return self.interp_cmp(cmp)(l, r)
  5983. case _:
  5984. return super().interp_exp(e, env)
  5985. def interp_stmts(self, ss, env):
  5986. if len(ss) == 0:
  5987. return
  5988. match ss[0]:
  5989. case If(test, body, orelse):
  5990. if self.interp_exp(test, env):
  5991. return self.interp_stmts(body + ss[1:], env)
  5992. else:
  5993. return self.interp_stmts(orelse + ss[1:], env)
  5994. case _:
  5995. return super().interp_stmts(ss, env)
  5996. ...
  5997. \end{lstlisting}
  5998. \fi}
  5999. \caption{Interpreter for the \LangIf{} language. \racket{(See
  6000. Figure~\ref{fig:interp-op-Lif} for \code{interp-op}.)}
  6001. \python{(See Figure~\ref{fig:interp-cmp-Lif} for \code{interp\_cmp}.)}}
  6002. \label{fig:interp-Lif}
  6003. \end{figure}
  6004. {\if\edition\racketEd\color{olive}
  6005. \begin{figure}[tbp]
  6006. \begin{lstlisting}
  6007. (define/public (interp_op op)
  6008. (match op
  6009. ['+ fx+]
  6010. ['- fx-]
  6011. ['read read-fixnum]
  6012. ['not (lambda (v) (match v [#t #f] [#f #t]))]
  6013. ['or (lambda (v1 v2)
  6014. (cond [(and (boolean? v1) (boolean? v2))
  6015. (or v1 v2)]))]
  6016. ['eq? (lambda (v1 v2)
  6017. (cond [(or (and (fixnum? v1) (fixnum? v2))
  6018. (and (boolean? v1) (boolean? v2))
  6019. (and (vector? v1) (vector? v2)))
  6020. (eq? v1 v2)]))]
  6021. ['< (lambda (v1 v2)
  6022. (cond [(and (fixnum? v1) (fixnum? v2))
  6023. (< v1 v2)]))]
  6024. ['<= (lambda (v1 v2)
  6025. (cond [(and (fixnum? v1) (fixnum? v2))
  6026. (<= v1 v2)]))]
  6027. ['> (lambda (v1 v2)
  6028. (cond [(and (fixnum? v1) (fixnum? v2))
  6029. (> v1 v2)]))]
  6030. ['>= (lambda (v1 v2)
  6031. (cond [(and (fixnum? v1) (fixnum? v2))
  6032. (>= v1 v2)]))]
  6033. [else (error 'interp_op "unknown operator")]))
  6034. \end{lstlisting}
  6035. \caption{Interpreter for the primitive operators in the \LangIf{} language.}
  6036. \label{fig:interp-op-Lif}
  6037. \end{figure}
  6038. \fi}
  6039. {\if\edition\pythonEd
  6040. \begin{figure}
  6041. \begin{lstlisting}
  6042. class InterpLif(InterpLvar):
  6043. ...
  6044. def interp_cmp(self, cmp):
  6045. match cmp:
  6046. case Lt():
  6047. return lambda x, y: x < y
  6048. case LtE():
  6049. return lambda x, y: x <= y
  6050. case Gt():
  6051. return lambda x, y: x > y
  6052. case GtE():
  6053. return lambda x, y: x >= y
  6054. case Eq():
  6055. return lambda x, y: x == y
  6056. case NotEq():
  6057. return lambda x, y: x != y
  6058. \end{lstlisting}
  6059. \caption{Interpreter for the comparison operators in the \LangIf{} language.}
  6060. \label{fig:interp-cmp-Lif}
  6061. \end{figure}
  6062. \fi}
  6063. \section{Type Checking \LangIf{} Programs}
  6064. \label{sec:type-check-Lif}
  6065. \index{subject}{type checking}
  6066. \index{subject}{semantic analysis}
  6067. It is helpful to think about type checking in two complementary
  6068. ways. A type checker predicts the type of value that will be produced
  6069. by each expression in the program. For \LangIf{}, we have just two types,
  6070. \INTTY{} and \BOOLTY{}. So a type checker should predict that
  6071. {\if\edition\racketEd\color{olive}
  6072. \begin{lstlisting}
  6073. (+ 10 (- (+ 12 20)))
  6074. \end{lstlisting}
  6075. \fi}
  6076. {\if\edition\pythonEd
  6077. \begin{lstlisting}
  6078. 10 + -(12 + 20)
  6079. \end{lstlisting}
  6080. \fi}
  6081. \noindent produces a value of type \INTTY{} while
  6082. {\if\edition\racketEd\color{olive}
  6083. \begin{lstlisting}
  6084. (and (not #f) #t)
  6085. \end{lstlisting}
  6086. \fi}
  6087. {\if\edition\pythonEd
  6088. \begin{lstlisting}
  6089. (not False) and True
  6090. \end{lstlisting}
  6091. \fi}
  6092. \noindent produces a value of type \BOOLTY{}.
  6093. A second way to think about type checking is that it enforces a set of
  6094. rules about which operators can be applied to which kinds of
  6095. values. For example, our type checker for \LangIf{} signals an error
  6096. for the below expression {\if\edition\racketEd\color{olive}
  6097. \begin{lstlisting}
  6098. (not (+ 10 (- (+ 12 20))))
  6099. \end{lstlisting}
  6100. \fi}
  6101. {\if\edition\pythonEd
  6102. \begin{lstlisting}
  6103. not (10 + -(12 + 20))
  6104. \end{lstlisting}
  6105. \fi}
  6106. The subexpression
  6107. \racket{\code{(+ 10 (- (+ 12 20)))}}\python{\code{(10 + -(12 + 20))}}
  6108. has type \INTTY{} but the type checker enforces the rule that the argument of
  6109. \code{not} must be an expression of type \BOOLTY{}.
  6110. We implement type checking using classes and methods because they
  6111. provide the open recursion needed to reuse code as we extend the type
  6112. checker in later chapters, analogous to the use of classes and methods
  6113. for the interpreters (Section~\ref{sec:extensible-interp}).
  6114. We separate the type checker for the \LangVar{} subset into its own
  6115. class, shown in Figure~\ref{fig:type-check-Lvar}. The type checker for
  6116. \LangIf{} is shown in Figure~\ref{fig:type-check-Lif} and it inherits
  6117. from the type checker for \LangVar{}. These type checkers are in the
  6118. files
  6119. \racket{\code{type-check-Lvar.rkt}}\python{\code{type\_check\_Lvar.py}}
  6120. and
  6121. \racket{\code{type-check-Lif.rkt}}\python{\code{type\_check\_Lif.py}}
  6122. of the support code.
  6123. %
  6124. Each type checker is a structurally recursive function over the AST.
  6125. Given an input expression \code{e}, the type checker either signals an
  6126. error or returns \racket{an expression and} its type (\INTTY{} or
  6127. \BOOLTY{}).
  6128. %
  6129. \racket{It returns an expression because there are situations in which
  6130. we want to change or update the expression.}
  6131. Next we discuss the \code{type\_check\_exp} function of \LangVar{} in
  6132. Figure~\ref{fig:type-check-Lvar}. The type of an integer constant is
  6133. \INTTY{}. To handle variables, the type checker uses the environment
  6134. \code{env} to map variables to types.
  6135. %
  6136. \racket{Consider the case for \key{let}. We type check the
  6137. initializing expression to obtain its type \key{T} and then
  6138. associate type \code{T} with the variable \code{x} in the
  6139. environment used to type check the body of the \key{let}. Thus,
  6140. when the type checker encounters a use of variable \code{x}, it can
  6141. find its type in the environment.}
  6142. %
  6143. \python{Consider the case for assignment. We type check the
  6144. initializing expression to obtain its type \key{t}. If the variable
  6145. \code{lhs.id} is already in the environment because there was a
  6146. prior assignment, we check that this initializer has the same type
  6147. as the prior one. If this is the first assignment to the variable,
  6148. we associate type \code{t} with the variable \code{lhs.id} in the
  6149. environment. Thus, when the type checker encounters a use of
  6150. variable \code{x}, it can find its type in the environment.}
  6151. %
  6152. \racket{Regarding primitive operators, we recursively analyze the
  6153. arguments and then invoke \code{type\_check\_op} to check whether
  6154. the argument types are allowed.}
  6155. %
  6156. \python{Regarding addition and negation, we recursively analyze the
  6157. arguments, check that they have type \INT{}, and return \INT{}.}
  6158. \racket{Several auxiliary methods are used in the type checker. The
  6159. method \code{operator-types} defines a dictionary that maps the
  6160. operator names to their parameter and return types. The
  6161. \code{type-equal?} method determines whether two types are equal,
  6162. which for now simply dispatches to \code{equal?} (deep
  6163. equality). The \code{check-type-equal?} method triggers an error if
  6164. the two types are not equal. The \code{type-check-op} method looks
  6165. up the operator in the \code{operator-types} dictionary and then
  6166. checks whether the argument types are equal to the parameter types.
  6167. The result is the return type of the operator.}
  6168. %
  6169. \python{The auxiliary method \code{check\_type\_equal} method triggers
  6170. an error if the two types are not equal.}
  6171. \begin{figure}[tbp]
  6172. {\if\edition\racketEd\color{olive}
  6173. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  6174. (define type-check-Lvar_class
  6175. (class object%
  6176. (super-new)
  6177. (define/public (operator-types)
  6178. '((+ . ((Integer Integer) . Integer))
  6179. (- . ((Integer) . Integer))
  6180. (read . (() . Integer))))
  6181. (define/public (type-equal? t1 t2) (equal? t1 t2))
  6182. (define/public (check-type-equal? t1 t2 e)
  6183. (unless (type-equal? t1 t2)
  6184. (error 'type-check "~a != ~a\nin ~v" t1 t2 e)))
  6185. (define/public (type-check-op op arg-types e)
  6186. (match (dict-ref (operator-types) op)
  6187. [`(,param-types . ,return-type)
  6188. (for ([at arg-types] [pt param-types])
  6189. (check-type-equal? at pt e))
  6190. return-type]
  6191. [else (error 'type-check-op "unrecognized ~a" op)]))
  6192. (define/public (type-check-exp env)
  6193. (lambda (e)
  6194. (match e
  6195. [(Int n) (values (Int n) 'Integer)]
  6196. [(Var x) (values (Var x) (dict-ref env x))]
  6197. [(Let x e body)
  6198. (define-values (e^ Te) ((type-check-exp env) e))
  6199. (define-values (b Tb) ((type-check-exp (dict-set env x Te)) body))
  6200. (values (Let x e^ b) Tb)]
  6201. [(Prim op es)
  6202. (define-values (new-es ts)
  6203. (for/lists (exprs types) ([e es]) ((type-check-exp env) e)))
  6204. (values (Prim op new-es) (type-check-op op ts e))]
  6205. [else (error 'type-check-exp "couldn't match" e)])))
  6206. (define/public (type-check-program e)
  6207. (match e
  6208. [(Program info body)
  6209. (define-values (body^ Tb) ((type-check-exp '()) body))
  6210. (check-type-equal? Tb 'Integer body)
  6211. (Program info body^)]
  6212. [else (error 'type-check-Lvar "couldn't match ~a" e)]))
  6213. ))
  6214. (define (type-check-Lvar p)
  6215. (send (new type-check-Lvar_class) type-check-program p))
  6216. \end{lstlisting}
  6217. \fi}
  6218. {\if\edition\pythonEd
  6219. \begin{lstlisting}
  6220. class TypeCheckLvar:
  6221. def check_type_equal(self, t1, t2, e):
  6222. if t1 != t2:
  6223. msg = 'error: ' + repr(t1) + ' != ' + repr(t2) + ' in ' + repr(e)
  6224. raise Exception(msg)
  6225. def type_check_exp(self, e, env):
  6226. match e:
  6227. case BinOp(left, Add(), right):
  6228. l = self.type_check_exp(left, env)
  6229. check_type_equal(l, int, left)
  6230. r = self.type_check_exp(right, env)
  6231. check_type_equal(r, int, right)
  6232. return int
  6233. case UnaryOp(USub(), v):
  6234. t = self.type_check_exp(v, env)
  6235. check_type_equal(t, int, v)
  6236. return int
  6237. case Name(id):
  6238. return env[id]
  6239. case Constant(value) if isinstance(value, int):
  6240. return int
  6241. case Call(Name('input_int'), []):
  6242. return int
  6243. def type_check_stmts(self, ss, env):
  6244. if len(ss) == 0:
  6245. return
  6246. match ss[0]:
  6247. case Assign([lhs], value):
  6248. t = self.type_check_exp(value, env)
  6249. if lhs.id in env:
  6250. check_type_equal(env[lhs.id], t, value)
  6251. else:
  6252. env[lhs.id] = t
  6253. return self.type_check_stmts(ss[1:], env)
  6254. case Expr(Call(Name('print'), [arg])):
  6255. t = self.type_check_exp(arg, env)
  6256. check_type_equal(t, int, arg)
  6257. return self.type_check_stmts(ss[1:], env)
  6258. case Expr(value):
  6259. self.type_check_exp(value, env)
  6260. return self.type_check_stmts(ss[1:], env)
  6261. def type_check_P(self, p):
  6262. match p:
  6263. case Module(body):
  6264. self.type_check_stmts(body, {})
  6265. \end{lstlisting}
  6266. \fi}
  6267. \caption{Type checker for the \LangVar{} language.}
  6268. \label{fig:type-check-Lvar}
  6269. \end{figure}
  6270. \begin{figure}[tbp]
  6271. {\if\edition\racketEd\color{olive}
  6272. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  6273. (define type-check-Lif_class
  6274. (class type-check-Lvar_class
  6275. (super-new)
  6276. (inherit check-type-equal?)
  6277. (define/override (operator-types)
  6278. (append '((- . ((Integer Integer) . Integer))
  6279. (and . ((Boolean Boolean) . Boolean))
  6280. (or . ((Boolean Boolean) . Boolean))
  6281. (< . ((Integer Integer) . Boolean))
  6282. (<= . ((Integer Integer) . Boolean))
  6283. (> . ((Integer Integer) . Boolean))
  6284. (>= . ((Integer Integer) . Boolean))
  6285. (not . ((Boolean) . Boolean))
  6286. )
  6287. (super operator-types)))
  6288. (define/override (type-check-exp env)
  6289. (lambda (e)
  6290. (match e
  6291. [(Bool b) (values (Bool b) 'Boolean)]
  6292. [(Prim 'eq? (list e1 e2))
  6293. (define-values (e1^ T1) ((type-check-exp env) e1))
  6294. (define-values (e2^ T2) ((type-check-exp env) e2))
  6295. (check-type-equal? T1 T2 e)
  6296. (values (Prim 'eq? (list e1^ e2^)) 'Boolean)]
  6297. [(If cnd thn els)
  6298. (define-values (cnd^ Tc) ((type-check-exp env) cnd))
  6299. (define-values (thn^ Tt) ((type-check-exp env) thn))
  6300. (define-values (els^ Te) ((type-check-exp env) els))
  6301. (check-type-equal? Tc 'Boolean e)
  6302. (check-type-equal? Tt Te e)
  6303. (values (If cnd^ thn^ els^) Te)]
  6304. [else ((super type-check-exp env) e)])))
  6305. ))
  6306. (define (type-check-Lif p)
  6307. (send (new type-check-Lif_class) type-check-program p))
  6308. \end{lstlisting}
  6309. \fi}
  6310. {\if\edition\pythonEd
  6311. \begin{lstlisting}
  6312. class TypeCheckLif(TypeCheckLvar):
  6313. def type_check_exp(self, e, env):
  6314. match e:
  6315. case Constant(value) if isinstance(value, bool):
  6316. return bool
  6317. case BinOp(left, Sub(), right):
  6318. l = self.type_check_exp(left, env); check_type_equal(l, int, left)
  6319. r = self.type_check_exp(right, env); check_type_equal(r, int, right)
  6320. return int
  6321. case UnaryOp(Not(), v):
  6322. t = self.type_check_exp(v, env); check_type_equal(t, bool, v)
  6323. return bool
  6324. case BoolOp(op, values):
  6325. left = values[0] ; right = values[1]
  6326. l = self.type_check_exp(left, env); check_type_equal(l, bool, left)
  6327. r = self.type_check_exp(right, env); check_type_equal(r, bool, right)
  6328. return bool
  6329. case Compare(left, [cmp], [right]) if isinstance(cmp, Eq) \
  6330. or isinstance(cmp, NotEq):
  6331. l = self.type_check_exp(left, env)
  6332. r = self.type_check_exp(right, env)
  6333. check_type_equal(l, r, e)
  6334. return bool
  6335. case Compare(left, [cmp], [right]):
  6336. l = self.type_check_exp(left, env); check_type_equal(l, int, left)
  6337. r = self.type_check_exp(right, env); check_type_equal(r, int, right)
  6338. return bool
  6339. case IfExp(test, body, orelse):
  6340. t = self.type_check_exp(test, env); check_type_equal(bool, t, test)
  6341. b = self.type_check_exp(body, env)
  6342. o = self.type_check_exp(orelse, env)
  6343. check_type_equal(b, o, e)
  6344. return b
  6345. case _:
  6346. return super().type_check_exp(e, env)
  6347. def type_check_stmts(self, ss, env):
  6348. if len(ss) == 0:
  6349. return
  6350. match ss[0]:
  6351. case If(test, body, orelse):
  6352. t = self.type_check_exp(test, env); check_type_equal(bool, t, test)
  6353. b = self.type_check_stmts(body, env)
  6354. o = self.type_check_stmts(orelse, env)
  6355. check_type_equal(b, o, ss[0])
  6356. return self.type_check_stmts(ss[1:], env)
  6357. case _:
  6358. return super().type_check_stmts(ss, env)
  6359. \end{lstlisting}
  6360. \fi}
  6361. \caption{Type checker for the \LangIf{} language.}
  6362. \label{fig:type-check-Lif}
  6363. \end{figure}
  6364. We shift our focus to Figure~\ref{fig:type-check-Lif}, the type
  6365. checker for \LangIf{}.
  6366. %
  6367. The type of a Boolean constant is \BOOLTY{}.
  6368. %
  6369. \racket{The \code{operator-types} function adds dictionary entries for
  6370. the other new operators.}
  6371. %
  6372. \python{Subtraction requires its arguments to be of type \INTTY{} and produces
  6373. an \INTTY{}. Negation requires its argument to be a \BOOLTY{} and
  6374. produces a \BOOLTY{}. Similarly for logical-and and logical-or. }
  6375. %
  6376. The equality operators requires the two arguments to have the same
  6377. type.
  6378. %
  6379. \python{The other comparisons (less-than, etc.) require their
  6380. arguments to be of type \INTTY{} and they produce a \BOOLTY{}.}
  6381. %
  6382. The condition of an \code{if} must
  6383. be of \BOOLTY{} type and the two branches must have the same type.
  6384. \begin{exercise}\normalfont
  6385. Create 10 new test programs in \LangIf{}. Half of the programs should
  6386. have a type error. For those programs, create an empty file with the
  6387. same base name but with file extension \code{.tyerr}. For example, if
  6388. the test
  6389. \racket{\code{cond\_test\_14.rkt}}\python{\code{cond\_test\_14.py}}
  6390. is expected to error, then create
  6391. an empty file named \code{cond\_test\_14.tyerr}.
  6392. %
  6393. \racket{This indicates to \code{interp-tests} and
  6394. \code{compiler-tests} that a type error is expected. }
  6395. %
  6396. \racket{This indicates to the \code{run-tests.py} scripts that a type
  6397. error is expected.}
  6398. %
  6399. The other half of the test programs should not have type errors.
  6400. %
  6401. \racket{In the \code{run-tests.rkt} script, change the second argument
  6402. of \code{interp-tests} and \code{compiler-tests} to
  6403. \code{type-check-Lif}, which causes the type checker to run prior to
  6404. the compiler passes. Temporarily change the \code{passes} to an
  6405. empty list and run the script, thereby checking that the new test
  6406. programs either type check or not as intended.}
  6407. %
  6408. Run the test script to check that these test programs type check as
  6409. expected.
  6410. \end{exercise}
  6411. \clearpage
  6412. \section{The \LangCIf{} Intermediate Language}
  6413. \label{sec:Cif}
  6414. \racket{
  6415. Figure~\ref{fig:c1-syntax} defines the abstract syntax of the
  6416. \LangCIf{} intermediate language. (The concrete syntax is in the
  6417. Appendix, Figure~\ref{fig:c1-concrete-syntax}.) Compared to
  6418. \LangCVar{}, the \LangCIf{} language adds logical and comparison
  6419. operators to the \Exp{} non-terminal and the literals \TRUE{} and
  6420. \FALSE{} to the \Arg{} non-terminal.
  6421. Regarding control flow, \LangCIf{} adds \key{goto} and \code{if}
  6422. statements to the \Tail{} non-terminal. The condition of an \code{if}
  6423. statement is a comparison operation and the branches are \code{goto}
  6424. statements, making it straightforward to compile \code{if} statements
  6425. to x86.
  6426. }
  6427. %
  6428. {\if\edition\pythonEd
  6429. %
  6430. The output of \key{explicate\_control} is a language similar to the
  6431. $C$ language~\citep{Kernighan:1988nx} in that it has labels and
  6432. \code{goto} statements, so we name it \LangCIf{}. The abstract syntax
  6433. for \LangCIf{} is defined in Figure~\ref{fig:c1-syntax}.
  6434. \racket{(The concrete syntax for \LangCIf{} is in the Appendix,
  6435. Figure~\ref{fig:c1-concrete-syntax}.)}
  6436. %
  6437. The \LangCIf{} language supports the same operators as \LangIf{} but
  6438. the arguments of operators are restricted to atomic expressions. The
  6439. \LangCIf{} language does not include \code{if} expressions but it does
  6440. include a restricted form of \code{if} statment. The condition must be
  6441. a comparison and the two branches may only contain \code{goto}
  6442. statements. These restrictions make it easier to translate \code{if}
  6443. statements to x86.
  6444. %
  6445. \fi}
  6446. %
  6447. The \key{CProgram} construct contains
  6448. %
  6449. \racket{an alist}\python{a dictionary}
  6450. %
  6451. mapping labels to \emph{basic blocks}, where each basic block is
  6452. %
  6453. \racket{represented by the $\Tail$ non-terminal}
  6454. %
  6455. \python{a list of statements}.
  6456. \begin{figure}[tp]
  6457. \fbox{
  6458. \begin{minipage}{0.96\textwidth}
  6459. \small
  6460. {\if\edition\racketEd\color{olive}
  6461. \[
  6462. \begin{array}{lcl}
  6463. \Atm &::=& \gray{\INT{\Int} \MID \VAR{\Var}} \MID \BOOL{\itm{bool}} \\
  6464. \itm{cmp} &::= & \key{eq?} \MID \key{<} \\
  6465. \Exp &::= & \gray{ \Atm \MID \READ{} }\\
  6466. &\MID& \gray{ \NEG{\Atm} \MID \ADD{\Atm}{\Atm} } \\
  6467. &\MID& \UNIOP{\key{'not}}{\Atm}
  6468. \MID \BINOP{\key{'}\itm{cmp}}{\Atm}{\Atm} \\
  6469. \Stmt &::=& \gray{ \ASSIGN{\VAR{\Var}}{\Exp} } \\
  6470. \Tail &::= & \gray{\RETURN{\Exp} \MID \SEQ{\Stmt}{\Tail} }
  6471. \MID \GOTO{\itm{label}} \\
  6472. &\MID& \IFSTMT{\BINOP{\itm{cmp}}{\Atm}{\Atm}}{\GOTO{\itm{label}}}{\GOTO{\itm{label}}} \\
  6473. \LangCIfM{} & ::= & \gray{\CPROGRAM{\itm{info}}{\LP\LP\itm{label}\,\key{.}\,\Tail\RP\ldots\RP}}
  6474. \end{array}
  6475. \]
  6476. \fi}
  6477. {\if\edition\pythonEd
  6478. \[
  6479. \begin{array}{lcl}
  6480. \Atm &::=& \INT{\Int} \MID \VAR{\Var} \MID \BOOL{\itm{bool}} \\
  6481. \Exp &::= & \Atm \MID \READ{} \\
  6482. &\MID& \BINOP{\Atm}{\itm{binop}}{\Atm}
  6483. \MID \UNIOP{\itm{uniop}}{\Atm} \\
  6484. &\MID& \CMP{\Atm}{\itm{cmp}}{\Atm}
  6485. \MID \BOOLOP{\itm{boolop}}{\Atm}{\Atm} \\
  6486. \Stmt &::=& \PRINT{\Exp} \MID \EXPR{\Exp} \\
  6487. &\MID& \ASSIGN{\VAR{\Var}}{\Exp}
  6488. \MID \RETURN{\Exp} \MID \GOTO{\itm{label}} \\
  6489. &\MID& \IFSTMT{\CMP{\Atm}{\itm{cmp}}{\Atm}}{\LS\GOTO{\itm{label}}\RS}{\LS\GOTO{\itm{label}}\RS} \\
  6490. \LangCIfM{} & ::= & \CPROGRAM{\itm{info}}{\LC\itm{label}\,\key{:}\,\Stmt^{*}, \ldots \RC}
  6491. \end{array}
  6492. \]
  6493. \fi}
  6494. \end{minipage}
  6495. }
  6496. \caption{The abstract syntax of \LangCIf{}\racket{, an extension of \LangCVar{}
  6497. (Figure~\ref{fig:c0-syntax})}.}
  6498. \label{fig:c1-syntax}
  6499. \end{figure}
  6500. \section{The \LangXIf{} Language}
  6501. \label{sec:x86-if}
  6502. \index{subject}{x86} To implement the new logical operations, the comparison
  6503. operations, and the \key{if} expression, we need to delve further into
  6504. the x86 language. Figures~\ref{fig:x86-1-concrete} and \ref{fig:x86-1}
  6505. define the concrete and abstract syntax for the \LangXIf{} subset
  6506. of x86, which includes instructions for logical operations,
  6507. comparisons, and \racket{conditional} jumps.
  6508. One challenge is that x86 does not provide an instruction that
  6509. directly implements logical negation (\code{not} in \LangIf{} and
  6510. \LangCIf{}). However, the \code{xorq} instruction can be used to
  6511. encode \code{not}. The \key{xorq} instruction takes two arguments,
  6512. performs a pairwise exclusive-or ($\mathrm{XOR}$) operation on each
  6513. bit of its arguments, and writes the results into its second argument.
  6514. Recall the truth table for exclusive-or:
  6515. \begin{center}
  6516. \begin{tabular}{l|cc}
  6517. & 0 & 1 \\ \hline
  6518. 0 & 0 & 1 \\
  6519. 1 & 1 & 0
  6520. \end{tabular}
  6521. \end{center}
  6522. For example, applying $\mathrm{XOR}$ to each bit of the binary numbers
  6523. $0011$ and $0101$ yields $0110$. Notice that in the row of the table
  6524. for the bit $1$, the result is the opposite of the second bit. Thus,
  6525. the \code{not} operation can be implemented by \code{xorq} with $1$ as
  6526. the first argument as follows, where $\Arg$ is the translation of
  6527. $\Atm$.
  6528. \[
  6529. \CASSIGN{\Var}{\CUNIOP{\key{not}}{\Atm}}
  6530. \qquad\Rightarrow\qquad
  6531. \begin{array}{l}
  6532. \key{movq}~ \Arg\key{,} \Var\\
  6533. \key{xorq}~ \key{\$1,} \Var
  6534. \end{array}
  6535. \]
  6536. \begin{figure}[tp]
  6537. \fbox{
  6538. \begin{minipage}{0.96\textwidth}
  6539. \[
  6540. \begin{array}{lcl}
  6541. \itm{bytereg} &::=& \key{ah} \MID \key{al} \MID \key{bh} \MID \key{bl}
  6542. \MID \key{ch} \MID \key{cl} \MID \key{dh} \MID \key{dl} \\
  6543. \Arg &::=& \gray{ \key{\$}\Int \MID \key{\%}\Reg \MID \Int\key{(}\key{\%}\Reg\key{)} } \MID \key{\%}\itm{bytereg}\\
  6544. \itm{cc} & ::= & \key{e} \MID \key{l} \MID \key{le} \MID \key{g} \MID \key{ge} \\
  6545. \Instr &::=& \gray{ \key{addq} \; \Arg\key{,} \Arg \MID
  6546. \key{subq} \; \Arg\key{,} \Arg \MID
  6547. \key{negq} \; \Arg \MID \key{movq} \; \Arg\key{,} \Arg \MID } \\
  6548. && \gray{ \key{callq} \; \itm{label} \MID
  6549. \key{pushq}\;\Arg \MID \key{popq}\;\Arg \MID \key{retq} \MID \racket{\key{jmp}\,\itm{label} \MID} } \python{\key{jmp}\,\itm{label} \MID} \\
  6550. && \racket{\gray{ \itm{label}\key{:}\; \Instr }}\python{\itm{label}\key{:}\; \Instr}
  6551. \MID \key{xorq}~\Arg\key{,}~\Arg
  6552. \MID \key{cmpq}~\Arg\key{,}~\Arg \MID \\
  6553. && \key{set}cc~\Arg
  6554. \MID \key{movzbq}~\Arg\key{,}~\Arg
  6555. \MID \key{j}cc~\itm{label}
  6556. \\
  6557. \LangXIfM{} &::= & \gray{ \key{.globl main} }\\
  6558. & & \gray{ \key{main:} \; \Instr\ldots }
  6559. \end{array}
  6560. \]
  6561. \end{minipage}
  6562. }
  6563. \caption{The concrete syntax of \LangXIf{} (extends \LangXInt{} of Figure~\ref{fig:x86-int-concrete}).}
  6564. \label{fig:x86-1-concrete}
  6565. \end{figure}
  6566. \begin{figure}[tp]
  6567. \fbox{
  6568. \begin{minipage}{0.98\textwidth}
  6569. \small
  6570. {\if\edition\racketEd\color{olive}
  6571. \[
  6572. \begin{array}{lcl}
  6573. \itm{bytereg} &::=& \key{ah} \MID \key{al} \MID \key{bh} \MID \key{bl}
  6574. \MID \key{ch} \MID \key{cl} \MID \key{dh} \MID \key{dl} \\
  6575. \Arg &::=& \gray{\IMM{\Int} \MID \REG{\Reg} \MID \DEREF{\Reg}{\Int}}
  6576. \MID \BYTEREG{\itm{bytereg}} \\
  6577. \itm{cc} & ::= & \key{e} \MID \key{l} \MID \key{le} \MID \key{g} \MID \key{ge} \\
  6578. \Instr &::=& \gray{ \BININSTR{\code{addq}}{\Arg}{\Arg}
  6579. \MID \BININSTR{\code{subq}}{\Arg}{\Arg} } \\
  6580. &\MID& \gray{ \BININSTR{\code{'movq}}{\Arg}{\Arg}
  6581. \MID \UNIINSTR{\code{negq}}{\Arg} } \\
  6582. &\MID& \gray{ \CALLQ{\itm{label}}{\itm{int}} \MID \RETQ{}
  6583. \MID \PUSHQ{\Arg} \MID \POPQ{\Arg} \MID \JMP{\itm{label}} } \\
  6584. &\MID& \BININSTR{\code{xorq}}{\Arg}{\Arg}
  6585. \MID \BININSTR{\code{cmpq}}{\Arg}{\Arg}\\
  6586. &\MID& \BININSTR{\code{set}}{\itm{cc}}{\Arg}
  6587. \MID \BININSTR{\code{movzbq}}{\Arg}{\Arg}\\
  6588. &\MID& \JMPIF{'\itm{cc}'}{\itm{label}} \\
  6589. \Block &::= & \gray{\BLOCK{\itm{info}}{\LP\Instr\ldots\RP}} \\
  6590. \LangXIfM{} &::= & \gray{\XPROGRAM{\itm{info}}{\LP\LP\itm{label} \,\key{.}\, \Block \RP\ldots\RP}}
  6591. \end{array}
  6592. \]
  6593. \fi}
  6594. %
  6595. {\if\edition\pythonEd
  6596. \[
  6597. \begin{array}{lcl}
  6598. \itm{bytereg} &::=& \key{ah} \MID \key{al} \MID \key{bh} \MID \key{bl}
  6599. \MID \key{ch} \MID \key{cl} \MID \key{dh} \MID \key{dl} \\
  6600. \Arg &::=& \gray{\IMM{\Int} \MID \REG{\Reg} \MID \DEREF{\Reg}{\Int}}
  6601. \MID \BYTEREG{\itm{bytereg}} \\
  6602. \itm{cc} & ::= & \key{e} \MID \key{l} \MID \key{le} \MID \key{g} \MID \key{ge} \\
  6603. \Instr &::=& \gray{ \BININSTR{\code{addq}}{\Arg}{\Arg}
  6604. \MID \BININSTR{\code{subq}}{\Arg}{\Arg} } \\
  6605. &\MID& \gray{ \BININSTR{\code{movq}}{\Arg}{\Arg}
  6606. \MID \UNIINSTR{\code{negq}}{\Arg} } \\
  6607. &\MID& \gray{ \CALLQ{\itm{label}}{\itm{int}} \MID \RETQ{}
  6608. \MID \PUSHQ{\Arg} \MID \POPQ{\Arg} \MID \racket{\JMP{\itm{label}}} } \python{\JMP{\itm{label}}}\\
  6609. &\MID& \BININSTR{\code{xorq}}{\Arg}{\Arg}
  6610. \MID \BININSTR{\code{cmpq}}{\Arg}{\Arg}\\
  6611. &\MID& \BININSTR{\code{set}}{\itm{cc}}{\Arg}
  6612. \MID \BININSTR{\code{movzbq}}{\Arg}{\Arg}\\
  6613. &\MID& \JMPIF{\key{'}\itm{cc}\key{'}}{\itm{label}} \\
  6614. \LangXIfM{} &::= & \XPROGRAM{\itm{info}}{\LC\itm{label} \,\key{:}\, \Instr^{*} \key{,} \ldots \RC }
  6615. \end{array}
  6616. \]
  6617. \fi}
  6618. \end{minipage}
  6619. }
  6620. \caption{The abstract syntax of \LangXIf{} (extends \LangXInt{} of Figure~\ref{fig:x86-int-ast}).}
  6621. \label{fig:x86-1}
  6622. \end{figure}
  6623. Next we consider the x86 instructions that are relevant for compiling
  6624. the comparison operations. The \key{cmpq} instruction compares its two
  6625. arguments to determine whether one argument is less than, equal, or
  6626. greater than the other argument. The \key{cmpq} instruction is unusual
  6627. regarding the order of its arguments and where the result is
  6628. placed. The argument order is backwards: if you want to test whether
  6629. $x < y$, then write \code{cmpq} $y$\code{,} $x$. The result of
  6630. \key{cmpq} is placed in the special EFLAGS register. This register
  6631. cannot be accessed directly but it can be queried by a number of
  6632. instructions, including the \key{set} instruction. The instruction
  6633. $\key{set}cc~d$ puts a \key{1} or \key{0} into the destination $d$
  6634. depending on whether the comparison comes out according to the
  6635. condition code \itm{cc} (\key{e} for equal, \key{l} for less, \key{le}
  6636. for less-or-equal, \key{g} for greater, \key{ge} for
  6637. greater-or-equal). The \key{set} instruction has a quirk in
  6638. that its destination argument must be single byte register, such as
  6639. \code{al} (L for lower bits) or \code{ah} (H for higher bits), which
  6640. are part of the \code{rax} register. Thankfully, the \key{movzbq}
  6641. instruction can be used to move from a single byte register to a
  6642. normal 64-bit register. The abstract syntax for the \code{set}
  6643. instruction differs from the concrete syntax in that it separates the
  6644. instruction name from the condition code.
  6645. \python{The x86 instructions for jumping are relevant to the
  6646. compilation of \key{if} expressions.}
  6647. %
  6648. \python{The instruction $\key{jmp}\,\itm{label}$ updates the program
  6649. counter to the address of the instruction after the specified
  6650. label.}
  6651. %
  6652. \racket{The x86 instruction for conditional jump is relevant to the
  6653. compilation of \key{if} expressions.}
  6654. %
  6655. The instruction $\key{j}\itm{cc}~\itm{label}$ updates the program
  6656. counter to point to the instruction after \itm{label} depending on
  6657. whether the result in the EFLAGS register matches the condition code
  6658. \itm{cc}, otherwise the jump instruction falls through to the next
  6659. instruction. Like the abstract syntax for \code{set}, the abstract
  6660. syntax for conditional jump separates the instruction name from the
  6661. condition code. For example, \JMPIF{\key{'le'}}{\key{foo}} corresponds
  6662. to \code{jle foo}. Because the conditional jump instruction relies on
  6663. the EFLAGS register, it is common for it to be immediately preceded by
  6664. a \key{cmpq} instruction to set the EFLAGS register.
  6665. \section{Shrink the \LangIf{} Language}
  6666. \label{sec:shrink-Lif}
  6667. The \LangIf{} language includes several features that are easily
  6668. expressible with other features. For example, \code{and} and \code{or}
  6669. are expressible using \code{if} as follows.
  6670. \begin{align*}
  6671. \CAND{e_1}{e_2} & \quad \Rightarrow \quad \CIF{e_1}{e_2}{\FALSE{}}\\
  6672. \COR{e_1}{e_2} & \quad \Rightarrow \quad \CIF{e_1}{\TRUE{}}{e_2}
  6673. \end{align*}
  6674. By performing these translations in the front-end of the compiler, the
  6675. later passes of the compiler do not need to deal with these features,
  6676. making the passes shorter.
  6677. %% For example, subtraction is
  6678. %% expressible using addition and negation.
  6679. %% \[
  6680. %% \key{(-}\; e_1 \; e_2\key{)} \quad \Rightarrow \quad \LP\key{+} \; e_1 \; \LP\key{-} \; e_2\RP\RP
  6681. %% \]
  6682. %% Several of the comparison operations are expressible using less-than
  6683. %% and logical negation.
  6684. %% \[
  6685. %% \LP\key{<=}\; e_1 \; e_2\RP \quad \Rightarrow \quad
  6686. %% \LP\key{let}~\LP\LS\key{tmp.1}~e_1\RS\RP~\LP\key{not}\;\LP\key{<}\;e_2\;\key{tmp.1})\RP\RP
  6687. %% \]
  6688. %% The \key{let} is needed in the above translation to ensure that
  6689. %% expression $e_1$ is evaluated before $e_2$.
  6690. On the other hand, sometimes translations reduce the efficiency of the
  6691. generated code by increasing the number of instructions. For example,
  6692. expressing subtraction in terms of negation
  6693. \[
  6694. \CBINOP{\key{-}}{e_1}{e_2} \quad \Rightarrow \quad
  6695. \CBINOP{\key{+}}{e_1}{ \CUNIOP{\key{-}}{e_2} }
  6696. \]
  6697. produces code with two x86 instructions (\code{negq} and \code{addq})
  6698. instead of just one (\code{subq}).
  6699. %% However,
  6700. %% these differences typically do not affect the number of accesses to
  6701. %% memory, which is the primary factor that determines execution time on
  6702. %% modern computer architectures.
  6703. \begin{exercise}\normalfont
  6704. %
  6705. Implement the pass \code{shrink} to remove \key{and} and \key{or} from
  6706. the language by translating them to \code{if} expressions in \LangIf{}.
  6707. %
  6708. Create four test programs that involve these operators.
  6709. %
  6710. {\if\edition\racketEd\color{olive}
  6711. In the \code{run-tests.rkt} script, add the following entry for
  6712. \code{shrink} to the list of passes (it should be the only pass at
  6713. this point).
  6714. \begin{lstlisting}
  6715. (list "shrink" shrink interp_Lif type-check-Lif)
  6716. \end{lstlisting}
  6717. This instructs \code{interp-tests} to run the intepreter
  6718. \code{interp\_Lif} and the type checker \code{type-check-Lif} on the
  6719. output of \code{shrink}.
  6720. \fi}
  6721. %
  6722. Run the script to test your compiler on all the test programs.
  6723. \end{exercise}
  6724. {\if\edition\racketEd\color{olive}
  6725. \section{Uniquify Variables}
  6726. \label{sec:uniquify-Lif}
  6727. Add cases to \code{uniquify-exp} to handle Boolean constants and
  6728. \code{if} expressions.
  6729. \begin{exercise}\normalfont
  6730. Update the \code{uniquify\_exp} for \LangIf{} and add the following
  6731. entry to the list of \code{passes} in the \code{run-tests.rkt} script.
  6732. \begin{lstlisting}
  6733. (list "uniquify" uniquify interp_Lif type_check_Lif)
  6734. \end{lstlisting}
  6735. Run the script to test your compiler.
  6736. \end{exercise}
  6737. \fi}
  6738. \section{Remove Complex Operands}
  6739. \label{sec:remove-complex-opera-Lif}
  6740. The output language of \code{remove\_complex\_operands} is \LangIfANF{}
  6741. (Figure~\ref{fig:Lif-anf-syntax}), the administrative normal form of
  6742. \LangIf{}. A Boolean constant is an atomic expressions but the
  6743. \code{if} expression is not.
  6744. All three sub-expressions of an
  6745. \code{if} are allowed to be complex expressions but the operands of
  6746. \code{not} and the comparisons must be atomic.
  6747. %
  6748. \python{We add a new language form, the \code{Let} expression, to aid
  6749. in the translation of \code{if} expressions. The
  6750. $\LET{x}{e_1}{e_2}$ form is like an assignment statement, but can be
  6751. used as an expression. It assigns the result of $e_1$ to the
  6752. variable $x$, an then evaluates $e_2$, which may reference $x$.}
  6753. Add cases for Boolean constants, \python{comparisons,} and \code{if}
  6754. expressions to the \code{rco\_exp} and \code{rco\_atom} functions
  6755. according to whether the output needs to be \Exp{} or \Atm{} as
  6756. specified in the grammar for \LangIfANF{}. Regarding \code{if}, it is
  6757. particularly important to \textbf{not} replace its condition with a
  6758. temporary variable because that would interfere with the generation of
  6759. high-quality output in the \code{explicate\_control} pass.
  6760. \begin{figure}[tp]
  6761. \centering
  6762. \fbox{
  6763. \begin{minipage}{0.96\textwidth}
  6764. {\if\edition\racketEd\color{olive}
  6765. \[
  6766. \begin{array}{rcl}
  6767. \Atm &::=& \gray{ \INT{\Int} \MID \VAR{\Var} } \MID \BOOL{\itm{bool}}\\
  6768. \Exp &::=& \gray{ \Atm \MID \READ{} } \\
  6769. &\MID& \gray{ \NEG{\Atm} \MID \ADD{\Atm}{\Atm} } \\
  6770. &\MID& \gray{ \LET{\Var}{\Exp}{\Exp} } \\
  6771. &\MID& \UNIOP{\key{not}}{\Atm} \\
  6772. &\MID& \BINOP{\itm{cmp}}{\Atm}{\Atm} \MID \IF{\Exp}{\Exp}{\Exp} \\
  6773. R^{\mathsf{ANF}}_{\mathsf{if}} &::=& \PROGRAM{\code{()}}{\Exp}
  6774. \end{array}
  6775. \]
  6776. \fi}
  6777. {\if\edition\pythonEd
  6778. \[
  6779. \begin{array}{rcl}
  6780. \Atm &::=& \INT{\Int} \MID \VAR{\Var} \MID \BOOL{\itm{bool}}\\
  6781. \Exp &::=& \Atm \MID \READ{} \\
  6782. &\MID& \BINOP{\itm{binop}}{\Atm}{\Atm} \MID \UNIOP{\key{uniop}}{\Atm} \\
  6783. &\MID& \CMP{\Atm}{\itm{cmp}}{\Atm} \MID \IF{\Exp}{\Exp}{\Exp} \\
  6784. &\MID& \LET{\Var}{\Exp}{\Exp}\\
  6785. \Stmt{} &::=& \PRINT{\Atm} \MID \EXPR{\Exp} \\
  6786. &\MID& \ASSIGN{\VAR{\Var}}{\Exp} \MID \IFSTMT{\Exp}{\Stmt^{*}}{\Stmt^{*}}\\
  6787. P^{\mathsf{ANF}}_{\mathsf{if}} &::=& \PROGRAM{\code{()}}{\Stmt^{*}}
  6788. \end{array}
  6789. \]
  6790. \fi}
  6791. \end{minipage}
  6792. }
  6793. \caption{\LangIfANF{} is \LangIf{} in administrative normal form (ANF).}
  6794. \label{fig:Lif-anf-syntax}
  6795. \end{figure}
  6796. \begin{exercise}\normalfont
  6797. %
  6798. Add cases for Boolean constants and \code{if} to the \code{rco\_atom}
  6799. and \code{rco\_exp} functions in \code{compiler.rkt}.
  6800. %
  6801. Create three new \LangInt{} programs that exercise the interesting
  6802. code in this pass.
  6803. %
  6804. {\if\edition\racketEd\color{olive}
  6805. In the \code{run-tests.rkt} script, add the following entry to the
  6806. list of \code{passes} and then run the script to test your compiler.
  6807. \begin{lstlisting}
  6808. (list "remove-complex" remove-complex-opera* interp-Lif type-check-Lif)
  6809. \end{lstlisting}
  6810. \fi}
  6811. \end{exercise}
  6812. \section{Explicate Control}
  6813. \label{sec:explicate-control-Lif}
  6814. \racket{Recall that the purpose of \code{explicate\_control} is to
  6815. make the order of evaluation explicit in the syntax of the program.
  6816. With the addition of \key{if} this get more interesting.}
  6817. %
  6818. The \code{explicate\_control} pass translates from \LangIf{} to \LangCIf{}.
  6819. %
  6820. The main challenge to overcome is that the condition of an \key{if}
  6821. can be an arbitrary expression in \LangIf{} whereas in \LangCIf{} the
  6822. condition must be a comparison.
  6823. As a motivating example, consider the following program that has an
  6824. \key{if} expression nested in the condition of another \key{if}.
  6825. % cond_test_41.rkt, if_lt_eq.py
  6826. \begin{center}
  6827. \begin{minipage}{0.96\textwidth}
  6828. {\if\edition\racketEd\color{olive}
  6829. \begin{lstlisting}
  6830. (let ([x (read)])
  6831. (let ([y (read)])
  6832. (if (if (< x 1) (eq? x 0) (eq? x 2))
  6833. (+ y 2)
  6834. (+ y 10))))
  6835. \end{lstlisting}
  6836. \fi}
  6837. {\if\edition\pythonEd
  6838. \begin{lstlisting}
  6839. x = input_int()
  6840. y = input_int()
  6841. print(y + 2 if (x == 0 if x < 1 else x == 2) else y + 10)
  6842. \end{lstlisting}
  6843. \fi}
  6844. \end{minipage}
  6845. \end{center}
  6846. %
  6847. The naive way to compile \key{if} and the comparison operations would
  6848. be to handle each of them in isolation, regardless of their context.
  6849. Each comparison would be translated into a \key{cmpq} instruction
  6850. followed by a couple instructions to move the result from the EFLAGS
  6851. register into a general purpose register or stack location. Each
  6852. \key{if} would be translated into a \key{cmpq} instruction followed by
  6853. a conditional jump. The generated code for the inner \key{if} in the
  6854. above example would be as follows.
  6855. \begin{center}
  6856. \begin{minipage}{0.96\textwidth}
  6857. \begin{lstlisting}
  6858. cmpq $1, x
  6859. setl %al
  6860. movzbq %al, tmp
  6861. cmpq $1, tmp
  6862. je then_branch_1
  6863. jmp else_branch_1
  6864. \end{lstlisting}
  6865. \end{minipage}
  6866. \end{center}
  6867. However, if we take context into account we can do better and reduce
  6868. the use of \key{cmpq} instructions for accessing the EFLAG register.
  6869. Our goal will be to compile \key{if} expressions so that the relevant
  6870. comparison instruction appears directly before the conditional jump.
  6871. For example, we want to generate the following code for the inner
  6872. \code{if}.
  6873. \begin{center}
  6874. \begin{minipage}{0.96\textwidth}
  6875. \begin{lstlisting}
  6876. cmpq $1, x
  6877. je then_branch_1
  6878. jmp else_branch_1
  6879. \end{lstlisting}
  6880. \end{minipage}
  6881. \end{center}
  6882. One way to achieve this is to reorganize the code at the level of
  6883. \LangIf{}, pushing the outer \key{if} inside the inner one, yielding
  6884. the following code.
  6885. \begin{center}
  6886. \begin{minipage}{0.96\textwidth}
  6887. {\if\edition\racketEd\color{olive}
  6888. \begin{lstlisting}
  6889. (let ([x (read)])
  6890. (let ([y (read)])
  6891. (if (< x 1)
  6892. (if (eq? x 0)
  6893. (+ y 2)
  6894. (+ y 10))
  6895. (if (eq? x 2)
  6896. (+ y 2)
  6897. (+ y 10)))))
  6898. \end{lstlisting}
  6899. \fi}
  6900. {\if\edition\pythonEd
  6901. \begin{lstlisting}
  6902. x = input_int()
  6903. y = intput_int()
  6904. print(((y + 2) if x == 0 else (y + 10)) \
  6905. if (x < 1) \
  6906. else ((y + 2) if (x == 2) else (y + 10)))
  6907. \end{lstlisting}
  6908. \fi}
  6909. \end{minipage}
  6910. \end{center}
  6911. Unfortunately, this approach duplicates the two branches from the
  6912. outer \code{if} and a compiler must never duplicate code! After all,
  6913. the two branches could have been very large expressions.
  6914. We need a way to perform the above transformation but without
  6915. duplicating code. That is, we need a way for different parts of a
  6916. program to refer to the same piece of code.
  6917. %
  6918. Put another way, we need to move away from abstract syntax
  6919. \emph{trees} and instead use \emph{graphs}.
  6920. %
  6921. At the level of x86 assembly this is straightforward because we can
  6922. label the code for each branch and insert jumps in all the places that
  6923. need to execute the branch.
  6924. %
  6925. Likewise, our language \LangCIf{} provides the ability to label a
  6926. sequence of code and to jump to a label via \code{goto}.
  6927. %
  6928. %% In particular, we use a standard program representation called a
  6929. %% \emph{control flow graph} (CFG), due to Frances Elizabeth
  6930. %% \citet{Allen:1970uq}. \index{subject}{control-flow graph} Each vertex
  6931. %% is a labeled sequence of code, called a \emph{basic block}, and each
  6932. %% edge represents a jump to another block.
  6933. %
  6934. %% The nice thing about the output of \code{explicate\_control} is that
  6935. %% there are no unnecessary comparisons and every comparison is part of a
  6936. %% conditional jump.
  6937. %% The down-side of this output is that it includes
  6938. %% trivial blocks, such as the blocks labeled \code{block92} through
  6939. %% \code{block95}, that only jump to another block. We discuss a solution
  6940. %% to this problem in Section~\ref{sec:opt-jumps}.
  6941. {\if\edition\racketEd\color{olive}
  6942. %
  6943. Recall that in Section~\ref{sec:explicate-control-Lvar} we implement
  6944. \code{explicate\_control} for \LangVar{} using two mutually recursive
  6945. functions, \code{explicate-tail} and \code{explicate-assign}. The
  6946. former function translates expressions in tail position whereas the
  6947. later function translates expressions on the right-hand-side of a
  6948. \key{let}. With the addition of \key{if} expression in \LangIf{} we
  6949. have a new kind of position to deal with: the predicate position of
  6950. the \key{if}. We need another function, \code{explicate-pred}, that
  6951. takes an \LangIf{} expression and two blocks for the then-branch and
  6952. else-branch. The output of \code{explicate-pred} is a block. In the
  6953. following paragraphs we discuss specific cases in the
  6954. \code{explicate\_pred} function as well as additions to the
  6955. \code{explicate\_tail} and \code{explicate\_assign} functions.
  6956. %
  6957. \fi}
  6958. %
  6959. {\if\edition\pythonEd
  6960. %
  6961. We recommend implementing \code{explicate\_control} using the
  6962. following four auxiliary functions.
  6963. \begin{description}
  6964. \item[\code{explicate\_effect}] generates code for expressions as
  6965. statements, so their result is ignored and only their side effects
  6966. matter.
  6967. \item[\code{explicate\_assign}] generates code for expressions
  6968. on the right-hand side of an assignment.
  6969. \item[\code{explicate\_pred}] generates code for an \code{if}
  6970. expression or statement by analyzing the condition expression.
  6971. \item[\code{explicate\_stmt}] generates code for statements.
  6972. \end{description}
  6973. These four functions should build the dictionary of basic blocks. The
  6974. following auxiliary function can be used to create a new basic block
  6975. from a list of statements. It returns a \code{goto} statement that
  6976. jumps to the new basic block.
  6977. \begin{center}
  6978. \begin{minipage}{\textwidth}
  6979. \begin{lstlisting}
  6980. def create_block(stmts, basic_blocks):
  6981. label = label_name(generate_name('block'))
  6982. basic_blocks[label] = stmts
  6983. return Goto(label)
  6984. \end{lstlisting}
  6985. \end{minipage}
  6986. \end{center}
  6987. Figure~\ref{fig:explicate-control-Lif} provides a skeleton for the
  6988. \code{explicate\_control} pass.
  6989. The \code{explicate\_effect} function has three parameters: 1) the
  6990. expression to be compiled, 2) the already-compiled code for this
  6991. expression's \emph{continuation}, that is, the list of statements that
  6992. should execute after this expression, and 3) the dictionary of
  6993. generated basic blocks. The \code{explicate\_effect} function returns
  6994. a list of \LangCIf{} statements and it may add to the dictionary of
  6995. basic blocks.
  6996. %
  6997. Let's consider a few of the cases for the expression to be compiled.
  6998. If the expression to be compiled is a constant, then it can be
  6999. discarded because it has no side effects. If it's a \CREAD{}, then it
  7000. has a side-effect and should be preserved. So the exprssion should be
  7001. translated into a statement using the \code{Expr} AST class. If the
  7002. expression to be compiled is an \code{if} expression, we translate the
  7003. two branches using \code{explicate\_effect} and then translate the
  7004. condition expression using \code{explicate\_pred}, which generates
  7005. code for the entire \code{if}.
  7006. The \code{explicate\_assign} function has four parameters: 1) the
  7007. right-hand-side of the assignment, 2) the left-hand-side of the
  7008. assignment (the variable), 3) the continuation, and 4) the dictionary
  7009. of basic blocks. The \code{explicate\_assign} function returns a list
  7010. of \LangCIf{} statements and it may add to the dictionary of basic
  7011. blocks.
  7012. When the right-hand-side is an \code{if} expression, there is some
  7013. work to do. In particular, the two branches should be translated using
  7014. \code{explicate\_assign} and the condition expression should be
  7015. translated using \code{explicate\_pred}. Otherwise we can simply
  7016. generate an assignment statement, with the given left and right-hand
  7017. sides, concatenated with its continuation.
  7018. \begin{figure}[tbp]
  7019. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  7020. def explicate_effect(e, cont, basic_blocks):
  7021. match e:
  7022. case IfExp(test, body, orelse):
  7023. ...
  7024. case Call(func, args):
  7025. ...
  7026. case Let(var, rhs, body):
  7027. ...
  7028. case _:
  7029. ...
  7030. def explicate_assign(rhs, lhs, cont, basic_blocks):
  7031. match rhs:
  7032. case IfExp(test, body, orelse):
  7033. ...
  7034. case Let(var, rhs, body):
  7035. ...
  7036. case _:
  7037. return [Assign([lhs], rhs)] + cont
  7038. def explicate_pred(cnd, thn, els, basic_blocks):
  7039. match cnd:
  7040. case Compare(left, [op], [right]):
  7041. goto_thn = create_block(thn, basic_blocks)
  7042. goto_els = create_block(els, basic_blocks)
  7043. return [If(cnd, [goto_thn], [goto_els])]
  7044. case Constant(True):
  7045. return thn;
  7046. case Constant(False):
  7047. return els;
  7048. case UnaryOp(Not(), operand):
  7049. ...
  7050. case IfExp(test, body, orelse):
  7051. ...
  7052. case Let(var, rhs, body):
  7053. ...
  7054. case _:
  7055. return [If(Compare(cnd, [Eq()], [Constant(False)]),
  7056. [create_block(els, basic_blocks)],
  7057. [create_block(thn, basic_blocks)])]
  7058. def explicate_stmt(s, cont, basic_blocks):
  7059. match s:
  7060. case Assign([lhs], rhs):
  7061. return explicate_assign(rhs, lhs, cont, basic_blocks)
  7062. case Expr(value):
  7063. return explicate_effect(value, cont, basic_blocks)
  7064. case If(test, body, orelse):
  7065. ...
  7066. def explicate_control(p):
  7067. match p:
  7068. case Module(body):
  7069. new_body = [Return(Constant(0))]
  7070. basic_blocks = {}
  7071. for s in reversed(body):
  7072. new_body = explicate_stmt(s, new_body, basic_blocks)
  7073. basic_blocks[label_name('start')] = new_body
  7074. return CProgram(basic_blocks)
  7075. \end{lstlisting}
  7076. \caption{Skeleton for the \code{explicate\_control} pass.}
  7077. \label{fig:explicate-control-Lif}
  7078. \end{figure}
  7079. \fi}
  7080. {\if\edition\racketEd\color{olive}
  7081. \begin{figure}[tbp]
  7082. \begin{lstlisting}
  7083. (define (explicate-pred cnd thn els)
  7084. (match cnd
  7085. [(Var x) ___]
  7086. [(Let x rhs body) ___]
  7087. [(Prim 'not (list e)) ___]
  7088. [(Prim op es) #:when (or (eq? op 'eq?) (eq? op '<))
  7089. (IfStmt (Prim op arg*) (force (block->goto thn))
  7090. (force (block->goto els)))]
  7091. [(Bool b) (if b thn els)]
  7092. [(If cnd^ thn^ els^) ___]
  7093. [else (error "explicate-pred unhandled case" cnd)]))
  7094. \end{lstlisting}
  7095. \caption{Skeleton for the \key{explicate-pred} auxiliary function.}
  7096. \label{fig:explicate-pred}
  7097. \end{figure}
  7098. \fi}
  7099. \racket{The skeleton for the \code{explicate\_pred} function is given
  7100. in Figure~\ref{fig:explicate-pred}. It has a case for every
  7101. expression that can have type \code{Boolean}. We detail a few cases
  7102. here and leave the rest for the reader. The input to this function
  7103. is an expression and two blocks, \code{thn} and \code{els}, for the
  7104. two branches of the enclosing \key{if}.}
  7105. %
  7106. \python{The \code{explicate\_pred} function has four parameters: 1)
  7107. the condition expession, 2) the generated statements for the
  7108. ``then'' branch, 3) the generated statements for the ``else''
  7109. branch, and 4) the dictionary of basic blocks. The
  7110. \code{explicate\_pred} function returns a list of \LangCIf{}
  7111. statements and it may add to the dictionary of basic blocks.}
  7112. %
  7113. Consider the case for comparison operators. We translate the
  7114. comparison to an \code{if} statement whose branches are \code{goto}
  7115. statements created by applying \code{create\_block} to the \code{thn}
  7116. and \code{els} branches.
  7117. %
  7118. Next consider the case for Boolean constants. We perform a kind of
  7119. partial evaluation\index{subject}{partial evaluation} and output
  7120. either the \code{thn} or \code{els} branch depending on whether the
  7121. constant is \TRUE{} or \FALSE{}. This case demonstrates that we
  7122. sometimes discard the \code{thn} or \code{els} blocks that are input
  7123. to \code{explicate\_pred}.
  7124. The case for \key{if} expressions in \code{explicate\_pred} is
  7125. particularly illuminating because it deals with the challenges we
  7126. discussed above regarding nested \key{if} expressions
  7127. (Figure~\ref{fig:explicate-control-s1-38}). The
  7128. \racket{\lstinline{thn^}}\python{\code{body}} and
  7129. \racket{\lstinline{els^}}\python{\code{orlese}} branches of the
  7130. \key{if} inherit their context from the current one, that is,
  7131. predicate context. So you should recursively apply
  7132. \code{explicate\_pred} to the
  7133. \racket{\lstinline{thn^}}\python{\code{body}} and
  7134. \racket{\lstinline{els^}}\python{\code{orelse}} branches. For both of
  7135. those recursive calls, pass \code{thn} and \code{els} as the extra
  7136. parameters. Thus, \code{thn} and \code{els} may get used twice, once
  7137. inside each recursive call. As discussed above, to avoid duplicating
  7138. code, we need to add them to the dictionary of basic blocks so that we
  7139. can instead refer to them by name and execute them with a \key{goto}.
  7140. {\if\edition\pythonEd
  7141. %
  7142. The last of the auxiliary functions is \code{explicate\_stmt}. It has
  7143. three parameters: 1) the statement to be compiled, 2) the code for its
  7144. continuation, and 3) the dictionary of basic blocks. The
  7145. \code{explicate\_stmt} returns a list of statements and it may add to
  7146. the dictionary of basic blocks. The cases for assignment and an
  7147. expression-statement are given in full in the skeleton code: they
  7148. simply dispatch to \code{explicate\_assign} and
  7149. \code{explicate\_effect}, respectively. The case for \code{if}
  7150. statements is not given, and is similar to the case for \code{if}
  7151. expressions.
  7152. The \code{explicate\_control} function itself is given in
  7153. Figure~\ref{fig:explicate-control-Lif}. It applies
  7154. \code{explicate\_stmt} to each statement in the program, from back to
  7155. front. Thus, the result so-far, stored in \code{new\_body}, can be
  7156. used as the continuation parameter in the next call to
  7157. \code{explicate\_stmt}. The \code{new\_body} is initialized to a
  7158. \code{Return} statement. Once complete, we add the \code{new\_body} to
  7159. the dictionary of basic blocks, labeling it as the ``start'' block.
  7160. %
  7161. \fi}
  7162. %% Getting back to the case for \code{if} in \code{explicate-pred}, we
  7163. %% make the recursive calls to \code{explicate-pred} on the ``then'' and
  7164. %% ``else'' branches with the arguments \code{(block->goto} $B_1$\code{)}
  7165. %% and \code{(block->goto} $B_2$\code{)}. Let $B_3$ and $B_4$ be the
  7166. %% results from the two recursive calls. We complete the case for
  7167. %% \code{if} by recursively apply \code{explicate-pred} to the condition
  7168. %% of the \code{if} with the promised blocks $B_3$ and $B_4$ to obtain
  7169. %% the result $B_5$.
  7170. %% \[
  7171. %% (\key{if}\; \itm{cnd}\; \itm{thn}\; \itm{els})
  7172. %% \quad\Rightarrow\quad
  7173. %% B_5
  7174. %% \]
  7175. \racket{The \code{explicate\_tail} and \code{explicate\_assign}
  7176. functions need additional cases for Boolean constants and \key{if}.
  7177. In the cases for \code{if}, the two branches inherit the current
  7178. context, so in \code{explicate\_tail} they are in tail position and
  7179. in \code{explicate\_assign} they are in assignment position. The
  7180. \code{cont} parameter of \code{explicate\_assign} is used in both
  7181. recursive calls, so make sure to use \code{block->goto} on it.}
  7182. %% In the case for \code{if} in \code{explicate-tail}, the two branches
  7183. %% inherit the current context, so they are in tail position. Thus, the
  7184. %% recursive calls on the ``then'' and ``else'' branch should be calls to
  7185. %% \code{explicate-tail}.
  7186. %% %
  7187. %% We need to pass $B_0$ as the accumulator argument for both of these
  7188. %% recursive calls, but we need to be careful not to duplicate $B_0$.
  7189. %% Thus, we first apply \code{block->goto} to $B_0$ so that it gets added
  7190. %% to the control-flow graph and obtain a promised goto $G_0$.
  7191. %% %
  7192. %% Let $B_1$ be the result of \code{explicate-tail} on the ``then''
  7193. %% branch and $G_0$ and let $B_2$ be the result of \code{explicate-tail}
  7194. %% on the ``else'' branch and $G_0$. Let $B_3$ be the result of applying
  7195. %% \code{explicate-pred} to the condition of the \key{if}, $B_1$, and
  7196. %% $B_2$. Then the \key{if} as a whole translates to promise $B_3$.
  7197. %% \[
  7198. %% (\key{if}\; \itm{cnd}\; \itm{thn}\; \itm{els}) \quad\Rightarrow\quad B_3
  7199. %% \]
  7200. %% In the above discussion, we use the metavariables $B_1$, $B_2$, and
  7201. %% $B_3$ to refer to blocks for the purposes of our discussion, but they
  7202. %% should not be confused with the labels for the blocks that appear in
  7203. %% the generated code. We initially construct unlabeled blocks; we only
  7204. %% attach labels to blocks when we add them to the control-flow graph, as
  7205. %% we see in the next case.
  7206. %% Next consider the case for \key{if} in the \code{explicate-assign}
  7207. %% function. The context of the \key{if} is an assignment to some
  7208. %% variable $x$ and then the control continues to some promised block
  7209. %% $B_1$. The code that we generate for both the ``then'' and ``else''
  7210. %% branches needs to continue to $B_1$, so to avoid duplicating $B_1$ we
  7211. %% apply \code{block->goto} to it and obtain a promised goto $G_1$. The
  7212. %% branches of the \key{if} inherit the current context, so they are in
  7213. %% assignment positions. Let $B_2$ be the result of applying
  7214. %% \code{explicate-assign} to the ``then'' branch, variable $x$, and
  7215. %% $G_1$. Let $B_3$ be the result of applying \code{explicate-assign} to
  7216. %% the ``else'' branch, variable $x$, and $G_1$. Finally, let $B_4$ be
  7217. %% the result of applying \code{explicate-pred} to the predicate
  7218. %% $\itm{cnd}$ and the promises $B_2$ and $B_3$. The \key{if} as a whole
  7219. %% translates to the promise $B_4$.
  7220. %% \[
  7221. %% (\key{if}\; \itm{cnd}\; \itm{thn}\; \itm{els}) \quad\Rightarrow\quad B_4
  7222. %% \]
  7223. %% This completes the description of \code{explicate\_control} for \LangIf{}.
  7224. Figure~\ref{fig:explicate-control-s1-38} shows the output of the
  7225. \code{remove\_complex\_operands} pass and then the
  7226. \code{explicate\_control} pass on the example program. We walk through
  7227. the output program.
  7228. %
  7229. Following the order of evaluation in the output of
  7230. \code{remove\_complex\_operands}, we first have two calls to \CREAD{}
  7231. and then the comparison \racket{\code{(< x 1)}}\python{\code{x < 1}}
  7232. in the predicate of the inner \key{if}. In the output of
  7233. \code{explicate\_control}, in the
  7234. block labeled \code{start}, are two assignment statements followed by a
  7235. \code{if} statement that branches to \code{block\_8} or
  7236. \code{block\_9}. The blocks associated with those labels contain the
  7237. translations of the code
  7238. \racket{\code{(eq? x 0)}}\python{\code{x == 0}}
  7239. and
  7240. \racket{\code{(eq? x 2)}}\python{\code{x == 2}},
  7241. respectively. In particular, we start \code{block\_8} with the
  7242. comparison
  7243. \racket{\code{(eq? x 0)}}\python{\code{x == 0}}
  7244. and then branch to \code{block\_4} or \code{block\_5}.
  7245. Here was see that our algorithm sometimes inserts unnecessary blocks:
  7246. \code{block\_4} is just a \code{goto} to \code{block\_2}
  7247. and \code{block\_5} is just a \code{goto} to \code{block\_3}.
  7248. It would be better to skip blocks \code{block\_4} and \code{block\_5}
  7249. and go directly to \code{block\_2} and \code{block\_3},
  7250. which we investigate doing in Section~\ref{sec:opt-jumps}.
  7251. Getting back to the example, \code{block\_2} and \code{block\_3},
  7252. corresponds to the two branches of the outer \key{if}, i.e.,
  7253. \racket{\code{(+ y 2)}}\python{\code{y + 2}} and
  7254. \racket{\code{(+ y 10)}}\python{\code{y + 10}}.
  7255. %
  7256. The story for \code{block\_9} is similar to that of \code{block\_8}.
  7257. %
  7258. \python{The \code{block\_1} corresponds to the \code{print} statment
  7259. at the end of the program.}
  7260. \begin{figure}[tbp]
  7261. {\if\edition\racketEd\color{olive}
  7262. \begin{tabular}{lll}
  7263. \begin{minipage}{0.4\textwidth}
  7264. % cond_test_41.rkt
  7265. \begin{lstlisting}
  7266. (let ([x (read)])
  7267. (let ([y (read)])
  7268. (if (if (< x 1)
  7269. (eq? x 0)
  7270. (eq? x 2))
  7271. (+ y 2)
  7272. (+ y 10))))
  7273. \end{lstlisting}
  7274. \end{minipage}
  7275. &
  7276. $\Rightarrow$
  7277. &
  7278. \begin{minipage}{0.55\textwidth}
  7279. TODO: replace with non-optimized version. -Jeremy
  7280. \begin{lstlisting}
  7281. start:
  7282. x = (read);
  7283. y = (read);
  7284. if (< x 1) goto block40;
  7285. else goto block41;
  7286. block40:
  7287. if (eq? x 0) goto block38;
  7288. else goto block39;
  7289. block41:
  7290. if (eq? x 2) goto block38;
  7291. else goto block39;
  7292. block38:
  7293. return (+ y 2);
  7294. block39:
  7295. return (+ y 10);
  7296. \end{lstlisting}
  7297. \end{minipage}
  7298. \end{tabular}
  7299. \fi}
  7300. {\if\edition\pythonEd
  7301. \begin{tabular}{lll}
  7302. \begin{minipage}{0.4\textwidth}
  7303. % cond_test_41.rkt
  7304. \begin{lstlisting}
  7305. x = input_int()
  7306. y = input_int()
  7307. print(y + 2 \
  7308. if (x == 0 \
  7309. if x < 1 \
  7310. else x == 2) \
  7311. else y + 10)
  7312. \end{lstlisting}
  7313. \end{minipage}
  7314. &
  7315. $\Rightarrow$
  7316. &
  7317. \begin{minipage}{0.55\textwidth}
  7318. \begin{lstlisting}
  7319. start:
  7320. x = input_int()
  7321. y = input_int()
  7322. if x < 1:
  7323. goto block_8
  7324. else:
  7325. goto block_9
  7326. block_8:
  7327. if x == 0:
  7328. goto block_4
  7329. else:
  7330. goto block_5
  7331. block_9:
  7332. if x == 2:
  7333. goto block_6
  7334. else:
  7335. goto block_7
  7336. block_4:
  7337. goto block_2
  7338. block_5:
  7339. goto block_3
  7340. block_6:
  7341. goto block_2
  7342. block_7:
  7343. goto block_3
  7344. block_2:
  7345. tmp_0 = y + 2
  7346. goto block_1
  7347. block_3:
  7348. tmp_0 = y + 10
  7349. goto block_1
  7350. block_1:
  7351. print(tmp_0)
  7352. return 0
  7353. \end{lstlisting}
  7354. \end{minipage}
  7355. \end{tabular}
  7356. \fi}
  7357. \caption{Translation from \LangIf{} to \LangCIf{}
  7358. via the \code{explicate\_control}.}
  7359. \label{fig:explicate-control-s1-38}
  7360. \end{figure}
  7361. {\if\edition\racketEd\color{olive}
  7362. The way in which the \code{shrink} pass transforms logical operations
  7363. such as \code{and} and \code{or} can impact the quality of code
  7364. generated by \code{explicate\_control}. For example, consider the
  7365. following program.
  7366. % cond_test_21.rkt, and_eq_input.py
  7367. \begin{lstlisting}
  7368. (if (and (eq? (read) 0) (eq? (read) 1))
  7369. 0
  7370. 42)
  7371. \end{lstlisting}
  7372. The \code{and} operation should transform into something that the
  7373. \code{explicate-pred} function can still analyze and descend through to
  7374. reach the underlying \code{eq?} conditions. Ideally, your
  7375. \code{explicate\_control} pass should generate code similar to the
  7376. following for the above program.
  7377. \begin{center}
  7378. \begin{lstlisting}
  7379. start:
  7380. tmp1 = (read);
  7381. if (eq? tmp1 0) goto block40;
  7382. else goto block39;
  7383. block40:
  7384. tmp2 = (read);
  7385. if (eq? tmp2 1) goto block38;
  7386. else goto block39;
  7387. block38:
  7388. return 0;
  7389. block39:
  7390. return 42;
  7391. \end{lstlisting}
  7392. \end{center}
  7393. \fi}
  7394. \begin{exercise}\normalfont
  7395. \racket{
  7396. Implement the pass \code{explicate\_control} by adding the cases for
  7397. Boolean constants and \key{if} to the \code{explicate-tail} and
  7398. \code{explicate-assign}. Implement the auxiliary function
  7399. \code{explicate-pred} for predicate contexts.}
  7400. \python{Implement \code{explicate\_control} pass with its
  7401. four auxiliary functions.}
  7402. %
  7403. Create test cases that exercise all of the new cases in the code for
  7404. this pass.
  7405. %
  7406. {\if\edition\racketEd\color{olive}
  7407. Add the following entry to the list of \code{passes} in
  7408. \code{run-tests.rkt} and then run this script to test your compiler.
  7409. \begin{lstlisting}
  7410. (list "explicate-control" explicate-control interp-Cif type-check-Cif)
  7411. \end{lstlisting}
  7412. \fi}
  7413. \end{exercise}
  7414. \clearpage
  7415. \section{Select Instructions}
  7416. \label{sec:select-Lif}
  7417. \index{subject}{instruction selection}
  7418. The \code{select\_instructions} pass translates \LangCIf{} to
  7419. \LangXIfVar{}.
  7420. %
  7421. \racket{Recall that we implement this pass using three auxiliary
  7422. functions, one for each of the non-terminals $\Atm$, $\Stmt$, and
  7423. $\Tail$.}
  7424. %
  7425. \racket{For $\Atm$, we have new cases for the Booleans.}
  7426. %
  7427. \python{We begin with the Boolean constants.}
  7428. We take the usual approach of encoding them as integers.
  7429. \[
  7430. \TRUE{} \quad\Rightarrow\quad \key{1}
  7431. \qquad\qquad
  7432. \FALSE{} \quad\Rightarrow\quad \key{0}
  7433. \]
  7434. For translating statements, we discuss a couple cases. The \code{not}
  7435. operation can be implemented in terms of \code{xorq} as we discussed
  7436. at the beginning of this section. Given an assignment, if the
  7437. left-hand side variable is the same as the argument of \code{not},
  7438. then just the \code{xorq} instruction suffices.
  7439. \[
  7440. \CASSIGN{\Var}{ \CUNIOP{\key{not}}{\Var} }
  7441. \quad\Rightarrow\quad
  7442. \key{xorq}~\key{\$}1\key{,}~\Var
  7443. \]
  7444. Otherwise, a \key{movq} is needed to adapt to the update-in-place
  7445. semantics of x86. In the following translation, let $\Arg$ be the
  7446. result of translating $\Atm$ to x86.
  7447. \[
  7448. \CASSIGN{\Var}{ \CUNIOP{\key{not}}{\Atm} }
  7449. \quad\Rightarrow\quad
  7450. \begin{array}{l}
  7451. \key{movq}~\Arg\key{,}~\Var\\
  7452. \key{xorq}~\key{\$}1\key{,}~\Var
  7453. \end{array}
  7454. \]
  7455. Next consider the cases for equality. Translating this operation to
  7456. x86 is slightly involved due to the unusual nature of the \key{cmpq}
  7457. instruction discussed above. We recommend translating an assignment
  7458. with an equality on the right-hand side into a sequence of three
  7459. instructions. \\
  7460. \begin{tabular}{lll}
  7461. \begin{minipage}{0.4\textwidth}
  7462. \begin{lstlisting}
  7463. |$\CASSIGN{\Var}{ \LP\CEQ{\Atm_1}{\Atm_2} \RP }$|
  7464. \end{lstlisting}
  7465. \end{minipage}
  7466. &
  7467. $\Rightarrow$
  7468. &
  7469. \begin{minipage}{0.4\textwidth}
  7470. \begin{lstlisting}
  7471. cmpq |$\Arg_2$|, |$\Arg_1$|
  7472. sete %al
  7473. movzbq %al, |$\Var$|
  7474. \end{lstlisting}
  7475. \end{minipage}
  7476. \end{tabular} \\
  7477. The translations for the other comparison operators are similar to the
  7478. above but use different suffixes for the \code{set} instruction.
  7479. \racket{Regarding the $\Tail$ non-terminal, we have two new cases:
  7480. \key{goto} and \key{if} statements. Both are straightforward to
  7481. translate to x86.}
  7482. %
  7483. A \key{goto} statement becomes a jump instruction.
  7484. \[
  7485. \key{goto}\; \ell\racket{\key{;}} \quad \Rightarrow \quad \key{jmp}\;\ell
  7486. \]
  7487. %
  7488. An \key{if} statement becomes a compare instruction followed by a
  7489. conditional jump (for the ``then'' branch) and the fall-through is to
  7490. a regular jump (for the ``else'' branch).\\
  7491. \begin{tabular}{lll}
  7492. \begin{minipage}{0.4\textwidth}
  7493. \begin{lstlisting}
  7494. if |$\CEQ{\Atm_1}{\Atm_2}$||$\python{\key{:}}$|
  7495. goto |$\ell_1$||$\racket{\key{;}}$|
  7496. else|$\python{\key{:}}$|
  7497. goto |$\ell_2$||$\racket{\key{;}}$|
  7498. \end{lstlisting}
  7499. \end{minipage}
  7500. &
  7501. $\Rightarrow$
  7502. &
  7503. \begin{minipage}{0.4\textwidth}
  7504. \begin{lstlisting}
  7505. cmpq |$\Arg_2$|, |$\Arg_1$|
  7506. je |$\ell_1$|
  7507. jmp |$\ell_2$|
  7508. \end{lstlisting}
  7509. \end{minipage}
  7510. \end{tabular} \\
  7511. Again, the translations for the other comparison operators are similar to the
  7512. above but use different suffixes for the conditional jump instruction.
  7513. \python{Regarding the \key{return} statement, we recommend treating it
  7514. as an assignment to the \key{rax} register followed by a jump to the
  7515. conclusion of the \code{main} function.}
  7516. \begin{exercise}\normalfont
  7517. Expand your \code{select\_instructions} pass to handle the new
  7518. features of the \LangIf{} language.
  7519. %
  7520. {\if\edition\racketEd\color{olive}
  7521. Add the following entry to the list of \code{passes} in
  7522. \code{run-tests.rkt}
  7523. \begin{lstlisting}
  7524. (list "select-instructions" select-instructions interp-pseudo-x86-1)
  7525. \end{lstlisting}
  7526. \fi}
  7527. %
  7528. Run the script to test your compiler on all the test programs.
  7529. \end{exercise}
  7530. \section{Register Allocation}
  7531. \label{sec:register-allocation-Lif}
  7532. \index{subject}{register allocation}
  7533. The changes required for \LangIf{} affect liveness analysis, building the
  7534. interference graph, and assigning homes, but the graph coloring
  7535. algorithm itself does not change.
  7536. \subsection{Liveness Analysis}
  7537. \label{sec:liveness-analysis-Lif}
  7538. \index{subject}{liveness analysis}
  7539. Recall that for \LangVar{} we implemented liveness analysis for a
  7540. single basic block (Section~\ref{sec:liveness-analysis-Lvar}). With
  7541. the addition of \key{if} expressions to \LangIf{},
  7542. \code{explicate\_control} produces many basic blocks.
  7543. %% We recommend that you create a new auxiliary function named
  7544. %% \code{uncover\_live\_CFG} that applies liveness analysis to a
  7545. %% control-flow graph.
  7546. The first question is: what order should we process the basic blocks?
  7547. Recall that to perform liveness analysis on a basic block we need to
  7548. know the live-after set for the last instruction in the block. If a
  7549. basic block has no successors (i.e. contains no jumps to other
  7550. blocks), then it has an empty live-after set and we can immediately
  7551. apply liveness analysis to it. If a basic block has some successors,
  7552. then we need to complete liveness analysis on those blocks
  7553. first. These ordering contraints are the reverse of a
  7554. \emph{topological order}\index{subject}{topological order} on the
  7555. control-flow graph of the program~\citep{Allen:1970uq}. In a
  7556. \emph{control flow graph} (CFG), each node represents a \emph{basic
  7557. block} and each edge represents a jump from one block to another
  7558. \index{subject}{control-flow graph}. It is straightforward to
  7559. generate a CFG from the dictionary of basic blocks. One then needs to
  7560. transpose the CFG and apply the topological sort algorithm.
  7561. %
  7562. %
  7563. \racket{We recommend using the \code{tsort} and \code{transpose}
  7564. functions of the Racket \code{graph} package to accomplish this.}
  7565. %
  7566. \python{We provide implementations of \code{topological\_sort} and
  7567. \code{transpose} in the file \code{graph.py} of the support code.}
  7568. %
  7569. As an aside, a topological ordering is only guaranteed to exist if the
  7570. graph does not contain any cycles. That is indeed the case for the
  7571. control-flow graphs that we generate from \LangIf{} programs.
  7572. However, in Chapter~\ref{ch:Rwhile} we add loops to create \LangLoop{}
  7573. and learn how to handle cycles in the control-flow graph.
  7574. \racket{You'll need to construct a directed graph to represent the
  7575. control-flow graph. Do not use the \code{directed-graph} of the
  7576. \code{graph} package because that only allows at most one edge
  7577. between each pair of vertices, but a control-flow graph may have
  7578. multiple edges between a pair of vertices. The \code{multigraph.rkt}
  7579. file in the support code implements a graph representation that
  7580. allows multiple edges between a pair of vertices.}
  7581. {\if\edition\racketEd\color{olive}
  7582. The next question is how to analyze jump instructions. Recall that in
  7583. Section~\ref{sec:liveness-analysis-Lvar} we maintain an alist named
  7584. \code{label->live} that maps each label to the set of live locations
  7585. at the beginning of its block. We use \code{label->live} to determine
  7586. the live-before set for each $\JMP{\itm{label}}$ instruction. Now
  7587. that we have many basic blocks, \code{label->live} needs to be updated
  7588. as we process the blocks. In particular, after performing liveness
  7589. analysis on a block, we take the live-before set of its first
  7590. instruction and associate that with the block's label in the
  7591. \code{label->live}.
  7592. \fi}
  7593. %
  7594. {\if\edition\pythonEd
  7595. %
  7596. The next question is how to analyze jump instructions. The locations
  7597. that are live before a \code{jmp} should be the locations in
  7598. $L_{\mathtt{before}}$ at the target of the jump. So we recommend
  7599. maintaining a dictionary named \code{live\_before\_block} that maps each
  7600. label to the $L_{\mathtt{before}}$ for the first instruction in its
  7601. block. After performing liveness analysis on each block, we take the
  7602. live-before set of its first instruction and associate that with the
  7603. block's label in the \code{live\_before\_block} dictionary.
  7604. %
  7605. \fi}
  7606. In \LangXIfVar{} we also have the conditional jump
  7607. $\JMPIF{\itm{cc}}{\itm{label}}$ to deal with. Liveness analysis for
  7608. this instruction is particularly interesting because, during
  7609. compilation, we do not know which way a conditional jump will go. So
  7610. we do not know whether to use the live-before set for the following
  7611. instruction or the live-before set for the block associated with the
  7612. $\itm{label}$. However, there is no harm to the correctness of the
  7613. generated code if we classify more locations as live than the ones
  7614. that are truly live during one particular execution of the
  7615. instruction. Thus, we can take the union of the live-before sets from
  7616. the following instruction and from the mapping for $\itm{label}$ in
  7617. \racket{\code{label->live}}\python{\code{live\_before\_block}}.
  7618. The auxiliary functions for computing the variables in an
  7619. instruction's argument and for computing the variables read-from ($R$)
  7620. or written-to ($W$) by an instruction need to be updated to handle the
  7621. new kinds of arguments and instructions in \LangXIfVar{}.
  7622. \begin{exercise}\normalfont
  7623. {\if\edition\racketEd\color{olive}
  7624. %
  7625. Update the \code{uncover\_live} pass and implement the
  7626. \code{uncover-live-CFG} auxiliary function to apply liveness analysis
  7627. to the control-flow graph.
  7628. %
  7629. Add the following entry to the list of \code{passes} in the
  7630. \code{run-tests.rkt} script.
  7631. \begin{lstlisting}
  7632. (list "uncover-live" uncover-live interp-pseudo-x86-1)
  7633. \end{lstlisting}
  7634. \fi}
  7635. {\if\edition\pythonEd
  7636. %
  7637. Update the \code{uncover\_live} function to perform liveness analysis,
  7638. in reverse topological order, on all of the basic blocks in the
  7639. program.
  7640. %
  7641. \fi}
  7642. % Check that the live-after sets that you generate for
  7643. % example X matches the following... -Jeremy
  7644. \end{exercise}
  7645. \subsection{Build the Interference Graph}
  7646. \label{sec:build-interference-Lif}
  7647. Many of the new instructions in \LangXIfVar{} can be handled in the
  7648. same way as the instructions in \LangXVar{}. Thus, if your code was
  7649. already quite general, it will not need to be changed to handle the
  7650. new instructions. If you code is not general enough, we recommend that
  7651. you change your code to be more general. For example, you can factor
  7652. out the computing of the the read and write sets for each kind of
  7653. instruction into auxiliary functions.
  7654. Note that the \key{movzbq} instruction requires some special care,
  7655. similar to the \key{movq} instruction. See rule number 1 in
  7656. Section~\ref{sec:build-interference}.
  7657. \begin{exercise}\normalfont
  7658. Update the \code{build\_interference} pass for \LangXIfVar{}.
  7659. {\if\edition\racketEd\color{olive}
  7660. Add the following entries to the list of \code{passes} in the
  7661. \code{run-tests.rkt} script.
  7662. \begin{lstlisting}
  7663. (list "build-interference" build-interference interp-pseudo-x86-1)
  7664. (list "allocate-registers" allocate-registers interp-x86-1)
  7665. \end{lstlisting}
  7666. \fi}
  7667. % Check that the interference graph that you generate for
  7668. % example X matches the following graph G... -Jeremy
  7669. \end{exercise}
  7670. \section{Patch Instructions}
  7671. The new instructions \key{cmpq} and \key{movzbq} have some special
  7672. restrictions that need to be handled in the \code{patch\_instructions}
  7673. pass.
  7674. %
  7675. The second argument of the \key{cmpq} instruction must not be an
  7676. immediate value (such as an integer). So if you are comparing two
  7677. immediates, we recommend inserting a \key{movq} instruction to put the
  7678. second argument in \key{rax}. As usual, \key{cmpq} may have at most
  7679. one memory reference.
  7680. %
  7681. The second argument of the \key{movzbq} must be a register.
  7682. \begin{exercise}\normalfont
  7683. %
  7684. Update \code{patch-instructions} pass for \LangXIfVar{}.
  7685. %
  7686. {\if\edition\racketEd\color{olive}
  7687. Add the following entry to the list of \code{passes} in
  7688. \code{run-tests.rkt} and then run this script to test your compiler.
  7689. \begin{lstlisting}
  7690. (list "patch-instructions" patch-instructions interp-x86-1)
  7691. \end{lstlisting}
  7692. \fi}
  7693. \end{exercise}
  7694. {\if\edition\pythonEd
  7695. \section{Print x86}
  7696. \label{sec:print-x86-cond}
  7697. The generation of the \code{main} function with its prelude and
  7698. conclusion must change to accomodate how the program now consists of
  7699. one or more basic blocks. After the prelude in \code{main}, jump to
  7700. the \code{start} block. Place the conclusion in a basic block labelled
  7701. with \code{conclusion}.
  7702. \fi}
  7703. Figure~\ref{fig:if-example-x86} shows a simple example program in
  7704. \LangIf{} translated to x86, showing the results of
  7705. \code{explicate\_control}, \code{select\_instructions}, and the final
  7706. x86 assembly.
  7707. \begin{figure}[tbp]
  7708. {\if\edition\racketEd\color{olive}
  7709. \begin{tabular}{lll}
  7710. \begin{minipage}{0.4\textwidth}
  7711. % cond_test_20.rkt, eq_input.py
  7712. \begin{lstlisting}
  7713. (if (eq? (read) 1) 42 0)
  7714. \end{lstlisting}
  7715. $\Downarrow$
  7716. \begin{lstlisting}
  7717. start:
  7718. tmp7951 = (read);
  7719. if (eq? tmp7951 1)
  7720. goto block7952;
  7721. else
  7722. goto block7953;
  7723. block7952:
  7724. return 42;
  7725. block7953:
  7726. return 0;
  7727. \end{lstlisting}
  7728. $\Downarrow$
  7729. \begin{lstlisting}
  7730. start:
  7731. callq read_int
  7732. movq %rax, tmp7951
  7733. cmpq $1, tmp7951
  7734. je block7952
  7735. jmp block7953
  7736. block7953:
  7737. movq $0, %rax
  7738. jmp conclusion
  7739. block7952:
  7740. movq $42, %rax
  7741. jmp conclusion
  7742. \end{lstlisting}
  7743. \end{minipage}
  7744. &
  7745. $\Rightarrow\qquad$
  7746. \begin{minipage}{0.4\textwidth}
  7747. \begin{lstlisting}
  7748. start:
  7749. callq read_int
  7750. movq %rax, %rcx
  7751. cmpq $1, %rcx
  7752. je block7952
  7753. jmp block7953
  7754. block7953:
  7755. movq $0, %rax
  7756. jmp conclusion
  7757. block7952:
  7758. movq $42, %rax
  7759. jmp conclusion
  7760. .globl main
  7761. main:
  7762. pushq %rbp
  7763. movq %rsp, %rbp
  7764. pushq %r13
  7765. pushq %r12
  7766. pushq %rbx
  7767. pushq %r14
  7768. subq $0, %rsp
  7769. jmp start
  7770. conclusion:
  7771. addq $0, %rsp
  7772. popq %r14
  7773. popq %rbx
  7774. popq %r12
  7775. popq %r13
  7776. popq %rbp
  7777. retq
  7778. \end{lstlisting}
  7779. \end{minipage}
  7780. \end{tabular}
  7781. \fi}
  7782. {\if\edition\pythonEd
  7783. \begin{tabular}{lll}
  7784. \begin{minipage}{0.4\textwidth}
  7785. % cond_test_20.rkt, eq_input.py
  7786. \begin{lstlisting}
  7787. print(42 if input_int() == 1 else 0)
  7788. \end{lstlisting}
  7789. $\Downarrow$
  7790. \begin{lstlisting}
  7791. start:
  7792. tmp_0 = input_int()
  7793. if tmp_0 == 1:
  7794. goto block_3
  7795. else:
  7796. goto block_4
  7797. block_3:
  7798. tmp_1 = 42
  7799. goto block_2
  7800. block_4:
  7801. tmp_1 = 0
  7802. goto block_2
  7803. block_2:
  7804. print(tmp_1)
  7805. return 0
  7806. \end{lstlisting}
  7807. $\Downarrow$
  7808. \begin{lstlisting}
  7809. start:
  7810. callq read_int
  7811. movq %rax, tmp_0
  7812. cmpq 1, tmp_0
  7813. je block_3
  7814. jmp block_4
  7815. block_3:
  7816. movq 42, tmp_1
  7817. jmp block_2
  7818. block_4:
  7819. movq 0, tmp_1
  7820. jmp block_2
  7821. block_2:
  7822. movq tmp_1, %rdi
  7823. callq print_int
  7824. movq 0, %rax
  7825. jmp conclusion
  7826. \end{lstlisting}
  7827. \end{minipage}
  7828. &
  7829. $\Rightarrow\qquad$
  7830. \begin{minipage}{0.4\textwidth}
  7831. \begin{lstlisting}
  7832. .globl main
  7833. main:
  7834. pushq %rbp
  7835. movq %rsp, %rbp
  7836. subq $0, %rsp
  7837. jmp start
  7838. start:
  7839. callq read_int
  7840. movq %rax, %rcx
  7841. cmpq $1, %rcx
  7842. je block_3
  7843. jmp block_4
  7844. block_3:
  7845. movq $42, %rcx
  7846. jmp block_2
  7847. block_4:
  7848. movq $0, %rcx
  7849. jmp block_2
  7850. block_2:
  7851. movq %rcx, %rdi
  7852. callq print_int
  7853. movq $0, %rax
  7854. jmp conclusion
  7855. conclusion:
  7856. addq $0, %rsp
  7857. popq %rbp
  7858. retq
  7859. \end{lstlisting}
  7860. \end{minipage}
  7861. \end{tabular}
  7862. \fi}
  7863. \caption{Example compilation of an \key{if} expression to x86, showing
  7864. the results of \code{explicate\_control},
  7865. \code{select\_instructions}, and the final x86 assembly code. }
  7866. \label{fig:if-example-x86}
  7867. \end{figure}
  7868. \begin{figure}[tbp]
  7869. {\if\edition\racketEd\color{olive}
  7870. \begin{tikzpicture}[baseline=(current bounding box.center)]
  7871. \node (Lif) at (0,2) {\large \LangIf{}};
  7872. \node (Lif-2) at (3,2) {\large \LangIf{}};
  7873. \node (Lif-3) at (6,2) {\large \LangIf{}};
  7874. \node (Lif-4) at (9,2) {\large \LangIf{}};
  7875. \node (Lif-5) at (12,2) {\large \LangIf{}};
  7876. \node (C1-1) at (3,0) {\large \LangCIf{}};
  7877. \node (x86-2) at (3,-2) {\large \LangXIfVar{}};
  7878. \node (x86-2-1) at (3,-4) {\large \LangXIfVar{}};
  7879. \node (x86-2-2) at (6,-4) {\large \LangXIfVar{}};
  7880. \node (x86-3) at (6,-2) {\large \LangXIfVar{}};
  7881. \node (x86-4) at (9,-2) {\large \LangXIf{}};
  7882. \node (x86-5) at (9,-4) {\large \LangXIf{}};
  7883. \path[->,bend left=15] (Lif) edge [above] node {\ttfamily\footnotesize type-check} (Lif-2);
  7884. \path[->,bend left=15] (Lif-2) edge [above] node {\ttfamily\footnotesize shrink} (Lif-3);
  7885. \path[->,bend left=15] (Lif-3) edge [above] node {\ttfamily\footnotesize uniquify} (Lif-4);
  7886. \path[->,bend left=15] (Lif-4) edge [above] node {\ttfamily\footnotesize remove-complex.} (Lif-5);
  7887. \path[->,bend left=15] (Lif-5) edge [left] node {\ttfamily\footnotesize explicate-control} (C1-1);
  7888. \path[->,bend right=15] (C1-1) edge [left] node {\ttfamily\footnotesize select-instructions} (x86-2);
  7889. \path[->,bend left=15] (x86-2) edge [right] node {\ttfamily\footnotesize uncover-live} (x86-2-1);
  7890. \path[->,bend right=15] (x86-2-1) edge [below] node {\ttfamily\footnotesize build-inter.} (x86-2-2);
  7891. \path[->,bend right=15] (x86-2-2) edge [right] node {\ttfamily\footnotesize allocate-reg.} (x86-3);
  7892. \path[->,bend left=15] (x86-3) edge [above] node {\ttfamily\footnotesize patch-instr.} (x86-4);
  7893. \path[->,bend left=15] (x86-4) edge [right] node {\ttfamily\footnotesize print-x86 } (x86-5);
  7894. \end{tikzpicture}
  7895. \fi}
  7896. {\if\edition\pythonEd
  7897. \begin{tikzpicture}[baseline=(current bounding box.center)]
  7898. \node (Lif-1) at (0,2) {\large \LangIf{}};
  7899. \node (Lif-2) at (3,2) {\large \LangIf{}};
  7900. \node (Lif-3) at (6,2) {\large \LangIf{}};
  7901. \node (C-1) at (3,0) {\large \LangCIf{}};
  7902. \node (x86-1) at (3,-2) {\large \LangXIfVar{}};
  7903. \node (x86-2) at (6,-2) {\large \LangXIfVar{}};
  7904. \node (x86-3) at (9,-2) {\large \LangXIf{}};
  7905. \node (x86-4) at (12,-2) {\large \LangXIf{}};
  7906. \path[->,bend left=15] (Lif-1) edge [above] node {\ttfamily\footnotesize shrink} (Lif-2);
  7907. \path[->,bend left=15] (Lif-2) edge [above] node {\ttfamily\footnotesize remove\_complex.} (Lif-3);
  7908. \path[->,bend left=15] (Lif-3) edge [right] node {\ttfamily\footnotesize explicate\_control} (C-1);
  7909. \path[->,bend right=15] (C-1) edge [left] node {\ttfamily\footnotesize select\_instr.} (x86-1);
  7910. \path[->,bend right=15] (x86-1) edge [below] node {\ttfamily\footnotesize assign\_homes} (x86-2);
  7911. \path[->,bend left=15] (x86-2) edge [above] node {\ttfamily\footnotesize patch\_instr.} (x86-3);
  7912. \path[->,bend right=15] (x86-3) edge [below] node {\ttfamily\footnotesize print\_x86 } (x86-4);
  7913. \end{tikzpicture}
  7914. \fi}
  7915. \caption{Diagram of the passes for \LangIf{}, a language with conditionals.}
  7916. \label{fig:Lif-passes}
  7917. \end{figure}
  7918. Figure~\ref{fig:Lif-passes} lists all the passes needed for the
  7919. compilation of \LangIf{}.
  7920. \section{Challenge: Optimize Blocks and Remove Jumps}
  7921. \label{sec:opt-jumps}
  7922. We discuss two optional challenges that involve optimizing the
  7923. control-flow of the program.
  7924. \subsection{Optimize Blocks}
  7925. The algorithm for \code{explicate\_control} that we discussed in
  7926. Section~\ref{sec:explicate-control-Lif} sometimes generates too many
  7927. blocks. It does so in two different ways.
  7928. %
  7929. First, recall how in Figure~\ref{fig:explicate-control-s1-38},
  7930. \code{block\_4} consists of just a jump to \code{block\_2}. We created
  7931. a new basic block from a single \code{goto} statement, whereas we
  7932. could have simply returned the \code{goto} statement. We can solve
  7933. this problem by modifying the \code{create\_block} function to
  7934. recognize this situation.
  7935. Second, \code{explicate\_control} creates a basic block whenever a
  7936. continuation \emph{might} get used more than once (wheneven a
  7937. continuation is passed into two or more recursive calls). However,
  7938. just because a continuation might get used more than once, doesn't
  7939. mean it will. In fact, some continuation parameters may not be used
  7940. at all because we sometimes ignore them. For example, consider the
  7941. case for the constant \TRUE{} in \code{explicate\_pred}, where we
  7942. discard the \code{els} branch. So the question is how can we decide
  7943. whether to create a basic block?
  7944. The solution to this conundrum is to use \emph{lazy
  7945. evaluation}\index{subject}{lazy evaluation}~\citep{Friedman:1976aa}
  7946. to delay creating a basic block until the point in time where we know
  7947. it will be used.
  7948. %
  7949. {\if\edition\racketEd\color{olive}
  7950. %
  7951. Racket provides support for
  7952. lazy evaluation with the
  7953. \href{https://docs.racket-lang.org/reference/Delayed_Evaluation.html}{\code{racket/promise}}
  7954. package. The expression \key{(delay} $e_1 \ldots e_n$\key{)}
  7955. \index{subject}{delay} creates a
  7956. \emph{promise}\index{subject}{promise} in which the evaluation of the
  7957. expressions is postponed. When \key{(force}
  7958. $p$\key{)}\index{subject}{force} is applied to a promise $p$ for the
  7959. first time, the expressions $e_1 \ldots e_n$ are evaluated and the
  7960. result of $e_n$ is cached in the promise and returned. If \code{force}
  7961. is applied again to the same promise, then the cached result is
  7962. returned. If \code{force} is applied to an argument that is not a
  7963. promise, \code{force} simply returns the argument.
  7964. %
  7965. \fi}
  7966. %
  7967. {\if\edition\pythonEd
  7968. %
  7969. While Python does not provide direct support for lazy evaluation, it
  7970. is easy to mimic. We can \emph{delay} the evaluation of a computation
  7971. by wrapping it inside a function with no parameters. We can
  7972. \emph{force} its evaluation by calling the function. However, in some
  7973. cases of \code{explicate\_pred}, etc., we will return a list of
  7974. statements and in other cases we will return a function that computes
  7975. a list of statements. We use the term \emph{promise} to refer to a
  7976. value that may or may not be delayed. To uniformly deal with
  7977. promises, we define the following \code{force} function that checks
  7978. whether its input is delayed (i.e. whether it is a function) and then
  7979. either 1) calls the function, or 2) returns the input.
  7980. \begin{lstlisting}
  7981. def force(promise):
  7982. if isinstance(promise, types.FunctionType):
  7983. return promise()
  7984. else:
  7985. return promise
  7986. \end{lstlisting}
  7987. %
  7988. \fi}
  7989. We use promises for the input and output of the functions
  7990. \code{explicate\_pred}, \code{explicate\_assign},
  7991. %
  7992. \racket{ and \code{explicate\_tail}}\python{ \code{explicate\_effect}, and \code{explicate\_stmt}}.
  7993. %
  7994. So instead of taking and returning lists of statments, they take and
  7995. return promises. Furthermore, when we come to a situation in which a
  7996. continuation might be used more than once, as in the case for
  7997. \code{if} in \code{explicate\_pred}, we create a delayed computation
  7998. that creates a basic block for each continuation (if there is not
  7999. already one) and then returns a \code{goto} statement to that basic
  8000. block.
  8001. %
  8002. {\if\edition\racketEd\color{olive}
  8003. %
  8004. The following auxiliary function named \code{block->goto} accomplishes
  8005. this task. It begins with \code{delay} to create a promise. When
  8006. forced, this promise will force the original promise. If that returns
  8007. a \code{goto} (because the block was already added to the control-flow
  8008. graph), then we return the \code{goto}. Otherwise we add the block to
  8009. the control-flow graph with another auxiliary function named
  8010. \code{add-node}. That function returns the label for the new block,
  8011. which we use to create a \code{goto}.
  8012. \begin{lstlisting}
  8013. (define (block->goto block)
  8014. (delay
  8015. (define b (force block))
  8016. (match b
  8017. [(Goto label) (Goto label)]
  8018. [else (Goto (add-node b))])))
  8019. \end{lstlisting}
  8020. \fi}
  8021. {\if\edition\pythonEd
  8022. %
  8023. Here's the new version of the \code{create\_block} auxiliary function
  8024. that works on promises and that checks whether the block consists of a
  8025. solitary \code{goto} statement.\\
  8026. \begin{minipage}{\textwidth}
  8027. \begin{lstlisting}
  8028. def create_block(promise, basic_blocks):
  8029. stmts = force(promise)
  8030. match stmts:
  8031. case [Goto(l)]:
  8032. return Goto(l)
  8033. case _:
  8034. label = label_name(generate_name('block'))
  8035. basic_blocks[label] = stmts
  8036. return Goto(label)
  8037. \end{lstlisting}
  8038. \end{minipage}
  8039. \fi}
  8040. Figure~\ref{fig:explicate-control-challenge} shows the output of
  8041. \code{explicate\_control} on the example of the nested \code{if}
  8042. expressions with the two improvements discussed above. As you can
  8043. see, the number of basic blocks has been reduced from 10 blocks (see
  8044. Figure~\ref{fig:explicate-control-s1-38}) down to 6 blocks.
  8045. \begin{figure}[tbp]
  8046. {\if\edition\racketEd\color{olive}
  8047. \begin{tabular}{lll}
  8048. \begin{minipage}{0.4\textwidth}
  8049. % cond_test_41.rkt
  8050. \begin{lstlisting}
  8051. (let ([x (read)])
  8052. (let ([y (read)])
  8053. (if (if (< x 1)
  8054. (eq? x 0)
  8055. (eq? x 2))
  8056. (+ y 2)
  8057. (+ y 10))))
  8058. \end{lstlisting}
  8059. \end{minipage}
  8060. &
  8061. $\Rightarrow$
  8062. &
  8063. \begin{minipage}{0.55\textwidth}
  8064. \begin{lstlisting}
  8065. start:
  8066. x = (read);
  8067. y = (read);
  8068. if (< x 1) goto block40;
  8069. else goto block41;
  8070. block40:
  8071. if (eq? x 0) goto block38;
  8072. else goto block39;
  8073. block41:
  8074. if (eq? x 2) goto block38;
  8075. else goto block39;
  8076. block38:
  8077. return (+ y 2);
  8078. block39:
  8079. return (+ y 10);
  8080. \end{lstlisting}
  8081. \end{minipage}
  8082. \end{tabular}
  8083. \fi}
  8084. {\if\edition\pythonEd
  8085. \begin{tabular}{lll}
  8086. \begin{minipage}{0.4\textwidth}
  8087. % cond_test_41.rkt
  8088. \begin{lstlisting}
  8089. x = input_int()
  8090. y = input_int()
  8091. print(y + 2 \
  8092. if (x == 0 \
  8093. if x < 1 \
  8094. else x == 2) \
  8095. else y + 10)
  8096. \end{lstlisting}
  8097. \end{minipage}
  8098. &
  8099. $\Rightarrow$
  8100. &
  8101. \begin{minipage}{0.55\textwidth}
  8102. \begin{lstlisting}
  8103. start:
  8104. x = input_int()
  8105. y = input_int()
  8106. if x < 1:
  8107. goto block_4
  8108. else:
  8109. goto block_5
  8110. block_4:
  8111. if x == 0:
  8112. goto block_2
  8113. else:
  8114. goto block_3
  8115. block_5:
  8116. if x == 2:
  8117. goto block_2
  8118. else:
  8119. goto block_3
  8120. block_2:
  8121. tmp_0 = y + 2
  8122. goto block_1
  8123. block_3:
  8124. tmp_0 = y + 10
  8125. goto block_1
  8126. block_1:
  8127. print(tmp_0)
  8128. return 0
  8129. \end{lstlisting}
  8130. \end{minipage}
  8131. \end{tabular}
  8132. \fi}
  8133. \caption{Translation from \LangIf{} to \LangCIf{}
  8134. via the improved \code{explicate\_control}.}
  8135. \label{fig:explicate-control-challenge}
  8136. \end{figure}
  8137. %% Recall that in the example output of \code{explicate\_control} in
  8138. %% Figure~\ref{fig:explicate-control-s1-38}, \code{block57} through
  8139. %% \code{block60} are trivial blocks, they do nothing but jump to another
  8140. %% block. The first goal of this challenge assignment is to remove those
  8141. %% blocks. Figure~\ref{fig:optimize-jumps} repeats the result of
  8142. %% \code{explicate\_control} on the left and shows the result of bypassing
  8143. %% the trivial blocks on the right. Let us focus on \code{block61}. The
  8144. %% \code{then} branch jumps to \code{block57}, which in turn jumps to
  8145. %% \code{block55}. The optimized code on the right of
  8146. %% Figure~\ref{fig:optimize-jumps} bypasses \code{block57}, with the
  8147. %% \code{then} branch jumping directly to \code{block55}. The story is
  8148. %% similar for the \code{else} branch, as well as for the two branches in
  8149. %% \code{block62}. After the jumps in \code{block61} and \code{block62}
  8150. %% have been optimized in this way, there are no longer any jumps to
  8151. %% blocks \code{block57} through \code{block60}, so they can be removed.
  8152. %% \begin{figure}[tbp]
  8153. %% \begin{tabular}{lll}
  8154. %% \begin{minipage}{0.4\textwidth}
  8155. %% \begin{lstlisting}
  8156. %% block62:
  8157. %% tmp54 = (read);
  8158. %% if (eq? tmp54 2) then
  8159. %% goto block59;
  8160. %% else
  8161. %% goto block60;
  8162. %% block61:
  8163. %% tmp53 = (read);
  8164. %% if (eq? tmp53 0) then
  8165. %% goto block57;
  8166. %% else
  8167. %% goto block58;
  8168. %% block60:
  8169. %% goto block56;
  8170. %% block59:
  8171. %% goto block55;
  8172. %% block58:
  8173. %% goto block56;
  8174. %% block57:
  8175. %% goto block55;
  8176. %% block56:
  8177. %% return (+ 700 77);
  8178. %% block55:
  8179. %% return (+ 10 32);
  8180. %% start:
  8181. %% tmp52 = (read);
  8182. %% if (eq? tmp52 1) then
  8183. %% goto block61;
  8184. %% else
  8185. %% goto block62;
  8186. %% \end{lstlisting}
  8187. %% \end{minipage}
  8188. %% &
  8189. %% $\Rightarrow$
  8190. %% &
  8191. %% \begin{minipage}{0.55\textwidth}
  8192. %% \begin{lstlisting}
  8193. %% block62:
  8194. %% tmp54 = (read);
  8195. %% if (eq? tmp54 2) then
  8196. %% goto block55;
  8197. %% else
  8198. %% goto block56;
  8199. %% block61:
  8200. %% tmp53 = (read);
  8201. %% if (eq? tmp53 0) then
  8202. %% goto block55;
  8203. %% else
  8204. %% goto block56;
  8205. %% block56:
  8206. %% return (+ 700 77);
  8207. %% block55:
  8208. %% return (+ 10 32);
  8209. %% start:
  8210. %% tmp52 = (read);
  8211. %% if (eq? tmp52 1) then
  8212. %% goto block61;
  8213. %% else
  8214. %% goto block62;
  8215. %% \end{lstlisting}
  8216. %% \end{minipage}
  8217. %% \end{tabular}
  8218. %% \caption{Optimize jumps by removing trivial blocks.}
  8219. %% \label{fig:optimize-jumps}
  8220. %% \end{figure}
  8221. %% The name of this pass is \code{optimize-jumps}. We recommend
  8222. %% implementing this pass in two phases. The first phrase builds a hash
  8223. %% table that maps labels to possibly improved labels. The second phase
  8224. %% changes the target of each \code{goto} to use the improved label. If
  8225. %% the label is for a trivial block, then the hash table should map the
  8226. %% label to the first non-trivial block that can be reached from this
  8227. %% label by jumping through trivial blocks. If the label is for a
  8228. %% non-trivial block, then the hash table should map the label to itself;
  8229. %% we do not want to change jumps to non-trivial blocks.
  8230. %% The first phase can be accomplished by constructing an empty hash
  8231. %% table, call it \code{short-cut}, and then iterating over the control
  8232. %% flow graph. Each time you encouter a block that is just a \code{goto},
  8233. %% then update the hash table, mapping the block's source to the target
  8234. %% of the \code{goto}. Also, the hash table may already have mapped some
  8235. %% labels to the block's source, to you must iterate through the hash
  8236. %% table and update all of those so that they instead map to the target
  8237. %% of the \code{goto}.
  8238. %% For the second phase, we recommend iterating through the $\Tail$ of
  8239. %% each block in the program, updating the target of every \code{goto}
  8240. %% according to the mapping in \code{short-cut}.
  8241. \begin{exercise}\normalfont
  8242. Implement the improvements to the \code{explicate\_control} pass.
  8243. Check that it removes trivial blocks in a few example programs. Then
  8244. check that your compiler still passes all of your tests.
  8245. \end{exercise}
  8246. \subsection{Remove Jumps}
  8247. There is an opportunity for removing jumps that is apparent in the
  8248. example of Figure~\ref{fig:if-example-x86}. The \code{start} block
  8249. ends with a jump to \code{block\_4} and there are no other jumps to
  8250. \code{block\_4} in the rest of the program. In this situation we can
  8251. avoid the runtime overhead of this jump by merging \code{block\_4}
  8252. into the preceding block, in this case the \code{start} block.
  8253. Figure~\ref{fig:remove-jumps} shows the output of
  8254. \code{select\_instructions} on the left and the result of this
  8255. optimization on the right.
  8256. \begin{figure}[tbp]
  8257. {\if\edition\racketEd\color{olive}
  8258. \begin{tabular}{lll}
  8259. \begin{minipage}{0.5\textwidth}
  8260. % cond_test_20.rkt
  8261. \begin{lstlisting}
  8262. start:
  8263. callq read_int
  8264. movq %rax, tmp7951
  8265. cmpq $1, tmp7951
  8266. je block7952
  8267. jmp block7953
  8268. block7953:
  8269. movq $0, %rax
  8270. jmp conclusion
  8271. block7952:
  8272. movq $42, %rax
  8273. jmp conclusion
  8274. \end{lstlisting}
  8275. \end{minipage}
  8276. &
  8277. $\Rightarrow\qquad$
  8278. \begin{minipage}{0.4\textwidth}
  8279. \begin{lstlisting}
  8280. start:
  8281. callq read_int
  8282. movq %rax, tmp7951
  8283. cmpq $1, tmp7951
  8284. je block7952
  8285. movq $0, %rax
  8286. jmp conclusion
  8287. block7952:
  8288. movq $42, %rax
  8289. jmp conclusion
  8290. \end{lstlisting}
  8291. \end{minipage}
  8292. \end{tabular}
  8293. \fi}
  8294. {\if\edition\pythonEd
  8295. \begin{tabular}{lll}
  8296. \begin{minipage}{0.5\textwidth}
  8297. % cond_test_20.rkt
  8298. \begin{lstlisting}
  8299. start:
  8300. callq read_int
  8301. movq %rax, tmp_0
  8302. cmpq 1, tmp_0
  8303. je block_3
  8304. jmp block_4
  8305. block_3:
  8306. movq 42, tmp_1
  8307. jmp block_2
  8308. block_4:
  8309. movq 0, tmp_1
  8310. jmp block_2
  8311. block_2:
  8312. movq tmp_1, %rdi
  8313. callq print_int
  8314. movq 0, %rax
  8315. jmp conclusion
  8316. \end{lstlisting}
  8317. \end{minipage}
  8318. &
  8319. $\Rightarrow\qquad$
  8320. \begin{minipage}{0.4\textwidth}
  8321. \begin{lstlisting}
  8322. start:
  8323. callq read_int
  8324. movq %rax, tmp_0
  8325. cmpq 1, tmp_0
  8326. je block_3
  8327. movq 0, tmp_1
  8328. jmp block_2
  8329. block_3:
  8330. movq 42, tmp_1
  8331. jmp block_2
  8332. block_2:
  8333. movq tmp_1, %rdi
  8334. callq print_int
  8335. movq 0, %rax
  8336. jmp conclusion
  8337. \end{lstlisting}
  8338. \end{minipage}
  8339. \end{tabular}
  8340. \fi}
  8341. \caption{Merging basic blocks by removing unnecessary jumps.}
  8342. \label{fig:remove-jumps}
  8343. \end{figure}
  8344. \begin{exercise}\normalfont
  8345. %
  8346. Implement a pass named \code{remove\_jumps} that merges basic blocks
  8347. into their preceding basic block, when there is only one preceding
  8348. block. The pass should translate from \LangXIfVar{} to \LangXIfVar{}.
  8349. %
  8350. {\if\edition\racketEd\color{olive}
  8351. In the \code{run-tests.rkt} script, add the following entry to the
  8352. list of \code{passes} between \code{allocate-registers}
  8353. and \code{patch-instructions}.
  8354. \begin{lstlisting}
  8355. (list "remove-jumps" remove-jumps interp-pseudo-x86-1)
  8356. \end{lstlisting}
  8357. \fi}
  8358. %
  8359. Run the script to test your compiler.
  8360. %
  8361. Check that \code{remove\_jumps} accomplishes the goal of merging basic
  8362. blocks on several test programs.
  8363. \end{exercise}
  8364. \section{Further Reading}
  8365. \label{sec:cond-further-reading}
  8366. The algorithm for the \code{explicate\_control} pass comes from the
  8367. course notes of \citet{Dybvig:2010aa}. The use of lazy evaluation in
  8368. Section~\ref{sec:opt-jumps} to optimize basic blocks is new. There
  8369. are algorithms similar to \code{explicate\_control} in the literature,
  8370. such as the case-of-case transformation of \citet{PeytonJones:1998}.
  8371. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  8372. \chapter{Loops and Dataflow Analysis}
  8373. \label{ch:Rwhile}
  8374. % TODO: define R'_8
  8375. % TODO: multi-graph
  8376. \if\edition\racketEd
  8377. In this chapter we study two features that are the hallmarks of
  8378. imperative programming languages: loops and assignments to local
  8379. variables. The following example demonstrates these new features by
  8380. computing the sum of the first five positive integers.
  8381. % similar to loop_test_1.rkt
  8382. \begin{lstlisting}
  8383. (let ([sum 0])
  8384. (let ([i 5])
  8385. (begin
  8386. (while (> i 0)
  8387. (begin
  8388. (set! sum (+ sum i))
  8389. (set! i (- i 1))))
  8390. sum)))
  8391. \end{lstlisting}
  8392. The \code{while} loop consists of a condition and a body.
  8393. %
  8394. The \code{set!} consists of a variable and a right-hand-side expression.
  8395. %
  8396. The primary purpose of both the \code{while} loop and \code{set!} is
  8397. to cause side effects, so it is convenient to also include in a
  8398. language feature for sequencing side effects: the \code{begin}
  8399. expression. It consists of one or more subexpressions that are
  8400. evaluated left-to-right.
  8401. \section{The \LangLoop{} Language}
  8402. \begin{figure}[tp]
  8403. \centering
  8404. \fbox{
  8405. \begin{minipage}{0.96\textwidth}
  8406. \small
  8407. \[
  8408. \begin{array}{lcl}
  8409. \Exp &::=& \gray{ \Int \MID \CREAD{} \MID \CNEG{\Exp}
  8410. \MID \CADD{\Exp}{\Exp} \MID \CSUB{\Exp}{\Exp} } \\
  8411. &\MID& \gray{ \Var \MID \CLET{\Var}{\Exp}{\Exp} }\\
  8412. &\MID& \gray{\key{\#t} \MID \key{\#f}
  8413. \MID (\key{and}\;\Exp\;\Exp)
  8414. \MID (\key{or}\;\Exp\;\Exp)
  8415. \MID (\key{not}\;\Exp) } \\
  8416. &\MID& \gray{ (\key{eq?}\;\Exp\;\Exp) \MID \CIF{\Exp}{\Exp}{\Exp} } \\
  8417. &\MID& \gray{ (\key{vector}\;\Exp\ldots) \MID
  8418. (\key{vector-ref}\;\Exp\;\Int)} \\
  8419. &\MID& \gray{(\key{vector-set!}\;\Exp\;\Int\;\Exp)\MID (\key{void})
  8420. \MID (\Exp \; \Exp\ldots) } \\
  8421. &\MID& \gray{ \LP \key{procedure-arity}~\Exp\RP
  8422. \MID \CLAMBDA{\LP\LS\Var \key{:} \Type\RS\ldots\RP}{\Type}{\Exp} } \\
  8423. &\MID& \CSETBANG{\Var}{\Exp}
  8424. \MID \CBEGIN{\Exp\ldots}{\Exp}
  8425. \MID \CWHILE{\Exp}{\Exp} \\
  8426. \Def &::=& \gray{ \CDEF{\Var}{\LS\Var \key{:} \Type\RS\ldots}{\Type}{\Exp} } \\
  8427. \LangLoopM{} &::=& \gray{\Def\ldots \; \Exp}
  8428. \end{array}
  8429. \]
  8430. \end{minipage}
  8431. }
  8432. \caption{The concrete syntax of \LangLoop{}, extending \LangAny{} (Figure~\ref{fig:Rany-concrete-syntax}).}
  8433. \label{fig:Rwhile-concrete-syntax}
  8434. \end{figure}
  8435. \begin{figure}[tp]
  8436. \centering
  8437. \fbox{
  8438. \begin{minipage}{0.96\textwidth}
  8439. \small
  8440. \[
  8441. \begin{array}{lcl}
  8442. \Exp &::=& \gray{ \INT{\Int} \VAR{\Var} \MID \LET{\Var}{\Exp}{\Exp} } \\
  8443. &\MID& \gray{ \PRIM{\itm{op}}{\Exp\ldots} }\\
  8444. &\MID& \gray{ \BOOL{\itm{bool}}
  8445. \MID \IF{\Exp}{\Exp}{\Exp} } \\
  8446. &\MID& \gray{ \VOID{} \MID \LP\key{HasType}~\Exp~\Type \RP
  8447. \MID \APPLY{\Exp}{\Exp\ldots} }\\
  8448. &\MID& \gray{ \LAMBDA{\LP\LS\Var\code{:}\Type\RS\ldots\RP}{\Type}{\Exp} }\\
  8449. &\MID& \SETBANG{\Var}{\Exp} \MID \BEGIN{\LP\Exp\ldots\RP}{\Exp}
  8450. \MID \WHILE{\Exp}{\Exp} \\
  8451. \Def &::=& \gray{ \FUNDEF{\Var}{\LP\LS\Var \code{:} \Type\RS\ldots\RP}{\Type}{\code{'()}}{\Exp} }\\
  8452. \LangLoopM{} &::=& \gray{ \PROGRAMDEFSEXP{\code{'()}}{\LP\Def\ldots\RP}{\Exp} }
  8453. \end{array}
  8454. \]
  8455. \end{minipage}
  8456. }
  8457. \caption{The abstract syntax of \LangLoop{}, extending \LangAny{} (Figure~\ref{fig:Rany-syntax}).}
  8458. \label{fig:Rwhile-syntax}
  8459. \end{figure}
  8460. The concrete syntax of \LangLoop{} is defined in
  8461. Figure~\ref{fig:Rwhile-concrete-syntax} and its abstract syntax is defined
  8462. in Figure~\ref{fig:Rwhile-syntax}.
  8463. %
  8464. The definitional interpreter for \LangLoop{} is shown in
  8465. Figure~\ref{fig:interp-Rwhile}. We add three new cases for \code{SetBang},
  8466. \code{WhileLoop}, and \code{Begin} and we make changes to the cases
  8467. for \code{Var}, \code{Let}, and \code{Apply} regarding variables. To
  8468. support assignment to variables and to make their lifetimes indefinite
  8469. (see the second example in Section~\ref{sec:assignment-scoping}), we
  8470. box the value that is bound to each variable (in \code{Let}) and
  8471. function parameter (in \code{Apply}). The case for \code{Var} unboxes
  8472. the value.
  8473. %
  8474. Now to discuss the new cases. For \code{SetBang}, we lookup the
  8475. variable in the environment to obtain a boxed value and then we change
  8476. it using \code{set-box!} to the result of evaluating the right-hand
  8477. side. The result value of a \code{SetBang} is \code{void}.
  8478. %
  8479. For the \code{WhileLoop}, we repeatedly 1) evaluate the condition, and
  8480. if the result is true, 2) evaluate the body.
  8481. The result value of a \code{while} loop is also \code{void}.
  8482. %
  8483. Finally, the $\BEGIN{\itm{es}}{\itm{body}}$ expression evaluates the
  8484. subexpressions \itm{es} for their effects and then evaluates
  8485. and returns the result from \itm{body}.
  8486. \begin{figure}[tbp]
  8487. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  8488. (define interp-Rwhile_class
  8489. (class interp-Rany_class
  8490. (super-new)
  8491. (define/override ((interp-exp env) e)
  8492. (define recur (interp-exp env))
  8493. (match e
  8494. [(SetBang x rhs)
  8495. (set-box! (lookup x env) (recur rhs))]
  8496. [(WhileLoop cnd body)
  8497. (define (loop)
  8498. (cond [(recur cnd) (recur body) (loop)]
  8499. [else (void)]))
  8500. (loop)]
  8501. [(Begin es body)
  8502. (for ([e es]) (recur e))
  8503. (recur body)]
  8504. [else ((super interp-exp env) e)]))
  8505. ))
  8506. (define (interp-Rwhile p)
  8507. (send (new interp-Rwhile_class) interp-program p))
  8508. \end{lstlisting}
  8509. \caption{Interpreter for \LangLoop{}.}
  8510. \label{fig:interp-Rwhile}
  8511. \end{figure}
  8512. The type checker for \LangLoop{} is define in
  8513. Figure~\ref{fig:type-check-Rwhile}. For \code{SetBang}, the type of the
  8514. variable and the right-hand-side must agree. The result type is
  8515. \code{Void}. For the \code{WhileLoop}, the condition must be a
  8516. \code{Boolean}. The result type is also \code{Void}. For
  8517. \code{Begin}, the result type is the type of its last subexpression.
  8518. \begin{figure}[tbp]
  8519. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  8520. (define type-check-Rwhile_class
  8521. (class type-check-Rany_class
  8522. (super-new)
  8523. (inherit check-type-equal?)
  8524. (define/override (type-check-exp env)
  8525. (lambda (e)
  8526. (define recur (type-check-exp env))
  8527. (match e
  8528. [(SetBang x rhs)
  8529. (define-values (rhs^ rhsT) (recur rhs))
  8530. (define varT (dict-ref env x))
  8531. (check-type-equal? rhsT varT e)
  8532. (values (SetBang x rhs^) 'Void)]
  8533. [(WhileLoop cnd body)
  8534. (define-values (cnd^ Tc) (recur cnd))
  8535. (check-type-equal? Tc 'Boolean e)
  8536. (define-values (body^ Tbody) ((type-check-exp env) body))
  8537. (values (WhileLoop cnd^ body^) 'Void)]
  8538. [(Begin es body)
  8539. (define-values (es^ ts)
  8540. (for/lists (l1 l2) ([e es]) (recur e)))
  8541. (define-values (body^ Tbody) (recur body))
  8542. (values (Begin es^ body^) Tbody)]
  8543. [else ((super type-check-exp env) e)])))
  8544. ))
  8545. (define (type-check-Rwhile p)
  8546. (send (new type-check-Rwhile_class) type-check-program p))
  8547. \end{lstlisting}
  8548. \caption{Type checking \key{SetBang}, \key{WhileLoop},
  8549. and \code{Begin} in \LangLoop{}.}
  8550. \label{fig:type-check-Rwhile}
  8551. \end{figure}
  8552. At first glance, the translation of these language features to x86
  8553. seems straightforward because the \LangCFun{} intermediate language already
  8554. supports all of the ingredients that we need: assignment, \code{goto},
  8555. conditional branching, and sequencing. However, there are two
  8556. complications that arise which we discuss in the next two
  8557. sections. After that we introduce one new compiler pass and the
  8558. changes necessary to the existing passes.
  8559. \section{Assignment and Lexically Scoped Functions}
  8560. \label{sec:assignment-scoping}
  8561. The addition of assignment raises a problem with our approach to
  8562. implementing lexically-scoped functions. Consider the following
  8563. example in which function \code{f} has a free variable \code{x} that
  8564. is changed after \code{f} is created but before the call to \code{f}.
  8565. % loop_test_11.rkt
  8566. \begin{lstlisting}
  8567. (let ([x 0])
  8568. (let ([y 0])
  8569. (let ([z 20])
  8570. (let ([f (lambda: ([a : Integer]) : Integer (+ a (+ x z)))])
  8571. (begin
  8572. (set! x 10)
  8573. (set! y 12)
  8574. (f y))))))
  8575. \end{lstlisting}
  8576. The correct output for this example is \code{42} because the call to
  8577. \code{f} is required to use the current value of \code{x} (which is
  8578. \code{10}). Unfortunately, the closure conversion pass
  8579. (Section~\ref{sec:closure-conversion}) generates code for the
  8580. \code{lambda} that copies the old value of \code{x} into a
  8581. closure. Thus, if we naively add support for assignment to our current
  8582. compiler, the output of this program would be \code{32}.
  8583. A first attempt at solving this problem would be to save a pointer to
  8584. \code{x} in the closure and change the occurrences of \code{x} inside
  8585. the lambda to dereference the pointer. Of course, this would require
  8586. assigning \code{x} to the stack and not to a register. However, the
  8587. problem goes a bit deeper. Consider the following example in which we
  8588. create a counter abstraction by creating a pair of functions that
  8589. share the free variable \code{x}.
  8590. % similar to loop_test_10.rkt
  8591. \begin{lstlisting}
  8592. (define (f [x : Integer]) : (Vector ( -> Integer) ( -> Void))
  8593. (vector
  8594. (lambda: () : Integer x)
  8595. (lambda: () : Void (set! x (+ 1 x)))))
  8596. (let ([counter (f 0)])
  8597. (let ([get (vector-ref counter 0)])
  8598. (let ([inc (vector-ref counter 1)])
  8599. (begin
  8600. (inc)
  8601. (get)))))
  8602. \end{lstlisting}
  8603. In this example, the lifetime of \code{x} extends beyond the lifetime
  8604. of the call to \code{f}. Thus, if we were to store \code{x} on the
  8605. stack frame for the call to \code{f}, it would be gone by the time we
  8606. call \code{inc} and \code{get}, leaving us with dangling pointers for
  8607. \code{x}. This example demonstrates that when a variable occurs free
  8608. inside a \code{lambda}, its lifetime becomes indefinite. Thus, the
  8609. value of the variable needs to live on the heap. The verb ``box'' is
  8610. often used for allocating a single value on the heap, producing a
  8611. pointer, and ``unbox'' for dereferencing the pointer.
  8612. We recommend solving these problems by ``boxing'' the local variables
  8613. that are in the intersection of 1) variables that appear on the
  8614. left-hand-side of a \code{set!} and 2) variables that occur free
  8615. inside a \code{lambda}. We shall introduce a new pass named
  8616. \code{convert-assignments} in Section~\ref{sec:convert-assignments} to
  8617. perform this translation. But before diving into the compiler passes,
  8618. we one more problem to discuss.
  8619. \section{Cyclic Control Flow and Dataflow Analysis}
  8620. \label{sec:dataflow-analysis}
  8621. Up until this point the control-flow graphs generated in
  8622. \code{explicate\_control} were guaranteed to be acyclic. However, each
  8623. \code{while} loop introduces a cycle in the control-flow graph.
  8624. But does that matter?
  8625. %
  8626. Indeed it does. Recall that for register allocation, the compiler
  8627. performs liveness analysis to determine which variables can share the
  8628. same register. In Section~\ref{sec:liveness-analysis-Lif} we analyze
  8629. the control-flow graph in reverse topological order, but topological
  8630. order is only well-defined for acyclic graphs.
  8631. Let us return to the example of computing the sum of the first five
  8632. positive integers. Here is the program after instruction selection but
  8633. before register allocation.
  8634. \begin{center}
  8635. \begin{minipage}{0.45\textwidth}
  8636. \begin{lstlisting}
  8637. (define (main) : Integer
  8638. mainstart:
  8639. movq $0, sum1
  8640. movq $5, i2
  8641. jmp block5
  8642. block5:
  8643. movq i2, tmp3
  8644. cmpq tmp3, $0
  8645. jl block7
  8646. jmp block8
  8647. \end{lstlisting}
  8648. \end{minipage}
  8649. \begin{minipage}{0.45\textwidth}
  8650. \begin{lstlisting}
  8651. block7:
  8652. addq i2, sum1
  8653. movq $1, tmp4
  8654. negq tmp4
  8655. addq tmp4, i2
  8656. jmp block5
  8657. block8:
  8658. movq $27, %rax
  8659. addq sum1, %rax
  8660. jmp mainconclusion
  8661. )
  8662. \end{lstlisting}
  8663. \end{minipage}
  8664. \end{center}
  8665. Recall that liveness analysis works backwards, starting at the end
  8666. of each function. For this example we could start with \code{block8}
  8667. because we know what is live at the beginning of the conclusion,
  8668. just \code{rax} and \code{rsp}. So the live-before set
  8669. for \code{block8} is $\{\ttm{rsp},\ttm{sum1}\}$.
  8670. %
  8671. Next we might try to analyze \code{block5} or \code{block7}, but
  8672. \code{block5} jumps to \code{block7} and vice versa, so it seems that
  8673. we are stuck.
  8674. The way out of this impasse comes from the realization that one can
  8675. perform liveness analysis starting with an empty live-after set to
  8676. compute an under-approximation of the live-before set. By
  8677. \emph{under-approximation}, we mean that the set only contains
  8678. variables that are really live, but it may be missing some. Next, the
  8679. under-approximations for each block can be improved by 1) updating the
  8680. live-after set for each block using the approximate live-before sets
  8681. from the other blocks and 2) perform liveness analysis again on each
  8682. block. In fact, by iterating this process, the under-approximations
  8683. eventually become the correct solutions!
  8684. %
  8685. This approach of iteratively analyzing a control-flow graph is
  8686. applicable to many static analysis problems and goes by the name
  8687. \emph{dataflow analysis}\index{subject}{dataflow analysis}. It was invented by
  8688. \citet{Kildall:1973vn} in his Ph.D. thesis at the University of
  8689. Washington.
  8690. Let us apply this approach to the above example. We use the empty set
  8691. for the initial live-before set for each block. Let $m_0$ be the
  8692. following mapping from label names to sets of locations (variables and
  8693. registers).
  8694. \begin{center}
  8695. \begin{lstlisting}
  8696. mainstart: {}
  8697. block5: {}
  8698. block7: {}
  8699. block8: {}
  8700. \end{lstlisting}
  8701. \end{center}
  8702. Using the above live-before approximations, we determine the
  8703. live-after for each block and then apply liveness analysis to each
  8704. block. This produces our next approximation $m_1$ of the live-before
  8705. sets.
  8706. \begin{center}
  8707. \begin{lstlisting}
  8708. mainstart: {}
  8709. block5: {i2}
  8710. block7: {i2, sum1}
  8711. block8: {rsp, sum1}
  8712. \end{lstlisting}
  8713. \end{center}
  8714. For the second round, the live-after for \code{mainstart} is the
  8715. current live-before for \code{block5}, which is \code{\{i2\}}. So the
  8716. liveness analysis for \code{mainstart} computes the empty set. The
  8717. live-after for \code{block5} is the union of the live-before sets for
  8718. \code{block7} and \code{block8}, which is \code{\{i2 , rsp, sum1\}}.
  8719. So the liveness analysis for \code{block5} computes \code{\{i2 , rsp,
  8720. sum1\}}. The live-after for \code{block7} is the live-before for
  8721. \code{block5} (from the previous iteration), which is \code{\{i2\}}.
  8722. So the liveness analysis for \code{block7} remains \code{\{i2,
  8723. sum1\}}. Together these yield the following approximation $m_2$ of
  8724. the live-before sets.
  8725. \begin{center}
  8726. \begin{lstlisting}
  8727. mainstart: {}
  8728. block5: {i2, rsp, sum1}
  8729. block7: {i2, sum1}
  8730. block8: {rsp, sum1}
  8731. \end{lstlisting}
  8732. \end{center}
  8733. In the preceding iteration, only \code{block5} changed, so we can
  8734. limit our attention to \code{mainstart} and \code{block7}, the two
  8735. blocks that jump to \code{block5}. As a result, the live-before sets
  8736. for \code{mainstart} and \code{block7} are updated to include
  8737. \code{rsp}, yielding the following approximation $m_3$.
  8738. \begin{center}
  8739. \begin{lstlisting}
  8740. mainstart: {rsp}
  8741. block5: {i2, rsp, sum1}
  8742. block7: {i2, rsp, sum1}
  8743. block8: {rsp, sum1}
  8744. \end{lstlisting}
  8745. \end{center}
  8746. Because \code{block7} changed, we analyze \code{block5} once more, but
  8747. its live-before set remains \code{\{ i2, rsp, sum1 \}}. At this point
  8748. our approximations have converged, so $m_3$ is the solution.
  8749. This iteration process is guaranteed to converge to a solution by the
  8750. Kleene Fixed-Point Theorem, a general theorem about functions on
  8751. lattices~\citep{Kleene:1952aa}. Roughly speaking, a \emph{lattice} is
  8752. any collection that comes with a partial ordering $\sqsubseteq$ on its
  8753. elements, a least element $\bot$ (pronounced bottom), and a join
  8754. operator $\sqcup$.\index{subject}{lattice}\index{subject}{bottom}\index{subject}{partial
  8755. ordering}\index{subject}{join}\footnote{Technically speaking, we will be
  8756. working with join semi-lattices.} When two elements are ordered $m_i
  8757. \sqsubseteq m_j$, it means that $m_j$ contains at least as much
  8758. information as $m_i$, so we can think of $m_j$ as a better-or-equal
  8759. approximation than $m_i$. The bottom element $\bot$ represents the
  8760. complete lack of information, i.e., the worst approximation. The join
  8761. operator takes two lattice elements and combines their information,
  8762. i.e., it produces the least upper bound of the two.\index{subject}{least upper
  8763. bound}
  8764. A dataflow analysis typically involves two lattices: one lattice to
  8765. represent abstract states and another lattice that aggregates the
  8766. abstract states of all the blocks in the control-flow graph. For
  8767. liveness analysis, an abstract state is a set of locations. We form
  8768. the lattice $L$ by taking its elements to be sets of locations, the
  8769. ordering to be set inclusion ($\subseteq$), the bottom to be the empty
  8770. set, and the join operator to be set union.
  8771. %
  8772. We form a second lattice $M$ by taking its elements to be mappings
  8773. from the block labels to sets of locations (elements of $L$). We
  8774. order the mappings point-wise, using the ordering of $L$. So given any
  8775. two mappings $m_i$ and $m_j$, $m_i \sqsubseteq_M m_j$ when $m_i(\ell)
  8776. \subseteq m_j(\ell)$ for every block label $\ell$ in the program. The
  8777. bottom element of $M$ is the mapping $\bot_M$ that sends every label
  8778. to the empty set, i.e., $\bot_M(\ell) = \emptyset$.
  8779. We can think of one iteration of liveness analysis as being a function
  8780. $f$ on the lattice $M$. It takes a mapping as input and computes a new
  8781. mapping.
  8782. \[
  8783. f(m_i) = m_{i+1}
  8784. \]
  8785. Next let us think for a moment about what a final solution $m_s$
  8786. should look like. If we perform liveness analysis using the solution
  8787. $m_s$ as input, we should get $m_s$ again as the output. That is, the
  8788. solution should be a \emph{fixed point} of the function $f$.\index{subject}{fixed point}
  8789. \[
  8790. f(m_s) = m_s
  8791. \]
  8792. Furthermore, the solution should only include locations that are
  8793. forced to be there by performing liveness analysis on the program, so
  8794. the solution should be the \emph{least} fixed point.\index{subject}{least fixed point}
  8795. The Kleene Fixed-Point Theorem states that if a function $f$ is
  8796. monotone (better inputs produce better outputs), then the least fixed
  8797. point of $f$ is the least upper bound of the \emph{ascending Kleene
  8798. chain} obtained by starting at $\bot$ and iterating $f$ as
  8799. follows.\index{subject}{Kleene Fixed-Point Theorem}
  8800. \[
  8801. \bot \sqsubseteq f(\bot) \sqsubseteq f(f(\bot)) \sqsubseteq \cdots
  8802. \sqsubseteq f^n(\bot) \sqsubseteq \cdots
  8803. \]
  8804. When a lattice contains only finitely-long ascending chains, then
  8805. every Kleene chain tops out at some fixed point after a number of
  8806. iterations of $f$. So that fixed point is also a least upper
  8807. bound of the chain.
  8808. \[
  8809. \bot \sqsubseteq f(\bot) \sqsubseteq f(f(\bot)) \sqsubseteq \cdots
  8810. \sqsubseteq f^k(\bot) = f^{k+1}(\bot) = m_s
  8811. \]
  8812. The liveness analysis is indeed a monotone function and the lattice
  8813. $M$ only has finitely-long ascending chains because there are only a
  8814. finite number of variables and blocks in the program. Thus we are
  8815. guaranteed that iteratively applying liveness analysis to all blocks
  8816. in the program will eventually produce the least fixed point solution.
  8817. Next let us consider dataflow analysis in general and discuss the
  8818. generic work list algorithm (Figure~\ref{fig:generic-dataflow}).
  8819. %
  8820. The algorithm has four parameters: the control-flow graph \code{G}, a
  8821. function \code{transfer} that applies the analysis to one block, the
  8822. \code{bottom} and \code{join} operator for the lattice of abstract
  8823. states. The algorithm begins by creating the bottom mapping,
  8824. represented by a hash table. It then pushes all of the nodes in the
  8825. control-flow graph onto the work list (a queue). The algorithm repeats
  8826. the \code{while} loop as long as there are items in the work list. In
  8827. each iteration, a node is popped from the work list and processed. The
  8828. \code{input} for the node is computed by taking the join of the
  8829. abstract states of all the predecessor nodes. The \code{transfer}
  8830. function is then applied to obtain the \code{output} abstract
  8831. state. If the output differs from the previous state for this block,
  8832. the mapping for this block is updated and its successor nodes are
  8833. pushed onto the work list.
  8834. \begin{figure}[tb]
  8835. \begin{lstlisting}
  8836. (define (analyze-dataflow G transfer bottom join)
  8837. (define mapping (make-hash))
  8838. (for ([v (in-vertices G)])
  8839. (dict-set! mapping v bottom))
  8840. (define worklist (make-queue))
  8841. (for ([v (in-vertices G)])
  8842. (enqueue! worklist v))
  8843. (define trans-G (transpose G))
  8844. (while (not (queue-empty? worklist))
  8845. (define node (dequeue! worklist))
  8846. (define input (for/fold ([state bottom])
  8847. ([pred (in-neighbors trans-G node)])
  8848. (join state (dict-ref mapping pred))))
  8849. (define output (transfer node input))
  8850. (cond [(not (equal? output (dict-ref mapping node)))
  8851. (dict-set! mapping node output)
  8852. (for ([v (in-neighbors G node)])
  8853. (enqueue! worklist v))]))
  8854. mapping)
  8855. \end{lstlisting}
  8856. \caption{Generic work list algorithm for dataflow analysis}
  8857. \label{fig:generic-dataflow}
  8858. \end{figure}
  8859. Having discussed the two complications that arise from adding support
  8860. for assignment and loops, we turn to discussing the one new compiler
  8861. pass and the significant changes to existing passes.
  8862. \section{Convert Assignments}
  8863. \label{sec:convert-assignments}
  8864. Recall that in Section~\ref{sec:assignment-scoping} we learned that
  8865. the combination of assignments and lexically-scoped functions requires
  8866. that we box those variables that are both assigned-to and that appear
  8867. free inside a \code{lambda}. The purpose of the
  8868. \code{convert-assignments} pass is to carry out that transformation.
  8869. We recommend placing this pass after \code{uniquify} but before
  8870. \code{reveal-functions}.
  8871. Consider again the first example from
  8872. Section~\ref{sec:assignment-scoping}:
  8873. \begin{lstlisting}
  8874. (let ([x 0])
  8875. (let ([y 0])
  8876. (let ([z 20])
  8877. (let ([f (lambda: ([a : Integer]) : Integer (+ a (+ x z)))])
  8878. (begin
  8879. (set! x 10)
  8880. (set! y 12)
  8881. (f y))))))
  8882. \end{lstlisting}
  8883. The variables \code{x} and \code{y} are assigned-to. The variables
  8884. \code{x} and \code{z} occur free inside the \code{lambda}. Thus,
  8885. variable \code{x} needs to be boxed but not \code{y} and \code{z}.
  8886. The boxing of \code{x} consists of three transformations: initialize
  8887. \code{x} with a vector, replace reads from \code{x} with
  8888. \code{vector-ref}'s, and replace each \code{set!} on \code{x} with a
  8889. \code{vector-set!}. The output of \code{convert-assignments} for this
  8890. example is as follows.
  8891. \begin{lstlisting}
  8892. (define (main) : Integer
  8893. (let ([x0 (vector 0)])
  8894. (let ([y1 0])
  8895. (let ([z2 20])
  8896. (let ([f4 (lambda: ([a3 : Integer]) : Integer
  8897. (+ a3 (+ (vector-ref x0 0) z2)))])
  8898. (begin
  8899. (vector-set! x0 0 10)
  8900. (set! y1 12)
  8901. (f4 y1)))))))
  8902. \end{lstlisting}
  8903. \paragraph{Assigned \& Free}
  8904. We recommend defining an auxiliary function named
  8905. \code{assigned\&free} that takes an expression and simultaneously
  8906. computes 1) a set of assigned variables $A$, 2) a set $F$ of variables
  8907. that occur free within lambda's, and 3) a new version of the
  8908. expression that records which bound variables occurred in the
  8909. intersection of $A$ and $F$. You can use the struct
  8910. \code{AssignedFree} to do this. Consider the case for
  8911. $\LET{x}{\itm{rhs}}{\itm{body}}$. Suppose the the recursive call on
  8912. $\itm{rhs}$ produces $\itm{rhs}'$, $A_r$, and $F_r$ and the recursive
  8913. call on the $\itm{body}$ produces $\itm{body}'$, $A_b$, and $F_b$. If
  8914. $x$ is in $A_b\cap F_b$, then transforms the \code{Let} as follows.
  8915. \begin{lstlisting}
  8916. (Let |$x$| |$rhs$| |$body$|)
  8917. |$\Rightarrow$|
  8918. (Let (AssignedFree |$x$|) |$rhs'$| |$body'$|)
  8919. \end{lstlisting}
  8920. If $x$ is not in $A_b\cap F_b$ then omit the use of \code{AssignedFree}.
  8921. The set of assigned variables for this \code{Let} is
  8922. $A_r \cup (A_b - \{x\})$
  8923. and the set of variables free in lambda's is
  8924. $F_r \cup (F_b - \{x\})$.
  8925. The case for $\SETBANG{x}{\itm{rhs}}$ is straightforward but
  8926. important. Recursively process \itm{rhs} to obtain \itm{rhs'}, $A_r$,
  8927. and $F_r$. The result is $\SETBANG{x}{\itm{rhs'}}$, $\{x\} \cup A_r$,
  8928. and $F_r$.
  8929. The case for $\LAMBDA{\itm{params}}{T}{\itm{body}}$ is a bit more
  8930. involved. Let \itm{body'}, $A_b$, and $F_b$ be the result of
  8931. recursively processing \itm{body}. Wrap each of parameter that occurs
  8932. in $A_b \cap F_b$ with \code{AssignedFree} to produce \itm{params'}.
  8933. Let $P$ be the set of parameter names in \itm{params}. The result is
  8934. $\LAMBDA{\itm{params'}}{T}{\itm{body'}}$, $A_b - P$, and $(F_b \cup
  8935. \mathrm{FV}(\itm{body})) - P$, where $\mathrm{FV}$ computes the free
  8936. variables of an expression (see Chapter~\ref{ch:Rlam}).
  8937. \paragraph{Convert Assignments}
  8938. Next we discuss the \code{convert-assignment} pass with its auxiliary
  8939. functions for expressions and definitions. The function for
  8940. expressions, \code{cnvt-assign-exp}, should take an expression and a
  8941. set of assigned-and-free variables (obtained from the result of
  8942. \code{assigned\&free}. In the case for $\VAR{x}$, if $x$ is
  8943. assigned-and-free, then unbox it by translating $\VAR{x}$ to a
  8944. \code{vector-ref}.
  8945. \begin{lstlisting}
  8946. (Var |$x$|)
  8947. |$\Rightarrow$|
  8948. (Prim 'vector-ref (list (Var |$x$|) (Int 0)))
  8949. \end{lstlisting}
  8950. %
  8951. In the case for $\LET{\LP\code{AssignedFree}\,
  8952. x\RP}{\itm{rhs}}{\itm{body}}$, recursively process \itm{rhs} to
  8953. obtain \itm{rhs'}. Next, recursively process \itm{body} to obtain
  8954. \itm{body'} but with $x$ added to the set of assigned-and-free
  8955. variables. Translate the let-expression as follows to bind $x$ to a
  8956. boxed value.
  8957. \begin{lstlisting}
  8958. (Let (AssignedFree |$x$|) |$rhs$| |$body$|)
  8959. |$\Rightarrow$|
  8960. (Let |$x$| (Prim 'vector (list |$rhs'$|)) |$body'$|)
  8961. \end{lstlisting}
  8962. %
  8963. In the case for $\SETBANG{x}{\itm{rhs}}$, recursively process
  8964. \itm{rhs} to obtain \itm{rhs'}. If $x$ is in the assigned-and-free
  8965. variables, translate the \code{set!} into a \code{vector-set!}
  8966. as follows.
  8967. \begin{lstlisting}
  8968. (SetBang |$x$| |$\itm{rhs}$|)
  8969. |$\Rightarrow$|
  8970. (Prim 'vector-set! (list (Var |$x$|) (Int 0) |$\itm{rhs'}$|))
  8971. \end{lstlisting}
  8972. %
  8973. The case for \code{Lambda} is non-trivial, but it is similar to the
  8974. case for function definitions, which we discuss next.
  8975. The auxiliary function for definitions, \code{cnvt-assign-def},
  8976. applies assignment conversion to function definitions.
  8977. We translate a function definition as follows.
  8978. \begin{lstlisting}
  8979. (Def |$f$| |$\itm{params}$| |$T$| |$\itm{info}$| |$\itm{body_1}$|)
  8980. |$\Rightarrow$|
  8981. (Def |$f$| |$\itm{params'}$| |$T$| |$\itm{info}$| |$\itm{body_4}$|)
  8982. \end{lstlisting}
  8983. So it remains to explain \itm{params'} and $\itm{body}_4$.
  8984. Let \itm{body_2}, $A_b$, and $F_b$ be the result of
  8985. \code{assigned\&free} on $\itm{body_1}$.
  8986. Let $P$ be the parameter names in \itm{params}.
  8987. We then apply \code{cnvt-assign-exp} to $\itm{body_2}$ to
  8988. obtain \itm{body_3}, passing $A_b \cap F_b \cap P$
  8989. as the set of assigned-and-free variables.
  8990. Finally, we obtain \itm{body_4} by wrapping \itm{body_3}
  8991. in a sequence of let-expressions that box the parameters
  8992. that are in $A_b \cap F_b$.
  8993. %
  8994. Regarding \itm{params'}, change the names of the parameters that are
  8995. in $A_b \cap F_b$ to maintain uniqueness (and so the let-bound
  8996. variables can retain the original names). Recall the second example in
  8997. Section~\ref{sec:assignment-scoping} involving a counter
  8998. abstraction. The following is the output of assignment version for
  8999. function \code{f}.
  9000. \begin{lstlisting}
  9001. (define (f0 [x1 : Integer]) : (Vector ( -> Integer) ( -> Void))
  9002. (vector
  9003. (lambda: () : Integer x1)
  9004. (lambda: () : Void (set! x1 (+ 1 x1)))))
  9005. |$\Rightarrow$|
  9006. (define (f0 [param_x1 : Integer]) : (Vector (-> Integer) (-> Void))
  9007. (let ([x1 (vector param_x1)])
  9008. (vector (lambda: () : Integer (vector-ref x1 0))
  9009. (lambda: () : Void
  9010. (vector-set! x1 0 (+ 1 (vector-ref x1 0)))))))
  9011. \end{lstlisting}
  9012. \section{Remove Complex Operands}
  9013. \label{sec:rco-loop}
  9014. The three new language forms, \code{while}, \code{set!}, and
  9015. \code{begin} are all complex expressions and their subexpressions are
  9016. allowed to be complex. Figure~\ref{fig:Rfun-anf-syntax} defines the
  9017. output language \LangFunANF{} of this pass.
  9018. \begin{figure}[tp]
  9019. \centering
  9020. \fbox{
  9021. \begin{minipage}{0.96\textwidth}
  9022. \small
  9023. \[
  9024. \begin{array}{rcl}
  9025. \Atm &::=& \gray{ \INT{\Int} \MID \VAR{\Var} \MID \BOOL{\itm{bool}}
  9026. \MID \VOID{} } \\
  9027. \Exp &::=& \ldots \MID \gray{ \LET{\Var}{\Exp}{\Exp} } \\
  9028. &\MID& \WHILE{\Exp}{\Exp} \MID \SETBANG{\Var}{\Exp}
  9029. \MID \BEGIN{\LP\Exp\ldots\RP}{\Exp} \\
  9030. \Def &::=& \gray{ \FUNDEF{\Var}{([\Var \code{:} \Type]\ldots)}{\Type}{\code{'()}}{\Exp} }\\
  9031. R^{\dagger}_8 &::=& \gray{ \PROGRAMDEFS{\code{'()}}{\Def} }
  9032. \end{array}
  9033. \]
  9034. \end{minipage}
  9035. }
  9036. \caption{\LangLoopANF{} is \LangLoop{} in administrative normal form (ANF).}
  9037. \label{fig:Rwhile-anf-syntax}
  9038. \end{figure}
  9039. As usual, when a complex expression appears in a grammar position that
  9040. needs to be atomic, such as the argument of a primitive operator, we
  9041. must introduce a temporary variable and bind it to the complex
  9042. expression. This approach applies, unchanged, to handle the new
  9043. language forms. For example, in the following code there are two
  9044. \code{begin} expressions appearing as arguments to \code{+}. The
  9045. output of \code{rco-exp} is shown below, in which the \code{begin}
  9046. expressions have been bound to temporary variables. Recall that
  9047. \code{let} expressions in \LangLoopANF{} are allowed to have
  9048. arbitrary expressions in their right-hand-side expression, so it is
  9049. fine to place \code{begin} there.
  9050. \begin{lstlisting}
  9051. (let ([x0 10])
  9052. (let ([y1 0])
  9053. (+ (+ (begin (set! y1 (read)) x0)
  9054. (begin (set! x0 (read)) y1))
  9055. x0)))
  9056. |$\Rightarrow$|
  9057. (let ([x0 10])
  9058. (let ([y1 0])
  9059. (let ([tmp2 (begin (set! y1 (read)) x0)])
  9060. (let ([tmp3 (begin (set! x0 (read)) y1)])
  9061. (let ([tmp4 (+ tmp2 tmp3)])
  9062. (+ tmp4 x0))))))
  9063. \end{lstlisting}
  9064. \section{Explicate Control and \LangCLoop{}}
  9065. \label{sec:explicate-loop}
  9066. Recall that in the \code{explicate\_control} pass we define one helper
  9067. function for each kind of position in the program. For the \LangVar{}
  9068. language of integers and variables we needed kinds of positions:
  9069. assignment and tail. The \code{if} expressions of \LangIf{} introduced
  9070. predicate positions. For \LangLoop{}, the \code{begin} expression introduces
  9071. yet another kind of position: effect position. Except for the last
  9072. subexpression, the subexpressions inside a \code{begin} are evaluated
  9073. only for their effect. Their result values are discarded. We can
  9074. generate better code by taking this fact into account.
  9075. The output language of \code{explicate\_control} is \LangCLoop{}
  9076. (Figure~\ref{fig:c7-syntax}), which is nearly identical to
  9077. \LangCLam{}. The only syntactic difference is that \code{Call},
  9078. \code{vector-set!}, and \code{read} may also appear as statements.
  9079. The most significant difference between \LangCLam{} and \LangCLoop{}
  9080. is that the control-flow graphs of the later may contain cycles.
  9081. \begin{figure}[tp]
  9082. \fbox{
  9083. \begin{minipage}{0.96\textwidth}
  9084. \small
  9085. \[
  9086. \begin{array}{lcl}
  9087. \Stmt &::=& \gray{ \ASSIGN{\VAR{\Var}}{\Exp}
  9088. \MID \LP\key{Collect} \,\itm{int}\RP } \\
  9089. &\MID& \CALL{\Atm}{\LP\Atm\ldots\RP} \MID \READ{}\\
  9090. &\MID& \LP\key{Prim}~\key{'vector-set!}\,\LP\key{list}\,\Atm\,\INT{\Int}\,\Atm\RP\RP \\
  9091. \Def &::=& \DEF{\itm{label}}{\LP\LS\Var\key{:}\Type\RS\ldots\RP}{\Type}{\itm{info}}{\LP\LP\itm{label}\,\key{.}\,\Tail\RP\ldots\RP}\\
  9092. \LangCLoopM{} & ::= & \PROGRAMDEFS{\itm{info}}{\LP\Def\ldots\RP}
  9093. \end{array}
  9094. \]
  9095. \end{minipage}
  9096. }
  9097. \caption{The abstract syntax of \LangCLoop{}, extending \LangCLam{} (Figure~\ref{fig:c4-syntax}).}
  9098. \label{fig:c7-syntax}
  9099. \end{figure}
  9100. The new auxiliary function \code{explicate-effect} takes an expression
  9101. (in an effect position) and a promise of a continuation block. The
  9102. function returns a promise for a $\Tail$ that includes the generated
  9103. code for the input expression followed by the continuation block. If
  9104. the expression is obviously pure, that is, never causes side effects,
  9105. then the expression can be removed, so the result is just the
  9106. continuation block.
  9107. %
  9108. The $\WHILE{\itm{cnd}}{\itm{body}}$ expression is the most interesting
  9109. case. First, you will need a fresh label $\itm{loop}$ for the top of
  9110. the loop. Recursively process the \itm{body} (in effect position)
  9111. with the a \code{goto} to $\itm{loop}$ as the continuation, producing
  9112. \itm{body'}. Next, process the \itm{cnd} (in predicate position) with
  9113. \itm{body'} as the then-branch and the continuation block as the
  9114. else-branch. The result should be added to the control-flow graph with
  9115. the label \itm{loop}. The result for the whole \code{while} loop is a
  9116. \code{goto} to the \itm{loop} label. Note that the loop should only be
  9117. added to the control-flow graph if the loop is indeed used, which can
  9118. be accomplished using \code{delay}.
  9119. The auxiliary functions for tail, assignment, and predicate positions
  9120. need to be updated. The three new language forms, \code{while},
  9121. \code{set!}, and \code{begin}, can appear in assignment and tail
  9122. positions. Only \code{begin} may appear in predicate positions; the
  9123. other two have result type \code{Void}.
  9124. \section{Select Instructions}
  9125. \label{sec:select-instructions-loop}
  9126. Only three small additions are needed in the
  9127. \code{select-instructions} pass to handle the changes to \LangCLoop{}. That
  9128. is, \code{Call}, \code{read}, and \code{vector-set!} may now appear as
  9129. stand-alone statements instead of only appearing on the right-hand
  9130. side of an assignment statement. The code generation is nearly
  9131. identical; just leave off the instruction for moving the result into
  9132. the left-hand side.
  9133. \section{Register Allocation}
  9134. \label{sec:register-allocation-loop}
  9135. As discussed in Section~\ref{sec:dataflow-analysis}, the presence of
  9136. loops in \LangLoop{} means that the control-flow graphs may contain cycles,
  9137. which complicates the liveness analysis needed for register
  9138. allocation.
  9139. \subsection{Liveness Analysis}
  9140. \label{sec:liveness-analysis-r8}
  9141. We recommend using the generic \code{analyze-dataflow} function that
  9142. was presented at the end of Section~\ref{sec:dataflow-analysis} to
  9143. perform liveness analysis, replacing the code in
  9144. \code{uncover-live-CFG} that processed the basic blocks in topological
  9145. order (Section~\ref{sec:liveness-analysis-Lif}).
  9146. The \code{analyze-dataflow} function has four parameters.
  9147. \begin{enumerate}
  9148. \item The first parameter \code{G} should be a directed graph from the
  9149. \code{racket/graph} package (see the sidebar in
  9150. Section~\ref{sec:build-interference}) that represents the
  9151. control-flow graph.
  9152. \item The second parameter \code{transfer} is a function that applies
  9153. liveness analysis to a basic block. It takes two parameters: the
  9154. label for the block to analyze and the live-after set for that
  9155. block. The transfer function should return the live-before set for
  9156. the block. Also, as a side-effect, it should update the block's
  9157. $\itm{info}$ with the liveness information for each instruction. To
  9158. implement the \code{transfer} function, you should be able to reuse
  9159. the code you already have for analyzing basic blocks.
  9160. \item The third and fourth parameters of \code{analyze-dataflow} are
  9161. \code{bottom} and \code{join} for the lattice of abstract states,
  9162. i.e. sets of locations. The bottom of the lattice is the empty set
  9163. \code{(set)} and the join operator is \code{set-union}.
  9164. \end{enumerate}
  9165. \begin{figure}[p]
  9166. \begin{tikzpicture}[baseline=(current bounding box.center)]
  9167. \node (Rfun) at (0,2) {\large \LangLoop{}};
  9168. \node (Rfun-2) at (3,2) {\large \LangLoop{}};
  9169. \node (Rfun-3) at (6,2) {\large \LangLoop{}};
  9170. \node (Rfun-4) at (9,2) {\large \LangLoopFunRef{}};
  9171. \node (F1-1) at (12,0) {\large \LangLoopFunRef{}};
  9172. \node (F1-2) at (9,0) {\large \LangLoopFunRef{}};
  9173. \node (F1-3) at (6,0) {\large \LangLoopFunRef{}};
  9174. \node (F1-4) at (3,0) {\large \LangLoopAlloc{}};
  9175. \node (F1-5) at (0,0) {\large \LangLoopAlloc{}};
  9176. \node (C3-2) at (3,-2) {\large \LangCLoop{}};
  9177. \node (x86-2) at (3,-4) {\large \LangXIndCallVar{}};
  9178. \node (x86-2-1) at (3,-6) {\large \LangXIndCallVar{}};
  9179. \node (x86-2-2) at (6,-6) {\large \LangXIndCallVar{}};
  9180. \node (x86-3) at (6,-4) {\large \LangXIndCallVar{}};
  9181. \node (x86-4) at (9,-4) {\large \LangXIndCall{}};
  9182. \node (x86-5) at (9,-6) {\large \LangXIndCall{}};
  9183. %% \path[->,bend left=15] (Rfun) edge [above] node
  9184. %% {\ttfamily\footnotesize type-check} (Rfun-2);
  9185. \path[->,bend left=15] (Rfun) edge [above] node
  9186. {\ttfamily\footnotesize shrink} (Rfun-2);
  9187. \path[->,bend left=15] (Rfun-2) edge [above] node
  9188. {\ttfamily\footnotesize uniquify} (Rfun-3);
  9189. \path[->,bend left=15] (Rfun-3) edge [above] node
  9190. {\ttfamily\footnotesize reveal-functions} (Rfun-4);
  9191. \path[->,bend left=15] (Rfun-4) edge [right] node
  9192. {\ttfamily\footnotesize convert-assignments} (F1-1);
  9193. \path[->,bend left=15] (F1-1) edge [below] node
  9194. {\ttfamily\footnotesize convert-to-clos.} (F1-2);
  9195. \path[->,bend right=15] (F1-2) edge [above] node
  9196. {\ttfamily\footnotesize limit-fun.} (F1-3);
  9197. \path[->,bend right=15] (F1-3) edge [above] node
  9198. {\ttfamily\footnotesize expose-alloc.} (F1-4);
  9199. \path[->,bend right=15] (F1-4) edge [above] node
  9200. {\ttfamily\footnotesize remove-complex.} (F1-5);
  9201. \path[->,bend right=15] (F1-5) edge [right] node
  9202. {\ttfamily\footnotesize explicate-control} (C3-2);
  9203. \path[->,bend left=15] (C3-2) edge [left] node
  9204. {\ttfamily\footnotesize select-instr.} (x86-2);
  9205. \path[->,bend right=15] (x86-2) edge [left] node
  9206. {\ttfamily\footnotesize uncover-live} (x86-2-1);
  9207. \path[->,bend right=15] (x86-2-1) edge [below] node
  9208. {\ttfamily\footnotesize build-inter.} (x86-2-2);
  9209. \path[->,bend right=15] (x86-2-2) edge [left] node
  9210. {\ttfamily\footnotesize allocate-reg.} (x86-3);
  9211. \path[->,bend left=15] (x86-3) edge [above] node
  9212. {\ttfamily\footnotesize patch-instr.} (x86-4);
  9213. \path[->,bend left=15] (x86-4) edge [right] node {\ttfamily\footnotesize print-x86} (x86-5);
  9214. \end{tikzpicture}
  9215. \caption{Diagram of the passes for \LangLoop{} (loops and assignment).}
  9216. \label{fig:Rwhile-passes}
  9217. \end{figure}
  9218. Figure~\ref{fig:Rwhile-passes} provides an overview of all the passes needed
  9219. for the compilation of \LangLoop{}.
  9220. \section{Challenge: Arrays}
  9221. \label{sec:arrays}
  9222. In Chapter~\ref{ch:Rvec} we studied tuples, that is, sequences of
  9223. elements whose length is determined at compile-time and where each
  9224. element of a tuple may have a different type (they are
  9225. heterogeous). This challenge is also about sequences, but this time
  9226. the length is determined at run-time and all the elements have the same
  9227. type (they are homogeneous). We use the term ``array'' for this later
  9228. kind of sequence.
  9229. The Racket language does not distinguish between tuples and arrays,
  9230. they are both represented by vectors. However, Typed Racket
  9231. distinguishes between tuples and arrays: the \code{Vector} type is for
  9232. tuples and the \code{Vectorof} type is for arrays.
  9233. %
  9234. Figure~\ref{fig:Rvecof-concrete-syntax} defines the concrete syntax
  9235. for \LangArray{}, extending \LangLoop{} with the \code{Vectorof} type
  9236. and the \code{make-vector} primitive operator for creating an array,
  9237. whose arguments are the length of the array and an initial value for
  9238. all the elements in the array. The \code{vector-length},
  9239. \code{vector-ref}, and \code{vector-ref!} operators that we defined
  9240. for tuples become overloaded for use with arrays.
  9241. %
  9242. We also include integer multiplication in \LangArray{}, as it is
  9243. useful in many examples involving arrays such as computing the
  9244. inner-product of two arrays (Figure~\ref{fig:inner-product}).
  9245. \begin{figure}[tp]
  9246. \centering
  9247. \fbox{
  9248. \begin{minipage}{0.96\textwidth}
  9249. \small
  9250. \[
  9251. \begin{array}{lcl}
  9252. \Type &::=& \ldots \MID \LP \key{Vectorof}~\Type \RP \\
  9253. \Exp &::=& \gray{ \Int \MID \CREAD{} \MID \CNEG{\Exp}
  9254. \MID \CADD{\Exp}{\Exp} \MID \CSUB{\Exp}{\Exp} } \MID \CMUL{\Exp}{\Exp}\\
  9255. &\MID& \gray{ \Var \MID \CLET{\Var}{\Exp}{\Exp} }\\
  9256. &\MID& \gray{\key{\#t} \MID \key{\#f}
  9257. \MID \LP\key{and}\;\Exp\;\Exp\RP
  9258. \MID \LP\key{or}\;\Exp\;\Exp\RP
  9259. \MID \LP\key{not}\;\Exp\RP } \\
  9260. &\MID& \gray{ \LP\key{eq?}\;\Exp\;\Exp\RP \MID \CIF{\Exp}{\Exp}{\Exp} } \\
  9261. &\MID& \gray{ \LP\key{vector}\;\Exp\ldots\RP \MID
  9262. \LP\key{vector-ref}\;\Exp\;\Int\RP} \\
  9263. &\MID& \gray{\LP\key{vector-set!}\;\Exp\;\Int\;\Exp\RP\MID \LP\key{void}\RP
  9264. \MID \LP\Exp \; \Exp\ldots\RP } \\
  9265. &\MID& \gray{ \LP \key{procedure-arity}~\Exp\RP
  9266. \MID \CLAMBDA{\LP\LS\Var \key{:} \Type\RS\ldots\RP}{\Type}{\Exp} } \\
  9267. &\MID& \gray{ \CSETBANG{\Var}{\Exp}
  9268. \MID \CBEGIN{\Exp\ldots}{\Exp}
  9269. \MID \CWHILE{\Exp}{\Exp} } \\
  9270. &\MID& \CMAKEVEC{\Exp}{\Exp} \\
  9271. \Def &::=& \gray{ \CDEF{\Var}{\LS\Var \key{:} \Type\RS\ldots}{\Type}{\Exp} } \\
  9272. \LangArray{} &::=& \gray{\Def\ldots \; \Exp}
  9273. \end{array}
  9274. \]
  9275. \end{minipage}
  9276. }
  9277. \caption{The concrete syntax of \LangArray{}, extending \LangLoop{} (Figure~\ref{fig:Rwhile-concrete-syntax}).}
  9278. \label{fig:Rvecof-concrete-syntax}
  9279. \end{figure}
  9280. \begin{figure}[tp]
  9281. \begin{lstlisting}
  9282. (define (inner-product [A : (Vectorof Integer)] [B : (Vectorof Integer)]
  9283. [n : Integer]) : Integer
  9284. (let ([i 0])
  9285. (let ([prod 0])
  9286. (begin
  9287. (while (< i n)
  9288. (begin
  9289. (set! prod (+ prod (* (vector-ref A i)
  9290. (vector-ref B i))))
  9291. (set! i (+ i 1))
  9292. ))
  9293. prod))))
  9294. (let ([A (make-vector 2 2)])
  9295. (let ([B (make-vector 2 3)])
  9296. (+ (inner-product A B 2)
  9297. 30)))
  9298. \end{lstlisting}
  9299. \caption{Example program that computes the inner-product.}
  9300. \label{fig:inner-product}
  9301. \end{figure}
  9302. The type checker for \LangArray{} is define in
  9303. Figure~\ref{fig:type-check-Rvecof}. The result type of
  9304. \code{make-vector} is \code{(Vectorof T)} where \code{T} is the type
  9305. of the intializing expression. The length expression is required to
  9306. have type \code{Integer}. The type checking of the operators
  9307. \code{vector-length}, \code{vector-ref}, and \code{vector-set!} is
  9308. updated to handle the situation where the vector has type
  9309. \code{Vectorof}. In these cases we translate the operators to their
  9310. \code{vectorof} form so that later passes can easily distinguish
  9311. between operations on tuples versus arrays. We override the
  9312. \code{operator-types} method to provide the type signature for
  9313. multiplication: it takes two integers and returns an integer. To
  9314. support injection and projection of arrays to the \code{Any} type
  9315. (Section~\ref{sec:Rany-lang}), we also override the \code{flat-ty?}
  9316. predicate.
  9317. \begin{figure}[tbp]
  9318. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  9319. (define type-check-Rvecof_class
  9320. (class type-check-Rwhile_class
  9321. (super-new)
  9322. (inherit check-type-equal?)
  9323. (define/override (flat-ty? ty)
  9324. (match ty
  9325. ['(Vectorof Any) #t]
  9326. [else (super flat-ty? ty)]))
  9327. (define/override (operator-types)
  9328. (append '((* . ((Integer Integer) . Integer)))
  9329. (super operator-types)))
  9330. (define/override (type-check-exp env)
  9331. (lambda (e)
  9332. (define recur (type-check-exp env))
  9333. (match e
  9334. [(Prim 'make-vector (list e1 e2))
  9335. (define-values (e1^ t1) (recur e1))
  9336. (define-values (e2^ elt-type) (recur e2))
  9337. (define vec-type `(Vectorof ,elt-type))
  9338. (values (HasType (Prim 'make-vector (list e1^ e2^)) vec-type)
  9339. vec-type)]
  9340. [(Prim 'vector-ref (list e1 e2))
  9341. (define-values (e1^ t1) (recur e1))
  9342. (define-values (e2^ t2) (recur e2))
  9343. (match* (t1 t2)
  9344. [(`(Vectorof ,elt-type) 'Integer)
  9345. (values (Prim 'vectorof-ref (list e1^ e2^)) elt-type)]
  9346. [(other wise) ((super type-check-exp env) e)])]
  9347. [(Prim 'vector-set! (list e1 e2 e3) )
  9348. (define-values (e-vec t-vec) (recur e1))
  9349. (define-values (e2^ t2) (recur e2))
  9350. (define-values (e-arg^ t-arg) (recur e3))
  9351. (match t-vec
  9352. [`(Vectorof ,elt-type)
  9353. (check-type-equal? elt-type t-arg e)
  9354. (values (Prim 'vectorof-set! (list e-vec e2^ e-arg^)) 'Void)]
  9355. [else ((super type-check-exp env) e)])]
  9356. [(Prim 'vector-length (list e1))
  9357. (define-values (e1^ t1) (recur e1))
  9358. (match t1
  9359. [`(Vectorof ,t)
  9360. (values (Prim 'vectorof-length (list e1^)) 'Integer)]
  9361. [else ((super type-check-exp env) e)])]
  9362. [else ((super type-check-exp env) e)])))
  9363. ))
  9364. (define (type-check-Rvecof p)
  9365. (send (new type-check-Rvecof_class) type-check-program p))
  9366. \end{lstlisting}
  9367. \caption{Type checker for the \LangArray{} language.}
  9368. \label{fig:type-check-Rvecof}
  9369. \end{figure}
  9370. The interpreter for \LangArray{} is defined in
  9371. Figure~\ref{fig:interp-Rvecof}. The \code{make-vector} operator is
  9372. implemented with Racket's \code{make-vector} function and
  9373. multiplication is \code{fx*}, multiplication for \code{fixnum}
  9374. integers.
  9375. \begin{figure}[tbp]
  9376. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  9377. (define interp-Rvecof_class
  9378. (class interp-Rwhile_class
  9379. (super-new)
  9380. (define/override (interp-op op)
  9381. (verbose "Rvecof/interp-op" op)
  9382. (match op
  9383. ['make-vector make-vector]
  9384. ['* fx*]
  9385. [else (super interp-op op)]))
  9386. ))
  9387. (define (interp-Rvecof p)
  9388. (send (new interp-Rvecof_class) interp-program p))
  9389. \end{lstlisting}
  9390. \caption{Interpreter for \LangArray{}.}
  9391. \label{fig:interp-Rvecof}
  9392. \end{figure}
  9393. \subsection{Data Representation}
  9394. \label{sec:array-rep}
  9395. Just like tuples, we store arrays on the heap which means that the
  9396. garbage collector will need to inspect arrays. An immediate thought is
  9397. to use the same representation for arrays that we use for tuples.
  9398. However, we limit tuples to a length of $50$ so that their length and
  9399. pointer mask can fit into the 64-bit tag at the beginning of each
  9400. tuple (Section~\ref{sec:data-rep-gc}). We intend arrays to allow
  9401. millions of elements, so we need more bits to store the length.
  9402. However, because arrays are homogeneous, we only need $1$ bit for the
  9403. pointer mask instead of one bit per array elements. Finally, the
  9404. garbage collector will need to be able to distinguish between tuples
  9405. and arrays, so we need to reserve $1$ bit for that purpose. So we
  9406. arrive at the following layout for the 64-bit tag at the beginning of
  9407. an array:
  9408. \begin{itemize}
  9409. \item The right-most bit is the forwarding bit, just like in a tuple.
  9410. A $0$ indicates it is a forwarding pointer and a $1$ indicates
  9411. it is not.
  9412. \item The next bit to the left is the pointer mask. A $0$ indicates
  9413. that none of the elements are pointers to the heap and a $1$
  9414. indicates that all of the elements are pointers.
  9415. \item The next $61$ bits store the length of the array.
  9416. \item The left-most bit distinguishes between a tuple ($0$) versus an
  9417. array ($1$).
  9418. \end{itemize}
  9419. Recall that in Chapter~\ref{ch:Rdyn}, we use a $3$-bit tag to
  9420. differentiate the kinds of values that have been injected into the
  9421. \code{Any} type. We use the bit pattern \code{110} (or $6$ in decimal)
  9422. to indicate that the value is an array.
  9423. In the following subsections we provide hints regarding how to update
  9424. the passes to handle arrays.
  9425. \subsection{Reveal Casts}
  9426. The array-access operators \code{vectorof-ref} and
  9427. \code{vectorof-set!} are similar to the \code{any-vector-ref} and
  9428. \code{any-vector-set!} operators of Chapter~\ref{ch:Rdyn} in
  9429. that the type checker cannot tell whether the index will be in bounds,
  9430. so the bounds check must be performed at run time. Recall that the
  9431. \code{reveal-casts} pass (Section~\ref{sec:reveal-casts-Rany}) wraps
  9432. an \code{If} arround a vector reference for update to check whether
  9433. the index is less than the length. You should do the same for
  9434. \code{vectorof-ref} and \code{vectorof-set!} .
  9435. In addition, the handling of the \code{any-vector} operators in
  9436. \code{reveal-casts} needs to be updated to account for arrays that are
  9437. injected to \code{Any}. For the \code{any-vector-length} operator, the
  9438. generated code should test whether the tag is for tuples (\code{010})
  9439. or arrays (\code{110}) and then dispatch to either
  9440. \code{any-vector-length} or \code{any-vectorof-length}. For the later
  9441. we add a case in \code{select-instructions} to generate the
  9442. appropriate instructions for accessing the array length from the
  9443. header of an array.
  9444. For the \code{any-vector-ref} and \code{any-vector-set!} operators,
  9445. the generated code needs to check that the index is less than the
  9446. vector length, so like the code for \code{any-vector-length}, check
  9447. the tag to determine whether to use \code{any-vector-length} or
  9448. \code{any-vectorof-length} for this purpose. Once the bounds checking
  9449. is complete, the generated code can use \code{any-vector-ref} and
  9450. \code{any-vector-set!} for both tuples and arrays because the
  9451. instructions used for those operators do not look at the tag at the
  9452. front of the tuple or array.
  9453. \subsection{Expose Allocation}
  9454. This pass should translate the \code{make-vector} operator into
  9455. lower-level operations. In particular, the new AST node
  9456. $\LP\key{AllocateArray}~\Exp~\Type\RP$ allocates an array of the
  9457. length specified by the $\Exp$, but does not initialize the elements
  9458. of the array. (Analogous to the \code{Allocate} AST node for tuples.)
  9459. The $\Type$ argument must be $\LP\key{Vectorof}~T\RP$ where $T$ is the
  9460. element type for the array. Regarding the initialization of the array,
  9461. we recommend generated a \code{while} loop that uses
  9462. \code{vector-set!} to put the initializing value into every element of
  9463. the array.
  9464. \subsection{Remove Complex Operands}
  9465. Add cases in the \code{rco-atom} and \code{rco-exp} for
  9466. \code{AllocateArray}. In particular, an \code{AllocateArray} node is
  9467. complex and its subexpression must be atomic.
  9468. \subsection{Explicate Control}
  9469. Add cases for \code{AllocateArray} to \code{explicate-tail} and
  9470. \code{explicate-assign}.
  9471. \subsection{Select Instructions}
  9472. Generate instructions for \code{AllocateArray} similar to those for
  9473. \code{Allocate} in Section~\ref{sec:select-instructions-gc} except
  9474. that the tag at the front of the array should instead use the
  9475. representation discussed in Section~\ref{sec:array-rep}.
  9476. Regarding \code{vectorof-length}, extract the length from the tag
  9477. according to the representation discussed in
  9478. Section~\ref{sec:array-rep}.
  9479. The instructions generated for \code{vectorof-ref} differ from those
  9480. for \code{vector-ref} (Section~\ref{sec:select-instructions-gc}) in
  9481. that the index is not a constant so the offset must be computed at
  9482. runtime, similar to the instructions generated for
  9483. \code{any-vector-of-ref} (Section~\ref{sec:select-Rany}). The same is
  9484. true for \code{vectorof-set!}. Also, the \code{vectorof-set!} may
  9485. appear in an assignment and as a stand-alone statement, so make sure
  9486. to handle both situations in this pass.
  9487. Finally, the instructions for \code{any-vectorof-length} should be
  9488. similar to those for \code{vectorof-length}, except that one must
  9489. first project the array by writing zeroes into the $3$-bit tag
  9490. \begin{exercise}\normalfont
  9491. Implement a compiler for the \LangArray{} language by extending your
  9492. compiler for \LangLoop{}. Test your compiler on a half dozen new
  9493. programs, including the one in Figure~\ref{fig:inner-product} and also
  9494. a program that multiplies two matrices. Note that matrices are
  9495. 2-dimensional arrays, but those can be encoded into 1-dimensional
  9496. arrays by laying out each row in the array, one after the next.
  9497. \end{exercise}
  9498. % Further Reading: dataflow analysis
  9499. \fi
  9500. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  9501. \chapter{Tuples and Garbage Collection}
  9502. \label{ch:Rvec}
  9503. \index{subject}{tuple}
  9504. \index{subject}{vector}
  9505. \if\edition\racketEd
  9506. %% \margincomment{\scriptsize To do: Flesh out this chapter, e.g., make sure
  9507. %% all the IR grammars are spelled out! \\ --Jeremy}
  9508. %% \margincomment{\scriptsize Be more explicit about how to deal with
  9509. %% the root stack. \\ --Jeremy}
  9510. In this chapter we study the implementation of mutable tuples, called
  9511. vectors in Racket. This language feature is the first to use the
  9512. computer's \emph{heap}\index{subject}{heap} because the lifetime of a Racket
  9513. tuple is indefinite, that is, a tuple lives forever from the
  9514. programmer's viewpoint. Of course, from an implementer's viewpoint, it
  9515. is important to reclaim the space associated with a tuple when it is
  9516. no longer needed, which is why we also study \emph{garbage collection}
  9517. \emph{garbage collection} techniques in this chapter.
  9518. Section~\ref{sec:r3} introduces the \LangVec{} language including its
  9519. interpreter and type checker. The \LangVec{} language extends the \LangIf{}
  9520. language of Chapter~\ref{ch:Lif} with vectors and Racket's
  9521. \code{void} value. The reason for including the later is that the
  9522. \code{vector-set!} operation returns a value of type
  9523. \code{Void}\footnote{Racket's \code{Void} type corresponds to what is
  9524. called the \code{Unit} type in the programming languages
  9525. literature. Racket's \code{Void} type is inhabited by a single value
  9526. \code{void} which corresponds to \code{unit} or \code{()} in the
  9527. literature~\citep{Pierce:2002hj}.}.
  9528. Section~\ref{sec:GC} describes a garbage collection algorithm based on
  9529. copying live objects back and forth between two halves of the
  9530. heap. The garbage collector requires coordination with the compiler so
  9531. that it can see all of the \emph{root} pointers, that is, pointers in
  9532. registers or on the procedure call stack.
  9533. Sections~\ref{sec:expose-allocation} through \ref{sec:print-x86-gc}
  9534. discuss all the necessary changes and additions to the compiler
  9535. passes, including a new compiler pass named \code{expose-allocation}.
  9536. \section{The \LangVec{} Language}
  9537. \label{sec:r3}
  9538. Figure~\ref{fig:Rvec-concrete-syntax} defines the concrete syntax for
  9539. \LangVec{} and Figure~\ref{fig:Rvec-syntax} defines the abstract syntax. The
  9540. \LangVec{} language includes three new forms: \code{vector} for creating a
  9541. tuple, \code{vector-ref} for reading an element of a tuple, and
  9542. \code{vector-set!} for writing to an element of a tuple. The program
  9543. in Figure~\ref{fig:vector-eg} shows the usage of tuples in Racket. We
  9544. create a 3-tuple \code{t} and a 1-tuple that is stored at index $2$ of
  9545. the 3-tuple, demonstrating that tuples are first-class values. The
  9546. element at index $1$ of \code{t} is \code{\#t}, so the ``then'' branch
  9547. of the \key{if} is taken. The element at index $0$ of \code{t} is
  9548. \code{40}, to which we add \code{2}, the element at index $0$ of the
  9549. 1-tuple. So the result of the program is \code{42}.
  9550. \begin{figure}[tbp]
  9551. \centering
  9552. \fbox{
  9553. \begin{minipage}{0.96\textwidth}
  9554. \[
  9555. \begin{array}{lcl}
  9556. \Type &::=& \gray{\key{Integer} \MID \key{Boolean}}
  9557. \MID \LP\key{Vector}\;\Type\ldots\RP \MID \key{Void}\\
  9558. \Exp &::=& \gray{ \Int \MID \CREAD{} \MID \CNEG{\Exp} \MID \CADD{\Exp}{\Exp} \MID \CSUB{\Exp}{\Exp} } \\
  9559. &\MID& \gray{ \Var \MID \CLET{\Var}{\Exp}{\Exp} }\\
  9560. &\MID& \gray{ \key{\#t} \MID \key{\#f}
  9561. \MID \LP\key{and}\;\Exp\;\Exp\RP
  9562. \MID \LP\key{or}\;\Exp\;\Exp\RP
  9563. \MID \LP\key{not}\;\Exp\RP } \\
  9564. &\MID& \gray{ \LP\itm{cmp}\;\Exp\;\Exp\RP
  9565. \MID \CIF{\Exp}{\Exp}{\Exp} } \\
  9566. &\MID& \LP\key{vector}\;\Exp\ldots\RP
  9567. \MID \LP\key{vector-length}\;\Exp\RP \\
  9568. &\MID& \LP\key{vector-ref}\;\Exp\;\Int\RP
  9569. \MID \LP\key{vector-set!}\;\Exp\;\Int\;\Exp\RP \\
  9570. &\MID& \LP\key{void}\RP \MID \LP\key{has-type}~\Exp~\Type\RP\\
  9571. \LangVecM{} &::=& \Exp
  9572. \end{array}
  9573. \]
  9574. \end{minipage}
  9575. }
  9576. \caption{The concrete syntax of \LangVec{}, extending \LangIf{}
  9577. (Figure~\ref{fig:Lif-concrete-syntax}).}
  9578. \label{fig:Rvec-concrete-syntax}
  9579. \end{figure}
  9580. \begin{figure}[tbp]
  9581. \begin{lstlisting}
  9582. (let ([t (vector 40 #t (vector 2))])
  9583. (if (vector-ref t 1)
  9584. (+ (vector-ref t 0)
  9585. (vector-ref (vector-ref t 2) 0))
  9586. 44))
  9587. \end{lstlisting}
  9588. \caption{Example program that creates tuples and reads from them.}
  9589. \label{fig:vector-eg}
  9590. \end{figure}
  9591. \begin{figure}[tp]
  9592. \centering
  9593. \fbox{
  9594. \begin{minipage}{0.96\textwidth}
  9595. \[
  9596. \begin{array}{lcl}
  9597. \itm{op} &::=& \ldots \MID \code{vector} \MID \code{vector-length} \\
  9598. \Exp &::=& \gray{ \INT{\Int} \MID \VAR{\Var} \MID \LET{\Var}{\Exp}{\Exp} } \\
  9599. &\MID& \gray{ \PRIM{\itm{op}}{\Exp\ldots}
  9600. \MID \BOOL{\itm{bool}}
  9601. \MID \IF{\Exp}{\Exp}{\Exp} } \\
  9602. &\MID& \VECREF{\Exp}{\INT{\Int}}\\
  9603. &\MID& \VECSET{\Exp}{\INT{\Int}}{\Exp} \\
  9604. &\MID& \VOID{} \MID \LP\key{HasType}~\Exp~\Type \RP \\
  9605. \LangVecM{} &::=& \PROGRAM{\key{'()}}{\Exp}
  9606. \end{array}
  9607. \]
  9608. \end{minipage}
  9609. }
  9610. \caption{The abstract syntax of \LangVec{}.}
  9611. \label{fig:Rvec-syntax}
  9612. \end{figure}
  9613. \index{subject}{allocate}
  9614. \index{subject}{heap allocate}
  9615. Tuples are our first encounter with heap-allocated data, which raises
  9616. several interesting issues. First, variable binding performs a
  9617. shallow-copy when dealing with tuples, which means that different
  9618. variables can refer to the same tuple, that is, different variables
  9619. can be \emph{aliases} for the same entity. Consider the following
  9620. example in which both \code{t1} and \code{t2} refer to the same tuple.
  9621. Thus, the mutation through \code{t2} is visible when referencing the
  9622. tuple from \code{t1}, so the result of this program is \code{42}.
  9623. \index{subject}{alias}\index{subject}{mutation}
  9624. \begin{center}
  9625. \begin{minipage}{0.96\textwidth}
  9626. \begin{lstlisting}
  9627. (let ([t1 (vector 3 7)])
  9628. (let ([t2 t1])
  9629. (let ([_ (vector-set! t2 0 42)])
  9630. (vector-ref t1 0))))
  9631. \end{lstlisting}
  9632. \end{minipage}
  9633. \end{center}
  9634. The next issue concerns the lifetime of tuples. Of course, they are
  9635. created by the \code{vector} form, but when does their lifetime end?
  9636. Notice that \LangVec{} does not include an operation for deleting
  9637. tuples. Furthermore, the lifetime of a tuple is not tied to any notion
  9638. of static scoping. For example, the following program returns
  9639. \code{42} even though the variable \code{w} goes out of scope prior to
  9640. the \code{vector-ref} that reads from the vector it was bound to.
  9641. \begin{center}
  9642. \begin{minipage}{0.96\textwidth}
  9643. \begin{lstlisting}
  9644. (let ([v (vector (vector 44))])
  9645. (let ([x (let ([w (vector 42)])
  9646. (let ([_ (vector-set! v 0 w)])
  9647. 0))])
  9648. (+ x (vector-ref (vector-ref v 0) 0))))
  9649. \end{lstlisting}
  9650. \end{minipage}
  9651. \end{center}
  9652. From the perspective of programmer-observable behavior, tuples live
  9653. forever. Of course, if they really lived forever, then many programs
  9654. would run out of memory.\footnote{The \LangVec{} language does not have
  9655. looping or recursive functions, so it is nigh impossible to write a
  9656. program in \LangVec{} that will run out of memory. However, we add
  9657. recursive functions in the next Chapter!} A Racket implementation
  9658. must therefore perform automatic garbage collection.
  9659. Figure~\ref{fig:interp-Rvec} shows the definitional interpreter for the
  9660. \LangVec{} language. We define the \code{vector}, \code{vector-length},
  9661. \code{vector-ref}, and \code{vector-set!} operations for \LangVec{} in
  9662. terms of the corresponding operations in Racket. One subtle point is
  9663. that the \code{vector-set!} operation returns the \code{\#<void>}
  9664. value. The \code{\#<void>} value can be passed around just like other
  9665. values inside an \LangVec{} program and a \code{\#<void>} value can be
  9666. compared for equality with another \code{\#<void>} value. However,
  9667. there are no other operations specific to the the \code{\#<void>}
  9668. value in \LangVec{}. In contrast, Racket defines the \code{void?} predicate
  9669. that returns \code{\#t} when applied to \code{\#<void>} and \code{\#f}
  9670. otherwise.
  9671. \begin{figure}[tbp]
  9672. \begin{lstlisting}
  9673. (define interp-Rvec_class
  9674. (class interp-Lif_class
  9675. (super-new)
  9676. (define/override (interp-op op)
  9677. (match op
  9678. ['eq? (lambda (v1 v2)
  9679. (cond [(or (and (fixnum? v1) (fixnum? v2))
  9680. (and (boolean? v1) (boolean? v2))
  9681. (and (vector? v1) (vector? v2))
  9682. (and (void? v1) (void? v2)))
  9683. (eq? v1 v2)]))]
  9684. ['vector vector]
  9685. ['vector-length vector-length]
  9686. ['vector-ref vector-ref]
  9687. ['vector-set! vector-set!]
  9688. [else (super interp-op op)]
  9689. ))
  9690. (define/override ((interp-exp env) e)
  9691. (define recur (interp-exp env))
  9692. (match e
  9693. [(HasType e t) (recur e)]
  9694. [(Void) (void)]
  9695. [else ((super interp-exp env) e)]
  9696. ))
  9697. ))
  9698. (define (interp-Rvec p)
  9699. (send (new interp-Rvec_class) interp-program p))
  9700. \end{lstlisting}
  9701. \caption{Interpreter for the \LangVec{} language.}
  9702. \label{fig:interp-Rvec}
  9703. \end{figure}
  9704. Figure~\ref{fig:type-check-Rvec} shows the type checker for \LangVec{}, which
  9705. deserves some explanation. When allocating a vector, we need to know
  9706. which elements of the vector are pointers (i.e. are also vectors). We
  9707. can obtain this information during type checking. The type checker in
  9708. Figure~\ref{fig:type-check-Rvec} not only computes the type of an
  9709. expression, it also wraps every \key{vector} creation with the form
  9710. $(\key{HasType}~e~T)$, where $T$ is the vector's type.
  9711. %
  9712. To create the s-expression for the \code{Vector} type in
  9713. Figure~\ref{fig:type-check-Rvec}, we use the
  9714. \href{https://docs.racket-lang.org/reference/quasiquote.html}{unquote-splicing
  9715. operator} \code{,@} to insert the list \code{t*} without its usual
  9716. start and end parentheses. \index{subject}{unquote-slicing}
  9717. \begin{figure}[tp]
  9718. \begin{lstlisting}[basicstyle=\ttfamily\scriptsize]
  9719. (define type-check-Rvec_class
  9720. (class type-check-Lif_class
  9721. (super-new)
  9722. (inherit check-type-equal?)
  9723. (define/override (type-check-exp env)
  9724. (lambda (e)
  9725. (define recur (type-check-exp env))
  9726. (match e
  9727. [(Void) (values (Void) 'Void)]
  9728. [(Prim 'vector es)
  9729. (define-values (e* t*) (for/lists (e* t*) ([e es]) (recur e)))
  9730. (define t `(Vector ,@t*))
  9731. (values (HasType (Prim 'vector e*) t) t)]
  9732. [(Prim 'vector-ref (list e1 (Int i)))
  9733. (define-values (e1^ t) (recur e1))
  9734. (match t
  9735. [`(Vector ,ts ...)
  9736. (unless (and (0 . <= . i) (i . < . (length ts)))
  9737. (error 'type-check "index ~a out of bounds\nin ~v" i e))
  9738. (values (Prim 'vector-ref (list e1^ (Int i))) (list-ref ts i))]
  9739. [else (error 'type-check "expect Vector, not ~a\nin ~v" t e)])]
  9740. [(Prim 'vector-set! (list e1 (Int i) arg) )
  9741. (define-values (e-vec t-vec) (recur e1))
  9742. (define-values (e-arg^ t-arg) (recur arg))
  9743. (match t-vec
  9744. [`(Vector ,ts ...)
  9745. (unless (and (0 . <= . i) (i . < . (length ts)))
  9746. (error 'type-check "index ~a out of bounds\nin ~v" i e))
  9747. (check-type-equal? (list-ref ts i) t-arg e)
  9748. (values (Prim 'vector-set! (list e-vec (Int i) e-arg^)) 'Void)]
  9749. [else (error 'type-check "expect Vector, not ~a\nin ~v" t-vec e)])]
  9750. [(Prim 'vector-length (list e))
  9751. (define-values (e^ t) (recur e))
  9752. (match t
  9753. [`(Vector ,ts ...)
  9754. (values (Prim 'vector-length (list e^)) 'Integer)]
  9755. [else (error 'type-check "expect Vector, not ~a\nin ~v" t e)])]
  9756. [(Prim 'eq? (list arg1 arg2))
  9757. (define-values (e1 t1) (recur arg1))
  9758. (define-values (e2 t2) (recur arg2))
  9759. (match* (t1 t2)
  9760. [(`(Vector ,ts1 ...) `(Vector ,ts2 ...)) (void)]
  9761. [(other wise) (check-type-equal? t1 t2 e)])
  9762. (values (Prim 'eq? (list e1 e2)) 'Boolean)]
  9763. [(HasType (Prim 'vector es) t)
  9764. ((type-check-exp env) (Prim 'vector es))]
  9765. [(HasType e1 t)
  9766. (define-values (e1^ t^) (recur e1))
  9767. (check-type-equal? t t^ e)
  9768. (values (HasType e1^ t) t)]
  9769. [else ((super type-check-exp env) e)]
  9770. )))
  9771. ))
  9772. (define (type-check-Rvec p)
  9773. (send (new type-check-Rvec_class) type-check-program p))
  9774. \end{lstlisting}
  9775. \caption{Type checker for the \LangVec{} language.}
  9776. \label{fig:type-check-Rvec}
  9777. \end{figure}
  9778. \section{Garbage Collection}
  9779. \label{sec:GC}
  9780. Here we study a relatively simple algorithm for garbage collection
  9781. that is the basis of state-of-the-art garbage
  9782. collectors~\citep{Lieberman:1983aa,Ungar:1984aa,Jones:1996aa,Detlefs:2004aa,Dybvig:2006aa,Tene:2011kx}. In
  9783. particular, we describe a two-space copying
  9784. collector~\citep{Wilson:1992fk} that uses Cheney's algorithm to
  9785. perform the
  9786. copy~\citep{Cheney:1970aa}.
  9787. \index{subject}{copying collector}
  9788. \index{subject}{two-space copying collector}
  9789. Figure~\ref{fig:copying-collector} gives a
  9790. coarse-grained depiction of what happens in a two-space collector,
  9791. showing two time steps, prior to garbage collection (on the top) and
  9792. after garbage collection (on the bottom). In a two-space collector,
  9793. the heap is divided into two parts named the FromSpace and the
  9794. ToSpace. Initially, all allocations go to the FromSpace until there is
  9795. not enough room for the next allocation request. At that point, the
  9796. garbage collector goes to work to make more room.
  9797. \index{subject}{ToSpace}
  9798. \index{subject}{FromSpace}
  9799. The garbage collector must be careful not to reclaim tuples that will
  9800. be used by the program in the future. Of course, it is impossible in
  9801. general to predict what a program will do, but we can over approximate
  9802. the will-be-used tuples by preserving all tuples that could be
  9803. accessed by \emph{any} program given the current computer state. A
  9804. program could access any tuple whose address is in a register or on
  9805. the procedure call stack. These addresses are called the \emph{root
  9806. set}\index{subject}{root set}. In addition, a program could access any tuple that is
  9807. transitively reachable from the root set. Thus, it is safe for the
  9808. garbage collector to reclaim the tuples that are not reachable in this
  9809. way.
  9810. So the goal of the garbage collector is twofold:
  9811. \begin{enumerate}
  9812. \item preserve all tuple that are reachable from the root set via a
  9813. path of pointers, that is, the \emph{live} tuples, and
  9814. \item reclaim the memory of everything else, that is, the
  9815. \emph{garbage}.
  9816. \end{enumerate}
  9817. A copying collector accomplishes this by copying all of the live
  9818. objects from the FromSpace into the ToSpace and then performs a sleight
  9819. of hand, treating the ToSpace as the new FromSpace and the old
  9820. FromSpace as the new ToSpace. In the example of
  9821. Figure~\ref{fig:copying-collector}, there are three pointers in the
  9822. root set, one in a register and two on the stack. All of the live
  9823. objects have been copied to the ToSpace (the right-hand side of
  9824. Figure~\ref{fig:copying-collector}) in a way that preserves the
  9825. pointer relationships. For example, the pointer in the register still
  9826. points to a 2-tuple whose first element is a 3-tuple and whose second
  9827. element is a 2-tuple. There are four tuples that are not reachable
  9828. from the root set and therefore do not get copied into the ToSpace.
  9829. The exact situation in Figure~\ref{fig:copying-collector} cannot be
  9830. created by a well-typed program in \LangVec{} because it contains a
  9831. cycle. However, creating cycles will be possible once we get to \LangAny{}.
  9832. We design the garbage collector to deal with cycles to begin with so
  9833. we will not need to revisit this issue.
  9834. \begin{figure}[tbp]
  9835. \centering
  9836. \includegraphics[width=\textwidth]{figs/copy-collect-1} \\[5ex]
  9837. \includegraphics[width=\textwidth]{figs/copy-collect-2}
  9838. \caption{A copying collector in action.}
  9839. \label{fig:copying-collector}
  9840. \end{figure}
  9841. There are many alternatives to copying collectors (and their bigger
  9842. siblings, the generational collectors) when its comes to garbage
  9843. collection, such as mark-and-sweep~\citep{McCarthy:1960dz} and
  9844. reference counting~\citep{Collins:1960aa}. The strengths of copying
  9845. collectors are that allocation is fast (just a comparison and pointer
  9846. increment), there is no fragmentation, cyclic garbage is collected,
  9847. and the time complexity of collection only depends on the amount of
  9848. live data, and not on the amount of garbage~\citep{Wilson:1992fk}. The
  9849. main disadvantages of a two-space copying collector is that it uses a
  9850. lot of space and takes a long time to perform the copy, though these
  9851. problems are ameliorated in generational collectors. Racket and
  9852. Scheme programs tend to allocate many small objects and generate a lot
  9853. of garbage, so copying and generational collectors are a good fit.
  9854. Garbage collection is an active research topic, especially concurrent
  9855. garbage collection~\citep{Tene:2011kx}. Researchers are continuously
  9856. developing new techniques and revisiting old
  9857. trade-offs~\citep{Blackburn:2004aa,Jones:2011aa,Shahriyar:2013aa,Cutler:2015aa,Shidal:2015aa,Osterlund:2016aa,Jacek:2019aa,Gamari:2020aa}. Researchers
  9858. meet every year at the International Symposium on Memory Management to
  9859. present these findings.
  9860. \subsection{Graph Copying via Cheney's Algorithm}
  9861. \label{sec:cheney}
  9862. \index{subject}{Cheney's algorithm}
  9863. Let us take a closer look at the copying of the live objects. The
  9864. allocated objects and pointers can be viewed as a graph and we need to
  9865. copy the part of the graph that is reachable from the root set. To
  9866. make sure we copy all of the reachable vertices in the graph, we need
  9867. an exhaustive graph traversal algorithm, such as depth-first search or
  9868. breadth-first search~\citep{Moore:1959aa,Cormen:2001uq}. Recall that
  9869. such algorithms take into account the possibility of cycles by marking
  9870. which vertices have already been visited, so as to ensure termination
  9871. of the algorithm. These search algorithms also use a data structure
  9872. such as a stack or queue as a to-do list to keep track of the vertices
  9873. that need to be visited. We use breadth-first search and a trick
  9874. due to \citet{Cheney:1970aa} for simultaneously representing the queue
  9875. and copying tuples into the ToSpace.
  9876. Figure~\ref{fig:cheney} shows several snapshots of the ToSpace as the
  9877. copy progresses. The queue is represented by a chunk of contiguous
  9878. memory at the beginning of the ToSpace, using two pointers to track
  9879. the front and the back of the queue. The algorithm starts by copying
  9880. all tuples that are immediately reachable from the root set into the
  9881. ToSpace to form the initial queue. When we copy a tuple, we mark the
  9882. old tuple to indicate that it has been visited. We discuss how this
  9883. marking is accomplish in Section~\ref{sec:data-rep-gc}. Note that any
  9884. pointers inside the copied tuples in the queue still point back to the
  9885. FromSpace. Once the initial queue has been created, the algorithm
  9886. enters a loop in which it repeatedly processes the tuple at the front
  9887. of the queue and pops it off the queue. To process a tuple, the
  9888. algorithm copies all the tuple that are directly reachable from it to
  9889. the ToSpace, placing them at the back of the queue. The algorithm then
  9890. updates the pointers in the popped tuple so they point to the newly
  9891. copied tuples.
  9892. \begin{figure}[tbp]
  9893. \centering \includegraphics[width=0.9\textwidth]{figs/cheney}
  9894. \caption{Depiction of the Cheney algorithm copying the live tuples.}
  9895. \label{fig:cheney}
  9896. \end{figure}
  9897. Getting back to Figure~\ref{fig:cheney}, in the first step we copy the
  9898. tuple whose second element is $42$ to the back of the queue. The other
  9899. pointer goes to a tuple that has already been copied, so we do not
  9900. need to copy it again, but we do need to update the pointer to the new
  9901. location. This can be accomplished by storing a \emph{forwarding
  9902. pointer} to the new location in the old tuple, back when we initially
  9903. copied the tuple into the ToSpace. This completes one step of the
  9904. algorithm. The algorithm continues in this way until the front of the
  9905. queue is empty, that is, until the front catches up with the back.
  9906. \subsection{Data Representation}
  9907. \label{sec:data-rep-gc}
  9908. The garbage collector places some requirements on the data
  9909. representations used by our compiler. First, the garbage collector
  9910. needs to distinguish between pointers and other kinds of data. There
  9911. are several ways to accomplish this.
  9912. \begin{enumerate}
  9913. \item Attached a tag to each object that identifies what type of
  9914. object it is~\citep{McCarthy:1960dz}.
  9915. \item Store different types of objects in different
  9916. regions~\citep{Steele:1977ab}.
  9917. \item Use type information from the program to either generate
  9918. type-specific code for collecting or to generate tables that can
  9919. guide the
  9920. collector~\citep{Appel:1989aa,Goldberg:1991aa,Diwan:1992aa}.
  9921. \end{enumerate}
  9922. Dynamically typed languages, such as Lisp, need to tag objects
  9923. anyways, so option 1 is a natural choice for those languages.
  9924. However, \LangVec{} is a statically typed language, so it would be
  9925. unfortunate to require tags on every object, especially small and
  9926. pervasive objects like integers and Booleans. Option 3 is the
  9927. best-performing choice for statically typed languages, but comes with
  9928. a relatively high implementation complexity. To keep this chapter
  9929. within a 2-week time budget, we recommend a combination of options 1
  9930. and 2, using separate strategies for the stack and the heap.
  9931. Regarding the stack, we recommend using a separate stack for pointers,
  9932. which we call a \emph{root stack}\index{subject}{root stack} (a.k.a. ``shadow
  9933. stack'')~\citep{Siebert:2001aa,Henderson:2002aa,Baker:2009aa}. That
  9934. is, when a local variable needs to be spilled and is of type
  9935. \code{(Vector $\Type_1 \ldots \Type_n$)}, then we put it on the root
  9936. stack instead of the normal procedure call stack. Furthermore, we
  9937. always spill vector-typed variables if they are live during a call to
  9938. the collector, thereby ensuring that no pointers are in registers
  9939. during a collection. Figure~\ref{fig:shadow-stack} reproduces the
  9940. example from Figure~\ref{fig:copying-collector} and contrasts it with
  9941. the data layout using a root stack. The root stack contains the two
  9942. pointers from the regular stack and also the pointer in the second
  9943. register.
  9944. \begin{figure}[tbp]
  9945. \centering \includegraphics[width=0.60\textwidth]{figs/root-stack}
  9946. \caption{Maintaining a root stack to facilitate garbage collection.}
  9947. \label{fig:shadow-stack}
  9948. \end{figure}
  9949. The problem of distinguishing between pointers and other kinds of data
  9950. also arises inside of each tuple on the heap. We solve this problem by
  9951. attaching a tag, an extra 64-bits, to each
  9952. tuple. Figure~\ref{fig:tuple-rep} zooms in on the tags for two of the
  9953. tuples in the example from Figure~\ref{fig:copying-collector}. Note
  9954. that we have drawn the bits in a big-endian way, from right-to-left,
  9955. with bit location 0 (the least significant bit) on the far right,
  9956. which corresponds to the direction of the x86 shifting instructions
  9957. \key{salq} (shift left) and \key{sarq} (shift right). Part of each tag
  9958. is dedicated to specifying which elements of the tuple are pointers,
  9959. the part labeled ``pointer mask''. Within the pointer mask, a 1 bit
  9960. indicates there is a pointer and a 0 bit indicates some other kind of
  9961. data. The pointer mask starts at bit location 7. We have limited
  9962. tuples to a maximum size of 50 elements, so we just need 50 bits for
  9963. the pointer mask. The tag also contains two other pieces of
  9964. information. The length of the tuple (number of elements) is stored in
  9965. bits location 1 through 6. Finally, the bit at location 0 indicates
  9966. whether the tuple has yet to be copied to the ToSpace. If the bit has
  9967. value 1, then this tuple has not yet been copied. If the bit has
  9968. value 0 then the entire tag is a forwarding pointer. (The lower 3 bits
  9969. of a pointer are always zero anyways because our tuples are 8-byte
  9970. aligned.)
  9971. \begin{figure}[tbp]
  9972. \centering \includegraphics[width=0.8\textwidth]{figs/tuple-rep}
  9973. \caption{Representation of tuples in the heap.}
  9974. \label{fig:tuple-rep}
  9975. \end{figure}
  9976. \subsection{Implementation of the Garbage Collector}
  9977. \label{sec:organize-gz}
  9978. \index{subject}{prelude}
  9979. An implementation of the copying collector is provided in the
  9980. \code{runtime.c} file. Figure~\ref{fig:gc-header} defines the
  9981. interface to the garbage collector that is used by the compiler. The
  9982. \code{initialize} function creates the FromSpace, ToSpace, and root
  9983. stack and should be called in the prelude of the \code{main}
  9984. function. The arguments of \code{initialize} are the root stack size
  9985. and the heap size. Both need to be multiples of $64$ and $16384$ is a
  9986. good choice for both. The \code{initialize} function puts the address
  9987. of the beginning of the FromSpace into the global variable
  9988. \code{free\_ptr}. The global variable \code{fromspace\_end} points to
  9989. the address that is 1-past the last element of the FromSpace. (We use
  9990. half-open intervals to represent chunks of
  9991. memory~\citep{Dijkstra:1982aa}.) The \code{rootstack\_begin} variable
  9992. points to the first element of the root stack.
  9993. As long as there is room left in the FromSpace, your generated code
  9994. can allocate tuples simply by moving the \code{free\_ptr} forward.
  9995. %
  9996. The amount of room left in FromSpace is the difference between the
  9997. \code{fromspace\_end} and the \code{free\_ptr}. The \code{collect}
  9998. function should be called when there is not enough room left in the
  9999. FromSpace for the next allocation. The \code{collect} function takes
  10000. a pointer to the current top of the root stack (one past the last item
  10001. that was pushed) and the number of bytes that need to be
  10002. allocated. The \code{collect} function performs the copying collection
  10003. and leaves the heap in a state such that the next allocation will
  10004. succeed.
  10005. \begin{figure}[tbp]
  10006. \begin{lstlisting}
  10007. void initialize(uint64_t rootstack_size, uint64_t heap_size);
  10008. void collect(int64_t** rootstack_ptr, uint64_t bytes_requested);
  10009. int64_t* free_ptr;
  10010. int64_t* fromspace_begin;
  10011. int64_t* fromspace_end;
  10012. int64_t** rootstack_begin;
  10013. \end{lstlisting}
  10014. \caption{The compiler's interface to the garbage collector.}
  10015. \label{fig:gc-header}
  10016. \end{figure}
  10017. %% \begin{exercise}
  10018. %% In the file \code{runtime.c} you will find the implementation of
  10019. %% \code{initialize} and a partial implementation of \code{collect}.
  10020. %% The \code{collect} function calls another function, \code{cheney},
  10021. %% to perform the actual copy, and that function is left to the reader
  10022. %% to implement. The following is the prototype for \code{cheney}.
  10023. %% \begin{lstlisting}
  10024. %% static void cheney(int64_t** rootstack_ptr);
  10025. %% \end{lstlisting}
  10026. %% The parameter \code{rootstack\_ptr} is a pointer to the top of the
  10027. %% rootstack (which is an array of pointers). The \code{cheney} function
  10028. %% also communicates with \code{collect} through the global
  10029. %% variables \code{fromspace\_begin} and \code{fromspace\_end}
  10030. %% mentioned in Figure~\ref{fig:gc-header} as well as the pointers for
  10031. %% the ToSpace:
  10032. %% \begin{lstlisting}
  10033. %% static int64_t* tospace_begin;
  10034. %% static int64_t* tospace_end;
  10035. %% \end{lstlisting}
  10036. %% The job of the \code{cheney} function is to copy all the live
  10037. %% objects (reachable from the root stack) into the ToSpace, update
  10038. %% \code{free\_ptr} to point to the next unused spot in the ToSpace,
  10039. %% update the root stack so that it points to the objects in the
  10040. %% ToSpace, and finally to swap the global pointers for the FromSpace
  10041. %% and ToSpace.
  10042. %% \end{exercise}
  10043. %% \section{Compiler Passes}
  10044. %% \label{sec:code-generation-gc}
  10045. The introduction of garbage collection has a non-trivial impact on our
  10046. compiler passes. We introduce a new compiler pass named
  10047. \code{expose-allocation}. We make
  10048. significant changes to \code{select-instructions},
  10049. \code{build-interference}, \code{allocate-registers}, and
  10050. \code{print\_x86} and make minor changes in several more passes. The
  10051. following program will serve as our running example. It creates two
  10052. tuples, one nested inside the other. Both tuples have length one. The
  10053. program accesses the element in the inner tuple tuple via two vector
  10054. references.
  10055. % tests/s2_17.rkt
  10056. \begin{lstlisting}
  10057. (vector-ref (vector-ref (vector (vector 42)) 0) 0)
  10058. \end{lstlisting}
  10059. \section{Shrink}
  10060. \label{sec:shrink-Rvec}
  10061. Recall that the \code{shrink} pass translates the primitives operators
  10062. into a smaller set of primitives. Because this pass comes after type
  10063. checking, but before the passes that require the type information in
  10064. the \code{HasType} AST nodes, the \code{shrink} pass must be modified
  10065. to wrap \code{HasType} around each AST node that it generates.
  10066. \section{Expose Allocation}
  10067. \label{sec:expose-allocation}
  10068. The pass \code{expose-allocation} lowers the \code{vector} creation
  10069. form into a conditional call to the collector followed by the
  10070. allocation. We choose to place the \code{expose-allocation} pass
  10071. before \code{remove\_complex\_operands} because the code generated by
  10072. \code{expose-allocation} contains complex operands. We also place
  10073. \code{expose-allocation} before \code{explicate\_control} because
  10074. \code{expose-allocation} introduces new variables using \code{let},
  10075. but \code{let} is gone after \code{explicate\_control}.
  10076. The output of \code{expose-allocation} is a language \LangAlloc{} that
  10077. extends \LangVec{} with the three new forms that we use in the translation
  10078. of the \code{vector} form.
  10079. \[
  10080. \begin{array}{lcl}
  10081. \Exp &::=& \cdots
  10082. \MID (\key{collect} \,\itm{int})
  10083. \MID (\key{allocate} \,\itm{int}\,\itm{type})
  10084. \MID (\key{global-value} \,\itm{name})
  10085. \end{array}
  10086. \]
  10087. The $(\key{collect}\,n)$ form runs the garbage collector, requesting
  10088. $n$ bytes. It will become a call to the \code{collect} function in
  10089. \code{runtime.c} in \code{select-instructions}. The
  10090. $(\key{allocate}\,n\,T)$ form creates an tuple of $n$ elements.
  10091. \index{subject}{allocate}
  10092. The $T$ parameter is the type of the tuple: \code{(Vector $\Type_1 \ldots
  10093. \Type_n$)} where $\Type_i$ is the type of the $i$th element in the
  10094. tuple. The $(\key{global-value}\,\itm{name})$ form reads the value of
  10095. a global variable, such as \code{free\_ptr}.
  10096. In the following, we show the transformation for the \code{vector}
  10097. form into 1) a sequence of let-bindings for the initializing
  10098. expressions, 2) a conditional call to \code{collect}, 3) a call to
  10099. \code{allocate}, and 4) the initialization of the vector. In the
  10100. following, \itm{len} refers to the length of the vector and
  10101. \itm{bytes} is how many total bytes need to be allocated for the
  10102. vector, which is 8 for the tag plus \itm{len} times 8.
  10103. \begin{lstlisting}
  10104. (has-type (vector |$e_0 \ldots e_{n-1}$|) |\itm{type}|)
  10105. |$\Longrightarrow$|
  10106. (let ([|$x_0$| |$e_0$|]) ... (let ([|$x_{n-1}$| |$e_{n-1}$|])
  10107. (let ([_ (if (< (+ (global-value free_ptr) |\itm{bytes}|)
  10108. (global-value fromspace_end))
  10109. (void)
  10110. (collect |\itm{bytes}|))])
  10111. (let ([|$v$| (allocate |\itm{len}| |\itm{type}|)])
  10112. (let ([_ (vector-set! |$v$| |$0$| |$x_0$|)]) ...
  10113. (let ([_ (vector-set! |$v$| |$n-1$| |$x_{n-1}$|)])
  10114. |$v$|) ... )))) ...)
  10115. \end{lstlisting}
  10116. In the above, we suppressed all of the \code{has-type} forms in the
  10117. output for the sake of readability. The placement of the initializing
  10118. expressions $e_0,\ldots,e_{n-1}$ prior to the \code{allocate} and the
  10119. sequence of \code{vector-set!} is important, as those expressions may
  10120. trigger garbage collection and we cannot have an allocated but
  10121. uninitialized tuple on the heap during a collection.
  10122. Figure~\ref{fig:expose-alloc-output} shows the output of the
  10123. \code{expose-allocation} pass on our running example.
  10124. \begin{figure}[tbp]
  10125. % tests/s2_17.rkt
  10126. \begin{lstlisting}
  10127. (vector-ref
  10128. (vector-ref
  10129. (let ([vecinit7976
  10130. (let ([vecinit7972 42])
  10131. (let ([collectret7974
  10132. (if (< (+ (global-value free_ptr) 16)
  10133. (global-value fromspace_end))
  10134. (void)
  10135. (collect 16)
  10136. )])
  10137. (let ([alloc7971 (allocate 1 (Vector Integer))])
  10138. (let ([initret7973 (vector-set! alloc7971 0 vecinit7972)])
  10139. alloc7971)
  10140. )
  10141. )
  10142. )
  10143. ])
  10144. (let ([collectret7978
  10145. (if (< (+ (global-value free_ptr) 16)
  10146. (global-value fromspace_end))
  10147. (void)
  10148. (collect 16)
  10149. )])
  10150. (let ([alloc7975 (allocate 1 (Vector (Vector Integer)))])
  10151. (let ([initret7977 (vector-set! alloc7975 0 vecinit7976)])
  10152. alloc7975)
  10153. )
  10154. )
  10155. )
  10156. 0)
  10157. 0)
  10158. \end{lstlisting}
  10159. \caption{Output of the \code{expose-allocation} pass, minus
  10160. all of the \code{has-type} forms.}
  10161. \label{fig:expose-alloc-output}
  10162. \end{figure}
  10163. \section{Remove Complex Operands}
  10164. \label{sec:remove-complex-opera-Rvec}
  10165. The new forms \code{collect}, \code{allocate}, and \code{global-value}
  10166. should all be treated as complex operands.
  10167. %% A new case for
  10168. %% \code{HasType} is needed and the case for \code{Prim} needs to be
  10169. %% handled carefully to prevent the \code{Prim} node from being separated
  10170. %% from its enclosing \code{HasType}.
  10171. Figure~\ref{fig:Rvec-anf-syntax}
  10172. shows the grammar for the output language \LangVecANF{} of this
  10173. pass, which is \LangVec{} in administrative normal form.
  10174. \begin{figure}[tp]
  10175. \centering
  10176. \fbox{
  10177. \begin{minipage}{0.96\textwidth}
  10178. \small
  10179. \[
  10180. \begin{array}{rcl}
  10181. \Atm &::=& \gray{ \INT{\Int} \MID \VAR{\Var} \MID \BOOL{\itm{bool}} }
  10182. \MID \VOID{} \\
  10183. \Exp &::=& \gray{ \Atm \MID \READ{} } \\
  10184. &\MID& \gray{ \NEG{\Atm} \MID \ADD{\Atm}{\Atm} } \\
  10185. &\MID& \gray{ \LET{\Var}{\Exp}{\Exp} } \\
  10186. &\MID& \gray{ \UNIOP{\key{'not}}{\Atm} } \\
  10187. &\MID& \gray{ \BINOP{\itm{cmp}}{\Atm}{\Atm} \MID \IF{\Exp}{\Exp}{\Exp} }\\
  10188. &\MID& \LP\key{Collect}~\Int\RP \MID \LP\key{Allocate}~\Int~\Type\RP
  10189. \MID \LP\key{GlobalValue}~\Var\RP\\
  10190. % &\MID& \LP\key{HasType}~\Exp~\Type\RP \\
  10191. \LangVecANFM{} &::=& \gray{ \PROGRAM{\code{'()}}{\Exp} }
  10192. \end{array}
  10193. \]
  10194. \end{minipage}
  10195. }
  10196. \caption{\LangVecANF{} is \LangVec{} in administrative normal form (ANF).}
  10197. \label{fig:Rvec-anf-syntax}
  10198. \end{figure}
  10199. \section{Explicate Control and the \LangCVec{} language}
  10200. \label{sec:explicate-control-r3}
  10201. \begin{figure}[tp]
  10202. \fbox{
  10203. \begin{minipage}{0.96\textwidth}
  10204. \small
  10205. \[
  10206. \begin{array}{lcl}
  10207. \Atm &::=& \gray{ \INT{\Int} \MID \VAR{\Var} \MID \BOOL{\itm{bool}} }\\
  10208. \itm{cmp} &::= & \gray{ \key{eq?} \MID \key{<} } \\
  10209. \Exp &::= & \gray{ \Atm \MID \READ{} } \\
  10210. &\MID& \gray{ \NEG{\Atm} \MID \ADD{\Atm}{\Atm} }\\
  10211. &\MID& \gray{ \UNIOP{\key{not}}{\Atm} \MID \BINOP{\itm{cmp}}{\Atm}{\Atm} } \\
  10212. &\MID& \LP\key{Allocate} \,\itm{int}\,\itm{type}\RP \\
  10213. &\MID& \BINOP{\key{'vector-ref}}{\Atm}{\INT{\Int}} \\
  10214. &\MID& \LP\key{Prim}~\key{'vector-set!}\,\LP\Atm\,\INT{\Int}\,\Atm\RP\RP\\
  10215. &\MID& \LP\key{GlobalValue} \,\Var\RP \MID \LP\key{Void}\RP\\
  10216. \Stmt &::=& \gray{ \ASSIGN{\VAR{\Var}}{\Exp} }
  10217. \MID \LP\key{Collect} \,\itm{int}\RP \\
  10218. \Tail &::= & \gray{ \RETURN{\Exp} \MID \SEQ{\Stmt}{\Tail}
  10219. \MID \GOTO{\itm{label}} } \\
  10220. &\MID& \gray{ \IFSTMT{\BINOP{\itm{cmp}}{\Atm}{\Atm}}{\GOTO{\itm{label}}}{\GOTO{\itm{label}}} }\\
  10221. \LangCVecM{} & ::= & \gray{ \CPROGRAM{\itm{info}}{\LP\LP\itm{label}\,\key{.}\,\Tail\RP\ldots\RP} }
  10222. \end{array}
  10223. \]
  10224. \end{minipage}
  10225. }
  10226. \caption{The abstract syntax of \LangCVec{}, extending \LangCIf{}
  10227. (Figure~\ref{fig:c1-syntax}).}
  10228. \label{fig:c2-syntax}
  10229. \end{figure}
  10230. The output of \code{explicate\_control} is a program in the
  10231. intermediate language \LangCVec{}, whose abstract syntax is defined in
  10232. Figure~\ref{fig:c2-syntax}. (The concrete syntax is defined in
  10233. Figure~\ref{fig:c2-concrete-syntax} of the Appendix.) The new forms
  10234. of \LangCVec{} include the \key{allocate}, \key{vector-ref}, and
  10235. \key{vector-set!}, and \key{global-value} expressions and the
  10236. \code{collect} statement. The \code{explicate\_control} pass can treat
  10237. these new forms much like the other expression forms that we've
  10238. already encoutered.
  10239. \section{Select Instructions and the \LangXGlobal{} Language}
  10240. \label{sec:select-instructions-gc}
  10241. \index{subject}{instruction selection}
  10242. %% void (rep as zero)
  10243. %% allocate
  10244. %% collect (callq collect)
  10245. %% vector-ref
  10246. %% vector-set!
  10247. %% global (postpone)
  10248. In this pass we generate x86 code for most of the new operations that
  10249. were needed to compile tuples, including \code{Allocate},
  10250. \code{Collect}, \code{vector-ref}, \code{vector-set!}, and
  10251. \code{void}. We compile \code{GlobalValue} to \code{Global} because
  10252. the later has a different concrete syntax (see
  10253. Figures~\ref{fig:x86-2-concrete} and \ref{fig:x86-2}).
  10254. \index{subject}{x86}
  10255. The \code{vector-ref} and \code{vector-set!} forms translate into
  10256. \code{movq} instructions. (The plus one in the offset is to get past
  10257. the tag at the beginning of the tuple representation.)
  10258. \begin{lstlisting}
  10259. |$\itm{lhs}$| = (vector-ref |$\itm{vec}$| |$n$|);
  10260. |$\Longrightarrow$|
  10261. movq |$\itm{vec}'$|, %r11
  10262. movq |$8(n+1)$|(%r11), |$\itm{lhs'}$|
  10263. |$\itm{lhs}$| = (vector-set! |$\itm{vec}$| |$n$| |$\itm{arg}$|);
  10264. |$\Longrightarrow$|
  10265. movq |$\itm{vec}'$|, %r11
  10266. movq |$\itm{arg}'$|, |$8(n+1)$|(%r11)
  10267. movq $0, |$\itm{lhs'}$|
  10268. \end{lstlisting}
  10269. The $\itm{lhs}'$, $\itm{vec}'$, and $\itm{arg}'$ are obtained by
  10270. translating $\itm{vec}$ and $\itm{arg}$ to x86. The move of $\itm{vec}'$ to
  10271. register \code{r11} ensures that offset expression
  10272. \code{$-8(n+1)$(\%r11)} contains a register operand. This requires
  10273. removing \code{r11} from consideration by the register allocating.
  10274. Why not use \code{rax} instead of \code{r11}? Suppose we instead used
  10275. \code{rax}. Then the generated code for \code{vector-set!} would be
  10276. \begin{lstlisting}
  10277. movq |$\itm{vec}'$|, %rax
  10278. movq |$\itm{arg}'$|, |$8(n+1)$|(%rax)
  10279. movq $0, |$\itm{lhs}'$|
  10280. \end{lstlisting}
  10281. Next, suppose that $\itm{arg}'$ ends up as a stack location, so
  10282. \code{patch-instructions} would insert a move through \code{rax}
  10283. as follows.
  10284. \begin{lstlisting}
  10285. movq |$\itm{vec}'$|, %rax
  10286. movq |$\itm{arg}'$|, %rax
  10287. movq %rax, |$8(n+1)$|(%rax)
  10288. movq $0, |$\itm{lhs}'$|
  10289. \end{lstlisting}
  10290. But the above sequence of instructions does not work because we're
  10291. trying to use \code{rax} for two different values ($\itm{vec}'$ and
  10292. $\itm{arg}'$) at the same time!
  10293. We compile the \code{allocate} form to operations on the
  10294. \code{free\_ptr}, as shown below. The address in the \code{free\_ptr}
  10295. is the next free address in the FromSpace, so we copy it into
  10296. \code{r11} and then move it forward by enough space for the tuple
  10297. being allocated, which is $8(\itm{len}+1)$ bytes because each element
  10298. is 8 bytes (64 bits) and we use 8 bytes for the tag. We then
  10299. initialize the \itm{tag} and finally copy the address in \code{r11} to
  10300. the left-hand-side. Refer to Figure~\ref{fig:tuple-rep} to see how the
  10301. tag is organized. We recommend using the Racket operations
  10302. \code{bitwise-ior} and \code{arithmetic-shift} to compute the tag
  10303. during compilation. The type annotation in the \code{vector} form is
  10304. used to determine the pointer mask region of the tag.
  10305. \begin{lstlisting}
  10306. |$\itm{lhs}$| = (allocate |$\itm{len}$| (Vector |$\itm{type} \ldots$|));
  10307. |$\Longrightarrow$|
  10308. movq free_ptr(%rip), %r11
  10309. addq |$8(\itm{len}+1)$|, free_ptr(%rip)
  10310. movq $|$\itm{tag}$|, 0(%r11)
  10311. movq %r11, |$\itm{lhs}'$|
  10312. \end{lstlisting}
  10313. The \code{collect} form is compiled to a call to the \code{collect}
  10314. function in the runtime. The arguments to \code{collect} are 1) the
  10315. top of the root stack and 2) the number of bytes that need to be
  10316. allocated. We use another dedicated register, \code{r15}, to
  10317. store the pointer to the top of the root stack. So \code{r15} is not
  10318. available for use by the register allocator.
  10319. \begin{lstlisting}
  10320. (collect |$\itm{bytes}$|)
  10321. |$\Longrightarrow$|
  10322. movq %r15, %rdi
  10323. movq $|\itm{bytes}|, %rsi
  10324. callq collect
  10325. \end{lstlisting}
  10326. \begin{figure}[tp]
  10327. \fbox{
  10328. \begin{minipage}{0.96\textwidth}
  10329. \[
  10330. \begin{array}{lcl}
  10331. \Arg &::=& \gray{ \key{\$}\Int \MID \key{\%}\Reg \MID \Int\key{(}\key{\%}\Reg\key{)} \MID \key{\%}\itm{bytereg} } \MID \Var \key{(\%rip)} \\
  10332. \LangXGlobalM{} &::= & \gray{ \key{.globl main} }\\
  10333. & & \gray{ \key{main:} \; \Instr\ldots }
  10334. \end{array}
  10335. \]
  10336. \end{minipage}
  10337. }
  10338. \caption{The concrete syntax of \LangXGlobal{} (extends \LangXIf{} of Figure~\ref{fig:x86-1-concrete}).}
  10339. \label{fig:x86-2-concrete}
  10340. \end{figure}
  10341. \begin{figure}[tp]
  10342. \fbox{
  10343. \begin{minipage}{0.96\textwidth}
  10344. \small
  10345. \[
  10346. \begin{array}{lcl}
  10347. \Arg &::=& \gray{ \INT{\Int} \MID \REG{\Reg} \MID \DEREF{\Reg}{\Int}
  10348. \MID \BYTEREG{\Reg}} \\
  10349. &\MID& (\key{Global}~\Var) \\
  10350. \LangXGlobalM{} &::= & \gray{ \XPROGRAM{\itm{info}}{\LP\LP\itm{label} \,\key{.}\, \Block \RP\ldots\RP} }
  10351. \end{array}
  10352. \]
  10353. \end{minipage}
  10354. }
  10355. \caption{The abstract syntax of \LangXGlobal{} (extends \LangXIf{} of Figure~\ref{fig:x86-1}).}
  10356. \label{fig:x86-2}
  10357. \end{figure}
  10358. The concrete and abstract syntax of the \LangXGlobal{} language is
  10359. defined in Figures~\ref{fig:x86-2-concrete} and \ref{fig:x86-2}. It
  10360. differs from \LangXIf{} just in the addition of the form for global
  10361. variables.
  10362. %
  10363. Figure~\ref{fig:select-instr-output-gc} shows the output of the
  10364. \code{select-instructions} pass on the running example.
  10365. \begin{figure}[tbp]
  10366. \centering
  10367. % tests/s2_17.rkt
  10368. \begin{minipage}[t]{0.5\textwidth}
  10369. \begin{lstlisting}[basicstyle=\ttfamily\scriptsize]
  10370. block35:
  10371. movq free_ptr(%rip), alloc9024
  10372. addq $16, free_ptr(%rip)
  10373. movq alloc9024, %r11
  10374. movq $131, 0(%r11)
  10375. movq alloc9024, %r11
  10376. movq vecinit9025, 8(%r11)
  10377. movq $0, initret9026
  10378. movq alloc9024, %r11
  10379. movq 8(%r11), tmp9034
  10380. movq tmp9034, %r11
  10381. movq 8(%r11), %rax
  10382. jmp conclusion
  10383. block36:
  10384. movq $0, collectret9027
  10385. jmp block35
  10386. block38:
  10387. movq free_ptr(%rip), alloc9020
  10388. addq $16, free_ptr(%rip)
  10389. movq alloc9020, %r11
  10390. movq $3, 0(%r11)
  10391. movq alloc9020, %r11
  10392. movq vecinit9021, 8(%r11)
  10393. movq $0, initret9022
  10394. movq alloc9020, vecinit9025
  10395. movq free_ptr(%rip), tmp9031
  10396. movq tmp9031, tmp9032
  10397. addq $16, tmp9032
  10398. movq fromspace_end(%rip), tmp9033
  10399. cmpq tmp9033, tmp9032
  10400. jl block36
  10401. jmp block37
  10402. block37:
  10403. movq %r15, %rdi
  10404. movq $16, %rsi
  10405. callq 'collect
  10406. jmp block35
  10407. block39:
  10408. movq $0, collectret9023
  10409. jmp block38
  10410. \end{lstlisting}
  10411. \end{minipage}
  10412. \begin{minipage}[t]{0.45\textwidth}
  10413. \begin{lstlisting}[basicstyle=\ttfamily\scriptsize]
  10414. start:
  10415. movq $42, vecinit9021
  10416. movq free_ptr(%rip), tmp9028
  10417. movq tmp9028, tmp9029
  10418. addq $16, tmp9029
  10419. movq fromspace_end(%rip), tmp9030
  10420. cmpq tmp9030, tmp9029
  10421. jl block39
  10422. jmp block40
  10423. block40:
  10424. movq %r15, %rdi
  10425. movq $16, %rsi
  10426. callq 'collect
  10427. jmp block38
  10428. \end{lstlisting}
  10429. \end{minipage}
  10430. \caption{Output of the \code{select-instructions} pass.}
  10431. \label{fig:select-instr-output-gc}
  10432. \end{figure}
  10433. \clearpage
  10434. \section{Register Allocation}
  10435. \label{sec:reg-alloc-gc}
  10436. \index{subject}{register allocation}
  10437. As discussed earlier in this chapter, the garbage collector needs to
  10438. access all the pointers in the root set, that is, all variables that
  10439. are vectors. It will be the responsibility of the register allocator
  10440. to make sure that:
  10441. \begin{enumerate}
  10442. \item the root stack is used for spilling vector-typed variables, and
  10443. \item if a vector-typed variable is live during a call to the
  10444. collector, it must be spilled to ensure it is visible to the
  10445. collector.
  10446. \end{enumerate}
  10447. The later responsibility can be handled during construction of the
  10448. interference graph, by adding interference edges between the call-live
  10449. vector-typed variables and all the callee-saved registers. (They
  10450. already interfere with the caller-saved registers.) The type
  10451. information for variables is in the \code{Program} form, so we
  10452. recommend adding another parameter to the \code{build-interference}
  10453. function to communicate this alist.
  10454. The spilling of vector-typed variables to the root stack can be
  10455. handled after graph coloring, when choosing how to assign the colors
  10456. (integers) to registers and stack locations. The \code{Program} output
  10457. of this pass changes to also record the number of spills to the root
  10458. stack.
  10459. % build-interference
  10460. %
  10461. % callq
  10462. % extra parameter for var->type assoc. list
  10463. % update 'program' and 'if'
  10464. % allocate-registers
  10465. % allocate spilled vectors to the rootstack
  10466. % don't change color-graph
  10467. \section{Print x86}
  10468. \label{sec:print-x86-gc}
  10469. \index{subject}{prelude}\index{subject}{conclusion}
  10470. Figure~\ref{fig:print-x86-output-gc} shows the output of the
  10471. \code{print\_x86} pass on the running example. In the prelude and
  10472. conclusion of the \code{main} function, we treat the root stack very
  10473. much like the regular stack in that we move the root stack pointer
  10474. (\code{r15}) to make room for the spills to the root stack, except
  10475. that the root stack grows up instead of down. For the running
  10476. example, there was just one spill so we increment \code{r15} by 8
  10477. bytes. In the conclusion we decrement \code{r15} by 8 bytes.
  10478. One issue that deserves special care is that there may be a call to
  10479. \code{collect} prior to the initializing assignments for all the
  10480. variables in the root stack. We do not want the garbage collector to
  10481. accidentally think that some uninitialized variable is a pointer that
  10482. needs to be followed. Thus, we zero-out all locations on the root
  10483. stack in the prelude of \code{main}. In
  10484. Figure~\ref{fig:print-x86-output-gc}, the instruction
  10485. %
  10486. \lstinline{movq $0, (%r15)}
  10487. %
  10488. accomplishes this task. The garbage collector tests each root to see
  10489. if it is null prior to dereferencing it.
  10490. \begin{figure}[htbp]
  10491. \begin{minipage}[t]{0.5\textwidth}
  10492. \begin{lstlisting}[basicstyle=\ttfamily\scriptsize]
  10493. block35:
  10494. movq free_ptr(%rip), %rcx
  10495. addq $16, free_ptr(%rip)
  10496. movq %rcx, %r11
  10497. movq $131, 0(%r11)
  10498. movq %rcx, %r11
  10499. movq -8(%r15), %rax
  10500. movq %rax, 8(%r11)
  10501. movq $0, %rdx
  10502. movq %rcx, %r11
  10503. movq 8(%r11), %rcx
  10504. movq %rcx, %r11
  10505. movq 8(%r11), %rax
  10506. jmp conclusion
  10507. block36:
  10508. movq $0, %rcx
  10509. jmp block35
  10510. block38:
  10511. movq free_ptr(%rip), %rcx
  10512. addq $16, free_ptr(%rip)
  10513. movq %rcx, %r11
  10514. movq $3, 0(%r11)
  10515. movq %rcx, %r11
  10516. movq %rbx, 8(%r11)
  10517. movq $0, %rdx
  10518. movq %rcx, -8(%r15)
  10519. movq free_ptr(%rip), %rcx
  10520. addq $16, %rcx
  10521. movq fromspace_end(%rip), %rdx
  10522. cmpq %rdx, %rcx
  10523. jl block36
  10524. movq %r15, %rdi
  10525. movq $16, %rsi
  10526. callq collect
  10527. jmp block35
  10528. block39:
  10529. movq $0, %rcx
  10530. jmp block38
  10531. \end{lstlisting}
  10532. \end{minipage}
  10533. \begin{minipage}[t]{0.45\textwidth}
  10534. \begin{lstlisting}[basicstyle=\ttfamily\scriptsize]
  10535. start:
  10536. movq $42, %rbx
  10537. movq free_ptr(%rip), %rdx
  10538. addq $16, %rdx
  10539. movq fromspace_end(%rip), %rcx
  10540. cmpq %rcx, %rdx
  10541. jl block39
  10542. movq %r15, %rdi
  10543. movq $16, %rsi
  10544. callq collect
  10545. jmp block38
  10546. .globl main
  10547. main:
  10548. pushq %rbp
  10549. movq %rsp, %rbp
  10550. pushq %r13
  10551. pushq %r12
  10552. pushq %rbx
  10553. pushq %r14
  10554. subq $0, %rsp
  10555. movq $16384, %rdi
  10556. movq $16384, %rsi
  10557. callq initialize
  10558. movq rootstack_begin(%rip), %r15
  10559. movq $0, (%r15)
  10560. addq $8, %r15
  10561. jmp start
  10562. conclusion:
  10563. subq $8, %r15
  10564. addq $0, %rsp
  10565. popq %r14
  10566. popq %rbx
  10567. popq %r12
  10568. popq %r13
  10569. popq %rbp
  10570. retq
  10571. \end{lstlisting}
  10572. \end{minipage}
  10573. \caption{Output of the \code{print\_x86} pass.}
  10574. \label{fig:print-x86-output-gc}
  10575. \end{figure}
  10576. \begin{figure}[p]
  10577. \begin{tikzpicture}[baseline=(current bounding box.center)]
  10578. \node (Rvec) at (0,2) {\large \LangVec{}};
  10579. \node (Rvec-2) at (3,2) {\large \LangVec{}};
  10580. \node (Rvec-3) at (6,2) {\large \LangVec{}};
  10581. \node (Rvec-4) at (9,2) {\large \LangVec{}};
  10582. \node (Rvec-5) at (12,2) {\large \LangAlloc{}};
  10583. \node (C2-4) at (3,0) {\large \LangCVec{}};
  10584. \node (x86-2) at (3,-2) {\large \LangXGlobalVar{}};
  10585. \node (x86-2-1) at (3,-4) {\large \LangXGlobalVar{}};
  10586. \node (x86-2-2) at (6,-4) {\large \LangXGlobalVar{}};
  10587. \node (x86-3) at (6,-2) {\large \LangXGlobalVar{}};
  10588. \node (x86-4) at (9,-2) {\large \LangXGlobal{}};
  10589. \node (x86-5) at (9,-4) {\large \LangXGlobal{}};
  10590. %\path[->,bend left=15] (Rvec) edge [above] node {\ttfamily\footnotesize type-check} (Rvec-2);
  10591. \path[->,bend left=15] (Rvec) edge [above] node {\ttfamily\footnotesize shrink} (Rvec-2);
  10592. \path[->,bend left=15] (Rvec-2) edge [above] node {\ttfamily\footnotesize uniquify} (Rvec-3);
  10593. \path[->,bend left=15] (Rvec-3) edge [above] node {\ttfamily\footnotesize expose-alloc.} (Rvec-4);
  10594. \path[->,bend left=15] (Rvec-4) edge [above] node {\ttfamily\footnotesize remove-complex.} (Rvec-5);
  10595. \path[->,bend left=20] (Rvec-5) edge [left] node {\ttfamily\footnotesize explicate-control} (C2-4);
  10596. \path[->,bend left=15] (C2-4) edge [right] node {\ttfamily\footnotesize select-instr.} (x86-2);
  10597. \path[->,bend right=15] (x86-2) edge [left] node {\ttfamily\footnotesize uncover-live} (x86-2-1);
  10598. \path[->,bend right=15] (x86-2-1) edge [below] node {\ttfamily\footnotesize build-inter.} (x86-2-2);
  10599. \path[->,bend right=15] (x86-2-2) edge [right] node {\ttfamily\footnotesize allocate-reg.} (x86-3);
  10600. \path[->,bend left=15] (x86-3) edge [above] node {\ttfamily\footnotesize patch-instr.} (x86-4);
  10601. \path[->,bend left=15] (x86-4) edge [right] node {\ttfamily\footnotesize print-x86} (x86-5);
  10602. \end{tikzpicture}
  10603. \caption{Diagram of the passes for \LangVec{}, a language with tuples.}
  10604. \label{fig:Rvec-passes}
  10605. \end{figure}
  10606. Figure~\ref{fig:Rvec-passes} gives an overview of all the passes needed
  10607. for the compilation of \LangVec{}.
  10608. \section{Challenge: Simple Structures}
  10609. \label{sec:simple-structures}
  10610. \index{subject}{struct}
  10611. \index{subject}{structure}
  10612. Figure~\ref{fig:r3s-concrete-syntax} defines the concrete syntax for
  10613. \LangStruct{}, which extends \LangVec{} with support for simple structures.
  10614. Recall that a \code{struct} in Typed Racket is a user-defined data
  10615. type that contains named fields and that is heap allocated, similar to
  10616. a vector. The following is an example of a structure definition, in
  10617. this case the definition of a \code{point} type.
  10618. \begin{lstlisting}
  10619. (struct point ([x : Integer] [y : Integer]) #:mutable)
  10620. \end{lstlisting}
  10621. \begin{figure}[tbp]
  10622. \centering
  10623. \fbox{
  10624. \begin{minipage}{0.96\textwidth}
  10625. \[
  10626. \begin{array}{lcl}
  10627. \Type &::=& \gray{\key{Integer} \MID \key{Boolean}
  10628. \MID (\key{Vector}\;\Type \ldots) \MID \key{Void} } \MID \Var \\
  10629. \itm{cmp} &::= & \gray{ \key{eq?} \MID \key{<} \MID \key{<=} \MID \key{>} \MID \key{>=} } \\
  10630. \Exp &::=& \gray{ \Int \MID (\key{read}) \MID (\key{-}\;\Exp) \MID (\key{+} \; \Exp\;\Exp) \MID (\key{-}\;\Exp\;\Exp) } \\
  10631. &\MID& \gray{ \Var \MID (\key{let}~([\Var~\Exp])~\Exp) }\\
  10632. &\MID& \gray{ \key{\#t} \MID \key{\#f}
  10633. \MID (\key{and}\;\Exp\;\Exp)
  10634. \MID (\key{or}\;\Exp\;\Exp)
  10635. \MID (\key{not}\;\Exp) } \\
  10636. &\MID& \gray{ (\itm{cmp}\;\Exp\;\Exp)
  10637. \MID (\key{if}~\Exp~\Exp~\Exp) } \\
  10638. &\MID& \gray{ (\key{vector}\;\Exp \ldots)
  10639. \MID (\key{vector-ref}\;\Exp\;\Int) } \\
  10640. &\MID& \gray{ (\key{vector-set!}\;\Exp\;\Int\;\Exp) }\\
  10641. &\MID& \gray{ (\key{void}) } \MID (\Var\;\Exp \ldots)\\
  10642. \Def &::=& (\key{struct}\; \Var \; ([\Var \,\key{:}\, \Type] \ldots)\; \code{\#:mutable})\\
  10643. \LangStruct{} &::=& \Def \ldots \; \Exp
  10644. \end{array}
  10645. \]
  10646. \end{minipage}
  10647. }
  10648. \caption{The concrete syntax of \LangStruct{}, extending \LangVec{}
  10649. (Figure~\ref{fig:Rvec-concrete-syntax}).}
  10650. \label{fig:r3s-concrete-syntax}
  10651. \end{figure}
  10652. An instance of a structure is created using function call syntax, with
  10653. the name of the structure in the function position:
  10654. \begin{lstlisting}
  10655. (point 7 12)
  10656. \end{lstlisting}
  10657. Function-call syntax is also used to read the value in a field of a
  10658. structure. The function name is formed by the structure name, a dash,
  10659. and the field name. The following example uses \code{point-x} and
  10660. \code{point-y} to access the \code{x} and \code{y} fields of two point
  10661. instances.
  10662. \begin{center}
  10663. \begin{lstlisting}
  10664. (let ([pt1 (point 7 12)])
  10665. (let ([pt2 (point 4 3)])
  10666. (+ (- (point-x pt1) (point-x pt2))
  10667. (- (point-y pt1) (point-y pt2)))))
  10668. \end{lstlisting}
  10669. \end{center}
  10670. Similarly, to write to a field of a structure, use its set function,
  10671. whose name starts with \code{set-}, followed by the structure name,
  10672. then a dash, then the field name, and concluded with an exclamation
  10673. mark. The following example uses \code{set-point-x!} to change the
  10674. \code{x} field from \code{7} to \code{42}.
  10675. \begin{center}
  10676. \begin{lstlisting}
  10677. (let ([pt (point 7 12)])
  10678. (let ([_ (set-point-x! pt 42)])
  10679. (point-x pt)))
  10680. \end{lstlisting}
  10681. \end{center}
  10682. \begin{exercise}\normalfont
  10683. Extend your compiler with support for simple structures, compiling
  10684. \LangStruct{} to x86 assembly code. Create five new test cases that use
  10685. structures and test your compiler.
  10686. \end{exercise}
  10687. \section{Challenge: Generational Collection}
  10688. The copying collector described in Section~\ref{sec:GC} can incur
  10689. significant runtime overhead because the call to \code{collect} takes
  10690. time proportional to all of the live data. One way to reduce this
  10691. overhead is to reduce how much data is inspected in each call to
  10692. \code{collect}. In particular, researchers have observed that recently
  10693. allocated data is more likely to become garbage then data that has
  10694. survived one or more previous calls to \code{collect}. This insight
  10695. motivated the creation of \emph{generational garbage collectors}
  10696. \index{subject}{generational garbage collector} that
  10697. 1) segregates data according to its age into two or more generations,
  10698. 2) allocates less space for younger generations, so collecting them is
  10699. faster, and more space for the older generations, and 3) performs
  10700. collection on the younger generations more frequently then for older
  10701. generations~\citep{Wilson:1992fk}.
  10702. For this challenge assignment, the goal is to adapt the copying
  10703. collector implemented in \code{runtime.c} to use two generations, one
  10704. for young data and one for old data. Each generation consists of a
  10705. FromSpace and a ToSpace. The following is a sketch of how to adapt the
  10706. \code{collect} function to use the two generations.
  10707. \begin{enumerate}
  10708. \item Copy the young generation's FromSpace to its ToSpace then switch
  10709. the role of the ToSpace and FromSpace
  10710. \item If there is enough space for the requested number of bytes in
  10711. the young FromSpace, then return from \code{collect}.
  10712. \item If there is not enough space in the young FromSpace for the
  10713. requested bytes, then move the data from the young generation to the
  10714. old one with the following steps:
  10715. \begin{enumerate}
  10716. \item If there is enough room in the old FromSpace, copy the young
  10717. FromSpace to the old FromSpace and then return.
  10718. \item If there is not enough room in the old FromSpace, then collect
  10719. the old generation by copying the old FromSpace to the old ToSpace
  10720. and swap the roles of the old FromSpace and ToSpace.
  10721. \item If there is enough room now, copy the young FromSpace to the
  10722. old FromSpace and return. Otherwise, allocate a larger FromSpace
  10723. and ToSpace for the old generation. Copy the young FromSpace and
  10724. the old FromSpace into the larger FromSpace for the old
  10725. generation and then return.
  10726. \end{enumerate}
  10727. \end{enumerate}
  10728. We recommend that you generalize the \code{cheney} function so that it
  10729. can be used for all the copies mentioned above: between the young
  10730. FromSpace and ToSpace, between the old FromSpace and ToSpace, and
  10731. between the young FromSpace and old FromSpace. This can be
  10732. accomplished by adding parameters to \code{cheney} that replace its
  10733. use of the global variables \code{fromspace\_begin},
  10734. \code{fromspace\_end}, \code{tospace\_begin}, and \code{tospace\_end}.
  10735. Note that the collection of the young generation does not traverse the
  10736. old generation. This introduces a potential problem: there may be
  10737. young data that is only reachable through pointers in the old
  10738. generation. If these pointers are not taken into account, the
  10739. collector could throw away young data that is live! One solution,
  10740. called \emph{pointer recording}, is to maintain a set of all the
  10741. pointers from the old generation into the new generation and consider
  10742. this set as part of the root set. To maintain this set, the compiler
  10743. must insert extra instructions around every \code{vector-set!}. If the
  10744. vector being modified is in the old generation, and if the value being
  10745. written is a pointer into the new generation, than that pointer must
  10746. be added to the set. Also, if the value being overwritten was a
  10747. pointer into the new generation, then that pointer should be removed
  10748. from the set.
  10749. \begin{exercise}\normalfont
  10750. Adapt the \code{collect} function in \code{runtime.c} to implement
  10751. generational garbage collection, as outlined in this section.
  10752. Update the code generation for \code{vector-set!} to implement
  10753. pointer recording. Make sure that your new compiler and runtime
  10754. passes your test suite.
  10755. \end{exercise}
  10756. % Further Reading
  10757. \fi % racketEd
  10758. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  10759. \chapter{Functions}
  10760. \label{ch:Rfun}
  10761. \index{subject}{function}
  10762. \if\edition\racketEd
  10763. This chapter studies the compilation of functions similar to those
  10764. found in the C language. This corresponds to a subset of Typed Racket
  10765. in which only top-level function definitions are allowed. This kind of
  10766. function is an important stepping stone to implementing
  10767. lexically-scoped functions, that is, \key{lambda} abstractions, which
  10768. is the topic of Chapter~\ref{ch:Rlam}.
  10769. \section{The \LangFun{} Language}
  10770. The concrete and abstract syntax for function definitions and function
  10771. application is shown in Figures~\ref{fig:Rfun-concrete-syntax} and
  10772. \ref{fig:Rfun-syntax}, where we define the \LangFun{} language. Programs in
  10773. \LangFun{} begin with zero or more function definitions. The function
  10774. names from these definitions are in-scope for the entire program,
  10775. including all other function definitions (so the ordering of function
  10776. definitions does not matter). The concrete syntax for function
  10777. application\index{subject}{function application} is $(\Exp \; \Exp \ldots)$
  10778. where the first expression must
  10779. evaluate to a function and the rest are the arguments.
  10780. The abstract syntax for function application is
  10781. $\APPLY{\Exp}{\Exp\ldots}$.
  10782. %% The syntax for function application does not include an explicit
  10783. %% keyword, which is error prone when using \code{match}. To alleviate
  10784. %% this problem, we translate the syntax from $(\Exp \; \Exp \ldots)$ to
  10785. %% $(\key{app}\; \Exp \; \Exp \ldots)$ during type checking.
  10786. Functions are first-class in the sense that a function pointer
  10787. \index{subject}{function pointer} is data and can be stored in memory or passed
  10788. as a parameter to another function. Thus, we introduce a function
  10789. type, written
  10790. \begin{lstlisting}
  10791. (|$\Type_1$| |$\cdots$| |$\Type_n$| -> |$\Type_r$|)
  10792. \end{lstlisting}
  10793. for a function whose $n$ parameters have the types $\Type_1$ through
  10794. $\Type_n$ and whose return type is $\Type_r$. The main limitation of
  10795. these functions (with respect to Racket functions) is that they are
  10796. not lexically scoped. That is, the only external entities that can be
  10797. referenced from inside a function body are other globally-defined
  10798. functions. The syntax of \LangFun{} prevents functions from being nested
  10799. inside each other.
  10800. \begin{figure}[tp]
  10801. \centering
  10802. \fbox{
  10803. \begin{minipage}{0.96\textwidth}
  10804. \small
  10805. \[
  10806. \begin{array}{lcl}
  10807. \Type &::=& \gray{ \key{Integer} \MID \key{Boolean}
  10808. \MID (\key{Vector}\;\Type\ldots) \MID \key{Void} } \MID (\Type \ldots \; \key{->}\; \Type) \\
  10809. \itm{cmp} &::= & \gray{ \key{eq?} \MID \key{<} \MID \key{<=} \MID \key{>} \MID \key{>=} } \\
  10810. \Exp &::=& \gray{ \Int \MID \CREAD{} \MID \CNEG{\Exp} \MID \CADD{\Exp}{\Exp} \MID \CSUB{\Exp}{\Exp} } \\
  10811. &\MID& \gray{ \Var \MID \CLET{\Var}{\Exp}{\Exp} }\\
  10812. &\MID& \gray{ \key{\#t} \MID \key{\#f}
  10813. \MID (\key{and}\;\Exp\;\Exp)
  10814. \MID (\key{or}\;\Exp\;\Exp)
  10815. \MID (\key{not}\;\Exp)} \\
  10816. &\MID& \gray{(\itm{cmp}\;\Exp\;\Exp) \MID \CIF{\Exp}{\Exp}{\Exp} } \\
  10817. &\MID& \gray{(\key{vector}\;\Exp\ldots) \MID
  10818. (\key{vector-ref}\;\Exp\;\Int)} \\
  10819. &\MID& \gray{(\key{vector-set!}\;\Exp\;\Int\;\Exp)\MID (\key{void})
  10820. \MID \LP\key{has-type}~\Exp~\Type\RP } \\
  10821. &\MID& \LP\Exp \; \Exp \ldots\RP \\
  10822. \Def &::=& \CDEF{\Var}{\LS\Var \key{:} \Type\RS \ldots}{\Type}{\Exp} \\
  10823. \LangFunM{} &::=& \Def \ldots \; \Exp
  10824. \end{array}
  10825. \]
  10826. \end{minipage}
  10827. }
  10828. \caption{The concrete syntax of \LangFun{}, extending \LangVec{} (Figure~\ref{fig:Rvec-concrete-syntax}).}
  10829. \label{fig:Rfun-concrete-syntax}
  10830. \end{figure}
  10831. \begin{figure}[tp]
  10832. \centering
  10833. \fbox{
  10834. \begin{minipage}{0.96\textwidth}
  10835. \small
  10836. \[
  10837. \begin{array}{lcl}
  10838. \Exp &::=& \gray{ \INT{\Int} \MID \VAR{\Var} \MID \LET{\Var}{\Exp}{\Exp} } \\
  10839. &\MID& \gray{ \PRIM{\itm{op}}{\Exp\ldots} }\\
  10840. &\MID& \gray{ \BOOL{\itm{bool}}
  10841. \MID \IF{\Exp}{\Exp}{\Exp} } \\
  10842. &\MID& \gray{ \VOID{} \MID \LP\key{HasType}~\Exp~\Type \RP }
  10843. \MID \APPLY{\Exp}{\Exp\ldots}\\
  10844. \Def &::=& \FUNDEF{\Var}{\LP[\Var \code{:} \Type]\ldots\RP}{\Type}{\code{'()}}{\Exp}\\
  10845. \LangFunM{} &::=& \PROGRAMDEFSEXP{\code{'()}}{\LP\Def\ldots\RP)}{\Exp}
  10846. \end{array}
  10847. \]
  10848. \end{minipage}
  10849. }
  10850. \caption{The abstract syntax of \LangFun{}, extending \LangVec{} (Figure~\ref{fig:Rvec-syntax}).}
  10851. \label{fig:Rfun-syntax}
  10852. \end{figure}
  10853. The program in Figure~\ref{fig:Rfun-function-example} is a
  10854. representative example of defining and using functions in \LangFun{}. We
  10855. define a function \code{map-vec} that applies some other function
  10856. \code{f} to both elements of a vector and returns a new
  10857. vector containing the results. We also define a function \code{add1}.
  10858. The program applies
  10859. \code{map-vec} to \code{add1} and \code{(vector 0 41)}. The result is
  10860. \code{(vector 1 42)}, from which we return the \code{42}.
  10861. \begin{figure}[tbp]
  10862. \begin{lstlisting}
  10863. (define (map-vec [f : (Integer -> Integer)]
  10864. [v : (Vector Integer Integer)])
  10865. : (Vector Integer Integer)
  10866. (vector (f (vector-ref v 0)) (f (vector-ref v 1))))
  10867. (define (add1 [x : Integer]) : Integer
  10868. (+ x 1))
  10869. (vector-ref (map-vec add1 (vector 0 41)) 1)
  10870. \end{lstlisting}
  10871. \caption{Example of using functions in \LangFun{}.}
  10872. \label{fig:Rfun-function-example}
  10873. \end{figure}
  10874. The definitional interpreter for \LangFun{} is in
  10875. Figure~\ref{fig:interp-Rfun}. The case for the \code{ProgramDefsExp} form is
  10876. responsible for setting up the mutual recursion between the top-level
  10877. function definitions. We use the classic back-patching \index{subject}{back-patching}
  10878. approach that uses mutable variables and makes two passes over the function
  10879. definitions~\citep{Kelsey:1998di}. In the first pass we set up the
  10880. top-level environment using a mutable cons cell for each function
  10881. definition. Note that the \code{lambda} value for each function is
  10882. incomplete; it does not yet include the environment. Once the
  10883. top-level environment is constructed, we then iterate over it and
  10884. update the \code{lambda} values to use the top-level environment.
  10885. \begin{figure}[tp]
  10886. \begin{lstlisting}
  10887. (define interp-Rfun_class
  10888. (class interp-Rvec_class
  10889. (super-new)
  10890. (define/override ((interp-exp env) e)
  10891. (define recur (interp-exp env))
  10892. (match e
  10893. [(Var x) (unbox (dict-ref env x))]
  10894. [(Let x e body)
  10895. (define new-env (dict-set env x (box (recur e))))
  10896. ((interp-exp new-env) body)]
  10897. [(Apply fun args)
  10898. (define fun-val (recur fun))
  10899. (define arg-vals (for/list ([e args]) (recur e)))
  10900. (match fun-val
  10901. [`(function (,xs ...) ,body ,fun-env)
  10902. (define params-args (for/list ([x xs] [arg arg-vals])
  10903. (cons x (box arg))))
  10904. (define new-env (append params-args fun-env))
  10905. ((interp-exp new-env) body)]
  10906. [else (error 'interp-exp "expected function, not ~a" fun-val)])]
  10907. [else ((super interp-exp env) e)]
  10908. ))
  10909. (define/public (interp-def d)
  10910. (match d
  10911. [(Def f (list `[,xs : ,ps] ...) rt _ body)
  10912. (cons f (box `(function ,xs ,body ())))]))
  10913. (define/override (interp-program p)
  10914. (match p
  10915. [(ProgramDefsExp info ds body)
  10916. (let ([top-level (for/list ([d ds]) (interp-def d))])
  10917. (for/list ([f (in-dict-values top-level)])
  10918. (set-box! f (match (unbox f)
  10919. [`(function ,xs ,body ())
  10920. `(function ,xs ,body ,top-level)])))
  10921. ((interp-exp top-level) body))]))
  10922. ))
  10923. (define (interp-Rfun p)
  10924. (send (new interp-Rfun_class) interp-program p))
  10925. \end{lstlisting}
  10926. \caption{Interpreter for the \LangFun{} language.}
  10927. \label{fig:interp-Rfun}
  10928. \end{figure}
  10929. %\margincomment{TODO: explain type checker}
  10930. The type checker for \LangFun{} is in Figure~\ref{fig:type-check-Rfun}.
  10931. \begin{figure}[tp]
  10932. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  10933. (define type-check-Rfun_class
  10934. (class type-check-Rvec_class
  10935. (super-new)
  10936. (inherit check-type-equal?)
  10937. (define/public (type-check-apply env e es)
  10938. (define-values (e^ ty) ((type-check-exp env) e))
  10939. (define-values (e* ty*) (for/lists (e* ty*) ([e (in-list es)])
  10940. ((type-check-exp env) e)))
  10941. (match ty
  10942. [`(,ty^* ... -> ,rt)
  10943. (for ([arg-ty ty*] [param-ty ty^*])
  10944. (check-type-equal? arg-ty param-ty (Apply e es)))
  10945. (values e^ e* rt)]))
  10946. (define/override (type-check-exp env)
  10947. (lambda (e)
  10948. (match e
  10949. [(FunRef f)
  10950. (values (FunRef f) (dict-ref env f))]
  10951. [(Apply e es)
  10952. (define-values (e^ es^ rt) (type-check-apply env e es))
  10953. (values (Apply e^ es^) rt)]
  10954. [(Call e es)
  10955. (define-values (e^ es^ rt) (type-check-apply env e es))
  10956. (values (Call e^ es^) rt)]
  10957. [else ((super type-check-exp env) e)])))
  10958. (define/public (type-check-def env)
  10959. (lambda (e)
  10960. (match e
  10961. [(Def f (and p:t* (list `[,xs : ,ps] ...)) rt info body)
  10962. (define new-env (append (map cons xs ps) env))
  10963. (define-values (body^ ty^) ((type-check-exp new-env) body))
  10964. (check-type-equal? ty^ rt body)
  10965. (Def f p:t* rt info body^)])))
  10966. (define/public (fun-def-type d)
  10967. (match d
  10968. [(Def f (list `[,xs : ,ps] ...) rt info body) `(,@ps -> ,rt)]))
  10969. (define/override (type-check-program e)
  10970. (match e
  10971. [(ProgramDefsExp info ds body)
  10972. (define new-env (for/list ([d ds])
  10973. (cons (Def-name d) (fun-def-type d))))
  10974. (define ds^ (for/list ([d ds]) ((type-check-def new-env) d)))
  10975. (define-values (body^ ty) ((type-check-exp new-env) body))
  10976. (check-type-equal? ty 'Integer body)
  10977. (ProgramDefsExp info ds^ body^)]))))
  10978. (define (type-check-Rfun p)
  10979. (send (new type-check-Rfun_class) type-check-program p))
  10980. \end{lstlisting}
  10981. \caption{Type checker for the \LangFun{} language.}
  10982. \label{fig:type-check-Rfun}
  10983. \end{figure}
  10984. \section{Functions in x86}
  10985. \label{sec:fun-x86}
  10986. %% \margincomment{\tiny Make sure callee-saved registers are discussed
  10987. %% in enough depth, especially updating Fig 6.4 \\ --Jeremy }
  10988. %% \margincomment{\tiny Talk about the return address on the
  10989. %% stack and what callq and retq does.\\ --Jeremy }
  10990. The x86 architecture provides a few features to support the
  10991. implementation of functions. We have already seen that x86 provides
  10992. labels so that one can refer to the location of an instruction, as is
  10993. needed for jump instructions. Labels can also be used to mark the
  10994. beginning of the instructions for a function. Going further, we can
  10995. obtain the address of a label by using the \key{leaq} instruction and
  10996. PC-relative addressing. For example, the following puts the
  10997. address of the \code{add1} label into the \code{rbx} register.
  10998. \begin{lstlisting}
  10999. leaq add1(%rip), %rbx
  11000. \end{lstlisting}
  11001. The instruction pointer register \key{rip} (aka. the program counter
  11002. \index{subject}{program counter}) always points to the next instruction to be
  11003. executed. When combined with an label, as in \code{add1(\%rip)}, the
  11004. linker computes the distance $d$ between the address of \code{add1}
  11005. and where the \code{rip} would be at that moment and then changes
  11006. \code{add1(\%rip)} to \code{$d$(\%rip)}, which at runtime will compute
  11007. the address of \code{add1}.
  11008. In Section~\ref{sec:x86} we used of the \code{callq} instruction to
  11009. jump to a function whose location is given by a label. To support
  11010. function calls in this chapter we instead will be jumping to a
  11011. function whose location is given by an address in a register, that is,
  11012. we need to make an \emph{indirect function call}. The x86 syntax for
  11013. this is a \code{callq} instruction but with an asterisk before the
  11014. register name.\index{subject}{indirect function call}
  11015. \begin{lstlisting}
  11016. callq *%rbx
  11017. \end{lstlisting}
  11018. \subsection{Calling Conventions}
  11019. \index{subject}{calling conventions}
  11020. The \code{callq} instruction provides partial support for implementing
  11021. functions: it pushes the return address on the stack and it jumps to
  11022. the target. However, \code{callq} does not handle
  11023. \begin{enumerate}
  11024. \item parameter passing,
  11025. \item pushing frames on the procedure call stack and popping them off,
  11026. or
  11027. \item determining how registers are shared by different functions.
  11028. \end{enumerate}
  11029. Regarding (1) parameter passing, recall that the following six
  11030. registers are used to pass arguments to a function, in this order.
  11031. \begin{lstlisting}
  11032. rdi rsi rdx rcx r8 r9
  11033. \end{lstlisting}
  11034. If there are
  11035. more than six arguments, then the convention is to use space on the
  11036. frame of the caller for the rest of the arguments. However, to ease
  11037. the implementation of efficient tail calls
  11038. (Section~\ref{sec:tail-call}), we arrange never to need more than six
  11039. arguments.
  11040. %
  11041. Also recall that the register \code{rax} is for the return value of
  11042. the function.
  11043. \index{subject}{prelude}\index{subject}{conclusion}
  11044. Regarding (2) frames \index{subject}{frame} and the procedure call stack,
  11045. \index{subject}{procedure call stack} recall from Section~\ref{sec:x86} that
  11046. the stack grows down, with each function call using a chunk of space
  11047. called a frame. The caller sets the stack pointer, register
  11048. \code{rsp}, to the last data item in its frame. The callee must not
  11049. change anything in the caller's frame, that is, anything that is at or
  11050. above the stack pointer. The callee is free to use locations that are
  11051. below the stack pointer.
  11052. Recall that we are storing variables of vector type on the root stack.
  11053. So the prelude needs to move the root stack pointer \code{r15} up and
  11054. the conclusion needs to move the root stack pointer back down. Also,
  11055. the prelude must initialize to \code{0} this frame's slots in the root
  11056. stack to signal to the garbage collector that those slots do not yet
  11057. contain a pointer to a vector. Otherwise the garbage collector will
  11058. interpret the garbage bits in those slots as memory addresses and try
  11059. to traverse them, causing serious mayhem!
  11060. Regarding (3) the sharing of registers between different functions,
  11061. recall from Section~\ref{sec:calling-conventions} that the registers
  11062. are divided into two groups, the caller-saved registers and the
  11063. callee-saved registers. The caller should assume that all the
  11064. caller-saved registers get overwritten with arbitrary values by the
  11065. callee. That is why we recommend in
  11066. Section~\ref{sec:calling-conventions} that variables that are live
  11067. during a function call should not be assigned to caller-saved
  11068. registers.
  11069. On the flip side, if the callee wants to use a callee-saved register,
  11070. the callee must save the contents of those registers on their stack
  11071. frame and then put them back prior to returning to the caller. That
  11072. is why we recommended in Section~\ref{sec:calling-conventions} that if
  11073. the register allocator assigns a variable to a callee-saved register,
  11074. then the prelude of the \code{main} function must save that register
  11075. to the stack and the conclusion of \code{main} must restore it. This
  11076. recommendation now generalizes to all functions.
  11077. Also recall that the base pointer, register \code{rbp}, is used as a
  11078. point-of-reference within a frame, so that each local variable can be
  11079. accessed at a fixed offset from the base pointer
  11080. (Section~\ref{sec:x86}).
  11081. %
  11082. Figure~\ref{fig:call-frames} shows the general layout of the caller
  11083. and callee frames.
  11084. \begin{figure}[tbp]
  11085. \centering
  11086. \begin{tabular}{r|r|l|l} \hline
  11087. Caller View & Callee View & Contents & Frame \\ \hline
  11088. 8(\key{\%rbp}) & & return address & \multirow{5}{*}{Caller}\\
  11089. 0(\key{\%rbp}) & & old \key{rbp} \\
  11090. -8(\key{\%rbp}) & & callee-saved $1$ \\
  11091. \ldots & & \ldots \\
  11092. $-8j$(\key{\%rbp}) & & callee-saved $j$ \\
  11093. $-8(j+1)$(\key{\%rbp}) & & local variable $1$ \\
  11094. \ldots & & \ldots \\
  11095. $-8(j+k)$(\key{\%rbp}) & & local variable $k$ \\
  11096. %% & & \\
  11097. %% $8n-8$\key{(\%rsp)} & $8n+8$(\key{\%rbp})& argument $n$ \\
  11098. %% & \ldots & \ldots \\
  11099. %% 0\key{(\%rsp)} & 16(\key{\%rbp}) & argument $1$ & \\
  11100. \hline
  11101. & 8(\key{\%rbp}) & return address & \multirow{5}{*}{Callee}\\
  11102. & 0(\key{\%rbp}) & old \key{rbp} \\
  11103. & -8(\key{\%rbp}) & callee-saved $1$ \\
  11104. & \ldots & \ldots \\
  11105. & $-8n$(\key{\%rbp}) & callee-saved $n$ \\
  11106. & $-8(n+1)$(\key{\%rbp}) & local variable $1$ \\
  11107. & \ldots & \ldots \\
  11108. & $-8(n+m)$(\key{\%rsp}) & local variable $m$\\ \hline
  11109. \end{tabular}
  11110. \caption{Memory layout of caller and callee frames.}
  11111. \label{fig:call-frames}
  11112. \end{figure}
  11113. %% Recall from Section~\ref{sec:x86} that the stack is also used for
  11114. %% local variables and for storing the values of callee-saved registers
  11115. %% (we shall refer to all of these collectively as ``locals''), and that
  11116. %% at the beginning of a function we move the stack pointer \code{rsp}
  11117. %% down to make room for them.
  11118. %% We recommend storing the local variables
  11119. %% first and then the callee-saved registers, so that the local variables
  11120. %% can be accessed using \code{rbp} the same as before the addition of
  11121. %% functions.
  11122. %% To make additional room for passing arguments, we shall
  11123. %% move the stack pointer even further down. We count how many stack
  11124. %% arguments are needed for each function call that occurs inside the
  11125. %% body of the function and find their maximum. Adding this number to the
  11126. %% number of locals gives us how much the \code{rsp} should be moved at
  11127. %% the beginning of the function. In preparation for a function call, we
  11128. %% offset from \code{rsp} to set up the stack arguments. We put the first
  11129. %% stack argument in \code{0(\%rsp)}, the second in \code{8(\%rsp)}, and
  11130. %% so on.
  11131. %% Upon calling the function, the stack arguments are retrieved by the
  11132. %% callee using the base pointer \code{rbp}. The address \code{16(\%rbp)}
  11133. %% is the location of the first stack argument, \code{24(\%rbp)} is the
  11134. %% address of the second, and so on. Figure~\ref{fig:call-frames} shows
  11135. %% the layout of the caller and callee frames. Notice how important it is
  11136. %% that we correctly compute the maximum number of arguments needed for
  11137. %% function calls; if that number is too small then the arguments and
  11138. %% local variables will smash into each other!
  11139. \subsection{Efficient Tail Calls}
  11140. \label{sec:tail-call}
  11141. In general, the amount of stack space used by a program is determined
  11142. by the longest chain of nested function calls. That is, if function
  11143. $f_1$ calls $f_2$, $f_2$ calls $f_3$, $\ldots$, and $f_{n-1}$ calls
  11144. $f_n$, then the amount of stack space is bounded by $O(n)$. The depth
  11145. $n$ can grow quite large in the case of recursive or mutually
  11146. recursive functions. However, in some cases we can arrange to use only
  11147. constant space, i.e. $O(1)$, instead of $O(n)$.
  11148. If a function call is the last action in a function body, then that
  11149. call is said to be a \emph{tail call}\index{subject}{tail call}.
  11150. For example, in the following
  11151. program, the recursive call to \code{tail-sum} is a tail call.
  11152. \begin{center}
  11153. \begin{lstlisting}
  11154. (define (tail-sum [n : Integer] [r : Integer]) : Integer
  11155. (if (eq? n 0)
  11156. r
  11157. (tail-sum (- n 1) (+ n r))))
  11158. (+ (tail-sum 5 0) 27)
  11159. \end{lstlisting}
  11160. \end{center}
  11161. At a tail call, the frame of the caller is no longer needed, so we
  11162. can pop the caller's frame before making the tail call. With this
  11163. approach, a recursive function that only makes tail calls will only
  11164. use $O(1)$ stack space. Functional languages like Racket typically
  11165. rely heavily on recursive functions, so they typically guarantee that
  11166. all tail calls will be optimized in this way.
  11167. \index{subject}{frame}
  11168. However, some care is needed with regards to argument passing in tail
  11169. calls. As mentioned above, for arguments beyond the sixth, the
  11170. convention is to use space in the caller's frame for passing
  11171. arguments. But for a tail call we pop the caller's frame and can no
  11172. longer use it. Another alternative is to use space in the callee's
  11173. frame for passing arguments. However, this option is also problematic
  11174. because the caller and callee's frame overlap in memory. As we begin
  11175. to copy the arguments from their sources in the caller's frame, the
  11176. target locations in the callee's frame might overlap with the sources
  11177. for later arguments! We solve this problem by using the heap instead
  11178. of the stack for passing more than six arguments, as we describe in
  11179. the Section~\ref{sec:limit-functions-r4}.
  11180. As mentioned above, for a tail call we pop the caller's frame prior to
  11181. making the tail call. The instructions for popping a frame are the
  11182. instructions that we usually place in the conclusion of a
  11183. function. Thus, we also need to place such code immediately before
  11184. each tail call. These instructions include restoring the callee-saved
  11185. registers, so it is good that the argument passing registers are all
  11186. caller-saved registers.
  11187. One last note regarding which instruction to use to make the tail
  11188. call. When the callee is finished, it should not return to the current
  11189. function, but it should return to the function that called the current
  11190. one. Thus, the return address that is already on the stack is the
  11191. right one, and we should not use \key{callq} to make the tail call, as
  11192. that would unnecessarily overwrite the return address. Instead we can
  11193. simply use the \key{jmp} instruction. Like the indirect function call,
  11194. we write an \emph{indirect jump}\index{subject}{indirect jump} with a register
  11195. prefixed with an asterisk. We recommend using \code{rax} to hold the
  11196. jump target because the preceding conclusion overwrites just about
  11197. everything else.
  11198. \begin{lstlisting}
  11199. jmp *%rax
  11200. \end{lstlisting}
  11201. \section{Shrink \LangFun{}}
  11202. \label{sec:shrink-r4}
  11203. The \code{shrink} pass performs a minor modification to ease the
  11204. later passes. This pass introduces an explicit \code{main} function
  11205. and changes the top \code{ProgramDefsExp} form to
  11206. \code{ProgramDefs} as follows.
  11207. \begin{lstlisting}
  11208. (ProgramDefsExp |$\itm{info}$| (|$\Def\ldots$|) |$\Exp$|)
  11209. |$\Rightarrow$| (ProgramDefs |$\itm{info}$| (|$\Def\ldots$| |$\itm{mainDef}$|))
  11210. \end{lstlisting}
  11211. where $\itm{mainDef}$ is
  11212. \begin{lstlisting}
  11213. (Def 'main '() 'Integer '() |$\Exp'$|)
  11214. \end{lstlisting}
  11215. \section{Reveal Functions and the \LangFunRef{} language}
  11216. \label{sec:reveal-functions-r4}
  11217. The syntax of \LangFun{} is inconvenient for purposes of compilation in one
  11218. respect: it conflates the use of function names and local
  11219. variables. This is a problem because we need to compile the use of a
  11220. function name differently than the use of a local variable; we need to
  11221. use \code{leaq} to convert the function name (a label in x86) to an
  11222. address in a register. Thus, it is a good idea to create a new pass
  11223. that changes function references from just a symbol $f$ to
  11224. $\FUNREF{f}$. This pass is named \code{reveal-functions} and the
  11225. output language, \LangFunRef{}, is defined in Figure~\ref{fig:f1-syntax}.
  11226. The concrete syntax for a function reference is $\CFUNREF{f}$.
  11227. \begin{figure}[tp]
  11228. \centering
  11229. \fbox{
  11230. \begin{minipage}{0.96\textwidth}
  11231. \[
  11232. \begin{array}{lcl}
  11233. \Exp &::=& \ldots \MID \FUNREF{\Var}\\
  11234. \Def &::=& \gray{ \FUNDEF{\Var}{([\Var \code{:} \Type]\ldots)}{\Type}{\code{'()}}{\Exp} }\\
  11235. \LangFunRefM{} &::=& \PROGRAMDEFS{\code{'()}}{\LP \Def\ldots \RP}
  11236. \end{array}
  11237. \]
  11238. \end{minipage}
  11239. }
  11240. \caption{The abstract syntax \LangFunRef{}, an extension of \LangFun{}
  11241. (Figure~\ref{fig:Rfun-syntax}).}
  11242. \label{fig:f1-syntax}
  11243. \end{figure}
  11244. %% Distinguishing between calls in tail position and non-tail position
  11245. %% requires the pass to have some notion of context. We recommend using
  11246. %% two mutually recursive functions, one for processing expressions in
  11247. %% tail position and another for the rest.
  11248. Placing this pass after \code{uniquify} will make sure that there are
  11249. no local variables and functions that share the same name. On the
  11250. other hand, \code{reveal-functions} needs to come before the
  11251. \code{explicate\_control} pass because that pass helps us compile
  11252. \code{FunRef} forms into assignment statements.
  11253. \section{Limit Functions}
  11254. \label{sec:limit-functions-r4}
  11255. Recall that we wish to limit the number of function parameters to six
  11256. so that we do not need to use the stack for argument passing, which
  11257. makes it easier to implement efficient tail calls. However, because
  11258. the input language \LangFun{} supports arbitrary numbers of function
  11259. arguments, we have some work to do!
  11260. This pass transforms functions and function calls that involve more
  11261. than six arguments to pass the first five arguments as usual, but it
  11262. packs the rest of the arguments into a vector and passes it as the
  11263. sixth argument.
  11264. Each function definition with too many parameters is transformed as
  11265. follows.
  11266. \begin{lstlisting}
  11267. (Def |$f$| ([|$x_1$|:|$T_1$|] |$\ldots$| [|$x_n$|:|$T_n$|]) |$T_r$| |$\itm{info}$| |$\itm{body}$|)
  11268. |$\Rightarrow$|
  11269. (Def |$f$| ([|$x_1$|:|$T_1$|] |$\ldots$| [|$x_5$|:|$T_5$|] [vec : (Vector |$T_6 \ldots T_n$|)]) |$T_r$| |$\itm{info}$| |$\itm{body}'$|)
  11270. \end{lstlisting}
  11271. where the $\itm{body}$ is transformed into $\itm{body}'$ by replacing
  11272. the occurrences of the later parameters with vector references.
  11273. \begin{lstlisting}
  11274. (Var |$x_i$|) |$\Rightarrow$| (Prim 'vector-ref (list vec (Int |$(i - 6)$|)))
  11275. \end{lstlisting}
  11276. For function calls with too many arguments, the \code{limit-functions}
  11277. pass transforms them in the following way.
  11278. \begin{tabular}{lll}
  11279. \begin{minipage}{0.2\textwidth}
  11280. \begin{lstlisting}
  11281. (|$e_0$| |$e_1$| |$\ldots$| |$e_n$|)
  11282. \end{lstlisting}
  11283. \end{minipage}
  11284. &
  11285. $\Rightarrow$
  11286. &
  11287. \begin{minipage}{0.4\textwidth}
  11288. \begin{lstlisting}
  11289. (|$e_0$| |$e_1 \ldots e_5$| (vector |$e_6 \ldots e_n$|))
  11290. \end{lstlisting}
  11291. \end{minipage}
  11292. \end{tabular}
  11293. \section{Remove Complex Operands}
  11294. \label{sec:rco-r4}
  11295. The primary decisions to make for this pass is whether to classify
  11296. \code{FunRef} and \code{Apply} as either atomic or complex
  11297. expressions. Recall that a simple expression will eventually end up as
  11298. just an immediate argument of an x86 instruction. Function
  11299. application will be translated to a sequence of instructions, so
  11300. \code{Apply} must be classified as complex expression.
  11301. On the other hand, the arguments of \code{Apply} should be
  11302. atomic expressions.
  11303. %
  11304. Regarding \code{FunRef}, as discussed above, the function label needs
  11305. to be converted to an address using the \code{leaq} instruction. Thus,
  11306. even though \code{FunRef} seems rather simple, it needs to be
  11307. classified as a complex expression so that we generate an assignment
  11308. statement with a left-hand side that can serve as the target of the
  11309. \code{leaq}. Figure~\ref{fig:Rfun-anf-syntax} defines the
  11310. output language \LangFunANF{} of this pass.
  11311. \begin{figure}[tp]
  11312. \centering
  11313. \fbox{
  11314. \begin{minipage}{0.96\textwidth}
  11315. \small
  11316. \[
  11317. \begin{array}{rcl}
  11318. \Atm &::=& \gray{ \INT{\Int} \MID \VAR{\Var} \MID \BOOL{\itm{bool}}
  11319. \MID \VOID{} } \\
  11320. \Exp &::=& \gray{ \Atm \MID \READ{} } \\
  11321. &\MID& \gray{ \NEG{\Atm} \MID \ADD{\Atm}{\Atm} } \\
  11322. &\MID& \gray{ \LET{\Var}{\Exp}{\Exp} } \\
  11323. &\MID& \gray{ \UNIOP{\key{'not}}{\Atm} } \\
  11324. &\MID& \gray{ \BINOP{\itm{cmp}}{\Atm}{\Atm} \MID \IF{\Exp}{\Exp}{\Exp} }\\
  11325. &\MID& \gray{ \LP\key{Collect}~\Int\RP \MID \LP\key{Allocate}~\Int~\Type\RP
  11326. \MID \LP\key{GlobalValue}~\Var\RP }\\
  11327. &\MID& \FUNREF{\Var} \MID \APPLY{\Atm}{\Atm\ldots}\\
  11328. \Def &::=& \gray{ \FUNDEF{\Var}{([\Var \code{:} \Type]\ldots)}{\Type}{\code{'()}}{\Exp} }\\
  11329. R^{\dagger}_4 &::=& \gray{ \PROGRAMDEFS{\code{'()}}{\Def} }
  11330. \end{array}
  11331. \]
  11332. \end{minipage}
  11333. }
  11334. \caption{\LangFunANF{} is \LangFun{} in administrative normal form (ANF).}
  11335. \label{fig:Rfun-anf-syntax}
  11336. \end{figure}
  11337. \section{Explicate Control and the \LangCFun{} language}
  11338. \label{sec:explicate-control-r4}
  11339. Figure~\ref{fig:c3-syntax} defines the abstract syntax for \LangCFun{}, the
  11340. output of \code{explicate\_control}. (The concrete syntax is given in
  11341. Figure~\ref{fig:c3-concrete-syntax} of the Appendix.) The auxiliary
  11342. functions for assignment and tail contexts should be updated with
  11343. cases for \code{Apply} and \code{FunRef} and the function for
  11344. predicate context should be updated for \code{Apply} but not
  11345. \code{FunRef}. (A \code{FunRef} can't be a Boolean.) In assignment
  11346. and predicate contexts, \code{Apply} becomes \code{Call}, whereas in
  11347. tail position \code{Apply} becomes \code{TailCall}. We recommend
  11348. defining a new auxiliary function for processing function definitions.
  11349. This code is similar to the case for \code{Program} in \LangVec{}. The
  11350. top-level \code{explicate\_control} function that handles the
  11351. \code{ProgramDefs} form of \LangFun{} can then apply this new function to
  11352. all the function definitions.
  11353. \begin{figure}[tp]
  11354. \fbox{
  11355. \begin{minipage}{0.96\textwidth}
  11356. \small
  11357. \[
  11358. \begin{array}{lcl}
  11359. \Atm &::=& \gray{ \INT{\Int} \MID \VAR{\Var} \MID \BOOL{\itm{bool}} }\\
  11360. \itm{cmp} &::= & \gray{ \key{eq?} \MID \key{<} } \\
  11361. \Exp &::= & \gray{ \Atm \MID \READ{} } \\
  11362. &\MID& \gray{ \NEG{\Atm} \MID \ADD{\Atm}{\Atm} }\\
  11363. &\MID& \gray{ \UNIOP{\key{not}}{\Atm} \MID \BINOP{\itm{cmp}}{\Atm}{\Atm} } \\
  11364. &\MID& \gray{ \LP\key{Allocate} \,\itm{int}\,\itm{type}\RP } \\
  11365. &\MID& \gray{ \BINOP{\key{'vector-ref}}{\Atm}{\INT{\Int}} }\\
  11366. &\MID& \gray{ \LP\key{Prim}~\key{'vector-set!}\,\LP\key{list}\,\Atm\,\INT{\Int}\,\Atm\RP\RP }\\
  11367. &\MID& \gray{ \LP\key{GlobalValue} \,\Var\RP \MID \LP\key{Void}\RP }\\
  11368. &\MID& \FUNREF{\itm{label}} \MID \CALL{\Atm}{\LP\Atm\ldots\RP} \\
  11369. \Stmt &::=& \gray{ \ASSIGN{\VAR{\Var}}{\Exp}
  11370. \MID \LP\key{Collect} \,\itm{int}\RP } \\
  11371. \Tail &::= & \gray{ \RETURN{\Exp} \MID \SEQ{\Stmt}{\Tail}
  11372. \MID \GOTO{\itm{label}} } \\
  11373. &\MID& \gray{ \IFSTMT{\BINOP{\itm{cmp}}{\Atm}{\Atm}}{\GOTO{\itm{label}}}{\GOTO{\itm{label}}} }\\
  11374. &\MID& \TAILCALL{\Atm}{\Atm\ldots} \\
  11375. \Def &::=& \DEF{\itm{label}}{\LP[\Var\key{:}\Type]\ldots\RP}{\Type}{\itm{info}}{\LP\LP\itm{label}\,\key{.}\,\Tail\RP\ldots\RP}\\
  11376. \LangCFunM{} & ::= & \PROGRAMDEFS{\itm{info}}{\LP\Def\ldots\RP}
  11377. \end{array}
  11378. \]
  11379. \end{minipage}
  11380. }
  11381. \caption{The abstract syntax of \LangCFun{}, extending \LangCVec{} (Figure~\ref{fig:c2-syntax}).}
  11382. \label{fig:c3-syntax}
  11383. \end{figure}
  11384. \section{Select Instructions and the \LangXIndCall{} Language}
  11385. \label{sec:select-r4}
  11386. \index{subject}{instruction selection}
  11387. The output of select instructions is a program in the \LangXIndCall{}
  11388. language, whose syntax is defined in Figure~\ref{fig:x86-3}.
  11389. \index{subject}{x86}
  11390. \begin{figure}[tp]
  11391. \fbox{
  11392. \begin{minipage}{0.96\textwidth}
  11393. \small
  11394. \[
  11395. \begin{array}{lcl}
  11396. \Arg &::=& \gray{ \key{\$}\Int \MID \key{\%}\Reg \MID \Int\key{(}\key{\%}\Reg\key{)} \MID \key{\%}\itm{bytereg} } \MID \Var \key{(\%rip)}
  11397. \MID \LP\key{fun-ref}\; \itm{label}\RP\\
  11398. \itm{cc} & ::= & \gray{ \key{e} \MID \key{l} \MID \key{le} \MID \key{g} \MID \key{ge} } \\
  11399. \Instr &::=& \ldots
  11400. \MID \key{callq}\;\key{*}\Arg \MID \key{tailjmp}\;\Arg
  11401. \MID \key{leaq}\;\Arg\key{,}\;\key{\%}\Reg \\
  11402. \Block &::= & \Instr\ldots \\
  11403. \Def &::= & \LP\key{define} \; \LP\itm{label}\RP \;\LP\LP\itm{label} \,\key{.}\, \Block\RP\ldots\RP\RP\\
  11404. \LangXIndCallM{} &::= & \Def\ldots
  11405. \end{array}
  11406. \]
  11407. \end{minipage}
  11408. }
  11409. \caption{The concrete syntax of \LangXIndCall{} (extends \LangXGlobal{} of Figure~\ref{fig:x86-2-concrete}).}
  11410. \label{fig:x86-3-concrete}
  11411. \end{figure}
  11412. \begin{figure}[tp]
  11413. \fbox{
  11414. \begin{minipage}{0.96\textwidth}
  11415. \small
  11416. \[
  11417. \begin{array}{lcl}
  11418. \Arg &::=& \gray{ \INT{\Int} \MID \REG{\Reg} \MID \DEREF{\Reg}{\Int}
  11419. \MID \BYTEREG{\Reg} } \\
  11420. &\MID& \gray{ (\key{Global}~\Var) } \MID \FUNREF{\itm{label}} \\
  11421. \Instr &::=& \ldots \MID \INDCALLQ{\Arg}{\itm{int}}
  11422. \MID \TAILJMP{\Arg}{\itm{int}}\\
  11423. &\MID& \BININSTR{\code{'leaq}}{\Arg}{\REG{\Reg}}\\
  11424. \Block &::= & \BLOCK{\itm{info}}{\LP\Instr\ldots\RP}\\
  11425. \Def &::= & \DEF{\itm{label}}{\code{'()}}{\Type}{\itm{info}}{\LP\LP\itm{label}\,\key{.}\,\Block\RP\ldots\RP} \\
  11426. \LangXIndCallM{} &::= & \PROGRAMDEFS{\itm{info}}{\LP\Def\ldots\RP}
  11427. \end{array}
  11428. \]
  11429. \end{minipage}
  11430. }
  11431. \caption{The abstract syntax of \LangXIndCall{} (extends
  11432. \LangXGlobal{} of Figure~\ref{fig:x86-2}).}
  11433. \label{fig:x86-3}
  11434. \end{figure}
  11435. An assignment of a function reference to a variable becomes a
  11436. load-effective-address instruction as follows: \\
  11437. \begin{tabular}{lcl}
  11438. \begin{minipage}{0.35\textwidth}
  11439. \begin{lstlisting}
  11440. |$\itm{lhs}$| = (fun-ref |$f$|);
  11441. \end{lstlisting}
  11442. \end{minipage}
  11443. &
  11444. $\Rightarrow$\qquad\qquad
  11445. &
  11446. \begin{minipage}{0.3\textwidth}
  11447. \begin{lstlisting}
  11448. leaq (fun-ref |$f$|), |$\itm{lhs}'$|
  11449. \end{lstlisting}
  11450. \end{minipage}
  11451. \end{tabular} \\
  11452. Regarding function definitions, we need to remove the parameters and
  11453. instead perform parameter passing using the conventions discussed in
  11454. Section~\ref{sec:fun-x86}. That is, the arguments are passed in
  11455. registers. We recommend turning the parameters into local variables
  11456. and generating instructions at the beginning of the function to move
  11457. from the argument passing registers to these local variables.
  11458. \begin{lstlisting}
  11459. (Def |$f$| '([|$x_1$| : |$T_1$|] [|$x_2$| : |$T_2$|] |$\ldots$| ) |$T_r$| |$\itm{info}$| |$G$|)
  11460. |$\Rightarrow$|
  11461. (Def |$f$| '() 'Integer |$\itm{info}'$| |$G'$|)
  11462. \end{lstlisting}
  11463. The $G'$ control-flow graph is the same as $G$ except that the
  11464. \code{start} block is modified to add the instructions for moving from
  11465. the argument registers to the parameter variables. So the \code{start}
  11466. block of $G$ shown on the left is changed to the code on the right.
  11467. \begin{center}
  11468. \begin{minipage}{0.3\textwidth}
  11469. \begin{lstlisting}
  11470. start:
  11471. |$\itm{instr}_1$|
  11472. |$\vdots$|
  11473. |$\itm{instr}_n$|
  11474. \end{lstlisting}
  11475. \end{minipage}
  11476. $\Rightarrow$
  11477. \begin{minipage}{0.3\textwidth}
  11478. \begin{lstlisting}
  11479. start:
  11480. movq %rdi, |$x_1$|
  11481. movq %rsi, |$x_2$|
  11482. |$\vdots$|
  11483. |$\itm{instr}_1$|
  11484. |$\vdots$|
  11485. |$\itm{instr}_n$|
  11486. \end{lstlisting}
  11487. \end{minipage}
  11488. \end{center}
  11489. By changing the parameters to local variables, we are giving the
  11490. register allocator control over which registers or stack locations to
  11491. use for them. If you implemented the move-biasing challenge
  11492. (Section~\ref{sec:move-biasing}), the register allocator will try to
  11493. assign the parameter variables to the corresponding argument register,
  11494. in which case the \code{patch-instructions} pass will remove the
  11495. \code{movq} instruction. This happens in the example translation in
  11496. Figure~\ref{fig:add-fun} of Section~\ref{sec:functions-example}, in
  11497. the \code{add} function.
  11498. %
  11499. Also, note that the register allocator will perform liveness analysis
  11500. on this sequence of move instructions and build the interference
  11501. graph. So, for example, $x_1$ will be marked as interfering with
  11502. \code{rsi} and that will prevent the assignment of $x_1$ to
  11503. \code{rsi}, which is good, because that would overwrite the argument
  11504. that needs to move into $x_2$.
  11505. Next, consider the compilation of function calls. In the mirror image
  11506. of handling the parameters of function definitions, the arguments need
  11507. to be moved to the argument passing registers. The function call
  11508. itself is performed with an indirect function call. The return value
  11509. from the function is stored in \code{rax}, so it needs to be moved
  11510. into the \itm{lhs}.
  11511. \begin{lstlisting}
  11512. |\itm{lhs}| = (call |\itm{fun}| |$\itm{arg}_1~\itm{arg}_2\ldots$|));
  11513. |$\Rightarrow$|
  11514. movq |$\itm{arg}_1$|, %rdi
  11515. movq |$\itm{arg}_2$|, %rsi
  11516. |$\vdots$|
  11517. callq *|\itm{fun}|
  11518. movq %rax, |\itm{lhs}|
  11519. \end{lstlisting}
  11520. The \code{IndirectCallq} AST node includes an integer for the arity of
  11521. the function, i.e., the number of parameters. That information is
  11522. useful in the \code{uncover-live} pass for determining which
  11523. argument-passing registers are potentially read during the call.
  11524. For tail calls, the parameter passing is the same as non-tail calls:
  11525. generate instructions to move the arguments into to the argument
  11526. passing registers. After that we need to pop the frame from the
  11527. procedure call stack. However, we do not yet know how big the frame
  11528. is; that gets determined during register allocation. So instead of
  11529. generating those instructions here, we invent a new instruction that
  11530. means ``pop the frame and then do an indirect jump'', which we name
  11531. \code{TailJmp}. The abstract syntax for this instruction includes an
  11532. argument that specifies where to jump and an integer that represents
  11533. the arity of the function being called.
  11534. Recall that in Section~\ref{sec:explicate-control-Lvar} we recommended
  11535. using the label \code{start} for the initial block of a program, and
  11536. in Section~\ref{sec:select-Lvar} we recommended labeling the conclusion
  11537. of the program with \code{conclusion}, so that $(\key{Return}\;\Arg)$
  11538. can be compiled to an assignment to \code{rax} followed by a jump to
  11539. \code{conclusion}. With the addition of function definitions, we will
  11540. have a starting block and conclusion for each function, but their
  11541. labels need to be unique. We recommend prepending the function's name
  11542. to \code{start} and \code{conclusion}, respectively, to obtain unique
  11543. labels. (Alternatively, one could \code{gensym} labels for the start
  11544. and conclusion and store them in the $\itm{info}$ field of the
  11545. function definition.)
  11546. \section{Register Allocation}
  11547. \label{sec:register-allocation-r4}
  11548. \subsection{Liveness Analysis}
  11549. \label{sec:liveness-analysis-r4}
  11550. \index{subject}{liveness analysis}
  11551. %% The rest of the passes need only minor modifications to handle the new
  11552. %% kinds of AST nodes: \code{fun-ref}, \code{indirect-callq}, and
  11553. %% \code{leaq}.
  11554. The \code{IndirectCallq} instruction should be treated like
  11555. \code{Callq} regarding its written locations $W$, in that they should
  11556. include all the caller-saved registers. Recall that the reason for
  11557. that is to force call-live variables to be assigned to callee-saved
  11558. registers or to be spilled to the stack.
  11559. Regarding the set of read locations $R$ the arity field of
  11560. \code{TailJmp} and \code{IndirectCallq} determines how many of the
  11561. argument-passing registers should be considered as read by those
  11562. instructions.
  11563. \subsection{Build Interference Graph}
  11564. \label{sec:build-interference-r4}
  11565. With the addition of function definitions, we compute an interference
  11566. graph for each function (not just one for the whole program).
  11567. Recall that in Section~\ref{sec:reg-alloc-gc} we discussed the need to
  11568. spill vector-typed variables that are live during a call to the
  11569. \code{collect}. With the addition of functions to our language, we
  11570. need to revisit this issue. Many functions perform allocation and
  11571. therefore have calls to the collector inside of them. Thus, we should
  11572. not only spill a vector-typed variable when it is live during a call
  11573. to \code{collect}, but we should spill the variable if it is live
  11574. during any function call. Thus, in the \code{build-interference} pass,
  11575. we recommend adding interference edges between call-live vector-typed
  11576. variables and the callee-saved registers (in addition to the usual
  11577. addition of edges between call-live variables and the caller-saved
  11578. registers).
  11579. \subsection{Allocate Registers}
  11580. The primary change to the \code{allocate-registers} pass is adding an
  11581. auxiliary function for handling definitions (the \Def{} non-terminal
  11582. in Figure~\ref{fig:x86-3}) with one case for function definitions. The
  11583. logic is the same as described in
  11584. Chapter~\ref{ch:register-allocation-Lvar}, except now register
  11585. allocation is performed many times, once for each function definition,
  11586. instead of just once for the whole program.
  11587. \section{Patch Instructions}
  11588. In \code{patch-instructions}, you should deal with the x86
  11589. idiosyncrasy that the destination argument of \code{leaq} must be a
  11590. register. Additionally, you should ensure that the argument of
  11591. \code{TailJmp} is \itm{rax}, our reserved register---this is to make
  11592. code generation more convenient, because we trample many registers
  11593. before the tail call (as explained in the next section).
  11594. \section{Print x86}
  11595. For the \code{print\_x86} pass, the cases for \code{FunRef} and
  11596. \code{IndirectCallq} are straightforward: output their concrete
  11597. syntax.
  11598. \begin{lstlisting}
  11599. (FunRef |\itm{label}|) |$\Rightarrow$| |\itm{label}|(%rip)
  11600. (IndirectCallq |\itm{arg}| |\itm{int}|) |$\Rightarrow$| callq *|\itm{arg}'|
  11601. \end{lstlisting}
  11602. The \code{TailJmp} node requires a bit work. A straightforward
  11603. translation of \code{TailJmp} would be \code{jmp *$\itm{arg}$}, but
  11604. before the jump we need to pop the current frame. This sequence of
  11605. instructions is the same as the code for the conclusion of a function,
  11606. except the \code{retq} is replaced with \code{jmp *$\itm{arg}$}.
  11607. Regarding function definitions, you will need to generate a prelude
  11608. and conclusion for each one. This code is similar to the prelude and
  11609. conclusion that you generated for the \code{main} function in
  11610. Chapter~\ref{ch:Rvec}. To review, the prelude of every function
  11611. should carry out the following steps.
  11612. \begin{enumerate}
  11613. \item Start with \code{.global} and \code{.align} directives followed
  11614. by the label for the function. (See Figure~\ref{fig:add-fun} for an
  11615. example.)
  11616. \item Push \code{rbp} to the stack and set \code{rbp} to current stack
  11617. pointer.
  11618. \item Push to the stack all of the callee-saved registers that were
  11619. used for register allocation.
  11620. \item Move the stack pointer \code{rsp} down by the size of the stack
  11621. frame for this function, which depends on the number of regular
  11622. spills. (Aligned to 16 bytes.)
  11623. \item Move the root stack pointer \code{r15} up by the size of the
  11624. root-stack frame for this function, which depends on the number of
  11625. spilled vectors. \label{root-stack-init}
  11626. \item Initialize to zero all of the entries in the root-stack frame.
  11627. \item Jump to the start block.
  11628. \end{enumerate}
  11629. The prelude of the \code{main} function has one additional task: call
  11630. the \code{initialize} function to set up the garbage collector and
  11631. move the value of the global \code{rootstack\_begin} in
  11632. \code{r15}. This should happen before step \ref{root-stack-init}
  11633. above, which depends on \code{r15}.
  11634. The conclusion of every function should do the following.
  11635. \begin{enumerate}
  11636. \item Move the stack pointer back up by the size of the stack frame
  11637. for this function.
  11638. \item Restore the callee-saved registers by popping them from the
  11639. stack.
  11640. \item Move the root stack pointer back down by the size of the
  11641. root-stack frame for this function.
  11642. \item Restore \code{rbp} by popping it from the stack.
  11643. \item Return to the caller with the \code{retq} instruction.
  11644. \end{enumerate}
  11645. \begin{exercise}\normalfont
  11646. Expand your compiler to handle \LangFun{} as outlined in this chapter.
  11647. Create 5 new programs that use functions, including examples that pass
  11648. functions and return functions from other functions, recursive
  11649. functions, functions that create vectors, and functions that make tail
  11650. calls. Test your compiler on these new programs and all of your
  11651. previously created test programs.
  11652. \end{exercise}
  11653. \begin{figure}[tbp]
  11654. \begin{tikzpicture}[baseline=(current bounding box.center)]
  11655. \node (Rfun) at (0,2) {\large \LangFun{}};
  11656. \node (Rfun-1) at (3,2) {\large \LangFun{}};
  11657. \node (Rfun-2) at (6,2) {\large \LangFun{}};
  11658. \node (F1-1) at (12,0) {\large \LangFunRef{}};
  11659. \node (F1-2) at (9,0) {\large \LangFunRef{}};
  11660. \node (F1-3) at (6,0) {\large \LangFunRefAlloc{}};
  11661. \node (F1-4) at (3,0) {\large \LangFunRefAlloc{}};
  11662. \node (C3-2) at (3,-2) {\large \LangCFun{}};
  11663. \node (x86-2) at (3,-4) {\large \LangXIndCallVar{}};
  11664. \node (x86-3) at (6,-4) {\large \LangXIndCallVar{}};
  11665. \node (x86-4) at (9,-4) {\large \LangXIndCall{}};
  11666. \node (x86-5) at (9,-6) {\large \LangXIndCall{}};
  11667. \node (x86-2-1) at (3,-6) {\large \LangXIndCallVar{}};
  11668. \node (x86-2-2) at (6,-6) {\large \LangXIndCallVar{}};
  11669. \path[->,bend left=15] (Rfun) edge [above] node
  11670. {\ttfamily\footnotesize shrink} (Rfun-1);
  11671. \path[->,bend left=15] (Rfun-1) edge [above] node
  11672. {\ttfamily\footnotesize uniquify} (Rfun-2);
  11673. \path[->,bend left=15] (Rfun-2) edge [right] node
  11674. {\ttfamily\footnotesize ~~reveal-functions} (F1-1);
  11675. \path[->,bend left=15] (F1-1) edge [below] node
  11676. {\ttfamily\footnotesize limit-functions} (F1-2);
  11677. \path[->,bend right=15] (F1-2) edge [above] node
  11678. {\ttfamily\footnotesize expose-alloc.} (F1-3);
  11679. \path[->,bend right=15] (F1-3) edge [above] node
  11680. {\ttfamily\footnotesize remove-complex.} (F1-4);
  11681. \path[->,bend left=15] (F1-4) edge [right] node
  11682. {\ttfamily\footnotesize explicate-control} (C3-2);
  11683. \path[->,bend right=15] (C3-2) edge [left] node
  11684. {\ttfamily\footnotesize select-instr.} (x86-2);
  11685. \path[->,bend left=15] (x86-2) edge [left] node
  11686. {\ttfamily\footnotesize uncover-live} (x86-2-1);
  11687. \path[->,bend right=15] (x86-2-1) edge [below] node
  11688. {\ttfamily\footnotesize build-inter.} (x86-2-2);
  11689. \path[->,bend right=15] (x86-2-2) edge [left] node
  11690. {\ttfamily\footnotesize allocate-reg.} (x86-3);
  11691. \path[->,bend left=15] (x86-3) edge [above] node
  11692. {\ttfamily\footnotesize patch-instr.} (x86-4);
  11693. \path[->,bend right=15] (x86-4) edge [left] node {\ttfamily\footnotesize print-x86} (x86-5);
  11694. \end{tikzpicture}
  11695. \caption{Diagram of the passes for \LangFun{}, a language with functions.}
  11696. \label{fig:Rfun-passes}
  11697. \end{figure}
  11698. Figure~\ref{fig:Rfun-passes} gives an overview of the passes for
  11699. compiling \LangFun{} to x86.
  11700. \section{An Example Translation}
  11701. \label{sec:functions-example}
  11702. Figure~\ref{fig:add-fun} shows an example translation of a simple
  11703. function in \LangFun{} to x86. The figure also includes the results of the
  11704. \code{explicate\_control} and \code{select-instructions} passes.
  11705. \begin{figure}[htbp]
  11706. \begin{tabular}{ll}
  11707. \begin{minipage}{0.5\textwidth}
  11708. % s3_2.rkt
  11709. \begin{lstlisting}[basicstyle=\ttfamily\scriptsize]
  11710. (define (add [x : Integer] [y : Integer])
  11711. : Integer
  11712. (+ x y))
  11713. (add 40 2)
  11714. \end{lstlisting}
  11715. $\Downarrow$
  11716. \begin{lstlisting}[basicstyle=\ttfamily\scriptsize]
  11717. (define (add86 [x87 : Integer]
  11718. [y88 : Integer]) : Integer
  11719. add86start:
  11720. return (+ x87 y88);
  11721. )
  11722. (define (main) : Integer ()
  11723. mainstart:
  11724. tmp89 = (fun-ref add86);
  11725. (tail-call tmp89 40 2)
  11726. )
  11727. \end{lstlisting}
  11728. \end{minipage}
  11729. &
  11730. $\Rightarrow$
  11731. \begin{minipage}{0.5\textwidth}
  11732. \begin{lstlisting}[basicstyle=\ttfamily\scriptsize]
  11733. (define (add86) : Integer
  11734. add86start:
  11735. movq %rdi, x87
  11736. movq %rsi, y88
  11737. movq x87, %rax
  11738. addq y88, %rax
  11739. jmp add11389conclusion
  11740. )
  11741. (define (main) : Integer
  11742. mainstart:
  11743. leaq (fun-ref add86), tmp89
  11744. movq $40, %rdi
  11745. movq $2, %rsi
  11746. tail-jmp tmp89
  11747. )
  11748. \end{lstlisting}
  11749. $\Downarrow$
  11750. \end{minipage}
  11751. \end{tabular}
  11752. \begin{tabular}{ll}
  11753. \begin{minipage}{0.3\textwidth}
  11754. \begin{lstlisting}[basicstyle=\ttfamily\scriptsize]
  11755. .globl add86
  11756. .align 16
  11757. add86:
  11758. pushq %rbp
  11759. movq %rsp, %rbp
  11760. jmp add86start
  11761. add86start:
  11762. movq %rdi, %rax
  11763. addq %rsi, %rax
  11764. jmp add86conclusion
  11765. add86conclusion:
  11766. popq %rbp
  11767. retq
  11768. \end{lstlisting}
  11769. \end{minipage}
  11770. &
  11771. \begin{minipage}{0.5\textwidth}
  11772. \begin{lstlisting}[basicstyle=\ttfamily\scriptsize]
  11773. .globl main
  11774. .align 16
  11775. main:
  11776. pushq %rbp
  11777. movq %rsp, %rbp
  11778. movq $16384, %rdi
  11779. movq $16384, %rsi
  11780. callq initialize
  11781. movq rootstack_begin(%rip), %r15
  11782. jmp mainstart
  11783. mainstart:
  11784. leaq add86(%rip), %rcx
  11785. movq $40, %rdi
  11786. movq $2, %rsi
  11787. movq %rcx, %rax
  11788. popq %rbp
  11789. jmp *%rax
  11790. mainconclusion:
  11791. popq %rbp
  11792. retq
  11793. \end{lstlisting}
  11794. \end{minipage}
  11795. \end{tabular}
  11796. \caption{Example compilation of a simple function to x86.}
  11797. \label{fig:add-fun}
  11798. \end{figure}
  11799. % Challenge idea: inlining! (simple version)
  11800. % Further Reading
  11801. \fi % racketEd
  11802. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  11803. \chapter{Lexically Scoped Functions}
  11804. \label{ch:Rlam}
  11805. \index{subject}{lambda}
  11806. \index{subject}{lexical scoping}
  11807. \if\edition\racketEd
  11808. This chapter studies lexically scoped functions as they appear in
  11809. functional languages such as Racket. By lexical scoping we mean that a
  11810. function's body may refer to variables whose binding site is outside
  11811. of the function, in an enclosing scope.
  11812. %
  11813. Consider the example in Figure~\ref{fig:lexical-scoping} written in
  11814. \LangLam{}, which extends \LangFun{} with anonymous functions using the
  11815. \key{lambda} form. The body of the \key{lambda}, refers to three
  11816. variables: \code{x}, \code{y}, and \code{z}. The binding sites for
  11817. \code{x} and \code{y} are outside of the \key{lambda}. Variable
  11818. \code{y} is bound by the enclosing \key{let} and \code{x} is a
  11819. parameter of function \code{f}. The \key{lambda} is returned from the
  11820. function \code{f}. The main expression of the program includes two
  11821. calls to \code{f} with different arguments for \code{x}, first
  11822. \code{5} then \code{3}. The functions returned from \code{f} are bound
  11823. to variables \code{g} and \code{h}. Even though these two functions
  11824. were created by the same \code{lambda}, they are really different
  11825. functions because they use different values for \code{x}. Applying
  11826. \code{g} to \code{11} produces \code{20} whereas applying \code{h} to
  11827. \code{15} produces \code{22}. The result of this program is \code{42}.
  11828. \begin{figure}[btp]
  11829. % s4_6.rkt
  11830. \begin{lstlisting}
  11831. (define (f [x : Integer]) : (Integer -> Integer)
  11832. (let ([y 4])
  11833. (lambda: ([z : Integer]) : Integer
  11834. (+ x (+ y z)))))
  11835. (let ([g (f 5)])
  11836. (let ([h (f 3)])
  11837. (+ (g 11) (h 15))))
  11838. \end{lstlisting}
  11839. \caption{Example of a lexically scoped function.}
  11840. \label{fig:lexical-scoping}
  11841. \end{figure}
  11842. The approach that we take for implementing lexically scoped
  11843. functions is to compile them into top-level function definitions,
  11844. translating from \LangLam{} into \LangFun{}. However, the compiler will need to
  11845. provide special treatment for variable occurrences such as \code{x}
  11846. and \code{y} in the body of the \code{lambda} of
  11847. Figure~\ref{fig:lexical-scoping}. After all, an \LangFun{} function may not
  11848. refer to variables defined outside of it. To identify such variable
  11849. occurrences, we review the standard notion of free variable.
  11850. \begin{definition}
  11851. A variable is \emph{free in expression} $e$ if the variable occurs
  11852. inside $e$ but does not have an enclosing binding in $e$.\index{subject}{free
  11853. variable}
  11854. \end{definition}
  11855. For example, in the expression \code{(+ x (+ y z))} the variables
  11856. \code{x}, \code{y}, and \code{z} are all free. On the other hand,
  11857. only \code{x} and \code{y} are free in the following expression
  11858. because \code{z} is bound by the \code{lambda}.
  11859. \begin{lstlisting}
  11860. (lambda: ([z : Integer]) : Integer
  11861. (+ x (+ y z)))
  11862. \end{lstlisting}
  11863. So the free variables of a \code{lambda} are the ones that will need
  11864. special treatment. We need to arrange for some way to transport, at
  11865. runtime, the values of those variables from the point where the
  11866. \code{lambda} was created to the point where the \code{lambda} is
  11867. applied. An efficient solution to the problem, due to
  11868. \citet{Cardelli:1983aa}, is to bundle into a vector the values of the
  11869. free variables together with the function pointer for the lambda's
  11870. code, an arrangement called a \emph{flat closure} (which we shorten to
  11871. just ``closure''). \index{subject}{closure}\index{subject}{flat closure} Fortunately,
  11872. we have all the ingredients to make closures, Chapter~\ref{ch:Rvec}
  11873. gave us vectors and Chapter~\ref{ch:Rfun} gave us function
  11874. pointers. The function pointer resides at index $0$ and the
  11875. values for the free variables will fill in the rest of the vector.
  11876. Let us revisit the example in Figure~\ref{fig:lexical-scoping} to see
  11877. how closures work. It's a three-step dance. The program first calls
  11878. function \code{f}, which creates a closure for the \code{lambda}. The
  11879. closure is a vector whose first element is a pointer to the top-level
  11880. function that we will generate for the \code{lambda}, the second
  11881. element is the value of \code{x}, which is \code{5}, and the third
  11882. element is \code{4}, the value of \code{y}. The closure does not
  11883. contain an element for \code{z} because \code{z} is not a free
  11884. variable of the \code{lambda}. Creating the closure is step 1 of the
  11885. dance. The closure is returned from \code{f} and bound to \code{g}, as
  11886. shown in Figure~\ref{fig:closures}.
  11887. %
  11888. The second call to \code{f} creates another closure, this time with
  11889. \code{3} in the second slot (for \code{x}). This closure is also
  11890. returned from \code{f} but bound to \code{h}, which is also shown in
  11891. Figure~\ref{fig:closures}.
  11892. \begin{figure}[tbp]
  11893. \centering \includegraphics[width=0.6\textwidth]{figs/closures}
  11894. \caption{Example closure representation for the \key{lambda}'s
  11895. in Figure~\ref{fig:lexical-scoping}.}
  11896. \label{fig:closures}
  11897. \end{figure}
  11898. Continuing with the example, consider the application of \code{g} to
  11899. \code{11} in Figure~\ref{fig:lexical-scoping}. To apply a closure, we
  11900. obtain the function pointer in the first element of the closure and
  11901. call it, passing in the closure itself and then the regular arguments,
  11902. in this case \code{11}. This technique for applying a closure is step
  11903. 2 of the dance.
  11904. %
  11905. But doesn't this \code{lambda} only take 1 argument, for parameter
  11906. \code{z}? The third and final step of the dance is generating a
  11907. top-level function for a \code{lambda}. We add an additional
  11908. parameter for the closure and we insert a \code{let} at the beginning
  11909. of the function for each free variable, to bind those variables to the
  11910. appropriate elements from the closure parameter.
  11911. %
  11912. This three-step dance is known as \emph{closure conversion}. We
  11913. discuss the details of closure conversion in
  11914. Section~\ref{sec:closure-conversion} and the code generated from the
  11915. example in Section~\ref{sec:example-lambda}. But first we define the
  11916. syntax and semantics of \LangLam{} in Section~\ref{sec:r5}.
  11917. \section{The \LangLam{} Language}
  11918. \label{sec:r5}
  11919. The concrete and abstract syntax for \LangLam{}, a language with anonymous
  11920. functions and lexical scoping, is defined in
  11921. Figures~\ref{fig:Rlam-concrete-syntax} and ~\ref{fig:Rlam-syntax}. It adds
  11922. the \key{lambda} form to the grammar for \LangFun{}, which already has
  11923. syntax for function application.
  11924. \begin{figure}[tp]
  11925. \centering
  11926. \fbox{
  11927. \begin{minipage}{0.96\textwidth}
  11928. \small
  11929. \[
  11930. \begin{array}{lcl}
  11931. \Type &::=& \gray{\key{Integer} \MID \key{Boolean}
  11932. \MID (\key{Vector}\;\Type\ldots) \MID \key{Void}
  11933. \MID (\Type\ldots \; \key{->}\; \Type)} \\
  11934. \Exp &::=& \gray{ \Int \MID \CREAD{} \MID \CNEG{\Exp}
  11935. \MID \CADD{\Exp}{\Exp} \MID \CSUB{\Exp}{\Exp} } \\
  11936. &\MID& \gray{ \Var \MID \CLET{\Var}{\Exp}{\Exp} }\\
  11937. &\MID& \gray{\key{\#t} \MID \key{\#f}
  11938. \MID (\key{and}\;\Exp\;\Exp)
  11939. \MID (\key{or}\;\Exp\;\Exp)
  11940. \MID (\key{not}\;\Exp) } \\
  11941. &\MID& \gray{ (\key{eq?}\;\Exp\;\Exp) \MID \CIF{\Exp}{\Exp}{\Exp} } \\
  11942. &\MID& \gray{ (\key{vector}\;\Exp\ldots) \MID
  11943. (\key{vector-ref}\;\Exp\;\Int)} \\
  11944. &\MID& \gray{(\key{vector-set!}\;\Exp\;\Int\;\Exp)\MID (\key{void})
  11945. \MID (\Exp \; \Exp\ldots) } \\
  11946. &\MID& \LP \key{procedure-arity}~\Exp\RP \\
  11947. &\MID& \CLAMBDA{\LP\LS\Var \key{:} \Type\RS\ldots\RP}{\Type}{\Exp} \\
  11948. \Def &::=& \gray{ \CDEF{\Var}{\LS\Var \key{:} \Type\RS\ldots}{\Type}{\Exp} } \\
  11949. \LangLamM{} &::=& \gray{\Def\ldots \; \Exp}
  11950. \end{array}
  11951. \]
  11952. \end{minipage}
  11953. }
  11954. \caption{The concrete syntax of \LangLam{}, extending \LangFun{} (Figure~\ref{fig:Rfun-concrete-syntax})
  11955. with \key{lambda}.}
  11956. \label{fig:Rlam-concrete-syntax}
  11957. \end{figure}
  11958. \begin{figure}[tp]
  11959. \centering
  11960. \fbox{
  11961. \begin{minipage}{0.96\textwidth}
  11962. \small
  11963. \[
  11964. \begin{array}{lcl}
  11965. \itm{op} &::=& \ldots \MID \code{procedure-arity} \\
  11966. \Exp &::=& \gray{ \INT{\Int} \VAR{\Var} \MID \LET{\Var}{\Exp}{\Exp} } \\
  11967. &\MID& \gray{ \PRIM{\itm{op}}{\Exp\ldots} }\\
  11968. &\MID& \gray{ \BOOL{\itm{bool}}
  11969. \MID \IF{\Exp}{\Exp}{\Exp} } \\
  11970. &\MID& \gray{ \VOID{} \MID \LP\key{HasType}~\Exp~\Type \RP
  11971. \MID \APPLY{\Exp}{\Exp\ldots} }\\
  11972. &\MID& \LAMBDA{\LP\LS\Var\code{:}\Type\RS\ldots\RP}{\Type}{\Exp}\\
  11973. \Def &::=& \gray{ \FUNDEF{\Var}{\LP\LS\Var \code{:} \Type\RS\ldots\RP}{\Type}{\code{'()}}{\Exp} }\\
  11974. \LangLamM{} &::=& \gray{ \PROGRAMDEFSEXP{\code{'()}}{\LP\Def\ldots\RP}{\Exp} }
  11975. \end{array}
  11976. \]
  11977. \end{minipage}
  11978. }
  11979. \caption{The abstract syntax of \LangLam{}, extending \LangFun{} (Figure~\ref{fig:Rfun-syntax}).}
  11980. \label{fig:Rlam-syntax}
  11981. \end{figure}
  11982. \index{subject}{interpreter}
  11983. \label{sec:interp-Rlambda}
  11984. Figure~\ref{fig:interp-Rlambda} shows the definitional interpreter for
  11985. \LangLam{}. The case for \key{lambda} saves the current environment
  11986. inside the returned \key{lambda}. Then the case for \key{Apply} uses
  11987. the environment from the \key{lambda}, the \code{lam-env}, when
  11988. interpreting the body of the \key{lambda}. The \code{lam-env}
  11989. environment is extended with the mapping of parameters to argument
  11990. values.
  11991. \begin{figure}[tbp]
  11992. \begin{lstlisting}
  11993. (define interp-Rlambda_class
  11994. (class interp-Rfun_class
  11995. (super-new)
  11996. (define/override (interp-op op)
  11997. (match op
  11998. ['procedure-arity
  11999. (lambda (v)
  12000. (match v
  12001. [`(function (,xs ...) ,body ,lam-env) (length xs)]
  12002. [else (error 'interp-op "expected a function, not ~a" v)]))]
  12003. [else (super interp-op op)]))
  12004. (define/override ((interp-exp env) e)
  12005. (define recur (interp-exp env))
  12006. (match e
  12007. [(Lambda (list `[,xs : ,Ts] ...) rT body)
  12008. `(function ,xs ,body ,env)]
  12009. [else ((super interp-exp env) e)]))
  12010. ))
  12011. (define (interp-Rlambda p)
  12012. (send (new interp-Rlambda_class) interp-program p))
  12013. \end{lstlisting}
  12014. \caption{Interpreter for \LangLam{}.}
  12015. \label{fig:interp-Rlambda}
  12016. \end{figure}
  12017. \label{sec:type-check-r5}
  12018. \index{subject}{type checking}
  12019. Figure~\ref{fig:type-check-Rlambda} shows how to type check the new
  12020. \key{lambda} form. The body of the \key{lambda} is checked in an
  12021. environment that includes the current environment (because it is
  12022. lexically scoped) and also includes the \key{lambda}'s parameters. We
  12023. require the body's type to match the declared return type.
  12024. \begin{figure}[tbp]
  12025. \begin{lstlisting}
  12026. (define (type-check-Rlambda env)
  12027. (lambda (e)
  12028. (match e
  12029. [(Lambda (and params `([,xs : ,Ts] ...)) rT body)
  12030. (define-values (new-body bodyT)
  12031. ((type-check-exp (append (map cons xs Ts) env)) body))
  12032. (define ty `(,@Ts -> ,rT))
  12033. (cond
  12034. [(equal? rT bodyT)
  12035. (values (HasType (Lambda params rT new-body) ty) ty)]
  12036. [else
  12037. (error "mismatch in return type" bodyT rT)])]
  12038. ...
  12039. )))
  12040. \end{lstlisting}
  12041. \caption{Type checking the \key{lambda}'s in \LangLam{}.}
  12042. \label{fig:type-check-Rlambda}
  12043. \end{figure}
  12044. \section{Reveal Functions and the $F_2$ language}
  12045. \label{sec:reveal-functions-r5}
  12046. To support the \code{procedure-arity} operator we need to communicate
  12047. the arity of a function to the point of closure creation. We can
  12048. accomplish this by replacing the $\FUNREF{\Var}$ struct with one that
  12049. has a second field for the arity: $\FUNREFARITY{\Var}{\Int}$. The
  12050. output of this pass is the language $F_2$, whose syntax is defined in
  12051. Figure~\ref{fig:f2-syntax}.
  12052. \begin{figure}[tp]
  12053. \centering
  12054. \fbox{
  12055. \begin{minipage}{0.96\textwidth}
  12056. \[
  12057. \begin{array}{lcl}
  12058. \Exp &::=& \ldots \MID \FUNREFARITY{\Var}{\Int}\\
  12059. \Def &::=& \gray{ \FUNDEF{\Var}{([\Var \code{:} \Type]\ldots)}{\Type}{\code{'()}}{\Exp} }\\
  12060. F_2 &::=& \gray{\PROGRAMDEFS{\code{'()}}{\LP \Def\ldots \RP}}
  12061. \end{array}
  12062. \]
  12063. \end{minipage}
  12064. }
  12065. \caption{The abstract syntax $F_2$, an extension of \LangLam{}
  12066. (Figure~\ref{fig:Rlam-syntax}).}
  12067. \label{fig:f2-syntax}
  12068. \end{figure}
  12069. \section{Closure Conversion}
  12070. \label{sec:closure-conversion}
  12071. \index{subject}{closure conversion}
  12072. The compiling of lexically-scoped functions into top-level function
  12073. definitions is accomplished in the pass \code{convert-to-closures}
  12074. that comes after \code{reveal-functions} and before
  12075. \code{limit-functions}.
  12076. As usual, we implement the pass as a recursive function over the
  12077. AST. All of the action is in the cases for \key{Lambda} and
  12078. \key{Apply}. We transform a \key{Lambda} expression into an expression
  12079. that creates a closure, that is, a vector whose first element is a
  12080. function pointer and the rest of the elements are the free variables
  12081. of the \key{Lambda}. We use the struct \code{Closure} here instead of
  12082. using \code{vector} so that we can distinguish closures from vectors
  12083. in Section~\ref{sec:optimize-closures} and to record the arity. In
  12084. the generated code below, the \itm{name} is a unique symbol generated
  12085. to identify the function and the \itm{arity} is the number of
  12086. parameters (the length of \itm{ps}).
  12087. \begin{lstlisting}
  12088. (Lambda |\itm{ps}| |\itm{rt}| |\itm{body}|)
  12089. |$\Rightarrow$|
  12090. (Closure |\itm{arity}| (cons (FunRef |\itm{name}|) |\itm{fvs}|))
  12091. \end{lstlisting}
  12092. In addition to transforming each \key{Lambda} into a \key{Closure}, we
  12093. create a top-level function definition for each \key{Lambda}, as
  12094. shown below.\\
  12095. \begin{minipage}{0.8\textwidth}
  12096. \begin{lstlisting}
  12097. (Def |\itm{name}| ([clos : (Vector _ |\itm{fvts}| ...)] |\itm{ps'}| ...) |\itm{rt'}|
  12098. (Let |$\itm{fvs}_1$| (Prim 'vector-ref (list (Var clos) (Int 1)))
  12099. ...
  12100. (Let |$\itm{fvs}_n$| (Prim 'vector-ref (list (Var clos) (Int |$n$|)))
  12101. |\itm{body'}|)...))
  12102. \end{lstlisting}
  12103. \end{minipage}\\
  12104. The \code{clos} parameter refers to the closure. Translate the type
  12105. annotations in \itm{ps} and the return type \itm{rt}, as discussed in
  12106. the next paragraph, to obtain \itm{ps'} and \itm{rt'}. The types
  12107. $\itm{fvts}$ are the types of the free variables in the lambda and the
  12108. underscore \code{\_} is a dummy type that we use because it is rather
  12109. difficult to give a type to the function in the closure's
  12110. type.\footnote{To give an accurate type to a closure, we would need to
  12111. add existential types to the type checker~\citep{Minamide:1996ys}.}
  12112. The dummy type is considered to be equal to any other type during type
  12113. checking. The sequence of \key{Let} forms bind the free variables to
  12114. their values obtained from the closure.
  12115. Closure conversion turns functions into vectors, so the type
  12116. annotations in the program must also be translated. We recommend
  12117. defining a auxiliary recursive function for this purpose. Function
  12118. types should be translated as follows.
  12119. \begin{lstlisting}
  12120. (|$T_1, \ldots, T_n$| -> |$T_r$|)
  12121. |$\Rightarrow$|
  12122. (Vector ((Vector _) |$T'_1, \ldots, T'_n$| -> |$T'_r$|))
  12123. \end{lstlisting}
  12124. The above type says that the first thing in the vector is a function
  12125. pointer. The first parameter of the function pointer is a vector (a
  12126. closure) and the rest of the parameters are the ones from the original
  12127. function, with types $T'_1, \ldots, T'_n$. The \code{Vector} type for
  12128. the closure omits the types of the free variables because 1) those
  12129. types are not available in this context and 2) we do not need them in
  12130. the code that is generated for function application.
  12131. We transform function application into code that retrieves the
  12132. function pointer from the closure and then calls the function, passing
  12133. in the closure as the first argument. We bind $e'$ to a temporary
  12134. variable to avoid code duplication.
  12135. \begin{lstlisting}
  12136. (Apply |$e$| |\itm{es}|)
  12137. |$\Rightarrow$|
  12138. (Let |\itm{tmp}| |$e'$|
  12139. (Apply (Prim 'vector-ref (list (Var |\itm{tmp}|) (Int 0))) (cons |\itm{tmp}| |\itm{es'}|)))
  12140. \end{lstlisting}
  12141. There is also the question of what to do with references top-level
  12142. function definitions. To maintain a uniform translation of function
  12143. application, we turn function references into closures.
  12144. \begin{tabular}{lll}
  12145. \begin{minipage}{0.3\textwidth}
  12146. \begin{lstlisting}
  12147. (FunRefArity |$f$| |$n$|)
  12148. \end{lstlisting}
  12149. \end{minipage}
  12150. &
  12151. $\Rightarrow$
  12152. &
  12153. \begin{minipage}{0.5\textwidth}
  12154. \begin{lstlisting}
  12155. (Closure |$n$| (FunRef |$f$|) '())
  12156. \end{lstlisting}
  12157. \end{minipage}
  12158. \end{tabular} \\
  12159. %
  12160. The top-level function definitions need to be updated as well to take
  12161. an extra closure parameter.
  12162. \section{An Example Translation}
  12163. \label{sec:example-lambda}
  12164. Figure~\ref{fig:lexical-functions-example} shows the result of
  12165. \code{reveal-functions} and \code{convert-to-closures} for the example
  12166. program demonstrating lexical scoping that we discussed at the
  12167. beginning of this chapter.
  12168. \begin{figure}[tbp]
  12169. \begin{minipage}{0.8\textwidth}
  12170. % tests/lambda_test_6.rkt
  12171. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  12172. (define (f6 [x7 : Integer]) : (Integer -> Integer)
  12173. (let ([y8 4])
  12174. (lambda: ([z9 : Integer]) : Integer
  12175. (+ x7 (+ y8 z9)))))
  12176. (define (main) : Integer
  12177. (let ([g0 ((fun-ref-arity f6 1) 5)])
  12178. (let ([h1 ((fun-ref-arity f6 1) 3)])
  12179. (+ (g0 11) (h1 15)))))
  12180. \end{lstlisting}
  12181. $\Rightarrow$
  12182. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  12183. (define (f6 [fvs4 : _] [x7 : Integer]) : (Vector ((Vector _) Integer -> Integer))
  12184. (let ([y8 4])
  12185. (closure 1 (list (fun-ref lambda2) x7 y8))))
  12186. (define (lambda2 [fvs3 : (Vector _ Integer Integer)] [z9 : Integer]) : Integer
  12187. (let ([x7 (vector-ref fvs3 1)])
  12188. (let ([y8 (vector-ref fvs3 2)])
  12189. (+ x7 (+ y8 z9)))))
  12190. (define (main) : Integer
  12191. (let ([g0 (let ([clos5 (closure 1 (list (fun-ref f6)))])
  12192. ((vector-ref clos5 0) clos5 5))])
  12193. (let ([h1 (let ([clos6 (closure 1 (list (fun-ref f6)))])
  12194. ((vector-ref clos6 0) clos6 3))])
  12195. (+ ((vector-ref g0 0) g0 11) ((vector-ref h1 0) h1 15)))))
  12196. \end{lstlisting}
  12197. \end{minipage}
  12198. \caption{Example of closure conversion.}
  12199. \label{fig:lexical-functions-example}
  12200. \end{figure}
  12201. \begin{exercise}\normalfont
  12202. Expand your compiler to handle \LangLam{} as outlined in this chapter.
  12203. Create 5 new programs that use \key{lambda} functions and make use of
  12204. lexical scoping. Test your compiler on these new programs and all of
  12205. your previously created test programs.
  12206. \end{exercise}
  12207. \section{Expose Allocation}
  12208. \label{sec:expose-allocation-r5}
  12209. Compile the $\CLOSURE{\itm{arity}}{\LP\Exp\ldots\RP}$ form into code
  12210. that allocates and initializes a vector, similar to the translation of
  12211. the \code{vector} operator in Section~\ref{sec:expose-allocation}.
  12212. The only difference is replacing the use of
  12213. \ALLOC{\itm{len}}{\itm{type}} with
  12214. \ALLOCCLOS{\itm{len}}{\itm{type}}{\itm{arity}}.
  12215. \section{Explicate Control and \LangCLam{}}
  12216. \label{sec:explicate-r5}
  12217. The output language of \code{explicate\_control} is \LangCLam{} whose
  12218. abstract syntax is defined in Figure~\ref{fig:c4-syntax}. The only
  12219. difference with respect to \LangCFun{} is the addition of the
  12220. \code{AllocateClosure} form to the grammar for $\Exp$. The handling
  12221. of \code{AllocateClosure} in the \code{explicate\_control} pass is
  12222. similar to the handling of other expressions such as primitive
  12223. operators.
  12224. \begin{figure}[tp]
  12225. \fbox{
  12226. \begin{minipage}{0.96\textwidth}
  12227. \small
  12228. \[
  12229. \begin{array}{lcl}
  12230. \Exp &::= & \ldots
  12231. \MID \ALLOCCLOS{\Int}{\Type}{\Int} \\
  12232. \Stmt &::=& \gray{ \ASSIGN{\VAR{\Var}}{\Exp}
  12233. \MID \LP\key{Collect} \,\itm{int}\RP } \\
  12234. \Tail &::= & \gray{ \RETURN{\Exp} \MID \SEQ{\Stmt}{\Tail}
  12235. \MID \GOTO{\itm{label}} } \\
  12236. &\MID& \gray{ \IFSTMT{\BINOP{\itm{cmp}}{\Atm}{\Atm}}{\GOTO{\itm{label}}}{\GOTO{\itm{label}}} }\\
  12237. &\MID& \gray{ \TAILCALL{\Atm}{\Atm\ldots} } \\
  12238. \Def &::=& \gray{ \DEF{\itm{label}}{\LP[\Var\key{:}\Type]\ldots\RP}{\Type}{\itm{info}}{\LP\LP\itm{label}\,\key{.}\,\Tail\RP\ldots\RP} }\\
  12239. \LangCLamM{} & ::= & \gray{ \PROGRAMDEFS{\itm{info}}{\LP\Def\ldots\RP} }
  12240. \end{array}
  12241. \]
  12242. \end{minipage}
  12243. }
  12244. \caption{The abstract syntax of \LangCLam{}, extending \LangCFun{} (Figure~\ref{fig:c3-syntax}).}
  12245. \label{fig:c4-syntax}
  12246. \end{figure}
  12247. \section{Select Instructions}
  12248. \label{sec:select-instructions-Rlambda}
  12249. Compile \ALLOCCLOS{\itm{len}}{\itm{type}}{\itm{arity}} in almost the
  12250. same way as the \ALLOC{\itm{len}}{\itm{type}} form
  12251. (Section~\ref{sec:select-instructions-gc}). The only difference is
  12252. that you should place the \itm{arity} in the tag that is stored at
  12253. position $0$ of the vector. Recall that in
  12254. Section~\ref{sec:select-instructions-gc} a portion of the 64-bit tag
  12255. was not used. We store the arity in the $5$ bits starting at position
  12256. $58$.
  12257. Compile the \code{procedure-arity} operator into a sequence of
  12258. instructions that access the tag from position $0$ of the vector and
  12259. extract the $5$-bits starting at position $58$ from the tag.
  12260. \begin{figure}[p]
  12261. \begin{tikzpicture}[baseline=(current bounding box.center)]
  12262. \node (Rfun) at (0,2) {\large \LangFun{}};
  12263. \node (Rfun-2) at (3,2) {\large \LangFun{}};
  12264. \node (Rfun-3) at (6,2) {\large \LangFun{}};
  12265. \node (F1-1) at (12,0) {\large \LangFunRef{}};
  12266. \node (F1-2) at (9,0) {\large \LangFunRef{}};
  12267. \node (F1-3) at (6,0) {\large $F_1$};
  12268. \node (F1-4) at (3,0) {\large $F_1$};
  12269. \node (F1-5) at (0,0) {\large $F_1$};
  12270. \node (C3-2) at (3,-2) {\large \LangCFun{}};
  12271. \node (x86-2) at (3,-4) {\large \LangXIndCallVar{}};
  12272. \node (x86-2-1) at (3,-6) {\large \LangXIndCallVar{}};
  12273. \node (x86-2-2) at (6,-6) {\large \LangXIndCallVar{}};
  12274. \node (x86-3) at (6,-4) {\large \LangXIndCallVar{}};
  12275. \node (x86-4) at (9,-4) {\large \LangXIndCall{}};
  12276. \node (x86-5) at (9,-6) {\large \LangXIndCall{}};
  12277. \path[->,bend left=15] (Rfun) edge [above] node
  12278. {\ttfamily\footnotesize shrink} (Rfun-2);
  12279. \path[->,bend left=15] (Rfun-2) edge [above] node
  12280. {\ttfamily\footnotesize uniquify} (Rfun-3);
  12281. \path[->,bend left=15] (Rfun-3) edge [right] node
  12282. {\ttfamily\footnotesize reveal-functions} (F1-1);
  12283. \path[->,bend left=15] (F1-1) edge [below] node
  12284. {\ttfamily\footnotesize convert-to-clos.} (F1-2);
  12285. \path[->,bend right=15] (F1-2) edge [above] node
  12286. {\ttfamily\footnotesize limit-fun.} (F1-3);
  12287. \path[->,bend right=15] (F1-3) edge [above] node
  12288. {\ttfamily\footnotesize expose-alloc.} (F1-4);
  12289. \path[->,bend right=15] (F1-4) edge [above] node
  12290. {\ttfamily\footnotesize remove-complex.} (F1-5);
  12291. \path[->,bend right=15] (F1-5) edge [right] node
  12292. {\ttfamily\footnotesize explicate-control} (C3-2);
  12293. \path[->,bend left=15] (C3-2) edge [left] node
  12294. {\ttfamily\footnotesize select-instr.} (x86-2);
  12295. \path[->,bend right=15] (x86-2) edge [left] node
  12296. {\ttfamily\footnotesize uncover-live} (x86-2-1);
  12297. \path[->,bend right=15] (x86-2-1) edge [below] node
  12298. {\ttfamily\footnotesize build-inter.} (x86-2-2);
  12299. \path[->,bend right=15] (x86-2-2) edge [left] node
  12300. {\ttfamily\footnotesize allocate-reg.} (x86-3);
  12301. \path[->,bend left=15] (x86-3) edge [above] node
  12302. {\ttfamily\footnotesize patch-instr.} (x86-4);
  12303. \path[->,bend left=15] (x86-4) edge [right] node
  12304. {\ttfamily\footnotesize print-x86} (x86-5);
  12305. \end{tikzpicture}
  12306. \caption{Diagram of the passes for \LangLam{}, a language with lexically-scoped
  12307. functions.}
  12308. \label{fig:Rlambda-passes}
  12309. \end{figure}
  12310. Figure~\ref{fig:Rlambda-passes} provides an overview of all the passes needed
  12311. for the compilation of \LangLam{}.
  12312. \clearpage
  12313. \section{Challenge: Optimize Closures}
  12314. \label{sec:optimize-closures}
  12315. In this chapter we compiled lexically-scoped functions into a
  12316. relatively efficient representation: flat closures. However, even this
  12317. representation comes with some overhead. For example, consider the
  12318. following program with a function \code{tail-sum} that does not have
  12319. any free variables and where all the uses of \code{tail-sum} are in
  12320. applications where we know that only \code{tail-sum} is being applied
  12321. (and not any other functions).
  12322. \begin{center}
  12323. \begin{minipage}{0.95\textwidth}
  12324. \begin{lstlisting}
  12325. (define (tail-sum [n : Integer] [r : Integer]) : Integer
  12326. (if (eq? n 0)
  12327. r
  12328. (tail-sum (- n 1) (+ n r))))
  12329. (+ (tail-sum 5 0) 27)
  12330. \end{lstlisting}
  12331. \end{minipage}
  12332. \end{center}
  12333. As described in this chapter, we uniformly apply closure conversion to
  12334. all functions, obtaining the following output for this program.
  12335. \begin{center}
  12336. \begin{minipage}{0.95\textwidth}
  12337. \begin{lstlisting}
  12338. (define (tail_sum1 [fvs5 : _] [n2 : Integer] [r3 : Integer]) : Integer
  12339. (if (eq? n2 0)
  12340. r3
  12341. (let ([clos4 (closure (list (fun-ref tail_sum1)))])
  12342. ((vector-ref clos4 0) clos4 (+ n2 -1) (+ n2 r3)))))
  12343. (define (main) : Integer
  12344. (+ (let ([clos6 (closure (list (fun-ref tail_sum1)))])
  12345. ((vector-ref clos6 0) clos6 5 0)) 27))
  12346. \end{lstlisting}
  12347. \end{minipage}
  12348. \end{center}
  12349. In the previous Chapter, there would be no allocation in the program
  12350. and the calls to \code{tail-sum} would be direct calls. In contrast,
  12351. the above program allocates memory for each \code{closure} and the
  12352. calls to \code{tail-sum} are indirect. These two differences incur
  12353. considerable overhead in a program such as this one, where the
  12354. allocations and indirect calls occur inside a tight loop.
  12355. One might think that this problem is trivial to solve: can't we just
  12356. recognize calls of the form \code{((fun-ref $f$) $e_1 \ldots e_n$)}
  12357. and compile them to direct calls \code{((fun-ref $f$) $e'_1 \ldots
  12358. e'_n$)} instead of treating it like a call to a closure? We would
  12359. also drop the \code{fvs5} parameter of \code{tail\_sum1}.
  12360. %
  12361. However, this problem is not so trivial because a global function may
  12362. ``escape'' and become involved in applications that also involve
  12363. closures. Consider the following example in which the application
  12364. \code{(f 41)} needs to be compiled into a closure application, because
  12365. the \code{lambda} may get bound to \code{f}, but the \code{add1}
  12366. function might also get bound to \code{f}.
  12367. \begin{lstlisting}
  12368. (define (add1 [x : Integer]) : Integer
  12369. (+ x 1))
  12370. (let ([y (read)])
  12371. (let ([f (if (eq? (read) 0)
  12372. add1
  12373. (lambda: ([x : Integer]) : Integer (- x y)))])
  12374. (f 41)))
  12375. \end{lstlisting}
  12376. If a global function name is used in any way other than as the
  12377. operator in a direct call, then we say that the function
  12378. \emph{escapes}. If a global function does not escape, then we do not
  12379. need to perform closure conversion on the function.
  12380. \begin{exercise}\normalfont
  12381. Implement an auxiliary function for detecting which global
  12382. functions escape. Using that function, implement an improved version
  12383. of closure conversion that does not apply closure conversion to
  12384. global functions that do not escape but instead compiles them as
  12385. regular functions. Create several new test cases that check whether
  12386. you properly detect whether global functions escape or not.
  12387. \end{exercise}
  12388. So far we have reduced the overhead of calling global functions, but
  12389. it would also be nice to reduce the overhead of calling a
  12390. \code{lambda} when we can determine at compile time which
  12391. \code{lambda} will be called. We refer to such calls as \emph{known
  12392. calls}. Consider the following example in which a \code{lambda} is
  12393. bound to \code{f} and then applied.
  12394. \begin{lstlisting}
  12395. (let ([y (read)])
  12396. (let ([f (lambda: ([x : Integer]) : Integer
  12397. (+ x y))])
  12398. (f 21)))
  12399. \end{lstlisting}
  12400. Closure conversion compiles \code{(f 21)} into an indirect call:
  12401. \begin{lstlisting}
  12402. (define (lambda5 [fvs6 : (Vector _ Integer)] [x3 : Integer]) : Integer
  12403. (let ([y2 (vector-ref fvs6 1)])
  12404. (+ x3 y2)))
  12405. (define (main) : Integer
  12406. (let ([y2 (read)])
  12407. (let ([f4 (Closure 1 (list (fun-ref lambda5) y2))])
  12408. ((vector-ref f4 0) f4 21))))
  12409. \end{lstlisting}
  12410. but we can instead compile the application \code{(f 21)} into a direct call
  12411. to \code{lambda5}:
  12412. \begin{lstlisting}
  12413. (define (main) : Integer
  12414. (let ([y2 (read)])
  12415. (let ([f4 (Closure 1 (list (fun-ref lambda5) y2))])
  12416. ((fun-ref lambda5) f4 21))))
  12417. \end{lstlisting}
  12418. The problem of determining which lambda will be called from a
  12419. particular application is quite challenging in general and the topic
  12420. of considerable research~\citep{Shivers:1988aa,Gilray:2016aa}. For the
  12421. following exercise we recommend that you compile an application to a
  12422. direct call when the operator is a variable and the variable is
  12423. \code{let}-bound to a closure. This can be accomplished by maintaining
  12424. an environment mapping \code{let}-bound variables to function names.
  12425. Extend the environment whenever you encounter a closure on the
  12426. right-hand side of a \code{let}, mapping the \code{let}-bound variable
  12427. to the name of the global function for the closure. This pass should
  12428. come after closure conversion.
  12429. \begin{exercise}\normalfont
  12430. Implement a compiler pass, named \code{optimize-known-calls}, that
  12431. compiles known calls into direct calls. Verify that your compiler is
  12432. successful in this regard on several example programs.
  12433. \end{exercise}
  12434. These exercises only scratches the surface of optimizing of
  12435. closures. A good next step for the interested reader is to look at the
  12436. work of \citet{Keep:2012ab}.
  12437. \section{Further Reading}
  12438. The notion of lexically scoped anonymous functions predates modern
  12439. computers by about a decade. They were invented by
  12440. \citet{Church:1932aa}, who proposed the $\lambda$ calculus as a
  12441. foundation for logic. Anonymous functions were included in the
  12442. LISP~\citep{McCarthy:1960dz} programming language but were initially
  12443. dynamically scoped. The Scheme dialect of LISP adopted lexical scoping
  12444. and \citet{Guy-L.-Steele:1978yq} demonstrated how to efficiently
  12445. compile Scheme programs. However, environments were represented as
  12446. linked lists, so variable lookup was linear in the size of the
  12447. environment. In this chapter we represent environments using flat
  12448. closures, which were invented by
  12449. \citet{Cardelli:1983aa,Cardelli:1984aa} for the purposes of compiling
  12450. the ML language~\citep{Gordon:1978aa,Milner:1990fk}. With flat
  12451. closures, variable lookup is constant time but the time to create a
  12452. closure is proportional to the number of its free variables. Flat
  12453. closures were reinvented by \citet{Dybvig:1987ab} in his Ph.D. thesis
  12454. and used in Chez Scheme version 1~\citep{Dybvig:2006aa}.
  12455. \fi
  12456. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  12457. \chapter{Dynamic Typing}
  12458. \label{ch:Rdyn}
  12459. \index{subject}{dynamic typing}
  12460. \if\edition\racketEd
  12461. In this chapter we discuss the compilation of \LangDyn{}, a dynamically
  12462. typed language that is a subset of Racket. This is in contrast to the
  12463. previous chapters, which have studied the compilation of Typed
  12464. Racket. In dynamically typed languages such as \LangDyn{}, a given
  12465. expression may produce a value of a different type each time it is
  12466. executed. Consider the following example with a conditional \code{if}
  12467. expression that may return a Boolean or an integer depending on the
  12468. input to the program.
  12469. % part of dynamic_test_25.rkt
  12470. \begin{lstlisting}
  12471. (not (if (eq? (read) 1) #f 0))
  12472. \end{lstlisting}
  12473. Languages that allow expressions to produce different kinds of values
  12474. are called \emph{polymorphic}, a word composed of the Greek roots
  12475. ``poly'', meaning ``many'', and ``morph'', meaning ``shape''. There
  12476. are several kinds of polymorphism in programming languages, such as
  12477. subtype polymorphism and parametric
  12478. polymorphism~\citep{Cardelli:1985kx}. The kind of polymorphism we
  12479. study in this chapter does not have a special name but it is the kind
  12480. that arises in dynamically typed languages.
  12481. Another characteristic of dynamically typed languages is that
  12482. primitive operations, such as \code{not}, are often defined to operate
  12483. on many different types of values. In fact, in Racket, the \code{not}
  12484. operator produces a result for any kind of value: given \code{\#f} it
  12485. returns \code{\#t} and given anything else it returns \code{\#f}.
  12486. Furthermore, even when primitive operations restrict their inputs to
  12487. values of a certain type, this restriction is enforced at runtime
  12488. instead of during compilation. For example, the following vector
  12489. reference results in a run-time contract violation because the index
  12490. must be in integer, not a Boolean such as \code{\#t}.
  12491. \begin{lstlisting}
  12492. (vector-ref (vector 42) #t)
  12493. \end{lstlisting}
  12494. \begin{figure}[tp]
  12495. \centering
  12496. \fbox{
  12497. \begin{minipage}{0.97\textwidth}
  12498. \[
  12499. \begin{array}{rcl}
  12500. \itm{cmp} &::= & \key{eq?} \MID \key{<} \MID \key{<=} \MID \key{>} \MID \key{>=} \\
  12501. \Exp &::=& \Int \MID \CREAD{} \MID \CNEG{\Exp}
  12502. \MID \CADD{\Exp}{\Exp} \MID \CSUB{\Exp}{\Exp} \\
  12503. &\MID& \Var \MID \CLET{\Var}{\Exp}{\Exp} \\
  12504. &\MID& \key{\#t} \MID \key{\#f}
  12505. \MID \CBINOP{\key{and}}{\Exp}{\Exp}
  12506. \MID \CBINOP{\key{or}}{\Exp}{\Exp}
  12507. \MID \CUNIOP{\key{not}}{\Exp} \\
  12508. &\MID& \LP\itm{cmp}\;\Exp\;\Exp\RP \MID \CIF{\Exp}{\Exp}{\Exp} \\
  12509. &\MID& \LP\key{vector}\;\Exp\ldots\RP \MID
  12510. \LP\key{vector-ref}\;\Exp\;\Exp\RP \\
  12511. &\MID& \LP\key{vector-set!}\;\Exp\;\Exp\;\Exp\RP \MID \LP\key{void}\RP \\
  12512. &\MID& \LP\Exp \; \Exp\ldots\RP
  12513. \MID \LP\key{lambda}\;\LP\Var\ldots\RP\;\Exp\RP \\
  12514. & \MID & \LP\key{boolean?}\;\Exp\RP \MID \LP\key{integer?}\;\Exp\RP\\
  12515. & \MID & \LP\key{vector?}\;\Exp\RP \MID \LP\key{procedure?}\;\Exp\RP \MID \LP\key{void?}\;\Exp\RP \\
  12516. \Def &::=& \LP\key{define}\; \LP\Var \; \Var\ldots\RP \; \Exp\RP \\
  12517. \LangDynM{} &::=& \Def\ldots\; \Exp
  12518. \end{array}
  12519. \]
  12520. \end{minipage}
  12521. }
  12522. \caption{Syntax of \LangDyn{}, an untyped language (a subset of Racket).}
  12523. \label{fig:r7-concrete-syntax}
  12524. \end{figure}
  12525. \begin{figure}[tp]
  12526. \centering
  12527. \fbox{
  12528. \begin{minipage}{0.96\textwidth}
  12529. \small
  12530. \[
  12531. \begin{array}{lcl}
  12532. \Exp &::=& \INT{\Int} \MID \VAR{\Var} \MID \LET{\Var}{\Exp}{\Exp} \\
  12533. &\MID& \PRIM{\itm{op}}{\Exp\ldots} \\
  12534. &\MID& \BOOL{\itm{bool}}
  12535. \MID \IF{\Exp}{\Exp}{\Exp} \\
  12536. &\MID& \VOID{} \MID \APPLY{\Exp}{\Exp\ldots} \\
  12537. &\MID& \LAMBDA{\LP\Var\ldots\RP}{\code{'Any}}{\Exp}\\
  12538. \Def &::=& \FUNDEF{\Var}{\LP\Var\ldots\RP}{\code{'Any}}{\code{'()}}{\Exp} \\
  12539. \LangDynM{} &::=& \PROGRAMDEFSEXP{\code{'()}}{\LP\Def\ldots\RP}{\Exp}
  12540. \end{array}
  12541. \]
  12542. \end{minipage}
  12543. }
  12544. \caption{The abstract syntax of \LangDyn{}.}
  12545. \label{fig:r7-syntax}
  12546. \end{figure}
  12547. The concrete and abstract syntax of \LangDyn{}, our subset of Racket, is
  12548. defined in Figures~\ref{fig:r7-concrete-syntax} and
  12549. \ref{fig:r7-syntax}.
  12550. %
  12551. There is no type checker for \LangDyn{} because it is not a statically
  12552. typed language (it's dynamically typed!).
  12553. The definitional interpreter for \LangDyn{} is presented in
  12554. Figure~\ref{fig:interp-Rdyn} and its auxiliary functions are defined i
  12555. Figure~\ref{fig:interp-Rdyn-aux}. Consider the match case for
  12556. \code{(Int n)}. Instead of simply returning the integer \code{n} (as
  12557. in the interpreter for \LangVar{} in Figure~\ref{fig:interp-Lvar}), the
  12558. interpreter for \LangDyn{} creates a \emph{tagged value}\index{subject}{tagged
  12559. value} that combines an underlying value with a tag that identifies
  12560. what kind of value it is. We define the following struct
  12561. to represented tagged values.
  12562. \begin{lstlisting}
  12563. (struct Tagged (value tag) #:transparent)
  12564. \end{lstlisting}
  12565. The tags are \code{Integer}, \code{Boolean}, \code{Void},
  12566. \code{Vector}, and \code{Procedure}. Tags are closely related to types
  12567. but don't always capture all the information that a type does. For
  12568. example, a vector of type \code{(Vector Any Any)} is tagged with
  12569. \code{Vector} and a procedure of type \code{(Any Any -> Any)}
  12570. is tagged with \code{Procedure}.
  12571. Next consider the match case for \code{vector-ref}. The
  12572. \code{check-tag} auxiliary function (Figure~\ref{fig:interp-Rdyn-aux})
  12573. is used to ensure that the first argument is a vector and the second
  12574. is an integer. If they are not, a \code{trapped-error} is raised.
  12575. Recall from Section~\ref{sec:interp_Lint} that when a definition
  12576. interpreter raises a \code{trapped-error} error, the compiled code
  12577. must also signal an error by exiting with return code \code{255}. A
  12578. \code{trapped-error} is also raised if the index is not less than
  12579. length of the vector.
  12580. \begin{figure}[tbp]
  12581. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  12582. (define ((interp-Rdyn-exp env) ast)
  12583. (define recur (interp-Rdyn-exp env))
  12584. (match ast
  12585. [(Var x) (lookup x env)]
  12586. [(Int n) (Tagged n 'Integer)]
  12587. [(Bool b) (Tagged b 'Boolean)]
  12588. [(Lambda xs rt body)
  12589. (Tagged `(function ,xs ,body ,env) 'Procedure)]
  12590. [(Prim 'vector es)
  12591. (Tagged (apply vector (for/list ([e es]) (recur e))) 'Vector)]
  12592. [(Prim 'vector-ref (list e1 e2))
  12593. (define vec (recur e1)) (define i (recur e2))
  12594. (check-tag vec 'Vector ast) (check-tag i 'Integer ast)
  12595. (unless (< (Tagged-value i) (vector-length (Tagged-value vec)))
  12596. (error 'trapped-error "index ~a too big\nin ~v" (Tagged-value i) ast))
  12597. (vector-ref (Tagged-value vec) (Tagged-value i))]
  12598. [(Prim 'vector-set! (list e1 e2 e3))
  12599. (define vec (recur e1)) (define i (recur e2)) (define arg (recur e3))
  12600. (check-tag vec 'Vector ast) (check-tag i 'Integer ast)
  12601. (unless (< (Tagged-value i) (vector-length (Tagged-value vec)))
  12602. (error 'trapped-error "index ~a too big\nin ~v" (Tagged-value i) ast))
  12603. (vector-set! (Tagged-value vec) (Tagged-value i) arg)
  12604. (Tagged (void) 'Void)]
  12605. [(Let x e body) ((interp-Rdyn-exp (cons (cons x (recur e)) env)) body)]
  12606. [(Prim 'and (list e1 e2)) (recur (If e1 e2 (Bool #f)))]
  12607. [(Prim 'or (list e1 e2))
  12608. (define v1 (recur e1))
  12609. (match (Tagged-value v1) [#f (recur e2)] [else v1])]
  12610. [(Prim 'eq? (list l r)) (Tagged (equal? (recur l) (recur r)) 'Boolean)]
  12611. [(Prim op (list e1))
  12612. #:when (set-member? type-predicates op)
  12613. (tag-value ((interp-op op) (Tagged-value (recur e1))))]
  12614. [(Prim op es)
  12615. (define args (map recur es))
  12616. (define tags (for/list ([arg args]) (Tagged-tag arg)))
  12617. (unless (for/or ([expected-tags (op-tags op)])
  12618. (equal? expected-tags tags))
  12619. (error 'trapped-error "illegal argument tags ~a\nin ~v" tags ast))
  12620. (tag-value
  12621. (apply (interp-op op) (for/list ([a args]) (Tagged-value a))))]
  12622. [(If q t f)
  12623. (match (Tagged-value (recur q)) [#f (recur f)] [else (recur t)])]
  12624. [(Apply f es)
  12625. (define new-f (recur f)) (define args (map recur es))
  12626. (check-tag new-f 'Procedure ast) (define f-val (Tagged-value new-f))
  12627. (match f-val
  12628. [`(function ,xs ,body ,lam-env)
  12629. (unless (eq? (length xs) (length args))
  12630. (error 'trapped-error "~a != ~a\nin ~v" (length args) (length xs) ast))
  12631. (define new-env (append (map cons xs args) lam-env))
  12632. ((interp-Rdyn-exp new-env) body)]
  12633. [else (error "interp-Rdyn-exp, expected function, not" f-val)])]))
  12634. \end{lstlisting}
  12635. \caption{Interpreter for the \LangDyn{} language.}
  12636. \label{fig:interp-Rdyn}
  12637. \end{figure}
  12638. \begin{figure}[tbp]
  12639. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  12640. (define (interp-op op)
  12641. (match op
  12642. ['+ fx+]
  12643. ['- fx-]
  12644. ['read read-fixnum]
  12645. ['not (lambda (v) (match v [#t #f] [#f #t]))]
  12646. ['< (lambda (v1 v2)
  12647. (cond [(and (fixnum? v1) (fixnum? v2)) (< v1 v2)]))]
  12648. ['<= (lambda (v1 v2)
  12649. (cond [(and (fixnum? v1) (fixnum? v2)) (<= v1 v2)]))]
  12650. ['> (lambda (v1 v2)
  12651. (cond [(and (fixnum? v1) (fixnum? v2)) (> v1 v2)]))]
  12652. ['>= (lambda (v1 v2)
  12653. (cond [(and (fixnum? v1) (fixnum? v2)) (>= v1 v2)]))]
  12654. ['boolean? boolean?]
  12655. ['integer? fixnum?]
  12656. ['void? void?]
  12657. ['vector? vector?]
  12658. ['vector-length vector-length]
  12659. ['procedure? (match-lambda
  12660. [`(functions ,xs ,body ,env) #t] [else #f])]
  12661. [else (error 'interp-op "unknown operator" op)]))
  12662. (define (op-tags op)
  12663. (match op
  12664. ['+ '((Integer Integer))]
  12665. ['- '((Integer Integer) (Integer))]
  12666. ['read '(())]
  12667. ['not '((Boolean))]
  12668. ['< '((Integer Integer))]
  12669. ['<= '((Integer Integer))]
  12670. ['> '((Integer Integer))]
  12671. ['>= '((Integer Integer))]
  12672. ['vector-length '((Vector))]))
  12673. (define type-predicates
  12674. (set 'boolean? 'integer? 'vector? 'procedure? 'void?))
  12675. (define (tag-value v)
  12676. (cond [(boolean? v) (Tagged v 'Boolean)]
  12677. [(fixnum? v) (Tagged v 'Integer)]
  12678. [(procedure? v) (Tagged v 'Procedure)]
  12679. [(vector? v) (Tagged v 'Vector)]
  12680. [(void? v) (Tagged v 'Void)]
  12681. [else (error 'tag-value "unidentified value ~a" v)]))
  12682. (define (check-tag val expected ast)
  12683. (define tag (Tagged-tag val))
  12684. (unless (eq? tag expected)
  12685. (error 'trapped-error "expected ~a, not ~a\nin ~v" expected tag ast)))
  12686. \end{lstlisting}
  12687. \caption{Auxiliary functions for the \LangDyn{} interpreter.}
  12688. \label{fig:interp-Rdyn-aux}
  12689. \end{figure}
  12690. \clearpage
  12691. \section{Representation of Tagged Values}
  12692. The interpreter for \LangDyn{} introduced a new kind of value, a tagged
  12693. value. To compile \LangDyn{} to x86 we must decide how to represent tagged
  12694. values at the bit level. Because almost every operation in \LangDyn{}
  12695. involves manipulating tagged values, the representation must be
  12696. efficient. Recall that all of our values are 64 bits. We shall steal
  12697. the 3 right-most bits to encode the tag. We use $001$ to identify
  12698. integers, $100$ for Booleans, $010$ for vectors, $011$ for procedures,
  12699. and $101$ for the void value. We define the following auxiliary
  12700. function for mapping types to tag codes.
  12701. \begin{align*}
  12702. \itm{tagof}(\key{Integer}) &= 001 \\
  12703. \itm{tagof}(\key{Boolean}) &= 100 \\
  12704. \itm{tagof}((\key{Vector} \ldots)) &= 010 \\
  12705. \itm{tagof}((\ldots \key{->} \ldots)) &= 011 \\
  12706. \itm{tagof}(\key{Void}) &= 101
  12707. \end{align*}
  12708. This stealing of 3 bits comes at some price: our integers are reduced
  12709. to ranging from $-2^{60}$ to $2^{60}$. The stealing does not adversely
  12710. affect vectors and procedures because those values are addresses, and
  12711. our addresses are 8-byte aligned so the rightmost 3 bits are unused,
  12712. they are always $000$. Thus, we do not lose information by overwriting
  12713. the rightmost 3 bits with the tag and we can simply zero-out the tag
  12714. to recover the original address.
  12715. To make tagged values into first-class entities, we can give them a
  12716. type, called \code{Any}, and define operations such as \code{Inject}
  12717. and \code{Project} for creating and using them, yielding the \LangAny{}
  12718. intermediate language. We describe how to compile \LangDyn{} to \LangAny{} in
  12719. Section~\ref{sec:compile-r7} but first we describe the \LangAny{} language
  12720. in greater detail.
  12721. \section{The \LangAny{} Language}
  12722. \label{sec:Rany-lang}
  12723. \begin{figure}[tp]
  12724. \centering
  12725. \fbox{
  12726. \begin{minipage}{0.96\textwidth}
  12727. \small
  12728. \[
  12729. \begin{array}{lcl}
  12730. \Type &::= & \ldots \MID \key{Any} \\
  12731. \itm{op} &::= & \ldots \MID \code{any-vector-length}
  12732. \MID \code{any-vector-ref} \MID \code{any-vector-set!}\\
  12733. &\MID& \code{boolean?} \MID \code{integer?} \MID \code{vector?}
  12734. \MID \code{procedure?} \MID \code{void?} \\
  12735. \Exp &::=& \ldots
  12736. \MID \gray{ \PRIM{\itm{op}}{\Exp\ldots} } \\
  12737. &\MID& \INJECT{\Exp}{\FType} \MID \PROJECT{\Exp}{\FType} \\
  12738. \Def &::=& \gray{ \FUNDEF{\Var}{\LP[\Var \code{:} \Type]\ldots\RP}{\Type}{\code{'()}}{\Exp} }\\
  12739. \LangAnyM{} &::=& \gray{ \PROGRAMDEFSEXP{\code{'()}}{\LP\Def\ldots\RP}{\Exp} }
  12740. \end{array}
  12741. \]
  12742. \end{minipage}
  12743. }
  12744. \caption{The abstract syntax of \LangAny{}, extending \LangLam{} (Figure~\ref{fig:Rlam-syntax}).}
  12745. \label{fig:Rany-syntax}
  12746. \end{figure}
  12747. The abstract syntax of \LangAny{} is defined in Figure~\ref{fig:Rany-syntax}.
  12748. (The concrete syntax of \LangAny{} is in the Appendix,
  12749. Figure~\ref{fig:Rany-concrete-syntax}.) The $\INJECT{e}{T}$ form
  12750. converts the value produced by expression $e$ of type $T$ into a
  12751. tagged value. The $\PROJECT{e}{T}$ form converts the tagged value
  12752. produced by expression $e$ into a value of type $T$ or else halts the
  12753. program if the type tag is not equivalent to $T$.
  12754. %
  12755. Note that in both \code{Inject} and \code{Project}, the type $T$ is
  12756. restricted to a flat type $\FType$, which simplifies the
  12757. implementation and corresponds with what is needed for compiling \LangDyn{}.
  12758. The \code{any-vector} operators adapt the vector operations so that
  12759. they can be applied to a value of type \code{Any}. They also
  12760. generalize the vector operations in that the index is not restricted
  12761. to be a literal integer in the grammar but is allowed to be any
  12762. expression.
  12763. The type predicates such as \key{boolean?} expect their argument to
  12764. produce a tagged value; they return \key{\#t} if the tag corresponds
  12765. to the predicate and they return \key{\#f} otherwise.
  12766. The type checker for \LangAny{} is shown in
  12767. Figures~\ref{fig:type-check-Rany-part-1} and
  12768. \ref{fig:type-check-Rany-part-2} and uses the auxiliary functions in
  12769. Figure~\ref{fig:type-check-Rany-aux}.
  12770. %
  12771. The interpreter for \LangAny{} is in Figure~\ref{fig:interp-Rany} and the
  12772. auxiliary functions \code{apply-inject} and \code{apply-project} are
  12773. in Figure~\ref{fig:apply-project}.
  12774. \begin{figure}[btp]
  12775. \begin{lstlisting}[basicstyle=\ttfamily\small]
  12776. (define type-check-Rany_class
  12777. (class type-check-Rlambda_class
  12778. (super-new)
  12779. (inherit check-type-equal?)
  12780. (define/override (type-check-exp env)
  12781. (lambda (e)
  12782. (define recur (type-check-exp env))
  12783. (match e
  12784. [(Inject e1 ty)
  12785. (unless (flat-ty? ty)
  12786. (error 'type-check "may only inject from flat type, not ~a" ty))
  12787. (define-values (new-e1 e-ty) (recur e1))
  12788. (check-type-equal? e-ty ty e)
  12789. (values (Inject new-e1 ty) 'Any)]
  12790. [(Project e1 ty)
  12791. (unless (flat-ty? ty)
  12792. (error 'type-check "may only project to flat type, not ~a" ty))
  12793. (define-values (new-e1 e-ty) (recur e1))
  12794. (check-type-equal? e-ty 'Any e)
  12795. (values (Project new-e1 ty) ty)]
  12796. [(Prim 'any-vector-length (list e1))
  12797. (define-values (e1^ t1) (recur e1))
  12798. (check-type-equal? t1 'Any e)
  12799. (values (Prim 'any-vector-length (list e1^)) 'Integer)]
  12800. [(Prim 'any-vector-ref (list e1 e2))
  12801. (define-values (e1^ t1) (recur e1))
  12802. (define-values (e2^ t2) (recur e2))
  12803. (check-type-equal? t1 'Any e)
  12804. (check-type-equal? t2 'Integer e)
  12805. (values (Prim 'any-vector-ref (list e1^ e2^)) 'Any)]
  12806. [(Prim 'any-vector-set! (list e1 e2 e3))
  12807. (define-values (e1^ t1) (recur e1))
  12808. (define-values (e2^ t2) (recur e2))
  12809. (define-values (e3^ t3) (recur e3))
  12810. (check-type-equal? t1 'Any e)
  12811. (check-type-equal? t2 'Integer e)
  12812. (check-type-equal? t3 'Any e)
  12813. (values (Prim 'any-vector-set! (list e1^ e2^ e3^)) 'Void)]
  12814. \end{lstlisting}
  12815. \caption{Type checker for the \LangAny{} language, part 1.}
  12816. \label{fig:type-check-Rany-part-1}
  12817. \end{figure}
  12818. \begin{figure}[btp]
  12819. \begin{lstlisting}[basicstyle=\ttfamily\small]
  12820. [(ValueOf e ty)
  12821. (define-values (new-e e-ty) (recur e))
  12822. (values (ValueOf new-e ty) ty)]
  12823. [(Prim pred (list e1))
  12824. #:when (set-member? (type-predicates) pred)
  12825. (define-values (new-e1 e-ty) (recur e1))
  12826. (check-type-equal? e-ty 'Any e)
  12827. (values (Prim pred (list new-e1)) 'Boolean)]
  12828. [(If cnd thn els)
  12829. (define-values (cnd^ Tc) (recur cnd))
  12830. (define-values (thn^ Tt) (recur thn))
  12831. (define-values (els^ Te) (recur els))
  12832. (check-type-equal? Tc 'Boolean cnd)
  12833. (check-type-equal? Tt Te e)
  12834. (values (If cnd^ thn^ els^) (combine-types Tt Te))]
  12835. [(Exit) (values (Exit) '_)]
  12836. [(Prim 'eq? (list arg1 arg2))
  12837. (define-values (e1 t1) (recur arg1))
  12838. (define-values (e2 t2) (recur arg2))
  12839. (match* (t1 t2)
  12840. [(`(Vector ,ts1 ...) `(Vector ,ts2 ...)) (void)]
  12841. [(other wise) (check-type-equal? t1 t2 e)])
  12842. (values (Prim 'eq? (list e1 e2)) 'Boolean)]
  12843. [else ((super type-check-exp env) e)])))
  12844. ))
  12845. \end{lstlisting}
  12846. \caption{Type checker for the \LangAny{} language, part 2.}
  12847. \label{fig:type-check-Rany-part-2}
  12848. \end{figure}
  12849. \begin{figure}[tbp]
  12850. \begin{lstlisting}
  12851. (define/override (operator-types)
  12852. (append
  12853. '((integer? . ((Any) . Boolean))
  12854. (vector? . ((Any) . Boolean))
  12855. (procedure? . ((Any) . Boolean))
  12856. (void? . ((Any) . Boolean))
  12857. (tag-of-any . ((Any) . Integer))
  12858. (make-any . ((_ Integer) . Any))
  12859. )
  12860. (super operator-types)))
  12861. (define/public (type-predicates)
  12862. (set 'boolean? 'integer? 'vector? 'procedure? 'void?))
  12863. (define/public (combine-types t1 t2)
  12864. (match (list t1 t2)
  12865. [(list '_ t2) t2]
  12866. [(list t1 '_) t1]
  12867. [(list `(Vector ,ts1 ...)
  12868. `(Vector ,ts2 ...))
  12869. `(Vector ,@(for/list ([t1 ts1] [t2 ts2])
  12870. (combine-types t1 t2)))]
  12871. [(list `(,ts1 ... -> ,rt1)
  12872. `(,ts2 ... -> ,rt2))
  12873. `(,@(for/list ([t1 ts1] [t2 ts2])
  12874. (combine-types t1 t2))
  12875. -> ,(combine-types rt1 rt2))]
  12876. [else t1]))
  12877. (define/public (flat-ty? ty)
  12878. (match ty
  12879. [(or `Integer `Boolean '_ `Void) #t]
  12880. [`(Vector ,ts ...) (for/and ([t ts]) (eq? t 'Any))]
  12881. [`(,ts ... -> ,rt)
  12882. (and (eq? rt 'Any) (for/and ([t ts]) (eq? t 'Any)))]
  12883. [else #f]))
  12884. \end{lstlisting}
  12885. \caption{Auxiliary methods for type checking \LangAny{}.}
  12886. \label{fig:type-check-Rany-aux}
  12887. \end{figure}
  12888. \begin{figure}[btp]
  12889. \begin{lstlisting}
  12890. (define interp-Rany_class
  12891. (class interp-Rlambda_class
  12892. (super-new)
  12893. (define/override (interp-op op)
  12894. (match op
  12895. ['boolean? (match-lambda
  12896. [`(tagged ,v1 ,tg) (equal? tg (any-tag 'Boolean))]
  12897. [else #f])]
  12898. ['integer? (match-lambda
  12899. [`(tagged ,v1 ,tg) (equal? tg (any-tag 'Integer))]
  12900. [else #f])]
  12901. ['vector? (match-lambda
  12902. [`(tagged ,v1 ,tg) (equal? tg (any-tag `(Vector Any)))]
  12903. [else #f])]
  12904. ['procedure? (match-lambda
  12905. [`(tagged ,v1 ,tg) (equal? tg (any-tag `(Any -> Any)))]
  12906. [else #f])]
  12907. ['eq? (match-lambda*
  12908. [`((tagged ,v1^ ,tg1) (tagged ,v2^ ,tg2))
  12909. (and (eq? v1^ v2^) (equal? tg1 tg2))]
  12910. [ls (apply (super interp-op op) ls)])]
  12911. ['any-vector-ref (lambda (v i)
  12912. (match v [`(tagged ,v^ ,tg) (vector-ref v^ i)]))]
  12913. ['any-vector-set! (lambda (v i a)
  12914. (match v [`(tagged ,v^ ,tg) (vector-set! v^ i a)]))]
  12915. ['any-vector-length (lambda (v)
  12916. (match v [`(tagged ,v^ ,tg) (vector-length v^)]))]
  12917. [else (super interp-op op)]))
  12918. (define/override ((interp-exp env) e)
  12919. (define recur (interp-exp env))
  12920. (match e
  12921. [(Inject e ty) `(tagged ,(recur e) ,(any-tag ty))]
  12922. [(Project e ty2) (apply-project (recur e) ty2)]
  12923. [else ((super interp-exp env) e)]))
  12924. ))
  12925. (define (interp-Rany p)
  12926. (send (new interp-Rany_class) interp-program p))
  12927. \end{lstlisting}
  12928. \caption{Interpreter for \LangAny{}.}
  12929. \label{fig:interp-Rany}
  12930. \end{figure}
  12931. \begin{figure}[tbp]
  12932. \begin{lstlisting}
  12933. (define/public (apply-inject v tg) (Tagged v tg))
  12934. (define/public (apply-project v ty2)
  12935. (define tag2 (any-tag ty2))
  12936. (match v
  12937. [(Tagged v1 tag1)
  12938. (cond
  12939. [(eq? tag1 tag2)
  12940. (match ty2
  12941. [`(Vector ,ts ...)
  12942. (define l1 ((interp-op 'vector-length) v1))
  12943. (cond
  12944. [(eq? l1 (length ts)) v1]
  12945. [else (error 'apply-project "vector length mismatch, ~a != ~a"
  12946. l1 (length ts))])]
  12947. [`(,ts ... -> ,rt)
  12948. (match v1
  12949. [`(function ,xs ,body ,env)
  12950. (cond [(eq? (length xs) (length ts)) v1]
  12951. [else
  12952. (error 'apply-project "arity mismatch ~a != ~a"
  12953. (length xs) (length ts))])]
  12954. [else (error 'apply-project "expected function not ~a" v1)])]
  12955. [else v1])]
  12956. [else (error 'apply-project "tag mismatch ~a != ~a" tag1 tag2)])]
  12957. [else (error 'apply-project "expected tagged value, not ~a" v)]))
  12958. \end{lstlisting}
  12959. \caption{Auxiliary functions for injection and projection.}
  12960. \label{fig:apply-project}
  12961. \end{figure}
  12962. \clearpage
  12963. \section{Cast Insertion: Compiling \LangDyn{} to \LangAny{}}
  12964. \label{sec:compile-r7}
  12965. The \code{cast-insert} pass compiles from \LangDyn{} to \LangAny{}.
  12966. Figure~\ref{fig:compile-r7-Rany} shows the compilation of many of the
  12967. \LangDyn{} forms into \LangAny{}. An important invariant of this pass is that
  12968. given a subexpression $e$ in the \LangDyn{} program, the pass will produce
  12969. an expression $e'$ in \LangAny{} that has type \key{Any}. For example, the
  12970. first row in Figure~\ref{fig:compile-r7-Rany} shows the compilation of
  12971. the Boolean \code{\#t}, which must be injected to produce an
  12972. expression of type \key{Any}.
  12973. %
  12974. The second row of Figure~\ref{fig:compile-r7-Rany}, the compilation of
  12975. addition, is representative of compilation for many primitive
  12976. operations: the arguments have type \key{Any} and must be projected to
  12977. \key{Integer} before the addition can be performed.
  12978. The compilation of \key{lambda} (third row of
  12979. Figure~\ref{fig:compile-r7-Rany}) shows what happens when we need to
  12980. produce type annotations: we simply use \key{Any}.
  12981. %
  12982. The compilation of \code{if} and \code{eq?} demonstrate how this pass
  12983. has to account for some differences in behavior between \LangDyn{} and
  12984. \LangAny{}. The \LangDyn{} language is more permissive than \LangAny{} regarding what
  12985. kind of values can be used in various places. For example, the
  12986. condition of an \key{if} does not have to be a Boolean. For \key{eq?},
  12987. the arguments need not be of the same type (in that case the
  12988. result is \code{\#f}).
  12989. \begin{figure}[btp]
  12990. \centering
  12991. \begin{tabular}{|lll|} \hline
  12992. \begin{minipage}{0.27\textwidth}
  12993. \begin{lstlisting}
  12994. #t
  12995. \end{lstlisting}
  12996. \end{minipage}
  12997. &
  12998. $\Rightarrow$
  12999. &
  13000. \begin{minipage}{0.65\textwidth}
  13001. \begin{lstlisting}
  13002. (inject #t Boolean)
  13003. \end{lstlisting}
  13004. \end{minipage}
  13005. \\[2ex]\hline
  13006. \begin{minipage}{0.27\textwidth}
  13007. \begin{lstlisting}
  13008. (+ |$e_1$| |$e_2$|)
  13009. \end{lstlisting}
  13010. \end{minipage}
  13011. &
  13012. $\Rightarrow$
  13013. &
  13014. \begin{minipage}{0.65\textwidth}
  13015. \begin{lstlisting}
  13016. (inject
  13017. (+ (project |$e'_1$| Integer)
  13018. (project |$e'_2$| Integer))
  13019. Integer)
  13020. \end{lstlisting}
  13021. \end{minipage}
  13022. \\[2ex]\hline
  13023. \begin{minipage}{0.27\textwidth}
  13024. \begin{lstlisting}
  13025. (lambda (|$x_1 \ldots x_n$|) |$e$|)
  13026. \end{lstlisting}
  13027. \end{minipage}
  13028. &
  13029. $\Rightarrow$
  13030. &
  13031. \begin{minipage}{0.65\textwidth}
  13032. \begin{lstlisting}
  13033. (inject
  13034. (lambda: ([|$x_1$|:Any]|$\ldots$|[|$x_n$|:Any]):Any |$e'$|)
  13035. (Any|$\ldots$|Any -> Any))
  13036. \end{lstlisting}
  13037. \end{minipage}
  13038. \\[2ex]\hline
  13039. \begin{minipage}{0.27\textwidth}
  13040. \begin{lstlisting}
  13041. (|$e_0$| |$e_1 \ldots e_n$|)
  13042. \end{lstlisting}
  13043. \end{minipage}
  13044. &
  13045. $\Rightarrow$
  13046. &
  13047. \begin{minipage}{0.65\textwidth}
  13048. \begin{lstlisting}
  13049. ((project |$e'_0$| (Any|$\ldots$|Any -> Any)) |$e'_1 \ldots e'_n$|)
  13050. \end{lstlisting}
  13051. \end{minipage}
  13052. \\[2ex]\hline
  13053. \begin{minipage}{0.27\textwidth}
  13054. \begin{lstlisting}
  13055. (vector-ref |$e_1$| |$e_2$|)
  13056. \end{lstlisting}
  13057. \end{minipage}
  13058. &
  13059. $\Rightarrow$
  13060. &
  13061. \begin{minipage}{0.65\textwidth}
  13062. \begin{lstlisting}
  13063. (any-vector-ref |$e_1'$| |$e_2'$|)
  13064. \end{lstlisting}
  13065. \end{minipage}
  13066. \\[2ex]\hline
  13067. \begin{minipage}{0.27\textwidth}
  13068. \begin{lstlisting}
  13069. (if |$e_1$| |$e_2$| |$e_3$|)
  13070. \end{lstlisting}
  13071. \end{minipage}
  13072. &
  13073. $\Rightarrow$
  13074. &
  13075. \begin{minipage}{0.65\textwidth}
  13076. \begin{lstlisting}
  13077. (if (eq? |$e'_1$| (inject #f Boolean)) |$e'_3$| |$e'_2$|)
  13078. \end{lstlisting}
  13079. \end{minipage}
  13080. \\[2ex]\hline
  13081. \begin{minipage}{0.27\textwidth}
  13082. \begin{lstlisting}
  13083. (eq? |$e_1$| |$e_2$|)
  13084. \end{lstlisting}
  13085. \end{minipage}
  13086. &
  13087. $\Rightarrow$
  13088. &
  13089. \begin{minipage}{0.65\textwidth}
  13090. \begin{lstlisting}
  13091. (inject (eq? |$e'_1$| |$e'_2$|) Boolean)
  13092. \end{lstlisting}
  13093. \end{minipage}
  13094. \\[2ex]\hline
  13095. \begin{minipage}{0.27\textwidth}
  13096. \begin{lstlisting}
  13097. (not |$e_1$|)
  13098. \end{lstlisting}
  13099. \end{minipage}
  13100. &
  13101. $\Rightarrow$
  13102. &
  13103. \begin{minipage}{0.65\textwidth}
  13104. \begin{lstlisting}
  13105. (if (eq? |$e'_1$| (inject #f Boolean))
  13106. (inject #t Boolean) (inject #f Boolean))
  13107. \end{lstlisting}
  13108. \end{minipage}
  13109. \\[2ex]\hline
  13110. \end{tabular}
  13111. \caption{Cast Insertion}
  13112. \label{fig:compile-r7-Rany}
  13113. \end{figure}
  13114. \section{Reveal Casts}
  13115. \label{sec:reveal-casts-Rany}
  13116. % TODO: define R'_6
  13117. In the \code{reveal-casts} pass we recommend compiling \code{project}
  13118. into an \code{if} expression that checks whether the value's tag
  13119. matches the target type; if it does, the value is converted to a value
  13120. of the target type by removing the tag; if it does not, the program
  13121. exits. To perform these actions we need a new primitive operation,
  13122. \code{tag-of-any}, and two new forms, \code{ValueOf} and \code{Exit}.
  13123. The \code{tag-of-any} operation retrieves the type tag from a tagged
  13124. value of type \code{Any}. The \code{ValueOf} form retrieves the
  13125. underlying value from a tagged value. The \code{ValueOf} form
  13126. includes the type for the underlying value which is used by the type
  13127. checker. Finally, the \code{Exit} form ends the execution of the
  13128. program.
  13129. If the target type of the projection is \code{Boolean} or
  13130. \code{Integer}, then \code{Project} can be translated as follows.
  13131. \begin{center}
  13132. \begin{minipage}{1.0\textwidth}
  13133. \begin{lstlisting}
  13134. (Project |$e$| |$\FType$|)
  13135. |$\Rightarrow$|
  13136. (Let |$\itm{tmp}$| |$e'$|
  13137. (If (Prim 'eq? (list (Prim 'tag-of-any (list (Var |$\itm{tmp}$|)))
  13138. (Int |$\itm{tagof}(\FType)$|)))
  13139. (ValueOf |$\itm{tmp}$| |$\FType$|)
  13140. (Exit)))
  13141. \end{lstlisting}
  13142. \end{minipage}
  13143. \end{center}
  13144. If the target type of the projection is a vector or function type,
  13145. then there is a bit more work to do. For vectors, check that the
  13146. length of the vector type matches the length of the vector (using the
  13147. \code{vector-length} primitive). For functions, check that the number
  13148. of parameters in the function type matches the function's arity (using
  13149. \code{procedure-arity}).
  13150. Regarding \code{inject}, we recommend compiling it to a slightly
  13151. lower-level primitive operation named \code{make-any}. This operation
  13152. takes a tag instead of a type.
  13153. \begin{center}
  13154. \begin{minipage}{1.0\textwidth}
  13155. \begin{lstlisting}
  13156. (Inject |$e$| |$\FType$|)
  13157. |$\Rightarrow$|
  13158. (Prim 'make-any (list |$e'$| (Int |$\itm{tagof}(\FType)$|)))
  13159. \end{lstlisting}
  13160. \end{minipage}
  13161. \end{center}
  13162. The type predicates (\code{boolean?}, etc.) can be translated into
  13163. uses of \code{tag-of-any} and \code{eq?} in a similar way as in the
  13164. translation of \code{Project}.
  13165. The \code{any-vector-ref} and \code{any-vector-set!} operations
  13166. combine the projection action with the vector operation. Also, the
  13167. read and write operations allow arbitrary expressions for the index so
  13168. the type checker for \LangAny{} (Figure~\ref{fig:type-check-Rany-part-1})
  13169. cannot guarantee that the index is within bounds. Thus, we insert code
  13170. to perform bounds checking at runtime. The translation for
  13171. \code{any-vector-ref} is as follows and the other two operations are
  13172. translated in a similar way.
  13173. \begin{lstlisting}
  13174. (Prim 'any-vector-ref (list |$e_1$| |$e_2$|))
  13175. |$\Rightarrow$|
  13176. (Let |$v$| |$e'_1$|
  13177. (Let |$i$| |$e'_2$|
  13178. (If (Prim 'eq? (list (Prim 'tag-of-any (list (Var |$v$|))) (Int 2)))
  13179. (If (Prim '< (list (Var |$i$|)
  13180. (Prim 'any-vector-length (list (Var |$v$|)))))
  13181. (Prim 'any-vector-ref (list (Var |$v$|) (Var |$i$|)))
  13182. (Exit))))
  13183. \end{lstlisting}
  13184. \section{Remove Complex Operands}
  13185. \label{sec:rco-Rany}
  13186. The \code{ValueOf} and \code{Exit} forms are both complex expressions.
  13187. The subexpression of \code{ValueOf} must be atomic.
  13188. \section{Explicate Control and \LangCAny{}}
  13189. \label{sec:explicate-Rany}
  13190. The output of \code{explicate\_control} is the \LangCAny{} language whose
  13191. syntax is defined in Figure~\ref{fig:c5-syntax}. The \code{ValueOf}
  13192. form that we added to \LangAny{} remains an expression and the \code{Exit}
  13193. expression becomes a $\Tail$. Also, note that the index argument of
  13194. \code{vector-ref} and \code{vector-set!} is an $\Atm$ instead
  13195. of an integer, as in \LangCVec{} (Figure~\ref{fig:c2-syntax}).
  13196. \begin{figure}[tp]
  13197. \fbox{
  13198. \begin{minipage}{0.96\textwidth}
  13199. \small
  13200. \[
  13201. \begin{array}{lcl}
  13202. \Exp &::= & \ldots
  13203. \MID \BINOP{\key{'any-vector-ref}}{\Atm}{\Atm} \\
  13204. &\MID& (\key{Prim}~\key{'any-vector-set!}\,(\key{list}\,\Atm\,\Atm\,\Atm))\\
  13205. &\MID& \VALUEOF{\Exp}{\FType} \\
  13206. \Stmt &::=& \gray{ \ASSIGN{\VAR{\Var}}{\Exp}
  13207. \MID \LP\key{Collect} \,\itm{int}\RP }\\
  13208. \Tail &::= & \gray{ \RETURN{\Exp} \MID \SEQ{\Stmt}{\Tail}
  13209. \MID \GOTO{\itm{label}} } \\
  13210. &\MID& \gray{ \IFSTMT{\BINOP{\itm{cmp}}{\Atm}{\Atm}}{\GOTO{\itm{label}}}{\GOTO{\itm{label}}} }\\
  13211. &\MID& \gray{ \TAILCALL{\Atm}{\Atm\ldots} }
  13212. \MID \LP\key{Exit}\RP \\
  13213. \Def &::=& \gray{ \DEF{\itm{label}}{\LP[\Var\key{:}\Type]\ldots\RP}{\Type}{\itm{info}}{\LP\LP\itm{label}\,\key{.}\,\Tail\RP\ldots\RP} }\\
  13214. \LangCAnyM{} & ::= & \gray{ \PROGRAMDEFS{\itm{info}}{\LP\Def\ldots\RP} }
  13215. \end{array}
  13216. \]
  13217. \end{minipage}
  13218. }
  13219. \caption{The abstract syntax of \LangCAny{}, extending \LangCLam{} (Figure~\ref{fig:c4-syntax}).}
  13220. \label{fig:c5-syntax}
  13221. \end{figure}
  13222. \section{Select Instructions}
  13223. \label{sec:select-Rany}
  13224. In the \code{select-instructions} pass we translate the primitive
  13225. operations on the \code{Any} type to x86 instructions that involve
  13226. manipulating the 3 tag bits of the tagged value.
  13227. \paragraph{Make-any}
  13228. We recommend compiling the \key{make-any} primitive as follows if the
  13229. tag is for \key{Integer} or \key{Boolean}. The \key{salq} instruction
  13230. shifts the destination to the left by the number of bits specified its
  13231. source argument (in this case $3$, the length of the tag) and it
  13232. preserves the sign of the integer. We use the \key{orq} instruction to
  13233. combine the tag and the value to form the tagged value. \\
  13234. \begin{lstlisting}
  13235. (Assign |\itm{lhs}| (Prim 'make-any (list |$e$| (Int |$\itm{tag}$|))))
  13236. |$\Rightarrow$|
  13237. movq |$e'$|, |\itm{lhs'}|
  13238. salq $3, |\itm{lhs'}|
  13239. orq $|$\itm{tag}$|, |\itm{lhs'}|
  13240. \end{lstlisting}
  13241. The instruction selection for vectors and procedures is different
  13242. because their is no need to shift them to the left. The rightmost 3
  13243. bits are already zeros as described at the beginning of this
  13244. chapter. So we just combine the value and the tag using \key{orq}. \\
  13245. \begin{lstlisting}
  13246. (Assign |\itm{lhs}| (Prim 'make-any (list |$e$| (Int |$\itm{tag}$|))))
  13247. |$\Rightarrow$|
  13248. movq |$e'$|, |\itm{lhs'}|
  13249. orq $|$\itm{tag}$|, |\itm{lhs'}|
  13250. \end{lstlisting}
  13251. \paragraph{Tag-of-any}
  13252. Recall that the \code{tag-of-any} operation extracts the type tag from
  13253. a value of type \code{Any}. The type tag is the bottom three bits, so
  13254. we obtain the tag by taking the bitwise-and of the value with $111$
  13255. ($7$ in decimal).
  13256. \begin{lstlisting}
  13257. (Assign |\itm{lhs}| (Prim 'tag-of-any (list |$e$|)))
  13258. |$\Rightarrow$|
  13259. movq |$e'$|, |\itm{lhs'}|
  13260. andq $7, |\itm{lhs'}|
  13261. \end{lstlisting}
  13262. \paragraph{ValueOf}
  13263. Like \key{make-any}, the instructions for \key{ValueOf} are different
  13264. depending on whether the type $T$ is a pointer (vector or procedure)
  13265. or not (Integer or Boolean). The following shows the instruction
  13266. selection for Integer and Boolean. We produce an untagged value by
  13267. shifting it to the right by 3 bits.
  13268. \begin{lstlisting}
  13269. (Assign |\itm{lhs}| (ValueOf |$e$| |$T$|))
  13270. |$\Rightarrow$|
  13271. movq |$e'$|, |\itm{lhs'}|
  13272. sarq $3, |\itm{lhs'}|
  13273. \end{lstlisting}
  13274. %
  13275. In the case for vectors and procedures, there is no need to
  13276. shift. Instead we just need to zero-out the rightmost 3 bits. We
  13277. accomplish this by creating the bit pattern $\ldots 0111$ ($7$ in
  13278. decimal) and apply \code{bitwise-not} to obtain $\ldots 11111000$ (-8
  13279. in decimal) which we \code{movq} into the destination $\itm{lhs}$. We
  13280. then apply \code{andq} with the tagged value to get the desired
  13281. result. \\
  13282. \begin{lstlisting}
  13283. (Assign |\itm{lhs}| (ValueOf |$e$| |$T$|))
  13284. |$\Rightarrow$|
  13285. movq $|$-8$|, |\itm{lhs'}|
  13286. andq |$e'$|, |\itm{lhs'}|
  13287. \end{lstlisting}
  13288. %% \paragraph{Type Predicates} We leave it to the reader to
  13289. %% devise a sequence of instructions to implement the type predicates
  13290. %% \key{boolean?}, \key{integer?}, \key{vector?}, and \key{procedure?}.
  13291. \paragraph{Any-vector-length}
  13292. \begin{lstlisting}
  13293. (Assign |$\itm{lhs}$| (Prim 'any-vector-length (list |$a_1$|)))
  13294. |$\Longrightarrow$|
  13295. movq |$\neg 111$|, %r11
  13296. andq |$a_1'$|, %r11
  13297. movq 0(%r11), %r11
  13298. andq $126, %r11
  13299. sarq $1, %r11
  13300. movq %r11, |$\itm{lhs'}$|
  13301. \end{lstlisting}
  13302. \paragraph{Any-vector-ref}
  13303. The index may be an arbitrary atom so instead of computing the offset
  13304. at compile time, instructions need to be generated to compute the
  13305. offset at runtime as follows. Note the use of the new instruction
  13306. \code{imulq}.
  13307. \begin{center}
  13308. \begin{minipage}{0.96\textwidth}
  13309. \begin{lstlisting}
  13310. (Assign |$\itm{lhs}$| (Prim 'any-vector-ref (list |$a_1$| |$a_2$|)))
  13311. |$\Longrightarrow$|
  13312. movq |$\neg 111$|, %r11
  13313. andq |$a_1'$|, %r11
  13314. movq |$a_2'$|, %rax
  13315. addq $1, %rax
  13316. imulq $8, %rax
  13317. addq %rax, %r11
  13318. movq 0(%r11) |$\itm{lhs'}$|
  13319. \end{lstlisting}
  13320. \end{minipage}
  13321. \end{center}
  13322. \paragraph{Any-vector-set!}
  13323. The code generation for \code{any-vector-set!} is similar to the other
  13324. \code{any-vector} operations.
  13325. \section{Register Allocation for \LangAny{}}
  13326. \label{sec:register-allocation-Rany}
  13327. \index{subject}{register allocation}
  13328. There is an interesting interaction between tagged values and garbage
  13329. collection that has an impact on register allocation. A variable of
  13330. type \code{Any} might refer to a vector and therefore it might be a
  13331. root that needs to be inspected and copied during garbage
  13332. collection. Thus, we need to treat variables of type \code{Any} in a
  13333. similar way to variables of type \code{Vector} for purposes of
  13334. register allocation. In particular,
  13335. \begin{itemize}
  13336. \item If a variable of type \code{Any} is live during a function call,
  13337. then it must be spilled. This can be accomplished by changing
  13338. \code{build-interference} to mark all variables of type \code{Any}
  13339. that are live after a \code{callq} as interfering with all the
  13340. registers.
  13341. \item If a variable of type \code{Any} is spilled, it must be spilled
  13342. to the root stack instead of the normal procedure call stack.
  13343. \end{itemize}
  13344. Another concern regarding the root stack is that the garbage collector
  13345. needs to differentiate between (1) plain old pointers to tuples, (2) a
  13346. tagged value that points to a tuple, and (3) a tagged value that is
  13347. not a tuple. We enable this differentiation by choosing not to use the
  13348. tag $000$ in the $\itm{tagof}$ function. Instead, that bit pattern is
  13349. reserved for identifying plain old pointers to tuples. That way, if
  13350. one of the first three bits is set, then we have a tagged value and
  13351. inspecting the tag can differentiation between vectors ($010$) and the
  13352. other kinds of values.
  13353. \begin{exercise}\normalfont
  13354. Expand your compiler to handle \LangAny{} as discussed in the last few
  13355. sections. Create 5 new programs that use the \code{Any} type and the
  13356. new operations (\code{inject}, \code{project}, \code{boolean?},
  13357. etc.). Test your compiler on these new programs and all of your
  13358. previously created test programs.
  13359. \end{exercise}
  13360. \begin{exercise}\normalfont
  13361. Expand your compiler to handle \LangDyn{} as outlined in this chapter.
  13362. Create tests for \LangDyn{} by adapting ten of your previous test programs
  13363. by removing type annotations. Add 5 more tests programs that
  13364. specifically rely on the language being dynamically typed. That is,
  13365. they should not be legal programs in a statically typed language, but
  13366. nevertheless, they should be valid \LangDyn{} programs that run to
  13367. completion without error.
  13368. \end{exercise}
  13369. \begin{figure}[p]
  13370. \begin{tikzpicture}[baseline=(current bounding box.center)]
  13371. \node (Rfun) at (0,4) {\large \LangDyn{}};
  13372. \node (Rfun-2) at (3,4) {\large \LangDyn{}};
  13373. \node (Rfun-3) at (6,4) {\large \LangDyn{}};
  13374. \node (Rfun-4) at (9,4) {\large \LangDynFunRef{}};
  13375. \node (Rfun-5) at (9,2) {\large \LangAnyFunRef{}};
  13376. \node (Rfun-6) at (12,2) {\large \LangAnyFunRef{}};
  13377. \node (Rfun-7) at (12,0) {\large \LangAnyFunRef{}};
  13378. \node (F1-2) at (9,0) {\large \LangAnyFunRef{}};
  13379. \node (F1-3) at (6,0) {\large \LangAnyFunRef{}};
  13380. \node (F1-4) at (3,0) {\large \LangAnyAlloc{}};
  13381. \node (F1-5) at (0,0) {\large \LangAnyAlloc{}};
  13382. \node (C3-2) at (3,-2) {\large \LangCAny{}};
  13383. \node (x86-2) at (3,-4) {\large \LangXIndCallVar{}};
  13384. \node (x86-2-1) at (3,-6) {\large \LangXIndCallVar{}};
  13385. \node (x86-2-2) at (6,-6) {\large \LangXIndCallVar{}};
  13386. \node (x86-3) at (6,-4) {\large \LangXIndCallVar{}};
  13387. \node (x86-4) at (9,-4) {\large \LangXIndCall{}};
  13388. \node (x86-5) at (9,-6) {\large \LangXIndCall{}};
  13389. \path[->,bend left=15] (Rfun) edge [above] node
  13390. {\ttfamily\footnotesize shrink} (Rfun-2);
  13391. \path[->,bend left=15] (Rfun-2) edge [above] node
  13392. {\ttfamily\footnotesize uniquify} (Rfun-3);
  13393. \path[->,bend left=15] (Rfun-3) edge [above] node
  13394. {\ttfamily\footnotesize reveal-functions} (Rfun-4);
  13395. \path[->,bend right=15] (Rfun-4) edge [left] node
  13396. {\ttfamily\footnotesize cast-insert} (Rfun-5);
  13397. \path[->,bend left=15] (Rfun-5) edge [above] node
  13398. {\ttfamily\footnotesize check-bounds} (Rfun-6);
  13399. \path[->,bend left=15] (Rfun-6) edge [left] node
  13400. {\ttfamily\footnotesize reveal-casts} (Rfun-7);
  13401. \path[->,bend left=15] (Rfun-7) edge [below] node
  13402. {\ttfamily\footnotesize convert-to-clos.} (F1-2);
  13403. \path[->,bend right=15] (F1-2) edge [above] node
  13404. {\ttfamily\footnotesize limit-fun.} (F1-3);
  13405. \path[->,bend right=15] (F1-3) edge [above] node
  13406. {\ttfamily\footnotesize expose-alloc.} (F1-4);
  13407. \path[->,bend right=15] (F1-4) edge [above] node
  13408. {\ttfamily\footnotesize remove-complex.} (F1-5);
  13409. \path[->,bend right=15] (F1-5) edge [right] node
  13410. {\ttfamily\footnotesize explicate-control} (C3-2);
  13411. \path[->,bend left=15] (C3-2) edge [left] node
  13412. {\ttfamily\footnotesize select-instr.} (x86-2);
  13413. \path[->,bend right=15] (x86-2) edge [left] node
  13414. {\ttfamily\footnotesize uncover-live} (x86-2-1);
  13415. \path[->,bend right=15] (x86-2-1) edge [below] node
  13416. {\ttfamily\footnotesize build-inter.} (x86-2-2);
  13417. \path[->,bend right=15] (x86-2-2) edge [left] node
  13418. {\ttfamily\footnotesize allocate-reg.} (x86-3);
  13419. \path[->,bend left=15] (x86-3) edge [above] node
  13420. {\ttfamily\footnotesize patch-instr.} (x86-4);
  13421. \path[->,bend left=15] (x86-4) edge [right] node
  13422. {\ttfamily\footnotesize print-x86} (x86-5);
  13423. \end{tikzpicture}
  13424. \caption{Diagram of the passes for \LangDyn{}, a dynamically typed language.}
  13425. \label{fig:Rdyn-passes}
  13426. \end{figure}
  13427. Figure~\ref{fig:Rdyn-passes} provides an overview of all the passes needed
  13428. for the compilation of \LangDyn{}.
  13429. % Further Reading
  13430. \fi % racketEd
  13431. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  13432. \chapter{Objects}
  13433. \label{ch:Robject}
  13434. \index{subject}{objects}
  13435. \index{subject}{classes}
  13436. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  13437. \chapter{Gradual Typing}
  13438. \label{ch:Rgrad}
  13439. \index{subject}{gradual typing}
  13440. \if\edition\racketEd
  13441. This chapter studies a language, \LangGrad{}, in which the programmer
  13442. can choose between static and dynamic type checking in different parts
  13443. of a program, thereby mixing the statically typed \LangLoop{} language
  13444. with the dynamically typed \LangDyn{}. There are several approaches to
  13445. mixing static and dynamic typing, including multi-language
  13446. integration~\citep{Tobin-Hochstadt:2006fk,Matthews:2007zr} and hybrid
  13447. type checking~\citep{Flanagan:2006mn,Gronski:2006uq}. In this chapter
  13448. we focus on \emph{gradual typing}\index{subject}{gradual typing}, in which the
  13449. programmer controls the amount of static versus dynamic checking by
  13450. adding or removing type annotations on parameters and
  13451. variables~\citep{Anderson:2002kd,Siek:2006bh}.
  13452. %
  13453. The concrete syntax of \LangGrad{} is defined in
  13454. Figure~\ref{fig:Rgrad-concrete-syntax} and its abstract syntax is defined
  13455. in Figure~\ref{fig:Rgrad-syntax}. The main syntactic difference between
  13456. \LangLoop{} and \LangGrad{} is the additional \itm{param} and \itm{ret}
  13457. non-terminals that make type annotations optional. The return types
  13458. are not optional in the abstract syntax; the parser fills in
  13459. \code{Any} when the return type is not specified in the concrete
  13460. syntax.
  13461. \begin{figure}[tp]
  13462. \centering
  13463. \fbox{
  13464. \begin{minipage}{0.96\textwidth}
  13465. \small
  13466. \[
  13467. \begin{array}{lcl}
  13468. \itm{param} &::=& \Var \MID \LS\Var \key{:} \Type\RS \\
  13469. \itm{ret} &::=& \epsilon \MID \key{:} \Type \\
  13470. \Exp &::=& \gray{ \Int \MID \CREAD{} \MID \CNEG{\Exp}
  13471. \MID \CADD{\Exp}{\Exp} \MID \CSUB{\Exp}{\Exp} } \\
  13472. &\MID& \gray{ \Var \MID \CLET{\Var}{\Exp}{\Exp} }\\
  13473. &\MID& \gray{\key{\#t} \MID \key{\#f}
  13474. \MID (\key{and}\;\Exp\;\Exp)
  13475. \MID (\key{or}\;\Exp\;\Exp)
  13476. \MID (\key{not}\;\Exp) } \\
  13477. &\MID& \gray{ (\key{eq?}\;\Exp\;\Exp) \MID \CIF{\Exp}{\Exp}{\Exp} } \\
  13478. &\MID& \gray{ (\key{vector}\;\Exp\ldots) \MID
  13479. (\key{vector-ref}\;\Exp\;\Int)} \\
  13480. &\MID& \gray{(\key{vector-set!}\;\Exp\;\Int\;\Exp)\MID (\key{void})
  13481. \MID (\Exp \; \Exp\ldots) } \\
  13482. &\MID& \gray{ \LP \key{procedure-arity}~\Exp\RP }
  13483. \MID \CGLAMBDA{\LP\itm{param}\ldots\RP}{\itm{ret}}{\Exp} \\
  13484. &\MID& \gray{ \CSETBANG{\Var}{\Exp}
  13485. \MID \CBEGIN{\Exp\ldots}{\Exp}
  13486. \MID \CWHILE{\Exp}{\Exp} } \\
  13487. \Def &::=& \CGDEF{\Var}{\itm{param}\ldots}{\itm{ret}}{\Exp} \\
  13488. \LangGradM{} &::=& \gray{\Def\ldots \; \Exp}
  13489. \end{array}
  13490. \]
  13491. \end{minipage}
  13492. }
  13493. \caption{The concrete syntax of \LangGrad{}, extending \LangLoop{} (Figure~\ref{fig:Rwhile-concrete-syntax}).}
  13494. \label{fig:Rgrad-concrete-syntax}
  13495. \end{figure}
  13496. \begin{figure}[tp]
  13497. \centering
  13498. \fbox{
  13499. \begin{minipage}{0.96\textwidth}
  13500. \small
  13501. \[
  13502. \begin{array}{lcl}
  13503. \itm{param} &::=& \Var \MID \LS\Var \key{:} \Type\RS \\
  13504. \Exp &::=& \gray{ \INT{\Int} \VAR{\Var} \MID \LET{\Var}{\Exp}{\Exp} } \\
  13505. &\MID& \gray{ \PRIM{\itm{op}}{\Exp\ldots} }\\
  13506. &\MID& \gray{ \BOOL{\itm{bool}}
  13507. \MID \IF{\Exp}{\Exp}{\Exp} } \\
  13508. &\MID& \gray{ \VOID{} \MID \LP\key{HasType}~\Exp~\Type \RP
  13509. \MID \APPLY{\Exp}{\Exp\ldots} }\\
  13510. &\MID& \LAMBDA{\LP\itm{param}\ldots\RP}{\Type}{\Exp} \\
  13511. &\MID& \gray{ \SETBANG{\Var}{\Exp} \MID \BEGIN{\LP\Exp\ldots\RP}{\Exp} } \\
  13512. &\MID& \gray{ \WHILE{\Exp}{\Exp} } \\
  13513. \Def &::=& \FUNDEF{\Var}{\LP\itm{param}\ldots\RP}{\Type}{\code{'()}}{\Exp} \\
  13514. \LangGradM{} &::=& \gray{ \PROGRAMDEFSEXP{\code{'()}}{\LP\Def\ldots\RP}{\Exp} }
  13515. \end{array}
  13516. \]
  13517. \end{minipage}
  13518. }
  13519. \caption{The abstract syntax of \LangGrad{}, extending \LangLoop{} (Figure~\ref{fig:Rwhile-syntax}).}
  13520. \label{fig:Rgrad-syntax}
  13521. \end{figure}
  13522. Both the type checker and the interpreter for \LangGrad{} require some
  13523. interesting changes to enable gradual typing, which we discuss in the
  13524. next two sections in the context of the \code{map-vec} example from
  13525. Chapter~\ref{ch:Rfun}. In Figure~\ref{fig:gradual-map-vec} we
  13526. revised the \code{map-vec} example, omitting the type annotations from
  13527. the \code{add1} function.
  13528. \begin{figure}[btp]
  13529. % gradual_test_9.rkt
  13530. \begin{lstlisting}
  13531. (define (map-vec [f : (Integer -> Integer)]
  13532. [v : (Vector Integer Integer)])
  13533. : (Vector Integer Integer)
  13534. (vector (f (vector-ref v 0)) (f (vector-ref v 1))))
  13535. (define (add1 x) (+ x 1))
  13536. (vector-ref (map-vec add1 (vector 0 41)) 1)
  13537. \end{lstlisting}
  13538. \caption{A partially-typed version of the \code{map-vec} example.}
  13539. \label{fig:gradual-map-vec}
  13540. \end{figure}
  13541. \section{Type Checking \LangGrad{} and \LangCast{}}
  13542. \label{sec:gradual-type-check}
  13543. The type checker for \LangGrad{} uses the \code{Any} type for missing
  13544. parameter and return types. For example, the \code{x} parameter of
  13545. \code{add1} in Figure~\ref{fig:gradual-map-vec} is given the type
  13546. \code{Any} and the return type of \code{add1} is \code{Any}. Next
  13547. consider the \code{+} operator inside \code{add1}. It expects both
  13548. arguments to have type \code{Integer}, but its first argument \code{x}
  13549. has type \code{Any}. In a gradually typed language, such differences
  13550. are allowed so long as the types are \emph{consistent}, that is, they
  13551. are equal except in places where there is an \code{Any} type. The type
  13552. \code{Any} is consistent with every other type.
  13553. Figure~\ref{fig:consistent} defines the \code{consistent?} predicate.
  13554. \begin{figure}[tbp]
  13555. \begin{lstlisting}
  13556. (define/public (consistent? t1 t2)
  13557. (match* (t1 t2)
  13558. [('Integer 'Integer) #t]
  13559. [('Boolean 'Boolean) #t]
  13560. [('Void 'Void) #t]
  13561. [('Any t2) #t]
  13562. [(t1 'Any) #t]
  13563. [(`(Vector ,ts1 ...) `(Vector ,ts2 ...))
  13564. (for/and ([t1 ts1] [t2 ts2]) (consistent? t1 t2))]
  13565. [(`(,ts1 ... -> ,rt1) `(,ts2 ... -> ,rt2))
  13566. (and (for/and ([t1 ts1] [t2 ts2]) (consistent? t1 t2))
  13567. (consistent? rt1 rt2))]
  13568. [(other wise) #f]))
  13569. \end{lstlisting}
  13570. \caption{The consistency predicate on types.}
  13571. \label{fig:consistent}
  13572. \end{figure}
  13573. Returning to the \code{map-vec} example of
  13574. Figure~\ref{fig:gradual-map-vec}, the \code{add1} function has type
  13575. \code{(Any -> Any)} but parameter \code{f} of \code{map-vec} has type
  13576. \code{(Integer -> Integer)}. The type checker for \LangGrad{} allows this
  13577. because the two types are consistent. In particular, \code{->} is
  13578. equal to \code{->} and because \code{Any} is consistent with
  13579. \code{Integer}.
  13580. Next consider a program with an error, such as applying the
  13581. \code{map-vec} to a function that sometimes returns a Boolean, as
  13582. shown in Figure~\ref{fig:map-vec-maybe-add1}. The type checker for
  13583. \LangGrad{} accepts this program because the type of \code{maybe-add1} is
  13584. consistent with the type of parameter \code{f} of \code{map-vec}, that
  13585. is, \code{(Any -> Any)} is consistent with \code{(Integer ->
  13586. Integer)}. One might say that a gradual type checker is optimistic
  13587. in that it accepts programs that might execute without a runtime type
  13588. error.
  13589. %
  13590. Unfortunately, running this program with input \code{1} triggers an
  13591. error when the \code{maybe-add1} function returns \code{\#t}. \LangGrad{}
  13592. performs checking at runtime to ensure the integrity of the static
  13593. types, such as the \code{(Integer -> Integer)} annotation on parameter
  13594. \code{f} of \code{map-vec}. This runtime checking is carried out by a
  13595. new \code{Cast} form that is inserted by the type checker. Thus, the
  13596. output of the type checker is a program in the \LangCast{} language, which
  13597. adds \code{Cast} to \LangLoop{}, as shown in
  13598. Figure~\ref{fig:Rgrad-prime-syntax}.
  13599. \begin{figure}[tp]
  13600. \centering
  13601. \fbox{
  13602. \begin{minipage}{0.96\textwidth}
  13603. \small
  13604. \[
  13605. \begin{array}{lcl}
  13606. \Exp &::=& \ldots \MID \CAST{\Exp}{\Type}{\Type} \\
  13607. \LangCastM{} &::=& \gray{ \PROGRAMDEFSEXP{\code{'()}}{\LP\Def\ldots\RP}{\Exp} }
  13608. \end{array}
  13609. \]
  13610. \end{minipage}
  13611. }
  13612. \caption{The abstract syntax of \LangCast{}, extending \LangLoop{} (Figure~\ref{fig:Rwhile-syntax}).}
  13613. \label{fig:Rgrad-prime-syntax}
  13614. \end{figure}
  13615. \begin{figure}[tbp]
  13616. \begin{lstlisting}
  13617. (define (map-vec [f : (Integer -> Integer)]
  13618. [v : (Vector Integer Integer)])
  13619. : (Vector Integer Integer)
  13620. (vector (f (vector-ref v 0)) (f (vector-ref v 1))))
  13621. (define (add1 x) (+ x 1))
  13622. (define (true) #t)
  13623. (define (maybe-add1 x) (if (eq? 0 (read)) (add1 x) (true)))
  13624. (vector-ref (map-vec maybe-add1 (vector 0 41)) 0)
  13625. \end{lstlisting}
  13626. \caption{A variant of the \code{map-vec} example with an error.}
  13627. \label{fig:map-vec-maybe-add1}
  13628. \end{figure}
  13629. Figure~\ref{fig:map-vec-cast} shows the output of the type checker for
  13630. \code{map-vec} and \code{maybe-add1}. The idea is that \code{Cast} is
  13631. inserted every time the type checker sees two types that are
  13632. consistent but not equal. In the \code{add1} function, \code{x} is
  13633. cast to \code{Integer} and the result of the \code{+} is cast to
  13634. \code{Any}. In the call to \code{map-vec}, the \code{add1} argument
  13635. is cast from \code{(Any -> Any)} to \code{(Integer -> Integer)}.
  13636. \begin{figure}[btp]
  13637. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  13638. (define (map-vec [f : (Integer -> Integer)] [v : (Vector Integer Integer)])
  13639. : (Vector Integer Integer)
  13640. (vector (f (vector-ref v 0)) (f (vector-ref v 1))))
  13641. (define (add1 [x : Any]) : Any
  13642. (cast (+ (cast x Any Integer) 1) Integer Any))
  13643. (define (true) : Any (cast #t Boolean Any))
  13644. (define (maybe-add1 [x : Any]) : Any
  13645. (if (eq? 0 (read)) (add1 x) (true)))
  13646. (vector-ref (map-vec (cast maybe-add1 (Any -> Any) (Integer -> Integer))
  13647. (vector 0 41)) 0)
  13648. \end{lstlisting}
  13649. \caption{Output of type checking \code{map-vec}
  13650. and \code{maybe-add1}.}
  13651. \label{fig:map-vec-cast}
  13652. \end{figure}
  13653. The type checker for \LangGrad{} is defined in
  13654. Figures~\ref{fig:type-check-Rgradual-1}, \ref{fig:type-check-Rgradual-2},
  13655. and \ref{fig:type-check-Rgradual-3}.
  13656. \begin{figure}[tbp]
  13657. \begin{lstlisting}[basicstyle=\ttfamily\scriptsize]
  13658. (define type-check-gradual_class
  13659. (class type-check-Rwhile_class
  13660. (super-new)
  13661. (inherit operator-types type-predicates)
  13662. (define/override (type-check-exp env)
  13663. (lambda (e)
  13664. (define recur (type-check-exp env))
  13665. (match e
  13666. [(Prim 'vector-length (list e1))
  13667. (define-values (e1^ t) (recur e1))
  13668. (match t
  13669. [`(Vector ,ts ...)
  13670. (values (Prim 'vector-length (list e1^)) 'Integer)]
  13671. ['Any (values (Prim 'any-vector-length (list e1^)) 'Integer)])]
  13672. [(Prim 'vector-ref (list e1 e2))
  13673. (define-values (e1^ t1) (recur e1))
  13674. (define-values (e2^ t2) (recur e2))
  13675. (check-consistent? t2 'Integer e)
  13676. (match t1
  13677. [`(Vector ,ts ...)
  13678. (match e2^
  13679. [(Int i)
  13680. (unless (and (0 . <= . i) (i . < . (length ts)))
  13681. (error 'type-check "invalid index ~a in ~a" i e))
  13682. (values (Prim 'vector-ref (list e1^ (Int i))) (list-ref ts i))]
  13683. [else (define e1^^ (make-cast e1^ t1 'Any))
  13684. (define e2^^ (make-cast e2^ t2 'Integer))
  13685. (values (Prim 'any-vector-ref (list e1^^ e2^^)) 'Any)])]
  13686. ['Any
  13687. (define e2^^ (make-cast e2^ t2 'Integer))
  13688. (values (Prim 'any-vector-ref (list e1^ e2^^)) 'Any)]
  13689. [else (error 'type-check "expected vector not ~a\nin ~v" t1 e)])]
  13690. [(Prim 'vector-set! (list e1 e2 e3) )
  13691. (define-values (e1^ t1) (recur e1))
  13692. (define-values (e2^ t2) (recur e2))
  13693. (define-values (e3^ t3) (recur e3))
  13694. (check-consistent? t2 'Integer e)
  13695. (match t1
  13696. [`(Vector ,ts ...)
  13697. (match e2^
  13698. [(Int i)
  13699. (unless (and (0 . <= . i) (i . < . (length ts)))
  13700. (error 'type-check "invalid index ~a in ~a" i e))
  13701. (check-consistent? (list-ref ts i) t3 e)
  13702. (define e3^^ (make-cast e3^ t3 (list-ref ts i)))
  13703. (values (Prim 'vector-set! (list e1^ (Int i) e3^^)) 'Void)]
  13704. [else
  13705. (define e1^^ (make-cast e1^ t1 'Any))
  13706. (define e2^^ (make-cast e2^ t2 'Integer))
  13707. (define e3^^ (make-cast e3^ t3 'Any))
  13708. (values (Prim 'any-vector-set! (list e1^^ e2^^ e3^^)) 'Void)])]
  13709. ['Any
  13710. (define e2^^ (make-cast e2^ t2 'Integer))
  13711. (define e3^^ (make-cast e3^ t3 'Any))
  13712. (values (Prim 'any-vector-set! (list e1^ e2^^ e3^^)) 'Void)]
  13713. [else (error 'type-check "expected vector not ~a\nin ~v" t1 e)])]
  13714. \end{lstlisting}
  13715. \caption{Type checker for the \LangGrad{} language, part 1.}
  13716. \label{fig:type-check-Rgradual-1}
  13717. \end{figure}
  13718. \begin{figure}[tbp]
  13719. \begin{lstlisting}[basicstyle=\ttfamily\scriptsize]
  13720. [(Prim 'eq? (list e1 e2))
  13721. (define-values (e1^ t1) (recur e1))
  13722. (define-values (e2^ t2) (recur e2))
  13723. (check-consistent? t1 t2 e)
  13724. (define T (meet t1 t2))
  13725. (values (Prim 'eq? (list (make-cast e1^ t1 T) (make-cast e2^ t2 T)))
  13726. 'Boolean)]
  13727. [(Prim 'not (list e1))
  13728. (define-values (e1^ t1) (recur e1))
  13729. (match t1
  13730. ['Any
  13731. (recur (If (Prim 'eq? (list e1 (Inject (Bool #f) 'Boolean)))
  13732. (Bool #t) (Bool #f)))]
  13733. [else
  13734. (define-values (t-ret new-es^)
  13735. (type-check-op 'not (list t1) (list e1^) e))
  13736. (values (Prim 'not new-es^) t-ret)])]
  13737. [(Prim 'and (list e1 e2))
  13738. (recur (If e1 e2 (Bool #f)))]
  13739. [(Prim 'or (list e1 e2))
  13740. (define tmp (gensym 'tmp))
  13741. (recur (Let tmp e1 (If (Var tmp) (Var tmp) e2)))]
  13742. [(Prim op es)
  13743. #:when (not (set-member? explicit-prim-ops op))
  13744. (define-values (new-es ts)
  13745. (for/lists (exprs types) ([e es])
  13746. (recur e)))
  13747. (define-values (t-ret new-es^) (type-check-op op ts new-es e))
  13748. (values (Prim op new-es^) t-ret)]
  13749. [(If e1 e2 e3)
  13750. (define-values (e1^ T1) (recur e1))
  13751. (define-values (e2^ T2) (recur e2))
  13752. (define-values (e3^ T3) (recur e3))
  13753. (check-consistent? T2 T3 e)
  13754. (match T1
  13755. ['Boolean
  13756. (define Tif (join T2 T3))
  13757. (values (If e1^ (make-cast e2^ T2 Tif)
  13758. (make-cast e3^ T3 Tif)) Tif)]
  13759. ['Any
  13760. (define Tif (meet T2 T3))
  13761. (values (If (Prim 'eq? (list e1^ (Inject (Bool #f) 'Boolean)))
  13762. (make-cast e3^ T3 Tif) (make-cast e2^ T2 Tif))
  13763. Tif)]
  13764. [else (error 'type-check "expected Boolean not ~a\nin ~v" T1 e)])]
  13765. [(HasType e1 T)
  13766. (define-values (e1^ T1) (recur e1))
  13767. (check-consistent? T1 T)
  13768. (values (make-cast e1^ T1 T) T)]
  13769. [(SetBang x e1)
  13770. (define-values (e1^ T1) (recur e1))
  13771. (define varT (dict-ref env x))
  13772. (check-consistent? T1 varT e)
  13773. (values (SetBang x (make-cast e1^ T1 varT)) 'Void)]
  13774. [(WhileLoop e1 e2)
  13775. (define-values (e1^ T1) (recur e1))
  13776. (check-consistent? T1 'Boolean e)
  13777. (define-values (e2^ T2) ((type-check-exp env) e2))
  13778. (values (WhileLoop (make-cast e1^ T1 'Boolean) e2^) 'Void)]
  13779. \end{lstlisting}
  13780. \caption{Type checker for the \LangGrad{} language, part 2.}
  13781. \label{fig:type-check-Rgradual-2}
  13782. \end{figure}
  13783. \begin{figure}[tbp]
  13784. \begin{lstlisting}[basicstyle=\ttfamily\scriptsize]
  13785. [(Apply e1 e2s)
  13786. (define-values (e1^ T1) (recur e1))
  13787. (define-values (e2s^ T2s) (for/lists (e* ty*) ([e2 e2s]) (recur e2)))
  13788. (match T1
  13789. [`(,T1ps ... -> ,T1rt)
  13790. (for ([T2 T2s] [Tp T1ps])
  13791. (check-consistent? T2 Tp e))
  13792. (define e2s^^ (for/list ([e2 e2s^] [src T2s] [tgt T1ps])
  13793. (make-cast e2 src tgt)))
  13794. (values (Apply e1^ e2s^^) T1rt)]
  13795. [`Any
  13796. (define e1^^ (make-cast e1^ 'Any
  13797. `(,@(for/list ([e e2s]) 'Any) -> Any)))
  13798. (define e2s^^ (for/list ([e2 e2s^] [src T2s])
  13799. (make-cast e2 src 'Any)))
  13800. (values (Apply e1^^ e2s^^) 'Any)]
  13801. [else (error 'type-check "expected function not ~a\nin ~v" T1 e)])]
  13802. [(Lambda params Tr e1)
  13803. (define-values (xs Ts) (for/lists (l1 l2) ([p params])
  13804. (match p
  13805. [`[,x : ,T] (values x T)]
  13806. [(? symbol? x) (values x 'Any)])))
  13807. (define-values (e1^ T1)
  13808. ((type-check-exp (append (map cons xs Ts) env)) e1))
  13809. (check-consistent? Tr T1 e)
  13810. (values (Lambda (for/list ([x xs] [T Ts]) `[,x : ,T]) Tr
  13811. (make-cast e1^ T1 Tr)) `(,@Ts -> ,Tr))]
  13812. [else ((super type-check-exp env) e)]
  13813. )))
  13814. \end{lstlisting}
  13815. \caption{Type checker for the \LangGrad{} language, part 3.}
  13816. \label{fig:type-check-Rgradual-3}
  13817. \end{figure}
  13818. \begin{figure}[tbp]
  13819. \begin{lstlisting}[basicstyle=\ttfamily\scriptsize]
  13820. (define/public (join t1 t2)
  13821. (match* (t1 t2)
  13822. [('Integer 'Integer) 'Integer]
  13823. [('Boolean 'Boolean) 'Boolean]
  13824. [('Void 'Void) 'Void]
  13825. [('Any t2) t2]
  13826. [(t1 'Any) t1]
  13827. [(`(Vector ,ts1 ...) `(Vector ,ts2 ...))
  13828. `(Vector ,@(for/list ([t1 ts1] [t2 ts2]) (join t1 t2)))]
  13829. [(`(,ts1 ... -> ,rt1) `(,ts2 ... -> ,rt2))
  13830. `(,@(for/list ([t1 ts1] [t2 ts2]) (join t1 t2))
  13831. -> ,(join rt1 rt2))]))
  13832. (define/public (meet t1 t2)
  13833. (match* (t1 t2)
  13834. [('Integer 'Integer) 'Integer]
  13835. [('Boolean 'Boolean) 'Boolean]
  13836. [('Void 'Void) 'Void]
  13837. [('Any t2) 'Any]
  13838. [(t1 'Any) 'Any]
  13839. [(`(Vector ,ts1 ...) `(Vector ,ts2 ...))
  13840. `(Vector ,@(for/list ([t1 ts1] [t2 ts2]) (meet t1 t2)))]
  13841. [(`(,ts1 ... -> ,rt1) `(,ts2 ... -> ,rt2))
  13842. `(,@(for/list ([t1 ts1] [t2 ts2]) (meet t1 t2))
  13843. -> ,(meet rt1 rt2))]))
  13844. (define/public (make-cast e src tgt)
  13845. (cond [(equal? src tgt) e] [else (Cast e src tgt)]))
  13846. (define/public (check-consistent? t1 t2 e)
  13847. (unless (consistent? t1 t2)
  13848. (error 'type-check "~a is inconsistent with ~a\nin ~v" t1 t2 e)))
  13849. (define/override (type-check-op op arg-types args e)
  13850. (match (dict-ref (operator-types) op)
  13851. [`(,param-types . ,return-type)
  13852. (for ([at arg-types] [pt param-types])
  13853. (check-consistent? at pt e))
  13854. (values return-type
  13855. (for/list ([e args] [s arg-types] [t param-types])
  13856. (make-cast e s t)))]
  13857. [else (error 'type-check-op "unrecognized ~a" op)]))
  13858. (define explicit-prim-ops
  13859. (set-union
  13860. (type-predicates)
  13861. (set 'procedure-arity 'eq?
  13862. 'vector 'vector-length 'vector-ref 'vector-set!
  13863. 'any-vector-length 'any-vector-ref 'any-vector-set!)))
  13864. (define/override (fun-def-type d)
  13865. (match d
  13866. [(Def f params rt info body)
  13867. (define ps
  13868. (for/list ([p params])
  13869. (match p
  13870. [`[,x : ,T] T]
  13871. [(? symbol?) 'Any]
  13872. [else (error 'fun-def-type "unmatched parameter ~a" p)])))
  13873. `(,@ps -> ,rt)]
  13874. [else (error 'fun-def-type "ill-formed function definition in ~a" d)]))
  13875. \end{lstlisting}
  13876. \caption{Auxiliary functions for type checking \LangGrad{}.}
  13877. \label{fig:type-check-Rgradual-aux}
  13878. \end{figure}
  13879. \clearpage
  13880. \section{Interpreting \LangCast{}}
  13881. \label{sec:interp-casts}
  13882. The runtime behavior of first-order casts is straightforward, that is,
  13883. casts involving simple types such as \code{Integer} and
  13884. \code{Boolean}. For example, a cast from \code{Integer} to \code{Any}
  13885. can be accomplished with the \code{Inject} operator of \LangAny{}, which
  13886. puts the integer into a tagged value
  13887. (Figure~\ref{fig:interp-Rany}). Similarly, a cast from \code{Any} to
  13888. \code{Integer} is accomplished with the \code{Project} operator, that
  13889. is, by checking the value's tag and either retrieving the underlying
  13890. integer or signaling an error if it the tag is not the one for
  13891. integers (Figure~\ref{fig:apply-project}).
  13892. %
  13893. Things get more interesting for higher-order casts, that is, casts
  13894. involving function or vector types.
  13895. Consider the cast of the function \code{maybe-add1} from \code{(Any ->
  13896. Any)} to \code{(Integer -> Integer)}. When a function flows through
  13897. this cast at runtime, we can't know in general whether the function
  13898. will always return an integer.\footnote{Predicting the return value of
  13899. a function is equivalent to the halting problem, which is
  13900. undecidable.} The \LangCast{} interpreter therefore delays the checking
  13901. of the cast until the function is applied. This is accomplished by
  13902. wrapping \code{maybe-add1} in a new function that casts its parameter
  13903. from \code{Integer} to \code{Any}, applies \code{maybe-add1}, and then
  13904. casts the return value from \code{Any} to \code{Integer}.
  13905. Turning our attention to casts involving vector types, we consider the
  13906. example in Figure~\ref{fig:map-vec-bang} that defines a
  13907. partially-typed version of \code{map-vec} whose parameter \code{v} has
  13908. type \code{(Vector Any Any)} and that updates \code{v} in place
  13909. instead of returning a new vector. So we name this function
  13910. \code{map-vec!}. We apply \code{map-vec!} to a vector of integers, so
  13911. the type checker inserts a cast from \code{(Vector Integer Integer)}
  13912. to \code{(Vector Any Any)}. A naive way for the \LangCast{} interpreter to
  13913. cast between vector types would be a build a new vector whose elements
  13914. are the result of casting each of the original elements to the
  13915. appropriate target type. However, this approach is only valid for
  13916. immutable vectors; and our vectors are mutable. In the example of
  13917. Figure~\ref{fig:map-vec-bang}, if the cast created a new vector, then
  13918. the updates inside of \code{map-vec!} would happen to the new vector
  13919. and not the original one.
  13920. \begin{figure}[tbp]
  13921. % gradual_test_11.rkt
  13922. \begin{lstlisting}
  13923. (define (map-vec! [f : (Any -> Any)]
  13924. [v : (Vector Any Any)]) : Void
  13925. (begin
  13926. (vector-set! v 0 (f (vector-ref v 0)))
  13927. (vector-set! v 1 (f (vector-ref v 1)))))
  13928. (define (add1 x) (+ x 1))
  13929. (let ([v (vector 0 41)])
  13930. (begin (map-vec! add1 v) (vector-ref v 1)))
  13931. \end{lstlisting}
  13932. \caption{An example involving casts on vectors.}
  13933. \label{fig:map-vec-bang}
  13934. \end{figure}
  13935. Instead the interpreter needs to create a new kind of value, a
  13936. \emph{vector proxy}, that intercepts every vector operation. On a
  13937. read, the proxy reads from the underlying vector and then applies a
  13938. cast to the resulting value. On a write, the proxy casts the argument
  13939. value and then performs the write to the underlying vector. For the
  13940. first \code{(vector-ref v 0)} in \code{map-vec!}, the proxy casts
  13941. \code{0} from \code{Integer} to \code{Any}. For the first
  13942. \code{vector-set!}, the proxy casts a tagged \code{1} from \code{Any}
  13943. to \code{Integer}.
  13944. The final category of cast that we need to consider are casts between
  13945. the \code{Any} type and either a function or a vector
  13946. type. Figure~\ref{fig:map-vec-any} shows a variant of \code{map-vec!}
  13947. in which parameter \code{v} does not have a type annotation, so it is
  13948. given type \code{Any}. In the call to \code{map-vec!}, the vector has
  13949. type \code{(Vector Integer Integer)} so the type checker inserts a
  13950. cast from \code{(Vector Integer Integer)} to \code{Any}. A first
  13951. thought is to use \code{Inject}, but that doesn't work because
  13952. \code{(Vector Integer Integer)} is not a flat type. Instead, we must
  13953. first cast to \code{(Vector Any Any)} (which is flat) and then inject
  13954. to \code{Any}.
  13955. \begin{figure}[tbp]
  13956. \begin{lstlisting}
  13957. (define (map-vec! [f : (Any -> Any)] v) : Void
  13958. (begin
  13959. (vector-set! v 0 (f (vector-ref v 0)))
  13960. (vector-set! v 1 (f (vector-ref v 1)))))
  13961. (define (add1 x) (+ x 1))
  13962. (let ([v (vector 0 41)])
  13963. (begin (map-vec! add1 v) (vector-ref v 1)))
  13964. \end{lstlisting}
  13965. \caption{Casting a vector to \code{Any}.}
  13966. \label{fig:map-vec-any}
  13967. \end{figure}
  13968. The \LangCast{} interpreter uses an auxiliary function named
  13969. \code{apply-cast} to cast a value from a source type to a target type,
  13970. shown in Figure~\ref{fig:apply-cast}. You'll find that it handles all
  13971. of the kinds of casts that we've discussed in this section.
  13972. \begin{figure}[tbp]
  13973. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  13974. (define/public (apply-cast v s t)
  13975. (match* (s t)
  13976. [(t1 t2) #:when (equal? t1 t2) v]
  13977. [('Any t2)
  13978. (match t2
  13979. [`(,ts ... -> ,rt)
  13980. (define any->any `(,@(for/list ([t ts]) 'Any) -> Any))
  13981. (define v^ (apply-project v any->any))
  13982. (apply-cast v^ any->any `(,@ts -> ,rt))]
  13983. [`(Vector ,ts ...)
  13984. (define vec-any `(Vector ,@(for/list ([t ts]) 'Any)))
  13985. (define v^ (apply-project v vec-any))
  13986. (apply-cast v^ vec-any `(Vector ,@ts))]
  13987. [else (apply-project v t2)])]
  13988. [(t1 'Any)
  13989. (match t1
  13990. [`(,ts ... -> ,rt)
  13991. (define any->any `(,@(for/list ([t ts]) 'Any) -> Any))
  13992. (define v^ (apply-cast v `(,@ts -> ,rt) any->any))
  13993. (apply-inject v^ (any-tag any->any))]
  13994. [`(Vector ,ts ...)
  13995. (define vec-any `(Vector ,@(for/list ([t ts]) 'Any)))
  13996. (define v^ (apply-cast v `(Vector ,@ts) vec-any))
  13997. (apply-inject v^ (any-tag vec-any))]
  13998. [else (apply-inject v (any-tag t1))])]
  13999. [(`(Vector ,ts1 ...) `(Vector ,ts2 ...))
  14000. (define x (gensym 'x))
  14001. (define cast-reads (for/list ([t1 ts1] [t2 ts2])
  14002. `(function (,x) ,(Cast (Var x) t1 t2) ())))
  14003. (define cast-writes
  14004. (for/list ([t1 ts1] [t2 ts2])
  14005. `(function (,x) ,(Cast (Var x) t2 t1) ())))
  14006. `(vector-proxy ,(vector v (apply vector cast-reads)
  14007. (apply vector cast-writes)))]
  14008. [(`(,ts1 ... -> ,rt1) `(,ts2 ... -> ,rt2))
  14009. (define xs (for/list ([t2 ts2]) (gensym 'x)))
  14010. `(function ,xs ,(Cast
  14011. (Apply (Value v)
  14012. (for/list ([x xs][t1 ts1][t2 ts2])
  14013. (Cast (Var x) t2 t1)))
  14014. rt1 rt2) ())]
  14015. ))
  14016. \end{lstlisting}
  14017. \caption{The \code{apply-cast} auxiliary method.}
  14018. \label{fig:apply-cast}
  14019. \end{figure}
  14020. The interpreter for \LangCast{} is defined in
  14021. Figure~\ref{fig:interp-Rcast}, with the case for \code{Cast}
  14022. dispatching to \code{apply-cast}. To handle the addition of vector
  14023. proxies, we update the vector primitives in \code{interp-op} using the
  14024. functions in Figure~\ref{fig:guarded-vector}.
  14025. \begin{figure}[tbp]
  14026. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  14027. (define interp-Rcast_class
  14028. (class interp-Rwhile_class
  14029. (super-new)
  14030. (inherit apply-fun apply-inject apply-project)
  14031. (define/override (interp-op op)
  14032. (match op
  14033. ['vector-length guarded-vector-length]
  14034. ['vector-ref guarded-vector-ref]
  14035. ['vector-set! guarded-vector-set!]
  14036. ['any-vector-ref (lambda (v i)
  14037. (match v [`(tagged ,v^ ,tg)
  14038. (guarded-vector-ref v^ i)]))]
  14039. ['any-vector-set! (lambda (v i a)
  14040. (match v [`(tagged ,v^ ,tg)
  14041. (guarded-vector-set! v^ i a)]))]
  14042. ['any-vector-length (lambda (v)
  14043. (match v [`(tagged ,v^ ,tg)
  14044. (guarded-vector-length v^)]))]
  14045. [else (super interp-op op)]
  14046. ))
  14047. (define/override ((interp-exp env) e)
  14048. (define (recur e) ((interp-exp env) e))
  14049. (match e
  14050. [(Value v) v]
  14051. [(Cast e src tgt) (apply-cast (recur e) src tgt)]
  14052. [else ((super interp-exp env) e)]))
  14053. ))
  14054. (define (interp-Rcast p)
  14055. (send (new interp-Rcast_class) interp-program p))
  14056. \end{lstlisting}
  14057. \caption{The interpreter for \LangCast{}.}
  14058. \label{fig:interp-Rcast}
  14059. \end{figure}
  14060. \begin{figure}[tbp]
  14061. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  14062. (define (guarded-vector-ref vec i)
  14063. (match vec
  14064. [`(vector-proxy ,proxy)
  14065. (define val (guarded-vector-ref (vector-ref proxy 0) i))
  14066. (define rd (vector-ref (vector-ref proxy 1) i))
  14067. (apply-fun rd (list val) 'guarded-vector-ref)]
  14068. [else (vector-ref vec i)]))
  14069. (define (guarded-vector-set! vec i arg)
  14070. (match vec
  14071. [`(vector-proxy ,proxy)
  14072. (define wr (vector-ref (vector-ref proxy 2) i))
  14073. (define arg^ (apply-fun wr (list arg) 'guarded-vector-set!))
  14074. (guarded-vector-set! (vector-ref proxy 0) i arg^)]
  14075. [else (vector-set! vec i arg)]))
  14076. (define (guarded-vector-length vec)
  14077. (match vec
  14078. [`(vector-proxy ,proxy)
  14079. (guarded-vector-length (vector-ref proxy 0))]
  14080. [else (vector-length vec)]))
  14081. \end{lstlisting}
  14082. \caption{The guarded-vector auxiliary functions.}
  14083. \label{fig:guarded-vector}
  14084. \end{figure}
  14085. \section{Lower Casts}
  14086. \label{sec:lower-casts}
  14087. The next step in the journey towards x86 is the \code{lower-casts}
  14088. pass that translates the casts in \LangCast{} to the lower-level
  14089. \code{Inject} and \code{Project} operators and a new operator for
  14090. creating vector proxies, extending the \LangLoop{} language to create
  14091. \LangProxy{}. We recommend creating an auxiliary function named
  14092. \code{lower-cast} that takes an expression (in \LangCast{}), a source type,
  14093. and a target type, and translates it to expression in \LangProxy{} that has
  14094. the same behavior as casting the expression from the source to the
  14095. target type in the interpreter.
  14096. The \code{lower-cast} function can follow a code structure similar to
  14097. the \code{apply-cast} function (Figure~\ref{fig:apply-cast}) used in
  14098. the interpreter for \LangCast{} because it must handle the same cases as
  14099. \code{apply-cast} and it needs to mimic the behavior of
  14100. \code{apply-cast}. The most interesting cases are those concerning the
  14101. casts between two vector types and between two function types.
  14102. As mentioned in Section~\ref{sec:interp-casts}, a cast from one vector
  14103. type to another vector type is accomplished by creating a proxy that
  14104. intercepts the operations on the underlying vector. Here we make the
  14105. creation of the proxy explicit with the \code{vector-proxy} primitive
  14106. operation. It takes three arguments, the first is an expression for
  14107. the vector, the second is a vector of functions for casting an element
  14108. that is being read from the vector, and the third is a vector of
  14109. functions for casting an element that is being written to the vector.
  14110. You can create the functions using \code{Lambda}. Also, as we shall
  14111. see in the next section, we need to differentiate these vectors from
  14112. the user-created ones, so we recommend using a new primitive operator
  14113. named \code{raw-vector} instead of \code{vector} to create these
  14114. vectors of functions. Figure~\ref{fig:map-vec-bang-lower-cast} shows
  14115. the output of \code{lower-casts} on the example in
  14116. Figure~\ref{fig:map-vec-bang} that involved casting a vector of
  14117. integers to a vector of \code{Any}.
  14118. \begin{figure}[tbp]
  14119. \begin{lstlisting}
  14120. (define (map-vec! [f : (Any -> Any)] [v : (Vector Any Any)]) : Void
  14121. (begin
  14122. (vector-set! v 0 (f (vector-ref v 0)))
  14123. (vector-set! v 1 (f (vector-ref v 1)))))
  14124. (define (add1 [x : Any]) : Any
  14125. (inject (+ (project x Integer) 1) Integer))
  14126. (let ([v (vector 0 41)])
  14127. (begin
  14128. (map-vec! add1 (vector-proxy v
  14129. (raw-vector (lambda: ([x9 : Integer]) : Any
  14130. (inject x9 Integer))
  14131. (lambda: ([x9 : Integer]) : Any
  14132. (inject x9 Integer)))
  14133. (raw-vector (lambda: ([x9 : Any]) : Integer
  14134. (project x9 Integer))
  14135. (lambda: ([x9 : Any]) : Integer
  14136. (project x9 Integer)))))
  14137. (vector-ref v 1)))
  14138. \end{lstlisting}
  14139. \caption{Output of \code{lower-casts} on the example in
  14140. Figure~\ref{fig:map-vec-bang}.}
  14141. \label{fig:map-vec-bang-lower-cast}
  14142. \end{figure}
  14143. A cast from one function type to another function type is accomplished
  14144. by generating a \code{Lambda} whose parameter and return types match
  14145. the target function type. The body of the \code{Lambda} should cast
  14146. the parameters from the target type to the source type (yes,
  14147. backwards! functions are contravariant\index{subject}{contravariant} in the
  14148. parameters), then call the underlying function, and finally cast the
  14149. result from the source return type to the target return type.
  14150. Figure~\ref{fig:map-vec-lower-cast} shows the output of the
  14151. \code{lower-casts} pass on the \code{map-vec} example in
  14152. Figure~\ref{fig:gradual-map-vec}. Note that the \code{add1} argument
  14153. in the call to \code{map-vec} is wrapped in a \code{lambda}.
  14154. \begin{figure}[tbp]
  14155. \begin{lstlisting}
  14156. (define (map-vec [f : (Integer -> Integer)]
  14157. [v : (Vector Integer Integer)])
  14158. : (Vector Integer Integer)
  14159. (vector (f (vector-ref v 0)) (f (vector-ref v 1))))
  14160. (define (add1 [x : Any]) : Any
  14161. (inject (+ (project x Integer) 1) Integer))
  14162. (vector-ref (map-vec (lambda: ([x9 : Integer]) : Integer
  14163. (project (add1 (inject x9 Integer)) Integer))
  14164. (vector 0 41)) 1)
  14165. \end{lstlisting}
  14166. \caption{Output of \code{lower-casts} on the example in
  14167. Figure~\ref{fig:gradual-map-vec}.}
  14168. \label{fig:map-vec-lower-cast}
  14169. \end{figure}
  14170. \section{Differentiate Proxies}
  14171. \label{sec:differentiate-proxies}
  14172. So far the job of differentiating vectors and vector proxies has been
  14173. the job of the interpreter. For example, the interpreter for \LangCast{}
  14174. implements \code{vector-ref} using the \code{guarded-vector-ref}
  14175. function in Figure~\ref{fig:guarded-vector}. In the
  14176. \code{differentiate-proxies} pass we shift this responsibility to the
  14177. generated code.
  14178. We begin by designing the output language $R^p_8$. In
  14179. \LangGrad{} we used the type \code{Vector} for both real vectors and vector
  14180. proxies. In $R^p_8$ we return the \code{Vector} type to
  14181. its original meaning, as the type of real vectors, and we introduce a
  14182. new type, \code{PVector}, whose values can be either real vectors or
  14183. vector proxies. This new type comes with a suite of new primitive
  14184. operations for creating and using values of type \code{PVector}. We
  14185. don't need to introduce a new type to represent vector proxies. A
  14186. proxy is represented by a vector containing three things: 1) the
  14187. underlying vector, 2) a vector of functions for casting elements that
  14188. are read from the vector, and 3) a vector of functions for casting
  14189. values to be written to the vector. So we define the following
  14190. abbreviation for the type of a vector proxy:
  14191. \[
  14192. \itm{Proxy} (T\ldots \Rightarrow T'\ldots)
  14193. = (\ttm{Vector}~(\ttm{PVector}~ T\ldots) ~R~ W)
  14194. \to (\key{PVector}~ T' \ldots)
  14195. \]
  14196. where $R = (\ttm{Vector}~(T\to T') \ldots)$ and
  14197. $W = (\ttm{Vector}~(T'\to T) \ldots)$.
  14198. %
  14199. Next we describe each of the new primitive operations.
  14200. \begin{description}
  14201. \item[\code{inject-vector} : (\key{Vector} $T \ldots$) $\to$
  14202. (\key{PVector} $T \ldots$)]\ \\
  14203. %
  14204. This operation brands a vector as a value of the \code{PVector} type.
  14205. \item[\code{inject-proxy} : $\itm{Proxy}(T\ldots \Rightarrow T'\ldots)$
  14206. $\to$ (\key{PVector} $T' \ldots$)]\ \\
  14207. %
  14208. This operation brands a vector proxy as value of the \code{PVector} type.
  14209. \item[\code{proxy?} : (\key{PVector} $T \ldots$) $\to$
  14210. \code{Boolean}] \ \\
  14211. %
  14212. returns true if the value is a vector proxy and false if it is a
  14213. real vector.
  14214. \item[\code{project-vector} : (\key{PVector} $T \ldots$) $\to$
  14215. (\key{Vector} $T \ldots$)]\ \\
  14216. %
  14217. Assuming that the input is a vector (and not a proxy), this
  14218. operation returns the vector.
  14219. \item[\code{proxy-vector-length} : (\key{PVector} $T \ldots$)
  14220. $\to$ \code{Boolean}]\ \\
  14221. %
  14222. Given a vector proxy, this operation returns the length of the
  14223. underlying vector.
  14224. \item[\code{proxy-vector-ref} : (\key{PVector} $T \ldots$)
  14225. $\to$ ($i$ : \code{Integer}) $\to$ $T_i$]\ \\
  14226. %
  14227. Given a vector proxy, this operation returns the $i$th element of
  14228. the underlying vector.
  14229. \item[\code{proxy-vector-set!} : (\key{PVector} $T \ldots$) $\to$ ($i$
  14230. : \code{Integer}) $\to$ $T_i$ $\to$ \key{Void}]\ \\ Given a vector
  14231. proxy, this operation writes a value to the $i$th element of the
  14232. underlying vector.
  14233. \end{description}
  14234. Now to discuss the translation that differentiates vectors from
  14235. proxies. First, every type annotation in the program must be
  14236. translated (recursively) to replace \code{Vector} with \code{PVector}.
  14237. Next, we must insert uses of \code{PVector} operations in the
  14238. appropriate places. For example, we wrap every vector creation with an
  14239. \code{inject-vector}.
  14240. \begin{lstlisting}
  14241. (vector |$e_1 \ldots e_n$|)
  14242. |$\Rightarrow$|
  14243. (inject-vector (vector |$e'_1 \ldots e'_n$|))
  14244. \end{lstlisting}
  14245. The \code{raw-vector} operator that we introduced in the previous
  14246. section does not get injected.
  14247. \begin{lstlisting}
  14248. (raw-vector |$e_1 \ldots e_n$|)
  14249. |$\Rightarrow$|
  14250. (vector |$e'_1 \ldots e'_n$|)
  14251. \end{lstlisting}
  14252. The \code{vector-proxy} primitive translates as follows.
  14253. \begin{lstlisting}
  14254. (vector-proxy |$e_1~e_2~e_3$|)
  14255. |$\Rightarrow$|
  14256. (inject-proxy (vector |$e'_1~e'_2~e'_3$|))
  14257. \end{lstlisting}
  14258. We translate the vector operations into conditional expressions that
  14259. check whether the value is a proxy and then dispatch to either the
  14260. appropriate proxy vector operation or the regular vector operation.
  14261. For example, the following is the translation for \code{vector-ref}.
  14262. \begin{lstlisting}
  14263. (vector-ref |$e_1$| |$i$|)
  14264. |$\Rightarrow$|
  14265. (let ([|$v~e_1$|])
  14266. (if (proxy? |$v$|)
  14267. (proxy-vector-ref |$v$| |$i$|)
  14268. (vector-ref (project-vector |$v$|) |$i$|)
  14269. \end{lstlisting}
  14270. Note in the case of a real vector, we must apply \code{project-vector}
  14271. before the \code{vector-ref}.
  14272. \section{Reveal Casts}
  14273. \label{sec:reveal-casts-gradual}
  14274. Recall that the \code{reveal-casts} pass
  14275. (Section~\ref{sec:reveal-casts-Rany}) is responsible for lowering
  14276. \code{Inject} and \code{Project} into lower-level operations. In
  14277. particular, \code{Project} turns into a conditional expression that
  14278. inspects the tag and retrieves the underlying value. Here we need to
  14279. augment the translation of \code{Project} to handle the situation when
  14280. the target type is \code{PVector}. Instead of using
  14281. \code{vector-length} we need to use \code{proxy-vector-length}.
  14282. \begin{lstlisting}
  14283. (project |$e$| (PVector Any|$_1$| |$\ldots$| Any|$_n$|))
  14284. |$\Rightarrow$|
  14285. (let |$\itm{tmp}$| |$e'$|
  14286. (if (eq? (tag-of-any |$\itm{tmp}$| 2))
  14287. (let |$\itm{vec}$| (value-of |$\itm{tmp}$| (PVector Any |$\ldots$| Any))
  14288. (if (eq? (proxy-vector-length |$\itm{vec}$|) |$n$|) |$\itm{vec}$| (exit)))
  14289. (exit)))
  14290. \end{lstlisting}
  14291. \section{Closure Conversion}
  14292. \label{sec:closure-conversion-gradual}
  14293. The closure conversion pass only requires one minor adjustment. The
  14294. auxiliary function that translates type annotations needs to be
  14295. updated to handle the \code{PVector} type.
  14296. \section{Explicate Control}
  14297. \label{sec:explicate-control-gradual}
  14298. Update the \code{explicate\_control} pass to handle the new primitive
  14299. operations on the \code{PVector} type.
  14300. \section{Select Instructions}
  14301. \label{sec:select-instructions-gradual}
  14302. Recall that the \code{select-instructions} pass is responsible for
  14303. lowering the primitive operations into x86 instructions. So we need
  14304. to translate the new \code{PVector} operations to x86. To do so, the
  14305. first question we need to answer is how will we differentiate the two
  14306. kinds of values (vectors and proxies) that can inhabit \code{PVector}.
  14307. We need just one bit to accomplish this, and use the bit in position
  14308. $57$ of the 64-bit tag at the front of every vector (see
  14309. Figure~\ref{fig:tuple-rep}). So far, this bit has been set to $0$, so
  14310. for \code{inject-vector} we leave it that way.
  14311. \begin{lstlisting}
  14312. (Assign |$\itm{lhs}$| (Prim 'inject-vector (list |$e_1$|)))
  14313. |$\Rightarrow$|
  14314. movq |$e'_1$|, |$\itm{lhs'}$|
  14315. \end{lstlisting}
  14316. On the other hand, \code{inject-proxy} sets bit $57$ to $1$.
  14317. \begin{lstlisting}
  14318. (Assign |$\itm{lhs}$| (Prim 'inject-proxy (list |$e_1$|)))
  14319. |$\Rightarrow$|
  14320. movq |$e'_1$|, %r11
  14321. movq |$(1 << 57)$|, %rax
  14322. orq 0(%r11), %rax
  14323. movq %rax, 0(%r11)
  14324. movq %r11, |$\itm{lhs'}$|
  14325. \end{lstlisting}
  14326. The \code{proxy?} operation consumes the information so carefully
  14327. stashed away by \code{inject-vector} and \code{inject-proxy}. It
  14328. isolates the $57$th bit to tell whether the value is a real vector or
  14329. a proxy.
  14330. \begin{lstlisting}
  14331. (Assign |$\itm{lhs}$| (Prim 'proxy? (list e)))
  14332. |$\Rightarrow$|
  14333. movq |$e_1'$|, %r11
  14334. movq 0(%r11), %rax
  14335. sarq $57, %rax
  14336. andq $1, %rax
  14337. movq %rax, |$\itm{lhs'}$|
  14338. \end{lstlisting}
  14339. The \code{project-vector} operation is straightforward to translate,
  14340. so we leave it up to the reader.
  14341. Regarding the \code{proxy-vector} operations, the runtime provides
  14342. procedures that implement them (they are recursive functions!) so
  14343. here we simply need to translate these vector operations into the
  14344. appropriate function call. For example, here is the translation for
  14345. \code{proxy-vector-ref}.
  14346. \begin{lstlisting}
  14347. (Assign |$\itm{lhs}$| (Prim 'proxy-vector-ref (list |$e_1$| |$e_2$|)))
  14348. |$\Rightarrow$|
  14349. movq |$e_1'$|, %rdi
  14350. movq |$e_2'$|, %rsi
  14351. callq proxy_vector_ref
  14352. movq %rax, |$\itm{lhs'}$|
  14353. \end{lstlisting}
  14354. We have another batch of vector operations to deal with, those for the
  14355. \code{Any} type. Recall that the type checker for \LangGrad{} generates an
  14356. \code{any-vector-ref} when there is a \code{vector-ref} on something
  14357. of type \code{Any}, and similarly for \code{any-vector-set!} and
  14358. \code{any-vector-length} (Figure~\ref{fig:type-check-Rgradual-1}). In
  14359. Section~\ref{sec:select-Rany} we selected instructions for these
  14360. operations based on the idea that the underlying value was a real
  14361. vector. But in the current setting, the underlying value is of type
  14362. \code{PVector}. So \code{any-vector-ref} can be translates to
  14363. pseudo-x86 as follows. We begin by projecting the underlying value out
  14364. of the tagged value and then call the \code{proxy\_vector\_ref}
  14365. procedure in the runtime.
  14366. \begin{lstlisting}
  14367. (Assign |$\itm{lhs}$| (Prim 'any-vector-ref (list |$e_1$| |$e_2$|)))
  14368. movq |$\neg 111$|, %rdi
  14369. andq |$e_1'$|, %rdi
  14370. movq |$e_2'$|, %rsi
  14371. callq proxy_vector_ref
  14372. movq %rax, |$\itm{lhs'}$|
  14373. \end{lstlisting}
  14374. The \code{any-vector-set!} and \code{any-vector-length} operators can
  14375. be translated in a similar way.
  14376. \begin{exercise}\normalfont
  14377. Implement a compiler for the gradually-typed \LangGrad{} language by
  14378. extending and adapting your compiler for \LangLoop{}. Create 10 new
  14379. partially-typed test programs. In addition to testing with these
  14380. new programs, also test your compiler on all the tests for \LangLoop{}
  14381. and tests for \LangDyn{}. Sometimes you may get a type checking error
  14382. on the \LangDyn{} programs but you can adapt them by inserting
  14383. a cast to the \code{Any} type around each subexpression
  14384. causing a type error. While \LangDyn{} doesn't have explicit casts,
  14385. you can induce one by wrapping the subexpression \code{e}
  14386. with a call to an un-annotated identity function, like this:
  14387. \code{((lambda (x) x) e)}.
  14388. \end{exercise}
  14389. \begin{figure}[p]
  14390. \begin{tikzpicture}[baseline=(current bounding box.center)]
  14391. \node (Rgradual) at (6,4) {\large \LangGrad{}};
  14392. \node (Rgradualp) at (3,4) {\large \LangCast{}};
  14393. \node (Rwhilepp) at (0,4) {\large \LangProxy{}};
  14394. \node (Rwhileproxy) at (0,2) {\large \LangPVec{}};
  14395. \node (Rwhileproxy-2) at (3,2) {\large \LangPVec{}};
  14396. \node (Rwhileproxy-3) at (6,2) {\large \LangPVec{}};
  14397. \node (Rwhileproxy-4) at (9,2) {\large \LangPVecFunRef{}};
  14398. \node (Rwhileproxy-5) at (12,2) {\large \LangPVecFunRef{}};
  14399. \node (F1-1) at (12,0) {\large \LangPVecFunRef{}};
  14400. \node (F1-2) at (9,0) {\large \LangPVecFunRef{}};
  14401. \node (F1-3) at (6,0) {\large \LangPVecFunRef{}};
  14402. \node (F1-4) at (3,0) {\large \LangPVecAlloc{}};
  14403. \node (F1-5) at (0,0) {\large \LangPVecAlloc{}};
  14404. \node (C3-2) at (3,-2) {\large \LangCLoopPVec{}};
  14405. \node (x86-2) at (3,-4) {\large \LangXIndCallVar{}};
  14406. \node (x86-2-1) at (3,-6) {\large \LangXIndCallVar{}};
  14407. \node (x86-2-2) at (6,-6) {\large \LangXIndCallVar{}};
  14408. \node (x86-3) at (6,-4) {\large \LangXIndCallVar{}};
  14409. \node (x86-4) at (9,-4) {\large \LangXIndCall{}};
  14410. \node (x86-5) at (9,-6) {\large \LangXIndCall{}};
  14411. \path[->,bend right=15] (Rgradual) edge [above] node
  14412. {\ttfamily\footnotesize type-check} (Rgradualp);
  14413. \path[->,bend right=15] (Rgradualp) edge [above] node
  14414. {\ttfamily\footnotesize lower-casts} (Rwhilepp);
  14415. \path[->,bend right=15] (Rwhilepp) edge [right] node
  14416. {\ttfamily\footnotesize differentiate-proxies} (Rwhileproxy);
  14417. \path[->,bend left=15] (Rwhileproxy) edge [above] node
  14418. {\ttfamily\footnotesize shrink} (Rwhileproxy-2);
  14419. \path[->,bend left=15] (Rwhileproxy-2) edge [above] node
  14420. {\ttfamily\footnotesize uniquify} (Rwhileproxy-3);
  14421. \path[->,bend left=15] (Rwhileproxy-3) edge [above] node
  14422. {\ttfamily\footnotesize reveal-functions} (Rwhileproxy-4);
  14423. \path[->,bend left=15] (Rwhileproxy-4) edge [above] node
  14424. {\ttfamily\footnotesize reveal-casts} (Rwhileproxy-5);
  14425. \path[->,bend left=15] (Rwhileproxy-5) edge [left] node
  14426. {\ttfamily\footnotesize convert-assignments} (F1-1);
  14427. \path[->,bend left=15] (F1-1) edge [below] node
  14428. {\ttfamily\footnotesize convert-to-clos.} (F1-2);
  14429. \path[->,bend right=15] (F1-2) edge [above] node
  14430. {\ttfamily\footnotesize limit-fun.} (F1-3);
  14431. \path[->,bend right=15] (F1-3) edge [above] node
  14432. {\ttfamily\footnotesize expose-alloc.} (F1-4);
  14433. \path[->,bend right=15] (F1-4) edge [above] node
  14434. {\ttfamily\footnotesize remove-complex.} (F1-5);
  14435. \path[->,bend right=15] (F1-5) edge [right] node
  14436. {\ttfamily\footnotesize explicate-control} (C3-2);
  14437. \path[->,bend left=15] (C3-2) edge [left] node
  14438. {\ttfamily\footnotesize select-instr.} (x86-2);
  14439. \path[->,bend right=15] (x86-2) edge [left] node
  14440. {\ttfamily\footnotesize uncover-live} (x86-2-1);
  14441. \path[->,bend right=15] (x86-2-1) edge [below] node
  14442. {\ttfamily\footnotesize build-inter.} (x86-2-2);
  14443. \path[->,bend right=15] (x86-2-2) edge [left] node
  14444. {\ttfamily\footnotesize allocate-reg.} (x86-3);
  14445. \path[->,bend left=15] (x86-3) edge [above] node
  14446. {\ttfamily\footnotesize patch-instr.} (x86-4);
  14447. \path[->,bend left=15] (x86-4) edge [right] node {\ttfamily\footnotesize print-x86} (x86-5);
  14448. \end{tikzpicture}
  14449. \caption{Diagram of the passes for \LangGrad{} (gradual typing).}
  14450. \label{fig:Rgradual-passes}
  14451. \end{figure}
  14452. Figure~\ref{fig:Rgradual-passes} provides an overview of all the passes needed
  14453. for the compilation of \LangGrad{}.
  14454. \section{Further Reading}
  14455. This chapter just scratches the surface of gradual typing. The basic
  14456. approach described here is missing two key ingredients that one would
  14457. want in a implementation of gradual typing: blame
  14458. tracking~\citep{Tobin-Hochstadt:2006fk,Wadler:2009qv} and
  14459. space-efficient casts~\citep{Herman:2006uq,Herman:2010aa}. The
  14460. problem addressed by blame tracking is that when a cast on a
  14461. higher-order value fails, it often does so at a point in the program
  14462. that is far removed from the original cast. Blame tracking is a
  14463. technique for propagating extra information through casts and proxies
  14464. so that when a cast fails, the error message can point back to the
  14465. original location of the cast in the source program.
  14466. The problem addressed by space-efficient casts also relates to
  14467. higher-order casts. It turns out that in partially typed programs, a
  14468. function or vector can flow through very-many casts at runtime. With
  14469. the approach described in this chapter, each cast adds another
  14470. \code{lambda} wrapper or a vector proxy. Not only does this take up
  14471. considerable space, but it also makes the function calls and vector
  14472. operations slow. For example, a partially-typed version of quicksort
  14473. could, in the worst case, build a chain of proxies of length $O(n)$
  14474. around the vector, changing the overall time complexity of the
  14475. algorithm from $O(n^2)$ to $O(n^3)$! \citet{Herman:2006uq} suggested a
  14476. solution to this problem by representing casts using the coercion
  14477. calculus of \citet{Henglein:1994nz}, which prevents the creation of
  14478. long chains of proxies by compressing them into a concise normal
  14479. form. \citet{Siek:2015ab} give and algorithm for compressing coercions
  14480. and \citet{Kuhlenschmidt:2019aa} show how to implement these ideas in
  14481. the Grift compiler.
  14482. \begin{center}
  14483. \url{https://github.com/Gradual-Typing/Grift}
  14484. \end{center}
  14485. There are also interesting interactions between gradual typing and
  14486. other language features, such as parametetric polymorphism,
  14487. information-flow types, and type inference, to name a few. We
  14488. recommend the reader to the online gradual typing bibliography:
  14489. \begin{center}
  14490. \url{http://samth.github.io/gradual-typing-bib/}
  14491. \end{center}
  14492. % TODO: challenge problem:
  14493. % type analysis and type specialization?
  14494. % coercions?
  14495. \fi
  14496. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  14497. \chapter{Parametric Polymorphism}
  14498. \label{ch:Rpoly}
  14499. \index{subject}{parametric polymorphism}
  14500. \index{subject}{generics}
  14501. \if\edition\racketEd
  14502. This chapter studies the compilation of parametric
  14503. polymorphism\index{subject}{parametric polymorphism}
  14504. (aka. generics\index{subject}{generics}) in the subset \LangPoly{} of Typed
  14505. Racket. Parametric polymorphism enables improved code reuse by
  14506. parameterizing functions and data structures with respect to the types
  14507. that they operate on. For example, Figure~\ref{fig:map-vec-poly}
  14508. revisits the \code{map-vec} example but this time gives it a more
  14509. fitting type. This \code{map-vec} function is parameterized with
  14510. respect to the element type of the vector. The type of \code{map-vec}
  14511. is the following polymorphic type as specified by the \code{All} and
  14512. the type parameter \code{a}.
  14513. \begin{lstlisting}
  14514. (All (a) ((a -> a) (Vector a a) -> (Vector a a)))
  14515. \end{lstlisting}
  14516. The idea is that \code{map-vec} can be used at \emph{all} choices of a
  14517. type for parameter \code{a}. In Figure~\ref{fig:map-vec-poly} we apply
  14518. \code{map-vec} to a vector of integers, a choice of \code{Integer} for
  14519. \code{a}, but we could have just as well applied \code{map-vec} to a
  14520. vector of Booleans (and a function on Booleans).
  14521. \begin{figure}[tbp]
  14522. % poly_test_2.rkt
  14523. \begin{lstlisting}
  14524. (: map-vec (All (a) ((a -> a) (Vector a a) -> (Vector a a))))
  14525. (define (map-vec f v)
  14526. (vector (f (vector-ref v 0)) (f (vector-ref v 1))))
  14527. (define (add1 [x : Integer]) : Integer (+ x 1))
  14528. (vector-ref (map-vec add1 (vector 0 41)) 1)
  14529. \end{lstlisting}
  14530. \caption{The \code{map-vec} example using parametric polymorphism.}
  14531. \label{fig:map-vec-poly}
  14532. \end{figure}
  14533. Figure~\ref{fig:Rpoly-concrete-syntax} defines the concrete syntax of
  14534. \LangPoly{} and Figure~\ref{fig:Rpoly-syntax} defines the abstract
  14535. syntax. We add a second form for function definitions in which a type
  14536. declaration comes before the \code{define}. In the abstract syntax,
  14537. the return type in the \code{Def} is \code{Any}, but that should be
  14538. ignored in favor of the return type in the type declaration. (The
  14539. \code{Any} comes from using the same parser as in
  14540. Chapter~\ref{ch:Rdyn}.) The presence of a type declaration
  14541. enables the use of an \code{All} type for a function, thereby making
  14542. it polymorphic. The grammar for types is extended to include
  14543. polymorphic types and type variables.
  14544. \begin{figure}[tp]
  14545. \centering
  14546. \fbox{
  14547. \begin{minipage}{0.96\textwidth}
  14548. \small
  14549. \[
  14550. \begin{array}{lcl}
  14551. \Type &::=& \ldots \MID \LP\key{All}~\LP\Var\ldots\RP~ \Type\RP \MID \Var \\
  14552. \Def &::=& \gray{ \CDEF{\Var}{\LS\Var \key{:} \Type\RS \ldots}{\Type}{\Exp} } \\
  14553. &\MID& \LP\key{:}~\Var~\Type\RP \\
  14554. && \LP\key{define}~ \LP\Var ~ \Var\ldots\RP ~ \Exp\RP \\
  14555. \LangPoly{} &::=& \gray{ \Def \ldots ~ \Exp }
  14556. \end{array}
  14557. \]
  14558. \end{minipage}
  14559. }
  14560. \caption{The concrete syntax of \LangPoly{}, extending \LangLoop{}
  14561. (Figure~\ref{fig:Rwhile-concrete-syntax}).}
  14562. \label{fig:Rpoly-concrete-syntax}
  14563. \end{figure}
  14564. \begin{figure}[tp]
  14565. \centering
  14566. \fbox{
  14567. \begin{minipage}{0.96\textwidth}
  14568. \small
  14569. \[
  14570. \begin{array}{lcl}
  14571. \Type &::=& \ldots \MID \LP\key{All}~\LP\Var\ldots\RP~ \Type\RP \MID \Var \\
  14572. \Def &::=& \gray{ \DEF{\Var}{\LP\LS\Var \key{:} \Type\RS \ldots\RP}{\Type}{\code{'()}}{\Exp} } \\
  14573. &\MID& \DECL{\Var}{\Type} \\
  14574. && \DEF{\Var}{\LP\Var \ldots\RP}{\key{'Any}}{\code{'()}}{\Exp} \\
  14575. \LangPoly{} &::=& \gray{ \PROGRAMDEFSEXP{\code{'()}}{\LP\Def\ldots\RP}{\Exp} }
  14576. \end{array}
  14577. \]
  14578. \end{minipage}
  14579. }
  14580. \caption{The abstract syntax of \LangPoly{}, extending \LangLoop{}
  14581. (Figure~\ref{fig:Rwhile-syntax}).}
  14582. \label{fig:Rpoly-syntax}
  14583. \end{figure}
  14584. By including polymorphic types in the $\Type$ non-terminal we choose
  14585. to make them first-class which has interesting repercussions on the
  14586. compiler. Many languages with polymorphism, such as
  14587. C++~\citep{stroustrup88:_param_types} and Standard
  14588. ML~\citep{Milner:1990fk}, only support second-class polymorphism, so
  14589. it is useful to see an example of first-class polymorphism. In
  14590. Figure~\ref{fig:apply-twice} we define a function \code{apply-twice}
  14591. whose parameter is a polymorphic function. The occurrence of a
  14592. polymorphic type underneath a function type is enabled by the normal
  14593. recursive structure of the grammar for $\Type$ and the categorization
  14594. of the \code{All} type as a $\Type$. The body of \code{apply-twice}
  14595. applies the polymorphic function to a Boolean and to an integer.
  14596. \begin{figure}[tbp]
  14597. \begin{lstlisting}
  14598. (: apply-twice ((All (b) (b -> b)) -> Integer))
  14599. (define (apply-twice f)
  14600. (if (f #t) (f 42) (f 777)))
  14601. (: id (All (a) (a -> a)))
  14602. (define (id x) x)
  14603. (apply-twice id)
  14604. \end{lstlisting}
  14605. \caption{An example illustrating first-class polymorphism.}
  14606. \label{fig:apply-twice}
  14607. \end{figure}
  14608. The type checker for \LangPoly{} in Figure~\ref{fig:type-check-Lvar0} has
  14609. three new responsibilities (compared to \LangLoop{}). The type checking of
  14610. function application is extended to handle the case where the operator
  14611. expression is a polymorphic function. In that case the type arguments
  14612. are deduced by matching the type of the parameters with the types of
  14613. the arguments.
  14614. %
  14615. The \code{match-types} auxiliary function carries out this deduction
  14616. by recursively descending through a parameter type \code{pt} and the
  14617. corresponding argument type \code{at}, making sure that they are equal
  14618. except when there is a type parameter on the left (in the parameter
  14619. type). If it's the first time that the type parameter has been
  14620. encountered, then the algorithm deduces an association of the type
  14621. parameter to the corresponding type on the right (in the argument
  14622. type). If it's not the first time that the type parameter has been
  14623. encountered, the algorithm looks up its deduced type and makes sure
  14624. that it is equal to the type on the right.
  14625. %
  14626. Once the type arguments are deduced, the operator expression is
  14627. wrapped in an \code{Inst} AST node (for instantiate) that records the
  14628. type of the operator, but more importantly, records the deduced type
  14629. arguments. The return type of the application is the return type of
  14630. the polymorphic function, but with the type parameters replaced by the
  14631. deduced type arguments, using the \code{subst-type} function.
  14632. The second responsibility of the type checker is extending the
  14633. function \code{type-equal?} to handle the \code{All} type. This is
  14634. not quite a simple as equal on other types, such as function and
  14635. vector types, because two polymorphic types can be syntactically
  14636. different even though they are equivalent types. For example,
  14637. \code{(All (a) (a -> a))} is equivalent to \code{(All (b) (b -> b))}.
  14638. Two polymorphic types should be considered equal if they differ only
  14639. in the choice of the names of the type parameters. The
  14640. \code{type-equal?} function in Figure~\ref{fig:type-check-Lvar0-aux}
  14641. renames the type parameters of the first type to match the type
  14642. parameters of the second type.
  14643. The third responsibility of the type checker is making sure that only
  14644. defined type variables appear in type annotations. The
  14645. \code{check-well-formed} function defined in
  14646. Figure~\ref{fig:well-formed-types} recursively inspects a type, making
  14647. sure that each type variable has been defined.
  14648. The output language of the type checker is \LangInst{}, defined in
  14649. Figure~\ref{fig:Rpoly-prime-syntax}. The type checker combines the type
  14650. declaration and polymorphic function into a single definition, using
  14651. the \code{Poly} form, to make polymorphic functions more convenient to
  14652. process in next pass of the compiler.
  14653. \begin{figure}[tp]
  14654. \centering
  14655. \fbox{
  14656. \begin{minipage}{0.96\textwidth}
  14657. \small
  14658. \[
  14659. \begin{array}{lcl}
  14660. \Type &::=& \ldots \MID \LP\key{All}~\LP\Var\ldots\RP~ \Type\RP \MID \Var \\
  14661. \Exp &::=& \ldots \MID \INST{\Exp}{\Type}{\LP\Type\ldots\RP} \\
  14662. \Def &::=& \gray{ \DEF{\Var}{\LP\LS\Var \key{:} \Type\RS \ldots\RP}{\Type}{\code{'()}}{\Exp} } \\
  14663. &\MID& \LP\key{Poly}~\LP\Var\ldots\RP~ \DEF{\Var}{\LP\LS\Var \key{:} \Type\RS \ldots\RP}{\Type}{\code{'()}}{\Exp}\RP \\
  14664. \LangInst{} &::=& \gray{ \PROGRAMDEFSEXP{\code{'()}}{\LP\Def\ldots\RP}{\Exp} }
  14665. \end{array}
  14666. \]
  14667. \end{minipage}
  14668. }
  14669. \caption{The abstract syntax of \LangInst{}, extending \LangLoop{}
  14670. (Figure~\ref{fig:Rwhile-syntax}).}
  14671. \label{fig:Rpoly-prime-syntax}
  14672. \end{figure}
  14673. The output of the type checker on the polymorphic \code{map-vec}
  14674. example is listed in Figure~\ref{fig:map-vec-type-check}.
  14675. \begin{figure}[tbp]
  14676. % poly_test_2.rkt
  14677. \begin{lstlisting}
  14678. (poly (a) (define (map-vec [f : (a -> a)] [v : (Vector a a)]) : (Vector a a)
  14679. (vector (f (vector-ref v 0)) (f (vector-ref v 1)))))
  14680. (define (add1 [x : Integer]) : Integer (+ x 1))
  14681. (vector-ref ((inst map-vec (All (a) ((a -> a) (Vector a a) -> (Vector a a)))
  14682. (Integer))
  14683. add1 (vector 0 41)) 1)
  14684. \end{lstlisting}
  14685. \caption{Output of the type checker on the \code{map-vec} example.}
  14686. \label{fig:map-vec-type-check}
  14687. \end{figure}
  14688. \begin{figure}[tbp]
  14689. \begin{lstlisting}[basicstyle=\ttfamily\scriptsize]
  14690. (define type-check-poly-class
  14691. (class type-check-Rwhile-class
  14692. (super-new)
  14693. (inherit check-type-equal?)
  14694. (define/override (type-check-apply env e1 es)
  14695. (define-values (e^ ty) ((type-check-exp env) e1))
  14696. (define-values (es^ ty*) (for/lists (es^ ty*) ([e (in-list es)])
  14697. ((type-check-exp env) e)))
  14698. (match ty
  14699. [`(,ty^* ... -> ,rt)
  14700. (for ([arg-ty ty*] [param-ty ty^*])
  14701. (check-type-equal? arg-ty param-ty (Apply e1 es)))
  14702. (values e^ es^ rt)]
  14703. [`(All ,xs (,tys ... -> ,rt))
  14704. (define env^ (append (for/list ([x xs]) (cons x 'Type)) env))
  14705. (define env^^ (for/fold ([env^^ env^]) ([arg-ty ty*] [param-ty tys])
  14706. (match-types env^^ param-ty arg-ty)))
  14707. (define targs
  14708. (for/list ([x xs])
  14709. (match (dict-ref env^^ x (lambda () #f))
  14710. [#f (error 'type-check "type variable ~a not deduced\nin ~v"
  14711. x (Apply e1 es))]
  14712. [ty ty])))
  14713. (values (Inst e^ ty targs) es^ (subst-type env^^ rt))]
  14714. [else (error 'type-check "expected a function, not ~a" ty)]))
  14715. (define/override ((type-check-exp env) e)
  14716. (match e
  14717. [(Lambda `([,xs : ,Ts] ...) rT body)
  14718. (for ([T Ts]) ((check-well-formed env) T))
  14719. ((check-well-formed env) rT)
  14720. ((super type-check-exp env) e)]
  14721. [(HasType e1 ty)
  14722. ((check-well-formed env) ty)
  14723. ((super type-check-exp env) e)]
  14724. [else ((super type-check-exp env) e)]))
  14725. (define/override ((type-check-def env) d)
  14726. (verbose 'type-check "poly/def" d)
  14727. (match d
  14728. [(Generic ts (Def f (and p:t* (list `[,xs : ,ps] ...)) rt info body))
  14729. (define ts-env (for/list ([t ts]) (cons t 'Type)))
  14730. (for ([p ps]) ((check-well-formed ts-env) p))
  14731. ((check-well-formed ts-env) rt)
  14732. (define new-env (append ts-env (map cons xs ps) env))
  14733. (define-values (body^ ty^) ((type-check-exp new-env) body))
  14734. (check-type-equal? ty^ rt body)
  14735. (Generic ts (Def f p:t* rt info body^))]
  14736. [else ((super type-check-def env) d)]))
  14737. (define/override (type-check-program p)
  14738. (match p
  14739. [(Program info body)
  14740. (type-check-program (ProgramDefsExp info '() body))]
  14741. [(ProgramDefsExp info ds body)
  14742. (define ds^ (combine-decls-defs ds))
  14743. (define new-env (for/list ([d ds^])
  14744. (cons (def-name d) (fun-def-type d))))
  14745. (define ds^^ (for/list ([d ds^]) ((type-check-def new-env) d)))
  14746. (define-values (body^ ty) ((type-check-exp new-env) body))
  14747. (check-type-equal? ty 'Integer body)
  14748. (ProgramDefsExp info ds^^ body^)]))
  14749. ))
  14750. \end{lstlisting}
  14751. \caption{Type checker for the \LangPoly{} language.}
  14752. \label{fig:type-check-Lvar0}
  14753. \end{figure}
  14754. \begin{figure}[tbp]
  14755. \begin{lstlisting}[basicstyle=\ttfamily\scriptsize]
  14756. (define/override (type-equal? t1 t2)
  14757. (match* (t1 t2)
  14758. [(`(All ,xs ,T1) `(All ,ys ,T2))
  14759. (define env (map cons xs ys))
  14760. (type-equal? (subst-type env T1) T2)]
  14761. [(other wise)
  14762. (super type-equal? t1 t2)]))
  14763. (define/public (match-types env pt at)
  14764. (match* (pt at)
  14765. [('Integer 'Integer) env] [('Boolean 'Boolean) env]
  14766. [('Void 'Void) env] [('Any 'Any) env]
  14767. [(`(Vector ,pts ...) `(Vector ,ats ...))
  14768. (for/fold ([env^ env]) ([pt1 pts] [at1 ats])
  14769. (match-types env^ pt1 at1))]
  14770. [(`(,pts ... -> ,prt) `(,ats ... -> ,art))
  14771. (define env^ (match-types env prt art))
  14772. (for/fold ([env^^ env^]) ([pt1 pts] [at1 ats])
  14773. (match-types env^^ pt1 at1))]
  14774. [(`(All ,pxs ,pt1) `(All ,axs ,at1))
  14775. (define env^ (append (map cons pxs axs) env))
  14776. (match-types env^ pt1 at1)]
  14777. [((? symbol? x) at)
  14778. (match (dict-ref env x (lambda () #f))
  14779. [#f (error 'type-check "undefined type variable ~a" x)]
  14780. ['Type (cons (cons x at) env)]
  14781. [t^ (check-type-equal? at t^ 'matching) env])]
  14782. [(other wise) (error 'type-check "mismatch ~a != a" pt at)]))
  14783. (define/public (subst-type env pt)
  14784. (match pt
  14785. ['Integer 'Integer] ['Boolean 'Boolean]
  14786. ['Void 'Void] ['Any 'Any]
  14787. [`(Vector ,ts ...)
  14788. `(Vector ,@(for/list ([t ts]) (subst-type env t)))]
  14789. [`(,ts ... -> ,rt)
  14790. `(,@(for/list ([t ts]) (subst-type env t)) -> ,(subst-type env rt))]
  14791. [`(All ,xs ,t)
  14792. `(All ,xs ,(subst-type (append (map cons xs xs) env) t))]
  14793. [(? symbol? x) (dict-ref env x)]
  14794. [else (error 'type-check "expected a type not ~a" pt)]))
  14795. (define/public (combine-decls-defs ds)
  14796. (match ds
  14797. ['() '()]
  14798. [`(,(Decl name type) . (,(Def f params _ info body) . ,ds^))
  14799. (unless (equal? name f)
  14800. (error 'type-check "name mismatch, ~a != ~a" name f))
  14801. (match type
  14802. [`(All ,xs (,ps ... -> ,rt))
  14803. (define params^ (for/list ([x params] [T ps]) `[,x : ,T]))
  14804. (cons (Generic xs (Def name params^ rt info body))
  14805. (combine-decls-defs ds^))]
  14806. [`(,ps ... -> ,rt)
  14807. (define params^ (for/list ([x params] [T ps]) `[,x : ,T]))
  14808. (cons (Def name params^ rt info body) (combine-decls-defs ds^))]
  14809. [else (error 'type-check "expected a function type, not ~a" type) ])]
  14810. [`(,(Def f params rt info body) . ,ds^)
  14811. (cons (Def f params rt info body) (combine-decls-defs ds^))]))
  14812. \end{lstlisting}
  14813. \caption{Auxiliary functions for type checking \LangPoly{}.}
  14814. \label{fig:type-check-Lvar0-aux}
  14815. \end{figure}
  14816. \begin{figure}[tbp]
  14817. \begin{lstlisting}%[basicstyle=\ttfamily\scriptsize]
  14818. (define/public ((check-well-formed env) ty)
  14819. (match ty
  14820. ['Integer (void)]
  14821. ['Boolean (void)]
  14822. ['Void (void)]
  14823. [(? symbol? a)
  14824. (match (dict-ref env a (lambda () #f))
  14825. ['Type (void)]
  14826. [else (error 'type-check "undefined type variable ~a" a)])]
  14827. [`(Vector ,ts ...)
  14828. (for ([t ts]) ((check-well-formed env) t))]
  14829. [`(,ts ... -> ,t)
  14830. (for ([t ts]) ((check-well-formed env) t))
  14831. ((check-well-formed env) t)]
  14832. [`(All ,xs ,t)
  14833. (define env^ (append (for/list ([x xs]) (cons x 'Type)) env))
  14834. ((check-well-formed env^) t)]
  14835. [else (error 'type-check "unrecognized type ~a" ty)]))
  14836. \end{lstlisting}
  14837. \caption{Well-formed types.}
  14838. \label{fig:well-formed-types}
  14839. \end{figure}
  14840. % TODO: interpreter for R'_10
  14841. \section{Compiling Polymorphism}
  14842. \label{sec:compiling-poly}
  14843. Broadly speaking, there are four approaches to compiling parametric
  14844. polymorphism, which we describe below.
  14845. \begin{description}
  14846. \item[Monomorphization] generates a different version of a polymorphic
  14847. function for each set of type arguments that it is used with,
  14848. producing type-specialized code. This approach results in the most
  14849. efficient code but requires whole-program compilation (no separate
  14850. compilation) and increases code size. For our current purposes
  14851. monomorphization is a non-starter because, with first-class
  14852. polymorphism, it is sometimes not possible to determine which
  14853. generic functions are used with which type arguments during
  14854. compilation. (It can be done at runtime, with just-in-time
  14855. compilation.) This approach is used to compile C++
  14856. templates~\citep{stroustrup88:_param_types} and polymorphic
  14857. functions in NESL~\citep{Blelloch:1993aa} and
  14858. ML~\citep{Weeks:2006aa}.
  14859. \item[Uniform representation] generates one version of each
  14860. polymorphic function but requires all values have a common ``boxed''
  14861. format, such as the tagged values of type \code{Any} in
  14862. \LangAny{}. Non-polymorphic code (i.e. monomorphic code) is compiled
  14863. similarly to code in a dynamically typed language (like \LangDyn{}),
  14864. in which primitive operators require their arguments to be projected
  14865. from \code{Any} and their results are injected into \code{Any}. (In
  14866. object-oriented languages, the projection is accomplished via
  14867. virtual method dispatch.) The uniform representation approach is
  14868. compatible with separate compilation and with first-class
  14869. polymorphism. However, it produces the least-efficient code because
  14870. it introduces overhead in the entire program, including
  14871. non-polymorphic code. This approach is used in implementations of
  14872. CLU~\cite{liskov79:_clu_ref,Liskov:1993dk},
  14873. ML~\citep{Cardelli:1984aa,Appel:1987aa}, and
  14874. Java~\citep{Bracha:1998fk}.
  14875. \item[Mixed representation] generates one version of each polymorphic
  14876. function, using a boxed representation for type
  14877. variables. Monomorphic code is compiled as usual (as in \LangLoop{})
  14878. and conversions are performed at the boundaries between monomorphic
  14879. and polymorphic (e.g. when a polymorphic function is instantiated
  14880. and called). This approach is compatible with separate compilation
  14881. and first-class polymorphism and maintains the efficiency of
  14882. monomorphic code. The tradeoff is increased overhead at the boundary
  14883. between monomorphic and polymorphic code. This approach is used in
  14884. implementations of ML~\citep{Leroy:1992qb} and Java, starting in
  14885. Java 5 with the addition of autoboxing.
  14886. \item[Type passing] uses the unboxed representation in both
  14887. monomorphic and polymorphic code. Each polymorphic function is
  14888. compiled to a single function with extra parameters that describe
  14889. the type arguments. The type information is used by the generated
  14890. code to know how to access the unboxed values at runtime. This
  14891. approach is used in implementation of the Napier88
  14892. language~\citep{Morrison:1991aa} and ML~\citep{Harper:1995um}. Type
  14893. passing is compatible with separate compilation and first-class
  14894. polymorphism and maintains the efficiency for monomorphic
  14895. code. There is runtime overhead in polymorphic code from dispatching
  14896. on type information.
  14897. \end{description}
  14898. In this chapter we use the mixed representation approach, partly
  14899. because of its favorable attributes, and partly because it is
  14900. straightforward to implement using the tools that we have already
  14901. built to support gradual typing. To compile polymorphic functions, we
  14902. add just one new pass, \code{erase-types}, to compile \LangInst{} to
  14903. \LangCast{}.
  14904. \section{Erase Types}
  14905. \label{sec:erase-types}
  14906. We use the \code{Any} type from Chapter~\ref{ch:Rdyn} to
  14907. represent type variables. For example, Figure~\ref{fig:map-vec-erase}
  14908. shows the output of the \code{erase-types} pass on the polymorphic
  14909. \code{map-vec} (Figure~\ref{fig:map-vec-poly}). The occurrences of
  14910. type parameter \code{a} are replaced by \code{Any} and the polymorphic
  14911. \code{All} types are removed from the type of \code{map-vec}.
  14912. \begin{figure}[tbp]
  14913. \begin{lstlisting}
  14914. (define (map-vec [f : (Any -> Any)] [v : (Vector Any Any)])
  14915. : (Vector Any Any)
  14916. (vector (f (vector-ref v 0)) (f (vector-ref v 1))))
  14917. (define (add1 [x : Integer]) : Integer (+ x 1))
  14918. (vector-ref ((cast map-vec
  14919. ((Any -> Any) (Vector Any Any) -> (Vector Any Any))
  14920. ((Integer -> Integer) (Vector Integer Integer)
  14921. -> (Vector Integer Integer)))
  14922. add1 (vector 0 41)) 1)
  14923. \end{lstlisting}
  14924. \caption{The polymorphic \code{map-vec} example after type erasure.}
  14925. \label{fig:map-vec-erase}
  14926. \end{figure}
  14927. This process of type erasure creates a challenge at points of
  14928. instantiation. For example, consider the instantiation of
  14929. \code{map-vec} in Figure~\ref{fig:map-vec-type-check}.
  14930. The type of \code{map-vec} is
  14931. \begin{lstlisting}
  14932. (All (a) ((a -> a) (Vector a a) -> (Vector a a)))
  14933. \end{lstlisting}
  14934. and it is instantiated to
  14935. \begin{lstlisting}
  14936. ((Integer -> Integer) (Vector Integer Integer)
  14937. -> (Vector Integer Integer))
  14938. \end{lstlisting}
  14939. After erasure, the type of \code{map-vec} is
  14940. \begin{lstlisting}
  14941. ((Any -> Any) (Vector Any Any) -> (Vector Any Any))
  14942. \end{lstlisting}
  14943. but we need to convert it to the instantiated type. This is easy to
  14944. do in the target language \LangCast{} with a single \code{cast}. In
  14945. Figure~\ref{fig:map-vec-erase}, the instantiation of \code{map-vec}
  14946. has been compiled to a \code{cast} from the type of \code{map-vec} to
  14947. the instantiated type. The source and target type of a cast must be
  14948. consistent (Figure~\ref{fig:consistent}), which indeed is the case
  14949. because both the source and target are obtained from the same
  14950. polymorphic type of \code{map-vec}, replacing the type parameters with
  14951. \code{Any} in the former and with the deduced type arguments in the
  14952. later. (Recall that the \code{Any} type is consistent with any type.)
  14953. To implement the \code{erase-types} pass, we recommend defining a
  14954. recursive auxiliary function named \code{erase-type} that applies the
  14955. following two transformations. It replaces type variables with
  14956. \code{Any}
  14957. \begin{lstlisting}
  14958. |$x$|
  14959. |$\Rightarrow$|
  14960. Any
  14961. \end{lstlisting}
  14962. and it removes the polymorphic \code{All} types.
  14963. \begin{lstlisting}
  14964. (All |$xs$| |$T_1$|)
  14965. |$\Rightarrow$|
  14966. |$T'_1$|
  14967. \end{lstlisting}
  14968. Apply the \code{erase-type} function to all of the type annotations in
  14969. the program.
  14970. Regarding the translation of expressions, the case for \code{Inst} is
  14971. the interesting one. We translate it into a \code{Cast}, as shown
  14972. below. The type of the subexpression $e$ is the polymorphic type
  14973. $\LP\key{All} xs T\RP$. The source type of the cast is the erasure of
  14974. $T$, the type $T'$. The target type $T''$ is the result of
  14975. substituting the arguments types $ts$ for the type parameters $xs$ in
  14976. $T$ followed by doing type erasure.
  14977. \begin{lstlisting}
  14978. (Inst |$e$| (All |$xs$| |$T$|) |$ts$|)
  14979. |$\Rightarrow$|
  14980. (Cast |$e'$| |$T'$| |$T''$|)
  14981. \end{lstlisting}
  14982. where $T'' = \LP\code{erase-type}~\LP\code{subst-type}~s~T\RP\RP$
  14983. and $s = \LP\code{map}~\code{cons}~xs~ts\RP$.
  14984. Finally, each polymorphic function is translated to a regular
  14985. functions in which type erasure has been applied to all the type
  14986. annotations and the body.
  14987. \begin{lstlisting}
  14988. (Poly |$ts$| (Def |$f$| ([|$x_1$| : |$T_1$|] |$\ldots$|) |$T_r$| |$\itm{info}$| |$e$|))
  14989. |$\Rightarrow$|
  14990. (Def |$f$| ([|$x_1$| : |$T'_1$|] |$\ldots$|) |$T'_r$| |$\itm{info}$| |$e'$|)
  14991. \end{lstlisting}
  14992. \begin{exercise}\normalfont
  14993. Implement a compiler for the polymorphic language \LangPoly{} by
  14994. extending and adapting your compiler for \LangGrad{}. Create 6 new test
  14995. programs that use polymorphic functions. Some of them should make
  14996. use of first-class polymorphism.
  14997. \end{exercise}
  14998. \begin{figure}[p]
  14999. \begin{tikzpicture}[baseline=(current bounding box.center)]
  15000. \node (Rpoly) at (9,4) {\large \LangPoly{}};
  15001. \node (Rpolyp) at (6,4) {\large \LangInst{}};
  15002. \node (Rgradualp) at (3,4) {\large \LangCast{}};
  15003. \node (Rwhilepp) at (0,4) {\large \LangProxy{}};
  15004. \node (Rwhileproxy) at (0,2) {\large \LangPVec{}};
  15005. \node (Rwhileproxy-2) at (3,2) {\large \LangPVec{}};
  15006. \node (Rwhileproxy-3) at (6,2) {\large \LangPVec{}};
  15007. \node (Rwhileproxy-4) at (9,2) {\large \LangPVecFunRef{}};
  15008. \node (Rwhileproxy-5) at (12,2) {\large \LangPVecFunRef{}};
  15009. \node (F1-1) at (12,0) {\large \LangPVecFunRef{}};
  15010. \node (F1-2) at (9,0) {\large \LangPVecFunRef{}};
  15011. \node (F1-3) at (6,0) {\large \LangPVecFunRef{}};
  15012. \node (F1-4) at (3,0) {\large \LangPVecAlloc{}};
  15013. \node (F1-5) at (0,0) {\large \LangPVecAlloc{}};
  15014. \node (C3-2) at (3,-2) {\large \LangCLoopPVec{}};
  15015. \node (x86-2) at (3,-4) {\large \LangXIndCallVar{}};
  15016. \node (x86-2-1) at (3,-6) {\large \LangXIndCallVar{}};
  15017. \node (x86-2-2) at (6,-6) {\large \LangXIndCallVar{}};
  15018. \node (x86-3) at (6,-4) {\large \LangXIndCallVar{}};
  15019. \node (x86-4) at (9,-4) {\large \LangXIndCall{}};
  15020. \node (x86-5) at (9,-6) {\large \LangXIndCall{}};
  15021. \path[->,bend right=15] (Rpoly) edge [above] node
  15022. {\ttfamily\footnotesize type-check} (Rpolyp);
  15023. \path[->,bend right=15] (Rpolyp) edge [above] node
  15024. {\ttfamily\footnotesize erase-types} (Rgradualp);
  15025. \path[->,bend right=15] (Rgradualp) edge [above] node
  15026. {\ttfamily\footnotesize lower-casts} (Rwhilepp);
  15027. \path[->,bend right=15] (Rwhilepp) edge [right] node
  15028. {\ttfamily\footnotesize differentiate-proxies} (Rwhileproxy);
  15029. \path[->,bend left=15] (Rwhileproxy) edge [above] node
  15030. {\ttfamily\footnotesize shrink} (Rwhileproxy-2);
  15031. \path[->,bend left=15] (Rwhileproxy-2) edge [above] node
  15032. {\ttfamily\footnotesize uniquify} (Rwhileproxy-3);
  15033. \path[->,bend left=15] (Rwhileproxy-3) edge [above] node
  15034. {\ttfamily\footnotesize reveal-functions} (Rwhileproxy-4);
  15035. \path[->,bend left=15] (Rwhileproxy-4) edge [above] node
  15036. {\ttfamily\footnotesize reveal-casts} (Rwhileproxy-5);
  15037. \path[->,bend left=15] (Rwhileproxy-5) edge [left] node
  15038. {\ttfamily\footnotesize convert-assignments} (F1-1);
  15039. \path[->,bend left=15] (F1-1) edge [below] node
  15040. {\ttfamily\footnotesize convert-to-clos.} (F1-2);
  15041. \path[->,bend right=15] (F1-2) edge [above] node
  15042. {\ttfamily\footnotesize limit-fun.} (F1-3);
  15043. \path[->,bend right=15] (F1-3) edge [above] node
  15044. {\ttfamily\footnotesize expose-alloc.} (F1-4);
  15045. \path[->,bend right=15] (F1-4) edge [above] node
  15046. {\ttfamily\footnotesize remove-complex.} (F1-5);
  15047. \path[->,bend right=15] (F1-5) edge [right] node
  15048. {\ttfamily\footnotesize explicate-control} (C3-2);
  15049. \path[->,bend left=15] (C3-2) edge [left] node
  15050. {\ttfamily\footnotesize select-instr.} (x86-2);
  15051. \path[->,bend right=15] (x86-2) edge [left] node
  15052. {\ttfamily\footnotesize uncover-live} (x86-2-1);
  15053. \path[->,bend right=15] (x86-2-1) edge [below] node
  15054. {\ttfamily\footnotesize build-inter.} (x86-2-2);
  15055. \path[->,bend right=15] (x86-2-2) edge [left] node
  15056. {\ttfamily\footnotesize allocate-reg.} (x86-3);
  15057. \path[->,bend left=15] (x86-3) edge [above] node
  15058. {\ttfamily\footnotesize patch-instr.} (x86-4);
  15059. \path[->,bend left=15] (x86-4) edge [right] node {\ttfamily\footnotesize print-x86} (x86-5);
  15060. \end{tikzpicture}
  15061. \caption{Diagram of the passes for \LangPoly{} (parametric polymorphism).}
  15062. \label{fig:Rpoly-passes}
  15063. \end{figure}
  15064. Figure~\ref{fig:Rpoly-passes} provides an overview of all the passes needed
  15065. for the compilation of \LangPoly{}.
  15066. % TODO: challenge problem: specialization of instantiations
  15067. % Further Reading
  15068. \fi
  15069. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  15070. \clearpage
  15071. \appendix
  15072. \chapter{Appendix}
  15073. \if\edition\racketEd
  15074. \section{Interpreters}
  15075. \label{appendix:interp}
  15076. \index{subject}{interpreter}
  15077. We provide interpreters for each of the source languages \LangInt{},
  15078. \LangVar{}, $\ldots$ in the files \code{interp\_Lint.rkt},
  15079. \code{interp-Lvar.rkt}, etc. The interpreters for the intermediate
  15080. languages \LangCVar{} and \LangCIf{} are in \code{interp-Cvar.rkt} and
  15081. \code{interp-C1.rkt}. The interpreters for \LangCVec{}, \LangCFun{}, pseudo-x86,
  15082. and x86 are in the \key{interp.rkt} file.
  15083. \section{Utility Functions}
  15084. \label{appendix:utilities}
  15085. The utility functions described in this section are in the
  15086. \key{utilities.rkt} file of the support code.
  15087. \paragraph{\code{interp-tests}}
  15088. The \key{interp-tests} function runs the compiler passes and the
  15089. interpreters on each of the specified tests to check whether each pass
  15090. is correct. The \key{interp-tests} function has the following
  15091. parameters:
  15092. \begin{description}
  15093. \item[name (a string)] a name to identify the compiler,
  15094. \item[typechecker] a function of exactly one argument that either
  15095. raises an error using the \code{error} function when it encounters a
  15096. type error, or returns \code{\#f} when it encounters a type
  15097. error. If there is no type error, the type checker returns the
  15098. program.
  15099. \item[passes] a list with one entry per pass. An entry is a list with
  15100. four things:
  15101. \begin{enumerate}
  15102. \item a string giving the name of the pass,
  15103. \item the function that implements the pass (a translator from AST
  15104. to AST),
  15105. \item a function that implements the interpreter (a function from
  15106. AST to result value) for the output language,
  15107. \item and a type checker for the output language. Type checkers for
  15108. the $R$ and $C$ languages are provided in the support code. For
  15109. example, the type checkers for \LangVar{} and \LangCVar{} are in
  15110. \code{type-check-Lvar.rkt} and \code{type-check-Cvar.rkt}. The
  15111. type checker entry is optional. The support code does not provide
  15112. type checkers for the x86 languages.
  15113. \end{enumerate}
  15114. \item[source-interp] an interpreter for the source language. The
  15115. interpreters from Appendix~\ref{appendix:interp} make a good choice.
  15116. \item[test-family (a string)] for example, \code{"r1"}, \code{"r2"}, etc.
  15117. \item[tests] a list of test numbers that specifies which tests to
  15118. run. (see below)
  15119. \end{description}
  15120. %
  15121. The \key{interp-tests} function assumes that the subdirectory
  15122. \key{tests} has a collection of Racket programs whose names all start
  15123. with the family name, followed by an underscore and then the test
  15124. number, ending with the file extension \key{.rkt}. Also, for each test
  15125. program that calls \code{read} one or more times, there is a file with
  15126. the same name except that the file extension is \key{.in} that
  15127. provides the input for the Racket program. If the test program is
  15128. expected to fail type checking, then there should be an empty file of
  15129. the same name but with extension \key{.tyerr}.
  15130. \paragraph{\code{compiler-tests}}
  15131. runs the compiler passes to generate x86 (a \key{.s} file) and then
  15132. runs the GNU C compiler (gcc) to generate machine code. It runs the
  15133. machine code and checks that the output is $42$. The parameters to the
  15134. \code{compiler-tests} function are similar to those of the
  15135. \code{interp-tests} function, and consist of
  15136. \begin{itemize}
  15137. \item a compiler name (a string),
  15138. \item a type checker,
  15139. \item description of the passes,
  15140. \item name of a test-family, and
  15141. \item a list of test numbers.
  15142. \end{itemize}
  15143. \paragraph{\code{compile-file}}
  15144. takes a description of the compiler passes (see the comment for
  15145. \key{interp-tests}) and returns a function that, given a program file
  15146. name (a string ending in \key{.rkt}), applies all of the passes and
  15147. writes the output to a file whose name is the same as the program file
  15148. name but with \key{.rkt} replaced with \key{.s}.
  15149. \paragraph{\code{read-program}}
  15150. takes a file path and parses that file (it must be a Racket program)
  15151. into an abstract syntax tree.
  15152. \paragraph{\code{parse-program}}
  15153. takes an S-expression representation of an abstract syntax tree and converts it into
  15154. the struct-based representation.
  15155. \paragraph{\code{assert}}
  15156. takes two parameters, a string (\code{msg}) and Boolean (\code{bool}),
  15157. and displays the message \key{msg} if the Boolean \key{bool} is false.
  15158. \paragraph{\code{lookup}}
  15159. % remove discussion of lookup? -Jeremy
  15160. takes a key and an alist, and returns the first value that is
  15161. associated with the given key, if there is one. If not, an error is
  15162. triggered. The alist may contain both immutable pairs (built with
  15163. \key{cons}) and mutable pairs (built with \key{mcons}).
  15164. %The \key{map2} function ...
  15165. \fi %\racketEd
  15166. \section{x86 Instruction Set Quick-Reference}
  15167. \label{sec:x86-quick-reference}
  15168. \index{subject}{x86}
  15169. Table~\ref{tab:x86-instr} lists some x86 instructions and what they
  15170. do. We write $A \to B$ to mean that the value of $A$ is written into
  15171. location $B$. Address offsets are given in bytes. The instruction
  15172. arguments $A, B, C$ can be immediate constants (such as \code{\$4}),
  15173. registers (such as \code{\%rax}), or memory references (such as
  15174. \code{-4(\%ebp)}). Most x86 instructions only allow at most one memory
  15175. reference per instruction. Other operands must be immediates or
  15176. registers.
  15177. \begin{table}[tbp]
  15178. \centering
  15179. \begin{tabular}{l|l}
  15180. \textbf{Instruction} & \textbf{Operation} \\ \hline
  15181. \texttt{addq} $A$, $B$ & $A + B \to B$\\
  15182. \texttt{negq} $A$ & $- A \to A$ \\
  15183. \texttt{subq} $A$, $B$ & $B - A \to B$\\
  15184. \texttt{imulq} $A$, $B$ & $A \times B \to B$\\
  15185. \texttt{callq} $L$ & Pushes the return address and jumps to label $L$ \\
  15186. \texttt{callq} \texttt{*}$A$ & Calls the function at the address $A$. \\
  15187. %\texttt{leave} & $\texttt{ebp} \to \texttt{esp};$ \texttt{popl \%ebp} \\
  15188. \texttt{retq} & Pops the return address and jumps to it \\
  15189. \texttt{popq} $A$ & $*\mathtt{rsp} \to A; \mathtt{rsp} + 8 \to \mathtt{rsp}$ \\
  15190. \texttt{pushq} $A$ & $\texttt{rsp} - 8 \to \texttt{rsp}; A \to *\texttt{rsp}$\\
  15191. \texttt{leaq} $A$,$B$ & $A \to B$ ($B$ must be a register) \\
  15192. \texttt{cmpq} $A$, $B$ & compare $A$ and $B$ and set the flag register ($B$ must not
  15193. be an immediate) \\
  15194. \texttt{je} $L$ & \multirow{5}{3.7in}{Jump to label $L$ if the flag register
  15195. matches the condition code of the instruction, otherwise go to the
  15196. next instructions. The condition codes are \key{e} for ``equal'',
  15197. \key{l} for ``less'', \key{le} for ``less or equal'', \key{g}
  15198. for ``greater'', and \key{ge} for ``greater or equal''.} \\
  15199. \texttt{jl} $L$ & \\
  15200. \texttt{jle} $L$ & \\
  15201. \texttt{jg} $L$ & \\
  15202. \texttt{jge} $L$ & \\
  15203. \texttt{jmp} $L$ & Jump to label $L$ \\
  15204. \texttt{movq} $A$, $B$ & $A \to B$ \\
  15205. \texttt{movzbq} $A$, $B$ &
  15206. \multirow{3}{3.7in}{$A \to B$, \text{where } $A$ is a single-byte register
  15207. (e.g., \texttt{al} or \texttt{cl}), $B$ is a 8-byte register,
  15208. and the extra bytes of $B$ are set to zero.} \\
  15209. & \\
  15210. & \\
  15211. \texttt{notq} $A$ & $\sim A \to A$ \qquad (bitwise complement)\\
  15212. \texttt{orq} $A$, $B$ & $A | B \to B$ \qquad (bitwise-or)\\
  15213. \texttt{andq} $A$, $B$ & $A \& B \to B$ \qquad (bitwise-and)\\
  15214. \texttt{salq} $A$, $B$ & $B$ \texttt{<<} $A \to B$ (arithmetic shift left, where $A$ is a constant)\\
  15215. \texttt{sarq} $A$, $B$ & $B$ \texttt{>>} $A \to B$ (arithmetic shift right, where $A$ is a constant)\\
  15216. \texttt{sete} $A$ & \multirow{5}{3.7in}{If the flag matches the condition code,
  15217. then $1 \to A$, else $0 \to A$. Refer to \texttt{je} above for the
  15218. description of the condition codes. $A$ must be a single byte register
  15219. (e.g., \texttt{al} or \texttt{cl}).} \\
  15220. \texttt{setl} $A$ & \\
  15221. \texttt{setle} $A$ & \\
  15222. \texttt{setg} $A$ & \\
  15223. \texttt{setge} $A$ &
  15224. \end{tabular}
  15225. \vspace{5pt}
  15226. \caption{Quick-reference for the x86 instructions used in this book.}
  15227. \label{tab:x86-instr}
  15228. \end{table}
  15229. \if\edition\racketEd
  15230. \cleardoublepage
  15231. \section{Concrete Syntax for Intermediate Languages}
  15232. The concrete syntax of \LangAny{} is defined in
  15233. Figure~\ref{fig:Rany-concrete-syntax}.
  15234. \begin{figure}[tp]
  15235. \centering
  15236. \fbox{
  15237. \begin{minipage}{0.97\textwidth}\small
  15238. \[
  15239. \begin{array}{lcl}
  15240. \Type &::=& \gray{\key{Integer} \MID \key{Boolean}
  15241. \MID \LP\key{Vector}\;\Type\ldots\RP \MID \key{Void}} \\
  15242. &\MID& \gray{\LP\Type\ldots \; \key{->}\; \Type\RP} \MID \key{Any} \\
  15243. \FType &::=& \key{Integer} \MID \key{Boolean} \MID \key{Void}
  15244. \MID \LP\key{Vector}\; \key{Any}\ldots\RP \\
  15245. &\MID& \LP\key{Any}\ldots \; \key{->}\; \key{Any}\RP\\
  15246. \Exp &::=& \ldots \CINJECT{\Exp}{\FType}\RP \MID \CPROJECT{\Exp}{\FType}\\
  15247. &\MID& \LP\key{any-vector-length}\;\Exp\RP
  15248. \MID \LP\key{any-vector-ref}\;\Exp\;\Exp\RP \\
  15249. &\MID& \LP\key{any-vector-set!}\;\Exp\;\Exp\;\Exp\RP\\
  15250. &\MID& \LP\key{boolean?}\;\Exp\RP \MID \LP\key{integer?}\;\Exp\RP
  15251. \MID \LP\key{void?}\;\Exp\RP \\
  15252. &\MID& \LP\key{vector?}\;\Exp\RP \MID \LP\key{procedure?}\;\Exp\RP \\
  15253. \Def &::=& \gray{ \CDEF{\Var}{\LS\Var \key{:} \Type\RS\ldots}{\Type}{\Exp} } \\
  15254. \LangAnyM{} &::=& \gray{\Def\ldots \; \Exp}
  15255. \end{array}
  15256. \]
  15257. \end{minipage}
  15258. }
  15259. \caption{The concrete syntax of \LangAny{}, extending \LangLam{}
  15260. (Figure~\ref{fig:Rlam-syntax}).}
  15261. \label{fig:Rany-concrete-syntax}
  15262. \end{figure}
  15263. The concrete syntax for \LangCVar{}, \LangCIf{}, \LangCVec{} and \LangCFun{} is
  15264. defined in Figures~\ref{fig:c0-concrete-syntax},
  15265. \ref{fig:c1-concrete-syntax}, \ref{fig:c2-concrete-syntax},
  15266. and \ref{fig:c3-concrete-syntax}, respectively.
  15267. \begin{figure}[tbp]
  15268. \fbox{
  15269. \begin{minipage}{0.96\textwidth}
  15270. \[
  15271. \begin{array}{lcl}
  15272. \Atm &::=& \Int \MID \Var \\
  15273. \Exp &::=& \Atm \MID \key{(read)} \MID \key{(-}~\Atm\key{)} \MID \key{(+}~\Atm~\Atm\key{)}\\
  15274. \Stmt &::=& \Var~\key{=}~\Exp\key{;} \\
  15275. \Tail &::= & \key{return}~\Exp\key{;} \MID \Stmt~\Tail \\
  15276. \LangCVarM{} & ::= & (\itm{label}\key{:}~ \Tail)\ldots
  15277. \end{array}
  15278. \]
  15279. \end{minipage}
  15280. }
  15281. \caption{The concrete syntax of the \LangCVar{} intermediate language.}
  15282. \label{fig:c0-concrete-syntax}
  15283. \end{figure}
  15284. \begin{figure}[tbp]
  15285. \fbox{
  15286. \begin{minipage}{0.96\textwidth}
  15287. \small
  15288. \[
  15289. \begin{array}{lcl}
  15290. \Atm &::=& \gray{ \Int \MID \Var } \MID \itm{bool} \\
  15291. \itm{cmp} &::= & \key{eq?} \MID \key{<} \\
  15292. \Exp &::=& \gray{ \Atm \MID \key{(read)} \MID \key{(-}~\Atm\key{)} \MID \key{(+}~\Atm~\Atm\key{)} } \\
  15293. &\MID& \LP \key{not}~\Atm \RP \MID \LP \itm{cmp}~\Atm~\Atm\RP \\
  15294. \Stmt &::=& \gray{ \Var~\key{=}~\Exp\key{;} } \\
  15295. \Tail &::= & \gray{ \key{return}~\Exp\key{;} \MID \Stmt~\Tail }
  15296. \MID \key{goto}~\itm{label}\key{;}\\
  15297. &\MID& \key{if}~\LP \itm{cmp}~\Atm~\Atm \RP~ \key{goto}~\itm{label}\key{;} ~\key{else}~\key{goto}~\itm{label}\key{;} \\
  15298. \LangCIfM{} & ::= & \gray{ (\itm{label}\key{:}~ \Tail)\ldots }
  15299. \end{array}
  15300. \]
  15301. \end{minipage}
  15302. }
  15303. \caption{The concrete syntax of the \LangCIf{} intermediate language.}
  15304. \label{fig:c1-concrete-syntax}
  15305. \end{figure}
  15306. \begin{figure}[tbp]
  15307. \fbox{
  15308. \begin{minipage}{0.96\textwidth}
  15309. \small
  15310. \[
  15311. \begin{array}{lcl}
  15312. \Atm &::=& \gray{ \Int \MID \Var \MID \itm{bool} } \\
  15313. \itm{cmp} &::= & \gray{ \key{eq?} \MID \key{<} } \\
  15314. \Exp &::=& \gray{ \Atm \MID \key{(read)} \MID \key{(-}~\Atm\key{)} \MID \key{(+}~\Atm~\Atm\key{)} } \\
  15315. &\MID& \gray{ \LP \key{not}~\Atm \RP \MID \LP \itm{cmp}~\Atm~\Atm\RP } \\
  15316. &\MID& \LP \key{allocate}~\Int~\Type \RP \\
  15317. &\MID& (\key{vector-ref}\;\Atm\;\Int) \MID (\key{vector-set!}\;\Atm\;\Int\;\Atm)\\
  15318. &\MID& \LP \key{global-value}~\Var \RP \MID \LP \key{void} \RP \\
  15319. \Stmt &::=& \gray{ \Var~\key{=}~\Exp\key{;} } \MID \LP\key{collect}~\Int \RP\\
  15320. \Tail &::= & \gray{ \key{return}~\Exp\key{;} \MID \Stmt~\Tail }
  15321. \MID \gray{ \key{goto}~\itm{label}\key{;} }\\
  15322. &\MID& \gray{ \key{if}~\LP \itm{cmp}~\Atm~\Atm \RP~ \key{goto}~\itm{label}\key{;} ~\key{else}~\key{goto}~\itm{label}\key{;} } \\
  15323. \LangCVecM{} & ::= & \gray{ (\itm{label}\key{:}~ \Tail)\ldots }
  15324. \end{array}
  15325. \]
  15326. \end{minipage}
  15327. }
  15328. \caption{The concrete syntax of the \LangCVec{} intermediate language.}
  15329. \label{fig:c2-concrete-syntax}
  15330. \end{figure}
  15331. \begin{figure}[tp]
  15332. \fbox{
  15333. \begin{minipage}{0.96\textwidth}
  15334. \small
  15335. \[
  15336. \begin{array}{lcl}
  15337. \Atm &::=& \gray{ \Int \MID \Var \MID \key{\#t} \MID \key{\#f} }
  15338. \\
  15339. \itm{cmp} &::= & \gray{ \key{eq?} \MID \key{<} } \\
  15340. \Exp &::= & \gray{ \Atm \MID \LP\key{read}\RP \MID \LP\key{-}\;\Atm\RP \MID \LP\key{+} \; \Atm\;\Atm\RP
  15341. \MID \LP\key{not}\;\Atm\RP \MID \LP\itm{cmp}\;\Atm\;\Atm\RP } \\
  15342. &\MID& \gray{ \LP\key{allocate}\,\Int\,\Type\RP
  15343. \MID \LP\key{vector-ref}\, \Atm\, \Int\RP } \\
  15344. &\MID& \gray{ \LP\key{vector-set!}\,\Atm\,\Int\,\Atm\RP \MID \LP\key{global-value} \,\itm{name}\RP \MID \LP\key{void}\RP } \\
  15345. &\MID& \LP\key{fun-ref}~\itm{label}\RP \MID \LP\key{call} \,\Atm\,\Atm\ldots\RP \\
  15346. \Stmt &::=& \gray{ \ASSIGN{\Var}{\Exp} \MID \RETURN{\Exp}
  15347. \MID \LP\key{collect} \,\itm{int}\RP }\\
  15348. \Tail &::= & \gray{\RETURN{\Exp} \MID \LP\key{seq}\;\Stmt\;\Tail\RP} \\
  15349. &\MID& \gray{\LP\key{goto}\,\itm{label}\RP
  15350. \MID \IF{\LP\itm{cmp}\, \Atm\,\Atm\RP}{\LP\key{goto}\,\itm{label}\RP}{\LP\key{goto}\,\itm{label}\RP}} \\
  15351. &\MID& \LP\key{tail-call}\,\Atm\,\Atm\ldots\RP \\
  15352. \Def &::=& \LP\key{define}\; \LP\itm{label} \; [\Var \key{:} \Type]\ldots\RP \key{:} \Type \; \LP\LP\itm{label}\,\key{.}\,\Tail\RP\ldots\RP\RP \\
  15353. \LangCFunM{} & ::= & \Def\ldots
  15354. \end{array}
  15355. \]
  15356. \end{minipage}
  15357. }
  15358. \caption{The \LangCFun{} language, extending \LangCVec{} (Figure~\ref{fig:c2-concrete-syntax}) with functions.}
  15359. \label{fig:c3-concrete-syntax}
  15360. \end{figure}
  15361. \fi % racketEd
  15362. \backmatter
  15363. \addtocontents{toc}{\vspace{11pt}}
  15364. %% \addtocontents{toc}{\vspace{11pt}}
  15365. %% \nocite{*} is a way to get all the entries in the .bib file to print in the bibliography:
  15366. \nocite{*}\let\bibname\refname
  15367. \addcontentsline{toc}{fmbm}{\refname}
  15368. \printbibliography
  15369. \printindex{authors}{Author Index}
  15370. \printindex{subject}{Subject Index}
  15371. \end{document}
  15372. % LocalWords: Nano Siek CC NC ISBN wonks wizardry Backus nanopasses
  15373. % LocalWords: dataflow nx generics autoboxing Hulman Ch CO Dybvig aa
  15374. % LocalWords: Abelson uq Felleisen Flatt Lutz vp vj Sweigart vn Matz
  15375. % LocalWords: Matthes github gcc MacOS Chez Friedman's Dipanwita fk
  15376. % LocalWords: Sarkar Dybvig's Abdulaziz Ghuloum bh IU Factora Bor qf
  15377. % LocalWords: Cameron Kuhlenschmidt Vollmer Vitousek Yuh Nystrom AST
  15378. % LocalWords: Tolmach Wollowski ASTs Aho ast struct int backquote op
  15379. % LocalWords: args neg def init UnaryOp USub func BinOp Naur BNF rkt
  15380. % LocalWords: fixnum datatype structure's arith exp stmt Num Expr tr
  15381. % LocalWords: plt PSF ref CPython cpython reynolds interp cond fx pe
  15382. % LocalWords: arg Hitchhiker's TODO nullary Lvar Lif cnd thn var sam
  15383. % LocalWords: IfExp Bool InterpLvar InterpLif InterpRVar alist jane
  15384. % LocalWords: basicstyle kate dict alists env stmts ss len lhs globl
  15385. % LocalWords: rsp rbp rax rbx rcx rdx rsi rdi movq retq callq jmp es
  15386. % LocalWords: pushq subq popq negq addq arity uniquify Cvar instr cg
  15387. % LocalWords: Seq CProgram gensym lib Fprivate Flist tmp ANF Danvy
  15388. % LocalWords: rco Flists py rhs unhandled cont immediates lstlisting
  15389. % LocalWords: numberstyle Cormen Sudoku Balakrishnan ve aka DSATUR
  15390. % LocalWords: Brelaz eu Gebremedhin Omari deletekeywords min JGS
  15391. % LocalWords: morekeywords fullflexible