book.tex 664 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137613861396140614161426143614461456146614761486149615061516152615361546155615661576158615961606161616261636164616561666167616861696170617161726173617461756176617761786179618061816182618361846185618661876188618961906191619261936194619561966197619861996200620162026203620462056206620762086209621062116212621362146215621662176218621962206221622262236224622562266227622862296230623162326233623462356236623762386239624062416242624362446245624662476248624962506251625262536254625562566257625862596260626162626263626462656266626762686269627062716272627362746275627662776278627962806281628262836284628562866287628862896290629162926293629462956296629762986299630063016302630363046305630663076308630963106311631263136314631563166317631863196320632163226323632463256326632763286329633063316332633363346335633663376338633963406341634263436344634563466347634863496350635163526353635463556356635763586359636063616362636363646365636663676368636963706371637263736374637563766377637863796380638163826383638463856386638763886389639063916392639363946395639663976398639964006401640264036404640564066407640864096410641164126413641464156416641764186419642064216422642364246425642664276428642964306431643264336434643564366437643864396440644164426443644464456446644764486449645064516452645364546455645664576458645964606461646264636464646564666467646864696470647164726473647464756476647764786479648064816482648364846485648664876488648964906491649264936494649564966497649864996500650165026503650465056506650765086509651065116512651365146515651665176518651965206521652265236524652565266527652865296530653165326533653465356536653765386539654065416542654365446545654665476548654965506551655265536554655565566557655865596560656165626563656465656566656765686569657065716572657365746575657665776578657965806581658265836584658565866587658865896590659165926593659465956596659765986599660066016602660366046605660666076608660966106611661266136614661566166617661866196620662166226623662466256626662766286629663066316632663366346635663666376638663966406641664266436644664566466647664866496650665166526653665466556656665766586659666066616662666366646665666666676668666966706671667266736674667566766677667866796680668166826683668466856686668766886689669066916692669366946695669666976698669967006701670267036704670567066707670867096710671167126713671467156716671767186719672067216722672367246725672667276728672967306731673267336734673567366737673867396740674167426743674467456746674767486749675067516752675367546755675667576758675967606761676267636764676567666767676867696770677167726773677467756776677767786779678067816782678367846785678667876788678967906791679267936794679567966797679867996800680168026803680468056806680768086809681068116812681368146815681668176818681968206821682268236824682568266827682868296830683168326833683468356836683768386839684068416842684368446845684668476848684968506851685268536854685568566857685868596860686168626863686468656866686768686869687068716872687368746875687668776878687968806881688268836884688568866887688868896890689168926893689468956896689768986899690069016902690369046905690669076908690969106911691269136914691569166917691869196920692169226923692469256926692769286929693069316932693369346935693669376938693969406941694269436944694569466947694869496950695169526953695469556956695769586959696069616962696369646965696669676968696969706971697269736974697569766977697869796980698169826983698469856986698769886989699069916992699369946995699669976998699970007001700270037004700570067007700870097010701170127013701470157016701770187019702070217022702370247025702670277028702970307031703270337034703570367037703870397040704170427043704470457046704770487049705070517052705370547055705670577058705970607061706270637064706570667067706870697070707170727073707470757076707770787079708070817082708370847085708670877088708970907091709270937094709570967097709870997100710171027103710471057106710771087109711071117112711371147115711671177118711971207121712271237124712571267127712871297130713171327133713471357136713771387139714071417142714371447145714671477148714971507151715271537154715571567157715871597160716171627163716471657166716771687169717071717172717371747175717671777178717971807181718271837184718571867187718871897190719171927193719471957196719771987199720072017202720372047205720672077208720972107211721272137214721572167217721872197220722172227223722472257226722772287229723072317232723372347235723672377238723972407241724272437244724572467247724872497250725172527253725472557256725772587259726072617262726372647265726672677268726972707271727272737274727572767277727872797280728172827283728472857286728772887289729072917292729372947295729672977298729973007301730273037304730573067307730873097310731173127313731473157316731773187319732073217322732373247325732673277328732973307331733273337334733573367337733873397340734173427343734473457346734773487349735073517352735373547355735673577358735973607361736273637364736573667367736873697370737173727373737473757376737773787379738073817382738373847385738673877388738973907391739273937394739573967397739873997400740174027403740474057406740774087409741074117412741374147415741674177418741974207421742274237424742574267427742874297430743174327433743474357436743774387439744074417442744374447445744674477448744974507451745274537454745574567457745874597460746174627463746474657466746774687469747074717472747374747475747674777478747974807481748274837484748574867487748874897490749174927493749474957496749774987499750075017502750375047505750675077508750975107511751275137514751575167517751875197520752175227523752475257526752775287529753075317532753375347535753675377538753975407541754275437544754575467547754875497550755175527553755475557556755775587559756075617562756375647565756675677568756975707571757275737574757575767577757875797580758175827583758475857586758775887589759075917592759375947595759675977598759976007601760276037604760576067607760876097610761176127613761476157616761776187619762076217622762376247625762676277628762976307631763276337634763576367637763876397640764176427643764476457646764776487649765076517652765376547655765676577658765976607661766276637664766576667667766876697670767176727673767476757676767776787679768076817682768376847685768676877688768976907691769276937694769576967697769876997700770177027703770477057706770777087709771077117712771377147715771677177718771977207721772277237724772577267727772877297730773177327733773477357736773777387739774077417742774377447745774677477748774977507751775277537754775577567757775877597760776177627763776477657766776777687769777077717772777377747775777677777778777977807781778277837784778577867787778877897790779177927793779477957796779777987799780078017802780378047805780678077808780978107811781278137814781578167817781878197820782178227823782478257826782778287829783078317832783378347835783678377838783978407841784278437844784578467847784878497850785178527853785478557856785778587859786078617862786378647865786678677868786978707871787278737874787578767877787878797880788178827883788478857886788778887889789078917892789378947895789678977898789979007901790279037904790579067907790879097910791179127913791479157916791779187919792079217922792379247925792679277928792979307931793279337934793579367937793879397940794179427943794479457946794779487949795079517952795379547955795679577958795979607961796279637964796579667967796879697970797179727973797479757976797779787979798079817982798379847985798679877988798979907991799279937994799579967997799879998000800180028003800480058006800780088009801080118012801380148015801680178018801980208021802280238024802580268027802880298030803180328033803480358036803780388039804080418042804380448045804680478048804980508051805280538054805580568057805880598060806180628063806480658066806780688069807080718072807380748075807680778078807980808081808280838084808580868087808880898090809180928093809480958096809780988099810081018102810381048105810681078108810981108111811281138114811581168117811881198120812181228123812481258126812781288129813081318132813381348135813681378138813981408141814281438144814581468147814881498150815181528153815481558156815781588159816081618162816381648165816681678168816981708171817281738174817581768177817881798180818181828183818481858186818781888189819081918192819381948195819681978198819982008201820282038204820582068207820882098210821182128213821482158216821782188219822082218222822382248225822682278228822982308231823282338234823582368237823882398240824182428243824482458246824782488249825082518252825382548255825682578258825982608261826282638264826582668267826882698270827182728273827482758276827782788279828082818282828382848285828682878288828982908291829282938294829582968297829882998300830183028303830483058306830783088309831083118312831383148315831683178318831983208321832283238324832583268327832883298330833183328333833483358336833783388339834083418342834383448345834683478348834983508351835283538354835583568357835883598360836183628363836483658366836783688369837083718372837383748375837683778378837983808381838283838384838583868387838883898390839183928393839483958396839783988399840084018402840384048405840684078408840984108411841284138414841584168417841884198420842184228423842484258426842784288429843084318432843384348435843684378438843984408441844284438444844584468447844884498450845184528453845484558456845784588459846084618462846384648465846684678468846984708471847284738474847584768477847884798480848184828483848484858486848784888489849084918492849384948495849684978498849985008501850285038504850585068507850885098510851185128513851485158516851785188519852085218522852385248525852685278528852985308531853285338534853585368537853885398540854185428543854485458546854785488549855085518552855385548555855685578558855985608561856285638564856585668567856885698570857185728573857485758576857785788579858085818582858385848585858685878588858985908591859285938594859585968597859885998600860186028603860486058606860786088609861086118612861386148615861686178618861986208621862286238624862586268627862886298630863186328633863486358636863786388639864086418642864386448645864686478648864986508651865286538654865586568657865886598660866186628663866486658666866786688669867086718672867386748675867686778678867986808681868286838684868586868687868886898690869186928693869486958696869786988699870087018702870387048705870687078708870987108711871287138714871587168717871887198720872187228723872487258726872787288729873087318732873387348735873687378738873987408741874287438744874587468747874887498750875187528753875487558756875787588759876087618762876387648765876687678768876987708771877287738774877587768777877887798780878187828783878487858786878787888789879087918792879387948795879687978798879988008801880288038804880588068807880888098810881188128813881488158816881788188819882088218822882388248825882688278828882988308831883288338834883588368837883888398840884188428843884488458846884788488849885088518852885388548855885688578858885988608861886288638864886588668867886888698870887188728873887488758876887788788879888088818882888388848885888688878888888988908891889288938894889588968897889888998900890189028903890489058906890789088909891089118912891389148915891689178918891989208921892289238924892589268927892889298930893189328933893489358936893789388939894089418942894389448945894689478948894989508951895289538954895589568957895889598960896189628963896489658966896789688969897089718972897389748975897689778978897989808981898289838984898589868987898889898990899189928993899489958996899789988999900090019002900390049005900690079008900990109011901290139014901590169017901890199020902190229023902490259026902790289029903090319032903390349035903690379038903990409041904290439044904590469047904890499050905190529053905490559056905790589059906090619062906390649065906690679068906990709071907290739074907590769077907890799080908190829083908490859086908790889089909090919092909390949095909690979098909991009101910291039104910591069107910891099110911191129113911491159116911791189119912091219122912391249125912691279128912991309131913291339134913591369137913891399140914191429143914491459146914791489149915091519152915391549155915691579158915991609161916291639164916591669167916891699170917191729173917491759176917791789179918091819182918391849185918691879188918991909191919291939194919591969197919891999200920192029203920492059206920792089209921092119212921392149215921692179218921992209221922292239224922592269227922892299230923192329233923492359236923792389239924092419242924392449245924692479248924992509251925292539254925592569257925892599260926192629263926492659266926792689269927092719272927392749275927692779278927992809281928292839284928592869287928892899290929192929293929492959296929792989299930093019302930393049305930693079308930993109311931293139314931593169317931893199320932193229323932493259326932793289329933093319332933393349335933693379338933993409341934293439344934593469347934893499350935193529353935493559356935793589359936093619362936393649365936693679368936993709371937293739374937593769377937893799380938193829383938493859386938793889389939093919392939393949395939693979398939994009401940294039404940594069407940894099410941194129413941494159416941794189419942094219422942394249425942694279428942994309431943294339434943594369437943894399440944194429443944494459446944794489449945094519452945394549455945694579458945994609461946294639464946594669467946894699470947194729473947494759476947794789479948094819482948394849485948694879488948994909491949294939494949594969497949894999500950195029503950495059506950795089509951095119512951395149515951695179518951995209521952295239524952595269527952895299530953195329533953495359536953795389539954095419542954395449545954695479548954995509551955295539554955595569557955895599560956195629563956495659566956795689569957095719572957395749575957695779578957995809581958295839584958595869587958895899590959195929593959495959596959795989599960096019602960396049605960696079608960996109611961296139614961596169617961896199620962196229623962496259626962796289629963096319632963396349635963696379638963996409641964296439644964596469647964896499650965196529653965496559656965796589659966096619662966396649665966696679668966996709671967296739674967596769677967896799680968196829683968496859686968796889689969096919692969396949695969696979698969997009701970297039704970597069707970897099710971197129713971497159716971797189719972097219722972397249725972697279728972997309731973297339734973597369737973897399740974197429743974497459746974797489749975097519752975397549755975697579758975997609761976297639764976597669767976897699770977197729773977497759776977797789779978097819782978397849785978697879788978997909791979297939794979597969797979897999800980198029803980498059806980798089809981098119812981398149815981698179818981998209821982298239824982598269827982898299830983198329833983498359836983798389839984098419842984398449845984698479848984998509851985298539854985598569857985898599860986198629863986498659866986798689869987098719872987398749875987698779878987998809881988298839884988598869887988898899890989198929893989498959896989798989899990099019902990399049905990699079908990999109911991299139914991599169917991899199920992199229923992499259926992799289929993099319932993399349935993699379938993999409941994299439944994599469947994899499950995199529953995499559956995799589959996099619962996399649965996699679968996999709971997299739974997599769977997899799980998199829983998499859986998799889989999099919992999399949995999699979998999910000100011000210003100041000510006100071000810009100101001110012100131001410015100161001710018100191002010021100221002310024100251002610027100281002910030100311003210033100341003510036100371003810039100401004110042100431004410045100461004710048100491005010051100521005310054100551005610057100581005910060100611006210063100641006510066100671006810069100701007110072100731007410075100761007710078100791008010081100821008310084100851008610087100881008910090100911009210093100941009510096100971009810099101001010110102101031010410105101061010710108101091011010111101121011310114101151011610117101181011910120101211012210123101241012510126101271012810129101301013110132101331013410135101361013710138101391014010141101421014310144101451014610147101481014910150101511015210153101541015510156101571015810159101601016110162101631016410165101661016710168101691017010171101721017310174101751017610177101781017910180101811018210183101841018510186101871018810189101901019110192101931019410195101961019710198101991020010201102021020310204102051020610207102081020910210102111021210213102141021510216102171021810219102201022110222102231022410225102261022710228102291023010231102321023310234102351023610237102381023910240102411024210243102441024510246102471024810249102501025110252102531025410255102561025710258102591026010261102621026310264102651026610267102681026910270102711027210273102741027510276102771027810279102801028110282102831028410285102861028710288102891029010291102921029310294102951029610297102981029910300103011030210303103041030510306103071030810309103101031110312103131031410315103161031710318103191032010321103221032310324103251032610327103281032910330103311033210333103341033510336103371033810339103401034110342103431034410345103461034710348103491035010351103521035310354103551035610357103581035910360103611036210363103641036510366103671036810369103701037110372103731037410375103761037710378103791038010381103821038310384103851038610387103881038910390103911039210393103941039510396103971039810399104001040110402104031040410405104061040710408104091041010411104121041310414104151041610417104181041910420104211042210423104241042510426104271042810429104301043110432104331043410435104361043710438104391044010441104421044310444104451044610447104481044910450104511045210453104541045510456104571045810459104601046110462104631046410465104661046710468104691047010471104721047310474104751047610477104781047910480104811048210483104841048510486104871048810489104901049110492104931049410495104961049710498104991050010501105021050310504105051050610507105081050910510105111051210513105141051510516105171051810519105201052110522105231052410525105261052710528105291053010531105321053310534105351053610537105381053910540105411054210543105441054510546105471054810549105501055110552105531055410555105561055710558105591056010561105621056310564105651056610567105681056910570105711057210573105741057510576105771057810579105801058110582105831058410585105861058710588105891059010591105921059310594105951059610597105981059910600106011060210603106041060510606106071060810609106101061110612106131061410615106161061710618106191062010621106221062310624106251062610627106281062910630106311063210633106341063510636106371063810639106401064110642106431064410645106461064710648106491065010651106521065310654106551065610657106581065910660106611066210663106641066510666106671066810669106701067110672106731067410675106761067710678106791068010681106821068310684106851068610687106881068910690106911069210693106941069510696106971069810699107001070110702107031070410705107061070710708107091071010711107121071310714107151071610717107181071910720107211072210723107241072510726107271072810729107301073110732107331073410735107361073710738107391074010741107421074310744107451074610747107481074910750107511075210753107541075510756107571075810759107601076110762107631076410765107661076710768107691077010771107721077310774107751077610777107781077910780107811078210783107841078510786107871078810789107901079110792107931079410795107961079710798107991080010801108021080310804108051080610807108081080910810108111081210813108141081510816108171081810819108201082110822108231082410825108261082710828108291083010831108321083310834108351083610837108381083910840108411084210843108441084510846108471084810849108501085110852108531085410855108561085710858108591086010861108621086310864108651086610867108681086910870108711087210873108741087510876108771087810879108801088110882108831088410885108861088710888108891089010891108921089310894108951089610897108981089910900109011090210903109041090510906109071090810909109101091110912109131091410915109161091710918109191092010921109221092310924109251092610927109281092910930109311093210933109341093510936109371093810939109401094110942109431094410945109461094710948109491095010951109521095310954109551095610957109581095910960109611096210963109641096510966109671096810969109701097110972109731097410975109761097710978109791098010981109821098310984109851098610987109881098910990109911099210993109941099510996109971099810999110001100111002110031100411005110061100711008110091101011011110121101311014110151101611017110181101911020110211102211023110241102511026110271102811029110301103111032110331103411035110361103711038110391104011041110421104311044110451104611047110481104911050110511105211053110541105511056110571105811059110601106111062110631106411065110661106711068110691107011071110721107311074110751107611077110781107911080110811108211083110841108511086110871108811089110901109111092110931109411095110961109711098110991110011101111021110311104111051110611107111081110911110111111111211113111141111511116111171111811119111201112111122111231112411125111261112711128111291113011131111321113311134111351113611137111381113911140111411114211143111441114511146111471114811149111501115111152111531115411155111561115711158111591116011161111621116311164111651116611167111681116911170111711117211173111741117511176111771117811179111801118111182111831118411185111861118711188111891119011191111921119311194111951119611197111981119911200112011120211203112041120511206112071120811209112101121111212112131121411215112161121711218112191122011221112221122311224112251122611227112281122911230112311123211233112341123511236112371123811239112401124111242112431124411245112461124711248112491125011251112521125311254112551125611257112581125911260112611126211263112641126511266112671126811269112701127111272112731127411275112761127711278112791128011281112821128311284112851128611287112881128911290112911129211293112941129511296112971129811299113001130111302113031130411305113061130711308113091131011311113121131311314113151131611317113181131911320113211132211323113241132511326113271132811329113301133111332113331133411335113361133711338113391134011341113421134311344113451134611347113481134911350113511135211353113541135511356113571135811359113601136111362113631136411365113661136711368113691137011371113721137311374113751137611377113781137911380113811138211383113841138511386113871138811389113901139111392113931139411395113961139711398113991140011401114021140311404114051140611407114081140911410114111141211413114141141511416114171141811419114201142111422114231142411425114261142711428114291143011431114321143311434114351143611437114381143911440114411144211443114441144511446114471144811449114501145111452114531145411455114561145711458114591146011461114621146311464114651146611467114681146911470114711147211473114741147511476114771147811479114801148111482114831148411485114861148711488114891149011491114921149311494114951149611497114981149911500115011150211503115041150511506115071150811509115101151111512115131151411515115161151711518115191152011521115221152311524115251152611527115281152911530115311153211533115341153511536115371153811539115401154111542115431154411545115461154711548115491155011551115521155311554115551155611557115581155911560115611156211563115641156511566115671156811569115701157111572115731157411575115761157711578115791158011581115821158311584115851158611587115881158911590115911159211593115941159511596115971159811599116001160111602116031160411605116061160711608116091161011611116121161311614116151161611617116181161911620116211162211623116241162511626116271162811629116301163111632116331163411635116361163711638116391164011641116421164311644116451164611647116481164911650116511165211653116541165511656116571165811659116601166111662116631166411665116661166711668116691167011671116721167311674116751167611677116781167911680116811168211683116841168511686116871168811689116901169111692116931169411695116961169711698116991170011701117021170311704117051170611707117081170911710117111171211713117141171511716117171171811719117201172111722117231172411725117261172711728117291173011731117321173311734117351173611737117381173911740117411174211743117441174511746117471174811749117501175111752117531175411755117561175711758117591176011761117621176311764117651176611767117681176911770117711177211773117741177511776117771177811779117801178111782117831178411785117861178711788117891179011791117921179311794117951179611797117981179911800118011180211803118041180511806118071180811809118101181111812118131181411815118161181711818118191182011821118221182311824118251182611827118281182911830118311183211833118341183511836118371183811839118401184111842118431184411845118461184711848118491185011851118521185311854118551185611857118581185911860118611186211863118641186511866118671186811869118701187111872118731187411875118761187711878118791188011881118821188311884118851188611887118881188911890118911189211893118941189511896118971189811899119001190111902119031190411905119061190711908119091191011911119121191311914119151191611917119181191911920119211192211923119241192511926119271192811929119301193111932119331193411935119361193711938119391194011941119421194311944119451194611947119481194911950119511195211953119541195511956119571195811959119601196111962119631196411965119661196711968119691197011971119721197311974119751197611977119781197911980119811198211983119841198511986119871198811989119901199111992119931199411995119961199711998119991200012001120021200312004120051200612007120081200912010120111201212013120141201512016120171201812019120201202112022120231202412025120261202712028120291203012031120321203312034120351203612037120381203912040120411204212043120441204512046120471204812049120501205112052120531205412055120561205712058120591206012061120621206312064120651206612067120681206912070120711207212073120741207512076120771207812079120801208112082120831208412085120861208712088120891209012091120921209312094120951209612097120981209912100121011210212103121041210512106121071210812109121101211112112121131211412115121161211712118121191212012121121221212312124121251212612127121281212912130121311213212133121341213512136121371213812139121401214112142121431214412145121461214712148121491215012151121521215312154121551215612157121581215912160121611216212163121641216512166121671216812169121701217112172121731217412175121761217712178121791218012181121821218312184121851218612187121881218912190121911219212193121941219512196121971219812199122001220112202122031220412205122061220712208122091221012211122121221312214122151221612217122181221912220122211222212223122241222512226122271222812229122301223112232122331223412235122361223712238122391224012241122421224312244122451224612247122481224912250122511225212253122541225512256122571225812259122601226112262122631226412265122661226712268122691227012271122721227312274122751227612277122781227912280122811228212283122841228512286122871228812289122901229112292122931229412295122961229712298122991230012301123021230312304123051230612307123081230912310123111231212313123141231512316123171231812319123201232112322123231232412325123261232712328123291233012331123321233312334123351233612337123381233912340123411234212343123441234512346123471234812349123501235112352123531235412355123561235712358123591236012361123621236312364123651236612367123681236912370123711237212373123741237512376123771237812379123801238112382123831238412385123861238712388123891239012391123921239312394123951239612397123981239912400124011240212403124041240512406124071240812409124101241112412124131241412415124161241712418124191242012421124221242312424124251242612427124281242912430124311243212433124341243512436124371243812439124401244112442124431244412445124461244712448124491245012451124521245312454124551245612457124581245912460124611246212463124641246512466124671246812469124701247112472124731247412475124761247712478124791248012481124821248312484124851248612487124881248912490124911249212493124941249512496124971249812499125001250112502125031250412505125061250712508125091251012511125121251312514125151251612517125181251912520125211252212523125241252512526125271252812529125301253112532125331253412535125361253712538125391254012541125421254312544125451254612547125481254912550125511255212553125541255512556125571255812559125601256112562125631256412565125661256712568125691257012571125721257312574125751257612577125781257912580125811258212583125841258512586125871258812589125901259112592125931259412595125961259712598125991260012601126021260312604126051260612607126081260912610126111261212613126141261512616126171261812619126201262112622126231262412625126261262712628126291263012631126321263312634126351263612637126381263912640126411264212643126441264512646126471264812649126501265112652126531265412655126561265712658126591266012661126621266312664126651266612667126681266912670126711267212673126741267512676126771267812679126801268112682126831268412685126861268712688126891269012691126921269312694126951269612697126981269912700127011270212703127041270512706127071270812709127101271112712127131271412715127161271712718127191272012721127221272312724127251272612727127281272912730127311273212733127341273512736127371273812739127401274112742127431274412745127461274712748127491275012751127521275312754127551275612757127581275912760127611276212763127641276512766127671276812769127701277112772127731277412775127761277712778127791278012781127821278312784127851278612787127881278912790127911279212793127941279512796127971279812799128001280112802128031280412805128061280712808128091281012811128121281312814128151281612817128181281912820128211282212823128241282512826128271282812829128301283112832128331283412835128361283712838128391284012841128421284312844128451284612847128481284912850128511285212853128541285512856128571285812859128601286112862128631286412865128661286712868128691287012871128721287312874128751287612877128781287912880128811288212883128841288512886128871288812889128901289112892128931289412895128961289712898128991290012901129021290312904129051290612907129081290912910129111291212913129141291512916129171291812919129201292112922129231292412925129261292712928129291293012931129321293312934129351293612937129381293912940129411294212943129441294512946129471294812949129501295112952129531295412955129561295712958129591296012961129621296312964129651296612967129681296912970129711297212973129741297512976129771297812979129801298112982129831298412985129861298712988129891299012991129921299312994129951299612997129981299913000130011300213003130041300513006130071300813009130101301113012130131301413015130161301713018130191302013021130221302313024130251302613027130281302913030130311303213033130341303513036130371303813039130401304113042130431304413045130461304713048130491305013051130521305313054130551305613057130581305913060130611306213063130641306513066130671306813069130701307113072130731307413075130761307713078130791308013081130821308313084130851308613087130881308913090130911309213093130941309513096130971309813099131001310113102131031310413105131061310713108131091311013111131121311313114131151311613117131181311913120131211312213123131241312513126131271312813129131301313113132131331313413135131361313713138131391314013141131421314313144131451314613147131481314913150131511315213153131541315513156131571315813159131601316113162131631316413165131661316713168131691317013171131721317313174131751317613177131781317913180131811318213183131841318513186131871318813189131901319113192131931319413195131961319713198131991320013201132021320313204132051320613207132081320913210132111321213213132141321513216132171321813219132201322113222132231322413225132261322713228132291323013231132321323313234132351323613237132381323913240132411324213243132441324513246132471324813249132501325113252132531325413255132561325713258132591326013261132621326313264132651326613267132681326913270132711327213273132741327513276132771327813279132801328113282132831328413285132861328713288132891329013291132921329313294132951329613297132981329913300133011330213303133041330513306133071330813309133101331113312133131331413315133161331713318133191332013321133221332313324133251332613327133281332913330133311333213333133341333513336133371333813339133401334113342133431334413345133461334713348133491335013351133521335313354133551335613357133581335913360133611336213363133641336513366133671336813369133701337113372133731337413375133761337713378133791338013381133821338313384133851338613387133881338913390133911339213393133941339513396133971339813399134001340113402134031340413405134061340713408134091341013411134121341313414134151341613417134181341913420134211342213423134241342513426134271342813429134301343113432134331343413435134361343713438134391344013441134421344313444134451344613447134481344913450134511345213453134541345513456134571345813459134601346113462134631346413465134661346713468134691347013471134721347313474134751347613477134781347913480134811348213483134841348513486134871348813489134901349113492134931349413495134961349713498134991350013501135021350313504135051350613507135081350913510135111351213513135141351513516135171351813519135201352113522135231352413525135261352713528135291353013531135321353313534135351353613537135381353913540135411354213543135441354513546135471354813549135501355113552135531355413555135561355713558135591356013561135621356313564135651356613567135681356913570135711357213573135741357513576135771357813579135801358113582135831358413585135861358713588135891359013591135921359313594135951359613597135981359913600136011360213603136041360513606136071360813609136101361113612136131361413615136161361713618136191362013621136221362313624136251362613627136281362913630136311363213633136341363513636136371363813639136401364113642136431364413645136461364713648136491365013651136521365313654136551365613657136581365913660136611366213663136641366513666136671366813669136701367113672136731367413675136761367713678136791368013681136821368313684136851368613687136881368913690136911369213693136941369513696136971369813699137001370113702137031370413705137061370713708137091371013711137121371313714137151371613717137181371913720137211372213723137241372513726137271372813729137301373113732137331373413735137361373713738137391374013741137421374313744137451374613747137481374913750137511375213753137541375513756137571375813759137601376113762137631376413765137661376713768137691377013771137721377313774137751377613777137781377913780137811378213783137841378513786137871378813789137901379113792137931379413795137961379713798137991380013801138021380313804138051380613807138081380913810138111381213813138141381513816138171381813819138201382113822138231382413825138261382713828138291383013831138321383313834138351383613837138381383913840138411384213843138441384513846138471384813849138501385113852138531385413855138561385713858138591386013861138621386313864138651386613867138681386913870138711387213873138741387513876138771387813879138801388113882138831388413885138861388713888138891389013891138921389313894138951389613897138981389913900139011390213903139041390513906139071390813909139101391113912139131391413915139161391713918139191392013921139221392313924139251392613927139281392913930139311393213933139341393513936139371393813939139401394113942139431394413945139461394713948139491395013951139521395313954139551395613957139581395913960139611396213963139641396513966139671396813969139701397113972139731397413975139761397713978139791398013981139821398313984139851398613987139881398913990139911399213993139941399513996139971399813999140001400114002140031400414005140061400714008140091401014011140121401314014140151401614017140181401914020140211402214023140241402514026140271402814029140301403114032140331403414035140361403714038140391404014041140421404314044140451404614047140481404914050140511405214053140541405514056140571405814059140601406114062140631406414065140661406714068140691407014071140721407314074140751407614077140781407914080140811408214083140841408514086140871408814089140901409114092140931409414095140961409714098140991410014101141021410314104141051410614107141081410914110141111411214113141141411514116141171411814119141201412114122141231412414125141261412714128141291413014131141321413314134141351413614137141381413914140141411414214143141441414514146141471414814149141501415114152141531415414155141561415714158141591416014161141621416314164141651416614167141681416914170141711417214173141741417514176141771417814179141801418114182141831418414185141861418714188141891419014191141921419314194141951419614197141981419914200142011420214203142041420514206142071420814209142101421114212142131421414215142161421714218142191422014221142221422314224142251422614227142281422914230142311423214233142341423514236142371423814239142401424114242142431424414245142461424714248142491425014251142521425314254142551425614257142581425914260142611426214263142641426514266142671426814269142701427114272142731427414275142761427714278142791428014281142821428314284142851428614287142881428914290142911429214293142941429514296142971429814299143001430114302143031430414305143061430714308143091431014311143121431314314143151431614317143181431914320143211432214323143241432514326143271432814329143301433114332143331433414335143361433714338143391434014341143421434314344143451434614347143481434914350143511435214353143541435514356143571435814359143601436114362143631436414365143661436714368143691437014371143721437314374143751437614377143781437914380143811438214383143841438514386143871438814389143901439114392143931439414395143961439714398143991440014401144021440314404144051440614407144081440914410144111441214413144141441514416144171441814419144201442114422144231442414425144261442714428144291443014431144321443314434144351443614437144381443914440144411444214443144441444514446144471444814449144501445114452144531445414455144561445714458144591446014461144621446314464144651446614467144681446914470144711447214473144741447514476144771447814479144801448114482144831448414485144861448714488144891449014491144921449314494144951449614497144981449914500145011450214503145041450514506145071450814509145101451114512145131451414515145161451714518145191452014521145221452314524145251452614527145281452914530145311453214533145341453514536145371453814539145401454114542145431454414545145461454714548145491455014551145521455314554145551455614557145581455914560145611456214563145641456514566145671456814569145701457114572145731457414575145761457714578145791458014581145821458314584145851458614587145881458914590145911459214593145941459514596145971459814599146001460114602146031460414605146061460714608146091461014611146121461314614146151461614617146181461914620146211462214623146241462514626146271462814629146301463114632146331463414635146361463714638146391464014641146421464314644146451464614647146481464914650146511465214653146541465514656146571465814659146601466114662146631466414665146661466714668146691467014671146721467314674146751467614677146781467914680146811468214683146841468514686146871468814689146901469114692146931469414695146961469714698146991470014701147021470314704147051470614707147081470914710147111471214713147141471514716147171471814719147201472114722147231472414725147261472714728147291473014731147321473314734147351473614737147381473914740147411474214743147441474514746147471474814749147501475114752147531475414755147561475714758147591476014761147621476314764147651476614767147681476914770147711477214773147741477514776147771477814779147801478114782147831478414785147861478714788147891479014791147921479314794147951479614797147981479914800148011480214803148041480514806148071480814809148101481114812148131481414815148161481714818148191482014821148221482314824148251482614827148281482914830148311483214833148341483514836148371483814839148401484114842148431484414845148461484714848148491485014851148521485314854148551485614857148581485914860148611486214863148641486514866148671486814869148701487114872148731487414875148761487714878148791488014881148821488314884148851488614887148881488914890148911489214893148941489514896148971489814899149001490114902149031490414905149061490714908149091491014911149121491314914149151491614917149181491914920149211492214923149241492514926149271492814929149301493114932149331493414935149361493714938149391494014941149421494314944149451494614947149481494914950149511495214953149541495514956149571495814959149601496114962149631496414965149661496714968149691497014971149721497314974149751497614977149781497914980149811498214983149841498514986149871498814989149901499114992149931499414995149961499714998149991500015001150021500315004150051500615007150081500915010150111501215013150141501515016150171501815019150201502115022150231502415025150261502715028150291503015031150321503315034150351503615037150381503915040150411504215043150441504515046150471504815049150501505115052150531505415055150561505715058150591506015061150621506315064150651506615067150681506915070150711507215073150741507515076150771507815079150801508115082150831508415085150861508715088150891509015091150921509315094150951509615097150981509915100151011510215103151041510515106151071510815109151101511115112151131511415115151161511715118151191512015121151221512315124151251512615127151281512915130151311513215133151341513515136151371513815139151401514115142151431514415145151461514715148151491515015151151521515315154151551515615157151581515915160151611516215163151641516515166151671516815169151701517115172151731517415175151761517715178151791518015181151821518315184151851518615187151881518915190151911519215193151941519515196151971519815199152001520115202152031520415205152061520715208152091521015211152121521315214152151521615217152181521915220152211522215223152241522515226152271522815229152301523115232152331523415235152361523715238152391524015241152421524315244152451524615247152481524915250152511525215253152541525515256152571525815259152601526115262152631526415265152661526715268152691527015271152721527315274152751527615277152781527915280152811528215283152841528515286152871528815289152901529115292152931529415295152961529715298152991530015301153021530315304153051530615307153081530915310153111531215313153141531515316153171531815319153201532115322153231532415325153261532715328153291533015331153321533315334153351533615337153381533915340153411534215343153441534515346153471534815349153501535115352153531535415355153561535715358153591536015361153621536315364153651536615367153681536915370153711537215373153741537515376153771537815379153801538115382153831538415385153861538715388153891539015391153921539315394153951539615397153981539915400154011540215403154041540515406154071540815409154101541115412154131541415415154161541715418154191542015421154221542315424154251542615427154281542915430154311543215433154341543515436154371543815439154401544115442154431544415445154461544715448154491545015451154521545315454154551545615457154581545915460154611546215463154641546515466154671546815469154701547115472154731547415475154761547715478154791548015481154821548315484154851548615487154881548915490154911549215493154941549515496154971549815499155001550115502155031550415505155061550715508155091551015511155121551315514155151551615517155181551915520155211552215523155241552515526155271552815529155301553115532155331553415535155361553715538155391554015541155421554315544155451554615547155481554915550155511555215553155541555515556155571555815559155601556115562155631556415565155661556715568155691557015571155721557315574155751557615577155781557915580155811558215583155841558515586155871558815589155901559115592155931559415595155961559715598155991560015601156021560315604156051560615607156081560915610156111561215613156141561515616156171561815619156201562115622156231562415625156261562715628156291563015631156321563315634156351563615637156381563915640156411564215643156441564515646156471564815649156501565115652156531565415655156561565715658156591566015661156621566315664156651566615667156681566915670156711567215673156741567515676156771567815679156801568115682156831568415685156861568715688156891569015691156921569315694156951569615697156981569915700157011570215703157041570515706157071570815709157101571115712157131571415715157161571715718157191572015721157221572315724157251572615727157281572915730157311573215733157341573515736157371573815739157401574115742157431574415745157461574715748157491575015751157521575315754157551575615757157581575915760157611576215763157641576515766157671576815769157701577115772157731577415775157761577715778157791578015781157821578315784157851578615787157881578915790157911579215793157941579515796157971579815799158001580115802158031580415805158061580715808158091581015811158121581315814158151581615817158181581915820158211582215823158241582515826158271582815829158301583115832158331583415835158361583715838158391584015841158421584315844158451584615847158481584915850158511585215853158541585515856158571585815859158601586115862158631586415865158661586715868158691587015871158721587315874158751587615877158781587915880158811588215883158841588515886158871588815889158901589115892158931589415895158961589715898158991590015901159021590315904159051590615907159081590915910159111591215913159141591515916159171591815919159201592115922159231592415925159261592715928159291593015931159321593315934159351593615937159381593915940159411594215943159441594515946159471594815949159501595115952159531595415955159561595715958159591596015961159621596315964159651596615967159681596915970159711597215973159741597515976159771597815979159801598115982159831598415985159861598715988159891599015991159921599315994159951599615997159981599916000160011600216003160041600516006160071600816009160101601116012160131601416015160161601716018160191602016021160221602316024160251602616027160281602916030160311603216033160341603516036160371603816039160401604116042160431604416045160461604716048160491605016051160521605316054160551605616057160581605916060160611606216063160641606516066160671606816069160701607116072160731607416075160761607716078160791608016081160821608316084160851608616087160881608916090160911609216093160941609516096160971609816099161001610116102161031610416105161061610716108161091611016111161121611316114161151611616117161181611916120161211612216123161241612516126161271612816129161301613116132161331613416135161361613716138161391614016141161421614316144161451614616147161481614916150161511615216153161541615516156161571615816159161601616116162161631616416165161661616716168161691617016171161721617316174161751617616177161781617916180161811618216183161841618516186161871618816189161901619116192161931619416195161961619716198161991620016201162021620316204162051620616207162081620916210162111621216213162141621516216162171621816219162201622116222162231622416225162261622716228162291623016231162321623316234162351623616237162381623916240162411624216243162441624516246162471624816249162501625116252162531625416255162561625716258162591626016261162621626316264162651626616267162681626916270162711627216273162741627516276162771627816279162801628116282162831628416285162861628716288162891629016291162921629316294162951629616297162981629916300163011630216303163041630516306163071630816309163101631116312163131631416315163161631716318163191632016321163221632316324163251632616327163281632916330163311633216333163341633516336163371633816339163401634116342163431634416345163461634716348163491635016351163521635316354163551635616357163581635916360163611636216363163641636516366163671636816369163701637116372163731637416375163761637716378163791638016381163821638316384163851638616387163881638916390163911639216393163941639516396163971639816399164001640116402164031640416405164061640716408164091641016411164121641316414164151641616417164181641916420164211642216423164241642516426164271642816429164301643116432164331643416435164361643716438164391644016441164421644316444164451644616447164481644916450164511645216453164541645516456164571645816459164601646116462164631646416465164661646716468164691647016471164721647316474164751647616477164781647916480164811648216483164841648516486164871648816489164901649116492164931649416495164961649716498164991650016501165021650316504165051650616507165081650916510165111651216513165141651516516165171651816519165201652116522165231652416525165261652716528165291653016531165321653316534165351653616537165381653916540165411654216543165441654516546165471654816549165501655116552165531655416555165561655716558165591656016561165621656316564165651656616567165681656916570165711657216573165741657516576165771657816579165801658116582165831658416585165861658716588165891659016591165921659316594165951659616597165981659916600166011660216603166041660516606166071660816609166101661116612166131661416615166161661716618166191662016621166221662316624166251662616627166281662916630166311663216633166341663516636166371663816639166401664116642166431664416645166461664716648166491665016651166521665316654166551665616657166581665916660166611666216663166641666516666166671666816669166701667116672166731667416675166761667716678166791668016681166821668316684166851668616687166881668916690166911669216693166941669516696166971669816699167001670116702167031670416705167061670716708167091671016711167121671316714167151671616717167181671916720167211672216723167241672516726167271672816729167301673116732167331673416735167361673716738167391674016741167421674316744167451674616747167481674916750167511675216753167541675516756167571675816759167601676116762167631676416765167661676716768167691677016771167721677316774167751677616777167781677916780167811678216783167841678516786167871678816789167901679116792167931679416795167961679716798167991680016801168021680316804168051680616807168081680916810168111681216813168141681516816168171681816819168201682116822168231682416825168261682716828168291683016831168321683316834168351683616837168381683916840168411684216843168441684516846168471684816849168501685116852168531685416855168561685716858168591686016861168621686316864168651686616867168681686916870168711687216873168741687516876168771687816879168801688116882168831688416885168861688716888168891689016891168921689316894168951689616897168981689916900169011690216903169041690516906169071690816909169101691116912169131691416915169161691716918169191692016921169221692316924169251692616927169281692916930169311693216933169341693516936169371693816939169401694116942169431694416945169461694716948169491695016951169521695316954169551695616957169581695916960169611696216963169641696516966169671696816969169701697116972169731697416975169761697716978169791698016981169821698316984169851698616987169881698916990169911699216993169941699516996169971699816999170001700117002170031700417005170061700717008170091701017011170121701317014170151701617017170181701917020170211702217023170241702517026170271702817029170301703117032170331703417035170361703717038170391704017041170421704317044170451704617047170481704917050170511705217053170541705517056170571705817059170601706117062170631706417065170661706717068170691707017071170721707317074170751707617077170781707917080170811708217083170841708517086170871708817089170901709117092170931709417095170961709717098170991710017101171021710317104171051710617107171081710917110171111711217113171141711517116171171711817119171201712117122171231712417125171261712717128171291713017131171321713317134171351713617137171381713917140171411714217143171441714517146171471714817149171501715117152171531715417155171561715717158171591716017161171621716317164171651716617167171681716917170171711717217173171741717517176171771717817179171801718117182171831718417185171861718717188171891719017191171921719317194171951719617197171981719917200172011720217203172041720517206172071720817209172101721117212172131721417215172161721717218172191722017221172221722317224172251722617227172281722917230172311723217233172341723517236172371723817239172401724117242172431724417245172461724717248172491725017251172521725317254172551725617257172581725917260172611726217263172641726517266172671726817269172701727117272172731727417275172761727717278172791728017281172821728317284172851728617287172881728917290172911729217293172941729517296172971729817299173001730117302173031730417305173061730717308173091731017311173121731317314173151731617317173181731917320173211732217323173241732517326173271732817329173301733117332173331733417335173361733717338173391734017341173421734317344173451734617347173481734917350173511735217353173541735517356173571735817359173601736117362173631736417365173661736717368173691737017371173721737317374173751737617377173781737917380173811738217383173841738517386173871738817389173901739117392173931739417395173961739717398173991740017401174021740317404174051740617407174081740917410174111741217413174141741517416174171741817419174201742117422174231742417425174261742717428174291743017431174321743317434174351743617437174381743917440174411744217443174441744517446174471744817449174501745117452174531745417455174561745717458174591746017461174621746317464174651746617467174681746917470174711747217473174741747517476174771747817479174801748117482174831748417485174861748717488174891749017491174921749317494174951749617497174981749917500175011750217503175041750517506175071750817509175101751117512175131751417515175161751717518175191752017521175221752317524175251752617527175281752917530175311753217533175341753517536175371753817539175401754117542175431754417545175461754717548175491755017551175521755317554175551755617557175581755917560175611756217563175641756517566175671756817569175701757117572175731757417575175761757717578175791758017581175821758317584175851758617587175881758917590175911759217593175941759517596175971759817599176001760117602176031760417605176061760717608176091761017611176121761317614176151761617617176181761917620176211762217623176241762517626176271762817629176301763117632176331763417635176361763717638176391764017641176421764317644176451764617647176481764917650176511765217653176541765517656176571765817659176601766117662176631766417665176661766717668176691767017671176721767317674176751767617677176781767917680176811768217683176841768517686176871768817689176901769117692176931769417695176961769717698176991770017701177021770317704177051770617707177081770917710177111771217713177141771517716177171771817719177201772117722177231772417725177261772717728177291773017731177321773317734177351773617737177381773917740177411774217743177441774517746177471774817749177501775117752177531775417755177561775717758177591776017761177621776317764177651776617767177681776917770177711777217773177741777517776177771777817779177801778117782177831778417785177861778717788177891779017791177921779317794177951779617797177981779917800178011780217803178041780517806178071780817809178101781117812178131781417815178161781717818178191782017821178221782317824178251782617827178281782917830178311783217833178341783517836178371783817839178401784117842178431784417845178461784717848178491785017851178521785317854178551785617857178581785917860178611786217863178641786517866178671786817869178701787117872178731787417875178761787717878178791788017881178821788317884178851788617887178881788917890178911789217893178941789517896178971789817899179001790117902179031790417905179061790717908179091791017911179121791317914179151791617917179181791917920179211792217923179241792517926179271792817929179301793117932179331793417935179361793717938179391794017941179421794317944179451794617947179481794917950179511795217953179541795517956179571795817959179601796117962179631796417965179661796717968179691797017971179721797317974179751797617977179781797917980179811798217983179841798517986179871798817989179901799117992179931799417995179961799717998179991800018001180021800318004180051800618007180081800918010180111801218013180141801518016180171801818019180201802118022180231802418025180261802718028180291803018031180321803318034180351803618037180381803918040180411804218043180441804518046180471804818049180501805118052180531805418055180561805718058180591806018061180621806318064180651806618067180681806918070180711807218073180741807518076180771807818079180801808118082180831808418085180861808718088180891809018091180921809318094180951809618097180981809918100181011810218103181041810518106181071810818109181101811118112181131811418115181161811718118181191812018121181221812318124181251812618127181281812918130181311813218133181341813518136181371813818139181401814118142181431814418145181461814718148181491815018151181521815318154181551815618157181581815918160181611816218163181641816518166181671816818169181701817118172181731817418175181761817718178181791818018181181821818318184181851818618187181881818918190181911819218193181941819518196181971819818199182001820118202182031820418205182061820718208182091821018211182121821318214182151821618217182181821918220182211822218223182241822518226182271822818229182301823118232182331823418235182361823718238182391824018241182421824318244182451824618247182481824918250182511825218253182541825518256182571825818259182601826118262182631826418265182661826718268182691827018271182721827318274182751827618277182781827918280182811828218283182841828518286182871828818289182901829118292182931829418295182961829718298182991830018301183021830318304183051830618307183081830918310183111831218313183141831518316183171831818319183201832118322183231832418325183261832718328183291833018331183321833318334183351833618337183381833918340183411834218343183441834518346183471834818349183501835118352183531835418355183561835718358183591836018361183621836318364183651836618367183681836918370183711837218373183741837518376183771837818379183801838118382183831838418385183861838718388183891839018391183921839318394183951839618397183981839918400184011840218403184041840518406184071840818409184101841118412184131841418415184161841718418184191842018421184221842318424184251842618427184281842918430184311843218433184341843518436184371843818439184401844118442184431844418445184461844718448184491845018451184521845318454184551845618457184581845918460184611846218463184641846518466184671846818469184701847118472184731847418475184761847718478184791848018481184821848318484184851848618487184881848918490184911849218493184941849518496184971849818499185001850118502185031850418505185061850718508185091851018511185121851318514185151851618517185181851918520185211852218523185241852518526185271852818529185301853118532185331853418535185361853718538185391854018541185421854318544185451854618547185481854918550185511855218553185541855518556185571855818559185601856118562185631856418565185661856718568185691857018571185721857318574185751857618577185781857918580185811858218583185841858518586185871858818589185901859118592185931859418595185961859718598185991860018601186021860318604186051860618607186081860918610186111861218613186141861518616186171861818619186201862118622186231862418625186261862718628186291863018631186321863318634186351863618637186381863918640186411864218643186441864518646186471864818649186501865118652186531865418655186561865718658186591866018661186621866318664186651866618667186681866918670186711867218673186741867518676186771867818679186801868118682186831868418685186861868718688186891869018691186921869318694186951869618697186981869918700187011870218703187041870518706
  1. \documentclass[7x10]{TimesAPriori_MIT}%%7x10
  2. % TODO:
  3. % move binary subtraction from Lif to Lint
  4. \usepackage[utf8]{inputenc}
  5. %% \usepackage{setspace}
  6. %% \doublespacing
  7. \usepackage{listings}
  8. \usepackage{verbatim}
  9. \usepackage{amssymb}
  10. \usepackage{lmodern} % better typewriter font for code
  11. %\usepackage{wrapfig}
  12. \usepackage{multirow}
  13. \usepackage{tcolorbox}
  14. \usepackage{color}
  15. %\usepackage{ifthen}
  16. \usepackage{upquote}
  17. \definecolor{lightgray}{gray}{1}
  18. \newcommand{\black}[1]{{\color{black} #1}}
  19. %\newcommand{\gray}[1]{{\color{lightgray} #1}}
  20. \newcommand{\gray}[1]{{\color{gray} #1}}
  21. \def\racketEd{0}
  22. \def\pythonEd{1}
  23. \def\edition{1}
  24. % material that is specific to the Racket edition of the book
  25. \newcommand{\racket}[1]{{\if\edition\racketEd{#1}\fi}}
  26. % would like a command for: \if\edition\racketEd\color{olive}
  27. % and : \fi\color{black}
  28. % material that is specific to the Python edition of the book
  29. \newcommand{\python}[1]{{\if\edition\pythonEd #1\fi}}
  30. %% For multiple indices:
  31. \usepackage{multind}
  32. \makeindex{subject}
  33. \makeindex{authors}
  34. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  35. \if\edition\racketEd
  36. \lstset{%
  37. language=Lisp,
  38. basicstyle=\ttfamily\small,
  39. morekeywords={seq,assign,program,block,define,lambda,match,goto,if,else,then,struct,Integer,Boolean,Vector,Void,Any,while,begin,define,public,override,class},
  40. deletekeywords={read,mapping,vector},
  41. escapechar=|,
  42. columns=flexible,
  43. moredelim=[is][\color{red}]{~}{~},
  44. showstringspaces=false
  45. }
  46. \fi
  47. \if\edition\pythonEd
  48. \lstset{%
  49. language=Python,
  50. basicstyle=\ttfamily\small,
  51. morekeywords={match,case,bool,int},
  52. deletekeywords={},
  53. escapechar=|,
  54. columns=flexible,
  55. moredelim=[is][\color{red}]{~}{~},
  56. showstringspaces=false
  57. }
  58. \fi
  59. %%% Any shortcut own defined macros place here
  60. %% sample of author macro:
  61. \input{defs}
  62. \newtheorem{exercise}[theorem]{Exercise}
  63. % Adjusted settings
  64. \setlength{\columnsep}{4pt}
  65. %% \begingroup
  66. %% \setlength{\intextsep}{0pt}%
  67. %% \setlength{\columnsep}{0pt}%
  68. %% \begin{wrapfigure}{r}{0.5\textwidth}
  69. %% \centering\includegraphics[width=\linewidth]{example-image-a}
  70. %% \caption{Basic layout}
  71. %% \end{wrapfigure}
  72. %% \lipsum[1]
  73. %% \endgroup
  74. \newbox\oiintbox
  75. \setbox\oiintbox=\hbox{$\lower2pt\hbox{\huge$\displaystyle\circ$}
  76. \hskip-13pt\displaystyle\int\hskip-7pt\int_{S}\ $}
  77. \def\oiint{\copy\oiintbox}
  78. \def\boldnabla{\hbox{\boldmath$\displaystyle\nabla$}}
  79. %\usepackage{showframe}
  80. \def\ShowFrameLinethickness{0.125pt}
  81. \addbibresource{book.bib}
  82. \begin{document}
  83. \frontmatter
  84. \HalfTitle{Essentials of Compilation \\ An Incremental Approach in \python{Python}\racket{Racket}}
  85. \halftitlepage
  86. \Title{Essentials of Compilation}
  87. \Booksubtitle{An Incremental Approach in \python{Python}\racket{Racket}}
  88. %\edition{First Edition}
  89. \BookAuthor{Jeremy G. Siek}
  90. \imprint{The MIT Press\\
  91. Cambridge, Massachusetts\\
  92. London, England}
  93. \begin{copyrightpage}
  94. \textcopyright\ 2021 Jeremy G. Siek. Available for free viewing
  95. or personal downloading under the
  96. \href{https://creativecommons.org/licenses/by-nc-nd/2.0/uk/}{CC-BY-NC-ND}
  97. license.
  98. Copyright in this monograph has been licensed exclusively to The MIT
  99. Press, \url{http://mitpress.mit.edu}, which will be releasing the final
  100. version to the public in 2022. All inquiries regarding rights should
  101. be addressed to The MIT Press, Rights and Permissions Department.
  102. %% \textcopyright\ [YEAR] Massachusetts Institute of Technology
  103. %% All rights reserved. No part of this book may be reproduced in any
  104. %% form by any electronic or mechanical means (including photocopying,
  105. %% recording, or information storage and retrieval) without permission in
  106. %% writing from the publisher.
  107. %% This book was set in LaTeX by Jeremy G. Siek. Printed and bound in the
  108. %% United States of America.
  109. %% Library of Congress Cataloging-in-Publication Data is available.
  110. %% ISBN:
  111. %% 10\quad9\quad8\quad7\quad6\quad5\quad4\quad3\quad2\quad1
  112. \end{copyrightpage}
  113. \dedication{This book is dedicated to the programming language wonks
  114. at Indiana University.}
  115. %% \begin{epigraphpage}
  116. %% \epigraph{First Epigraph line goes here}{Mention author name if any,
  117. %% \textit{Book Name if any}}
  118. %% \epigraph{Second Epigraph line goes here}{Mention author name if any}
  119. %% \end{epigraphpage}
  120. \tableofcontents
  121. %\listoffigures
  122. %\listoftables
  123. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  124. \chapter*{Preface}
  125. \addcontentsline{toc}{fmbm}{Preface}
  126. There is a magical moment when a programmer presses the ``run'' button
  127. and the software begins to execute. Somehow a program written in a
  128. high-level language is running on a computer that is only capable of
  129. shuffling bits. Here we reveal the wizardry that makes that moment
  130. possible. Beginning with the ground breaking work of Backus and
  131. colleagues in the 1950s, computer scientists discovered techniques for
  132. constructing programs, called \emph{compilers}, that automatically
  133. translate high-level programs into machine code.
  134. We take you on a journey by constructing your own compiler for a small
  135. but powerful language. Along the way we explain the essential
  136. concepts, algorithms, and data structures that underlie compilers. We
  137. develop your understanding of how programs are mapped onto computer
  138. hardware, which is helpful when reasoning about properties at the
  139. junction between hardware and software such as execution time,
  140. software errors, and security vulnerabilities. For those interested
  141. in pursuing compiler construction, our goal is to provide a
  142. stepping-stone to advanced topics such as just-in-time compilation,
  143. program analysis, and program optimization. For those interested in
  144. designing and implementing programming languages, we connect
  145. language design choices to their impact on the compiler and the generated
  146. code.
  147. A compiler is typically organized as a sequence of stages that
  148. progressively translate a program to code that runs on hardware. We
  149. take this approach to the extreme by partitioning our compiler into a
  150. large number of \emph{nanopasses}, each of which performs a single
  151. task. This allows us to test the output of each pass in isolation, and
  152. furthermore, allows us to focus our attention which makes the compiler
  153. far easier to understand.
  154. The most familiar approach to describing compilers is with one pass
  155. per chapter. The problem with that approach is it obfuscates how
  156. language features motivate design choices in a compiler. We take an
  157. \emph{incremental} approach in which we build a complete compiler in
  158. each chapter, starting with a small input language that includes only
  159. arithmetic and variables and we add new language features in
  160. subsequent chapters.
  161. Our choice of language features is designed to elicit the fundamental
  162. concepts and algorithms used in compilers.
  163. \begin{itemize}
  164. \item We begin with integer arithmetic and local variables in
  165. Chapters~\ref{ch:trees-recur} and \ref{ch:Lvar}, where we introduce
  166. the fundamental tools of compiler construction: \emph{abstract
  167. syntax trees} and \emph{recursive functions}.
  168. \item In Chapter~\ref{ch:register-allocation-Lvar} we apply
  169. \emph{graph coloring} to assign variables to machine registers.
  170. \item Chapter~\ref{ch:Lif} adds \code{if} expressions, which motivates
  171. an elegant recursive algorithm for translating them into conditional
  172. \code{goto}'s.
  173. \item Chapter~\ref{ch:Lwhile} fleshes out support for imperative
  174. programming languages with the addition of loops\racket{ and mutable
  175. variables}. This elicits the need for \emph{dataflow
  176. analysis} in the register allocator.
  177. \item Chapter~\ref{ch:Lvec} adds heap-allocated tuples, motivating
  178. \emph{garbage collection}.
  179. \item Chapter~\ref{ch:Rfun} adds functions that are first-class values
  180. but lack lexical scoping, similar to the C programming
  181. language~\citep{Kernighan:1988nx} except that we generate efficient
  182. tail calls. The reader learns about the procedure call stack,
  183. \emph{calling conventions}, and their interaction with register
  184. allocation and garbage collection.
  185. \item Chapter~\ref{ch:Rlam} adds anonymous functions with lexical
  186. scoping, i.e., \emph{lambda abstraction}. The reader learns about
  187. \emph{closure conversion}, in which lambdas are translated into a
  188. combination of functions and tuples.
  189. % Chapter about classes and objects?
  190. \item Chapter~\ref{ch:Rdyn} adds \emph{dynamic typing}. Prior to this
  191. point the input languages are statically typed. The reader extends
  192. the statically typed language with an \code{Any} type which serves
  193. as a target for compiling the dynamically typed language.
  194. {\if\edition\pythonEd
  195. \item Chapter~\ref{ch:Robject} adds support for \emph{objects} and
  196. \emph{classes}.
  197. \fi}
  198. \item Chapter~\ref{ch:Rgrad} uses the \code{Any} type of
  199. Chapter~\ref{ch:Rdyn} to implement a \emph{gradually typed language}
  200. in which different regions of a program may be static or dynamically
  201. typed. The reader implements runtime support for \emph{proxies} that
  202. allow values to safely move between regions.
  203. \item Chapter~\ref{ch:Rpoly} adds \emph{generics} with autoboxing,
  204. leveraging the \code{Any} type and type casts developed in Chapters
  205. \ref{ch:Rdyn} and \ref{ch:Rgrad}.
  206. \end{itemize}
  207. There are many language features that we do not include. Our choices
  208. balance the incidental complexity of a feature versus the fundamental
  209. concepts that it exposes. For example, we include tuples and not
  210. records because they both elicit the study of heap allocation and
  211. garbage collection but records come with more incidental complexity.
  212. Since 2009 drafts of this book have served as the textbook for 16-week
  213. compiler courses for upper-level undergraduates and first-year
  214. graduate students at the University of Colorado and Indiana
  215. University.
  216. %
  217. Students come into the course having learned the basics of
  218. programming, data structures and algorithms, and discrete
  219. mathematics.
  220. %
  221. At the beginning of the course, students form groups of 2-4 people.
  222. The groups complete one chapter every two weeks, starting with
  223. Chapter~\ref{ch:Lvar}. Many chapters include a challenge problem that
  224. we assign to the graduate students. The last two weeks of the course
  225. involve a final project in which students design and implement a
  226. compiler extension of their choosing. Chapters~\ref{ch:Rgrad} and
  227. \ref{ch:Rpoly} can be used in support of these projects or they can
  228. replace some of the other chapters. For example, a course with an
  229. emphasis on statically-typed imperative languages could include
  230. Chapter~\ref{ch:Rpoly} but skip Chapter~\ref{ch:Rdyn}. For compiler
  231. courses at universities on the quarter system, with 10 weeks, we
  232. recommend completing up through Chapter~\ref{ch:Rfun}. (If pressed
  233. for time, one can skip Chapter~\ref{ch:Lvec} but still include
  234. Chapter~\ref{ch:Rfun} by limiting the number of parameters allowed in
  235. functions.) Figure~\ref{fig:chapter-dependences} depicts the
  236. dependencies between chapters.
  237. This book has also been used in compiler courses at California
  238. Polytechnic State University, Portland State University, Rose–Hulman
  239. Institute of Technology, University of Massachusetts Lowell, and the
  240. University of Vermont.
  241. \begin{figure}[tp]
  242. {\if\edition\racketEd
  243. \begin{tikzpicture}[baseline=(current bounding box.center)]
  244. \node (C1) at (0,1.5) {\small Ch.~\ref{ch:trees-recur} Preliminaries};
  245. \node (C2) at (4,1.5) {\small Ch.~\ref{ch:Lvar} Variables};
  246. \node (C3) at (8,1.5) {\small Ch.~\ref{ch:register-allocation-Lvar} Registers};
  247. \node (C4) at (0,0) {\small Ch.~\ref{ch:Lif} Conditionals};
  248. \node (C5) at (4,0) {\small Ch.~\ref{ch:Lvec} Tuples};
  249. \node (C6) at (8,0) {\small Ch.~\ref{ch:Rfun} Functions};
  250. \node (C9) at (0,-1.5) {\small Ch.~\ref{ch:Lwhile} Loops};
  251. \node (C8) at (4,-1.5) {\small Ch.~\ref{ch:Rdyn} Dynamic};
  252. \node (C7) at (8,-1.5) {\small Ch.~\ref{ch:Rlam} Lambda};
  253. \node (C10) at (4,-3) {\small Ch.~\ref{ch:Rgrad} Gradual Typing};
  254. \node (C11) at (8,-3) {\small Ch.~\ref{ch:Rpoly} Generics};
  255. \path[->] (C1) edge [above] node {} (C2);
  256. \path[->] (C2) edge [above] node {} (C3);
  257. \path[->] (C3) edge [above] node {} (C4);
  258. \path[->] (C4) edge [above] node {} (C5);
  259. \path[->] (C5) edge [above] node {} (C6);
  260. \path[->] (C6) edge [above] node {} (C7);
  261. \path[->] (C4) edge [above] node {} (C8);
  262. \path[->] (C4) edge [above] node {} (C9);
  263. \path[->] (C8) edge [above] node {} (C10);
  264. \path[->] (C10) edge [above] node {} (C11);
  265. \end{tikzpicture}
  266. \fi}
  267. {\if\edition\pythonEd
  268. \begin{tikzpicture}[baseline=(current bounding box.center)]
  269. \node (C1) at (0,1.5) {\small Ch.~\ref{ch:trees-recur} Preliminaries};
  270. \node (C2) at (4,1.5) {\small Ch.~\ref{ch:Lvar} Variables};
  271. \node (C3) at (8,1.5) {\small Ch.~\ref{ch:register-allocation-Lvar} Registers};
  272. \node (C4) at (0,0) {\small Ch.~\ref{ch:Lif} Conditionals};
  273. \node (C5) at (4,0) {\small Ch.~\ref{ch:Lvec} Tuples};
  274. \node (C6) at (8,0) {\small Ch.~\ref{ch:Rfun} Functions};
  275. \node (C9) at (0,-1.5) {\small Ch.~\ref{ch:Lwhile} Loops};
  276. \node (C8) at (4,-1.5) {\small Ch.~\ref{ch:Rdyn} Dynamic};
  277. \node (CO) at (0,-3) {\small Ch.~\ref{ch:Robject} Objects};
  278. \node (C7) at (8,-1.5) {\small Ch.~\ref{ch:Rlam} Lambda};
  279. \node (C10) at (4,-3) {\small Ch.~\ref{ch:Rgrad} Gradual Typing};
  280. \node (C11) at (8,-3) {\small Ch.~\ref{ch:Rpoly} Generics};
  281. \path[->] (C1) edge [above] node {} (C2);
  282. \path[->] (C2) edge [above] node {} (C3);
  283. \path[->] (C3) edge [above] node {} (C4);
  284. \path[->] (C4) edge [above] node {} (C5);
  285. \path[->] (C5) edge [above] node {} (C6);
  286. \path[->] (C6) edge [above] node {} (C7);
  287. \path[->] (C4) edge [above] node {} (C8);
  288. \path[->] (C4) edge [above] node {} (C9);
  289. \path[->] (C8) edge [above] node {} (C10);
  290. \path[->] (C8) edge [above] node {} (CO);
  291. \path[->] (C10) edge [above] node {} (C11);
  292. \end{tikzpicture}
  293. \fi}
  294. \caption{Diagram of chapter dependencies.}
  295. \label{fig:chapter-dependences}
  296. \end{figure}
  297. \racket{
  298. We use the \href{https://racket-lang.org/}{Racket} language both for
  299. the implementation of the compiler and for the input language, so the
  300. reader should be proficient with Racket or Scheme. There are many
  301. excellent resources for learning Scheme and
  302. Racket~\citep{Dybvig:1987aa,Abelson:1996uq,Friedman:1996aa,Felleisen:2001aa,Felleisen:2013aa,Flatt:2014aa}.
  303. }
  304. \python{
  305. This edition of the book uses \href{https://www.python.org/}{Python}
  306. both for the implementation of the compiler and for the input language, so the
  307. reader should be proficient with Python. There are many
  308. excellent resources for learning Python~\citep{Lutz:2013vp,Barry:2016vj,Sweigart:2019vn,Matthes:2019vs}.
  309. }
  310. The support code for this book is in the github repository at
  311. the following URL:
  312. \if\edition\racketEd
  313. \begin{center}\small
  314. \url{https://github.com/IUCompilerCourse/public-student-support-code}
  315. \end{center}
  316. \fi
  317. \if\edition\pythonEd
  318. \begin{center}\small
  319. \url{https://github.com/IUCompilerCourse/}
  320. \end{center}
  321. \fi
  322. The compiler targets x86 assembly language~\citep{Intel:2015aa}, so it
  323. is helpful but not necessary for the reader to have taken a computer
  324. systems course~\citep{Bryant:2010aa}. This book introduces the parts
  325. of x86-64 assembly language that are needed.
  326. %
  327. We follow the System V calling
  328. conventions~\citep{Bryant:2005aa,Matz:2013aa}, so the assembly code
  329. that we generate works with the runtime system (written in C) when it
  330. is compiled using the GNU C compiler (\code{gcc}) on Linux and MacOS
  331. operating systems on Intel hardware.
  332. %
  333. On the Windows operating system, \code{gcc} uses the Microsoft x64
  334. calling convention~\citep{Microsoft:2018aa,Microsoft:2020aa}. So the
  335. assembly code that we generate does \emph{not} work with the runtime
  336. system on Windows. One workaround is to use a virtual machine with
  337. Linux as the guest operating system.
  338. \section*{Acknowledgments}
  339. The tradition of compiler construction at Indiana University goes back
  340. to research and courses on programming languages by Daniel Friedman in
  341. the 1970's and 1980's. One of his students, Kent Dybvig, implemented
  342. Chez Scheme~\citep{Dybvig:2006aa}, an efficient, production-quality
  343. compiler for Scheme. Throughout the 1990's and 2000's, Dybvig taught
  344. the compiler course and continued the development of Chez Scheme.
  345. %
  346. The compiler course evolved to incorporate novel pedagogical ideas
  347. while also including elements of real-world compilers. One of
  348. Friedman's ideas was to split the compiler into many small
  349. passes. Another idea, called ``the game'', was to test the code
  350. generated by each pass using interpreters.
  351. Dybvig, with help from his students Dipanwita Sarkar and Andrew Keep,
  352. developed infrastructure to support this approach and evolved the
  353. course to use even smaller
  354. nanopasses~\citep{Sarkar:2004fk,Keep:2012aa}. Many of the compiler
  355. design decisions in this book are inspired by the assignment
  356. descriptions of \citet{Dybvig:2010aa}. In the mid 2000's a student of
  357. Dybvig's named Abdulaziz Ghuloum observed that the front-to-back
  358. organization of the course made it difficult for students to
  359. understand the rationale for the compiler design. Ghuloum proposed the
  360. incremental approach~\citep{Ghuloum:2006bh} that this book is based
  361. on.
  362. We thank the many students who served as teaching assistants for the
  363. compiler course at IU and made suggestions for improving the book
  364. including Carl Factora, Ryan Scott, Cameron Swords, and Chris
  365. Wailes. We thank Andre Kuhlenschmidt for work on the garbage
  366. collector, Michael Vollmer for work on efficient tail calls, and
  367. Michael Vitousek for help running the first offering of the
  368. incremental compiler course at IU.
  369. We thank professors Bor-Yuh Chang, John Clements, Jay McCarthy, Joseph
  370. Near, Ryan Newton, Nate Nystrom, Peter Thiemann, Andrew Tolmach, and
  371. Michael Wollowski for teaching courses based on drafts of this book
  372. and for their feedback.
  373. We thank Ronald Garcia for helping Jeremy survive Dybvig's compiler
  374. course in the early 2000's and especially for finding the bug that
  375. sent our garbage collector on a wild goose chase!
  376. \mbox{}\\
  377. \noindent Jeremy G. Siek \\
  378. Bloomington, Indiana
  379. \mainmatter
  380. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  381. \chapter{Preliminaries}
  382. \label{ch:trees-recur}
  383. In this chapter we review the basic tools that are needed to implement
  384. a compiler. Programs are typically input by a programmer as text,
  385. i.e., a sequence of characters. The program-as-text representation is
  386. called \emph{concrete syntax}. We use concrete syntax to concisely
  387. write down and talk about programs. Inside the compiler, we use
  388. \emph{abstract syntax trees} (ASTs) to represent programs in a way
  389. that efficiently supports the operations that the compiler needs to
  390. perform.\index{subject}{concrete syntax}\index{subject}{abstract syntax}\index{subject}{abstract
  391. syntax tree}\index{subject}{AST}\index{subject}{program}\index{subject}{parse} The translation
  392. from concrete syntax to abstract syntax is a process called
  393. \emph{parsing}~\citep{Aho:2006wb}. We do not cover the theory and
  394. implementation of parsing in this book.
  395. %
  396. \racket{A parser is provided in the support code for translating from
  397. concrete to abstract syntax.}
  398. %
  399. \python{We use Python's \code{ast} module to translate from concrete
  400. to abstract syntax.}
  401. ASTs can be represented in many different ways inside the compiler,
  402. depending on the programming language used to write the compiler.
  403. %
  404. \racket{We use Racket's
  405. \href{https://docs.racket-lang.org/guide/define-struct.html}{\code{struct}}
  406. feature to represent ASTs (Section~\ref{sec:ast}).}
  407. %
  408. \python{We use Python classes and objects to represent ASTs, especially the
  409. classes defined in the standard \code{ast} module for the Python
  410. source language.}
  411. %
  412. We use grammars to define the abstract syntax of programming languages
  413. (Section~\ref{sec:grammar}) and pattern matching to inspect individual
  414. nodes in an AST (Section~\ref{sec:pattern-matching}). We use
  415. recursive functions to construct and deconstruct ASTs
  416. (Section~\ref{sec:recursion}). This chapter provides an brief
  417. introduction to these ideas.
  418. \racket{\index{subject}{struct}}
  419. \python{\index{subject}{class}\index{subject}{object}}
  420. \section{Abstract Syntax Trees}
  421. \label{sec:ast}
  422. Compilers use abstract syntax trees to represent programs because they
  423. often need to ask questions like: for a given part of a program, what
  424. kind of language feature is it? What are its sub-parts? Consider the
  425. program on the left and its AST on the right. This program is an
  426. addition operation and it has two sub-parts, a
  427. \racket{read}\python{input} operation and a negation. The negation has
  428. another sub-part, the integer constant \code{8}. By using a tree to
  429. represent the program, we can easily follow the links to go from one
  430. part of a program to its sub-parts.
  431. \begin{center}
  432. \begin{minipage}{0.4\textwidth}
  433. \if\edition\racketEd
  434. \begin{lstlisting}
  435. (+ (read) (- 8))
  436. \end{lstlisting}
  437. \fi
  438. \if\edition\pythonEd
  439. \begin{lstlisting}
  440. input_int() + -8
  441. \end{lstlisting}
  442. \fi
  443. \end{minipage}
  444. \begin{minipage}{0.4\textwidth}
  445. \begin{equation}
  446. \begin{tikzpicture}
  447. \node[draw] (plus) at (0 , 0) {\key{+}};
  448. \node[draw] (read) at (-1, -1.5) {{\if\edition\racketEd\footnotesize\key{read}\fi\if\edition\pythonEd\key{input\_int()}\fi}};
  449. \node[draw] (minus) at (1 , -1.5) {$\key{-}$};
  450. \node[draw] (8) at (1 , -3) {\key{8}};
  451. \draw[->] (plus) to (read);
  452. \draw[->] (plus) to (minus);
  453. \draw[->] (minus) to (8);
  454. \end{tikzpicture}
  455. \label{eq:arith-prog}
  456. \end{equation}
  457. \end{minipage}
  458. \end{center}
  459. We use the standard terminology for trees to describe ASTs: each
  460. rectangle above is called a \emph{node}. The arrows connect a node to its
  461. \emph{children} (which are also nodes). The top-most node is the
  462. \emph{root}. Every node except for the root has a \emph{parent} (the
  463. node it is the child of). If a node has no children, it is a
  464. \emph{leaf} node. Otherwise it is an \emph{internal} node.
  465. \index{subject}{node}
  466. \index{subject}{children}
  467. \index{subject}{root}
  468. \index{subject}{parent}
  469. \index{subject}{leaf}
  470. \index{subject}{internal node}
  471. %% Recall that an \emph{symbolic expression} (S-expression) is either
  472. %% \begin{enumerate}
  473. %% \item an atom, or
  474. %% \item a pair of two S-expressions, written $(e_1 \key{.} e_2)$,
  475. %% where $e_1$ and $e_2$ are each an S-expression.
  476. %% \end{enumerate}
  477. %% An \emph{atom} can be a symbol, such as \code{`hello}, a number, the
  478. %% null value \code{'()}, etc. We can create an S-expression in Racket
  479. %% simply by writing a backquote (called a quasi-quote in Racket)
  480. %% followed by the textual representation of the S-expression. It is
  481. %% quite common to use S-expressions to represent a list, such as $a, b
  482. %% ,c$ in the following way:
  483. %% \begin{lstlisting}
  484. %% `(a . (b . (c . ())))
  485. %% \end{lstlisting}
  486. %% Each element of the list is in the first slot of a pair, and the
  487. %% second slot is either the rest of the list or the null value, to mark
  488. %% the end of the list. Such lists are so common that Racket provides
  489. %% special notation for them that removes the need for the periods
  490. %% and so many parenthesis:
  491. %% \begin{lstlisting}
  492. %% `(a b c)
  493. %% \end{lstlisting}
  494. %% The following expression creates an S-expression that represents AST
  495. %% \eqref{eq:arith-prog}.
  496. %% \begin{lstlisting}
  497. %% `(+ (read) (- 8))
  498. %% \end{lstlisting}
  499. %% When using S-expressions to represent ASTs, the convention is to
  500. %% represent each AST node as a list and to put the operation symbol at
  501. %% the front of the list. The rest of the list contains the children. So
  502. %% in the above case, the root AST node has operation \code{`+} and its
  503. %% two children are \code{`(read)} and \code{`(- 8)}, just as in the
  504. %% diagram \eqref{eq:arith-prog}.
  505. %% To build larger S-expressions one often needs to splice together
  506. %% several smaller S-expressions. Racket provides the comma operator to
  507. %% splice an S-expression into a larger one. For example, instead of
  508. %% creating the S-expression for AST \eqref{eq:arith-prog} all at once,
  509. %% we could have first created an S-expression for AST
  510. %% \eqref{eq:arith-neg8} and then spliced that into the addition
  511. %% S-expression.
  512. %% \begin{lstlisting}
  513. %% (define ast1.4 `(- 8))
  514. %% (define ast1_1 `(+ (read) ,ast1.4))
  515. %% \end{lstlisting}
  516. %% In general, the Racket expression that follows the comma (splice)
  517. %% can be any expression that produces an S-expression.
  518. {\if\edition\racketEd
  519. We define a Racket \code{struct} for each kind of node. For this
  520. chapter we require just two kinds of nodes: one for integer constants
  521. and one for primitive operations. The following is the \code{struct}
  522. definition for integer constants.
  523. \begin{lstlisting}
  524. (struct Int (value))
  525. \end{lstlisting}
  526. An integer node includes just one thing: the integer value.
  527. To create an AST node for the integer $8$, we write \INT{8}.
  528. \begin{lstlisting}
  529. (define eight (Int 8))
  530. \end{lstlisting}
  531. We say that the value created by \INT{8} is an
  532. \emph{instance} of the
  533. \code{Int} structure.
  534. The following is the \code{struct} definition for primitive operations.
  535. \begin{lstlisting}
  536. (struct Prim (op args))
  537. \end{lstlisting}
  538. A primitive operation node includes an operator symbol \code{op} and a
  539. list of child \code{args}. For example, to create an AST that negates
  540. the number $8$, we write \code{(Prim '- (list eight))}.
  541. \begin{lstlisting}
  542. (define neg-eight (Prim '- (list eight)))
  543. \end{lstlisting}
  544. Primitive operations may have zero or more children. The \code{read}
  545. operator has zero children:
  546. \begin{lstlisting}
  547. (define rd (Prim 'read '()))
  548. \end{lstlisting}
  549. whereas the addition operator has two children:
  550. \begin{lstlisting}
  551. (define ast1_1 (Prim '+ (list rd neg-eight)))
  552. \end{lstlisting}
  553. We have made a design choice regarding the \code{Prim} structure.
  554. Instead of using one structure for many different operations
  555. (\code{read}, \code{+}, and \code{-}), we could have instead defined a
  556. structure for each operation, as follows.
  557. \begin{lstlisting}
  558. (struct Read ())
  559. (struct Add (left right))
  560. (struct Neg (value))
  561. \end{lstlisting}
  562. The reason we choose to use just one structure is that in many parts
  563. of the compiler the code for the different primitive operators is the
  564. same, so we might as well just write that code once, which is enabled
  565. by using a single structure.
  566. \fi}
  567. {\if\edition\pythonEd
  568. We use a Python \code{class} for each kind of node.
  569. The following is the class definition for constants.
  570. \begin{lstlisting}
  571. class Constant:
  572. def __init__(self, value):
  573. self.value = value
  574. \end{lstlisting}
  575. An integer constant node includes just one thing: the integer value.
  576. To create an AST node for the integer $8$, we write \INT{8}.
  577. \begin{lstlisting}
  578. eight = Constant(8)
  579. \end{lstlisting}
  580. We say that the value created by \INT{8} is an
  581. \emph{instance} of the \code{Constant} class.
  582. The following is the class definition for unary operators.
  583. \begin{lstlisting}
  584. class UnaryOp:
  585. def __init__(self, op, operand):
  586. self.op = op
  587. self.operand = operand
  588. \end{lstlisting}
  589. The specific operation is specified by the \code{op} parameter. For
  590. example, the class \code{USub} is for unary subtraction. (More unary
  591. operators are introduced in later chapters.) To create an AST that
  592. negates the number $8$, we write the following.
  593. \begin{lstlisting}
  594. neg_eight = UnaryOp(USub(), eight)
  595. \end{lstlisting}
  596. The call to the \code{input\_int} function is represented by the
  597. \code{Call} and \code{Name} classes.
  598. \begin{lstlisting}
  599. class Call:
  600. def __init__(self, func, args):
  601. self.func = func
  602. self.args = args
  603. class Name:
  604. def __init__(self, id):
  605. self.id = id
  606. \end{lstlisting}
  607. To create an AST node that calls \code{input\_int}, we write
  608. \begin{lstlisting}
  609. read = Call(Name('input_int'), [])
  610. \end{lstlisting}
  611. Finally, to represent the addition in \eqref{eq:arith-prog}, we use
  612. the \code{BinOp} class for binary operators.
  613. \begin{lstlisting}
  614. class BinOp:
  615. def __init__(self, left, op, right):
  616. self.op = op
  617. self.left = left
  618. self.right = right
  619. \end{lstlisting}
  620. Similar to \code{UnaryOp}, the specific operation is specified by the
  621. \code{op} parameter, which for now is just an instance of the
  622. \code{Add} class. So to create the AST node that adds negative eight
  623. to some user input, we write the following.
  624. \begin{lstlisting}
  625. ast1_1 = BinOp(read, Add(), neg_eight)
  626. \end{lstlisting}
  627. \fi}
  628. When compiling a program such as \eqref{eq:arith-prog}, we need to
  629. know that the operation associated with the root node is addition and
  630. we need to be able to access its two children. \racket{Racket}\python{Python}
  631. provides pattern matching to support these kinds of queries, as we see in
  632. Section~\ref{sec:pattern-matching}.
  633. In this book, we often write down the concrete syntax of a program
  634. even when we really have in mind the AST because the concrete syntax
  635. is more concise. We recommend that, in your mind, you always think of
  636. programs as abstract syntax trees.
  637. \section{Grammars}
  638. \label{sec:grammar}
  639. \index{subject}{integer}
  640. \index{subject}{literal}
  641. \index{subject}{constant}
  642. A programming language can be thought of as a \emph{set} of programs.
  643. The set is typically infinite (one can always create larger and larger
  644. programs), so one cannot simply describe a language by listing all of
  645. the programs in the language. Instead we write down a set of rules, a
  646. \emph{grammar}, for building programs. Grammars are often used to
  647. define the concrete syntax of a language, but they can also be used to
  648. describe the abstract syntax. We write our rules in a variant of
  649. Backus-Naur Form (BNF)~\citep{Backus:1960aa,Knuth:1964aa}.
  650. \index{subject}{Backus-Naur Form}\index{subject}{BNF}
  651. As an example, we describe a small language, named \LangInt{}, that consists of
  652. integers and arithmetic operations.
  653. \index{subject}{grammar}
  654. The first grammar rule for the abstract syntax of \LangInt{} says that an
  655. instance of the \racket{\code{Int} structure}\python{\code{Constant} class} is an expression:
  656. \begin{equation}
  657. \Exp ::= \INT{\Int} \label{eq:arith-int}
  658. \end{equation}
  659. %
  660. Each rule has a left-hand-side and a right-hand-side.
  661. If you have an AST node that matches the
  662. right-hand-side, then you can categorize it according to the
  663. left-hand-side.
  664. %
  665. Symbols in typewriter font are \emph{terminal} symbols and must
  666. literally appear in the program for the rule to be applicable.
  667. \index{subject}{terminal}
  668. %
  669. Our grammars do not mention \emph{white-space}, that is, separating characters
  670. like spaces, tabulators, and newlines. White-space may be inserted
  671. between symbols for disambiguation and to improve readability.
  672. \index{subject}{white-space}
  673. %
  674. A name such as $\Exp$ that is defined by the grammar rules is a
  675. \emph{non-terminal}. \index{subject}{non-terminal}
  676. %
  677. The name $\Int$ is also a non-terminal, but instead of defining it
  678. with a grammar rule, we define it with the following explanation. An
  679. $\Int$ is a sequence of decimals ($0$ to $9$), possibly starting with
  680. $-$ (for negative integers), such that the sequence of decimals
  681. represent an integer in range $-2^{62}$ to $2^{62}-1$. This enables
  682. the representation of integers using 63 bits, which simplifies several
  683. aspects of compilation. \racket{Thus, these integers corresponds to
  684. the Racket \texttt{fixnum} datatype on a 64-bit machine.}
  685. \python{In contrast, integers in Python have unlimited precision, but
  686. the techniques needed to handle unlimited precision fall outside the
  687. scope of this book.}
  688. The second grammar rule is the \READOP{} operation that receives an
  689. input integer from the user of the program.
  690. \begin{equation}
  691. \Exp ::= \READ{} \label{eq:arith-read}
  692. \end{equation}
  693. The third rule says that, given an $\Exp$ node, the negation of that
  694. node is also an $\Exp$.
  695. \begin{equation}
  696. \Exp ::= \NEG{\Exp} \label{eq:arith-neg}
  697. \end{equation}
  698. We can apply these rules to categorize the ASTs that are in the
  699. \LangInt{} language. For example, by rule \eqref{eq:arith-int}
  700. \INT{8} is an $\Exp$, then by rule \eqref{eq:arith-neg} the
  701. following AST is an $\Exp$.
  702. \begin{center}
  703. \begin{minipage}{0.5\textwidth}
  704. \NEG{\INT{\code{8}}}
  705. \end{minipage}
  706. \begin{minipage}{0.25\textwidth}
  707. \begin{equation}
  708. \begin{tikzpicture}
  709. \node[draw, circle] (minus) at (0, 0) {$\text{--}$};
  710. \node[draw, circle] (8) at (0, -1.2) {$8$};
  711. \draw[->] (minus) to (8);
  712. \end{tikzpicture}
  713. \label{eq:arith-neg8}
  714. \end{equation}
  715. \end{minipage}
  716. \end{center}
  717. The next grammar rules are for addition and subtraction expressions:
  718. \begin{align}
  719. \Exp &::= \ADD{\Exp}{\Exp} \label{eq:arith-add}\\
  720. \Exp &::= \SUB{\Exp}{\Exp} \label{eq:arith-sub}
  721. \end{align}
  722. We can now justify that the AST \eqref{eq:arith-prog} is an $\Exp$ in
  723. \LangInt{}. We know that \READ{} is an $\Exp$ by rule
  724. \eqref{eq:arith-read} and we have already categorized
  725. \NEG{\INT{\code{8}}} as an $\Exp$, so we apply rule \eqref{eq:arith-add}
  726. to show that
  727. \[
  728. \ADD{\READ{}}{\NEG{\INT{\code{8}}}}
  729. \]
  730. is an $\Exp$ in the \LangInt{} language.
  731. If you have an AST for which the above rules do not apply, then the
  732. AST is not in \LangInt{}. For example, the program \racket{\code{(*
  733. (read) 8)}} \python{\code{input\_int() * 8}} is not in \LangInt{}
  734. because there are no rules for the \key{*} operator. Whenever we
  735. define a language with a grammar, the language only includes those
  736. programs that are justified by the grammar rules.
  737. {\if\edition\pythonEd
  738. The language \LangInt{} includes a second non-terminal $\Stmt$ for statements.
  739. There is a statement for printing the value of an expression
  740. \[
  741. \Stmt{} ::= \PRINT{\Exp}
  742. \]
  743. and a statement that evaluates an expression but ignores the result.
  744. \[
  745. \Stmt{} ::= \EXPR{\Exp}
  746. \]
  747. \fi}
  748. {\if\edition\racketEd
  749. The last grammar rule for \LangInt{} states that there is a
  750. \code{Program} node to mark the top of the whole program:
  751. \[
  752. \LangInt{} ::= \PROGRAM{\code{'()}}{\Exp}
  753. \]
  754. The \code{Program} structure is defined as follows
  755. \begin{lstlisting}
  756. (struct Program (info body))
  757. \end{lstlisting}
  758. where \code{body} is an expression. In later chapters, the \code{info}
  759. part will be used to store auxiliary information but for now it is
  760. just the empty list.
  761. \fi}
  762. {\if\edition\pythonEd
  763. The last grammar rule for \LangInt{} states that there is a
  764. \code{Module} node to mark the top of the whole program:
  765. \[
  766. \LangInt{} ::= \PROGRAM{}{\Stmt^{*}}
  767. \]
  768. The asterisk symbol $*$ indicates a list of the preceding grammar item, in
  769. this case, a list of statements.
  770. %
  771. The \code{Module} class is defined as follows
  772. \begin{lstlisting}
  773. class Module:
  774. def __init__(self, body):
  775. self.body = body
  776. \end{lstlisting}
  777. where \code{body} is a list of statements.
  778. \fi}
  779. It is common to have many grammar rules with the same left-hand side
  780. but different right-hand sides, such as the rules for $\Exp$ in the
  781. grammar of \LangInt{}. As a short-hand, a vertical bar can be used to
  782. combine several right-hand-sides into a single rule.
  783. We collect all of the grammar rules for the abstract syntax of \LangInt{}
  784. in Figure~\ref{fig:r0-syntax}. The concrete syntax for \LangInt{} is
  785. defined in Figure~\ref{fig:r0-concrete-syntax}.
  786. \racket{The \code{read-program} function provided in
  787. \code{utilities.rkt} of the support code reads a program in from a
  788. file (the sequence of characters in the concrete syntax of Racket)
  789. and parses it into an abstract syntax tree. See the description of
  790. \code{read-program} in Appendix~\ref{appendix:utilities} for more
  791. details.}
  792. \python{The \code{parse} function in Python's \code{ast} module
  793. converts the concrete syntax (represented as a string) into an
  794. abstract syntax tree.}
  795. \newcommand{\LintGrammarRacket}{
  796. \begin{array}{rcl}
  797. \Type &::=& \key{Integer} \\
  798. \Exp{} &::=& \Int{} \MID \CREAD \RP \MID \CNEG{\Exp} \MID \CADD{\Exp}{\Exp}
  799. \end{array}
  800. }
  801. \newcommand{\LintASTRacket}{
  802. \begin{array}{rcl}
  803. \Type &::=& \key{Integer} \\
  804. \Exp{} &::=& \INT{\Int} \MID \READ{} \\
  805. &\MID& \NEG{\Exp} \MID \ADD{\Exp}{\Exp}
  806. \end{array}
  807. }
  808. \newcommand{\LintGrammarPython}{
  809. \begin{array}{rcl}
  810. \Exp &::=& \Int \MID \key{input\_int}\LP\RP \MID \key{-}\;\Exp \MID \Exp \; \key{+} \; \Exp \MID \Exp \; \key{-} \; \Exp \MID \LP\Exp\RP \\
  811. \Stmt &::=& \key{print}\LP \Exp \RP \MID \Exp
  812. \end{array}
  813. }
  814. \newcommand{\LintASTPython}{
  815. \begin{array}{rcl}
  816. \itm{binaryop} &::= & \code{Add()} \MID \code{Sub()} \\
  817. \itm{unaryop} &::= & \code{USub()} \\
  818. \Exp{} &::=& \INT{\Int} \MID \READ{} \\
  819. &\MID& \UNIOP{\itm{unaryop}}{\Exp} \MID \BINOP{\itm{binaryop}}{\Exp}{\Exp} \\
  820. \Stmt{} &::=& \PRINT{\Exp} \MID \EXPR{\Exp}
  821. \end{array}
  822. }
  823. \begin{figure}[tp]
  824. \fbox{
  825. \begin{minipage}{0.96\textwidth}
  826. {\if\edition\racketEd
  827. \[
  828. \begin{array}{l}
  829. \LintGrammarRacket \\
  830. \begin{array}{rcl}
  831. \LangInt{} &::=& \Exp
  832. \end{array}
  833. \end{array}
  834. \]
  835. \fi}
  836. {\if\edition\pythonEd
  837. \[
  838. \begin{array}{l}
  839. \LintGrammarPython \\
  840. \begin{array}{rcl}
  841. \LangInt{} &::=& \Stmt^{*}
  842. \end{array}
  843. \end{array}
  844. \]
  845. \fi}
  846. \end{minipage}
  847. }
  848. \caption{The concrete syntax of \LangInt{}.}
  849. \label{fig:r0-concrete-syntax}
  850. \end{figure}
  851. \begin{figure}[tp]
  852. \fbox{
  853. \begin{minipage}{0.96\textwidth}
  854. {\if\edition\racketEd
  855. \[
  856. \begin{array}{l}
  857. \LintASTRacket{} \\
  858. \begin{array}{rcl}
  859. \LangInt{} &::=& \PROGRAM{\code{'()}}{\Exp}
  860. \end{array}
  861. \end{array}
  862. \]
  863. \fi}
  864. {\if\edition\pythonEd
  865. \[
  866. \begin{array}{l}
  867. \LintASTPython\\
  868. \begin{array}{rcl}
  869. \LangInt{} &::=& \PROGRAM{}{\Stmt^{*}}
  870. \end{array}
  871. \end{array}
  872. \]
  873. \fi}
  874. \end{minipage}
  875. }
  876. \caption{The abstract syntax of \LangInt{}.}
  877. \label{fig:r0-syntax}
  878. \end{figure}
  879. \section{Pattern Matching}
  880. \label{sec:pattern-matching}
  881. As mentioned in Section~\ref{sec:ast}, compilers often need to access
  882. the parts of an AST node. \racket{Racket}\python{As of version 3.10, Python} provides the
  883. \texttt{match} feature to access the parts of a value.
  884. Consider the following example. \index{subject}{match} \index{subject}{pattern matching}
  885. \begin{center}
  886. \begin{minipage}{0.5\textwidth}
  887. {\if\edition\racketEd
  888. \begin{lstlisting}
  889. (match ast1_1
  890. [(Prim op (list child1 child2))
  891. (print op)])
  892. \end{lstlisting}
  893. \fi}
  894. {\if\edition\pythonEd
  895. \begin{lstlisting}
  896. match ast1_1:
  897. case BinOp(child1, op, child2):
  898. print(op)
  899. \end{lstlisting}
  900. \fi}
  901. \end{minipage}
  902. \end{center}
  903. {\if\edition\racketEd
  904. %
  905. In the above example, the \texttt{match} form checks whether the AST
  906. \eqref{eq:arith-prog} is a binary operator, binds its parts to the
  907. three pattern variables \texttt{op}, \texttt{child1}, and
  908. \texttt{child2}, and then prints out the operator. In general, a match
  909. clause consists of a \emph{pattern} and a
  910. \emph{body}.\index{subject}{pattern} Patterns are recursively defined
  911. to be either a pattern variable, a structure name followed by a
  912. pattern for each of the structure's arguments, or an S-expression
  913. (symbols, lists, etc.). (See Chapter 12 of The Racket
  914. Guide\footnote{\url{https://docs.racket-lang.org/guide/match.html}}
  915. and Chapter 9 of The Racket
  916. Reference\footnote{\url{https://docs.racket-lang.org/reference/match.html}}
  917. for a complete description of \code{match}.)
  918. %
  919. The body of a match clause may contain arbitrary Racket code. The
  920. pattern variables can be used in the scope of the body, such as
  921. \code{op} in \code{(print op)}.
  922. %
  923. \fi}
  924. %
  925. %
  926. {\if\edition\pythonEd
  927. %
  928. In the above example, the \texttt{match} form checks whether the AST
  929. \eqref{eq:arith-prog} is a binary operator and binds its parts to the
  930. three pattern variables \texttt{child1}, \texttt{op}, and
  931. \texttt{child2}, and then prints out the operator. In general, each
  932. \code{case} consists of a \emph{pattern} and a
  933. \emph{body}.\index{subject}{pattern} Patterns are recursively defined
  934. to be either a pattern variable, a class name followed by a pattern
  935. for each of its constructor's arguments, or other literals such as
  936. strings, lists, etc.
  937. %
  938. The body of each \code{case} may contain arbitrary Python code. The
  939. pattern variables can be used in the body, such as \code{op} in
  940. \code{print(op)}.
  941. %
  942. \fi}
  943. A \code{match} form may contain several clauses, as in the following
  944. function \code{leaf} that recognizes when an \LangInt{} node is a leaf in
  945. the AST. The \code{match} proceeds through the clauses in order,
  946. checking whether the pattern can match the input AST. The body of the
  947. first clause that matches is executed. The output of \code{leaf} for
  948. several ASTs is shown on the right.
  949. \begin{center}
  950. \begin{minipage}{0.6\textwidth}
  951. {\if\edition\racketEd
  952. \begin{lstlisting}
  953. (define (leaf arith)
  954. (match arith
  955. [(Int n) #t]
  956. [(Prim 'read '()) #t]
  957. [(Prim '- (list e1)) #f]
  958. [(Prim '+ (list e1 e2)) #f]))
  959. (leaf (Prim 'read '()))
  960. (leaf (Prim '- (list (Int 8))))
  961. (leaf (Int 8))
  962. \end{lstlisting}
  963. \fi}
  964. {\if\edition\pythonEd
  965. \begin{lstlisting}
  966. def leaf(arith):
  967. match arith:
  968. case Constant(n):
  969. return True
  970. case Call(Name('input_int'), []):
  971. return True
  972. case UnaryOp(USub(), e1):
  973. return False
  974. case BinOp(e1, Add(), e2):
  975. return False
  976. print(leaf(Call(Name('input_int'), [])))
  977. print(leaf(UnaryOp(USub(), eight)))
  978. print(leaf(Constant(8)))
  979. \end{lstlisting}
  980. \fi}
  981. \end{minipage}
  982. \vrule
  983. \begin{minipage}{0.25\textwidth}
  984. {\if\edition\racketEd
  985. \begin{lstlisting}
  986. #t
  987. #f
  988. #t
  989. \end{lstlisting}
  990. \fi}
  991. {\if\edition\pythonEd
  992. \begin{lstlisting}
  993. True
  994. False
  995. True
  996. \end{lstlisting}
  997. \fi}
  998. \end{minipage}
  999. \end{center}
  1000. When writing a \code{match}, we refer to the grammar definition to
  1001. identify which non-terminal we are expecting to match against, then we
  1002. make sure that 1) we have one \racket{clause}\python{case} for each alternative of that
  1003. non-terminal and 2) that the pattern in each \racket{clause}\python{case} corresponds to the
  1004. corresponding right-hand side of a grammar rule. For the \code{match}
  1005. in the \code{leaf} function, we refer to the grammar for \LangInt{} in
  1006. Figure~\ref{fig:r0-syntax}. The $\Exp$ non-terminal has 4
  1007. alternatives, so the \code{match} has 4 \racket{clauses}\python{cases}.
  1008. The pattern in each \racket{clause}\python{case} corresponds to the right-hand side
  1009. of a grammar rule. For example, the pattern \ADD{\code{e1}}{\code{e2}} corresponds to the
  1010. right-hand side $\ADD{\Exp}{\Exp}$. When translating from grammars to
  1011. patterns, replace non-terminals such as $\Exp$ with pattern variables
  1012. of your choice (e.g. \code{e1} and \code{e2}).
  1013. \section{Recursive Functions}
  1014. \label{sec:recursion}
  1015. \index{subject}{recursive function}
  1016. Programs are inherently recursive. For example, an expression is often
  1017. made of smaller expressions. Thus, the natural way to process an
  1018. entire program is with a recursive function. As a first example of
  1019. such a recursive function, we define the function \code{exp} in
  1020. Figure~\ref{fig:exp-predicate}, which takes an arbitrary value and
  1021. determines whether or not it is an expression in \LangInt{}.
  1022. %
  1023. We say that a function is defined by \emph{structural recursion} when
  1024. it is defined using a sequence of match \racket{clauses}\python{cases}
  1025. that correspond to a grammar, and the body of each
  1026. \racket{clause}\python{case} makes a recursive call on each child
  1027. node.\footnote{This principle of structuring code according to the
  1028. data definition is advocated in the book \emph{How to Design
  1029. Programs} \url{https://htdp.org/2020-8-1/Book/index.html}.}
  1030. \python{We define a second function, named \code{stmt}, that
  1031. recognizes whether a value is a \LangInt{} statement.}
  1032. \python{Finally, } Figure~\ref{fig:exp-predicate} \racket{also}
  1033. defines \code{Lint}, which determines whether an AST is a program in
  1034. \LangInt{}. In general we can expect to write one recursive function
  1035. to handle each non-terminal in a grammar.\index{subject}{structural
  1036. recursion} Of the two examples at the bottom of the figure, the
  1037. first is in \code{Lint} and the second is not.
  1038. \begin{figure}[tp]
  1039. {\if\edition\racketEd
  1040. \begin{lstlisting}
  1041. (define (exp ast)
  1042. (match ast
  1043. [(Int n) #t]
  1044. [(Prim 'read '()) #t]
  1045. [(Prim '- (list e)) (exp e)]
  1046. [(Prim '+ (list e1 e2))
  1047. (and (exp e1) (exp e2))]
  1048. [else #f]))
  1049. (define (Lint ast)
  1050. (match ast
  1051. [(Program '() e) (exp e)]
  1052. [else #f]))
  1053. (Lint (Program '() ast1_1)
  1054. (Lint (Program '()
  1055. (Prim '- (list (Prim 'read '())
  1056. (Prim '+ (list (Num 8)))))))
  1057. \end{lstlisting}
  1058. \fi}
  1059. {\if\edition\pythonEd
  1060. \begin{lstlisting}
  1061. def exp(e):
  1062. match e:
  1063. case Constant(n):
  1064. return True
  1065. case Call(Name('input_int'), []):
  1066. return True
  1067. case UnaryOp(USub(), e1):
  1068. return exp(e1)
  1069. case BinOp(e1, Add(), e2):
  1070. return exp(e1) and exp(e2)
  1071. case BinOp(e1, Sub(), e2):
  1072. return exp(e1) and exp(e2)
  1073. case _:
  1074. return False
  1075. def stmt(s):
  1076. match s:
  1077. case Expr(Call(Name('print'), [e])):
  1078. return exp(e)
  1079. case Expr(e):
  1080. return exp(e)
  1081. case _:
  1082. return False
  1083. def Lint(p):
  1084. match p:
  1085. case Module(body):
  1086. return all([stmt(s) for s in body])
  1087. case _:
  1088. return False
  1089. print(Lint(Module([Expr(ast1_1)])))
  1090. print(Lint(Module([Expr(BinOp(read, Sub(),
  1091. UnaryOp(Add(), Constant(8))))])))
  1092. \end{lstlisting}
  1093. \fi}
  1094. \caption{Example of recursive functions for \LangInt{}. These functions
  1095. recognize whether an AST is in \LangInt{}.}
  1096. \label{fig:exp-predicate}
  1097. \end{figure}
  1098. %% You may be tempted to merge the two functions into one, like this:
  1099. %% \begin{center}
  1100. %% \begin{minipage}{0.5\textwidth}
  1101. %% \begin{lstlisting}
  1102. %% (define (Lint ast)
  1103. %% (match ast
  1104. %% [(Int n) #t]
  1105. %% [(Prim 'read '()) #t]
  1106. %% [(Prim '- (list e)) (Lint e)]
  1107. %% [(Prim '+ (list e1 e2)) (and (Lint e1) (Lint e2))]
  1108. %% [(Program '() e) (Lint e)]
  1109. %% [else #f]))
  1110. %% \end{lstlisting}
  1111. %% \end{minipage}
  1112. %% \end{center}
  1113. %% %
  1114. %% Sometimes such a trick will save a few lines of code, especially when
  1115. %% it comes to the \code{Program} wrapper. Yet this style is generally
  1116. %% \emph{not} recommended because it can get you into trouble.
  1117. %% %
  1118. %% For example, the above function is subtly wrong:
  1119. %% \lstinline{(Lint (Program '() (Program '() (Int 3))))}
  1120. %% returns true when it should return false.
  1121. \section{Interpreters}
  1122. \label{sec:interp_Lint}
  1123. \index{subject}{interpreter}
  1124. The behavior of a program is defined by the specification of the
  1125. programming language.
  1126. %
  1127. \racket{For example, the Scheme language is defined in the report by
  1128. \cite{SPERBER:2009aa}. The Racket language is defined in its
  1129. reference manual~\citep{plt-tr}.}
  1130. %
  1131. \python{For example, the Python language is defined in the Python
  1132. Language Reference~\citep{PSF21:python_ref} and the CPython interpreter~\citep{PSF21:cpython}.}
  1133. %
  1134. In this book we use interpreters
  1135. to specify each language that we consider. An interpreter that is
  1136. designated as the definition of a language is called a
  1137. \emph{definitional interpreter}~\citep{reynolds72:_def_interp}.
  1138. \index{subject}{definitional interpreter} We warm up by creating a
  1139. definitional interpreter for the \LangInt{} language, which serves as
  1140. a second example of structural recursion. The \code{interp\_Lint}
  1141. function is defined in Figure~\ref{fig:interp_Lint}.
  1142. %
  1143. \racket{The body of the function is a match on the input program
  1144. followed by a call to the \lstinline{interp_exp} helper function,
  1145. which in turn has one match clause per grammar rule for \LangInt{}
  1146. expressions.}
  1147. %
  1148. \python{The body of the function matches on the \code{Module} AST node
  1149. and then invokes \code{interp\_stmt} on each statement in the
  1150. module. The \code{interp\_stmt} function includes a case for each
  1151. grammar rule of the \Stmt{} non-terminal and it calls
  1152. \code{interp\_exp} on each subexpression. The \code{interp\_exp}
  1153. function includes a case for each grammar rule of the \Exp{}
  1154. non-terminal.}
  1155. \begin{figure}[tp]
  1156. {\if\edition\racketEd
  1157. \begin{lstlisting}
  1158. (define (interp_exp e)
  1159. (match e
  1160. [(Int n) n]
  1161. [(Prim 'read '())
  1162. (define r (read))
  1163. (cond [(fixnum? r) r]
  1164. [else (error 'interp_exp "read expected an integer" r)])]
  1165. [(Prim '- (list e))
  1166. (define v (interp_exp e))
  1167. (fx- 0 v)]
  1168. [(Prim '+ (list e1 e2))
  1169. (define v1 (interp_exp e1))
  1170. (define v2 (interp_exp e2))
  1171. (fx+ v1 v2)]))
  1172. (define (interp_Lint p)
  1173. (match p
  1174. [(Program '() e) (interp_exp e)]))
  1175. \end{lstlisting}
  1176. \fi}
  1177. {\if\edition\pythonEd
  1178. \begin{lstlisting}
  1179. def interp_exp(e):
  1180. match e:
  1181. case BinOp(left, Add(), right):
  1182. l = interp_exp(left); r = interp_exp(right)
  1183. return l + r
  1184. case BinOp(left, Sub(), right):
  1185. l = interp_exp(left); r = interp_exp(right)
  1186. return l - r
  1187. case UnaryOp(USub(), v):
  1188. return - interp_exp(v)
  1189. case Constant(value):
  1190. return value
  1191. case Call(Name('input_int'), []):
  1192. return int(input())
  1193. def interp_stmt(s):
  1194. match s:
  1195. case Expr(Call(Name('print'), [arg])):
  1196. print(interp_exp(arg))
  1197. case Expr(value):
  1198. interp_exp(value)
  1199. def interp_Lint(p):
  1200. match p:
  1201. case Module(body):
  1202. for s in body:
  1203. interp_stmt(s)
  1204. \end{lstlisting}
  1205. \fi}
  1206. \caption{Interpreter for the \LangInt{} language.}
  1207. \label{fig:interp_Lint}
  1208. \end{figure}
  1209. Let us consider the result of interpreting a few \LangInt{} programs. The
  1210. following program adds two integers.
  1211. {\if\edition\racketEd
  1212. \begin{lstlisting}
  1213. (+ 10 32)
  1214. \end{lstlisting}
  1215. \fi}
  1216. {\if\edition\pythonEd
  1217. \begin{lstlisting}
  1218. print(10 + 32)
  1219. \end{lstlisting}
  1220. \fi}
  1221. The result is \key{42}, the answer to life, the universe, and
  1222. everything: \code{42}!\footnote{\emph{The Hitchhiker's Guide to the
  1223. Galaxy} by Douglas Adams.}
  1224. %
  1225. We wrote the above program in concrete syntax whereas the parsed
  1226. abstract syntax is:
  1227. {\if\edition\racketEd
  1228. \begin{lstlisting}
  1229. (Program '() (Prim '+ (list (Int 10) (Int 32))))
  1230. \end{lstlisting}
  1231. \fi}
  1232. {\if\edition\pythonEd
  1233. \begin{lstlisting}
  1234. Module([Expr(Call(Name('print'), [BinOp(Constant(10), Add(), Constant(32))]))])
  1235. \end{lstlisting}
  1236. \fi}
  1237. The next example demonstrates that expressions may be nested within
  1238. each other, in this case nesting several additions and negations.
  1239. {\if\edition\racketEd
  1240. \begin{lstlisting}
  1241. (+ 10 (- (+ 12 20)))
  1242. \end{lstlisting}
  1243. \fi}
  1244. {\if\edition\pythonEd
  1245. \begin{lstlisting}
  1246. print(10 + -(12 + 20))
  1247. \end{lstlisting}
  1248. \fi}
  1249. %
  1250. \noindent What is the result of the above program?
  1251. {\if\edition\racketEd
  1252. As mentioned previously, the \LangInt{} language does not support
  1253. arbitrarily-large integers, but only $63$-bit integers, so we
  1254. interpret the arithmetic operations of \LangInt{} using fixnum arithmetic
  1255. in Racket.
  1256. Suppose
  1257. \[
  1258. n = 999999999999999999
  1259. \]
  1260. which indeed fits in $63$-bits. What happens when we run the
  1261. following program in our interpreter?
  1262. \begin{lstlisting}
  1263. (+ (+ (+ |$n$| |$n$|) (+ |$n$| |$n$|)) (+ (+ |$n$| |$n$|) (+ |$n$| |$n$|)))))
  1264. \end{lstlisting}
  1265. It produces an error:
  1266. \begin{lstlisting}
  1267. fx+: result is not a fixnum
  1268. \end{lstlisting}
  1269. We establish the convention that if running the definitional
  1270. interpreter on a program produces an error then the meaning of that
  1271. program is \emph{unspecified}\index{subject}{unspecified behavior}, unless the
  1272. error is a \code{trapped-error}. A compiler for the language is under
  1273. no obligations regarding programs with unspecified behavior; it does
  1274. not have to produce an executable, and if it does, that executable can
  1275. do anything. On the other hand, if the error is a
  1276. \code{trapped-error}, then the compiler must produce an executable and
  1277. it is required to report that an error occurred. To signal an error,
  1278. exit with a return code of \code{255}. The interpreters in chapters
  1279. \ref{ch:Rdyn} and \ref{ch:Rgrad} use
  1280. \code{trapped-error}.
  1281. \fi}
  1282. % TODO: how to deal with too-large integers in the Python interpreter?
  1283. %% This convention applies to the languages defined in this
  1284. %% book, as a way to simplify the student's task of implementing them,
  1285. %% but this convention is not applicable to all programming languages.
  1286. %%
  1287. Moving on to the last feature of the \LangInt{} language, the
  1288. \READOP{} operation prompts the user of the program for an integer.
  1289. Recall that program \eqref{eq:arith-prog} requests an integer input
  1290. and then subtracts \code{8}. So if we run
  1291. {\if\edition\racketEd
  1292. \begin{lstlisting}
  1293. (interp_Lint (Program '() ast1_1))
  1294. \end{lstlisting}
  1295. \fi}
  1296. {\if\edition\pythonEd
  1297. \begin{lstlisting}
  1298. interp_Lint(Module([Expr(Call(Name('print'), [ast1_1]))]))
  1299. \end{lstlisting}
  1300. \fi}
  1301. \noindent and if the input is \code{50}, the result is \code{42}.
  1302. We include the \READOP{} operation in \LangInt{} so a clever student
  1303. cannot implement a compiler for \LangInt{} that simply runs the interpreter
  1304. during compilation to obtain the output and then generates the trivial
  1305. code to produce the output.\footnote{Yes, a clever student did this in the
  1306. first instance of this course!}
  1307. The job of a compiler is to translate a program in one language into a
  1308. program in another language so that the output program behaves the
  1309. same way as the input program. This idea is depicted in the
  1310. following diagram. Suppose we have two languages, $\mathcal{L}_1$ and
  1311. $\mathcal{L}_2$, and a definitional interpreter for each language.
  1312. Given a compiler that translates from language $\mathcal{L}_1$ to
  1313. $\mathcal{L}_2$ and given any program $P_1$ in $\mathcal{L}_1$, the
  1314. compiler must translate it into some program $P_2$ such that
  1315. interpreting $P_1$ and $P_2$ on their respective interpreters with
  1316. same input $i$ yields the same output $o$.
  1317. \begin{equation} \label{eq:compile-correct}
  1318. \begin{tikzpicture}[baseline=(current bounding box.center)]
  1319. \node (p1) at (0, 0) {$P_1$};
  1320. \node (p2) at (3, 0) {$P_2$};
  1321. \node (o) at (3, -2.5) {$o$};
  1322. \path[->] (p1) edge [above] node {compile} (p2);
  1323. \path[->] (p2) edge [right] node {interp\_$\mathcal{L}_2$($i$)} (o);
  1324. \path[->] (p1) edge [left] node {interp\_$\mathcal{L}_1$($i$)} (o);
  1325. \end{tikzpicture}
  1326. \end{equation}
  1327. In the next section we see our first example of a compiler.
  1328. \section{Example Compiler: a Partial Evaluator}
  1329. \label{sec:partial-evaluation}
  1330. In this section we consider a compiler that translates \LangInt{}
  1331. programs into \LangInt{} programs that may be more efficient. The
  1332. compiler eagerly computes the parts of the program that do not depend
  1333. on any inputs, a process known as \emph{partial
  1334. evaluation}~\citep{Jones:1993uq}. \index{subject}{partial evaluation}
  1335. For example, given the following program
  1336. {\if\edition\racketEd
  1337. \begin{lstlisting}
  1338. (+ (read) (- (+ 5 3)))
  1339. \end{lstlisting}
  1340. \fi}
  1341. {\if\edition\pythonEd
  1342. \begin{lstlisting}
  1343. print(input_int() + -(5 + 3) )
  1344. \end{lstlisting}
  1345. \fi}
  1346. \noindent our compiler translates it into the program
  1347. {\if\edition\racketEd
  1348. \begin{lstlisting}
  1349. (+ (read) -8)
  1350. \end{lstlisting}
  1351. \fi}
  1352. {\if\edition\pythonEd
  1353. \begin{lstlisting}
  1354. print(input_int() + -8)
  1355. \end{lstlisting}
  1356. \fi}
  1357. Figure~\ref{fig:pe-arith} gives the code for a simple partial
  1358. evaluator for the \LangInt{} language. The output of the partial evaluator
  1359. is a program in \LangInt{}. In Figure~\ref{fig:pe-arith}, the structural
  1360. recursion over $\Exp$ is captured in the \code{pe\_exp} function
  1361. whereas the code for partially evaluating the negation and addition
  1362. operations is factored into two auxiliary functions:
  1363. \code{pe\_neg} and \code{pe\_add}. The input to these
  1364. functions is the output of partially evaluating the children.
  1365. The \code{pe\_neg} and \code{pe\_add} functions check whether their
  1366. arguments are integers and if they are, perform the appropriate
  1367. arithmetic. Otherwise, they create an AST node for the arithmetic
  1368. operation.
  1369. \begin{figure}[tp]
  1370. {\if\edition\racketEd
  1371. \begin{lstlisting}
  1372. (define (pe_neg r)
  1373. (match r
  1374. [(Int n) (Int (fx- 0 n))]
  1375. [else (Prim '- (list r))]))
  1376. (define (pe_add r1 r2)
  1377. (match* (r1 r2)
  1378. [((Int n1) (Int n2)) (Int (fx+ n1 n2))]
  1379. [(_ _) (Prim '+ (list r1 r2))]))
  1380. (define (pe_exp e)
  1381. (match e
  1382. [(Int n) (Int n)]
  1383. [(Prim 'read '()) (Prim 'read '())]
  1384. [(Prim '- (list e1)) (pe_neg (pe_exp e1))]
  1385. [(Prim '+ (list e1 e2)) (pe_add (pe_exp e1) (pe_exp e2))]))
  1386. (define (pe_Lint p)
  1387. (match p
  1388. [(Program '() e) (Program '() (pe_exp e))]))
  1389. \end{lstlisting}
  1390. \fi}
  1391. {\if\edition\pythonEd
  1392. \begin{lstlisting}
  1393. def pe_neg(r):
  1394. match r:
  1395. case Constant(n):
  1396. return Constant(-n)
  1397. case _:
  1398. return UnaryOp(USub(), r)
  1399. def pe_add(r1, r2):
  1400. match (r1, r2):
  1401. case (Constant(n1), Constant(n2)):
  1402. return Constant(n1 + n2)
  1403. case _:
  1404. return BinOp(r1, Add(), r2)
  1405. def pe_sub(r1, r2):
  1406. match (r1, r2):
  1407. case (Constant(n1), Constant(n2)):
  1408. return Constant(n1 - n2)
  1409. case _:
  1410. return BinOp(r1, Sub(), r2)
  1411. def pe_exp(e):
  1412. match e:
  1413. case BinOp(left, Add(), right):
  1414. return pe_add(pe_exp(left), pe_exp(right))
  1415. case BinOp(left, Sub(), right):
  1416. return pe_sub(pe_exp(left), pe_exp(right))
  1417. case UnaryOp(USub(), v):
  1418. return pe_neg(pe_exp(v))
  1419. case Constant(value):
  1420. return e
  1421. case Call(Name('input_int'), []):
  1422. return e
  1423. def pe_stmt(s):
  1424. match s:
  1425. case Expr(Call(Name('print'), [arg])):
  1426. return Expr(Call(Name('print'), [pe_exp(arg)]))
  1427. case Expr(value):
  1428. return Expr(pe_exp(value))
  1429. def pe_P_int(p):
  1430. match p:
  1431. case Module(body):
  1432. new_body = [pe_stmt(s) for s in body]
  1433. return Module(new_body)
  1434. \end{lstlisting}
  1435. \fi}
  1436. \caption{A partial evaluator for \LangInt{}.}
  1437. \label{fig:pe-arith}
  1438. \end{figure}
  1439. To gain some confidence that the partial evaluator is correct, we can
  1440. test whether it produces programs that get the same result as the
  1441. input programs. That is, we can test whether it satisfies Diagram
  1442. \ref{eq:compile-correct}.
  1443. %
  1444. {\if\edition\racketEd
  1445. The following code runs the partial evaluator on several examples and
  1446. tests the output program. The \texttt{parse-program} and
  1447. \texttt{assert} functions are defined in
  1448. Appendix~\ref{appendix:utilities}.\\
  1449. \begin{minipage}{1.0\textwidth}
  1450. \begin{lstlisting}
  1451. (define (test_pe p)
  1452. (assert "testing pe_Lint"
  1453. (equal? (interp_Lint p) (interp_Lint (pe_Lint p)))))
  1454. (test_pe (parse-program `(program () (+ 10 (- (+ 5 3))))))
  1455. (test_pe (parse-program `(program () (+ 1 (+ 3 1)))))
  1456. (test_pe (parse-program `(program () (- (+ 3 (- 5))))))
  1457. \end{lstlisting}
  1458. \end{minipage}
  1459. \fi}
  1460. % TODO: python version of testing the PE
  1461. \begin{exercise}\normalfont
  1462. Create three programs in the \LangInt{} language and test whether
  1463. partially evaluating them with \code{pe\_Lint} and then
  1464. interpreting them with \code{interp\_Lint} gives the same result
  1465. as directly interpreting them with \code{interp\_Lint}.
  1466. \end{exercise}
  1467. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  1468. \chapter{Integers and Variables}
  1469. \label{ch:Lvar}
  1470. This chapter is about compiling a subset of
  1471. \racket{Racket}\python{Python} to x86-64 assembly
  1472. code~\citep{Intel:2015aa}. The subset, named \LangVar{}, includes
  1473. integer arithmetic and local variables. We often refer to x86-64
  1474. simply as x86. The chapter begins with a description of the
  1475. \LangVar{} language (Section~\ref{sec:s0}) followed by an introduction
  1476. to x86 assembly (Section~\ref{sec:x86}). The x86 assembly language is
  1477. large so we discuss only the instructions needed for compiling
  1478. \LangVar{}. We introduce more x86 instructions in later chapters.
  1479. After introducing \LangVar{} and x86, we reflect on their differences
  1480. and come up with a plan to break down the translation from \LangVar{}
  1481. to x86 into a handful of steps (Section~\ref{sec:plan-s0-x86}). The
  1482. rest of the sections in this chapter give detailed hints regarding
  1483. each step. We hope to give enough hints that the well-prepared
  1484. reader, together with a few friends, can implement a compiler from
  1485. \LangVar{} to x86 in a short time. To give the reader a feeling for
  1486. the scale of this first compiler, the instructor solution for the
  1487. \LangVar{} compiler is approximately \racket{500}\python{300} lines of
  1488. code.
  1489. \section{The \LangVar{} Language}
  1490. \label{sec:s0}
  1491. \index{subject}{variable}
  1492. The \LangVar{} language extends the \LangInt{} language with
  1493. variables. The concrete syntax of the \LangVar{} language is defined
  1494. by the grammar in Figure~\ref{fig:Lvar-concrete-syntax} and the
  1495. abstract syntax is defined in Figure~\ref{fig:Lvar-syntax}. The
  1496. non-terminal \Var{} may be any \racket{Racket}\python{Python} identifier.
  1497. As in \LangInt{}, \READOP{} is a nullary operator, \key{-} is a unary operator, and
  1498. \key{+} is a binary operator. Similar to \LangInt{}, the abstract
  1499. syntax of \LangVar{} includes the \racket{\key{Program}
  1500. struct}\python{\key{Module} instance} to mark the top of the
  1501. program.
  1502. %% The $\itm{info}$
  1503. %% field of the \key{Program} structure contains an \emph{association
  1504. %% list} (a list of key-value pairs) that is used to communicate
  1505. %% auxiliary data from one compiler pass the next.
  1506. Despite the simplicity of the \LangVar{} language, it is rich enough to
  1507. exhibit several compilation techniques.
  1508. \newcommand{\LvarGrammarRacket}{
  1509. \begin{array}{rcl}
  1510. \Exp &::=& \Var \MID \CLET{\Var}{\Exp}{\Exp}
  1511. \end{array}
  1512. }
  1513. \newcommand{\LvarASTRacket}{
  1514. \begin{array}{rcl}
  1515. \Exp &::=& \VAR{\Var} \MID \LET{\Var}{\Exp}{\Exp}
  1516. \end{array}
  1517. }
  1518. \newcommand{\LvarGrammarPython}{
  1519. \begin{array}{rcl}
  1520. \Exp &::=& \Var{} \\
  1521. \Stmt &::=& \Var\mathop{\key{=}}\Exp
  1522. \end{array}
  1523. }
  1524. \newcommand{\LvarASTPython}{
  1525. \begin{array}{rcl}
  1526. \Exp{} &::=& \VAR{\Var{}} \\
  1527. \Stmt{} &::=& \ASSIGN{\VAR{\Var}}{\Exp}
  1528. \end{array}
  1529. }
  1530. \begin{figure}[tp]
  1531. \centering
  1532. \fbox{
  1533. \begin{minipage}{0.96\textwidth}
  1534. {\if\edition\racketEd
  1535. \[
  1536. \begin{array}{l}
  1537. \gray{\LintGrammarRacket{}} \\ \hline
  1538. \LvarGrammarRacket{} \\
  1539. \begin{array}{rcl}
  1540. \LangVarM{} &::=& \Exp
  1541. \end{array}
  1542. \end{array}
  1543. \]
  1544. \fi}
  1545. {\if\edition\pythonEd
  1546. \[
  1547. \begin{array}{l}
  1548. \gray{\LintGrammarPython} \\ \hline
  1549. \LvarGrammarPython \\
  1550. \begin{array}{rcl}
  1551. \LangVarM{} &::=& \Stmt^{*}
  1552. \end{array}
  1553. \end{array}
  1554. \]
  1555. \fi}
  1556. \end{minipage}
  1557. }
  1558. \caption{The concrete syntax of \LangVar{}.}
  1559. \label{fig:Lvar-concrete-syntax}
  1560. \end{figure}
  1561. \begin{figure}[tp]
  1562. \centering
  1563. \fbox{
  1564. \begin{minipage}{0.96\textwidth}
  1565. {\if\edition\racketEd
  1566. \[
  1567. \begin{array}{l}
  1568. \gray{\LintASTRacket{}} \\ \hline
  1569. \LvarASTRacket \\
  1570. \begin{array}{rcl}
  1571. \LangVarM{} &::=& \PROGRAM{\code{'()}}{\Exp}
  1572. \end{array}
  1573. \end{array}
  1574. \]
  1575. \fi}
  1576. {\if\edition\pythonEd
  1577. \[
  1578. \begin{array}{l}
  1579. \gray{\LintASTPython}\\ \hline
  1580. \LvarASTPython \\
  1581. \begin{array}{rcl}
  1582. \LangVarM{} &::=& \PROGRAM{}{\Stmt^{*}}
  1583. \end{array}
  1584. \end{array}
  1585. \]
  1586. \fi}
  1587. \end{minipage}
  1588. }
  1589. \caption{The abstract syntax of \LangVar{}.}
  1590. \label{fig:Lvar-syntax}
  1591. \end{figure}
  1592. {\if\edition\racketEd
  1593. Let us dive further into the syntax and semantics of the \LangVar{}
  1594. language. The \key{let} feature defines a variable for use within its
  1595. body and initializes the variable with the value of an expression.
  1596. The abstract syntax for \key{let} is defined in
  1597. Figure~\ref{fig:Lvar-syntax}. The concrete syntax for \key{let} is
  1598. \begin{lstlisting}
  1599. (let ([|$\itm{var}$| |$\itm{exp}$|]) |$\itm{exp}$|)
  1600. \end{lstlisting}
  1601. For example, the following program initializes \code{x} to $32$ and then
  1602. evaluates the body \code{(+ 10 x)}, producing $42$.
  1603. \begin{lstlisting}
  1604. (let ([x (+ 12 20)]) (+ 10 x))
  1605. \end{lstlisting}
  1606. \fi}
  1607. %
  1608. {\if\edition\pythonEd
  1609. %
  1610. The \LangVar{} language includes assignment statements, which define a
  1611. variable for use in later statements and initializes the variable with
  1612. the value of an expression. The abstract syntax for assignment is
  1613. defined in Figure~\ref{fig:Lvar-syntax}. The concrete syntax for
  1614. assignment is
  1615. \begin{lstlisting}
  1616. |$\itm{var}$| = |$\itm{exp}$|
  1617. \end{lstlisting}
  1618. For example, the following program initializes the variable \code{x}
  1619. to $32$ and then prints the result of \code{10 + x}, producing $42$.
  1620. \begin{lstlisting}
  1621. x = 12 + 20
  1622. print(10 + x)
  1623. \end{lstlisting}
  1624. \fi}
  1625. {\if\edition\racketEd
  1626. %
  1627. When there are multiple \key{let}'s for the same variable, the closest
  1628. enclosing \key{let} is used. That is, variable definitions overshadow
  1629. prior definitions. Consider the following program with two \key{let}'s
  1630. that define variables named \code{x}. Can you figure out the result?
  1631. \begin{lstlisting}
  1632. (let ([x 32]) (+ (let ([x 10]) x) x))
  1633. \end{lstlisting}
  1634. For the purposes of depicting which variable uses correspond to which
  1635. definitions, the following shows the \code{x}'s annotated with
  1636. subscripts to distinguish them. Double check that your answer for the
  1637. above is the same as your answer for this annotated version of the
  1638. program.
  1639. \begin{lstlisting}
  1640. (let ([x|$_1$| 32]) (+ (let ([x|$_2$| 10]) x|$_2$|) x|$_1$|))
  1641. \end{lstlisting}
  1642. The initializing expression is always evaluated before the body of the
  1643. \key{let}, so in the following, the \key{read} for \code{x} is
  1644. performed before the \key{read} for \code{y}. Given the input
  1645. $52$ then $10$, the following produces $42$ (not $-42$).
  1646. \begin{lstlisting}
  1647. (let ([x (read)]) (let ([y (read)]) (+ x (- y))))
  1648. \end{lstlisting}
  1649. \fi}
  1650. \subsection{Extensible Interpreters via Method Overriding}
  1651. \label{sec:extensible-interp}
  1652. To prepare for discussing the interpreter of \LangVar{}, we explain
  1653. why we implement it in an object-oriented style. Throughout this book
  1654. we define many interpreters, one for each of language that we
  1655. study. Because each language builds on the prior one, there is a lot
  1656. of commonality between these interpreters. We want to write down the
  1657. common parts just once instead of many times. A naive approach would
  1658. be for the interpreter of \LangVar{} to handle the
  1659. \racket{cases for variables and \code{let}}
  1660. \python{case for variables}
  1661. but dispatch to \LangInt{}
  1662. for the rest of the cases. The following code sketches this idea. (We
  1663. explain the \code{env} parameter soon, in
  1664. Section~\ref{sec:interp-Lvar}.)
  1665. \begin{center}
  1666. {\if\edition\racketEd
  1667. \begin{minipage}{0.45\textwidth}
  1668. \begin{lstlisting}
  1669. (define ((interp_Lint env) e)
  1670. (match e
  1671. [(Prim '- (list e1))
  1672. (fx- 0 ((interp_Lint env) e1))]
  1673. ...))
  1674. \end{lstlisting}
  1675. \end{minipage}
  1676. \begin{minipage}{0.45\textwidth}
  1677. \begin{lstlisting}
  1678. (define ((interp_Lvar env) e)
  1679. (match e
  1680. [(Var x)
  1681. (dict-ref env x)]
  1682. [(Let x e body)
  1683. (define v ((interp_exp env) e))
  1684. (define env^ (dict-set env x v))
  1685. ((interp_exp env^) body)]
  1686. [else ((interp_Lint env) e)]))
  1687. \end{lstlisting}
  1688. \end{minipage}
  1689. \fi}
  1690. {\if\edition\pythonEd
  1691. \begin{minipage}{0.45\textwidth}
  1692. \begin{lstlisting}
  1693. def interp_Lint(e, env):
  1694. match e:
  1695. case UnaryOp(USub(), e1):
  1696. return - interp_Lint(e1, env)
  1697. ...
  1698. \end{lstlisting}
  1699. \end{minipage}
  1700. \begin{minipage}{0.45\textwidth}
  1701. \begin{lstlisting}
  1702. def interp_Lvar(e, env):
  1703. match e:
  1704. case Name(id):
  1705. return env[id]
  1706. case _:
  1707. return interp_Lint(e, env)
  1708. \end{lstlisting}
  1709. \end{minipage}
  1710. \fi}
  1711. \end{center}
  1712. The problem with this approach is that it does not handle situations
  1713. in which an \LangVar{} feature, such as a variable, is nested inside
  1714. an \LangInt{} feature, like the \code{-} operator, as in the following
  1715. program.
  1716. %
  1717. {\if\edition\racketEd
  1718. \begin{lstlisting}
  1719. (Let 'y (Int 10) (Prim '- (list (Var 'y))))
  1720. \end{lstlisting}
  1721. \fi}
  1722. {\if\edition\pythonEd
  1723. \begin{lstlisting}
  1724. y = 10
  1725. print(-y)
  1726. \end{lstlisting}
  1727. \fi}
  1728. %
  1729. \noindent If we invoke \code{interp\_Lvar} on this program, it
  1730. dispatches to \code{interp\_Lint} to handle the \code{-} operator, but
  1731. then it recursively calls \code{interp\_Lint} again on its argument.
  1732. But there is no case for \code{Var} in \code{interp\_Lint} so we get
  1733. an error!
  1734. To make our interpreters extensible we need something called
  1735. \emph{open recursion}\index{subject}{open recursion}, where the tying of the
  1736. recursive knot is delayed to when the functions are
  1737. composed. Object-oriented languages provide open recursion via
  1738. method overriding\index{subject}{method overriding}. The
  1739. following code uses method overriding to interpret \LangInt{} and
  1740. \LangVar{} using
  1741. %
  1742. \racket{the
  1743. \href{https://docs.racket-lang.org/guide/classes.html}{\code{class}}
  1744. \index{subject}{class} feature of Racket}
  1745. %
  1746. \python{a Python \code{class} definition}.
  1747. %
  1748. We define one class for each language and define a method for
  1749. interpreting expressions inside each class. The class for \LangVar{}
  1750. inherits from the class for \LangInt{} and the method
  1751. \code{interp\_exp} in \LangVar{} overrides the \code{interp\_exp} in
  1752. \LangInt{}. Note that the default case of \code{interp\_exp} in
  1753. \LangVar{} uses \code{super} to invoke \code{interp\_exp}, and because
  1754. \LangVar{} inherits from \LangInt{}, that dispatches to the
  1755. \code{interp\_exp} in \LangInt{}.
  1756. \begin{center}
  1757. \hspace{-20pt}
  1758. {\if\edition\racketEd
  1759. \begin{minipage}{0.45\textwidth}
  1760. \begin{lstlisting}
  1761. (define interp_Lint_class
  1762. (class object%
  1763. (define/public ((interp_exp env) e)
  1764. (match e
  1765. [(Prim '- (list e))
  1766. (fx- 0 ((interp_exp env) e))]
  1767. ...))
  1768. ...))
  1769. \end{lstlisting}
  1770. \end{minipage}
  1771. \begin{minipage}{0.45\textwidth}
  1772. \begin{lstlisting}
  1773. (define interp_Lvar_class
  1774. (class interp_Lint_class
  1775. (define/override ((interp_exp env) e)
  1776. (match e
  1777. [(Var x)
  1778. (dict-ref env x)]
  1779. [(Let x e body)
  1780. (define v ((interp_exp env) e))
  1781. (define env^ (dict-set env x v))
  1782. ((interp_exp env^) body)]
  1783. [else
  1784. (super (interp_exp env) e)]))
  1785. ...
  1786. ))
  1787. \end{lstlisting}
  1788. \end{minipage}
  1789. \fi}
  1790. {\if\edition\pythonEd
  1791. \begin{minipage}{0.45\textwidth}
  1792. \begin{lstlisting}
  1793. class InterpLint:
  1794. def interp_exp(e):
  1795. match e:
  1796. case UnaryOp(USub(), e1):
  1797. return -self.interp_exp(e1)
  1798. ...
  1799. ...
  1800. \end{lstlisting}
  1801. \end{minipage}
  1802. \begin{minipage}{0.45\textwidth}
  1803. \begin{lstlisting}
  1804. def InterpLvar(InterpLint):
  1805. def interp_exp(e):
  1806. match e:
  1807. case Name(id):
  1808. return env[id]
  1809. case _:
  1810. return super().interp_exp(e)
  1811. ...
  1812. \end{lstlisting}
  1813. \end{minipage}
  1814. \fi}
  1815. \end{center}
  1816. Getting back to the troublesome example, repeated here:
  1817. {\if\edition\racketEd
  1818. \begin{lstlisting}
  1819. (Let 'y (Int 10) (Prim '- (Var 'y)))
  1820. \end{lstlisting}
  1821. \fi}
  1822. {\if\edition\pythonEd
  1823. \begin{lstlisting}
  1824. y = 10
  1825. print(-y)
  1826. \end{lstlisting}
  1827. \fi}
  1828. \noindent We can invoke the \code{interp\_exp} method for \LangVar{}
  1829. \racket{on this expression,}
  1830. \python{on the \code{-y} expression,}
  1831. %
  1832. call it \code{e0}, by creating an object of the \LangVar{} class
  1833. and calling the \code{interp\_exp} method.
  1834. {\if\edition\racketEd
  1835. \begin{lstlisting}
  1836. (send (new interp_Lvar_class) interp_exp e0)
  1837. \end{lstlisting}
  1838. \fi}
  1839. {\if\edition\pythonEd
  1840. \begin{lstlisting}
  1841. InterpLvar().interp_exp(e0)
  1842. \end{lstlisting}
  1843. \fi}
  1844. \noindent To process the \code{-} operator, the default case of
  1845. \code{interp\_exp} in \LangVar{} dispatches to the \code{interp\_exp}
  1846. method in \LangInt{}. But then for the recursive method call, it
  1847. dispatches back to \code{interp\_exp} in \LangVar{}, where the
  1848. \code{Var} node is handled correctly. Thus, method overriding gives us
  1849. the open recursion that we need to implement our interpreters in an
  1850. extensible way.
  1851. \subsection{Definitional Interpreter for \LangVar{}}
  1852. \label{sec:interp-Lvar}
  1853. {\if\edition\racketEd
  1854. \begin{figure}[tp]
  1855. %\begin{wrapfigure}[26]{r}[0.75in]{0.55\textwidth}
  1856. \small
  1857. \begin{tcolorbox}[title=Association Lists as Dictionaries]
  1858. An \emph{association list} (alist) is a list of key-value pairs.
  1859. For example, we can map people to their ages with an alist.
  1860. \index{subject}{alist}\index{subject}{association list}
  1861. \begin{lstlisting}[basicstyle=\ttfamily]
  1862. (define ages '((jane . 25) (sam . 24) (kate . 45)))
  1863. \end{lstlisting}
  1864. The \emph{dictionary} interface is for mapping keys to values.
  1865. Every alist implements this interface. \index{subject}{dictionary} The package
  1866. \href{https://docs.racket-lang.org/reference/dicts.html}{\code{racket/dict}}
  1867. provides many functions for working with dictionaries. Here
  1868. are a few of them:
  1869. \begin{description}
  1870. \item[$\LP\key{dict-ref}\,\itm{dict}\,\itm{key}\RP$]
  1871. returns the value associated with the given $\itm{key}$.
  1872. \item[$\LP\key{dict-set}\,\itm{dict}\,\itm{key}\,\itm{val}\RP$]
  1873. returns a new dictionary that maps $\itm{key}$ to $\itm{val}$
  1874. but otherwise is the same as $\itm{dict}$.
  1875. \item[$\LP\code{in-dict}\,\itm{dict}\RP$] returns the
  1876. \href{https://docs.racket-lang.org/reference/sequences.html}{sequence}
  1877. of keys and values in $\itm{dict}$. For example, the following
  1878. creates a new alist in which the ages are incremented.
  1879. \end{description}
  1880. \vspace{-10pt}
  1881. \begin{lstlisting}[basicstyle=\ttfamily]
  1882. (for/list ([(k v) (in-dict ages)])
  1883. (cons k (add1 v)))
  1884. \end{lstlisting}
  1885. \end{tcolorbox}
  1886. %\end{wrapfigure}
  1887. \caption{Association lists implement the dictionary interface.}
  1888. \label{fig:alist}
  1889. \end{figure}
  1890. \fi}
  1891. Having justified the use of classes and methods to implement
  1892. interpreters, we revisit the definitional interpreter for \LangInt{}
  1893. in Figure~\ref{fig:interp-Lint-class} and then extend it to create an
  1894. interpreter for \LangVar{} in Figure~\ref{fig:interp-Lvar}. The
  1895. interpreter for \LangVar{} adds two new \key{match} cases for
  1896. variables and \racket{\key{let}}\python{assignment}. For
  1897. \racket{\key{let}}\python{assignment} we need a way to communicate the
  1898. value bound to a variable to all the uses of the variable. To
  1899. accomplish this, we maintain a mapping from variables to values
  1900. called an \emph{environment}\index{subject}{environment}.
  1901. %
  1902. We use%
  1903. %
  1904. \racket{an association list (alist)}
  1905. %
  1906. \python{a Python \href{https://docs.python.org/3.10/library/stdtypes.html\#mapping-types-dict}{dictionary}}
  1907. %
  1908. to represent the environment.
  1909. %
  1910. \racket{Figure~\ref{fig:alist} gives a brief introduction to alists
  1911. and the \code{racket/dict} package.}
  1912. %
  1913. The \code{interp\_exp} function takes the current environment,
  1914. \code{env}, as an extra parameter. When the interpreter encounters a
  1915. variable, it looks up the corresponding value in the dictionary.
  1916. %
  1917. \racket{When the interpreter encounters a \key{Let}, it evaluates the
  1918. initializing expression, extends the environment with the result
  1919. value bound to the variable, using \code{dict-set}, then evaluates
  1920. the body of the \key{Let}.}
  1921. %
  1922. \python{When the interpreter encounters an assignment, it evaluates
  1923. the initializing expression and then associates the resulting value
  1924. with the variable in the environment.}
  1925. \begin{figure}[tp]
  1926. {\if\edition\racketEd
  1927. \begin{lstlisting}
  1928. (define interp_Lint_class
  1929. (class object%
  1930. (super-new)
  1931. (define/public ((interp_exp env) e)
  1932. (match e
  1933. [(Int n) n]
  1934. [(Prim 'read '())
  1935. (define r (read))
  1936. (cond [(fixnum? r) r]
  1937. [else (error 'interp_exp "expected an integer" r)])]
  1938. [(Prim '- (list e)) (fx- 0 ((interp_exp env) e))]
  1939. [(Prim '+ (list e1 e2))
  1940. (fx+ ((interp_exp env) e1) ((interp_exp env) e2))]))
  1941. (define/public (interp_program p)
  1942. (match p
  1943. [(Program '() e) ((interp_exp '()) e)]))
  1944. ))
  1945. \end{lstlisting}
  1946. \fi}
  1947. {\if\edition\pythonEd
  1948. \begin{lstlisting}
  1949. class InterpLint:
  1950. def interp_exp(self, e, env):
  1951. match e:
  1952. case BinOp(left, Add(), right):
  1953. return self.interp_exp(left, env) + self.interp_exp(right, env)
  1954. case UnaryOp(USub(), v):
  1955. return - self.interp_exp(v, env)
  1956. case Constant(value):
  1957. return value
  1958. case Call(Name('input_int'), []):
  1959. return int(input())
  1960. def interp_stmts(self, ss, env):
  1961. if len(ss) == 0:
  1962. return
  1963. match ss[0]:
  1964. case Expr(Call(Name('print'), [arg])):
  1965. print(self.interp_exp(arg, env), end='')
  1966. return self.interp_stmts(ss[1:], env)
  1967. case Expr(value):
  1968. self.interp_exp(value, env)
  1969. return self.interp_stmts(ss[1:], env)
  1970. def interp(self, p):
  1971. match p:
  1972. case Module(body):
  1973. self.interp_stmts(body, {})
  1974. def interp_Lint(p):
  1975. return InterpLint().interp(p)
  1976. \end{lstlisting}
  1977. \fi}
  1978. \caption{Interpreter for \LangInt{} as a class.}
  1979. \label{fig:interp-Lint-class}
  1980. \end{figure}
  1981. \begin{figure}[tp]
  1982. {\if\edition\racketEd
  1983. \begin{lstlisting}
  1984. (define interp_Lvar_class
  1985. (class interp_Lint_class
  1986. (super-new)
  1987. (define/override ((interp_exp env) e)
  1988. (match e
  1989. [(Var x) (dict-ref env x)]
  1990. [(Let x e body)
  1991. (define new-env (dict-set env x ((interp_exp env) e)))
  1992. ((interp_exp new-env) body)]
  1993. [else ((super interp-exp env) e)]))
  1994. ))
  1995. (define (interp_Lvar p)
  1996. (send (new interp_Lvar_class) interp_program p))
  1997. \end{lstlisting}
  1998. \fi}
  1999. {\if\edition\pythonEd
  2000. \begin{lstlisting}
  2001. class InterpLvar(InterpLint):
  2002. def interp_exp(self, e, env):
  2003. match e:
  2004. case Name(id):
  2005. return env[id]
  2006. case _:
  2007. return super().interp_exp(e, env)
  2008. def interp_stmts(self, ss, env):
  2009. if len(ss) == 0:
  2010. return
  2011. match ss[0]:
  2012. case Assign([lhs], value):
  2013. env[lhs.id] = self.interp_exp(value, env)
  2014. return self.interp_stmts(ss[1:], env)
  2015. case _:
  2016. return super().interp_stmts(ss, env)
  2017. def interp_Lvar(p):
  2018. return InterpLvar().interp(p)
  2019. \end{lstlisting}
  2020. \fi}
  2021. \caption{Interpreter for the \LangVar{} language.}
  2022. \label{fig:interp-Lvar}
  2023. \end{figure}
  2024. The goal for this chapter is to implement a compiler that translates
  2025. any program $P_1$ written in the \LangVar{} language into an x86 assembly
  2026. program $P_2$ such that $P_2$ exhibits the same behavior when run on a
  2027. computer as the $P_1$ program interpreted by \code{interp\_Lvar}.
  2028. That is, they output the same integer $n$. We depict this correctness
  2029. criteria in the following diagram.
  2030. \[
  2031. \begin{tikzpicture}[baseline=(current bounding box.center)]
  2032. \node (p1) at (0, 0) {$P_1$};
  2033. \node (p2) at (4, 0) {$P_2$};
  2034. \node (o) at (4, -2) {$n$};
  2035. \path[->] (p1) edge [above] node {\footnotesize compile} (p2);
  2036. \path[->] (p1) edge [left] node {\footnotesize\code{interp\_Lvar}} (o);
  2037. \path[->] (p2) edge [right] node {\footnotesize\code{interp\_x86int}} (o);
  2038. \end{tikzpicture}
  2039. \]
  2040. In the next section we introduce the \LangXInt{} subset of x86 that
  2041. suffices for compiling \LangVar{}.
  2042. \section{The \LangXInt{} Assembly Language}
  2043. \label{sec:x86}
  2044. \index{subject}{x86}
  2045. Figure~\ref{fig:x86-int-concrete} defines the concrete syntax for
  2046. \LangXInt{}. We use the AT\&T syntax expected by the GNU
  2047. assembler.
  2048. %
  2049. A program begins with a \code{main} label followed by a sequence of
  2050. instructions. The \key{globl} directive says that the \key{main}
  2051. procedure is externally visible, which is necessary so that the
  2052. operating system can call it.
  2053. %
  2054. An x86 program is stored in the computer's memory. For our purposes,
  2055. the computer's memory is a mapping of 64-bit addresses to 64-bit
  2056. values. The computer has a \emph{program counter} (PC)\index{subject}{program
  2057. counter}\index{subject}{PC} stored in the \code{rip} register that points to
  2058. the address of the next instruction to be executed. For most
  2059. instructions, the program counter is incremented after the instruction
  2060. is executed, so it points to the next instruction in memory. Most x86
  2061. instructions take two operands, where each operand is either an
  2062. integer constant (called an \emph{immediate value}\index{subject}{immediate
  2063. value}), a \emph{register}\index{subject}{register}, or a memory location.
  2064. \newcommand{\allregisters}{\key{rsp} \MID \key{rbp} \MID \key{rax} \MID \key{rbx} \MID \key{rcx}
  2065. \MID \key{rdx} \MID \key{rsi} \MID \key{rdi} \MID \\
  2066. && \key{r8} \MID \key{r9} \MID \key{r10}
  2067. \MID \key{r11} \MID \key{r12} \MID \key{r13}
  2068. \MID \key{r14} \MID \key{r15}}
  2069. \begin{figure}[tp]
  2070. \fbox{
  2071. \begin{minipage}{0.96\textwidth}
  2072. {\if\edition\racketEd
  2073. \[
  2074. \begin{array}{lcl}
  2075. \Reg &::=& \allregisters{} \\
  2076. \Arg &::=& \key{\$}\Int \MID \key{\%}\Reg \MID \Int\key{(}\key{\%}\Reg\key{)}\\
  2077. \Instr &::=& \key{addq} \; \Arg\key{,} \Arg \MID
  2078. \key{subq} \; \Arg\key{,} \Arg \MID
  2079. \key{negq} \; \Arg \MID \key{movq} \; \Arg\key{,} \Arg \MID \\
  2080. && \key{callq} \; \mathit{label} \MID
  2081. \key{pushq}\;\Arg \MID \key{popq}\;\Arg \MID \key{retq} \MID \key{jmp}\,\itm{label} \\
  2082. && \itm{label}\key{:}\; \Instr \\
  2083. \LangXIntM{} &::= & \key{.globl main}\\
  2084. & & \key{main:} \; \Instr\ldots
  2085. \end{array}
  2086. \]
  2087. \fi}
  2088. {\if\edition\pythonEd
  2089. \[
  2090. \begin{array}{lcl}
  2091. \Reg &::=& \allregisters{} \\
  2092. \Arg &::=& \key{\$}\Int \MID \key{\%}\Reg \MID \Int\key{(}\key{\%}\Reg\key{)}\\
  2093. \Instr &::=& \key{addq} \; \Arg\key{,} \Arg \MID
  2094. \key{subq} \; \Arg\key{,} \Arg \MID
  2095. \key{negq} \; \Arg \MID \key{movq} \; \Arg\key{,} \Arg \MID \\
  2096. && \key{callq} \; \mathit{label} \MID
  2097. \key{pushq}\;\Arg \MID \key{popq}\;\Arg \MID \key{retq} \\
  2098. \LangXIntM{} &::= & \key{.globl main}\\
  2099. & & \key{main:} \; \Instr^{*}
  2100. \end{array}
  2101. \]
  2102. \fi}
  2103. \end{minipage}
  2104. }
  2105. \caption{The syntax of the \LangXInt{} assembly language (AT\&T syntax).}
  2106. \label{fig:x86-int-concrete}
  2107. \end{figure}
  2108. A register is a special kind of variable that holds a 64-bit
  2109. value. There are 16 general-purpose registers in the computer and
  2110. their names are given in Figure~\ref{fig:x86-int-concrete}. A register
  2111. is written with a \key{\%} followed by the register name, such as
  2112. \key{\%rax}.
  2113. An immediate value is written using the notation \key{\$}$n$ where $n$
  2114. is an integer.
  2115. %
  2116. %
  2117. An access to memory is specified using the syntax $n(\key{\%}r)$,
  2118. which obtains the address stored in register $r$ and then adds $n$
  2119. bytes to the address. The resulting address is used to load or store
  2120. to memory depending on whether it occurs as a source or destination
  2121. argument of an instruction.
  2122. An arithmetic instruction such as $\key{addq}\,s\key{,}\,d$ reads from the
  2123. source $s$ and destination $d$, applies the arithmetic operation, then
  2124. writes the result back to the destination $d$. \index{subject}{instruction}
  2125. %
  2126. The move instruction $\key{movq}\,s\key{,}\,d$ reads from $s$ and
  2127. stores the result in $d$.
  2128. %
  2129. The $\key{callq}\,\itm{label}$ instruction jumps to the procedure
  2130. specified by the label and $\key{retq}$ returns from a procedure to
  2131. its caller.
  2132. %
  2133. We discuss procedure calls in more detail later in this chapter and in
  2134. Chapter~\ref{ch:Rfun}.
  2135. %
  2136. The last letter \key{q} indicates that these instructions operate on
  2137. quadwords, i.e., 64-bit values.
  2138. %
  2139. \racket{The instruction $\key{jmp}\,\itm{label}$ updates the program
  2140. counter to the address of the instruction after the specified
  2141. label.}
  2142. Appendix~\ref{sec:x86-quick-reference} contains a quick-reference for
  2143. all of the x86 instructions used in this book.
  2144. Figure~\ref{fig:p0-x86} depicts an x86 program that computes
  2145. \racket{\code{(+ 10 32)}}\python{10 + 32}. The instruction
  2146. \lstinline{movq $10, %rax}
  2147. puts $10$ into register \key{rax} and then \lstinline{addq $32, %rax}
  2148. adds $32$ to the $10$ in \key{rax} and
  2149. puts the result, $42$, back into \key{rax}.
  2150. %
  2151. The last instruction, \key{retq}, finishes the \key{main} function by
  2152. returning the integer in \key{rax} to the operating system. The
  2153. operating system interprets this integer as the program's exit
  2154. code. By convention, an exit code of 0 indicates that a program
  2155. completed successfully, and all other exit codes indicate various
  2156. errors.
  2157. %
  2158. \racket{Nevertheless, in this book we return the result of the program
  2159. as the exit code.}
  2160. \begin{figure}[tbp]
  2161. \begin{lstlisting}
  2162. .globl main
  2163. main:
  2164. movq $10, %rax
  2165. addq $32, %rax
  2166. retq
  2167. \end{lstlisting}
  2168. \caption{An x86 program that computes
  2169. \racket{\code{(+ 10 32)}}\python{10 + 32}.}
  2170. \label{fig:p0-x86}
  2171. \end{figure}
  2172. We exhibit the use of memory for storing intermediate results in the
  2173. next example. Figure~\ref{fig:p1-x86} lists an x86 program that
  2174. computes \racket{\code{(+ 52 (- 10))}}\python{52 + -10}. This program
  2175. uses a region of memory called the \emph{procedure call stack} (or
  2176. \emph{stack} for
  2177. short). \index{subject}{stack}\index{subject}{procedure call stack}
  2178. The stack consists of a separate \emph{frame}\index{subject}{frame}
  2179. for each procedure call. The memory layout for an individual frame is
  2180. shown in Figure~\ref{fig:frame}. The register \key{rsp} is called the
  2181. \emph{stack pointer}\index{subject}{stack pointer} and points to the
  2182. item at the top of the stack. The stack grows downward in memory, so
  2183. we increase the size of the stack by subtracting from the stack
  2184. pointer. In the context of a procedure call, the \emph{return
  2185. address}\index{subject}{return address} is the instruction after the
  2186. call instruction on the caller side. The function call instruction,
  2187. \code{callq}, pushes the return address onto the stack prior to
  2188. jumping to the procedure. The register \key{rbp} is the \emph{base
  2189. pointer}\index{subject}{base pointer} and is used to access variables
  2190. that are stored in the frame of the current procedure call. The base
  2191. pointer of the caller is store after the return address. In
  2192. Figure~\ref{fig:frame} we number the variables from $1$ to
  2193. $n$. Variable $1$ is stored at address $-8\key{(\%rbp)}$, variable $2$
  2194. at $-16\key{(\%rbp)}$, etc.
  2195. \begin{figure}[tbp]
  2196. {\if\edition\racketEd
  2197. \begin{lstlisting}
  2198. start:
  2199. movq $10, -8(%rbp)
  2200. negq -8(%rbp)
  2201. movq -8(%rbp), %rax
  2202. addq $52, %rax
  2203. jmp conclusion
  2204. .globl main
  2205. main:
  2206. pushq %rbp
  2207. movq %rsp, %rbp
  2208. subq $16, %rsp
  2209. jmp start
  2210. conclusion:
  2211. addq $16, %rsp
  2212. popq %rbp
  2213. retq
  2214. \end{lstlisting}
  2215. \fi}
  2216. {\if\edition\pythonEd
  2217. \begin{lstlisting}
  2218. .globl main
  2219. main:
  2220. pushq %rbp
  2221. movq %rsp, %rbp
  2222. subq $16, %rsp
  2223. movq $10, -8(%rbp)
  2224. negq -8(%rbp)
  2225. movq -8(%rbp), %rax
  2226. addq $52, %rax
  2227. addq $16, %rsp
  2228. popq %rbp
  2229. retq
  2230. \end{lstlisting}
  2231. \fi}
  2232. \caption{An x86 program that computes
  2233. \racket{\code{(+ 52 (- 10))}}\python{52 + -10}.}
  2234. \label{fig:p1-x86}
  2235. \end{figure}
  2236. \begin{figure}[tbp]
  2237. \centering
  2238. \begin{tabular}{|r|l|} \hline
  2239. Position & Contents \\ \hline
  2240. 8(\key{\%rbp}) & return address \\
  2241. 0(\key{\%rbp}) & old \key{rbp} \\
  2242. -8(\key{\%rbp}) & variable $1$ \\
  2243. -16(\key{\%rbp}) & variable $2$ \\
  2244. \ldots & \ldots \\
  2245. 0(\key{\%rsp}) & variable $n$\\ \hline
  2246. \end{tabular}
  2247. \caption{Memory layout of a frame.}
  2248. \label{fig:frame}
  2249. \end{figure}
  2250. Getting back to the program in Figure~\ref{fig:p1-x86}, consider how
  2251. control is transferred from the operating system to the \code{main}
  2252. function. The operating system issues a \code{callq main} instruction
  2253. which pushes its return address on the stack and then jumps to
  2254. \code{main}. In x86-64, the stack pointer \code{rsp} must be divisible
  2255. by 16 bytes prior to the execution of any \code{callq} instruction, so
  2256. when control arrives at \code{main}, the \code{rsp} is 8 bytes out of
  2257. alignment (because the \code{callq} pushed the return address). The
  2258. first three instructions are the typical \emph{prelude}\index{subject}{prelude}
  2259. for a procedure. The instruction \code{pushq \%rbp} first subtracts $8$ from the stack
  2260. pointer and then saves the base pointer of the caller at address
  2261. \code{rsp} on the stack. The next instruction \code{movq \%rsp, \%rbp} sets the
  2262. base pointer to the current stack pointer, which is pointing at the location
  2263. of the old base pointer. The instruction \code{subq \$16, \%rsp} moves the stack
  2264. pointer down to make enough room for storing variables. This program
  2265. needs one variable ($8$ bytes) but we round up to 16 bytes so that
  2266. \code{rsp} is 16-byte aligned and we're ready to make calls to other
  2267. functions.
  2268. \racket{The last instruction of the prelude is \code{jmp start},
  2269. which transfers control to the instructions that were generated from
  2270. the expression \racket{\code{(+ 52 (- 10))}}\python{52 + -10}.}
  2271. \racket{The first instruction under the \code{start} label is}
  2272. %
  2273. \python{The first instruction after the prelude is}
  2274. %
  2275. \code{movq \$10, -8(\%rbp)}, which stores $10$ in variable $1$.
  2276. %
  2277. The instruction \code{negq -8(\%rbp)} changes variable $1$ to $-10$.
  2278. %
  2279. The next instruction moves the $-10$ from variable $1$ into the
  2280. \code{rax} register. Finally, \code{addq \$52, \%rax} adds $52$ to
  2281. the value in \code{rax}, updating its contents to $42$.
  2282. \racket{The three instructions under the label \code{conclusion} are the
  2283. typical \emph{conclusion}\index{subject}{conclusion} of a procedure.}
  2284. %
  2285. \python{The \emph{conclusion}\index{subject}{conclusion} of the
  2286. \code{main} function consists of the last three instructions.}
  2287. %
  2288. The first two restore the \code{rsp} and \code{rbp} registers to the
  2289. state they were in at the beginning of the procedure. In particular,
  2290. \key{addq \$16, \%rsp} moves the stack pointer back to point at the
  2291. old base pointer. Then \key{popq \%rbp} returns the old base pointer
  2292. to \key{rbp} and adds $8$ to the stack pointer. The last instruction,
  2293. \key{retq}, jumps back to the procedure that called this one and adds
  2294. $8$ to the stack pointer.
  2295. Our compiler needs a convenient representation for manipulating x86
  2296. programs, so we define an abstract syntax for x86 in
  2297. Figure~\ref{fig:x86-int-ast}. We refer to this language as
  2298. \LangXInt{}.
  2299. %
  2300. {\if\edition\pythonEd%
  2301. The main difference compared to the concrete syntax of \LangXInt{}
  2302. (Figure~\ref{fig:x86-int-concrete}) is that labels, instruction
  2303. names, and register names are explicitly represented by strings.
  2304. \fi} %
  2305. {\if\edition\racketEd
  2306. The main difference compared to the concrete syntax of \LangXInt{}
  2307. (Figure~\ref{fig:x86-int-concrete}) is that labels are not allowed in
  2308. front of every instruction. Instead instructions are grouped into
  2309. \emph{blocks}\index{subject}{block} with a
  2310. label associated with every block, which is why the \key{X86Program}
  2311. struct includes an alist mapping labels to blocks. The reason for this
  2312. organization becomes apparent in Chapter~\ref{ch:Lif} when we
  2313. introduce conditional branching. The \code{Block} structure includes
  2314. an $\itm{info}$ field that is not needed for this chapter, but becomes
  2315. useful in Chapter~\ref{ch:register-allocation-Lvar}. For now, the
  2316. $\itm{info}$ field should contain an empty list.
  2317. \fi}
  2318. %
  2319. Regarding the abstract syntax for \code{callq}, the \code{Callq} AST
  2320. node includes an integer for representing the arity of the function,
  2321. i.e., the number of arguments, which is helpful to know during
  2322. register allocation (Chapter~\ref{ch:register-allocation-Lvar}).
  2323. \newcommand{\allastregisters}{\skey{rsp} \MID \skey{rbp} \MID \skey{rax} \MID \skey{rbx} \MID \skey{rcx}
  2324. \MID \skey{rdx} \MID \skey{rsi} \MID \skey{rdi} \MID \\
  2325. && \skey{r8} \MID \skey{r9} \MID \skey{r10}
  2326. \MID \skey{r11} \MID \skey{r12} \MID \skey{r13}
  2327. \MID \skey{r14} \MID \skey{r15}}
  2328. \begin{figure}[tp]
  2329. \fbox{
  2330. \begin{minipage}{0.98\textwidth}
  2331. \small
  2332. {\if\edition\racketEd
  2333. \[
  2334. \begin{array}{lcl}
  2335. \Reg &::=& \allregisters{} \\
  2336. \Arg &::=& \IMM{\Int} \MID \REG{\Reg}
  2337. \MID \DEREF{\Reg}{\Int} \\
  2338. \Instr &::=& \BININSTR{\code{addq}}{\Arg}{\Arg}
  2339. \MID \BININSTR{\code{subq}}{\Arg}{\Arg} \\
  2340. &\MID& \BININSTR{\code{movq}}{\Arg}{\Arg}
  2341. \MID \UNIINSTR{\code{negq}}{\Arg}\\
  2342. &\MID& \CALLQ{\itm{label}}{\itm{int}} \MID \RETQ{}
  2343. \MID \PUSHQ{\Arg} \MID \POPQ{\Arg} \MID \JMP{\itm{label}} \\
  2344. \Block &::= & \BLOCK{\itm{info}}{\LP\Instr\ldots\RP} \\
  2345. \LangXIntM{} &::= & \XPROGRAM{\itm{info}}{\LP\LP\itm{label} \,\key{.}\, \Block \RP\ldots\RP}
  2346. \end{array}
  2347. \]
  2348. \fi}
  2349. {\if\edition\pythonEd
  2350. \[
  2351. \begin{array}{lcl}
  2352. \Reg &::=& \allastregisters{} \\
  2353. \Arg &::=& \IMM{\Int} \MID \REG{\Reg}
  2354. \MID \DEREF{\Reg}{\Int} \\
  2355. \Instr &::=& \BININSTR{\scode{addq}}{\Arg}{\Arg}
  2356. \MID \BININSTR{\scode{subq}}{\Arg}{\Arg} \\
  2357. &\MID& \BININSTR{\scode{movq}}{\Arg}{\Arg}
  2358. \MID \UNIINSTR{\scode{negq}}{\Arg}\\
  2359. &\MID& \PUSHQ{\Arg} \MID \POPQ{\Arg} \\
  2360. &\MID& \CALLQ{\itm{label}}{\itm{int}} \MID \RETQ{} \MID \JMP{\itm{label}} \\
  2361. \LangXIntM{} &::= & \XPROGRAM{}{\Instr^{*}}{}
  2362. \end{array}
  2363. \]
  2364. \fi}
  2365. \end{minipage}
  2366. }
  2367. \caption{The abstract syntax of \LangXInt{} assembly.}
  2368. \label{fig:x86-int-ast}
  2369. \end{figure}
  2370. \section{Planning the trip to x86}
  2371. \label{sec:plan-s0-x86}
  2372. To compile one language to another it helps to focus on the
  2373. differences between the two languages because the compiler will need
  2374. to bridge those differences. What are the differences between \LangVar{}
  2375. and x86 assembly? Here are some of the most important ones:
  2376. \begin{enumerate}
  2377. \item x86 arithmetic instructions typically have two arguments and
  2378. update the second argument in place. In contrast, \LangVar{}
  2379. arithmetic operations take two arguments and produce a new value.
  2380. An x86 instruction may have at most one memory-accessing argument.
  2381. Furthermore, some x86 instructions place special restrictions on
  2382. their arguments.
  2383. \item An argument of an \LangVar{} operator can be a deeply-nested
  2384. expression, whereas x86 instructions restrict their arguments to be
  2385. integer constants, registers, and memory locations.
  2386. {\if\edition\racketEd
  2387. \item The order of execution in x86 is explicit in the syntax: a
  2388. sequence of instructions and jumps to labeled positions, whereas in
  2389. \LangVar{} the order of evaluation is a left-to-right depth-first
  2390. traversal of the abstract syntax tree.
  2391. \fi}
  2392. \item A program in \LangVar{} can have any number of variables
  2393. whereas x86 has 16 registers and the procedure call stack.
  2394. {\if\edition\racketEd
  2395. \item Variables in \LangVar{} can shadow other variables with the
  2396. same name. In x86, registers have unique names and memory locations
  2397. have unique addresses.
  2398. \fi}
  2399. \end{enumerate}
  2400. We ease the challenge of compiling from \LangVar{} to x86 by breaking
  2401. down the problem into several steps, dealing with the above
  2402. differences one at a time. Each of these steps is called a \emph{pass}
  2403. of the compiler.\index{subject}{pass}\index{subject}{compiler pass}
  2404. %
  2405. This terminology comes from the way each step passes over, that is,
  2406. traverses the AST of the program.
  2407. %
  2408. Furthermore, we follow the nanopass approach, which means we strive
  2409. for each pass to accomplish one clear objective (not two or three at
  2410. the same time).
  2411. %
  2412. We begin by sketching how we might implement each pass, and give them
  2413. names. We then figure out an ordering of the passes and the
  2414. input/output language for each pass. The very first pass has
  2415. \LangVar{} as its input language and the last pass has \LangXInt{} as
  2416. its output language. In between we can choose whichever language is
  2417. most convenient for expressing the output of each pass, whether that
  2418. be \LangVar{}, \LangXInt{}, or new \emph{intermediate languages} of
  2419. our own design. Finally, to implement each pass we write one
  2420. recursive function per non-terminal in the grammar of the input
  2421. language of the pass. \index{subject}{intermediate language}
  2422. Our compiler for \LangVar{} consists of the following passes.
  2423. %
  2424. \begin{description}
  2425. {\if\edition\racketEd
  2426. \item[\key{uniquify}] deals with the shadowing of variables by
  2427. renaming every variable to a unique name.
  2428. \fi}
  2429. \item[\key{remove\_complex\_operands}] ensures that each subexpression
  2430. of a primitive operation or function call is a variable or integer,
  2431. that is, an \emph{atomic} expression. We refer to non-atomic
  2432. expressions as \emph{complex}. This pass introduces temporary
  2433. variables to hold the results of complex
  2434. subexpressions.\index{subject}{atomic
  2435. expression}\index{subject}{complex expression}%
  2436. {\if\edition\racketEd
  2437. \item[\key{explicate\_control}] makes the execution order of the
  2438. program explicit. It converts the abstract syntax tree representation
  2439. into a control-flow graph in which each node contains a sequence of
  2440. statements and the edges between nodes say which nodes contain jumps
  2441. to other nodes.
  2442. \fi}
  2443. \item[\key{select\_instructions}] handles the difference between
  2444. \LangVar{} operations and x86 instructions. This pass converts each
  2445. \LangVar{} operation to a short sequence of instructions that
  2446. accomplishes the same task.
  2447. \item[\key{assign\_homes}] replaces variables with registers or stack
  2448. locations.
  2449. \end{description}
  2450. %
  2451. {\if\edition\racketEd
  2452. %
  2453. Our treatment of \code{remove\_complex\_operands} and
  2454. \code{explicate\_control} as separate passes is an example of the
  2455. nanopass approach\footnote{For analogous decompositions of the
  2456. translation into continuation passing style, see the work of
  2457. \citet{Lawall:1993} and \citet{Hatcliff:1994ea}.}. The traditional
  2458. approach is to combine them into a single step~\citep{Aho:2006wb}.
  2459. %
  2460. \fi}
  2461. The next question is: in what order should we apply these passes? This
  2462. question can be challenging because it is difficult to know ahead of
  2463. time which orderings will be better (easier to implement, produce more
  2464. efficient code, etc.) so oftentimes trial-and-error is
  2465. involved. Nevertheless, we can try to plan ahead and make educated
  2466. choices regarding the ordering.
  2467. \racket{What should be the ordering of \key{explicate\_control} with respect to
  2468. \key{uniquify}? The \key{uniquify} pass should come first because
  2469. \key{explicate\_control} changes all the \key{let}-bound variables to
  2470. become local variables whose scope is the entire program, which would
  2471. confuse variables with the same name.}
  2472. %
  2473. \racket{We place \key{remove\_complex\_opera*} before \key{explicate\_control}
  2474. because the later removes the \key{let} form, but it is convenient to
  2475. use \key{let} in the output of \key{remove\_complex\_opera*}.}
  2476. %
  2477. \racket{The ordering of \key{uniquify} with respect to
  2478. \key{remove\_complex\_opera*} does not matter so we arbitrarily choose
  2479. \key{uniquify} to come first.}
  2480. The \key{select\_instructions} and \key{assign\_homes} passes are
  2481. intertwined.
  2482. %
  2483. In Chapter~\ref{ch:Rfun} we learn that, in x86, registers are used for
  2484. passing arguments to functions and it is preferable to assign
  2485. parameters to their corresponding registers. This suggests that it
  2486. would be better to start with the \key{select\_instructions} pass,
  2487. which generates the instructions for argument passing, before
  2488. performing register allocation.
  2489. %
  2490. On the other hand, by selecting instructions first we may run into a
  2491. dead end in \key{assign\_homes}. Recall that only one argument of an
  2492. x86 instruction may be a memory access but \key{assign\_homes} might
  2493. be forced to assign both arguments to memory locations.
  2494. %
  2495. A sophisticated approach is to iteratively repeat the two passes until
  2496. a solution is found. However, to reduce implementation complexity we
  2497. recommend placing \key{select\_instructions} first, followed by the
  2498. \key{assign\_homes}, then a third pass named \key{patch\_instructions}
  2499. that uses a reserved register to fix outstanding problems.
  2500. \begin{figure}[tbp]
  2501. {\if\edition\racketEd
  2502. \begin{tikzpicture}[baseline=(current bounding box.center)]
  2503. \node (Lvar) at (0,2) {\large \LangVar{}};
  2504. \node (Lvar-2) at (3,2) {\large \LangVar{}};
  2505. \node (Lvar-3) at (6,2) {\large \LangVarANF{}};
  2506. %\node (Cvar-1) at (6,0) {\large \LangCVar{}};
  2507. \node (Cvar-2) at (3,0) {\large \LangCVar{}};
  2508. \node (x86-2) at (3,-2) {\large \LangXVar{}};
  2509. \node (x86-3) at (6,-2) {\large \LangXVar{}};
  2510. \node (x86-4) at (9,-2) {\large \LangXInt{}};
  2511. \node (x86-5) at (12,-2) {\large \LangXInt{}};
  2512. \path[->,bend left=15] (Lvar) edge [above] node {\ttfamily\footnotesize uniquify} (Lvar-2);
  2513. \path[->,bend left=15] (Lvar-2) edge [above] node {\ttfamily\footnotesize remove\_complex.} (Lvar-3);
  2514. \path[->,bend left=15] (Lvar-3) edge [right] node {\ttfamily\footnotesize explicate\_control} (Cvar-2);
  2515. \path[->,bend right=15] (Cvar-2) edge [left] node {\ttfamily\footnotesize select\_instr.} (x86-2);
  2516. \path[->,bend left=15] (x86-2) edge [above] node {\ttfamily\footnotesize assign\_homes} (x86-3);
  2517. \path[->,bend left=15] (x86-3) edge [above] node {\ttfamily\footnotesize patch\_instr.} (x86-4);
  2518. \path[->,bend left=15] (x86-4) edge [above] node {\ttfamily\footnotesize prelude\_and\_concl.} (x86-5);
  2519. \end{tikzpicture}
  2520. \fi}
  2521. {\if\edition\pythonEd
  2522. \begin{tikzpicture}[baseline=(current bounding box.center)]
  2523. \node (Lvar) at (0,2) {\large \LangVar{}};
  2524. \node (Lvar-2) at (3,2) {\large \LangVarANF{}};
  2525. \node (x86-1) at (3,0) {\large \LangXVar{}};
  2526. \node (x86-2) at (6,0) {\large \LangXVar{}};
  2527. \node (x86-3) at (9,0) {\large \LangXInt{}};
  2528. \node (x86-4) at (12,0) {\large \LangXInt{}};
  2529. \path[->,bend left=15] (Lvar) edge [above] node {\ttfamily\footnotesize remove\_complex.} (Lvar-2);
  2530. \path[->,bend right=15] (Lvar-2) edge [left] node {\ttfamily\footnotesize select\_instr.} (x86-1);
  2531. \path[->,bend right=15] (x86-1) edge [below] node {\ttfamily\footnotesize assign\_homes} (x86-2);
  2532. \path[->,bend left=15] (x86-2) edge [above] node {\ttfamily\footnotesize patch\_instr.} (x86-3);
  2533. \path[->,bend right=15] (x86-3) edge [below] node {\ttfamily\footnotesize prelude\_and\_concl.} (x86-4);
  2534. \end{tikzpicture}
  2535. \fi}
  2536. \caption{Diagram of the passes for compiling \LangVar{}. }
  2537. \label{fig:Lvar-passes}
  2538. \end{figure}
  2539. Figure~\ref{fig:Lvar-passes} presents the ordering of the compiler
  2540. passes and identifies the input and output language of each pass.
  2541. %
  2542. The output of the \key{select\_instructions} pass is the \LangXVar{}
  2543. language, which extends \LangXInt{} with an unbounded number of
  2544. program-scope variables and removes the restrictions regarding
  2545. instruction arguments.
  2546. %
  2547. The last pass, \key{prelude\_and\_conclusion}, places the program
  2548. instructions inside a \code{main} function with instructions for the
  2549. prelude and conclusion.
  2550. %
  2551. \racket{In the following section we discuss the \LangCVar{}
  2552. intermediate language.}
  2553. %
  2554. The remainder of this chapter provides guidance on the implementation
  2555. of each of the compiler passes in Figure~\ref{fig:Lvar-passes}.
  2556. %% The output of \key{uniquify} and \key{remove-complex-opera*}
  2557. %% are programs that are still in the \LangVar{} language, though the
  2558. %% output of the later is a subset of \LangVar{} named \LangVarANF{}
  2559. %% (Section~\ref{sec:remove-complex-opera-Lvar}).
  2560. %% %
  2561. %% The output of \code{explicate\_control} is in an intermediate language
  2562. %% \LangCVar{} designed to make the order of evaluation explicit in its
  2563. %% syntax, which we introduce in the next section. The
  2564. %% \key{select-instruction} pass translates from \LangCVar{} to
  2565. %% \LangXVar{}. The \key{assign-homes} and
  2566. %% \key{patch-instructions}
  2567. %% passes input and output variants of x86 assembly.
  2568. \newcommand{\CvarGrammarRacket}{
  2569. \begin{array}{lcl}
  2570. \Atm &::=& \Int \MID \Var \\
  2571. \Exp &::=& \Atm \MID \CREAD{} \MID \CNEG{\Atm} \MID \CADD{\Atm}{\Atm} \MID \CSUB{\Atm}{\Atm}\\
  2572. \Stmt &::=& \CASSIGN{\Var}{\Exp} \\
  2573. \Tail &::= & \CRETURN{\Exp} \MID \Stmt~\Tail
  2574. \end{array}
  2575. }
  2576. \newcommand{\CvarASTRacket}{
  2577. \begin{array}{lcl}
  2578. \Atm &::=& \INT{\Int} \MID \VAR{\Var} \\
  2579. \Exp &::=& \Atm \MID \READ{} \MID \NEG{\Atm} \\
  2580. &\MID& \ADD{\Atm}{\Atm} \MID \SUB{\Atm}{\Atm}\\
  2581. \Stmt &::=& \ASSIGN{\VAR{\Var}}{\Exp} \\
  2582. \Tail &::= & \RETURN{\Exp} \MID \SEQ{\Stmt}{\Tail}
  2583. \end{array}
  2584. }
  2585. {\if\edition\racketEd
  2586. \subsection{The \LangCVar{} Intermediate Language}
  2587. The output of \code{explicate\_control} is similar to the $C$
  2588. language~\citep{Kernighan:1988nx} in that it has separate syntactic
  2589. categories for expressions and statements, so we name it \LangCVar{}.
  2590. This style of intermediate language is also known as
  2591. \emph{three-address code}, to emphasize that the typical form of a
  2592. statement is \CASSIGN{\key{x}}{\CADD{\key{y}}{\key{z}}} involves three
  2593. addresses~\citep{Aho:2006wb}.
  2594. The concrete syntax for \LangCVar{} is defined in
  2595. Figure~\ref{fig:c0-concrete-syntax} and the abstract syntax for
  2596. \LangCVar{} is defined in Figure~\ref{fig:c0-syntax}.
  2597. %
  2598. The \LangCVar{} language supports the same operators as \LangVar{} but
  2599. the arguments of operators are restricted to atomic
  2600. expressions. Instead of \key{let} expressions, \LangCVar{} has
  2601. assignment statements which can be executed in sequence using the
  2602. \key{Seq} form. A sequence of statements always ends with
  2603. \key{Return}, a guarantee that is baked into the grammar rules for
  2604. \itm{tail}. The naming of this non-terminal comes from the term
  2605. \emph{tail position}\index{subject}{tail position}, which refers to an
  2606. expression that is the last one to execute within a function.
  2607. A \LangCVar{} program consists of an alist mapping labels to
  2608. tails. This is more general than necessary for the present chapter, as
  2609. we do not yet introduce \key{goto} for jumping to labels, but it saves
  2610. us from having to change the syntax in Chapter~\ref{ch:Lif}. For now
  2611. there will be just one label, \key{start}, and the whole program is
  2612. its tail.
  2613. %
  2614. The $\itm{info}$ field of the \key{CProgram} form, after the
  2615. \code{explicate\_control} pass, contains a mapping from the symbol
  2616. \key{locals} to a list of variables, that is, a list of all the
  2617. variables used in the program. At the start of the program, these
  2618. variables are uninitialized; they become initialized on their first
  2619. assignment.
  2620. \begin{figure}[tbp]
  2621. \fbox{
  2622. \begin{minipage}{0.96\textwidth}
  2623. \[
  2624. \begin{array}{l}
  2625. \CvarGrammarRacket \\
  2626. \begin{array}{lcl}
  2627. \LangCVarM{} & ::= & (\itm{label}\key{:}~ \Tail)\ldots
  2628. \end{array}
  2629. \end{array}
  2630. \]
  2631. \end{minipage}
  2632. }
  2633. \caption{The concrete syntax of the \LangCVar{} intermediate language.}
  2634. \label{fig:c0-concrete-syntax}
  2635. \end{figure}
  2636. \begin{figure}[tbp]
  2637. \fbox{
  2638. \begin{minipage}{0.96\textwidth}
  2639. \[
  2640. \begin{array}{l}
  2641. \CvarASTRacket \\
  2642. \begin{array}{lcl}
  2643. \LangCVarM{} & ::= & \CPROGRAM{\itm{info}}{\LP\LP\itm{label}\,\key{.}\,\Tail\RP\ldots\RP}
  2644. \end{array}
  2645. \end{array}
  2646. \]
  2647. \end{minipage}
  2648. }
  2649. \caption{The abstract syntax of the \LangCVar{} intermediate language.}
  2650. \label{fig:c0-syntax}
  2651. \end{figure}
  2652. The definitional interpreter for \LangCVar{} is in the support code,
  2653. in the file \code{interp-Cvar.rkt}.
  2654. \fi}
  2655. {\if\edition\racketEd
  2656. \section{Uniquify Variables}
  2657. \label{sec:uniquify-Lvar}
  2658. The \code{uniquify} pass compiles \LangVar{} programs into \LangVar{}
  2659. programs in which every \key{let} binds a unique variable name. For
  2660. example, the \code{uniquify} pass should translate the program on the
  2661. left into the program on the right.
  2662. \begin{transformation}
  2663. \begin{lstlisting}
  2664. (let ([x 32])
  2665. (+ (let ([x 10]) x) x))
  2666. \end{lstlisting}
  2667. \compilesto
  2668. \begin{lstlisting}
  2669. (let ([x.1 32])
  2670. (+ (let ([x.2 10]) x.2) x.1))
  2671. \end{lstlisting}
  2672. \end{transformation}
  2673. The following is another example translation, this time of a program
  2674. with a \key{let} nested inside the initializing expression of another
  2675. \key{let}.
  2676. \begin{transformation}
  2677. \begin{lstlisting}
  2678. (let ([x (let ([x 4])
  2679. (+ x 1))])
  2680. (+ x 2))
  2681. \end{lstlisting}
  2682. \compilesto
  2683. \begin{lstlisting}
  2684. (let ([x.2 (let ([x.1 4])
  2685. (+ x.1 1))])
  2686. (+ x.2 2))
  2687. \end{lstlisting}
  2688. \end{transformation}
  2689. We recommend implementing \code{uniquify} by creating a structurally
  2690. recursive function named \code{uniquify-exp} that mostly just copies
  2691. an expression. However, when encountering a \key{let}, it should
  2692. generate a unique name for the variable and associate the old name
  2693. with the new name in an alist.\footnote{The Racket function
  2694. \code{gensym} is handy for generating unique variable names.} The
  2695. \code{uniquify-exp} function needs to access this alist when it gets
  2696. to a variable reference, so we add a parameter to \code{uniquify-exp}
  2697. for the alist.
  2698. The skeleton of the \code{uniquify-exp} function is shown in
  2699. Figure~\ref{fig:uniquify-Lvar}. The function is curried so that it is
  2700. convenient to partially apply it to an alist and then apply it to
  2701. different expressions, as in the last case for primitive operations in
  2702. Figure~\ref{fig:uniquify-Lvar}. The
  2703. %
  2704. \href{https://docs.racket-lang.org/reference/for.html#%28form._%28%28lib._racket%2Fprivate%2Fbase..rkt%29._for%2Flist%29%29}{\key{for/list}}
  2705. %
  2706. form of Racket is useful for transforming each element of a list to
  2707. produce a new list.\index{subject}{for/list}
  2708. \begin{figure}[tbp]
  2709. \begin{lstlisting}
  2710. (define (uniquify-exp env)
  2711. (lambda (e)
  2712. (match e
  2713. [(Var x) ___]
  2714. [(Int n) (Int n)]
  2715. [(Let x e body) ___]
  2716. [(Prim op es)
  2717. (Prim op (for/list ([e es]) ((uniquify-exp env) e)))])))
  2718. (define (uniquify p)
  2719. (match p
  2720. [(Program '() e) (Program '() ((uniquify-exp '()) e))]))
  2721. \end{lstlisting}
  2722. \caption{Skeleton for the \key{uniquify} pass.}
  2723. \label{fig:uniquify-Lvar}
  2724. \end{figure}
  2725. \begin{exercise}
  2726. \normalfont % I don't like the italics for exercises. -Jeremy
  2727. Complete the \code{uniquify} pass by filling in the blanks in
  2728. Figure~\ref{fig:uniquify-Lvar}, that is, implement the cases for
  2729. variables and for the \key{let} form in the file \code{compiler.rkt}
  2730. in the support code.
  2731. \end{exercise}
  2732. \begin{exercise}
  2733. \normalfont % I don't like the italics for exercises. -Jeremy
  2734. \label{ex:Lvar}
  2735. Create five \LangVar{} programs that exercise the most interesting
  2736. parts of the \key{uniquify} pass, that is, the programs should include
  2737. \key{let} forms, variables, and variables that shadow each other.
  2738. The five programs should be placed in the subdirectory named
  2739. \key{tests} and the file names should start with \code{var\_test\_}
  2740. followed by a unique integer and end with the file extension
  2741. \key{.rkt}.
  2742. %
  2743. The \key{run-tests.rkt} script in the support code checks whether the
  2744. output programs produce the same result as the input programs. The
  2745. script uses the \key{interp-tests} function
  2746. (Appendix~\ref{appendix:utilities}) from \key{utilities.rkt} to test
  2747. your \key{uniquify} pass on the example programs. The \code{passes}
  2748. parameter of \key{interp-tests} is a list that should have one entry
  2749. for each pass in your compiler. For now, define \code{passes} to
  2750. contain just one entry for \code{uniquify} as shown below.
  2751. \begin{lstlisting}
  2752. (define passes
  2753. (list (list "uniquify" uniquify interp_Lvar type-check-Lvar)))
  2754. \end{lstlisting}
  2755. Run the \key{run-tests.rkt} script in the support code to check
  2756. whether the output programs produce the same result as the input
  2757. programs.
  2758. \end{exercise}
  2759. \fi}
  2760. \section{Remove Complex Operands}
  2761. \label{sec:remove-complex-opera-Lvar}
  2762. The \code{remove\_complex\_operands} pass compiles \LangVar{} programs
  2763. into a restricted form in which the arguments of operations are atomic
  2764. expressions. Put another way, this pass removes complex
  2765. operands\index{subject}{complex operand}, such as the expression
  2766. \racket{\code{(- 10)}}\python{\code{-10}}
  2767. in the program below. This is accomplished by introducing a new
  2768. temporary variable, assigning the complex operand to the new
  2769. variable, and then using the new variable in place of the complex
  2770. operand, as shown in the output of \code{remove\_complex\_operands} on the
  2771. right.
  2772. {\if\edition\racketEd
  2773. \begin{transformation}
  2774. % var_test_19.rkt
  2775. \begin{lstlisting}
  2776. (let ([x (+ 42 (- 10))])
  2777. (+ x 10))
  2778. \end{lstlisting}
  2779. \compilesto
  2780. \begin{lstlisting}
  2781. (let ([x (let ([tmp.1 (- 10)])
  2782. (+ 42 tmp.1))])
  2783. (+ x 10))
  2784. \end{lstlisting}
  2785. \end{transformation}
  2786. \fi}
  2787. {\if\edition\pythonEd
  2788. \begin{transformation}
  2789. \begin{lstlisting}
  2790. x = 42 + -10
  2791. print(x + 10)
  2792. \end{lstlisting}
  2793. \compilesto
  2794. \begin{lstlisting}
  2795. tmp_0 = -10
  2796. x = 42 + tmp_0
  2797. tmp_1 = x + 10
  2798. print(tmp_1)
  2799. \end{lstlisting}
  2800. \end{transformation}
  2801. \fi}
  2802. \begin{figure}[tp]
  2803. \centering
  2804. \fbox{
  2805. \begin{minipage}{0.96\textwidth}
  2806. {\if\edition\racketEd
  2807. \[
  2808. \begin{array}{rcl}
  2809. \Atm &::=& \INT{\Int} \MID \VAR{\Var} \\
  2810. \Exp &::=& \Atm \MID \READ{} \\
  2811. &\MID& \NEG{\Atm} \MID \ADD{\Atm}{\Atm} \\
  2812. &\MID& \LET{\Var}{\Exp}{\Exp} \\
  2813. \LangVarANFM{} &::=& \PROGRAM{\code{'()}}{\Exp}
  2814. \end{array}
  2815. \]
  2816. \fi}
  2817. {\if\edition\pythonEd
  2818. \[
  2819. \begin{array}{rcl}
  2820. \Atm &::=& \INT{\Int} \MID \VAR{\Var} \\
  2821. \Exp{} &::=& \Atm \MID \READ{} \\
  2822. &\MID& \NEG{\Atm} \MID \ADD{\Atm}{\Atm} \\
  2823. \Stmt{} &::=& \PRINT{\Atm} \MID \EXPR{\Exp} \\
  2824. &\MID& \ASSIGN{\VAR{\Var}}{\Exp}\\
  2825. \LangVarANFM{} &::=& \PROGRAM{}{\Stmt^{*}}
  2826. \end{array}
  2827. \]
  2828. \fi}
  2829. \end{minipage}
  2830. }
  2831. \caption{\LangVarANF{} is \LangVar{} with operands restricted to
  2832. atomic expressions.}
  2833. \label{fig:Lvar-anf-syntax}
  2834. \end{figure}
  2835. Figure~\ref{fig:Lvar-anf-syntax} presents the grammar for the output
  2836. of this pass, the language \LangVarANF{}. The only difference is that
  2837. operator arguments are restricted to be atomic expressions that are
  2838. defined by the \Atm{} non-terminal. In particular, integer constants
  2839. and variables are atomic.
  2840. The atomic expressions are pure (they do not cause side-effects or
  2841. depend on them) whereas complex expressions may have side effects,
  2842. such as \READ{}. A language with this separation between pure versus
  2843. side-effecting expressions is said to be in monadic normal
  2844. form~\citep{Moggi:1991in,Danvy:2003fk} which explains the \textit{mon}
  2845. in \LangVarANF{}. An important invariant of the
  2846. \code{remove\_complex\_operands} pass is that the relative ordering
  2847. among complex expressions is not changed, but the relative ordering
  2848. between atomic expressions and complex expressions can change and
  2849. often does. The reason that these changes are behaviour preserving is
  2850. that the atomic expressions are pure.
  2851. Another well-known form for intermediate languages is the
  2852. \emph{administrative normal form}
  2853. (ANF)~\citep{Danvy:1991fk,Flanagan:1993cg}.
  2854. \index{subject}{administrative normal form} \index{subject}{ANF}
  2855. %
  2856. The \LangVarANF{} language is not quite in ANF because we allow the
  2857. right-hand side of a \code{let} to be a complex expression.
  2858. {\if\edition\racketEd
  2859. We recommend implementing this pass with two mutually recursive
  2860. functions, \code{rco\_atom} and \code{rco\_exp}. The idea is to apply
  2861. \code{rco\_atom} to subexpressions that need to become atomic and to
  2862. apply \code{rco\_exp} to subexpressions that do not. Both functions
  2863. take an \LangVar{} expression as input. The \code{rco\_exp} function
  2864. returns an expression. The \code{rco\_atom} function returns two
  2865. things: an atomic expression and an alist mapping temporary variables to
  2866. complex subexpressions. You can return multiple things from a function
  2867. using Racket's \key{values} form and you can receive multiple things
  2868. from a function call using the \key{define-values} form.
  2869. Also, the
  2870. \href{https://docs.racket-lang.org/reference/for.html#%28form._%28%28lib._racket%2Fprivate%2Fbase..rkt%29._for%2Flists%29%29}{\code{for/lists}}
  2871. form is useful for applying a function to each element of a list, in
  2872. the case where the function returns multiple values.
  2873. \index{subject}{for/lists}
  2874. \fi}
  2875. %
  2876. {\if\edition\pythonEd
  2877. %
  2878. We recommend implementing this pass with an auxiliary method named
  2879. \code{rco\_exp} with two parameters: an \LangVar{} expression and a
  2880. Boolean that specifies whether the expression needs to become atomic
  2881. or not. The \code{rco\_exp} method should return a pair consisting of
  2882. the new expression and a list of pairs, associating new temporary
  2883. variables with their initializing expressions.
  2884. %
  2885. \fi}
  2886. {\if\edition\racketEd
  2887. Returning to the example program with the expression \code{(+ 42 (-
  2888. 10))}, the subexpression \code{(- 10)} should be processed using the
  2889. \code{rco\_atom} function because it is an argument of the \code{+} and
  2890. therefore needs to become atomic. The output of \code{rco\_atom}
  2891. applied to \code{(- 10)} is as follows.
  2892. \begin{transformation}
  2893. \begin{lstlisting}
  2894. (- 10)
  2895. \end{lstlisting}
  2896. \compilesto
  2897. \begin{lstlisting}
  2898. tmp.1
  2899. ((tmp.1 . (- 10)))
  2900. \end{lstlisting}
  2901. \end{transformation}
  2902. \fi}
  2903. %
  2904. {\if\edition\pythonEd
  2905. %
  2906. Returning to the example program with the expression \code{42 + -10},
  2907. the subexpression \code{-10} should be processed using the
  2908. \code{rco\_exp} function with \code{True} as the second argument
  2909. because \code{-10} is an argument of the \code{+} operator and
  2910. therefore needs to become atomic. The output of \code{rco\_exp}
  2911. applied to \code{-10} is as follows.
  2912. \begin{transformation}
  2913. \begin{lstlisting}
  2914. -10
  2915. \end{lstlisting}
  2916. \compilesto
  2917. \begin{lstlisting}
  2918. tmp_1
  2919. [(tmp_1, -10)]
  2920. \end{lstlisting}
  2921. \end{transformation}
  2922. %
  2923. \fi}
  2924. Take special care of programs such as the following that
  2925. %
  2926. \racket{bind a variable to an atomic expression}
  2927. %
  2928. \python{assign an atomic expression to a variable}.
  2929. %
  2930. You should leave such \racket{variable bindings}\python{assignments}
  2931. unchanged, as shown in the program on the right\\
  2932. %
  2933. {\if\edition\racketEd
  2934. \begin{transformation}
  2935. % var_test_20.rkt
  2936. \begin{lstlisting}
  2937. (let ([a 42])
  2938. (let ([b a])
  2939. b))
  2940. \end{lstlisting}
  2941. \compilesto
  2942. \begin{lstlisting}
  2943. (let ([a 42])
  2944. (let ([b a])
  2945. b))
  2946. \end{lstlisting}
  2947. \end{transformation}
  2948. \fi}
  2949. {\if\edition\pythonEd
  2950. \begin{transformation}
  2951. \begin{lstlisting}
  2952. a = 42
  2953. b = a
  2954. print(b)
  2955. \end{lstlisting}
  2956. \compilesto
  2957. \begin{lstlisting}
  2958. a = 42
  2959. b = a
  2960. print(b)
  2961. \end{lstlisting}
  2962. \end{transformation}
  2963. \fi}
  2964. %
  2965. \noindent A careless implementation might produce the following output with
  2966. unnecessary temporary variables.
  2967. \begin{center}
  2968. \begin{minipage}{0.4\textwidth}
  2969. {\if\edition\racketEd
  2970. \begin{lstlisting}
  2971. (let ([tmp.1 42])
  2972. (let ([a tmp.1])
  2973. (let ([tmp.2 a])
  2974. (let ([b tmp.2])
  2975. b))))
  2976. \end{lstlisting}
  2977. \fi}
  2978. {\if\edition\pythonEd
  2979. \begin{lstlisting}
  2980. tmp_1 = 42
  2981. a = tmp_1
  2982. tmp_2 = a
  2983. b = tmp_2
  2984. print(b)
  2985. \end{lstlisting}
  2986. \fi}
  2987. \end{minipage}
  2988. \end{center}
  2989. \begin{exercise}
  2990. \normalfont
  2991. {\if\edition\racketEd
  2992. Implement the \code{remove\_complex\_operands} function in
  2993. \code{compiler.rkt}.
  2994. %
  2995. Create three new \LangVar{} programs that exercise the interesting
  2996. code in the \code{remove\_complex\_operands} pass. Follow the guidelines
  2997. regarding file names described in Exercise~\ref{ex:Lvar}.
  2998. %
  2999. In the \code{run-tests.rkt} script, add the following entry to the
  3000. list of \code{passes} and then run the script to test your compiler.
  3001. \begin{lstlisting}
  3002. (list "remove-complex" remove-complex-opera* interp_Lvar type-check-Lvar)
  3003. \end{lstlisting}
  3004. While debugging your compiler, it is often useful to see the
  3005. intermediate programs that are output from each pass. To print the
  3006. intermediate programs, place \lstinline{(debug-level 1)} before the call to
  3007. \code{interp-tests} in \code{run-tests.rkt}.
  3008. \fi}
  3009. %
  3010. {\if\edition\pythonEd
  3011. Implement the \code{remove\_complex\_operands} pass in
  3012. \code{compiler.py}, creating auxiliary functions for each
  3013. non-terminal in the grammar, i.e., \code{rco\_exp}
  3014. and \code{rco\_stmt}.
  3015. \fi}
  3016. \end{exercise}
  3017. {\if\edition\pythonEd
  3018. \begin{exercise}
  3019. \normalfont % I don't like the italics for exercises. -Jeremy
  3020. \label{ex:Lvar}
  3021. Create five \LangVar{} programs that exercise the most interesting
  3022. parts of the \code{remove\_complex\_operands} pass. The five programs
  3023. should be placed in the subdirectory named \key{tests} and the file
  3024. names should start with \code{var\_test\_} followed by a unique
  3025. integer and end with the file extension \key{.py}.
  3026. %% The \key{run-tests.rkt} script in the support code checks whether the
  3027. %% output programs produce the same result as the input programs. The
  3028. %% script uses the \key{interp-tests} function
  3029. %% (Appendix~\ref{appendix:utilities}) from \key{utilities.rkt} to test
  3030. %% your \key{uniquify} pass on the example programs. The \code{passes}
  3031. %% parameter of \key{interp-tests} is a list that should have one entry
  3032. %% for each pass in your compiler. For now, define \code{passes} to
  3033. %% contain just one entry for \code{uniquify} as shown below.
  3034. %% \begin{lstlisting}
  3035. %% (define passes
  3036. %% (list (list "uniquify" uniquify interp_Lvar type-check-Lvar)))
  3037. %% \end{lstlisting}
  3038. Run the \key{run-tests.py} script in the support code to check
  3039. whether the output programs produce the same result as the input
  3040. programs.
  3041. \end{exercise}
  3042. \fi}
  3043. {\if\edition\racketEd
  3044. \section{Explicate Control}
  3045. \label{sec:explicate-control-Lvar}
  3046. The \code{explicate\_control} pass compiles \LangVar{} programs into \LangCVar{}
  3047. programs that make the order of execution explicit in their
  3048. syntax. For now this amounts to flattening \key{let} constructs into a
  3049. sequence of assignment statements. For example, consider the following
  3050. \LangVar{} program.\\
  3051. % var_test_11.rkt
  3052. \begin{minipage}{0.96\textwidth}
  3053. \begin{lstlisting}
  3054. (let ([y (let ([x 20])
  3055. (+ x (let ([x 22]) x)))])
  3056. y)
  3057. \end{lstlisting}
  3058. \end{minipage}\\
  3059. %
  3060. The output of the previous pass and of \code{explicate\_control} is
  3061. shown below. Recall that the right-hand-side of a \key{let} executes
  3062. before its body, so the order of evaluation for this program is to
  3063. assign \code{20} to \code{x.1}, \code{22} to \code{x.2}, and
  3064. \code{(+ x.1 x.2)} to \code{y}, then return \code{y}. Indeed, the
  3065. output of \code{explicate\_control} makes this ordering explicit.
  3066. \begin{transformation}
  3067. \begin{lstlisting}
  3068. (let ([y (let ([x.1 20])
  3069. (let ([x.2 22])
  3070. (+ x.1 x.2)))])
  3071. y)
  3072. \end{lstlisting}
  3073. \compilesto
  3074. \begin{lstlisting}[language=C]
  3075. start:
  3076. x.1 = 20;
  3077. x.2 = 22;
  3078. y = (+ x.1 x.2);
  3079. return y;
  3080. \end{lstlisting}
  3081. \end{transformation}
  3082. \begin{figure}[tbp]
  3083. \begin{lstlisting}
  3084. (define (explicate_tail e)
  3085. (match e
  3086. [(Var x) ___]
  3087. [(Int n) (Return (Int n))]
  3088. [(Let x rhs body) ___]
  3089. [(Prim op es) ___]
  3090. [else (error "explicate_tail unhandled case" e)]))
  3091. (define (explicate_assign e x cont)
  3092. (match e
  3093. [(Var x) ___]
  3094. [(Int n) (Seq (Assign (Var x) (Int n)) cont)]
  3095. [(Let y rhs body) ___]
  3096. [(Prim op es) ___]
  3097. [else (error "explicate_assign unhandled case" e)]))
  3098. (define (explicate_control p)
  3099. (match p
  3100. [(Program info body) ___]))
  3101. \end{lstlisting}
  3102. \caption{Skeleton for the \code{explicate\_control} pass.}
  3103. \label{fig:explicate-control-Lvar}
  3104. \end{figure}
  3105. The organization of this pass depends on the notion of tail position
  3106. that we have alluded to earlier.
  3107. \begin{definition}
  3108. The following rules define when an expression is in \textbf{\emph{tail
  3109. position}}\index{subject}{tail position} for the language \LangVar{}.
  3110. \begin{enumerate}
  3111. \item In $\PROGRAM{\code{()}}{e}$, expression $e$ is in tail position.
  3112. \item If $\LET{x}{e_1}{e_2}$ is in tail position, then so is $e_2$.
  3113. \end{enumerate}
  3114. \end{definition}
  3115. We recommend implementing \code{explicate\_control} using two mutually
  3116. recursive functions, \code{explicate\_tail} and
  3117. \code{explicate\_assign}, as suggested in the skeleton code in
  3118. Figure~\ref{fig:explicate-control-Lvar}. The \code{explicate\_tail}
  3119. function should be applied to expressions in tail position whereas the
  3120. \code{explicate\_assign} should be applied to expressions that occur on
  3121. the right-hand-side of a \key{let}.
  3122. %
  3123. The \code{explicate\_tail} function takes an \Exp{} in \LangVar{} as
  3124. input and produces a \Tail{} in \LangCVar{} (see
  3125. Figure~\ref{fig:c0-syntax}).
  3126. %
  3127. The \code{explicate\_assign} function takes an \Exp{} in \LangVar{},
  3128. the variable that it is to be assigned to, and a \Tail{} in
  3129. \LangCVar{} for the code that comes after the assignment. The
  3130. \code{explicate\_assign} function returns a $\Tail$ in \LangCVar{}.
  3131. The \code{explicate\_assign} function is in accumulator-passing style:
  3132. the \code{cont} parameter is used for accumulating the output. This
  3133. accumulator-passing style plays an important role in how we generate
  3134. high-quality code for conditional expressions in Chapter~\ref{ch:Lif}.
  3135. \begin{exercise}\normalfont
  3136. %
  3137. Implement the \code{explicate\_control} function in
  3138. \code{compiler.rkt}. Create three new \LangInt{} programs that
  3139. exercise the code in \code{explicate\_control}.
  3140. %
  3141. In the \code{run-tests.rkt} script, add the following entry to the
  3142. list of \code{passes} and then run the script to test your compiler.
  3143. \begin{lstlisting}
  3144. (list "explicate control" explicate_control interp_Cvar type-check-Cvar)
  3145. \end{lstlisting}
  3146. \end{exercise}
  3147. \fi}
  3148. \section{Select Instructions}
  3149. \label{sec:select-Lvar}
  3150. \index{subject}{instruction selection}
  3151. In the \code{select\_instructions} pass we begin the work of
  3152. translating \racket{from \LangCVar{}} to \LangXVar{}. The target
  3153. language of this pass is a variant of x86 that still uses variables,
  3154. so we add an AST node of the form $\VAR{\itm{var}}$ to the \Arg{}
  3155. non-terminal of the \LangXInt{} abstract syntax
  3156. (Figure~\ref{fig:x86-int-ast}).
  3157. \racket{We recommend implementing the
  3158. \code{select\_instructions} with three auxiliary functions, one for
  3159. each of the non-terminals of \LangCVar{}: $\Atm$, $\Stmt$, and
  3160. $\Tail$.}
  3161. \python{We recommend implementing an auxiliary function
  3162. named \code{select\_stmt} for the $\Stmt$ non-terminal.}
  3163. \racket{
  3164. The cases for $\Atm$ are straightforward; variables stay
  3165. the same and integer constants change to immediates:
  3166. $\INT{n}$ changes to $\IMM{n}$.}
  3167. We consider the cases for the $\Stmt$ non-terminal, starting with
  3168. arithmetic operations. For example, consider the addition operation
  3169. below, on the left side. There is an \key{addq} instruction in x86,
  3170. but it performs an in-place update. So we could move $\Arg_1$
  3171. into the left-hand side \itm{var} and then add $\Arg_2$ to
  3172. \itm{var}, where $\Arg_1$ and $\Arg_2$ are the translations of
  3173. $\Atm_1$ and $\Atm_2$ respectively.
  3174. \begin{transformation}
  3175. {\if\edition\racketEd
  3176. \begin{lstlisting}
  3177. |$\itm{var}$| = (+ |$\Atm_1$| |$\Atm_2$|);
  3178. \end{lstlisting}
  3179. \fi}
  3180. {\if\edition\pythonEd
  3181. \begin{lstlisting}
  3182. |$\itm{var}$| = |$\Atm_1$| + |$\Atm_2$|
  3183. \end{lstlisting}
  3184. \fi}
  3185. \compilesto
  3186. \begin{lstlisting}
  3187. movq |$\Arg_1$|, |$\itm{var}$|
  3188. addq |$\Arg_2$|, |$\itm{var}$|
  3189. \end{lstlisting}
  3190. \end{transformation}
  3191. There are also cases that require special care to avoid generating
  3192. needlessly complicated code. For example, if one of the arguments of
  3193. the addition is the same variable as the left-hand side of the
  3194. assignment, as shown below, then there is no need for the extra move
  3195. instruction. The assignment statement can be translated into a single
  3196. \key{addq} instruction as follows.
  3197. \begin{transformation}
  3198. {\if\edition\racketEd
  3199. \begin{lstlisting}
  3200. |$\itm{var}$| = (+ |$\Atm_1$| |$\itm{var}$|);
  3201. \end{lstlisting}
  3202. \fi}
  3203. {\if\edition\pythonEd
  3204. \begin{lstlisting}
  3205. |$\itm{var}$| = |$\Atm_1$| + |$\itm{var}$|
  3206. \end{lstlisting}
  3207. \fi}
  3208. \compilesto
  3209. \begin{lstlisting}
  3210. addq |$\Arg_1$|, |$\itm{var}$|
  3211. \end{lstlisting}
  3212. \end{transformation}
  3213. The \READOP{} operation does not have a direct counterpart in x86
  3214. assembly, so we provide this functionality with the function
  3215. \code{read\_int} in the file \code{runtime.c}, written in
  3216. C~\citep{Kernighan:1988nx}. In general, we refer to all of the
  3217. functionality in this file as the \emph{runtime system}\index{subject}{runtime
  3218. system}, or simply the \emph{runtime} for short. When compiling your
  3219. generated x86 assembly code, you need to compile \code{runtime.c} to
  3220. \code{runtime.o} (an ``object file'', using \code{gcc} with option
  3221. \code{-c}) and link it into the executable. For our purposes of code
  3222. generation, all you need to do is translate an assignment of
  3223. \READOP{} into a call to the \code{read\_int} function followed by a
  3224. move from \code{rax} to the left-hand-side variable. (Recall that the
  3225. return value of a function goes into \code{rax}.)
  3226. \begin{transformation}
  3227. {\if\edition\racketEd
  3228. \begin{lstlisting}
  3229. |$\itm{var}$| = (read);
  3230. \end{lstlisting}
  3231. \fi}
  3232. {\if\edition\pythonEd
  3233. \begin{lstlisting}
  3234. |$\itm{var}$| = input_int();
  3235. \end{lstlisting}
  3236. \fi}
  3237. \compilesto
  3238. \begin{lstlisting}
  3239. callq read_int
  3240. movq %rax, |$\itm{var}$|
  3241. \end{lstlisting}
  3242. \end{transformation}
  3243. {\if\edition\pythonEd
  3244. %
  3245. Similarly, we translate the \code{print} operation, shown below, into
  3246. a call to the \code{print\_int} function defined in \code{runtime.c}.
  3247. In x86, the first six arguments to functions are passed in registers,
  3248. with the first argument passed in register \code{rdi}. So we move the
  3249. $\Arg$ into \code{rdi} and then call \code{print\_int} using the
  3250. \code{callq} instruction.
  3251. \begin{transformation}
  3252. \begin{lstlisting}
  3253. print(|$\Atm$|)
  3254. \end{lstlisting}
  3255. \compilesto
  3256. \begin{lstlisting}
  3257. movq |$\Arg$|, %rdi
  3258. callq print_int
  3259. \end{lstlisting}
  3260. \end{transformation}
  3261. %
  3262. \fi}
  3263. {\if\edition\racketEd
  3264. There are two cases for the $\Tail$ non-terminal: \key{Return} and
  3265. \key{Seq}. Regarding \key{Return}, we recommend treating it as an
  3266. assignment to the \key{rax} register followed by a jump to the
  3267. conclusion of the program (so the conclusion needs to be labeled).
  3268. For $\SEQ{s}{t}$, you can translate the statement $s$ and tail $t$
  3269. recursively and then append the resulting instructions.
  3270. \fi}
  3271. {\if\edition\pythonEd
  3272. We recommend that you use the function \code{utils.label\_name()} to
  3273. transform a string into an label argument suitably suitable for, e.g.,
  3274. the target of the \code{callq} instruction. This practice makes your
  3275. compiler portable across Linus and Mac OS X, which requires an underscore prefixed to
  3276. all labels.
  3277. \fi}
  3278. \begin{exercise}
  3279. \normalfont
  3280. {\if\edition\racketEd
  3281. Implement the \code{select\_instructions} pass in
  3282. \code{compiler.rkt}. Create three new example programs that are
  3283. designed to exercise all of the interesting cases in this pass.
  3284. %
  3285. In the \code{run-tests.rkt} script, add the following entry to the
  3286. list of \code{passes} and then run the script to test your compiler.
  3287. \begin{lstlisting}
  3288. (list "instruction selection" select_instructions interp_pseudo-x86-0)
  3289. \end{lstlisting}
  3290. \fi}
  3291. {\if\edition\pythonEd
  3292. Implement the \key{select\_instructions} pass in
  3293. \code{compiler.py}. Create three new example programs that are
  3294. designed to exercise all of the interesting cases in this pass.
  3295. Run the \code{run-tests.py} script to to check
  3296. whether the output programs produce the same result as the input
  3297. programs.
  3298. \fi}
  3299. \end{exercise}
  3300. \section{Assign Homes}
  3301. \label{sec:assign-Lvar}
  3302. The \key{assign\_homes} pass compiles \LangXVar{} programs to
  3303. \LangXVar{} programs that no longer use program variables.
  3304. Thus, the \key{assign-homes} pass is responsible for placing all of
  3305. the program variables in registers or on the stack. For runtime
  3306. efficiency, it is better to place variables in registers, but as there
  3307. are only 16 registers, some programs must necessarily resort to
  3308. placing some variables on the stack. In this chapter we focus on the
  3309. mechanics of placing variables on the stack. We study an algorithm for
  3310. placing variables in registers in
  3311. Chapter~\ref{ch:register-allocation-Lvar}.
  3312. Consider again the following \LangVar{} program from
  3313. Section~\ref{sec:remove-complex-opera-Lvar}.
  3314. % var_test_20.rkt
  3315. {\if\edition\racketEd
  3316. \begin{lstlisting}
  3317. (let ([a 42])
  3318. (let ([b a])
  3319. b))
  3320. \end{lstlisting}
  3321. \fi}
  3322. {\if\edition\pythonEd
  3323. \begin{lstlisting}
  3324. a = 42
  3325. b = a
  3326. print(b)
  3327. \end{lstlisting}
  3328. \fi}
  3329. %
  3330. The output of \code{select\_instructions} is shown below, on the left,
  3331. and the output of \code{assign\_homes} is on the right. In this
  3332. example, we assign variable \code{a} to stack location
  3333. \code{-8(\%rbp)} and variable \code{b} to location \code{-16(\%rbp)}.
  3334. \begin{transformation}
  3335. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  3336. movq $42, a
  3337. movq a, b
  3338. movq b, %rax
  3339. \end{lstlisting}
  3340. \compilesto
  3341. %stack-space: 16
  3342. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  3343. movq $42, -8(%rbp)
  3344. movq -8(%rbp), -16(%rbp)
  3345. movq -16(%rbp), %rax
  3346. \end{lstlisting}
  3347. \end{transformation}
  3348. \racket{The \code{locals-types} entry in the $\itm{info}$ of the
  3349. \code{X86Program} node is an alist mapping all the variables in the
  3350. program to their types (for now just \code{Integer}). The
  3351. \code{assign\_homes} pass should replace all uses of those variables
  3352. with stack locations. As an aside, the \code{locals-types} entry is
  3353. computed by \code{type-check-Cvar} in the support code, which
  3354. installs it in the $\itm{info}$ field of the \code{CProgram} node,
  3355. which should be propagated to the \code{X86Program} node.}
  3356. %
  3357. \python{The \code{assign\_homes} pass should replace all uses of
  3358. variables with stack locations.}
  3359. %
  3360. In the process of assigning variables to stack locations, it is
  3361. convenient for you to compute and store the size of the frame (in
  3362. bytes) in%
  3363. \racket{the $\itm{info}$ field of the \key{X86Program} node, with the key \code{stack-space}}
  3364. %
  3365. \python{the field \code{stack\_space} of the \key{X86Program} node},
  3366. which is needed later to generate the conclusion of the \code{main}
  3367. procedure. The x86-64 standard requires the frame size to be a
  3368. multiple of 16 bytes.\index{subject}{frame}
  3369. % TODO: store the number of variables instead? -Jeremy
  3370. \begin{exercise}\normalfont
  3371. Implement the \key{assign\_homes} pass in
  3372. \racket{\code{compiler.rkt}}\python{\code{compiler.py}}, defining
  3373. auxiliary functions for each of the non-terminals in the \LangXVar{}
  3374. grammar. We recommend that the auxiliary functions take an extra
  3375. parameter that maps variable names to homes (stack locations for now).
  3376. %
  3377. {\if\edition\racketEd
  3378. In the \code{run-tests.rkt} script, add the following entry to the
  3379. list of \code{passes} and then run the script to test your compiler.
  3380. \begin{lstlisting}
  3381. (list "assign homes" assign-homes interp_x86-0)
  3382. \end{lstlisting}
  3383. \fi}
  3384. {\if\edition\pythonEd
  3385. Run the \code{run-tests.py} script to to check
  3386. whether the output programs produce the same result as the input
  3387. programs.
  3388. \fi}
  3389. \end{exercise}
  3390. \section{Patch Instructions}
  3391. \label{sec:patch-s0}
  3392. The \code{patch\_instructions} pass compiles from \LangXVar{} to
  3393. \LangXInt{} by making sure that each instruction adheres to the
  3394. restriction that at most one argument of an instruction may be a
  3395. memory reference.
  3396. We return to the following example.\\
  3397. \begin{minipage}{0.5\textwidth}
  3398. % var_test_20.rkt
  3399. {\if\edition\racketEd
  3400. \begin{lstlisting}
  3401. (let ([a 42])
  3402. (let ([b a])
  3403. b))
  3404. \end{lstlisting}
  3405. \fi}
  3406. {\if\edition\pythonEd
  3407. \begin{lstlisting}
  3408. a = 42
  3409. b = a
  3410. print(b)
  3411. \end{lstlisting}
  3412. \fi}
  3413. \end{minipage}\\
  3414. The \key{assign\_homes} pass produces the following translation. \\
  3415. \begin{minipage}{0.5\textwidth}
  3416. {\if\edition\racketEd
  3417. \begin{lstlisting}
  3418. movq $42, -8(%rbp)
  3419. movq -8(%rbp), -16(%rbp)
  3420. movq -16(%rbp), %rax
  3421. \end{lstlisting}
  3422. \fi}
  3423. {\if\edition\pythonEd
  3424. \begin{lstlisting}
  3425. movq 42, -8(%rbp)
  3426. movq -8(%rbp), -16(%rbp)
  3427. movq -16(%rbp), %rdi
  3428. callq print_int
  3429. \end{lstlisting}
  3430. \fi}
  3431. \end{minipage}\\
  3432. The second \key{movq} instruction is problematic because both
  3433. arguments are stack locations. We suggest fixing this problem by
  3434. moving from the source location to the register \key{rax} and then
  3435. from \key{rax} to the destination location, as follows.
  3436. \begin{lstlisting}
  3437. movq -8(%rbp), %rax
  3438. movq %rax, -16(%rbp)
  3439. \end{lstlisting}
  3440. \begin{exercise}
  3441. \normalfont Implement the \key{patch\_instructions} pass in
  3442. \racket{\code{compiler.rkt}}\python{\code{compiler.py}}.
  3443. Create three new example programs that are
  3444. designed to exercise all of the interesting cases in this pass.
  3445. %
  3446. {\if\edition\racketEd
  3447. In the \code{run-tests.rkt} script, add the following entry to the
  3448. list of \code{passes} and then run the script to test your compiler.
  3449. \begin{lstlisting}
  3450. (list "patch instructions" patch_instructions interp_x86-0)
  3451. \end{lstlisting}
  3452. \fi}
  3453. {\if\edition\pythonEd
  3454. Run the \code{run-tests.py} script to to check
  3455. whether the output programs produce the same result as the input
  3456. programs.
  3457. \fi}
  3458. \end{exercise}
  3459. \section{Generate Prelude and Conclusion}
  3460. \label{sec:print-x86}
  3461. \index{subject}{prelude}\index{subject}{conclusion}
  3462. The last step of the compiler from \LangVar{} to x86 is to generate
  3463. the \code{main} function with a prelude and conclusion wrapped around
  3464. the rest of the program, as shown in Figure~\ref{fig:p1-x86} and
  3465. discussed in Section~\ref{sec:x86}.
  3466. When running on Mac OS X, your compiler should prefix an underscore to
  3467. all labels, e.g., changing \key{main} to \key{\_main}.
  3468. %
  3469. \racket{The Racket call \code{(system-type 'os)} is useful for
  3470. determining which operating system the compiler is running on. It
  3471. returns \code{'macosx}, \code{'unix}, or \code{'windows}.}
  3472. %
  3473. \python{The Python \code{platform} library includes a \code{system()}
  3474. function that returns \code{'Linux'}, \code{'Windows'}, or
  3475. \code{'Darwin'} (for Mac).}
  3476. \begin{exercise}\normalfont
  3477. %
  3478. Implement the \key{prelude\_and\_conclusion} pass in
  3479. \racket{\code{compiler.rkt}}\python{\code{compiler.py}}.
  3480. %
  3481. {\if\edition\racketEd
  3482. In the \code{run-tests.rkt} script, add the following entry to the
  3483. list of \code{passes} and then run the script to test your compiler.
  3484. \begin{lstlisting}
  3485. (list "prelude and conclusion" prelude-and-conclusion interp_x86-0)
  3486. \end{lstlisting}
  3487. %
  3488. Uncomment the call to the \key{compiler-tests} function
  3489. (Appendix~\ref{appendix:utilities}), which tests your complete
  3490. compiler by executing the generated x86 code. It translates the x86
  3491. AST that you produce into a string by invoking the \code{print-x86}
  3492. method of the \code{print-x86-class} in \code{utilities.rkt}. Compile
  3493. the provided \key{runtime.c} file to \key{runtime.o} using
  3494. \key{gcc}. Run the script to test your compiler.
  3495. %
  3496. \fi}
  3497. {\if\edition\pythonEd
  3498. %
  3499. Run the \code{run-tests.py} script to to check whether the output
  3500. programs produce the same result as the input programs. That script
  3501. translates the x86 AST that you produce into a string by invoking the
  3502. \code{repr} method that is implemented by the x86 AST classes in
  3503. \code{x86\_ast.py}.
  3504. %
  3505. \fi}
  3506. \end{exercise}
  3507. \section{Challenge: Partial Evaluator for \LangVar{}}
  3508. \label{sec:pe-Lvar}
  3509. \index{subject}{partial evaluation}
  3510. This section describes two optional challenge exercises that involve
  3511. adapting and improving the partial evaluator for \LangInt{} that was
  3512. introduced in Section~\ref{sec:partial-evaluation}.
  3513. \begin{exercise}\label{ex:pe-Lvar}
  3514. \normalfont
  3515. Adapt the partial evaluator from Section~\ref{sec:partial-evaluation}
  3516. (Figure~\ref{fig:pe-arith}) so that it applies to \LangVar{} programs
  3517. instead of \LangInt{} programs. Recall that \LangVar{} adds variables and
  3518. %
  3519. \racket{\key{let} binding}\python{assignment}
  3520. %
  3521. to the \LangInt{} language, so you will need to add cases for them in
  3522. the \code{pe\_exp}
  3523. %
  3524. \racket{function}
  3525. %
  3526. \python{and \code{pe\_stmt} functions}.
  3527. %
  3528. Once complete, add the partial evaluation pass to the front of your
  3529. compiler and make sure that your compiler still passes all of the
  3530. tests.
  3531. \end{exercise}
  3532. \begin{exercise}
  3533. \normalfont
  3534. Improve on the partial evaluator by replacing the \code{pe\_neg} and
  3535. \code{pe\_add} auxiliary functions with functions that know more about
  3536. arithmetic. For example, your partial evaluator should translate
  3537. {\if\edition\racketEd
  3538. \[
  3539. \code{(+ 1 (+ (read) 1))} \qquad \text{into} \qquad
  3540. \code{(+ 2 (read))}
  3541. \]
  3542. \fi}
  3543. {\if\edition\pythonEd
  3544. \[
  3545. \code{1 + (input\_int() + 1)} \qquad \text{into} \qquad
  3546. \code{2 + input\_int()}
  3547. \]
  3548. \fi}
  3549. To accomplish this, the \code{pe\_exp} function should produce output
  3550. in the form of the $\itm{residual}$ non-terminal of the following
  3551. grammar. The idea is that when processing an addition expression, we
  3552. can always produce either 1) an integer constant, 2) an addition
  3553. expression with an integer constant on the left-hand side but not the
  3554. right-hand side, or 3) or an addition expression in which neither
  3555. subexpression is a constant.
  3556. {\if\edition\racketEd
  3557. \[
  3558. \begin{array}{lcl}
  3559. \itm{inert} &::=& \Var
  3560. \MID \LP\key{read}\RP
  3561. \MID \LP\key{-} ~\Var\RP
  3562. \MID \LP\key{-} ~\LP\key{read}\RP\RP
  3563. \MID \LP\key{+} ~ \itm{inert} ~ \itm{inert}\RP\\
  3564. &\MID& \LP\key{let}~\LP\LS\Var~\itm{residual}\RS\RP~ \itm{residual} \RP \\
  3565. \itm{residual} &::=& \Int
  3566. \MID \LP\key{+}~ \Int~ \itm{inert}\RP
  3567. \MID \itm{inert}
  3568. \end{array}
  3569. \]
  3570. \fi}
  3571. {\if\edition\pythonEd
  3572. \[
  3573. \begin{array}{lcl}
  3574. \itm{inert} &::=& \Var
  3575. \MID \key{input\_int}\LP\RP
  3576. \MID \key{-} \Var
  3577. \MID \key{-} \key{input\_int}\LP\RP
  3578. \MID \itm{inert} ~ \key{+} ~ \itm{inert}\\
  3579. \itm{residual} &::=& \Int
  3580. \MID \Int ~ \key{+} ~ \itm{inert}
  3581. \MID \itm{inert}
  3582. \end{array}
  3583. \]
  3584. \fi}
  3585. The \code{pe\_add} and \code{pe\_neg} functions may assume that their
  3586. inputs are $\itm{residual}$ expressions and they should return
  3587. $\itm{residual}$ expressions. Once the improvements are complete,
  3588. make sure that your compiler still passes all of the tests. After
  3589. all, fast code is useless if it produces incorrect results!
  3590. \end{exercise}
  3591. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  3592. \chapter{Register Allocation}
  3593. \label{ch:register-allocation-Lvar}
  3594. \index{subject}{register allocation}
  3595. In Chapter~\ref{ch:Lvar} we learned how to store variables on the
  3596. stack. In this chapter we learn how to improve the performance of the
  3597. generated code by assigning some variables to registers. The CPU can
  3598. access a register in a single cycle, whereas accessing the stack can
  3599. take 10s to 100s of cycles. The program in Figure~\ref{fig:reg-eg}
  3600. serves as a running example. The source program is on the left and the
  3601. output of instruction selection is on the right. The program is almost
  3602. in the x86 assembly language but it still uses variables.
  3603. \begin{figure}
  3604. \begin{minipage}{0.45\textwidth}
  3605. Example \LangVar{} program:
  3606. % var_test_28.rkt
  3607. {\if\edition\racketEd
  3608. \begin{lstlisting}
  3609. (let ([v 1])
  3610. (let ([w 42])
  3611. (let ([x (+ v 7)])
  3612. (let ([y x])
  3613. (let ([z (+ x w)])
  3614. (+ z (- y)))))))
  3615. \end{lstlisting}
  3616. \fi}
  3617. {\if\edition\pythonEd
  3618. \begin{lstlisting}
  3619. v = 1
  3620. w = 42
  3621. x = v + 7
  3622. y = x
  3623. z = x + w
  3624. print(z + (- y))
  3625. \end{lstlisting}
  3626. \fi}
  3627. \end{minipage}
  3628. \begin{minipage}{0.45\textwidth}
  3629. After instruction selection:
  3630. {\if\edition\racketEd
  3631. \begin{lstlisting}
  3632. locals-types:
  3633. x : Integer, y : Integer,
  3634. z : Integer, t : Integer,
  3635. v : Integer, w : Integer
  3636. start:
  3637. movq $1, v
  3638. movq $42, w
  3639. movq v, x
  3640. addq $7, x
  3641. movq x, y
  3642. movq x, z
  3643. addq w, z
  3644. movq y, t
  3645. negq t
  3646. movq z, %rax
  3647. addq t, %rax
  3648. jmp conclusion
  3649. \end{lstlisting}
  3650. \fi}
  3651. {\if\edition\pythonEd
  3652. \begin{lstlisting}
  3653. movq $1, v
  3654. movq $42, w
  3655. movq v, x
  3656. addq $7, x
  3657. movq x, y
  3658. movq x, z
  3659. addq w, z
  3660. movq y, tmp_0
  3661. negq tmp_0
  3662. movq z, tmp_1
  3663. addq tmp_0, tmp_1
  3664. movq tmp_1, %rdi
  3665. callq print_int
  3666. \end{lstlisting}
  3667. \fi}
  3668. \end{minipage}
  3669. \caption{A running example for register allocation.}
  3670. \label{fig:reg-eg}
  3671. \end{figure}
  3672. The goal of register allocation is to fit as many variables into
  3673. registers as possible. Some programs have more variables than
  3674. registers so we cannot always map each variable to a different
  3675. register. Fortunately, it is common for different variables to be
  3676. needed during different periods of time during program execution, and
  3677. in such cases several variables can be mapped to the same register.
  3678. Consider variables \code{x} and \code{z} in Figure~\ref{fig:reg-eg}.
  3679. After the variable \code{x} is moved to \code{z} it is no longer
  3680. needed. Variable \code{z}, on the other hand, is used only after this
  3681. point, so \code{x} and \code{z} could share the same register. The
  3682. topic of Section~\ref{sec:liveness-analysis-Lvar} is how to compute
  3683. where a variable is needed. Once we have that information, we compute
  3684. which variables are needed at the same time, i.e., which ones
  3685. \emph{interfere} with each other, and represent this relation as an
  3686. undirected graph whose vertices are variables and edges indicate when
  3687. two variables interfere (Section~\ref{sec:build-interference}). We
  3688. then model register allocation as a graph coloring problem
  3689. (Section~\ref{sec:graph-coloring}).
  3690. If we run out of registers despite these efforts, we place the
  3691. remaining variables on the stack, similar to what we did in
  3692. Chapter~\ref{ch:Lvar}. It is common to use the verb \emph{spill} for
  3693. assigning a variable to a stack location. The decision to spill a
  3694. variable is handled as part of the graph coloring process.
  3695. We make the simplifying assumption that each variable is assigned to
  3696. one location (a register or stack address). A more sophisticated
  3697. approach is to assign a variable to one or more locations in different
  3698. regions of the program. For example, if a variable is used many times
  3699. in short sequence and then only used again after many other
  3700. instructions, it could be more efficient to assign the variable to a
  3701. register during the initial sequence and then move it to the stack for
  3702. the rest of its lifetime. We refer the interested reader to
  3703. \citet{Cooper:2011aa} Chapter 13 for more information about that
  3704. approach.
  3705. % discuss prioritizing variables based on how much they are used.
  3706. \section{Registers and Calling Conventions}
  3707. \label{sec:calling-conventions}
  3708. \index{subject}{calling conventions}
  3709. As we perform register allocation, we need to be aware of the
  3710. \emph{calling conventions} \index{subject}{calling conventions} that govern how
  3711. functions calls are performed in x86.
  3712. %
  3713. Even though \LangVar{} does not include programmer-defined functions,
  3714. our generated code includes a \code{main} function that is called by
  3715. the operating system and our generated code contains calls to the
  3716. \code{read\_int} function.
  3717. Function calls require coordination between two pieces of code that
  3718. may be written by different programmers or generated by different
  3719. compilers. Here we follow the System V calling conventions that are
  3720. used by the GNU C compiler on Linux and
  3721. MacOS~\citep{Bryant:2005aa,Matz:2013aa}.
  3722. %
  3723. The calling conventions include rules about how functions share the
  3724. use of registers. In particular, the caller is responsible for freeing
  3725. up some registers prior to the function call for use by the callee.
  3726. These are called the \emph{caller-saved registers}
  3727. \index{subject}{caller-saved registers}
  3728. and they are
  3729. \begin{lstlisting}
  3730. rax rcx rdx rsi rdi r8 r9 r10 r11
  3731. \end{lstlisting}
  3732. On the other hand, the callee is responsible for preserving the values
  3733. of the \emph{callee-saved registers}, \index{subject}{callee-saved registers}
  3734. which are
  3735. \begin{lstlisting}
  3736. rsp rbp rbx r12 r13 r14 r15
  3737. \end{lstlisting}
  3738. We can think about this caller/callee convention from two points of
  3739. view, the caller view and the callee view:
  3740. \begin{itemize}
  3741. \item The caller should assume that all the caller-saved registers get
  3742. overwritten with arbitrary values by the callee. On the other hand,
  3743. the caller can safely assume that all the callee-saved registers
  3744. contain the same values after the call that they did before the
  3745. call.
  3746. \item The callee can freely use any of the caller-saved registers.
  3747. However, if the callee wants to use a callee-saved register, the
  3748. callee must arrange to put the original value back in the register
  3749. prior to returning to the caller. This can be accomplished by saving
  3750. the value to the stack in the prelude of the function and restoring
  3751. the value in the conclusion of the function.
  3752. \end{itemize}
  3753. In x86, registers are also used for passing arguments to a function
  3754. and for the return value. In particular, the first six arguments to a
  3755. function are passed in the following six registers, in this order.
  3756. \begin{lstlisting}
  3757. rdi rsi rdx rcx r8 r9
  3758. \end{lstlisting}
  3759. If there are more than six arguments, then the convention is to use
  3760. space on the frame of the caller for the rest of the
  3761. arguments. However, in Chapter~\ref{ch:Rfun} we arrange never to
  3762. need more than six arguments.
  3763. %
  3764. \racket{For now, the only function we care about is \code{read\_int}
  3765. and it takes zero arguments.}
  3766. %
  3767. \python{For now, the only functions we care about are \code{read\_int}
  3768. and \code{print\_int}, which take zero and one argument, respectively.}
  3769. %
  3770. The register \code{rax} is used for the return value of a function.
  3771. The next question is how these calling conventions impact register
  3772. allocation. Consider the \LangVar{} program in
  3773. Figure~\ref{fig:example-calling-conventions}. We first analyze this
  3774. example from the caller point of view and then from the callee point
  3775. of view.
  3776. The program makes two calls to \READOP{}. Also, the variable \code{x}
  3777. is in use during the second call to \READOP{}, so we need to make sure
  3778. that the value in \code{x} does not get accidentally wiped out by the
  3779. call to \READOP{}. One obvious approach is to save all the values in
  3780. caller-saved registers to the stack prior to each function call, and
  3781. restore them after each call. That way, if the register allocator
  3782. chooses to assign \code{x} to a caller-saved register, its value will
  3783. be preserved across the call to \READOP{}. However, saving and
  3784. restoring to the stack is relatively slow. If \code{x} is not used
  3785. many times, it may be better to assign \code{x} to a stack location in
  3786. the first place. Or better yet, if we can arrange for \code{x} to be
  3787. placed in a callee-saved register, then it won't need to be saved and
  3788. restored during function calls.
  3789. The approach that we recommend for variables that are in use during a
  3790. function call is to either assign them to callee-saved registers or to
  3791. spill them to the stack. On the other hand, for variables that are not
  3792. in use during a function call, we try the following alternatives in
  3793. order 1) look for an available caller-saved register (to leave room
  3794. for other variables in the callee-saved register), 2) look for a
  3795. callee-saved register, and 3) spill the variable to the stack.
  3796. It is straightforward to implement this approach in a graph coloring
  3797. register allocator. First, we know which variables are in use during
  3798. every function call because we compute that information for every
  3799. instruction (Section~\ref{sec:liveness-analysis-Lvar}). Second, when
  3800. we build the interference graph
  3801. (Section~\ref{sec:build-interference}), we can place an edge between
  3802. each of these call-live variables and the caller-saved registers in
  3803. the interference graph. This will prevent the graph coloring algorithm
  3804. from assigning them to caller-saved registers.
  3805. Returning to the example in
  3806. Figure~\ref{fig:example-calling-conventions}, let us analyze the
  3807. generated x86 code on the right-hand side. Notice that variable
  3808. \code{x} is assigned to \code{rbx}, a callee-saved register. Thus, it
  3809. is already in a safe place during the second call to
  3810. \code{read\_int}. Next, notice that variable \code{y} is assigned to
  3811. \code{rcx}, a caller-saved register, because \code{y} is not in the
  3812. live-after set of a \code{callq} instruction.
  3813. Next we analyze the example from the callee point of view, focusing on
  3814. the prelude and conclusion of the \code{main} function. As usual the
  3815. prelude begins with saving the \code{rbp} register to the stack and
  3816. setting the \code{rbp} to the current stack pointer. We now know why
  3817. it is necessary to save the \code{rbp}: it is a callee-saved register.
  3818. The prelude then pushes \code{rbx} to the stack because 1) \code{rbx}
  3819. is a callee-saved register and 2) \code{rbx} is assigned to a variable
  3820. (\code{x}). The other callee-saved registers are not saved in the
  3821. prelude because they are not used. The prelude subtracts 8 bytes from
  3822. the \code{rsp} to make it 16-byte aligned. Shifting attention to the
  3823. conclusion, we see that \code{rbx} is restored from the stack with a
  3824. \code{popq} instruction.
  3825. \index{subject}{prelude}\index{subject}{conclusion}
  3826. \begin{figure}[tp]
  3827. \begin{minipage}{0.45\textwidth}
  3828. Example \LangVar{} program:
  3829. %var_test_14.rkt
  3830. {\if\edition\racketEd
  3831. \begin{lstlisting}
  3832. (let ([x (read)])
  3833. (let ([y (read)])
  3834. (+ (+ x y) 42)))
  3835. \end{lstlisting}
  3836. \fi}
  3837. {\if\edition\pythonEd
  3838. \begin{lstlisting}
  3839. x = input_int()
  3840. y = input_int()
  3841. print((x + y) + 42)
  3842. \end{lstlisting}
  3843. \fi}
  3844. \end{minipage}
  3845. \begin{minipage}{0.45\textwidth}
  3846. Generated x86 assembly:
  3847. {\if\edition\racketEd
  3848. \begin{lstlisting}
  3849. start:
  3850. callq read_int
  3851. movq %rax, %rbx
  3852. callq read_int
  3853. movq %rax, %rcx
  3854. addq %rcx, %rbx
  3855. movq %rbx, %rax
  3856. addq $42, %rax
  3857. jmp _conclusion
  3858. .globl main
  3859. main:
  3860. pushq %rbp
  3861. movq %rsp, %rbp
  3862. pushq %rbx
  3863. subq $8, %rsp
  3864. jmp start
  3865. conclusion:
  3866. addq $8, %rsp
  3867. popq %rbx
  3868. popq %rbp
  3869. retq
  3870. \end{lstlisting}
  3871. \fi}
  3872. {\if\edition\pythonEd
  3873. \begin{lstlisting}
  3874. .globl main
  3875. main:
  3876. pushq %rbp
  3877. movq %rsp, %rbp
  3878. pushq %rbx
  3879. subq $8, %rsp
  3880. callq read_int
  3881. movq %rax, %rbx
  3882. callq read_int
  3883. movq %rax, %rcx
  3884. movq %rbx, %rdx
  3885. addq %rcx, %rdx
  3886. movq %rdx, %rcx
  3887. addq $42, %rcx
  3888. movq %rcx, %rdi
  3889. callq print_int
  3890. addq $8, %rsp
  3891. popq %rbx
  3892. popq %rbp
  3893. retq
  3894. \end{lstlisting}
  3895. \fi}
  3896. \end{minipage}
  3897. \caption{An example with function calls.}
  3898. \label{fig:example-calling-conventions}
  3899. \end{figure}
  3900. %\clearpage
  3901. \section{Liveness Analysis}
  3902. \label{sec:liveness-analysis-Lvar}
  3903. \index{subject}{liveness analysis}
  3904. The \code{uncover\_live} \racket{pass}\python{function}
  3905. performs \emph{liveness analysis}, that
  3906. is, it discovers which variables are in-use in different regions of a
  3907. program.
  3908. %
  3909. A variable or register is \emph{live} at a program point if its
  3910. current value is used at some later point in the program. We refer to
  3911. variables, stack locations, and registers collectively as
  3912. \emph{locations}.
  3913. %
  3914. Consider the following code fragment in which there are two writes to
  3915. \code{b}. Are \code{a} and \code{b} both live at the same time?
  3916. \begin{center}
  3917. \begin{minipage}{0.96\textwidth}
  3918. \begin{lstlisting}[numbers=left,numberstyle=\tiny]
  3919. movq $5, a
  3920. movq $30, b
  3921. movq a, c
  3922. movq $10, b
  3923. addq b, c
  3924. \end{lstlisting}
  3925. \end{minipage}
  3926. \end{center}
  3927. The answer is no because \code{a} is live from line 1 to 3 and
  3928. \code{b} is live from line 4 to 5. The integer written to \code{b} on
  3929. line 2 is never used because it is overwritten (line 4) before the
  3930. next read (line 5).
  3931. The live locations can be computed by traversing the instruction
  3932. sequence back to front (i.e., backwards in execution order). Let
  3933. $I_1,\ldots, I_n$ be the instruction sequence. We write
  3934. $L_{\mathsf{after}}(k)$ for the set of live locations after
  3935. instruction $I_k$ and $L_{\mathsf{before}}(k)$ for the set of live
  3936. locations before instruction $I_k$.
  3937. \racket{We recommend representing these
  3938. sets with the Racket \code{set} data structure described in
  3939. Figure~\ref{fig:set}.}
  3940. \python{We recommend representing these sets with the Python
  3941. \href{https://docs.python.org/3.10/library/stdtypes.html\#set-types-set-frozenset}{\code{set}}
  3942. data structure.}
  3943. {\if\edition\racketEd
  3944. \begin{figure}[tp]
  3945. %\begin{wrapfigure}[19]{l}[0.75in]{0.55\textwidth}
  3946. \small
  3947. \begin{tcolorbox}[title=\href{https://docs.racket-lang.org/reference/sets.html}{The Racket Set Package}]
  3948. A \emph{set} is an unordered collection of elements without duplicates.
  3949. Here are some of the operations defined on sets.
  3950. \index{subject}{set}
  3951. \begin{description}
  3952. \item[$\LP\code{set}~v~\ldots\RP$] constructs a set containing the specified elements.
  3953. \item[$\LP\code{set-union}~set_1~set_2\RP$] returns the union of the two sets.
  3954. \item[$\LP\code{set-subtract}~set_1~set_2\RP$] returns the set
  3955. difference of the two sets.
  3956. \item[$\LP\code{set-member?}~set~v\RP$] answers whether element $v$ is in $set$.
  3957. \item[$\LP\code{set-count}~set\RP$] returns the number of unique elements in $set$.
  3958. \item[$\LP\code{set->list}~set\RP$] converts $set$ to a list.
  3959. \end{description}
  3960. \end{tcolorbox}
  3961. %\end{wrapfigure}
  3962. \caption{The \code{set} data structure.}
  3963. \label{fig:set}
  3964. \end{figure}
  3965. \fi}
  3966. The live locations after an instruction are always the same as the
  3967. live locations before the next instruction.
  3968. \index{subject}{live-after} \index{subject}{live-before}
  3969. \begin{equation} \label{eq:live-after-before-next}
  3970. L_{\mathsf{after}}(k) = L_{\mathsf{before}}(k+1)
  3971. \end{equation}
  3972. To start things off, there are no live locations after the last
  3973. instruction, so
  3974. \begin{equation}\label{eq:live-last-empty}
  3975. L_{\mathsf{after}}(n) = \emptyset
  3976. \end{equation}
  3977. We then apply the following rule repeatedly, traversing the
  3978. instruction sequence back to front.
  3979. \begin{equation}\label{eq:live-before-after-minus-writes-plus-reads}
  3980. L_{\mathtt{before}}(k) = (L_{\mathtt{after}}(k) - W(k)) \cup R(k),
  3981. \end{equation}
  3982. where $W(k)$ are the locations written to by instruction $I_k$ and
  3983. $R(k)$ are the locations read by instruction $I_k$.
  3984. {\if\edition\racketEd
  3985. There is a special case for \code{jmp} instructions. The locations
  3986. that are live before a \code{jmp} should be the locations in
  3987. $L_{\mathtt{before}}$ at the target of the jump. So we recommend
  3988. maintaining an alist named \code{label->live} that maps each label to
  3989. the $L_{\mathtt{before}}$ for the first instruction in its block. For
  3990. now the only \code{jmp} in a \LangXVar{} program is the one at the
  3991. end, to the conclusion. (For example, see Figure~\ref{fig:reg-eg}.)
  3992. The conclusion reads from \ttm{rax} and \ttm{rsp}, so the alist should
  3993. map \code{conclusion} to the set $\{\ttm{rax},\ttm{rsp}\}$.
  3994. \fi}
  3995. Let us walk through the above example, applying these formulas
  3996. starting with the instruction on line 5. We collect the answers in
  3997. Figure~\ref{fig:liveness-example-0}. The $L_{\mathsf{after}}$ for the
  3998. \code{addq b, c} instruction is $\emptyset$ because it is the last
  3999. instruction (formula~\ref{eq:live-last-empty}). The
  4000. $L_{\mathsf{before}}$ for this instruction is $\{\ttm{b},\ttm{c}\}$
  4001. because it reads from variables \code{b} and \code{c}
  4002. (formula~\ref{eq:live-before-after-minus-writes-plus-reads}), that is
  4003. \[
  4004. L_{\mathsf{before}}(5) = (\emptyset - \{\ttm{c}\}) \cup \{ \ttm{b}, \ttm{c} \} = \{ \ttm{b}, \ttm{c} \}
  4005. \]
  4006. Moving on the the instruction \code{movq \$10, b} at line 4, we copy
  4007. the live-before set from line 5 to be the live-after set for this
  4008. instruction (formula~\ref{eq:live-after-before-next}).
  4009. \[
  4010. L_{\mathsf{after}}(4) = \{ \ttm{b}, \ttm{c} \}
  4011. \]
  4012. This move instruction writes to \code{b} and does not read from any
  4013. variables, so we have the following live-before set
  4014. (formula~\ref{eq:live-before-after-minus-writes-plus-reads}).
  4015. \[
  4016. L_{\mathsf{before}}(4) = (\{\ttm{b},\ttm{c}\} - \{\ttm{b}\}) \cup \emptyset = \{ \ttm{c} \}
  4017. \]
  4018. The live-before for instruction \code{movq a, c}
  4019. is $\{\ttm{a}\}$ because it writes to $\{\ttm{c}\}$ and reads from $\{\ttm{a}\}$
  4020. (formula~\ref{eq:live-before-after-minus-writes-plus-reads}). The
  4021. live-before for \code{movq \$30, b} is $\{\ttm{a}\}$ because it writes to a
  4022. variable that is not live and does not read from a variable.
  4023. Finally, the live-before for \code{movq \$5, a} is $\emptyset$
  4024. because it writes to variable \code{a}.
  4025. \begin{figure}[tbp]
  4026. \begin{minipage}{0.45\textwidth}
  4027. \begin{lstlisting}[numbers=left,numberstyle=\tiny]
  4028. movq $5, a
  4029. movq $30, b
  4030. movq a, c
  4031. movq $10, b
  4032. addq b, c
  4033. \end{lstlisting}
  4034. \end{minipage}
  4035. \vrule\hspace{10pt}
  4036. \begin{minipage}{0.45\textwidth}
  4037. \begin{align*}
  4038. L_{\mathsf{before}}(1)= \emptyset,
  4039. L_{\mathsf{after}}(1)= \{\ttm{a}\}\\
  4040. L_{\mathsf{before}}(2)= \{\ttm{a}\},
  4041. L_{\mathsf{after}}(2)= \{\ttm{a}\}\\
  4042. L_{\mathsf{before}}(3)= \{\ttm{a}\},
  4043. L_{\mathsf{after}}(2)= \{\ttm{c}\}\\
  4044. L_{\mathsf{before}}(4)= \{\ttm{c}\},
  4045. L_{\mathsf{after}}(4)= \{\ttm{b},\ttm{c}\}\\
  4046. L_{\mathsf{before}}(5)= \{\ttm{b},\ttm{c}\},
  4047. L_{\mathsf{after}}(5)= \emptyset
  4048. \end{align*}
  4049. \end{minipage}
  4050. \caption{Example output of liveness analysis on a short example.}
  4051. \label{fig:liveness-example-0}
  4052. \end{figure}
  4053. \begin{exercise}\normalfont
  4054. Perform liveness analysis on the running example in
  4055. Figure~\ref{fig:reg-eg}, computing the live-before and live-after
  4056. sets for each instruction. Compare your answers to the solution
  4057. shown in Figure~\ref{fig:live-eg}.
  4058. \end{exercise}
  4059. \begin{figure}[tp]
  4060. \hspace{20pt}
  4061. \begin{minipage}{0.45\textwidth}
  4062. {\if\edition\racketEd
  4063. \begin{lstlisting}
  4064. |$\{\ttm{rsp}\}$|
  4065. movq $1, v
  4066. |$\{\ttm{v},\ttm{rsp}\}$|
  4067. movq $42, w
  4068. |$\{\ttm{v},\ttm{w},\ttm{rsp}\}$|
  4069. movq v, x
  4070. |$\{\ttm{w},\ttm{x},\ttm{rsp}\}$|
  4071. addq $7, x
  4072. |$\{\ttm{w},\ttm{x},\ttm{rsp}\}$|
  4073. movq x, y
  4074. |$\{\ttm{w},\ttm{x},\ttm{y},\ttm{rsp}\}$|
  4075. movq x, z
  4076. |$\{\ttm{w},\ttm{y},\ttm{z},\ttm{rsp}\}$|
  4077. addq w, z
  4078. |$\{\ttm{y},\ttm{z},\ttm{rsp}\}$|
  4079. movq y, t
  4080. |$\{\ttm{t},\ttm{z},\ttm{rsp}\}$|
  4081. negq t
  4082. |$\{\ttm{t},\ttm{z},\ttm{rsp}\}$|
  4083. movq z, %rax
  4084. |$\{\ttm{rax},\ttm{t},\ttm{rsp}\}$|
  4085. addq t, %rax
  4086. |$\{\ttm{rax},\ttm{rsp}\}$|
  4087. jmp conclusion
  4088. \end{lstlisting}
  4089. \fi}
  4090. {\if\edition\pythonEd
  4091. \begin{lstlisting}
  4092. movq $1, v
  4093. |$\{\ttm{v}\}$|
  4094. movq $42, w
  4095. |$\{\ttm{w}, \ttm{v}\}$|
  4096. movq v, x
  4097. |$\{\ttm{w}, \ttm{x}\}$|
  4098. addq $7, x
  4099. |$\{\ttm{w}, \ttm{x}\}$|
  4100. movq x, y
  4101. |$\{\ttm{w}, \ttm{x}, \ttm{y}\}$|
  4102. movq x, z
  4103. |$\{\ttm{w}, \ttm{y}, \ttm{z}\}$|
  4104. addq w, z
  4105. |$\{\ttm{y}, \ttm{z}\}$|
  4106. movq y, tmp_0
  4107. |$\{\ttm{tmp\_0}, \ttm{z}\}$|
  4108. negq tmp_0
  4109. |$\{\ttm{tmp\_0}, \ttm{z}\}$|
  4110. movq z, tmp_1
  4111. |$\{\ttm{tmp\_0}, \ttm{tmp\_1}\}$|
  4112. addq tmp_0, tmp_1
  4113. |$\{\ttm{tmp\_1}\}$|
  4114. movq tmp_1, %rdi
  4115. |$\{\ttm{rdi}\}$|
  4116. callq print_int
  4117. |$\{\}$|
  4118. \end{lstlisting}
  4119. \fi}
  4120. \end{minipage}
  4121. \caption{The running example annotated with live-after sets.}
  4122. \label{fig:live-eg}
  4123. \end{figure}
  4124. \begin{exercise}\normalfont
  4125. Implement the \code{uncover\_live} \racket{pass}\python{function}.
  4126. %
  4127. \racket{Store the sequence of live-after sets in the $\itm{info}$
  4128. field of the \code{Block} structure.}
  4129. %
  4130. \python{Return a dictionary that maps each instruction to its
  4131. live-after set.}
  4132. %
  4133. \racket{We recommend creating an auxiliary function that takes a list
  4134. of instructions and an initial live-after set (typically empty) and
  4135. returns the list of live-after sets.}
  4136. %
  4137. We recommend creating auxiliary functions to 1) compute the set
  4138. of locations that appear in an \Arg{}, 2) compute the locations read
  4139. by an instruction (the $R$ function), and 3) the locations written by
  4140. an instruction (the $W$ function). The \code{callq} instruction should
  4141. include all of the caller-saved registers in its write-set $W$ because
  4142. the calling convention says that those registers may be written to
  4143. during the function call. Likewise, the \code{callq} instruction
  4144. should include the appropriate argument-passing registers in its
  4145. read-set $R$, depending on the arity of the function being
  4146. called. (This is why the abstract syntax for \code{callq} includes the
  4147. arity.)
  4148. \end{exercise}
  4149. %\clearpage
  4150. \section{Build the Interference Graph}
  4151. \label{sec:build-interference}
  4152. {\if\edition\racketEd
  4153. \begin{figure}[tp]
  4154. %\begin{wrapfigure}[23]{r}[0.75in]{0.55\textwidth}
  4155. \small
  4156. \begin{tcolorbox}[title=\href{https://docs.racket-lang.org/graph/index.html}{The Racket Graph Library}]
  4157. A \emph{graph} is a collection of vertices and edges where each
  4158. edge connects two vertices. A graph is \emph{directed} if each
  4159. edge points from a source to a target. Otherwise the graph is
  4160. \emph{undirected}.
  4161. \index{subject}{graph}\index{subject}{directed graph}\index{subject}{undirected graph}
  4162. \begin{description}
  4163. %% We currently don't use directed graphs. We instead use
  4164. %% directed multi-graphs. -Jeremy
  4165. \item[$\LP\code{directed-graph}\,\itm{edges}\RP$] constructs a
  4166. directed graph from a list of edges. Each edge is a list
  4167. containing the source and target vertex.
  4168. \item[$\LP\code{undirected-graph}\,\itm{edges}\RP$] constructs a
  4169. undirected graph from a list of edges. Each edge is represented by
  4170. a list containing two vertices.
  4171. \item[$\LP\code{add-vertex!}\,\itm{graph}\,\itm{vertex}\RP$]
  4172. inserts a vertex into the graph.
  4173. \item[$\LP\code{add-edge!}\,\itm{graph}\,\itm{source}\,\itm{target}\RP$]
  4174. inserts an edge between the two vertices.
  4175. \item[$\LP\code{in-neighbors}\,\itm{graph}\,\itm{vertex}\RP$]
  4176. returns a sequence of vertices adjacent to the vertex.
  4177. \item[$\LP\code{in-vertices}\,\itm{graph}\RP$]
  4178. returns a sequence of all vertices in the graph.
  4179. \end{description}
  4180. \end{tcolorbox}
  4181. %\end{wrapfigure}
  4182. \caption{The Racket \code{graph} package.}
  4183. \label{fig:graph}
  4184. \end{figure}
  4185. \fi}
  4186. Based on the liveness analysis, we know where each location is live.
  4187. However, during register allocation, we need to answer questions of
  4188. the specific form: are locations $u$ and $v$ live at the same time?
  4189. (And therefore cannot be assigned to the same register.) To make this
  4190. question more efficient to answer, we create an explicit data
  4191. structure, an \emph{interference graph}\index{subject}{interference
  4192. graph}. An interference graph is an undirected graph that has an
  4193. edge between two locations if they are live at the same time, that is,
  4194. if they interfere with each other.
  4195. %
  4196. \racket{We recommend using the Racket \code{graph} package
  4197. (Figure~\ref{fig:graph}) to represent the interference graph.}
  4198. %
  4199. \python{We provide implementations of directed and undirected graph
  4200. data structures in the file \code{graph.py} of the support code.}
  4201. A straightforward way to compute the interference graph is to look at
  4202. the set of live locations between each instruction and add an edge to
  4203. the graph for every pair of variables in the same set. This approach
  4204. is less than ideal for two reasons. First, it can be expensive because
  4205. it takes $O(n^2)$ time to consider at every pair in a set of $n$ live
  4206. locations. Second, in the special case where two locations hold the
  4207. same value (because one was assigned to the other), they can be live
  4208. at the same time without interfering with each other.
  4209. A better way to compute the interference graph is to focus on
  4210. writes~\citep{Appel:2003fk}. The writes performed by an instruction
  4211. must not overwrite something in a live location. So for each
  4212. instruction, we create an edge between the locations being written to
  4213. and the live locations. (Except that one should not create self
  4214. edges.) Note that for the \key{callq} instruction, we consider all of
  4215. the caller-saved registers as being written to, so an edge is added
  4216. between every live variable and every caller-saved register. Also, for
  4217. \key{movq} there is the above-mentioned special case to deal with. If
  4218. a live variable $v$ is the same as the source of the \key{movq}, then
  4219. there is no need to add an edge between $v$ and the destination,
  4220. because they both hold the same value.
  4221. %
  4222. So we have the following two rules.
  4223. \begin{enumerate}
  4224. \item If instruction $I_k$ is a move instruction of the form
  4225. \key{movq} $s$\key{,} $d$, then for every $v \in
  4226. L_{\mathsf{after}}(k)$, if $v \neq d$ and $v \neq s$, add the edge
  4227. $(d,v)$.
  4228. \item For any other instruction $I_k$, for every $d \in W(k)$ and
  4229. every $v \in L_{\mathsf{after}}(k)$, if $v \neq d$, add the edge
  4230. $(d,v)$.
  4231. \end{enumerate}
  4232. Working from the top to bottom of Figure~\ref{fig:live-eg}, we apply
  4233. the above rules to each instruction. We highlight a few of the
  4234. instructions. \racket{The first instruction is \lstinline{movq $1, v}
  4235. and the live-after set is $\{\ttm{v},\ttm{rsp}\}$. Rule 1 applies,
  4236. so \code{v} interferes with \code{rsp}.}
  4237. %
  4238. \python{The first instruction is \lstinline{movq $1, v} and the
  4239. live-after set is $\{\ttm{v}\}$. Rule 1 applies but there is
  4240. no interference because $\ttm{v}$ is the destination of the move.}
  4241. %
  4242. \racket{The fourth instruction is \lstinline{addq $7, x} and the
  4243. live-after set is $\{\ttm{w},\ttm{x},\ttm{rsp}\}$. Rule 2 applies so
  4244. $\ttm{x}$ interferes with \ttm{w} and \ttm{rsp}.}
  4245. %
  4246. \python{The fourth instruction is \lstinline{addq $7, x} and the
  4247. live-after set is $\{\ttm{w},\ttm{x}\}$. Rule 2 applies so
  4248. $\ttm{x}$ interferes with \ttm{w}.}
  4249. %
  4250. \racket{The next instruction is \lstinline{movq x, y} and the
  4251. live-after set is $\{\ttm{w},\ttm{x},\ttm{y},\ttm{rsp}\}$. Rule 1
  4252. applies, so \ttm{y} interferes with \ttm{w} and \ttm{rsp} but not
  4253. \ttm{x} because \ttm{x} is the source of the move and therefore
  4254. \ttm{x} and \ttm{y} hold the same value.}
  4255. %
  4256. \python{The next instruction is \lstinline{movq x, y} and the
  4257. live-after set is $\{\ttm{w},\ttm{x},\ttm{y}\}$. Rule 1
  4258. applies, so \ttm{y} interferes with \ttm{w} but not
  4259. \ttm{x} because \ttm{x} is the source of the move and therefore
  4260. \ttm{x} and \ttm{y} hold the same value.}
  4261. %
  4262. Figure~\ref{fig:interference-results} lists the interference results
  4263. for all of the instructions and the resulting interference graph is
  4264. shown in Figure~\ref{fig:interfere}.
  4265. \begin{figure}[tbp]
  4266. \begin{quote}
  4267. {\if\edition\racketEd
  4268. \begin{tabular}{ll}
  4269. \lstinline!movq $1, v!& \ttm{v} interferes with \ttm{rsp},\\
  4270. \lstinline!movq $42, w!& \ttm{w} interferes with \ttm{v} and \ttm{rsp},\\
  4271. \lstinline!movq v, x!& \ttm{x} interferes with \ttm{w} and \ttm{rsp},\\
  4272. \lstinline!addq $7, x!& \ttm{x} interferes with \ttm{w} and \ttm{rsp},\\
  4273. \lstinline!movq x, y!& \ttm{y} interferes with \ttm{w} and \ttm{rsp} but not \ttm{x},\\
  4274. \lstinline!movq x, z!& \ttm{z} interferes with \ttm{w}, \ttm{y}, and \ttm{rsp},\\
  4275. \lstinline!addq w, z!& \ttm{z} interferes with \ttm{y} and \ttm{rsp}, \\
  4276. \lstinline!movq y, t!& \ttm{t} interferes with \ttm{z} and \ttm{rsp}, \\
  4277. \lstinline!negq t!& \ttm{t} interferes with \ttm{z} and \ttm{rsp}, \\
  4278. \lstinline!movq z, %rax! & \ttm{rax} interferes with \ttm{t} and \ttm{rsp}, \\
  4279. \lstinline!addq t, %rax! & \ttm{rax} interferes with \ttm{rsp}. \\
  4280. \lstinline!jmp conclusion!& no interference.
  4281. \end{tabular}
  4282. \fi}
  4283. {\if\edition\pythonEd
  4284. \begin{tabular}{ll}
  4285. \lstinline!movq $1, v!& no interference\\
  4286. \lstinline!movq $42, w!& \ttm{w} interferes with \ttm{v}\\
  4287. \lstinline!movq v, x!& \ttm{x} interferes with \ttm{w}\\
  4288. \lstinline!addq $7, x!& \ttm{x} interferes with \ttm{w}\\
  4289. \lstinline!movq x, y!& \ttm{y} interferes with \ttm{w} but not \ttm{x}\\
  4290. \lstinline!movq x, z!& \ttm{z} interferes with \ttm{w} and \ttm{y}\\
  4291. \lstinline!addq w, z!& \ttm{z} interferes with \ttm{y} \\
  4292. \lstinline!movq y, tmp_0!& \ttm{tmp\_0} interferes with \ttm{z} \\
  4293. \lstinline!negq tmp_0!& \ttm{tmp\_0} interferes with \ttm{z} \\
  4294. \lstinline!movq z, tmp_1! & \ttm{tmp\_0} interferes with \ttm{tmp\_1} \\
  4295. \lstinline!addq tmp_0, tmp_1! & no interference\\
  4296. \lstinline!movq tmp_1, %rdi! & no interference \\
  4297. \lstinline!callq print_int!& no interference.
  4298. \end{tabular}
  4299. \fi}
  4300. \end{quote}
  4301. \caption{Interference results for the running example.}
  4302. \label{fig:interference-results}
  4303. \end{figure}
  4304. \begin{figure}[tbp]
  4305. \large
  4306. {\if\edition\racketEd
  4307. \[
  4308. \begin{tikzpicture}[baseline=(current bounding box.center)]
  4309. \node (rax) at (0,0) {$\ttm{rax}$};
  4310. \node (rsp) at (9,2) {$\ttm{rsp}$};
  4311. \node (t1) at (0,2) {$\ttm{t}$};
  4312. \node (z) at (3,2) {$\ttm{z}$};
  4313. \node (x) at (6,2) {$\ttm{x}$};
  4314. \node (y) at (3,0) {$\ttm{y}$};
  4315. \node (w) at (6,0) {$\ttm{w}$};
  4316. \node (v) at (9,0) {$\ttm{v}$};
  4317. \draw (t1) to (rax);
  4318. \draw (t1) to (z);
  4319. \draw (z) to (y);
  4320. \draw (z) to (w);
  4321. \draw (x) to (w);
  4322. \draw (y) to (w);
  4323. \draw (v) to (w);
  4324. \draw (v) to (rsp);
  4325. \draw (w) to (rsp);
  4326. \draw (x) to (rsp);
  4327. \draw (y) to (rsp);
  4328. \path[-.,bend left=15] (z) edge node {} (rsp);
  4329. \path[-.,bend left=10] (t1) edge node {} (rsp);
  4330. \draw (rax) to (rsp);
  4331. \end{tikzpicture}
  4332. \]
  4333. \fi}
  4334. {\if\edition\pythonEd
  4335. \[
  4336. \begin{tikzpicture}[baseline=(current bounding box.center)]
  4337. \node (t0) at (0,2) {$\ttm{tmp\_0}$};
  4338. \node (t1) at (0,0) {$\ttm{tmp\_1}$};
  4339. \node (z) at (3,2) {$\ttm{z}$};
  4340. \node (x) at (6,2) {$\ttm{x}$};
  4341. \node (y) at (3,0) {$\ttm{y}$};
  4342. \node (w) at (6,0) {$\ttm{w}$};
  4343. \node (v) at (9,0) {$\ttm{v}$};
  4344. \draw (t0) to (t1);
  4345. \draw (t0) to (z);
  4346. \draw (z) to (y);
  4347. \draw (z) to (w);
  4348. \draw (x) to (w);
  4349. \draw (y) to (w);
  4350. \draw (v) to (w);
  4351. \end{tikzpicture}
  4352. \]
  4353. \fi}
  4354. \caption{The interference graph of the example program.}
  4355. \label{fig:interfere}
  4356. \end{figure}
  4357. %% Our next concern is to choose a data structure for representing the
  4358. %% interference graph. There are many choices for how to represent a
  4359. %% graph, for example, \emph{adjacency matrix}, \emph{adjacency list},
  4360. %% and \emph{edge set}~\citep{Cormen:2001uq}. The right way to choose a
  4361. %% data structure is to study the algorithm that uses the data structure,
  4362. %% determine what operations need to be performed, and then choose the
  4363. %% data structure that provide the most efficient implementations of
  4364. %% those operations. Often times the choice of data structure can have an
  4365. %% effect on the time complexity of the algorithm, as it does here. If
  4366. %% you skim the next section, you will see that the register allocation
  4367. %% algorithm needs to ask the graph for all of its vertices and, given a
  4368. %% vertex, it needs to known all of the adjacent vertices. Thus, the
  4369. %% correct choice of graph representation is that of an adjacency
  4370. %% list. There are helper functions in \code{utilities.rkt} for
  4371. %% representing graphs using the adjacency list representation:
  4372. %% \code{make-graph}, \code{add-edge}, and \code{adjacent}
  4373. %% (Appendix~\ref{appendix:utilities}).
  4374. %% %
  4375. %% \margincomment{\footnotesize To do: change to use the
  4376. %% Racket graph library. \\ --Jeremy}
  4377. %% %
  4378. %% In particular, those functions use a hash table to map each vertex to
  4379. %% the set of adjacent vertices, and the sets are represented using
  4380. %% Racket's \key{set}, which is also a hash table.
  4381. \begin{exercise}\normalfont
  4382. \racket{Implement the compiler pass named \code{build\_interference} according
  4383. to the algorithm suggested above. We recommend using the Racket
  4384. \code{graph} package to create and inspect the interference graph.
  4385. The output graph of this pass should be stored in the $\itm{info}$ field of
  4386. the program, under the key \code{conflicts}.}
  4387. %
  4388. \python{Implement a function named \code{build\_interference}
  4389. according to the algorithm suggested above that
  4390. returns the interference graph.}
  4391. \end{exercise}
  4392. \section{Graph Coloring via Sudoku}
  4393. \label{sec:graph-coloring}
  4394. \index{subject}{graph coloring}
  4395. \index{subject}{Sudoku}
  4396. \index{subject}{color}
  4397. We come to the main event, mapping variables to registers and stack
  4398. locations. Variables that interfere with each other must be mapped to
  4399. different locations. In terms of the interference graph, this means
  4400. that adjacent vertices must be mapped to different locations. If we
  4401. think of locations as colors, the register allocation problem becomes
  4402. the graph coloring problem~\citep{Balakrishnan:1996ve,Rosen:2002bh}.
  4403. The reader may be more familiar with the graph coloring problem than he
  4404. or she realizes; the popular game of Sudoku is an instance of the
  4405. graph coloring problem. The following describes how to build a graph
  4406. out of an initial Sudoku board.
  4407. \begin{itemize}
  4408. \item There is one vertex in the graph for each Sudoku square.
  4409. \item There is an edge between two vertices if the corresponding squares
  4410. are in the same row, in the same column, or if the squares are in
  4411. the same $3\times 3$ region.
  4412. \item Choose nine colors to correspond to the numbers $1$ to $9$.
  4413. \item Based on the initial assignment of numbers to squares in the
  4414. Sudoku board, assign the corresponding colors to the corresponding
  4415. vertices in the graph.
  4416. \end{itemize}
  4417. If you can color the remaining vertices in the graph with the nine
  4418. colors, then you have also solved the corresponding game of Sudoku.
  4419. Figure~\ref{fig:sudoku-graph} shows an initial Sudoku game board and
  4420. the corresponding graph with colored vertices. We map the Sudoku
  4421. number 1 to black, 2 to white, and 3 to gray. We only show edges for a
  4422. sampling of the vertices (the colored ones) because showing edges for
  4423. all of the vertices would make the graph unreadable.
  4424. \begin{figure}[tbp]
  4425. \includegraphics[width=0.45\textwidth]{figs/sudoku}
  4426. \includegraphics[width=0.5\textwidth]{figs/sudoku-graph-bw}
  4427. \caption{A Sudoku game board and the corresponding colored graph.}
  4428. \label{fig:sudoku-graph}
  4429. \end{figure}
  4430. Some techniques for playing Sudoku correspond to heuristics used in
  4431. graph coloring algorithms. For example, one of the basic techniques
  4432. for Sudoku is called Pencil Marks. The idea is to use a process of
  4433. elimination to determine what numbers are no longer available for a
  4434. square and write down those numbers in the square (writing very
  4435. small). For example, if the number $1$ is assigned to a square, then
  4436. write the pencil mark $1$ in all the squares in the same row, column,
  4437. and region to indicate that $1$ is no longer an option for those other
  4438. squares.
  4439. %
  4440. The Pencil Marks technique corresponds to the notion of
  4441. \emph{saturation}\index{subject}{saturation} due to \cite{Brelaz:1979eu}. The
  4442. saturation of a vertex, in Sudoku terms, is the set of numbers that
  4443. are no longer available. In graph terminology, we have the following
  4444. definition:
  4445. \begin{equation*}
  4446. \mathrm{saturation}(u) = \{ c \;|\; \exists v. v \in \mathrm{adjacent}(u)
  4447. \text{ and } \mathrm{color}(v) = c \}
  4448. \end{equation*}
  4449. where $\mathrm{adjacent}(u)$ is the set of vertices that share an
  4450. edge with $u$.
  4451. The Pencil Marks technique leads to a simple strategy for filling in
  4452. numbers: if there is a square with only one possible number left, then
  4453. choose that number! But what if there are no squares with only one
  4454. possibility left? One brute-force approach is to try them all: choose
  4455. the first one and if that ultimately leads to a solution, great. If
  4456. not, backtrack and choose the next possibility. One good thing about
  4457. Pencil Marks is that it reduces the degree of branching in the search
  4458. tree. Nevertheless, backtracking can be terribly time consuming. One
  4459. way to reduce the amount of backtracking is to use the
  4460. most-constrained-first heuristic (aka. minimum remaining
  4461. values)~\citep{Russell2003}. That is, when choosing a square, always
  4462. choose one with the fewest possibilities left (the vertex with the
  4463. highest saturation). The idea is that choosing highly constrained
  4464. squares earlier rather than later is better because later on there may
  4465. not be any possibilities left in the highly saturated squares.
  4466. However, register allocation is easier than Sudoku because the
  4467. register allocator can fall back to assigning variables to stack
  4468. locations when the registers run out. Thus, it makes sense to replace
  4469. backtracking with greedy search: make the best choice at the time and
  4470. keep going. We still wish to minimize the number of colors needed, so
  4471. we use the most-constrained-first heuristic in the greedy search.
  4472. Figure~\ref{fig:satur-algo} gives the pseudo-code for a simple greedy
  4473. algorithm for register allocation based on saturation and the
  4474. most-constrained-first heuristic. It is roughly equivalent to the
  4475. DSATUR graph coloring algorithm~\citep{Brelaz:1979eu}.
  4476. %,Gebremedhin:1999fk,Omari:2006uq
  4477. Just as in Sudoku, the algorithm represents colors with integers. The
  4478. integers $0$ through $k-1$ correspond to the $k$ registers that we use
  4479. for register allocation. The integers $k$ and larger correspond to
  4480. stack locations. The registers that are not used for register
  4481. allocation, such as \code{rax}, are assigned to negative integers. In
  4482. particular, we assign $-1$ to \code{rax} and $-2$ to \code{rsp}.
  4483. %% One might wonder why we include registers at all in the liveness
  4484. %% analysis and interference graph. For example, we never allocate a
  4485. %% variable to \code{rax} and \code{rsp}, so it would be harmless to
  4486. %% leave them out. As we see in Chapter~\ref{ch:Lvec}, when we begin
  4487. %% to use register for passing arguments to functions, it will be
  4488. %% necessary for those registers to appear in the interference graph
  4489. %% because those registers will also be assigned to variables, and we
  4490. %% don't want those two uses to encroach on each other. Regarding
  4491. %% registers such as \code{rax} and \code{rsp} that are not used for
  4492. %% variables, we could omit them from the interference graph but that
  4493. %% would require adding special cases to our algorithm, which would
  4494. %% complicate the logic for little gain.
  4495. \begin{figure}[btp]
  4496. \centering
  4497. \begin{lstlisting}[basicstyle=\rmfamily,deletekeywords={for,from,with,is,not,in,find},morekeywords={while},columns=fullflexible]
  4498. Algorithm: DSATUR
  4499. Input: a graph |$G$|
  4500. Output: an assignment |$\mathrm{color}[v]$| for each vertex |$v \in G$|
  4501. |$W \gets \mathrm{vertices}(G)$|
  4502. while |$W \neq \emptyset$| do
  4503. pick a vertex |$u$| from |$W$| with the highest saturation,
  4504. breaking ties randomly
  4505. find the lowest color |$c$| that is not in |$\{ \mathrm{color}[v] \;:\; v \in \mathrm{adjacent}(u)\}$|
  4506. |$\mathrm{color}[u] \gets c$|
  4507. |$W \gets W - \{u\}$|
  4508. \end{lstlisting}
  4509. \caption{The saturation-based greedy graph coloring algorithm.}
  4510. \label{fig:satur-algo}
  4511. \end{figure}
  4512. {\if\edition\racketEd
  4513. With the DSATUR algorithm in hand, let us return to the running
  4514. example and consider how to color the interference graph in
  4515. Figure~\ref{fig:interfere}.
  4516. %
  4517. We start by assigning the register nodes to their own color. For
  4518. example, \code{rax} is assigned the color $-1$ and \code{rsp} is
  4519. assigned $-2$. The variables are not yet colored, so they are
  4520. annotated with a dash. We then update the saturation for vertices that
  4521. are adjacent to a register, obtaining the following annotated
  4522. graph. For example, the saturation for \code{t} is $\{-1,-2\}$ because
  4523. it interferes with both \code{rax} and \code{rsp}.
  4524. \[
  4525. \begin{tikzpicture}[baseline=(current bounding box.center)]
  4526. \node (rax) at (0,0) {$\ttm{rax}:-1,\{-2\}$};
  4527. \node (rsp) at (10,2) {$\ttm{rsp}:-2,\{-1\}$};
  4528. \node (t1) at (0,2) {$\ttm{t}:-,\{-1,-2\}$};
  4529. \node (z) at (3,2) {$\ttm{z}:-,\{-2\}$};
  4530. \node (x) at (6,2) {$\ttm{x}:-,\{-2\}$};
  4531. \node (y) at (3,0) {$\ttm{y}:-,\{-2\}$};
  4532. \node (w) at (6,0) {$\ttm{w}:-,\{-2\}$};
  4533. \node (v) at (10,0) {$\ttm{v}:-,\{-2\}$};
  4534. \draw (t1) to (rax);
  4535. \draw (t1) to (z);
  4536. \draw (z) to (y);
  4537. \draw (z) to (w);
  4538. \draw (x) to (w);
  4539. \draw (y) to (w);
  4540. \draw (v) to (w);
  4541. \draw (v) to (rsp);
  4542. \draw (w) to (rsp);
  4543. \draw (x) to (rsp);
  4544. \draw (y) to (rsp);
  4545. \path[-.,bend left=15] (z) edge node {} (rsp);
  4546. \path[-.,bend left=10] (t1) edge node {} (rsp);
  4547. \draw (rax) to (rsp);
  4548. \end{tikzpicture}
  4549. \]
  4550. The algorithm says to select a maximally saturated vertex. So we pick
  4551. $\ttm{t}$ and color it with the first available integer, which is
  4552. $0$. We mark $0$ as no longer available for $\ttm{z}$, $\ttm{rax}$,
  4553. and \ttm{rsp} because they interfere with $\ttm{t}$.
  4554. \[
  4555. \begin{tikzpicture}[baseline=(current bounding box.center)]
  4556. \node (rax) at (0,0) {$\ttm{rax}:-1,\{0,-2\}$};
  4557. \node (rsp) at (10,2) {$\ttm{rsp}:-2,\{-1,0\}$};
  4558. \node (t1) at (0,2) {$\ttm{t}:0,\{-1,-2\}$};
  4559. \node (z) at (3,2) {$\ttm{z}:-,\{0,-2\}$};
  4560. \node (x) at (6,2) {$\ttm{x}:-,\{-2\}$};
  4561. \node (y) at (3,0) {$\ttm{y}:-,\{-2\}$};
  4562. \node (w) at (6,0) {$\ttm{w}:-,\{-2\}$};
  4563. \node (v) at (10,0) {$\ttm{v}:-,\{-2\}$};
  4564. \draw (t1) to (rax);
  4565. \draw (t1) to (z);
  4566. \draw (z) to (y);
  4567. \draw (z) to (w);
  4568. \draw (x) to (w);
  4569. \draw (y) to (w);
  4570. \draw (v) to (w);
  4571. \draw (v) to (rsp);
  4572. \draw (w) to (rsp);
  4573. \draw (x) to (rsp);
  4574. \draw (y) to (rsp);
  4575. \path[-.,bend left=15] (z) edge node {} (rsp);
  4576. \path[-.,bend left=10] (t1) edge node {} (rsp);
  4577. \draw (rax) to (rsp);
  4578. \end{tikzpicture}
  4579. \]
  4580. We repeat the process, selecting a maximally saturated vertex,
  4581. choosing is \code{z}, and color it with the first available number, which
  4582. is $1$. We add $1$ to the saturation for the neighboring vertices
  4583. \code{t}, \code{y}, \code{w}, and \code{rsp}.
  4584. \[
  4585. \begin{tikzpicture}[baseline=(current bounding box.center)]
  4586. \node (rax) at (0,0) {$\ttm{rax}:-1,\{0,-2\}$};
  4587. \node (rsp) at (10,2) {$\ttm{rsp}:-2,\{-1,0,1\}$};
  4588. \node (t1) at (0,2) {$\ttm{t}:0,\{-1,1,-2\}$};
  4589. \node (z) at (3,2) {$\ttm{z}:1,\{0,-2\}$};
  4590. \node (x) at (6,2) {$\ttm{x}:-,\{-2\}$};
  4591. \node (y) at (3,0) {$\ttm{y}:-,\{1,-2\}$};
  4592. \node (w) at (6,0) {$\ttm{w}:-,\{1,-2\}$};
  4593. \node (v) at (10,0) {$\ttm{v}:-,\{-2\}$};
  4594. \draw (t1) to (rax);
  4595. \draw (t1) to (z);
  4596. \draw (z) to (y);
  4597. \draw (z) to (w);
  4598. \draw (x) to (w);
  4599. \draw (y) to (w);
  4600. \draw (v) to (w);
  4601. \draw (v) to (rsp);
  4602. \draw (w) to (rsp);
  4603. \draw (x) to (rsp);
  4604. \draw (y) to (rsp);
  4605. \path[-.,bend left=15] (z) edge node {} (rsp);
  4606. \path[-.,bend left=10] (t1) edge node {} (rsp);
  4607. \draw (rax) to (rsp);
  4608. \end{tikzpicture}
  4609. \]
  4610. The most saturated vertices are now \code{w} and \code{y}. We color
  4611. \code{w} with the first available color, which is $0$.
  4612. \[
  4613. \begin{tikzpicture}[baseline=(current bounding box.center)]
  4614. \node (rax) at (0,0) {$\ttm{rax}:-1,\{0,-2\}$};
  4615. \node (rsp) at (10,2) {$\ttm{rsp}:-2,\{-1,0,1\}$};
  4616. \node (t1) at (0,2) {$\ttm{t}:0,\{-1,1,-2\}$};
  4617. \node (z) at (3,2) {$\ttm{z}:1,\{0,-2\}$};
  4618. \node (x) at (6,2) {$\ttm{x}:-,\{0,-2\}$};
  4619. \node (y) at (3,0) {$\ttm{y}:-,\{0,1,-2\}$};
  4620. \node (w) at (6,0) {$\ttm{w}:0,\{1,-2\}$};
  4621. \node (v) at (10,0) {$\ttm{v}:-,\{0,-2\}$};
  4622. \draw (t1) to (rax);
  4623. \draw (t1) to (z);
  4624. \draw (z) to (y);
  4625. \draw (z) to (w);
  4626. \draw (x) to (w);
  4627. \draw (y) to (w);
  4628. \draw (v) to (w);
  4629. \draw (v) to (rsp);
  4630. \draw (w) to (rsp);
  4631. \draw (x) to (rsp);
  4632. \draw (y) to (rsp);
  4633. \path[-.,bend left=15] (z) edge node {} (rsp);
  4634. \path[-.,bend left=10] (t1) edge node {} (rsp);
  4635. \draw (rax) to (rsp);
  4636. \end{tikzpicture}
  4637. \]
  4638. Vertex \code{y} is now the most highly saturated, so we color \code{y}
  4639. with $2$. We cannot choose $0$ or $1$ because those numbers are in
  4640. \code{y}'s saturation set. Indeed, \code{y} interferes with \code{w}
  4641. and \code{z}, whose colors are $0$ and $1$ respectively.
  4642. \[
  4643. \begin{tikzpicture}[baseline=(current bounding box.center)]
  4644. \node (rax) at (0,0) {$\ttm{rax}:-1,\{0,-2\}$};
  4645. \node (rsp) at (10,2) {$\ttm{rsp}:-2,\{-1,0,1,2\}$};
  4646. \node (t1) at (0,2) {$\ttm{t}:0,\{-1,1,-2\}$};
  4647. \node (z) at (3,2) {$\ttm{z}:1,\{0,2,-2\}$};
  4648. \node (x) at (6,2) {$\ttm{x}:-,\{0,-2\}$};
  4649. \node (y) at (3,0) {$\ttm{y}:2,\{0,1,-2\}$};
  4650. \node (w) at (6,0) {$\ttm{w}:0,\{1,2,-2\}$};
  4651. \node (v) at (10,0) {$\ttm{v}:-,\{0,-2\}$};
  4652. \draw (t1) to (rax);
  4653. \draw (t1) to (z);
  4654. \draw (z) to (y);
  4655. \draw (z) to (w);
  4656. \draw (x) to (w);
  4657. \draw (y) to (w);
  4658. \draw (v) to (w);
  4659. \draw (v) to (rsp);
  4660. \draw (w) to (rsp);
  4661. \draw (x) to (rsp);
  4662. \draw (y) to (rsp);
  4663. \path[-.,bend left=15] (z) edge node {} (rsp);
  4664. \path[-.,bend left=10] (t1) edge node {} (rsp);
  4665. \draw (rax) to (rsp);
  4666. \end{tikzpicture}
  4667. \]
  4668. Now \code{x} and \code{v} are the most saturated, so we color \code{v} with $1$.
  4669. \[
  4670. \begin{tikzpicture}[baseline=(current bounding box.center)]
  4671. \node (rax) at (0,0) {$\ttm{rax}:-1,\{0,-2\}$};
  4672. \node (rsp) at (10,2) {$\ttm{rsp}:-2,\{-1,0,1,2\}$};
  4673. \node (t1) at (0,2) {$\ttm{t}:0,\{-1,1,-2\}$};
  4674. \node (z) at (3,2) {$\ttm{z}:1,\{0,2,-2\}$};
  4675. \node (x) at (6,2) {$\ttm{x}:-,\{0,-2\}$};
  4676. \node (y) at (3,0) {$\ttm{y}:2,\{0,1,-2\}$};
  4677. \node (w) at (6,0) {$\ttm{w}:0,\{1,2,-2\}$};
  4678. \node (v) at (10,0) {$\ttm{v}:1,\{0,-2\}$};
  4679. \draw (t1) to (rax);
  4680. \draw (t1) to (z);
  4681. \draw (z) to (y);
  4682. \draw (z) to (w);
  4683. \draw (x) to (w);
  4684. \draw (y) to (w);
  4685. \draw (v) to (w);
  4686. \draw (v) to (rsp);
  4687. \draw (w) to (rsp);
  4688. \draw (x) to (rsp);
  4689. \draw (y) to (rsp);
  4690. \path[-.,bend left=15] (z) edge node {} (rsp);
  4691. \path[-.,bend left=10] (t1) edge node {} (rsp);
  4692. \draw (rax) to (rsp);
  4693. \end{tikzpicture}
  4694. \]
  4695. In the last step of the algorithm, we color \code{x} with $1$.
  4696. \[
  4697. \begin{tikzpicture}[baseline=(current bounding box.center)]
  4698. \node (rax) at (0,0) {$\ttm{rax}:-1,\{0,-2\}$};
  4699. \node (rsp) at (10,2) {$\ttm{rsp}:-2,\{-1,0,1,2\}$};
  4700. \node (t1) at (0,2) {$\ttm{t}:0,\{-1,1,-2\}$};
  4701. \node (z) at (3,2) {$\ttm{z}:1,\{0,2,-2\}$};
  4702. \node (x) at (6,2) {$\ttm{x}:1,\{0,-2\}$};
  4703. \node (y) at (3,0) {$\ttm{y}:2,\{0,1,-2\}$};
  4704. \node (w) at (6,0) {$\ttm{w}:0,\{1,2,-2\}$};
  4705. \node (v) at (10,0) {$\ttm{v}:1,\{0,-2\}$};
  4706. \draw (t1) to (rax);
  4707. \draw (t1) to (z);
  4708. \draw (z) to (y);
  4709. \draw (z) to (w);
  4710. \draw (x) to (w);
  4711. \draw (y) to (w);
  4712. \draw (v) to (w);
  4713. \draw (v) to (rsp);
  4714. \draw (w) to (rsp);
  4715. \draw (x) to (rsp);
  4716. \draw (y) to (rsp);
  4717. \path[-.,bend left=15] (z) edge node {} (rsp);
  4718. \path[-.,bend left=10] (t1) edge node {} (rsp);
  4719. \draw (rax) to (rsp);
  4720. \end{tikzpicture}
  4721. \]
  4722. So we obtain the following coloring:
  4723. \[
  4724. \{
  4725. \ttm{rax} \mapsto -1,
  4726. \ttm{rsp} \mapsto -2,
  4727. \ttm{t} \mapsto 0,
  4728. \ttm{z} \mapsto 1,
  4729. \ttm{x} \mapsto 1,
  4730. \ttm{y} \mapsto 2,
  4731. \ttm{w} \mapsto 0,
  4732. \ttm{v} \mapsto 1
  4733. \}
  4734. \]
  4735. \fi}
  4736. %
  4737. {\if\edition\pythonEd
  4738. %
  4739. With the DSATUR algorithm in hand, let us return to the running
  4740. example and consider how to color the interference graph in
  4741. Figure~\ref{fig:interfere}. We annotate each variable node with a dash
  4742. to indicate that it has not yet been assigned a color. The saturation
  4743. sets are also shown for each node; all of them start as the empty set.
  4744. (We do not include the register nodes in the graph below because there
  4745. were no interference edges involving registers in this program, but in
  4746. general there can be.)
  4747. %
  4748. \[
  4749. \begin{tikzpicture}[baseline=(current bounding box.center)]
  4750. \node (t0) at (0,2) {$\ttm{tmp\_0}: -, \{\}$};
  4751. \node (t1) at (0,0) {$\ttm{tmp\_1}: -, \{\}$};
  4752. \node (z) at (3,2) {$\ttm{z}: -, \{\}$};
  4753. \node (x) at (6,2) {$\ttm{x}: -, \{\}$};
  4754. \node (y) at (3,0) {$\ttm{y}: -, \{\}$};
  4755. \node (w) at (6,0) {$\ttm{w}: -, \{\}$};
  4756. \node (v) at (9,0) {$\ttm{v}: -, \{\}$};
  4757. \draw (t0) to (t1);
  4758. \draw (t0) to (z);
  4759. \draw (z) to (y);
  4760. \draw (z) to (w);
  4761. \draw (x) to (w);
  4762. \draw (y) to (w);
  4763. \draw (v) to (w);
  4764. \end{tikzpicture}
  4765. \]
  4766. The algorithm says to select a maximally saturated vertex, but they
  4767. are all equally saturated. So we flip a coin and pick $\ttm{tmp\_0}$
  4768. then color it with the first available integer, which is $0$. We mark
  4769. $0$ as no longer available for $\ttm{tmp\_1}$ and $\ttm{z}$ because
  4770. they interfere with $\ttm{tmp\_0}$.
  4771. \[
  4772. \begin{tikzpicture}[baseline=(current bounding box.center)]
  4773. \node (t0) at (0,2) {$\ttm{tmp\_0}: 0, \{\}$};
  4774. \node (t1) at (0,0) {$\ttm{tmp\_1}: -, \{0\}$};
  4775. \node (z) at (3,2) {$\ttm{z}: -, \{0\}$};
  4776. \node (x) at (6,2) {$\ttm{x}: -, \{\}$};
  4777. \node (y) at (3,0) {$\ttm{y}: -, \{\}$};
  4778. \node (w) at (6,0) {$\ttm{w}: -, \{\}$};
  4779. \node (v) at (9,0) {$\ttm{v}: -, \{\}$};
  4780. \draw (t0) to (t1);
  4781. \draw (t0) to (z);
  4782. \draw (z) to (y);
  4783. \draw (z) to (w);
  4784. \draw (x) to (w);
  4785. \draw (y) to (w);
  4786. \draw (v) to (w);
  4787. \end{tikzpicture}
  4788. \]
  4789. We repeat the process. The most saturated vertices are \code{z} and
  4790. \code{tmp\_1}, so we choose \code{z} and color it with the first
  4791. available number, which is $1$. We add $1$ to the saturation for the
  4792. neighboring vertices \code{tmp\_0}, \code{y}, and \code{w}.
  4793. \[
  4794. \begin{tikzpicture}[baseline=(current bounding box.center)]
  4795. \node (t0) at (0,2) {$\ttm{tmp\_0}: 0, \{1\}$};
  4796. \node (t1) at (0,0) {$\ttm{tmp\_1}: -, \{0\}$};
  4797. \node (z) at (3,2) {$\ttm{z}: 1, \{0\}$};
  4798. \node (x) at (6,2) {$\ttm{x}: -, \{\}$};
  4799. \node (y) at (3,0) {$\ttm{y}: -, \{1\}$};
  4800. \node (w) at (6,0) {$\ttm{w}: -, \{1\}$};
  4801. \node (v) at (9,0) {$\ttm{v}: -, \{\}$};
  4802. \draw (t0) to (t1);
  4803. \draw (t0) to (z);
  4804. \draw (z) to (y);
  4805. \draw (z) to (w);
  4806. \draw (x) to (w);
  4807. \draw (y) to (w);
  4808. \draw (v) to (w);
  4809. \end{tikzpicture}
  4810. \]
  4811. The most saturated vertices are now \code{tmp\_1}, \code{w}, and
  4812. \code{y}. We color \code{w} with the first available color, which
  4813. is $0$.
  4814. \[
  4815. \begin{tikzpicture}[baseline=(current bounding box.center)]
  4816. \node (t0) at (0,2) {$\ttm{tmp\_0}: 0, \{1\}$};
  4817. \node (t1) at (0,0) {$\ttm{tmp\_1}: -, \{0\}$};
  4818. \node (z) at (3,2) {$\ttm{z}: 1, \{0\}$};
  4819. \node (x) at (6,2) {$\ttm{x}: -, \{0\}$};
  4820. \node (y) at (3,0) {$\ttm{y}: -, \{0,1\}$};
  4821. \node (w) at (6,0) {$\ttm{w}: 0, \{1\}$};
  4822. \node (v) at (9,0) {$\ttm{v}: -, \{0\}$};
  4823. \draw (t0) to (t1);
  4824. \draw (t0) to (z);
  4825. \draw (z) to (y);
  4826. \draw (z) to (w);
  4827. \draw (x) to (w);
  4828. \draw (y) to (w);
  4829. \draw (v) to (w);
  4830. \end{tikzpicture}
  4831. \]
  4832. Now \code{y} is the most saturated, so we color it with $2$.
  4833. \[
  4834. \begin{tikzpicture}[baseline=(current bounding box.center)]
  4835. \node (t0) at (0,2) {$\ttm{tmp\_0}: 0, \{1\}$};
  4836. \node (t1) at (0,0) {$\ttm{tmp\_1}: -, \{0\}$};
  4837. \node (z) at (3,2) {$\ttm{z}: 1, \{0,2\}$};
  4838. \node (x) at (6,2) {$\ttm{x}: -, \{0\}$};
  4839. \node (y) at (3,0) {$\ttm{y}: 2, \{0,1\}$};
  4840. \node (w) at (6,0) {$\ttm{w}: 0, \{1,2\}$};
  4841. \node (v) at (9,0) {$\ttm{v}: -, \{0\}$};
  4842. \draw (t0) to (t1);
  4843. \draw (t0) to (z);
  4844. \draw (z) to (y);
  4845. \draw (z) to (w);
  4846. \draw (x) to (w);
  4847. \draw (y) to (w);
  4848. \draw (v) to (w);
  4849. \end{tikzpicture}
  4850. \]
  4851. The most saturated vertices are \code{tmp\_1}, \code{x}, and \code{v}.
  4852. We choose to color \code{v} with $1$.
  4853. \[
  4854. \begin{tikzpicture}[baseline=(current bounding box.center)]
  4855. \node (t0) at (0,2) {$\ttm{tmp\_0}: 0, \{1\}$};
  4856. \node (t1) at (0,0) {$\ttm{tmp\_1}: -, \{0\}$};
  4857. \node (z) at (3,2) {$\ttm{z}: 1, \{0,2\}$};
  4858. \node (x) at (6,2) {$\ttm{x}: -, \{0\}$};
  4859. \node (y) at (3,0) {$\ttm{y}: 2, \{0,1\}$};
  4860. \node (w) at (6,0) {$\ttm{w}: 0, \{1,2\}$};
  4861. \node (v) at (9,0) {$\ttm{v}: 1, \{0\}$};
  4862. \draw (t0) to (t1);
  4863. \draw (t0) to (z);
  4864. \draw (z) to (y);
  4865. \draw (z) to (w);
  4866. \draw (x) to (w);
  4867. \draw (y) to (w);
  4868. \draw (v) to (w);
  4869. \end{tikzpicture}
  4870. \]
  4871. We color the remaining two variables, \code{tmp\_1} and \code{x}, with $1$.
  4872. \[
  4873. \begin{tikzpicture}[baseline=(current bounding box.center)]
  4874. \node (t0) at (0,2) {$\ttm{tmp\_0}: 0, \{1\}$};
  4875. \node (t1) at (0,0) {$\ttm{tmp\_1}: 1, \{0\}$};
  4876. \node (z) at (3,2) {$\ttm{z}: 1, \{0,2\}$};
  4877. \node (x) at (6,2) {$\ttm{x}: 1, \{0\}$};
  4878. \node (y) at (3,0) {$\ttm{y}: 2, \{0,1\}$};
  4879. \node (w) at (6,0) {$\ttm{w}: 0, \{1,2\}$};
  4880. \node (v) at (9,0) {$\ttm{v}: 1, \{0\}$};
  4881. \draw (t0) to (t1);
  4882. \draw (t0) to (z);
  4883. \draw (z) to (y);
  4884. \draw (z) to (w);
  4885. \draw (x) to (w);
  4886. \draw (y) to (w);
  4887. \draw (v) to (w);
  4888. \end{tikzpicture}
  4889. \]
  4890. So we obtain the following coloring:
  4891. \[
  4892. \{ \ttm{tmp\_0} \mapsto 0,
  4893. \ttm{tmp\_1} \mapsto 1,
  4894. \ttm{z} \mapsto 1,
  4895. \ttm{x} \mapsto 1,
  4896. \ttm{y} \mapsto 2,
  4897. \ttm{w} \mapsto 0,
  4898. \ttm{v} \mapsto 1 \}
  4899. \]
  4900. \fi}
  4901. We recommend creating an auxiliary function named \code{color\_graph}
  4902. that takes an interference graph and a list of all the variables in
  4903. the program. This function should return a mapping of variables to
  4904. their colors (represented as natural numbers). By creating this helper
  4905. function, you will be able to reuse it in Chapter~\ref{ch:Rfun}
  4906. when we add support for functions.
  4907. To prioritize the processing of highly saturated nodes inside the
  4908. \code{color\_graph} function, we recommend using the priority queue
  4909. data structure \racket{described in Figure~\ref{fig:priority-queue}}\python{in the file \code{priority\_queue.py} of the support code}. \racket{In
  4910. addition, you will need to maintain a mapping from variables to their
  4911. ``handles'' in the priority queue so that you can notify the priority
  4912. queue when their saturation changes.}
  4913. {\if\edition\racketEd
  4914. \begin{figure}[tp]
  4915. %\begin{wrapfigure}[25]{r}[0.75in]{0.55\textwidth}
  4916. \small
  4917. \begin{tcolorbox}[title=Priority Queue]
  4918. A \emph{priority queue} is a collection of items in which the
  4919. removal of items is governed by priority. In a ``min'' queue,
  4920. lower priority items are removed first. An implementation is in
  4921. \code{priority\_queue.rkt} of the support code. \index{subject}{priority
  4922. queue} \index{subject}{minimum priority queue}
  4923. \begin{description}
  4924. \item[$\LP\code{make-pqueue}\,\itm{cmp}\RP$] constructs an empty
  4925. priority queue that uses the $\itm{cmp}$ predicate to determine
  4926. whether its first argument has lower or equal priority to its
  4927. second argument.
  4928. \item[$\LP\code{pqueue-count}\,\itm{queue}\RP$] returns the number of
  4929. items in the queue.
  4930. \item[$\LP\code{pqueue-push!}\,\itm{queue}\,\itm{item}\RP$] inserts
  4931. the item into the queue and returns a handle for the item in the
  4932. queue.
  4933. \item[$\LP\code{pqueue-pop!}\,\itm{queue}\RP$] returns the item with
  4934. the lowest priority.
  4935. \item[$\LP\code{pqueue-decrease-key!}\,\itm{queue}\,\itm{handle}\RP$]
  4936. notifies the queue that the priority has decreased for the item
  4937. associated with the given handle.
  4938. \end{description}
  4939. \end{tcolorbox}
  4940. %\end{wrapfigure}
  4941. \caption{The priority queue data structure.}
  4942. \label{fig:priority-queue}
  4943. \end{figure}
  4944. \fi}
  4945. With the coloring complete, we finalize the assignment of variables to
  4946. registers and stack locations. We map the first $k$ colors to the $k$
  4947. registers and the rest of the colors to stack locations. Suppose for
  4948. the moment that we have just one register to use for register
  4949. allocation, \key{rcx}. Then we have the following map from colors to
  4950. locations.
  4951. \[
  4952. \{ 0 \mapsto \key{\%rcx}, \; 1 \mapsto \key{-8(\%rbp)}, \; 2 \mapsto \key{-16(\%rbp)} \}
  4953. \]
  4954. Composing this mapping with the coloring, we arrive at the following
  4955. assignment of variables to locations.
  4956. {\if\edition\racketEd
  4957. \begin{gather*}
  4958. \{ \ttm{v} \mapsto \key{-8(\%rbp)}, \,
  4959. \ttm{w} \mapsto \key{\%rcx}, \,
  4960. \ttm{x} \mapsto \key{-8(\%rbp)}, \,
  4961. \ttm{y} \mapsto \key{-16(\%rbp)}, \\
  4962. \ttm{z} \mapsto \key{-8(\%rbp)}, \,
  4963. \ttm{t} \mapsto \key{\%rcx} \}
  4964. \end{gather*}
  4965. \fi}
  4966. {\if\edition\pythonEd
  4967. \begin{gather*}
  4968. \{ \ttm{v} \mapsto \key{-8(\%rbp)}, \,
  4969. \ttm{w} \mapsto \key{\%rcx}, \,
  4970. \ttm{x} \mapsto \key{-8(\%rbp)}, \,
  4971. \ttm{y} \mapsto \key{-16(\%rbp)}, \\
  4972. \ttm{z} \mapsto \key{-8(\%rbp)}, \,
  4973. \ttm{tmp\_0} \mapsto \key{\%rcx}, \,
  4974. \ttm{tmp\_1} \mapsto \key{-8(\%rbp)} \}
  4975. \end{gather*}
  4976. \fi}
  4977. Adapt the code from the \code{assign\_homes} pass
  4978. (Section~\ref{sec:assign-Lvar}) to replace the variables with their
  4979. assigned location. Applying the above assignment to our running
  4980. example, on the left, yields the program on the right.
  4981. % why frame size of 32? -JGS
  4982. \begin{center}
  4983. {\if\edition\racketEd
  4984. \begin{minipage}{0.3\textwidth}
  4985. \begin{lstlisting}
  4986. movq $1, v
  4987. movq $42, w
  4988. movq v, x
  4989. addq $7, x
  4990. movq x, y
  4991. movq x, z
  4992. addq w, z
  4993. movq y, t
  4994. negq t
  4995. movq z, %rax
  4996. addq t, %rax
  4997. jmp conclusion
  4998. \end{lstlisting}
  4999. \end{minipage}
  5000. $\Rightarrow\qquad$
  5001. \begin{minipage}{0.45\textwidth}
  5002. \begin{lstlisting}
  5003. movq $1, -8(%rbp)
  5004. movq $42, %rcx
  5005. movq -8(%rbp), -8(%rbp)
  5006. addq $7, -8(%rbp)
  5007. movq -8(%rbp), -16(%rbp)
  5008. movq -8(%rbp), -8(%rbp)
  5009. addq %rcx, -8(%rbp)
  5010. movq -16(%rbp), %rcx
  5011. negq %rcx
  5012. movq -8(%rbp), %rax
  5013. addq %rcx, %rax
  5014. jmp conclusion
  5015. \end{lstlisting}
  5016. \end{minipage}
  5017. \fi}
  5018. {\if\edition\pythonEd
  5019. \begin{minipage}{0.3\textwidth}
  5020. \begin{lstlisting}
  5021. movq $1, v
  5022. movq $42, w
  5023. movq v, x
  5024. addq $7, x
  5025. movq x, y
  5026. movq x, z
  5027. addq w, z
  5028. movq y, tmp_0
  5029. negq tmp_0
  5030. movq z, tmp_1
  5031. addq tmp_0, tmp_1
  5032. movq tmp_1, %rdi
  5033. callq print_int
  5034. \end{lstlisting}
  5035. \end{minipage}
  5036. $\Rightarrow\qquad$
  5037. \begin{minipage}{0.45\textwidth}
  5038. \begin{lstlisting}
  5039. movq $1, -8(%rbp)
  5040. movq $42, %rcx
  5041. movq -8(%rbp), -8(%rbp)
  5042. addq $7, -8(%rbp)
  5043. movq -8(%rbp), -16(%rbp)
  5044. movq -8(%rbp), -8(%rbp)
  5045. addq %rcx, -8(%rbp)
  5046. movq -16(%rbp), %rcx
  5047. negq %rcx
  5048. movq -8(%rbp), -8(%rbp)
  5049. addq %rcx, -8(%rbp)
  5050. movq -8(%rbp), %rdi
  5051. callq print_int
  5052. \end{lstlisting}
  5053. \end{minipage}
  5054. \fi}
  5055. \end{center}
  5056. \begin{exercise}\normalfont
  5057. %
  5058. Implement the compiler pass \code{allocate\_registers}.
  5059. %
  5060. Create five programs that exercise all aspects of the register
  5061. allocation algorithm, including spilling variables to the stack.
  5062. %
  5063. \racket{Replace \code{assign\_homes} in the list of \code{passes} in the
  5064. \code{run-tests.rkt} script with the three new passes:
  5065. \code{uncover\_live}, \code{build\_interference}, and
  5066. \code{allocate\_registers}.
  5067. %
  5068. Temporarily remove the \code{print\_x86} pass from the list of passes
  5069. and the call to \code{compiler-tests}.
  5070. Run the script to test the register allocator.
  5071. }
  5072. %
  5073. \python{Run the \code{run-tests.py} script to to check whether the
  5074. output programs produce the same result as the input programs.}
  5075. \end{exercise}
  5076. \section{Patch Instructions}
  5077. \label{sec:patch-instructions}
  5078. The remaining step in the compilation to x86 is to ensure that the
  5079. instructions have at most one argument that is a memory access.
  5080. %
  5081. In the running example, the instruction \code{movq -8(\%rbp),
  5082. -16(\%rbp)} is problematic. Recall from Section~\ref{sec:patch-s0}
  5083. that the fix is to first move \code{-8(\%rbp)} into \code{rax} and
  5084. then move \code{rax} into \code{-16(\%rbp)}.
  5085. %
  5086. The moves from \code{-8(\%rbp)} to \code{-8(\%rbp)} are also
  5087. problematic, but they can simply be deleted. In general, we recommend
  5088. deleting all the trivial moves whose source and destination are the
  5089. same location.
  5090. %
  5091. The following is the output of \code{patch\_instructions} on the
  5092. running example.
  5093. \begin{center}
  5094. {\if\edition\racketEd
  5095. \begin{minipage}{0.4\textwidth}
  5096. \begin{lstlisting}
  5097. movq $1, -8(%rbp)
  5098. movq $42, %rcx
  5099. movq -8(%rbp), -8(%rbp)
  5100. addq $7, -8(%rbp)
  5101. movq -8(%rbp), -16(%rbp)
  5102. movq -8(%rbp), -8(%rbp)
  5103. addq %rcx, -8(%rbp)
  5104. movq -16(%rbp), %rcx
  5105. negq %rcx
  5106. movq -8(%rbp), %rax
  5107. addq %rcx, %rax
  5108. jmp conclusion
  5109. \end{lstlisting}
  5110. \end{minipage}
  5111. $\Rightarrow\qquad$
  5112. \begin{minipage}{0.45\textwidth}
  5113. \begin{lstlisting}
  5114. movq $1, -8(%rbp)
  5115. movq $42, %rcx
  5116. addq $7, -8(%rbp)
  5117. movq -8(%rbp), %rax
  5118. movq %rax, -16(%rbp)
  5119. addq %rcx, -8(%rbp)
  5120. movq -16(%rbp), %rcx
  5121. negq %rcx
  5122. movq -8(%rbp), %rax
  5123. addq %rcx, %rax
  5124. jmp conclusion
  5125. \end{lstlisting}
  5126. \end{minipage}
  5127. \fi}
  5128. {\if\edition\pythonEd
  5129. \begin{minipage}{0.4\textwidth}
  5130. \begin{lstlisting}
  5131. movq $1, -8(%rbp)
  5132. movq $42, %rcx
  5133. movq -8(%rbp), -8(%rbp)
  5134. addq $7, -8(%rbp)
  5135. movq -8(%rbp), -16(%rbp)
  5136. movq -8(%rbp), -8(%rbp)
  5137. addq %rcx, -8(%rbp)
  5138. movq -16(%rbp), %rcx
  5139. negq %rcx
  5140. movq -8(%rbp), -8(%rbp)
  5141. addq %rcx, -8(%rbp)
  5142. movq -8(%rbp), %rdi
  5143. callq print_int
  5144. \end{lstlisting}
  5145. \end{minipage}
  5146. $\Rightarrow\qquad$
  5147. \begin{minipage}{0.45\textwidth}
  5148. \begin{lstlisting}
  5149. movq $1, -8(%rbp)
  5150. movq $42, %rcx
  5151. addq $7, -8(%rbp)
  5152. movq -8(%rbp), %rax
  5153. movq %rax, -16(%rbp)
  5154. addq %rcx, -8(%rbp)
  5155. movq -16(%rbp), %rcx
  5156. negq %rcx
  5157. addq %rcx, -8(%rbp)
  5158. movq -8(%rbp), %rdi
  5159. callq print_int
  5160. \end{lstlisting}
  5161. \end{minipage}
  5162. \fi}
  5163. \end{center}
  5164. \begin{exercise}\normalfont
  5165. %
  5166. Update the \code{patch\_instructions} compiler pass to delete trivial moves.
  5167. %
  5168. %Insert it after \code{allocate\_registers} in the list of \code{passes}
  5169. %in the \code{run-tests.rkt} script.
  5170. %
  5171. Run the script to test the \code{patch\_instructions} pass.
  5172. \end{exercise}
  5173. \section{Prelude and Conclusion}
  5174. \label{sec:print-x86-reg-alloc}
  5175. \index{subject}{calling conventions}
  5176. \index{subject}{prelude}\index{subject}{conclusion}
  5177. Recall that this pass generates the prelude and conclusion
  5178. instructions to satisfy the x86 calling conventions
  5179. (Section~\ref{sec:calling-conventions}). With the addition of the
  5180. register allocator, the callee-saved registers used by the register
  5181. allocator must be saved in the prelude and restored in the conclusion.
  5182. In the \code{allocate\_registers} pass,
  5183. %
  5184. \racket{add an entry to the \itm{info}
  5185. of \code{X86Program} named \code{used\_callee}}
  5186. %
  5187. \python{add a field named \code{used\_callee} to the \code{X86Program} AST node}
  5188. %
  5189. that stores the set of callee-saved registers that were assigned to
  5190. variables. The \code{prelude\_and\_conclusion} pass can then access
  5191. this information to decide which callee-saved registers need to be
  5192. saved and restored.
  5193. %
  5194. When calculating the size of the frame to adjust the \code{rsp} in the
  5195. prelude, make sure to take into account the space used for saving the
  5196. callee-saved registers. Also, don't forget that the frame needs to be
  5197. a multiple of 16 bytes!
  5198. \racket{An overview of all of the passes involved in register
  5199. allocation is shown in Figure~\ref{fig:reg-alloc-passes}.}
  5200. {\if\edition\racketEd
  5201. \begin{figure}[tbp]
  5202. \begin{tikzpicture}[baseline=(current bounding box.center)]
  5203. \node (Lvar) at (0,2) {\large \LangVar{}};
  5204. \node (Lvar-2) at (3,2) {\large \LangVar{}};
  5205. \node (Lvar-3) at (6,2) {\large \LangVarANF{}};
  5206. \node (Cvar-1) at (3,0) {\large \LangCVar{}};
  5207. \node (x86-2) at (3,-2) {\large \LangXVar{}};
  5208. \node (x86-3) at (6,-2) {\large \LangXVar{}};
  5209. \node (x86-4) at (9,-2) {\large \LangXInt{}};
  5210. \node (x86-5) at (9,-4) {\large \LangXInt{}};
  5211. \node (x86-2-1) at (3,-4) {\large \LangXVar{}};
  5212. \node (x86-2-2) at (6,-4) {\large \LangXVar{}};
  5213. \path[->,bend left=15] (Lvar) edge [above] node {\ttfamily\footnotesize uniquify} (Lvar-2);
  5214. \path[->,bend left=15] (Lvar-2) edge [above] node {\ttfamily\footnotesize remove\_complex.} (Lvar-3);
  5215. \path[->,bend left=15] (Lvar-3) edge [right] node {\ttfamily\footnotesize explicate\_control} (Cvar-1);
  5216. \path[->,bend right=15] (Cvar-1) edge [left] node {\ttfamily\footnotesize select\_instr.} (x86-2);
  5217. \path[->,bend left=15] (x86-2) edge [right] node {\ttfamily\footnotesize uncover\_live} (x86-2-1);
  5218. \path[->,bend right=15] (x86-2-1) edge [below] node {\ttfamily\footnotesize build\_inter.} (x86-2-2);
  5219. \path[->,bend right=15] (x86-2-2) edge [right] node {\ttfamily\footnotesize allocate\_reg.} (x86-3);
  5220. \path[->,bend left=15] (x86-3) edge [above] node {\ttfamily\footnotesize patch\_instr.} (x86-4);
  5221. \path[->,bend left=15] (x86-4) edge [right] node {\ttfamily\footnotesize prelude\_and\_concl.} (x86-5);
  5222. \end{tikzpicture}
  5223. \caption{Diagram of the passes for \LangVar{} with register allocation.}
  5224. \label{fig:reg-alloc-passes}
  5225. \end{figure}
  5226. \fi}
  5227. Figure~\ref{fig:running-example-x86} shows the x86 code generated for
  5228. the running example (Figure~\ref{fig:reg-eg}). To demonstrate both the
  5229. use of registers and the stack, we limit the register allocator for
  5230. this example to use just two registers: \code{rbx} and \code{rcx}. In
  5231. the prelude\index{subject}{prelude} of the \code{main} function, we
  5232. push \code{rbx} onto the stack because it is a callee-saved register
  5233. and it was assigned to variable by the register allocator. We
  5234. subtract \code{8} from the \code{rsp} at the end of the prelude to
  5235. reserve space for the one spilled variable. After that subtraction,
  5236. the \code{rsp} is aligned to 16 bytes.
  5237. Moving on to the program proper, we see how the registers were
  5238. allocated.
  5239. %
  5240. \racket{Variables \code{v}, \code{x}, and \code{y} were assigned to
  5241. \code{rbx} and variable \code{z} was assigned to \code{rcx}.}
  5242. %
  5243. \python{Variables \code{v}, \code{x}, \code{y}, and \code{tmp\_0}
  5244. were assigned to \code{rcx} and variables \code{w} and \code{tmp\_1}
  5245. were assigned to \code{rbx}.}
  5246. %
  5247. Variable \racket{\code{w}}\python{\code{z}} was spilled to the stack
  5248. location \code{-16(\%rbp)}. Recall that the prelude saved the
  5249. callee-save register \code{rbx} onto the stack. The spilled variables
  5250. must be placed lower on the stack than the saved callee-save
  5251. registers, so in this case \racket{\code{w}}\python{z} is placed at
  5252. \code{-16(\%rbp)}.
  5253. In the conclusion\index{subject}{conclusion}, we undo the work that was
  5254. done in the prelude. We move the stack pointer up by \code{8} bytes
  5255. (the room for spilled variables), then we pop the old values of
  5256. \code{rbx} and \code{rbp} (callee-saved registers), and finish with
  5257. \code{retq} to return control to the operating system.
  5258. \begin{figure}[tbp]
  5259. % var_test_28.rkt
  5260. % (use-minimal-set-of-registers! #t)
  5261. % and only rbx rcx
  5262. % tmp 0 rbx
  5263. % z 1 rcx
  5264. % y 0 rbx
  5265. % w 2 16(%rbp)
  5266. % v 0 rbx
  5267. % x 0 rbx
  5268. {\if\edition\racketEd
  5269. \begin{lstlisting}
  5270. start:
  5271. movq $1, %rbx
  5272. movq $42, -16(%rbp)
  5273. addq $7, %rbx
  5274. movq %rbx, %rcx
  5275. addq -16(%rbp), %rcx
  5276. negq %rbx
  5277. movq %rcx, %rax
  5278. addq %rbx, %rax
  5279. jmp conclusion
  5280. .globl main
  5281. main:
  5282. pushq %rbp
  5283. movq %rsp, %rbp
  5284. pushq %rbx
  5285. subq $8, %rsp
  5286. jmp start
  5287. conclusion:
  5288. addq $8, %rsp
  5289. popq %rbx
  5290. popq %rbp
  5291. retq
  5292. \end{lstlisting}
  5293. \fi}
  5294. {\if\edition\pythonEd
  5295. %{v: %rcx, x: %rcx, z: -16(%rbp), w: %rbx, tmp_1: %rbx, y: %rcx, tmp_0: %rcx}
  5296. \begin{lstlisting}
  5297. .globl main
  5298. main:
  5299. pushq %rbp
  5300. movq %rsp, %rbp
  5301. pushq %rbx
  5302. subq $8, %rsp
  5303. movq $1, %rcx
  5304. movq $42, %rbx
  5305. addq $7, %rcx
  5306. movq %rcx, -16(%rbp)
  5307. addq %rbx, -16(%rbp)
  5308. negq %rcx
  5309. movq -16(%rbp), %rbx
  5310. addq %rcx, %rbx
  5311. movq %rbx, %rdi
  5312. callq print_int
  5313. addq $8, %rsp
  5314. popq %rbx
  5315. popq %rbp
  5316. retq
  5317. \end{lstlisting}
  5318. \fi}
  5319. \caption{The x86 output from the running example
  5320. (Figure~\ref{fig:reg-eg}), limiting allocation to just \code{rbx}
  5321. and \code{rcx}.}
  5322. \label{fig:running-example-x86}
  5323. \end{figure}
  5324. \begin{exercise}\normalfont
  5325. Update the \code{prelude\_and\_conclusion} pass as described in this section.
  5326. %
  5327. \racket{
  5328. In the \code{run-tests.rkt} script, add \code{prelude\_and\_conclusion} to the
  5329. list of passes and the call to \code{compiler-tests}.}
  5330. %
  5331. Run the script to test the complete compiler for \LangVar{} that
  5332. performs register allocation.
  5333. \end{exercise}
  5334. \section{Challenge: Move Biasing}
  5335. \label{sec:move-biasing}
  5336. \index{subject}{move biasing}
  5337. This section describes an enhancement to the register allocator,
  5338. called move biasing, for students who are looking for an extra
  5339. challenge.
  5340. {\if\edition\racketEd
  5341. To motivate the need for move biasing we return to the running example
  5342. but this time use all of the general purpose registers. So we have
  5343. the following mapping of color numbers to registers.
  5344. \[
  5345. \{ 0 \mapsto \key{\%rcx}, \; 1 \mapsto \key{\%rdx}, \; 2 \mapsto \key{\%rsi} \}
  5346. \]
  5347. Using the same assignment of variables to color numbers that was
  5348. produced by the register allocator described in the last section, we
  5349. get the following program.
  5350. \begin{center}
  5351. \begin{minipage}{0.3\textwidth}
  5352. \begin{lstlisting}
  5353. movq $1, v
  5354. movq $42, w
  5355. movq v, x
  5356. addq $7, x
  5357. movq x, y
  5358. movq x, z
  5359. addq w, z
  5360. movq y, t
  5361. negq t
  5362. movq z, %rax
  5363. addq t, %rax
  5364. jmp conclusion
  5365. \end{lstlisting}
  5366. \end{minipage}
  5367. $\Rightarrow\qquad$
  5368. \begin{minipage}{0.45\textwidth}
  5369. \begin{lstlisting}
  5370. movq $1, %rdx
  5371. movq $42, %rcx
  5372. movq %rdx, %rdx
  5373. addq $7, %rdx
  5374. movq %rdx, %rsi
  5375. movq %rdx, %rdx
  5376. addq %rcx, %rdx
  5377. movq %rsi, %rcx
  5378. negq %rcx
  5379. movq %rdx, %rax
  5380. addq %rcx, %rax
  5381. jmp conclusion
  5382. \end{lstlisting}
  5383. \end{minipage}
  5384. \end{center}
  5385. In the above output code there are two \key{movq} instructions that
  5386. can be removed because their source and target are the same. However,
  5387. if we had put \key{t}, \key{v}, \key{x}, and \key{y} into the same
  5388. register, we could instead remove three \key{movq} instructions. We
  5389. can accomplish this by taking into account which variables appear in
  5390. \key{movq} instructions with which other variables.
  5391. \fi}
  5392. {\if\edition\pythonEd
  5393. %
  5394. To motivate the need for move biasing we return to the running example
  5395. and recall that in Section~\ref{sec:patch-instructions} we were able to
  5396. remove three trivial move instructions from the running
  5397. example. However, we could remove another trivial move if we were able
  5398. to allocate \code{y} and \code{tmp\_0} to the same register. \fi}
  5399. We say that two variables $p$ and $q$ are \emph{move
  5400. related}\index{subject}{move related} if they participate together in
  5401. a \key{movq} instruction, that is, \key{movq} $p$\key{,} $q$ or
  5402. \key{movq} $q$\key{,} $p$. When deciding which variable to color next,
  5403. when there are multiple variables with the same saturation, prefer
  5404. variables that can be assigned to a color that is the same as the
  5405. color of a move related variable. Furthermore, when the register
  5406. allocator chooses a color for a variable, it should prefer a color
  5407. that has already been used for a move-related variable (assuming that
  5408. they do not interfere). Of course, this preference should not override
  5409. the preference for registers over stack locations. So this preference
  5410. should be used as a tie breaker when choosing between registers or
  5411. when choosing between stack locations.
  5412. We recommend representing the move relationships in a graph, similar
  5413. to how we represented interference. The following is the \emph{move
  5414. graph} for our running example.
  5415. {\if\edition\racketEd
  5416. \[
  5417. \begin{tikzpicture}[baseline=(current bounding box.center)]
  5418. \node (rax) at (0,0) {$\ttm{rax}$};
  5419. \node (rsp) at (9,2) {$\ttm{rsp}$};
  5420. \node (t) at (0,2) {$\ttm{t}$};
  5421. \node (z) at (3,2) {$\ttm{z}$};
  5422. \node (x) at (6,2) {$\ttm{x}$};
  5423. \node (y) at (3,0) {$\ttm{y}$};
  5424. \node (w) at (6,0) {$\ttm{w}$};
  5425. \node (v) at (9,0) {$\ttm{v}$};
  5426. \draw (v) to (x);
  5427. \draw (x) to (y);
  5428. \draw (x) to (z);
  5429. \draw (y) to (t);
  5430. \end{tikzpicture}
  5431. \]
  5432. \fi}
  5433. %
  5434. {\if\edition\pythonEd
  5435. \[
  5436. \begin{tikzpicture}[baseline=(current bounding box.center)]
  5437. \node (t0) at (0,2) {$\ttm{tmp\_0}$};
  5438. \node (t1) at (0,0) {$\ttm{tmp\_1}$};
  5439. \node (z) at (3,2) {$\ttm{z}$};
  5440. \node (x) at (6,2) {$\ttm{x}$};
  5441. \node (y) at (3,0) {$\ttm{y}$};
  5442. \node (w) at (6,0) {$\ttm{w}$};
  5443. \node (v) at (9,0) {$\ttm{v}$};
  5444. \draw (y) to (t0);
  5445. \draw (z) to (x);
  5446. \draw (z) to (t1);
  5447. \draw (x) to (y);
  5448. \draw (x) to (v);
  5449. \end{tikzpicture}
  5450. \]
  5451. \fi}
  5452. {\if\edition\racketEd
  5453. Now we replay the graph coloring, pausing to see the coloring of
  5454. \code{y}. Recall the following configuration. The most saturated vertices
  5455. were \code{w} and \code{y}.
  5456. \[
  5457. \begin{tikzpicture}[baseline=(current bounding box.center)]
  5458. \node (rax) at (0,0) {$\ttm{rax}:-1,\{0,-2\}$};
  5459. \node (rsp) at (9,2) {$\ttm{rsp}:-2,\{-1,0,1,2\}$};
  5460. \node (t1) at (0,2) {$\ttm{t}:0,\{1,-2\}$};
  5461. \node (z) at (3,2) {$\ttm{z}:1,\{0,-2\}$};
  5462. \node (x) at (6,2) {$\ttm{x}:-,\{-2\}$};
  5463. \node (y) at (3,0) {$\ttm{y}:-,\{1,-2\}$};
  5464. \node (w) at (6,0) {$\ttm{w}:-,\{1,-2\}$};
  5465. \node (v) at (9,0) {$\ttm{v}:-,\{-2\}$};
  5466. \draw (t1) to (rax);
  5467. \draw (t1) to (z);
  5468. \draw (z) to (y);
  5469. \draw (z) to (w);
  5470. \draw (x) to (w);
  5471. \draw (y) to (w);
  5472. \draw (v) to (w);
  5473. \draw (v) to (rsp);
  5474. \draw (w) to (rsp);
  5475. \draw (x) to (rsp);
  5476. \draw (y) to (rsp);
  5477. \path[-.,bend left=15] (z) edge node {} (rsp);
  5478. \path[-.,bend left=10] (t1) edge node {} (rsp);
  5479. \draw (rax) to (rsp);
  5480. \end{tikzpicture}
  5481. \]
  5482. %
  5483. Last time we chose to color \code{w} with $0$. But this time we see
  5484. that \code{w} is not move related to any vertex, but \code{y} is move
  5485. related to \code{t}. So we choose to color \code{y} the same color as
  5486. \code{t}, $0$.
  5487. \[
  5488. \begin{tikzpicture}[baseline=(current bounding box.center)]
  5489. \node (rax) at (0,0) {$\ttm{rax}:-1,\{0,-2\}$};
  5490. \node (rsp) at (9,2) {$\ttm{rsp}:-2,\{-1,0,1,2\}$};
  5491. \node (t1) at (0,2) {$\ttm{t}:0,\{1,-2\}$};
  5492. \node (z) at (3,2) {$\ttm{z}:1,\{0,-2\}$};
  5493. \node (x) at (6,2) {$\ttm{x}:-,\{-2\}$};
  5494. \node (y) at (3,0) {$\ttm{y}:0,\{1,-2\}$};
  5495. \node (w) at (6,0) {$\ttm{w}:-,\{0,1,-2\}$};
  5496. \node (v) at (9,0) {$\ttm{v}:-,\{-2\}$};
  5497. \draw (t1) to (rax);
  5498. \draw (t1) to (z);
  5499. \draw (z) to (y);
  5500. \draw (z) to (w);
  5501. \draw (x) to (w);
  5502. \draw (y) to (w);
  5503. \draw (v) to (w);
  5504. \draw (v) to (rsp);
  5505. \draw (w) to (rsp);
  5506. \draw (x) to (rsp);
  5507. \draw (y) to (rsp);
  5508. \path[-.,bend left=15] (z) edge node {} (rsp);
  5509. \path[-.,bend left=10] (t1) edge node {} (rsp);
  5510. \draw (rax) to (rsp);
  5511. \end{tikzpicture}
  5512. \]
  5513. Now \code{w} is the most saturated, so we color it $2$.
  5514. \[
  5515. \begin{tikzpicture}[baseline=(current bounding box.center)]
  5516. \node (rax) at (0,0) {$\ttm{rax}:-1,\{0,-2\}$};
  5517. \node (rsp) at (9,2) {$\ttm{rsp}:-2,\{-1,0,1,2\}$};
  5518. \node (t1) at (0,2) {$\ttm{t}:0,\{1,-2\}$};
  5519. \node (z) at (3,2) {$\ttm{z}:1,\{0,2,-2\}$};
  5520. \node (x) at (6,2) {$\ttm{x}:-,\{2,-2\}$};
  5521. \node (y) at (3,0) {$\ttm{y}:0,\{1,2,-2\}$};
  5522. \node (w) at (6,0) {$\ttm{w}:2,\{0,1,-2\}$};
  5523. \node (v) at (9,0) {$\ttm{v}:-,\{2,-2\}$};
  5524. \draw (t1) to (rax);
  5525. \draw (t1) to (z);
  5526. \draw (z) to (y);
  5527. \draw (z) to (w);
  5528. \draw (x) to (w);
  5529. \draw (y) to (w);
  5530. \draw (v) to (w);
  5531. \draw (v) to (rsp);
  5532. \draw (w) to (rsp);
  5533. \draw (x) to (rsp);
  5534. \draw (y) to (rsp);
  5535. \path[-.,bend left=15] (z) edge node {} (rsp);
  5536. \path[-.,bend left=10] (t1) edge node {} (rsp);
  5537. \draw (rax) to (rsp);
  5538. \end{tikzpicture}
  5539. \]
  5540. At this point, vertices \code{x} and \code{v} are most saturated, but
  5541. \code{x} is move related to \code{y} and \code{z}, so we color
  5542. \code{x} to $0$ to match \code{y}. Finally, we color \code{v} to $0$.
  5543. \[
  5544. \begin{tikzpicture}[baseline=(current bounding box.center)]
  5545. \node (rax) at (0,0) {$\ttm{rax}:-1,\{0,-2\}$};
  5546. \node (rsp) at (9,2) {$\ttm{rsp}:-2,\{-1,0,1,2\}$};
  5547. \node (t) at (0,2) {$\ttm{t}:0,\{1,-2\}$};
  5548. \node (z) at (3,2) {$\ttm{z}:1,\{0,2,-2\}$};
  5549. \node (x) at (6,2) {$\ttm{x}:0,\{2,-2\}$};
  5550. \node (y) at (3,0) {$\ttm{y}:0,\{1,2,-2\}$};
  5551. \node (w) at (6,0) {$\ttm{w}:2,\{0,1,-2\}$};
  5552. \node (v) at (9,0) {$\ttm{v}:0,\{2,-2\}$};
  5553. \draw (t1) to (rax);
  5554. \draw (t) to (z);
  5555. \draw (z) to (y);
  5556. \draw (z) to (w);
  5557. \draw (x) to (w);
  5558. \draw (y) to (w);
  5559. \draw (v) to (w);
  5560. \draw (v) to (rsp);
  5561. \draw (w) to (rsp);
  5562. \draw (x) to (rsp);
  5563. \draw (y) to (rsp);
  5564. \path[-.,bend left=15] (z) edge node {} (rsp);
  5565. \path[-.,bend left=10] (t1) edge node {} (rsp);
  5566. \draw (rax) to (rsp);
  5567. \end{tikzpicture}
  5568. \]
  5569. \fi}
  5570. %
  5571. {\if\edition\pythonEd
  5572. Now we replay the graph coloring, pausing before the coloring of
  5573. \code{w}. Recall the following configuration. The most saturated vertices
  5574. were \code{tmp\_1}, \code{w}, and \code{y}.
  5575. \[
  5576. \begin{tikzpicture}[baseline=(current bounding box.center)]
  5577. \node (t0) at (0,2) {$\ttm{tmp\_0}: 0, \{1\}$};
  5578. \node (t1) at (0,0) {$\ttm{tmp\_1}: -, \{0\}$};
  5579. \node (z) at (3,2) {$\ttm{z}: 1, \{0\}$};
  5580. \node (x) at (6,2) {$\ttm{x}: -, \{\}$};
  5581. \node (y) at (3,0) {$\ttm{y}: -, \{1\}$};
  5582. \node (w) at (6,0) {$\ttm{w}: -, \{1\}$};
  5583. \node (v) at (9,0) {$\ttm{v}: -, \{\}$};
  5584. \draw (t0) to (t1);
  5585. \draw (t0) to (z);
  5586. \draw (z) to (y);
  5587. \draw (z) to (w);
  5588. \draw (x) to (w);
  5589. \draw (y) to (w);
  5590. \draw (v) to (w);
  5591. \end{tikzpicture}
  5592. \]
  5593. We have arbitrarily chosen to color \code{w} instead of \code{tmp\_1}
  5594. or \code{y}, but note that \code{w} is not move related to any
  5595. variables, whereas \code{y} and \code{tmp\_1} are move related to
  5596. \code{tmp\_0} and \code{z}, respectively. If we instead choose
  5597. \code{y} and color it $0$, we can delete another move instruction.
  5598. \[
  5599. \begin{tikzpicture}[baseline=(current bounding box.center)]
  5600. \node (t0) at (0,2) {$\ttm{tmp\_0}: 0, \{1\}$};
  5601. \node (t1) at (0,0) {$\ttm{tmp\_1}: -, \{0\}$};
  5602. \node (z) at (3,2) {$\ttm{z}: 1, \{0\}$};
  5603. \node (x) at (6,2) {$\ttm{x}: -, \{\}$};
  5604. \node (y) at (3,0) {$\ttm{y}: 0, \{1\}$};
  5605. \node (w) at (6,0) {$\ttm{w}: -, \{0,1\}$};
  5606. \node (v) at (9,0) {$\ttm{v}: -, \{\}$};
  5607. \draw (t0) to (t1);
  5608. \draw (t0) to (z);
  5609. \draw (z) to (y);
  5610. \draw (z) to (w);
  5611. \draw (x) to (w);
  5612. \draw (y) to (w);
  5613. \draw (v) to (w);
  5614. \end{tikzpicture}
  5615. \]
  5616. Now \code{w} is the most saturated, so we color it $2$.
  5617. \[
  5618. \begin{tikzpicture}[baseline=(current bounding box.center)]
  5619. \node (t0) at (0,2) {$\ttm{tmp\_0}: 0, \{1\}$};
  5620. \node (t1) at (0,0) {$\ttm{tmp\_1}: -, \{0\}$};
  5621. \node (z) at (3,2) {$\ttm{z}: 1, \{0\}$};
  5622. \node (x) at (6,2) {$\ttm{x}: -, \{2\}$};
  5623. \node (y) at (3,0) {$\ttm{y}: 0, \{1,2\}$};
  5624. \node (w) at (6,0) {$\ttm{w}: 2, \{0,1\}$};
  5625. \node (v) at (9,0) {$\ttm{v}: -, \{2\}$};
  5626. \draw (t0) to (t1);
  5627. \draw (t0) to (z);
  5628. \draw (z) to (y);
  5629. \draw (z) to (w);
  5630. \draw (x) to (w);
  5631. \draw (y) to (w);
  5632. \draw (v) to (w);
  5633. \end{tikzpicture}
  5634. \]
  5635. To finish the coloring, \code{x} and \code{v} get $0$ and
  5636. \code{tmp\_1} gets $1$.
  5637. \[
  5638. \begin{tikzpicture}[baseline=(current bounding box.center)]
  5639. \node (t0) at (0,2) {$\ttm{tmp\_0}: 0, \{1\}$};
  5640. \node (t1) at (0,0) {$\ttm{tmp\_1}: 1, \{0\}$};
  5641. \node (z) at (3,2) {$\ttm{z}: 1, \{0\}$};
  5642. \node (x) at (6,2) {$\ttm{x}: 0, \{2\}$};
  5643. \node (y) at (3,0) {$\ttm{y}: 0, \{1,2\}$};
  5644. \node (w) at (6,0) {$\ttm{w}: 2, \{0,1\}$};
  5645. \node (v) at (9,0) {$\ttm{v}: 0, \{2\}$};
  5646. \draw (t0) to (t1);
  5647. \draw (t0) to (z);
  5648. \draw (z) to (y);
  5649. \draw (z) to (w);
  5650. \draw (x) to (w);
  5651. \draw (y) to (w);
  5652. \draw (v) to (w);
  5653. \end{tikzpicture}
  5654. \]
  5655. \fi}
  5656. So we have the following assignment of variables to registers.
  5657. {\if\edition\racketEd
  5658. \begin{gather*}
  5659. \{ \ttm{v} \mapsto \key{\%rcx}, \,
  5660. \ttm{w} \mapsto \key{\%rsi}, \,
  5661. \ttm{x} \mapsto \key{\%rcx}, \,
  5662. \ttm{y} \mapsto \key{\%rcx}, \,
  5663. \ttm{z} \mapsto \key{\%rdx}, \,
  5664. \ttm{t} \mapsto \key{\%rcx} \}
  5665. \end{gather*}
  5666. \fi}
  5667. {\if\edition\pythonEd
  5668. \begin{gather*}
  5669. \{ \ttm{v} \mapsto \key{\%rcx}, \,
  5670. \ttm{w} \mapsto \key{-16(\%rbp)}, \,
  5671. \ttm{x} \mapsto \key{\%rcx}, \,
  5672. \ttm{y} \mapsto \key{\%rcx}, \\
  5673. \ttm{z} \mapsto \key{-8(\%rbp)}, \,
  5674. \ttm{tmp\_0} \mapsto \key{\%rcx}, \,
  5675. \ttm{tmp\_1} \mapsto \key{-8(\%rbp)} \}
  5676. \end{gather*}
  5677. \fi}
  5678. We apply this register assignment to the running example, on the left,
  5679. to obtain the code in the middle. The \code{patch\_instructions} then
  5680. deletes the trivial moves to obtain the code on the right.
  5681. {\if\edition\racketEd
  5682. \begin{minipage}{0.25\textwidth}
  5683. \begin{lstlisting}
  5684. movq $1, v
  5685. movq $42, w
  5686. movq v, x
  5687. addq $7, x
  5688. movq x, y
  5689. movq x, z
  5690. addq w, z
  5691. movq y, t
  5692. negq t
  5693. movq z, %rax
  5694. addq t, %rax
  5695. jmp conclusion
  5696. \end{lstlisting}
  5697. \end{minipage}
  5698. $\Rightarrow\qquad$
  5699. \begin{minipage}{0.25\textwidth}
  5700. \begin{lstlisting}
  5701. movq $1, %rcx
  5702. movq $42, %rsi
  5703. movq %rcx, %rcx
  5704. addq $7, %rcx
  5705. movq %rcx, %rcx
  5706. movq %rcx, %rdx
  5707. addq %rsi, %rdx
  5708. movq %rcx, %rcx
  5709. negq %rcx
  5710. movq %rdx, %rax
  5711. addq %rcx, %rax
  5712. jmp conclusion
  5713. \end{lstlisting}
  5714. \end{minipage}
  5715. $\Rightarrow\qquad$
  5716. \begin{minipage}{0.25\textwidth}
  5717. \begin{lstlisting}
  5718. movq $1, %rcx
  5719. movq $42, %rsi
  5720. addq $7, %rcx
  5721. movq %rcx, %rdx
  5722. addq %rsi, %rdx
  5723. negq %rcx
  5724. movq %rdx, %rax
  5725. addq %rcx, %rax
  5726. jmp conclusion
  5727. \end{lstlisting}
  5728. \end{minipage}
  5729. \fi}
  5730. {\if\edition\pythonEd
  5731. \begin{minipage}{0.20\textwidth}
  5732. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  5733. movq $1, v
  5734. movq $42, w
  5735. movq v, x
  5736. addq $7, x
  5737. movq x, y
  5738. movq x, z
  5739. addq w, z
  5740. movq y, tmp_0
  5741. negq tmp_0
  5742. movq z, tmp_1
  5743. addq tmp_0, tmp_1
  5744. movq tmp_1, %rdi
  5745. callq _print_int
  5746. \end{lstlisting}
  5747. \end{minipage}
  5748. ${\Rightarrow\qquad}$
  5749. \begin{minipage}{0.30\textwidth}
  5750. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  5751. movq $1, %rcx
  5752. movq $42, -16(%rbp)
  5753. movq %rcx, %rcx
  5754. addq $7, %rcx
  5755. movq %rcx, %rcx
  5756. movq %rcx, -8(%rbp)
  5757. addq -16(%rbp), -8(%rbp)
  5758. movq %rcx, %rcx
  5759. negq %rcx
  5760. movq -8(%rbp), -8(%rbp)
  5761. addq %rcx, -8(%rbp)
  5762. movq -8(%rbp), %rdi
  5763. callq _print_int
  5764. \end{lstlisting}
  5765. \end{minipage}
  5766. ${\Rightarrow\qquad}$
  5767. \begin{minipage}{0.20\textwidth}
  5768. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  5769. movq $1, %rcx
  5770. movq $42, -16(%rbp)
  5771. addq $7, %rcx
  5772. movq %rcx, -8(%rbp)
  5773. movq -16(%rbp), %rax
  5774. addq %rax, -8(%rbp)
  5775. negq %rcx
  5776. addq %rcx, -8(%rbp)
  5777. movq -8(%rbp), %rdi
  5778. callq print_int
  5779. \end{lstlisting}
  5780. \end{minipage}
  5781. \fi}
  5782. \begin{exercise}\normalfont
  5783. Change your implementation of \code{allocate\_registers} to take move
  5784. biasing into account. Create two new tests that include at least one
  5785. opportunity for move biasing and visually inspect the output x86
  5786. programs to make sure that your move biasing is working properly. Make
  5787. sure that your compiler still passes all of the tests.
  5788. \end{exercise}
  5789. %To do: another neat challenge would be to do
  5790. % live range splitting~\citep{Cooper:1998ly}. \\ --Jeremy
  5791. %% \subsection{Output of the Running Example}
  5792. %% \label{sec:reg-alloc-output}
  5793. % challenge: prioritize variables based on execution frequencies
  5794. % and the number of uses of a variable
  5795. % challenge: enhance the coloring algorithm using Chaitin's
  5796. % approach of prioritizing high-degree variables
  5797. % by removing low-degree variables (coloring them later)
  5798. % from the interference graph
  5799. \section{Further Reading}
  5800. \label{sec:register-allocation-further-reading}
  5801. Early register allocation algorithms were developed for Fortran
  5802. compilers in the 1950s~\citep{Horwitz:1966aa,Backus:1978aa}. The use
  5803. of graph coloring began in the late 1970s and early 1980s with the
  5804. work of \citet{Chaitin:1981vl} on an optimizing compiler for PL/I. The
  5805. algorithm is based on the following observation of
  5806. \citet{Kempe:1879aa}. If a graph $G$ has a vertex $v$ with degree
  5807. lower than $k$, then $G$ is $k$ colorable if the subgraph of $G$ with
  5808. $v$ removed is also $k$ colorable. To see why, suppose that the
  5809. subgraph is $k$ colorable. At worst the neighbors of $v$ are assigned
  5810. different colors, but since there are less than $k$ neighbors, there
  5811. will be one or more colors left over to use for coloring $v$ in $G$.
  5812. The algorithm of \citet{Chaitin:1981vl} removes a vertex $v$ of degree
  5813. less than $k$ from the graph and recursively colors the rest of the
  5814. graph. Upon returning from the recursion, it colors $v$ with one of
  5815. the available colors and returns. \citet{Chaitin:1982vn} augments
  5816. this algorithm to handle spilling as follows. If there are no vertices
  5817. of degree lower than $k$ then pick a vertex at random, spill it,
  5818. remove it from the graph, and proceed recursively to color the rest of
  5819. the graph.
  5820. Prior to coloring, \citet{Chaitin:1981vl} merge variables that are
  5821. move-related and that don't interfere with each other, a process
  5822. called \emph{coalescing}. While coalescing decreases the number of
  5823. moves, it can make the graph more difficult to
  5824. color. \citet{Briggs:1994kx} propose \emph{conservative coalescing} in
  5825. which two variables are merged only if they have fewer than $k$
  5826. neighbors of high degree. \citet{George:1996aa} observe that
  5827. conservative coalescing is sometimes too conservative and make it more
  5828. aggressive by iterating the coalescing with the removal of low-degree
  5829. vertices.
  5830. %
  5831. Attacking the problem from a different angle, \citet{Briggs:1994kx}
  5832. also propose \emph{biased coloring} in which a variable is assigned to
  5833. the same color as another move-related variable if possible, as
  5834. discussed in Section~\ref{sec:move-biasing}.
  5835. %
  5836. The algorithm of \citet{Chaitin:1981vl} and its successors iteratively
  5837. performs coalescing, graph coloring, and spill code insertion until
  5838. all variables have been assigned a location.
  5839. \citet{Briggs:1994kx} observes that \citet{Chaitin:1982vn} sometimes
  5840. spills variables that don't have to be: a high-degree variable can be
  5841. colorable if many of its neighbors are assigned the same color.
  5842. \citet{Briggs:1994kx} propose \emph{optimistic coloring}, in which a
  5843. high-degree vertex is not immediately spilled. Instead the decision is
  5844. deferred until after the recursive call, at which point it is apparent
  5845. whether there is actually an available color or not. We observe that
  5846. this algorithm is equivalent to the smallest-last ordering
  5847. algorithm~\citep{Matula:1972aa} if one takes the first $k$ colors to
  5848. be registers and the rest to be stack locations.
  5849. %% biased coloring
  5850. Earlier editions of the compiler course at Indiana University
  5851. \citep{Dybvig:2010aa} were based on the algorithm of
  5852. \citet{Briggs:1994kx}.
  5853. The smallest-last ordering algorithm is one of many \emph{greedy}
  5854. coloring algorithms. A greedy coloring algorithm visits all the
  5855. vertices in a particular order and assigns each one the first
  5856. available color. An \emph{offline} greedy algorithm chooses the
  5857. ordering up-front, prior to assigning colors. The algorithm of
  5858. \citet{Chaitin:1981vl} should be considered offline because the vertex
  5859. ordering does not depend on the colors assigned. Other orderings are
  5860. possible. For example, \citet{Chow:1984ys} order variables according
  5861. to an estimate of runtime cost.
  5862. An \emph{online} greedy coloring algorithm uses information about the
  5863. current assignment of colors to influence the order in which the
  5864. remaining vertices are colored. The saturation-based algorithm
  5865. described in this chapter is one such algorithm. We choose to use
  5866. saturation-based coloring because it is fun to introduce graph
  5867. coloring via Sudoku!
  5868. A register allocator may choose to map each variable to just one
  5869. location, as in \citet{Chaitin:1981vl}, or it may choose to map a
  5870. variable to one or more locations. The later can be achieved by
  5871. \emph{live range splitting}, where a variable is replaced by several
  5872. variables that each handle part of its live
  5873. range~\citep{Chow:1984ys,Briggs:1994kx,Cooper:1998ly}.
  5874. %% 1950s, Sheldon Best, Fortran \cite{Backus:1978aa}, Belady's page
  5875. %% replacement algorithm, bottom-up local
  5876. %% \citep{Horwitz:1966aa} straight-line programs, single basic block,
  5877. %% Cooper: top-down (priority bassed), bottom-up
  5878. %% top-down
  5879. %% order variables by priority (estimated cost)
  5880. %% caveat: split variables into two groups:
  5881. %% constrained (>k neighbors) and unconstrained (<k neighbors)
  5882. %% color the constrained ones first
  5883. %% \citet{Schwartz:1975aa} graph-coloring, no spill
  5884. %% cite J. Cocke for an algorithm that colors variables
  5885. %% in a high-degree first ordering
  5886. %Register Allocation via Usage Counts, Freiburghouse CACM
  5887. \citet{Palsberg:2007si} observe that many of the interference graphs
  5888. that arise from Java programs in the JoeQ compiler are \emph{chordal},
  5889. that is, every cycle with four or more edges has an edge which is not
  5890. part of the cycle but which connects two vertices on the cycle. Such
  5891. graphs can be optimally colored by the greedy algorithm with a vertex
  5892. ordering determined by maximum cardinality search.
  5893. In situations where compile time is of utmost importance, such as in
  5894. just-in-time compilers, graph coloring algorithms can be too expensive
  5895. and the linear scan algorithm of \citet{Poletto:1999uq} may be more
  5896. appropriate.
  5897. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  5898. \chapter{Booleans and Conditionals}
  5899. \label{ch:Lif}
  5900. \index{subject}{Boolean}
  5901. \index{subject}{control flow}
  5902. \index{subject}{conditional expression}
  5903. The \LangInt{} and \LangVar{} languages only have a single kind of
  5904. value, the integers. In this chapter we add a second kind of value,
  5905. the Booleans, to create the \LangIf{} language. The Boolean values
  5906. \emph{true} and \emph{false} are written \TRUE{} and \FALSE{}
  5907. respectively in \racket{Racket}\python{Python}. The \LangIf{}
  5908. language includes several operations that involve Booleans (\key{and},
  5909. \key{not}, \racket{\key{eq?}}\python{==}, \key{<}, etc.) and the
  5910. \key{if} expression \python{and statement}. With the addition of
  5911. \key{if}, programs can have non-trivial control flow which
  5912. %
  5913. \racket{impacts \code{explicate\_control} and liveness analysis}
  5914. %
  5915. \python{impacts liveness analysis and motivates a new pass named
  5916. \code{explicate\_control}}.
  5917. %
  5918. Also, because we now have two kinds of values, we need to handle
  5919. programs that apply an operation to the wrong kind of value, such as
  5920. \racket{\code{(not 1)}}\python{\code{not 1}}.
  5921. There are two language design options for such situations. One option
  5922. is to signal an error and the other is to provide a wider
  5923. interpretation of the operation. \racket{The Racket
  5924. language}\python{Python} uses a mixture of these two options,
  5925. depending on the operation and the kind of value. For example, the
  5926. result of \racket{\code{(not 1)}}\python{\code{not 1}} is
  5927. \racket{\code{\#f}}\python{False} because \racket{Racket}\python{Python}
  5928. treats non-zero integers as if they were \racket{\code{\#t}}\python{\code{True}}.
  5929. %
  5930. \racket{On the other hand, \code{(car 1)} results in a run-time error
  5931. in Racket because \code{car} expects a pair.}
  5932. %
  5933. \python{On the other hand, \code{1[0]} results in a run-time error
  5934. in Python because an ``\code{int} object is not subscriptable''.}
  5935. \racket{Typed Racket}\python{The MyPy type checker} makes similar
  5936. design choices as \racket{Racket}\python{Python}, except much of the
  5937. error detection happens at compile time instead of run
  5938. time\python{~\citep{Lehtosalo2021:MyPy}}. \racket{Typed Racket}\python{MyPy}
  5939. accepts \racket{\code{(not 1)}}\python{\code{not 1}}. But in the case
  5940. of \racket{\code{(car 1)}}\python{\code{1[0]}}, \racket{Typed
  5941. Racket}\python{MyPy} reports a compile-time error
  5942. %
  5943. \racket{because Racket expects the type of the argument to be of the form
  5944. \code{(Listof T)} or \code{(Pairof T1 T2)}.}
  5945. %
  5946. \python{stating that a ``value of type \code{int} is not indexable''.}
  5947. The \LangIf{} language performs type checking during compilation like
  5948. \racket{Typed Racket}\python{MyPy}. In Chapter~\ref{ch:Rdyn} we study the
  5949. alternative choice, that is, a dynamically typed language like
  5950. \racket{Racket}\python{Python}.
  5951. The \LangIf{} language is a subset of \racket{Typed Racket}\python{MyPy};
  5952. for some operations we are more restrictive, for example, rejecting
  5953. \racket{\code{(not 1)}}\python{\code{not 1}}.
  5954. This chapter is organized as follows. We begin by defining the syntax
  5955. and interpreter for the \LangIf{} language
  5956. (Section~\ref{sec:lang-if}). We then introduce the idea of type
  5957. checking and define a type checker for \LangIf{}
  5958. (Section~\ref{sec:type-check-Lif}).
  5959. %
  5960. \racket{To compile \LangIf{} we need to enlarge the intermediate
  5961. language \LangCVar{} into \LangCIf{} (Section~\ref{sec:Cif}) and
  5962. \LangXInt{} into \LangXIf{} (Section~\ref{sec:x86-if}).}
  5963. %
  5964. The remaining sections of this chapter discuss how the addition of
  5965. Booleans and conditional control flow to the language requires changes
  5966. to the existing compiler passes and the addition of new ones. In
  5967. particular, we introduce the \code{shrink} pass to translates some
  5968. operators into others, thereby reducing the number of operators that
  5969. need to be handled in later passes.
  5970. %
  5971. The main event of this chapter is the \code{explicate\_control} pass
  5972. that is responsible for translating \code{if}'s into conditional
  5973. \code{goto}'s (Section~\ref{sec:explicate-control-Lif}).
  5974. %
  5975. Regarding register allocation, there is the interesting question of
  5976. how to handle conditional \code{goto}'s during liveness analysis.
  5977. \section{The \LangIf{} Language}
  5978. \label{sec:lang-if}
  5979. The concrete syntax of the \LangIf{} language is defined in
  5980. Figure~\ref{fig:Lif-concrete-syntax} and the abstract syntax is defined
  5981. in Figure~\ref{fig:Lif-syntax}. The \LangIf{} language includes all of
  5982. \LangVar{}\racket{(shown in gray)}, the Boolean literals \TRUE{} and
  5983. \FALSE{}, and the \code{if} expression \python{and statement}. We expand the
  5984. operators to include
  5985. \begin{enumerate}
  5986. \item subtraction on integers,
  5987. \item the logical operators \key{and}, \key{or}, and \key{not},
  5988. \item the \racket{\key{eq?} operation}\python{\key{==} and \key{!=} operations}
  5989. for comparing integers or Booleans for equality, and
  5990. \item the \key{<}, \key{<=}, \key{>}, and \key{>=} operations for
  5991. comparing integers.
  5992. \end{enumerate}
  5993. \racket{We reorganize the abstract syntax for the primitive
  5994. operations in Figure~\ref{fig:Lif-syntax}, using only one grammar
  5995. rule for all of them. This means that the grammar no longer checks
  5996. whether the arity of an operators matches the number of
  5997. arguments. That responsibility is moved to the type checker for
  5998. \LangIf{}, which we introduce in Section~\ref{sec:type-check-Lif}.}
  5999. \newcommand{\LifGrammarRacket}{
  6000. \begin{array}{lcl}
  6001. \Type &::=& \key{Boolean} \\
  6002. \itm{bool} &::=& \TRUE \MID \FALSE \\
  6003. \itm{cmp} &::= & \key{eq?} \MID \key{<} \MID \key{<=} \MID \key{>} \MID \key{>=} \\
  6004. \Exp &::=& \CSUB{\Exp}{\Exp} \MID \itm{bool}
  6005. \MID (\key{and}\;\Exp\;\Exp) \MID (\key{or}\;\Exp\;\Exp)
  6006. \MID (\key{not}\;\Exp) \\
  6007. &\MID& (\itm{cmp}\;\Exp\;\Exp) \MID \CIF{\Exp}{\Exp}{\Exp}
  6008. \end{array}
  6009. }
  6010. \newcommand{\LifASTRacket}{
  6011. \begin{array}{lcl}
  6012. \Type &::=& \key{Boolean} \\
  6013. \itm{bool} &::=& \code{\#t} \MID \code{\#f} \\
  6014. \itm{cmp} &::= & \code{eq?} \MID \code{<} \MID \code{<=} \MID \code{>} \MID \code{>=} \\
  6015. \itm{op} &::= & \itm{cmp} \MID \code{and} \MID \code{or} \MID \code{not} \\
  6016. \Exp &::=& \BOOL{\itm{bool}} \MID \IF{\Exp}{\Exp}{\Exp}
  6017. \end{array}
  6018. }
  6019. \newcommand{\LintOpAST}{
  6020. \begin{array}{rcl}
  6021. \itm{op} &::= & \code{read} \MID \code{+} \MID \code{-}\\
  6022. \Exp{} &::=& \INT{\Int} \MID \PRIM{\itm{op}}{\Exp\ldots}
  6023. \end{array}
  6024. }
  6025. \newcommand{\LifGrammarPython}{
  6026. \begin{array}{rcl}
  6027. \itm{cmp} &::= & \key{==} \MID \key{!=} \MID \key{<} \MID \key{<=} \MID \key{>} \MID \key{>=} \\
  6028. \Exp &::=& \TRUE \MID \FALSE \MID \CAND{\Exp}{\Exp} \MID \COR{\Exp}{\Exp}
  6029. \MID \key{not}~\Exp \\
  6030. &\MID& \CCMP{\itm{cmp}}{\Exp}{\Exp}
  6031. \MID \CIF{\Exp}{\Exp}{\Exp} \\
  6032. \Stmt &::=& \key{if}~ \Exp \key{:}~ \Stmt^{+} ~\key{else:}~ \Stmt^{+}
  6033. \end{array}
  6034. }
  6035. \newcommand{\LifASTPython}{
  6036. \begin{array}{lcl}
  6037. \itm{boolop} &::=& \code{And()} \MID \code{Or()} \\
  6038. \itm{unaryop} &::=& \code{Not()} \\
  6039. \itm{cmp} &::= & \code{Eq()} \MID \code{NotEq()} \MID \code{Lt()} \MID \code{LtE()} \MID \code{Gt()} \MID \code{GtE()} \\
  6040. \itm{bool} &::=& \code{True} \MID \code{False} \\
  6041. \Exp &::=& \BOOL{\itm{bool}}
  6042. \MID \BOOLOP{\itm{boolop}}{\Exp}{\Exp}\\
  6043. &\MID& \CMP{\Exp}{\itm{cmp}}{\Exp} \MID \IF{\Exp}{\Exp}{\Exp} \\
  6044. \Stmt{} &::=& \IFSTMT{\Exp}{\Stmt^{+}}{\Stmt^{+}}
  6045. \end{array}
  6046. }
  6047. \begin{figure}[tp]
  6048. \centering
  6049. \fbox{
  6050. \begin{minipage}{0.96\textwidth}
  6051. {\if\edition\racketEd
  6052. \[
  6053. \begin{array}{l}
  6054. \gray{\LintGrammarRacket{}} \\ \hline
  6055. \gray{\LvarGrammarRacket{}} \\ \hline
  6056. \LifGrammarRacket{} \\
  6057. \begin{array}{lcl}
  6058. \LangIfM{} &::=& \Exp
  6059. \end{array}
  6060. \end{array}
  6061. \]
  6062. \fi}
  6063. {\if\edition\pythonEd
  6064. \[
  6065. \begin{array}{l}
  6066. \gray{\LintGrammarPython} \\ \hline
  6067. \gray{\LvarGrammarPython} \\ \hline
  6068. \LifGrammarPython \\
  6069. \begin{array}{rcl}
  6070. \LangIfM{} &::=& \Stmt^{*}
  6071. \end{array}
  6072. \end{array}
  6073. \]
  6074. \fi}
  6075. \end{minipage}
  6076. }
  6077. \caption{The concrete syntax of \LangIf{}, extending \LangVar{}
  6078. (Figure~\ref{fig:Lvar-concrete-syntax}) with Booleans and conditionals.}
  6079. \label{fig:Lif-concrete-syntax}
  6080. \end{figure}
  6081. \begin{figure}[tp]
  6082. \centering
  6083. \fbox{
  6084. \begin{minipage}{0.96\textwidth}
  6085. {\if\edition\racketEd
  6086. \[
  6087. \begin{array}{l}
  6088. \gray{\LintOpAST} \\ \hline
  6089. \gray{\LvarASTRacket{}} \\ \hline
  6090. \LifASTRacket{} \\
  6091. \begin{array}{lcl}
  6092. \LangIfM{} &::=& \PROGRAM{\code{'()}}{\Exp}
  6093. \end{array}
  6094. \end{array}
  6095. \]
  6096. \fi}
  6097. {\if\edition\pythonEd
  6098. \[
  6099. \begin{array}{l}
  6100. \gray{\LintASTPython} \\ \hline
  6101. \gray{\LvarASTPython} \\ \hline
  6102. \LifASTPython \\
  6103. \begin{array}{lcl}
  6104. \LangIfM{} &::=& \PROGRAM{\code{'()}}{\Stmt^{*}}
  6105. \end{array}
  6106. \end{array}
  6107. \]
  6108. \fi}
  6109. \end{minipage}
  6110. }
  6111. \caption{The abstract syntax of \LangIf{}.}
  6112. \label{fig:Lif-syntax}
  6113. \end{figure}
  6114. Figure~\ref{fig:interp-Lif} defines the interpreter for \LangIf{},
  6115. which inherits from the interpreter for \LangVar{}
  6116. (Figure~\ref{fig:interp-Lvar}). The literals \TRUE{} and \FALSE{}
  6117. evaluate to the corresponding Boolean values. The conditional
  6118. expression $\CIF{e_1}{e_2}{\itm{e_3}}$ evaluates expression $e_1$
  6119. and then either evaluates $e_2$ or $e_3$ depending on whether
  6120. $e_1$ produced \TRUE{} or \FALSE{}. The logical operations
  6121. \code{and}, \code{or}, and \code{not} behave according to propositional logic,
  6122. but note that the \code{and} and \code{or} operations are
  6123. short-circuiting.
  6124. %
  6125. That is, given the expression $\CAND{e_1}{e_2}$, the expression $e_2$
  6126. is not evaluated if $e_1$ evaluates to \FALSE{}.
  6127. %
  6128. Similarly, given $\COR{e_1}{e_2}$, the expression $e_2$ is not
  6129. evaluated if $e_1$ evaluates to \TRUE{}.
  6130. \racket{With the increase in the number of primitive operations, the
  6131. interpreter would become repetitive without some care. We refactor
  6132. the case for \code{Prim}, moving the code that differs with each
  6133. operation into the \code{interp\_op} method shown in in
  6134. Figure~\ref{fig:interp-op-Lif}. We handle the \code{and} and
  6135. \code{or} operations separately because of their short-circuiting
  6136. behavior.}
  6137. \begin{figure}[tbp]
  6138. {\if\edition\racketEd
  6139. \begin{lstlisting}
  6140. (define interp_Lif_class
  6141. (class interp_Lvar_class
  6142. (super-new)
  6143. (define/public (interp_op op) ...)
  6144. (define/override ((interp_exp env) e)
  6145. (define recur (interp_exp env))
  6146. (match e
  6147. [(Bool b) b]
  6148. [(If cnd thn els)
  6149. (match (recur cnd)
  6150. [#t (recur thn)]
  6151. [#f (recur els)])]
  6152. [(Prim 'and (list e1 e2))
  6153. (match (recur e1)
  6154. [#t (match (recur e2) [#t #t] [#f #f])]
  6155. [#f #f])]
  6156. [(Prim 'or (list e1 e2))
  6157. (define v1 (recur e1))
  6158. (match v1
  6159. [#t #t]
  6160. [#f (match (recur e2) [#t #t] [#f #f])])]
  6161. [(Prim op args)
  6162. (apply (interp_op op) (for/list ([e args]) (recur e)))]
  6163. [else ((super interp_exp env) e)]))
  6164. ))
  6165. (define (interp_Lif p)
  6166. (send (new interp_Lif_class) interp_program p))
  6167. \end{lstlisting}
  6168. \fi}
  6169. {\if\edition\pythonEd
  6170. \begin{lstlisting}
  6171. class InterpLif(InterpLvar):
  6172. def interp_exp(self, e, env):
  6173. match e:
  6174. case IfExp(test, body, orelse):
  6175. if self.interp_exp(test, env):
  6176. return self.interp_exp(body, env)
  6177. else:
  6178. return self.interp_exp(orelse, env)
  6179. case BinOp(left, Sub(), right):
  6180. return self.interp_exp(left, env) - self.interp_exp(right, env)
  6181. case UnaryOp(Not(), v):
  6182. return not self.interp_exp(v, env)
  6183. case BoolOp(And(), values):
  6184. if self.interp_exp(values[0], env):
  6185. return self.interp_exp(values[1], env)
  6186. else:
  6187. return False
  6188. case BoolOp(Or(), values):
  6189. if self.interp_exp(values[0], env):
  6190. return True
  6191. else:
  6192. return self.interp_exp(values[1], env)
  6193. case Compare(left, [cmp], [right]):
  6194. l = self.interp_exp(left, env)
  6195. r = self.interp_exp(right, env)
  6196. return self.interp_cmp(cmp)(l, r)
  6197. case _:
  6198. return super().interp_exp(e, env)
  6199. def interp_stmts(self, ss, env):
  6200. if len(ss) == 0:
  6201. return
  6202. match ss[0]:
  6203. case If(test, body, orelse):
  6204. if self.interp_exp(test, env):
  6205. return self.interp_stmts(body + ss[1:], env)
  6206. else:
  6207. return self.interp_stmts(orelse + ss[1:], env)
  6208. case _:
  6209. return super().interp_stmts(ss, env)
  6210. ...
  6211. \end{lstlisting}
  6212. \fi}
  6213. \caption{Interpreter for the \LangIf{} language. \racket{(See
  6214. Figure~\ref{fig:interp-op-Lif} for \code{interp-op}.)}
  6215. \python{(See Figure~\ref{fig:interp-cmp-Lif} for \code{interp\_cmp}.)}}
  6216. \label{fig:interp-Lif}
  6217. \end{figure}
  6218. {\if\edition\racketEd
  6219. \begin{figure}[tbp]
  6220. \begin{lstlisting}
  6221. (define/public (interp_op op)
  6222. (match op
  6223. ['+ fx+]
  6224. ['- fx-]
  6225. ['read read-fixnum]
  6226. ['not (lambda (v) (match v [#t #f] [#f #t]))]
  6227. ['eq? (lambda (v1 v2)
  6228. (cond [(or (and (fixnum? v1) (fixnum? v2))
  6229. (and (boolean? v1) (boolean? v2))
  6230. (and (vector? v1) (vector? v2)))
  6231. (eq? v1 v2)]))]
  6232. ['< (lambda (v1 v2)
  6233. (cond [(and (fixnum? v1) (fixnum? v2))
  6234. (< v1 v2)]))]
  6235. ['<= (lambda (v1 v2)
  6236. (cond [(and (fixnum? v1) (fixnum? v2))
  6237. (<= v1 v2)]))]
  6238. ['> (lambda (v1 v2)
  6239. (cond [(and (fixnum? v1) (fixnum? v2))
  6240. (> v1 v2)]))]
  6241. ['>= (lambda (v1 v2)
  6242. (cond [(and (fixnum? v1) (fixnum? v2))
  6243. (>= v1 v2)]))]
  6244. [else (error 'interp_op "unknown operator")]))
  6245. \end{lstlisting}
  6246. \caption{Interpreter for the primitive operators in the \LangIf{} language.}
  6247. \label{fig:interp-op-Lif}
  6248. \end{figure}
  6249. \fi}
  6250. {\if\edition\pythonEd
  6251. \begin{figure}
  6252. \begin{lstlisting}
  6253. class InterpLif(InterpLvar):
  6254. ...
  6255. def interp_cmp(self, cmp):
  6256. match cmp:
  6257. case Lt():
  6258. return lambda x, y: x < y
  6259. case LtE():
  6260. return lambda x, y: x <= y
  6261. case Gt():
  6262. return lambda x, y: x > y
  6263. case GtE():
  6264. return lambda x, y: x >= y
  6265. case Eq():
  6266. return lambda x, y: x == y
  6267. case NotEq():
  6268. return lambda x, y: x != y
  6269. \end{lstlisting}
  6270. \caption{Interpreter for the comparison operators in the \LangIf{} language.}
  6271. \label{fig:interp-cmp-Lif}
  6272. \end{figure}
  6273. \fi}
  6274. \section{Type Checking \LangIf{} Programs}
  6275. \label{sec:type-check-Lif}
  6276. \index{subject}{type checking}
  6277. \index{subject}{semantic analysis}
  6278. It is helpful to think about type checking in two complementary
  6279. ways. A type checker predicts the type of value that will be produced
  6280. by each expression in the program. For \LangIf{}, we have just two types,
  6281. \INTTY{} and \BOOLTY{}. So a type checker should predict that
  6282. {\if\edition\racketEd
  6283. \begin{lstlisting}
  6284. (+ 10 (- (+ 12 20)))
  6285. \end{lstlisting}
  6286. \fi}
  6287. {\if\edition\pythonEd
  6288. \begin{lstlisting}
  6289. 10 + -(12 + 20)
  6290. \end{lstlisting}
  6291. \fi}
  6292. \noindent produces a value of type \INTTY{} while
  6293. {\if\edition\racketEd
  6294. \begin{lstlisting}
  6295. (and (not #f) #t)
  6296. \end{lstlisting}
  6297. \fi}
  6298. {\if\edition\pythonEd
  6299. \begin{lstlisting}
  6300. (not False) and True
  6301. \end{lstlisting}
  6302. \fi}
  6303. \noindent produces a value of type \BOOLTY{}.
  6304. A second way to think about type checking is that it enforces a set of
  6305. rules about which operators can be applied to which kinds of
  6306. values. For example, our type checker for \LangIf{} signals an error
  6307. for the below expression {\if\edition\racketEd
  6308. \begin{lstlisting}
  6309. (not (+ 10 (- (+ 12 20))))
  6310. \end{lstlisting}
  6311. \fi}
  6312. {\if\edition\pythonEd
  6313. \begin{lstlisting}
  6314. not (10 + -(12 + 20))
  6315. \end{lstlisting}
  6316. \fi}
  6317. The subexpression
  6318. \racket{\code{(+ 10 (- (+ 12 20)))}}\python{\code{(10 + -(12 + 20))}}
  6319. has type \INTTY{} but the type checker enforces the rule that the argument of
  6320. \code{not} must be an expression of type \BOOLTY{}.
  6321. We implement type checking using classes and methods because they
  6322. provide the open recursion needed to reuse code as we extend the type
  6323. checker in later chapters, analogous to the use of classes and methods
  6324. for the interpreters (Section~\ref{sec:extensible-interp}).
  6325. We separate the type checker for the \LangVar{} subset into its own
  6326. class, shown in Figure~\ref{fig:type-check-Lvar}. The type checker for
  6327. \LangIf{} is shown in Figure~\ref{fig:type-check-Lif} and it inherits
  6328. from the type checker for \LangVar{}. These type checkers are in the
  6329. files
  6330. \racket{\code{type-check-Lvar.rkt}}\python{\code{type\_check\_Lvar.py}}
  6331. and
  6332. \racket{\code{type-check-Lif.rkt}}\python{\code{type\_check\_Lif.py}}
  6333. of the support code.
  6334. %
  6335. Each type checker is a structurally recursive function over the AST.
  6336. Given an input expression \code{e}, the type checker either signals an
  6337. error or returns \racket{an expression and} its type (\INTTY{} or
  6338. \BOOLTY{}).
  6339. %
  6340. \racket{It returns an expression because there are situations in which
  6341. we want to change or update the expression.}
  6342. Next we discuss the \code{type\_check\_exp} function of \LangVar{} in
  6343. Figure~\ref{fig:type-check-Lvar}. The type of an integer constant is
  6344. \INTTY{}. To handle variables, the type checker uses the environment
  6345. \code{env} to map variables to types.
  6346. %
  6347. \racket{Consider the case for \key{let}. We type check the
  6348. initializing expression to obtain its type \key{T} and then
  6349. associate type \code{T} with the variable \code{x} in the
  6350. environment used to type check the body of the \key{let}. Thus,
  6351. when the type checker encounters a use of variable \code{x}, it can
  6352. find its type in the environment.}
  6353. %
  6354. \python{Consider the case for assignment. We type check the
  6355. initializing expression to obtain its type \key{t}. If the variable
  6356. \code{lhs.id} is already in the environment because there was a
  6357. prior assignment, we check that this initializer has the same type
  6358. as the prior one. If this is the first assignment to the variable,
  6359. we associate type \code{t} with the variable \code{lhs.id} in the
  6360. environment. Thus, when the type checker encounters a use of
  6361. variable \code{x}, it can find its type in the environment.}
  6362. %
  6363. \racket{Regarding primitive operators, we recursively analyze the
  6364. arguments and then invoke \code{type\_check\_op} to check whether
  6365. the argument types are allowed.}
  6366. %
  6367. \python{Regarding addition and negation, we recursively analyze the
  6368. arguments, check that they have type \INT{}, and return \INT{}.}
  6369. \racket{Several auxiliary methods are used in the type checker. The
  6370. method \code{operator-types} defines a dictionary that maps the
  6371. operator names to their parameter and return types. The
  6372. \code{type-equal?} method determines whether two types are equal,
  6373. which for now simply dispatches to \code{equal?} (deep
  6374. equality). The \code{check-type-equal?} method triggers an error if
  6375. the two types are not equal. The \code{type-check-op} method looks
  6376. up the operator in the \code{operator-types} dictionary and then
  6377. checks whether the argument types are equal to the parameter types.
  6378. The result is the return type of the operator.}
  6379. %
  6380. \python{The auxiliary method \code{check\_type\_equal} method triggers
  6381. an error if the two types are not equal.}
  6382. \begin{figure}[tbp]
  6383. {\if\edition\racketEd
  6384. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  6385. (define type-check-Lvar_class
  6386. (class object%
  6387. (super-new)
  6388. (define/public (operator-types)
  6389. '((+ . ((Integer Integer) . Integer))
  6390. (- . ((Integer) . Integer))
  6391. (read . (() . Integer))))
  6392. (define/public (type-equal? t1 t2) (equal? t1 t2))
  6393. (define/public (check-type-equal? t1 t2 e)
  6394. (unless (type-equal? t1 t2)
  6395. (error 'type-check "~a != ~a\nin ~v" t1 t2 e)))
  6396. (define/public (type-check-op op arg-types e)
  6397. (match (dict-ref (operator-types) op)
  6398. [`(,param-types . ,return-type)
  6399. (for ([at arg-types] [pt param-types])
  6400. (check-type-equal? at pt e))
  6401. return-type]
  6402. [else (error 'type-check-op "unrecognized ~a" op)]))
  6403. (define/public (type-check-exp env)
  6404. (lambda (e)
  6405. (match e
  6406. [(Int n) (values (Int n) 'Integer)]
  6407. [(Var x) (values (Var x) (dict-ref env x))]
  6408. [(Let x e body)
  6409. (define-values (e^ Te) ((type-check-exp env) e))
  6410. (define-values (b Tb) ((type-check-exp (dict-set env x Te)) body))
  6411. (values (Let x e^ b) Tb)]
  6412. [(Prim op es)
  6413. (define-values (new-es ts)
  6414. (for/lists (exprs types) ([e es]) ((type-check-exp env) e)))
  6415. (values (Prim op new-es) (type-check-op op ts e))]
  6416. [else (error 'type-check-exp "couldn't match" e)])))
  6417. (define/public (type-check-program e)
  6418. (match e
  6419. [(Program info body)
  6420. (define-values (body^ Tb) ((type-check-exp '()) body))
  6421. (check-type-equal? Tb 'Integer body)
  6422. (Program info body^)]
  6423. [else (error 'type-check-Lvar "couldn't match ~a" e)]))
  6424. ))
  6425. (define (type-check-Lvar p)
  6426. (send (new type-check-Lvar_class) type-check-program p))
  6427. \end{lstlisting}
  6428. \fi}
  6429. {\if\edition\pythonEd
  6430. \begin{lstlisting}
  6431. class TypeCheckLvar:
  6432. def check_type_equal(self, t1, t2, e):
  6433. if t1 != t2:
  6434. msg = 'error: ' + repr(t1) + ' != ' + repr(t2) + ' in ' + repr(e)
  6435. raise Exception(msg)
  6436. def type_check_exp(self, e, env):
  6437. match e:
  6438. case BinOp(left, Add(), right):
  6439. l = self.type_check_exp(left, env)
  6440. check_type_equal(l, int, left)
  6441. r = self.type_check_exp(right, env)
  6442. check_type_equal(r, int, right)
  6443. return int
  6444. case UnaryOp(USub(), v):
  6445. t = self.type_check_exp(v, env)
  6446. check_type_equal(t, int, v)
  6447. return int
  6448. case Name(id):
  6449. return env[id]
  6450. case Constant(value) if isinstance(value, int):
  6451. return int
  6452. case Call(Name('input_int'), []):
  6453. return int
  6454. def type_check_stmts(self, ss, env):
  6455. if len(ss) == 0:
  6456. return
  6457. match ss[0]:
  6458. case Assign([lhs], value):
  6459. t = self.type_check_exp(value, env)
  6460. if lhs.id in env:
  6461. check_type_equal(env[lhs.id], t, value)
  6462. else:
  6463. env[lhs.id] = t
  6464. return self.type_check_stmts(ss[1:], env)
  6465. case Expr(Call(Name('print'), [arg])):
  6466. t = self.type_check_exp(arg, env)
  6467. check_type_equal(t, int, arg)
  6468. return self.type_check_stmts(ss[1:], env)
  6469. case Expr(value):
  6470. self.type_check_exp(value, env)
  6471. return self.type_check_stmts(ss[1:], env)
  6472. def type_check_P(self, p):
  6473. match p:
  6474. case Module(body):
  6475. self.type_check_stmts(body, {})
  6476. \end{lstlisting}
  6477. \fi}
  6478. \caption{Type checker for the \LangVar{} language.}
  6479. \label{fig:type-check-Lvar}
  6480. \end{figure}
  6481. \begin{figure}[tbp]
  6482. {\if\edition\racketEd
  6483. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  6484. (define type-check-Lif_class
  6485. (class type-check-Lvar_class
  6486. (super-new)
  6487. (inherit check-type-equal?)
  6488. (define/override (operator-types)
  6489. (append '((- . ((Integer Integer) . Integer))
  6490. (and . ((Boolean Boolean) . Boolean))
  6491. (or . ((Boolean Boolean) . Boolean))
  6492. (< . ((Integer Integer) . Boolean))
  6493. (<= . ((Integer Integer) . Boolean))
  6494. (> . ((Integer Integer) . Boolean))
  6495. (>= . ((Integer Integer) . Boolean))
  6496. (not . ((Boolean) . Boolean))
  6497. )
  6498. (super operator-types)))
  6499. (define/override (type-check-exp env)
  6500. (lambda (e)
  6501. (match e
  6502. [(Bool b) (values (Bool b) 'Boolean)]
  6503. [(Prim 'eq? (list e1 e2))
  6504. (define-values (e1^ T1) ((type-check-exp env) e1))
  6505. (define-values (e2^ T2) ((type-check-exp env) e2))
  6506. (check-type-equal? T1 T2 e)
  6507. (values (Prim 'eq? (list e1^ e2^)) 'Boolean)]
  6508. [(If cnd thn els)
  6509. (define-values (cnd^ Tc) ((type-check-exp env) cnd))
  6510. (define-values (thn^ Tt) ((type-check-exp env) thn))
  6511. (define-values (els^ Te) ((type-check-exp env) els))
  6512. (check-type-equal? Tc 'Boolean e)
  6513. (check-type-equal? Tt Te e)
  6514. (values (If cnd^ thn^ els^) Te)]
  6515. [else ((super type-check-exp env) e)])))
  6516. ))
  6517. (define (type-check-Lif p)
  6518. (send (new type-check-Lif_class) type-check-program p))
  6519. \end{lstlisting}
  6520. \fi}
  6521. {\if\edition\pythonEd
  6522. \begin{lstlisting}
  6523. class TypeCheckLif(TypeCheckLvar):
  6524. def type_check_exp(self, e, env):
  6525. match e:
  6526. case Constant(value) if isinstance(value, bool):
  6527. return bool
  6528. case BinOp(left, Sub(), right):
  6529. l = self.type_check_exp(left, env); check_type_equal(l, int, left)
  6530. r = self.type_check_exp(right, env); check_type_equal(r, int, right)
  6531. return int
  6532. case UnaryOp(Not(), v):
  6533. t = self.type_check_exp(v, env); check_type_equal(t, bool, v)
  6534. return bool
  6535. case BoolOp(op, values):
  6536. left = values[0] ; right = values[1]
  6537. l = self.type_check_exp(left, env); check_type_equal(l, bool, left)
  6538. r = self.type_check_exp(right, env); check_type_equal(r, bool, right)
  6539. return bool
  6540. case Compare(left, [cmp], [right]) if isinstance(cmp, Eq) \
  6541. or isinstance(cmp, NotEq):
  6542. l = self.type_check_exp(left, env)
  6543. r = self.type_check_exp(right, env)
  6544. check_type_equal(l, r, e)
  6545. return bool
  6546. case Compare(left, [cmp], [right]):
  6547. l = self.type_check_exp(left, env); check_type_equal(l, int, left)
  6548. r = self.type_check_exp(right, env); check_type_equal(r, int, right)
  6549. return bool
  6550. case IfExp(test, body, orelse):
  6551. t = self.type_check_exp(test, env); check_type_equal(bool, t, test)
  6552. b = self.type_check_exp(body, env)
  6553. o = self.type_check_exp(orelse, env)
  6554. check_type_equal(b, o, e)
  6555. return b
  6556. case _:
  6557. return super().type_check_exp(e, env)
  6558. def type_check_stmts(self, ss, env):
  6559. if len(ss) == 0:
  6560. return
  6561. match ss[0]:
  6562. case If(test, body, orelse):
  6563. t = self.type_check_exp(test, env); check_type_equal(bool, t, test)
  6564. b = self.type_check_stmts(body, env)
  6565. o = self.type_check_stmts(orelse, env)
  6566. check_type_equal(b, o, ss[0])
  6567. return self.type_check_stmts(ss[1:], env)
  6568. case _:
  6569. return super().type_check_stmts(ss, env)
  6570. \end{lstlisting}
  6571. \fi}
  6572. \caption{Type checker for the \LangIf{} language.}
  6573. \label{fig:type-check-Lif}
  6574. \end{figure}
  6575. We shift our focus to Figure~\ref{fig:type-check-Lif}, the type
  6576. checker for \LangIf{}.
  6577. %
  6578. The type of a Boolean constant is \BOOLTY{}.
  6579. %
  6580. \racket{The \code{operator-types} function adds dictionary entries for
  6581. the other new operators.}
  6582. %
  6583. \python{Subtraction requires its arguments to be of type \INTTY{} and produces
  6584. an \INTTY{}. Negation requires its argument to be a \BOOLTY{} and
  6585. produces a \BOOLTY{}. Similarly for logical and and logical or. }
  6586. %
  6587. The equality operators requires the two arguments to have the same
  6588. type.
  6589. %
  6590. \python{The other comparisons (less-than, etc.) require their
  6591. arguments to be of type \INTTY{} and they produce a \BOOLTY{}.}
  6592. %
  6593. The condition of an \code{if} must
  6594. be of \BOOLTY{} type and the two branches must have the same type.
  6595. \begin{exercise}\normalfont
  6596. Create 10 new test programs in \LangIf{}. Half of the programs should
  6597. have a type error. For those programs, create an empty file with the
  6598. same base name but with file extension \code{.tyerr}. For example, if
  6599. the test
  6600. \racket{\code{cond\_test\_14.rkt}}\python{\code{cond\_test\_14.py}}
  6601. is expected to error, then create
  6602. an empty file named \code{cond\_test\_14.tyerr}.
  6603. %
  6604. \racket{This indicates to \code{interp-tests} and
  6605. \code{compiler-tests} that a type error is expected. }
  6606. %
  6607. \racket{This indicates to the \code{run-tests.rkt} scripts that a type
  6608. error is expected.}
  6609. %
  6610. The other half of the test programs should not have type errors.
  6611. %
  6612. \racket{In the \code{run-tests.rkt} script, change the second argument
  6613. of \code{interp-tests} and \code{compiler-tests} to
  6614. \code{type-check-Lif}, which causes the type checker to run prior to
  6615. the compiler passes. Temporarily change the \code{passes} to an
  6616. empty list and run the script, thereby checking that the new test
  6617. programs either type check or not as intended.}
  6618. %
  6619. Run the test script to check that these test programs type check as
  6620. expected.
  6621. \end{exercise}
  6622. \clearpage
  6623. \section{The \LangCIf{} Intermediate Language}
  6624. \label{sec:Cif}
  6625. {\if\edition\racketEd
  6626. %
  6627. Figure~\ref{fig:c1-concrete-syntax} defines the concrete syntax of the
  6628. \LangCIf{} intermediate language and Figure~\ref{fig:c1-syntax}
  6629. defines its abstract syntax. Compared to \LangCVar{}, the \LangCIf{}
  6630. language adds logical and comparison operators to the \Exp{}
  6631. non-terminal and the literals \TRUE{} and \FALSE{} to the \Arg{}
  6632. non-terminal.
  6633. Regarding control flow, \LangCIf{} adds \key{goto} and \code{if}
  6634. statements to the \Tail{} non-terminal. The condition of an \code{if}
  6635. statement is a comparison operation and the branches are \code{goto}
  6636. statements, making it straightforward to compile \code{if} statements
  6637. to x86.
  6638. %
  6639. \fi}
  6640. %
  6641. {\if\edition\pythonEd
  6642. %
  6643. The output of \key{explicate\_control} is a language similar to the
  6644. $C$ language~\citep{Kernighan:1988nx} in that it has labels and
  6645. \code{goto} statements, so we name it \LangCIf{}. The
  6646. concrete syntax for \LangCIf{} is defined in
  6647. Figure~\ref{fig:c1-concrete-syntax}
  6648. and the abstract syntax is defined in Figure~\ref{fig:c1-syntax}.
  6649. %
  6650. The \LangCIf{} language supports the same operators as \LangIf{} but
  6651. the arguments of operators are restricted to atomic expressions. The
  6652. \LangCIf{} language does not include \code{if} expressions but it does
  6653. include a restricted form of \code{if} statment. The condition must be
  6654. a comparison and the two branches may only contain \code{goto}
  6655. statements. These restrictions make it easier to translate \code{if}
  6656. statements to x86.
  6657. %
  6658. \fi}
  6659. %
  6660. The \key{CProgram} construct contains
  6661. %
  6662. \racket{an alist}\python{a dictionary}
  6663. %
  6664. mapping labels to $\Tail$ expressions, which can be return statements,
  6665. an assignment statement followed by a $\Tail$ expression, a
  6666. \code{goto}, or a conditional \code{goto}.
  6667. \newcommand{\CifGrammarRacket}{
  6668. \begin{array}{lcl}
  6669. \Atm &::=& \itm{bool} \\
  6670. \itm{cmp} &::= & \code{eq?} \MID \code{<} \MID \code{<=} \MID \code{>} \MID \code{>=} \\
  6671. \Exp &::=& \CNOT{\Atm} \MID \LP \itm{cmp}~\Atm~\Atm\RP \\
  6672. \Tail &::= & \key{goto}~\itm{label}\key{;}\\
  6673. &\MID& \key{if}~\LP \itm{cmp}~\Atm~\Atm \RP~ \key{goto}~\itm{label}\key{;} ~\key{else}~\key{goto}~\itm{label}\key{;}
  6674. \end{array}
  6675. }
  6676. \newcommand{\CifASTRacket}{
  6677. \begin{array}{lcl}
  6678. \Atm &::=& \BOOL{\itm{bool}} \\
  6679. \itm{cmp} &::= & \code{eq?} \MID \code{<} \MID \code{<=} \MID \code{>} \MID \code{>=} \\
  6680. \Exp &::= & \UNIOP{\key{'not}}{\Atm} \MID \BINOP{\key{'}\itm{cmp}}{\Atm}{\Atm} \\
  6681. \Tail &::= & \GOTO{\itm{label}} \\
  6682. &\MID& \IFSTMT{\BINOP{\itm{cmp}}{\Atm}{\Atm}}{\GOTO{\itm{label}}}{\GOTO{\itm{label}}}
  6683. \end{array}
  6684. }
  6685. \newcommand{\CifGrammarPython}{
  6686. \begin{array}{lcl}
  6687. \Atm &::=& \Int \MID \Var \MID \itm{bool} \\
  6688. \Exp &::= & \Atm \MID \CREAD{}
  6689. \MID \CBINOP{\itm{binaryop}}{\Atm}{\Atm}
  6690. \MID \CUNIOP{\itm{unaryop}}{\Atm} \\
  6691. &\MID& \CCMP{\itm{cmp}}{\Atm}{\Atm} \\
  6692. \Stmt &::=& \CPRINT{\Exp} \MID \Exp \\
  6693. &\MID& \CASSIGN{\Var}{\Exp}
  6694. \MID \CRETURN{\Exp} \MID \CGOTO{\itm{label}} \\
  6695. &\MID& \CIFSTMT{\CCMP{\itm{cmp}}{\Atm}{\Atm}}{\CGOTO{\itm{label}}}{\CGOTO{\itm{label}}}
  6696. \end{array}
  6697. }
  6698. \newcommand{\CifASTPython}{
  6699. \begin{array}{lcl}
  6700. \Atm &::=& \INT{\Int} \MID \VAR{\Var} \MID \BOOL{\itm{bool}} \\
  6701. \Exp &::= & \Atm \MID \READ{} \\
  6702. &\MID& \BINOP{\Atm}{\itm{binaryop}}{\Atm}
  6703. \MID \UNIOP{\itm{unaryop}}{\Atm} \\
  6704. &\MID& \CMP{\Atm}{\itm{cmp}}{\Atm} \\
  6705. \Stmt &::=& \PRINT{\Exp} \MID \EXPR{\Exp} \\
  6706. &\MID& \ASSIGN{\VAR{\Var}}{\Exp}
  6707. \MID \RETURN{\Exp} \MID \GOTO{\itm{label}} \\
  6708. &\MID& \IFSTMT{\CMP{\Atm}{\itm{cmp}}{\Atm}}{\LS\GOTO{\itm{label}}\RS}{\LS\GOTO{\itm{label}}\RS}
  6709. \end{array}
  6710. }
  6711. \begin{figure}[tbp]
  6712. \fbox{
  6713. \begin{minipage}{0.96\textwidth}
  6714. \small
  6715. {\if\edition\racketEd
  6716. \[
  6717. \begin{array}{l}
  6718. \gray{\CvarGrammarRacket} \\ \hline
  6719. \CifGrammarRacket \\
  6720. \begin{array}{lcl}
  6721. \LangCIfM{} & ::= & (\itm{label}\key{:}~ \Tail)\ldots
  6722. \end{array}
  6723. \end{array}
  6724. \]
  6725. \fi}
  6726. {\if\edition\pythonEd
  6727. \[
  6728. \begin{array}{l}
  6729. \CifGrammarPython \\
  6730. \begin{array}{lcl}
  6731. \LangCIfM{} & ::= & (\itm{label}\code{:}~\Stmt^{*}) \ldots
  6732. \end{array}
  6733. \end{array}
  6734. \]
  6735. \fi}
  6736. \end{minipage}
  6737. }
  6738. \caption{The concrete syntax of the \LangCIf{} intermediate language.}
  6739. \label{fig:c1-concrete-syntax}
  6740. \end{figure}
  6741. \begin{figure}[tp]
  6742. \fbox{
  6743. \begin{minipage}{0.96\textwidth}
  6744. \small
  6745. {\if\edition\racketEd
  6746. \[
  6747. \begin{array}{l}
  6748. \gray{\CvarASTRacket} \\ \hline
  6749. \CifASTRacket \\
  6750. \begin{array}{lcl}
  6751. \LangCIfM{} & ::= & \CPROGRAM{\itm{info}}{\LP\LP\itm{label}\,\key{.}\,\Tail\RP\ldots\RP}
  6752. \end{array}
  6753. \end{array}
  6754. \]
  6755. \fi}
  6756. {\if\edition\pythonEd
  6757. \[
  6758. \begin{array}{l}
  6759. \CifASTPython \\
  6760. \begin{array}{lcl}
  6761. \LangCIfM{} & ::= & \CPROGRAM{\itm{info}}{\LC\itm{label}\key{:}\,\Stmt^{*}, \ldots \RC}
  6762. \end{array}
  6763. \end{array}
  6764. \]
  6765. \fi}
  6766. \end{minipage}
  6767. }
  6768. \caption{The abstract syntax of \LangCIf{}\racket{, an extension of \LangCVar{}
  6769. (Figure~\ref{fig:c0-syntax})}.}
  6770. \label{fig:c1-syntax}
  6771. \end{figure}
  6772. \section{The \LangXIf{} Language}
  6773. \label{sec:x86-if}
  6774. \index{subject}{x86} To implement the new logical operations, the comparison
  6775. operations, and the \key{if} expression, we need to delve further into
  6776. the x86 language. Figures~\ref{fig:x86-1-concrete} and \ref{fig:x86-1}
  6777. define the concrete and abstract syntax for the \LangXIf{} subset
  6778. of x86, which includes instructions for logical operations,
  6779. comparisons, and \racket{conditional} jumps.
  6780. One challenge is that x86 does not provide an instruction that
  6781. directly implements logical negation (\code{not} in \LangIf{} and
  6782. \LangCIf{}). However, the \code{xorq} instruction can be used to
  6783. encode \code{not}. The \key{xorq} instruction takes two arguments,
  6784. performs a pairwise exclusive-or ($\mathrm{XOR}$) operation on each
  6785. bit of its arguments, and writes the results into its second argument.
  6786. Recall the truth table for exclusive-or:
  6787. \begin{center}
  6788. \begin{tabular}{l|cc}
  6789. & 0 & 1 \\ \hline
  6790. 0 & 0 & 1 \\
  6791. 1 & 1 & 0
  6792. \end{tabular}
  6793. \end{center}
  6794. For example, applying $\mathrm{XOR}$ to each bit of the binary numbers
  6795. $0011$ and $0101$ yields $0110$. Notice that in the row of the table
  6796. for the bit $1$, the result is the opposite of the second bit. Thus,
  6797. the \code{not} operation can be implemented by \code{xorq} with $1$ as
  6798. the first argument as follows, where $\Arg$ is the translation of
  6799. $\Atm$.
  6800. \[
  6801. \CASSIGN{\Var}{\CUNIOP{\key{not}}{\Atm}}
  6802. \qquad\Rightarrow\qquad
  6803. \begin{array}{l}
  6804. \key{movq}~ \Arg\key{,} \Var\\
  6805. \key{xorq}~ \key{\$1,} \Var
  6806. \end{array}
  6807. \]
  6808. \begin{figure}[tp]
  6809. \fbox{
  6810. \begin{minipage}{0.96\textwidth}
  6811. \[
  6812. \begin{array}{lcl}
  6813. \itm{bytereg} &::=& \key{ah} \MID \key{al} \MID \key{bh} \MID \key{bl}
  6814. \MID \key{ch} \MID \key{cl} \MID \key{dh} \MID \key{dl} \\
  6815. \Arg &::=& \gray{ \key{\$}\Int \MID \key{\%}\Reg \MID \Int\key{(}\key{\%}\Reg\key{)} } \MID \key{\%}\itm{bytereg}\\
  6816. \itm{cc} & ::= & \key{e} \MID \key{l} \MID \key{le} \MID \key{g} \MID \key{ge} \\
  6817. \Instr &::=& \gray{ \key{addq} \; \Arg\key{,} \Arg \MID
  6818. \key{subq} \; \Arg\key{,} \Arg \MID
  6819. \key{negq} \; \Arg \MID \key{movq} \; \Arg\key{,} \Arg \MID } \\
  6820. && \gray{ \key{callq} \; \itm{label} \MID
  6821. \key{pushq}\;\Arg \MID \key{popq}\;\Arg \MID \key{retq} \MID \racket{\key{jmp}\,\itm{label} \MID} } \python{\key{jmp}\,\itm{label} \MID} \\
  6822. && \racket{\gray{ \itm{label}\key{:}\; \Instr }}\python{\itm{label}\key{:}\; \Instr}
  6823. \MID \key{xorq}~\Arg\key{,}~\Arg
  6824. \MID \key{cmpq}~\Arg\key{,}~\Arg \MID \\
  6825. && \key{set}cc~\Arg
  6826. \MID \key{movzbq}~\Arg\key{,}~\Arg
  6827. \MID \key{j}cc~\itm{label}
  6828. \\
  6829. \LangXIfM{} &::= & \gray{ \key{.globl main} }\\
  6830. & & \gray{ \key{main:} \; \Instr\ldots }
  6831. \end{array}
  6832. \]
  6833. \end{minipage}
  6834. }
  6835. \caption{The concrete syntax of \LangXIf{} (extends \LangXInt{} of Figure~\ref{fig:x86-int-concrete}).}
  6836. \label{fig:x86-1-concrete}
  6837. \end{figure}
  6838. \begin{figure}[tp]
  6839. \fbox{
  6840. \begin{minipage}{0.98\textwidth}
  6841. \small
  6842. {\if\edition\racketEd
  6843. \[
  6844. \begin{array}{lcl}
  6845. \itm{bytereg} &::=& \key{ah} \MID \key{al} \MID \key{bh} \MID \key{bl}
  6846. \MID \key{ch} \MID \key{cl} \MID \key{dh} \MID \key{dl} \\
  6847. \Arg &::=& \gray{\IMM{\Int} \MID \REG{\Reg} \MID \DEREF{\Reg}{\Int}}
  6848. \MID \BYTEREG{\itm{bytereg}} \\
  6849. \itm{cc} & ::= & \key{e} \MID \key{l} \MID \key{le} \MID \key{g} \MID \key{ge} \\
  6850. \Instr &::=& \gray{ \BININSTR{\code{addq}}{\Arg}{\Arg}
  6851. \MID \BININSTR{\code{subq}}{\Arg}{\Arg} } \\
  6852. &\MID& \gray{ \BININSTR{\code{'movq}}{\Arg}{\Arg}
  6853. \MID \UNIINSTR{\code{negq}}{\Arg} } \\
  6854. &\MID& \gray{ \CALLQ{\itm{label}}{\itm{int}} \MID \RETQ{}
  6855. \MID \PUSHQ{\Arg} \MID \POPQ{\Arg} \MID \JMP{\itm{label}} } \\
  6856. &\MID& \BININSTR{\code{xorq}}{\Arg}{\Arg}
  6857. \MID \BININSTR{\code{cmpq}}{\Arg}{\Arg}\\
  6858. &\MID& \BININSTR{\code{set}}{\itm{cc}}{\Arg}
  6859. \MID \BININSTR{\code{movzbq}}{\Arg}{\Arg}\\
  6860. &\MID& \JMPIF{'\itm{cc}'}{\itm{label}} \\
  6861. \Block &::= & \gray{\BLOCK{\itm{info}}{\LP\Instr\ldots\RP}} \\
  6862. \LangXIfM{} &::= & \gray{\XPROGRAM{\itm{info}}{\LP\LP\itm{label} \,\key{.}\, \Block \RP\ldots\RP}}
  6863. \end{array}
  6864. \]
  6865. \fi}
  6866. %
  6867. {\if\edition\pythonEd
  6868. \[
  6869. \begin{array}{lcl}
  6870. \itm{bytereg} &::=& \key{ah} \MID \key{al} \MID \key{bh} \MID \key{bl}
  6871. \MID \key{ch} \MID \key{cl} \MID \key{dh} \MID \key{dl} \\
  6872. \Arg &::=& \gray{\IMM{\Int} \MID \REG{\Reg} \MID \DEREF{\Reg}{\Int}}
  6873. \MID \BYTEREG{\itm{bytereg}} \\
  6874. \itm{cc} & ::= & \key{e} \MID \key{l} \MID \key{le} \MID \key{g} \MID \key{ge} \\
  6875. \Instr &::=& \gray{ \BININSTR{\code{addq}}{\Arg}{\Arg}
  6876. \MID \BININSTR{\code{subq}}{\Arg}{\Arg} } \\
  6877. &\MID& \gray{ \BININSTR{\code{movq}}{\Arg}{\Arg}
  6878. \MID \UNIINSTR{\code{negq}}{\Arg} } \\
  6879. &\MID& \gray{ \CALLQ{\itm{label}}{\itm{int}} \MID \RETQ{}
  6880. \MID \PUSHQ{\Arg}} \\
  6881. &\MID& \gray{ \POPQ{\Arg} \MID \racket{\JMP{\itm{label}}} } \python{\JMP{\itm{label}}}\\
  6882. &\MID& \BININSTR{\code{xorq}}{\Arg}{\Arg}
  6883. \MID \BININSTR{\code{cmpq}}{\Arg}{\Arg}\\
  6884. &\MID& \BININSTR{\code{set}}{\itm{cc}}{\Arg}
  6885. \MID \BININSTR{\code{movzbq}}{\Arg}{\Arg}\\
  6886. &\MID& \JMPIF{\key{'}\itm{cc}\key{'}}{\itm{label}} \\
  6887. \LangXIfM{} &::= & \XPROGRAM{\itm{info}}{\LC\itm{label} \,\key{:}\, \Instr^{*} \key{,} \ldots \RC }
  6888. \end{array}
  6889. \]
  6890. \fi}
  6891. \end{minipage}
  6892. }
  6893. \caption{The abstract syntax of \LangXIf{} (extends \LangXInt{} of Figure~\ref{fig:x86-int-ast}).}
  6894. \label{fig:x86-1}
  6895. \end{figure}
  6896. Next we consider the x86 instructions that are relevant for compiling
  6897. the comparison operations. The \key{cmpq} instruction compares its two
  6898. arguments to determine whether one argument is less than, equal, or
  6899. greater than the other argument. The \key{cmpq} instruction is unusual
  6900. regarding the order of its arguments and where the result is
  6901. placed. The argument order is backwards: if you want to test whether
  6902. $x < y$, then write \code{cmpq} $y$\code{,} $x$. The result of
  6903. \key{cmpq} is placed in the special EFLAGS register. This register
  6904. cannot be accessed directly but it can be queried by a number of
  6905. instructions, including the \key{set} instruction. The instruction
  6906. $\key{set}cc~d$ puts a \key{1} or \key{0} into the destination $d$
  6907. depending on whether the comparison comes out according to the
  6908. condition code \itm{cc} (\key{e} for equal, \key{l} for less, \key{le}
  6909. for less-or-equal, \key{g} for greater, \key{ge} for
  6910. greater-or-equal). The \key{set} instruction has a quirk in
  6911. that its destination argument must be single byte register, such as
  6912. \code{al} (L for lower bits) or \code{ah} (H for higher bits), which
  6913. are part of the \code{rax} register. Thankfully, the \key{movzbq}
  6914. instruction can be used to move from a single byte register to a
  6915. normal 64-bit register. The abstract syntax for the \code{set}
  6916. instruction differs from the concrete syntax in that it separates the
  6917. instruction name from the condition code.
  6918. \python{The x86 instructions for jumping are relevant to the
  6919. compilation of \key{if} expressions.}
  6920. %
  6921. \python{The instruction $\key{jmp}\,\itm{label}$ updates the program
  6922. counter to the address of the instruction after the specified
  6923. label.}
  6924. %
  6925. \racket{The x86 instruction for conditional jump is relevant to the
  6926. compilation of \key{if} expressions.}
  6927. %
  6928. The instruction $\key{j}\itm{cc}~\itm{label}$ updates the program
  6929. counter to point to the instruction after \itm{label} depending on
  6930. whether the result in the EFLAGS register matches the condition code
  6931. \itm{cc}, otherwise the jump instruction falls through to the next
  6932. instruction. Like the abstract syntax for \code{set}, the abstract
  6933. syntax for conditional jump separates the instruction name from the
  6934. condition code. For example, \JMPIF{\key{'le'}}{\key{foo}} corresponds
  6935. to \code{jle foo}. Because the conditional jump instruction relies on
  6936. the EFLAGS register, it is common for it to be immediately preceded by
  6937. a \key{cmpq} instruction to set the EFLAGS register.
  6938. \section{Shrink the \LangIf{} Language}
  6939. \label{sec:shrink-Lif}
  6940. The \LangIf{} language includes several features that are easily
  6941. expressible with other features. For example, \code{and} and \code{or}
  6942. are expressible using \code{if} as follows.
  6943. \begin{align*}
  6944. \CAND{e_1}{e_2} & \quad \Rightarrow \quad \CIF{e_1}{e_2}{\FALSE{}}\\
  6945. \COR{e_1}{e_2} & \quad \Rightarrow \quad \CIF{e_1}{\TRUE{}}{e_2}
  6946. \end{align*}
  6947. By performing these translations in the front-end of the compiler, the
  6948. later passes of the compiler do not need to deal with these features,
  6949. making the passes shorter.
  6950. %% For example, subtraction is
  6951. %% expressible using addition and negation.
  6952. %% \[
  6953. %% \key{(-}\; e_1 \; e_2\key{)} \quad \Rightarrow \quad \LP\key{+} \; e_1 \; \LP\key{-} \; e_2\RP\RP
  6954. %% \]
  6955. %% Several of the comparison operations are expressible using less-than
  6956. %% and logical negation.
  6957. %% \[
  6958. %% \LP\key{<=}\; e_1 \; e_2\RP \quad \Rightarrow \quad
  6959. %% \LP\key{let}~\LP\LS\key{tmp.1}~e_1\RS\RP~\LP\key{not}\;\LP\key{<}\;e_2\;\key{tmp.1})\RP\RP
  6960. %% \]
  6961. %% The \key{let} is needed in the above translation to ensure that
  6962. %% expression $e_1$ is evaluated before $e_2$.
  6963. On the other hand, sometimes translations reduce the efficiency of the
  6964. generated code by increasing the number of instructions. For example,
  6965. expressing subtraction in terms of negation
  6966. \[
  6967. \CBINOP{\key{-}}{e_1}{e_2} \quad \Rightarrow \quad
  6968. \CBINOP{\key{+}}{e_1}{ \CUNIOP{\key{-}}{e_2} }
  6969. \]
  6970. produces code with two x86 instructions (\code{negq} and \code{addq})
  6971. instead of just one (\code{subq}).
  6972. %% However,
  6973. %% these differences typically do not affect the number of accesses to
  6974. %% memory, which is the primary factor that determines execution time on
  6975. %% modern computer architectures.
  6976. \begin{exercise}\normalfont
  6977. %
  6978. Implement the pass \code{shrink} to remove \key{and} and \key{or} from
  6979. the language by translating them to \code{if} expressions in \LangIf{}.
  6980. %
  6981. Create four test programs that involve these operators.
  6982. %
  6983. {\if\edition\racketEd
  6984. In the \code{run-tests.rkt} script, add the following entry for
  6985. \code{shrink} to the list of passes (it should be the only pass at
  6986. this point).
  6987. \begin{lstlisting}
  6988. (list "shrink" shrink interp_Lif type-check-Lif)
  6989. \end{lstlisting}
  6990. This instructs \code{interp-tests} to run the intepreter
  6991. \code{interp\_Lif} and the type checker \code{type-check-Lif} on the
  6992. output of \code{shrink}.
  6993. \fi}
  6994. %
  6995. Run the script to test your compiler on all the test programs.
  6996. \end{exercise}
  6997. {\if\edition\racketEd
  6998. \section{Uniquify Variables}
  6999. \label{sec:uniquify-Lif}
  7000. Add cases to \code{uniquify-exp} to handle Boolean constants and
  7001. \code{if} expressions.
  7002. \begin{exercise}\normalfont
  7003. Update the \code{uniquify\_exp} for \LangIf{} and add the following
  7004. entry to the list of \code{passes} in the \code{run-tests.rkt} script.
  7005. \begin{lstlisting}
  7006. (list "uniquify" uniquify interp_Lif type_check_Lif)
  7007. \end{lstlisting}
  7008. Run the script to test your compiler.
  7009. \end{exercise}
  7010. \fi}
  7011. \section{Remove Complex Operands}
  7012. \label{sec:remove-complex-opera-Lif}
  7013. The output language of \code{remove\_complex\_operands} is
  7014. \LangIfANF{} (Figure~\ref{fig:Lif-anf-syntax}), the administrative
  7015. normal form of \LangIf{}. A Boolean constant is an atomic expressions
  7016. but the \code{if} expression is not. All three sub-expressions of an
  7017. \code{if} are allowed to be complex expressions but the operands of
  7018. \code{not} and the comparisons must be atomic.
  7019. %
  7020. \python{We add a new language form, the \code{Let} expression, to aid
  7021. in the translation of \code{if} expressions. When we recursively
  7022. process the two branches of the \code{if}, we generate temporary
  7023. variables and their initializing expressions. However, these
  7024. expressions may contain side effects and should only be executed
  7025. when the condition of the \code{if} is true (for the ``then''
  7026. branch) or false (for the ``else'' branch). The \code{Let} provides
  7027. a way to initialize the temporary variables within the two branches
  7028. of the \code{if} expression. In general, the $\LET{x}{e_1}{e_2}$
  7029. form assigns the result of $e_1$ to the variable $x$, an then
  7030. evaluates $e_2$, which may reference $x$.}
  7031. Add cases for Boolean constants, \python{comparisons,} and \code{if}
  7032. expressions to the \code{rco\_exp} and \code{rco\_atom} functions
  7033. according to whether the output needs to be \Exp{} or \Atm{} as
  7034. specified in the grammar for \LangIfANF{}. Regarding \code{if}, it is
  7035. particularly important to \textbf{not} replace its condition with a
  7036. temporary variable because that would interfere with the generation of
  7037. high-quality output in the \code{explicate\_control} pass.
  7038. \newcommand{\LifASTMonadPython}{
  7039. \begin{array}{rcl}
  7040. %% \itm{binaryop} &::=& \code{Add()} \MID \code{Sub()} \\
  7041. %% \itm{cmp} &::= & \code{Eq()} \MID \code{NotEq()} \MID \code{Lt()} \MID \code{LtE()} \MID \code{Gt()} \MID \code{GtE()} \\
  7042. %% \itm{unaryop} &::=& \code{USub()} \MID \code{Not()} \\
  7043. %% \itm{bool} &::=& \code{True} \MID \code{False} \\
  7044. \Atm &::=& \INT{\Int} \MID \VAR{\Var} \MID \BOOL{\itm{bool}}\\
  7045. \Exp &::=& \Atm \MID \READ{} \\
  7046. &\MID& \BINOP{\itm{binaryop}}{\Atm}{\Atm} \MID \UNIOP{\key{unaryop}}{\Atm} \\
  7047. &\MID& \CMP{\Atm}{\itm{cmp}}{\Atm} \MID \IF{\Exp}{\Exp}{\Exp} \\
  7048. &\MID& \LET{\Var}{\Exp}{\Exp}\\
  7049. \Stmt{} &::=& \PRINT{\Atm} \MID \EXPR{\Exp} \\
  7050. &\MID& \ASSIGN{\VAR{\Var}}{\Exp} \MID \IFSTMT{\Exp}{\Stmt^{*}}{\Stmt^{*}}\\
  7051. \LangIfANF &::=& \PROGRAM{\code{()}}{\Stmt^{*}}
  7052. \end{array}
  7053. }
  7054. \begin{figure}[tp]
  7055. \centering
  7056. \fbox{
  7057. \begin{minipage}{0.96\textwidth}
  7058. {\if\edition\racketEd
  7059. \[
  7060. \begin{array}{rcl}
  7061. Atm &::=& \gray{ \INT{\Int} \MID \VAR{\Var} } \MID \BOOL{\itm{bool}}\\
  7062. \Exp &::=& \gray{ \Atm \MID \READ{} } \\
  7063. &\MID& \gray{ \NEG{\Atm} \MID \ADD{\Atm}{\Atm} } \\
  7064. &\MID& \gray{ \LET{\Var}{\Exp}{\Exp} } \\
  7065. &\MID& \UNIOP{\key{not}}{\Atm} \\
  7066. &\MID& \BINOP{\itm{cmp}}{\Atm}{\Atm} \MID \IF{\Exp}{\Exp}{\Exp} \\
  7067. \LangIfANF &::=& \PROGRAM{\code{()}}{\Exp}
  7068. \end{array}
  7069. \]
  7070. \fi}
  7071. {\if\edition\pythonEd
  7072. \[
  7073. \begin{array}{l}
  7074. \LifASTMonadPython \\
  7075. \begin{array}{rcl}
  7076. \LangIfANF &::=& \PROGRAM{\code{()}}{\Stmt^{*}}
  7077. \end{array}
  7078. \end{array}
  7079. \]
  7080. \fi}
  7081. \end{minipage}
  7082. }
  7083. \caption{\LangIfANF{} is \LangIf{} in monadic normal form.}
  7084. \label{fig:Lif-anf-syntax}
  7085. \end{figure}
  7086. \begin{exercise}\normalfont
  7087. %
  7088. Add cases for Boolean constants and \code{if} to the \code{rco\_atom}
  7089. and \code{rco\_exp} functions in \code{compiler.rkt}.
  7090. %
  7091. Create three new \LangIf{} programs that exercise the interesting
  7092. code in this pass.
  7093. %
  7094. {\if\edition\racketEd
  7095. In the \code{run-tests.rkt} script, add the following entry to the
  7096. list of \code{passes} and then run the script to test your compiler.
  7097. \begin{lstlisting}
  7098. (list "remove-complex" remove-complex-opera* interp-Lif type-check-Lif)
  7099. \end{lstlisting}
  7100. \fi}
  7101. \end{exercise}
  7102. \section{Explicate Control}
  7103. \label{sec:explicate-control-Lif}
  7104. \racket{Recall that the purpose of \code{explicate\_control} is to
  7105. make the order of evaluation explicit in the syntax of the program.
  7106. With the addition of \key{if} this get more interesting.}
  7107. %
  7108. The \code{explicate\_control} pass translates from \LangIf{} to \LangCIf{}.
  7109. %
  7110. The main challenge to overcome is that the condition of an \key{if}
  7111. can be an arbitrary expression in \LangIf{} whereas in \LangCIf{} the
  7112. condition must be a comparison.
  7113. As a motivating example, consider the following program that has an
  7114. \key{if} expression nested in the condition of another \key{if}.%
  7115. \python{\footnote{Programmers rarely write nested \code{if}
  7116. expressions, but it is not uncommon for the condition of an
  7117. \code{if} statement to be a call of a function that also contains an
  7118. \code{if} statement. When such a function is inlined, the result is
  7119. a nested \code{if} that requires the techniques discussed in this
  7120. section.}}
  7121. % cond_test_41.rkt, if_lt_eq.py
  7122. \begin{center}
  7123. \begin{minipage}{0.96\textwidth}
  7124. {\if\edition\racketEd
  7125. \begin{lstlisting}
  7126. (let ([x (read)])
  7127. (let ([y (read)])
  7128. (if (if (< x 1) (eq? x 0) (eq? x 2))
  7129. (+ y 2)
  7130. (+ y 10))))
  7131. \end{lstlisting}
  7132. \fi}
  7133. {\if\edition\pythonEd
  7134. \begin{lstlisting}
  7135. x = input_int()
  7136. y = input_int()
  7137. print(y + 2 if (x == 0 if x < 1 else x == 2) else y + 10)
  7138. \end{lstlisting}
  7139. \fi}
  7140. \end{minipage}
  7141. \end{center}
  7142. %
  7143. The naive way to compile \key{if} and the comparison operations would
  7144. be to handle each of them in isolation, regardless of their context.
  7145. Each comparison would be translated into a \key{cmpq} instruction
  7146. followed by a couple instructions to move the result from the EFLAGS
  7147. register into a general purpose register or stack location. Each
  7148. \key{if} would be translated into a \key{cmpq} instruction followed by
  7149. a conditional jump. The generated code for the inner \key{if} in the
  7150. above example would be as follows.
  7151. \begin{center}
  7152. \begin{minipage}{0.96\textwidth}
  7153. \begin{lstlisting}
  7154. cmpq $1, x
  7155. setl %al
  7156. movzbq %al, tmp
  7157. cmpq $1, tmp
  7158. je then_branch_1
  7159. jmp else_branch_1
  7160. \end{lstlisting}
  7161. \end{minipage}
  7162. \end{center}
  7163. However, if we take context into account we can do better and reduce
  7164. the use of \key{cmpq} instructions for accessing the EFLAG register.
  7165. Our goal will be to compile \key{if} expressions so that the relevant
  7166. comparison instruction appears directly before the conditional jump.
  7167. For example, we want to generate the following code for the inner
  7168. \code{if}.
  7169. \begin{center}
  7170. \begin{minipage}{0.96\textwidth}
  7171. \begin{lstlisting}
  7172. cmpq $1, x
  7173. jl then_branch_1
  7174. jmp else_branch_1
  7175. \end{lstlisting}
  7176. \end{minipage}
  7177. \end{center}
  7178. One way to achieve this is to reorganize the code at the level of
  7179. \LangIf{}, pushing the outer \key{if} inside the inner one, yielding
  7180. the following code.
  7181. \begin{center}
  7182. \begin{minipage}{0.96\textwidth}
  7183. {\if\edition\racketEd
  7184. \begin{lstlisting}
  7185. (let ([x (read)])
  7186. (let ([y (read)])
  7187. (if (< x 1)
  7188. (if (eq? x 0)
  7189. (+ y 2)
  7190. (+ y 10))
  7191. (if (eq? x 2)
  7192. (+ y 2)
  7193. (+ y 10)))))
  7194. \end{lstlisting}
  7195. \fi}
  7196. {\if\edition\pythonEd
  7197. \begin{lstlisting}
  7198. x = input_int()
  7199. y = intput_int()
  7200. print(((y + 2) if x == 0 else (y + 10)) \
  7201. if (x < 1) \
  7202. else ((y + 2) if (x == 2) else (y + 10)))
  7203. \end{lstlisting}
  7204. \fi}
  7205. \end{minipage}
  7206. \end{center}
  7207. Unfortunately, this approach duplicates the two branches from the
  7208. outer \code{if} and a compiler must never duplicate code! After all,
  7209. the two branches could have been very large expressions.
  7210. We need a way to perform the above transformation but without
  7211. duplicating code. That is, we need a way for different parts of a
  7212. program to refer to the same piece of code.
  7213. %
  7214. Put another way, we need to move away from abstract syntax
  7215. \emph{trees} and instead use \emph{graphs}.
  7216. %
  7217. At the level of x86 assembly this is straightforward because we can
  7218. label the code for each branch and insert jumps in all the places that
  7219. need to execute the branch.
  7220. %
  7221. Likewise, our language \LangCIf{} provides the ability to label a
  7222. sequence of code and to jump to a label via \code{goto}.
  7223. %
  7224. %% In particular, we use a standard program representation called a
  7225. %% \emph{control flow graph} (CFG), due to Frances Elizabeth
  7226. %% \citet{Allen:1970uq}. \index{subject}{control-flow graph} Each vertex
  7227. %% is a labeled sequence of code, called a \emph{basic block}, and each
  7228. %% edge represents a jump to another block.
  7229. %
  7230. %% The nice thing about the output of \code{explicate\_control} is that
  7231. %% there are no unnecessary comparisons and every comparison is part of a
  7232. %% conditional jump.
  7233. %% The down-side of this output is that it includes
  7234. %% trivial blocks, such as the blocks labeled \code{block92} through
  7235. %% \code{block95}, that only jump to another block. We discuss a solution
  7236. %% to this problem in Section~\ref{sec:opt-jumps}.
  7237. {\if\edition\racketEd
  7238. %
  7239. Recall that in Section~\ref{sec:explicate-control-Lvar} we implement
  7240. \code{explicate\_control} for \LangVar{} using two mutually recursive
  7241. functions, \code{explicate\_tail} and \code{explicate\_assign}. The
  7242. former function translates expressions in tail position whereas the
  7243. later function translates expressions on the right-hand-side of a
  7244. \key{let}. With the addition of \key{if} expression in \LangIf{} we
  7245. have a new kind of position to deal with: the predicate position of
  7246. the \key{if}. We need another function, \code{explicate\_pred}, that
  7247. decides how to compile an \key{if} by analyzing its predicate. So
  7248. \code{explicate\_pred} takes an \LangIf{} expression and two \LangCIf{}
  7249. tails for the then-branch and else-branch and outputs a tail. In the
  7250. following paragraphs we discuss specific cases in the
  7251. \code{explicate\_tail}, \code{explicate\_assign}, and
  7252. \code{explicate\_pred} functions.
  7253. %
  7254. \fi}
  7255. %
  7256. {\if\edition\pythonEd
  7257. %
  7258. We recommend implementing \code{explicate\_control} using the
  7259. following four auxiliary functions.
  7260. \begin{description}
  7261. \item[\code{explicate\_effect}] generates code for expressions as
  7262. statements, so their result is ignored and only their side effects
  7263. matter.
  7264. \item[\code{explicate\_assign}] generates code for expressions
  7265. on the right-hand side of an assignment.
  7266. \item[\code{explicate\_pred}] generates code for an \code{if}
  7267. expression or statement by analyzing the condition expression.
  7268. \item[\code{explicate\_stmt}] generates code for statements.
  7269. \end{description}
  7270. These four functions should build the dictionary of basic blocks. The
  7271. following auxiliary function can be used to create a new basic block
  7272. from a list of statements. It returns a \code{goto} statement that
  7273. jumps to the new basic block.
  7274. \begin{center}
  7275. \begin{minipage}{\textwidth}
  7276. \begin{lstlisting}
  7277. def create_block(stmts, basic_blocks):
  7278. label = label_name(generate_name('block'))
  7279. basic_blocks[label] = stmts
  7280. return Goto(label)
  7281. \end{lstlisting}
  7282. \end{minipage}
  7283. \end{center}
  7284. Figure~\ref{fig:explicate-control-Lif} provides a skeleton for the
  7285. \code{explicate\_control} pass.
  7286. The \code{explicate\_effect} function has three parameters: 1) the
  7287. expression to be compiled, 2) the already-compiled code for this
  7288. expression's \emph{continuation}, that is, the list of statements that
  7289. should execute after this expression, and 3) the dictionary of
  7290. generated basic blocks. The \code{explicate\_effect} function returns
  7291. a list of \LangCIf{} statements and it may add to the dictionary of
  7292. basic blocks.
  7293. %
  7294. Let's consider a few of the cases for the expression to be compiled.
  7295. If the expression to be compiled is a constant, then it can be
  7296. discarded because it has no side effects. If it's a \CREAD{}, then it
  7297. has a side-effect and should be preserved. So the exprssion should be
  7298. translated into a statement using the \code{Expr} AST class. If the
  7299. expression to be compiled is an \code{if} expression, we translate the
  7300. two branches using \code{explicate\_effect} and then translate the
  7301. condition expression using \code{explicate\_pred}, which generates
  7302. code for the entire \code{if}.
  7303. The \code{explicate\_assign} function has four parameters: 1) the
  7304. right-hand-side of the assignment, 2) the left-hand-side of the
  7305. assignment (the variable), 3) the continuation, and 4) the dictionary
  7306. of basic blocks. The \code{explicate\_assign} function returns a list
  7307. of \LangCIf{} statements and it may add to the dictionary of basic
  7308. blocks.
  7309. When the right-hand-side is an \code{if} expression, there is some
  7310. work to do. In particular, the two branches should be translated using
  7311. \code{explicate\_assign} and the condition expression should be
  7312. translated using \code{explicate\_pred}. Otherwise we can simply
  7313. generate an assignment statement, with the given left and right-hand
  7314. sides, concatenated with its continuation.
  7315. \begin{figure}[tbp]
  7316. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  7317. def explicate_effect(e, cont, basic_blocks):
  7318. match e:
  7319. case IfExp(test, body, orelse):
  7320. ...
  7321. case Call(func, args):
  7322. ...
  7323. case Let(var, rhs, body):
  7324. ...
  7325. case _:
  7326. ...
  7327. def explicate_assign(rhs, lhs, cont, basic_blocks):
  7328. match rhs:
  7329. case IfExp(test, body, orelse):
  7330. ...
  7331. case Let(var, rhs, body):
  7332. ...
  7333. case _:
  7334. return [Assign([lhs], rhs)] + cont
  7335. def explicate_pred(cnd, thn, els, basic_blocks):
  7336. match cnd:
  7337. case Compare(left, [op], [right]):
  7338. goto_thn = create_block(thn, basic_blocks)
  7339. goto_els = create_block(els, basic_blocks)
  7340. return [If(cnd, [goto_thn], [goto_els])]
  7341. case Constant(True):
  7342. return thn;
  7343. case Constant(False):
  7344. return els;
  7345. case UnaryOp(Not(), operand):
  7346. ...
  7347. case IfExp(test, body, orelse):
  7348. ...
  7349. case Let(var, rhs, body):
  7350. ...
  7351. case _:
  7352. return [If(Compare(cnd, [Eq()], [Constant(False)]),
  7353. [create_block(els, basic_blocks)],
  7354. [create_block(thn, basic_blocks)])]
  7355. def explicate_stmt(s, cont, basic_blocks):
  7356. match s:
  7357. case Assign([lhs], rhs):
  7358. return explicate_assign(rhs, lhs, cont, basic_blocks)
  7359. case Expr(value):
  7360. return explicate_effect(value, cont, basic_blocks)
  7361. case If(test, body, orelse):
  7362. ...
  7363. def explicate_control(p):
  7364. match p:
  7365. case Module(body):
  7366. new_body = [Return(Constant(0))]
  7367. basic_blocks = {}
  7368. for s in reversed(body):
  7369. new_body = explicate_stmt(s, new_body, basic_blocks)
  7370. basic_blocks[label_name('start')] = new_body
  7371. return CProgram(basic_blocks)
  7372. \end{lstlisting}
  7373. \caption{Skeleton for the \code{explicate\_control} pass.}
  7374. \label{fig:explicate-control-Lif}
  7375. \end{figure}
  7376. \fi}
  7377. {\if\edition\racketEd
  7378. %
  7379. The \code{explicate\_tail} and \code{explicate\_assign} functions need
  7380. additional cases for Boolean constants and \key{if}. The cases for
  7381. \code{if} should recursively compile the two branches using either
  7382. \code{explicate\_tail} or \code{explicate\_assign}, respectively. The
  7383. cases should then invoke \code{explicate\_pred} on the condition
  7384. expression, passing in the generated code for the two branches. For
  7385. example, consider the following program with an \code{if} in tail
  7386. position.
  7387. \begin{lstlisting}
  7388. (let ([x (read)])
  7389. (if (eq? x 0) 42 777))
  7390. \end{lstlisting}
  7391. The two branches are recursively compiled to \code{return 42;} and
  7392. \code{return 777;}. We then delegate to \code{explicate\_pred},
  7393. passing the condition \code{(eq? x 0)} and the two return statements, which is
  7394. used as the result for \code{explicate\_tail}.
  7395. Next let us consider a program with an \code{if} on the right-hand
  7396. side of a \code{let}.
  7397. \begin{lstlisting}
  7398. (let ([y (read)])
  7399. (let ([x (if (eq? y 0) 40 777)])
  7400. (+ x 2)))
  7401. \end{lstlisting}
  7402. Note that the body of the inner \code{let} will have already been
  7403. compiled to \code{return (+ x 2);} and passed as the \code{cont}
  7404. parameter of \code{explicate\_assign}. We'll need to use \code{cont}
  7405. to recursively process both branches of the \code{if}, so we generate
  7406. the following block using an auxiliary function named \code{create\_block}.
  7407. \begin{lstlisting}
  7408. block_6:
  7409. return (+ x 2)
  7410. \end{lstlisting}
  7411. and use \code{goto block\_6;} as the \code{cont} argument for
  7412. compiling the branches. So the two branches compile to
  7413. \begin{lstlisting}
  7414. x = 40;
  7415. goto block_6;
  7416. \end{lstlisting}
  7417. and
  7418. \begin{lstlisting}
  7419. x = 777;
  7420. goto block_6;
  7421. \end{lstlisting}
  7422. We then delegate to \code{explicate\_pred}, passing the condition \code{(eq? y
  7423. 0)} and the above code for the branches.
  7424. \fi}
  7425. {\if\edition\racketEd
  7426. \begin{figure}[tbp]
  7427. \begin{lstlisting}
  7428. (define (explicate_pred cnd thn els)
  7429. (match cnd
  7430. [(Var x) ___]
  7431. [(Let x rhs body) ___]
  7432. [(Prim 'not (list e)) ___]
  7433. [(Prim op es) #:when (or (eq? op 'eq?) (eq? op '<))
  7434. (IfStmt (Prim op es) (create_block thn)
  7435. (create_block els))]
  7436. [(Bool b) (if b thn els)]
  7437. [(If cnd^ thn^ els^) ___]
  7438. [else (error "explicate_pred unhandled case" cnd)]))
  7439. \end{lstlisting}
  7440. \caption{Skeleton for the \key{explicate\_pred} auxiliary function.}
  7441. \label{fig:explicate-pred}
  7442. \end{figure}
  7443. \fi}
  7444. \racket{The skeleton for the \code{explicate\_pred} function is given
  7445. in Figure~\ref{fig:explicate-pred}. It takes three parameters:
  7446. 1) \code{cnd}, the condition expression of the \code{if},
  7447. 2) \code{thn}, the code generated by explicate for the ``then'' branch,
  7448. and 3) \code{els}, the code generated by
  7449. explicate for the ``else'' branch. The \code{explicate\_pred}
  7450. function should match on \code{cnd} with a case for
  7451. every kind of expression that can have type \code{Boolean}.}
  7452. %
  7453. \python{The \code{explicate\_pred} function has four parameters: 1)
  7454. the condition expession, 2) the generated statements for the
  7455. ``then'' branch, 3) the generated statements for the ``else''
  7456. branch, and 4) the dictionary of basic blocks. The
  7457. \code{explicate\_pred} function returns a list of \LangCIf{}
  7458. statements and it may add to the dictionary of basic blocks.}
  7459. Consider the case for comparison operators. We translate the
  7460. comparison to an \code{if} statement whose branches are \code{goto}
  7461. statements created by applying \code{create\_block} to the code
  7462. generated for the \code{thn} and \code{els} branches. Let us
  7463. illustrate this translation with an example. Returning
  7464. to the program with an \code{if} expression in tail position,
  7465. we invoke \code{explicate\_pred} on its condition \code{(eq? x 0)}
  7466. which happens to be a comparison operator.
  7467. \begin{lstlisting}
  7468. (let ([x (read)])
  7469. (if (eq? x 0) 42 777))
  7470. \end{lstlisting}
  7471. The two branches \code{42} and \code{777} were already compiled to \code{return}
  7472. statements, from which we now create the following blocks.
  7473. \begin{center}
  7474. \begin{minipage}{\textwidth}
  7475. \begin{lstlisting}
  7476. block_1:
  7477. return 42;
  7478. block_2:
  7479. return 777;
  7480. \end{lstlisting}
  7481. \end{minipage}
  7482. \end{center}
  7483. %
  7484. So \code{explicate\_pred} compiles the comparison \code{(eq? x 0)}
  7485. to the following \code{if} statement.
  7486. %
  7487. \begin{center}
  7488. \begin{minipage}{\textwidth}
  7489. \begin{lstlisting}
  7490. if (eq? x 0)
  7491. goto block_1;
  7492. else
  7493. goto block_2;
  7494. \end{lstlisting}
  7495. \end{minipage}
  7496. \end{center}
  7497. Next consider the case for Boolean constants. We perform a kind of
  7498. partial evaluation\index{subject}{partial evaluation} and output
  7499. either the \code{thn} or \code{els} branch depending on whether the
  7500. constant is \TRUE{} or \FALSE{}. Let us illustrate this with the
  7501. following program.
  7502. \begin{center}
  7503. \begin{minipage}{\textwidth}
  7504. \begin{lstlisting}
  7505. (if #t 42 777)
  7506. \end{lstlisting}
  7507. \end{minipage}
  7508. \end{center}
  7509. %
  7510. Again, the two branches \code{42} and \code{777} were compiled to
  7511. \code{return} statements, so \code{explicate\_pred} compiles the
  7512. constant \code{\#t} to the code for the ``then'' branch.
  7513. \begin{center}
  7514. \begin{minipage}{\textwidth}
  7515. \begin{lstlisting}
  7516. return 42;
  7517. \end{lstlisting}
  7518. \end{minipage}
  7519. \end{center}
  7520. %
  7521. This case demonstrates that we sometimes discard the \code{thn} or
  7522. \code{els} blocks that are input to \code{explicate\_pred}.
  7523. The case for \key{if} expressions in \code{explicate\_pred} is
  7524. particularly illuminating because it deals with the challenges we
  7525. discussed above regarding nested \key{if} expressions
  7526. (Figure~\ref{fig:explicate-control-s1-38}). The
  7527. \racket{\lstinline{thn^}}\python{\code{body}} and
  7528. \racket{\lstinline{els^}}\python{\code{orlese}} branches of the
  7529. \key{if} inherit their context from the current one, that is,
  7530. predicate context. So you should recursively apply
  7531. \code{explicate\_pred} to the
  7532. \racket{\lstinline{thn^}}\python{\code{body}} and
  7533. \racket{\lstinline{els^}}\python{\code{orelse}} branches. For both of
  7534. those recursive calls, pass \code{thn} and \code{els} as the extra
  7535. parameters. Thus, \code{thn} and \code{els} may get used twice, once
  7536. inside each recursive call. As discussed above, to avoid duplicating
  7537. code, we need to add them to the dictionary of basic blocks so that we
  7538. can instead refer to them by name and execute them with a \key{goto}.
  7539. {\if\edition\pythonEd
  7540. %
  7541. The last of the auxiliary functions is \code{explicate\_stmt}. It has
  7542. three parameters: 1) the statement to be compiled, 2) the code for its
  7543. continuation, and 3) the dictionary of basic blocks. The
  7544. \code{explicate\_stmt} returns a list of statements and it may add to
  7545. the dictionary of basic blocks. The cases for assignment and an
  7546. expression-statement are given in full in the skeleton code: they
  7547. simply dispatch to \code{explicate\_assign} and
  7548. \code{explicate\_effect}, respectively. The case for \code{if}
  7549. statements is not given, and is similar to the case for \code{if}
  7550. expressions.
  7551. The \code{explicate\_control} function itself is given in
  7552. Figure~\ref{fig:explicate-control-Lif}. It applies
  7553. \code{explicate\_stmt} to each statement in the program, from back to
  7554. front. Thus, the result so-far, stored in \code{new\_body}, can be
  7555. used as the continuation parameter in the next call to
  7556. \code{explicate\_stmt}. The \code{new\_body} is initialized to a
  7557. \code{Return} statement. Once complete, we add the \code{new\_body} to
  7558. the dictionary of basic blocks, labeling it as the ``start'' block.
  7559. %
  7560. \fi}
  7561. %% Getting back to the case for \code{if} in \code{explicate\_pred}, we
  7562. %% make the recursive calls to \code{explicate\_pred} on the ``then'' and
  7563. %% ``else'' branches with the arguments \code{(create_block} $B_1$\code{)}
  7564. %% and \code{(create_block} $B_2$\code{)}. Let $B_3$ and $B_4$ be the
  7565. %% results from the two recursive calls. We complete the case for
  7566. %% \code{if} by recursively apply \code{explicate\_pred} to the condition
  7567. %% of the \code{if} with the promised blocks $B_3$ and $B_4$ to obtain
  7568. %% the result $B_5$.
  7569. %% \[
  7570. %% (\key{if}\; \itm{cnd}\; \itm{thn}\; \itm{els})
  7571. %% \quad\Rightarrow\quad
  7572. %% B_5
  7573. %% \]
  7574. %% In the case for \code{if} in \code{explicate\_tail}, the two branches
  7575. %% inherit the current context, so they are in tail position. Thus, the
  7576. %% recursive calls on the ``then'' and ``else'' branch should be calls to
  7577. %% \code{explicate\_tail}.
  7578. %% %
  7579. %% We need to pass $B_0$ as the accumulator argument for both of these
  7580. %% recursive calls, but we need to be careful not to duplicate $B_0$.
  7581. %% Thus, we first apply \code{create_block} to $B_0$ so that it gets added
  7582. %% to the control-flow graph and obtain a promised goto $G_0$.
  7583. %% %
  7584. %% Let $B_1$ be the result of \code{explicate\_tail} on the ``then''
  7585. %% branch and $G_0$ and let $B_2$ be the result of \code{explicate\_tail}
  7586. %% on the ``else'' branch and $G_0$. Let $B_3$ be the result of applying
  7587. %% \code{explicate\_pred} to the condition of the \key{if}, $B_1$, and
  7588. %% $B_2$. Then the \key{if} as a whole translates to promise $B_3$.
  7589. %% \[
  7590. %% (\key{if}\; \itm{cnd}\; \itm{thn}\; \itm{els}) \quad\Rightarrow\quad B_3
  7591. %% \]
  7592. %% In the above discussion, we use the metavariables $B_1$, $B_2$, and
  7593. %% $B_3$ to refer to blocks for the purposes of our discussion, but they
  7594. %% should not be confused with the labels for the blocks that appear in
  7595. %% the generated code. We initially construct unlabeled blocks; we only
  7596. %% attach labels to blocks when we add them to the control-flow graph, as
  7597. %% we see in the next case.
  7598. %% Next consider the case for \key{if} in the \code{explicate\_assign}
  7599. %% function. The context of the \key{if} is an assignment to some
  7600. %% variable $x$ and then the control continues to some promised block
  7601. %% $B_1$. The code that we generate for both the ``then'' and ``else''
  7602. %% branches needs to continue to $B_1$, so to avoid duplicating $B_1$ we
  7603. %% apply \code{create_block} to it and obtain a promised goto $G_1$. The
  7604. %% branches of the \key{if} inherit the current context, so they are in
  7605. %% assignment positions. Let $B_2$ be the result of applying
  7606. %% \code{explicate\_assign} to the ``then'' branch, variable $x$, and
  7607. %% $G_1$. Let $B_3$ be the result of applying \code{explicate\_assign} to
  7608. %% the ``else'' branch, variable $x$, and $G_1$. Finally, let $B_4$ be
  7609. %% the result of applying \code{explicate\_pred} to the predicate
  7610. %% $\itm{cnd}$ and the promises $B_2$ and $B_3$. The \key{if} as a whole
  7611. %% translates to the promise $B_4$.
  7612. %% \[
  7613. %% (\key{if}\; \itm{cnd}\; \itm{thn}\; \itm{els}) \quad\Rightarrow\quad B_4
  7614. %% \]
  7615. %% This completes the description of \code{explicate\_control} for \LangIf{}.
  7616. Figure~\ref{fig:explicate-control-s1-38} shows the output of the
  7617. \code{remove\_complex\_operands} pass and then the
  7618. \code{explicate\_control} pass on the example program. We walk through
  7619. the output program.
  7620. %
  7621. Following the order of evaluation in the output of
  7622. \code{remove\_complex\_operands}, we first have two calls to \CREAD{}
  7623. and then the comparison \racket{\code{(< x 1)}}\python{\code{x < 1}}
  7624. in the predicate of the inner \key{if}. In the output of
  7625. \code{explicate\_control}, in the
  7626. block labeled \code{start}, are two assignment statements followed by a
  7627. \code{if} statement that branches to \code{block\_8} or
  7628. \code{block\_9}. The blocks associated with those labels contain the
  7629. translations of the code
  7630. \racket{\code{(eq? x 0)}}\python{\code{x == 0}}
  7631. and
  7632. \racket{\code{(eq? x 2)}}\python{\code{x == 2}},
  7633. respectively. In particular, we start \code{block\_8} with the
  7634. comparison
  7635. \racket{\code{(eq? x 0)}}\python{\code{x == 0}}
  7636. and then branch to \code{block\_4} or \code{block\_5}.
  7637. Here was see that our algorithm sometimes inserts unnecessary blocks:
  7638. \code{block\_4} is just a \code{goto} to \code{block\_2}
  7639. and \code{block\_5} is just a \code{goto} to \code{block\_3}.
  7640. It would be better to skip blocks \code{block\_4} and \code{block\_5}
  7641. and go directly to \code{block\_2} and \code{block\_3},
  7642. which we investigate in Section~\ref{sec:opt-jumps}.
  7643. Getting back to the example, \code{block\_2} and \code{block\_3},
  7644. corresponds to the two branches of the outer \key{if}, i.e.,
  7645. \racket{\code{(+ y 2)}}\python{\code{y + 2}} and
  7646. \racket{\code{(+ y 10)}}\python{\code{y + 10}}.
  7647. %
  7648. The story for \code{block\_9} is similar to that of \code{block\_8}.
  7649. %
  7650. \python{The \code{block\_1} corresponds to the \code{print} statment
  7651. at the end of the program.}
  7652. \begin{figure}[tbp]
  7653. {\if\edition\racketEd
  7654. \begin{tabular}{lll}
  7655. \begin{minipage}{0.4\textwidth}
  7656. % cond_test_41.rkt
  7657. \begin{lstlisting}
  7658. (let ([x (read)])
  7659. (let ([y (read)])
  7660. (if (if (< x 1)
  7661. (eq? x 0)
  7662. (eq? x 2))
  7663. (+ y 2)
  7664. (+ y 10))))
  7665. \end{lstlisting}
  7666. \end{minipage}
  7667. &
  7668. $\Rightarrow$
  7669. &
  7670. \begin{minipage}{0.55\textwidth}
  7671. \begin{lstlisting}
  7672. start:
  7673. x = (read);
  7674. y = (read);
  7675. if (< x 1)
  7676. goto block_8;
  7677. else
  7678. goto block_9;
  7679. block_8:
  7680. if (eq? x 0)
  7681. goto block_4;
  7682. else
  7683. goto block_5;
  7684. block_9:
  7685. if (eq? x 2)
  7686. goto block_6;
  7687. else
  7688. goto block_7;
  7689. block_4:
  7690. goto block_2;
  7691. block_5:
  7692. goto block_3;
  7693. block_6:
  7694. goto block_2;
  7695. block_7:
  7696. goto block_3;
  7697. block_2:
  7698. return (+ y 2);
  7699. block_3:
  7700. return (+ y 10);
  7701. \end{lstlisting}
  7702. \end{minipage}
  7703. \end{tabular}
  7704. \fi}
  7705. {\if\edition\pythonEd
  7706. \begin{tabular}{lll}
  7707. \begin{minipage}{0.4\textwidth}
  7708. % cond_test_41.rkt
  7709. \begin{lstlisting}
  7710. x = input_int()
  7711. y = input_int()
  7712. print(y + 2 \
  7713. if (x == 0 \
  7714. if x < 1 \
  7715. else x == 2) \
  7716. else y + 10)
  7717. \end{lstlisting}
  7718. \end{minipage}
  7719. &
  7720. $\Rightarrow$
  7721. &
  7722. \begin{minipage}{0.55\textwidth}
  7723. \begin{lstlisting}
  7724. start:
  7725. x = input_int()
  7726. y = input_int()
  7727. if x < 1:
  7728. goto block_8
  7729. else:
  7730. goto block_9
  7731. block_8:
  7732. if x == 0:
  7733. goto block_4
  7734. else:
  7735. goto block_5
  7736. block_9:
  7737. if x == 2:
  7738. goto block_6
  7739. else:
  7740. goto block_7
  7741. block_4:
  7742. goto block_2
  7743. block_5:
  7744. goto block_3
  7745. block_6:
  7746. goto block_2
  7747. block_7:
  7748. goto block_3
  7749. block_2:
  7750. tmp_0 = y + 2
  7751. goto block_1
  7752. block_3:
  7753. tmp_0 = y + 10
  7754. goto block_1
  7755. block_1:
  7756. print(tmp_0)
  7757. return 0
  7758. \end{lstlisting}
  7759. \end{minipage}
  7760. \end{tabular}
  7761. \fi}
  7762. \caption{Translation from \LangIf{} to \LangCIf{}
  7763. via the \code{explicate\_control}.}
  7764. \label{fig:explicate-control-s1-38}
  7765. \end{figure}
  7766. {\if\edition\racketEd
  7767. The way in which the \code{shrink} pass transforms logical operations
  7768. such as \code{and} and \code{or} can impact the quality of code
  7769. generated by \code{explicate\_control}. For example, consider the
  7770. following program.
  7771. % cond_test_21.rkt, and_eq_input.py
  7772. \begin{lstlisting}
  7773. (if (and (eq? (read) 0) (eq? (read) 1))
  7774. 0
  7775. 42)
  7776. \end{lstlisting}
  7777. The \code{and} operation should transform into something that the
  7778. \code{explicate\_pred} function can still analyze and descend through to
  7779. reach the underlying \code{eq?} conditions. Ideally, your
  7780. \code{explicate\_control} pass should generate code similar to the
  7781. following for the above program.
  7782. \begin{center}
  7783. \begin{lstlisting}
  7784. start:
  7785. tmp1 = (read);
  7786. if (eq? tmp1 0) goto block40;
  7787. else goto block39;
  7788. block40:
  7789. tmp2 = (read);
  7790. if (eq? tmp2 1) goto block38;
  7791. else goto block39;
  7792. block38:
  7793. return 0;
  7794. block39:
  7795. return 42;
  7796. \end{lstlisting}
  7797. \end{center}
  7798. \fi}
  7799. \begin{exercise}\normalfont
  7800. \racket{
  7801. Implement the pass \code{explicate\_control} by adding the cases for
  7802. Boolean constants and \key{if} to the \code{explicate\_tail} and
  7803. \code{explicate\_assign} functions. Implement the auxiliary function
  7804. \code{explicate\_pred} for predicate contexts.}
  7805. \python{Implement \code{explicate\_control} pass with its
  7806. four auxiliary functions.}
  7807. %
  7808. Create test cases that exercise all of the new cases in the code for
  7809. this pass.
  7810. %
  7811. {\if\edition\racketEd
  7812. Add the following entry to the list of \code{passes} in
  7813. \code{run-tests.rkt} and then run this script to test your compiler.
  7814. \begin{lstlisting}
  7815. (list "explicate_control" explicate_control interp-Cif type-check-Cif)
  7816. \end{lstlisting}
  7817. \fi}
  7818. \end{exercise}
  7819. \clearpage
  7820. \section{Select Instructions}
  7821. \label{sec:select-Lif}
  7822. \index{subject}{instruction selection}
  7823. The \code{select\_instructions} pass translates \LangCIf{} to
  7824. \LangXIfVar{}.
  7825. %
  7826. \racket{Recall that we implement this pass using three auxiliary
  7827. functions, one for each of the non-terminals $\Atm$, $\Stmt$, and
  7828. $\Tail$.}
  7829. %
  7830. \racket{For $\Atm$, we have new cases for the Booleans.}
  7831. %
  7832. \python{We begin with the Boolean constants.}
  7833. We take the usual approach of encoding them as integers.
  7834. \[
  7835. \TRUE{} \quad\Rightarrow\quad \key{1}
  7836. \qquad\qquad
  7837. \FALSE{} \quad\Rightarrow\quad \key{0}
  7838. \]
  7839. For translating statements, we discuss a couple cases. The \code{not}
  7840. operation can be implemented in terms of \code{xorq} as we discussed
  7841. at the beginning of this section. Given an assignment, if the
  7842. left-hand side variable is the same as the argument of \code{not},
  7843. then just the \code{xorq} instruction suffices.
  7844. \[
  7845. \CASSIGN{\Var}{ \CUNIOP{\key{not}}{\Var} }
  7846. \quad\Rightarrow\quad
  7847. \key{xorq}~\key{\$}1\key{,}~\Var
  7848. \]
  7849. Otherwise, a \key{movq} is needed to adapt to the update-in-place
  7850. semantics of x86. In the following translation, let $\Arg$ be the
  7851. result of translating $\Atm$ to x86.
  7852. \[
  7853. \CASSIGN{\Var}{ \CUNIOP{\key{not}}{\Atm} }
  7854. \quad\Rightarrow\quad
  7855. \begin{array}{l}
  7856. \key{movq}~\Arg\key{,}~\Var\\
  7857. \key{xorq}~\key{\$}1\key{,}~\Var
  7858. \end{array}
  7859. \]
  7860. Next consider the cases for equality. Translating this operation to
  7861. x86 is slightly involved due to the unusual nature of the \key{cmpq}
  7862. instruction discussed above. We recommend translating an assignment
  7863. with an equality on the right-hand side into a sequence of three
  7864. instructions. \\
  7865. \begin{tabular}{lll}
  7866. \begin{minipage}{0.4\textwidth}
  7867. \begin{lstlisting}
  7868. |$\CASSIGN{\Var}{ \LP\CEQ{\Atm_1}{\Atm_2} \RP }$|
  7869. \end{lstlisting}
  7870. \end{minipage}
  7871. &
  7872. $\Rightarrow$
  7873. &
  7874. \begin{minipage}{0.4\textwidth}
  7875. \begin{lstlisting}
  7876. cmpq |$\Arg_2$|, |$\Arg_1$|
  7877. sete %al
  7878. movzbq %al, |$\Var$|
  7879. \end{lstlisting}
  7880. \end{minipage}
  7881. \end{tabular} \\
  7882. The translations for the other comparison operators are similar to the
  7883. above but use different suffixes for the \code{set} instruction.
  7884. \racket{Regarding the $\Tail$ non-terminal, we have two new cases:
  7885. \key{goto} and \key{if} statements. Both are straightforward to
  7886. translate to x86.}
  7887. %
  7888. A \key{goto} statement becomes a jump instruction.
  7889. \[
  7890. \key{goto}\; \ell\racket{\key{;}} \quad \Rightarrow \quad \key{jmp}\;\ell
  7891. \]
  7892. %
  7893. An \key{if} statement becomes a compare instruction followed by a
  7894. conditional jump (for the ``then'' branch) and the fall-through is to
  7895. a regular jump (for the ``else'' branch).\\
  7896. \begin{tabular}{lll}
  7897. \begin{minipage}{0.4\textwidth}
  7898. \begin{lstlisting}
  7899. if |$\CEQ{\Atm_1}{\Atm_2}$||$\python{\key{:}}$|
  7900. goto |$\ell_1$||$\racket{\key{;}}$|
  7901. else|$\python{\key{:}}$|
  7902. goto |$\ell_2$||$\racket{\key{;}}$|
  7903. \end{lstlisting}
  7904. \end{minipage}
  7905. &
  7906. $\Rightarrow$
  7907. &
  7908. \begin{minipage}{0.4\textwidth}
  7909. \begin{lstlisting}
  7910. cmpq |$\Arg_2$|, |$\Arg_1$|
  7911. je |$\ell_1$|
  7912. jmp |$\ell_2$|
  7913. \end{lstlisting}
  7914. \end{minipage}
  7915. \end{tabular} \\
  7916. Again, the translations for the other comparison operators are similar to the
  7917. above but use different suffixes for the conditional jump instruction.
  7918. \python{Regarding the \key{return} statement, we recommend treating it
  7919. as an assignment to the \key{rax} register followed by a jump to the
  7920. conclusion of the \code{main} function.}
  7921. \begin{exercise}\normalfont
  7922. Expand your \code{select\_instructions} pass to handle the new
  7923. features of the \LangIf{} language.
  7924. %
  7925. {\if\edition\racketEd
  7926. Add the following entry to the list of \code{passes} in
  7927. \code{run-tests.rkt}
  7928. \begin{lstlisting}
  7929. (list "select_instructions" select_instructions interp-pseudo-x86-1)
  7930. \end{lstlisting}
  7931. \fi}
  7932. %
  7933. Run the script to test your compiler on all the test programs.
  7934. \end{exercise}
  7935. \section{Register Allocation}
  7936. \label{sec:register-allocation-Lif}
  7937. \index{subject}{register allocation}
  7938. The changes required for \LangIf{} affect liveness analysis, building the
  7939. interference graph, and assigning homes, but the graph coloring
  7940. algorithm itself does not change.
  7941. \subsection{Liveness Analysis}
  7942. \label{sec:liveness-analysis-Lif}
  7943. \index{subject}{liveness analysis}
  7944. Recall that for \LangVar{} we implemented liveness analysis for a
  7945. single basic block (Section~\ref{sec:liveness-analysis-Lvar}). With
  7946. the addition of \key{if} expressions to \LangIf{},
  7947. \code{explicate\_control} produces many basic blocks.
  7948. %% We recommend that you create a new auxiliary function named
  7949. %% \code{uncover\_live\_CFG} that applies liveness analysis to a
  7950. %% control-flow graph.
  7951. The first question is: what order should we process the basic blocks?
  7952. Recall that to perform liveness analysis on a basic block we need to
  7953. know the live-after set for the last instruction in the block. If a
  7954. basic block has no successors (i.e. contains no jumps to other
  7955. blocks), then it has an empty live-after set and we can immediately
  7956. apply liveness analysis to it. If a basic block has some successors,
  7957. then we need to complete liveness analysis on those blocks
  7958. first. These ordering contraints are the reverse of a
  7959. \emph{topological order}\index{subject}{topological order} on a graph
  7960. representation of the program. In particular, the \emph{control flow
  7961. graph} (CFG)\index{subject}{control-flow graph}~\citep{Allen:1970uq}
  7962. of a program has a node for each basic block and an edge for each jump
  7963. from one block to another. It is straightforward to generate a CFG
  7964. from the dictionary of basic blocks. One then transposes the CFG and
  7965. applies the topological sort algorithm.
  7966. %
  7967. %
  7968. \racket{We recommend using the \code{tsort} and \code{transpose}
  7969. functions of the Racket \code{graph} package to accomplish this.}
  7970. %
  7971. \python{We provide implementations of \code{topological\_sort} and
  7972. \code{transpose} in the file \code{graph.py} of the support code.}
  7973. %
  7974. As an aside, a topological ordering is only guaranteed to exist if the
  7975. graph does not contain any cycles. This is the case for the
  7976. control-flow graphs that we generate from \LangIf{} programs.
  7977. However, in Chapter~\ref{ch:Lwhile} we add loops to create \LangLoop{}
  7978. and learn how to handle cycles in the control-flow graph.
  7979. \racket{You'll need to construct a directed graph to represent the
  7980. control-flow graph. Do not use the \code{directed-graph} of the
  7981. \code{graph} package because that only allows at most one edge
  7982. between each pair of vertices, but a control-flow graph may have
  7983. multiple edges between a pair of vertices. The \code{multigraph.rkt}
  7984. file in the support code implements a graph representation that
  7985. allows multiple edges between a pair of vertices.}
  7986. {\if\edition\racketEd
  7987. The next question is how to analyze jump instructions. Recall that in
  7988. Section~\ref{sec:liveness-analysis-Lvar} we maintain an alist named
  7989. \code{label->live} that maps each label to the set of live locations
  7990. at the beginning of its block. We use \code{label->live} to determine
  7991. the live-before set for each $\JMP{\itm{label}}$ instruction. Now
  7992. that we have many basic blocks, \code{label->live} needs to be updated
  7993. as we process the blocks. In particular, after performing liveness
  7994. analysis on a block, we take the live-before set of its first
  7995. instruction and associate that with the block's label in the
  7996. \code{label->live}.
  7997. \fi}
  7998. %
  7999. {\if\edition\pythonEd
  8000. %
  8001. The next question is how to analyze jump instructions. The locations
  8002. that are live before a \code{jmp} should be the locations in
  8003. $L_{\mathtt{before}}$ at the target of the jump. So we recommend
  8004. maintaining a dictionary named \code{live\_before\_block} that maps each
  8005. label to the $L_{\mathtt{before}}$ for the first instruction in its
  8006. block. After performing liveness analysis on each block, we take the
  8007. live-before set of its first instruction and associate that with the
  8008. block's label in the \code{live\_before\_block} dictionary.
  8009. %
  8010. \fi}
  8011. In \LangXIfVar{} we also have the conditional jump
  8012. $\JMPIF{\itm{cc}}{\itm{label}}$ to deal with. Liveness analysis for
  8013. this instruction is particularly interesting because, during
  8014. compilation, we do not know which way a conditional jump will go. So
  8015. we do not know whether to use the live-before set for the following
  8016. instruction or the live-before set for the block associated with the
  8017. $\itm{label}$. However, there is no harm to the correctness of the
  8018. generated code if we classify more locations as live than the ones
  8019. that are truly live during one particular execution of the
  8020. instruction. Thus, we can take the union of the live-before sets from
  8021. the following instruction and from the mapping for $\itm{label}$ in
  8022. \racket{\code{label->live}}\python{\code{live\_before\_block}}.
  8023. The auxiliary functions for computing the variables in an
  8024. instruction's argument and for computing the variables read-from ($R$)
  8025. or written-to ($W$) by an instruction need to be updated to handle the
  8026. new kinds of arguments and instructions in \LangXIfVar{}.
  8027. \begin{exercise}\normalfont
  8028. {\if\edition\racketEd
  8029. %
  8030. Update the \code{uncover\_live} pass to apply liveness analysis to
  8031. every basic block in the program.
  8032. %
  8033. Add the following entry to the list of \code{passes} in the
  8034. \code{run-tests.rkt} script.
  8035. \begin{lstlisting}
  8036. (list "uncover_live" uncover_live interp-pseudo-x86-1)
  8037. \end{lstlisting}
  8038. \fi}
  8039. {\if\edition\pythonEd
  8040. %
  8041. Update the \code{uncover\_live} function to perform liveness analysis,
  8042. in reverse topological order, on all of the basic blocks in the
  8043. program.
  8044. %
  8045. \fi}
  8046. % Check that the live-after sets that you generate for
  8047. % example X matches the following... -Jeremy
  8048. \end{exercise}
  8049. \subsection{Build the Interference Graph}
  8050. \label{sec:build-interference-Lif}
  8051. Many of the new instructions in \LangXIfVar{} can be handled in the
  8052. same way as the instructions in \LangXVar{}. Thus, if your code was
  8053. already quite general, it will not need to be changed to handle the
  8054. new instructions. If you code is not general enough, we recommend that
  8055. you change your code to be more general. For example, you can factor
  8056. out the computing of the the read and write sets for each kind of
  8057. instruction into auxiliary functions.
  8058. Note that the \key{movzbq} instruction requires some special care,
  8059. similar to the \key{movq} instruction. See rule number 1 in
  8060. Section~\ref{sec:build-interference}.
  8061. \begin{exercise}\normalfont
  8062. Update the \code{build\_interference} pass for \LangXIfVar{}.
  8063. {\if\edition\racketEd
  8064. Add the following entries to the list of \code{passes} in the
  8065. \code{run-tests.rkt} script.
  8066. \begin{lstlisting}
  8067. (list "build_interference" build_interference interp-pseudo-x86-1)
  8068. (list "allocate_registers" allocate_registers interp-x86-1)
  8069. \end{lstlisting}
  8070. \fi}
  8071. % Check that the interference graph that you generate for
  8072. % example X matches the following graph G... -Jeremy
  8073. \end{exercise}
  8074. \section{Patch Instructions}
  8075. The new instructions \key{cmpq} and \key{movzbq} have some special
  8076. restrictions that need to be handled in the \code{patch\_instructions}
  8077. pass.
  8078. %
  8079. The second argument of the \key{cmpq} instruction must not be an
  8080. immediate value (such as an integer). So if you are comparing two
  8081. immediates, we recommend inserting a \key{movq} instruction to put the
  8082. second argument in \key{rax}. As usual, \key{cmpq} may have at most
  8083. one memory reference.
  8084. %
  8085. The second argument of the \key{movzbq} must be a register.
  8086. \begin{exercise}\normalfont
  8087. %
  8088. Update \code{patch\_instructions} pass for \LangXIfVar{}.
  8089. %
  8090. {\if\edition\racketEd
  8091. Add the following entry to the list of \code{passes} in
  8092. \code{run-tests.rkt} and then run this script to test your compiler.
  8093. \begin{lstlisting}
  8094. (list "patch_instructions" patch_instructions interp-x86-1)
  8095. \end{lstlisting}
  8096. \fi}
  8097. \end{exercise}
  8098. {\if\edition\pythonEd
  8099. \section{Prelude and Conclusion}
  8100. \label{sec:prelude-conclusion-cond}
  8101. The generation of the \code{main} function with its prelude and
  8102. conclusion must change to accomodate how the program now consists of
  8103. one or more basic blocks. After the prelude in \code{main}, jump to
  8104. the \code{start} block. Place the conclusion in a basic block labelled
  8105. with \code{conclusion}.
  8106. \fi}
  8107. Figure~\ref{fig:if-example-x86} shows a simple example program in
  8108. \LangIf{} translated to x86, showing the results of
  8109. \code{explicate\_control}, \code{select\_instructions}, and the final
  8110. x86 assembly.
  8111. \begin{figure}[tbp]
  8112. {\if\edition\racketEd
  8113. \begin{tabular}{lll}
  8114. \begin{minipage}{0.4\textwidth}
  8115. % cond_test_20.rkt, eq_input.py
  8116. \begin{lstlisting}
  8117. (if (eq? (read) 1) 42 0)
  8118. \end{lstlisting}
  8119. $\Downarrow$
  8120. \begin{lstlisting}
  8121. start:
  8122. tmp7951 = (read);
  8123. if (eq? tmp7951 1)
  8124. goto block7952;
  8125. else
  8126. goto block7953;
  8127. block7952:
  8128. return 42;
  8129. block7953:
  8130. return 0;
  8131. \end{lstlisting}
  8132. $\Downarrow$
  8133. \begin{lstlisting}
  8134. start:
  8135. callq read_int
  8136. movq %rax, tmp7951
  8137. cmpq $1, tmp7951
  8138. je block7952
  8139. jmp block7953
  8140. block7953:
  8141. movq $0, %rax
  8142. jmp conclusion
  8143. block7952:
  8144. movq $42, %rax
  8145. jmp conclusion
  8146. \end{lstlisting}
  8147. \end{minipage}
  8148. &
  8149. $\Rightarrow\qquad$
  8150. \begin{minipage}{0.4\textwidth}
  8151. \begin{lstlisting}
  8152. start:
  8153. callq read_int
  8154. movq %rax, %rcx
  8155. cmpq $1, %rcx
  8156. je block7952
  8157. jmp block7953
  8158. block7953:
  8159. movq $0, %rax
  8160. jmp conclusion
  8161. block7952:
  8162. movq $42, %rax
  8163. jmp conclusion
  8164. .globl main
  8165. main:
  8166. pushq %rbp
  8167. movq %rsp, %rbp
  8168. pushq %r13
  8169. pushq %r12
  8170. pushq %rbx
  8171. pushq %r14
  8172. subq $0, %rsp
  8173. jmp start
  8174. conclusion:
  8175. addq $0, %rsp
  8176. popq %r14
  8177. popq %rbx
  8178. popq %r12
  8179. popq %r13
  8180. popq %rbp
  8181. retq
  8182. \end{lstlisting}
  8183. \end{minipage}
  8184. \end{tabular}
  8185. \fi}
  8186. {\if\edition\pythonEd
  8187. \begin{tabular}{lll}
  8188. \begin{minipage}{0.4\textwidth}
  8189. % cond_test_20.rkt, eq_input.py
  8190. \begin{lstlisting}
  8191. print(42 if input_int() == 1 else 0)
  8192. \end{lstlisting}
  8193. $\Downarrow$
  8194. \begin{lstlisting}
  8195. start:
  8196. tmp_0 = input_int()
  8197. if tmp_0 == 1:
  8198. goto block_3
  8199. else:
  8200. goto block_4
  8201. block_3:
  8202. tmp_1 = 42
  8203. goto block_2
  8204. block_4:
  8205. tmp_1 = 0
  8206. goto block_2
  8207. block_2:
  8208. print(tmp_1)
  8209. return 0
  8210. \end{lstlisting}
  8211. $\Downarrow$
  8212. \begin{lstlisting}
  8213. start:
  8214. callq read_int
  8215. movq %rax, tmp_0
  8216. cmpq 1, tmp_0
  8217. je block_3
  8218. jmp block_4
  8219. block_3:
  8220. movq 42, tmp_1
  8221. jmp block_2
  8222. block_4:
  8223. movq 0, tmp_1
  8224. jmp block_2
  8225. block_2:
  8226. movq tmp_1, %rdi
  8227. callq print_int
  8228. movq 0, %rax
  8229. jmp conclusion
  8230. \end{lstlisting}
  8231. \end{minipage}
  8232. &
  8233. $\Rightarrow\qquad$
  8234. \begin{minipage}{0.4\textwidth}
  8235. \begin{lstlisting}
  8236. .globl main
  8237. main:
  8238. pushq %rbp
  8239. movq %rsp, %rbp
  8240. subq $0, %rsp
  8241. jmp start
  8242. start:
  8243. callq read_int
  8244. movq %rax, %rcx
  8245. cmpq $1, %rcx
  8246. je block_3
  8247. jmp block_4
  8248. block_3:
  8249. movq $42, %rcx
  8250. jmp block_2
  8251. block_4:
  8252. movq $0, %rcx
  8253. jmp block_2
  8254. block_2:
  8255. movq %rcx, %rdi
  8256. callq print_int
  8257. movq $0, %rax
  8258. jmp conclusion
  8259. conclusion:
  8260. addq $0, %rsp
  8261. popq %rbp
  8262. retq
  8263. \end{lstlisting}
  8264. \end{minipage}
  8265. \end{tabular}
  8266. \fi}
  8267. \caption{Example compilation of an \key{if} expression to x86, showing
  8268. the results of \code{explicate\_control},
  8269. \code{select\_instructions}, and the final x86 assembly code. }
  8270. \label{fig:if-example-x86}
  8271. \end{figure}
  8272. \begin{figure}[tbp]
  8273. {\if\edition\racketEd
  8274. \begin{tikzpicture}[baseline=(current bounding box.center)]
  8275. \node (Lif) at (0,2) {\large \LangIf{}};
  8276. \node (Lif-2) at (3,2) {\large \LangIf{}};
  8277. \node (Lif-3) at (6,2) {\large \LangIf{}};
  8278. \node (Lif-4) at (9,2) {\large \LangIf{}};
  8279. \node (Lif-5) at (12,2) {\large \LangIfANF{}};
  8280. \node (C1-1) at (3,0) {\large \LangCIf{}};
  8281. \node (x86-2) at (3,-2) {\large \LangXIfVar{}};
  8282. \node (x86-2-1) at (3,-4) {\large \LangXIfVar{}};
  8283. \node (x86-2-2) at (6,-4) {\large \LangXIfVar{}};
  8284. \node (x86-3) at (6,-2) {\large \LangXIfVar{}};
  8285. \node (x86-4) at (9,-2) {\large \LangXIf{}};
  8286. \node (x86-5) at (9,-4) {\large \LangXIf{}};
  8287. \path[->,bend left=15] (Lif) edge [above] node {\ttfamily\footnotesize type\_check} (Lif-2);
  8288. \path[->,bend left=15] (Lif-2) edge [above] node {\ttfamily\footnotesize shrink} (Lif-3);
  8289. \path[->,bend left=15] (Lif-3) edge [above] node {\ttfamily\footnotesize uniquify} (Lif-4);
  8290. \path[->,bend left=15] (Lif-4) edge [above] node {\ttfamily\footnotesize remove\_complex.} (Lif-5);
  8291. \path[->,bend left=15] (Lif-5) edge [left] node {\ttfamily\footnotesize explicate\_control} (C1-1);
  8292. \path[->,bend right=15] (C1-1) edge [left] node {\ttfamily\footnotesize select\_instructions} (x86-2);
  8293. \path[->,bend left=15] (x86-2) edge [right] node {\ttfamily\footnotesize uncover\_live} (x86-2-1);
  8294. \path[->,bend right=15] (x86-2-1) edge [below] node {\ttfamily\footnotesize build\_inter.} (x86-2-2);
  8295. \path[->,bend right=15] (x86-2-2) edge [right] node {\ttfamily\footnotesize allocate\_reg.} (x86-3);
  8296. \path[->,bend left=15] (x86-3) edge [above] node {\ttfamily\footnotesize patch\_instr.} (x86-4);
  8297. \path[->,bend left=15] (x86-4) edge [right] node {\ttfamily\footnotesize print\_x86 } (x86-5);
  8298. \end{tikzpicture}
  8299. \fi}
  8300. {\if\edition\pythonEd
  8301. \begin{tikzpicture}[baseline=(current bounding box.center)]
  8302. \node (Lif-1) at (0,2) {\large \LangIf{}};
  8303. \node (Lif-2) at (3,2) {\large \LangIf{}};
  8304. \node (Lif-3) at (6,2) {\large \LangIfANF{}};
  8305. \node (C-1) at (3,0) {\large \LangCIf{}};
  8306. \node (x86-1) at (3,-2) {\large \LangXIfVar{}};
  8307. \node (x86-2) at (6,-2) {\large \LangXIfVar{}};
  8308. \node (x86-3) at (9,-2) {\large \LangXIf{}};
  8309. \node (x86-4) at (12,-2) {\large \LangXIf{}};
  8310. \path[->,bend left=15] (Lif-1) edge [above] node {\ttfamily\footnotesize shrink} (Lif-2);
  8311. \path[->,bend left=15] (Lif-2) edge [above] node {\ttfamily\footnotesize remove\_complex.} (Lif-3);
  8312. \path[->,bend left=15] (Lif-3) edge [right] node {\ttfamily\footnotesize explicate\_control} (C-1);
  8313. \path[->,bend right=15] (C-1) edge [left] node {\ttfamily\footnotesize select\_instr.} (x86-1);
  8314. \path[->,bend right=15] (x86-1) edge [below] node {\ttfamily\footnotesize assign\_homes} (x86-2);
  8315. \path[->,bend left=15] (x86-2) edge [above] node {\ttfamily\footnotesize patch\_instr.} (x86-3);
  8316. \path[->,bend right=15] (x86-3) edge [below] node {\ttfamily\footnotesize prelude\_and\_concl. } (x86-4);
  8317. \end{tikzpicture}
  8318. \fi}
  8319. \caption{Diagram of the passes for \LangIf{}, a language with conditionals.}
  8320. \label{fig:Lif-passes}
  8321. \end{figure}
  8322. Figure~\ref{fig:Lif-passes} lists all the passes needed for the
  8323. compilation of \LangIf{}.
  8324. \section{Challenge: Optimize Blocks and Remove Jumps}
  8325. \label{sec:opt-jumps}
  8326. We discuss two optional challenges that involve optimizing the
  8327. control-flow of the program.
  8328. \subsection{Optimize Blocks}
  8329. The algorithm for \code{explicate\_control} that we discussed in
  8330. Section~\ref{sec:explicate-control-Lif} sometimes generates too many
  8331. blocks. It does so in two different ways.
  8332. %
  8333. First, recall how in Figure~\ref{fig:explicate-control-s1-38},
  8334. \code{block\_4} consists of just a jump to \code{block\_2}. We created
  8335. a new basic block from a single \code{goto} statement, whereas we
  8336. could have simply returned the \code{goto} statement. We can solve
  8337. this problem by modifying the \code{create\_block} function to
  8338. recognize this situation.
  8339. Second, \code{explicate\_control} creates a basic block whenever a
  8340. continuation \emph{might} get used more than once (wheneven a
  8341. continuation is passed into two or more recursive calls). However,
  8342. just because a continuation might get used more than once, doesn't
  8343. mean it will. In fact, some continuation parameters may not be used
  8344. at all because we sometimes ignore them. For example, consider the
  8345. case for the constant \TRUE{} in \code{explicate\_pred}, where we
  8346. discard the \code{els} branch. So the question is how can we decide
  8347. whether to create a basic block?
  8348. The solution to this conundrum is to use \emph{lazy
  8349. evaluation}\index{subject}{lazy evaluation}~\citep{Friedman:1976aa}
  8350. to delay creating a basic block until the point in time where we know
  8351. it will be used.
  8352. %
  8353. {\if\edition\racketEd
  8354. %
  8355. Racket provides support for
  8356. lazy evaluation with the
  8357. \href{https://docs.racket-lang.org/reference/Delayed_Evaluation.html}{\code{racket/promise}}
  8358. package. The expression \key{(delay} $e_1 \ldots e_n$\key{)}
  8359. \index{subject}{delay} creates a
  8360. \emph{promise}\index{subject}{promise} in which the evaluation of the
  8361. expressions is postponed. When \key{(force}
  8362. $p$\key{)}\index{subject}{force} is applied to a promise $p$ for the
  8363. first time, the expressions $e_1 \ldots e_n$ are evaluated and the
  8364. result of $e_n$ is cached in the promise and returned. If \code{force}
  8365. is applied again to the same promise, then the cached result is
  8366. returned. If \code{force} is applied to an argument that is not a
  8367. promise, \code{force} simply returns the argument.
  8368. %
  8369. \fi}
  8370. %
  8371. {\if\edition\pythonEd
  8372. %
  8373. While Python does not provide direct support for lazy evaluation, it
  8374. is easy to mimic. We can \emph{delay} the evaluation of a computation
  8375. by wrapping it inside a function with no parameters. We can
  8376. \emph{force} its evaluation by calling the function. However, in some
  8377. cases of \code{explicate\_pred}, etc., we will return a list of
  8378. statements and in other cases we will return a function that computes
  8379. a list of statements. We use the term \emph{promise} to refer to a
  8380. value that may or may not be delayed. To uniformly deal with
  8381. promises, we define the following \code{force} function that checks
  8382. whether its input is delayed (i.e. whether it is a function) and then
  8383. either 1) calls the function, or 2) returns the input.
  8384. \begin{lstlisting}
  8385. def force(promise):
  8386. if isinstance(promise, types.FunctionType):
  8387. return promise()
  8388. else:
  8389. return promise
  8390. \end{lstlisting}
  8391. %
  8392. \fi}
  8393. We use promises for the input and output of the functions
  8394. \code{explicate\_pred}, \code{explicate\_assign},
  8395. %
  8396. \racket{ and \code{explicate\_tail}}\python{ \code{explicate\_effect}, and \code{explicate\_stmt}}.
  8397. %
  8398. So instead of taking and returning lists of statments, they take and
  8399. return promises. Furthermore, when we come to a situation in which a
  8400. continuation might be used more than once, as in the case for
  8401. \code{if} in \code{explicate\_pred}, we create a delayed computation
  8402. that creates a basic block for each continuation (if there is not
  8403. already one) and then returns a \code{goto} statement to that basic
  8404. block.
  8405. %
  8406. {\if\edition\racketEd
  8407. %
  8408. The following auxiliary function named \code{create\_block} accomplishes
  8409. this task. It begins with \code{delay} to create a promise. When
  8410. forced, this promise will force the original promise. If that returns
  8411. a \code{goto} (because the block was already added to the control-flow
  8412. graph), then we return the \code{goto}. Otherwise we add the block to
  8413. the control-flow graph with another auxiliary function named
  8414. \code{add-node}. That function returns the label for the new block,
  8415. which we use to create a \code{goto}.
  8416. \begin{lstlisting}
  8417. (define (create_block tail)
  8418. (delay
  8419. (define t (force tail))
  8420. (match t
  8421. [(Goto label) (Goto label)]
  8422. [else (Goto (add-node t))])))
  8423. \end{lstlisting}
  8424. \fi}
  8425. {\if\edition\pythonEd
  8426. %
  8427. Here's the new version of the \code{create\_block} auxiliary function
  8428. that works on promises and that checks whether the block consists of a
  8429. solitary \code{goto} statement.\\
  8430. \begin{minipage}{\textwidth}
  8431. \begin{lstlisting}
  8432. def create_block(promise, basic_blocks):
  8433. stmts = force(promise)
  8434. match stmts:
  8435. case [Goto(l)]:
  8436. return Goto(l)
  8437. case _:
  8438. label = label_name(generate_name('block'))
  8439. basic_blocks[label] = stmts
  8440. return Goto(label)
  8441. \end{lstlisting}
  8442. \end{minipage}
  8443. \fi}
  8444. Figure~\ref{fig:explicate-control-challenge} shows the output of
  8445. \code{explicate\_control} on the example of the nested \code{if}
  8446. expressions with the two improvements discussed above. As you can
  8447. see, the number of basic blocks has been reduced from 10 blocks (see
  8448. Figure~\ref{fig:explicate-control-s1-38}) down to 6 blocks.
  8449. \begin{figure}[tbp]
  8450. {\if\edition\racketEd
  8451. \begin{tabular}{lll}
  8452. \begin{minipage}{0.4\textwidth}
  8453. % cond_test_41.rkt
  8454. \begin{lstlisting}
  8455. (let ([x (read)])
  8456. (let ([y (read)])
  8457. (if (if (< x 1)
  8458. (eq? x 0)
  8459. (eq? x 2))
  8460. (+ y 2)
  8461. (+ y 10))))
  8462. \end{lstlisting}
  8463. \end{minipage}
  8464. &
  8465. $\Rightarrow$
  8466. &
  8467. \begin{minipage}{0.55\textwidth}
  8468. \begin{lstlisting}
  8469. start:
  8470. x = (read);
  8471. y = (read);
  8472. if (< x 1) goto block40;
  8473. else goto block41;
  8474. block40:
  8475. if (eq? x 0) goto block38;
  8476. else goto block39;
  8477. block41:
  8478. if (eq? x 2) goto block38;
  8479. else goto block39;
  8480. block38:
  8481. return (+ y 2);
  8482. block39:
  8483. return (+ y 10);
  8484. \end{lstlisting}
  8485. \end{minipage}
  8486. \end{tabular}
  8487. \fi}
  8488. {\if\edition\pythonEd
  8489. \begin{tabular}{lll}
  8490. \begin{minipage}{0.4\textwidth}
  8491. % cond_test_41.rkt
  8492. \begin{lstlisting}
  8493. x = input_int()
  8494. y = input_int()
  8495. print(y + 2 \
  8496. if (x == 0 \
  8497. if x < 1 \
  8498. else x == 2) \
  8499. else y + 10)
  8500. \end{lstlisting}
  8501. \end{minipage}
  8502. &
  8503. $\Rightarrow$
  8504. &
  8505. \begin{minipage}{0.55\textwidth}
  8506. \begin{lstlisting}
  8507. start:
  8508. x = input_int()
  8509. y = input_int()
  8510. if x < 1:
  8511. goto block_4
  8512. else:
  8513. goto block_5
  8514. block_4:
  8515. if x == 0:
  8516. goto block_2
  8517. else:
  8518. goto block_3
  8519. block_5:
  8520. if x == 2:
  8521. goto block_2
  8522. else:
  8523. goto block_3
  8524. block_2:
  8525. tmp_0 = y + 2
  8526. goto block_1
  8527. block_3:
  8528. tmp_0 = y + 10
  8529. goto block_1
  8530. block_1:
  8531. print(tmp_0)
  8532. return 0
  8533. \end{lstlisting}
  8534. \end{minipage}
  8535. \end{tabular}
  8536. \fi}
  8537. \caption{Translation from \LangIf{} to \LangCIf{}
  8538. via the improved \code{explicate\_control}.}
  8539. \label{fig:explicate-control-challenge}
  8540. \end{figure}
  8541. %% Recall that in the example output of \code{explicate\_control} in
  8542. %% Figure~\ref{fig:explicate-control-s1-38}, \code{block57} through
  8543. %% \code{block60} are trivial blocks, they do nothing but jump to another
  8544. %% block. The first goal of this challenge assignment is to remove those
  8545. %% blocks. Figure~\ref{fig:optimize-jumps} repeats the result of
  8546. %% \code{explicate\_control} on the left and shows the result of bypassing
  8547. %% the trivial blocks on the right. Let us focus on \code{block61}. The
  8548. %% \code{then} branch jumps to \code{block57}, which in turn jumps to
  8549. %% \code{block55}. The optimized code on the right of
  8550. %% Figure~\ref{fig:optimize-jumps} bypasses \code{block57}, with the
  8551. %% \code{then} branch jumping directly to \code{block55}. The story is
  8552. %% similar for the \code{else} branch, as well as for the two branches in
  8553. %% \code{block62}. After the jumps in \code{block61} and \code{block62}
  8554. %% have been optimized in this way, there are no longer any jumps to
  8555. %% blocks \code{block57} through \code{block60}, so they can be removed.
  8556. %% \begin{figure}[tbp]
  8557. %% \begin{tabular}{lll}
  8558. %% \begin{minipage}{0.4\textwidth}
  8559. %% \begin{lstlisting}
  8560. %% block62:
  8561. %% tmp54 = (read);
  8562. %% if (eq? tmp54 2) then
  8563. %% goto block59;
  8564. %% else
  8565. %% goto block60;
  8566. %% block61:
  8567. %% tmp53 = (read);
  8568. %% if (eq? tmp53 0) then
  8569. %% goto block57;
  8570. %% else
  8571. %% goto block58;
  8572. %% block60:
  8573. %% goto block56;
  8574. %% block59:
  8575. %% goto block55;
  8576. %% block58:
  8577. %% goto block56;
  8578. %% block57:
  8579. %% goto block55;
  8580. %% block56:
  8581. %% return (+ 700 77);
  8582. %% block55:
  8583. %% return (+ 10 32);
  8584. %% start:
  8585. %% tmp52 = (read);
  8586. %% if (eq? tmp52 1) then
  8587. %% goto block61;
  8588. %% else
  8589. %% goto block62;
  8590. %% \end{lstlisting}
  8591. %% \end{minipage}
  8592. %% &
  8593. %% $\Rightarrow$
  8594. %% &
  8595. %% \begin{minipage}{0.55\textwidth}
  8596. %% \begin{lstlisting}
  8597. %% block62:
  8598. %% tmp54 = (read);
  8599. %% if (eq? tmp54 2) then
  8600. %% goto block55;
  8601. %% else
  8602. %% goto block56;
  8603. %% block61:
  8604. %% tmp53 = (read);
  8605. %% if (eq? tmp53 0) then
  8606. %% goto block55;
  8607. %% else
  8608. %% goto block56;
  8609. %% block56:
  8610. %% return (+ 700 77);
  8611. %% block55:
  8612. %% return (+ 10 32);
  8613. %% start:
  8614. %% tmp52 = (read);
  8615. %% if (eq? tmp52 1) then
  8616. %% goto block61;
  8617. %% else
  8618. %% goto block62;
  8619. %% \end{lstlisting}
  8620. %% \end{minipage}
  8621. %% \end{tabular}
  8622. %% \caption{Optimize jumps by removing trivial blocks.}
  8623. %% \label{fig:optimize-jumps}
  8624. %% \end{figure}
  8625. %% The name of this pass is \code{optimize-jumps}. We recommend
  8626. %% implementing this pass in two phases. The first phrase builds a hash
  8627. %% table that maps labels to possibly improved labels. The second phase
  8628. %% changes the target of each \code{goto} to use the improved label. If
  8629. %% the label is for a trivial block, then the hash table should map the
  8630. %% label to the first non-trivial block that can be reached from this
  8631. %% label by jumping through trivial blocks. If the label is for a
  8632. %% non-trivial block, then the hash table should map the label to itself;
  8633. %% we do not want to change jumps to non-trivial blocks.
  8634. %% The first phase can be accomplished by constructing an empty hash
  8635. %% table, call it \code{short-cut}, and then iterating over the control
  8636. %% flow graph. Each time you encouter a block that is just a \code{goto},
  8637. %% then update the hash table, mapping the block's source to the target
  8638. %% of the \code{goto}. Also, the hash table may already have mapped some
  8639. %% labels to the block's source, to you must iterate through the hash
  8640. %% table and update all of those so that they instead map to the target
  8641. %% of the \code{goto}.
  8642. %% For the second phase, we recommend iterating through the $\Tail$ of
  8643. %% each block in the program, updating the target of every \code{goto}
  8644. %% according to the mapping in \code{short-cut}.
  8645. \begin{exercise}\normalfont
  8646. Implement the improvements to the \code{explicate\_control} pass.
  8647. Check that it removes trivial blocks in a few example programs. Then
  8648. check that your compiler still passes all of your tests.
  8649. \end{exercise}
  8650. \subsection{Remove Jumps}
  8651. There is an opportunity for removing jumps that is apparent in the
  8652. example of Figure~\ref{fig:if-example-x86}. The \code{start} block
  8653. ends with a jump to \code{block\_4} and there are no other jumps to
  8654. \code{block\_4} in the rest of the program. In this situation we can
  8655. avoid the runtime overhead of this jump by merging \code{block\_4}
  8656. into the preceding block, in this case the \code{start} block.
  8657. Figure~\ref{fig:remove-jumps} shows the output of
  8658. \code{select\_instructions} on the left and the result of this
  8659. optimization on the right.
  8660. \begin{figure}[tbp]
  8661. {\if\edition\racketEd
  8662. \begin{tabular}{lll}
  8663. \begin{minipage}{0.5\textwidth}
  8664. % cond_test_20.rkt
  8665. \begin{lstlisting}
  8666. start:
  8667. callq read_int
  8668. movq %rax, tmp7951
  8669. cmpq $1, tmp7951
  8670. je block7952
  8671. jmp block7953
  8672. block7953:
  8673. movq $0, %rax
  8674. jmp conclusion
  8675. block7952:
  8676. movq $42, %rax
  8677. jmp conclusion
  8678. \end{lstlisting}
  8679. \end{minipage}
  8680. &
  8681. $\Rightarrow\qquad$
  8682. \begin{minipage}{0.4\textwidth}
  8683. \begin{lstlisting}
  8684. start:
  8685. callq read_int
  8686. movq %rax, tmp7951
  8687. cmpq $1, tmp7951
  8688. je block7952
  8689. movq $0, %rax
  8690. jmp conclusion
  8691. block7952:
  8692. movq $42, %rax
  8693. jmp conclusion
  8694. \end{lstlisting}
  8695. \end{minipage}
  8696. \end{tabular}
  8697. \fi}
  8698. {\if\edition\pythonEd
  8699. \begin{tabular}{lll}
  8700. \begin{minipage}{0.5\textwidth}
  8701. % cond_test_20.rkt
  8702. \begin{lstlisting}
  8703. start:
  8704. callq read_int
  8705. movq %rax, tmp_0
  8706. cmpq 1, tmp_0
  8707. je block_3
  8708. jmp block_4
  8709. block_3:
  8710. movq 42, tmp_1
  8711. jmp block_2
  8712. block_4:
  8713. movq 0, tmp_1
  8714. jmp block_2
  8715. block_2:
  8716. movq tmp_1, %rdi
  8717. callq print_int
  8718. movq 0, %rax
  8719. jmp conclusion
  8720. \end{lstlisting}
  8721. \end{minipage}
  8722. &
  8723. $\Rightarrow\qquad$
  8724. \begin{minipage}{0.4\textwidth}
  8725. \begin{lstlisting}
  8726. start:
  8727. callq read_int
  8728. movq %rax, tmp_0
  8729. cmpq 1, tmp_0
  8730. je block_3
  8731. movq 0, tmp_1
  8732. jmp block_2
  8733. block_3:
  8734. movq 42, tmp_1
  8735. jmp block_2
  8736. block_2:
  8737. movq tmp_1, %rdi
  8738. callq print_int
  8739. movq 0, %rax
  8740. jmp conclusion
  8741. \end{lstlisting}
  8742. \end{minipage}
  8743. \end{tabular}
  8744. \fi}
  8745. \caption{Merging basic blocks by removing unnecessary jumps.}
  8746. \label{fig:remove-jumps}
  8747. \end{figure}
  8748. \begin{exercise}\normalfont
  8749. %
  8750. Implement a pass named \code{remove\_jumps} that merges basic blocks
  8751. into their preceding basic block, when there is only one preceding
  8752. block. The pass should translate from \LangXIfVar{} to \LangXIfVar{}.
  8753. %
  8754. {\if\edition\racketEd
  8755. In the \code{run-tests.rkt} script, add the following entry to the
  8756. list of \code{passes} between \code{allocate\_registers}
  8757. and \code{patch\_instructions}.
  8758. \begin{lstlisting}
  8759. (list "remove-jumps" remove-jumps interp-pseudo-x86-1)
  8760. \end{lstlisting}
  8761. \fi}
  8762. %
  8763. Run the script to test your compiler.
  8764. %
  8765. Check that \code{remove\_jumps} accomplishes the goal of merging basic
  8766. blocks on several test programs.
  8767. \end{exercise}
  8768. \section{Further Reading}
  8769. \label{sec:cond-further-reading}
  8770. The algorithm for the \code{explicate\_control} pass is based on the
  8771. the \code{explose-basic-blocks} pass in the course notes of
  8772. \citet{Dybvig:2010aa}.
  8773. %
  8774. It has similarities to the algorithms of \citet{Danvy:2003fk} and
  8775. \citet{Appel:2003fk}, and is related to translations into continuation
  8776. passing
  8777. style~\citep{Wijngaarden:1966,Fischer:1972,reynolds72:_def_interp,Plotkin:1975,Friedman:2001}.
  8778. %
  8779. The treatment of conditionals in the \code{explicate\_control} pass is
  8780. similar to short-cut boolean
  8781. evaluation~\citep{Logothetis:1981,Aho:2006wb,Clarke:1989,Danvy:2003fk}
  8782. and the case-of-case transformation of \citet{PeytonJones:1998}.
  8783. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  8784. \chapter{Loops and Dataflow Analysis}
  8785. \label{ch:Lwhile}
  8786. % TODO: define R'_8
  8787. % TODO: multi-graph
  8788. {\if\edition\racketEd
  8789. %
  8790. In this chapter we study two features that are the hallmarks of
  8791. imperative programming languages: loops and assignments to local
  8792. variables. The following example demonstrates these new features by
  8793. computing the sum of the first five positive integers.
  8794. % similar to loop_test_1.rkt
  8795. \begin{lstlisting}
  8796. (let ([sum 0])
  8797. (let ([i 5])
  8798. (begin
  8799. (while (> i 0)
  8800. (begin
  8801. (set! sum (+ sum i))
  8802. (set! i (- i 1))))
  8803. sum)))
  8804. \end{lstlisting}
  8805. The \code{while} loop consists of a condition and a
  8806. body\footnote{The \code{while} loop in particular is not a built-in
  8807. feature of the Racket language, but Racket includes many looping
  8808. constructs and it is straightforward to define \code{while} as a
  8809. macro.}. The body is evaluated repeatedly so long as the condition
  8810. remains true.
  8811. %
  8812. The \code{set!} consists of a variable and a right-hand-side
  8813. expression. The \code{set!} updates value of the variable to the
  8814. value of the right-hand-side.
  8815. %
  8816. The primary purpose of both the \code{while} loop and \code{set!} is
  8817. to cause side effects, so they do not have a meaningful result
  8818. value. Instead their result is the \code{\#<void>} value. The
  8819. expression \code{(void)} is an explicit way to create the
  8820. \code{\#<void>} value and it has type \code{Void}. The
  8821. \code{\#<void>} value can be passed around just like other values
  8822. inside an \LangLoop{} program and a \code{\#<void>} value can be
  8823. compared for equality with another \code{\#<void>} value. However,
  8824. there are no other operations specific to the the \code{\#<void>}
  8825. value in \LangLoop{}. In contrast, Racket defines the \code{void?}
  8826. predicate that returns \code{\#t} when applied to \code{\#<void>} and
  8827. \code{\#f} otherwise.
  8828. %
  8829. \footnote{Racket's \code{Void} type corresponds to what is called the
  8830. \code{Unit} type in the programming languages literature. Racket's
  8831. \code{Void} type is inhabited by a single value \code{\#<void>}
  8832. which corresponds to \code{unit} or \code{()} in the
  8833. literature~\citep{Pierce:2002hj}.}.
  8834. %
  8835. With the addition of side-effecting features such as \code{while} loop
  8836. and \code{set!}, it is helpful to also include in a language feature
  8837. for sequencing side effects: the \code{begin} expression. It consists
  8838. of one or more subexpressions that are evaluated left-to-right.
  8839. %
  8840. \fi}
  8841. {\if\edition\pythonEd
  8842. %
  8843. In this chapter we study loops, one of the hallmarks of imperative
  8844. programming languages. The following example demonstrates the
  8845. \code{while} loop by computing the sum of the first five positive
  8846. integers.
  8847. \begin{lstlisting}
  8848. sum = 0
  8849. i = 5
  8850. while i > 0:
  8851. sum = sum + i
  8852. i = i - 1
  8853. print(sum)
  8854. \end{lstlisting}
  8855. The \code{while} loop consists of a condition expression and a body (a
  8856. sequence of statements). The body is evaluated repeatedly so long as
  8857. the condition remains true.
  8858. %
  8859. \fi}
  8860. \section{The \LangLoop{} Language}
  8861. \newcommand{\LwhileGrammarRacket}{
  8862. \begin{array}{lcl}
  8863. \Type &::=& \key{Void}\\
  8864. \Exp &::=& \CSETBANG{\Var}{\Exp}
  8865. \MID \CBEGIN{\Exp\ldots}{\Exp}
  8866. \MID \CWHILE{\Exp}{\Exp} \MID \LP\key{void}\RP
  8867. \end{array}
  8868. }
  8869. \newcommand{\LwhileASTRacket}{
  8870. \begin{array}{lcl}
  8871. \Type &::=& \key{Void}\\
  8872. \Exp &::=& \SETBANG{\Var}{\Exp} \MID \BEGIN{\LP\Exp\ldots\RP}{\Exp}\\
  8873. &\MID& \WHILE{\Exp}{\Exp} \MID \VOID{}
  8874. \end{array}
  8875. }
  8876. \newcommand{\LwhileGrammarPython}{
  8877. \begin{array}{rcl}
  8878. \Stmt &::=& \key{while}~ \Exp \key{:}~ \Stmt^{+}
  8879. \end{array}
  8880. }
  8881. \newcommand{\LwhileASTPython}{
  8882. \begin{array}{lcl}
  8883. \Stmt{} &::=& \WHILESTMT{\Exp}{\Stmt^{+}}
  8884. \end{array}
  8885. }
  8886. \begin{figure}[tp]
  8887. \centering
  8888. \fbox{
  8889. \begin{minipage}{0.96\textwidth}
  8890. \small
  8891. {\if\edition\racketEd
  8892. \[
  8893. \begin{array}{l}
  8894. \gray{\LintGrammarRacket{}} \\ \hline
  8895. \gray{\LvarGrammarRacket{}} \\ \hline
  8896. \gray{\LifGrammarRacket{}} \\ \hline
  8897. \LwhileGrammarRacket \\
  8898. \begin{array}{lcl}
  8899. \LangLoopM{} &::=& \Exp
  8900. \end{array}
  8901. \end{array}
  8902. \]
  8903. \fi}
  8904. {\if\edition\pythonEd
  8905. \[
  8906. \begin{array}{l}
  8907. \gray{\LintGrammarPython} \\ \hline
  8908. \gray{\LvarGrammarPython} \\ \hline
  8909. \gray{\LifGrammarPython} \\ \hline
  8910. \LwhileGrammarPython \\
  8911. \begin{array}{rcl}
  8912. \LangLoopM{} &::=& \Stmt^{*}
  8913. \end{array}
  8914. \end{array}
  8915. \]
  8916. \fi}
  8917. \end{minipage}
  8918. }
  8919. \caption{The concrete syntax of \LangLoop{}, extending \LangIf{} (Figure~\ref{fig:Lif-concrete-syntax}).}
  8920. \label{fig:Lwhile-concrete-syntax}
  8921. \end{figure}
  8922. \begin{figure}[tp]
  8923. \centering
  8924. \fbox{
  8925. \begin{minipage}{0.96\textwidth}
  8926. \small
  8927. {\if\edition\racketEd
  8928. \[
  8929. \begin{array}{l}
  8930. \gray{\LintOpAST} \\ \hline
  8931. \gray{\LvarASTRacket{}} \\ \hline
  8932. \gray{\LifASTRacket{}} \\ \hline
  8933. \LwhileASTRacket{} \\
  8934. \begin{array}{lcl}
  8935. \LangLoopM{} &::=& \gray{ \PROGRAM{\code{'()}}{\Exp} }
  8936. \end{array}
  8937. \end{array}
  8938. \]
  8939. \fi}
  8940. {\if\edition\pythonEd
  8941. \[
  8942. \begin{array}{l}
  8943. \gray{\LintASTPython} \\ \hline
  8944. \gray{\LvarASTPython} \\ \hline
  8945. \gray{\LifASTPython} \\ \hline
  8946. \LwhileASTPython \\
  8947. \begin{array}{lcl}
  8948. \LangLoopM{} &::=& \PROGRAM{\code{'()}}{\Stmt^{*}}
  8949. \end{array}
  8950. \end{array}
  8951. \]
  8952. \fi}
  8953. \end{minipage}
  8954. }
  8955. \caption{The abstract syntax of \LangLoop{}, extending \LangIf{} (Figure~\ref{fig:Lif-syntax}).}
  8956. \label{fig:Lwhile-syntax}
  8957. \end{figure}
  8958. The concrete syntax of \LangLoop{} is defined in
  8959. Figure~\ref{fig:Lwhile-concrete-syntax} and its abstract syntax is defined
  8960. in Figure~\ref{fig:Lwhile-syntax}.
  8961. %
  8962. The definitional interpreter for \LangLoop{} is shown in
  8963. Figure~\ref{fig:interp-Rwhile}.
  8964. %
  8965. {\if\edition\racketEd
  8966. %
  8967. We add new cases for \code{SetBang}, \code{WhileLoop}, \code{Begin},
  8968. and \code{Void} and we make changes to the cases for \code{Var} and
  8969. \code{Let} regarding variables. To support assignment to variables and
  8970. to make their lifetimes indefinite (see the second example in
  8971. Section~\ref{sec:assignment-scoping}), we box the value that is bound
  8972. to each variable (in \code{Let}). The case for \code{Var} unboxes the
  8973. value.
  8974. %
  8975. Now to discuss the new cases. For \code{SetBang}, we lookup the
  8976. variable in the environment to obtain a boxed value and then we change
  8977. it using \code{set-box!} to the result of evaluating the right-hand
  8978. side. The result value of a \code{SetBang} is \code{void}.
  8979. %
  8980. For the \code{WhileLoop}, we repeatedly 1) evaluate the condition, and
  8981. if the result is true, 2) evaluate the body.
  8982. The result value of a \code{while} loop is also \code{void}.
  8983. %
  8984. The $\BEGIN{\itm{es}}{\itm{body}}$ expression evaluates the
  8985. subexpressions \itm{es} for their effects and then evaluates
  8986. and returns the result from \itm{body}.
  8987. %
  8988. The $\VOID{}$ expression produces the \code{void} value.
  8989. %
  8990. \fi}
  8991. {\if\edition\pythonEd
  8992. %
  8993. We add a new case for \code{While} in the \code{interp\_stmts}
  8994. function, where we repeatedly interpret the \code{body} so long as the
  8995. \code{test} expression remains true.
  8996. %
  8997. \fi}
  8998. \begin{figure}[tbp]
  8999. {\if\edition\racketEd
  9000. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  9001. (define interp-Rwhile_class
  9002. (class interp-Rany_class
  9003. (super-new)
  9004. (define/override ((interp-exp env) e)
  9005. (define recur (interp-exp env))
  9006. (match e
  9007. [(SetBang x rhs)
  9008. (set-box! (lookup x env) (recur rhs))]
  9009. [(WhileLoop cnd body)
  9010. (define (loop)
  9011. (cond [(recur cnd) (recur body) (loop)]
  9012. [else (void)]))
  9013. (loop)]
  9014. [(Begin es body)
  9015. (for ([e es]) (recur e))
  9016. (recur body)]
  9017. [(Void) (void)]
  9018. [else ((super interp-exp env) e)]))
  9019. ))
  9020. (define (interp-Rwhile p)
  9021. (send (new interp-Rwhile_class) interp-program p))
  9022. \end{lstlisting}
  9023. \fi}
  9024. {\if\edition\pythonEd
  9025. \begin{lstlisting}
  9026. class InterpLwhile(InterpLif):
  9027. def interp_stmts(self, ss, env):
  9028. if len(ss) == 0:
  9029. return
  9030. match ss[0]:
  9031. case While(test, body, []):
  9032. while self.interp_exp(test, env):
  9033. self.interp_stmts(body, env)
  9034. return self.interp_stmts(ss[1:], env)
  9035. case _:
  9036. return super().interp_stmts(ss, env)
  9037. \end{lstlisting}
  9038. \fi}
  9039. \caption{Interpreter for \LangLoop{}.}
  9040. \label{fig:interp-Rwhile}
  9041. \end{figure}
  9042. The type checker for \LangLoop{} is defined in
  9043. Figure~\ref{fig:type-check-Rwhile}.
  9044. %
  9045. {\if\edition\racketEd
  9046. %
  9047. For \LangLoop{} we add a type named \code{Void} and the only value of
  9048. this type is the \code{void} value.
  9049. %
  9050. The type checking of the \code{SetBang} expression requires the type of
  9051. the variable and the right-hand-side to agree. The result type is
  9052. \code{Void}. For \code{while}, the condition must be a
  9053. \code{Boolean}. The result type is also \code{Void}. For
  9054. \code{Begin}, the result type is the type of its last subexpression.
  9055. %
  9056. \fi}
  9057. %
  9058. {\if\edition\pythonEd
  9059. %
  9060. A \code{while} loop is well typed if the type of the \code{test}
  9061. expression is \code{bool} and the statements in the \code{body} are
  9062. well typed.
  9063. %
  9064. \fi}
  9065. \begin{figure}[tbp]
  9066. {\if\edition\racketEd
  9067. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  9068. (define type-check-Rwhile_class
  9069. (class type-check-Rany_class
  9070. (super-new)
  9071. (inherit check-type-equal?)
  9072. (define/override (type-check-exp env)
  9073. (lambda (e)
  9074. (define recur (type-check-exp env))
  9075. (match e
  9076. [(SetBang x rhs)
  9077. (define-values (rhs^ rhsT) (recur rhs))
  9078. (define varT (dict-ref env x))
  9079. (check-type-equal? rhsT varT e)
  9080. (values (SetBang x rhs^) 'Void)]
  9081. [(WhileLoop cnd body)
  9082. (define-values (cnd^ Tc) (recur cnd))
  9083. (check-type-equal? Tc 'Boolean e)
  9084. (define-values (body^ Tbody) ((type-check-exp env) body))
  9085. (values (WhileLoop cnd^ body^) 'Void)]
  9086. [(Begin es body)
  9087. (define-values (es^ ts)
  9088. (for/lists (l1 l2) ([e es]) (recur e)))
  9089. (define-values (body^ Tbody) (recur body))
  9090. (values (Begin es^ body^) Tbody)]
  9091. [else ((super type-check-exp env) e)])))
  9092. ))
  9093. (define (type-check-Rwhile p)
  9094. (send (new type-check-Rwhile_class) type-check-program p))
  9095. \end{lstlisting}
  9096. \fi}
  9097. {\if\edition\pythonEd
  9098. \begin{lstlisting}
  9099. class TypeCheckLwhile(TypeCheckLif):
  9100. def type_check_stmts(self, ss, env):
  9101. if len(ss) == 0:
  9102. return
  9103. match ss[0]:
  9104. case While(test, body, []):
  9105. test_t = self.type_check_exp(test, env)
  9106. check_type_equal(bool, test_t, test)
  9107. body_t = self.type_check_stmts(body, env)
  9108. return self.type_check_stmts(ss[1:], env)
  9109. case _:
  9110. return super().type_check_stmts(ss, env)
  9111. \end{lstlisting}
  9112. \fi}
  9113. \caption{Type checker for the \LangLoop{} language.}
  9114. \label{fig:type-check-Rwhile}
  9115. \end{figure}
  9116. {\if\edition\racketEd
  9117. %
  9118. At first glance, the translation of these language features to x86
  9119. seems straightforward because the \LangCIf{} intermediate language
  9120. already supports all of the ingredients that we need: assignment,
  9121. \code{goto}, conditional branching, and sequencing. However, there are
  9122. complications that arise which we discuss in the next section. After
  9123. that we introduce the changes necessary to the existing passes.
  9124. %
  9125. \fi}
  9126. {\if\edition\pythonEd
  9127. %
  9128. At first glance, the translation of \code{while} loops to x86 seems
  9129. straightforward because the \LangCIf{} intermediate language already
  9130. supports \code{goto} and conditional branching. However, there are
  9131. complications that arise which we discuss in the next section. After
  9132. that we introduce the changes necessary to the existing passes.
  9133. %
  9134. \fi}
  9135. \section{Cyclic Control Flow and Dataflow Analysis}
  9136. \label{sec:dataflow-analysis}
  9137. Up until this point the control-flow graphs of the programs generated
  9138. in \code{explicate\_control} were guaranteed to be acyclic. However,
  9139. each \code{while} loop introduces a cycle in the control-flow graph.
  9140. But does that matter?
  9141. %
  9142. Indeed it does. Recall that for register allocation, the compiler
  9143. performs liveness analysis to determine which variables can share the
  9144. same register. To accomplish this we analyzed the control-flow graph
  9145. in reverse topological order
  9146. (Section~\ref{sec:liveness-analysis-Lif}), but topological order is
  9147. only well-defined for acyclic graphs.
  9148. Let us return to the example of computing the sum of the first five
  9149. positive integers. Here is the program after instruction selection but
  9150. before register allocation.
  9151. \begin{center}
  9152. {\if\edition\racketEd
  9153. \begin{minipage}{0.45\textwidth}
  9154. \begin{lstlisting}
  9155. (define (main) : Integer
  9156. mainstart:
  9157. movq $0, sum
  9158. movq $5, i
  9159. jmp block5
  9160. block5:
  9161. movq i, tmp3
  9162. cmpq tmp3, $0
  9163. jl block7
  9164. jmp block8
  9165. \end{lstlisting}
  9166. \end{minipage}
  9167. \begin{minipage}{0.45\textwidth}
  9168. \begin{lstlisting}
  9169. block7:
  9170. addq i, sum
  9171. movq $1, tmp4
  9172. negq tmp4
  9173. addq tmp4, i
  9174. jmp block5
  9175. block8:
  9176. movq $27, %rax
  9177. addq sum, %rax
  9178. jmp mainconclusion
  9179. )
  9180. \end{lstlisting}
  9181. \end{minipage}
  9182. \fi}
  9183. {\if\edition\pythonEd
  9184. \begin{minipage}{0.45\textwidth}
  9185. \begin{lstlisting}
  9186. mainstart:
  9187. movq $0, sum
  9188. movq $5, i
  9189. jmp block5
  9190. block5:
  9191. cmpq $0, i
  9192. jg block7
  9193. jmp block8
  9194. \end{lstlisting}
  9195. \end{minipage}
  9196. \begin{minipage}{0.45\textwidth}
  9197. \begin{lstlisting}
  9198. block7:
  9199. addq i, sum
  9200. subq $1, i
  9201. jmp block5
  9202. block8:
  9203. movq sum, %rdi
  9204. callq print_int
  9205. movq $0, %rax
  9206. jmp mainconclusion
  9207. \end{lstlisting}
  9208. \end{minipage}
  9209. \fi}
  9210. \end{center}
  9211. Recall that liveness analysis works backwards, starting at the end
  9212. of each function. For this example we could start with \code{block8}
  9213. because we know what is live at the beginning of the conclusion,
  9214. just \code{rax} and \code{rsp}. So the live-before set
  9215. for \code{block8} is $\{\ttm{rsp},\ttm{sum}\}$.
  9216. %
  9217. Next we might try to analyze \code{block5} or \code{block7}, but
  9218. \code{block5} jumps to \code{block7} and vice versa, so it seems that
  9219. we are stuck.
  9220. The way out of this impasse is to realize that we can compute an
  9221. under-approximation of the live-before set by starting with empty
  9222. live-after sets. By \emph{under-approximation}, we mean that the set
  9223. only contains variables that are live for some execution of the
  9224. program, but the set may be missing some variables. Next, the
  9225. under-approximations for each block can be improved by 1) updating the
  9226. live-after set for each block using the approximate live-before sets
  9227. from the other blocks and 2) perform liveness analysis again on each
  9228. block. In fact, by iterating this process, the under-approximations
  9229. eventually become the correct solutions!
  9230. %
  9231. This approach of iteratively analyzing a control-flow graph is
  9232. applicable to many static analysis problems and goes by the name
  9233. \emph{dataflow analysis}\index{subject}{dataflow analysis}. It was invented by
  9234. \citet{Kildall:1973vn} in his Ph.D. thesis at the University of
  9235. Washington.
  9236. Let us apply this approach to the above example. We use the empty set
  9237. for the initial live-before set for each block. Let $m_0$ be the
  9238. following mapping from label names to sets of locations (variables and
  9239. registers).
  9240. \begin{center}
  9241. \begin{lstlisting}
  9242. mainstart: {}, block5: {}, block7: {}, block8: {}
  9243. \end{lstlisting}
  9244. \end{center}
  9245. Using the above live-before approximations, we determine the
  9246. live-after for each block and then apply liveness analysis to each
  9247. block. This produces our next approximation $m_1$ of the live-before
  9248. sets.
  9249. \begin{center}
  9250. \begin{lstlisting}
  9251. mainstart: {}, block5: {i}, block7: {i, sum}, block8: {rsp, sum}
  9252. \end{lstlisting}
  9253. \end{center}
  9254. For the second round, the live-after for \code{mainstart} is the
  9255. current live-before for \code{block5}, which is \code{\{i\}}. So the
  9256. liveness analysis for \code{mainstart} computes the empty set. The
  9257. live-after for \code{block5} is the union of the live-before sets for
  9258. \code{block7} and \code{block8}, which is \code{\{i , rsp, sum\}}.
  9259. So the liveness analysis for \code{block5} computes \code{\{i , rsp,
  9260. sum\}}. The live-after for \code{block7} is the live-before for
  9261. \code{block5} (from the previous iteration), which is \code{\{i\}}.
  9262. So the liveness analysis for \code{block7} remains \code{\{i,
  9263. sum\}}. Together these yield the following approximation $m_2$ of
  9264. the live-before sets.
  9265. \begin{center}
  9266. \begin{lstlisting}
  9267. mainstart: {}, block5: {i, rsp, sum}, block7: {i, sum}, block8: {rsp, sum}
  9268. \end{lstlisting}
  9269. \end{center}
  9270. In the preceding iteration, only \code{block5} changed, so we can
  9271. limit our attention to \code{mainstart} and \code{block7}, the two
  9272. blocks that jump to \code{block5}. As a result, the live-before sets
  9273. for \code{mainstart} and \code{block7} are updated to include
  9274. \code{rsp}, yielding the following approximation $m_3$.
  9275. \begin{center}
  9276. \begin{lstlisting}
  9277. mainstart: {rsp}, block5: {i,rsp,sum}, block7: {i,rsp,sum}, block8: {rsp,sum}
  9278. \end{lstlisting}
  9279. \end{center}
  9280. Because \code{block7} changed, we analyze \code{block5} once more, but
  9281. its live-before set remains \code{\{i,rsp,sum\}}. At this point
  9282. our approximations have converged, so $m_3$ is the solution.
  9283. This iteration process is guaranteed to converge to a solution by the
  9284. Kleene Fixed-Point Theorem, a general theorem about functions on
  9285. lattices~\citep{Kleene:1952aa}. Roughly speaking, a \emph{lattice} is
  9286. any collection that comes with a partial ordering $\sqsubseteq$ on its
  9287. elements, a least element $\bot$ (pronounced bottom), and a join
  9288. operator $\sqcup$.\index{subject}{lattice}\index{subject}{bottom}\index{subject}{partial
  9289. ordering}\index{subject}{join}\footnote{Technically speaking, we will be
  9290. working with join semi-lattices.} When two elements are ordered $m_i
  9291. \sqsubseteq m_j$, it means that $m_j$ contains at least as much
  9292. information as $m_i$, so we can think of $m_j$ as a better-or-equal
  9293. approximation than $m_i$. The bottom element $\bot$ represents the
  9294. complete lack of information, i.e., the worst approximation. The join
  9295. operator takes two lattice elements and combines their information,
  9296. i.e., it produces the least upper bound of the two.\index{subject}{least upper
  9297. bound}
  9298. A dataflow analysis typically involves two lattices: one lattice to
  9299. represent abstract states and another lattice that aggregates the
  9300. abstract states of all the blocks in the control-flow graph. For
  9301. liveness analysis, an abstract state is a set of locations. We form
  9302. the lattice $L$ by taking its elements to be sets of locations, the
  9303. ordering to be set inclusion ($\subseteq$), the bottom to be the empty
  9304. set, and the join operator to be set union.
  9305. %
  9306. We form a second lattice $M$ by taking its elements to be mappings
  9307. from the block labels to sets of locations (elements of $L$). We
  9308. order the mappings point-wise, using the ordering of $L$. So given any
  9309. two mappings $m_i$ and $m_j$, $m_i \sqsubseteq_M m_j$ when $m_i(\ell)
  9310. \subseteq m_j(\ell)$ for every block label $\ell$ in the program. The
  9311. bottom element of $M$ is the mapping $\bot_M$ that sends every label
  9312. to the empty set, i.e., $\bot_M(\ell) = \emptyset$.
  9313. We can think of one iteration of liveness analysis applied to the
  9314. whole program as being a function $f$ on the lattice $M$. It takes a
  9315. mapping as input and computes a new mapping.
  9316. \[
  9317. f(m_i) = m_{i+1}
  9318. \]
  9319. Next let us think for a moment about what a final solution $m_s$
  9320. should look like. If we perform liveness analysis using the solution
  9321. $m_s$ as input, we should get $m_s$ again as the output. That is, the
  9322. solution should be a \emph{fixed point} of the function $f$.\index{subject}{fixed point}
  9323. \[
  9324. f(m_s) = m_s
  9325. \]
  9326. Furthermore, the solution should only include locations that are
  9327. forced to be there by performing liveness analysis on the program, so
  9328. the solution should be the \emph{least} fixed point.\index{subject}{least fixed point}
  9329. The Kleene Fixed-Point Theorem states that if a function $f$ is
  9330. monotone (better inputs produce better outputs), then the least fixed
  9331. point of $f$ is the least upper bound of the \emph{ascending Kleene
  9332. chain} obtained by starting at $\bot$ and iterating $f$ as
  9333. follows.\index{subject}{Kleene Fixed-Point Theorem}
  9334. \[
  9335. \bot \sqsubseteq f(\bot) \sqsubseteq f(f(\bot)) \sqsubseteq \cdots
  9336. \sqsubseteq f^n(\bot) \sqsubseteq \cdots
  9337. \]
  9338. When a lattice contains only finitely-long ascending chains, then
  9339. every Kleene chain tops out at some fixed point after some number of
  9340. iterations of $f$.
  9341. \[
  9342. \bot \sqsubseteq f(\bot) \sqsubseteq f(f(\bot)) \sqsubseteq \cdots
  9343. \sqsubseteq f^k(\bot) = f^{k+1}(\bot) = m_s
  9344. \]
  9345. The liveness analysis is indeed a monotone function and the lattice
  9346. $M$ only has finitely-long ascending chains because there are only a
  9347. finite number of variables and blocks in the program. Thus we are
  9348. guaranteed that iteratively applying liveness analysis to all blocks
  9349. in the program will eventually produce the least fixed point solution.
  9350. Next let us consider dataflow analysis in general and discuss the
  9351. generic work list algorithm (Figure~\ref{fig:generic-dataflow}).
  9352. %
  9353. The algorithm has four parameters: the control-flow graph \code{G}, a
  9354. function \code{transfer} that applies the analysis to one block, the
  9355. \code{bottom} and \code{join} operator for the lattice of abstract
  9356. states. The algorithm begins by creating the bottom mapping,
  9357. represented by a hash table. It then pushes all of the nodes in the
  9358. control-flow graph onto the work list (a queue). The algorithm repeats
  9359. the \code{while} loop as long as there are items in the work list. In
  9360. each iteration, a node is popped from the work list and processed. The
  9361. \code{input} for the node is computed by taking the join of the
  9362. abstract states of all the predecessor nodes. The \code{transfer}
  9363. function is then applied to obtain the \code{output} abstract
  9364. state. If the output differs from the previous state for this block,
  9365. the mapping for this block is updated and its successor nodes are
  9366. pushed onto the work list.
  9367. Note that the \code{analyze\_dataflow} function is formulated as a
  9368. \emph{forward} dataflow analysis, that is, the inputs to the transfer
  9369. function come from the predecessor nodes in the control-flow
  9370. graph. However, liveness analysis is a \emph{backward} dataflow
  9371. analysis, so in that case one must supply the \code{analyze\_dataflow}
  9372. function with the transpose of the control-flow graph.
  9373. \begin{figure}[tb]
  9374. {\if\edition\racketEd
  9375. \begin{lstlisting}
  9376. (define (analyze_dataflow G transfer bottom join)
  9377. (define mapping (make-hash))
  9378. (for ([v (in-vertices G)])
  9379. (dict-set! mapping v bottom))
  9380. (define worklist (make-queue))
  9381. (for ([v (in-vertices G)])
  9382. (enqueue! worklist v))
  9383. (define trans-G (transpose G))
  9384. (while (not (queue-empty? worklist))
  9385. (define node (dequeue! worklist))
  9386. (define input (for/fold ([state bottom])
  9387. ([pred (in-neighbors trans-G node)])
  9388. (join state (dict-ref mapping pred))))
  9389. (define output (transfer node input))
  9390. (cond [(not (equal? output (dict-ref mapping node)))
  9391. (dict-set! mapping node output)
  9392. (for ([v (in-neighbors G node)])
  9393. (enqueue! worklist v))]))
  9394. mapping)
  9395. \end{lstlisting}
  9396. \fi}
  9397. {\if\edition\pythonEd
  9398. \begin{lstlisting}
  9399. def analyze_dataflow(G, transfer, bottom, join):
  9400. trans_G = transpose(G)
  9401. mapping = {}
  9402. for v in G.vertices():
  9403. mapping[v] = bottom
  9404. worklist = deque()
  9405. for v in G.vertices():
  9406. worklist.append(v)
  9407. while worklist:
  9408. node = worklist.pop()
  9409. input = reduce(join, [mapping[v] for v in trans_G.adjacent(node)], bottom)
  9410. output = transfer(node, input)
  9411. if output != mapping[node]:
  9412. mapping[node] = output
  9413. for v in G.adjacent(node):
  9414. worklist.append(v)
  9415. \end{lstlisting}
  9416. \fi}
  9417. \caption{Generic work list algorithm for dataflow analysis}
  9418. \label{fig:generic-dataflow}
  9419. \end{figure}
  9420. {\if\edition\racketEd
  9421. \section{Mutable Variables \& Remove Complex Operands}
  9422. There is a subtle interaction between the addition of \code{set!}, the
  9423. \code{remove\_complex\_operands} pass, and the left-to-right order of
  9424. evaluation of Racket. Consider the following example.
  9425. \begin{lstlisting}
  9426. (let ([x 2])
  9427. (+ x (begin (set! x 40) x)))
  9428. \end{lstlisting}
  9429. The result of this program is \code{42} because the first read from
  9430. \code{x} produces \code{2} and the second produces \code{40}. However,
  9431. if we naively apply the \code{remove\_complex\_operands} pass to this
  9432. example we obtain the following program whose result is \code{80}!
  9433. \begin{lstlisting}
  9434. (let ([x 2])
  9435. (let ([tmp (begin (set! x 40) x)])
  9436. (+ x tmp)))
  9437. \end{lstlisting}
  9438. The problem is that, with mutable variables, the ordering between
  9439. reads and writes is important, and the
  9440. \code{remove\_complex\_operands} pass moved the \code{set!} to happen
  9441. before the first read of \code{x}.
  9442. We recommend solving this problem by giving special treatment to reads
  9443. from mutable variables, that is, variables that occur on the left-hand
  9444. side of a \code{set!}. We mark each read from a mutable variable with
  9445. the form \code{get!} (\code{GetBang} in abstract syntax) to indicate
  9446. that the read operation is effectful in that it can produce different
  9447. results at different points in time. Let's apply this idea to the
  9448. following variation that also involves a variable that is not mutated.
  9449. % loop_test_24.rkt
  9450. \begin{lstlisting}
  9451. (let ([x 2])
  9452. (let ([y 0])
  9453. (+ y (+ x (begin (set! x 40) x)))))
  9454. \end{lstlisting}
  9455. We analyze the above program to discover that variable \code{x} is
  9456. mutable but \code{y} is not. We then transform the program as follows,
  9457. replacing each occurence of \code{x} with \code{(get! x)}.
  9458. \begin{lstlisting}
  9459. (let ([x 2])
  9460. (let ([y 0])
  9461. (+ y (+ (get! x) (begin (set! x 40) (get! x))))))
  9462. \end{lstlisting}
  9463. Now that we have a clear distinction between reads from mutable and
  9464. immutable variables, we can apply the \code{remove\_complex\_operands}
  9465. pass, where reads from immutable variables are still classified as
  9466. atomic expressions but reads from mutable variables are classified as
  9467. complex. Thus, \code{remove\_complex\_operands} yields the following
  9468. program.
  9469. \begin{lstlisting}
  9470. (let ([x 2])
  9471. (let ([y 0])
  9472. (+ y (let ([t1 (get! x)])
  9473. (let ([t2 (begin (set! x 40) (get! x))])
  9474. (+ t1 t2))))))
  9475. \end{lstlisting}
  9476. The temporary variable \code{t1} gets the value of \code{x} before the
  9477. \code{set!}, so it is \code{2}. The temporary variable \code{t2} gets
  9478. the value of \code{x} after the \code{set!}, so it is \code{40}. We
  9479. do not generate a temporary variable for the occurence of \code{y}
  9480. because it's an immutable variable. We want to avoid such unnecessary
  9481. extra temporaries because they would needless increase the number of
  9482. variables, making it more likely for some of them to be spilled. The
  9483. result of this program is \code{42}, the same as the result prior to
  9484. \code{remove\_complex\_operands}.
  9485. The approach that we've sketched above requires only a small
  9486. modification to \code{remove\_complex\_operands} to handle
  9487. \code{get!}. However, it requires a new pass, called
  9488. \code{uncover-get!}, that we discuss in
  9489. Section~\ref{sec:uncover-get-bang}.
  9490. As an aside, this problematic interaction between \code{set!} and the
  9491. pass \code{remove\_complex\_operands} is particular to Racket and not
  9492. its predecessor, the Scheme language. The key difference is that
  9493. Scheme does not specify an order of evaluation for the arguments of an
  9494. operator or function call~\citep{SPERBER:2009aa}. Thus, a compiler for
  9495. Scheme is free to choose any ordering: both \code{42} and \code{80}
  9496. would be correct results for the example program. Interestingly,
  9497. Racket is implemented on top of the Chez Scheme
  9498. compiler~\citep{Dybvig:2006aa} and an approach similar to the one
  9499. presented in this section (using extra \code{let} bindings to control
  9500. the order of evaluation) is used in the translation from Racket to
  9501. Scheme~\citep{Flatt:2019tb}.
  9502. \fi} % racket
  9503. Having discussed the complications that arise from adding support for
  9504. assignment and loops, we turn to discussing the individual compilation
  9505. passes.
  9506. {\if\edition\racketEd
  9507. \section{Uncover \texttt{get!}}
  9508. \label{sec:uncover-get-bang}
  9509. The goal of this pass it to mark uses of mutable variables so that
  9510. \code{remove\_complex\_operands} can treat them as complex expressions
  9511. and thereby preserve their ordering relative to the side-effects in
  9512. other operands. So the first step is to collect all the mutable
  9513. variables. We recommend creating an auxilliary function for this,
  9514. named \code{collect-set!}, that recursively traverses expressions,
  9515. returning a set of all variables that occur on the left-hand side of a
  9516. \code{set!}. Here's an exerpt of its implementation.
  9517. \begin{center}
  9518. \begin{minipage}{\textwidth}
  9519. \begin{lstlisting}
  9520. (define (collect-set! e)
  9521. (match e
  9522. [(Var x) (set)]
  9523. [(Int n) (set)]
  9524. [(Let x rhs body)
  9525. (set-union (collect-set! rhs) (collect-set! body))]
  9526. [(SetBang var rhs)
  9527. (set-union (set var) (collect-set! rhs))]
  9528. ...))
  9529. \end{lstlisting}
  9530. \end{minipage}
  9531. \end{center}
  9532. By placing this pass after \code{uniquify}, we need not worry about
  9533. variable shadowing and our logic for \code{let} can remain simple, as
  9534. in the exerpt above.
  9535. The second step is to mark the occurences of the mutable variables
  9536. with the new \code{GetBang} AST node (\code{get!} in concrete
  9537. syntax). The following is an exerpt of the \code{uncover-get!-exp}
  9538. function, which takes two parameters: the set of mutable varaibles
  9539. \code{set!-vars}, and the expression \code{e} to be processed. The
  9540. case for \code{(Var x)} replaces it with \code{(GetBang x)} if it is a
  9541. mutable variable or leaves it alone if not.
  9542. \begin{center}
  9543. \begin{minipage}{\textwidth}
  9544. \begin{lstlisting}
  9545. (define ((uncover-get!-exp set!-vars) e)
  9546. (match e
  9547. [(Var x)
  9548. (if (set-member? set!-vars x)
  9549. (GetBang x)
  9550. (Var x))]
  9551. ...))
  9552. \end{lstlisting}
  9553. \end{minipage}
  9554. \end{center}
  9555. To wrap things up, define the \code{uncover-get!} function for
  9556. processing a whole program, using \code{collect-set!} to obtain the
  9557. set of mutable variables and then \code{uncover-get!-exp} to replace
  9558. their occurences with \code{GetBang}.
  9559. \fi}
  9560. \section{Remove Complex Operands}
  9561. \label{sec:rco-loop}
  9562. {\if\edition\racketEd
  9563. %
  9564. The new language forms, \code{get!}, \code{set!}, \code{begin}, and
  9565. \code{while} are all complex expressions. The subexpressions of
  9566. \code{set!}, \code{begin}, and \code{while} are allowed to be complex.
  9567. %
  9568. \fi}
  9569. {\if\edition\pythonEd
  9570. %
  9571. The change needed for this pass is to add a case for the \code{while}
  9572. statement. The condition of a \code{while} loop is allowed to be a
  9573. complex expression, just like the condition of the \code{if}
  9574. statement.
  9575. %
  9576. \fi}
  9577. %
  9578. Figure~\ref{fig:Rwhile-anf-syntax} defines the output language
  9579. \LangLoopANF{} of this pass.
  9580. \begin{figure}[tp]
  9581. \centering
  9582. \fbox{
  9583. \begin{minipage}{0.96\textwidth}
  9584. \small
  9585. {\if\edition\racketEd
  9586. \[
  9587. \begin{array}{rcl}
  9588. \Atm &::=& \gray{ \INT{\Int} \MID \VAR{\Var} \MID \BOOL{\itm{bool}} } \MID \VOID{} \\
  9589. \Exp &::=& \ldots \MID \gray{ \LET{\Var}{\Exp}{\Exp} } \\
  9590. &\MID& \GETBANG{\Var}
  9591. \MID \SETBANG{\Var}{\Exp} \\
  9592. &\MID& \BEGIN{\LP\Exp\ldots\RP}{\Exp}
  9593. \MID \WHILE{\Exp}{\Exp} \\
  9594. \Def &::=& \gray{ \FUNDEF{\Var}{([\Var \code{:} \Type]\ldots)}{\Type}{\code{'()}}{\Exp} }\\
  9595. \LangLoopANF &::=& \gray{ \PROGRAMDEFS{\code{'()}}{\Def} }
  9596. \end{array}
  9597. \]
  9598. \fi}
  9599. {\if\edition\pythonEd
  9600. \[
  9601. \begin{array}{rcl}
  9602. \Atm &::=& \INT{\Int} \MID \VAR{\Var} \MID \BOOL{\itm{bool}}\\
  9603. \Exp &::=& \Atm \MID \READ{} \\
  9604. &\MID& \BINOP{\itm{binaryop}}{\Atm}{\Atm} \MID \UNIOP{\key{unaryop}}{\Atm} \\
  9605. &\MID& \CMP{\Atm}{\itm{cmp}}{\Atm} \MID \IF{\Exp}{\Exp}{\Exp} \\
  9606. % &\MID& \LET{\Var}{\Exp}{\Exp}\\
  9607. \Stmt{} &::=& \PRINT{\Atm} \MID \EXPR{\Exp} \\
  9608. &\MID& \ASSIGN{\VAR{\Var}}{\Exp} \MID \IFSTMT{\Exp}{\Stmt^{+}}{\Stmt^{+}}\\
  9609. &\MID& \WHILESTMT{\Exp}{\Stmt^{+}} \\
  9610. \LangLoopANF &::=& \PROGRAM{\code{()}}{\Stmt^{*}}
  9611. \end{array}
  9612. \]
  9613. \fi}
  9614. \end{minipage}
  9615. }
  9616. \caption{\LangLoopANF{} is \LangLoop{} in monadic normal form.}
  9617. \label{fig:Rwhile-anf-syntax}
  9618. \end{figure}
  9619. {\if\edition\racketEd
  9620. As usual, when a complex expression appears in a grammar position that
  9621. needs to be atomic, such as the argument of a primitive operator, we
  9622. must introduce a temporary variable and bind it to the complex
  9623. expression. This approach applies, unchanged, to handle the new
  9624. language forms. For example, in the following code there are two
  9625. \code{begin} expressions appearing as arguments to \code{+}. The
  9626. output of \code{rco\_exp} is shown below, in which the \code{begin}
  9627. expressions have been bound to temporary variables. Recall that
  9628. \code{let} expressions in \LangLoopANF{} are allowed to have
  9629. arbitrary expressions in their right-hand-side expression, so it is
  9630. fine to place \code{begin} there.
  9631. \begin{center}
  9632. \begin{minipage}{\textwidth}
  9633. \begin{lstlisting}
  9634. (let ([x0 10])
  9635. (let ([y1 0])
  9636. (+ (+ (begin (set! y1 (read)) x0)
  9637. (begin (set! x0 (read)) y1))
  9638. x0)))
  9639. |$\Rightarrow$|
  9640. (let ([x0 10])
  9641. (let ([y1 0])
  9642. (let ([tmp2 (begin (set! y1 (read)) x0)])
  9643. (let ([tmp3 (begin (set! x0 (read)) y1)])
  9644. (let ([tmp4 (+ tmp2 tmp3)])
  9645. (+ tmp4 x0))))))
  9646. \end{lstlisting}
  9647. \end{minipage}
  9648. \end{center}
  9649. \fi}
  9650. \section{Explicate Control \racket{and \LangCLoop{}}}
  9651. \label{sec:explicate-loop}
  9652. {\if\edition\racketEd
  9653. Recall that in the \code{explicate\_control} pass we define one helper
  9654. function for each kind of position in the program. For the \LangVar{}
  9655. language of integers and variables we needed kinds of positions:
  9656. assignment and tail. The \code{if} expressions of \LangIf{} introduced
  9657. predicate positions. For \LangLoop{}, the \code{begin} expression introduces
  9658. yet another kind of position: effect position. Except for the last
  9659. subexpression, the subexpressions inside a \code{begin} are evaluated
  9660. only for their effect. Their result values are discarded. We can
  9661. generate better code by taking this fact into account.
  9662. The output language of \code{explicate\_control} is \LangCLoop{}
  9663. (Figure~\ref{fig:c7-syntax}), which is nearly identical to
  9664. \LangCLam{}. The only syntactic difference is that \code{Call} and
  9665. \code{read} may also appear as statements. The most significant
  9666. difference between \LangCLam{} and \LangCLoop{} is that the
  9667. control-flow graphs of the later may contain cycles.
  9668. \begin{figure}[tp]
  9669. \fbox{
  9670. \begin{minipage}{0.96\textwidth}
  9671. \small
  9672. \[
  9673. \begin{array}{lcl}
  9674. \Stmt &::=& \gray{ \ASSIGN{\VAR{\Var}}{\Exp} }
  9675. \MID \READ{}\\
  9676. \Def &::=& \DEF{\itm{label}}{\LP\LS\Var\key{:}\Type\RS\ldots\RP}{\Type}{\itm{info}}{\LP\LP\itm{label}\,\key{.}\,\Tail\RP\ldots\RP}\\
  9677. \LangCLoopM{} & ::= & \CPROGRAM{\itm{info}}{\LP\LP\itm{label}\,\key{.}\,\Tail\RP\ldots\RP}
  9678. \end{array}
  9679. \]
  9680. \end{minipage}
  9681. }
  9682. \caption{The abstract syntax of \LangCLoop{}, extending \LangCIf{} (Figure~\ref{fig:c1-syntax}).}
  9683. \label{fig:c7-syntax}
  9684. \end{figure}
  9685. The new auxiliary function \code{explicate\_effect} takes an
  9686. expression (in an effect position) and a continuation. The function
  9687. returns a $\Tail$ that includes the generated code for the input
  9688. expression followed by the continuation. If the expression is
  9689. obviously pure, that is, never causes side effects, then the
  9690. expression can be removed, so the result is just the continuation.
  9691. %
  9692. The $\WHILE{\itm{cnd}}{\itm{body}}$ expression is the most interesting
  9693. case. First, you will need a fresh label $\itm{loop}$ for the top of
  9694. the loop. Recursively process the \itm{body} (in effect position)
  9695. with the a \code{goto} to $\itm{loop}$ as the continuation, producing
  9696. \itm{body'}. Next, process the \itm{cnd} (in predicate position) with
  9697. \itm{body'} as the then-branch and the continuation block as the
  9698. else-branch. The result should be added to the control-flow graph with
  9699. the label \itm{loop}. The result for the whole \code{while} loop is a
  9700. \code{goto} to the \itm{loop} label.
  9701. The auxiliary functions for tail, assignment, and predicate positions
  9702. need to be updated. The three new language forms, \code{while},
  9703. \code{set!}, and \code{begin}, can appear in assignment and tail
  9704. positions. Only \code{begin} may appear in predicate positions; the
  9705. other two have result type \code{Void}.
  9706. \fi}
  9707. %
  9708. {\if\edition\pythonEd
  9709. %
  9710. The output of this pass is the language \LangCIf{}. No new language
  9711. features are needed in the output because a \code{while} loop can be
  9712. expressed in terms of \code{goto} and \code{if} statements, which are
  9713. already in \LangCIf{}.
  9714. %
  9715. Add a case for the \code{while} statement to the
  9716. \code{explicate\_stmt} method, using \code{explicate\_pred} to process
  9717. the condition expression.
  9718. %
  9719. \fi}
  9720. {\if\edition\racketEd
  9721. \section{Select Instructions}
  9722. \label{sec:select-instructions-loop}
  9723. Only three small additions are needed in the
  9724. \code{select\_instructions} pass to handle the changes to
  9725. \LangCLoop{}. That is, a \code{Call} to \code{read} may now appear as a
  9726. stand-alone statement instead of only appearing on the right-hand
  9727. side of an assignment statement. The code generation is nearly
  9728. identical; just leave off the instruction for moving the result into
  9729. the left-hand side.
  9730. \fi}
  9731. \section{Register Allocation}
  9732. \label{sec:register-allocation-loop}
  9733. As discussed in Section~\ref{sec:dataflow-analysis}, the presence of
  9734. loops in \LangLoop{} means that the control-flow graphs may contain cycles,
  9735. which complicates the liveness analysis needed for register
  9736. allocation.
  9737. \subsection{Liveness Analysis}
  9738. \label{sec:liveness-analysis-r8}
  9739. We recommend using the generic \code{analyze\_dataflow} function that
  9740. was presented at the end of Section~\ref{sec:dataflow-analysis} to
  9741. perform liveness analysis, replacing the code in
  9742. \code{uncover\_live} that processed the basic blocks in topological
  9743. order (Section~\ref{sec:liveness-analysis-Lif}).
  9744. The \code{analyze\_dataflow} function has four parameters.
  9745. \begin{enumerate}
  9746. \item The first parameter \code{G} should be a directed graph from the
  9747. \racket{
  9748. \code{racket/graph} package (see the sidebar in
  9749. Section~\ref{sec:build-interference})}
  9750. \python{\code{graph.py} file in the support code}
  9751. that represents the
  9752. control-flow graph.
  9753. \item The second parameter \code{transfer} is a function that applies
  9754. liveness analysis to a basic block. It takes two parameters: the
  9755. label for the block to analyze and the live-after set for that
  9756. block. The transfer function should return the live-before set for
  9757. the block.
  9758. %
  9759. \racket{Also, as a side-effect, it should update the block's
  9760. $\itm{info}$ with the liveness information for each instruction.}
  9761. %
  9762. \python{Also, as a side-effect, it should update the live-before and
  9763. live-after sets for each instruction.}
  9764. %
  9765. To implement the \code{transfer} function, you should be able to
  9766. reuse the code you already have for analyzing basic blocks.
  9767. \item The third and fourth parameters of \code{analyze\_dataflow} are
  9768. \code{bottom} and \code{join} for the lattice of abstract states,
  9769. i.e. sets of locations. The bottom of the lattice is the empty set
  9770. and the join operator is set union.
  9771. \end{enumerate}
  9772. \begin{figure}[p]
  9773. \begin{tikzpicture}[baseline=(current bounding box.center)]
  9774. \node (Rfun) at (0,2) {\large \LangLoop{}};
  9775. \node (Rfun-2) at (3,2) {\large \LangLoop{}};
  9776. %\node (Rfun-3) at (6,2) {\large \LangLoop{}};
  9777. %\node (Rfun-4) at (9,2) {\large \LangLoopFunRef{}};
  9778. %\node (F1-1) at (12,0) {\large \LangLoopFunRef{}};
  9779. %\node (F1-2) at (9,0) {\large \LangLoopFunRef{}};
  9780. %\node (F1-3) at (6,0) {\large \LangLoopFunRef{}};
  9781. \node (F1-4) at (6,2) {\large \LangLoop{}};
  9782. \node (F1-5) at (9,2) {\large \LangLoopANF{}};
  9783. \node (C3-2) at (3,0) {\large \racket{\LangCLoop{}}\python{\LangCIf{}}};
  9784. \node (x86-2) at (3,-2) {\large \LangXIfVar{}};
  9785. \node (x86-2-1) at (3,-4) {\large \LangXIfVar{}};
  9786. \node (x86-2-2) at (6,-4) {\large \LangXIfVar{}};
  9787. \node (x86-3) at (6,-2) {\large \LangXIfVar{}};
  9788. \node (x86-4) at (9,-2) {\large \LangXIf{}};
  9789. \node (x86-5) at (9,-4) {\large \LangXIf{}};
  9790. %% \path[->,bend left=15] (Rfun) edge [above] node
  9791. %% {\ttfamily\footnotesize type-check} (Rfun-2);
  9792. \path[->,bend left=15] (Rfun) edge [above] node
  9793. {\ttfamily\footnotesize shrink} (Rfun-2);
  9794. \path[->,bend left=15] (Rfun-2) edge [above] node
  9795. {\ttfamily\footnotesize uniquify} (F1-4);
  9796. %% \path[->,bend left=15] (Rfun-3) edge [above] node
  9797. %% {\ttfamily\footnotesize reveal\_functions} (Rfun-4);
  9798. %% \path[->,bend left=15] (Rfun-4) edge [right] node
  9799. %% {\ttfamily\footnotesize convert\_assignments} (F1-1);
  9800. %% \path[->,bend left=15] (Rfun-4) edge [right] node
  9801. %% {\ttfamily\footnotesize convert\_to\_clos.} (F1-2);
  9802. %% \path[->,bend right=15] (F1-2) edge [above] node
  9803. %% {\ttfamily\footnotesize limit\_fun.} (F1-3);
  9804. %% \path[->,bend right=15] (F1-3) edge [above] node
  9805. %% {\ttfamily\footnotesize expose-alloc.} (F1-4);
  9806. \path[->,bend left=15] (F1-4) edge [above] node
  9807. {\ttfamily\footnotesize remove\_complex.} (F1-5);
  9808. \path[->,bend left=15] (F1-5) edge [right] node
  9809. {\ttfamily\footnotesize explicate\_control} (C3-2);
  9810. \path[->,bend left=15] (C3-2) edge [left] node
  9811. {\ttfamily\footnotesize select\_instr.} (x86-2);
  9812. \path[->,bend right=15] (x86-2) edge [left] node
  9813. {\ttfamily\footnotesize uncover\_live} (x86-2-1);
  9814. \path[->,bend right=15] (x86-2-1) edge [below] node
  9815. {\ttfamily\footnotesize build\_inter.} (x86-2-2);
  9816. \path[->,bend right=15] (x86-2-2) edge [left] node
  9817. {\ttfamily\footnotesize allocate\_reg.} (x86-3);
  9818. \path[->,bend left=15] (x86-3) edge [above] node
  9819. {\ttfamily\footnotesize patch\_instr.} (x86-4);
  9820. \path[->,bend left=15] (x86-4) edge [right] node {\ttfamily\footnotesize prelude\_and\_concl.} (x86-5);
  9821. \end{tikzpicture}
  9822. \caption{Diagram of the passes for \LangLoop{}.}
  9823. \label{fig:Rwhile-passes}
  9824. \end{figure}
  9825. Figure~\ref{fig:Rwhile-passes} provides an overview of all the passes needed
  9826. for the compilation of \LangLoop{}.
  9827. % Further Reading: dataflow analysis
  9828. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  9829. \chapter{Tuples and Garbage Collection}
  9830. \label{ch:Lvec}
  9831. \index{subject}{tuple}
  9832. \index{subject}{vector}
  9833. \index{subject}{allocate}
  9834. \index{subject}{heap allocate}
  9835. %% \margincomment{\scriptsize To do: Flesh out this chapter, e.g., make sure
  9836. %% all the IR grammars are spelled out! \\ --Jeremy}
  9837. %% \margincomment{\scriptsize Be more explicit about how to deal with
  9838. %% the root stack. \\ --Jeremy}
  9839. In this chapter we study the implementation of
  9840. tuples\racket{, called vectors in Racket}.
  9841. %
  9842. This language feature is the first of ours to use the computer's
  9843. \emph{heap}\index{subject}{heap} because the lifetime of a tuple is
  9844. indefinite, that is, a tuple lives forever from the programmer's
  9845. viewpoint. Of course, from an implementer's viewpoint, it is important
  9846. to reclaim the space associated with a tuple when it is no longer
  9847. needed, which is why we also study \emph{garbage collection}
  9848. \index{garbage collection} techniques in this chapter.
  9849. Section~\ref{sec:r3} introduces the \LangVec{} language including its
  9850. interpreter and type checker. The \LangVec{} language extends the \LangLoop{}
  9851. language of Chapter~\ref{ch:Lwhile} with tuples.
  9852. Section~\ref{sec:GC} describes a garbage collection algorithm based on
  9853. copying live objects back and forth between two halves of the
  9854. heap. The garbage collector requires coordination with the compiler so
  9855. that it can see all of the \emph{root} pointers, that is, pointers in
  9856. registers or on the procedure call stack.
  9857. Sections~\ref{sec:expose-allocation} through \ref{sec:print-x86-gc}
  9858. discuss all the necessary changes and additions to the compiler
  9859. passes, including a new compiler pass named \code{expose\_allocation}.
  9860. \section{The \LangVec{} Language}
  9861. \label{sec:r3}
  9862. Figure~\ref{fig:Lvec-concrete-syntax} defines the concrete syntax for
  9863. \LangVec{} and Figure~\ref{fig:Lvec-syntax} defines the abstract syntax.
  9864. %
  9865. \racket{The \LangVec{} language includes the forms: \code{vector} for
  9866. creating a tuple, \code{vector-ref} for reading an element of a
  9867. tuple, \code{vector-set!} for writing to an element of a tuple, and
  9868. \code{vector-length} for obtaining the number of elements of a
  9869. tuple.}
  9870. %
  9871. \python{The \LangVec{} language adds 1) tuple creation via a
  9872. comma-separated list of expressions, 2) accessing an element of a
  9873. tuple with the square bracket notation, i.e., \code{t[n]} returns
  9874. the nth element of the tuple \code{t}, 3) the \code{is} comparison
  9875. operator, and 4) obtaining the number of elements (the length) of a
  9876. tuple.}
  9877. %
  9878. The program below shows an example use of tuples. It creates a 3-tuple
  9879. \code{t} and a 1-tuple that is stored at index $2$ of the 3-tuple,
  9880. demonstrating that tuples are first-class values. The element at
  9881. index $1$ of \code{t} is \racket{\code{\#t}}\python{\code{True}}, so the
  9882. ``then'' branch of the \key{if} is taken. The element at index $0$ of
  9883. \code{t} is \code{40}, to which we add \code{2}, the element at index
  9884. $0$ of the 1-tuple. So the result of the program is \code{42}.
  9885. %
  9886. {\if\edition\racketEd
  9887. \begin{lstlisting}
  9888. (let ([t (vector 40 #t (vector 2))])
  9889. (if (vector-ref t 1)
  9890. (+ (vector-ref t 0)
  9891. (vector-ref (vector-ref t 2) 0))
  9892. 44))
  9893. \end{lstlisting}
  9894. \fi}
  9895. {\if\edition\pythonEd
  9896. \begin{lstlisting}
  9897. t = 40, True, (2,)
  9898. print( t[0] + t[2][0] if t[1] else 44 )
  9899. \end{lstlisting}
  9900. \fi}
  9901. \newcommand{\LtupGrammarRacket}{
  9902. \begin{array}{lcl}
  9903. \Type &::=& \LP\key{Vector}\;\Type\ldots\RP \\
  9904. \Exp &::=& \LP\key{vector}\;\Exp\ldots\RP
  9905. \MID \LP\key{vector-length}\;\Exp\RP \\
  9906. &\MID& \LP\key{vector-ref}\;\Exp\;\Int\RP
  9907. \MID \LP\key{vector-set!}\;\Exp\;\Int\;\Exp\RP
  9908. \end{array}
  9909. }
  9910. \newcommand{\LtupASTRacket}{
  9911. \begin{array}{lcl}
  9912. \Type &::=& \LP\key{Vector}\;\Type\ldots\RP \\
  9913. \itm{op} &::=& \code{vector} \MID \code{vector-length} \\
  9914. \Exp &::=& \VECREF{\Exp}{\INT{\Int}} \\
  9915. &\MID& \VECSET{\Exp}{\INT{\Int}}{\Exp} \\
  9916. &\MID& \LP\key{HasType}~\Exp~\Type \RP
  9917. \end{array}
  9918. }
  9919. \newcommand{\LtupGrammarPython}{
  9920. \begin{array}{rcl}
  9921. \itm{cmp} &::= & \key{is} \\
  9922. \Exp &::=& \Exp \key{,} \ldots \key{,} \Exp \MID \CGET{\Exp}{\Exp} \MID \CLEN{\Exp}
  9923. \end{array}
  9924. }
  9925. \newcommand{\LtupASTPython}{
  9926. \begin{array}{lcl}
  9927. \itm{cmp} &::= & \code{Is()} \\
  9928. \Exp &::=& \TUPLE{\Exp^{+}} \MID \GET{\Exp}{\Exp} \\
  9929. &\MID& \LEN{\Exp}
  9930. \end{array}
  9931. }
  9932. \begin{figure}[tbp]
  9933. \centering
  9934. \fbox{
  9935. \begin{minipage}{0.96\textwidth}
  9936. {\if\edition\racketEd
  9937. \[
  9938. \begin{array}{l}
  9939. \gray{\LintGrammarRacket{}} \\ \hline
  9940. \gray{\LvarGrammarRacket{}} \\ \hline
  9941. \gray{\LifGrammarRacket{}} \\ \hline
  9942. \gray{\LwhileGrammarRacket} \\ \hline
  9943. \LtupGrammarRacket \\
  9944. \begin{array}{lcl}
  9945. \LangVecM{} &::=& \Exp
  9946. \end{array}
  9947. \end{array}
  9948. \]
  9949. \fi}
  9950. {\if\edition\pythonEd
  9951. \[
  9952. \begin{array}{l}
  9953. \gray{\LintGrammarPython{}} \\ \hline
  9954. \gray{\LvarGrammarPython{}} \\ \hline
  9955. \gray{\LifGrammarPython{}} \\ \hline
  9956. \gray{\LwhileGrammarPython} \\ \hline
  9957. \LtupGrammarPython \\
  9958. \begin{array}{rcl}
  9959. \LangVecM{} &::=& \Stmt^{*}
  9960. \end{array}
  9961. \end{array}
  9962. \]
  9963. \fi}
  9964. \end{minipage}
  9965. }
  9966. \caption{The concrete syntax of \LangVec{}, extending \LangLoop{}
  9967. (Figure~\ref{fig:Lwhile-concrete-syntax}).}
  9968. \label{fig:Lvec-concrete-syntax}
  9969. \end{figure}
  9970. \begin{figure}[tp]
  9971. \centering
  9972. \fbox{
  9973. \begin{minipage}{0.96\textwidth}
  9974. {\if\edition\racketEd
  9975. \[
  9976. \begin{array}{l}
  9977. \gray{\LintOpAST} \\ \hline
  9978. \gray{\LvarASTRacket{}} \\ \hline
  9979. \gray{\LifASTRacket{}} \\ \hline
  9980. \gray{\LwhileASTRacket{}} \\ \hline
  9981. \LtupASTRacket{} \\
  9982. \begin{array}{lcl}
  9983. \LangVecM{} &::=& \PROGRAM{\key{'()}}{\Exp}
  9984. \end{array}
  9985. \end{array}
  9986. \]
  9987. \fi}
  9988. {\if\edition\pythonEd
  9989. \[
  9990. \begin{array}{l}
  9991. \gray{\LintASTPython} \\ \hline
  9992. \gray{\LvarASTPython} \\ \hline
  9993. \gray{\LifASTPython} \\ \hline
  9994. \gray{\LwhileASTPython} \\ \hline
  9995. \LtupASTPython \\
  9996. \begin{array}{lcl}
  9997. \LangLoopM{} &::=& \PROGRAM{\code{'()}}{\Stmt^{*}}
  9998. \end{array}
  9999. \end{array}
  10000. \]
  10001. \fi}
  10002. \end{minipage}
  10003. }
  10004. \caption{The abstract syntax of \LangVec{}.}
  10005. \label{fig:Lvec-syntax}
  10006. \end{figure}
  10007. Tuples raises several interesting new issues. First, variable binding
  10008. performs a shallow-copy when dealing with tuples, which means that
  10009. different variables can refer to the same tuple, that is, two
  10010. variables can be \emph{aliases}\index{subject}{alias} for the same
  10011. entity. Consider the following example in which both \code{t1} and
  10012. \code{t2} refer to the same tuple value but \code{t3} refers to a
  10013. different tuple value but with equal elements. The result of the
  10014. program is \code{42}.
  10015. \begin{center}
  10016. \begin{minipage}{0.96\textwidth}
  10017. {\if\edition\racketEd
  10018. \begin{lstlisting}
  10019. (let ([t1 (vector 3 7)])
  10020. (let ([t2 t1])
  10021. (let ([t3 (vector 3 7)])
  10022. (if (and (eq? t1 t2) (not (eq? t1 t3)))
  10023. 42
  10024. 0))))
  10025. \end{lstlisting}
  10026. \fi}
  10027. {\if\edition\pythonEd
  10028. \begin{lstlisting}
  10029. t1 = 3, 7
  10030. t2 = t1
  10031. t3 = 3, 7
  10032. print( 42 if (t1 is t2) and not (t1 is t3) else 0)
  10033. \end{lstlisting}
  10034. \fi}
  10035. \end{minipage}
  10036. \end{center}
  10037. {\if\edition\racketEd
  10038. Whether two variables are aliased or not affects what happens
  10039. when the underlying tuple is mutated\index{subject}{mutation}.
  10040. Consider the following example in which \code{t1} and \code{t2}
  10041. again refer to the same tuple value.
  10042. \begin{center}
  10043. \begin{minipage}{0.96\textwidth}
  10044. \begin{lstlisting}
  10045. (let ([t1 (vector 3 7)])
  10046. (let ([t2 t1])
  10047. (let ([_ (vector-set! t2 0 42)])
  10048. (vector-ref t1 0))))
  10049. \end{lstlisting}
  10050. \end{minipage}
  10051. \end{center}
  10052. The mutation through \code{t2} is visible when referencing the tuple
  10053. from \code{t1}, so the result of this program is \code{42}.
  10054. \fi}
  10055. The next issue concerns the lifetime of tuples. When does their
  10056. lifetime end? Notice that \LangVec{} does not include an operation
  10057. for deleting tuples. Furthermore, the lifetime of a tuple is not tied
  10058. to any notion of static scoping.
  10059. %
  10060. {\if\edition\racketEd
  10061. %
  10062. For example, the following program returns \code{42} even though the
  10063. variable \code{w} goes out of scope prior to the \code{vector-ref}
  10064. that reads from the vector it was bound to.
  10065. \begin{center}
  10066. \begin{minipage}{0.96\textwidth}
  10067. \begin{lstlisting}
  10068. (let ([v (vector (vector 44))])
  10069. (let ([x (let ([w (vector 42)])
  10070. (let ([_ (vector-set! v 0 w)])
  10071. 0))])
  10072. (+ x (vector-ref (vector-ref v 0) 0))))
  10073. \end{lstlisting}
  10074. \end{minipage}
  10075. \end{center}
  10076. \fi}
  10077. %
  10078. {\if\edition\pythonEd
  10079. %
  10080. For example, the following program returns \code{42} even though the
  10081. variable \code{x} goes out of scope when the function returns, prior
  10082. to reading the tuple element at index zero. (We study the compilation
  10083. of functions in Chapter~\ref{ch:Rfun}.)
  10084. %
  10085. \begin{center}
  10086. \begin{minipage}{0.96\textwidth}
  10087. \begin{lstlisting}
  10088. def f():
  10089. x = 42, 43
  10090. return x
  10091. t = f()
  10092. print( t[0] )
  10093. \end{lstlisting}
  10094. \end{minipage}
  10095. \end{center}
  10096. \fi}
  10097. %
  10098. From the perspective of programmer-observable behavior, tuples live
  10099. forever. Of course, if they really lived forever then many programs
  10100. would run out of memory. The language's runtime system must therefore
  10101. perform automatic garbage collection.
  10102. Figure~\ref{fig:interp-Lvec} shows the definitional interpreter for the
  10103. \LangVec{} language.
  10104. %
  10105. \racket{We define the \code{vector}, \code{vector-ref},
  10106. \code{vector-set!}, and \code{vector-length} operations for
  10107. \LangVec{} in terms of the corresponding operations in Racket. One
  10108. subtle point is that the \code{vector-set!} operation returns the
  10109. \code{\#<void>} value.}
  10110. %
  10111. \python{We define tuple creation, element access, and the \code{len}
  10112. operator for \LangVec{} in terms of the corresponding operations in
  10113. Python.}
  10114. \begin{figure}[tbp]
  10115. {\if\edition\racketEd
  10116. \begin{lstlisting}
  10117. (define interp-Lvec_class
  10118. (class interp-Lif_class
  10119. (super-new)
  10120. (define/override (interp-op op)
  10121. (match op
  10122. ['eq? (lambda (v1 v2)
  10123. (cond [(or (and (fixnum? v1) (fixnum? v2))
  10124. (and (boolean? v1) (boolean? v2))
  10125. (and (vector? v1) (vector? v2))
  10126. (and (void? v1) (void? v2)))
  10127. (eq? v1 v2)]))]
  10128. ['vector vector]
  10129. ['vector-length vector-length]
  10130. ['vector-ref vector-ref]
  10131. ['vector-set! vector-set!]
  10132. [else (super interp-op op)]
  10133. ))
  10134. (define/override ((interp-exp env) e)
  10135. (define recur (interp-exp env))
  10136. (match e
  10137. [(HasType e t) (recur e)]
  10138. [(Void) (void)]
  10139. [else ((super interp-exp env) e)]
  10140. ))
  10141. ))
  10142. (define (interp-Lvec p)
  10143. (send (new interp-Lvec_class) interp-program p))
  10144. \end{lstlisting}
  10145. \fi}
  10146. %
  10147. {\if\edition\pythonEd
  10148. \begin{lstlisting}
  10149. class InterpLtup(InterpLwhile):
  10150. def interp_cmp(self, cmp):
  10151. match cmp:
  10152. case Is():
  10153. return lambda x, y: x is y
  10154. case _:
  10155. return super().interp_cmp(cmp)
  10156. def interp_exp(self, e, env):
  10157. match e:
  10158. case Tuple(es, Load()):
  10159. return tuple([self.interp_exp(e, env) for e in es])
  10160. case Subscript(tup, index, Load()):
  10161. t = self.interp_exp(tup, env)
  10162. n = self.interp_exp(index, env)
  10163. return t[n]
  10164. case _:
  10165. return super().interp_exp(e, env)
  10166. \end{lstlisting}
  10167. \fi}
  10168. \caption{Interpreter for the \LangVec{} language.}
  10169. \label{fig:interp-Lvec}
  10170. \end{figure}
  10171. Figure~\ref{fig:type-check-Lvec} shows the type checker for
  10172. \LangVec{}, which deserves some explanation. When allocating a tuple,
  10173. we need to know which elements of the tuple are pointers (i.e. are
  10174. also tuple) for garbage collection purposes. We can obtain this
  10175. information during type checking. The type checker in
  10176. Figure~\ref{fig:type-check-Lvec} not only computes the type of an
  10177. expression, it also
  10178. %
  10179. \racket{wraps every tuple creation with the form $(\key{HasType}~e~T)$,
  10180. where $T$ is the vector's type.
  10181. To create the s-expression for the \code{Vector} type in
  10182. Figure~\ref{fig:type-check-Lvec}, we use the
  10183. \href{https://docs.racket-lang.org/reference/quasiquote.html}{unquote-splicing
  10184. operator} \code{,@} to insert the list \code{t*} without its usual
  10185. start and end parentheses. \index{subject}{unquote-slicing}}
  10186. %
  10187. \python{records the type of each tuple expression in a new field
  10188. named \code{has\_type}.}
  10189. \begin{figure}[tp]
  10190. {\if\edition\racketEd
  10191. \begin{lstlisting}[basicstyle=\ttfamily\scriptsize]
  10192. (define type-check-Lvec_class
  10193. (class type-check-Lif_class
  10194. (super-new)
  10195. (inherit check-type-equal?)
  10196. (define/override (type-check-exp env)
  10197. (lambda (e)
  10198. (define recur (type-check-exp env))
  10199. (match e
  10200. [(Void) (values (Void) 'Void)]
  10201. [(Prim 'vector es)
  10202. (define-values (e* t*) (for/lists (e* t*) ([e es]) (recur e)))
  10203. (define t `(Vector ,@t*))
  10204. (values (HasType (Prim 'vector e*) t) t)]
  10205. [(Prim 'vector-ref (list e1 (Int i)))
  10206. (define-values (e1^ t) (recur e1))
  10207. (match t
  10208. [`(Vector ,ts ...)
  10209. (unless (and (0 . <= . i) (i . < . (length ts)))
  10210. (error 'type-check "index ~a out of bounds\nin ~v" i e))
  10211. (values (Prim 'vector-ref (list e1^ (Int i))) (list-ref ts i))]
  10212. [else (error 'type-check "expect Vector, not ~a\nin ~v" t e)])]
  10213. [(Prim 'vector-set! (list e1 (Int i) arg) )
  10214. (define-values (e-vec t-vec) (recur e1))
  10215. (define-values (e-arg^ t-arg) (recur arg))
  10216. (match t-vec
  10217. [`(Vector ,ts ...)
  10218. (unless (and (0 . <= . i) (i . < . (length ts)))
  10219. (error 'type-check "index ~a out of bounds\nin ~v" i e))
  10220. (check-type-equal? (list-ref ts i) t-arg e)
  10221. (values (Prim 'vector-set! (list e-vec (Int i) e-arg^)) 'Void)]
  10222. [else (error 'type-check "expect Vector, not ~a\nin ~v" t-vec e)])]
  10223. [(Prim 'vector-length (list e))
  10224. (define-values (e^ t) (recur e))
  10225. (match t
  10226. [`(Vector ,ts ...)
  10227. (values (Prim 'vector-length (list e^)) 'Integer)]
  10228. [else (error 'type-check "expect Vector, not ~a\nin ~v" t e)])]
  10229. [(Prim 'eq? (list arg1 arg2))
  10230. (define-values (e1 t1) (recur arg1))
  10231. (define-values (e2 t2) (recur arg2))
  10232. (match* (t1 t2)
  10233. [(`(Vector ,ts1 ...) `(Vector ,ts2 ...)) (void)]
  10234. [(other wise) (check-type-equal? t1 t2 e)])
  10235. (values (Prim 'eq? (list e1 e2)) 'Boolean)]
  10236. [(HasType (Prim 'vector es) t)
  10237. ((type-check-exp env) (Prim 'vector es))]
  10238. [(HasType e1 t)
  10239. (define-values (e1^ t^) (recur e1))
  10240. (check-type-equal? t t^ e)
  10241. (values (HasType e1^ t) t)]
  10242. [else ((super type-check-exp env) e)]
  10243. )))
  10244. ))
  10245. (define (type-check-Lvec p)
  10246. (send (new type-check-Lvec_class) type-check-program p))
  10247. \end{lstlisting}
  10248. \fi}
  10249. {\if\edition\pythonEd
  10250. \begin{lstlisting}
  10251. class TypeCheckLtup(TypeCheckLwhile):
  10252. def type_check_exp(self, e, env):
  10253. match e:
  10254. case Compare(left, [cmp], [right]) if isinstance(cmp, Is):
  10255. l = self.type_check_exp(left, env)
  10256. r = self.type_check_exp(right, env)
  10257. check_type_equal(l, r, e)
  10258. return bool
  10259. case Tuple(es, Load()):
  10260. ts = [self.type_check_exp(e, env) for e in es]
  10261. e.has_type = tuple(ts)
  10262. return e.has_type
  10263. case Subscript(tup, Constant(index), Load()):
  10264. tup_ty = self.type_check_exp(tup, env)
  10265. index_ty = self.type_check_exp(Constant(index), env)
  10266. check_type_equal(index_ty, int, index)
  10267. match tup_ty:
  10268. case tuple(ts):
  10269. return ts[index]
  10270. case _:
  10271. raise Exception('error: expected a tuple, not ' + repr(tup_ty))
  10272. case _:
  10273. return super().type_check_exp(e, env)
  10274. \end{lstlisting}
  10275. \fi}
  10276. \caption{Type checker for the \LangVec{} language.}
  10277. \label{fig:type-check-Lvec}
  10278. \end{figure}
  10279. \section{Garbage Collection}
  10280. \label{sec:GC}
  10281. Here we study a relatively simple algorithm for garbage collection
  10282. that is the basis of state-of-the-art garbage
  10283. collectors~\citep{Lieberman:1983aa,Ungar:1984aa,Jones:1996aa,Detlefs:2004aa,Dybvig:2006aa,Tene:2011kx}. In
  10284. particular, we describe a two-space copying
  10285. collector~\citep{Wilson:1992fk} that uses Cheney's algorithm to
  10286. perform the
  10287. copy~\citep{Cheney:1970aa}.
  10288. \index{subject}{copying collector}
  10289. \index{subject}{two-space copying collector}
  10290. Figure~\ref{fig:copying-collector} gives a
  10291. coarse-grained depiction of what happens in a two-space collector,
  10292. showing two time steps, prior to garbage collection (on the top) and
  10293. after garbage collection (on the bottom). In a two-space collector,
  10294. the heap is divided into two parts named the FromSpace and the
  10295. ToSpace. Initially, all allocations go to the FromSpace until there is
  10296. not enough room for the next allocation request. At that point, the
  10297. garbage collector goes to work to make more room.
  10298. \index{subject}{ToSpace}
  10299. \index{subject}{FromSpace}
  10300. The garbage collector must be careful not to reclaim tuples that will
  10301. be used by the program in the future. Of course, it is impossible in
  10302. general to predict what a program will do, but we can over approximate
  10303. the will-be-used tuples by preserving all tuples that could be
  10304. accessed by \emph{any} program given the current computer state. A
  10305. program could access any tuple whose address is in a register or on
  10306. the procedure call stack. These addresses are called the \emph{root
  10307. set}\index{subject}{root set}. In addition, a program could access any tuple that is
  10308. transitively reachable from the root set. Thus, it is safe for the
  10309. garbage collector to reclaim the tuples that are not reachable in this
  10310. way.
  10311. So the goal of the garbage collector is twofold:
  10312. \begin{enumerate}
  10313. \item preserve all tuple that are reachable from the root set via a
  10314. path of pointers, that is, the \emph{live} tuples, and
  10315. \item reclaim the memory of everything else, that is, the
  10316. \emph{garbage}.
  10317. \end{enumerate}
  10318. A copying collector accomplishes this by copying all of the live
  10319. objects from the FromSpace into the ToSpace and then performs a sleight
  10320. of hand, treating the ToSpace as the new FromSpace and the old
  10321. FromSpace as the new ToSpace. In the example of
  10322. Figure~\ref{fig:copying-collector}, there are three pointers in the
  10323. root set, one in a register and two on the stack. All of the live
  10324. objects have been copied to the ToSpace (the right-hand side of
  10325. Figure~\ref{fig:copying-collector}) in a way that preserves the
  10326. pointer relationships. For example, the pointer in the register still
  10327. points to a 2-tuple whose first element is a 3-tuple and whose second
  10328. element is a 2-tuple. There are four tuples that are not reachable
  10329. from the root set and therefore do not get copied into the ToSpace.
  10330. The exact situation in Figure~\ref{fig:copying-collector} cannot be
  10331. created by a well-typed program in \LangVec{} because it contains a
  10332. cycle. However, creating cycles will be possible once we get to \LangAny{}.
  10333. We design the garbage collector to deal with cycles to begin with so
  10334. we will not need to revisit this issue.
  10335. \begin{figure}[tbp]
  10336. \centering
  10337. \includegraphics[width=\textwidth]{figs/copy-collect-1} \\[5ex]
  10338. \includegraphics[width=\textwidth]{figs/copy-collect-2}
  10339. \caption{A copying collector in action.}
  10340. \label{fig:copying-collector}
  10341. \end{figure}
  10342. There are many alternatives to copying collectors (and their bigger
  10343. siblings, the generational collectors) when its comes to garbage
  10344. collection, such as mark-and-sweep~\citep{McCarthy:1960dz} and
  10345. reference counting~\citep{Collins:1960aa}. The strengths of copying
  10346. collectors are that allocation is fast (just a comparison and pointer
  10347. increment), there is no fragmentation, cyclic garbage is collected,
  10348. and the time complexity of collection only depends on the amount of
  10349. live data, and not on the amount of garbage~\citep{Wilson:1992fk}. The
  10350. main disadvantages of a two-space copying collector is that it uses a
  10351. lot of space and takes a long time to perform the copy, though these
  10352. problems are ameliorated in generational collectors. Racket and
  10353. Scheme programs tend to allocate many small objects and generate a lot
  10354. of garbage, so copying and generational collectors are a good fit.
  10355. Garbage collection is an active research topic, especially concurrent
  10356. garbage collection~\citep{Tene:2011kx}. Researchers are continuously
  10357. developing new techniques and revisiting old
  10358. trade-offs~\citep{Blackburn:2004aa,Jones:2011aa,Shahriyar:2013aa,Cutler:2015aa,Shidal:2015aa,Osterlund:2016aa,Jacek:2019aa,Gamari:2020aa}. Researchers
  10359. meet every year at the International Symposium on Memory Management to
  10360. present these findings.
  10361. \subsection{Graph Copying via Cheney's Algorithm}
  10362. \label{sec:cheney}
  10363. \index{subject}{Cheney's algorithm}
  10364. Let us take a closer look at the copying of the live objects. The
  10365. allocated objects and pointers can be viewed as a graph and we need to
  10366. copy the part of the graph that is reachable from the root set. To
  10367. make sure we copy all of the reachable vertices in the graph, we need
  10368. an exhaustive graph traversal algorithm, such as depth-first search or
  10369. breadth-first search~\citep{Moore:1959aa,Cormen:2001uq}. Recall that
  10370. such algorithms take into account the possibility of cycles by marking
  10371. which vertices have already been visited, so as to ensure termination
  10372. of the algorithm. These search algorithms also use a data structure
  10373. such as a stack or queue as a to-do list to keep track of the vertices
  10374. that need to be visited. We use breadth-first search and a trick
  10375. due to \citet{Cheney:1970aa} for simultaneously representing the queue
  10376. and copying tuples into the ToSpace.
  10377. Figure~\ref{fig:cheney} shows several snapshots of the ToSpace as the
  10378. copy progresses. The queue is represented by a chunk of contiguous
  10379. memory at the beginning of the ToSpace, using two pointers to track
  10380. the front and the back of the queue. The algorithm starts by copying
  10381. all tuples that are immediately reachable from the root set into the
  10382. ToSpace to form the initial queue. When we copy a tuple, we mark the
  10383. old tuple to indicate that it has been visited. We discuss how this
  10384. marking is accomplish in Section~\ref{sec:data-rep-gc}. Note that any
  10385. pointers inside the copied tuples in the queue still point back to the
  10386. FromSpace. Once the initial queue has been created, the algorithm
  10387. enters a loop in which it repeatedly processes the tuple at the front
  10388. of the queue and pops it off the queue. To process a tuple, the
  10389. algorithm copies all the tuple that are directly reachable from it to
  10390. the ToSpace, placing them at the back of the queue. The algorithm then
  10391. updates the pointers in the popped tuple so they point to the newly
  10392. copied tuples.
  10393. \begin{figure}[tbp]
  10394. \centering \includegraphics[width=0.9\textwidth]{figs/cheney}
  10395. \caption{Depiction of the Cheney algorithm copying the live tuples.}
  10396. \label{fig:cheney}
  10397. \end{figure}
  10398. Getting back to Figure~\ref{fig:cheney}, in the first step we copy the
  10399. tuple whose second element is $42$ to the back of the queue. The other
  10400. pointer goes to a tuple that has already been copied, so we do not
  10401. need to copy it again, but we do need to update the pointer to the new
  10402. location. This can be accomplished by storing a \emph{forwarding
  10403. pointer} to the new location in the old tuple, back when we initially
  10404. copied the tuple into the ToSpace. This completes one step of the
  10405. algorithm. The algorithm continues in this way until the front of the
  10406. queue is empty, that is, until the front catches up with the back.
  10407. \subsection{Data Representation}
  10408. \label{sec:data-rep-gc}
  10409. The garbage collector places some requirements on the data
  10410. representations used by our compiler. First, the garbage collector
  10411. needs to distinguish between pointers and other kinds of data. There
  10412. are several ways to accomplish this.
  10413. \begin{enumerate}
  10414. \item Attached a tag to each object that identifies what type of
  10415. object it is~\citep{McCarthy:1960dz}.
  10416. \item Store different types of objects in different
  10417. regions~\citep{Steele:1977ab}.
  10418. \item Use type information from the program to either generate
  10419. type-specific code for collecting or to generate tables that can
  10420. guide the
  10421. collector~\citep{Appel:1989aa,Goldberg:1991aa,Diwan:1992aa}.
  10422. \end{enumerate}
  10423. Dynamically typed languages, such as \racket{Racket}\python{Python},
  10424. need to tag objects anyways, so option 1 is a natural choice for those
  10425. languages. However, \LangVec{} is a statically typed language, so it
  10426. would be unfortunate to require tags on every object, especially small
  10427. and pervasive objects like integers and Booleans. Option 3 is the
  10428. best-performing choice for statically typed languages, but comes with
  10429. a relatively high implementation complexity. To keep this chapter
  10430. within a 2-week time budget, we recommend a combination of options 1
  10431. and 2, using separate strategies for the stack and the heap.
  10432. Regarding the stack, we recommend using a separate stack for pointers,
  10433. which we call a \emph{root stack}\index{subject}{root stack}
  10434. (a.k.a. ``shadow
  10435. stack'')~\citep{Siebert:2001aa,Henderson:2002aa,Baker:2009aa}. That
  10436. is, when a local variable needs to be spilled and is of type
  10437. \racket{\code{Vector}}\python{\code{TupleType}}, then we put it on the
  10438. root stack instead of the normal procedure call stack. Furthermore, we
  10439. always spill tuple-typed variables if they are live during a call to
  10440. the collector, thereby ensuring that no pointers are in registers
  10441. during a collection. Figure~\ref{fig:shadow-stack} reproduces the
  10442. example from Figure~\ref{fig:copying-collector} and contrasts it with
  10443. the data layout using a root stack. The root stack contains the two
  10444. pointers from the regular stack and also the pointer in the second
  10445. register.
  10446. \begin{figure}[tbp]
  10447. \centering \includegraphics[width=0.60\textwidth]{figs/root-stack}
  10448. \caption{Maintaining a root stack to facilitate garbage collection.}
  10449. \label{fig:shadow-stack}
  10450. \end{figure}
  10451. The problem of distinguishing between pointers and other kinds of data
  10452. also arises inside of each tuple on the heap. We solve this problem by
  10453. attaching a tag, an extra 64-bits, to each
  10454. tuple. Figure~\ref{fig:tuple-rep} zooms in on the tags for two of the
  10455. tuples in the example from Figure~\ref{fig:copying-collector}. Note
  10456. that we have drawn the bits in a big-endian way, from right-to-left,
  10457. with bit location 0 (the least significant bit) on the far right,
  10458. which corresponds to the direction of the x86 shifting instructions
  10459. \key{salq} (shift left) and \key{sarq} (shift right). Part of each tag
  10460. is dedicated to specifying which elements of the tuple are pointers,
  10461. the part labeled ``pointer mask''. Within the pointer mask, a 1 bit
  10462. indicates there is a pointer and a 0 bit indicates some other kind of
  10463. data. The pointer mask starts at bit location 7. We have limited
  10464. tuples to a maximum size of 50 elements, so we just need 50 bits for
  10465. the pointer mask. The tag also contains two other pieces of
  10466. information. The length of the tuple (number of elements) is stored in
  10467. bits location 1 through 6. Finally, the bit at location 0 indicates
  10468. whether the tuple has yet to be copied to the ToSpace. If the bit has
  10469. value 1, then this tuple has not yet been copied. If the bit has
  10470. value 0 then the entire tag is a forwarding pointer. (The lower 3 bits
  10471. of a pointer are always zero anyways because our tuples are 8-byte
  10472. aligned.)
  10473. \begin{figure}[tbp]
  10474. \centering \includegraphics[width=0.8\textwidth]{figs/tuple-rep}
  10475. \caption{Representation of tuples in the heap.}
  10476. \label{fig:tuple-rep}
  10477. \end{figure}
  10478. \subsection{Implementation of the Garbage Collector}
  10479. \label{sec:organize-gz}
  10480. \index{subject}{prelude}
  10481. An implementation of the copying collector is provided in the
  10482. \code{runtime.c} file. Figure~\ref{fig:gc-header} defines the
  10483. interface to the garbage collector that is used by the compiler. The
  10484. \code{initialize} function creates the FromSpace, ToSpace, and root
  10485. stack and should be called in the prelude of the \code{main}
  10486. function. The arguments of \code{initialize} are the root stack size
  10487. and the heap size. Both need to be multiples of $64$ and $16384$ is a
  10488. good choice for both. The \code{initialize} function puts the address
  10489. of the beginning of the FromSpace into the global variable
  10490. \code{free\_ptr}. The global variable \code{fromspace\_end} points to
  10491. the address that is 1-past the last element of the FromSpace. (We use
  10492. half-open intervals to represent chunks of
  10493. memory~\citep{Dijkstra:1982aa}.) The \code{rootstack\_begin} variable
  10494. points to the first element of the root stack.
  10495. As long as there is room left in the FromSpace, your generated code
  10496. can allocate tuples simply by moving the \code{free\_ptr} forward.
  10497. %
  10498. The amount of room left in FromSpace is the difference between the
  10499. \code{fromspace\_end} and the \code{free\_ptr}. The \code{collect}
  10500. function should be called when there is not enough room left in the
  10501. FromSpace for the next allocation. The \code{collect} function takes
  10502. a pointer to the current top of the root stack (one past the last item
  10503. that was pushed) and the number of bytes that need to be
  10504. allocated. The \code{collect} function performs the copying collection
  10505. and leaves the heap in a state such that the next allocation will
  10506. succeed.
  10507. \begin{figure}[tbp]
  10508. \begin{lstlisting}
  10509. void initialize(uint64_t rootstack_size, uint64_t heap_size);
  10510. void collect(int64_t** rootstack_ptr, uint64_t bytes_requested);
  10511. int64_t* free_ptr;
  10512. int64_t* fromspace_begin;
  10513. int64_t* fromspace_end;
  10514. int64_t** rootstack_begin;
  10515. \end{lstlisting}
  10516. \caption{The compiler's interface to the garbage collector.}
  10517. \label{fig:gc-header}
  10518. \end{figure}
  10519. %% \begin{exercise}
  10520. %% In the file \code{runtime.c} you will find the implementation of
  10521. %% \code{initialize} and a partial implementation of \code{collect}.
  10522. %% The \code{collect} function calls another function, \code{cheney},
  10523. %% to perform the actual copy, and that function is left to the reader
  10524. %% to implement. The following is the prototype for \code{cheney}.
  10525. %% \begin{lstlisting}
  10526. %% static void cheney(int64_t** rootstack_ptr);
  10527. %% \end{lstlisting}
  10528. %% The parameter \code{rootstack\_ptr} is a pointer to the top of the
  10529. %% rootstack (which is an array of pointers). The \code{cheney} function
  10530. %% also communicates with \code{collect} through the global
  10531. %% variables \code{fromspace\_begin} and \code{fromspace\_end}
  10532. %% mentioned in Figure~\ref{fig:gc-header} as well as the pointers for
  10533. %% the ToSpace:
  10534. %% \begin{lstlisting}
  10535. %% static int64_t* tospace_begin;
  10536. %% static int64_t* tospace_end;
  10537. %% \end{lstlisting}
  10538. %% The job of the \code{cheney} function is to copy all the live
  10539. %% objects (reachable from the root stack) into the ToSpace, update
  10540. %% \code{free\_ptr} to point to the next unused spot in the ToSpace,
  10541. %% update the root stack so that it points to the objects in the
  10542. %% ToSpace, and finally to swap the global pointers for the FromSpace
  10543. %% and ToSpace.
  10544. %% \end{exercise}
  10545. %% \section{Compiler Passes}
  10546. %% \label{sec:code-generation-gc}
  10547. The introduction of garbage collection has a non-trivial impact on our
  10548. compiler passes. We introduce a new compiler pass named
  10549. \code{expose\_allocation}. We make significant changes to
  10550. \code{select\_instructions}, \code{build\_interference},
  10551. \code{allocate\_registers}, and \code{prelude\_and\_conclusion} and
  10552. make minor changes in several more passes. The following program will
  10553. serve as our running example. It creates two tuples, one nested
  10554. inside the other. Both tuples have length one. The program accesses
  10555. the element in the inner tuple tuple.
  10556. % tests/vectors_test_17.rkt
  10557. {\if\edition\racketEd
  10558. \begin{lstlisting}
  10559. (vector-ref (vector-ref (vector (vector 42)) 0) 0)
  10560. \end{lstlisting}
  10561. \fi}
  10562. {\if\edition\pythonEd
  10563. \begin{lstlisting}
  10564. print( ((42,),)[0][0] )
  10565. \end{lstlisting}
  10566. \fi}
  10567. {\if\edition\racketEd
  10568. \section{Shrink}
  10569. \label{sec:shrink-Lvec}
  10570. Recall that the \code{shrink} pass translates the primitives operators
  10571. into a smaller set of primitives.
  10572. %
  10573. This pass comes after type checking and the type checker adds a
  10574. \code{HasType} AST node around each \code{vector} AST node, so you'll
  10575. need to add a case for \code{HasType} to the \code{shrink} pass.
  10576. \fi}
  10577. \section{Expose Allocation}
  10578. \label{sec:expose-allocation}
  10579. The pass \code{expose\_allocation} lowers tuple creation into a
  10580. conditional call to the collector followed by allocating the
  10581. appropriate amount of memory and initializing it. We choose to place
  10582. the \code{expose\_allocation} pass before
  10583. \code{remove\_complex\_operands} because the code generated by
  10584. \code{expose\_allocation} contains complex operands.
  10585. The output of \code{expose\_allocation} is a language \LangAlloc{}
  10586. that extends \LangVec{} with new forms that we use in the translation
  10587. of tuple creation.
  10588. %
  10589. {\if\edition\racketEd
  10590. \[
  10591. \begin{array}{lcl}
  10592. \Exp &::=& \cdots
  10593. \MID (\key{collect} \,\itm{int})
  10594. \MID (\key{allocate} \,\itm{int}\,\itm{type})
  10595. \MID (\key{global-value} \,\itm{name})
  10596. \end{array}
  10597. \]
  10598. \fi}
  10599. {\if\edition\pythonEd
  10600. \[
  10601. \begin{array}{lcl}
  10602. \Exp &::=& \cdots\\
  10603. &\MID& \key{collect}(\itm{int})
  10604. \MID \key{allocate}(\itm{int},\itm{type})
  10605. \MID \key{global\_value}(\itm{name}) \\
  10606. &\MID& \key{begin:} ~ \Stmt^{*} ~ \Exp
  10607. \end{array}
  10608. \]
  10609. \fi}
  10610. The \CCOLLECT{$n$} form runs the garbage collector, requesting that it
  10611. make sure that there are $n$ bytes ready to be allocated. During
  10612. instruction selection, the \CCOLLECT{$n$} form will become a call to
  10613. the \code{collect} function in \code{runtime.c}.
  10614. %
  10615. The \CALLOCATE{$n$}{$T$} form obtains memory for $n$ elements (and
  10616. space at the front for the 64 bit tag), but the elements are not
  10617. initialized. \index{subject}{allocate} The $T$ parameter is the type
  10618. of the tuple:
  10619. %
  10620. \VECTY{\racket{$\Type_1 \ldots \Type_n$}\python{$\Type_1, \ldots, \Type_n$}}
  10621. %
  10622. where $\Type_i$ is the type of the $i$th element in the tuple. The
  10623. \CGLOBAL{\itm{name}} form reads the value of a global variable, such
  10624. as \code{free\_ptr}.
  10625. %
  10626. \python{The \code{begin} form is an expression that executes a
  10627. sequence of statements and then produces the value of the expression
  10628. at the end.}
  10629. The following shows the transformation of tuple creation into 1) a
  10630. sequence of temporary variables bindings for the initializing
  10631. expressions, 2) a conditional call to \code{collect}, 3) a call to
  10632. \code{allocate}, and 4) the initialization of the tuple. The
  10633. \itm{len} placeholder refers to the length of the tuple and
  10634. \itm{bytes} is how many total bytes need to be allocated for the
  10635. tuple, which is 8 for the tag plus \itm{len} times 8.
  10636. %
  10637. \python{The \itm{type} needed for the second argument of the
  10638. \code{allocate} form can be obtained from the \code{has\_type} field
  10639. of the tuple AST node, which is stored there by running the type
  10640. checker for \LangVec{} immediately before this pass.}
  10641. %
  10642. \begin{center}
  10643. \begin{minipage}{\textwidth}
  10644. {\if\edition\racketEd
  10645. \begin{lstlisting}
  10646. (has-type (vector |$e_0 \ldots e_{n-1}$|) |\itm{type}|)
  10647. |$\Longrightarrow$|
  10648. (let ([|$x_0$| |$e_0$|]) ... (let ([|$x_{n-1}$| |$e_{n-1}$|])
  10649. (let ([_ (if (< (+ (global-value free_ptr) |\itm{bytes}|)
  10650. (global-value fromspace_end))
  10651. (void)
  10652. (collect |\itm{bytes}|))])
  10653. (let ([|$v$| (allocate |\itm{len}| |\itm{type}|)])
  10654. (let ([_ (vector-set! |$v$| |$0$| |$x_0$|)]) ...
  10655. (let ([_ (vector-set! |$v$| |$n-1$| |$x_{n-1}$|)])
  10656. |$v$|) ... )))) ...)
  10657. \end{lstlisting}
  10658. \fi}
  10659. {\if\edition\pythonEd
  10660. \begin{lstlisting}
  10661. (|$e_0$|, |$\ldots$|, |$e_{n-1}$|)
  10662. |$\Longrightarrow$|
  10663. begin:
  10664. |$x_0$| = |$e_0$|
  10665. |$\vdots$|
  10666. |$x_{n-1}$| = |$e_{n-1}$|
  10667. if global_value(free_ptr) + |\itm{bytes}| < global_value(fromspace_end):
  10668. 0
  10669. else:
  10670. collect(|\itm{bytes}|)
  10671. |$v$| = allocate(|\itm{len}|, |\itm{type}|)
  10672. |$v$|[0] = |$x_0$|
  10673. |$\vdots$|
  10674. |$v$|[|$n-1$|] = |$x_{n-1}$|
  10675. |$v$|
  10676. \end{lstlisting}
  10677. \fi}
  10678. \end{minipage}
  10679. \end{center}
  10680. %
  10681. \noindent The sequencing of the initializing expressions
  10682. $e_0,\ldots,e_{n-1}$ prior to the \code{allocate} is important, as
  10683. they may trigger garbage collection and we cannot have an allocated
  10684. but uninitialized tuple on the heap during a collection.
  10685. Figure~\ref{fig:expose-alloc-output} shows the output of the
  10686. \code{expose\_allocation} pass on our running example.
  10687. \begin{figure}[tbp]
  10688. % tests/s2_17.rkt
  10689. {\if\edition\racketEd
  10690. \begin{lstlisting}
  10691. (vector-ref
  10692. (vector-ref
  10693. (let ([vecinit7976
  10694. (let ([vecinit7972 42])
  10695. (let ([collectret7974
  10696. (if (< (+ (global-value free_ptr) 16)
  10697. (global-value fromspace_end))
  10698. (void)
  10699. (collect 16)
  10700. )])
  10701. (let ([alloc7971 (allocate 1 (Vector Integer))])
  10702. (let ([initret7973 (vector-set! alloc7971 0 vecinit7972)])
  10703. alloc7971))))])
  10704. (let ([collectret7978
  10705. (if (< (+ (global-value free_ptr) 16)
  10706. (global-value fromspace_end))
  10707. (void)
  10708. (collect 16)
  10709. )])
  10710. (let ([alloc7975 (allocate 1 (Vector (Vector Integer)))])
  10711. (let ([initret7977 (vector-set! alloc7975 0 vecinit7976)])
  10712. alloc7975))))
  10713. 0)
  10714. 0)
  10715. \end{lstlisting}
  10716. \fi}
  10717. {\if\edition\pythonEd
  10718. \begin{lstlisting}
  10719. print( |$T_1$|[0][0] )
  10720. \end{lstlisting}
  10721. where $T_1$ is
  10722. \begin{lstlisting}
  10723. begin:
  10724. tmp.1 = |$T_2$|
  10725. if global_value(free_ptr) + 16 < global_value(fromspace_end):
  10726. 0
  10727. else:
  10728. collect(16)
  10729. tmp.2 = allocate(1, TupleType(TupleType([int])))
  10730. tmp.2[0] = tmp.1
  10731. tmp.2
  10732. \end{lstlisting}
  10733. and $T_2$ is
  10734. \begin{lstlisting}
  10735. begin:
  10736. tmp.3 = 42
  10737. if global_value(free_ptr) + 16 < global_value(fromspace_end):
  10738. 0
  10739. else:
  10740. collect(16)
  10741. tmp.4 = allocate(1, TupleType([int]))
  10742. tmp.4[0] = tmp.3
  10743. tmp.4
  10744. \end{lstlisting}
  10745. \fi}
  10746. \caption{Output of the \code{expose\_allocation} pass.}
  10747. \label{fig:expose-alloc-output}
  10748. \end{figure}
  10749. \section{Remove Complex Operands}
  10750. \label{sec:remove-complex-opera-Lvec}
  10751. {\if\edition\racketEd
  10752. %
  10753. The forms \code{collect}, \code{allocate}, and \code{global\_value}
  10754. should be treated as complex operands.
  10755. %
  10756. \fi}
  10757. %
  10758. {\if\edition\pythonEd
  10759. %
  10760. The expressions \code{allocate}, \code{global\_value}, \code{begin},
  10761. and tuple access should be treated as complex operands. The
  10762. sub-expressions of tuple access must be atomic.
  10763. %
  10764. \fi}
  10765. %% A new case for
  10766. %% \code{HasType} is needed and the case for \code{Prim} needs to be
  10767. %% handled carefully to prevent the \code{Prim} node from being separated
  10768. %% from its enclosing \code{HasType}.
  10769. Figure~\ref{fig:Lvec-anf-syntax}
  10770. shows the grammar for the output language \LangAllocANF{} of this
  10771. pass, which is \LangAlloc{} in monadic normal form.
  10772. \begin{figure}[tp]
  10773. \centering
  10774. \fbox{
  10775. \begin{minipage}{0.96\textwidth}
  10776. \small
  10777. {\if\edition\racketEd
  10778. \[
  10779. \begin{array}{rcl}
  10780. \Atm &::=& \gray{ \INT{\Int} \MID \VAR{\Var} \MID \BOOL{\itm{bool}}
  10781. \MID \VOID{} } \\
  10782. \Exp &::=& \gray{ \Atm \MID \READ{} } \\
  10783. &\MID& \gray{ \NEG{\Atm} \MID \ADD{\Atm}{\Atm} } \\
  10784. &\MID& \gray{ \LET{\Var}{\Exp}{\Exp} } \\
  10785. &\MID& \gray{ \UNIOP{\key{'not}}{\Atm} } \\
  10786. &\MID& \gray{ \BINOP{\itm{cmp}}{\Atm}{\Atm} \MID \IF{\Exp}{\Exp}{\Exp} }\\
  10787. &\MID& \COLLECT{\Int} \RP \MID \ALLOCATE{\Int}{\Type}
  10788. \MID \GLOBALVALUE{\Var}\\
  10789. % &\MID& \LP\key{HasType}~\Exp~\Type\RP \\
  10790. \LangAllocANFM{} &::=& \gray{ \PROGRAM{\code{'()}}{\Exp} }
  10791. \end{array}
  10792. \]
  10793. \fi}
  10794. {\if\edition\pythonEd
  10795. \[
  10796. \begin{array}{lcl}
  10797. \itm{binaryop} &::=& \code{Add()} \MID \code{Sub()} \\
  10798. \itm{boolop} &::=& \code{And()} \MID \code{Or()} \\
  10799. \itm{cmp} &::= & \code{Eq()} \MID \code{NotEq()} \MID \code{Lt()} \MID \code{LtE()} \MID \code{Gt()} \MID \code{GtE()} \MID \code{Is()} \\
  10800. \itm{unaryop} &::=& \code{USub()} \MID \code{Not()} \\
  10801. \itm{bool} &::=& \code{True} \MID \code{False} \\
  10802. \Atm &::=& \INT{\Int} \MID \VAR{\Var} \MID \BOOL{\itm{bool}} \\
  10803. \Exp &::=& \Atm \MID \READ{} \MID \\
  10804. &\MID& \BINOP{\Exp}{\itm{binaryop}}{\Exp}
  10805. \MID \UNIOP{\itm{unaryop}}{\Exp}\\
  10806. &\MID& \CMP{\Exp}{\itm{cmp}}{\Exp}
  10807. \MID \BOOLOP{\itm{boolop}}{\Exp}{\Exp}\\
  10808. &\MID& \IF{\Exp}{\Exp}{\Exp} \\
  10809. &\MID& \GET{\Atm}{\Atm} \\
  10810. &\MID& \LEN{\Exp}\\
  10811. &\MID& \ALLOCATE{\Int}{\Type}
  10812. \MID \GLOBALVALUE{\Var}\RP\\
  10813. &\MID& \BEGIN{\Stmt^{*}}{\Exp} \\
  10814. \Stmt{} &::=& \PRINT{\Exp} \MID \EXPR{\Exp} \\
  10815. &\MID& \ASSIGN{\VAR{\Var}}{\Exp} \\
  10816. &\MID& \ASSIGN{\PUT{\Atm}{\Atm}}{\Exp} \\
  10817. &\MID& \IFSTMT{\Exp}{\Stmt^{+}}{\Stmt^{+}}\\
  10818. &\MID& \WHILESTMT{\Exp}{\Stmt^{+}}
  10819. \MID \COLLECT{\Int} \\
  10820. \LangAllocANFM{} &::=& \PROGRAM{\code{'()}}{\Stmt^{*}}
  10821. \end{array}
  10822. \]
  10823. \fi}
  10824. \end{minipage}
  10825. }
  10826. \caption{\LangAllocANF{} is \LangAlloc{} in monadic normal form.}
  10827. \label{fig:Lvec-anf-syntax}
  10828. \end{figure}
  10829. \section{Explicate Control and the \LangCVec{} language}
  10830. \label{sec:explicate-control-r3}
  10831. \newcommand{\CtupASTPython}{
  10832. \begin{array}{lcl}
  10833. \Exp &::= & \GET{\Atm}{\Atm}\MID \ALLOCATE{\Int}{\Type} \\
  10834. &\MID& \GLOBALVALUE{\Var}\RP \MID \LEN{\Atm} \\
  10835. \Stmt &::=& \COLLECT{\Int} \\
  10836. &\MID& \ASSIGN{\PUT{\Atm}{\Atm}}{\Atm}
  10837. \end{array}
  10838. }
  10839. \begin{figure}[tp]
  10840. \fbox{
  10841. \begin{minipage}{0.96\textwidth}
  10842. \small
  10843. {\if\edition\racketEd
  10844. \[
  10845. \begin{array}{lcl}
  10846. \Atm &::=& \gray{ \INT{\Int} \MID \VAR{\Var} \MID \BOOL{\itm{bool}} }\\
  10847. \itm{cmp} &::= & \gray{ \key{eq?} \MID \key{<} } \\
  10848. \Exp &::= & \gray{ \Atm \MID \READ{} } \\
  10849. &\MID& \gray{ \NEG{\Atm} \MID \ADD{\Atm}{\Atm} }\\
  10850. &\MID& \gray{ \UNIOP{\key{not}}{\Atm} \MID \BINOP{\itm{cmp}}{\Atm}{\Atm} } \\
  10851. &\MID& \LP\key{Allocate} \,\itm{int}\,\itm{type}\RP \\
  10852. &\MID& \BINOP{\key{'vector-ref}}{\Atm}{\INT{\Int}} \\
  10853. &\MID& \LP\key{Prim}~\key{'vector-set!}\,\LP\Atm\,\INT{\Int}\,\Atm\RP\RP\\
  10854. &\MID& \LP\key{GlobalValue} \,\Var\RP \MID \LP\key{Void}\RP\\
  10855. \Stmt &::=& \gray{ \ASSIGN{\VAR{\Var}}{\Exp} }
  10856. \MID \LP\key{Collect} \,\itm{int}\RP \\
  10857. \Tail &::= & \gray{ \RETURN{\Exp} \MID \SEQ{\Stmt}{\Tail}
  10858. \MID \GOTO{\itm{label}} } \\
  10859. &\MID& \gray{ \IFSTMT{\BINOP{\itm{cmp}}{\Atm}{\Atm}}{\GOTO{\itm{label}}}{\GOTO{\itm{label}}} }\\
  10860. \LangCVecM{} & ::= & \gray{ \CPROGRAM{\itm{info}}{\LP\LP\itm{label}\,\key{.}\,\Tail\RP\ldots\RP} }
  10861. \end{array}
  10862. \]
  10863. \fi}
  10864. {\if\edition\pythonEd
  10865. \[
  10866. \begin{array}{l}
  10867. \gray{\CifASTPython} \\ \hline
  10868. \CtupASTPython \\
  10869. \begin{array}{lcl}
  10870. \LangCVecM{} & ::= & \CPROGRAM{\itm{info}}{\LC\itm{label}\key{:}\,\Stmt^{*}, \ldots \RC}
  10871. \end{array}
  10872. \end{array}
  10873. \]
  10874. \fi}
  10875. \end{minipage}
  10876. }
  10877. \caption{The abstract syntax of \LangCVec{}, extending \LangCIf{}
  10878. (Figure~\ref{fig:c1-syntax}).}
  10879. \label{fig:c2-syntax}
  10880. \end{figure}
  10881. The output of \code{explicate\_control} is a program in the
  10882. intermediate language \LangCVec{}, whose abstract syntax is defined in
  10883. Figure~\ref{fig:c2-syntax}.
  10884. %
  10885. \racket{(The concrete syntax is defined in
  10886. Figure~\ref{fig:c2-concrete-syntax} of the Appendix.)}
  10887. %
  10888. The new expressions of \LangCVec{} include \key{allocate},
  10889. %
  10890. \racket{\key{vector-ref}, and \key{vector-set!},}
  10891. %
  10892. \python{accessing tuple elements,}
  10893. %
  10894. and \key{global\_value}.
  10895. %
  10896. \python{\LangCVec{} also includes the \code{collect} statement and
  10897. assignment to a tuple element.}
  10898. %
  10899. \racket{\LangCVec{} also includes the new \code{collect} statement.}
  10900. %
  10901. The \code{explicate\_control} pass can treat these new forms much like
  10902. the other forms that we've already encoutered.
  10903. \section{Select Instructions and the \LangXGlobal{} Language}
  10904. \label{sec:select-instructions-gc}
  10905. \index{subject}{instruction selection}
  10906. %% void (rep as zero)
  10907. %% allocate
  10908. %% collect (callq collect)
  10909. %% vector-ref
  10910. %% vector-set!
  10911. %% vector-length
  10912. %% global (postpone)
  10913. In this pass we generate x86 code for most of the new operations that
  10914. were needed to compile tuples, including \code{Allocate},
  10915. \code{Collect}, and accessing tuple elements.
  10916. %
  10917. We compile \code{GlobalValue} to \code{Global} because the later has a
  10918. different concrete syntax (see Figures~\ref{fig:x86-2-concrete} and
  10919. \ref{fig:x86-2}). \index{subject}{x86}
  10920. The tuple read and write forms translate into \code{movq}
  10921. instructions. (The plus one in the offset is to get past the tag at
  10922. the beginning of the tuple representation.)
  10923. %
  10924. \begin{center}
  10925. \begin{minipage}{\textwidth}
  10926. {\if\edition\racketEd
  10927. \begin{lstlisting}
  10928. |$\itm{lhs}$| = (vector-ref |$\itm{tup}$| |$n$|);
  10929. |$\Longrightarrow$|
  10930. movq |$\itm{tup}'$|, %r11
  10931. movq |$8(n+1)$|(%r11), |$\itm{lhs'}$|
  10932. |$\itm{lhs}$| = (vector-set! |$\itm{tup}$| |$n$| |$\itm{rhs}$|);
  10933. |$\Longrightarrow$|
  10934. movq |$\itm{tup}'$|, %r11
  10935. movq |$\itm{rhs}'$|, |$8(n+1)$|(%r11)
  10936. movq $0, |$\itm{lhs'}$|
  10937. \end{lstlisting}
  10938. \fi}
  10939. {\if\edition\pythonEd
  10940. \begin{lstlisting}
  10941. |$\itm{lhs}$| = |$\itm{tup}$|[|$n$|]
  10942. |$\Longrightarrow$|
  10943. movq |$\itm{tup}'$|, %r11
  10944. movq |$8(n+1)$|(%r11), |$\itm{lhs'}$|
  10945. |$\itm{tup}$|[|$n$|] = |$\itm{rhs}$|
  10946. |$\Longrightarrow$|
  10947. movq |$\itm{tup}'$|, %r11
  10948. movq |$\itm{rhs}'$|, |$8(n+1)$|(%r11)
  10949. movq $0, |$\itm{lhs'}$|
  10950. \end{lstlisting}
  10951. \fi}
  10952. \end{minipage}
  10953. \end{center}
  10954. The $\itm{lhs}'$, $\itm{tup}'$, and $\itm{rhs}'$ are obtained by
  10955. translating $\itm{tup}$ and $\itm{rhs}$ to x86. The move of $\itm{tup}'$ to
  10956. register \code{r11} ensures that offset expression
  10957. \code{$-8(n+1)$(\%r11)} contains a register operand. This requires
  10958. removing \code{r11} from consideration by the register allocating.
  10959. Why not use \code{rax} instead of \code{r11}? Suppose we instead used
  10960. \code{rax}. Then the generated code for tuple assignment would be
  10961. \begin{lstlisting}
  10962. movq |$\itm{tup}'$|, %rax
  10963. movq |$\itm{rhs}'$|, |$8(n+1)$|(%rax)
  10964. movq $0, |$\itm{lhs}'$|
  10965. \end{lstlisting}
  10966. Next, suppose that $\itm{rhs}'$ ends up as a stack location, so
  10967. \code{patch\_instructions} would insert a move through \code{rax}
  10968. as follows.
  10969. \begin{lstlisting}
  10970. movq |$\itm{tup}'$|, %rax
  10971. movq |$\itm{rhs}'$|, %rax
  10972. movq %rax, |$8(n+1)$|(%rax)
  10973. movq $0, |$\itm{lhs}'$|
  10974. \end{lstlisting}
  10975. But the above sequence of instructions does not work because we're
  10976. trying to use \code{rax} for two different values ($\itm{tup}'$ and
  10977. $\itm{rhs}'$) at the same time!
  10978. The \racket{\code{vector-length}}\python{\code{len}} operation should
  10979. be translated into a sequence of instructions that read the tag of the
  10980. tuple and extract the six bits that represent the tuple length, which
  10981. are the bits starting at index 1 and going up to and including bit 6.
  10982. The x86 instructions \code{andq} (for bitwise-and) and \code{sarq}
  10983. (shift right) can be used to accomplish this.
  10984. We compile the \code{allocate} form to operations on the
  10985. \code{free\_ptr}, as shown below. The address in the \code{free\_ptr}
  10986. is the next free address in the FromSpace, so we copy it into
  10987. \code{r11} and then move it forward by enough space for the tuple
  10988. being allocated, which is $8(\itm{len}+1)$ bytes because each element
  10989. is 8 bytes (64 bits) and we use 8 bytes for the tag. We then
  10990. initialize the \itm{tag} and finally copy the address in \code{r11} to
  10991. the left-hand-side. Refer to Figure~\ref{fig:tuple-rep} to see how the
  10992. tag is organized.
  10993. %
  10994. \racket{We recommend using the Racket operations
  10995. \code{bitwise-ior} and \code{arithmetic-shift} to compute the tag
  10996. during compilation.}
  10997. %
  10998. \python{We recommend using the bitwise-or operator \code{|} and the
  10999. shift-left operator \code{<<} to compute the tag during
  11000. compilation.}
  11001. %
  11002. The type annotation in the \code{allocate} form is used to determine
  11003. the pointer mask region of the tag.
  11004. %
  11005. {\if\edition\racketEd
  11006. \begin{lstlisting}
  11007. |$\itm{lhs}$| = (allocate |$\itm{len}$| (Vector |$\itm{type} \ldots$|));
  11008. |$\Longrightarrow$|
  11009. movq free_ptr(%rip), %r11
  11010. addq |$8(\itm{len}+1)$|, free_ptr(%rip)
  11011. movq $|$\itm{tag}$|, 0(%r11)
  11012. movq %r11, |$\itm{lhs}'$|
  11013. \end{lstlisting}
  11014. \fi}
  11015. {\if\edition\pythonEd
  11016. \begin{lstlisting}
  11017. |$\itm{lhs}$| = allocate(|$\itm{len}$|, TupleType([|$\itm{type}, \ldots$])|);
  11018. |$\Longrightarrow$|
  11019. movq free_ptr(%rip), %r11
  11020. addq |$8(\itm{len}+1)$|, free_ptr(%rip)
  11021. movq $|$\itm{tag}$|, 0(%r11)
  11022. movq %r11, |$\itm{lhs}'$|
  11023. \end{lstlisting}
  11024. \fi}
  11025. The \code{collect} form is compiled to a call to the \code{collect}
  11026. function in the runtime. The arguments to \code{collect} are 1) the
  11027. top of the root stack and 2) the number of bytes that need to be
  11028. allocated. We use another dedicated register, \code{r15}, to
  11029. store the pointer to the top of the root stack. So \code{r15} is not
  11030. available for use by the register allocator.
  11031. {\if\edition\racketEd
  11032. \begin{lstlisting}
  11033. (collect |$\itm{bytes}$|)
  11034. |$\Longrightarrow$|
  11035. movq %r15, %rdi
  11036. movq $|\itm{bytes}|, %rsi
  11037. callq collect
  11038. \end{lstlisting}
  11039. \fi}
  11040. {\if\edition\pythonEd
  11041. \begin{lstlisting}
  11042. collect(|$\itm{bytes}$|)
  11043. |$\Longrightarrow$|
  11044. movq %r15, %rdi
  11045. movq $|\itm{bytes}|, %rsi
  11046. callq collect
  11047. \end{lstlisting}
  11048. \fi}
  11049. \begin{figure}[tp]
  11050. \fbox{
  11051. \begin{minipage}{0.96\textwidth}
  11052. \[
  11053. \begin{array}{lcl}
  11054. \Arg &::=& \gray{ \key{\$}\Int \MID \key{\%}\Reg \MID \Int\key{(}\key{\%}\Reg\key{)} \MID \key{\%}\itm{bytereg} } \MID \Var \key{(\%rip)} \\
  11055. \LangXGlobalM{} &::= & \gray{ \key{.globl main} }\\
  11056. & & \gray{ \key{main:} \; \Instr\ldots }
  11057. \end{array}
  11058. \]
  11059. \end{minipage}
  11060. }
  11061. \caption{The concrete syntax of \LangXGlobal{} (extends \LangXIf{} of Figure~\ref{fig:x86-1-concrete}).}
  11062. \label{fig:x86-2-concrete}
  11063. \end{figure}
  11064. \begin{figure}[tp]
  11065. \fbox{
  11066. \begin{minipage}{0.96\textwidth}
  11067. \small
  11068. \[
  11069. \begin{array}{lcl}
  11070. \Arg &::=& \gray{ \INT{\Int} \MID \REG{\Reg} \MID \DEREF{\Reg}{\Int}
  11071. \MID \BYTEREG{\Reg}} \\
  11072. &\MID& \GLOBAL{\Var} \\
  11073. \LangXGlobalM{} &::= & \gray{ \XPROGRAM{\itm{info}}{\LP\LP\itm{label} \,\key{.}\, \Block \RP\ldots\RP} }
  11074. \end{array}
  11075. \]
  11076. \end{minipage}
  11077. }
  11078. \caption{The abstract syntax of \LangXGlobal{} (extends \LangXIf{} of Figure~\ref{fig:x86-1}).}
  11079. \label{fig:x86-2}
  11080. \end{figure}
  11081. The concrete and abstract syntax of the \LangXGlobal{} language is
  11082. defined in Figures~\ref{fig:x86-2-concrete} and \ref{fig:x86-2}. It
  11083. differs from \LangXIf{} just in the addition of global variables.
  11084. %
  11085. Figure~\ref{fig:select-instr-output-gc} shows the output of the
  11086. \code{select\_instructions} pass on the running example.
  11087. \begin{figure}[tbp]
  11088. \centering
  11089. % tests/s2_17.rkt
  11090. \begin{minipage}[t]{0.5\textwidth}
  11091. \begin{lstlisting}[basicstyle=\ttfamily\scriptsize]
  11092. block35:
  11093. movq free_ptr(%rip), alloc9024
  11094. addq $16, free_ptr(%rip)
  11095. movq alloc9024, %r11
  11096. movq $131, 0(%r11)
  11097. movq alloc9024, %r11
  11098. movq vecinit9025, 8(%r11)
  11099. movq $0, initret9026
  11100. movq alloc9024, %r11
  11101. movq 8(%r11), tmp9034
  11102. movq tmp9034, %r11
  11103. movq 8(%r11), %rax
  11104. jmp conclusion
  11105. block36:
  11106. movq $0, collectret9027
  11107. jmp block35
  11108. block38:
  11109. movq free_ptr(%rip), alloc9020
  11110. addq $16, free_ptr(%rip)
  11111. movq alloc9020, %r11
  11112. movq $3, 0(%r11)
  11113. movq alloc9020, %r11
  11114. movq vecinit9021, 8(%r11)
  11115. movq $0, initret9022
  11116. movq alloc9020, vecinit9025
  11117. movq free_ptr(%rip), tmp9031
  11118. movq tmp9031, tmp9032
  11119. addq $16, tmp9032
  11120. movq fromspace_end(%rip), tmp9033
  11121. cmpq tmp9033, tmp9032
  11122. jl block36
  11123. jmp block37
  11124. block37:
  11125. movq %r15, %rdi
  11126. movq $16, %rsi
  11127. callq 'collect
  11128. jmp block35
  11129. block39:
  11130. movq $0, collectret9023
  11131. jmp block38
  11132. \end{lstlisting}
  11133. \end{minipage}
  11134. \begin{minipage}[t]{0.45\textwidth}
  11135. \begin{lstlisting}[basicstyle=\ttfamily\scriptsize]
  11136. start:
  11137. movq $42, vecinit9021
  11138. movq free_ptr(%rip), tmp9028
  11139. movq tmp9028, tmp9029
  11140. addq $16, tmp9029
  11141. movq fromspace_end(%rip), tmp9030
  11142. cmpq tmp9030, tmp9029
  11143. jl block39
  11144. jmp block40
  11145. block40:
  11146. movq %r15, %rdi
  11147. movq $16, %rsi
  11148. callq 'collect
  11149. jmp block38
  11150. \end{lstlisting}
  11151. \end{minipage}
  11152. \caption{Output of the \code{select\_instructions} pass.}
  11153. \label{fig:select-instr-output-gc}
  11154. \end{figure}
  11155. \clearpage
  11156. \section{Register Allocation}
  11157. \label{sec:reg-alloc-gc}
  11158. \index{subject}{register allocation}
  11159. As discussed earlier in this chapter, the garbage collector needs to
  11160. access all the pointers in the root set, that is, all variables that
  11161. are tuples. It will be the responsibility of the register allocator
  11162. to make sure that:
  11163. \begin{enumerate}
  11164. \item the root stack is used for spilling tuple-typed variables, and
  11165. \item if a tuple-typed variable is live during a call to the
  11166. collector, it must be spilled to ensure it is visible to the
  11167. collector.
  11168. \end{enumerate}
  11169. The later responsibility can be handled during construction of the
  11170. interference graph, by adding interference edges between the call-live
  11171. tuple-typed variables and all the callee-saved registers. (They
  11172. already interfere with the caller-saved registers.)
  11173. %
  11174. \racket{The type information for variables is in the \code{Program}
  11175. form, so we recommend adding another parameter to the
  11176. \code{build\_interference} function to communicate this alist.}
  11177. %
  11178. \python{The type information for variables is generated by the type
  11179. checker for \LangCVec{}, stored a field named \code{var\_types} in
  11180. the \code{CProgram} AST mode. You'll need to propagate that
  11181. information so that it is available in this pass.}
  11182. The spilling of tuple-typed variables to the root stack can be handled
  11183. after graph coloring, when choosing how to assign the colors
  11184. (integers) to registers and stack locations. The
  11185. \racket{\code{Program}}\python{\code{CProgram}} output of this pass
  11186. changes to also record the number of spills to the root stack.
  11187. % build-interference
  11188. %
  11189. % callq
  11190. % extra parameter for var->type assoc. list
  11191. % update 'program' and 'if'
  11192. % allocate-registers
  11193. % allocate spilled vectors to the rootstack
  11194. % don't change color-graph
  11195. % TODO:
  11196. %\section{Patch Instructions}
  11197. %[mention that global variables are memory references]
  11198. \section{Prelude and Conclusion}
  11199. \label{sec:print-x86-gc}
  11200. \label{sec:prelude-conclusion-x86-gc}
  11201. \index{subject}{prelude}\index{subject}{conclusion}
  11202. Figure~\ref{fig:print-x86-output-gc} shows the output of the
  11203. \code{prelude\_and\_conclusion} pass on the running example. In the
  11204. prelude and conclusion of the \code{main} function, we treat the root
  11205. stack very much like the regular stack in that we move the root stack
  11206. pointer (\code{r15}) to make room for the spills to the root stack,
  11207. except that the root stack grows up instead of down. For the running
  11208. example, there was just one spill so we increment \code{r15} by 8
  11209. bytes. In the conclusion we decrement \code{r15} by 8 bytes.
  11210. One issue that deserves special care is that there may be a call to
  11211. \code{collect} prior to the initializing assignments for all the
  11212. variables in the root stack. We do not want the garbage collector to
  11213. accidentally think that some uninitialized variable is a pointer that
  11214. needs to be followed. Thus, we zero-out all locations on the root
  11215. stack in the prelude of \code{main}. In
  11216. Figure~\ref{fig:print-x86-output-gc}, the instruction
  11217. %
  11218. \lstinline{movq $0, (%r15)}
  11219. %
  11220. accomplishes this task. The garbage collector tests each root to see
  11221. if it is null prior to dereferencing it.
  11222. \begin{figure}[htbp]
  11223. % TODO: Python Version -Jeremy
  11224. \begin{minipage}[t]{0.5\textwidth}
  11225. \begin{lstlisting}[basicstyle=\ttfamily\scriptsize]
  11226. block35:
  11227. movq free_ptr(%rip), %rcx
  11228. addq $16, free_ptr(%rip)
  11229. movq %rcx, %r11
  11230. movq $131, 0(%r11)
  11231. movq %rcx, %r11
  11232. movq -8(%r15), %rax
  11233. movq %rax, 8(%r11)
  11234. movq $0, %rdx
  11235. movq %rcx, %r11
  11236. movq 8(%r11), %rcx
  11237. movq %rcx, %r11
  11238. movq 8(%r11), %rax
  11239. jmp conclusion
  11240. block36:
  11241. movq $0, %rcx
  11242. jmp block35
  11243. block38:
  11244. movq free_ptr(%rip), %rcx
  11245. addq $16, free_ptr(%rip)
  11246. movq %rcx, %r11
  11247. movq $3, 0(%r11)
  11248. movq %rcx, %r11
  11249. movq %rbx, 8(%r11)
  11250. movq $0, %rdx
  11251. movq %rcx, -8(%r15)
  11252. movq free_ptr(%rip), %rcx
  11253. addq $16, %rcx
  11254. movq fromspace_end(%rip), %rdx
  11255. cmpq %rdx, %rcx
  11256. jl block36
  11257. movq %r15, %rdi
  11258. movq $16, %rsi
  11259. callq collect
  11260. jmp block35
  11261. block39:
  11262. movq $0, %rcx
  11263. jmp block38
  11264. \end{lstlisting}
  11265. \end{minipage}
  11266. \begin{minipage}[t]{0.45\textwidth}
  11267. \begin{lstlisting}[basicstyle=\ttfamily\scriptsize]
  11268. start:
  11269. movq $42, %rbx
  11270. movq free_ptr(%rip), %rdx
  11271. addq $16, %rdx
  11272. movq fromspace_end(%rip), %rcx
  11273. cmpq %rcx, %rdx
  11274. jl block39
  11275. movq %r15, %rdi
  11276. movq $16, %rsi
  11277. callq collect
  11278. jmp block38
  11279. .globl main
  11280. main:
  11281. pushq %rbp
  11282. movq %rsp, %rbp
  11283. pushq %r13
  11284. pushq %r12
  11285. pushq %rbx
  11286. pushq %r14
  11287. subq $0, %rsp
  11288. movq $16384, %rdi
  11289. movq $16384, %rsi
  11290. callq initialize
  11291. movq rootstack_begin(%rip), %r15
  11292. movq $0, (%r15)
  11293. addq $8, %r15
  11294. jmp start
  11295. conclusion:
  11296. subq $8, %r15
  11297. addq $0, %rsp
  11298. popq %r14
  11299. popq %rbx
  11300. popq %r12
  11301. popq %r13
  11302. popq %rbp
  11303. retq
  11304. \end{lstlisting}
  11305. \end{minipage}
  11306. \caption{Output of the \code{prelude\_and\_conclusion} pass.}
  11307. \label{fig:print-x86-output-gc}
  11308. \end{figure}
  11309. \begin{figure}[tbp]
  11310. \begin{tikzpicture}[baseline=(current bounding box.center)]
  11311. \node (Lvec) at (0,2) {\large \LangVec{}};
  11312. \node (Lvec-2) at (3,2) {\large \LangVec{}};
  11313. \node (Lvec-3) at (6,2) {\large \LangVec{}};
  11314. \node (Lvec-4) at (9,2) {\large \LangVec{}};
  11315. \node (Lvec-5) at (9,0) {\large \LangAllocANF{}};
  11316. \node (C2-4) at (3,0) {\large \LangCVec{}};
  11317. \node (x86-2) at (3,-2) {\large \LangXGlobalVar{}};
  11318. \node (x86-2-1) at (3,-4) {\large \LangXGlobalVar{}};
  11319. \node (x86-2-2) at (6,-4) {\large \LangXGlobalVar{}};
  11320. \node (x86-3) at (6,-2) {\large \LangXGlobalVar{}};
  11321. \node (x86-4) at (9,-2) {\large \LangXGlobal{}};
  11322. \node (x86-5) at (9,-4) {\large \LangXGlobal{}};
  11323. %\path[->,bend left=15] (Lvec) edge [above] node {\ttfamily\footnotesize type-check} (Lvec-2);
  11324. \path[->,bend left=15] (Lvec) edge [above] node {\ttfamily\footnotesize shrink} (Lvec-2);
  11325. \path[->,bend left=15] (Lvec-2) edge [above] node {\ttfamily\footnotesize uniquify} (Lvec-3);
  11326. \path[->,bend left=15] (Lvec-3) edge [above] node {\ttfamily\footnotesize expose\_alloc.} (Lvec-4);
  11327. \path[->,bend left=15] (Lvec-4) edge [above] node {\ttfamily\footnotesize remove\_complex.} (Lvec-5);
  11328. \path[->,bend left=10] (Lvec-5) edge [above] node {\ttfamily\footnotesize explicate\_control} (C2-4);
  11329. \path[->,bend left=15] (C2-4) edge [right] node {\ttfamily\footnotesize select\_instr.} (x86-2);
  11330. \path[->,bend right=15] (x86-2) edge [left] node {\ttfamily\footnotesize uncover\_live} (x86-2-1);
  11331. \path[->,bend right=15] (x86-2-1) edge [below] node {\ttfamily\footnotesize build\_inter.} (x86-2-2);
  11332. \path[->,bend right=15] (x86-2-2) edge [right] node {\ttfamily\footnotesize allocate\_reg.} (x86-3);
  11333. \path[->,bend left=15] (x86-3) edge [above] node {\ttfamily\footnotesize patch\_instr.} (x86-4);
  11334. \path[->,bend left=15] (x86-4) edge [right] node {\ttfamily\footnotesize print\_x86} (x86-5);
  11335. \end{tikzpicture}
  11336. \caption{Diagram of the passes for \LangVec{}, a language with tuples.}
  11337. \label{fig:Lvec-passes}
  11338. \end{figure}
  11339. Figure~\ref{fig:Lvec-passes} gives an overview of all the passes needed
  11340. for the compilation of \LangVec{}.
  11341. \clearpage
  11342. {\if\edition\racketEd
  11343. \section{Challenge: Simple Structures}
  11344. \label{sec:simple-structures}
  11345. \index{subject}{struct}
  11346. \index{subject}{structure}
  11347. The language \LangStruct{} extends \LangVec{} with support for simple
  11348. structures. Its concrete syntax is defined in
  11349. Figure~\ref{fig:Lstruct-concrete-syntax} and the abstract syntax is in
  11350. Figure~\ref{fig:Lstruct-syntax}. Recall that a \code{struct} in Typed
  11351. Racket is a user-defined data type that contains named fields and that
  11352. is heap allocated, similar to a vector. The following is an example of
  11353. a structure definition, in this case the definition of a \code{point}
  11354. type.
  11355. \begin{lstlisting}
  11356. (struct point ([x : Integer] [y : Integer]) #:mutable)
  11357. \end{lstlisting}
  11358. \newcommand{\LstructGrammarRacket}{
  11359. \begin{array}{lcl}
  11360. \Type &::=& \Var \\
  11361. \Exp &::=& (\Var\;\Exp \ldots)\\
  11362. \Def &::=& (\key{struct}\; \Var \; ([\Var \,\key{:}\, \Type] \ldots)\; \code{\#:mutable})\\
  11363. \end{array}
  11364. }
  11365. \newcommand{\LstructASTRacket}{
  11366. \begin{array}{lcl}
  11367. \Type &::=& \VAR{\Var} \\
  11368. \Exp &::=& \APPLY{\Var}{\Exp\ldots} \\
  11369. \Def &::=& \LP\key{StructDef}\; \Var \; \LP\LS\Var \,\key{:}\, \Type\RS \ldots\RP\RP
  11370. \end{array}
  11371. }
  11372. \begin{figure}[tbp]
  11373. \centering
  11374. \fbox{
  11375. \begin{minipage}{0.96\textwidth}
  11376. \[
  11377. \begin{array}{l}
  11378. \gray{\LintGrammarRacket{}} \\ \hline
  11379. \gray{\LvarGrammarRacket{}} \\ \hline
  11380. \gray{\LifGrammarRacket{}} \\ \hline
  11381. \gray{\LwhileGrammarRacket} \\ \hline
  11382. \gray{\LtupGrammarRacket} \\ \hline
  11383. \LstructGrammarRacket \\
  11384. \begin{array}{lcl}
  11385. \LangStruct{} &::=& \Def \ldots \; \Exp
  11386. \end{array}
  11387. \end{array}
  11388. \]
  11389. \end{minipage}
  11390. }
  11391. \caption{The concrete syntax of \LangStruct{}, extending \LangVec{}
  11392. (Figure~\ref{fig:Lvec-concrete-syntax}).}
  11393. \label{fig:Lstruct-concrete-syntax}
  11394. \end{figure}
  11395. \begin{figure}[tbp]
  11396. \centering
  11397. \fbox{
  11398. \begin{minipage}{0.96\textwidth}
  11399. \[
  11400. \begin{array}{l}
  11401. \gray{\LintASTRacket{}} \\ \hline
  11402. \gray{\LvarASTRacket{}} \\ \hline
  11403. \gray{\LifASTRacket{}} \\ \hline
  11404. \gray{\LwhileASTRacket} \\ \hline
  11405. \gray{\LtupASTRacket} \\ \hline
  11406. \LstructASTRacket \\
  11407. \begin{array}{lcl}
  11408. \LangStruct{} &::=& \PROGRAMDEFSEXP{\code{'()}}{\LP\Def\ldots\RP)}{\Exp}
  11409. \end{array}
  11410. \end{array}
  11411. \]
  11412. \end{minipage}
  11413. }
  11414. \caption{The abstract syntax of \LangStruct{}, extending \LangVec{}
  11415. (Figure~\ref{fig:Lvec-syntax}).}
  11416. \label{fig:Lstruct-syntax}
  11417. \end{figure}
  11418. An instance of a structure is created using function call syntax, with
  11419. the name of the structure in the function position:
  11420. \begin{lstlisting}
  11421. (point 7 12)
  11422. \end{lstlisting}
  11423. Function-call syntax is also used to read the value in a field of a
  11424. structure. The function name is formed by the structure name, a dash,
  11425. and the field name. The following example uses \code{point-x} and
  11426. \code{point-y} to access the \code{x} and \code{y} fields of two point
  11427. instances.
  11428. \begin{center}
  11429. \begin{lstlisting}
  11430. (let ([pt1 (point 7 12)])
  11431. (let ([pt2 (point 4 3)])
  11432. (+ (- (point-x pt1) (point-x pt2))
  11433. (- (point-y pt1) (point-y pt2)))))
  11434. \end{lstlisting}
  11435. \end{center}
  11436. Similarly, to write to a field of a structure, use its set function,
  11437. whose name starts with \code{set-}, followed by the structure name,
  11438. then a dash, then the field name, and concluded with an exclamation
  11439. mark. The following example uses \code{set-point-x!} to change the
  11440. \code{x} field from \code{7} to \code{42}.
  11441. \begin{center}
  11442. \begin{lstlisting}
  11443. (let ([pt (point 7 12)])
  11444. (let ([_ (set-point-x! pt 42)])
  11445. (point-x pt)))
  11446. \end{lstlisting}
  11447. \end{center}
  11448. \begin{exercise}\normalfont
  11449. Create a type checker for \LangStruct{} by extending the type
  11450. checker for \LangVec{}. Extend your compiler with support for simple
  11451. structures, compiling \LangStruct{} to x86 assembly code. Create
  11452. five new test cases that use structures and test your compiler.
  11453. \end{exercise}
  11454. % TODO: create an interpreter for L_struct
  11455. \clearpage
  11456. \section{Challenge: Arrays}
  11457. \label{sec:arrays}
  11458. In Chapter~\ref{ch:Lvec} we studied tuples, that is, sequences of
  11459. elements whose length is determined at compile-time and where each
  11460. element of a tuple may have a different type (they are
  11461. heterogeous). This challenge is also about sequences, but this time
  11462. the length is determined at run-time and all the elements have the same
  11463. type (they are homogeneous). We use the term ``array'' for this later
  11464. kind of sequence.
  11465. The Racket language does not distinguish between tuples and arrays,
  11466. they are both represented by vectors. However, Typed Racket
  11467. distinguishes between tuples and arrays: the \code{Vector} type is for
  11468. tuples and the \code{Vectorof} type is for arrays.
  11469. %
  11470. Figure~\ref{fig:Lvecof-concrete-syntax} defines the concrete syntax
  11471. for \LangArray{}, extending \LangLoop{} with the \code{Vectorof} type
  11472. and the \code{make-vector} primitive operator for creating an array,
  11473. whose arguments are the length of the array and an initial value for
  11474. all the elements in the array. The \code{vector-length},
  11475. \code{vector-ref}, and \code{vector-ref!} operators that we defined
  11476. for tuples become overloaded for use with arrays.
  11477. %
  11478. We also include integer multiplication in \LangArray{}, as it is
  11479. useful in many examples involving arrays such as computing the
  11480. inner-product of two arrays (Figure~\ref{fig:inner-product}).
  11481. \begin{figure}[tp]
  11482. \centering
  11483. \fbox{
  11484. \begin{minipage}{0.96\textwidth}
  11485. \small
  11486. \[
  11487. \begin{array}{lcl}
  11488. \Type &::=& \ldots \MID \LP \key{Vectorof}~\Type \RP \\
  11489. \Exp &::=& \gray{ \Int \MID \CREAD{} \MID \CNEG{\Exp}
  11490. \MID \CADD{\Exp}{\Exp} \MID \CSUB{\Exp}{\Exp} } \MID \CMUL{\Exp}{\Exp}\\
  11491. &\MID& \gray{ \Var \MID \CLET{\Var}{\Exp}{\Exp} }\\
  11492. &\MID& \gray{\key{\#t} \MID \key{\#f}
  11493. \MID \LP\key{and}\;\Exp\;\Exp\RP
  11494. \MID \LP\key{or}\;\Exp\;\Exp\RP
  11495. \MID \LP\key{not}\;\Exp\RP } \\
  11496. &\MID& \gray{ \LP\key{eq?}\;\Exp\;\Exp\RP \MID \CIF{\Exp}{\Exp}{\Exp} } \\
  11497. &\MID& \gray{ \LP\key{vector}\;\Exp\ldots\RP \MID
  11498. \LP\key{vector-ref}\;\Exp\;\Int\RP} \\
  11499. &\MID& \gray{\LP\key{vector-set!}\;\Exp\;\Int\;\Exp\RP\MID \LP\key{void}\RP
  11500. \MID \LP\Exp \; \Exp\ldots\RP } \\
  11501. &\MID& \gray{ \LP \key{procedure-arity}~\Exp\RP
  11502. \MID \CLAMBDA{\LP\LS\Var \key{:} \Type\RS\ldots\RP}{\Type}{\Exp} } \\
  11503. &\MID& \gray{ \CSETBANG{\Var}{\Exp}
  11504. \MID \CBEGIN{\Exp\ldots}{\Exp}
  11505. \MID \CWHILE{\Exp}{\Exp} } \\
  11506. &\MID& \CMAKEVEC{\Exp}{\Exp} \\
  11507. \Def &::=& \gray{ \CDEF{\Var}{\LS\Var \key{:} \Type\RS\ldots}{\Type}{\Exp} } \\
  11508. \LangArray{} &::=& \gray{\Def\ldots \; \Exp}
  11509. \end{array}
  11510. \]
  11511. \end{minipage}
  11512. }
  11513. \caption{The concrete syntax of \LangArray{}, extending \LangLoop{} (Figure~\ref{fig:Lwhile-concrete-syntax}).}
  11514. \label{fig:Lvecof-concrete-syntax}
  11515. \end{figure}
  11516. \begin{figure}[tp]
  11517. \begin{lstlisting}
  11518. (define (inner-product [A : (Vectorof Integer)] [B : (Vectorof Integer)]
  11519. [n : Integer]) : Integer
  11520. (let ([i 0])
  11521. (let ([prod 0])
  11522. (begin
  11523. (while (< i n)
  11524. (begin
  11525. (set! prod (+ prod (* (vector-ref A i)
  11526. (vector-ref B i))))
  11527. (set! i (+ i 1))
  11528. ))
  11529. prod))))
  11530. (let ([A (make-vector 2 2)])
  11531. (let ([B (make-vector 2 3)])
  11532. (+ (inner-product A B 2)
  11533. 30)))
  11534. \end{lstlisting}
  11535. \caption{Example program that computes the inner-product.}
  11536. \label{fig:inner-product}
  11537. \end{figure}
  11538. The type checker for \LangArray{} is define in
  11539. Figure~\ref{fig:type-check-Lvecof}. The result type of
  11540. \code{make-vector} is \code{(Vectorof T)} where \code{T} is the type
  11541. of the intializing expression. The length expression is required to
  11542. have type \code{Integer}. The type checking of the operators
  11543. \code{vector-length}, \code{vector-ref}, and \code{vector-set!} is
  11544. updated to handle the situation where the vector has type
  11545. \code{Vectorof}. In these cases we translate the operators to their
  11546. \code{vectorof} form so that later passes can easily distinguish
  11547. between operations on tuples versus arrays. We override the
  11548. \code{operator-types} method to provide the type signature for
  11549. multiplication: it takes two integers and returns an integer. To
  11550. support injection and projection of arrays to the \code{Any} type
  11551. (Section~\ref{sec:Rany-lang}), we also override the \code{flat-ty?}
  11552. predicate.
  11553. \begin{figure}[tbp]
  11554. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  11555. (define type-check-Lvecof_class
  11556. (class type-check-Rwhile_class
  11557. (super-new)
  11558. (inherit check-type-equal?)
  11559. (define/override (flat-ty? ty)
  11560. (match ty
  11561. ['(Vectorof Any) #t]
  11562. [else (super flat-ty? ty)]))
  11563. (define/override (operator-types)
  11564. (append '((* . ((Integer Integer) . Integer)))
  11565. (super operator-types)))
  11566. (define/override (type-check-exp env)
  11567. (lambda (e)
  11568. (define recur (type-check-exp env))
  11569. (match e
  11570. [(Prim 'make-vector (list e1 e2))
  11571. (define-values (e1^ t1) (recur e1))
  11572. (define-values (e2^ elt-type) (recur e2))
  11573. (define vec-type `(Vectorof ,elt-type))
  11574. (values (HasType (Prim 'make-vector (list e1^ e2^)) vec-type)
  11575. vec-type)]
  11576. [(Prim 'vector-ref (list e1 e2))
  11577. (define-values (e1^ t1) (recur e1))
  11578. (define-values (e2^ t2) (recur e2))
  11579. (match* (t1 t2)
  11580. [(`(Vectorof ,elt-type) 'Integer)
  11581. (values (Prim 'vectorof-ref (list e1^ e2^)) elt-type)]
  11582. [(other wise) ((super type-check-exp env) e)])]
  11583. [(Prim 'vector-set! (list e1 e2 e3) )
  11584. (define-values (e-vec t-vec) (recur e1))
  11585. (define-values (e2^ t2) (recur e2))
  11586. (define-values (e-arg^ t-arg) (recur e3))
  11587. (match t-vec
  11588. [`(Vectorof ,elt-type)
  11589. (check-type-equal? elt-type t-arg e)
  11590. (values (Prim 'vectorof-set! (list e-vec e2^ e-arg^)) 'Void)]
  11591. [else ((super type-check-exp env) e)])]
  11592. [(Prim 'vector-length (list e1))
  11593. (define-values (e1^ t1) (recur e1))
  11594. (match t1
  11595. [`(Vectorof ,t)
  11596. (values (Prim 'vectorof-length (list e1^)) 'Integer)]
  11597. [else ((super type-check-exp env) e)])]
  11598. [else ((super type-check-exp env) e)])))
  11599. ))
  11600. (define (type-check-Lvecof p)
  11601. (send (new type-check-Lvecof_class) type-check-program p))
  11602. \end{lstlisting}
  11603. \caption{Type checker for the \LangArray{} language.}
  11604. \label{fig:type-check-Lvecof}
  11605. \end{figure}
  11606. The interpreter for \LangArray{} is defined in
  11607. Figure~\ref{fig:interp-Lvecof}. The \code{make-vector} operator is
  11608. implemented with Racket's \code{make-vector} function and
  11609. multiplication is \code{fx*}, multiplication for \code{fixnum}
  11610. integers.
  11611. \begin{figure}[tbp]
  11612. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  11613. (define interp-Lvecof_class
  11614. (class interp-Rwhile_class
  11615. (super-new)
  11616. (define/override (interp-op op)
  11617. (verbose "Lvecof/interp-op" op)
  11618. (match op
  11619. ['make-vector make-vector]
  11620. ['* fx*]
  11621. [else (super interp-op op)]))
  11622. ))
  11623. (define (interp-Lvecof p)
  11624. (send (new interp-Lvecof_class) interp-program p))
  11625. \end{lstlisting}
  11626. \caption{Interpreter for \LangArray{}.}
  11627. \label{fig:interp-Lvecof}
  11628. \end{figure}
  11629. \subsection{Data Representation}
  11630. \label{sec:array-rep}
  11631. Just like tuples, we store arrays on the heap which means that the
  11632. garbage collector will need to inspect arrays. An immediate thought is
  11633. to use the same representation for arrays that we use for tuples.
  11634. However, we limit tuples to a length of $50$ so that their length and
  11635. pointer mask can fit into the 64-bit tag at the beginning of each
  11636. tuple (Section~\ref{sec:data-rep-gc}). We intend arrays to allow
  11637. millions of elements, so we need more bits to store the length.
  11638. However, because arrays are homogeneous, we only need $1$ bit for the
  11639. pointer mask instead of one bit per array elements. Finally, the
  11640. garbage collector will need to be able to distinguish between tuples
  11641. and arrays, so we need to reserve $1$ bit for that purpose. So we
  11642. arrive at the following layout for the 64-bit tag at the beginning of
  11643. an array:
  11644. \begin{itemize}
  11645. \item The right-most bit is the forwarding bit, just like in a tuple.
  11646. A $0$ indicates it is a forwarding pointer and a $1$ indicates
  11647. it is not.
  11648. \item The next bit to the left is the pointer mask. A $0$ indicates
  11649. that none of the elements are pointers to the heap and a $1$
  11650. indicates that all of the elements are pointers.
  11651. \item The next $61$ bits store the length of the array.
  11652. \item The left-most bit distinguishes between a tuple ($0$) versus an
  11653. array ($1$).
  11654. \end{itemize}
  11655. Recall that in Chapter~\ref{ch:Rdyn}, we use a $3$-bit tag to
  11656. differentiate the kinds of values that have been injected into the
  11657. \code{Any} type. We use the bit pattern \code{110} (or $6$ in decimal)
  11658. to indicate that the value is an array.
  11659. In the following subsections we provide hints regarding how to update
  11660. the passes to handle arrays.
  11661. \subsection{Reveal Casts}
  11662. The array-access operators \code{vectorof-ref} and
  11663. \code{vectorof-set!} are similar to the \code{any-vector-ref} and
  11664. \code{any-vector-set!} operators of Chapter~\ref{ch:Rdyn} in
  11665. that the type checker cannot tell whether the index will be in bounds,
  11666. so the bounds check must be performed at run time. Recall that the
  11667. \code{reveal-casts} pass (Section~\ref{sec:reveal-casts-Rany}) wraps
  11668. an \code{If} arround a vector reference for update to check whether
  11669. the index is less than the length. You should do the same for
  11670. \code{vectorof-ref} and \code{vectorof-set!} .
  11671. In addition, the handling of the \code{any-vector} operators in
  11672. \code{reveal-casts} needs to be updated to account for arrays that are
  11673. injected to \code{Any}. For the \code{any-vector-length} operator, the
  11674. generated code should test whether the tag is for tuples (\code{010})
  11675. or arrays (\code{110}) and then dispatch to either
  11676. \code{any-vector-length} or \code{any-vectorof-length}. For the later
  11677. we add a case in \code{select\_instructions} to generate the
  11678. appropriate instructions for accessing the array length from the
  11679. header of an array.
  11680. For the \code{any-vector-ref} and \code{any-vector-set!} operators,
  11681. the generated code needs to check that the index is less than the
  11682. vector length, so like the code for \code{any-vector-length}, check
  11683. the tag to determine whether to use \code{any-vector-length} or
  11684. \code{any-vectorof-length} for this purpose. Once the bounds checking
  11685. is complete, the generated code can use \code{any-vector-ref} and
  11686. \code{any-vector-set!} for both tuples and arrays because the
  11687. instructions used for those operators do not look at the tag at the
  11688. front of the tuple or array.
  11689. \subsection{Expose Allocation}
  11690. This pass should translate the \code{make-vector} operator into
  11691. lower-level operations. In particular, the new AST node
  11692. $\LP\key{AllocateArray}~\Exp~\Type\RP$ allocates an array of the
  11693. length specified by the $\Exp$, but does not initialize the elements
  11694. of the array. (Analogous to the \code{Allocate} AST node for tuples.)
  11695. The $\Type$ argument must be $\LP\key{Vectorof}~T\RP$ where $T$ is the
  11696. element type for the array. Regarding the initialization of the array,
  11697. we recommend generated a \code{while} loop that uses
  11698. \code{vector-set!} to put the initializing value into every element of
  11699. the array.
  11700. \subsection{Remove Complex Operands}
  11701. Add cases in the \code{rco\_atom} and \code{rco\_exp} for
  11702. \code{AllocateArray}. In particular, an \code{AllocateArray} node is
  11703. complex and its subexpression must be atomic.
  11704. \subsection{Explicate Control}
  11705. Add cases for \code{AllocateArray} to \code{explicate\_tail} and
  11706. \code{explicate\_assign}.
  11707. \subsection{Select Instructions}
  11708. Generate instructions for \code{AllocateArray} similar to those for
  11709. \code{Allocate} in Section~\ref{sec:select-instructions-gc} except
  11710. that the tag at the front of the array should instead use the
  11711. representation discussed in Section~\ref{sec:array-rep}.
  11712. Regarding \code{vectorof-length}, extract the length from the tag
  11713. according to the representation discussed in
  11714. Section~\ref{sec:array-rep}.
  11715. The instructions generated for \code{vectorof-ref} differ from those
  11716. for \code{vector-ref} (Section~\ref{sec:select-instructions-gc}) in
  11717. that the index is not a constant so the offset must be computed at
  11718. runtime, similar to the instructions generated for
  11719. \code{any-vector-of-ref} (Section~\ref{sec:select-Rany}). The same is
  11720. true for \code{vectorof-set!}. Also, the \code{vectorof-set!} may
  11721. appear in an assignment and as a stand-alone statement, so make sure
  11722. to handle both situations in this pass.
  11723. Finally, the instructions for \code{any-vectorof-length} should be
  11724. similar to those for \code{vectorof-length}, except that one must
  11725. first project the array by writing zeroes into the $3$-bit tag
  11726. \begin{exercise}\normalfont
  11727. Implement a compiler for the \LangArray{} language by extending your
  11728. compiler for \LangLoop{}. Test your compiler on a half dozen new
  11729. programs, including the one in Figure~\ref{fig:inner-product} and also
  11730. a program that multiplies two matrices. Note that matrices are
  11731. 2-dimensional arrays, but those can be encoded into 1-dimensional
  11732. arrays by laying out each row in the array, one after the next.
  11733. \end{exercise}
  11734. \section{Challenge: Generational Collection}
  11735. The copying collector described in Section~\ref{sec:GC} can incur
  11736. significant runtime overhead because the call to \code{collect} takes
  11737. time proportional to all of the live data. One way to reduce this
  11738. overhead is to reduce how much data is inspected in each call to
  11739. \code{collect}. In particular, researchers have observed that recently
  11740. allocated data is more likely to become garbage then data that has
  11741. survived one or more previous calls to \code{collect}. This insight
  11742. motivated the creation of \emph{generational garbage collectors}
  11743. \index{subject}{generational garbage collector} that
  11744. 1) segregates data according to its age into two or more generations,
  11745. 2) allocates less space for younger generations, so collecting them is
  11746. faster, and more space for the older generations, and 3) performs
  11747. collection on the younger generations more frequently then for older
  11748. generations~\citep{Wilson:1992fk}.
  11749. For this challenge assignment, the goal is to adapt the copying
  11750. collector implemented in \code{runtime.c} to use two generations, one
  11751. for young data and one for old data. Each generation consists of a
  11752. FromSpace and a ToSpace. The following is a sketch of how to adapt the
  11753. \code{collect} function to use the two generations.
  11754. \begin{enumerate}
  11755. \item Copy the young generation's FromSpace to its ToSpace then switch
  11756. the role of the ToSpace and FromSpace
  11757. \item If there is enough space for the requested number of bytes in
  11758. the young FromSpace, then return from \code{collect}.
  11759. \item If there is not enough space in the young FromSpace for the
  11760. requested bytes, then move the data from the young generation to the
  11761. old one with the following steps:
  11762. \begin{enumerate}
  11763. \item If there is enough room in the old FromSpace, copy the young
  11764. FromSpace to the old FromSpace and then return.
  11765. \item If there is not enough room in the old FromSpace, then collect
  11766. the old generation by copying the old FromSpace to the old ToSpace
  11767. and swap the roles of the old FromSpace and ToSpace.
  11768. \item If there is enough room now, copy the young FromSpace to the
  11769. old FromSpace and return. Otherwise, allocate a larger FromSpace
  11770. and ToSpace for the old generation. Copy the young FromSpace and
  11771. the old FromSpace into the larger FromSpace for the old
  11772. generation and then return.
  11773. \end{enumerate}
  11774. \end{enumerate}
  11775. We recommend that you generalize the \code{cheney} function so that it
  11776. can be used for all the copies mentioned above: between the young
  11777. FromSpace and ToSpace, between the old FromSpace and ToSpace, and
  11778. between the young FromSpace and old FromSpace. This can be
  11779. accomplished by adding parameters to \code{cheney} that replace its
  11780. use of the global variables \code{fromspace\_begin},
  11781. \code{fromspace\_end}, \code{tospace\_begin}, and \code{tospace\_end}.
  11782. Note that the collection of the young generation does not traverse the
  11783. old generation. This introduces a potential problem: there may be
  11784. young data that is only reachable through pointers in the old
  11785. generation. If these pointers are not taken into account, the
  11786. collector could throw away young data that is live! One solution,
  11787. called \emph{pointer recording}, is to maintain a set of all the
  11788. pointers from the old generation into the new generation and consider
  11789. this set as part of the root set. To maintain this set, the compiler
  11790. must insert extra instructions around every \code{vector-set!}. If the
  11791. vector being modified is in the old generation, and if the value being
  11792. written is a pointer into the new generation, than that pointer must
  11793. be added to the set. Also, if the value being overwritten was a
  11794. pointer into the new generation, then that pointer should be removed
  11795. from the set.
  11796. \begin{exercise}\normalfont
  11797. Adapt the \code{collect} function in \code{runtime.c} to implement
  11798. generational garbage collection, as outlined in this section.
  11799. Update the code generation for \code{vector-set!} to implement
  11800. pointer recording. Make sure that your new compiler and runtime
  11801. passes your test suite.
  11802. \end{exercise}
  11803. \fi}
  11804. % Further Reading
  11805. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  11806. \chapter{Functions}
  11807. \label{ch:Rfun}
  11808. \index{subject}{function}
  11809. This chapter studies the compilation of functions similar to those
  11810. found in the C language. This corresponds to a subset of \racket{Typed
  11811. Racket} \python{Python} in which only top-level function definitions
  11812. are allowed. This kind of function is an important stepping stone to
  11813. implementing lexically-scoped functions in the form of \key{lambda}
  11814. abstractions, which is the topic of Chapter~\ref{ch:Rlam}.
  11815. \section{The \LangFun{} Language}
  11816. The concrete and abstract syntax for function definitions and function
  11817. application is shown in Figures~\ref{fig:Rfun-concrete-syntax} and
  11818. \ref{fig:Rfun-syntax}, where we define the \LangFun{} language. Programs in
  11819. \LangFun{} begin with zero or more function definitions. The function
  11820. names from these definitions are in-scope for the entire program,
  11821. including all other function definitions (so the ordering of function
  11822. definitions does not matter).
  11823. %
  11824. \python{The abstract syntax for function parameters in
  11825. Figure~\ref{fig:Rfun-syntax} is a list of pairs, where each pair
  11826. consists of a parameter name and its type. This differs from
  11827. Python's \code{ast} module, which has a more complex syntax for
  11828. function parameters, for example, to handle keyword parameters and
  11829. defaults. The type checker in \code{type\_check\_Lfun} converts the
  11830. more commplex syntax into the simpler syntax of
  11831. Figure~\ref{fig:Rfun-syntax}.}
  11832. %
  11833. The concrete syntax for function application\index{subject}{function
  11834. application} is $\CAPPLY{\Exp}{\Exp \ldots}$ where the first expression
  11835. must evaluate to a function and the rest are the arguments. The
  11836. abstract syntax for function application is
  11837. $\APPLY{\Exp}{\Exp\ldots}$.
  11838. %% The syntax for function application does not include an explicit
  11839. %% keyword, which is error prone when using \code{match}. To alleviate
  11840. %% this problem, we translate the syntax from $(\Exp \; \Exp \ldots)$ to
  11841. %% $(\key{app}\; \Exp \; \Exp \ldots)$ during type checking.
  11842. Functions are first-class in the sense that a function pointer
  11843. \index{subject}{function pointer} is data and can be stored in memory or passed
  11844. as a parameter to another function. Thus, there is a function
  11845. type, written
  11846. {\if\edition\racketEd
  11847. \begin{lstlisting}
  11848. (|$\Type_1$| |$\cdots$| |$\Type_n$| -> |$\Type_r$|)
  11849. \end{lstlisting}
  11850. \fi}
  11851. {\if\edition\pythonEd
  11852. \begin{lstlisting}
  11853. Callable[[|$\Type_1$|,|$\cdots$|,|$\Type_n$|], |$\Type_r$|]
  11854. \end{lstlisting}
  11855. \fi}
  11856. %
  11857. \noindent for a function whose $n$ parameters have the types $\Type_1$
  11858. through $\Type_n$ and whose return type is $\Type_r$. The main
  11859. limitation of these functions (with respect to
  11860. \racket{Racket}\python{Python} functions) is that they are not
  11861. lexically scoped. That is, the only external entities that can be
  11862. referenced from inside a function body are other globally-defined
  11863. functions. The syntax of \LangFun{} prevents functions from being
  11864. nested inside each other.
  11865. \newcommand{\LfunGrammarRacket}{
  11866. \begin{array}{lcl}
  11867. \Type &::=& (\Type \ldots \; \key{->}\; \Type) \\
  11868. \Exp &::=& \LP\Exp \; \Exp \ldots\RP \\
  11869. \Def &::=& \CDEF{\Var}{\LS\Var \key{:} \Type\RS \ldots}{\Type}{\Exp} \\
  11870. \end{array}
  11871. }
  11872. \newcommand{\LfunASTRacket}{
  11873. \begin{array}{lcl}
  11874. \Type &::=& (\Type \ldots \; \key{->}\; \Type) \\
  11875. \Exp &::=& \APPLY{\Exp}{\Exp\ldots}\\
  11876. \Def &::=& \FUNDEF{\Var}{\LP[\Var \code{:} \Type]\ldots\RP}{\Type}{\code{'()}}{\Exp}
  11877. \end{array}
  11878. }
  11879. \newcommand{\LfunGrammarPython}{
  11880. \begin{array}{lcl}
  11881. \Type &::=& \key{Callable}\LS \LS \Type \key{,} \ldots \RS \key{, } \Type \RS \\
  11882. \Exp &::=& \CAPPLY{\Exp}{\Exp\code{,} \ldots} \\
  11883. \Stmt &::=& \CRETURN{\Exp} \\
  11884. \Def &::=& \CDEF{\Var}{\Var \key{:} \Type\key{,} \ldots}{\Type}{\Stmt^{+}}
  11885. \end{array}
  11886. }
  11887. \newcommand{\LfunASTPython}{
  11888. \begin{array}{lcl}
  11889. \Type &::=& \key{FunctionType}\LP \Type^{*} \key{, } \Type \RP \\
  11890. \Exp &::=& \CALL{\Exp}{\Exp^{*}}\\
  11891. \Stmt &::=& \RETURN{\Exp} \\
  11892. \Def &::=& \FUNDEF{\Var}{\LS \LP \Var \key{, } \Type \RP \key{, } \ldots \RS}{\Type}{}{\Stmt^{+}}
  11893. \end{array}
  11894. }
  11895. \begin{figure}[tp]
  11896. \centering
  11897. \fbox{
  11898. \begin{minipage}{0.96\textwidth}
  11899. \small
  11900. {\if\edition\racketEd
  11901. \[
  11902. \begin{array}{l}
  11903. \gray{\LintGrammarRacket{}} \\ \hline
  11904. \gray{\LvarGrammarRacket{}} \\ \hline
  11905. \gray{\LifGrammarRacket{}} \\ \hline
  11906. \gray{\LwhileGrammarRacket} \\ \hline
  11907. \gray{\LtupGrammarRacket} \\ \hline
  11908. \LfunGrammarRacket \\
  11909. \begin{array}{lcl}
  11910. \LangFunM{} &::=& \Def \ldots \; \Exp
  11911. \end{array}
  11912. \end{array}
  11913. \]
  11914. \fi}
  11915. {\if\edition\pythonEd
  11916. \[
  11917. \begin{array}{l}
  11918. \gray{\LintGrammarPython{}} \\ \hline
  11919. \gray{\LvarGrammarPython{}} \\ \hline
  11920. \gray{\LifGrammarPython{}} \\ \hline
  11921. \gray{\LwhileGrammarPython} \\ \hline
  11922. \gray{\LtupGrammarPython} \\ \hline
  11923. \LfunGrammarPython \\
  11924. \begin{array}{rcl}
  11925. \LangFunM{} &::=& \Def^{*} \Stmt^{*}
  11926. \end{array}
  11927. \end{array}
  11928. \]
  11929. \fi}
  11930. \end{minipage}
  11931. }
  11932. \caption{The concrete syntax of \LangFun{}, extending \LangVec{} (Figure~\ref{fig:Lvec-concrete-syntax}).}
  11933. \label{fig:Rfun-concrete-syntax}
  11934. \end{figure}
  11935. \begin{figure}[tp]
  11936. \centering
  11937. \fbox{
  11938. \begin{minipage}{0.96\textwidth}
  11939. \small
  11940. {\if\edition\racketEd
  11941. \[
  11942. \begin{array}{l}
  11943. \gray{\LintOpAST} \\ \hline
  11944. \gray{\LvarASTRacket{}} \\ \hline
  11945. \gray{\LifASTRacket{}} \\ \hline
  11946. \gray{\LwhileASTRacket{}} \\ \hline
  11947. \gray{\LtupASTRacket{}} \\ \hline
  11948. \LfunASTRacket \\
  11949. \begin{array}{lcl}
  11950. \LangFunM{} &::=& \PROGRAMDEFSEXP{\code{'()}}{\LP\Def\ldots\RP)}{\Exp}
  11951. \end{array}
  11952. \end{array}
  11953. \]
  11954. \fi}
  11955. {\if\edition\pythonEd
  11956. \[
  11957. \begin{array}{l}
  11958. \gray{\LintASTPython{}} \\ \hline
  11959. \gray{\LvarASTPython{}} \\ \hline
  11960. \gray{\LifASTPython{}} \\ \hline
  11961. \gray{\LwhileASTPython} \\ \hline
  11962. \gray{\LtupASTPython} \\ \hline
  11963. \LfunASTPython \\
  11964. \begin{array}{rcl}
  11965. \LangFunM{} &::=& \PROGRAM{}{\LS \Def \ldots \Stmt \ldots \RS}
  11966. \end{array}
  11967. \end{array}
  11968. \]
  11969. \fi}
  11970. \end{minipage}
  11971. }
  11972. \caption{The abstract syntax of \LangFun{}, extending \LangVec{} (Figure~\ref{fig:Lvec-syntax}).}
  11973. \label{fig:Rfun-syntax}
  11974. \end{figure}
  11975. The program in Figure~\ref{fig:Rfun-function-example} is a
  11976. representative example of defining and using functions in \LangFun{}.
  11977. We define a function \code{map} that applies some other function
  11978. \code{f} to both elements of a vector and returns a new vector
  11979. containing the results. We also define a function \code{inc}. The
  11980. program applies \code{map} to \code{inc} and
  11981. %
  11982. \racket{\code{(vector 0 41)}}\python{\code{(0, 41)}}.
  11983. %
  11984. The result is \racket{\code{(vector 1 42)}}\python{\code{(1, 42)}},
  11985. %
  11986. from which we return the \code{42}.
  11987. \begin{figure}[tbp]
  11988. {\if\edition\racketEd
  11989. \begin{lstlisting}
  11990. (define (map [f : (Integer -> Integer)] [v : (Vector Integer Integer)])
  11991. : (Vector Integer Integer)
  11992. (vector (f (vector-ref v 0)) (f (vector-ref v 1))))
  11993. (define (inc [x : Integer]) : Integer
  11994. (+ x 1))
  11995. (vector-ref (map inc (vector 0 41)) 1)
  11996. \end{lstlisting}
  11997. \fi}
  11998. {\if\edition\pythonEd
  11999. \begin{lstlisting}
  12000. def map(f : Callable[[int], int], v : tuple[int,int]) -> tuple[int,int]:
  12001. return f(v[0]), f(v[1])
  12002. def inc(x : int) -> int:
  12003. return x + 1
  12004. print( map(inc, (0, 41))[1] )
  12005. \end{lstlisting}
  12006. \fi}
  12007. \caption{Example of using functions in \LangFun{}.}
  12008. \label{fig:Rfun-function-example}
  12009. \end{figure}
  12010. The definitional interpreter for \LangFun{} is in
  12011. Figure~\ref{fig:interp-Rfun}. The case for the
  12012. %
  12013. \racket{\code{ProgramDefsExp}}\python{\code{Module}}
  12014. %
  12015. AST is responsible for setting up the mutual recursion between the
  12016. top-level function definitions.
  12017. %
  12018. \racket{We use the classic back-patching
  12019. \index{subject}{back-patching} approach that uses mutable variables
  12020. and makes two passes over the function
  12021. definitions~\citep{Kelsey:1998di}. In the first pass we set up the
  12022. top-level environment using a mutable cons cell for each function
  12023. definition. Note that the \code{lambda} value for each function is
  12024. incomplete; it does not yet include the environment. Once the
  12025. top-level environment is constructed, we then iterate over it and
  12026. update the \code{lambda} values to use the top-level environment.}
  12027. %
  12028. \python{We create a dictionary named \code{env} and fill it in
  12029. by mapping each function name to a new \code{Function} value,
  12030. each of which stores a reference to the \code{env}.
  12031. (We define the class \code{Function} for this purpose.)}
  12032. %
  12033. To interpret a function \racket{application}\python{call}, we match
  12034. the result of the function expression to obtain a function value. We
  12035. then extend the function's environment with mapping of parameters to
  12036. argument values. Finally, we interpret the body of the function in
  12037. this extended environment.
  12038. \begin{figure}[tp]
  12039. {\if\edition\racketEd
  12040. \begin{lstlisting}
  12041. (define interp-Rfun_class
  12042. (class interp-Lvec_class
  12043. (super-new)
  12044. (define/override ((interp-exp env) e)
  12045. (define recur (interp-exp env))
  12046. (match e
  12047. [(Var x) (unbox (dict-ref env x))]
  12048. [(Let x e body)
  12049. (define new-env (dict-set env x (box (recur e))))
  12050. ((interp-exp new-env) body)]
  12051. [(Apply fun args)
  12052. (define fun-val (recur fun))
  12053. (define arg-vals (for/list ([e args]) (recur e)))
  12054. (match fun-val
  12055. [`(function (,xs ...) ,body ,fun-env)
  12056. (define params-args (for/list ([x xs] [arg arg-vals])
  12057. (cons x (box arg))))
  12058. (define new-env (append params-args fun-env))
  12059. ((interp-exp new-env) body)]
  12060. [else (error 'interp-exp "expected function, not ~a" fun-val)])]
  12061. [else ((super interp-exp env) e)]
  12062. ))
  12063. (define/public (interp-def d)
  12064. (match d
  12065. [(Def f (list `[,xs : ,ps] ...) rt _ body)
  12066. (cons f (box `(function ,xs ,body ())))]))
  12067. (define/override (interp-program p)
  12068. (match p
  12069. [(ProgramDefsExp info ds body)
  12070. (let ([top-level (for/list ([d ds]) (interp-def d))])
  12071. (for/list ([f (in-dict-values top-level)])
  12072. (set-box! f (match (unbox f)
  12073. [`(function ,xs ,body ())
  12074. `(function ,xs ,body ,top-level)])))
  12075. ((interp-exp top-level) body))]))
  12076. ))
  12077. (define (interp-Rfun p)
  12078. (send (new interp-Rfun_class) interp-program p))
  12079. \end{lstlisting}
  12080. \fi}
  12081. {\if\edition\pythonEd
  12082. \begin{lstlisting}
  12083. class InterpLfun(InterpLtup):
  12084. def apply_fun(self, fun, args, e):
  12085. match fun:
  12086. case Function(name, xs, body, env):
  12087. new_env = {x: v for (x,v) in env.items()}
  12088. for (x,arg) in zip(xs, args):
  12089. new_env[x] = arg
  12090. return self.interp_stmts(body, new_env)
  12091. case _:
  12092. raise Exception('apply_fun: unexpected: ' + repr(fun))
  12093. def interp_exp(self, e, env):
  12094. match e:
  12095. case Call(Name('input_int'), []):
  12096. return super().interp_exp(e, env)
  12097. case Call(func, args):
  12098. f = self.interp_exp(func, env)
  12099. vs = [self.interp_exp(arg, env) for arg in args]
  12100. return self.apply_fun(f, vs, e)
  12101. case _:
  12102. return super().interp_exp(e, env)
  12103. def interp_stmts(self, ss, env):
  12104. if len(ss) == 0:
  12105. return
  12106. match ss[0]:
  12107. case Return(value):
  12108. return self.interp_exp(value, env)
  12109. case _:
  12110. return super().interp_stmts(ss, env)
  12111. def interp(self, p):
  12112. match p:
  12113. case Module(defs):
  12114. env = {}
  12115. for d in defs:
  12116. match d:
  12117. case FunctionDef(name, params, bod, dl, returns, comment):
  12118. env[name] = Function(name, [x for (x,t) in params], bod, env)
  12119. self.apply_fun(env['main'], [], None)
  12120. case _:
  12121. raise Exception('interp: unexpected ' + repr(p))
  12122. \end{lstlisting}
  12123. \fi}
  12124. \caption{Interpreter for the \LangFun{} language.}
  12125. \label{fig:interp-Rfun}
  12126. \end{figure}
  12127. %\margincomment{TODO: explain type checker}
  12128. The type checker for \LangFun{} is in
  12129. Figure~\ref{fig:type-check-Rfun}. (We omit the code that parses
  12130. function parameters into the simpler abstract syntax.) Similar to the
  12131. interpreter, the case for the
  12132. \racket{\code{ProgramDefsExp}}\python{\code{Module}}
  12133. %
  12134. AST is responsible for setting up the mutual recursion between the
  12135. top-level function definitions. We begin by create a mapping
  12136. \code{env} from every function name to its type. We then type check
  12137. the program using this \code{env}.
  12138. %
  12139. In the case for function \racket{application}\python{call}, we match
  12140. the type of the function expression to a function type and check that
  12141. the types of the argument expressions are equal to the function's
  12142. parameter types. The type of the \racket{application}\python{call} as
  12143. a whole is the return type from the function type.
  12144. \begin{figure}[tp]
  12145. {\if\edition\racketEd
  12146. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  12147. (define type-check-Rfun_class
  12148. (class type-check-Lvec_class
  12149. (super-new)
  12150. (inherit check-type-equal?)
  12151. (define/public (type-check-apply env e es)
  12152. (define-values (e^ ty) ((type-check-exp env) e))
  12153. (define-values (e* ty*) (for/lists (e* ty*) ([e (in-list es)])
  12154. ((type-check-exp env) e)))
  12155. (match ty
  12156. [`(,ty^* ... -> ,rt)
  12157. (for ([arg-ty ty*] [param-ty ty^*])
  12158. (check-type-equal? arg-ty param-ty (Apply e es)))
  12159. (values e^ e* rt)]))
  12160. (define/override (type-check-exp env)
  12161. (lambda (e)
  12162. (match e
  12163. [(FunRef f)
  12164. (values (FunRef f) (dict-ref env f))]
  12165. [(Apply e es)
  12166. (define-values (e^ es^ rt) (type-check-apply env e es))
  12167. (values (Apply e^ es^) rt)]
  12168. [(Call e es)
  12169. (define-values (e^ es^ rt) (type-check-apply env e es))
  12170. (values (Call e^ es^) rt)]
  12171. [else ((super type-check-exp env) e)])))
  12172. (define/public (type-check-def env)
  12173. (lambda (e)
  12174. (match e
  12175. [(Def f (and p:t* (list `[,xs : ,ps] ...)) rt info body)
  12176. (define new-env (append (map cons xs ps) env))
  12177. (define-values (body^ ty^) ((type-check-exp new-env) body))
  12178. (check-type-equal? ty^ rt body)
  12179. (Def f p:t* rt info body^)])))
  12180. (define/public (fun-def-type d)
  12181. (match d
  12182. [(Def f (list `[,xs : ,ps] ...) rt info body) `(,@ps -> ,rt)]))
  12183. (define/override (type-check-program e)
  12184. (match e
  12185. [(ProgramDefsExp info ds body)
  12186. (define env (for/list ([d ds])
  12187. (cons (Def-name d) (fun-def-type d))))
  12188. (define ds^ (for/list ([d ds]) ((type-check-def env) d)))
  12189. (define-values (body^ ty) ((type-check-exp env) body))
  12190. (check-type-equal? ty 'Integer body)
  12191. (ProgramDefsExp info ds^ body^)]))))
  12192. (define (type-check-Rfun p)
  12193. (send (new type-check-Rfun_class) type-check-program p))
  12194. \end{lstlisting}
  12195. \fi}
  12196. {\if\edition\pythonEd
  12197. \begin{lstlisting}
  12198. class TypeCheckLfun(TypeCheckLtup):
  12199. def type_check_exp(self, e, env):
  12200. match e:
  12201. case Call(Name('input_int'), []):
  12202. return super().type_check_exp(e, env)
  12203. case Call(func, args):
  12204. func_t = self.type_check_exp(func, env)
  12205. args_t = [self.type_check_exp(arg, env) for arg in args]
  12206. match func_t:
  12207. case FunctionType(params_t, return_t):
  12208. for (arg_t, param_t) in zip(args_t, params_t):
  12209. check_type_equal(param_t, arg_t, e)
  12210. return return_t
  12211. case _:
  12212. raise Exception('type_check_exp: in call, unexpected ' + \
  12213. repr(func_t))
  12214. case _:
  12215. return super().type_check_exp(e, env)
  12216. def type_check_stmts(self, ss, env):
  12217. if len(ss) == 0:
  12218. return
  12219. match ss[0]:
  12220. case FunctionDef(name, params, body, dl, returns, comment):
  12221. new_env = {x: t for (x,t) in env.items()}
  12222. for (x,t) in params:
  12223. new_env[x] = t
  12224. rt = self.type_check_stmts(body, new_env)
  12225. check_type_equal(returns, rt, ss[0])
  12226. return self.type_check_stmts(ss[1:], env)
  12227. case Return(value):
  12228. return self.type_check_exp(value, env)
  12229. case _:
  12230. return super().type_check_stmts(ss, env)
  12231. def type_check(self, p):
  12232. match p:
  12233. case Module(body):
  12234. env = {}
  12235. for s in body:
  12236. match s:
  12237. case FunctionDef(name, params, bod, dl, returns, comment):
  12238. params_t = [t for (x,t) in params]
  12239. env[name] = FunctionType(params_t, returns)
  12240. self.type_check_stmts(body, env)
  12241. case _:
  12242. raise Exception('type_check: unexpected ' + repr(p))
  12243. \end{lstlisting}
  12244. \fi}
  12245. \caption{Type checker for the \LangFun{} language.}
  12246. \label{fig:type-check-Rfun}
  12247. \end{figure}
  12248. \section{Functions in x86}
  12249. \label{sec:fun-x86}
  12250. %% \margincomment{\tiny Make sure callee-saved registers are discussed
  12251. %% in enough depth, especially updating Fig 6.4 \\ --Jeremy }
  12252. %% \margincomment{\tiny Talk about the return address on the
  12253. %% stack and what callq and retq does.\\ --Jeremy }
  12254. The x86 architecture provides a few features to support the
  12255. implementation of functions. We have already seen that x86 provides
  12256. labels so that one can refer to the location of an instruction, as is
  12257. needed for jump instructions. Labels can also be used to mark the
  12258. beginning of the instructions for a function. Going further, we can
  12259. obtain the address of a label by using the \key{leaq} instruction and
  12260. PC-relative addressing. For example, the following puts the
  12261. address of the \code{inc} label into the \code{rbx} register.
  12262. \begin{lstlisting}
  12263. leaq inc(%rip), %rbx
  12264. \end{lstlisting}
  12265. The instruction pointer register \key{rip} (aka. the program counter
  12266. \index{subject}{program counter}) always points to the next
  12267. instruction to be executed. When combined with an label, as in
  12268. \code{inc(\%rip)}, the assembler computes the distance $d$ between the
  12269. address of \code{inc} and where the \code{rip} would be at that moment
  12270. and then changes the \code{inc(\%rip)} argument to \code{$d$(\%rip)},
  12271. which at runtime will compute the address of \code{inc}.
  12272. In Section~\ref{sec:x86} we used the \code{callq} instruction to jump
  12273. to functions whose locations were given by a label, such as
  12274. \code{read\_int}. To support function calls in this chapter we instead
  12275. will be jumping to functions whose location are given by an address in
  12276. a register, that is, we need to make an \emph{indirect function
  12277. call}. The x86 syntax for this is a \code{callq} instruction but with
  12278. an asterisk before the register name.\index{subject}{indirect function
  12279. call}
  12280. \begin{lstlisting}
  12281. callq *%rbx
  12282. \end{lstlisting}
  12283. \subsection{Calling Conventions}
  12284. \index{subject}{calling conventions}
  12285. The \code{callq} instruction provides partial support for implementing
  12286. functions: it pushes the return address on the stack and it jumps to
  12287. the target. However, \code{callq} does not handle
  12288. \begin{enumerate}
  12289. \item parameter passing,
  12290. \item pushing frames on the procedure call stack and popping them off,
  12291. or
  12292. \item determining how registers are shared by different functions.
  12293. \end{enumerate}
  12294. Regarding (1) parameter passing, recall that the following six
  12295. registers are used to pass arguments to a function, in this order.
  12296. \begin{lstlisting}
  12297. rdi rsi rdx rcx r8 r9
  12298. \end{lstlisting}
  12299. If there are
  12300. more than six arguments, then the convention is to use space on the
  12301. frame of the caller for the rest of the arguments. However, to ease
  12302. the implementation of efficient tail calls
  12303. (Section~\ref{sec:tail-call}), we arrange never to need more than six
  12304. arguments.
  12305. %
  12306. Also recall that the register \code{rax} is for the return value of
  12307. the function.
  12308. \index{subject}{prelude}\index{subject}{conclusion}
  12309. Regarding (2) frames \index{subject}{frame} and the procedure call
  12310. stack, \index{subject}{procedure call stack} recall from
  12311. Section~\ref{sec:x86} that the stack grows down and each function call
  12312. uses a chunk of space on the stack called a frame. The caller sets the
  12313. stack pointer, register \code{rsp}, to the last data item in its
  12314. frame. The callee must not change anything in the caller's frame, that
  12315. is, anything that is at or above the stack pointer. The callee is free
  12316. to use locations that are below the stack pointer.
  12317. Recall that we are storing variables of tuple type on the root stack.
  12318. So the prelude needs to move the root stack pointer \code{r15} up and
  12319. the conclusion needs to move the root stack pointer back down. Also,
  12320. the prelude must initialize to \code{0} this frame's slots in the root
  12321. stack to signal to the garbage collector that those slots do not yet
  12322. contain a pointer to a vector. Otherwise the garbage collector will
  12323. interpret the garbage bits in those slots as memory addresses and try
  12324. to traverse them, causing serious mayhem!
  12325. Regarding (3) the sharing of registers between different functions,
  12326. recall from Section~\ref{sec:calling-conventions} that the registers
  12327. are divided into two groups, the caller-saved registers and the
  12328. callee-saved registers. The caller should assume that all the
  12329. caller-saved registers get overwritten with arbitrary values by the
  12330. callee. That is why we recommend in
  12331. Section~\ref{sec:calling-conventions} that variables that are live
  12332. during a function call should not be assigned to caller-saved
  12333. registers.
  12334. On the flip side, if the callee wants to use a callee-saved register,
  12335. the callee must save the contents of those registers on their stack
  12336. frame and then put them back prior to returning to the caller. That
  12337. is why we recommended in Section~\ref{sec:calling-conventions} that if
  12338. the register allocator assigns a variable to a callee-saved register,
  12339. then the prelude of the \code{main} function must save that register
  12340. to the stack and the conclusion of \code{main} must restore it. This
  12341. recommendation now generalizes to all functions.
  12342. Recall that the base pointer, register \code{rbp}, is used as a
  12343. point-of-reference within a frame, so that each local variable can be
  12344. accessed at a fixed offset from the base pointer
  12345. (Section~\ref{sec:x86}).
  12346. %
  12347. Figure~\ref{fig:call-frames} shows the general layout of the caller
  12348. and callee frames.
  12349. \begin{figure}[tbp]
  12350. \centering
  12351. \begin{tabular}{r|r|l|l} \hline
  12352. Caller View & Callee View & Contents & Frame \\ \hline
  12353. 8(\key{\%rbp}) & & return address & \multirow{5}{*}{Caller}\\
  12354. 0(\key{\%rbp}) & & old \key{rbp} \\
  12355. -8(\key{\%rbp}) & & callee-saved $1$ \\
  12356. \ldots & & \ldots \\
  12357. $-8j$(\key{\%rbp}) & & callee-saved $j$ \\
  12358. $-8(j+1)$(\key{\%rbp}) & & local variable $1$ \\
  12359. \ldots & & \ldots \\
  12360. $-8(j+k)$(\key{\%rbp}) & & local variable $k$ \\
  12361. %% & & \\
  12362. %% $8n-8$\key{(\%rsp)} & $8n+8$(\key{\%rbp})& argument $n$ \\
  12363. %% & \ldots & \ldots \\
  12364. %% 0\key{(\%rsp)} & 16(\key{\%rbp}) & argument $1$ & \\
  12365. \hline
  12366. & 8(\key{\%rbp}) & return address & \multirow{5}{*}{Callee}\\
  12367. & 0(\key{\%rbp}) & old \key{rbp} \\
  12368. & -8(\key{\%rbp}) & callee-saved $1$ \\
  12369. & \ldots & \ldots \\
  12370. & $-8n$(\key{\%rbp}) & callee-saved $n$ \\
  12371. & $-8(n+1)$(\key{\%rbp}) & local variable $1$ \\
  12372. & \ldots & \ldots \\
  12373. & $-8(n+m)$(\key{\%rsp}) & local variable $m$\\ \hline
  12374. \end{tabular}
  12375. \caption{Memory layout of caller and callee frames.}
  12376. \label{fig:call-frames}
  12377. \end{figure}
  12378. %% Recall from Section~\ref{sec:x86} that the stack is also used for
  12379. %% local variables and for storing the values of callee-saved registers
  12380. %% (we shall refer to all of these collectively as ``locals''), and that
  12381. %% at the beginning of a function we move the stack pointer \code{rsp}
  12382. %% down to make room for them.
  12383. %% We recommend storing the local variables
  12384. %% first and then the callee-saved registers, so that the local variables
  12385. %% can be accessed using \code{rbp} the same as before the addition of
  12386. %% functions.
  12387. %% To make additional room for passing arguments, we shall
  12388. %% move the stack pointer even further down. We count how many stack
  12389. %% arguments are needed for each function call that occurs inside the
  12390. %% body of the function and find their maximum. Adding this number to the
  12391. %% number of locals gives us how much the \code{rsp} should be moved at
  12392. %% the beginning of the function. In preparation for a function call, we
  12393. %% offset from \code{rsp} to set up the stack arguments. We put the first
  12394. %% stack argument in \code{0(\%rsp)}, the second in \code{8(\%rsp)}, and
  12395. %% so on.
  12396. %% Upon calling the function, the stack arguments are retrieved by the
  12397. %% callee using the base pointer \code{rbp}. The address \code{16(\%rbp)}
  12398. %% is the location of the first stack argument, \code{24(\%rbp)} is the
  12399. %% address of the second, and so on. Figure~\ref{fig:call-frames} shows
  12400. %% the layout of the caller and callee frames. Notice how important it is
  12401. %% that we correctly compute the maximum number of arguments needed for
  12402. %% function calls; if that number is too small then the arguments and
  12403. %% local variables will smash into each other!
  12404. \subsection{Efficient Tail Calls}
  12405. \label{sec:tail-call}
  12406. In general, the amount of stack space used by a program is determined
  12407. by the longest chain of nested function calls. That is, if function
  12408. $f_1$ calls $f_2$, $f_2$ calls $f_3$, $\ldots$, $f_n$, then the amount
  12409. of stack space is linear in $n$. The depth $n$ can grow quite large
  12410. in the case of recursive or mutually recursive functions. However, in
  12411. some cases we can arrange to use only a constant amount of space for a
  12412. long chain of nested function calls.
  12413. If a function call is the last action in a function body, then that
  12414. call is said to be a \emph{tail call}\index{subject}{tail call}.
  12415. For example, in the following
  12416. program, the recursive call to \code{tail\_sum} is a tail call.
  12417. \begin{center}
  12418. {\if\edition\racketEd
  12419. \begin{lstlisting}
  12420. (define (tail_sum [n : Integer] [r : Integer]) : Integer
  12421. (if (eq? n 0)
  12422. r
  12423. (tail_sum (- n 1) (+ n r))))
  12424. (+ (tail_sum 3 0) 36)
  12425. \end{lstlisting}
  12426. \fi}
  12427. {\if\edition\pythonEd
  12428. \begin{lstlisting}
  12429. def tail_sum(n : int, r : int) -> int:
  12430. if n == 0:
  12431. return r
  12432. else:
  12433. return tail_sum(n - 1, n + r)
  12434. print( tail_sum(3, 0) + 36)
  12435. \end{lstlisting}
  12436. \fi}
  12437. \end{center}
  12438. At a tail call, the frame of the caller is no longer needed, so we can
  12439. pop the caller's frame before making the tail call. With this
  12440. approach, a recursive function that only makes tail calls will only
  12441. use a constant amount of stack space. Functional languages like
  12442. Racket typically rely heavily on recursive functions, so they
  12443. typically guarantee that all tail calls will be optimized in this way.
  12444. \index{subject}{frame}
  12445. Some care is needed with regards to argument passing in tail calls.
  12446. As mentioned above, for arguments beyond the sixth, the convention is
  12447. to use space in the caller's frame for passing arguments. But for a
  12448. tail call we pop the caller's frame and can no longer use it. An
  12449. alternative is to use space in the callee's frame for passing
  12450. arguments. However, this option is also problematic because the caller
  12451. and callee's frames overlap in memory. As we begin to copy the
  12452. arguments from their sources in the caller's frame, the target
  12453. locations in the callee's frame might collide with the sources for
  12454. later arguments! We solve this problem by using the heap instead of
  12455. the stack for passing more than six arguments, which we describe in
  12456. the Section~\ref{sec:limit-functions-r4}.
  12457. As mentioned above, for a tail call we pop the caller's frame prior to
  12458. making the tail call. The instructions for popping a frame are the
  12459. instructions that we usually place in the conclusion of a
  12460. function. Thus, we also need to place such code immediately before
  12461. each tail call. These instructions include restoring the callee-saved
  12462. registers, so it is fortunate that the argument passing registers are
  12463. all caller-saved registers!
  12464. One last note regarding which instruction to use to make the tail
  12465. call. When the callee is finished, it should not return to the current
  12466. function, but it should return to the function that called the current
  12467. one. Thus, the return address that is already on the stack is the
  12468. right one, and we should not use \key{callq} to make the tail call, as
  12469. that would unnecessarily overwrite the return address. Instead we can
  12470. simply use the \key{jmp} instruction. Like the indirect function call,
  12471. we write an \emph{indirect jump}\index{subject}{indirect jump} with a
  12472. register prefixed with an asterisk. We recommend using \code{rax} to
  12473. hold the jump target because the preceding conclusion can overwrite
  12474. just about everything else.
  12475. \begin{lstlisting}
  12476. jmp *%rax
  12477. \end{lstlisting}
  12478. \section{Shrink \LangFun{}}
  12479. \label{sec:shrink-r4}
  12480. The \code{shrink} pass performs a minor modification to ease the
  12481. later passes. This pass introduces an explicit \code{main} function.
  12482. %
  12483. \racket{It also changes the top \code{ProgramDefsExp} form to
  12484. \code{ProgramDefs}.}
  12485. {\if\edition\racketEd
  12486. \begin{lstlisting}
  12487. (ProgramDefsExp |$\itm{info}$| (|$\Def\ldots$|) |$\Exp$|)
  12488. |$\Rightarrow$| (ProgramDefs |$\itm{info}$| (|$\Def\ldots$| |$\itm{mainDef}$|))
  12489. \end{lstlisting}
  12490. where $\itm{mainDef}$ is
  12491. \begin{lstlisting}
  12492. (Def 'main '() 'Integer '() |$\Exp'$|)
  12493. \end{lstlisting}
  12494. \fi}
  12495. {\if\edition\pythonEd
  12496. \begin{lstlisting}
  12497. Module(|$\Def\ldots\Stmt\ldots$|)
  12498. |$\Rightarrow$| Module(|$\Def\ldots\itm{mainDef}$|)
  12499. \end{lstlisting}
  12500. where $\itm{mainDef}$ is
  12501. \begin{lstlisting}
  12502. FunctionDef('main', [], int, |$\Stmt'\ldots$|Return(Constant(0)))
  12503. \end{lstlisting}
  12504. \fi}
  12505. \section{Reveal Functions and the \LangFunRef{} language}
  12506. \label{sec:reveal-functions-r4}
  12507. The syntax of \LangFun{} is inconvenient for purposes of compilation
  12508. in that it conflates the use of function names and local
  12509. variables. This is a problem because we need to compile the use of a
  12510. function name differently than the use of a local variable; we need to
  12511. use \code{leaq} to convert the function name (a label in x86) to an
  12512. address in a register. Thus, we create a new pass that changes
  12513. function references from $\VAR{f}$ to $\FUNREF{f}$. This pass is named
  12514. \code{reveal\_functions} and the output language, \LangFunRef{}, is
  12515. defined in Figure~\ref{fig:f1-syntax}.
  12516. %% The concrete syntax for a
  12517. %% function reference is $\CFUNREF{f}$.
  12518. \begin{figure}[tp]
  12519. \centering
  12520. \fbox{
  12521. \begin{minipage}{0.96\textwidth}
  12522. {\if\edition\racketEd
  12523. \[
  12524. \begin{array}{lcl}
  12525. \Exp &::=& \ldots \MID \FUNREF{\Var}\\
  12526. \Def &::=& \gray{ \FUNDEF{\Var}{([\Var \code{:} \Type]\ldots)}{\Type}{\code{'()}}{\Exp} }\\
  12527. \LangFunRefM{} &::=& \PROGRAMDEFS{\code{'()}}{\LP \Def\ldots \RP}
  12528. \end{array}
  12529. \]
  12530. \fi}
  12531. {\if\edition\pythonEd
  12532. \[
  12533. \begin{array}{lcl}
  12534. \Exp &::=& \FUNREF{\Var}\\
  12535. \LangFunM{} &::=& \PROGRAM{}{\LS \Def \code{,} \ldots \RS}
  12536. \end{array}
  12537. \]
  12538. \fi}
  12539. \end{minipage}
  12540. }
  12541. \caption{The abstract syntax \LangFunRef{}, an extension of \LangFun{}
  12542. (Figure~\ref{fig:Rfun-syntax}).}
  12543. \label{fig:f1-syntax}
  12544. \end{figure}
  12545. %% Distinguishing between calls in tail position and non-tail position
  12546. %% requires the pass to have some notion of context. We recommend using
  12547. %% two mutually recursive functions, one for processing expressions in
  12548. %% tail position and another for the rest.
  12549. \racket{Placing this pass after \code{uniquify} will make sure that
  12550. there are no local variables and functions that share the same
  12551. name.}
  12552. %
  12553. The \code{reveal\_functions} pass should come before the
  12554. \code{remove\_complex\_operands} pass because function references
  12555. should be categorized as complex expressions.
  12556. \section{Limit Functions}
  12557. \label{sec:limit-functions-r4}
  12558. Recall that we wish to limit the number of function parameters to six
  12559. so that we do not need to use the stack for argument passing, which
  12560. makes it easier to implement efficient tail calls. However, because
  12561. the input language \LangFun{} supports arbitrary numbers of function
  12562. arguments, we have some work to do!
  12563. This pass transforms functions and function calls that involve more
  12564. than six arguments to pass the first five arguments as usual, but it
  12565. packs the rest of the arguments into a vector and passes it as the
  12566. sixth argument.
  12567. Each function definition with too many parameters is transformed as
  12568. follows.
  12569. {\if\edition\racketEd
  12570. \begin{lstlisting}
  12571. (Def |$f$| ([|$x_1$|:|$T_1$|] |$\ldots$| [|$x_n$|:|$T_n$|]) |$T_r$| |$\itm{info}$| |$\itm{body}$|)
  12572. |$\Rightarrow$|
  12573. (Def |$f$| ([|$x_1$|:|$T_1$|] |$\ldots$| [|$x_5$|:|$T_5$|] [tup : (Vector |$T_6 \ldots T_n$|)]) |$T_r$| |$\itm{info}$| |$\itm{body}'$|)
  12574. \end{lstlisting}
  12575. \fi}
  12576. {\if\edition\pythonEd
  12577. \begin{lstlisting}
  12578. FunctionDef(|$f$|, [(|$x_1$|,|$T_1$|),|$\ldots$|,(|$x_n$|,|$T_n$|)], |$T_r$|, |$\itm{body}$|)
  12579. |$\Rightarrow$|
  12580. FunctionDef(|$f$|, [(|$x_1$|,|$T_1$|),|$\ldots$|,(|$x_5$|,|$T_5$|),(tup,TupleType([|$T_6, \ldots, T_n$|]))], |$T_r$|, |$\itm{body}'$|)
  12581. \end{lstlisting}
  12582. \fi}
  12583. %
  12584. \noindent where the $\itm{body}$ is transformed into $\itm{body}'$ by
  12585. replacing the occurrences of each parameter $x_i$ where $i > 5$ with
  12586. the $k$th element of the tuple, where $k = i - 6$.
  12587. %
  12588. {\if\edition\racketEd
  12589. \begin{lstlisting}
  12590. (Var |$x_i$|) |$\Rightarrow$| (Prim 'vector-ref (list tup (Int |$k$|)))
  12591. \end{lstlisting}
  12592. \fi}
  12593. {\if\edition\pythonEd
  12594. \begin{lstlisting}
  12595. Name(|$x_i$|) |$\Rightarrow$| Subscript(tup, Constant(|$k$|))
  12596. \end{lstlisting}
  12597. \fi}
  12598. For function calls with too many arguments, the \code{limit\_functions}
  12599. pass transforms them in the following way.
  12600. \begin{tabular}{lll}
  12601. \begin{minipage}{0.3\textwidth}
  12602. {\if\edition\racketEd
  12603. \begin{lstlisting}
  12604. (|$e_0$| |$e_1$| |$\ldots$| |$e_n$|)
  12605. \end{lstlisting}
  12606. \fi}
  12607. {\if\edition\pythonEd
  12608. \begin{lstlisting}
  12609. Call(|$e_0$|, [|$e_1,\ldots,e_n$|])
  12610. \end{lstlisting}
  12611. \fi}
  12612. \end{minipage}
  12613. &
  12614. $\Rightarrow$
  12615. &
  12616. \begin{minipage}{0.5\textwidth}
  12617. {\if\edition\racketEd
  12618. \begin{lstlisting}
  12619. (|$e_0$| |$e_1 \ldots e_5$| (vector |$e_6 \ldots e_n$|))
  12620. \end{lstlisting}
  12621. \fi}
  12622. {\if\edition\pythonEd
  12623. \begin{lstlisting}
  12624. Call(|$e_0$|, [|$e_1,\ldots,e_5$|,Tuple([|$e_6,\ldots,e_n$|])])
  12625. \end{lstlisting}
  12626. \fi}
  12627. \end{minipage}
  12628. \end{tabular}
  12629. \section{Remove Complex Operands}
  12630. \label{sec:rco-r4}
  12631. The primary decisions to make for this pass is whether to classify
  12632. \code{FunRef} and \racket{\code{Apply}}\python{\code{Call}} as either
  12633. atomic or complex expressions. Recall that a simple expression will
  12634. eventually end up as just an immediate argument of an x86
  12635. instruction. Function application will be translated to a sequence of
  12636. instructions, so \racket{\code{Apply}}\python{\code{Call}} must be
  12637. classified as complex expression. On the other hand, the arguments of
  12638. \racket{\code{Apply}}\python{\code{Call}} should be atomic expressions.
  12639. %
  12640. Regarding \code{FunRef}, as discussed above, the function label needs
  12641. to be converted to an address using the \code{leaq} instruction. Thus,
  12642. even though \code{FunRef} seems rather simple, it needs to be
  12643. classified as a complex expression so that we generate an assignment
  12644. statement with a left-hand side that can serve as the target of the
  12645. \code{leaq}.
  12646. The output of this pass, \LangFunANF{}, extends \LangAllocANF{}
  12647. (Figure~\ref{fig:Lvec-anf-syntax}) with \code{FunRef}
  12648. and \racket{\code{Apply}}\python{\code{Call}} in the grammar for expressions.
  12649. %
  12650. \python{Also, \LangFunANF{} adds \code{Return} to the grammar for statements.}
  12651. % TODO: Return?
  12652. %% Figure~\ref{fig:Rfun-anf-syntax} defines the output language
  12653. %% \LangFunANF{} of this pass.
  12654. %% \begin{figure}[tp]
  12655. %% \centering
  12656. %% \fbox{
  12657. %% \begin{minipage}{0.96\textwidth}
  12658. %% \small
  12659. %% \[
  12660. %% \begin{array}{rcl}
  12661. %% \Atm &::=& \gray{ \INT{\Int} \MID \VAR{\Var} \MID \BOOL{\itm{bool}}
  12662. %% \MID \VOID{} } \\
  12663. %% \Exp &::=& \gray{ \Atm \MID \READ{} } \\
  12664. %% &\MID& \gray{ \NEG{\Atm} \MID \ADD{\Atm}{\Atm} } \\
  12665. %% &\MID& \gray{ \LET{\Var}{\Exp}{\Exp} } \\
  12666. %% &\MID& \gray{ \UNIOP{\key{'not}}{\Atm} } \\
  12667. %% &\MID& \gray{ \BINOP{\itm{cmp}}{\Atm}{\Atm} \MID \IF{\Exp}{\Exp}{\Exp} }\\
  12668. %% &\MID& \gray{ \LP\key{Collect}~\Int\RP \MID \LP\key{Allocate}~\Int~\Type\RP
  12669. %% \MID \LP\key{GlobalValue}~\Var\RP }\\
  12670. %% &\MID& \FUNREF{\Var} \MID \APPLY{\Atm}{\Atm\ldots}\\
  12671. %% \Def &::=& \gray{ \FUNDEF{\Var}{([\Var \code{:} \Type]\ldots)}{\Type}{\code{'()}}{\Exp} }\\
  12672. %% R^{\dagger}_4 &::=& \gray{ \PROGRAMDEFS{\code{'()}}{\Def} }
  12673. %% \end{array}
  12674. %% \]
  12675. %% \end{minipage}
  12676. %% }
  12677. %% \caption{\LangFunANF{} is \LangFunRefAlloc{} in monadic normal form.}
  12678. %% \label{fig:Rfun-anf-syntax}
  12679. %% \end{figure}
  12680. \section{Explicate Control and the \LangCFun{} language}
  12681. \label{sec:explicate-control-r4}
  12682. Figure~\ref{fig:c3-syntax} defines the abstract syntax for \LangCFun{}, the
  12683. output of \code{explicate\_control}.
  12684. %
  12685. \racket{(The concrete syntax is given in
  12686. Figure~\ref{fig:c3-concrete-syntax} of the Appendix.)}
  12687. %
  12688. The auxiliary functions for assignment\racket{and tail contexts} should
  12689. be updated with cases for
  12690. \racket{\code{Apply}}\python{\code{Call}} and \code{FunRef} and the
  12691. function for predicate context should be updated for
  12692. \racket{\code{Apply}}\python{\code{Call}} but not \code{FunRef}. (A
  12693. \code{FunRef} can't be a Boolean.) In assignment and predicate
  12694. contexts, \code{Apply} becomes \code{Call}\racket{, whereas in tail position
  12695. \code{Apply} becomes \code{TailCall}}. We recommend defining a new
  12696. auxiliary function for processing function definitions. This code is
  12697. similar to the case for \code{Program} in \LangVec{}. The top-level
  12698. \code{explicate\_control} function that handles the \code{ProgramDefs}
  12699. form of \LangFun{} can then apply this new function to all the
  12700. function definitions.
  12701. {\if\edition\pythonEd
  12702. The translation of \code{Return} statements requires a new auxiliary
  12703. function to handle expressions in tail context, called
  12704. \code{explicate\_tail}. The function should take an expression and the
  12705. dictionary of basic blocks and produce a list of statements in the
  12706. \LangCFun{} language. The \code{explicate\_tail} function should
  12707. include cases for \code{Begin}, \code{IfExp}, \code{Let}, \code{Call},
  12708. and a default case for other kinds of expressions. The default case
  12709. should produce a \code{Return} statement. The case for \code{Call}
  12710. should change it into \code{TailCall}. The other cases should
  12711. recursively process their subexpressions and statements, choosing the
  12712. appropriate explicate functions for the various contexts.
  12713. \fi}
  12714. \newcommand{\CfunASTPython}{
  12715. \begin{array}{lcl}
  12716. \Exp &::= & \FUNREF{\itm{label}} \MID \CALL{\Atm}{\LS\Atm\code{,}\ldots\RS} \\
  12717. \Stmt &::= & \TAILCALL{\Atm}{\LS\Atm\code{,}\ldots\RS} \\
  12718. \Def &::=& \DEF{\itm{label}}{\LS\LP\Var\key{,}\Type\RP\code{,}\ldots\RS}{\LC\itm{label}\key{:}\Stmt^{*}\code{,}\ldots\RC}{\_}{\Type}{\_}
  12719. \end{array}
  12720. }
  12721. \begin{figure}[tp]
  12722. \fbox{
  12723. \begin{minipage}{0.96\textwidth}
  12724. \small
  12725. {\if\edition\racketEd
  12726. \[
  12727. \begin{array}{lcl}
  12728. \Atm &::=& \gray{ \INT{\Int} \MID \VAR{\Var} \MID \BOOL{\itm{bool}} }\\
  12729. \itm{cmp} &::= & \gray{ \key{eq?} \MID \key{<} } \\
  12730. \Exp &::= & \gray{ \Atm \MID \READ{} } \\
  12731. &\MID& \gray{ \NEG{\Atm} \MID \ADD{\Atm}{\Atm} }\\
  12732. &\MID& \gray{ \UNIOP{\key{not}}{\Atm} \MID \BINOP{\itm{cmp}}{\Atm}{\Atm} } \\
  12733. &\MID& \gray{ \LP\key{Allocate} \,\itm{int}\,\itm{type}\RP } \\
  12734. &\MID& \gray{ \BINOP{\key{'vector-ref}}{\Atm}{\INT{\Int}} }\\
  12735. &\MID& \gray{ \LP\key{Prim}~\key{'vector-set!}\,\LP\key{list}\,\Atm\,\INT{\Int}\,\Atm\RP\RP }\\
  12736. &\MID& \gray{ \LP\key{GlobalValue} \,\Var\RP \MID \LP\key{Void}\RP }\\
  12737. &\MID& \FUNREF{\itm{label}} \MID \CALL{\Atm}{\LP\Atm\ldots\RP} \\
  12738. \Stmt &::=& \gray{ \ASSIGN{\VAR{\Var}}{\Exp}
  12739. \MID \LP\key{Collect} \,\itm{int}\RP } \\
  12740. \Tail &::= & \gray{ \RETURN{\Exp} \MID \SEQ{\Stmt}{\Tail}
  12741. \MID \GOTO{\itm{label}} } \\
  12742. &\MID& \gray{ \IFSTMT{\BINOP{\itm{cmp}}{\Atm}{\Atm}}{\GOTO{\itm{label}}}{\GOTO{\itm{label}}} }\\
  12743. &\MID& \TAILCALL{\Atm}{\Atm\ldots} \\
  12744. \Def &::=& \DEF{\itm{label}}{\LP[\Var\key{:}\Type]\ldots\RP}{\Type}{\itm{info}}{\LP\LP\itm{label}\,\key{.}\,\Tail\RP\ldots\RP}\\
  12745. \LangCFunM{} & ::= & \PROGRAMDEFS{\itm{info}}{\LP\Def\ldots\RP}
  12746. \end{array}
  12747. \]
  12748. \fi}
  12749. {\if\edition\pythonEd
  12750. \[
  12751. \begin{array}{l}
  12752. \gray{\CifASTPython} \\ \hline
  12753. \gray{\CtupASTPython} \\ \hline
  12754. \CfunASTPython \\
  12755. \begin{array}{lcl}
  12756. \LangCFunM{} & ::= & \CPROGRAMDEFS{\LS\Def\code{,}\ldots\RS}
  12757. \end{array}
  12758. \end{array}
  12759. \]
  12760. \fi}
  12761. \end{minipage}
  12762. }
  12763. \caption{The abstract syntax of \LangCFun{}, extending \LangCVec{} (Figure~\ref{fig:c2-syntax}).}
  12764. \label{fig:c3-syntax}
  12765. \end{figure}
  12766. \section{Select Instructions and the \LangXIndCall{} Language}
  12767. \label{sec:select-r4}
  12768. \index{subject}{instruction selection}
  12769. The output of select instructions is a program in the \LangXIndCall{}
  12770. language, whose syntax is defined in Figure~\ref{fig:x86-3}.
  12771. \index{subject}{x86}
  12772. \begin{figure}[tp]
  12773. \fbox{
  12774. \begin{minipage}{0.96\textwidth}
  12775. \small
  12776. \[
  12777. \begin{array}{lcl}
  12778. \Arg &::=& \gray{ \key{\$}\Int \MID \key{\%}\Reg \MID \Int\key{(}\key{\%}\Reg\key{)} \MID \key{\%}\itm{bytereg} } \MID \Var \key{(\%rip)} \\
  12779. \itm{cc} & ::= & \gray{ \key{e} \MID \key{l} \MID \key{le} \MID \key{g} \MID \key{ge} } \\
  12780. \Instr &::=& \ldots
  12781. \MID \key{callq}\;\key{*}\Arg \MID \key{tailjmp}\;\Arg
  12782. \MID \key{leaq}\;\Arg\key{,}\;\key{\%}\Reg \\
  12783. \Block &::= & \Instr\ldots \\
  12784. \Def &::= & \LP\key{define} \; \LP\itm{label}\RP \;\LP\LP\itm{label} \,\key{.}\, \Block\RP\ldots\RP\RP\\
  12785. \LangXIndCallM{} &::= & \Def\ldots
  12786. \end{array}
  12787. \]
  12788. \end{minipage}
  12789. }
  12790. \caption{The concrete syntax of \LangXIndCall{} (extends \LangXGlobal{} of Figure~\ref{fig:x86-2-concrete}).}
  12791. \label{fig:x86-3-concrete}
  12792. \end{figure}
  12793. \begin{figure}[tp]
  12794. \fbox{
  12795. \begin{minipage}{0.96\textwidth}
  12796. \small
  12797. {\if\edition\racketEd
  12798. \[
  12799. \begin{array}{lcl}
  12800. \Arg &::=& \gray{ \INT{\Int} \MID \REG{\Reg} \MID \DEREF{\Reg}{\Int}
  12801. \MID \BYTEREG{\Reg} } \\
  12802. &\MID& \gray{ \GLOBAL{\Var} } \MID \FUNREF{\itm{label}} \\
  12803. \Instr &::=& \ldots \MID \INDCALLQ{\Arg}{\itm{int}}
  12804. \MID \TAILJMP{\Arg}{\itm{int}}\\
  12805. &\MID& \BININSTR{\code{'leaq}}{\Arg}{\REG{\Reg}}\\
  12806. \Block &::= & \BLOCK{\itm{info}}{\LP\Instr\ldots\RP}\\
  12807. \Def &::= & \DEF{\itm{label}}{\code{'()}}{\Type}{\itm{info}}{\LP\LP\itm{label}\,\key{.}\,\Block\RP\ldots\RP} \\
  12808. \LangXIndCallM{} &::= & \PROGRAMDEFS{\itm{info}}{\LP\Def\ldots\RP}
  12809. \end{array}
  12810. \]
  12811. \fi}
  12812. {\if\edition\pythonEd
  12813. \[
  12814. \begin{array}{lcl}
  12815. \Arg &::=& \gray{ \INT{\Int} \MID \REG{\Reg} \MID \DEREF{\Reg}{\Int}
  12816. \MID \BYTEREG{\Reg} } \\
  12817. &\MID& \gray{ \GLOBAL{\Var} } \MID \FUNREF{\itm{label}} \\
  12818. \Instr &::=& \ldots \MID \INDCALLQ{\Arg}{\itm{int}}
  12819. \MID \TAILJMP{\Arg}{\itm{int}}\\
  12820. &\MID& \BININSTR{\code{leaq}}{\Arg}{\REG{\Reg}}\\
  12821. \Def &::= & \DEF{\itm{label}}{\LS\RS}{\LC\itm{label}\key{:}\,\Instr^{*}\code{,}\ldots\RC}{\_}{\Type}{\_} \\
  12822. \LangXIndCallM{} &::= & \XPROGRAMDEFS{\LS\Def\code{,}\ldots\RS}
  12823. \end{array}
  12824. \]
  12825. \fi}
  12826. \end{minipage}
  12827. }
  12828. \caption{The abstract syntax of \LangXIndCall{} (extends
  12829. \LangXGlobal{} of Figure~\ref{fig:x86-2}).}
  12830. \label{fig:x86-3}
  12831. \end{figure}
  12832. An assignment of a function reference to a variable becomes a
  12833. load-effective-address instruction as follows, where $\itm{lhs}'$
  12834. is the translation of $\itm{lhs}$ from \Atm{} in \LangCFun{}
  12835. to \Arg{} in \LangXIndCallVar{}. \\
  12836. \begin{tabular}{lcl}
  12837. \begin{minipage}{0.35\textwidth}
  12838. \begin{lstlisting}
  12839. |$\itm{lhs}$| = (fun-ref |$f$|);
  12840. \end{lstlisting}
  12841. \end{minipage}
  12842. &
  12843. $\Rightarrow$\qquad\qquad
  12844. &
  12845. \begin{minipage}{0.3\textwidth}
  12846. \begin{lstlisting}
  12847. leaq (fun-ref |$f$|), |$\itm{lhs}'$|
  12848. \end{lstlisting}
  12849. \end{minipage}
  12850. \end{tabular} \\
  12851. Regarding function definitions, we need to remove the parameters and
  12852. instead perform parameter passing using the conventions discussed in
  12853. Section~\ref{sec:fun-x86}. That is, the arguments are passed in
  12854. registers. We recommend turning the parameters into local variables
  12855. and generating instructions at the beginning of the function to move
  12856. from the argument passing registers to these local variables.
  12857. {\if\edition\racketEd
  12858. \begin{lstlisting}
  12859. (Def |$f$| '([|$x_1$| : |$T_1$|] [|$x_2$| : |$T_2$|] |$\ldots$| ) |$T_r$| |$\itm{info}$| |$B$|)
  12860. |$\Rightarrow$|
  12861. (Def |$f$| '() 'Integer |$\itm{info}'$| |$B'$|)
  12862. \end{lstlisting}
  12863. \fi}
  12864. {\if\edition\pythonEd
  12865. \begin{lstlisting}
  12866. FunctionDef(|$f$|, [|$(x_1,T_1),\ldots$|], |$B$|, _, |$T_r$|, _)
  12867. |$\Rightarrow$|
  12868. FunctionDef(|$f$|, [], |$B'$|, _, int, _)
  12869. \end{lstlisting}
  12870. \fi}
  12871. The basic blocks $B'$ are the same as $B$ except that the
  12872. \code{start} block is modified to add the instructions for moving from
  12873. the argument registers to the parameter variables. So the \code{start}
  12874. block of $B$ shown on the left is changed to the code on the right.
  12875. \begin{center}
  12876. \begin{minipage}{0.3\textwidth}
  12877. \begin{lstlisting}
  12878. start:
  12879. |$\itm{instr}_1$|
  12880. |$\cdots$|
  12881. |$\itm{instr}_n$|
  12882. \end{lstlisting}
  12883. \end{minipage}
  12884. $\Rightarrow$
  12885. \begin{minipage}{0.3\textwidth}
  12886. \begin{lstlisting}
  12887. start:
  12888. movq %rdi, |$x_1$|
  12889. |$\cdots$|
  12890. |$\itm{instr}_1$|
  12891. |$\cdots$|
  12892. |$\itm{instr}_n$|
  12893. \end{lstlisting}
  12894. \end{minipage}
  12895. \end{center}
  12896. By changing the parameters to local variables, we are giving the
  12897. register allocator control over which registers or stack locations to
  12898. use for them. If you implemented the move-biasing challenge
  12899. (Section~\ref{sec:move-biasing}), the register allocator will try to
  12900. assign the parameter variables to the corresponding argument register,
  12901. in which case the \code{patch\_instructions} pass will remove the
  12902. \code{movq} instruction. This happens in the example translation in
  12903. Figure~\ref{fig:add-fun} of Section~\ref{sec:functions-example}, in
  12904. the \code{add} function.
  12905. %
  12906. Also, note that the register allocator will perform liveness analysis
  12907. on this sequence of move instructions and build the interference
  12908. graph. So, for example, $x_1$ will be marked as interfering with
  12909. \code{rsi} and that will prevent the assignment of $x_1$ to
  12910. \code{rsi}, which is good, because that would overwrite the argument
  12911. that needs to move into $x_2$.
  12912. Next, consider the compilation of function calls. In the mirror image
  12913. of handling the parameters of function definitions, the arguments need
  12914. to be moved to the argument passing registers. The function call
  12915. itself is performed with an indirect function call. The return value
  12916. from the function is stored in \code{rax}, so it needs to be moved
  12917. into the \itm{lhs}.
  12918. \begin{lstlisting}
  12919. |\itm{lhs}| = |$\CALL{\itm{fun}}{\itm{arg}_1\ldots}$|
  12920. |$\Rightarrow$|
  12921. movq |$\itm{arg}_1$|, %rdi
  12922. movq |$\itm{arg}_2$|, %rsi
  12923. |$\vdots$|
  12924. callq *|\itm{fun}|
  12925. movq %rax, |\itm{lhs}|
  12926. \end{lstlisting}
  12927. The \code{IndirectCallq} AST node includes an integer for the arity of
  12928. the function, i.e., the number of parameters. That information is
  12929. useful in the \code{uncover\_live} pass for determining which
  12930. argument-passing registers are potentially read during the call.
  12931. For tail calls, the parameter passing is the same as non-tail calls:
  12932. generate instructions to move the arguments into to the argument
  12933. passing registers. After that we need to pop the frame from the
  12934. procedure call stack. However, we do not yet know how big the frame
  12935. is; that gets determined during register allocation. So instead of
  12936. generating those instructions here, we invent a new instruction that
  12937. means ``pop the frame and then do an indirect jump'', which we name
  12938. \code{TailJmp}. The abstract syntax for this instruction includes an
  12939. argument that specifies where to jump and an integer that represents
  12940. the arity of the function being called.
  12941. Recall that we use the label \code{start} for the initial block of a
  12942. program, and in Section~\ref{sec:select-Lvar} we recommended labeling
  12943. the conclusion of the program with \code{conclusion}, so that
  12944. $\RETURN{Arg}$ can be compiled to an assignment to \code{rax} followed
  12945. by a jump to \code{conclusion}. With the addition of function
  12946. definitions, there is a start block and conclusion for each function,
  12947. but their labels need to be unique. We recommend prepending the
  12948. function's name to \code{start} and \code{conclusion}, respectively,
  12949. to obtain unique labels.
  12950. \section{Register Allocation}
  12951. \label{sec:register-allocation-r4}
  12952. \subsection{Liveness Analysis}
  12953. \label{sec:liveness-analysis-r4}
  12954. \index{subject}{liveness analysis}
  12955. %% The rest of the passes need only minor modifications to handle the new
  12956. %% kinds of AST nodes: \code{fun-ref}, \code{indirect-callq}, and
  12957. %% \code{leaq}.
  12958. The \code{IndirectCallq} instruction should be treated like
  12959. \code{Callq} regarding its written locations $W$, in that they should
  12960. include all the caller-saved registers. Recall that the reason for
  12961. that is to force call-live variables to be assigned to callee-saved
  12962. registers or to be spilled to the stack.
  12963. Regarding the set of read locations $R$ the arity field of
  12964. \code{TailJmp} and \code{IndirectCallq} determines how many of the
  12965. argument-passing registers should be considered as read by those
  12966. instructions.
  12967. \subsection{Build Interference Graph}
  12968. \label{sec:build-interference-r4}
  12969. With the addition of function definitions, we compute an interference
  12970. graph for each function (not just one for the whole program).
  12971. Recall that in Section~\ref{sec:reg-alloc-gc} we discussed the need to
  12972. spill vector-typed variables that are live during a call to the
  12973. \code{collect}. With the addition of functions to our language, we
  12974. need to revisit this issue. Many functions perform allocation and
  12975. therefore have calls to the collector inside of them. Thus, we should
  12976. not only spill a vector-typed variable when it is live during a call
  12977. to \code{collect}, but we should spill the variable if it is live
  12978. during any function call. Thus, in the \code{build\_interference} pass,
  12979. we recommend adding interference edges between call-live vector-typed
  12980. variables and the callee-saved registers (in addition to the usual
  12981. addition of edges between call-live variables and the caller-saved
  12982. registers).
  12983. \subsection{Allocate Registers}
  12984. The primary change to the \code{allocate\_registers} pass is adding an
  12985. auxiliary function for handling definitions (the \Def{} non-terminal
  12986. in Figure~\ref{fig:x86-3}) with one case for function definitions. The
  12987. logic is the same as described in
  12988. Chapter~\ref{ch:register-allocation-Lvar}, except now register
  12989. allocation is performed many times, once for each function definition,
  12990. instead of just once for the whole program.
  12991. \section{Patch Instructions}
  12992. In \code{patch\_instructions}, you should deal with the x86
  12993. idiosyncrasy that the destination argument of \code{leaq} must be a
  12994. register. Additionally, you should ensure that the argument of
  12995. \code{TailJmp} is \itm{rax}, our reserved register---this is to make
  12996. code generation more convenient, because we trample many registers
  12997. before the tail call (as explained in the next section).
  12998. \section{Prelude and Conclusion}
  12999. %% For the \code{print\_x86} pass, the cases for \code{FunRef} and
  13000. %% \code{IndirectCallq} are straightforward: output their concrete
  13001. %% syntax.
  13002. %% \begin{lstlisting}
  13003. %% (FunRef |\itm{label}|) |$\Rightarrow$| |\itm{label}|(%rip)
  13004. %% (IndirectCallq |\itm{arg}| |\itm{int}|) |$\Rightarrow$| callq *|\itm{arg}'|
  13005. %% \end{lstlisting}
  13006. Now that register allocation is complete, we can translate the
  13007. \code{TailJmp} into a sequence of instructions. A straightforward
  13008. translation of \code{TailJmp} would simply be \code{jmp *$\itm{arg}$}.
  13009. However, before the jump we need to pop the current frame. This
  13010. sequence of instructions is the same as the code for the conclusion of
  13011. a function, except the \code{retq} is replaced with \code{jmp *$\itm{arg}$}.
  13012. Regarding function definitions, you need to generate a prelude
  13013. and conclusion for each one. This code is similar to the prelude and
  13014. conclusion that you generated for the \code{main} function in
  13015. Chapter~\ref{ch:Lvec}. To review, the prelude of every function
  13016. should carry out the following steps.
  13017. % TODO: .align the functions!
  13018. \begin{enumerate}
  13019. %% \item Start with \code{.global} and \code{.align} directives followed
  13020. %% by the label for the function. (See Figure~\ref{fig:add-fun} for an
  13021. %% example.)
  13022. \item Push \code{rbp} to the stack and set \code{rbp} to current stack
  13023. pointer.
  13024. \item Push to the stack all of the callee-saved registers that were
  13025. used for register allocation.
  13026. \item Move the stack pointer \code{rsp} down by the size of the stack
  13027. frame for this function, which depends on the number of regular
  13028. spills. (Aligned to 16 bytes.)
  13029. \item Move the root stack pointer \code{r15} up by the size of the
  13030. root-stack frame for this function, which depends on the number of
  13031. spilled vectors. \label{root-stack-init}
  13032. \item Initialize to zero all of the entries in the root-stack frame.
  13033. \item Jump to the start block.
  13034. \end{enumerate}
  13035. The prelude of the \code{main} function has one additional task: call
  13036. the \code{initialize} function to set up the garbage collector and
  13037. move the value of the global \code{rootstack\_begin} in
  13038. \code{r15}. This should happen before step \ref{root-stack-init}
  13039. above, which depends on \code{r15}.
  13040. The conclusion of every function should do the following.
  13041. \begin{enumerate}
  13042. \item Move the stack pointer back up by the size of the stack frame
  13043. for this function.
  13044. \item Restore the callee-saved registers by popping them from the
  13045. stack.
  13046. \item Move the root stack pointer back down by the size of the
  13047. root-stack frame for this function.
  13048. \item Restore \code{rbp} by popping it from the stack.
  13049. \item Return to the caller with the \code{retq} instruction.
  13050. \end{enumerate}
  13051. \begin{exercise}\normalfont
  13052. Expand your compiler to handle \LangFun{} as outlined in this chapter.
  13053. Create 5 new programs that use functions, including examples that pass
  13054. functions and return functions from other functions, recursive
  13055. functions, functions that create vectors, and functions that make tail
  13056. calls. Test your compiler on these new programs and all of your
  13057. previously created test programs.
  13058. \end{exercise}
  13059. \begin{figure}[tbp]
  13060. \begin{tikzpicture}[baseline=(current bounding box.center)]
  13061. \node (Rfun) at (0,2) {\large \LangFun{}};
  13062. \node (Rfun-1) at (3,2) {\large \LangFun{}};
  13063. \node (Rfun-2) at (6,2) {\large \LangFun{}};
  13064. \node (F1-1) at (9,2) {\large \LangFunRef{}};
  13065. \node (F1-2) at (9,0) {\large \LangFunRef{}};
  13066. \node (F1-3) at (6,0) {\large \LangFunRefAlloc{}};
  13067. \node (F1-4) at (3,0) {\large \LangFunANF{}};
  13068. \node (C3-2) at (3,-2) {\large \LangCFun{}};
  13069. \node (x86-2) at (3,-4) {\large \LangXIndCallVar{}};
  13070. \node (x86-3) at (6,-4) {\large \LangXIndCallVar{}};
  13071. \node (x86-4) at (9,-4) {\large \LangXIndCall{}};
  13072. \node (x86-5) at (9,-6) {\large \LangXIndCall{}};
  13073. \node (x86-2-1) at (3,-6) {\large \LangXIndCallVar{}};
  13074. \node (x86-2-2) at (6,-6) {\large \LangXIndCallVar{}};
  13075. \path[->,bend left=15] (Rfun) edge [above] node
  13076. {\ttfamily\footnotesize shrink} (Rfun-1);
  13077. \path[->,bend left=15] (Rfun-1) edge [above] node
  13078. {\ttfamily\footnotesize uniquify} (Rfun-2);
  13079. \path[->,bend left=15] (Rfun-2) edge [above] node
  13080. {\ttfamily\footnotesize ~~reveal\_functions} (F1-1);
  13081. \path[->,bend left=15] (F1-1) edge [right] node
  13082. {\ttfamily\footnotesize limit\_functions} (F1-2);
  13083. \path[->,bend right=15] (F1-2) edge [above] node
  13084. {\ttfamily\footnotesize expose\_alloc.} (F1-3);
  13085. \path[->,bend right=15] (F1-3) edge [above] node
  13086. {\ttfamily\footnotesize remove\_complex.} (F1-4);
  13087. \path[->,bend left=15] (F1-4) edge [right] node
  13088. {\ttfamily\footnotesize explicate\_control} (C3-2);
  13089. \path[->,bend right=15] (C3-2) edge [left] node
  13090. {\ttfamily\footnotesize select\_instr.} (x86-2);
  13091. \path[->,bend left=15] (x86-2) edge [left] node
  13092. {\ttfamily\footnotesize uncover\_live} (x86-2-1);
  13093. \path[->,bend right=15] (x86-2-1) edge [below] node
  13094. {\ttfamily\footnotesize build\_inter.} (x86-2-2);
  13095. \path[->,bend right=15] (x86-2-2) edge [left] node
  13096. {\ttfamily\footnotesize allocate\_reg.} (x86-3);
  13097. \path[->,bend left=15] (x86-3) edge [above] node
  13098. {\ttfamily\footnotesize patch\_instr.} (x86-4);
  13099. \path[->,bend right=15] (x86-4) edge [left] node {\ttfamily\footnotesize print-x86} (x86-5);
  13100. \end{tikzpicture}
  13101. \caption{Diagram of the passes for \LangFun{}, a language with functions.}
  13102. \label{fig:Rfun-passes}
  13103. \end{figure}
  13104. Figure~\ref{fig:Rfun-passes} gives an overview of the passes for
  13105. compiling \LangFun{} to x86.
  13106. \section{An Example Translation}
  13107. \label{sec:functions-example}
  13108. Figure~\ref{fig:add-fun} shows an example translation of a simple
  13109. function in \LangFun{} to x86. The figure also includes the results of the
  13110. \code{explicate\_control} and \code{select\_instructions} passes.
  13111. \begin{figure}[htbp]
  13112. \begin{tabular}{ll}
  13113. \begin{minipage}{0.4\textwidth}
  13114. % s3_2.rkt
  13115. {\if\edition\racketEd
  13116. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  13117. (define (add [x : Integer] [y : Integer])
  13118. : Integer
  13119. (+ x y))
  13120. (add 40 2)
  13121. \end{lstlisting}
  13122. \fi}
  13123. {\if\edition\pythonEd
  13124. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  13125. def add(x:int, y:int) -> int:
  13126. return x + y
  13127. print(add(40, 2))
  13128. \end{lstlisting}
  13129. \fi}
  13130. $\Downarrow$
  13131. {\if\edition\racketEd
  13132. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  13133. (define (add86 [x87 : Integer]
  13134. [y88 : Integer]) : Integer
  13135. add86start:
  13136. return (+ x87 y88);
  13137. )
  13138. (define (main) : Integer ()
  13139. mainstart:
  13140. tmp89 = (fun-ref add86);
  13141. (tail-call tmp89 40 2)
  13142. )
  13143. \end{lstlisting}
  13144. \fi}
  13145. {\if\edition\pythonEd
  13146. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  13147. def add(x:int, y:int) -> int:
  13148. addstart:
  13149. return x + y
  13150. def main() -> int:
  13151. mainstart:
  13152. fun.0 = add
  13153. tmp.1 = fun.0(40, 2)
  13154. print(tmp.1)
  13155. return 0
  13156. \end{lstlisting}
  13157. \fi}
  13158. \end{minipage}
  13159. &
  13160. $\Rightarrow$
  13161. \begin{minipage}{0.5\textwidth}
  13162. {\if\edition\racketEd
  13163. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  13164. (define (add86) : Integer
  13165. add86start:
  13166. movq %rdi, x87
  13167. movq %rsi, y88
  13168. movq x87, %rax
  13169. addq y88, %rax
  13170. jmp inc1389conclusion
  13171. )
  13172. (define (main) : Integer
  13173. mainstart:
  13174. leaq (fun-ref add86), tmp89
  13175. movq $40, %rdi
  13176. movq $2, %rsi
  13177. tail-jmp tmp89
  13178. )
  13179. \end{lstlisting}
  13180. \fi}
  13181. {\if\edition\pythonEd
  13182. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  13183. def add() -> int:
  13184. addstart:
  13185. movq %rdi, x
  13186. movq %rsi, y
  13187. movq x, %rax
  13188. addq y, %rax
  13189. jmp addconclusion
  13190. def main() -> int:
  13191. mainstart:
  13192. leaq add, fun.0
  13193. movq $40, %rdi
  13194. movq $2, %rsi
  13195. callq *fun.0
  13196. movq %rax, tmp.1
  13197. movq tmp.1, %rdi
  13198. callq print_int
  13199. movq $0, %rax
  13200. jmp mainconclusion
  13201. \end{lstlisting}
  13202. \fi}
  13203. $\Downarrow$
  13204. \end{minipage}
  13205. \end{tabular}
  13206. \begin{tabular}{ll}
  13207. \begin{minipage}{0.3\textwidth}
  13208. {\if\edition\racketEd
  13209. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  13210. .globl add86
  13211. .align 16
  13212. add86:
  13213. pushq %rbp
  13214. movq %rsp, %rbp
  13215. jmp add86start
  13216. add86start:
  13217. movq %rdi, %rax
  13218. addq %rsi, %rax
  13219. jmp add86conclusion
  13220. add86conclusion:
  13221. popq %rbp
  13222. retq
  13223. \end{lstlisting}
  13224. \fi}
  13225. {\if\edition\pythonEd
  13226. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  13227. .align 16
  13228. add:
  13229. pushq %rbp
  13230. movq %rsp, %rbp
  13231. subq $0, %rsp
  13232. jmp addstart
  13233. addstart:
  13234. movq %rdi, %rdx
  13235. movq %rsi, %rcx
  13236. movq %rdx, %rax
  13237. addq %rcx, %rax
  13238. jmp addconclusion
  13239. addconclusion:
  13240. subq $0, %r15
  13241. addq $0, %rsp
  13242. popq %rbp
  13243. retq
  13244. \end{lstlisting}
  13245. \fi}
  13246. \end{minipage}
  13247. &
  13248. \begin{minipage}{0.5\textwidth}
  13249. {\if\edition\racketEd
  13250. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  13251. .globl main
  13252. .align 16
  13253. main:
  13254. pushq %rbp
  13255. movq %rsp, %rbp
  13256. movq $16384, %rdi
  13257. movq $16384, %rsi
  13258. callq initialize
  13259. movq rootstack_begin(%rip), %r15
  13260. jmp mainstart
  13261. mainstart:
  13262. leaq add86(%rip), %rcx
  13263. movq $40, %rdi
  13264. movq $2, %rsi
  13265. movq %rcx, %rax
  13266. popq %rbp
  13267. jmp *%rax
  13268. mainconclusion:
  13269. popq %rbp
  13270. retq
  13271. \end{lstlisting}
  13272. \fi}
  13273. {\if\edition\pythonEd
  13274. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  13275. .globl main
  13276. .align 16
  13277. main:
  13278. pushq %rbp
  13279. movq %rsp, %rbp
  13280. subq $0, %rsp
  13281. movq $65536, %rdi
  13282. movq $65536, %rsi
  13283. callq initialize
  13284. movq rootstack_begin(%rip), %r15
  13285. jmp mainstart
  13286. mainstart:
  13287. leaq add(%rip), %rcx
  13288. movq $40, %rdi
  13289. movq $2, %rsi
  13290. callq *%rcx
  13291. movq %rax, %rcx
  13292. movq %rcx, %rdi
  13293. callq print_int
  13294. movq $0, %rax
  13295. jmp mainconclusion
  13296. mainconclusion:
  13297. subq $0, %r15
  13298. addq $0, %rsp
  13299. popq %rbp
  13300. retq
  13301. \end{lstlisting}
  13302. \fi}
  13303. \end{minipage}
  13304. \end{tabular}
  13305. \caption{Example compilation of a simple function to x86.}
  13306. \label{fig:add-fun}
  13307. \end{figure}
  13308. % Challenge idea: inlining! (simple version)
  13309. % Further Reading
  13310. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  13311. \chapter{Lexically Scoped Functions}
  13312. \label{ch:Rlam}
  13313. \index{subject}{lambda}
  13314. \index{subject}{lexical scoping}
  13315. This chapter studies lexically scoped functions as they appear in
  13316. functional languages such as Racket. By lexical scoping we mean that a
  13317. function's body may refer to variables whose binding site is outside
  13318. of the function, in an enclosing scope.
  13319. %
  13320. Consider the example in Figure~\ref{fig:lexical-scoping} written in
  13321. \LangLam{}, which extends \LangFun{} with anonymous functions using the
  13322. \key{lambda} form. The body of the \key{lambda}, refers to three
  13323. variables: \code{x}, \code{y}, and \code{z}. The binding sites for
  13324. \code{x} and \code{y} are outside of the \key{lambda}. Variable
  13325. \code{y} is \racket{bound by the enclosing \key{let}}\python{a local variable of function\code{f}} and \code{x} is a
  13326. parameter of function \code{f}. The \key{lambda} is returned from the
  13327. function \code{f}. The main expression of the program includes two
  13328. calls to \code{f} with different arguments for \code{x}, first
  13329. \code{5} then \code{3}. The functions returned from \code{f} are bound
  13330. to variables \code{g} and \code{h}. Even though these two functions
  13331. were created by the same \code{lambda}, they are really different
  13332. functions because they use different values for \code{x}. Applying
  13333. \code{g} to \code{11} produces \code{20} whereas applying \code{h} to
  13334. \code{15} produces \code{22}. The result of this program is \code{42}.
  13335. \begin{figure}[btp]
  13336. {\if\edition\racketEd
  13337. % lambda_test_21.rkt
  13338. \begin{lstlisting}
  13339. (define (f [x : Integer]) : (Integer -> Integer)
  13340. (let ([y 4])
  13341. (lambda: ([z : Integer]) : Integer
  13342. (+ x (+ y z)))))
  13343. (let ([g (f 5)])
  13344. (let ([h (f 3)])
  13345. (+ (g 11) (h 15))))
  13346. \end{lstlisting}
  13347. \fi}
  13348. {\if\edition\pythonEd
  13349. \begin{lstlisting}
  13350. def f(x : int) -> Callable[[int], int]:
  13351. y = 4
  13352. return lambda z: x + y + z
  13353. g = f(5)
  13354. h = f(3)
  13355. print( g(11) + h(15) )
  13356. \end{lstlisting}
  13357. \fi}
  13358. \caption{Example of a lexically scoped function.}
  13359. \label{fig:lexical-scoping}
  13360. \end{figure}
  13361. The approach that we take for implementing lexically scoped functions
  13362. is to compile them into top-level function definitions, translating
  13363. from \LangLam{} into \LangFun{}. However, the compiler must give
  13364. special treatment to variable occurrences such as \code{x} and
  13365. \code{y} in the body of the \code{lambda} of
  13366. Figure~\ref{fig:lexical-scoping}. After all, an \LangFun{} function
  13367. may not refer to variables defined outside of it. To identify such
  13368. variable occurrences, we review the standard notion of free variable.
  13369. \begin{definition}
  13370. A variable is \textbf{free in expression} $e$ if the variable occurs
  13371. inside $e$ but does not have an enclosing binding that is also in
  13372. $e$.\index{subject}{free variable}
  13373. \end{definition}
  13374. For example, in the expression \code{(+ x (+ y z))} the variables
  13375. \code{x}, \code{y}, and \code{z} are all free. On the other hand,
  13376. only \code{x} and \code{y} are free in the following expression
  13377. because \code{z} is bound by the \code{lambda}.
  13378. {\if\edition\racketEd
  13379. \begin{lstlisting}
  13380. (lambda: ([z : Integer]) : Integer
  13381. (+ x (+ y z)))
  13382. \end{lstlisting}
  13383. \fi}
  13384. {\if\edition\pythonEd
  13385. \begin{lstlisting}
  13386. lambda z: x + y + z
  13387. \end{lstlisting}
  13388. \fi}
  13389. So the free variables of a \code{lambda} are the ones that will need
  13390. special treatment. We need to arrange for some way to transport, at
  13391. runtime, the values of those variables from the point where the
  13392. \code{lambda} was created to the point where the \code{lambda} is
  13393. applied. An efficient solution to the problem, due to
  13394. \citet{Cardelli:1983aa}, is to bundle into a tuple the values of the
  13395. free variables together with the function pointer for the lambda's
  13396. code, an arrangement called a \emph{flat closure} (which we shorten to
  13397. just ``closure''). \index{subject}{closure}\index{subject}{flat closure} Fortunately,
  13398. we have all the ingredients to make closures, Chapter~\ref{ch:Lvec}
  13399. gave us tuples and Chapter~\ref{ch:Rfun} gave us function
  13400. pointers. The function pointer resides at index $0$ and the
  13401. values for the free variables will fill in the rest of the tuple.
  13402. Let us revisit the example in Figure~\ref{fig:lexical-scoping} to see
  13403. how closures work. It's a three-step dance. The program first calls
  13404. function \code{f}, which creates a closure for the \code{lambda}. The
  13405. closure is a tuple whose first element is a pointer to the top-level
  13406. function that we will generate for the \code{lambda}, the second
  13407. element is the value of \code{x}, which is \code{5}, and the third
  13408. element is \code{4}, the value of \code{y}. The closure does not
  13409. contain an element for \code{z} because \code{z} is not a free
  13410. variable of the \code{lambda}. Creating the closure is step 1 of the
  13411. dance. The closure is returned from \code{f} and bound to \code{g}, as
  13412. shown in Figure~\ref{fig:closures}.
  13413. %
  13414. The second call to \code{f} creates another closure, this time with
  13415. \code{3} in the second slot (for \code{x}). This closure is also
  13416. returned from \code{f} but bound to \code{h}, which is also shown in
  13417. Figure~\ref{fig:closures}.
  13418. \begin{figure}[tbp]
  13419. \centering \includegraphics[width=0.6\textwidth]{figs/closures}
  13420. \caption{Example closure representation for the \key{lambda}'s
  13421. in Figure~\ref{fig:lexical-scoping}.}
  13422. \label{fig:closures}
  13423. \end{figure}
  13424. Continuing with the example, consider the application of \code{g} to
  13425. \code{11} in Figure~\ref{fig:lexical-scoping}. To apply a closure, we
  13426. obtain the function pointer in the first element of the closure and
  13427. call it, passing in the closure itself and then the regular arguments,
  13428. in this case \code{11}. This technique for applying a closure is step
  13429. 2 of the dance.
  13430. %
  13431. But doesn't this \code{lambda} only take 1 argument, for parameter
  13432. \code{z}? The third and final step of the dance is generating a
  13433. top-level function for a \code{lambda}. We add an additional
  13434. parameter for the closure and we insert an initialization at the beginning
  13435. of the function for each free variable, to bind those variables to the
  13436. appropriate elements from the closure parameter.
  13437. %
  13438. This three-step dance is known as \emph{closure conversion}. We
  13439. discuss the details of closure conversion in
  13440. Section~\ref{sec:closure-conversion} and the code generated from the
  13441. example in Section~\ref{sec:example-lambda}. But first we define the
  13442. syntax and semantics of \LangLam{} in Section~\ref{sec:r5}.
  13443. \section{The \LangLam{} Language}
  13444. \label{sec:r5}
  13445. \python{UNDER CONSTRUCTION}
  13446. The concrete and abstract syntax for \LangLam{}, a language with anonymous
  13447. functions and lexical scoping, is defined in
  13448. Figures~\ref{fig:Rlam-concrete-syntax} and ~\ref{fig:Rlam-syntax}. It adds
  13449. the \key{lambda} form to the grammar for \LangFun{}, which already has
  13450. syntax for function application.
  13451. \newcommand{\LlambdaGrammarRacket}{
  13452. \begin{array}{lcl}
  13453. \Exp &::=& \LP \key{procedure-arity}~\Exp\RP \\
  13454. &\MID& \CLAMBDA{\LP\LS\Var \key{:} \Type\RS\ldots\RP}{\Type}{\Exp}
  13455. \end{array}
  13456. }
  13457. \newcommand{\LlambdaASTRacket}{
  13458. \begin{array}{lcl}
  13459. \itm{op} &::=& \code{procedure-arity} \\
  13460. \Exp &::=& \LAMBDA{\LP\LS\Var\code{:}\Type\RS\ldots\RP}{\Type}{\Exp}
  13461. \end{array}
  13462. }
  13463. % include AnnAssign in ASTPython
  13464. \begin{figure}[tp]
  13465. \centering
  13466. \fbox{
  13467. \begin{minipage}{0.96\textwidth}
  13468. \small
  13469. \[
  13470. \begin{array}{l}
  13471. \gray{\LintGrammarRacket{}} \\ \hline
  13472. \gray{\LvarGrammarRacket{}} \\ \hline
  13473. \gray{\LifGrammarRacket{}} \\ \hline
  13474. \gray{\LwhileGrammarRacket} \\ \hline
  13475. \gray{\LtupGrammarRacket} \\ \hline
  13476. \gray{\LfunGrammarRacket} \\ \hline
  13477. \LlambdaGrammarRacket \\
  13478. \begin{array}{lcl}
  13479. \LangLamM{} &::=& \Def\ldots \; \Exp
  13480. \end{array}
  13481. \end{array}
  13482. \]
  13483. \end{minipage}
  13484. }
  13485. \caption{The concrete syntax of \LangLam{}, extending \LangFun{} (Figure~\ref{fig:Rfun-concrete-syntax})
  13486. with \key{lambda}.}
  13487. \label{fig:Rlam-concrete-syntax}
  13488. \end{figure}
  13489. \begin{figure}[tp]
  13490. \centering
  13491. \fbox{
  13492. \begin{minipage}{0.96\textwidth}
  13493. \small
  13494. \[
  13495. \begin{array}{l}
  13496. \gray{\LintOpAST} \\ \hline
  13497. \gray{\LvarASTRacket{}} \\ \hline
  13498. \gray{\LifASTRacket{}} \\ \hline
  13499. \gray{\LwhileASTRacket{}} \\ \hline
  13500. \gray{\LtupASTRacket{}} \\ \hline
  13501. \gray{\LfunASTRacket} \\ \hline
  13502. \LlambdaASTRacket \\
  13503. \begin{array}{lcl}
  13504. \LangLamM{} &::=& \gray{ \PROGRAMDEFSEXP{\code{'()}}{\LP\Def\ldots\RP}{\Exp} }
  13505. \end{array}
  13506. \end{array}
  13507. \]
  13508. \end{minipage}
  13509. }
  13510. \caption{The abstract syntax of \LangLam{}, extending \LangFun{} (Figure~\ref{fig:Rfun-syntax}).}
  13511. \label{fig:Rlam-syntax}
  13512. \end{figure}
  13513. \index{subject}{interpreter}
  13514. \label{sec:interp-Rlambda}
  13515. Figure~\ref{fig:interp-Rlambda} shows the definitional interpreter for
  13516. \LangLam{}. The case for \key{lambda} saves the current environment
  13517. inside the returned \key{lambda}. Then the case for \key{Apply} uses
  13518. the environment from the \key{lambda}, the \code{lam-env}, when
  13519. interpreting the body of the \key{lambda}. The \code{lam-env}
  13520. environment is extended with the mapping of parameters to argument
  13521. values.
  13522. \begin{figure}[tbp]
  13523. \begin{lstlisting}
  13524. (define interp-Rlambda_class
  13525. (class interp-Rfun_class
  13526. (super-new)
  13527. (define/override (interp-op op)
  13528. (match op
  13529. ['procedure-arity
  13530. (lambda (v)
  13531. (match v
  13532. [`(function (,xs ...) ,body ,lam-env) (length xs)]
  13533. [else (error 'interp-op "expected a function, not ~a" v)]))]
  13534. [else (super interp-op op)]))
  13535. (define/override ((interp-exp env) e)
  13536. (define recur (interp-exp env))
  13537. (match e
  13538. [(Lambda (list `[,xs : ,Ts] ...) rT body)
  13539. `(function ,xs ,body ,env)]
  13540. [else ((super interp-exp env) e)]))
  13541. ))
  13542. (define (interp-Rlambda p)
  13543. (send (new interp-Rlambda_class) interp-program p))
  13544. \end{lstlisting}
  13545. \caption{Interpreter for \LangLam{}.}
  13546. \label{fig:interp-Rlambda}
  13547. \end{figure}
  13548. \label{sec:type-check-r5}
  13549. \index{subject}{type checking}
  13550. Figure~\ref{fig:type-check-Rlambda} shows how to type check the new
  13551. \key{lambda} form. The body of the \key{lambda} is checked in an
  13552. environment that includes the current environment (because it is
  13553. lexically scoped) and also includes the \key{lambda}'s parameters. We
  13554. require the body's type to match the declared return type.
  13555. \begin{figure}[tbp]
  13556. \begin{lstlisting}
  13557. (define (type-check-Rlambda env)
  13558. (lambda (e)
  13559. (match e
  13560. [(Lambda (and params `([,xs : ,Ts] ...)) rT body)
  13561. (define-values (new-body bodyT)
  13562. ((type-check-exp (append (map cons xs Ts) env)) body))
  13563. (define ty `(,@Ts -> ,rT))
  13564. (cond
  13565. [(equal? rT bodyT)
  13566. (values (HasType (Lambda params rT new-body) ty) ty)]
  13567. [else
  13568. (error "mismatch in return type" bodyT rT)])]
  13569. ...
  13570. )))
  13571. \end{lstlisting}
  13572. \caption{Type checking the \key{lambda}'s in \LangLam{}.}
  13573. \label{fig:type-check-Rlambda}
  13574. \end{figure}
  13575. \section{Assignment and Lexically Scoped Functions}
  13576. \label{sec:assignment-scoping}
  13577. The combination of lexically-scoped functions and assignment to
  13578. variables raises a challenge with our approach to implementing
  13579. lexically-scoped functions. Consider the following example in which
  13580. function \code{f} has a free variable \code{x} that is changed after
  13581. \code{f} is created but before the call to \code{f}.
  13582. % loop_test_11.rkt
  13583. {\if\edition\racketEd
  13584. \begin{lstlisting}
  13585. (let ([x 0])
  13586. (let ([y 0])
  13587. (let ([z 20])
  13588. (let ([f (lambda: ([a : Integer]) : Integer (+ a (+ x z)))])
  13589. (begin
  13590. (set! x 10)
  13591. (set! y 12)
  13592. (f y))))))
  13593. \end{lstlisting}
  13594. \fi}
  13595. {\if\edition\pythonEd
  13596. % assign_free.py
  13597. \begin{lstlisting}
  13598. x = 0
  13599. y = 0
  13600. z = 20
  13601. f : Callable[[int],int] = lambda a: a + x + z
  13602. x = 10
  13603. y = 12
  13604. print( f(y) )
  13605. \end{lstlisting}
  13606. \fi}
  13607. The correct output for this example is \code{42} because the call to
  13608. \code{f} is required to use the current value of \code{x} (which is
  13609. \code{10}). Unfortunately, the closure conversion pass
  13610. (Section~\ref{sec:closure-conversion}) generates code for the
  13611. \code{lambda} that copies the old value of \code{x} into a
  13612. closure. Thus, if we naively add support for assignment to our current
  13613. compiler, the output of this program would be \code{32}.
  13614. A first attempt at solving this problem would be to save a pointer to
  13615. \code{x} in the closure and change the occurrences of \code{x} inside
  13616. the lambda to dereference the pointer. Of course, this would require
  13617. assigning \code{x} to the stack and not to a register. However, the
  13618. problem goes a bit deeper.
  13619. %% Consider the following example in which we
  13620. %% create a counter abstraction by creating a pair of functions that
  13621. %% share the free variable \code{x}.
  13622. Consider the following example that returns a function that refers to
  13623. a local variable of the enclosing function.
  13624. \begin{center}
  13625. \begin{minipage}{\textwidth}
  13626. {\if\edition\racketEd
  13627. % similar to loop_test_10.rkt
  13628. %% \begin{lstlisting}
  13629. %% (define (f [x : Integer]) : (Vector ( -> Integer) ( -> Void))
  13630. %% (vector
  13631. %% (lambda: () : Integer x)
  13632. %% (lambda: () : Void (set! x (+ 1 x)))))
  13633. %% (let ([counter (f 0)])
  13634. %% (let ([get (vector-ref counter 0)])
  13635. %% (let ([inc (vector-ref counter 1)])
  13636. %% (begin
  13637. %% (inc)
  13638. %% (get)))))
  13639. %% \end{lstlisting}
  13640. \begin{lstlisting}
  13641. (define (f []) : Integer
  13642. (let ([x 0])
  13643. (let ([g (lambda: () : Integer x)])
  13644. (begin
  13645. (set! x 42)
  13646. g))))
  13647. ((f))
  13648. \end{lstlisting}
  13649. \fi}
  13650. {\if\edition\pythonEd
  13651. % counter.py
  13652. \begin{lstlisting}
  13653. def f():
  13654. x = 0
  13655. g = lambda: x
  13656. x = 42
  13657. return g
  13658. print( f()() )
  13659. \end{lstlisting}
  13660. \fi}
  13661. \end{minipage}
  13662. \end{center}
  13663. In this example, the lifetime of \code{x} extends beyond the lifetime
  13664. of the call to \code{f}. Thus, if we were to store \code{x} on the
  13665. stack frame for the call to \code{f}, it would be gone by the time we
  13666. call \code{g}, leaving us with dangling pointers for
  13667. \code{x}. This example demonstrates that when a variable occurs free
  13668. inside a function, its lifetime becomes indefinite. Thus, the value of
  13669. the variable needs to live on the heap. The verb
  13670. \emph{box}\index{subject}{box} is often used for allocating a single
  13671. value on the heap, producing a pointer, and
  13672. \emph{unbox}\index{subject}{unbox} for dereferencing the pointer.
  13673. {\if\edition\racketEd
  13674. We recommend solving these problems by boxing the local variables that
  13675. are in the intersection of 1) variables that appear on the
  13676. left-hand-side of a \code{set!} and 2) variables that occur free
  13677. inside a \code{lambda}.
  13678. \fi}
  13679. {\if\edition\pythonEd
  13680. We recommend solving these problems by boxing the local variables that
  13681. are in the intersection of 1) variables whose values may change and 2)
  13682. variables that occur free inside a \code{lambda}.
  13683. \fi}
  13684. We shall introduce a new pass named
  13685. \code{convert\_assignments} in Section~\ref{sec:convert-assignments}
  13686. to perform this translation. But before diving into the compiler
  13687. passes, we one more problem to discuss.
  13688. \section{Reveal Functions and the $F_2$ language}
  13689. \label{sec:reveal-functions-r5}
  13690. To support the \code{procedure-arity} operator we need to communicate
  13691. the arity of a function to the point of closure creation. We can
  13692. accomplish this by replacing the $\FUNREF{\Var}$ struct with one that
  13693. has a second field for the arity: $\FUNREFARITY{\Var}{\Int}$. The
  13694. output of this pass is the language $F_2$, whose syntax is defined in
  13695. Figure~\ref{fig:f2-syntax}.
  13696. \begin{figure}[tp]
  13697. \centering
  13698. \fbox{
  13699. \begin{minipage}{0.96\textwidth}
  13700. \[
  13701. \begin{array}{lcl}
  13702. \Exp &::=& \ldots \MID \FUNREFARITY{\Var}{\Int}\\
  13703. \Def &::=& \gray{ \FUNDEF{\Var}{([\Var \code{:} \Type]\ldots)}{\Type}{\code{'()}}{\Exp} }\\
  13704. F_2 &::=& \gray{\PROGRAMDEFS{\code{'()}}{\LP \Def\ldots \RP}}
  13705. \end{array}
  13706. \]
  13707. \end{minipage}
  13708. }
  13709. \caption{The abstract syntax $F_2$, an extension of \LangLam{}
  13710. (Figure~\ref{fig:Rlam-syntax}).}
  13711. \label{fig:f2-syntax}
  13712. \end{figure}
  13713. \section{Convert Assignments}
  13714. \label{sec:convert-assignments}
  13715. [UNDER CONSTRUCTION: This section was just moved into this location
  13716. and may need to be updated. -Jeremy]
  13717. Recall that in Section~\ref{sec:assignment-scoping} we learned that
  13718. the combination of assignments and lexically-scoped functions requires
  13719. that we box those variables that are both assigned-to and that appear
  13720. free inside a \code{lambda}. The purpose of the
  13721. \code{convert-assignments} pass is to carry out that transformation.
  13722. We recommend placing this pass after \code{uniquify} but before
  13723. \code{reveal\_functions}.
  13724. Consider again the first example from
  13725. Section~\ref{sec:assignment-scoping}:
  13726. \begin{lstlisting}
  13727. (let ([x 0])
  13728. (let ([y 0])
  13729. (let ([z 20])
  13730. (let ([f (lambda: ([a : Integer]) : Integer (+ a (+ x z)))])
  13731. (begin
  13732. (set! x 10)
  13733. (set! y 12)
  13734. (f y))))))
  13735. \end{lstlisting}
  13736. The variables \code{x} and \code{y} are assigned-to. The variables
  13737. \code{x} and \code{z} occur free inside the \code{lambda}. Thus,
  13738. variable \code{x} needs to be boxed but not \code{y} and \code{z}.
  13739. The boxing of \code{x} consists of three transformations: initialize
  13740. \code{x} with a vector, replace reads from \code{x} with
  13741. \code{vector-ref}'s, and replace each \code{set!} on \code{x} with a
  13742. \code{vector-set!}. The output of \code{convert-assignments} for this
  13743. example is as follows.
  13744. \begin{lstlisting}
  13745. (define (main) : Integer
  13746. (let ([x0 (vector 0)])
  13747. (let ([y1 0])
  13748. (let ([z2 20])
  13749. (let ([f4 (lambda: ([a3 : Integer]) : Integer
  13750. (+ a3 (+ (vector-ref x0 0) z2)))])
  13751. (begin
  13752. (vector-set! x0 0 10)
  13753. (set! y1 12)
  13754. (f4 y1)))))))
  13755. \end{lstlisting}
  13756. \paragraph{Assigned \& Free}
  13757. We recommend defining an auxiliary function named
  13758. \code{assigned\&free} that takes an expression and simultaneously
  13759. computes 1) a set of assigned variables $A$, 2) a set $F$ of variables
  13760. that occur free within lambda's, and 3) a new version of the
  13761. expression that records which bound variables occurred in the
  13762. intersection of $A$ and $F$. You can use the struct
  13763. \code{AssignedFree} to do this. Consider the case for
  13764. $\LET{x}{\itm{rhs}}{\itm{body}}$. Suppose the the recursive call on
  13765. $\itm{rhs}$ produces $\itm{rhs}'$, $A_r$, and $F_r$ and the recursive
  13766. call on the $\itm{body}$ produces $\itm{body}'$, $A_b$, and $F_b$. If
  13767. $x$ is in $A_b\cap F_b$, then transforms the \code{Let} as follows.
  13768. \begin{lstlisting}
  13769. (Let |$x$| |$rhs$| |$body$|)
  13770. |$\Rightarrow$|
  13771. (Let (AssignedFree |$x$|) |$rhs'$| |$body'$|)
  13772. \end{lstlisting}
  13773. If $x$ is not in $A_b\cap F_b$ then omit the use of \code{AssignedFree}.
  13774. The set of assigned variables for this \code{Let} is
  13775. $A_r \cup (A_b - \{x\})$
  13776. and the set of variables free in lambda's is
  13777. $F_r \cup (F_b - \{x\})$.
  13778. The case for $\SETBANG{x}{\itm{rhs}}$ is straightforward but
  13779. important. Recursively process \itm{rhs} to obtain \itm{rhs'}, $A_r$,
  13780. and $F_r$. The result is $\SETBANG{x}{\itm{rhs'}}$, $\{x\} \cup A_r$,
  13781. and $F_r$.
  13782. The case for $\LAMBDA{\itm{params}}{T}{\itm{body}}$ is a bit more
  13783. involved. Let \itm{body'}, $A_b$, and $F_b$ be the result of
  13784. recursively processing \itm{body}. Wrap each of parameter that occurs
  13785. in $A_b \cap F_b$ with \code{AssignedFree} to produce \itm{params'}.
  13786. Let $P$ be the set of parameter names in \itm{params}. The result is
  13787. $\LAMBDA{\itm{params'}}{T}{\itm{body'}}$, $A_b - P$, and $(F_b \cup
  13788. \mathrm{FV}(\itm{body})) - P$, where $\mathrm{FV}$ computes the free
  13789. variables of an expression (see Chapter~\ref{ch:Rlam}).
  13790. \paragraph{Convert Assignments}
  13791. Next we discuss the \code{convert-assignment} pass with its auxiliary
  13792. functions for expressions and definitions. The function for
  13793. expressions, \code{cnvt-assign-exp}, should take an expression and a
  13794. set of assigned-and-free variables (obtained from the result of
  13795. \code{assigned\&free}. In the case for $\VAR{x}$, if $x$ is
  13796. assigned-and-free, then unbox it by translating $\VAR{x}$ to a
  13797. \code{vector-ref}.
  13798. \begin{lstlisting}
  13799. (Var |$x$|)
  13800. |$\Rightarrow$|
  13801. (Prim 'vector-ref (list (Var |$x$|) (Int 0)))
  13802. \end{lstlisting}
  13803. %
  13804. In the case for $\LET{\LP\code{AssignedFree}\,
  13805. x\RP}{\itm{rhs}}{\itm{body}}$, recursively process \itm{rhs} to
  13806. obtain \itm{rhs'}. Next, recursively process \itm{body} to obtain
  13807. \itm{body'} but with $x$ added to the set of assigned-and-free
  13808. variables. Translate the let-expression as follows to bind $x$ to a
  13809. boxed value.
  13810. \begin{lstlisting}
  13811. (Let (AssignedFree |$x$|) |$rhs$| |$body$|)
  13812. |$\Rightarrow$|
  13813. (Let |$x$| (Prim 'vector (list |$rhs'$|)) |$body'$|)
  13814. \end{lstlisting}
  13815. %
  13816. In the case for $\SETBANG{x}{\itm{rhs}}$, recursively process
  13817. \itm{rhs} to obtain \itm{rhs'}. If $x$ is in the assigned-and-free
  13818. variables, translate the \code{set!} into a \code{vector-set!}
  13819. as follows.
  13820. \begin{lstlisting}
  13821. (SetBang |$x$| |$\itm{rhs}$|)
  13822. |$\Rightarrow$|
  13823. (Prim 'vector-set! (list (Var |$x$|) (Int 0) |$\itm{rhs'}$|))
  13824. \end{lstlisting}
  13825. %
  13826. The case for \code{Lambda} is non-trivial, but it is similar to the
  13827. case for function definitions, which we discuss next.
  13828. The auxiliary function for definitions, \code{cnvt-assign-def},
  13829. applies assignment conversion to function definitions.
  13830. We translate a function definition as follows.
  13831. \begin{lstlisting}
  13832. (Def |$f$| |$\itm{params}$| |$T$| |$\itm{info}$| |$\itm{body_1}$|)
  13833. |$\Rightarrow$|
  13834. (Def |$f$| |$\itm{params'}$| |$T$| |$\itm{info}$| |$\itm{body_4}$|)
  13835. \end{lstlisting}
  13836. So it remains to explain \itm{params'} and $\itm{body}_4$.
  13837. Let \itm{body_2}, $A_b$, and $F_b$ be the result of
  13838. \code{assigned\&free} on $\itm{body_1}$.
  13839. Let $P$ be the parameter names in \itm{params}.
  13840. We then apply \code{cnvt-assign-exp} to $\itm{body_2}$ to
  13841. obtain \itm{body_3}, passing $A_b \cap F_b \cap P$
  13842. as the set of assigned-and-free variables.
  13843. Finally, we obtain \itm{body_4} by wrapping \itm{body_3}
  13844. in a sequence of let-expressions that box the parameters
  13845. that are in $A_b \cap F_b$.
  13846. %
  13847. Regarding \itm{params'}, change the names of the parameters that are
  13848. in $A_b \cap F_b$ to maintain uniqueness (and so the let-bound
  13849. variables can retain the original names). Recall the second example in
  13850. Section~\ref{sec:assignment-scoping} involving a counter
  13851. abstraction. The following is the output of assignment version for
  13852. function \code{f}.
  13853. \begin{lstlisting}
  13854. (define (f0 [x1 : Integer]) : (Vector ( -> Integer) ( -> Void))
  13855. (vector
  13856. (lambda: () : Integer x1)
  13857. (lambda: () : Void (set! x1 (+ 1 x1)))))
  13858. |$\Rightarrow$|
  13859. (define (f0 [param_x1 : Integer]) : (Vector (-> Integer) (-> Void))
  13860. (let ([x1 (vector param_x1)])
  13861. (vector (lambda: () : Integer (vector-ref x1 0))
  13862. (lambda: () : Void
  13863. (vector-set! x1 0 (+ 1 (vector-ref x1 0)))))))
  13864. \end{lstlisting}
  13865. \section{Closure Conversion}
  13866. \label{sec:closure-conversion}
  13867. \index{subject}{closure conversion}
  13868. The compiling of lexically-scoped functions into top-level function
  13869. definitions is accomplished in the pass \code{convert-to-closures}
  13870. that comes after \code{reveal\_functions} and before
  13871. \code{limit-functions}.
  13872. As usual, we implement the pass as a recursive function over the
  13873. AST. All of the action is in the cases for \key{Lambda} and
  13874. \key{Apply}. We transform a \key{Lambda} expression into an expression
  13875. that creates a closure, that is, a vector whose first element is a
  13876. function pointer and the rest of the elements are the free variables
  13877. of the \key{Lambda}. We use the struct \code{Closure} here instead of
  13878. using \code{vector} so that we can distinguish closures from vectors
  13879. in Section~\ref{sec:optimize-closures} and to record the arity. In
  13880. the generated code below, the \itm{name} is a unique symbol generated
  13881. to identify the function and the \itm{arity} is the number of
  13882. parameters (the length of \itm{ps}).
  13883. \begin{lstlisting}
  13884. (Lambda |\itm{ps}| |\itm{rt}| |\itm{body}|)
  13885. |$\Rightarrow$|
  13886. (Closure |\itm{arity}| (cons (FunRef |\itm{name}|) |\itm{fvs}|))
  13887. \end{lstlisting}
  13888. In addition to transforming each \key{Lambda} into a \key{Closure}, we
  13889. create a top-level function definition for each \key{Lambda}, as
  13890. shown below.\\
  13891. \begin{minipage}{0.8\textwidth}
  13892. \begin{lstlisting}
  13893. (Def |\itm{name}| ([clos : (Vector _ |\itm{fvts}| ...)] |\itm{ps'}| ...) |\itm{rt'}|
  13894. (Let |$\itm{fvs}_1$| (Prim 'vector-ref (list (Var clos) (Int 1)))
  13895. ...
  13896. (Let |$\itm{fvs}_n$| (Prim 'vector-ref (list (Var clos) (Int |$n$|)))
  13897. |\itm{body'}|)...))
  13898. \end{lstlisting}
  13899. \end{minipage}\\
  13900. The \code{clos} parameter refers to the closure. Translate the type
  13901. annotations in \itm{ps} and the return type \itm{rt}, as discussed in
  13902. the next paragraph, to obtain \itm{ps'} and \itm{rt'}. The types
  13903. $\itm{fvts}$ are the types of the free variables in the lambda and the
  13904. underscore \code{\_} is a dummy type that we use because it is rather
  13905. difficult to give a type to the function in the closure's
  13906. type.\footnote{To give an accurate type to a closure, we would need to
  13907. add existential types to the type checker~\citep{Minamide:1996ys}.}
  13908. The dummy type is considered to be equal to any other type during type
  13909. checking. The sequence of \key{Let} forms bind the free variables to
  13910. their values obtained from the closure.
  13911. Closure conversion turns functions into vectors, so the type
  13912. annotations in the program must also be translated. We recommend
  13913. defining a auxiliary recursive function for this purpose. Function
  13914. types should be translated as follows.
  13915. \begin{lstlisting}
  13916. (|$T_1, \ldots, T_n$| -> |$T_r$|)
  13917. |$\Rightarrow$|
  13918. (Vector ((Vector _) |$T'_1, \ldots, T'_n$| -> |$T'_r$|))
  13919. \end{lstlisting}
  13920. The above type says that the first thing in the vector is a function
  13921. pointer. The first parameter of the function pointer is a vector (a
  13922. closure) and the rest of the parameters are the ones from the original
  13923. function, with types $T'_1, \ldots, T'_n$. The \code{Vector} type for
  13924. the closure omits the types of the free variables because 1) those
  13925. types are not available in this context and 2) we do not need them in
  13926. the code that is generated for function application.
  13927. We transform function application into code that retrieves the
  13928. function pointer from the closure and then calls the function, passing
  13929. in the closure as the first argument. We bind $e'$ to a temporary
  13930. variable to avoid code duplication.
  13931. \begin{lstlisting}
  13932. (Apply |$e$| |\itm{es}|)
  13933. |$\Rightarrow$|
  13934. (Let |\itm{tmp}| |$e'$|
  13935. (Apply (Prim 'vector-ref (list (Var |\itm{tmp}|) (Int 0))) (cons |\itm{tmp}| |\itm{es'}|)))
  13936. \end{lstlisting}
  13937. There is also the question of what to do with references top-level
  13938. function definitions. To maintain a uniform translation of function
  13939. application, we turn function references into closures.
  13940. \begin{tabular}{lll}
  13941. \begin{minipage}{0.3\textwidth}
  13942. \begin{lstlisting}
  13943. (FunRefArity |$f$| |$n$|)
  13944. \end{lstlisting}
  13945. \end{minipage}
  13946. &
  13947. $\Rightarrow$
  13948. &
  13949. \begin{minipage}{0.5\textwidth}
  13950. \begin{lstlisting}
  13951. (Closure |$n$| (FunRef |$f$|) '())
  13952. \end{lstlisting}
  13953. \end{minipage}
  13954. \end{tabular} \\
  13955. %
  13956. The top-level function definitions need to be updated as well to take
  13957. an extra closure parameter.
  13958. \section{An Example Translation}
  13959. \label{sec:example-lambda}
  13960. Figure~\ref{fig:lexical-functions-example} shows the result of
  13961. \code{reveal\_functions} and \code{convert-to-closures} for the example
  13962. program demonstrating lexical scoping that we discussed at the
  13963. beginning of this chapter.
  13964. \begin{figure}[tbp]
  13965. \begin{minipage}{0.8\textwidth}
  13966. % tests/lambda_test_6.rkt
  13967. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  13968. (define (f6 [x7 : Integer]) : (Integer -> Integer)
  13969. (let ([y8 4])
  13970. (lambda: ([z9 : Integer]) : Integer
  13971. (+ x7 (+ y8 z9)))))
  13972. (define (main) : Integer
  13973. (let ([g0 ((fun-ref-arity f6 1) 5)])
  13974. (let ([h1 ((fun-ref-arity f6 1) 3)])
  13975. (+ (g0 11) (h1 15)))))
  13976. \end{lstlisting}
  13977. $\Rightarrow$
  13978. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  13979. (define (f6 [fvs4 : _] [x7 : Integer]) : (Vector ((Vector _) Integer -> Integer))
  13980. (let ([y8 4])
  13981. (closure 1 (list (fun-ref lambda2) x7 y8))))
  13982. (define (lambda2 [fvs3 : (Vector _ Integer Integer)] [z9 : Integer]) : Integer
  13983. (let ([x7 (vector-ref fvs3 1)])
  13984. (let ([y8 (vector-ref fvs3 2)])
  13985. (+ x7 (+ y8 z9)))))
  13986. (define (main) : Integer
  13987. (let ([g0 (let ([clos5 (closure 1 (list (fun-ref f6)))])
  13988. ((vector-ref clos5 0) clos5 5))])
  13989. (let ([h1 (let ([clos6 (closure 1 (list (fun-ref f6)))])
  13990. ((vector-ref clos6 0) clos6 3))])
  13991. (+ ((vector-ref g0 0) g0 11) ((vector-ref h1 0) h1 15)))))
  13992. \end{lstlisting}
  13993. \end{minipage}
  13994. \caption{Example of closure conversion.}
  13995. \label{fig:lexical-functions-example}
  13996. \end{figure}
  13997. \begin{exercise}\normalfont
  13998. Expand your compiler to handle \LangLam{} as outlined in this chapter.
  13999. Create 5 new programs that use \key{lambda} functions and make use of
  14000. lexical scoping. Test your compiler on these new programs and all of
  14001. your previously created test programs.
  14002. \end{exercise}
  14003. \section{Expose Allocation}
  14004. \label{sec:expose-allocation-r5}
  14005. Compile the $\CLOSURE{\itm{arity}}{\LP\Exp\ldots\RP}$ form into code
  14006. that allocates and initializes a vector, similar to the translation of
  14007. the \code{vector} operator in Section~\ref{sec:expose-allocation}.
  14008. The only difference is replacing the use of
  14009. \ALLOC{\itm{len}}{\itm{type}} with
  14010. \ALLOCCLOS{\itm{len}}{\itm{type}}{\itm{arity}}.
  14011. \section{Explicate Control and \LangCLam{}}
  14012. \label{sec:explicate-r5}
  14013. The output language of \code{explicate\_control} is \LangCLam{} whose
  14014. abstract syntax is defined in Figure~\ref{fig:c4-syntax}. The only
  14015. difference with respect to \LangCFun{} is the addition of the
  14016. \code{AllocateClosure} form to the grammar for $\Exp$. The handling
  14017. of \code{AllocateClosure} in the \code{explicate\_control} pass is
  14018. similar to the handling of other expressions such as primitive
  14019. operators.
  14020. \begin{figure}[tp]
  14021. \fbox{
  14022. \begin{minipage}{0.96\textwidth}
  14023. \small
  14024. {\if\edition\racketEd
  14025. \[
  14026. \begin{array}{lcl}
  14027. \Exp &::= & \ldots
  14028. \MID \ALLOCCLOS{\Int}{\Type}{\Int} \\
  14029. \Stmt &::=& \gray{ \ASSIGN{\VAR{\Var}}{\Exp}
  14030. \MID \LP\key{Collect} \,\itm{int}\RP } \\
  14031. \Tail &::= & \gray{ \RETURN{\Exp} \MID \SEQ{\Stmt}{\Tail}
  14032. \MID \GOTO{\itm{label}} } \\
  14033. &\MID& \gray{ \IFSTMT{\BINOP{\itm{cmp}}{\Atm}{\Atm}}{\GOTO{\itm{label}}}{\GOTO{\itm{label}}} }\\
  14034. &\MID& \gray{ \TAILCALL{\Atm}{\Atm\ldots} } \\
  14035. \Def &::=& \gray{ \DEF{\itm{label}}{\LP[\Var\key{:}\Type]\ldots\RP}{\Type}{\itm{info}}{\LP\LP\itm{label}\,\key{.}\,\Tail\RP\ldots\RP} }\\
  14036. \LangCLamM{} & ::= & \gray{ \PROGRAMDEFS{\itm{info}}{\LP\Def\ldots\RP} }
  14037. \end{array}
  14038. \]
  14039. \fi}
  14040. \end{minipage}
  14041. }
  14042. \caption{The abstract syntax of \LangCLam{}, extending \LangCFun{} (Figure~\ref{fig:c3-syntax}).}
  14043. \label{fig:c4-syntax}
  14044. \end{figure}
  14045. \section{Select Instructions}
  14046. \label{sec:select-instructions-Rlambda}
  14047. Compile \ALLOCCLOS{\itm{len}}{\itm{type}}{\itm{arity}} in almost the
  14048. same way as the \ALLOC{\itm{len}}{\itm{type}} form
  14049. (Section~\ref{sec:select-instructions-gc}). The only difference is
  14050. that you should place the \itm{arity} in the tag that is stored at
  14051. position $0$ of the vector. Recall that in
  14052. Section~\ref{sec:select-instructions-gc} a portion of the 64-bit tag
  14053. was not used. We store the arity in the $5$ bits starting at position
  14054. $58$.
  14055. Compile the \code{procedure-arity} operator into a sequence of
  14056. instructions that access the tag from position $0$ of the vector and
  14057. extract the $5$-bits starting at position $58$ from the tag.
  14058. \begin{figure}[p]
  14059. \begin{tikzpicture}[baseline=(current bounding box.center)]
  14060. \node (Rfun) at (0,2) {\large \LangLam{}};
  14061. \node (Rfun-2) at (3,2) {\large \LangLam{}};
  14062. \node (Rfun-3) at (6,2) {\large \LangLam{}};
  14063. \node (F1-0) at (9,2) {\large \LangLamFunRef{}};
  14064. \node (F1-1) at (12,0) {\large \LangLamFunRef{}};
  14065. \node (F1-2) at (9,0) {\large \LangFunRef{}};
  14066. \node (F1-3) at (6,0) {\large \LangFunRef{}};
  14067. \node (F1-4) at (3,0) {\large \LangFunRefAlloc{}};
  14068. \node (F1-5) at (0,0) {\large \LangFunANF{}};
  14069. \node (C3-2) at (3,-2) {\large \LangCFun{}};
  14070. \node (x86-2) at (3,-4) {\large \LangXIndCallVar{}};
  14071. \node (x86-2-1) at (3,-6) {\large \LangXIndCallVar{}};
  14072. \node (x86-2-2) at (6,-6) {\large \LangXIndCallVar{}};
  14073. \node (x86-3) at (6,-4) {\large \LangXIndCallVar{}};
  14074. \node (x86-4) at (9,-4) {\large \LangXIndCall{}};
  14075. \node (x86-5) at (9,-6) {\large \LangXIndCall{}};
  14076. \path[->,bend left=15] (Rfun) edge [above] node
  14077. {\ttfamily\footnotesize shrink} (Rfun-2);
  14078. \path[->,bend left=15] (Rfun-2) edge [above] node
  14079. {\ttfamily\footnotesize uniquify} (Rfun-3);
  14080. \path[->,bend left=15] (Rfun-3) edge [above] node
  14081. {\ttfamily\footnotesize reveal\_functions} (F1-0);
  14082. \path[->,bend left=15] (F1-0) edge [right] node
  14083. {\ttfamily\footnotesize convert\_assignments} (F1-1);
  14084. \path[->,bend left=15] (F1-1) edge [below] node
  14085. {\ttfamily\footnotesize convert\_to\_clos.} (F1-2);
  14086. \path[->,bend right=15] (F1-2) edge [above] node
  14087. {\ttfamily\footnotesize limit\_fun.} (F1-3);
  14088. \path[->,bend right=15] (F1-3) edge [above] node
  14089. {\ttfamily\footnotesize expose\_alloc.} (F1-4);
  14090. \path[->,bend right=15] (F1-4) edge [above] node
  14091. {\ttfamily\footnotesize remove\_complex.} (F1-5);
  14092. \path[->,bend right=15] (F1-5) edge [right] node
  14093. {\ttfamily\footnotesize explicate\_control} (C3-2);
  14094. \path[->,bend left=15] (C3-2) edge [left] node
  14095. {\ttfamily\footnotesize select\_instr.} (x86-2);
  14096. \path[->,bend right=15] (x86-2) edge [left] node
  14097. {\ttfamily\footnotesize uncover\_live} (x86-2-1);
  14098. \path[->,bend right=15] (x86-2-1) edge [below] node
  14099. {\ttfamily\footnotesize build\_inter.} (x86-2-2);
  14100. \path[->,bend right=15] (x86-2-2) edge [left] node
  14101. {\ttfamily\footnotesize allocate\_reg.} (x86-3);
  14102. \path[->,bend left=15] (x86-3) edge [above] node
  14103. {\ttfamily\footnotesize patch\_instr.} (x86-4);
  14104. \path[->,bend left=15] (x86-4) edge [right] node
  14105. {\ttfamily\footnotesize print\_x86} (x86-5);
  14106. \end{tikzpicture}
  14107. \caption{Diagram of the passes for \LangLam{}, a language with lexically-scoped
  14108. functions.}
  14109. \label{fig:Rlambda-passes}
  14110. \end{figure}
  14111. Figure~\ref{fig:Rlambda-passes} provides an overview of all the passes needed
  14112. for the compilation of \LangLam{}.
  14113. \clearpage
  14114. \section{Challenge: Optimize Closures}
  14115. \label{sec:optimize-closures}
  14116. In this chapter we compiled lexically-scoped functions into a
  14117. relatively efficient representation: flat closures. However, even this
  14118. representation comes with some overhead. For example, consider the
  14119. following program with a function \code{tail\_sum} that does not have
  14120. any free variables and where all the uses of \code{tail\_sum} are in
  14121. applications where we know that only \code{tail\_sum} is being applied
  14122. (and not any other functions).
  14123. \begin{center}
  14124. \begin{minipage}{0.95\textwidth}
  14125. \begin{lstlisting}
  14126. (define (tail_sum [n : Integer] [r : Integer]) : Integer
  14127. (if (eq? n 0)
  14128. r
  14129. (tail_sum (- n 1) (+ n r))))
  14130. (+ (tail_sum 5 0) 27)
  14131. \end{lstlisting}
  14132. \end{minipage}
  14133. \end{center}
  14134. As described in this chapter, we uniformly apply closure conversion to
  14135. all functions, obtaining the following output for this program.
  14136. \begin{center}
  14137. \begin{minipage}{0.95\textwidth}
  14138. \begin{lstlisting}
  14139. (define (tail_sum1 [fvs5 : _] [n2 : Integer] [r3 : Integer]) : Integer
  14140. (if (eq? n2 0)
  14141. r3
  14142. (let ([clos4 (closure (list (fun-ref tail_sum1)))])
  14143. ((vector-ref clos4 0) clos4 (+ n2 -1) (+ n2 r3)))))
  14144. (define (main) : Integer
  14145. (+ (let ([clos6 (closure (list (fun-ref tail_sum1)))])
  14146. ((vector-ref clos6 0) clos6 5 0)) 27))
  14147. \end{lstlisting}
  14148. \end{minipage}
  14149. \end{center}
  14150. In the previous Chapter, there would be no allocation in the program
  14151. and the calls to \code{tail\_sum} would be direct calls. In contrast,
  14152. the above program allocates memory for each \code{closure} and the
  14153. calls to \code{tail\_sum} are indirect. These two differences incur
  14154. considerable overhead in a program such as this one, where the
  14155. allocations and indirect calls occur inside a tight loop.
  14156. One might think that this problem is trivial to solve: can't we just
  14157. recognize calls of the form \code{((fun-ref $f$) $e_1 \ldots e_n$)}
  14158. and compile them to direct calls \code{((fun-ref $f$) $e'_1 \ldots
  14159. e'_n$)} instead of treating it like a call to a closure? We would
  14160. also drop the \code{fvs5} parameter of \code{tail\_sum1}.
  14161. %
  14162. However, this problem is not so trivial because a global function may
  14163. ``escape'' and become involved in applications that also involve
  14164. closures. Consider the following example in which the application
  14165. \code{(f 41)} needs to be compiled into a closure application, because
  14166. the \code{lambda} may get bound to \code{f}, but the \code{inc}
  14167. function might also get bound to \code{f}.
  14168. \begin{lstlisting}
  14169. (define (inc [x : Integer]) : Integer
  14170. (+ x 1))
  14171. (let ([y (read)])
  14172. (let ([f (if (eq? (read) 0)
  14173. inc
  14174. (lambda: ([x : Integer]) : Integer (- x y)))])
  14175. (f 41)))
  14176. \end{lstlisting}
  14177. If a global function name is used in any way other than as the
  14178. operator in a direct call, then we say that the function
  14179. \emph{escapes}. If a global function does not escape, then we do not
  14180. need to perform closure conversion on the function.
  14181. \begin{exercise}\normalfont
  14182. Implement an auxiliary function for detecting which global
  14183. functions escape. Using that function, implement an improved version
  14184. of closure conversion that does not apply closure conversion to
  14185. global functions that do not escape but instead compiles them as
  14186. regular functions. Create several new test cases that check whether
  14187. you properly detect whether global functions escape or not.
  14188. \end{exercise}
  14189. So far we have reduced the overhead of calling global functions, but
  14190. it would also be nice to reduce the overhead of calling a
  14191. \code{lambda} when we can determine at compile time which
  14192. \code{lambda} will be called. We refer to such calls as \emph{known
  14193. calls}. Consider the following example in which a \code{lambda} is
  14194. bound to \code{f} and then applied.
  14195. \begin{lstlisting}
  14196. (let ([y (read)])
  14197. (let ([f (lambda: ([x : Integer]) : Integer
  14198. (+ x y))])
  14199. (f 21)))
  14200. \end{lstlisting}
  14201. Closure conversion compiles \code{(f 21)} into an indirect call:
  14202. \begin{lstlisting}
  14203. (define (lambda5 [fvs6 : (Vector _ Integer)] [x3 : Integer]) : Integer
  14204. (let ([y2 (vector-ref fvs6 1)])
  14205. (+ x3 y2)))
  14206. (define (main) : Integer
  14207. (let ([y2 (read)])
  14208. (let ([f4 (Closure 1 (list (fun-ref lambda5) y2))])
  14209. ((vector-ref f4 0) f4 21))))
  14210. \end{lstlisting}
  14211. but we can instead compile the application \code{(f 21)} into a direct call
  14212. to \code{lambda5}:
  14213. \begin{lstlisting}
  14214. (define (main) : Integer
  14215. (let ([y2 (read)])
  14216. (let ([f4 (Closure 1 (list (fun-ref lambda5) y2))])
  14217. ((fun-ref lambda5) f4 21))))
  14218. \end{lstlisting}
  14219. The problem of determining which lambda will be called from a
  14220. particular application is quite challenging in general and the topic
  14221. of considerable research~\citep{Shivers:1988aa,Gilray:2016aa}. For the
  14222. following exercise we recommend that you compile an application to a
  14223. direct call when the operator is a variable and the variable is
  14224. \code{let}-bound to a closure. This can be accomplished by maintaining
  14225. an environment mapping \code{let}-bound variables to function names.
  14226. Extend the environment whenever you encounter a closure on the
  14227. right-hand side of a \code{let}, mapping the \code{let}-bound variable
  14228. to the name of the global function for the closure. This pass should
  14229. come after closure conversion.
  14230. \begin{exercise}\normalfont
  14231. Implement a compiler pass, named \code{optimize-known-calls}, that
  14232. compiles known calls into direct calls. Verify that your compiler is
  14233. successful in this regard on several example programs.
  14234. \end{exercise}
  14235. These exercises only scratches the surface of optimizing of
  14236. closures. A good next step for the interested reader is to look at the
  14237. work of \citet{Keep:2012ab}.
  14238. \section{Further Reading}
  14239. The notion of lexically scoped anonymous functions predates modern
  14240. computers by about a decade. They were invented by
  14241. \citet{Church:1932aa}, who proposed the $\lambda$ calculus as a
  14242. foundation for logic. Anonymous functions were included in the
  14243. LISP~\citep{McCarthy:1960dz} programming language but were initially
  14244. dynamically scoped. The Scheme dialect of LISP adopted lexical scoping
  14245. and \citet{Guy-L.-Steele:1978yq} demonstrated how to efficiently
  14246. compile Scheme programs. However, environments were represented as
  14247. linked lists, so variable lookup was linear in the size of the
  14248. environment. In this chapter we represent environments using flat
  14249. closures, which were invented by
  14250. \citet{Cardelli:1983aa,Cardelli:1984aa} for the purposes of compiling
  14251. the ML language~\citep{Gordon:1978aa,Milner:1990fk}. With flat
  14252. closures, variable lookup is constant time but the time to create a
  14253. closure is proportional to the number of its free variables. Flat
  14254. closures were reinvented by \citet{Dybvig:1987ab} in his Ph.D. thesis
  14255. and used in Chez Scheme version 1~\citep{Dybvig:2006aa}.
  14256. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  14257. \chapter{Dynamic Typing}
  14258. \label{ch:Rdyn}
  14259. \index{subject}{dynamic typing}
  14260. \if\edition\racketEd
  14261. In this chapter we discuss the compilation of \LangDyn{}, a dynamically
  14262. typed language that is a subset of Racket. This is in contrast to the
  14263. previous chapters, which have studied the compilation of Typed
  14264. Racket. In dynamically typed languages such as \LangDyn{}, a given
  14265. expression may produce a value of a different type each time it is
  14266. executed. Consider the following example with a conditional \code{if}
  14267. expression that may return a Boolean or an integer depending on the
  14268. input to the program.
  14269. % part of dynamic_test_25.rkt
  14270. \begin{lstlisting}
  14271. (not (if (eq? (read) 1) #f 0))
  14272. \end{lstlisting}
  14273. Languages that allow expressions to produce different kinds of values
  14274. are called \emph{polymorphic}, a word composed of the Greek roots
  14275. ``poly'', meaning ``many'', and ``morph'', meaning ``shape''. There
  14276. are several kinds of polymorphism in programming languages, such as
  14277. subtype polymorphism and parametric
  14278. polymorphism~\citep{Cardelli:1985kx}. The kind of polymorphism we
  14279. study in this chapter does not have a special name but it is the kind
  14280. that arises in dynamically typed languages.
  14281. Another characteristic of dynamically typed languages is that
  14282. primitive operations, such as \code{not}, are often defined to operate
  14283. on many different types of values. In fact, in Racket, the \code{not}
  14284. operator produces a result for any kind of value: given \code{\#f} it
  14285. returns \code{\#t} and given anything else it returns \code{\#f}.
  14286. Furthermore, even when primitive operations restrict their inputs to
  14287. values of a certain type, this restriction is enforced at runtime
  14288. instead of during compilation. For example, the following vector
  14289. reference results in a run-time contract violation because the index
  14290. must be in integer, not a Boolean such as \code{\#t}.
  14291. \begin{lstlisting}
  14292. (vector-ref (vector 42) #t)
  14293. \end{lstlisting}
  14294. \begin{figure}[tp]
  14295. \centering
  14296. \fbox{
  14297. \begin{minipage}{0.97\textwidth}
  14298. \[
  14299. \begin{array}{rcl}
  14300. \itm{cmp} &::= & \key{eq?} \MID \key{<} \MID \key{<=} \MID \key{>} \MID \key{>=} \\
  14301. \Exp &::=& \Int \MID \CREAD{} \MID \CNEG{\Exp}
  14302. \MID \CADD{\Exp}{\Exp} \MID \CSUB{\Exp}{\Exp} \\
  14303. &\MID& \Var \MID \CLET{\Var}{\Exp}{\Exp} \\
  14304. &\MID& \key{\#t} \MID \key{\#f}
  14305. \MID \CBINOP{\key{and}}{\Exp}{\Exp}
  14306. \MID \CBINOP{\key{or}}{\Exp}{\Exp}
  14307. \MID \CUNIOP{\key{not}}{\Exp} \\
  14308. &\MID& \LP\itm{cmp}\;\Exp\;\Exp\RP \MID \CIF{\Exp}{\Exp}{\Exp} \\
  14309. &\MID& \LP\key{vector}\;\Exp\ldots\RP \MID
  14310. \LP\key{vector-ref}\;\Exp\;\Exp\RP \\
  14311. &\MID& \LP\key{vector-set!}\;\Exp\;\Exp\;\Exp\RP \MID \LP\key{void}\RP \\
  14312. &\MID& \LP\Exp \; \Exp\ldots\RP
  14313. \MID \LP\key{lambda}\;\LP\Var\ldots\RP\;\Exp\RP \\
  14314. & \MID & \LP\key{boolean?}\;\Exp\RP \MID \LP\key{integer?}\;\Exp\RP\\
  14315. & \MID & \LP\key{vector?}\;\Exp\RP \MID \LP\key{procedure?}\;\Exp\RP \MID \LP\key{void?}\;\Exp\RP \\
  14316. \Def &::=& \LP\key{define}\; \LP\Var \; \Var\ldots\RP \; \Exp\RP \\
  14317. \LangDynM{} &::=& \Def\ldots\; \Exp
  14318. \end{array}
  14319. \]
  14320. \end{minipage}
  14321. }
  14322. \caption{Syntax of \LangDyn{}, an untyped language (a subset of Racket).}
  14323. \label{fig:r7-concrete-syntax}
  14324. \end{figure}
  14325. \begin{figure}[tp]
  14326. \centering
  14327. \fbox{
  14328. \begin{minipage}{0.96\textwidth}
  14329. \small
  14330. \[
  14331. \begin{array}{lcl}
  14332. \Exp &::=& \INT{\Int} \MID \VAR{\Var} \MID \LET{\Var}{\Exp}{\Exp} \\
  14333. &\MID& \PRIM{\itm{op}}{\Exp\ldots} \\
  14334. &\MID& \BOOL{\itm{bool}}
  14335. \MID \IF{\Exp}{\Exp}{\Exp} \\
  14336. &\MID& \VOID{} \MID \APPLY{\Exp}{\Exp\ldots} \\
  14337. &\MID& \LAMBDA{\LP\Var\ldots\RP}{\code{'Any}}{\Exp}\\
  14338. \Def &::=& \FUNDEF{\Var}{\LP\Var\ldots\RP}{\code{'Any}}{\code{'()}}{\Exp} \\
  14339. \LangDynM{} &::=& \PROGRAMDEFSEXP{\code{'()}}{\LP\Def\ldots\RP}{\Exp}
  14340. \end{array}
  14341. \]
  14342. \end{minipage}
  14343. }
  14344. \caption{The abstract syntax of \LangDyn{}.}
  14345. \label{fig:r7-syntax}
  14346. \end{figure}
  14347. The concrete and abstract syntax of \LangDyn{}, our subset of Racket, is
  14348. defined in Figures~\ref{fig:r7-concrete-syntax} and
  14349. \ref{fig:r7-syntax}.
  14350. %
  14351. There is no type checker for \LangDyn{} because it is not a statically
  14352. typed language (it's dynamically typed!).
  14353. The definitional interpreter for \LangDyn{} is presented in
  14354. Figure~\ref{fig:interp-Rdyn} and its auxiliary functions are defined i
  14355. Figure~\ref{fig:interp-Rdyn-aux}. Consider the match case for
  14356. \code{(Int n)}. Instead of simply returning the integer \code{n} (as
  14357. in the interpreter for \LangVar{} in Figure~\ref{fig:interp-Lvar}), the
  14358. interpreter for \LangDyn{} creates a \emph{tagged value}\index{subject}{tagged
  14359. value} that combines an underlying value with a tag that identifies
  14360. what kind of value it is. We define the following struct
  14361. to represented tagged values.
  14362. \begin{lstlisting}
  14363. (struct Tagged (value tag) #:transparent)
  14364. \end{lstlisting}
  14365. The tags are \code{Integer}, \code{Boolean}, \code{Void},
  14366. \code{Vector}, and \code{Procedure}. Tags are closely related to types
  14367. but don't always capture all the information that a type does. For
  14368. example, a vector of type \code{(Vector Any Any)} is tagged with
  14369. \code{Vector} and a procedure of type \code{(Any Any -> Any)}
  14370. is tagged with \code{Procedure}.
  14371. Next consider the match case for \code{vector-ref}. The
  14372. \code{check-tag} auxiliary function (Figure~\ref{fig:interp-Rdyn-aux})
  14373. is used to ensure that the first argument is a vector and the second
  14374. is an integer. If they are not, a \code{trapped-error} is raised.
  14375. Recall from Section~\ref{sec:interp_Lint} that when a definition
  14376. interpreter raises a \code{trapped-error} error, the compiled code
  14377. must also signal an error by exiting with return code \code{255}. A
  14378. \code{trapped-error} is also raised if the index is not less than
  14379. length of the vector.
  14380. \begin{figure}[tbp]
  14381. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  14382. (define ((interp-Rdyn-exp env) ast)
  14383. (define recur (interp-Rdyn-exp env))
  14384. (match ast
  14385. [(Var x) (lookup x env)]
  14386. [(Int n) (Tagged n 'Integer)]
  14387. [(Bool b) (Tagged b 'Boolean)]
  14388. [(Lambda xs rt body)
  14389. (Tagged `(function ,xs ,body ,env) 'Procedure)]
  14390. [(Prim 'vector es)
  14391. (Tagged (apply vector (for/list ([e es]) (recur e))) 'Vector)]
  14392. [(Prim 'vector-ref (list e1 e2))
  14393. (define vec (recur e1)) (define i (recur e2))
  14394. (check-tag vec 'Vector ast) (check-tag i 'Integer ast)
  14395. (unless (< (Tagged-value i) (vector-length (Tagged-value vec)))
  14396. (error 'trapped-error "index ~a too big\nin ~v" (Tagged-value i) ast))
  14397. (vector-ref (Tagged-value vec) (Tagged-value i))]
  14398. [(Prim 'vector-set! (list e1 e2 e3))
  14399. (define vec (recur e1)) (define i (recur e2)) (define arg (recur e3))
  14400. (check-tag vec 'Vector ast) (check-tag i 'Integer ast)
  14401. (unless (< (Tagged-value i) (vector-length (Tagged-value vec)))
  14402. (error 'trapped-error "index ~a too big\nin ~v" (Tagged-value i) ast))
  14403. (vector-set! (Tagged-value vec) (Tagged-value i) arg)
  14404. (Tagged (void) 'Void)]
  14405. [(Let x e body) ((interp-Rdyn-exp (cons (cons x (recur e)) env)) body)]
  14406. [(Prim 'and (list e1 e2)) (recur (If e1 e2 (Bool #f)))]
  14407. [(Prim 'or (list e1 e2))
  14408. (define v1 (recur e1))
  14409. (match (Tagged-value v1) [#f (recur e2)] [else v1])]
  14410. [(Prim 'eq? (list l r)) (Tagged (equal? (recur l) (recur r)) 'Boolean)]
  14411. [(Prim op (list e1))
  14412. #:when (set-member? type-predicates op)
  14413. (tag-value ((interp-op op) (Tagged-value (recur e1))))]
  14414. [(Prim op es)
  14415. (define args (map recur es))
  14416. (define tags (for/list ([arg args]) (Tagged-tag arg)))
  14417. (unless (for/or ([expected-tags (op-tags op)])
  14418. (equal? expected-tags tags))
  14419. (error 'trapped-error "illegal argument tags ~a\nin ~v" tags ast))
  14420. (tag-value
  14421. (apply (interp-op op) (for/list ([a args]) (Tagged-value a))))]
  14422. [(If q t f)
  14423. (match (Tagged-value (recur q)) [#f (recur f)] [else (recur t)])]
  14424. [(Apply f es)
  14425. (define new-f (recur f)) (define args (map recur es))
  14426. (check-tag new-f 'Procedure ast) (define f-val (Tagged-value new-f))
  14427. (match f-val
  14428. [`(function ,xs ,body ,lam-env)
  14429. (unless (eq? (length xs) (length args))
  14430. (error 'trapped-error "~a != ~a\nin ~v" (length args) (length xs) ast))
  14431. (define new-env (append (map cons xs args) lam-env))
  14432. ((interp-Rdyn-exp new-env) body)]
  14433. [else (error "interp-Rdyn-exp, expected function, not" f-val)])]))
  14434. \end{lstlisting}
  14435. \caption{Interpreter for the \LangDyn{} language.}
  14436. \label{fig:interp-Rdyn}
  14437. \end{figure}
  14438. \begin{figure}[tbp]
  14439. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  14440. (define (interp-op op)
  14441. (match op
  14442. ['+ fx+]
  14443. ['- fx-]
  14444. ['read read-fixnum]
  14445. ['not (lambda (v) (match v [#t #f] [#f #t]))]
  14446. ['< (lambda (v1 v2)
  14447. (cond [(and (fixnum? v1) (fixnum? v2)) (< v1 v2)]))]
  14448. ['<= (lambda (v1 v2)
  14449. (cond [(and (fixnum? v1) (fixnum? v2)) (<= v1 v2)]))]
  14450. ['> (lambda (v1 v2)
  14451. (cond [(and (fixnum? v1) (fixnum? v2)) (> v1 v2)]))]
  14452. ['>= (lambda (v1 v2)
  14453. (cond [(and (fixnum? v1) (fixnum? v2)) (>= v1 v2)]))]
  14454. ['boolean? boolean?]
  14455. ['integer? fixnum?]
  14456. ['void? void?]
  14457. ['vector? vector?]
  14458. ['vector-length vector-length]
  14459. ['procedure? (match-lambda
  14460. [`(functions ,xs ,body ,env) #t] [else #f])]
  14461. [else (error 'interp-op "unknown operator" op)]))
  14462. (define (op-tags op)
  14463. (match op
  14464. ['+ '((Integer Integer))]
  14465. ['- '((Integer Integer) (Integer))]
  14466. ['read '(())]
  14467. ['not '((Boolean))]
  14468. ['< '((Integer Integer))]
  14469. ['<= '((Integer Integer))]
  14470. ['> '((Integer Integer))]
  14471. ['>= '((Integer Integer))]
  14472. ['vector-length '((Vector))]))
  14473. (define type-predicates
  14474. (set 'boolean? 'integer? 'vector? 'procedure? 'void?))
  14475. (define (tag-value v)
  14476. (cond [(boolean? v) (Tagged v 'Boolean)]
  14477. [(fixnum? v) (Tagged v 'Integer)]
  14478. [(procedure? v) (Tagged v 'Procedure)]
  14479. [(vector? v) (Tagged v 'Vector)]
  14480. [(void? v) (Tagged v 'Void)]
  14481. [else (error 'tag-value "unidentified value ~a" v)]))
  14482. (define (check-tag val expected ast)
  14483. (define tag (Tagged-tag val))
  14484. (unless (eq? tag expected)
  14485. (error 'trapped-error "expected ~a, not ~a\nin ~v" expected tag ast)))
  14486. \end{lstlisting}
  14487. \caption{Auxiliary functions for the \LangDyn{} interpreter.}
  14488. \label{fig:interp-Rdyn-aux}
  14489. \end{figure}
  14490. \clearpage
  14491. \section{Representation of Tagged Values}
  14492. The interpreter for \LangDyn{} introduced a new kind of value, a tagged
  14493. value. To compile \LangDyn{} to x86 we must decide how to represent tagged
  14494. values at the bit level. Because almost every operation in \LangDyn{}
  14495. involves manipulating tagged values, the representation must be
  14496. efficient. Recall that all of our values are 64 bits. We shall steal
  14497. the 3 right-most bits to encode the tag. We use $001$ to identify
  14498. integers, $100$ for Booleans, $010$ for vectors, $011$ for procedures,
  14499. and $101$ for the void value. We define the following auxiliary
  14500. function for mapping types to tag codes.
  14501. \begin{align*}
  14502. \itm{tagof}(\key{Integer}) &= 001 \\
  14503. \itm{tagof}(\key{Boolean}) &= 100 \\
  14504. \itm{tagof}((\key{Vector} \ldots)) &= 010 \\
  14505. \itm{tagof}((\ldots \key{->} \ldots)) &= 011 \\
  14506. \itm{tagof}(\key{Void}) &= 101
  14507. \end{align*}
  14508. This stealing of 3 bits comes at some price: our integers are reduced
  14509. to ranging from $-2^{60}$ to $2^{60}$. The stealing does not adversely
  14510. affect vectors and procedures because those values are addresses, and
  14511. our addresses are 8-byte aligned so the rightmost 3 bits are unused,
  14512. they are always $000$. Thus, we do not lose information by overwriting
  14513. the rightmost 3 bits with the tag and we can simply zero-out the tag
  14514. to recover the original address.
  14515. To make tagged values into first-class entities, we can give them a
  14516. type, called \code{Any}, and define operations such as \code{Inject}
  14517. and \code{Project} for creating and using them, yielding the \LangAny{}
  14518. intermediate language. We describe how to compile \LangDyn{} to \LangAny{} in
  14519. Section~\ref{sec:compile-r7} but first we describe the \LangAny{} language
  14520. in greater detail.
  14521. \section{The \LangAny{} Language}
  14522. \label{sec:Rany-lang}
  14523. \newcommand{\LAnyAST}{
  14524. \begin{array}{lcl}
  14525. \Type &::= & \key{Any} \\
  14526. \itm{op} &::= & \code{any-vector-length}
  14527. \MID \code{any-vector-ref} \MID \code{any-vector-set!}\\
  14528. &\MID& \code{boolean?} \MID \code{integer?} \MID \code{vector?}
  14529. \MID \code{procedure?} \MID \code{void?} \\
  14530. \Exp &::=& \INJECT{\Exp}{\FType} \MID \PROJECT{\Exp}{\FType}
  14531. \end{array}
  14532. }
  14533. \begin{figure}[tp]
  14534. \centering
  14535. \fbox{
  14536. \begin{minipage}{0.96\textwidth}
  14537. \small
  14538. \[
  14539. \begin{array}{l}
  14540. \gray{\LintOpAST} \\ \hline
  14541. \gray{\LvarASTRacket{}} \\ \hline
  14542. \gray{\LifASTRacket{}} \\ \hline
  14543. \gray{\LwhileASTRacket{}} \\ \hline
  14544. \gray{\LtupASTRacket{}} \\ \hline
  14545. \gray{\LfunASTRacket} \\ \hline
  14546. \gray{\LlambdaASTRacket} \\ \hline
  14547. \LAnyAST \\
  14548. \begin{array}{lcl}
  14549. %% \Type &::= & \ldots \MID \key{Any} \\
  14550. %% \itm{op} &::= & \ldots \MID \code{any-vector-length}
  14551. %% \MID \code{any-vector-ref} \MID \code{any-vector-set!}\\
  14552. %% &\MID& \code{boolean?} \MID \code{integer?} \MID \code{vector?}
  14553. %% \MID \code{procedure?} \MID \code{void?} \\
  14554. %% \Exp &::=& \ldots
  14555. %% \MID \gray{ \PRIM{\itm{op}}{\Exp\ldots} } \\
  14556. %% &\MID& \INJECT{\Exp}{\FType} \MID \PROJECT{\Exp}{\FType} \\
  14557. %% \Def &::=& \gray{ \FUNDEF{\Var}{\LP[\Var \code{:} \Type]\ldots\RP}{\Type}{\code{'()}}{\Exp} }\\
  14558. \LangAnyM{} &::=& \PROGRAMDEFSEXP{\code{'()}}{\LP\Def\ldots\RP}{\Exp}
  14559. \end{array}
  14560. \end{array}
  14561. \]
  14562. \end{minipage}
  14563. }
  14564. \caption{The abstract syntax of \LangAny{}, extending \LangLam{} (Figure~\ref{fig:Rlam-syntax}).}
  14565. \label{fig:Rany-syntax}
  14566. \end{figure}
  14567. The abstract syntax of \LangAny{} is defined in Figure~\ref{fig:Rany-syntax}.
  14568. (The concrete syntax of \LangAny{} is in the Appendix,
  14569. Figure~\ref{fig:Rany-concrete-syntax}.) The $\INJECT{e}{T}$ form
  14570. converts the value produced by expression $e$ of type $T$ into a
  14571. tagged value. The $\PROJECT{e}{T}$ form converts the tagged value
  14572. produced by expression $e$ into a value of type $T$ or else halts the
  14573. program if the type tag is not equivalent to $T$.
  14574. %
  14575. Note that in both \code{Inject} and \code{Project}, the type $T$ is
  14576. restricted to a flat type $\FType$, which simplifies the
  14577. implementation and corresponds with what is needed for compiling \LangDyn{}.
  14578. The \code{any-vector} operators adapt the vector operations so that
  14579. they can be applied to a value of type \code{Any}. They also
  14580. generalize the vector operations in that the index is not restricted
  14581. to be a literal integer in the grammar but is allowed to be any
  14582. expression.
  14583. The type predicates such as \key{boolean?} expect their argument to
  14584. produce a tagged value; they return \key{\#t} if the tag corresponds
  14585. to the predicate and they return \key{\#f} otherwise.
  14586. The type checker for \LangAny{} is shown in
  14587. Figures~\ref{fig:type-check-Rany-part-1} and
  14588. \ref{fig:type-check-Rany-part-2} and uses the auxiliary functions in
  14589. Figure~\ref{fig:type-check-Rany-aux}.
  14590. %
  14591. The interpreter for \LangAny{} is in Figure~\ref{fig:interp-Rany} and the
  14592. auxiliary functions \code{apply-inject} and \code{apply-project} are
  14593. in Figure~\ref{fig:apply-project}.
  14594. \begin{figure}[btp]
  14595. \begin{lstlisting}[basicstyle=\ttfamily\small]
  14596. (define type-check-Rany_class
  14597. (class type-check-Rlambda_class
  14598. (super-new)
  14599. (inherit check-type-equal?)
  14600. (define/override (type-check-exp env)
  14601. (lambda (e)
  14602. (define recur (type-check-exp env))
  14603. (match e
  14604. [(Inject e1 ty)
  14605. (unless (flat-ty? ty)
  14606. (error 'type-check "may only inject from flat type, not ~a" ty))
  14607. (define-values (new-e1 e-ty) (recur e1))
  14608. (check-type-equal? e-ty ty e)
  14609. (values (Inject new-e1 ty) 'Any)]
  14610. [(Project e1 ty)
  14611. (unless (flat-ty? ty)
  14612. (error 'type-check "may only project to flat type, not ~a" ty))
  14613. (define-values (new-e1 e-ty) (recur e1))
  14614. (check-type-equal? e-ty 'Any e)
  14615. (values (Project new-e1 ty) ty)]
  14616. [(Prim 'any-vector-length (list e1))
  14617. (define-values (e1^ t1) (recur e1))
  14618. (check-type-equal? t1 'Any e)
  14619. (values (Prim 'any-vector-length (list e1^)) 'Integer)]
  14620. [(Prim 'any-vector-ref (list e1 e2))
  14621. (define-values (e1^ t1) (recur e1))
  14622. (define-values (e2^ t2) (recur e2))
  14623. (check-type-equal? t1 'Any e)
  14624. (check-type-equal? t2 'Integer e)
  14625. (values (Prim 'any-vector-ref (list e1^ e2^)) 'Any)]
  14626. [(Prim 'any-vector-set! (list e1 e2 e3))
  14627. (define-values (e1^ t1) (recur e1))
  14628. (define-values (e2^ t2) (recur e2))
  14629. (define-values (e3^ t3) (recur e3))
  14630. (check-type-equal? t1 'Any e)
  14631. (check-type-equal? t2 'Integer e)
  14632. (check-type-equal? t3 'Any e)
  14633. (values (Prim 'any-vector-set! (list e1^ e2^ e3^)) 'Void)]
  14634. \end{lstlisting}
  14635. \caption{Type checker for the \LangAny{} language, part 1.}
  14636. \label{fig:type-check-Rany-part-1}
  14637. \end{figure}
  14638. \begin{figure}[btp]
  14639. \begin{lstlisting}[basicstyle=\ttfamily\small]
  14640. [(ValueOf e ty)
  14641. (define-values (new-e e-ty) (recur e))
  14642. (values (ValueOf new-e ty) ty)]
  14643. [(Prim pred (list e1))
  14644. #:when (set-member? (type-predicates) pred)
  14645. (define-values (new-e1 e-ty) (recur e1))
  14646. (check-type-equal? e-ty 'Any e)
  14647. (values (Prim pred (list new-e1)) 'Boolean)]
  14648. [(If cnd thn els)
  14649. (define-values (cnd^ Tc) (recur cnd))
  14650. (define-values (thn^ Tt) (recur thn))
  14651. (define-values (els^ Te) (recur els))
  14652. (check-type-equal? Tc 'Boolean cnd)
  14653. (check-type-equal? Tt Te e)
  14654. (values (If cnd^ thn^ els^) (combine-types Tt Te))]
  14655. [(Exit) (values (Exit) '_)]
  14656. [(Prim 'eq? (list arg1 arg2))
  14657. (define-values (e1 t1) (recur arg1))
  14658. (define-values (e2 t2) (recur arg2))
  14659. (match* (t1 t2)
  14660. [(`(Vector ,ts1 ...) `(Vector ,ts2 ...)) (void)]
  14661. [(other wise) (check-type-equal? t1 t2 e)])
  14662. (values (Prim 'eq? (list e1 e2)) 'Boolean)]
  14663. [else ((super type-check-exp env) e)])))
  14664. ))
  14665. \end{lstlisting}
  14666. \caption{Type checker for the \LangAny{} language, part 2.}
  14667. \label{fig:type-check-Rany-part-2}
  14668. \end{figure}
  14669. \begin{figure}[tbp]
  14670. \begin{lstlisting}
  14671. (define/override (operator-types)
  14672. (append
  14673. '((integer? . ((Any) . Boolean))
  14674. (vector? . ((Any) . Boolean))
  14675. (procedure? . ((Any) . Boolean))
  14676. (void? . ((Any) . Boolean))
  14677. (tag-of-any . ((Any) . Integer))
  14678. (make-any . ((_ Integer) . Any))
  14679. )
  14680. (super operator-types)))
  14681. (define/public (type-predicates)
  14682. (set 'boolean? 'integer? 'vector? 'procedure? 'void?))
  14683. (define/public (combine-types t1 t2)
  14684. (match (list t1 t2)
  14685. [(list '_ t2) t2]
  14686. [(list t1 '_) t1]
  14687. [(list `(Vector ,ts1 ...)
  14688. `(Vector ,ts2 ...))
  14689. `(Vector ,@(for/list ([t1 ts1] [t2 ts2])
  14690. (combine-types t1 t2)))]
  14691. [(list `(,ts1 ... -> ,rt1)
  14692. `(,ts2 ... -> ,rt2))
  14693. `(,@(for/list ([t1 ts1] [t2 ts2])
  14694. (combine-types t1 t2))
  14695. -> ,(combine-types rt1 rt2))]
  14696. [else t1]))
  14697. (define/public (flat-ty? ty)
  14698. (match ty
  14699. [(or `Integer `Boolean '_ `Void) #t]
  14700. [`(Vector ,ts ...) (for/and ([t ts]) (eq? t 'Any))]
  14701. [`(,ts ... -> ,rt)
  14702. (and (eq? rt 'Any) (for/and ([t ts]) (eq? t 'Any)))]
  14703. [else #f]))
  14704. \end{lstlisting}
  14705. \caption{Auxiliary methods for type checking \LangAny{}.}
  14706. \label{fig:type-check-Rany-aux}
  14707. \end{figure}
  14708. \begin{figure}[btp]
  14709. \begin{lstlisting}
  14710. (define interp-Rany_class
  14711. (class interp-Rlambda_class
  14712. (super-new)
  14713. (define/override (interp-op op)
  14714. (match op
  14715. ['boolean? (match-lambda
  14716. [`(tagged ,v1 ,tg) (equal? tg (any-tag 'Boolean))]
  14717. [else #f])]
  14718. ['integer? (match-lambda
  14719. [`(tagged ,v1 ,tg) (equal? tg (any-tag 'Integer))]
  14720. [else #f])]
  14721. ['vector? (match-lambda
  14722. [`(tagged ,v1 ,tg) (equal? tg (any-tag `(Vector Any)))]
  14723. [else #f])]
  14724. ['procedure? (match-lambda
  14725. [`(tagged ,v1 ,tg) (equal? tg (any-tag `(Any -> Any)))]
  14726. [else #f])]
  14727. ['eq? (match-lambda*
  14728. [`((tagged ,v1^ ,tg1) (tagged ,v2^ ,tg2))
  14729. (and (eq? v1^ v2^) (equal? tg1 tg2))]
  14730. [ls (apply (super interp-op op) ls)])]
  14731. ['any-vector-ref (lambda (v i)
  14732. (match v [`(tagged ,v^ ,tg) (vector-ref v^ i)]))]
  14733. ['any-vector-set! (lambda (v i a)
  14734. (match v [`(tagged ,v^ ,tg) (vector-set! v^ i a)]))]
  14735. ['any-vector-length (lambda (v)
  14736. (match v [`(tagged ,v^ ,tg) (vector-length v^)]))]
  14737. [else (super interp-op op)]))
  14738. (define/override ((interp-exp env) e)
  14739. (define recur (interp-exp env))
  14740. (match e
  14741. [(Inject e ty) `(tagged ,(recur e) ,(any-tag ty))]
  14742. [(Project e ty2) (apply-project (recur e) ty2)]
  14743. [else ((super interp-exp env) e)]))
  14744. ))
  14745. (define (interp-Rany p)
  14746. (send (new interp-Rany_class) interp-program p))
  14747. \end{lstlisting}
  14748. \caption{Interpreter for \LangAny{}.}
  14749. \label{fig:interp-Rany}
  14750. \end{figure}
  14751. \begin{figure}[tbp]
  14752. \begin{lstlisting}
  14753. (define/public (apply-inject v tg) (Tagged v tg))
  14754. (define/public (apply-project v ty2)
  14755. (define tag2 (any-tag ty2))
  14756. (match v
  14757. [(Tagged v1 tag1)
  14758. (cond
  14759. [(eq? tag1 tag2)
  14760. (match ty2
  14761. [`(Vector ,ts ...)
  14762. (define l1 ((interp-op 'vector-length) v1))
  14763. (cond
  14764. [(eq? l1 (length ts)) v1]
  14765. [else (error 'apply-project "vector length mismatch, ~a != ~a"
  14766. l1 (length ts))])]
  14767. [`(,ts ... -> ,rt)
  14768. (match v1
  14769. [`(function ,xs ,body ,env)
  14770. (cond [(eq? (length xs) (length ts)) v1]
  14771. [else
  14772. (error 'apply-project "arity mismatch ~a != ~a"
  14773. (length xs) (length ts))])]
  14774. [else (error 'apply-project "expected function not ~a" v1)])]
  14775. [else v1])]
  14776. [else (error 'apply-project "tag mismatch ~a != ~a" tag1 tag2)])]
  14777. [else (error 'apply-project "expected tagged value, not ~a" v)]))
  14778. \end{lstlisting}
  14779. \caption{Auxiliary functions for injection and projection.}
  14780. \label{fig:apply-project}
  14781. \end{figure}
  14782. \clearpage
  14783. \section{Cast Insertion: Compiling \LangDyn{} to \LangAny{}}
  14784. \label{sec:compile-r7}
  14785. The \code{cast-insert} pass compiles from \LangDyn{} to \LangAny{}.
  14786. Figure~\ref{fig:compile-r7-Rany} shows the compilation of many of the
  14787. \LangDyn{} forms into \LangAny{}. An important invariant of this pass is that
  14788. given a subexpression $e$ in the \LangDyn{} program, the pass will produce
  14789. an expression $e'$ in \LangAny{} that has type \key{Any}. For example, the
  14790. first row in Figure~\ref{fig:compile-r7-Rany} shows the compilation of
  14791. the Boolean \code{\#t}, which must be injected to produce an
  14792. expression of type \key{Any}.
  14793. %
  14794. The second row of Figure~\ref{fig:compile-r7-Rany}, the compilation of
  14795. addition, is representative of compilation for many primitive
  14796. operations: the arguments have type \key{Any} and must be projected to
  14797. \key{Integer} before the addition can be performed.
  14798. The compilation of \key{lambda} (third row of
  14799. Figure~\ref{fig:compile-r7-Rany}) shows what happens when we need to
  14800. produce type annotations: we simply use \key{Any}.
  14801. %
  14802. The compilation of \code{if} and \code{eq?} demonstrate how this pass
  14803. has to account for some differences in behavior between \LangDyn{} and
  14804. \LangAny{}. The \LangDyn{} language is more permissive than \LangAny{} regarding what
  14805. kind of values can be used in various places. For example, the
  14806. condition of an \key{if} does not have to be a Boolean. For \key{eq?},
  14807. the arguments need not be of the same type (in that case the
  14808. result is \code{\#f}).
  14809. \begin{figure}[btp]
  14810. \centering
  14811. \begin{tabular}{|lll|} \hline
  14812. \begin{minipage}{0.27\textwidth}
  14813. \begin{lstlisting}
  14814. #t
  14815. \end{lstlisting}
  14816. \end{minipage}
  14817. &
  14818. $\Rightarrow$
  14819. &
  14820. \begin{minipage}{0.65\textwidth}
  14821. \begin{lstlisting}
  14822. (inject #t Boolean)
  14823. \end{lstlisting}
  14824. \end{minipage}
  14825. \\[2ex]\hline
  14826. \begin{minipage}{0.27\textwidth}
  14827. \begin{lstlisting}
  14828. (+ |$e_1$| |$e_2$|)
  14829. \end{lstlisting}
  14830. \end{minipage}
  14831. &
  14832. $\Rightarrow$
  14833. &
  14834. \begin{minipage}{0.65\textwidth}
  14835. \begin{lstlisting}
  14836. (inject
  14837. (+ (project |$e'_1$| Integer)
  14838. (project |$e'_2$| Integer))
  14839. Integer)
  14840. \end{lstlisting}
  14841. \end{minipage}
  14842. \\[2ex]\hline
  14843. \begin{minipage}{0.27\textwidth}
  14844. \begin{lstlisting}
  14845. (lambda (|$x_1 \ldots x_n$|) |$e$|)
  14846. \end{lstlisting}
  14847. \end{minipage}
  14848. &
  14849. $\Rightarrow$
  14850. &
  14851. \begin{minipage}{0.65\textwidth}
  14852. \begin{lstlisting}
  14853. (inject
  14854. (lambda: ([|$x_1$|:Any]|$\ldots$|[|$x_n$|:Any]):Any |$e'$|)
  14855. (Any|$\ldots$|Any -> Any))
  14856. \end{lstlisting}
  14857. \end{minipage}
  14858. \\[2ex]\hline
  14859. \begin{minipage}{0.27\textwidth}
  14860. \begin{lstlisting}
  14861. (|$e_0$| |$e_1 \ldots e_n$|)
  14862. \end{lstlisting}
  14863. \end{minipage}
  14864. &
  14865. $\Rightarrow$
  14866. &
  14867. \begin{minipage}{0.65\textwidth}
  14868. \begin{lstlisting}
  14869. ((project |$e'_0$| (Any|$\ldots$|Any -> Any)) |$e'_1 \ldots e'_n$|)
  14870. \end{lstlisting}
  14871. \end{minipage}
  14872. \\[2ex]\hline
  14873. \begin{minipage}{0.27\textwidth}
  14874. \begin{lstlisting}
  14875. (vector-ref |$e_1$| |$e_2$|)
  14876. \end{lstlisting}
  14877. \end{minipage}
  14878. &
  14879. $\Rightarrow$
  14880. &
  14881. \begin{minipage}{0.65\textwidth}
  14882. \begin{lstlisting}
  14883. (any-vector-ref |$e_1'$| |$e_2'$|)
  14884. \end{lstlisting}
  14885. \end{minipage}
  14886. \\[2ex]\hline
  14887. \begin{minipage}{0.27\textwidth}
  14888. \begin{lstlisting}
  14889. (if |$e_1$| |$e_2$| |$e_3$|)
  14890. \end{lstlisting}
  14891. \end{minipage}
  14892. &
  14893. $\Rightarrow$
  14894. &
  14895. \begin{minipage}{0.65\textwidth}
  14896. \begin{lstlisting}
  14897. (if (eq? |$e'_1$| (inject #f Boolean)) |$e'_3$| |$e'_2$|)
  14898. \end{lstlisting}
  14899. \end{minipage}
  14900. \\[2ex]\hline
  14901. \begin{minipage}{0.27\textwidth}
  14902. \begin{lstlisting}
  14903. (eq? |$e_1$| |$e_2$|)
  14904. \end{lstlisting}
  14905. \end{minipage}
  14906. &
  14907. $\Rightarrow$
  14908. &
  14909. \begin{minipage}{0.65\textwidth}
  14910. \begin{lstlisting}
  14911. (inject (eq? |$e'_1$| |$e'_2$|) Boolean)
  14912. \end{lstlisting}
  14913. \end{minipage}
  14914. \\[2ex]\hline
  14915. \begin{minipage}{0.27\textwidth}
  14916. \begin{lstlisting}
  14917. (not |$e_1$|)
  14918. \end{lstlisting}
  14919. \end{minipage}
  14920. &
  14921. $\Rightarrow$
  14922. &
  14923. \begin{minipage}{0.65\textwidth}
  14924. \begin{lstlisting}
  14925. (if (eq? |$e'_1$| (inject #f Boolean))
  14926. (inject #t Boolean) (inject #f Boolean))
  14927. \end{lstlisting}
  14928. \end{minipage}
  14929. \\[2ex]\hline
  14930. \end{tabular}
  14931. \caption{Cast Insertion}
  14932. \label{fig:compile-r7-Rany}
  14933. \end{figure}
  14934. \section{Reveal Casts}
  14935. \label{sec:reveal-casts-Rany}
  14936. % TODO: define R'_6
  14937. In the \code{reveal-casts} pass we recommend compiling \code{project}
  14938. into an \code{if} expression that checks whether the value's tag
  14939. matches the target type; if it does, the value is converted to a value
  14940. of the target type by removing the tag; if it does not, the program
  14941. exits. To perform these actions we need a new primitive operation,
  14942. \code{tag-of-any}, and two new forms, \code{ValueOf} and \code{Exit}.
  14943. The \code{tag-of-any} operation retrieves the type tag from a tagged
  14944. value of type \code{Any}. The \code{ValueOf} form retrieves the
  14945. underlying value from a tagged value. The \code{ValueOf} form
  14946. includes the type for the underlying value which is used by the type
  14947. checker. Finally, the \code{Exit} form ends the execution of the
  14948. program.
  14949. If the target type of the projection is \code{Boolean} or
  14950. \code{Integer}, then \code{Project} can be translated as follows.
  14951. \begin{center}
  14952. \begin{minipage}{1.0\textwidth}
  14953. \begin{lstlisting}
  14954. (Project |$e$| |$\FType$|)
  14955. |$\Rightarrow$|
  14956. (Let |$\itm{tmp}$| |$e'$|
  14957. (If (Prim 'eq? (list (Prim 'tag-of-any (list (Var |$\itm{tmp}$|)))
  14958. (Int |$\itm{tagof}(\FType)$|)))
  14959. (ValueOf |$\itm{tmp}$| |$\FType$|)
  14960. (Exit)))
  14961. \end{lstlisting}
  14962. \end{minipage}
  14963. \end{center}
  14964. If the target type of the projection is a vector or function type,
  14965. then there is a bit more work to do. For vectors, check that the
  14966. length of the vector type matches the length of the vector (using the
  14967. \code{vector-length} primitive). For functions, check that the number
  14968. of parameters in the function type matches the function's arity (using
  14969. \code{procedure-arity}).
  14970. Regarding \code{inject}, we recommend compiling it to a slightly
  14971. lower-level primitive operation named \code{make-any}. This operation
  14972. takes a tag instead of a type.
  14973. \begin{center}
  14974. \begin{minipage}{1.0\textwidth}
  14975. \begin{lstlisting}
  14976. (Inject |$e$| |$\FType$|)
  14977. |$\Rightarrow$|
  14978. (Prim 'make-any (list |$e'$| (Int |$\itm{tagof}(\FType)$|)))
  14979. \end{lstlisting}
  14980. \end{minipage}
  14981. \end{center}
  14982. The type predicates (\code{boolean?}, etc.) can be translated into
  14983. uses of \code{tag-of-any} and \code{eq?} in a similar way as in the
  14984. translation of \code{Project}.
  14985. The \code{any-vector-ref} and \code{any-vector-set!} operations
  14986. combine the projection action with the vector operation. Also, the
  14987. read and write operations allow arbitrary expressions for the index so
  14988. the type checker for \LangAny{} (Figure~\ref{fig:type-check-Rany-part-1})
  14989. cannot guarantee that the index is within bounds. Thus, we insert code
  14990. to perform bounds checking at runtime. The translation for
  14991. \code{any-vector-ref} is as follows and the other two operations are
  14992. translated in a similar way.
  14993. \begin{lstlisting}
  14994. (Prim 'any-vector-ref (list |$e_1$| |$e_2$|))
  14995. |$\Rightarrow$|
  14996. (Let |$v$| |$e'_1$|
  14997. (Let |$i$| |$e'_2$|
  14998. (If (Prim 'eq? (list (Prim 'tag-of-any (list (Var |$v$|))) (Int 2)))
  14999. (If (Prim '< (list (Var |$i$|)
  15000. (Prim 'any-vector-length (list (Var |$v$|)))))
  15001. (Prim 'any-vector-ref (list (Var |$v$|) (Var |$i$|)))
  15002. (Exit))))
  15003. \end{lstlisting}
  15004. \section{Remove Complex Operands}
  15005. \label{sec:rco-Rany}
  15006. The \code{ValueOf} and \code{Exit} forms are both complex expressions.
  15007. The subexpression of \code{ValueOf} must be atomic.
  15008. \section{Explicate Control and \LangCAny{}}
  15009. \label{sec:explicate-Rany}
  15010. The output of \code{explicate\_control} is the \LangCAny{} language whose
  15011. syntax is defined in Figure~\ref{fig:c5-syntax}. The \code{ValueOf}
  15012. form that we added to \LangAny{} remains an expression and the \code{Exit}
  15013. expression becomes a $\Tail$. Also, note that the index argument of
  15014. \code{vector-ref} and \code{vector-set!} is an $\Atm$ instead
  15015. of an integer, as in \LangCVec{} (Figure~\ref{fig:c2-syntax}).
  15016. \begin{figure}[tp]
  15017. \fbox{
  15018. \begin{minipage}{0.96\textwidth}
  15019. \small
  15020. \[
  15021. \begin{array}{lcl}
  15022. \Exp &::= & \ldots
  15023. \MID \BINOP{\key{'any-vector-ref}}{\Atm}{\Atm} \\
  15024. &\MID& (\key{Prim}~\key{'any-vector-set!}\,(\key{list}\,\Atm\,\Atm\,\Atm))\\
  15025. &\MID& \VALUEOF{\Exp}{\FType} \\
  15026. \Stmt &::=& \gray{ \ASSIGN{\VAR{\Var}}{\Exp}
  15027. \MID \LP\key{Collect} \,\itm{int}\RP }\\
  15028. \Tail &::= & \gray{ \RETURN{\Exp} \MID \SEQ{\Stmt}{\Tail}
  15029. \MID \GOTO{\itm{label}} } \\
  15030. &\MID& \gray{ \IFSTMT{\BINOP{\itm{cmp}}{\Atm}{\Atm}}{\GOTO{\itm{label}}}{\GOTO{\itm{label}}} }\\
  15031. &\MID& \gray{ \TAILCALL{\Atm}{\Atm\ldots} }
  15032. \MID \LP\key{Exit}\RP \\
  15033. \Def &::=& \gray{ \DEF{\itm{label}}{\LP[\Var\key{:}\Type]\ldots\RP}{\Type}{\itm{info}}{\LP\LP\itm{label}\,\key{.}\,\Tail\RP\ldots\RP} }\\
  15034. \LangCAnyM{} & ::= & \gray{ \PROGRAMDEFS{\itm{info}}{\LP\Def\ldots\RP} }
  15035. \end{array}
  15036. \]
  15037. \end{minipage}
  15038. }
  15039. \caption{The abstract syntax of \LangCAny{}, extending \LangCLam{} (Figure~\ref{fig:c4-syntax}).}
  15040. \label{fig:c5-syntax}
  15041. \end{figure}
  15042. \section{Select Instructions}
  15043. \label{sec:select-Rany}
  15044. In the \code{select\_instructions} pass we translate the primitive
  15045. operations on the \code{Any} type to x86 instructions that involve
  15046. manipulating the 3 tag bits of the tagged value.
  15047. \paragraph{Make-any}
  15048. We recommend compiling the \key{make-any} primitive as follows if the
  15049. tag is for \key{Integer} or \key{Boolean}. The \key{salq} instruction
  15050. shifts the destination to the left by the number of bits specified its
  15051. source argument (in this case $3$, the length of the tag) and it
  15052. preserves the sign of the integer. We use the \key{orq} instruction to
  15053. combine the tag and the value to form the tagged value. \\
  15054. \begin{lstlisting}
  15055. (Assign |\itm{lhs}| (Prim 'make-any (list |$e$| (Int |$\itm{tag}$|))))
  15056. |$\Rightarrow$|
  15057. movq |$e'$|, |\itm{lhs'}|
  15058. salq $3, |\itm{lhs'}|
  15059. orq $|$\itm{tag}$|, |\itm{lhs'}|
  15060. \end{lstlisting}
  15061. The instruction selection for vectors and procedures is different
  15062. because their is no need to shift them to the left. The rightmost 3
  15063. bits are already zeros as described at the beginning of this
  15064. chapter. So we just combine the value and the tag using \key{orq}. \\
  15065. \begin{lstlisting}
  15066. (Assign |\itm{lhs}| (Prim 'make-any (list |$e$| (Int |$\itm{tag}$|))))
  15067. |$\Rightarrow$|
  15068. movq |$e'$|, |\itm{lhs'}|
  15069. orq $|$\itm{tag}$|, |\itm{lhs'}|
  15070. \end{lstlisting}
  15071. \paragraph{Tag-of-any}
  15072. Recall that the \code{tag-of-any} operation extracts the type tag from
  15073. a value of type \code{Any}. The type tag is the bottom three bits, so
  15074. we obtain the tag by taking the bitwise-and of the value with $111$
  15075. ($7$ in decimal).
  15076. \begin{lstlisting}
  15077. (Assign |\itm{lhs}| (Prim 'tag-of-any (list |$e$|)))
  15078. |$\Rightarrow$|
  15079. movq |$e'$|, |\itm{lhs'}|
  15080. andq $7, |\itm{lhs'}|
  15081. \end{lstlisting}
  15082. \paragraph{ValueOf}
  15083. Like \key{make-any}, the instructions for \key{ValueOf} are different
  15084. depending on whether the type $T$ is a pointer (vector or procedure)
  15085. or not (Integer or Boolean). The following shows the instruction
  15086. selection for Integer and Boolean. We produce an untagged value by
  15087. shifting it to the right by 3 bits.
  15088. \begin{lstlisting}
  15089. (Assign |\itm{lhs}| (ValueOf |$e$| |$T$|))
  15090. |$\Rightarrow$|
  15091. movq |$e'$|, |\itm{lhs'}|
  15092. sarq $3, |\itm{lhs'}|
  15093. \end{lstlisting}
  15094. %
  15095. In the case for vectors and procedures, there is no need to
  15096. shift. Instead we just need to zero-out the rightmost 3 bits. We
  15097. accomplish this by creating the bit pattern $\ldots 0111$ ($7$ in
  15098. decimal) and apply \code{bitwise-not} to obtain $\ldots 11111000$ (-8
  15099. in decimal) which we \code{movq} into the destination $\itm{lhs}$. We
  15100. then apply \code{andq} with the tagged value to get the desired
  15101. result. \\
  15102. \begin{lstlisting}
  15103. (Assign |\itm{lhs}| (ValueOf |$e$| |$T$|))
  15104. |$\Rightarrow$|
  15105. movq $|$-8$|, |\itm{lhs'}|
  15106. andq |$e'$|, |\itm{lhs'}|
  15107. \end{lstlisting}
  15108. %% \paragraph{Type Predicates} We leave it to the reader to
  15109. %% devise a sequence of instructions to implement the type predicates
  15110. %% \key{boolean?}, \key{integer?}, \key{vector?}, and \key{procedure?}.
  15111. \paragraph{Any-vector-length}
  15112. \begin{lstlisting}
  15113. (Assign |$\itm{lhs}$| (Prim 'any-vector-length (list |$a_1$|)))
  15114. |$\Longrightarrow$|
  15115. movq |$\neg 111$|, %r11
  15116. andq |$a_1'$|, %r11
  15117. movq 0(%r11), %r11
  15118. andq $126, %r11
  15119. sarq $1, %r11
  15120. movq %r11, |$\itm{lhs'}$|
  15121. \end{lstlisting}
  15122. \paragraph{Any-vector-ref}
  15123. The index may be an arbitrary atom so instead of computing the offset
  15124. at compile time, instructions need to be generated to compute the
  15125. offset at runtime as follows. Note the use of the new instruction
  15126. \code{imulq}.
  15127. \begin{center}
  15128. \begin{minipage}{0.96\textwidth}
  15129. \begin{lstlisting}
  15130. (Assign |$\itm{lhs}$| (Prim 'any-vector-ref (list |$a_1$| |$a_2$|)))
  15131. |$\Longrightarrow$|
  15132. movq |$\neg 111$|, %r11
  15133. andq |$a_1'$|, %r11
  15134. movq |$a_2'$|, %rax
  15135. addq $1, %rax
  15136. imulq $8, %rax
  15137. addq %rax, %r11
  15138. movq 0(%r11) |$\itm{lhs'}$|
  15139. \end{lstlisting}
  15140. \end{minipage}
  15141. \end{center}
  15142. \paragraph{Any-vector-set!}
  15143. The code generation for \code{any-vector-set!} is similar to the other
  15144. \code{any-vector} operations.
  15145. \section{Register Allocation for \LangAny{}}
  15146. \label{sec:register-allocation-Rany}
  15147. \index{subject}{register allocation}
  15148. There is an interesting interaction between tagged values and garbage
  15149. collection that has an impact on register allocation. A variable of
  15150. type \code{Any} might refer to a vector and therefore it might be a
  15151. root that needs to be inspected and copied during garbage
  15152. collection. Thus, we need to treat variables of type \code{Any} in a
  15153. similar way to variables of type \code{Vector} for purposes of
  15154. register allocation. In particular,
  15155. \begin{itemize}
  15156. \item If a variable of type \code{Any} is live during a function call,
  15157. then it must be spilled. This can be accomplished by changing
  15158. \code{build\_interference} to mark all variables of type \code{Any}
  15159. that are live after a \code{callq} as interfering with all the
  15160. registers.
  15161. \item If a variable of type \code{Any} is spilled, it must be spilled
  15162. to the root stack instead of the normal procedure call stack.
  15163. \end{itemize}
  15164. Another concern regarding the root stack is that the garbage collector
  15165. needs to differentiate between (1) plain old pointers to tuples, (2) a
  15166. tagged value that points to a tuple, and (3) a tagged value that is
  15167. not a tuple. We enable this differentiation by choosing not to use the
  15168. tag $000$ in the $\itm{tagof}$ function. Instead, that bit pattern is
  15169. reserved for identifying plain old pointers to tuples. That way, if
  15170. one of the first three bits is set, then we have a tagged value and
  15171. inspecting the tag can differentiation between vectors ($010$) and the
  15172. other kinds of values.
  15173. \begin{exercise}\normalfont
  15174. Expand your compiler to handle \LangAny{} as discussed in the last few
  15175. sections. Create 5 new programs that use the \code{Any} type and the
  15176. new operations (\code{inject}, \code{project}, \code{boolean?},
  15177. etc.). Test your compiler on these new programs and all of your
  15178. previously created test programs.
  15179. \end{exercise}
  15180. \begin{exercise}\normalfont
  15181. Expand your compiler to handle \LangDyn{} as outlined in this chapter.
  15182. Create tests for \LangDyn{} by adapting ten of your previous test programs
  15183. by removing type annotations. Add 5 more tests programs that
  15184. specifically rely on the language being dynamically typed. That is,
  15185. they should not be legal programs in a statically typed language, but
  15186. nevertheless, they should be valid \LangDyn{} programs that run to
  15187. completion without error.
  15188. \end{exercise}
  15189. \begin{figure}[p]
  15190. \begin{tikzpicture}[baseline=(current bounding box.center)]
  15191. \node (Rfun) at (0,4) {\large \LangDyn{}};
  15192. \node (Rfun-2) at (3,4) {\large \LangDyn{}};
  15193. \node (Rfun-3) at (6,4) {\large \LangDyn{}};
  15194. \node (Rfun-4) at (9,4) {\large \LangDynFunRef{}};
  15195. \node (Rfun-5) at (9,2) {\large \LangAnyFunRef{}};
  15196. \node (Rfun-6) at (12,2) {\large \LangAnyFunRef{}};
  15197. \node (Rfun-7) at (12,0) {\large \LangAnyFunRef{}};
  15198. \node (F1-2) at (9,0) {\large \LangAnyFunRef{}};
  15199. \node (F1-3) at (6,0) {\large \LangAnyFunRef{}};
  15200. \node (F1-4) at (3,0) {\large \LangAnyAlloc{}};
  15201. \node (F1-5) at (0,0) {\large \LangAnyAlloc{}};
  15202. \node (C3-2) at (3,-2) {\large \LangCAny{}};
  15203. \node (x86-2) at (3,-4) {\large \LangXIndCallVar{}};
  15204. \node (x86-2-1) at (3,-6) {\large \LangXIndCallVar{}};
  15205. \node (x86-2-2) at (6,-6) {\large \LangXIndCallVar{}};
  15206. \node (x86-3) at (6,-4) {\large \LangXIndCallVar{}};
  15207. \node (x86-4) at (9,-4) {\large \LangXIndCall{}};
  15208. \node (x86-5) at (9,-6) {\large \LangXIndCall{}};
  15209. \path[->,bend left=15] (Rfun) edge [above] node
  15210. {\ttfamily\footnotesize shrink} (Rfun-2);
  15211. \path[->,bend left=15] (Rfun-2) edge [above] node
  15212. {\ttfamily\footnotesize uniquify} (Rfun-3);
  15213. \path[->,bend left=15] (Rfun-3) edge [above] node
  15214. {\ttfamily\footnotesize reveal\_functions} (Rfun-4);
  15215. \path[->,bend right=15] (Rfun-4) edge [left] node
  15216. {\ttfamily\footnotesize cast\_insert} (Rfun-5);
  15217. \path[->,bend left=15] (Rfun-5) edge [above] node
  15218. {\ttfamily\footnotesize check\_bounds} (Rfun-6);
  15219. \path[->,bend left=15] (Rfun-6) edge [left] node
  15220. {\ttfamily\footnotesize reveal\_casts} (Rfun-7);
  15221. \path[->,bend left=15] (Rfun-7) edge [below] node
  15222. {\ttfamily\footnotesize convert\_to\_clos.} (F1-2);
  15223. \path[->,bend right=15] (F1-2) edge [above] node
  15224. {\ttfamily\footnotesize limit\_fun.} (F1-3);
  15225. \path[->,bend right=15] (F1-3) edge [above] node
  15226. {\ttfamily\footnotesize expose\_alloc.} (F1-4);
  15227. \path[->,bend right=15] (F1-4) edge [above] node
  15228. {\ttfamily\footnotesize remove\_complex.} (F1-5);
  15229. \path[->,bend right=15] (F1-5) edge [right] node
  15230. {\ttfamily\footnotesize explicate\_control} (C3-2);
  15231. \path[->,bend left=15] (C3-2) edge [left] node
  15232. {\ttfamily\footnotesize select\_instr.} (x86-2);
  15233. \path[->,bend right=15] (x86-2) edge [left] node
  15234. {\ttfamily\footnotesize uncover\_live} (x86-2-1);
  15235. \path[->,bend right=15] (x86-2-1) edge [below] node
  15236. {\ttfamily\footnotesize build\_inter.} (x86-2-2);
  15237. \path[->,bend right=15] (x86-2-2) edge [left] node
  15238. {\ttfamily\footnotesize allocate\_reg.} (x86-3);
  15239. \path[->,bend left=15] (x86-3) edge [above] node
  15240. {\ttfamily\footnotesize patch\_instr.} (x86-4);
  15241. \path[->,bend left=15] (x86-4) edge [right] node
  15242. {\ttfamily\footnotesize print\_x86} (x86-5);
  15243. \end{tikzpicture}
  15244. \caption{Diagram of the passes for \LangDyn{}, a dynamically typed language.}
  15245. \label{fig:Rdyn-passes}
  15246. \end{figure}
  15247. Figure~\ref{fig:Rdyn-passes} provides an overview of all the passes needed
  15248. for the compilation of \LangDyn{}.
  15249. % Further Reading
  15250. \fi % racketEd
  15251. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  15252. {\if\edition\pythonEd
  15253. \chapter{Objects}
  15254. \label{ch:Robject}
  15255. \index{subject}{objects}
  15256. \index{subject}{classes}
  15257. \fi}
  15258. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  15259. \chapter{Gradual Typing}
  15260. \label{ch:Rgrad}
  15261. \index{subject}{gradual typing}
  15262. \if\edition\racketEd
  15263. This chapter studies a language, \LangGrad{}, in which the programmer
  15264. can choose between static and dynamic type checking in different parts
  15265. of a program, thereby mixing the statically typed \LangLoop{} language
  15266. with the dynamically typed \LangDyn{}. There are several approaches to
  15267. mixing static and dynamic typing, including multi-language
  15268. integration~\citep{Tobin-Hochstadt:2006fk,Matthews:2007zr} and hybrid
  15269. type checking~\citep{Flanagan:2006mn,Gronski:2006uq}. In this chapter
  15270. we focus on \emph{gradual typing}\index{subject}{gradual typing}, in which the
  15271. programmer controls the amount of static versus dynamic checking by
  15272. adding or removing type annotations on parameters and
  15273. variables~\citep{Anderson:2002kd,Siek:2006bh}.
  15274. %
  15275. The concrete syntax of \LangGrad{} is defined in
  15276. Figure~\ref{fig:Rgrad-concrete-syntax} and its abstract syntax is defined
  15277. in Figure~\ref{fig:Rgrad-syntax}. The main syntactic difference between
  15278. \LangLoop{} and \LangGrad{} is the additional \itm{param} and \itm{ret}
  15279. non-terminals that make type annotations optional. The return types
  15280. are not optional in the abstract syntax; the parser fills in
  15281. \code{Any} when the return type is not specified in the concrete
  15282. syntax.
  15283. \begin{figure}[tp]
  15284. \centering
  15285. \fbox{
  15286. \begin{minipage}{0.96\textwidth}
  15287. \small
  15288. \[
  15289. \begin{array}{lcl}
  15290. \itm{param} &::=& \Var \MID \LS\Var \key{:} \Type\RS \\
  15291. \itm{ret} &::=& \epsilon \MID \key{:} \Type \\
  15292. \Exp &::=& \gray{ \Int \MID \CREAD{} \MID \CNEG{\Exp}
  15293. \MID \CADD{\Exp}{\Exp} \MID \CSUB{\Exp}{\Exp} } \\
  15294. &\MID& \gray{ \Var \MID \CLET{\Var}{\Exp}{\Exp} }\\
  15295. &\MID& \gray{\key{\#t} \MID \key{\#f}
  15296. \MID (\key{and}\;\Exp\;\Exp)
  15297. \MID (\key{or}\;\Exp\;\Exp)
  15298. \MID (\key{not}\;\Exp) } \\
  15299. &\MID& \gray{ (\key{eq?}\;\Exp\;\Exp) \MID \CIF{\Exp}{\Exp}{\Exp} } \\
  15300. &\MID& \gray{ (\key{vector}\;\Exp\ldots) \MID
  15301. (\key{vector-ref}\;\Exp\;\Int)} \\
  15302. &\MID& \gray{(\key{vector-set!}\;\Exp\;\Int\;\Exp)\MID (\key{void})
  15303. \MID (\Exp \; \Exp\ldots) } \\
  15304. &\MID& \gray{ \LP \key{procedure-arity}~\Exp\RP }
  15305. \MID \CGLAMBDA{\LP\itm{param}\ldots\RP}{\itm{ret}}{\Exp} \\
  15306. &\MID& \gray{ \CSETBANG{\Var}{\Exp}
  15307. \MID \CBEGIN{\Exp\ldots}{\Exp}
  15308. \MID \CWHILE{\Exp}{\Exp} } \\
  15309. \Def &::=& \CGDEF{\Var}{\itm{param}\ldots}{\itm{ret}}{\Exp} \\
  15310. \LangGradM{} &::=& \gray{\Def\ldots \; \Exp}
  15311. \end{array}
  15312. \]
  15313. \end{minipage}
  15314. }
  15315. \caption{The concrete syntax of \LangGrad{}, extending \LangLoop{} (Figure~\ref{fig:Lwhile-concrete-syntax}).}
  15316. \label{fig:Rgrad-concrete-syntax}
  15317. \end{figure}
  15318. \begin{figure}[tp]
  15319. \centering
  15320. \fbox{
  15321. \begin{minipage}{0.96\textwidth}
  15322. \small
  15323. \[
  15324. \begin{array}{lcl}
  15325. \itm{param} &::=& \Var \MID \LS\Var \key{:} \Type\RS \\
  15326. \Exp &::=& \gray{ \INT{\Int} \VAR{\Var} \MID \LET{\Var}{\Exp}{\Exp} } \\
  15327. &\MID& \gray{ \PRIM{\itm{op}}{\Exp\ldots} }\\
  15328. &\MID& \gray{ \BOOL{\itm{bool}}
  15329. \MID \IF{\Exp}{\Exp}{\Exp} } \\
  15330. &\MID& \gray{ \VOID{} \MID \LP\key{HasType}~\Exp~\Type \RP
  15331. \MID \APPLY{\Exp}{\Exp\ldots} }\\
  15332. &\MID& \LAMBDA{\LP\itm{param}\ldots\RP}{\Type}{\Exp} \\
  15333. &\MID& \gray{ \SETBANG{\Var}{\Exp} \MID \BEGIN{\LP\Exp\ldots\RP}{\Exp} } \\
  15334. &\MID& \gray{ \WHILE{\Exp}{\Exp} } \\
  15335. \Def &::=& \FUNDEF{\Var}{\LP\itm{param}\ldots\RP}{\Type}{\code{'()}}{\Exp} \\
  15336. \LangGradM{} &::=& \gray{ \PROGRAMDEFSEXP{\code{'()}}{\LP\Def\ldots\RP}{\Exp} }
  15337. \end{array}
  15338. \]
  15339. \end{minipage}
  15340. }
  15341. \caption{The abstract syntax of \LangGrad{}, extending \LangLoop{} (Figure~\ref{fig:Lwhile-syntax}).}
  15342. \label{fig:Rgrad-syntax}
  15343. \end{figure}
  15344. Both the type checker and the interpreter for \LangGrad{} require some
  15345. interesting changes to enable gradual typing, which we discuss in the
  15346. next two sections in the context of the \code{map} example from
  15347. Chapter~\ref{ch:Rfun}. In Figure~\ref{fig:gradual-map} we
  15348. revised the \code{map} example, omitting the type annotations from
  15349. the \code{inc} function.
  15350. \begin{figure}[btp]
  15351. % gradual_test_9.rkt
  15352. \begin{lstlisting}
  15353. (define (map [f : (Integer -> Integer)]
  15354. [v : (Vector Integer Integer)])
  15355. : (Vector Integer Integer)
  15356. (vector (f (vector-ref v 0)) (f (vector-ref v 1))))
  15357. (define (inc x) (+ x 1))
  15358. (vector-ref (map inc (vector 0 41)) 1)
  15359. \end{lstlisting}
  15360. \caption{A partially-typed version of the \code{map} example.}
  15361. \label{fig:gradual-map}
  15362. \end{figure}
  15363. \section{Type Checking \LangGrad{} and \LangCast{}}
  15364. \label{sec:gradual-type-check}
  15365. The type checker for \LangGrad{} uses the \code{Any} type for missing
  15366. parameter and return types. For example, the \code{x} parameter of
  15367. \code{inc} in Figure~\ref{fig:gradual-map} is given the type
  15368. \code{Any} and the return type of \code{inc} is \code{Any}. Next
  15369. consider the \code{+} operator inside \code{inc}. It expects both
  15370. arguments to have type \code{Integer}, but its first argument \code{x}
  15371. has type \code{Any}. In a gradually typed language, such differences
  15372. are allowed so long as the types are \emph{consistent}, that is, they
  15373. are equal except in places where there is an \code{Any} type. The type
  15374. \code{Any} is consistent with every other type.
  15375. Figure~\ref{fig:consistent} defines the \code{consistent?} predicate.
  15376. \begin{figure}[tbp]
  15377. \begin{lstlisting}
  15378. (define/public (consistent? t1 t2)
  15379. (match* (t1 t2)
  15380. [('Integer 'Integer) #t]
  15381. [('Boolean 'Boolean) #t]
  15382. [('Void 'Void) #t]
  15383. [('Any t2) #t]
  15384. [(t1 'Any) #t]
  15385. [(`(Vector ,ts1 ...) `(Vector ,ts2 ...))
  15386. (for/and ([t1 ts1] [t2 ts2]) (consistent? t1 t2))]
  15387. [(`(,ts1 ... -> ,rt1) `(,ts2 ... -> ,rt2))
  15388. (and (for/and ([t1 ts1] [t2 ts2]) (consistent? t1 t2))
  15389. (consistent? rt1 rt2))]
  15390. [(other wise) #f]))
  15391. \end{lstlisting}
  15392. \caption{The consistency predicate on types.}
  15393. \label{fig:consistent}
  15394. \end{figure}
  15395. Returning to the \code{map} example of
  15396. Figure~\ref{fig:gradual-map}, the \code{inc} function has type
  15397. \code{(Any -> Any)} but parameter \code{f} of \code{map} has type
  15398. \code{(Integer -> Integer)}. The type checker for \LangGrad{} allows this
  15399. because the two types are consistent. In particular, \code{->} is
  15400. equal to \code{->} and because \code{Any} is consistent with
  15401. \code{Integer}.
  15402. Next consider a program with an error, such as applying the
  15403. \code{map} to a function that sometimes returns a Boolean, as
  15404. shown in Figure~\ref{fig:map-maybe-inc}. The type checker for
  15405. \LangGrad{} accepts this program because the type of \code{maybe-inc} is
  15406. consistent with the type of parameter \code{f} of \code{map}, that
  15407. is, \code{(Any -> Any)} is consistent with \code{(Integer ->
  15408. Integer)}. One might say that a gradual type checker is optimistic
  15409. in that it accepts programs that might execute without a runtime type
  15410. error.
  15411. %
  15412. Unfortunately, running this program with input \code{1} triggers an
  15413. error when the \code{maybe-inc} function returns \code{\#t}. \LangGrad{}
  15414. performs checking at runtime to ensure the integrity of the static
  15415. types, such as the \code{(Integer -> Integer)} annotation on parameter
  15416. \code{f} of \code{map}. This runtime checking is carried out by a
  15417. new \code{Cast} form that is inserted by the type checker. Thus, the
  15418. output of the type checker is a program in the \LangCast{} language, which
  15419. adds \code{Cast} to \LangLoop{}, as shown in
  15420. Figure~\ref{fig:Rgrad-prime-syntax}.
  15421. \begin{figure}[tp]
  15422. \centering
  15423. \fbox{
  15424. \begin{minipage}{0.96\textwidth}
  15425. \small
  15426. \[
  15427. \begin{array}{lcl}
  15428. \Exp &::=& \ldots \MID \CAST{\Exp}{\Type}{\Type} \\
  15429. \LangCastM{} &::=& \gray{ \PROGRAMDEFSEXP{\code{'()}}{\LP\Def\ldots\RP}{\Exp} }
  15430. \end{array}
  15431. \]
  15432. \end{minipage}
  15433. }
  15434. \caption{The abstract syntax of \LangCast{}, extending \LangLoop{} (Figure~\ref{fig:Lwhile-syntax}).}
  15435. \label{fig:Rgrad-prime-syntax}
  15436. \end{figure}
  15437. \begin{figure}[tbp]
  15438. \begin{lstlisting}
  15439. (define (map [f : (Integer -> Integer)]
  15440. [v : (Vector Integer Integer)])
  15441. : (Vector Integer Integer)
  15442. (vector (f (vector-ref v 0)) (f (vector-ref v 1))))
  15443. (define (inc x) (+ x 1))
  15444. (define (true) #t)
  15445. (define (maybe-inc x) (if (eq? 0 (read)) (inc x) (true)))
  15446. (vector-ref (map maybe-inc (vector 0 41)) 0)
  15447. \end{lstlisting}
  15448. \caption{A variant of the \code{map} example with an error.}
  15449. \label{fig:map-maybe-inc}
  15450. \end{figure}
  15451. Figure~\ref{fig:map-cast} shows the output of the type checker for
  15452. \code{map} and \code{maybe-inc}. The idea is that \code{Cast} is
  15453. inserted every time the type checker sees two types that are
  15454. consistent but not equal. In the \code{inc} function, \code{x} is
  15455. cast to \code{Integer} and the result of the \code{+} is cast to
  15456. \code{Any}. In the call to \code{map}, the \code{inc} argument
  15457. is cast from \code{(Any -> Any)} to \code{(Integer -> Integer)}.
  15458. \begin{figure}[btp]
  15459. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  15460. (define (map [f : (Integer -> Integer)] [v : (Vector Integer Integer)])
  15461. : (Vector Integer Integer)
  15462. (vector (f (vector-ref v 0)) (f (vector-ref v 1))))
  15463. (define (inc [x : Any]) : Any
  15464. (cast (+ (cast x Any Integer) 1) Integer Any))
  15465. (define (true) : Any (cast #t Boolean Any))
  15466. (define (maybe-inc [x : Any]) : Any
  15467. (if (eq? 0 (read)) (inc x) (true)))
  15468. (vector-ref (map (cast maybe-inc (Any -> Any) (Integer -> Integer))
  15469. (vector 0 41)) 0)
  15470. \end{lstlisting}
  15471. \caption{Output of type checking \code{map}
  15472. and \code{maybe-inc}.}
  15473. \label{fig:map-cast}
  15474. \end{figure}
  15475. The type checker for \LangGrad{} is defined in
  15476. Figures~\ref{fig:type-check-Rgradual-1}, \ref{fig:type-check-Rgradual-2},
  15477. and \ref{fig:type-check-Rgradual-3}.
  15478. \begin{figure}[tbp]
  15479. \begin{lstlisting}[basicstyle=\ttfamily\scriptsize]
  15480. (define type-check-gradual_class
  15481. (class type-check-Rwhile_class
  15482. (super-new)
  15483. (inherit operator-types type-predicates)
  15484. (define/override (type-check-exp env)
  15485. (lambda (e)
  15486. (define recur (type-check-exp env))
  15487. (match e
  15488. [(Prim 'vector-length (list e1))
  15489. (define-values (e1^ t) (recur e1))
  15490. (match t
  15491. [`(Vector ,ts ...)
  15492. (values (Prim 'vector-length (list e1^)) 'Integer)]
  15493. ['Any (values (Prim 'any-vector-length (list e1^)) 'Integer)])]
  15494. [(Prim 'vector-ref (list e1 e2))
  15495. (define-values (e1^ t1) (recur e1))
  15496. (define-values (e2^ t2) (recur e2))
  15497. (check-consistent? t2 'Integer e)
  15498. (match t1
  15499. [`(Vector ,ts ...)
  15500. (match e2^
  15501. [(Int i)
  15502. (unless (and (0 . <= . i) (i . < . (length ts)))
  15503. (error 'type-check "invalid index ~a in ~a" i e))
  15504. (values (Prim 'vector-ref (list e1^ (Int i))) (list-ref ts i))]
  15505. [else (define e1^^ (make-cast e1^ t1 'Any))
  15506. (define e2^^ (make-cast e2^ t2 'Integer))
  15507. (values (Prim 'any-vector-ref (list e1^^ e2^^)) 'Any)])]
  15508. ['Any
  15509. (define e2^^ (make-cast e2^ t2 'Integer))
  15510. (values (Prim 'any-vector-ref (list e1^ e2^^)) 'Any)]
  15511. [else (error 'type-check "expected vector not ~a\nin ~v" t1 e)])]
  15512. [(Prim 'vector-set! (list e1 e2 e3) )
  15513. (define-values (e1^ t1) (recur e1))
  15514. (define-values (e2^ t2) (recur e2))
  15515. (define-values (e3^ t3) (recur e3))
  15516. (check-consistent? t2 'Integer e)
  15517. (match t1
  15518. [`(Vector ,ts ...)
  15519. (match e2^
  15520. [(Int i)
  15521. (unless (and (0 . <= . i) (i . < . (length ts)))
  15522. (error 'type-check "invalid index ~a in ~a" i e))
  15523. (check-consistent? (list-ref ts i) t3 e)
  15524. (define e3^^ (make-cast e3^ t3 (list-ref ts i)))
  15525. (values (Prim 'vector-set! (list e1^ (Int i) e3^^)) 'Void)]
  15526. [else
  15527. (define e1^^ (make-cast e1^ t1 'Any))
  15528. (define e2^^ (make-cast e2^ t2 'Integer))
  15529. (define e3^^ (make-cast e3^ t3 'Any))
  15530. (values (Prim 'any-vector-set! (list e1^^ e2^^ e3^^)) 'Void)])]
  15531. ['Any
  15532. (define e2^^ (make-cast e2^ t2 'Integer))
  15533. (define e3^^ (make-cast e3^ t3 'Any))
  15534. (values (Prim 'any-vector-set! (list e1^ e2^^ e3^^)) 'Void)]
  15535. [else (error 'type-check "expected vector not ~a\nin ~v" t1 e)])]
  15536. \end{lstlisting}
  15537. \caption{Type checker for the \LangGrad{} language, part 1.}
  15538. \label{fig:type-check-Rgradual-1}
  15539. \end{figure}
  15540. \begin{figure}[tbp]
  15541. \begin{lstlisting}[basicstyle=\ttfamily\scriptsize]
  15542. [(Prim 'eq? (list e1 e2))
  15543. (define-values (e1^ t1) (recur e1))
  15544. (define-values (e2^ t2) (recur e2))
  15545. (check-consistent? t1 t2 e)
  15546. (define T (meet t1 t2))
  15547. (values (Prim 'eq? (list (make-cast e1^ t1 T) (make-cast e2^ t2 T)))
  15548. 'Boolean)]
  15549. [(Prim 'not (list e1))
  15550. (define-values (e1^ t1) (recur e1))
  15551. (match t1
  15552. ['Any
  15553. (recur (If (Prim 'eq? (list e1 (Inject (Bool #f) 'Boolean)))
  15554. (Bool #t) (Bool #f)))]
  15555. [else
  15556. (define-values (t-ret new-es^)
  15557. (type-check-op 'not (list t1) (list e1^) e))
  15558. (values (Prim 'not new-es^) t-ret)])]
  15559. [(Prim 'and (list e1 e2))
  15560. (recur (If e1 e2 (Bool #f)))]
  15561. [(Prim 'or (list e1 e2))
  15562. (define tmp (gensym 'tmp))
  15563. (recur (Let tmp e1 (If (Var tmp) (Var tmp) e2)))]
  15564. [(Prim op es)
  15565. #:when (not (set-member? explicit-prim-ops op))
  15566. (define-values (new-es ts)
  15567. (for/lists (exprs types) ([e es])
  15568. (recur e)))
  15569. (define-values (t-ret new-es^) (type-check-op op ts new-es e))
  15570. (values (Prim op new-es^) t-ret)]
  15571. [(If e1 e2 e3)
  15572. (define-values (e1^ T1) (recur e1))
  15573. (define-values (e2^ T2) (recur e2))
  15574. (define-values (e3^ T3) (recur e3))
  15575. (check-consistent? T2 T3 e)
  15576. (match T1
  15577. ['Boolean
  15578. (define Tif (join T2 T3))
  15579. (values (If e1^ (make-cast e2^ T2 Tif)
  15580. (make-cast e3^ T3 Tif)) Tif)]
  15581. ['Any
  15582. (define Tif (meet T2 T3))
  15583. (values (If (Prim 'eq? (list e1^ (Inject (Bool #f) 'Boolean)))
  15584. (make-cast e3^ T3 Tif) (make-cast e2^ T2 Tif))
  15585. Tif)]
  15586. [else (error 'type-check "expected Boolean not ~a\nin ~v" T1 e)])]
  15587. [(HasType e1 T)
  15588. (define-values (e1^ T1) (recur e1))
  15589. (check-consistent? T1 T)
  15590. (values (make-cast e1^ T1 T) T)]
  15591. [(SetBang x e1)
  15592. (define-values (e1^ T1) (recur e1))
  15593. (define varT (dict-ref env x))
  15594. (check-consistent? T1 varT e)
  15595. (values (SetBang x (make-cast e1^ T1 varT)) 'Void)]
  15596. [(WhileLoop e1 e2)
  15597. (define-values (e1^ T1) (recur e1))
  15598. (check-consistent? T1 'Boolean e)
  15599. (define-values (e2^ T2) ((type-check-exp env) e2))
  15600. (values (WhileLoop (make-cast e1^ T1 'Boolean) e2^) 'Void)]
  15601. \end{lstlisting}
  15602. \caption{Type checker for the \LangGrad{} language, part 2.}
  15603. \label{fig:type-check-Rgradual-2}
  15604. \end{figure}
  15605. \begin{figure}[tbp]
  15606. \begin{lstlisting}[basicstyle=\ttfamily\scriptsize]
  15607. [(Apply e1 e2s)
  15608. (define-values (e1^ T1) (recur e1))
  15609. (define-values (e2s^ T2s) (for/lists (e* ty*) ([e2 e2s]) (recur e2)))
  15610. (match T1
  15611. [`(,T1ps ... -> ,T1rt)
  15612. (for ([T2 T2s] [Tp T1ps])
  15613. (check-consistent? T2 Tp e))
  15614. (define e2s^^ (for/list ([e2 e2s^] [src T2s] [tgt T1ps])
  15615. (make-cast e2 src tgt)))
  15616. (values (Apply e1^ e2s^^) T1rt)]
  15617. [`Any
  15618. (define e1^^ (make-cast e1^ 'Any
  15619. `(,@(for/list ([e e2s]) 'Any) -> Any)))
  15620. (define e2s^^ (for/list ([e2 e2s^] [src T2s])
  15621. (make-cast e2 src 'Any)))
  15622. (values (Apply e1^^ e2s^^) 'Any)]
  15623. [else (error 'type-check "expected function not ~a\nin ~v" T1 e)])]
  15624. [(Lambda params Tr e1)
  15625. (define-values (xs Ts) (for/lists (l1 l2) ([p params])
  15626. (match p
  15627. [`[,x : ,T] (values x T)]
  15628. [(? symbol? x) (values x 'Any)])))
  15629. (define-values (e1^ T1)
  15630. ((type-check-exp (append (map cons xs Ts) env)) e1))
  15631. (check-consistent? Tr T1 e)
  15632. (values (Lambda (for/list ([x xs] [T Ts]) `[,x : ,T]) Tr
  15633. (make-cast e1^ T1 Tr)) `(,@Ts -> ,Tr))]
  15634. [else ((super type-check-exp env) e)]
  15635. )))
  15636. \end{lstlisting}
  15637. \caption{Type checker for the \LangGrad{} language, part 3.}
  15638. \label{fig:type-check-Rgradual-3}
  15639. \end{figure}
  15640. \begin{figure}[tbp]
  15641. \begin{lstlisting}[basicstyle=\ttfamily\scriptsize]
  15642. (define/public (join t1 t2)
  15643. (match* (t1 t2)
  15644. [('Integer 'Integer) 'Integer]
  15645. [('Boolean 'Boolean) 'Boolean]
  15646. [('Void 'Void) 'Void]
  15647. [('Any t2) t2]
  15648. [(t1 'Any) t1]
  15649. [(`(Vector ,ts1 ...) `(Vector ,ts2 ...))
  15650. `(Vector ,@(for/list ([t1 ts1] [t2 ts2]) (join t1 t2)))]
  15651. [(`(,ts1 ... -> ,rt1) `(,ts2 ... -> ,rt2))
  15652. `(,@(for/list ([t1 ts1] [t2 ts2]) (join t1 t2))
  15653. -> ,(join rt1 rt2))]))
  15654. (define/public (meet t1 t2)
  15655. (match* (t1 t2)
  15656. [('Integer 'Integer) 'Integer]
  15657. [('Boolean 'Boolean) 'Boolean]
  15658. [('Void 'Void) 'Void]
  15659. [('Any t2) 'Any]
  15660. [(t1 'Any) 'Any]
  15661. [(`(Vector ,ts1 ...) `(Vector ,ts2 ...))
  15662. `(Vector ,@(for/list ([t1 ts1] [t2 ts2]) (meet t1 t2)))]
  15663. [(`(,ts1 ... -> ,rt1) `(,ts2 ... -> ,rt2))
  15664. `(,@(for/list ([t1 ts1] [t2 ts2]) (meet t1 t2))
  15665. -> ,(meet rt1 rt2))]))
  15666. (define/public (make-cast e src tgt)
  15667. (cond [(equal? src tgt) e] [else (Cast e src tgt)]))
  15668. (define/public (check-consistent? t1 t2 e)
  15669. (unless (consistent? t1 t2)
  15670. (error 'type-check "~a is inconsistent with ~a\nin ~v" t1 t2 e)))
  15671. (define/override (type-check-op op arg-types args e)
  15672. (match (dict-ref (operator-types) op)
  15673. [`(,param-types . ,return-type)
  15674. (for ([at arg-types] [pt param-types])
  15675. (check-consistent? at pt e))
  15676. (values return-type
  15677. (for/list ([e args] [s arg-types] [t param-types])
  15678. (make-cast e s t)))]
  15679. [else (error 'type-check-op "unrecognized ~a" op)]))
  15680. (define explicit-prim-ops
  15681. (set-union
  15682. (type-predicates)
  15683. (set 'procedure-arity 'eq?
  15684. 'vector 'vector-length 'vector-ref 'vector-set!
  15685. 'any-vector-length 'any-vector-ref 'any-vector-set!)))
  15686. (define/override (fun-def-type d)
  15687. (match d
  15688. [(Def f params rt info body)
  15689. (define ps
  15690. (for/list ([p params])
  15691. (match p
  15692. [`[,x : ,T] T]
  15693. [(? symbol?) 'Any]
  15694. [else (error 'fun-def-type "unmatched parameter ~a" p)])))
  15695. `(,@ps -> ,rt)]
  15696. [else (error 'fun-def-type "ill-formed function definition in ~a" d)]))
  15697. \end{lstlisting}
  15698. \caption{Auxiliary functions for type checking \LangGrad{}.}
  15699. \label{fig:type-check-Rgradual-aux}
  15700. \end{figure}
  15701. \clearpage
  15702. \section{Interpreting \LangCast{}}
  15703. \label{sec:interp-casts}
  15704. The runtime behavior of first-order casts is straightforward, that is,
  15705. casts involving simple types such as \code{Integer} and
  15706. \code{Boolean}. For example, a cast from \code{Integer} to \code{Any}
  15707. can be accomplished with the \code{Inject} operator of \LangAny{}, which
  15708. puts the integer into a tagged value
  15709. (Figure~\ref{fig:interp-Rany}). Similarly, a cast from \code{Any} to
  15710. \code{Integer} is accomplished with the \code{Project} operator, that
  15711. is, by checking the value's tag and either retrieving the underlying
  15712. integer or signaling an error if it the tag is not the one for
  15713. integers (Figure~\ref{fig:apply-project}).
  15714. %
  15715. Things get more interesting for higher-order casts, that is, casts
  15716. involving function or vector types.
  15717. Consider the cast of the function \code{maybe-inc} from \code{(Any ->
  15718. Any)} to \code{(Integer -> Integer)}. When a function flows through
  15719. this cast at runtime, we can't know in general whether the function
  15720. will always return an integer.\footnote{Predicting the return value of
  15721. a function is equivalent to the halting problem, which is
  15722. undecidable.} The \LangCast{} interpreter therefore delays the checking
  15723. of the cast until the function is applied. This is accomplished by
  15724. wrapping \code{maybe-inc} in a new function that casts its parameter
  15725. from \code{Integer} to \code{Any}, applies \code{maybe-inc}, and then
  15726. casts the return value from \code{Any} to \code{Integer}.
  15727. Turning our attention to casts involving vector types, we consider the
  15728. example in Figure~\ref{fig:map-bang} that defines a
  15729. partially-typed version of \code{map} whose parameter \code{v} has
  15730. type \code{(Vector Any Any)} and that updates \code{v} in place
  15731. instead of returning a new vector. So we name this function
  15732. \code{map!}. We apply \code{map!} to a vector of integers, so
  15733. the type checker inserts a cast from \code{(Vector Integer Integer)}
  15734. to \code{(Vector Any Any)}. A naive way for the \LangCast{} interpreter to
  15735. cast between vector types would be a build a new vector whose elements
  15736. are the result of casting each of the original elements to the
  15737. appropriate target type. However, this approach is only valid for
  15738. immutable vectors; and our vectors are mutable. In the example of
  15739. Figure~\ref{fig:map-bang}, if the cast created a new vector, then
  15740. the updates inside of \code{map!} would happen to the new vector
  15741. and not the original one.
  15742. \begin{figure}[tbp]
  15743. % gradual_test_11.rkt
  15744. \begin{lstlisting}
  15745. (define (map! [f : (Any -> Any)]
  15746. [v : (Vector Any Any)]) : Void
  15747. (begin
  15748. (vector-set! v 0 (f (vector-ref v 0)))
  15749. (vector-set! v 1 (f (vector-ref v 1)))))
  15750. (define (inc x) (+ x 1))
  15751. (let ([v (vector 0 41)])
  15752. (begin (map! inc v) (vector-ref v 1)))
  15753. \end{lstlisting}
  15754. \caption{An example involving casts on vectors.}
  15755. \label{fig:map-bang}
  15756. \end{figure}
  15757. Instead the interpreter needs to create a new kind of value, a
  15758. \emph{vector proxy}, that intercepts every vector operation. On a
  15759. read, the proxy reads from the underlying vector and then applies a
  15760. cast to the resulting value. On a write, the proxy casts the argument
  15761. value and then performs the write to the underlying vector. For the
  15762. first \code{(vector-ref v 0)} in \code{map!}, the proxy casts
  15763. \code{0} from \code{Integer} to \code{Any}. For the first
  15764. \code{vector-set!}, the proxy casts a tagged \code{1} from \code{Any}
  15765. to \code{Integer}.
  15766. The final category of cast that we need to consider are casts between
  15767. the \code{Any} type and either a function or a vector
  15768. type. Figure~\ref{fig:map-any} shows a variant of \code{map!}
  15769. in which parameter \code{v} does not have a type annotation, so it is
  15770. given type \code{Any}. In the call to \code{map!}, the vector has
  15771. type \code{(Vector Integer Integer)} so the type checker inserts a
  15772. cast from \code{(Vector Integer Integer)} to \code{Any}. A first
  15773. thought is to use \code{Inject}, but that doesn't work because
  15774. \code{(Vector Integer Integer)} is not a flat type. Instead, we must
  15775. first cast to \code{(Vector Any Any)} (which is flat) and then inject
  15776. to \code{Any}.
  15777. \begin{figure}[tbp]
  15778. \begin{lstlisting}
  15779. (define (map! [f : (Any -> Any)] v) : Void
  15780. (begin
  15781. (vector-set! v 0 (f (vector-ref v 0)))
  15782. (vector-set! v 1 (f (vector-ref v 1)))))
  15783. (define (inc x) (+ x 1))
  15784. (let ([v (vector 0 41)])
  15785. (begin (map! inc v) (vector-ref v 1)))
  15786. \end{lstlisting}
  15787. \caption{Casting a vector to \code{Any}.}
  15788. \label{fig:map-any}
  15789. \end{figure}
  15790. The \LangCast{} interpreter uses an auxiliary function named
  15791. \code{apply-cast} to cast a value from a source type to a target type,
  15792. shown in Figure~\ref{fig:apply-cast}. You'll find that it handles all
  15793. of the kinds of casts that we've discussed in this section.
  15794. \begin{figure}[tbp]
  15795. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  15796. (define/public (apply-cast v s t)
  15797. (match* (s t)
  15798. [(t1 t2) #:when (equal? t1 t2) v]
  15799. [('Any t2)
  15800. (match t2
  15801. [`(,ts ... -> ,rt)
  15802. (define any->any `(,@(for/list ([t ts]) 'Any) -> Any))
  15803. (define v^ (apply-project v any->any))
  15804. (apply-cast v^ any->any `(,@ts -> ,rt))]
  15805. [`(Vector ,ts ...)
  15806. (define vec-any `(Vector ,@(for/list ([t ts]) 'Any)))
  15807. (define v^ (apply-project v vec-any))
  15808. (apply-cast v^ vec-any `(Vector ,@ts))]
  15809. [else (apply-project v t2)])]
  15810. [(t1 'Any)
  15811. (match t1
  15812. [`(,ts ... -> ,rt)
  15813. (define any->any `(,@(for/list ([t ts]) 'Any) -> Any))
  15814. (define v^ (apply-cast v `(,@ts -> ,rt) any->any))
  15815. (apply-inject v^ (any-tag any->any))]
  15816. [`(Vector ,ts ...)
  15817. (define vec-any `(Vector ,@(for/list ([t ts]) 'Any)))
  15818. (define v^ (apply-cast v `(Vector ,@ts) vec-any))
  15819. (apply-inject v^ (any-tag vec-any))]
  15820. [else (apply-inject v (any-tag t1))])]
  15821. [(`(Vector ,ts1 ...) `(Vector ,ts2 ...))
  15822. (define x (gensym 'x))
  15823. (define cast-reads (for/list ([t1 ts1] [t2 ts2])
  15824. `(function (,x) ,(Cast (Var x) t1 t2) ())))
  15825. (define cast-writes
  15826. (for/list ([t1 ts1] [t2 ts2])
  15827. `(function (,x) ,(Cast (Var x) t2 t1) ())))
  15828. `(vector-proxy ,(vector v (apply vector cast-reads)
  15829. (apply vector cast-writes)))]
  15830. [(`(,ts1 ... -> ,rt1) `(,ts2 ... -> ,rt2))
  15831. (define xs (for/list ([t2 ts2]) (gensym 'x)))
  15832. `(function ,xs ,(Cast
  15833. (Apply (Value v)
  15834. (for/list ([x xs][t1 ts1][t2 ts2])
  15835. (Cast (Var x) t2 t1)))
  15836. rt1 rt2) ())]
  15837. ))
  15838. \end{lstlisting}
  15839. \caption{The \code{apply-cast} auxiliary method.}
  15840. \label{fig:apply-cast}
  15841. \end{figure}
  15842. The interpreter for \LangCast{} is defined in
  15843. Figure~\ref{fig:interp-Rcast}, with the case for \code{Cast}
  15844. dispatching to \code{apply-cast}. To handle the addition of vector
  15845. proxies, we update the vector primitives in \code{interp-op} using the
  15846. functions in Figure~\ref{fig:guarded-vector}.
  15847. \begin{figure}[tbp]
  15848. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  15849. (define interp-Rcast_class
  15850. (class interp-Rwhile_class
  15851. (super-new)
  15852. (inherit apply-fun apply-inject apply-project)
  15853. (define/override (interp-op op)
  15854. (match op
  15855. ['vector-length guarded-vector-length]
  15856. ['vector-ref guarded-vector-ref]
  15857. ['vector-set! guarded-vector-set!]
  15858. ['any-vector-ref (lambda (v i)
  15859. (match v [`(tagged ,v^ ,tg)
  15860. (guarded-vector-ref v^ i)]))]
  15861. ['any-vector-set! (lambda (v i a)
  15862. (match v [`(tagged ,v^ ,tg)
  15863. (guarded-vector-set! v^ i a)]))]
  15864. ['any-vector-length (lambda (v)
  15865. (match v [`(tagged ,v^ ,tg)
  15866. (guarded-vector-length v^)]))]
  15867. [else (super interp-op op)]
  15868. ))
  15869. (define/override ((interp-exp env) e)
  15870. (define (recur e) ((interp-exp env) e))
  15871. (match e
  15872. [(Value v) v]
  15873. [(Cast e src tgt) (apply-cast (recur e) src tgt)]
  15874. [else ((super interp-exp env) e)]))
  15875. ))
  15876. (define (interp-Rcast p)
  15877. (send (new interp-Rcast_class) interp-program p))
  15878. \end{lstlisting}
  15879. \caption{The interpreter for \LangCast{}.}
  15880. \label{fig:interp-Rcast}
  15881. \end{figure}
  15882. \begin{figure}[tbp]
  15883. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  15884. (define (guarded-vector-ref vec i)
  15885. (match vec
  15886. [`(vector-proxy ,proxy)
  15887. (define val (guarded-vector-ref (vector-ref proxy 0) i))
  15888. (define rd (vector-ref (vector-ref proxy 1) i))
  15889. (apply-fun rd (list val) 'guarded-vector-ref)]
  15890. [else (vector-ref vec i)]))
  15891. (define (guarded-vector-set! vec i arg)
  15892. (match vec
  15893. [`(vector-proxy ,proxy)
  15894. (define wr (vector-ref (vector-ref proxy 2) i))
  15895. (define arg^ (apply-fun wr (list arg) 'guarded-vector-set!))
  15896. (guarded-vector-set! (vector-ref proxy 0) i arg^)]
  15897. [else (vector-set! vec i arg)]))
  15898. (define (guarded-vector-length vec)
  15899. (match vec
  15900. [`(vector-proxy ,proxy)
  15901. (guarded-vector-length (vector-ref proxy 0))]
  15902. [else (vector-length vec)]))
  15903. \end{lstlisting}
  15904. \caption{The guarded-vector auxiliary functions.}
  15905. \label{fig:guarded-vector}
  15906. \end{figure}
  15907. \section{Lower Casts}
  15908. \label{sec:lower-casts}
  15909. The next step in the journey towards x86 is the \code{lower-casts}
  15910. pass that translates the casts in \LangCast{} to the lower-level
  15911. \code{Inject} and \code{Project} operators and a new operator for
  15912. creating vector proxies, extending the \LangLoop{} language to create
  15913. \LangProxy{}. We recommend creating an auxiliary function named
  15914. \code{lower-cast} that takes an expression (in \LangCast{}), a source type,
  15915. and a target type, and translates it to expression in \LangProxy{} that has
  15916. the same behavior as casting the expression from the source to the
  15917. target type in the interpreter.
  15918. The \code{lower-cast} function can follow a code structure similar to
  15919. the \code{apply-cast} function (Figure~\ref{fig:apply-cast}) used in
  15920. the interpreter for \LangCast{} because it must handle the same cases as
  15921. \code{apply-cast} and it needs to mimic the behavior of
  15922. \code{apply-cast}. The most interesting cases are those concerning the
  15923. casts between two vector types and between two function types.
  15924. As mentioned in Section~\ref{sec:interp-casts}, a cast from one vector
  15925. type to another vector type is accomplished by creating a proxy that
  15926. intercepts the operations on the underlying vector. Here we make the
  15927. creation of the proxy explicit with the \code{vector-proxy} primitive
  15928. operation. It takes three arguments, the first is an expression for
  15929. the vector, the second is a vector of functions for casting an element
  15930. that is being read from the vector, and the third is a vector of
  15931. functions for casting an element that is being written to the vector.
  15932. You can create the functions using \code{Lambda}. Also, as we shall
  15933. see in the next section, we need to differentiate these vectors from
  15934. the user-created ones, so we recommend using a new primitive operator
  15935. named \code{raw-vector} instead of \code{vector} to create these
  15936. vectors of functions. Figure~\ref{fig:map-bang-lower-cast} shows
  15937. the output of \code{lower-casts} on the example in
  15938. Figure~\ref{fig:map-bang} that involved casting a vector of
  15939. integers to a vector of \code{Any}.
  15940. \begin{figure}[tbp]
  15941. \begin{lstlisting}
  15942. (define (map! [f : (Any -> Any)] [v : (Vector Any Any)]) : Void
  15943. (begin
  15944. (vector-set! v 0 (f (vector-ref v 0)))
  15945. (vector-set! v 1 (f (vector-ref v 1)))))
  15946. (define (inc [x : Any]) : Any
  15947. (inject (+ (project x Integer) 1) Integer))
  15948. (let ([v (vector 0 41)])
  15949. (begin
  15950. (map! inc (vector-proxy v
  15951. (raw-vector (lambda: ([x9 : Integer]) : Any
  15952. (inject x9 Integer))
  15953. (lambda: ([x9 : Integer]) : Any
  15954. (inject x9 Integer)))
  15955. (raw-vector (lambda: ([x9 : Any]) : Integer
  15956. (project x9 Integer))
  15957. (lambda: ([x9 : Any]) : Integer
  15958. (project x9 Integer)))))
  15959. (vector-ref v 1)))
  15960. \end{lstlisting}
  15961. \caption{Output of \code{lower-casts} on the example in
  15962. Figure~\ref{fig:map-bang}.}
  15963. \label{fig:map-bang-lower-cast}
  15964. \end{figure}
  15965. A cast from one function type to another function type is accomplished
  15966. by generating a \code{Lambda} whose parameter and return types match
  15967. the target function type. The body of the \code{Lambda} should cast
  15968. the parameters from the target type to the source type (yes,
  15969. backwards! functions are contravariant\index{subject}{contravariant} in the
  15970. parameters), then call the underlying function, and finally cast the
  15971. result from the source return type to the target return type.
  15972. Figure~\ref{fig:map-lower-cast} shows the output of the
  15973. \code{lower-casts} pass on the \code{map} example in
  15974. Figure~\ref{fig:gradual-map}. Note that the \code{inc} argument
  15975. in the call to \code{map} is wrapped in a \code{lambda}.
  15976. \begin{figure}[tbp]
  15977. \begin{lstlisting}
  15978. (define (map [f : (Integer -> Integer)]
  15979. [v : (Vector Integer Integer)])
  15980. : (Vector Integer Integer)
  15981. (vector (f (vector-ref v 0)) (f (vector-ref v 1))))
  15982. (define (inc [x : Any]) : Any
  15983. (inject (+ (project x Integer) 1) Integer))
  15984. (vector-ref (map (lambda: ([x9 : Integer]) : Integer
  15985. (project (inc (inject x9 Integer)) Integer))
  15986. (vector 0 41)) 1)
  15987. \end{lstlisting}
  15988. \caption{Output of \code{lower-casts} on the example in
  15989. Figure~\ref{fig:gradual-map}.}
  15990. \label{fig:map-lower-cast}
  15991. \end{figure}
  15992. \section{Differentiate Proxies}
  15993. \label{sec:differentiate-proxies}
  15994. So far the job of differentiating vectors and vector proxies has been
  15995. the job of the interpreter. For example, the interpreter for \LangCast{}
  15996. implements \code{vector-ref} using the \code{guarded-vector-ref}
  15997. function in Figure~\ref{fig:guarded-vector}. In the
  15998. \code{differentiate-proxies} pass we shift this responsibility to the
  15999. generated code.
  16000. We begin by designing the output language $R^p_8$. In
  16001. \LangGrad{} we used the type \code{Vector} for both real vectors and vector
  16002. proxies. In $R^p_8$ we return the \code{Vector} type to
  16003. its original meaning, as the type of real vectors, and we introduce a
  16004. new type, \code{PVector}, whose values can be either real vectors or
  16005. vector proxies. This new type comes with a suite of new primitive
  16006. operations for creating and using values of type \code{PVector}. We
  16007. don't need to introduce a new type to represent vector proxies. A
  16008. proxy is represented by a vector containing three things: 1) the
  16009. underlying vector, 2) a vector of functions for casting elements that
  16010. are read from the vector, and 3) a vector of functions for casting
  16011. values to be written to the vector. So we define the following
  16012. abbreviation for the type of a vector proxy:
  16013. \[
  16014. \itm{Proxy} (T\ldots \Rightarrow T'\ldots)
  16015. = (\ttm{Vector}~(\ttm{PVector}~ T\ldots) ~R~ W)
  16016. \to (\key{PVector}~ T' \ldots)
  16017. \]
  16018. where $R = (\ttm{Vector}~(T\to T') \ldots)$ and
  16019. $W = (\ttm{Vector}~(T'\to T) \ldots)$.
  16020. %
  16021. Next we describe each of the new primitive operations.
  16022. \begin{description}
  16023. \item[\code{inject-vector} : (\key{Vector} $T \ldots$) $\to$
  16024. (\key{PVector} $T \ldots$)]\ \\
  16025. %
  16026. This operation brands a vector as a value of the \code{PVector} type.
  16027. \item[\code{inject-proxy} : $\itm{Proxy}(T\ldots \Rightarrow T'\ldots)$
  16028. $\to$ (\key{PVector} $T' \ldots$)]\ \\
  16029. %
  16030. This operation brands a vector proxy as value of the \code{PVector} type.
  16031. \item[\code{proxy?} : (\key{PVector} $T \ldots$) $\to$
  16032. \code{Boolean}] \ \\
  16033. %
  16034. returns true if the value is a vector proxy and false if it is a
  16035. real vector.
  16036. \item[\code{project-vector} : (\key{PVector} $T \ldots$) $\to$
  16037. (\key{Vector} $T \ldots$)]\ \\
  16038. %
  16039. Assuming that the input is a vector (and not a proxy), this
  16040. operation returns the vector.
  16041. \item[\code{proxy-vector-length} : (\key{PVector} $T \ldots$)
  16042. $\to$ \code{Boolean}]\ \\
  16043. %
  16044. Given a vector proxy, this operation returns the length of the
  16045. underlying vector.
  16046. \item[\code{proxy-vector-ref} : (\key{PVector} $T \ldots$)
  16047. $\to$ ($i$ : \code{Integer}) $\to$ $T_i$]\ \\
  16048. %
  16049. Given a vector proxy, this operation returns the $i$th element of
  16050. the underlying vector.
  16051. \item[\code{proxy-vector-set!} : (\key{PVector} $T \ldots$) $\to$ ($i$
  16052. : \code{Integer}) $\to$ $T_i$ $\to$ \key{Void}]\ \\ Given a vector
  16053. proxy, this operation writes a value to the $i$th element of the
  16054. underlying vector.
  16055. \end{description}
  16056. Now to discuss the translation that differentiates vectors from
  16057. proxies. First, every type annotation in the program must be
  16058. translated (recursively) to replace \code{Vector} with \code{PVector}.
  16059. Next, we must insert uses of \code{PVector} operations in the
  16060. appropriate places. For example, we wrap every vector creation with an
  16061. \code{inject-vector}.
  16062. \begin{lstlisting}
  16063. (vector |$e_1 \ldots e_n$|)
  16064. |$\Rightarrow$|
  16065. (inject-vector (vector |$e'_1 \ldots e'_n$|))
  16066. \end{lstlisting}
  16067. The \code{raw-vector} operator that we introduced in the previous
  16068. section does not get injected.
  16069. \begin{lstlisting}
  16070. (raw-vector |$e_1 \ldots e_n$|)
  16071. |$\Rightarrow$|
  16072. (vector |$e'_1 \ldots e'_n$|)
  16073. \end{lstlisting}
  16074. The \code{vector-proxy} primitive translates as follows.
  16075. \begin{lstlisting}
  16076. (vector-proxy |$e_1~e_2~e_3$|)
  16077. |$\Rightarrow$|
  16078. (inject-proxy (vector |$e'_1~e'_2~e'_3$|))
  16079. \end{lstlisting}
  16080. We translate the vector operations into conditional expressions that
  16081. check whether the value is a proxy and then dispatch to either the
  16082. appropriate proxy vector operation or the regular vector operation.
  16083. For example, the following is the translation for \code{vector-ref}.
  16084. \begin{lstlisting}
  16085. (vector-ref |$e_1$| |$i$|)
  16086. |$\Rightarrow$|
  16087. (let ([|$v~e_1$|])
  16088. (if (proxy? |$v$|)
  16089. (proxy-vector-ref |$v$| |$i$|)
  16090. (vector-ref (project-vector |$v$|) |$i$|)
  16091. \end{lstlisting}
  16092. Note in the case of a real vector, we must apply \code{project-vector}
  16093. before the \code{vector-ref}.
  16094. \section{Reveal Casts}
  16095. \label{sec:reveal-casts-gradual}
  16096. Recall that the \code{reveal-casts} pass
  16097. (Section~\ref{sec:reveal-casts-Rany}) is responsible for lowering
  16098. \code{Inject} and \code{Project} into lower-level operations. In
  16099. particular, \code{Project} turns into a conditional expression that
  16100. inspects the tag and retrieves the underlying value. Here we need to
  16101. augment the translation of \code{Project} to handle the situation when
  16102. the target type is \code{PVector}. Instead of using
  16103. \code{vector-length} we need to use \code{proxy-vector-length}.
  16104. \begin{lstlisting}
  16105. (project |$e$| (PVector Any|$_1$| |$\ldots$| Any|$_n$|))
  16106. |$\Rightarrow$|
  16107. (let |$\itm{tmp}$| |$e'$|
  16108. (if (eq? (tag-of-any |$\itm{tmp}$| 2))
  16109. (let |$\itm{tup}$| (value-of |$\itm{tmp}$| (PVector Any |$\ldots$| Any))
  16110. (if (eq? (proxy-vector-length |$\itm{tup}$|) |$n$|) |$\itm{tup}$| (exit)))
  16111. (exit)))
  16112. \end{lstlisting}
  16113. \section{Closure Conversion}
  16114. \label{sec:closure-conversion-gradual}
  16115. The closure conversion pass only requires one minor adjustment. The
  16116. auxiliary function that translates type annotations needs to be
  16117. updated to handle the \code{PVector} type.
  16118. \section{Explicate Control}
  16119. \label{sec:explicate-control-gradual}
  16120. Update the \code{explicate\_control} pass to handle the new primitive
  16121. operations on the \code{PVector} type.
  16122. \section{Select Instructions}
  16123. \label{sec:select-instructions-gradual}
  16124. Recall that the \code{select\_instructions} pass is responsible for
  16125. lowering the primitive operations into x86 instructions. So we need
  16126. to translate the new \code{PVector} operations to x86. To do so, the
  16127. first question we need to answer is how will we differentiate the two
  16128. kinds of values (vectors and proxies) that can inhabit \code{PVector}.
  16129. We need just one bit to accomplish this, and use the bit in position
  16130. $57$ of the 64-bit tag at the front of every vector (see
  16131. Figure~\ref{fig:tuple-rep}). So far, this bit has been set to $0$, so
  16132. for \code{inject-vector} we leave it that way.
  16133. \begin{lstlisting}
  16134. (Assign |$\itm{lhs}$| (Prim 'inject-vector (list |$e_1$|)))
  16135. |$\Rightarrow$|
  16136. movq |$e'_1$|, |$\itm{lhs'}$|
  16137. \end{lstlisting}
  16138. On the other hand, \code{inject-proxy} sets bit $57$ to $1$.
  16139. \begin{lstlisting}
  16140. (Assign |$\itm{lhs}$| (Prim 'inject-proxy (list |$e_1$|)))
  16141. |$\Rightarrow$|
  16142. movq |$e'_1$|, %r11
  16143. movq |$(1 << 57)$|, %rax
  16144. orq 0(%r11), %rax
  16145. movq %rax, 0(%r11)
  16146. movq %r11, |$\itm{lhs'}$|
  16147. \end{lstlisting}
  16148. The \code{proxy?} operation consumes the information so carefully
  16149. stashed away by \code{inject-vector} and \code{inject-proxy}. It
  16150. isolates the $57$th bit to tell whether the value is a real vector or
  16151. a proxy.
  16152. \begin{lstlisting}
  16153. (Assign |$\itm{lhs}$| (Prim 'proxy? (list e)))
  16154. |$\Rightarrow$|
  16155. movq |$e_1'$|, %r11
  16156. movq 0(%r11), %rax
  16157. sarq $57, %rax
  16158. andq $1, %rax
  16159. movq %rax, |$\itm{lhs'}$|
  16160. \end{lstlisting}
  16161. The \code{project-vector} operation is straightforward to translate,
  16162. so we leave it up to the reader.
  16163. Regarding the \code{proxy-vector} operations, the runtime provides
  16164. procedures that implement them (they are recursive functions!) so
  16165. here we simply need to translate these vector operations into the
  16166. appropriate function call. For example, here is the translation for
  16167. \code{proxy-vector-ref}.
  16168. \begin{lstlisting}
  16169. (Assign |$\itm{lhs}$| (Prim 'proxy-vector-ref (list |$e_1$| |$e_2$|)))
  16170. |$\Rightarrow$|
  16171. movq |$e_1'$|, %rdi
  16172. movq |$e_2'$|, %rsi
  16173. callq proxy_vector_ref
  16174. movq %rax, |$\itm{lhs'}$|
  16175. \end{lstlisting}
  16176. We have another batch of vector operations to deal with, those for the
  16177. \code{Any} type. Recall that the type checker for \LangGrad{} generates an
  16178. \code{any-vector-ref} when there is a \code{vector-ref} on something
  16179. of type \code{Any}, and similarly for \code{any-vector-set!} and
  16180. \code{any-vector-length} (Figure~\ref{fig:type-check-Rgradual-1}). In
  16181. Section~\ref{sec:select-Rany} we selected instructions for these
  16182. operations based on the idea that the underlying value was a real
  16183. vector. But in the current setting, the underlying value is of type
  16184. \code{PVector}. So \code{any-vector-ref} can be translates to
  16185. pseudo-x86 as follows. We begin by projecting the underlying value out
  16186. of the tagged value and then call the \code{proxy\_vector\_ref}
  16187. procedure in the runtime.
  16188. \begin{lstlisting}
  16189. (Assign |$\itm{lhs}$| (Prim 'any-vector-ref (list |$e_1$| |$e_2$|)))
  16190. movq |$\neg 111$|, %rdi
  16191. andq |$e_1'$|, %rdi
  16192. movq |$e_2'$|, %rsi
  16193. callq proxy_vector_ref
  16194. movq %rax, |$\itm{lhs'}$|
  16195. \end{lstlisting}
  16196. The \code{any-vector-set!} and \code{any-vector-length} operators can
  16197. be translated in a similar way.
  16198. \begin{exercise}\normalfont
  16199. Implement a compiler for the gradually-typed \LangGrad{} language by
  16200. extending and adapting your compiler for \LangLoop{}. Create 10 new
  16201. partially-typed test programs. In addition to testing with these
  16202. new programs, also test your compiler on all the tests for \LangLoop{}
  16203. and tests for \LangDyn{}. Sometimes you may get a type checking error
  16204. on the \LangDyn{} programs but you can adapt them by inserting
  16205. a cast to the \code{Any} type around each subexpression
  16206. causing a type error. While \LangDyn{} doesn't have explicit casts,
  16207. you can induce one by wrapping the subexpression \code{e}
  16208. with a call to an un-annotated identity function, like this:
  16209. \code{((lambda (x) x) e)}.
  16210. \end{exercise}
  16211. \begin{figure}[p]
  16212. \begin{tikzpicture}[baseline=(current bounding box.center)]
  16213. \node (Rgradual) at (6,4) {\large \LangGrad{}};
  16214. \node (Rgradualp) at (3,4) {\large \LangCast{}};
  16215. \node (Rwhilepp) at (0,4) {\large \LangProxy{}};
  16216. \node (Rwhileproxy) at (0,2) {\large \LangPVec{}};
  16217. \node (Rwhileproxy-2) at (3,2) {\large \LangPVec{}};
  16218. \node (Rwhileproxy-3) at (6,2) {\large \LangPVec{}};
  16219. \node (Rwhileproxy-4) at (9,2) {\large \LangPVecFunRef{}};
  16220. \node (Rwhileproxy-5) at (12,2) {\large \LangPVecFunRef{}};
  16221. \node (F1-1) at (12,0) {\large \LangPVecFunRef{}};
  16222. \node (F1-2) at (9,0) {\large \LangPVecFunRef{}};
  16223. \node (F1-3) at (6,0) {\large \LangPVecFunRef{}};
  16224. \node (F1-4) at (3,0) {\large \LangPVecAlloc{}};
  16225. \node (F1-5) at (0,0) {\large \LangPVecAlloc{}};
  16226. \node (C3-2) at (3,-2) {\large \LangCLoopPVec{}};
  16227. \node (x86-2) at (3,-4) {\large \LangXIndCallVar{}};
  16228. \node (x86-2-1) at (3,-6) {\large \LangXIndCallVar{}};
  16229. \node (x86-2-2) at (6,-6) {\large \LangXIndCallVar{}};
  16230. \node (x86-3) at (6,-4) {\large \LangXIndCallVar{}};
  16231. \node (x86-4) at (9,-4) {\large \LangXIndCall{}};
  16232. \node (x86-5) at (9,-6) {\large \LangXIndCall{}};
  16233. \path[->,bend right=15] (Rgradual) edge [above] node
  16234. {\ttfamily\footnotesize type\_check} (Rgradualp);
  16235. \path[->,bend right=15] (Rgradualp) edge [above] node
  16236. {\ttfamily\footnotesize lower\_casts} (Rwhilepp);
  16237. \path[->,bend right=15] (Rwhilepp) edge [right] node
  16238. {\ttfamily\footnotesize differentiate\_proxies} (Rwhileproxy);
  16239. \path[->,bend left=15] (Rwhileproxy) edge [above] node
  16240. {\ttfamily\footnotesize shrink} (Rwhileproxy-2);
  16241. \path[->,bend left=15] (Rwhileproxy-2) edge [above] node
  16242. {\ttfamily\footnotesize uniquify} (Rwhileproxy-3);
  16243. \path[->,bend left=15] (Rwhileproxy-3) edge [above] node
  16244. {\ttfamily\footnotesize reveal\_functions} (Rwhileproxy-4);
  16245. \path[->,bend left=15] (Rwhileproxy-4) edge [above] node
  16246. {\ttfamily\footnotesize reveal\_casts} (Rwhileproxy-5);
  16247. \path[->,bend left=15] (Rwhileproxy-5) edge [left] node
  16248. {\ttfamily\footnotesize convert\_assignments} (F1-1);
  16249. \path[->,bend left=15] (F1-1) edge [below] node
  16250. {\ttfamily\footnotesize convert\_to\_clos.} (F1-2);
  16251. \path[->,bend right=15] (F1-2) edge [above] node
  16252. {\ttfamily\footnotesize limit\_fun.} (F1-3);
  16253. \path[->,bend right=15] (F1-3) edge [above] node
  16254. {\ttfamily\footnotesize expose\_alloc.} (F1-4);
  16255. \path[->,bend right=15] (F1-4) edge [above] node
  16256. {\ttfamily\footnotesize remove\_complex.} (F1-5);
  16257. \path[->,bend right=15] (F1-5) edge [right] node
  16258. {\ttfamily\footnotesize explicate\_control} (C3-2);
  16259. \path[->,bend left=15] (C3-2) edge [left] node
  16260. {\ttfamily\footnotesize select\_instr.} (x86-2);
  16261. \path[->,bend right=15] (x86-2) edge [left] node
  16262. {\ttfamily\footnotesize uncover\_live} (x86-2-1);
  16263. \path[->,bend right=15] (x86-2-1) edge [below] node
  16264. {\ttfamily\footnotesize build\_inter.} (x86-2-2);
  16265. \path[->,bend right=15] (x86-2-2) edge [left] node
  16266. {\ttfamily\footnotesize allocate\_reg.} (x86-3);
  16267. \path[->,bend left=15] (x86-3) edge [above] node
  16268. {\ttfamily\footnotesize patch\_instr.} (x86-4);
  16269. \path[->,bend left=15] (x86-4) edge [right] node {\ttfamily\footnotesize print-x86} (x86-5);
  16270. \end{tikzpicture}
  16271. \caption{Diagram of the passes for \LangGrad{} (gradual typing).}
  16272. \label{fig:Rgradual-passes}
  16273. \end{figure}
  16274. Figure~\ref{fig:Rgradual-passes} provides an overview of all the passes needed
  16275. for the compilation of \LangGrad{}.
  16276. \section{Further Reading}
  16277. This chapter just scratches the surface of gradual typing. The basic
  16278. approach described here is missing two key ingredients that one would
  16279. want in a implementation of gradual typing: blame
  16280. tracking~\citep{Tobin-Hochstadt:2006fk,Wadler:2009qv} and
  16281. space-efficient casts~\citep{Herman:2006uq,Herman:2010aa}. The
  16282. problem addressed by blame tracking is that when a cast on a
  16283. higher-order value fails, it often does so at a point in the program
  16284. that is far removed from the original cast. Blame tracking is a
  16285. technique for propagating extra information through casts and proxies
  16286. so that when a cast fails, the error message can point back to the
  16287. original location of the cast in the source program.
  16288. The problem addressed by space-efficient casts also relates to
  16289. higher-order casts. It turns out that in partially typed programs, a
  16290. function or vector can flow through very-many casts at runtime. With
  16291. the approach described in this chapter, each cast adds another
  16292. \code{lambda} wrapper or a vector proxy. Not only does this take up
  16293. considerable space, but it also makes the function calls and vector
  16294. operations slow. For example, a partially-typed version of quicksort
  16295. could, in the worst case, build a chain of proxies of length $O(n)$
  16296. around the vector, changing the overall time complexity of the
  16297. algorithm from $O(n^2)$ to $O(n^3)$! \citet{Herman:2006uq} suggested a
  16298. solution to this problem by representing casts using the coercion
  16299. calculus of \citet{Henglein:1994nz}, which prevents the creation of
  16300. long chains of proxies by compressing them into a concise normal
  16301. form. \citet{Siek:2015ab} give and algorithm for compressing coercions
  16302. and \citet{Kuhlenschmidt:2019aa} show how to implement these ideas in
  16303. the Grift compiler.
  16304. \begin{center}
  16305. \url{https://github.com/Gradual-Typing/Grift}
  16306. \end{center}
  16307. There are also interesting interactions between gradual typing and
  16308. other language features, such as parametetric polymorphism,
  16309. information-flow types, and type inference, to name a few. We
  16310. recommend the reader to the online gradual typing bibliography:
  16311. \begin{center}
  16312. \url{http://samth.github.io/gradual-typing-bib/}
  16313. \end{center}
  16314. % TODO: challenge problem:
  16315. % type analysis and type specialization?
  16316. % coercions?
  16317. \fi
  16318. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  16319. \chapter{Parametric Polymorphism}
  16320. \label{ch:Rpoly}
  16321. \index{subject}{parametric polymorphism}
  16322. \index{subject}{generics}
  16323. \if\edition\racketEd
  16324. This chapter studies the compilation of parametric
  16325. polymorphism\index{subject}{parametric polymorphism}
  16326. (aka. generics\index{subject}{generics}) in the subset \LangPoly{} of Typed
  16327. Racket. Parametric polymorphism enables improved code reuse by
  16328. parameterizing functions and data structures with respect to the types
  16329. that they operate on. For example, Figure~\ref{fig:map-poly}
  16330. revisits the \code{map} example but this time gives it a more
  16331. fitting type. This \code{map} function is parameterized with
  16332. respect to the element type of the vector. The type of \code{map}
  16333. is the following polymorphic type as specified by the \code{All} and
  16334. the type parameter \code{a}.
  16335. \begin{lstlisting}
  16336. (All (a) ((a -> a) (Vector a a) -> (Vector a a)))
  16337. \end{lstlisting}
  16338. The idea is that \code{map} can be used at \emph{all} choices of a
  16339. type for parameter \code{a}. In Figure~\ref{fig:map-poly} we apply
  16340. \code{map} to a vector of integers, a choice of \code{Integer} for
  16341. \code{a}, but we could have just as well applied \code{map} to a
  16342. vector of Booleans (and a function on Booleans).
  16343. \begin{figure}[tbp]
  16344. % poly_test_2.rkt
  16345. \begin{lstlisting}
  16346. (: map (All (a) ((a -> a) (Vector a a) -> (Vector a a))))
  16347. (define (map f v)
  16348. (vector (f (vector-ref v 0)) (f (vector-ref v 1))))
  16349. (define (inc [x : Integer]) : Integer (+ x 1))
  16350. (vector-ref (map inc (vector 0 41)) 1)
  16351. \end{lstlisting}
  16352. \caption{The \code{map} example using parametric polymorphism.}
  16353. \label{fig:map-poly}
  16354. \end{figure}
  16355. Figure~\ref{fig:Rpoly-concrete-syntax} defines the concrete syntax of
  16356. \LangPoly{} and Figure~\ref{fig:Rpoly-syntax} defines the abstract
  16357. syntax. We add a second form for function definitions in which a type
  16358. declaration comes before the \code{define}. In the abstract syntax,
  16359. the return type in the \code{Def} is \code{Any}, but that should be
  16360. ignored in favor of the return type in the type declaration. (The
  16361. \code{Any} comes from using the same parser as in
  16362. Chapter~\ref{ch:Rdyn}.) The presence of a type declaration
  16363. enables the use of an \code{All} type for a function, thereby making
  16364. it polymorphic. The grammar for types is extended to include
  16365. polymorphic types and type variables.
  16366. \begin{figure}[tp]
  16367. \centering
  16368. \fbox{
  16369. \begin{minipage}{0.96\textwidth}
  16370. \small
  16371. \[
  16372. \begin{array}{lcl}
  16373. \Type &::=& \ldots \MID \LP\key{All}~\LP\Var\ldots\RP~ \Type\RP \MID \Var \\
  16374. \Def &::=& \gray{ \CDEF{\Var}{\LS\Var \key{:} \Type\RS \ldots}{\Type}{\Exp} } \\
  16375. &\MID& \LP\key{:}~\Var~\Type\RP \\
  16376. && \LP\key{define}~ \LP\Var ~ \Var\ldots\RP ~ \Exp\RP \\
  16377. \LangPoly{} &::=& \gray{ \Def \ldots ~ \Exp }
  16378. \end{array}
  16379. \]
  16380. \end{minipage}
  16381. }
  16382. \caption{The concrete syntax of \LangPoly{}, extending \LangLoop{}
  16383. (Figure~\ref{fig:Lwhile-concrete-syntax}).}
  16384. \label{fig:Rpoly-concrete-syntax}
  16385. \end{figure}
  16386. \begin{figure}[tp]
  16387. \centering
  16388. \fbox{
  16389. \begin{minipage}{0.96\textwidth}
  16390. \small
  16391. \[
  16392. \begin{array}{lcl}
  16393. \Type &::=& \ldots \MID \LP\key{All}~\LP\Var\ldots\RP~ \Type\RP \MID \Var \\
  16394. \Def &::=& \gray{ \DEF{\Var}{\LP\LS\Var \key{:} \Type\RS \ldots\RP}{\Type}{\code{'()}}{\Exp} } \\
  16395. &\MID& \DECL{\Var}{\Type} \\
  16396. && \DEF{\Var}{\LP\Var \ldots\RP}{\key{'Any}}{\code{'()}}{\Exp} \\
  16397. \LangPoly{} &::=& \gray{ \PROGRAMDEFSEXP{\code{'()}}{\LP\Def\ldots\RP}{\Exp} }
  16398. \end{array}
  16399. \]
  16400. \end{minipage}
  16401. }
  16402. \caption{The abstract syntax of \LangPoly{}, extending \LangLoop{}
  16403. (Figure~\ref{fig:Lwhile-syntax}).}
  16404. \label{fig:Rpoly-syntax}
  16405. \end{figure}
  16406. By including polymorphic types in the $\Type$ non-terminal we choose
  16407. to make them first-class which has interesting repercussions on the
  16408. compiler. Many languages with polymorphism, such as
  16409. C++~\citep{stroustrup88:_param_types} and Standard
  16410. ML~\citep{Milner:1990fk}, only support second-class polymorphism, so
  16411. it is useful to see an example of first-class polymorphism. In
  16412. Figure~\ref{fig:apply-twice} we define a function \code{apply-twice}
  16413. whose parameter is a polymorphic function. The occurrence of a
  16414. polymorphic type underneath a function type is enabled by the normal
  16415. recursive structure of the grammar for $\Type$ and the categorization
  16416. of the \code{All} type as a $\Type$. The body of \code{apply-twice}
  16417. applies the polymorphic function to a Boolean and to an integer.
  16418. \begin{figure}[tbp]
  16419. \begin{lstlisting}
  16420. (: apply-twice ((All (b) (b -> b)) -> Integer))
  16421. (define (apply-twice f)
  16422. (if (f #t) (f 42) (f 777)))
  16423. (: id (All (a) (a -> a)))
  16424. (define (id x) x)
  16425. (apply-twice id)
  16426. \end{lstlisting}
  16427. \caption{An example illustrating first-class polymorphism.}
  16428. \label{fig:apply-twice}
  16429. \end{figure}
  16430. The type checker for \LangPoly{} in Figure~\ref{fig:type-check-Lvar0} has
  16431. three new responsibilities (compared to \LangLoop{}). The type checking of
  16432. function application is extended to handle the case where the operator
  16433. expression is a polymorphic function. In that case the type arguments
  16434. are deduced by matching the type of the parameters with the types of
  16435. the arguments.
  16436. %
  16437. The \code{match-types} auxiliary function carries out this deduction
  16438. by recursively descending through a parameter type \code{pt} and the
  16439. corresponding argument type \code{at}, making sure that they are equal
  16440. except when there is a type parameter on the left (in the parameter
  16441. type). If it's the first time that the type parameter has been
  16442. encountered, then the algorithm deduces an association of the type
  16443. parameter to the corresponding type on the right (in the argument
  16444. type). If it's not the first time that the type parameter has been
  16445. encountered, the algorithm looks up its deduced type and makes sure
  16446. that it is equal to the type on the right.
  16447. %
  16448. Once the type arguments are deduced, the operator expression is
  16449. wrapped in an \code{Inst} AST node (for instantiate) that records the
  16450. type of the operator, but more importantly, records the deduced type
  16451. arguments. The return type of the application is the return type of
  16452. the polymorphic function, but with the type parameters replaced by the
  16453. deduced type arguments, using the \code{subst-type} function.
  16454. The second responsibility of the type checker is extending the
  16455. function \code{type-equal?} to handle the \code{All} type. This is
  16456. not quite a simple as equal on other types, such as function and
  16457. vector types, because two polymorphic types can be syntactically
  16458. different even though they are equivalent types. For example,
  16459. \code{(All (a) (a -> a))} is equivalent to \code{(All (b) (b -> b))}.
  16460. Two polymorphic types should be considered equal if they differ only
  16461. in the choice of the names of the type parameters. The
  16462. \code{type-equal?} function in Figure~\ref{fig:type-check-Lvar0-aux}
  16463. renames the type parameters of the first type to match the type
  16464. parameters of the second type.
  16465. The third responsibility of the type checker is making sure that only
  16466. defined type variables appear in type annotations. The
  16467. \code{check-well-formed} function defined in
  16468. Figure~\ref{fig:well-formed-types} recursively inspects a type, making
  16469. sure that each type variable has been defined.
  16470. The output language of the type checker is \LangInst{}, defined in
  16471. Figure~\ref{fig:Rpoly-prime-syntax}. The type checker combines the type
  16472. declaration and polymorphic function into a single definition, using
  16473. the \code{Poly} form, to make polymorphic functions more convenient to
  16474. process in next pass of the compiler.
  16475. \begin{figure}[tp]
  16476. \centering
  16477. \fbox{
  16478. \begin{minipage}{0.96\textwidth}
  16479. \small
  16480. \[
  16481. \begin{array}{lcl}
  16482. \Type &::=& \ldots \MID \LP\key{All}~\LP\Var\ldots\RP~ \Type\RP \MID \Var \\
  16483. \Exp &::=& \ldots \MID \INST{\Exp}{\Type}{\LP\Type\ldots\RP} \\
  16484. \Def &::=& \gray{ \DEF{\Var}{\LP\LS\Var \key{:} \Type\RS \ldots\RP}{\Type}{\code{'()}}{\Exp} } \\
  16485. &\MID& \LP\key{Poly}~\LP\Var\ldots\RP~ \DEF{\Var}{\LP\LS\Var \key{:} \Type\RS \ldots\RP}{\Type}{\code{'()}}{\Exp}\RP \\
  16486. \LangInst{} &::=& \gray{ \PROGRAMDEFSEXP{\code{'()}}{\LP\Def\ldots\RP}{\Exp} }
  16487. \end{array}
  16488. \]
  16489. \end{minipage}
  16490. }
  16491. \caption{The abstract syntax of \LangInst{}, extending \LangLoop{}
  16492. (Figure~\ref{fig:Lwhile-syntax}).}
  16493. \label{fig:Rpoly-prime-syntax}
  16494. \end{figure}
  16495. The output of the type checker on the polymorphic \code{map}
  16496. example is listed in Figure~\ref{fig:map-type-check}.
  16497. \begin{figure}[tbp]
  16498. % poly_test_2.rkt
  16499. \begin{lstlisting}
  16500. (poly (a) (define (map [f : (a -> a)] [v : (Vector a a)]) : (Vector a a)
  16501. (vector (f (vector-ref v 0)) (f (vector-ref v 1)))))
  16502. (define (inc [x : Integer]) : Integer (+ x 1))
  16503. (vector-ref ((inst map (All (a) ((a -> a) (Vector a a) -> (Vector a a)))
  16504. (Integer))
  16505. inc (vector 0 41)) 1)
  16506. \end{lstlisting}
  16507. \caption{Output of the type checker on the \code{map} example.}
  16508. \label{fig:map-type-check}
  16509. \end{figure}
  16510. \begin{figure}[tbp]
  16511. \begin{lstlisting}[basicstyle=\ttfamily\scriptsize]
  16512. (define type-check-poly-class
  16513. (class type-check-Rwhile-class
  16514. (super-new)
  16515. (inherit check-type-equal?)
  16516. (define/override (type-check-apply env e1 es)
  16517. (define-values (e^ ty) ((type-check-exp env) e1))
  16518. (define-values (es^ ty*) (for/lists (es^ ty*) ([e (in-list es)])
  16519. ((type-check-exp env) e)))
  16520. (match ty
  16521. [`(,ty^* ... -> ,rt)
  16522. (for ([arg-ty ty*] [param-ty ty^*])
  16523. (check-type-equal? arg-ty param-ty (Apply e1 es)))
  16524. (values e^ es^ rt)]
  16525. [`(All ,xs (,tys ... -> ,rt))
  16526. (define env^ (append (for/list ([x xs]) (cons x 'Type)) env))
  16527. (define env^^ (for/fold ([env^^ env^]) ([arg-ty ty*] [param-ty tys])
  16528. (match-types env^^ param-ty arg-ty)))
  16529. (define targs
  16530. (for/list ([x xs])
  16531. (match (dict-ref env^^ x (lambda () #f))
  16532. [#f (error 'type-check "type variable ~a not deduced\nin ~v"
  16533. x (Apply e1 es))]
  16534. [ty ty])))
  16535. (values (Inst e^ ty targs) es^ (subst-type env^^ rt))]
  16536. [else (error 'type-check "expected a function, not ~a" ty)]))
  16537. (define/override ((type-check-exp env) e)
  16538. (match e
  16539. [(Lambda `([,xs : ,Ts] ...) rT body)
  16540. (for ([T Ts]) ((check-well-formed env) T))
  16541. ((check-well-formed env) rT)
  16542. ((super type-check-exp env) e)]
  16543. [(HasType e1 ty)
  16544. ((check-well-formed env) ty)
  16545. ((super type-check-exp env) e)]
  16546. [else ((super type-check-exp env) e)]))
  16547. (define/override ((type-check-def env) d)
  16548. (verbose 'type-check "poly/def" d)
  16549. (match d
  16550. [(Generic ts (Def f (and p:t* (list `[,xs : ,ps] ...)) rt info body))
  16551. (define ts-env (for/list ([t ts]) (cons t 'Type)))
  16552. (for ([p ps]) ((check-well-formed ts-env) p))
  16553. ((check-well-formed ts-env) rt)
  16554. (define new-env (append ts-env (map cons xs ps) env))
  16555. (define-values (body^ ty^) ((type-check-exp new-env) body))
  16556. (check-type-equal? ty^ rt body)
  16557. (Generic ts (Def f p:t* rt info body^))]
  16558. [else ((super type-check-def env) d)]))
  16559. (define/override (type-check-program p)
  16560. (match p
  16561. [(Program info body)
  16562. (type-check-program (ProgramDefsExp info '() body))]
  16563. [(ProgramDefsExp info ds body)
  16564. (define ds^ (combine-decls-defs ds))
  16565. (define new-env (for/list ([d ds^])
  16566. (cons (def-name d) (fun-def-type d))))
  16567. (define ds^^ (for/list ([d ds^]) ((type-check-def new-env) d)))
  16568. (define-values (body^ ty) ((type-check-exp new-env) body))
  16569. (check-type-equal? ty 'Integer body)
  16570. (ProgramDefsExp info ds^^ body^)]))
  16571. ))
  16572. \end{lstlisting}
  16573. \caption{Type checker for the \LangPoly{} language.}
  16574. \label{fig:type-check-Lvar0}
  16575. \end{figure}
  16576. \begin{figure}[tbp]
  16577. \begin{lstlisting}[basicstyle=\ttfamily\scriptsize]
  16578. (define/override (type-equal? t1 t2)
  16579. (match* (t1 t2)
  16580. [(`(All ,xs ,T1) `(All ,ys ,T2))
  16581. (define env (map cons xs ys))
  16582. (type-equal? (subst-type env T1) T2)]
  16583. [(other wise)
  16584. (super type-equal? t1 t2)]))
  16585. (define/public (match-types env pt at)
  16586. (match* (pt at)
  16587. [('Integer 'Integer) env] [('Boolean 'Boolean) env]
  16588. [('Void 'Void) env] [('Any 'Any) env]
  16589. [(`(Vector ,pts ...) `(Vector ,ats ...))
  16590. (for/fold ([env^ env]) ([pt1 pts] [at1 ats])
  16591. (match-types env^ pt1 at1))]
  16592. [(`(,pts ... -> ,prt) `(,ats ... -> ,art))
  16593. (define env^ (match-types env prt art))
  16594. (for/fold ([env^^ env^]) ([pt1 pts] [at1 ats])
  16595. (match-types env^^ pt1 at1))]
  16596. [(`(All ,pxs ,pt1) `(All ,axs ,at1))
  16597. (define env^ (append (map cons pxs axs) env))
  16598. (match-types env^ pt1 at1)]
  16599. [((? symbol? x) at)
  16600. (match (dict-ref env x (lambda () #f))
  16601. [#f (error 'type-check "undefined type variable ~a" x)]
  16602. ['Type (cons (cons x at) env)]
  16603. [t^ (check-type-equal? at t^ 'matching) env])]
  16604. [(other wise) (error 'type-check "mismatch ~a != a" pt at)]))
  16605. (define/public (subst-type env pt)
  16606. (match pt
  16607. ['Integer 'Integer] ['Boolean 'Boolean]
  16608. ['Void 'Void] ['Any 'Any]
  16609. [`(Vector ,ts ...)
  16610. `(Vector ,@(for/list ([t ts]) (subst-type env t)))]
  16611. [`(,ts ... -> ,rt)
  16612. `(,@(for/list ([t ts]) (subst-type env t)) -> ,(subst-type env rt))]
  16613. [`(All ,xs ,t)
  16614. `(All ,xs ,(subst-type (append (map cons xs xs) env) t))]
  16615. [(? symbol? x) (dict-ref env x)]
  16616. [else (error 'type-check "expected a type not ~a" pt)]))
  16617. (define/public (combine-decls-defs ds)
  16618. (match ds
  16619. ['() '()]
  16620. [`(,(Decl name type) . (,(Def f params _ info body) . ,ds^))
  16621. (unless (equal? name f)
  16622. (error 'type-check "name mismatch, ~a != ~a" name f))
  16623. (match type
  16624. [`(All ,xs (,ps ... -> ,rt))
  16625. (define params^ (for/list ([x params] [T ps]) `[,x : ,T]))
  16626. (cons (Generic xs (Def name params^ rt info body))
  16627. (combine-decls-defs ds^))]
  16628. [`(,ps ... -> ,rt)
  16629. (define params^ (for/list ([x params] [T ps]) `[,x : ,T]))
  16630. (cons (Def name params^ rt info body) (combine-decls-defs ds^))]
  16631. [else (error 'type-check "expected a function type, not ~a" type) ])]
  16632. [`(,(Def f params rt info body) . ,ds^)
  16633. (cons (Def f params rt info body) (combine-decls-defs ds^))]))
  16634. \end{lstlisting}
  16635. \caption{Auxiliary functions for type checking \LangPoly{}.}
  16636. \label{fig:type-check-Lvar0-aux}
  16637. \end{figure}
  16638. \begin{figure}[tbp]
  16639. \begin{lstlisting}%[basicstyle=\ttfamily\scriptsize]
  16640. (define/public ((check-well-formed env) ty)
  16641. (match ty
  16642. ['Integer (void)]
  16643. ['Boolean (void)]
  16644. ['Void (void)]
  16645. [(? symbol? a)
  16646. (match (dict-ref env a (lambda () #f))
  16647. ['Type (void)]
  16648. [else (error 'type-check "undefined type variable ~a" a)])]
  16649. [`(Vector ,ts ...)
  16650. (for ([t ts]) ((check-well-formed env) t))]
  16651. [`(,ts ... -> ,t)
  16652. (for ([t ts]) ((check-well-formed env) t))
  16653. ((check-well-formed env) t)]
  16654. [`(All ,xs ,t)
  16655. (define env^ (append (for/list ([x xs]) (cons x 'Type)) env))
  16656. ((check-well-formed env^) t)]
  16657. [else (error 'type-check "unrecognized type ~a" ty)]))
  16658. \end{lstlisting}
  16659. \caption{Well-formed types.}
  16660. \label{fig:well-formed-types}
  16661. \end{figure}
  16662. % TODO: interpreter for R'_10
  16663. \section{Compiling Polymorphism}
  16664. \label{sec:compiling-poly}
  16665. Broadly speaking, there are four approaches to compiling parametric
  16666. polymorphism, which we describe below.
  16667. \begin{description}
  16668. \item[Monomorphization] generates a different version of a polymorphic
  16669. function for each set of type arguments that it is used with,
  16670. producing type-specialized code. This approach results in the most
  16671. efficient code but requires whole-program compilation (no separate
  16672. compilation) and increases code size. For our current purposes
  16673. monomorphization is a non-starter because, with first-class
  16674. polymorphism, it is sometimes not possible to determine which
  16675. generic functions are used with which type arguments during
  16676. compilation. (It can be done at runtime, with just-in-time
  16677. compilation.) This approach is used to compile C++
  16678. templates~\citep{stroustrup88:_param_types} and polymorphic
  16679. functions in NESL~\citep{Blelloch:1993aa} and
  16680. ML~\citep{Weeks:2006aa}.
  16681. \item[Uniform representation] generates one version of each
  16682. polymorphic function but requires all values have a common ``boxed''
  16683. format, such as the tagged values of type \code{Any} in
  16684. \LangAny{}. Non-polymorphic code (i.e. monomorphic code) is compiled
  16685. similarly to code in a dynamically typed language (like \LangDyn{}),
  16686. in which primitive operators require their arguments to be projected
  16687. from \code{Any} and their results are injected into \code{Any}. (In
  16688. object-oriented languages, the projection is accomplished via
  16689. virtual method dispatch.) The uniform representation approach is
  16690. compatible with separate compilation and with first-class
  16691. polymorphism. However, it produces the least-efficient code because
  16692. it introduces overhead in the entire program, including
  16693. non-polymorphic code. This approach is used in implementations of
  16694. CLU~\cite{liskov79:_clu_ref,Liskov:1993dk},
  16695. ML~\citep{Cardelli:1984aa,Appel:1987aa}, and
  16696. Java~\citep{Bracha:1998fk}.
  16697. \item[Mixed representation] generates one version of each polymorphic
  16698. function, using a boxed representation for type
  16699. variables. Monomorphic code is compiled as usual (as in \LangLoop{})
  16700. and conversions are performed at the boundaries between monomorphic
  16701. and polymorphic (e.g. when a polymorphic function is instantiated
  16702. and called). This approach is compatible with separate compilation
  16703. and first-class polymorphism and maintains the efficiency of
  16704. monomorphic code. The tradeoff is increased overhead at the boundary
  16705. between monomorphic and polymorphic code. This approach is used in
  16706. implementations of ML~\citep{Leroy:1992qb} and Java, starting in
  16707. Java 5 with the addition of autoboxing.
  16708. \item[Type passing] uses the unboxed representation in both
  16709. monomorphic and polymorphic code. Each polymorphic function is
  16710. compiled to a single function with extra parameters that describe
  16711. the type arguments. The type information is used by the generated
  16712. code to know how to access the unboxed values at runtime. This
  16713. approach is used in implementation of the Napier88
  16714. language~\citep{Morrison:1991aa} and ML~\citep{Harper:1995um}. Type
  16715. passing is compatible with separate compilation and first-class
  16716. polymorphism and maintains the efficiency for monomorphic
  16717. code. There is runtime overhead in polymorphic code from dispatching
  16718. on type information.
  16719. \end{description}
  16720. In this chapter we use the mixed representation approach, partly
  16721. because of its favorable attributes, and partly because it is
  16722. straightforward to implement using the tools that we have already
  16723. built to support gradual typing. To compile polymorphic functions, we
  16724. add just one new pass, \code{erase-types}, to compile \LangInst{} to
  16725. \LangCast{}.
  16726. \section{Erase Types}
  16727. \label{sec:erase-types}
  16728. We use the \code{Any} type from Chapter~\ref{ch:Rdyn} to
  16729. represent type variables. For example, Figure~\ref{fig:map-erase}
  16730. shows the output of the \code{erase-types} pass on the polymorphic
  16731. \code{map} (Figure~\ref{fig:map-poly}). The occurrences of
  16732. type parameter \code{a} are replaced by \code{Any} and the polymorphic
  16733. \code{All} types are removed from the type of \code{map}.
  16734. \begin{figure}[tbp]
  16735. \begin{lstlisting}
  16736. (define (map [f : (Any -> Any)] [v : (Vector Any Any)])
  16737. : (Vector Any Any)
  16738. (vector (f (vector-ref v 0)) (f (vector-ref v 1))))
  16739. (define (inc [x : Integer]) : Integer (+ x 1))
  16740. (vector-ref ((cast map
  16741. ((Any -> Any) (Vector Any Any) -> (Vector Any Any))
  16742. ((Integer -> Integer) (Vector Integer Integer)
  16743. -> (Vector Integer Integer)))
  16744. inc (vector 0 41)) 1)
  16745. \end{lstlisting}
  16746. \caption{The polymorphic \code{map} example after type erasure.}
  16747. \label{fig:map-erase}
  16748. \end{figure}
  16749. This process of type erasure creates a challenge at points of
  16750. instantiation. For example, consider the instantiation of
  16751. \code{map} in Figure~\ref{fig:map-type-check}.
  16752. The type of \code{map} is
  16753. \begin{lstlisting}
  16754. (All (a) ((a -> a) (Vector a a) -> (Vector a a)))
  16755. \end{lstlisting}
  16756. and it is instantiated to
  16757. \begin{lstlisting}
  16758. ((Integer -> Integer) (Vector Integer Integer)
  16759. -> (Vector Integer Integer))
  16760. \end{lstlisting}
  16761. After erasure, the type of \code{map} is
  16762. \begin{lstlisting}
  16763. ((Any -> Any) (Vector Any Any) -> (Vector Any Any))
  16764. \end{lstlisting}
  16765. but we need to convert it to the instantiated type. This is easy to
  16766. do in the target language \LangCast{} with a single \code{cast}. In
  16767. Figure~\ref{fig:map-erase}, the instantiation of \code{map}
  16768. has been compiled to a \code{cast} from the type of \code{map} to
  16769. the instantiated type. The source and target type of a cast must be
  16770. consistent (Figure~\ref{fig:consistent}), which indeed is the case
  16771. because both the source and target are obtained from the same
  16772. polymorphic type of \code{map}, replacing the type parameters with
  16773. \code{Any} in the former and with the deduced type arguments in the
  16774. later. (Recall that the \code{Any} type is consistent with any type.)
  16775. To implement the \code{erase-types} pass, we recommend defining a
  16776. recursive auxiliary function named \code{erase-type} that applies the
  16777. following two transformations. It replaces type variables with
  16778. \code{Any}
  16779. \begin{lstlisting}
  16780. |$x$|
  16781. |$\Rightarrow$|
  16782. Any
  16783. \end{lstlisting}
  16784. and it removes the polymorphic \code{All} types.
  16785. \begin{lstlisting}
  16786. (All |$xs$| |$T_1$|)
  16787. |$\Rightarrow$|
  16788. |$T'_1$|
  16789. \end{lstlisting}
  16790. Apply the \code{erase-type} function to all of the type annotations in
  16791. the program.
  16792. Regarding the translation of expressions, the case for \code{Inst} is
  16793. the interesting one. We translate it into a \code{Cast}, as shown
  16794. below. The type of the subexpression $e$ is the polymorphic type
  16795. $\LP\key{All} xs T\RP$. The source type of the cast is the erasure of
  16796. $T$, the type $T'$. The target type $T''$ is the result of
  16797. substituting the arguments types $ts$ for the type parameters $xs$ in
  16798. $T$ followed by doing type erasure.
  16799. \begin{lstlisting}
  16800. (Inst |$e$| (All |$xs$| |$T$|) |$ts$|)
  16801. |$\Rightarrow$|
  16802. (Cast |$e'$| |$T'$| |$T''$|)
  16803. \end{lstlisting}
  16804. where $T'' = \LP\code{erase-type}~\LP\code{subst-type}~s~T\RP\RP$
  16805. and $s = \LP\code{map}~\code{cons}~xs~ts\RP$.
  16806. Finally, each polymorphic function is translated to a regular
  16807. functions in which type erasure has been applied to all the type
  16808. annotations and the body.
  16809. \begin{lstlisting}
  16810. (Poly |$ts$| (Def |$f$| ([|$x_1$| : |$T_1$|] |$\ldots$|) |$T_r$| |$\itm{info}$| |$e$|))
  16811. |$\Rightarrow$|
  16812. (Def |$f$| ([|$x_1$| : |$T'_1$|] |$\ldots$|) |$T'_r$| |$\itm{info}$| |$e'$|)
  16813. \end{lstlisting}
  16814. \begin{exercise}\normalfont
  16815. Implement a compiler for the polymorphic language \LangPoly{} by
  16816. extending and adapting your compiler for \LangGrad{}. Create 6 new test
  16817. programs that use polymorphic functions. Some of them should make
  16818. use of first-class polymorphism.
  16819. \end{exercise}
  16820. \begin{figure}[p]
  16821. \begin{tikzpicture}[baseline=(current bounding box.center)]
  16822. \node (Rpoly) at (9,4) {\large \LangPoly{}};
  16823. \node (Rpolyp) at (6,4) {\large \LangInst{}};
  16824. \node (Rgradualp) at (3,4) {\large \LangCast{}};
  16825. \node (Rwhilepp) at (0,4) {\large \LangProxy{}};
  16826. \node (Rwhileproxy) at (0,2) {\large \LangPVec{}};
  16827. \node (Rwhileproxy-2) at (3,2) {\large \LangPVec{}};
  16828. \node (Rwhileproxy-3) at (6,2) {\large \LangPVec{}};
  16829. \node (Rwhileproxy-4) at (9,2) {\large \LangPVecFunRef{}};
  16830. \node (Rwhileproxy-5) at (12,2) {\large \LangPVecFunRef{}};
  16831. \node (F1-1) at (12,0) {\large \LangPVecFunRef{}};
  16832. \node (F1-2) at (9,0) {\large \LangPVecFunRef{}};
  16833. \node (F1-3) at (6,0) {\large \LangPVecFunRef{}};
  16834. \node (F1-4) at (3,0) {\large \LangPVecAlloc{}};
  16835. \node (F1-5) at (0,0) {\large \LangPVecAlloc{}};
  16836. \node (C3-2) at (3,-2) {\large \LangCLoopPVec{}};
  16837. \node (x86-2) at (3,-4) {\large \LangXIndCallVar{}};
  16838. \node (x86-2-1) at (3,-6) {\large \LangXIndCallVar{}};
  16839. \node (x86-2-2) at (6,-6) {\large \LangXIndCallVar{}};
  16840. \node (x86-3) at (6,-4) {\large \LangXIndCallVar{}};
  16841. \node (x86-4) at (9,-4) {\large \LangXIndCall{}};
  16842. \node (x86-5) at (9,-6) {\large \LangXIndCall{}};
  16843. \path[->,bend right=15] (Rpoly) edge [above] node
  16844. {\ttfamily\footnotesize type\_check} (Rpolyp);
  16845. \path[->,bend right=15] (Rpolyp) edge [above] node
  16846. {\ttfamily\footnotesize erase\_types} (Rgradualp);
  16847. \path[->,bend right=15] (Rgradualp) edge [above] node
  16848. {\ttfamily\footnotesize lower\_casts} (Rwhilepp);
  16849. \path[->,bend right=15] (Rwhilepp) edge [right] node
  16850. {\ttfamily\footnotesize differentiate\_proxies} (Rwhileproxy);
  16851. \path[->,bend left=15] (Rwhileproxy) edge [above] node
  16852. {\ttfamily\footnotesize shrink} (Rwhileproxy-2);
  16853. \path[->,bend left=15] (Rwhileproxy-2) edge [above] node
  16854. {\ttfamily\footnotesize uniquify} (Rwhileproxy-3);
  16855. \path[->,bend left=15] (Rwhileproxy-3) edge [above] node
  16856. {\ttfamily\footnotesize reveal\_functions} (Rwhileproxy-4);
  16857. \path[->,bend left=15] (Rwhileproxy-4) edge [above] node
  16858. {\ttfamily\footnotesize reveal\_casts} (Rwhileproxy-5);
  16859. \path[->,bend left=15] (Rwhileproxy-5) edge [left] node
  16860. {\ttfamily\footnotesize convert\_assignments} (F1-1);
  16861. \path[->,bend left=15] (F1-1) edge [below] node
  16862. {\ttfamily\footnotesize convert\_to\_clos.} (F1-2);
  16863. \path[->,bend right=15] (F1-2) edge [above] node
  16864. {\ttfamily\footnotesize limit\_fun.} (F1-3);
  16865. \path[->,bend right=15] (F1-3) edge [above] node
  16866. {\ttfamily\footnotesize expose\_alloc.} (F1-4);
  16867. \path[->,bend right=15] (F1-4) edge [above] node
  16868. {\ttfamily\footnotesize remove\_complex.} (F1-5);
  16869. \path[->,bend right=15] (F1-5) edge [right] node
  16870. {\ttfamily\footnotesize explicate\_control} (C3-2);
  16871. \path[->,bend left=15] (C3-2) edge [left] node
  16872. {\ttfamily\footnotesize select\_instr.} (x86-2);
  16873. \path[->,bend right=15] (x86-2) edge [left] node
  16874. {\ttfamily\footnotesize uncover\_live} (x86-2-1);
  16875. \path[->,bend right=15] (x86-2-1) edge [below] node
  16876. {\ttfamily\footnotesize build\_inter.} (x86-2-2);
  16877. \path[->,bend right=15] (x86-2-2) edge [left] node
  16878. {\ttfamily\footnotesize allocate\_reg.} (x86-3);
  16879. \path[->,bend left=15] (x86-3) edge [above] node
  16880. {\ttfamily\footnotesize patch\_instr.} (x86-4);
  16881. \path[->,bend left=15] (x86-4) edge [right] node {\ttfamily\footnotesize print\_x86} (x86-5);
  16882. \end{tikzpicture}
  16883. \caption{Diagram of the passes for \LangPoly{} (parametric polymorphism).}
  16884. \label{fig:Rpoly-passes}
  16885. \end{figure}
  16886. Figure~\ref{fig:Rpoly-passes} provides an overview of all the passes needed
  16887. for the compilation of \LangPoly{}.
  16888. % TODO: challenge problem: specialization of instantiations
  16889. % Further Reading
  16890. \fi
  16891. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  16892. \clearpage
  16893. \appendix
  16894. \chapter{Appendix}
  16895. \if\edition\racketEd
  16896. \section{Interpreters}
  16897. \label{appendix:interp}
  16898. \index{subject}{interpreter}
  16899. We provide interpreters for each of the source languages \LangInt{},
  16900. \LangVar{}, $\ldots$ in the files \code{interp\_Lint.rkt},
  16901. \code{interp-Lvar.rkt}, etc. The interpreters for the intermediate
  16902. languages \LangCVar{} and \LangCIf{} are in \code{interp-Cvar.rkt} and
  16903. \code{interp-C1.rkt}. The interpreters for \LangCVec{}, \LangCFun{}, pseudo-x86,
  16904. and x86 are in the \key{interp.rkt} file.
  16905. \section{Utility Functions}
  16906. \label{appendix:utilities}
  16907. The utility functions described in this section are in the
  16908. \key{utilities.rkt} file of the support code.
  16909. \paragraph{\code{interp-tests}}
  16910. The \key{interp-tests} function runs the compiler passes and the
  16911. interpreters on each of the specified tests to check whether each pass
  16912. is correct. The \key{interp-tests} function has the following
  16913. parameters:
  16914. \begin{description}
  16915. \item[name (a string)] a name to identify the compiler,
  16916. \item[typechecker] a function of exactly one argument that either
  16917. raises an error using the \code{error} function when it encounters a
  16918. type error, or returns \code{\#f} when it encounters a type
  16919. error. If there is no type error, the type checker returns the
  16920. program.
  16921. \item[passes] a list with one entry per pass. An entry is a list with
  16922. four things:
  16923. \begin{enumerate}
  16924. \item a string giving the name of the pass,
  16925. \item the function that implements the pass (a translator from AST
  16926. to AST),
  16927. \item a function that implements the interpreter (a function from
  16928. AST to result value) for the output language,
  16929. \item and a type checker for the output language. Type checkers for
  16930. the $R$ and $C$ languages are provided in the support code. For
  16931. example, the type checkers for \LangVar{} and \LangCVar{} are in
  16932. \code{type-check-Lvar.rkt} and \code{type-check-Cvar.rkt}. The
  16933. type checker entry is optional. The support code does not provide
  16934. type checkers for the x86 languages.
  16935. \end{enumerate}
  16936. \item[source-interp] an interpreter for the source language. The
  16937. interpreters from Appendix~\ref{appendix:interp} make a good choice.
  16938. \item[test-family (a string)] for example, \code{"r1"}, \code{"r2"}, etc.
  16939. \item[tests] a list of test numbers that specifies which tests to
  16940. run. (see below)
  16941. \end{description}
  16942. %
  16943. The \key{interp-tests} function assumes that the subdirectory
  16944. \key{tests} has a collection of Racket programs whose names all start
  16945. with the family name, followed by an underscore and then the test
  16946. number, ending with the file extension \key{.rkt}. Also, for each test
  16947. program that calls \code{read} one or more times, there is a file with
  16948. the same name except that the file extension is \key{.in} that
  16949. provides the input for the Racket program. If the test program is
  16950. expected to fail type checking, then there should be an empty file of
  16951. the same name but with extension \key{.tyerr}.
  16952. \paragraph{\code{compiler-tests}}
  16953. runs the compiler passes to generate x86 (a \key{.s} file) and then
  16954. runs the GNU C compiler (gcc) to generate machine code. It runs the
  16955. machine code and checks that the output is $42$. The parameters to the
  16956. \code{compiler-tests} function are similar to those of the
  16957. \code{interp-tests} function, and consist of
  16958. \begin{itemize}
  16959. \item a compiler name (a string),
  16960. \item a type checker,
  16961. \item description of the passes,
  16962. \item name of a test-family, and
  16963. \item a list of test numbers.
  16964. \end{itemize}
  16965. \paragraph{\code{compile-file}}
  16966. takes a description of the compiler passes (see the comment for
  16967. \key{interp-tests}) and returns a function that, given a program file
  16968. name (a string ending in \key{.rkt}), applies all of the passes and
  16969. writes the output to a file whose name is the same as the program file
  16970. name but with \key{.rkt} replaced with \key{.s}.
  16971. \paragraph{\code{read-program}}
  16972. takes a file path and parses that file (it must be a Racket program)
  16973. into an abstract syntax tree.
  16974. \paragraph{\code{parse-program}}
  16975. takes an S-expression representation of an abstract syntax tree and converts it into
  16976. the struct-based representation.
  16977. \paragraph{\code{assert}}
  16978. takes two parameters, a string (\code{msg}) and Boolean (\code{bool}),
  16979. and displays the message \key{msg} if the Boolean \key{bool} is false.
  16980. \paragraph{\code{lookup}}
  16981. % remove discussion of lookup? -Jeremy
  16982. takes a key and an alist, and returns the first value that is
  16983. associated with the given key, if there is one. If not, an error is
  16984. triggered. The alist may contain both immutable pairs (built with
  16985. \key{cons}) and mutable pairs (built with \key{mcons}).
  16986. %The \key{map2} function ...
  16987. \fi %\racketEd
  16988. \section{x86 Instruction Set Quick-Reference}
  16989. \label{sec:x86-quick-reference}
  16990. \index{subject}{x86}
  16991. Table~\ref{tab:x86-instr} lists some x86 instructions and what they
  16992. do. We write $A \to B$ to mean that the value of $A$ is written into
  16993. location $B$. Address offsets are given in bytes. The instruction
  16994. arguments $A, B, C$ can be immediate constants (such as \code{\$4}),
  16995. registers (such as \code{\%rax}), or memory references (such as
  16996. \code{-4(\%ebp)}). Most x86 instructions only allow at most one memory
  16997. reference per instruction. Other operands must be immediates or
  16998. registers.
  16999. \begin{table}[tbp]
  17000. \centering
  17001. \begin{tabular}{l|l}
  17002. \textbf{Instruction} & \textbf{Operation} \\ \hline
  17003. \texttt{addq} $A$, $B$ & $A + B \to B$\\
  17004. \texttt{negq} $A$ & $- A \to A$ \\
  17005. \texttt{subq} $A$, $B$ & $B - A \to B$\\
  17006. \texttt{imulq} $A$, $B$ & $A \times B \to B$\\
  17007. \texttt{callq} $L$ & Pushes the return address and jumps to label $L$ \\
  17008. \texttt{callq} \texttt{*}$A$ & Calls the function at the address $A$. \\
  17009. %\texttt{leave} & $\texttt{ebp} \to \texttt{esp};$ \texttt{popl \%ebp} \\
  17010. \texttt{retq} & Pops the return address and jumps to it \\
  17011. \texttt{popq} $A$ & $*\mathtt{rsp} \to A; \mathtt{rsp} + 8 \to \mathtt{rsp}$ \\
  17012. \texttt{pushq} $A$ & $\texttt{rsp} - 8 \to \texttt{rsp}; A \to *\texttt{rsp}$\\
  17013. \texttt{leaq} $A$,$B$ & $A \to B$ ($B$ must be a register) \\
  17014. \texttt{cmpq} $A$, $B$ & compare $A$ and $B$ and set the flag register ($B$ must not
  17015. be an immediate) \\
  17016. \texttt{je} $L$ & \multirow{5}{3.7in}{Jump to label $L$ if the flag register
  17017. matches the condition code of the instruction, otherwise go to the
  17018. next instructions. The condition codes are \key{e} for ``equal'',
  17019. \key{l} for ``less'', \key{le} for ``less or equal'', \key{g}
  17020. for ``greater'', and \key{ge} for ``greater or equal''.} \\
  17021. \texttt{jl} $L$ & \\
  17022. \texttt{jle} $L$ & \\
  17023. \texttt{jg} $L$ & \\
  17024. \texttt{jge} $L$ & \\
  17025. \texttt{jmp} $L$ & Jump to label $L$ \\
  17026. \texttt{movq} $A$, $B$ & $A \to B$ \\
  17027. \texttt{movzbq} $A$, $B$ &
  17028. \multirow{3}{3.7in}{$A \to B$, \text{where } $A$ is a single-byte register
  17029. (e.g., \texttt{al} or \texttt{cl}), $B$ is a 8-byte register,
  17030. and the extra bytes of $B$ are set to zero.} \\
  17031. & \\
  17032. & \\
  17033. \texttt{notq} $A$ & $\sim A \to A$ \qquad (bitwise complement)\\
  17034. \texttt{orq} $A$, $B$ & $A | B \to B$ \qquad (bitwise-or)\\
  17035. \texttt{andq} $A$, $B$ & $A \& B \to B$ \qquad (bitwise-and)\\
  17036. \texttt{salq} $A$, $B$ & $B$ \texttt{<<} $A \to B$ (arithmetic shift left, where $A$ is a constant)\\
  17037. \texttt{sarq} $A$, $B$ & $B$ \texttt{>>} $A \to B$ (arithmetic shift right, where $A$ is a constant)\\
  17038. \texttt{sete} $A$ & \multirow{5}{3.7in}{If the flag matches the condition code,
  17039. then $1 \to A$, else $0 \to A$. Refer to \texttt{je} above for the
  17040. description of the condition codes. $A$ must be a single byte register
  17041. (e.g., \texttt{al} or \texttt{cl}).} \\
  17042. \texttt{setl} $A$ & \\
  17043. \texttt{setle} $A$ & \\
  17044. \texttt{setg} $A$ & \\
  17045. \texttt{setge} $A$ &
  17046. \end{tabular}
  17047. \vspace{5pt}
  17048. \caption{Quick-reference for the x86 instructions used in this book.}
  17049. \label{tab:x86-instr}
  17050. \end{table}
  17051. \if\edition\racketEd
  17052. \cleardoublepage
  17053. \section{Concrete Syntax for Intermediate Languages}
  17054. The concrete syntax of \LangAny{} is defined in
  17055. Figure~\ref{fig:Rany-concrete-syntax}.
  17056. \begin{figure}[tp]
  17057. \centering
  17058. \fbox{
  17059. \begin{minipage}{0.97\textwidth}\small
  17060. \[
  17061. \begin{array}{lcl}
  17062. \Type &::=& \gray{\key{Integer} \MID \key{Boolean}
  17063. \MID \LP\key{Vector}\;\Type\ldots\RP \MID \key{Void}} \\
  17064. &\MID& \gray{\LP\Type\ldots \; \key{->}\; \Type\RP} \MID \key{Any} \\
  17065. \FType &::=& \key{Integer} \MID \key{Boolean} \MID \key{Void}
  17066. \MID \LP\key{Vector}\; \key{Any}\ldots\RP \\
  17067. &\MID& \LP\key{Any}\ldots \; \key{->}\; \key{Any}\RP\\
  17068. \Exp &::=& \ldots \CINJECT{\Exp}{\FType}\RP \MID \CPROJECT{\Exp}{\FType}\\
  17069. &\MID& \LP\key{any-vector-length}\;\Exp\RP
  17070. \MID \LP\key{any-vector-ref}\;\Exp\;\Exp\RP \\
  17071. &\MID& \LP\key{any-vector-set!}\;\Exp\;\Exp\;\Exp\RP\\
  17072. &\MID& \LP\key{boolean?}\;\Exp\RP \MID \LP\key{integer?}\;\Exp\RP
  17073. \MID \LP\key{void?}\;\Exp\RP \\
  17074. &\MID& \LP\key{vector?}\;\Exp\RP \MID \LP\key{procedure?}\;\Exp\RP \\
  17075. \Def &::=& \gray{ \CDEF{\Var}{\LS\Var \key{:} \Type\RS\ldots}{\Type}{\Exp} } \\
  17076. \LangAnyM{} &::=& \gray{\Def\ldots \; \Exp}
  17077. \end{array}
  17078. \]
  17079. \end{minipage}
  17080. }
  17081. \caption{The concrete syntax of \LangAny{}, extending \LangLam{}
  17082. (Figure~\ref{fig:Rlam-syntax}).}
  17083. \label{fig:Rany-concrete-syntax}
  17084. \end{figure}
  17085. The concrete syntax for \LangCVar{}, \LangCIf{}, \LangCVec{} and \LangCFun{} is
  17086. defined in Figures~\ref{fig:c0-concrete-syntax},
  17087. \ref{fig:c1-concrete-syntax}, \ref{fig:c2-concrete-syntax},
  17088. and \ref{fig:c3-concrete-syntax}, respectively.
  17089. \begin{figure}[tbp]
  17090. \fbox{
  17091. \begin{minipage}{0.96\textwidth}
  17092. \small
  17093. \[
  17094. \begin{array}{lcl}
  17095. \Atm &::=& \gray{ \Int \MID \Var \MID \itm{bool} } \\
  17096. \itm{cmp} &::= & \gray{ \key{eq?} \MID \key{<} } \\
  17097. \Exp &::=& \gray{ \Atm \MID \key{(read)} \MID \key{(-}~\Atm\key{)} \MID \key{(+}~\Atm~\Atm\key{)} } \\
  17098. &\MID& \gray{ \LP \key{not}~\Atm \RP \MID \LP \itm{cmp}~\Atm~\Atm\RP } \\
  17099. &\MID& \LP \key{allocate}~\Int~\Type \RP \\
  17100. &\MID& (\key{vector-ref}\;\Atm\;\Int) \MID (\key{vector-set!}\;\Atm\;\Int\;\Atm)\\
  17101. &\MID& \LP \key{global-value}~\Var \RP \MID \LP \key{void} \RP \\
  17102. \Stmt &::=& \gray{ \Var~\key{=}~\Exp\key{;} } \MID \LP\key{collect}~\Int \RP\\
  17103. \Tail &::= & \gray{ \key{return}~\Exp\key{;} \MID \Stmt~\Tail }
  17104. \MID \gray{ \key{goto}~\itm{label}\key{;} }\\
  17105. &\MID& \gray{ \key{if}~\LP \itm{cmp}~\Atm~\Atm \RP~ \key{goto}~\itm{label}\key{;} ~\key{else}~\key{goto}~\itm{label}\key{;} } \\
  17106. \LangCVecM{} & ::= & \gray{ (\itm{label}\key{:}~ \Tail)\ldots }
  17107. \end{array}
  17108. \]
  17109. \end{minipage}
  17110. }
  17111. \caption{The concrete syntax of the \LangCVec{} intermediate language.}
  17112. \label{fig:c2-concrete-syntax}
  17113. \end{figure}
  17114. \begin{figure}[tp]
  17115. \fbox{
  17116. \begin{minipage}{0.96\textwidth}
  17117. \small
  17118. \[
  17119. \begin{array}{lcl}
  17120. \Atm &::=& \gray{ \Int \MID \Var \MID \key{\#t} \MID \key{\#f} }
  17121. \\
  17122. \itm{cmp} &::= & \gray{ \key{eq?} \MID \key{<} } \\
  17123. \Exp &::= & \gray{ \Atm \MID \LP\key{read}\RP \MID \LP\key{-}\;\Atm\RP \MID \LP\key{+} \; \Atm\;\Atm\RP
  17124. \MID \LP\key{not}\;\Atm\RP \MID \LP\itm{cmp}\;\Atm\;\Atm\RP } \\
  17125. &\MID& \gray{ \LP\key{allocate}\,\Int\,\Type\RP
  17126. \MID \LP\key{vector-ref}\, \Atm\, \Int\RP } \\
  17127. &\MID& \gray{ \LP\key{vector-set!}\,\Atm\,\Int\,\Atm\RP \MID \LP\key{global-value} \,\itm{name}\RP \MID \LP\key{void}\RP } \\
  17128. &\MID& \LP\key{fun-ref}~\itm{label}\RP \MID \LP\key{call} \,\Atm\,\Atm\ldots\RP \\
  17129. \Stmt &::=& \gray{ \ASSIGN{\Var}{\Exp} \MID \RETURN{\Exp}
  17130. \MID \LP\key{collect} \,\itm{int}\RP }\\
  17131. \Tail &::= & \gray{\RETURN{\Exp} \MID \LP\key{seq}\;\Stmt\;\Tail\RP} \\
  17132. &\MID& \gray{\LP\key{goto}\,\itm{label}\RP
  17133. \MID \IF{\LP\itm{cmp}\, \Atm\,\Atm\RP}{\LP\key{goto}\,\itm{label}\RP}{\LP\key{goto}\,\itm{label}\RP}} \\
  17134. &\MID& \LP\key{tail-call}\,\Atm\,\Atm\ldots\RP \\
  17135. \Def &::=& \LP\key{define}\; \LP\itm{label} \; [\Var \key{:} \Type]\ldots\RP \key{:} \Type \; \LP\LP\itm{label}\,\key{.}\,\Tail\RP\ldots\RP\RP \\
  17136. \LangCFunM{} & ::= & \Def\ldots
  17137. \end{array}
  17138. \]
  17139. \end{minipage}
  17140. }
  17141. \caption{The \LangCFun{} language, extending \LangCVec{} (Figure~\ref{fig:c2-concrete-syntax}) with functions.}
  17142. \label{fig:c3-concrete-syntax}
  17143. \end{figure}
  17144. \fi % racketEd
  17145. \backmatter
  17146. \addtocontents{toc}{\vspace{11pt}}
  17147. %% \addtocontents{toc}{\vspace{11pt}}
  17148. %% \nocite{*} is a way to get all the entries in the .bib file to print in the bibliography:
  17149. \nocite{*}\let\bibname\refname
  17150. \addcontentsline{toc}{fmbm}{\refname}
  17151. \printbibliography
  17152. \printindex{authors}{Author Index}
  17153. \printindex{subject}{Subject Index}
  17154. \end{document}
  17155. % LocalWords: Nano Siek CC NC ISBN wonks wizardry Backus nanopasses
  17156. % LocalWords: dataflow nx generics autoboxing Hulman Ch CO Dybvig aa
  17157. % LocalWords: Abelson uq Felleisen Flatt Lutz vp vj Sweigart vn Matz
  17158. % LocalWords: Matthes github gcc MacOS Chez Friedman's Dipanwita fk
  17159. % LocalWords: Sarkar Dybvig's Abdulaziz Ghuloum bh IU Factora Bor qf
  17160. % LocalWords: Cameron Kuhlenschmidt Vollmer Vitousek Yuh Nystrom AST
  17161. % LocalWords: Tolmach Wollowski ASTs Aho ast struct int backquote op
  17162. % LocalWords: args neg def init UnaryOp USub func BinOp Naur BNF rkt
  17163. % LocalWords: fixnum datatype structure's arith exp stmt Num Expr tr
  17164. % LocalWords: plt PSF ref CPython cpython reynolds interp cond fx pe
  17165. % LocalWords: arg Hitchhiker's TODO nullary Lvar Lif cnd thn var sam
  17166. % LocalWords: IfExp Bool InterpLvar InterpLif InterpRVar alist jane
  17167. % LocalWords: basicstyle kate dict alists env stmts ss len lhs globl
  17168. % LocalWords: rsp rbp rax rbx rcx rdx rsi rdi movq retq callq jmp es
  17169. % LocalWords: pushq subq popq negq addq arity uniquify Cvar instr cg
  17170. % LocalWords: Seq CProgram gensym lib Fprivate Flist tmp ANF Danvy
  17171. % LocalWords: rco Flists py rhs unhandled cont immediates lstlisting
  17172. % LocalWords: numberstyle Cormen Sudoku Balakrishnan ve aka DSATUR
  17173. % LocalWords: Brelaz eu Gebremedhin Omari deletekeywords min JGS
  17174. % LocalWords: morekeywords fullflexible