book.tex 831 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839584058415842584358445845584658475848584958505851585258535854585558565857585858595860586158625863586458655866586758685869587058715872587358745875587658775878587958805881588258835884588558865887588858895890589158925893589458955896589758985899590059015902590359045905590659075908590959105911591259135914591559165917591859195920592159225923592459255926592759285929593059315932593359345935593659375938593959405941594259435944594559465947594859495950595159525953595459555956595759585959596059615962596359645965596659675968596959705971597259735974597559765977597859795980598159825983598459855986598759885989599059915992599359945995599659975998599960006001600260036004600560066007600860096010601160126013601460156016601760186019602060216022602360246025602660276028602960306031603260336034603560366037603860396040604160426043604460456046604760486049605060516052605360546055605660576058605960606061606260636064606560666067606860696070607160726073607460756076607760786079608060816082608360846085608660876088608960906091609260936094609560966097609860996100610161026103610461056106610761086109611061116112611361146115611661176118611961206121612261236124612561266127612861296130613161326133613461356136613761386139614061416142614361446145614661476148614961506151615261536154615561566157615861596160616161626163616461656166616761686169617061716172617361746175617661776178617961806181618261836184618561866187618861896190619161926193619461956196619761986199620062016202620362046205620662076208620962106211621262136214621562166217621862196220622162226223622462256226622762286229623062316232623362346235623662376238623962406241624262436244624562466247624862496250625162526253625462556256625762586259626062616262626362646265626662676268626962706271627262736274627562766277627862796280628162826283628462856286628762886289629062916292629362946295629662976298629963006301630263036304630563066307630863096310631163126313631463156316631763186319632063216322632363246325632663276328632963306331633263336334633563366337633863396340634163426343634463456346634763486349635063516352635363546355635663576358635963606361636263636364636563666367636863696370637163726373637463756376637763786379638063816382638363846385638663876388638963906391639263936394639563966397639863996400640164026403640464056406640764086409641064116412641364146415641664176418641964206421642264236424642564266427642864296430643164326433643464356436643764386439644064416442644364446445644664476448644964506451645264536454645564566457645864596460646164626463646464656466646764686469647064716472647364746475647664776478647964806481648264836484648564866487648864896490649164926493649464956496649764986499650065016502650365046505650665076508650965106511651265136514651565166517651865196520652165226523652465256526652765286529653065316532653365346535653665376538653965406541654265436544654565466547654865496550655165526553655465556556655765586559656065616562656365646565656665676568656965706571657265736574657565766577657865796580658165826583658465856586658765886589659065916592659365946595659665976598659966006601660266036604660566066607660866096610661166126613661466156616661766186619662066216622662366246625662666276628662966306631663266336634663566366637663866396640664166426643664466456646664766486649665066516652665366546655665666576658665966606661666266636664666566666667666866696670667166726673667466756676667766786679668066816682668366846685668666876688668966906691669266936694669566966697669866996700670167026703670467056706670767086709671067116712671367146715671667176718671967206721672267236724672567266727672867296730673167326733673467356736673767386739674067416742674367446745674667476748674967506751675267536754675567566757675867596760676167626763676467656766676767686769677067716772677367746775677667776778677967806781678267836784678567866787678867896790679167926793679467956796679767986799680068016802680368046805680668076808680968106811681268136814681568166817681868196820682168226823682468256826682768286829683068316832683368346835683668376838683968406841684268436844684568466847684868496850685168526853685468556856685768586859686068616862686368646865686668676868686968706871687268736874687568766877687868796880688168826883688468856886688768886889689068916892689368946895689668976898689969006901690269036904690569066907690869096910691169126913691469156916691769186919692069216922692369246925692669276928692969306931693269336934693569366937693869396940694169426943694469456946694769486949695069516952695369546955695669576958695969606961696269636964696569666967696869696970697169726973697469756976697769786979698069816982698369846985698669876988698969906991699269936994699569966997699869997000700170027003700470057006700770087009701070117012701370147015701670177018701970207021702270237024702570267027702870297030703170327033703470357036703770387039704070417042704370447045704670477048704970507051705270537054705570567057705870597060706170627063706470657066706770687069707070717072707370747075707670777078707970807081708270837084708570867087708870897090709170927093709470957096709770987099710071017102710371047105710671077108710971107111711271137114711571167117711871197120712171227123712471257126712771287129713071317132713371347135713671377138713971407141714271437144714571467147714871497150715171527153715471557156715771587159716071617162716371647165716671677168716971707171717271737174717571767177717871797180718171827183718471857186718771887189719071917192719371947195719671977198719972007201720272037204720572067207720872097210721172127213721472157216721772187219722072217222722372247225722672277228722972307231723272337234723572367237723872397240724172427243724472457246724772487249725072517252725372547255725672577258725972607261726272637264726572667267726872697270727172727273727472757276727772787279728072817282728372847285728672877288728972907291729272937294729572967297729872997300730173027303730473057306730773087309731073117312731373147315731673177318731973207321732273237324732573267327732873297330733173327333733473357336733773387339734073417342734373447345734673477348734973507351735273537354735573567357735873597360736173627363736473657366736773687369737073717372737373747375737673777378737973807381738273837384738573867387738873897390739173927393739473957396739773987399740074017402740374047405740674077408740974107411741274137414741574167417741874197420742174227423742474257426742774287429743074317432743374347435743674377438743974407441744274437444744574467447744874497450745174527453745474557456745774587459746074617462746374647465746674677468746974707471747274737474747574767477747874797480748174827483748474857486748774887489749074917492749374947495749674977498749975007501750275037504750575067507750875097510751175127513751475157516751775187519752075217522752375247525752675277528752975307531753275337534753575367537753875397540754175427543754475457546754775487549755075517552755375547555755675577558755975607561756275637564756575667567756875697570757175727573757475757576757775787579758075817582758375847585758675877588758975907591759275937594759575967597759875997600760176027603760476057606760776087609761076117612761376147615761676177618761976207621762276237624762576267627762876297630763176327633763476357636763776387639764076417642764376447645764676477648764976507651765276537654765576567657765876597660766176627663766476657666766776687669767076717672767376747675767676777678767976807681768276837684768576867687768876897690769176927693769476957696769776987699770077017702770377047705770677077708770977107711771277137714771577167717771877197720772177227723772477257726772777287729773077317732773377347735773677377738773977407741774277437744774577467747774877497750775177527753775477557756775777587759776077617762776377647765776677677768776977707771777277737774777577767777777877797780778177827783778477857786778777887789779077917792779377947795779677977798779978007801780278037804780578067807780878097810781178127813781478157816781778187819782078217822782378247825782678277828782978307831783278337834783578367837783878397840784178427843784478457846784778487849785078517852785378547855785678577858785978607861786278637864786578667867786878697870787178727873787478757876787778787879788078817882788378847885788678877888788978907891789278937894789578967897789878997900790179027903790479057906790779087909791079117912791379147915791679177918791979207921792279237924792579267927792879297930793179327933793479357936793779387939794079417942794379447945794679477948794979507951795279537954795579567957795879597960796179627963796479657966796779687969797079717972797379747975797679777978797979807981798279837984798579867987798879897990799179927993799479957996799779987999800080018002800380048005800680078008800980108011801280138014801580168017801880198020802180228023802480258026802780288029803080318032803380348035803680378038803980408041804280438044804580468047804880498050805180528053805480558056805780588059806080618062806380648065806680678068806980708071807280738074807580768077807880798080808180828083808480858086808780888089809080918092809380948095809680978098809981008101810281038104810581068107810881098110811181128113811481158116811781188119812081218122812381248125812681278128812981308131813281338134813581368137813881398140814181428143814481458146814781488149815081518152815381548155815681578158815981608161816281638164816581668167816881698170817181728173817481758176817781788179818081818182818381848185818681878188818981908191819281938194819581968197819881998200820182028203820482058206820782088209821082118212821382148215821682178218821982208221822282238224822582268227822882298230823182328233823482358236823782388239824082418242824382448245824682478248824982508251825282538254825582568257825882598260826182628263826482658266826782688269827082718272827382748275827682778278827982808281828282838284828582868287828882898290829182928293829482958296829782988299830083018302830383048305830683078308830983108311831283138314831583168317831883198320832183228323832483258326832783288329833083318332833383348335833683378338833983408341834283438344834583468347834883498350835183528353835483558356835783588359836083618362836383648365836683678368836983708371837283738374837583768377837883798380838183828383838483858386838783888389839083918392839383948395839683978398839984008401840284038404840584068407840884098410841184128413841484158416841784188419842084218422842384248425842684278428842984308431843284338434843584368437843884398440844184428443844484458446844784488449845084518452845384548455845684578458845984608461846284638464846584668467846884698470847184728473847484758476847784788479848084818482848384848485848684878488848984908491849284938494849584968497849884998500850185028503850485058506850785088509851085118512851385148515851685178518851985208521852285238524852585268527852885298530853185328533853485358536853785388539854085418542854385448545854685478548854985508551855285538554855585568557855885598560856185628563856485658566856785688569857085718572857385748575857685778578857985808581858285838584858585868587858885898590859185928593859485958596859785988599860086018602860386048605860686078608860986108611861286138614861586168617861886198620862186228623862486258626862786288629863086318632863386348635863686378638863986408641864286438644864586468647864886498650865186528653865486558656865786588659866086618662866386648665866686678668866986708671867286738674867586768677867886798680868186828683868486858686868786888689869086918692869386948695869686978698869987008701870287038704870587068707870887098710871187128713871487158716871787188719872087218722872387248725872687278728872987308731873287338734873587368737873887398740874187428743874487458746874787488749875087518752875387548755875687578758875987608761876287638764876587668767876887698770877187728773877487758776877787788779878087818782878387848785878687878788878987908791879287938794879587968797879887998800880188028803880488058806880788088809881088118812881388148815881688178818881988208821882288238824882588268827882888298830883188328833883488358836883788388839884088418842884388448845884688478848884988508851885288538854885588568857885888598860886188628863886488658866886788688869887088718872887388748875887688778878887988808881888288838884888588868887888888898890889188928893889488958896889788988899890089018902890389048905890689078908890989108911891289138914891589168917891889198920892189228923892489258926892789288929893089318932893389348935893689378938893989408941894289438944894589468947894889498950895189528953895489558956895789588959896089618962896389648965896689678968896989708971897289738974897589768977897889798980898189828983898489858986898789888989899089918992899389948995899689978998899990009001900290039004900590069007900890099010901190129013901490159016901790189019902090219022902390249025902690279028902990309031903290339034903590369037903890399040904190429043904490459046904790489049905090519052905390549055905690579058905990609061906290639064906590669067906890699070907190729073907490759076907790789079908090819082908390849085908690879088908990909091909290939094909590969097909890999100910191029103910491059106910791089109911091119112911391149115911691179118911991209121912291239124912591269127912891299130913191329133913491359136913791389139914091419142914391449145914691479148914991509151915291539154915591569157915891599160916191629163916491659166916791689169917091719172917391749175917691779178917991809181918291839184918591869187918891899190919191929193919491959196919791989199920092019202920392049205920692079208920992109211921292139214921592169217921892199220922192229223922492259226922792289229923092319232923392349235923692379238923992409241924292439244924592469247924892499250925192529253925492559256925792589259926092619262926392649265926692679268926992709271927292739274927592769277927892799280928192829283928492859286928792889289929092919292929392949295929692979298929993009301930293039304930593069307930893099310931193129313931493159316931793189319932093219322932393249325932693279328932993309331933293339334933593369337933893399340934193429343934493459346934793489349935093519352935393549355935693579358935993609361936293639364936593669367936893699370937193729373937493759376937793789379938093819382938393849385938693879388938993909391939293939394939593969397939893999400940194029403940494059406940794089409941094119412941394149415941694179418941994209421942294239424942594269427942894299430943194329433943494359436943794389439944094419442944394449445944694479448944994509451945294539454945594569457945894599460946194629463946494659466946794689469947094719472947394749475947694779478947994809481948294839484948594869487948894899490949194929493949494959496949794989499950095019502950395049505950695079508950995109511951295139514951595169517951895199520952195229523952495259526952795289529953095319532953395349535953695379538953995409541954295439544954595469547954895499550955195529553955495559556955795589559956095619562956395649565956695679568956995709571957295739574957595769577957895799580958195829583958495859586958795889589959095919592959395949595959695979598959996009601960296039604960596069607960896099610961196129613961496159616961796189619962096219622962396249625962696279628962996309631963296339634963596369637963896399640964196429643964496459646964796489649965096519652965396549655965696579658965996609661966296639664966596669667966896699670967196729673967496759676967796789679968096819682968396849685968696879688968996909691969296939694969596969697969896999700970197029703970497059706970797089709971097119712971397149715971697179718971997209721972297239724972597269727972897299730973197329733973497359736973797389739974097419742974397449745974697479748974997509751975297539754975597569757975897599760976197629763976497659766976797689769977097719772977397749775977697779778977997809781978297839784978597869787978897899790979197929793979497959796979797989799980098019802980398049805980698079808980998109811981298139814981598169817981898199820982198229823982498259826982798289829983098319832983398349835983698379838983998409841984298439844984598469847984898499850985198529853985498559856985798589859986098619862986398649865986698679868986998709871987298739874987598769877987898799880988198829883988498859886988798889889989098919892989398949895989698979898989999009901990299039904990599069907990899099910991199129913991499159916991799189919992099219922992399249925992699279928992999309931993299339934993599369937993899399940994199429943994499459946994799489949995099519952995399549955995699579958995999609961996299639964996599669967996899699970997199729973997499759976997799789979998099819982998399849985998699879988998999909991999299939994999599969997999899991000010001100021000310004100051000610007100081000910010100111001210013100141001510016100171001810019100201002110022100231002410025100261002710028100291003010031100321003310034100351003610037100381003910040100411004210043100441004510046100471004810049100501005110052100531005410055100561005710058100591006010061100621006310064100651006610067100681006910070100711007210073100741007510076100771007810079100801008110082100831008410085100861008710088100891009010091100921009310094100951009610097100981009910100101011010210103101041010510106101071010810109101101011110112101131011410115101161011710118101191012010121101221012310124101251012610127101281012910130101311013210133101341013510136101371013810139101401014110142101431014410145101461014710148101491015010151101521015310154101551015610157101581015910160101611016210163101641016510166101671016810169101701017110172101731017410175101761017710178101791018010181101821018310184101851018610187101881018910190101911019210193101941019510196101971019810199102001020110202102031020410205102061020710208102091021010211102121021310214102151021610217102181021910220102211022210223102241022510226102271022810229102301023110232102331023410235102361023710238102391024010241102421024310244102451024610247102481024910250102511025210253102541025510256102571025810259102601026110262102631026410265102661026710268102691027010271102721027310274102751027610277102781027910280102811028210283102841028510286102871028810289102901029110292102931029410295102961029710298102991030010301103021030310304103051030610307103081030910310103111031210313103141031510316103171031810319103201032110322103231032410325103261032710328103291033010331103321033310334103351033610337103381033910340103411034210343103441034510346103471034810349103501035110352103531035410355103561035710358103591036010361103621036310364103651036610367103681036910370103711037210373103741037510376103771037810379103801038110382103831038410385103861038710388103891039010391103921039310394103951039610397103981039910400104011040210403104041040510406104071040810409104101041110412104131041410415104161041710418104191042010421104221042310424104251042610427104281042910430104311043210433104341043510436104371043810439104401044110442104431044410445104461044710448104491045010451104521045310454104551045610457104581045910460104611046210463104641046510466104671046810469104701047110472104731047410475104761047710478104791048010481104821048310484104851048610487104881048910490104911049210493104941049510496104971049810499105001050110502105031050410505105061050710508105091051010511105121051310514105151051610517105181051910520105211052210523105241052510526105271052810529105301053110532105331053410535105361053710538105391054010541105421054310544105451054610547105481054910550105511055210553105541055510556105571055810559105601056110562105631056410565105661056710568105691057010571105721057310574105751057610577105781057910580105811058210583105841058510586105871058810589105901059110592105931059410595105961059710598105991060010601106021060310604106051060610607106081060910610106111061210613106141061510616106171061810619106201062110622106231062410625106261062710628106291063010631106321063310634106351063610637106381063910640106411064210643106441064510646106471064810649106501065110652106531065410655106561065710658106591066010661106621066310664106651066610667106681066910670106711067210673106741067510676106771067810679106801068110682106831068410685106861068710688106891069010691106921069310694106951069610697106981069910700107011070210703107041070510706107071070810709107101071110712107131071410715107161071710718107191072010721107221072310724107251072610727107281072910730107311073210733107341073510736107371073810739107401074110742107431074410745107461074710748107491075010751107521075310754107551075610757107581075910760107611076210763107641076510766107671076810769107701077110772107731077410775107761077710778107791078010781107821078310784107851078610787107881078910790107911079210793107941079510796107971079810799108001080110802108031080410805108061080710808108091081010811108121081310814108151081610817108181081910820108211082210823108241082510826108271082810829108301083110832108331083410835108361083710838108391084010841108421084310844108451084610847108481084910850108511085210853108541085510856108571085810859108601086110862108631086410865108661086710868108691087010871108721087310874108751087610877108781087910880108811088210883108841088510886108871088810889108901089110892108931089410895108961089710898108991090010901109021090310904109051090610907109081090910910109111091210913109141091510916109171091810919109201092110922109231092410925109261092710928109291093010931109321093310934109351093610937109381093910940109411094210943109441094510946109471094810949109501095110952109531095410955109561095710958109591096010961109621096310964109651096610967109681096910970109711097210973109741097510976109771097810979109801098110982109831098410985109861098710988109891099010991109921099310994109951099610997109981099911000110011100211003110041100511006110071100811009110101101111012110131101411015110161101711018110191102011021110221102311024110251102611027110281102911030110311103211033110341103511036110371103811039110401104111042110431104411045110461104711048110491105011051110521105311054110551105611057110581105911060110611106211063110641106511066110671106811069110701107111072110731107411075110761107711078110791108011081110821108311084110851108611087110881108911090110911109211093110941109511096110971109811099111001110111102111031110411105111061110711108111091111011111111121111311114111151111611117111181111911120111211112211123111241112511126111271112811129111301113111132111331113411135111361113711138111391114011141111421114311144111451114611147111481114911150111511115211153111541115511156111571115811159111601116111162111631116411165111661116711168111691117011171111721117311174111751117611177111781117911180111811118211183111841118511186111871118811189111901119111192111931119411195111961119711198111991120011201112021120311204112051120611207112081120911210112111121211213112141121511216112171121811219112201122111222112231122411225112261122711228112291123011231112321123311234112351123611237112381123911240112411124211243112441124511246112471124811249112501125111252112531125411255112561125711258112591126011261112621126311264112651126611267112681126911270112711127211273112741127511276112771127811279112801128111282112831128411285112861128711288112891129011291112921129311294112951129611297112981129911300113011130211303113041130511306113071130811309113101131111312113131131411315113161131711318113191132011321113221132311324113251132611327113281132911330113311133211333113341133511336113371133811339113401134111342113431134411345113461134711348113491135011351113521135311354113551135611357113581135911360113611136211363113641136511366113671136811369113701137111372113731137411375113761137711378113791138011381113821138311384113851138611387113881138911390113911139211393113941139511396113971139811399114001140111402114031140411405114061140711408114091141011411114121141311414114151141611417114181141911420114211142211423114241142511426114271142811429114301143111432114331143411435114361143711438114391144011441114421144311444114451144611447114481144911450114511145211453114541145511456114571145811459114601146111462114631146411465114661146711468114691147011471114721147311474114751147611477114781147911480114811148211483114841148511486114871148811489114901149111492114931149411495114961149711498114991150011501115021150311504115051150611507115081150911510115111151211513115141151511516115171151811519115201152111522115231152411525115261152711528115291153011531115321153311534115351153611537115381153911540115411154211543115441154511546115471154811549115501155111552115531155411555115561155711558115591156011561115621156311564115651156611567115681156911570115711157211573115741157511576115771157811579115801158111582115831158411585115861158711588115891159011591115921159311594115951159611597115981159911600116011160211603116041160511606116071160811609116101161111612116131161411615116161161711618116191162011621116221162311624116251162611627116281162911630116311163211633116341163511636116371163811639116401164111642116431164411645116461164711648116491165011651116521165311654116551165611657116581165911660116611166211663116641166511666116671166811669116701167111672116731167411675116761167711678116791168011681116821168311684116851168611687116881168911690116911169211693116941169511696116971169811699117001170111702117031170411705117061170711708117091171011711117121171311714117151171611717117181171911720117211172211723117241172511726117271172811729117301173111732117331173411735117361173711738117391174011741117421174311744117451174611747117481174911750117511175211753117541175511756117571175811759117601176111762117631176411765117661176711768117691177011771117721177311774117751177611777117781177911780117811178211783117841178511786117871178811789117901179111792117931179411795117961179711798117991180011801118021180311804118051180611807118081180911810118111181211813118141181511816118171181811819118201182111822118231182411825118261182711828118291183011831118321183311834118351183611837118381183911840118411184211843118441184511846118471184811849118501185111852118531185411855118561185711858118591186011861118621186311864118651186611867118681186911870118711187211873118741187511876118771187811879118801188111882118831188411885118861188711888118891189011891118921189311894118951189611897118981189911900119011190211903119041190511906119071190811909119101191111912119131191411915119161191711918119191192011921119221192311924119251192611927119281192911930119311193211933119341193511936119371193811939119401194111942119431194411945119461194711948119491195011951119521195311954119551195611957119581195911960119611196211963119641196511966119671196811969119701197111972119731197411975119761197711978119791198011981119821198311984119851198611987119881198911990119911199211993119941199511996119971199811999120001200112002120031200412005120061200712008120091201012011120121201312014120151201612017120181201912020120211202212023120241202512026120271202812029120301203112032120331203412035120361203712038120391204012041120421204312044120451204612047120481204912050120511205212053120541205512056120571205812059120601206112062120631206412065120661206712068120691207012071120721207312074120751207612077120781207912080120811208212083120841208512086120871208812089120901209112092120931209412095120961209712098120991210012101121021210312104121051210612107121081210912110121111211212113121141211512116121171211812119121201212112122121231212412125121261212712128121291213012131121321213312134121351213612137121381213912140121411214212143121441214512146121471214812149121501215112152121531215412155121561215712158121591216012161121621216312164121651216612167121681216912170121711217212173121741217512176121771217812179121801218112182121831218412185121861218712188121891219012191121921219312194121951219612197121981219912200122011220212203122041220512206122071220812209122101221112212122131221412215122161221712218122191222012221122221222312224122251222612227122281222912230122311223212233122341223512236122371223812239122401224112242122431224412245122461224712248122491225012251122521225312254122551225612257122581225912260122611226212263122641226512266122671226812269122701227112272122731227412275122761227712278122791228012281122821228312284122851228612287122881228912290122911229212293122941229512296122971229812299123001230112302123031230412305123061230712308123091231012311123121231312314123151231612317123181231912320123211232212323123241232512326123271232812329123301233112332123331233412335123361233712338123391234012341123421234312344123451234612347123481234912350123511235212353123541235512356123571235812359123601236112362123631236412365123661236712368123691237012371123721237312374123751237612377123781237912380123811238212383123841238512386123871238812389123901239112392123931239412395123961239712398123991240012401124021240312404124051240612407124081240912410124111241212413124141241512416124171241812419124201242112422124231242412425124261242712428124291243012431124321243312434124351243612437124381243912440124411244212443124441244512446124471244812449124501245112452124531245412455124561245712458124591246012461124621246312464124651246612467124681246912470124711247212473124741247512476124771247812479124801248112482124831248412485124861248712488124891249012491124921249312494124951249612497124981249912500125011250212503125041250512506125071250812509125101251112512125131251412515125161251712518125191252012521125221252312524125251252612527125281252912530125311253212533125341253512536125371253812539125401254112542125431254412545125461254712548125491255012551125521255312554125551255612557125581255912560125611256212563125641256512566125671256812569125701257112572125731257412575125761257712578125791258012581125821258312584125851258612587125881258912590125911259212593125941259512596125971259812599126001260112602126031260412605126061260712608126091261012611126121261312614126151261612617126181261912620126211262212623126241262512626126271262812629126301263112632126331263412635126361263712638126391264012641126421264312644126451264612647126481264912650126511265212653126541265512656126571265812659126601266112662126631266412665126661266712668126691267012671126721267312674126751267612677126781267912680126811268212683126841268512686126871268812689126901269112692126931269412695126961269712698126991270012701127021270312704127051270612707127081270912710127111271212713127141271512716127171271812719127201272112722127231272412725127261272712728127291273012731127321273312734127351273612737127381273912740127411274212743127441274512746127471274812749127501275112752127531275412755127561275712758127591276012761127621276312764127651276612767127681276912770127711277212773127741277512776127771277812779127801278112782127831278412785127861278712788127891279012791127921279312794127951279612797127981279912800128011280212803128041280512806128071280812809128101281112812128131281412815128161281712818128191282012821128221282312824128251282612827128281282912830128311283212833128341283512836128371283812839128401284112842128431284412845128461284712848128491285012851128521285312854128551285612857128581285912860128611286212863128641286512866128671286812869128701287112872128731287412875128761287712878128791288012881128821288312884128851288612887128881288912890128911289212893128941289512896128971289812899129001290112902129031290412905129061290712908129091291012911129121291312914129151291612917129181291912920129211292212923129241292512926129271292812929129301293112932129331293412935129361293712938129391294012941129421294312944129451294612947129481294912950129511295212953129541295512956129571295812959129601296112962129631296412965129661296712968129691297012971129721297312974129751297612977129781297912980129811298212983129841298512986129871298812989129901299112992129931299412995129961299712998129991300013001130021300313004130051300613007130081300913010130111301213013130141301513016130171301813019130201302113022130231302413025130261302713028130291303013031130321303313034130351303613037130381303913040130411304213043130441304513046130471304813049130501305113052130531305413055130561305713058130591306013061130621306313064130651306613067130681306913070130711307213073130741307513076130771307813079130801308113082130831308413085130861308713088130891309013091130921309313094130951309613097130981309913100131011310213103131041310513106131071310813109131101311113112131131311413115131161311713118131191312013121131221312313124131251312613127131281312913130131311313213133131341313513136131371313813139131401314113142131431314413145131461314713148131491315013151131521315313154131551315613157131581315913160131611316213163131641316513166131671316813169131701317113172131731317413175131761317713178131791318013181131821318313184131851318613187131881318913190131911319213193131941319513196131971319813199132001320113202132031320413205132061320713208132091321013211132121321313214132151321613217132181321913220132211322213223132241322513226132271322813229132301323113232132331323413235132361323713238132391324013241132421324313244132451324613247132481324913250132511325213253132541325513256132571325813259132601326113262132631326413265132661326713268132691327013271132721327313274132751327613277132781327913280132811328213283132841328513286132871328813289132901329113292132931329413295132961329713298132991330013301133021330313304133051330613307133081330913310133111331213313133141331513316133171331813319133201332113322133231332413325133261332713328133291333013331133321333313334133351333613337133381333913340133411334213343133441334513346133471334813349133501335113352133531335413355133561335713358133591336013361133621336313364133651336613367133681336913370133711337213373133741337513376133771337813379133801338113382133831338413385133861338713388133891339013391133921339313394133951339613397133981339913400134011340213403134041340513406134071340813409134101341113412134131341413415134161341713418134191342013421134221342313424134251342613427134281342913430134311343213433134341343513436134371343813439134401344113442134431344413445134461344713448134491345013451134521345313454134551345613457134581345913460134611346213463134641346513466134671346813469134701347113472134731347413475134761347713478134791348013481134821348313484134851348613487134881348913490134911349213493134941349513496134971349813499135001350113502135031350413505135061350713508135091351013511135121351313514135151351613517135181351913520135211352213523135241352513526135271352813529135301353113532135331353413535135361353713538135391354013541135421354313544135451354613547135481354913550135511355213553135541355513556135571355813559135601356113562135631356413565135661356713568135691357013571135721357313574135751357613577135781357913580135811358213583135841358513586135871358813589135901359113592135931359413595135961359713598135991360013601136021360313604136051360613607136081360913610136111361213613136141361513616136171361813619136201362113622136231362413625136261362713628136291363013631136321363313634136351363613637136381363913640136411364213643136441364513646136471364813649136501365113652136531365413655136561365713658136591366013661136621366313664136651366613667136681366913670136711367213673136741367513676136771367813679136801368113682136831368413685136861368713688136891369013691136921369313694136951369613697136981369913700137011370213703137041370513706137071370813709137101371113712137131371413715137161371713718137191372013721137221372313724137251372613727137281372913730137311373213733137341373513736137371373813739137401374113742137431374413745137461374713748137491375013751137521375313754137551375613757137581375913760137611376213763137641376513766137671376813769137701377113772137731377413775137761377713778137791378013781137821378313784137851378613787137881378913790137911379213793137941379513796137971379813799138001380113802138031380413805138061380713808138091381013811138121381313814138151381613817138181381913820138211382213823138241382513826138271382813829138301383113832138331383413835138361383713838138391384013841138421384313844138451384613847138481384913850138511385213853138541385513856138571385813859138601386113862138631386413865138661386713868138691387013871138721387313874138751387613877138781387913880138811388213883138841388513886138871388813889138901389113892138931389413895138961389713898138991390013901139021390313904139051390613907139081390913910139111391213913139141391513916139171391813919139201392113922139231392413925139261392713928139291393013931139321393313934139351393613937139381393913940139411394213943139441394513946139471394813949139501395113952139531395413955139561395713958139591396013961139621396313964139651396613967139681396913970139711397213973139741397513976139771397813979139801398113982139831398413985139861398713988139891399013991139921399313994139951399613997139981399914000140011400214003140041400514006140071400814009140101401114012140131401414015140161401714018140191402014021140221402314024140251402614027140281402914030140311403214033140341403514036140371403814039140401404114042140431404414045140461404714048140491405014051140521405314054140551405614057140581405914060140611406214063140641406514066140671406814069140701407114072140731407414075140761407714078140791408014081140821408314084140851408614087140881408914090140911409214093140941409514096140971409814099141001410114102141031410414105141061410714108141091411014111141121411314114141151411614117141181411914120141211412214123141241412514126141271412814129141301413114132141331413414135141361413714138141391414014141141421414314144141451414614147141481414914150141511415214153141541415514156141571415814159141601416114162141631416414165141661416714168141691417014171141721417314174141751417614177141781417914180141811418214183141841418514186141871418814189141901419114192141931419414195141961419714198141991420014201142021420314204142051420614207142081420914210142111421214213142141421514216142171421814219142201422114222142231422414225142261422714228142291423014231142321423314234142351423614237142381423914240142411424214243142441424514246142471424814249142501425114252142531425414255142561425714258142591426014261142621426314264142651426614267142681426914270142711427214273142741427514276142771427814279142801428114282142831428414285142861428714288142891429014291142921429314294142951429614297142981429914300143011430214303143041430514306143071430814309143101431114312143131431414315143161431714318143191432014321143221432314324143251432614327143281432914330143311433214333143341433514336143371433814339143401434114342143431434414345143461434714348143491435014351143521435314354143551435614357143581435914360143611436214363143641436514366143671436814369143701437114372143731437414375143761437714378143791438014381143821438314384143851438614387143881438914390143911439214393143941439514396143971439814399144001440114402144031440414405144061440714408144091441014411144121441314414144151441614417144181441914420144211442214423144241442514426144271442814429144301443114432144331443414435144361443714438144391444014441144421444314444144451444614447144481444914450144511445214453144541445514456144571445814459144601446114462144631446414465144661446714468144691447014471144721447314474144751447614477144781447914480144811448214483144841448514486144871448814489144901449114492144931449414495144961449714498144991450014501145021450314504145051450614507145081450914510145111451214513145141451514516145171451814519145201452114522145231452414525145261452714528145291453014531145321453314534145351453614537145381453914540145411454214543145441454514546145471454814549145501455114552145531455414555145561455714558145591456014561145621456314564145651456614567145681456914570145711457214573145741457514576145771457814579145801458114582145831458414585145861458714588145891459014591145921459314594145951459614597145981459914600146011460214603146041460514606146071460814609146101461114612146131461414615146161461714618146191462014621146221462314624146251462614627146281462914630146311463214633146341463514636146371463814639146401464114642146431464414645146461464714648146491465014651146521465314654146551465614657146581465914660146611466214663146641466514666146671466814669146701467114672146731467414675146761467714678146791468014681146821468314684146851468614687146881468914690146911469214693146941469514696146971469814699147001470114702147031470414705147061470714708147091471014711147121471314714147151471614717147181471914720147211472214723147241472514726147271472814729147301473114732147331473414735147361473714738147391474014741147421474314744147451474614747147481474914750147511475214753147541475514756147571475814759147601476114762147631476414765147661476714768147691477014771147721477314774147751477614777147781477914780147811478214783147841478514786147871478814789147901479114792147931479414795147961479714798147991480014801148021480314804148051480614807148081480914810148111481214813148141481514816148171481814819148201482114822148231482414825148261482714828148291483014831148321483314834148351483614837148381483914840148411484214843148441484514846148471484814849148501485114852148531485414855148561485714858148591486014861148621486314864148651486614867148681486914870148711487214873148741487514876148771487814879148801488114882148831488414885148861488714888148891489014891148921489314894148951489614897148981489914900149011490214903149041490514906149071490814909149101491114912149131491414915149161491714918149191492014921149221492314924149251492614927149281492914930149311493214933149341493514936149371493814939149401494114942149431494414945149461494714948149491495014951149521495314954149551495614957149581495914960149611496214963149641496514966149671496814969149701497114972149731497414975149761497714978149791498014981149821498314984149851498614987149881498914990149911499214993149941499514996149971499814999150001500115002150031500415005150061500715008150091501015011150121501315014150151501615017150181501915020150211502215023150241502515026150271502815029150301503115032150331503415035150361503715038150391504015041150421504315044150451504615047150481504915050150511505215053150541505515056150571505815059150601506115062150631506415065150661506715068150691507015071150721507315074150751507615077150781507915080150811508215083150841508515086150871508815089150901509115092150931509415095150961509715098150991510015101151021510315104151051510615107151081510915110151111511215113151141511515116151171511815119151201512115122151231512415125151261512715128151291513015131151321513315134151351513615137151381513915140151411514215143151441514515146151471514815149151501515115152151531515415155151561515715158151591516015161151621516315164151651516615167151681516915170151711517215173151741517515176151771517815179151801518115182151831518415185151861518715188151891519015191151921519315194151951519615197151981519915200152011520215203152041520515206152071520815209152101521115212152131521415215152161521715218152191522015221152221522315224152251522615227152281522915230152311523215233152341523515236152371523815239152401524115242152431524415245152461524715248152491525015251152521525315254152551525615257152581525915260152611526215263152641526515266152671526815269152701527115272152731527415275152761527715278152791528015281152821528315284152851528615287152881528915290152911529215293152941529515296152971529815299153001530115302153031530415305153061530715308153091531015311153121531315314153151531615317153181531915320153211532215323153241532515326153271532815329153301533115332153331533415335153361533715338153391534015341153421534315344153451534615347153481534915350153511535215353153541535515356153571535815359153601536115362153631536415365153661536715368153691537015371153721537315374153751537615377153781537915380153811538215383153841538515386153871538815389153901539115392153931539415395153961539715398153991540015401154021540315404154051540615407154081540915410154111541215413154141541515416154171541815419154201542115422154231542415425154261542715428154291543015431154321543315434154351543615437154381543915440154411544215443154441544515446154471544815449154501545115452154531545415455154561545715458154591546015461154621546315464154651546615467154681546915470154711547215473154741547515476154771547815479154801548115482154831548415485154861548715488154891549015491154921549315494154951549615497154981549915500155011550215503155041550515506155071550815509155101551115512155131551415515155161551715518155191552015521155221552315524155251552615527155281552915530155311553215533155341553515536155371553815539155401554115542155431554415545155461554715548155491555015551155521555315554155551555615557155581555915560155611556215563155641556515566155671556815569155701557115572155731557415575155761557715578155791558015581155821558315584155851558615587155881558915590155911559215593155941559515596155971559815599156001560115602156031560415605156061560715608156091561015611156121561315614156151561615617156181561915620156211562215623156241562515626156271562815629156301563115632156331563415635156361563715638156391564015641156421564315644156451564615647156481564915650156511565215653156541565515656156571565815659156601566115662156631566415665156661566715668156691567015671156721567315674156751567615677156781567915680156811568215683156841568515686156871568815689156901569115692156931569415695156961569715698156991570015701157021570315704157051570615707157081570915710157111571215713157141571515716157171571815719157201572115722157231572415725157261572715728157291573015731157321573315734157351573615737157381573915740157411574215743157441574515746157471574815749157501575115752157531575415755157561575715758157591576015761157621576315764157651576615767157681576915770157711577215773157741577515776157771577815779157801578115782157831578415785157861578715788157891579015791157921579315794157951579615797157981579915800158011580215803158041580515806158071580815809158101581115812158131581415815158161581715818158191582015821158221582315824158251582615827158281582915830158311583215833158341583515836158371583815839158401584115842158431584415845158461584715848158491585015851158521585315854158551585615857158581585915860158611586215863158641586515866158671586815869158701587115872158731587415875158761587715878158791588015881158821588315884158851588615887158881588915890158911589215893158941589515896158971589815899159001590115902159031590415905159061590715908159091591015911159121591315914159151591615917159181591915920159211592215923159241592515926159271592815929159301593115932159331593415935159361593715938159391594015941159421594315944159451594615947159481594915950159511595215953159541595515956159571595815959159601596115962159631596415965159661596715968159691597015971159721597315974159751597615977159781597915980159811598215983159841598515986159871598815989159901599115992159931599415995159961599715998159991600016001160021600316004160051600616007160081600916010160111601216013160141601516016160171601816019160201602116022160231602416025160261602716028160291603016031160321603316034160351603616037160381603916040160411604216043160441604516046160471604816049160501605116052160531605416055160561605716058160591606016061160621606316064160651606616067160681606916070160711607216073160741607516076160771607816079160801608116082160831608416085160861608716088160891609016091160921609316094160951609616097160981609916100161011610216103161041610516106161071610816109161101611116112161131611416115161161611716118161191612016121161221612316124161251612616127161281612916130161311613216133161341613516136161371613816139161401614116142161431614416145161461614716148161491615016151161521615316154161551615616157161581615916160161611616216163161641616516166161671616816169161701617116172161731617416175161761617716178161791618016181161821618316184161851618616187161881618916190161911619216193161941619516196161971619816199162001620116202162031620416205162061620716208162091621016211162121621316214162151621616217162181621916220162211622216223162241622516226162271622816229162301623116232162331623416235162361623716238162391624016241162421624316244162451624616247162481624916250162511625216253162541625516256162571625816259162601626116262162631626416265162661626716268162691627016271162721627316274162751627616277162781627916280162811628216283162841628516286162871628816289162901629116292162931629416295162961629716298162991630016301163021630316304163051630616307163081630916310163111631216313163141631516316163171631816319163201632116322163231632416325163261632716328163291633016331163321633316334163351633616337163381633916340163411634216343163441634516346163471634816349163501635116352163531635416355163561635716358163591636016361163621636316364163651636616367163681636916370163711637216373163741637516376163771637816379163801638116382163831638416385163861638716388163891639016391163921639316394163951639616397163981639916400164011640216403164041640516406164071640816409164101641116412164131641416415164161641716418164191642016421164221642316424164251642616427164281642916430164311643216433164341643516436164371643816439164401644116442164431644416445164461644716448164491645016451164521645316454164551645616457164581645916460164611646216463164641646516466164671646816469164701647116472164731647416475164761647716478164791648016481164821648316484164851648616487164881648916490164911649216493164941649516496164971649816499165001650116502165031650416505165061650716508165091651016511165121651316514165151651616517165181651916520165211652216523165241652516526165271652816529165301653116532165331653416535165361653716538165391654016541165421654316544165451654616547165481654916550165511655216553165541655516556165571655816559165601656116562165631656416565165661656716568165691657016571165721657316574165751657616577165781657916580165811658216583165841658516586165871658816589165901659116592165931659416595165961659716598165991660016601166021660316604166051660616607166081660916610166111661216613166141661516616166171661816619166201662116622166231662416625166261662716628166291663016631166321663316634166351663616637166381663916640166411664216643166441664516646166471664816649166501665116652166531665416655166561665716658166591666016661166621666316664166651666616667166681666916670166711667216673166741667516676166771667816679166801668116682166831668416685166861668716688166891669016691166921669316694166951669616697166981669916700167011670216703167041670516706167071670816709167101671116712167131671416715167161671716718167191672016721167221672316724167251672616727167281672916730167311673216733167341673516736167371673816739167401674116742167431674416745167461674716748167491675016751167521675316754167551675616757167581675916760167611676216763167641676516766167671676816769167701677116772167731677416775167761677716778167791678016781167821678316784167851678616787167881678916790167911679216793167941679516796167971679816799168001680116802168031680416805168061680716808168091681016811168121681316814168151681616817168181681916820168211682216823168241682516826168271682816829168301683116832168331683416835168361683716838168391684016841168421684316844168451684616847168481684916850168511685216853168541685516856168571685816859168601686116862168631686416865168661686716868168691687016871168721687316874168751687616877168781687916880168811688216883168841688516886168871688816889168901689116892168931689416895168961689716898168991690016901169021690316904169051690616907169081690916910169111691216913169141691516916169171691816919169201692116922169231692416925169261692716928169291693016931169321693316934169351693616937169381693916940169411694216943169441694516946169471694816949169501695116952169531695416955169561695716958169591696016961169621696316964169651696616967169681696916970169711697216973169741697516976169771697816979169801698116982169831698416985169861698716988169891699016991169921699316994169951699616997169981699917000170011700217003170041700517006170071700817009170101701117012170131701417015170161701717018170191702017021170221702317024170251702617027170281702917030170311703217033170341703517036170371703817039170401704117042170431704417045170461704717048170491705017051170521705317054170551705617057170581705917060170611706217063170641706517066170671706817069170701707117072170731707417075170761707717078170791708017081170821708317084170851708617087170881708917090170911709217093170941709517096170971709817099171001710117102171031710417105171061710717108171091711017111171121711317114171151711617117171181711917120171211712217123171241712517126171271712817129171301713117132171331713417135171361713717138171391714017141171421714317144171451714617147171481714917150171511715217153171541715517156171571715817159171601716117162171631716417165171661716717168171691717017171171721717317174171751717617177171781717917180171811718217183171841718517186171871718817189171901719117192171931719417195171961719717198171991720017201172021720317204172051720617207172081720917210172111721217213172141721517216172171721817219172201722117222172231722417225172261722717228172291723017231172321723317234172351723617237172381723917240172411724217243172441724517246172471724817249172501725117252172531725417255172561725717258172591726017261172621726317264172651726617267172681726917270172711727217273172741727517276172771727817279172801728117282172831728417285172861728717288172891729017291172921729317294172951729617297172981729917300173011730217303173041730517306173071730817309173101731117312173131731417315173161731717318173191732017321173221732317324173251732617327173281732917330173311733217333173341733517336173371733817339173401734117342173431734417345173461734717348173491735017351173521735317354173551735617357173581735917360173611736217363173641736517366173671736817369173701737117372173731737417375173761737717378173791738017381173821738317384173851738617387173881738917390173911739217393173941739517396173971739817399174001740117402174031740417405174061740717408174091741017411174121741317414174151741617417174181741917420174211742217423174241742517426174271742817429174301743117432174331743417435174361743717438174391744017441174421744317444174451744617447174481744917450174511745217453174541745517456174571745817459174601746117462174631746417465174661746717468174691747017471174721747317474174751747617477174781747917480174811748217483174841748517486174871748817489174901749117492174931749417495174961749717498174991750017501175021750317504175051750617507175081750917510175111751217513175141751517516175171751817519175201752117522175231752417525175261752717528175291753017531175321753317534175351753617537175381753917540175411754217543175441754517546175471754817549175501755117552175531755417555175561755717558175591756017561175621756317564175651756617567175681756917570175711757217573175741757517576175771757817579175801758117582175831758417585175861758717588175891759017591175921759317594175951759617597175981759917600176011760217603176041760517606176071760817609176101761117612176131761417615176161761717618176191762017621176221762317624176251762617627176281762917630176311763217633176341763517636176371763817639176401764117642176431764417645176461764717648176491765017651176521765317654176551765617657176581765917660176611766217663176641766517666176671766817669176701767117672176731767417675176761767717678176791768017681176821768317684176851768617687176881768917690176911769217693176941769517696176971769817699177001770117702177031770417705177061770717708177091771017711177121771317714177151771617717177181771917720177211772217723177241772517726177271772817729177301773117732177331773417735177361773717738177391774017741177421774317744177451774617747177481774917750177511775217753177541775517756177571775817759177601776117762177631776417765177661776717768177691777017771177721777317774177751777617777177781777917780177811778217783177841778517786177871778817789177901779117792177931779417795177961779717798177991780017801178021780317804178051780617807178081780917810178111781217813178141781517816178171781817819178201782117822178231782417825178261782717828178291783017831178321783317834178351783617837178381783917840178411784217843178441784517846178471784817849178501785117852178531785417855178561785717858178591786017861178621786317864178651786617867178681786917870178711787217873178741787517876178771787817879178801788117882178831788417885178861788717888178891789017891178921789317894178951789617897178981789917900179011790217903179041790517906179071790817909179101791117912179131791417915179161791717918179191792017921179221792317924179251792617927179281792917930179311793217933179341793517936179371793817939179401794117942179431794417945179461794717948179491795017951179521795317954179551795617957179581795917960179611796217963179641796517966179671796817969179701797117972179731797417975179761797717978179791798017981179821798317984179851798617987179881798917990179911799217993179941799517996179971799817999180001800118002180031800418005180061800718008180091801018011180121801318014180151801618017180181801918020180211802218023180241802518026180271802818029180301803118032180331803418035180361803718038180391804018041180421804318044180451804618047180481804918050180511805218053180541805518056180571805818059180601806118062180631806418065180661806718068180691807018071180721807318074180751807618077180781807918080180811808218083180841808518086180871808818089180901809118092180931809418095180961809718098180991810018101181021810318104181051810618107181081810918110181111811218113181141811518116181171811818119181201812118122181231812418125181261812718128181291813018131181321813318134181351813618137181381813918140181411814218143181441814518146181471814818149181501815118152181531815418155181561815718158181591816018161181621816318164181651816618167181681816918170181711817218173181741817518176181771817818179181801818118182181831818418185181861818718188181891819018191181921819318194181951819618197181981819918200182011820218203182041820518206182071820818209182101821118212182131821418215182161821718218182191822018221182221822318224182251822618227182281822918230182311823218233182341823518236182371823818239182401824118242182431824418245182461824718248182491825018251182521825318254182551825618257182581825918260182611826218263182641826518266182671826818269182701827118272182731827418275182761827718278182791828018281182821828318284182851828618287182881828918290182911829218293182941829518296182971829818299183001830118302183031830418305183061830718308183091831018311183121831318314183151831618317183181831918320183211832218323183241832518326183271832818329183301833118332183331833418335183361833718338183391834018341183421834318344183451834618347183481834918350183511835218353183541835518356183571835818359183601836118362183631836418365183661836718368183691837018371183721837318374183751837618377183781837918380183811838218383183841838518386183871838818389183901839118392183931839418395183961839718398183991840018401184021840318404184051840618407184081840918410184111841218413184141841518416184171841818419184201842118422184231842418425184261842718428184291843018431184321843318434184351843618437184381843918440184411844218443184441844518446184471844818449184501845118452184531845418455184561845718458184591846018461184621846318464184651846618467184681846918470184711847218473184741847518476184771847818479184801848118482184831848418485184861848718488184891849018491184921849318494184951849618497184981849918500185011850218503185041850518506185071850818509185101851118512185131851418515185161851718518185191852018521185221852318524185251852618527185281852918530185311853218533185341853518536185371853818539185401854118542185431854418545185461854718548185491855018551185521855318554185551855618557185581855918560185611856218563185641856518566185671856818569185701857118572185731857418575185761857718578185791858018581185821858318584185851858618587185881858918590185911859218593185941859518596185971859818599186001860118602186031860418605186061860718608186091861018611186121861318614186151861618617186181861918620186211862218623186241862518626186271862818629186301863118632186331863418635186361863718638186391864018641186421864318644186451864618647186481864918650186511865218653186541865518656186571865818659186601866118662186631866418665186661866718668186691867018671186721867318674186751867618677186781867918680186811868218683186841868518686186871868818689186901869118692186931869418695186961869718698186991870018701187021870318704187051870618707187081870918710187111871218713187141871518716187171871818719187201872118722187231872418725187261872718728187291873018731187321873318734187351873618737187381873918740187411874218743187441874518746187471874818749187501875118752187531875418755187561875718758187591876018761187621876318764187651876618767187681876918770187711877218773187741877518776187771877818779187801878118782187831878418785187861878718788187891879018791187921879318794187951879618797187981879918800188011880218803188041880518806188071880818809188101881118812188131881418815188161881718818188191882018821188221882318824188251882618827188281882918830188311883218833188341883518836188371883818839188401884118842188431884418845188461884718848188491885018851188521885318854188551885618857188581885918860188611886218863188641886518866188671886818869188701887118872188731887418875188761887718878188791888018881188821888318884188851888618887188881888918890188911889218893188941889518896188971889818899189001890118902189031890418905189061890718908189091891018911189121891318914189151891618917189181891918920189211892218923189241892518926189271892818929189301893118932189331893418935189361893718938189391894018941189421894318944189451894618947189481894918950189511895218953189541895518956189571895818959189601896118962189631896418965189661896718968189691897018971189721897318974189751897618977189781897918980189811898218983189841898518986189871898818989189901899118992189931899418995189961899718998189991900019001190021900319004190051900619007190081900919010190111901219013190141901519016190171901819019190201902119022190231902419025190261902719028190291903019031190321903319034190351903619037190381903919040190411904219043190441904519046190471904819049190501905119052190531905419055190561905719058190591906019061190621906319064190651906619067190681906919070190711907219073190741907519076190771907819079190801908119082190831908419085190861908719088190891909019091190921909319094190951909619097190981909919100191011910219103191041910519106191071910819109191101911119112191131911419115191161911719118191191912019121191221912319124191251912619127191281912919130191311913219133191341913519136191371913819139191401914119142191431914419145191461914719148191491915019151191521915319154191551915619157191581915919160191611916219163191641916519166191671916819169191701917119172191731917419175191761917719178191791918019181191821918319184191851918619187191881918919190191911919219193191941919519196191971919819199192001920119202192031920419205192061920719208192091921019211192121921319214192151921619217192181921919220192211922219223192241922519226192271922819229192301923119232192331923419235192361923719238192391924019241192421924319244192451924619247192481924919250192511925219253192541925519256192571925819259192601926119262192631926419265192661926719268192691927019271192721927319274192751927619277192781927919280192811928219283192841928519286192871928819289192901929119292192931929419295192961929719298192991930019301193021930319304193051930619307193081930919310193111931219313193141931519316193171931819319193201932119322193231932419325193261932719328193291933019331193321933319334193351933619337193381933919340193411934219343193441934519346193471934819349193501935119352193531935419355193561935719358193591936019361193621936319364193651936619367193681936919370193711937219373193741937519376193771937819379193801938119382193831938419385193861938719388193891939019391193921939319394193951939619397193981939919400194011940219403194041940519406194071940819409194101941119412194131941419415194161941719418194191942019421194221942319424194251942619427194281942919430194311943219433194341943519436194371943819439194401944119442194431944419445194461944719448194491945019451194521945319454194551945619457194581945919460194611946219463194641946519466194671946819469194701947119472194731947419475194761947719478194791948019481194821948319484194851948619487194881948919490194911949219493194941949519496194971949819499195001950119502195031950419505195061950719508195091951019511195121951319514195151951619517195181951919520195211952219523195241952519526195271952819529195301953119532195331953419535195361953719538195391954019541195421954319544195451954619547195481954919550195511955219553195541955519556195571955819559195601956119562195631956419565195661956719568195691957019571195721957319574195751957619577195781957919580195811958219583195841958519586195871958819589195901959119592195931959419595195961959719598195991960019601196021960319604196051960619607196081960919610196111961219613196141961519616196171961819619196201962119622196231962419625196261962719628196291963019631196321963319634196351963619637196381963919640196411964219643196441964519646196471964819649196501965119652196531965419655196561965719658196591966019661196621966319664196651966619667196681966919670196711967219673196741967519676196771967819679196801968119682196831968419685196861968719688196891969019691196921969319694196951969619697196981969919700197011970219703197041970519706197071970819709197101971119712197131971419715197161971719718197191972019721197221972319724197251972619727197281972919730197311973219733197341973519736197371973819739197401974119742197431974419745197461974719748197491975019751197521975319754197551975619757197581975919760197611976219763197641976519766197671976819769197701977119772197731977419775197761977719778197791978019781197821978319784197851978619787197881978919790197911979219793197941979519796197971979819799198001980119802198031980419805198061980719808198091981019811198121981319814198151981619817198181981919820198211982219823198241982519826198271982819829198301983119832198331983419835198361983719838198391984019841198421984319844198451984619847198481984919850198511985219853198541985519856198571985819859198601986119862198631986419865198661986719868198691987019871198721987319874198751987619877198781987919880198811988219883198841988519886198871988819889198901989119892198931989419895198961989719898198991990019901199021990319904199051990619907199081990919910199111991219913199141991519916199171991819919199201992119922199231992419925199261992719928199291993019931199321993319934199351993619937199381993919940199411994219943199441994519946199471994819949199501995119952199531995419955199561995719958199591996019961199621996319964199651996619967199681996919970199711997219973199741997519976199771997819979199801998119982199831998419985199861998719988199891999019991199921999319994199951999619997199981999920000200012000220003200042000520006200072000820009200102001120012200132001420015200162001720018200192002020021200222002320024200252002620027200282002920030200312003220033200342003520036200372003820039200402004120042200432004420045200462004720048200492005020051200522005320054200552005620057200582005920060200612006220063200642006520066200672006820069200702007120072200732007420075200762007720078200792008020081200822008320084200852008620087200882008920090200912009220093200942009520096200972009820099201002010120102201032010420105201062010720108201092011020111201122011320114201152011620117201182011920120201212012220123201242012520126201272012820129201302013120132201332013420135201362013720138201392014020141201422014320144201452014620147201482014920150201512015220153201542015520156201572015820159201602016120162201632016420165201662016720168201692017020171201722017320174201752017620177201782017920180201812018220183201842018520186201872018820189201902019120192201932019420195201962019720198201992020020201202022020320204202052020620207202082020920210202112021220213202142021520216202172021820219202202022120222202232022420225202262022720228202292023020231202322023320234202352023620237202382023920240202412024220243202442024520246202472024820249202502025120252202532025420255202562025720258202592026020261202622026320264202652026620267202682026920270202712027220273202742027520276202772027820279202802028120282202832028420285202862028720288202892029020291202922029320294202952029620297202982029920300203012030220303203042030520306203072030820309203102031120312203132031420315203162031720318203192032020321203222032320324203252032620327203282032920330203312033220333203342033520336203372033820339203402034120342203432034420345203462034720348203492035020351203522035320354203552035620357203582035920360203612036220363203642036520366203672036820369203702037120372203732037420375203762037720378203792038020381203822038320384203852038620387203882038920390203912039220393203942039520396203972039820399204002040120402204032040420405204062040720408204092041020411204122041320414204152041620417204182041920420204212042220423204242042520426204272042820429204302043120432204332043420435204362043720438204392044020441204422044320444204452044620447204482044920450204512045220453204542045520456204572045820459204602046120462204632046420465204662046720468204692047020471204722047320474204752047620477204782047920480204812048220483204842048520486204872048820489204902049120492204932049420495204962049720498204992050020501205022050320504205052050620507205082050920510205112051220513205142051520516205172051820519205202052120522205232052420525205262052720528205292053020531205322053320534205352053620537205382053920540205412054220543205442054520546205472054820549205502055120552205532055420555205562055720558205592056020561205622056320564205652056620567205682056920570205712057220573205742057520576205772057820579205802058120582205832058420585205862058720588205892059020591205922059320594205952059620597205982059920600206012060220603206042060520606206072060820609206102061120612206132061420615206162061720618206192062020621206222062320624206252062620627206282062920630206312063220633206342063520636206372063820639206402064120642206432064420645206462064720648206492065020651206522065320654206552065620657206582065920660206612066220663206642066520666206672066820669206702067120672206732067420675206762067720678206792068020681206822068320684206852068620687206882068920690206912069220693206942069520696206972069820699207002070120702207032070420705207062070720708207092071020711207122071320714207152071620717207182071920720207212072220723207242072520726207272072820729207302073120732207332073420735207362073720738207392074020741207422074320744207452074620747207482074920750207512075220753207542075520756207572075820759207602076120762207632076420765207662076720768207692077020771207722077320774207752077620777207782077920780207812078220783207842078520786207872078820789207902079120792207932079420795207962079720798207992080020801208022080320804208052080620807208082080920810208112081220813208142081520816208172081820819208202082120822208232082420825208262082720828208292083020831208322083320834208352083620837208382083920840208412084220843208442084520846208472084820849208502085120852208532085420855208562085720858208592086020861208622086320864208652086620867208682086920870208712087220873208742087520876208772087820879208802088120882208832088420885208862088720888208892089020891208922089320894208952089620897208982089920900209012090220903209042090520906209072090820909209102091120912209132091420915209162091720918209192092020921209222092320924209252092620927209282092920930209312093220933209342093520936209372093820939209402094120942209432094420945209462094720948209492095020951209522095320954209552095620957209582095920960209612096220963209642096520966209672096820969209702097120972209732097420975209762097720978209792098020981209822098320984209852098620987209882098920990209912099220993209942099520996209972099820999210002100121002210032100421005210062100721008210092101021011210122101321014210152101621017210182101921020210212102221023210242102521026210272102821029210302103121032210332103421035210362103721038210392104021041210422104321044210452104621047210482104921050210512105221053210542105521056210572105821059210602106121062210632106421065210662106721068210692107021071210722107321074210752107621077210782107921080210812108221083210842108521086210872108821089210902109121092210932109421095210962109721098210992110021101211022110321104211052110621107211082110921110211112111221113211142111521116211172111821119211202112121122211232112421125211262112721128211292113021131211322113321134211352113621137211382113921140211412114221143211442114521146211472114821149211502115121152211532115421155211562115721158211592116021161211622116321164211652116621167211682116921170211712117221173211742117521176211772117821179211802118121182211832118421185211862118721188211892119021191211922119321194211952119621197211982119921200212012120221203212042120521206212072120821209212102121121212212132121421215212162121721218212192122021221212222122321224212252122621227212282122921230212312123221233212342123521236212372123821239212402124121242212432124421245212462124721248212492125021251212522125321254212552125621257212582125921260212612126221263212642126521266212672126821269212702127121272212732127421275212762127721278212792128021281212822128321284212852128621287212882128921290212912129221293212942129521296212972129821299213002130121302213032130421305213062130721308213092131021311213122131321314213152131621317213182131921320213212132221323213242132521326213272132821329213302133121332213332133421335213362133721338213392134021341213422134321344213452134621347213482134921350213512135221353213542135521356213572135821359213602136121362213632136421365213662136721368213692137021371213722137321374213752137621377213782137921380213812138221383213842138521386213872138821389213902139121392213932139421395213962139721398213992140021401214022140321404214052140621407214082140921410214112141221413214142141521416214172141821419214202142121422214232142421425214262142721428214292143021431214322143321434214352143621437214382143921440214412144221443214442144521446214472144821449214502145121452214532145421455214562145721458214592146021461214622146321464214652146621467214682146921470214712147221473214742147521476214772147821479214802148121482214832148421485214862148721488214892149021491214922149321494214952149621497214982149921500215012150221503215042150521506215072150821509215102151121512215132151421515215162151721518215192152021521215222152321524215252152621527215282152921530215312153221533215342153521536215372153821539215402154121542215432154421545215462154721548215492155021551215522155321554215552155621557215582155921560215612156221563215642156521566215672156821569215702157121572215732157421575215762157721578215792158021581215822158321584215852158621587215882158921590215912159221593215942159521596215972159821599216002160121602216032160421605216062160721608216092161021611216122161321614216152161621617216182161921620216212162221623216242162521626216272162821629216302163121632216332163421635216362163721638216392164021641216422164321644216452164621647216482164921650216512165221653216542165521656216572165821659216602166121662216632166421665216662166721668216692167021671216722167321674216752167621677216782167921680216812168221683216842168521686216872168821689216902169121692216932169421695216962169721698216992170021701217022170321704217052170621707217082170921710217112171221713217142171521716217172171821719217202172121722217232172421725217262172721728217292173021731217322173321734217352173621737217382173921740217412174221743217442174521746217472174821749217502175121752217532175421755217562175721758217592176021761217622176321764217652176621767217682176921770217712177221773217742177521776217772177821779217802178121782217832178421785217862178721788217892179021791217922179321794217952179621797217982179921800218012180221803218042180521806218072180821809218102181121812218132181421815218162181721818218192182021821218222182321824218252182621827218282182921830218312183221833218342183521836218372183821839218402184121842218432184421845218462184721848218492185021851218522185321854218552185621857218582185921860218612186221863218642186521866218672186821869218702187121872218732187421875218762187721878218792188021881218822188321884218852188621887218882188921890218912189221893218942189521896218972189821899219002190121902219032190421905219062190721908219092191021911219122191321914219152191621917219182191921920219212192221923219242192521926219272192821929219302193121932219332193421935219362193721938219392194021941219422194321944219452194621947219482194921950219512195221953219542195521956219572195821959219602196121962219632196421965219662196721968219692197021971219722197321974219752197621977219782197921980219812198221983219842198521986219872198821989219902199121992219932199421995219962199721998219992200022001220022200322004220052200622007220082200922010220112201222013220142201522016220172201822019220202202122022220232202422025220262202722028220292203022031220322203322034220352203622037220382203922040220412204222043220442204522046220472204822049220502205122052220532205422055220562205722058220592206022061220622206322064220652206622067220682206922070220712207222073220742207522076220772207822079220802208122082220832208422085220862208722088220892209022091220922209322094220952209622097220982209922100221012210222103221042210522106221072210822109221102211122112221132211422115221162211722118221192212022121221222212322124221252212622127221282212922130221312213222133221342213522136221372213822139221402214122142221432214422145221462214722148221492215022151221522215322154221552215622157221582215922160221612216222163221642216522166221672216822169221702217122172221732217422175221762217722178221792218022181221822218322184221852218622187221882218922190221912219222193221942219522196221972219822199222002220122202222032220422205222062220722208222092221022211222122221322214222152221622217222182221922220222212222222223222242222522226222272222822229222302223122232222332223422235222362223722238222392224022241222422224322244222452224622247222482224922250222512225222253222542225522256222572225822259222602226122262222632226422265222662226722268222692227022271222722227322274222752227622277222782227922280222812228222283222842228522286222872228822289222902229122292222932229422295222962229722298222992230022301223022230322304223052230622307223082230922310223112231222313223142231522316223172231822319223202232122322223232232422325223262232722328223292233022331223322233322334223352233622337223382233922340223412234222343223442234522346223472234822349223502235122352223532235422355223562235722358223592236022361223622236322364223652236622367223682236922370223712237222373223742237522376223772237822379223802238122382223832238422385223862238722388223892239022391223922239322394223952239622397223982239922400224012240222403224042240522406224072240822409224102241122412224132241422415224162241722418224192242022421224222242322424224252242622427224282242922430224312243222433224342243522436224372243822439224402244122442224432244422445224462244722448224492245022451224522245322454224552245622457224582245922460224612246222463224642246522466224672246822469224702247122472224732247422475224762247722478224792248022481224822248322484224852248622487224882248922490224912249222493224942249522496224972249822499225002250122502225032250422505225062250722508225092251022511225122251322514225152251622517225182251922520225212252222523225242252522526225272252822529225302253122532225332253422535225362253722538225392254022541225422254322544225452254622547225482254922550225512255222553225542255522556225572255822559225602256122562225632256422565225662256722568225692257022571225722257322574225752257622577225782257922580225812258222583225842258522586225872258822589225902259122592225932259422595225962259722598225992260022601226022260322604226052260622607226082260922610226112261222613226142261522616226172261822619226202262122622226232262422625226262262722628226292263022631226322263322634226352263622637226382263922640226412264222643226442264522646226472264822649226502265122652226532265422655226562265722658226592266022661226622266322664226652266622667226682266922670226712267222673226742267522676226772267822679226802268122682226832268422685226862268722688226892269022691226922269322694226952269622697226982269922700227012270222703227042270522706227072270822709227102271122712227132271422715227162271722718227192272022721227222272322724227252272622727227282272922730227312273222733227342273522736227372273822739227402274122742227432274422745227462274722748227492275022751227522275322754227552275622757227582275922760227612276222763227642276522766227672276822769227702277122772227732277422775227762277722778227792278022781227822278322784227852278622787227882278922790227912279222793227942279522796227972279822799228002280122802228032280422805228062280722808228092281022811228122281322814228152281622817228182281922820228212282222823228242282522826228272282822829228302283122832228332283422835228362283722838228392284022841228422284322844228452284622847228482284922850228512285222853228542285522856228572285822859228602286122862228632286422865228662286722868228692287022871228722287322874228752287622877228782287922880228812288222883228842288522886228872288822889228902289122892228932289422895228962289722898228992290022901229022290322904229052290622907229082290922910229112291222913229142291522916229172291822919229202292122922229232292422925229262292722928229292293022931229322293322934229352293622937229382293922940229412294222943229442294522946229472294822949229502295122952229532295422955229562295722958229592296022961229622296322964229652296622967229682296922970229712297222973229742297522976229772297822979229802298122982229832298422985229862298722988229892299022991229922299322994229952299622997229982299923000230012300223003230042300523006230072300823009230102301123012230132301423015230162301723018230192302023021230222302323024230252302623027230282302923030230312303223033230342303523036230372303823039230402304123042230432304423045230462304723048230492305023051230522305323054230552305623057230582305923060230612306223063230642306523066230672306823069230702307123072230732307423075230762307723078230792308023081230822308323084230852308623087230882308923090230912309223093230942309523096230972309823099231002310123102231032310423105231062310723108231092311023111231122311323114231152311623117231182311923120231212312223123231242312523126231272312823129231302313123132231332313423135231362313723138231392314023141231422314323144231452314623147231482314923150231512315223153231542315523156231572315823159231602316123162231632316423165231662316723168231692317023171231722317323174231752317623177231782317923180231812318223183231842318523186231872318823189231902319123192231932319423195231962319723198231992320023201232022320323204232052320623207232082320923210232112321223213232142321523216232172321823219232202322123222232232322423225232262322723228232292323023231232322323323234232352323623237232382323923240232412324223243232442324523246232472324823249232502325123252232532325423255232562325723258232592326023261232622326323264232652326623267232682326923270232712327223273232742327523276232772327823279232802328123282232832328423285232862328723288232892329023291232922329323294232952329623297232982329923300233012330223303233042330523306233072330823309233102331123312233132331423315233162331723318233192332023321233222332323324233252332623327233282332923330233312333223333233342333523336233372333823339233402334123342233432334423345233462334723348233492335023351233522335323354233552335623357233582335923360233612336223363233642336523366233672336823369233702337123372233732337423375233762337723378233792338023381233822338323384233852338623387233882338923390233912339223393233942339523396233972339823399234002340123402234032340423405234062340723408234092341023411234122341323414234152341623417234182341923420234212342223423234242342523426234272342823429234302343123432234332343423435234362343723438234392344023441234422344323444234452344623447234482344923450234512345223453234542345523456234572345823459234602346123462234632346423465234662346723468234692347023471234722347323474234752347623477234782347923480234812348223483234842348523486234872348823489234902349123492234932349423495234962349723498234992350023501235022350323504235052350623507235082350923510235112351223513235142351523516235172351823519235202352123522235232352423525235262352723528235292353023531235322353323534235352353623537235382353923540235412354223543235442354523546235472354823549235502355123552235532355423555235562355723558235592356023561235622356323564235652356623567235682356923570235712357223573235742357523576235772357823579235802358123582235832358423585235862358723588235892359023591235922359323594235952359623597235982359923600236012360223603236042360523606236072360823609236102361123612236132361423615236162361723618236192362023621236222362323624236252362623627236282362923630236312363223633236342363523636236372363823639236402364123642236432364423645236462364723648236492365023651236522365323654236552365623657236582365923660236612366223663236642366523666236672366823669236702367123672236732367423675236762367723678236792368023681236822368323684236852368623687236882368923690236912369223693236942369523696236972369823699237002370123702237032370423705237062370723708237092371023711237122371323714237152371623717237182371923720237212372223723237242372523726237272372823729237302373123732237332373423735237362373723738237392374023741237422374323744237452374623747237482374923750237512375223753237542375523756237572375823759237602376123762237632376423765237662376723768237692377023771237722377323774237752377623777237782377923780237812378223783237842378523786237872378823789237902379123792237932379423795237962379723798237992380023801238022380323804238052380623807238082380923810238112381223813238142381523816238172381823819238202382123822238232382423825238262382723828238292383023831238322383323834238352383623837238382383923840238412384223843238442384523846238472384823849
  1. \documentclass[7x10]{TimesAPriori_MIT}%%7x10
  2. % TODO:
  3. %
  4. \usepackage[utf8]{inputenc}
  5. %% \usepackage{setspace}
  6. %% \doublespacing
  7. \usepackage{listings}
  8. \usepackage{verbatim}
  9. \usepackage{amssymb}
  10. \usepackage{lmodern} % better typewriter font for code
  11. %\usepackage{wrapfig}
  12. \usepackage{multirow}
  13. \usepackage{tcolorbox}
  14. \usepackage{color}
  15. %\usepackage{ifthen}
  16. \usepackage{upquote}
  17. \usepackage[all]{xy}
  18. \usepackage{url}
  19. \definecolor{lightgray}{gray}{1}
  20. \newcommand{\black}[1]{{\color{black} #1}}
  21. %\newcommand{\gray}[1]{{\color{lightgray} #1}}
  22. \newcommand{\gray}[1]{{\color{gray} #1}}
  23. \def\racketEd{0}
  24. \def\pythonEd{1}
  25. \def\edition{0}
  26. % material that is specific to the Racket edition of the book
  27. \newcommand{\racket}[1]{{\if\edition\racketEd{#1}\fi}}
  28. % would like a command for: \if\edition\racketEd\color{olive}
  29. % and : \fi\color{black}
  30. %\newcommand{\pythonColor}[0]{\color{purple}}
  31. \newcommand{\pythonColor}[0]{}
  32. % material that is specific to the Python edition of the book
  33. \newcommand{\python}[1]{{\if\edition\pythonEd\pythonColor #1\fi}}
  34. \makeatletter
  35. \newcommand{\captionabove}[2][]{%
  36. \vskip-\abovecaptionskip
  37. \vskip+\belowcaptionskip
  38. \ifx\@nnil#1\@nnil
  39. \caption{#2}%
  40. \else
  41. \caption[#1]{#2}%
  42. \fi
  43. \vskip+\abovecaptionskip
  44. \vskip-\belowcaptionskip
  45. }
  46. %% For multiple indices:
  47. %\usepackage{multind} moved this to the file TimesAPriori_MIT.cls. -Jeremy
  48. \makeindex{subject}
  49. %\makeindex{authors}
  50. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  51. \if\edition\racketEd
  52. \lstset{%
  53. language=Lisp,
  54. basicstyle=\ttfamily\small,
  55. morekeywords={lambda,match,goto,if,else,then,struct,Integer,Boolean,Vector,Void,Any,while,begin,define,public,override,class},
  56. deletekeywords={read,mapping,vector},
  57. escapechar=|,
  58. columns=flexible,
  59. %moredelim=[is][\color{red}]{~}{~},
  60. showstringspaces=false
  61. }
  62. \fi
  63. \if\edition\pythonEd
  64. \lstset{%
  65. language=Python,
  66. basicstyle=\ttfamily\small,
  67. morekeywords={match,case,bool,int,let,begin,if,else,closure},
  68. deletekeywords={},
  69. escapechar=|,
  70. columns=flexible,
  71. %moredelim=[is][\color{red}]{~}{~},
  72. showstringspaces=false
  73. }
  74. \fi
  75. %%% Any shortcut own defined macros place here
  76. %% sample of author macro:
  77. \input{defs}
  78. \newtheorem{exercise}[theorem]{Exercise}
  79. \numberwithin{theorem}{chapter}
  80. \numberwithin{definition}{chapter}
  81. \numberwithin{equation}{chapter}
  82. % Adjusted settings
  83. \setlength{\columnsep}{4pt}
  84. %% \begingroup
  85. %% \setlength{\intextsep}{0pt}%
  86. %% \setlength{\columnsep}{0pt}%
  87. %% \begin{wrapfigure}{r}{0.5\textwidth}
  88. %% \centering\includegraphics[width=\linewidth]{example-image-a}
  89. %% \caption{Basic layout}
  90. %% \end{wrapfigure}
  91. %% \lipsum[1]
  92. %% \endgroup
  93. \newbox\oiintbox
  94. \setbox\oiintbox=\hbox{$\lower2pt\hbox{\huge$\displaystyle\circ$}
  95. \hskip-13pt\displaystyle\int\hskip-7pt\int_{S}\ $}
  96. \def\oiint{\copy\oiintbox}
  97. \def\boldnabla{\hbox{\boldmath$\displaystyle\nabla$}}
  98. %\usepackage{showframe}
  99. \def\ShowFrameLinethickness{0.125pt}
  100. \addbibresource{book.bib}
  101. \if\edition\pythonEd
  102. \addbibresource{python.bib}
  103. \fi
  104. \begin{document}
  105. \frontmatter
  106. %\HalfTitle{Essentials of Compilation \\ An Incremental Approach in \python{Python}\racket{Racket}}
  107. \HalfTitle{Essentials of Compilation}
  108. \halftitlepage
  109. \clearemptydoublepage
  110. \Title{Essentials of Compilation}
  111. \Booksubtitle{An Incremental Approach in \python{Python}\racket{Racket}}
  112. %\edition{First Edition}
  113. \BookAuthor{Jeremy G. Siek}
  114. \imprint{The MIT Press\\
  115. Cambridge, Massachusetts\\
  116. London, England}
  117. \begin{copyrightpage}
  118. \textcopyright\ 2023 Jeremy G. Siek \\[2ex]
  119. This work is subject to a Creative Commons CC-BY-ND-NC license. \\[2ex]
  120. Subject to such license, all rights are reserved. \\[2ex]
  121. \includegraphics{CCBY-logo}
  122. The MIT Press would like to thank the anonymous peer reviewers who
  123. provided comments on drafts of this book. The generous work of
  124. academic experts is essential for establishing the authority and
  125. quality of our publications. We acknowledge with gratitude the
  126. contributions of these otherwise uncredited readers.
  127. This book was set in Times LT Std Roman by the author. Printed and
  128. bound in the United States of America.
  129. {\if\edition\racketEd
  130. Library of Congress Cataloging-in-Publication Data\\
  131. \ \\
  132. Names: Siek, Jeremy, author. \\
  133. Title: Essentials of compilation : an incremental approach in Racket / Jeremy G. Siek. \\
  134. Description: Cambridge, Massachusetts : The MIT Press, [2023] | Includes bibliographical references and index. \\
  135. Identifiers: LCCN 2022015399 (print) | LCCN 2022015400 (ebook) | ISBN 9780262047760 (hardcover) | ISBN 9780262373272 (epub) | ISBN 9780262373289 (pdf) \\
  136. Subjects: LCSH: Racket (Computer program language) | Compilers (Computer programs) \\
  137. Classification: LCC QA76.73.R33 S54 2023 (print) | LCC QA76.73.R33 (ebook) | DDC 005.13/3--dc23/eng/20220705 \\
  138. LC record available at https://lccn.loc.gov/2022015399\\
  139. LC ebook record available at https://lccn.loc.gov/2022015400\\
  140. \ \\
  141. \fi}
  142. %
  143. {\if\edition\pythonEd
  144. Library of Congress Cataloging-in-Publication Data\\
  145. \ \\
  146. Names: Siek, Jeremy, author. \\
  147. Title: Essentials of compilation : an incremental approach in Python / Jeremy G. Siek. \\
  148. Description: Cambridge, Massachusetts : The MIT Press, [2023] | Includes
  149. bibliographical references and index. \\
  150. Identifiers: LCCN 2022043053 (print) | LCCN 2022043054 (ebook) | ISBN
  151. 9780262048248 | ISBN 9780262375542 (epub) | ISBN 9780262375559 (pdf) \\
  152. Subjects: LCSH: Compilers (Computer programs) | Python (Computer program
  153. language) | Programming languages (Electronic computers) | Computer
  154. programming. \\
  155. Classification: LCC QA76.76.C65 S54 2023 (print) | LCC QA76.76.C65
  156. (ebook) | DDC 005.4/53--dc23/eng/20221117 \\
  157. LC record available at https://lccn.loc.gov/2022043053\\
  158. LC ebook record available at https://lccn.loc.gov/2022043054 \\
  159. \ \\
  160. \fi}
  161. 10 9 8 7 6 5 4 3 2 1
  162. %% Jeremy G. Siek. Available for free viewing
  163. %% or personal downloading under the
  164. %% \href{https://creativecommons.org/licenses/by-nc-nd/2.0/uk/}{CC-BY-NC-ND}
  165. %% license.
  166. %% Copyright in this monograph has been licensed exclusively to The MIT
  167. %% Press, \url{http://mitpress.mit.edu}, which will be releasing the final
  168. %% version to the public in 2022. All inquiries regarding rights should
  169. %% be addressed to The MIT Press, Rights and Permissions Department.
  170. %% \textcopyright\ [YEAR] Massachusetts Institute of Technology
  171. %% All rights reserved. No part of this book may be reproduced in any
  172. %% form by any electronic or mechanical means (including photocopying,
  173. %% recording, or information storage and retrieval) without permission in
  174. %% writing from the publisher.
  175. %% This book was set in LaTeX by Jeremy G. Siek. Printed and bound in the
  176. %% United States of America.
  177. %% Library of Congress Cataloging-in-Publication Data is available.
  178. %% ISBN:
  179. %% 10\quad9\quad8\quad7\quad6\quad5\quad4\quad3\quad2\quad1
  180. \end{copyrightpage}
  181. \dedication{This book is dedicated to Katie, my partner in everything,
  182. my children, who grew up during the writing of this book, and the
  183. programming language students at Indiana University, whose
  184. thoughtful questions made this a better book.}
  185. %% \begin{epigraphpage}
  186. %% \epigraph{First Epigraph line goes here}{Mention author name if any,
  187. %% \textit{Book Name if any}}
  188. %% \epigraph{Second Epigraph line goes here}{Mention author name if any}
  189. %% \end{epigraphpage}
  190. \tableofcontents
  191. %\listoffigures
  192. %\listoftables
  193. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  194. \chapter*{Preface}
  195. \addcontentsline{toc}{fmbm}{Preface}
  196. There is a magical moment when a programmer presses the \emph{run}
  197. button and the software begins to execute. Somehow a program written
  198. in a high-level language is running on a computer that is capable only
  199. of shuffling bits. Here we reveal the wizardry that makes that moment
  200. possible. Beginning with the groundbreaking work of Backus and
  201. colleagues in the 1950s, computer scientists developed techniques for
  202. constructing programs called \emph{compilers} that automatically
  203. translate high-level programs into machine code.
  204. We take you on a journey through constructing your own compiler for a
  205. small but powerful language. Along the way we explain the essential
  206. concepts, algorithms, and data structures that underlie compilers. We
  207. develop your understanding of how programs are mapped onto computer
  208. hardware, which is helpful in reasoning about properties at the
  209. junction of hardware and software, such as execution time, software
  210. errors, and security vulnerabilities. For those interested in
  211. pursuing compiler construction as a career, our goal is to provide a
  212. stepping-stone to advanced topics such as just-in-time compilation,
  213. program analysis, and program optimization. For those interested in
  214. designing and implementing programming languages, we connect language
  215. design choices to their impact on the compiler and the generated code.
  216. A compiler is typically organized as a sequence of stages that
  217. progressively translate a program to the code that runs on
  218. hardware. We take this approach to the extreme by partitioning our
  219. compiler into a large number of \emph{nanopasses}, each of which
  220. performs a single task. This enables the testing of each pass in
  221. isolation and focuses our attention, making the compiler far easier to
  222. understand.
  223. The most familiar approach to describing compilers is to dedicate each
  224. chapter to one pass. The problem with that approach is that it
  225. obfuscates how language features motivate design choices in a
  226. compiler. We instead take an \emph{incremental} approach in which we
  227. build a complete compiler in each chapter, starting with a small input
  228. language that includes only arithmetic and variables. We add new
  229. language features in subsequent chapters, extending the compiler as
  230. necessary.
  231. Our choice of language features is designed to elicit fundamental
  232. concepts and algorithms used in compilers.
  233. \begin{itemize}
  234. \item We begin with integer arithmetic and local variables in
  235. chapters~\ref{ch:trees-recur} and \ref{ch:Lvar}, where we introduce
  236. the fundamental tools of compiler construction: \emph{abstract
  237. syntax trees} and \emph{recursive functions}.
  238. {\if\edition\pythonEd\pythonColor
  239. \item In chapter~\ref{ch:parsing} we learn how to use the Lark
  240. parser framework to create a parser for the language of integer
  241. arithmetic and local variables. We learn about the parsing
  242. algorithms inside Lark, including Earley and LALR(1).
  243. %
  244. \fi}
  245. \item In chapter~\ref{ch:register-allocation-Lvar} we apply
  246. \emph{graph coloring} to assign variables to machine registers.
  247. \item Chapter~\ref{ch:Lif} adds conditional expressions, which
  248. motivates an elegant recursive algorithm for translating them into
  249. conditional \code{goto} statements.
  250. \item Chapter~\ref{ch:Lwhile} adds loops\racket{ and mutable
  251. variables}. This elicits the need for \emph{dataflow
  252. analysis} in the register allocator.
  253. \item Chapter~\ref{ch:Lvec} adds heap-allocated tuples, motivating
  254. \emph{garbage collection}.
  255. \item Chapter~\ref{ch:Lfun} adds functions as first-class values
  256. without lexical scoping, similar to functions in the C programming
  257. language~\citep{Kernighan:1988nx}. The reader learns about the
  258. procedure call stack and \emph{calling conventions} and how they interact
  259. with register allocation and garbage collection. The chapter also
  260. describes how to generate efficient tail calls.
  261. \item Chapter~\ref{ch:Llambda} adds anonymous functions with lexical
  262. scoping, that is, \emph{lambda} expressions. The reader learns about
  263. \emph{closure conversion}, in which lambdas are translated into a
  264. combination of functions and tuples.
  265. % Chapter about classes and objects?
  266. \item Chapter~\ref{ch:Ldyn} adds \emph{dynamic typing}. Prior to this
  267. point the input languages are statically typed. The reader extends
  268. the statically typed language with an \code{Any} type that serves
  269. as a target for compiling the dynamically typed language.
  270. %% {\if\edition\pythonEd\pythonColor
  271. %% \item Chapter~\ref{ch:Lobject} adds support for \emph{objects} and
  272. %% \emph{classes}.
  273. %% \fi}
  274. \item Chapter~\ref{ch:Lgrad} uses the \code{Any} type introduced in
  275. chapter~\ref{ch:Ldyn} to implement a \emph{gradually typed language}
  276. in which different regions of a program may be static or dynamically
  277. typed. The reader implements runtime support for \emph{proxies} that
  278. allow values to safely move between regions.
  279. \item Chapter~\ref{ch:Lpoly} adds \emph{generics} with autoboxing,
  280. leveraging the \code{Any} type and type casts developed in chapters
  281. \ref{ch:Ldyn} and \ref{ch:Lgrad}.
  282. \end{itemize}
  283. There are many language features that we do not include. Our choices
  284. balance the incidental complexity of a feature versus the fundamental
  285. concepts that it exposes. For example, we include tuples and not
  286. records because although they both elicit the study of heap allocation and
  287. garbage collection, records come with more incidental complexity.
  288. Since 2009, drafts of this book have served as the textbook for
  289. sixteen-week compiler courses for upper-level undergraduates and
  290. first-year graduate students at the University of Colorado and Indiana
  291. University.
  292. %
  293. Students come into the course having learned the basics of
  294. programming, data structures and algorithms, and discrete
  295. mathematics.
  296. %
  297. At the beginning of the course, students form groups of two to four
  298. people. The groups complete approximately one chapter every two
  299. weeks, starting with chapter~\ref{ch:Lvar} and including chapters
  300. according to the students interests while respecting the dependencies
  301. between chapters shown in
  302. figure~\ref{fig:chapter-dependences}. Chapter~\ref{ch:Lfun}
  303. (functions) depends on chapter~\ref{ch:Lvec} (tuples) only in the
  304. implementation of efficient tail calls.
  305. %
  306. The last two weeks of the course involve a final project in which
  307. students design and implement a compiler extension of their choosing.
  308. The last few chapters can be used in support of these projects. Many
  309. chapters include a challenge problem that we assign to the graduate
  310. students.
  311. For compiler courses at universities on the quarter system
  312. (about ten weeks in length), we recommend completing the course
  313. through chapter~\ref{ch:Lvec} or chapter~\ref{ch:Lfun} and providing
  314. some scaffolding code to the students for each compiler pass.
  315. %
  316. The course can be adapted to emphasize functional languages by
  317. skipping chapter~\ref{ch:Lwhile} (loops) and including
  318. chapter~\ref{ch:Llambda} (lambda). The course can be adapted to
  319. dynamically typed languages by including chapter~\ref{ch:Ldyn}.
  320. %
  321. %% \python{A course that emphasizes object-oriented languages would
  322. %% include Chapter~\ref{ch:Lobject}.}
  323. This book has been used in compiler courses at California Polytechnic
  324. State University, Portland State University, Rose–Hulman Institute of
  325. Technology, University of Freiburg, University of Massachusetts
  326. Lowell, and the University of Vermont.
  327. \begin{figure}[tp]
  328. \begin{tcolorbox}[colback=white]
  329. {\if\edition\racketEd
  330. \begin{tikzpicture}[baseline=(current bounding box.center)]
  331. \node (C1) at (0,1.5) {\small Ch.~\ref{ch:trees-recur} Preliminaries};
  332. \node (C2) at (4,1.5) {\small Ch.~\ref{ch:Lvar} Variables};
  333. \node (C3) at (8,1.5) {\small Ch.~\ref{ch:register-allocation-Lvar} Registers};
  334. \node (C4) at (0,0) {\small Ch.~\ref{ch:Lif} Conditionals};
  335. \node (C5) at (4,0) {\small Ch.~\ref{ch:Lvec} Tuples};
  336. \node (C6) at (8,0) {\small Ch.~\ref{ch:Lfun} Functions};
  337. \node (C9) at (0,-1.5) {\small Ch.~\ref{ch:Lwhile} Loops};
  338. \node (C8) at (4,-1.5) {\small Ch.~\ref{ch:Ldyn} Dynamic};
  339. \node (C7) at (8,-1.5) {\small Ch.~\ref{ch:Llambda} Lambda};
  340. \node (C10) at (4,-3) {\small Ch.~\ref{ch:Lgrad} Gradual Typing};
  341. \node (C11) at (8,-3) {\small Ch.~\ref{ch:Lpoly} Generics};
  342. \path[->] (C1) edge [above] node {} (C2);
  343. \path[->] (C2) edge [above] node {} (C3);
  344. \path[->] (C3) edge [above] node {} (C4);
  345. \path[->] (C4) edge [above] node {} (C5);
  346. \path[->,style=dotted] (C5) edge [above] node {} (C6);
  347. \path[->] (C5) edge [above] node {} (C7);
  348. \path[->] (C6) edge [above] node {} (C7);
  349. \path[->] (C4) edge [above] node {} (C8);
  350. \path[->] (C4) edge [above] node {} (C9);
  351. \path[->] (C7) edge [above] node {} (C10);
  352. \path[->] (C8) edge [above] node {} (C10);
  353. \path[->] (C10) edge [above] node {} (C11);
  354. \end{tikzpicture}
  355. \fi}
  356. {\if\edition\pythonEd\pythonColor
  357. \begin{tikzpicture}[baseline=(current bounding box.center)]
  358. \node (Prelim) at (0,1.5) {\small Ch.~\ref{ch:trees-recur} Preliminaries};
  359. \node (Var) at (4,1.5) {\small Ch.~\ref{ch:Lvar} Variables};
  360. \node (Parse) at (8,1.5) {\small Ch.~\ref{ch:parsing} Parsing};
  361. \node (Reg) at (0,0) {\small Ch.~\ref{ch:register-allocation-Lvar} Registers};
  362. \node (Cond) at (4,0) {\small Ch.~\ref{ch:Lif} Conditionals};
  363. \node (Loop) at (8,0) {\small Ch.~\ref{ch:Lwhile} Loops};
  364. \node (Fun) at (0,-1.5) {\small Ch.~\ref{ch:Lfun} Functions};
  365. \node (Tuple) at (4,-1.5) {\small Ch.~\ref{ch:Lvec} Tuples};
  366. \node (Dyn) at (8,-1.5) {\small Ch.~\ref{ch:Ldyn} Dynamic};
  367. % \node (CO) at (0,-3) {\small Ch.~\ref{ch:Lobject} Objects};
  368. \node (Lam) at (0,-3) {\small Ch.~\ref{ch:Llambda} Lambda};
  369. \node (Gradual) at (4,-3) {\small Ch.~\ref{ch:Lgrad} Gradual Typing};
  370. \node (Generic) at (8,-3) {\small Ch.~\ref{ch:Lpoly} Generics};
  371. \path[->] (Prelim) edge [above] node {} (Var);
  372. \path[->] (Var) edge [above] node {} (Reg);
  373. \path[->] (Var) edge [above] node {} (Parse);
  374. \path[->] (Reg) edge [above] node {} (Cond);
  375. \path[->] (Cond) edge [above] node {} (Tuple);
  376. \path[->,style=dotted] (Tuple) edge [above] node {} (Fun);
  377. \path[->] (Cond) edge [above] node {} (Fun);
  378. \path[->] (Tuple) edge [above] node {} (Lam);
  379. \path[->] (Fun) edge [above] node {} (Lam);
  380. \path[->] (Cond) edge [above] node {} (Dyn);
  381. \path[->] (Cond) edge [above] node {} (Loop);
  382. \path[->] (Lam) edge [above] node {} (Gradual);
  383. \path[->] (Dyn) edge [above] node {} (Gradual);
  384. % \path[->] (Dyn) edge [above] node {} (CO);
  385. \path[->] (Gradual) edge [above] node {} (Generic);
  386. \end{tikzpicture}
  387. \fi}
  388. \end{tcolorbox}
  389. \caption{Diagram of chapter dependencies.}
  390. \label{fig:chapter-dependences}
  391. \end{figure}
  392. \racket{We use the \href{https://racket-lang.org/}{Racket} language both for
  393. the implementation of the compiler and for the input language, so the
  394. reader should be proficient with Racket or Scheme. There are many
  395. excellent resources for learning Scheme and
  396. Racket~\citep{Dybvig:1987aa,Abelson:1996uq,Friedman:1996aa,Felleisen:2001aa,Felleisen:2013aa,Flatt:2014aa}.}
  397. %
  398. \python{This edition of the book uses \href{https://www.python.org/}{Python}
  399. both for the implementation of the compiler and for the input language, so the
  400. reader should be proficient with Python. There are many
  401. excellent resources for learning Python~\citep{Lutz:2013vp,Barry:2016vj,Sweigart:2019vn,Matthes:2019vs}.}%
  402. %
  403. The support code for this book is in the GitHub repository at
  404. the following location:
  405. \begin{center}\small\texttt
  406. https://github.com/IUCompilerCourse/
  407. \end{center}
  408. The compiler targets x86 assembly language~\citep{Intel:2015aa}, so it
  409. is helpful but not necessary for the reader to have taken a computer
  410. systems course~\citep{Bryant:2010aa}. We introduce the parts of x86-64
  411. assembly language that are needed in the compiler.
  412. %
  413. We follow the System V calling
  414. conventions~\citep{Bryant:2005aa,Matz:2013aa}, so the assembly code
  415. that we generate works with the runtime system (written in C) when it
  416. is compiled using the GNU C compiler (\code{gcc}) on Linux and MacOS
  417. operating systems on Intel hardware.
  418. %
  419. On the Windows operating system, \code{gcc} uses the Microsoft x64
  420. calling convention~\citep{Microsoft:2018aa,Microsoft:2020aa}. So the
  421. assembly code that we generate does \emph{not} work with the runtime
  422. system on Windows. One workaround is to use a virtual machine with
  423. Linux as the guest operating system.
  424. \section*{Acknowledgments}
  425. The tradition of compiler construction at Indiana University goes back
  426. to research and courses on programming languages by Daniel Friedman in
  427. the 1970s and 1980s. One of his students, Kent Dybvig, implemented
  428. Chez Scheme~\citep{Dybvig:2006aa}, an efficient, production-quality
  429. compiler for Scheme. Throughout the 1990s and 2000s, Dybvig taught
  430. the compiler course and continued the development of Chez Scheme.
  431. %
  432. The compiler course evolved to incorporate novel pedagogical ideas
  433. while also including elements of real-world compilers. One of
  434. Friedman's ideas was to split the compiler into many small
  435. passes. Another idea, called ``the game,'' was to test the code
  436. generated by each pass using interpreters.
  437. Dybvig, with help from his students Dipanwita Sarkar and Andrew Keep,
  438. developed infrastructure to support this approach and evolved the
  439. course to use even smaller
  440. nanopasses~\citep{Sarkar:2004fk,Keep:2012aa}. Many of the compiler
  441. design decisions in this book are inspired by the assignment
  442. descriptions of \citet{Dybvig:2010aa}. In the mid 2000s, a student of
  443. Dybvig named Abdulaziz Ghuloum observed that the front-to-back
  444. organization of the course made it difficult for students to
  445. understand the rationale for the compiler design. Ghuloum proposed the
  446. incremental approach~\citep{Ghuloum:2006bh} on which this book is
  447. based.
  448. I thank the many students who served as teaching assistants for the
  449. compiler course at IU including Carl Factora, Ryan Scott, Cameron
  450. Swords, and Chris Wailes. I thank Andre Kuhlenschmidt for work on the
  451. garbage collector and x86 interpreter, Michael Vollmer for work on
  452. efficient tail calls, and Michael Vitousek for help with the first
  453. offering of the incremental compiler course at IU.
  454. I thank professors Bor-Yuh Chang, John Clements, Jay McCarthy, Joseph
  455. Near, Ryan Newton, Nate Nystrom, Peter Thiemann, Andrew Tolmach, and
  456. Michael Wollowski for teaching courses based on drafts of this book
  457. and for their feedback. I thank the National Science Foundation for
  458. the grants that helped to support this work: Grant Numbers 1518844,
  459. 1763922, and 1814460.
  460. I thank Ronald Garcia for helping me survive Dybvig's compiler
  461. course in the early 2000s and especially for finding the bug that
  462. sent our garbage collector on a wild goose chase!
  463. \mbox{}\\
  464. \noindent Jeremy G. Siek \\
  465. Bloomington, Indiana
  466. \mainmatter
  467. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  468. \chapter{Preliminaries}
  469. \label{ch:trees-recur}
  470. \setcounter{footnote}{0}
  471. In this chapter we introduce the basic tools needed to implement a
  472. compiler. Programs are typically input by a programmer as text, that
  473. is, a sequence of characters. The program-as-text representation is
  474. called \emph{concrete syntax}. We use concrete syntax to concisely
  475. write down and talk about programs. Inside the compiler, we use
  476. \emph{abstract syntax trees} (ASTs) to represent programs in a way
  477. that efficiently supports the operations that the compiler needs to
  478. perform.\index{subject}{concrete syntax}\index{subject}{abstract
  479. syntax}\index{subject}{abstract syntax
  480. tree}\index{subject}{AST}\index{subject}{program}
  481. The process of translating concrete syntax to abstract syntax is
  482. called \emph{parsing}\index{subject}{parsing}\python{\ and is studied in
  483. chapter~\ref{ch:parsing}}.
  484. \racket{This book does not cover the theory and implementation of parsing.
  485. We refer the readers interested in parsing to the thorough treatment
  486. of parsing by \citet{Aho:2006wb}. }%
  487. %
  488. \racket{A parser is provided in the support code for translating from
  489. concrete to abstract syntax.}%
  490. %
  491. \python{For now we use the \code{parse} function in Python's
  492. \code{ast} module to translate from concrete to abstract syntax.}
  493. ASTs can be represented inside the compiler in many different ways,
  494. depending on the programming language used to write the compiler.
  495. %
  496. \racket{We use Racket's
  497. \href{https://docs.racket-lang.org/guide/define-struct.html}{\code{struct}}
  498. feature to represent ASTs (section~\ref{sec:ast}).}
  499. %
  500. \python{We use Python classes and objects to represent ASTs, especially the
  501. classes defined in the standard \code{ast} module for the Python
  502. source language.}
  503. %
  504. We use grammars to define the abstract syntax of programming languages
  505. (section~\ref{sec:grammar}) and pattern matching to inspect individual
  506. nodes in an AST (section~\ref{sec:pattern-matching}). We use
  507. recursive functions to construct and deconstruct ASTs
  508. (section~\ref{sec:recursion}). This chapter provides a brief
  509. introduction to these components.
  510. \racket{\index{subject}{struct}}
  511. \python{\index{subject}{class}\index{subject}{object}}
  512. \section{Abstract Syntax Trees}
  513. \label{sec:ast}
  514. Compilers use abstract syntax trees to represent programs because they
  515. often need to ask questions such as, for a given part of a program,
  516. what kind of language feature is it? What are its subparts? Consider
  517. the program on the left and the diagram of its AST on the
  518. right~\eqref{eq:arith-prog}. This program is an addition operation
  519. that has two subparts, a \racket{read}\python{input} operation and a
  520. negation. The negation has another subpart, the integer constant
  521. \code{8}. By using a tree to represent the program, we can easily
  522. follow the links to go from one part of a program to its subparts.
  523. \begin{center}
  524. \begin{minipage}{0.4\textwidth}
  525. {\if\edition\racketEd
  526. \begin{lstlisting}
  527. (+ (read) (- 8))
  528. \end{lstlisting}
  529. \fi}
  530. {\if\edition\pythonEd\pythonColor
  531. \begin{lstlisting}
  532. input_int() + -8
  533. \end{lstlisting}
  534. \fi}
  535. \end{minipage}
  536. \begin{minipage}{0.4\textwidth}
  537. \begin{equation}
  538. \begin{tikzpicture}
  539. \node[draw] (plus) at (0 , 0) {\key{+}};
  540. \node[draw] (read) at (-1, -1) {\racket{\footnotesize\key{read}}\python{\key{input\_int()}}};
  541. \node[draw] (minus) at (1 , -1) {$\key{-}$};
  542. \node[draw] (8) at (1 , -2) {\key{8}};
  543. \draw[->] (plus) to (read);
  544. \draw[->] (plus) to (minus);
  545. \draw[->] (minus) to (8);
  546. \end{tikzpicture}
  547. \label{eq:arith-prog}
  548. \end{equation}
  549. \end{minipage}
  550. \end{center}
  551. We use the standard terminology for trees to describe ASTs: each
  552. rectangle above is called a \emph{node}. The arrows connect a node to its
  553. \emph{children}, which are also nodes. The top-most node is the
  554. \emph{root}. Every node except for the root has a \emph{parent} (the
  555. node of which it is the child). If a node has no children, it is a
  556. \emph{leaf} node; otherwise it is an \emph{internal} node.
  557. \index{subject}{node}
  558. \index{subject}{children}
  559. \index{subject}{root}
  560. \index{subject}{parent}
  561. \index{subject}{leaf}
  562. \index{subject}{internal node}
  563. %% Recall that an \emph{symbolic expression} (S-expression) is either
  564. %% \begin{enumerate}
  565. %% \item an atom, or
  566. %% \item a pair of two S-expressions, written $(e_1 \key{.} e_2)$,
  567. %% where $e_1$ and $e_2$ are each an S-expression.
  568. %% \end{enumerate}
  569. %% An \emph{atom} can be a symbol, such as \code{`hello}, a number, the
  570. %% null value \code{'()}, etc. We can create an S-expression in Racket
  571. %% simply by writing a backquote (called a quasi-quote in Racket)
  572. %% followed by the textual representation of the S-expression. It is
  573. %% quite common to use S-expressions to represent a list, such as $a, b
  574. %% ,c$ in the following way:
  575. %% \begin{lstlisting}
  576. %% `(a . (b . (c . ())))
  577. %% \end{lstlisting}
  578. %% Each element of the list is in the first slot of a pair, and the
  579. %% second slot is either the rest of the list or the null value, to mark
  580. %% the end of the list. Such lists are so common that Racket provides
  581. %% special notation for them that removes the need for the periods
  582. %% and so many parenthesis:
  583. %% \begin{lstlisting}
  584. %% `(a b c)
  585. %% \end{lstlisting}
  586. %% The following expression creates an S-expression that represents AST
  587. %% \eqref{eq:arith-prog}.
  588. %% \begin{lstlisting}
  589. %% `(+ (read) (- 8))
  590. %% \end{lstlisting}
  591. %% When using S-expressions to represent ASTs, the convention is to
  592. %% represent each AST node as a list and to put the operation symbol at
  593. %% the front of the list. The rest of the list contains the children. So
  594. %% in the above case, the root AST node has operation \code{`+} and its
  595. %% two children are \code{`(read)} and \code{`(- 8)}, just as in the
  596. %% diagram \eqref{eq:arith-prog}.
  597. %% To build larger S-expressions one often needs to splice together
  598. %% several smaller S-expressions. Racket provides the comma operator to
  599. %% splice an S-expression into a larger one. For example, instead of
  600. %% creating the S-expression for AST \eqref{eq:arith-prog} all at once,
  601. %% we could have first created an S-expression for AST
  602. %% \eqref{eq:arith-neg8} and then spliced that into the addition
  603. %% S-expression.
  604. %% \begin{lstlisting}
  605. %% (define ast1.4 `(- 8))
  606. %% (define ast1_1 `(+ (read) ,ast1.4))
  607. %% \end{lstlisting}
  608. %% In general, the Racket expression that follows the comma (splice)
  609. %% can be any expression that produces an S-expression.
  610. {\if\edition\racketEd
  611. We define a Racket \code{struct} for each kind of node. For this
  612. chapter we require just two kinds of nodes: one for integer constants
  613. (aka literals\index{subject}{literals})
  614. and one for primitive operations. The following is the \code{struct}
  615. definition for integer constants.\footnote{All the AST structures are
  616. defined in the file \code{utilities.rkt} in the support code.}
  617. \begin{lstlisting}
  618. (struct Int (value))
  619. \end{lstlisting}
  620. An integer node contains just one thing: the integer value.
  621. We establish the convention that \code{struct} names, such
  622. as \code{Int}, are capitalized.
  623. To create an AST node for the integer $8$, we write \INT{8}.
  624. \begin{lstlisting}
  625. (define eight (Int 8))
  626. \end{lstlisting}
  627. We say that the value created by \INT{8} is an
  628. \emph{instance} of the
  629. \code{Int} structure.
  630. The following is the \code{struct} definition for primitive operations.
  631. \begin{lstlisting}
  632. (struct Prim (op args))
  633. \end{lstlisting}
  634. A primitive operation node includes an operator symbol \code{op} and a
  635. list of child arguments called \code{args}. For example, to create an
  636. AST that negates the number $8$, we write the following.
  637. \begin{lstlisting}
  638. (define neg-eight (Prim '- (list eight)))
  639. \end{lstlisting}
  640. Primitive operations may have zero or more children. The \code{read}
  641. operator has zero:
  642. \begin{lstlisting}
  643. (define rd (Prim 'read '()))
  644. \end{lstlisting}
  645. The addition operator has two children:
  646. \begin{lstlisting}
  647. (define ast1_1 (Prim '+ (list rd neg-eight)))
  648. \end{lstlisting}
  649. We have made a design choice regarding the \code{Prim} structure.
  650. Instead of using one structure for many different operations
  651. (\code{read}, \code{+}, and \code{-}), we could have instead defined a
  652. structure for each operation, as follows:
  653. \begin{lstlisting}
  654. (struct Read ())
  655. (struct Add (left right))
  656. (struct Neg (value))
  657. \end{lstlisting}
  658. The reason that we choose to use just one structure is that many parts
  659. of the compiler can use the same code for the different primitive
  660. operators, so we might as well just write that code once by using a
  661. single structure.
  662. %
  663. \fi}
  664. {\if\edition\pythonEd\pythonColor
  665. We use a Python \code{class} for each kind of node.
  666. The following is the class definition for
  667. constants (aka literals\index{subject}{literals})
  668. from the Python \code{ast} module.
  669. \begin{lstlisting}
  670. class Constant:
  671. def __init__(self, value):
  672. self.value = value
  673. \end{lstlisting}
  674. An integer constant node includes just one thing: the integer value.
  675. To create an AST node for the integer $8$, we write \INT{8}.
  676. \begin{lstlisting}
  677. eight = Constant(8)
  678. \end{lstlisting}
  679. We say that the value created by \INT{8} is an
  680. \emph{instance} of the \code{Constant} class.
  681. The following is the class definition for unary operators.
  682. \begin{lstlisting}
  683. class UnaryOp:
  684. def __init__(self, op, operand):
  685. self.op = op
  686. self.operand = operand
  687. \end{lstlisting}
  688. The specific operation is specified by the \code{op} parameter. For
  689. example, the class \code{USub} is for unary subtraction.
  690. (More unary operators are introduced in later chapters.) To create an AST that
  691. negates the number $8$, we write the following.
  692. \begin{lstlisting}
  693. neg_eight = UnaryOp(USub(), eight)
  694. \end{lstlisting}
  695. The call to the \code{input\_int} function is represented by the
  696. \code{Call} and \code{Name} classes.
  697. \begin{lstlisting}
  698. class Call:
  699. def __init__(self, func, args):
  700. self.func = func
  701. self.args = args
  702. class Name:
  703. def __init__(self, id):
  704. self.id = id
  705. \end{lstlisting}
  706. To create an AST node that calls \code{input\_int}, we write
  707. \begin{lstlisting}
  708. read = Call(Name('input_int'), [])
  709. \end{lstlisting}
  710. Finally, to represent the addition in \eqref{eq:arith-prog}, we use
  711. the \code{BinOp} class for binary operators.
  712. \begin{lstlisting}
  713. class BinOp:
  714. def __init__(self, left, op, right):
  715. self.op = op
  716. self.left = left
  717. self.right = right
  718. \end{lstlisting}
  719. Similar to \code{UnaryOp}, the specific operation is specified by the
  720. \code{op} parameter, which for now is just an instance of the
  721. \code{Add} class. So to create the AST
  722. node that adds negative eight to some user input, we write the following.
  723. \begin{lstlisting}
  724. ast1_1 = BinOp(read, Add(), neg_eight)
  725. \end{lstlisting}
  726. \fi}
  727. To compile a program such as \eqref{eq:arith-prog}, we need to know
  728. that the operation associated with the root node is addition and we
  729. need to be able to access its two
  730. children. \racket{Racket}\python{Python} provides pattern matching to
  731. support these kinds of queries, as we see in
  732. section~\ref{sec:pattern-matching}.
  733. We often write down the concrete syntax of a program even when we
  734. actually have in mind the AST, because the concrete syntax is more
  735. concise. We recommend that you always think of programs as abstract
  736. syntax trees.
  737. \section{Grammars}
  738. \label{sec:grammar}
  739. \index{subject}{integer}
  740. %\index{subject}{constant}
  741. A programming language can be thought of as a \emph{set} of programs.
  742. The set is infinite (that is, one can always create larger programs),
  743. so one cannot simply describe a language by listing all the
  744. programs in the language. Instead we write down a set of rules, a
  745. \emph{context-free grammar}, for building programs. Grammars are often used to
  746. define the concrete syntax of a language, but they can also be used to
  747. describe the abstract syntax. We write our rules in a variant of
  748. Backus-Naur form (BNF)~\citep{Backus:1960aa,Knuth:1964aa}.
  749. \index{subject}{Backus-Naur form}\index{subject}{BNF} As an example,
  750. we describe a small language, named \LangInt{}, that consists of
  751. integers and arithmetic operations.\index{subject}{grammar}
  752. \index{subject}{context-free grammar}
  753. The first grammar rule for the abstract syntax of \LangInt{} says that an
  754. instance of the \racket{\code{Int} structure}\python{\code{Constant} class} is an expression:
  755. \begin{equation}
  756. \Exp ::= \INT{\Int} \label{eq:arith-int}
  757. \end{equation}
  758. %
  759. Each rule has a left-hand side and a right-hand side.
  760. If you have an AST node that matches the
  761. right-hand side, then you can categorize it according to the
  762. left-hand side.
  763. %
  764. Symbols in typewriter font, such as \racket{\code{Int}}\python{\code{Constant}},
  765. are \emph{terminal} symbols and must literally appear in the program for the
  766. rule to be applicable.\index{subject}{terminal}
  767. %
  768. Our grammars do not mention \emph{white space}, that is, delimiter
  769. characters like spaces, tabs, and new lines. White space may be
  770. inserted between symbols for disambiguation and to improve
  771. readability. \index{subject}{white space}
  772. %
  773. A name such as $\Exp$ that is defined by the grammar rules is a
  774. \emph{nonterminal}. \index{subject}{nonterminal}
  775. %
  776. The name $\Int$ is also a nonterminal, but instead of defining it with
  777. a grammar rule, we define it with the following explanation. An
  778. $\Int$ is a sequence of decimals ($0$ to $9$), possibly starting with
  779. $-$ (for negative integers), such that the sequence of decimals
  780. %
  781. \racket{represents an integer in the range $-2^{62}$ to $2^{62}-1$. This
  782. enables the representation of integers using 63 bits, which simplifies
  783. several aspects of compilation.
  784. %
  785. Thus, these integers correspond to the Racket \texttt{fixnum}
  786. datatype on a 64-bit machine.}
  787. %
  788. \python{represents an integer in the range $-2^{63}$ to $2^{63}-1$. This
  789. enables the representation of integers using 64 bits, which simplifies
  790. several aspects of compilation. In contrast, integers in Python have
  791. unlimited precision, but the techniques needed to handle unlimited
  792. precision fall outside the scope of this book.}
  793. The second grammar rule is the \READOP{} operation, which receives an
  794. input integer from the user of the program.
  795. \begin{equation}
  796. \Exp ::= \READ{} \label{eq:arith-read}
  797. \end{equation}
  798. The third rule categorizes the negation of an $\Exp$ node as an
  799. $\Exp$.
  800. \begin{equation}
  801. \Exp ::= \NEG{\Exp} \label{eq:arith-neg}
  802. \end{equation}
  803. We can apply these rules to categorize the ASTs that are in the
  804. \LangInt{} language. For example, by rule \eqref{eq:arith-int},
  805. \INT{8} is an $\Exp$, and then by rule \eqref{eq:arith-neg} the
  806. following AST is an $\Exp$.
  807. \begin{center}
  808. \begin{minipage}{0.5\textwidth}
  809. \NEG{\INT{\code{8}}}
  810. \end{minipage}
  811. \begin{minipage}{0.25\textwidth}
  812. \begin{equation}
  813. \begin{tikzpicture}
  814. \node[draw, circle] (minus) at (0, 0) {$\text{--}$};
  815. \node[draw, circle] (8) at (0, -1.2) {$8$};
  816. \draw[->] (minus) to (8);
  817. \end{tikzpicture}
  818. \label{eq:arith-neg8}
  819. \end{equation}
  820. \end{minipage}
  821. \end{center}
  822. The next two grammar rules are for addition and subtraction expressions:
  823. \begin{align}
  824. \Exp &::= \ADD{\Exp}{\Exp} \label{eq:arith-add}\\
  825. \Exp &::= \SUB{\Exp}{\Exp} \label{eq:arith-sub}
  826. \end{align}
  827. We can now justify that the AST \eqref{eq:arith-prog} is an $\Exp$ in
  828. \LangInt{}. We know that \READ{} is an $\Exp$ by rule
  829. \eqref{eq:arith-read}, and we have already categorized
  830. \NEG{\INT{\code{8}}} as an $\Exp$, so we apply rule \eqref{eq:arith-add}
  831. to show that
  832. \[
  833. \ADD{\READ{}}{\NEG{\INT{\code{8}}}}
  834. \]
  835. is an $\Exp$ in the \LangInt{} language.
  836. If you have an AST for which these rules do not apply, then the
  837. AST is not in \LangInt{}. For example, the program \racket{\code{(*
  838. (read) 8)}} \python{\code{input\_int() * 8}} is not in \LangInt{}
  839. because there is no rule for the \key{*} operator. Whenever we
  840. define a language with a grammar, the language includes only those
  841. programs that are justified by the grammar rules.
  842. {\if\edition\pythonEd\pythonColor
  843. The language \LangInt{} includes a second nonterminal $\Stmt$ for statements.
  844. There is a statement for printing the value of an expression
  845. \[
  846. \Stmt{} ::= \PRINT{\Exp}
  847. \]
  848. and a statement that evaluates an expression but ignores the result.
  849. \[
  850. \Stmt{} ::= \EXPR{\Exp}
  851. \]
  852. \fi}
  853. {\if\edition\racketEd
  854. The last grammar rule for \LangInt{} states that there is a
  855. \code{Program} node to mark the top of the whole program:
  856. \[
  857. \LangInt{} ::= \PROGRAM{\code{\textquotesingle()}}{\Exp}
  858. \]
  859. The \code{Program} structure is defined as follows:
  860. \begin{lstlisting}
  861. (struct Program (info body))
  862. \end{lstlisting}
  863. where \code{body} is an expression. In further chapters, the \code{info}
  864. part is used to store auxiliary information, but for now it is
  865. just the empty list.
  866. \fi}
  867. {\if\edition\pythonEd\pythonColor
  868. The last grammar rule for \LangInt{} states that there is a
  869. \code{Module} node to mark the top of the whole program:
  870. \[
  871. \LangInt{} ::= \PROGRAM{}{\Stmt^{*}}
  872. \]
  873. The asterisk $*$ indicates a list of the preceding grammar item, in
  874. this case a list of statements.
  875. %
  876. The \code{Module} class is defined as follows:
  877. \begin{lstlisting}
  878. class Module:
  879. def __init__(self, body):
  880. self.body = body
  881. \end{lstlisting}
  882. where \code{body} is a list of statements.
  883. \fi}
  884. It is common to have many grammar rules with the same left-hand side
  885. but different right-hand sides, such as the rules for $\Exp$ in the
  886. grammar of \LangInt{}. As shorthand, a vertical bar can be used to
  887. combine several right-hand sides into a single rule.
  888. The concrete syntax for \LangInt{} is shown in
  889. figure~\ref{fig:r0-concrete-syntax} and the abstract syntax for
  890. \LangInt{} is shown in figure~\ref{fig:r0-syntax}. %
  891. %
  892. \racket{The \code{read-program} function provided in
  893. \code{utilities.rkt} of the support code reads a program from a file
  894. (the sequence of characters in the concrete syntax of Racket) and
  895. parses it into an abstract syntax tree. Refer to the description of
  896. \code{read-program} in appendix~\ref{appendix:utilities} for more
  897. details.}
  898. %
  899. \python{We recommend using the \code{parse} function in Python's
  900. \code{ast} module to convert the concrete syntax into an abstract
  901. syntax tree.}
  902. \newcommand{\LintGrammarRacket}{
  903. \begin{array}{rcl}
  904. \Type &::=& \key{Integer} \\
  905. \Exp{} &::=& \Int{} \MID \CREAD \MID \CNEG{\Exp} \MID \CADD{\Exp}{\Exp}
  906. \MID \CSUB{\Exp}{\Exp}
  907. \end{array}
  908. }
  909. \newcommand{\LintASTRacket}{
  910. \begin{array}{rcl}
  911. \Type &::=& \key{Integer} \\
  912. \Exp{} &::=& \INT{\Int} \MID \READ{} \\
  913. &\MID& \NEG{\Exp} \MID \ADD{\Exp}{\Exp} \MID \SUB{\Exp}{\Exp}
  914. \end{array}
  915. }
  916. \newcommand{\LintGrammarPython}{
  917. \begin{array}{rcl}
  918. \Exp &::=& \Int \MID \key{input\_int}\LP\RP \MID \key{-}\;\Exp \MID \Exp \; \key{+} \; \Exp \MID \Exp \; \key{-} \; \Exp \MID \LP\Exp\RP \\
  919. \Stmt &::=& \key{print}\LP \Exp \RP \MID \Exp
  920. \end{array}
  921. }
  922. \newcommand{\LintASTPython}{
  923. \begin{array}{rcl}
  924. \Exp{} &::=& \INT{\Int} \MID \READ{} \\
  925. &\MID& \UNIOP{\key{USub()}}{\Exp} \MID \BINOP{\Exp}{\key{Add()}}{\Exp}\\
  926. &\MID& \BINOP{\Exp}{\key{Sub()}}{\Exp}\\
  927. \Stmt{} &::=& \PRINT{\Exp} \MID \EXPR{\Exp}
  928. \end{array}
  929. }
  930. \begin{figure}[tp]
  931. \begin{tcolorbox}[colback=white]
  932. {\if\edition\racketEd
  933. \[
  934. \begin{array}{l}
  935. \LintGrammarRacket \\
  936. \begin{array}{rcl}
  937. \LangInt{} &::=& \Exp
  938. \end{array}
  939. \end{array}
  940. \]
  941. \fi}
  942. {\if\edition\pythonEd\pythonColor
  943. \[
  944. \begin{array}{l}
  945. \LintGrammarPython \\
  946. \begin{array}{rcl}
  947. \LangInt{} &::=& \Stmt^{*}
  948. \end{array}
  949. \end{array}
  950. \]
  951. \fi}
  952. \end{tcolorbox}
  953. \caption{The concrete syntax of \LangInt{}.}
  954. \label{fig:r0-concrete-syntax}
  955. \end{figure}
  956. \begin{figure}[tp]
  957. \begin{tcolorbox}[colback=white]
  958. {\if\edition\racketEd
  959. \[
  960. \begin{array}{l}
  961. \LintASTRacket{} \\
  962. \begin{array}{rcl}
  963. \LangInt{} &::=& \PROGRAM{\code{'()}}{\Exp}
  964. \end{array}
  965. \end{array}
  966. \]
  967. \fi}
  968. {\if\edition\pythonEd\pythonColor
  969. \[
  970. \begin{array}{l}
  971. \LintASTPython\\
  972. \begin{array}{rcl}
  973. \LangInt{} &::=& \PROGRAM{}{\Stmt^{*}}
  974. \end{array}
  975. \end{array}
  976. \]
  977. \fi}
  978. \end{tcolorbox}
  979. \python{
  980. \index{subject}{Constant@\texttt{Constant}}
  981. \index{subject}{UnaryOp@\texttt{UnaryOp}}
  982. \index{subject}{USub@\texttt{USub}}
  983. \index{subject}{inputint@\texttt{input\_int}}
  984. \index{subject}{Call@\texttt{Call}}
  985. \index{subject}{Name@\texttt{Name}}
  986. \index{subject}{BinOp@\texttt{BinOp}}
  987. \index{subject}{Add@\texttt{Add}}
  988. \index{subject}{Sub@\texttt{Sub}}
  989. \index{subject}{print@\texttt{print}}
  990. \index{subject}{Expr@\texttt{Expr}}
  991. \index{subject}{Module@\texttt{Module}}
  992. }
  993. \caption{The abstract syntax of \LangInt{}.}
  994. \label{fig:r0-syntax}
  995. \end{figure}
  996. \section{Pattern Matching}
  997. \label{sec:pattern-matching}
  998. As mentioned in section~\ref{sec:ast}, compilers often need to access
  999. the parts of an AST node. \racket{Racket}\python{As of version 3.10, Python}
  1000. provides the \texttt{match} feature to access the parts of a value.
  1001. Consider the following example: \index{subject}{match} \index{subject}{pattern matching}
  1002. \begin{center}
  1003. \begin{minipage}{1.0\textwidth}
  1004. {\if\edition\racketEd
  1005. \begin{lstlisting}
  1006. (match ast1_1
  1007. [(Prim op (list child1 child2))
  1008. (print op)])
  1009. \end{lstlisting}
  1010. \fi}
  1011. {\if\edition\pythonEd\pythonColor
  1012. \begin{lstlisting}
  1013. match ast1_1:
  1014. case BinOp(child1, op, child2):
  1015. print(op)
  1016. \end{lstlisting}
  1017. \fi}
  1018. \end{minipage}
  1019. \end{center}
  1020. {\if\edition\racketEd
  1021. %
  1022. In this example, the \texttt{match} form checks whether the AST
  1023. \eqref{eq:arith-prog} is a binary operator and binds its parts to the
  1024. three pattern variables \texttt{op}, \texttt{child1}, and
  1025. \texttt{child2}. In general, a match clause consists of a
  1026. \emph{pattern} and a \emph{body}.\index{subject}{pattern} Patterns are
  1027. recursively defined to be a pattern variable, a structure name
  1028. followed by a pattern for each of the structure's arguments, or an
  1029. S-expression (a symbol, list, etc.). (See chapter 12 of The Racket
  1030. Guide\footnote{See \url{https://docs.racket-lang.org/guide/match.html}.}
  1031. and chapter 9 of The Racket
  1032. Reference\footnote{See \url{https://docs.racket-lang.org/reference/match.html}.}
  1033. for complete descriptions of \code{match}.)
  1034. %
  1035. The body of a match clause may contain arbitrary Racket code. The
  1036. pattern variables can be used in the scope of the body, such as
  1037. \code{op} in \code{(print op)}.
  1038. %
  1039. \fi}
  1040. %
  1041. %
  1042. {\if\edition\pythonEd\pythonColor
  1043. %
  1044. In the example above, the \texttt{match} form checks whether the AST
  1045. \eqref{eq:arith-prog} is a binary operator and binds its parts to the
  1046. three pattern variables (\texttt{child1}, \texttt{op}, and
  1047. \texttt{child2}). In general, each \code{case} consists of a
  1048. \emph{pattern} and a \emph{body}.\index{subject}{pattern} Patterns are
  1049. recursively defined to be one of the following: a pattern variable, a
  1050. class name followed by a pattern for each of its constructor's
  1051. arguments, or other literals\index{subject}{literals} such as strings
  1052. or lists.
  1053. %
  1054. The body of each \code{case} may contain arbitrary Python code. The
  1055. pattern variables can be used in the body, such as \code{op} in
  1056. \code{print(op)}.
  1057. %
  1058. \fi}
  1059. A \code{match} form may contain several clauses, as in the following
  1060. function \code{leaf} that recognizes when an \LangInt{} node is a leaf in
  1061. the AST. The \code{match} proceeds through the clauses in order,
  1062. checking whether the pattern can match the input AST. The body of the
  1063. first clause that matches is executed. The output of \code{leaf} for
  1064. several ASTs is shown on the right side of the following:
  1065. \begin{center}
  1066. \begin{minipage}{0.6\textwidth}
  1067. {\if\edition\racketEd
  1068. \begin{lstlisting}
  1069. (define (leaf arith)
  1070. (match arith
  1071. [(Int n) #t]
  1072. [(Prim 'read '()) #t]
  1073. [(Prim '- (list e1)) #f]
  1074. [(Prim '+ (list e1 e2)) #f]
  1075. [(Prim '- (list e1 e2)) #f]))
  1076. (leaf (Prim 'read '()))
  1077. (leaf (Prim '- (list (Int 8))))
  1078. (leaf (Int 8))
  1079. \end{lstlisting}
  1080. \fi}
  1081. {\if\edition\pythonEd\pythonColor
  1082. \begin{lstlisting}
  1083. def leaf(arith):
  1084. match arith:
  1085. case Constant(n):
  1086. return True
  1087. case Call(Name('input_int'), []):
  1088. return True
  1089. case UnaryOp(USub(), e1):
  1090. return False
  1091. case BinOp(e1, Add(), e2):
  1092. return False
  1093. case BinOp(e1, Sub(), e2):
  1094. return False
  1095. print(leaf(Call(Name('input_int'), [])))
  1096. print(leaf(UnaryOp(USub(), eight)))
  1097. print(leaf(Constant(8)))
  1098. \end{lstlisting}
  1099. \fi}
  1100. \end{minipage}
  1101. \vrule
  1102. \begin{minipage}{0.25\textwidth}
  1103. {\if\edition\racketEd
  1104. \begin{lstlisting}
  1105. #t
  1106. #f
  1107. #t
  1108. \end{lstlisting}
  1109. \fi}
  1110. {\if\edition\pythonEd\pythonColor
  1111. \begin{lstlisting}
  1112. True
  1113. False
  1114. True
  1115. \end{lstlisting}
  1116. \fi}
  1117. \end{minipage}
  1118. \index{subject}{True@\TRUE{}}
  1119. \index{subject}{False@\FALSE{}}
  1120. \end{center}
  1121. When constructing a \code{match} expression, we refer to the grammar
  1122. definition to identify which nonterminal we are expecting to match
  1123. against, and then we make sure that (1) we have one
  1124. \racket{clause}\python{case} for each alternative of that nonterminal
  1125. and (2) the pattern in each \racket{clause}\python{case}
  1126. corresponds to the corresponding right-hand side of a grammar
  1127. rule. For the \code{match} in the \code{leaf} function, we refer to
  1128. the grammar for \LangInt{} shown in figure~\ref{fig:r0-syntax}. The $\Exp$
  1129. nonterminal has five alternatives, so the \code{match} has five
  1130. \racket{clauses}\python{cases}. The pattern in each
  1131. \racket{clause}\python{case} corresponds to the right-hand side of a
  1132. grammar rule. For example, the pattern \ADDP{\code{e1}}{\code{e2}}
  1133. corresponds to the right-hand side $\ADD{\Exp}{\Exp}$. When
  1134. translating from grammars to patterns, replace nonterminals such as
  1135. $\Exp$ with pattern variables of your choice (such as \code{e1} and
  1136. \code{e2}).
  1137. \section{Recursive Functions}
  1138. \label{sec:recursion}
  1139. \index{subject}{recursive function}
  1140. Programs are inherently recursive. For example, an expression is often
  1141. made of smaller expressions. Thus, the natural way to process an
  1142. entire program is to use a recursive function. As a first example of
  1143. such a recursive function, we define the function \code{is\_exp} as
  1144. shown in figure~\ref{fig:exp-predicate}, to take an arbitrary
  1145. value and determine whether or not it is an expression in \LangInt{}.
  1146. %
  1147. We say that a function is defined by \emph{structural recursion} if
  1148. it is defined using a sequence of match \racket{clauses}\python{cases}
  1149. that correspond to a grammar and the body of each
  1150. \racket{clause}\python{case} makes a recursive call on each child
  1151. node.\footnote{This principle of structuring code according to the
  1152. data definition is advocated in the book \emph{How to Design
  1153. Programs} by \citet{Felleisen:2001aa}.} \python{We define a
  1154. second function, named \code{is\_stmt}, that recognizes whether a value
  1155. is a \LangInt{} statement.} \python{Finally, }
  1156. figure~\ref{fig:exp-predicate} \racket{also} contains the definition of
  1157. \code{is\_Lint}, which determines whether an AST is a program in \LangInt{}.
  1158. In general, we can write one recursive function to handle each
  1159. nonterminal in a grammar.\index{subject}{structural recursion} Of the
  1160. two examples at the bottom of the figure, the first is in
  1161. \LangInt{} and the second is not.
  1162. \begin{figure}[tp]
  1163. \begin{tcolorbox}[colback=white]
  1164. {\if\edition\racketEd
  1165. \begin{lstlisting}
  1166. (define (is_exp ast)
  1167. (match ast
  1168. [(Int n) #t]
  1169. [(Prim 'read '()) #t]
  1170. [(Prim '- (list e)) (is_exp e)]
  1171. [(Prim '+ (list e1 e2))
  1172. (and (is_exp e1) (is_exp e2))]
  1173. [(Prim '- (list e1 e2))
  1174. (and (is_exp e1) (is_exp e2))]
  1175. [else #f]))
  1176. (define (is_Lint ast)
  1177. (match ast
  1178. [(Program '() e) (is_exp e)]
  1179. [else #f]))
  1180. (is_Lint (Program '() ast1_1)
  1181. (is_Lint (Program '()
  1182. (Prim '* (list (Prim 'read '())
  1183. (Prim '+ (list (Int 8)))))))
  1184. \end{lstlisting}
  1185. \fi}
  1186. {\if\edition\pythonEd\pythonColor
  1187. \begin{lstlisting}
  1188. def is_exp(e):
  1189. match e:
  1190. case Constant(n):
  1191. return True
  1192. case Call(Name('input_int'), []):
  1193. return True
  1194. case UnaryOp(USub(), e1):
  1195. return is_exp(e1)
  1196. case BinOp(e1, Add(), e2):
  1197. return is_exp(e1) and is_exp(e2)
  1198. case BinOp(e1, Sub(), e2):
  1199. return is_exp(e1) and is_exp(e2)
  1200. case _:
  1201. return False
  1202. def is_stmt(s):
  1203. match s:
  1204. case Expr(Call(Name('print'), [e])):
  1205. return is_exp(e)
  1206. case Expr(e):
  1207. return is_exp(e)
  1208. case _:
  1209. return False
  1210. def is_Lint(p):
  1211. match p:
  1212. case Module(body):
  1213. return all([is_stmt(s) for s in body])
  1214. case _:
  1215. return False
  1216. print(is_Lint(Module([Expr(ast1_1)])))
  1217. print(is_Lint(Module([Expr(BinOp(read, Sub(),
  1218. UnaryOp(Add(), Constant(8))))])))
  1219. \end{lstlisting}
  1220. \fi}
  1221. \end{tcolorbox}
  1222. \caption{Example of recursive functions for \LangInt{}. These functions
  1223. recognize whether an AST is in \LangInt{}.}
  1224. \label{fig:exp-predicate}
  1225. \end{figure}
  1226. %% You may be tempted to merge the two functions into one, like this:
  1227. %% \begin{center}
  1228. %% \begin{minipage}{0.5\textwidth}
  1229. %% \begin{lstlisting}
  1230. %% (define (Lint ast)
  1231. %% (match ast
  1232. %% [(Int n) #t]
  1233. %% [(Prim 'read '()) #t]
  1234. %% [(Prim '- (list e)) (Lint e)]
  1235. %% [(Prim '+ (list e1 e2)) (and (Lint e1) (Lint e2))]
  1236. %% [(Program '() e) (Lint e)]
  1237. %% [else #f]))
  1238. %% \end{lstlisting}
  1239. %% \end{minipage}
  1240. %% \end{center}
  1241. %% %
  1242. %% Sometimes such a trick will save a few lines of code, especially when
  1243. %% it comes to the \code{Program} wrapper. Yet this style is generally
  1244. %% \emph{not} recommended because it can get you into trouble.
  1245. %% %
  1246. %% For example, the above function is subtly wrong:
  1247. %% \lstinline{(Lint (Program '() (Program '() (Int 3))))}
  1248. %% returns true when it should return false.
  1249. \section{Interpreters}
  1250. \label{sec:interp_Lint}
  1251. \index{subject}{interpreter}
  1252. The behavior of a program is defined by the specification of the
  1253. programming language.
  1254. %
  1255. \racket{For example, the Scheme language is defined in the report by
  1256. \citet{SPERBER:2009aa}. The Racket language is defined in its
  1257. reference manual~\citep{plt-tr}.}
  1258. %
  1259. \python{For example, the Python language is defined in the Python
  1260. language reference~\citep{PSF21:python_ref} and the CPython interpreter~\citep{PSF21:cpython}.}
  1261. %
  1262. In this book we use interpreters to specify each language that we
  1263. consider. An interpreter that is designated as the definition of a
  1264. language is called a \emph{definitional
  1265. interpreter}~\citep{reynolds72:_def_interp}.
  1266. \index{subject}{definitional interpreter} We warm up by creating a
  1267. definitional interpreter for the \LangInt{} language. This interpreter
  1268. serves as a second example of structural recursion. The definition of the
  1269. \code{interp\_Lint} function is shown in
  1270. figure~\ref{fig:interp_Lint}.
  1271. %
  1272. \racket{The body of the function is a match on the input program
  1273. followed by a call to the \lstinline{interp_exp} auxiliary function,
  1274. which in turn has one match clause per grammar rule for \LangInt{}
  1275. expressions.}
  1276. %
  1277. \python{The body of the function matches on the \code{Module} AST node
  1278. and then invokes \code{interp\_stmt} on each statement in the
  1279. module. The \code{interp\_stmt} function includes a case for each
  1280. grammar rule of the \Stmt{} nonterminal, and it calls
  1281. \code{interp\_exp} on each subexpression. The \code{interp\_exp}
  1282. function includes a case for each grammar rule of the \Exp{}
  1283. nonterminal. We use several auxiliary functions such as \code{add64}
  1284. and \code{input\_int} that are defined in the support code for this book.}
  1285. \begin{figure}[tp]
  1286. \begin{tcolorbox}[colback=white]
  1287. {\if\edition\racketEd
  1288. \begin{lstlisting}
  1289. (define (interp_exp e)
  1290. (match e
  1291. [(Int n) n]
  1292. [(Prim 'read '())
  1293. (define r (read))
  1294. (cond [(fixnum? r) r]
  1295. [else (error 'interp_exp "read expected an integer: ~v" r)])]
  1296. [(Prim '- (list e))
  1297. (define v (interp_exp e))
  1298. (fx- 0 v)]
  1299. [(Prim '+ (list e1 e2))
  1300. (define v1 (interp_exp e1))
  1301. (define v2 (interp_exp e2))
  1302. (fx+ v1 v2)]
  1303. [(Prim '- (list e1 e2))
  1304. (define v1 (interp_exp e1))
  1305. (define v2 (interp_exp e2))
  1306. (fx- v1 v2)]))
  1307. (define (interp_Lint p)
  1308. (match p
  1309. [(Program '() e) (interp_exp e)]))
  1310. \end{lstlisting}
  1311. \fi}
  1312. {\if\edition\pythonEd\pythonColor
  1313. \begin{lstlisting}
  1314. def interp_exp(e):
  1315. match e:
  1316. case BinOp(left, Add(), right):
  1317. l = interp_exp(left); r = interp_exp(right)
  1318. return add64(l, r)
  1319. case BinOp(left, Sub(), right):
  1320. l = interp_exp(left); r = interp_exp(right)
  1321. return sub64(l, r)
  1322. case UnaryOp(USub(), v):
  1323. return neg64(interp_exp(v))
  1324. case Constant(value):
  1325. return value
  1326. case Call(Name('input_int'), []):
  1327. return input_int()
  1328. def interp_stmt(s):
  1329. match s:
  1330. case Expr(Call(Name('print'), [arg])):
  1331. print(interp_exp(arg))
  1332. case Expr(value):
  1333. interp_exp(value)
  1334. def interp_Lint(p):
  1335. match p:
  1336. case Module(body):
  1337. for s in body:
  1338. interp_stmt(s)
  1339. \end{lstlisting}
  1340. \fi}
  1341. \end{tcolorbox}
  1342. \caption{Interpreter for the \LangInt{} language.}
  1343. \label{fig:interp_Lint}
  1344. \end{figure}
  1345. Let us consider the result of interpreting a few \LangInt{} programs. The
  1346. following program adds two integers:
  1347. {\if\edition\racketEd
  1348. \begin{lstlisting}
  1349. (+ 10 32)
  1350. \end{lstlisting}
  1351. \fi}
  1352. {\if\edition\pythonEd\pythonColor
  1353. \begin{lstlisting}
  1354. print(10 + 32)
  1355. \end{lstlisting}
  1356. \fi}
  1357. %
  1358. \noindent The result is \key{42}, the answer to life, the universe,
  1359. and everything: \code{42}!\footnote{\emph{The Hitchhiker's Guide to
  1360. the Galaxy} by Douglas Adams.}
  1361. %
  1362. We wrote this program in concrete syntax, whereas the parsed
  1363. abstract syntax is
  1364. {\if\edition\racketEd
  1365. \begin{lstlisting}
  1366. (Program '() (Prim '+ (list (Int 10) (Int 32))))
  1367. \end{lstlisting}
  1368. \fi}
  1369. {\if\edition\pythonEd\pythonColor
  1370. \begin{lstlisting}
  1371. Module([Expr(Call(Name('print'),
  1372. [BinOp(Constant(10), Add(), Constant(32))]))])
  1373. \end{lstlisting}
  1374. \fi}
  1375. The following program demonstrates that expressions may be nested within
  1376. each other, in this case nesting several additions and negations.
  1377. {\if\edition\racketEd
  1378. \begin{lstlisting}
  1379. (+ 10 (- (+ 12 20)))
  1380. \end{lstlisting}
  1381. \fi}
  1382. {\if\edition\pythonEd\pythonColor
  1383. \begin{lstlisting}
  1384. print(10 + -(12 + 20))
  1385. \end{lstlisting}
  1386. \fi}
  1387. %
  1388. \noindent What is the result of this program?
  1389. {\if\edition\racketEd
  1390. As mentioned previously, the \LangInt{} language does not support
  1391. arbitrarily large integers but only $63$-bit integers, so we
  1392. interpret the arithmetic operations of \LangInt{} using fixnum arithmetic
  1393. in Racket.
  1394. Suppose that
  1395. \[
  1396. n = 999999999999999999
  1397. \]
  1398. which indeed fits in $63$ bits. What happens when we run the
  1399. following program in our interpreter?
  1400. \begin{lstlisting}
  1401. (+ (+ (+ |$n$| |$n$|) (+ |$n$| |$n$|)) (+ (+ |$n$| |$n$|) (+ |$n$| |$n$|)))))
  1402. \end{lstlisting}
  1403. It produces the following error:
  1404. \begin{lstlisting}
  1405. fx+: result is not a fixnum
  1406. \end{lstlisting}
  1407. We establish the convention that if running the definitional
  1408. interpreter on a program produces an error, then the meaning of that
  1409. program is \emph{unspecified}\index{subject}{unspecified behavior} unless the
  1410. error is a \code{trapped-error}. A compiler for the language is under
  1411. no obligation regarding programs with unspecified behavior; it does
  1412. not have to produce an executable, and if it does, that executable can
  1413. do anything. On the other hand, if the error is a
  1414. \code{trapped-error}, then the compiler must produce an executable and
  1415. it is required to report that an error occurred. To signal an error,
  1416. exit with a return code of \code{255}. The interpreters in chapters
  1417. \ref{ch:Ldyn} and \ref{ch:Lgrad} and in section \ref{sec:arrays} use
  1418. \code{trapped-error}.
  1419. \fi}
  1420. % TODO: how to deal with too-large integers in the Python interpreter?
  1421. %% This convention applies to the languages defined in this
  1422. %% book, as a way to simplify the student's task of implementing them,
  1423. %% but this convention is not applicable to all programming languages.
  1424. %%
  1425. The last feature of the \LangInt{} language, the \READOP{} operation,
  1426. prompts the user of the program for an integer. Recall that program
  1427. \eqref{eq:arith-prog} requests an integer input and then subtracts
  1428. \code{8}. So, if we run {\if\edition\racketEd
  1429. \begin{lstlisting}
  1430. (interp_Lint (Program '() ast1_1))
  1431. \end{lstlisting}
  1432. \fi}
  1433. {\if\edition\pythonEd\pythonColor
  1434. \begin{lstlisting}
  1435. interp_Lint(Module([Expr(Call(Name('print'), [ast1_1]))]))
  1436. \end{lstlisting}
  1437. \fi}
  1438. \noindent and if the input is \code{50}, the result is \code{42}.
  1439. We include the \READOP{} operation in \LangInt{} so that a clever
  1440. student cannot implement a compiler for \LangInt{} that simply runs
  1441. the interpreter during compilation to obtain the output and then
  1442. generates the trivial code to produce the output.\footnote{Yes, a
  1443. clever student did this in the first instance of this course!}
  1444. The job of a compiler is to translate a program in one language into a
  1445. program in another language so that the output program behaves the
  1446. same way as the input program. This idea is depicted in the
  1447. following diagram. Suppose we have two languages, $\mathcal{L}_1$ and
  1448. $\mathcal{L}_2$, and a definitional interpreter for each language.
  1449. Given a compiler that translates from language $\mathcal{L}_1$ to
  1450. $\mathcal{L}_2$ and given any program $P_1$ in $\mathcal{L}_1$, the
  1451. compiler must translate it into some program $P_2$ such that
  1452. interpreting $P_1$ and $P_2$ on their respective interpreters with
  1453. same input $i$ yields the same output $o$.
  1454. \begin{equation} \label{eq:compile-correct}
  1455. \begin{tikzpicture}[baseline=(current bounding box.center)]
  1456. \node (p1) at (0, 0) {$P_1$};
  1457. \node (p2) at (3, 0) {$P_2$};
  1458. \node (o) at (3, -2.5) {$o$};
  1459. \path[->] (p1) edge [above] node {compile} (p2);
  1460. \path[->] (p2) edge [right] node {interp\_$\mathcal{L}_2$($i$)} (o);
  1461. \path[->] (p1) edge [left] node {interp\_$\mathcal{L}_1$($i$)} (o);
  1462. \end{tikzpicture}
  1463. \end{equation}
  1464. \python{We establish the convention that if running the definitional
  1465. interpreter on a program produces an error, then the meaning of that
  1466. program is \emph{unspecified}\index{subject}{unspecified behavior}
  1467. unless the exception raised is a \code{TrappedError}. A compiler for
  1468. the language is under no obligation regarding programs with
  1469. unspecified behavior; it does not have to produce an executable, and
  1470. if it does, that executable can do anything. On the other hand, if
  1471. the error is a \code{TrappedError}, then the compiler must produce
  1472. an executable and it is required to report that an error
  1473. occurred. To signal an error, exit with a return code of \code{255}.
  1474. The interpreters in chapters \ref{ch:Ldyn} and \ref{ch:Lgrad} and in
  1475. section \ref{sec:arrays} use \code{TrappedError}.}
  1476. In the next section we see our first example of a compiler.
  1477. \section{Example Compiler: A Partial Evaluator}
  1478. \label{sec:partial-evaluation}
  1479. In this section we consider a compiler that translates \LangInt{}
  1480. programs into \LangInt{} programs that may be more efficient. The
  1481. compiler eagerly computes the parts of the program that do not depend
  1482. on any inputs, a process known as \emph{partial
  1483. evaluation}~\citep{Jones:1993uq}.\index{subject}{partialevaluation@partial evaluation}
  1484. For example, given the following program
  1485. {\if\edition\racketEd
  1486. \begin{lstlisting}
  1487. (+ (read) (- (+ 5 3)))
  1488. \end{lstlisting}
  1489. \fi}
  1490. {\if\edition\pythonEd\pythonColor
  1491. \begin{lstlisting}
  1492. print(input_int() + -(5 + 3) )
  1493. \end{lstlisting}
  1494. \fi}
  1495. \noindent our compiler translates it into the program
  1496. {\if\edition\racketEd
  1497. \begin{lstlisting}
  1498. (+ (read) -8)
  1499. \end{lstlisting}
  1500. \fi}
  1501. {\if\edition\pythonEd\pythonColor
  1502. \begin{lstlisting}
  1503. print(input_int() + -8)
  1504. \end{lstlisting}
  1505. \fi}
  1506. Figure~\ref{fig:pe-arith} gives the code for a simple partial
  1507. evaluator for the \LangInt{} language. The output of the partial evaluator
  1508. is a program in \LangInt{}. In figure~\ref{fig:pe-arith}, the structural
  1509. recursion over $\Exp$ is captured in the \code{pe\_exp} function,
  1510. whereas the code for partially evaluating the negation and addition
  1511. operations is factored into three auxiliary functions:
  1512. \code{pe\_neg}, \code{pe\_add} and \code{pe\_sub}. The input to these
  1513. functions is the output of partially evaluating the children.
  1514. The \code{pe\_neg}, \code{pe\_add} and \code{pe\_sub} functions check whether their
  1515. arguments are integers and if they are, perform the appropriate
  1516. arithmetic. Otherwise, they create an AST node for the arithmetic
  1517. operation.
  1518. \begin{figure}[tp]
  1519. \begin{tcolorbox}[colback=white]
  1520. {\if\edition\racketEd
  1521. \begin{lstlisting}
  1522. (define (pe_neg r)
  1523. (match r
  1524. [(Int n) (Int (fx- 0 n))]
  1525. [else (Prim '- (list r))]))
  1526. (define (pe_add r1 r2)
  1527. (match* (r1 r2)
  1528. [((Int n1) (Int n2)) (Int (fx+ n1 n2))]
  1529. [(_ _) (Prim '+ (list r1 r2))]))
  1530. (define (pe_sub r1 r2)
  1531. (match* (r1 r2)
  1532. [((Int n1) (Int n2)) (Int (fx- n1 n2))]
  1533. [(_ _) (Prim '- (list r1 r2))]))
  1534. (define (pe_exp e)
  1535. (match e
  1536. [(Int n) (Int n)]
  1537. [(Prim 'read '()) (Prim 'read '())]
  1538. [(Prim '- (list e1)) (pe_neg (pe_exp e1))]
  1539. [(Prim '+ (list e1 e2)) (pe_add (pe_exp e1) (pe_exp e2))]
  1540. [(Prim '- (list e1 e2)) (pe_sub (pe_exp e1) (pe_exp e2))]))
  1541. (define (pe_Lint p)
  1542. (match p
  1543. [(Program '() e) (Program '() (pe_exp e))]))
  1544. \end{lstlisting}
  1545. \fi}
  1546. {\if\edition\pythonEd\pythonColor
  1547. \begin{lstlisting}
  1548. def pe_neg(r):
  1549. match r:
  1550. case Constant(n):
  1551. return Constant(neg64(n))
  1552. case _:
  1553. return UnaryOp(USub(), r)
  1554. def pe_add(r1, r2):
  1555. match (r1, r2):
  1556. case (Constant(n1), Constant(n2)):
  1557. return Constant(add64(n1, n2))
  1558. case _:
  1559. return BinOp(r1, Add(), r2)
  1560. def pe_sub(r1, r2):
  1561. match (r1, r2):
  1562. case (Constant(n1), Constant(n2)):
  1563. return Constant(sub64(n1, n2))
  1564. case _:
  1565. return BinOp(r1, Sub(), r2)
  1566. def pe_exp(e):
  1567. match e:
  1568. case BinOp(left, Add(), right):
  1569. return pe_add(pe_exp(left), pe_exp(right))
  1570. case BinOp(left, Sub(), right):
  1571. return pe_sub(pe_exp(left), pe_exp(right))
  1572. case UnaryOp(USub(), v):
  1573. return pe_neg(pe_exp(v))
  1574. case Constant(value):
  1575. return e
  1576. case Call(Name('input_int'), []):
  1577. return e
  1578. def pe_stmt(s):
  1579. match s:
  1580. case Expr(Call(Name('print'), [arg])):
  1581. return Expr(Call(Name('print'), [pe_exp(arg)]))
  1582. case Expr(value):
  1583. return Expr(pe_exp(value))
  1584. def pe_P_int(p):
  1585. match p:
  1586. case Module(body):
  1587. new_body = [pe_stmt(s) for s in body]
  1588. return Module(new_body)
  1589. \end{lstlisting}
  1590. \fi}
  1591. \end{tcolorbox}
  1592. \caption{A partial evaluator for \LangInt{}.}
  1593. \label{fig:pe-arith}
  1594. \end{figure}
  1595. To gain some confidence that the partial evaluator is correct, we can
  1596. test whether it produces programs that produce the same result as the
  1597. input programs. That is, we can test whether it satisfies the diagram
  1598. of \eqref{eq:compile-correct}.
  1599. %
  1600. {\if\edition\racketEd
  1601. The following code runs the partial evaluator on several examples and
  1602. tests the output program. The \texttt{parse-program} and
  1603. \texttt{assert} functions are defined in
  1604. appendix~\ref{appendix:utilities}.\\
  1605. \begin{minipage}{1.0\textwidth}
  1606. \begin{lstlisting}
  1607. (define (test_pe p)
  1608. (assert "testing pe_Lint"
  1609. (equal? (interp_Lint p) (interp_Lint (pe_Lint p)))))
  1610. (test_pe (parse-program `(program () (+ 10 (- (+ 5 3))))))
  1611. (test_pe (parse-program `(program () (+ 1 (+ 3 1)))))
  1612. (test_pe (parse-program `(program () (- (+ 3 (- 5))))))
  1613. \end{lstlisting}
  1614. \end{minipage}
  1615. \fi}
  1616. % TODO: python version of testing the PE
  1617. \begin{exercise}\normalfont\normalsize
  1618. Create three programs in the \LangInt{} language and test whether
  1619. partially evaluating them with \code{pe\_Lint} and then
  1620. interpreting them with \code{interp\_Lint} gives the same result
  1621. as directly interpreting them with \code{interp\_Lint}.
  1622. \end{exercise}
  1623. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  1624. \chapter{Integers and Variables}
  1625. \label{ch:Lvar}
  1626. \setcounter{footnote}{0}
  1627. This chapter covers compiling a subset of
  1628. \racket{Racket}\python{Python} to x86-64 assembly
  1629. code~\citep{Intel:2015aa}. The subset, named \LangVar{}, includes
  1630. integer arithmetic and local variables. We often refer to x86-64
  1631. simply as x86. The chapter first describes the \LangVar{} language
  1632. (section~\ref{sec:s0}) and then introduces x86 assembly
  1633. (section~\ref{sec:x86}). Because x86 assembly language is large, we
  1634. discuss only the instructions needed for compiling \LangVar{}. We
  1635. introduce more x86 instructions in subsequent chapters. After
  1636. introducing \LangVar{} and x86, we reflect on their differences and
  1637. create a plan to break down the translation from \LangVar{} to x86
  1638. into a handful of steps (section~\ref{sec:plan-s0-x86}). The rest of
  1639. the chapter gives detailed hints regarding each step. We aim to give
  1640. enough hints that the well-prepared reader, together with a few
  1641. friends, can implement a compiler from \LangVar{} to x86 in a short
  1642. time. To suggest the scale of this first compiler, we note that the
  1643. instructor solution for the \LangVar{} compiler is approximately
  1644. \racket{500}\python{300} lines of code.
  1645. \section{The \LangVar{} Language}
  1646. \label{sec:s0}
  1647. \index{subject}{variable}
  1648. The \LangVar{} language extends the \LangInt{} language with
  1649. variables. The concrete syntax of the \LangVar{} language is defined
  1650. by the grammar presented in figure~\ref{fig:Lvar-concrete-syntax}, and
  1651. the abstract syntax is presented in figure~\ref{fig:Lvar-syntax}. The
  1652. nonterminal \Var{} may be any \racket{Racket}\python{Python}
  1653. identifier. As in \LangInt{}, \READOP{} is a nullary operator,
  1654. \key{-} is a unary operator, and \key{+} is a binary operator.
  1655. Similarly to \LangInt{}, the abstract syntax of \LangVar{} includes the
  1656. \racket{\key{Program} struct}\python{\key{Module} instance} to mark
  1657. the top of the program.
  1658. %% The $\itm{info}$
  1659. %% field of the \key{Program} structure contains an \emph{association
  1660. %% list} (a list of key-value pairs) that is used to communicate
  1661. %% auxiliary data from one compiler pass the next.
  1662. Despite the simplicity of the \LangVar{} language, it is rich enough to
  1663. exhibit several compilation techniques.
  1664. \newcommand{\LvarGrammarRacket}{
  1665. \begin{array}{rcl}
  1666. \Exp &::=& \Var \MID \CLET{\Var}{\Exp}{\Exp}
  1667. \end{array}
  1668. }
  1669. \newcommand{\LvarASTRacket}{
  1670. \begin{array}{rcl}
  1671. \Exp &::=& \VAR{\Var} \MID \LET{\Var}{\Exp}{\Exp}
  1672. \end{array}
  1673. }
  1674. \newcommand{\LvarGrammarPython}{
  1675. \begin{array}{rcl}
  1676. \Exp &::=& \Var{} \\
  1677. \Stmt &::=& \Var\mathop{\key{=}}\Exp
  1678. \end{array}
  1679. }
  1680. \newcommand{\LvarASTPython}{
  1681. \begin{array}{rcl}
  1682. \Exp{} &::=& \VAR{\Var{}} \\
  1683. \Stmt{} &::=& \ASSIGN{\VAR{\Var}}{\Exp}
  1684. \end{array}
  1685. }
  1686. \begin{figure}[tp]
  1687. \centering
  1688. \begin{tcolorbox}[colback=white]
  1689. {\if\edition\racketEd
  1690. \[
  1691. \begin{array}{l}
  1692. \gray{\LintGrammarRacket{}} \\ \hline
  1693. \LvarGrammarRacket{} \\
  1694. \begin{array}{rcl}
  1695. \LangVarM{} &::=& \Exp
  1696. \end{array}
  1697. \end{array}
  1698. \]
  1699. \fi}
  1700. {\if\edition\pythonEd\pythonColor
  1701. \[
  1702. \begin{array}{l}
  1703. \gray{\LintGrammarPython} \\ \hline
  1704. \LvarGrammarPython \\
  1705. \begin{array}{rcl}
  1706. \LangVarM{} &::=& \Stmt^{*}
  1707. \end{array}
  1708. \end{array}
  1709. \]
  1710. \fi}
  1711. \end{tcolorbox}
  1712. \caption{The concrete syntax of \LangVar{}.}
  1713. \label{fig:Lvar-concrete-syntax}
  1714. \end{figure}
  1715. \begin{figure}[tp]
  1716. \centering
  1717. \begin{tcolorbox}[colback=white]
  1718. {\if\edition\racketEd
  1719. \[
  1720. \begin{array}{l}
  1721. \gray{\LintASTRacket{}} \\ \hline
  1722. \LvarASTRacket \\
  1723. \begin{array}{rcl}
  1724. \LangVarM{} &::=& \PROGRAM{\code{'()}}{\Exp}
  1725. \end{array}
  1726. \end{array}
  1727. \]
  1728. \fi}
  1729. {\if\edition\pythonEd\pythonColor
  1730. \[
  1731. \begin{array}{l}
  1732. \gray{\LintASTPython}\\ \hline
  1733. \LvarASTPython \\
  1734. \begin{array}{rcl}
  1735. \LangVarM{} &::=& \PROGRAM{}{\Stmt^{*}}
  1736. \end{array}
  1737. \end{array}
  1738. \]
  1739. \fi}
  1740. \end{tcolorbox}
  1741. \caption{The abstract syntax of \LangVar{}.}
  1742. \label{fig:Lvar-syntax}
  1743. \end{figure}
  1744. {\if\edition\racketEd
  1745. Let us dive further into the syntax and semantics of the \LangVar{}
  1746. language. The \key{let} feature defines a variable for use within its
  1747. body and initializes the variable with the value of an expression.
  1748. The abstract syntax for \key{let} is shown in
  1749. figure~\ref{fig:Lvar-syntax}. The concrete syntax for \key{let} is
  1750. \begin{lstlisting}
  1751. (let ([|$\itm{var}$| |$\itm{exp}$|]) |$\itm{exp}$|)
  1752. \end{lstlisting}
  1753. For example, the following program initializes \code{x} to $32$ and then
  1754. evaluates the body \code{(+ 10 x)}, producing $42$.
  1755. \begin{lstlisting}
  1756. (let ([x (+ 12 20)]) (+ 10 x))
  1757. \end{lstlisting}
  1758. \fi}
  1759. %
  1760. {\if\edition\pythonEd\pythonColor
  1761. %
  1762. The \LangVar{} language includes an assignment statement, which defines a
  1763. variable for use in later statements and initializes the variable with
  1764. the value of an expression. The abstract syntax for assignment is
  1765. defined in figure~\ref{fig:Lvar-syntax}. The concrete syntax for
  1766. assignment is \index{subject}{Assign@\texttt{Assign}}
  1767. \begin{lstlisting}
  1768. |$\itm{var}$| = |$\itm{exp}$|
  1769. \end{lstlisting}
  1770. For example, the following program initializes the variable \code{x}
  1771. to $32$ and then prints the result of \code{10 + x}, producing $42$.
  1772. \begin{lstlisting}
  1773. x = 12 + 20
  1774. print(10 + x)
  1775. \end{lstlisting}
  1776. \fi}
  1777. {\if\edition\racketEd
  1778. %
  1779. When there are multiple \key{let}s for the same variable, the closest
  1780. enclosing \key{let} is used. That is, variable definitions overshadow
  1781. prior definitions. Consider the following program with two \key{let}s
  1782. that define two variables named \code{x}. Can you figure out the
  1783. result?
  1784. \begin{lstlisting}
  1785. (let ([x 32]) (+ (let ([x 10]) x) x))
  1786. \end{lstlisting}
  1787. For the purposes of depicting which variable occurrences correspond to
  1788. which definitions, the following shows the \code{x}'s annotated with
  1789. subscripts to distinguish them. Double-check that your answer for the
  1790. previous program is the same as your answer for this annotated version
  1791. of the program.
  1792. \begin{lstlisting}
  1793. (let ([x|$_1$| 32]) (+ (let ([x|$_2$| 10]) x|$_2$|) x|$_1$|))
  1794. \end{lstlisting}
  1795. The initializing expression is always evaluated before the body of the
  1796. \key{let}, so in the following, the \key{read} for \code{x} is
  1797. performed before the \key{read} for \code{y}. Given the input
  1798. $52$ then $10$, the following produces $42$ (not $-42$).
  1799. \begin{lstlisting}
  1800. (let ([x (read)]) (let ([y (read)]) (+ x (- y))))
  1801. \end{lstlisting}
  1802. \fi}
  1803. \subsection{Extensible Interpreters via Method Overriding}
  1804. \label{sec:extensible-interp}
  1805. \index{subject}{method overriding}
  1806. To prepare for discussing the interpreter of \LangVar{}, we explain
  1807. why we implement it in an object-oriented style. Throughout this book
  1808. we define many interpreters, one for each language that we
  1809. study. Because each language builds on the prior one, there is a lot
  1810. of commonality between these interpreters. We want to write down the
  1811. common parts just once instead of many times. A naive interpreter for
  1812. \LangVar{} would handle the \racket{cases for variables and
  1813. \code{let}} \python{case for variables} but dispatch to an
  1814. interpreter for \LangInt{} in the rest of the cases. The following
  1815. code sketches this idea. (We explain the \code{env} parameter in
  1816. section~\ref{sec:interp-Lvar}.)
  1817. \begin{center}
  1818. {\if\edition\racketEd
  1819. \begin{minipage}{0.45\textwidth}
  1820. \begin{lstlisting}
  1821. (define ((interp_Lint env) e)
  1822. (match e
  1823. [(Prim '- (list e1))
  1824. (fx- 0 ((interp_Lint env) e1))]
  1825. ...))
  1826. \end{lstlisting}
  1827. \end{minipage}
  1828. \begin{minipage}{0.45\textwidth}
  1829. \begin{lstlisting}
  1830. (define ((interp_Lvar env) e)
  1831. (match e
  1832. [(Var x)
  1833. (dict-ref env x)]
  1834. [(Let x e body)
  1835. (define v ((interp_Lvar env) e))
  1836. (define env^ (dict-set env x v))
  1837. ((interp_Lvar env^) body)]
  1838. [else ((interp_Lint env) e)]))
  1839. \end{lstlisting}
  1840. \end{minipage}
  1841. \fi}
  1842. {\if\edition\pythonEd\pythonColor
  1843. \begin{minipage}{0.45\textwidth}
  1844. \begin{lstlisting}
  1845. def interp_Lint(e, env):
  1846. match e:
  1847. case UnaryOp(USub(), e1):
  1848. return - interp_Lint(e1, env)
  1849. ...
  1850. \end{lstlisting}
  1851. \end{minipage}
  1852. \begin{minipage}{0.45\textwidth}
  1853. \begin{lstlisting}
  1854. def interp_Lvar(e, env):
  1855. match e:
  1856. case Name(id):
  1857. return env[id]
  1858. case _:
  1859. return interp_Lint(e, env)
  1860. \end{lstlisting}
  1861. \end{minipage}
  1862. \fi}
  1863. \end{center}
  1864. The problem with this naive approach is that it does not handle
  1865. situations in which an \LangVar{} feature, such as a variable, is
  1866. nested inside an \LangInt{} feature, such as the \code{-} operator, as
  1867. in the following program.
  1868. {\if\edition\racketEd
  1869. \begin{lstlisting}
  1870. (Let 'y (Int 10) (Prim '- (list (Var 'y))))
  1871. \end{lstlisting}
  1872. \fi}
  1873. {\if\edition\pythonEd\pythonColor
  1874. \begin{minipage}{1.0\textwidth}
  1875. \begin{lstlisting}
  1876. y = 10
  1877. print(-y)
  1878. \end{lstlisting}
  1879. \end{minipage}
  1880. \fi}
  1881. \noindent If we invoke \code{interp\_Lvar} on this program, it
  1882. dispatches to \code{interp\_Lint} to handle the \code{-} operator, but
  1883. then it recursively calls \code{interp\_Lint} again on its argument.
  1884. Because there is no case for \racket{\code{Var}}\python{\code{Name}} in
  1885. \code{interp\_Lint}, we get an error!
  1886. To make our interpreters extensible we need something called
  1887. \emph{open recursion}\index{subject}{open recursion}, in which the
  1888. tying of the recursive knot is delayed until the functions are
  1889. composed. Object-oriented languages provide open recursion via method
  1890. overriding. The following code uses
  1891. method overriding to interpret \LangInt{} and \LangVar{} using
  1892. %
  1893. \racket{the
  1894. \href{https://docs.racket-lang.org/guide/classes.html}{\code{class}}
  1895. \index{subject}{class} feature of Racket.}%
  1896. %
  1897. \python{Python \code{class} definitions.}
  1898. %
  1899. We define one class for each language and define a method for
  1900. interpreting expressions inside each class. The class for \LangVar{}
  1901. inherits from the class for \LangInt{}, and the method
  1902. \code{interp\_exp} in \LangVar{} overrides the \code{interp\_exp} in
  1903. \LangInt{}. Note that the default case of \code{interp\_exp} in
  1904. \LangVar{} uses \code{super} to invoke \code{interp\_exp}, and because
  1905. \LangVar{} inherits from \LangInt{}, that dispatches to the
  1906. \code{interp\_exp} in \LangInt{}.
  1907. \begin{center}
  1908. \hspace{-20pt}
  1909. {\if\edition\racketEd
  1910. \begin{minipage}{0.45\textwidth}
  1911. \begin{lstlisting}
  1912. (define interp-Lint-class
  1913. (class object%
  1914. (define/public ((interp_exp env) e)
  1915. (match e
  1916. [(Prim '- (list e))
  1917. (fx- 0 ((interp_exp env) e))]
  1918. ...))
  1919. ...))
  1920. \end{lstlisting}
  1921. \end{minipage}
  1922. \begin{minipage}{0.45\textwidth}
  1923. \begin{lstlisting}
  1924. (define interp-Lvar-class
  1925. (class interp-Lint-class
  1926. (define/override ((interp_exp env) e)
  1927. (match e
  1928. [(Var x)
  1929. (dict-ref env x)]
  1930. [(Let x e body)
  1931. (define v ((interp_exp env) e))
  1932. (define env^ (dict-set env x v))
  1933. ((interp_exp env^) body)]
  1934. [else
  1935. (super (interp_exp env) e)]))
  1936. ...
  1937. ))
  1938. \end{lstlisting}
  1939. \end{minipage}
  1940. \fi}
  1941. {\if\edition\pythonEd\pythonColor
  1942. \begin{minipage}{0.45\textwidth}
  1943. \begin{lstlisting}
  1944. class InterpLint:
  1945. def interp_exp(e):
  1946. match e:
  1947. case UnaryOp(USub(), e1):
  1948. return neg64(self.interp_exp(e1))
  1949. ...
  1950. ...
  1951. \end{lstlisting}
  1952. \end{minipage}
  1953. \begin{minipage}{0.45\textwidth}
  1954. \begin{lstlisting}
  1955. def InterpLvar(InterpLint):
  1956. def interp_exp(e):
  1957. match e:
  1958. case Name(id):
  1959. return env[id]
  1960. case _:
  1961. return super().interp_exp(e)
  1962. ...
  1963. \end{lstlisting}
  1964. \end{minipage}
  1965. \fi}
  1966. \end{center}
  1967. We return to the troublesome example, repeated here:
  1968. {\if\edition\racketEd
  1969. \begin{lstlisting}
  1970. (Let 'y (Int 10) (Prim '- (list (Var 'y))))
  1971. \end{lstlisting}
  1972. \fi}
  1973. {\if\edition\pythonEd\pythonColor
  1974. \begin{lstlisting}
  1975. y = 10
  1976. print(-y)
  1977. \end{lstlisting}
  1978. \fi}
  1979. \noindent We can invoke the \code{interp\_exp} method for \LangVar{}
  1980. \racket{on this expression,}%
  1981. \python{on the \code{-y} expression,}
  1982. %
  1983. which we call \code{e0}, by creating an object of the \LangVar{} class
  1984. and calling the \code{interp\_exp} method
  1985. {\if\edition\racketEd
  1986. \begin{lstlisting}
  1987. ((send (new interp-Lvar-class) interp_exp '()) e0)
  1988. \end{lstlisting}
  1989. \fi}
  1990. {\if\edition\pythonEd\pythonColor
  1991. \begin{lstlisting}
  1992. InterpLvar().interp_exp(e0)
  1993. \end{lstlisting}
  1994. \fi}
  1995. \noindent To process the \code{-} operator, the default case of
  1996. \code{interp\_exp} in \LangVar{} dispatches to the \code{interp\_exp}
  1997. method in \LangInt{}. But then for the recursive method call, it
  1998. dispatches to \code{interp\_exp} in \LangVar{}, where the
  1999. \racket{\code{Var}}\python{\code{Name}} node is handled correctly.
  2000. Thus, method overriding gives us the open recursion that we need to
  2001. implement our interpreters in an extensible way.
  2002. \subsection{Definitional Interpreter for \LangVar{}}
  2003. \label{sec:interp-Lvar}
  2004. Having justified the use of classes and methods to implement
  2005. interpreters, we revisit the definitional interpreter for \LangInt{}
  2006. shown in figure~\ref{fig:interp-Lint-class} and then extend it to
  2007. create an interpreter for \LangVar{}, shown in
  2008. figure~\ref{fig:interp-Lvar}.
  2009. %
  2010. \python{We change the \code{interp\_stmt} method in the interpreter
  2011. for \LangInt{} to take two extra parameters named \code{env}, which
  2012. we discuss in the next paragraph, and \code{cont} for
  2013. \emph{continuation}, which is the technical name for what comes
  2014. after a particular point in a program. The \code{cont} parameter is
  2015. the list of statements that follow the current statement. Note
  2016. that \code{interp\_stmts} invokes \code{interp\_stmt} on the first
  2017. statement and passes the rest of the statements as the argument for
  2018. \code{cont}. This organization enables each statement to decide what
  2019. if anything should be evaluated after it, for example, allowing a
  2020. \code{return} statement to exit early from a function (see
  2021. Chapter~\ref{ch:Lfun}).}
  2022. The interpreter for \LangVar{} adds two new cases for
  2023. variables and \racket{\key{let}}\python{assignment}. For
  2024. \racket{\key{let}}\python{assignment}, we need a way to communicate the
  2025. value bound to a variable to all the uses of the variable. To
  2026. accomplish this, we maintain a mapping from variables to values called
  2027. an \emph{environment}\index{subject}{environment}.
  2028. %
  2029. We use
  2030. %
  2031. \racket{an association list (alist) }%
  2032. %
  2033. \python{a Python \href{https://docs.python.org/3.10/library/stdtypes.html\#mapping-types-dict}{dictionary} }%
  2034. %
  2035. to represent the environment.
  2036. %
  2037. \racket{Figure~\ref{fig:alist} gives a brief introduction to alists
  2038. and the \code{racket/dict} package.}
  2039. %
  2040. The \code{interp\_exp} function takes the current environment,
  2041. \code{env}, as an extra parameter. When the interpreter encounters a
  2042. variable, it looks up the corresponding value in the environment. If
  2043. the variable is not in the environment (because the variable was not
  2044. defined) then the lookup will fail and the interpreter will
  2045. halt with an error. Recall that the compiler is not obligated to
  2046. compile such programs (Section~\ref{sec:interp_Lint}).\footnote{In
  2047. Chapter~\ref{ch:Lif} we introduce type checking rules that
  2048. prohibit access to undefined variables.}
  2049. %
  2050. \racket{When the interpreter encounters a \key{Let}, it evaluates the
  2051. initializing expression, extends the environment with the result
  2052. value bound to the variable, using \code{dict-set}, then evaluates
  2053. the body of the \key{Let}.}
  2054. %
  2055. \python{When the interpreter encounters an assignment, it evaluates
  2056. the initializing expression and then associates the resulting value
  2057. with the variable in the environment.}
  2058. \begin{figure}[tp]
  2059. \begin{tcolorbox}[colback=white]
  2060. {\if\edition\racketEd
  2061. \begin{lstlisting}
  2062. (define interp-Lint-class
  2063. (class object%
  2064. (super-new)
  2065. (define/public ((interp_exp env) e)
  2066. (match e
  2067. [(Int n) n]
  2068. [(Prim 'read '())
  2069. (define r (read))
  2070. (cond [(fixnum? r) r]
  2071. [else (error 'interp_exp "expected an integer" r)])]
  2072. [(Prim '- (list e)) (fx- 0 ((interp_exp env) e))]
  2073. [(Prim '+ (list e1 e2))
  2074. (fx+ ((interp_exp env) e1) ((interp_exp env) e2))]
  2075. [(Prim '- (list e1 e2))
  2076. (fx- ((interp_exp env) e1) ((interp_exp env) e2))]))
  2077. (define/public (interp_program p)
  2078. (match p
  2079. [(Program '() e) ((interp_exp '()) e)]))
  2080. ))
  2081. \end{lstlisting}
  2082. \fi}
  2083. {\if\edition\pythonEd\pythonColor
  2084. \begin{lstlisting}
  2085. class InterpLint:
  2086. def interp_exp(self, e, env):
  2087. match e:
  2088. case BinOp(left, Add(), right):
  2089. l = self.interp_exp(left, env)
  2090. r = self.interp_exp(right, env)
  2091. return add64(l, r)
  2092. case BinOp(left, Sub(), right):
  2093. l = self.interp_exp(left, env)
  2094. r = self.interp_exp(right, env)
  2095. return sub64(l, r)
  2096. case UnaryOp(USub(), v):
  2097. return neg64(self.interp_exp(v, env))
  2098. case Constant(value):
  2099. return value
  2100. case Call(Name('input_int'), []):
  2101. return int(input())
  2102. def interp_stmt(self, s, env, cont):
  2103. match s:
  2104. case Expr(Call(Name('print'), [arg])):
  2105. val = self.interp_exp(arg, env)
  2106. print(val, end='')
  2107. return self.interp_stmts(cont, env)
  2108. case Expr(value):
  2109. self.interp_exp(value, env)
  2110. return self.interp_stmts(cont, env)
  2111. case _:
  2112. raise Exception('error in interp_stmt, unexpected ' + repr(s))
  2113. def interp_stmts(self, ss, env):
  2114. match ss:
  2115. case []:
  2116. return 0
  2117. case [s, *ss]:
  2118. return self.interp_stmt(s, env, ss)
  2119. def interp(self, p):
  2120. match p:
  2121. case Module(body):
  2122. self.interp_stmts(body, {})
  2123. def interp_Lint(p):
  2124. return InterpLint().interp(p)
  2125. \end{lstlisting}
  2126. \fi}
  2127. \end{tcolorbox}
  2128. \caption{Interpreter for \LangInt{} as a class.}
  2129. \label{fig:interp-Lint-class}
  2130. \end{figure}
  2131. \begin{figure}[tp]
  2132. \begin{tcolorbox}[colback=white]
  2133. {\if\edition\racketEd
  2134. \begin{lstlisting}
  2135. (define interp-Lvar-class
  2136. (class interp-Lint-class
  2137. (super-new)
  2138. (define/override ((interp_exp env) e)
  2139. (match e
  2140. [(Var x) (dict-ref env x)]
  2141. [(Let x e body)
  2142. (define new-env (dict-set env x ((interp_exp env) e)))
  2143. ((interp_exp new-env) body)]
  2144. [else ((super interp_exp env) e)]))
  2145. ))
  2146. (define (interp_Lvar p)
  2147. (send (new interp-Lvar-class) interp_program p))
  2148. \end{lstlisting}
  2149. \fi}
  2150. {\if\edition\pythonEd\pythonColor
  2151. \begin{lstlisting}
  2152. class InterpLvar(InterpLint):
  2153. def interp_exp(self, e, env):
  2154. match e:
  2155. case Name(id):
  2156. return env[id]
  2157. case _:
  2158. return super().interp_exp(e, env)
  2159. def interp_stmt(self, s, env, cont):
  2160. match s:
  2161. case Assign([Name(id)], value):
  2162. env[id] = self.interp_exp(value, env)
  2163. return self.interp_stmts(cont, env)
  2164. case _:
  2165. return super().interp_stmt(s, env, cont)
  2166. def interp_Lvar(p):
  2167. return InterpLvar().interp(p)
  2168. \end{lstlisting}
  2169. \fi}
  2170. \end{tcolorbox}
  2171. \caption{Interpreter for the \LangVar{} language.}
  2172. \label{fig:interp-Lvar}
  2173. \end{figure}
  2174. {\if\edition\racketEd
  2175. \begin{figure}[tp]
  2176. %\begin{wrapfigure}[26]{r}[0.75in]{0.55\textwidth}
  2177. \small
  2178. \begin{tcolorbox}[title=Association Lists as Dictionaries]
  2179. An \emph{association list} (called an alist) is a list of key-value pairs.
  2180. For example, we can map people to their ages with an alist
  2181. \index{subject}{alist}\index{subject}{association list}
  2182. \begin{lstlisting}[basicstyle=\ttfamily]
  2183. (define ages '((jane . 25) (sam . 24) (kate . 45)))
  2184. \end{lstlisting}
  2185. The \emph{dictionary} interface is for mapping keys to values.
  2186. Every alist implements this interface. \index{subject}{dictionary}
  2187. The package
  2188. \href{https://docs.racket-lang.org/reference/dicts.html}{\code{racket/dict}}
  2189. provides many functions for working with dictionaries, such as
  2190. \begin{description}
  2191. \item[$\LP\key{dict-ref}\,\itm{dict}\,\itm{key}\RP$]
  2192. returns the value associated with the given $\itm{key}$.
  2193. \item[$\LP\key{dict-set}\,\itm{dict}\,\itm{key}\,\itm{val}\RP$]
  2194. returns a new dictionary that maps $\itm{key}$ to $\itm{val}$
  2195. and otherwise is the same as $\itm{dict}$.
  2196. \item[$\LP\code{in-dict}\,\itm{dict}\RP$] returns the
  2197. \href{https://docs.racket-lang.org/reference/sequences.html}{sequence}
  2198. of keys and values in $\itm{dict}$. For example, the following
  2199. creates a new alist in which the ages are incremented:
  2200. \end{description}
  2201. \vspace{-10pt}
  2202. \begin{lstlisting}[basicstyle=\ttfamily]
  2203. (for/list ([(k v) (in-dict ages)])
  2204. (cons k (add1 v)))
  2205. \end{lstlisting}
  2206. \end{tcolorbox}
  2207. %\end{wrapfigure}
  2208. \caption{Association lists implement the dictionary interface.}
  2209. \label{fig:alist}
  2210. \end{figure}
  2211. \fi}
  2212. The goal for this chapter is to implement a compiler that translates
  2213. any program $P_1$ written in the \LangVar{} language into an x86 assembly
  2214. program $P_2$ such that $P_2$ exhibits the same behavior when run on a
  2215. computer as the $P_1$ program interpreted by \code{interp\_Lvar}.
  2216. That is, they output the same integer $n$. We depict this correctness
  2217. criteria in the following diagram:
  2218. \[
  2219. \begin{tikzpicture}[baseline=(current bounding box.center)]
  2220. \node (p1) at (0, 0) {$P_1$};
  2221. \node (p2) at (4, 0) {$P_2$};
  2222. \node (o) at (4, -2) {$n$};
  2223. \path[->] (p1) edge [above] node {\footnotesize compile} (p2);
  2224. \path[->] (p1) edge [left] node {\footnotesize\code{interp\_Lvar}} (o);
  2225. \path[->] (p2) edge [right] node {\footnotesize\code{interp\_x86int}} (o);
  2226. \end{tikzpicture}
  2227. \]
  2228. Next we introduce the \LangXInt{} subset of x86 that suffices for
  2229. compiling \LangVar{}.
  2230. \section{The \LangXInt{} Assembly Language}
  2231. \label{sec:x86}
  2232. \index{subject}{x86}
  2233. Figure~\ref{fig:x86-int-concrete} defines the concrete syntax for
  2234. \LangXInt{}. We use the AT\&T syntax expected by the GNU
  2235. assembler.
  2236. %
  2237. A program begins with a \code{main} label followed by a sequence of
  2238. instructions. The \key{globl} directive makes the \key{main} procedure
  2239. externally visible so that the operating system can call it.
  2240. %
  2241. An x86 program is stored in the computer's memory. For our purposes,
  2242. the computer's memory is a mapping of 64-bit addresses to 64-bit
  2243. values. The computer has a \emph{program counter}
  2244. (PC)\index{subject}{program counter}\index{subject}{PC} stored in the
  2245. \code{rip} register that points to the address of the next instruction
  2246. to be executed. For most instructions, the program counter is
  2247. incremented after the instruction is executed so that it points to the
  2248. next instruction in memory. Most x86 instructions take two operands,
  2249. each of which is an integer constant (called an \emph{immediate
  2250. value}\index{subject}{immediate value}), a
  2251. \emph{register}\index{subject}{register}, or a memory location.
  2252. \newcommand{\allregisters}{\key{rsp} \MID \key{rbp} \MID \key{rax} \MID \key{rbx} \MID \key{rcx}
  2253. \MID \key{rdx} \MID \key{rsi} \MID \key{rdi} \MID \\
  2254. && \key{r8} \MID \key{r9} \MID \key{r10}
  2255. \MID \key{r11} \MID \key{r12} \MID \key{r13}
  2256. \MID \key{r14} \MID \key{r15}}
  2257. \newcommand{\GrammarXInt}{
  2258. \begin{array}{rcl}
  2259. \Reg &::=& \allregisters{} \\
  2260. \Arg &::=& \key{\$}\Int \MID \key{\%}\Reg \MID \Int\key{(}\key{\%}\Reg\key{)}\\
  2261. \Instr &::=& \key{addq} \; \Arg\key{,} \Arg \MID
  2262. \key{subq} \; \Arg\key{,} \Arg \MID
  2263. \key{negq} \; \Arg \MID \key{movq} \; \Arg\key{,} \Arg \MID \\
  2264. && \key{pushq}\;\Arg \MID \key{popq}\;\Arg \MID
  2265. \key{callq} \; \mathit{label} \MID
  2266. \key{retq} \MID
  2267. \key{jmp}\,\itm{label} \MID \\
  2268. && \itm{label}\key{:}\; \Instr
  2269. \end{array}
  2270. }
  2271. \begin{figure}[tp]
  2272. \begin{tcolorbox}[colback=white]
  2273. {\if\edition\racketEd
  2274. \[
  2275. \begin{array}{l}
  2276. \GrammarXInt \\
  2277. \begin{array}{lcl}
  2278. \LangXIntM{} &::= & \key{.globl main}\\
  2279. & & \key{main:} \; \Instr\ldots
  2280. \end{array}
  2281. \end{array}
  2282. \]
  2283. \fi}
  2284. {\if\edition\pythonEd\pythonColor
  2285. \[
  2286. \begin{array}{lcl}
  2287. \Reg &::=& \allregisters{} \\
  2288. \Arg &::=& \key{\$}\Int \MID \key{\%}\Reg \MID \Int\key{(}\key{\%}\Reg\key{)}\\
  2289. \Instr &::=& \key{addq} \; \Arg\key{,} \Arg \MID
  2290. \key{subq} \; \Arg\key{,} \Arg \MID
  2291. \key{negq} \; \Arg \MID \key{movq} \; \Arg\key{,} \Arg \MID \\
  2292. && \key{callq} \; \mathit{label} \MID
  2293. \key{pushq}\;\Arg \MID \key{popq}\;\Arg \MID \key{retq} \\
  2294. \LangXIntM{} &::= & \key{.globl main}\\
  2295. & & \key{main:} \; \Instr^{*}
  2296. \end{array}
  2297. \]
  2298. \fi}
  2299. \end{tcolorbox}
  2300. \caption{The syntax of the \LangXInt{} assembly language (AT\&T syntax).}
  2301. \label{fig:x86-int-concrete}
  2302. \end{figure}
  2303. A register is a special kind of variable that holds a 64-bit
  2304. value. There are 16 general-purpose registers in the computer; their
  2305. names are given in figure~\ref{fig:x86-int-concrete}. A register is
  2306. written with a percent sign, \key{\%}, followed by its name,
  2307. for example, \key{\%rax}.
  2308. An immediate value is written using the notation \key{\$}$n$ where $n$
  2309. is an integer.
  2310. %
  2311. %
  2312. An access to memory is specified using the syntax $n(\key{\%}r)$,
  2313. which obtains the address stored in register $r$ and then adds $n$
  2314. bytes to the address. The resulting address is used to load or to store
  2315. to memory depending on whether it occurs as a source or destination
  2316. argument of an instruction.
  2317. An arithmetic instruction such as $\key{addq}\,s\key{,}\,d$ reads from
  2318. the source $s$ and destination $d$, applies the arithmetic operation,
  2319. and then writes the result to the destination $d$. \index{subject}{instruction}
  2320. %
  2321. The move instruction $\key{movq}\,s\key{,}\,d$ reads from $s$ and
  2322. stores the result in $d$.
  2323. %
  2324. The $\key{callq}\,\itm{label}$ instruction jumps to the procedure
  2325. specified by the label, and $\key{retq}$ returns from a procedure to
  2326. its caller.
  2327. %
  2328. We discuss procedure calls in more detail further in this chapter and
  2329. in chapter~\ref{ch:Lfun}.
  2330. %
  2331. The last letter \key{q} indicates that these instructions operate on
  2332. quadwords, which are 64-bit values.
  2333. %
  2334. \racket{The instruction $\key{jmp}\,\itm{label}$ updates the program
  2335. counter to the address of the instruction immediately after the
  2336. specified label.}
  2337. Appendix~\ref{sec:x86-quick-reference} contains a reference for
  2338. all the x86 instructions used in this book.
  2339. Figure~\ref{fig:p0-x86} depicts an x86 program that computes
  2340. \racket{\code{(+ 10 32)}}\python{10 + 32}. The instruction
  2341. \lstinline{movq $10, %rax}
  2342. puts $10$ into register \key{rax}, and then \lstinline{addq $32, %rax}
  2343. adds $32$ to the $10$ in \key{rax} and
  2344. puts the result, $42$, into \key{rax}.
  2345. %
  2346. The last instruction \key{retq} finishes the \key{main} function by
  2347. returning the integer in \key{rax} to the operating system. The
  2348. operating system interprets this integer as the program's exit
  2349. code. By convention, an exit code of 0 indicates that a program has
  2350. completed successfully, and all other exit codes indicate various
  2351. errors.
  2352. %
  2353. \racket{However, in this book we return the result of the program
  2354. as the exit code.}
  2355. \begin{figure}[tbp]
  2356. \begin{minipage}{0.45\textwidth}
  2357. \begin{tcolorbox}[colback=white]
  2358. \begin{lstlisting}
  2359. .globl main
  2360. main:
  2361. movq $10, %rax
  2362. addq $32, %rax
  2363. retq
  2364. \end{lstlisting}
  2365. \end{tcolorbox}
  2366. \end{minipage}
  2367. \caption{An x86 program that computes
  2368. \racket{\code{(+ 10 32)}}\python{10 + 32}.}
  2369. \label{fig:p0-x86}
  2370. \end{figure}
  2371. We exhibit the use of memory for storing intermediate results in the
  2372. next example. Figure~\ref{fig:p1-x86} lists an x86 program that
  2373. computes \racket{\code{(+ 52 (- 10))}}\python{52 + -10}. This program
  2374. uses a region of memory called the \emph{procedure call stack}
  2375. (\emph{stack} for
  2376. short). \index{subject}{stack}\index{subject}{procedure call stack}
  2377. The stack consists of a separate \emph{frame}\index{subject}{frame}
  2378. for each procedure call. The memory layout for an individual frame is
  2379. shown in figure~\ref{fig:frame}. The register \key{rsp} is called the
  2380. \emph{stack pointer}\index{subject}{stack pointer} and contains the
  2381. address of the item at the top of the stack. In general, we use the
  2382. term \emph{pointer}\index{subject}{pointer} for something that
  2383. contains an address. The stack grows downward in memory, so we
  2384. increase the size of the stack by subtracting from the stack pointer.
  2385. In the context of a procedure call, the \emph{return
  2386. address}\index{subject}{return address} is the location of the
  2387. instruction that immediately follows the call instruction on the
  2388. caller side. The function call instruction, \code{callq}, pushes the
  2389. return address onto the stack prior to jumping to the procedure. The
  2390. register \key{rbp} is the \emph{base pointer}\index{subject}{base
  2391. pointer} and is used to access variables that are stored in the
  2392. frame of the current procedure call. The base pointer of the caller
  2393. is stored immediately after the return address.
  2394. Figure~\ref{fig:frame} shows the memory layout of a frame with storage
  2395. for $n$ variables, which are numbered from $1$ to $n$. Variable $1$ is
  2396. stored at address $-8\key{(\%rbp)}$, variable $2$ at
  2397. $-16\key{(\%rbp)}$, and so on.
  2398. \begin{figure}[tbp]
  2399. \begin{minipage}{0.66\textwidth}
  2400. \begin{tcolorbox}[colback=white]
  2401. {\if\edition\racketEd
  2402. \begin{lstlisting}
  2403. start:
  2404. movq $10, -8(%rbp)
  2405. negq -8(%rbp)
  2406. movq -8(%rbp), %rax
  2407. addq $52, %rax
  2408. jmp conclusion
  2409. .globl main
  2410. main:
  2411. pushq %rbp
  2412. movq %rsp, %rbp
  2413. subq $16, %rsp
  2414. jmp start
  2415. conclusion:
  2416. addq $16, %rsp
  2417. popq %rbp
  2418. retq
  2419. \end{lstlisting}
  2420. \fi}
  2421. {\if\edition\pythonEd\pythonColor
  2422. \begin{lstlisting}
  2423. .globl main
  2424. main:
  2425. pushq %rbp
  2426. movq %rsp, %rbp
  2427. subq $16, %rsp
  2428. movq $10, -8(%rbp)
  2429. negq -8(%rbp)
  2430. movq -8(%rbp), %rax
  2431. addq $52, %rax
  2432. addq $16, %rsp
  2433. popq %rbp
  2434. retq
  2435. \end{lstlisting}
  2436. \fi}
  2437. \end{tcolorbox}
  2438. \end{minipage}
  2439. \caption{An x86 program that computes
  2440. \racket{\code{(+ 52 (- 10))}}\python{52 + -10}.}
  2441. \label{fig:p1-x86}
  2442. \end{figure}
  2443. \begin{figure}[tbp]
  2444. \begin{minipage}{0.66\textwidth}
  2445. \begin{tcolorbox}[colback=white]
  2446. \centering
  2447. \begin{tabular}{|r|l|} \hline
  2448. Position & Contents \\ \hline
  2449. $8$(\key{\%rbp}) & return address \\
  2450. $0$(\key{\%rbp}) & old \key{rbp} \\
  2451. $-8$(\key{\%rbp}) & variable $1$ \\
  2452. $-16$(\key{\%rbp}) & variable $2$ \\
  2453. \ldots & \ldots \\
  2454. $0$(\key{\%rsp}) & variable $n$\\ \hline
  2455. \end{tabular}
  2456. \end{tcolorbox}
  2457. \end{minipage}
  2458. \caption{Memory layout of a frame.}
  2459. \label{fig:frame}
  2460. \end{figure}
  2461. In the program shown in figure~\ref{fig:p1-x86}, consider how control
  2462. is transferred from the operating system to the \code{main} function.
  2463. The operating system issues a \code{callq main} instruction that
  2464. pushes its return address on the stack and then jumps to
  2465. \code{main}. In x86-64, the stack pointer \code{rsp} must be divisible
  2466. by 16 bytes prior to the execution of any \code{callq} instruction, so
  2467. that when control arrives at \code{main}, the \code{rsp} is 8 bytes
  2468. out of alignment (because the \code{callq} pushed the return address).
  2469. The first three instructions are the typical
  2470. \emph{prelude}\index{subject}{prelude} for a procedure. The
  2471. instruction \code{pushq \%rbp} first subtracts $8$ from the stack
  2472. pointer \code{rsp} and then saves the base pointer of the caller at
  2473. address \code{rsp} on the stack. The next instruction \code{movq
  2474. \%rsp, \%rbp} sets the base pointer to the current stack pointer,
  2475. which is pointing to the location of the old base pointer. The
  2476. instruction \code{subq \$16, \%rsp} moves the stack pointer down to
  2477. make enough room for storing variables. This program needs one
  2478. variable ($8$ bytes), but we round up to 16 bytes so that \code{rsp} is
  2479. 16-byte-aligned, and then we are ready to make calls to other functions.
  2480. \racket{The last instruction of the prelude is \code{jmp start}, which
  2481. transfers control to the instructions that were generated from the
  2482. expression \racket{\code{(+ 52 (- 10))}}\python{52 + -10}.}
  2483. \racket{The first instruction under the \code{start} label is}
  2484. %
  2485. \python{The first instruction after the prelude is}
  2486. %
  2487. \code{movq \$10, -8(\%rbp)}, which stores $10$ in variable $1$.
  2488. %
  2489. The instruction \code{negq -8(\%rbp)} changes the contents of variable
  2490. $1$ to $-10$.
  2491. %
  2492. The next instruction moves the $-10$ from variable $1$ into the
  2493. \code{rax} register. Finally, \code{addq \$52, \%rax} adds $52$ to
  2494. the value in \code{rax}, updating its contents to $42$.
  2495. \racket{The three instructions under the label \code{conclusion} are the
  2496. typical \emph{conclusion}\index{subject}{conclusion} of a procedure.}
  2497. %
  2498. \python{The \emph{conclusion}\index{subject}{conclusion} of the
  2499. \code{main} function consists of the last three instructions.}
  2500. %
  2501. The first two restore the \code{rsp} and \code{rbp} registers to their
  2502. states at the beginning of the procedure. In particular,
  2503. \key{addq \$16, \%rsp} moves the stack pointer to point to the
  2504. old base pointer. Then \key{popq \%rbp} restores the old base pointer
  2505. to \key{rbp} and adds $8$ to the stack pointer. The last instruction,
  2506. \key{retq}, jumps back to the procedure that called this one and adds
  2507. $8$ to the stack pointer.
  2508. Our compiler needs a convenient representation for manipulating x86
  2509. programs, so we define an abstract syntax for x86, shown in
  2510. figure~\ref{fig:x86-int-ast}. We refer to this language as
  2511. \LangXInt{}.
  2512. %
  2513. {\if\edition\pythonEd\pythonColor%
  2514. The main difference between this and the concrete syntax of \LangXInt{}
  2515. (figure~\ref{fig:x86-int-concrete}) is that labels, instruction
  2516. names, and register names are explicitly represented by strings.
  2517. \fi} %
  2518. {\if\edition\racketEd
  2519. The main difference between this and the concrete syntax of \LangXInt{}
  2520. (figure~\ref{fig:x86-int-concrete}) is that labels are not allowed in
  2521. front of every instruction. Instead instructions are grouped into
  2522. \emph{basic blocks}\index{subject}{basic block} with a
  2523. label associated with every basic block; this is why the \key{X86Program}
  2524. struct includes an alist mapping labels to basic blocks. The reason for this
  2525. organization becomes apparent in chapter~\ref{ch:Lif} when we
  2526. introduce conditional branching. The \code{Block} structure includes
  2527. an $\itm{info}$ field that is not needed in this chapter but becomes
  2528. useful in chapter~\ref{ch:register-allocation-Lvar}. For now, the
  2529. $\itm{info}$ field should contain an empty list.
  2530. \fi}
  2531. %
  2532. Regarding the abstract syntax for \code{callq}, the \code{Callq} AST
  2533. node includes an integer for representing the arity of the function,
  2534. that is, the number of arguments, which is helpful to know during
  2535. register allocation (chapter~\ref{ch:register-allocation-Lvar}).
  2536. \newcommand{\allastregisters}{\skey{rsp} \MID \skey{rbp} \MID \skey{rax} \MID \skey{rbx} \MID \skey{rcx}
  2537. \MID \skey{rdx} \MID \skey{rsi} \MID \skey{rdi} \MID \\
  2538. && \skey{r8} \MID \skey{r9} \MID \skey{r10}
  2539. \MID \skey{r11} \MID \skey{r12} \MID \skey{r13}
  2540. \MID \skey{r14} \MID \skey{r15}}
  2541. \newcommand{\ASTXIntRacket}{
  2542. \begin{array}{lcl}
  2543. \Reg &::=& \allregisters{} \\
  2544. \Arg &::=& \IMM{\Int} \MID \REG{\Reg}
  2545. \MID \DEREF{\Reg}{\Int} \\
  2546. \Instr &::=& \BININSTR{\code{addq}}{\Arg}{\Arg}
  2547. \MID \BININSTR{\code{subq}}{\Arg}{\Arg}\\
  2548. &\MID& \UNIINSTR{\code{negq}}{\Arg}
  2549. \MID \BININSTR{\code{movq}}{\Arg}{\Arg}\\
  2550. &\MID& \PUSHQ{\Arg}
  2551. \MID \POPQ{\Arg} \\
  2552. &\MID& \CALLQ{\itm{label}}{\itm{int}}
  2553. \MID \RETQ{}
  2554. \MID \JMP{\itm{label}} \\
  2555. \Block &::= & \BLOCK{\itm{info}}{\LP\Instr\ldots\RP}
  2556. \end{array}
  2557. }
  2558. \newcommand{\ASTXIntPython}{
  2559. \begin{array}{lcl}
  2560. \Reg &::=& \allregisters{} \\
  2561. \Arg &::=& \IMM{\Int} \MID \REG{\Reg}
  2562. \MID \DEREF{\Reg}{\Int} \\
  2563. \Instr &::=& \BININSTR{\skey{addq}}{\Arg}{\Arg}
  2564. \MID \BININSTR{\skey{subq}}{\Arg}{\Arg}\\
  2565. &\MID& \UNIINSTR{\skey{negq}}{\Arg}
  2566. \MID \BININSTR{\skey{movq}}{\Arg}{\Arg}\\
  2567. &\MID& \PUSHQ{\Arg}
  2568. \MID \POPQ{\Arg} \\
  2569. &\MID& \CALLQ{\itm{label}}{\itm{int}}
  2570. \MID \RETQ{}
  2571. \MID \JMP{\itm{label}} \\
  2572. \Block &::= & \Instr^{+}
  2573. \end{array}
  2574. }
  2575. \begin{figure}[tp]
  2576. \begin{tcolorbox}[colback=white]
  2577. \small
  2578. {\if\edition\racketEd
  2579. \[\arraycolsep=3pt
  2580. \begin{array}{l}
  2581. \ASTXIntRacket \\
  2582. \begin{array}{lcl}
  2583. \LangXIntM{} &::= & \XPROGRAM{\itm{info}}{\LP\LP\itm{label} \,\key{.}\, \Block \RP\ldots\RP}
  2584. \end{array}
  2585. \end{array}
  2586. \]
  2587. \fi}
  2588. {\if\edition\pythonEd\pythonColor
  2589. \[
  2590. \begin{array}{lcl}
  2591. \Reg &::=& \allastregisters{} \\
  2592. \Arg &::=& \IMM{\Int} \MID \REG{\Reg}
  2593. \MID \DEREF{\Reg}{\Int} \\
  2594. \Instr &::=& \BININSTR{\scode{addq}}{\Arg}{\Arg}
  2595. \MID \BININSTR{\scode{subq}}{\Arg}{\Arg} \\
  2596. &\MID& \BININSTR{\scode{movq}}{\Arg}{\Arg}
  2597. \MID \UNIINSTR{\scode{negq}}{\Arg}\\
  2598. &\MID& \PUSHQ{\Arg} \MID \POPQ{\Arg} \\
  2599. &\MID& \CALLQ{\itm{label}}{\itm{int}} \MID \RETQ{} \MID \JMP{\itm{label}} \\
  2600. \LangXIntM{} &::= & \XPROGRAM{}{\Instr^{*}}{}
  2601. \end{array}
  2602. \]
  2603. \fi}
  2604. \end{tcolorbox}
  2605. \caption{The abstract syntax of \LangXInt{} assembly.}
  2606. \label{fig:x86-int-ast}
  2607. \end{figure}
  2608. \section{Planning the Trip to x86}
  2609. \label{sec:plan-s0-x86}
  2610. To compile one language to another, it helps to focus on the
  2611. differences between the two languages because the compiler will need
  2612. to bridge those differences. What are the differences between \LangVar{}
  2613. and x86 assembly? Here are some of the most important ones:
  2614. \begin{enumerate}
  2615. \item x86 arithmetic instructions typically have two arguments and
  2616. update the second argument in place. In contrast, \LangVar{}
  2617. arithmetic operations take two arguments and produce a new value.
  2618. An x86 instruction may have at most one memory-accessing argument.
  2619. Furthermore, some x86 instructions place special restrictions on
  2620. their arguments.
  2621. \item An argument of an \LangVar{} operator can be a deeply nested
  2622. expression, whereas x86 instructions restrict their arguments to be
  2623. integer constants, registers, and memory locations.
  2624. {\if\edition\racketEd
  2625. \item The order of execution in x86 is explicit in the syntax, which
  2626. is a sequence of instructions and jumps to labeled positions,
  2627. whereas in \LangVar{} the order of evaluation is a left-to-right
  2628. depth-first traversal of the abstract syntax tree. \fi}
  2629. \item A program in \LangVar{} can have any number of variables,
  2630. whereas x86 has 16 registers and the procedure call stack.
  2631. {\if\edition\racketEd
  2632. \item Variables in \LangVar{} can shadow other variables with the
  2633. same name. In x86, registers have unique names, and memory locations
  2634. have unique addresses.
  2635. \fi}
  2636. \end{enumerate}
  2637. We ease the challenge of compiling from \LangVar{} to x86 by breaking
  2638. down the problem into several steps, which deal with these differences
  2639. one at a time. Each of these steps is called a \emph{pass} of the
  2640. compiler.\index{subject}{pass}\index{subject}{compiler pass}
  2641. %
  2642. This term indicates that each step passes over, or traverses, the AST
  2643. of the program.
  2644. %
  2645. Furthermore, we follow the nanopass approach, which means that we
  2646. strive for each pass to accomplish one clear objective rather than two
  2647. or three at the same time.
  2648. %
  2649. We begin by sketching how we might implement each pass and give each
  2650. pass a name. We then figure out an ordering of the passes and the
  2651. input/output language for each pass. The very first pass has
  2652. \LangVar{} as its input language, and the last pass has \LangXInt{} as
  2653. its output language. In between these two passes, we can choose
  2654. whichever language is most convenient for expressing the output of
  2655. each pass, whether that be \LangVar{}, \LangXInt{}, or a new
  2656. \emph{intermediate language} of our own design. Finally, to
  2657. implement each pass we write one recursive function per nonterminal in
  2658. the grammar of the input language of the pass.
  2659. \index{subject}{intermediate language}
  2660. Our compiler for \LangVar{} consists of the following passes:
  2661. %
  2662. \begin{description}
  2663. {\if\edition\racketEd
  2664. \item[\key{uniquify}] deals with the shadowing of variables by
  2665. renaming every variable to a unique name.
  2666. \fi}
  2667. \item[\key{remove\_complex\_operands}] ensures that each subexpression
  2668. of a primitive operation or function call is a variable or integer,
  2669. that is, an \emph{atomic} expression. We refer to nonatomic
  2670. expressions as \emph{complex}. This pass introduces temporary
  2671. variables to hold the results of complex
  2672. subexpressions.\index{subject}{atomic
  2673. expression}\index{subject}{complex expression}%
  2674. {\if\edition\racketEd
  2675. \item[\key{explicate\_control}] makes the execution order of the
  2676. program explicit. It converts the abstract syntax tree
  2677. representation into a graph in which each node is a labeled sequence
  2678. of statements and the edges are \code{goto} statements.
  2679. \fi}
  2680. \item[\key{select\_instructions}]\index{subject}{select instructions}
  2681. handles the difference between
  2682. \LangVar{} operations and x86 instructions. This pass converts each
  2683. \LangVar{} operation to a short sequence of instructions that
  2684. accomplishes the same task.
  2685. \item[\key{assign\_homes}] replaces variables with registers or stack
  2686. locations.
  2687. \end{description}
  2688. %
  2689. {\if\edition\racketEd
  2690. %
  2691. Our treatment of \code{remove\_complex\_operands} and
  2692. \code{explicate\_control} as separate passes is an example of the
  2693. nanopass approach.\footnote{For analogous decompositions of the
  2694. translation into continuation passing style, see the work of
  2695. \citet{Lawall:1993} and \citet{Hatcliff:1994ea}.} The traditional
  2696. approach is to combine them into a single step~\citep{Aho:2006wb}.
  2697. %
  2698. \fi}
  2699. The next question is, in what order should we apply these passes? This
  2700. question can be challenging because it is difficult to know ahead of
  2701. time which orderings will be better (that is, will be easier to
  2702. implement, produce more efficient code, and so on), and therefore
  2703. ordering often involves trial and error. Nevertheless, we can plan
  2704. ahead and make educated choices regarding the ordering.
  2705. \racket{What should be the ordering of \key{explicate\_control} with respect to
  2706. \key{uniquify}? The \key{uniquify} pass should come first because
  2707. \key{explicate\_control} changes all the \key{let}-bound variables to
  2708. become local variables whose scope is the entire program, which would
  2709. confuse variables with the same name.}
  2710. %
  2711. \racket{We place \key{remove\_complex\_operands} before \key{explicate\_control}
  2712. because the latter removes the \key{let} form, but it is convenient to
  2713. use \key{let} in the output of \key{remove\_complex\_operands}.}
  2714. %
  2715. \racket{The ordering of \key{uniquify} with respect to
  2716. \key{remove\_complex\_operands} does not matter, so we arbitrarily choose
  2717. \key{uniquify} to come first.}
  2718. The \key{select\_instructions} and \key{assign\_homes} passes are
  2719. intertwined.
  2720. %
  2721. In chapter~\ref{ch:Lfun} we learn that in x86, registers are used for
  2722. passing arguments to functions and that it is preferable to assign
  2723. parameters to their corresponding registers. This suggests that it
  2724. would be better to start with the \key{select\_instructions} pass,
  2725. which generates the instructions for argument passing, before
  2726. performing register allocation.
  2727. %
  2728. On the other hand, by selecting instructions first we may run into a
  2729. dead end in \key{assign\_homes}. Recall that only one argument of an
  2730. x86 instruction may be a memory access, but \key{assign\_homes} might
  2731. be forced to assign both arguments to memory locations.
  2732. %
  2733. A sophisticated approach is to repeat the two passes until a solution
  2734. is found. However, to reduce implementation complexity we recommend
  2735. placing \key{select\_instructions} first, followed by the
  2736. \key{assign\_homes}, and then a third pass named \key{patch\_instructions}
  2737. that uses a reserved register to fix outstanding problems.
  2738. \begin{figure}[tbp]
  2739. \begin{tcolorbox}[colback=white]
  2740. {\if\edition\racketEd
  2741. \begin{tikzpicture}[baseline=(current bounding box.center),scale=0.90]
  2742. \node (Lvar) at (0,2) {\large \LangVar{}};
  2743. \node (Lvar-2) at (3,2) {\large \LangVar{}};
  2744. \node (Lvar-3) at (7,2) {\large \LangVarANF{}};
  2745. %\node (Cvar-1) at (6,0) {\large \LangCVar{}};
  2746. \node (Cvar-2) at (0,0) {\large \LangCVar{}};
  2747. \node (x86-2) at (0,-2) {\large \LangXVar{}};
  2748. \node (x86-3) at (3,-2) {\large \LangXVar{}};
  2749. \node (x86-4) at (7,-2) {\large \LangXInt{}};
  2750. \node (x86-5) at (11,-2) {\large \LangXInt{}};
  2751. \path[->,bend left=15] (Lvar) edge [above] node {\ttfamily\footnotesize uniquify} (Lvar-2);
  2752. \path[->,bend left=15] (Lvar-2) edge [above] node {\ttfamily\footnotesize remove\_complex\_operands} (Lvar-3);
  2753. \path[->,bend left=15] (Lvar-3) edge [right] node {\ttfamily\footnotesize\ \ explicate\_control} (Cvar-2);
  2754. \path[->,bend right=15] (Cvar-2) edge [right] node {\ttfamily\footnotesize select\_instructions} (x86-2);
  2755. \path[->,bend right=15] (x86-2) edge [below] node {\ttfamily\footnotesize assign\_homes} (x86-3);
  2756. \path[->,bend left=15] (x86-3) edge [above] node {\ttfamily\footnotesize patch\_instructions} (x86-4);
  2757. \path[->,bend left=15] (x86-4) edge [above] node {\ttfamily\footnotesize prelude\_and\_conclusion} (x86-5);
  2758. \end{tikzpicture}
  2759. \fi}
  2760. {\if\edition\pythonEd\pythonColor
  2761. \begin{tikzpicture}[baseline=(current bounding box.center),scale=0.85]
  2762. \node (Lvar) at (0,2) {\large \LangVar{}};
  2763. \node (Lvar-2) at (4,2) {\large \LangVarANF{}};
  2764. \node (x86-1) at (0,0) {\large \LangXVar{}};
  2765. \node (x86-2) at (4,0) {\large \LangXVar{}};
  2766. \node (x86-3) at (8,0) {\large \LangXInt{}};
  2767. \node (x86-4) at (12,0) {\large \LangXInt{}};
  2768. \path[->,bend left=15] (Lvar) edge [above] node {\ttfamily\footnotesize remove\_complex\_operands} (Lvar-2);
  2769. \path[->,bend left=15] (Lvar-2) edge [left] node {\ttfamily\footnotesize select\_instructions\ \ } (x86-1);
  2770. \path[->,bend right=15] (x86-1) edge [below] node {\ttfamily\footnotesize assign\_homes} (x86-2);
  2771. \path[->,bend left=15] (x86-2) edge [above] node {\ttfamily\footnotesize patch\_instructions} (x86-3);
  2772. \path[->,bend right=15] (x86-3) edge [below] node {\ttfamily\footnotesize prelude\_and\_conclusion} (x86-4);
  2773. \end{tikzpicture}
  2774. \fi}
  2775. \end{tcolorbox}
  2776. \caption{Diagram of the passes for compiling \LangVar{}. }
  2777. \label{fig:Lvar-passes}
  2778. \end{figure}
  2779. Figure~\ref{fig:Lvar-passes} presents the ordering of the compiler
  2780. passes and identifies the input and output language of each pass.
  2781. %
  2782. The output of the \key{select\_instructions} pass is the \LangXVar{}
  2783. language, which extends \LangXInt{} with an unbounded number of
  2784. program-scope variables and removes the restrictions regarding
  2785. instruction arguments.
  2786. %
  2787. The last pass, \key{prelude\_and\_conclusion}, places the program
  2788. instructions inside a \code{main} function with instructions for the
  2789. prelude and conclusion.
  2790. %
  2791. \racket{In the next section we discuss the \LangCVar{} intermediate
  2792. language that serves as the output of \code{explicate\_control}.}
  2793. %
  2794. The remainder of this chapter provides guidance on the implementation
  2795. of each of the compiler passes represented in
  2796. figure~\ref{fig:Lvar-passes}.
  2797. %% The output of \key{uniquify} and \key{remove-complex-operands}
  2798. %% are programs that are still in the \LangVar{} language, though the
  2799. %% output of the later is a subset of \LangVar{} named \LangVarANF{}
  2800. %% (section~\ref{sec:remove-complex-opera-Lvar}).
  2801. %% %
  2802. %% The output of \code{explicate\_control} is in an intermediate language
  2803. %% \LangCVar{} designed to make the order of evaluation explicit in its
  2804. %% syntax, which we introduce in the next section. The
  2805. %% \key{select-instruction} pass translates from \LangCVar{} to
  2806. %% \LangXVar{}. The \key{assign-homes} and
  2807. %% \key{patch-instructions}
  2808. %% passes input and output variants of x86 assembly.
  2809. \newcommand{\CvarGrammarRacket}{
  2810. \begin{array}{lcl}
  2811. \Atm &::=& \Int \MID \Var \\
  2812. \Exp &::=& \Atm \MID \CREAD{} \MID \CNEG{\Atm} \MID \CADD{\Atm}{\Atm} \MID \CSUB{\Atm}{\Atm}\\
  2813. \Stmt &::=& \CASSIGN{\Var}{\Exp} \\
  2814. \Tail &::= & \CRETURN{\Exp} \MID \Stmt~\Tail
  2815. \end{array}
  2816. }
  2817. \newcommand{\CvarASTRacket}{
  2818. \begin{array}{lcl}
  2819. \Atm &::=& \INT{\Int} \MID \VAR{\Var} \\
  2820. \Exp &::=& \Atm \MID \READ{} \MID \NEG{\Atm} \\
  2821. &\MID& \ADD{\Atm}{\Atm} \MID \SUB{\Atm}{\Atm}\\
  2822. \Stmt &::=& \ASSIGN{\VAR{\Var}}{\Exp} \\
  2823. \Tail &::= & \RETURN{\Exp} \MID \SEQ{\Stmt}{\Tail}
  2824. \end{array}
  2825. }
  2826. {\if\edition\racketEd
  2827. \subsection{The \LangCVar{} Intermediate Language}
  2828. The output of \code{explicate\_control} is similar to the C
  2829. language~\citep{Kernighan:1988nx} in that it has separate syntactic
  2830. categories for expressions and statements, so we name it \LangCVar{}.
  2831. This style of intermediate language is also known as
  2832. \emph{three-address code}, to emphasize that the typical form of a
  2833. statement such as \CASSIGN{\key{x}}{\CADD{\key{y}}{\key{z}}} involves three
  2834. addresses: \code{x}, \code{y}, and \code{z}~\citep{Aho:2006wb}.
  2835. The concrete syntax for \LangCVar{} is shown in
  2836. figure~\ref{fig:c0-concrete-syntax}, and the abstract syntax for
  2837. \LangCVar{} is shown in figure~\ref{fig:c0-syntax}.
  2838. %
  2839. The \LangCVar{} language supports the same operators as \LangVar{} but
  2840. the arguments of operators are restricted to atomic
  2841. expressions. Instead of \key{let} expressions, \LangCVar{} has
  2842. assignment statements that can be executed in sequence using the
  2843. \key{Seq} form. A sequence of statements always ends with
  2844. \key{Return}, a guarantee that is baked into the grammar rules for
  2845. \itm{tail}. The naming of this nonterminal comes from the term
  2846. \emph{tail position}\index{subject}{tail position}, which refers to an
  2847. expression that is the last one to execute within a function or
  2848. program.
  2849. A \LangCVar{} program consists of an alist mapping labels to
  2850. tails. This is more general than necessary for the present chapter, as
  2851. we do not yet introduce \key{goto} for jumping to labels, but it saves
  2852. us from having to change the syntax in chapter~\ref{ch:Lif}. For now
  2853. there is just one label, \key{start}, and the whole program is
  2854. its tail.
  2855. %
  2856. The $\itm{info}$ field of the \key{CProgram} form, after the
  2857. \code{explicate\_control} pass, contains an alist that associates the
  2858. symbol \key{locals} with a list of all the variables used in the
  2859. program. At the start of the program, these variables are
  2860. uninitialized; they become initialized on their first assignment.
  2861. \begin{figure}[tbp]
  2862. \begin{tcolorbox}[colback=white]
  2863. \[
  2864. \begin{array}{l}
  2865. \CvarGrammarRacket \\
  2866. \begin{array}{lcl}
  2867. \LangCVarM{} & ::= & (\itm{label}\key{:}~ \Tail)\ldots
  2868. \end{array}
  2869. \end{array}
  2870. \]
  2871. \end{tcolorbox}
  2872. \caption{The concrete syntax of the \LangCVar{} intermediate language.}
  2873. \label{fig:c0-concrete-syntax}
  2874. \end{figure}
  2875. \begin{figure}[tbp]
  2876. \begin{tcolorbox}[colback=white]
  2877. \[
  2878. \begin{array}{l}
  2879. \CvarASTRacket \\
  2880. \begin{array}{lcl}
  2881. \LangCVarM{} & ::= & \CPROGRAM{\itm{info}}{\LP\LP\itm{label}\,\key{.}\,\Tail\RP\ldots\RP}
  2882. \end{array}
  2883. \end{array}
  2884. \]
  2885. \end{tcolorbox}
  2886. \caption{The abstract syntax of the \LangCVar{} intermediate language.}
  2887. \label{fig:c0-syntax}
  2888. \end{figure}
  2889. The definitional interpreter for \LangCVar{} is in the support code,
  2890. in the file \code{interp-Cvar.rkt}.
  2891. \fi}
  2892. {\if\edition\racketEd
  2893. \section{Uniquify Variables}
  2894. \label{sec:uniquify-Lvar}
  2895. The \code{uniquify} pass replaces the variable bound by each \key{let}
  2896. with a unique name. Both the input and output of the \code{uniquify}
  2897. pass is the \LangVar{} language. For example, the \code{uniquify} pass
  2898. should translate the program on the left into the program on the
  2899. right.
  2900. \begin{transformation}
  2901. \begin{lstlisting}
  2902. (let ([x 32])
  2903. (+ (let ([x 10]) x) x))
  2904. \end{lstlisting}
  2905. \compilesto
  2906. \begin{lstlisting}
  2907. (let ([x.1 32])
  2908. (+ (let ([x.2 10]) x.2) x.1))
  2909. \end{lstlisting}
  2910. \end{transformation}
  2911. The following is another example translation, this time of a program
  2912. with a \key{let} nested inside the initializing expression of another
  2913. \key{let}.
  2914. \begin{transformation}
  2915. \begin{lstlisting}
  2916. (let ([x (let ([x 4])
  2917. (+ x 1))])
  2918. (+ x 2))
  2919. \end{lstlisting}
  2920. \compilesto
  2921. \begin{lstlisting}
  2922. (let ([x.2 (let ([x.1 4])
  2923. (+ x.1 1))])
  2924. (+ x.2 2))
  2925. \end{lstlisting}
  2926. \end{transformation}
  2927. We recommend implementing \code{uniquify} by creating a structurally
  2928. recursive function named \code{uniquify\_exp} that does little other
  2929. than copy an expression. However, when encountering a \key{let}, it
  2930. should generate a unique name for the variable and associate the old
  2931. name with the new name in an alist.\footnote{The Racket function
  2932. \code{gensym} is handy for generating unique variable names.} The
  2933. \code{uniquify\_exp} function needs to access this alist when it gets
  2934. to a variable reference, so we add a parameter to \code{uniquify\_exp}
  2935. for the alist.
  2936. The skeleton of the \code{uniquify\_exp} function is shown in
  2937. figure~\ref{fig:uniquify-Lvar}.
  2938. %% The function is curried so that it is
  2939. %% convenient to partially apply it to an alist and then apply it to
  2940. %% different expressions, as in the last case for primitive operations in
  2941. %% figure~\ref{fig:uniquify-Lvar}.
  2942. The
  2943. %
  2944. \href{https://docs.racket-lang.org/reference/for.html#%28form._%28%28lib._racket%2Fprivate%2Fbase..rkt%29._for%2Flist%29%29}{\key{for/list}}
  2945. %
  2946. form of Racket is useful for transforming the element of a list to
  2947. produce a new list.\index{subject}{for/list}
  2948. \begin{figure}[tbp]
  2949. \begin{tcolorbox}[colback=white]
  2950. \begin{lstlisting}
  2951. (define (uniquify_exp env)
  2952. (lambda (e)
  2953. (match e
  2954. [(Var x) ___]
  2955. [(Int n) (Int n)]
  2956. [(Let x e body) ___]
  2957. [(Prim op es)
  2958. (Prim op (for/list ([e es]) ((uniquify_exp env) e)))])))
  2959. (define (uniquify p)
  2960. (match p
  2961. [(Program '() e) (Program '() ((uniquify_exp '()) e))]))
  2962. \end{lstlisting}
  2963. \end{tcolorbox}
  2964. \caption{Skeleton for the \key{uniquify} pass.}
  2965. \label{fig:uniquify-Lvar}
  2966. \end{figure}
  2967. \begin{exercise}
  2968. \normalfont\normalsize % I don't like the italics for exercises. -Jeremy
  2969. Complete the \code{uniquify} pass by filling in the blanks in
  2970. figure~\ref{fig:uniquify-Lvar}; that is, implement the cases for
  2971. variables and for the \key{let} form in the file \code{compiler.rkt}
  2972. in the support code.
  2973. \end{exercise}
  2974. \begin{exercise}
  2975. \normalfont\normalsize
  2976. \label{ex:Lvar}
  2977. Create five \LangVar{} programs that exercise the most interesting
  2978. parts of the \key{uniquify} pass; that is, the programs should include
  2979. \key{let} forms, variables, and variables that shadow each other.
  2980. The five programs should be placed in the subdirectory named
  2981. \key{tests}, and the file names should start with \code{var\_test\_}
  2982. followed by a unique integer and end with the file extension
  2983. \key{.rkt}.
  2984. %
  2985. The \key{run-tests.rkt} script in the support code checks whether the
  2986. output programs produce the same result as the input programs. The
  2987. script uses the \key{interp-tests} function
  2988. (appendix~\ref{appendix:utilities}) from \key{utilities.rkt} to test
  2989. your \key{uniquify} pass on the example programs. The \code{passes}
  2990. parameter of \key{interp-tests} is a list that should have one entry
  2991. for each pass in your compiler. For now, define \code{passes} to
  2992. contain just one entry for \code{uniquify} as follows:
  2993. \begin{lstlisting}
  2994. (define passes
  2995. (list (list "uniquify" uniquify interp_Lvar type-check-Lvar)))
  2996. \end{lstlisting}
  2997. Run the \key{run-tests.rkt} script in the support code to check
  2998. whether the output programs produce the same result as the input
  2999. programs.
  3000. \end{exercise}
  3001. \fi}
  3002. \section{Remove Complex Operands}
  3003. \label{sec:remove-complex-opera-Lvar}
  3004. The \code{remove\_complex\_operands} pass compiles \LangVar{} programs
  3005. into a restricted form in which the arguments of operations are atomic
  3006. expressions. Put another way, this pass removes complex
  3007. operands\index{subject}{complex operand}, such as the expression
  3008. \racket{\code{(- 10)}}\python{\code{-10}}
  3009. in the following program. This is accomplished by introducing a new
  3010. temporary variable, assigning the complex operand to the new
  3011. variable, and then using the new variable in place of the complex
  3012. operand, as shown in the output of \code{remove\_complex\_operands} on the
  3013. right.
  3014. {\if\edition\racketEd
  3015. \begin{transformation}
  3016. % var_test_19.rkt
  3017. \begin{lstlisting}
  3018. (let ([x (+ 42 (- 10))])
  3019. (+ x 10))
  3020. \end{lstlisting}
  3021. \compilesto
  3022. \begin{lstlisting}
  3023. (let ([x (let ([tmp.1 (- 10)])
  3024. (+ 42 tmp.1))])
  3025. (+ x 10))
  3026. \end{lstlisting}
  3027. \end{transformation}
  3028. \fi}
  3029. {\if\edition\pythonEd\pythonColor
  3030. \begin{transformation}
  3031. \begin{lstlisting}
  3032. x = 42 + -10
  3033. print(x + 10)
  3034. \end{lstlisting}
  3035. \compilesto
  3036. \begin{lstlisting}
  3037. tmp_0 = -10
  3038. x = 42 + tmp_0
  3039. tmp_1 = x + 10
  3040. print(tmp_1)
  3041. \end{lstlisting}
  3042. \end{transformation}
  3043. \fi}
  3044. \newcommand{\LvarMonadASTRacket}{
  3045. \begin{array}{rcl}
  3046. \Atm &::=& \INT{\Int} \MID \VAR{\Var} \\
  3047. \Exp &::=& \Atm \MID \READ{} \\
  3048. &\MID& \NEG{\Atm} \MID \ADD{\Atm}{\Atm} \MID \SUB{\Atm}{\Atm} \\
  3049. &\MID& \LET{\Var}{\Exp}{\Exp} \\
  3050. \end{array}
  3051. }
  3052. \newcommand{\LvarMonadASTPython}{
  3053. \begin{array}{rcl}
  3054. \Atm &::=& \INT{\Int} \MID \VAR{\Var} \\
  3055. \Exp{} &::=& \Atm \MID \READ{} \\
  3056. &\MID& \UNIOP{\key{USub()}}{\Atm} \MID \BINOP{\Atm}{\key{Add()}}{\Atm} \\
  3057. &\MID& \BINOP{\Atm}{\key{Sub()}}{\Atm} \\
  3058. \Stmt{} &::=& \PRINT{\Atm} \MID \EXPR{\Exp} \\
  3059. &\MID& \ASSIGN{\VAR{\Var}}{\Exp}
  3060. \end{array}
  3061. }
  3062. \begin{figure}[tp]
  3063. \centering
  3064. \begin{tcolorbox}[colback=white]
  3065. {\if\edition\racketEd
  3066. \[
  3067. \begin{array}{l}
  3068. \LvarMonadASTRacket \\
  3069. \begin{array}{rcl}
  3070. \LangVarANFM{} &::=& \PROGRAM{\code{'()}}{\Exp}
  3071. \end{array}
  3072. \end{array}
  3073. \]
  3074. \fi}
  3075. {\if\edition\pythonEd\pythonColor
  3076. \[
  3077. \begin{array}{l}
  3078. \LvarMonadASTPython \\
  3079. \begin{array}{rcl}
  3080. \LangVarANFM{} &::=& \PROGRAM{}{\Stmt^{*}}
  3081. \end{array}
  3082. \end{array}
  3083. \]
  3084. \fi}
  3085. \end{tcolorbox}
  3086. \caption{\LangVarANF{} is \LangVar{} with operands restricted to
  3087. atomic expressions.}
  3088. \label{fig:Lvar-anf-syntax}
  3089. \end{figure}
  3090. Figure~\ref{fig:Lvar-anf-syntax} presents the grammar for the output
  3091. of this pass, the language \LangVarANF{}. The only difference is that
  3092. operator arguments are restricted to be atomic expressions that are
  3093. defined by the \Atm{} nonterminal. In particular, integer constants
  3094. and variables are atomic.
  3095. The atomic expressions are pure (they do not cause or depend on side
  3096. effects) whereas complex expressions may have side effects, such as
  3097. \READ{}. A language with this separation between pure expressions
  3098. versus expressions with side effects is said to be in monadic normal
  3099. form~\citep{Moggi:1991in,Danvy:2003fk}, which explains the \textit{mon}
  3100. in the name \LangVarANF{}. An important invariant of the
  3101. \code{remove\_complex\_operands} pass is that the relative ordering
  3102. among complex expressions is not changed, but the relative ordering
  3103. between atomic expressions and complex expressions can change and
  3104. often does. These changes are behavior preserving because
  3105. atomic expressions are pure.
  3106. {\if\edition\racketEd
  3107. Another well-known form for intermediate languages is the
  3108. \emph{administrative normal form}
  3109. (ANF)~\citep{Danvy:1991fk,Flanagan:1993cg}.
  3110. \index{subject}{administrative normal form} \index{subject}{ANF}
  3111. %
  3112. The \LangVarANF{} language is not quite in ANF because it allows the
  3113. right-hand side of a \code{let} to be a complex expression, such as
  3114. another \code{let}. The flattening of nested \code{let} expressions is
  3115. instead one of the responsibilities of the \code{explicate\_control}
  3116. pass.
  3117. \fi}
  3118. {\if\edition\racketEd
  3119. We recommend implementing this pass with two mutually recursive
  3120. functions, \code{rco\_atom} and \code{rco\_exp}. The idea is to apply
  3121. \code{rco\_atom} to subexpressions that need to become atomic and to
  3122. apply \code{rco\_exp} to subexpressions that do not. Both functions
  3123. take an \LangVar{} expression as input. The \code{rco\_exp} function
  3124. returns an expression. The \code{rco\_atom} function returns two
  3125. things: an atomic expression and an alist mapping temporary variables to
  3126. complex subexpressions. You can return multiple things from a function
  3127. using Racket's \key{values} form, and you can receive multiple things
  3128. from a function call using the \key{define-values} form.
  3129. \fi}
  3130. %
  3131. {\if\edition\pythonEd\pythonColor
  3132. %
  3133. We recommend implementing this pass with an auxiliary method named
  3134. \code{rco\_exp} with two parameters: an \LangVar{} expression and a
  3135. Boolean that specifies whether the expression needs to become atomic
  3136. or not. The \code{rco\_exp} method should return a pair consisting of
  3137. the new expression and a list of pairs, associating new temporary
  3138. variables with their initializing expressions.
  3139. %
  3140. \fi}
  3141. {\if\edition\racketEd
  3142. %
  3143. In the example program with the expression \code{(+ 42 (-
  3144. 10))}, the subexpression \code{(- 10)} should be processed using the
  3145. \code{rco\_atom} function because it is an argument of the \code{+}
  3146. operator and therefore needs to become atomic. The output of
  3147. \code{rco\_atom} applied to \code{(- 10)} is as follows:
  3148. \begin{transformation}
  3149. \begin{lstlisting}
  3150. (- 10)
  3151. \end{lstlisting}
  3152. \compilesto
  3153. \begin{lstlisting}
  3154. tmp.1
  3155. ((tmp.1 . (- 10)))
  3156. \end{lstlisting}
  3157. \end{transformation}
  3158. \fi}
  3159. %
  3160. {\if\edition\pythonEd\pythonColor
  3161. %
  3162. Returning to the example program with the expression \code{42 + -10},
  3163. the subexpression \code{-10} should be processed using the
  3164. \code{rco\_exp} function with \code{True} as the second argument,
  3165. because \code{-10} is an argument of the \code{+} operator and
  3166. therefore needs to become atomic. The output of \code{rco\_exp}
  3167. applied to \code{-10} is as follows.
  3168. \begin{transformation}
  3169. \begin{lstlisting}
  3170. -10
  3171. \end{lstlisting}
  3172. \compilesto
  3173. \begin{lstlisting}
  3174. tmp_1
  3175. [(tmp_1, -10)]
  3176. \end{lstlisting}
  3177. \end{transformation}
  3178. %
  3179. \fi}
  3180. Take special care of programs, such as the following, that
  3181. %
  3182. \racket{bind a variable to an atomic expression.}
  3183. %
  3184. \python{assign an atomic expression to a variable.}
  3185. %
  3186. You should leave such \racket{variable bindings}\python{assignments}
  3187. unchanged, as shown in the program on the right:\\
  3188. %
  3189. {\if\edition\racketEd
  3190. \begin{transformation}
  3191. % var_test_20.rkt
  3192. \begin{lstlisting}
  3193. (let ([a 42])
  3194. (let ([b a])
  3195. b))
  3196. \end{lstlisting}
  3197. \compilesto
  3198. \begin{lstlisting}
  3199. (let ([a 42])
  3200. (let ([b a])
  3201. b))
  3202. \end{lstlisting}
  3203. \end{transformation}
  3204. \fi}
  3205. {\if\edition\pythonEd\pythonColor
  3206. \begin{transformation}
  3207. \begin{lstlisting}
  3208. a = 42
  3209. b = a
  3210. print(b)
  3211. \end{lstlisting}
  3212. \compilesto
  3213. \begin{lstlisting}
  3214. a = 42
  3215. b = a
  3216. print(b)
  3217. \end{lstlisting}
  3218. \end{transformation}
  3219. \fi}
  3220. %
  3221. \noindent A careless implementation might produce the following output with
  3222. unnecessary temporary variables.
  3223. \begin{center}
  3224. \begin{minipage}{0.4\textwidth}
  3225. {\if\edition\racketEd
  3226. \begin{lstlisting}
  3227. (let ([tmp.1 42])
  3228. (let ([a tmp.1])
  3229. (let ([tmp.2 a])
  3230. (let ([b tmp.2])
  3231. b))))
  3232. \end{lstlisting}
  3233. \fi}
  3234. {\if\edition\pythonEd\pythonColor
  3235. \begin{lstlisting}
  3236. tmp_1 = 42
  3237. a = tmp_1
  3238. tmp_2 = a
  3239. b = tmp_2
  3240. print(b)
  3241. \end{lstlisting}
  3242. \fi}
  3243. \end{minipage}
  3244. \end{center}
  3245. \begin{exercise}
  3246. \normalfont\normalsize
  3247. {\if\edition\racketEd
  3248. Implement the \code{remove\_complex\_operands} function in
  3249. \code{compiler.rkt}.
  3250. %
  3251. Create three new \LangVar{} programs that exercise the interesting
  3252. code in the \code{remove\_complex\_operands} pass. Follow the guidelines
  3253. regarding file names described in exercise~\ref{ex:Lvar}.
  3254. %
  3255. In the \code{run-tests.rkt} script, add the following entry to the
  3256. list of \code{passes}, and then run the script to test your compiler.
  3257. \begin{lstlisting}
  3258. (list "remove-complex" remove_complex_operands interp_Lvar type-check-Lvar)
  3259. \end{lstlisting}
  3260. In debugging your compiler, it is often useful to see the intermediate
  3261. programs that are output from each pass. To print the intermediate
  3262. programs, place \lstinline{(debug-level 1)} before the call to
  3263. \code{interp-tests} in \code{run-tests.rkt}. \fi}
  3264. %
  3265. {\if\edition\pythonEd\pythonColor
  3266. Implement the \code{remove\_complex\_operands} pass in
  3267. \code{compiler.py}, creating auxiliary functions for each
  3268. nonterminal in the grammar, that is, \code{rco\_exp}
  3269. and \code{rco\_stmt}. We recommend that you use the function
  3270. \code{utils.generate\_name()} to generate fresh names from a stub string.
  3271. \fi}
  3272. \end{exercise}
  3273. {\if\edition\pythonEd\pythonColor
  3274. \begin{exercise}
  3275. \normalfont\normalsize
  3276. \label{ex:Lvar}
  3277. Create five \LangVar{} programs that exercise the most interesting
  3278. parts of the \code{remove\_complex\_operands} pass. The five programs
  3279. should be placed in the subdirectory \key{tests/var}, and the file
  3280. names should end with the file extension \key{.py}. Run the
  3281. \key{run-tests.py} script in the support code to check whether the
  3282. output programs produce the same result as the input programs.
  3283. \end{exercise}
  3284. \fi}
  3285. {\if\edition\racketEd
  3286. \section{Explicate Control}
  3287. \label{sec:explicate-control-Lvar}
  3288. The \code{explicate\_control} pass compiles \LangVar{} programs into \LangCVar{}
  3289. programs that make the order of execution explicit in their
  3290. syntax. For now this amounts to flattening \key{let} constructs into a
  3291. sequence of assignment statements. For example, consider the following
  3292. \LangVar{} program:\\
  3293. % var_test_11.rkt
  3294. \begin{minipage}{0.96\textwidth}
  3295. \begin{lstlisting}
  3296. (let ([y (let ([x 20])
  3297. (+ x (let ([x 22]) x)))])
  3298. y)
  3299. \end{lstlisting}
  3300. \end{minipage}\\
  3301. %
  3302. The output of the previous pass is shown next, on the left, and the
  3303. output of \code{explicate\_control} is on the right. Recall that the
  3304. right-hand side of a \key{let} executes before its body, so that the order
  3305. of evaluation for this program is to assign \code{20} to \code{x.1},
  3306. \code{22} to \code{x.2}, and \code{(+ x.1 x.2)} to \code{y}, and then to
  3307. return \code{y}. Indeed, the output of \code{explicate\_control} makes
  3308. this ordering explicit.
  3309. \begin{transformation}
  3310. \begin{lstlisting}
  3311. (let ([y (let ([x.1 20])
  3312. (let ([x.2 22])
  3313. (+ x.1 x.2)))])
  3314. y)
  3315. \end{lstlisting}
  3316. \compilesto
  3317. \begin{lstlisting}[language=C]
  3318. start:
  3319. x.1 = 20;
  3320. x.2 = 22;
  3321. y = (+ x.1 x.2);
  3322. return y;
  3323. \end{lstlisting}
  3324. \end{transformation}
  3325. \begin{figure}[tbp]
  3326. \begin{tcolorbox}[colback=white]
  3327. \begin{lstlisting}
  3328. (define (explicate_tail e)
  3329. (match e
  3330. [(Var x) ___]
  3331. [(Int n) (Return (Int n))]
  3332. [(Let x rhs body) ___]
  3333. [(Prim op es) ___]
  3334. [else (error "explicate_tail unhandled case" e)]))
  3335. (define (explicate_assign e x cont)
  3336. (match e
  3337. [(Var x) ___]
  3338. [(Int n) (Seq (Assign (Var x) (Int n)) cont)]
  3339. [(Let y rhs body) ___]
  3340. [(Prim op es) ___]
  3341. [else (error "explicate_assign unhandled case" e)]))
  3342. (define (explicate_control p)
  3343. (match p
  3344. [(Program info body) ___]))
  3345. \end{lstlisting}
  3346. \end{tcolorbox}
  3347. \caption{Skeleton for the \code{explicate\_control} pass.}
  3348. \label{fig:explicate-control-Lvar}
  3349. \end{figure}
  3350. The organization of this pass depends on the notion of tail position
  3351. to which we have alluded. Here is the definition.
  3352. \begin{definition}\normalfont
  3353. The following rules define when an expression is in \emph{tail
  3354. position}\index{subject}{tail position} for the language \LangVar{}.
  3355. \begin{enumerate}
  3356. \item In $\PROGRAM{\code{()}}{e}$, expression $e$ is in tail position.
  3357. \item If $\LET{x}{e_1}{e_2}$ is in tail position, then so is $e_2$.
  3358. \end{enumerate}
  3359. \end{definition}
  3360. We recommend implementing \code{explicate\_control} using two
  3361. recursive functions, \code{explicate\_tail} and
  3362. \code{explicate\_assign}, as suggested in the skeleton code shown in
  3363. figure~\ref{fig:explicate-control-Lvar}. The \code{explicate\_tail}
  3364. function should be applied to expressions in tail position, whereas the
  3365. \code{explicate\_assign} should be applied to expressions that occur on
  3366. the right-hand side of a \key{let}.
  3367. %
  3368. The \code{explicate\_tail} function takes an \Exp{} in \LangVar{} as
  3369. input and produces a \Tail{} in \LangCVar{} (see
  3370. figure~\ref{fig:c0-syntax}).
  3371. %
  3372. The \code{explicate\_assign} function takes an \Exp{} in \LangVar{},
  3373. the variable to which it is to be assigned, and a \Tail{} in
  3374. \LangCVar{} for the code that comes after the assignment. The
  3375. \code{explicate\_assign} function returns a $\Tail$ in \LangCVar{}.
  3376. The \code{explicate\_assign} function is in accumulator-passing style:
  3377. the \code{cont} parameter is used for accumulating the output. This
  3378. accumulator-passing style plays an important role in the way that we
  3379. generate high-quality code for conditional expressions in
  3380. chapter~\ref{ch:Lif}. The abbreviation \code{cont} is for
  3381. continuation because it contains the generated code that should come
  3382. after the current assignment. This code organization is also related
  3383. to continuation-passing style, except that \code{cont} is not what
  3384. happens next during compilation but is what happens next in the
  3385. generated code.
  3386. \begin{exercise}\normalfont\normalsize
  3387. %
  3388. Implement the \code{explicate\_control} function in
  3389. \code{compiler.rkt}. Create three new \LangInt{} programs that
  3390. exercise the code in \code{explicate\_control}.
  3391. %
  3392. In the \code{run-tests.rkt} script, add the following entry to the
  3393. list of \code{passes} and then run the script to test your compiler.
  3394. \begin{lstlisting}
  3395. (list "explicate control" explicate_control interp_Cvar type-check-Cvar)
  3396. \end{lstlisting}
  3397. \end{exercise}
  3398. \fi}
  3399. \section{Select Instructions}
  3400. \label{sec:select-Lvar}
  3401. \index{subject}{select instructions}
  3402. In the \code{select\_instructions} pass we begin the work of
  3403. translating \racket{from \LangCVar{}} to \LangXVar{}. The target
  3404. language of this pass is a variant of x86 that still uses variables,
  3405. so we add an AST node of the form $\VAR{\itm{var}}$ to the \Arg{}
  3406. nonterminal of the \LangXInt{} abstract syntax
  3407. (figure~\ref{fig:x86-int-ast}).
  3408. \racket{We recommend implementing the
  3409. \code{select\_instructions} with three auxiliary functions, one for
  3410. each of the nonterminals of \LangCVar{}: $\Atm$, $\Stmt$, and
  3411. $\Tail$.}
  3412. \python{We recommend implementing an auxiliary function
  3413. named \code{select\_stmt} for the $\Stmt$ nonterminal.}
  3414. \racket{The cases for $\Atm$ are straightforward; variables stay the
  3415. same and integer constants change to immediates; that is, $\INT{n}$
  3416. changes to $\IMM{n}$.}
  3417. Next consider the cases for the $\Stmt$ nonterminal, starting with
  3418. arithmetic operations. For example, consider the following addition
  3419. operation, on the left side. (Let $\Arg_1$ and $\Arg_2$ be the
  3420. translations of $\Atm_1$ and $\Atm_2$, respectively.) There is an
  3421. \key{addq} instruction in x86, but it performs an in-place update.
  3422. %
  3423. So, we could move $\Arg_1$ into the \code{rax} register, then add
  3424. $\Arg_2$ to \code{rax}, and then finally move \code{rax} into \itm{var}.
  3425. \begin{transformation}
  3426. {\if\edition\racketEd
  3427. \begin{lstlisting}
  3428. |$\itm{var}$| = (+ |$\Atm_1$| |$\Atm_2$|);
  3429. \end{lstlisting}
  3430. \fi}
  3431. {\if\edition\pythonEd\pythonColor
  3432. \begin{lstlisting}
  3433. |$\itm{var}$| = |$\Atm_1$| + |$\Atm_2$|
  3434. \end{lstlisting}
  3435. \fi}
  3436. \compilesto
  3437. \begin{lstlisting}
  3438. movq |$\Arg_1$|, %rax
  3439. addq |$\Arg_2$|, %rax
  3440. movq %rax, |$\itm{var}$|
  3441. \end{lstlisting}
  3442. \end{transformation}
  3443. %
  3444. However, with some care we can generate shorter sequences of
  3445. instructions. Suppose that one or more of the arguments of the
  3446. addition is the same variable as the left-hand side of the assignment.
  3447. Then the assignment statement can be translated into a single
  3448. \key{addq} instruction, as follows.
  3449. \begin{transformation}
  3450. {\if\edition\racketEd
  3451. \begin{lstlisting}
  3452. |$\itm{var}$| = (+ |$\Atm_1$| |$\itm{var}$|);
  3453. \end{lstlisting}
  3454. \fi}
  3455. {\if\edition\pythonEd\pythonColor
  3456. \begin{lstlisting}
  3457. |$\itm{var}$| = |$\Atm_1$| + |$\itm{var}$|
  3458. \end{lstlisting}
  3459. \fi}
  3460. \compilesto
  3461. \begin{lstlisting}
  3462. addq |$\Arg_1$|, |$\itm{var}$|
  3463. \end{lstlisting}
  3464. \end{transformation}
  3465. %
  3466. On the other hand, if $\Atm_2$ is not the same variable as the
  3467. left-hand side, then we can move $\Arg_1$ into the left-hand \itm{var}
  3468. and then add $\Arg_2$ to \itm{var}.
  3469. %
  3470. \begin{transformation}
  3471. {\if\edition\racketEd
  3472. \begin{lstlisting}
  3473. |$\itm{var}$| = (+ |$\Atm_1$| |$\Atm_2$|);
  3474. \end{lstlisting}
  3475. \fi}
  3476. {\if\edition\pythonEd\pythonColor
  3477. \begin{lstlisting}
  3478. |$\itm{var}$| = |$\Atm_1$| + |$\Atm_2$|
  3479. \end{lstlisting}
  3480. \fi}
  3481. \compilesto
  3482. \begin{lstlisting}
  3483. movq |$\Arg_1$|, |$\itm{var}$|
  3484. addq |$\Arg_2$|, |$\itm{var}$|
  3485. \end{lstlisting}
  3486. \end{transformation}
  3487. The \READOP{} operation does not have a direct counterpart in x86
  3488. assembly, so we provide this functionality with the function
  3489. \code{read\_int} in the file \code{runtime.c}, written in
  3490. C~\citep{Kernighan:1988nx}. In general, we refer to all the
  3491. functionality in this file as the \emph{runtime system}\index{subject}{runtime
  3492. system}, or simply the \emph{runtime} for short. When compiling your
  3493. generated x86 assembly code, you need to compile \code{runtime.c} to
  3494. \code{runtime.o} (an \emph{object file}, using \code{gcc} with option
  3495. \code{-c}) and link it into the executable. For our purposes of code
  3496. generation, all you need to do is translate an assignment of
  3497. \READOP{} into a call to the \code{read\_int} function followed by a
  3498. move from \code{rax} to the left-hand side variable. (The
  3499. return value of a function is placed in \code{rax}.)
  3500. \begin{transformation}
  3501. {\if\edition\racketEd
  3502. \begin{lstlisting}
  3503. |$\itm{var}$| = (read);
  3504. \end{lstlisting}
  3505. \fi}
  3506. {\if\edition\pythonEd\pythonColor
  3507. \begin{lstlisting}
  3508. |$\itm{var}$| = input_int();
  3509. \end{lstlisting}
  3510. \fi}
  3511. \compilesto
  3512. \begin{lstlisting}
  3513. callq read_int
  3514. movq %rax, |$\itm{var}$|
  3515. \end{lstlisting}
  3516. \end{transformation}
  3517. {\if\edition\pythonEd\pythonColor
  3518. %
  3519. Similarly, we translate the \code{print} operation, shown below, into
  3520. a call to the \code{print\_int} function defined in \code{runtime.c}.
  3521. In x86, the first six arguments to functions are passed in registers,
  3522. with the first argument passed in register \code{rdi}. So we move the
  3523. $\Arg$ into \code{rdi} and then call \code{print\_int} using the
  3524. \code{callq} instruction.
  3525. \begin{transformation}
  3526. \begin{lstlisting}
  3527. print(|$\Atm$|)
  3528. \end{lstlisting}
  3529. \compilesto
  3530. \begin{lstlisting}
  3531. movq |$\Arg$|, %rdi
  3532. callq print_int
  3533. \end{lstlisting}
  3534. \end{transformation}
  3535. %
  3536. \fi}
  3537. {\if\edition\racketEd
  3538. %
  3539. There are two cases for the $\Tail$ nonterminal: \key{Return} and
  3540. \key{Seq}. Regarding \key{Return}, we recommend treating it as an
  3541. assignment to the \key{rax} register followed by a jump to
  3542. the label \key{conclusion}. Later, in Section~\ref{sec:print-x86},
  3543. we discuss the generation of the \key{conclusion} block.
  3544. In the meantime, the interpreter for \LangXVar{} recognizes a jump
  3545. to \key{conclusion} as the end of the program.
  3546. For $\SEQ{s}{t}$, you can translate the statement $s$ and tail $t$
  3547. recursively and then append the resulting instructions.
  3548. %
  3549. \fi}
  3550. {\if\edition\pythonEd\pythonColor
  3551. We recommend that you use the function \code{utils.label\_name} to
  3552. transform strings into labels, for example, in
  3553. the target of the \code{callq} instruction. This practice makes your
  3554. compiler portable across Linux and Mac OS X, which requires an underscore
  3555. prefixed to all labels.
  3556. \fi}
  3557. \begin{exercise}
  3558. \normalfont\normalsize
  3559. {\if\edition\racketEd
  3560. Implement the \code{select\_instructions} pass in
  3561. \code{compiler.rkt}. Create three new example programs that are
  3562. designed to exercise all the interesting cases in this pass.
  3563. %
  3564. In the \code{run-tests.rkt} script, add the following entry to the
  3565. list of \code{passes} and then run the script to test your compiler.
  3566. \begin{lstlisting}
  3567. (list "instruction selection" select_instructions interp_pseudo-x86-0)
  3568. \end{lstlisting}
  3569. \fi}
  3570. {\if\edition\pythonEd\pythonColor
  3571. Implement the \key{select\_instructions} pass in
  3572. \code{compiler.py}. Create three new example programs that are
  3573. designed to exercise all the interesting cases in this pass.
  3574. Run the \code{run-tests.py} script to check
  3575. whether the output programs produce the same result as the input
  3576. programs.
  3577. \fi}
  3578. \end{exercise}
  3579. \section{Assign Homes}
  3580. \label{sec:assign-Lvar}
  3581. The \code{assign\_homes} pass compiles \LangXVar{} programs to
  3582. \LangXVar{} programs that no longer use program variables. Thus, the
  3583. \code{assign\_homes} pass is responsible for placing all the program
  3584. variables in registers or on the stack. For runtime efficiency, it is
  3585. better to place variables in registers, but because there are only
  3586. sixteen registers, some programs must necessarily resort to placing
  3587. some variables on the stack. In this chapter we focus on the mechanics
  3588. of placing variables on the stack. We study an algorithm for placing
  3589. variables in registers in chapter~\ref{ch:register-allocation-Lvar}.
  3590. Consider again the following \LangVar{} program from
  3591. section~\ref{sec:remove-complex-opera-Lvar}:\\
  3592. % var_test_20.rkt
  3593. \begin{minipage}{0.96\textwidth}
  3594. {\if\edition\racketEd
  3595. \begin{lstlisting}
  3596. (let ([a 42])
  3597. (let ([b a])
  3598. b))
  3599. \end{lstlisting}
  3600. \fi}
  3601. {\if\edition\pythonEd\pythonColor
  3602. \begin{lstlisting}
  3603. a = 42
  3604. b = a
  3605. print(b)
  3606. \end{lstlisting}
  3607. \fi}
  3608. \end{minipage}\\
  3609. %
  3610. The output of \code{select\_instructions} is shown next, on the left,
  3611. and the output of \code{assign\_homes} is on the right. In this
  3612. example, we assign variable \code{a} to stack location
  3613. \code{-8(\%rbp)} and variable \code{b} to location \code{-16(\%rbp)}.
  3614. \begin{transformation}
  3615. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  3616. movq $42, a
  3617. movq a, b
  3618. movq b, %rax
  3619. \end{lstlisting}
  3620. \compilesto
  3621. %stack-space: 16
  3622. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  3623. movq $42, -8(%rbp)
  3624. movq -8(%rbp), -16(%rbp)
  3625. movq -16(%rbp), %rax
  3626. \end{lstlisting}
  3627. \end{transformation}
  3628. \racket{
  3629. The \code{assign\_homes} pass should replace all variables
  3630. with stack locations.
  3631. The list of variables can be obtained from
  3632. the \code{locals-types} entry in the $\itm{info}$ of the
  3633. \code{X86Program} node. The \code{locals-types} entry is an alist
  3634. mapping all the variables in the program to their types
  3635. (for now, just \code{Integer}).
  3636. As an aside, the \code{locals-types} entry is
  3637. computed by \code{type-check-Cvar} in the support code, which
  3638. installs it in the $\itm{info}$ field of the \code{CProgram} node,
  3639. which you should propagate to the \code{X86Program} node.}
  3640. %
  3641. \python{The \code{assign\_homes} pass should replace all uses of
  3642. variables with stack locations.}
  3643. %
  3644. In the process of assigning variables to stack locations, it is
  3645. convenient for you to compute and store the size of the frame (in
  3646. bytes) in
  3647. \racket{the $\itm{info}$ field of the \key{X86Program} node, with the key \code{stack-space},}
  3648. %
  3649. \python{the field \code{stack\_space} of the \key{X86Program} node,}
  3650. %
  3651. which is needed later to generate the conclusion of the \code{main}
  3652. procedure. The x86-64 standard requires the frame size to be a
  3653. multiple of 16 bytes.\index{subject}{frame}
  3654. % TODO: store the number of variables instead? -Jeremy
  3655. \begin{exercise}\normalfont\normalsize
  3656. Implement the \code{assign\_homes} pass in
  3657. \racket{\code{compiler.rkt}}\python{\code{compiler.py}}, defining
  3658. auxiliary functions for each of the nonterminals in the \LangXVar{}
  3659. grammar. We recommend that the auxiliary functions take an extra
  3660. parameter that maps variable names to homes (stack locations for now).
  3661. %
  3662. {\if\edition\racketEd
  3663. In the \code{run-tests.rkt} script, add the following entry to the
  3664. list of \code{passes} and then run the script to test your compiler.
  3665. \begin{lstlisting}
  3666. (list "assign homes" assign-homes interp_x86-0)
  3667. \end{lstlisting}
  3668. \fi}
  3669. {\if\edition\pythonEd\pythonColor
  3670. Run the \code{run-tests.py} script to check
  3671. whether the output programs produce the same result as the input
  3672. programs.
  3673. \fi}
  3674. \end{exercise}
  3675. \section{Patch Instructions}
  3676. \label{sec:patch-s0}
  3677. The \code{patch\_instructions} pass compiles from \LangXVar{} to
  3678. \LangXInt{} by making sure that each instruction adheres to the
  3679. restriction that at most one argument of an instruction may be a
  3680. memory reference.
  3681. We return to the following example.\\
  3682. \begin{minipage}{0.5\textwidth}
  3683. % var_test_20.rkt
  3684. {\if\edition\racketEd
  3685. \begin{lstlisting}
  3686. (let ([a 42])
  3687. (let ([b a])
  3688. b))
  3689. \end{lstlisting}
  3690. \fi}
  3691. {\if\edition\pythonEd\pythonColor
  3692. \begin{lstlisting}
  3693. a = 42
  3694. b = a
  3695. print(b)
  3696. \end{lstlisting}
  3697. \fi}
  3698. \end{minipage}\\
  3699. The \code{assign\_homes} pass produces the following translation. \\
  3700. \begin{minipage}{0.5\textwidth}
  3701. {\if\edition\racketEd
  3702. \begin{lstlisting}
  3703. movq $42, -8(%rbp)
  3704. movq -8(%rbp), -16(%rbp)
  3705. movq -16(%rbp), %rax
  3706. \end{lstlisting}
  3707. \fi}
  3708. {\if\edition\pythonEd\pythonColor
  3709. \begin{lstlisting}
  3710. movq $42, -8(%rbp)
  3711. movq -8(%rbp), -16(%rbp)
  3712. movq -16(%rbp), %rdi
  3713. callq print_int
  3714. \end{lstlisting}
  3715. \fi}
  3716. \end{minipage}\\
  3717. The second \key{movq} instruction is problematic because both
  3718. arguments are stack locations. We suggest fixing this problem by
  3719. moving from the source location to the register \key{rax} and then
  3720. from \key{rax} to the destination location, as follows.
  3721. \begin{lstlisting}
  3722. movq -8(%rbp), %rax
  3723. movq %rax, -16(%rbp)
  3724. \end{lstlisting}
  3725. There is a similar corner case that also needs to be dealt with. If
  3726. one argument is an immediate integer larger than $2^{16}$ and the
  3727. other is a memory reference, then the instruction is invalid. One can
  3728. fix this, for example, by first moving the immediate integer into
  3729. \key{rax} and then using \key{rax} in place of the integer.
  3730. \begin{exercise}
  3731. \normalfont\normalsize Implement the \key{patch\_instructions} pass in
  3732. \racket{\code{compiler.rkt}}\python{\code{compiler.py}}.
  3733. Create three new example programs that are
  3734. designed to exercise all the interesting cases in this pass.
  3735. %
  3736. {\if\edition\racketEd
  3737. In the \code{run-tests.rkt} script, add the following entry to the
  3738. list of \code{passes} and then run the script to test your compiler.
  3739. \begin{lstlisting}
  3740. (list "patch instructions" patch_instructions interp_x86-0)
  3741. \end{lstlisting}
  3742. \fi}
  3743. {\if\edition\pythonEd\pythonColor
  3744. Run the \code{run-tests.py} script to check
  3745. whether the output programs produce the same result as the input
  3746. programs.
  3747. \fi}
  3748. \end{exercise}
  3749. \section{Generate Prelude and Conclusion}
  3750. \label{sec:print-x86}
  3751. \index{subject}{prelude}\index{subject}{conclusion}
  3752. The last step of the compiler from \LangVar{} to x86 is to generate
  3753. the \code{main} function with a prelude and conclusion wrapped around
  3754. the rest of the program, as shown in figure~\ref{fig:p1-x86} and
  3755. discussed in section~\ref{sec:x86}.
  3756. When running on Mac OS X, your compiler should prefix an underscore to
  3757. all labels (for example, changing \key{main} to \key{\_main}).
  3758. %
  3759. \racket{The Racket call \code{(system-type 'os)} is useful for
  3760. determining which operating system the compiler is running on. It
  3761. returns \code{'macosx}, \code{'unix}, or \code{'windows}.}
  3762. %
  3763. \python{The Python \code{platform.system}
  3764. function returns \code{\textquotesingle Linux\textquotesingle},
  3765. \code{\textquotesingle Windows\textquotesingle}, or
  3766. \code{\textquotesingle Darwin\textquotesingle} (for Mac).}
  3767. \begin{exercise}\normalfont\normalsize
  3768. %
  3769. Implement the \key{prelude\_and\_conclusion} pass in
  3770. \racket{\code{compiler.rkt}}\python{\code{compiler.py}}.
  3771. %
  3772. {\if\edition\racketEd
  3773. In the \code{run-tests.rkt} script, add the following entry to the
  3774. list of \code{passes} and then run the script to test your compiler.
  3775. \begin{lstlisting}
  3776. (list "prelude and conclusion" prelude-and-conclusion interp_x86-0)
  3777. \end{lstlisting}
  3778. %
  3779. Uncomment the call to the \key{compiler-tests} function
  3780. (appendix~\ref{appendix:utilities}), which tests your complete
  3781. compiler by executing the generated x86 code. It translates the x86
  3782. AST that you produce into a string by invoking the \code{print-x86}
  3783. method of the \code{print-x86-class} in \code{utilities.rkt}. Compile
  3784. the provided \key{runtime.c} file to \key{runtime.o} using
  3785. \key{gcc}. Run the script to test your compiler.
  3786. %
  3787. \fi}
  3788. {\if\edition\pythonEd\pythonColor
  3789. %
  3790. Run the \code{run-tests.py} script to check whether the output
  3791. programs produce the same result as the input programs. That script
  3792. translates the x86 AST that you produce into a string by invoking the
  3793. \code{repr} method that is implemented by the x86 AST classes in
  3794. \code{x86\_ast.py}.
  3795. %
  3796. \fi}
  3797. \end{exercise}
  3798. \section{Challenge: Partial Evaluator for \LangVar{}}
  3799. \label{sec:pe-Lvar}
  3800. \index{subject}{partialevaluation@partial evaluation}
  3801. This section describes two optional challenge exercises that involve
  3802. adapting and improving the partial evaluator for \LangInt{} that was
  3803. introduced in section~\ref{sec:partial-evaluation}.
  3804. \begin{exercise}\label{ex:pe-Lvar}
  3805. \normalfont\normalsize
  3806. Adapt the partial evaluator from section~\ref{sec:partial-evaluation}
  3807. (figure~\ref{fig:pe-arith}) so that it applies to \LangVar{} programs
  3808. instead of \LangInt{} programs. Recall that \LangVar{} adds variables and
  3809. %
  3810. \racket{\key{let} binding}\python{assignment}
  3811. %
  3812. to the \LangInt{} language, so you will need to add cases for them in
  3813. the \code{pe\_exp}
  3814. %
  3815. \racket{function.}
  3816. %
  3817. \python{and \code{pe\_stmt} functions.}
  3818. %
  3819. Once complete, add the partial evaluation pass to the front of your
  3820. compiler, and check that your compiler still passes all the
  3821. tests.
  3822. \end{exercise}
  3823. \begin{exercise}
  3824. \normalfont\normalsize
  3825. Improve on the partial evaluator by replacing the \code{pe\_neg} and
  3826. \code{pe\_add} auxiliary functions with functions that know more about
  3827. arithmetic. For example, your partial evaluator should translate
  3828. {\if\edition\racketEd
  3829. \[
  3830. \code{(+ 1 (+ (read) 1))} \qquad \text{into} \qquad
  3831. \code{(+ 2 (read))}
  3832. \]
  3833. \fi}
  3834. {\if\edition\pythonEd\pythonColor
  3835. \[
  3836. \code{1 + (input\_int() + 1)} \qquad \text{into} \qquad
  3837. \code{2 + input\_int()}
  3838. \]
  3839. \fi}
  3840. %
  3841. To accomplish this, the \code{pe\_exp} function should produce output
  3842. in the form of the $\itm{residual}$ nonterminal of the following
  3843. grammar. The idea is that when processing an addition expression, we
  3844. can always produce one of the following: (1) an integer constant, (2)
  3845. an addition expression with an integer constant on the left-hand side
  3846. but not the right-hand side, or (3) an addition expression in which
  3847. neither subexpression is a constant.
  3848. %
  3849. {\if\edition\racketEd
  3850. \[
  3851. \begin{array}{lcl}
  3852. \itm{inert} &::=& \Var
  3853. \MID \LP\key{read}\RP
  3854. \MID \LP\key{-} ~\Var\RP
  3855. \MID \LP\key{-} ~\LP\key{read}\RP\RP
  3856. \MID \LP\key{+} ~ \itm{inert} ~ \itm{inert}\RP\\
  3857. &\MID& \LP\key{let}~\LP\LS\Var~\itm{residual}\RS\RP~ \itm{residual} \RP \\
  3858. \itm{residual} &::=& \Int
  3859. \MID \LP\key{+}~ \Int~ \itm{inert}\RP
  3860. \MID \itm{inert}
  3861. \end{array}
  3862. \]
  3863. \fi}
  3864. {\if\edition\pythonEd\pythonColor
  3865. \[
  3866. \begin{array}{lcl}
  3867. \itm{inert} &::=& \Var
  3868. \MID \key{input\_int}\LP\RP
  3869. \MID \key{-} \Var
  3870. \MID \key{-} \key{input\_int}\LP\RP
  3871. \MID \itm{inert} ~ \key{+} ~ \itm{inert}\\
  3872. \itm{residual} &::=& \Int
  3873. \MID \Int ~ \key{+} ~ \itm{inert}
  3874. \MID \itm{inert}
  3875. \end{array}
  3876. \]
  3877. \fi}
  3878. The \code{pe\_add} and \code{pe\_neg} functions may assume that their
  3879. inputs are $\itm{residual}$ expressions and they should return
  3880. $\itm{residual}$ expressions. Once the improvements are complete,
  3881. make sure that your compiler still passes all the tests. After
  3882. all, fast code is useless if it produces incorrect results!
  3883. \end{exercise}
  3884. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  3885. {\if\edition\pythonEd\pythonColor
  3886. \chapter{Parsing}
  3887. \label{ch:parsing}
  3888. \setcounter{footnote}{0}
  3889. \index{subject}{parsing}
  3890. In this chapter we learn how to use the Lark parser
  3891. framework~\citep{shinan20:_lark_docs} to translate the concrete syntax
  3892. of \LangInt{} (a sequence of characters) into an abstract syntax tree.
  3893. You are then asked to create a parser for \LangVar{} using Lark.
  3894. We also describe the parsing algorithms used inside Lark, studying the
  3895. \citet{Earley:1970ly} and LALR(1) algorithms~\citep{DeRemer69,Anderson73}.
  3896. A parser framework such as Lark takes in a specification of the
  3897. concrete syntax and an input program and produces a parse tree. Even
  3898. though a parser framework does most of the work for us, using one
  3899. properly requires some knowledge. In particular, we must learn about
  3900. its specification languages and we must learn how to deal with
  3901. ambiguity in our language specifications. Also, some algorithms, such
  3902. as LALR(1), place restrictions on the grammars they can handle, in
  3903. which case knowing the algorithm helps with trying to decipher the
  3904. error messages.
  3905. The process of parsing is traditionally subdivided into two phases:
  3906. \emph{lexical analysis} (also called scanning) and \emph{syntax
  3907. analysis} (also called parsing). The lexical analysis phase
  3908. translates the sequence of characters into a sequence of
  3909. \emph{tokens}, that is, words consisting of several characters. The
  3910. parsing phase organizes the tokens into a \emph{parse tree} that
  3911. captures how the tokens were matched by rules in the grammar of the
  3912. language. The reason for the subdivision into two phases is to enable
  3913. the use of a faster but less powerful algorithm for lexical analysis
  3914. and the use of a slower but more powerful algorithm for parsing.
  3915. %
  3916. %% Likewise, parser generators typical come in pairs, with separate
  3917. %% generators for the lexical analyzer (or lexer for short) and for the
  3918. %% parser. A particularly influential pair of generators were
  3919. %% \texttt{lex} and \texttt{yacc}. The \texttt{lex} generator was written
  3920. %% by \citet{Lesk:1975uq} at Bell Labs. The \texttt{yacc} generator was
  3921. %% written by \citet{Johnson:1979qy} at AT\&T and stands for Yet Another
  3922. %% Compiler Compiler.
  3923. %
  3924. The Lark parser framework that we use in this chapter includes both
  3925. lexical analyzers and parsers. The next section discusses lexical
  3926. analysis, and the remainder of the chapter discusses parsing.
  3927. \section{Lexical Analysis and Regular Expressions}
  3928. \label{sec:lex}
  3929. The lexical analyzers produced by Lark turn a sequence of characters
  3930. (a string) into a sequence of token objects. For example, a Lark
  3931. generated lexer for \LangInt{} converts the string
  3932. \begin{lstlisting}
  3933. 'print(1 + 3)'
  3934. \end{lstlisting}
  3935. \noindent into the following sequence of token objects:
  3936. \begin{center}
  3937. \begin{minipage}{0.95\textwidth}
  3938. \begin{lstlisting}
  3939. Token('PRINT', 'print')
  3940. Token('LPAR', '(')
  3941. Token('INT', '1')
  3942. Token('PLUS', '+')
  3943. Token('INT', '3')
  3944. Token('RPAR', ')')
  3945. Token('NEWLINE', '\n')
  3946. \end{lstlisting}
  3947. \end{minipage}
  3948. \end{center}
  3949. Each token includes a field for its \code{type}, such as \skey{INT},
  3950. and a field for its \code{value}, such as \skey{1}.
  3951. Following in the tradition of \code{lex}~\citep{Lesk:1975uq}, the
  3952. specification language for Lark's lexer is one regular expression for
  3953. each type of token. The term \emph{regular} comes from the term
  3954. \emph{regular languages}, which are the languages that can be
  3955. recognized by a finite state machine. A \emph{regular expression} is a
  3956. pattern formed of the following core elements:\index{subject}{regular
  3957. expression}\footnote{Regular expressions traditionally include the
  3958. empty regular expression that matches any zero-length part of a
  3959. string, but Lark does not support the empty regular expression.}
  3960. \begin{itemize}
  3961. \item A single character $c$ is a regular expression, and it matches
  3962. only itself. For example, the regular expression \code{a} matches
  3963. only the string \skey{a}.
  3964. \item Two regular expressions separated by a vertical bar $R_1 \ttm{|}
  3965. R_2$ form a regular expression that matches any string that matches
  3966. $R_1$ or $R_2$. For example, the regular expression \code{a|c}
  3967. matches the string \skey{a} and the string \skey{c}.
  3968. \item Two regular expressions in sequence $R_1 R_2$ form a regular
  3969. expression that matches any string that can be formed by
  3970. concatenating two strings, where the first string matches $R_1$ and
  3971. the second string matches $R_2$. For example, the regular expression
  3972. \code{(a|c)b} matches the strings \skey{ab} and \skey{cb}.
  3973. (Parentheses can be used to control the grouping of operators within
  3974. a regular expression.)
  3975. \item A regular expression followed by an asterisks $R\ttm{*}$ (called
  3976. Kleene closure) is a regular expression that matches any string that
  3977. can be formed by concatenating zero or more strings that each match
  3978. the regular expression $R$. For example, the regular expression
  3979. \code{((a|c)b)*} matches the string \skey{abcbab} but not
  3980. \skey{abc}.
  3981. \end{itemize}
  3982. For our convenience, Lark also accepts the following extended set of
  3983. regular expressions that are automatically translated into the core
  3984. regular expressions.
  3985. \begin{itemize}
  3986. \item A set of characters enclosed in square brackets $[c_1 c_2 \ldots
  3987. c_n]$ is a regular expression that matches any one of the
  3988. characters. So, $[c_1 c_2 \ldots c_n]$ is equivalent to
  3989. the regular expression $c_1\mid c_2\mid \ldots \mid c_n$.
  3990. \item A range of characters enclosed in square brackets $[c_1\ttm{-}c_2]$ is
  3991. a regular expression that matches any character between $c_1$ and
  3992. $c_2$, inclusive. For example, \code{[a-z]} matches any lowercase
  3993. letter in the alphabet.
  3994. \item A regular expression followed by the plus symbol $R\ttm{+}$
  3995. is a regular expression that matches any string that can
  3996. be formed by concatenating one or more strings that each match $R$.
  3997. So $R+$ is equivalent to $R(R*)$. For example, \code{[a-z]+}
  3998. matches \skey{b} and \skey{bzca}.
  3999. \item A regular expression followed by a question mark $R\ttm{?}$
  4000. is a regular expression that matches any string that either
  4001. matches $R$ or is the empty string.
  4002. For example, \code{a?b} matches both \skey{ab} and \skey{b}.
  4003. \end{itemize}
  4004. In a Lark grammar file, each kind of token is specified by a
  4005. \emph{terminal}\index{subject}{terminal}, which is defined by a rule
  4006. that consists of the name of the terminal followed by a colon followed
  4007. by a sequence of literals. The literals include strings such as
  4008. \code{"abc"}, regular expressions surrounded by \code{/} characters,
  4009. terminal names, and literals composed using the regular expression
  4010. operators ($+$, $*$, etc.). For example, the \code{DIGIT},
  4011. \code{INT}, and \code{NEWLINE} terminals are specified as follows:
  4012. \begin{center}
  4013. \begin{minipage}{0.95\textwidth}
  4014. \begin{lstlisting}
  4015. DIGIT: /[0-9]/
  4016. INT: "-"? DIGIT+
  4017. NEWLINE: (/\r/? /\n/)+
  4018. \end{lstlisting}
  4019. \end{minipage}
  4020. \end{center}
  4021. \section{Grammars and Parse Trees}
  4022. \label{sec:CFG}
  4023. In section~\ref{sec:grammar} we learned how to use grammar rules to
  4024. specify the abstract syntax of a language. We now take a closer look
  4025. at using grammar rules to specify the concrete syntax. Recall that
  4026. each rule has a left-hand side and a right-hand side, where the
  4027. left-hand side is a nonterminal and the right-hand side is a pattern
  4028. that defines what can be parsed as that nonterminal. For concrete
  4029. syntax, each right-hand side expresses a pattern for a string instead
  4030. of a pattern for an abstract syntax tree. In particular, each
  4031. right-hand side is a sequence of
  4032. \emph{symbols}\index{subject}{symbol}, where a symbol is either a
  4033. terminal or a nonterminal. The nonterminals play the same role as in
  4034. the abstract syntax, defining categories of syntax. The nonterminals
  4035. of a grammar include the tokens defined in the lexer and all the
  4036. nonterminals defined by the grammar rules.
  4037. As an example, let us take a closer look at the concrete syntax of the
  4038. \LangInt{} language, repeated here.
  4039. \[
  4040. \begin{array}{l}
  4041. \LintGrammarPython \\
  4042. \begin{array}{rcl}
  4043. \LangInt{} &::=& \Stmt^{*}
  4044. \end{array}
  4045. \end{array}
  4046. \]
  4047. The Lark syntax for grammar rules differs slightly from the variant of
  4048. BNF that we use in this book. In particular, the notation $::=$ is
  4049. replaced by a single colon, and the use of typewriter font for string
  4050. literals is replaced by quotation marks. The following grammar serves
  4051. as a first draft of a Lark grammar for \LangInt{}.
  4052. \begin{center}
  4053. \begin{minipage}{0.95\textwidth}
  4054. \begin{lstlisting}[escapechar=$]
  4055. exp: INT
  4056. | "input_int" "(" ")"
  4057. | "-" exp
  4058. | exp "+" exp
  4059. | exp "-" exp
  4060. | "(" exp ")"
  4061. stmt_list:
  4062. | stmt NEWLINE stmt_list
  4063. lang_int: stmt_list
  4064. \end{lstlisting}
  4065. \end{minipage}
  4066. \end{center}
  4067. Let us begin by discussing the rule \code{exp: INT}, which says that
  4068. if the lexer matches a string to \code{INT}, then the parser also
  4069. categorizes the string as an \code{exp}. Recall that in
  4070. section~\ref{sec:grammar} we defined the corresponding \Int{}
  4071. nonterminal with a sentence in English. Here we specify \code{INT}
  4072. more formally using a type of token \code{INT} and its regular
  4073. expression \code{"-"? DIGIT+}.
  4074. The rule \code{exp: exp "+" exp} says that any string that matches
  4075. \code{exp}, followed by the \code{+} character, followed by another
  4076. string that matches \code{exp}, is itself an \code{exp}. For example,
  4077. the string \lstinline{'1+3'} is an \code{exp} because \lstinline{'1'} and
  4078. \lstinline{'3'} are both \code{exp} by the rule \code{exp: INT}, and then
  4079. the rule for addition applies to categorize \lstinline{'1+3'} as an
  4080. \code{exp}. We can visualize the application of grammar rules to parse
  4081. a string using a \emph{parse tree}\index{subject}{parse tree}. Each
  4082. internal node in the tree is an application of a grammar rule and is
  4083. labeled with its left-hand side nonterminal. Each leaf node is a
  4084. substring of the input program. The parse tree for \lstinline{'1+3'} is
  4085. shown in figure~\ref{fig:simple-parse-tree}.
  4086. \begin{figure}[tbp]
  4087. \begin{tcolorbox}[colback=white]
  4088. \centering
  4089. \includegraphics[width=1.9in]{figs/simple-parse-tree}
  4090. \end{tcolorbox}
  4091. \caption{The parse tree for \lstinline{'1+3'}.}
  4092. \label{fig:simple-parse-tree}
  4093. \end{figure}
  4094. The result of parsing \lstinline{'1+3'} with this Lark grammar is the
  4095. following parse tree as represented by \code{Tree} and \code{Token}
  4096. objects.
  4097. \begin{lstlisting}
  4098. Tree('lang_int',
  4099. [Tree('stmt', [Tree('exp', [Tree('exp', [Token('INT', '1')]),
  4100. Tree('exp', [Token('INT', '3')])])]),
  4101. Token('NEWLINE', '\n')])
  4102. \end{lstlisting}
  4103. The nodes that come from the lexer are \code{Token} objects, whereas
  4104. the nodes from the parser are \code{Tree} objects. Each \code{Tree}
  4105. object has a \code{data} field containing the name of the nonterminal
  4106. for the grammar rule that was applied. Each \code{Tree} object also
  4107. has a \code{children} field that is a list containing trees and/or
  4108. tokens. Note that Lark does not produce nodes for string literals in
  4109. the grammar. For example, the \code{Tree} node for the addition
  4110. expression has only two children for the two integers but is missing
  4111. its middle child for the \code{"+"} terminal. This would be
  4112. problematic except that Lark provides a mechanism for customizing the
  4113. \code{data} field of each \code{Tree} node on the basis of which rule was
  4114. applied. Next to each alternative in a grammar rule, write \code{->}
  4115. followed by a string that you want to appear in the \code{data}
  4116. field. The following is a second draft of a Lark grammar for
  4117. \LangInt{}, this time with more specific labels on the \code{Tree}
  4118. nodes.
  4119. \begin{center}
  4120. \begin{minipage}{0.95\textwidth}
  4121. \begin{lstlisting}[escapechar=$]
  4122. exp: INT -> int
  4123. | "input_int" "(" ")" -> input_int
  4124. | "-" exp -> usub
  4125. | exp "+" exp -> add
  4126. | exp "-" exp -> sub
  4127. | "(" exp ")" -> paren
  4128. stmt: "print" "(" exp ")" -> print
  4129. | exp -> expr
  4130. stmt_list: -> empty_stmt
  4131. | stmt NEWLINE stmt_list -> add_stmt
  4132. lang_int: stmt_list -> module
  4133. \end{lstlisting}
  4134. \end{minipage}
  4135. \end{center}
  4136. Here is the resulting parse tree.
  4137. \begin{lstlisting}
  4138. Tree('module',
  4139. [Tree('expr', [Tree('add', [Tree('int', [Token('INT', '1')]),
  4140. Tree('int', [Token('INT', '3')])])]),
  4141. Token('NEWLINE', '\n')])
  4142. \end{lstlisting}
  4143. \section{Ambiguous Grammars}
  4144. A grammar is \emph{ambiguous}\index{subject}{ambiguous} when a string
  4145. can be parsed in more than one way. For example, consider the string
  4146. \lstinline{'1-2+3'}. This string can be parsed in two different ways using
  4147. our draft grammar, resulting in the two parse trees shown in
  4148. figure~\ref{fig:ambig-parse-tree}. This example is problematic because
  4149. interpreting the second parse tree would yield \code{-4} even through
  4150. the correct answer is \code{2}.
  4151. \begin{figure}[tbp]
  4152. \begin{tcolorbox}[colback=white]
  4153. \centering
  4154. \includegraphics[width=0.95\textwidth]{figs/ambig-parse-tree}
  4155. \end{tcolorbox}
  4156. \caption{The two parse trees for \lstinline{'1-2+3'}.}
  4157. \label{fig:ambig-parse-tree}
  4158. \end{figure}
  4159. To deal with this problem we can change the grammar by categorizing
  4160. the syntax in a more fine-grained fashion. In this case we want to
  4161. disallow the application of the rule \code{exp: exp "-" exp} when the
  4162. child on the right is an addition. To do this we can replace the
  4163. \code{exp} after \code{"-"} with a nonterminal that categorizes all
  4164. the expressions except for addition, as in the following.
  4165. \begin{center}
  4166. \begin{minipage}{0.95\textwidth}
  4167. \begin{lstlisting}[escapechar=$]
  4168. exp: exp "-" exp_no_add -> sub
  4169. | exp "+" exp -> add
  4170. | exp_no_add
  4171. exp_no_add: INT -> int
  4172. | "input_int" "(" ")" -> input_int
  4173. | "-" exp -> usub
  4174. | exp "-" exp_no_add -> sub
  4175. | "(" exp ")" -> paren
  4176. \end{lstlisting}
  4177. \end{minipage}
  4178. \end{center}
  4179. However, there remains some ambiguity in the grammar. For example, the
  4180. string \lstinline{'1-2-3'} can still be parsed in two different ways,
  4181. as \lstinline{'(1-2)-3'} (correct) or \lstinline{'1-(2-3)'}
  4182. (incorrect). That is, subtraction is left associative. Likewise,
  4183. addition in Python is left associative. We also need to consider the
  4184. interaction of unary subtraction with both addition and
  4185. subtraction. How should we parse \lstinline{'-1+2'}? Unary subtraction
  4186. has higher \emph{precedence}\index{subject}{precedence} than addition
  4187. and subtraction, so \lstinline{'-1+2'} should parse the same as
  4188. \lstinline{'(-1)+2'} and not \lstinline{'-(1+2)'}. The grammar in
  4189. figure~\ref{fig:Lint-lark-grammar} handles the associativity of
  4190. addition and subtraction by using the nonterminal \code{exp\_hi} for
  4191. all the other expressions, and it uses \code{exp\_hi} for the second
  4192. child in the rules for addition and subtraction. Furthermore, unary
  4193. subtraction uses \code{exp\_hi} for its child.
  4194. For languages with more operators and more precedence levels, one must
  4195. refine the \code{exp} nonterminal into several nonterminals, one for
  4196. each precedence level.
  4197. \begin{figure}[tbp]
  4198. \begin{tcolorbox}[colback=white]
  4199. \centering
  4200. \begin{lstlisting}[escapechar=$]
  4201. exp: exp "+" exp_hi -> add
  4202. | exp "-" exp_hi -> sub
  4203. | exp_hi
  4204. exp_hi: INT -> int
  4205. | "input_int" "(" ")" -> input_int
  4206. | "-" exp_hi -> usub
  4207. | "(" exp ")" -> paren
  4208. stmt: "print" "(" exp ")" -> print
  4209. | exp -> expr
  4210. stmt_list: -> empty_stmt
  4211. | stmt NEWLINE stmt_list -> add_stmt
  4212. lang_int: stmt_list -> module
  4213. \end{lstlisting}
  4214. \end{tcolorbox}
  4215. \caption{An unambiguous Lark grammar for \LangInt{}.}
  4216. \label{fig:Lint-lark-grammar}
  4217. \end{figure}
  4218. \section{From Parse Trees to Abstract Syntax Trees}
  4219. As we have seen, the output of a Lark parser is a parse tree, that is,
  4220. a tree consisting of \code{Tree} and \code{Token} nodes. So, the next
  4221. step is to convert the parse tree to an abstract syntax tree. This can
  4222. be accomplished with a recursive function that inspects the
  4223. \code{data} field of each node and then constructs the corresponding
  4224. AST node, using recursion to handle its children. The following is an
  4225. excerpt from the \code{parse\_tree\_to\_ast} function for \LangInt{}.
  4226. \begin{center}
  4227. \begin{minipage}{0.95\textwidth}
  4228. \begin{lstlisting}
  4229. def parse_tree_to_ast(e):
  4230. if e.data == 'int':
  4231. return Constant(int(e.children[0].value))
  4232. elif e.data == 'input_int':
  4233. return Call(Name('input_int'), [])
  4234. elif e.data == 'add':
  4235. e1, e2 = e.children
  4236. return BinOp(parse_tree_to_ast(e1), Add(), parse_tree_to_ast(e2))
  4237. ...
  4238. else:
  4239. raise Exception('unhandled parse tree', e)
  4240. \end{lstlisting}
  4241. \end{minipage}
  4242. \end{center}
  4243. \begin{exercise}
  4244. \normalfont\normalsize
  4245. %
  4246. Use Lark to create a lexer and parser for \LangVar{}. Use Lark's
  4247. default parsing algorithm (Earley) with the \code{ambiguity} option
  4248. set to \lstinline{'explicit'} so that if your grammar is ambiguous, the
  4249. output will include multiple parse trees that will indicate to you
  4250. that there is a problem with your grammar. Your parser should ignore
  4251. white space, so we recommend using Lark's \code{\%ignore} directive
  4252. as follows.
  4253. \begin{lstlisting}
  4254. %import common.WS_INLINE
  4255. %ignore WS_INLINE
  4256. \end{lstlisting}
  4257. Change your compiler from chapter~\ref{ch:Lvar} to use your
  4258. Lark parser instead of using the \code{parse} function from
  4259. the \code{ast} module. Test your compiler on all the \LangVar{}
  4260. programs that you have created, and create four additional programs
  4261. that test for ambiguities in your grammar.
  4262. \end{exercise}
  4263. \section{Earley's Algorithm}
  4264. \label{sec:earley}
  4265. In this section we discuss the parsing algorithm of
  4266. \citet{Earley:1970ly}, the default algorithm used by Lark. The
  4267. algorithm is powerful in that it can handle any context-free grammar,
  4268. which makes it easy to use, but it is not a particularly
  4269. efficient parsing algorithm. Earley's algorithm is $O(n^3)$ for
  4270. ambiguous grammars and $O(n^2)$ for unambiguous grammars, where $n$ is
  4271. the number of tokens in the input
  4272. string~\citep{Hopcroft06:_automata}. In section~\ref{sec:lalr} we
  4273. learn about the LALR(1) algorithm, which is more efficient but cannot
  4274. handle all context-free grammars.
  4275. Earley's algorithm can be viewed as an interpreter; it treats the
  4276. grammar as the program being interpreted, and it treats the concrete
  4277. syntax of the program-to-be-parsed as its input. Earley's algorithm
  4278. uses a data structure called a \emph{chart}\index{subject}{chart} to
  4279. keep track of its progress and to store its results. The chart is an
  4280. array with one slot for each position in the input string, where
  4281. position $0$ is before the first character and position $n$ is
  4282. immediately after the last character. So, the array has length $n+1$
  4283. for an input string of length $n$. Each slot in the chart contains a
  4284. set of \emph{dotted rules}. A dotted rule is simply a grammar rule
  4285. with a period indicating how much of its right-hand side has already
  4286. been parsed. For example, the dotted rule
  4287. \begin{lstlisting}
  4288. exp: exp "+" . exp_hi
  4289. \end{lstlisting}
  4290. represents a partial parse that has matched an \code{exp} followed by
  4291. \code{+} but has not yet parsed an \code{exp} to the right of
  4292. \code{+}.
  4293. %
  4294. Earley's algorithm starts with an initialization phase and then
  4295. repeats three actions---prediction, scanning, and completion---for as
  4296. long as opportunities arise. We demonstrate Earley's algorithm on a
  4297. running example, parsing the following program:
  4298. \begin{lstlisting}
  4299. print(1 + 3)
  4300. \end{lstlisting}
  4301. The algorithm's initialization phase creates dotted rules for all the
  4302. grammar rules whose left-hand side is the start symbol and places them
  4303. in slot $0$ of the chart. We also record the starting position of the
  4304. dotted rule in parentheses on the right. For example, given the
  4305. grammar in figure~\ref{fig:Lint-lark-grammar}, we place
  4306. \begin{lstlisting}
  4307. lang_int: . stmt_list (0)
  4308. \end{lstlisting}
  4309. in slot $0$ of the chart. The algorithm then proceeds with
  4310. \emph{prediction} actions in which it adds more dotted rules to the
  4311. chart based on the nonterminals that come immediately after a period. In
  4312. the dotted rule above, the nonterminal \code{stmt\_list} appears after a period,
  4313. so we add all the rules for \code{stmt\_list} to slot $0$, with a
  4314. period at the beginning of their right-hand sides, as follows:
  4315. \begin{lstlisting}
  4316. stmt_list: . (0)
  4317. stmt_list: . stmt NEWLINE stmt_list (0)
  4318. \end{lstlisting}
  4319. We continue to perform prediction actions as more opportunities
  4320. arise. For example, the \code{stmt} nonterminal now appears after a
  4321. period, so we add all the rules for \code{stmt}.
  4322. \begin{lstlisting}
  4323. stmt: . "print" "(" exp ")" (0)
  4324. stmt: . exp (0)
  4325. \end{lstlisting}
  4326. This reveals yet more opportunities for prediction, so we add the grammar
  4327. rules for \code{exp} and \code{exp\_hi} to slot $0$.
  4328. \begin{lstlisting}[escapechar=$]
  4329. exp: . exp "+" exp_hi (0)
  4330. exp: . exp "-" exp_hi (0)
  4331. exp: . exp_hi (0)
  4332. exp_hi: . INT (0)
  4333. exp_hi: . "input_int" "(" ")" (0)
  4334. exp_hi: . "-" exp_hi (0)
  4335. exp_hi: . "(" exp ")" (0)
  4336. \end{lstlisting}
  4337. We have exhausted the opportunities for prediction, so the algorithm
  4338. proceeds to \emph{scanning}, in which we inspect the next input token
  4339. and look for a dotted rule at the current position that has a matching
  4340. terminal immediately following the period. In our running example, the
  4341. first input token is \code{"print"}, so we identify the rule in slot
  4342. $0$ of the chart where \code{"print"} follows the period:
  4343. \begin{lstlisting}
  4344. stmt: . "print" "(" exp ")" (0)
  4345. \end{lstlisting}
  4346. We advance the period past \code{"print"} and add the resulting rule
  4347. to slot $1$:
  4348. \begin{lstlisting}
  4349. stmt: "print" . "(" exp ")" (0)
  4350. \end{lstlisting}
  4351. If the new dotted rule had a nonterminal after the period, we would
  4352. need to carry out a prediction action, adding more dotted rules to
  4353. slot $1$. That is not the case, so we continue scanning. The next
  4354. input token is \code{"("}, so we add the following to slot $2$ of the
  4355. chart.
  4356. \begin{lstlisting}
  4357. stmt: "print" "(" . exp ")" (0)
  4358. \end{lstlisting}
  4359. Now we have a nonterminal after the period, so we carry out several
  4360. prediction actions, adding dotted rules for \code{exp} and
  4361. \code{exp\_hi} to slot $2$ with a period at the beginning and with
  4362. starting position $2$.
  4363. \begin{lstlisting}[escapechar=$]
  4364. exp: . exp "+" exp_hi (2)
  4365. exp: . exp "-" exp_hi (2)
  4366. exp: . exp_hi (2)
  4367. exp_hi: . INT (2)
  4368. exp_hi: . "input_int" "(" ")" (2)
  4369. exp_hi: . "-" exp_hi (2)
  4370. exp_hi: . "(" exp ")" (2)
  4371. \end{lstlisting}
  4372. With this prediction complete, we return to scanning, noting that the
  4373. next input token is \code{"1"}, which the lexer parses as an
  4374. \code{INT}. There is a matching rule in slot $2$:
  4375. \begin{lstlisting}
  4376. exp_hi: . INT (2)
  4377. \end{lstlisting}
  4378. so we advance the period and put the following rule into slot $3$.
  4379. \begin{lstlisting}
  4380. exp_hi: INT . (2)
  4381. \end{lstlisting}
  4382. This brings us to \emph{completion} actions. When the period reaches
  4383. the end of a dotted rule, we recognize that the substring
  4384. has matched the nonterminal on the left-hand side of the rule, in this case
  4385. \code{exp\_hi}. We therefore need to advance the periods in any dotted
  4386. rules into slot $2$ (the starting position for the finished rule) if
  4387. the period is immediately followed by \code{exp\_hi}. So we identify
  4388. \begin{lstlisting}
  4389. exp: . exp_hi (2)
  4390. \end{lstlisting}
  4391. and add the following dotted rule to slot $3$
  4392. \begin{lstlisting}
  4393. exp: exp_hi . (2)
  4394. \end{lstlisting}
  4395. This triggers another completion step for the nonterminal \code{exp},
  4396. adding two more dotted rules to slot $3$.
  4397. \begin{lstlisting}[escapechar=$]
  4398. exp: exp . "+" exp_hi (2)
  4399. exp: exp . "-" exp_hi (2)
  4400. \end{lstlisting}
  4401. Returning to scanning, the next input token is \code{"+"}, so
  4402. we add the following to slot $4$.
  4403. \begin{lstlisting}[escapechar=$]
  4404. exp: exp "+" . exp_hi (2)
  4405. \end{lstlisting}
  4406. The period precedes the nonterminal \code{exp\_hi}, so prediction adds
  4407. the following dotted rules to slot $4$ of the chart.
  4408. \begin{lstlisting}[escapechar=$]
  4409. exp_hi: . INT (4)
  4410. exp_hi: . "input_int" "(" ")" (4)
  4411. exp_hi: . "-" exp_hi (4)
  4412. exp_hi: . "(" exp ")" (4)
  4413. \end{lstlisting}
  4414. The next input token is \code{"3"} which the lexer categorized as an
  4415. \code{INT}, so we advance the period past \code{INT} for the rules in
  4416. slot $4$, of which there is just one, and put the following into slot $5$.
  4417. \begin{lstlisting}[escapechar=$]
  4418. exp_hi: INT . (4)
  4419. \end{lstlisting}
  4420. The period at the end of the rule triggers a completion action for the
  4421. rules in slot $4$, one of which has a period before \code{exp\_hi}.
  4422. So we advance the period and put the following into slot $5$.
  4423. \begin{lstlisting}[escapechar=$]
  4424. exp: exp "+" exp_hi . (2)
  4425. \end{lstlisting}
  4426. This triggers another completion action for the rules in slot $2$ that
  4427. have a period before \code{exp}.
  4428. \begin{lstlisting}[escapechar=$]
  4429. stmt: "print" "(" exp . ")" (0)
  4430. exp: exp . "+" exp_hi (2)
  4431. exp: exp . "-" exp_hi (2)
  4432. \end{lstlisting}
  4433. We scan the next input token \code{")"}, placing the following dotted
  4434. rule into slot $6$.
  4435. \begin{lstlisting}[escapechar=$]
  4436. stmt: "print" "(" exp ")" . (0)
  4437. \end{lstlisting}
  4438. This triggers the completion of \code{stmt} in slot $0$
  4439. \begin{lstlisting}
  4440. stmt_list: stmt . NEWLINE stmt_list (0)
  4441. \end{lstlisting}
  4442. The last input token is a \code{NEWLINE}, so we advance the period
  4443. and place the new dotted rule into slot $7$.
  4444. \begin{lstlisting}
  4445. stmt_list: stmt NEWLINE . stmt_list (0)
  4446. \end{lstlisting}
  4447. We are close to the end of parsing the input!
  4448. The period is before the \code{stmt\_list} nonterminal, so we
  4449. apply prediction for \code{stmt\_list} and then \code{stmt}.
  4450. \begin{lstlisting}
  4451. stmt_list: . (7)
  4452. stmt_list: . stmt NEWLINE stmt_list (7)
  4453. stmt: . "print" "(" exp ")" (7)
  4454. stmt: . exp (7)
  4455. \end{lstlisting}
  4456. There is immediately an opportunity for completion of \code{stmt\_list},
  4457. so we add the following to slot $7$.
  4458. \begin{lstlisting}
  4459. stmt_list: stmt NEWLINE stmt_list . (0)
  4460. \end{lstlisting}
  4461. This triggers another completion action for \code{stmt\_list} in slot $0$
  4462. \begin{lstlisting}
  4463. lang_int: stmt_list . (0)
  4464. \end{lstlisting}
  4465. which in turn completes \code{lang\_int}, the start symbol of the
  4466. grammar, so the parsing of the input is complete.
  4467. For reference, we give a general description of Earley's
  4468. algorithm.
  4469. \begin{enumerate}
  4470. \item The algorithm begins by initializing slot $0$ of the chart with the
  4471. grammar rule for the start symbol, placing a period at the beginning
  4472. of the right-hand side, and recording its starting position as $0$.
  4473. \item The algorithm repeatedly applies the following three kinds of
  4474. actions for as long as there are opportunities to do so.
  4475. \begin{itemize}
  4476. \item Prediction: If there is a rule in slot $k$ whose period comes
  4477. before a nonterminal, add the rules for that nonterminal into slot
  4478. $k$, placing a period at the beginning of their right-hand sides
  4479. and recording their starting position as $k$.
  4480. \item Scanning: If the token at position $k$ of the input string
  4481. matches the symbol after the period in a dotted rule in slot $k$
  4482. of the chart, advance the period in the dotted rule, adding
  4483. the result to slot $k+1$.
  4484. \item Completion: If a dotted rule in slot $k$ has a period at the
  4485. end, inspect the rules in the slot corresponding to the starting
  4486. position of the completed rule. If any of those rules have a
  4487. nonterminal following their period that matches the left-hand side
  4488. of the completed rule, then advance their period, placing the new
  4489. dotted rule in slot $k$.
  4490. \end{itemize}
  4491. While repeating these three actions, take care never to add
  4492. duplicate dotted rules to the chart.
  4493. \end{enumerate}
  4494. We have described how Earley's algorithm recognizes that an input
  4495. string matches a grammar, but we have not described how it builds a
  4496. parse tree. The basic idea is simple, but building parse trees in an
  4497. efficient way is more complex, requiring a data structure called a
  4498. shared packed parse forest~\citep{Tomita:1985qr}. The simple idea is
  4499. to attach a partial parse tree to every dotted rule in the chart.
  4500. Initially, the node associated with a dotted rule has no
  4501. children. As the period moves to the right, the nodes from the
  4502. subparses are added as children to the node.
  4503. As mentioned at the beginning of this section, Earley's algorithm is
  4504. $O(n^2)$ for unambiguous grammars, which means that it can parse input
  4505. files that contain thousands of tokens in a reasonable amount of time,
  4506. but not millions.
  4507. %
  4508. In the next section we discuss the LALR(1) parsing algorithm, which is
  4509. efficient enough to use with even the largest of input files.
  4510. \section{The LALR(1) Algorithm}
  4511. \label{sec:lalr}
  4512. The LALR(1) algorithm~\citep{DeRemer69,Anderson73} can be viewed as a
  4513. two-phase approach in which it first compiles the grammar into a state
  4514. machine and then runs the state machine to parse an input string. The
  4515. second phase has time complexity $O(n)$ where $n$ is the number of
  4516. tokens in the input, so LALR(1) is the best one could hope for with
  4517. respect to efficiency.
  4518. %
  4519. A particularly influential implementation of LALR(1) is the
  4520. \texttt{yacc} parser generator by \citet{Johnson:1979qy};
  4521. \texttt{yacc} stands for ``yet another compiler compiler.''
  4522. %
  4523. The LALR(1) state machine uses a stack to record its progress in
  4524. parsing the input string. Each element of the stack is a pair: a
  4525. state number and a grammar symbol (a terminal or a nonterminal). The
  4526. symbol characterizes the input that has been parsed so far, and the
  4527. state number is used to remember how to proceed once the next
  4528. symbol's worth of input has been parsed. Each state in the machine
  4529. represents where the parser stands in the parsing process with respect
  4530. to certain grammar rules. In particular, each state is associated with
  4531. a set of dotted rules.
  4532. Figure~\ref{fig:shift-reduce} shows an example LALR(1) state machine
  4533. (also called parse table) for the following simple but ambiguous
  4534. grammar:
  4535. \begin{lstlisting}[escapechar=$]
  4536. exp: INT
  4537. | exp "+" exp
  4538. stmt: "print" exp
  4539. start: stmt
  4540. \end{lstlisting}
  4541. Consider state 1 in figure~\ref{fig:shift-reduce}. The parser has just
  4542. read in a \lstinline{"print"} token, so the top of the stack is
  4543. \lstinline{(1,"print")}. The parser is part of the way through parsing
  4544. the input according to grammar rule 1, which is signified by showing
  4545. rule 1 with a period after the \code{"print"} token and before the
  4546. \code{exp} nonterminal. There are two rules that could apply next,
  4547. rules 2 and 3, so state 1 also shows those rules with a period at
  4548. the beginning of their right-hand sides. The edges between states
  4549. indicate which transitions the machine should make depending on the
  4550. next input token. So, for example, if the next input token is
  4551. \code{INT} then the parser will push \code{INT} and the target state 4
  4552. on the stack and transition to state 4. Suppose that we are now at the end
  4553. of the input. State 4 says that we should reduce by rule 3, so we pop
  4554. from the stack the same number of items as the number of symbols in
  4555. the right-hand side of the rule, in this case just one. We then
  4556. momentarily jump to the state at the top of the stack (state 1) and
  4557. then follow the goto edge that corresponds to the left-hand side of
  4558. the rule we just reduced by, in this case \code{exp}, so we arrive at
  4559. state 3. (A slightly longer example parse is shown in
  4560. figure~\ref{fig:shift-reduce}.)
  4561. \begin{figure}[tbp]
  4562. \centering
  4563. \includegraphics[width=5.0in]{figs/shift-reduce-conflict}
  4564. \caption{An LALR(1) parse table and a trace of an example run.}
  4565. \label{fig:shift-reduce}
  4566. \end{figure}
  4567. In general, the algorithm works as follows. First, set the current state to
  4568. state $0$. Then repeat the following, looking at the next input token.
  4569. \begin{itemize}
  4570. \item If there there is a shift edge for the input token in the
  4571. current state, push the edge's target state and the input token onto
  4572. the stack and proceed to the edge's target state.
  4573. \item If there is a reduce action for the input token in the current
  4574. state, pop $k$ elements from the stack, where $k$ is the number of
  4575. symbols in the right-hand side of the rule being reduced. Jump to
  4576. the state at the top of the stack and then follow the goto edge for
  4577. the nonterminal that matches the left-hand side of the rule that we
  4578. are reducing by. Push the edge's target state and the nonterminal on the
  4579. stack.
  4580. \end{itemize}
  4581. Notice that in state 6 of figure~\ref{fig:shift-reduce} there is both
  4582. a shift and a reduce action for the token \lstinline{PLUS}, so the
  4583. algorithm does not know which action to take in this case. When a
  4584. state has both a shift and a reduce action for the same token, we say
  4585. there is a \emph{shift/reduce conflict}. In this case, the conflict
  4586. will arise, for example, in trying to parse the input
  4587. \lstinline{print 1 + 2 + 3}. After having consumed \lstinline{print 1 + 2},
  4588. the parser will be in state 6 and will not know whether to
  4589. reduce to form an \code{exp} of \lstinline{1 + 2} or
  4590. to proceed by shifting the next \lstinline{+} from the input.
  4591. A similar kind of problem, known as a \emph{reduce/reduce} conflict,
  4592. arises when there are two reduce actions in a state for the same
  4593. token. To understand which grammars give rise to shift/reduce and
  4594. reduce/reduce conflicts, it helps to know how the parse table is
  4595. generated from the grammar, which we discuss next.
  4596. The parse table is generated one state at a time. State 0 represents
  4597. the start of the parser. We add the grammar rule for the start symbol
  4598. to this state with a period at the beginning of the right-hand side,
  4599. similarly to the initialization phase of the Earley parser. If the
  4600. period appears immediately before another nonterminal, we add all the
  4601. rules with that nonterminal on the left-hand side. Again, we place a
  4602. period at the beginning of the right-hand side of each new
  4603. rule. This process, called \emph{state closure}, is continued
  4604. until there are no more rules to add (similarly to the prediction
  4605. actions of an Earley parser). We then examine each dotted rule in the
  4606. current state $I$. Suppose that a dotted rule has the form $A ::=
  4607. s_1.\,X \,s_2$, where $A$ and $X$ are symbols and $s_1$ and $s_2$
  4608. are sequences of symbols. We create a new state and call it $J$. If $X$
  4609. is a terminal, we create a shift edge from $I$ to $J$ (analogously to
  4610. scanning in Earley), whereas if $X$ is a nonterminal, we create a
  4611. goto edge from $I$ to $J$. We then need to add some dotted rules to
  4612. state $J$. We start by adding all dotted rules from state $I$ that
  4613. have the form $B ::= s_1.\,X\,s_2$ (where $B$ is any nonterminal and
  4614. $s_1$ and $s_2$ are arbitrary sequences of symbols), with
  4615. the period moved past the $X$. (This is analogous to completion in
  4616. Earley's algorithm.) We then perform state closure on $J$. This
  4617. process repeats until there are no more states or edges to add.
  4618. We then mark states as accepting states if they have a dotted rule
  4619. that is the start rule with a period at the end. Also, to add
  4620. the reduce actions, we look for any state containing a dotted rule
  4621. with a period at the end. Let $n$ be the rule number for this dotted
  4622. rule. We then put a reduce $n$ action into that state for every token
  4623. $Y$. For example, in figure~\ref{fig:shift-reduce} state 4 has a
  4624. dotted rule with a period at the end. We therefore put a reduce by
  4625. rule 3 action into state 4 for every
  4626. token.
  4627. When inserting reduce actions, take care to spot any shift/reduce or
  4628. reduce/reduce conflicts. If there are any, abort the construction of
  4629. the parse table.
  4630. \begin{exercise}
  4631. \normalfont\normalsize
  4632. %
  4633. Working on paper, walk through the parse table generation process for
  4634. the grammar at the top of figure~\ref{fig:shift-reduce}, and check
  4635. your results against the parse table shown in
  4636. figure~\ref{fig:shift-reduce}.
  4637. \end{exercise}
  4638. \begin{exercise}
  4639. \normalfont\normalsize
  4640. %
  4641. Change the parser in your compiler for \LangVar{} to set the
  4642. \code{parser} option of Lark to \lstinline{'lalr'}. Test your compiler on
  4643. all the \LangVar{} programs that you have created. In doing so, Lark
  4644. may signal an error due to shift/reduce or reduce/reduce conflicts
  4645. in your grammar. If so, change your Lark grammar for \LangVar{} to
  4646. remove those conflicts.
  4647. \end{exercise}
  4648. \section{Further Reading}
  4649. In this chapter we have just scratched the surface of the field of
  4650. parsing, with the study of a very general but less efficient algorithm
  4651. (Earley) and with a more limited but highly efficient algorithm
  4652. (LALR). There are many more algorithms and classes of grammars that
  4653. fall between these two ends of the spectrum. We recommend to the reader
  4654. \citet{Aho:2006wb} for a thorough treatment of parsing.
  4655. Regarding lexical analysis, we have described the specification
  4656. language, which are the regular expressions, but not the algorithms
  4657. for recognizing them. In short, regular expressions can be translated
  4658. to nondeterministic finite automata, which in turn are translated to
  4659. finite automata. We refer the reader again to \citet{Aho:2006wb} for
  4660. all the details on lexical analysis.
  4661. \fi}
  4662. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  4663. \chapter{Register Allocation}
  4664. \label{ch:register-allocation-Lvar}
  4665. \setcounter{footnote}{0}
  4666. \index{subject}{register allocation}
  4667. In chapter~\ref{ch:Lvar} we learned how to compile \LangVar{} to x86,
  4668. storing variables on the procedure call stack. The CPU may require tens
  4669. to hundreds of cycles to access a location on the stack, whereas
  4670. accessing a register takes only a single cycle. In this chapter we
  4671. improve the efficiency of our generated code by storing some variables
  4672. in registers. The goal of register allocation is to fit as many
  4673. variables into registers as possible. Some programs have more
  4674. variables than registers, so we cannot always map each variable to a
  4675. different register. Fortunately, it is common for different variables
  4676. to be in use during different periods of time during program
  4677. execution, and in those cases we can map multiple variables to the
  4678. same register.
  4679. The program shown in figure~\ref{fig:reg-eg} serves as a running
  4680. example. The source program is on the left and the output of
  4681. instruction selection\index{subject}{instruction selection}
  4682. is on the right. The program is almost
  4683. completely in the x86 assembly language, but it still uses variables.
  4684. Consider variables \code{x} and \code{z}. After the variable \code{x}
  4685. has been moved to \code{z}, it is no longer in use. Variable \code{z}, on
  4686. the other hand, is used only after this point, so \code{x} and
  4687. \code{z} could share the same register.
  4688. \begin{figure}
  4689. \begin{tcolorbox}[colback=white]
  4690. \begin{minipage}{0.45\textwidth}
  4691. Example \LangVar{} program:
  4692. % var_test_28.rkt
  4693. {\if\edition\racketEd
  4694. \begin{lstlisting}
  4695. (let ([v 1])
  4696. (let ([w 42])
  4697. (let ([x (+ v 7)])
  4698. (let ([y x])
  4699. (let ([z (+ x w)])
  4700. (+ z (- y)))))))
  4701. \end{lstlisting}
  4702. \fi}
  4703. {\if\edition\pythonEd\pythonColor
  4704. \begin{lstlisting}
  4705. v = 1
  4706. w = 42
  4707. x = v + 7
  4708. y = x
  4709. z = x + w
  4710. print(z + (- y))
  4711. \end{lstlisting}
  4712. \fi}
  4713. \end{minipage}
  4714. \begin{minipage}{0.45\textwidth}
  4715. After instruction selection:
  4716. {\if\edition\racketEd
  4717. \begin{lstlisting}
  4718. locals-types:
  4719. x : Integer, y : Integer,
  4720. z : Integer, t : Integer,
  4721. v : Integer, w : Integer
  4722. start:
  4723. movq $1, v
  4724. movq $42, w
  4725. movq v, x
  4726. addq $7, x
  4727. movq x, y
  4728. movq x, z
  4729. addq w, z
  4730. movq y, t
  4731. negq t
  4732. movq z, %rax
  4733. addq t, %rax
  4734. jmp conclusion
  4735. \end{lstlisting}
  4736. \fi}
  4737. {\if\edition\pythonEd\pythonColor
  4738. \begin{lstlisting}
  4739. movq $1, v
  4740. movq $42, w
  4741. movq v, x
  4742. addq $7, x
  4743. movq x, y
  4744. movq x, z
  4745. addq w, z
  4746. movq y, tmp_0
  4747. negq tmp_0
  4748. movq z, tmp_1
  4749. addq tmp_0, tmp_1
  4750. movq tmp_1, %rdi
  4751. callq print_int
  4752. \end{lstlisting}
  4753. \fi}
  4754. \end{minipage}
  4755. \end{tcolorbox}
  4756. \caption{A running example for register allocation.}
  4757. \label{fig:reg-eg}
  4758. \end{figure}
  4759. The topic of section~\ref{sec:liveness-analysis-Lvar} is how to
  4760. compute where a variable is in use. Once we have that information, we
  4761. compute which variables are in use at the same time, that is, which ones
  4762. \emph{interfere}\index{subject}{interfere} with each other, and
  4763. represent this relation as an undirected graph whose vertices are
  4764. variables and edges indicate when two variables interfere
  4765. (section~\ref{sec:build-interference}). We then model register
  4766. allocation as a graph coloring problem
  4767. (section~\ref{sec:graph-coloring}).
  4768. If we run out of registers despite these efforts, we place the
  4769. remaining variables on the stack, similarly to how we handled
  4770. variables in chapter~\ref{ch:Lvar}. It is common to use the verb
  4771. \emph{spill}\index{subject}{spill} for assigning a variable to a stack
  4772. location. The decision to spill a variable is handled as part of the
  4773. graph coloring process.
  4774. We make the simplifying assumption that each variable is assigned to
  4775. one location (a register or stack address). A more sophisticated
  4776. approach is to assign a variable to one or more locations in different
  4777. regions of the program. For example, if a variable is used many times
  4778. in short sequence and then used again only after many other
  4779. instructions, it could be more efficient to assign the variable to a
  4780. register during the initial sequence and then move it to the stack for
  4781. the rest of its lifetime. We refer the interested reader to
  4782. \citet{Cooper:2011aa} (chapter 13) for more information about that
  4783. approach.
  4784. % discuss prioritizing variables based on how much they are used.
  4785. \section{Registers and Calling Conventions}
  4786. \label{sec:calling-conventions}
  4787. \index{subject}{calling conventions}
  4788. As we perform register allocation, we must be aware of the
  4789. \emph{calling conventions} \index{subject}{calling conventions} that
  4790. govern how function calls are performed in x86.
  4791. %
  4792. Even though \LangVar{} does not include programmer-defined functions,
  4793. our generated code includes a \code{main} function that is called by
  4794. the operating system and our generated code contains calls to the
  4795. \code{read\_int} function.
  4796. Function calls require coordination between two pieces of code that
  4797. may be written by different programmers or generated by different
  4798. compilers. Here we follow the System V calling conventions that are
  4799. used by the GNU C compiler on Linux and
  4800. MacOS~\citep{Bryant:2005aa,Matz:2013aa}.
  4801. %
  4802. The calling conventions include rules about how functions share the
  4803. use of registers. In particular, the caller is responsible for freeing
  4804. some registers prior to the function call for use by the callee.
  4805. These are called the \emph{caller-saved registers}
  4806. \index{subject}{caller-saved registers}
  4807. and they are
  4808. \begin{lstlisting}
  4809. rax rcx rdx rsi rdi r8 r9 r10 r11
  4810. \end{lstlisting}
  4811. On the other hand, the callee is responsible for preserving the values
  4812. of the \emph{callee-saved registers}, \index{subject}{callee-saved registers}
  4813. which are
  4814. \begin{lstlisting}
  4815. rsp rbp rbx r12 r13 r14 r15
  4816. \end{lstlisting}
  4817. We can think about this caller/callee convention from two points of
  4818. view, the caller view and the callee view, as follows:
  4819. \begin{itemize}
  4820. \item The caller should assume that all the caller-saved registers get
  4821. overwritten with arbitrary values by the callee. On the other hand,
  4822. the caller can safely assume that all the callee-saved registers
  4823. retain their original values.
  4824. \item The callee can freely use any of the caller-saved registers.
  4825. However, if the callee wants to use a callee-saved register, the
  4826. callee must arrange to put the original value back in the register
  4827. prior to returning to the caller. This can be accomplished by saving
  4828. the value to the stack in the prelude of the function and restoring
  4829. the value in the conclusion of the function.
  4830. \end{itemize}
  4831. In x86, registers are also used for passing arguments to a function
  4832. and for the return value. In particular, the first six arguments of a
  4833. function are passed in the following six registers, in this order.
  4834. \begin{lstlisting}
  4835. rdi rsi rdx rcx r8 r9
  4836. \end{lstlisting}
  4837. We refer to these six registers are the argument-passing registers
  4838. \index{subject}{argument-passing registers}.
  4839. If there are more than six arguments, the convention is to use space
  4840. on the frame of the caller for the rest of the arguments. In
  4841. chapter~\ref{ch:Lfun}, we instead pass a tuple containing the sixth
  4842. argument and the rest of the arguments, which simplifies the treatment
  4843. of efficient tail calls.
  4844. %
  4845. \racket{For now, the only function we care about is \code{read\_int},
  4846. which takes zero arguments.}
  4847. %
  4848. \python{For now, the only functions we care about are \code{read\_int}
  4849. and \code{print\_int}, which take zero and one argument, respectively.}
  4850. %
  4851. The register \code{rax} is used for the return value of a function.
  4852. The next question is how these calling conventions impact register
  4853. allocation. Consider the \LangVar{} program presented in
  4854. figure~\ref{fig:example-calling-conventions}. We first analyze this
  4855. example from the caller point of view and then from the callee point
  4856. of view. We refer to a variable that is in use during a function call
  4857. as a \emph{call-live variable}\index{subject}{call-live variable}.
  4858. The program makes two calls to \READOP{}. The variable \code{x} is
  4859. call-live because it is in use during the second call to \READOP{}; we
  4860. must ensure that the value in \code{x} does not get overwritten during
  4861. the call to \READOP{}. One obvious approach is to save all the values
  4862. that reside in caller-saved registers to the stack prior to each
  4863. function call and to restore them after each call. That way, if the
  4864. register allocator chooses to assign \code{x} to a caller-saved
  4865. register, its value will be preserved across the call to \READOP{}.
  4866. However, saving and restoring to the stack is relatively slow. If
  4867. \code{x} is not used many times, it may be better to assign \code{x}
  4868. to a stack location in the first place. Or better yet, if we can
  4869. arrange for \code{x} to be placed in a callee-saved register, then it
  4870. won't need to be saved and restored during function calls.
  4871. We recommend an approach that captures these issues in the
  4872. interference graph, without complicating the graph coloring algorithm.
  4873. During liveness analysis we know which variables are call-live because
  4874. we compute which variables are in use at every instruction
  4875. (section~\ref{sec:liveness-analysis-Lvar}). When we build the
  4876. interference graph (section~\ref{sec:build-interference}), we can
  4877. place an edge in the interference graph between each call-live
  4878. variable and the caller-saved registers. This will prevent the graph
  4879. coloring algorithm from assigning call-live variables to caller-saved
  4880. registers.
  4881. On the other hand, for variables that are not call-live, we prefer
  4882. placing them in caller-saved registers to leave more room for
  4883. call-live variables in the callee-saved registers. This can also be
  4884. implemented without complicating the graph coloring algorithm. We
  4885. recommend that the graph coloring algorithm assign variables to
  4886. natural numbers, choosing the lowest number for which there is no
  4887. interference. After the coloring is complete, we map the numbers to
  4888. registers and stack locations: mapping the lowest numbers to
  4889. caller-saved registers, the next lowest to callee-saved registers, and
  4890. the largest numbers to stack locations. This ordering gives preference
  4891. to registers over stack locations and to caller-saved registers over
  4892. callee-saved registers.
  4893. Returning to the example in
  4894. figure~\ref{fig:example-calling-conventions}, let us analyze the
  4895. generated x86 code on the right-hand side. Variable \code{x} is
  4896. assigned to \code{rbx}, a callee-saved register. Thus, it is already
  4897. in a safe place during the second call to \code{read\_int}. Next,
  4898. variable \code{y} is assigned to \code{rcx}, a caller-saved register,
  4899. because \code{y} is not a call-live variable.
  4900. We have completed the analysis from the caller point of view, so now
  4901. we switch to the callee point of view, focusing on the prelude and
  4902. conclusion of the \code{main} function. As usual, the prelude begins
  4903. with saving the \code{rbp} register to the stack and setting the
  4904. \code{rbp} to the current stack pointer. We now know why it is
  4905. necessary to save the \code{rbp}: it is a callee-saved register. The
  4906. prelude then pushes \code{rbx} to the stack because (1) \code{rbx} is
  4907. a callee-saved register and (2) \code{rbx} is assigned to a variable
  4908. (\code{x}). The other callee-saved registers are not saved in the
  4909. prelude because they are not used. The prelude subtracts 8 bytes from
  4910. the \code{rsp} to make it 16-byte aligned. Shifting attention to the
  4911. conclusion, we see that \code{rbx} is restored from the stack with a
  4912. \code{popq} instruction.
  4913. \index{subject}{prelude}\index{subject}{conclusion}
  4914. \begin{figure}[tp]
  4915. \begin{tcolorbox}[colback=white]
  4916. \begin{minipage}{0.45\textwidth}
  4917. Example \LangVar{} program:
  4918. %var_test_14.rkt
  4919. {\if\edition\racketEd
  4920. \begin{lstlisting}
  4921. (let ([x (read)])
  4922. (let ([y (read)])
  4923. (+ (+ x y) 42)))
  4924. \end{lstlisting}
  4925. \fi}
  4926. {\if\edition\pythonEd\pythonColor
  4927. \begin{lstlisting}
  4928. x = input_int()
  4929. y = input_int()
  4930. print((x + y) + 42)
  4931. \end{lstlisting}
  4932. \fi}
  4933. \end{minipage}
  4934. \begin{minipage}{0.45\textwidth}
  4935. Generated x86 assembly:
  4936. {\if\edition\racketEd
  4937. \begin{lstlisting}
  4938. start:
  4939. callq read_int
  4940. movq %rax, %rbx
  4941. callq read_int
  4942. movq %rax, %rcx
  4943. addq %rcx, %rbx
  4944. movq %rbx, %rax
  4945. addq $42, %rax
  4946. jmp _conclusion
  4947. .globl main
  4948. main:
  4949. pushq %rbp
  4950. movq %rsp, %rbp
  4951. pushq %rbx
  4952. subq $8, %rsp
  4953. jmp start
  4954. conclusion:
  4955. addq $8, %rsp
  4956. popq %rbx
  4957. popq %rbp
  4958. retq
  4959. \end{lstlisting}
  4960. \fi}
  4961. {\if\edition\pythonEd\pythonColor
  4962. \begin{lstlisting}
  4963. .globl main
  4964. main:
  4965. pushq %rbp
  4966. movq %rsp, %rbp
  4967. pushq %rbx
  4968. subq $8, %rsp
  4969. callq read_int
  4970. movq %rax, %rbx
  4971. callq read_int
  4972. movq %rax, %rcx
  4973. movq %rbx, %rdx
  4974. addq %rcx, %rdx
  4975. movq %rdx, %rcx
  4976. addq $42, %rcx
  4977. movq %rcx, %rdi
  4978. callq print_int
  4979. addq $8, %rsp
  4980. popq %rbx
  4981. popq %rbp
  4982. retq
  4983. \end{lstlisting}
  4984. \fi}
  4985. \end{minipage}
  4986. \end{tcolorbox}
  4987. \caption{An example with function calls.}
  4988. \label{fig:example-calling-conventions}
  4989. \end{figure}
  4990. %\clearpage
  4991. \section{Liveness Analysis}
  4992. \label{sec:liveness-analysis-Lvar}
  4993. \index{subject}{liveness analysis}
  4994. The \code{uncover\_live} \racket{pass}\python{function} performs
  4995. \emph{liveness analysis}; that is, it discovers which variables are
  4996. in use in different regions of a program.
  4997. %
  4998. A variable or register is \emph{live} at a program point if its
  4999. current value is used at some later point in the program. We refer to
  5000. variables, stack locations, and registers collectively as
  5001. \emph{locations}.
  5002. %
  5003. Consider the following code fragment in which there are two writes to
  5004. \code{b}. Are variables \code{a} and \code{b} both live at the same
  5005. time?
  5006. \begin{center}
  5007. \begin{minipage}{0.85\textwidth}
  5008. \begin{lstlisting}[numbers=left,numberstyle=\tiny]
  5009. movq $5, a
  5010. movq $30, b
  5011. movq a, c
  5012. movq $10, b
  5013. addq b, c
  5014. \end{lstlisting}
  5015. \end{minipage}
  5016. \end{center}
  5017. The answer is no, because \code{a} is live from line 1 to 3 and
  5018. \code{b} is live from line 4 to 5. The integer written to \code{b} on
  5019. line 2 is never used because it is overwritten (line 4) before the
  5020. next read (line 5).
  5021. The live locations for each instruction can be computed by traversing
  5022. the instruction sequence back to front (i.e., backward in execution
  5023. order). Let $I_1,\ldots, I_n$ be the instruction sequence. We write
  5024. $L_{\mathsf{after}}(k)$ for the set of live locations after
  5025. instruction $I_k$ and write $L_{\mathsf{before}}(k)$ for the set of live
  5026. locations before instruction $I_k$. \racket{We recommend representing
  5027. these sets with the Racket \code{set} data structure described in
  5028. figure~\ref{fig:set}.} \python{We recommend representing these sets
  5029. with the Python
  5030. \href{https://docs.python.org/3.10/library/stdtypes.html\#set-types-set-frozenset}{\code{set}}
  5031. data structure.}
  5032. {\if\edition\racketEd
  5033. \begin{figure}[tp]
  5034. %\begin{wrapfigure}[19]{l}[0.75in]{0.55\textwidth}
  5035. \small
  5036. \begin{tcolorbox}[title=\href{https://docs.racket-lang.org/reference/sets.html}{The Racket Set Package}]
  5037. A \emph{set} is an unordered collection of elements without duplicates.
  5038. Here are some of the operations defined on sets.
  5039. \index{subject}{set}
  5040. \begin{description}
  5041. \item[$\LP\code{set}~v~\ldots\RP$] constructs a set containing the specified elements.
  5042. \item[$\LP\code{set-union}~set_1~set_2\RP$] returns the union of the two sets.
  5043. \item[$\LP\code{set-subtract}~set_1~set_2\RP$] returns the set
  5044. difference of the two sets.
  5045. \item[$\LP\code{set-member?}~set~v\RP$] answers whether element $v$ is in $set$.
  5046. \item[$\LP\code{set-count}~set\RP$] returns the number of unique elements in $set$.
  5047. \item[$\LP\code{set->list}~set\RP$] converts $set$ to a list.
  5048. \end{description}
  5049. \end{tcolorbox}
  5050. %\end{wrapfigure}
  5051. \caption{The \code{set} data structure.}
  5052. \label{fig:set}
  5053. \end{figure}
  5054. \fi}
  5055. % TODO: add a python version of the reference box for sets. -Jeremy
  5056. The locations that are live after an instruction are its
  5057. \emph{live-after}\index{subject}{live-after} set, and the locations
  5058. that are live before an instruction are its
  5059. \emph{live-before}\index{subject}{live-before} set. The live-after
  5060. set of an instruction is always the same as the live-before set of the
  5061. next instruction.
  5062. \begin{equation} \label{eq:live-after-before-next}
  5063. L_{\mathsf{after}}(k) = L_{\mathsf{before}}(k+1)
  5064. \end{equation}
  5065. To start things off, there are no live locations after the last
  5066. instruction, so
  5067. \begin{equation}\label{eq:live-last-empty}
  5068. L_{\mathsf{after}}(n) = \emptyset
  5069. \end{equation}
  5070. We then apply the following rule repeatedly, traversing the
  5071. instruction sequence back to front.
  5072. \begin{equation}\label{eq:live-before-after-minus-writes-plus-reads}
  5073. L_{\mathtt{before}}(k) = (L_{\mathtt{after}}(k) - W(k)) \cup R(k),
  5074. \end{equation}
  5075. where $W(k)$ are the locations written to by instruction $I_k$, and
  5076. $R(k)$ are the locations read by instruction $I_k$.
  5077. {\if\edition\racketEd
  5078. %
  5079. There is a special case for \code{jmp} instructions. The locations
  5080. that are live before a \code{jmp} should be the locations in
  5081. $L_{\mathsf{before}}$ at the target of the jump. So, we recommend
  5082. maintaining an alist named \code{label->live} that maps each label to
  5083. the $L_{\mathsf{before}}$ for the first instruction in its block. For
  5084. now the only \code{jmp} in a \LangXVar{} program is the jump to the
  5085. conclusion. (For example, see figure~\ref{fig:reg-eg}.) The
  5086. conclusion reads from \ttm{rax} and \ttm{rsp}, so the alist should map
  5087. \code{conclusion} to the set $\{\ttm{rax},\ttm{rsp}\}$.
  5088. %
  5089. \fi}
  5090. Let us walk through the previous example, applying these formulas
  5091. starting with the instruction on line 5 of the code fragment. We
  5092. collect the answers in figure~\ref{fig:liveness-example-0}. The
  5093. $L_{\mathsf{after}}$ for the \code{addq b, c} instruction is
  5094. $\emptyset$ because it is the last instruction
  5095. (formula~\eqref{eq:live-last-empty}). The $L_{\mathsf{before}}$ for
  5096. this instruction is $\{\ttm{b},\ttm{c}\}$ because it reads from
  5097. variables \code{b} and \code{c}
  5098. (formula~\eqref{eq:live-before-after-minus-writes-plus-reads}):
  5099. \[
  5100. L_{\mathsf{before}}(5) = (\emptyset - \{\ttm{c}\}) \cup \{ \ttm{b}, \ttm{c} \} = \{ \ttm{b}, \ttm{c} \}
  5101. \]
  5102. Moving on the the instruction \code{movq \$10, b} at line 4, we copy
  5103. the live-before set from line 5 to be the live-after set for this
  5104. instruction (formula~\eqref{eq:live-after-before-next}).
  5105. \[
  5106. L_{\mathsf{after}}(4) = \{ \ttm{b}, \ttm{c} \}
  5107. \]
  5108. This move instruction writes to \code{b} and does not read from any
  5109. variables, so we have the following live-before set
  5110. (formula~\eqref{eq:live-before-after-minus-writes-plus-reads}).
  5111. \[
  5112. L_{\mathsf{before}}(4) = (\{\ttm{b},\ttm{c}\} - \{\ttm{b}\}) \cup \emptyset = \{ \ttm{c} \}
  5113. \]
  5114. The live-before for instruction \code{movq a, c}
  5115. is $\{\ttm{a}\}$ because it writes to $\{\ttm{c}\}$ and reads from $\{\ttm{a}\}$
  5116. (formula~\eqref{eq:live-before-after-minus-writes-plus-reads}). The
  5117. live-before for \code{movq \$30, b} is $\{\ttm{a}\}$ because it writes to a
  5118. variable that is not live and does not read from a variable.
  5119. Finally, the live-before for \code{movq \$5, a} is $\emptyset$
  5120. because it writes to variable \code{a}.
  5121. \begin{figure}[tbp]
  5122. \centering
  5123. \begin{tcolorbox}[colback=white]
  5124. \hspace{10pt}
  5125. \begin{minipage}{0.4\textwidth}
  5126. \begin{lstlisting}[numbers=left,numberstyle=\tiny]
  5127. movq $5, a
  5128. movq $30, b
  5129. movq a, c
  5130. movq $10, b
  5131. addq b, c
  5132. \end{lstlisting}
  5133. \end{minipage}
  5134. \vrule\hspace{10pt}
  5135. \begin{minipage}{0.45\textwidth}
  5136. \begin{align*}
  5137. L_{\mathsf{before}}(1)= \emptyset,
  5138. L_{\mathsf{after}}(1)= \{\ttm{a}\}\\
  5139. L_{\mathsf{before}}(2)= \{\ttm{a}\},
  5140. L_{\mathsf{after}}(2)= \{\ttm{a}\}\\
  5141. L_{\mathsf{before}}(3)= \{\ttm{a}\},
  5142. L_{\mathsf{after}}(3)= \{\ttm{c}\}\\
  5143. L_{\mathsf{before}}(4)= \{\ttm{c}\},
  5144. L_{\mathsf{after}}(4)= \{\ttm{b},\ttm{c}\}\\
  5145. L_{\mathsf{before}}(5)= \{\ttm{b},\ttm{c}\},
  5146. L_{\mathsf{after}}(5)= \emptyset
  5147. \end{align*}
  5148. \end{minipage}
  5149. \end{tcolorbox}
  5150. \caption{Example output of liveness analysis on a short example.}
  5151. \label{fig:liveness-example-0}
  5152. \end{figure}
  5153. \begin{exercise}\normalfont\normalsize
  5154. Perform liveness analysis by hand on the running example in
  5155. figure~\ref{fig:reg-eg}, computing the live-before and live-after
  5156. sets for each instruction. Compare your answers to the solution
  5157. shown in figure~\ref{fig:live-eg}.
  5158. \end{exercise}
  5159. \begin{figure}[tp]
  5160. \hspace{20pt}
  5161. \begin{minipage}{0.55\textwidth}
  5162. \begin{tcolorbox}[colback=white]
  5163. {\if\edition\racketEd
  5164. \begin{lstlisting}
  5165. |$\{\ttm{rsp}\}$|
  5166. movq $1, v
  5167. |$\{\ttm{v},\ttm{rsp}\}$|
  5168. movq $42, w
  5169. |$\{\ttm{v},\ttm{w},\ttm{rsp}\}$|
  5170. movq v, x
  5171. |$\{\ttm{w},\ttm{x},\ttm{rsp}\}$|
  5172. addq $7, x
  5173. |$\{\ttm{w},\ttm{x},\ttm{rsp}\}$|
  5174. movq x, y
  5175. |$\{\ttm{w},\ttm{x},\ttm{y},\ttm{rsp}\}$|
  5176. movq x, z
  5177. |$\{\ttm{w},\ttm{y},\ttm{z},\ttm{rsp}\}$|
  5178. addq w, z
  5179. |$\{\ttm{y},\ttm{z},\ttm{rsp}\}$|
  5180. movq y, t
  5181. |$\{\ttm{t},\ttm{z},\ttm{rsp}\}$|
  5182. negq t
  5183. |$\{\ttm{t},\ttm{z},\ttm{rsp}\}$|
  5184. movq z, %rax
  5185. |$\{\ttm{rax},\ttm{t},\ttm{rsp}\}$|
  5186. addq t, %rax
  5187. |$\{\ttm{rax},\ttm{rsp}\}$|
  5188. jmp conclusion
  5189. \end{lstlisting}
  5190. \fi}
  5191. {\if\edition\pythonEd\pythonColor
  5192. \begin{lstlisting}
  5193. movq $1, v
  5194. |$\{\ttm{v}\}$|
  5195. movq $42, w
  5196. |$\{\ttm{w}, \ttm{v}\}$|
  5197. movq v, x
  5198. |$\{\ttm{w}, \ttm{x}\}$|
  5199. addq $7, x
  5200. |$\{\ttm{w}, \ttm{x}\}$|
  5201. movq x, y
  5202. |$\{\ttm{w}, \ttm{x}, \ttm{y}\}$|
  5203. movq x, z
  5204. |$\{\ttm{w}, \ttm{y}, \ttm{z}\}$|
  5205. addq w, z
  5206. |$\{\ttm{y}, \ttm{z}\}$|
  5207. movq y, tmp_0
  5208. |$\{\ttm{tmp\_0}, \ttm{z}\}$|
  5209. negq tmp_0
  5210. |$\{\ttm{tmp\_0}, \ttm{z}\}$|
  5211. movq z, tmp_1
  5212. |$\{\ttm{tmp\_0}, \ttm{tmp\_1}\}$|
  5213. addq tmp_0, tmp_1
  5214. |$\{\ttm{tmp\_1}\}$|
  5215. movq tmp_1, %rdi
  5216. |$\{\ttm{rdi}\}$|
  5217. callq print_int
  5218. |$\{\}$|
  5219. \end{lstlisting}
  5220. \fi}
  5221. \end{tcolorbox}
  5222. \end{minipage}
  5223. \caption{The running example annotated with live-after sets.}
  5224. \label{fig:live-eg}
  5225. \end{figure}
  5226. \begin{exercise}\normalfont\normalsize
  5227. Implement the \code{uncover\_live} \racket{pass}\python{function}.
  5228. %
  5229. \racket{Store the sequence of live-after sets in the $\itm{info}$
  5230. field of the \code{Block} structure.}
  5231. %
  5232. \python{Return a dictionary that maps each instruction to its
  5233. live-after set.}
  5234. %
  5235. \racket{We recommend creating an auxiliary function that takes a list
  5236. of instructions and an initial live-after set (typically empty) and
  5237. returns the list of live-after sets.}
  5238. %
  5239. We recommend creating auxiliary functions to (1) compute the set
  5240. of locations that appear in an \Arg{}, (2) compute the locations read
  5241. by an instruction (the $R$ function), and (3) the locations written by
  5242. an instruction (the $W$ function). The \code{callq} instruction should
  5243. include all the caller-saved registers in its write set $W$ because
  5244. the calling convention says that those registers may be written to
  5245. during the function call. Likewise, the \code{callq} instruction
  5246. should include the appropriate argument-passing registers in its
  5247. read set $R$, depending on the arity of the function being
  5248. called. (This is why the abstract syntax for \code{callq} includes the
  5249. arity.)
  5250. \end{exercise}
  5251. %\clearpage
  5252. \section{Build the Interference Graph}
  5253. \label{sec:build-interference}
  5254. {\if\edition\racketEd
  5255. \begin{figure}[tp]
  5256. %\begin{wrapfigure}[23]{r}[0.75in]{0.55\textwidth}
  5257. \small
  5258. \begin{tcolorbox}[title=\href{https://docs.racket-lang.org/graph/index.html}{The Racket Graph Library}]
  5259. A \emph{graph} is a collection of vertices and edges where each
  5260. edge connects two vertices. A graph is \emph{directed} if each
  5261. edge points from a source to a target. Otherwise the graph is
  5262. \emph{undirected}.
  5263. \index{subject}{graph}\index{subject}{directed graph}\index{subject}{undirected graph}
  5264. \begin{description}
  5265. %% We currently don't use directed graphs. We instead use
  5266. %% directed multi-graphs. -Jeremy
  5267. \item[$\LP\code{directed-graph}\,\itm{edges}\RP$] constructs a
  5268. directed graph from a list of edges. Each edge is a list
  5269. containing the source and target vertex.
  5270. \item[$\LP\code{undirected-graph}\,\itm{edges}\RP$] constructs a
  5271. undirected graph from a list of edges. Each edge is represented by
  5272. a list containing two vertices.
  5273. \item[$\LP\code{add-vertex!}\,\itm{graph}\,\itm{vertex}\RP$]
  5274. inserts a vertex into the graph.
  5275. \item[$\LP\code{add-edge!}\,\itm{graph}\,\itm{source}\,\itm{target}\RP$]
  5276. inserts an edge between the two vertices.
  5277. \item[$\LP\code{in-neighbors}\,\itm{graph}\,\itm{vertex}\RP$]
  5278. returns a sequence of vertices adjacent to the vertex.
  5279. \item[$\LP\code{in-vertices}\,\itm{graph}\RP$]
  5280. returns a sequence of all vertices in the graph.
  5281. \end{description}
  5282. \end{tcolorbox}
  5283. %\end{wrapfigure}
  5284. \caption{The Racket \code{graph} package.}
  5285. \label{fig:graph}
  5286. \end{figure}
  5287. \fi}
  5288. On the basis of the liveness analysis, we know where each location is
  5289. live. However, during register allocation, we need to answer
  5290. questions of the specific form: are locations $u$ and $v$ live at the
  5291. same time? (If so, they cannot be assigned to the same register.) To
  5292. make this question more efficient to answer, we create an explicit
  5293. data structure, an \emph{interference
  5294. graph}\index{subject}{interference graph}. An interference graph is
  5295. an undirected graph that has a node for every variable and register
  5296. and has an edge between two nodes if they are
  5297. live at the same time, that is, if they interfere with each other.
  5298. %
  5299. \racket{We recommend using the Racket \code{graph} package
  5300. (figure~\ref{fig:graph}) to represent the interference graph.}
  5301. %
  5302. \python{We provide implementations of directed and undirected graph
  5303. data structures in the file \code{graph.py} of the support code.}
  5304. A straightforward way to compute the interference graph is to look at
  5305. the set of live locations between each instruction and add an edge to
  5306. the graph for every pair of variables in the same set. This approach
  5307. is less than ideal for two reasons. First, it can be expensive because
  5308. it takes $O(n^2)$ time to consider every pair in a set of $n$ live
  5309. locations. Second, in the special case in which two locations hold the
  5310. same value (because one was assigned to the other), they can be live
  5311. at the same time without interfering with each other.
  5312. A better way to compute the interference graph is to focus on
  5313. writes~\citep{Appel:2003fk}. The writes performed by an instruction
  5314. must not overwrite something in a live location. So for each
  5315. instruction, we create an edge between the locations being written to
  5316. and the live locations. (However, a location never interferes with
  5317. itself.) For the \key{callq} instruction, we consider all the
  5318. caller-saved registers to have been written to, so an edge is added
  5319. between every live variable and every caller-saved register. Also, for
  5320. \key{movq} there is the special case of two variables holding the same
  5321. value. If a live variable $v$ is the same as the source of the
  5322. \key{movq}, then there is no need to add an edge between $v$ and the
  5323. destination, because they both hold the same value.
  5324. %
  5325. Hence we have the following two rules:
  5326. \begin{enumerate}
  5327. \item If instruction $I_k$ is a move instruction of the form
  5328. \key{movq} $s$\key{,} $d$, then for every $v \in
  5329. L_{\mathsf{after}}(k)$, if $v \neq d$ and $v \neq s$, add the edge
  5330. $(d,v)$.
  5331. \item For any other instruction $I_k$, for every $d \in W(k)$ and
  5332. every $v \in L_{\mathsf{after}}(k)$, if $v \neq d$, add the edge
  5333. $(d,v)$.
  5334. \end{enumerate}
  5335. Working from the top to bottom of figure~\ref{fig:live-eg}, we apply
  5336. these rules to each instruction. We highlight a few of the
  5337. instructions. \racket{The first instruction is \lstinline{movq $1, v},
  5338. and the live-after set is $\{\ttm{v},\ttm{rsp}\}$. Rule 1 applies,
  5339. so \code{v} interferes with \code{rsp}.}
  5340. %
  5341. \python{The first instruction is \lstinline{movq $1, v}, and the
  5342. live-after set is $\{\ttm{v}\}$. Rule 1 applies, but there is
  5343. no interference because $\ttm{v}$ is the destination of the move.}
  5344. %
  5345. \racket{The fourth instruction is \lstinline{addq $7, x}, and the
  5346. live-after set is $\{\ttm{w},\ttm{x},\ttm{rsp}\}$. Rule 2 applies, so
  5347. $\ttm{x}$ interferes with \ttm{w} and \ttm{rsp}.}
  5348. %
  5349. \python{The fourth instruction is \lstinline{addq $7, x}, and the
  5350. live-after set is $\{\ttm{w},\ttm{x}\}$. Rule 2 applies, so
  5351. $\ttm{x}$ interferes with \ttm{w}.}
  5352. %
  5353. \racket{The next instruction is \lstinline{movq x, y}, and the
  5354. live-after set is $\{\ttm{w},\ttm{x},\ttm{y},\ttm{rsp}\}$. Rule 1
  5355. applies, so \ttm{y} interferes with \ttm{w} and \ttm{rsp} but not
  5356. \ttm{x}, because \ttm{x} is the source of the move and therefore
  5357. \ttm{x} and \ttm{y} hold the same value.}
  5358. %
  5359. \python{The next instruction is \lstinline{movq x, y}, and the
  5360. live-after set is $\{\ttm{w},\ttm{x},\ttm{y}\}$. Rule 1
  5361. applies, so \ttm{y} interferes with \ttm{w} but not
  5362. \ttm{x}, because \ttm{x} is the source of the move and therefore
  5363. \ttm{x} and \ttm{y} hold the same value.}
  5364. %
  5365. Figure~\ref{fig:interference-results} lists the interference results
  5366. for all the instructions, and the resulting interference graph is
  5367. shown in figure~\ref{fig:interfere}. We elide the register nodes from
  5368. the interference graph in figure~\ref{fig:interfere} because there
  5369. were no interference edges involving registers and we did not wish to
  5370. clutter the graph, but in general one needs to include all the
  5371. registers in the interference graph.
  5372. \begin{figure}[tbp]
  5373. \begin{tcolorbox}[colback=white]
  5374. \begin{quote}
  5375. {\if\edition\racketEd
  5376. \begin{tabular}{ll}
  5377. \lstinline!movq $1, v!& \ttm{v} interferes with \ttm{rsp},\\
  5378. \lstinline!movq $42, w!& \ttm{w} interferes with \ttm{v} and \ttm{rsp},\\
  5379. \lstinline!movq v, x!& \ttm{x} interferes with \ttm{w} and \ttm{rsp},\\
  5380. \lstinline!addq $7, x!& \ttm{x} interferes with \ttm{w} and \ttm{rsp},\\
  5381. \lstinline!movq x, y!& \ttm{y} interferes with \ttm{w} and \ttm{rsp} but not \ttm{x},\\
  5382. \lstinline!movq x, z!& \ttm{z} interferes with \ttm{w}, \ttm{y}, and \ttm{rsp},\\
  5383. \lstinline!addq w, z!& \ttm{z} interferes with \ttm{y} and \ttm{rsp}, \\
  5384. \lstinline!movq y, t!& \ttm{t} interferes with \ttm{z} and \ttm{rsp}, \\
  5385. \lstinline!negq t!& \ttm{t} interferes with \ttm{z} and \ttm{rsp}, \\
  5386. \lstinline!movq z, %rax! & \ttm{rax} interferes with \ttm{t} and \ttm{rsp}, \\
  5387. \lstinline!addq t, %rax! & \ttm{rax} interferes with \ttm{rsp}. \\
  5388. \lstinline!jmp conclusion!& no interference.
  5389. \end{tabular}
  5390. \fi}
  5391. {\if\edition\pythonEd\pythonColor
  5392. \begin{tabular}{ll}
  5393. \lstinline!movq $1, v!& no interference\\
  5394. \lstinline!movq $42, w!& \ttm{w} interferes with \ttm{v}\\
  5395. \lstinline!movq v, x!& \ttm{x} interferes with \ttm{w}\\
  5396. \lstinline!addq $7, x!& \ttm{x} interferes with \ttm{w}\\
  5397. \lstinline!movq x, y!& \ttm{y} interferes with \ttm{w} but not \ttm{x}\\
  5398. \lstinline!movq x, z!& \ttm{z} interferes with \ttm{w} and \ttm{y}\\
  5399. \lstinline!addq w, z!& \ttm{z} interferes with \ttm{y} \\
  5400. \lstinline!movq y, tmp_0!& \ttm{tmp\_0} interferes with \ttm{z} \\
  5401. \lstinline!negq tmp_0!& \ttm{tmp\_0} interferes with \ttm{z} \\
  5402. \lstinline!movq z, tmp_1! & \ttm{tmp\_0} interferes with \ttm{tmp\_1} \\
  5403. \lstinline!addq tmp_0, tmp_1! & no interference\\
  5404. \lstinline!movq tmp_1, %rdi! & no interference \\
  5405. \lstinline!callq print_int!& no interference.
  5406. \end{tabular}
  5407. \fi}
  5408. \end{quote}
  5409. \end{tcolorbox}
  5410. \caption{Interference results for the running example.}
  5411. \label{fig:interference-results}
  5412. \end{figure}
  5413. \begin{figure}[tbp]
  5414. \begin{tcolorbox}[colback=white]
  5415. \large
  5416. {\if\edition\racketEd
  5417. \[
  5418. \begin{tikzpicture}[baseline=(current bounding box.center)]
  5419. \node (rax) at (0,0) {$\ttm{rax}$};
  5420. \node (rsp) at (9,2) {$\ttm{rsp}$};
  5421. \node (t1) at (0,2) {$\ttm{t}$};
  5422. \node (z) at (3,2) {$\ttm{z}$};
  5423. \node (x) at (6,2) {$\ttm{x}$};
  5424. \node (y) at (3,0) {$\ttm{y}$};
  5425. \node (w) at (6,0) {$\ttm{w}$};
  5426. \node (v) at (9,0) {$\ttm{v}$};
  5427. \draw (t1) to (rax);
  5428. \draw (t1) to (z);
  5429. \draw (z) to (y);
  5430. \draw (z) to (w);
  5431. \draw (x) to (w);
  5432. \draw (y) to (w);
  5433. \draw (v) to (w);
  5434. \draw (v) to (rsp);
  5435. \draw (w) to (rsp);
  5436. \draw (x) to (rsp);
  5437. \draw (y) to (rsp);
  5438. \path[-.,bend left=15] (z) edge node {} (rsp);
  5439. \path[-.,bend left=10] (t1) edge node {} (rsp);
  5440. \draw (rax) to (rsp);
  5441. \end{tikzpicture}
  5442. \]
  5443. \fi}
  5444. {\if\edition\pythonEd\pythonColor
  5445. \[
  5446. \begin{tikzpicture}[baseline=(current bounding box.center),scale=0.9]
  5447. \node (t0) at (0,2) {$\ttm{tmp\_0}$};
  5448. \node (t1) at (0,0) {$\ttm{tmp\_1}$};
  5449. \node (z) at (3,2) {$\ttm{z}$};
  5450. \node (x) at (6,2) {$\ttm{x}$};
  5451. \node (y) at (3,0) {$\ttm{y}$};
  5452. \node (w) at (6,0) {$\ttm{w}$};
  5453. \node (v) at (9,0) {$\ttm{v}$};
  5454. \draw (t0) to (t1);
  5455. \draw (t0) to (z);
  5456. \draw (z) to (y);
  5457. \draw (z) to (w);
  5458. \draw (x) to (w);
  5459. \draw (y) to (w);
  5460. \draw (v) to (w);
  5461. \end{tikzpicture}
  5462. \]
  5463. \fi}
  5464. \end{tcolorbox}
  5465. \caption{The interference graph of the example program.}
  5466. \label{fig:interfere}
  5467. \end{figure}
  5468. \begin{exercise}\normalfont\normalsize
  5469. \racket{Implement the compiler pass named \code{build\_interference} according
  5470. to the algorithm suggested here. We recommend using the Racket
  5471. \code{graph} package to create and inspect the interference graph.
  5472. The output graph of this pass should be stored in the $\itm{info}$ field of
  5473. the program, under the key \code{conflicts}.}
  5474. %
  5475. \python{Implement a function named \code{build\_interference}
  5476. according to the algorithm suggested above that
  5477. returns the interference graph.}
  5478. \end{exercise}
  5479. \section{Graph Coloring via Sudoku}
  5480. \label{sec:graph-coloring}
  5481. \index{subject}{graph coloring}
  5482. \index{subject}{sudoku}
  5483. \index{subject}{color}
  5484. We come to the main event discussed in this chapter, mapping variables
  5485. to registers and stack locations. Variables that interfere with each
  5486. other must be mapped to different locations. In terms of the
  5487. interference graph, this means that adjacent vertices must be mapped
  5488. to different locations. If we think of locations as colors, the
  5489. register allocation problem becomes the graph coloring
  5490. problem~\citep{Balakrishnan:1996ve,Rosen:2002bh}.
  5491. The reader may be more familiar with the graph coloring problem than he
  5492. or she realizes; the popular game of sudoku is an instance of the
  5493. graph coloring problem. The following describes how to build a graph
  5494. out of an initial sudoku board.
  5495. \begin{itemize}
  5496. \item There is one vertex in the graph for each sudoku square.
  5497. \item There is an edge between two vertices if the corresponding squares
  5498. are in the same row, in the same column, or in the same $3\times 3$ region.
  5499. \item Choose nine colors to correspond to the numbers $1$ to $9$.
  5500. \item On the basis of the initial assignment of numbers to squares on the
  5501. sudoku board, assign the corresponding colors to the corresponding
  5502. vertices in the graph.
  5503. \end{itemize}
  5504. If you can color the remaining vertices in the graph with the nine
  5505. colors, then you have also solved the corresponding game of sudoku.
  5506. Figure~\ref{fig:sudoku-graph} shows an initial sudoku game board and
  5507. the corresponding graph with colored vertices. Here we use a
  5508. monochrome representation of colors, mapping the sudoku number 1 to
  5509. black, 2 to white, and 3 to gray. We show edges for only a sampling
  5510. of the vertices (the colored ones) because showing edges for all the
  5511. vertices would make the graph unreadable.
  5512. \begin{figure}[tbp]
  5513. \begin{tcolorbox}[colback=white]
  5514. \includegraphics[width=0.5\textwidth]{figs/sudoku}
  5515. \includegraphics[width=0.5\textwidth]{figs/sudoku-graph-bw}
  5516. \end{tcolorbox}
  5517. \caption{A sudoku game board and the corresponding colored graph.}
  5518. \label{fig:sudoku-graph}
  5519. \end{figure}
  5520. Some techniques for playing sudoku correspond to heuristics used in
  5521. graph coloring algorithms. For example, one of the basic techniques
  5522. for sudoku is called Pencil Marks. The idea is to use a process of
  5523. elimination to determine what numbers are no longer available for a
  5524. square and to write those numbers in the square (writing very
  5525. small). For example, if the number $1$ is assigned to a square, then
  5526. write the pencil mark $1$ in all the squares in the same row, column,
  5527. and region to indicate that $1$ is no longer an option for those other
  5528. squares.
  5529. %
  5530. The Pencil Marks technique corresponds to the notion of
  5531. \emph{saturation}\index{subject}{saturation} due to \citet{Brelaz:1979eu}. The
  5532. saturation of a vertex, in sudoku terms, is the set of numbers that
  5533. are no longer available. In graph terminology, we have the following
  5534. definition:
  5535. \begin{equation*}
  5536. \mathrm{saturation}(u) = \{ c \;|\; \exists v. v \in \mathrm{adjacent}(u)
  5537. \text{ and } \mathrm{color}(v) = c \}
  5538. \end{equation*}
  5539. where $\mathrm{adjacent}(u)$ is the set of vertices that share an
  5540. edge with $u$.
  5541. The Pencil Marks technique leads to a simple strategy for filling in
  5542. numbers: if there is a square with only one possible number left, then
  5543. choose that number! But what if there are no squares with only one
  5544. possibility left? One brute-force approach is to try them all: choose
  5545. the first one, and if that ultimately leads to a solution, great. If
  5546. not, backtrack and choose the next possibility. One good thing about
  5547. Pencil Marks is that it reduces the degree of branching in the search
  5548. tree. Nevertheless, backtracking can be terribly time consuming. One
  5549. way to reduce the amount of backtracking is to use the
  5550. most-constrained-first heuristic (aka minimum remaining
  5551. values)~\citep{Russell2003}. That is, in choosing a square, always
  5552. choose one with the fewest possibilities left (the vertex with the
  5553. highest saturation). The idea is that choosing highly constrained
  5554. squares earlier rather than later is better, because later on there may
  5555. not be any possibilities left in the highly saturated squares.
  5556. However, register allocation is easier than sudoku, because the
  5557. register allocator can fall back to assigning variables to stack
  5558. locations when the registers run out. Thus, it makes sense to replace
  5559. backtracking with greedy search: make the best choice at the time and
  5560. keep going. We still wish to minimize the number of colors needed, so
  5561. we use the most-constrained-first heuristic in the greedy search.
  5562. Figure~\ref{fig:satur-algo} gives the pseudocode for a simple greedy
  5563. algorithm for register allocation based on saturation and the
  5564. most-constrained-first heuristic. It is roughly equivalent to the
  5565. DSATUR graph coloring algorithm~\citep{Brelaz:1979eu}. Just as in
  5566. sudoku, the algorithm represents colors with integers. The integers
  5567. $0$ through $k-1$ correspond to the $k$ registers that we use for
  5568. register allocation. In particular, we recommend the following
  5569. correspondence, with $k=11$.
  5570. \begin{lstlisting}
  5571. 0: rcx, 1: rdx, 2: rsi, 3: rdi, 4: r8, 5: r9,
  5572. 6: r10, 7: rbx, 8: r12, 9: r13, 10: r14
  5573. \end{lstlisting}
  5574. The integers $k$ and larger correspond to stack locations. The
  5575. registers that are not used for register allocation, such as
  5576. \code{rax}, are assigned to negative integers. In particular, we
  5577. recommend the following correspondence.
  5578. \begin{lstlisting}
  5579. -1: rax, -2: rsp, -3: rbp, -4: r11, -5: r15
  5580. \end{lstlisting}
  5581. \begin{figure}[btp]
  5582. \begin{tcolorbox}[colback=white]
  5583. \centering
  5584. \begin{lstlisting}[basicstyle=\rmfamily,deletekeywords={for,from,with,is,not,in,find},morekeywords={while},columns=fullflexible]
  5585. Algorithm: DSATUR
  5586. Input: A graph |$G$|
  5587. Output: An assignment |$\mathrm{color}[v]$| for each vertex |$v \in G$|
  5588. |$W \gets \mathrm{vertices}(G)$|
  5589. while |$W \neq \emptyset$| do
  5590. pick a vertex |$u$| from |$W$| with the highest saturation,
  5591. breaking ties randomly
  5592. find the lowest color |$c$| that is not in |$\{ \mathrm{color}[v] \;:\; v \in \mathrm{adjacent}(u)\}$|
  5593. |$\mathrm{color}[u] \gets c$|
  5594. |$W \gets W - \{u\}$|
  5595. \end{lstlisting}
  5596. \end{tcolorbox}
  5597. \caption{The saturation-based greedy graph coloring algorithm.}
  5598. \label{fig:satur-algo}
  5599. \end{figure}
  5600. {\if\edition\racketEd
  5601. With the DSATUR algorithm in hand, let us return to the running
  5602. example and consider how to color the interference graph shown in
  5603. figure~\ref{fig:interfere}.
  5604. %
  5605. We start by assigning each register node to its own color. For
  5606. example, \code{rax} is assigned the color $-1$, \code{rsp} is assign
  5607. $-2$, \code{rcx} is assigned $0$, and \code{rdx} is assigned $1$.
  5608. (To reduce clutter in the interference graph, we elide nodes
  5609. that do not have interference edges, such as \code{rcx}.)
  5610. The variables are not yet colored, so they are annotated with a dash. We
  5611. then update the saturation for vertices that are adjacent to a
  5612. register, obtaining the following annotated graph. For example, the
  5613. saturation for \code{t} is $\{-1,-2\}$ because it interferes with both
  5614. \code{rax} and \code{rsp}.
  5615. \[
  5616. \begin{tikzpicture}[baseline=(current bounding box.center),scale=0.9]
  5617. \node (rax) at (0,0) {$\ttm{rax}:-1,\{-2\}$};
  5618. \node (rsp) at (10,2) {$\ttm{rsp}:-2,\{-1\}$};
  5619. \node (t1) at (0,2) {$\ttm{t}:-,\{-1,-2\}$};
  5620. \node (z) at (3,2) {$\ttm{z}:-,\{-2\}$};
  5621. \node (x) at (6,2) {$\ttm{x}:-,\{-2\}$};
  5622. \node (y) at (3,0) {$\ttm{y}:-,\{-2\}$};
  5623. \node (w) at (6,0) {$\ttm{w}:-,\{-2\}$};
  5624. \node (v) at (10,0) {$\ttm{v}:-,\{-2\}$};
  5625. \draw (t1) to (rax);
  5626. \draw (t1) to (z);
  5627. \draw (z) to (y);
  5628. \draw (z) to (w);
  5629. \draw (x) to (w);
  5630. \draw (y) to (w);
  5631. \draw (v) to (w);
  5632. \draw (v) to (rsp);
  5633. \draw (w) to (rsp);
  5634. \draw (x) to (rsp);
  5635. \draw (y) to (rsp);
  5636. \path[-.,bend left=15] (z) edge node {} (rsp);
  5637. \path[-.,bend left=10] (t1) edge node {} (rsp);
  5638. \draw (rax) to (rsp);
  5639. \end{tikzpicture}
  5640. \]
  5641. The algorithm says to select a maximally saturated vertex. So, we pick
  5642. $\ttm{t}$ and color it with the first available integer, which is
  5643. $0$. We mark $0$ as no longer available for $\ttm{z}$, $\ttm{rax}$,
  5644. and \ttm{rsp} because they interfere with $\ttm{t}$.
  5645. \[
  5646. \begin{tikzpicture}[baseline=(current bounding box.center),scale=0.9]
  5647. \node (rax) at (0,0) {$\ttm{rax}:-1,\{0,-2\}$};
  5648. \node (rsp) at (10,2) {$\ttm{rsp}:-2,\{-1,0\}$};
  5649. \node (t1) at (0,2) {$\ttm{t}:0,\{-1,-2\}$};
  5650. \node (z) at (3,2) {$\ttm{z}:-,\{0,-2\}$};
  5651. \node (x) at (6,2) {$\ttm{x}:-,\{-2\}$};
  5652. \node (y) at (3,0) {$\ttm{y}:-,\{-2\}$};
  5653. \node (w) at (6,0) {$\ttm{w}:-,\{-2\}$};
  5654. \node (v) at (10,0) {$\ttm{v}:-,\{-2\}$};
  5655. \draw (t1) to (rax);
  5656. \draw (t1) to (z);
  5657. \draw (z) to (y);
  5658. \draw (z) to (w);
  5659. \draw (x) to (w);
  5660. \draw (y) to (w);
  5661. \draw (v) to (w);
  5662. \draw (v) to (rsp);
  5663. \draw (w) to (rsp);
  5664. \draw (x) to (rsp);
  5665. \draw (y) to (rsp);
  5666. \path[-.,bend left=15] (z) edge node {} (rsp);
  5667. \path[-.,bend left=10] (t1) edge node {} (rsp);
  5668. \draw (rax) to (rsp);
  5669. \end{tikzpicture}
  5670. \]
  5671. We repeat the process, selecting a maximally saturated vertex,
  5672. choosing \code{z}, and coloring it with the first available number, which
  5673. is $1$. We add $1$ to the saturation for the neighboring vertices
  5674. \code{t}, \code{y}, \code{w}, and \code{rsp}.
  5675. \[
  5676. \begin{tikzpicture}[baseline=(current bounding box.center),scale=0.9]
  5677. \node (rax) at (0,0) {$\ttm{rax}:-1,\{0,-2\}$};
  5678. \node (rsp) at (10,2) {$\ttm{rsp}:-2,\{-1,0,1\}$};
  5679. \node (t1) at (0,2) {$\ttm{t}:0,\{-1,1,-2\}$};
  5680. \node (z) at (3,2) {$\ttm{z}:1,\{0,-2\}$};
  5681. \node (x) at (6,2) {$\ttm{x}:-,\{-2\}$};
  5682. \node (y) at (3,0) {$\ttm{y}:-,\{1,-2\}$};
  5683. \node (w) at (6,0) {$\ttm{w}:-,\{1,-2\}$};
  5684. \node (v) at (10,0) {$\ttm{v}:-,\{-2\}$};
  5685. \draw (t1) to (rax);
  5686. \draw (t1) to (z);
  5687. \draw (z) to (y);
  5688. \draw (z) to (w);
  5689. \draw (x) to (w);
  5690. \draw (y) to (w);
  5691. \draw (v) to (w);
  5692. \draw (v) to (rsp);
  5693. \draw (w) to (rsp);
  5694. \draw (x) to (rsp);
  5695. \draw (y) to (rsp);
  5696. \path[-.,bend left=15] (z) edge node {} (rsp);
  5697. \path[-.,bend left=10] (t1) edge node {} (rsp);
  5698. \draw (rax) to (rsp);
  5699. \end{tikzpicture}
  5700. \]
  5701. The most saturated vertices are now \code{w} and \code{y}. We color
  5702. \code{w} with the first available color, which is $0$.
  5703. \[
  5704. \begin{tikzpicture}[baseline=(current bounding box.center),scale=0.9]
  5705. \node (rax) at (0,0) {$\ttm{rax}:-1,\{0,-2\}$};
  5706. \node (rsp) at (10,2) {$\ttm{rsp}:-2,\{-1,0,1\}$};
  5707. \node (t1) at (0,2) {$\ttm{t}:0,\{-1,1,-2\}$};
  5708. \node (z) at (3,2) {$\ttm{z}:1,\{0,-2\}$};
  5709. \node (x) at (6,2) {$\ttm{x}:-,\{0,-2\}$};
  5710. \node (y) at (3,0) {$\ttm{y}:-,\{0,1,-2\}$};
  5711. \node (w) at (6,0) {$\ttm{w}:0,\{1,-2\}$};
  5712. \node (v) at (10,0) {$\ttm{v}:-,\{0,-2\}$};
  5713. \draw (t1) to (rax);
  5714. \draw (t1) to (z);
  5715. \draw (z) to (y);
  5716. \draw (z) to (w);
  5717. \draw (x) to (w);
  5718. \draw (y) to (w);
  5719. \draw (v) to (w);
  5720. \draw (v) to (rsp);
  5721. \draw (w) to (rsp);
  5722. \draw (x) to (rsp);
  5723. \draw (y) to (rsp);
  5724. \path[-.,bend left=15] (z) edge node {} (rsp);
  5725. \path[-.,bend left=10] (t1) edge node {} (rsp);
  5726. \draw (rax) to (rsp);
  5727. \end{tikzpicture}
  5728. \]
  5729. Vertex \code{y} is now the most highly saturated, so we color \code{y}
  5730. with $2$. We cannot choose $0$ or $1$ because those numbers are in
  5731. \code{y}'s saturation set. Indeed, \code{y} interferes with \code{w}
  5732. and \code{z}, whose colors are $0$ and $1$ respectively.
  5733. \[
  5734. \begin{tikzpicture}[baseline=(current bounding box.center),scale=0.9]
  5735. \node (rax) at (0,0) {$\ttm{rax}:-1,\{0,-2\}$};
  5736. \node (rsp) at (10,2) {$\ttm{rsp}:-2,\{-1,0,1,2\}$};
  5737. \node (t1) at (0,2) {$\ttm{t}:0,\{-1,1,-2\}$};
  5738. \node (z) at (3,2) {$\ttm{z}:1,\{0,2,-2\}$};
  5739. \node (x) at (6,2) {$\ttm{x}:-,\{0,-2\}$};
  5740. \node (y) at (3,0) {$\ttm{y}:2,\{0,1,-2\}$};
  5741. \node (w) at (6,0) {$\ttm{w}:0,\{1,2,-2\}$};
  5742. \node (v) at (10,0) {$\ttm{v}:-,\{0,-2\}$};
  5743. \draw (t1) to (rax);
  5744. \draw (t1) to (z);
  5745. \draw (z) to (y);
  5746. \draw (z) to (w);
  5747. \draw (x) to (w);
  5748. \draw (y) to (w);
  5749. \draw (v) to (w);
  5750. \draw (v) to (rsp);
  5751. \draw (w) to (rsp);
  5752. \draw (x) to (rsp);
  5753. \draw (y) to (rsp);
  5754. \path[-.,bend left=15] (z) edge node {} (rsp);
  5755. \path[-.,bend left=10] (t1) edge node {} (rsp);
  5756. \draw (rax) to (rsp);
  5757. \end{tikzpicture}
  5758. \]
  5759. Now \code{x} and \code{v} are the most saturated, so we color \code{v} with $1$.
  5760. \[
  5761. \begin{tikzpicture}[baseline=(current bounding box.center),scale=0.9]
  5762. \node (rax) at (0,0) {$\ttm{rax}:-1,\{0,-2\}$};
  5763. \node (rsp) at (10,2) {$\ttm{rsp}:-2,\{-1,0,1,2\}$};
  5764. \node (t1) at (0,2) {$\ttm{t}:0,\{-1,1,-2\}$};
  5765. \node (z) at (3,2) {$\ttm{z}:1,\{0,2,-2\}$};
  5766. \node (x) at (6,2) {$\ttm{x}:-,\{0,-2\}$};
  5767. \node (y) at (3,0) {$\ttm{y}:2,\{0,1,-2\}$};
  5768. \node (w) at (6,0) {$\ttm{w}:0,\{1,2,-2\}$};
  5769. \node (v) at (10,0) {$\ttm{v}:1,\{0,-2\}$};
  5770. \draw (t1) to (rax);
  5771. \draw (t1) to (z);
  5772. \draw (z) to (y);
  5773. \draw (z) to (w);
  5774. \draw (x) to (w);
  5775. \draw (y) to (w);
  5776. \draw (v) to (w);
  5777. \draw (v) to (rsp);
  5778. \draw (w) to (rsp);
  5779. \draw (x) to (rsp);
  5780. \draw (y) to (rsp);
  5781. \path[-.,bend left=15] (z) edge node {} (rsp);
  5782. \path[-.,bend left=10] (t1) edge node {} (rsp);
  5783. \draw (rax) to (rsp);
  5784. \end{tikzpicture}
  5785. \]
  5786. In the last step of the algorithm, we color \code{x} with $1$.
  5787. \[
  5788. \begin{tikzpicture}[baseline=(current bounding box.center),scale=0.9]
  5789. \node (rax) at (0,0) {$\ttm{rax}:-1,\{0,-2\}$};
  5790. \node (rsp) at (10,2) {$\ttm{rsp}:-2,\{-1,0,1,2\}$};
  5791. \node (t1) at (0,2) {$\ttm{t}:0,\{-1,1,-2\}$};
  5792. \node (z) at (3,2) {$\ttm{z}:1,\{0,2,-2\}$};
  5793. \node (x) at (6,2) {$\ttm{x}:1,\{0,-2\}$};
  5794. \node (y) at (3,0) {$\ttm{y}:2,\{0,1,-2\}$};
  5795. \node (w) at (6,0) {$\ttm{w}:0,\{1,2,-2\}$};
  5796. \node (v) at (10,0) {$\ttm{v}:1,\{0,-2\}$};
  5797. \draw (t1) to (rax);
  5798. \draw (t1) to (z);
  5799. \draw (z) to (y);
  5800. \draw (z) to (w);
  5801. \draw (x) to (w);
  5802. \draw (y) to (w);
  5803. \draw (v) to (w);
  5804. \draw (v) to (rsp);
  5805. \draw (w) to (rsp);
  5806. \draw (x) to (rsp);
  5807. \draw (y) to (rsp);
  5808. \path[-.,bend left=15] (z) edge node {} (rsp);
  5809. \path[-.,bend left=10] (t1) edge node {} (rsp);
  5810. \draw (rax) to (rsp);
  5811. \end{tikzpicture}
  5812. \]
  5813. So, we obtain the following coloring:
  5814. \[
  5815. \{
  5816. \ttm{rax} \mapsto -1,
  5817. \ttm{rsp} \mapsto -2,
  5818. \ttm{t} \mapsto 0,
  5819. \ttm{z} \mapsto 1,
  5820. \ttm{x} \mapsto 1,
  5821. \ttm{y} \mapsto 2,
  5822. \ttm{w} \mapsto 0,
  5823. \ttm{v} \mapsto 1
  5824. \}
  5825. \]
  5826. \fi}
  5827. %
  5828. {\if\edition\pythonEd\pythonColor
  5829. %
  5830. With the DSATUR algorithm in hand, let us return to the running
  5831. example and consider how to color the interference graph shown in
  5832. figure~\ref{fig:interfere}. We annotate each variable node with a dash
  5833. to indicate that it has not yet been assigned a color. Each register
  5834. node (not shown) should be assigned the number that the register
  5835. corresponds to, for example, color \code{rcx} with the number \code{0}
  5836. and \code{rdx} with \code{1}. The saturation sets are also shown for
  5837. each node; all of them start as the empty set.
  5838. %
  5839. \[
  5840. \begin{tikzpicture}[baseline=(current bounding box.center),scale=0.9]
  5841. \node (t0) at (0,2) {$\ttm{tmp\_0}: -, \{\}$};
  5842. \node (t1) at (0,0) {$\ttm{tmp\_1}: -, \{\}$};
  5843. \node (z) at (3,2) {$\ttm{z}: -, \{\}$};
  5844. \node (x) at (6,2) {$\ttm{x}: -, \{\}$};
  5845. \node (y) at (3,0) {$\ttm{y}: -, \{\}$};
  5846. \node (w) at (6,0) {$\ttm{w}: -, \{\}$};
  5847. \node (v) at (9,0) {$\ttm{v}: -, \{\}$};
  5848. \draw (t0) to (t1);
  5849. \draw (t0) to (z);
  5850. \draw (z) to (y);
  5851. \draw (z) to (w);
  5852. \draw (x) to (w);
  5853. \draw (y) to (w);
  5854. \draw (v) to (w);
  5855. \end{tikzpicture}
  5856. \]
  5857. The algorithm says to select a maximally saturated vertex, but they
  5858. are all equally saturated. So we flip a coin and pick $\ttm{tmp\_0}$
  5859. and then we color it with the first available integer, which is $0$. We mark
  5860. $0$ as no longer available for $\ttm{tmp\_1}$ and $\ttm{z}$ because
  5861. they interfere with $\ttm{tmp\_0}$.
  5862. \[
  5863. \begin{tikzpicture}[baseline=(current bounding box.center),scale=0.9]
  5864. \node (t0) at (0,2) {$\ttm{tmp\_0}: 0, \{\}$};
  5865. \node (t1) at (0,0) {$\ttm{tmp\_1}: -, \{0\}$};
  5866. \node (z) at (3,2) {$\ttm{z}: -, \{0\}$};
  5867. \node (x) at (6,2) {$\ttm{x}: -, \{\}$};
  5868. \node (y) at (3,0) {$\ttm{y}: -, \{\}$};
  5869. \node (w) at (6,0) {$\ttm{w}: -, \{\}$};
  5870. \node (v) at (9,0) {$\ttm{v}: -, \{\}$};
  5871. \draw (t0) to (t1);
  5872. \draw (t0) to (z);
  5873. \draw (z) to (y);
  5874. \draw (z) to (w);
  5875. \draw (x) to (w);
  5876. \draw (y) to (w);
  5877. \draw (v) to (w);
  5878. \end{tikzpicture}
  5879. \]
  5880. We repeat the process. The most saturated vertices are \code{z} and
  5881. \code{tmp\_1}, so we choose \code{z} and color it with the first
  5882. available number, which is $1$. We add $1$ to the saturation for the
  5883. neighboring vertices \code{tmp\_0}, \code{y}, and \code{w}.
  5884. \[
  5885. \begin{tikzpicture}[baseline=(current bounding box.center),scale=0.9]
  5886. \node (t0) at (0,2) {$\ttm{tmp\_0}: 0, \{1\}$};
  5887. \node (t1) at (0,0) {$\ttm{tmp\_1}: -, \{0\}$};
  5888. \node (z) at (3,2) {$\ttm{z}: 1, \{0\}$};
  5889. \node (x) at (6,2) {$\ttm{x}: -, \{\}$};
  5890. \node (y) at (3,0) {$\ttm{y}: -, \{1\}$};
  5891. \node (w) at (6,0) {$\ttm{w}: -, \{1\}$};
  5892. \node (v) at (9,0) {$\ttm{v}: -, \{\}$};
  5893. \draw (t0) to (t1);
  5894. \draw (t0) to (z);
  5895. \draw (z) to (y);
  5896. \draw (z) to (w);
  5897. \draw (x) to (w);
  5898. \draw (y) to (w);
  5899. \draw (v) to (w);
  5900. \end{tikzpicture}
  5901. \]
  5902. The most saturated vertices are now \code{tmp\_1}, \code{w}, and
  5903. \code{y}. We color \code{w} with the first available color, which
  5904. is $0$.
  5905. \[
  5906. \begin{tikzpicture}[baseline=(current bounding box.center),scale=0.9]
  5907. \node (t0) at (0,2) {$\ttm{tmp\_0}: 0, \{1\}$};
  5908. \node (t1) at (0,0) {$\ttm{tmp\_1}: -, \{0\}$};
  5909. \node (z) at (3,2) {$\ttm{z}: 1, \{0\}$};
  5910. \node (x) at (6,2) {$\ttm{x}: -, \{0\}$};
  5911. \node (y) at (3,0) {$\ttm{y}: -, \{0,1\}$};
  5912. \node (w) at (6,0) {$\ttm{w}: 0, \{1\}$};
  5913. \node (v) at (9,0) {$\ttm{v}: -, \{0\}$};
  5914. \draw (t0) to (t1);
  5915. \draw (t0) to (z);
  5916. \draw (z) to (y);
  5917. \draw (z) to (w);
  5918. \draw (x) to (w);
  5919. \draw (y) to (w);
  5920. \draw (v) to (w);
  5921. \end{tikzpicture}
  5922. \]
  5923. Now \code{y} is the most saturated, so we color it with $2$.
  5924. \[
  5925. \begin{tikzpicture}[baseline=(current bounding box.center),scale=0.9]
  5926. \node (t0) at (0,2) {$\ttm{tmp\_0}: 0, \{1\}$};
  5927. \node (t1) at (0,0) {$\ttm{tmp\_1}: -, \{0\}$};
  5928. \node (z) at (3,2) {$\ttm{z}: 1, \{0,2\}$};
  5929. \node (x) at (6,2) {$\ttm{x}: -, \{0\}$};
  5930. \node (y) at (3,0) {$\ttm{y}: 2, \{0,1\}$};
  5931. \node (w) at (6,0) {$\ttm{w}: 0, \{1,2\}$};
  5932. \node (v) at (9,0) {$\ttm{v}: -, \{0\}$};
  5933. \draw (t0) to (t1);
  5934. \draw (t0) to (z);
  5935. \draw (z) to (y);
  5936. \draw (z) to (w);
  5937. \draw (x) to (w);
  5938. \draw (y) to (w);
  5939. \draw (v) to (w);
  5940. \end{tikzpicture}
  5941. \]
  5942. The most saturated vertices are \code{tmp\_1}, \code{x}, and \code{v}.
  5943. We choose to color \code{v} with $1$.
  5944. \[
  5945. \begin{tikzpicture}[baseline=(current bounding box.center),scale=0.9]
  5946. \node (t0) at (0,2) {$\ttm{tmp\_0}: 0, \{1\}$};
  5947. \node (t1) at (0,0) {$\ttm{tmp\_1}: -, \{0\}$};
  5948. \node (z) at (3,2) {$\ttm{z}: 1, \{0,2\}$};
  5949. \node (x) at (6,2) {$\ttm{x}: -, \{0\}$};
  5950. \node (y) at (3,0) {$\ttm{y}: 2, \{0,1\}$};
  5951. \node (w) at (6,0) {$\ttm{w}: 0, \{1,2\}$};
  5952. \node (v) at (9,0) {$\ttm{v}: 1, \{0\}$};
  5953. \draw (t0) to (t1);
  5954. \draw (t0) to (z);
  5955. \draw (z) to (y);
  5956. \draw (z) to (w);
  5957. \draw (x) to (w);
  5958. \draw (y) to (w);
  5959. \draw (v) to (w);
  5960. \end{tikzpicture}
  5961. \]
  5962. We color the remaining two variables, \code{tmp\_1} and \code{x}, with $1$.
  5963. \[
  5964. \begin{tikzpicture}[baseline=(current bounding box.center),scale=0.9]
  5965. \node (t0) at (0,2) {$\ttm{tmp\_0}: 0, \{1\}$};
  5966. \node (t1) at (0,0) {$\ttm{tmp\_1}: 1, \{0\}$};
  5967. \node (z) at (3,2) {$\ttm{z}: 1, \{0,2\}$};
  5968. \node (x) at (6,2) {$\ttm{x}: 1, \{0\}$};
  5969. \node (y) at (3,0) {$\ttm{y}: 2, \{0,1\}$};
  5970. \node (w) at (6,0) {$\ttm{w}: 0, \{1,2\}$};
  5971. \node (v) at (9,0) {$\ttm{v}: 1, \{0\}$};
  5972. \draw (t0) to (t1);
  5973. \draw (t0) to (z);
  5974. \draw (z) to (y);
  5975. \draw (z) to (w);
  5976. \draw (x) to (w);
  5977. \draw (y) to (w);
  5978. \draw (v) to (w);
  5979. \end{tikzpicture}
  5980. \]
  5981. So, we obtain the following coloring:
  5982. \[
  5983. \{ \ttm{tmp\_0} \mapsto 0,
  5984. \ttm{tmp\_1} \mapsto 1,
  5985. \ttm{z} \mapsto 1,
  5986. \ttm{x} \mapsto 1,
  5987. \ttm{y} \mapsto 2,
  5988. \ttm{w} \mapsto 0,
  5989. \ttm{v} \mapsto 1 \}
  5990. \]
  5991. \fi}
  5992. We recommend creating an auxiliary function named \code{color\_graph}
  5993. that takes an interference graph and a list of all the variables in
  5994. the program. This function should return a mapping of variables to
  5995. their colors (represented as natural numbers). By creating this helper
  5996. function, you will be able to reuse it in chapter~\ref{ch:Lfun}
  5997. when we add support for functions.
  5998. To prioritize the processing of highly saturated nodes inside the
  5999. \code{color\_graph} function, we recommend using the priority queue
  6000. data structure \racket{described in figure~\ref{fig:priority-queue}}\python{in the file \code{priority\_queue.py} of the support code}. \racket{In
  6001. addition, you will need to maintain a mapping from variables to their
  6002. handles in the priority queue so that you can notify the priority
  6003. queue when their saturation changes.}
  6004. {\if\edition\racketEd
  6005. \begin{figure}[tp]
  6006. %\begin{wrapfigure}[25]{r}[0.75in]{0.55\textwidth}
  6007. \small
  6008. \begin{tcolorbox}[title=Priority Queue]
  6009. A \emph{priority queue}\index{subject}{priority queue}
  6010. is a collection of items in which the
  6011. removal of items is governed by priority. In a \emph{min} queue,
  6012. lower priority items are removed first. An implementation is in
  6013. \code{priority\_queue.rkt} of the support code.\index{subject}{min queue}
  6014. \begin{description}
  6015. \item[$\LP\code{make-pqueue}\,\itm{cmp}\RP$] constructs an empty
  6016. priority queue that uses the $\itm{cmp}$ predicate to determine
  6017. whether its first argument has lower or equal priority to its
  6018. second argument.
  6019. \item[$\LP\code{pqueue-count}\,\itm{queue}\RP$] returns the number of
  6020. items in the queue.
  6021. \item[$\LP\code{pqueue-push!}\,\itm{queue}\,\itm{item}\RP$] inserts
  6022. the item into the queue and returns a handle for the item in the
  6023. queue.
  6024. \item[$\LP\code{pqueue-pop!}\,\itm{queue}\RP$] returns the item with
  6025. the lowest priority.
  6026. \item[$\LP\code{pqueue-decrease-key!}\,\itm{queue}\,\itm{handle}\RP$]
  6027. notifies the queue that the priority has decreased for the item
  6028. associated with the given handle.
  6029. \end{description}
  6030. \end{tcolorbox}
  6031. %\end{wrapfigure}
  6032. \caption{The priority queue data structure.}
  6033. \label{fig:priority-queue}
  6034. \end{figure}
  6035. \fi}
  6036. With the coloring complete, we finalize the assignment of variables to
  6037. registers and stack locations. We map the first $k$ colors to the $k$
  6038. registers and the rest of the colors to stack locations. Suppose for
  6039. the moment that we have just one register to use for register
  6040. allocation, \key{rcx}. Then we have the following assignment.
  6041. \[
  6042. \{ 0 \mapsto \key{\%rcx}, \; 1 \mapsto \key{-8(\%rbp)}, \; 2 \mapsto \key{-16(\%rbp)} \}
  6043. \]
  6044. Composing this mapping with the coloring, we arrive at the following
  6045. assignment of variables to locations.
  6046. {\if\edition\racketEd
  6047. \begin{gather*}
  6048. \{ \ttm{v} \mapsto \key{-8(\%rbp)}, \,
  6049. \ttm{w} \mapsto \key{\%rcx}, \,
  6050. \ttm{x} \mapsto \key{-8(\%rbp)}, \,
  6051. \ttm{y} \mapsto \key{-16(\%rbp)}, \\
  6052. \ttm{z} \mapsto \key{-8(\%rbp)}, \,
  6053. \ttm{t} \mapsto \key{\%rcx} \}
  6054. \end{gather*}
  6055. \fi}
  6056. {\if\edition\pythonEd\pythonColor
  6057. \begin{gather*}
  6058. \{ \ttm{v} \mapsto \key{-8(\%rbp)}, \,
  6059. \ttm{w} \mapsto \key{\%rcx}, \,
  6060. \ttm{x} \mapsto \key{-8(\%rbp)}, \,
  6061. \ttm{y} \mapsto \key{-16(\%rbp)}, \\
  6062. \ttm{z} \mapsto \key{-8(\%rbp)}, \,
  6063. \ttm{tmp\_0} \mapsto \key{\%rcx}, \,
  6064. \ttm{tmp\_1} \mapsto \key{-8(\%rbp)} \}
  6065. \end{gather*}
  6066. \fi}
  6067. Adapt the code from the \code{assign\_homes} pass
  6068. (section~\ref{sec:assign-Lvar}) to replace the variables with their
  6069. assigned location. Applying this assignment to our running
  6070. example shown next, on the left, yields the program on the right.
  6071. \begin{center}
  6072. {\if\edition\racketEd
  6073. \begin{minipage}{0.35\textwidth}
  6074. \begin{lstlisting}
  6075. movq $1, v
  6076. movq $42, w
  6077. movq v, x
  6078. addq $7, x
  6079. movq x, y
  6080. movq x, z
  6081. addq w, z
  6082. movq y, t
  6083. negq t
  6084. movq z, %rax
  6085. addq t, %rax
  6086. jmp conclusion
  6087. \end{lstlisting}
  6088. \end{minipage}
  6089. $\Rightarrow\qquad$
  6090. \begin{minipage}{0.45\textwidth}
  6091. \begin{lstlisting}
  6092. movq $1, -8(%rbp)
  6093. movq $42, %rcx
  6094. movq -8(%rbp), -8(%rbp)
  6095. addq $7, -8(%rbp)
  6096. movq -8(%rbp), -16(%rbp)
  6097. movq -8(%rbp), -8(%rbp)
  6098. addq %rcx, -8(%rbp)
  6099. movq -16(%rbp), %rcx
  6100. negq %rcx
  6101. movq -8(%rbp), %rax
  6102. addq %rcx, %rax
  6103. jmp conclusion
  6104. \end{lstlisting}
  6105. \end{minipage}
  6106. \fi}
  6107. {\if\edition\pythonEd\pythonColor
  6108. \begin{minipage}{0.35\textwidth}
  6109. \begin{lstlisting}
  6110. movq $1, v
  6111. movq $42, w
  6112. movq v, x
  6113. addq $7, x
  6114. movq x, y
  6115. movq x, z
  6116. addq w, z
  6117. movq y, tmp_0
  6118. negq tmp_0
  6119. movq z, tmp_1
  6120. addq tmp_0, tmp_1
  6121. movq tmp_1, %rdi
  6122. callq print_int
  6123. \end{lstlisting}
  6124. \end{minipage}
  6125. $\Rightarrow\qquad$
  6126. \begin{minipage}{0.45\textwidth}
  6127. \begin{lstlisting}
  6128. movq $1, -8(%rbp)
  6129. movq $42, %rcx
  6130. movq -8(%rbp), -8(%rbp)
  6131. addq $7, -8(%rbp)
  6132. movq -8(%rbp), -16(%rbp)
  6133. movq -8(%rbp), -8(%rbp)
  6134. addq %rcx, -8(%rbp)
  6135. movq -16(%rbp), %rcx
  6136. negq %rcx
  6137. movq -8(%rbp), -8(%rbp)
  6138. addq %rcx, -8(%rbp)
  6139. movq -8(%rbp), %rdi
  6140. callq print_int
  6141. \end{lstlisting}
  6142. \end{minipage}
  6143. \fi}
  6144. \end{center}
  6145. \begin{exercise}\normalfont\normalsize
  6146. Implement the \code{allocate\_registers} pass.
  6147. Create five programs that exercise all aspects of the register
  6148. allocation algorithm, including spilling variables to the stack.
  6149. %
  6150. {\if\edition\racketEd
  6151. Replace \code{assign\_homes} in the list of \code{passes} in the
  6152. \code{run-tests.rkt} script with the three new passes:
  6153. \code{uncover\_live}, \code{build\_interference}, and
  6154. \code{allocate\_registers}.
  6155. Temporarily remove the call to \code{compiler-tests}.
  6156. Run the script to test the register allocator.
  6157. \fi}
  6158. %
  6159. {\if\edition\pythonEd\pythonColor
  6160. Run the \code{run-tests.py} script to check whether the
  6161. output programs produce the same result as the input programs.
  6162. \fi}
  6163. \end{exercise}
  6164. \section{Patch Instructions}
  6165. \label{sec:patch-instructions}
  6166. The remaining step in the compilation to x86 is to ensure that the
  6167. instructions have at most one argument that is a memory access.
  6168. %
  6169. In the running example, the instruction \code{movq -8(\%rbp),
  6170. -16(\%rbp)} is problematic. Recall from section~\ref{sec:patch-s0}
  6171. that the fix is to first move \code{-8(\%rbp)} into \code{rax} and
  6172. then move \code{rax} into \code{-16(\%rbp)}.
  6173. %
  6174. The moves from \code{-8(\%rbp)} to \code{-8(\%rbp)} are also
  6175. problematic, but they can simply be deleted. In general, we recommend
  6176. deleting all the trivial moves whose source and destination are the
  6177. same location.
  6178. %
  6179. The following is the output of \code{patch\_instructions} on the
  6180. running example.
  6181. \begin{center}
  6182. {\if\edition\racketEd
  6183. \begin{minipage}{0.35\textwidth}
  6184. \begin{lstlisting}
  6185. movq $1, -8(%rbp)
  6186. movq $42, %rcx
  6187. movq -8(%rbp), -8(%rbp)
  6188. addq $7, -8(%rbp)
  6189. movq -8(%rbp), -16(%rbp)
  6190. movq -8(%rbp), -8(%rbp)
  6191. addq %rcx, -8(%rbp)
  6192. movq -16(%rbp), %rcx
  6193. negq %rcx
  6194. movq -8(%rbp), %rax
  6195. addq %rcx, %rax
  6196. jmp conclusion
  6197. \end{lstlisting}
  6198. \end{minipage}
  6199. $\Rightarrow\qquad$
  6200. \begin{minipage}{0.45\textwidth}
  6201. \begin{lstlisting}
  6202. movq $1, -8(%rbp)
  6203. movq $42, %rcx
  6204. addq $7, -8(%rbp)
  6205. movq -8(%rbp), %rax
  6206. movq %rax, -16(%rbp)
  6207. addq %rcx, -8(%rbp)
  6208. movq -16(%rbp), %rcx
  6209. negq %rcx
  6210. movq -8(%rbp), %rax
  6211. addq %rcx, %rax
  6212. jmp conclusion
  6213. \end{lstlisting}
  6214. \end{minipage}
  6215. \fi}
  6216. {\if\edition\pythonEd\pythonColor
  6217. \begin{minipage}{0.35\textwidth}
  6218. \begin{lstlisting}
  6219. movq $1, -8(%rbp)
  6220. movq $42, %rcx
  6221. movq -8(%rbp), -8(%rbp)
  6222. addq $7, -8(%rbp)
  6223. movq -8(%rbp), -16(%rbp)
  6224. movq -8(%rbp), -8(%rbp)
  6225. addq %rcx, -8(%rbp)
  6226. movq -16(%rbp), %rcx
  6227. negq %rcx
  6228. movq -8(%rbp), -8(%rbp)
  6229. addq %rcx, -8(%rbp)
  6230. movq -8(%rbp), %rdi
  6231. callq print_int
  6232. \end{lstlisting}
  6233. \end{minipage}
  6234. $\Rightarrow\qquad$
  6235. \begin{minipage}{0.45\textwidth}
  6236. \begin{lstlisting}
  6237. movq $1, -8(%rbp)
  6238. movq $42, %rcx
  6239. addq $7, -8(%rbp)
  6240. movq -8(%rbp), %rax
  6241. movq %rax, -16(%rbp)
  6242. addq %rcx, -8(%rbp)
  6243. movq -16(%rbp), %rcx
  6244. negq %rcx
  6245. addq %rcx, -8(%rbp)
  6246. movq -8(%rbp), %rdi
  6247. callq print_int
  6248. \end{lstlisting}
  6249. \end{minipage}
  6250. \fi}
  6251. \end{center}
  6252. \begin{exercise}\normalfont\normalsize
  6253. %
  6254. Update the \code{patch\_instructions} compiler pass to delete trivial moves.
  6255. %
  6256. %Insert it after \code{allocate\_registers} in the list of \code{passes}
  6257. %in the \code{run-tests.rkt} script.
  6258. %
  6259. Run the script to test the \code{patch\_instructions} pass.
  6260. \end{exercise}
  6261. \section{Generate Prelude and Conclusion}
  6262. \label{sec:print-x86-reg-alloc}
  6263. \index{subject}{calling conventions}
  6264. \index{subject}{prelude}\index{subject}{conclusion}
  6265. Recall that this pass generates the prelude and conclusion
  6266. instructions to satisfy the x86 calling conventions
  6267. (section~\ref{sec:calling-conventions}). With the addition of the
  6268. register allocator, the callee-saved registers used by the register
  6269. allocator must be saved in the prelude and restored in the conclusion.
  6270. In the \code{allocate\_registers} pass,
  6271. %
  6272. \racket{add an entry to the \itm{info}
  6273. of \code{X86Program} named \code{used\_callee}}
  6274. %
  6275. \python{add a field named \code{used\_callee} to the \code{X86Program} AST node}
  6276. %
  6277. that stores the set of callee-saved registers that were assigned to
  6278. variables. The \code{prelude\_and\_conclusion} pass can then access
  6279. this information to decide which callee-saved registers need to be
  6280. saved and restored.
  6281. %
  6282. When calculating the amount to adjust the \code{rsp} in the prelude,
  6283. make sure to take into account the space used for saving the
  6284. callee-saved registers. Also, remember that the frame needs to be a
  6285. multiple of 16 bytes! We recommend using the following equation for
  6286. the amount $A$ to subtract from the \code{rsp}. Let $S$ be the number
  6287. of stack locations used by spilled variables\footnote{Sometimes two or
  6288. more spilled variables are assigned to the same stack location, so
  6289. $S$ can be less than the number of spilled variables.} and $C$ be
  6290. the number of callee-saved registers that were
  6291. allocated\index{subject}{allocate} to
  6292. variables. The $\itm{align}$ function rounds a number up to the
  6293. nearest 16 bytes.
  6294. \[
  6295. \itm{A} = \itm{align}(8\itm{S} + 8\itm{C}) - 8\itm{C}
  6296. \]
  6297. The reason we subtract $8\itm{C}$ in this equation is that the
  6298. prelude uses \code{pushq} to save each of the callee-saved registers,
  6299. and \code{pushq} subtracts $8$ from the \code{rsp}.
  6300. \racket{An overview of all the passes involved in register
  6301. allocation is shown in figure~\ref{fig:reg-alloc-passes}.}
  6302. {\if\edition\racketEd
  6303. \begin{figure}[tbp]
  6304. \begin{tcolorbox}[colback=white]
  6305. \begin{tikzpicture}[baseline=(current bounding box.center),scale=0.9]
  6306. \node (Lvar) at (0,2) {\large \LangVar{}};
  6307. \node (Lvar-2) at (3,2) {\large \LangVar{}};
  6308. \node (Lvar-3) at (7,2) {\large \LangVarANF{}};
  6309. \node (Cvar-1) at (0,0) {\large \LangCVar{}};
  6310. \node (x86-2) at (0,-2) {\large \LangXVar{}};
  6311. \node (x86-3) at (3,-2) {\large \LangXVar{}};
  6312. \node (x86-4) at (7,-2) {\large \LangXInt{}};
  6313. \node (x86-5) at (7,-4) {\large \LangXInt{}};
  6314. \node (x86-2-1) at (0,-4) {\large \LangXVar{}};
  6315. \node (x86-2-2) at (3,-4) {\large \LangXVar{}};
  6316. \path[->,bend left=15] (Lvar) edge [above] node {\ttfamily\footnotesize uniquify} (Lvar-2);
  6317. \path[->,bend left=15] (Lvar-2) edge [above] node {\ttfamily\footnotesize remove\_complex\_operands} (Lvar-3);
  6318. \path[->,bend left=15] (Lvar-3) edge [right] node {\ttfamily\footnotesize \ \ explicate\_control} (Cvar-1);
  6319. \path[->,bend right=15] (Cvar-1) edge [right] node {\ttfamily\footnotesize select\_instructions} (x86-2);
  6320. \path[->,bend left=15] (x86-2) edge [right] node {\ttfamily\footnotesize uncover\_live} (x86-2-1);
  6321. \path[->,bend right=15] (x86-2-1) edge [below] node {\ttfamily\footnotesize build\_interference} (x86-2-2);
  6322. \path[->,bend right=15] (x86-2-2) edge [right] node {\ttfamily\footnotesize allocate\_registers} (x86-3);
  6323. \path[->,bend left=15] (x86-3) edge [above] node {\ttfamily\footnotesize patch\_instructions} (x86-4);
  6324. \path[->,bend left=15] (x86-4) edge [right] node {\ttfamily\footnotesize prelude\_and\_conclusion} (x86-5);
  6325. \end{tikzpicture}
  6326. \end{tcolorbox}
  6327. \caption{Diagram of the passes for \LangVar{} with register allocation.}
  6328. \label{fig:reg-alloc-passes}
  6329. \end{figure}
  6330. \fi}
  6331. Figure~\ref{fig:running-example-x86} shows the x86 code generated for
  6332. the running example (figure~\ref{fig:reg-eg}). To demonstrate both the
  6333. use of registers and the stack, we limit the register allocator for
  6334. this example to use just two registers: \code{rcx} (color $0$) and
  6335. \code{rbx} (color $1$). In the prelude\index{subject}{prelude} of the
  6336. \code{main} function, we push \code{rbx} onto the stack because it is
  6337. a callee-saved register and it was assigned to a variable by the
  6338. register allocator. We subtract \code{8} from the \code{rsp} at the
  6339. end of the prelude to reserve space for the one spilled variable.
  6340. After that subtraction, the \code{rsp} is aligned to 16 bytes.
  6341. Moving on to the program proper, we see how the registers were
  6342. allocated.
  6343. %
  6344. \racket{Variables \code{v}, \code{x}, and \code{z} were assigned to
  6345. \code{rbx}, and variables \code{w} and \code{t} was assigned to \code{rcx}.}
  6346. %
  6347. \python{Variables \code{v}, \code{x}, \code{y}, and \code{tmp\_0}
  6348. were assigned to \code{rcx}, and variables \code{w} and \code{tmp\_1}
  6349. were assigned to \code{rbx}.}
  6350. %
  6351. Variable \racket{\code{y}}\python{\code{z}} was spilled to the stack
  6352. location \code{-16(\%rbp)}. Recall that the prelude saved the
  6353. callee-save register \code{rbx} onto the stack. The spilled variables
  6354. must be placed lower on the stack than the saved callee-save
  6355. registers, so in this case \racket{\code{y}}\python{z} is placed at
  6356. \code{-16(\%rbp)}.
  6357. In the conclusion\index{subject}{conclusion}, we undo the work that was
  6358. done in the prelude. We move the stack pointer up by \code{8} bytes
  6359. (the room for spilled variables), then pop the old values of
  6360. \code{rbx} and \code{rbp} (callee-saved registers), and finish with
  6361. \code{retq} to return control to the operating system.
  6362. \begin{figure}[tbp]
  6363. \begin{minipage}{0.55\textwidth}
  6364. \begin{tcolorbox}[colback=white]
  6365. % var_test_28.rkt
  6366. % (use-minimal-set-of-registers! #t)
  6367. % 0 -> rcx
  6368. % 1 -> rbx
  6369. %
  6370. % t 0 rcx
  6371. % z 1 rbx
  6372. % w 0 rcx
  6373. % y 2 rbp -16
  6374. % v 1 rbx
  6375. % x 1 rbx
  6376. {\if\edition\racketEd
  6377. \begin{lstlisting}
  6378. start:
  6379. movq $1, %rbx
  6380. movq $42, %rcx
  6381. addq $7, %rbx
  6382. movq %rbx, -16(%rbp)
  6383. addq %rcx, %rbx
  6384. movq -16(%rbp), %rcx
  6385. negq %rcx
  6386. movq %rbx, %rax
  6387. addq %rcx, %rax
  6388. jmp conclusion
  6389. .globl main
  6390. main:
  6391. pushq %rbp
  6392. movq %rsp, %rbp
  6393. pushq %rbx
  6394. subq $8, %rsp
  6395. jmp start
  6396. conclusion:
  6397. addq $8, %rsp
  6398. popq %rbx
  6399. popq %rbp
  6400. retq
  6401. \end{lstlisting}
  6402. \fi}
  6403. {\if\edition\pythonEd\pythonColor
  6404. %{v: %rcx, x: %rcx, z: -16(%rbp), w: %rbx, tmp_1: %rbx, y: %rcx, tmp_0: %rcx}
  6405. \begin{lstlisting}
  6406. .globl main
  6407. main:
  6408. pushq %rbp
  6409. movq %rsp, %rbp
  6410. pushq %rbx
  6411. subq $8, %rsp
  6412. movq $1, %rcx
  6413. movq $42, %rbx
  6414. addq $7, %rcx
  6415. movq %rcx, -16(%rbp)
  6416. addq %rbx, -16(%rbp)
  6417. negq %rcx
  6418. movq -16(%rbp), %rbx
  6419. addq %rcx, %rbx
  6420. movq %rbx, %rdi
  6421. callq print_int
  6422. addq $8, %rsp
  6423. popq %rbx
  6424. popq %rbp
  6425. retq
  6426. \end{lstlisting}
  6427. \fi}
  6428. \end{tcolorbox}
  6429. \end{minipage}
  6430. \caption{The x86 output from the running example
  6431. (figure~\ref{fig:reg-eg}), limiting allocation to just \code{rbx}
  6432. and \code{rcx}.}
  6433. \label{fig:running-example-x86}
  6434. \end{figure}
  6435. \begin{exercise}\normalfont\normalsize
  6436. Update the \code{prelude\_and\_conclusion} pass as described in this section.
  6437. %
  6438. \racket{
  6439. In the \code{run-tests.rkt} script, add \code{prelude\_and\_conclusion} to the
  6440. list of passes and the call to \code{compiler-tests}.}
  6441. %
  6442. Run the script to test the complete compiler for \LangVar{} that
  6443. performs register allocation.
  6444. \end{exercise}
  6445. \section{Challenge: Move Biasing}
  6446. \label{sec:move-biasing}
  6447. \index{subject}{move biasing}
  6448. This section describes an enhancement to the register allocator,
  6449. called move biasing, for students who are looking for an extra
  6450. challenge.
  6451. {\if\edition\racketEd
  6452. To motivate the need for move biasing we return to the running example,
  6453. but this time we use all the general purpose registers. So, we have
  6454. the following mapping of color numbers to registers.
  6455. \[
  6456. \{ 0 \mapsto \key{\%rcx}, \; 1 \mapsto \key{\%rdx}, \; 2 \mapsto \key{\%rsi}, \ldots \}
  6457. \]
  6458. Using the same assignment of variables to color numbers that was
  6459. produced by the register allocator described in the last section, we
  6460. get the following program.
  6461. \begin{center}
  6462. \begin{minipage}{0.35\textwidth}
  6463. \begin{lstlisting}
  6464. movq $1, v
  6465. movq $42, w
  6466. movq v, x
  6467. addq $7, x
  6468. movq x, y
  6469. movq x, z
  6470. addq w, z
  6471. movq y, t
  6472. negq t
  6473. movq z, %rax
  6474. addq t, %rax
  6475. jmp conclusion
  6476. \end{lstlisting}
  6477. \end{minipage}
  6478. $\Rightarrow\qquad$
  6479. \begin{minipage}{0.45\textwidth}
  6480. \begin{lstlisting}
  6481. movq $1, %rdx
  6482. movq $42, %rcx
  6483. movq %rdx, %rdx
  6484. addq $7, %rdx
  6485. movq %rdx, %rsi
  6486. movq %rdx, %rdx
  6487. addq %rcx, %rdx
  6488. movq %rsi, %rcx
  6489. negq %rcx
  6490. movq %rdx, %rax
  6491. addq %rcx, %rax
  6492. jmp conclusion
  6493. \end{lstlisting}
  6494. \end{minipage}
  6495. \end{center}
  6496. In this output code there are two \key{movq} instructions that
  6497. can be removed because their source and target are the same. However,
  6498. if we had put \key{t}, \key{v}, \key{x}, and \key{y} into the same
  6499. register, we could instead remove three \key{movq} instructions. We
  6500. can accomplish this by taking into account which variables appear in
  6501. \key{movq} instructions with which other variables.
  6502. \fi}
  6503. {\if\edition\pythonEd\pythonColor
  6504. %
  6505. To motivate the need for move biasing we return to the running example
  6506. and recall that in section~\ref{sec:patch-instructions} we were able to
  6507. remove three trivial move instructions from the running
  6508. example. However, we could remove another trivial move if we were able
  6509. to allocate \code{y} and \code{tmp\_0} to the same register. \fi}
  6510. We say that two variables $p$ and $q$ are \emph{move
  6511. related}\index{subject}{move related} if they participate together in
  6512. a \key{movq} instruction, that is, \key{movq} $p$\key{,} $q$ or
  6513. \key{movq} $q$\key{,} $p$.
  6514. %
  6515. Recall that we color variables that are more saturated before coloring
  6516. variables that are less saturated, and in the case of equally
  6517. saturated variables, we choose randomly. Now we break such ties by
  6518. giving preference to variables that have an available color that is
  6519. the same as the color of a move-related variable.
  6520. %
  6521. Furthermore, when the register allocator chooses a color for a
  6522. variable, it should prefer a color that has already been used for a
  6523. move-related variable if one exists (and assuming that they do not
  6524. interfere). This preference should not override the preference for
  6525. registers over stack locations. So, this preference should be used as
  6526. a tie breaker in choosing between two registers or in choosing between
  6527. two stack locations.
  6528. We recommend representing the move relationships in a graph, similarly
  6529. to how we represented interference. The following is the \emph{move
  6530. graph} for our example.
  6531. {\if\edition\racketEd
  6532. \[
  6533. \begin{tikzpicture}[baseline=(current bounding box.center),scale=0.9]
  6534. \node (rax) at (0,0) {$\ttm{rax}$};
  6535. \node (rsp) at (9,2) {$\ttm{rsp}$};
  6536. \node (t) at (0,2) {$\ttm{t}$};
  6537. \node (z) at (3,2) {$\ttm{z}$};
  6538. \node (x) at (6,2) {$\ttm{x}$};
  6539. \node (y) at (3,0) {$\ttm{y}$};
  6540. \node (w) at (6,0) {$\ttm{w}$};
  6541. \node (v) at (9,0) {$\ttm{v}$};
  6542. \draw (v) to (x);
  6543. \draw (x) to (y);
  6544. \draw (x) to (z);
  6545. \draw (y) to (t);
  6546. \end{tikzpicture}
  6547. \]
  6548. \fi}
  6549. %
  6550. {\if\edition\pythonEd\pythonColor
  6551. \[
  6552. \begin{tikzpicture}[baseline=(current bounding box.center),scale=0.9]
  6553. \node (t0) at (0,2) {$\ttm{tmp\_0}$};
  6554. \node (t1) at (0,0) {$\ttm{tmp\_1}$};
  6555. \node (z) at (3,2) {$\ttm{z}$};
  6556. \node (x) at (6,2) {$\ttm{x}$};
  6557. \node (y) at (3,0) {$\ttm{y}$};
  6558. \node (w) at (6,0) {$\ttm{w}$};
  6559. \node (v) at (9,0) {$\ttm{v}$};
  6560. \draw (y) to (t0);
  6561. \draw (z) to (x);
  6562. \draw (z) to (t1);
  6563. \draw (x) to (y);
  6564. \draw (x) to (v);
  6565. \end{tikzpicture}
  6566. \]
  6567. \fi}
  6568. {\if\edition\racketEd
  6569. Now we replay the graph coloring, pausing to see the coloring of
  6570. \code{y}. Recall the following configuration. The most saturated vertices
  6571. were \code{w} and \code{y}.
  6572. \[
  6573. \begin{tikzpicture}[baseline=(current bounding box.center),scale=0.9]
  6574. \node (rax) at (0,0) {$\ttm{rax}:-1,\{0,-2\}$};
  6575. \node (rsp) at (9,2) {$\ttm{rsp}:-2,\{-1,0,1,2\}$};
  6576. \node (t1) at (0,2) {$\ttm{t}:0,\{1,-2\}$};
  6577. \node (z) at (3,2) {$\ttm{z}:1,\{0,-2\}$};
  6578. \node (x) at (6,2) {$\ttm{x}:-,\{-2\}$};
  6579. \node (y) at (3,0) {$\ttm{y}:-,\{1,-2\}$};
  6580. \node (w) at (6,0) {$\ttm{w}:-,\{1,-2\}$};
  6581. \node (v) at (9,0) {$\ttm{v}:-,\{-2\}$};
  6582. \draw (t1) to (rax);
  6583. \draw (t1) to (z);
  6584. \draw (z) to (y);
  6585. \draw (z) to (w);
  6586. \draw (x) to (w);
  6587. \draw (y) to (w);
  6588. \draw (v) to (w);
  6589. \draw (v) to (rsp);
  6590. \draw (w) to (rsp);
  6591. \draw (x) to (rsp);
  6592. \draw (y) to (rsp);
  6593. \path[-.,bend left=15] (z) edge node {} (rsp);
  6594. \path[-.,bend left=10] (t1) edge node {} (rsp);
  6595. \draw (rax) to (rsp);
  6596. \end{tikzpicture}
  6597. \]
  6598. %
  6599. The last time, we chose to color \code{w} with $0$. This time, we see
  6600. that \code{w} is not move-related to any vertex, but \code{y} is
  6601. move-related to \code{t}. So we choose to color \code{y} with $0$,
  6602. the same color as \code{t}.
  6603. \[
  6604. \begin{tikzpicture}[baseline=(current bounding box.center),scale=0.9]
  6605. \node (rax) at (0,0) {$\ttm{rax}:-1,\{0,-2\}$};
  6606. \node (rsp) at (9,2) {$\ttm{rsp}:-2,\{-1,0,1,2\}$};
  6607. \node (t1) at (0,2) {$\ttm{t}:0,\{1,-2\}$};
  6608. \node (z) at (3,2) {$\ttm{z}:1,\{0,-2\}$};
  6609. \node (x) at (6,2) {$\ttm{x}:-,\{-2\}$};
  6610. \node (y) at (3,0) {$\ttm{y}:0,\{1,-2\}$};
  6611. \node (w) at (6,0) {$\ttm{w}:-,\{0,1,-2\}$};
  6612. \node (v) at (9,0) {$\ttm{v}:-,\{-2\}$};
  6613. \draw (t1) to (rax);
  6614. \draw (t1) to (z);
  6615. \draw (z) to (y);
  6616. \draw (z) to (w);
  6617. \draw (x) to (w);
  6618. \draw (y) to (w);
  6619. \draw (v) to (w);
  6620. \draw (v) to (rsp);
  6621. \draw (w) to (rsp);
  6622. \draw (x) to (rsp);
  6623. \draw (y) to (rsp);
  6624. \path[-.,bend left=15] (z) edge node {} (rsp);
  6625. \path[-.,bend left=10] (t1) edge node {} (rsp);
  6626. \draw (rax) to (rsp);
  6627. \end{tikzpicture}
  6628. \]
  6629. Now \code{w} is the most saturated, so we color it $2$.
  6630. \[
  6631. \begin{tikzpicture}[baseline=(current bounding box.center),scale=0.9]
  6632. \node (rax) at (0,0) {$\ttm{rax}:-1,\{0,-2\}$};
  6633. \node (rsp) at (9,2) {$\ttm{rsp}:-2,\{-1,0,1,2\}$};
  6634. \node (t1) at (0,2) {$\ttm{t}:0,\{1,-2\}$};
  6635. \node (z) at (3,2) {$\ttm{z}:1,\{0,2,-2\}$};
  6636. \node (x) at (6,2) {$\ttm{x}:-,\{2,-2\}$};
  6637. \node (y) at (3,0) {$\ttm{y}:0,\{1,2,-2\}$};
  6638. \node (w) at (6,0) {$\ttm{w}:2,\{0,1,-2\}$};
  6639. \node (v) at (9,0) {$\ttm{v}:-,\{2,-2\}$};
  6640. \draw (t1) to (rax);
  6641. \draw (t1) to (z);
  6642. \draw (z) to (y);
  6643. \draw (z) to (w);
  6644. \draw (x) to (w);
  6645. \draw (y) to (w);
  6646. \draw (v) to (w);
  6647. \draw (v) to (rsp);
  6648. \draw (w) to (rsp);
  6649. \draw (x) to (rsp);
  6650. \draw (y) to (rsp);
  6651. \path[-.,bend left=15] (z) edge node {} (rsp);
  6652. \path[-.,bend left=10] (t1) edge node {} (rsp);
  6653. \draw (rax) to (rsp);
  6654. \end{tikzpicture}
  6655. \]
  6656. At this point, vertices \code{x} and \code{v} are most saturated, but
  6657. \code{x} is move related to \code{y} and \code{z}, so we color
  6658. \code{x} to $0$ to match \code{y}. Finally, we color \code{v} to $0$.
  6659. \[
  6660. \begin{tikzpicture}[baseline=(current bounding box.center),scale=0.9]
  6661. \node (rax) at (0,0) {$\ttm{rax}:-1,\{0,-2\}$};
  6662. \node (rsp) at (9,2) {$\ttm{rsp}:-2,\{-1,0,1,2\}$};
  6663. \node (t) at (0,2) {$\ttm{t}:0,\{1,-2\}$};
  6664. \node (z) at (3,2) {$\ttm{z}:1,\{0,2,-2\}$};
  6665. \node (x) at (6,2) {$\ttm{x}:0,\{2,-2\}$};
  6666. \node (y) at (3,0) {$\ttm{y}:0,\{1,2,-2\}$};
  6667. \node (w) at (6,0) {$\ttm{w}:2,\{0,1,-2\}$};
  6668. \node (v) at (9,0) {$\ttm{v}:0,\{2,-2\}$};
  6669. \draw (t1) to (rax);
  6670. \draw (t) to (z);
  6671. \draw (z) to (y);
  6672. \draw (z) to (w);
  6673. \draw (x) to (w);
  6674. \draw (y) to (w);
  6675. \draw (v) to (w);
  6676. \draw (v) to (rsp);
  6677. \draw (w) to (rsp);
  6678. \draw (x) to (rsp);
  6679. \draw (y) to (rsp);
  6680. \path[-.,bend left=15] (z) edge node {} (rsp);
  6681. \path[-.,bend left=10] (t1) edge node {} (rsp);
  6682. \draw (rax) to (rsp);
  6683. \end{tikzpicture}
  6684. \]
  6685. \fi}
  6686. %
  6687. {\if\edition\pythonEd\pythonColor
  6688. Now we replay the graph coloring, pausing before the coloring of
  6689. \code{w}. Recall the following configuration. The most saturated vertices
  6690. were \code{tmp\_1}, \code{w}, and \code{y}.
  6691. \[
  6692. \begin{tikzpicture}[baseline=(current bounding box.center),scale=0.9]
  6693. \node (t0) at (0,2) {$\ttm{tmp\_0}: 0, \{1\}$};
  6694. \node (t1) at (0,0) {$\ttm{tmp\_1}: -, \{0\}$};
  6695. \node (z) at (3,2) {$\ttm{z}: 1, \{0\}$};
  6696. \node (x) at (6,2) {$\ttm{x}: -, \{\}$};
  6697. \node (y) at (3,0) {$\ttm{y}: -, \{1\}$};
  6698. \node (w) at (6,0) {$\ttm{w}: -, \{1\}$};
  6699. \node (v) at (9,0) {$\ttm{v}: -, \{\}$};
  6700. \draw (t0) to (t1);
  6701. \draw (t0) to (z);
  6702. \draw (z) to (y);
  6703. \draw (z) to (w);
  6704. \draw (x) to (w);
  6705. \draw (y) to (w);
  6706. \draw (v) to (w);
  6707. \end{tikzpicture}
  6708. \]
  6709. We have arbitrarily chosen to color \code{w} instead of \code{tmp\_1}
  6710. or \code{y}. Note, however, that \code{w} is not move related to any
  6711. variables, whereas \code{y} and \code{tmp\_1} are move related to
  6712. \code{tmp\_0} and \code{z}, respectively. If we instead choose
  6713. \code{y} and color it $0$, we can delete another move instruction.
  6714. \[
  6715. \begin{tikzpicture}[baseline=(current bounding box.center),scale=0.9]
  6716. \node (t0) at (0,2) {$\ttm{tmp\_0}: 0, \{1\}$};
  6717. \node (t1) at (0,0) {$\ttm{tmp\_1}: -, \{0\}$};
  6718. \node (z) at (3,2) {$\ttm{z}: 1, \{0\}$};
  6719. \node (x) at (6,2) {$\ttm{x}: -, \{\}$};
  6720. \node (y) at (3,0) {$\ttm{y}: 0, \{1\}$};
  6721. \node (w) at (6,0) {$\ttm{w}: -, \{0,1\}$};
  6722. \node (v) at (9,0) {$\ttm{v}: -, \{\}$};
  6723. \draw (t0) to (t1);
  6724. \draw (t0) to (z);
  6725. \draw (z) to (y);
  6726. \draw (z) to (w);
  6727. \draw (x) to (w);
  6728. \draw (y) to (w);
  6729. \draw (v) to (w);
  6730. \end{tikzpicture}
  6731. \]
  6732. Now \code{w} is the most saturated, so we color it $2$.
  6733. \[
  6734. \begin{tikzpicture}[baseline=(current bounding box.center),scale=0.9]
  6735. \node (t0) at (0,2) {$\ttm{tmp\_0}: 0, \{1\}$};
  6736. \node (t1) at (0,0) {$\ttm{tmp\_1}: -, \{0\}$};
  6737. \node (z) at (3,2) {$\ttm{z}: 1, \{0\}$};
  6738. \node (x) at (6,2) {$\ttm{x}: -, \{2\}$};
  6739. \node (y) at (3,0) {$\ttm{y}: 0, \{1,2\}$};
  6740. \node (w) at (6,0) {$\ttm{w}: 2, \{0,1\}$};
  6741. \node (v) at (9,0) {$\ttm{v}: -, \{2\}$};
  6742. \draw (t0) to (t1);
  6743. \draw (t0) to (z);
  6744. \draw (z) to (y);
  6745. \draw (z) to (w);
  6746. \draw (x) to (w);
  6747. \draw (y) to (w);
  6748. \draw (v) to (w);
  6749. \end{tikzpicture}
  6750. \]
  6751. To finish the coloring, \code{x} and \code{v} get $0$ and
  6752. \code{tmp\_1} gets $1$.
  6753. \[
  6754. \begin{tikzpicture}[baseline=(current bounding box.center),scale=0.9]
  6755. \node (t0) at (0,2) {$\ttm{tmp\_0}: 0, \{1\}$};
  6756. \node (t1) at (0,0) {$\ttm{tmp\_1}: 1, \{0\}$};
  6757. \node (z) at (3,2) {$\ttm{z}: 1, \{0\}$};
  6758. \node (x) at (6,2) {$\ttm{x}: 0, \{2\}$};
  6759. \node (y) at (3,0) {$\ttm{y}: 0, \{1,2\}$};
  6760. \node (w) at (6,0) {$\ttm{w}: 2, \{0,1\}$};
  6761. \node (v) at (9,0) {$\ttm{v}: 0, \{2\}$};
  6762. \draw (t0) to (t1);
  6763. \draw (t0) to (z);
  6764. \draw (z) to (y);
  6765. \draw (z) to (w);
  6766. \draw (x) to (w);
  6767. \draw (y) to (w);
  6768. \draw (v) to (w);
  6769. \end{tikzpicture}
  6770. \]
  6771. \fi}
  6772. So, we have the following assignment of variables to registers.
  6773. {\if\edition\racketEd
  6774. \begin{gather*}
  6775. \{ \ttm{v} \mapsto \key{\%rcx}, \,
  6776. \ttm{w} \mapsto \key{\%rsi}, \,
  6777. \ttm{x} \mapsto \key{\%rcx}, \,
  6778. \ttm{y} \mapsto \key{\%rcx}, \,
  6779. \ttm{z} \mapsto \key{\%rdx}, \,
  6780. \ttm{t} \mapsto \key{\%rcx} \}
  6781. \end{gather*}
  6782. \fi}
  6783. {\if\edition\pythonEd\pythonColor
  6784. \begin{gather*}
  6785. \{ \ttm{v} \mapsto \key{\%rcx}, \,
  6786. \ttm{w} \mapsto \key{-16(\%rbp)}, \,
  6787. \ttm{x} \mapsto \key{\%rcx}, \,
  6788. \ttm{y} \mapsto \key{\%rcx}, \\
  6789. \ttm{z} \mapsto \key{-8(\%rbp)}, \,
  6790. \ttm{tmp\_0} \mapsto \key{\%rcx}, \,
  6791. \ttm{tmp\_1} \mapsto \key{-8(\%rbp)} \}
  6792. \end{gather*}
  6793. \fi}
  6794. %
  6795. We apply this register assignment to the running example shown next,
  6796. on the left, to obtain the code in the middle. The
  6797. \code{patch\_instructions} then deletes the trivial moves to obtain
  6798. the code on the right.
  6799. {\if\edition\racketEd
  6800. \begin{center}
  6801. \begin{minipage}{0.2\textwidth}
  6802. \begin{lstlisting}
  6803. movq $1, v
  6804. movq $42, w
  6805. movq v, x
  6806. addq $7, x
  6807. movq x, y
  6808. movq x, z
  6809. addq w, z
  6810. movq y, t
  6811. negq t
  6812. movq z, %rax
  6813. addq t, %rax
  6814. jmp conclusion
  6815. \end{lstlisting}
  6816. \end{minipage}
  6817. $\Rightarrow\qquad$
  6818. \begin{minipage}{0.25\textwidth}
  6819. \begin{lstlisting}
  6820. movq $1, %rcx
  6821. movq $42, %rsi
  6822. movq %rcx, %rcx
  6823. addq $7, %rcx
  6824. movq %rcx, %rcx
  6825. movq %rcx, %rdx
  6826. addq %rsi, %rdx
  6827. movq %rcx, %rcx
  6828. negq %rcx
  6829. movq %rdx, %rax
  6830. addq %rcx, %rax
  6831. jmp conclusion
  6832. \end{lstlisting}
  6833. \end{minipage}
  6834. $\Rightarrow\qquad$
  6835. \begin{minipage}{0.23\textwidth}
  6836. \begin{lstlisting}
  6837. movq $1, %rcx
  6838. movq $42, %rsi
  6839. addq $7, %rcx
  6840. movq %rcx, %rdx
  6841. addq %rsi, %rdx
  6842. negq %rcx
  6843. movq %rdx, %rax
  6844. addq %rcx, %rax
  6845. jmp conclusion
  6846. \end{lstlisting}
  6847. \end{minipage}
  6848. \end{center}
  6849. \fi}
  6850. {\if\edition\pythonEd\pythonColor
  6851. \begin{center}
  6852. \begin{minipage}{0.20\textwidth}
  6853. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  6854. movq $1, v
  6855. movq $42, w
  6856. movq v, x
  6857. addq $7, x
  6858. movq x, y
  6859. movq x, z
  6860. addq w, z
  6861. movq y, tmp_0
  6862. negq tmp_0
  6863. movq z, tmp_1
  6864. addq tmp_0, tmp_1
  6865. movq tmp_1, %rdi
  6866. callq _print_int
  6867. \end{lstlisting}
  6868. \end{minipage}
  6869. ${\Rightarrow\qquad}$
  6870. \begin{minipage}{0.35\textwidth}
  6871. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  6872. movq $1, %rcx
  6873. movq $42, -16(%rbp)
  6874. movq %rcx, %rcx
  6875. addq $7, %rcx
  6876. movq %rcx, %rcx
  6877. movq %rcx, -8(%rbp)
  6878. addq -16(%rbp), -8(%rbp)
  6879. movq %rcx, %rcx
  6880. negq %rcx
  6881. movq -8(%rbp), -8(%rbp)
  6882. addq %rcx, -8(%rbp)
  6883. movq -8(%rbp), %rdi
  6884. callq _print_int
  6885. \end{lstlisting}
  6886. \end{minipage}
  6887. ${\Rightarrow\qquad}$
  6888. \begin{minipage}{0.20\textwidth}
  6889. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  6890. movq $1, %rcx
  6891. movq $42, -16(%rbp)
  6892. addq $7, %rcx
  6893. movq %rcx, -8(%rbp)
  6894. movq -16(%rbp), %rax
  6895. addq %rax, -8(%rbp)
  6896. negq %rcx
  6897. addq %rcx, -8(%rbp)
  6898. movq -8(%rbp), %rdi
  6899. callq print_int
  6900. \end{lstlisting}
  6901. \end{minipage}
  6902. \end{center}
  6903. \fi}
  6904. \begin{exercise}\normalfont\normalsize
  6905. Change your implementation of \code{allocate\_registers} to take move
  6906. biasing into account. Create two new tests that include at least one
  6907. opportunity for move biasing, and visually inspect the output x86
  6908. programs to make sure that your move biasing is working properly. Make
  6909. sure that your compiler still passes all the tests.
  6910. \end{exercise}
  6911. %To do: another neat challenge would be to do
  6912. % live range splitting~\citep{Cooper:1998ly}. \\ --Jeremy
  6913. %% \subsection{Output of the Running Example}
  6914. %% \label{sec:reg-alloc-output}
  6915. % challenge: prioritize variables based on execution frequencies
  6916. % and the number of uses of a variable
  6917. % challenge: enhance the coloring algorithm using Chaitin's
  6918. % approach of prioritizing high-degree variables
  6919. % by removing low-degree variables (coloring them later)
  6920. % from the interference graph
  6921. \section{Further Reading}
  6922. \label{sec:register-allocation-further-reading}
  6923. Early register allocation algorithms were developed for Fortran
  6924. compilers in the 1950s~\citep{Horwitz:1966aa,Backus:1978aa}. The use
  6925. of graph coloring began in the late 1970s and early 1980s with the
  6926. work of \citet{Chaitin:1981vl} on an optimizing compiler for PL/I. The
  6927. algorithm is based on the following observation of
  6928. \citet{Kempe:1879aa}. If a graph $G$ has a vertex $v$ with degree
  6929. lower than $k$, then $G$ is $k$ colorable if the subgraph of $G$ with
  6930. $v$ removed is also $k$ colorable. To see why, suppose that the
  6931. subgraph is $k$ colorable. At worst, the neighbors of $v$ are assigned
  6932. different colors, but because there are fewer than $k$ neighbors, there
  6933. will be one or more colors left over to use for coloring $v$ in $G$.
  6934. The algorithm of \citet{Chaitin:1981vl} removes a vertex $v$ of degree
  6935. less than $k$ from the graph and recursively colors the rest of the
  6936. graph. Upon returning from the recursion, it colors $v$ with one of
  6937. the available colors and returns. \citet{Chaitin:1982vn} augments
  6938. this algorithm to handle spilling as follows. If there are no vertices
  6939. of degree lower than $k$ then pick a vertex at random, spill it,
  6940. remove it from the graph, and proceed recursively to color the rest of
  6941. the graph.
  6942. Prior to coloring, \citet{Chaitin:1981vl} merged variables that are
  6943. move-related and that don't interfere with each other, in a process
  6944. called \emph{coalescing}. Although coalescing decreases the number of
  6945. moves, it can make the graph more difficult to
  6946. color. \citet{Briggs:1994kx} proposed \emph{conservative coalescing} in
  6947. which two variables are merged only if they have fewer than $k$
  6948. neighbors of high degree. \citet{George:1996aa} observes that
  6949. conservative coalescing is sometimes too conservative and made it more
  6950. aggressive by iterating the coalescing with the removal of low-degree
  6951. vertices.
  6952. %
  6953. Attacking the problem from a different angle, \citet{Briggs:1994kx}
  6954. also proposed \emph{biased coloring}, in which a variable is assigned to
  6955. the same color as another move-related variable if possible, as
  6956. discussed in section~\ref{sec:move-biasing}.
  6957. %
  6958. The algorithm of \citet{Chaitin:1981vl} and its successors iteratively
  6959. performs coalescing, graph coloring, and spill code insertion until
  6960. all variables have been assigned a location.
  6961. \citet{Briggs:1994kx} observes that \citet{Chaitin:1982vn} sometimes
  6962. spilled variables that don't have to be: a high-degree variable can be
  6963. colorable if many of its neighbors are assigned the same color.
  6964. \citet{Briggs:1994kx} proposed \emph{optimistic coloring}, in which a
  6965. high-degree vertex is not immediately spilled. Instead the decision is
  6966. deferred until after the recursive call, when it is apparent whether
  6967. there is an available color or not. We observe that this algorithm is
  6968. equivalent to the smallest-last ordering
  6969. algorithm~\citep{Matula:1972aa} if one takes the first $k$ colors to
  6970. be registers and the rest to be stack locations.
  6971. %% biased coloring
  6972. Earlier editions of the compiler course at Indiana University
  6973. \citep{Dybvig:2010aa} were based on the algorithm of
  6974. \citet{Briggs:1994kx}.
  6975. The smallest-last ordering algorithm is one of many \emph{greedy}
  6976. coloring algorithms. A greedy coloring algorithm visits all the
  6977. vertices in a particular order and assigns each one the first
  6978. available color. An \emph{offline} greedy algorithm chooses the
  6979. ordering up front, prior to assigning colors. The algorithm of
  6980. \citet{Chaitin:1981vl} should be considered offline because the vertex
  6981. ordering does not depend on the colors assigned. Other orderings are
  6982. possible. For example, \citet{Chow:1984ys} ordered variables according
  6983. to an estimate of runtime cost.
  6984. An \emph{online} greedy coloring algorithm uses information about the
  6985. current assignment of colors to influence the order in which the
  6986. remaining vertices are colored. The saturation-based algorithm
  6987. described in this chapter is one such algorithm. We choose to use
  6988. saturation-based coloring because it is fun to introduce graph
  6989. coloring via sudoku!
  6990. A register allocator may choose to map each variable to just one
  6991. location, as in \citet{Chaitin:1981vl}, or it may choose to map a
  6992. variable to one or more locations. The latter can be achieved by
  6993. \emph{live range splitting}, where a variable is replaced by several
  6994. variables that each handle part of its live
  6995. range~\citep{Chow:1984ys,Briggs:1994kx,Cooper:1998ly}.
  6996. %% 1950s, Sheldon Best, Fortran \cite{Backus:1978aa}, Belady's page
  6997. %% replacement algorithm, bottom-up local
  6998. %% \citep{Horwitz:1966aa} straight-line programs, single basic block,
  6999. %% Cooper: top-down (priority bassed), bottom-up
  7000. %% top-down
  7001. %% order variables by priority (estimated cost)
  7002. %% caveat: split variables into two groups:
  7003. %% constrained (>k neighbors) and unconstrained (<k neighbors)
  7004. %% color the constrained ones first
  7005. %% \citet{Schwartz:1975aa} graph-coloring, no spill
  7006. %% cite J. Cocke for an algorithm that colors variables
  7007. %% in a high-degree first ordering
  7008. %Register Allocation via Usage Counts, Freiburghouse CACM
  7009. \citet{Palsberg:2007si} observes that many of the interference graphs
  7010. that arise from Java programs in the JoeQ compiler are \emph{chordal};
  7011. that is, every cycle with four or more edges has an edge that is not
  7012. part of the cycle but that connects two vertices on the cycle. Such
  7013. graphs can be optimally colored by the greedy algorithm with a vertex
  7014. ordering determined by maximum cardinality search.
  7015. In situations in which compile time is of utmost importance, such as
  7016. in just-in-time compilers, graph coloring algorithms can be too
  7017. expensive, and the linear scan algorithm of \citet{Poletto:1999uq} may
  7018. be more appropriate.
  7019. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  7020. {\if\edition\racketEd
  7021. \addtocontents{toc}{\newpage}
  7022. \fi}
  7023. \chapter{Booleans and Conditionals}
  7024. \label{ch:Lif}
  7025. \setcounter{footnote}{0}
  7026. The \LangVar{} language has only a single kind of value, the
  7027. integers. In this chapter we add a second kind of value, the Booleans,
  7028. to create the \LangIf{} language. In \racket{Racket}\python{Python},
  7029. the Boolean\index{subject}{Boolean} values \emph{true} and \emph{false}
  7030. are written
  7031. \TRUE{}\index{subject}{True@\TRUE{}} and
  7032. \FALSE{}\index{subject}{False@\FALSE{}}, respectively. The \LangIf{}
  7033. language includes several operations that involve Booleans
  7034. (\key{and}\index{subject}{and@\ANDNAME{}},
  7035. \key{or}\index{subject}{or@\ORNAME{}},
  7036. \key{not}\index{subject}{not@\NOTNAME{}},
  7037. \racket{\key{eq?}\index{subject}{equal@\EQNAME{}}}\python{==},
  7038. \key{<}\index{subject}{lessthan@\texttt{<}}, etc.) and the
  7039. \key{if}\index{subject}{IfExp@\IFNAME{}}
  7040. conditional expression\index{subject}{conditional expression}%
  7041. \python{ and statement\index{subject}{IfStmt@\IFSTMTNAME{}}}.
  7042. With the addition of \key{if}, programs can have
  7043. nontrivial control flow\index{subject}{control flow}, which
  7044. %
  7045. \racket{impacts \code{explicate\_control} and liveness analysis.}%
  7046. %
  7047. \python{impacts liveness analysis and motivates a new pass named
  7048. \code{explicate\_control}.}
  7049. %
  7050. Also, because we now have two kinds of values, we need to handle
  7051. programs that apply an operation to the wrong kind of value, such as
  7052. \racket{\code{(not 1)}}\python{\code{not 1}}.
  7053. There are two language design options for such situations. One option
  7054. is to signal an error and the other is to provide a wider
  7055. interpretation of the operation. \racket{The Racket
  7056. language}\python{Python} uses a mixture of these two options,
  7057. depending on the operation and the kind of value. For example, the
  7058. result of \racket{\code{(not 1)}}\python{\code{not 1}} is
  7059. \racket{\code{\#f}}\python{False} because \racket{Racket}\python{Python}
  7060. treats nonzero integers as if they were \racket{\code{\#t}}\python{\code{True}}.
  7061. %
  7062. \racket{On the other hand, \code{(car 1)} results in a runtime error
  7063. in Racket because \code{car} expects a pair.}
  7064. %
  7065. \python{On the other hand, \code{1[0]} results in a runtime error
  7066. in Python because an ``\code{int} object is not subscriptable.''}
  7067. \racket{Typed Racket}\python{The MyPy type checker} makes similar
  7068. design choices as \racket{Racket}\python{Python}, except that much of the
  7069. error detection happens at compile time instead of runtime\python{~\citep{Lehtosalo2021:MyPy}}. \racket{Typed Racket}\python{MyPy}
  7070. accepts \racket{\code{(not 1)}}\python{\code{not 1}}. But in the case
  7071. of \racket{\code{(car 1)}}\python{\code{1[0]}}, \racket{Typed Racket}
  7072. \python{MyPy} reports a compile-time error
  7073. %
  7074. \racket{because Racket expects the type of the argument to be of the form
  7075. \code{(Listof T)} or \code{(Pairof T1 T2)}.}
  7076. %
  7077. \python{stating that a ``value of type \code{int} is not indexable.''}
  7078. The \LangIf{} language performs type checking during compilation just as
  7079. \racket{Typed Racket}\python{MyPy}. In chapter~\ref{ch:Ldyn} we study
  7080. the alternative choice, that is, a dynamically typed language like
  7081. \racket{Racket}\python{Python}. The \LangIf{} language is a subset of
  7082. \racket{Typed Racket}\python{MyPy}; for some operations we are more
  7083. restrictive, for example, rejecting \racket{\code{(not
  7084. 1)}}\python{\code{not 1}}. We keep the type checker for \LangIf{}
  7085. fairly simple because the focus of this book is on compilation and not
  7086. type systems, about which there are already several excellent
  7087. books~\citep{Pierce:2002hj,Pierce:2004fk,Harper2016,Pierce:SF2}.
  7088. This chapter is organized as follows. We begin by defining the syntax
  7089. and interpreter for the \LangIf{} language
  7090. (section~\ref{sec:lang-if}). We then introduce the idea of type
  7091. checking (aka semantic analysis\index{subject}{semantic analysis})
  7092. and define a type checker for \LangIf{}
  7093. (section~\ref{sec:type-check-Lif}).
  7094. %
  7095. \racket{To compile \LangIf{} we need to enlarge the intermediate
  7096. language \LangCVar{} into \LangCIf{} (section~\ref{sec:Cif}) and
  7097. \LangXInt{} into \LangXIf{} (section~\ref{sec:x86-if}).}
  7098. %
  7099. The remaining sections of this chapter discuss how Booleans and
  7100. conditional control flow require changes to the existing compiler
  7101. passes and the addition of new ones. We introduce the \code{shrink}
  7102. pass to translate some operators into others, thereby reducing the
  7103. number of operators that need to be handled in later passes.
  7104. %
  7105. The main event of this chapter is the \code{explicate\_control} pass
  7106. that is responsible for translating \code{if}s into conditional
  7107. \code{goto}s (section~\ref{sec:explicate-control-Lif}).
  7108. %
  7109. Regarding register allocation, there is the interesting question of
  7110. how to handle conditional \code{goto}s during liveness analysis.
  7111. \section{The \LangIf{} Language}
  7112. \label{sec:lang-if}
  7113. Definitions of the concrete syntax and abstract syntax of the
  7114. \LangIf{} language are shown in figures~\ref{fig:Lif-concrete-syntax}
  7115. and~\ref{fig:Lif-syntax}, respectively. The \LangIf{} language
  7116. includes all of \LangVar{} {(shown in gray)}, the Boolean
  7117. literals\index{subject}{literals}
  7118. \TRUE{} and \FALSE{}, \racket{and} the \code{if} expression%
  7119. \python{, and the \code{if} statement}. We expand the set of
  7120. operators to include
  7121. \begin{enumerate}
  7122. \item the logical operators \key{and}, \key{or}, and \key{not},
  7123. \item the \racket{\key{eq?} operation}\python{\key{==} and \key{!=} operations}
  7124. for comparing integers or Booleans for equality, and
  7125. \item the \key{<}, \key{<=}\index{subject}{lessthaneq@\texttt{<=}},
  7126. \key{>}\index{subject}{greaterthan@\texttt{>}}, and
  7127. \key{>=}\index{subject}{greaterthaneq@\texttt{>=}} operations for
  7128. comparing integers.
  7129. \end{enumerate}
  7130. \racket{We reorganize the abstract syntax for the primitive
  7131. operations given in figure~\ref{fig:Lif-syntax}, using only one grammar
  7132. rule for all of them. This means that the grammar no longer checks
  7133. whether the arity of an operator matches the number of
  7134. arguments. That responsibility is moved to the type checker for
  7135. \LangIf{} (section~\ref{sec:type-check-Lif}).}
  7136. \newcommand{\LifGrammarRacket}{
  7137. \begin{array}{lcl}
  7138. \Type &::=& \key{Boolean} \\
  7139. \itm{bool} &::=& \TRUE \MID \FALSE \\
  7140. \itm{cmp} &::= & \key{eq?} \MID \key{<} \MID \key{<=} \MID \key{>} \MID \key{>=} \\
  7141. \Exp &::=& \itm{bool}
  7142. \MID (\key{and}\;\Exp\;\Exp) \MID (\key{or}\;\Exp\;\Exp)
  7143. \MID (\key{not}\;\Exp) \\
  7144. &\MID& (\itm{cmp}\;\Exp\;\Exp) \MID \CIF{\Exp}{\Exp}{\Exp}
  7145. \end{array}
  7146. }
  7147. \newcommand{\LifASTRacket}{
  7148. \begin{array}{lcl}
  7149. \Type &::=& \key{Boolean} \\
  7150. \itm{bool} &::=& \code{\#t} \MID \code{\#f} \\
  7151. \itm{cmp} &::= & \code{eq?} \MID \code{<} \MID \code{<=} \MID \code{>} \MID \code{>=} \\
  7152. \itm{op} &::= & \itm{cmp} \MID \code{and} \MID \code{or} \MID \code{not} \\
  7153. \Exp &::=& \BOOL{\itm{bool}} \MID \IF{\Exp}{\Exp}{\Exp}
  7154. \end{array}
  7155. }
  7156. \newcommand{\LintOpAST}{
  7157. \begin{array}{rcl}
  7158. \Type &::=& \key{Integer} \\
  7159. \itm{op} &::= & \code{read} \MID \code{+} \MID \code{-}\\
  7160. \Exp{} &::=& \INT{\Int} \MID \PRIM{\itm{op}}{\Exp\ldots}
  7161. \end{array}
  7162. }
  7163. \newcommand{\LifGrammarPython}{
  7164. \begin{array}{rcl}
  7165. \itm{cmp} &::= & \key{==} \MID \key{!=} \MID \key{<} \MID \key{<=} \MID \key{>} \MID \key{>=} \\
  7166. \Exp &::=& \TRUE \MID \FALSE \MID \CAND{\Exp}{\Exp} \MID \COR{\Exp}{\Exp}
  7167. \MID \key{not}~\Exp \\
  7168. &\MID& \CCMP{\itm{cmp}}{\Exp}{\Exp}
  7169. \MID \CIF{\Exp}{\Exp}{\Exp} \\
  7170. \Stmt &::=& \key{if}~ \Exp \key{:}~ \Stmt^{+} ~\key{else:}~ \Stmt^{+}
  7171. \end{array}
  7172. }
  7173. \newcommand{\LifASTPython}{
  7174. \begin{array}{lcl}
  7175. \itm{boolop} &::=& \code{And()} \MID \code{Or()} \\
  7176. \itm{cmp} &::= & \code{Eq()} \MID \code{NotEq()} \MID \code{Lt()} \MID \code{LtE()} \MID \code{Gt()} \MID \code{GtE()} \\
  7177. \itm{bool} &::=& \code{True} \MID \code{False} \\
  7178. \Exp &::=& \BOOL{\itm{bool}}
  7179. \MID \BOOLOP{\itm{boolop}}{\Exp}{\Exp}\\
  7180. &\MID& \UNIOP{\key{Not()}}{\Exp}
  7181. \MID \CMP{\Exp}{\itm{cmp}}{\Exp} \\
  7182. &\MID& \IF{\Exp}{\Exp}{\Exp} \\
  7183. \Stmt{} &::=& \IFSTMT{\Exp}{\Stmt^{+}}{\Stmt^{+}}
  7184. \end{array}
  7185. }
  7186. \begin{figure}[tp]
  7187. \centering
  7188. \begin{tcolorbox}[colback=white]
  7189. {\if\edition\racketEd
  7190. \[
  7191. \begin{array}{l}
  7192. \gray{\LintGrammarRacket{}} \\ \hline
  7193. \gray{\LvarGrammarRacket{}} \\ \hline
  7194. \LifGrammarRacket{} \\
  7195. \begin{array}{lcl}
  7196. \LangIfM{} &::=& \Exp
  7197. \end{array}
  7198. \end{array}
  7199. \]
  7200. \fi}
  7201. {\if\edition\pythonEd\pythonColor
  7202. \[
  7203. \begin{array}{l}
  7204. \gray{\LintGrammarPython} \\ \hline
  7205. \gray{\LvarGrammarPython} \\ \hline
  7206. \LifGrammarPython \\
  7207. \begin{array}{rcl}
  7208. \LangIfM{} &::=& \Stmt^{*}
  7209. \end{array}
  7210. \end{array}
  7211. \]
  7212. \fi}
  7213. \end{tcolorbox}
  7214. \caption{The concrete syntax of \LangIf{}, extending \LangVar{}
  7215. (figure~\ref{fig:Lvar-concrete-syntax}) with Booleans and conditionals.}
  7216. \label{fig:Lif-concrete-syntax}
  7217. \end{figure}
  7218. \begin{figure}[tp]
  7219. %\begin{minipage}{0.66\textwidth}
  7220. \begin{tcolorbox}[colback=white]
  7221. \centering
  7222. {\if\edition\racketEd
  7223. \[
  7224. \begin{array}{l}
  7225. \gray{\LintOpAST} \\ \hline
  7226. \gray{\LvarASTRacket{}} \\ \hline
  7227. \LifASTRacket{} \\
  7228. \begin{array}{lcl}
  7229. \LangIfM{} &::=& \PROGRAM{\code{'()}}{\Exp}
  7230. \end{array}
  7231. \end{array}
  7232. \]
  7233. \fi}
  7234. {\if\edition\pythonEd\pythonColor
  7235. \[
  7236. \begin{array}{l}
  7237. \gray{\LintASTPython} \\ \hline
  7238. \gray{\LvarASTPython} \\ \hline
  7239. \LifASTPython \\
  7240. \begin{array}{lcl}
  7241. \LangIfM{} &::=& \PROGRAM{\code{'()}}{\Stmt^{*}}
  7242. \end{array}
  7243. \end{array}
  7244. \]
  7245. \fi}
  7246. \end{tcolorbox}
  7247. %\end{minipage}
  7248. \python{\index{subject}{not equal@\NOTEQNAME{}}}
  7249. \python{
  7250. \index{subject}{BoolOp@\texttt{BoolOp}}
  7251. \index{subject}{Compare@\texttt{Compare}}
  7252. \index{subject}{Lt@\texttt{Lt}}
  7253. \index{subject}{LtE@\texttt{LtE}}
  7254. \index{subject}{Gt@\texttt{Gt}}
  7255. \index{subject}{GtE@\texttt{GtE}}
  7256. }
  7257. \caption{The abstract syntax of \LangIf{}.}
  7258. \label{fig:Lif-syntax}
  7259. \end{figure}
  7260. Figure~\ref{fig:interp-Lif} shows the definition of the interpreter
  7261. for \LangIf{}, which inherits from the interpreter for \LangVar{}
  7262. (figure~\ref{fig:interp-Lvar}). The constants \TRUE{} and \FALSE{}
  7263. evaluate to the corresponding Boolean values, behavior that is
  7264. inherited from the interpreter for \LangInt{}
  7265. (figure~\ref{fig:interp-Lint-class}).
  7266. The conditional expression $\CIF{e_1}{e_2}{\itm{e_3}}$ evaluates
  7267. expression $e_1$ and then either evaluates $e_2$ or $e_3$, depending
  7268. on whether $e_1$ produced \TRUE{} or \FALSE{}. The logical operations
  7269. \code{and}, \code{or}, and \code{not} behave according to propositional
  7270. logic. In addition, the \code{and} and \code{or} operations perform
  7271. \emph{short-circuit evaluation}.
  7272. %
  7273. That is, given the expression $\CAND{e_1}{e_2}$, the expression $e_2$
  7274. is not evaluated if $e_1$ evaluates to \FALSE{}.
  7275. %
  7276. Similarly, given $\COR{e_1}{e_2}$, the expression $e_2$ is not
  7277. evaluated if $e_1$ evaluates to \TRUE{}.
  7278. \racket{With the increase in the number of primitive operations, the
  7279. interpreter would become repetitive without some care. We refactor
  7280. the case for \code{Prim}, moving the code that differs with each
  7281. operation into the \code{interp\_op} method shown in
  7282. figure~\ref{fig:interp-op-Lif}. We handle the \code{and} and
  7283. \code{or} operations separately because of their short-circuiting
  7284. behavior.}
  7285. \begin{figure}[tbp]
  7286. \begin{tcolorbox}[colback=white]
  7287. {\if\edition\racketEd
  7288. \begin{lstlisting}
  7289. (define interp-Lif-class
  7290. (class interp-Lvar-class
  7291. (super-new)
  7292. (define/public (interp_op op) ...)
  7293. (define/override ((interp_exp env) e)
  7294. (define recur (interp_exp env))
  7295. (match e
  7296. [(Bool b) b]
  7297. [(If cnd thn els)
  7298. (match (recur cnd)
  7299. [#t (recur thn)]
  7300. [#f (recur els)])]
  7301. [(Prim 'and (list e1 e2))
  7302. (match (recur e1)
  7303. [#t (match (recur e2) [#t #t] [#f #f])]
  7304. [#f #f])]
  7305. [(Prim 'or (list e1 e2))
  7306. (define v1 (recur e1))
  7307. (match v1
  7308. [#t #t]
  7309. [#f (match (recur e2) [#t #t] [#f #f])])]
  7310. [(Prim op args)
  7311. (apply (interp_op op) (for/list ([e args]) (recur e)))]
  7312. [else ((super interp_exp env) e)]))
  7313. ))
  7314. (define (interp_Lif p)
  7315. (send (new interp-Lif-class) interp_program p))
  7316. \end{lstlisting}
  7317. \fi}
  7318. {\if\edition\pythonEd\pythonColor
  7319. \begin{lstlisting}
  7320. class InterpLif(InterpLvar):
  7321. def interp_exp(self, e, env):
  7322. match e:
  7323. case IfExp(test, body, orelse):
  7324. if self.interp_exp(test, env):
  7325. return self.interp_exp(body, env)
  7326. else:
  7327. return self.interp_exp(orelse, env)
  7328. case UnaryOp(Not(), v):
  7329. return not self.interp_exp(v, env)
  7330. case BoolOp(And(), values):
  7331. if self.interp_exp(values[0], env):
  7332. return self.interp_exp(values[1], env)
  7333. else:
  7334. return False
  7335. case BoolOp(Or(), values):
  7336. if self.interp_exp(values[0], env):
  7337. return True
  7338. else:
  7339. return self.interp_exp(values[1], env)
  7340. case Compare(left, [cmp], [right]):
  7341. l = self.interp_exp(left, env)
  7342. r = self.interp_exp(right, env)
  7343. return self.interp_cmp(cmp)(l, r)
  7344. case _:
  7345. return super().interp_exp(e, env)
  7346. def interp_stmt(self, s, env, cont):
  7347. match s:
  7348. case If(test, body, orelse):
  7349. match self.interp_exp(test, env):
  7350. case True:
  7351. return self.interp_stmts(body + cont, env)
  7352. case False:
  7353. return self.interp_stmts(orelse + cont, env)
  7354. case _:
  7355. return super().interp_stmt(s, env, cont)
  7356. ...
  7357. \end{lstlisting}
  7358. \fi}
  7359. \end{tcolorbox}
  7360. \caption{Interpreter for the \LangIf{} language. \racket{(See
  7361. figure~\ref{fig:interp-op-Lif} for \code{interp-op}.)}
  7362. \python{(See figure~\ref{fig:interp-cmp-Lif} for \code{interp\_cmp}.)}}
  7363. \label{fig:interp-Lif}
  7364. \end{figure}
  7365. {\if\edition\racketEd
  7366. \begin{figure}[tbp]
  7367. \begin{tcolorbox}[colback=white]
  7368. \begin{lstlisting}
  7369. (define/public (interp_op op)
  7370. (match op
  7371. ['+ fx+]
  7372. ['- fx-]
  7373. ['read read-fixnum]
  7374. ['not (lambda (v) (match v [#t #f] [#f #t]))]
  7375. ['eq? (lambda (v1 v2)
  7376. (cond [(or (and (fixnum? v1) (fixnum? v2))
  7377. (and (boolean? v1) (boolean? v2))
  7378. (and (vector? v1) (vector? v2)))
  7379. (eq? v1 v2)]))]
  7380. ['< (lambda (v1 v2)
  7381. (cond [(and (fixnum? v1) (fixnum? v2))
  7382. (< v1 v2)]))]
  7383. ['<= (lambda (v1 v2)
  7384. (cond [(and (fixnum? v1) (fixnum? v2))
  7385. (<= v1 v2)]))]
  7386. ['> (lambda (v1 v2)
  7387. (cond [(and (fixnum? v1) (fixnum? v2))
  7388. (> v1 v2)]))]
  7389. ['>= (lambda (v1 v2)
  7390. (cond [(and (fixnum? v1) (fixnum? v2))
  7391. (>= v1 v2)]))]
  7392. [else (error 'interp_op "unknown operator")]))
  7393. \end{lstlisting}
  7394. \end{tcolorbox}
  7395. \caption{Interpreter for the primitive operators in the \LangIf{} language.}
  7396. \label{fig:interp-op-Lif}
  7397. \end{figure}
  7398. \fi}
  7399. {\if\edition\pythonEd\pythonColor
  7400. \begin{figure}
  7401. \begin{tcolorbox}[colback=white]
  7402. \begin{lstlisting}
  7403. class InterpLif(InterpLvar):
  7404. ...
  7405. def interp_cmp(self, cmp):
  7406. match cmp:
  7407. case Lt():
  7408. return lambda x, y: x < y
  7409. case LtE():
  7410. return lambda x, y: x <= y
  7411. case Gt():
  7412. return lambda x, y: x > y
  7413. case GtE():
  7414. return lambda x, y: x >= y
  7415. case Eq():
  7416. return lambda x, y: x == y
  7417. case NotEq():
  7418. return lambda x, y: x != y
  7419. \end{lstlisting}
  7420. \end{tcolorbox}
  7421. \caption{Interpreter for the comparison operators in the \LangIf{} language.}
  7422. \label{fig:interp-cmp-Lif}
  7423. \end{figure}
  7424. \fi}
  7425. \section{Type Checking \LangIf{} Programs}
  7426. \label{sec:type-check-Lif}
  7427. It is helpful to think about type checking\index{subject}{type
  7428. checking} in two complementary ways. A type checker predicts the
  7429. type of value that will be produced by each expression in the program.
  7430. For \LangIf{}, we have just two types, \INTTY{} and \BOOLTY{}. So, a
  7431. type checker should predict that {\if\edition\racketEd
  7432. \begin{lstlisting}
  7433. (+ 10 (- (+ 12 20)))
  7434. \end{lstlisting}
  7435. \fi}
  7436. {\if\edition\pythonEd\pythonColor
  7437. \begin{lstlisting}
  7438. 10 + -(12 + 20)
  7439. \end{lstlisting}
  7440. \fi}
  7441. \noindent produces a value of type \INTTY{}, whereas
  7442. {\if\edition\racketEd
  7443. \begin{lstlisting}
  7444. (and (not #f) #t)
  7445. \end{lstlisting}
  7446. \fi}
  7447. {\if\edition\pythonEd\pythonColor
  7448. \begin{lstlisting}
  7449. (not False) and True
  7450. \end{lstlisting}
  7451. \fi}
  7452. \noindent produces a value of type \BOOLTY{}.
  7453. A second way to think about type checking is that it enforces a set of
  7454. rules about which operators can be applied to which kinds of
  7455. values. For example, our type checker for \LangIf{} signals an error
  7456. for the following expression:
  7457. %
  7458. {\if\edition\racketEd
  7459. \begin{lstlisting}
  7460. (not (+ 10 (- (+ 12 20))))
  7461. \end{lstlisting}
  7462. \fi}
  7463. {\if\edition\pythonEd\pythonColor
  7464. \begin{lstlisting}
  7465. not (10 + -(12 + 20))
  7466. \end{lstlisting}
  7467. \fi}
  7468. \noindent The subexpression
  7469. \racket{\code{(+ 10 (- (+ 12 20)))}}
  7470. \python{\code{(10 + -(12 + 20))}}
  7471. has type \INTTY{}, but the type checker enforces the rule that the
  7472. argument of \code{not} must be an expression of type \BOOLTY{}.
  7473. We implement type checking using classes and methods because they
  7474. provide the open recursion needed to reuse code as we extend the type
  7475. checker in subsequent chapters, analogous to the use of classes and methods
  7476. for the interpreters (section~\ref{sec:extensible-interp}).
  7477. We separate the type checker for the \LangVar{} subset into its own
  7478. class, shown in figure~\ref{fig:type-check-Lvar}. The type checker for
  7479. \LangIf{} is shown in figure~\ref{fig:type-check-Lif}, and it inherits
  7480. from the type checker for \LangVar{}. These type checkers are in the
  7481. files
  7482. \racket{\code{type-check-Lvar.rkt}}\python{\code{type\_check\_Lvar.py}}
  7483. and
  7484. \racket{\code{type-check-Lif.rkt}}\python{\code{type\_check\_Lif.py}}
  7485. of the support code.
  7486. %
  7487. Each type checker is a structurally recursive function over the AST.
  7488. Given an input expression \code{e}, the type checker either signals an
  7489. error or returns \racket{an expression and its type.}\python{its type.}
  7490. %
  7491. \racket{It returns an expression because there are situations in which
  7492. we want to change or update the expression.}
  7493. Next we discuss the \code{type\_check\_exp} function of \LangVar{}
  7494. shown in figure~\ref{fig:type-check-Lvar}. The type of an integer
  7495. constant is \INTTY{}. To handle variables, the type checker uses the
  7496. environment \code{env} to map variables to types.
  7497. %
  7498. \racket{Consider the case for \key{let}. We type check the
  7499. initializing expression to obtain its type \key{T} and then
  7500. associate type \code{T} with the variable \code{x} in the
  7501. environment used to type check the body of the \key{let}. Thus,
  7502. when the type checker encounters a use of variable \code{x}, it can
  7503. find its type in the environment.}
  7504. %
  7505. \python{Consider the case for assignment. We type check the
  7506. initializing expression to obtain its type \key{t}. If the variable
  7507. \code{id} is already in the environment because there was a
  7508. prior assignment, we check that this initializer has the same type
  7509. as the prior one. If this is the first assignment to the variable,
  7510. we associate type \code{t} with the variable \code{id} in the
  7511. environment. Thus, when the type checker encounters a use of
  7512. variable \code{x}, it can find its type in the environment.}
  7513. %
  7514. \racket{Regarding primitive operators, we recursively analyze the
  7515. arguments and then invoke \code{type\_check\_op} to check whether
  7516. the argument types are allowed.}
  7517. %
  7518. \python{Regarding addition, subtraction, and negation, we recursively analyze the
  7519. arguments, check that they have type \INTTY{}, and return \INTTY{}.}
  7520. \racket{Several auxiliary methods are used in the type checker. The
  7521. method \code{operator-types} defines a dictionary that maps the
  7522. operator names to their parameter and return types. The
  7523. \code{type-equal?} method determines whether two types are equal,
  7524. which for now simply dispatches to \code{equal?} (deep
  7525. equality). The \code{check-type-equal?} method triggers an error if
  7526. the two types are not equal. The \code{type-check-op} method looks
  7527. up the operator in the \code{operator-types} dictionary and then
  7528. checks whether the argument types are equal to the parameter types.
  7529. The result is the return type of the operator.}
  7530. %
  7531. \python{The auxiliary method \code{check\_type\_equal} triggers
  7532. an error if the two types are not equal.}
  7533. \begin{figure}[tbp]
  7534. \begin{tcolorbox}[colback=white]
  7535. {\if\edition\racketEd
  7536. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  7537. (define type-check-Lvar-class
  7538. (class object%
  7539. (super-new)
  7540. (define/public (operator-types)
  7541. '((+ . ((Integer Integer) . Integer))
  7542. (- . ((Integer Integer) . Integer))
  7543. (read . (() . Integer))))
  7544. (define/public (type-equal? t1 t2) (equal? t1 t2))
  7545. (define/public (check-type-equal? t1 t2 e)
  7546. (unless (type-equal? t1 t2)
  7547. (error 'type-check "~a != ~a\nin ~v" t1 t2 e)))
  7548. (define/public (type-check-op op arg-types e)
  7549. (match (dict-ref (operator-types) op)
  7550. [`(,param-types . ,return-type)
  7551. (for ([at arg-types] [pt param-types])
  7552. (check-type-equal? at pt e))
  7553. return-type]
  7554. [else (error 'type-check-op "unrecognized ~a" op)]))
  7555. (define/public (type-check-exp env)
  7556. (lambda (e)
  7557. (match e
  7558. [(Int n) (values (Int n) 'Integer)]
  7559. [(Var x) (values (Var x) (dict-ref env x))]
  7560. [(Let x e body)
  7561. (define-values (e^ Te) ((type-check-exp env) e))
  7562. (define-values (b Tb) ((type-check-exp (dict-set env x Te)) body))
  7563. (values (Let x e^ b) Tb)]
  7564. [(Prim op es)
  7565. (define-values (new-es ts)
  7566. (for/lists (exprs types) ([e es]) ((type-check-exp env) e)))
  7567. (values (Prim op new-es) (type-check-op op ts e))]
  7568. [else (error 'type-check-exp "couldn't match" e)])))
  7569. (define/public (type-check-program e)
  7570. (match e
  7571. [(Program info body)
  7572. (define-values (body^ Tb) ((type-check-exp '()) body))
  7573. (check-type-equal? Tb 'Integer body)
  7574. (Program info body^)]
  7575. [else (error 'type-check-Lvar "couldn't match ~a" e)]))
  7576. ))
  7577. (define (type-check-Lvar p)
  7578. (send (new type-check-Lvar-class) type-check-program p))
  7579. \end{lstlisting}
  7580. \fi}
  7581. {\if\edition\pythonEd\pythonColor
  7582. \begin{lstlisting}[escapechar=`]
  7583. class TypeCheckLvar:
  7584. def check_type_equal(self, t1, t2, e):
  7585. if t1 != t2:
  7586. msg = 'error: ' + repr(t1) + ' != ' + repr(t2) + ' in ' + repr(e)
  7587. raise Exception(msg)
  7588. def type_check_exp(self, e, env):
  7589. match e:
  7590. case BinOp(left, (Add() | Sub()), right):
  7591. l = self.type_check_exp(left, env)
  7592. check_type_equal(l, int, left)
  7593. r = self.type_check_exp(right, env)
  7594. check_type_equal(r, int, right)
  7595. return int
  7596. case UnaryOp(USub(), v):
  7597. t = self.type_check_exp(v, env)
  7598. check_type_equal(t, int, v)
  7599. return int
  7600. case Name(id):
  7601. return env[id]
  7602. case Constant(value) if isinstance(value, int):
  7603. return int
  7604. case Call(Name('input_int'), []):
  7605. return int
  7606. def type_check_stmts(self, ss, env):
  7607. if len(ss) == 0:
  7608. return
  7609. match ss[0]:
  7610. case Assign([Name(id)], value):
  7611. t = self.type_check_exp(value, env)
  7612. if id in env:
  7613. check_type_equal(env[id], t, value)
  7614. else:
  7615. env[id] = t
  7616. return self.type_check_stmts(ss[1:], env)
  7617. case Expr(Call(Name('print'), [arg])):
  7618. t = self.type_check_exp(arg, env)
  7619. check_type_equal(t, int, arg)
  7620. return self.type_check_stmts(ss[1:], env)
  7621. case Expr(value):
  7622. self.type_check_exp(value, env)
  7623. return self.type_check_stmts(ss[1:], env)
  7624. def type_check_P(self, p):
  7625. match p:
  7626. case Module(body):
  7627. self.type_check_stmts(body, {})
  7628. \end{lstlisting}
  7629. \fi}
  7630. \end{tcolorbox}
  7631. \caption{Type checker for the \LangVar{} language.}
  7632. \label{fig:type-check-Lvar}
  7633. \end{figure}
  7634. \begin{figure}[tbp]
  7635. \begin{tcolorbox}[colback=white]
  7636. {\if\edition\racketEd
  7637. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  7638. (define type-check-Lif-class
  7639. (class type-check-Lvar-class
  7640. (super-new)
  7641. (inherit check-type-equal?)
  7642. (define/override (operator-types)
  7643. (append '((and . ((Boolean Boolean) . Boolean))
  7644. (or . ((Boolean Boolean) . Boolean))
  7645. (< . ((Integer Integer) . Boolean))
  7646. (<= . ((Integer Integer) . Boolean))
  7647. (> . ((Integer Integer) . Boolean))
  7648. (>= . ((Integer Integer) . Boolean))
  7649. (not . ((Boolean) . Boolean)))
  7650. (super operator-types)))
  7651. (define/override (type-check-exp env)
  7652. (lambda (e)
  7653. (match e
  7654. [(Bool b) (values (Bool b) 'Boolean)]
  7655. [(Prim 'eq? (list e1 e2))
  7656. (define-values (e1^ T1) ((type-check-exp env) e1))
  7657. (define-values (e2^ T2) ((type-check-exp env) e2))
  7658. (check-type-equal? T1 T2 e)
  7659. (values (Prim 'eq? (list e1^ e2^)) 'Boolean)]
  7660. [(If cnd thn els)
  7661. (define-values (cnd^ Tc) ((type-check-exp env) cnd))
  7662. (define-values (thn^ Tt) ((type-check-exp env) thn))
  7663. (define-values (els^ Te) ((type-check-exp env) els))
  7664. (check-type-equal? Tc 'Boolean e)
  7665. (check-type-equal? Tt Te e)
  7666. (values (If cnd^ thn^ els^) Te)]
  7667. [else ((super type-check-exp env) e)])))
  7668. ))
  7669. (define (type-check-Lif p)
  7670. (send (new type-check-Lif-class) type-check-program p))
  7671. \end{lstlisting}
  7672. \fi}
  7673. {\if\edition\pythonEd\pythonColor
  7674. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  7675. class TypeCheckLif(TypeCheckLvar):
  7676. def type_check_exp(self, e, env):
  7677. match e:
  7678. case Constant(value) if isinstance(value, bool):
  7679. return bool
  7680. case BinOp(left, Sub(), right):
  7681. l = self.type_check_exp(left, env); check_type_equal(l, int, left)
  7682. r = self.type_check_exp(right, env); check_type_equal(r, int, right)
  7683. return int
  7684. case UnaryOp(Not(), v):
  7685. t = self.type_check_exp(v, env); check_type_equal(t, bool, v)
  7686. return bool
  7687. case BoolOp(op, values):
  7688. left = values[0] ; right = values[1]
  7689. l = self.type_check_exp(left, env); check_type_equal(l, bool, left)
  7690. r = self.type_check_exp(right, env); check_type_equal(r, bool, right)
  7691. return bool
  7692. case Compare(left, [cmp], [right]) if isinstance(cmp, Eq) \
  7693. or isinstance(cmp, NotEq):
  7694. l = self.type_check_exp(left, env)
  7695. r = self.type_check_exp(right, env)
  7696. check_type_equal(l, r, e)
  7697. return bool
  7698. case Compare(left, [cmp], [right]):
  7699. l = self.type_check_exp(left, env); check_type_equal(l, int, left)
  7700. r = self.type_check_exp(right, env); check_type_equal(r, int, right)
  7701. return bool
  7702. case IfExp(test, body, orelse):
  7703. t = self.type_check_exp(test, env); check_type_equal(bool, t, test)
  7704. b = self.type_check_exp(body, env)
  7705. o = self.type_check_exp(orelse, env)
  7706. check_type_equal(b, o, e)
  7707. return b
  7708. case _:
  7709. return super().type_check_exp(e, env)
  7710. def type_check_stmts(self, ss, env):
  7711. if len(ss) == 0:
  7712. return
  7713. match ss[0]:
  7714. case If(test, body, orelse):
  7715. t = self.type_check_exp(test, env); check_type_equal(bool, t, test)
  7716. b = self.type_check_stmts(body, env)
  7717. o = self.type_check_stmts(orelse, env)
  7718. check_type_equal(b, o, ss[0])
  7719. return self.type_check_stmts(ss[1:], env)
  7720. case _:
  7721. return super().type_check_stmts(ss, env)
  7722. \end{lstlisting}
  7723. \fi}
  7724. \end{tcolorbox}
  7725. \caption{Type checker for the \LangIf{} language.}
  7726. \label{fig:type-check-Lif}
  7727. \end{figure}
  7728. The definition of the type checker for \LangIf{} is shown in
  7729. figure~\ref{fig:type-check-Lif}.
  7730. %
  7731. The type of a Boolean constant is \BOOLTY{}.
  7732. %
  7733. \racket{The \code{operator-types} function adds dictionary entries for
  7734. the new operators.}
  7735. %
  7736. \python{The logical \code{not} operator requires its argument to be a
  7737. \BOOLTY{} and produces a \BOOLTY{}. Similarly for the logical \code{and}
  7738. and logical \code{or} operators.}
  7739. %
  7740. The equality operator requires the two arguments to have the same type,
  7741. and therefore we handle it separately from the other operators.
  7742. %
  7743. \python{The other comparisons (less-than, etc.) require their
  7744. arguments to be of type \INTTY{}, and they produce a \BOOLTY{}.}
  7745. %
  7746. The condition of an \code{if} must
  7747. be of \BOOLTY{} type, and the two branches must have the same type.
  7748. \begin{exercise}\normalfont\normalsize
  7749. Create ten new test programs in \LangIf{}. Half the programs should
  7750. have a type error.
  7751. \racket{For those programs, create an empty file with the
  7752. same base name and with file extension \code{.tyerr}. For example, if
  7753. the test \code{cond\_test\_14.rkt}
  7754. is expected to error, then create
  7755. an empty file named \code{cond\_test\_14.tyerr}.
  7756. This indicates to \code{interp-tests} and
  7757. \code{compiler-tests} that a type error is expected.}
  7758. %
  7759. The other half of the test programs should not have type errors.
  7760. %
  7761. \racket{In the \code{run-tests.rkt} script, change the second argument
  7762. of \code{interp-tests} and \code{compiler-tests} to
  7763. \code{type-check-Lif}, which causes the type checker to run prior to
  7764. the compiler passes. Temporarily change the \code{passes} to an
  7765. empty list and run the script, thereby checking that the new test
  7766. programs either type check or do not, as intended.}
  7767. %
  7768. Run the test script to check that these test programs type check as
  7769. expected.
  7770. \end{exercise}
  7771. \clearpage
  7772. \section{The \LangCIf{} Intermediate Language}
  7773. \label{sec:Cif}
  7774. {\if\edition\racketEd
  7775. %
  7776. The \LangCIf{} language builds on \LangCVar{} by adding logical and
  7777. comparison operators to the \Exp{} nonterminal and the literals
  7778. \TRUE{} and \FALSE{} to the \Arg{} nonterminal. Regarding control
  7779. flow, \LangCIf{} adds \key{goto} and \code{if} statements to the
  7780. \Tail{} nonterminal. The condition of an \code{if} statement is a
  7781. comparison operation and the branches are \code{goto} statements,
  7782. making it straightforward to compile \code{if} statements to x86. The
  7783. \key{CProgram} construct contains an alist mapping labels to $\Tail$
  7784. expressions. A \code{goto} statement transfers control to the $\Tail$
  7785. expression corresponding to its label.
  7786. %
  7787. Figure~\ref{fig:c1-concrete-syntax} defines the concrete syntax of the
  7788. \LangCIf{} intermediate language, and figure~\ref{fig:c1-syntax}
  7789. defines its abstract syntax.
  7790. %
  7791. \fi}
  7792. %
  7793. {\if\edition\pythonEd\pythonColor
  7794. %
  7795. The output of \key{explicate\_control} is a language similar to the
  7796. $C$ language~\citep{Kernighan:1988nx} in that it has labels and
  7797. \code{goto} statements, so we name it \LangCIf{}.
  7798. %
  7799. The \LangCIf{} language supports most of the operators in \LangIf{}, but
  7800. the arguments of operators are restricted to atomic expressions. The
  7801. \LangCIf{} language does not include \code{if} expressions, but it does
  7802. include a restricted form of \code{if} statement. The condition must be
  7803. a comparison, and the two branches may contain only \code{goto}
  7804. statements. These restrictions make it easier to translate \code{if}
  7805. statements to x86. The \LangCIf{} language also adds a \code{return}
  7806. statement to finish the program with a specified value.
  7807. %
  7808. The \key{CProgram} construct contains a dictionary mapping labels to
  7809. lists of statements that end with a \emph{tail} statement, which is
  7810. either a \code{return} statement, a \code{goto}, or an
  7811. \code{if} statement.
  7812. %
  7813. A \code{goto} transfers control to the sequence of statements
  7814. associated with its label.
  7815. %
  7816. Figure~\ref{fig:c1-concrete-syntax} shows the concrete syntax for \LangCIf{},
  7817. and figure~\ref{fig:c1-syntax} shows its
  7818. abstract syntax.
  7819. %
  7820. \fi}
  7821. %
  7822. \newcommand{\CifGrammarRacket}{
  7823. \begin{array}{lcl}
  7824. \Atm &::=& \itm{bool} \\
  7825. \itm{cmp} &::= & \code{eq?} \MID \code{<} \MID \code{<=} \MID \code{>} \MID \code{>=} \\
  7826. \Exp &::=& \CNOT{\Atm} \MID \LP \itm{cmp}~\Atm~\Atm\RP \\
  7827. \Tail &::= & \key{goto}~\itm{label}\key{;}\\
  7828. &\MID& \key{if}~\LP \itm{cmp}~\Atm~\Atm \RP~ \key{goto}~\itm{label}\key{;} ~\key{else}~\key{goto}~\itm{label}\key{;}
  7829. \end{array}
  7830. }
  7831. \newcommand{\CifASTRacket}{
  7832. \begin{array}{lcl}
  7833. \Atm &::=& \BOOL{\itm{bool}} \\
  7834. \itm{cmp} &::= & \code{eq?} \MID \code{<} \MID \code{<=} \MID \code{>} \MID \code{>=} \\
  7835. \Exp &::= & \UNIOP{\key{'not}}{\Atm} \MID \BINOP{\key{'}\itm{cmp}}{\Atm}{\Atm} \\
  7836. \Tail &::= & \GOTO{\itm{label}} \\
  7837. &\MID& \IFSTMT{\BINOP{\itm{cmp}}{\Atm}{\Atm}}{\GOTO{\itm{label}}}{\GOTO{\itm{label}}}
  7838. \end{array}
  7839. }
  7840. \newcommand{\CifGrammarPython}{
  7841. \begin{array}{lcl}
  7842. \Atm &::=& \Int \MID \Var \MID \itm{bool} \\
  7843. \Exp &::= & \Atm \MID \CREAD{}
  7844. \MID \CUNIOP{\key{-}}{\Atm}
  7845. \MID \CBINOP{\key{+}}{\Atm}{\Atm}
  7846. \MID \CBINOP{\key{-}}{\Atm}{\Atm}
  7847. \MID \CCMP{\itm{cmp}}{\Atm}{\Atm} \\
  7848. \Stmt &::=& \CPRINT{\Atm} \MID \Exp \MID \CASSIGN{\Var}{\Exp} \\
  7849. \Tail &::=& \CRETURN{\Exp} \MID \CGOTO{\itm{label}} \\
  7850. &\MID& \CIFSTMT{\CCMP{\itm{cmp}}{\Atm}{\Atm}}{\CGOTO{\itm{label}}}{\CGOTO{\itm{label}}}
  7851. \end{array}
  7852. }
  7853. \newcommand{\CifASTPython}{
  7854. \begin{array}{lcl}
  7855. \Atm &::=& \INT{\Int} \MID \VAR{\Var} \MID \BOOL{\itm{bool}} \\
  7856. \Exp &::= & \Atm \MID \READ{}
  7857. \MID \UNIOP{\key{USub()}}{\Atm} \\
  7858. &\MID& \BINOP{\Atm}{\key{Sub()}}{\Atm}
  7859. \MID \BINOP{\Atm}{\key{Add()}}{\Atm} \\
  7860. &\MID& \CMP{\Atm}{\itm{cmp}}{\Atm} \\
  7861. \Stmt &::=& \PRINT{\Atm} \MID \EXPR{\Exp} \\
  7862. &\MID& \ASSIGN{\VAR{\Var}}{\Exp} \\
  7863. \Tail &::= & \RETURN{\Exp} \MID \GOTO{\itm{label}} \\
  7864. &\MID& \IFSTMT{\CMP{\Atm}{\itm{cmp}}{\Atm}}{\LS\GOTO{\itm{label}}\RS}{\LS\GOTO{\itm{label}}\RS}
  7865. \end{array}
  7866. }
  7867. \begin{figure}[tbp]
  7868. \begin{tcolorbox}[colback=white]
  7869. \small
  7870. {\if\edition\racketEd
  7871. \[
  7872. \begin{array}{l}
  7873. \gray{\CvarGrammarRacket} \\ \hline
  7874. \CifGrammarRacket \\
  7875. \begin{array}{lcl}
  7876. \LangCIfM{} & ::= & (\itm{label}\key{:}~ \Tail)\ldots
  7877. \end{array}
  7878. \end{array}
  7879. \]
  7880. \fi}
  7881. {\if\edition\pythonEd\pythonColor
  7882. \[
  7883. \begin{array}{l}
  7884. \CifGrammarPython \\
  7885. \begin{array}{lcl}
  7886. \LangCIfM{} & ::= & (\itm{label}\code{:}~\Stmt^{*}\;\Tail) \ldots
  7887. \end{array}
  7888. \end{array}
  7889. \]
  7890. \fi}
  7891. \end{tcolorbox}
  7892. \caption{The concrete syntax of the \LangCIf{} intermediate language%
  7893. \racket{, an extension of \LangCVar{} (figure~\ref{fig:c0-concrete-syntax})}.}
  7894. \label{fig:c1-concrete-syntax}
  7895. \end{figure}
  7896. \begin{figure}[tp]
  7897. \begin{tcolorbox}[colback=white]
  7898. \small
  7899. {\if\edition\racketEd
  7900. \[
  7901. \begin{array}{l}
  7902. \gray{\CvarASTRacket} \\ \hline
  7903. \CifASTRacket \\
  7904. \begin{array}{lcl}
  7905. \LangCIfM{} & ::= & \CPROGRAM{\itm{info}}{\LP\LP\itm{label}\,\key{.}\,\Tail\RP\ldots\RP}
  7906. \end{array}
  7907. \end{array}
  7908. \]
  7909. \fi}
  7910. {\if\edition\pythonEd\pythonColor
  7911. \[
  7912. \begin{array}{l}
  7913. \CifASTPython \\
  7914. \begin{array}{lcl}
  7915. \LangCIfM{} & ::= & \CPROGRAM{\itm{info}}{\LC\itm{label}\key{:}\,\LS\Stmt,\ldots,\Tail\RS, \ldots \RC}
  7916. \end{array}
  7917. \end{array}
  7918. \]
  7919. \fi}
  7920. \end{tcolorbox}
  7921. \racket{
  7922. \index{subject}{IfStmt@\IFSTMTNAME{}}
  7923. }
  7924. \index{subject}{Goto@\texttt{Goto}}
  7925. \index{subject}{Return@\texttt{Return}}
  7926. \caption{The abstract syntax of \LangCIf{}\racket{, an extension of \LangCVar{}
  7927. (figure~\ref{fig:c0-syntax})}.}
  7928. \label{fig:c1-syntax}
  7929. \end{figure}
  7930. \section{The \LangXIf{} Language}
  7931. \label{sec:x86-if}
  7932. \index{subject}{x86}
  7933. To implement Booleans, the new logical operations, the
  7934. comparison operations, and the \key{if} expression\python{ and
  7935. statement}, we delve further into the x86
  7936. language. Figures~\ref{fig:x86-1-concrete} and \ref{fig:x86-1} present
  7937. the definitions of the concrete and abstract syntax for the \LangXIf{}
  7938. subset of x86, which includes instructions for logical operations,
  7939. comparisons, and \racket{conditional} jumps.
  7940. %
  7941. \python{The abstract syntax for an \LangXIf{} program contains a
  7942. dictionary mapping labels to sequences of instructions, each of
  7943. which we refer to as a \emph{basic block}\index{subject}{basic
  7944. block}.}
  7945. As x86 does not provide direct support for Booleans, we take the usual
  7946. approach of encoding Booleans as integers, with \code{True} as $1$ and
  7947. \code{False} as $0$.
  7948. Furthermore, x86 does not provide an instruction that directly
  7949. implements logical negation (\code{not} in \LangIf{} and \LangCIf{}).
  7950. However, the \code{xorq} instruction can be used to encode \code{not}.
  7951. The \key{xorq} instruction takes two arguments, performs a pairwise
  7952. exclusive-or ($\mathrm{XOR}$) operation on each bit of its arguments,
  7953. and writes the results into its second argument. Recall the following
  7954. truth table for exclusive-or:
  7955. \begin{center}
  7956. \begin{tabular}{l|cc}
  7957. & 0 & 1 \\ \hline
  7958. 0 & 0 & 1 \\
  7959. 1 & 1 & 0
  7960. \end{tabular}
  7961. \end{center}
  7962. For example, applying $\mathrm{XOR}$ to each bit of the binary numbers
  7963. $0011$ and $0101$ yields $0110$. Notice that in the row of the table
  7964. for the bit $1$, the result is the opposite of the second bit. Thus,
  7965. the \code{not} operation can be implemented by \code{xorq} with $1$ as
  7966. the first argument, as follows, where $\Arg$ is the translation of
  7967. $\Atm$ to x86:
  7968. \[
  7969. \CASSIGN{\Var}{\CUNIOP{\key{not}}{\Atm}}
  7970. \qquad\Rightarrow\qquad
  7971. \begin{array}{l}
  7972. \key{movq}~ \Arg\key{,} \Var\\
  7973. \key{xorq}~ \key{\$1,} \Var
  7974. \end{array}
  7975. \]
  7976. \newcommand{\GrammarXIf}{
  7977. \begin{array}{lcl}
  7978. \itm{bytereg} &::=& \key{ah} \MID \key{al} \MID \key{bh} \MID \key{bl}
  7979. \MID \key{ch} \MID \key{cl} \MID \key{dh} \MID \key{dl} \\
  7980. \Arg &::=& \key{\%}\itm{bytereg}\\
  7981. \itm{cc} & ::= & \key{e} \MID \key{ne} \MID \key{l} \MID \key{le} \MID \key{g} \MID \key{ge} \\
  7982. \Instr &::=& \key{xorq}~\Arg\key{,}~\Arg
  7983. \MID \key{cmpq}~\Arg\key{,}~\Arg
  7984. \MID \key{set}cc~\Arg
  7985. \MID \key{movzbq}~\Arg\key{,}~\Arg \\
  7986. &\MID& \key{j}cc~\itm{label} \\
  7987. \end{array}
  7988. }
  7989. \begin{figure}[tp]
  7990. \begin{tcolorbox}[colback=white]
  7991. \[
  7992. \begin{array}{l}
  7993. \gray{\GrammarXInt} \\ \hline
  7994. \GrammarXIf \\
  7995. \begin{array}{lcl}
  7996. \LangXIfM{} &::= & \key{.globl main} \\
  7997. & & \key{main:} \; \Instr\ldots
  7998. \end{array}
  7999. \end{array}
  8000. \]
  8001. \end{tcolorbox}
  8002. \caption{The concrete syntax of \LangXIf{} (extends \LangXInt{} of figure~\ref{fig:x86-int-concrete}).}
  8003. \label{fig:x86-1-concrete}
  8004. \end{figure}
  8005. \newcommand{\ASTXIfRacket}{
  8006. \begin{array}{lcl}
  8007. \itm{bytereg} &::=& \key{ah} \MID \key{al} \MID \key{bh} \MID \key{bl}
  8008. \MID \key{ch} \MID \key{cl} \MID \key{dh} \MID \key{dl} \\
  8009. \Arg &::=& \BYTEREG{\itm{bytereg}} \\
  8010. \itm{cc} & ::= & \key{e} \MID \key{l} \MID \key{le} \MID \key{g} \MID \key{ge} \\
  8011. \Instr &::=& \BININSTR{\code{xorq}}{\Arg}{\Arg}
  8012. \MID \BININSTR{\code{cmpq}}{\Arg}{\Arg}\\
  8013. &\MID& \BININSTR{\code{set}}{\itm{cc}}{\Arg}
  8014. \MID \BININSTR{\code{movzbq}}{\Arg}{\Arg}\\
  8015. &\MID& \JMPIF{\itm{cc}}{\itm{label}}
  8016. \end{array}
  8017. }
  8018. \newcommand{\ASTXIfPython}{
  8019. \begin{array}{lcl}
  8020. \itm{bytereg} &::=& \skey{ah} \MID \skey{al} \MID \skey{bh} \MID \skey{bl}
  8021. \MID \skey{ch} \MID \skey{cl} \MID \skey{dh} \MID \skey{dl} \\
  8022. \Arg &::=& \gray{\IMM{\Int} \MID \REG{\Reg} \MID \DEREF{\Reg}{\Int}}
  8023. \MID \BYTEREG{\itm{bytereg}} \\
  8024. \itm{cc} & ::= & \skey{e} \MID \skey{ne} \MID \skey{l} \MID \skey{le} \MID \skey{g} \MID \skey{ge} \\
  8025. \Instr &::=& \python{\JMP{\itm{label}}}\\
  8026. &\MID& \BININSTR{\scode{xorq}}{\Arg}{\Arg}
  8027. \MID \BININSTR{\scode{cmpq}}{\Arg}{\Arg}\\
  8028. &\MID& \UNIINSTR{\scode{set}\code{+}\itm{cc}}{\Arg}
  8029. \MID \BININSTR{\scode{movzbq}}{\Arg}{\Arg}\\
  8030. &\MID& \JMPIF{\itm{cc}}{\itm{label}}
  8031. \end{array}
  8032. }
  8033. \begin{figure}[tp]
  8034. \begin{tcolorbox}[colback=white]
  8035. \small
  8036. {\if\edition\racketEd
  8037. \[\arraycolsep=3pt
  8038. \begin{array}{l}
  8039. \gray{\ASTXIntRacket} \\ \hline
  8040. \ASTXIfRacket \\
  8041. \begin{array}{lcl}
  8042. \LangXIfM{} &::= & \XPROGRAM{\itm{info}}{\LP\LP\itm{label} \,\key{.}\, \Block \RP\ldots\RP}
  8043. \end{array}
  8044. \end{array}
  8045. \]
  8046. \fi}
  8047. %
  8048. {\if\edition\pythonEd\pythonColor
  8049. \[
  8050. \begin{array}{l}
  8051. \gray{\ASTXIntPython} \\ \hline
  8052. \ASTXIfPython \\
  8053. \begin{array}{lcl}
  8054. \LangXIfM{} &::= & \XPROGRAM{\itm{info}}{\LC\itm{label} \,\key{:}\, \Block \key{,} \ldots \RC }
  8055. \end{array}
  8056. \end{array}
  8057. \]
  8058. \fi}
  8059. \end{tcolorbox}
  8060. \caption{The abstract syntax of \LangXIf{} (extends \LangXInt{} shown in figure~\ref{fig:x86-int-ast}).}
  8061. \label{fig:x86-1}
  8062. \end{figure}
  8063. Next we consider the x86 instructions that are relevant for compiling
  8064. the comparison operations. The \key{cmpq} instruction compares its two
  8065. arguments to determine whether one argument is less than, equal to, or
  8066. greater than the other argument. The \key{cmpq} instruction is unusual
  8067. regarding the order of its arguments and where the result is
  8068. placed. The argument order is backward: if you want to test whether
  8069. $x < y$, then write \code{cmpq} $y$\code{,} $x$. The result of
  8070. \key{cmpq} is placed in the special EFLAGS register. This register
  8071. cannot be accessed directly, but it can be queried by a number of
  8072. instructions, including the \key{set} instruction. The instruction
  8073. $\key{set}cc~d$ puts a \key{1} or \key{0} into the destination $d$,
  8074. depending on whether the contents of the EFLAGS register matches the
  8075. condition code \itm{cc}: \key{e} for equal, \key{l} for less, \key{le}
  8076. for less-or-equal, \key{g} for greater, \key{ge} for greater-or-equal.
  8077. The \key{set} instruction has a quirk in that its destination argument
  8078. must be a single-byte register, such as \code{al} (\code{l} for lower bits) or
  8079. \code{ah} (\code{h} for higher bits), which are part of the \code{rax}
  8080. register. Thankfully, the \key{movzbq} instruction can be used to
  8081. move from a single-byte register to a normal 64-bit register. The
  8082. abstract syntax for the \code{set} instruction differs from the
  8083. concrete syntax in that it separates the instruction name from the
  8084. condition code.
  8085. \python{The x86 instructions for jumping are relevant to the
  8086. compilation of \key{if} expressions.}
  8087. %
  8088. \python{The instruction $\key{jmp}\,\itm{label}$ updates the program
  8089. counter to the address of the instruction after the specified
  8090. label.}
  8091. %
  8092. \racket{The x86 instruction for conditional jump is relevant to the
  8093. compilation of \key{if} expressions.}
  8094. %
  8095. The instruction $\key{j}\itm{cc}~\itm{label}$ updates the program
  8096. counter to point to the instruction after \itm{label}, depending on
  8097. whether the result in the EFLAGS register matches the condition code
  8098. \itm{cc}; otherwise, the jump instruction falls through to the next
  8099. instruction. Like the abstract syntax for \code{set}, the abstract
  8100. syntax for conditional jump separates the instruction name from the
  8101. condition code. For example, \JMPIF{\QUOTE{\code{le}}}{\QUOTE{\code{foo}}}
  8102. corresponds to \code{jle foo}. Because the conditional jump instruction
  8103. relies on the EFLAGS register, it is common for it to be immediately preceded by
  8104. a \key{cmpq} instruction to set the EFLAGS register.
  8105. \section{Shrink the \LangIf{} Language}
  8106. \label{sec:shrink-Lif}
  8107. The \code{shrink} pass translates some of the language features into
  8108. other features, thereby reducing the kinds of expressions in the
  8109. language. For example, the short-circuiting nature of the \code{and}
  8110. and \code{or} logical operators can be expressed using \code{if} as
  8111. follows.
  8112. \begin{align*}
  8113. \CAND{e_1}{e_2} & \quad \Rightarrow \quad \CIF{e_1}{e_2}{\FALSE{}}\\
  8114. \COR{e_1}{e_2} & \quad \Rightarrow \quad \CIF{e_1}{\TRUE{}}{e_2}
  8115. \end{align*}
  8116. By performing these translations in the front end of the compiler,
  8117. subsequent passes of the compiler can be shorter.
  8118. On the other hand, translations sometimes reduce the efficiency of the
  8119. generated code by increasing the number of instructions. For example,
  8120. expressing subtraction in terms of addition and negation
  8121. \[
  8122. \CBINOP{\key{-}}{e_1}{e_2} \quad \Rightarrow \quad
  8123. \CBINOP{\key{+}}{e_1}{ \CUNIOP{\key{-}}{e_2} }
  8124. \]
  8125. produces code with two x86 instructions (\code{negq} and \code{addq})
  8126. instead of just one (\code{subq}). Thus, we do not recommend
  8127. translating subtraction into addition and negation.
  8128. \begin{exercise}\normalfont\normalsize
  8129. %
  8130. Implement the pass \code{shrink} to remove \key{and} and \key{or} from
  8131. the language by translating them to \code{if} expressions in \LangIf{}.
  8132. %
  8133. Create four test programs that involve these operators.
  8134. %
  8135. {\if\edition\racketEd
  8136. In the \code{run-tests.rkt} script, add the following entry for
  8137. \code{shrink} to the list of passes (it should be the only pass at
  8138. this point).
  8139. \begin{lstlisting}
  8140. (list "shrink" shrink interp_Lif type-check-Lif)
  8141. \end{lstlisting}
  8142. This instructs \code{interp-tests} to run the interpreter
  8143. \code{interp\_Lif} and the type checker \code{type-check-Lif} on the
  8144. output of \code{shrink}.
  8145. \fi}
  8146. %
  8147. Run the script to test your compiler on all the test programs.
  8148. \end{exercise}
  8149. {\if\edition\racketEd
  8150. \section{Uniquify Variables}
  8151. \label{sec:uniquify-Lif}
  8152. Add cases to \code{uniquify\_exp} to handle Boolean constants and
  8153. \code{if} expressions.
  8154. \begin{exercise}\normalfont\normalsize
  8155. Update the \code{uniquify\_exp} for \LangIf{} and add the following
  8156. entry to the list of \code{passes} in the \code{run-tests.rkt} script:
  8157. \begin{lstlisting}
  8158. (list "uniquify" uniquify interp_Lif type_check_Lif)
  8159. \end{lstlisting}
  8160. Run the script to test your compiler.
  8161. \end{exercise}
  8162. \fi}
  8163. \section{Remove Complex Operands}
  8164. \label{sec:remove-complex-opera-Lif}
  8165. The output language of \code{remove\_complex\_operands} is
  8166. \LangIfANF{} (figure~\ref{fig:Lif-anf-syntax}), the monadic
  8167. normal form of \LangIf{}. A Boolean constant is an atomic expression,
  8168. but the \code{if} expression is not. All three subexpressions of an
  8169. \code{if} are allowed to be complex expressions, but the operands of
  8170. the \code{not} operator and comparison operators must be atomic.
  8171. %
  8172. \python{We add a new language form, the \code{Begin} expression, to aid
  8173. in the translation of \code{if} expressions. When we recursively
  8174. process the two branches of the \code{if}, we generate temporary
  8175. variables and their initializing expressions. However, these
  8176. expressions may contain side effects and should be executed only
  8177. when the condition of the \code{if} is true (for the ``then''
  8178. branch) or false (for the ``else'' branch). The \code{Begin} expression
  8179. provides a way to initialize the temporary variables within the two branches
  8180. of the \code{if} expression. In general, the $\BEGIN{ss}{e}$
  8181. form executes the statements $ss$ and then returns the result of
  8182. expression $e$.}
  8183. Add cases to the \code{rco\_exp} and \code{rco\_atom} functions for
  8184. the new features in \LangIf{}. In recursively processing
  8185. subexpressions, recall that you should invoke \code{rco\_atom} when
  8186. the output needs to be an \Atm{} (as specified in the grammar for
  8187. \LangIfANF{}) and invoke \code{rco\_exp} when the output should be
  8188. \Exp{}. Regarding \code{if}, it is particularly important
  8189. \emph{not} to replace its condition with a temporary variable, because
  8190. that would interfere with the generation of high-quality output in the
  8191. upcoming \code{explicate\_control} pass.
  8192. \newcommand{\LifMonadASTRacket}{
  8193. \begin{array}{rcl}
  8194. \Atm &::=& \BOOL{\itm{bool}}\\
  8195. \Exp &::=& \UNIOP{\key{not}}{\Atm}
  8196. \MID \BINOP{\itm{cmp}}{\Atm}{\Atm}
  8197. \MID \IF{\Exp}{\Exp}{\Exp}
  8198. \end{array}
  8199. }
  8200. \newcommand{\LifMonadASTPython}{
  8201. \begin{array}{rcl}
  8202. \Atm &::=& \BOOL{\itm{bool}}\\
  8203. \Exp &::=& \UNIOP{\key{Not()}}{\Exp}
  8204. \MID \CMP{\Atm}{\itm{cmp}}{\Atm} \\
  8205. &\MID& \IF{\Exp}{\Exp}{\Exp}
  8206. \MID \BEGIN{\Stmt^{*}}{\Exp}\\
  8207. \Stmt{} &::=& \IFSTMT{\Exp}{\Stmt^{*}}{\Stmt^{*}}
  8208. \end{array}
  8209. }
  8210. \begin{figure}[tp]
  8211. \centering
  8212. \begin{tcolorbox}[colback=white]
  8213. {\if\edition\racketEd
  8214. \[
  8215. \begin{array}{l}
  8216. \gray{\LvarMonadASTRacket} \\ \hline
  8217. \LifMonadASTRacket \\
  8218. \begin{array}{rcl}
  8219. \LangIfANF &::=& \PROGRAM{\code{()}}{\Exp}
  8220. \end{array}
  8221. \end{array}
  8222. \]
  8223. \fi}
  8224. {\if\edition\pythonEd\pythonColor
  8225. \[
  8226. \begin{array}{l}
  8227. \gray{\LvarMonadASTPython} \\ \hline
  8228. \LifMonadASTPython \\
  8229. \begin{array}{rcl}
  8230. \LangIfANF &::=& \PROGRAM{\code{()}}{\Stmt^{*}}
  8231. \end{array}
  8232. \end{array}
  8233. \]
  8234. \fi}
  8235. \end{tcolorbox}
  8236. \python{\index{subject}{Begin@\texttt{Begin}}}
  8237. \caption{\LangIfANF{} is \LangIf{} in monadic normal form
  8238. (extends \LangVarANF in figure~\ref{fig:Lvar-anf-syntax}).}
  8239. \label{fig:Lif-anf-syntax}
  8240. \end{figure}
  8241. \begin{exercise}\normalfont\normalsize
  8242. %
  8243. Add cases for Boolean constants and \code{if} to the \code{rco\_atom}
  8244. and \code{rco\_exp} functions.
  8245. %
  8246. Create three new \LangIf{} programs that exercise the interesting
  8247. code in this pass.
  8248. %
  8249. {\if\edition\racketEd
  8250. In the \code{run-tests.rkt} script, add the following entry to the
  8251. list of \code{passes} and then run the script to test your compiler.
  8252. \begin{lstlisting}
  8253. (list "remove-complex" remove_complex_operands interp-Lif type-check-Lif)
  8254. \end{lstlisting}
  8255. \fi}
  8256. \end{exercise}
  8257. \section{Explicate Control}
  8258. \label{sec:explicate-control-Lif}
  8259. \racket{Recall that the purpose of \code{explicate\_control} is to
  8260. make the order of evaluation explicit in the syntax of the program.
  8261. With the addition of \key{if}, this becomes more interesting.}
  8262. %
  8263. The \code{explicate\_control} pass translates from \LangIf{} to \LangCIf{}.
  8264. %
  8265. The main challenge to overcome is that the condition of an \key{if}
  8266. can be an arbitrary expression in \LangIf{}, whereas in \LangCIf{} the
  8267. condition must be a comparison.
  8268. As a motivating example, consider the following program that has an
  8269. \key{if} expression nested in the condition of another \key{if}:%
  8270. \python{\footnote{Programmers rarely write nested \code{if}
  8271. expressions, but they do write nested expressions involving
  8272. logical \code{and}, which, as we have seen, translates to
  8273. \code{if}.}}
  8274. % cond_test_41.rkt, if_lt_eq.py
  8275. \begin{center}
  8276. \begin{minipage}{0.96\textwidth}
  8277. {\if\edition\racketEd
  8278. \begin{lstlisting}
  8279. (let ([x (read)])
  8280. (let ([y (read)])
  8281. (if (if (< x 1) (eq? x 0) (eq? x 2))
  8282. (+ y 2)
  8283. (+ y 10))))
  8284. \end{lstlisting}
  8285. \fi}
  8286. {\if\edition\pythonEd\pythonColor
  8287. \begin{lstlisting}
  8288. x = input_int()
  8289. y = input_int()
  8290. print(y + 2 if (x == 0 if x < 1 else x == 2) else y + 10)
  8291. \end{lstlisting}
  8292. \fi}
  8293. \end{minipage}
  8294. \end{center}
  8295. %
  8296. The naive way to compile \key{if} and the comparison operations would
  8297. be to handle each of them in isolation, regardless of their context.
  8298. Each comparison would be translated into a \key{cmpq} instruction
  8299. followed by several instructions to move the result from the EFLAGS
  8300. register into a general purpose register or stack location. Each
  8301. \key{if} would be translated into a \key{cmpq} instruction followed by
  8302. a conditional jump. The generated code for the inner \key{if} in this
  8303. example would be as follows:
  8304. \begin{center}
  8305. \begin{minipage}{0.96\textwidth}
  8306. \begin{lstlisting}
  8307. cmpq $1, x
  8308. setl %al
  8309. movzbq %al, tmp
  8310. cmpq $1, tmp
  8311. je then_branch_1
  8312. jmp else_branch_1
  8313. \end{lstlisting}
  8314. \end{minipage}
  8315. \end{center}
  8316. Notice that the three instructions starting with \code{setl} are
  8317. redundant; the conditional jump could come immediately after the first
  8318. \code{cmpq}.
  8319. Our goal is to compile \key{if} expressions so that the relevant
  8320. comparison instruction appears directly before the conditional jump.
  8321. For example, we want to generate the following code for the inner
  8322. \code{if}:
  8323. \begin{center}
  8324. \begin{minipage}{0.96\textwidth}
  8325. \begin{lstlisting}
  8326. cmpq $1, x
  8327. jl then_branch_1
  8328. jmp else_branch_1
  8329. \end{lstlisting}
  8330. \end{minipage}
  8331. \end{center}
  8332. One way to achieve this goal is to reorganize the code at the level of
  8333. \LangIf{}, pushing the outer \key{if} inside the inner one, yielding
  8334. the following code:
  8335. \begin{center}
  8336. \begin{minipage}{0.96\textwidth}
  8337. {\if\edition\racketEd
  8338. \begin{lstlisting}
  8339. (let ([x (read)])
  8340. (let ([y (read)])
  8341. (if (< x 1)
  8342. (if (eq? x 0)
  8343. (+ y 2)
  8344. (+ y 10))
  8345. (if (eq? x 2)
  8346. (+ y 2)
  8347. (+ y 10)))))
  8348. \end{lstlisting}
  8349. \fi}
  8350. {\if\edition\pythonEd\pythonColor
  8351. \begin{lstlisting}
  8352. x = input_int()
  8353. y = input_int()
  8354. print(((y + 2) if x == 0 else (y + 10)) \
  8355. if (x < 1) \
  8356. else ((y + 2) if (x == 2) else (y + 10)))
  8357. \end{lstlisting}
  8358. \fi}
  8359. \end{minipage}
  8360. \end{center}
  8361. Unfortunately, this approach duplicates the two branches from the
  8362. outer \code{if}, and a compiler must never duplicate code! After all,
  8363. the two branches could be very large expressions.
  8364. How can we apply this transformation without duplicating code? In
  8365. other words, how can two different parts of a program refer to one
  8366. piece of code?
  8367. %
  8368. The answer is that we must move away from abstract syntax \emph{trees}
  8369. and instead use \emph{graphs}.
  8370. %
  8371. At the level of x86 assembly, this is straightforward because we can
  8372. label the code for each branch and insert jumps in all the places that
  8373. need to execute the branch. In this way, jump instructions are edges
  8374. in the graph and the basic blocks are the nodes.
  8375. %
  8376. Likewise, our language \LangCIf{} provides the ability to label a
  8377. sequence of statements and to jump to a label via \code{goto}.
  8378. As a preview of what \code{explicate\_control} will do,
  8379. figure~\ref{fig:explicate-control-s1-38} shows the output of
  8380. \code{explicate\_control} on this example. Note how the condition of
  8381. every \code{if} is a comparison operation and that we have not
  8382. duplicated any code but instead have used labels and \code{goto} to
  8383. enable sharing of code.
  8384. \begin{figure}[tbp]
  8385. \begin{tcolorbox}[colback=white]
  8386. {\if\edition\racketEd
  8387. \begin{tabular}{lll}
  8388. \begin{minipage}{0.4\textwidth}
  8389. % cond_test_41.rkt
  8390. \begin{lstlisting}
  8391. (let ([x (read)])
  8392. (let ([y (read)])
  8393. (if (if (< x 1)
  8394. (eq? x 0)
  8395. (eq? x 2))
  8396. (+ y 2)
  8397. (+ y 10))))
  8398. \end{lstlisting}
  8399. \end{minipage}
  8400. &
  8401. $\Rightarrow$
  8402. &
  8403. \begin{minipage}{0.55\textwidth}
  8404. \begin{lstlisting}
  8405. start:
  8406. x = (read);
  8407. y = (read);
  8408. if (< x 1)
  8409. goto block_4;
  8410. else
  8411. goto block_5;
  8412. block_4:
  8413. if (eq? x 0)
  8414. goto block_2;
  8415. else
  8416. goto block_3;
  8417. block_5:
  8418. if (eq? x 2)
  8419. goto block_2;
  8420. else
  8421. goto block_3;
  8422. block_2:
  8423. return (+ y 2);
  8424. block_3:
  8425. return (+ y 10);
  8426. \end{lstlisting}
  8427. \end{minipage}
  8428. \end{tabular}
  8429. \fi}
  8430. {\if\edition\pythonEd\pythonColor
  8431. \begin{tabular}{lll}
  8432. \begin{minipage}{0.4\textwidth}
  8433. % tests/if/if_lt_eq.py
  8434. \begin{lstlisting}
  8435. x = input_int()
  8436. y = input_int()
  8437. print(y + 2 \
  8438. if (x == 0 \
  8439. if x < 1 \
  8440. else x == 2) \
  8441. else y + 10)
  8442. \end{lstlisting}
  8443. \end{minipage}
  8444. &
  8445. $\Rightarrow\qquad$
  8446. &
  8447. \begin{minipage}{0.55\textwidth}
  8448. \begin{lstlisting}
  8449. start:
  8450. x = input_int()
  8451. y = input_int()
  8452. if x < 1:
  8453. goto block_6
  8454. else:
  8455. goto block_7
  8456. block_6:
  8457. if x == 0:
  8458. goto block_4
  8459. else:
  8460. goto block_5
  8461. block_7:
  8462. if x == 2:
  8463. goto block_4
  8464. else:
  8465. goto block_5
  8466. block_4:
  8467. tmp.82 = (y + 2)
  8468. goto block_3
  8469. block_5:
  8470. tmp.82 = (y + 10)
  8471. goto block_3
  8472. block_3:
  8473. print(tmp.82)
  8474. return 0
  8475. \end{lstlisting}
  8476. \end{minipage}
  8477. \end{tabular}
  8478. \fi}
  8479. \end{tcolorbox}
  8480. \caption{Translation from \LangIf{} to \LangCIf{}
  8481. via the \code{explicate\_control}.}
  8482. \label{fig:explicate-control-s1-38}
  8483. \end{figure}
  8484. {\if\edition\racketEd
  8485. %
  8486. Recall that in section~\ref{sec:explicate-control-Lvar} we implement
  8487. \code{explicate\_control} for \LangVar{} using two recursive
  8488. functions, \code{explicate\_tail} and \code{explicate\_assign}. The
  8489. former function translates expressions in tail position, whereas the
  8490. latter function translates expressions on the right-hand side of a
  8491. \key{let}. With the addition of \key{if} expression to \LangIf{} we
  8492. have a new kind of position to deal with: the predicate position of
  8493. the \key{if}. We need another function, \code{explicate\_pred}, that
  8494. decides how to compile an \key{if} by analyzing its condition. So,
  8495. \code{explicate\_pred} takes an \LangIf{} expression and two
  8496. \LangCIf{} tails for the \emph{then} branch and \emph{else} branch
  8497. and outputs a tail. In the following paragraphs we discuss specific
  8498. cases in the \code{explicate\_tail}, \code{explicate\_assign}, and
  8499. \code{explicate\_pred} functions.
  8500. %
  8501. \fi}
  8502. %
  8503. {\if\edition\pythonEd\pythonColor
  8504. %
  8505. We recommend implementing \code{explicate\_control} using the
  8506. following four auxiliary functions.
  8507. \begin{description}
  8508. \item[\code{explicate\_effect}] generates code for expressions as
  8509. statements, so their result is ignored and only their side effects
  8510. matter.
  8511. \item[\code{explicate\_assign}] generates code for expressions
  8512. on the right-hand side of an assignment.
  8513. \item[\code{explicate\_pred}] generates code for an \code{if}
  8514. expression or statement by analyzing the condition expression.
  8515. \item[\code{explicate\_stmt}] generates code for statements.
  8516. \end{description}
  8517. These four functions should build the dictionary of basic blocks. The
  8518. following auxiliary function \code{create\_block} is used to create a
  8519. new basic block from a list of statements. If the list just contains a
  8520. \code{goto}, then \code{create\_block} returns the list. Otherwise
  8521. \code{create\_block} creates a new basic block and returns a
  8522. \code{goto} to its label.
  8523. \begin{center}
  8524. \begin{minipage}{\textwidth}
  8525. \begin{lstlisting}
  8526. def create_block(stmts, basic_blocks):
  8527. match stmts:
  8528. case [Goto(l)]:
  8529. return stmts
  8530. case _:
  8531. label = label_name(generate_name('block'))
  8532. basic_blocks[label] = stmts
  8533. return [Goto(label)]
  8534. \end{lstlisting}
  8535. \end{minipage}
  8536. \end{center}
  8537. Figure~\ref{fig:explicate-control-Lif} provides a skeleton for the
  8538. \code{explicate\_control} pass.
  8539. The \code{explicate\_effect} function has three parameters: (1) the
  8540. expression to be compiled; (2) the already-compiled code for this
  8541. expression's \emph{continuation}, that is, the list of statements that
  8542. should execute after this expression; and (3) the dictionary of
  8543. generated basic blocks. The \code{explicate\_effect} function returns
  8544. a list of \LangCIf{} statements and it may add to the dictionary of
  8545. basic blocks.
  8546. %
  8547. Let's consider a few of the cases for the expression to be compiled.
  8548. If the expression to be compiled is a constant, then it can be
  8549. discarded because it has no side effects. If it's a \CREAD{}, then it
  8550. has a side effect and should be preserved. So the expression should be
  8551. translated into a statement using the \code{Expr} AST class. If the
  8552. expression to be compiled is an \code{if} expression, we translate the
  8553. two branches using \code{explicate\_effect} and then translate the
  8554. condition expression using \code{explicate\_pred}, which generates
  8555. code for the entire \code{if}.
  8556. The \code{explicate\_assign} function has four parameters: (1) the
  8557. right-hand side of the assignment, (2) the left-hand side of the
  8558. assignment (the variable), (3) the continuation, and (4) the dictionary
  8559. of basic blocks. The \code{explicate\_assign} function returns a list
  8560. of \LangCIf{} statements, and it may add to the dictionary of basic
  8561. blocks.
  8562. When the right-hand side is an \code{if} expression, there is some
  8563. work to do. In particular, the two branches should be translated using
  8564. \code{explicate\_assign}, and the condition expression should be
  8565. translated using \code{explicate\_pred}. Otherwise we can simply
  8566. generate an assignment statement, with the given left- and right-hand
  8567. sides, concatenated with its continuation.
  8568. \begin{figure}[tbp]
  8569. \begin{tcolorbox}[colback=white]
  8570. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  8571. def explicate_effect(e, cont, basic_blocks):
  8572. match e:
  8573. case IfExp(test, body, orelse):
  8574. ...
  8575. case Call(func, args):
  8576. ...
  8577. case Begin(body, result):
  8578. ...
  8579. case _:
  8580. ...
  8581. def explicate_assign(rhs, lhs, cont, basic_blocks):
  8582. match rhs:
  8583. case IfExp(test, body, orelse):
  8584. ...
  8585. case Begin(body, result):
  8586. ...
  8587. case _:
  8588. return [Assign([lhs], rhs)] + cont
  8589. def explicate_pred(cnd, thn, els, basic_blocks):
  8590. match cnd:
  8591. case Compare(left, [op], [right]):
  8592. goto_thn = create_block(thn, basic_blocks)
  8593. goto_els = create_block(els, basic_blocks)
  8594. return [If(cnd, goto_thn, goto_els)]
  8595. case Constant(True):
  8596. return thn;
  8597. case Constant(False):
  8598. return els;
  8599. case UnaryOp(Not(), operand):
  8600. ...
  8601. case IfExp(test, body, orelse):
  8602. ...
  8603. case Begin(body, result):
  8604. ...
  8605. case _:
  8606. return [If(Compare(cnd, [Eq()], [Constant(False)]),
  8607. create_block(els, basic_blocks),
  8608. create_block(thn, basic_blocks))]
  8609. def explicate_stmt(s, cont, basic_blocks):
  8610. match s:
  8611. case Assign([lhs], rhs):
  8612. return explicate_assign(rhs, lhs, cont, basic_blocks)
  8613. case Expr(value):
  8614. return explicate_effect(value, cont, basic_blocks)
  8615. case If(test, body, orelse):
  8616. ...
  8617. def explicate_control(p):
  8618. match p:
  8619. case Module(body):
  8620. new_body = [Return(Constant(0))]
  8621. basic_blocks = {}
  8622. for s in reversed(body):
  8623. new_body = explicate_stmt(s, new_body, basic_blocks)
  8624. basic_blocks[label_name('start')] = new_body
  8625. return CProgram(basic_blocks)
  8626. \end{lstlisting}
  8627. \end{tcolorbox}
  8628. \caption{Skeleton for the \code{explicate\_control} pass.}
  8629. \label{fig:explicate-control-Lif}
  8630. \end{figure}
  8631. \fi}
  8632. {\if\edition\racketEd
  8633. \subsection{Explicate Tail and Assign}
  8634. The \code{explicate\_tail} and \code{explicate\_assign} functions need
  8635. additional cases for Boolean constants and \key{if}. The cases for
  8636. \code{if} should recursively compile the two branches using either
  8637. \code{explicate\_tail} or \code{explicate\_assign}, respectively. The
  8638. cases should then invoke \code{explicate\_pred} on the condition
  8639. expression, passing in the generated code for the two branches. For
  8640. example, consider the following program with an \code{if} in tail
  8641. position.
  8642. % cond_test_6.rkt
  8643. \begin{lstlisting}
  8644. (let ([x (read)])
  8645. (if (eq? x 0) 42 777))
  8646. \end{lstlisting}
  8647. The two branches are recursively compiled to return statements. We
  8648. then delegate to \code{explicate\_pred}, passing the condition
  8649. \code{(eq? x 0)} and the two return statements. We return to this
  8650. example shortly when we discuss \code{explicate\_pred}.
  8651. Next let us consider a program with an \code{if} on the right-hand
  8652. side of a \code{let}.
  8653. \begin{lstlisting}
  8654. (let ([y (read)])
  8655. (let ([x (if (eq? y 0) 40 777)])
  8656. (+ x 2)))
  8657. \end{lstlisting}
  8658. Note that the body of the inner \code{let} will have already been
  8659. compiled to \code{return (+ x 2);} and passed as the \code{cont}
  8660. parameter of \code{explicate\_assign}. We'll need to use \code{cont}
  8661. to recursively process both branches of the \code{if}, and we do not
  8662. want to duplicate code, so we generate the following block using an
  8663. auxiliary function named \code{create\_block}, discussed in the next
  8664. section.
  8665. \begin{lstlisting}
  8666. block_6:
  8667. return (+ x 2)
  8668. \end{lstlisting}
  8669. We then use \code{goto block\_6;} as the \code{cont} argument for
  8670. compiling the branches. So the two branches compile to
  8671. \begin{center}
  8672. \begin{minipage}{0.2\textwidth}
  8673. \begin{lstlisting}
  8674. x = 40;
  8675. goto block_6;
  8676. \end{lstlisting}
  8677. \end{minipage}
  8678. \hspace{0.5in} and \hspace{0.5in}
  8679. \begin{minipage}{0.2\textwidth}
  8680. \begin{lstlisting}
  8681. x = 777;
  8682. goto block_6;
  8683. \end{lstlisting}
  8684. \end{minipage}
  8685. \end{center}
  8686. Finally, we delegate to \code{explicate\_pred}, passing the condition
  8687. \code{(eq? y 0)} and the previously presented code for the branches.
  8688. \subsection{Create Block}
  8689. We recommend implementing the \code{create\_block} auxiliary function
  8690. as follows, using a global variable \code{basic-blocks} to store a
  8691. dictionary that maps labels to $\Tail$ expressions. The main idea is
  8692. that \code{create\_block} generates a new label and then associates
  8693. the given \code{tail} with the new label in the \code{basic-blocks}
  8694. dictionary. The result of \code{create\_block} is a \code{Goto} to the
  8695. new label. However, if the given \code{tail} is already a \code{Goto},
  8696. then there is no need to generate a new label and entry in
  8697. \code{basic-blocks}; we can simply return that \code{Goto}.
  8698. %
  8699. \begin{lstlisting}
  8700. (define (create_block tail)
  8701. (match tail
  8702. [(Goto label) (Goto label)]
  8703. [else
  8704. (let ([label (gensym 'block)])
  8705. (set! basic-blocks (cons (cons label tail) basic-blocks))
  8706. (Goto label))]))
  8707. \end{lstlisting}
  8708. \fi}
  8709. {\if\edition\racketEd
  8710. \subsection{Explicate Predicate}
  8711. The skeleton for the \code{explicate\_pred} function is given in
  8712. figure~\ref{fig:explicate-pred}. It takes three parameters: (1)
  8713. \code{cnd}, the condition expression of the \code{if}; (2) \code{thn},
  8714. the code generated by explicate for the \emph{then} branch; and (3)
  8715. \code{els}, the code generated by explicate for the \emph{else}
  8716. branch. The \code{explicate\_pred} function should match on
  8717. \code{cnd} with a case for every kind of expression that can have type
  8718. \BOOLTY{}.
  8719. \begin{figure}[tbp]
  8720. \begin{tcolorbox}[colback=white]
  8721. \begin{lstlisting}
  8722. (define (explicate_pred cnd thn els)
  8723. (match cnd
  8724. [(Var x) ___]
  8725. [(Let x rhs body) ___]
  8726. [(Prim 'not (list e)) ___]
  8727. [(Prim op es) #:when (or (eq? op 'eq?) (eq? op '<))
  8728. (IfStmt (Prim op es) (create_block thn)
  8729. (create_block els))]
  8730. [(Bool b) (if b thn els)]
  8731. [(If cnd^ thn^ els^) ___]
  8732. [else (error "explicate_pred unhandled case" cnd)]))
  8733. \end{lstlisting}
  8734. \end{tcolorbox}
  8735. \caption{Skeleton for the \key{explicate\_pred} auxiliary function.}
  8736. \label{fig:explicate-pred}
  8737. \end{figure}
  8738. \fi}
  8739. %
  8740. {\if\edition\pythonEd\pythonColor
  8741. The \code{explicate\_pred} function has four parameters: (1) the
  8742. condition expression, (2) the generated statements for the \emph{then}
  8743. branch, (3) the generated statements for the \emph{else} branch, and
  8744. (4) the dictionary of basic blocks. The \code{explicate\_pred}
  8745. function returns a list of statements, and it adds to the dictionary
  8746. of basic blocks.
  8747. \fi}
  8748. Consider the case for comparison operators. We translate the
  8749. comparison to an \code{if} statement whose branches are \code{goto}
  8750. statements created by applying \code{create\_block} to the \code{thn}
  8751. and \code{els} parameters. Let us illustrate this translation by
  8752. returning to the program with an \code{if} expression in tail
  8753. position, shown next. We invoke \code{explicate\_pred} on its
  8754. condition \racket{\code{(eq? x 0)}}\python{\code{x == 0}}.
  8755. %
  8756. {\if\edition\racketEd
  8757. \begin{lstlisting}
  8758. (let ([x (read)])
  8759. (if (eq? x 0) 42 777))
  8760. \end{lstlisting}
  8761. \fi}
  8762. %
  8763. {\if\edition\pythonEd\pythonColor
  8764. \begin{lstlisting}
  8765. x = input_int()
  8766. 42 if x == 0 else 777
  8767. \end{lstlisting}
  8768. \fi}
  8769. %
  8770. \noindent The two branches \code{42} and \code{777} were already
  8771. compiled to \code{return} statements, from which we now create the
  8772. following blocks:
  8773. %
  8774. \begin{center}
  8775. \begin{minipage}{\textwidth}
  8776. \begin{lstlisting}
  8777. block_1:
  8778. return 42;
  8779. block_2:
  8780. return 777;
  8781. \end{lstlisting}
  8782. \end{minipage}
  8783. \end{center}
  8784. %
  8785. After that, \code{explicate\_pred} compiles the comparison
  8786. \racket{\code{(eq? x 0)}}
  8787. \python{\code{x == 0}}
  8788. to the following \code{if} statement:
  8789. %
  8790. {\if\edition\racketEd
  8791. \begin{center}
  8792. \begin{minipage}{\textwidth}
  8793. \begin{lstlisting}
  8794. if (eq? x 0)
  8795. goto block_1;
  8796. else
  8797. goto block_2;
  8798. \end{lstlisting}
  8799. \end{minipage}
  8800. \end{center}
  8801. \fi}
  8802. {\if\edition\pythonEd\pythonColor
  8803. \begin{center}
  8804. \begin{minipage}{\textwidth}
  8805. \begin{lstlisting}
  8806. if x == 0:
  8807. goto block_1;
  8808. else
  8809. goto block_2;
  8810. \end{lstlisting}
  8811. \end{minipage}
  8812. \end{center}
  8813. \fi}
  8814. Next consider the case for Boolean constants. We perform a kind of
  8815. partial evaluation\index{subject}{partialevaluation@partial evaluation} and output
  8816. either the \code{thn} or \code{els} parameter, depending on whether the
  8817. constant is \TRUE{} or \FALSE{}. Let us illustrate this with the
  8818. following program:
  8819. {\if\edition\racketEd
  8820. \begin{lstlisting}
  8821. (if #t 42 777)
  8822. \end{lstlisting}
  8823. \fi}
  8824. {\if\edition\pythonEd\pythonColor
  8825. \begin{lstlisting}
  8826. 42 if True else 777
  8827. \end{lstlisting}
  8828. \fi}
  8829. %
  8830. \noindent Again, the two branches \code{42} and \code{777} were
  8831. compiled to \code{return} statements, so \code{explicate\_pred}
  8832. compiles the constant \racket{\code{\#t}} \python{\code{True}} to the
  8833. code for the \emph{then} branch.
  8834. \begin{lstlisting}
  8835. return 42;
  8836. \end{lstlisting}
  8837. This case demonstrates that we sometimes discard the \code{thn} or
  8838. \code{els} blocks that are input to \code{explicate\_pred}.
  8839. The case for \key{if} expressions in \code{explicate\_pred} is
  8840. particularly illuminating because it deals with the challenges
  8841. discussed previously regarding nested \key{if} expressions
  8842. (figure~\ref{fig:explicate-control-s1-38}). The
  8843. \racket{\lstinline{thn^}}\python{\code{body}} and
  8844. \racket{\lstinline{els^}}\python{\code{orelse}} branches of the
  8845. \key{if} inherit their context from the current one, that is,
  8846. predicate context. So, you should recursively apply
  8847. \code{explicate\_pred} to the
  8848. \racket{\lstinline{thn^}}\python{\code{body}} and
  8849. \racket{\lstinline{els^}}\python{\code{orelse}} branches. For both of
  8850. those recursive calls, pass \code{thn} and \code{els} as the extra
  8851. parameters. Thus, \code{thn} and \code{els} may be used twice, once
  8852. inside each recursive call. As discussed previously, to avoid
  8853. duplicating code, we need to add them to the dictionary of basic
  8854. blocks so that we can instead refer to them by name and execute them
  8855. with a \key{goto}.
  8856. {\if\edition\pythonEd\pythonColor
  8857. %
  8858. The last of the auxiliary functions is \code{explicate\_stmt}. It has
  8859. three parameters: (1) the statement to be compiled, (2) the code for its
  8860. continuation, and (3) the dictionary of basic blocks. The
  8861. \code{explicate\_stmt} returns a list of statements, and it may add to
  8862. the dictionary of basic blocks. The cases for assignment and an
  8863. expression-statement are given in full in the skeleton code: they
  8864. simply dispatch to \code{explicate\_assign} and
  8865. \code{explicate\_effect}, respectively. The case for \code{if}
  8866. statements is not given; it is similar to the case for \code{if}
  8867. expressions.
  8868. The \code{explicate\_control} function itself is given in
  8869. figure~\ref{fig:explicate-control-Lif}. It applies
  8870. \code{explicate\_stmt} to each statement in the program, from back to
  8871. front. Thus, the result so far, stored in \code{new\_body}, can be
  8872. used as the continuation parameter in the next call to
  8873. \code{explicate\_stmt}. The \code{new\_body} is initialized to a
  8874. \code{Return} statement. Once complete, we add the \code{new\_body} to
  8875. the dictionary of basic blocks, labeling it the ``start'' block.
  8876. %
  8877. \fi}
  8878. %% Getting back to the case for \code{if} in \code{explicate\_pred}, we
  8879. %% make the recursive calls to \code{explicate\_pred} on the ``then'' and
  8880. %% ``else'' branches with the arguments \code{(create_block} $B_1$\code{)}
  8881. %% and \code{(create_block} $B_2$\code{)}. Let $B_3$ and $B_4$ be the
  8882. %% results from the two recursive calls. We complete the case for
  8883. %% \code{if} by recursively apply \code{explicate\_pred} to the condition
  8884. %% of the \code{if} with the promised blocks $B_3$ and $B_4$ to obtain
  8885. %% the result $B_5$.
  8886. %% \[
  8887. %% (\key{if}\; \itm{cnd}\; \itm{thn}\; \itm{els})
  8888. %% \quad\Rightarrow\quad
  8889. %% B_5
  8890. %% \]
  8891. %% In the case for \code{if} in \code{explicate\_tail}, the two branches
  8892. %% inherit the current context, so they are in tail position. Thus, the
  8893. %% recursive calls on the ``then'' and ``else'' branch should be calls to
  8894. %% \code{explicate\_tail}.
  8895. %% %
  8896. %% We need to pass $B_0$ as the accumulator argument for both of these
  8897. %% recursive calls, but we need to be careful not to duplicate $B_0$.
  8898. %% Thus, we first apply \code{create_block} to $B_0$ so that it gets added
  8899. %% to the control-flow graph and obtain a promised goto $G_0$.
  8900. %% %
  8901. %% Let $B_1$ be the result of \code{explicate\_tail} on the ``then''
  8902. %% branch and $G_0$ and let $B_2$ be the result of \code{explicate\_tail}
  8903. %% on the ``else'' branch and $G_0$. Let $B_3$ be the result of applying
  8904. %% \code{explicate\_pred} to the condition of the \key{if}, $B_1$, and
  8905. %% $B_2$. Then the \key{if} as a whole translates to promise $B_3$.
  8906. %% \[
  8907. %% (\key{if}\; \itm{cnd}\; \itm{thn}\; \itm{els}) \quad\Rightarrow\quad B_3
  8908. %% \]
  8909. %% In the above discussion, we use the metavariables $B_1$, $B_2$, and
  8910. %% $B_3$ to refer to blocks for the purposes of our discussion, but they
  8911. %% should not be confused with the labels for the blocks that appear in
  8912. %% the generated code. We initially construct unlabeled blocks; we only
  8913. %% attach labels to blocks when we add them to the control-flow graph, as
  8914. %% we see in the next case.
  8915. %% Next consider the case for \key{if} in the \code{explicate\_assign}
  8916. %% function. The context of the \key{if} is an assignment to some
  8917. %% variable $x$ and then the control continues to some promised block
  8918. %% $B_1$. The code that we generate for both the ``then'' and ``else''
  8919. %% branches needs to continue to $B_1$, so to avoid duplicating $B_1$ we
  8920. %% apply \code{create_block} to it and obtain a promised goto $G_1$. The
  8921. %% branches of the \key{if} inherit the current context, so they are in
  8922. %% assignment positions. Let $B_2$ be the result of applying
  8923. %% \code{explicate\_assign} to the ``then'' branch, variable $x$, and
  8924. %% $G_1$. Let $B_3$ be the result of applying \code{explicate\_assign} to
  8925. %% the ``else'' branch, variable $x$, and $G_1$. Finally, let $B_4$ be
  8926. %% the result of applying \code{explicate\_pred} to the predicate
  8927. %% $\itm{cnd}$ and the promises $B_2$ and $B_3$. The \key{if} as a whole
  8928. %% translates to the promise $B_4$.
  8929. %% \[
  8930. %% (\key{if}\; \itm{cnd}\; \itm{thn}\; \itm{els}) \quad\Rightarrow\quad B_4
  8931. %% \]
  8932. %% This completes the description of \code{explicate\_control} for \LangIf{}.
  8933. Figure~\ref{fig:explicate-control-s1-38} shows the output of the
  8934. \code{remove\_complex\_operands} pass and then the
  8935. \code{explicate\_control} pass on the example program. We walk through
  8936. the output program.
  8937. %
  8938. Following the order of evaluation in the output of
  8939. \code{remove\_complex\_operands}, we first have two calls to \CREAD{}
  8940. and then the comparison \racket{\code{(< x 1)}}\python{\code{x < 1}}
  8941. in the predicate of the inner \key{if}. In the output of
  8942. \code{explicate\_control}, in the
  8943. block labeled \code{start}, two assignment statements are followed by an
  8944. \code{if} statement that branches to \racket{\code{block\_4}}\python{\code{block\_6}}
  8945. or \racket{\code{block\_5}}\python{\code{block\_7}}.
  8946. The blocks associated with those labels contain the
  8947. translations of the code
  8948. \racket{\code{(eq? x 0)}}\python{\code{x == 0}}
  8949. and
  8950. \racket{\code{(eq? x 2)}}\python{\code{x == 2}},
  8951. respectively. In particular, we start
  8952. \racket{\code{block\_4}}\python{\code{block\_6}}
  8953. with the comparison
  8954. \racket{\code{(eq? x 0)}}\python{\code{x == 0}}
  8955. and then branch to \racket{\code{block\_2}}\python{\code{block\_4}}
  8956. or \racket{\code{block\_3}}\python{\code{block\_5}},
  8957. which correspond to the two branches of the outer \key{if}, that is,
  8958. \racket{\code{(+ y 2)}}\python{\code{y + 2}} and
  8959. \racket{\code{(+ y 10)}}\python{\code{y + 10}}.
  8960. %
  8961. The story for \racket{\code{block\_5}}\python{\code{block\_7}}
  8962. is similar to that of \racket{\code{block\_4}}\python{\code{block\_6}}.
  8963. %
  8964. \python{The \code{block\_3} is the translation of the \code{print} statement.}
  8965. {\if\edition\racketEd
  8966. \subsection{Interactions between Explicate and Shrink}
  8967. The way in which the \code{shrink} pass transforms logical operations
  8968. such as \code{and} and \code{or} can impact the quality of code
  8969. generated by \code{explicate\_control}. For example, consider the
  8970. following program:
  8971. % cond_test_21.rkt, and_eq_input.py
  8972. \begin{lstlisting}
  8973. (if (and (eq? (read) 0) (eq? (read) 1))
  8974. 0
  8975. 42)
  8976. \end{lstlisting}
  8977. The \code{and} operation should transform into something that the
  8978. \code{explicate\_pred} function can analyze and descend through to
  8979. reach the underlying \code{eq?} conditions. Ideally, for this program
  8980. your \code{explicate\_control} pass should generate code similar to
  8981. the following:
  8982. \begin{center}
  8983. \begin{minipage}{\textwidth}
  8984. \begin{lstlisting}
  8985. start:
  8986. tmp1 = (read);
  8987. if (eq? tmp1 0) goto block40;
  8988. else goto block39;
  8989. block40:
  8990. tmp2 = (read);
  8991. if (eq? tmp2 1) goto block38;
  8992. else goto block39;
  8993. block38:
  8994. return 0;
  8995. block39:
  8996. return 42;
  8997. \end{lstlisting}
  8998. \end{minipage}
  8999. \end{center}
  9000. \fi}
  9001. \begin{exercise}\normalfont\normalsize
  9002. \racket{
  9003. Implement the pass \code{explicate\_control} by adding the cases for
  9004. Boolean constants and \key{if} to the \code{explicate\_tail} and
  9005. \code{explicate\_assign} functions. Implement the auxiliary function
  9006. \code{explicate\_pred} for predicate contexts.}
  9007. \python{Implement \code{explicate\_control} pass with its
  9008. four auxiliary functions.}
  9009. %
  9010. Create test cases that exercise all the new cases in the code for
  9011. this pass.
  9012. %
  9013. {\if\edition\racketEd
  9014. Add the following entry to the list of \code{passes} in
  9015. \code{run-tests.rkt}:
  9016. \begin{lstlisting}
  9017. (list "explicate_control" explicate_control interp-Cif type-check-Cif)
  9018. \end{lstlisting}
  9019. and then run \code{run-tests.rkt} to test your compiler.
  9020. \fi}
  9021. \end{exercise}
  9022. \section{Select Instructions}
  9023. \label{sec:select-Lif}
  9024. \index{subject}{select instructions}
  9025. The \code{select\_instructions} pass translates \LangCIf{} to
  9026. \LangXIfVar{}.
  9027. %
  9028. \racket{Recall that we implement this pass using three auxiliary
  9029. functions, one for each of the nonterminals $\Atm$, $\Stmt$, and
  9030. $\Tail$ in \LangCIf{} (figure~\ref{fig:c1-syntax}).}
  9031. %
  9032. \racket{For $\Atm$, we have new cases for the Booleans.}
  9033. %
  9034. \python{We begin with the Boolean constants.}
  9035. As previously discussed, we encode them as integers.
  9036. \[
  9037. \TRUE{} \quad\Rightarrow\quad \key{1}
  9038. \qquad\qquad
  9039. \FALSE{} \quad\Rightarrow\quad \key{0}
  9040. \]
  9041. For translating statements, we discuss some of the cases. The
  9042. \code{not} operation can be implemented in terms of \code{xorq}, as we
  9043. discussed at the beginning of this section. Given an assignment, if
  9044. the left-hand-side variable is the same as the argument of \code{not},
  9045. then just the \code{xorq} instruction suffices.
  9046. \[
  9047. \CASSIGN{\Var}{ \CUNIOP{\key{not}}{\Var} }
  9048. \quad\Rightarrow\quad
  9049. \key{xorq}~\key{\$}1\key{,}~\Var
  9050. \]
  9051. Otherwise, a \key{movq} is needed to adapt to the update-in-place
  9052. semantics of x86. In the following translation, let $\Arg$ be the
  9053. result of translating $\Atm$ to x86.
  9054. \[
  9055. \CASSIGN{\Var}{ \CUNIOP{\key{not}}{\Atm} }
  9056. \quad\Rightarrow\quad
  9057. \begin{array}{l}
  9058. \key{movq}~\Arg\key{,}~\Var\\
  9059. \key{xorq}~\key{\$}1\key{,}~\Var
  9060. \end{array}
  9061. \]
  9062. Next consider the cases for equality comparisons. Translating this
  9063. operation to x86 is slightly involved due to the unusual nature of the
  9064. \key{cmpq} instruction that we discussed in section~\ref{sec:x86-if}.
  9065. We recommend translating an assignment with an equality on the
  9066. right-hand side into a sequence of three instructions. Let $\Arg_1$
  9067. be the translation of $\Atm_1$ to x86 and likewise for $\Arg_2$.\\
  9068. \begin{tabular}{lll}
  9069. \begin{minipage}{0.4\textwidth}
  9070. $\CASSIGN{\Var}{ \LP\CEQ{\Atm_1}{\Atm_2} \RP }$
  9071. \end{minipage}
  9072. &
  9073. $\Rightarrow$
  9074. &
  9075. \begin{minipage}{0.4\textwidth}
  9076. \begin{lstlisting}
  9077. cmpq |$\Arg_2$|, |$\Arg_1$|
  9078. sete %al
  9079. movzbq %al, |$\Var$|
  9080. \end{lstlisting}
  9081. \end{minipage}
  9082. \end{tabular} \\
  9083. The translations for the other comparison operators are similar to
  9084. this but use different condition codes for the \code{set} instruction.
  9085. \racket{Regarding the $\Tail$ nonterminal, we have two new cases:
  9086. \key{goto} and \key{if} statements. Both are straightforward to
  9087. translate to x86.}
  9088. %
  9089. A \key{goto} statement becomes a jump instruction.
  9090. \[
  9091. \key{goto}\; \ell\racket{\key{;}} \quad \Rightarrow \quad \key{jmp}\;\ell
  9092. \]
  9093. %
  9094. An \key{if} statement becomes a compare instruction followed by a
  9095. conditional jump (for the \emph{then} branch), and the fall-through is to
  9096. a regular jump (for the \emph{else} branch). Again, $\Arg_1$ and $\Arg_2$
  9097. are the translations of $\Atm_1$ and $\Atm_2$, respectively.\\
  9098. \begin{tabular}{lll}
  9099. \begin{minipage}{0.4\textwidth}
  9100. \begin{lstlisting}
  9101. if |$\CEQ{\Atm_1}{\Atm_2}$||$\python{\key{:}}$|
  9102. goto |$\ell_1$||$\racket{\key{;}}$|
  9103. else|$\python{\key{:}}$|
  9104. goto |$\ell_2$||$\racket{\key{;}}$|
  9105. \end{lstlisting}
  9106. \end{minipage}
  9107. &
  9108. $\Rightarrow$
  9109. &
  9110. \begin{minipage}{0.4\textwidth}
  9111. \begin{lstlisting}
  9112. cmpq |$\Arg_2$|, |$\Arg_1$|
  9113. je |$\ell_1$|
  9114. jmp |$\ell_2$|
  9115. \end{lstlisting}
  9116. \end{minipage}
  9117. \end{tabular} \\
  9118. Again, the translations for the other comparison operators are similar to this
  9119. but use different condition codes for the conditional jump instruction.
  9120. \python{Regarding the \key{return} statement, we recommend treating it
  9121. as an assignment to the \key{rax} register followed by a jump to the
  9122. conclusion of the \code{main} function. (See section~\ref{sec:prelude-conclusion-cond} for more about the conclusion of \code{main}.)}
  9123. \begin{exercise}\normalfont\normalsize
  9124. Expand your \code{select\_instructions} pass to handle the new
  9125. features of the \LangCIf{} language.
  9126. %
  9127. {\if\edition\racketEd
  9128. Add the following entry to the list of \code{passes} in
  9129. \code{run-tests.rkt}
  9130. \begin{lstlisting}
  9131. (list "select_instructions" select_instructions interp-pseudo-x86-1)
  9132. \end{lstlisting}
  9133. \fi}
  9134. %
  9135. Run the script to test your compiler on all the test programs.
  9136. \end{exercise}
  9137. \section{Register Allocation}
  9138. \label{sec:register-allocation-Lif}
  9139. \index{subject}{register allocation}
  9140. The changes required for compiling \LangIf{} affect liveness analysis,
  9141. building the interference graph, and assigning homes, but the graph
  9142. coloring algorithm itself does not change.
  9143. \subsection{Liveness Analysis}
  9144. \label{sec:liveness-analysis-Lif}
  9145. \index{subject}{liveness analysis}
  9146. Recall that for \LangVar{} we implemented liveness analysis for a
  9147. single basic block (section~\ref{sec:liveness-analysis-Lvar}). With
  9148. the addition of \key{if} expressions to \LangIf{},
  9149. \code{explicate\_control} produces many basic blocks.
  9150. %% We recommend that you create a new auxiliary function named
  9151. %% \code{uncover\_live\_CFG} that applies liveness analysis to a
  9152. %% control-flow graph.
  9153. The first question is, in what order should we process the basic blocks?
  9154. Recall that to perform liveness analysis on a basic block we need to
  9155. know the live-after set for the last instruction in the block. If a
  9156. basic block has no successors (i.e., contains no jumps to other
  9157. blocks), then it has an empty live-after set and we can immediately
  9158. apply liveness analysis to it. If a basic block has some successors,
  9159. then we need to complete liveness analysis on those blocks
  9160. first. These ordering constraints are the reverse of a
  9161. \emph{topological order}\index{subject}{topological order} on a graph
  9162. representation of the program. In particular, the \emph{control flow
  9163. graph} (CFG)\index{subject}{control-flow graph}~\citep{Allen:1970uq}
  9164. of a program has a node for each basic block and an edge for each jump
  9165. from one block to another. It is straightforward to generate a CFG
  9166. from the dictionary of basic blocks. One then transposes the CFG and
  9167. applies the topological sort algorithm.
  9168. %
  9169. %
  9170. \racket{We recommend using the \code{tsort} and \code{transpose}
  9171. functions of the Racket \code{graph} package to accomplish this.}
  9172. %
  9173. \python{We provide implementations of \code{topological\_sort} and
  9174. \code{transpose} in the file \code{graph.py} of the support code.}
  9175. %
  9176. As an aside, a topological ordering is only guaranteed to exist if the
  9177. graph does not contain any cycles. This is the case for the
  9178. control-flow graphs that we generate from \LangIf{} programs.
  9179. However, in chapter~\ref{ch:Lwhile} we add loops to create \LangLoop{}
  9180. and learn how to handle cycles in the control-flow graph.
  9181. \racket{You need to construct a directed graph to represent the
  9182. control-flow graph. Do not use the \code{directed-graph} of the
  9183. \code{graph} package because that allows at most one edge
  9184. between each pair of vertices, whereas a control-flow graph may have
  9185. multiple edges between a pair of vertices. The \code{multigraph.rkt}
  9186. file in the support code implements a graph representation that
  9187. allows multiple edges between a pair of vertices.}
  9188. {\if\edition\racketEd
  9189. The next question is how to analyze jump instructions. Recall that in
  9190. section~\ref{sec:liveness-analysis-Lvar} we maintain an alist named
  9191. \code{label->live} that maps each label to the set of live locations
  9192. at the beginning of its block. We use \code{label->live} to determine
  9193. the live-before set for each $\JMP{\itm{label}}$ instruction. Now
  9194. that we have many basic blocks, \code{label->live} needs to be updated
  9195. as we process the blocks. In particular, after performing liveness
  9196. analysis on a block, we take the live-before set of its first
  9197. instruction and associate that with the block's label in the
  9198. \code{label->live} alist.
  9199. \fi}
  9200. %
  9201. {\if\edition\pythonEd\pythonColor
  9202. %
  9203. The next question is how to analyze jump instructions. The locations
  9204. that are live before a \code{jmp} should be the locations in
  9205. $L_{\mathsf{before}}$ at the target of the jump. So we recommend
  9206. maintaining a dictionary named \code{live\_before\_block} that maps each
  9207. label to the $L_{\mathsf{before}}$ for the first instruction in its
  9208. block. After performing liveness analysis on each block, we take the
  9209. live-before set of its first instruction and associate that with the
  9210. block's label in the \code{live\_before\_block} dictionary.
  9211. %
  9212. \fi}
  9213. In \LangXIfVar{} we also have the conditional jump
  9214. $\JMPIF{\itm{cc}}{\itm{label}}$ to deal with. Liveness analysis for
  9215. this instruction is particularly interesting because during
  9216. compilation, we do not know which way a conditional jump will go. Thus
  9217. we do not know whether to use the live-before set for the block
  9218. associated with the $\itm{label}$ or the live-before set for the
  9219. following instruction. So we use both, by taking the union of the
  9220. live-before sets from the following instruction and from the mapping
  9221. for $\itm{label}$ in
  9222. \racket{\code{label->live}}\python{\code{live\_before\_block}}.
  9223. The auxiliary functions for computing the variables in an
  9224. instruction's argument and for computing the variables read-from ($R$)
  9225. or written-to ($W$) by an instruction need to be updated to handle the
  9226. new kinds of arguments and instructions in \LangXIfVar{}.
  9227. \begin{exercise}\normalfont\normalsize
  9228. {\if\edition\racketEd
  9229. %
  9230. Update the \code{uncover\_live} pass to apply liveness analysis to
  9231. every basic block in the program.
  9232. %
  9233. Add the following entry to the list of \code{passes} in the
  9234. \code{run-tests.rkt} script:
  9235. \begin{lstlisting}
  9236. (list "uncover_live" uncover_live interp-pseudo-x86-1)
  9237. \end{lstlisting}
  9238. \fi}
  9239. {\if\edition\pythonEd\pythonColor
  9240. %
  9241. Update the \code{uncover\_live} function to perform liveness analysis,
  9242. in reverse topological order, on all the basic blocks in the
  9243. program.
  9244. %
  9245. \fi}
  9246. % Check that the live-after sets that you generate for
  9247. % example X matches the following... -Jeremy
  9248. \end{exercise}
  9249. \subsection{Build the Interference Graph}
  9250. \label{sec:build-interference-Lif}
  9251. Many of the new instructions in \LangXIfVar{} can be handled in the
  9252. same way as the instructions in \LangXVar{}.
  9253. % Thus, if your code was
  9254. % already quite general, it will not need to be changed to handle the
  9255. % new instructions. If your code is not general enough, we recommend that
  9256. % you change your code to be more general. For example, you can factor
  9257. % out the computing of the the read and write sets for each kind of
  9258. % instruction into auxiliary functions.
  9259. %
  9260. Some instructions, such as the \key{movzbq} instruction, require special care,
  9261. similar to the \key{movq} instruction. Refer to rule number 1 in
  9262. section~\ref{sec:build-interference}.
  9263. \begin{exercise}\normalfont\normalsize
  9264. Update the \code{build\_interference} pass for \LangXIfVar{}.
  9265. {\if\edition\racketEd
  9266. Add the following entries to the list of \code{passes} in the
  9267. \code{run-tests.rkt} script:
  9268. \begin{lstlisting}
  9269. (list "build_interference" build_interference interp-pseudo-x86-1)
  9270. (list "allocate_registers" allocate_registers interp-pseudo-x86-1)
  9271. \end{lstlisting}
  9272. \fi}
  9273. % Check that the interference graph that you generate for
  9274. % example X matches the following graph G... -Jeremy
  9275. \end{exercise}
  9276. \section{Patch Instructions}
  9277. The new instructions \key{cmpq} and \key{movzbq} have some special
  9278. restrictions that need to be handled in the \code{patch\_instructions}
  9279. pass.
  9280. %
  9281. The second argument of the \key{cmpq} instruction must not be an
  9282. immediate value (such as an integer). So, if you are comparing two
  9283. immediates, we recommend inserting a \key{movq} instruction to put the
  9284. second argument in \key{rax}. On the other hand, if you implemented
  9285. the partial evaluator (section~\ref{sec:pe-Lvar}), you could
  9286. update it for \LangIf{} and then this situation would not arise.
  9287. %
  9288. As usual, \key{cmpq} may have at most one memory reference.
  9289. %
  9290. The second argument of the \key{movzbq} must be a register.
  9291. \begin{exercise}\normalfont\normalsize
  9292. %
  9293. Update \code{patch\_instructions} pass for \LangXIfVar{}.
  9294. %
  9295. {\if\edition\racketEd
  9296. Add the following entry to the list of \code{passes} in
  9297. \code{run-tests.rkt}, and then run this script to test your compiler.
  9298. \begin{lstlisting}
  9299. (list "patch_instructions" patch_instructions interp-x86-1)
  9300. \end{lstlisting}
  9301. \fi}
  9302. \end{exercise}
  9303. {\if\edition\pythonEd\pythonColor
  9304. \section{Generate Prelude and Conclusion}
  9305. \label{sec:prelude-conclusion-cond}
  9306. The generation of the \code{main} function with its prelude and
  9307. conclusion must change to accommodate how the program now consists of
  9308. one or more basic blocks. After the prelude in \code{main}, jump to
  9309. the \code{start} block. Place the conclusion in a basic block labeled
  9310. with \code{conclusion}.
  9311. \fi}
  9312. Figure~\ref{fig:if-example-x86} shows a simple example program in
  9313. \LangIf{} translated to x86, showing the results of
  9314. \code{explicate\_control}, \code{select\_instructions}, and the final
  9315. x86 assembly.
  9316. \begin{figure}[tbp]
  9317. \begin{tcolorbox}[colback=white]
  9318. {\if\edition\racketEd
  9319. \begin{tabular}{lll}
  9320. \begin{minipage}{0.4\textwidth}
  9321. % cond_test_20.rkt, eq_input.py
  9322. \begin{lstlisting}
  9323. (if (eq? (read) 1) 42 0)
  9324. \end{lstlisting}
  9325. $\Downarrow$
  9326. \begin{lstlisting}
  9327. start:
  9328. tmp7951 = (read);
  9329. if (eq? tmp7951 1)
  9330. goto block7952;
  9331. else
  9332. goto block7953;
  9333. block7952:
  9334. return 42;
  9335. block7953:
  9336. return 0;
  9337. \end{lstlisting}
  9338. $\Downarrow$
  9339. \begin{lstlisting}
  9340. start:
  9341. callq read_int
  9342. movq %rax, tmp7951
  9343. cmpq $1, tmp7951
  9344. je block7952
  9345. jmp block7953
  9346. block7953:
  9347. movq $0, %rax
  9348. jmp conclusion
  9349. block7952:
  9350. movq $42, %rax
  9351. jmp conclusion
  9352. \end{lstlisting}
  9353. \end{minipage}
  9354. &
  9355. $\Rightarrow\qquad$
  9356. \begin{minipage}{0.4\textwidth}
  9357. \begin{lstlisting}
  9358. start:
  9359. callq read_int
  9360. movq %rax, %rcx
  9361. cmpq $1, %rcx
  9362. je block7952
  9363. jmp block7953
  9364. block7953:
  9365. movq $0, %rax
  9366. jmp conclusion
  9367. block7952:
  9368. movq $42, %rax
  9369. jmp conclusion
  9370. .globl main
  9371. main:
  9372. pushq %rbp
  9373. movq %rsp, %rbp
  9374. pushq %r13
  9375. pushq %r12
  9376. pushq %rbx
  9377. pushq %r14
  9378. subq $0, %rsp
  9379. jmp start
  9380. conclusion:
  9381. addq $0, %rsp
  9382. popq %r14
  9383. popq %rbx
  9384. popq %r12
  9385. popq %r13
  9386. popq %rbp
  9387. retq
  9388. \end{lstlisting}
  9389. \end{minipage}
  9390. \end{tabular}
  9391. \fi}
  9392. {\if\edition\pythonEd\pythonColor
  9393. \begin{tabular}{lll}
  9394. \begin{minipage}{0.4\textwidth}
  9395. % cond_test_20.rkt, eq_input.py
  9396. \begin{lstlisting}
  9397. print(42 if input_int() == 1 else 0)
  9398. \end{lstlisting}
  9399. $\Downarrow$
  9400. \begin{lstlisting}
  9401. start:
  9402. tmp_0 = input_int()
  9403. if tmp_0 == 1:
  9404. goto block_3
  9405. else:
  9406. goto block_4
  9407. block_3:
  9408. tmp_1 = 42
  9409. goto block_2
  9410. block_4:
  9411. tmp_1 = 0
  9412. goto block_2
  9413. block_2:
  9414. print(tmp_1)
  9415. return 0
  9416. \end{lstlisting}
  9417. $\Downarrow$
  9418. \begin{lstlisting}
  9419. start:
  9420. callq read_int
  9421. movq %rax, tmp_0
  9422. cmpq 1, tmp_0
  9423. je block_3
  9424. jmp block_4
  9425. block_3:
  9426. movq 42, tmp_1
  9427. jmp block_2
  9428. block_4:
  9429. movq 0, tmp_1
  9430. jmp block_2
  9431. block_2:
  9432. movq tmp_1, %rdi
  9433. callq print_int
  9434. movq 0, %rax
  9435. jmp conclusion
  9436. \end{lstlisting}
  9437. \end{minipage}
  9438. &
  9439. $\Rightarrow\qquad$
  9440. \begin{minipage}{0.4\textwidth}
  9441. \begin{lstlisting}
  9442. .globl main
  9443. main:
  9444. pushq %rbp
  9445. movq %rsp, %rbp
  9446. subq $0, %rsp
  9447. jmp start
  9448. start:
  9449. callq read_int
  9450. movq %rax, %rcx
  9451. cmpq $1, %rcx
  9452. je block_3
  9453. jmp block_4
  9454. block_3:
  9455. movq $42, %rcx
  9456. jmp block_2
  9457. block_4:
  9458. movq $0, %rcx
  9459. jmp block_2
  9460. block_2:
  9461. movq %rcx, %rdi
  9462. callq print_int
  9463. movq $0, %rax
  9464. jmp conclusion
  9465. conclusion:
  9466. addq $0, %rsp
  9467. popq %rbp
  9468. retq
  9469. \end{lstlisting}
  9470. \end{minipage}
  9471. \end{tabular}
  9472. \fi}
  9473. \end{tcolorbox}
  9474. \caption{Example compilation of an \key{if} expression to x86, showing
  9475. the results of \code{explicate\_control},
  9476. \code{select\_instructions}, and the final x86 assembly code. }
  9477. \label{fig:if-example-x86}
  9478. \end{figure}
  9479. Figure~\ref{fig:Lif-passes} lists all the passes needed for the
  9480. compilation of \LangIf{}.
  9481. \begin{figure}[htbp]
  9482. \begin{tcolorbox}[colback=white]
  9483. {\if\edition\racketEd
  9484. \begin{tikzpicture}[baseline=(current bounding box.center),scale=0.90]
  9485. \node (Lif-2) at (0,2) {\large \LangIf{}};
  9486. \node (Lif-3) at (3,2) {\large \LangIf{}};
  9487. \node (Lif-4) at (6,2) {\large \LangIf{}};
  9488. \node (Lif-5) at (10,2) {\large \LangIfANF{}};
  9489. \node (C1-1) at (0,0) {\large \LangCIf{}};
  9490. \node (x86-2) at (0,-2) {\large \LangXIfVar{}};
  9491. \node (x86-2-1) at (0,-4) {\large \LangXIfVar{}};
  9492. \node (x86-2-2) at (4,-4) {\large \LangXIfVar{}};
  9493. \node (x86-3) at (4,-2) {\large \LangXIfVar{}};
  9494. \node (x86-4) at (8,-2) {\large \LangXIf{}};
  9495. \node (x86-5) at (8,-4) {\large \LangXIf{}};
  9496. \path[->,bend left=15] (Lif-2) edge [above] node {\ttfamily\footnotesize shrink} (Lif-3);
  9497. \path[->,bend left=15] (Lif-3) edge [above] node {\ttfamily\footnotesize uniquify} (Lif-4);
  9498. \path[->,bend left=15] (Lif-4) edge [above] node {\ttfamily\footnotesize remove\_complex\_operands} (Lif-5);
  9499. \path[->,bend left=10] (Lif-5) edge [right] node {\ttfamily\footnotesize \ \ \ explicate\_control} (C1-1);
  9500. \path[->,bend right=15] (C1-1) edge [right] node {\ttfamily\footnotesize select\_instructions} (x86-2);
  9501. \path[->,bend left=15] (x86-2) edge [right] node {\ttfamily\footnotesize uncover\_live} (x86-2-1);
  9502. \path[->,bend right=15] (x86-2-1) edge [below] node {\ttfamily\footnotesize build\_interference} (x86-2-2);
  9503. \path[->,bend right=15] (x86-2-2) edge [right] node {\ttfamily\footnotesize allocate\_registers} (x86-3);
  9504. \path[->,bend left=15] (x86-3) edge [above] node {\ttfamily\footnotesize patch\_instructions} (x86-4);
  9505. \path[->,bend left=15] (x86-4) edge [right] node {\ttfamily\footnotesize prelude\_and\_conclusion } (x86-5);
  9506. \end{tikzpicture}
  9507. \fi}
  9508. {\if\edition\pythonEd\pythonColor
  9509. \begin{tikzpicture}[baseline=(current bounding box.center),scale=0.90]
  9510. \node (Lif-1) at (0,2) {\large \LangIf{}};
  9511. \node (Lif-2) at (4,2) {\large \LangIf{}};
  9512. \node (Lif-3) at (8,2) {\large \LangIfANF{}};
  9513. \node (C-1) at (0,0) {\large \LangCIf{}};
  9514. \node (x86-1) at (0,-2) {\large \LangXIfVar{}};
  9515. \node (x86-2) at (4,-2) {\large \LangXIfVar{}};
  9516. \node (x86-3) at (8,-2) {\large \LangXIf{}};
  9517. \node (x86-4) at (12,-2) {\large \LangXIf{}};
  9518. \path[->,bend left=15] (Lif-1) edge [above] node {\ttfamily\footnotesize shrink} (Lif-2);
  9519. \path[->,bend left=15] (Lif-2) edge [above] node {\ttfamily\footnotesize remove\_complex\_operands} (Lif-3);
  9520. \path[->,bend left=15] (Lif-3) edge [right] node {\ttfamily\footnotesize \ \ explicate\_control} (C-1);
  9521. \path[->,bend right=15] (C-1) edge [right] node {\ttfamily\footnotesize select\_instructions} (x86-1);
  9522. \path[->,bend right=15] (x86-1) edge [below] node {\ttfamily\footnotesize assign\_homes} (x86-2);
  9523. \path[->,bend left=15] (x86-2) edge [above] node {\ttfamily\footnotesize patch\_instructions} (x86-3);
  9524. \path[->,bend right=15] (x86-3) edge [below] node {\ttfamily\footnotesize prelude\_and\_conclusion} (x86-4);
  9525. \end{tikzpicture}
  9526. \fi}
  9527. \end{tcolorbox}
  9528. \caption{Diagram of the passes for \LangIf{}, a language with conditionals.}
  9529. \label{fig:Lif-passes}
  9530. \end{figure}
  9531. \section{Challenge: Optimize Blocks and Remove Jumps}
  9532. \label{sec:opt-jumps}
  9533. We discuss two challenges that involve optimizing the control-flow of
  9534. the program.
  9535. \subsection{Optimize Blocks}
  9536. The algorithm for \code{explicate\_control} that we discussed in
  9537. section~\ref{sec:explicate-control-Lif} sometimes generates too many
  9538. blocks. It creates a block whenever a continuation \emph{might} get
  9539. used more than once (for example, whenever the \code{cont} parameter
  9540. is passed into two or more recursive calls). However, some
  9541. continuation arguments may not be used at all. Consider the case for
  9542. the constant \TRUE{} in \code{explicate\_pred}, in which we discard
  9543. the \code{els} continuation.
  9544. %
  9545. {\if\edition\racketEd
  9546. The following example program falls into this
  9547. case, and it creates two unused blocks.
  9548. \begin{center}
  9549. \begin{tabular}{lll}
  9550. \begin{minipage}{0.4\textwidth}
  9551. % cond_test_82.rkt
  9552. \begin{lstlisting}
  9553. (let ([y (if #t
  9554. (read)
  9555. (if (eq? (read) 0)
  9556. 777
  9557. (let ([x (read)])
  9558. (+ 1 x))))])
  9559. (+ y 2))
  9560. \end{lstlisting}
  9561. \end{minipage}
  9562. &
  9563. $\Rightarrow$
  9564. &
  9565. \begin{minipage}{0.4\textwidth}
  9566. \begin{lstlisting}
  9567. start:
  9568. y = (read);
  9569. goto block_5;
  9570. block_5:
  9571. return (+ y 2);
  9572. block_6:
  9573. y = 777;
  9574. goto block_5;
  9575. block_7:
  9576. x = (read);
  9577. y = (+ 1 x2);
  9578. goto block_5;
  9579. \end{lstlisting}
  9580. \end{minipage}
  9581. \end{tabular}
  9582. \end{center}
  9583. \fi}
  9584. {\if\edition\pythonEd
  9585. The following example program falls into this
  9586. case, and it creates the unused \code{block\_9}.
  9587. \begin{center}
  9588. \begin{minipage}{0.4\textwidth}
  9589. % if/if_true.py
  9590. \begin{lstlisting}
  9591. if True:
  9592. print(0)
  9593. else:
  9594. x = 1 if False else 2
  9595. print(x)
  9596. \end{lstlisting}
  9597. \end{minipage}
  9598. $\Rightarrow\qquad\qquad$
  9599. \begin{minipage}{0.4\textwidth}
  9600. \begin{lstlisting}
  9601. start:
  9602. print(0)
  9603. goto block_8
  9604. block_9:
  9605. print(x)
  9606. goto block_8
  9607. block_8:
  9608. return 0
  9609. \end{lstlisting}
  9610. \end{minipage}
  9611. \end{center}
  9612. \fi}
  9613. The question is, how can we decide whether to create a basic block?
  9614. \emph{Lazy evaluation}\index{subject}{lazy
  9615. evaluation}~\citep{Friedman:1976aa} can solve this conundrum by
  9616. delaying the creation of a basic block until the point in time at which
  9617. we know that it will be used.
  9618. %
  9619. {\if\edition\racketEd
  9620. %
  9621. Racket provides support for
  9622. lazy evaluation with the
  9623. \href{https://docs.racket-lang.org/reference/Delayed_Evaluation.html}{\code{racket/promise}}
  9624. package. The expression \key{(delay} $e_1 \ldots e_n$\key{)}
  9625. \index{subject}{delay} creates a
  9626. \emph{promise}\index{subject}{promise} in which the evaluation of the
  9627. expressions is postponed. When \key{(force}
  9628. $p$\key{)}\index{subject}{force} is applied to a promise $p$ for the
  9629. first time, the expressions $e_1 \ldots e_n$ are evaluated and the
  9630. result of $e_n$ is cached in the promise and returned. If \code{force}
  9631. is applied again to the same promise, then the cached result is
  9632. returned. If \code{force} is applied to an argument that is not a
  9633. promise, \code{force} simply returns the argument.
  9634. %
  9635. \fi}
  9636. %
  9637. {\if\edition\pythonEd\pythonColor
  9638. %
  9639. Although Python does not provide direct support for lazy evaluation,
  9640. it is easy to mimic. We \emph{delay} the evaluation of a computation
  9641. by wrapping it inside a function with no parameters. We \emph{force}
  9642. its evaluation by calling the function. However, we might need to
  9643. force multiple times, so we store the result of calling the
  9644. function instead of recomputing it each time. The following
  9645. \code{Promise} class handles this memoization process.
  9646. \begin{minipage}{0.8\textwidth}
  9647. \begin{lstlisting}
  9648. @dataclass
  9649. class Promise:
  9650. fun : typing.Any
  9651. cache : list[stmt] = None
  9652. def force(self):
  9653. if self.cache is None:
  9654. self.cache = self.fun(); return self.cache
  9655. else:
  9656. return self.cache
  9657. \end{lstlisting}
  9658. \end{minipage}
  9659. \noindent However, in some cases of \code{explicate\_pred}, we return
  9660. a list of statements, and in other cases we return a function that
  9661. computes a list of statements. To uniformly deal with both regular
  9662. data and promises, we define the following \code{force} function that
  9663. checks whether its input is delayed (i.e., whether it is a
  9664. \code{Promise}) and then either (1) forces the promise or (2) returns
  9665. the input.
  9666. %
  9667. \begin{lstlisting}
  9668. def force(promise):
  9669. if isinstance(promise, Promise):
  9670. return promise.force()
  9671. else:
  9672. return promise
  9673. \end{lstlisting}
  9674. %
  9675. \fi}
  9676. We use promises for the input and output of the functions
  9677. \code{explicate\_pred}, \code{explicate\_assign},
  9678. %
  9679. \racket{ and \code{explicate\_tail}}\python{ \code{explicate\_effect}, and \code{explicate\_stmt}}.
  9680. %
  9681. So, instead of taking and returning \racket{$\Tail$
  9682. expressions}\python{lists of statements}, they take and return
  9683. promises. Furthermore, when we come to a situation in which a
  9684. continuation might be used more than once, as in the case for
  9685. \code{if} in \code{explicate\_pred}, we create a delayed computation
  9686. that creates a basic block for each continuation (if there is not
  9687. already one) and then returns a \code{goto} statement to that basic
  9688. block. When we come to a situation in which we have a promise but need an
  9689. actual piece of code, for example, to create a larger piece of code with a
  9690. constructor such as \code{Seq}, then insert a call to \code{force}.
  9691. %
  9692. {\if\edition\racketEd
  9693. %
  9694. Also, we must modify the \code{create\_block} function to begin with
  9695. \code{delay} to create a promise. When forced, this promise forces the
  9696. original promise. If that returns a \code{Goto} (because the block was
  9697. already added to \code{basic-blocks}), then we return the
  9698. \code{Goto}. Otherwise, we add the block to \code{basic-blocks} and
  9699. return a \code{Goto} to the new label.
  9700. \begin{center}
  9701. \begin{minipage}{\textwidth}
  9702. \begin{lstlisting}
  9703. (define (create_block tail)
  9704. (delay
  9705. (define t (force tail))
  9706. (match t
  9707. [(Goto label) (Goto label)]
  9708. [else
  9709. (let ([label (gensym 'block)])
  9710. (set! basic-blocks (cons (cons label t) basic-blocks))
  9711. (Goto label))])))
  9712. \end{lstlisting}
  9713. \end{minipage}
  9714. \end{center}
  9715. \fi}
  9716. {\if\edition\pythonEd\pythonColor
  9717. %
  9718. Here is the new version of the \code{create\_block} auxiliary function
  9719. that delays the creation of the new basic block.\\
  9720. \begin{minipage}{\textwidth}
  9721. \begin{lstlisting}
  9722. def create_block(promise, basic_blocks):
  9723. def delay():
  9724. stmts = force(promise)
  9725. match stmts:
  9726. case [Goto(l)]:
  9727. return [Goto(l)]
  9728. case _:
  9729. label = label_name(generate_name('block'))
  9730. basic_blocks[label] = stmts
  9731. return [Goto(label)]
  9732. return Promise(delay)
  9733. \end{lstlisting}
  9734. \end{minipage}
  9735. \fi}
  9736. Figure~\ref{fig:explicate-control-challenge} shows the output of
  9737. improved \code{explicate\_control} on this example.
  9738. \racket{As you can see, the number of basic blocks has been reduced
  9739. from four blocks to two blocks.}%
  9740. \python{As you can see, the number of basic blocks has been reduced
  9741. from three blocks to two blocks.}
  9742. \begin{figure}[tbp]
  9743. \begin{tcolorbox}[colback=white]
  9744. {\if\edition\racketEd
  9745. \begin{tabular}{lll}
  9746. \begin{minipage}{0.45\textwidth}
  9747. % cond_test_82.rkt
  9748. \begin{lstlisting}
  9749. (let ([y (if #t
  9750. (read)
  9751. (if (eq? (read) 0)
  9752. 777
  9753. (let ([x (read)])
  9754. (+ 1 x))))])
  9755. (+ y 2))
  9756. \end{lstlisting}
  9757. \end{minipage}
  9758. &
  9759. $\quad\Rightarrow\quad$
  9760. &
  9761. \begin{minipage}{0.4\textwidth}
  9762. \begin{lstlisting}
  9763. start:
  9764. y = (read);
  9765. goto block_5;
  9766. block_5:
  9767. return (+ y 2);
  9768. \end{lstlisting}
  9769. \end{minipage}
  9770. \end{tabular}
  9771. \fi}
  9772. {\if\edition\pythonEd\pythonColor
  9773. \begin{tabular}{lll}
  9774. \begin{minipage}{0.4\textwidth}
  9775. % if/if_true.py
  9776. \begin{lstlisting}
  9777. if True:
  9778. print(0)
  9779. else:
  9780. x = 1 if False else 2
  9781. print(x)
  9782. \end{lstlisting}
  9783. \end{minipage}
  9784. &
  9785. $\Rightarrow$
  9786. &
  9787. \begin{minipage}{0.55\textwidth}
  9788. \begin{lstlisting}
  9789. start:
  9790. print(0)
  9791. goto block_4
  9792. block_4:
  9793. return 0
  9794. \end{lstlisting}
  9795. \end{minipage}
  9796. \end{tabular}
  9797. \fi}
  9798. \end{tcolorbox}
  9799. \caption{Translation from \LangIf{} to \LangCIf{}
  9800. via the improved \code{explicate\_control}.}
  9801. \label{fig:explicate-control-challenge}
  9802. \end{figure}
  9803. %% Recall that in the example output of \code{explicate\_control} in
  9804. %% figure~\ref{fig:explicate-control-s1-38}, \code{block57} through
  9805. %% \code{block60} are trivial blocks, they do nothing but jump to another
  9806. %% block. The first goal of this challenge assignment is to remove those
  9807. %% blocks. Figure~\ref{fig:optimize-jumps} repeats the result of
  9808. %% \code{explicate\_control} on the left and shows the result of bypassing
  9809. %% the trivial blocks on the right. Let us focus on \code{block61}. The
  9810. %% \code{then} branch jumps to \code{block57}, which in turn jumps to
  9811. %% \code{block55}. The optimized code on the right of
  9812. %% figure~\ref{fig:optimize-jumps} bypasses \code{block57}, with the
  9813. %% \code{then} branch jumping directly to \code{block55}. The story is
  9814. %% similar for the \code{else} branch, as well as for the two branches in
  9815. %% \code{block62}. After the jumps in \code{block61} and \code{block62}
  9816. %% have been optimized in this way, there are no longer any jumps to
  9817. %% blocks \code{block57} through \code{block60}, so they can be removed.
  9818. %% \begin{figure}[tbp]
  9819. %% \begin{tabular}{lll}
  9820. %% \begin{minipage}{0.4\textwidth}
  9821. %% \begin{lstlisting}
  9822. %% block62:
  9823. %% tmp54 = (read);
  9824. %% if (eq? tmp54 2) then
  9825. %% goto block59;
  9826. %% else
  9827. %% goto block60;
  9828. %% block61:
  9829. %% tmp53 = (read);
  9830. %% if (eq? tmp53 0) then
  9831. %% goto block57;
  9832. %% else
  9833. %% goto block58;
  9834. %% block60:
  9835. %% goto block56;
  9836. %% block59:
  9837. %% goto block55;
  9838. %% block58:
  9839. %% goto block56;
  9840. %% block57:
  9841. %% goto block55;
  9842. %% block56:
  9843. %% return (+ 700 77);
  9844. %% block55:
  9845. %% return (+ 10 32);
  9846. %% start:
  9847. %% tmp52 = (read);
  9848. %% if (eq? tmp52 1) then
  9849. %% goto block61;
  9850. %% else
  9851. %% goto block62;
  9852. %% \end{lstlisting}
  9853. %% \end{minipage}
  9854. %% &
  9855. %% $\Rightarrow$
  9856. %% &
  9857. %% \begin{minipage}{0.55\textwidth}
  9858. %% \begin{lstlisting}
  9859. %% block62:
  9860. %% tmp54 = (read);
  9861. %% if (eq? tmp54 2) then
  9862. %% goto block55;
  9863. %% else
  9864. %% goto block56;
  9865. %% block61:
  9866. %% tmp53 = (read);
  9867. %% if (eq? tmp53 0) then
  9868. %% goto block55;
  9869. %% else
  9870. %% goto block56;
  9871. %% block56:
  9872. %% return (+ 700 77);
  9873. %% block55:
  9874. %% return (+ 10 32);
  9875. %% start:
  9876. %% tmp52 = (read);
  9877. %% if (eq? tmp52 1) then
  9878. %% goto block61;
  9879. %% else
  9880. %% goto block62;
  9881. %% \end{lstlisting}
  9882. %% \end{minipage}
  9883. %% \end{tabular}
  9884. %% \caption{Optimize jumps by removing trivial blocks.}
  9885. %% \label{fig:optimize-jumps}
  9886. %% \end{figure}
  9887. %% The name of this pass is \code{optimize-jumps}. We recommend
  9888. %% implementing this pass in two phases. The first phrase builds a hash
  9889. %% table that maps labels to possibly improved labels. The second phase
  9890. %% changes the target of each \code{goto} to use the improved label. If
  9891. %% the label is for a trivial block, then the hash table should map the
  9892. %% label to the first non-trivial block that can be reached from this
  9893. %% label by jumping through trivial blocks. If the label is for a
  9894. %% non-trivial block, then the hash table should map the label to itself;
  9895. %% we do not want to change jumps to non-trivial blocks.
  9896. %% The first phase can be accomplished by constructing an empty hash
  9897. %% table, call it \code{short-cut}, and then iterating over the control
  9898. %% flow graph. Each time you encounter a block that is just a \code{goto},
  9899. %% then update the hash table, mapping the block's source to the target
  9900. %% of the \code{goto}. Also, the hash table may already have mapped some
  9901. %% labels to the block's source, to you must iterate through the hash
  9902. %% table and update all of those so that they instead map to the target
  9903. %% of the \code{goto}.
  9904. %% For the second phase, we recommend iterating through the $\Tail$ of
  9905. %% each block in the program, updating the target of every \code{goto}
  9906. %% according to the mapping in \code{short-cut}.
  9907. \begin{exercise}\normalfont\normalsize
  9908. Implement the improvements to the \code{explicate\_control} pass.
  9909. Check that it removes trivial blocks in a few example programs. Then
  9910. check that your compiler still passes all your tests.
  9911. \end{exercise}
  9912. \subsection{Remove Jumps}
  9913. There is an opportunity for removing jumps that is apparent in the
  9914. example of figure~\ref{fig:if-example-x86}. The \code{start} block
  9915. ends with a jump to \racket{\code{block\_5}}\python{\code{block\_4}},
  9916. and there are no other jumps to
  9917. \racket{\code{block\_5}}\python{\code{block\_4}} in the rest of the program.
  9918. In this situation we can avoid the runtime overhead of this jump by merging
  9919. \racket{\code{block\_5}}\python{\code{block\_4}}
  9920. into the preceding block, which in this case is the \code{start} block.
  9921. Figure~\ref{fig:remove-jumps} shows the output of
  9922. \code{allocate\_registers} on the left and the result of this
  9923. optimization on the right.
  9924. \begin{figure}[tbp]
  9925. \begin{tcolorbox}[colback=white]
  9926. {\if\edition\racketEd
  9927. \begin{tabular}{lll}
  9928. \begin{minipage}{0.5\textwidth}
  9929. % cond_test_82.rkt
  9930. \begin{lstlisting}
  9931. start:
  9932. callq read_int
  9933. movq %rax, %rcx
  9934. jmp block_5
  9935. block_5:
  9936. movq %rcx, %rax
  9937. addq $2, %rax
  9938. jmp conclusion
  9939. \end{lstlisting}
  9940. \end{minipage}
  9941. &
  9942. $\Rightarrow\qquad$
  9943. \begin{minipage}{0.4\textwidth}
  9944. \begin{lstlisting}
  9945. start:
  9946. callq read_int
  9947. movq %rax, %rcx
  9948. movq %rcx, %rax
  9949. addq $2, %rax
  9950. jmp conclusion
  9951. \end{lstlisting}
  9952. \end{minipage}
  9953. \end{tabular}
  9954. \fi}
  9955. {\if\edition\pythonEd\pythonColor
  9956. \begin{tabular}{lll}
  9957. \begin{minipage}{0.5\textwidth}
  9958. % cond_test_20.rkt
  9959. \begin{lstlisting}
  9960. start:
  9961. callq read_int
  9962. movq %rax, tmp_0
  9963. cmpq 1, tmp_0
  9964. je block_3
  9965. jmp block_4
  9966. block_3:
  9967. movq 42, tmp_1
  9968. jmp block_2
  9969. block_4:
  9970. movq 0, tmp_1
  9971. jmp block_2
  9972. block_2:
  9973. movq tmp_1, %rdi
  9974. callq print_int
  9975. movq 0, %rax
  9976. jmp conclusion
  9977. \end{lstlisting}
  9978. \end{minipage}
  9979. &
  9980. $\Rightarrow\qquad$
  9981. \begin{minipage}{0.4\textwidth}
  9982. \begin{lstlisting}
  9983. start:
  9984. callq read_int
  9985. movq %rax, tmp_0
  9986. cmpq 1, tmp_0
  9987. je block_3
  9988. movq 0, tmp_1
  9989. jmp block_2
  9990. block_3:
  9991. movq 42, tmp_1
  9992. jmp block_2
  9993. block_2:
  9994. movq tmp_1, %rdi
  9995. callq print_int
  9996. movq 0, %rax
  9997. jmp conclusion
  9998. \end{lstlisting}
  9999. \end{minipage}
  10000. \end{tabular}
  10001. \fi}
  10002. \end{tcolorbox}
  10003. \caption{Merging basic blocks by removing unnecessary jumps.}
  10004. \label{fig:remove-jumps}
  10005. \end{figure}
  10006. \begin{exercise}\normalfont\normalsize
  10007. %
  10008. Implement a pass named \code{remove\_jumps} that merges basic blocks
  10009. into their preceding basic block, when there is only one preceding
  10010. block. The pass should translate from \LangXIfVar{} to \LangXIfVar{}.
  10011. %
  10012. {\if\edition\racketEd
  10013. In the \code{run-tests.rkt} script, add the following entry to the
  10014. list of \code{passes} between \code{allocate\_registers}
  10015. and \code{patch\_instructions}:
  10016. \begin{lstlisting}
  10017. (list "remove_jumps" remove_jumps interp-pseudo-x86-1)
  10018. \end{lstlisting}
  10019. \fi}
  10020. %
  10021. Run the script to test your compiler.
  10022. %
  10023. Check that \code{remove\_jumps} accomplishes the goal of merging basic
  10024. blocks on several test programs.
  10025. \end{exercise}
  10026. \section{Further Reading}
  10027. \label{sec:cond-further-reading}
  10028. The algorithm for \code{explicate\_control} is based on the
  10029. \code{expose-basic-blocks} pass in the course notes of
  10030. \citet{Dybvig:2010aa}.
  10031. %
  10032. It has similarities to the algorithms of \citet{Danvy:2003fk} and
  10033. \citet{Appel:2003fk}, and is related to translations into continuation
  10034. passing
  10035. style~\citep{Wijngaarden:1966,Fischer:1972,reynolds72:_def_interp,Plotkin:1975,Friedman:2001}.
  10036. %
  10037. The treatment of conditionals in the \code{explicate\_control} pass is
  10038. similar to short-cut Boolean
  10039. evaluation~\citep{Logothetis:1981,Aho:2006wb,Clarke:1989,Danvy:2003fk}
  10040. and the case-of-case transformation~\citep{PeytonJones:1998}.
  10041. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  10042. \chapter{Loops and Dataflow Analysis}
  10043. \label{ch:Lwhile}
  10044. \setcounter{footnote}{0}
  10045. % TODO: define R'_8
  10046. % TODO: multi-graph
  10047. {\if\edition\racketEd
  10048. %
  10049. In this chapter we study two features that are the hallmarks of
  10050. imperative programming languages: loops and assignments to local
  10051. variables. The following example demonstrates these new features by
  10052. computing the sum of the first five positive integers:
  10053. % similar to loop_test_1.rkt
  10054. \begin{lstlisting}
  10055. (let ([sum 0])
  10056. (let ([i 5])
  10057. (begin
  10058. (while (> i 0)
  10059. (begin
  10060. (set! sum (+ sum i))
  10061. (set! i (- i 1))))
  10062. sum)))
  10063. \end{lstlisting}
  10064. The \code{while} loop consists of a condition and a
  10065. body.\footnote{The \code{while} loop is not a built-in
  10066. feature of the Racket language, but Racket includes many looping
  10067. constructs and it is straightforward to define \code{while} as a
  10068. macro.} The body is evaluated repeatedly so long as the condition
  10069. remains true.
  10070. %
  10071. The \code{set!} consists of a variable and a right-hand side
  10072. expression. The \code{set!} updates value of the variable to the
  10073. value of the right-hand side.
  10074. %
  10075. The primary purpose of both the \code{while} loop and \code{set!} is
  10076. to cause side effects, so they do not give a meaningful result
  10077. value. Instead, their result is the \code{\#<void>} value. The
  10078. expression \code{(void)} is an explicit way to create the
  10079. \code{\#<void>} value, and it has type \code{Void}. The
  10080. \code{\#<void>} value can be passed around just like other values
  10081. inside an \LangLoop{} program, and it can be compared for equality with
  10082. another \code{\#<void>} value. However, there are no other operations
  10083. specific to the \code{\#<void>} value in \LangLoop{}. In contrast,
  10084. Racket defines the \code{void?} predicate that returns \code{\#t}
  10085. when applied to \code{\#<void>} and \code{\#f} otherwise.%
  10086. %
  10087. \footnote{Racket's \code{Void} type corresponds to what is often
  10088. called the \code{Unit} type. Racket's \code{Void} type is inhabited
  10089. by a single value \code{\#<void>}, which corresponds to \code{unit}
  10090. or \code{()} in the literature~\citep{Pierce:2002hj}.}
  10091. %
  10092. With the addition of side effect-producing features such as
  10093. \code{while} loop and \code{set!}, it is helpful to include a language
  10094. feature for sequencing side effects: the \code{begin} expression. It
  10095. consists of one or more subexpressions that are evaluated
  10096. left to right.
  10097. %
  10098. \fi}
  10099. {\if\edition\pythonEd\pythonColor
  10100. %
  10101. In this chapter we study loops, one of the hallmarks of imperative
  10102. programming languages. The following example demonstrates the
  10103. \code{while} loop by computing the sum of the first five positive
  10104. integers.
  10105. \begin{lstlisting}
  10106. sum = 0
  10107. i = 5
  10108. while i > 0:
  10109. sum = sum + i
  10110. i = i - 1
  10111. print(sum)
  10112. \end{lstlisting}
  10113. The \code{while} loop consists of a condition and a body (a sequence
  10114. of statements). The body is evaluated repeatedly so long as the
  10115. condition remains true.
  10116. %
  10117. \fi}
  10118. \section{The \LangLoop{} Language}
  10119. \newcommand{\LwhileGrammarRacket}{
  10120. \begin{array}{lcl}
  10121. \Type &::=& \key{Void}\\
  10122. \Exp &::=& \CSETBANG{\Var}{\Exp}
  10123. \MID \CBEGIN{\Exp^{*}}{\Exp}
  10124. \MID \CWHILE{\Exp}{\Exp} \MID \LP\key{void}\RP
  10125. \end{array}
  10126. }
  10127. \newcommand{\LwhileASTRacket}{
  10128. \begin{array}{lcl}
  10129. \Type &::=& \key{Void}\\
  10130. \Exp &::=& \SETBANG{\Var}{\Exp}
  10131. \MID \BEGIN{\Exp^{*}}{\Exp}
  10132. \MID \WHILE{\Exp}{\Exp}
  10133. \MID \VOID{}
  10134. \end{array}
  10135. }
  10136. \newcommand{\LwhileGrammarPython}{
  10137. \begin{array}{rcl}
  10138. \Stmt &::=& \key{while}~ \Exp \key{:}~ \Stmt^{+}
  10139. \end{array}
  10140. }
  10141. \newcommand{\LwhileASTPython}{
  10142. \begin{array}{lcl}
  10143. \Stmt{} &::=& \WHILESTMT{\Exp}{\Stmt^{+}}
  10144. \end{array}
  10145. }
  10146. \begin{figure}[tp]
  10147. \centering
  10148. \begin{tcolorbox}[colback=white]
  10149. \small
  10150. {\if\edition\racketEd
  10151. \[
  10152. \begin{array}{l}
  10153. \gray{\LintGrammarRacket{}} \\ \hline
  10154. \gray{\LvarGrammarRacket{}} \\ \hline
  10155. \gray{\LifGrammarRacket{}} \\ \hline
  10156. \LwhileGrammarRacket \\
  10157. \begin{array}{lcl}
  10158. \LangLoopM{} &::=& \Exp
  10159. \end{array}
  10160. \end{array}
  10161. \]
  10162. \fi}
  10163. {\if\edition\pythonEd\pythonColor
  10164. \[
  10165. \begin{array}{l}
  10166. \gray{\LintGrammarPython} \\ \hline
  10167. \gray{\LvarGrammarPython} \\ \hline
  10168. \gray{\LifGrammarPython} \\ \hline
  10169. \LwhileGrammarPython \\
  10170. \begin{array}{rcl}
  10171. \LangLoopM{} &::=& \Stmt^{*}
  10172. \end{array}
  10173. \end{array}
  10174. \]
  10175. \fi}
  10176. \end{tcolorbox}
  10177. \caption{The concrete syntax of \LangLoop{}, extending \LangIf{} (figure~\ref{fig:Lif-concrete-syntax}).}
  10178. \label{fig:Lwhile-concrete-syntax}
  10179. \end{figure}
  10180. \begin{figure}[tp]
  10181. \centering
  10182. \begin{tcolorbox}[colback=white]
  10183. \small
  10184. {\if\edition\racketEd
  10185. \[
  10186. \begin{array}{l}
  10187. \gray{\LintOpAST} \\ \hline
  10188. \gray{\LvarASTRacket{}} \\ \hline
  10189. \gray{\LifASTRacket{}} \\ \hline
  10190. \LwhileASTRacket{} \\
  10191. \begin{array}{lcl}
  10192. \LangLoopM{} &::=& \gray{ \PROGRAM{\code{'()}}{\Exp} }
  10193. \end{array}
  10194. \end{array}
  10195. \]
  10196. \fi}
  10197. {\if\edition\pythonEd\pythonColor
  10198. \[
  10199. \begin{array}{l}
  10200. \gray{\LintASTPython} \\ \hline
  10201. \gray{\LvarASTPython} \\ \hline
  10202. \gray{\LifASTPython} \\ \hline
  10203. \LwhileASTPython \\
  10204. \begin{array}{lcl}
  10205. \LangLoopM{} &::=& \PROGRAM{\code{'()}}{\Stmt^{*}}
  10206. \end{array}
  10207. \end{array}
  10208. \]
  10209. \fi}
  10210. \end{tcolorbox}
  10211. \python{
  10212. \index{subject}{While@\texttt{While}}
  10213. }
  10214. \caption{The abstract syntax of \LangLoop{}, extending \LangIf{} (figure~\ref{fig:Lif-syntax}).}
  10215. \label{fig:Lwhile-syntax}
  10216. \end{figure}
  10217. Figure~\ref{fig:Lwhile-concrete-syntax} shows the definition of the
  10218. concrete syntax of \LangLoop{}, and figure~\ref{fig:Lwhile-syntax}
  10219. shows the definition of its abstract syntax.
  10220. %
  10221. The definitional interpreter for \LangLoop{} is shown in
  10222. figure~\ref{fig:interp-Lwhile}.
  10223. %
  10224. {\if\edition\racketEd
  10225. %
  10226. We add new cases for \code{SetBang}, \code{WhileLoop}, \code{Begin},
  10227. and \code{Void}, and we make changes to the cases for \code{Var} and
  10228. \code{Let} regarding variables. To support assignment to variables and
  10229. to make their lifetimes indefinite (see the second example in
  10230. section~\ref{sec:assignment-scoping}), we box the value that is bound
  10231. to each variable (in \code{Let}). The case for \code{Var} unboxes the
  10232. value.
  10233. %
  10234. Now we discuss the new cases. For \code{SetBang}, we find the
  10235. variable in the environment to obtain a boxed value, and then we change
  10236. it using \code{set-box!} to the result of evaluating the right-hand
  10237. side. The result value of a \code{SetBang} is \code{\#<void>}.
  10238. %
  10239. For the \code{WhileLoop}, we repeatedly (1) evaluate the condition, and
  10240. if the result is true, (2) evaluate the body.
  10241. The result value of a \code{while} loop is also \code{\#<void>}.
  10242. %
  10243. The $\BEGIN{\itm{es}}{\itm{body}}$ expression evaluates the
  10244. subexpressions \itm{es} for their effects and then evaluates
  10245. and returns the result from \itm{body}.
  10246. %
  10247. The $\VOID{}$ expression produces the \code{\#<void>} value.
  10248. %
  10249. \fi}
  10250. {\if\edition\pythonEd\pythonColor
  10251. %
  10252. We add a new case for \code{While} in the \code{interp\_stmts}
  10253. function, in which we repeatedly interpret the \code{body} so long as the
  10254. \code{test} expression remains true.
  10255. %
  10256. \fi}
  10257. \begin{figure}[tbp]
  10258. \begin{tcolorbox}[colback=white]
  10259. {\if\edition\racketEd
  10260. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  10261. (define interp-Lwhile-class
  10262. (class interp-Lif-class
  10263. (super-new)
  10264. (define/override ((interp-exp env) e)
  10265. (define recur (interp-exp env))
  10266. (match e
  10267. [(Let x e body)
  10268. (define new-env (dict-set env x (box (recur e))))
  10269. ((interp-exp new-env) body)]
  10270. [(Var x) (unbox (dict-ref env x))]
  10271. [(SetBang x rhs)
  10272. (set-box! (dict-ref env x) (recur rhs))]
  10273. [(WhileLoop cnd body)
  10274. (define (loop)
  10275. (cond [(recur cnd) (recur body) (loop)]
  10276. [else (void)]))
  10277. (loop)]
  10278. [(Begin es body)
  10279. (for ([e es]) (recur e))
  10280. (recur body)]
  10281. [(Void) (void)]
  10282. [else ((super interp-exp env) e)]))
  10283. ))
  10284. (define (interp-Lwhile p)
  10285. (send (new interp-Lwhile-class) interp-program p))
  10286. \end{lstlisting}
  10287. \fi}
  10288. {\if\edition\pythonEd\pythonColor
  10289. \begin{lstlisting}
  10290. class InterpLwhile(InterpLif):
  10291. def interp_stmt(self, s, env, cont):
  10292. match s:
  10293. case While(test, body, []):
  10294. if self.interp_exp(test, env):
  10295. self.interp_stmts(body + [s] + cont, env)
  10296. else:
  10297. return self.interp_stmts(cont, env)
  10298. case _:
  10299. return super().interp_stmt(s, env, cont)
  10300. \end{lstlisting}
  10301. \fi}
  10302. \end{tcolorbox}
  10303. \caption{Interpreter for \LangLoop{}.}
  10304. \label{fig:interp-Lwhile}
  10305. \end{figure}
  10306. The definition of the type checker for \LangLoop{} is shown in
  10307. figure~\ref{fig:type-check-Lwhile}.
  10308. %
  10309. {\if\edition\racketEd
  10310. %
  10311. The type checking of the \code{SetBang} expression requires the type
  10312. of the variable and the right-hand side to agree. The result type is
  10313. \code{Void}. For \code{while}, the condition must be a \BOOLTY{}
  10314. and the result type is \code{Void}. For \code{Begin}, the result type
  10315. is the type of its last subexpression.
  10316. %
  10317. \fi}
  10318. %
  10319. {\if\edition\pythonEd\pythonColor
  10320. %
  10321. A \code{while} loop is well typed if the type of the \code{test}
  10322. expression is \code{bool} and the statements in the \code{body} are
  10323. well typed.
  10324. %
  10325. \fi}
  10326. \begin{figure}[tbp]
  10327. \begin{tcolorbox}[colback=white]
  10328. {\if\edition\racketEd
  10329. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  10330. (define type-check-Lwhile-class
  10331. (class type-check-Lif-class
  10332. (super-new)
  10333. (inherit check-type-equal?)
  10334. (define/override (type-check-exp env)
  10335. (lambda (e)
  10336. (define recur (type-check-exp env))
  10337. (match e
  10338. [(SetBang x rhs)
  10339. (define-values (rhs^ rhsT) (recur rhs))
  10340. (define varT (dict-ref env x))
  10341. (check-type-equal? rhsT varT e)
  10342. (values (SetBang x rhs^) 'Void)]
  10343. [(WhileLoop cnd body)
  10344. (define-values (cnd^ Tc) (recur cnd))
  10345. (check-type-equal? Tc 'Boolean e)
  10346. (define-values (body^ Tbody) ((type-check-exp env) body))
  10347. (values (WhileLoop cnd^ body^) 'Void)]
  10348. [(Begin es body)
  10349. (define-values (es^ ts)
  10350. (for/lists (l1 l2) ([e es]) (recur e)))
  10351. (define-values (body^ Tbody) (recur body))
  10352. (values (Begin es^ body^) Tbody)]
  10353. [else ((super type-check-exp env) e)])))
  10354. ))
  10355. (define (type-check-Lwhile p)
  10356. (send (new type-check-Lwhile-class) type-check-program p))
  10357. \end{lstlisting}
  10358. \fi}
  10359. {\if\edition\pythonEd\pythonColor
  10360. \begin{lstlisting}
  10361. class TypeCheckLwhile(TypeCheckLif):
  10362. def type_check_stmts(self, ss, env):
  10363. if len(ss) == 0:
  10364. return
  10365. match ss[0]:
  10366. case While(test, body, []):
  10367. test_t = self.type_check_exp(test, env)
  10368. check_type_equal(bool, test_t, test)
  10369. body_t = self.type_check_stmts(body, env)
  10370. return self.type_check_stmts(ss[1:], env)
  10371. case _:
  10372. return super().type_check_stmts(ss, env)
  10373. \end{lstlisting}
  10374. \fi}
  10375. \end{tcolorbox}
  10376. \caption{Type checker for the \LangLoop{} language.}
  10377. \label{fig:type-check-Lwhile}
  10378. \end{figure}
  10379. {\if\edition\racketEd
  10380. %
  10381. At first glance, the translation of these language features to x86
  10382. seems straightforward because the \LangCIf{} intermediate language
  10383. already supports all the ingredients that we need: assignment,
  10384. \code{goto}, conditional branching, and sequencing. However,
  10385. complications arise, which we discuss in the next section. After
  10386. that we introduce the changes necessary to the existing passes.
  10387. %
  10388. \fi}
  10389. {\if\edition\pythonEd\pythonColor
  10390. %
  10391. At first glance, the translation of \code{while} loops to x86 seems
  10392. straightforward because the \LangCIf{} intermediate language already
  10393. supports \code{goto} and conditional branching. However, there are
  10394. complications that arise, which we discuss in the next section. After
  10395. that we introduce the changes necessary to the existing passes.
  10396. %
  10397. \fi}
  10398. \section{Cyclic Control Flow and Dataflow Analysis}
  10399. \label{sec:dataflow-analysis}
  10400. Up until this point, the programs generated in
  10401. \code{explicate\_control} were guaranteed to be acyclic. However, each
  10402. \code{while} loop introduces a cycle. Does that matter?
  10403. %
  10404. Indeed, it does. Recall that for register allocation, the compiler
  10405. performs liveness analysis to determine which variables can share the
  10406. same register. To accomplish this, we analyzed the control-flow graph
  10407. in reverse topological order
  10408. (section~\ref{sec:liveness-analysis-Lif}), but topological order is
  10409. well defined only for acyclic graphs.
  10410. Let us return to the example of computing the sum of the first five
  10411. positive integers. Here is the program after instruction
  10412. selection\index{subject}{instruction selection} but before register
  10413. allocation.
  10414. \begin{center}
  10415. {\if\edition\racketEd
  10416. \begin{minipage}{0.45\textwidth}
  10417. \begin{lstlisting}
  10418. (define (main) : Integer
  10419. mainstart:
  10420. movq $0, sum
  10421. movq $5, i
  10422. jmp block5
  10423. block5:
  10424. movq i, tmp3
  10425. cmpq tmp3, $0
  10426. jl block7
  10427. jmp block8
  10428. \end{lstlisting}
  10429. \end{minipage}
  10430. \begin{minipage}{0.45\textwidth}
  10431. \begin{lstlisting}
  10432. block7:
  10433. addq i, sum
  10434. movq $1, tmp4
  10435. negq tmp4
  10436. addq tmp4, i
  10437. jmp block5
  10438. block8:
  10439. movq $27, %rax
  10440. addq sum, %rax
  10441. jmp mainconclusion)
  10442. \end{lstlisting}
  10443. \end{minipage}
  10444. \fi}
  10445. {\if\edition\pythonEd\pythonColor
  10446. \begin{minipage}{0.45\textwidth}
  10447. \begin{lstlisting}
  10448. mainstart:
  10449. movq $0, sum
  10450. movq $5, i
  10451. jmp block5
  10452. block5:
  10453. cmpq $0, i
  10454. jg block7
  10455. jmp block8
  10456. \end{lstlisting}
  10457. \end{minipage}
  10458. \begin{minipage}{0.45\textwidth}
  10459. \begin{lstlisting}
  10460. block7:
  10461. addq i, sum
  10462. subq $1, i
  10463. jmp block5
  10464. block8:
  10465. movq sum, %rdi
  10466. callq print_int
  10467. movq $0, %rax
  10468. jmp mainconclusion
  10469. \end{lstlisting}
  10470. \end{minipage}
  10471. \fi}
  10472. \end{center}
  10473. Recall that liveness analysis works backward, starting at the end
  10474. of each function. For this example we could start with \code{block8}
  10475. because we know what is live at the beginning of the conclusion:
  10476. only \code{rax} and \code{rsp}. So the live-before set
  10477. for \code{block8} is \code{\{rsp,sum\}}.
  10478. %
  10479. Next we might try to analyze \code{block5} or \code{block7}, but
  10480. \code{block5} jumps to \code{block7} and vice versa, so it seems that
  10481. we are stuck.
  10482. The way out of this impasse is to realize that we can compute an
  10483. underapproximation of each live-before set by starting with empty
  10484. live-after sets. By \emph{underapproximation}, we mean that the set
  10485. contains only variables that are live for some execution of the
  10486. program, but the set may be missing some variables that are live.
  10487. Next, the underapproximations for each block can be improved by (1)
  10488. updating the live-after set for each block using the approximate
  10489. live-before sets from the other blocks, and (2) performing liveness
  10490. analysis again on each block. In fact, by iterating this process, the
  10491. underapproximations eventually become the correct solutions!
  10492. %
  10493. This approach of iteratively analyzing a control-flow graph is
  10494. applicable to many static analysis problems and goes by the name
  10495. \emph{dataflow analysis}\index{subject}{dataflow analysis}. It was invented by
  10496. \citet{Kildall:1973vn} in his PhD thesis at the University of
  10497. Washington.
  10498. Let us apply this approach to the previously presented example. We use
  10499. the empty set for the initial live-before set for each block. Let
  10500. $m_0$ be the following mapping from label names to sets of locations
  10501. (variables and registers):
  10502. \begin{center}
  10503. \begin{lstlisting}
  10504. mainstart: {}, block5: {}, block7: {}, block8: {}
  10505. \end{lstlisting}
  10506. \end{center}
  10507. Using the above live-before approximations, we determine the
  10508. live-after for each block and then apply liveness analysis to each
  10509. block. This produces our next approximation $m_1$ of the live-before
  10510. sets.
  10511. \begin{center}
  10512. \begin{lstlisting}
  10513. mainstart: {}, block5: {i}, block7: {i, sum}, block8: {rsp, sum}
  10514. \end{lstlisting}
  10515. \end{center}
  10516. For the second round, the live-after for \code{mainstart} is the
  10517. current live-before for \code{block5}, which is \code{\{i\}}. Therefore
  10518. the liveness analysis for \code{mainstart} computes the empty set. The
  10519. live-after for \code{block5} is the union of the live-before sets for
  10520. \code{block7} and \code{block8}, which is \code{\{i, rsp, sum\}}.
  10521. So the liveness analysis for \code{block5} computes \code{\{i, rsp,
  10522. sum\}}. The live-after for \code{block7} is the live-before for
  10523. \code{block5} (from the previous iteration), which is \code{\{i\}}.
  10524. So the liveness analysis for \code{block7} remains \code{\{i, sum\}}.
  10525. Together these yield the following approximation $m_2$ of
  10526. the live-before sets:
  10527. \begin{center}
  10528. \begin{lstlisting}
  10529. mainstart: {}, block5: {i, rsp, sum}, block7: {i, sum}, block8: {rsp, sum}
  10530. \end{lstlisting}
  10531. \end{center}
  10532. In the preceding iteration, only \code{block5} changed, so we can
  10533. limit our attention to \code{mainstart} and \code{block7}, the two
  10534. blocks that jump to \code{block5}. As a result, the live-before sets
  10535. for \code{mainstart} and \code{block7} are updated to include
  10536. \code{rsp}, yielding the following approximation $m_3$:
  10537. \begin{center}
  10538. \begin{lstlisting}
  10539. mainstart: {rsp}, block5: {i,rsp,sum}, block7: {i,rsp,sum}, block8: {rsp,sum}
  10540. \end{lstlisting}
  10541. \end{center}
  10542. Because \code{block7} changed, we analyze \code{block5} once more, but
  10543. its live-before set remains \code{\{i,rsp,sum\}}. At this point
  10544. our approximations have converged, so $m_3$ is the solution.
  10545. This iteration process is guaranteed to converge to a solution by the
  10546. Kleene fixed-point theorem, a general theorem about functions on
  10547. lattices~\citep{Kleene:1952aa}. Roughly speaking, a \emph{lattice} is
  10548. any collection that comes with a partial ordering\index{subject}{partialordering@partial ordering} $\sqsubseteq$ on its
  10549. elements, a least element $\bot$ (pronounced \emph{bottom}), and a
  10550. join operator
  10551. $\sqcup$.\index{subject}{lattice}\index{subject}{bottom}\index{subject}{join}\footnote{Technically speaking, we
  10552. will be working with join semilattices.} When two elements are
  10553. ordered $m_i \sqsubseteq m_j$, it means that $m_j$ contains at least
  10554. as much information as $m_i$, so we can think of $m_j$ as a
  10555. better-than-or-equal-to approximation in relation to $m_i$. The
  10556. bottom element $\bot$ represents the complete lack of information,
  10557. that is, the worst approximation. The join operator takes two lattice
  10558. elements and combines their information; that is, it produces the
  10559. least upper bound of the two.\index{subject}{least upper bound}
  10560. A dataflow analysis typically involves two lattices: one lattice to
  10561. represent abstract states and another lattice that aggregates the
  10562. abstract states of all the blocks in the control-flow graph. For
  10563. liveness analysis, an abstract state is a set of locations. We form
  10564. the lattice $L$ by taking its elements to be sets of locations, the
  10565. ordering to be set inclusion ($\subseteq$), the bottom to be the empty
  10566. set, and the join operator to be set union.
  10567. %
  10568. We form a second lattice $M$ by taking its elements to be mappings
  10569. from the block labels to sets of locations (elements of $L$). We
  10570. order the mappings point-wise, using the ordering of $L$. So, given any
  10571. two mappings $m_i$ and $m_j$, $m_i \sqsubseteq_M m_j$ when $m_i(\ell)
  10572. \subseteq m_j(\ell)$ for every block label $\ell$ in the program. The
  10573. bottom element of $M$ is the mapping $\bot_M$ that sends every label
  10574. to the empty set, $\bot_M(\ell) = \emptyset$.
  10575. We can think of one iteration of liveness analysis applied to the
  10576. whole program as being a function $f$ on the lattice $M$. It takes a
  10577. mapping as input and computes a new mapping.
  10578. \[
  10579. f(m_i) = m_{i+1}
  10580. \]
  10581. Next let us think for a moment about what a final solution $m_s$
  10582. should look like. If we perform liveness analysis using the solution
  10583. $m_s$ as input, we should get $m_s$ again as the output. That is, the
  10584. solution should be a \emph{fixed point} of the function $f$.\index{subject}{fixed point}
  10585. \[
  10586. f(m_s) = m_s
  10587. \]
  10588. Furthermore, the solution should include only locations that are
  10589. forced to be there by performing liveness analysis on the program, so
  10590. the solution should be the \emph{least} fixed point.\index{subject}{least fixed point}
  10591. The Kleene fixed-point theorem states that if a function $f$ is
  10592. monotone (better inputs produce better outputs), then the least fixed
  10593. point of $f$ is the least upper bound of the \emph{ascending Kleene
  10594. chain} that starts at $\bot$ and iterates $f$ as
  10595. follows:\index{subject}{Kleene fixed-point theorem}
  10596. \[
  10597. \bot \sqsubseteq f(\bot) \sqsubseteq f(f(\bot)) \sqsubseteq \cdots
  10598. \sqsubseteq f^n(\bot) \sqsubseteq \cdots
  10599. \]
  10600. When a lattice contains only finitely long ascending chains, then
  10601. every Kleene chain tops out at some fixed point after some number of
  10602. iterations of $f$.
  10603. \[
  10604. \bot \sqsubseteq f(\bot) \sqsubseteq f(f(\bot)) \sqsubseteq \cdots
  10605. \sqsubseteq f^k(\bot) = f^{k+1}(\bot) = m_s
  10606. \]
  10607. The liveness analysis is indeed a monotone function and the lattice
  10608. $M$ has finitely long ascending chains because there are only a
  10609. finite number of variables and blocks in the program. Thus we are
  10610. guaranteed that iteratively applying liveness analysis to all blocks
  10611. in the program will eventually produce the least fixed point solution.
  10612. Next let us consider dataflow analysis in general and discuss the
  10613. generic work list algorithm (figure~\ref{fig:generic-dataflow}).
  10614. %
  10615. The algorithm has four parameters: the control-flow graph \code{G}, a
  10616. function \code{transfer} that applies the analysis to one block, and the
  10617. \code{bottom} and \code{join} operators for the lattice of abstract
  10618. states. The \code{analyze\_dataflow} function is formulated as a
  10619. \emph{forward} dataflow analysis; that is, the inputs to the transfer
  10620. function come from the predecessor nodes in the control-flow
  10621. graph. However, liveness analysis is a \emph{backward} dataflow
  10622. analysis, so in that case one must supply the \code{analyze\_dataflow}
  10623. function with the transpose of the control-flow graph.
  10624. The algorithm begins by creating the bottom mapping, represented by a
  10625. hash table. It then pushes all the nodes in the control-flow graph
  10626. onto the work list (a queue). The algorithm repeats the \code{while}
  10627. loop as long as there are items in the work list. In each iteration, a
  10628. node is popped from the work list and processed. The \code{input} for
  10629. the node is computed by taking the join of the abstract states of all
  10630. the predecessor nodes. The \code{transfer} function is then applied to
  10631. obtain the \code{output} abstract state. If the output differs from
  10632. the previous state for this block, the mapping for this block is
  10633. updated and its successor nodes are pushed onto the work list.
  10634. \begin{figure}[tb]
  10635. \begin{tcolorbox}[colback=white]
  10636. {\if\edition\racketEd
  10637. \begin{lstlisting}
  10638. (define (analyze_dataflow G transfer bottom join)
  10639. (define mapping (make-hash))
  10640. (for ([v (in-vertices G)])
  10641. (dict-set! mapping v bottom))
  10642. (define worklist (make-queue))
  10643. (for ([v (in-vertices G)])
  10644. (enqueue! worklist v))
  10645. (define trans-G (transpose G))
  10646. (while (not (queue-empty? worklist))
  10647. (define node (dequeue! worklist))
  10648. (define input (for/fold ([state bottom])
  10649. ([pred (in-neighbors trans-G node)])
  10650. (join state (dict-ref mapping pred))))
  10651. (define output (transfer node input))
  10652. (cond [(not (equal? output (dict-ref mapping node)))
  10653. (dict-set! mapping node output)
  10654. (for ([v (in-neighbors G node)])
  10655. (enqueue! worklist v))]))
  10656. mapping)
  10657. \end{lstlisting}
  10658. \fi}
  10659. {\if\edition\pythonEd\pythonColor
  10660. \begin{lstlisting}
  10661. def analyze_dataflow(G, transfer, bottom, join):
  10662. trans_G = transpose(G)
  10663. mapping = dict((v, bottom) for v in G.vertices())
  10664. worklist = deque(G.vertices)
  10665. while worklist:
  10666. node = worklist.pop()
  10667. inputs = [mapping[v] for v in trans_G.adjacent(node)]
  10668. input = reduce(join, inputs, bottom)
  10669. output = transfer(node, input)
  10670. if output != mapping[node]:
  10671. mapping[node] = output
  10672. worklist.extend(G.adjacent(node))
  10673. \end{lstlisting}
  10674. \fi}
  10675. \end{tcolorbox}
  10676. \caption{Generic work list algorithm for dataflow analysis.}
  10677. \label{fig:generic-dataflow}
  10678. \end{figure}
  10679. {\if\edition\racketEd
  10680. \section{Mutable Variables and Remove Complex Operands}
  10681. There is a subtle interaction between the
  10682. \code{remove\_complex\_operands} pass, the addition of \code{set!},
  10683. and the left-to-right order of evaluation of Racket. Consider the
  10684. following example:
  10685. \begin{lstlisting}
  10686. (let ([x 2])
  10687. (+ x (begin (set! x 40) x)))
  10688. \end{lstlisting}
  10689. The result of this program is \code{42} because the first read from
  10690. \code{x} produces \code{2} and the second produces \code{40}. However,
  10691. if we naively apply the \code{remove\_complex\_operands} pass to this
  10692. example we obtain the following program whose result is \code{80}!
  10693. \begin{lstlisting}
  10694. (let ([x 2])
  10695. (let ([tmp (begin (set! x 40) x)])
  10696. (+ x tmp)))
  10697. \end{lstlisting}
  10698. The problem is that with mutable variables, the ordering between
  10699. reads and writes is important, and the
  10700. \code{remove\_complex\_operands} pass moved the \code{set!} to happen
  10701. before the first read of \code{x}.
  10702. We recommend solving this problem by giving special treatment to reads
  10703. from mutable variables, that is, variables that occur on the left-hand
  10704. side of a \code{set!}. We mark each read from a mutable variable with
  10705. the form \code{get!} (\code{GetBang} in abstract syntax) to indicate
  10706. that the read operation is effectful in that it can produce different
  10707. results at different points in time. Let's apply this idea to the
  10708. following variation that also involves a variable that is not mutated:
  10709. % loop_test_24.rkt
  10710. \begin{lstlisting}
  10711. (let ([x 2])
  10712. (let ([y 0])
  10713. (+ y (+ x (begin (set! x 40) x)))))
  10714. \end{lstlisting}
  10715. We first analyze this program to discover that variable \code{x}
  10716. is mutable but \code{y} is not. We then transform the program as
  10717. follows, replacing each occurrence of \code{x} with \code{(get! x)}:
  10718. \begin{lstlisting}
  10719. (let ([x 2])
  10720. (let ([y 0])
  10721. (+ y (+ (get! x) (begin (set! x 40) (get! x))))))
  10722. \end{lstlisting}
  10723. Now that we have a clear distinction between reads from mutable and
  10724. immutable variables, we can apply the \code{remove\_complex\_operands}
  10725. pass, where reads from immutable variables are still classified as
  10726. atomic expressions but reads from mutable variables are classified as
  10727. complex. Thus, \code{remove\_complex\_operands} yields the following
  10728. program:\\
  10729. \begin{minipage}{\textwidth}
  10730. \begin{lstlisting}
  10731. (let ([x 2])
  10732. (let ([y 0])
  10733. (let ([t1 x])
  10734. (let ([t2 (begin (set! x 40) x)])
  10735. (let ([t3 (+ t1 t2)])
  10736. (+ y t3))))))
  10737. \end{lstlisting}
  10738. \end{minipage}
  10739. The temporary variable \code{t1} gets the value of \code{x} before the
  10740. \code{set!}, so it is \code{2}. The temporary variable \code{t2} gets
  10741. the value of \code{x} after the \code{set!}, so it is \code{40}. We
  10742. do not generate a temporary variable for the occurrence of \code{y}
  10743. because it's an immutable variable. We want to avoid such unnecessary
  10744. extra temporaries because they would needlessly increase the number of
  10745. variables, making it more likely for some of them to be spilled. The
  10746. result of this program is \code{42}, the same as the result prior to
  10747. \code{remove\_complex\_operands}.
  10748. The approach that we've sketched requires only a small
  10749. modification to \code{remove\_complex\_operands} to handle
  10750. \code{get!}. However, it requires a new pass, called
  10751. \code{uncover-get!}, that we discuss in
  10752. section~\ref{sec:uncover-get-bang}.
  10753. As an aside, this problematic interaction between \code{set!} and the
  10754. pass \code{remove\_complex\_operands} is particular to Racket and not
  10755. its predecessor, the Scheme language. The key difference is that
  10756. Scheme does not specify an order of evaluation for the arguments of an
  10757. operator or function call~\citep{SPERBER:2009aa}. Thus, a compiler for
  10758. Scheme is free to choose any ordering: both \code{42} and \code{80}
  10759. would be correct results for the example program. Interestingly,
  10760. Racket is implemented on top of the Chez Scheme
  10761. compiler~\citep{Dybvig:2006aa} and an approach similar to the one
  10762. presented in this section (using extra \code{let} bindings to control
  10763. the order of evaluation) is used in the translation from Racket to
  10764. Scheme~\citep{Flatt:2019tb}.
  10765. \fi} % racket
  10766. Having discussed the complications that arise from adding support for
  10767. assignment and loops, we turn to discussing the individual compilation
  10768. passes.
  10769. {\if\edition\racketEd
  10770. \section{Uncover \texttt{get!}}
  10771. \label{sec:uncover-get-bang}
  10772. The goal of this pass is to mark uses of mutable variables so that
  10773. \code{remove\_complex\_operands} can treat them as complex expressions
  10774. and thereby preserve their ordering relative to the side effects in
  10775. other operands. So, the first step is to collect all the mutable
  10776. variables. We recommend creating an auxiliary function for this,
  10777. named \code{collect-set!}, that recursively traverses expressions,
  10778. returning the set of all variables that occur on the left-hand side of a
  10779. \code{set!}. Here's an excerpt of its implementation.
  10780. \begin{center}
  10781. \begin{minipage}{\textwidth}
  10782. \begin{lstlisting}
  10783. (define (collect-set! e)
  10784. (match e
  10785. [(Var x) (set)]
  10786. [(Int n) (set)]
  10787. [(Let x rhs body)
  10788. (set-union (collect-set! rhs) (collect-set! body))]
  10789. [(SetBang var rhs)
  10790. (set-union (set var) (collect-set! rhs))]
  10791. ...))
  10792. \end{lstlisting}
  10793. \end{minipage}
  10794. \end{center}
  10795. By placing this pass after \code{uniquify}, we need not worry about
  10796. variable shadowing, and our logic for \code{Let} can remain simple, as
  10797. in this excerpt.
  10798. The second step is to mark the occurrences of the mutable variables
  10799. with the new \code{GetBang} AST node (\code{get!} in concrete
  10800. syntax). The following is an excerpt of the \code{uncover-get!-exp}
  10801. function, which takes two parameters: the set of mutable variables
  10802. \code{set!-vars} and the expression \code{e} to be processed. The
  10803. case for \code{(Var x)} replaces it with \code{(GetBang x)} if it is a
  10804. mutable variable or leaves it alone if not.
  10805. \begin{center}
  10806. \begin{minipage}{\textwidth}
  10807. \begin{lstlisting}
  10808. (define ((uncover-get!-exp set!-vars) e)
  10809. (match e
  10810. [(Var x)
  10811. (if (set-member? set!-vars x)
  10812. (GetBang x)
  10813. (Var x))]
  10814. ...))
  10815. \end{lstlisting}
  10816. \end{minipage}
  10817. \end{center}
  10818. To wrap things up, define the \code{uncover-get!} function for
  10819. processing a whole program, using \code{collect-set!} to obtain the
  10820. set of mutable variables and then \code{uncover-get!-exp} to replace
  10821. their occurrences with \code{GetBang}.
  10822. \fi}
  10823. \section{Remove Complex Operands}
  10824. \label{sec:rco-loop}
  10825. {\if\edition\racketEd
  10826. %
  10827. The new language forms, \code{get!}, \code{set!}, \code{begin}, and
  10828. \code{while} are all complex expressions. The subexpressions of
  10829. \code{set!}, \code{begin}, and \code{while} are allowed to be complex.
  10830. %
  10831. \fi}
  10832. {\if\edition\pythonEd\pythonColor
  10833. %
  10834. The change needed for this pass is to add a case for the \code{while}
  10835. statement. The condition of a loop is allowed to be a complex
  10836. expression, just like the condition of the \code{if} statement.
  10837. %
  10838. \fi}
  10839. %
  10840. Figure~\ref{fig:Lwhile-anf-syntax} defines the output language
  10841. \LangLoopANF{} of this pass.
  10842. \newcommand{\LwhileMonadASTRacket}{
  10843. \begin{array}{rcl}
  10844. \Atm &::=& \VOID{} \\
  10845. \Exp &::=& \GETBANG{\Var}
  10846. \MID \SETBANG{\Var}{\Exp}
  10847. \MID \BEGIN{\LP\Exp\ldots\RP}{\Exp} \\
  10848. &\MID& \WHILE{\Exp}{\Exp}
  10849. \end{array}
  10850. }
  10851. \newcommand{\LwhileMonadASTPython}{
  10852. \begin{array}{rcl}
  10853. \Stmt{} &::=& \WHILESTMT{\Exp}{\Stmt^{+}}
  10854. \end{array}
  10855. }
  10856. \begin{figure}[tp]
  10857. \centering
  10858. \begin{tcolorbox}[colback=white]
  10859. \small
  10860. {\if\edition\racketEd
  10861. \[
  10862. \begin{array}{l}
  10863. \gray{\LvarMonadASTRacket} \\ \hline
  10864. \gray{\LifMonadASTRacket} \\ \hline
  10865. \LwhileMonadASTRacket \\
  10866. \begin{array}{rcl}
  10867. \LangLoopANF &::=& \PROGRAM{\code{'()}}{\Exp}
  10868. \end{array}
  10869. \end{array}
  10870. \]
  10871. \fi}
  10872. {\if\edition\pythonEd\pythonColor
  10873. \[
  10874. \begin{array}{l}
  10875. \gray{\LvarMonadASTPython} \\ \hline
  10876. \gray{\LifMonadASTPython} \\ \hline
  10877. \LwhileMonadASTPython \\
  10878. \begin{array}{rcl}
  10879. \LangLoopANF &::=& \PROGRAM{\code{()}}{\Stmt^{*}}
  10880. \end{array}
  10881. \end{array}
  10882. \]
  10883. \fi}
  10884. \end{tcolorbox}
  10885. \caption{\LangLoopANF{} is \LangLoop{} in monadic normal form.}
  10886. \label{fig:Lwhile-anf-syntax}
  10887. \end{figure}
  10888. {\if\edition\racketEd
  10889. %
  10890. As usual, when a complex expression appears in a grammar position that
  10891. needs to be atomic, such as the argument of a primitive operator, we
  10892. must introduce a temporary variable and bind it to the complex
  10893. expression. This approach applies, unchanged, to handle the new
  10894. language forms. For example, in the following code there are two
  10895. \code{begin} expressions appearing as arguments to the \code{+}
  10896. operator. The output of \code{rco\_exp} is then shown, in which the
  10897. \code{begin} expressions have been bound to temporary
  10898. variables. Recall that \code{let} expressions in \LangLoopANF{} are
  10899. allowed to have arbitrary expressions in their right-hand side
  10900. expression, so it is fine to place \code{begin} there.
  10901. %
  10902. \begin{center}
  10903. \begin{tabular}{lcl}
  10904. \begin{minipage}{0.4\textwidth}
  10905. \begin{lstlisting}
  10906. (let ([x2 10])
  10907. (let ([y3 0])
  10908. (+ (+ (begin
  10909. (set! y3 (read))
  10910. (get! x2))
  10911. (begin
  10912. (set! x2 (read))
  10913. (get! y3)))
  10914. (get! x2))))
  10915. \end{lstlisting}
  10916. \end{minipage}
  10917. &
  10918. $\Rightarrow$
  10919. &
  10920. \begin{minipage}{0.4\textwidth}
  10921. \begin{lstlisting}
  10922. (let ([x2 10])
  10923. (let ([y3 0])
  10924. (let ([tmp4 (begin
  10925. (set! y3 (read))
  10926. x2)])
  10927. (let ([tmp5 (begin
  10928. (set! x2 (read))
  10929. y3)])
  10930. (let ([tmp6 (+ tmp4 tmp5)])
  10931. (let ([tmp7 x2])
  10932. (+ tmp6 tmp7)))))))
  10933. \end{lstlisting}
  10934. \end{minipage}
  10935. \end{tabular}
  10936. \end{center}
  10937. \fi}
  10938. \section{Explicate Control \racket{and \LangCLoop{}}}
  10939. \label{sec:explicate-loop}
  10940. \newcommand{\CloopASTRacket}{
  10941. \begin{array}{lcl}
  10942. \Atm &::=& \VOID \\
  10943. \Stmt &::=& \READ{}
  10944. \end{array}
  10945. }
  10946. {\if\edition\racketEd
  10947. Recall that in the \code{explicate\_control} pass we define one helper
  10948. function for each kind of position in the program. For the \LangVar{}
  10949. language of integers and variables, we needed assignment and tail
  10950. positions. The \code{if} expressions of \LangIf{} introduced predicate
  10951. positions. For \LangLoop{}, the \code{begin} expression introduces yet
  10952. another kind of position: effect position. Except for the last
  10953. subexpression, the subexpressions inside a \code{begin} are evaluated
  10954. only for their effect. Their result values are discarded. We can
  10955. generate better code by taking this fact into account.
  10956. The output language of \code{explicate\_control} is \LangCLoop{}
  10957. (figure~\ref{fig:c7-syntax}), which is nearly identical to
  10958. \LangCIf{}. The only syntactic differences are the addition of \VOID{}
  10959. and that \code{read} may appear as a statement. The most significant
  10960. difference between the programs generated by \code{explicate\_control}
  10961. in chapter~\ref{ch:Lif} versus \code{explicate\_control} in this
  10962. chapter is that the control-flow graphs of the latter may contain
  10963. cycles.
  10964. \begin{figure}[tp]
  10965. \begin{tcolorbox}[colback=white]
  10966. \small
  10967. \[
  10968. \begin{array}{l}
  10969. \gray{\CvarASTRacket} \\ \hline
  10970. \gray{\CifASTRacket} \\ \hline
  10971. \CloopASTRacket \\
  10972. \begin{array}{lcl}
  10973. \LangCLoopM{} & ::= & \CPROGRAM{\itm{info}}{\LP\LP\itm{label}\,\key{.}\,\Tail\RP\ldots\RP}
  10974. \end{array}
  10975. \end{array}
  10976. \]
  10977. \end{tcolorbox}
  10978. \caption{The abstract syntax of \LangCLoop{}, extending \LangCIf{} (figure~\ref{fig:c1-syntax}).}
  10979. \label{fig:c7-syntax}
  10980. \end{figure}
  10981. The new auxiliary function \code{explicate\_effect} takes an
  10982. expression (in an effect position) and the code for its
  10983. continuation. The function returns a $\Tail$ that includes the
  10984. generated code for the input expression followed by the
  10985. continuation. If the expression is obviously pure, that is, never
  10986. causes side effects, then the expression can be removed, so the result
  10987. is just the continuation.
  10988. %
  10989. The case for $\WHILE{\itm{cnd}}{\itm{body}}$ expressions is
  10990. interesting; the generated code is depicted in the following diagram:
  10991. \begin{center}
  10992. \begin{minipage}{0.3\textwidth}
  10993. \xymatrix{
  10994. *+[F=]{\txt{\code{goto} \itm{loop}}} \ar[r]
  10995. & *+[F]{\txt{\itm{loop}: \\ \itm{cnd'}}} \ar[r]^{else} \ar[d]^{then}
  10996. & *+[F]{\txt{\itm{cont}}} \\
  10997. & *+[F]{\txt{\itm{body'} \\ \code{goto} \itm{loop}}} \ar@/^50pt/[u]
  10998. }
  10999. \end{minipage}
  11000. \end{center}
  11001. We start by creating a fresh label $\itm{loop}$ for the top of the
  11002. loop. Next, recursively process the \itm{body} (in effect position)
  11003. with a \code{goto} to $\itm{loop}$ as the continuation, producing
  11004. \itm{body'}. Process the \itm{cnd} (in predicate position) with
  11005. \itm{body'} as the \emph{then} branch and the continuation block as the
  11006. \emph{else} branch. The result should be added to the dictionary of
  11007. \code{basic-blocks} with the label \itm{loop}. The result for the
  11008. whole \code{while} loop is a \code{goto} to the \itm{loop} label.
  11009. The auxiliary functions for tail, assignment, and predicate positions
  11010. need to be updated. The three new language forms, \code{while},
  11011. \code{set!}, and \code{begin}, can appear in assignment and tail
  11012. positions. Only \code{begin} may appear in predicate positions; the
  11013. other two have result type \code{Void}.
  11014. \fi}
  11015. %
  11016. {\if\edition\pythonEd\pythonColor
  11017. %
  11018. The output of this pass is the language \LangCIf{}. No new language
  11019. features are needed in the output, because a \code{while} loop can be
  11020. expressed in terms of \code{goto} and \code{if} statements, which are
  11021. already in \LangCIf{}.
  11022. %
  11023. Add a case for the \code{while} statement to the
  11024. \code{explicate\_stmt} method, using \code{explicate\_pred} to process
  11025. the condition expression.
  11026. %
  11027. \fi}
  11028. {\if\edition\racketEd
  11029. \section{Select Instructions}
  11030. \label{sec:select-instructions-loop}
  11031. \index{subject}{select instructions}
  11032. Only two small additions are needed in the \code{select\_instructions}
  11033. pass to handle the changes to \LangCLoop{}. First, to handle the
  11034. addition of \VOID{} we simply translate it to \code{0}. Second,
  11035. \code{read} may appear as a stand-alone statement instead of
  11036. appearing only on the right-hand side of an assignment statement. The code
  11037. generation is nearly identical to the one for assignment; just leave
  11038. off the instruction for moving the result into the left-hand side.
  11039. \fi}
  11040. \section{Register Allocation}
  11041. \label{sec:register-allocation-loop}
  11042. As discussed in section~\ref{sec:dataflow-analysis}, the presence of
  11043. loops in \LangLoop{} means that the control-flow graphs may contain cycles,
  11044. which complicates the liveness analysis needed for register
  11045. allocation.
  11046. %
  11047. We recommend using the generic \code{analyze\_dataflow} function that
  11048. was presented at the end of section~\ref{sec:dataflow-analysis} to
  11049. perform liveness analysis, replacing the code in
  11050. \code{uncover\_live} that processed the basic blocks in topological
  11051. order (section~\ref{sec:liveness-analysis-Lif}).
  11052. The \code{analyze\_dataflow} function has the following four parameters.
  11053. \begin{enumerate}
  11054. \item The first parameter \code{G} should be passed the transpose
  11055. of the control-flow graph.
  11056. \item The second parameter \code{transfer} should be passed a function
  11057. that applies liveness analysis to a basic block. It takes two
  11058. parameters: the label for the block to analyze and the live-after
  11059. set for that block. The transfer function should return the
  11060. live-before set for the block.
  11061. %
  11062. \racket{Also, as a side effect, it should update the block's
  11063. $\itm{info}$ with the liveness information for each instruction.}
  11064. %
  11065. \python{Also, as a side effect, it should update the live-before and
  11066. live-after sets for each instruction.}
  11067. %
  11068. To implement the \code{transfer} function, you should be able to
  11069. reuse the code you already have for analyzing basic blocks.
  11070. \item The third and fourth parameters of \code{analyze\_dataflow} are
  11071. \code{bottom} and \code{join} for the lattice of abstract states,
  11072. that is, sets of locations. For liveness analysis, the bottom of the
  11073. lattice is the empty set, and the join operator is set union.
  11074. \end{enumerate}
  11075. \begin{figure}[tp]
  11076. \begin{tcolorbox}[colback=white]
  11077. {\if\edition\racketEd
  11078. \begin{tikzpicture}[baseline=(current bounding box.center),scale=0.90]
  11079. \node (Lfun) at (0,2) {\large \LangLoop{}};
  11080. \node (Lfun-2) at (3,2) {\large \LangLoop{}};
  11081. \node (F1-4) at (6,2) {\large \LangLoop{}};
  11082. \node (F1-5) at (9,2) {\large \LangLoop{}};
  11083. \node (F1-6) at (9,0) {\large \LangLoopANF{}};
  11084. \node (C3-2) at (0,0) {\large \racket{\LangCLoop{}}\python{\LangCIf{}}};
  11085. \node (x86-2) at (0,-2) {\large \LangXIfVar{}};
  11086. \node (x86-2-1) at (0,-4) {\large \LangXIfVar{}};
  11087. \node (x86-2-2) at (4,-4) {\large \LangXIfVar{}};
  11088. \node (x86-3) at (4,-2) {\large \LangXIfVar{}};
  11089. \node (x86-4) at (8,-2) {\large \LangXIf{}};
  11090. \node (x86-5) at (8,-4) {\large \LangXIf{}};
  11091. \path[->,bend left=15] (Lfun) edge [above] node
  11092. {\ttfamily\footnotesize shrink} (Lfun-2);
  11093. \path[->,bend left=15] (Lfun-2) edge [above] node
  11094. {\ttfamily\footnotesize uniquify} (F1-4);
  11095. \path[->,bend left=15] (F1-4) edge [above] node
  11096. {\ttfamily\footnotesize uncover\_get!} (F1-5);
  11097. \path[->,bend left=15] (F1-5) edge [left] node
  11098. {\ttfamily\footnotesize remove\_complex\_operands} (F1-6);
  11099. \path[->,bend left=10] (F1-6) edge [above] node
  11100. {\ttfamily\footnotesize explicate\_control} (C3-2);
  11101. \path[->,bend left=15] (C3-2) edge [right] node
  11102. {\ttfamily\footnotesize select\_instructions} (x86-2);
  11103. \path[->,bend right=15] (x86-2) edge [right] node
  11104. {\ttfamily\footnotesize uncover\_live} (x86-2-1);
  11105. \path[->,bend right=15] (x86-2-1) edge [below] node
  11106. {\ttfamily\footnotesize build\_interference} (x86-2-2);
  11107. \path[->,bend right=15] (x86-2-2) edge [right] node
  11108. {\ttfamily\footnotesize allocate\_registers} (x86-3);
  11109. \path[->,bend left=15] (x86-3) edge [above] node
  11110. {\ttfamily\footnotesize patch\_instructions} (x86-4);
  11111. \path[->,bend left=15] (x86-4) edge [right] node
  11112. {\ttfamily\footnotesize prelude\_and\_conclusion} (x86-5);
  11113. \end{tikzpicture}
  11114. \fi}
  11115. {\if\edition\pythonEd\pythonColor
  11116. \begin{tikzpicture}[baseline=(current bounding box.center),scale=0.90]
  11117. \node (Lfun) at (0,2) {\large \LangLoop{}};
  11118. \node (Lfun-2) at (4,2) {\large \LangLoop{}};
  11119. \node (F1-6) at (8,2) {\large \LangLoopANF{}};
  11120. \node (C3-2) at (0,0) {\large \racket{\LangCLoop{}}\python{\LangCIf{}}};
  11121. \node (x86-2) at (0,-2) {\large \LangXIfVar{}};
  11122. \node (x86-3) at (4,-2) {\large \LangXIfVar{}};
  11123. \node (x86-4) at (8,-2) {\large \LangXIf{}};
  11124. \node (x86-5) at (12,-2) {\large \LangXIf{}};
  11125. \path[->,bend left=15] (Lfun) edge [above] node
  11126. {\ttfamily\footnotesize shrink} (Lfun-2);
  11127. \path[->,bend left=15] (Lfun-2) edge [above] node
  11128. {\ttfamily\footnotesize remove\_complex\_operands} (F1-6);
  11129. \path[->,bend left=10] (F1-6) edge [right] node
  11130. {\ttfamily\footnotesize \ \ explicate\_control} (C3-2);
  11131. \path[->,bend right=15] (C3-2) edge [right] node
  11132. {\ttfamily\footnotesize select\_instructions} (x86-2);
  11133. \path[->,bend right=15] (x86-2) edge [below] node
  11134. {\ttfamily\footnotesize assign\_homes} (x86-3);
  11135. \path[->,bend left=15] (x86-3) edge [above] node
  11136. {\ttfamily\footnotesize patch\_instructions} (x86-4);
  11137. \path[->,bend right=15] (x86-4) edge [below] node
  11138. {\ttfamily\footnotesize prelude\_and\_conclusion} (x86-5);
  11139. \end{tikzpicture}
  11140. \fi}
  11141. \end{tcolorbox}
  11142. \caption{Diagram of the passes for \LangLoop{}.}
  11143. \label{fig:Lwhile-passes}
  11144. \end{figure}
  11145. Figure~\ref{fig:Lwhile-passes} provides an overview of all the passes needed
  11146. for the compilation of \LangLoop{}.
  11147. % Further Reading: dataflow analysis
  11148. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  11149. \chapter{Tuples and Garbage Collection}
  11150. \label{ch:Lvec}
  11151. \index{subject}{tuple}
  11152. \index{subject}{vector}
  11153. \setcounter{footnote}{0}
  11154. %% \margincomment{\scriptsize To do: Flesh out this chapter, e.g., make sure
  11155. %% all the IR grammars are spelled out! \\ --Jeremy}
  11156. %% \margincomment{\scriptsize Be more explicit about how to deal with
  11157. %% the root stack. \\ --Jeremy}
  11158. In this chapter we study the implementation of tuples\racket{, called
  11159. vectors in Racket}. A tuple is a fixed-length sequence of elements
  11160. in which each element may have a different type.
  11161. %
  11162. This language feature is the first to use the computer's
  11163. \emph{heap}\index{subject}{heap}, because the lifetime of a tuple is
  11164. indefinite; that is, a tuple lives forever from the programmer's
  11165. viewpoint. Of course, from an implementer's viewpoint, it is important
  11166. to reclaim the space associated with a tuple when it is no longer
  11167. needed, which is why we also study \emph{garbage collection}
  11168. \index{subject}{garbage collection} techniques in this chapter.
  11169. Section~\ref{sec:r3} introduces the \LangVec{} language, including its
  11170. interpreter and type checker. The \LangVec{} language extends the \LangLoop{}
  11171. language (chapter~\ref{ch:Lwhile}) with tuples.
  11172. %
  11173. Section~\ref{sec:GC} describes a garbage collection algorithm based on
  11174. copying live tuples back and forth between two halves of the heap. The
  11175. garbage collector requires coordination with the compiler so that it
  11176. can find all the live tuples.
  11177. %
  11178. Sections~\ref{sec:expose-allocation} through \ref{sec:print-x86-gc}
  11179. discuss the necessary changes and additions to the compiler passes,
  11180. including a new compiler pass named \code{expose\_allocation}.
  11181. \section{The \LangVec{} Language}
  11182. \label{sec:r3}
  11183. Figure~\ref{fig:Lvec-concrete-syntax} shows the definition of the
  11184. concrete syntax for \LangVec{}, and figure~\ref{fig:Lvec-syntax} shows
  11185. the definition of the abstract syntax.
  11186. %
  11187. \racket{The \LangVec{} language includes the forms \code{vector} for
  11188. creating a tuple, \code{vector-ref} for reading an element of a
  11189. tuple, \code{vector-set!} for writing to an element of a tuple, and
  11190. \code{vector-length} for obtaining the number of elements of a
  11191. tuple.}
  11192. %
  11193. \python{The \LangVec{} language adds (1) tuple creation via a
  11194. comma-separated list of expressions; (2) accessing an element of a
  11195. tuple with the square bracket notation (i.e., \code{t[n]} returns
  11196. the element at index \code{n} of tuple \code{t}); (3) the \code{is}
  11197. comparison operator; and (4) obtaining the number of elements (the
  11198. length) of a tuple. In this chapter, we restrict access indices to
  11199. constant integers.}
  11200. %
  11201. The following program shows an example of the use of tuples. It creates a tuple
  11202. \code{t} containing the elements \code{40},
  11203. \racket{\code{\#t}}\python{\code{True}}, and another tuple that
  11204. contains just \code{2}. The element at index $1$ of \code{t} is
  11205. \racket{\code{\#t}}\python{\code{True}}, so the \emph{then} branch of the
  11206. \key{if} is taken. The element at index $0$ of \code{t} is \code{40},
  11207. to which we add \code{2}, the element at index $0$ of the tuple.
  11208. The result of the program is \code{42}.
  11209. %
  11210. {\if\edition\racketEd
  11211. \begin{lstlisting}
  11212. (let ([t (vector 40 #t (vector 2))])
  11213. (if (vector-ref t 1)
  11214. (+ (vector-ref t 0)
  11215. (vector-ref (vector-ref t 2) 0))
  11216. 44))
  11217. \end{lstlisting}
  11218. \fi}
  11219. {\if\edition\pythonEd\pythonColor
  11220. \begin{lstlisting}
  11221. t = 40, True, (2,)
  11222. print(t[0] + t[2][0] if t[1] else 44)
  11223. \end{lstlisting}
  11224. \fi}
  11225. \newcommand{\LtupGrammarRacket}{
  11226. \begin{array}{lcl}
  11227. \Type &::=& \LP\key{Vector}\;\Type^{*}\RP \\
  11228. \Exp &::=& \LP\key{vector}\;\Exp^{*}\RP
  11229. \MID \LP\key{vector-length}\;\Exp\RP \\
  11230. &\MID& \LP\key{vector-ref}\;\Exp\;\Int\RP
  11231. \MID \LP\key{vector-set!}\;\Exp\;\Int\;\Exp\RP
  11232. \end{array}
  11233. }
  11234. \newcommand{\LtupASTRacket}{
  11235. \begin{array}{lcl}
  11236. \Type &::=& \LP\key{Vector}\;\Type^{*}\RP \\
  11237. \itm{op} &::=& \code{vector} \MID \code{vector-length} \\
  11238. \Exp &::=& \VECREF{\Exp}{\INT{\Int}} \\
  11239. &\MID& \VECSET{\Exp}{\INT{\Int}}{\Exp}
  11240. % &\MID& \LP\key{HasType}~\Exp~\Type \RP
  11241. \end{array}
  11242. }
  11243. \newcommand{\LtupGrammarPython}{
  11244. \begin{array}{rcl}
  11245. \itm{cmp} &::= & \key{is} \\
  11246. \Exp &::=& \Exp \key{,} \ldots \key{,} \Exp \MID \CGET{\Exp}{\Int} \MID \CLEN{\Exp}
  11247. \end{array}
  11248. }
  11249. \newcommand{\LtupASTPython}{
  11250. \begin{array}{lcl}
  11251. \itm{cmp} &::= & \code{Is()} \\
  11252. \Exp &::=& \TUPLE{\Exp^{+}} \MID \GET{\Exp}{\INT{\Int}} \\
  11253. &\MID& \LEN{\Exp}
  11254. \end{array}
  11255. }
  11256. \begin{figure}[tbp]
  11257. \centering
  11258. \begin{tcolorbox}[colback=white]
  11259. \small
  11260. {\if\edition\racketEd
  11261. \[
  11262. \begin{array}{l}
  11263. \gray{\LintGrammarRacket{}} \\ \hline
  11264. \gray{\LvarGrammarRacket{}} \\ \hline
  11265. \gray{\LifGrammarRacket{}} \\ \hline
  11266. \gray{\LwhileGrammarRacket} \\ \hline
  11267. \LtupGrammarRacket \\
  11268. \begin{array}{lcl}
  11269. \LangVecM{} &::=& \Exp
  11270. \end{array}
  11271. \end{array}
  11272. \]
  11273. \fi}
  11274. {\if\edition\pythonEd\pythonColor
  11275. \[
  11276. \begin{array}{l}
  11277. \gray{\LintGrammarPython{}} \\ \hline
  11278. \gray{\LvarGrammarPython{}} \\ \hline
  11279. \gray{\LifGrammarPython{}} \\ \hline
  11280. \gray{\LwhileGrammarPython} \\ \hline
  11281. \LtupGrammarPython \\
  11282. \begin{array}{rcl}
  11283. \LangVecM{} &::=& \Stmt^{*}
  11284. \end{array}
  11285. \end{array}
  11286. \]
  11287. \fi}
  11288. \end{tcolorbox}
  11289. \caption{The concrete syntax of \LangVec{}, extending \LangLoop{}
  11290. (figure~\ref{fig:Lwhile-concrete-syntax}).}
  11291. \label{fig:Lvec-concrete-syntax}
  11292. \end{figure}
  11293. \begin{figure}[tp]
  11294. \centering
  11295. \begin{tcolorbox}[colback=white]
  11296. \small
  11297. {\if\edition\racketEd
  11298. \[
  11299. \begin{array}{l}
  11300. \gray{\LintOpAST} \\ \hline
  11301. \gray{\LvarASTRacket{}} \\ \hline
  11302. \gray{\LifASTRacket{}} \\ \hline
  11303. \gray{\LwhileASTRacket{}} \\ \hline
  11304. \LtupASTRacket{} \\
  11305. \begin{array}{lcl}
  11306. \LangVecM{} &::=& \PROGRAM{\key{'()}}{\Exp}
  11307. \end{array}
  11308. \end{array}
  11309. \]
  11310. \fi}
  11311. {\if\edition\pythonEd\pythonColor
  11312. \[
  11313. \begin{array}{l}
  11314. \gray{\LintASTPython} \\ \hline
  11315. \gray{\LvarASTPython} \\ \hline
  11316. \gray{\LifASTPython} \\ \hline
  11317. \gray{\LwhileASTPython} \\ \hline
  11318. \LtupASTPython \\
  11319. \begin{array}{lcl}
  11320. \LangVecM{} &::=& \PROGRAM{\code{'()}}{\Stmt^{*}}
  11321. \end{array}
  11322. \end{array}
  11323. \]
  11324. \fi}
  11325. \end{tcolorbox}
  11326. \caption{The abstract syntax of \LangVec{}.}
  11327. \label{fig:Lvec-syntax}
  11328. \end{figure}
  11329. Tuples raise several interesting new issues. First, variable binding
  11330. performs a shallow copy in dealing with tuples, which means that
  11331. different variables can refer to the same tuple; that is, two
  11332. variables can be \emph{aliases}\index{subject}{alias} for the same
  11333. entity. Consider the following example, in which \code{t1} and
  11334. \code{t2} refer to the same tuple value and \code{t3} refers to a
  11335. different tuple value with equal elements. The result of the
  11336. program is \code{42}.
  11337. \begin{center}
  11338. \begin{minipage}{0.96\textwidth}
  11339. {\if\edition\racketEd
  11340. \begin{lstlisting}
  11341. (let ([t1 (vector 3 7)])
  11342. (let ([t2 t1])
  11343. (let ([t3 (vector 3 7)])
  11344. (if (and (eq? t1 t2) (not (eq? t1 t3)))
  11345. 42
  11346. 0))))
  11347. \end{lstlisting}
  11348. \fi}
  11349. {\if\edition\pythonEd\pythonColor
  11350. \begin{lstlisting}
  11351. t1 = 3, 7
  11352. t2 = t1
  11353. t3 = 3, 7
  11354. print(42 if (t1 is t2) and not (t1 is t3) else 0)
  11355. \end{lstlisting}
  11356. \fi}
  11357. \end{minipage}
  11358. \end{center}
  11359. {\if\edition\racketEd
  11360. Whether two variables are aliased or not affects what happens
  11361. when the underlying tuple is mutated\index{subject}{mutation}.
  11362. Consider the following example in which \code{t1} and \code{t2}
  11363. again refer to the same tuple value.
  11364. \begin{center}
  11365. \begin{minipage}{0.96\textwidth}
  11366. \begin{lstlisting}
  11367. (let ([t1 (vector 3 7)])
  11368. (let ([t2 t1])
  11369. (let ([_ (vector-set! t2 0 42)])
  11370. (vector-ref t1 0))))
  11371. \end{lstlisting}
  11372. \end{minipage}
  11373. \end{center}
  11374. The mutation through \code{t2} is visible in referencing the tuple
  11375. from \code{t1}, so the result of this program is \code{42}.
  11376. \fi}
  11377. The next issue concerns the lifetime of tuples. When does a tuple's
  11378. lifetime end? Notice that \LangVec{} does not include an operation
  11379. for deleting tuples. Furthermore, the lifetime of a tuple is not tied
  11380. to any notion of static scoping.
  11381. %
  11382. {\if\edition\racketEd
  11383. %
  11384. For example, the following program returns \code{42} even though the
  11385. variable \code{w} goes out of scope prior to the \code{vector-ref}
  11386. that reads from the vector to which it was bound.
  11387. \begin{center}
  11388. \begin{minipage}{0.96\textwidth}
  11389. \begin{lstlisting}
  11390. (let ([v (vector (vector 44))])
  11391. (let ([x (let ([w (vector 42)])
  11392. (let ([_ (vector-set! v 0 w)])
  11393. 0))])
  11394. (+ x (vector-ref (vector-ref v 0) 0))))
  11395. \end{lstlisting}
  11396. \end{minipage}
  11397. \end{center}
  11398. \fi}
  11399. %
  11400. {\if\edition\pythonEd\pythonColor
  11401. %
  11402. For example, the following program returns \code{42} even though the
  11403. variable \code{x} goes out of scope when the function returns, prior
  11404. to reading the tuple element at index $0$. (We study the compilation
  11405. of functions in chapter~\ref{ch:Lfun}.)
  11406. %
  11407. \begin{center}
  11408. \begin{minipage}{0.96\textwidth}
  11409. \begin{lstlisting}
  11410. def f():
  11411. x = 42, 43
  11412. return x
  11413. t = f()
  11414. print(t[0])
  11415. \end{lstlisting}
  11416. \end{minipage}
  11417. \end{center}
  11418. \fi}
  11419. %
  11420. From the perspective of programmer-observable behavior, tuples live
  11421. forever. However, if they really lived forever then many long-running
  11422. programs would run out of memory. To solve this problem, the
  11423. language's runtime system performs automatic garbage collection.
  11424. Figure~\ref{fig:interp-Lvec} shows the definitional interpreter for the
  11425. \LangVec{} language.
  11426. %
  11427. \racket{We define the \code{vector}, \code{vector-ref},
  11428. \code{vector-set!}, and \code{vector-length} operations for
  11429. \LangVec{} in terms of the corresponding operations in Racket. One
  11430. subtle point is that the \code{vector-set!} operation returns the
  11431. \code{\#<void>} value.}
  11432. %
  11433. \python{We represent tuples with Python lists in the interpreter
  11434. because we need to write to them
  11435. (section~\ref{sec:expose-allocation}). (Python tuples are
  11436. immutable.) We define element access, the \code{is} operator, and
  11437. the \code{len} operator for \LangVec{} in terms of the corresponding
  11438. operations in Python.}
  11439. \begin{figure}[tbp]
  11440. \begin{tcolorbox}[colback=white]
  11441. {\if\edition\racketEd
  11442. \begin{lstlisting}
  11443. (define interp-Lvec-class
  11444. (class interp-Lwhile-class
  11445. (super-new)
  11446. (define/override (interp-op op)
  11447. (match op
  11448. ['eq? (lambda (v1 v2)
  11449. (cond [(or (and (fixnum? v1) (fixnum? v2))
  11450. (and (boolean? v1) (boolean? v2))
  11451. (and (vector? v1) (vector? v2))
  11452. (and (void? v1) (void? v2)))
  11453. (eq? v1 v2)]))]
  11454. ['vector vector]
  11455. ['vector-length vector-length]
  11456. ['vector-ref vector-ref]
  11457. ['vector-set! vector-set!]
  11458. [else (super interp-op op)]
  11459. ))
  11460. (define/override ((interp-exp env) e)
  11461. (match e
  11462. [(HasType e t) ((interp-exp env) e)]
  11463. [else ((super interp-exp env) e)]
  11464. ))
  11465. ))
  11466. (define (interp-Lvec p)
  11467. (send (new interp-Lvec-class) interp-program p))
  11468. \end{lstlisting}
  11469. \fi}
  11470. %
  11471. {\if\edition\pythonEd\pythonColor
  11472. \begin{lstlisting}
  11473. class InterpLtup(InterpLwhile):
  11474. def interp_cmp(self, cmp):
  11475. match cmp:
  11476. case Is():
  11477. return lambda x, y: x is y
  11478. case _:
  11479. return super().interp_cmp(cmp)
  11480. def interp_exp(self, e, env):
  11481. match e:
  11482. case Tuple(es, Load()):
  11483. return tuple([self.interp_exp(e, env) for e in es])
  11484. case Subscript(tup, index, Load()):
  11485. t = self.interp_exp(tup, env)
  11486. n = self.interp_exp(index, env)
  11487. return t[n]
  11488. case _:
  11489. return super().interp_exp(e, env)
  11490. \end{lstlisting}
  11491. \fi}
  11492. \end{tcolorbox}
  11493. \caption{Interpreter for the \LangVec{} language.}
  11494. \label{fig:interp-Lvec}
  11495. \end{figure}
  11496. Figure~\ref{fig:type-check-Lvec} shows the type checker for
  11497. \LangVec{}.
  11498. %
  11499. The type of a tuple is a
  11500. \racket{\code{Vector}}\python{\code{TupleType}} type that contains a
  11501. type for each of its elements.
  11502. %
  11503. \racket{To create the s-expression for the \code{Vector} type, we use the
  11504. \href{https://docs.racket-lang.org/reference/quasiquote.html}{unquote-splicing
  11505. operator} \code{,@} to insert the list \code{t*} without its usual
  11506. start and end parentheses. \index{subject}{unquote-splicing}}
  11507. %
  11508. The type of accessing the ith element of a tuple is the ith element
  11509. type of the tuple's type, if there is one. If not, an error is
  11510. signaled. Note that the index \code{i} is required to be a constant
  11511. integer (and not, for example, a call to
  11512. \racket{\code{read}}\python{\code{input\_int}}) so that the type checker
  11513. can determine the element's type given the tuple type.
  11514. %
  11515. \racket{
  11516. Regarding writing an element to a tuple, the element's type must
  11517. be equal to the ith element type of the tuple's type.
  11518. The result type is \code{Void}.}
  11519. %% When allocating a tuple,
  11520. %% we need to know which elements of the tuple are themselves tuples for
  11521. %% the purposes of garbage collection. We can obtain this information
  11522. %% during type checking. The type checker shown in
  11523. %% figure~\ref{fig:type-check-Lvec} not only computes the type of an
  11524. %% expression; it also
  11525. %% %
  11526. %% \racket{wraps every tuple creation with the form $(\key{HasType}~e~T)$,
  11527. %% where $T$ is the tuple's type.
  11528. %
  11529. %records the type of each tuple expression in a new field named \code{has\_type}.
  11530. \begin{figure}[tp]
  11531. \begin{tcolorbox}[colback=white]
  11532. {\if\edition\racketEd
  11533. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  11534. (define type-check-Lvec-class
  11535. (class type-check-Lif-class
  11536. (super-new)
  11537. (inherit check-type-equal?)
  11538. (define/override (type-check-exp env)
  11539. (lambda (e)
  11540. (define recur (type-check-exp env))
  11541. (match e
  11542. [(Prim 'vector es)
  11543. (define-values (e* t*) (for/lists (e* t*) ([e es]) (recur e)))
  11544. (define t `(Vector ,@t*))
  11545. (values (Prim 'vector e*) t)]
  11546. [(Prim 'vector-ref (list e1 (Int i)))
  11547. (define-values (e1^ t) (recur e1))
  11548. (match t
  11549. [`(Vector ,ts ...)
  11550. (unless (and (0 . <= . i) (i . < . (length ts)))
  11551. (error 'type-check "index ~a out of bounds\nin ~v" i e))
  11552. (values (Prim 'vector-ref (list e1^ (Int i))) (list-ref ts i))]
  11553. [else (error 'type-check "expect Vector, not ~a\nin ~v" t e)])]
  11554. [(Prim 'vector-set! (list e1 (Int i) elt) )
  11555. (define-values (e-vec t-vec) (recur e1))
  11556. (define-values (e-elt^ t-elt) (recur elt))
  11557. (match t-vec
  11558. [`(Vector ,ts ...)
  11559. (unless (and (0 . <= . i) (i . < . (length ts)))
  11560. (error 'type-check "index ~a out of bounds\nin ~v" i e))
  11561. (check-type-equal? (list-ref ts i) t-elt e)
  11562. (values (Prim 'vector-set! (list e-vec (Int i) e-elt^)) 'Void)]
  11563. [else (error 'type-check "expect Vector, not ~a\nin ~v" t-vec e)])]
  11564. [(Prim 'vector-length (list e))
  11565. (define-values (e^ t) (recur e))
  11566. (match t
  11567. [`(Vector ,ts ...)
  11568. (values (Prim 'vector-length (list e^)) 'Integer)]
  11569. [else (error 'type-check "expect Vector, not ~a\nin ~v" t e)])]
  11570. [(Prim 'eq? (list arg1 arg2))
  11571. (define-values (e1 t1) (recur arg1))
  11572. (define-values (e2 t2) (recur arg2))
  11573. (match* (t1 t2)
  11574. [(`(Vector ,ts1 ...) `(Vector ,ts2 ...)) (void)]
  11575. [(other wise) (check-type-equal? t1 t2 e)])
  11576. (values (Prim 'eq? (list e1 e2)) 'Boolean)]
  11577. [else ((super type-check-exp env) e)]
  11578. )))
  11579. ))
  11580. (define (type-check-Lvec p)
  11581. (send (new type-check-Lvec-class) type-check-program p))
  11582. \end{lstlisting}
  11583. \fi}
  11584. {\if\edition\pythonEd\pythonColor
  11585. \begin{lstlisting}
  11586. class TypeCheckLtup(TypeCheckLwhile):
  11587. def type_check_exp(self, e, env):
  11588. match e:
  11589. case Compare(left, [cmp], [right]) if isinstance(cmp, Is):
  11590. l = self.type_check_exp(left, env)
  11591. r = self.type_check_exp(right, env)
  11592. check_type_equal(l, r, e)
  11593. return bool
  11594. case Tuple(es, Load()):
  11595. ts = [self.type_check_exp(e, env) for e in es]
  11596. e.has_type = TupleType(ts)
  11597. return e.has_type
  11598. case Subscript(tup, Constant(i), Load()):
  11599. tup_ty = self.type_check_exp(tup, env)
  11600. i_ty = self.type_check_exp(Constant(i), env)
  11601. check_type_equal(i_ty, int, i)
  11602. match tup_ty:
  11603. case TupleType(ts):
  11604. return ts[i]
  11605. case _:
  11606. raise Exception('expected a tuple, not ' + repr(tup_ty))
  11607. case _:
  11608. return super().type_check_exp(e, env)
  11609. \end{lstlisting}
  11610. \fi}
  11611. \end{tcolorbox}
  11612. \caption{Type checker for the \LangVec{} language.}
  11613. \label{fig:type-check-Lvec}
  11614. \end{figure}
  11615. \section{Garbage Collection}
  11616. \label{sec:GC}
  11617. Garbage collection is a runtime technique for reclaiming space on the
  11618. heap that will not be used in the future of the running program. We
  11619. use the term \emph{object}\index{subject}{object} to refer to any
  11620. value that is stored in the heap, which for now includes only
  11621. tuples.%
  11622. %
  11623. \footnote{The term \emph{object} as it is used in the context of
  11624. object-oriented programming has a more specific meaning than the
  11625. way in which we use the term here.}
  11626. %
  11627. Unfortunately, it is impossible to know precisely which objects will
  11628. be accessed in the future and which will not. Instead, garbage
  11629. collectors overapproximate the set of objects that will be accessed by
  11630. identifying which objects can possibly be accessed. The running
  11631. program can directly access objects that are in registers and on the
  11632. procedure call stack. It can also transitively access the elements of
  11633. tuples, starting with a tuple whose address is in a register or on the
  11634. procedure call stack. We define the \emph{root
  11635. set}\index{subject}{root set} to be all the tuple addresses that are
  11636. in registers or on the procedure call stack. We define the \emph{live
  11637. objects}\index{subject}{live objects} to be the objects that are
  11638. reachable from the root set. Garbage collectors reclaim the space that
  11639. is allocated to objects that are no longer live. \index{subject}{allocate}
  11640. That means that some objects may not get reclaimed as soon as they could be,
  11641. but at least
  11642. garbage collectors do not reclaim the space dedicated to objects that
  11643. will be accessed in the future! The programmer can influence which
  11644. objects get reclaimed by causing them to become unreachable.
  11645. So the goal of the garbage collector is twofold:
  11646. \begin{enumerate}
  11647. \item to preserve all the live objects, and
  11648. \item to reclaim the memory of everything else, that is, the \emph{garbage}.
  11649. \end{enumerate}
  11650. \subsection{Two-Space Copying Collector}
  11651. Here we study a relatively simple algorithm for garbage collection
  11652. that is the basis of many state-of-the-art garbage
  11653. collectors~\citep{Lieberman:1983aa,Ungar:1984aa,Jones:1996aa,Detlefs:2004aa,Dybvig:2006aa,Tene:2011kx}. In
  11654. particular, we describe a two-space copying
  11655. collector~\citep{Wilson:1992fk} that uses Cheney's algorithm to
  11656. perform the copy~\citep{Cheney:1970aa}. \index{subject}{copying
  11657. collector} \index{subject}{two-space copying collector}
  11658. Figure~\ref{fig:copying-collector} gives a coarse-grained depiction of
  11659. what happens in a two-space collector, showing two time steps, prior
  11660. to garbage collection (on the top) and after garbage collection (on
  11661. the bottom). In a two-space collector, the heap is divided into two
  11662. parts named the FromSpace\index{subject}{FromSpace} and the
  11663. ToSpace\index{subject}{ToSpace}. Initially, all allocations go to the
  11664. FromSpace until there is not enough room for the next allocation
  11665. request. At that point, the garbage collector goes to work to make
  11666. room for the next allocation.
  11667. A copying collector makes more room by copying all the live objects
  11668. from the FromSpace into the ToSpace and then performs a sleight of
  11669. hand, treating the ToSpace as the new FromSpace and the old FromSpace
  11670. as the new ToSpace. In the example shown in
  11671. figure~\ref{fig:copying-collector}, the root set consists of three
  11672. pointers, one in a register and two on the stack. All the live
  11673. objects have been copied to the ToSpace (the right-hand side of
  11674. figure~\ref{fig:copying-collector}) in a way that preserves the
  11675. pointer relationships. For example, the pointer in the register still
  11676. points to a tuple that in turn points to two other tuples. There are
  11677. four tuples that are not reachable from the root set and therefore do
  11678. not get copied into the ToSpace.
  11679. The exact situation shown in figure~\ref{fig:copying-collector} cannot be
  11680. created by a well-typed program in \LangVec{} because it contains a
  11681. cycle. However, creating cycles will be possible once we get to
  11682. \LangDyn{} (chapter~\ref{ch:Ldyn}). We design the garbage collector
  11683. to deal with cycles to begin with, so we will not need to revisit this
  11684. issue.
  11685. \begin{figure}[tbp]
  11686. \centering
  11687. \begin{tcolorbox}[colback=white]
  11688. \racket{\includegraphics[width=\textwidth]{figs/copy-collect-1}}
  11689. \python{\includegraphics[width=\textwidth]{figs/copy-collect-1-python}}
  11690. \\[5ex]
  11691. \racket{\includegraphics[width=\textwidth]{figs/copy-collect-2}}
  11692. \python{\includegraphics[width=\textwidth]{figs/copy-collect-2-python}}
  11693. \end{tcolorbox}
  11694. \caption{A copying collector in action.}
  11695. \label{fig:copying-collector}
  11696. \end{figure}
  11697. \subsection{Graph Copying via Cheney's Algorithm}
  11698. \label{sec:cheney}
  11699. \index{subject}{Cheney's algorithm}
  11700. Let us take a closer look at the copying of the live objects. The
  11701. allocated\index{subject}{allocate} objects and pointers can be viewed
  11702. as a graph, and we need to copy the part of the graph that is
  11703. reachable from the root set. To make sure that we copy all the
  11704. reachable vertices in the graph, we need an exhaustive graph traversal
  11705. algorithm, such as depth-first search or breadth-first
  11706. search~\citep{Moore:1959aa,Cormen:2001uq}. Recall that such algorithms
  11707. take into account the possibility of cycles by marking which vertices
  11708. have already been visited, so to ensure termination of the
  11709. algorithm. These search algorithms also use a data structure such as a
  11710. stack or queue as a to-do list to keep track of the vertices that need
  11711. to be visited. We use breadth-first search and a trick due to
  11712. \citet{Cheney:1970aa} for simultaneously representing the queue and
  11713. copying tuples into the ToSpace.
  11714. Figure~\ref{fig:cheney} shows several snapshots of the ToSpace as the
  11715. copy progresses. The queue is represented by a chunk of contiguous
  11716. memory at the beginning of the ToSpace, using two pointers to track
  11717. the front and the back of the queue, called the \emph{free pointer}
  11718. and the \emph{scan pointer}, respectively. The algorithm starts by
  11719. copying all tuples that are immediately reachable from the root set
  11720. into the ToSpace to form the initial queue. When we copy a tuple, we
  11721. mark the old tuple to indicate that it has been visited. We discuss
  11722. how this marking is accomplished in section~\ref{sec:data-rep-gc}. Note
  11723. that any pointers inside the copied tuples in the queue still point
  11724. back to the FromSpace. Once the initial queue has been created, the
  11725. algorithm enters a loop in which it repeatedly processes the tuple at
  11726. the front of the queue and pops it off the queue. To process a tuple,
  11727. the algorithm copies all the objects that are directly reachable from it
  11728. to the ToSpace, placing them at the back of the queue. The algorithm
  11729. then updates the pointers in the popped tuple so that they point to the
  11730. newly copied objects.
  11731. \begin{figure}[tbp]
  11732. \centering
  11733. \begin{tcolorbox}[colback=white]
  11734. \racket{\includegraphics[width=0.8\textwidth]{figs/cheney}}
  11735. \python{\includegraphics[width=0.8\textwidth]{figs/cheney-python}}
  11736. \end{tcolorbox}
  11737. \caption{Depiction of the Cheney algorithm copying the live tuples.}
  11738. \label{fig:cheney}
  11739. \end{figure}
  11740. As shown in figure~\ref{fig:cheney}, in the first step we copy the
  11741. tuple whose second element is $42$ to the back of the queue. The other
  11742. pointer goes to a tuple that has already been copied, so we do not
  11743. need to copy it again, but we do need to update the pointer to the new
  11744. location. This can be accomplished by storing a \emph{forwarding
  11745. pointer}\index{subject}{forwarding pointer} to the new location in the
  11746. old tuple, when we initially copied the tuple into the
  11747. ToSpace. This completes one step of the algorithm. The algorithm
  11748. continues in this way until the queue is empty; that is, when the scan
  11749. pointer catches up with the free pointer.
  11750. \subsection{Data Representation}
  11751. \label{sec:data-rep-gc}
  11752. The garbage collector places some requirements on the data
  11753. representations used by our compiler. First, the garbage collector
  11754. needs to distinguish between pointers and other kinds of data such as
  11755. integers. The following are three ways to accomplish this:
  11756. \begin{enumerate}
  11757. \item Attach a tag to each object that identifies what type of
  11758. object it is~\citep{McCarthy:1960dz}.
  11759. \item Store different types of objects in different
  11760. regions~\citep{Steele:1977ab}.
  11761. \item Use type information from the program to either (a) generate
  11762. type-specific code for collecting, or (b) generate tables that
  11763. guide the collector~\citep{Appel:1989aa,Goldberg:1991aa,Diwan:1992aa}.
  11764. \end{enumerate}
  11765. Dynamically typed languages, such as \racket{Racket}\python{Python},
  11766. need to tag objects in any case, so option 1 is a natural choice for those
  11767. languages. However, \LangVec{} is a statically typed language, so it
  11768. would be unfortunate to require tags on every object, especially small
  11769. and pervasive objects like integers and Booleans. Option 3 is the
  11770. best-performing choice for statically typed languages, but it comes with
  11771. a relatively high implementation complexity. To keep this chapter
  11772. within a reasonable scope of complexity, we recommend a combination of options
  11773. 1 and 2, using separate strategies for the stack and the heap.
  11774. Regarding the stack, we recommend using a separate stack for pointers,
  11775. which we call the \emph{root stack}\index{subject}{root stack}
  11776. (aka \emph{shadow stack})~\citep{Siebert:2001aa,Henderson:2002aa,Baker:2009aa}.
  11777. That is, when a local variable needs to be spilled and is of type
  11778. \racket{\code{Vector}}\python{\code{TupleType}}, we put it on the
  11779. root stack instead of putting it on the procedure call
  11780. stack. Furthermore, we always spill tuple-typed variables if they are
  11781. live during a call to the collector, thereby ensuring that no pointers
  11782. are in registers during a collection. Figure~\ref{fig:shadow-stack}
  11783. reproduces the example shown in figure~\ref{fig:copying-collector} and
  11784. contrasts it with the data layout using a root stack. The root stack
  11785. contains the two pointers from the regular stack and also the pointer
  11786. in the second register.
  11787. \begin{figure}[tbp]
  11788. \centering
  11789. \begin{tcolorbox}[colback=white]
  11790. \racket{\includegraphics[width=0.60\textwidth]{figs/root-stack}}
  11791. \python{\includegraphics[width=0.60\textwidth]{figs/root-stack-python}}
  11792. \end{tcolorbox}
  11793. \caption{Maintaining a root stack to facilitate garbage collection.}
  11794. \label{fig:shadow-stack}
  11795. \end{figure}
  11796. The problem of distinguishing between pointers and other kinds of data
  11797. also arises inside each tuple on the heap. We solve this problem by
  11798. attaching a tag, an extra 64 bits, to each
  11799. tuple. Figure~\ref{fig:tuple-rep} shows a zoomed-in view of the tags for
  11800. two of the tuples in the example given in figure~\ref{fig:copying-collector}.
  11801. Note that we have drawn the bits in a big-endian way, from right to left,
  11802. with bit location 0 (the least significant bit) on the far right,
  11803. which corresponds to the direction of the x86 shifting instructions
  11804. \key{salq} (shift left) and \key{sarq} (shift right). Part of each tag
  11805. is dedicated to specifying which elements of the tuple are pointers,
  11806. the part labeled \emph{pointer mask}. Within the pointer mask, a 1 bit
  11807. indicates that there is a pointer, and a 0 bit indicates some other kind of
  11808. data. The pointer mask starts at bit location 7. We limit tuples to a
  11809. maximum size of fifty elements, so we need 50 bits for the pointer
  11810. mask.%
  11811. %
  11812. \footnote{A production-quality compiler would handle
  11813. arbitrarily sized tuples and use a more complex approach.}
  11814. %
  11815. The tag also contains two other pieces of information. The length of
  11816. the tuple (number of elements) is stored in bits at locations 1 through
  11817. 6. Finally, the bit at location 0 indicates whether the tuple has yet
  11818. to be copied to the ToSpace. If the bit has value 1, then this tuple
  11819. has not yet been copied. If the bit has value 0, then the entire tag
  11820. is a forwarding pointer. (The lower 3 bits of a pointer are always
  11821. zero in any case, because our tuples are 8-byte aligned.)
  11822. \begin{figure}[tbp]
  11823. \centering
  11824. \begin{tcolorbox}[colback=white]
  11825. \includegraphics[width=0.8\textwidth]{figs/tuple-rep}
  11826. \end{tcolorbox}
  11827. \caption{Representation of tuples in the heap.}
  11828. \label{fig:tuple-rep}
  11829. \end{figure}
  11830. \subsection{Implementation of the Garbage Collector}
  11831. \label{sec:organize-gz}
  11832. \index{subject}{prelude}
  11833. An implementation of the copying collector is provided in the
  11834. \code{runtime.c} file. Figure~\ref{fig:gc-header} defines the
  11835. interface to the garbage collector that is used by the compiler. The
  11836. \code{initialize} function creates the FromSpace, ToSpace, and root
  11837. stack and should be called in the prelude of the \code{main}
  11838. function. The arguments of \code{initialize} are the root stack size
  11839. and the heap size. Both need to be multiples of sixty-four, and $16,384$ is a
  11840. good choice for both. The \code{initialize} function puts the address
  11841. of the beginning of the FromSpace into the global variable
  11842. \code{free\_ptr}. The global variable \code{fromspace\_end} points to
  11843. the address that is one past the last element of the FromSpace. We use
  11844. half-open intervals to represent chunks of
  11845. memory~\citep{Dijkstra:1982aa}. The \code{rootstack\_begin} variable
  11846. points to the first element of the root stack.
  11847. As long as there is room left in the FromSpace, your generated code
  11848. can allocate\index{subject}{allocate} tuples simply by moving the
  11849. \code{free\_ptr} forward.
  11850. %
  11851. The amount of room left in the FromSpace is the difference between the
  11852. \code{fromspace\_end} and the \code{free\_ptr}. The \code{collect}
  11853. function should be called when there is not enough room left in the
  11854. FromSpace for the next allocation. The \code{collect} function takes
  11855. a pointer to the current top of the root stack (one past the last item
  11856. that was pushed) and the number of bytes that need to be
  11857. allocated. The \code{collect} function performs the copying collection
  11858. and leaves the heap in a state such that there is enough room for the
  11859. next allocation.
  11860. \begin{figure}[tbp]
  11861. \begin{tcolorbox}[colback=white]
  11862. \begin{lstlisting}
  11863. void initialize(uint64_t rootstack_size, uint64_t heap_size);
  11864. void collect(int64_t** rootstack_ptr, uint64_t bytes_requested);
  11865. int64_t* free_ptr;
  11866. int64_t* fromspace_begin;
  11867. int64_t* fromspace_end;
  11868. int64_t** rootstack_begin;
  11869. \end{lstlisting}
  11870. \end{tcolorbox}
  11871. \caption{The compiler's interface to the garbage collector.}
  11872. \label{fig:gc-header}
  11873. \end{figure}
  11874. %% \begin{exercise}
  11875. %% In the file \code{runtime.c} you will find the implementation of
  11876. %% \code{initialize} and a partial implementation of \code{collect}.
  11877. %% The \code{collect} function calls another function, \code{cheney},
  11878. %% to perform the actual copy, and that function is left to the reader
  11879. %% to implement. The following is the prototype for \code{cheney}.
  11880. %% \begin{lstlisting}
  11881. %% static void cheney(int64_t** rootstack_ptr);
  11882. %% \end{lstlisting}
  11883. %% The parameter \code{rootstack\_ptr} is a pointer to the top of the
  11884. %% rootstack (which is an array of pointers). The \code{cheney} function
  11885. %% also communicates with \code{collect} through the global
  11886. %% variables \code{fromspace\_begin} and \code{fromspace\_end}
  11887. %% mentioned in figure~\ref{fig:gc-header} as well as the pointers for
  11888. %% the ToSpace:
  11889. %% \begin{lstlisting}
  11890. %% static int64_t* tospace_begin;
  11891. %% static int64_t* tospace_end;
  11892. %% \end{lstlisting}
  11893. %% The job of the \code{cheney} function is to copy all the live
  11894. %% objects (reachable from the root stack) into the ToSpace, update
  11895. %% \code{free\_ptr} to point to the next unused spot in the ToSpace,
  11896. %% update the root stack so that it points to the objects in the
  11897. %% ToSpace, and finally to swap the global pointers for the FromSpace
  11898. %% and ToSpace.
  11899. %% \end{exercise}
  11900. The introduction of garbage collection has a nontrivial impact on our
  11901. compiler passes. We introduce a new compiler pass named
  11902. \code{expose\_allocation} that elaborates the code for allocating
  11903. tuples. We also make significant changes to
  11904. \code{select\_instructions}, \code{build\_interference},
  11905. \code{allocate\_registers}, and \code{prelude\_and\_conclusion} and
  11906. make minor changes in several more passes.
  11907. The following program serves as our running example. It creates
  11908. two tuples, one nested inside the other. Both tuples have length
  11909. one. The program accesses the element in the inner tuple.
  11910. % tests/vectors_test_17.rkt
  11911. {\if\edition\racketEd
  11912. \begin{lstlisting}
  11913. (vector-ref (vector-ref (vector (vector 42)) 0) 0)
  11914. \end{lstlisting}
  11915. \fi}
  11916. % tests/tuple/get_get.py
  11917. {\if\edition\pythonEd\pythonColor
  11918. \begin{lstlisting}
  11919. v1 = (42,)
  11920. v2 = (v1,)
  11921. print(v2[0][0])
  11922. \end{lstlisting}
  11923. \fi}
  11924. %% {\if\edition\racketEd
  11925. %% \section{Shrink}
  11926. %% \label{sec:shrink-Lvec}
  11927. %% Recall that the \code{shrink} pass translates the primitives operators
  11928. %% into a smaller set of primitives.
  11929. %% %
  11930. %% This pass comes after type checking, and the type checker adds a
  11931. %% \code{HasType} AST node around each \code{vector} AST node, so you'll
  11932. %% need to add a case for \code{HasType} to the \code{shrink} pass.
  11933. %% \fi}
  11934. \section{Expose Allocation}
  11935. \label{sec:expose-allocation}
  11936. The pass \code{expose\_allocation} lowers tuple creation into making a
  11937. conditional call to the collector followed by allocating the
  11938. appropriate amount of memory and initializing it. We choose to place
  11939. the \code{expose\_allocation} pass before
  11940. \code{remove\_complex\_operands} because it generates code that
  11941. contains complex operands. However, with some care it can also be
  11942. placed before \code{remove\_complex\_operands}, which would simplify
  11943. tuple creation by removing the need to assign the initializing
  11944. expressions to temporary variables (see below).
  11945. The output of \code{expose\_allocation} is a language \LangAlloc{}
  11946. that replaces tuple creation with new lower-level forms that we use in the
  11947. translation of tuple creation.
  11948. %
  11949. {\if\edition\racketEd
  11950. \[
  11951. \begin{array}{lcl}
  11952. \Exp &::=& (\key{collect} \,\itm{int})
  11953. \MID (\key{allocate} \,\itm{int}\,\itm{type})
  11954. \MID (\key{global-value} \,\itm{name})
  11955. \end{array}
  11956. \]
  11957. \fi}
  11958. {\if\edition\pythonEd\pythonColor
  11959. \[
  11960. \begin{array}{lcl}
  11961. \Exp &::=& \key{collect}(\itm{int})
  11962. \MID \key{allocate}(\itm{int},\itm{type})
  11963. \MID \key{global\_value}(\itm{name}) \\
  11964. \Stmt &::= & \CASSIGN{\CPUT{\Exp}{\itm{int}}}{\Exp}
  11965. \end{array}
  11966. \]
  11967. \fi}
  11968. %
  11969. The \CCOLLECT{$n$} form runs the garbage collector, requesting that
  11970. there be $n$ bytes ready to be allocated. During instruction
  11971. selection\index{subject}{instruction selection}, the \CCOLLECT{$n$}
  11972. form will become a call to the \code{collect} function in
  11973. \code{runtime.c}.
  11974. %
  11975. The \CALLOCATE{$n$}{$\itm{type}$} form obtains memory for $n$ elements (and
  11976. space at the front for the 64-bit tag), but the elements are not
  11977. initialized. \index{subject}{allocate} The $\itm{type}$ parameter is the type
  11978. of the tuple:
  11979. %
  11980. \VECTY{\racket{$\Type_1 \ldots \Type_n$}\python{$\Type_1, \ldots, \Type_n$}}
  11981. %
  11982. where $\Type_i$ is the type of the $i$th element.
  11983. %
  11984. The \CGLOBALVALUE{\itm{name}} form reads the value of a global
  11985. variable, such as \code{free\_ptr}.
  11986. \racket{
  11987. The type information that you need for \CALLOCATE{$n$}{$\itm{type}$}
  11988. can be obtained by running the
  11989. \code{type-check-Lvec-has-type} type checker immediately before the
  11990. \code{expose\_allocation} pass. This version of the type checker
  11991. places a special AST node of the form $(\key{HasType}~e~\itm{type})$
  11992. around each tuple creation. The concrete syntax
  11993. for \code{HasType} is \code{has-type}.}
  11994. The following shows the transformation of tuple creation into (1) a
  11995. sequence of temporary variable bindings for the initializing
  11996. expressions, (2) a conditional call to \code{collect}, (3) a call to
  11997. \code{allocate}, and (4) the initialization of the tuple. The
  11998. \itm{len} placeholder refers to the length of the tuple, and
  11999. \itm{bytes} is the total number of bytes that need to be allocated for
  12000. the tuple, which is 8 for the tag plus \itm{len} times 8.
  12001. %
  12002. \python{The \itm{type} needed for the second argument of the
  12003. \code{allocate} form can be obtained from the \code{has\_type} field
  12004. of the tuple AST node, which is stored there by running the type
  12005. checker for \LangVec{} immediately before this pass.}
  12006. %
  12007. \begin{center}
  12008. \begin{minipage}{\textwidth}
  12009. {\if\edition\racketEd
  12010. \begin{lstlisting}
  12011. (has-type (vector |$e_0 \ldots e_{n-1}$|) |\itm{type}|)
  12012. |$\Longrightarrow$|
  12013. (let ([|$x_0$| |$e_0$|]) ... (let ([|$x_{n-1}$| |$e_{n-1}$|])
  12014. (let ([_ (if (< (+ (global-value free_ptr) |\itm{bytes}|)
  12015. (global-value fromspace_end))
  12016. (void)
  12017. (collect |\itm{bytes}|))])
  12018. (let ([|$v$| (allocate |\itm{len}| |\itm{type}|)])
  12019. (let ([_ (vector-set! |$v$| |$0$| |$x_0$|)]) ...
  12020. (let ([_ (vector-set! |$v$| |$n-1$| |$x_{n-1}$|)])
  12021. |$v$|) ... )))) ...)
  12022. \end{lstlisting}
  12023. \fi}
  12024. {\if\edition\pythonEd\pythonColor
  12025. \begin{lstlisting}
  12026. (|$e_0$|, |$\ldots$|, |$e_{n-1}$|)
  12027. |$\Longrightarrow$|
  12028. begin:
  12029. |$x_0$| = |$e_0$|
  12030. |$\vdots$|
  12031. |$x_{n-1}$| = |$e_{n-1}$|
  12032. if global_value(free_ptr) + |\itm{bytes}| < global_value(fromspace_end):
  12033. 0
  12034. else:
  12035. collect(|\itm{bytes}|)
  12036. |$v$| = allocate(|\itm{len}|, |\itm{type}|)
  12037. |$v$|[0] = |$x_0$|
  12038. |$\vdots$|
  12039. |$v$|[|$n-1$|] = |$x_{n-1}$|
  12040. |$v$|
  12041. \end{lstlisting}
  12042. \fi}
  12043. \end{minipage}
  12044. \end{center}
  12045. %
  12046. \noindent The sequencing of the initializing expressions
  12047. $e_0,\ldots,e_{n-1}$ prior to the \code{allocate} is important because
  12048. they may trigger garbage collection and we cannot have an allocated
  12049. but uninitialized tuple on the heap during a collection.
  12050. Figure~\ref{fig:expose-alloc-output} shows the output of the
  12051. \code{expose\_allocation} pass on our running example.
  12052. \begin{figure}[tbp]
  12053. \begin{tcolorbox}[colback=white]
  12054. % tests/s2_17.rkt
  12055. {\if\edition\racketEd
  12056. \begin{lstlisting}
  12057. (vector-ref
  12058. (vector-ref
  12059. (let ([vecinit6
  12060. (let ([_4 (if (< (+ (global-value free_ptr) 16)
  12061. (global-value fromspace_end))
  12062. (void)
  12063. (collect 16))])
  12064. (let ([alloc2 (allocate 1 (Vector Integer))])
  12065. (let ([_3 (vector-set! alloc2 0 42)])
  12066. alloc2)))])
  12067. (let ([_8 (if (< (+ (global-value free_ptr) 16)
  12068. (global-value fromspace_end))
  12069. (void)
  12070. (collect 16))])
  12071. (let ([alloc5 (allocate 1 (Vector (Vector Integer)))])
  12072. (let ([_7 (vector-set! alloc5 0 vecinit6)])
  12073. alloc5))))
  12074. 0)
  12075. 0)
  12076. \end{lstlisting}
  12077. \fi}
  12078. {\if\edition\pythonEd\pythonColor
  12079. \begin{lstlisting}
  12080. v1 = begin:
  12081. init.514 = 42
  12082. if (free_ptr + 16) < fromspace_end:
  12083. else:
  12084. collect(16)
  12085. alloc.513 = allocate(1,tuple[int])
  12086. alloc.513[0] = init.514
  12087. alloc.513
  12088. v2 = begin:
  12089. init.516 = v1
  12090. if (free_ptr + 16) < fromspace_end:
  12091. else:
  12092. collect(16)
  12093. alloc.515 = allocate(1,tuple[tuple[int]])
  12094. alloc.515[0] = init.516
  12095. alloc.515
  12096. print(v2[0][0])
  12097. \end{lstlisting}
  12098. \fi}
  12099. \end{tcolorbox}
  12100. \caption{Output of the \code{expose\_allocation} pass.}
  12101. \label{fig:expose-alloc-output}
  12102. \end{figure}
  12103. \section{Remove Complex Operands}
  12104. \label{sec:remove-complex-opera-Lvec}
  12105. {\if\edition\racketEd
  12106. %
  12107. The forms \code{collect}, \code{allocate}, and \code{global\_value}
  12108. should be treated as complex operands.
  12109. %
  12110. \fi}
  12111. %
  12112. {\if\edition\pythonEd\pythonColor
  12113. %
  12114. The expressions \code{allocate}, \code{begin},
  12115. and tuple access should be treated as complex operands. The
  12116. subexpressions of tuple access must be atomic.
  12117. The \code{global\_value} AST node is atomic.
  12118. %
  12119. \fi}
  12120. %% A new case for
  12121. %% \code{HasType} is needed and the case for \code{Prim} needs to be
  12122. %% handled carefully to prevent the \code{Prim} node from being separated
  12123. %% from its enclosing \code{HasType}.
  12124. Figure~\ref{fig:Lvec-anf-syntax}
  12125. shows the grammar for the output language \LangAllocANF{} of this
  12126. pass, which is \LangAlloc{} in monadic normal form.
  12127. \newcommand{\LtupMonadASTRacket}{
  12128. \begin{array}{rcl}
  12129. \Exp &::=& \COLLECT{\Int} \RP \MID \ALLOCATE{\Int}{\Type}
  12130. \MID \GLOBALVALUE{\Var}
  12131. \end{array}
  12132. }
  12133. \newcommand{\LtupMonadASTPython}{
  12134. \begin{array}{rcl}
  12135. \Atm &::=& \GLOBALVALUE{\Var} \\
  12136. \Exp &::=& \GET{\Atm}{\Atm}
  12137. \MID \LEN{\Atm}\\
  12138. &\MID& \ALLOCATE{\Int}{\Type}\\
  12139. \Stmt{} &::=& \ASSIGN{\PUT{\Atm}{\Atm}}{\Atm} \\
  12140. &\MID& \COLLECT{\Int}
  12141. \end{array}
  12142. }
  12143. \begin{figure}[tp]
  12144. \centering
  12145. \begin{tcolorbox}[colback=white]
  12146. \small
  12147. {\if\edition\racketEd
  12148. \[
  12149. \begin{array}{l}
  12150. \gray{\LvarMonadASTRacket} \\ \hline
  12151. \gray{\LifMonadASTRacket} \\ \hline
  12152. \gray{\LwhileMonadASTRacket} \\ \hline
  12153. \LtupMonadASTRacket \\
  12154. \begin{array}{rcl}
  12155. \LangAllocANFM{} &::=& \PROGRAM{\code{'()}}{\Exp}
  12156. \end{array}
  12157. \end{array}
  12158. \]
  12159. \fi}
  12160. {\if\edition\pythonEd\pythonColor
  12161. \[
  12162. \begin{array}{l}
  12163. \gray{\LvarMonadASTPython} \\ \hline
  12164. \gray{\LifMonadASTPython} \\ \hline
  12165. \gray{\LwhileMonadASTPython} \\ \hline
  12166. \LtupMonadASTPython \\
  12167. \begin{array}{rcl}
  12168. \LangAllocANFM{} &::=& \PROGRAM{\code{'()}}{\Stmt^{*}}
  12169. \end{array}
  12170. \end{array}
  12171. \]
  12172. \fi}
  12173. \end{tcolorbox}
  12174. \caption{\LangAllocANF{} is \LangAlloc{} in monadic normal form.}
  12175. \label{fig:Lvec-anf-syntax}
  12176. \end{figure}
  12177. \section{Explicate Control and the \LangCVec{} Language}
  12178. \label{sec:explicate-control-r3}
  12179. \newcommand{\CtupASTRacket}{
  12180. \begin{array}{lcl}
  12181. \Exp &::= & \LP\key{Allocate} \,\itm{int}\,\itm{type}\RP \\
  12182. &\MID& \VECREF{\Atm}{\INT{\Int}} \\
  12183. &\MID& \VECSET{\Atm}{\INT{\Int}}{\Atm} \\
  12184. &\MID& \VECLEN{\Atm} \\
  12185. &\MID& \GLOBALVALUE{\Var} \\
  12186. \Stmt &::=& \VECSET{\Atm}{\INT{\Int}}{\Atm} \\
  12187. &\MID& \LP\key{Collect} \,\itm{int}\RP
  12188. \end{array}
  12189. }
  12190. \newcommand{\CtupASTPython}{
  12191. \begin{array}{lcl}
  12192. \Atm &::=& \GLOBALVALUE{\Var} \\
  12193. \Exp &::=& \GET{\Atm}{\Atm} \MID \ALLOCATE{\Int}{\Type} \\
  12194. &\MID& \LEN{\Atm} \\
  12195. \Stmt &::=& \COLLECT{\Int}
  12196. \MID \ASSIGN{\PUT{\Atm}{\Atm}}{\Atm}
  12197. \end{array}
  12198. }
  12199. \begin{figure}[tp]
  12200. \begin{tcolorbox}[colback=white]
  12201. \small
  12202. {\if\edition\racketEd
  12203. \[
  12204. \begin{array}{l}
  12205. \gray{\CvarASTRacket} \\ \hline
  12206. \gray{\CifASTRacket} \\ \hline
  12207. \gray{\CloopASTRacket} \\ \hline
  12208. \CtupASTRacket \\
  12209. \begin{array}{lcl}
  12210. \LangCVecM{} & ::= & \CPROGRAM{\itm{info}}{\LP\LP\itm{label}\,\key{.}\,\Tail\RP\ldots\RP}
  12211. \end{array}
  12212. \end{array}
  12213. \]
  12214. \fi}
  12215. {\if\edition\pythonEd\pythonColor
  12216. \[
  12217. \begin{array}{l}
  12218. \gray{\CifASTPython} \\ \hline
  12219. \CtupASTPython \\
  12220. \begin{array}{lcl}
  12221. \LangCVecM{} & ::= & \CPROGRAM{\itm{info}}{\LC\itm{label}\key{:}\,\Stmt^{*}\;\Tail, \ldots \RC}
  12222. \end{array}
  12223. \end{array}
  12224. \]
  12225. \fi}
  12226. \end{tcolorbox}
  12227. \caption{The abstract syntax of \LangCVec{}, extending
  12228. \racket{\LangCLoop{} (figure~\ref{fig:c7-syntax})}\python{\LangCIf{}
  12229. (figure~\ref{fig:c1-syntax})}.}
  12230. \label{fig:c2-syntax}
  12231. \end{figure}
  12232. The output of \code{explicate\_control} is a program in the
  12233. intermediate language \LangCVec{}, for which figure~\ref{fig:c2-syntax}
  12234. shows the definition of the abstract syntax.
  12235. %
  12236. %% \racket{(The concrete syntax is defined in
  12237. %% figure~\ref{fig:c2-concrete-syntax} of the Appendix.)}
  12238. %
  12239. The new expressions of \LangCVec{} include \key{allocate},
  12240. %
  12241. \racket{\key{vector-ref}, and \key{vector-set!},}
  12242. %
  12243. \python{accessing tuple elements,}
  12244. %
  12245. and \key{global\_value}.
  12246. %
  12247. \python{\LangCVec{} also includes the \code{collect} statement and
  12248. assignment to a tuple element.}
  12249. %
  12250. \racket{\LangCVec{} also includes the new \code{collect} statement.}
  12251. %
  12252. The \code{explicate\_control} pass can treat these new forms much like
  12253. the other forms that we've already encountered. The output of the
  12254. \code{explicate\_control} pass on the running example is shown on the
  12255. left side of figure~\ref{fig:select-instr-output-gc} in the next
  12256. section.
  12257. \section{Select Instructions and the \LangXGlobal{} Language}
  12258. \label{sec:select-instructions-gc}
  12259. \index{subject}{select instructions}
  12260. %% void (rep as zero)
  12261. %% allocate
  12262. %% collect (callq collect)
  12263. %% vector-ref
  12264. %% vector-set!
  12265. %% vector-length
  12266. %% global (postpone)
  12267. In this pass we generate x86 code for most of the new operations that
  12268. are needed to compile tuples, including \code{Allocate},
  12269. \code{Collect}, accessing tuple elements, and the \code{Is}
  12270. comparison.
  12271. %
  12272. We compile \code{GlobalValue} to \code{Global} because the latter has a
  12273. different concrete syntax (see figures~\ref{fig:x86-2-concrete} and
  12274. \ref{fig:x86-2}). \index{subject}{x86}
  12275. The tuple read and write forms translate into \code{movq}
  12276. instructions. (The $+1$ in the offset serves to move past the tag at the
  12277. beginning of the tuple representation.)
  12278. %
  12279. \begin{center}
  12280. \begin{minipage}{\textwidth}
  12281. {\if\edition\racketEd
  12282. \begin{lstlisting}
  12283. |$\itm{lhs}$| = (vector-ref |$\itm{tup}$| |$n$|);
  12284. |$\Longrightarrow$|
  12285. movq |$\itm{tup}'$|, %r11
  12286. movq |$8(n+1)$|(%r11), |$\itm{lhs'}$|
  12287. |$\itm{lhs}$| = (vector-set! |$\itm{tup}$| |$n$| |$\itm{rhs}$|);
  12288. |$\Longrightarrow$|
  12289. movq |$\itm{tup}'$|, %r11
  12290. movq |$\itm{rhs}'$|, |$8(n+1)$|(%r11)
  12291. movq $0, |$\itm{lhs'}$|
  12292. \end{lstlisting}
  12293. \fi}
  12294. {\if\edition\pythonEd\pythonColor
  12295. \begin{lstlisting}
  12296. |$\itm{lhs}$| = |$\itm{tup}$|[|$n$|]
  12297. |$\Longrightarrow$|
  12298. movq |$\itm{tup}'$|, %r11
  12299. movq |$8(n+1)$|(%r11), |$\itm{lhs'}$|
  12300. |$\itm{tup}$|[|$n$|] = |$\itm{rhs}$|
  12301. |$\Longrightarrow$|
  12302. movq |$\itm{tup}'$|, %r11
  12303. movq |$\itm{rhs}'$|, |$8(n+1)$|(%r11)
  12304. \end{lstlisting}
  12305. \fi}
  12306. \end{minipage}
  12307. \end{center}
  12308. \racket{The $\itm{lhs}'$, $\itm{tup}'$, and $\itm{rhs}'$}
  12309. \python{The $\itm{tup}'$ and $\itm{rhs}'$}
  12310. are obtained by translating from \LangCVec{} to x86.
  12311. %
  12312. The move of $\itm{tup}'$ to
  12313. register \code{r11} ensures that the offset expression
  12314. \code{$8(n+1)$(\%r11)} contains a register operand. This requires
  12315. removing \code{r11} from consideration by the register allocator.
  12316. Why not use \code{rax} instead of \code{r11}? Suppose that we instead used
  12317. \code{rax}. Then the generated code for tuple assignment would be
  12318. \begin{lstlisting}
  12319. movq |$\itm{tup}'$|, %rax
  12320. movq |$\itm{rhs}'$|, |$8(n+1)$|(%rax)
  12321. \end{lstlisting}
  12322. Next, suppose that $\itm{rhs}'$ ends up as a stack location, so
  12323. \code{patch\_instructions} would insert a move through \code{rax}
  12324. as follows:
  12325. \begin{lstlisting}
  12326. movq |$\itm{tup}'$|, %rax
  12327. movq |$\itm{rhs}'$|, %rax
  12328. movq %rax, |$8(n+1)$|(%rax)
  12329. \end{lstlisting}
  12330. However, this sequence of instructions does not work because we're
  12331. trying to use \code{rax} for two different values ($\itm{tup}'$ and
  12332. $\itm{rhs}'$) at the same time!
  12333. The \racket{\code{vector-length}}\python{\code{len}} operation should
  12334. be translated into a sequence of instructions that read the tag of the
  12335. tuple and extract the 6 bits that represent the tuple length, which
  12336. are the bits starting at index 1 and going up to and including bit 6.
  12337. The x86 instructions \code{andq} (for bitwise-and) and \code{sarq}
  12338. (shift right) can be used to accomplish this.
  12339. We compile the \code{allocate} form to operations on the
  12340. \code{free\_ptr}, as shown next. This approach is called
  12341. \emph{inline allocation} because it implements allocation without a
  12342. function call by simply incrementing the allocation pointer. It is much
  12343. more efficient than calling a function for each allocation. The
  12344. address in the \code{free\_ptr} is the next free address in the
  12345. FromSpace, so we copy it into \code{r11} and then move it forward by
  12346. enough space for the tuple being allocated, which is $8(\itm{len}+1)$
  12347. bytes because each element is 8 bytes (64 bits) and we use 8 bytes for
  12348. the tag. We then initialize the \itm{tag} and finally copy the
  12349. address in \code{r11} to the left-hand side. Refer to
  12350. figure~\ref{fig:tuple-rep} to see how the tag is organized.
  12351. %
  12352. \racket{We recommend using the Racket operations
  12353. \code{bitwise-ior} and \code{arithmetic-shift} to compute the tag
  12354. during compilation.}
  12355. %
  12356. \python{We recommend using the bitwise-or operator \code{|} and the
  12357. shift-left operator \code{<<} to compute the tag during
  12358. compilation.}
  12359. %
  12360. The type annotation in the \code{allocate} form is used to determine
  12361. the pointer mask region of the tag.
  12362. %
  12363. The addressing mode \verb!free_ptr(%rip)! essentially stands for the
  12364. address of the \code{free\_ptr} global variable using a special
  12365. instruction-pointer-relative addressing mode of the x86-64 processor.
  12366. In particular, the assembler computes the distance $d$ between the
  12367. address of \code{free\_ptr} and where the \code{rip} would be at that
  12368. moment and then changes the \code{free\_ptr(\%rip)} argument to
  12369. \code{$d$(\%rip)}, which at runtime will compute the address of
  12370. \code{free\_ptr}.
  12371. %
  12372. {\if\edition\racketEd
  12373. \begin{lstlisting}
  12374. |$\itm{lhs}$| = (allocate |$\itm{len}$| (Vector |$\itm{type} \ldots$|));
  12375. |$\Longrightarrow$|
  12376. movq free_ptr(%rip), %r11
  12377. addq |$8(\itm{len}+1)$|, free_ptr(%rip)
  12378. movq $|$\itm{tag}$|, 0(%r11)
  12379. movq %r11, |$\itm{lhs}'$|
  12380. \end{lstlisting}
  12381. \fi}
  12382. {\if\edition\pythonEd\pythonColor
  12383. \begin{lstlisting}
  12384. |$\itm{lhs}$| = allocate(|$\itm{len}$|, TupleType([|$\itm{type}, \ldots$])|);
  12385. |$\Longrightarrow$|
  12386. movq free_ptr(%rip), %r11
  12387. addq |$8(\itm{len}+1)$|, free_ptr(%rip)
  12388. movq $|$\itm{tag}$|, 0(%r11)
  12389. movq %r11, |$\itm{lhs}'$|
  12390. \end{lstlisting}
  12391. \fi}
  12392. %
  12393. The \code{collect} form is compiled to a call to the \code{collect}
  12394. function in the runtime. The arguments to \code{collect} are (1) the
  12395. top of the root stack, and (2) the number of bytes that need to be
  12396. allocated. We use another dedicated register, \code{r15}, to store
  12397. the pointer to the top of the root stack. Therefore \code{r15} is not
  12398. available for use by the register allocator.
  12399. %
  12400. {\if\edition\racketEd
  12401. \begin{lstlisting}
  12402. (collect |$\itm{bytes}$|)
  12403. |$\Longrightarrow$|
  12404. movq %r15, %rdi
  12405. movq $|\itm{bytes}|, %rsi
  12406. callq collect
  12407. \end{lstlisting}
  12408. \fi}
  12409. {\if\edition\pythonEd\pythonColor
  12410. \begin{lstlisting}
  12411. collect(|$\itm{bytes}$|)
  12412. |$\Longrightarrow$|
  12413. movq %r15, %rdi
  12414. movq $|\itm{bytes}|, %rsi
  12415. callq collect
  12416. \end{lstlisting}
  12417. \fi}
  12418. {\if\edition\pythonEd\pythonColor
  12419. The \code{is} comparison is compiled similarly to the other comparison
  12420. operators, using the \code{cmpq} instruction. Because the value of a
  12421. tuple is its address, we can translate \code{is} into a simple check
  12422. for equality using the \code{e} condition code. \\
  12423. \begin{tabular}{lll}
  12424. \begin{minipage}{0.4\textwidth}
  12425. $\CASSIGN{\Var}{ \LP\CIS{\Atm_1}{\Atm_2} \RP }$
  12426. \end{minipage}
  12427. &
  12428. $\Rightarrow$
  12429. &
  12430. \begin{minipage}{0.4\textwidth}
  12431. \begin{lstlisting}
  12432. cmpq |$\Arg_2$|, |$\Arg_1$|
  12433. sete %al
  12434. movzbq %al, |$\Var$|
  12435. \end{lstlisting}
  12436. \end{minipage}
  12437. \end{tabular}
  12438. \fi}
  12439. \newcommand{\GrammarXGlobal}{
  12440. \begin{array}{lcl}
  12441. \Arg &::=& \itm{label} \key{(\%rip)}
  12442. \end{array}
  12443. }
  12444. \newcommand{\ASTXGlobalRacket}{
  12445. \begin{array}{lcl}
  12446. \Arg &::=& \GLOBAL{\itm{label}}
  12447. \end{array}
  12448. }
  12449. \begin{figure}[tp]
  12450. \begin{tcolorbox}[colback=white]
  12451. \[
  12452. \begin{array}{l}
  12453. \gray{\GrammarXInt} \\ \hline
  12454. \gray{\GrammarXIf} \\ \hline
  12455. \GrammarXGlobal \\
  12456. \begin{array}{lcl}
  12457. \LangXGlobalM{} &::= & \key{.globl main} \\
  12458. & & \key{main:} \; \Instr^{*}
  12459. \end{array}
  12460. \end{array}
  12461. \]
  12462. \end{tcolorbox}
  12463. \caption{The concrete syntax of \LangXGlobal{} (extends \LangXIf{} shown in figure~\ref{fig:x86-1-concrete}).}
  12464. \label{fig:x86-2-concrete}
  12465. \end{figure}
  12466. \begin{figure}[tp]
  12467. \begin{tcolorbox}[colback=white]
  12468. \small
  12469. {\if\edition\racketEd
  12470. \[
  12471. \begin{array}{l}
  12472. \gray{\ASTXIntRacket} \\ \hline
  12473. \gray{\ASTXIfRacket} \\ \hline
  12474. \ASTXGlobalRacket \\
  12475. \begin{array}{lcl}
  12476. \LangXGlobalM{} &::= & \XPROGRAM{\itm{info}}{\LP\LP\itm{label} \,\key{.}\, \Block \RP\ldots\RP}
  12477. \end{array}
  12478. \end{array}
  12479. \]
  12480. \fi}
  12481. {\if\edition\pythonEd\pythonColor
  12482. \[
  12483. \begin{array}{l}
  12484. \gray{\ASTXIntPython} \\ \hline
  12485. \gray{\ASTXIfPython} \\ \hline
  12486. \ASTXGlobalRacket \\
  12487. \begin{array}{lcl}
  12488. \LangXGlobalM{} &::= & \XPROGRAM{\itm{info}}{\LC\itm{label} \,\key{:}\, \Block \key{,} \ldots \RC }
  12489. \end{array}
  12490. \end{array}
  12491. \]
  12492. \fi}
  12493. \end{tcolorbox}
  12494. \caption{The abstract syntax of \LangXGlobal{} (extends \LangXIf{} shown in figure~\ref{fig:x86-1}).}
  12495. \label{fig:x86-2}
  12496. \end{figure}
  12497. The definitions of the concrete and abstract syntax of the
  12498. \LangXGlobal{} language are shown in figures~\ref{fig:x86-2-concrete}
  12499. and \ref{fig:x86-2}. It differs from \LangXIf{} only in the addition
  12500. of global variables.
  12501. %
  12502. Figure~\ref{fig:select-instr-output-gc} shows the output of the
  12503. \code{select\_instructions} pass on the running example.
  12504. \begin{figure}[tbp]
  12505. \centering
  12506. \begin{tcolorbox}[colback=white]
  12507. {\if\edition\racketEd
  12508. % tests/s2_17.rkt
  12509. \begin{tabular}{lll}
  12510. \begin{minipage}{0.5\textwidth}
  12511. \begin{lstlisting}[basicstyle=\ttfamily\scriptsize]
  12512. start:
  12513. tmp9 = (global-value free_ptr);
  12514. tmp0 = (+ tmp9 16);
  12515. tmp1 = (global-value fromspace_end);
  12516. if (< tmp0 tmp1)
  12517. goto block0;
  12518. else
  12519. goto block1;
  12520. block0:
  12521. _4 = (void);
  12522. goto block9;
  12523. block1:
  12524. (collect 16)
  12525. goto block9;
  12526. block9:
  12527. alloc2 = (allocate 1 (Vector Integer));
  12528. _3 = (vector-set! alloc2 0 42);
  12529. vecinit6 = alloc2;
  12530. tmp2 = (global-value free_ptr);
  12531. tmp3 = (+ tmp2 16);
  12532. tmp4 = (global-value fromspace_end);
  12533. if (< tmp3 tmp4)
  12534. goto block7;
  12535. else
  12536. goto block8;
  12537. block7:
  12538. _8 = (void);
  12539. goto block6;
  12540. block8:
  12541. (collect 16)
  12542. goto block6;
  12543. block6:
  12544. alloc5 = (allocate 1 (Vector (Vector Integer)));
  12545. _7 = (vector-set! alloc5 0 vecinit6);
  12546. tmp5 = (vector-ref alloc5 0);
  12547. return (vector-ref tmp5 0);
  12548. \end{lstlisting}
  12549. \end{minipage}
  12550. &$\Rightarrow$&
  12551. \begin{minipage}{0.4\textwidth}
  12552. \begin{lstlisting}[basicstyle=\ttfamily\scriptsize]
  12553. start:
  12554. movq free_ptr(%rip), tmp9
  12555. movq tmp9, tmp0
  12556. addq $16, tmp0
  12557. movq fromspace_end(%rip), tmp1
  12558. cmpq tmp1, tmp0
  12559. jl block0
  12560. jmp block1
  12561. block0:
  12562. movq $0, _4
  12563. jmp block9
  12564. block1:
  12565. movq %r15, %rdi
  12566. movq $16, %rsi
  12567. callq collect
  12568. jmp block9
  12569. block9:
  12570. movq free_ptr(%rip), %r11
  12571. addq $16, free_ptr(%rip)
  12572. movq $3, 0(%r11)
  12573. movq %r11, alloc2
  12574. movq alloc2, %r11
  12575. movq $42, 8(%r11)
  12576. movq $0, _3
  12577. movq alloc2, vecinit6
  12578. movq free_ptr(%rip), tmp2
  12579. movq tmp2, tmp3
  12580. addq $16, tmp3
  12581. movq fromspace_end(%rip), tmp4
  12582. cmpq tmp4, tmp3
  12583. jl block7
  12584. jmp block8
  12585. block7:
  12586. movq $0, _8
  12587. jmp block6
  12588. block8:
  12589. movq %r15, %rdi
  12590. movq $16, %rsi
  12591. callq collect
  12592. jmp block6
  12593. block6:
  12594. movq free_ptr(%rip), %r11
  12595. addq $16, free_ptr(%rip)
  12596. movq $131, 0(%r11)
  12597. movq %r11, alloc5
  12598. movq alloc5, %r11
  12599. movq vecinit6, 8(%r11)
  12600. movq $0, _7
  12601. movq alloc5, %r11
  12602. movq 8(%r11), tmp5
  12603. movq tmp5, %r11
  12604. movq 8(%r11), %rax
  12605. jmp conclusion
  12606. \end{lstlisting}
  12607. \end{minipage}
  12608. \end{tabular}
  12609. \fi}
  12610. {\if\edition\pythonEd
  12611. % tests/tuple/get_get.py
  12612. \begin{tabular}{lll}
  12613. \begin{minipage}{0.5\textwidth}
  12614. \begin{lstlisting}[basicstyle=\ttfamily\scriptsize]
  12615. start:
  12616. init.514 = 42
  12617. tmp.517 = free_ptr
  12618. tmp.518 = (tmp.517 + 16)
  12619. tmp.519 = fromspace_end
  12620. if tmp.518 < tmp.519:
  12621. goto block.529
  12622. else:
  12623. goto block.530
  12624. block.529:
  12625. goto block.528
  12626. block.530:
  12627. collect(16)
  12628. goto block.528
  12629. block.528:
  12630. alloc.513 = allocate(1,tuple[int])
  12631. alloc.513:tuple[int][0] = init.514
  12632. v1 = alloc.513
  12633. init.516 = v1
  12634. tmp.520 = free_ptr
  12635. tmp.521 = (tmp.520 + 16)
  12636. tmp.522 = fromspace_end
  12637. if tmp.521 < tmp.522:
  12638. goto block.526
  12639. else:
  12640. goto block.527
  12641. block.526:
  12642. goto block.525
  12643. block.527:
  12644. collect(16)
  12645. goto block.525
  12646. block.525:
  12647. alloc.515 = allocate(1,tuple[tuple[int]])
  12648. alloc.515:tuple[tuple[int]][0] = init.516
  12649. v2 = alloc.515
  12650. tmp.523 = v2[0]
  12651. tmp.524 = tmp.523[0]
  12652. print(tmp.524)
  12653. return 0
  12654. \end{lstlisting}
  12655. \end{minipage}
  12656. &$\Rightarrow$&
  12657. \begin{minipage}{0.4\textwidth}
  12658. \begin{lstlisting}[basicstyle=\ttfamily\scriptsize]
  12659. start:
  12660. movq $42, init.514
  12661. movq free_ptr(%rip), tmp.517
  12662. movq tmp.517, tmp.518
  12663. addq $16, tmp.518
  12664. movq fromspace_end(%rip), tmp.519
  12665. cmpq tmp.519, tmp.518
  12666. jl block.529
  12667. jmp block.530
  12668. block.529:
  12669. jmp block.528
  12670. block.530:
  12671. movq %r15, %rdi
  12672. movq $16, %rsi
  12673. callq collect
  12674. jmp block.528
  12675. block.528:
  12676. movq free_ptr(%rip), %r11
  12677. addq $16, free_ptr(%rip)
  12678. movq $3, 0(%r11)
  12679. movq %r11, alloc.513
  12680. movq alloc.513, %r11
  12681. movq init.514, 8(%r11)
  12682. movq alloc.513, v1
  12683. movq v1, init.516
  12684. movq free_ptr(%rip), tmp.520
  12685. movq tmp.520, tmp.521
  12686. addq $16, tmp.521
  12687. movq fromspace_end(%rip), tmp.522
  12688. cmpq tmp.522, tmp.521
  12689. jl block.526
  12690. jmp block.527
  12691. block.526:
  12692. jmp block.525
  12693. block.527:
  12694. movq %r15, %rdi
  12695. movq $16, %rsi
  12696. callq collect
  12697. jmp block.525
  12698. block.525:
  12699. movq free_ptr(%rip), %r11
  12700. addq $16, free_ptr(%rip)
  12701. movq $131, 0(%r11)
  12702. movq %r11, alloc.515
  12703. movq alloc.515, %r11
  12704. movq init.516, 8(%r11)
  12705. movq alloc.515, v2
  12706. movq v2, %r11
  12707. movq 8(%r11), %r11
  12708. movq %r11, tmp.523
  12709. movq tmp.523, %r11
  12710. movq 8(%r11), %r11
  12711. movq %r11, tmp.524
  12712. movq tmp.524, %rdi
  12713. callq print_int
  12714. movq $0, %rax
  12715. jmp conclusion
  12716. \end{lstlisting}
  12717. \end{minipage}
  12718. \end{tabular}
  12719. \fi}
  12720. \end{tcolorbox}
  12721. \caption{Output of \code{explicate\_control} (\emph{left}) and
  12722. \code{select\_instructions} (\emph{right}) on the running example.}
  12723. \label{fig:select-instr-output-gc}
  12724. \end{figure}
  12725. \clearpage
  12726. \section{Register Allocation}
  12727. \label{sec:reg-alloc-gc}
  12728. \index{subject}{register allocation}
  12729. As discussed previously in this chapter, the garbage collector needs to
  12730. access all the pointers in the root set, that is, all variables that
  12731. are tuples. It will be the responsibility of the register allocator
  12732. to make sure that
  12733. \begin{enumerate}
  12734. \item the root stack is used for spilling tuple-typed variables, and
  12735. \item if a tuple-typed variable is live during a call to the
  12736. collector, it must be spilled to ensure that it is visible to the
  12737. collector.
  12738. \end{enumerate}
  12739. The latter responsibility can be handled during construction of the
  12740. interference graph, by adding interference edges between the call-live
  12741. tuple-typed variables and all the callee-saved registers. (They
  12742. already interfere with the caller-saved registers.)
  12743. %
  12744. \racket{The type information for variables is in the \code{Program}
  12745. form, so we recommend adding another parameter to the
  12746. \code{build\_interference} function to communicate this alist.}
  12747. %
  12748. \python{The type information for variables is generated by the type
  12749. checker for \LangCVec{}, stored in a field named \code{var\_types} in
  12750. the \code{CProgram} AST mode. You'll need to propagate that
  12751. information so that it is available in this pass.}
  12752. The spilling of tuple-typed variables to the root stack can be handled
  12753. after graph coloring, in choosing how to assign the colors
  12754. (integers) to registers and stack locations. The
  12755. \racket{\code{Program}}\python{\code{CProgram}} output of this pass
  12756. changes to also record the number of spills to the root stack.
  12757. % build-interference
  12758. %
  12759. % callq
  12760. % extra parameter for var->type assoc. list
  12761. % update 'program' and 'if'
  12762. % allocate-registers
  12763. % allocate spilled vectors to the rootstack
  12764. % don't change color-graph
  12765. % TODO:
  12766. %\section{Patch Instructions}
  12767. %[mention that global variables are memory references]
  12768. \section{Generate Prelude and Conclusion}
  12769. \label{sec:print-x86-gc}
  12770. \label{sec:prelude-conclusion-x86-gc}
  12771. \index{subject}{prelude}\index{subject}{conclusion}
  12772. Figure~\ref{fig:print-x86-output-gc} shows the output of the
  12773. \code{prelude\_and\_conclusion} pass on the running example. In the
  12774. prelude of the \code{main} function, we allocate space
  12775. on the root stack to make room for the spills of tuple-typed
  12776. variables. We do so by incrementing the root stack pointer (\code{r15}),
  12777. taking care that the root stack grows up instead of down. For the
  12778. running example, there was just one spill, so we increment \code{r15}
  12779. by 8 bytes. In the conclusion we subtract 8 bytes from \code{r15}.
  12780. One issue that deserves special care is that there may be a call to
  12781. \code{collect} prior to the initializing assignments for all the
  12782. variables in the root stack. We do not want the garbage collector to
  12783. mistakenly determine that some uninitialized variable is a pointer that
  12784. needs to be followed. Thus, we zero out all locations on the root
  12785. stack in the prelude of \code{main}. In
  12786. figure~\ref{fig:print-x86-output-gc}, the instruction
  12787. %
  12788. \lstinline{movq $0, 0(%r15)}
  12789. %
  12790. is sufficient to accomplish this task because there is only one spill.
  12791. In general, we have to clear as many words as there are spills of
  12792. tuple-typed variables. The garbage collector tests each root to see
  12793. if it is null prior to dereferencing it.
  12794. \begin{figure}[htbp]
  12795. \begin{tcolorbox}[colback=white]
  12796. {\if\edition\racketEd
  12797. \begin{minipage}[t]{0.5\textwidth}
  12798. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  12799. .globl main
  12800. main:
  12801. pushq %rbp
  12802. movq %rsp, %rbp
  12803. subq $0, %rsp
  12804. movq $65536, %rdi
  12805. movq $65536, %rsi
  12806. callq initialize
  12807. movq rootstack_begin(%rip), %r15
  12808. movq $0, 0(%r15)
  12809. addq $8, %r15
  12810. jmp start
  12811. conclusion:
  12812. subq $8, %r15
  12813. addq $0, %rsp
  12814. popq %rbp
  12815. retq
  12816. \end{lstlisting}
  12817. \end{minipage}
  12818. \fi}
  12819. {\if\edition\pythonEd
  12820. \begin{minipage}[t]{0.5\textwidth}
  12821. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  12822. .globl main
  12823. main:
  12824. pushq %rbp
  12825. movq %rsp, %rbp
  12826. pushq %rbx
  12827. subq $8, %rsp
  12828. movq $65536, %rdi
  12829. movq $16, %rsi
  12830. callq initialize
  12831. movq rootstack_begin(%rip), %r15
  12832. movq $0, 0(%r15)
  12833. addq $8, %r15
  12834. jmp start
  12835. conclusion:
  12836. subq $8, %r15
  12837. addq $8, %rsp
  12838. popq %rbx
  12839. popq %rbp
  12840. retq
  12841. \end{lstlisting}
  12842. \end{minipage}
  12843. \fi}
  12844. \end{tcolorbox}
  12845. \caption{The prelude and conclusion for the running example.}
  12846. \label{fig:print-x86-output-gc}
  12847. \end{figure}
  12848. \begin{figure}[tbp]
  12849. \begin{tcolorbox}[colback=white]
  12850. {\if\edition\racketEd
  12851. \begin{tikzpicture}[baseline=(current bounding box.center),scale=0.90]
  12852. \node (Lvec) at (0,2) {\large \LangVec{}};
  12853. \node (Lvec-2) at (3,2) {\large \LangVec{}};
  12854. \node (Lvec-3) at (6,2) {\large \LangVec{}};
  12855. \node (Lvec-4) at (10,2) {\large \LangAlloc{}};
  12856. \node (Lvec-5) at (10,0) {\large \LangAlloc{}};
  12857. \node (Lvec-6) at (5,0) {\large \LangAllocANF{}};
  12858. \node (C2-4) at (0,0) {\large \LangCVec{}};
  12859. \node (x86-2) at (0,-2) {\large \LangXGlobalVar{}};
  12860. \node (x86-2-1) at (0,-4) {\large \LangXGlobalVar{}};
  12861. \node (x86-2-2) at (4,-4) {\large \LangXGlobalVar{}};
  12862. \node (x86-3) at (4,-2) {\large \LangXGlobalVar{}};
  12863. \node (x86-4) at (8,-2) {\large \LangXGlobal{}};
  12864. \node (x86-5) at (8,-4) {\large \LangXGlobal{}};
  12865. \path[->,bend left=15] (Lvec) edge [above] node {\ttfamily\footnotesize shrink} (Lvec-2);
  12866. \path[->,bend left=15] (Lvec-2) edge [above] node {\ttfamily\footnotesize uniquify} (Lvec-3);
  12867. \path[->,bend left=15] (Lvec-3) edge [above] node {\ttfamily\footnotesize expose\_allocation} (Lvec-4);
  12868. \path[->,bend left=15] (Lvec-4) edge [right] node
  12869. {\ttfamily\footnotesize uncover\_get!} (Lvec-5);
  12870. \path[->,bend left=10] (Lvec-5) edge [below] node {\ttfamily\footnotesize remove\_complex\_operands} (Lvec-6);
  12871. \path[->,bend right=10] (Lvec-6) edge [above] node {\ttfamily\footnotesize explicate\_control} (C2-4);
  12872. \path[->,bend left=15] (C2-4) edge [right] node {\ttfamily\footnotesize select\_instructions} (x86-2);
  12873. \path[->,bend right=15] (x86-2) edge [right] node {\ttfamily\footnotesize uncover\_live} (x86-2-1);
  12874. \path[->,bend right=15] (x86-2-1) edge [below] node {\ttfamily\footnotesize build\_interference} (x86-2-2);
  12875. \path[->,bend right=15] (x86-2-2) edge [right] node {\ttfamily\footnotesize allocate\_registers} (x86-3);
  12876. \path[->,bend left=10] (x86-3) edge [above] node {\ttfamily\footnotesize patch\_instructions} (x86-4);
  12877. \path[->,bend left=15] (x86-4) edge [right] node {\ttfamily\footnotesize prelude\_and\_conclusion} (x86-5);
  12878. \end{tikzpicture}
  12879. \fi}
  12880. {\if\edition\pythonEd\pythonColor
  12881. \begin{tikzpicture}[baseline=(current bounding box.center),scale=0.85]
  12882. \node (Lvec) at (0,2) {\large \LangVec{}};
  12883. \node (Lvec-2) at (4,2) {\large \LangVec{}};
  12884. \node (Lvec-5) at (8,2) {\large \LangAlloc{}};
  12885. \node (Lvec-6) at (12,2) {\large \LangAllocANF{}};
  12886. \node (C2-4) at (0,0) {\large \LangCVec{}};
  12887. \node (x86-2) at (0,-2) {\large \LangXGlobalVar{}};
  12888. \node (x86-3) at (4,-2) {\large \LangXGlobalVar{}};
  12889. \node (x86-4) at (8,-2) {\large \LangXGlobal{}};
  12890. \node (x86-5) at (12,-2) {\large \LangXGlobal{}};
  12891. \path[->,bend left=15] (Lvec) edge [above] node {\ttfamily\footnotesize shrink} (Lvec-2);
  12892. \path[->,bend left=15] (Lvec-2) edge [above] node {\ttfamily\footnotesize expose\_allocation} (Lvec-5);
  12893. \path[->,bend left=15] (Lvec-5) edge [above] node {\ttfamily\footnotesize remove\_complex\_operands} (Lvec-6);
  12894. \path[->,bend left=10] (Lvec-6) edge [right] node {\ttfamily\footnotesize \ \ \ explicate\_control} (C2-4);
  12895. \path[->,bend left=15] (C2-4) edge [right] node {\ttfamily\footnotesize select\_instructions} (x86-2);
  12896. \path[->,bend right=15] (x86-2) edge [below] node {\ttfamily\footnotesize assign\_homes} (x86-3);
  12897. \path[->,bend left=15] (x86-3) edge [above] node {\ttfamily\footnotesize patch\_instructions} (x86-4);
  12898. \path[->,bend right=15] (x86-4) edge [below] node {\ttfamily\footnotesize prelude\_and\_conclusion} (x86-5);
  12899. \end{tikzpicture}
  12900. \fi}
  12901. \end{tcolorbox}
  12902. \caption{Diagram of the passes for \LangVec{}, a language with tuples.}
  12903. \label{fig:Lvec-passes}
  12904. \end{figure}
  12905. Figure~\ref{fig:Lvec-passes} gives an overview of all the passes needed
  12906. for the compilation of \LangVec{}.
  12907. \clearpage
  12908. {\if\edition\racketEd
  12909. \section{Challenge: Simple Structures}
  12910. \label{sec:simple-structures}
  12911. \index{subject}{struct}
  12912. \index{subject}{structure}
  12913. The language \LangStruct{} extends \LangVec{} with support for simple
  12914. structures. The definition of its concrete syntax is shown in
  12915. figure~\ref{fig:Lstruct-concrete-syntax}, and the abstract syntax is
  12916. shown in figure~\ref{fig:Lstruct-syntax}. Recall that a \code{struct}
  12917. in Typed Racket is a user-defined data type that contains named fields
  12918. and that is heap allocated\index{subject}{heap allocated},
  12919. similarly to a vector. The following is an
  12920. example of a structure definition, in this case the definition of a
  12921. \code{point} type:
  12922. \begin{lstlisting}
  12923. (struct point ([x : Integer] [y : Integer]) #:mutable)
  12924. \end{lstlisting}
  12925. \newcommand{\LstructGrammarRacket}{
  12926. \begin{array}{lcl}
  12927. \Type &::=& \Var \\
  12928. \Exp &::=& (\Var\;\Exp \ldots)\\
  12929. \Def &::=& (\key{struct}\; \Var \; ([\Var \,\key{:}\, \Type] \ldots)\; \code{\#:mutable})\\
  12930. \end{array}
  12931. }
  12932. \newcommand{\LstructASTRacket}{
  12933. \begin{array}{lcl}
  12934. \Type &::=& \VAR{\Var} \\
  12935. \Exp &::=& \APPLY{\Var}{\Exp\ldots} \\
  12936. \Def &::=& \LP\key{StructDef}\; \Var \; \LP\LS\Var \,\key{:}\, \Type\RS \ldots\RP\RP
  12937. \end{array}
  12938. }
  12939. \begin{figure}[tbp]
  12940. \centering
  12941. \begin{tcolorbox}[colback=white]
  12942. \[
  12943. \begin{array}{l}
  12944. \gray{\LintGrammarRacket{}} \\ \hline
  12945. \gray{\LvarGrammarRacket{}} \\ \hline
  12946. \gray{\LifGrammarRacket{}} \\ \hline
  12947. \gray{\LwhileGrammarRacket} \\ \hline
  12948. \gray{\LtupGrammarRacket} \\ \hline
  12949. \LstructGrammarRacket \\
  12950. \begin{array}{lcl}
  12951. \LangStruct{} &::=& \Def \ldots \; \Exp
  12952. \end{array}
  12953. \end{array}
  12954. \]
  12955. \end{tcolorbox}
  12956. \caption{The concrete syntax of \LangStruct{}, extending \LangVec{}
  12957. (figure~\ref{fig:Lvec-concrete-syntax}).}
  12958. \label{fig:Lstruct-concrete-syntax}
  12959. \end{figure}
  12960. \begin{figure}[tbp]
  12961. \centering
  12962. \begin{tcolorbox}[colback=white]
  12963. \small
  12964. \[
  12965. \begin{array}{l}
  12966. \gray{\LintASTRacket{}} \\ \hline
  12967. \gray{\LvarASTRacket{}} \\ \hline
  12968. \gray{\LifASTRacket{}} \\ \hline
  12969. \gray{\LwhileASTRacket} \\ \hline
  12970. \gray{\LtupASTRacket} \\ \hline
  12971. \LstructASTRacket \\
  12972. \begin{array}{lcl}
  12973. \LangStruct{} &::=& \PROGRAMDEFSEXP{\code{'()}}{\LP\Def\ldots\RP)}{\Exp}
  12974. \end{array}
  12975. \end{array}
  12976. \]
  12977. \end{tcolorbox}
  12978. \caption{The abstract syntax of \LangStruct{}, extending \LangVec{}
  12979. (figure~\ref{fig:Lvec-syntax}).}
  12980. \label{fig:Lstruct-syntax}
  12981. \end{figure}
  12982. An instance of a structure is created using function-call syntax, with
  12983. the name of the structure in the function position, as follows:
  12984. \begin{lstlisting}
  12985. (point 7 12)
  12986. \end{lstlisting}
  12987. Function-call syntax is also used to read a field of a structure. The
  12988. function name is formed by the structure name, a dash, and the field
  12989. name. The following example uses \code{point-x} and \code{point-y} to
  12990. access the \code{x} and \code{y} fields of two point instances:
  12991. \begin{center}
  12992. \begin{lstlisting}
  12993. (let ([pt1 (point 7 12)])
  12994. (let ([pt2 (point 4 3)])
  12995. (+ (- (point-x pt1) (point-x pt2))
  12996. (- (point-y pt1) (point-y pt2)))))
  12997. \end{lstlisting}
  12998. \end{center}
  12999. Similarly, to write to a field of a structure, use its set function,
  13000. whose name starts with \code{set-}, followed by the structure name,
  13001. then a dash, then the field name, and finally with an exclamation
  13002. mark. The following example uses \code{set-point-x!} to change the
  13003. \code{x} field from \code{7} to \code{42}:
  13004. \begin{center}
  13005. \begin{lstlisting}
  13006. (let ([pt (point 7 12)])
  13007. (let ([_ (set-point-x! pt 42)])
  13008. (point-x pt)))
  13009. \end{lstlisting}
  13010. \end{center}
  13011. \begin{exercise}\normalfont\normalsize
  13012. Create a type checker for \LangStruct{} by extending the type
  13013. checker for \LangVec{}. Extend your compiler with support for simple
  13014. structures, compiling \LangStruct{} to x86 assembly code. Create
  13015. five new test cases that use structures, and test your compiler.
  13016. \end{exercise}
  13017. % TODO: create an interpreter for L_struct
  13018. \clearpage
  13019. \fi}
  13020. \section{Challenge: Arrays}
  13021. \label{sec:arrays}
  13022. % TODO mention trapped-error
  13023. In this chapter we have studied tuples, that is, heterogeneous
  13024. sequences of elements whose length is determined at compile time. This
  13025. challenge is also about sequences, but this time the length is
  13026. determined at runtime and all the elements have the same type (they
  13027. are homogeneous). We use the traditional term \emph{array} for this
  13028. latter kind of sequence.
  13029. %
  13030. \racket{
  13031. The Racket language does not distinguish between tuples and arrays;
  13032. they are both represented by vectors. However, Typed Racket
  13033. distinguishes between tuples and arrays: the \code{Vector} type is for
  13034. tuples, and the \code{Vectorof} type is for arrays.}%
  13035. \python{Arrays correspond to the \code{list} type in the Python language.}
  13036. Figure~\ref{fig:Lvecof-concrete-syntax} presents the definition of the
  13037. concrete syntax for \LangArray{}, and figure~\ref{fig:Lvecof-syntax}
  13038. presents the definition of the abstract syntax, extending \LangVec{}
  13039. with the \racket{\code{Vectorof}}\python{\code{list}} type and the
  13040. \racket{\code{make-vector} primitive operator for creating an array,
  13041. whose arguments are the length of the array and an initial value for
  13042. all the elements in the array.}%
  13043. \python{bracket notation for creating an array literal.}
  13044. \racket{The \code{vector-length},
  13045. \code{vector-ref}, and \code{vector-ref!} operators that we defined
  13046. for tuples become overloaded for use with arrays.}
  13047. \python{
  13048. The subscript operator becomes overloaded for use with arrays and tuples
  13049. and now may appear on the left-hand side of an assignment.
  13050. Note that the index of the subscript, when applied to an array, may be an
  13051. arbitrary expression and not exclusively a constant integer.
  13052. The \code{len} function is also applicable to arrays.
  13053. }
  13054. %
  13055. We include integer multiplication in \LangArray{} because it is
  13056. useful in many examples involving arrays such as computing the
  13057. inner product of two arrays (figure~\ref{fig:inner_product}).
  13058. \newcommand{\LarrayGrammarRacket}{
  13059. \begin{array}{lcl}
  13060. \Type &::=& \LP \key{Vectorof}~\Type \RP \\
  13061. \Exp &::=& \CMUL{\Exp}{\Exp}
  13062. \MID \CMAKEVEC{\Exp}{\Exp}
  13063. \end{array}
  13064. }
  13065. \newcommand{\LarrayASTRacket}{
  13066. \begin{array}{lcl}
  13067. \Type &::=& \LP \key{Vectorof}~\Type \RP \\
  13068. \Exp &::=& \MUL{\Exp}{\Exp}
  13069. \MID \MAKEVEC{\Exp}{\Exp}
  13070. \end{array}
  13071. }
  13072. \newcommand{\LarrayGrammarPython}{
  13073. \begin{array}{lcl}
  13074. \Type &::=& \key{list}\LS\Type\RS \\
  13075. \Exp &::=& \CMUL{\Exp}{\Exp}
  13076. \MID \CGET{\Exp}{\Exp}
  13077. \MID \LS \Exp \code{,} \ldots \RS \\
  13078. \Stmt &::= & \CGET{\Exp}{\Exp} \mathop{\key{=}}\Exp
  13079. \end{array}
  13080. }
  13081. \newcommand{\LarrayASTPython}{
  13082. \begin{array}{lcl}
  13083. \Type &::=& \key{ListType}\LP\Type\RP \\
  13084. \Exp &::=& \MUL{\Exp}{\Exp}
  13085. \MID \GET{\Exp}{\Exp} \\
  13086. &\MID& \key{List}\LP \Exp \code{,} \ldots \code{, } \code{Load()} \RP \\
  13087. \Stmt &::= & \ASSIGN{ \PUT{\Exp}{\Exp} }{\Exp}
  13088. \end{array}
  13089. }
  13090. \begin{figure}[tp]
  13091. \centering
  13092. \begin{tcolorbox}[colback=white]
  13093. \small
  13094. {\if\edition\racketEd
  13095. \[
  13096. \begin{array}{l}
  13097. \gray{\LintGrammarRacket{}} \\ \hline
  13098. \gray{\LvarGrammarRacket{}} \\ \hline
  13099. \gray{\LifGrammarRacket{}} \\ \hline
  13100. \gray{\LwhileGrammarRacket} \\ \hline
  13101. \gray{\LtupGrammarRacket} \\ \hline
  13102. \LarrayGrammarRacket \\
  13103. \begin{array}{lcl}
  13104. \LangArray{} &::=& \Exp
  13105. \end{array}
  13106. \end{array}
  13107. \]
  13108. \fi}
  13109. {\if\edition\pythonEd\pythonColor
  13110. \[
  13111. \begin{array}{l}
  13112. \gray{\LintGrammarPython{}} \\ \hline
  13113. \gray{\LvarGrammarPython{}} \\ \hline
  13114. \gray{\LifGrammarPython{}} \\ \hline
  13115. \gray{\LwhileGrammarPython} \\ \hline
  13116. \gray{\LtupGrammarPython} \\ \hline
  13117. \LarrayGrammarPython \\
  13118. \begin{array}{rcl}
  13119. \LangArrayM{} &::=& \Stmt^{*}
  13120. \end{array}
  13121. \end{array}
  13122. \]
  13123. \fi}
  13124. \end{tcolorbox}
  13125. \caption{The concrete syntax of \LangArray{}, extending \LangVec{} (figure~\ref{fig:Lvec-concrete-syntax}).}
  13126. \label{fig:Lvecof-concrete-syntax}
  13127. \end{figure}
  13128. \begin{figure}[tp]
  13129. \centering
  13130. \begin{tcolorbox}[colback=white]
  13131. \small
  13132. {\if\edition\racketEd
  13133. \[
  13134. \begin{array}{l}
  13135. \gray{\LintASTRacket{}} \\ \hline
  13136. \gray{\LvarASTRacket{}} \\ \hline
  13137. \gray{\LifASTRacket{}} \\ \hline
  13138. \gray{\LwhileASTRacket} \\ \hline
  13139. \gray{\LtupASTRacket} \\ \hline
  13140. \LarrayASTRacket \\
  13141. \begin{array}{lcl}
  13142. \LangArray{} &::=& \Exp
  13143. \end{array}
  13144. \end{array}
  13145. \]
  13146. \fi}
  13147. {\if\edition\pythonEd\pythonColor
  13148. \[
  13149. \begin{array}{l}
  13150. \gray{\LintASTPython{}} \\ \hline
  13151. \gray{\LvarASTPython{}} \\ \hline
  13152. \gray{\LifASTPython{}} \\ \hline
  13153. \gray{\LwhileASTPython} \\ \hline
  13154. \gray{\LtupASTPython} \\ \hline
  13155. \LarrayASTPython \\
  13156. \begin{array}{rcl}
  13157. \LangArrayM{} &::=& \Stmt^{*}
  13158. \end{array}
  13159. \end{array}
  13160. \]
  13161. \fi}
  13162. \end{tcolorbox}
  13163. \caption{The abstract syntax of \LangArray{}, extending \LangVec{} (figure~\ref{fig:Lvec-syntax}).}
  13164. \label{fig:Lvecof-syntax}
  13165. \end{figure}
  13166. \begin{figure}[tp]
  13167. \begin{tcolorbox}[colback=white]
  13168. {\if\edition\racketEd
  13169. % TODO: remove the function from the following example, like the python version -Jeremy
  13170. \begin{lstlisting}
  13171. (let ([A (make-vector 2 2)])
  13172. (let ([B (make-vector 2 3)])
  13173. (let ([i 0])
  13174. (let ([prod 0])
  13175. (begin
  13176. (while (< i n)
  13177. (begin
  13178. (set! prod (+ prod (* (vector-ref A i)
  13179. (vector-ref B i))))
  13180. (set! i (+ i 1))))
  13181. prod)))))
  13182. \end{lstlisting}
  13183. \fi}
  13184. {\if\edition\pythonEd\pythonColor
  13185. \begin{lstlisting}
  13186. A = [2, 2]
  13187. B = [3, 3]
  13188. i = 0
  13189. prod = 0
  13190. while i != len(A):
  13191. prod = prod + A[i] * B[i]
  13192. i = i + 1
  13193. print(prod)
  13194. \end{lstlisting}
  13195. \fi}
  13196. \end{tcolorbox}
  13197. \caption{Example program that computes the inner product.}
  13198. \label{fig:inner_product}
  13199. \end{figure}
  13200. {\if\edition\racketEd
  13201. %
  13202. Figure~\ref{fig:type-check-Lvecof} shows the definition of the type
  13203. checker for \LangArray{}. The result type of
  13204. \code{make-vector} is \code{(Vectorof T)}, where \code{T} is the type
  13205. of the initializing expression. The length expression is required to
  13206. have type \code{Integer}. The type checking of the operators
  13207. \code{vector-length}, \code{vector-ref}, and \code{vector-set!} is
  13208. updated to handle the situation in which the vector has type
  13209. \code{Vectorof}. In these cases we translate the operators to their
  13210. \code{vectorof} form so that later passes can easily distinguish
  13211. between operations on tuples versus arrays. We override the
  13212. \code{operator-types} method to provide the type signature for
  13213. multiplication: it takes two integers and returns an integer.
  13214. \fi}
  13215. %
  13216. {\if\edition\pythonEd\pythonColor
  13217. %
  13218. The type checker for \LangArray{} is defined in
  13219. figures~\ref{fig:type-check-Lvecof} and
  13220. \ref{fig:type-check-Lvecof-part2}. The result type of a list literal
  13221. is \code{list[T]}, where \code{T} is the type of the initializing
  13222. expressions. The type checking of the \code{len} function and the
  13223. subscript operator are updated to handle lists. The type checker now
  13224. also handles a subscript on the left-hand side of an assignment.
  13225. Regarding multiplication, it takes two integers and returns an
  13226. integer.
  13227. %
  13228. \fi}
  13229. \begin{figure}[tbp]
  13230. \begin{tcolorbox}[colback=white]
  13231. {\if\edition\racketEd
  13232. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  13233. (define type-check-Lvecof-class
  13234. (class type-check-Lvec-class
  13235. (super-new)
  13236. (inherit check-type-equal?)
  13237. (define/override (operator-types)
  13238. (append '((* . ((Integer Integer) . Integer)))
  13239. (super operator-types)))
  13240. (define/override (type-check-exp env)
  13241. (lambda (e)
  13242. (define recur (type-check-exp env))
  13243. (match e
  13244. [(Prim 'make-vector (list e1 e2))
  13245. (define-values (e1^ t1) (recur e1))
  13246. (define-values (e2^ elt-type) (recur e2))
  13247. (define vec-type `(Vectorof ,elt-type))
  13248. (values (Prim 'make-vector (list e1^ e2^)) vec-type)]
  13249. [(Prim 'vector-ref (list e1 e2))
  13250. (define-values (e1^ t1) (recur e1))
  13251. (define-values (e2^ t2) (recur e2))
  13252. (match* (t1 t2)
  13253. [(`(Vectorof ,elt-type) 'Integer)
  13254. (values (Prim 'vectorof-ref (list e1^ e2^)) elt-type)]
  13255. [(other wise) ((super type-check-exp env) e)])]
  13256. [(Prim 'vector-set! (list e1 e2 e3) )
  13257. (define-values (e-vec t-vec) (recur e1))
  13258. (define-values (e2^ t2) (recur e2))
  13259. (define-values (e-arg^ t-arg) (recur e3))
  13260. (match t-vec
  13261. [`(Vectorof ,elt-type)
  13262. (check-type-equal? elt-type t-arg e)
  13263. (values (Prim 'vectorof-set! (list e-vec e2^ e-arg^)) 'Void)]
  13264. [else ((super type-check-exp env) e)])]
  13265. [(Prim 'vector-length (list e1))
  13266. (define-values (e1^ t1) (recur e1))
  13267. (match t1
  13268. [`(Vectorof ,t)
  13269. (values (Prim 'vectorof-length (list e1^)) 'Integer)]
  13270. [else ((super type-check-exp env) e)])]
  13271. [else ((super type-check-exp env) e)])))
  13272. ))
  13273. (define (type-check-Lvecof p)
  13274. (send (new type-check-Lvecof-class) type-check-program p))
  13275. \end{lstlisting}
  13276. \fi}
  13277. {\if\edition\pythonEd\pythonColor
  13278. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  13279. class TypeCheckLarray(TypeCheckLtup):
  13280. def type_check_exp(self, e, env):
  13281. match e:
  13282. case ast.List(es, Load()):
  13283. ts = [self.type_check_exp(e, env) for e in es]
  13284. elt_ty = ts[0]
  13285. for (ty, elt) in zip(ts, es):
  13286. self.check_type_equal(elt_ty, ty, elt)
  13287. e.has_type = ListType(elt_ty)
  13288. return e.has_type
  13289. case Call(Name('len'), [tup]):
  13290. tup_t = self.type_check_exp(tup, env)
  13291. tup.has_type = tup_t
  13292. match tup_t:
  13293. case TupleType(ts):
  13294. return IntType()
  13295. case ListType(ty):
  13296. return IntType()
  13297. case _:
  13298. raise Exception('len expected a tuple, not ' + repr(tup_t))
  13299. case Subscript(tup, index, Load()):
  13300. tup_ty = self.type_check_exp(tup, env)
  13301. index_ty = self.type_check_exp(index, env)
  13302. self.check_type_equal(index_ty, IntType(), index)
  13303. match tup_ty:
  13304. case TupleType(ts):
  13305. match index:
  13306. case Constant(i):
  13307. return ts[i]
  13308. case _:
  13309. raise Exception('subscript required constant integer index')
  13310. case ListType(ty):
  13311. return ty
  13312. case _:
  13313. raise Exception('subscript expected a tuple, not ' + repr(tup_ty))
  13314. case BinOp(left, Mult(), right):
  13315. l = self.type_check_exp(left, env)
  13316. self.check_type_equal(l, IntType(), left)
  13317. r = self.type_check_exp(right, env)
  13318. self.check_type_equal(r, IntType(), right)
  13319. return IntType()
  13320. case _:
  13321. return super().type_check_exp(e, env)
  13322. \end{lstlisting}
  13323. \fi}
  13324. \end{tcolorbox}
  13325. \caption{Type checker for the \LangArray{} language\python{, part 1}.}
  13326. \label{fig:type-check-Lvecof}
  13327. \end{figure}
  13328. {\if\edition\pythonEd
  13329. \begin{figure}[tbp]
  13330. \begin{tcolorbox}[colback=white]
  13331. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  13332. def type_check_stmts(self, ss, env):
  13333. if len(ss) == 0:
  13334. return VoidType()
  13335. match ss[0]:
  13336. case Assign([Subscript(tup, index, Store())], value):
  13337. tup_t = self.type_check_exp(tup, env)
  13338. value_t = self.type_check_exp(value, env)
  13339. index_ty = self.type_check_exp(index, env)
  13340. self.check_type_equal(index_ty, IntType(), index)
  13341. match tup_t:
  13342. case ListType(ty):
  13343. self.check_type_equal(ty, value_t, ss[0])
  13344. case TupleType(ts):
  13345. return self.type_check_stmts(ss, env)
  13346. case _:
  13347. raise Exception('type_check_stmts: '
  13348. 'expected tuple or list, not ' + repr(tup_t))
  13349. return self.type_check_stmts(ss[1:], env)
  13350. case _:
  13351. return super().type_check_stmts(ss, env)
  13352. \end{lstlisting}
  13353. \end{tcolorbox}
  13354. \caption{Type checker for the \LangArray{} language, part 2.}
  13355. \label{fig:type-check-Lvecof-part2}
  13356. \end{figure}
  13357. \fi}
  13358. The definition of the interpreter for \LangArray{} is shown in
  13359. \racket{figure~\ref{fig:interp-Lvecof}}
  13360. \python{figure~\ref{fig:interp-Lvecof}}.
  13361. \racket{The \code{make-vector} operator is
  13362. interpreted using Racket's \code{make-vector} function,
  13363. and multiplication is interpreted using \code{fx*},
  13364. which is multiplication for \code{fixnum} integers.
  13365. In the \code{resolve} pass (section~\ref{sec:array-resolution})
  13366. we translate array access operations
  13367. into \code{vectorof-ref} and \code{vectorof-set!} operations,
  13368. which we interpret using \code{vector} operations with additional
  13369. bounds checks that signal a \code{trapped-error}.
  13370. }
  13371. %
  13372. \python{We implement array creation with a Python list comprehension,
  13373. and multiplication is implemented with 64-bit multiplication. We
  13374. add a case for a subscript on the left-hand side of
  13375. assignment. Other uses of subscript can be handled by the existing
  13376. code for tuples.}
  13377. \begin{figure}[tbp]
  13378. \begin{tcolorbox}[colback=white]
  13379. {\if\edition\racketEd
  13380. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  13381. (define interp-Lvecof-class
  13382. (class interp-Lvec-class
  13383. (super-new)
  13384. (define/override (interp-op op)
  13385. (match op
  13386. ['make-vector make-vector]
  13387. ['vectorof-length vector-length]
  13388. ['vectorof-ref
  13389. (lambda (v i)
  13390. (if (< i (vector-length v))
  13391. (vector-ref v i)
  13392. (error 'trapped-error "index ~a out of bounds\nin ~v" i v)))]
  13393. ['vectorof-set!
  13394. (lambda (v i e)
  13395. (if (< i (vector-length v))
  13396. (vector-set! v i e)
  13397. (error 'trapped-error "index ~a out of bounds\nin ~v" i v)))]
  13398. [else (super interp-op op)]))
  13399. ))
  13400. (define (interp-Lvecof p)
  13401. (send (new interp-Lvecof-class) interp-program p))
  13402. \end{lstlisting}
  13403. \fi}
  13404. {\if\edition\pythonEd\pythonColor
  13405. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  13406. class InterpLarray(InterpLtup):
  13407. def interp_exp(self, e, env):
  13408. match e:
  13409. case ast.List(es, Load()):
  13410. return [self.interp_exp(e, env) for e in es]
  13411. case BinOp(left, Mult(), right):
  13412. l = self.interp_exp(left, env)
  13413. r = self.interp_exp(right, env)
  13414. return mul64(l, r)
  13415. case Subscript(tup, index, Load()):
  13416. t = self.interp_exp(tup, env)
  13417. n = self.interp_exp(index, env)
  13418. if n < len(t):
  13419. return t[n]
  13420. else:
  13421. raise TrappedError('array index out of bounds')
  13422. case _:
  13423. return super().interp_exp(e, env)
  13424. def interp_stmt(self, s, env, cont):
  13425. match s:
  13426. case Assign([Subscript(tup, index)], value):
  13427. t = self.interp_exp(tup, env)
  13428. n = self.interp_exp(index, env)
  13429. if n < len(t):
  13430. t[n] = self.interp_exp(value, env)
  13431. else:
  13432. raise TrappedError('array index out of bounds')
  13433. return self.interp_stmts(cont, env)
  13434. case _:
  13435. return super().interp_stmt(s, env, cont)
  13436. \end{lstlisting}
  13437. \fi}
  13438. \end{tcolorbox}
  13439. \caption{Interpreter for \LangArray{}.}
  13440. \label{fig:interp-Lvecof}
  13441. \end{figure}
  13442. \subsection{Data Representation}
  13443. \label{sec:array-rep}
  13444. Just as with tuples, we store arrays on the heap, which means that the
  13445. garbage collector will need to inspect arrays. An immediate thought is
  13446. to use the same representation for arrays that we use for tuples.
  13447. However, we limit tuples to a length of fifty so that their length and
  13448. pointer mask can fit into the 64-bit tag at the beginning of each
  13449. tuple (section~\ref{sec:data-rep-gc}). We intend arrays to allow
  13450. millions of elements, so we need more bits to store the length.
  13451. However, because arrays are homogeneous, we need only 1 bit for the
  13452. pointer mask instead of 1 bit per array element. Finally, the
  13453. garbage collector must be able to distinguish between tuples
  13454. and arrays, so we need to reserve one bit for that purpose. We
  13455. arrive at the following layout for the 64-bit tag at the beginning of
  13456. an array:
  13457. \begin{itemize}
  13458. \item The right-most bit is the forwarding bit, just as in a tuple.
  13459. A $0$ indicates that it is a forwarding pointer, and a $1$ indicates
  13460. that it is not.
  13461. \item The next bit to the left is the pointer mask. A $0$ indicates
  13462. that none of the elements are pointers, and a $1$ indicates that all
  13463. the elements are pointers.
  13464. \item The next $60$ bits store the length of the array.
  13465. \item The bit at position $62$ distinguishes between a tuple ($0$)
  13466. and an array ($1$).
  13467. \item The left-most bit is reserved as explained in
  13468. chapter~\ref{ch:Lgrad}.
  13469. \end{itemize}
  13470. %% Recall that in chapter~\ref{ch:Ldyn}, we use a $3$-bit tag to
  13471. %% differentiate the kinds of values that have been injected into the
  13472. %% \code{Any} type. We use the bit pattern \code{110} (or $6$ in decimal)
  13473. %% to indicate that the value is an array.
  13474. In the following subsections we provide hints regarding how to update
  13475. the passes to handle arrays.
  13476. \subsection{Overload Resolution}
  13477. \label{sec:array-resolution}
  13478. As noted previously, with the addition of arrays, several operators
  13479. have become \emph{overloaded}; that is, they can be applied to values
  13480. of more than one type. In this case, the element access and length
  13481. operators can be applied to both tuples and arrays. This kind of
  13482. overloading is quite common in programming languages, so many
  13483. compilers perform \emph{overload resolution}\index{subject}{overload
  13484. resolution} to handle it. The idea is to translate each overloaded
  13485. operator into different operators for the different types.
  13486. Implement a new pass named \code{resolve}.
  13487. Translate the reading of an array element to
  13488. \racket{\code{vectorof-ref}}\python{\code{array\_load}}
  13489. and the writing of an array element to
  13490. \racket{\code{vectorof-set!}}\python{\code{array\_store}}.
  13491. Translate calls to \racket{\code{vector-length}}\python{\code{len}}
  13492. into \racket{\code{vectorof-length}}\python{\code{array\_len}}.
  13493. When these operators are applied to tuples, leave them as is.
  13494. %
  13495. \python{The type checker for \LangArray{} adds a \code{has\_type}
  13496. field, which can be inspected to determine whether the operator
  13497. is applied to a tuple or an array.}
  13498. \subsection{Bounds Checking}
  13499. Recall that the interpreter for \LangArray{} signals a
  13500. \racket{\code{trapped-error}}\python{\code{TrappedError}}
  13501. when there is an array access that is out of
  13502. bounds. Therefore your compiler is obliged to also catch these errors
  13503. during execution and halt, signaling an error. We recommend inserting
  13504. a new pass named \code{check\_bounds} that inserts code around each
  13505. \racket{\code{vectorof-ref} and \code{vectorof-set!}}
  13506. \python{subscript} operation to ensure that the index is greater than
  13507. or equal to zero and less than the array's length. If not, the program
  13508. should halt, for which we recommend using a new primitive operation
  13509. named \code{exit}.
  13510. %% \subsection{Reveal Casts}
  13511. %% The array-access operators \code{vectorof-ref} and
  13512. %% \code{vectorof-set!} are similar to the \code{any-vector-ref} and
  13513. %% \code{any-vector-set!} operators of chapter~\ref{ch:Ldyn} in
  13514. %% that the type checker cannot tell whether the index will be in bounds,
  13515. %% so the bounds check must be performed at run time. Recall that the
  13516. %% \code{reveal-casts} pass (section~\ref{sec:reveal-casts-Rany}) wraps
  13517. %% an \code{If} around a vector reference for update to check whether
  13518. %% the index is less than the length. You should do the same for
  13519. %% \code{vectorof-ref} and \code{vectorof-set!} .
  13520. %% In addition, the handling of the \code{any-vector} operators in
  13521. %% \code{reveal-casts} needs to be updated to account for arrays that are
  13522. %% injected to \code{Any}. For the \code{any-vector-length} operator, the
  13523. %% generated code should test whether the tag is for tuples (\code{010})
  13524. %% or arrays (\code{110}) and then dispatch to either
  13525. %% \code{any-vector-length} or \code{any-vectorof-length}. For the later
  13526. %% we add a case in \code{select\_instructions} to generate the
  13527. %% appropriate instructions for accessing the array length from the
  13528. %% header of an array.
  13529. %% For the \code{any-vector-ref} and \code{any-vector-set!} operators,
  13530. %% the generated code needs to check that the index is less than the
  13531. %% vector length, so like the code for \code{any-vector-length}, check
  13532. %% the tag to determine whether to use \code{any-vector-length} or
  13533. %% \code{any-vectorof-length} for this purpose. Once the bounds checking
  13534. %% is complete, the generated code can use \code{any-vector-ref} and
  13535. %% \code{any-vector-set!} for both tuples and arrays because the
  13536. %% instructions used for those operators do not look at the tag at the
  13537. %% front of the tuple or array.
  13538. \subsection{Expose Allocation}
  13539. This pass should translate array creation into lower-level
  13540. operations. In particular, the new AST node \ALLOCARRAY{\Exp}{\Type}
  13541. is analogous to the \code{Allocate} AST node for tuples. The $\Type$
  13542. argument must be \ARRAYTY{T}, where $T$ is the element type for the
  13543. array. The \code{AllocateArray} AST node allocates an array of the
  13544. length specified by the $\Exp$ (of type \INTTY), but does not
  13545. initialize the elements of the array. Generate code in this pass to
  13546. initialize the elements analogous to the case for tuples.
  13547. {\if\edition\racketEd
  13548. \subsection{Uncover \texttt{get!}}
  13549. \label{sec:uncover-get-bang-vecof}
  13550. Add cases for \code{AllocateArray} to \code{collect-set!} and
  13551. \code{uncover-get!-exp}.
  13552. \fi}
  13553. \subsection{Remove Complex Operands}
  13554. Add cases in the \code{rco\_atom} and \code{rco\_exp} for
  13555. \code{AllocateArray}. In particular, an \code{AllocateArray} node is
  13556. complex, and its subexpression must be atomic.
  13557. \subsection{Explicate Control}
  13558. Add cases for \code{AllocateArray} to \code{explicate\_tail} and
  13559. \code{explicate\_assign}.
  13560. \subsection{Select Instructions}
  13561. \index{subject}{select instructions}
  13562. Generate instructions for \code{AllocateArray} similar to those for
  13563. \code{Allocate} given in section~\ref{sec:select-instructions-gc}
  13564. except that the tag at the front of the array should instead use the
  13565. representation discussed in section~\ref{sec:array-rep}.
  13566. Regarding \racket{\code{vectorof-length}}\python{\code{array\_len}},
  13567. extract the length from the tag.
  13568. The instructions generated for accessing an element of an array differ
  13569. from those for a tuple (section~\ref{sec:select-instructions-gc}) in
  13570. that the index is not a constant so you need to generate instructions
  13571. that compute the offset at runtime.
  13572. Compile the \code{exit} primitive into a call to the \code{exit}
  13573. function of the C standard library, with an argument of $255$.
  13574. %% Also, note that assignment to an array element may appear in
  13575. %% as a stand-alone statement, so make sure to handle that situation in
  13576. %% this pass.
  13577. %% Finally, the instructions for \code{any-vectorof-length} should be
  13578. %% similar to those for \code{vectorof-length}, except that one must
  13579. %% first project the array by writing zeroes into the $3$-bit tag
  13580. \begin{exercise}\normalfont\normalsize
  13581. Implement a compiler for the \LangArray{} language by extending your
  13582. compiler for \LangLoop{}. Test your compiler on a half dozen new
  13583. programs, including the one shown in figure~\ref{fig:inner_product}
  13584. and also a program that multiplies two matrices. Note that although
  13585. matrices are two-dimensional arrays, they can be encoded into
  13586. one-dimensional arrays by laying out each row in the array, one after
  13587. the next.
  13588. \end{exercise}
  13589. {\if\edition\racketEd
  13590. \section{Challenge: Generational Collection}
  13591. The copying collector described in section~\ref{sec:GC} can incur
  13592. significant runtime overhead because the call to \code{collect} takes
  13593. time proportional to all the live data. One way to reduce this
  13594. overhead is to reduce how much data is inspected in each call to
  13595. \code{collect}. In particular, researchers have observed that recently
  13596. allocated data is more likely to become garbage then data that has
  13597. survived one or more previous calls to \code{collect}. This insight
  13598. motivated the creation of \emph{generational garbage collectors}
  13599. \index{subject}{generational garbage collector} that
  13600. (1) segregate data according to its age into two or more generations;
  13601. (2) allocate less space for younger generations, so collecting them is
  13602. faster, and more space for the older generations; and (3) perform
  13603. collection on the younger generations more frequently than on older
  13604. generations~\citep{Wilson:1992fk}.
  13605. For this challenge assignment, the goal is to adapt the copying
  13606. collector implemented in \code{runtime.c} to use two generations, one
  13607. for young data and one for old data. Each generation consists of a
  13608. FromSpace and a ToSpace. The following is a sketch of how to adapt the
  13609. \code{collect} function to use the two generations:
  13610. \begin{enumerate}
  13611. \item Copy the young generation's FromSpace to its ToSpace and then
  13612. switch the role of the ToSpace and FromSpace.
  13613. \item If there is enough space for the requested number of bytes in
  13614. the young FromSpace, then return from \code{collect}.
  13615. \item If there is not enough space in the young FromSpace for the
  13616. requested bytes, then move the data from the young generation to the
  13617. old one with the following steps:
  13618. \begin{enumerate}
  13619. \item[a.] If there is enough room in the old FromSpace, copy the young
  13620. FromSpace to the old FromSpace and then return.
  13621. \item[b.] If there is not enough room in the old FromSpace, then collect
  13622. the old generation by copying the old FromSpace to the old ToSpace
  13623. and swap the roles of the old FromSpace and ToSpace.
  13624. \item[c.] If there is enough room now, copy the young FromSpace to the
  13625. old FromSpace and return. Otherwise, allocate a larger FromSpace
  13626. and ToSpace for the old generation. Copy the young FromSpace and
  13627. the old FromSpace into the larger FromSpace for the old
  13628. generation and then return.
  13629. \end{enumerate}
  13630. \end{enumerate}
  13631. We recommend that you generalize the \code{cheney} function so that it
  13632. can be used for all the copies mentioned: between the young FromSpace
  13633. and ToSpace, between the old FromSpace and ToSpace, and between the
  13634. young FromSpace and old FromSpace. This can be accomplished by adding
  13635. parameters to \code{cheney} that replace its use of the global
  13636. variables \code{fromspace\_begin}, \code{fromspace\_end},
  13637. \code{tospace\_begin}, and \code{tospace\_end}.
  13638. Note that the collection of the young generation does not traverse the
  13639. old generation. This introduces a potential problem: there may be
  13640. young data that is reachable only through pointers in the old
  13641. generation. If these pointers are not taken into account, the
  13642. collector could throw away young data that is live! One solution,
  13643. called \emph{pointer recording}, is to maintain a set of all the
  13644. pointers from the old generation into the new generation and consider
  13645. this set as part of the root set. To maintain this set, the compiler
  13646. must insert extra instructions around every \code{vector-set!}. If the
  13647. vector being modified is in the old generation, and if the value being
  13648. written is a pointer into the new generation, then that pointer must
  13649. be added to the set. Also, if the value being overwritten was a
  13650. pointer into the new generation, then that pointer should be removed
  13651. from the set.
  13652. \begin{exercise}\normalfont\normalsize
  13653. Adapt the \code{collect} function in \code{runtime.c} to implement
  13654. generational garbage collection, as outlined in this section.
  13655. Update the code generation for \code{vector-set!} to implement
  13656. pointer recording. Make sure that your new compiler and runtime
  13657. execute without error on your test suite.
  13658. \end{exercise}
  13659. \fi}
  13660. \section{Further Reading}
  13661. \citet{Appel90} describes many data representation approaches
  13662. including the ones used in the compilation of Standard ML.
  13663. There are many alternatives to copying collectors (and their bigger
  13664. siblings, the generational collectors) with regard to garbage
  13665. collection, such as mark-and-sweep~\citep{McCarthy:1960dz} and
  13666. reference counting~\citep{Collins:1960aa}. The strengths of copying
  13667. collectors are that allocation is fast (just a comparison and pointer
  13668. increment), there is no fragmentation, cyclic garbage is collected,
  13669. and the time complexity of collection depends only on the amount of
  13670. live data and not on the amount of garbage~\citep{Wilson:1992fk}. The
  13671. main disadvantages of a two-space copying collector is that it uses a
  13672. lot of extra space and takes a long time to perform the copy, though
  13673. these problems are ameliorated in generational collectors.
  13674. \racket{Racket}\python{Object-oriented} programs tend to allocate many
  13675. small objects and generate a lot of garbage, so copying and
  13676. generational collectors are a good fit\python{~\citep{Dieckmann99}}.
  13677. Garbage collection is an active research topic, especially concurrent
  13678. garbage collection~\citep{Tene:2011kx}. Researchers are continuously
  13679. developing new techniques and revisiting old
  13680. trade-offs~\citep{Blackburn:2004aa,Jones:2011aa,Shahriyar:2013aa,Cutler:2015aa,Shidal:2015aa,Osterlund:2016aa,Jacek:2019aa,Gamari:2020aa}. Researchers
  13681. meet every year at the International Symposium on Memory Management to
  13682. present these findings.
  13683. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  13684. \chapter{Functions}
  13685. \label{ch:Lfun}
  13686. \index{subject}{function}
  13687. \setcounter{footnote}{0}
  13688. This chapter studies the compilation of a subset of \racket{Typed
  13689. Racket}\python{Python} in which only top-level function definitions
  13690. are allowed. This kind of function appears in the C programming
  13691. language, and it serves as an important stepping-stone to implementing
  13692. lexically scoped functions in the form of \key{lambda}\index{subject}{lambda}
  13693. abstractions, which is the topic of chapter~\ref{ch:Llambda}.
  13694. \section{The \LangFun{} Language}
  13695. The concrete syntax and abstract syntax for function definitions and
  13696. function application are shown in
  13697. figures~\ref{fig:Lfun-concrete-syntax} and \ref{fig:Lfun-syntax}, with
  13698. which we define the \LangFun{} language. Programs in \LangFun{} begin
  13699. with zero or more function definitions. The function names from these
  13700. definitions are in scope for the entire program, including all the
  13701. function definitions, and therefore the ordering of function
  13702. definitions does not matter.
  13703. %
  13704. \python{The abstract syntax for function parameters in
  13705. figure~\ref{fig:Lfun-syntax} is a list of pairs, each of which
  13706. consists of a parameter name and its type. This design differs from
  13707. Python's \code{ast} module, which has a more complex structure for
  13708. function parameters to handle keyword parameters,
  13709. defaults, and so on. The type checker in \code{type\_check\_Lfun} converts the
  13710. complex Python abstract syntax into the simpler syntax shown in
  13711. figure~\ref{fig:Lfun-syntax}. The fourth and sixth parameters of the
  13712. \code{FunctionDef} constructor are for decorators and a type
  13713. comment, neither of which are used by our compiler. We recommend
  13714. replacing them with \code{None} in the \code{shrink} pass.
  13715. }
  13716. %
  13717. The concrete syntax for function application
  13718. \index{subject}{function application}
  13719. is \python{$\CAPPLY{\Exp}{\Exp\code{,} \ldots}$}\racket{$\CAPPLY{\Exp}{\Exp \ldots}$},
  13720. where the first expression
  13721. must evaluate to a function and the remaining expressions are the arguments. The
  13722. abstract syntax for function application is
  13723. $\APPLY{\Exp}{\Exp^*}$.
  13724. %% The syntax for function application does not include an explicit
  13725. %% keyword, which is error prone when using \code{match}. To alleviate
  13726. %% this problem, we translate the syntax from $(\Exp \; \Exp \ldots)$ to
  13727. %% $(\key{app}\; \Exp \; \Exp \ldots)$ during type checking.
  13728. Functions are first-class in the sense that a function pointer
  13729. \index{subject}{function pointer} is data and can be stored in memory or passed
  13730. as a parameter to another function. Thus, there is a function
  13731. type, written
  13732. {\if\edition\racketEd
  13733. \begin{lstlisting}
  13734. (|$\Type_1$| |$\cdots$| |$\Type_n$| -> |$\Type_r$|)
  13735. \end{lstlisting}
  13736. \fi}
  13737. {\if\edition\pythonEd\pythonColor
  13738. \begin{lstlisting}
  13739. Callable[[|$\Type_1$|,|$\cdots$|,|$\Type_n$|], |$\Type_R$|]
  13740. \end{lstlisting}
  13741. \fi}
  13742. %
  13743. \noindent for a function whose $n$ parameters have the types $\Type_1$
  13744. through $\Type_n$ and whose return type is $\Type_R$. The main
  13745. limitation of these functions (with respect to
  13746. \racket{Racket}\python{Python} functions) is that they are not
  13747. lexically scoped. That is, the only external entities that can be
  13748. referenced from inside a function body are other globally defined
  13749. functions. The syntax of \LangFun{} prevents function definitions from
  13750. being nested inside each other.
  13751. \newcommand{\LfunGrammarRacket}{
  13752. \begin{array}{lcl}
  13753. \Type &::=& (\Type \ldots \; \key{->}\; \Type) \\
  13754. \Exp &::=& \LP\Exp \; \Exp \ldots\RP \\
  13755. \Def &::=& \CDEF{\Var}{\LS\Var \key{:} \Type\RS \ldots}{\Type}{\Exp} \\
  13756. \end{array}
  13757. }
  13758. \newcommand{\LfunASTRacket}{
  13759. \begin{array}{lcl}
  13760. \Type &::=& (\Type \ldots \; \key{->}\; \Type) \\
  13761. \Exp &::=& \APPLY{\Exp}{\Exp\ldots}\\
  13762. \Def &::=& \FUNDEF{\Var}{\LP[\Var \code{:} \Type]\ldots\RP}{\Type}{\code{'()}}{\Exp}
  13763. \end{array}
  13764. }
  13765. \newcommand{\LfunGrammarPython}{
  13766. \begin{array}{lcl}
  13767. \Type &::=& \key{int}
  13768. \MID \key{bool} \MID \key{void}
  13769. \MID \key{tuple}\LS \Type^+ \RS
  13770. \MID \key{Callable}\LS \LS \Type \key{,} \ldots \RS \key{, } \Type \RS \\
  13771. \Exp &::=& \CAPPLY{\Exp}{\Exp\code{,} \ldots} \\
  13772. \Stmt &::=& \CRETURN{\Exp} \\
  13773. \Def &::=& \CDEF{\Var}{\Var \key{:} \Type\key{,} \ldots}{\Type}{\Stmt^{+}}
  13774. \end{array}
  13775. }
  13776. \newcommand{\LfunASTPython}{
  13777. \begin{array}{lcl}
  13778. \Type &::=& \key{IntType()} \MID \key{BoolType()} \MID \key{VoidType()}
  13779. \MID \key{TupleType}\LS\Type^+\RS\\
  13780. &\MID& \key{FunctionType}\LP \Type^{*} \key{, } \Type \RP \\
  13781. \Exp &::=& \CALL{\Exp}{\Exp^{*}}\\
  13782. \Stmt &::=& \RETURN{\Exp} \\
  13783. \Params &::=& \LP\Var\key{,}\Type\RP^* \\
  13784. \Def &::=& \FUNDEF{\Var}{\Params}{\Type}{}{\Stmt^{+}}
  13785. \end{array}
  13786. }
  13787. \begin{figure}[tp]
  13788. \centering
  13789. \begin{tcolorbox}[colback=white]
  13790. \small
  13791. {\if\edition\racketEd
  13792. \[
  13793. \begin{array}{l}
  13794. \gray{\LintGrammarRacket{}} \\ \hline
  13795. \gray{\LvarGrammarRacket{}} \\ \hline
  13796. \gray{\LifGrammarRacket{}} \\ \hline
  13797. \gray{\LwhileGrammarRacket} \\ \hline
  13798. \gray{\LtupGrammarRacket} \\ \hline
  13799. \LfunGrammarRacket \\
  13800. \begin{array}{lcl}
  13801. \LangFunM{} &::=& \Def \ldots \; \Exp
  13802. \end{array}
  13803. \end{array}
  13804. \]
  13805. \fi}
  13806. {\if\edition\pythonEd\pythonColor
  13807. \[
  13808. \begin{array}{l}
  13809. \gray{\LintGrammarPython{}} \\ \hline
  13810. \gray{\LvarGrammarPython{}} \\ \hline
  13811. \gray{\LifGrammarPython{}} \\ \hline
  13812. \gray{\LwhileGrammarPython} \\ \hline
  13813. \gray{\LtupGrammarPython} \\ \hline
  13814. \LfunGrammarPython \\
  13815. \begin{array}{rcl}
  13816. \LangFunM{} &::=& \Def\ldots \Stmt\ldots
  13817. \end{array}
  13818. \end{array}
  13819. \]
  13820. \fi}
  13821. \end{tcolorbox}
  13822. \caption{The concrete syntax of \LangFun{}, extending \LangVec{} (figure~\ref{fig:Lvec-concrete-syntax}).}
  13823. \label{fig:Lfun-concrete-syntax}
  13824. \end{figure}
  13825. \begin{figure}[tp]
  13826. \centering
  13827. \begin{tcolorbox}[colback=white]
  13828. \small
  13829. {\if\edition\racketEd
  13830. \[
  13831. \begin{array}{l}
  13832. \gray{\LintOpAST} \\ \hline
  13833. \gray{\LvarASTRacket{}} \\ \hline
  13834. \gray{\LifASTRacket{}} \\ \hline
  13835. \gray{\LwhileASTRacket{}} \\ \hline
  13836. \gray{\LtupASTRacket{}} \\ \hline
  13837. \LfunASTRacket \\
  13838. \begin{array}{lcl}
  13839. \LangFunM{} &::=& \PROGRAMDEFSEXP{\code{'()}}{\LP\Def\ldots\RP)}{\Exp}
  13840. \end{array}
  13841. \end{array}
  13842. \]
  13843. \fi}
  13844. {\if\edition\pythonEd\pythonColor
  13845. \[
  13846. \begin{array}{l}
  13847. \gray{\LintASTPython{}} \\ \hline
  13848. \gray{\LvarASTPython{}} \\ \hline
  13849. \gray{\LifASTPython{}} \\ \hline
  13850. \gray{\LwhileASTPython} \\ \hline
  13851. \gray{\LtupASTPython} \\ \hline
  13852. \LfunASTPython \\
  13853. \begin{array}{rcl}
  13854. \LangFunM{} &::=& \PROGRAM{}{\LS \Def \ldots \Stmt \ldots \RS}
  13855. \end{array}
  13856. \end{array}
  13857. \]
  13858. \fi}
  13859. \end{tcolorbox}
  13860. \caption{The abstract syntax of \LangFun{}, extending \LangVec{} (figure~\ref{fig:Lvec-syntax}).}
  13861. \label{fig:Lfun-syntax}
  13862. \end{figure}
  13863. The program shown in figure~\ref{fig:Lfun-function-example} is a
  13864. representative example of defining and using functions in \LangFun{}.
  13865. We define a function \code{map} that applies some other function
  13866. \code{f} to both elements of a tuple and returns a new tuple
  13867. containing the results. We also define a function \code{inc}. The
  13868. program applies \code{map} to \code{inc} and
  13869. %
  13870. \racket{\code{(vector 0 41)}}\python{\code{(0, 41)}}.
  13871. %
  13872. The result is \racket{\code{(vector 1 42)}}\python{\code{(1, 42)}},
  13873. %
  13874. from which we return \code{42}.
  13875. \begin{figure}[tbp]
  13876. \begin{tcolorbox}[colback=white]
  13877. {\if\edition\racketEd
  13878. \begin{lstlisting}
  13879. (define (map [f : (Integer -> Integer)] [v : (Vector Integer Integer)])
  13880. : (Vector Integer Integer)
  13881. (vector (f (vector-ref v 0)) (f (vector-ref v 1))))
  13882. (define (inc [x : Integer]) : Integer
  13883. (+ x 1))
  13884. (vector-ref (map inc (vector 0 41)) 1)
  13885. \end{lstlisting}
  13886. \fi}
  13887. {\if\edition\pythonEd\pythonColor
  13888. \begin{lstlisting}
  13889. def map(f : Callable[[int], int], v : tuple[int,int]) -> tuple[int,int]:
  13890. return f(v[0]), f(v[1])
  13891. def inc(x : int) -> int:
  13892. return x + 1
  13893. print(map(inc, (0, 41))[1])
  13894. \end{lstlisting}
  13895. \fi}
  13896. \end{tcolorbox}
  13897. \caption{Example of using functions in \LangFun{}.}
  13898. \label{fig:Lfun-function-example}
  13899. \end{figure}
  13900. The definitional interpreter for \LangFun{} is shown in
  13901. figure~\ref{fig:interp-Lfun}. The case for the
  13902. %
  13903. \racket{\code{ProgramDefsExp}}\python{\code{Module}}
  13904. %
  13905. AST is responsible for setting up the mutual recursion between the
  13906. top-level function definitions.
  13907. %
  13908. \racket{We use the classic back-patching
  13909. \index{subject}{back-patching} approach that uses mutable variables
  13910. and makes two passes over the function
  13911. definitions~\citep{Kelsey:1998di}. In the first pass we set up the
  13912. top-level environment using a mutable cons cell for each function
  13913. definition. Note that the \code{lambda}\index{subject}{lambda} value
  13914. for each function is incomplete; it does not yet include the environment.
  13915. Once the top-level environment has been constructed, we iterate over it and
  13916. update the \code{lambda} values to use the top-level environment.}
  13917. %
  13918. \python{We create a dictionary named \code{env} and fill it in
  13919. by mapping each function name to a new \code{Function} value,
  13920. each of which stores a reference to the \code{env}.
  13921. (We define the class \code{Function} for this purpose.)}
  13922. %
  13923. To interpret a function \racket{application}\python{call}, we match
  13924. the result of the function expression to obtain a function value. We
  13925. then extend the function's environment with the mapping of parameters to
  13926. argument values. Finally, we interpret the body of the function in
  13927. this extended environment.
  13928. \begin{figure}[tp]
  13929. \begin{tcolorbox}[colback=white]
  13930. {\if\edition\racketEd
  13931. \begin{lstlisting}
  13932. (define interp-Lfun-class
  13933. (class interp-Lvec-class
  13934. (super-new)
  13935. (define/override ((interp-exp env) e)
  13936. (define recur (interp-exp env))
  13937. (match e
  13938. [(Apply fun args)
  13939. (define fun-val (recur fun))
  13940. (define arg-vals (for/list ([e args]) (recur e)))
  13941. (match fun-val
  13942. [`(function (,xs ...) ,body ,fun-env)
  13943. (define params-args (for/list ([x xs] [arg arg-vals])
  13944. (cons x (box arg))))
  13945. (define new-env (append params-args fun-env))
  13946. ((interp-exp new-env) body)]
  13947. [else
  13948. (error 'interp-exp "expected function, not ~a" fun-val)])]
  13949. [else ((super interp-exp env) e)]
  13950. ))
  13951. (define/public (interp-def d)
  13952. (match d
  13953. [(Def f (list `[,xs : ,ps] ...) rt _ body)
  13954. (cons f (box `(function ,xs ,body ())))]))
  13955. (define/override (interp-program p)
  13956. (match p
  13957. [(ProgramDefsExp info ds body)
  13958. (let ([top-level (for/list ([d ds]) (interp-def d))])
  13959. (for/list ([f (in-dict-values top-level)])
  13960. (set-box! f (match (unbox f)
  13961. [`(function ,xs ,body ())
  13962. `(function ,xs ,body ,top-level)])))
  13963. ((interp-exp top-level) body))]))
  13964. ))
  13965. (define (interp-Lfun p)
  13966. (send (new interp-Lfun-class) interp-program p))
  13967. \end{lstlisting}
  13968. \fi}
  13969. {\if\edition\pythonEd\pythonColor
  13970. \begin{lstlisting}
  13971. class InterpLfun(InterpLtup):
  13972. def apply_fun(self, fun, args, e):
  13973. match fun:
  13974. case Function(name, xs, body, env):
  13975. new_env = env.copy().update(zip(xs, args))
  13976. return self.interp_stmts(body, new_env)
  13977. case _:
  13978. raise Exception('apply_fun: unexpected: ' + repr(fun))
  13979. def interp_exp(self, e, env):
  13980. match e:
  13981. case Call(Name('input_int'), []):
  13982. return super().interp_exp(e, env)
  13983. case Call(func, args):
  13984. f = self.interp_exp(func, env)
  13985. vs = [self.interp_exp(arg, env) for arg in args]
  13986. return self.apply_fun(f, vs, e)
  13987. case _:
  13988. return super().interp_exp(e, env)
  13989. def interp_stmt(self, s, env, cont):
  13990. match s:
  13991. case Return(value):
  13992. return self.interp_exp(value, env)
  13993. case FunctionDef(name, params, bod, dl, returns, comment):
  13994. if isinstance(params, ast.arguments):
  13995. ps = [p.arg for p in params.args]
  13996. else:
  13997. ps = [x for (x,t) in params]
  13998. env[name] = Function(name, ps, bod, env)
  13999. return self.interp_stmts(cont, env)
  14000. case _:
  14001. return super().interp_stmt(s, env, cont)
  14002. def interp(self, p):
  14003. match p:
  14004. case Module(ss):
  14005. env = {}
  14006. self.interp_stmts(ss, env)
  14007. if 'main' in env.keys():
  14008. self.apply_fun(env['main'], [], None)
  14009. case _:
  14010. raise Exception('interp: unexpected ' + repr(p))
  14011. \end{lstlisting}
  14012. \fi}
  14013. \end{tcolorbox}
  14014. \caption{Interpreter for the \LangFun{} language.}
  14015. \label{fig:interp-Lfun}
  14016. \end{figure}
  14017. %\margincomment{TODO: explain type checker}
  14018. The type checker for \LangFun{} is shown in
  14019. figure~\ref{fig:type-check-Lfun}.
  14020. %
  14021. \python{(We omit the code that parses function parameters into the
  14022. simpler abstract syntax.)}
  14023. %
  14024. Similarly to the interpreter, the case for the
  14025. \racket{\code{ProgramDefsExp}}\python{\code{Module}}
  14026. %
  14027. AST is responsible for setting up the mutual recursion between the
  14028. top-level function definitions. We begin by creating a mapping
  14029. \code{env} from every function name to its type. We then type check
  14030. the program using this mapping.
  14031. %
  14032. \python{To check a function definition, we copy and extend the
  14033. \code{env} with the parameters of the function. We then type check
  14034. the body of the function and obtain the actual return type
  14035. \code{rt}, which is either the type of the expression in a
  14036. \code{return} statement or the \code{VoidType} if control reaches
  14037. the end of the function without a \code{return} statement. (If
  14038. there are multiple \code{return} statements, the types of their
  14039. expressions must agree.) Finally, we check that the actual return
  14040. type \code{rt} is equal to the declared return type \code{returns}.}
  14041. %
  14042. To check a function \racket{application}\python{call}, we match
  14043. the type of the function expression to a function type and check that
  14044. the types of the argument expressions are equal to the function's
  14045. parameter types. The type of the \racket{application}\python{call} as
  14046. a whole is the return type from the function type.
  14047. \begin{figure}[tp]
  14048. \begin{tcolorbox}[colback=white]
  14049. {\if\edition\racketEd
  14050. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  14051. (define type-check-Lfun-class
  14052. (class type-check-Lvec-class
  14053. (super-new)
  14054. (inherit check-type-equal?)
  14055. (define/public (type-check-apply env e es)
  14056. (define-values (e^ ty) ((type-check-exp env) e))
  14057. (define-values (e* ty*) (for/lists (e* ty*) ([e (in-list es)])
  14058. ((type-check-exp env) e)))
  14059. (match ty
  14060. [`(,ty^* ... -> ,rt)
  14061. (for ([arg-ty ty*] [param-ty ty^*])
  14062. (check-type-equal? arg-ty param-ty (Apply e es)))
  14063. (values e^ e* rt)]))
  14064. (define/override (type-check-exp env)
  14065. (lambda (e)
  14066. (match e
  14067. [(FunRef f n)
  14068. (values (FunRef f n) (dict-ref env f))]
  14069. [(Apply e es)
  14070. (define-values (e^ es^ rt) (type-check-apply env e es))
  14071. (values (Apply e^ es^) rt)]
  14072. [(Call e es)
  14073. (define-values (e^ es^ rt) (type-check-apply env e es))
  14074. (values (Call e^ es^) rt)]
  14075. [else ((super type-check-exp env) e)])))
  14076. (define/public (type-check-def env)
  14077. (lambda (e)
  14078. (match e
  14079. [(Def f (and p:t* (list `[,xs : ,ps] ...)) rt info body)
  14080. (define new-env (append (map cons xs ps) env))
  14081. (define-values (body^ ty^) ((type-check-exp new-env) body))
  14082. (check-type-equal? ty^ rt body)
  14083. (Def f p:t* rt info body^)])))
  14084. (define/public (fun-def-type d)
  14085. (match d
  14086. [(Def f (list `[,xs : ,ps] ...) rt info body) `(,@ps -> ,rt)]))
  14087. (define/override (type-check-program e)
  14088. (match e
  14089. [(ProgramDefsExp info ds body)
  14090. (define env (for/list ([d ds])
  14091. (cons (Def-name d) (fun-def-type d))))
  14092. (define ds^ (for/list ([d ds]) ((type-check-def env) d)))
  14093. (define-values (body^ ty) ((type-check-exp env) body))
  14094. (check-type-equal? ty 'Integer body)
  14095. (ProgramDefsExp info ds^ body^)]))))
  14096. (define (type-check-Lfun p)
  14097. (send (new type-check-Lfun-class) type-check-program p))
  14098. \end{lstlisting}
  14099. \fi}
  14100. {\if\edition\pythonEd\pythonColor
  14101. \begin{lstlisting}
  14102. class TypeCheckLfun(TypeCheckLtup):
  14103. def type_check_exp(self, e, env):
  14104. match e:
  14105. case Call(Name('input_int'), []):
  14106. return super().type_check_exp(e, env)
  14107. case Call(func, args):
  14108. func_t = self.type_check_exp(func, env)
  14109. args_t = [self.type_check_exp(arg, env) for arg in args]
  14110. match func_t:
  14111. case FunctionType(params_t, return_t):
  14112. for (arg_t, param_t) in zip(args_t, params_t):
  14113. check_type_equal(param_t, arg_t, e)
  14114. return return_t
  14115. case _:
  14116. raise Exception('type_check_exp: in call, unexpected ' +
  14117. repr(func_t))
  14118. case _:
  14119. return super().type_check_exp(e, env)
  14120. def type_check_stmts(self, ss, env):
  14121. if len(ss) == 0:
  14122. return VoidType()
  14123. match ss[0]:
  14124. case FunctionDef(name, params, body, dl, returns, comment):
  14125. new_env = env.copy().update(params)
  14126. rt = self.type_check_stmts(body, new_env)
  14127. check_type_equal(returns, rt, ss[0])
  14128. return self.type_check_stmts(ss[1:], env)
  14129. case Return(value):
  14130. return self.type_check_exp(value, env)
  14131. case _:
  14132. return super().type_check_stmts(ss, env)
  14133. def type_check(self, p):
  14134. match p:
  14135. case Module(body):
  14136. env = {}
  14137. for s in body:
  14138. match s:
  14139. case FunctionDef(name, params, bod, dl, returns, comment):
  14140. if name in env:
  14141. raise Exception('type_check: function ' +
  14142. repr(name) + ' defined twice')
  14143. params_t = [t for (x,t) in params]
  14144. env[name] = FunctionType(params_t, returns)
  14145. self.type_check_stmts(body, env)
  14146. case _:
  14147. raise Exception('type_check: unexpected ' + repr(p))
  14148. \end{lstlisting}
  14149. \fi}
  14150. \end{tcolorbox}
  14151. \caption{Type checker for the \LangFun{} language.}
  14152. \label{fig:type-check-Lfun}
  14153. \end{figure}
  14154. \clearpage
  14155. \section{Functions in x86}
  14156. \label{sec:fun-x86}
  14157. %% \margincomment{\tiny Make sure callee-saved registers are discussed
  14158. %% in enough depth, especially updating Fig 6.4 \\ --Jeremy }
  14159. %% \margincomment{\tiny Talk about the return address on the
  14160. %% stack and what callq and retq does.\\ --Jeremy }
  14161. The x86 architecture provides a few features to support the
  14162. implementation of functions. We have already seen that there are
  14163. labels in x86 so that one can refer to the location of an instruction,
  14164. as is needed for jump instructions. Labels can also be used to mark
  14165. the beginning of the instructions for a function. Going further, we
  14166. can obtain the address of a label by using the \key{leaq}
  14167. instruction. For example, the following puts the address of the
  14168. \code{inc} label into the \code{rbx} register:
  14169. \begin{lstlisting}
  14170. leaq inc(%rip), %rbx
  14171. \end{lstlisting}
  14172. Recall from section~\ref{sec:select-instructions-gc} that
  14173. \verb!inc(%rip)! is an example of instruction-pointer-relative
  14174. addressing.
  14175. In section~\ref{sec:x86} we used the \code{callq} instruction to jump
  14176. to functions whose locations were given by a label, such as
  14177. \code{read\_int}. To support function calls in this chapter we instead
  14178. jump to functions whose location are given by an address in
  14179. a register; that is, we use \emph{indirect function calls}. The
  14180. x86 syntax for this is a \code{callq} instruction that requires an asterisk
  14181. before the register name.\index{subject}{indirect function call}
  14182. \begin{lstlisting}
  14183. callq *%rbx
  14184. \end{lstlisting}
  14185. \subsection{Calling Conventions}
  14186. \label{sec:calling-conventions-fun}
  14187. \index{subject}{calling conventions}
  14188. The \code{callq} instruction provides partial support for implementing
  14189. functions: it pushes the return address on the stack and it jumps to
  14190. the target. However, \code{callq} does not handle
  14191. \begin{enumerate}
  14192. \item parameter passing,
  14193. \item pushing frames on the procedure call stack and popping them off,
  14194. or
  14195. \item determining how registers are shared by different functions.
  14196. \end{enumerate}
  14197. Regarding parameter passing, recall that the x86-64 calling
  14198. convention for Unix-based systems uses the following six registers to
  14199. pass arguments to a function, in the given order:
  14200. \begin{lstlisting}
  14201. rdi rsi rdx rcx r8 r9
  14202. \end{lstlisting}
  14203. If there are more than six arguments, then the calling convention
  14204. mandates using space on the frame of the caller for the rest of the
  14205. arguments. However, to ease the implementation of efficient tail calls
  14206. (section~\ref{sec:tail-call}), we arrange never to need more than six
  14207. arguments.
  14208. %
  14209. The return value of the function is stored in register \code{rax}.
  14210. Regarding frames \index{subject}{frame} and the procedure call stack,
  14211. \index{subject}{procedure call stack} recall from
  14212. section~\ref{sec:x86} that the stack grows down and each function call
  14213. uses a chunk of space on the stack called a frame. The caller sets the
  14214. stack pointer, register \code{rsp}, to the last data item in its
  14215. frame. The callee must not change anything in the caller's frame, that
  14216. is, anything that is at or above the stack pointer. The callee is free
  14217. to use locations that are below the stack pointer.
  14218. Recall that we store variables of tuple type on the root stack. So,
  14219. the prelude\index{subject}{prelude} of a function needs to move the
  14220. root stack pointer \code{r15} up according to the number of variables
  14221. of tuple type and the conclusion\index{subject}{conclusion} needs to
  14222. move the root stack pointer back down. Also, the prelude must
  14223. initialize to \code{0} this frame's slots in the root stack to signal
  14224. to the garbage collector that those slots do not yet contain a valid
  14225. pointer. Otherwise the garbage collector will interpret the garbage
  14226. bits in those slots as memory addresses and try to traverse them,
  14227. causing serious mayhem!
  14228. Regarding the sharing of registers between different functions, recall
  14229. from section~\ref{sec:calling-conventions} that the registers are
  14230. divided into two groups, the caller-saved registers and the
  14231. callee-saved registers. The caller should assume that all the
  14232. caller-saved registers are overwritten with arbitrary values by the
  14233. callee. For that reason we recommend in
  14234. section~\ref{sec:calling-conventions} that variables that are live
  14235. during a function call should not be assigned to caller-saved
  14236. registers.
  14237. On the flip side, if the callee wants to use a callee-saved register,
  14238. the callee must save the contents of those registers on their stack
  14239. frame and then put them back prior to returning to the caller. For
  14240. that reason we recommend in section~\ref{sec:calling-conventions} that if
  14241. the register allocator assigns a variable to a callee-saved register,
  14242. then the prelude of the \code{main} function must save that register
  14243. to the stack and the conclusion of \code{main} must restore it. This
  14244. recommendation now generalizes to all functions.
  14245. Recall that the base pointer, register \code{rbp}, is used as a
  14246. point of reference within a frame, so that each local variable can be
  14247. accessed at a fixed offset from the base pointer
  14248. (section~\ref{sec:x86}).
  14249. %
  14250. Figure~\ref{fig:call-frames} shows the layout of the caller and callee
  14251. frames.
  14252. \begin{figure}[tbp]
  14253. \centering
  14254. \begin{tcolorbox}[colback=white]
  14255. \begin{tabular}{r|r|l|l} \hline
  14256. Caller View & Callee View & Contents & Frame \\ \hline
  14257. 8(\key{\%rbp}) & & return address & \multirow{5}{*}{Caller}\\
  14258. 0(\key{\%rbp}) & & old \key{rbp} \\
  14259. -8(\key{\%rbp}) & & callee-saved $1$ \\
  14260. \ldots & & \ldots \\
  14261. $-8j$(\key{\%rbp}) & & callee-saved $j$ \\
  14262. $-8(j+1)$(\key{\%rbp}) & & local variable $1$ \\
  14263. \ldots & & \ldots \\
  14264. $-8(j+k)$(\key{\%rbp}) & & local variable $k$ \\
  14265. %% & & \\
  14266. %% $8n-8$\key{(\%rsp)} & $8n+8$(\key{\%rbp})& argument $n$ \\
  14267. %% & \ldots & \ldots \\
  14268. %% 0\key{(\%rsp)} & 16(\key{\%rbp}) & argument $1$ & \\
  14269. \hline
  14270. & 8(\key{\%rbp}) & return address & \multirow{5}{*}{Callee}\\
  14271. & 0(\key{\%rbp}) & old \key{rbp} \\
  14272. & -8(\key{\%rbp}) & callee-saved $1$ \\
  14273. & \ldots & \ldots \\
  14274. & $-8n$(\key{\%rbp}) & callee-saved $n$ \\
  14275. & $-8(n+1)$(\key{\%rbp}) & local variable $1$ \\
  14276. & \ldots & \ldots \\
  14277. & $-8(n+m)$(\key{\%rbp}) & local variable $m$\\ \hline
  14278. \end{tabular}
  14279. \end{tcolorbox}
  14280. \caption{Memory layout of caller and callee frames.}
  14281. \label{fig:call-frames}
  14282. \end{figure}
  14283. %% Recall from section~\ref{sec:x86} that the stack is also used for
  14284. %% local variables and for storing the values of callee-saved registers
  14285. %% (we shall refer to all of these collectively as ``locals''), and that
  14286. %% at the beginning of a function we move the stack pointer \code{rsp}
  14287. %% down to make room for them.
  14288. %% We recommend storing the local variables
  14289. %% first and then the callee-saved registers, so that the local variables
  14290. %% can be accessed using \code{rbp} the same as before the addition of
  14291. %% functions.
  14292. %% To make additional room for passing arguments, we shall
  14293. %% move the stack pointer even further down. We count how many stack
  14294. %% arguments are needed for each function call that occurs inside the
  14295. %% body of the function and find their maximum. Adding this number to the
  14296. %% number of locals gives us how much the \code{rsp} should be moved at
  14297. %% the beginning of the function. In preparation for a function call, we
  14298. %% offset from \code{rsp} to set up the stack arguments. We put the first
  14299. %% stack argument in \code{0(\%rsp)}, the second in \code{8(\%rsp)}, and
  14300. %% so on.
  14301. %% Upon calling the function, the stack arguments are retrieved by the
  14302. %% callee using the base pointer \code{rbp}. The address \code{16(\%rbp)}
  14303. %% is the location of the first stack argument, \code{24(\%rbp)} is the
  14304. %% address of the second, and so on. Figure~\ref{fig:call-frames} shows
  14305. %% the layout of the caller and callee frames. Notice how important it is
  14306. %% that we correctly compute the maximum number of arguments needed for
  14307. %% function calls; if that number is too small then the arguments and
  14308. %% local variables will smash into each other!
  14309. \subsection{Efficient Tail Calls}
  14310. \label{sec:tail-call}
  14311. In general, the amount of stack space used by a program is determined
  14312. by the longest chain of nested function calls. That is, if function
  14313. $f_1$ calls $f_2$, $f_2$ calls $f_3$, and so on to $f_n$, then the
  14314. amount of stack space is linear in $n$. The depth $n$ can grow quite
  14315. large if functions are recursive. However, in some cases we can
  14316. arrange to use only a constant amount of space for a long chain of
  14317. nested function calls.
  14318. A \emph{tail call}\index{subject}{tail call} is a function call that
  14319. happens as the last action in a function body. For example, in the
  14320. following program, the recursive call to \code{tail\_sum} is a tail
  14321. call:
  14322. \begin{center}
  14323. {\if\edition\racketEd
  14324. \begin{lstlisting}
  14325. (define (tail_sum [n : Integer] [r : Integer]) : Integer
  14326. (if (eq? n 0)
  14327. r
  14328. (tail_sum (- n 1) (+ n r))))
  14329. (+ (tail_sum 3 0) 36)
  14330. \end{lstlisting}
  14331. \fi}
  14332. {\if\edition\pythonEd\pythonColor
  14333. \begin{lstlisting}
  14334. def tail_sum(n : int, r : int) -> int:
  14335. if n == 0:
  14336. return r
  14337. else:
  14338. return tail_sum(n - 1, n + r)
  14339. print(tail_sum(3, 0) + 36)
  14340. \end{lstlisting}
  14341. \fi}
  14342. \end{center}
  14343. At a tail call, the frame of the caller is no longer needed, so we can
  14344. pop the caller's frame before making the tail
  14345. call. \index{subject}{frame} With this approach, a recursive function
  14346. that makes only tail calls ends up using a constant amount of stack
  14347. space. \racket{Functional languages like Racket rely heavily on
  14348. recursive functions, so the definition of Racket \emph{requires}
  14349. that all tail calls be optimized in this way.}
  14350. Some care is needed with regard to argument passing in tail calls. As
  14351. mentioned, for arguments beyond the sixth, the convention is to use
  14352. space in the caller's frame for passing arguments. However, for a
  14353. tail call we pop the caller's frame and can no longer use it. An
  14354. alternative is to use space in the callee's frame for passing
  14355. arguments. However, this option is also problematic because the caller
  14356. and callee's frames overlap in memory. As we begin to copy the
  14357. arguments from their sources in the caller's frame, the target
  14358. locations in the callee's frame might collide with the sources for
  14359. later arguments! We solve this problem by using the heap instead of
  14360. the stack for passing more than six arguments
  14361. (section~\ref{sec:limit-functions-r4}).
  14362. As mentioned, for a tail call we pop the caller's frame prior to
  14363. making the tail call. The instructions for popping a frame are the
  14364. instructions that we usually place in the conclusion of a
  14365. function. Thus, we also need to place such code immediately before
  14366. each tail call. These instructions include restoring the callee-saved
  14367. registers, so it is fortunate that the argument passing registers are
  14368. all caller-saved registers.
  14369. One note remains regarding which instruction to use to make the tail
  14370. call. When the callee is finished, it should not return to the current
  14371. function but instead return to the function that called the current
  14372. one. Thus, the return address that is already on the stack is the
  14373. right one, and we should not use \key{callq} to make the tail call
  14374. because that would overwrite the return address. Instead we simply use
  14375. the \key{jmp} instruction. As with the indirect function call, we write
  14376. an \emph{indirect jump}\index{subject}{indirect jump} with a register
  14377. prefixed with an asterisk. We recommend using \code{rax} to hold the
  14378. jump target because the conclusion can overwrite just about everything
  14379. else.
  14380. \begin{lstlisting}
  14381. jmp *%rax
  14382. \end{lstlisting}
  14383. \section{Shrink \LangFun{}}
  14384. \label{sec:shrink-r4}
  14385. The \code{shrink} pass performs a minor modification to ease the
  14386. later passes. This pass introduces an explicit \code{main} function
  14387. that gobbles up all the top-level statements of the module.
  14388. %
  14389. \racket{It also changes the top \code{ProgramDefsExp} form to
  14390. \code{ProgramDefs}.}
  14391. {\if\edition\racketEd
  14392. \begin{lstlisting}
  14393. (ProgramDefsExp |$\itm{info}$| (|$\Def\ldots$|) |$\Exp$|)
  14394. |$\Rightarrow$| (ProgramDefs |$\itm{info}$| (|$\Def\ldots$| |$\itm{mainDef}$|))
  14395. \end{lstlisting}
  14396. where $\itm{mainDef}$ is
  14397. \begin{lstlisting}
  14398. (Def 'main '() 'Integer '() |$\Exp'$|)
  14399. \end{lstlisting}
  14400. \fi}
  14401. {\if\edition\pythonEd\pythonColor
  14402. \begin{lstlisting}
  14403. Module(|$\Def\ldots\Stmt\ldots$|)
  14404. |$\Rightarrow$| Module(|$\Def\ldots\itm{mainDef}$|)
  14405. \end{lstlisting}
  14406. where $\itm{mainDef}$ is
  14407. \begin{lstlisting}
  14408. FunctionDef('main', [], int, None, |$\Stmt\ldots$|Return(Constant(0)), None)
  14409. \end{lstlisting}
  14410. \fi}
  14411. \section{Reveal Functions and the \LangFunRef{} Language}
  14412. \label{sec:reveal-functions-r4}
  14413. The syntax of \LangFun{} is inconvenient for purposes of compilation
  14414. in that it conflates the use of function names and local
  14415. variables. This is a problem because we need to compile the use of a
  14416. function name differently from the use of a local variable. In
  14417. particular, we use \code{leaq} to convert the function name (a label
  14418. in x86) to an address in a register. Thus, we create a new pass that
  14419. changes function references from $\VAR{f}$ to $\FUNREF{f}{n}$ where
  14420. $n$ is the arity of the function.\python{\footnote{The arity is not
  14421. needed in this chapter but is used in chapter~\ref{ch:Ldyn}.}}
  14422. This pass is named \code{reveal\_functions} and the output language
  14423. is \LangFunRef{}.
  14424. %is defined in figure~\ref{fig:f1-syntax}.
  14425. %% The concrete syntax for a
  14426. %% function reference is $\CFUNREF{f}$.
  14427. %% \begin{figure}[tp]
  14428. %% \centering
  14429. %% \fbox{
  14430. %% \begin{minipage}{0.96\textwidth}
  14431. %% {\if\edition\racketEd
  14432. %% \[
  14433. %% \begin{array}{lcl}
  14434. %% \Exp &::=& \ldots \MID \FUNREF{\Var}{\Int}\\
  14435. %% \Def &::=& \gray{ \FUNDEF{\Var}{([\Var \code{:} \Type]\ldots)}{\Type}{\code{'()}}{\Exp} }\\
  14436. %% \LangFunRefM{} &::=& \PROGRAMDEFS{\code{'()}}{\LP \Def\ldots \RP}
  14437. %% \end{array}
  14438. %% \]
  14439. %% \fi}
  14440. %% {\if\edition\pythonEd\pythonColor
  14441. %% \[
  14442. %% \begin{array}{lcl}
  14443. %% \Exp &::=& \FUNREF{\Var}{\Int}\\
  14444. %% \LangFunRefM{} &::=& \PROGRAM{}{\LS \Def \code{,} \ldots \RS}
  14445. %% \end{array}
  14446. %% \]
  14447. %% \fi}
  14448. %% \end{minipage}
  14449. %% }
  14450. %% \caption{The abstract syntax \LangFunRef{}, an extension of \LangFun{}
  14451. %% (figure~\ref{fig:Lfun-syntax}).}
  14452. %% \label{fig:f1-syntax}
  14453. %% \end{figure}
  14454. %% Distinguishing between calls in tail position and non-tail position
  14455. %% requires the pass to have some notion of context. We recommend using
  14456. %% two mutually recursive functions, one for processing expressions in
  14457. %% tail position and another for the rest.
  14458. \racket{Placing this pass after \code{uniquify} will make sure that
  14459. there are no local variables and functions that share the same
  14460. name.}
  14461. %
  14462. The \code{reveal\_functions} pass should come before the
  14463. \code{remove\_complex\_operands} pass because function references
  14464. should be categorized as complex expressions.
  14465. \section{Limit Functions}
  14466. \label{sec:limit-functions-r4}
  14467. Recall that we wish to limit the number of function parameters to six
  14468. so that we do not need to use the stack for argument passing, which
  14469. makes it easier to implement efficient tail calls. However, because
  14470. the input language \LangFun{} supports arbitrary numbers of function
  14471. arguments, we have some work to do! The \code{limit\_functions} pass
  14472. transforms functions and function calls that involve more than six
  14473. arguments to pass the first five arguments as usual, but it packs the
  14474. rest of the arguments into a tuple and passes it as the sixth
  14475. argument.\footnote{The implementation this pass can be postponed to
  14476. last because you can test the rest of the passes on functions with
  14477. six or fewer parameters.}
  14478. Each function definition with seven or more parameters is transformed as
  14479. follows:
  14480. {\if\edition\racketEd
  14481. \begin{lstlisting}
  14482. (Def |$f$| ([|$x_1$|:|$T_1$|] |$\ldots$| [|$x_n$|:|$T_n$|]) |$T_r$| |$\itm{info}$| |$\itm{body}$|)
  14483. |$\Rightarrow$|
  14484. (Def |$f$| ([|$x_1$|:|$T_1$|] |$\ldots$| [|$x_5$|:|$T_5$|] [tup : (Vector |$T_6 \ldots T_n$|)]) |$T_r$| |$\itm{info}$| |$\itm{body}'$|)
  14485. \end{lstlisting}
  14486. \fi}
  14487. {\if\edition\pythonEd\pythonColor
  14488. \begin{lstlisting}
  14489. FunctionDef(|$f$|, [(|$x_1$|,|$T_1$|),|$\ldots$|,(|$x_n$|,|$T_n$|)], |$T_r$|, None, |$\itm{body}$|, None)
  14490. |$\Rightarrow$|
  14491. FunctionDef(|$f$|, [(|$x_1$|,|$T_1$|),|$\ldots$|,(|$x_5$|,|$T_5$|),(tup,TupleType([|$T_6, \ldots, T_n$|]))],
  14492. |$T_r$|, None, |$\itm{body}'$|, None)
  14493. \end{lstlisting}
  14494. \fi}
  14495. %
  14496. \noindent where the $\itm{body}$ is transformed into $\itm{body}'$ by
  14497. replacing the occurrences of each parameter $x_i$ where $i > 5$ with
  14498. the $k$th element of the tuple, where $k = i - 6$.
  14499. %
  14500. {\if\edition\racketEd
  14501. \begin{lstlisting}
  14502. (Var |$x_i$|) |$\Rightarrow$| (Prim 'vector-ref (list tup (Int |$k$|)))
  14503. \end{lstlisting}
  14504. \fi}
  14505. {\if\edition\pythonEd\pythonColor
  14506. \begin{lstlisting}
  14507. Name(|$x_i$|) |$\Rightarrow$| Subscript(tup, Constant(|$k$|), Load())
  14508. \end{lstlisting}
  14509. \fi}
  14510. For function calls with too many arguments, the \code{limit\_functions}
  14511. pass transforms them in the following way:
  14512. \begin{tabular}{lll}
  14513. \begin{minipage}{0.3\textwidth}
  14514. {\if\edition\racketEd
  14515. \begin{lstlisting}
  14516. (|$e_0$| |$e_1$| |$\ldots$| |$e_n$|)
  14517. \end{lstlisting}
  14518. \fi}
  14519. {\if\edition\pythonEd\pythonColor
  14520. \begin{lstlisting}
  14521. Call(|$e_0$|, [|$e_1,\ldots,e_n$|])
  14522. \end{lstlisting}
  14523. \fi}
  14524. \end{minipage}
  14525. &
  14526. $\Rightarrow$
  14527. &
  14528. \begin{minipage}{0.5\textwidth}
  14529. {\if\edition\racketEd
  14530. \begin{lstlisting}
  14531. (|$e_0$| |$e_1 \ldots e_5$| (vector |$e_6 \ldots e_n$|))
  14532. \end{lstlisting}
  14533. \fi}
  14534. {\if\edition\pythonEd\pythonColor
  14535. \begin{lstlisting}
  14536. Call(|$e_0$|, [|$e_1,\ldots,e_5$|,Tuple([|$e_6,\ldots,e_n$|])])
  14537. \end{lstlisting}
  14538. \fi}
  14539. \end{minipage}
  14540. \end{tabular}
  14541. \section{Remove Complex Operands}
  14542. \label{sec:rco-r4}
  14543. The primary decisions to make for this pass are whether to classify
  14544. \code{FunRef} and \racket{\code{Apply}}\python{\code{Call}} as either
  14545. atomic or complex expressions. Recall that an atomic expression
  14546. ends up as an immediate argument of an x86 instruction. Function
  14547. application translates to a sequence of instructions, so
  14548. \racket{\code{Apply}}\python{\code{Call}} must be classified as
  14549. a complex expression. On the other hand, the arguments of
  14550. \racket{\code{Apply}}\python{\code{Call}} should be atomic
  14551. expressions.
  14552. %
  14553. Regarding \code{FunRef}, as discussed previously, the function label
  14554. needs to be converted to an address using the \code{leaq}
  14555. instruction. Thus, even though \code{FunRef} seems rather simple, it
  14556. needs to be classified as a complex expression so that we generate an
  14557. assignment statement with a left-hand side that can serve as the
  14558. target of the \code{leaq}.
  14559. The output of this pass, \LangFunANF{} (figure~\ref{fig:Lfun-anf-syntax}),
  14560. extends \LangAllocANF{} (figure~\ref{fig:Lvec-anf-syntax}) with \code{FunRef}
  14561. and \racket{\code{Apply}}\python{\code{Call}} in the grammar for expressions
  14562. and augments programs to include a list of function definitions.
  14563. %
  14564. \python{Also, \LangFunANF{} adds \code{Return} to the grammar for statements.}
  14565. \newcommand{\LfunMonadASTRacket}{
  14566. \begin{array}{lcl}
  14567. \Type &::=& (\Type \ldots \; \key{->}\; \Type) \\
  14568. \Exp &::=& \FUNREF{\itm{label}}{\Int} \MID \APPLY{\Atm}{\Atm\ldots}\\
  14569. \Def &::=& \FUNDEF{\Var}{\LP[\Var \code{:} \Type]\ldots\RP}{\Type}{\code{'()}}{\Exp}
  14570. \end{array}
  14571. }
  14572. \newcommand{\LfunMonadASTPython}{
  14573. \begin{array}{lcl}
  14574. \Type &::=& \key{IntType()} \MID \key{BoolType()} \MID \key{VoidType()}
  14575. \MID \key{TupleType}\LS\Type^+\RS\\
  14576. &\MID& \key{FunctionType}\LP \Type^{*} \key{, } \Type \RP \\
  14577. \Exp &::=& \FUNREF{\itm{label}}{\Int} \MID \CALL{\Atm}{\Atm^{*}}\\
  14578. \Stmt &::=& \RETURN{\Exp} \\
  14579. \Params &::=& \LP\Var\key{,}\Type\RP^* \\
  14580. \Def &::=& \FUNDEF{\Var}{\Params}{\Type}{}{\Stmt^{+}}
  14581. \end{array}
  14582. }
  14583. \begin{figure}[tp]
  14584. \centering
  14585. \begin{tcolorbox}[colback=white]
  14586. \footnotesize
  14587. {\if\edition\racketEd
  14588. \[
  14589. \begin{array}{l}
  14590. \gray{\LvarMonadASTRacket} \\ \hline
  14591. \gray{\LifMonadASTRacket} \\ \hline
  14592. \gray{\LwhileMonadASTRacket} \\ \hline
  14593. \gray{\LtupMonadASTRacket} \\ \hline
  14594. \LfunMonadASTRacket \\
  14595. \begin{array}{rcl}
  14596. \LangFunANFM{} &::=& \PROGRAMDEFSEXP{\code{'()}}{\LP\Def\ldots\RP)}{\Exp}
  14597. \end{array}
  14598. \end{array}
  14599. \]
  14600. \fi}
  14601. {\if\edition\pythonEd\pythonColor
  14602. \[
  14603. \begin{array}{l}
  14604. \gray{\LvarMonadASTPython} \\ \hline
  14605. \gray{\LifMonadASTPython} \\ \hline
  14606. \gray{\LwhileMonadASTPython} \\ \hline
  14607. \gray{\LtupMonadASTPython} \\ \hline
  14608. \LfunMonadASTPython \\
  14609. \begin{array}{rcl}
  14610. \LangFunANFM{} &::=& \PROGRAM{}{\LS \Def \ldots \Stmt \ldots \RS}
  14611. \end{array}
  14612. \end{array}
  14613. \]
  14614. \fi}
  14615. \end{tcolorbox}
  14616. \caption{\LangFunANF{} is \LangFunRef{} in monadic normal form.}
  14617. \label{fig:Lfun-anf-syntax}
  14618. \end{figure}
  14619. %% Figure~\ref{fig:Lfun-anf-syntax} defines the output language
  14620. %% \LangFunANF{} of this pass.
  14621. %% \begin{figure}[tp]
  14622. %% \centering
  14623. %% \fbox{
  14624. %% \begin{minipage}{0.96\textwidth}
  14625. %% \small
  14626. %% \[
  14627. %% \begin{array}{rcl}
  14628. %% \Atm &::=& \gray{ \INT{\Int} \MID \VAR{\Var} \MID \BOOL{\itm{bool}}
  14629. %% \MID \VOID{} } \\
  14630. %% \Exp &::=& \gray{ \Atm \MID \READ{} } \\
  14631. %% &\MID& \gray{ \NEG{\Atm} \MID \ADD{\Atm}{\Atm} } \\
  14632. %% &\MID& \gray{ \LET{\Var}{\Exp}{\Exp} } \\
  14633. %% &\MID& \gray{ \UNIOP{\key{'not}}{\Atm} } \\
  14634. %% &\MID& \gray{ \BINOP{\itm{cmp}}{\Atm}{\Atm} \MID \IF{\Exp}{\Exp}{\Exp} }\\
  14635. %% &\MID& \gray{ \LP\key{Collect}~\Int\RP \MID \LP\key{Allocate}~\Int~\Type\RP
  14636. %% \MID \LP\key{GlobalValue}~\Var\RP }\\
  14637. %% &\MID& \FUNREF{\Var} \MID \APPLY{\Atm}{\Atm\ldots}\\
  14638. %% \Def &::=& \gray{ \FUNDEF{\Var}{([\Var \code{:} \Type]\ldots)}{\Type}{\code{'()}}{\Exp} }\\
  14639. %% R^{\dagger}_4 &::=& \gray{ \PROGRAMDEFS{\code{'()}}{\Def} }
  14640. %% \end{array}
  14641. %% \]
  14642. %% \end{minipage}
  14643. %% }
  14644. %% \caption{\LangFunANF{} is \LangFunRefAlloc{} in monadic normal form.}
  14645. %% \label{fig:Lfun-anf-syntax}
  14646. %% \end{figure}
  14647. \section{Explicate Control and the \LangCFun{} Language}
  14648. \label{sec:explicate-control-r4}
  14649. Figure~\ref{fig:c3-syntax} defines the abstract syntax for \LangCFun{}, the
  14650. output of \code{explicate\_control}.
  14651. %
  14652. %% \racket{(The concrete syntax is given in
  14653. %% figure~\ref{fig:c3-concrete-syntax} of the Appendix.)}
  14654. %
  14655. The auxiliary functions for assignment\racket{ and tail contexts} should
  14656. be updated with cases for
  14657. \racket{\code{Apply}}\python{\code{Call}} and \code{FunRef} and the
  14658. function for predicate context should be updated for
  14659. \racket{\code{Apply}}\python{\code{Call}} but not \code{FunRef}. (A
  14660. \code{FunRef} cannot be a Boolean.) In assignment and predicate
  14661. contexts, \code{Apply} becomes \code{Call}\racket{, whereas in tail position
  14662. \code{Apply} becomes \code{TailCall}}. We recommend defining a new
  14663. auxiliary function for processing function definitions. This code is
  14664. similar to the case for \code{Program} in \LangVec{}. The top-level
  14665. \code{explicate\_control} function that handles the \code{ProgramDefs}
  14666. form of \LangFun{} can then apply this new function to all the
  14667. function definitions.
  14668. {\if\edition\pythonEd\pythonColor
  14669. The translation of \code{Return} statements requires a new auxiliary
  14670. function to handle expressions in tail context, called
  14671. \code{explicate\_tail}. The function should take an expression and the
  14672. dictionary of basic blocks and produce a list of statements in the
  14673. \LangCFun{} language. The \code{explicate\_tail} function should
  14674. include cases for \code{Begin}, \code{IfExp}, and \code{Call},
  14675. and a default case for other kinds of expressions. The default case
  14676. should produce a \code{Return} statement. The case for \code{Call}
  14677. should change it into \code{TailCall}. The other cases should
  14678. recursively process their subexpressions and statements, choosing the
  14679. appropriate explicate functions for the various contexts.
  14680. \fi}
  14681. \newcommand{\CfunASTRacket}{
  14682. \begin{array}{lcl}
  14683. \Exp &::= & \FUNREF{\itm{label}}{\Int} \MID \CALL{\Atm}{\LP\Atm\ldots\RP} \\
  14684. \Tail &::= & \TAILCALL{\Atm}{\Atm\ldots} \\
  14685. \Def &::=& \DEF{\itm{label}}{\LP[\Var\key{:}\Type]\ldots\RP}{\Type}{\itm{info}}{\LP\LP\itm{label}\,\key{.}\,\Tail\RP\ldots\RP}
  14686. \end{array}
  14687. }
  14688. \newcommand{\CfunASTPython}{
  14689. \begin{array}{lcl}
  14690. \Exp &::= & \FUNREF{\itm{label}}{\Int} \MID \CALL{\Atm}{\Atm^{*}} \\
  14691. \Tail &::= & \TAILCALL{\Atm}{\Atm^{*}} \\
  14692. \Params &::=& \LS\LP\Var\key{,}\Type\RP\code{,}\ldots\RS \\
  14693. \Block &::=& \itm{label}\key{:} \Stmt^{*}\;\Tail \\
  14694. \Def &::=& \DEF{\itm{label}}{\Params}{\LC\Block\code{,}\ldots\RC}{\key{None}}{\Type}{\key{None}}
  14695. \end{array}
  14696. }
  14697. \begin{figure}[tp]
  14698. \begin{tcolorbox}[colback=white]
  14699. \footnotesize
  14700. {\if\edition\racketEd
  14701. \[
  14702. \begin{array}{l}
  14703. \gray{\CvarASTRacket} \\ \hline
  14704. \gray{\CifASTRacket} \\ \hline
  14705. \gray{\CloopASTRacket} \\ \hline
  14706. \gray{\CtupASTRacket} \\ \hline
  14707. \CfunASTRacket \\
  14708. \begin{array}{lcl}
  14709. \LangCFunM{} & ::= & \PROGRAMDEFS{\itm{info}}{\LP\Def\ldots\RP}
  14710. \end{array}
  14711. \end{array}
  14712. \]
  14713. \fi}
  14714. {\if\edition\pythonEd\pythonColor
  14715. \[
  14716. \begin{array}{l}
  14717. \gray{\CifASTPython} \\ \hline
  14718. \gray{\CtupASTPython} \\ \hline
  14719. \CfunASTPython \\
  14720. \begin{array}{lcl}
  14721. \LangCFunM{} & ::= & \CPROGRAMDEFS{\LS\Def\code{,}\ldots\RS}
  14722. \end{array}
  14723. \end{array}
  14724. \]
  14725. \fi}
  14726. \end{tcolorbox}
  14727. \caption{The abstract syntax of \LangCFun{}, extending \LangCVec{} (figure~\ref{fig:c2-syntax}).}
  14728. \label{fig:c3-syntax}
  14729. \end{figure}
  14730. \clearpage
  14731. \section{Select Instructions and the \LangXIndCall{} Language}
  14732. \label{sec:select-r4}
  14733. \index{subject}{select instructions}
  14734. The output of select instructions is a program in the \LangXIndCall{}
  14735. language; the definition of its concrete syntax is shown in
  14736. figure~\ref{fig:x86-3-concrete}, and the definition of its abstract
  14737. syntax is shown in figure~\ref{fig:x86-3}. We use the \code{align}
  14738. directive on the labels of function definitions to make sure the
  14739. bottom three bits are zero, which we put to use in
  14740. chapter~\ref{ch:Ldyn}. We discuss the new instructions as needed in
  14741. this section. \index{subject}{x86}
  14742. \newcommand{\GrammarXIndCall}{
  14743. \begin{array}{lcl}
  14744. \Instr &::=& \key{callq}\;\key{*}\Arg \MID \key{tailjmp}\;\Arg
  14745. \MID \key{leaq}\;\Arg\key{,}\;\key{\%}\Reg \\
  14746. \Block &::= & \Instr^{+} \\
  14747. \Def &::= & \code{.globl}\,\code{.align 8}\,\itm{label}\; (\itm{label}\key{:}\, \Block)^{*}
  14748. \end{array}
  14749. }
  14750. \newcommand{\ASTXIndCallRacket}{
  14751. \begin{array}{lcl}
  14752. \Instr &::=& \INDCALLQ{\Arg}{\itm{int}}
  14753. \MID \TAILJMP{\Arg}{\itm{int}}\\
  14754. &\MID& \BININSTR{\code{'leaq}}{\Arg}{\REG{\Reg}}\\
  14755. \Block &::= & \BLOCK{\itm{info}}{\LP\Instr\ldots\RP}\\
  14756. \Def &::= & \DEF{\itm{label}}{\code{'()}}{\Type}{\itm{info}}{\LP\LP\itm{label}\,\key{.}\,\Block\RP\ldots\RP}
  14757. \end{array}
  14758. }
  14759. \begin{figure}[tp]
  14760. \begin{tcolorbox}[colback=white]
  14761. \small
  14762. \[
  14763. \begin{array}{l}
  14764. \gray{\GrammarXInt} \\ \hline
  14765. \gray{\GrammarXIf} \\ \hline
  14766. \gray{\GrammarXGlobal} \\ \hline
  14767. \GrammarXIndCall \\
  14768. \begin{array}{lcl}
  14769. \LangXIndCallM{} &::= & \Def^{*}
  14770. \end{array}
  14771. \end{array}
  14772. \]
  14773. \end{tcolorbox}
  14774. \caption{The concrete syntax of \LangXIndCall{} (extends \LangXGlobal{} of figure~\ref{fig:x86-2-concrete}).}
  14775. \label{fig:x86-3-concrete}
  14776. \end{figure}
  14777. \begin{figure}[tp]
  14778. \begin{tcolorbox}[colback=white]
  14779. \small
  14780. {\if\edition\racketEd
  14781. \[\arraycolsep=3pt
  14782. \begin{array}{l}
  14783. \gray{\ASTXIntRacket} \\ \hline
  14784. \gray{\ASTXIfRacket} \\ \hline
  14785. \gray{\ASTXGlobalRacket} \\ \hline
  14786. \ASTXIndCallRacket \\
  14787. \begin{array}{lcl}
  14788. \LangXIndCallM{} &::= & \XPROGRAMDEFS{\itm{info}}{\LP\Def\ldots\RP}
  14789. \end{array}
  14790. \end{array}
  14791. \]
  14792. \fi}
  14793. {\if\edition\pythonEd\pythonColor
  14794. \[
  14795. \begin{array}{lcl}
  14796. \Arg &::=& \gray{ \INT{\Int} \MID \REG{\Reg} \MID \DEREF{\Reg}{\Int}
  14797. \MID \BYTEREG{\Reg} } \\
  14798. &\MID& \gray{ \GLOBAL{\itm{label}} } \MID \FUNREF{\itm{label}}{\Int} \\
  14799. \Instr &::=& \ldots \MID \INDCALLQ{\Arg}{\itm{int}}
  14800. \MID \TAILJMP{\Arg}{\itm{int}}\\
  14801. &\MID& \BININSTR{\scode{leaq}}{\Arg}{\REG{\Reg}}\\
  14802. \Block &::=&\itm{label}\key{:}\,\Instr^{*} \\
  14803. \Def &::= & \DEF{\itm{label}}{\LS\RS}{\LC\Block\code{,}\ldots\RC}{\_}{\Type}{\_} \\
  14804. \LangXIndCallM{} &::= & \XPROGRAMDEFS{\LS\Def\code{,}\ldots\RS}
  14805. \end{array}
  14806. \]
  14807. \fi}
  14808. \end{tcolorbox}
  14809. \caption{The abstract syntax of \LangXIndCall{} (extends
  14810. \LangXGlobal{} of figure~\ref{fig:x86-2}).}
  14811. \label{fig:x86-3}
  14812. \end{figure}
  14813. An assignment of a function reference to a variable becomes a
  14814. load-effective-address instruction as follows, where $\itm{lhs}'$ is
  14815. the translation of $\itm{lhs}$ from \Atm{} in \LangCFun{} to \Arg{} in
  14816. \LangXIndCallVar{}. The \code{FunRef} becomes a \code{Global} AST
  14817. node, whose concrete syntax is instruction-pointer-relative
  14818. addressing.
  14819. \begin{center}
  14820. \begin{tabular}{lcl}
  14821. \begin{minipage}{0.35\textwidth}
  14822. {\if\edition\racketEd
  14823. \begin{lstlisting}
  14824. |$\itm{lhs}$| = (fun-ref |$f$| |$n$|);
  14825. \end{lstlisting}
  14826. \fi}
  14827. {\if\edition\pythonEd\pythonColor
  14828. \begin{lstlisting}
  14829. |$\itm{lhs}$| = FunRef(|$f$| |$n$|);
  14830. \end{lstlisting}
  14831. \fi}
  14832. \end{minipage}
  14833. &
  14834. $\Rightarrow$\qquad\qquad
  14835. &
  14836. \begin{minipage}{0.3\textwidth}
  14837. \begin{lstlisting}
  14838. leaq |$f$|(%rip), |$\itm{lhs}'$|
  14839. \end{lstlisting}
  14840. \end{minipage}
  14841. \end{tabular}
  14842. \end{center}
  14843. Regarding function definitions, we need to remove the parameters and
  14844. instead perform parameter passing using the conventions discussed in
  14845. section~\ref{sec:fun-x86}. That is, the arguments are passed in
  14846. registers. We recommend turning the parameters into local variables
  14847. and generating instructions at the beginning of the function to move
  14848. from the argument-passing registers
  14849. (section~\ref{sec:calling-conventions-fun}) to these local variables.
  14850. {\if\edition\racketEd
  14851. \begin{lstlisting}
  14852. (Def |$f$| '([|$x_1$| : |$T_1$|] [|$x_2$| : |$T_2$|] |$\ldots$| ) |$T_r$| |$\itm{info}$| |$B$|)
  14853. |$\Rightarrow$|
  14854. (Def |$f$| '() 'Integer |$\itm{info}'$| |$B'$|)
  14855. \end{lstlisting}
  14856. \fi}
  14857. {\if\edition\pythonEd\pythonColor
  14858. \begin{lstlisting}
  14859. FunctionDef(|$f$|, [|$(x_1,T_1),\ldots$|], |$B$|, _, |$T_r$|, _)
  14860. |$\Rightarrow$|
  14861. FunctionDef(|$f$|, [], |$B'$|, _, int, _)
  14862. \end{lstlisting}
  14863. \fi}
  14864. The basic blocks $B'$ are the same as $B$ except that the
  14865. \code{start} block is modified to add the instructions for moving from
  14866. the argument registers to the parameter variables. So the \code{start}
  14867. block of $B$ shown on the left of the following is changed to the code
  14868. on the right:
  14869. \begin{center}
  14870. \begin{minipage}{0.3\textwidth}
  14871. \begin{lstlisting}
  14872. start:
  14873. |$\itm{instr}_1$|
  14874. |$\cdots$|
  14875. |$\itm{instr}_n$|
  14876. \end{lstlisting}
  14877. \end{minipage}
  14878. $\Rightarrow$
  14879. \begin{minipage}{0.3\textwidth}
  14880. \begin{lstlisting}
  14881. |$f$|start:
  14882. movq %rdi, |$x_1$|
  14883. movq %rsi, |$x_2$|
  14884. |$\cdots$|
  14885. |$\itm{instr}_1$|
  14886. |$\cdots$|
  14887. |$\itm{instr}_n$|
  14888. \end{lstlisting}
  14889. \end{minipage}
  14890. \end{center}
  14891. Recall that we use the label \code{start} for the initial block of a
  14892. program, and in section~\ref{sec:select-Lvar} we recommend labeling
  14893. the conclusion of the program with \code{conclusion}, so that
  14894. $\RETURN{Arg}$ can be compiled to an assignment to \code{rax} followed
  14895. by a jump to \code{conclusion}. With the addition of function
  14896. definitions, there is a start block and conclusion for each function,
  14897. but their labels need to be unique. We recommend prepending the
  14898. function's name to \code{start} and \code{conclusion}, respectively,
  14899. to obtain unique labels.
  14900. \racket{The interpreter for \LangXIndCall{} needs to be given the
  14901. number of parameters the function expects, but the parameters are no
  14902. longer in the syntax of function definitions. Instead, add an entry
  14903. to $\itm{info}$ that maps \code{num-params} to the number of
  14904. parameters to construct $\itm{info}'$.}
  14905. By changing the parameters to local variables, we are giving the
  14906. register allocator control over which registers or stack locations to
  14907. use for them. If you implement the move-biasing challenge
  14908. (section~\ref{sec:move-biasing}), the register allocator will try to
  14909. assign the parameter variables to the corresponding argument register,
  14910. in which case the \code{patch\_instructions} pass will remove the
  14911. \code{movq} instruction. This happens in the example translation given
  14912. in figure~\ref{fig:add-fun} in section~\ref{sec:functions-example}, in
  14913. the \code{add} function.
  14914. %
  14915. Also, note that the register allocator will perform liveness analysis
  14916. on this sequence of move instructions and build the interference
  14917. graph. So, for example, $x_1$ will be marked as interfering with
  14918. \code{rsi}, and that will prevent the mapping of $x_1$ to \code{rsi},
  14919. which is good because otherwise the first \code{movq} would overwrite
  14920. the argument in \code{rsi} that is needed for $x_2$.
  14921. Next, consider the compilation of function calls. In the mirror image
  14922. of the handling of parameters in function definitions, the arguments
  14923. are moved to the argument-passing registers. Note that the function
  14924. is not given as a label, but its address is produced by the argument
  14925. $\itm{arg}_0$. So, we translate the call into an indirect function
  14926. call. The return value from the function is stored in \code{rax}, so
  14927. it needs to be moved into the \itm{lhs}.
  14928. \begin{lstlisting}
  14929. |\itm{lhs}| = |$\CALL{\itm{arg}_0}{\python{\LS}\itm{arg}_1~\itm{arg}_2 \ldots\python{\RS}}$|
  14930. |$\Rightarrow$|
  14931. movq |$\itm{arg}_1$|, %rdi
  14932. movq |$\itm{arg}_2$|, %rsi
  14933. |$\vdots$|
  14934. callq *|$\itm{arg}_0$|
  14935. movq %rax, |$\itm{lhs}$|
  14936. \end{lstlisting}
  14937. The \code{IndirectCallq} AST node includes an integer for the arity of
  14938. the function, that is, the number of parameters. That information is
  14939. useful in the \code{uncover\_live} pass for determining which
  14940. argument-passing registers are potentially read during the call.
  14941. For tail calls, the parameter passing is the same as non-tail calls:
  14942. generate instructions to move the arguments into the argument-passing
  14943. registers. After that we need to pop the frame from the procedure
  14944. call stack. However, we do not yet know how big the frame is; that
  14945. gets determined during register allocation. So, instead of generating
  14946. those instructions here, we invent a new instruction that means ``pop
  14947. the frame and then do an indirect jump,'' which we name
  14948. \code{TailJmp}. The abstract syntax for this instruction includes an
  14949. argument that specifies where to jump and an integer that represents
  14950. the arity of the function being called.
  14951. \section{Register Allocation}
  14952. \label{sec:register-allocation-r4}
  14953. The addition of functions requires some changes to all three aspects
  14954. of register allocation, which we discuss in the following subsections.
  14955. \subsection{Liveness Analysis}
  14956. \label{sec:liveness-analysis-r4}
  14957. \index{subject}{liveness analysis}
  14958. %% The rest of the passes need only minor modifications to handle the new
  14959. %% kinds of AST nodes: \code{fun-ref}, \code{indirect-callq}, and
  14960. %% \code{leaq}.
  14961. The \code{IndirectCallq} instruction should be treated like
  14962. \code{Callq} regarding its written locations $W$, in that they should
  14963. include all the caller-saved registers. Recall that the reason for
  14964. that is to force variables that are live across a function call to be assigned to callee-saved
  14965. registers or to be spilled to the stack.
  14966. Regarding the set of read locations $R$, the arity fields of
  14967. \code{TailJmp} and \code{IndirectCallq} determine how many of the
  14968. argument-passing registers should be considered as read by those
  14969. instructions. Also, the target field of \code{TailJmp} and
  14970. \code{IndirectCallq} should be included in the set of read locations
  14971. $R$.
  14972. \subsection{Build Interference Graph}
  14973. \label{sec:build-interference-r4}
  14974. With the addition of function definitions, we compute a separate interference
  14975. graph for each function (not just one for the whole program).
  14976. Recall that in section~\ref{sec:reg-alloc-gc} we discussed the need to
  14977. spill tuple-typed variables that are live during a call to
  14978. \code{collect}, the garbage collector. With the addition of functions
  14979. to our language, we need to revisit this issue. Functions that perform
  14980. allocation contain calls to the collector. Thus, we should not only
  14981. spill a tuple-typed variable when it is live during a call to
  14982. \code{collect}, but we should spill the variable if it is live during
  14983. a call to any user-defined function. Thus, in the
  14984. \code{build\_interference} pass, we recommend adding interference
  14985. edges between call-live tuple-typed variables and the callee-saved
  14986. registers (in addition to creating edges between
  14987. call-live variables and the caller-saved registers).
  14988. \subsection{Allocate Registers}
  14989. The primary change to the \code{allocate\_registers} pass is adding an
  14990. auxiliary function for handling definitions (the \Def{} nonterminal
  14991. shown in figure~\ref{fig:x86-3}) with one case for function
  14992. definitions. The logic is the same as described in
  14993. chapter~\ref{ch:register-allocation-Lvar} except that now register
  14994. allocation is performed many times, once for each function definition,
  14995. instead of just once for the whole program.
  14996. \section{Patch Instructions}
  14997. In \code{patch\_instructions}, you should deal with the x86
  14998. idiosyncrasy that the destination argument of \code{leaq} must be a
  14999. register. Additionally, you should ensure that the argument of
  15000. \code{TailJmp} is \itm{rax}, our reserved register---because we
  15001. trample many other registers before the tail call, as explained in the
  15002. next section.
  15003. \section{Generate Prelude and Conclusion}
  15004. Now that register allocation is complete, we can translate the
  15005. \code{TailJmp} into a sequence of instructions. A naive translation of
  15006. \code{TailJmp} would simply be \code{jmp *$\itm{arg}$}. However,
  15007. before the jump we need to pop the current frame to achieve efficient
  15008. tail calls. This sequence of instructions is the same as the code for
  15009. the conclusion of a function, except that the \code{retq} is replaced with
  15010. \code{jmp *$\itm{arg}$}.
  15011. Regarding function definitions, we generate a prelude and conclusion
  15012. for each one. This code is similar to the prelude and conclusion
  15013. generated for the \code{main} function presented in
  15014. chapter~\ref{ch:Lvec}. To review, the prelude of every function should
  15015. carry out the following steps:
  15016. % TODO: .align the functions!
  15017. \begin{enumerate}
  15018. %% \item Start with \code{.global} and \code{.align} directives followed
  15019. %% by the label for the function. (See figure~\ref{fig:add-fun} for an
  15020. %% example.)
  15021. \item Push \code{rbp} to the stack and set \code{rbp} to current stack
  15022. pointer.
  15023. \item Push to the stack all the callee-saved registers that were
  15024. used for register allocation.
  15025. \item Move the stack pointer \code{rsp} down to make room for the
  15026. regular spills (aligned to 16 bytes).
  15027. \item Move the root stack pointer \code{r15} up by the size of the
  15028. root-stack frame for this function, which depends on the number of
  15029. spilled tuple-typed variables. \label{root-stack-init}
  15030. \item Initialize to zero all new entries in the root-stack frame.
  15031. \item Jump to the start block.
  15032. \end{enumerate}
  15033. The prelude of the \code{main} function has an additional task: call
  15034. the \code{initialize} function to set up the garbage collector, and
  15035. then move the value of the global \code{rootstack\_begin} in
  15036. \code{r15}. This initialization should happen before step
  15037. \ref{root-stack-init}, which depends on \code{r15}.
  15038. The conclusion of every function should do the following:
  15039. \begin{enumerate}
  15040. \item Move the stack pointer back up past the regular spills.
  15041. \item Restore the callee-saved registers by popping them from the
  15042. stack.
  15043. \item Move the root stack pointer back down by the size of the
  15044. root-stack frame for this function.
  15045. \item Restore \code{rbp} by popping it from the stack.
  15046. \item Return to the caller with the \code{retq} instruction.
  15047. \end{enumerate}
  15048. The output of this pass is \LangXIndCallFlat{}, which differs from
  15049. \LangXIndCall{} in that there is no longer an AST node for function
  15050. definitions. Instead, a program is just
  15051. \racket{an association list}\python{a dictionary}
  15052. of basic blocks, as in \LangXGlobal{}. So we have the following grammar rule:
  15053. {\if\edition\racketEd
  15054. \[
  15055. \LangXIndCallFlatM{} ::= \XPROGRAM{\itm{info}}{\LP\LP\itm{label} \,\key{.}\, \Block \RP\ldots\RP}
  15056. \]
  15057. \fi}
  15058. {\if\edition\pythonEd
  15059. \[
  15060. \LangXIndCallFlatM{} ::= \XPROGRAM{\itm{info}}{\LC\itm{label}\key{:}\,\Instr^{*}\code{,}\ldots\RC}
  15061. \]
  15062. \fi}
  15063. Figure~\ref{fig:Lfun-passes} gives an overview of the passes for
  15064. compiling \LangFun{} to x86.
  15065. \begin{exercise}\normalfont\normalsize
  15066. Expand your compiler to handle \LangFun{} as outlined in this chapter.
  15067. Create eight new programs that use functions including examples that
  15068. pass functions and return functions from other functions, recursive
  15069. functions, functions that create tuples, and functions that make tail
  15070. calls. Test your compiler on these new programs and all your
  15071. previously created test programs.
  15072. \end{exercise}
  15073. \begin{figure}[tbp]
  15074. \begin{tcolorbox}[colback=white]
  15075. {\if\edition\racketEd
  15076. \begin{tikzpicture}[baseline=(current bounding box.center),scale=0.90]
  15077. \node (Lfun) at (0,2) {\large \LangFun{}};
  15078. \node (Lfun-1) at (4,2) {\large \LangFun{}};
  15079. \node (Lfun-2) at (7,2) {\large \LangFun{}};
  15080. \node (F1-1) at (11,2) {\large \LangFunRef{}};
  15081. \node (F1-2) at (11,0) {\large \LangFunRef{}};
  15082. \node (F1-3) at (7,0) {\large \LangFunRefAlloc{}};
  15083. \node (F1-4) at (4,0) {\large \LangFunRefAlloc{}};
  15084. \node (F1-5) at (0,0) {\large \LangFunANF{}};
  15085. \node (C3-2) at (0,-2) {\large \LangCFun{}};
  15086. \node (x86-2) at (0,-4) {\large \LangXIndCallVar{}};
  15087. \node (x86-3) at (4,-4) {\large \LangXIndCallVar{}};
  15088. \node (x86-4) at (8,-4) {\large \LangXIndCall{}};
  15089. \node (x86-5) at (8,-6) {\large \LangXIndCallFlat{}};
  15090. \node (x86-2-1) at (0,-6) {\large \LangXIndCallVar{}};
  15091. \node (x86-2-2) at (4,-6) {\large \LangXIndCallVar{}};
  15092. \path[->,bend left=15] (Lfun) edge [above] node
  15093. {\ttfamily\footnotesize shrink} (Lfun-1);
  15094. \path[->,bend left=15] (Lfun-1) edge [above] node
  15095. {\ttfamily\footnotesize uniquify} (Lfun-2);
  15096. \path[->,bend left=15] (Lfun-2) edge [above] node
  15097. {\ttfamily\footnotesize ~~reveal\_functions} (F1-1);
  15098. \path[->,bend left=15] (F1-1) edge [left] node
  15099. {\ttfamily\footnotesize limit\_functions} (F1-2);
  15100. \path[->,bend left=15] (F1-2) edge [below] node
  15101. {\ttfamily\footnotesize expose\_allocation} (F1-3);
  15102. \path[->,bend left=15] (F1-3) edge [below] node
  15103. {\ttfamily\footnotesize uncover\_get!} (F1-4);
  15104. \path[->,bend right=15] (F1-4) edge [above] node
  15105. {\ttfamily\footnotesize remove\_complex\_operands} (F1-5);
  15106. \path[->,bend right=15] (F1-5) edge [right] node
  15107. {\ttfamily\footnotesize explicate\_control} (C3-2);
  15108. \path[->,bend right=15] (C3-2) edge [right] node
  15109. {\ttfamily\footnotesize select\_instructions} (x86-2);
  15110. \path[->,bend left=15] (x86-2) edge [right] node
  15111. {\ttfamily\footnotesize uncover\_live} (x86-2-1);
  15112. \path[->,bend right=15] (x86-2-1) edge [below] node
  15113. {\ttfamily\footnotesize build\_interference} (x86-2-2);
  15114. \path[->,bend right=15] (x86-2-2) edge [right] node
  15115. {\ttfamily\footnotesize allocate\_registers} (x86-3);
  15116. \path[->,bend left=15] (x86-3) edge [above] node
  15117. {\ttfamily\footnotesize patch\_instructions} (x86-4);
  15118. \path[->,bend right=15] (x86-4) edge [right] node {\ttfamily\footnotesize prelude\_and\_conclusion} (x86-5);
  15119. \end{tikzpicture}
  15120. \fi}
  15121. {\if\edition\pythonEd\pythonColor
  15122. \begin{tikzpicture}[baseline=(current bounding box.center),scale=0.85]
  15123. \node (Lfun) at (0,2) {\large \LangFun{}};
  15124. \node (Lfun-2) at (4,2) {\large \LangFun{}};
  15125. \node (F1-1) at (8,2) {\large \LangFunRef{}};
  15126. \node (F1-2) at (12,2) {\large \LangFunRef{}};
  15127. \node (F1-4) at (4,0) {\large \LangFunRefAlloc{}};
  15128. \node (F1-5) at (0,0) {\large \LangFunANF{}};
  15129. \node (C3-2) at (0,-2) {\large \LangCFun{}};
  15130. \node (x86-2) at (0,-4) {\large \LangXIndCallVar{}};
  15131. \node (x86-3) at (4,-4) {\large \LangXIndCallVar{}};
  15132. \node (x86-4) at (8,-4) {\large \LangXIndCall{}};
  15133. \node (x86-5) at (12,-4) {\large \LangXIndCallFlat{}};
  15134. \path[->,bend left=15] (Lfun) edge [above] node
  15135. {\ttfamily\footnotesize shrink} (Lfun-2);
  15136. \path[->,bend left=15] (Lfun-2) edge [above] node
  15137. {\ttfamily\footnotesize ~~reveal\_functions} (F1-1);
  15138. \path[->,bend left=15] (F1-1) edge [above] node
  15139. {\ttfamily\footnotesize limit\_functions} (F1-2);
  15140. \path[->,bend left=15] (F1-2) edge [right] node
  15141. {\ttfamily\footnotesize \ \ expose\_allocation} (F1-4);
  15142. \path[->,bend right=15] (F1-4) edge [above] node
  15143. {\ttfamily\footnotesize remove\_complex\_operands} (F1-5);
  15144. \path[->,bend right=15] (F1-5) edge [right] node
  15145. {\ttfamily\footnotesize explicate\_control} (C3-2);
  15146. \path[->,bend left=15] (C3-2) edge [right] node
  15147. {\ttfamily\footnotesize select\_instructions} (x86-2);
  15148. \path[->,bend right=15] (x86-2) edge [below] node
  15149. {\ttfamily\footnotesize assign\_homes} (x86-3);
  15150. \path[->,bend left=15] (x86-3) edge [above] node
  15151. {\ttfamily\footnotesize patch\_instructions} (x86-4);
  15152. \path[->,bend right=15] (x86-4) edge [below] node {\ttfamily\footnotesize prelude\_and\_conclusion} (x86-5);
  15153. \end{tikzpicture}
  15154. \fi}
  15155. \end{tcolorbox}
  15156. \caption{Diagram of the passes for \LangFun{}, a language with functions.}
  15157. \label{fig:Lfun-passes}
  15158. \end{figure}
  15159. \section{An Example Translation}
  15160. \label{sec:functions-example}
  15161. Figure~\ref{fig:add-fun} shows an example translation of a simple
  15162. function in \LangFun{} to x86. The figure includes the results of
  15163. \code{explicate\_control} and \code{select\_instructions}.
  15164. \begin{figure}[hbtp]
  15165. \begin{tcolorbox}[colback=white]
  15166. \begin{tabular}{ll}
  15167. \begin{minipage}{0.4\textwidth}
  15168. % s3_2.rkt
  15169. {\if\edition\racketEd
  15170. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  15171. (define (add [x : Integer]
  15172. [y : Integer])
  15173. : Integer
  15174. (+ x y))
  15175. (add 40 2)
  15176. \end{lstlisting}
  15177. \fi}
  15178. {\if\edition\pythonEd\pythonColor
  15179. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  15180. def add(x:int, y:int) -> int:
  15181. return x + y
  15182. print(add(40, 2))
  15183. \end{lstlisting}
  15184. \fi}
  15185. $\Downarrow$
  15186. {\if\edition\racketEd
  15187. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  15188. (define (add86 [x87 : Integer]
  15189. [y88 : Integer])
  15190. : Integer
  15191. add86start:
  15192. return (+ x87 y88);
  15193. )
  15194. (define (main) : Integer ()
  15195. mainstart:
  15196. tmp89 = (fun-ref add86 2);
  15197. (tail-call tmp89 40 2)
  15198. )
  15199. \end{lstlisting}
  15200. \fi}
  15201. {\if\edition\pythonEd\pythonColor
  15202. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  15203. def add(x:int, y:int) -> int:
  15204. addstart:
  15205. return x + y
  15206. def main() -> int:
  15207. mainstart:
  15208. fun.0 = add
  15209. tmp.1 = fun.0(40, 2)
  15210. print(tmp.1)
  15211. return 0
  15212. \end{lstlisting}
  15213. \fi}
  15214. \end{minipage}
  15215. &
  15216. $\Rightarrow$
  15217. \begin{minipage}{0.5\textwidth}
  15218. {\if\edition\racketEd
  15219. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  15220. (define (add86) : Integer
  15221. add86start:
  15222. movq %rdi, x87
  15223. movq %rsi, y88
  15224. movq x87, %rax
  15225. addq y88, %rax
  15226. jmp inc1389conclusion
  15227. )
  15228. (define (main) : Integer
  15229. mainstart:
  15230. leaq (fun-ref add86 2), tmp89
  15231. movq $40, %rdi
  15232. movq $2, %rsi
  15233. tail-jmp tmp89
  15234. )
  15235. \end{lstlisting}
  15236. \fi}
  15237. {\if\edition\pythonEd\pythonColor
  15238. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  15239. def add() -> int:
  15240. addstart:
  15241. movq %rdi, x
  15242. movq %rsi, y
  15243. movq x, %rax
  15244. addq y, %rax
  15245. jmp addconclusion
  15246. def main() -> int:
  15247. mainstart:
  15248. leaq add, fun.0
  15249. movq $40, %rdi
  15250. movq $2, %rsi
  15251. callq *fun.0
  15252. movq %rax, tmp.1
  15253. movq tmp.1, %rdi
  15254. callq print_int
  15255. movq $0, %rax
  15256. jmp mainconclusion
  15257. \end{lstlisting}
  15258. \fi}
  15259. $\Downarrow$
  15260. \end{minipage}
  15261. \end{tabular}
  15262. \begin{tabular}{ll}
  15263. \begin{minipage}{0.3\textwidth}
  15264. {\if\edition\racketEd
  15265. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  15266. .globl add86
  15267. .align 8
  15268. add86:
  15269. pushq %rbp
  15270. movq %rsp, %rbp
  15271. jmp add86start
  15272. add86start:
  15273. movq %rdi, %rax
  15274. addq %rsi, %rax
  15275. jmp add86conclusion
  15276. add86conclusion:
  15277. popq %rbp
  15278. retq
  15279. \end{lstlisting}
  15280. \fi}
  15281. {\if\edition\pythonEd\pythonColor
  15282. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  15283. .align 8
  15284. add:
  15285. pushq %rbp
  15286. movq %rsp, %rbp
  15287. subq $0, %rsp
  15288. jmp addstart
  15289. addstart:
  15290. movq %rdi, %rdx
  15291. movq %rsi, %rcx
  15292. movq %rdx, %rax
  15293. addq %rcx, %rax
  15294. jmp addconclusion
  15295. addconclusion:
  15296. subq $0, %r15
  15297. addq $0, %rsp
  15298. popq %rbp
  15299. retq
  15300. \end{lstlisting}
  15301. \fi}
  15302. \end{minipage}
  15303. &
  15304. \begin{minipage}{0.5\textwidth}
  15305. {\if\edition\racketEd
  15306. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  15307. .globl main
  15308. .align 8
  15309. main:
  15310. pushq %rbp
  15311. movq %rsp, %rbp
  15312. movq $16384, %rdi
  15313. movq $16384, %rsi
  15314. callq initialize
  15315. movq rootstack_begin(%rip), %r15
  15316. jmp mainstart
  15317. mainstart:
  15318. leaq add86(%rip), %rcx
  15319. movq $40, %rdi
  15320. movq $2, %rsi
  15321. movq %rcx, %rax
  15322. popq %rbp
  15323. jmp *%rax
  15324. mainconclusion:
  15325. popq %rbp
  15326. retq
  15327. \end{lstlisting}
  15328. \fi}
  15329. {\if\edition\pythonEd\pythonColor
  15330. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  15331. .globl main
  15332. .align 8
  15333. main:
  15334. pushq %rbp
  15335. movq %rsp, %rbp
  15336. subq $0, %rsp
  15337. movq $65536, %rdi
  15338. movq $65536, %rsi
  15339. callq initialize
  15340. movq rootstack_begin(%rip), %r15
  15341. jmp mainstart
  15342. mainstart:
  15343. leaq add(%rip), %rcx
  15344. movq $40, %rdi
  15345. movq $2, %rsi
  15346. callq *%rcx
  15347. movq %rax, %rcx
  15348. movq %rcx, %rdi
  15349. callq print_int
  15350. movq $0, %rax
  15351. jmp mainconclusion
  15352. mainconclusion:
  15353. subq $0, %r15
  15354. addq $0, %rsp
  15355. popq %rbp
  15356. retq
  15357. \end{lstlisting}
  15358. \fi}
  15359. \end{minipage}
  15360. \end{tabular}
  15361. \end{tcolorbox}
  15362. \caption{Example compilation of a simple function to x86.}
  15363. \label{fig:add-fun}
  15364. \end{figure}
  15365. % Challenge idea: inlining! (simple version)
  15366. % Further Reading
  15367. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  15368. \chapter{Lexically Scoped Functions}
  15369. \label{ch:Llambda}
  15370. \setcounter{footnote}{0}
  15371. This chapter studies lexically scoped functions. Lexical
  15372. scoping\index{subject}{lexical scoping} means that a function's body
  15373. may refer to variables whose binding site is outside of the function,
  15374. in an enclosing scope.
  15375. %
  15376. Consider the example shown in figure~\ref{fig:lexical-scoping} written
  15377. in \LangLam{}, which extends \LangFun{} with the
  15378. \key{lambda}\index{subject}{lambda} form for creating lexically scoped
  15379. functions. The body of the \key{lambda} refers to three variables:
  15380. \code{x}, \code{y}, and \code{z}. The binding sites for \code{x} and
  15381. \code{y} are outside of the \key{lambda}. Variable \code{y} is
  15382. \racket{bound by the enclosing \key{let}}\python{a local variable of
  15383. function \code{f}}, and \code{x} is a parameter of function
  15384. \code{f}. Note that function \code{f} returns the \key{lambda} as its
  15385. result value. The main expression of the program includes two calls to
  15386. \code{f} with different arguments for \code{x}: first \code{5} and
  15387. then \code{3}. The functions returned from \code{f} are bound to
  15388. variables \code{g} and \code{h}. Even though these two functions were
  15389. created by the same \code{lambda}, they are really different functions
  15390. because they use different values for \code{x}. Applying \code{g} to
  15391. \code{11} produces \code{20} whereas applying \code{h} to \code{15}
  15392. produces \code{22}, so the result of the program is \code{42}.
  15393. \begin{figure}[btp]
  15394. \begin{tcolorbox}[colback=white]
  15395. {\if\edition\racketEd
  15396. % lambda_test_21.rkt
  15397. \begin{lstlisting}
  15398. (define (f [x : Integer]) : (Integer -> Integer)
  15399. (let ([y 4])
  15400. (lambda: ([z : Integer]) : Integer
  15401. (+ x (+ y z)))))
  15402. (let ([g (f 5)])
  15403. (let ([h (f 3)])
  15404. (+ (g 11) (h 15))))
  15405. \end{lstlisting}
  15406. \fi}
  15407. {\if\edition\pythonEd\pythonColor
  15408. \begin{lstlisting}
  15409. def f(x : int) -> Callable[[int], int]:
  15410. y = 4
  15411. return lambda z: x + y + z
  15412. g = f(5)
  15413. h = f(3)
  15414. print(g(11) + h(15))
  15415. \end{lstlisting}
  15416. \fi}
  15417. \end{tcolorbox}
  15418. \caption{Example of a lexically scoped function.}
  15419. \label{fig:lexical-scoping}
  15420. \end{figure}
  15421. The approach that we take for implementing lexically scoped functions
  15422. is to compile them into top-level function definitions, translating
  15423. from \LangLam{} into \LangFun{}. However, the compiler must give
  15424. special treatment to variable occurrences such as \code{x} and
  15425. \code{y} in the body of the \code{lambda} shown in
  15426. figure~\ref{fig:lexical-scoping}. After all, an \LangFun{} function
  15427. may not refer to variables defined outside of it. To identify such
  15428. variable occurrences, we review the standard notion of free variable.
  15429. \begin{definition}\normalfont
  15430. A variable is \emph{free in expression} $e$ if the variable occurs
  15431. inside $e$ but does not have an enclosing definition that is also in
  15432. $e$.\index{subject}{free variable}
  15433. \end{definition}
  15434. For example, in the expression
  15435. \racket{\code{(+ x (+ y z))}}\python{\code{x + y + z}}
  15436. the variables \code{x}, \code{y}, and \code{z} are all free. On the other hand,
  15437. only \code{x} and \code{y} are free in the following expression,
  15438. because \code{z} is defined by the \code{lambda}
  15439. {\if\edition\racketEd
  15440. \begin{lstlisting}
  15441. (lambda: ([z : Integer]) : Integer
  15442. (+ x (+ y z)))
  15443. \end{lstlisting}
  15444. \fi}
  15445. {\if\edition\pythonEd\pythonColor
  15446. \begin{lstlisting}
  15447. lambda z: x + y + z
  15448. \end{lstlisting}
  15449. \fi}
  15450. %
  15451. \noindent Thus the free variables of a \code{lambda} are the ones that
  15452. need special treatment. We need to transport at runtime the values
  15453. of those variables from the point where the \code{lambda} was created
  15454. to the point where the \code{lambda} is applied. An efficient solution
  15455. to the problem, due to \citet{Cardelli:1983aa}, is to bundle the
  15456. values of the free variables together with a function pointer into a
  15457. tuple, an arrangement called a \emph{flat closure} (which we shorten
  15458. to just \emph{closure}).\index{subject}{closure}\index{subject}{flat
  15459. closure}
  15460. %
  15461. By design, we have all the ingredients to make closures:
  15462. chapter~\ref{ch:Lvec} gave us tuples, and chapter~\ref{ch:Lfun} gave us
  15463. function pointers. The function pointer resides at index $0$, and the
  15464. values for the free variables fill in the rest of the tuple.
  15465. Let us revisit the example shown in figure~\ref{fig:lexical-scoping}
  15466. to see how closures work. It is a three-step dance. The program calls
  15467. function \code{f}, which creates a closure for the \code{lambda}. The
  15468. closure is a tuple whose first element is a pointer to the top-level
  15469. function that we will generate for the \code{lambda}; the second
  15470. element is the value of \code{x}, which is \code{5}; and the third
  15471. element is \code{4}, the value of \code{y}. The closure does not
  15472. contain an element for \code{z} because \code{z} is not a free
  15473. variable of the \code{lambda}. Creating the closure is step 1 of the
  15474. dance. The closure is returned from \code{f} and bound to \code{g}, as
  15475. shown in figure~\ref{fig:closures}.
  15476. %
  15477. The second call to \code{f} creates another closure, this time with
  15478. \code{3} in the second slot (for \code{x}). This closure is also
  15479. returned from \code{f} but bound to \code{h}, which is also shown in
  15480. figure~\ref{fig:closures}.
  15481. \begin{figure}[tbp]
  15482. \centering
  15483. \begin{minipage}{0.65\textwidth}
  15484. \begin{tcolorbox}[colback=white]
  15485. \includegraphics[width=\textwidth]{figs/closures}
  15486. \end{tcolorbox}
  15487. \end{minipage}
  15488. \caption{Flat closure representations for the two functions
  15489. produced by the \key{lambda} in figure~\ref{fig:lexical-scoping}.}
  15490. \label{fig:closures}
  15491. \end{figure}
  15492. Continuing with the example, consider the application of \code{g} to
  15493. \code{11} shown in figure~\ref{fig:lexical-scoping}. To apply a
  15494. closure, we obtain the function pointer from the first element of the
  15495. closure and call it, passing in the closure itself and then the
  15496. regular arguments, in this case \code{11}. This technique for applying
  15497. a closure is step 2 of the dance.
  15498. %
  15499. But doesn't this \code{lambda} take only one argument, for parameter
  15500. \code{z}? The third and final step of the dance is generating a
  15501. top-level function for a \code{lambda}. We add an additional
  15502. parameter for the closure and insert an initialization at the beginning
  15503. of the function for each free variable, to bind those variables to the
  15504. appropriate elements from the closure parameter.
  15505. %
  15506. This three-step dance is known as \emph{closure
  15507. conversion}\index{subject}{closure conversion}. We discuss the
  15508. details of closure conversion in section~\ref{sec:closure-conversion}
  15509. and show the code generated from the example in
  15510. section~\ref{sec:example-lambda}. First, we define the syntax and
  15511. semantics of \LangLam{} in section~\ref{sec:r5}.
  15512. \section{The \LangLam{} Language}
  15513. \label{sec:r5}
  15514. The definitions of the concrete syntax and abstract syntax for
  15515. \LangLam{}, a language with anonymous functions and lexical scoping,
  15516. are shown in figures~\ref{fig:Llam-concrete-syntax} and
  15517. \ref{fig:Llam-syntax}. They add the \key{lambda} form to the grammar
  15518. for \LangFun{}, which already has syntax for function application.
  15519. %
  15520. \python{The syntax also includes an assignment statement that includes
  15521. a type annotation for the variable on the left-hand side, which
  15522. facilitates the type checking of \code{lambda} expressions that we
  15523. discuss later in this section.}
  15524. %
  15525. \racket{The \code{procedure-arity} operation returns the number of parameters
  15526. of a given function, an operation that we need for the translation
  15527. of dynamic typing that is discussed in chapter~\ref{ch:Ldyn}.}
  15528. %
  15529. \python{The \code{arity} operation returns the number of parameters of
  15530. a given function, an operation that we need for the translation
  15531. of dynamic typing that is discussed in chapter~\ref{ch:Ldyn}.
  15532. The \code{arity} operation is not in Python, but the same functionality
  15533. is available in a more complex form. We include \code{arity} in the
  15534. \LangLam{} source language to enable testing.}
  15535. \newcommand{\LlambdaGrammarRacket}{
  15536. \begin{array}{lcl}
  15537. \Exp &::=& \CLAMBDA{\LP\LS\Var \key{:} \Type\RS\ldots\RP}{\Type}{\Exp} \\
  15538. &\MID& \LP \key{procedure-arity}~\Exp\RP
  15539. \end{array}
  15540. }
  15541. \newcommand{\LlambdaASTRacket}{
  15542. \begin{array}{lcl}
  15543. \Exp &::=& \LAMBDA{\LP\LS\Var\code{:}\Type\RS\ldots\RP}{\Type}{\Exp}\\
  15544. \itm{op} &::=& \code{procedure-arity}
  15545. \end{array}
  15546. }
  15547. \newcommand{\LlambdaGrammarPython}{
  15548. \begin{array}{lcl}
  15549. \Exp &::=& \CLAMBDA{\Var\code{, }\ldots}{\Exp} \MID \CARITY{\Exp} \\
  15550. \Stmt &::=& \CANNASSIGN{\Var}{\Type}{\Exp}
  15551. \end{array}
  15552. }
  15553. \newcommand{\LlambdaASTPython}{
  15554. \begin{array}{lcl}
  15555. \Exp &::=& \LAMBDA{\Var^{*}}{\Exp} \MID \ARITY{\Exp} \\
  15556. \Stmt &::=& \ANNASSIGN{\Var}{\Type}{\Exp}
  15557. \end{array}
  15558. }
  15559. % include AnnAssign in ASTPython
  15560. \begin{figure}[tp]
  15561. \centering
  15562. \begin{tcolorbox}[colback=white]
  15563. \small
  15564. {\if\edition\racketEd
  15565. \[
  15566. \begin{array}{l}
  15567. \gray{\LintGrammarRacket{}} \\ \hline
  15568. \gray{\LvarGrammarRacket{}} \\ \hline
  15569. \gray{\LifGrammarRacket{}} \\ \hline
  15570. \gray{\LwhileGrammarRacket} \\ \hline
  15571. \gray{\LtupGrammarRacket} \\ \hline
  15572. \gray{\LfunGrammarRacket} \\ \hline
  15573. \LlambdaGrammarRacket \\
  15574. \begin{array}{lcl}
  15575. \LangLamM{} &::=& \Def\ldots \; \Exp
  15576. \end{array}
  15577. \end{array}
  15578. \]
  15579. \fi}
  15580. {\if\edition\pythonEd\pythonColor
  15581. \[
  15582. \begin{array}{l}
  15583. \gray{\LintGrammarPython{}} \\ \hline
  15584. \gray{\LvarGrammarPython{}} \\ \hline
  15585. \gray{\LifGrammarPython{}} \\ \hline
  15586. \gray{\LwhileGrammarPython} \\ \hline
  15587. \gray{\LtupGrammarPython} \\ \hline
  15588. \gray{\LfunGrammarPython} \\ \hline
  15589. \LlambdaGrammarPython \\
  15590. \begin{array}{lcl}
  15591. \LangFunM{} &::=& \Def\ldots \Stmt\ldots
  15592. \end{array}
  15593. \end{array}
  15594. \]
  15595. \fi}
  15596. \end{tcolorbox}
  15597. \caption{The concrete syntax of \LangLam{}, extending \LangFun{} (figure~\ref{fig:Lfun-concrete-syntax})
  15598. with \key{lambda}.}
  15599. \label{fig:Llam-concrete-syntax}
  15600. \end{figure}
  15601. \begin{figure}[tp]
  15602. \centering
  15603. \begin{tcolorbox}[colback=white]
  15604. \small
  15605. {\if\edition\racketEd
  15606. \[\arraycolsep=3pt
  15607. \begin{array}{l}
  15608. \gray{\LintOpAST} \\ \hline
  15609. \gray{\LvarASTRacket{}} \\ \hline
  15610. \gray{\LifASTRacket{}} \\ \hline
  15611. \gray{\LwhileASTRacket{}} \\ \hline
  15612. \gray{\LtupASTRacket{}} \\ \hline
  15613. \gray{\LfunASTRacket} \\ \hline
  15614. \LlambdaASTRacket \\
  15615. \begin{array}{lcl}
  15616. \LangLamM{} &::=& \PROGRAMDEFSEXP{\code{'()}}{\LP\Def\ldots\RP}{\Exp}
  15617. \end{array}
  15618. \end{array}
  15619. \]
  15620. \fi}
  15621. {\if\edition\pythonEd\pythonColor
  15622. \[
  15623. \begin{array}{l}
  15624. \gray{\LintASTPython} \\ \hline
  15625. \gray{\LvarASTPython{}} \\ \hline
  15626. \gray{\LifASTPython{}} \\ \hline
  15627. \gray{\LwhileASTPython{}} \\ \hline
  15628. \gray{\LtupASTPython{}} \\ \hline
  15629. \gray{\LfunASTPython} \\ \hline
  15630. \LlambdaASTPython \\
  15631. \begin{array}{lcl}
  15632. \LangLamM{} &::=& \PROGRAM{}{\LS \Def \ldots \Stmt \ldots \RS}
  15633. \end{array}
  15634. \end{array}
  15635. \]
  15636. \fi}
  15637. \end{tcolorbox}
  15638. \caption{The abstract syntax of \LangLam{}, extending \LangFun{} (figure~\ref{fig:Lfun-syntax}).}
  15639. \label{fig:Llam-syntax}
  15640. \end{figure}
  15641. Figure~\ref{fig:interp-Llambda} shows the definitional
  15642. interpreter\index{subject}{interpreter} for \LangLam{}. The case for
  15643. \key{Lambda} saves the current environment inside the returned
  15644. function value. Recall that during function application, the
  15645. environment stored in the function value, extended with the mapping of
  15646. parameters to argument values, is used to interpret the body of the
  15647. function.
  15648. \begin{figure}[tbp]
  15649. \begin{tcolorbox}[colback=white]
  15650. {\if\edition\racketEd
  15651. \begin{lstlisting}
  15652. (define interp-Llambda-class
  15653. (class interp-Lfun-class
  15654. (super-new)
  15655. (define/override (interp-op op)
  15656. (match op
  15657. ['procedure-arity
  15658. (lambda (v)
  15659. (match v
  15660. [`(function (,xs ...) ,body ,lam-env) (length xs)]
  15661. [else (error 'interp-op "expected a function, not ~a" v)]))]
  15662. [else (super interp-op op)]))
  15663. (define/override ((interp-exp env) e)
  15664. (define recur (interp-exp env))
  15665. (match e
  15666. [(Lambda (list `[,xs : ,Ts] ...) rT body)
  15667. `(function ,xs ,body ,env)]
  15668. [else ((super interp-exp env) e)]))
  15669. ))
  15670. (define (interp-Llambda p)
  15671. (send (new interp-Llambda-class) interp-program p))
  15672. \end{lstlisting}
  15673. \fi}
  15674. {\if\edition\pythonEd\pythonColor
  15675. \begin{lstlisting}
  15676. class InterpLlambda(InterpLfun):
  15677. def arity(self, v):
  15678. match v:
  15679. case Function(name, params, body, env):
  15680. return len(params)
  15681. case _:
  15682. raise Exception('Llambda arity unexpected ' + repr(v))
  15683. def interp_exp(self, e, env):
  15684. match e:
  15685. case Call(Name('arity'), [fun]):
  15686. f = self.interp_exp(fun, env)
  15687. return self.arity(f)
  15688. case Lambda(params, body):
  15689. return Function('lambda', params, [Return(body)], env)
  15690. case _:
  15691. return super().interp_exp(e, env)
  15692. def interp_stmt(self, s, env, cont):
  15693. match s:
  15694. case AnnAssign(lhs, typ, value, simple):
  15695. env[lhs.id] = self.interp_exp(value, env)
  15696. return self.interp_stmts(cont, env)
  15697. case Pass():
  15698. return self.interp_stmts(cont, env)
  15699. case _:
  15700. return super().interp_stmt(s, env, cont)
  15701. \end{lstlisting}
  15702. \fi}
  15703. \end{tcolorbox}
  15704. \caption{Interpreter for \LangLam{}.}
  15705. \label{fig:interp-Llambda}
  15706. \end{figure}
  15707. {\if\edition\racketEd
  15708. %
  15709. Figure~\ref{fig:type-check-Llambda} shows how to type check the new
  15710. \key{lambda} form. The body of the \key{lambda} is checked in an
  15711. environment that includes the current environment (because it is
  15712. lexically scoped) and also includes the \key{lambda}'s parameters. We
  15713. require the body's type to match the declared return type.
  15714. %
  15715. \fi}
  15716. {\if\edition\pythonEd\pythonColor
  15717. %
  15718. Figures~\ref{fig:type-check-Llambda} and
  15719. \ref{fig:type-check-Llambda-part2} define the type checker for
  15720. \LangLam{}, which is more complex than one might expect. The reason
  15721. for the added complexity is that the syntax of \key{lambda} does not
  15722. include type annotations for the parameters or return type. Instead
  15723. they must be inferred. There are many approaches to type inference
  15724. from which to choose, of varying degrees of complexity. We choose one
  15725. of the simpler approaches, bidirectional type
  15726. inference~\citep{Pierce:2000,Dunfield:2021}, because the focus of this
  15727. book is compilation, not type inference.
  15728. The main idea of bidirectional type inference is to add an auxiliary
  15729. function, here named \code{check\_exp}, that takes an expected type
  15730. and checks whether the given expression is of that type. Thus, in
  15731. \code{check\_exp}, type information flows in a top-down manner with
  15732. respect to the AST, in contrast to the regular \code{type\_check\_exp}
  15733. function, where type information flows in a primarily bottom-up
  15734. manner.
  15735. %
  15736. The idea then is to use \code{check\_exp} in all the places where we
  15737. already know what the type of an expression should be, such as in the
  15738. \code{return} statement of a top-level function definition or on the
  15739. right-hand side of an annotated assignment statement.
  15740. With regard to \code{lambda}, it is straightforward to check a
  15741. \code{lambda} inside \code{check\_exp} because the expected type
  15742. provides the parameter types and the return type. On the other hand,
  15743. inside \code{type\_check\_exp} we disallow \code{lambda}, which means
  15744. that we do not allow \code{lambda} in contexts in which we don't already
  15745. know its type. This restriction does not incur a loss of
  15746. expressiveness for \LangLam{} because it is straightforward to modify
  15747. a program to sidestep the restriction, for example, by using an
  15748. annotated assignment statement to assign the \code{lambda} to a
  15749. temporary variable.
  15750. Note that for the \code{Name} and \code{Lambda} AST nodes, the type
  15751. checker records their type in a \code{has\_type} field. This type
  15752. information is used further on in this chapter.
  15753. %
  15754. \fi}
  15755. \begin{figure}[tbp]
  15756. \begin{tcolorbox}[colback=white]
  15757. {\if\edition\racketEd
  15758. \begin{lstlisting}
  15759. (define (type-check-Llambda env)
  15760. (lambda (e)
  15761. (match e
  15762. [(Lambda (and params `([,xs : ,Ts] ...)) rT body)
  15763. (define-values (new-body bodyT)
  15764. ((type-check-exp (append (map cons xs Ts) env)) body))
  15765. (define ty `(,@Ts -> ,rT))
  15766. (cond
  15767. [(equal? rT bodyT)
  15768. (values (HasType (Lambda params rT new-body) ty) ty)]
  15769. [else
  15770. (error "mismatch in return type" bodyT rT)])]
  15771. ...
  15772. )))
  15773. \end{lstlisting}
  15774. \fi}
  15775. {\if\edition\pythonEd\pythonColor
  15776. \begin{lstlisting}
  15777. class TypeCheckLlambda(TypeCheckLfun):
  15778. def type_check_exp(self, e, env):
  15779. match e:
  15780. case Name(id):
  15781. e.has_type = env[id]
  15782. return env[id]
  15783. case Lambda(params, body):
  15784. raise Exception('cannot synthesize a type for a lambda')
  15785. case Call(Name('arity'), [func]):
  15786. func_t = self.type_check_exp(func, env)
  15787. match func_t:
  15788. case FunctionType(params_t, return_t):
  15789. return IntType()
  15790. case _:
  15791. raise Exception('in arity, unexpected ' + repr(func_t))
  15792. case _:
  15793. return super().type_check_exp(e, env)
  15794. def check_exp(self, e, ty, env):
  15795. match e:
  15796. case Lambda(params, body):
  15797. e.has_type = ty
  15798. match ty:
  15799. case FunctionType(params_t, return_t):
  15800. new_env = env.copy().update(zip(params, params_t))
  15801. self.check_exp(body, return_t, new_env)
  15802. case _:
  15803. raise Exception('lambda does not have type ' + str(ty))
  15804. case Call(func, args):
  15805. func_t = self.type_check_exp(func, env)
  15806. match func_t:
  15807. case FunctionType(params_t, return_t):
  15808. for (arg, param_t) in zip(args, params_t):
  15809. self.check_exp(arg, param_t, env)
  15810. self.check_type_equal(return_t, ty, e)
  15811. case _:
  15812. raise Exception('type_check_exp: in call, unexpected ' + \
  15813. repr(func_t))
  15814. case _:
  15815. t = self.type_check_exp(e, env)
  15816. self.check_type_equal(t, ty, e)
  15817. \end{lstlisting}
  15818. \fi}
  15819. \end{tcolorbox}
  15820. \caption{Type checking \LangLam{}\python{, part 1}.}
  15821. \label{fig:type-check-Llambda}
  15822. \end{figure}
  15823. {\if\edition\pythonEd\pythonColor
  15824. \begin{figure}[tbp]
  15825. \begin{tcolorbox}[colback=white]
  15826. \begin{lstlisting}
  15827. def check_stmts(self, ss, return_ty, env):
  15828. if len(ss) == 0:
  15829. return
  15830. match ss[0]:
  15831. case FunctionDef(name, params, body, dl, returns, comment):
  15832. new_env = env.copy().update(params)
  15833. rt = self.check_stmts(body, returns, new_env)
  15834. self.check_stmts(ss[1:], return_ty, env)
  15835. case Return(value):
  15836. self.check_exp(value, return_ty, env)
  15837. case Assign([Name(id)], value):
  15838. if id in env:
  15839. self.check_exp(value, env[id], env)
  15840. else:
  15841. env[id] = self.type_check_exp(value, env)
  15842. self.check_stmts(ss[1:], return_ty, env)
  15843. case Assign([Subscript(tup, Constant(index), Store())], value):
  15844. tup_t = self.type_check_exp(tup, env)
  15845. match tup_t:
  15846. case TupleType(ts):
  15847. self.check_exp(value, ts[index], env)
  15848. case _:
  15849. raise Exception('expected a tuple, not ' + repr(tup_t))
  15850. self.check_stmts(ss[1:], return_ty, env)
  15851. case AnnAssign(Name(id), ty_annot, value, simple):
  15852. ss[0].annotation = ty_annot
  15853. if id in env:
  15854. self.check_type_equal(env[id], ty_annot)
  15855. else:
  15856. env[id] = ty_annot
  15857. self.check_exp(value, ty_annot, env)
  15858. self.check_stmts(ss[1:], return_ty, env)
  15859. case _:
  15860. self.type_check_stmts(ss, env)
  15861. def type_check(self, p):
  15862. match p:
  15863. case Module(body):
  15864. env = {}
  15865. for s in body:
  15866. match s:
  15867. case FunctionDef(name, params, bod, dl, returns, comment):
  15868. params_t = [t for (x,t) in params]
  15869. env[name] = FunctionType(params_t, returns)
  15870. self.check_stmts(body, int, env)
  15871. \end{lstlisting}
  15872. \end{tcolorbox}
  15873. \caption{Type checking the \key{lambda}'s in \LangLam{}, part 2.}
  15874. \label{fig:type-check-Llambda-part2}
  15875. \end{figure}
  15876. \fi}
  15877. \clearpage
  15878. \section{Assignment and Lexically Scoped Functions}
  15879. \label{sec:assignment-scoping}
  15880. The combination of lexically scoped functions and assignment to
  15881. variables raises a challenge with the flat-closure approach to
  15882. implementing lexically scoped functions. Consider the following
  15883. example in which function \code{f} has a free variable \code{x} that
  15884. is changed after \code{f} is created but before the call to \code{f}.
  15885. % loop_test_11.rkt
  15886. {\if\edition\racketEd
  15887. \begin{lstlisting}
  15888. (let ([x 0])
  15889. (let ([y 0])
  15890. (let ([z 20])
  15891. (let ([f (lambda: ([a : Integer]) : Integer (+ a (+ x z)))])
  15892. (begin
  15893. (set! x 10)
  15894. (set! y 12)
  15895. (f y))))))
  15896. \end{lstlisting}
  15897. \fi}
  15898. {\if\edition\pythonEd\pythonColor
  15899. % box_free_assign.py
  15900. \begin{lstlisting}
  15901. def g(z : int) -> int:
  15902. x = 0
  15903. y = 0
  15904. f : Callable[[int],int] = lambda a: a + x + z
  15905. x = 10
  15906. y = 12
  15907. return f(y)
  15908. print(g(20))
  15909. \end{lstlisting}
  15910. \fi} The correct output for this example is \code{42} because the call
  15911. to \code{f} is required to use the current value of \code{x} (which is
  15912. \code{10}). Unfortunately, the closure conversion pass
  15913. (section~\ref{sec:closure-conversion}) generates code for the
  15914. \code{lambda} that copies the old value of \code{x} into a
  15915. closure. Thus, if we naively applied closure conversion, the output of
  15916. this program would be \code{32}.
  15917. A first attempt at solving this problem would be to save a pointer to
  15918. \code{x} in the closure and change the occurrences of \code{x} inside
  15919. the lambda to dereference the pointer. Of course, this would require
  15920. assigning \code{x} to the stack and not to a register. However, the
  15921. problem goes a bit deeper.
  15922. Consider the following example that returns a function that refers to
  15923. a local variable of the enclosing function:
  15924. \begin{center}
  15925. \begin{minipage}{\textwidth}
  15926. {\if\edition\racketEd
  15927. \begin{lstlisting}
  15928. (define (f) : ( -> Integer)
  15929. (let ([x 0])
  15930. (let ([g (lambda: () : Integer x)])
  15931. (begin
  15932. (set! x 42)
  15933. g))))
  15934. ((f))
  15935. \end{lstlisting}
  15936. \fi}
  15937. {\if\edition\pythonEd\pythonColor
  15938. % counter.py
  15939. \begin{lstlisting}
  15940. def f():
  15941. x = 0
  15942. g = lambda: x
  15943. x = 42
  15944. return g
  15945. print(f()())
  15946. \end{lstlisting}
  15947. \fi}
  15948. \end{minipage}
  15949. \end{center}
  15950. In this example, the lifetime of \code{x} extends beyond the lifetime
  15951. of the call to \code{f}. Thus, if we were to store \code{x} on the
  15952. stack frame for the call to \code{f}, it would be gone by the time we
  15953. called \code{g}, leaving us with dangling pointers for
  15954. \code{x}. This example demonstrates that when a variable occurs free
  15955. inside a function, its lifetime becomes indefinite. Thus, the value of
  15956. the variable needs to live on the heap. The verb
  15957. \emph{box}\index{subject}{box} is often used for allocating a single
  15958. value on the heap, producing a pointer, and
  15959. \emph{unbox}\index{subject}{unbox} for dereferencing the pointer.
  15960. %
  15961. We introduce a new pass named \code{convert\_assignments} to address
  15962. this challenge.
  15963. %
  15964. \python{But before diving into that, we have one more
  15965. problem to discuss.}
  15966. {\if\edition\pythonEd\pythonColor
  15967. \section{Uniquify Variables}
  15968. \label{sec:uniquify-lambda}
  15969. With the addition of \code{lambda} we have a complication to deal
  15970. with: name shadowing. Consider the following program with a function
  15971. \code{f} that has a parameter \code{x}. Inside \code{f} there are two
  15972. \code{lambda} expressions. The first \code{lambda} has a parameter
  15973. that is also named \code{x}.
  15974. \begin{lstlisting}
  15975. def f(x:int, y:int) -> Callable[[int], int]:
  15976. g : Callable[[int],int] = (lambda x: x + y)
  15977. h : Callable[[int],int] = (lambda y: x + y)
  15978. x = input_int()
  15979. return g
  15980. print(f(0, 10)(32))
  15981. \end{lstlisting}
  15982. Many of our compiler passes rely on being able to connect variable
  15983. uses with their definitions using just the name of the
  15984. variable. However, in the example above, the name of the variable does
  15985. not uniquely determine its definition. To solve this problem we
  15986. recommend implementing a pass named \code{uniquify} that renames every
  15987. variable in the program to make sure that they are all unique.
  15988. The following shows the result of \code{uniquify} for the example
  15989. above. The \code{x} parameter of function \code{f} is renamed to
  15990. \code{x\_0}, and the \code{x} parameter of the first \code{lambda} is
  15991. renamed to \code{x\_4}.
  15992. \begin{lstlisting}
  15993. def f(x_0:int, y_1:int) -> Callable[[int], int] :
  15994. g_2 : Callable[[int], int] = (lambda x_4: x_4 + y_1)
  15995. h_3 : Callable[[int], int] = (lambda y_5: x_0 + y_5)
  15996. x_0 = input_int()
  15997. return g_2
  15998. def main() -> int :
  15999. print(f(0, 10)(32))
  16000. return 0
  16001. \end{lstlisting}
  16002. \fi} % pythonEd
  16003. %% \section{Reveal Functions}
  16004. %% \label{sec:reveal-functions-r5}
  16005. %% \racket{To support the \code{procedure-arity} operator we need to
  16006. %% communicate the arity of a function to the point of closure
  16007. %% creation.}
  16008. %% %
  16009. %% \python{In chapter~\ref{ch:Ldyn} we need to access the arity of a
  16010. %% function at runtime. Thus, we need to communicate the arity of a
  16011. %% function to the point of closure creation.}
  16012. %% %
  16013. %% We can accomplish this by replacing the $\FUNREF{\Var}{\Int}$ AST node with
  16014. %% one that has a second field for the arity: $\FUNREFARITY{\Var}{\Int}$.
  16015. %% \[
  16016. %% \begin{array}{lcl}
  16017. %% \Exp &::=& \FUNREFARITY{\Var}{\Int}
  16018. %% \end{array}
  16019. %% \]
  16020. \section{Assignment Conversion}
  16021. \label{sec:convert-assignments}
  16022. The purpose of the \code{convert\_assignments} pass is to address the
  16023. challenge regarding the interaction between variable assignments and
  16024. closure conversion. First we identify which variables need to be
  16025. boxed, and then we transform the program to box those variables. In
  16026. general, boxing introduces runtime overhead that we would like to
  16027. avoid, so we should box as few variables as possible. We recommend
  16028. boxing the variables in the intersection of the following two sets of
  16029. variables:
  16030. \begin{enumerate}
  16031. \item The variables that are free in a \code{lambda}.
  16032. \item The variables that appear on the left-hand side of an
  16033. assignment.
  16034. \end{enumerate}
  16035. The first condition is a must but the second condition is
  16036. conservative. It is possible to develop a more liberal condition using
  16037. static program analysis.
  16038. Consider again the first example from
  16039. section~\ref{sec:assignment-scoping}:
  16040. %
  16041. {\if\edition\racketEd
  16042. \begin{lstlisting}
  16043. (let ([x 0])
  16044. (let ([y 0])
  16045. (let ([z 20])
  16046. (let ([f (lambda: ([a : Integer]) : Integer (+ a (+ x z)))])
  16047. (begin
  16048. (set! x 10)
  16049. (set! y 12)
  16050. (f y))))))
  16051. \end{lstlisting}
  16052. \fi}
  16053. {\if\edition\pythonEd\pythonColor
  16054. \begin{lstlisting}
  16055. def g(z : int) -> int:
  16056. x = 0
  16057. y = 0
  16058. f : Callable[[int],int] = lambda a: a + x + z
  16059. x = 10
  16060. y = 12
  16061. return f(y)
  16062. print(g(20))
  16063. \end{lstlisting}
  16064. \fi}
  16065. %
  16066. \noindent The variables \code{x} and \code{y} appear on the left-hand
  16067. side of assignments. The variables \code{x} and \code{z} occur free
  16068. inside the \code{lambda}. Thus, variable \code{x} needs to be boxed
  16069. but not \code{y} or \code{z}. The boxing of \code{x} consists of
  16070. three transformations: initialize \code{x} with a tuple whose element
  16071. is uninitialized, replace reads from \code{x} with tuple reads, and
  16072. replace each assignment to \code{x} with a tuple write. The output of
  16073. \code{convert\_assignments} for this example is as follows:
  16074. %
  16075. {\if\edition\racketEd
  16076. \begin{lstlisting}
  16077. (define (main) : Integer
  16078. (let ([x0 (vector 0)])
  16079. (let ([y1 0])
  16080. (let ([z2 20])
  16081. (let ([f4 (lambda: ([a3 : Integer]) : Integer
  16082. (+ a3 (+ (vector-ref x0 0) z2)))])
  16083. (begin
  16084. (vector-set! x0 0 10)
  16085. (set! y1 12)
  16086. (f4 y1)))))))
  16087. \end{lstlisting}
  16088. \fi}
  16089. %
  16090. {\if\edition\pythonEd\pythonColor
  16091. \begin{lstlisting}
  16092. def g(z : int)-> int:
  16093. x = (uninitialized(int),)
  16094. x[0] = 0
  16095. y = 0
  16096. f : Callable[[int], int] = (lambda a: a + x[0] + z)
  16097. x[0] = 10
  16098. y = 12
  16099. return f(y)
  16100. def main() -> int:
  16101. print(g(20))
  16102. return 0
  16103. \end{lstlisting}
  16104. \fi}
  16105. To compute the free variables of all the \code{lambda} expressions, we
  16106. recommend defining the following two auxiliary functions:
  16107. \begin{enumerate}
  16108. \item \code{free\_variables} computes the free variables of an expression, and
  16109. \item \code{free\_in\_lambda} collects all the variables that are
  16110. free in any of the \code{lambda} expressions, using
  16111. \code{free\_variables} in the case for each \code{lambda}.
  16112. \end{enumerate}
  16113. {\if\edition\racketEd
  16114. %
  16115. To compute the variables that are assigned to, we recommend updating
  16116. the \code{collect-set!} function that we introduced in
  16117. section~\ref{sec:uncover-get-bang} to include the new AST forms such
  16118. as \code{Lambda}.
  16119. %
  16120. \fi}
  16121. {\if\edition\pythonEd\pythonColor
  16122. %
  16123. To compute the variables that are assigned to, we recommend defining
  16124. an auxiliary function named \code{assigned\_vars\_stmt} that returns
  16125. the set of variables that occur in the left-hand side of an assignment
  16126. statement and otherwise returns the empty set.
  16127. %
  16128. \fi}
  16129. Let $\mathit{AF}$ be the intersection of the set of variables that are
  16130. free in a \code{lambda} and that are assigned to in the enclosing
  16131. function definition.
  16132. Next we discuss the \code{convert\_assignments} pass. In the case for
  16133. $\VAR{x}$, if $x$ is in $\mathit{AF}$, then unbox it by translating
  16134. $\VAR{x}$ to a tuple read.
  16135. %
  16136. {\if\edition\racketEd
  16137. \begin{lstlisting}
  16138. (Var |$x$|)
  16139. |$\Rightarrow$|
  16140. (Prim 'vector-ref (list (Var |$x$|) (Int 0)))
  16141. \end{lstlisting}
  16142. \fi}
  16143. %
  16144. {\if\edition\pythonEd\pythonColor
  16145. \begin{lstlisting}
  16146. Name(|$x$|)
  16147. |$\Rightarrow$|
  16148. Subscript(Name(|$x$|), Constant(0), Load())
  16149. \end{lstlisting}
  16150. \fi}
  16151. %
  16152. \noindent In the case for assignment, recursively process the
  16153. right-hand side \itm{rhs} to obtain \itm{rhs'}. If the left-hand side
  16154. $x$ is in $\mathit{AF}$, translate the assignment into a tuple write
  16155. as follows:
  16156. %
  16157. {\if\edition\racketEd
  16158. \begin{lstlisting}
  16159. (SetBang |$x$| |$\itm{rhs}$|)
  16160. |$\Rightarrow$|
  16161. (Prim 'vector-set! (list (Var |$x$|) (Int 0) |$\itm{rhs'}$|))
  16162. \end{lstlisting}
  16163. \fi}
  16164. {\if\edition\pythonEd\pythonColor
  16165. \begin{lstlisting}
  16166. Assign([Name(|$x$|)],|$\itm{rhs}$|)
  16167. |$\Rightarrow$|
  16168. Assign([Subscript(Name(|$x$|), Constant(0), Store())], |$\itm{rhs'}$|)
  16169. \end{lstlisting}
  16170. \fi}
  16171. %
  16172. {\if\edition\racketEd
  16173. The case for \code{Lambda} is nontrivial, but it is similar to the
  16174. case for function definitions, which we discuss next.
  16175. \fi}
  16176. %
  16177. To translate a function definition, we first compute $\mathit{AF}$,
  16178. the intersection of the variables that are free in a \code{lambda} and
  16179. that are assigned to. We then apply assignment conversion to the body
  16180. of the function definition. Finally, we box the parameters of this
  16181. function definition that are in $\mathit{AF}$. For example,
  16182. the parameter \code{x} of the following function \code{g}
  16183. needs to be boxed:
  16184. {\if\edition\racketEd
  16185. \begin{lstlisting}
  16186. (define (g [x : Integer]) : Integer
  16187. (let ([f (lambda: ([a : Integer]) : Integer (+ a x))])
  16188. (begin
  16189. (set! x 10)
  16190. (f 32))))
  16191. \end{lstlisting}
  16192. \fi}
  16193. %
  16194. {\if\edition\pythonEd\pythonColor
  16195. \begin{lstlisting}
  16196. def g(x : int) -> int:
  16197. f : Callable[[int],int] = lambda a: a + x
  16198. x = 10
  16199. return f(32)
  16200. \end{lstlisting}
  16201. \fi}
  16202. %
  16203. \noindent We box parameter \code{x} by creating a local variable named
  16204. \code{x} that is initialized to a tuple whose contents is the value of
  16205. the parameter, which is renamed to \code{x\_0}.
  16206. %
  16207. {\if\edition\racketEd
  16208. \begin{lstlisting}
  16209. (define (g [x_0 : Integer]) : Integer
  16210. (let ([x (vector x_0)])
  16211. (let ([f (lambda: ([a : Integer]) : Integer
  16212. (+ a (vector-ref x 0)))])
  16213. (begin
  16214. (vector-set! x 0 10)
  16215. (f 32)))))
  16216. \end{lstlisting}
  16217. \fi}
  16218. %
  16219. {\if\edition\pythonEd\pythonColor
  16220. \begin{lstlisting}
  16221. def g(x_0 : int)-> int:
  16222. x = (x_0,)
  16223. f : Callable[[int], int] = (lambda a: a + x[0])
  16224. x[0] = 10
  16225. return f(32)
  16226. \end{lstlisting}
  16227. \fi}
  16228. \section{Closure Conversion}
  16229. \label{sec:closure-conversion}
  16230. \index{subject}{closure conversion}
  16231. The compiling of lexically scoped functions into top-level function
  16232. definitions and flat closures is accomplished in the pass
  16233. \code{convert\_to\_closures} that comes after \code{reveal\_functions}
  16234. and before \code{limit\_functions}.
  16235. As usual, we implement the pass as a recursive function over the
  16236. AST. The interesting cases are for \key{lambda} and function
  16237. application. We transform a \key{lambda} expression into an expression
  16238. that creates a closure, that is, a tuple for which the first element
  16239. is a function pointer and the rest of the elements are the values of
  16240. the free variables of the \key{lambda}.
  16241. %
  16242. However, we use the \code{Closure} AST node instead of using a tuple
  16243. so that we can record the arity.
  16244. %
  16245. In the generated code that follows, \itm{fvs} is the list of free
  16246. variables of the lambda and \itm{name} is a unique symbol generated to
  16247. identify the lambda.
  16248. %
  16249. \racket{The \itm{arity} is the number of parameters (the length of
  16250. \itm{ps}).}
  16251. %
  16252. {\if\edition\racketEd
  16253. \begin{lstlisting}
  16254. (Lambda |\itm{ps}| |\itm{rt}| |\itm{body}|)
  16255. |$\Rightarrow$|
  16256. (Closure |\itm{arity}| (cons (FunRef |\itm{name}| |\itm{arity}|) |\itm{fvs}|))
  16257. \end{lstlisting}
  16258. \fi}
  16259. %
  16260. {\if\edition\pythonEd\pythonColor
  16261. \begin{lstlisting}
  16262. Lambda([|$x_1,\ldots,x_n$|], |\itm{body}|)
  16263. |$\Rightarrow$|
  16264. Closure(|$n$|, [FunRef(|\itm{name}|, |$n$|), |$\itm{fvs}_1$, \ldots, $\itm{fvs}_m$|])
  16265. \end{lstlisting}
  16266. \fi}
  16267. %
  16268. In addition to transforming each \key{Lambda} AST node into a
  16269. tuple, we create a top-level function definition for each
  16270. \key{Lambda}, as shown next.\\
  16271. \begin{minipage}{0.8\textwidth}
  16272. {\if\edition\racketEd
  16273. \begin{lstlisting}
  16274. (Def |\itm{name}| ([clos : (Vector _ |\itm{fvts}| ...)] |\itm{ps'}| ...) |\itm{rt'}|
  16275. (Let |$\itm{fvs}_1$| (Prim 'vector-ref (list (Var clos) (Int 1)))
  16276. ...
  16277. (Let |$\itm{fvs}_n$| (Prim 'vector-ref (list (Var clos) (Int |$n$|)))
  16278. |\itm{body'}|)...))
  16279. \end{lstlisting}
  16280. \fi}
  16281. {\if\edition\pythonEd\pythonColor
  16282. \begin{lstlisting}
  16283. def |\itm{name}|(clos : |\itm{closTy}|, |$\itm{x}_1 : T'_1$, \ldots, $\itm{x}_n : T'_n$|) -> |\itm{rt'}|:
  16284. |$\itm{fvs}_1$| = clos[1]
  16285. |$\ldots$|
  16286. |$\itm{fvs}_m$| = clos[|$m$|]
  16287. |\itm{body'}|
  16288. \end{lstlisting}
  16289. \fi}
  16290. \end{minipage}\\
  16291. %
  16292. The \code{clos} parameter refers to the closure. The type
  16293. \itm{closTy} is a tuple type for which the first element type is
  16294. \python{\code{Bottom()}}\racket{\code{\_} (the dummy type)} and the
  16295. rest of the element types are the types of the free variables in the
  16296. lambda. We use \python{\code{Bottom()}}\racket{\code{\_}} because it
  16297. is nontrivial to give a type to the function in the closure's
  16298. type.\footnote{To give an accurate type to a closure, we would need to
  16299. add existential types to the type checker~\citep{Minamide:1996ys}.}
  16300. %
  16301. \racket{Translate the type
  16302. annotations in \itm{ps} and the return type \itm{rt}, as discussed in
  16303. the next paragraph, to obtain \itm{ps'} and \itm{rt'}.}%
  16304. \python{The \code{has\_type} field of the \code{Lambda} AST node
  16305. is of the form \code{FunctionType([$x_1:T_1,\ldots, x_n:T_n$], $rt$)}.
  16306. Translate the parameter types $T_1,\ldots,T_n$ and return type $\itm{rt}$
  16307. to obtain $T'_1,\ldots, T'_n$ and $\itm{rt'}$.}
  16308. %% The dummy type is considered to be equal to any other type during type
  16309. %% checking.
  16310. The free variables become local variables that are initialized with
  16311. their values in the closure.
  16312. Closure conversion turns every function into a tuple, so the type
  16313. annotations in the program must also be translated. We recommend
  16314. defining an auxiliary recursive function for this purpose. Function
  16315. types should be translated as follows:
  16316. %
  16317. {\if\edition\racketEd
  16318. \begin{lstlisting}
  16319. (|$T_1, \ldots, T_n$| -> |$T_r$|)
  16320. |$\Rightarrow$|
  16321. (Vector ((Vector) |$T'_1, \ldots, T'_n$| -> |$T'_r$|))
  16322. \end{lstlisting}
  16323. \fi}
  16324. {\if\edition\pythonEd\pythonColor
  16325. \begin{lstlisting}
  16326. FunctionType([|$T_1, \ldots, T_n$|], |$T_r$|)
  16327. |$\Rightarrow$|
  16328. TupleType([FunctionType([TupleType([]), |$T'_1, \ldots, T'_n$|], |$T'_r$|)])
  16329. \end{lstlisting}
  16330. \fi}
  16331. %
  16332. This type indicates that the first thing in the tuple is a
  16333. function. The first parameter of the function is a tuple (a closure)
  16334. and the rest of the parameters are the ones from the original
  16335. function, with types $T'_1, \ldots, T'_n$. The type for the closure
  16336. omits the types of the free variables because (1) those types are not
  16337. available in this context, and (2) we do not need them in the code that
  16338. is generated for function application. So this type describes only the
  16339. first component of the closure tuple. At runtime the tuple may have
  16340. more components, but we ignore them at this point.
  16341. We transform function application into code that retrieves the
  16342. function from the closure and then calls the function, passing the
  16343. closure as the first argument. We place $e'$ in a temporary variable
  16344. to avoid code duplication.
  16345. \begin{center}
  16346. \begin{minipage}{\textwidth}
  16347. {\if\edition\racketEd
  16348. \begin{lstlisting}
  16349. (Apply |$e$| |$\itm{es}$|)
  16350. |$\Rightarrow$|
  16351. (Let |$\itm{tmp}$| |$e'$|
  16352. (Apply (Prim 'vector-ref (list (Var |$\itm{tmp}$|) (Int 0))) (cons (Var |$\itm{tmp}$|) |$\itm{es'}$|)))
  16353. \end{lstlisting}
  16354. \fi}
  16355. %
  16356. {\if\edition\pythonEd\pythonColor
  16357. \begin{lstlisting}
  16358. Call(|$e$|, [|$e_1, \ldots, e_n$|])
  16359. |$\Rightarrow$|
  16360. Begin([Assign([|$\itm{tmp}$|], |$e'$|)],
  16361. Call(Subscript(Name(|$\itm{tmp}$|), Constant(0)),
  16362. [|$\itm{tmp}$|, |$e'_1, \ldots, e'_n$|]))
  16363. \end{lstlisting}
  16364. \fi}
  16365. \end{minipage}
  16366. \end{center}
  16367. There is also the question of what to do with references to top-level
  16368. function definitions. To maintain a uniform translation of function
  16369. application, we turn function references into closures.
  16370. \begin{tabular}{lll}
  16371. \begin{minipage}{0.2\textwidth}
  16372. {\if\edition\racketEd
  16373. \begin{lstlisting}
  16374. (FunRef |$f$| |$n$|)
  16375. \end{lstlisting}
  16376. \fi}
  16377. {\if\edition\pythonEd\pythonColor
  16378. \begin{lstlisting}
  16379. FunRef(|$f$|, |$n$|)
  16380. \end{lstlisting}
  16381. \fi}
  16382. \end{minipage}
  16383. &
  16384. $\Rightarrow\qquad$
  16385. &
  16386. \begin{minipage}{0.5\textwidth}
  16387. {\if\edition\racketEd
  16388. \begin{lstlisting}
  16389. (Closure |$n$| (FunRef |$f$| |$n$|) '())
  16390. \end{lstlisting}
  16391. \fi}
  16392. {\if\edition\pythonEd\pythonColor
  16393. \begin{lstlisting}
  16394. Closure(|$n$|, [FunRef(|$f$| |$n$|)])
  16395. \end{lstlisting}
  16396. \fi}
  16397. \end{minipage}
  16398. \end{tabular} \\
  16399. We no longer need the annotated assignment statement \code{AnnAssign}
  16400. to support the type checking of \code{lambda} expressions, so we
  16401. translate it to a regular \code{Assign} statement.
  16402. The top-level function definitions need to be updated to take an extra
  16403. closure parameter, but that parameter is ignored in the body of those
  16404. functions.
  16405. \subsection{An Example Translation}
  16406. \label{sec:example-lambda}
  16407. Figure~\ref{fig:lexical-functions-example} shows the result of
  16408. \code{reveal\_functions} and \code{convert\_to\_closures} for the example
  16409. program demonstrating lexical scoping that we discussed at the
  16410. beginning of this chapter.
  16411. \begin{figure}[tbp]
  16412. \begin{tcolorbox}[colback=white]
  16413. \begin{minipage}{0.8\textwidth}
  16414. {\if\edition\racketEd
  16415. % tests/lambda_test_6.rkt
  16416. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  16417. (define (f6 [x7 : Integer]) : (Integer -> Integer)
  16418. (let ([y8 4])
  16419. (lambda: ([z9 : Integer]) : Integer
  16420. (+ x7 (+ y8 z9)))))
  16421. (define (main) : Integer
  16422. (let ([g0 ((fun-ref f6 1) 5)])
  16423. (let ([h1 ((fun-ref f6 1) 3)])
  16424. (+ (g0 11) (h1 15)))))
  16425. \end{lstlisting}
  16426. $\Rightarrow$
  16427. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  16428. (define (f6 [fvs4 : _] [x7 : Integer]) : (Vector ((Vector _) Integer -> Integer))
  16429. (let ([y8 4])
  16430. (closure 1 (list (fun-ref lambda2 1) x7 y8))))
  16431. (define (lambda2 [fvs3 : (Vector _ Integer Integer)] [z9 : Integer]) : Integer
  16432. (let ([x7 (vector-ref fvs3 1)])
  16433. (let ([y8 (vector-ref fvs3 2)])
  16434. (+ x7 (+ y8 z9)))))
  16435. (define (main) : Integer
  16436. (let ([g0 (let ([clos5 (closure 1 (list (fun-ref f6 1)))])
  16437. ((vector-ref clos5 0) clos5 5))])
  16438. (let ([h1 (let ([clos6 (closure 1 (list (fun-ref f6 1)))])
  16439. ((vector-ref clos6 0) clos6 3))])
  16440. (+ ((vector-ref g0 0) g0 11) ((vector-ref h1 0) h1 15)))))
  16441. \end{lstlisting}
  16442. \fi}
  16443. %
  16444. {\if\edition\pythonEd\pythonColor
  16445. % free_var.py
  16446. \begin{lstlisting}
  16447. def f(x: int) -> Callable[[int],int]:
  16448. y = 4
  16449. return lambda z: x + y + z
  16450. g = f(5)
  16451. h = f(3)
  16452. print(g(11) + h(15))
  16453. \end{lstlisting}
  16454. $\Rightarrow$
  16455. \begin{lstlisting}
  16456. def lambda_0(fvs_1: tuple[bot,int,tuple[int]], z: int) -> int:
  16457. x = fvs_1[1]
  16458. y = fvs_1[2]
  16459. return (x + y[0] + z)
  16460. def f(fvs_2: tuple[bot], x: int) -> tuple[Callable[[tuple[],int],int]]:
  16461. y = (uninitialized(int),)
  16462. y[0] = 4
  16463. return closure{1}({lambda_0}, x, y)
  16464. def main() -> int:
  16465. g = (begin: clos_3 = closure{1}({f})
  16466. clos_3[0](clos_3, 5))
  16467. h = (begin: clos_4 = closure{1}({f})
  16468. clos_4[0](clos_4, 3))
  16469. print((begin: clos_5 = g
  16470. clos_5[0](clos_5, 11))
  16471. + (begin: clos_6 = h
  16472. clos_6[0](clos_6, 15)))
  16473. return 0
  16474. \end{lstlisting}
  16475. \fi}
  16476. \end{minipage}
  16477. \end{tcolorbox}
  16478. \caption{Example of closure conversion.}
  16479. \label{fig:lexical-functions-example}
  16480. \end{figure}
  16481. \begin{exercise}\normalfont\normalsize
  16482. Expand your compiler to handle \LangLam{} as outlined in this chapter.
  16483. Create five new programs that use \key{lambda} functions and make use of
  16484. lexical scoping. Test your compiler on these new programs and all
  16485. your previously created test programs.
  16486. \end{exercise}
  16487. \section{Expose Allocation}
  16488. \label{sec:expose-allocation-r5}
  16489. Compile the $\CLOSURE{\itm{arity}}{\Exp^{*}}$ form into code that
  16490. allocates and initializes a tuple, similar to the translation of the
  16491. tuple creation in section~\ref{sec:expose-allocation}. The main
  16492. difference is replacing the use of \ALLOC{\itm{len}}{\itm{type}} with
  16493. \ALLOCCLOS{\itm{len}}{\itm{type}}{\itm{arity}}. The result type of
  16494. the translation of $\CLOSURE{\itm{arity}}{\Exp^{*}}$ should be a tuple
  16495. type, but only a single element tuple type. The types of the tuple
  16496. elements that correspond to the free variables of the closure should
  16497. not appear in the tuple type. The new AST class \code{UncheckedCast}
  16498. can be used to adjust the result type.
  16499. \section{Explicate Control and \LangCLam{}}
  16500. \label{sec:explicate-r5}
  16501. The output language of \code{explicate\_control} is \LangCLam{}; the
  16502. definition of its abstract syntax is shown in
  16503. figure~\ref{fig:Clam-syntax}.
  16504. %
  16505. \racket{The only differences with respect to \LangCFun{} are the
  16506. addition of the \code{AllocateClosure} form to the grammar for
  16507. $\Exp$ and the \code{procedure-arity} operator. The handling of
  16508. \code{AllocateClosure} in the \code{explicate\_control} pass is
  16509. similar to the handling of other expressions such as primitive
  16510. operators.}
  16511. %
  16512. \python{The differences with respect to \LangCFun{} are the
  16513. additions of \code{Uninitialized}, \code{AllocateClosure},
  16514. and \code{arity} to the grammar for $\Exp$. The handling of them in the
  16515. \code{explicate\_control} pass is similar to the handling of other
  16516. expressions such as primitive operators.}
  16517. \newcommand{\ClambdaASTRacket}{
  16518. \begin{array}{lcl}
  16519. \Exp &::= & \ALLOCCLOS{\Int}{\Type}{\Int} \\
  16520. \itm{op} &::= & \code{procedure-arity}
  16521. \end{array}
  16522. }
  16523. \newcommand{\ClambdaASTPython}{
  16524. \begin{array}{lcl}
  16525. \Exp &::=& \key{Uninitialized}\LP \Type \RP
  16526. \MID \key{AllocateClosure}\LP\itm{len},\Type, \itm{arity}\RP \\
  16527. &\MID& \ARITY{\Atm}
  16528. \MID \key{UncheckedCast}\LP\Exp,\Type\RP
  16529. \end{array}
  16530. }
  16531. \begin{figure}[tp]
  16532. \begin{tcolorbox}[colback=white]
  16533. \small
  16534. {\if\edition\racketEd
  16535. \[
  16536. \begin{array}{l}
  16537. \gray{\CvarASTRacket} \\ \hline
  16538. \gray{\CifASTRacket} \\ \hline
  16539. \gray{\CloopASTRacket} \\ \hline
  16540. \gray{\CtupASTRacket} \\ \hline
  16541. \gray{\CfunASTRacket} \\ \hline
  16542. \ClambdaASTRacket \\
  16543. \begin{array}{lcl}
  16544. \LangCLamM{} & ::= & \PROGRAMDEFS{\itm{info}}{\Def^{*}}
  16545. \end{array}
  16546. \end{array}
  16547. \]
  16548. \fi}
  16549. {\if\edition\pythonEd\pythonColor
  16550. \[
  16551. \begin{array}{l}
  16552. \gray{\CifASTPython} \\ \hline
  16553. \gray{\CtupASTPython} \\ \hline
  16554. \gray{\CfunASTPython} \\ \hline
  16555. \ClambdaASTPython \\
  16556. \begin{array}{lcl}
  16557. \LangCLamM{} & ::= & \CPROGRAMDEFS{\LS\Def\code{,}\ldots\RS}
  16558. \end{array}
  16559. \end{array}
  16560. \]
  16561. \fi}
  16562. \end{tcolorbox}
  16563. \caption{The abstract syntax of \LangCLam{}, extending \LangCFun{} (figure~\ref{fig:c3-syntax}).}
  16564. \label{fig:Clam-syntax}
  16565. \end{figure}
  16566. \section{Select Instructions}
  16567. \label{sec:select-instructions-Llambda}
  16568. \index{subject}{select instructions}
  16569. Compile \ALLOCCLOS{\itm{len}}{\itm{type}}{\itm{arity}} in almost the
  16570. same way as the \ALLOC{\itm{len}}{\itm{type}} form
  16571. (section~\ref{sec:select-instructions-gc}). The only difference is
  16572. that you should place the \itm{arity} in the tag that is stored at
  16573. position $0$ of the tuple. Recall that in
  16574. section~\ref{sec:select-instructions-gc} a portion of the 64-bit tag
  16575. was not used. We store the arity in the $5$ bits starting at position
  16576. $58$.
  16577. \racket{Compile the \code{procedure-arity} operator into a sequence of
  16578. instructions that access the tag from position $0$ of the vector and
  16579. extract the $5$ bits starting at position $58$ from the tag.}
  16580. %
  16581. \python{Compile a call to the \code{arity} operator to a sequence of
  16582. instructions that access the tag from position $0$ of the tuple
  16583. (representing a closure) and extract the $5$ bits starting at position
  16584. $58$ from the tag.}
  16585. Figure~\ref{fig:Llambda-passes} provides an overview of the passes
  16586. needed for the compilation of \LangLam{}.
  16587. \begin{figure}[bthp]
  16588. \begin{tcolorbox}[colback=white]
  16589. {\if\edition\racketEd
  16590. \begin{tikzpicture}[baseline=(current bounding box.center),scale=0.85]
  16591. \node (Lfun) at (0,2) {\large \LangLam{}};
  16592. \node (Lfun-2) at (4,2) {\large \LangLam{}};
  16593. \node (Lfun-3) at (8,2) {\large \LangLam{}};
  16594. \node (F1-0) at (12,2) {\large \LangLamFunRef{}};
  16595. \node (F1-1) at (12,0) {\large \LangLamFunRef{}};
  16596. \node (F1-2) at (8,0) {\large \LangFunRef{}};
  16597. \node (F1-3) at (4,0) {\large \LangFunRef{}};
  16598. \node (F1-4) at (0,0) {\large \LangFunRefAlloc{}};
  16599. \node (F1-5) at (0,-2) {\large \LangFunRefAlloc{}};
  16600. \node (F1-6) at (4,-2) {\large \LangFunANF{}};
  16601. \node (C3-2) at (8,-2) {\large \LangCFun{}};
  16602. \node (x86-2) at (0,-5) {\large \LangXIndCallVar{}};
  16603. \node (x86-2-1) at (0,-7) {\large \LangXIndCallVar{}};
  16604. \node (x86-2-2) at (4,-7) {\large \LangXIndCallVar{}};
  16605. \node (x86-3) at (4,-5) {\large \LangXIndCallVar{}};
  16606. \node (x86-4) at (8,-5) {\large \LangXIndCall{}};
  16607. \node (x86-5) at (8,-7) {\large \LangXIndCall{}};
  16608. \path[->,bend left=15] (Lfun) edge [above] node
  16609. {\ttfamily\footnotesize shrink} (Lfun-2);
  16610. \path[->,bend left=15] (Lfun-2) edge [above] node
  16611. {\ttfamily\footnotesize uniquify} (Lfun-3);
  16612. \path[->,bend left=15] (Lfun-3) edge [above] node
  16613. {\ttfamily\footnotesize reveal\_functions} (F1-0);
  16614. \path[->,bend left=15] (F1-0) edge [left] node
  16615. {\ttfamily\footnotesize convert\_assignments} (F1-1);
  16616. \path[->,bend left=15] (F1-1) edge [below] node
  16617. {\ttfamily\footnotesize convert\_to\_closures} (F1-2);
  16618. \path[->,bend right=15] (F1-2) edge [above] node
  16619. {\ttfamily\footnotesize limit\_functions} (F1-3);
  16620. \path[->,bend right=15] (F1-3) edge [above] node
  16621. {\ttfamily\footnotesize expose\_allocation} (F1-4);
  16622. \path[->,bend left=15] (F1-4) edge [right] node
  16623. {\ttfamily\footnotesize uncover\_get!} (F1-5);
  16624. \path[->,bend right=15] (F1-5) edge [below] node
  16625. {\ttfamily\footnotesize remove\_complex\_operands} (F1-6);
  16626. \path[->,bend left=15] (F1-6) edge [above] node
  16627. {\ttfamily\footnotesize explicate\_control} (C3-2);
  16628. \path[->] (C3-2) edge [right] node
  16629. {\ttfamily\footnotesize \ \ select\_instructions} (x86-2);
  16630. \path[->,bend right=15] (x86-2) edge [right] node
  16631. {\ttfamily\footnotesize uncover\_live} (x86-2-1);
  16632. \path[->,bend right=15] (x86-2-1) edge [below] node
  16633. {\ttfamily\footnotesize build\_interference} (x86-2-2);
  16634. \path[->,bend right=15] (x86-2-2) edge [right] node
  16635. {\ttfamily\footnotesize allocate\_registers} (x86-3);
  16636. \path[->,bend left=15] (x86-3) edge [above] node
  16637. {\ttfamily\footnotesize patch\_instructions} (x86-4);
  16638. \path[->,bend left=15] (x86-4) edge [right] node
  16639. {\ttfamily\footnotesize prelude\_and\_conclusion} (x86-5);
  16640. \end{tikzpicture}
  16641. \fi}
  16642. {\if\edition\pythonEd\pythonColor
  16643. \begin{tikzpicture}[baseline=(current bounding box.center),scale=0.85]
  16644. \node (Lfun) at (0,2) {\large \LangLam{}};
  16645. \node (Lfun-2) at (4,2) {\large \LangLam{}};
  16646. \node (Lfun-3) at (8,2) {\large \LangLam{}};
  16647. \node (F1-0) at (12,2) {\large \LangLamFunRef{}};
  16648. \node (F1-1) at (12,0) {\large \LangLamFunRef{}};
  16649. \node (F1-2) at (8,0) {\large \LangFunRef{}};
  16650. \node (F1-3) at (4,0) {\large \LangFunRef{}};
  16651. \node (F1-5) at (0,0) {\large \LangFunRefAlloc{}};
  16652. \node (F1-6) at (0,-2) {\large \LangFunANF{}};
  16653. \node (C3-2) at (0,-4) {\large \LangCFun{}};
  16654. \node (x86-2) at (0,-6) {\large \LangXIndCallVar{}};
  16655. \node (x86-3) at (4,-6) {\large \LangXIndCallVar{}};
  16656. \node (x86-4) at (8,-6) {\large \LangXIndCall{}};
  16657. \node (x86-5) at (12,-6) {\large \LangXIndCall{}};
  16658. \path[->,bend left=15] (Lfun) edge [above] node
  16659. {\ttfamily\footnotesize shrink} (Lfun-2);
  16660. \path[->,bend left=15] (Lfun-2) edge [above] node
  16661. {\ttfamily\footnotesize uniquify} (Lfun-3);
  16662. \path[->,bend left=15] (Lfun-3) edge [above] node
  16663. {\ttfamily\footnotesize reveal\_functions} (F1-0);
  16664. \path[->,bend left=15] (F1-0) edge [left] node
  16665. {\ttfamily\footnotesize convert\_assignments} (F1-1);
  16666. \path[->,bend left=15] (F1-1) edge [below] node
  16667. {\ttfamily\footnotesize convert\_to\_closures} (F1-2);
  16668. \path[->,bend left=15] (F1-2) edge [below] node
  16669. {\ttfamily\footnotesize limit\_functions} (F1-3);
  16670. \path[->,bend right=15] (F1-3) edge [above] node
  16671. {\ttfamily\footnotesize expose\_allocation} (F1-5);
  16672. \path[->,bend right=15] (F1-5) edge [right] node
  16673. {\ttfamily\footnotesize remove\_complex\_operands} (F1-6);
  16674. \path[->,bend left=15] (F1-6) edge [right] node
  16675. {\ttfamily\footnotesize explicate\_control} (C3-2);
  16676. \path[->,bend right=15] (C3-2) edge [right] node
  16677. {\ttfamily\footnotesize select\_instructions} (x86-2);
  16678. \path[->,bend right=15] (x86-2) edge [below] node
  16679. {\ttfamily\footnotesize assign\_homes} (x86-3);
  16680. \path[->,bend right=15] (x86-3) edge [below] node
  16681. {\ttfamily\footnotesize patch\_instructions} (x86-4);
  16682. \path[->,bend left=15] (x86-4) edge [above] node
  16683. {\ttfamily\footnotesize prelude\_and\_conclusion} (x86-5);
  16684. \end{tikzpicture}
  16685. \fi}
  16686. \end{tcolorbox}
  16687. \caption{Diagram of the passes for \LangLam{}, a language with lexically scoped
  16688. functions.}
  16689. \label{fig:Llambda-passes}
  16690. \end{figure}
  16691. \clearpage
  16692. \section{Challenge: Optimize Closures}
  16693. \label{sec:optimize-closures}
  16694. In this chapter we compile lexically scoped functions into a
  16695. relatively efficient representation: flat closures. However, even this
  16696. representation comes with some overhead. For example, consider the
  16697. following program with a function \code{tail\_sum} that does not have
  16698. any free variables and where all the uses of \code{tail\_sum} are in
  16699. applications in which we know that only \code{tail\_sum} is being applied
  16700. (and not any other functions):
  16701. \begin{center}
  16702. \begin{minipage}{0.95\textwidth}
  16703. {\if\edition\racketEd
  16704. \begin{lstlisting}
  16705. (define (tail_sum [n : Integer] [s : Integer]) : Integer
  16706. (if (eq? n 0)
  16707. s
  16708. (tail_sum (- n 1) (+ n s))))
  16709. (+ (tail_sum 3 0) 36)
  16710. \end{lstlisting}
  16711. \fi}
  16712. {\if\edition\pythonEd\pythonColor
  16713. \begin{lstlisting}
  16714. def tail_sum(n : int, s : int) -> int:
  16715. if n == 0:
  16716. return s
  16717. else:
  16718. return tail_sum(n - 1, n + s)
  16719. print(tail_sum(3, 0) + 36)
  16720. \end{lstlisting}
  16721. \fi}
  16722. \end{minipage}
  16723. \end{center}
  16724. As described in this chapter, we uniformly apply closure conversion to
  16725. all functions, obtaining the following output for this program:
  16726. \begin{center}
  16727. \begin{minipage}{0.95\textwidth}
  16728. {\if\edition\racketEd
  16729. \begin{lstlisting}
  16730. (define (tail_sum1 [fvs5 : _] [n2 : Integer] [s3 : Integer]) : Integer
  16731. (if (eq? n2 0)
  16732. s3
  16733. (let ([clos4 (closure (list (fun-ref tail_sum1 2)))])
  16734. ((vector-ref clos4 0) clos4 (+ n2 -1) (+ n2 s3)))))
  16735. (define (main) : Integer
  16736. (+ (let ([clos6 (closure (list (fun-ref tail_sum1 2)))])
  16737. ((vector-ref clos6 0) clos6 3 0)) 27))
  16738. \end{lstlisting}
  16739. \fi}
  16740. {\if\edition\pythonEd\pythonColor
  16741. \begin{lstlisting}
  16742. def tail_sum(fvs_3:bot,n_0:int,s_1:int) -> int :
  16743. if n_0 == 0:
  16744. return s_1
  16745. else:
  16746. return (begin: clos_2 = (tail_sum,)
  16747. clos_2[0](clos_2, n_0 - 1, n_0 + s_1))
  16748. def main() -> int :
  16749. print((begin: clos_4 = (tail_sum,)
  16750. clos_4[0](clos_4, 3, 0)) + 36)
  16751. return 0
  16752. \end{lstlisting}
  16753. \fi}
  16754. \end{minipage}
  16755. \end{center}
  16756. If this program were compiled according to the previous chapter, there
  16757. would be no allocation and the calls to \code{tail\_sum} would be
  16758. direct calls. In contrast, the program presented here allocates memory
  16759. for each closure and the calls to \code{tail\_sum} are indirect. These
  16760. two differences incur considerable overhead in a program such as this,
  16761. in which the allocations and indirect calls occur inside a tight loop.
  16762. One might think that this problem is trivial to solve: can't we just
  16763. recognize calls of the form \APPLY{\FUNREF{$f$}{$n$}}{$\mathit{args}$}
  16764. and compile them to direct calls instead of treating it like a call to
  16765. a closure? We would also drop the new \code{fvs} parameter of
  16766. \code{tail\_sum}.
  16767. %
  16768. However, this problem is not so trivial, because a global function may
  16769. \emph{escape} and become involved in applications that also involve
  16770. closures. Consider the following example in which the application
  16771. \CAPPLY{\code{f}}{\code{41}} needs to be compiled into a closure
  16772. application because the \code{lambda} may flow into \code{f}, but the
  16773. \code{inc} function might also flow into \code{f}:
  16774. \begin{center}
  16775. \begin{minipage}{\textwidth}
  16776. % lambda_test_30.rkt
  16777. {\if\edition\racketEd
  16778. \begin{lstlisting}
  16779. (define (inc [x : Integer]) : Integer
  16780. (+ x 1))
  16781. (let ([y (read)])
  16782. (let ([f (if (eq? (read) 0)
  16783. inc
  16784. (lambda: ([x : Integer]) : Integer (- x y)))])
  16785. (f 41)))
  16786. \end{lstlisting}
  16787. \fi}
  16788. {\if\edition\pythonEd\pythonColor
  16789. \begin{lstlisting}
  16790. def add1(x : int) -> int:
  16791. return x + 1
  16792. y = input_int()
  16793. g : Callable[[int], int] = lambda x: x - y
  16794. f = add1 if input_int() == 0 else g
  16795. print(f(41))
  16796. \end{lstlisting}
  16797. \fi}
  16798. \end{minipage}
  16799. \end{center}
  16800. If a global function name is used in any way other than as the
  16801. operator in a direct call, then we say that the function
  16802. \emph{escapes}. If a global function does not escape, then we do not
  16803. need to perform closure conversion on the function.
  16804. \begin{exercise}\normalfont\normalsize
  16805. Implement an auxiliary function for detecting which global
  16806. functions escape. Using that function, implement an improved version
  16807. of closure conversion that does not apply closure conversion to
  16808. global functions that do not escape but instead compiles them as
  16809. regular functions. Create several new test cases that check whether
  16810. your compiler properly detects whether global functions escape or not.
  16811. \end{exercise}
  16812. So far we have reduced the overhead of calling global functions, but
  16813. it would also be nice to reduce the overhead of calling a
  16814. \code{lambda} when we can determine at compile time which
  16815. \code{lambda} will be called. We refer to such calls as \emph{known
  16816. calls}. Consider the following example in which a \code{lambda} is
  16817. bound to \code{f} and then applied.
  16818. {\if\edition\racketEd
  16819. % lambda_test_9.rkt
  16820. \begin{lstlisting}
  16821. (let ([y (read)])
  16822. (let ([f (lambda: ([x : Integer]) : Integer
  16823. (+ x y))])
  16824. (f 21)))
  16825. \end{lstlisting}
  16826. \fi}
  16827. {\if\edition\pythonEd\pythonColor
  16828. \begin{lstlisting}
  16829. y = input_int()
  16830. f : Callable[[int],int] = lambda x: x + y
  16831. print(f(21))
  16832. \end{lstlisting}
  16833. \fi}
  16834. %
  16835. \noindent Closure conversion compiles the application
  16836. \CAPPLY{\code{f}}{\code{21}} into an indirect call, as follows:
  16837. %
  16838. {\if\edition\racketEd
  16839. \begin{lstlisting}
  16840. (define (lambda5 [fvs6 : (Vector _ Integer)] [x3 : Integer]) : Integer
  16841. (let ([y2 (vector-ref fvs6 1)])
  16842. (+ x3 y2)))
  16843. (define (main) : Integer
  16844. (let ([y2 (read)])
  16845. (let ([f4 (Closure 1 (list (fun-ref lambda5 1) y2))])
  16846. ((vector-ref f4 0) f4 21))))
  16847. \end{lstlisting}
  16848. \fi}
  16849. {\if\edition\pythonEd\pythonColor
  16850. \begin{lstlisting}
  16851. def lambda_3(fvs_4:tuple[bot,tuple[int]], x_2:int) -> int:
  16852. y_1 = fvs_4[1]
  16853. return x_2 + y_1[0]
  16854. def main() -> int:
  16855. y_1 = (777,)
  16856. y_1[0] = input_int()
  16857. f_0 = (lambda_3, y_1)
  16858. print((let clos_5 = f_0 in clos_5[0](clos_5, 21)))
  16859. return 0
  16860. \end{lstlisting}
  16861. \fi}
  16862. %
  16863. \noindent However, we can instead compile the application
  16864. \CAPPLY{\code{f}}{\code{21}} into a direct call, as follows:
  16865. %
  16866. {\if\edition\racketEd
  16867. \begin{lstlisting}
  16868. (define (main) : Integer
  16869. (let ([y2 (read)])
  16870. (let ([f4 (Closure 1 (list (fun-ref lambda5 1) y2))])
  16871. ((fun-ref lambda5 1) f4 21))))
  16872. \end{lstlisting}
  16873. \fi}
  16874. {\if\edition\pythonEd\pythonColor
  16875. \begin{lstlisting}
  16876. def main() -> int:
  16877. y_1 = (777,)
  16878. y_1[0] = input_int()
  16879. f_0 = (lambda_3, y_1)
  16880. print(lambda_3(f_0, 21))
  16881. return 0
  16882. \end{lstlisting}
  16883. \fi}
  16884. The problem of determining which \code{lambda} will be called from a
  16885. particular application is quite challenging in general and the topic
  16886. of considerable research~\citep{Shivers:1988aa,Gilray:2016aa}. For the
  16887. following exercise we recommend that you compile an application to a
  16888. direct call when the operator is a variable and \racket{the variable
  16889. is \code{let}-bound to a closure}\python{the previous assignment to
  16890. the variable is a closure}. This can be accomplished by maintaining
  16891. an environment that maps variables to function names. Extend the
  16892. environment whenever you encounter a closure on the right-hand side of
  16893. \racket{a \code{let}}\python{an assignment}, mapping the variable to the
  16894. name of the global function for the closure. This pass should come
  16895. after closure conversion.
  16896. \begin{exercise}\normalfont\normalsize
  16897. Implement a compiler pass, named \code{optimize\_known\_calls}, that
  16898. compiles known calls into direct calls. Verify that your compiler is
  16899. successful in this regard on several example programs.
  16900. \end{exercise}
  16901. These exercises only scratch the surface of closure optimization. A
  16902. good next step for the interested reader is to look at the work of
  16903. \citet{Keep:2012ab}.
  16904. \section{Further Reading}
  16905. The notion of lexically scoped functions predates modern computers by
  16906. about a decade. They were invented by \citet{Church:1932aa}, who
  16907. proposed the lambda calculus as a foundation for logic. Anonymous
  16908. functions were included in the LISP~\citep{McCarthy:1960dz}
  16909. programming language but were initially dynamically scoped. The Scheme
  16910. dialect of LISP adopted lexical scoping, and
  16911. \citet{Guy-L.-Steele:1978yq} demonstrated how to efficiently compile
  16912. Scheme programs. However, environments were represented as linked
  16913. lists, so variable look-up was linear in the size of the
  16914. environment. \citet{Appel91} gives a detailed description of several
  16915. closure representations. In this chapter we represent environments
  16916. using flat closures, which were invented by
  16917. \citet{Cardelli:1983aa,Cardelli:1984aa} for the purpose of compiling
  16918. the ML language~\citep{Gordon:1978aa,Milner:1990fk}. With flat
  16919. closures, variable look-up is constant time but the time to create a
  16920. closure is proportional to the number of its free variables. Flat
  16921. closures were reinvented by \citet{Dybvig:1987ab} in his PhD thesis
  16922. and used in Chez Scheme version 1~\citep{Dybvig:2006aa}.
  16923. % todo: related work on assignment conversion (e.g. orbit and rabbit
  16924. % compilers)
  16925. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  16926. \chapter{Dynamic Typing}
  16927. \label{ch:Ldyn}
  16928. \index{subject}{dynamic typing}
  16929. \setcounter{footnote}{0}
  16930. In this chapter we learn how to compile \LangDyn{}, a dynamically
  16931. typed language that is a subset of \racket{Racket}\python{Python}. The
  16932. focus on dynamic typing is in contrast to the previous chapters, which
  16933. have studied the compilation of statically typed languages. In
  16934. dynamically typed languages such as \LangDyn{}, a particular
  16935. expression may produce a value of a different type each time it is
  16936. executed. Consider the following example with a conditional \code{if}
  16937. expression that may return a Boolean or an integer depending on the
  16938. input to the program:
  16939. % part of dynamic_test_25.rkt
  16940. {\if\edition\racketEd
  16941. \begin{lstlisting}
  16942. (not (if (eq? (read) 1) #f 0))
  16943. \end{lstlisting}
  16944. \fi}
  16945. {\if\edition\pythonEd\pythonColor
  16946. \begin{lstlisting}
  16947. not (False if input_int() == 1 else 0)
  16948. \end{lstlisting}
  16949. \fi}
  16950. Languages that allow expressions to produce different kinds of values
  16951. are called \emph{polymorphic}, a word composed of the Greek roots
  16952. \emph{poly}, meaning \emph{many}, and \emph{morph}, meaning \emph{form}.
  16953. There are several kinds of polymorphism in programming languages, such as
  16954. subtype polymorphism\index{subject}{subtype polymorphism} and
  16955. parametric polymorphism\index{subject}{parametric polymorphism}
  16956. (aka generics)~\citep{Cardelli:1985kx}. The kind of polymorphism that we
  16957. study in this chapter does not have a special name; it is the kind
  16958. that arises in dynamically typed languages.
  16959. Another characteristic of dynamically typed languages is that
  16960. their primitive operations, such as \code{not}, are often defined to operate
  16961. on many different types of values. In fact, in
  16962. \racket{Racket}\python{Python}, the \code{not} operator produces a
  16963. result for any kind of value: given \FALSE{} it returns \TRUE{}, and
  16964. given anything else it returns \FALSE{}.
  16965. Furthermore, even when primitive operations restrict their inputs to
  16966. values of a certain type, this restriction is enforced at runtime
  16967. instead of during compilation. For example, the tuple read
  16968. operation \racket{\code{(vector-ref \#t 0)}}\python{\code{True[0]}}
  16969. results in a runtime error because the first argument must
  16970. be a tuple, not a Boolean.
  16971. \section{The \LangDyn{} Language}
  16972. \newcommand{\LdynGrammarRacket}{
  16973. \begin{array}{rcl}
  16974. \Exp &::=& \LP\Exp \; \Exp\ldots\RP
  16975. \MID \LP\key{lambda}\;\LP\Var\ldots\RP\;\Exp\RP \\
  16976. & \MID & \LP\key{boolean?}\;\Exp\RP \MID \LP\key{integer?}\;\Exp\RP\\
  16977. & \MID & \LP\key{vector?}\;\Exp\RP \MID \LP\key{procedure?}\;\Exp\RP \MID \LP\key{void?}\;\Exp\RP \\
  16978. \Def &::=& \LP\key{define}\; \LP\Var \; \Var\ldots\RP \; \Exp\RP
  16979. \end{array}
  16980. }
  16981. \newcommand{\LdynASTRacket}{
  16982. \begin{array}{lcl}
  16983. \Exp &::=& \APPLY{\Exp}{\Exp\ldots}
  16984. \MID \LAMBDA{\LP\Var\ldots\RP}{\code{'Any}}{\Exp}\\
  16985. \Def &::=& \FUNDEF{\Var}{\LP\Var\ldots\RP}{\code{'Any}}{\code{'()}}{\Exp}
  16986. \end{array}
  16987. }
  16988. \begin{figure}[tp]
  16989. \centering
  16990. \begin{tcolorbox}[colback=white]
  16991. \small
  16992. {\if\edition\racketEd
  16993. \[
  16994. \begin{array}{l}
  16995. \gray{\LintGrammarRacket{}} \\ \hline
  16996. \gray{\LvarGrammarRacket{}} \\ \hline
  16997. \gray{\LifGrammarRacket{}} \\ \hline
  16998. \gray{\LwhileGrammarRacket} \\ \hline
  16999. \gray{\LtupGrammarRacket} \\ \hline
  17000. \LdynGrammarRacket \\
  17001. \begin{array}{rcl}
  17002. \LangDynM{} &::=& \Def\ldots\; \Exp
  17003. \end{array}
  17004. \end{array}
  17005. \]
  17006. \fi}
  17007. {\if\edition\pythonEd\pythonColor
  17008. \[
  17009. \begin{array}{rcl}
  17010. \itm{cmp} &::= & \key{==} \MID \key{!=} \MID \key{<} \MID \key{<=} \MID \key{>} \MID \key{>=} \MID \key{is} \\
  17011. \Exp &::=& \Int \MID \key{input\_int}\LP\RP \MID \key{-}\;\Exp \MID \Exp \; \key{+} \; \Exp \MID \Exp \; \key{-} \; \Exp \MID \LP\Exp\RP \\
  17012. &\MID& \Var{} \MID \TRUE \MID \FALSE \MID \CAND{\Exp}{\Exp}
  17013. \MID \COR{\Exp}{\Exp} \MID \key{not}~\Exp \\
  17014. &\MID& \CCMP{\itm{cmp}}{\Exp}{\Exp}
  17015. \MID \CIF{\Exp}{\Exp}{\Exp} \\
  17016. &\MID& \Exp \key{,} \ldots \key{,} \Exp \MID \CGET{\Exp}{\Exp}
  17017. \MID \CLEN{\Exp} \\
  17018. &\MID& \CAPPLY{\Exp}{\Exp\code{,} \ldots}
  17019. \MID \CLAMBDA{\Var\code{, }\ldots}{\Exp}\\
  17020. \Stmt &::=& \key{print}\LP \Exp \RP \MID \Exp
  17021. \MID \Var\mathop{\key{=}}\Exp \\
  17022. &\MID& \key{if}~ \Exp \key{:}~ \Stmt^{+} ~\key{else:}~ \Stmt^{+}
  17023. \MID \key{while}~ \Exp \key{:}~ \Stmt^{+} \\
  17024. &\MID& \CRETURN{\Exp} \\
  17025. \Def &::=& \CDEFU{\Var}{\Var{,} \ldots}{\Stmt^{+}} \\
  17026. \LangDynM{} &::=& \Def\ldots \Stmt\ldots
  17027. \end{array}
  17028. \]
  17029. \fi}
  17030. \end{tcolorbox}
  17031. \caption{Syntax of \LangDyn{}, an untyped language (a subset of \racket{Racket}\python{Python}).}
  17032. \label{fig:r7-concrete-syntax}
  17033. \end{figure}
  17034. \begin{figure}[tp]
  17035. \centering
  17036. \begin{tcolorbox}[colback=white]
  17037. \small
  17038. {\if\edition\racketEd
  17039. \[
  17040. \begin{array}{l}
  17041. \gray{\LintASTRacket{}} \\ \hline
  17042. \gray{\LvarASTRacket{}} \\ \hline
  17043. \gray{\LifASTRacket{}} \\ \hline
  17044. \gray{\LwhileASTRacket} \\ \hline
  17045. \gray{\LtupASTRacket} \\ \hline
  17046. \LdynASTRacket \\
  17047. \begin{array}{lcl}
  17048. \LangDynM{} &::=& \PROGRAMDEFSEXP{\code{'()}}{\LP\Def\ldots\RP}{\Exp}
  17049. \end{array}
  17050. \end{array}
  17051. \]
  17052. \fi}
  17053. {\if\edition\pythonEd\pythonColor
  17054. \[
  17055. \begin{array}{rcl}
  17056. \itm{boolop} &::=& \code{And()} \MID \code{Or()} \\
  17057. \itm{cmp} &::= & \code{Eq()} \MID \code{NotEq()} \MID \code{Lt()}
  17058. \MID \code{LtE()} \MID \code{Gt()} \MID \code{GtE()}
  17059. \MID \code{Is()} \\
  17060. \itm{bool} &::=& \code{True} \MID \code{False} \\
  17061. \Exp{} &::=& \INT{\Int} \MID \READ{} \\
  17062. &\MID& \UNIOP{\key{USub()}}{\Exp}\\
  17063. &\MID& \BINOP{\Exp}{\key{Add()}}{\Exp}
  17064. \MID \BINOP{\Exp}{\key{Sub()}}{\Exp} \\
  17065. &\MID& \VAR{\Var{}}
  17066. \MID \BOOL{\itm{bool}}
  17067. \MID \BOOLOP{\itm{boolop}}{\Exp}{\Exp}\\
  17068. &\MID& \CMP{\Exp}{\itm{cmp}}{\Exp} \MID \IF{\Exp}{\Exp}{\Exp} \\
  17069. &\MID& \TUPLE{\Exp^{+}} \MID \GET{\Exp}{\Exp} \\
  17070. &\MID& \LEN{\Exp} \\
  17071. &\MID& \CALL{\Exp}{\Exp^{*}} \MID \LAMBDA{\Var^{*}}{\Exp} \\
  17072. \Stmt{} &::=& \PRINT{\Exp} \MID \EXPR{\Exp} \\
  17073. &\MID& \ASSIGN{\VAR{\Var}}{\Exp}\\
  17074. &\MID& \IFSTMT{\Exp}{\Stmt^{+}}{\Stmt^{+}}
  17075. \MID \WHILESTMT{\Exp}{\Stmt^{+}}\\
  17076. &\MID& \RETURN{\Exp} \\
  17077. \Params &::=& \LP\Var\key{,}\code{AnyType()}\RP^* \\
  17078. \Def &::=& \FUNDEF{\Var}{\Params}{\code{AnyType()}}{}{\Stmt^{+}} \\
  17079. \LangDynM{} &::=& \PROGRAM{}{\LS \Def \ldots \Stmt \ldots \RS}
  17080. \end{array}
  17081. \]
  17082. \fi}
  17083. \end{tcolorbox}
  17084. \caption{The abstract syntax of \LangDyn{}.}
  17085. \label{fig:r7-syntax}
  17086. \end{figure}
  17087. The definitions of the concrete and abstract syntax of \LangDyn{} are
  17088. shown in figures~\ref{fig:r7-concrete-syntax} and \ref{fig:r7-syntax}.
  17089. %
  17090. There is no type checker for \LangDyn{} because it checks types only
  17091. at runtime.
  17092. The definitional interpreter for \LangDyn{} is presented in
  17093. \racket{figure~\ref{fig:interp-Ldyn}}\python{figures~\ref{fig:interp-Ldyn} and \ref{fig:interp-Ldyn-2}}, and definitions of its auxiliary functions
  17094. are shown in figure~\ref{fig:interp-Ldyn-aux}. Consider the match case for
  17095. \INT{n}. Instead of simply returning the integer \code{n} (as
  17096. in the interpreter for \LangVar{} in figure~\ref{fig:interp-Lvar}), the
  17097. interpreter for \LangDyn{} creates a \emph{tagged value}\index{subject}{tagged
  17098. value} that combines an underlying value with a tag that identifies
  17099. what kind of value it is. We define the following \racket{struct}\python{class}
  17100. to represent tagged values:
  17101. %
  17102. {\if\edition\racketEd
  17103. \begin{lstlisting}
  17104. (struct Tagged (value tag) #:transparent)
  17105. \end{lstlisting}
  17106. \fi}
  17107. {\if\edition\pythonEd\pythonColor
  17108. \begin{minipage}{\textwidth}
  17109. \begin{lstlisting}
  17110. @dataclass(eq=True)
  17111. class Tagged(Value):
  17112. value : Value
  17113. tag : str
  17114. def __str__(self):
  17115. return str(self.value)
  17116. \end{lstlisting}
  17117. \end{minipage}
  17118. \fi}
  17119. %
  17120. \racket{The tags are \code{Integer}, \BOOLTY{}, \code{Void},
  17121. \code{Vector}, and \code{Procedure}.}
  17122. %
  17123. \python{The tags are \skey{int}, \skey{bool}, \skey{none},
  17124. \skey{tuple}, and \skey{function}.}
  17125. %
  17126. Tags are closely related to types but do not always capture all the
  17127. information that a type does.
  17128. %
  17129. \racket{For example, a vector of type \code{(Vector Any Any)} is
  17130. tagged with \code{Vector}, and a procedure of type \code{(Any Any ->
  17131. Any)} is tagged with \code{Procedure}.}
  17132. %
  17133. \python{For example, a tuple of type \code{TupleType([AnyType(),AnyType()])}
  17134. is tagged with \skey{tuple} and a function of type
  17135. \code{FunctionType([AnyType(), AnyType()], AnyType())}
  17136. is tagged with \skey{function}.}
  17137. Next consider the match case for accessing the element of a tuple.
  17138. The \racket{\code{check-tag}}\python{\code{untag}} auxiliary function
  17139. (figure~\ref{fig:interp-Ldyn-aux}) is used to ensure that the first
  17140. argument is a tuple and the second is an integer.
  17141. \racket{
  17142. If they are not, a \code{trapped-error} is raised. Recall from
  17143. section~\ref{sec:interp_Lint} that when a definition interpreter
  17144. raises a \code{trapped-error} error, the compiled code must also
  17145. signal an error by exiting with return code \code{255}. A
  17146. \code{trapped-error} is also raised if the index is not less than the
  17147. length of the vector.
  17148. }
  17149. %
  17150. \python{If they are not, an exception is raised. The compiled code
  17151. must also signal an error by exiting with return code \code{255}. A
  17152. exception is also raised if the index is not less than the length of the
  17153. tuple or if it is negative.}
  17154. \begin{figure}[tbp]
  17155. \begin{tcolorbox}[colback=white]
  17156. {\if\edition\racketEd
  17157. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  17158. (define ((interp-Ldyn-exp env) ast)
  17159. (define recur (interp-Ldyn-exp env))
  17160. (match ast
  17161. [(Var x) (dict-ref env x)]
  17162. [(Int n) (Tagged n 'Integer)]
  17163. [(Bool b) (Tagged b 'Boolean)]
  17164. [(Lambda xs rt body)
  17165. (Tagged `(function ,xs ,body ,env) 'Procedure)]
  17166. [(Prim 'vector es)
  17167. (Tagged (apply vector (for/list ([e es]) (recur e))) 'Vector)]
  17168. [(Prim 'vector-ref (list e1 e2))
  17169. (define vec (recur e1)) (define i (recur e2))
  17170. (check-tag vec 'Vector ast) (check-tag i 'Integer ast)
  17171. (unless (< (Tagged-value i) (vector-length (Tagged-value vec)))
  17172. (error 'trapped-error "index ~a too big\nin ~v" (Tagged-value i) ast))
  17173. (vector-ref (Tagged-value vec) (Tagged-value i))]
  17174. [(Prim 'vector-set! (list e1 e2 e3))
  17175. (define vec (recur e1)) (define i (recur e2)) (define arg (recur e3))
  17176. (check-tag vec 'Vector ast) (check-tag i 'Integer ast)
  17177. (unless (< (Tagged-value i) (vector-length (Tagged-value vec)))
  17178. (error 'trapped-error "index ~a too big\nin ~v" (Tagged-value i) ast))
  17179. (vector-set! (Tagged-value vec) (Tagged-value i) arg)
  17180. (Tagged (void) 'Void)]
  17181. [(Let x e body) ((interp-Ldyn-exp (cons (cons x (recur e)) env)) body)]
  17182. [(Prim 'and (list e1 e2)) (recur (If e1 e2 (Bool #f)))]
  17183. [(Prim 'or (list e1 e2))
  17184. (define v1 (recur e1))
  17185. (match (Tagged-value v1) [#f (recur e2)] [else v1])]
  17186. [(Prim 'eq? (list l r)) (Tagged (equal? (recur l) (recur r)) 'Boolean)]
  17187. [(Prim op (list e1))
  17188. #:when (set-member? type-predicates op)
  17189. (tag-value ((interp-op op) (Tagged-value (recur e1))))]
  17190. [(Prim op es)
  17191. (define args (map recur es))
  17192. (define tags (for/list ([arg args]) (Tagged-tag arg)))
  17193. (unless (for/or ([expected-tags (op-tags op)])
  17194. (equal? expected-tags tags))
  17195. (error 'trapped-error "illegal argument tags ~a\nin ~v" tags ast))
  17196. (tag-value
  17197. (apply (interp-op op) (for/list ([a args]) (Tagged-value a))))]
  17198. [(If q t f)
  17199. (match (Tagged-value (recur q)) [#f (recur f)] [else (recur t)])]
  17200. [(Apply f es)
  17201. (define new-f (recur f)) (define args (map recur es))
  17202. (check-tag new-f 'Procedure ast) (define f-val (Tagged-value new-f))
  17203. (match f-val
  17204. [`(function ,xs ,body ,lam-env)
  17205. (unless (eq? (length xs) (length args))
  17206. (error 'trapped-error "~a != ~a\nin ~v" (length args) (length xs) ast))
  17207. (define new-env (append (map cons xs args) lam-env))
  17208. ((interp-Ldyn-exp new-env) body)]
  17209. [else (error "interp-Ldyn-exp, expected function, not" f-val)])]))
  17210. \end{lstlisting}
  17211. \fi}
  17212. {\if\edition\pythonEd\pythonColor
  17213. \begin{lstlisting}[basicstyle=\ttfamily\scriptsize]
  17214. class InterpLdyn(InterpLlambda):
  17215. def interp_exp(self, e, env):
  17216. match e:
  17217. case Constant(n):
  17218. return self.tag(super().interp_exp(e, env))
  17219. case Tuple(es, Load()):
  17220. return self.tag(super().interp_exp(e, env))
  17221. case Lambda(params, body):
  17222. return self.tag(super().interp_exp(e, env))
  17223. case Call(Name('input_int'), []):
  17224. return self.tag(super().interp_exp(e, env))
  17225. case BinOp(left, Add(), right):
  17226. l = self.interp_exp(left, env); r = self.interp_exp(right, env)
  17227. return self.tag(self.untag(l, 'int', e) + self.untag(r, 'int', e))
  17228. case BinOp(left, Sub(), right):
  17229. l = self.interp_exp(left, env); r = self.interp_exp(right, env)
  17230. return self.tag(self.untag(l, 'int', e) - self.untag(r, 'int', e))
  17231. case UnaryOp(USub(), e1):
  17232. v = self.interp_exp(e1, env)
  17233. return self.tag(- self.untag(v, 'int', e))
  17234. case IfExp(test, body, orelse):
  17235. v = self.interp_exp(test, env)
  17236. if self.untag(v, 'bool', e):
  17237. return self.interp_exp(body, env)
  17238. else:
  17239. return self.interp_exp(orelse, env)
  17240. case UnaryOp(Not(), e1):
  17241. v = self.interp_exp(e1, env)
  17242. return self.tag(not self.untag(v, 'bool', e))
  17243. case BoolOp(And(), values):
  17244. left = values[0]; right = values[1]
  17245. l = self.interp_exp(left, env)
  17246. if self.untag(l, 'bool', e):
  17247. return self.interp_exp(right, env)
  17248. else:
  17249. return self.tag(False)
  17250. case BoolOp(Or(), values):
  17251. left = values[0]; right = values[1]
  17252. l = self.interp_exp(left, env)
  17253. if self.untag(l, 'bool', e):
  17254. return self.tag(True)
  17255. else:
  17256. return self.interp_exp(right, env)
  17257. \end{lstlisting}
  17258. \fi}
  17259. \end{tcolorbox}
  17260. \caption{Interpreter for the \LangDyn{} language\python{, part 1}.}
  17261. \label{fig:interp-Ldyn}
  17262. \end{figure}
  17263. {\if\edition\pythonEd\pythonColor
  17264. \begin{figure}[tbp]
  17265. \begin{tcolorbox}[colback=white]
  17266. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  17267. # interp_exp continued
  17268. case Compare(left, [cmp], [right]):
  17269. l = self.interp_exp(left, env)
  17270. r = self.interp_exp(right, env)
  17271. if l.tag == r.tag:
  17272. return self.tag(self.interp_cmp(cmp)(l.value, r.value))
  17273. else:
  17274. raise Exception('interp Compare unexpected '
  17275. + repr(l) + ' ' + repr(r))
  17276. case Subscript(tup, index, Load()):
  17277. t = self.interp_exp(tup, env)
  17278. n = self.interp_exp(index, env)
  17279. return self.untag(t, 'tuple', e)[self.untag(n, 'int', e)]
  17280. case Call(Name('len'), [tup]):
  17281. t = self.interp_exp(tup, env)
  17282. return self.tag(len(self.untag(t, 'tuple', e)))
  17283. case _:
  17284. return self.tag(super().interp_exp(e, env))
  17285. def interp_stmt(self, s, env, cont):
  17286. match s:
  17287. case If(test, body, orelse):
  17288. v = self.interp_exp(test, env)
  17289. match self.untag(v, 'bool', s):
  17290. case True:
  17291. return self.interp_stmts(body + cont, env)
  17292. case False:
  17293. return self.interp_stmts(orelse + cont, env)
  17294. case While(test, body, []):
  17295. v = self.interp_exp(test, env)
  17296. if self.untag(v, 'bool', test):
  17297. self.interp_stmts(body + [s] + cont, env)
  17298. else:
  17299. return self.interp_stmts(cont, env)
  17300. case Assign([Subscript(tup, index)], value):
  17301. tup = self.interp_exp(tup, env)
  17302. index = self.interp_exp(index, env)
  17303. tup_v = self.untag(tup, 'tuple', s)
  17304. index_v = self.untag(index, 'int', s)
  17305. tup_v[index_v] = self.interp_exp(value, env)
  17306. return self.interp_stmts(cont, env)
  17307. case FunctionDef(name, params, bod, dl, returns, comment):
  17308. if isinstance(params, ast.arguments):
  17309. ps = [p.arg for p in params.args]
  17310. else:
  17311. ps = [x for (x,t) in params]
  17312. env[name] = self.tag(Function(name, ps, bod, env))
  17313. return self.interp_stmts(cont, env)
  17314. case _:
  17315. return super().interp_stmt(s, env, cont)
  17316. \end{lstlisting}
  17317. \end{tcolorbox}
  17318. \caption{Interpreter for the \LangDyn{} language\python{, part 2}.}
  17319. \label{fig:interp-Ldyn-2}
  17320. \end{figure}
  17321. \fi}
  17322. \begin{figure}[tbp]
  17323. \begin{tcolorbox}[colback=white]
  17324. {\if\edition\racketEd
  17325. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  17326. (define (interp-op op)
  17327. (match op
  17328. ['+ fx+]
  17329. ['- fx-]
  17330. ['read read-fixnum]
  17331. ['not (lambda (v) (match v [#t #f] [#f #t]))]
  17332. ['< (lambda (v1 v2)
  17333. (cond [(and (fixnum? v1) (fixnum? v2)) (< v1 v2)]))]
  17334. ['<= (lambda (v1 v2)
  17335. (cond [(and (fixnum? v1) (fixnum? v2)) (<= v1 v2)]))]
  17336. ['> (lambda (v1 v2)
  17337. (cond [(and (fixnum? v1) (fixnum? v2)) (> v1 v2)]))]
  17338. ['>= (lambda (v1 v2)
  17339. (cond [(and (fixnum? v1) (fixnum? v2)) (>= v1 v2)]))]
  17340. ['boolean? boolean?]
  17341. ['integer? fixnum?]
  17342. ['void? void?]
  17343. ['vector? vector?]
  17344. ['vector-length vector-length]
  17345. ['procedure? (match-lambda
  17346. [`(functions ,xs ,body ,env) #t] [else #f])]
  17347. [else (error 'interp-op "unknown operator" op)]))
  17348. (define (op-tags op)
  17349. (match op
  17350. ['+ '((Integer Integer))]
  17351. ['- '((Integer Integer) (Integer))]
  17352. ['read '(())]
  17353. ['not '((Boolean))]
  17354. ['< '((Integer Integer))]
  17355. ['<= '((Integer Integer))]
  17356. ['> '((Integer Integer))]
  17357. ['>= '((Integer Integer))]
  17358. ['vector-length '((Vector))]))
  17359. (define type-predicates
  17360. (set 'boolean? 'integer? 'vector? 'procedure? 'void?))
  17361. (define (tag-value v)
  17362. (cond [(boolean? v) (Tagged v 'Boolean)]
  17363. [(fixnum? v) (Tagged v 'Integer)]
  17364. [(procedure? v) (Tagged v 'Procedure)]
  17365. [(vector? v) (Tagged v 'Vector)]
  17366. [(void? v) (Tagged v 'Void)]
  17367. [else (error 'tag-value "unidentified value ~a" v)]))
  17368. (define (check-tag val expected ast)
  17369. (define tag (Tagged-tag val))
  17370. (unless (eq? tag expected)
  17371. (error 'trapped-error "expected ~a, not ~a\nin ~v" expected tag ast)))
  17372. \end{lstlisting}
  17373. \fi}
  17374. {\if\edition\pythonEd\pythonColor
  17375. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  17376. class InterpLdyn(InterpLlambda):
  17377. def tag(self, v):
  17378. if v is True or v is False:
  17379. return Tagged(v, 'bool')
  17380. elif isinstance(v, int):
  17381. return Tagged(v, 'int')
  17382. elif isinstance(v, Function):
  17383. return Tagged(v, 'function')
  17384. elif isinstance(v, tuple):
  17385. return Tagged(v, 'tuple')
  17386. elif isinstance(v, type(None)):
  17387. return Tagged(v, 'none')
  17388. else:
  17389. raise Exception('tag: unexpected ' + repr(v))
  17390. def untag(self, v, expected_tag, ast):
  17391. match v:
  17392. case Tagged(val, tag) if tag == expected_tag:
  17393. return val
  17394. case _:
  17395. raise TrappedError('expected Tagged value with '
  17396. + expected_tag + ', not ' + ' ' + repr(v))
  17397. def apply_fun(self, fun, args, e):
  17398. f = self.untag(fun, 'function', e)
  17399. return super().apply_fun(f, args, e)
  17400. \end{lstlisting}
  17401. \fi}
  17402. \end{tcolorbox}
  17403. \caption{Auxiliary functions for the \LangDyn{} interpreter.}
  17404. \label{fig:interp-Ldyn-aux}
  17405. \end{figure}
  17406. %\clearpage
  17407. \section{Representation of Tagged Values}
  17408. The interpreter for \LangDyn{} introduced a new kind of value: the
  17409. tagged value. To compile \LangDyn{} to x86 we must decide how to
  17410. represent tagged values at the bit level. Because almost every
  17411. operation in \LangDyn{} involves manipulating tagged values, the
  17412. representation must be efficient. Recall that all our values are 64
  17413. bits. We shall steal the right-most $3$ bits to encode the tag. We use
  17414. $001$ to identify integers, $100$ for Booleans, $010$ for tuples,
  17415. $011$ for procedures, and $101$ for the void value\python{,
  17416. \key{None}}. We define the following auxiliary function for mapping
  17417. types to tag codes:
  17418. %
  17419. {\if\edition\racketEd
  17420. \begin{align*}
  17421. \itm{tagof}(\key{Integer}) &= 001 \\
  17422. \itm{tagof}(\key{Boolean}) &= 100 \\
  17423. \itm{tagof}(\LP\key{Vector} \ldots\RP) &= 010 \\
  17424. \itm{tagof}(\LP\ldots \key{->} \ldots\RP) &= 011 \\
  17425. \itm{tagof}(\key{Void}) &= 101
  17426. \end{align*}
  17427. \fi}
  17428. {\if\edition\pythonEd\pythonColor
  17429. \begin{align*}
  17430. \itm{tagof}(\key{IntType()}) &= 001 \\
  17431. \itm{tagof}(\key{BoolType()}) &= 100 \\
  17432. \itm{tagof}(\key{TupleType(ts)}) &= 010 \\
  17433. \itm{tagof}(\key{FunctionType(ps, rt)}) &= 011 \\
  17434. \itm{tagof}(\key{type(None)}) &= 101
  17435. \end{align*}
  17436. \fi}
  17437. %
  17438. This stealing of 3 bits comes at some price: integers are now restricted
  17439. to the range $-2^{60}$ to $2^{60}-1$. The stealing does not adversely
  17440. affect tuples and procedures because those values are addresses, and
  17441. our addresses are 8-byte aligned so the rightmost 3 bits are unused;
  17442. they are always $000$. Thus, we do not lose information by overwriting
  17443. the rightmost 3 bits with the tag, and we can simply zero out the tag
  17444. to recover the original address.
  17445. To make tagged values into first-class entities, we can give them a
  17446. type called \racket{\code{Any}}\python{\code{AnyType}} and define
  17447. operations such as \code{Inject} and \code{Project} for creating and
  17448. using them, yielding the statically typed \LangAny{} intermediate
  17449. language. We describe how to compile \LangDyn{} to \LangAny{} in
  17450. section~\ref{sec:compile-r7}; in the next section we describe the
  17451. \LangAny{} language in greater detail.
  17452. \section{The \LangAny{} Language}
  17453. \label{sec:Rany-lang}
  17454. \newcommand{\LanyASTRacket}{
  17455. \begin{array}{lcl}
  17456. \Type &::= & \ANYTY \\
  17457. \FType &::=& \key{Integer} \MID \key{Boolean} \MID \key{Void}
  17458. \MID \LP\key{Vector}\; \ANYTY\ldots\RP
  17459. \MID \LP\ANYTY\ldots \; \key{->}\; \ANYTY\RP\\
  17460. \itm{op} &::= & \code{any-vector-length}
  17461. \MID \code{any-vector-ref} \MID \code{any-vector-set!}\\
  17462. &\MID& \code{boolean?} \MID \code{integer?} \MID \code{vector?}
  17463. \MID \code{procedure?} \MID \code{void?} \\
  17464. \Exp &::=& \INJECT{\Exp}{\FType} \MID \PROJECT{\Exp}{\FType}
  17465. \end{array}
  17466. }
  17467. \newcommand{\LanyASTPython}{
  17468. \begin{array}{lcl}
  17469. \Type &::= & \key{AnyType()} \\
  17470. \FType &::=& \key{IntType()} \MID \key{BoolType()} \MID \key{VoidType()}
  17471. \MID \key{TupleType}\LS\key{AnyType()}^+\RS \\
  17472. &\MID& \key{FunctionType}\LP \key{AnyType()}^{*}\key{, }\key{AnyType()}\RP \\
  17473. \Exp & ::= & \INJECT{\Exp}{\FType} \MID \PROJECT{\Exp}{\FType} \\
  17474. &\MID& \CALL{\VAR{\skey{any\_tuple\_load}}}{\LS\Exp\key{, }\Exp\RS}\\
  17475. &\MID& \CALL{\VAR{\skey{any\_len}}}{\LS\Exp\RS} \\
  17476. &\MID& \CALL{\VAR{\skey{arity}}}{\LS\Exp\RS} \\
  17477. &\MID& \CALL{\VAR{\skey{make\_any}}}{\LS\Exp\key{, }\INT{\Int}\RS}
  17478. %% &\MID& \CALL{\VAR{\skey{is\_int}}}{\Exp}
  17479. %% \MID \CALL{\VAR{\skey{is\_bool}}}{\Exp} \\
  17480. %% &\MID& \CALL{\VAR{\skey{is\_none}}}{\Exp}
  17481. %% \MID \CALL{\VAR{\skey{is\_tuple}}}{\Exp} \\
  17482. %% &\MID& \CALL{\VAR{\skey{is\_function}}}{\Exp}
  17483. \end{array}
  17484. }
  17485. \begin{figure}[tp]
  17486. \centering
  17487. \begin{tcolorbox}[colback=white]
  17488. \small
  17489. {\if\edition\racketEd
  17490. \[
  17491. \begin{array}{l}
  17492. \gray{\LintOpAST} \\ \hline
  17493. \gray{\LvarASTRacket{}} \\ \hline
  17494. \gray{\LifASTRacket{}} \\ \hline
  17495. \gray{\LwhileASTRacket{}} \\ \hline
  17496. \gray{\LtupASTRacket{}} \\ \hline
  17497. \gray{\LfunASTRacket} \\ \hline
  17498. \gray{\LlambdaASTRacket} \\ \hline
  17499. \LanyASTRacket \\
  17500. \begin{array}{lcl}
  17501. \LangAnyM{} &::=& \PROGRAMDEFSEXP{\code{'()}}{\LP\Def\ldots\RP}{\Exp}
  17502. \end{array}
  17503. \end{array}
  17504. \]
  17505. \fi}
  17506. {\if\edition\pythonEd\pythonColor
  17507. \[
  17508. \begin{array}{l}
  17509. \gray{\LintASTPython} \\ \hline
  17510. \gray{\LvarASTPython{}} \\ \hline
  17511. \gray{\LifASTPython{}} \\ \hline
  17512. \gray{\LwhileASTPython{}} \\ \hline
  17513. \gray{\LtupASTPython{}} \\ \hline
  17514. \gray{\LfunASTPython} \\ \hline
  17515. \gray{\LlambdaASTPython} \\ \hline
  17516. \LanyASTPython \\
  17517. \begin{array}{lcl}
  17518. \LangAnyM{} &::=& \PROGRAM{}{\LS \Def \ldots \Stmt \ldots \RS}
  17519. \end{array}
  17520. \end{array}
  17521. \]
  17522. \fi}
  17523. \end{tcolorbox}
  17524. \caption{The abstract syntax of \LangAny{}, extending \LangLam{} (figure~\ref{fig:Llam-syntax}).}
  17525. \label{fig:Lany-syntax}
  17526. \end{figure}
  17527. The definition of the abstract syntax of \LangAny{} is given in
  17528. figure~\ref{fig:Lany-syntax}.
  17529. %% \racket{(The concrete syntax of \LangAny{} is in the Appendix,
  17530. %% figure~\ref{fig:Lany-concrete-syntax}.)}
  17531. The $\INJECT{e}{T}$ form converts the value produced by expression $e$
  17532. of type $T$ into a tagged value. The $\PROJECT{e}{T}$ form either
  17533. converts the tagged value produced by expression $e$ into a value of
  17534. type $T$ or halts the program if the type tag does not match $T$.
  17535. %
  17536. Note that in both \code{Inject} and \code{Project}, the type $T$ is
  17537. restricted to be a flat type (the nonterminal $\FType$) which
  17538. simplifies the implementation and complies with the needs for
  17539. compiling \LangDyn{}.
  17540. The \racket{\code{any-vector}} operators
  17541. \python{\code{any\_tuple\_load} and \code{any\_len}} adapt the tuple
  17542. operations so that they can be applied to a value of type
  17543. \racket{\code{Any}}\python{\code{AnyType}}. They also generalize the
  17544. tuple operations in that the index is not restricted to a literal
  17545. integer in the grammar but is allowed to be any expression.
  17546. \racket{The type predicates such as
  17547. \racket{\key{boolean?}}\python{\key{is\_bool}} expect their argument
  17548. to produce a tagged value; they return {\TRUE} if the tag corresponds to
  17549. the predicate and return {\FALSE} otherwise.}
  17550. \racket{The type checker for \LangAny{} is shown in figure~\ref{fig:type-check-Lany}
  17551. and it uses the auxiliary functions presented in figure~\ref{fig:type-check-Lany-aux}.}
  17552. \python{The type checker for \LangAny{} is shown in figure~\ref{fig:type-check-Lany}.}
  17553. The interpreter for \LangAny{} is shown in figure~\ref{fig:interp-Lany} and
  17554. its auxiliary functions are shown in figure~\ref{fig:interp-Lany-aux}.
  17555. \begin{figure}[btp]
  17556. \begin{tcolorbox}[colback=white]
  17557. {\if\edition\racketEd
  17558. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  17559. (define type-check-Lany-class
  17560. (class type-check-Llambda-class
  17561. (super-new)
  17562. (inherit check-type-equal?)
  17563. (define/override (type-check-exp env)
  17564. (lambda (e)
  17565. (define recur (type-check-exp env))
  17566. (match e
  17567. [(Inject e1 ty)
  17568. (unless (flat-ty? ty)
  17569. (error 'type-check "may only inject from flat type, not ~a" ty))
  17570. (define-values (new-e1 e-ty) (recur e1))
  17571. (check-type-equal? e-ty ty e)
  17572. (values (Inject new-e1 ty) 'Any)]
  17573. [(Project e1 ty)
  17574. (unless (flat-ty? ty)
  17575. (error 'type-check "may only project to flat type, not ~a" ty))
  17576. (define-values (new-e1 e-ty) (recur e1))
  17577. (check-type-equal? e-ty 'Any e)
  17578. (values (Project new-e1 ty) ty)]
  17579. [(Prim 'any-vector-length (list e1))
  17580. (define-values (e1^ t1) (recur e1))
  17581. (check-type-equal? t1 'Any e)
  17582. (values (Prim 'any-vector-length (list e1^)) 'Integer)]
  17583. [(Prim 'any-vector-ref (list e1 e2))
  17584. (define-values (e1^ t1) (recur e1))
  17585. (define-values (e2^ t2) (recur e2))
  17586. (check-type-equal? t1 'Any e)
  17587. (check-type-equal? t2 'Integer e)
  17588. (values (Prim 'any-vector-ref (list e1^ e2^)) 'Any)]
  17589. [(Prim 'any-vector-set! (list e1 e2 e3))
  17590. (define-values (e1^ t1) (recur e1))
  17591. (define-values (e2^ t2) (recur e2))
  17592. (define-values (e3^ t3) (recur e3))
  17593. (check-type-equal? t1 'Any e)
  17594. (check-type-equal? t2 'Integer e)
  17595. (check-type-equal? t3 'Any e)
  17596. (values (Prim 'any-vector-set! (list e1^ e2^ e3^)) 'Void)]
  17597. [(Prim pred (list e1))
  17598. #:when (set-member? (type-predicates) pred)
  17599. (define-values (new-e1 e-ty) (recur e1))
  17600. (check-type-equal? e-ty 'Any e)
  17601. (values (Prim pred (list new-e1)) 'Boolean)]
  17602. [(Prim 'eq? (list arg1 arg2))
  17603. (define-values (e1 t1) (recur arg1))
  17604. (define-values (e2 t2) (recur arg2))
  17605. (match* (t1 t2)
  17606. [(`(Vector ,ts1 ...) `(Vector ,ts2 ...)) (void)]
  17607. [(other wise) (check-type-equal? t1 t2 e)])
  17608. (values (Prim 'eq? (list e1 e2)) 'Boolean)]
  17609. [else ((super type-check-exp env) e)])))
  17610. ))
  17611. \end{lstlisting}
  17612. \fi}
  17613. {\if\edition\pythonEd\pythonColor
  17614. \begin{lstlisting}
  17615. class TypeCheckLany(TypeCheckLlambda):
  17616. def type_check_exp(self, e, env):
  17617. match e:
  17618. case Inject(value, typ):
  17619. self.check_exp(value, typ, env)
  17620. return AnyType()
  17621. case Project(value, typ):
  17622. self.check_exp(value, AnyType(), env)
  17623. return typ
  17624. case Call(Name('any_tuple_load'), [tup, index]):
  17625. self.check_exp(tup, AnyType(), env)
  17626. self.check_exp(index, IntType(), env)
  17627. return AnyType()
  17628. case Call(Name('any_len'), [tup]):
  17629. self.check_exp(tup, AnyType(), env)
  17630. return IntType()
  17631. case Call(Name('arity'), [fun]):
  17632. ty = self.type_check_exp(fun, env)
  17633. match ty:
  17634. case FunctionType(ps, rt):
  17635. return IntType()
  17636. case TupleType([FunctionType(ps,rs)]):
  17637. return IntType()
  17638. case _:
  17639. raise Exception('type check arity unexpected ' + repr(ty))
  17640. case Call(Name('make_any'), [value, tag]):
  17641. self.type_check_exp(value, env)
  17642. self.check_exp(tag, IntType(), env)
  17643. return AnyType()
  17644. case AnnLambda(params, returns, body):
  17645. new_env = {x:t for (x,t) in env.items()}
  17646. for (x,t) in params:
  17647. new_env[x] = t
  17648. return_t = self.type_check_exp(body, new_env)
  17649. self.check_type_equal(returns, return_t, e)
  17650. return FunctionType([t for (x,t) in params], return_t)
  17651. case _:
  17652. return super().type_check_exp(e, env)
  17653. \end{lstlisting}
  17654. \fi}
  17655. \end{tcolorbox}
  17656. \caption{Type checker for the \LangAny{} language.}
  17657. \label{fig:type-check-Lany}
  17658. \end{figure}
  17659. {\if\edition\racketEd
  17660. \begin{figure}[tbp]
  17661. \begin{tcolorbox}[colback=white]
  17662. \begin{lstlisting}
  17663. (define/override (operator-types)
  17664. (append
  17665. '((integer? . ((Any) . Boolean))
  17666. (vector? . ((Any) . Boolean))
  17667. (procedure? . ((Any) . Boolean))
  17668. (void? . ((Any) . Boolean)))
  17669. (super operator-types)))
  17670. (define/public (type-predicates)
  17671. (set 'boolean? 'integer? 'vector? 'procedure? 'void?))
  17672. (define/public (flat-ty? ty)
  17673. (match ty
  17674. [(or `Integer `Boolean `Void) #t]
  17675. [`(Vector ,ts ...) (for/and ([t ts]) (eq? t 'Any))]
  17676. [`(,ts ... -> ,rt)
  17677. (and (eq? rt 'Any) (for/and ([t ts]) (eq? t 'Any)))]
  17678. [else #f]))
  17679. \end{lstlisting}
  17680. \end{tcolorbox}
  17681. \caption{Auxiliary methods for type checking \LangAny{}.}
  17682. \label{fig:type-check-Lany-aux}
  17683. \end{figure}
  17684. \fi}
  17685. \begin{figure}[tbp]
  17686. \begin{tcolorbox}[colback=white]
  17687. {\if\edition\racketEd
  17688. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  17689. (define interp-Lany-class
  17690. (class interp-Llambda-class
  17691. (super-new)
  17692. (define/override (interp-op op)
  17693. (match op
  17694. ['boolean? (match-lambda
  17695. [`(tagged ,v1 ,tg) (equal? tg (any-tag 'Boolean))]
  17696. [else #f])]
  17697. ['integer? (match-lambda
  17698. [`(tagged ,v1 ,tg) (equal? tg (any-tag 'Integer))]
  17699. [else #f])]
  17700. ['vector? (match-lambda
  17701. [`(tagged ,v1 ,tg) (equal? tg (any-tag `(Vector Any)))]
  17702. [else #f])]
  17703. ['procedure? (match-lambda
  17704. [`(tagged ,v1 ,tg) (equal? tg (any-tag `(Any -> Any)))]
  17705. [else #f])]
  17706. ['eq? (match-lambda*
  17707. [`((tagged ,v1^ ,tg1) (tagged ,v2^ ,tg2))
  17708. (and (eq? v1^ v2^) (equal? tg1 tg2))]
  17709. [ls (apply (super interp-op op) ls)])]
  17710. ['any-vector-ref (lambda (v i)
  17711. (match v [`(tagged ,v^ ,tg) (vector-ref v^ i)]))]
  17712. ['any-vector-set! (lambda (v i a)
  17713. (match v [`(tagged ,v^ ,tg) (vector-set! v^ i a)]))]
  17714. ['any-vector-length (lambda (v)
  17715. (match v [`(tagged ,v^ ,tg) (vector-length v^)]))]
  17716. [else (super interp-op op)]))
  17717. (define/override ((interp-exp env) e)
  17718. (define recur (interp-exp env))
  17719. (match e
  17720. [(Inject e ty) `(tagged ,(recur e) ,(any-tag ty))]
  17721. [(Project e ty2) (apply-project (recur e) ty2)]
  17722. [else ((super interp-exp env) e)]))
  17723. ))
  17724. (define (interp-Lany p)
  17725. (send (new interp-Lany-class) interp-program p))
  17726. \end{lstlisting}
  17727. \fi}
  17728. {\if\edition\pythonEd\pythonColor
  17729. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  17730. class InterpLany(InterpLlambda):
  17731. def interp_exp(self, e, env):
  17732. match e:
  17733. case Inject(value, typ):
  17734. return Tagged(self.interp_exp(value, env), self.type_to_tag(typ))
  17735. case Project(value, typ):
  17736. match self.interp_exp(value, env):
  17737. case Tagged(val, tag) if self.type_to_tag(typ) == tag:
  17738. return val
  17739. case _:
  17740. raise Exception('failed project to ' + self.type_to_tag(typ))
  17741. case Call(Name('any_tuple_load'), [tup, index]):
  17742. match self.interp_exp(tup, env):
  17743. case Tagged(v, tag):
  17744. return v[self.interp_exp(index, env)]
  17745. case _:
  17746. raise Exception('in any_tuple_load untagged value')
  17747. case Call(Name('any_len'), [value]):
  17748. match self.interp_exp(value, env):
  17749. case Tagged(value, tag):
  17750. return len(value)
  17751. case _:
  17752. raise Exception('interp any_len untagged value')
  17753. case Call(Name('arity'), [fun]):
  17754. return self.arity(self.interp_exp(fun, env))
  17755. case _:
  17756. return super().interp_exp(e, env)
  17757. \end{lstlisting}
  17758. \fi}
  17759. \end{tcolorbox}
  17760. \caption{Interpreter for \LangAny{}.}
  17761. \label{fig:interp-Lany}
  17762. \end{figure}
  17763. \begin{figure}[btp]
  17764. \begin{tcolorbox}[colback=white]
  17765. {\if\edition\racketEd
  17766. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  17767. (define/public (apply-inject v tg) (Tagged v tg))
  17768. (define/public (apply-project v ty2)
  17769. (define tag2 (any-tag ty2))
  17770. (match v
  17771. [(Tagged v1 tag1)
  17772. (cond
  17773. [(eq? tag1 tag2)
  17774. (match ty2
  17775. [`(Vector ,ts ...)
  17776. (define l1 ((interp-op 'vector-length) v1))
  17777. (cond
  17778. [(eq? l1 (length ts)) v1]
  17779. [else (error 'apply-project "vector length mismatch, ~a != ~a"
  17780. l1 (length ts))])]
  17781. [`(,ts ... -> ,rt)
  17782. (match v1
  17783. [`(function ,xs ,body ,env)
  17784. (cond [(eq? (length xs) (length ts)) v1]
  17785. [else
  17786. (error 'apply-project "arity mismatch ~a != ~a"
  17787. (length xs) (length ts))])]
  17788. [else (error 'apply-project "expected function not ~a" v1)])]
  17789. [else v1])]
  17790. [else (error 'apply-project "tag mismatch ~a != ~a" tag1 tag2)])]
  17791. [else (error 'apply-project "expected tagged value, not ~a" v)]))
  17792. \end{lstlisting}
  17793. \fi}
  17794. {\if\edition\pythonEd\pythonColor
  17795. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  17796. class InterpLany(InterpLlambda):
  17797. def type_to_tag(self, typ):
  17798. match typ:
  17799. case FunctionType(params, rt):
  17800. return 'function'
  17801. case TupleType(fields):
  17802. return 'tuple'
  17803. case IntType():
  17804. return 'int'
  17805. case BoolType():
  17806. return 'bool'
  17807. case _:
  17808. raise Exception('type_to_tag unexpected ' + repr(typ))
  17809. def arity(self, v):
  17810. match v:
  17811. case Function(name, params, body, env):
  17812. return len(params)
  17813. case _:
  17814. raise Exception('Lany arity unexpected ' + repr(v))
  17815. \end{lstlisting}
  17816. \fi}
  17817. \end{tcolorbox}
  17818. \caption{Auxiliary functions for interpreting \LangAny{}.}
  17819. \label{fig:interp-Lany-aux}
  17820. \end{figure}
  17821. \clearpage
  17822. \section{Cast Insertion: Compiling \LangDyn{} to \LangAny{}}
  17823. \label{sec:compile-r7}
  17824. The \code{cast\_insert} pass compiles from \LangDyn{} to \LangAny{}.
  17825. Figure~\ref{fig:compile-r7-Lany} shows the compilation of many of the
  17826. \LangDyn{} forms into \LangAny{}. An important invariant of this pass
  17827. is that given any subexpression $e$ in the \LangDyn{} program, the
  17828. pass will produce an expression $e'$ in \LangAny{} that has type
  17829. \ANYTY{}. For example, the first row in
  17830. figure~\ref{fig:compile-r7-Lany} shows the compilation of the Boolean
  17831. \TRUE{}, which must be injected to produce an expression of type
  17832. \ANYTY{}.
  17833. %
  17834. The compilation of addition is shown in the second row of
  17835. figure~\ref{fig:compile-r7-Lany}. The compilation of addition is
  17836. representative of many primitive operations: the arguments have type
  17837. \ANYTY{} and must be projected to \INTTYPE{} before the addition can
  17838. be performed.
  17839. The compilation of \key{lambda} (third row of
  17840. figure~\ref{fig:compile-r7-Lany}) shows what happens when we need to
  17841. produce type annotations: we simply use \ANYTY{}.
  17842. %
  17843. % TODO:update the following for python, and the tests and interpreter. -Jeremy
  17844. \racket{The compilation of \code{if} and \code{eq?} demonstrate how
  17845. this pass has to account for some differences in behavior between
  17846. \LangDyn{} and \LangAny{}. The \LangDyn{} language is more
  17847. permissive than \LangAny{} regarding what kind of values can be used
  17848. in various places. For example, the condition of an \key{if} does
  17849. not have to be a Boolean. For \key{eq?}, the arguments need not be
  17850. of the same type (in that case the result is \code{\#f}).}
  17851. \begin{figure}[btp]
  17852. \centering
  17853. \begin{tcolorbox}[colback=white]
  17854. {\if\edition\racketEd
  17855. \begin{tabular}{lll}
  17856. \begin{minipage}{0.27\textwidth}
  17857. \begin{lstlisting}
  17858. #t
  17859. \end{lstlisting}
  17860. \end{minipage}
  17861. &
  17862. $\Rightarrow$
  17863. &
  17864. \begin{minipage}{0.65\textwidth}
  17865. \begin{lstlisting}
  17866. (inject #t Boolean)
  17867. \end{lstlisting}
  17868. \end{minipage}
  17869. \\[2ex]\hline
  17870. \begin{minipage}{0.27\textwidth}
  17871. \begin{lstlisting}
  17872. (+ |$e_1$| |$e_2$|)
  17873. \end{lstlisting}
  17874. \end{minipage}
  17875. &
  17876. $\Rightarrow$
  17877. &
  17878. \begin{minipage}{0.65\textwidth}
  17879. \begin{lstlisting}
  17880. (inject
  17881. (+ (project |$e'_1$| Integer)
  17882. (project |$e'_2$| Integer))
  17883. Integer)
  17884. \end{lstlisting}
  17885. \end{minipage}
  17886. \\[2ex]\hline
  17887. \begin{minipage}{0.27\textwidth}
  17888. \begin{lstlisting}
  17889. (lambda (|$x_1 \ldots$|) |$e$|)
  17890. \end{lstlisting}
  17891. \end{minipage}
  17892. &
  17893. $\Rightarrow$
  17894. &
  17895. \begin{minipage}{0.65\textwidth}
  17896. \begin{lstlisting}
  17897. (inject
  17898. (lambda: ([|$x_1$|:Any]|$\ldots$|):Any |$e'$|)
  17899. (Any|$\ldots$|Any -> Any))
  17900. \end{lstlisting}
  17901. \end{minipage}
  17902. \\[2ex]\hline
  17903. \begin{minipage}{0.27\textwidth}
  17904. \begin{lstlisting}
  17905. (|$e_0$| |$e_1 \ldots e_n$|)
  17906. \end{lstlisting}
  17907. \end{minipage}
  17908. &
  17909. $\Rightarrow$
  17910. &
  17911. \begin{minipage}{0.65\textwidth}
  17912. \begin{lstlisting}
  17913. ((project |$e'_0$| (Any|$\ldots$|Any -> Any)) |$e'_1 \ldots e'_n$|)
  17914. \end{lstlisting}
  17915. \end{minipage}
  17916. \\[2ex]\hline
  17917. \begin{minipage}{0.27\textwidth}
  17918. \begin{lstlisting}
  17919. (vector-ref |$e_1$| |$e_2$|)
  17920. \end{lstlisting}
  17921. \end{minipage}
  17922. &
  17923. $\Rightarrow$
  17924. &
  17925. \begin{minipage}{0.65\textwidth}
  17926. \begin{lstlisting}
  17927. (any-vector-ref |$e_1'$| (project |$e'_2$| Integer))
  17928. \end{lstlisting}
  17929. \end{minipage}
  17930. \\[2ex]\hline
  17931. \begin{minipage}{0.27\textwidth}
  17932. \begin{lstlisting}
  17933. (if |$e_1$| |$e_2$| |$e_3$|)
  17934. \end{lstlisting}
  17935. \end{minipage}
  17936. &
  17937. $\Rightarrow$
  17938. &
  17939. \begin{minipage}{0.65\textwidth}
  17940. \begin{lstlisting}
  17941. (if (eq? |$e'_1$| (inject #f Boolean)) |$e'_3$| |$e'_2$|)
  17942. \end{lstlisting}
  17943. \end{minipage}
  17944. \\[2ex]\hline
  17945. \begin{minipage}{0.27\textwidth}
  17946. \begin{lstlisting}
  17947. (eq? |$e_1$| |$e_2$|)
  17948. \end{lstlisting}
  17949. \end{minipage}
  17950. &
  17951. $\Rightarrow$
  17952. &
  17953. \begin{minipage}{0.65\textwidth}
  17954. \begin{lstlisting}
  17955. (inject (eq? |$e'_1$| |$e'_2$|) Boolean)
  17956. \end{lstlisting}
  17957. \end{minipage}
  17958. \\[2ex]\hline
  17959. \begin{minipage}{0.27\textwidth}
  17960. \begin{lstlisting}
  17961. (not |$e_1$|)
  17962. \end{lstlisting}
  17963. \end{minipage}
  17964. &
  17965. $\Rightarrow$
  17966. &
  17967. \begin{minipage}{0.65\textwidth}
  17968. \begin{lstlisting}
  17969. (if (eq? |$e'_1$| (inject #f Boolean))
  17970. (inject #t Boolean) (inject #f Boolean))
  17971. \end{lstlisting}
  17972. \end{minipage}
  17973. \end{tabular}
  17974. \fi}
  17975. {\if\edition\pythonEd\pythonColor
  17976. \hspace{-0.8em}\begin{tabular}{|lll|} \hline
  17977. \begin{minipage}{0.23\textwidth}
  17978. \begin{lstlisting}
  17979. True
  17980. \end{lstlisting}
  17981. \end{minipage}
  17982. &
  17983. $\Rightarrow$
  17984. &
  17985. \begin{minipage}{0.7\textwidth}
  17986. \begin{lstlisting}
  17987. Inject(True, BoolType())
  17988. \end{lstlisting}
  17989. \end{minipage}
  17990. \\[2ex]\hline
  17991. \begin{minipage}{0.23\textwidth}
  17992. \begin{lstlisting}
  17993. |$e_1$| + |$e_2$|
  17994. \end{lstlisting}
  17995. \end{minipage}
  17996. &
  17997. $\Rightarrow$
  17998. &
  17999. \begin{minipage}{0.7\textwidth}
  18000. \begin{lstlisting}
  18001. Inject(Project(|$e'_1$|, IntType())
  18002. + Project(|$e'_2$|, IntType()),
  18003. IntType())
  18004. \end{lstlisting}
  18005. \end{minipage}
  18006. \\[2ex]\hline
  18007. \begin{minipage}{0.23\textwidth}
  18008. \begin{lstlisting}
  18009. lambda |$x_1 \ldots$|: |$e$|
  18010. \end{lstlisting}
  18011. \end{minipage}
  18012. &
  18013. $\Rightarrow$
  18014. &
  18015. \begin{minipage}{0.7\textwidth}
  18016. \begin{lstlisting}
  18017. Inject(Lambda([(|$x_1$|,AnyType),|$\ldots$|], |$e'$|)
  18018. FunctionType([AnyType(),|$\ldots$|], AnyType()))
  18019. \end{lstlisting}
  18020. \end{minipage}
  18021. \\[2ex]\hline
  18022. \begin{minipage}{0.23\textwidth}
  18023. \begin{lstlisting}
  18024. |$e_0$|(|$e_1 \ldots e_n$|)
  18025. \end{lstlisting}
  18026. \end{minipage}
  18027. &
  18028. $\Rightarrow$
  18029. &
  18030. \begin{minipage}{0.7\textwidth}
  18031. \begin{lstlisting}
  18032. Call(Project(|$e'_0$|, FunctionType([AnyType(),|$\ldots$|],
  18033. AnyType())), |$e'_1, \ldots, e'_n$|)
  18034. \end{lstlisting}
  18035. \end{minipage}
  18036. \\[2ex]\hline
  18037. \begin{minipage}{0.23\textwidth}
  18038. \begin{lstlisting}
  18039. |$e_1$|[|$e_2$|]
  18040. \end{lstlisting}
  18041. \end{minipage}
  18042. &
  18043. $\Rightarrow$
  18044. &
  18045. \begin{minipage}{0.7\textwidth}
  18046. \begin{lstlisting}
  18047. Call(Name('any_tuple_load'),
  18048. [|$e_1'$|, Project(|$e_2'$|, IntType())])
  18049. \end{lstlisting}
  18050. \end{minipage}
  18051. %% \begin{minipage}{0.23\textwidth}
  18052. %% \begin{lstlisting}
  18053. %% |$e_2$| if |$e_1$| else |$e_3$|
  18054. %% \end{lstlisting}
  18055. %% \end{minipage}
  18056. %% &
  18057. %% $\Rightarrow$
  18058. %% &
  18059. %% \begin{minipage}{0.7\textwidth}
  18060. %% \begin{lstlisting}
  18061. %% (if (eq? |$e'_1$| (inject #f Boolean)) |$e'_3$| |$e'_2$|)
  18062. %% \end{lstlisting}
  18063. %% \end{minipage}
  18064. %% \\[2ex]\hline
  18065. %% \begin{minipage}{0.23\textwidth}
  18066. %% \begin{lstlisting}
  18067. %% (eq? |$e_1$| |$e_2$|)
  18068. %% \end{lstlisting}
  18069. %% \end{minipage}
  18070. %% &
  18071. %% $\Rightarrow$
  18072. %% &
  18073. %% \begin{minipage}{0.7\textwidth}
  18074. %% \begin{lstlisting}
  18075. %% (inject (eq? |$e'_1$| |$e'_2$|) Boolean)
  18076. %% \end{lstlisting}
  18077. %% \end{minipage}
  18078. %% \\[2ex]\hline
  18079. %% \begin{minipage}{0.23\textwidth}
  18080. %% \begin{lstlisting}
  18081. %% (not |$e_1$|)
  18082. %% \end{lstlisting}
  18083. %% \end{minipage}
  18084. %% &
  18085. %% $\Rightarrow$
  18086. %% &
  18087. %% \begin{minipage}{0.7\textwidth}
  18088. %% \begin{lstlisting}
  18089. %% (if (eq? |$e'_1$| (inject #f Boolean))
  18090. %% (inject #t Boolean) (inject #f Boolean))
  18091. %% \end{lstlisting}
  18092. %% \end{minipage}
  18093. %% \\[2ex]\hline
  18094. \\\hline
  18095. \end{tabular}
  18096. \fi}
  18097. \end{tcolorbox}
  18098. \caption{Cast insertion.}
  18099. \label{fig:compile-r7-Lany}
  18100. \end{figure}
  18101. \section{Reveal Casts}
  18102. \label{sec:reveal-casts-Lany}
  18103. % TODO: define R'_6
  18104. In the \code{reveal\_casts} pass, we recommend compiling
  18105. \code{Project} into a conditional expression that checks whether the
  18106. value's tag matches the target type; if it does, the value is
  18107. converted to a value of the target type by removing the tag; if it
  18108. does not, the program exits.
  18109. %
  18110. {\if\edition\racketEd
  18111. %
  18112. To perform these actions we need a new primitive operation,
  18113. \code{tag-of-any}, and a new form, \code{ValueOf}.
  18114. The \code{tag-of-any} operation retrieves the type tag from a tagged
  18115. value of type \code{Any}. The \code{ValueOf} form retrieves the
  18116. underlying value from a tagged value. The \code{ValueOf} form
  18117. includes the type for the underlying value that is used by the type
  18118. checker.
  18119. %
  18120. \fi}
  18121. %
  18122. {\if\edition\pythonEd\pythonColor
  18123. %
  18124. To perform these actions we need two new AST classes: \code{TagOf} and
  18125. \code{ValueOf}. The \code{TagOf} operation retrieves the type tag from a
  18126. tagged value of type \ANYTY{}. The \code{ValueOf} operation retrieves
  18127. the underlying value from a tagged value. The \code{ValueOf}
  18128. operation includes the type for the underlying value that is used by
  18129. the type checker.
  18130. %
  18131. \fi}
  18132. If the target type of the projection is \BOOLTY{} or \INTTY{}, then
  18133. \code{Project} can be translated as follows:
  18134. \begin{center}
  18135. \begin{minipage}{1.0\textwidth}
  18136. {\if\edition\racketEd
  18137. \begin{lstlisting}
  18138. (Project |$e$| |$\FType$|)
  18139. |$\Rightarrow$|
  18140. (Let |$\itm{tmp}$| |$e'$|
  18141. (If (Prim 'eq? (list (Prim 'tag-of-any (list (Var |$\itm{tmp}$|)))
  18142. (Int |$\itm{tagof}(\FType)$|)))
  18143. (ValueOf |$\itm{tmp}$| |$\FType$|)
  18144. (Exit)))
  18145. \end{lstlisting}
  18146. \fi}
  18147. {\if\edition\pythonEd\pythonColor
  18148. \begin{lstlisting}
  18149. Project(|$e$|, |$\FType$|)
  18150. |$\Rightarrow$|
  18151. Begin([Assign([|$\itm{tmp}$|], |$e'$|)],
  18152. IfExp(Compare(TagOf(|$\itm{tmp}$|),[Eq()],
  18153. [Constant(|$\itm{tagof}(\FType)$|)]),
  18154. ValueOf(|$\itm{tmp}$|, |$\FType$|)
  18155. Call(Name('exit'), [])))
  18156. \end{lstlisting}
  18157. \fi}
  18158. \end{minipage}
  18159. \end{center}
  18160. If the target type of the projection is a tuple or function type, then
  18161. there is a bit more work to do. For tuples, check that the length of
  18162. the tuple type matches the length of the tuple. For functions, check
  18163. that the number of parameters in the function type matches the
  18164. function's arity.
  18165. Regarding \code{Inject}, we recommend compiling it to a slightly
  18166. lower-level primitive operation named \racket{\code{make-any}}\python{\code{make\_any}}. This operation
  18167. takes a tag instead of a type.
  18168. \begin{center}
  18169. \begin{minipage}{1.0\textwidth}
  18170. {\if\edition\racketEd
  18171. \begin{lstlisting}
  18172. (Inject |$e$| |$\FType$|)
  18173. |$\Rightarrow$|
  18174. (Prim 'make-any (list |$e'$| (Int |$\itm{tagof}(\FType)$|)))
  18175. \end{lstlisting}
  18176. \fi}
  18177. {\if\edition\pythonEd\pythonColor
  18178. \begin{lstlisting}
  18179. Inject(|$e$|, |$\FType$|)
  18180. |$\Rightarrow$|
  18181. Call(Name('make_any'), [|$e'$|, Constant(|$\itm{tagof}(\FType)$|)])
  18182. \end{lstlisting}
  18183. \fi}
  18184. \end{minipage}
  18185. \end{center}
  18186. {\if\edition\pythonEd\pythonColor
  18187. %
  18188. The introduction of \code{make\_any} makes it difficult to use
  18189. bidirectional type checking because we no longer have an expected type
  18190. to use for type checking the expression $e'$. Thus, we run into
  18191. difficulty if $e'$ is a \code{Lambda} expression. We recommend
  18192. translating \code{Lambda} to a new AST class \code{AnnLambda} (for
  18193. annotated lambda) that contains its return type and the types of its
  18194. parameters.
  18195. %
  18196. \fi}
  18197. \racket{The type predicates (\code{boolean?}, etc.) can be translated into
  18198. uses of \code{tag-of-any} and \code{eq?} in a similar way as in the
  18199. translation of \code{Project}.}
  18200. {\if\edition\racketEd
  18201. The \code{any-vector-ref} and \code{any-vector-set!} operations
  18202. combine the projection action with the vector operation. Also, the
  18203. read and write operations allow arbitrary expressions for the index, so
  18204. the type checker for \LangAny{} (figure~\ref{fig:type-check-Lany})
  18205. cannot guarantee that the index is within bounds. Thus, we insert code
  18206. to perform bounds checking at runtime. The translation for
  18207. \code{any-vector-ref} is as follows, and the other two operations are
  18208. translated in a similar way:
  18209. \begin{center}
  18210. \begin{minipage}{0.95\textwidth}
  18211. \begin{lstlisting}
  18212. (Prim 'any-vector-ref (list |$e_1$| |$e_2$|))
  18213. |$\Rightarrow$|
  18214. (Let |$v$| |$e'_1$|
  18215. (Let |$i$| |$e'_2$|
  18216. (If (Prim 'eq? (list (Prim 'tag-of-any (list (Var |$v$|))) (Int 2)))
  18217. (If (Prim '< (list (Var |$i$|) (Prim 'any-vector-length (list (Var |$v$|)))))
  18218. (Prim 'any-vector-ref (list (Var |$v$|) (Var |$i$|)))
  18219. (Exit))
  18220. (Exit))))
  18221. \end{lstlisting}
  18222. \end{minipage}
  18223. \end{center}
  18224. \fi}
  18225. %
  18226. {\if\edition\pythonEd\pythonColor
  18227. %
  18228. The \code{any\_tuple\_load} operation combines the projection action
  18229. with the load operation. Also, the load operation allows arbitrary
  18230. expressions for the index, so the type checker for \LangAny{}
  18231. (figure~\ref{fig:type-check-Lany}) cannot guarantee that the index is
  18232. within bounds. Thus, we insert code to perform bounds checking at
  18233. runtime. The translation for \code{any\_tuple\_load} is as follows.
  18234. \begin{lstlisting}
  18235. Call(Name('any_tuple_load'), [|$e_1$|,|$e_2$|])
  18236. |$\Rightarrow$|
  18237. Block([Assign([|$t$|], |$e'_1$|), Assign([|$i$|], |$e'_2$|)],
  18238. IfExp(Compare(TagOf(|$t$|), [Eq()], [Constant(2)]),
  18239. IfExp(Compare(|$i$|, [Lt()], [Call(Name('any_len'), [|$t$|])]),
  18240. Call(Name('any_tuple_load_unsafe'), [|$t$|, |$i$|]),
  18241. Call(Name('exit'), [])),
  18242. Call(Name('exit'), [])))
  18243. \end{lstlisting}
  18244. \fi}
  18245. {\if\edition\pythonEd\pythonColor
  18246. \section{Assignment Conversion}
  18247. \label{sec:convert-assignments-Lany}
  18248. Update this pass to handle the \code{TagOf}, \code{ValueOf}, and
  18249. \code{AnnLambda} AST classes.
  18250. \section{Closure Conversion}
  18251. \label{sec:closure-conversion-Lany}
  18252. Update this pass to handle the \code{TagOf}, \code{ValueOf}, and
  18253. \code{AnnLambda} AST classes.
  18254. \fi}
  18255. \section{Remove Complex Operands}
  18256. \label{sec:rco-Lany}
  18257. \racket{The \code{ValueOf} and \code{Exit} forms are both complex
  18258. expressions. The subexpression of \code{ValueOf} must be atomic.}
  18259. %
  18260. \python{The \code{ValueOf} and \code{TagOf} operations are both
  18261. complex expressions. Their subexpressions must be atomic.}
  18262. \section{Explicate Control and \LangCAny{}}
  18263. \label{sec:explicate-Lany}
  18264. The output of \code{explicate\_control} is the \LangCAny{} language,
  18265. whose syntax definition is shown in figure~\ref{fig:c5-syntax}.
  18266. %
  18267. \racket{The \code{ValueOf} form that we added to \LangAny{} remains an
  18268. expression and the \code{Exit} expression becomes a $\Tail$. Also,
  18269. note that the index argument of \code{vector-ref} and
  18270. \code{vector-set!} is an $\Atm$, instead of an integer as it was in
  18271. \LangCVec{} (figure~\ref{fig:c2-syntax}).}
  18272. %
  18273. \python{Update the auxiliary functions \code{explicate\_tail},
  18274. \code{explicate\_effect}, and \code{explicate\_pred} as
  18275. appropriate to handle the new expressions in \LangCAny{}. }
  18276. \newcommand{\CanyASTPython}{
  18277. \begin{array}{lcl}
  18278. \Exp &::=& \CALL{\VAR{\skey{make\_any}}}{\LS \Atm,\Atm \RS}\\
  18279. &\MID& \key{TagOf}\LP \Atm \RP
  18280. \MID \key{ValueOf}\LP \Atm , \FType \RP \\
  18281. &\MID& \CALL{\VAR{\skey{any\_tuple\_load\_unsafe}}}{\LS \Atm,\Atm \RS}\\
  18282. &\MID& \CALL{\VAR{\skey{any\_len}}}{\LS \Atm \RS} \\
  18283. &\MID& \CALL{\VAR{\skey{exit}}}{\LS\RS}
  18284. \end{array}
  18285. }
  18286. \newcommand{\CanyASTRacket}{
  18287. \begin{array}{lcl}
  18288. \Exp &::= & \BINOP{\key{'any-vector-ref}}{\Atm}{\Atm} \\
  18289. &\MID& (\key{Prim}~\key{'any-vector-set!}\,(\key{list}\,\Atm\,\Atm\,\Atm))\\
  18290. &\MID& \VALUEOF{\Atm}{\FType} \\
  18291. \Tail &::= & \LP\key{Exit}\RP
  18292. \end{array}
  18293. }
  18294. \begin{figure}[tp]
  18295. \begin{tcolorbox}[colback=white]
  18296. \small
  18297. {\if\edition\racketEd
  18298. \[
  18299. \begin{array}{l}
  18300. \gray{\CvarASTRacket} \\ \hline
  18301. \gray{\CifASTRacket} \\ \hline
  18302. \gray{\CloopASTRacket} \\ \hline
  18303. \gray{\CtupASTRacket} \\ \hline
  18304. \gray{\CfunASTRacket} \\ \hline
  18305. \gray{\ClambdaASTRacket} \\ \hline
  18306. \CanyASTRacket \\
  18307. \begin{array}{lcl}
  18308. \LangCAnyM{} & ::= & \PROGRAMDEFS{\itm{info}}{\LP\Def\ldots\RP}
  18309. \end{array}
  18310. \end{array}
  18311. \]
  18312. \fi}
  18313. {\if\edition\pythonEd\pythonColor
  18314. \[
  18315. \begin{array}{l}
  18316. \gray{\CifASTPython} \\ \hline
  18317. \gray{\CtupASTPython} \\ \hline
  18318. \gray{\CfunASTPython} \\ \hline
  18319. \gray{\ClambdaASTPython} \\ \hline
  18320. \CanyASTPython \\
  18321. \begin{array}{lcl}
  18322. \LangCAnyM{} & ::= & \CPROGRAMDEFS{\LS\Def\code{,}\ldots\RS}
  18323. \end{array}
  18324. \end{array}
  18325. \]
  18326. \fi}
  18327. \end{tcolorbox}
  18328. \caption{The abstract syntax of \LangCAny{}, extending \LangCLam{} (figure~\ref{fig:Clam-syntax}).}
  18329. \label{fig:c5-syntax}
  18330. \end{figure}
  18331. \section{Select Instructions}
  18332. \label{sec:select-Lany}
  18333. \index{subject}{select instructions}
  18334. In the \code{select\_instructions} pass, we translate the primitive
  18335. operations on the \ANYTY{} type to x86 instructions that manipulate
  18336. the three tag bits of the tagged value. In the following descriptions,
  18337. given an atom $e$ we use a primed variable $e'$ to refer to the result
  18338. of translating $e$ into an x86 argument:
  18339. \paragraph{\racket{\code{make-any}}\python{\code{make\_any}}}
  18340. We recommend compiling the
  18341. \racket{\code{make-any}}\python{\code{make\_any}} operation as follows
  18342. if the tag is for \INTTY{} or \BOOLTY{}. The \key{salq} instruction
  18343. shifts the destination to the left by the number of bits specified by its
  18344. source argument (in this case three, the length of the tag), and it
  18345. preserves the sign of the integer. We use the \key{orq} instruction to
  18346. combine the tag and the value to form the tagged value.
  18347. {\if\edition\racketEd
  18348. \begin{lstlisting}
  18349. (Assign |\itm{lhs}| (Prim 'make-any (list |$e$| (Int |$\itm{tag}$|))))
  18350. |$\Rightarrow$|
  18351. movq |$e'$|, |\itm{lhs'}|
  18352. salq $3, |\itm{lhs'}|
  18353. orq $|$\itm{tag}$|, |\itm{lhs'}|
  18354. \end{lstlisting}
  18355. \fi}
  18356. %
  18357. {\if\edition\pythonEd\pythonColor
  18358. \begin{lstlisting}
  18359. Assign([|\itm{lhs}|], Call(Name('make_any'), [|$e$|, Constant(|$\itm{tag}$|)]))
  18360. |$\Rightarrow$|
  18361. movq |$e'$|, |\itm{lhs'}|
  18362. salq $3, |\itm{lhs'}|
  18363. orq $|$\itm{tag}$|, |\itm{lhs'}|
  18364. \end{lstlisting}
  18365. \fi}
  18366. %
  18367. The instruction selection\index{subject}{instruction selection} for
  18368. tuples and procedures is different because there is no need to shift
  18369. them to the left. The rightmost 3 bits are already zeros, so we simply
  18370. combine the value and the tag using \key{orq}. \\
  18371. %
  18372. {\if\edition\racketEd
  18373. \begin{center}
  18374. \begin{minipage}{\textwidth}
  18375. \begin{lstlisting}
  18376. (Assign |\itm{lhs}| (Prim 'make-any (list |$e$| (Int |$\itm{tag}$|))))
  18377. |$\Rightarrow$|
  18378. movq |$e'$|, |\itm{lhs'}|
  18379. orq $|$\itm{tag}$|, |\itm{lhs'}|
  18380. \end{lstlisting}
  18381. \end{minipage}
  18382. \end{center}
  18383. \fi}
  18384. %
  18385. {\if\edition\pythonEd\pythonColor
  18386. \begin{lstlisting}
  18387. Assign([|\itm{lhs}|], Call(Name('make_any'), [|$e$|, Constant(|$\itm{tag}$|)]))
  18388. |$\Rightarrow$|
  18389. movq |$e'$|, |\itm{lhs'}|
  18390. orq $|$\itm{tag}$|, |\itm{lhs'}|
  18391. \end{lstlisting}
  18392. \fi}
  18393. \paragraph{\racket{\code{tag-of-any}}\python{\code{TagOf}}}
  18394. Recall that the \racket{\code{tag-of-any}}\python{\code{TagOf}}
  18395. operation extracts the type tag from a value of type \ANYTY{}. The
  18396. type tag is the bottom $3$ bits, so we obtain the tag by taking the
  18397. bitwise-and of the value with $111$ ($7$ decimal).
  18398. %
  18399. {\if\edition\racketEd
  18400. \begin{lstlisting}
  18401. (Assign |\itm{lhs}| (Prim 'tag-of-any (list |$e$|)))
  18402. |$\Rightarrow$|
  18403. movq |$e'$|, |\itm{lhs'}|
  18404. andq $7, |\itm{lhs'}|
  18405. \end{lstlisting}
  18406. \fi}
  18407. %
  18408. {\if\edition\pythonEd\pythonColor
  18409. \begin{lstlisting}
  18410. Assign([|\itm{lhs}|], TagOf(|$e$|))
  18411. |$\Rightarrow$|
  18412. movq |$e'$|, |\itm{lhs'}|
  18413. andq $7, |\itm{lhs'}|
  18414. \end{lstlisting}
  18415. \fi}
  18416. \paragraph{\code{ValueOf}}
  18417. The instructions for \key{ValueOf} also differ, depending on whether
  18418. the type $T$ is a pointer (tuple or function) or not (integer or
  18419. Boolean). The following shows the instruction
  18420. selection for integers and
  18421. Booleans, in which we produce an untagged value by shifting it to the
  18422. right by 3 bits:
  18423. %
  18424. {\if\edition\racketEd
  18425. \begin{lstlisting}
  18426. (Assign |\itm{lhs}| (ValueOf |$e$| |$T$|))
  18427. |$\Rightarrow$|
  18428. movq |$e'$|, |\itm{lhs'}|
  18429. sarq $3, |\itm{lhs'}|
  18430. \end{lstlisting}
  18431. \fi}
  18432. %
  18433. {\if\edition\pythonEd\pythonColor
  18434. \begin{lstlisting}
  18435. Assign([|\itm{lhs}|], ValueOf(|$e$|, |$T$|))
  18436. |$\Rightarrow$|
  18437. movq |$e'$|, |\itm{lhs'}|
  18438. sarq $3, |\itm{lhs'}|
  18439. \end{lstlisting}
  18440. \fi}
  18441. %
  18442. In the case for tuples and procedures, we zero out the rightmost 3
  18443. bits. We accomplish this by creating the bit pattern $\ldots 0111$
  18444. ($7$ decimal) and apply bitwise-not to obtain $\ldots 11111000$ (-8
  18445. decimal), which we \code{movq} into the destination $\itm{lhs'}$.
  18446. Finally, we apply \code{andq} with the tagged value to get the desired
  18447. result.
  18448. %
  18449. {\if\edition\racketEd
  18450. \begin{lstlisting}
  18451. (Assign |\itm{lhs}| (ValueOf |$e$| |$T$|))
  18452. |$\Rightarrow$|
  18453. movq $|$-8$|, |\itm{lhs'}|
  18454. andq |$e'$|, |\itm{lhs'}|
  18455. \end{lstlisting}
  18456. \fi}
  18457. %
  18458. {\if\edition\pythonEd\pythonColor
  18459. \begin{lstlisting}
  18460. Assign([|\itm{lhs}|], ValueOf(|$e$|, |$T$|))
  18461. |$\Rightarrow$|
  18462. movq $|$-8$|, |\itm{lhs'}|
  18463. andq |$e'$|, |\itm{lhs'}|
  18464. \end{lstlisting}
  18465. \fi}
  18466. %% \paragraph{Type Predicates} We leave it to the reader to
  18467. %% devise a sequence of instructions to implement the type predicates
  18468. %% \key{boolean?}, \key{integer?}, \key{vector?}, and \key{procedure?}.
  18469. \paragraph{\racket{\code{any-vector-length}}\python{\code{any\_len}}}
  18470. The \racket{\code{any-vector-length}}\python{\code{any\_len}}
  18471. operation combines the effect of \code{ValueOf} with accessing the
  18472. length of a tuple from the tag stored at the zero index of the tuple.
  18473. {\if\edition\racketEd
  18474. \begin{lstlisting}
  18475. (Assign |$\itm{lhs}$| (Prim 'any-vector-length (list |$e_1$|)))
  18476. |$\Longrightarrow$|
  18477. movq $|$-8$|, %r11
  18478. andq |$e_1'$|, %r11
  18479. movq 0(%r11), %r11
  18480. andq $126, %r11
  18481. sarq $1, %r11
  18482. movq %r11, |$\itm{lhs'}$|
  18483. \end{lstlisting}
  18484. \fi}
  18485. {\if\edition\pythonEd\pythonColor
  18486. \begin{lstlisting}
  18487. Assign([|$\itm{lhs}$|], Call(Name('any_len'), [|$e_1$|]))
  18488. |$\Longrightarrow$|
  18489. movq $|$-8$|, %r11
  18490. andq |$e_1'$|, %r11
  18491. movq 0(%r11), %r11
  18492. andq $126, %r11
  18493. sarq $1, %r11
  18494. movq %r11, |$\itm{lhs'}$|
  18495. \end{lstlisting}
  18496. \fi}
  18497. \paragraph{\racket{\code{any-vector-ref}}\python{\code{\code{any\_tuple\_load\_unsafe}}}}
  18498. This operation combines the effect of \code{ValueOf} with reading an
  18499. element of the tuple (see
  18500. section~\ref{sec:select-instructions-gc}). However, the index may be
  18501. an arbitrary atom, so instead of computing the offset at compile time,
  18502. we must generate instructions to compute the offset at runtime as
  18503. follows. Note the use of the new instruction \code{imulq}.
  18504. \begin{center}
  18505. \begin{minipage}{0.96\textwidth}
  18506. {\if\edition\racketEd
  18507. \begin{lstlisting}
  18508. (Assign |$\itm{lhs}$| (Prim 'any-vector-ref (list |$e_1$| |$e_2$|)))
  18509. |$\Longrightarrow$|
  18510. movq |$\neg 111$|, %r11
  18511. andq |$e_1'$|, %r11
  18512. movq |$e_2'$|, %rax
  18513. addq $1, %rax
  18514. imulq $8, %rax
  18515. addq %rax, %r11
  18516. movq 0(%r11) |$\itm{lhs'}$|
  18517. \end{lstlisting}
  18518. \fi}
  18519. %
  18520. {\if\edition\pythonEd\pythonColor
  18521. \begin{lstlisting}
  18522. Assign([|$\itm{lhs}$|], Call(Name('any_tuple_load_unsafe'), [|$e_1$|,|$e_2$|]))
  18523. |$\Longrightarrow$|
  18524. movq $|$-8$|, %r11
  18525. andq |$e_1'$|, %r11
  18526. movq |$e_2'$|, %rax
  18527. addq $1, %rax
  18528. imulq $8, %rax
  18529. addq %rax, %r11
  18530. movq 0(%r11) |$\itm{lhs'}$|
  18531. \end{lstlisting}
  18532. \fi}
  18533. \end{minipage}
  18534. \end{center}
  18535. % $ pacify font lock
  18536. %% \paragraph{\racket{\code{any-vector-set!}}\python{\code{any\_tuple\_store}}}
  18537. %% The code generation for
  18538. %% \racket{\code{any-vector-set!}}\python{\code{any\_tuple\_store}} is
  18539. %% analogous to the above translation for reading from a tuple.
  18540. \section{Register Allocation for \LangAny{} }
  18541. \label{sec:register-allocation-Lany}
  18542. \index{subject}{register allocation}
  18543. There is an interesting interaction between tagged values and garbage
  18544. collection that has an impact on register allocation. A variable of
  18545. type \ANYTY{} might refer to a tuple, and therefore it might be a root
  18546. that needs to be inspected and copied during garbage collection. Thus,
  18547. we need to treat variables of type \ANYTY{} in a similar way to
  18548. variables of tuple type for purposes of register allocation,
  18549. with particular attention to the following:
  18550. \begin{itemize}
  18551. \item If a variable of type \ANYTY{} is live during a function call,
  18552. then it must be spilled. This can be accomplished by changing
  18553. \code{build\_interference} to mark all variables of type \ANYTY{}
  18554. that are live after a \code{callq} to be interfering with all the
  18555. registers.
  18556. \item If a variable of type \ANYTY{} is spilled, it must be spilled to
  18557. the root stack instead of the normal procedure call stack.
  18558. \end{itemize}
  18559. Another concern regarding the root stack is that the garbage collector
  18560. needs to differentiate among (1) plain old pointers to tuples, (2) a
  18561. tagged value that points to a tuple, and (3) a tagged value that is
  18562. not a tuple. We enable this differentiation by choosing not to use the
  18563. tag $000$ in the $\itm{tagof}$ function. Instead, that bit pattern is
  18564. reserved for identifying plain old pointers to tuples. That way, if
  18565. one of the first three bits is set, then we have a tagged value and
  18566. inspecting the tag can differentiate between tuples ($010$) and the
  18567. other kinds of values.
  18568. %% \begin{exercise}\normalfont
  18569. %% Expand your compiler to handle \LangAny{} as discussed in the last few
  18570. %% sections. Create 5 new programs that use the \ANYTY{} type and the
  18571. %% new operations (\code{Inject}, \code{Project}, etc.). Test your
  18572. %% compiler on these new programs and all of your previously created test
  18573. %% programs.
  18574. %% \end{exercise}
  18575. \begin{exercise}\normalfont\normalsize
  18576. Expand your compiler to handle \LangDyn{} as outlined in this chapter.
  18577. Create tests for \LangDyn{} by adapting ten of your previous test programs
  18578. by removing type annotations. Add five more test programs that
  18579. specifically rely on the language being dynamically typed. That is,
  18580. they should not be legal programs in a statically typed language, but
  18581. nevertheless they should be valid \LangDyn{} programs that run to
  18582. completion without error.
  18583. \end{exercise}
  18584. Figure~\ref{fig:Ldyn-passes} gives an overview of the passes needed
  18585. for the compilation of \LangDyn{}.
  18586. \begin{figure}[bthp]
  18587. \begin{tcolorbox}[colback=white]
  18588. {\if\edition\racketEd
  18589. \begin{tikzpicture}[baseline=(current bounding box.center),scale=0.85]
  18590. \node (Lfun) at (0,4) {\large \LangDyn{}};
  18591. \node (Lfun-2) at (4,4) {\large \LangDyn{}};
  18592. \node (Lfun-3) at (8,4) {\large \LangDyn{}};
  18593. \node (Lfun-4) at (12,4) {\large \LangDynFunRef{}};
  18594. \node (Lfun-5) at (12,2) {\large \LangAnyFunRef{}};
  18595. \node (Lfun-6) at (8,2) {\large \LangAnyFunRef{}};
  18596. \node (Lfun-7) at (4,2) {\large \LangAnyFunRef{}};
  18597. \node (F1-2) at (0,2) {\large \LangAnyFunRef{}};
  18598. \node (F1-3) at (0,0) {\large \LangAnyFunRef{}};
  18599. \node (F1-4) at (4,0) {\large \LangAnyAlloc{}};
  18600. \node (F1-5) at (8,0) {\large \LangAnyAlloc{}};
  18601. \node (F1-6) at (12,0) {\large \LangAnyAlloc{}};
  18602. \node (C3-2) at (0,-2) {\large \LangCAny{}};
  18603. \node (x86-2) at (0,-4) {\large \LangXIndCallVar{}};
  18604. \node (x86-2-1) at (0,-6) {\large \LangXIndCallVar{}};
  18605. \node (x86-2-2) at (4,-6) {\large \LangXIndCallVar{}};
  18606. \node (x86-3) at (4,-4) {\large \LangXIndCallVar{}};
  18607. \node (x86-4) at (8,-4) {\large \LangXIndCall{}};
  18608. \node (x86-5) at (8,-6) {\large \LangXIndCall{}};
  18609. \path[->,bend left=15] (Lfun) edge [above] node
  18610. {\ttfamily\footnotesize shrink} (Lfun-2);
  18611. \path[->,bend left=15] (Lfun-2) edge [above] node
  18612. {\ttfamily\footnotesize uniquify} (Lfun-3);
  18613. \path[->,bend left=15] (Lfun-3) edge [above] node
  18614. {\ttfamily\footnotesize reveal\_functions} (Lfun-4);
  18615. \path[->,bend left=15] (Lfun-4) edge [left] node
  18616. {\ttfamily\footnotesize cast\_insert} (Lfun-5);
  18617. \path[->,bend left=15] (Lfun-5) edge [below] node
  18618. {\ttfamily\footnotesize reveal\_casts} (Lfun-6);
  18619. \path[->,bend left=15] (Lfun-6) edge [below] node
  18620. {\ttfamily\footnotesize convert\_assignments} (Lfun-7);
  18621. \path[->,bend right=15] (Lfun-7) edge [above] node
  18622. {\ttfamily\footnotesize convert\_to\_closures} (F1-2);
  18623. \path[->,bend right=15] (F1-2) edge [right] node
  18624. {\ttfamily\footnotesize limit\_functions} (F1-3);
  18625. \path[->,bend right=15] (F1-3) edge [below] node
  18626. {\ttfamily\footnotesize expose\_allocation} (F1-4);
  18627. \path[->,bend right=15] (F1-4) edge [below] node
  18628. {\ttfamily\footnotesize uncover\_get!} (F1-5);
  18629. \path[->,bend left=15] (F1-5) edge [above] node
  18630. {\ttfamily\footnotesize remove\_complex\_operands} (F1-6);
  18631. \path[->,bend left=10] (F1-6) edge [below] node
  18632. {\ttfamily\footnotesize \ \ \ \ \ explicate\_control} (C3-2);
  18633. \path[->,bend left=15] (C3-2) edge [right] node
  18634. {\ttfamily\footnotesize select\_instructions} (x86-2);
  18635. \path[->,bend right=15] (x86-2) edge [right] node
  18636. {\ttfamily\footnotesize uncover\_live} (x86-2-1);
  18637. \path[->,bend right=15] (x86-2-1) edge [below] node
  18638. {\ttfamily\footnotesize build\_interference} (x86-2-2);
  18639. \path[->,bend right=15] (x86-2-2) edge [right] node
  18640. {\ttfamily\footnotesize allocate\_registers} (x86-3);
  18641. \path[->,bend left=15] (x86-3) edge [above] node
  18642. {\ttfamily\footnotesize patch\_instructions} (x86-4);
  18643. \path[->,bend left=15] (x86-4) edge [right] node
  18644. {\ttfamily\footnotesize prelude\_and\_conclusion} (x86-5);
  18645. \end{tikzpicture}
  18646. \fi}
  18647. {\if\edition\pythonEd\pythonColor
  18648. \begin{tikzpicture}[baseline=(current bounding box.center),scale=0.85]
  18649. \node (Lfun) at (0,4) {\large \LangDyn{}};
  18650. \node (Lfun-2) at (4,4) {\large \LangDyn{}};
  18651. \node (Lfun-3) at (8,4) {\large \LangDyn{}};
  18652. \node (Lfun-4) at (12,4) {\large \LangDynFunRef{}};
  18653. \node (Lfun-5) at (12,2) {\large \LangAnyFunRef{}};
  18654. \node (Lfun-6) at (8,2) {\large \LangAnyFunRef{}};
  18655. \node (Lfun-7) at (4,2) {\large \LangAnyFunRef{}};
  18656. \node (F1-2) at (0,2) {\large \LangAnyFunRef{}};
  18657. \node (F1-3) at (0,0) {\large \LangAnyFunRef{}};
  18658. \node (F1-5) at (4,0) {\large \LangAnyAlloc{}};
  18659. \node (F1-6) at (8,0) {\large \LangAnyAlloc{}};
  18660. \node (C3-2) at (0,-2) {\large \LangCAny{}};
  18661. \node (x86-2) at (0,-4) {\large \LangXIndCallVar{}};
  18662. \node (x86-3) at (4,-4) {\large \LangXIndCallVar{}};
  18663. \node (x86-4) at (8,-4) {\large \LangXIndCall{}};
  18664. \node (x86-5) at (12,-4) {\large \LangXIndCall{}};
  18665. \path[->,bend left=15] (Lfun) edge [above] node
  18666. {\ttfamily\footnotesize shrink} (Lfun-2);
  18667. \path[->,bend left=15] (Lfun-2) edge [above] node
  18668. {\ttfamily\footnotesize uniquify} (Lfun-3);
  18669. \path[->,bend left=15] (Lfun-3) edge [above] node
  18670. {\ttfamily\footnotesize reveal\_functions} (Lfun-4);
  18671. \path[->,bend left=15] (Lfun-4) edge [left] node
  18672. {\ttfamily\footnotesize cast\_insert} (Lfun-5);
  18673. \path[->,bend left=15] (Lfun-5) edge [below] node
  18674. {\ttfamily\footnotesize reveal\_casts} (Lfun-6);
  18675. \path[->,bend right=15] (Lfun-6) edge [above] node
  18676. {\ttfamily\footnotesize convert\_assignments} (Lfun-7);
  18677. \path[->,bend right=15] (Lfun-7) edge [above] node
  18678. {\ttfamily\footnotesize convert\_to\_closures} (F1-2);
  18679. \path[->,bend right=15] (F1-2) edge [right] node
  18680. {\ttfamily\footnotesize limit\_functions} (F1-3);
  18681. \path[->,bend right=15] (F1-3) edge [below] node
  18682. {\ttfamily\footnotesize expose\_allocation} (F1-5);
  18683. \path[->,bend left=15] (F1-5) edge [above] node
  18684. {\ttfamily\footnotesize remove\_complex\_operands} (F1-6);
  18685. \path[->,bend left=10] (F1-6) edge [below] node
  18686. {\ttfamily\footnotesize \ \ \ \ \ \ \ \ explicate\_control} (C3-2);
  18687. \path[->,bend right=15] (C3-2) edge [right] node
  18688. {\ttfamily\footnotesize select\_instructions} (x86-2);
  18689. \path[->,bend right=15] (x86-2) edge [below] node
  18690. {\ttfamily\footnotesize assign\_homes} (x86-3);
  18691. \path[->,bend right=15] (x86-3) edge [below] node
  18692. {\ttfamily\footnotesize patch\_instructions} (x86-4);
  18693. \path[->,bend left=15] (x86-4) edge [above] node
  18694. {\ttfamily\footnotesize prelude\_and\_conclusion} (x86-5);
  18695. \end{tikzpicture}
  18696. \fi}
  18697. \end{tcolorbox}
  18698. \caption{Diagram of the passes for \LangDyn{}, a dynamically typed language.}
  18699. \label{fig:Ldyn-passes}
  18700. \end{figure}
  18701. % Further Reading
  18702. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  18703. %% {\if\edition\pythonEd\pythonColor
  18704. %% \chapter{Objects}
  18705. %% \label{ch:Lobject}
  18706. %% \index{subject}{objects}
  18707. %% \index{subject}{classes}
  18708. %% \setcounter{footnote}{0}
  18709. %% \fi}
  18710. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  18711. \chapter{Gradual Typing}
  18712. \label{ch:Lgrad}
  18713. \index{subject}{gradual typing}
  18714. \setcounter{footnote}{0}
  18715. This chapter studies the language \LangGrad{}, in which the programmer
  18716. can choose between static and dynamic type checking in different parts
  18717. of a program, thereby mixing the statically typed \LangLam{} language
  18718. with the dynamically typed \LangDyn{}. There are several approaches to
  18719. mixing static and dynamic typing, including multilanguage
  18720. integration~\citep{Tobin-Hochstadt:2006fk,Matthews:2007zr} and hybrid
  18721. type checking~\citep{Flanagan:2006mn,Gronski:2006uq}. In this chapter
  18722. we focus on \emph{gradual typing}\index{subject}{gradual typing}, in which the
  18723. programmer controls the amount of static versus dynamic checking by
  18724. adding or removing type annotations on parameters and
  18725. variables~\citep{Anderson:2002kd,Siek:2006bh}.
  18726. The definition of the concrete syntax of \LangGrad{} is shown in
  18727. figure~\ref{fig:Lgrad-concrete-syntax}, and the definition of its
  18728. abstract syntax is shown in figure~\ref{fig:Lgrad-syntax}. The main
  18729. syntactic difference between \LangLam{} and \LangGrad{} is that type
  18730. annotations are optional, which is specified in the grammar using the
  18731. \Param{} and \itm{ret} nonterminals. In the abstract syntax, type
  18732. annotations are not optional, but we use the \CANYTY{} type when a type
  18733. annotation is absent.
  18734. %
  18735. Both the type checker and the interpreter for \LangGrad{} require some
  18736. interesting changes to enable gradual typing, which we discuss in the
  18737. next two sections.
  18738. \newcommand{\LgradGrammarRacket}{
  18739. \begin{array}{lcl}
  18740. \Type &::=& \LP\Type \ldots \; \key{->}\; \Type\RP \\
  18741. \Param &::=& \Var \MID \LS\Var \key{:} \Type\RS \\
  18742. \itm{ret} &::=& \epsilon \MID \key{:} \Type \\
  18743. \Exp &::=& \LP\Exp \; \Exp \ldots\RP
  18744. \MID \CGLAMBDA{\LP\Param\ldots\RP}{\itm{ret}}{\Exp} \\
  18745. &\MID& \LP \key{procedure-arity}~\Exp\RP \\
  18746. \Def &::=& \CGDEF{\Var}{\Param\ldots}{\itm{ret}}{\Exp}
  18747. \end{array}
  18748. }
  18749. \newcommand{\LgradASTRacket}{
  18750. \begin{array}{lcl}
  18751. \Type &::=& \LP\Type \ldots \; \key{->}\; \Type\RP \\
  18752. \Param &::=& \Var \MID \LS\Var \key{:} \Type\RS \\
  18753. \Exp &::=& \APPLY{\Exp}{\Exp\ldots}
  18754. \MID \LAMBDA{\LP\Param\ldots\RP}{\Type}{\Exp} \\
  18755. \itm{op} &::=& \code{procedure-arity} \\
  18756. \Def &::=& \FUNDEF{\Var}{\LP\Param\ldots\RP}{\Type}{\code{'()}}{\Exp}
  18757. \end{array}
  18758. }
  18759. \newcommand{\LgradGrammarPython}{
  18760. \begin{array}{lcl}
  18761. \Type &::=& \key{Any}
  18762. \MID \key{int}
  18763. \MID \key{bool}
  18764. \MID \key{tuple}\LS \Type \code{, } \ldots \RS
  18765. \MID \key{Callable}\LS \LS \Type \key{,} \ldots \RS \key{, } \Type \RS \\
  18766. \Exp &::=& \CAPPLY{\Exp}{\Exp\code{,} \ldots}
  18767. \MID \CLAMBDA{\Var\code{, }\ldots}{\Exp}
  18768. \MID \CARITY{\Exp} \\
  18769. \Stmt &::=& \CANNASSIGN{\Var}{\Type}{\Exp} \MID \CRETURN{\Exp} \\
  18770. \Param &::=& \Var \MID \Var \key{:} \Type \\
  18771. \itm{ret} &::=& \epsilon \MID \key{->}~\Type \\
  18772. \Def &::=& \CGDEF{\Var}{\Param\key{, }\ldots}{\itm{ret}}{\Stmt^{+}}
  18773. \end{array}
  18774. }
  18775. \newcommand{\LgradASTPython}{
  18776. \begin{array}{lcl}
  18777. \Type &::=& \key{AnyType()} \MID \key{IntType()} \MID \key{BoolType()} \MID \key{VoidType()}\\
  18778. &\MID& \key{TupleType}\LP\Type^{*}\RP
  18779. \MID \key{FunctionType}\LP \Type^{*} \key{, } \Type \RP \\
  18780. \Exp &::=& \CALL{\Exp}{\Exp^{*}} \MID \LAMBDA{\Var^{*}}{\Exp}\\
  18781. &\MID& \ARITY{\Exp} \\
  18782. \Stmt &::=& \ANNASSIGN{\Var}{\Type}{\Exp}
  18783. \MID \RETURN{\Exp} \\
  18784. \Param &::=& \LP\Var\key{,}\Type\RP \\
  18785. \Def &::=& \FUNDEF{\Var}{\Param^{*}}{\Type}{}{\Stmt^{+}}
  18786. \end{array}
  18787. }
  18788. \begin{figure}[tbp]
  18789. \centering
  18790. \begin{tcolorbox}[colback=white]
  18791. \vspace{-5pt}
  18792. \small
  18793. {\if\edition\racketEd
  18794. \[
  18795. \begin{array}{l}
  18796. \gray{\LintGrammarRacket{}} \\ \hline
  18797. \gray{\LvarGrammarRacket{}} \\ \hline
  18798. \gray{\LifGrammarRacket{}} \\ \hline
  18799. \gray{\LwhileGrammarRacket} \\ \hline
  18800. \gray{\LtupGrammarRacket} \\ \hline
  18801. \LgradGrammarRacket \\
  18802. \begin{array}{lcl}
  18803. \LangGradM{} &::=& \gray{\Def\ldots \; \Exp}
  18804. \end{array}
  18805. \end{array}
  18806. \]
  18807. \fi}
  18808. {\if\edition\pythonEd\pythonColor
  18809. \[
  18810. \begin{array}{l}
  18811. \gray{\LintGrammarPython{}} \\ \hline
  18812. \gray{\LvarGrammarPython{}} \\ \hline
  18813. \gray{\LifGrammarPython{}} \\ \hline
  18814. \gray{\LwhileGrammarPython} \\ \hline
  18815. \gray{\LtupGrammarPython} \\ \hline
  18816. \LgradGrammarPython \\
  18817. \begin{array}{lcl}
  18818. \LangGradM{} &::=& \Def\ldots \Stmt\ldots
  18819. \end{array}
  18820. \end{array}
  18821. \]
  18822. \fi}
  18823. \end{tcolorbox}
  18824. \caption{The concrete syntax of \LangGrad{}, extending \LangVec{} (figure~\ref{fig:Lvec-concrete-syntax}).}
  18825. \label{fig:Lgrad-concrete-syntax}
  18826. \end{figure}
  18827. \begin{figure}[tbp]
  18828. \centering
  18829. \begin{tcolorbox}[colback=white]
  18830. \small
  18831. {\if\edition\racketEd
  18832. \[
  18833. \begin{array}{l}
  18834. \gray{\LintOpAST} \\ \hline
  18835. \gray{\LvarASTRacket{}} \\ \hline
  18836. \gray{\LifASTRacket{}} \\ \hline
  18837. \gray{\LwhileASTRacket{}} \\ \hline
  18838. \gray{\LtupASTRacket{}} \\ \hline
  18839. \LgradASTRacket \\
  18840. \begin{array}{lcl}
  18841. \LangGradM{} &::=& \PROGRAMDEFSEXP{\code{'()}}{\LP\Def\ldots\RP}{\Exp}
  18842. \end{array}
  18843. \end{array}
  18844. \]
  18845. \fi}
  18846. {\if\edition\pythonEd\pythonColor
  18847. \[
  18848. \begin{array}{l}
  18849. \gray{\LintASTPython{}} \\ \hline
  18850. \gray{\LvarASTPython{}} \\ \hline
  18851. \gray{\LifASTPython{}} \\ \hline
  18852. \gray{\LwhileASTPython} \\ \hline
  18853. \gray{\LtupASTPython} \\ \hline
  18854. \LgradASTPython \\
  18855. \begin{array}{lcl}
  18856. \LangGradM{} &::=& \PROGRAM{}{\LS \Def \ldots \Stmt \ldots \RS}
  18857. \end{array}
  18858. \end{array}
  18859. \]
  18860. \fi}
  18861. \end{tcolorbox}
  18862. \caption{The abstract syntax of \LangGrad{}, extending \LangVec{} (figure~\ref{fig:Lvec-syntax}).}
  18863. \label{fig:Lgrad-syntax}
  18864. \end{figure}
  18865. % TODO: more road map -Jeremy
  18866. %\clearpage
  18867. \section{Type Checking \LangGrad{}}
  18868. \label{sec:gradual-type-check}
  18869. We begin by discussing the type checking of a partially typed variant
  18870. of the \code{map} example from chapter~\ref{ch:Lfun}, shown in
  18871. figure~\ref{fig:gradual-map}. The \code{map} function itself is
  18872. statically typed, so there is nothing special happening there with
  18873. respect to type checking. On the other hand, the \code{inc} function
  18874. does not have type annotations, so the type checker assigns the type
  18875. \CANYTY{} to parameter \code{x} and the return type. Now consider the
  18876. \code{+} operator inside \code{inc}. It expects both arguments to have
  18877. type \INTTY{}, but its first argument \code{x} has type \CANYTY{}. In
  18878. a gradually typed language, such differences are allowed so long as
  18879. the types are \emph{consistent}; that is, they are equal except in
  18880. places where there is an \CANYTY{} type. That is, the type \CANYTY{}
  18881. is consistent with every other type. Figure~\ref{fig:consistent}
  18882. shows the definition of the
  18883. \racket{\code{consistent?}}\python{\code{consistent}} method.
  18884. %
  18885. So the type checker allows the \code{+} operator to be applied
  18886. to \code{x} because \CANYTY{} is consistent with \INTTY{}.
  18887. %
  18888. Next consider the call to the \code{map} function shown in
  18889. figure~\ref{fig:gradual-map} with the arguments \code{inc} and a
  18890. tuple. The \code{inc} function has type
  18891. \racket{\code{(Any -> Any)}}\python{\code{Callable[[Any],Any]}},
  18892. but parameter \code{f} of \code{map} has type
  18893. \racket{\code{(Integer -> Integer)}}\python{\code{Callable[[int],int]}}.
  18894. The type checker for \LangGrad{} accepts this call because the two types are
  18895. consistent.
  18896. \begin{figure}[hbtp]
  18897. % gradual_test_9.rkt
  18898. \begin{tcolorbox}[colback=white]
  18899. {\if\edition\racketEd
  18900. \begin{lstlisting}
  18901. (define (map [f : (Integer -> Integer)]
  18902. [v : (Vector Integer Integer)])
  18903. : (Vector Integer Integer)
  18904. (vector (f (vector-ref v 0)) (f (vector-ref v 1))))
  18905. (define (inc x) (+ x 1))
  18906. (vector-ref (map inc (vector 0 41)) 1)
  18907. \end{lstlisting}
  18908. \fi}
  18909. {\if\edition\pythonEd\pythonColor
  18910. \begin{lstlisting}
  18911. def map(f : Callable[[int], int], v : tuple[int,int]) -> tuple[int,int]:
  18912. return f(v[0]), f(v[1])
  18913. def inc(x):
  18914. return x + 1
  18915. t = map(inc, (0, 41))
  18916. print(t[1])
  18917. \end{lstlisting}
  18918. \fi}
  18919. \end{tcolorbox}
  18920. \caption{A partially typed version of the \code{map} example.}
  18921. \label{fig:gradual-map}
  18922. \end{figure}
  18923. \begin{figure}[tbp]
  18924. \begin{tcolorbox}[colback=white]
  18925. {\if\edition\racketEd
  18926. \begin{lstlisting}
  18927. (define/public (consistent? t1 t2)
  18928. (match* (t1 t2)
  18929. [('Integer 'Integer) #t]
  18930. [('Boolean 'Boolean) #t]
  18931. [('Void 'Void) #t]
  18932. [('Any t2) #t]
  18933. [(t1 'Any) #t]
  18934. [(`(Vector ,ts1 ...) `(Vector ,ts2 ...))
  18935. (for/and ([t1 ts1] [t2 ts2]) (consistent? t1 t2))]
  18936. [(`(,ts1 ... -> ,rt1) `(,ts2 ... -> ,rt2))
  18937. (and (for/and ([t1 ts1] [t2 ts2]) (consistent? t1 t2))
  18938. (consistent? rt1 rt2))]
  18939. [(other wise) #f]))
  18940. \end{lstlisting}
  18941. \fi}
  18942. {\if\edition\pythonEd\pythonColor
  18943. \begin{lstlisting}
  18944. def consistent(self, t1, t2):
  18945. match (t1, t2):
  18946. case (AnyType(), _):
  18947. return True
  18948. case (_, AnyType()):
  18949. return True
  18950. case (FunctionType(ps1, rt1), FunctionType(ps2, rt2)):
  18951. return all(map(self.consistent, ps1, ps2)) and consistent(rt1, rt2)
  18952. case (TupleType(ts1), TupleType(ts2)):
  18953. return all(map(self.consistent, ts1, ts2))
  18954. case (_, _):
  18955. return t1 == t2
  18956. \end{lstlisting}
  18957. \fi}
  18958. \vspace{-5pt}
  18959. \end{tcolorbox}
  18960. \caption{The consistency method on types.}
  18961. \label{fig:consistent}
  18962. \end{figure}
  18963. It is also helpful to consider how gradual typing handles programs with an
  18964. error, such as applying \code{map} to a function that sometimes
  18965. returns a Boolean, as shown in figure~\ref{fig:map-maybe_inc}. The
  18966. type checker for \LangGrad{} accepts this program because the type of
  18967. \code{maybe\_inc} is consistent with the type of parameter \code{f} of
  18968. \code{map}; that is,
  18969. \racket{\code{(Any -> Any)}}\python{\code{Callable[[Any],Any]}}
  18970. is consistent with
  18971. \racket{\code{(Integer -> Integer)}}\python{\code{Callable[[int],int]}}.
  18972. One might say that a gradual type checker is optimistic in that it
  18973. accepts programs that might execute without a runtime type error.
  18974. %
  18975. The definition of the type checker for \LangGrad{} is shown in
  18976. figures~\ref{fig:type-check-Lgradual-1}, \ref{fig:type-check-Lgradual-2},
  18977. and \ref{fig:type-check-Lgradual-3}.
  18978. %% \begin{figure}[tp]
  18979. %% \centering
  18980. %% \fbox{
  18981. %% \begin{minipage}{0.96\textwidth}
  18982. %% \small
  18983. %% \[
  18984. %% \begin{array}{lcl}
  18985. %% \Exp &::=& \ldots \MID \CAST{\Exp}{\Type}{\Type} \\
  18986. %% \LangCastM{} &::=& \gray{ \PROGRAMDEFSEXP{\code{'()}}{\LP\Def\ldots\RP}{\Exp} }
  18987. %% \end{array}
  18988. %% \]
  18989. %% \end{minipage}
  18990. %% }
  18991. %% \caption{The abstract syntax of \LangCast{}, extending \LangLam{} (figure~\ref{fig:Lwhile-syntax}).}
  18992. %% \label{fig:Lgrad-prime-syntax}
  18993. %% \end{figure}
  18994. \begin{figure}[tbp]
  18995. \begin{tcolorbox}[colback=white]
  18996. {\if\edition\racketEd
  18997. \begin{lstlisting}
  18998. (define (map [f : (Integer -> Integer)]
  18999. [v : (Vector Integer Integer)])
  19000. : (Vector Integer Integer)
  19001. (vector (f (vector-ref v 0)) (f (vector-ref v 1))))
  19002. (define (inc x) (+ x 1))
  19003. (define (true) #t)
  19004. (define (maybe_inc x) (if (eq? 0 (read)) (inc x) (true)))
  19005. (vector-ref (map maybe_inc (vector 0 41)) 0)
  19006. \end{lstlisting}
  19007. \fi}
  19008. {\if\edition\pythonEd\pythonColor
  19009. \begin{lstlisting}
  19010. def map(f : Callable[[int], int], v : tuple[int,int]) -> tuple[int,int]:
  19011. return f(v[0]), f(v[1])
  19012. def inc(x):
  19013. return x + 1
  19014. def true():
  19015. return True
  19016. def maybe_inc(x):
  19017. return inc(x) if input_int() == 0 else true()
  19018. t = map(maybe_inc, (0, 41))
  19019. print(t[1])
  19020. \end{lstlisting}
  19021. \fi}
  19022. \vspace{-5pt}
  19023. \end{tcolorbox}
  19024. \caption{A variant of the \code{map} example with an error.}
  19025. \label{fig:map-maybe_inc}
  19026. \end{figure}
  19027. Running this program with input \code{1} triggers an
  19028. error when the \code{maybe\_inc} function returns
  19029. \racket{\code{\#t}}\python{\code{True}}. The \LangGrad{} language
  19030. performs checking at runtime to ensure the integrity of the static
  19031. types, such as the
  19032. \racket{\code{(Integer -> Integer)}}\python{\code{Callable[[int],int]}}
  19033. annotation on
  19034. parameter \code{f} of \code{map}.
  19035. Here we give a preview of how the runtime checking is accomplished;
  19036. the following sections provide the details.
  19037. The runtime checking is carried out by a new \code{Cast} AST node that
  19038. is generated in a new pass named \code{cast\_insert}. The output of
  19039. \code{cast\_insert} is a program in the \LangCast{} language, which
  19040. simply adds \code{Cast} and \CANYTY{} to \LangLam{}.
  19041. %
  19042. Figure~\ref{fig:map-cast} shows the output of \code{cast\_insert} for
  19043. \code{map} and \code{maybe\_inc}. The idea is that \code{Cast} is
  19044. inserted every time the type checker encounters two types that are
  19045. consistent but not equal. In the \code{inc} function, \code{x} is
  19046. cast to \INTTY{} and the result of the \code{+} is cast to
  19047. \CANYTY{}. In the call to \code{map}, the \code{inc} argument
  19048. is cast from
  19049. \racket{\code{(Any -> Any)}}
  19050. \python{\code{Callable[[Any], Any]}}
  19051. to
  19052. \racket{\code{(Integer -> Integer)}}\python{\code{Callable[[int],int]}}.
  19053. %
  19054. In the next section we see how to interpret the \code{Cast} node.
  19055. \begin{figure}[btp]
  19056. \begin{tcolorbox}[colback=white]
  19057. {\if\edition\racketEd
  19058. \begin{lstlisting}
  19059. (define (map [f : (Integer -> Integer)] [v : (Vector Integer Integer)])
  19060. : (Vector Integer Integer)
  19061. (vector (f (vector-ref v 0)) (f (vector-ref v 1))))
  19062. (define (inc [x : Any]) : Any
  19063. (cast (+ (cast x Any Integer) 1) Integer Any))
  19064. (define (true) : Any (cast #t Boolean Any))
  19065. (define (maybe_inc [x : Any]) : Any
  19066. (if (eq? 0 (read)) (inc x) (true)))
  19067. (vector-ref (map (cast maybe_inc (Any -> Any) (Integer -> Integer))
  19068. (vector 0 41)) 0)
  19069. \end{lstlisting}
  19070. \fi}
  19071. {\if\edition\pythonEd\pythonColor
  19072. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  19073. def map(f : Callable[[int], int], v : tuple[int,int]) -> tuple[int,int]:
  19074. return f(v[0]), f(v[1])
  19075. def inc(x : Any) -> Any:
  19076. return Cast(Cast(x, Any, int) + 1, int, Any)
  19077. def true() -> Any:
  19078. return Cast(True, bool, Any)
  19079. def maybe_inc(x : Any) -> Any:
  19080. return inc(x) if input_int() == 0 else true()
  19081. t = map(Cast(maybe_inc, Callable[[Any], Any], Callable[[int], int]),
  19082. (0, 41))
  19083. print(t[1])
  19084. \end{lstlisting}
  19085. \fi}
  19086. \vspace{-5pt}
  19087. \end{tcolorbox}
  19088. \caption{Output of the \code{cast\_insert} pass for the \code{map}
  19089. and \code{maybe\_inc} example.}
  19090. \label{fig:map-cast}
  19091. \end{figure}
  19092. {\if\edition\pythonEd\pythonColor
  19093. \begin{figure}[tbp]
  19094. \begin{tcolorbox}[colback=white]
  19095. \begin{lstlisting}
  19096. class TypeCheckLgrad(TypeCheckLlambda):
  19097. def type_check_exp(self, e, env) -> Type:
  19098. match e:
  19099. case Name(id):
  19100. return env[id]
  19101. case Constant(value) if isinstance(value, bool):
  19102. return BoolType()
  19103. case Constant(value) if isinstance(value, int):
  19104. return IntType()
  19105. case Call(Name('input_int'), []):
  19106. return IntType()
  19107. case BinOp(left, op, right):
  19108. left_type = self.type_check_exp(left, env)
  19109. self.check_consistent(left_type, IntType(), left)
  19110. right_type = self.type_check_exp(right, env)
  19111. self.check_consistent(right_type, IntType(), right)
  19112. return IntType()
  19113. case IfExp(test, body, orelse):
  19114. test_t = self.type_check_exp(test, env)
  19115. self.check_consistent(test_t, BoolType(), test)
  19116. body_t = self.type_check_exp(body, env)
  19117. orelse_t = self.type_check_exp(orelse, env)
  19118. self.check_consistent(body_t, orelse_t, e)
  19119. return self.join_types(body_t, orelse_t)
  19120. case Call(func, args):
  19121. func_t = self.type_check_exp(func, env)
  19122. args_t = [self.type_check_exp(arg, env) for arg in args]
  19123. match func_t:
  19124. case FunctionType(params_t, return_t) \
  19125. if len(params_t) == len(args_t):
  19126. for (arg_t, param_t) in zip(args_t, params_t):
  19127. self.check_consistent(param_t, arg_t, e)
  19128. return return_t
  19129. case AnyType():
  19130. return AnyType()
  19131. case _:
  19132. raise Exception('type_check_exp: in call, unexpected '
  19133. + repr(func_t))
  19134. ...
  19135. case _:
  19136. raise Exception('type_check_exp: unexpected ' + repr(e))
  19137. \end{lstlisting}
  19138. \end{tcolorbox}
  19139. \caption{Type checking expressions in the \LangGrad{} language.}
  19140. \label{fig:type-check-Lgradual-1}
  19141. \end{figure}
  19142. \begin{figure}[tbp]
  19143. \begin{tcolorbox}[colback=white]
  19144. \begin{lstlisting}
  19145. def check_exp(self, e, expected_ty, env):
  19146. match e:
  19147. case Lambda(params, body):
  19148. match expected_ty:
  19149. case FunctionType(params_t, return_t):
  19150. new_env = env.copy().update(zip(params, params_t))
  19151. e.has_type = expected_ty
  19152. body_ty = self.type_check_exp(body, new_env)
  19153. self.check_consistent(body_ty, return_t)
  19154. case AnyType():
  19155. new_env = env.copy().update((p, AnyType()) for p in params)
  19156. e.has_type = FunctionType([AnyType()for _ in params],AnyType())
  19157. body_ty = self.type_check_exp(body, new_env)
  19158. case _:
  19159. raise Exception('lambda is not of type ' + str(expected_ty))
  19160. case _:
  19161. e_ty = self.type_check_exp(e, env)
  19162. self.check_consistent(e_ty, expected_ty, e)
  19163. \end{lstlisting}
  19164. \end{tcolorbox}
  19165. \caption{Checking expressions with respect to a type in the \LangGrad{} language.}
  19166. \label{fig:type-check-Lgradual-2}
  19167. \end{figure}
  19168. \begin{figure}[tbp]
  19169. \begin{tcolorbox}[colback=white]
  19170. \begin{lstlisting}
  19171. def type_check_stmt(self, s, env, return_type):
  19172. match s:
  19173. case Assign([Name(id)], value):
  19174. value_ty = self.type_check_exp(value, env)
  19175. if id in env:
  19176. self.check_consistent(env[id], value_ty, value)
  19177. else:
  19178. env[id] = value_ty
  19179. ...
  19180. case _:
  19181. raise Exception('type_check_stmts: unexpected ' + repr(ss))
  19182. def type_check_stmts(self, ss, env, return_type):
  19183. for s in ss:
  19184. self.type_check_stmt(s, env, return_type)
  19185. \end{lstlisting}
  19186. \end{tcolorbox}
  19187. \caption{Type checking statements in the \LangGrad{} language.}
  19188. \label{fig:type-check-Lgradual-3}
  19189. \end{figure}
  19190. \clearpage
  19191. \begin{figure}[tbp]
  19192. \begin{tcolorbox}[colback=white]
  19193. \begin{lstlisting}
  19194. def join_types(self, t1, t2):
  19195. match (t1, t2):
  19196. case (AnyType(), _):
  19197. return t2
  19198. case (_, AnyType()):
  19199. return t1
  19200. case (FunctionType(ps1, rt1), FunctionType(ps2, rt2)):
  19201. return FunctionType(list(map(self.join_types, ps1, ps2)),
  19202. self.join_types(rt1,rt2))
  19203. case (TupleType(ts1), TupleType(ts2)):
  19204. return TupleType(list(map(self.join_types, ts1, ts2)))
  19205. case (_, _):
  19206. return t1
  19207. def check_consistent(self, t1, t2, e):
  19208. if not self.consistent(t1, t2):
  19209. raise Exception('error: ' + repr(t1) + ' inconsistent with ' \
  19210. + repr(t2) + ' in ' + repr(e))
  19211. \end{lstlisting}
  19212. \end{tcolorbox}
  19213. \caption{Auxiliary methods for type checking \LangGrad{}.}
  19214. \label{fig:type-check-Lgradual-aux}
  19215. \end{figure}
  19216. \fi}
  19217. {\if\edition\racketEd
  19218. \begin{figure}[tbp]
  19219. \begin{tcolorbox}[colback=white]
  19220. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  19221. (define/override (type-check-exp env)
  19222. (lambda (e)
  19223. (define recur (type-check-exp env))
  19224. (match e
  19225. [(Prim op es) #:when (not (set-member? explicit-prim-ops op))
  19226. (define-values (new-es ts)
  19227. (for/lists (exprs types) ([e es])
  19228. (recur e)))
  19229. (define t-ret (type-check-op op ts e))
  19230. (values (Prim op new-es) t-ret)]
  19231. [(Prim 'eq? (list e1 e2))
  19232. (define-values (e1^ t1) (recur e1))
  19233. (define-values (e2^ t2) (recur e2))
  19234. (check-consistent? t1 t2 e)
  19235. (define T (meet t1 t2))
  19236. (values (Prim 'eq? (list e1^ e2^)) 'Boolean)]
  19237. [(Prim 'and (list e1 e2))
  19238. (recur (If e1 e2 (Bool #f)))]
  19239. [(Prim 'or (list e1 e2))
  19240. (define tmp (gensym 'tmp))
  19241. (recur (Let tmp e1 (If (Var tmp) (Var tmp) e2)))]
  19242. [(If e1 e2 e3)
  19243. (define-values (e1^ T1) (recur e1))
  19244. (define-values (e2^ T2) (recur e2))
  19245. (define-values (e3^ T3) (recur e3))
  19246. (check-consistent? T1 'Boolean e)
  19247. (check-consistent? T2 T3 e)
  19248. (define Tif (meet T2 T3))
  19249. (values (If e1^ e2^ e3^) Tif)]
  19250. [(SetBang x e1)
  19251. (define-values (e1^ T1) (recur e1))
  19252. (define varT (dict-ref env x))
  19253. (check-consistent? T1 varT e)
  19254. (values (SetBang x e1^) 'Void)]
  19255. [(WhileLoop e1 e2)
  19256. (define-values (e1^ T1) (recur e1))
  19257. (check-consistent? T1 'Boolean e)
  19258. (define-values (e2^ T2) ((type-check-exp env) e2))
  19259. (values (WhileLoop e1^ e2^) 'Void)]
  19260. [(Prim 'vector-length (list e1))
  19261. (define-values (e1^ t) (recur e1))
  19262. (match t
  19263. [`(Vector ,ts ...)
  19264. (values (Prim 'vector-length (list e1^)) 'Integer)]
  19265. ['Any (values (Prim 'vector-length (list e1^)) 'Integer)])]
  19266. \end{lstlisting}
  19267. \end{tcolorbox}
  19268. \caption{Type checker for the \LangGrad{} language, part 1.}
  19269. \label{fig:type-check-Lgradual-1}
  19270. \end{figure}
  19271. \begin{figure}[tbp]
  19272. \begin{tcolorbox}[colback=white]
  19273. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  19274. [(Prim 'vector-ref (list e1 e2))
  19275. (define-values (e1^ t1) (recur e1))
  19276. (define-values (e2^ t2) (recur e2))
  19277. (check-consistent? t2 'Integer e)
  19278. (match t1
  19279. [`(Vector ,ts ...)
  19280. (match e2^
  19281. [(Int i)
  19282. (unless (and (0 . <= . i) (i . < . (length ts)))
  19283. (error 'type-check "invalid index ~a in ~a" i e))
  19284. (values (Prim 'vector-ref (list e1^ (Int i))) (list-ref ts i))]
  19285. [else (values (Prim 'vector-ref (list e1^ e2^)) 'Any)])]
  19286. ['Any (values (Prim 'vector-ref (list e1^ e2^)) 'Any)]
  19287. [else (error 'type-check "expected vector not ~a\nin ~v" t1 e)])]
  19288. [(Prim 'vector-set! (list e1 e2 e3) )
  19289. (define-values (e1^ t1) (recur e1))
  19290. (define-values (e2^ t2) (recur e2))
  19291. (define-values (e3^ t3) (recur e3))
  19292. (check-consistent? t2 'Integer e)
  19293. (match t1
  19294. [`(Vector ,ts ...)
  19295. (match e2^
  19296. [(Int i)
  19297. (unless (and (0 . <= . i) (i . < . (length ts)))
  19298. (error 'type-check "invalid index ~a in ~a" i e))
  19299. (check-consistent? (list-ref ts i) t3 e)
  19300. (values (Prim 'vector-set! (list e1^ (Int i) e3^)) 'Void)]
  19301. [else (values (Prim 'vector-set! (list e1^ e2^ e3^)) 'Void)])]
  19302. ['Any (values (Prim 'vector-set! (list e1^ e2^ e3^)) 'Void)]
  19303. [else (error 'type-check "expected vector not ~a\nin ~v" t1 e)])]
  19304. [(Apply e1 e2s)
  19305. (define-values (e1^ T1) (recur e1))
  19306. (define-values (e2s^ T2s) (for/lists (e* ty*) ([e2 e2s]) (recur e2)))
  19307. (match T1
  19308. [`(,T1ps ... -> ,T1rt)
  19309. (for ([T2 T2s] [Tp T1ps])
  19310. (check-consistent? T2 Tp e))
  19311. (values (Apply e1^ e2s^) T1rt)]
  19312. [`Any (values (Apply e1^ e2s^) 'Any)]
  19313. [else (error 'type-check "expected function not ~a\nin ~v" T1 e)])]
  19314. [(Lambda params Tr e1)
  19315. (define-values (xs Ts) (for/lists (l1 l2) ([p params])
  19316. (match p
  19317. [`[,x : ,T] (values x T)]
  19318. [(? symbol? x) (values x 'Any)])))
  19319. (define-values (e1^ T1)
  19320. ((type-check-exp (append (map cons xs Ts) env)) e1))
  19321. (check-consistent? Tr T1 e)
  19322. (values (Lambda (for/list ([x xs] [T Ts]) `[,x : ,T]) Tr e1^)
  19323. `(,@Ts -> ,Tr))]
  19324. [else ((super type-check-exp env) e)]
  19325. )))
  19326. \end{lstlisting}
  19327. \end{tcolorbox}
  19328. \caption{Type checker for the \LangGrad{} language, part 2.}
  19329. \label{fig:type-check-Lgradual-2}
  19330. \end{figure}
  19331. \begin{figure}[tbp]
  19332. \begin{tcolorbox}[colback=white]
  19333. \begin{lstlisting}
  19334. (define/override (type-check-def env)
  19335. (lambda (e)
  19336. (match e
  19337. [(Def f params rt info body)
  19338. (define-values (xs ps) (for/lists (l1 l2) ([p params])
  19339. (match p
  19340. [`[,x : ,T] (values x T)]
  19341. [(? symbol? x) (values x 'Any)])))
  19342. (define new-env (append (map cons xs ps) env))
  19343. (define-values (body^ ty^) ((type-check-exp new-env) body))
  19344. (check-consistent? ty^ rt e)
  19345. (Def f (for/list ([x xs] [T ps]) `[,x : ,T]) rt info body^)]
  19346. [else (error 'type-check "ill-formed function definition ~a" e)]
  19347. )))
  19348. (define/override (type-check-program e)
  19349. (match e
  19350. [(Program info body)
  19351. (define-values (body^ ty) ((type-check-exp '()) body))
  19352. (check-consistent? ty 'Integer e)
  19353. (ProgramDefsExp info '() body^)]
  19354. [(ProgramDefsExp info ds body)
  19355. (define new-env (for/list ([d ds])
  19356. (cons (Def-name d) (fun-def-type d))))
  19357. (define ds^ (for/list ([d ds])
  19358. ((type-check-def new-env) d)))
  19359. (define-values (body^ ty) ((type-check-exp new-env) body))
  19360. (check-consistent? ty 'Integer e)
  19361. (ProgramDefsExp info ds^ body^)]
  19362. [else (super type-check-program e)]))
  19363. \end{lstlisting}
  19364. \end{tcolorbox}
  19365. \caption{Type checker for the \LangGrad{} language, part 3.}
  19366. \label{fig:type-check-Lgradual-3}
  19367. \end{figure}
  19368. \begin{figure}[tbp]
  19369. \begin{tcolorbox}[colback=white]
  19370. \begin{lstlisting}
  19371. (define/public (join t1 t2)
  19372. (match* (t1 t2)
  19373. [('Integer 'Integer) 'Integer]
  19374. [('Boolean 'Boolean) 'Boolean]
  19375. [('Void 'Void) 'Void]
  19376. [('Any t2) t2]
  19377. [(t1 'Any) t1]
  19378. [(`(Vector ,ts1 ...) `(Vector ,ts2 ...))
  19379. `(Vector ,@(for/list ([t1 ts1] [t2 ts2]) (join t1 t2)))]
  19380. [(`(,ts1 ... -> ,rt1) `(,ts2 ... -> ,rt2))
  19381. `(,@(for/list ([t1 ts1] [t2 ts2]) (join t1 t2))
  19382. -> ,(join rt1 rt2))]))
  19383. (define/public (meet t1 t2)
  19384. (match* (t1 t2)
  19385. [('Integer 'Integer) 'Integer]
  19386. [('Boolean 'Boolean) 'Boolean]
  19387. [('Void 'Void) 'Void]
  19388. [('Any t2) 'Any]
  19389. [(t1 'Any) 'Any]
  19390. [(`(Vector ,ts1 ...) `(Vector ,ts2 ...))
  19391. `(Vector ,@(for/list ([t1 ts1] [t2 ts2]) (meet t1 t2)))]
  19392. [(`(,ts1 ... -> ,rt1) `(,ts2 ... -> ,rt2))
  19393. `(,@(for/list ([t1 ts1] [t2 ts2]) (meet t1 t2))
  19394. -> ,(meet rt1 rt2))]))
  19395. (define/public (check-consistent? t1 t2 e)
  19396. (unless (consistent? t1 t2)
  19397. (error 'type-check "~a is inconsistent with ~a\nin ~v" t1 t2 e)))
  19398. (define explicit-prim-ops
  19399. (set-union
  19400. (type-predicates)
  19401. (set 'procedure-arity 'eq? 'not 'and 'or
  19402. 'vector 'vector-length 'vector-ref 'vector-set!
  19403. 'any-vector-length 'any-vector-ref 'any-vector-set!)))
  19404. (define/override (fun-def-type d)
  19405. (match d
  19406. [(Def f params rt info body)
  19407. (define ps
  19408. (for/list ([p params])
  19409. (match p
  19410. [`[,x : ,T] T]
  19411. [(? symbol?) 'Any]
  19412. [else (error 'fun-def-type "unmatched parameter ~a" p)])))
  19413. `(,@ps -> ,rt)]
  19414. [else (error 'fun-def-type "ill-formed definition in ~a" d)]))
  19415. \end{lstlisting}
  19416. \end{tcolorbox}
  19417. \caption{Auxiliary functions for type checking \LangGrad{}.}
  19418. \label{fig:type-check-Lgradual-aux}
  19419. \end{figure}
  19420. \fi}
  19421. \section{Interpreting \LangCast{} }
  19422. \label{sec:interp-casts}
  19423. The runtime behavior of casts involving simple types such as
  19424. \INTTY{} and \BOOLTY{} is straightforward. For example, a
  19425. cast from \INTTY{} to \CANYTY{} can be accomplished with the
  19426. \code{Inject} operator of \LangAny{}, which puts the integer into a
  19427. tagged value (figure~\ref{fig:interp-Lany}). Similarly, a cast from
  19428. \CANYTY{} to \INTTY{} is accomplished with the \code{Project}
  19429. operator, by checking the value's tag and either retrieving
  19430. the underlying integer or signaling an error if the tag is not the
  19431. one for integers (figure~\ref{fig:interp-Lany-aux}).
  19432. %
  19433. Things get more interesting with casts involving
  19434. \racket{function and tuple types}\python{function, tuple, and array types}.
  19435. Consider the cast of the function \code{maybe\_inc} from
  19436. \racket{\code{(Any -> Any)}}\python{\code{Callable[[Any], Any]}}
  19437. to
  19438. \racket{\code{(Integer -> Integer)}}\python{\code{Callable[[int], int]}}
  19439. shown in figure~\ref{fig:map-maybe_inc}.
  19440. When the \code{maybe\_inc} function flows through
  19441. this cast at runtime, we don't know whether it will return
  19442. an integer, because that depends on the input from the user.
  19443. The \LangCast{} interpreter therefore delays the checking
  19444. of the cast until the function is applied. To do so it
  19445. wraps \code{maybe\_inc} in a new function that casts its parameter
  19446. from \INTTY{} to \CANYTY{}, applies \code{maybe\_inc}, and then
  19447. casts the return value from \CANYTY{} to \INTTY{}.
  19448. {\if\edition\pythonEd\pythonColor
  19449. %
  19450. There are further complications regarding casts on mutable data,
  19451. such as the \code{list} type introduced in
  19452. the challenge assignment of section~\ref{sec:arrays}.
  19453. %
  19454. \fi}
  19455. %
  19456. Consider the example presented in figure~\ref{fig:map-bang} that
  19457. defines a partially typed version of \code{map} whose parameter
  19458. \code{v} has type
  19459. \racket{\code{(Vector Any Any)}}\python{\code{list[Any]}}
  19460. and that updates \code{v} in place
  19461. instead of returning a new tuple. We name this function
  19462. \code{map\_inplace}. We apply \code{map\_inplace} to
  19463. \racket{a tuple}\python{an array} of integers, so the type checker
  19464. inserts a cast from
  19465. \racket{\code{(Vector Integer Integer)}}\python{\code{list[int]}}
  19466. to
  19467. \racket{\code{(Vector Any Any)}}\python{\code{list[Any]}}.
  19468. A naive way for the \LangCast{} interpreter to cast between
  19469. \racket{tuple}\python{array} types would be to build a new
  19470. \racket{tuple}\python{array} whose elements are the result
  19471. of casting each of the original elements to the target
  19472. type. However, this approach is not valid for mutable data structures.
  19473. In the example of figure~\ref{fig:map-bang},
  19474. if the cast created a new \racket{tuple}\python{array}, then the updates inside
  19475. \code{map\_inplace} would happen to the new \racket{tuple}\python{array} and not
  19476. the original one.
  19477. Instead the interpreter needs to create a new kind of value, a
  19478. \emph{proxy}, that intercepts every \racket{tuple}\python{array} operation.
  19479. On a read, the proxy reads from the underlying \racket{tuple}\python{array}
  19480. and then applies a
  19481. cast to the resulting value. On a write, the proxy casts the argument
  19482. value and then performs the write to the underlying \racket{tuple}\python{array}.
  19483. \racket{
  19484. For the first \code{(vector-ref v 0)} in \code{map\_inplace}, the proxy casts
  19485. \code{0} from \INTTY{} to \CANYTY{}.
  19486. For the first \code{vector-set!}, the proxy casts a tagged \code{1}
  19487. from \CANYTY{} to \INTTY{}.
  19488. }
  19489. \python{
  19490. For the subscript \code{v[i]} in \code{f(v[i])} of \code{map\_inplace},
  19491. the proxy casts the integer from \INTTY{} to \CANYTY{}.
  19492. For the subscript on the left of the assignment,
  19493. the proxy casts the tagged value from \CANYTY{} to \INTTY{}.
  19494. }
  19495. Finally we consider casts between the \CANYTY{} type and higher-order types
  19496. such as functions and \racket{tuples}\python{lists}. Figure~\ref{fig:map-any}
  19497. shows a variant of \code{map\_inplace} in which parameter \code{v} does not
  19498. have a type annotation, so it is given type \CANYTY{}. In the call to
  19499. \code{map\_inplace}, the \racket{tuple}\python{list} has type
  19500. \racket{\code{(Vector Integer Integer)}}\python{\code{list[int]}},
  19501. so the type checker inserts a cast to \CANYTY{}. A first thought is to use
  19502. \code{Inject}, but that doesn't work because
  19503. \racket{\code{(Vector Integer Integer)}}\python{\code{list[int]}} is not
  19504. a flat type. Instead, we must first cast to
  19505. \racket{\code{(Vector Any Any)}}\python{\code{list[Any]}}, which is flat,
  19506. and then inject to \CANYTY{}.
  19507. \begin{figure}[tbp]
  19508. \begin{tcolorbox}[colback=white]
  19509. % gradual_test_11.rkt
  19510. {\if\edition\racketEd
  19511. \begin{lstlisting}
  19512. (define (map_inplace [f : (Any -> Any)]
  19513. [v : (Vector Any Any)]) : Void
  19514. (begin
  19515. (vector-set! v 0 (f (vector-ref v 0)))
  19516. (vector-set! v 1 (f (vector-ref v 1)))))
  19517. (define (inc x) (+ x 1))
  19518. (let ([v (vector 0 41)])
  19519. (begin (map_inplace inc v) (vector-ref v 1)))
  19520. \end{lstlisting}
  19521. \fi}
  19522. {\if\edition\pythonEd\pythonColor
  19523. \begin{lstlisting}
  19524. def map_inplace(f : Callable[[int], int], v : list[Any]) -> None:
  19525. i = 0
  19526. while i != len(v):
  19527. v[i] = f(v[i])
  19528. i = i + 1
  19529. def inc(x : int) -> int:
  19530. return x + 1
  19531. v = [0, 41]
  19532. map_inplace(inc, v)
  19533. print(v[1])
  19534. \end{lstlisting}
  19535. \fi}
  19536. \end{tcolorbox}
  19537. \caption{An example involving casts on arrays.}
  19538. \label{fig:map-bang}
  19539. \end{figure}
  19540. \begin{figure}[btp]
  19541. \begin{tcolorbox}[colback=white]
  19542. {\if\edition\racketEd
  19543. \begin{lstlisting}
  19544. (define (map_inplace [f : (Any -> Any)] v) : Void
  19545. (begin
  19546. (vector-set! v 0 (f (vector-ref v 0)))
  19547. (vector-set! v 1 (f (vector-ref v 1)))))
  19548. (define (inc x) (+ x 1))
  19549. (let ([v (vector 0 41)])
  19550. (begin (map_inplace inc v) (vector-ref v 1)))
  19551. \end{lstlisting}
  19552. \fi}
  19553. {\if\edition\pythonEd\pythonColor
  19554. \begin{lstlisting}
  19555. def map_inplace(f : Callable[[Any], Any], v) -> None:
  19556. i = 0
  19557. while i != len(v):
  19558. v[i] = f(v[i])
  19559. i = i + 1
  19560. def inc(x):
  19561. return x + 1
  19562. v = [0, 41]
  19563. map_inplace(inc, v)
  19564. print(v[1])
  19565. \end{lstlisting}
  19566. \fi}
  19567. \end{tcolorbox}
  19568. \caption{Casting \racket{a tuple}\python{an array} to \CANYTY{}.}
  19569. \label{fig:map-any}
  19570. \end{figure}
  19571. \begin{figure}[tbp]
  19572. \begin{tcolorbox}[colback=white]
  19573. {\if\edition\racketEd
  19574. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  19575. (define/public (apply_cast v s t)
  19576. (match* (s t)
  19577. [(t1 t2) #:when (equal? t1 t2) v]
  19578. [('Any t2)
  19579. (match t2
  19580. [`(,ts ... -> ,rt)
  19581. (define any->any `(,@(for/list ([t ts]) 'Any) -> Any))
  19582. (define v^ (apply-project v any->any))
  19583. (apply_cast v^ any->any `(,@ts -> ,rt))]
  19584. [`(Vector ,ts ...)
  19585. (define vec-any `(Vector ,@(for/list ([t ts]) 'Any)))
  19586. (define v^ (apply-project v vec-any))
  19587. (apply_cast v^ vec-any `(Vector ,@ts))]
  19588. [else (apply-project v t2)])]
  19589. [(t1 'Any)
  19590. (match t1
  19591. [`(,ts ... -> ,rt)
  19592. (define any->any `(,@(for/list ([t ts]) 'Any) -> Any))
  19593. (define v^ (apply_cast v `(,@ts -> ,rt) any->any))
  19594. (apply-inject v^ (any-tag any->any))]
  19595. [`(Vector ,ts ...)
  19596. (define vec-any `(Vector ,@(for/list ([t ts]) 'Any)))
  19597. (define v^ (apply_cast v `(Vector ,@ts) vec-any))
  19598. (apply-inject v^ (any-tag vec-any))]
  19599. [else (apply-inject v (any-tag t1))])]
  19600. [(`(Vector ,ts1 ...) `(Vector ,ts2 ...))
  19601. (define x (gensym 'x))
  19602. (define cast-reads (for/list ([t1 ts1] [t2 ts2])
  19603. `(function (,x) ,(Cast (Var x) t1 t2) ())))
  19604. (define cast-writes
  19605. (for/list ([t1 ts1] [t2 ts2])
  19606. `(function (,x) ,(Cast (Var x) t2 t1) ())))
  19607. `(vector-proxy ,(vector v (apply vector cast-reads)
  19608. (apply vector cast-writes)))]
  19609. [(`(,ts1 ... -> ,rt1) `(,ts2 ... -> ,rt2))
  19610. (define xs (for/list ([t2 ts2]) (gensym 'x)))
  19611. `(function ,xs ,(Cast
  19612. (Apply (Value v)
  19613. (for/list ([x xs][t1 ts1][t2 ts2])
  19614. (Cast (Var x) t2 t1)))
  19615. rt1 rt2) ())]
  19616. ))
  19617. \end{lstlisting}
  19618. \fi}
  19619. {\if\edition\pythonEd\pythonColor
  19620. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  19621. def apply_cast(self, value, src, tgt):
  19622. match (src, tgt):
  19623. case (AnyType(), FunctionType(ps2, rt2)):
  19624. anyfun = FunctionType([AnyType() for p in ps2], AnyType())
  19625. return self.apply_cast(self.apply_project(value, anyfun), anyfun, tgt)
  19626. case (AnyType(), TupleType(ts2)):
  19627. anytup = TupleType([AnyType() for t1 in ts2])
  19628. return self.apply_cast(self.apply_project(value, anytup), anytup, tgt)
  19629. case (AnyType(), ListType(t2)):
  19630. anylist = ListType([AnyType() for t1 in ts2])
  19631. return self.apply_cast(self.apply_project(value, anylist), anylist, tgt)
  19632. case (AnyType(), AnyType()):
  19633. return value
  19634. case (AnyType(), _):
  19635. return self.apply_project(value, tgt)
  19636. case (FunctionType(ps1,rt1), AnyType()):
  19637. anyfun = FunctionType([AnyType() for p in ps1], AnyType())
  19638. return self.apply_inject(self.apply_cast(value, src, anyfun), anyfun)
  19639. case (TupleType(ts1), AnyType()):
  19640. anytup = TupleType([AnyType() for t1 in ts1])
  19641. return self.apply_inject(self.apply_cast(value, src, anytup), anytup)
  19642. case (ListType(t1), AnyType()):
  19643. anylist = ListType(AnyType())
  19644. return self.apply_inject(self.apply_cast(value,src,anylist), anylist)
  19645. case (_, AnyType()):
  19646. return self.apply_inject(value, src)
  19647. case (FunctionType(ps1, rt1), FunctionType(ps2, rt2)):
  19648. params = [generate_name('x') for p in ps2]
  19649. args = [Cast(Name(x), t2, t1)
  19650. for (x,t1,t2) in zip(params, ps1, ps2)]
  19651. body = Cast(Call(ValueExp(value), args), rt1, rt2)
  19652. return Function('cast', params, [Return(body)], {})
  19653. case (TupleType(ts1), TupleType(ts2)):
  19654. x = generate_name('x')
  19655. reads = [Function('cast', [x], [Return(Cast(Name(x), t1, t2))], {})
  19656. for (t1,t2) in zip(ts1,ts2)]
  19657. return ProxiedTuple(value, reads)
  19658. case (ListType(t1), ListType(t2)):
  19659. x = generate_name('x')
  19660. read = Function('cast', [x], [Return(Cast(Name(x), t1, t2))], {})
  19661. write = Function('cast', [x], [Return(Cast(Name(x), t2, t1))], {})
  19662. return ProxiedList(value, read, write)
  19663. case (t1, t2) if t1 == t2:
  19664. return value
  19665. case (t1, t2):
  19666. raise Exception('apply_cast unexpected ' + repr(src) + ' ' + repr(tgt))
  19667. def apply_inject(self, value, src):
  19668. return Tagged(value, self.type_to_tag(src))
  19669. def apply_project(self, value, tgt):
  19670. match value:
  19671. case Tagged(val, tag) if self.type_to_tag(tgt) == tag:
  19672. return val
  19673. case _:
  19674. raise Exception('apply_project, unexpected ' + repr(value))
  19675. \end{lstlisting}
  19676. \fi}
  19677. \end{tcolorbox}
  19678. \caption{The \code{apply\_cast} auxiliary method.}
  19679. \label{fig:apply_cast}
  19680. \end{figure}
  19681. The \LangCast{} interpreter uses an auxiliary function named
  19682. \code{apply\_cast} to cast a value from a source type to a target type,
  19683. shown in figure~\ref{fig:apply_cast}. You'll find that it handles all
  19684. the kinds of casts that we've discussed in this section.
  19685. %
  19686. The definition of the interpreter for \LangCast{} is shown in
  19687. figure~\ref{fig:interp-Lcast}, with the case for \code{Cast}
  19688. dispatching to \code{apply\_cast}.
  19689. \racket{To handle the addition of tuple
  19690. proxies, we update the tuple primitives in \code{interp-op} using the
  19691. functions given in figure~\ref{fig:guarded-tuple}.}
  19692. Next we turn to the individual passes needed for compiling \LangGrad{}.
  19693. \begin{figure}[tbp]
  19694. \begin{tcolorbox}[colback=white]
  19695. {\if\edition\racketEd
  19696. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  19697. (define interp-Lcast-class
  19698. (class interp-Llambda-class
  19699. (super-new)
  19700. (inherit apply-fun apply-inject apply-project)
  19701. (define/override (interp-op op)
  19702. (match op
  19703. ['vector-length guarded-vector-length]
  19704. ['vector-ref guarded-vector-ref]
  19705. ['vector-set! guarded-vector-set!]
  19706. ['any-vector-ref (lambda (v i)
  19707. (match v [`(tagged ,v^ ,tg)
  19708. (guarded-vector-ref v^ i)]))]
  19709. ['any-vector-set! (lambda (v i a)
  19710. (match v [`(tagged ,v^ ,tg)
  19711. (guarded-vector-set! v^ i a)]))]
  19712. ['any-vector-length (lambda (v)
  19713. (match v [`(tagged ,v^ ,tg)
  19714. (guarded-vector-length v^)]))]
  19715. [else (super interp-op op)]
  19716. ))
  19717. (define/override ((interp-exp env) e)
  19718. (define (recur e) ((interp-exp env) e))
  19719. (match e
  19720. [(Value v) v]
  19721. [(Cast e src tgt) (apply_cast (recur e) src tgt)]
  19722. [else ((super interp-exp env) e)]))
  19723. ))
  19724. (define (interp-Lcast p)
  19725. (send (new interp-Lcast-class) interp-program p))
  19726. \end{lstlisting}
  19727. \fi}
  19728. {\if\edition\pythonEd\pythonColor
  19729. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  19730. class InterpLcast(InterpLany):
  19731. def interp_exp(self, e, env):
  19732. match e:
  19733. case Cast(value, src, tgt):
  19734. v = self.interp_exp(value, env)
  19735. return self.apply_cast(v, src, tgt)
  19736. case ValueExp(value):
  19737. return value
  19738. ...
  19739. case _:
  19740. return super().interp_exp(e, env)
  19741. \end{lstlisting}
  19742. \fi}
  19743. \end{tcolorbox}
  19744. \caption{The interpreter for \LangCast{}.}
  19745. \label{fig:interp-Lcast}
  19746. \end{figure}
  19747. {\if\edition\racketEd
  19748. \begin{figure}[tbp]
  19749. \begin{tcolorbox}[colback=white]
  19750. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  19751. (define (guarded-vector-ref vec i)
  19752. (match vec
  19753. [`(vector-proxy ,proxy)
  19754. (define val (guarded-vector-ref (vector-ref proxy 0) i))
  19755. (define rd (vector-ref (vector-ref proxy 1) i))
  19756. (apply-fun rd (list val) 'guarded-vector-ref)]
  19757. [else (vector-ref vec i)]))
  19758. (define (guarded-vector-set! vec i arg)
  19759. (match vec
  19760. [`(vector-proxy ,proxy)
  19761. (define wr (vector-ref (vector-ref proxy 2) i))
  19762. (define arg^ (apply-fun wr (list arg) 'guarded-vector-set!))
  19763. (guarded-vector-set! (vector-ref proxy 0) i arg^)]
  19764. [else (vector-set! vec i arg)]))
  19765. (define (guarded-vector-length vec)
  19766. (match vec
  19767. [`(vector-proxy ,proxy)
  19768. (guarded-vector-length (vector-ref proxy 0))]
  19769. [else (vector-length vec)]))
  19770. \end{lstlisting}
  19771. %% {\if\edition\pythonEd\pythonColor
  19772. %% \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  19773. %% UNDER CONSTRUCTION
  19774. %% \end{lstlisting}
  19775. %% \fi}
  19776. \end{tcolorbox}
  19777. \caption{The \code{guarded-vector} auxiliary functions.}
  19778. \label{fig:guarded-tuple}
  19779. \end{figure}
  19780. \fi}
  19781. {\if\edition\pythonEd\pythonColor
  19782. \section{Overload Resolution }
  19783. \label{sec:gradual-resolution}
  19784. Recall that when we added support for arrays in
  19785. section~\ref{sec:arrays}, the syntax for the array operations were the
  19786. same as for tuple operations (for example, accessing an element and
  19787. getting the length). So we performed overload resolution, with a pass
  19788. named \code{resolve}, to separate the array and tuple operations. In
  19789. particular, we introduced the primitives \code{array\_load},
  19790. \code{array\_store}, and \code{array\_len}.
  19791. For gradual typing, we further overload these operators to work on
  19792. values of type \CANYTY{}. Thus, the \code{resolve} pass should be
  19793. updated with new cases for the \CANYTY{} type, translating the element
  19794. access and length operations to the primitives \code{any\_load},
  19795. \code{any\_store}, and \code{any\_len}.
  19796. \fi}
  19797. \section{Cast Insertion }
  19798. \label{sec:gradual-insert-casts}
  19799. In our discussion of type checking of \LangGrad{}, we mentioned how
  19800. the runtime aspect of type checking is carried out by the \code{Cast}
  19801. AST node, which is added to the program by a new pass named
  19802. \code{cast\_insert}. The target of this pass is the \LangCast{}
  19803. language. We now discuss the details of this pass.
  19804. The \code{cast\_insert} pass is closely related to the type checker
  19805. for \LangGrad{} (starting in figure~\ref{fig:type-check-Lgradual-1}).
  19806. In particular, the type checker allows implicit casts between
  19807. consistent types. The job of the \code{cast\_insert} pass is to make
  19808. those casts explicit. It does so by inserting
  19809. \code{Cast} nodes into the AST.
  19810. %
  19811. For the most part, the implicit casts occur in places where the type
  19812. checker checks two types for consistency. Consider the case for
  19813. binary operators in figure~\ref{fig:type-check-Lgradual-1}. The type
  19814. checker requires that the type of the left operand is consistent with
  19815. \INTTY{}. Thus, the \code{cast\_insert} pass should insert a
  19816. \code{Cast} around the left operand, converting from its type to
  19817. \INTTY{}. The story is similar for the right operand. It is not always
  19818. necessary to insert a cast, for example, if the left operand already has type
  19819. \INTTY{} then there is no need for a \code{Cast}.
  19820. Some of the implicit casts are not as straightforward. One such case
  19821. arises with the
  19822. conditional expression. In figure~\ref{fig:type-check-Lgradual-1} we
  19823. see that the type checker requires that the two branches have
  19824. consistent types and that type of the conditional expression is the
  19825. meet of the branches' types. In the target language \LangCast{}, both
  19826. branches will need to have the same type, and that type
  19827. will be the type of the conditional expression. Thus, each branch requires
  19828. a \code{Cast} to convert from its type to the meet of the branches' types.
  19829. The case for the function call exhibits another interesting situation. If
  19830. the function expression is of type \CANYTY{}, then it needs to be cast
  19831. to a function type so that it can be used in a function call in
  19832. \LangCast{}. Which function type should it be cast to? The parameter
  19833. and return types are unknown, so we can simply use \CANYTY{} for all
  19834. of them. Furthermore, in \LangCast{} the argument types will need to
  19835. exactly match the parameter types, so we must cast all the arguments
  19836. to type \CANYTY{} (if they are not already of that type).
  19837. {\if\edition\racketEd
  19838. %
  19839. Likewise, the cases for the tuple operators \code{vector-length},
  19840. \code{vector-ref}, and \code{vector-set!} need to handle the situation
  19841. where the tuple expression is of type \CANYTY{}. Instead of
  19842. handling these situations with casts, we recommend translating
  19843. the special-purpose variants of the tuple operators that handle
  19844. tuples of type \CANYTY{}: \code{any-vector-length},
  19845. \code{any-vector-ref}, and \code{any-vector-set!}.
  19846. %
  19847. \fi}
  19848. \section{Lower Casts }
  19849. \label{sec:lower_casts}
  19850. The next step in the journey toward x86 is the \code{lower\_casts}
  19851. pass that translates the casts in \LangCast{} to the lower-level
  19852. \code{Inject} and \code{Project} operators and new operators for
  19853. proxies, extending the \LangLam{} language to \LangProxy{}.
  19854. The \LangProxy{} language can also be described as an extension of
  19855. \LangAny{}, with the addition of proxies. We recommend creating an
  19856. auxiliary function named \code{lower\_cast} that takes an expression
  19857. (in \LangCast{}), a source type, and a target type and translates it
  19858. to an expression in \LangProxy{}.
  19859. The \code{lower\_cast} function can follow a code structure similar to
  19860. the \code{apply\_cast} function (figure~\ref{fig:apply_cast}) used in
  19861. the interpreter for \LangCast{}, because it must handle the same cases
  19862. as \code{apply\_cast} and it needs to mimic the behavior of
  19863. \code{apply\_cast}. The most interesting cases concern
  19864. the casts involving \racket{tuple and function types}\python{tuple, array, and function types}.
  19865. {\if\edition\racketEd
  19866. As mentioned in section~\ref{sec:interp-casts}, a cast from one tuple
  19867. type to another tuple type is accomplished by creating a proxy that
  19868. intercepts the operations on the underlying tuple. Here we make the
  19869. creation of the proxy explicit with the \code{vector-proxy} AST
  19870. node. It takes three arguments: the first is an expression for the
  19871. tuple, the second is a tuple of functions for casting an element that is
  19872. being read from the tuple, and the third is a tuple of functions for
  19873. casting an element that is being written to the array. You can create
  19874. the functions for reading and writing using lambda expressions. Also,
  19875. as we show in the next section, we need to differentiate these tuples
  19876. of functions from the user-created ones, so we recommend using a new
  19877. AST node named \code{raw-vector} instead of \code{vector}.
  19878. %
  19879. Figure~\ref{fig:map-bang-lower-cast} shows the output of
  19880. \code{lower\_casts} on the example given in figure~\ref{fig:map-bang}
  19881. that involved casting a tuple of integers to a tuple of \CANYTY{}.
  19882. \fi}
  19883. {\if\edition\pythonEd\pythonColor
  19884. As mentioned in section~\ref{sec:interp-casts}, a cast from one array
  19885. type to another array type is accomplished by creating a proxy that
  19886. intercepts the operations on the underlying array. Here we make the
  19887. creation of the proxy explicit with the \code{ListProxy} AST node. It
  19888. takes fives arguments: the first is an expression for the array, the
  19889. second is a function for casting an element that is being read from
  19890. the array, the third is a function for casting an element that is
  19891. being written to the array, the fourth is the type of the underlying
  19892. array, and the fifth is the type of the proxied array. You can create
  19893. the functions for reading and writing using lambda expressions.
  19894. A cast between two tuple types can be handled in a similar manner. We
  19895. create a proxy with the \code{TupleProxy} AST node. Tuples are
  19896. immutable, so there is no need for a function to cast the value during
  19897. a write. Because there is a separate element type for each slot in
  19898. the tuple, we need more than one function for casting during a read:
  19899. we need a tuple of functions.
  19900. %
  19901. Also, as we show in the next section, we need to differentiate these
  19902. tuples from the user-created ones, so we recommend using a new AST
  19903. node named \code{RawTuple} instead of \code{Tuple} to create the
  19904. tuples of functions.
  19905. %
  19906. Figure~\ref{fig:map-bang-lower-cast} shows the output of
  19907. \code{lower\_casts} on the example given in figure~\ref{fig:map-bang}
  19908. that involves casting an array of integers to an array of \CANYTY{}.
  19909. \fi}
  19910. \begin{figure}[tbp]
  19911. \begin{tcolorbox}[colback=white]
  19912. {\if\edition\racketEd
  19913. \begin{lstlisting}
  19914. (define (map_inplace [f : (Any -> Any)] [v : (Vector Any Any)]) : Void
  19915. (begin
  19916. (vector-set! v 0 (f (vector-ref v 0)))
  19917. (vector-set! v 1 (f (vector-ref v 1)))))
  19918. (define (inc [x : Any]) : Any
  19919. (inject (+ (project x Integer) 1) Integer))
  19920. (let ([v (vector 0 41)])
  19921. (begin
  19922. (map_inplace inc (vector-proxy v
  19923. (raw-vector (lambda: ([x9 : Integer]) : Any
  19924. (inject x9 Integer))
  19925. (lambda: ([x9 : Integer]) : Any
  19926. (inject x9 Integer)))
  19927. (raw-vector (lambda: ([x9 : Any]) : Integer
  19928. (project x9 Integer))
  19929. (lambda: ([x9 : Any]) : Integer
  19930. (project x9 Integer)))))
  19931. (vector-ref v 1)))
  19932. \end{lstlisting}
  19933. \fi}
  19934. {\if\edition\pythonEd\pythonColor
  19935. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  19936. def map_inplace(f : Callable[[int], int], v : list[Any]) -> void:
  19937. i = 0
  19938. while i != array_len(v):
  19939. array_store(v, i, inject(f(project(array_load(v, i), int)), int))
  19940. i = (i + 1)
  19941. def inc(x : int) -> int:
  19942. return (x + 1)
  19943. def main() -> int:
  19944. v = [0, 41]
  19945. map_inplace(inc, array_proxy(v, list[int], list[Any]))
  19946. print(array_load(v, 1))
  19947. return 0
  19948. \end{lstlisting}
  19949. \fi}
  19950. \end{tcolorbox}
  19951. \caption{Output of \code{lower\_casts} on the example shown in
  19952. figure~\ref{fig:map-bang}.}
  19953. \label{fig:map-bang-lower-cast}
  19954. \end{figure}
  19955. A cast from one function type to another function type is accomplished
  19956. by generating a \code{lambda} whose parameter and return types match
  19957. the target function type. The body of the \code{lambda} should cast
  19958. the parameters from the target type to the source type. (Yes,
  19959. backward! Functions are contravariant\index{subject}{contravariant}
  19960. in the parameters.) Afterward, call the underlying function and then
  19961. cast the result from the source return type to the target return type.
  19962. Figure~\ref{fig:map-lower-cast} shows the output of the
  19963. \code{lower\_casts} pass on the \code{map} example given in
  19964. figure~\ref{fig:gradual-map}. Note that the \code{inc} argument in the
  19965. call to \code{map} is wrapped in a \code{lambda}.
  19966. \begin{figure}[tbp]
  19967. \begin{tcolorbox}[colback=white]
  19968. {\if\edition\racketEd
  19969. \begin{lstlisting}
  19970. (define (map [f : (Integer -> Integer)]
  19971. [v : (Vector Integer Integer)])
  19972. : (Vector Integer Integer)
  19973. (vector (f (vector-ref v 0)) (f (vector-ref v 1))))
  19974. (define (inc [x : Any]) : Any
  19975. (inject (+ (project x Integer) 1) Integer))
  19976. (vector-ref (map (lambda: ([x9 : Integer]) : Integer
  19977. (project (inc (inject x9 Integer)) Integer))
  19978. (vector 0 41)) 1)
  19979. \end{lstlisting}
  19980. \fi}
  19981. {\if\edition\pythonEd\pythonColor
  19982. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  19983. def map(f : Callable[[int], int], v : tuple[int,int]) -> tuple[int,int]:
  19984. return (f(v[0]), f(v[1]),)
  19985. def inc(x : any) -> any:
  19986. return inject((project(x, int) + 1), int)
  19987. def main() -> int:
  19988. t = map(lambda x: project(inc(inject(x, int)), int), (0, 41,))
  19989. print(t[1])
  19990. return 0
  19991. \end{lstlisting}
  19992. \fi}
  19993. \end{tcolorbox}
  19994. \caption{Output of \code{lower\_casts} on the example shown in
  19995. figure~\ref{fig:gradual-map}.}
  19996. \label{fig:map-lower-cast}
  19997. \end{figure}
  19998. %\pagebreak
  19999. \section{Differentiate Proxies }
  20000. \label{sec:differentiate-proxies}
  20001. So far, the responsibility of differentiating tuples and tuple proxies
  20002. has been the job of the interpreter.
  20003. %
  20004. \racket{For example, the interpreter for \LangCast{} implements
  20005. \code{vector-ref} using the \code{guarded-vector-ref} function shown in
  20006. figure~\ref{fig:guarded-tuple}.}
  20007. %
  20008. In the \code{differentiate\_proxies} pass we shift this responsibility
  20009. to the generated code.
  20010. We begin by designing the output language \LangPVec{}. In \LangGrad{}
  20011. we used the type \TUPLETYPENAME{} for both
  20012. real tuples and tuple proxies.
  20013. \python{Similarly, we use the type \code{list} for both arrays and
  20014. array proxies.}
  20015. In \LangPVec{} we return the
  20016. \TUPLETYPENAME{} type to its original
  20017. meaning, as the type of just tuples, and we introduce a new type,
  20018. \PTUPLETYNAME{}, whose values
  20019. can be either real tuples or tuple
  20020. proxies.
  20021. %
  20022. {\if\edition\pythonEd\pythonColor
  20023. Likewise, we return the
  20024. \ARRAYTYPENAME{} type to its original
  20025. meaning, as the type of arrays, and we introduce a new type,
  20026. \PARRAYTYNAME{}, whose values
  20027. can be either arrays or array proxies.
  20028. These new types come with a suite of new primitive operations.
  20029. \fi}
  20030. {\if\edition\racketEd
  20031. A tuple proxy is represented by a tuple containing three things: (1) the
  20032. underlying tuple, (2) a tuple of functions for casting elements that
  20033. are read from the tuple, and (3) a tuple of functions for casting
  20034. values to be written to the tuple. So, we define the following
  20035. abbreviation for the type of a tuple proxy:
  20036. \[
  20037. \itm{TupleProxy} (T\ldots \Rightarrow T'\ldots)
  20038. = (\ttm{Vector}~\PTUPLETY{T\ldots} ~R~ W)
  20039. \]
  20040. where $R = (\ttm{Vector}~(T\to T') \ldots)$ and
  20041. $W = (\ttm{Vector}~(T'\to T) \ldots)$.
  20042. %
  20043. Next we describe each of the new primitive operations.
  20044. \begin{description}
  20045. \item[\code{inject-vector} : (\key{Vector} $T \ldots$) $\to$
  20046. (\key{PVector} $T \ldots$)]\ \\
  20047. %
  20048. This operation brands a vector as a value of the \code{PVector} type.
  20049. \item[\code{inject-proxy} : $\itm{TupleProxy}(T\ldots \Rightarrow T'\ldots)$
  20050. $\to$ (\key{PVector} $T' \ldots$)]\ \\
  20051. %
  20052. This operation brands a vector proxy as value of the \code{PVector} type.
  20053. \item[\code{proxy?} : (\key{PVector} $T \ldots$) $\to$
  20054. \BOOLTY{}] \ \\
  20055. %
  20056. This returns true if the value is a tuple proxy and false if it is a
  20057. real tuple.
  20058. \item[\code{project-vector} : (\key{PVector} $T \ldots$) $\to$
  20059. (\key{Vector} $T \ldots$)]\ \\
  20060. %
  20061. Assuming that the input is a tuple, this operation returns the
  20062. tuple.
  20063. \item[\code{proxy-vector-length} : (\key{PVector} $T \ldots$)
  20064. $\to$ \INTTY{}]\ \\
  20065. %
  20066. Given a tuple proxy, this operation returns the length of the tuple.
  20067. \item[\code{proxy-vector-ref} : (\key{PVector} $T \ldots$)
  20068. $\to$ ($i$ : \INTTY{}) $\to$ $T_i$]\ \\
  20069. %
  20070. Given a tuple proxy, this operation returns the $i$th element of the
  20071. tuple.
  20072. \item[\code{proxy-vector-set!} : (\key{PVector} $T \ldots$) $\to$ ($i$
  20073. : \INTTY{}) $\to$ $T_i$ $\to$ \key{Void}]\ \\
  20074. Given a tuple proxy, this operation writes a value to the $i$th element
  20075. of the tuple.
  20076. \end{description}
  20077. \fi}
  20078. {\if\edition\pythonEd\pythonColor
  20079. %
  20080. A tuple proxy is represented by a tuple containing (1) the underlying
  20081. tuple and (2) a tuple of functions for casting elements that are read
  20082. from the tuple. The \LangPVec{} language includes the following AST
  20083. classes and primitive functions.
  20084. \begin{description}
  20085. \item[\code{InjectTuple}] \ \\
  20086. %
  20087. This AST node brands a tuple as a value of the \PTUPLETYNAME{} type.
  20088. \item[\code{InjectTupleProxy}]\ \\
  20089. %
  20090. This AST node brands a tuple proxy as value of the \PTUPLETYNAME{} type.
  20091. \item[\code{is\_tuple\_proxy}]\ \\
  20092. %
  20093. This primitive returns true if the value is a tuple proxy and false
  20094. if it is a tuple.
  20095. \item[\code{project\_tuple}]\ \\
  20096. %
  20097. Converts a tuple that is branded as \PTUPLETYNAME{}
  20098. back to a tuple.
  20099. \item[\code{proxy\_tuple\_len}]\ \\
  20100. %
  20101. Given a tuple proxy, returns the length of the underlying tuple.
  20102. \item[\code{proxy\_tuple\_load}]\ \\
  20103. %
  20104. Given a tuple proxy, returns the $i$th element of the underlying
  20105. tuple.
  20106. \end{description}
  20107. An array proxy is represented by a tuple containing (1) the underlying
  20108. array, (2) a function for casting elements that are read from the
  20109. array, and (3) a function for casting elements that are written to the
  20110. array. The \LangPVec{} language includes the following AST classes
  20111. and primitive functions.
  20112. \begin{description}
  20113. \item[\code{InjectList}]\ \\
  20114. This AST node brands an array as a value of the \PARRAYTYNAME{} type.
  20115. \item[\code{InjectListProxy}]\ \\
  20116. %
  20117. This AST node brands an array proxy as a value of the \PARRAYTYNAME{} type.
  20118. \item[\code{is\_array\_proxy}]\ \\
  20119. %
  20120. Returns true if the value is an array proxy and false if it is an
  20121. array.
  20122. \item[\code{project\_array}]\ \\
  20123. %
  20124. Converts an array that is branded as \PARRAYTYNAME{} back to an
  20125. array.
  20126. \item[\code{proxy\_array\_len}]\ \\
  20127. %
  20128. Given an array proxy, returns the length of the underlying array.
  20129. \item[\code{proxy\_array\_load}]\ \\
  20130. %
  20131. Given an array proxy, returns the $i$th element of the underlying
  20132. array.
  20133. \item[\code{proxy\_array\_store}]\ \\
  20134. %
  20135. Given an array proxy, writes a value to the $i$th element of the
  20136. underlying array.
  20137. \end{description}
  20138. \fi}
  20139. Now we discuss the translation that differentiates tuples and arrays
  20140. from proxies. First, every type annotation in the program is
  20141. translated (recursively) to replace \TUPLETYPENAME{} with \PTUPLETYNAME{}.
  20142. Next, we insert uses of \PTUPLETYNAME{} operations in the appropriate
  20143. places. For example, we wrap every tuple creation with an
  20144. \racket{\code{inject-vector}}\python{\code{InjectTuple}}.
  20145. %
  20146. {\if\edition\racketEd
  20147. \begin{minipage}{0.96\textwidth}
  20148. \begin{lstlisting}
  20149. (vector |$e_1 \ldots e_n$|)
  20150. |$\Rightarrow$|
  20151. (inject-vector (vector |$e'_1 \ldots e'_n$|))
  20152. \end{lstlisting}
  20153. \end{minipage}
  20154. \fi}
  20155. {\if\edition\pythonEd\pythonColor
  20156. \begin{lstlisting}
  20157. Tuple(|$e_1, \ldots, e_n$|)
  20158. |$\Rightarrow$|
  20159. InjectTuple(Tuple(|$e'_1, \ldots, e'_n$|))
  20160. \end{lstlisting}
  20161. \fi}
  20162. The \racket{\code{raw-vector}}\python{\code{RawTuple}}
  20163. AST node that we introduced in the previous
  20164. section does not get injected.
  20165. {\if\edition\racketEd
  20166. \begin{lstlisting}
  20167. (raw-vector |$e_1 \ldots e_n$|)
  20168. |$\Rightarrow$|
  20169. (vector |$e'_1 \ldots e'_n$|)
  20170. \end{lstlisting}
  20171. \fi}
  20172. {\if\edition\pythonEd\pythonColor
  20173. \begin{lstlisting}
  20174. RawTuple(|$e_1, \ldots, e_n$|)
  20175. |$\Rightarrow$|
  20176. Tuple(|$e'_1, \ldots, e'_n$|)
  20177. \end{lstlisting}
  20178. \fi}
  20179. The \racket{\code{vector-proxy}}\python{\code{TupleProxy}} AST
  20180. translates as follows:
  20181. %
  20182. {\if\edition\racketEd
  20183. \begin{lstlisting}
  20184. (vector-proxy |$e_1~e_2~e_3$|)
  20185. |$\Rightarrow$|
  20186. (inject-proxy (vector |$e'_1~e'_2~e'_3$|))
  20187. \end{lstlisting}
  20188. \fi}
  20189. {\if\edition\pythonEd\pythonColor
  20190. \begin{lstlisting}
  20191. TupleProxy(|$e_1, e_2, T_1, T_2$|)
  20192. |$\Rightarrow$|
  20193. InjectTupleProxy(Tuple(|$e'_1,e'_2, T'_1, T'_2$|))
  20194. \end{lstlisting}
  20195. \fi}
  20196. We translate the element access operations into conditional
  20197. expressions that check whether the value is a proxy and then dispatch
  20198. to either the appropriate proxy tuple operation or the regular tuple
  20199. operation.
  20200. {\if\edition\racketEd
  20201. \begin{lstlisting}
  20202. (vector-ref |$e_1$| |$i$|)
  20203. |$\Rightarrow$|
  20204. (let ([|$v~e_1$|])
  20205. (if (proxy? |$v$|)
  20206. (proxy-vector-ref |$v$| |$i$|)
  20207. (vector-ref (project-vector |$v$|) |$i$|)
  20208. \end{lstlisting}
  20209. \fi}
  20210. %
  20211. Note that in the branch for a tuple, we must apply
  20212. \racket{\code{project-vector}}\python{\code{project\_tuple}} before reading
  20213. from the tuple.
  20214. The translation of array operations is similar to the ones for tuples.
  20215. \section{Reveal Casts }
  20216. \label{sec:reveal-casts-gradual}
  20217. {\if\edition\racketEd
  20218. Recall that the \code{reveal\_casts} pass
  20219. (section~\ref{sec:reveal-casts-Lany}) is responsible for lowering
  20220. \code{Inject} and \code{Project} into lower-level operations.
  20221. %
  20222. In particular, \code{Project} turns into a conditional expression that
  20223. inspects the tag and retrieves the underlying value. Here we need to
  20224. augment the translation of \code{Project} to handle the situation in which
  20225. the target type is \code{PVector}. Instead of using
  20226. \code{vector-length} we need to use \code{proxy-vector-length}.
  20227. \begin{lstlisting}
  20228. (project |$e$| (PVector Any|$_1$| |$\ldots$| Any|$_n$|))
  20229. |$\Rightarrow$|
  20230. (let |$\itm{tmp}$| |$e'$|
  20231. (if (eq? (tag-of-any |$\itm{tmp}$| 2))
  20232. (let |$\itm{tup}$| (value-of |$\itm{tmp}$| (PVector Any |$\ldots$| Any))
  20233. (if (eq? (proxy-vector-length |$\itm{tup}$|) |$n$|) |$\itm{tup}$| (exit)))
  20234. (exit)))
  20235. \end{lstlisting}
  20236. \fi}
  20237. %
  20238. {\if\edition\pythonEd\pythonColor
  20239. Recall that the $\itm{tagof}$ function determines the bits used to
  20240. identify values of different types, and it is used in the \code{reveal\_casts}
  20241. pass in the translation of \code{Project}. The \PTUPLETYNAME{} and
  20242. \PARRAYTYNAME{} types can be mapped to $010$ in binary ($2$ in
  20243. decimal), just like the tuple and array types.
  20244. \fi}
  20245. %
  20246. Otherwise, the only other changes are adding cases that copy the new AST nodes.
  20247. \pagebreak
  20248. \section{Closure Conversion }
  20249. \label{sec:closure-conversion-gradual}
  20250. The auxiliary function that translates type annotations needs to be
  20251. updated to handle the \PTUPLETYNAME{}
  20252. \racket{type}\python{and \PARRAYTYNAME{} types}.
  20253. %
  20254. Otherwise, the only other changes are adding cases that copy the new
  20255. AST nodes.
  20256. \section{Select Instructions }
  20257. \label{sec:select-instructions-gradual}
  20258. \index{subject}{select instructions}
  20259. Recall that the \code{select\_instructions} pass is responsible for
  20260. lowering the primitive operations into x86 instructions. So, we need
  20261. to translate the new operations on \PTUPLETYNAME{} \python{and \PARRAYTYNAME{}}
  20262. to x86. To do so, the first question we need to answer is how to
  20263. differentiate between tuple and tuple proxies\python{, and likewise for
  20264. arrays and array proxies}. We need just one bit to accomplish this;
  20265. we use the bit in position $63$ of the 64-bit tag at the front of
  20266. every tuple (see figure~\ref{fig:tuple-rep})\python{ or array
  20267. (section~\ref{sec:array-rep})}. So far, this bit has been set to $0$,
  20268. so for \racket{\code{inject-vector}}\python{\code{InjectTuple}} we leave
  20269. it that way.
  20270. {\if\edition\racketEd
  20271. \begin{lstlisting}
  20272. (Assign |$\itm{lhs}$| (Prim 'inject-vector (list |$e_1$|)))
  20273. |$\Rightarrow$|
  20274. movq |$e'_1$|, |$\itm{lhs'}$|
  20275. \end{lstlisting}
  20276. \fi}
  20277. {\if\edition\pythonEd\pythonColor
  20278. \begin{lstlisting}
  20279. Assign([|$\itm{lhs}$|], InjectTuple(|$e_1$|))
  20280. |$\Rightarrow$|
  20281. movq |$e'_1$|, |$\itm{lhs'}$|
  20282. \end{lstlisting}
  20283. \fi}
  20284. \python{The translation for \code{InjectList} is also a move instruction.}
  20285. \noindent On the other hand,
  20286. \racket{\code{inject-proxy}}\python{\code{InjectTupleProxy}} sets bit
  20287. $63$ to $1$.
  20288. %
  20289. {\if\edition\racketEd
  20290. \begin{lstlisting}
  20291. (Assign |$\itm{lhs}$| (Prim 'inject-proxy (list |$e_1$|)))
  20292. |$\Rightarrow$|
  20293. movq |$e'_1$|, %r11
  20294. movq |$(1 << 63)$|, %rax
  20295. orq 0(%r11), %rax
  20296. movq %rax, 0(%r11)
  20297. movq %r11, |$\itm{lhs'}$|
  20298. \end{lstlisting}
  20299. \fi}
  20300. {\if\edition\pythonEd\pythonColor
  20301. \begin{lstlisting}
  20302. Assign([|$\itm{lhs}$|], InjectTupleProxy(|$e_1$|))
  20303. |$\Rightarrow$|
  20304. movq |$e'_1$|, %r11
  20305. movq |$(1 << 63)$|, %rax
  20306. orq 0(%r11), %rax
  20307. movq %rax, 0(%r11)
  20308. movq %r11, |$\itm{lhs'}$|
  20309. \end{lstlisting}
  20310. \fi}
  20311. \python{\noindent The translation for \code{InjectListProxy} should set bit $63$
  20312. of the tag and also bit $62$, to differentiate between arrays and tuples.}
  20313. The \racket{\code{proxy?} operation consumes}%
  20314. \python{\code{is\_tuple\_proxy} and \code{is\_array\_proxy} operations
  20315. consume}
  20316. the information so carefully stashed away by the injections. It
  20317. isolates bit $63$ to tell whether the value is a proxy.
  20318. %
  20319. {\if\edition\racketEd
  20320. \begin{lstlisting}
  20321. (Assign |$\itm{lhs}$| (Prim 'proxy? (list |$e_1$|)))
  20322. |$\Rightarrow$|
  20323. movq |$e_1'$|, %r11
  20324. movq 0(%r11), %rax
  20325. sarq $63, %rax
  20326. andq $1, %rax
  20327. movq %rax, |$\itm{lhs'}$|
  20328. \end{lstlisting}
  20329. \fi}%
  20330. %
  20331. {\if\edition\pythonEd\pythonColor
  20332. \begin{lstlisting}
  20333. Assign([|$\itm{lhs}$|], Call(Name('is_tuple_proxy'), [|$e_1$|]))
  20334. |$\Rightarrow$|
  20335. movq |$e_1'$|, %r11
  20336. movq 0(%r11), %rax
  20337. sarq $63, %rax
  20338. andq $1, %rax
  20339. movq %rax, |$\itm{lhs'}$|
  20340. \end{lstlisting}
  20341. \fi}%
  20342. %
  20343. The \racket{\code{project-vector} operation is}
  20344. \python{\code{project\_tuple} and \code{project\_array} operations are}
  20345. straightforward to translate, so we leave that to the reader.
  20346. Regarding the element access operations for tuples\python{ and arrays}, the
  20347. runtime provides procedures that implement them (they are recursive
  20348. functions!), so here we simply need to translate these tuple
  20349. operations into the appropriate function call. For example, here is
  20350. the translation for
  20351. \racket{\code{proxy-vector-ref}}\python{\code{proxy\_tuple\_load}}.
  20352. {\if\edition\racketEd
  20353. \begin{minipage}{0.96\textwidth}
  20354. \begin{lstlisting}
  20355. (Assign |$\itm{lhs}$| (Prim 'proxy-vector-ref (list |$e_1$| |$e_2$|)))
  20356. |$\Rightarrow$|
  20357. movq |$e_1'$|, %rdi
  20358. movq |$e_2'$|, %rsi
  20359. callq proxy_vector_ref
  20360. movq %rax, |$\itm{lhs'}$|
  20361. \end{lstlisting}
  20362. \end{minipage}
  20363. \fi}
  20364. {\if\edition\pythonEd\pythonColor
  20365. \begin{lstlisting}
  20366. Assign([|$\itm{lhs}$|], Call(Name('proxy_tuple_load'), [|$e_1$|, |$e_2$|]))
  20367. |$\Rightarrow$|
  20368. movq |$e_1'$|, %rdi
  20369. movq |$e_2'$|, %rsi
  20370. callq proxy_vector_ref
  20371. movq %rax, |$\itm{lhs'}$|
  20372. \end{lstlisting}
  20373. \fi}
  20374. {\if\edition\pythonEd\pythonColor
  20375. % TODO: revisit the names vecof for python -Jeremy
  20376. We translate
  20377. \code{proxy\_array\_load} to \code{proxy\_vecof\_ref},
  20378. \code{proxy\_array\_store} to \code{proxy\_vecof\_set}, and
  20379. \code{proxy\_array\_len} to \code{proxy\_vecof\_length}.
  20380. \fi}
  20381. We have another batch of operations to deal with: those for the
  20382. \CANYTY{} type. Recall that we generate an
  20383. \racket{\code{any-vector-ref}}\python{\code{any\_load\_unsafe}} when
  20384. there is a element access on something of type \CANYTY{}, and
  20385. similarly for
  20386. \racket{\code{any-vector-set!}}\python{\code{any\_store\_unsafe}} and
  20387. \racket{\code{any-vector-length}}\python{\code{any\_len}}. In
  20388. section~\ref{sec:select-Lany} we selected instructions for these
  20389. operations on the basis of the idea that the underlying value was a tuple or
  20390. array. But in the current setting, the underlying value is of type
  20391. \PTUPLETYNAME{}\python{ or \PARRAYTYNAME{}}. We have added three runtime
  20392. functions to deal with this:
  20393. \code{proxy\_vector\_ref},
  20394. \code{proxy\_vector\_set}, and
  20395. \code{proxy\_vector\_length} that inspect bit $62$ of the tag
  20396. to determine whether the value is a proxy, and then
  20397. dispatches to the the appropriate code.
  20398. %
  20399. So \racket{\code{any-vector-ref}}\python{\code{any\_load\_unsafe}}
  20400. can be translated as follows.
  20401. We begin by projecting the underlying value out of the tagged value and
  20402. then call the \code{proxy\_vector\_ref} procedure in the runtime.
  20403. {\if\edition\racketEd
  20404. \begin{lstlisting}
  20405. (Assign |$\itm{lhs}$| (Prim 'any-vector-ref (list |$e_1$| |$e_2$|)))
  20406. |$\Rightarrow$|
  20407. movq |$\neg 111$|, %rdi
  20408. andq |$e_1'$|, %rdi
  20409. movq |$e_2'$|, %rsi
  20410. callq proxy_vector_ref
  20411. movq %rax, |$\itm{lhs'}$|
  20412. \end{lstlisting}
  20413. \fi}
  20414. {\if\edition\pythonEd\pythonColor
  20415. \begin{lstlisting}
  20416. Assign([|$\itm{lhs}$|], Call(Name('any_load_unsafe'), [|$e_1$|, |$e_2$|]))
  20417. |$\Rightarrow$|
  20418. movq |$\neg 111$|, %rdi
  20419. andq |$e_1'$|, %rdi
  20420. movq |$e_2'$|, %rsi
  20421. callq proxy_vector_ref
  20422. movq %rax, |$\itm{lhs'}$|
  20423. \end{lstlisting}
  20424. \fi}
  20425. \noindent The \racket{\code{any-vector-set!}}\python{\code{any\_store\_unsafe}}
  20426. and \racket{\code{any-vector-length}}\python{\code{any\_len}} operators
  20427. are translated in a similar way. Alternatively, you could generate
  20428. instructions to open-code
  20429. the \code{proxy\_vector\_ref}, \code{proxy\_vector\_set},
  20430. and \code{proxy\_vector\_length} functions.
  20431. \begin{exercise}\normalfont\normalsize
  20432. Implement a compiler for the gradually typed \LangGrad{} language by
  20433. extending and adapting your compiler for \LangLam{}. Create ten new
  20434. partially typed test programs. In addition to testing with these
  20435. new programs, test your compiler on all the tests for \LangLam{}
  20436. and for \LangDyn{}.
  20437. %
  20438. \racket{Sometimes you may get a type-checking error on the
  20439. \LangDyn{} programs, but you can adapt them by inserting a cast to
  20440. the \CANYTY{} type around each subexpression that has caused a type
  20441. error. Although \LangDyn{} does not have explicit casts, you can
  20442. induce one by wrapping the subexpression \code{e} with a call to
  20443. an unannotated identity function, as follows: \code{((lambda (x) x) e)}.}
  20444. %
  20445. \python{Sometimes you may get a type-checking error on the
  20446. \LangDyn{} programs, but you can adapt them by inserting a
  20447. temporary variable of type \CANYTY{} that is initialized with the
  20448. troublesome expression.}
  20449. \end{exercise}
  20450. \begin{figure}[t]
  20451. \begin{tcolorbox}[colback=white]
  20452. {\if\edition\racketEd
  20453. \begin{tikzpicture}[baseline=(current bounding box.center),scale=0.85]
  20454. \node (Lgradual) at (0,4) {\large \LangGrad{}};
  20455. \node (Lgradual2) at (4,4) {\large \LangCast{}};
  20456. \node (Lgradual3) at (8,4) {\large \LangProxy{}};
  20457. \node (Lgradual4) at (12,4) {\large \LangPVec{}};
  20458. \node (Lgradualr) at (12,2) {\large \LangPVec{}};
  20459. \node (Lgradualp) at (8,2) {\large \LangPVec{}};
  20460. \node (Llambdapp) at (4,2) {\large \LangPVecFunRef{}};
  20461. \node (Llambdaproxy-4) at (0,2) {\large \LangPVecFunRef{}};
  20462. \node (Llambdaproxy-5) at (0,0) {\large \LangPVecFunRef{}};
  20463. %\node (F1-1) at (4,0) {\large \LangPVecFunRef{}};
  20464. \node (F1-2) at (8,0) {\large \LangPVecFunRef{}};
  20465. \node (F1-3) at (12,0) {\large \LangPVecFunRef{}};
  20466. \node (F1-4) at (12,-2) {\large \LangPVecAlloc{}};
  20467. \node (F1-5) at (8,-2) {\large \LangPVecAlloc{}};
  20468. \node (F1-6) at (4,-2) {\large \LangPVecAlloc{}};
  20469. \node (C3-2) at (0,-2) {\large \LangCLoopPVec{}};
  20470. \node (x86-2) at (0,-4) {\large \LangXIndCallVar{}};
  20471. \node (x86-2-1) at (0,-6) {\large \LangXIndCallVar{}};
  20472. \node (x86-2-2) at (4,-6) {\large \LangXIndCallVar{}};
  20473. \node (x86-3) at (4,-4) {\large \LangXIndCallVar{}};
  20474. \node (x86-4) at (8,-4) {\large \LangXIndCall{}};
  20475. \node (x86-5) at (8,-6) {\large \LangXIndCall{}};
  20476. \path[->,bend left=15] (Lgradual) edge [above] node
  20477. {\ttfamily\footnotesize cast\_insert} (Lgradual2);
  20478. \path[->,bend left=15] (Lgradual2) edge [above] node
  20479. {\ttfamily\footnotesize lower\_casts} (Lgradual3);
  20480. \path[->,bend left=15] (Lgradual3) edge [above] node
  20481. {\ttfamily\footnotesize differentiate\_proxies} (Lgradual4);
  20482. \path[->,bend left=15] (Lgradual4) edge [left] node
  20483. {\ttfamily\footnotesize shrink} (Lgradualr);
  20484. \path[->,bend left=15] (Lgradualr) edge [above] node
  20485. {\ttfamily\footnotesize uniquify} (Lgradualp);
  20486. \path[->,bend right=15] (Lgradualp) edge [above] node
  20487. {\ttfamily\footnotesize reveal\_functions} (Llambdapp);
  20488. %% \path[->,bend left=15] (Llambdaproxy-4) edge [left] node
  20489. %% {\ttfamily\footnotesize resolve} (Lgradualr);
  20490. \path[->,bend right=15] (Llambdapp) edge [above] node
  20491. {\ttfamily\footnotesize reveal\_casts} (Llambdaproxy-4);
  20492. \path[->,bend right=15] (Llambdaproxy-4) edge [right] node
  20493. {\ttfamily\footnotesize convert\_assignments} (Llambdaproxy-5);
  20494. \path[->,bend right=10] (Llambdaproxy-5) edge [above] node
  20495. {\ttfamily\footnotesize convert\_to\_closures} (F1-2);
  20496. \path[->,bend left=15] (F1-2) edge [above] node
  20497. {\ttfamily\footnotesize limit\_functions} (F1-3);
  20498. \path[->,bend left=15] (F1-3) edge [left] node
  20499. {\ttfamily\footnotesize expose\_allocation} (F1-4);
  20500. \path[->,bend left=15] (F1-4) edge [below] node
  20501. {\ttfamily\footnotesize uncover\_get!} (F1-5);
  20502. \path[->,bend right=15] (F1-5) edge [above] node
  20503. {\ttfamily\footnotesize remove\_complex\_operands} (F1-6);
  20504. \path[->,bend right=15] (F1-6) edge [above] node
  20505. {\ttfamily\footnotesize explicate\_control} (C3-2);
  20506. \path[->,bend right=15] (C3-2) edge [right] node
  20507. {\ttfamily\footnotesize select\_instructions} (x86-2);
  20508. \path[->,bend right=15] (x86-2) edge [right] node
  20509. {\ttfamily\footnotesize uncover\_live} (x86-2-1);
  20510. \path[->,bend right=15] (x86-2-1) edge [below] node
  20511. {\ttfamily\footnotesize build\_interference} (x86-2-2);
  20512. \path[->,bend right=15] (x86-2-2) edge [right] node
  20513. {\ttfamily\footnotesize allocate\_registers} (x86-3);
  20514. \path[->,bend left=15] (x86-3) edge [above] node
  20515. {\ttfamily\footnotesize patch\_instructions} (x86-4);
  20516. \path[->,bend left=15] (x86-4) edge [right] node {\ttfamily\footnotesize prelude\_and\_conclusion} (x86-5);
  20517. \end{tikzpicture}
  20518. \fi}
  20519. {\if\edition\pythonEd\pythonColor
  20520. \begin{tikzpicture}[baseline=(current bounding box.center),scale=0.80]
  20521. \node (Lgradual) at (0,4) {\large \LangGrad{}};
  20522. \node (Lgradual2) at (4,4) {\large \LangGrad{}};
  20523. \node (Lgradual3) at (8,4) {\large \LangCast{}};
  20524. \node (Lgradual4) at (12,4) {\large \LangProxy{}};
  20525. \node (Lgradualr) at (12,2) {\large \LangPVec{}};
  20526. \node (Lgradualp) at (8,2) {\large \LangPVec{}};
  20527. \node (Llambdapp) at (4,2) {\large \LangPVec{}};
  20528. \node (Llambdaproxy-4) at (0,2) {\large \LangPVecFunRef{}};
  20529. \node (Llambdaproxy-5) at (0,0) {\large \LangPVecFunRef{}};
  20530. \node (F1-1) at (4,0) {\large \LangPVecFunRef{}};
  20531. \node (F1-2) at (8,0) {\large \LangPVecFunRef{}};
  20532. \node (F1-3) at (12,0) {\large \LangPVecFunRef{}};
  20533. \node (F1-5) at (8,-2) {\large \LangPVecAlloc{}};
  20534. \node (F1-6) at (4,-2) {\large \LangPVecAlloc{}};
  20535. \node (C3-2) at (0,-2) {\large \LangCLoopPVec{}};
  20536. \node (x86-2) at (0,-4) {\large \LangXIndCallVar{}};
  20537. \node (x86-3) at (4,-4) {\large \LangXIndCallVar{}};
  20538. \node (x86-4) at (8,-4) {\large \LangXIndCall{}};
  20539. \node (x86-5) at (12,-4) {\large \LangXIndCall{}};
  20540. \path[->,bend left=15] (Lgradual) edge [above] node
  20541. {\ttfamily\footnotesize shrink} (Lgradual2);
  20542. \path[->,bend left=15] (Lgradual2) edge [above] node
  20543. {\ttfamily\footnotesize uniquify} (Lgradual3);
  20544. \path[->,bend left=15] (Lgradual3) edge [above] node
  20545. {\ttfamily\footnotesize reveal\_functions} (Lgradual4);
  20546. \path[->,bend left=15] (Lgradual4) edge [left] node
  20547. {\ttfamily\footnotesize resolve} (Lgradualr);
  20548. \path[->,bend left=15] (Lgradualr) edge [below] node
  20549. {\ttfamily\footnotesize cast\_insert} (Lgradualp);
  20550. \path[->,bend right=15] (Lgradualp) edge [above] node
  20551. {\ttfamily\footnotesize lower\_casts} (Llambdapp);
  20552. \path[->,bend right=15] (Llambdapp) edge [above] node
  20553. {\ttfamily\footnotesize differentiate\_proxies} (Llambdaproxy-4);
  20554. \path[->,bend right=15] (Llambdaproxy-4) edge [right] node
  20555. {\ttfamily\footnotesize reveal\_casts} (Llambdaproxy-5);
  20556. \path[->,bend right=15] (Llambdaproxy-5) edge [below] node
  20557. {\ttfamily\footnotesize convert\_assignments} (F1-1);
  20558. \path[->,bend left=15] (F1-1) edge [above] node
  20559. {\ttfamily\footnotesize convert\_to\_closures} (F1-2);
  20560. \path[->,bend left=15] (F1-2) edge [above] node
  20561. {\ttfamily\footnotesize limit\_functions} (F1-3);
  20562. \path[->,bend left=15] (F1-3) edge [right] node
  20563. {\ttfamily\footnotesize expose\_allocation} (F1-5);
  20564. \path[->,bend right=15] (F1-5) edge [above] node
  20565. {\ttfamily\footnotesize remove\_complex\_operands} (F1-6);
  20566. \path[->,bend right=15] (F1-6) edge [above] node
  20567. {\ttfamily\footnotesize explicate\_control} (C3-2);
  20568. \path[->,bend right=15] (C3-2) edge [right] node
  20569. {\ttfamily\footnotesize select\_instructions} (x86-2);
  20570. \path[->,bend right=15] (x86-2) edge [below] node
  20571. {\ttfamily\footnotesize assign\_homes} (x86-3);
  20572. \path[->,bend right=15] (x86-3) edge [below] node
  20573. {\ttfamily\footnotesize patch\_instructions} (x86-4);
  20574. \path[->,bend left=15] (x86-4) edge [above] node {\ttfamily\footnotesize prelude\_and\_conclusion} (x86-5);
  20575. \end{tikzpicture}
  20576. \fi}
  20577. \end{tcolorbox}
  20578. \caption{Diagram of the passes for \LangGrad{} (gradual typing).}
  20579. \label{fig:Lgradual-passes}
  20580. \end{figure}
  20581. Figure~\ref{fig:Lgradual-passes} provides an overview of the passes
  20582. needed for the compilation of \LangGrad{}.
  20583. \section{Further Reading}
  20584. This chapter just scratches the surface of gradual typing. The basic
  20585. approach described here is missing two key ingredients that one would
  20586. want in an implementation of gradual typing: blame
  20587. tracking~\citep{Tobin-Hochstadt:2006fk,Wadler:2009qv} and
  20588. space-efficient casts~\citep{Herman:2006uq,Herman:2010aa}. The
  20589. problem addressed by blame tracking is that when a cast on a
  20590. higher-order value fails, it often does so at a point in the program
  20591. that is far removed from the original cast. Blame tracking is a
  20592. technique for propagating extra information through casts and proxies
  20593. so that when a cast fails, the error message can point back to the
  20594. original location of the cast in the source program.
  20595. The problem addressed by space-efficient casts also relates to
  20596. higher-order casts. It turns out that in partially typed programs, a
  20597. function or tuple can flow through a great many casts at runtime. With
  20598. the approach described in this chapter, each cast adds another
  20599. \code{lambda} wrapper or a tuple proxy. Not only does this take up
  20600. considerable space, but it also makes the function calls and tuple
  20601. operations slow. For example, a partially typed version of quicksort
  20602. could, in the worst case, build a chain of proxies of length $O(n)$
  20603. around the tuple, changing the overall time complexity of the
  20604. algorithm from $O(n^2)$ to $O(n^3)$! \citet{Herman:2006uq} suggested a
  20605. solution to this problem by representing casts using the coercion
  20606. calculus of \citet{Henglein:1994nz}, which prevents the creation of
  20607. long chains of proxies by compressing them into a concise normal
  20608. form. \citet{Siek:2015ab} give an algorithm for compressing coercions,
  20609. and \citet{Kuhlenschmidt:2019aa} show how to implement these ideas in
  20610. the Grift compiler:
  20611. \begin{center}
  20612. \url{https://github.com/Gradual-Typing/Grift}
  20613. \end{center}
  20614. There are also interesting interactions between gradual typing and
  20615. other language features, such as generics, information-flow types, and
  20616. type inference, to name a few. We recommend to the reader the
  20617. online gradual typing bibliography for more material:
  20618. \begin{center}
  20619. \url{http://samth.github.io/gradual-typing-bib/}
  20620. \end{center}
  20621. % TODO: challenge problem:
  20622. % type analysis and type specialization?
  20623. % coercions?
  20624. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  20625. \chapter{Generics}
  20626. \label{ch:Lpoly}
  20627. \setcounter{footnote}{0}
  20628. This chapter studies the compilation of
  20629. generics\index{subject}{generics} (aka parametric
  20630. polymorphism\index{subject}{parametric polymorphism}), compiling the
  20631. \LangPoly{} subset of \racket{Typed Racket}\python{Python}. Generics
  20632. enable programmers to make code more reusable by parameterizing
  20633. functions and data structures with respect to the types on which they
  20634. operate. For example, figure~\ref{fig:map-poly} revisits the
  20635. \code{map} example and this time gives it a more fitting type. This
  20636. \code{map} function is parameterized with respect to the element type
  20637. of the tuple. The type of \code{map} is the following generic type
  20638. specified by the \code{All} type with parameter \code{T}:
  20639. {\if\edition\racketEd
  20640. \begin{lstlisting}
  20641. (All (T) ((T -> T) (Vector T T) -> (Vector T T)))
  20642. \end{lstlisting}
  20643. \fi}
  20644. {\if\edition\pythonEd\pythonColor
  20645. \begin{lstlisting}
  20646. All[[T], Callable[[Callable[[T],T], tuple[T,T]], tuple[T,T]]]
  20647. \end{lstlisting}
  20648. \fi}
  20649. %
  20650. The idea is that \code{map} can be used at \emph{all} choices of a
  20651. type for parameter \code{T}. In the example shown in
  20652. figure~\ref{fig:map-poly} we apply \code{map} to a tuple of integers,
  20653. implicitly choosing \racket{\code{Integer}}\python{\code{int}} for
  20654. \code{T}, but we could have just as well applied \code{map} to a tuple
  20655. of Booleans.
  20656. %
  20657. A \emph{monomorphic} function is simply one that is not generic.
  20658. %
  20659. We use the term \emph{instantiation} for the process (within the
  20660. language implementation) of turning a generic function into a
  20661. monomorphic one, where the type parameters have been replaced by
  20662. types.
  20663. {\if\edition\pythonEd\pythonColor
  20664. %
  20665. In Python, when writing a generic function such as \code{map}, one
  20666. does not explicitly write its generic type (using \code{All}).
  20667. Instead, that the function is generic is implied by the use of type
  20668. variables (such as \code{T}) in the type annotations of its
  20669. parameters.
  20670. %
  20671. \fi}
  20672. \begin{figure}[tbp]
  20673. % poly_test_2.rkt
  20674. \begin{tcolorbox}[colback=white]
  20675. {\if\edition\racketEd
  20676. \begin{lstlisting}
  20677. (: map (All (T) ((T -> T) (Vector T T) -> (Vector T T))))
  20678. (define (map f v)
  20679. (vector (f (vector-ref v 0)) (f (vector-ref v 1))))
  20680. (define (inc [x : Integer]) : Integer (+ x 1))
  20681. (vector-ref (map inc (vector 0 41)) 1)
  20682. \end{lstlisting}
  20683. \fi}
  20684. {\if\edition\pythonEd\pythonColor
  20685. \begin{lstlisting}
  20686. def map(f : Callable[[T],T], tup : tuple[T,T]) -> tuple[T,T]:
  20687. return (f(tup[0]), f(tup[1]))
  20688. def add1(x : int) -> int:
  20689. return x + 1
  20690. t = map(add1, (0, 41))
  20691. print(t[1])
  20692. \end{lstlisting}
  20693. \fi}
  20694. \end{tcolorbox}
  20695. \caption{A generic version of the \code{map} function.}
  20696. \label{fig:map-poly}
  20697. \end{figure}
  20698. Figure~\ref{fig:Lpoly-concrete-syntax} presents the definition of the
  20699. concrete syntax of \LangPoly{}, and figure~\ref{fig:Lpoly-syntax}
  20700. shows the definition of the abstract syntax.
  20701. %
  20702. {\if\edition\racketEd
  20703. We add a second form for function definitions in which a type
  20704. declaration comes before the \code{define}. In the abstract syntax,
  20705. the return type in the \code{Def} is \CANYTY{}, but that should be
  20706. ignored in favor of the return type in the type declaration. (The
  20707. \CANYTY{} comes from using the same parser as discussed in
  20708. chapter~\ref{ch:Ldyn}.) The presence of a type declaration
  20709. enables the use of an \code{All} type for a function, thereby making
  20710. it generic.
  20711. \fi}
  20712. %
  20713. The grammar for types is extended to include the type of a generic
  20714. (\code{All}) and type variables\python{\ (\code{GenericVar} in the
  20715. abstract syntax)}.
  20716. \newcommand{\LpolyGrammarRacket}{
  20717. \begin{array}{lcl}
  20718. \Type &::=& \LP\key{All}~\LP\Var\ldots\RP~ \Type\RP \MID \Var \\
  20719. \Def &::=& \LP\key{:}~\Var~\Type\RP \\
  20720. && \LP\key{define}~ \LP\Var ~ \Var\ldots\RP ~ \Exp\RP
  20721. \end{array}
  20722. }
  20723. \newcommand{\LpolyASTRacket}{
  20724. \begin{array}{lcl}
  20725. \Type &::=& \LP\key{All}~\LP\Var\ldots\RP~ \Type\RP \MID \Var \\
  20726. \Def &::=& \DECL{\Var}{\Type} \\
  20727. && \DEF{\Var}{\LP\Var \ldots\RP}{\key{'Any}}{\code{'()}}{\Exp}
  20728. \end{array}
  20729. }
  20730. \newcommand{\LpolyGrammarPython}{
  20731. \begin{array}{lcl}
  20732. \Type &::=& \key{All}\LS \LS\Var\ldots\RS,\Type\RS \MID \Var
  20733. \end{array}
  20734. }
  20735. \newcommand{\LpolyASTPython}{
  20736. \begin{array}{lcl}
  20737. \Type &::=& \key{AllType}\LP\LS\Var\ldots\RS, \Type\RP
  20738. \MID \key{GenericVar}\LP\Var\RP
  20739. \end{array}
  20740. }
  20741. \begin{figure}[tp]
  20742. \centering
  20743. \begin{tcolorbox}[colback=white]
  20744. \footnotesize
  20745. {\if\edition\racketEd
  20746. \[
  20747. \begin{array}{l}
  20748. \gray{\LintGrammarRacket{}} \\ \hline
  20749. \gray{\LvarGrammarRacket{}} \\ \hline
  20750. \gray{\LifGrammarRacket{}} \\ \hline
  20751. \gray{\LwhileGrammarRacket} \\ \hline
  20752. \gray{\LtupGrammarRacket} \\ \hline
  20753. \gray{\LfunGrammarRacket} \\ \hline
  20754. \gray{\LlambdaGrammarRacket} \\ \hline
  20755. \LpolyGrammarRacket \\
  20756. \begin{array}{lcl}
  20757. \LangPoly{} &::=& \Def \ldots ~ \Exp
  20758. \end{array}
  20759. \end{array}
  20760. \]
  20761. \fi}
  20762. {\if\edition\pythonEd\pythonColor
  20763. \[
  20764. \begin{array}{l}
  20765. \gray{\LintGrammarPython{}} \\ \hline
  20766. \gray{\LvarGrammarPython{}} \\ \hline
  20767. \gray{\LifGrammarPython{}} \\ \hline
  20768. \gray{\LwhileGrammarPython} \\ \hline
  20769. \gray{\LtupGrammarPython} \\ \hline
  20770. \gray{\LfunGrammarPython} \\ \hline
  20771. \gray{\LlambdaGrammarPython} \\\hline
  20772. \LpolyGrammarPython \\
  20773. \begin{array}{lcl}
  20774. \LangPoly{} &::=& \Def\ldots \Stmt\ldots
  20775. \end{array}
  20776. \end{array}
  20777. \]
  20778. \fi}
  20779. \end{tcolorbox}
  20780. \caption{The concrete syntax of \LangPoly{}, extending \LangLam{}
  20781. (figure~\ref{fig:Llam-concrete-syntax}).}
  20782. \label{fig:Lpoly-concrete-syntax}
  20783. \end{figure}
  20784. \begin{figure}[tp]
  20785. \centering
  20786. \begin{tcolorbox}[colback=white]
  20787. \footnotesize
  20788. {\if\edition\racketEd
  20789. \[
  20790. \begin{array}{l}
  20791. \gray{\LintOpAST} \\ \hline
  20792. \gray{\LvarASTRacket{}} \\ \hline
  20793. \gray{\LifASTRacket{}} \\ \hline
  20794. \gray{\LwhileASTRacket{}} \\ \hline
  20795. \gray{\LtupASTRacket{}} \\ \hline
  20796. \gray{\LfunASTRacket} \\ \hline
  20797. \gray{\LlambdaASTRacket} \\ \hline
  20798. \LpolyASTRacket \\
  20799. \begin{array}{lcl}
  20800. \LangPoly{} &::=& \PROGRAMDEFSEXP{\code{'()}}{\LP\Def\ldots\RP}{\Exp}
  20801. \end{array}
  20802. \end{array}
  20803. \]
  20804. \fi}
  20805. {\if\edition\pythonEd\pythonColor
  20806. \[
  20807. \begin{array}{l}
  20808. \gray{\LintASTPython} \\ \hline
  20809. \gray{\LvarASTPython{}} \\ \hline
  20810. \gray{\LifASTPython{}} \\ \hline
  20811. \gray{\LwhileASTPython{}} \\ \hline
  20812. \gray{\LtupASTPython{}} \\ \hline
  20813. \gray{\LfunASTPython} \\ \hline
  20814. \gray{\LlambdaASTPython} \\ \hline
  20815. \LpolyASTPython \\
  20816. \begin{array}{lcl}
  20817. \LangPoly{} &::=& \PROGRAM{}{\LS \Def \ldots \Stmt \ldots \RS}
  20818. \end{array}
  20819. \end{array}
  20820. \]
  20821. \fi}
  20822. \end{tcolorbox}
  20823. \caption{The abstract syntax of \LangPoly{}, extending \LangLam{}
  20824. (figure~\ref{fig:Llam-syntax}).}
  20825. \label{fig:Lpoly-syntax}
  20826. \end{figure}
  20827. By including the \code{All} type in the $\Type$ nonterminal of the
  20828. grammar we choose to make generics first class, which has interesting
  20829. repercussions on the compiler.\footnote{The Python \code{typing} library does
  20830. not include syntax for the \code{All} type. It is inferred for functions whose
  20831. type annotations contain type variables.} Many languages with generics, such as
  20832. C++~\citep{stroustrup88:_param_types} and Standard
  20833. ML~\citep{Milner:1990fk}, support only second-class generics, so it
  20834. may be helpful to see an example of first-class generics in action. In
  20835. figure~\ref{fig:apply-twice} we define a function \code{apply\_twice}
  20836. whose parameter is a generic function. Indeed, because the grammar for
  20837. $\Type$ includes the \code{All} type, a generic function may also be
  20838. returned from a function or stored inside a tuple. The body of
  20839. \code{apply\_twice} applies the generic function \code{f} to a Boolean
  20840. and also to an integer, which would not be possible if \code{f} were
  20841. not generic.
  20842. \begin{figure}[tbp]
  20843. \begin{tcolorbox}[colback=white]
  20844. {\if\edition\racketEd
  20845. \begin{lstlisting}
  20846. (: apply_twice ((All (U) (U -> U)) -> Integer))
  20847. (define (apply_twice f)
  20848. (if (f #t) (f 42) (f 777)))
  20849. (: id (All (T) (T -> T)))
  20850. (define (id x) x)
  20851. (apply_twice id)
  20852. \end{lstlisting}
  20853. \fi}
  20854. {\if\edition\pythonEd\pythonColor
  20855. \begin{lstlisting}
  20856. def apply_twice(f : All[[U], Callable[[U],U]]) -> int:
  20857. if f(True):
  20858. return f(42)
  20859. else:
  20860. return f(777)
  20861. def id(x: T) -> T:
  20862. return x
  20863. print(apply_twice(id))
  20864. \end{lstlisting}
  20865. \fi}
  20866. \end{tcolorbox}
  20867. \caption{An example illustrating first-class generics.}
  20868. \label{fig:apply-twice}
  20869. \end{figure}
  20870. The type checker for \LangPoly{} shown in
  20871. figure~\ref{fig:type-check-Lpoly} has several new responsibilities
  20872. (compared to \LangLam{}) which we discuss in the following paragraphs.
  20873. {\if\edition\pythonEd\pythonColor
  20874. %
  20875. Regarding function definitions, if the type annotations on its
  20876. parameters contain generic variables, then the function is generic and
  20877. therefore its type is an \code{All} type wrapped around a function
  20878. type. Otherwise the function is monomorphic and its type is simply
  20879. a function type.
  20880. %
  20881. \fi}
  20882. The type checking of a function application is extended to handle the
  20883. case in which the operator expression is a generic function. In that case
  20884. the type arguments are deduced by matching the types of the parameters
  20885. with the types of the arguments.
  20886. %
  20887. The \code{match\_types} auxiliary function
  20888. (figure~\ref{fig:type-check-Lpoly-aux}) carries out this deduction by
  20889. recursively descending through a parameter type \code{param\_ty} and
  20890. the corresponding argument type \code{arg\_ty}, making sure that they
  20891. are equal except when there is a type parameter in the parameter
  20892. type. Upon encountering a type parameter for the first time, the
  20893. algorithm deduces an association of the type parameter to the
  20894. corresponding part of the argument type. If it is not the first time
  20895. that the type parameter has been encountered, the algorithm looks up
  20896. its deduced type and makes sure that it is equal to the corresponding
  20897. part of the argument type. The return type of the application is the
  20898. return type of the generic function with the type parameters
  20899. replaced by the deduced type arguments, using the
  20900. \code{substitute\_type} auxiliary function, which is also listed in
  20901. figure~\ref{fig:type-check-Lpoly-aux}.
  20902. The type checker extends type equality to handle the \code{All} type.
  20903. This is not quite as simple as for other types, such as function and
  20904. tuple types, because two \code{All} types can be syntactically
  20905. different even though they are equivalent. For example,
  20906. \begin{center}
  20907. \racket{\code{(All (T) (T -> T))}}\python{\code{All[[T], Callable[[T], T]]}}
  20908. \end{center}
  20909. is equivalent to
  20910. \begin{center}
  20911. \racket{\code{(All (U) (U -> U))}}\python{\code{All[[U], Callable[[U], U]]}}.
  20912. \end{center}
  20913. Two generic types are equal if they differ only in
  20914. the choice of the names of the type parameters. The definition of type
  20915. equality shown in figure~\ref{fig:type-check-Lpoly-aux} renames the type
  20916. parameters in one type to match the type parameters of the other type.
  20917. {\if\edition\racketEd
  20918. %
  20919. The type checker also ensures that only defined type variables appear
  20920. in type annotations. The \code{check\_well\_formed} function for which
  20921. the definition is shown in figure~\ref{fig:well-formed-types}
  20922. recursively inspects a type, making sure that each type variable has
  20923. been defined.
  20924. %
  20925. \fi}
  20926. \begin{figure}[tbp]
  20927. \begin{tcolorbox}[colback=white]
  20928. {\if\edition\racketEd
  20929. \begin{lstlisting}[basicstyle=\ttfamily\scriptsize]
  20930. (define type-check-poly-class
  20931. (class type-check-Llambda-class
  20932. (super-new)
  20933. (inherit check-type-equal?)
  20934. (define/override (type-check-apply env e1 es)
  20935. (define-values (e^ ty) ((type-check-exp env) e1))
  20936. (define-values (es^ ty*) (for/lists (es^ ty*) ([e (in-list es)])
  20937. ((type-check-exp env) e)))
  20938. (match ty
  20939. [`(,ty^* ... -> ,rt)
  20940. (for ([arg-ty ty*] [param-ty ty^*])
  20941. (check-type-equal? arg-ty param-ty (Apply e1 es)))
  20942. (values e^ es^ rt)]
  20943. [`(All ,xs (,tys ... -> ,rt))
  20944. (define env^ (append (for/list ([x xs]) (cons x 'Type)) env))
  20945. (define env^^ (for/fold ([env^^ env^]) ([arg-ty ty*] [param-ty tys])
  20946. (match_types env^^ param-ty arg-ty)))
  20947. (define targs
  20948. (for/list ([x xs])
  20949. (match (dict-ref env^^ x (lambda () #f))
  20950. [#f (error 'type-check "type variable ~a not deduced\nin ~v"
  20951. x (Apply e1 es))]
  20952. [ty ty])))
  20953. (values (Inst e^ ty targs) es^ (substitute_type env^^ rt))]
  20954. [else (error 'type-check "expected a function, not ~a" ty)]))
  20955. (define/override ((type-check-exp env) e)
  20956. (match e
  20957. [(Lambda `([,xs : ,Ts] ...) rT body)
  20958. (for ([T Ts]) ((check_well_formed env) T))
  20959. ((check_well_formed env) rT)
  20960. ((super type-check-exp env) e)]
  20961. [(HasType e1 ty)
  20962. ((check_well_formed env) ty)
  20963. ((super type-check-exp env) e)]
  20964. [else ((super type-check-exp env) e)]))
  20965. (define/override ((type-check-def env) d)
  20966. (verbose 'type-check "poly/def" d)
  20967. (match d
  20968. [(Generic ts (Def f (and p:t* (list `[,xs : ,ps] ...)) rt info body))
  20969. (define ts-env (for/list ([t ts]) (cons t 'Type)))
  20970. (for ([p ps]) ((check_well_formed ts-env) p))
  20971. ((check_well_formed ts-env) rt)
  20972. (define new-env (append ts-env (map cons xs ps) env))
  20973. (define-values (body^ ty^) ((type-check-exp new-env) body))
  20974. (check-type-equal? ty^ rt body)
  20975. (Generic ts (Def f p:t* rt info body^))]
  20976. [else ((super type-check-def env) d)]))
  20977. (define/override (type-check-program p)
  20978. (match p
  20979. [(Program info body)
  20980. (type-check-program (ProgramDefsExp info '() body))]
  20981. [(ProgramDefsExp info ds body)
  20982. (define ds^ (combine-decls-defs ds))
  20983. (define new-env (for/list ([d ds^])
  20984. (cons (def-name d) (fun-def-type d))))
  20985. (define ds^^ (for/list ([d ds^]) ((type-check-def new-env) d)))
  20986. (define-values (body^ ty) ((type-check-exp new-env) body))
  20987. (check-type-equal? ty 'Integer body)
  20988. (ProgramDefsExp info ds^^ body^)]))
  20989. ))
  20990. \end{lstlisting}
  20991. \fi}
  20992. {\if\edition\pythonEd\pythonColor
  20993. \begin{lstlisting}[basicstyle=\ttfamily\small]
  20994. def type_check_exp(self, e, env):
  20995. match e:
  20996. case Call(Name(f), args) if f in builtin_functions:
  20997. return super().type_check_exp(e, env)
  20998. case Call(func, args):
  20999. func_t = self.type_check_exp(func, env)
  21000. func.has_type = func_t
  21001. match func_t:
  21002. case AllType(ps, FunctionType(p_tys, rt)):
  21003. for arg in args:
  21004. arg.has_type = self.type_check_exp(arg, env)
  21005. arg_tys = [arg.has_type for arg in args]
  21006. deduced = {}
  21007. for (p, a) in zip(p_tys, arg_tys):
  21008. self.match_types(p, a, deduced, e)
  21009. return self.substitute_type(rt, deduced)
  21010. case _:
  21011. return super().type_check_exp(e, env)
  21012. case _:
  21013. return super().type_check_exp(e, env)
  21014. def type_check(self, p):
  21015. match p:
  21016. case Module(body):
  21017. env = {}
  21018. for s in body:
  21019. match s:
  21020. case FunctionDef(name, params, bod, dl, returns, comment):
  21021. params_t = [t for (x,t) in params]
  21022. ty_params = set()
  21023. for t in params_t:
  21024. ty_params |$\mid$|= self.generic_variables(t)
  21025. ty = FunctionType(params_t, returns)
  21026. if len(ty_params) > 0:
  21027. ty = AllType(list(ty_params), ty)
  21028. env[name] = ty
  21029. self.check_stmts(body, IntType(), env)
  21030. case _:
  21031. raise Exception('type_check: unexpected ' + repr(p))
  21032. \end{lstlisting}
  21033. \fi}
  21034. \end{tcolorbox}
  21035. \caption{Type checker for the \LangPoly{} language.}
  21036. \label{fig:type-check-Lpoly}
  21037. \end{figure}
  21038. \begin{figure}[tbp]
  21039. \begin{tcolorbox}[colback=white]
  21040. {\if\edition\racketEd
  21041. \begin{lstlisting}[basicstyle=\ttfamily\scriptsize]
  21042. (define/override (type-equal? t1 t2)
  21043. (match* (t1 t2)
  21044. [(`(All ,xs ,T1) `(All ,ys ,T2))
  21045. (define env (map cons xs ys))
  21046. (type-equal? (substitute_type env T1) T2)]
  21047. [(other wise)
  21048. (super type-equal? t1 t2)]))
  21049. (define/public (match_types env pt at)
  21050. (match* (pt at)
  21051. [('Integer 'Integer) env] [('Boolean 'Boolean) env]
  21052. [('Void 'Void) env] [('Any 'Any) env]
  21053. [(`(Vector ,pts ...) `(Vector ,ats ...))
  21054. (for/fold ([env^ env]) ([pt1 pts] [at1 ats])
  21055. (match_types env^ pt1 at1))]
  21056. [(`(,pts ... -> ,prt) `(,ats ... -> ,art))
  21057. (define env^ (match_types env prt art))
  21058. (for/fold ([env^^ env^]) ([pt1 pts] [at1 ats])
  21059. (match_types env^^ pt1 at1))]
  21060. [(`(All ,pxs ,pt1) `(All ,axs ,at1))
  21061. (define env^ (append (map cons pxs axs) env))
  21062. (match_types env^ pt1 at1)]
  21063. [((? symbol? x) at)
  21064. (match (dict-ref env x (lambda () #f))
  21065. [#f (error 'type-check "undefined type variable ~a" x)]
  21066. ['Type (cons (cons x at) env)]
  21067. [t^ (check-type-equal? at t^ 'matching) env])]
  21068. [(other wise) (error 'type-check "mismatch ~a != a" pt at)]))
  21069. (define/public (substitute_type env pt)
  21070. (match pt
  21071. ['Integer 'Integer] ['Boolean 'Boolean]
  21072. ['Void 'Void] ['Any 'Any]
  21073. [`(Vector ,ts ...)
  21074. `(Vector ,@(for/list ([t ts]) (substitute_type env t)))]
  21075. [`(,ts ... -> ,rt)
  21076. `(,@(for/list ([t ts]) (substitute_type env t)) -> ,(substitute_type env rt))]
  21077. [`(All ,xs ,t)
  21078. `(All ,xs ,(substitute_type (append (map cons xs xs) env) t))]
  21079. [(? symbol? x) (dict-ref env x)]
  21080. [else (error 'type-check "expected a type not ~a" pt)]))
  21081. (define/public (combine-decls-defs ds)
  21082. (match ds
  21083. ['() '()]
  21084. [`(,(Decl name type) . (,(Def f params _ info body) . ,ds^))
  21085. (unless (equal? name f)
  21086. (error 'type-check "name mismatch, ~a != ~a" name f))
  21087. (match type
  21088. [`(All ,xs (,ps ... -> ,rt))
  21089. (define params^ (for/list ([x params] [T ps]) `[,x : ,T]))
  21090. (cons (Generic xs (Def name params^ rt info body))
  21091. (combine-decls-defs ds^))]
  21092. [`(,ps ... -> ,rt)
  21093. (define params^ (for/list ([x params] [T ps]) `[,x : ,T]))
  21094. (cons (Def name params^ rt info body) (combine-decls-defs ds^))]
  21095. [else (error 'type-check "expected a function type, not ~a" type) ])]
  21096. [`(,(Def f params rt info body) . ,ds^)
  21097. (cons (Def f params rt info body) (combine-decls-defs ds^))]))
  21098. \end{lstlisting}
  21099. \fi}
  21100. {\if\edition\pythonEd\pythonColor
  21101. \begin{lstlisting}[basicstyle=\ttfamily\scriptsize]
  21102. def match_types(self, param_ty, arg_ty, deduced, e):
  21103. match (param_ty, arg_ty):
  21104. case (GenericVar(id), _):
  21105. if id in deduced:
  21106. self.check_type_equal(arg_ty, deduced[id], e)
  21107. else:
  21108. deduced[id] = arg_ty
  21109. case (AllType(ps, ty), AllType(arg_ps, arg_ty)):
  21110. rename = {ap:p for (ap,p) in zip(arg_ps, ps)}
  21111. new_arg_ty = self.substitute_type(arg_ty, rename)
  21112. self.match_types(ty, new_arg_ty, deduced, e)
  21113. case (TupleType(ps), TupleType(ts)):
  21114. for (p, a) in zip(ps, ts):
  21115. self.match_types(p, a, deduced, e)
  21116. case (ListType(p), ListType(a)):
  21117. self.match_types(p, a, deduced, e)
  21118. case (FunctionType(pps, prt), FunctionType(aps, art)):
  21119. for (pp, ap) in zip(pps, aps):
  21120. self.match_types(pp, ap, deduced, e)
  21121. self.match_types(prt, art, deduced, e)
  21122. case (IntType(), IntType()):
  21123. pass
  21124. case (BoolType(), BoolType()):
  21125. pass
  21126. case _:
  21127. raise Exception('mismatch: ' + str(param_ty) + '\n!= ' + str(arg_ty))
  21128. def substitute_type(self, ty, var_map):
  21129. match ty:
  21130. case GenericVar(id):
  21131. return var_map[id]
  21132. case AllType(ps, ty):
  21133. new_map = copy.deepcopy(var_map)
  21134. for p in ps:
  21135. new_map[p] = GenericVar(p)
  21136. return AllType(ps, self.substitute_type(ty, new_map))
  21137. case TupleType(ts):
  21138. return TupleType([self.substitute_type(t, var_map) for t in ts])
  21139. case ListType(ty):
  21140. return ListType(self.substitute_type(ty, var_map))
  21141. case FunctionType(pts, rt):
  21142. return FunctionType([self.substitute_type(p, var_map) for p in pts],
  21143. self.substitute_type(rt, var_map))
  21144. case IntType():
  21145. return IntType()
  21146. case BoolType():
  21147. return BoolType()
  21148. case _:
  21149. raise Exception('substitute_type: unexpected ' + repr(ty))
  21150. def check_type_equal(self, t1, t2, e):
  21151. match (t1, t2):
  21152. case (AllType(ps1, ty1), AllType(ps2, ty2)):
  21153. rename = {p2: GenericVar(p1) for (p1,p2) in zip(ps1,ps2)}
  21154. return self.check_type_equal(ty1, self.substitute_type(ty2, rename), e)
  21155. case (_, _):
  21156. return super().check_type_equal(t1, t2, e)
  21157. \end{lstlisting}
  21158. \fi}
  21159. \end{tcolorbox}
  21160. \caption{Auxiliary functions for type checking \LangPoly{}.}
  21161. \label{fig:type-check-Lpoly-aux}
  21162. \end{figure}
  21163. {\if\edition\racketEd
  21164. \begin{figure}[tbp]
  21165. \begin{tcolorbox}[colback=white]
  21166. \begin{lstlisting}
  21167. (define/public ((check_well_formed env) ty)
  21168. (match ty
  21169. ['Integer (void)]
  21170. ['Boolean (void)]
  21171. ['Void (void)]
  21172. [(? symbol? a)
  21173. (match (dict-ref env a (lambda () #f))
  21174. ['Type (void)]
  21175. [else (error 'type-check "undefined type variable ~a" a)])]
  21176. [`(Vector ,ts ...)
  21177. (for ([t ts]) ((check_well_formed env) t))]
  21178. [`(,ts ... -> ,t)
  21179. (for ([t ts]) ((check_well_formed env) t))
  21180. ((check_well_formed env) t)]
  21181. [`(All ,xs ,t)
  21182. (define env^ (append (for/list ([x xs]) (cons x 'Type)) env))
  21183. ((check_well_formed env^) t)]
  21184. [else (error 'type-check "unrecognized type ~a" ty)]))
  21185. \end{lstlisting}
  21186. \end{tcolorbox}
  21187. \caption{Well-formed types.}
  21188. \label{fig:well-formed-types}
  21189. \end{figure}
  21190. \fi}
  21191. % TODO: interpreter for R'_10
  21192. \clearpage
  21193. \section{Compiling Generics}
  21194. \label{sec:compiling-poly}
  21195. Broadly speaking, there are four approaches to compiling generics, as
  21196. follows:
  21197. \begin{description}
  21198. \item[Monomorphization] generates a different version of a generic
  21199. function for each set of type arguments with which it is used,
  21200. producing type-specialized code. This approach results in the most
  21201. efficient code but requires whole-program compilation (no separate
  21202. compilation) and may increase code size. Unfortunately,
  21203. monomorphization is incompatible with first-class generics because
  21204. it is not always possible to determine which generic functions are
  21205. used with which type arguments during compilation. (It can be done
  21206. at runtime with just-in-time compilation.) Monomorphization is
  21207. used to compile C++ templates~\citep{stroustrup88:_param_types} and
  21208. generic functions in NESL~\citep{Blelloch:1993aa} and
  21209. ML~\citep{Weeks:2006aa}.
  21210. \item[Uniform representation] generates one version of each generic
  21211. function and requires all values to have a common \emph{boxed} format,
  21212. such as the tagged values of type \CANYTY{} in \LangAny{}. Both
  21213. generic and monomorphic code is compiled similarly to code in a
  21214. dynamically typed language (like \LangDyn{}), in which primitive
  21215. operators require their arguments to be projected from \CANYTY{} and
  21216. their results to be injected into \CANYTY{}. (In object-oriented
  21217. languages, the projection is accomplished via virtual method
  21218. dispatch.) The uniform representation approach is compatible with
  21219. separate compilation and with first-class generics. However, it
  21220. produces the least efficient code because it introduces overhead in
  21221. the entire program. This approach is used in
  21222. Java~\citep{Bracha:1998fk},
  21223. CLU~\citep{liskov79:_clu_ref,Liskov:1993dk}, and some implementations
  21224. of ML~\citep{Cardelli:1984aa,Appel:1987aa}.
  21225. \item[Mixed representation] generates one version of each generic
  21226. function, using a boxed representation for type variables. However,
  21227. monomorphic code is compiled as usual (as in \LangLam{}), and
  21228. conversions are performed at the boundaries between monomorphic code
  21229. and polymorphic code (for example, when a generic function is instantiated
  21230. and called). This approach is compatible with separate compilation
  21231. and first-class generics and maintains efficiency in monomorphic
  21232. code. The trade-off is increased overhead at the boundary between
  21233. monomorphic and generic code. This approach is used in
  21234. implementations of ML~\citep{Leroy:1992qb} and Java, starting in
  21235. Java 5 with the addition of autoboxing.
  21236. \item[Type passing] uses the unboxed representation in both
  21237. monomorphic and generic code. Each generic function is compiled to a
  21238. single function with extra parameters that describe the type
  21239. arguments. The type information is used by the generated code to
  21240. determine how to access the unboxed values at runtime. This approach is
  21241. used in implementation of Napier88~\citep{Morrison:1991aa} and
  21242. ML~\citep{Harper:1995um}. Type passing is compatible with separate
  21243. compilation and first-class generics and maintains the
  21244. efficiency for monomorphic code. There is runtime overhead in
  21245. polymorphic code from dispatching on type information.
  21246. \end{description}
  21247. In this chapter we use the mixed representation approach, partly
  21248. because of its favorable attributes and partly because it is
  21249. straightforward to implement using the tools that we have already
  21250. built to support gradual typing. The work of compiling generic
  21251. functions is performed in two passes, \code{resolve} and
  21252. \code{erase\_types}, that we discuss next. The output of
  21253. \code{erase\_types} is \LangCast{}
  21254. (section~\ref{sec:gradual-insert-casts}), so the rest of the
  21255. compilation is handled by the compiler of chapter~\ref{ch:Lgrad}.
  21256. \section{Resolve Instantiation}
  21257. \label{sec:generic-resolve}
  21258. Recall that the type checker for \LangPoly{} deduces the type
  21259. arguments at call sites to a generic function. The purpose of the
  21260. \code{resolve} pass is to turn this implicit instantiation into an
  21261. explicit one, by adding \code{inst} nodes to the syntax of the
  21262. intermediate language. An \code{inst} node records the mapping of
  21263. type parameters to type arguments. The semantics of the \code{inst}
  21264. node is to instantiate the result of its first argument, a generic
  21265. function, to produce a monomorphic function. However, because the
  21266. interpreter never analyzes type annotations, instantiation can be a
  21267. no-op and simply return the generic function.
  21268. %
  21269. The output language of the \code{resolve} pass is \LangInst{},
  21270. for which the definition is shown in figure~\ref{fig:Lpoly-prime-syntax}.
  21271. {\if\edition\racketEd
  21272. The \code{resolve} pass combines the type declaration and polymorphic
  21273. function into a single definition, using the \code{Poly} form, to make
  21274. polymorphic functions more convenient to process in the next pass of the
  21275. compiler.
  21276. \fi}
  21277. \newcommand{\LinstASTRacket}{
  21278. \begin{array}{lcl}
  21279. \Type &::=& \LP\key{All}~\LP\Var\ldots\RP~ \Type\RP \MID \Var \\
  21280. \Exp &::=& \INST{\Exp}{\Type}{\LP\Type\ldots\RP} \\
  21281. \Def &::=& \gray{ \DEF{\Var}{\LP\LS\Var \key{:} \Type\RS \ldots\RP}{\Type}{\code{'()}}{\Exp} } \\
  21282. &\MID& \LP\key{Poly}~\LP\Var\ldots\RP~ \DEF{\Var}{\LP\LS\Var \key{:} \Type\RS \ldots\RP}{\Type}{\code{'()}}{\Exp}\RP
  21283. \end{array}
  21284. }
  21285. \newcommand{\LinstASTPython}{
  21286. \begin{array}{lcl}
  21287. \Type &::=& \key{AllType}\LP\LS\Var\ldots\RS, \Type\RP \MID \Var \\
  21288. \Exp &::=& \INST{\Exp}{\LC\Var\key{:}\Type\ldots\RC}
  21289. \end{array}
  21290. }
  21291. \begin{figure}[tp]
  21292. \centering
  21293. \begin{tcolorbox}[colback=white]
  21294. \small
  21295. {\if\edition\racketEd
  21296. \[
  21297. \begin{array}{l}
  21298. \gray{\LintOpAST} \\ \hline
  21299. \gray{\LvarASTRacket{}} \\ \hline
  21300. \gray{\LifASTRacket{}} \\ \hline
  21301. \gray{\LwhileASTRacket{}} \\ \hline
  21302. \gray{\LtupASTRacket{}} \\ \hline
  21303. \gray{\LfunASTRacket} \\ \hline
  21304. \gray{\LlambdaASTRacket} \\ \hline
  21305. \LinstASTRacket \\
  21306. \begin{array}{lcl}
  21307. \LangInst{} &::=& \PROGRAMDEFSEXP{\code{'()}}{\LP\Def\ldots\RP}{\Exp}
  21308. \end{array}
  21309. \end{array}
  21310. \]
  21311. \fi}
  21312. {\if\edition\pythonEd\pythonColor
  21313. \[
  21314. \begin{array}{l}
  21315. \gray{\LintASTPython} \\ \hline
  21316. \gray{\LvarASTPython{}} \\ \hline
  21317. \gray{\LifASTPython{}} \\ \hline
  21318. \gray{\LwhileASTPython{}} \\ \hline
  21319. \gray{\LtupASTPython{}} \\ \hline
  21320. \gray{\LfunASTPython} \\ \hline
  21321. \gray{\LlambdaASTPython} \\ \hline
  21322. \LinstASTPython \\
  21323. \begin{array}{lcl}
  21324. \LangInst{} &::=& \PROGRAM{}{\LS \Def \ldots \Stmt \ldots \RS}
  21325. \end{array}
  21326. \end{array}
  21327. \]
  21328. \fi}
  21329. \end{tcolorbox}
  21330. \caption{The abstract syntax of \LangInst{}, extending \LangLam{}
  21331. (figure~\ref{fig:Llam-syntax}).}
  21332. \label{fig:Lpoly-prime-syntax}
  21333. \end{figure}
  21334. The output of the \code{resolve} pass on the generic \code{map}
  21335. example is listed in figure~\ref{fig:map-resolve}. Note that the use
  21336. of \code{map} is wrapped in an \code{inst} node, with the parameter
  21337. \code{T} chosen to be \racket{\code{Integer}}\python{\code{int}}.
  21338. \begin{figure}[tbp]
  21339. % poly_test_2.rkt
  21340. \begin{tcolorbox}[colback=white]
  21341. {\if\edition\racketEd
  21342. \begin{lstlisting}
  21343. (poly (T) (define (map [f : (T -> T)] [v : (Vector T T)]) : (Vector T T)
  21344. (vector (f (vector-ref v 0)) (f (vector-ref v 1)))))
  21345. (define (inc [x : Integer]) : Integer (+ x 1))
  21346. (vector-ref ((inst map (All (T) ((T -> T) (Vector T T) -> (Vector T T)))
  21347. (Integer))
  21348. inc (vector 0 41)) 1)
  21349. \end{lstlisting}
  21350. \fi}
  21351. {\if\edition\pythonEd\pythonColor
  21352. \begin{lstlisting}
  21353. def map(f : Callable[[T],T], tup : tuple[T,T]) -> tuple[T,T]:
  21354. return (f(tup[0]), f(tup[1]))
  21355. def add1(x : int) -> int:
  21356. return x + 1
  21357. t = inst(map, {T: int})(add1, (0, 41))
  21358. print(t[1])
  21359. \end{lstlisting}
  21360. \fi}
  21361. \end{tcolorbox}
  21362. \caption{Output of the \code{resolve} pass on the \code{map} example.}
  21363. \label{fig:map-resolve}
  21364. \end{figure}
  21365. \section{Erase Generic Types}
  21366. \label{sec:erase_types}
  21367. We use the \CANYTY{} type presented in chapter~\ref{ch:Ldyn} to
  21368. represent type variables. For example, figure~\ref{fig:map-erase}
  21369. shows the output of the \code{erase\_types} pass on the generic
  21370. \code{map} (figure~\ref{fig:map-poly}). The occurrences of
  21371. type parameter \code{T} are replaced by \CANYTY{}, and the generic
  21372. \code{All} types are removed from the type of \code{map}.
  21373. \begin{figure}[tbp]
  21374. \begin{tcolorbox}[colback=white]
  21375. {\if\edition\racketEd
  21376. \begin{lstlisting}
  21377. (define (map [f : (Any -> Any)] [v : (Vector Any Any)])
  21378. : (Vector Any Any)
  21379. (vector (f (vector-ref v 0)) (f (vector-ref v 1))))
  21380. (define (inc [x : Integer]) : Integer (+ x 1))
  21381. (vector-ref ((cast map
  21382. ((Any -> Any) (Vector Any Any) -> (Vector Any Any))
  21383. ((Integer -> Integer) (Vector Integer Integer)
  21384. -> (Vector Integer Integer)))
  21385. inc (vector 0 41)) 1)
  21386. \end{lstlisting}
  21387. \fi}
  21388. {\if\edition\pythonEd\pythonColor
  21389. \begin{lstlisting}
  21390. def map(f : Callable[[Any],Any], tup : tuple[Any,Any])-> tuple[Any,Any]:
  21391. return (f(tup[0]), f(tup[1]))
  21392. def add1(x : int) -> int:
  21393. return (x + 1)
  21394. def main() -> int:
  21395. t = cast(map, |$T_1$|, |$T_2$|)(add1, (0, 41))
  21396. print(t[1])
  21397. return 0
  21398. \end{lstlisting}
  21399. {\small
  21400. where\\
  21401. $T_1 = $ \code{Callable[[Callable[[Any], Any],tuple[Any,Any]], tuple[Any,Any]]}\\
  21402. $T_2 = $ \code{Callable[[Callable[[int], int],tuple[int,int]], tuple[int,int]]}
  21403. }
  21404. \fi}
  21405. \end{tcolorbox}
  21406. \caption{The generic \code{map} example after type erasure.}
  21407. \label{fig:map-erase}
  21408. \end{figure}
  21409. This process of type erasure creates a challenge at points of
  21410. instantiation. For example, consider the instantiation of
  21411. \code{map} shown in figure~\ref{fig:map-resolve}.
  21412. The type of \code{map} is
  21413. %
  21414. {\if\edition\racketEd
  21415. \begin{lstlisting}
  21416. (All (T) ((T -> T) (Vector T T) -> (Vector T T)))
  21417. \end{lstlisting}
  21418. \fi}
  21419. {\if\edition\pythonEd\pythonColor
  21420. \begin{lstlisting}
  21421. All[[T], Callable[[Callable[[T], T], tuple[T, T]], tuple[T, T]]]
  21422. \end{lstlisting}
  21423. \fi}
  21424. %
  21425. \noindent and it is instantiated to
  21426. %
  21427. {\if\edition\racketEd
  21428. \begin{lstlisting}
  21429. ((Integer -> Integer) (Vector Integer Integer)
  21430. -> (Vector Integer Integer))
  21431. \end{lstlisting}
  21432. \fi}
  21433. {\if\edition\pythonEd\pythonColor
  21434. \begin{lstlisting}
  21435. Callable[[Callable[[int], int], tuple[int, int]], tuple[int, int]]
  21436. \end{lstlisting}
  21437. \fi}
  21438. %
  21439. \noindent After erasure, the type of \code{map} is
  21440. %
  21441. {\if\edition\racketEd
  21442. \begin{lstlisting}
  21443. ((Any -> Any) (Vector Any Any) -> (Vector Any Any))
  21444. \end{lstlisting}
  21445. \fi}
  21446. {\if\edition\pythonEd\pythonColor
  21447. \begin{lstlisting}
  21448. Callable[[Callable[[Any], Any], tuple[Any, Any]], tuple[Any, Any]]
  21449. \end{lstlisting}
  21450. \fi}
  21451. %
  21452. \noindent but we need to convert it to the instantiated type. This is
  21453. easy to do in the language \LangCast{} with a single \code{cast}. In
  21454. the example shown in figure~\ref{fig:map-erase}, the instantiation of
  21455. \code{map} has been compiled to a \code{cast} from the type of
  21456. \code{map} to the instantiated type. The source and the target type of
  21457. a cast must be consistent (figure~\ref{fig:consistent}), which indeed
  21458. is the case because both the source and target are obtained from the
  21459. same generic type of \code{map}, replacing the type parameters with
  21460. \CANYTY{} in the former and with the deduced type arguments in the
  21461. latter. (Recall that the \CANYTY{} type is consistent with any type.)
  21462. To implement the \code{erase\_types} pass, we first recommend defining
  21463. a recursive function that translates types, named
  21464. \code{erase\_type}. It replaces type variables with \CANYTY{} as
  21465. follows.
  21466. %
  21467. {\if\edition\racketEd
  21468. \begin{lstlisting}
  21469. |$T$|
  21470. |$\Rightarrow$|
  21471. Any
  21472. \end{lstlisting}
  21473. \fi}
  21474. {\if\edition\pythonEd\pythonColor
  21475. \begin{lstlisting}
  21476. GenericVar(|$T$|)
  21477. |$\Rightarrow$|
  21478. Any
  21479. \end{lstlisting}
  21480. \fi}
  21481. %
  21482. \noindent The \code{erase\_type} function also removes the generic
  21483. \code{All} types.
  21484. %
  21485. {\if\edition\racketEd
  21486. \begin{lstlisting}
  21487. (All |$xs$| |$T_1$|)
  21488. |$\Rightarrow$|
  21489. |$T'_1$|
  21490. \end{lstlisting}
  21491. \fi}
  21492. {\if\edition\pythonEd\pythonColor
  21493. \begin{lstlisting}
  21494. AllType(|$xs$|, |$T_1$|)
  21495. |$\Rightarrow$|
  21496. |$T'_1$|
  21497. \end{lstlisting}
  21498. \fi}
  21499. \noindent where $T'_1$ is the result of applying \code{erase\_type} to
  21500. $T_1$.
  21501. %
  21502. In this compiler pass, apply the \code{erase\_type} function to all
  21503. the type annotations in the program.
  21504. Regarding the translation of expressions, the case for \code{Inst} is
  21505. the interesting one. We translate it into a \code{Cast}, as shown
  21506. next.
  21507. The type of the subexpression $e$ is a generic type of the form
  21508. \racket{$\LP\key{All}~\itm{xs}~T\RP$}\python{$\key{AllType}\LP\itm{xs}, T\RP$}.
  21509. The source type of the cast is the erasure of $T$, the type $T_s$.
  21510. %
  21511. {\if\edition\racketEd
  21512. %
  21513. The target type $T_t$ is the result of substituting the argument types
  21514. $ts$ for the type parameters $xs$ in $T$ and then performing type
  21515. erasure.
  21516. %
  21517. \begin{lstlisting}
  21518. (Inst |$e$| (All |$xs$| |$T$|) |$ts$|)
  21519. |$\Rightarrow$|
  21520. (Cast |$e'$| |$T_s$| |$T_t$|)
  21521. \end{lstlisting}
  21522. %
  21523. where $T_t = \LP\code{erase\_type}~\LP\code{substitute\_type}~s~T\RP\RP$,
  21524. and $s = \LP\code{map}~\code{cons}~xs~ts\RP$.
  21525. \fi}
  21526. {\if\edition\pythonEd\pythonColor
  21527. %
  21528. The target type $T_t$ is the result of substituting the deduced
  21529. argument types $d$ in $T$ and then performing type erasure.
  21530. %
  21531. \begin{lstlisting}
  21532. Inst(|$e$|, |$d$|)
  21533. |$\Rightarrow$|
  21534. Cast(|$e'$|, |$T_s$|, |$T_t$|)
  21535. \end{lstlisting}
  21536. %
  21537. where
  21538. $T_t = \code{erase\_type}\LP\code{substitute\_type}\LP d, T\RP\RP$.
  21539. \fi}
  21540. Finally, each generic function is translated to a regular
  21541. function in which type erasure has been applied to all the type
  21542. annotations and the body.
  21543. %% \begin{lstlisting}
  21544. %% (Poly |$ts$| (Def |$f$| ([|$x_1$| : |$T_1$|] |$\ldots$|) |$T_r$| |$\itm{info}$| |$e$|))
  21545. %% |$\Rightarrow$|
  21546. %% (Def |$f$| ([|$x_1$| : |$T'_1$|] |$\ldots$|) |$T'_r$| |$\itm{info}$| |$e'$|)
  21547. %% \end{lstlisting}
  21548. \begin{exercise}\normalfont\normalsize
  21549. Implement a compiler for the polymorphic language \LangPoly{} by
  21550. extending and adapting your compiler for \LangGrad{}. Create six new
  21551. test programs that use polymorphic functions. Some of them should
  21552. make use of first-class generics.
  21553. \end{exercise}
  21554. \begin{figure}[tbp]
  21555. \begin{tcolorbox}[colback=white]
  21556. {\if\edition\racketEd
  21557. \begin{tikzpicture}[baseline=(current bounding box.center),scale=0.85]
  21558. \node (Lpoly) at (0,4) {\large \LangPoly{}};
  21559. \node (Lpolyp) at (4,4) {\large \LangInst{}};
  21560. \node (Lgradualp) at (8,4) {\large \LangCast{}};
  21561. \node (Llambdapp) at (12,4) {\large \LangProxy{}};
  21562. \node (Llambdaproxy) at (12,2) {\large \LangPVec{}};
  21563. \node (Llambdaproxy-2) at (8,2) {\large \LangPVec{}};
  21564. \node (Llambdaproxy-3) at (4,2) {\large \LangPVec{}};
  21565. \node (Llambdaproxy-4) at (0,2) {\large \LangPVecFunRef{}};
  21566. \node (Llambdaproxy-5) at (0,0) {\large \LangPVecFunRef{}};
  21567. \node (F1-1) at (4,0) {\large \LangPVecFunRef{}};
  21568. \node (F1-2) at (8,0) {\large \LangPVecFunRef{}};
  21569. \node (F1-3) at (12,0) {\large \LangPVecFunRef{}};
  21570. \node (F1-4) at (12,-2) {\large \LangPVecAlloc{}};
  21571. \node (F1-5) at (8,-2) {\large \LangPVecAlloc{}};
  21572. \node (F1-6) at (4,-2) {\large \LangPVecAlloc{}};
  21573. \node (C3-2) at (0,-2) {\large \LangCLoopPVec{}};
  21574. \node (x86-2) at (0,-4) {\large \LangXIndCallVar{}};
  21575. \node (x86-2-1) at (0,-6) {\large \LangXIndCallVar{}};
  21576. \node (x86-2-2) at (4,-6) {\large \LangXIndCallVar{}};
  21577. \node (x86-3) at (4,-4) {\large \LangXIndCallVar{}};
  21578. \node (x86-4) at (8,-4) {\large \LangXIndCall{}};
  21579. \node (x86-5) at (8,-6) {\large \LangXIndCall{}};
  21580. \path[->,bend left=15] (Lpoly) edge [above] node
  21581. {\ttfamily\footnotesize resolve} (Lpolyp);
  21582. \path[->,bend left=15] (Lpolyp) edge [above] node
  21583. {\ttfamily\footnotesize erase\_types} (Lgradualp);
  21584. \path[->,bend left=15] (Lgradualp) edge [above] node
  21585. {\ttfamily\footnotesize lower\_casts} (Llambdapp);
  21586. \path[->,bend left=15] (Llambdapp) edge [left] node
  21587. {\ttfamily\footnotesize differentiate\_proxies} (Llambdaproxy);
  21588. \path[->,bend left=15] (Llambdaproxy) edge [below] node
  21589. {\ttfamily\footnotesize shrink} (Llambdaproxy-2);
  21590. \path[->,bend right=15] (Llambdaproxy-2) edge [above] node
  21591. {\ttfamily\footnotesize uniquify} (Llambdaproxy-3);
  21592. \path[->,bend right=15] (Llambdaproxy-3) edge [above] node
  21593. {\ttfamily\footnotesize reveal\_functions} (Llambdaproxy-4);
  21594. \path[->,bend right=15] (Llambdaproxy-4) edge [right] node
  21595. {\ttfamily\footnotesize reveal\_casts} (Llambdaproxy-5);
  21596. \path[->,bend right=15] (Llambdaproxy-5) edge [below] node
  21597. {\ttfamily\footnotesize convert\_assignments} (F1-1);
  21598. \path[->,bend left=15] (F1-1) edge [above] node
  21599. {\ttfamily\footnotesize convert\_to\_closures} (F1-2);
  21600. \path[->,bend left=15] (F1-2) edge [above] node
  21601. {\ttfamily\footnotesize limit\_functions} (F1-3);
  21602. \path[->,bend left=15] (F1-3) edge [left] node
  21603. {\ttfamily\footnotesize expose\_allocation} (F1-4);
  21604. \path[->,bend left=15] (F1-4) edge [below] node
  21605. {\ttfamily\footnotesize uncover\_get!} (F1-5);
  21606. \path[->,bend right=15] (F1-5) edge [above] node
  21607. {\ttfamily\footnotesize remove\_complex\_operands} (F1-6);
  21608. \path[->,bend right=15] (F1-6) edge [above] node
  21609. {\ttfamily\footnotesize explicate\_control} (C3-2);
  21610. \path[->,bend right=15] (C3-2) edge [right] node
  21611. {\ttfamily\footnotesize select\_instructions} (x86-2);
  21612. \path[->,bend right=15] (x86-2) edge [right] node
  21613. {\ttfamily\footnotesize uncover\_live} (x86-2-1);
  21614. \path[->,bend right=15] (x86-2-1) edge [below] node
  21615. {\ttfamily\footnotesize build\_interference} (x86-2-2);
  21616. \path[->,bend right=15] (x86-2-2) edge [right] node
  21617. {\ttfamily\footnotesize allocate\_registers} (x86-3);
  21618. \path[->,bend left=15] (x86-3) edge [above] node
  21619. {\ttfamily\footnotesize patch\_instructions} (x86-4);
  21620. \path[->,bend left=15] (x86-4) edge [right] node {\ttfamily\footnotesize prelude\_and\_conclusion} (x86-5);
  21621. \end{tikzpicture}
  21622. \fi}
  21623. {\if\edition\pythonEd\pythonColor
  21624. \begin{tikzpicture}[baseline=(current bounding box.center),scale=0.85]
  21625. \node (Lgradual) at (0,4) {\large \LangPoly{}};
  21626. \node (Lgradual2) at (4,4) {\large \LangPoly{}};
  21627. \node (Lgradual3) at (8,4) {\large \LangPoly{}};
  21628. \node (Lgradual4) at (12,4) {\large \LangPoly{}};
  21629. \node (Lgradualr) at (12,2) {\large \LangInst{}};
  21630. \node (Llambdapp) at (8,2) {\large \LangCast{}};
  21631. \node (Llambdaproxy-4) at (4,2) {\large \LangPVec{}};
  21632. \node (Llambdaproxy-5) at (0,2) {\large \LangPVec{}};
  21633. \node (F1-1) at (0,0) {\large \LangPVec{}};
  21634. \node (F1-2) at (4,0) {\large \LangPVec{}};
  21635. \node (F1-3) at (8,0) {\large \LangPVec{}};
  21636. \node (F1-5) at (12,0) {\large \LangPVecAlloc{}};
  21637. \node (F1-6) at (12,-2) {\large \LangPVecAlloc{}};
  21638. \node (C3-2) at (0,-2) {\large \LangCLoopPVec{}};
  21639. \node (x86-2) at (0,-4) {\large \LangXIndCallVar{}};
  21640. \node (x86-3) at (4,-4) {\large \LangXIndCallVar{}};
  21641. \node (x86-4) at (8,-4) {\large \LangXIndCall{}};
  21642. \node (x86-5) at (12,-4) {\large \LangXIndCall{}};
  21643. \path[->,bend left=15] (Lgradual) edge [above] node
  21644. {\ttfamily\footnotesize shrink} (Lgradual2);
  21645. \path[->,bend left=15] (Lgradual2) edge [above] node
  21646. {\ttfamily\footnotesize uniquify} (Lgradual3);
  21647. \path[->,bend left=15] (Lgradual3) edge [above] node
  21648. {\ttfamily\footnotesize reveal\_functions} (Lgradual4);
  21649. \path[->,bend left=15] (Lgradual4) edge [left] node
  21650. {\ttfamily\footnotesize resolve} (Lgradualr);
  21651. \path[->,bend left=15] (Lgradualr) edge [below] node
  21652. {\ttfamily\footnotesize erase\_types} (Llambdapp);
  21653. \path[->,bend right=15] (Llambdapp) edge [above] node
  21654. {\ttfamily\footnotesize differentiate\_proxies} (Llambdaproxy-4);
  21655. \path[->,bend right=15] (Llambdaproxy-4) edge [above] node
  21656. {\ttfamily\footnotesize reveal\_casts} (Llambdaproxy-5);
  21657. \path[->,bend right=15] (Llambdaproxy-5) edge [right] node
  21658. {\ttfamily\footnotesize convert\_assignments} (F1-1);
  21659. \path[->,bend right=15] (F1-1) edge [below] node
  21660. {\ttfamily\footnotesize convert\_to\_closures} (F1-2);
  21661. \path[->,bend right=15] (F1-2) edge [below] node
  21662. {\ttfamily\footnotesize limit\_functions} (F1-3);
  21663. \path[->,bend left=15] (F1-3) edge [above] node
  21664. {\ttfamily\footnotesize expose\_allocation} (F1-5);
  21665. \path[->,bend left=15] (F1-5) edge [left] node
  21666. {\ttfamily\footnotesize remove\_complex\_operands} (F1-6);
  21667. \path[->,bend left=5] (F1-6) edge [below] node
  21668. {\ttfamily\footnotesize explicate\_control} (C3-2);
  21669. \path[->,bend right=15] (C3-2) edge [right] node
  21670. {\ttfamily\footnotesize select\_instructions} (x86-2);
  21671. \path[->,bend right=15] (x86-2) edge [below] node
  21672. {\ttfamily\footnotesize assign\_homes} (x86-3);
  21673. \path[->,bend right=15] (x86-3) edge [below] node
  21674. {\ttfamily\footnotesize patch\_instructions} (x86-4);
  21675. \path[->,bend left=15] (x86-4) edge [above] node
  21676. {\ttfamily\footnotesize prelude\_and\_conclusion} (x86-5);
  21677. \end{tikzpicture}
  21678. \fi}
  21679. \end{tcolorbox}
  21680. \caption{Diagram of the passes for \LangPoly{} (generics).}
  21681. \label{fig:Lpoly-passes}
  21682. \end{figure}
  21683. Figure~\ref{fig:Lpoly-passes} provides an overview of the passes
  21684. needed to compile \LangPoly{}.
  21685. % TODO: challenge problem: specialization of instantiations
  21686. % Further Reading
  21687. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  21688. \clearpage
  21689. \appendix
  21690. \chapter{Appendix}
  21691. \setcounter{footnote}{0}
  21692. {\if\edition\racketEd
  21693. \section{Interpreters}
  21694. \label{appendix:interp}
  21695. \index{subject}{interpreter}
  21696. We provide interpreters for each of the source languages \LangInt{},
  21697. \LangVar{}, $\ldots$ in the files \code{interp-Lint.rkt},
  21698. \code{interp-Lvar.rkt}, and so on. The interpreters for the
  21699. intermediate languages \LangCVar{} and \LangCIf{} are in
  21700. \code{interp-Cvar.rkt} and \code{interp-C1.rkt}. The interpreters for
  21701. \LangCVec{}, \LangCFun{}, pseudo-x86, and x86 are in the
  21702. \key{interp.rkt} file.
  21703. \section{Utility Functions}
  21704. \label{appendix:utilities}
  21705. The utility functions described in this section are in the
  21706. \key{utilities.rkt} file of the support code.
  21707. \paragraph{\code{interp-tests}}
  21708. This function runs the compiler passes and the interpreters on each of
  21709. the specified tests to check whether each pass is correct. The
  21710. \key{interp-tests} function has the following parameters:
  21711. \begin{description}
  21712. \item[name (a string)] A name to identify the compiler.
  21713. \item[typechecker] A function of exactly one argument that either
  21714. raises an error using the \code{error} function when it encounters a
  21715. type error, or returns \code{\#f} when it encounters a type
  21716. error. If there is no type error, the type checker returns the
  21717. program.
  21718. \item[passes] A list with one entry per pass. An entry is a list
  21719. consisting of four things:
  21720. \begin{enumerate}
  21721. \item a string giving the name of the pass;
  21722. \item the function that implements the pass (a translator from AST
  21723. to AST);
  21724. \item a function that implements the interpreter (a function from
  21725. AST to result value) for the output language; and,
  21726. \item a type checker for the output language. Type checkers for
  21727. all the $\Lang{}$ and $\CLang{}$ languages are provided in the support code.
  21728. For example, the type checkers for \LangVar{} and \LangCVar{} are in
  21729. \code{type-check-Lvar.rkt} and \code{type-check-Cvar.rkt}. The
  21730. type checker entry is optional. The support code does not provide
  21731. type checkers for the x86 languages.
  21732. \end{enumerate}
  21733. \item[source-interp] An interpreter for the source language. The
  21734. interpreters from appendix~\ref{appendix:interp} make a good choice.
  21735. \item[test-family (a string)] For example, \code{"var"} or \code{"cond"}.
  21736. \item[tests] A list of test numbers that specifies which tests to
  21737. run (explained next).
  21738. \end{description}
  21739. %
  21740. The \key{interp-tests} function assumes that the subdirectory
  21741. \key{tests} has a collection of Racket programs whose names all start
  21742. with the family name, followed by an underscore and then the test
  21743. number, and ending with the file extension \key{.rkt}. Also, for each test
  21744. program that calls \code{read} one or more times, there is a file with
  21745. the same name except that the file extension is \key{.in}, which
  21746. provides the input for the Racket program. If the test program is
  21747. expected to fail type checking, then there should be an empty file of
  21748. the same name with extension \key{.tyerr}.
  21749. \paragraph{\code{compiler-tests}}
  21750. This function runs the compiler passes to generate x86 (a \key{.s}
  21751. file) and then runs the GNU C compiler (gcc) to generate machine code.
  21752. It runs the machine code and checks that the output is $42$. The
  21753. parameters to the \code{compiler-tests} function are similar to those
  21754. of the \code{interp-tests} function, and they consist of
  21755. \begin{itemize}
  21756. \item a compiler name (a string),
  21757. \item a type checker,
  21758. \item description of the passes,
  21759. \item name of a test-family, and
  21760. \item a list of test numbers.
  21761. \end{itemize}
  21762. \paragraph{\code{compile-file}}
  21763. This function takes a description of the compiler passes (see the
  21764. comment for \key{interp-tests}) and returns a function that, given a
  21765. program file name (a string ending in \key{.rkt}), applies all the
  21766. passes and writes the output to a file whose name is the same as the
  21767. program file name with extension \key{.rkt} replaced by \key{.s}.
  21768. \paragraph{\code{read-program}}
  21769. This function takes a file path and parses that file (it must be a
  21770. Racket program) into an abstract syntax tree.
  21771. \paragraph{\code{parse-program}}
  21772. This function takes an S-expression representation of an abstract
  21773. syntax tree and converts it into the struct-based representation.
  21774. \paragraph{\code{assert}}
  21775. This function takes two parameters, a string (\code{msg}) and Boolean
  21776. (\code{bool}), and displays the message \key{msg} if the Boolean
  21777. \key{bool} is false.
  21778. \paragraph{\code{lookup}}
  21779. % remove discussion of lookup? -Jeremy
  21780. This function takes a key and an alist and returns the first value that is
  21781. associated with the given key, if there is one. If not, an error is
  21782. triggered. The alist may contain both immutable pairs (built with
  21783. \key{cons}) and mutable pairs (built with \key{mcons}).
  21784. %The \key{map2} function ...
  21785. \fi} %\racketEd
  21786. \section{x86 Instruction Set Quick Reference}
  21787. \label{sec:x86-quick-reference}
  21788. \index{subject}{x86}
  21789. Table~\ref{tab:x86-instr} lists some x86 instructions and what they
  21790. do. We write $A \to B$ to mean that the value of $A$ is written into
  21791. location $B$. Address offsets are given in bytes. The instruction
  21792. arguments $A, B, C$ can be immediate constants (such as \code{\$4}),
  21793. registers (such as \code{\%rax}), or memory references (such as
  21794. \code{-4(\%ebp)}). Most x86 instructions allow at most one memory
  21795. reference per instruction. Other operands must be immediates or
  21796. registers.
  21797. \begin{table}[tbp]
  21798. \captionabove{Quick reference for the x86 instructions used in this book.}
  21799. \label{tab:x86-instr}
  21800. \centering
  21801. \begin{tabular}{l|l}
  21802. \textbf{Instruction} & \textbf{Operation} \\ \hline
  21803. \texttt{addq} $A$, $B$ & $A + B \to B$\\
  21804. \texttt{negq} $A$ & $- A \to A$ \\
  21805. \texttt{subq} $A$, $B$ & $B - A \to B$\\
  21806. \texttt{imulq} $A$, $B$ & $A \times B \to B$ ($B$ must be a register).\\
  21807. \texttt{callq} $L$ & Pushes the return address and jumps to label $L$. \\
  21808. \texttt{callq} \texttt{*}$A$ & Calls the function at the address $A$. \\
  21809. \texttt{retq} & Pops the return address and jumps to it. \\
  21810. \texttt{popq} $A$ & $*\texttt{rsp} \to A;\, \texttt{rsp} + 8 \to \texttt{rsp}$ \\
  21811. \texttt{pushq} $A$ & $\texttt{rsp} - 8 \to \texttt{rsp};\, A \to *\texttt{rsp}$\\
  21812. \texttt{leaq} $A$, $B$ & $A \to B$ ($B$ must be a register.) \\
  21813. \texttt{cmpq} $A$, $B$ & \multirow{2}{3.7in}{Compare $A$ and $B$ and set the flag register ($B$ must not be an immediate).} \\
  21814. & \\
  21815. \texttt{je} $L$ & \multirow{5}{3.7in}{Jump to label $L$ if the flag register
  21816. matches the condition code of the instruction; otherwise go to the
  21817. next instructions. The condition codes are \key{e} for \emph{equal},
  21818. \key{l} for \emph{less}, \key{le} for \emph{less or equal}, \key{g}
  21819. for \emph{greater}, and \key{ge} for \emph{greater or equal}.} \\
  21820. \texttt{jl} $L$ & \\
  21821. \texttt{jle} $L$ & \\
  21822. \texttt{jg} $L$ & \\
  21823. \texttt{jge} $L$ & \\
  21824. \texttt{jmp} $L$ & Jump to label $L$. \\
  21825. \texttt{movq} $A$, $B$ & $A \to B$ \\
  21826. \texttt{movzbq} $A$, $B$ &
  21827. \multirow{3}{3.7in}{$A \to B$, \text{where } $A$ is a single-byte register
  21828. (e.g., \texttt{al} or \texttt{cl}), $B$ is an 8-byte register,
  21829. and the extra bytes of $B$ are set to zero.} \\
  21830. & \\
  21831. & \\
  21832. \texttt{notq} $A$ & $\sim A \to A$ (bitwise complement)\\
  21833. \texttt{orq} $A$, $B$ & $A \mid B \to B$ (bitwise-or)\\
  21834. \texttt{andq} $A$, $B$ & $A \& B \to B$ (bitwise-and)\\
  21835. \texttt{salq} $A$, $B$ & $B$ \texttt{<<} $A \to B$ (arithmetic shift left, where $A$ is a constant)\\
  21836. \texttt{sarq} $A$, $B$ & $B$ \texttt{>>} $A \to B$ (arithmetic shift right, where $A$ is a constant)\\
  21837. \texttt{sete} $A$ & \multirow{5}{3.7in}{If the flag matches the condition code,
  21838. then $1 \to A$; else $0 \to A$. Refer to \texttt{je} for the
  21839. description of the condition codes. $A$ must be a single byte register
  21840. (e.g., \texttt{al} or \texttt{cl}).} \\
  21841. \texttt{setl} $A$ & \\
  21842. \texttt{setle} $A$ & \\
  21843. \texttt{setg} $A$ & \\
  21844. \texttt{setge} $A$ &
  21845. \end{tabular}
  21846. \end{table}
  21847. \backmatter
  21848. \addtocontents{toc}{\vspace{11pt}}
  21849. \cleardoublepage % needed for right page number in TOC for References
  21850. %% \nocite{*} is a way to get all the entries in the .bib file to
  21851. %% print in the bibliography:
  21852. \nocite{*}\let\bibname\refname
  21853. \addcontentsline{toc}{fmbm}{\refname}
  21854. \printbibliography
  21855. %\printindex{authors}{Author Index}
  21856. \printindex{subject}{Index}
  21857. \end{document}
  21858. % LocalWords: Nano Siek CC NC ISBN wonks wizardry Backus nanopasses
  21859. % LocalWords: dataflow nx generics autoboxing Hulman Ch CO Dybvig aa
  21860. % LocalWords: Abelson uq Felleisen Flatt Lutz vp vj Sweigart vn Matz
  21861. % LocalWords: Matthes github gcc MacOS Chez Friedman's Dipanwita fk
  21862. % LocalWords: Sarkar Dybvig's Abdulaziz Ghuloum bh IU Factora Bor qf
  21863. % LocalWords: Cameron Kuhlenschmidt Vollmer Vitousek Yuh Nystrom AST
  21864. % LocalWords: Tolmach Wollowski ASTs Aho ast struct int backquote op
  21865. % LocalWords: args neg def init UnaryOp USub func BinOp Naur BNF rkt
  21866. % LocalWords: fixnum datatype structure's arith exp stmt Num Expr tr
  21867. % LocalWords: plt PSF ref CPython cpython reynolds interp cond fx pe
  21868. % LocalWords: arg Hitchhiker's TODO nullary Lvar Lif cnd thn var sam
  21869. % LocalWords: IfExp Bool InterpLvar InterpLif InterpRVar alist jane
  21870. % LocalWords: basicstyle kate dict alists env stmts ss len lhs globl
  21871. % LocalWords: rsp rbp rax rbx rcx rdx rsi rdi movq retq callq jmp es
  21872. % LocalWords: pushq subq popq negq addq arity uniquify Cvar instr cg
  21873. % LocalWords: Seq CProgram gensym lib Fprivate Flist tmp ANF Danvy
  21874. % LocalWords: rco Flists py rhs unhandled cont immediates lstlisting
  21875. % LocalWords: numberstyle Cormen sudoku Balakrishnan ve aka DSATUR
  21876. % LocalWords: Brelaz eu Gebremedhin Omari deletekeywords min JGS wb
  21877. % LocalWords: morekeywords fullflexible goto allocator tuples Wailes
  21878. % LocalWords: Kernighan runtime Freiburg Thiemann Bloomington unary
  21879. % LocalWords: eq prog rcl definitional Evaluator os Earley's mul
  21880. % LocalWords: subexpression evaluator InterpLint lcl quadwords concl
  21881. % LocalWords: nanopass subexpressions decompositions Lawall Hatcliff
  21882. % LocalWords: subdirectory monadic Moggi mon utils macosx unix repr
  21883. % LocalWords: Uncomment undirected vertices callee Liveness liveness
  21884. % LocalWords: frozenset unordered Appel Rosen pqueue cmp Fortran vl
  21885. % LocalWords: Horwitz Kempe colorable subgraph kx iteratively Matula
  21886. % LocalWords: ys ly Palsberg si JoeQ cardinality Poletto Booleans hj
  21887. % LocalWords: subscriptable MyPy Lehtosalo Listof Pairof indexable
  21888. % LocalWords: bool boolop NotEq LtE GtE refactor els orelse BoolOp
  21889. % LocalWords: boolean initializer param exprs TypeCheckLvar msg Tt
  21890. % LocalWords: isinstance TypeCheckLif tyerr xorq bytereg al dh dl ne
  21891. % LocalWords: le ge cmpq movzbq EFLAGS jle inlined setl je jl Cif
  21892. % LocalWords: lll pred IfStmt sete CFG tsort multigraph FunctionType
  21893. % LocalWords: Wijngaarden Plotkin Logothetis PeytonJones SetBang Ph
  21894. % LocalWords: WhileLoop unboxes Lwhile unbox InterpLwhile rhsT varT
  21895. % LocalWords: Tbody TypeCheckLwhile acyclic mainstart mainconclusion
  21896. % LocalWords: versa Kildall Kleene worklist enqueue dequeue deque tb
  21897. % LocalWords: GetBang effectful SPERBER Lfun tuple implementer's tup
  21898. % LocalWords: indices HasType Lvec InterpLtup tuple's vec ty Ungar
  21899. % LocalWords: TypeCheckLtup Detlefs Tene FromSpace ToSpace Diwan ptr
  21900. % LocalWords: Siebert TupleType endian salq sarq fromspace rootstack
  21901. % LocalWords: uint th vecinit alloc GlobalValue andq bitwise ior elt
  21902. % LocalWords: dereferencing StructDef Vectorof vectorof Lvecof Jacek
  21903. % LocalWords: AllocateArray cheney tospace Dieckmann Shahriyar di xs
  21904. % LocalWords: Shidal Osterlund Gamari lexically FunctionDef IntType
  21905. % LocalWords: BoolType VoidType ProgramDefsExp vals params ps ds num
  21906. % LocalWords: InterpLfun FunRef TypeCheckLfun leaq callee's mainDef
  21907. % LocalWords: ProgramDefs TailCall tailjmp IndirectCallq TailJmp rT
  21908. % LocalWords: prepending addstart addconclusion Cardelli Llambda typ
  21909. % LocalWords: Llambda InterpLlambda AnnAssign Dunfield bodyT str fvs
  21910. % LocalWords: TypeCheckLlambda annot dereference clos fvts closTy tg
  21911. % LocalWords: Minamide AllocateClosure Gilray Milner morphos subtype
  21912. % LocalWords: polymorphism untyped AnyType dataclass untag Ldyn conc
  21913. % LocalWords: lookup InterpLdyn elif tagof Lany TypeCheckLany tv orq
  21914. % LocalWords: AnnLambda InterpLany ClosureTuple ValueOf TagOf imulq
  21915. % LocalWords: untagged multi Tobin Hochstadt zr mn Gronski kd ret Tp
  21916. % LocalWords: Tif src tgt Lcast wr contravariant PVector un Lgradual
  21917. % LocalWords: Lgradualp Llambdapp Llambdaproxy Wadler qv quicksort
  21918. % LocalWords: Henglein nz coercions Grift parametetric parameterized
  21919. % LocalWords: parameterizing stroustrup subst tys targs decls defs
  21920. % LocalWords: pts ats prt pxs axs Decl Monomorphization NESL CLU qb
  21921. % LocalWords: monomorphization Blelloch monomorphic Bracha unboxed
  21922. % LocalWords: instantiation Lpoly Lpolyp typechecker mcons ebp jge
  21923. % LocalWords: notq setle setg setge uncredited LT Std groundbreaking
  21924. % LocalWords: colback GitHub inputint nonatomic ea tcolorbox bassed
  21925. % LocalWords: tikzpicture Chaitin's Belady's Cocke Freiburghouse Lt
  21926. % LocalWords: lessthan lessthaneq greaterthan greaterthaneq Gt pt Te
  21927. % LocalWords: ts escapechar Tc bl ch cl cc foo lt metavariables vars
  21928. % LocalWords: trans naively IR rep assoc ListType TypeCheckLarray dz
  21929. % LocalWords: Mult InterpLarray lst array's generation's Collins inc
  21930. % LocalWords: Cutler Kelsey val rt bod conflates reg inlining lam AF
  21931. % LocalWords: ASTPython body's bot todo rs ls TypeCheckLgrad ops ab
  21932. % LocalWords: value's inplace anyfun anytup anylist ValueExp proxied
  21933. % LocalWords: ProxiedTuple ProxiedList InterpLcast ListProxy vectof
  21934. % LocalWords: TupleProxy RawTuple InjectTuple InjectTupleProxy vecof
  21935. % LocalWords: InjectList InjectListProxy unannotated Lgradualr poly
  21936. % LocalWords: GenericVar AllType Inst builtin ap pps aps pp deepcopy
  21937. % LocalWords: liskov clu Liskov dk Napier um inst popl jg seq ith qy
  21938. % LocalWords: racketEd subparts subpart nonterminal nonterminals Dyn
  21939. % LocalWords: pseudocode underapproximation underapproximations LALR
  21940. % LocalWords: semilattices overapproximate incrementing Earley docs
  21941. % LocalWords: multilanguage Prelim shinan DeRemer lexer Lesk LPAR cb
  21942. % LocalWords: RPAR abcbab abc bzca usub paren expr lang WS Tomita qr
  21943. % LocalWords: subparses LCCN ebook hardcover epub pdf LCSH LCC DDC
  21944. % LocalWords: LC partialevaluation pythonEd TOC TrappedError