book.tex 626 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586558755885589559055915592559355945595559655975598559956005601560256035604560556065607560856095610561156125613561456155616561756185619562056215622562356245625562656275628562956305631563256335634563556365637563856395640564156425643564456455646564756485649565056515652565356545655565656575658565956605661566256635664566556665667566856695670567156725673567456755676567756785679568056815682568356845685568656875688568956905691569256935694569556965697569856995700570157025703570457055706570757085709571057115712571357145715571657175718571957205721572257235724572557265727572857295730573157325733573457355736573757385739574057415742574357445745574657475748574957505751575257535754575557565757575857595760576157625763576457655766576757685769577057715772577357745775577657775778577957805781578257835784578557865787578857895790579157925793579457955796579757985799580058015802580358045805580658075808580958105811581258135814581558165817581858195820582158225823582458255826582758285829583058315832583358345835583658375838583958405841584258435844584558465847584858495850585158525853585458555856585758585859586058615862586358645865586658675868586958705871587258735874587558765877587858795880588158825883588458855886588758885889589058915892589358945895589658975898589959005901590259035904590559065907590859095910591159125913591459155916591759185919592059215922592359245925592659275928592959305931593259335934593559365937593859395940594159425943594459455946594759485949595059515952595359545955595659575958595959605961596259635964596559665967596859695970597159725973597459755976597759785979598059815982598359845985598659875988598959905991599259935994599559965997599859996000600160026003600460056006600760086009601060116012601360146015601660176018601960206021602260236024602560266027602860296030603160326033603460356036603760386039604060416042604360446045604660476048604960506051605260536054605560566057605860596060606160626063606460656066606760686069607060716072607360746075607660776078607960806081608260836084608560866087608860896090609160926093609460956096609760986099610061016102610361046105610661076108610961106111611261136114611561166117611861196120612161226123612461256126612761286129613061316132613361346135613661376138613961406141614261436144614561466147614861496150615161526153615461556156615761586159616061616162616361646165616661676168616961706171617261736174617561766177617861796180618161826183618461856186618761886189619061916192619361946195619661976198619962006201620262036204620562066207620862096210621162126213621462156216621762186219622062216222622362246225622662276228622962306231623262336234623562366237623862396240624162426243624462456246624762486249625062516252625362546255625662576258625962606261626262636264626562666267626862696270627162726273627462756276627762786279628062816282628362846285628662876288628962906291629262936294629562966297629862996300630163026303630463056306630763086309631063116312631363146315631663176318631963206321632263236324632563266327632863296330633163326333633463356336633763386339634063416342634363446345634663476348634963506351635263536354635563566357635863596360636163626363636463656366636763686369637063716372637363746375637663776378637963806381638263836384638563866387638863896390639163926393639463956396639763986399640064016402640364046405640664076408640964106411641264136414641564166417641864196420642164226423642464256426642764286429643064316432643364346435643664376438643964406441644264436444644564466447644864496450645164526453645464556456645764586459646064616462646364646465646664676468646964706471647264736474647564766477647864796480648164826483648464856486648764886489649064916492649364946495649664976498649965006501650265036504650565066507650865096510651165126513651465156516651765186519652065216522652365246525652665276528652965306531653265336534653565366537653865396540654165426543654465456546654765486549655065516552655365546555655665576558655965606561656265636564656565666567656865696570657165726573657465756576657765786579658065816582658365846585658665876588658965906591659265936594659565966597659865996600660166026603660466056606660766086609661066116612661366146615661666176618661966206621662266236624662566266627662866296630663166326633663466356636663766386639664066416642664366446645664666476648664966506651665266536654665566566657665866596660666166626663666466656666666766686669667066716672667366746675667666776678667966806681668266836684668566866687668866896690669166926693669466956696669766986699670067016702670367046705670667076708670967106711671267136714671567166717671867196720672167226723672467256726672767286729673067316732673367346735673667376738673967406741674267436744674567466747674867496750675167526753675467556756675767586759676067616762676367646765676667676768676967706771677267736774677567766777677867796780678167826783678467856786678767886789679067916792679367946795679667976798679968006801680268036804680568066807680868096810681168126813681468156816681768186819682068216822682368246825682668276828682968306831683268336834683568366837683868396840684168426843684468456846684768486849685068516852685368546855685668576858685968606861686268636864686568666867686868696870687168726873687468756876687768786879688068816882688368846885688668876888688968906891689268936894689568966897689868996900690169026903690469056906690769086909691069116912691369146915691669176918691969206921692269236924692569266927692869296930693169326933693469356936693769386939694069416942694369446945694669476948694969506951695269536954695569566957695869596960696169626963696469656966696769686969697069716972697369746975697669776978697969806981698269836984698569866987698869896990699169926993699469956996699769986999700070017002700370047005700670077008700970107011701270137014701570167017701870197020702170227023702470257026702770287029703070317032703370347035703670377038703970407041704270437044704570467047704870497050705170527053705470557056705770587059706070617062706370647065706670677068706970707071707270737074707570767077707870797080708170827083708470857086708770887089709070917092709370947095709670977098709971007101710271037104710571067107710871097110711171127113711471157116711771187119712071217122712371247125712671277128712971307131713271337134713571367137713871397140714171427143714471457146714771487149715071517152715371547155715671577158715971607161716271637164716571667167716871697170717171727173717471757176717771787179718071817182718371847185718671877188718971907191719271937194719571967197719871997200720172027203720472057206720772087209721072117212721372147215721672177218721972207221722272237224722572267227722872297230723172327233723472357236723772387239724072417242724372447245724672477248724972507251725272537254725572567257725872597260726172627263726472657266726772687269727072717272727372747275727672777278727972807281728272837284728572867287728872897290729172927293729472957296729772987299730073017302730373047305730673077308730973107311731273137314731573167317731873197320732173227323732473257326732773287329733073317332733373347335733673377338733973407341734273437344734573467347734873497350735173527353735473557356735773587359736073617362736373647365736673677368736973707371737273737374737573767377737873797380738173827383738473857386738773887389739073917392739373947395739673977398739974007401740274037404740574067407740874097410741174127413741474157416741774187419742074217422742374247425742674277428742974307431743274337434743574367437743874397440744174427443744474457446744774487449745074517452745374547455745674577458745974607461746274637464746574667467746874697470747174727473747474757476747774787479748074817482748374847485748674877488748974907491749274937494749574967497749874997500750175027503750475057506750775087509751075117512751375147515751675177518751975207521752275237524752575267527752875297530753175327533753475357536753775387539754075417542754375447545754675477548754975507551755275537554755575567557755875597560756175627563756475657566756775687569757075717572757375747575757675777578757975807581758275837584758575867587758875897590759175927593759475957596759775987599760076017602760376047605760676077608760976107611761276137614761576167617761876197620762176227623762476257626762776287629763076317632763376347635763676377638763976407641764276437644764576467647764876497650765176527653765476557656765776587659766076617662766376647665766676677668766976707671767276737674767576767677767876797680768176827683768476857686768776887689769076917692769376947695769676977698769977007701770277037704770577067707770877097710771177127713771477157716771777187719772077217722772377247725772677277728772977307731773277337734773577367737773877397740774177427743774477457746774777487749775077517752775377547755775677577758775977607761776277637764776577667767776877697770777177727773777477757776777777787779778077817782778377847785778677877788778977907791779277937794779577967797779877997800780178027803780478057806780778087809781078117812781378147815781678177818781978207821782278237824782578267827782878297830783178327833783478357836783778387839784078417842784378447845784678477848784978507851785278537854785578567857785878597860786178627863786478657866786778687869787078717872787378747875787678777878787978807881788278837884788578867887788878897890789178927893789478957896789778987899790079017902790379047905790679077908790979107911791279137914791579167917791879197920792179227923792479257926792779287929793079317932793379347935793679377938793979407941794279437944794579467947794879497950795179527953795479557956795779587959796079617962796379647965796679677968796979707971797279737974797579767977797879797980798179827983798479857986798779887989799079917992799379947995799679977998799980008001800280038004800580068007800880098010801180128013801480158016801780188019802080218022802380248025802680278028802980308031803280338034803580368037803880398040804180428043804480458046804780488049805080518052805380548055805680578058805980608061806280638064806580668067806880698070807180728073807480758076807780788079808080818082808380848085808680878088808980908091809280938094809580968097809880998100810181028103810481058106810781088109811081118112811381148115811681178118811981208121812281238124812581268127812881298130813181328133813481358136813781388139814081418142814381448145814681478148814981508151815281538154815581568157815881598160816181628163816481658166816781688169817081718172817381748175817681778178817981808181818281838184818581868187818881898190819181928193819481958196819781988199820082018202820382048205820682078208820982108211821282138214821582168217821882198220822182228223822482258226822782288229823082318232823382348235823682378238823982408241824282438244824582468247824882498250825182528253825482558256825782588259826082618262826382648265826682678268826982708271827282738274827582768277827882798280828182828283828482858286828782888289829082918292829382948295829682978298829983008301830283038304830583068307830883098310831183128313831483158316831783188319832083218322832383248325832683278328832983308331833283338334833583368337833883398340834183428343834483458346834783488349835083518352835383548355835683578358835983608361836283638364836583668367836883698370837183728373837483758376837783788379838083818382838383848385838683878388838983908391839283938394839583968397839883998400840184028403840484058406840784088409841084118412841384148415841684178418841984208421842284238424842584268427842884298430843184328433843484358436843784388439844084418442844384448445844684478448844984508451845284538454845584568457845884598460846184628463846484658466846784688469847084718472847384748475847684778478847984808481848284838484848584868487848884898490849184928493849484958496849784988499850085018502850385048505850685078508850985108511851285138514851585168517851885198520852185228523852485258526852785288529853085318532853385348535853685378538853985408541854285438544854585468547854885498550855185528553855485558556855785588559856085618562856385648565856685678568856985708571857285738574857585768577857885798580858185828583858485858586858785888589859085918592859385948595859685978598859986008601860286038604860586068607860886098610861186128613861486158616861786188619862086218622862386248625862686278628862986308631863286338634863586368637863886398640864186428643864486458646864786488649865086518652865386548655865686578658865986608661866286638664866586668667866886698670867186728673867486758676867786788679868086818682868386848685868686878688868986908691869286938694869586968697869886998700870187028703870487058706870787088709871087118712871387148715871687178718871987208721872287238724872587268727872887298730873187328733873487358736873787388739874087418742874387448745874687478748874987508751875287538754875587568757875887598760876187628763876487658766876787688769877087718772877387748775877687778778877987808781878287838784878587868787878887898790879187928793879487958796879787988799880088018802880388048805880688078808880988108811881288138814881588168817881888198820882188228823882488258826882788288829883088318832883388348835883688378838883988408841884288438844884588468847884888498850885188528853885488558856885788588859886088618862886388648865886688678868886988708871887288738874887588768877887888798880888188828883888488858886888788888889889088918892889388948895889688978898889989008901890289038904890589068907890889098910891189128913891489158916891789188919892089218922892389248925892689278928892989308931893289338934893589368937893889398940894189428943894489458946894789488949895089518952895389548955895689578958895989608961896289638964896589668967896889698970897189728973897489758976897789788979898089818982898389848985898689878988898989908991899289938994899589968997899889999000900190029003900490059006900790089009901090119012901390149015901690179018901990209021902290239024902590269027902890299030903190329033903490359036903790389039904090419042904390449045904690479048904990509051905290539054905590569057905890599060906190629063906490659066906790689069907090719072907390749075907690779078907990809081908290839084908590869087908890899090909190929093909490959096909790989099910091019102910391049105910691079108910991109111911291139114911591169117911891199120912191229123912491259126912791289129913091319132913391349135913691379138913991409141914291439144914591469147914891499150915191529153915491559156915791589159916091619162916391649165916691679168916991709171917291739174917591769177917891799180918191829183918491859186918791889189919091919192919391949195919691979198919992009201920292039204920592069207920892099210921192129213921492159216921792189219922092219222922392249225922692279228922992309231923292339234923592369237923892399240924192429243924492459246924792489249925092519252925392549255925692579258925992609261926292639264926592669267926892699270927192729273927492759276927792789279928092819282928392849285928692879288928992909291929292939294929592969297929892999300930193029303930493059306930793089309931093119312931393149315931693179318931993209321932293239324932593269327932893299330933193329333933493359336933793389339934093419342934393449345934693479348934993509351935293539354935593569357935893599360936193629363936493659366936793689369937093719372937393749375937693779378937993809381938293839384938593869387938893899390939193929393939493959396939793989399940094019402940394049405940694079408940994109411941294139414941594169417941894199420942194229423942494259426942794289429943094319432943394349435943694379438943994409441944294439444944594469447944894499450945194529453945494559456945794589459946094619462946394649465946694679468946994709471947294739474947594769477947894799480948194829483948494859486948794889489949094919492949394949495949694979498949995009501950295039504950595069507950895099510951195129513951495159516951795189519952095219522952395249525952695279528952995309531953295339534953595369537953895399540954195429543954495459546954795489549955095519552955395549555955695579558955995609561956295639564956595669567956895699570957195729573957495759576957795789579958095819582958395849585958695879588958995909591959295939594959595969597959895999600960196029603960496059606960796089609961096119612961396149615961696179618961996209621962296239624962596269627962896299630963196329633963496359636963796389639964096419642964396449645964696479648964996509651965296539654965596569657965896599660966196629663966496659666966796689669967096719672967396749675967696779678967996809681968296839684968596869687968896899690969196929693969496959696969796989699970097019702970397049705970697079708970997109711971297139714971597169717971897199720972197229723972497259726972797289729973097319732973397349735973697379738973997409741974297439744974597469747974897499750975197529753975497559756975797589759976097619762976397649765976697679768976997709771977297739774977597769777977897799780978197829783978497859786978797889789979097919792979397949795979697979798979998009801980298039804980598069807980898099810981198129813981498159816981798189819982098219822982398249825982698279828982998309831983298339834983598369837983898399840984198429843984498459846984798489849985098519852985398549855985698579858985998609861986298639864986598669867986898699870987198729873987498759876987798789879988098819882988398849885988698879888988998909891989298939894989598969897989898999900990199029903990499059906990799089909991099119912991399149915991699179918991999209921992299239924992599269927992899299930993199329933993499359936993799389939994099419942994399449945994699479948994999509951995299539954995599569957995899599960996199629963996499659966996799689969997099719972997399749975997699779978997999809981998299839984998599869987998899899990999199929993999499959996999799989999100001000110002100031000410005100061000710008100091001010011100121001310014100151001610017100181001910020100211002210023100241002510026100271002810029100301003110032100331003410035100361003710038100391004010041100421004310044100451004610047100481004910050100511005210053100541005510056100571005810059100601006110062100631006410065100661006710068100691007010071100721007310074100751007610077100781007910080100811008210083100841008510086100871008810089100901009110092100931009410095100961009710098100991010010101101021010310104101051010610107101081010910110101111011210113101141011510116101171011810119101201012110122101231012410125101261012710128101291013010131101321013310134101351013610137101381013910140101411014210143101441014510146101471014810149101501015110152101531015410155101561015710158101591016010161101621016310164101651016610167101681016910170101711017210173101741017510176101771017810179101801018110182101831018410185101861018710188101891019010191101921019310194101951019610197101981019910200102011020210203102041020510206102071020810209102101021110212102131021410215102161021710218102191022010221102221022310224102251022610227102281022910230102311023210233102341023510236102371023810239102401024110242102431024410245102461024710248102491025010251102521025310254102551025610257102581025910260102611026210263102641026510266102671026810269102701027110272102731027410275102761027710278102791028010281102821028310284102851028610287102881028910290102911029210293102941029510296102971029810299103001030110302103031030410305103061030710308103091031010311103121031310314103151031610317103181031910320103211032210323103241032510326103271032810329103301033110332103331033410335103361033710338103391034010341103421034310344103451034610347103481034910350103511035210353103541035510356103571035810359103601036110362103631036410365103661036710368103691037010371103721037310374103751037610377103781037910380103811038210383103841038510386103871038810389103901039110392103931039410395103961039710398103991040010401104021040310404104051040610407104081040910410104111041210413104141041510416104171041810419104201042110422104231042410425104261042710428104291043010431104321043310434104351043610437104381043910440104411044210443104441044510446104471044810449104501045110452104531045410455104561045710458104591046010461104621046310464104651046610467104681046910470104711047210473104741047510476104771047810479104801048110482104831048410485104861048710488104891049010491104921049310494104951049610497104981049910500105011050210503105041050510506105071050810509105101051110512105131051410515105161051710518105191052010521105221052310524105251052610527105281052910530105311053210533105341053510536105371053810539105401054110542105431054410545105461054710548105491055010551105521055310554105551055610557105581055910560105611056210563105641056510566105671056810569105701057110572105731057410575105761057710578105791058010581105821058310584105851058610587105881058910590105911059210593105941059510596105971059810599106001060110602106031060410605106061060710608106091061010611106121061310614106151061610617106181061910620106211062210623106241062510626106271062810629106301063110632106331063410635106361063710638106391064010641106421064310644106451064610647106481064910650106511065210653106541065510656106571065810659106601066110662106631066410665106661066710668106691067010671106721067310674106751067610677106781067910680106811068210683106841068510686106871068810689106901069110692106931069410695106961069710698106991070010701107021070310704107051070610707107081070910710107111071210713107141071510716107171071810719107201072110722107231072410725107261072710728107291073010731107321073310734107351073610737107381073910740107411074210743107441074510746107471074810749107501075110752107531075410755107561075710758107591076010761107621076310764107651076610767107681076910770107711077210773107741077510776107771077810779107801078110782107831078410785107861078710788107891079010791107921079310794107951079610797107981079910800108011080210803108041080510806108071080810809108101081110812108131081410815108161081710818108191082010821108221082310824108251082610827108281082910830108311083210833108341083510836108371083810839108401084110842108431084410845108461084710848108491085010851108521085310854108551085610857108581085910860108611086210863108641086510866108671086810869108701087110872108731087410875108761087710878108791088010881108821088310884108851088610887108881088910890108911089210893108941089510896108971089810899109001090110902109031090410905109061090710908109091091010911109121091310914109151091610917109181091910920109211092210923109241092510926109271092810929109301093110932109331093410935109361093710938109391094010941109421094310944109451094610947109481094910950109511095210953109541095510956109571095810959109601096110962109631096410965109661096710968109691097010971109721097310974109751097610977109781097910980109811098210983109841098510986109871098810989109901099110992109931099410995109961099710998109991100011001110021100311004110051100611007110081100911010110111101211013110141101511016110171101811019110201102111022110231102411025110261102711028110291103011031110321103311034110351103611037110381103911040110411104211043110441104511046110471104811049110501105111052110531105411055110561105711058110591106011061110621106311064110651106611067110681106911070110711107211073110741107511076110771107811079110801108111082110831108411085110861108711088110891109011091110921109311094110951109611097110981109911100111011110211103111041110511106111071110811109111101111111112111131111411115111161111711118111191112011121111221112311124111251112611127111281112911130111311113211133111341113511136111371113811139111401114111142111431114411145111461114711148111491115011151111521115311154111551115611157111581115911160111611116211163111641116511166111671116811169111701117111172111731117411175111761117711178111791118011181111821118311184111851118611187111881118911190111911119211193111941119511196111971119811199112001120111202112031120411205112061120711208112091121011211112121121311214112151121611217112181121911220112211122211223112241122511226112271122811229112301123111232112331123411235112361123711238112391124011241112421124311244112451124611247112481124911250112511125211253112541125511256112571125811259112601126111262112631126411265112661126711268112691127011271112721127311274112751127611277112781127911280112811128211283112841128511286112871128811289112901129111292112931129411295112961129711298112991130011301113021130311304113051130611307113081130911310113111131211313113141131511316113171131811319113201132111322113231132411325113261132711328113291133011331113321133311334113351133611337113381133911340113411134211343113441134511346113471134811349113501135111352113531135411355113561135711358113591136011361113621136311364113651136611367113681136911370113711137211373113741137511376113771137811379113801138111382113831138411385113861138711388113891139011391113921139311394113951139611397113981139911400114011140211403114041140511406114071140811409114101141111412114131141411415114161141711418114191142011421114221142311424114251142611427114281142911430114311143211433114341143511436114371143811439114401144111442114431144411445114461144711448114491145011451114521145311454114551145611457114581145911460114611146211463114641146511466114671146811469114701147111472114731147411475114761147711478114791148011481114821148311484114851148611487114881148911490114911149211493114941149511496114971149811499115001150111502115031150411505115061150711508115091151011511115121151311514115151151611517115181151911520115211152211523115241152511526115271152811529115301153111532115331153411535115361153711538115391154011541115421154311544115451154611547115481154911550115511155211553115541155511556115571155811559115601156111562115631156411565115661156711568115691157011571115721157311574115751157611577115781157911580115811158211583115841158511586115871158811589115901159111592115931159411595115961159711598115991160011601116021160311604116051160611607116081160911610116111161211613116141161511616116171161811619116201162111622116231162411625116261162711628116291163011631116321163311634116351163611637116381163911640116411164211643116441164511646116471164811649116501165111652116531165411655116561165711658116591166011661116621166311664116651166611667116681166911670116711167211673116741167511676116771167811679116801168111682116831168411685116861168711688116891169011691116921169311694116951169611697116981169911700117011170211703117041170511706117071170811709117101171111712117131171411715117161171711718117191172011721117221172311724117251172611727117281172911730117311173211733117341173511736117371173811739117401174111742117431174411745117461174711748117491175011751117521175311754117551175611757117581175911760117611176211763117641176511766117671176811769117701177111772117731177411775117761177711778117791178011781117821178311784117851178611787117881178911790117911179211793117941179511796117971179811799118001180111802118031180411805118061180711808118091181011811118121181311814118151181611817118181181911820118211182211823118241182511826118271182811829118301183111832118331183411835118361183711838118391184011841118421184311844118451184611847118481184911850118511185211853118541185511856118571185811859118601186111862118631186411865118661186711868118691187011871118721187311874118751187611877118781187911880118811188211883118841188511886118871188811889118901189111892118931189411895118961189711898118991190011901119021190311904119051190611907119081190911910119111191211913119141191511916119171191811919119201192111922119231192411925119261192711928119291193011931119321193311934119351193611937119381193911940119411194211943119441194511946119471194811949119501195111952119531195411955119561195711958119591196011961119621196311964119651196611967119681196911970119711197211973119741197511976119771197811979119801198111982119831198411985119861198711988119891199011991119921199311994119951199611997119981199912000120011200212003120041200512006120071200812009120101201112012120131201412015120161201712018120191202012021120221202312024120251202612027120281202912030120311203212033120341203512036120371203812039120401204112042120431204412045120461204712048120491205012051120521205312054120551205612057120581205912060120611206212063120641206512066120671206812069120701207112072120731207412075120761207712078120791208012081120821208312084120851208612087120881208912090120911209212093120941209512096120971209812099121001210112102121031210412105121061210712108121091211012111121121211312114121151211612117121181211912120121211212212123121241212512126121271212812129121301213112132121331213412135121361213712138121391214012141121421214312144121451214612147121481214912150121511215212153121541215512156121571215812159121601216112162121631216412165121661216712168121691217012171121721217312174121751217612177121781217912180121811218212183121841218512186121871218812189121901219112192121931219412195121961219712198121991220012201122021220312204122051220612207122081220912210122111221212213122141221512216122171221812219122201222112222122231222412225122261222712228122291223012231122321223312234122351223612237122381223912240122411224212243122441224512246122471224812249122501225112252122531225412255122561225712258122591226012261122621226312264122651226612267122681226912270122711227212273122741227512276122771227812279122801228112282122831228412285122861228712288122891229012291122921229312294122951229612297122981229912300123011230212303123041230512306123071230812309123101231112312123131231412315123161231712318123191232012321123221232312324123251232612327123281232912330123311233212333123341233512336123371233812339123401234112342123431234412345123461234712348123491235012351123521235312354123551235612357123581235912360123611236212363123641236512366123671236812369123701237112372123731237412375123761237712378123791238012381123821238312384123851238612387123881238912390123911239212393123941239512396123971239812399124001240112402124031240412405124061240712408124091241012411124121241312414124151241612417124181241912420124211242212423124241242512426124271242812429124301243112432124331243412435124361243712438124391244012441124421244312444124451244612447124481244912450124511245212453124541245512456124571245812459124601246112462124631246412465124661246712468124691247012471124721247312474124751247612477124781247912480124811248212483124841248512486124871248812489124901249112492124931249412495124961249712498124991250012501125021250312504125051250612507125081250912510125111251212513125141251512516125171251812519125201252112522125231252412525125261252712528125291253012531125321253312534125351253612537125381253912540125411254212543125441254512546125471254812549125501255112552125531255412555125561255712558125591256012561125621256312564125651256612567125681256912570125711257212573125741257512576125771257812579125801258112582125831258412585125861258712588125891259012591125921259312594125951259612597125981259912600126011260212603126041260512606126071260812609126101261112612126131261412615126161261712618126191262012621126221262312624126251262612627126281262912630126311263212633126341263512636126371263812639126401264112642126431264412645126461264712648126491265012651126521265312654126551265612657126581265912660126611266212663126641266512666126671266812669126701267112672126731267412675126761267712678126791268012681126821268312684126851268612687126881268912690126911269212693126941269512696126971269812699127001270112702127031270412705127061270712708127091271012711127121271312714127151271612717127181271912720127211272212723127241272512726127271272812729127301273112732127331273412735127361273712738127391274012741127421274312744127451274612747127481274912750127511275212753127541275512756127571275812759127601276112762127631276412765127661276712768127691277012771127721277312774127751277612777127781277912780127811278212783127841278512786127871278812789127901279112792127931279412795127961279712798127991280012801128021280312804128051280612807128081280912810128111281212813128141281512816128171281812819128201282112822128231282412825128261282712828128291283012831128321283312834128351283612837128381283912840128411284212843128441284512846128471284812849128501285112852128531285412855128561285712858128591286012861128621286312864128651286612867128681286912870128711287212873128741287512876128771287812879128801288112882128831288412885128861288712888128891289012891128921289312894128951289612897128981289912900129011290212903129041290512906129071290812909129101291112912129131291412915129161291712918129191292012921129221292312924129251292612927129281292912930129311293212933129341293512936129371293812939129401294112942129431294412945129461294712948129491295012951129521295312954129551295612957129581295912960129611296212963129641296512966129671296812969129701297112972129731297412975129761297712978129791298012981129821298312984129851298612987129881298912990129911299212993129941299512996129971299812999130001300113002130031300413005130061300713008130091301013011130121301313014130151301613017130181301913020130211302213023130241302513026130271302813029130301303113032130331303413035130361303713038130391304013041130421304313044130451304613047130481304913050130511305213053130541305513056130571305813059130601306113062130631306413065130661306713068130691307013071130721307313074130751307613077130781307913080130811308213083130841308513086130871308813089130901309113092130931309413095130961309713098130991310013101131021310313104131051310613107131081310913110131111311213113131141311513116131171311813119131201312113122131231312413125131261312713128131291313013131131321313313134131351313613137131381313913140131411314213143131441314513146131471314813149131501315113152131531315413155131561315713158131591316013161131621316313164131651316613167131681316913170131711317213173131741317513176131771317813179131801318113182131831318413185131861318713188131891319013191131921319313194131951319613197131981319913200132011320213203132041320513206132071320813209132101321113212132131321413215132161321713218132191322013221132221322313224132251322613227132281322913230132311323213233132341323513236132371323813239132401324113242132431324413245132461324713248132491325013251132521325313254132551325613257132581325913260132611326213263132641326513266132671326813269132701327113272132731327413275132761327713278132791328013281132821328313284132851328613287132881328913290132911329213293132941329513296132971329813299133001330113302133031330413305133061330713308133091331013311133121331313314133151331613317133181331913320133211332213323133241332513326133271332813329133301333113332133331333413335133361333713338133391334013341133421334313344133451334613347133481334913350133511335213353133541335513356133571335813359133601336113362133631336413365133661336713368133691337013371133721337313374133751337613377133781337913380133811338213383133841338513386133871338813389133901339113392133931339413395133961339713398133991340013401134021340313404134051340613407134081340913410134111341213413134141341513416134171341813419134201342113422134231342413425134261342713428134291343013431134321343313434134351343613437134381343913440134411344213443134441344513446134471344813449134501345113452134531345413455134561345713458134591346013461134621346313464134651346613467134681346913470134711347213473134741347513476134771347813479134801348113482134831348413485134861348713488134891349013491134921349313494134951349613497134981349913500135011350213503135041350513506135071350813509135101351113512135131351413515135161351713518135191352013521135221352313524135251352613527135281352913530135311353213533135341353513536135371353813539135401354113542135431354413545135461354713548135491355013551135521355313554135551355613557135581355913560135611356213563135641356513566135671356813569135701357113572135731357413575135761357713578135791358013581135821358313584135851358613587135881358913590135911359213593135941359513596135971359813599136001360113602136031360413605136061360713608136091361013611136121361313614136151361613617136181361913620136211362213623136241362513626136271362813629136301363113632136331363413635136361363713638136391364013641136421364313644136451364613647136481364913650136511365213653136541365513656136571365813659136601366113662136631366413665136661366713668136691367013671136721367313674136751367613677136781367913680136811368213683136841368513686136871368813689136901369113692136931369413695136961369713698136991370013701137021370313704137051370613707137081370913710137111371213713137141371513716137171371813719137201372113722137231372413725137261372713728137291373013731137321373313734137351373613737137381373913740137411374213743137441374513746137471374813749137501375113752137531375413755137561375713758137591376013761137621376313764137651376613767137681376913770137711377213773137741377513776137771377813779137801378113782137831378413785137861378713788137891379013791137921379313794137951379613797137981379913800138011380213803138041380513806138071380813809138101381113812138131381413815138161381713818138191382013821138221382313824138251382613827138281382913830138311383213833138341383513836138371383813839138401384113842138431384413845138461384713848138491385013851138521385313854138551385613857138581385913860138611386213863138641386513866138671386813869138701387113872138731387413875138761387713878138791388013881138821388313884138851388613887138881388913890138911389213893138941389513896138971389813899139001390113902139031390413905139061390713908139091391013911139121391313914139151391613917139181391913920139211392213923139241392513926139271392813929139301393113932139331393413935139361393713938139391394013941139421394313944139451394613947139481394913950139511395213953139541395513956139571395813959139601396113962139631396413965139661396713968139691397013971139721397313974139751397613977139781397913980139811398213983139841398513986139871398813989139901399113992139931399413995139961399713998139991400014001140021400314004140051400614007140081400914010140111401214013140141401514016140171401814019140201402114022140231402414025140261402714028140291403014031140321403314034140351403614037140381403914040140411404214043140441404514046140471404814049140501405114052140531405414055140561405714058140591406014061140621406314064140651406614067140681406914070140711407214073140741407514076140771407814079140801408114082140831408414085140861408714088140891409014091140921409314094140951409614097140981409914100141011410214103141041410514106141071410814109141101411114112141131411414115141161411714118141191412014121141221412314124141251412614127141281412914130141311413214133141341413514136141371413814139141401414114142141431414414145141461414714148141491415014151141521415314154141551415614157141581415914160141611416214163141641416514166141671416814169141701417114172141731417414175141761417714178141791418014181141821418314184141851418614187141881418914190141911419214193141941419514196141971419814199142001420114202142031420414205142061420714208142091421014211142121421314214142151421614217142181421914220142211422214223142241422514226142271422814229142301423114232142331423414235142361423714238142391424014241142421424314244142451424614247142481424914250142511425214253142541425514256142571425814259142601426114262142631426414265142661426714268142691427014271142721427314274142751427614277142781427914280142811428214283142841428514286142871428814289142901429114292142931429414295142961429714298142991430014301143021430314304143051430614307143081430914310143111431214313143141431514316143171431814319143201432114322143231432414325143261432714328143291433014331143321433314334143351433614337143381433914340143411434214343143441434514346143471434814349143501435114352143531435414355143561435714358143591436014361143621436314364143651436614367143681436914370143711437214373143741437514376143771437814379143801438114382143831438414385143861438714388143891439014391143921439314394143951439614397143981439914400144011440214403144041440514406144071440814409144101441114412144131441414415144161441714418144191442014421144221442314424144251442614427144281442914430144311443214433144341443514436144371443814439144401444114442144431444414445144461444714448144491445014451144521445314454144551445614457144581445914460144611446214463144641446514466144671446814469144701447114472144731447414475144761447714478144791448014481144821448314484144851448614487144881448914490144911449214493144941449514496144971449814499145001450114502145031450414505145061450714508145091451014511145121451314514145151451614517145181451914520145211452214523145241452514526145271452814529145301453114532145331453414535145361453714538145391454014541145421454314544145451454614547145481454914550145511455214553145541455514556145571455814559145601456114562145631456414565145661456714568145691457014571145721457314574145751457614577145781457914580145811458214583145841458514586145871458814589145901459114592145931459414595145961459714598145991460014601146021460314604146051460614607146081460914610146111461214613146141461514616146171461814619146201462114622146231462414625146261462714628146291463014631146321463314634146351463614637146381463914640146411464214643146441464514646146471464814649146501465114652146531465414655146561465714658146591466014661146621466314664146651466614667146681466914670146711467214673146741467514676146771467814679146801468114682146831468414685146861468714688146891469014691146921469314694146951469614697146981469914700147011470214703147041470514706147071470814709147101471114712147131471414715147161471714718147191472014721147221472314724147251472614727147281472914730147311473214733147341473514736147371473814739147401474114742147431474414745147461474714748147491475014751147521475314754147551475614757147581475914760147611476214763147641476514766147671476814769147701477114772147731477414775147761477714778147791478014781147821478314784147851478614787147881478914790147911479214793147941479514796147971479814799148001480114802148031480414805148061480714808148091481014811148121481314814148151481614817148181481914820148211482214823148241482514826148271482814829148301483114832148331483414835148361483714838148391484014841148421484314844148451484614847148481484914850148511485214853148541485514856148571485814859148601486114862148631486414865148661486714868148691487014871148721487314874148751487614877148781487914880148811488214883148841488514886148871488814889148901489114892148931489414895148961489714898148991490014901149021490314904149051490614907149081490914910149111491214913149141491514916149171491814919149201492114922149231492414925149261492714928149291493014931149321493314934149351493614937149381493914940149411494214943149441494514946149471494814949149501495114952149531495414955149561495714958149591496014961149621496314964149651496614967149681496914970149711497214973149741497514976149771497814979149801498114982149831498414985149861498714988149891499014991149921499314994149951499614997149981499915000150011500215003150041500515006150071500815009150101501115012150131501415015150161501715018150191502015021150221502315024150251502615027150281502915030150311503215033150341503515036150371503815039150401504115042150431504415045150461504715048150491505015051150521505315054150551505615057150581505915060150611506215063150641506515066150671506815069150701507115072150731507415075150761507715078150791508015081150821508315084150851508615087150881508915090150911509215093150941509515096150971509815099151001510115102151031510415105151061510715108151091511015111151121511315114151151511615117151181511915120151211512215123151241512515126151271512815129151301513115132151331513415135151361513715138151391514015141151421514315144151451514615147151481514915150151511515215153151541515515156151571515815159151601516115162151631516415165151661516715168151691517015171151721517315174151751517615177151781517915180151811518215183151841518515186151871518815189151901519115192151931519415195151961519715198151991520015201152021520315204152051520615207152081520915210152111521215213152141521515216152171521815219152201522115222152231522415225152261522715228152291523015231152321523315234152351523615237152381523915240152411524215243152441524515246152471524815249152501525115252152531525415255152561525715258152591526015261152621526315264152651526615267152681526915270152711527215273152741527515276152771527815279152801528115282152831528415285152861528715288152891529015291152921529315294152951529615297152981529915300153011530215303153041530515306153071530815309153101531115312153131531415315153161531715318153191532015321153221532315324153251532615327153281532915330153311533215333153341533515336153371533815339153401534115342153431534415345153461534715348153491535015351153521535315354153551535615357153581535915360153611536215363153641536515366153671536815369153701537115372153731537415375153761537715378153791538015381153821538315384153851538615387153881538915390153911539215393153941539515396153971539815399154001540115402154031540415405154061540715408154091541015411154121541315414154151541615417154181541915420154211542215423154241542515426154271542815429154301543115432154331543415435154361543715438154391544015441154421544315444154451544615447154481544915450154511545215453154541545515456154571545815459154601546115462154631546415465154661546715468154691547015471154721547315474154751547615477154781547915480154811548215483154841548515486154871548815489154901549115492154931549415495154961549715498154991550015501155021550315504155051550615507155081550915510155111551215513155141551515516155171551815519155201552115522155231552415525155261552715528155291553015531155321553315534155351553615537155381553915540155411554215543155441554515546155471554815549155501555115552155531555415555155561555715558155591556015561155621556315564155651556615567155681556915570155711557215573155741557515576155771557815579155801558115582155831558415585155861558715588155891559015591155921559315594155951559615597155981559915600156011560215603156041560515606156071560815609156101561115612156131561415615156161561715618156191562015621156221562315624156251562615627156281562915630156311563215633156341563515636156371563815639156401564115642156431564415645156461564715648156491565015651156521565315654156551565615657156581565915660156611566215663156641566515666156671566815669156701567115672156731567415675156761567715678156791568015681156821568315684156851568615687156881568915690156911569215693156941569515696156971569815699157001570115702157031570415705157061570715708157091571015711157121571315714157151571615717157181571915720157211572215723157241572515726157271572815729157301573115732157331573415735157361573715738157391574015741157421574315744157451574615747157481574915750157511575215753157541575515756157571575815759157601576115762157631576415765157661576715768157691577015771157721577315774157751577615777157781577915780157811578215783157841578515786157871578815789157901579115792157931579415795157961579715798157991580015801158021580315804158051580615807158081580915810158111581215813158141581515816158171581815819158201582115822158231582415825158261582715828158291583015831158321583315834158351583615837158381583915840158411584215843158441584515846158471584815849158501585115852158531585415855158561585715858158591586015861158621586315864158651586615867158681586915870158711587215873158741587515876158771587815879158801588115882158831588415885158861588715888158891589015891158921589315894158951589615897158981589915900159011590215903159041590515906159071590815909159101591115912159131591415915159161591715918
  1. % Why direct style instead of continuation passing style?
  2. %% Student project ideas:
  3. %% * high-level optimizations like procedure inlining, etc.
  4. %% * closure optimization
  5. %% * adding letrec to the language
  6. %% (Thought: in the book and regular course, replace top-level defines
  7. %% with letrec.)
  8. %% * alternative back ends (ARM!, LLVM)
  9. %% * alternative calling convention (a la Dybvig)
  10. %% * lazy evaluation
  11. %% * continuations (frames in heap a la SML or segmented stack a la Dybvig)
  12. %% * exceptions
  13. %% * self hosting
  14. %% * I/O
  15. %% * foreign function interface
  16. %% * quasi-quote and unquote
  17. %% * macros (too difficult?)
  18. %% * alternative garbage collector
  19. %% * alternative register allocator
  20. %% * type classes
  21. %% * loop optimization (fusion, etc.)
  22. %% * deforestation
  23. %% * records with subtyping
  24. %% * object-oriented features
  25. %% - objects, object types, and structural subtyping (e.g. Abadi & Cardelli)
  26. %% - class-based objects and nominal subtyping (e.g. Featherweight Java)
  27. %% * multi-threading, fork join, futures, implicit parallelism
  28. %% * type analysis and specialization
  29. \documentclass[11pt]{book}
  30. \usepackage[T1]{fontenc}
  31. \usepackage[utf8]{inputenc}
  32. \usepackage{lmodern}
  33. \usepackage{hyperref}
  34. \usepackage{graphicx}
  35. \usepackage[english]{babel}
  36. \usepackage{listings}
  37. \usepackage{amsmath}
  38. \usepackage{amsthm}
  39. \usepackage{amssymb}
  40. \usepackage[numbers]{natbib}
  41. \usepackage{stmaryrd}
  42. \usepackage{xypic}
  43. \usepackage{semantic}
  44. \usepackage{wrapfig}
  45. \usepackage{tcolorbox}
  46. \usepackage{multirow}
  47. \usepackage{color}
  48. \usepackage{upquote}
  49. \usepackage{makeidx}
  50. \makeindex
  51. \definecolor{lightgray}{gray}{1}
  52. \newcommand{\black}[1]{{\color{black} #1}}
  53. %\newcommand{\gray}[1]{{\color{lightgray} #1}}
  54. \newcommand{\gray}[1]{{\color{gray} #1}}
  55. %% For pictures
  56. \usepackage{tikz}
  57. \usetikzlibrary{arrows.meta}
  58. \tikzset{baseline=(current bounding box.center), >/.tip={Triangle[scale=1.4]}}
  59. % Computer Modern is already the default. -Jeremy
  60. %\renewcommand{\ttdefault}{cmtt}
  61. \definecolor{comment-red}{rgb}{0.8,0,0}
  62. \if01
  63. \newcommand{\rn}[1]{{\color{comment-red}{(RRN: #1)}}}
  64. \newcommand{\margincomment}[1]{\marginpar{\color{comment-red}\tiny #1}}
  65. \else
  66. \newcommand{\rn}[1]{}
  67. \newcommand{\margincomment}[1]{}
  68. \fi
  69. \newcommand{\ocaml}[1]{{\color{blue}{#1}}}
  70. \newenvironment{ocamlx}{
  71. \begin{color}{blue}
  72. }
  73. {
  74. \end{color}
  75. }
  76. \definecolor{BLUE}{rgb}{0,0,1} % no idea why we need this
  77. \lstdefinestyle{racket}{
  78. language=Lisp,
  79. basicstyle=\ttfamily\small,
  80. morekeywords={seq,assign,program,block,define,lambda,match,goto,if,else,then,struct,Integer,Boolean,Vector,Void,Any,while,begin,define,public,override,class},
  81. deletekeywords={read,mapping,vector},
  82. escapechar=|,
  83. columns=flexible,
  84. moredelim=[is][\color{red}]{~}{~},
  85. showstringspaces=false
  86. }
  87. \lstset{style=racket}
  88. \lstdefinestyle{ocaml}{
  89. language=[Objective]Caml,
  90. basicstyle=\ttfamily\small\color{blue},
  91. columns=flexible,
  92. escapechar=~,
  93. showstringspaces=false
  94. }
  95. \newtheorem{theorem}{Theorem}
  96. \newtheorem{lemma}[theorem]{Lemma}
  97. \newtheorem{corollary}[theorem]{Corollary}
  98. \newtheorem{proposition}[theorem]{Proposition}
  99. \newtheorem{constraint}[theorem]{Constraint}
  100. \newtheorem{definition}[theorem]{Definition}
  101. \newtheorem{exercise}[theorem]{Exercise}
  102. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  103. % 'dedication' environment: To add a dedication paragraph at the start of book %
  104. % Source: http://www.tug.org/pipermail/texhax/2010-June/015184.html %
  105. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  106. \newenvironment{dedication}
  107. {
  108. \cleardoublepage
  109. \thispagestyle{empty}
  110. \vspace*{\stretch{1}}
  111. \hfill\begin{minipage}[t]{0.66\textwidth}
  112. \raggedright
  113. }
  114. {
  115. \end{minipage}
  116. \vspace*{\stretch{3}}
  117. \clearpage
  118. }
  119. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  120. % Chapter quote at the start of chapter %
  121. % Source: http://tex.stackexchange.com/a/53380 %
  122. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  123. \makeatletter
  124. \renewcommand{\@chapapp}{}% Not necessary...
  125. \newenvironment{chapquote}[2][2em]
  126. {\setlength{\@tempdima}{#1}%
  127. \def\chapquote@author{#2}%
  128. \parshape 1 \@tempdima \dimexpr\textwidth-2\@tempdima\relax%
  129. \itshape}
  130. {\par\normalfont\hfill--\ \chapquote@author\hspace*{\@tempdima}\par\bigskip}
  131. \makeatother
  132. \input{defs}
  133. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  134. \title{\Huge \textbf{Essentials of Compilation} \\
  135. \huge The Incremental, Nano-Pass Approach}
  136. \author{\textsc{Jeremy G. Siek} \\
  137. %\thanks{\url{http://homes.soic.indiana.edu/jsiek/}} \\
  138. Indiana University \\
  139. \\
  140. with contributions from: \\
  141. Carl Factora \\
  142. Andre Kuhlenschmidt \\
  143. Ryan R. Newton \\
  144. Ryan Scott \\
  145. Cameron Swords \\
  146. Michael M. Vitousek \\
  147. Michael Vollmer \\
  148. \\
  149. \ocaml{OCaml version:} \\
  150. \ocaml{Andrew Tolmach} \\
  151. \ocaml{(with inspiration from a Haskell version by Ian Winter)}
  152. }
  153. \begin{document}
  154. \frontmatter
  155. \maketitle
  156. \begin{dedication}
  157. This book is dedicated to the programming language wonks at Indiana
  158. University.
  159. \end{dedication}
  160. \tableofcontents
  161. \listoffigures
  162. %\listoftables
  163. \mainmatter
  164. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  165. \chapter*{Preface}
  166. There is a magical moment when a programmer presses the ``run'' button
  167. and the software begins to execute. Somehow a program written in a
  168. high-level language is running on a computer that is only capable of
  169. shuffling bits. Here we reveal the wizardry that makes that moment
  170. possible. Beginning with the groundbreaking work of Backus and
  171. colleagues in the 1950s, computer scientists discovered techniques for
  172. constructing programs, called \emph{compilers}, that automatically
  173. translate high-level programs into machine code.
  174. We take you on a journey by constructing your own compiler for a small
  175. but powerful language. Along the way we explain the essential
  176. concepts, algorithms, and data structures that underlie compilers. We
  177. develop your understanding of how programs are mapped onto computer
  178. hardware, which is helpful when reasoning about properties at the
  179. junction between hardware and software such as execution time,
  180. software errors, and security vulnerabilities. For those interested
  181. in pursuing compiler construction, our goal is to provide a
  182. stepping-stone to advanced topics such as just-in-time compilation,
  183. program analysis, and program optimization. For those interested in
  184. designing and implementing their own programming languages, we connect
  185. language design choices to their impact on the compiler its generated
  186. code.
  187. A compiler is typically organized as a sequence of stages that
  188. progressively translates a program to code that runs on hardware. We
  189. take this approach to the extreme by partitioning our compiler into a
  190. large number of \emph{nanopasses}, each of which performs a single
  191. task. This allows us to test the output of each pass in isolation, and
  192. furthermore, allows us to focus our attention making the compiler far
  193. easier to understand.
  194. %% [TODO: easier to understand/debug for those maintaining the compiler,
  195. %% proving correctness]
  196. The most familiar approach to describing compilers is with one pass
  197. per chapter. The problem with that is it obfuscates how language
  198. features motivate design choices in a compiler. We take an
  199. \emph{incremental} approach in which we build a complete compiler in
  200. each chapter, starting with arithmetic and variables and add new
  201. features in subsequent chapters.
  202. Our choice of language features is designed to elicit the fundamental
  203. concepts and algorithms used in compilers.
  204. \begin{itemize}
  205. \item We begin with integer arithmetic and local variables in
  206. Chapters~\ref{ch:trees-recur} and \ref{ch:Rvar}, where we introduce
  207. the fundamental tools of compiler construction: \emph{abstract
  208. syntax trees} and \emph{recursive functions}.
  209. \item In Chapter~\ref{ch:register-allocation-Rvar} we apply
  210. \emph{graph coloring} to assign variables to machine registers.
  211. \item Chapter~\ref{ch:Rif} adds \code{if} expressions, which motivates
  212. an elegant recursive algorithm for mapping expressions to
  213. \emph{control-flow graphs}.
  214. \item Chapter~\ref{ch:Rvec} adds heap-allocated tuples, motivating
  215. \emph{garbage collection}.
  216. \item Chapter~\ref{ch:Rfun} adds functions that are first-class values
  217. but lack lexical scoping, similar to the C programming
  218. language~\citep{Kernighan:1988nx} except that we generate efficient
  219. tail calls. The reader learns about the procedure call stack,
  220. \emph{calling conventions}, and their interaction with register
  221. allocation and garbage collection.
  222. \item Chapter~\ref{ch:Rlam} adds anonymous functions with lexical
  223. scoping, i.e., \emph{lambda abstraction}. The reader learns about
  224. \emph{closure conversion}, in which lambdas are translated into a
  225. combination of functions and tuples.
  226. \item Chapter~\ref{ch:Rdyn} adds \emph{dynamic typing}. Prior to this
  227. point the input languages are statically typed. The reader extends
  228. the statically typed language with an \code{Any} type which serves
  229. as a target for compiling the dynamically typed language.
  230. \item Chapter~\ref{ch:Rwhile} fleshes out support for imperative
  231. programming languages with the addition of loops and mutable
  232. variables. These additions elicit the need for \emph{dataflow
  233. analysis} in the register allocator.
  234. \item Chapter~\ref{ch:Rgrad} uses the \code{Any} type of
  235. Chapter~\ref{ch:Rdyn} to implement a \emph{gradually typed language}
  236. in which different regions of a program may be static or dynamically
  237. typed. The reader implements runtime support for \emph{proxies} that
  238. allow values to safely move between regions.
  239. \item Chapter~\ref{ch:Rpoly} adds \emph{generics} with autoboxing,
  240. leveraging the \code{Any} type and type casts developed in Chapters
  241. \ref{ch:Rdyn} and \ref{ch:Rgrad}.
  242. \end{itemize}
  243. There are many language features that we do not include. Our choices
  244. weigh the incidental complexity of a feature against the fundamental
  245. concepts that it exposes. For example, we include tuples and not
  246. records because they both elicit the study of heap allocation and
  247. garbage collection but records come with more incidental complexity.
  248. Since 2016 this book has served as the textbook for the compiler
  249. course at Indiana University, a 16-week course for upper-level
  250. undergraduates and first-year graduate students.
  251. %
  252. Prior to this course, students learn to program in both imperative and
  253. functional languages, study data structures and algorithms, and take
  254. discrete mathematics.
  255. %
  256. At the beginning of the course, students form groups of 2-4 people.
  257. The groups complete one chapter every two weeks, starting with
  258. Chapter~\ref{ch:Rvar} and finishing with Chapter~\ref{ch:Rdyn}. Many
  259. chapters include a challenge problem that we assign to the graduate
  260. students. The last two weeks of the course involve a final project in
  261. which students design and implement a compiler extension of their
  262. choosing. Chapters~\ref{ch:Rwhile}, \ref{ch:Rgrad}, and
  263. \ref{ch:Rpoly} can be used in support of these projects or they can
  264. replace some of the earlier chapters. For example, a course with an
  265. emphasis on statically-typed imperative languages would skip
  266. Chapter~\ref{ch:Rdyn} in favor of
  267. Chapter~\ref{ch:Rwhile}. Figure~\ref{fig:chapter-dependences} depicts
  268. the dependencies between chapters.
  269. This book has also been used in compiler courses at California
  270. Polytechnic State University, Rose–Hulman Institute of Technology, and
  271. University of Massachusetts Lowell.
  272. \begin{figure}[tp]
  273. \begin{tikzpicture}[baseline=(current bounding box.center)]
  274. \node (C1) at (0,1.5) {\small Ch.~\ref{ch:trees-recur} Preliminaries};
  275. \node (C2) at (4,1.5) {\small Ch.~\ref{ch:Rvar} Variables};
  276. \node (C3) at (8,1.5) {\small Ch.~\ref{ch:register-allocation-Rvar} Registers};
  277. \node (C4) at (0,0) {\small Ch.~\ref{ch:Rif} Control Flow};
  278. \node (C5) at (4,0) {\small Ch.~\ref{ch:Rvec} Tuples};
  279. \node (C6) at (8,0) {\small Ch.~\ref{ch:Rfun} Functions};
  280. \node (C9) at (0,-1.5) {\small Ch.~\ref{ch:Rwhile} Loops};
  281. \node (C8) at (4,-1.5) {\small Ch.~\ref{ch:Rdyn} Dynamic};
  282. \node (C7) at (8,-1.5) {\small Ch.~\ref{ch:Rlam} Lambda};
  283. \node (C10) at (4,-3) {\small Ch.~\ref{ch:Rgrad} Gradual};
  284. \node (C11) at (8,-3) {\small Ch.~\ref{ch:Rpoly} Generics};
  285. \path[->] (C1) edge [above] node {} (C2);
  286. \path[->] (C2) edge [above] node {} (C3);
  287. \path[->] (C3) edge [above] node {} (C4);
  288. \path[->] (C4) edge [above] node {} (C5);
  289. \path[->] (C5) edge [above] node {} (C6);
  290. \path[->] (C6) edge [above] node {} (C7);
  291. \path[->] (C4) edge [above] node {} (C8);
  292. \path[->] (C4) edge [above] node {} (C9);
  293. \path[->] (C8) edge [above] node {} (C10);
  294. \path[->] (C10) edge [above] node {} (C11);
  295. \end{tikzpicture}
  296. \caption{Diagram of chapter dependencies.}
  297. \label{fig:chapter-dependences}
  298. \end{figure}
  299. We use the \href{https://racket-lang.org/}{Racket} language both for
  300. the implementation of the compiler and for the input language, so the
  301. reader should be proficient with Racket or Scheme. There are many
  302. excellent resources for learning Scheme and
  303. Racket~\citep{Dybvig:1987aa,Abelson:1996uq,Friedman:1996aa,Felleisen:2001aa,Felleisen:2013aa,Flatt:2014aa}. The
  304. support code for this book is in the \code{github} repository at the
  305. following URL:
  306. \begin{center}\small
  307. \url{https://github.com/IUCompilerCourse/public-student-support-code}
  308. \end{center}
  309. The compiler targets x86 assembly language~\citep{Intel:2015aa}, so it
  310. is helpful but not necessary for the reader to have taken a computer
  311. systems course~\citep{Bryant:2010aa}. This book introduces the parts
  312. of x86-64 assembly language that are needed.
  313. %
  314. We follow the System V calling
  315. conventions~\citep{Bryant:2005aa,Matz:2013aa}, so the assembly code
  316. that we generate works with the runtime system (written in C) when it
  317. is compiled using the GNU C compiler (\code{gcc}) on Linux and MacOS
  318. operating systems.
  319. %
  320. On the Windows operating system, \code{gcc} uses the Microsoft x64
  321. calling convention~\citep{Microsoft:2018aa,Microsoft:2020aa}. So the
  322. assembly code that we generate does \emph{not} work with the runtime
  323. system on Windows. One workaround is to use a virtual machine with
  324. Linux as the guest operating system.
  325. \section*{Acknowledgments}
  326. The tradition of compiler construction at Indiana University goes back
  327. to research and courses on programming languages by Daniel Friedman in
  328. the 1970's and 1980's. One of his students, Kent Dybvig, implemented
  329. Chez Scheme~\citep{Dybvig:2006aa}, a production-quality, efficient
  330. compiler for Scheme. Throughout the 1990's and 2000's, Dybvig taught
  331. the compiler course and continued the development of Chez Scheme.
  332. %
  333. The compiler course evolved to incorporate novel pedagogical ideas
  334. while also including elements of efficient real-world compilers. One
  335. of Friedman's ideas was to split the compiler into many small
  336. passes. Another idea, called ``the game'', was to test the code
  337. generated by each pass on interpreters.
  338. Dybvig, with help from his students Dipanwita Sarkar and Andrew Keep,
  339. developed infrastructure to support this approach and evolved the
  340. course to use even smaller
  341. nanopasses~\citep{Sarkar:2004fk,Keep:2012aa}. Many of the compiler
  342. design decisions in this book are inspired by the assignment
  343. descriptions of \citet{Dybvig:2010aa}. In the mid 2000's a student of
  344. Dybvig's named Abdulaziz Ghuloum observed that the front-to-back
  345. organization of the course made it difficult for students to
  346. understand the rationale for the compiler design. Ghuloum proposed the
  347. incremental approach~\citep{Ghuloum:2006bh}.
  348. We thank Bor-Yuh Chang, John Clements, Jay McCarthy, Joseph Near, Nate
  349. Nystrom, and Michael Wollowski for teaching courses based on early
  350. drafts.
  351. We thank Ronald Garcia for being Jeremy's partner when they took the
  352. compiler course in the early 2000's and especially for finding the bug
  353. that sent the garbage collector on a wild goose chase!
  354. \mbox{}\\
  355. \noindent Jeremy G. Siek \\
  356. Bloomington, Indiana
  357. %Oscar Waddell ??
  358. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  359. \chapter{Preliminaries}
  360. \label{ch:trees-recur}
  361. \begin{ocamlx}
  362. Text in blue, like this, represents additions to the original book
  363. text to support the use of OCaml rather than Racket as our compiler
  364. implementation language. The original text is never changed, so you
  365. can see both the Racket and OCaml versions in parallel. The main
  366. motivation for this is to save a lot of rote editing: the bulk of
  367. the story being told in this book is substantially the same
  368. regardless of implementation language, so most of what has been
  369. written about the Racket version applies directly to OCaml
  370. with just small mental adjustments between the syntaxes of the two
  371. languages. A secondary motivation is that it is sometimes easier to
  372. see key underlying ideas when they are expressed in more than one
  373. way.
  374. In many respects, Racket and OCaml are very similar languages: they
  375. both encourage a purely functional style of programming while also supporting
  376. imperative programming, provide higher-order functions, use
  377. garbage collection to guarantee memory safety, etc. Indeed, the
  378. ``back ends'' of Racket and OCaml implementations are nearly
  379. interchangeable. By far the most fundamental difference between them is
  380. that OCaml uses static typing, whereas Racket uses runtime typing.
  381. The latter can provide useful flexibility, but the former has the
  382. big advantage of providing compile-time feedback on type errors.
  383. This is our main motivation for using OCaml.
  384. \end{ocamlx}
  385. In this chapter we review the basic tools that are needed to implement
  386. a compiler. Programs are typically input by a programmer as text,
  387. i.e., a sequence of characters. The program-as-text representation is
  388. called \emph{concrete syntax}. We use concrete syntax to concisely
  389. write down and talk about programs. Inside the compiler, we use
  390. \emph{abstract syntax trees} (ASTs) to represent programs in a way
  391. that efficiently supports the operations that the compiler needs to
  392. perform.\index{concrete syntax}\index{abstract syntax}\index{abstract
  393. syntax tree}\index{AST}\index{program}\index{parse} The translation
  394. from concrete syntax to abstract syntax is a process called
  395. \emph{parsing}~\citep{Aho:1986qf}. We do not cover the theory and
  396. implementation of parsing in this book. A parser is provided in the
  397. support code for translating from concrete to abstract syntax.
  398. ASTs can be represented in many different ways inside the compiler,
  399. depending on the programming language used to write the compiler.
  400. %
  401. We use Racket's
  402. \href{https://docs.racket-lang.org/guide/define-struct.html}{\code{struct}}
  403. feature to represent ASTs (Section~\ref{sec:ast}).
  404. \ocaml{OCaml: we use \emph{variants} (also called algebraic data types) to
  405. represent ASTs.}
  406. We use grammars to
  407. define the abstract syntax of programming languages
  408. (Section~\ref{sec:grammar}) and pattern matching to inspect individual
  409. nodes in an AST (Section~\ref{sec:pattern-matching}). We use
  410. recursive functions to construct and deconstruct ASTs
  411. (Section~\ref{sec:recursion}). This chapter provides an brief
  412. introduction to these ideas. \index{struct}
  413. \section{Abstract Syntax Trees and Racket Structures \ocaml{/ OCaml Variants}}
  414. \label{sec:ast}
  415. Compilers use abstract syntax trees to represent programs because they
  416. often need to ask questions like: for a given part of a program, what
  417. kind of language feature is it? What are its sub-parts? Consider the
  418. program on the left and its AST on the right.
  419. \begin{ocamlx}
  420. This program is
  421. itself in Racket; in addition to using Racket as the compiler implementation
  422. language, the original version of this book uses subsets of Racket as the
  423. \emph{source} languages that we compile. In the OCaml version we will be using
  424. ad-hoc source languages that look a lot like subsets of Racket, but sometimes
  425. made simpler (because there is no particular advantage to matching the messier details
  426. of Racket syntax). The code on the left will be valid in all of our source languages too.
  427. \end{ocamlx}
  428. This program is an
  429. addition operation and it has two sub-parts, a read operation and a
  430. negation. The negation has another sub-part, the integer constant
  431. \code{8}. By using a tree to represent the program, we can easily
  432. follow the links to go from one part of a program to its sub-parts.
  433. \begin{center}
  434. \begin{minipage}{0.4\textwidth}
  435. \begin{lstlisting}
  436. (+ (read) (- 8))
  437. \end{lstlisting}
  438. \end{minipage}
  439. \begin{minipage}{0.4\textwidth}
  440. \begin{equation}
  441. \begin{tikzpicture}
  442. \node[draw, circle] (plus) at (0 , 0) {\key{+}};
  443. \node[draw, circle] (read) at (-1, -1.5) {{\footnotesize\key{read}}};
  444. \node[draw, circle] (minus) at (1 , -1.5) {$\key{-}$};
  445. \node[draw, circle] (8) at (1 , -3) {\key{8}};
  446. \draw[->] (plus) to (read);
  447. \draw[->] (plus) to (minus);
  448. \draw[->] (minus) to (8);
  449. \end{tikzpicture}
  450. \label{eq:arith-prog}
  451. \end{equation}
  452. \end{minipage}
  453. \end{center}
  454. We use the standard terminology for trees to describe ASTs: each
  455. circle above is called a \emph{node}. The arrows connect a node to its
  456. \emph{children} (which are also nodes). The top-most node is the
  457. \emph{root}. Every node except for the root has a \emph{parent} (the
  458. node it is the child of). If a node has no children, it is a
  459. \emph{leaf} node. Otherwise it is an \emph{internal} node.
  460. \index{node}
  461. \index{children}
  462. \index{root}
  463. \index{parent}
  464. \index{leaf}
  465. \index{internal node}
  466. %% Recall that an \emph{symbolic expression} (S-expression) is either
  467. %% \begin{enumerate}
  468. %% \item an atom, or
  469. %% \item a pair of two S-expressions, written $(e_1 \key{.} e_2)$,
  470. %% where $e_1$ and $e_2$ are each an S-expression.
  471. %% \end{enumerate}
  472. %% An \emph{atom} can be a symbol, such as \code{`hello}, a number, the
  473. %% null value \code{'()}, etc. We can create an S-expression in Racket
  474. %% simply by writing a backquote (called a quasi-quote in Racket)
  475. %% followed by the textual representation of the S-expression. It is
  476. %% quite common to use S-expressions to represent a list, such as $a, b
  477. %% ,c$ in the following way:
  478. %% \begin{lstlisting}
  479. %% `(a . (b . (c . ())))
  480. %% \end{lstlisting}
  481. %% Each element of the list is in the first slot of a pair, and the
  482. %% second slot is either the rest of the list or the null value, to mark
  483. %% the end of the list. Such lists are so common that Racket provides
  484. %% special notation for them that removes the need for the periods
  485. %% and so many parenthesis:
  486. %% \begin{lstlisting}
  487. %% `(a b c)
  488. %% \end{lstlisting}
  489. %% The following expression creates an S-expression that represents AST
  490. %% \eqref{eq:arith-prog}.
  491. %% \begin{lstlisting}
  492. %% `(+ (read) (- 8))
  493. %% \end{lstlisting}
  494. %% When using S-expressions to represent ASTs, the convention is to
  495. %% represent each AST node as a list and to put the operation symbol at
  496. %% the front of the list. The rest of the list contains the children. So
  497. %% in the above case, the root AST node has operation \code{`+} and its
  498. %% two children are \code{`(read)} and \code{`(- 8)}, just as in the
  499. %% diagram \eqref{eq:arith-prog}.
  500. %% To build larger S-expressions one often needs to splice together
  501. %% several smaller S-expressions. Racket provides the comma operator to
  502. %% splice an S-expression into a larger one. For example, instead of
  503. %% creating the S-expression for AST \eqref{eq:arith-prog} all at once,
  504. %% we could have first created an S-expression for AST
  505. %% \eqref{eq:arith-neg8} and then spliced that into the addition
  506. %% S-expression.
  507. %% \begin{lstlisting}
  508. %% (define ast1.4 `(- 8))
  509. %% (define ast1.1 `(+ (read) ,ast1.4))
  510. %% \end{lstlisting}
  511. %% In general, the Racket expression that follows the comma (splice)
  512. %% can be any expression that produces an S-expression.
  513. We define a Racket \code{struct} for each kind of node. For this
  514. chapter we require just two kinds of nodes: one for integer constants
  515. and one for primitive operations. The following is the \code{struct}
  516. definition for integer constants.
  517. \begin{lstlisting}
  518. (struct Int (value))
  519. \end{lstlisting}
  520. An integer node includes just one thing: the integer value.
  521. To create a AST node for the integer $8$, we write \code{(Int 8)}.
  522. \begin{lstlisting}
  523. (define eight (Int 8))
  524. \end{lstlisting}
  525. We say that the value created by \code{(Int 8)} is an
  526. \emph{instance} of the \code{Int} structure.
  527. The following is the \code{struct} definition for primitives operations.
  528. \begin{lstlisting}
  529. (struct Prim (op args))
  530. \end{lstlisting}
  531. A primitive operation node includes an operator symbol \code{op}
  532. and a list of children \code{args}. For example, to create
  533. an AST that negates the number $8$, we write \code{(Prim '- (list eight))}.
  534. \begin{lstlisting}
  535. (define neg-eight (Prim '- (list eight)))
  536. \end{lstlisting}
  537. Primitive operations may have zero or more children. The \code{read}
  538. operator has zero children:
  539. \begin{lstlisting}
  540. (define rd (Prim 'read '()))
  541. \end{lstlisting}
  542. whereas the addition operator has two children:
  543. \begin{lstlisting}
  544. (define ast1.1 (Prim '+ (list rd neg-eight)))
  545. \end{lstlisting}
  546. \begin{ocamlx}
  547. We define an OCaml variant type for ASTs, with a different constructor for each
  548. kind of node:
  549. \begin{lstlisting}[style=ocaml]
  550. type exp =
  551. Int of int
  552. | Prim of primop * exp list
  553. \end{lstlisting}
  554. This definition depends on the definition of another variant type that enumerates the possible primops
  555. (in place of the single-quoted symbols used in Racket):
  556. \begin{lstlisting}[style=ocaml]
  557. type primop =
  558. Read
  559. | Neg
  560. | Add
  561. \end{lstlisting}
  562. To create an AST node for the integer 8, we write \code{Int 8}.
  563. To create an AST that negates
  564. the number 8, we write \code{Prim(Neg,[Int 8])}, and so on:
  565. \begin{lstlisting}[style=ocaml]
  566. let eight = Int 8
  567. let neg_eight = Prim(Neg,[eight])
  568. let rd = Prim(Read,[])
  569. let ast1_1 = Prim(Add,[rd,neg_eight])
  570. \end{lstlisting}
  571. Note that OCaml identifiers are more restricted in form than those of Racket; we will typically replace uses of dash (\code{-}), dot (\code{.}), etc. by underscores (\code{\_}).
  572. \end{ocamlx}
  573. We have made a design choice regarding the \code{Prim} structure.
  574. Instead of using one structure for many different operations
  575. (\code{read}, \code{+}, and \code{-}), we could have instead defined a
  576. structure for each operation, as follows.
  577. \begin{lstlisting}
  578. (struct Read ())
  579. (struct Add (left right))
  580. (struct Neg (value))
  581. \end{lstlisting}
  582. The reason we choose to use just one structure is that in many parts
  583. of the compiler the code for the different primitive operators is the
  584. same, so we might as well just write that code once, which is enabled
  585. by using a single structure.
  586. \begin{ocamlx}
  587. We have made a similar design choice in OCaml. The corresponding
  588. alternative would have been to define our AST type as
  589. \begin{lstlisting}[style=ocaml]
  590. type exp =
  591. Int of int
  592. | Read
  593. | Add of exp * exp
  594. | Neg of exp
  595. \end{lstlisting}
  596. Note that one advantage of using this alternative is that it would explicitly enforce
  597. that each primitive operator is given the correct number of arguments (its \emph{arity});
  598. this restriction is not captured in the list-based version.
  599. \end{ocamlx}
  600. When compiling a program such as \eqref{eq:arith-prog}, we need to
  601. know that the operation associated with the root node is addition and
  602. we need to be able to access its two children. Racket provides pattern
  603. matching to support these kinds of queries, as we see in
  604. Section~\ref{sec:pattern-matching}. \ocaml{So does OCaml.}
  605. In this book, we often write down the concrete syntax of a program
  606. even when we really have in mind the AST because the concrete syntax
  607. is more concise. We recommend that, in your mind, you always think of
  608. programs as abstract syntax trees.
  609. \section{Grammars}
  610. \label{sec:grammar}
  611. \index{integer}
  612. \index{literal}
  613. \index{constant}
  614. A programming language can be thought of as a \emph{set} of programs.
  615. The set is typically infinite (one can always create larger and larger
  616. programs), so one cannot simply describe a language by listing all of
  617. the programs in the language. Instead we write down a set of rules, a
  618. \emph{grammar}, for building programs. Grammars are often used to
  619. define the concrete syntax of a language, but they can also be used to
  620. describe the abstract syntax. We write our rules in a variant of
  621. Backus-Naur Form (BNF)~\citep{Backus:1960aa,Knuth:1964aa}.
  622. \index{Backus-Naur Form}\index{BNF}
  623. As an example, we describe a small language, named \LangInt{}, that consists of
  624. integers and arithmetic operations.
  625. \index{grammar}
  626. \begin{ocamlx}
  627. Using a grammar to describe abstract syntax is less useful in OCaml than in
  628. Racket, because our variant type definition for ASTs already serves to specify
  629. the legal forms of tree (except that it is overly flexible about the arity of
  630. primops, as mentioned above). So don't worry too much about the details of
  631. the AST grammar here---but do make sure you understand how the same ideas
  632. are applied to \emph{concrete} grammars, below.
  633. \end{ocamlx}
  634. The first grammar rule for the abstract syntax of \LangInt{} says that an
  635. instance of the \code{Int} structure is an expression:
  636. \begin{equation}
  637. \Exp ::= \INT{\Int} \label{eq:arith-int}
  638. \end{equation}
  639. %
  640. Each rule has a left-hand-side and a right-hand-side. The way to read
  641. a rule is that if you have an AST node that matches the
  642. right-hand-side, then you can categorize it according to the
  643. left-hand-side.
  644. %
  645. A name such as $\Exp$ that is defined by the grammar rules is a
  646. \emph{non-terminal}. \index{non-terminal}
  647. %
  648. The name $\Int$ is a also a non-terminal, but instead of defining it
  649. with a grammar rule, we define it with the following explanation. We
  650. make the simplifying design decision that all of the languages in this
  651. book only handle machine-representable integers. On most modern
  652. machines this corresponds to integers represented with 64-bits, i.e.,
  653. the in range $-2^{63}$ to $2^{63}-1$. We restrict this range further
  654. to match the Racket \texttt{fixnum} datatype, which allows 63-bit
  655. integers on a 64-bit machine. So an $\Int$ is a sequence of decimals
  656. ($0$ to $9$), possibly starting with $-$ (for negative integers), such
  657. that the sequence of decimals represent an integer in range $-2^{62}$
  658. to $2^{62}-1$.
  659. \ocaml{As it happens, OCaml's standard integer type
  660. (\code{int}) is also 63 bits on a 64-bit machine. Initially, we
  661. will adopt the corresponding convention that $\Int$ is a 63-bit integer,
  662. but soon we will move to full 64-bit integers.}
  663. The second grammar rule is the \texttt{read} operation that receives
  664. an input integer from the user of the program.
  665. \begin{equation}
  666. \Exp ::= \READ{} \label{eq:arith-read}
  667. \end{equation}
  668. The third rule says that, given an $\Exp$ node, the negation of that
  669. node is also an $\Exp$.
  670. \begin{equation}
  671. \Exp ::= \NEG{\Exp} \label{eq:arith-neg}
  672. \end{equation}
  673. Symbols in typewriter font such as \key{-} and \key{read} are
  674. \emph{terminal} symbols and must literally appear in the program for
  675. the rule to be applicable.
  676. \index{terminal}
  677. We can apply these rules to categorize the ASTs that are in the
  678. \LangInt{} language. For example, by rule \eqref{eq:arith-int}
  679. \texttt{(Int 8)} is an $\Exp$, then by rule \eqref{eq:arith-neg} the
  680. following AST is an $\Exp$.
  681. \begin{center}
  682. \begin{minipage}{0.4\textwidth}
  683. \begin{lstlisting}
  684. (Prim '- (list (Int 8)))
  685. \end{lstlisting}
  686. \end{minipage}
  687. \begin{minipage}{0.25\textwidth}
  688. \begin{equation}
  689. \begin{tikzpicture}
  690. \node[draw, circle] (minus) at (0, 0) {$\text{--}$};
  691. \node[draw, circle] (8) at (0, -1.2) {$8$};
  692. \draw[->] (minus) to (8);
  693. \end{tikzpicture}
  694. \label{eq:arith-neg8}
  695. \end{equation}
  696. \end{minipage}
  697. \end{center}
  698. \begin{ocamlx}
  699. The corresponding OCaml AST expression is \code{Prim(Neg,[Int 8])}.
  700. \end{ocamlx}
  701. The next grammar rule is for addition expressions:
  702. \begin{equation}
  703. \Exp ::= \ADD{\Exp}{\Exp} \label{eq:arith-add}
  704. \end{equation}
  705. We can now justify that the AST \eqref{eq:arith-prog} is an $\Exp$ in
  706. \LangInt{}. We know that \lstinline{(Prim 'read '())} is an $\Exp$ by rule
  707. \eqref{eq:arith-read} and we have already categorized \code{(Prim '-
  708. (list (Int 8)))} as an $\Exp$, so we apply rule \eqref{eq:arith-add}
  709. to show that
  710. \begin{lstlisting}
  711. (Prim '+ (list (Prim 'read '()) (Prim '- (list (Int 8)))))
  712. \end{lstlisting}
  713. is an $\Exp$ in the \LangInt{} language.
  714. \ocaml{\\ OCaml: \code{Prim(Add,[Prim(Read,[]);Prim(Neg,[Int 8])])}.}
  715. If you have an AST for which the above rules do not apply, then the
  716. AST is not in \LangInt{}. For example, the program \code{(- (read) (+ 8))}
  717. is not in \LangInt{} because there are no rules for \code{+} with only one
  718. argument, nor for \key{-} with two arguments. Whenever we define a
  719. language with a grammar, the language only includes those programs
  720. that are justified by the rules.
  721. The last grammar rule for \LangInt{} states that there is a \code{Program}
  722. node to mark the top of the whole program:
  723. \[
  724. \LangInt{} ::= \PROGRAM{\code{'()}}{\Exp}
  725. \]
  726. The \code{Program} structure is defined as follows
  727. \begin{lstlisting}
  728. (struct Program (info body))
  729. \end{lstlisting}
  730. where \code{body} is an expression. In later chapters, the \code{info}
  731. part will be used to store auxiliary information but for now it is
  732. just the empty list.
  733. \begin{ocamlx}
  734. In OCaml:
  735. \begin{lstlisting}[style=ocaml]
  736. type 'info program = Program of 'info * exp
  737. \end{lstlisting}
  738. Again, we represent the structure as a variant type
  739. (\code{rint\_program}), this time just with one constructor
  740. (\code{Program)}. We \emph{parameterize} \code{program} by a
  741. \emph{type variable} \code{'info} (type variables are distinguished by having
  742. a leading tick mark). This says that \code{rint\_program} is a family of types which can
  743. be instantiated to represent programs holding a particular kind of auxiliary information.
  744. For now, we'll just instantiate \code{'info}
  745. with the \emph{unit} type, written \code{unit}, whose sole (boring)
  746. value is written \code{()}.
  747. \begin{lstlisting}[style=ocaml]
  748. let p : unit program = Program () body
  749. \end{lstlisting}
  750. Here the colon (\code{:}) introduces an explicit type annotation on \code{p}; it can be read ``has type.''
  751. \end{ocamlx}
  752. It is common to have many grammar rules with the same left-hand side
  753. but different right-hand sides, such as the rules for $\Exp$ in the
  754. grammar of \LangInt{}. As a short-hand, a vertical bar can be used to
  755. combine several right-hand-sides into a single rule.
  756. We collect all of the grammar rules for the abstract syntax of \LangInt{}
  757. in Figure~\ref{fig:r0-syntax} \ocaml{along with the corresponding OCaml type definitions}.
  758. The concrete syntax for \LangInt{} is
  759. defined in Figure~\ref{fig:r0-concrete-syntax}.
  760. The \code{read-program} function provided in \code{utilities.rkt} of
  761. the support code reads a program in from a file (the sequence of
  762. characters in the concrete syntax of Racket) and parses it into an
  763. abstract syntax tree. See the description of \code{read-program} in
  764. Appendix~\ref{appendix:utilities} for more details.
  765. \begin{ocamlx}
  766. As noted above, the concrete syntaxes we will use are similar to Racket's own syntax.
  767. In particular, programs are described as \emph{S-expressions}. An S-expression can be
  768. either an atom (an integer, symbol, or quoted string) or a list of S-expressions enclosed in
  769. parentheses. You can see that the concrete syntax for \LangInt{} is written as
  770. S-expressions where the symbols used are \code{read},\code{-}, and \code{+}, and
  771. a primitive operation invocation is described by a list whose first element is
  772. the operation symbol and whose remaining elements (0 or more of them) are
  773. S-expressions representing the arguments (which can themselves be lists).
  774. All the source languages we consider in this book will be written as S-expressions in
  775. a similar style; the details of which symbols and shapes of list are allowed
  776. will vary from language to language.
  777. To handle all this neatly in OCaml, we split the parsing of concrete
  778. programs into two phases. First, the \code{parse} function provided
  779. in \code{sexpr.ml} of the support code reads text from a file and
  780. parses it into a generic S-expression data type. (This code is a
  781. bit complicated and messy, but you don't have to understand its
  782. internals in order to use it.) Then, a source-language-specific
  783. program is used to convert the S-expression into the abstract syntax
  784. of that particular language. We will see later on that OCaml's pattern
  785. matching facilities make it very easy to write such conversion
  786. routines. This is particularly true because the S-expression format
  787. we use for our concrete source languages is already very close to an
  788. abstract syntax, which means the conversion has very little work to
  789. do. For example, as you have seen, primitive operations are all
  790. written in prefix, rather than infix, notation, so there is no need
  791. to worry about issues like precedence and associativity of operators
  792. in an expression like \code{(2 * 3 + 4)}: the S-expression syntax
  793. will be either \code{(+ (* 2 3) 4)} or \code{(* 2 (+ 3 4))}, so
  794. there is no possible ambiguity. The downside is that source programs
  795. are a bit more tedious to write, and may sometimes seem to be drowning in
  796. parentheses.
  797. The OCaml representation of generic S-expressions is just another
  798. variant type:
  799. \begin{lstlisting}[style=ocaml]
  800. type sexp =
  801. | SList of sexp list
  802. (* list of expressions delimited by parentheses *)
  803. | SNum of Int64.t
  804. (* 64-bit integers *)
  805. | SSym of string
  806. (* character sequence starting with non-digit,
  807. delimited by white space *)
  808. | SString of string
  809. (* arbitrary character sequence delimited by double quotes *)
  810. \end{lstlisting}
  811. The generic S-expression parser handles (nestable) comments delimited by
  812. curly braces (\code{\{} and \code{\}}). Symbols must start with a non-digit
  813. character and can contain any
  814. non-whitespace characters except parentheses, curly braces, and
  815. the back tick (\code{\`}); this last exclusion is handy when we want to
  816. generate internal names during compilation and be sure they don't clash
  817. with a user-defined symbol.
  818. \end{ocamlx}
  819. \begin{figure}[tp]
  820. \fbox{
  821. \begin{minipage}{0.96\textwidth}
  822. \[
  823. \begin{array}{rcl}
  824. \begin{array}{rcl}
  825. \Exp &::=& \Int \mid \LP\key{read}\RP \mid \LP\key{-}\;\Exp\RP \mid \LP\key{+} \; \Exp\;\Exp\RP\\
  826. \LangInt{} &::=& \Exp
  827. \end{array}
  828. \end{array}
  829. \]
  830. \end{minipage}
  831. }
  832. \caption{The concrete syntax of \LangInt{}.}
  833. \label{fig:r0-concrete-syntax}
  834. \end{figure}
  835. \begin{figure}[tp]
  836. \fbox{
  837. \begin{minipage}{0.96\textwidth}
  838. \[
  839. \begin{array}{rcl}
  840. \Exp &::=& \INT{\Int} \mid \READ{} \mid \NEG{\Exp} \\
  841. &\mid& \ADD{\Exp}{\Exp} \\
  842. \LangInt{} &::=& \PROGRAM{\code{'()}}{\Exp}
  843. \end{array}
  844. \]
  845. \end{minipage}
  846. }
  847. \begin{minipage}{0.96\textwidth}
  848. \begin{lstlisting}[style=ocaml,frame=single]
  849. type primop =
  850. Read
  851. | Neg
  852. | Add
  853. type exp =
  854. Int of int
  855. | Prim of primop * exp list
  856. type 'info program = Program of 'info * exp
  857. \end{lstlisting}
  858. \end{minipage}
  859. \caption{The abstract syntax of \LangInt{}.}
  860. \label{fig:r0-syntax}
  861. \end{figure}
  862. \section{Pattern Matching}
  863. \label{sec:pattern-matching}
  864. As mentioned in Section~\ref{sec:ast}, compilers often need to access
  865. the parts of an AST node. Racket provides the \texttt{match} form to
  866. access the parts of a structure. Consider the following example and
  867. the output on the right. \index{match} \index{pattern matching}
  868. \begin{center}
  869. \begin{minipage}{0.5\textwidth}
  870. \begin{lstlisting}
  871. (match ast1.1
  872. [(Prim op (list child1 child2))
  873. (print op)])
  874. \end{lstlisting}
  875. \end{minipage}
  876. \vrule
  877. \begin{minipage}{0.25\textwidth}
  878. \begin{lstlisting}
  879. '+
  880. \end{lstlisting}
  881. \end{minipage}
  882. \end{center}
  883. In the above example, the \texttt{match} form takes an AST
  884. \eqref{eq:arith-prog} and binds its parts to the three pattern
  885. variables \texttt{op}, \texttt{child1}, and \texttt{child2}, and then
  886. prints out the operator. In general, a match clause consists of a
  887. \emph{pattern} and a \emph{body}.\index{pattern} Patterns are
  888. recursively defined to be either a pattern variable, a structure name
  889. followed by a pattern for each of the structure's arguments, or an
  890. S-expression (symbols, lists, etc.). (See Chapter 12 of The Racket
  891. Guide\footnote{\url{https://docs.racket-lang.org/guide/match.html}}
  892. and Chapter 9 of The Racket
  893. Reference\footnote{\url{https://docs.racket-lang.org/reference/match.html}}
  894. for a complete description of \code{match}.)
  895. %
  896. The body of a match clause may contain arbitrary Racket code. The
  897. pattern variables can be used in the scope of the body, such as
  898. \code{op} in \code{(print op)}.
  899. \begin{ocamlx}
  900. Here is the OCaml version, which is quite similar:
  901. \begin{center}
  902. \begin{minipage}{0.5\textwidth}
  903. \begin{lstlisting}[style=ocaml]
  904. match ast1_1 with
  905. | Prim(op,[child1;child2]) -> op
  906. \end{lstlisting}
  907. \end{minipage}
  908. \vrule
  909. \begin{minipage}{0.25\textwidth}
  910. \begin{lstlisting}[style=ocaml]
  911. Add
  912. \end{lstlisting}
  913. \end{minipage}
  914. \end{center}
  915. \end{ocamlx}
  916. A \code{match} form may contain several clauses, as in the following
  917. function \code{leaf?} that recognizes when an \LangInt{} node is a leaf in
  918. the AST. The \code{match} proceeds through the clauses in order,
  919. checking whether the pattern can match the input AST. The body of the
  920. first clause that matches is executed.
  921. \begin{ocamlx}
  922. In fact, in OCaml, we will get a warning message about the code above, because the \code{match} only contains
  923. a clause for a {\tt Prim} with two children, not for other other possible forms of \code{exp}.
  924. Although in this particular instance, that's OK (because of the value of \code{ast1\_1}), in general
  925. it suggests a possible error. Getting warnings like this is one of the advantages of static typing.
  926. \end{ocamlx}
  927. The output of \code{leaf?} for
  928. several ASTs is shown on the right.
  929. \begin{center}
  930. \begin{minipage}{0.6\textwidth}
  931. \begin{lstlisting}
  932. (define (leaf? arith)
  933. (match arith
  934. [(Int n) #t]
  935. [(Prim 'read '()) #t]
  936. [(Prim '- (list e1)) #f]
  937. [(Prim '+ (list e1 e2)) #f]))
  938. (leaf? (Prim 'read '()))
  939. (leaf? (Prim '- (list (Int 8))))
  940. (leaf? (Int 8))
  941. \end{lstlisting}
  942. \end{minipage}
  943. \vrule
  944. \begin{minipage}{0.25\textwidth}
  945. \begin{lstlisting}
  946. #t
  947. #f
  948. #t
  949. \end{lstlisting}
  950. \end{minipage}
  951. \end{center}
  952. When writing a \code{match}, we refer to the grammar definition to
  953. identify which non-terminal we are expecting to match against, then we
  954. make sure that 1) we have one clause for each alternative of that
  955. non-terminal and 2) that the pattern in each clause corresponds to the
  956. corresponding right-hand side of a grammar rule. For the \code{match}
  957. in the \code{leaf?} function, we refer to the grammar for \LangInt{} in
  958. Figure~\ref{fig:r0-syntax}. The $\Exp$ non-terminal has 4
  959. alternatives, so the \code{match} has 4 clauses. The pattern in each
  960. clause corresponds to the right-hand side of a grammar rule. For
  961. example, the pattern \code{(Prim '+ (list e1 e2))} corresponds to the
  962. right-hand side $\ADD{\Exp}{\Exp}$. When translating from grammars to
  963. patterns, replace non-terminals such as $\Exp$ with pattern variables
  964. of your choice (e.g. \code{e1} and \code{e2}).
  965. \begin{ocamlx}
  966. Here is the directly corresponding OCaml version.
  967. \begin{center}
  968. \begin{minipage}{0.6\textwidth}
  969. \begin{lstlisting}[style=ocaml]
  970. let is_leaf arith =
  971. match arith with
  972. | Int n -> true
  973. | Prim(Read,[]) -> true
  974. | Prim(Neg,[e1]) -> false
  975. | Prim(Add,[e1;e2]) -> false
  976. | _ -> assert false
  977. is_leaf (Prim(Read,[]))
  978. is_leaf (Prim(Neg,[Int 8]))
  979. is_leaf (Int 8)
  980. \end{lstlisting}
  981. \end{minipage}
  982. \vrule
  983. \begin{minipage}{0.25\textwidth}
  984. \begin{lstlisting}[style=ocaml]
  985. true
  986. false
  987. true
  988. \end{lstlisting}
  989. \end{minipage}
  990. \end{center}
  991. The final clause uses a wildcard pattern {\tt \_}, which matches anything of type \code{exp},
  992. to cover the (ill-formed) cases where a primop is given the wrong number of arguments;
  993. otherwise, the compiler will again issue a warning that not all cases have been considered.
  994. The \code{assert false} causes OCaml execution to halt with an uncaught exception message.
  995. In this particular case, we can use wildcards to write a more idiomatic version of
  996. \code{is\_leaf} that doesn't require a catch-all case (and is also ``future-proof''
  997. against later additions to the \code{primop} type). We also make use of the following
  998. short-cut: a function that takes an argument $arg$ and then immediately performs
  999. a \code{match} over $arg$ can be written more concisely using the \code{function} keyword.
  1000. \begin{center}
  1001. \begin{minipage}{0.5\textwidth}
  1002. \begin{lstlisting}[style=ocaml]
  1003. let is_leaf = function
  1004. | Int _ -> true
  1005. | Prim(_,[]) -> true
  1006. | _ -> false
  1007. \end{lstlisting}
  1008. \end{minipage}
  1009. \end{center}
  1010. \end{ocamlx}
  1011. \section{Recursive Functions}
  1012. \label{sec:recursion}
  1013. \index{recursive function}
  1014. Programs are inherently recursive. For example, an \LangInt{} expression is
  1015. often made of smaller expressions. Thus, the natural way to process an
  1016. entire program is with a recursive function. As a first example of
  1017. such a recursive function, we define \texttt{exp?} below, which takes
  1018. an arbitrary value and determines whether or not it is an \LangInt{}
  1019. expression.
  1020. %
  1021. We say that a function is defined by \emph{structural recursion} when
  1022. it is defined using a sequence of match clauses that correspond to a
  1023. grammar, and the body of each clause makes a recursive call on each
  1024. child node.\footnote{This principle of structuring code according to
  1025. the data definition is advocated in the book \emph{How to Design
  1026. Programs} \url{http://www.ccs.neu.edu/home/matthias/HtDP2e/}.}.
  1027. Below we also define a second function, named \code{Rint?}, that
  1028. determines whether an AST is an \LangInt{} program. In general we can
  1029. expect to write one recursive function to handle each non-terminal in
  1030. a grammar.\index{structural recursion}
  1031. %
  1032. \begin{center}
  1033. \begin{minipage}{0.7\textwidth}
  1034. \begin{lstlisting}
  1035. (define (exp? ast)
  1036. (match ast
  1037. [(Int n) #t]
  1038. [(Prim 'read '()) #t]
  1039. [(Prim '- (list e)) (exp? e)]
  1040. [(Prim '+ (list e1 e2))
  1041. (and (exp? e1) (exp? e2))]
  1042. [else #f]))
  1043. (define (Rint? ast)
  1044. (match ast
  1045. [(Program '() e) (exp? e)]
  1046. [else #f]))
  1047. (Rint? (Program '() ast1.1)
  1048. (Rint? (Program '()
  1049. (Prim '- (list (Prim 'read '())
  1050. (Prim '+ (list (Num 8)))))))
  1051. \end{lstlisting}
  1052. \end{minipage}
  1053. \vrule
  1054. \begin{minipage}{0.25\textwidth}
  1055. \begin{lstlisting}
  1056. #t
  1057. #f
  1058. \end{lstlisting}
  1059. \end{minipage}
  1060. \end{center}
  1061. You may be tempted to merge the two functions into one, like this:
  1062. \begin{center}
  1063. \begin{minipage}{0.5\textwidth}
  1064. \begin{lstlisting}
  1065. (define (Rint? ast)
  1066. (match ast
  1067. [(Int n) #t]
  1068. [(Prim 'read '()) #t]
  1069. [(Prim '- (list e)) (Rint? e)]
  1070. [(Prim '+ (list e1 e2)) (and (Rint? e1) (Rint? e2))]
  1071. [(Program '() e) (Rint? e)]
  1072. [else #f]))
  1073. \end{lstlisting}
  1074. \end{minipage}
  1075. \end{center}
  1076. %
  1077. Sometimes such a trick will save a few lines of code, especially when
  1078. it comes to the \code{Program} wrapper. Yet this style is generally
  1079. \emph{not} recommended because it can get you into trouble.
  1080. %
  1081. For example, the above function is subtly wrong:
  1082. \lstinline{(Rint? (Program '() (Program '() (Int 3))))}
  1083. returns true when it should return false.
  1084. \begin{ocamlx}
  1085. There is almost no point in writing OCaml analogs to \code{exp?} or \code{Rint?}, because static
  1086. typing guarantees that values claimed to be in type \code{exp} or \code{rint\_program} really are
  1087. (or the OCaml program will not pass the OCaml typechecker). However, it is still worth
  1088. writing a function to check that primops are applied to the right number of arguments.
  1089. Here is an idiomatic way to do that:
  1090. \begin{center}
  1091. \begin{minipage}{0.85\textwidth}
  1092. \begin{lstlisting}[style=ocaml]
  1093. let arity = function
  1094. | Read -> 0
  1095. | Neg -> 1
  1096. | Add -> 2
  1097. let rec check_exp = function
  1098. | Int _ -> true
  1099. | Prim(op,args) ->
  1100. List.length args = arity op && check_exps args
  1101. and check_exps = function
  1102. | [] -> true
  1103. | (exp::exps') -> check_exp exp && check_exps exps'
  1104. let check_program (Program(_,e)) = check_exp e
  1105. check_program (Program((),ast1_1))
  1106. check_program (Program((),Prim(Neg,[Prim(Read,[]);
  1107. Prim(Plus,[Int 8])])))
  1108. \end{lstlisting}
  1109. \end{minipage}
  1110. \vrule
  1111. \begin{minipage}{0.1\textwidth}
  1112. \begin{lstlisting}[style=ocaml]
  1113. true
  1114. false
  1115. \end{lstlisting}
  1116. \end{minipage}
  1117. \end{center}
  1118. In the definition of \code{check\_program}, since the argument type \code{rint\_program}
  1119. has only one constructor, we can write a pattern \code{Program(\_,e)} which matches that constructor directly in
  1120. place of an argument name; this binds the variable(s) (here \code{e}) of the pattern in the body of the function.
  1121. Note that \code{check\_exp} is declared to be recursive by using the \code{rec} keyword;
  1122. in fact, \code{check\_exp} and \code{check\_exps} are \emph{mutually} recursive because
  1123. their definitions are connected by the \code{and} keyword. \code{List.length} is a library
  1124. function that returns the length of a list. Actually, the library also has a handy higher-order
  1125. function \code{List.for\_all} that applies a specified boolean-value function to a list and returns
  1126. whether it is true on all elements. Using that, we could rewrite the \code{Prim}
  1127. clause of \code{check\_exp} as
  1128. \begin{lstlisting}[style=ocaml]
  1129. | Prim(op,args) ->
  1130. List.length args = arity op && List.for_all check_exp args
  1131. \end{lstlisting}
  1132. and dispense with \code{check\_exps} altogether. Being able to operate on entire lists
  1133. uniformly like this is one of the payoffs for using a single generic \code{Prim} constructor.
  1134. \end{ocamlx}
  1135. \section{Interpreters}
  1136. \label{sec:interp-Rint}
  1137. \index{interpreter}
  1138. In general, the intended behavior of a program is defined by the
  1139. specification of the language. For example, the Scheme language is
  1140. defined in the report by \cite{SPERBER:2009aa}. The Racket language is
  1141. defined in its reference manual~\citep{plt-tr}. In this book we use
  1142. interpreters to specify each language that we consider. An interpreter
  1143. that is designated as the definition of a language is called a
  1144. \emph{definitional interpreter}~\citep{reynolds72:_def_interp}.
  1145. \index{definitional interpreter} We warm up by creating a definitional
  1146. interpreter for the \LangInt{} language, which serves as a second example
  1147. of structural recursion. The \texttt{interp-Rint} function is defined in
  1148. Figure~\ref{fig:interp-Rint}. The body of the function is a match on the
  1149. input program followed by a call to the \lstinline{interp-exp} helper
  1150. function, which in turn has one match clause per grammar rule for
  1151. \LangInt{} expressions. \ocaml{The OCaml version is in Figure~\ref{fig:ocaml-interp-Rint}.}
  1152. \begin{figure}[tp]
  1153. \begin{lstlisting}
  1154. (define (interp-exp e)
  1155. (match e
  1156. [(Int n) n]
  1157. [(Prim 'read '())
  1158. (define r (read))
  1159. (cond [(fixnum? r) r]
  1160. [else (error 'interp-exp "read expected an integer" r)])]
  1161. [(Prim '- (list e))
  1162. (define v (interp-exp e))
  1163. (fx- 0 v)]
  1164. [(Prim '+ (list e1 e2))
  1165. (define v1 (interp-exp e1))
  1166. (define v2 (interp-exp e2))
  1167. (fx+ v1 v2)]))
  1168. (define (interp-Rint p)
  1169. (match p
  1170. [(Program '() e) (interp-exp e)]))
  1171. \end{lstlisting}
  1172. \caption{Interpreter for the \LangInt{} language.}
  1173. \label{fig:interp-Rint}
  1174. \end{figure}
  1175. \begin{figure}[tp]
  1176. \begin{lstlisting}[style=ocaml]
  1177. let interp_exp exp =
  1178. match exp with
  1179. | Int n -> n
  1180. | Prim(Read,[]) -> read_int()
  1181. | Prim(Neg,[e]) -> - (interp_exp e)
  1182. | Prim(Add,[e1;e2]) ->
  1183. (* must explicitly sequence evaluation order! *)
  1184. let v1 = interp_exp e1 in
  1185. let v2 = interp_exp e2 in
  1186. v1 + v2
  1187. | _ -> assert false (* arity mismatch *)
  1188. let interp_program (Program(_,e)) = interp_exp e
  1189. \end{lstlisting}
  1190. \caption{\ocaml{OCaml interpreter for the \LangInt{} language.}}
  1191. \label{fig:ocaml-interp-Rint}
  1192. \end{figure}
  1193. Let us consider the result of interpreting a few \LangInt{} programs. The
  1194. following program adds two integers.
  1195. \begin{lstlisting}
  1196. (+ 10 32)
  1197. \end{lstlisting}
  1198. The result is \key{42}, the answer to life, the universe, and
  1199. everything: \code{42}!\footnote{\emph{The Hitchhiker's Guide to the
  1200. Galaxy} by Douglas Adams.}.
  1201. %
  1202. We wrote the above program in concrete syntax whereas the parsed
  1203. abstract syntax is:
  1204. \begin{lstlisting}
  1205. (Program '() (Prim '+ (list (Int 10) (Int 32))))
  1206. \end{lstlisting}
  1207. \begin{ocamlx}
  1208. Ocaml:
  1209. \begin{lstlisting}[style=ocaml]
  1210. Program((),Prim(Add,[Int 10; Int 32]))
  1211. \end{lstlisting}
  1212. \end{ocamlx}
  1213. The next example demonstrates that expressions may be nested within
  1214. each other, in this case nesting several additions and negations.
  1215. \begin{lstlisting}
  1216. (+ 10 (- (+ 12 20)))
  1217. \end{lstlisting}
  1218. What is the result of the above program?
  1219. As mentioned previously, the \LangInt{} language does not support
  1220. arbitrarily-large integers, but only $63$-bit integers, so we
  1221. interpret the arithmetic operations of \LangInt{} using fixnum arithmetic
  1222. in Racket.
  1223. Suppose
  1224. \[
  1225. n = 999999999999999999
  1226. \]
  1227. which indeed fits in $63$-bits. What happens when we run the
  1228. following program in our interpreter?
  1229. \begin{lstlisting}
  1230. (+ (+ (+ |$n$| |$n$|) (+ |$n$| |$n$|)) (+ (+ |$n$| |$n$|) (+ |$n$| |$n$|)))))
  1231. \end{lstlisting}
  1232. It produces an error:
  1233. \begin{lstlisting}
  1234. fx+: result is not a fixnum
  1235. \end{lstlisting}
  1236. We establish the convention that if running the definitional
  1237. interpreter on a program produces an error then the meaning of that
  1238. program is \emph{unspecified}\index{unspecified behavior}, unless the
  1239. error is a \code{trapped-error}. A compiler for the language is under
  1240. no obligations regarding programs with unspecified behavior; it does
  1241. not have to produce an executable, and if it does, that executable can
  1242. do anything. On the other hand, if the error is a
  1243. \code{trapped-error}, then the compiler must produce an executable and
  1244. it is required to report that an error occurred. To signal an error,
  1245. exit with a return code of \code{255}. The interpreters in chapters
  1246. \ref{ch:Rdyn} and \ref{ch:Rgrad} use
  1247. \code{trapped-error}.
  1248. \begin{ocamlx}
  1249. In OCaml, overflow does not cause a trap; instead values ``wrap around''
  1250. to produce results modulo $2^{63}$. The result of this program is
  1251. \key{-1223372036854775816}. We will embrace this wrap-around behavior
  1252. as the intended one for \LangInt{}, so the OCaml version will have
  1253. no undefined behaviors due to overflow.
  1254. \end{ocamlx}
  1255. %% This convention applies to the languages defined in this
  1256. %% book, as a way to simplify the student's task of implementing them,
  1257. %% but this convention is not applicable to all programming languages.
  1258. %%
  1259. Moving on to the last feature of the \LangInt{} language, the \key{read}
  1260. operation prompts the user of the program for an integer. \ocaml{The \code{read\_int}
  1261. function is in the standard library.} Recall that
  1262. program \eqref{eq:arith-prog} performs a \key{read} and then subtracts
  1263. \code{8}. So if we run
  1264. \begin{lstlisting}
  1265. (interp-Rint (Program '() ast1.1))
  1266. \end{lstlisting}
  1267. and if the input is \code{50}, the result is \code{42}.
  1268. We include the \key{read} operation in \LangInt{} so a clever student
  1269. cannot implement a compiler for \LangInt{} that simply runs the interpreter
  1270. during compilation to obtain the output and then generates the trivial
  1271. code to produce the output. (Yes, a clever student did this in the
  1272. first instance of this course.)
  1273. The job of a compiler is to translate a program in one language into a
  1274. program in another language so that the output program behaves the
  1275. same way as the input program does. This idea is depicted in the
  1276. following diagram. Suppose we have two languages, $\mathcal{L}_1$ and
  1277. $\mathcal{L}_2$, and a definitional interpreter for each language.
  1278. Given a compiler that translates from language $\mathcal{L}_1$ to
  1279. $\mathcal{L}_2$ and given any program $P_1$ in $\mathcal{L}_1$, the
  1280. compiler must translate it into some program $P_2$ such that
  1281. interpreting $P_1$ and $P_2$ on their respective interpreters with
  1282. same input $i$ yields the same output $o$.
  1283. \begin{equation} \label{eq:compile-correct}
  1284. \begin{tikzpicture}[baseline=(current bounding box.center)]
  1285. \node (p1) at (0, 0) {$P_1$};
  1286. \node (p2) at (3, 0) {$P_2$};
  1287. \node (o) at (3, -2.5) {$o$};
  1288. \path[->] (p1) edge [above] node {compile} (p2);
  1289. \path[->] (p2) edge [right] node {interp-$\mathcal{L}_2$($i$)} (o);
  1290. \path[->] (p1) edge [left] node {interp-$\mathcal{L}_1$($i$)} (o);
  1291. \end{tikzpicture}
  1292. \end{equation}
  1293. In the next section we see our first example of a compiler.
  1294. \section{Example Compiler: a Partial Evaluator}
  1295. \label{sec:partial-evaluation}
  1296. In this section we consider a compiler that translates \LangInt{} programs
  1297. into \LangInt{} programs that may be more efficient, that is, this compiler
  1298. is an optimizer. This optimizer eagerly computes the parts of the
  1299. program that do not depend on any inputs, a process known as
  1300. \emph{partial evaluation}~\citep{Jones:1993uq}.
  1301. \index{partial evaluation}
  1302. For example, given the following program
  1303. \begin{lstlisting}
  1304. (+ (read) (- (+ 5 3)))
  1305. \end{lstlisting}
  1306. our compiler will translate it into the program
  1307. \begin{lstlisting}
  1308. (+ (read) -8)
  1309. \end{lstlisting}
  1310. Figure~\ref{fig:pe-arith} gives the code for a simple partial
  1311. evaluator for the \LangInt{} language. The output of the partial evaluator
  1312. is an \LangInt{} program. In Figure~\ref{fig:pe-arith}, the structural
  1313. recursion over $\Exp$ is captured in the \code{pe-exp} function
  1314. whereas the code for partially evaluating the negation and addition
  1315. operations is factored into two separate helper functions:
  1316. \code{pe-neg} and \code{pe-add}. The input to these helper
  1317. functions is the output of partially evaluating the children.
  1318. \begin{figure}[tp]
  1319. \begin{lstlisting}
  1320. (define (pe-neg r)
  1321. (match r
  1322. [(Int n) (Int (fx- 0 n))]
  1323. [else (Prim '- (list r))]))
  1324. (define (pe-add r1 r2)
  1325. (match* (r1 r2)
  1326. [((Int n1) (Int n2)) (Int (fx+ n1 n2))]
  1327. [(_ _) (Prim '+ (list r1 r2))]))
  1328. (define (pe-exp e)
  1329. (match e
  1330. [(Int n) (Int n)]
  1331. [(Prim 'read '()) (Prim 'read '())]
  1332. [(Prim '- (list e1)) (pe-neg (pe-exp e1))]
  1333. [(Prim '+ (list e1 e2)) (pe-add (pe-exp e1) (pe-exp e2))]))
  1334. (define (pe-Rint p)
  1335. (match p
  1336. [(Program '() e) (Program '() (pe-exp e))]))
  1337. \end{lstlisting}
  1338. \caption{A partial evaluator for \LangInt{}.}
  1339. \label{fig:pe-arith}
  1340. \end{figure}
  1341. The \texttt{pe-neg} and \texttt{pe-add} functions check whether their
  1342. arguments are integers and if they are, perform the appropriate
  1343. arithmetic. Otherwise, they create an AST node for the arithmetic
  1344. operation.
  1345. \begin{ocamlx}
  1346. The corresponding OCaml code is in Figure~\ref{fig:ocaml-pe-arith}. In \code{pe\_add}, note
  1347. the syntax for matching over a pair of values simultaneously.
  1348. \begin{figure}[tp]
  1349. \begin{lstlisting}[style=ocaml]
  1350. let pe_neg = function
  1351. Int n -> Int (-n)
  1352. | e -> Prim(Neg,[e])
  1353. let pe_add e1 e2 =
  1354. match e1,e2 with
  1355. Int n1,Int n2 -> Int (n1+n2)
  1356. | e1,e2 -> Prim(Add,[e1;e2])
  1357. let rec pe_exp = function
  1358. Prim(Neg,[e]) -> pe_neg (pe_exp e)
  1359. | Prim(Add,[e1;e2]) -> pe_add (pe_exp e1) (pe_exp e2)
  1360. | e -> e
  1361. let pe_program (Program(info,e)) = Program(info,pe_exp e)
  1362. \end{lstlisting}
  1363. \caption{\ocaml{An OCaml partial evaluator for \LangInt{}}.}
  1364. \label{fig:ocaml-pe-arith}
  1365. \end{figure}
  1366. \end{ocamlx}
  1367. To gain some confidence that the partial evaluator is correct, we can
  1368. test whether it produces programs that get the same result as the
  1369. input programs. That is, we can test whether it satisfies Diagram
  1370. \ref{eq:compile-correct}. The following code runs the partial
  1371. evaluator on several examples and tests the output program. The
  1372. \texttt{parse-program} and \texttt{assert} functions are defined in
  1373. Appendix~\ref{appendix:utilities}.\\
  1374. \begin{minipage}{1.0\textwidth}
  1375. \begin{lstlisting}
  1376. (define (test-pe p)
  1377. (assert "testing pe-Rint"
  1378. (equal? (interp-Rint p) (interp-Rint (pe-Rint p)))))
  1379. (test-pe (parse-program `(program () (+ 10 (- (+ 5 3))))))
  1380. (test-pe (parse-program `(program () (+ 1 (+ 3 1)))))
  1381. (test-pe (parse-program `(program () (- (+ 3 (- 5))))))
  1382. \end{lstlisting}
  1383. \end{minipage}
  1384. \begin{ocamlx}
  1385. We can perform a similar kind of test in OCaml using a utility
  1386. function called \code{interp\_from\_string} which is in the support
  1387. code for this chapter (not yet in the Appendix).
  1388. Note, however, that comparing
  1389. results like this isn't a very satisfactory way of testing programs
  1390. that use \code{Read} anyhow, because it requires us to input the
  1391. same values twice, once for each execution, or the test will fail!
  1392. A more straightforward approach is to know what result value we
  1393. expect from each test program on a given set of input, and simply check
  1394. that the partially evaluated program still produces that result.
  1395. The support code also contains a simple driver that implements this approach.
  1396. \end{ocamlx}
  1397. \begin{ocamlx}
  1398. {\bf Warmup Exercises}
  1399. 1. Extend the concrete language and implementation for \LangInt{} with an additional arity-2 primop that
  1400. performs subtraction. The concrete form for this is \code{(- $e_1$ $e_2$)} where
  1401. $e_1$ and $e_2$ are expressions. Note that there are several ways to do this: you can add
  1402. an additional primop \code{Sub} to the AST, and add new code to check and interpret it,
  1403. or you can choose to ``de-sugar'' the new form into a combination of existing primops when
  1404. converting S-expressions to ASTs. Either way, make sure that you understand why the concrete
  1405. language remains unambiguous even though (a) we already have a unary negation operaror that is also written
  1406. with \code{-}, and (b) unlike addition, subtraction is not an associative operator, i.e.
  1407. $((a-b)-c$ is not generally the same thing as $(a-(b-c))$.
  1408. 2. Make some non-trivial improvement to the partial evaluator. This task is intentionally open-ended, but here
  1409. are some suggestions, in increasing order of difficulty.
  1410. \begin{itemize}
  1411. \item
  1412. If you added a new primop for subtraction in part 1, add support for
  1413. partially evaluating subtractions involving constants, analogous to what is already there
  1414. for addition.
  1415. \item
  1416. Add support for simplifying expressions
  1417. based on simple algebraic identities, e.g. $x + 0 = x$ for all $x$.
  1418. \item Try to simplify expressions to
  1419. the point where they contain no more than one \code{Int} leaf expression (the remaining leaves should all be
  1420. \code{Read}s).
  1421. \end{itemize}
  1422. 3. Change the AST, interpreter and (improved) partial evaluator for \LangInt{} so that they
  1423. use true 64-bit integers throughout.
  1424. (Currently, these are used in S-expressions in the front end, but everything else uses 63-bit integers instead.)
  1425. This will bring our interpreter and partial evaluator in line with X86-64 machine code, our ultimate
  1426. compilation target.
  1427. The point of this exercise is to get you familiar with exploring an OCaml library, in this case \code{Int64},
  1428. which is documented at \url{https://ocaml.org/releases/4.12/api/Int64.html}.
  1429. \end{ocamlx}
  1430. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  1431. \chapter{Integers and Variables}
  1432. \label{ch:Rvar}
  1433. This chapter is about compiling a subset of Racket to x86-64 assembly
  1434. code~\citep{Intel:2015aa}. The subset, named \LangVar{}, includes
  1435. integer arithmetic and local variable binding. We often refer to
  1436. x86-64 simply as x86. The chapter begins with a description of the
  1437. \LangVar{} language (Section~\ref{sec:s0}) followed by an introduction
  1438. to of x86 assembly (Section~\ref{sec:x86}). The x86 assembly language
  1439. is large so we discuss only the instructions needed for compiling
  1440. \LangVar{}. We introduce more x86 instructions in later chapters.
  1441. After introducing \LangVar{} and x86, we reflect on their differences
  1442. and come up with a plan to break down the translation from \LangVar{}
  1443. to x86 into a handful of steps (Section~\ref{sec:plan-s0-x86}). The
  1444. rest of the sections in this chapter give detailed hints regarding
  1445. each step (Sections~\ref{sec:uniquify-Rvar} through \ref{sec:patch-s0}).
  1446. We hope to give enough hints that the well-prepared reader, together
  1447. with a few friends, can implement a compiler from \LangVar{} to x86 in
  1448. a couple weeks. To give the reader a feeling for the scale of this
  1449. first compiler, the instructor solution for the \LangVar{} compiler is
  1450. approximately 500 lines of code. \ocaml{For the OCaml-based course,
  1451. several pieces of the compiler will be provided for you, leaving enough
  1452. work for a week-long assignment. The instructor solution for
  1453. the tasks left to you is under 200 lines of code.
  1454. However, in return for not writing so much code,
  1455. you will need to \emph{read} more existing code.}
  1456. \section{The \LangVar{} Language}
  1457. \label{sec:s0}
  1458. \index{variable}
  1459. The \LangVar{} language extends the \LangInt{} language with variable
  1460. definitions. The concrete syntax of the \LangVar{} language is defined by
  1461. the grammar in Figure~\ref{fig:r1-concrete-syntax} and the abstract
  1462. syntax is defined in Figure~\ref{fig:r1-syntax}. \ocaml{For the OCaml
  1463. version, we don't feel the need to match the syntax of Racket exactly,
  1464. so we can simplify the concrete syntax of \key{let} bindings.} The non-terminal
  1465. \Var{} may be any Racket identifier. \ocaml{For OCaml, it can be any S-expression symbol.}
  1466. As in \LangInt{}, \key{read} is a
  1467. nullary operator, \key{-} is a unary operator, and \key{+} is a binary
  1468. operator. \ocaml{We also add \key{-} as a binary subtraction operator in
  1469. the concrete syntax, but not in the abstract syntax:
  1470. we will ``de-sugar'' substraction into a combination
  1471. of addition and negation.}Similar to \LangInt{}, the abstract syntax of \LangVar{} includes the
  1472. \key{Program} struct to mark the top of the program.
  1473. %% The $\itm{info}$
  1474. %% field of the \key{Program} structure contains an \emph{association
  1475. %% list} (a list of key-value pairs) that is used to communicate
  1476. %% auxiliary data from one compiler pass the next.
  1477. Despite the simplicity of the \LangVar{} language, it is rich enough to
  1478. exhibit several compilation techniques.
  1479. \begin{figure}[tp]
  1480. \centering
  1481. \fbox{
  1482. \begin{minipage}{0.96\textwidth}
  1483. \[
  1484. \begin{array}{rcl}
  1485. \Exp &::=& \Int \mid \CREAD{} \mid \CNEG{\Exp} \mid \CADD{\Exp}{\Exp}\\
  1486. &\mid& \Var \mid \CLET{\Var}{\Exp}{\Exp} \\
  1487. \LangVar{} &::=& \Exp
  1488. \end{array}
  1489. \]
  1490. \end{minipage}
  1491. }
  1492. \begin{ocamlx}
  1493. \fbox{
  1494. \begin{minipage}{0.96\textwidth}
  1495. \[
  1496. \begin{array}{rcl}
  1497. \Exp &::=& \Int \mid \CREAD{} \mid \CNEG{\Exp} \mid \CADD{\Exp}{\Exp} \mid \CSUB{\Exp}{\Exp}\\
  1498. &\mid& \Var \mid \code{(let $\Var$ $\Exp$ $\Exp$)}\\
  1499. \LangVar{} &::=& \Exp
  1500. \end{array}
  1501. \]
  1502. \end{minipage}
  1503. }
  1504. \end{ocamlx}
  1505. \caption{The concrete syntax of \LangVar{} \ocaml{in OCaml}.}
  1506. \label{fig:r1-concrete-syntax}
  1507. \end{figure}
  1508. \begin{figure}[tp]
  1509. \centering
  1510. \fbox{
  1511. \begin{minipage}{0.96\textwidth}
  1512. \[
  1513. \begin{array}{rcl}
  1514. \Exp &::=& \INT{\Int} \mid \READ{} \\
  1515. &\mid& \NEG{\Exp} \mid \ADD{\Exp}{\Exp} \\
  1516. &\mid& \VAR{\Var} \mid \LET{\Var}{\Exp}{\Exp} \\
  1517. \LangVar{} &::=& \PROGRAM{\code{'()}}{\Exp}
  1518. \end{array}
  1519. \]
  1520. \end{minipage}
  1521. }
  1522. \begin{lstlisting}[style=ocaml,frame=single]
  1523. type primop =
  1524. Read
  1525. | Neg
  1526. | Add
  1527. type var = string
  1528. type exp =
  1529. Int of int64
  1530. | Prim of primop * exp list
  1531. | Var of var
  1532. | Let of var * exp * exp
  1533. type 'info program = Program of 'info * exp
  1534. \end{lstlisting}
  1535. \caption{The abstract syntax of \LangVar{}.}
  1536. \label{fig:r1-syntax}
  1537. \end{figure}
  1538. Let us dive further into the syntax and semantics of the \LangVar{}
  1539. language. The \key{let} feature defines a variable for use within its
  1540. body and initializes the variable with the value of an expression.
  1541. The abstract syntax for \key{let} is defined in
  1542. Figure~\ref{fig:r1-syntax}. The concrete syntax for \key{let} is
  1543. \begin{lstlisting}
  1544. (let ([|$\itm{var}$| |$\itm{exp}$|]) |$\itm{exp}$|)
  1545. \end{lstlisting}
  1546. \begin{lstlisting}[style=ocaml]
  1547. (let ~$\itm{var}$~ ~$\itm{exp}$~ ~$\itm{exp}$~)
  1548. \end{lstlisting}
  1549. For example, the following program initializes \code{x} to $32$ and then
  1550. evaluates the body \code{(+ 10 x)}, producing $42$.
  1551. \begin{lstlisting}
  1552. (let ([x (+ 12 20)]) (+ 10 x))
  1553. \end{lstlisting}
  1554. \begin{lstlisting}[style=ocaml]
  1555. (let x (+ 12 20) (+ 10 x))
  1556. \end{lstlisting}
  1557. When there are multiple \key{let}'s for the same variable, the closest
  1558. enclosing \key{let} is used. That is, variable definitions overshadow
  1559. prior definitions. Consider the following program with two \key{let}'s
  1560. that define variables named \code{x}. Can you figure out the result?
  1561. \begin{lstlisting}
  1562. (let ([x 32]) (+ (let ([x 10]) x) x))
  1563. \end{lstlisting}
  1564. \begin{lstlisting}[style=ocaml]
  1565. (let x 32 (+ (let x 10 x) x))
  1566. \end{lstlisting}
  1567. For the purposes of depicting which variable uses correspond to which
  1568. definitions, the following shows the \code{x}'s annotated with
  1569. subscripts to distinguish them. Double check that your answer for the
  1570. above is the same as your answer for this annotated version of the
  1571. program.
  1572. \begin{lstlisting}
  1573. (let ([x|$_1$| 32]) (+ (let ([x|$_2$| 10]) x|$_2$|) x|$_1$|))
  1574. \end{lstlisting}
  1575. \begin{lstlisting}[style=ocaml]
  1576. (let x~$_1$~ 32 (+ (let x~$_2$~ 10 x~$_2$~) x~$_1$~))
  1577. \end{lstlisting}
  1578. The initializing expression is always evaluated before the body of the
  1579. \key{let}, so in the following, the \key{read} for \code{x} is
  1580. performed before the \key{read} for \code{y}. Given the input
  1581. $52$ then $10$, the following produces $42$ (not $-42$).
  1582. \begin{lstlisting}
  1583. (let ([x (read)]) (let ([y (read)]) (+ x (- y))))
  1584. \end{lstlisting}
  1585. \begin{lstlisting}[style=ocaml]
  1586. (let x (read) (let y (read) (+ x (- y)))))
  1587. \end{lstlisting}
  1588. \subsection{Extensible Interpreters via Method Overriding}
  1589. \label{sec:extensible-interp}
  1590. \begin{ocamlx}
  1591. We are not going to bother with making our OCaml interpreters
  1592. extensible, although there are several mechanisms in OCaml that
  1593. we could use to acheive this. The languages involved here just
  1594. don't seem big enough to warrant the added complexity.
  1595. We will, however, break out the definition and interpretation of
  1596. primops into a separate module, so that this can be easily shared among
  1597. different languages.
  1598. \end{ocamlx}
  1599. To prepare for discussing the interpreter for \LangVar{}, we need to
  1600. explain why we choose to implement the interpreter using
  1601. object-oriented programming, that is, as a collection of methods
  1602. inside of a class. Throughout this book we define many interpreters,
  1603. one for each of the languages that we study. Because each language
  1604. builds on the prior one, there is a lot of commonality between their
  1605. interpreters. We want to write down those common parts just once
  1606. instead of many times. A naive approach would be to have, for example,
  1607. the interpreter for \LangIf{} handle all of the new features in that
  1608. language and then have a default case that dispatches to the
  1609. interpreter for \LangVar{}. The following code sketches this idea.
  1610. \begin{center}
  1611. \begin{minipage}{0.45\textwidth}
  1612. \begin{lstlisting}
  1613. (define (interp-Rvar e)
  1614. (match e
  1615. [(Prim '- (list e))
  1616. (fx- 0 (interp-Rvar e))]
  1617. ...))
  1618. \end{lstlisting}
  1619. \end{minipage}
  1620. \begin{minipage}{0.45\textwidth}
  1621. \begin{lstlisting}
  1622. (define (interp-Rif e)
  1623. (match e
  1624. [(If cnd thn els)
  1625. (match (interp-Rif cnd)
  1626. [#t (interp-Rif thn)]
  1627. [#f (interp-Rif els)])]
  1628. ...
  1629. [else (interp-Rvar e)]))
  1630. \end{lstlisting}
  1631. \end{minipage}
  1632. \end{center}
  1633. The problem with this approach is that it does not handle situations
  1634. in which an \LangIf{} feature, like \code{If}, is nested inside an \LangVar{}
  1635. feature, like the \code{-} operator, as in the following program.
  1636. \begin{lstlisting}
  1637. (Prim '- (list (If (Bool #t) (Int 42) (Int 0))))
  1638. \end{lstlisting}
  1639. If we invoke \code{interp-Rif} on this program, it dispatches to
  1640. \code{interp-Rvar} to handle the \code{-} operator, but then it
  1641. recurisvely calls \code{interp-Rvar} again on the argument of \code{-},
  1642. which is an \code{If}. But there is no case for \code{If} in
  1643. \code{interp-Rvar}, so we get an error!
  1644. To make our interpreters extensible we need something called
  1645. \emph{open recursion}\index{open recursion}, where the tying of the
  1646. recursive knot is delayed to when the functions are
  1647. composed. Object-oriented languages provide open recursion with the
  1648. late-binding of overridden methods\index{method overriding}. The
  1649. following code sketches this idea for interpreting \LangVar{} and
  1650. \LangIf{} using the
  1651. \href{https://docs.racket-lang.org/guide/classes.html}{\code{class}}
  1652. \index{class} feature of Racket. We define one class for each
  1653. language and define a method for interpreting expressions inside each
  1654. class. The class for \LangIf{} inherits from the class for \LangVar{}
  1655. and the method \code{interp-exp} in \LangIf{} overrides the
  1656. \code{interp-exp} in \LangVar{}. Note that the default case of
  1657. \code{interp-exp} in \LangIf{} uses \code{super} to invoke
  1658. \code{interp-exp}, and because \LangIf{} inherits from \LangVar{},
  1659. that dispatches to the \code{interp-exp} in \LangVar{}.
  1660. \begin{center}
  1661. \begin{minipage}{0.45\textwidth}
  1662. \begin{lstlisting}
  1663. (define interp-Rvar-class
  1664. (class object%
  1665. (define/public (interp-exp e)
  1666. (match e
  1667. [(Prim '- (list e))
  1668. (fx- 0 (interp-exp e))]
  1669. ...))
  1670. ...))
  1671. \end{lstlisting}
  1672. \end{minipage}
  1673. \begin{minipage}{0.45\textwidth}
  1674. \begin{lstlisting}
  1675. (define interp-Rif-class
  1676. (class interp-Rvar-class
  1677. (define/override (interp-exp e)
  1678. (match e
  1679. [(If cnd thn els)
  1680. (match (interp-exp cnd)
  1681. [#t (interp-exp thn)]
  1682. [#f (interp-exp els)])]
  1683. ...
  1684. [else (super interp-exp e)]))
  1685. ...
  1686. ))
  1687. \end{lstlisting}
  1688. \end{minipage}
  1689. \end{center}
  1690. Getting back to the troublesome example, repeated here:
  1691. \begin{lstlisting}
  1692. (define e0 (Prim '- (list (If (Bool #t) (Int 42) (Int 0)))))
  1693. \end{lstlisting}
  1694. We can invoke the \code{interp-exp} method for \LangIf{} on this
  1695. expression by creating an object of the \LangIf{} class and sending it the
  1696. \code{interp-exp} method with the argument \code{e0}.
  1697. \begin{lstlisting}
  1698. (send (new interp-Rif-class) interp-exp e0)
  1699. \end{lstlisting}
  1700. The default case of \code{interp-exp} in \LangIf{} handles it by
  1701. dispatching to the \code{interp-exp} method in \LangVar{}, which
  1702. handles the \code{-} operator. But then for the recursive method call,
  1703. it dispatches back to \code{interp-exp} in \LangIf{}, where the
  1704. \code{If} is handled correctly. Thus, method overriding gives us the
  1705. open recursion that we need to implement our interpreters in an
  1706. extensible way.
  1707. \newpage
  1708. \subsection{Definitional Interpreter for \LangVar{}}
  1709. \begin{wrapfigure}[25]{r}[1.0in]{0.6\textwidth}
  1710. \small
  1711. \begin{tcolorbox}[title=Association Lists as Dictionaries]
  1712. An \emph{association list} (alist) is a list of key-value pairs.
  1713. For example, we can map people to their ages with an alist.
  1714. \index{alist}\index{association list}
  1715. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  1716. (define ages
  1717. '((jane . 25) (sam . 24) (kate . 45)))
  1718. \end{lstlisting}
  1719. The \emph{dictionary} interface is for mapping keys to values.
  1720. Every alist implements this interface. \index{dictionary} The package
  1721. \href{https://docs.racket-lang.org/reference/dicts.html}{\code{racket/dict}}
  1722. provides many functions for working with dictionaries. Here
  1723. are a few of them:
  1724. \begin{description}
  1725. \item[$\LP\key{dict-ref}\,\itm{dict}\,\itm{key}\RP$]
  1726. returns the value associated with the given $\itm{key}$.
  1727. \item[$\LP\key{dict-set}\,\itm{dict}\,\itm{key}\,\itm{val}\RP$]
  1728. returns a new dictionary that maps $\itm{key}$ to $\itm{val}$
  1729. but otherwise is the same as $\itm{dict}$.
  1730. \item[$\LP\code{in-dict}\,\itm{dict}\RP$] returns the
  1731. \href{https://docs.racket-lang.org/reference/sequences.html}{sequence}
  1732. of keys and values in $\itm{dict}$. For example, the following
  1733. creates a new alist in which the ages are incremented.
  1734. \end{description}
  1735. \vspace{-10pt}
  1736. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  1737. (for/list ([(k v) (in-dict ages)])
  1738. (cons k (add1 v)))
  1739. \end{lstlisting}
  1740. \end{tcolorbox}
  1741. \end{wrapfigure}
  1742. Having justified the use of classes and methods to implement
  1743. interpreters \ocaml{(or not)}, we turn to the definitional interpreter for \LangVar{}
  1744. in Figure~\ref{fig:interp-Rvar} \ocaml{(Figure~\ref{fig:interp-Rvar-ocaml})}.
  1745. It is similar to the interpreter for
  1746. \LangInt{} but adds two new \key{match} cases for variables and
  1747. \key{let}. \ocaml{Also, the code for performing primops has been split out
  1748. into a separate function. We rely on the fact that
  1749. \code{List.map} processes list elements from left to right to
  1750. enforce the intended order of evaluation of primop subexpressions.}
  1751. For \key{let} we need a way to communicate the value bound
  1752. to a variable to all the uses of the variable. To accomplish this, we
  1753. maintain a mapping from variables to values. Throughout the compiler
  1754. we often need to map variables to information about them. We refer to
  1755. these mappings as
  1756. \emph{environments}\index{environment}.\footnote{Another common term
  1757. for environment in the compiler literature is \emph{symbol
  1758. table}\index{symbol table}.}
  1759. %
  1760. For simplicity, we use an association list (alist) to represent the
  1761. environment. The sidebar to the right gives a brief introduction to
  1762. alists and the \code{racket/dict} package. The \code{interp-exp}
  1763. function takes the current environment, \code{env}, as an extra
  1764. parameter. When the interpreter encounters a variable, it finds the
  1765. corresponding value using the \code{dict-ref} function. When the
  1766. interpreter encounters a \key{Let}, it evaluates the initializing
  1767. expression, extends the environment with the result value bound to the
  1768. variable, using \code{dict-set}, then evaluates the body of the
  1769. \key{Let}.
  1770. \begin{ocamlx}
  1771. In OCaml, we thread environments in the same way, but
  1772. it is convenient to represent environments using
  1773. the \code{Map} library module, which provides efficient
  1774. mappings from keys to values (using balanced binary trees,
  1775. although that is an implementation detail we don't need to
  1776. know about). \code{Map} is an example of a module that
  1777. is \emph{parameterized} by another module signature; this
  1778. is sometimes called a \emph{functor}. Here we use \code{Map.Make}
  1779. to \emph{apply} the functor, thereby defining a module \code{Env} that provides operations
  1780. specialized to \code{string} keys (suitable for variables).
  1781. The type of environments is written \code{'a Env.t}; it is
  1782. parametric in the type \code{'a} of values stored in the map.
  1783. Here we will be using \LangVar{}
  1784. values, i.e. \code{int64}s, so the type is \code{int64 Env.t}.
  1785. \code{Env.empty} represents an empty environment.
  1786. \code{Env.find $x$ $env$} returns the value associated with
  1787. variable $x$ in $env$ (throwing an exception if $x$ is not found).
  1788. \code{Env.add $x$ $v$ $env$} produces a new environment
  1789. that is the same as $env$ except that variable $x$ is associated to
  1790. value $v$. Note that these operations are \emph{pure}; that is, they
  1791. do not mutate any environment.
  1792. \end{ocamlx}
  1793. \begin{ocamlx}
  1794. The OCaml code for \LangVar{} ASTs, concrete parsing and printing (for debug purposes),
  1795. and interpretation are in file \texttt{RVar.ml}, which also imports
  1796. from file \texttt{Primops.ml}. These files also contain code for
  1797. static checking of \LangVar{} programs. The checker makes sure that
  1798. (i) every use of a variable is in the scope of a corresponding \code{let} binding;
  1799. and (ii) each primop is applied to the correct number of arguments.
  1800. Note that if a source program fails the checker for reason (i), this is a static user error
  1801. that should be reported as such. (Violations of (ii) in user programs
  1802. should be caught by the parser; parse errors are always reported as user errors.)
  1803. Your compiler should stop trying to process a file as soon as it reports a static user
  1804. error! (That's what the provided test driver will do.)
  1805. However, if a program initially passes
  1806. the checker but is subsequently transformed by the compiler and then
  1807. fails a re-check, this indicates that the problem is the compiler's fault.
  1808. In this case, the compiler itself should halt with a suitable error message.
  1809. The checker has a boolean flag to distinguish these cases.
  1810. \end{ocamlx}
  1811. \begin{figure}[tp]
  1812. \begin{lstlisting}
  1813. (define interp-Rvar-class
  1814. (class object%
  1815. (super-new)
  1816. (define/public ((interp-exp env) e)
  1817. (match e
  1818. [(Int n) n]
  1819. [(Prim 'read '())
  1820. (define r (read))
  1821. (cond [(fixnum? r) r]
  1822. [else (error 'interp-exp "expected an integer" r)])]
  1823. [(Prim '- (list e)) (fx- 0 ((interp-exp env) e))]
  1824. [(Prim '+ (list e1 e2))
  1825. (fx+ ((interp-exp env) e1) ((interp-exp env) e2))]
  1826. [(Var x) (dict-ref env x)]
  1827. [(Let x e body)
  1828. (define new-env (dict-set env x ((interp-exp env) e)))
  1829. ((interp-exp new-env) body)]))
  1830. (define/public (interp-program p)
  1831. (match p
  1832. [(Program '() e) ((interp-exp '()) e)]))
  1833. ))
  1834. (define (interp-Rvar p)
  1835. (send (new interp-Rvar-class) interp-program p))
  1836. \end{lstlisting}
  1837. \caption{Interpreter for the \LangVar{} language.}
  1838. \label{fig:interp-Rvar}
  1839. \end{figure}
  1840. \begin{figure}[tp]
  1841. \begin{lstlisting}[style=ocaml]
  1842. type value = int64
  1843. let interp_primop (op:primop) (args: value list) : value =
  1844. match op,args with
  1845. Read,[] -> read_int()
  1846. | Neg,[v] -> Int64.neg v
  1847. | Add,[v1;v2] -> Int64.add v1 v2
  1848. | _,_ -> assert false (* arity mismatch *)
  1849. module StringKey = struct type t = string let compare = String.compare end
  1850. module Env = Map.Make(StringKey)
  1851. let rec interp_exp (env:value Env.t) = function
  1852. Int n -> n
  1853. | Prim(op,args) -> interp_primop op (List.map (interp_exp env) args)
  1854. | Var x -> Env.find x env
  1855. | Let (x,e1,e2) -> interp_exp (Env.add x (interp_exp env e1) env) e2
  1856. let interp_program (Program(_,e)) = interp_exp Env.empty e
  1857. \end{lstlisting}
  1858. \caption{\ocaml{Ocaml interpreter for the \LangVar{} language.}}
  1859. \label{fig:interp-Rvar-ocaml}
  1860. \end{figure}
  1861. The goal for this chapter is to implement a compiler that translates
  1862. any program $P_1$ written in the \LangVar{} language into an x86 assembly
  1863. program $P_2$ such that $P_2$ exhibits the same behavior when run on a
  1864. computer as the $P_1$ program interpreted by \code{interp-Rvar}. That
  1865. is, they output the same integer $n$. We depict this correctness
  1866. criteria in the following diagram.
  1867. \[
  1868. \begin{tikzpicture}[baseline=(current bounding box.center)]
  1869. \node (p1) at (0, 0) {$P_1$};
  1870. \node (p2) at (4, 0) {$P_2$};
  1871. \node (o) at (4, -2) {$n$};
  1872. \path[->] (p1) edge [above] node {\footnotesize compile} (p2);
  1873. \path[->] (p1) edge [left] node {\footnotesize\code{interp-Rvar}} (o);
  1874. \path[->] (p2) edge [right] node {\footnotesize\code{interp-x86int}} (o);
  1875. \end{tikzpicture}
  1876. \]
  1877. In the next section we introduce the \LangXInt{} subset of x86 that
  1878. suffices for compiling \LangVar{}.
  1879. \section{The \LangXInt{} Assembly Language}
  1880. \label{sec:x86}
  1881. \index{x86}
  1882. Figure~\ref{fig:x86-int-concrete} defines the concrete syntax for
  1883. \LangXInt{}. We use the AT\&T syntax expected by the GNU
  1884. assembler.
  1885. %
  1886. A program begins with a \code{main} label followed by a sequence of
  1887. instructions. The \key{globl} directive says that the \key{main}
  1888. procedure is externally visible, which is necessary so that the
  1889. operating system can call it. In the grammar, ellipses such as
  1890. $\ldots$ are used to indicate a sequence of items, e.g., $\Instr
  1891. \ldots$ is a sequence of instructions.\index{instruction}
  1892. %
  1893. An x86 program is stored in the computer's memory. For our purposes,
  1894. the computer's memory is as a mapping of 64-bit addresses to 64-bit
  1895. values. The computer has a \emph{program counter} (PC)\index{program
  1896. counter}\index{PC} stored in the \code{rip} register that points to
  1897. the address of the next instruction to be executed. For most
  1898. instructions, the program counter is incremented after the instruction
  1899. is executed, so it points to the next instruction in memory. Most x86
  1900. instructions take two operands, where each operand is either an
  1901. integer constant (called \emph{immediate value}\index{immediate
  1902. value}), a \emph{register}\index{register}, or a memory location.
  1903. \newcommand{\allregisters}{\key{rsp} \mid \key{rbp} \mid \key{rax} \mid \key{rbx} \mid \key{rcx}
  1904. \mid \key{rdx} \mid \key{rsi} \mid \key{rdi} \mid \\
  1905. && \key{r8} \mid \key{r9} \mid \key{r10}
  1906. \mid \key{r11} \mid \key{r12} \mid \key{r13}
  1907. \mid \key{r14} \mid \key{r15}}
  1908. \begin{figure}[tp]
  1909. \fbox{
  1910. \begin{minipage}{0.96\textwidth}
  1911. \[
  1912. \begin{array}{lcl}
  1913. \Reg &::=& \allregisters{} \\
  1914. \Arg &::=& \key{\$}\Int \mid \key{\%}\Reg \mid \Int\key{(}\key{\%}\Reg\key{)}\\
  1915. \Instr &::=& \key{addq} \; \Arg\key{,} \Arg \mid
  1916. \key{subq} \; \Arg\key{,} \Arg \mid
  1917. \key{negq} \; \Arg \mid \\
  1918. && \key{movq} \; \Arg\key{,} \Arg \mid \ocaml{\key{movabsq} \; \Arg\key{,} \Arg \mid} \\
  1919. && \key{callq} \; \mathit{label} \mid
  1920. \key{pushq}\;\Arg \mid \key{popq}\;\Arg \mid \key{retq} \mid \key{jmp}\,\itm{label} \\
  1921. && \itm{label}\key{:}\; \Instr \\
  1922. \LangXInt{} &::= & \key{.globl main}\\
  1923. & & \key{main:} \; \Instr\ldots
  1924. \end{array}
  1925. \]
  1926. \end{minipage}
  1927. }
  1928. \caption{The syntax of the \LangXInt{} assembly language (AT\&T syntax).}
  1929. \label{fig:x86-int-concrete}
  1930. \end{figure}
  1931. A register is a special kind of variable. Each one holds a 64-bit
  1932. value; there are 16 general-purpose registers in the computer and
  1933. their names are given in Figure~\ref{fig:x86-int-concrete}. A register
  1934. is written with a \key{\%} followed by the register name, such as
  1935. \key{\%rax}.
  1936. An immediate value is written using the notation \key{\$}$n$ where $n$
  1937. is an integer.
  1938. %
  1939. %
  1940. An access to memory is specified using the syntax $n(\key{\%}r)$,
  1941. which obtains the address stored in register $r$ and then adds $n$
  1942. bytes to the address. The resulting address is used to load or store
  1943. to memory depending on whether it occurs as a source or destination
  1944. argument of an instruction.
  1945. An arithmetic instruction such as $\key{addq}\,s\key{,}\,d$ reads from the
  1946. source $s$ and destination $d$, applies the arithmetic operation, then
  1947. writes the result back to the destination $d$.
  1948. %
  1949. The move instruction $\key{movq}\,s\key{,}\,d$ reads from $s$ and
  1950. stores the result in $d$.
  1951. %
  1952. The $\key{callq}\,\itm{label}$ instruction jumps to the procedure
  1953. specified by the label and $\key{retq}$ returns from a procedure to
  1954. its caller.
  1955. %
  1956. We discuss procedure calls in more detail later in this chapter and in
  1957. Chapter~\ref{ch:Rfun}. The instruction $\key{jmp}\,\itm{label}$
  1958. updates the program counter to the address of the instruction after
  1959. the specified label.
  1960. Appendix~\ref{sec:x86-quick-reference} contains a quick-reference for
  1961. all of the x86 instructions used in this book.
  1962. Figure~\ref{fig:p0-x86} depicts an x86 program that is equivalent to
  1963. \code{(+ 10 32)}. The instruction \lstinline{movq $10, %rax}
  1964. puts $10$ into register \key{rax} and then \lstinline{addq $32, %rax}
  1965. adds $32$ to the $10$ in \key{rax} and
  1966. puts the result, $42$, back into \key{rax}.
  1967. %
  1968. The last instruction, \key{retq}, finishes the \key{main} function by
  1969. returning the integer in \key{rax} to the operating system. The
  1970. operating system interprets this integer as the program's exit
  1971. code. By convention, an exit code of 0 indicates that a program
  1972. completed successfully, and all other exit codes indicate various
  1973. errors. \ocaml{Also, exit codes are unsigned bytes, so they cannot accurately represent
  1974. arbitrary \code{int64}s.} Nevertheless, in this book we return the result of the program
  1975. as the exit code. \ocaml{(Incidentally, if you run a program at the unix shell
  1976. prompt, you can retrieve its exit code by typing \texttt{echo \$?} as the very next command.)}
  1977. \begin{figure}[tbp]
  1978. \begin{lstlisting}
  1979. .globl main
  1980. main:
  1981. movq $10, %rax
  1982. addq $32, %rax
  1983. retq
  1984. \end{lstlisting}
  1985. \caption{An x86 program equivalent to \code{(+ 10 32)}.}
  1986. \label{fig:p0-x86}
  1987. \end{figure}
  1988. The x86 assembly language varies in a couple ways depending on what
  1989. operating system it is assembled in. The code examples shown here are
  1990. correct on Linux and most Unix-like platforms, but when assembled on
  1991. Mac OS X, labels like \key{main} must be prefixed with an underscore,
  1992. as in \key{\_main}. \ocaml{There is a utility function \code{get\_ostype}
  1993. provided in the \texttt{utils.ml} module provided with the support materials.}
  1994. We exhibit the use of memory for storing intermediate results in the
  1995. next example. Figure~\ref{fig:p1-x86} lists an x86 program that is
  1996. equivalent to \code{(+ 52 (- 10))}. This program uses a region of
  1997. memory called the \emph{procedure call stack} (or \emph{stack} for
  1998. short). \index{stack}\index{procedure call stack} The stack consists
  1999. of a separate \emph{frame}\index{frame} for each procedure call. The
  2000. memory layout for an individual frame is shown in
  2001. Figure~\ref{fig:frame}. The register \key{rsp} is called the
  2002. \emph{stack pointer}\index{stack pointer} and points to the item at
  2003. the top of the stack. The stack grows downward in memory, so we
  2004. increase the size of the stack by subtracting from the stack pointer.
  2005. In the context of a procedure call, the \emph{return
  2006. address}\index{return address} is the instruction after the call
  2007. instruction on the caller side. The function call instruction,
  2008. \code{callq}, pushes the return address onto the stack prior to
  2009. jumping to the procedure. The register \key{rbp} is the \emph{base
  2010. pointer}\index{base pointer} and is used to access variables that
  2011. are stored in the frame of the current procedure call. The base
  2012. pointer of the caller is pushed onto the stack after the return
  2013. address and then the base pointer is set to the location of the old
  2014. base pointer. In Figure~\ref{fig:frame} we number the variables from
  2015. $1$ to $n$. Variable $1$ is stored at address $-8\key{(\%rbp)}$,
  2016. variable $2$ at $-16\key{(\%rbp)}$, etc.
  2017. \begin{figure}[tbp]
  2018. \begin{lstlisting}
  2019. start:
  2020. movq $10, -8(%rbp)
  2021. negq -8(%rbp)
  2022. movq -8(%rbp), %rax
  2023. addq $52, %rax
  2024. jmp conclusion
  2025. .globl main
  2026. main:
  2027. pushq %rbp
  2028. movq %rsp, %rbp
  2029. subq $16, %rsp
  2030. jmp start
  2031. conclusion:
  2032. addq $16, %rsp
  2033. popq %rbp
  2034. retq
  2035. \end{lstlisting}
  2036. \caption{An x86 program equivalent to \code{(+ 52 (- 10))}.}
  2037. \label{fig:p1-x86}
  2038. \end{figure}
  2039. \begin{figure}[tbp]
  2040. \centering
  2041. \begin{tabular}{|r|l|} \hline
  2042. Position & Contents \\ \hline
  2043. 8(\key{\%rbp}) & return address \\
  2044. 0(\key{\%rbp}) & old \key{rbp} \\
  2045. -8(\key{\%rbp}) & variable $1$ \\
  2046. -16(\key{\%rbp}) & variable $2$ \\
  2047. \ldots & \ldots \\
  2048. 0(\key{\%rsp}) & variable $n$\\ \hline
  2049. \end{tabular}
  2050. \caption{Memory layout of a frame.}
  2051. \label{fig:frame}
  2052. \end{figure}
  2053. Getting back to the program in Figure~\ref{fig:p1-x86}, consider how
  2054. control is transferred from the operating system to the \code{main}
  2055. function. The operating system issues a \code{callq main} instruction
  2056. which pushes its return address on the stack and then jumps to
  2057. \code{main}. In x86-64, the stack pointer \code{rsp} must be divisible
  2058. by 16 bytes prior to the execution of any \code{callq} instruction, so
  2059. when control arrives at \code{main}, the \code{rsp} is 8 bytes out of
  2060. alignment (because the \code{callq} pushed the return address). The
  2061. first three instructions are the typical \emph{prelude}\index{prelude}
  2062. for a procedure. The instruction \code{pushq \%rbp} saves the base
  2063. pointer for the caller onto the stack and subtracts $8$ from the stack
  2064. pointer. The second instruction \code{movq \%rsp, \%rbp} changes the
  2065. base pointer so that it points the location of the old base
  2066. pointer. The instruction \code{subq \$16, \%rsp} moves the stack
  2067. pointer down to make enough room for storing variables. This program
  2068. needs one variable ($8$ bytes) but we round up to 16 bytes so that
  2069. \code{rsp} is 16-byte aligned and we're ready to make calls to other
  2070. functions. The last instruction of the prelude is \code{jmp start},
  2071. which transfers control to the instructions that were generated from
  2072. the Racket expression \code{(+ 52 (- 10))}.
  2073. The first instruction under the \code{start} label is
  2074. \code{movq \$10, -8(\%rbp)}, which stores $10$ in variable $1$.
  2075. %
  2076. The instruction \code{negq -8(\%rbp)} changes variable $1$ to $-10$.
  2077. %
  2078. The next instruction moves the $-10$ from variable $1$ into the
  2079. \code{rax} register. Finally, \code{addq \$52, \%rax} adds $52$ to
  2080. the value in \code{rax}, updating its contents to $42$.
  2081. The three instructions under the label \code{conclusion} are the
  2082. typical \emph{conclusion}\index{conclusion} of a procedure. The first
  2083. two instructions restore the \code{rsp} and \code{rbp} registers to
  2084. the state they were in at the beginning of the procedure. The
  2085. instruction \key{addq \$16, \%rsp} moves the stack pointer back to
  2086. point at the old base pointer. Then \key{popq \%rbp} returns the old
  2087. base pointer to \key{rbp} and adds $8$ to the stack pointer. The last
  2088. instruction, \key{retq}, jumps back to the procedure that called this
  2089. one and adds $8$ to the stack pointer.
  2090. The compiler needs a convenient representation for manipulating x86
  2091. programs, so we define an abstract syntax for x86 in
  2092. Figure~\ref{fig:x86-int-ast}. We refer to this language as
  2093. \LangXInt{}. The main difference compared to the concrete syntax of
  2094. \LangXInt{} (Figure~\ref{fig:x86-int-concrete}) is that labels are not
  2095. allowed in front of every instructions. Instead instructions are
  2096. grouped into \emph{blocks}\index{block}\index{basic block} with a
  2097. label associated with every block, which is why the \key{X86Program}
  2098. struct includes an alist mapping labels to blocks. The reason for this
  2099. organization becomes apparent in Chapter~\ref{ch:Rif} when we
  2100. introduce conditional branching. The \code{Block} structure includes
  2101. an $\itm{info}$ field that is not needed for this chapter, but becomes
  2102. useful in Chapter~\ref{ch:register-allocation-Rvar}. For now, the
  2103. $\itm{info}$ field should contain an empty list. \ocaml{The \code{'binfo}
  2104. type parameter should be instantiated with \code{unit}.}
  2105. Also, regarding the
  2106. abstract syntax for \code{callq}, the \code{Callq} struct includes an
  2107. integer for representing the arity of the function, i.e., the number
  2108. of arguments, which is helpful to know during register allocation
  2109. (Chapter~\ref{ch:register-allocation-Rvar}).
  2110. \begin{ocamlx}
  2111. The OCaml code for \LangXInt{} AST, printing, and checking is
  2112. in file \texttt{X86Int.ml}. Printing is used to produce \texttt{.s} files that
  2113. can be input to the system assembler; it can also be useful for debugging.
  2114. File \texttt{utils.ml} contains functions for invoking the assembler and linker and
  2115. running the resulting executables from inside OCaml; these are invoked
  2116. from the test drivers also defined in that file.
  2117. \end{ocamlx}
  2118. \begin{figure}[tp]
  2119. \fbox{
  2120. \begin{minipage}{0.98\textwidth}
  2121. \small
  2122. \[
  2123. \begin{array}{lcl}
  2124. \Reg &::=& \allregisters{} \\
  2125. \Arg &::=& \IMM{\Int} \mid \REG{\Reg}
  2126. \mid \DEREF{\Reg}{\Int} \\
  2127. \Instr &::=& \BININSTR{\code{addq}}{\Arg}{\Arg}
  2128. \mid \BININSTR{\code{subq}}{\Arg}{\Arg} \\
  2129. &\mid& \UNIINSTR{\code{negq}}{\Arg}\\
  2130. &\mid& \BININSTR{\code{movq}}{\Arg}{\Arg}
  2131. \ocaml{\mid \BININSTR{\code{movabsq}}{\Arg}{\Arg}} \\
  2132. &\mid& \CALLQ{\itm{label}}{\itm{int}} \mid \RETQ{}
  2133. \mid \PUSHQ{\Arg} \mid \POPQ{\Arg} \mid \JMP{\itm{label}} \\
  2134. \Block &::= & \BLOCK{\itm{info}}{\LP\Instr\ldots\RP} \\
  2135. \LangXInt{} &::= & \XPROGRAM{\itm{info}}{\LP\LP\itm{label} \,\key{.}\, \Block \RP\ldots\RP}
  2136. \end{array}
  2137. \]
  2138. \end{minipage}
  2139. }
  2140. \begin{lstlisting}[style=ocaml,frame=single]
  2141. type reg =
  2142. RSP | RBP | RAX | RBX | RCX | RDX | RSI | RDI
  2143. | R8 | R9 | R10 | R11 | R12 | R13 | R14 | R15
  2144. type label = string
  2145. type arg =
  2146. Imm of int64 (* in most cases must actually be an int32 *)
  2147. | Reg of reg
  2148. | Deref of reg*int32
  2149. | Var of string (* a pseudo-argument for ~$\LangXVar{}$~ *)
  2150. type instr =
  2151. Addq of arg*arg | Subq of arg*arg | Negq of arg
  2152. | Movq of arg*arg | Movabsq of arg*arg | Callq of label*int
  2153. | Retq | Pushq of arg | Popq of arg | Jmp of label
  2154. type 'binfo block = Block of 'binfo * instr list
  2155. type ('pinfo,'binfo) program =
  2156. Program of 'pinfo * (label * 'binfo block) list
  2157. \end{lstlisting}
  2158. \caption{The abstract syntax of \LangXInt{} \ocaml{and \LangXVar{}} assembly.}
  2159. \label{fig:x86-int-ast}
  2160. \end{figure}
  2161. \section{Planning the trip to x86 via the \LangCVar{} language}
  2162. \label{sec:plan-s0-x86}
  2163. To compile one language to another it helps to focus on the
  2164. differences between the two languages because the compiler will need
  2165. to bridge those differences. What are the differences between \LangVar{}
  2166. and x86 assembly? Here are some of the most important ones:
  2167. \begin{enumerate}
  2168. \item[(a)] x86 arithmetic instructions typically have two arguments
  2169. and update the second argument in place. In contrast, \LangVar{}
  2170. arithmetic operations take two arguments and produce a new value.
  2171. An x86 instruction may have at most one memory-accessing argument.
  2172. Furthermore, some instructions place special restrictions on their
  2173. arguments. \ocaml{For example, immediate operands are usually restricted
  2174. to fit in 32 bits (except for the \code{movabsq} instruction).}
  2175. \item[(b)] An argument of an \LangVar{} operator can be a deeply-nested
  2176. expression, whereas x86 instructions restrict their arguments to be
  2177. integers constants, registers, and memory locations.
  2178. \item[(c)] The order of execution in x86 is explicit in the syntax: a
  2179. sequence of instructions and jumps to labeled positions, whereas in
  2180. \LangVar{} the order of evaluation is a left-to-right depth-first
  2181. traversal of the abstract syntax tree.
  2182. \item[(d)] A program in \LangVar{} can have any number of variables
  2183. whereas x86 has 16 registers and the procedure calls stack.
  2184. \item[(e)] Variables in \LangVar{} can overshadow other variables with the
  2185. same name. In x86, registers have unique names and memory locations
  2186. have unique addresses.
  2187. \end{enumerate}
  2188. We ease the challenge of compiling from \LangVar{} to x86 by breaking down
  2189. the problem into several steps, dealing with the above differences one
  2190. at a time. Each of these steps is called a \emph{pass} of the
  2191. compiler.\index{pass}\index{compiler pass}
  2192. %
  2193. This terminology comes from the way each step passes over the AST of
  2194. the program.
  2195. %
  2196. We begin by sketching how we might implement each pass, and give them
  2197. names. We then figure out an ordering of the passes and the
  2198. input/output language for each pass. The very first pass has
  2199. \LangVar{} as its input language and the last pass has \LangXInt{} as
  2200. its output language. In between we can choose whichever language is
  2201. most convenient for expressing the output of each pass, whether that
  2202. be \LangVar{}, \LangXInt{}, or new \emph{intermediate languages} of
  2203. our own design. Finally, to implement each pass we write one
  2204. recursive function per non-terminal in the grammar of the input
  2205. language of the pass. \index{intermediate language}
  2206. \begin{description}
  2207. \item[\key{select-instructions}] handles the difference between
  2208. \LangVar{} operations and x86 instructions. This pass converts each
  2209. \LangVar{} operation to a short sequence of instructions that
  2210. accomplishes the same task.
  2211. \item[\key{remove-complex-opera*}] ensures that each subexpression of
  2212. a primitive operation is a variable or integer, that is, an
  2213. \emph{atomic} expression. We refer to non-atomic expressions as
  2214. \emph{complex}. This pass introduces temporary variables to hold
  2215. the results of complex subexpressions.\index{atomic
  2216. expression}\index{complex expression}%
  2217. \footnote{The subexpressions of an operation are often called
  2218. operators and operands which explains the presence of
  2219. \code{opera*} in the name of this pass.}
  2220. \item[\key{explicate-control}] makes the execution order of the
  2221. program explicit. It convert the abstract syntax tree representation
  2222. into a control-flow graph in which each node contains a sequence of
  2223. statements and the edges between nodes say which nodes contain jumps
  2224. to other nodes.
  2225. \item[\key{assign-homes}] replaces the variables in \LangVar{} with
  2226. registers or stack locations in x86.
  2227. \item[\key{uniquify}] deals with the shadowing of variables by
  2228. renaming every variable to a unique name.
  2229. \end{description}
  2230. The next question is: in what order should we apply these passes? This
  2231. question can be challenging because it is difficult to know ahead of
  2232. time which orderings will be better (easier to implement, produce more
  2233. efficient code, etc.) so oftentimes trial-and-error is
  2234. involved. Nevertheless, we can try to plan ahead and make educated
  2235. choices regarding the ordering.
  2236. What should be the ordering of \key{explicate-control} with respect to
  2237. \key{uniquify}? The \key{uniquify} pass should come first because
  2238. \key{explicate-control} changes all the \key{let}-bound variables to
  2239. become local variables whose scope is the entire program, which would
  2240. confuse variables with the same name.
  2241. %
  2242. We place \key{remove-complex-opera*} before \key{explicate-control}
  2243. because the latter removes the \key{let} form, but it is convenient to
  2244. use \key{let} in the output of \key{remove-complex-opera*}.
  2245. %
  2246. The ordering of \key{uniquify} with respect to
  2247. \key{remove-complex-opera*} does not matter so we arbitrarily choose
  2248. \key{uniquify} to come first.
  2249. Last, we consider \key{select-instructions} and \key{assign-homes}.
  2250. These two passes are intertwined. In Chapter~\ref{ch:Rfun} we
  2251. learn that, in x86, registers are used for passing arguments to
  2252. functions and it is preferable to assign parameters to their
  2253. corresponding registers. On the other hand, by selecting instructions
  2254. first we may run into a dead end in \key{assign-homes}. Recall that
  2255. only one argument of an x86 instruction may be a memory access but
  2256. \key{assign-homes} might fail to assign even one of them to a
  2257. register.
  2258. %
  2259. A sophisticated approach is to iteratively repeat the two passes until
  2260. a solution is found. However, to reduce implementation complexity we
  2261. recommend a simpler approach in which \key{select-instructions} comes
  2262. first, followed by the \key{assign-homes}, then a third pass named
  2263. \key{patch-instructions} that uses a reserved register to fix
  2264. outstanding problems.
  2265. \begin{figure}[tbp]
  2266. \begin{tikzpicture}[baseline=(current bounding box.center)]
  2267. \node (Rvar) at (0,2) {\large \LangVar{}};
  2268. \node (Rvar-2) at (3,2) {\large \LangVar{}};
  2269. \node (Rvar-3) at (6,2) {\large \LangVarANF{}};
  2270. %\node (Cvar-1) at (6,0) {\large \LangCVar{}};
  2271. \node (Cvar-2) at (3,0) {\large \LangCVar{}};
  2272. \node (x86-2) at (3,-2) {\large \LangXVar{}};
  2273. \node (x86-3) at (6,-2) {\large \LangXVar{}};
  2274. \node (x86-4) at (9,-2) {\large \LangXInt{}};
  2275. \node (x86-5) at (12,-2) {\large \LangXInt{}};
  2276. \path[->,bend left=15] (Rvar) edge [above] node {\ttfamily\footnotesize uniquify} (Rvar-2);
  2277. \path[->,bend left=15] (Rvar-2) edge [above] node {\ttfamily\footnotesize remove-complex.} (Rvar-3);
  2278. \path[->,bend left=15] (Rvar-3) edge [right] node {\ttfamily\footnotesize explicate-control} (Cvar-2);
  2279. \path[->,bend right=15] (Cvar-2) edge [left] node {\ttfamily\footnotesize select-instr.} (x86-2);
  2280. \path[->,bend left=15] (x86-2) edge [above] node {\ttfamily\footnotesize assign-homes} (x86-3);
  2281. \path[->,bend left=15] (x86-3) edge [above] node {\ttfamily\footnotesize patch-instr.} (x86-4);
  2282. \path[->,bend left=15] (x86-4) edge [above] node {\ttfamily\footnotesize print-x86} (x86-5);
  2283. \end{tikzpicture}
  2284. \caption{Diagram of the passes for compiling \LangVar{}. }
  2285. \label{fig:Rvar-passes}
  2286. \end{figure}
  2287. Figure~\ref{fig:Rvar-passes} presents the ordering of the compiler
  2288. passes and identifies the input and output language of each pass. The
  2289. last pass, \key{print-x86}, converts from the abstract syntax of
  2290. \LangXInt{} to the concrete syntax. In the following two sections
  2291. we discuss the \LangCVar{} intermediate language and the \LangXVar{}
  2292. dialect of x86. The remainder of this chapter gives hints regarding
  2293. the implementation of each of the compiler passes in
  2294. Figure~\ref{fig:Rvar-passes}.
  2295. %% The output of \key{uniquify} and \key{remove-complex-opera*}
  2296. %% are programs that are still in the \LangVar{} language, though the
  2297. %% output of the later is a subset of \LangVar{} named \LangVarANF{}
  2298. %% (Section~\ref{sec:remove-complex-opera-Rvar}).
  2299. %% %
  2300. %% The output of \key{explicate-control} is in an intermediate language
  2301. %% \LangCVar{} designed to make the order of evaluation explicit in its
  2302. %% syntax, which we introduce in the next section. The
  2303. %% \key{select-instruction} pass translates from \LangCVar{} to
  2304. %% \LangXVar{}. The \key{assign-homes} and
  2305. %% \key{patch-instructions}
  2306. %% passes input and output variants of x86 assembly.
  2307. \subsection{The \LangCVar{} Intermediate Language}
  2308. The output of \key{explicate-control} is similar to the $C$
  2309. language~\citep{Kernighan:1988nx} in that it has separate syntactic
  2310. categories for expressions and statements, so we name it \LangCVar{}. The
  2311. abstract syntax for \LangCVar{} is defined in Figure~\ref{fig:c0-syntax}.
  2312. (The concrete syntax for \LangCVar{} is in the Appendix,
  2313. Figure~\ref{fig:c0-concrete-syntax}. \ocaml{(This appendix is not quite accurate
  2314. for the OCaml version, but the details of the concrete syntax of
  2315. an IR like this don't matter much, since it will normally be used
  2316. only to dump out information when debugging; it won't be parsed.})
  2317. %
  2318. The \LangCVar{} language supports the same operators as \LangVar{} but
  2319. the arguments of operators are restricted to atomic
  2320. expressions. Instead of \key{let} expressions, \LangCVar{} has
  2321. assignment statements which can be executed in sequence using the
  2322. \key{Seq} form. A sequence of statements always ends with
  2323. \key{Return}, a guarantee that is baked into the grammar rules for
  2324. \itm{tail}. The naming of this non-terminal comes from the term
  2325. \emph{tail position}\index{tail position}, which refers to an
  2326. expression that is the last one to execute within a function.
  2327. A \LangCVar{} program consists of a control-flow graph represented as
  2328. an alist mapping labels to tails \ocaml{(that is, a list of \code{(label*tail)} pairs)}.
  2329. This is more general than necessary
  2330. for the present chapter, as we do not yet introduce \key{goto} for
  2331. jumping to labels, but it saves us from having to change the syntax in
  2332. Chapter~\ref{ch:Rif}. For now there will be just one label,
  2333. \key{start}, and the whole program \ocaml{body} is its tail.
  2334. %
  2335. The $\itm{info}$ field of the \key{CProgram} form, after the
  2336. \key{explicate-control} pass, contains a mapping from the symbol
  2337. \key{locals} to a list of variables, that is, a list of all the
  2338. variables used in the program. \ocaml{It is represented as a \code{unit Env.t},
  2339. a kind of degenerate map that effectively acts like a set.}
  2340. At the start of the program, these
  2341. variables are uninitialized; they become initialized on their first
  2342. assignment.
  2343. \begin{figure}[tbp]
  2344. \fbox{
  2345. \begin{minipage}{0.96\textwidth}
  2346. \[
  2347. \begin{array}{lcl}
  2348. \Atm &::=& \INT{\Int} \mid \VAR{\Var} \\
  2349. \Exp &::=& \Atm \mid \READ{} \mid \NEG{\Atm} \\
  2350. &\mid& \ADD{\Atm}{\Atm}\\
  2351. \Stmt &::=& \ASSIGN{\VAR{\Var}}{\Exp} \\
  2352. \Tail &::= & \RETURN{\Exp} \mid \SEQ{\Stmt}{\Tail} \\
  2353. \LangCVar{} & ::= & \CPROGRAM{\itm{info}}{\LP\LP\itm{label}\,\key{.}\,\Tail\RP\ldots\RP}
  2354. \end{array}
  2355. \]
  2356. \end{minipage}
  2357. }
  2358. \begin{lstlisting}[style=ocaml,frame=single]
  2359. type var = string
  2360. type label = string
  2361. type atm =
  2362. Int of int64
  2363. | Var of var
  2364. type exp =
  2365. Atom of atm
  2366. | Prim of primop * atm list
  2367. type stmt =
  2368. Assign of var * exp
  2369. type tail =
  2370. Return of exp
  2371. | Seq of stmt*tail
  2372. type 'pinfo program = Program of 'pinfo * (label*tail) list
  2373. \end{lstlisting}
  2374. \caption{The abstract syntax of the \LangCVar{} intermediate language.}
  2375. \label{fig:c0-syntax}
  2376. \end{figure}
  2377. The definitional interpreter for \LangCVar{} is in the support code,
  2378. in the file \code{interp-Cvar.rkt}.
  2379. \begin{ocamlx}
  2380. The OCaml code for \LangCVar{} AST, checking, printing (for debug purposes),
  2381. and interpretation is in file \texttt{CVar.ml}.
  2382. \end{ocamlx}
  2383. \subsection{The \LangXVar{} dialect}
  2384. The \LangXVar{} language is the output of the pass
  2385. \key{select-instructions}. It extends \LangXInt{} with an unbounded
  2386. number of program-scope variables and removes the restrictions
  2387. regarding instruction arguments.
  2388. \begin{ocamlx}
  2389. For simplicity, we treat \LangXInt{} and \LangXVar{} as the same
  2390. language, defined in \texttt{X86Int.ml}. In particular, we allow \code{Var}
  2391. as one of the possible forms for an instruction argument (\code{arg}).
  2392. We provide two different check routines.
  2393. \begin{itemize}
  2394. \item \code{CheckLabels.check\_program}
  2395. just checks that all label
  2396. declarations are unique and that all jump targets are defined; this
  2397. is suitable for checking the code produced from the \key{select-instructions}
  2398. pass, which will use \code{Var} arguments freely.
  2399. \item
  2400. \code{CheckArgs.check\_program} checks that all arguments are legal for the
  2401. actual X86-64 machine (in particular, that they are not \code{Var} arguments);
  2402. this is suitable for checking the output of the \key{patch-instr} pass.
  2403. \end{itemize}
  2404. \end{ocamlx}
  2405. \section{Uniquify Variables}
  2406. \label{sec:uniquify-Rvar}
  2407. The \code{uniquify} pass compiles \LangVar{} programs into \LangVar{}
  2408. programs in which every \key{let} binds a unique variable name. For
  2409. example, the \code{uniquify} pass should translate the program on the
  2410. left into the program on the right. \\
  2411. \begin{tabular}{lll}
  2412. \begin{minipage}{0.4\textwidth}
  2413. \begin{lstlisting}
  2414. (let ([x 32])
  2415. (+ (let ([x 10]) x) x))
  2416. \end{lstlisting}
  2417. \end{minipage}
  2418. &
  2419. $\Rightarrow$
  2420. &
  2421. \begin{minipage}{0.4\textwidth}
  2422. \begin{lstlisting}
  2423. (let ([x.1 32])
  2424. (+ (let ([x.2 10]) x.2) x.1))
  2425. \end{lstlisting}
  2426. \end{minipage}
  2427. \end{tabular} \\
  2428. %
  2429. \begin{tabular}{lll}
  2430. \begin{minipage}{0.4\textwidth}
  2431. \begin{lstlisting}[style=ocaml]
  2432. (let x 32
  2433. (+ (let x 10 x) x))
  2434. \end{lstlisting}
  2435. \end{minipage}
  2436. &
  2437. \ocaml{$\Rightarrow$}
  2438. &
  2439. \begin{minipage}{0.4\textwidth}
  2440. \begin{lstlisting}[style=ocaml]
  2441. (let x.1 32
  2442. (+ (let x.2 10 x.2) x.1))
  2443. \end{lstlisting}
  2444. \end{minipage}
  2445. \end{tabular} \\
  2446. %
  2447. The following is another example translation, this time of a program
  2448. with a \key{let} nested inside the initializing expression of another
  2449. \key{let}.\\
  2450. \begin{tabular}{lll}
  2451. \begin{minipage}{0.4\textwidth}
  2452. \begin{lstlisting}
  2453. (let ([x (let ([x 4])
  2454. (+ x 1))])
  2455. (+ x 2))
  2456. \end{lstlisting}
  2457. \end{minipage}
  2458. &
  2459. $\Rightarrow$
  2460. &
  2461. \begin{minipage}{0.4\textwidth}
  2462. \begin{lstlisting}
  2463. (let ([x.2 (let ([x.1 4])
  2464. (+ x.1 1))])
  2465. (+ x.2 2))
  2466. \end{lstlisting}
  2467. \end{minipage}
  2468. \end{tabular}
  2469. \ocaml{You can transliterate examples like this for yourself by now...}
  2470. We recommend implementing \code{uniquify} by creating a structurally
  2471. recursive function named \code{uniquify-exp} that mostly just copies
  2472. an expression. However, when encountering a \key{let}, it should
  2473. generate a unique name for the variable and associate the old name
  2474. with the new name in an alist \ocaml{(Ocaml: \key{Env})}.\footnote{The Racket function
  2475. \code{gensym} is handy for generating unique variable names. \ocaml{There is a similar
  2476. function defined in \texttt{utils.ml}.}} The
  2477. \code{uniquify-exp} function needs to access this alist \ocaml{(\key{Env})} when it gets
  2478. to a variable reference, so we add a parameter to \code{uniquify-exp}
  2479. for the alist \ocaml{(\key{Env})} .
  2480. The skeleton of the \code{uniquify-exp} function is shown in
  2481. Figure~\ref{fig:uniquify-Rvar}. The function is curried so that it is
  2482. convenient to partially apply it to an alist \ocaml{(\key{Env})} and then apply it to
  2483. different expressions, as in the last case for primitive operations in
  2484. Figure~\ref{fig:uniquify-Rvar}. The
  2485. %
  2486. \href{https://docs.racket-lang.org/reference/for.html#%28form._%28%28lib._racket%2Fprivate%2Fbase..rkt%29._for%2Flist%29%29}{\key{for/list}}
  2487. %
  2488. form of Racket is useful for transforming each element of a list to
  2489. produce a new list.\index{for/list}
  2490. \ocaml{The \code{List.map} function is similar.}
  2491. \ocaml{In addition to writing the \code{uniquify} transformation, it is worthwhile
  2492. to write a \emph{checker} to make sure that the result obeys any invariants we
  2493. expect to hold. (Sometimes these invariants are baked into the abstract syntax
  2494. of the target, but that's not the case here.) Our checker should re-traverse the
  2495. result AST and make sure that no identifier is bound more than once. It should also
  2496. re-run the \LangVar{} checker defined in module \code{RVar} to make sure that
  2497. all variables uses are in the scope of a binding (something we might easily have
  2498. messed up) and that we have not accidentally introduced a primop arity error (much
  2499. less likely, but still possible).
  2500. }
  2501. \begin{exercise}
  2502. \normalfont % I don't like the italics for exercises. -Jeremy
  2503. Complete the \code{uniquify} pass by filling in the blanks in
  2504. Figure~\ref{fig:uniquify-Rvar}, that is, implement the cases for
  2505. variables and for the \key{let} form in the file \code{compiler.rkt}
  2506. in the support code. \ocaml{This exercise is done for you, in the
  2507. \code{Uniquify} module of file \code{Chapter2.ml}.}
  2508. \end{exercise}
  2509. \begin{figure}[tbp]
  2510. \begin{lstlisting}
  2511. (define (uniquify-exp env)
  2512. (lambda (e)
  2513. (match e
  2514. [(Var x) ___]
  2515. [(Int n) (Int n)]
  2516. [(Let x e body) ___]
  2517. [(Prim op es)
  2518. (Prim op (for/list ([e es]) ((uniquify-exp env) e)))])))
  2519. (define (uniquify p)
  2520. (match p
  2521. [(Program '() e) (Program '() ((uniquify-exp '()) e))]))
  2522. \end{lstlisting}
  2523. \caption{Skeleton for the \key{uniquify} pass.}
  2524. \label{fig:uniquify-Rvar}
  2525. \end{figure}
  2526. \begin{exercise}
  2527. \normalfont % I don't like the italics for exercises. -Jeremy
  2528. Create five \LangVar{} programs that exercise the most interesting
  2529. parts of the \key{uniquify} pass, that is, the programs should include
  2530. \key{let} forms, variables, and variables that overshadow each other.
  2531. The five programs should be placed in the subdirectory named
  2532. \key{tests} and the file names should start with \code{var\_test\_}
  2533. followed by a unique integer and end with the file extension
  2534. \key{.rkt}. \ocaml{OCaml: use extension \key{.r}.}
  2535. %
  2536. The \key{run-tests.rkt} script in the support code \ocaml{(\key{test\_files}
  2537. function in \code{Chapter2.ml}, which is invoked by the \code{driver}
  2538. executable)} checks whether the
  2539. output programs produce the same result as the input programs. The
  2540. script uses the \key{interp-tests} function
  2541. (Appendix~\ref{appendix:utilities}) from \key{utilities.rkt} \ocaml{(\key{test\_files}
  2542. function from \code{utils.ml})} to test
  2543. your \key{uniquify} pass on the example programs. The \code{passes}
  2544. parameter of \key{interp-tests} is a list that should have one entry
  2545. for each pass in your compiler. For now, define \code{passes} to
  2546. contain just one entry for \code{uniquify} \ocaml{(plus the fixed initial pass)} as follows.
  2547. \begin{lstlisting}
  2548. (define passes
  2549. (list (list "uniquify" uniquify interp-Rvar type-check-Rvar)))
  2550. \end{lstlisting}
  2551. \begin{ocamlx}
  2552. \begin{lstlisting}{style=ocaml}
  2553. let passes = PCons(initial_pass,
  2554. PCons(Uniquify.pass,PNil))
  2555. \end{lstlisting}
  2556. \end{ocamlx}
  2557. Run the \key{run-tests.rkt} script in the support code
  2558. \ocaml{(the \key{driver} executable)} to check
  2559. whether the output programs produce the same result as the input
  2560. programs.
  2561. \end{exercise}
  2562. \section{Remove Complex Operands}
  2563. \label{sec:remove-complex-opera-Rvar}
  2564. The \code{remove-complex-opera*} pass compiles \LangVar{} programs
  2565. into a restricted form in which the arguments of operations are atomic
  2566. expressions. Put another way, this pass removes complex
  2567. operands\index{complex operand}, such as the expression \code{(- 10)}
  2568. in the program below. This is accomplished by introducing a new
  2569. \key{let}-bound variable, binding the complex operand to the new
  2570. variable, and then using the new variable in place of the complex
  2571. operand, as shown in the output of \code{remove-complex-opera*} on the
  2572. right.\\
  2573. \begin{tabular}{lll}
  2574. \begin{minipage}{0.4\textwidth}
  2575. % var_test_19.rkt
  2576. \begin{lstlisting}
  2577. (+ 52 (- 10))
  2578. \end{lstlisting}
  2579. \end{minipage}
  2580. &
  2581. $\Rightarrow$
  2582. &
  2583. \begin{minipage}{0.4\textwidth}
  2584. \begin{lstlisting}
  2585. (let ([tmp.1 (- 10)])
  2586. (+ 52 tmp.1))
  2587. \end{lstlisting}
  2588. \end{minipage}
  2589. \end{tabular}
  2590. \begin{ocamlx}
  2591. We suggest generating temporary names that begin with a back-tick (\verb'`')
  2592. since these are illegal as S-expression symbols, and so cannot conflict with existing
  2593. user-defined names.
  2594. \end{ocamlx}
  2595. \begin{figure}[tp]
  2596. \centering
  2597. \fbox{
  2598. \begin{minipage}{0.96\textwidth}
  2599. \[
  2600. \begin{array}{rcl}
  2601. \Atm &::=& \INT{\Int} \mid \VAR{\Var} \\
  2602. \Exp &::=& \Atm \mid \READ{} \\
  2603. &\mid& \NEG{\Atm} \mid \ADD{\Atm}{\Atm} \\
  2604. &\mid& \LET{\Var}{\Exp}{\Exp} \\
  2605. R^{\dagger}_1 &::=& \PROGRAM{\code{'()}}{\Exp}
  2606. \end{array}
  2607. \]
  2608. \end{minipage}
  2609. }
  2610. \caption{\LangVarANF{} is \LangVar{} in administrative normal form (ANF).}
  2611. \label{fig:r1-anf-syntax}
  2612. \end{figure}
  2613. Figure~\ref{fig:r1-anf-syntax} presents the grammar for the output of
  2614. this pass, the language \LangVarANF{}. The only difference is that
  2615. operator arguments are restricted to be atomic expressions that are
  2616. defined by the \Atm{} non-terminal. In particular, integer constants
  2617. and variables are atomic. In the literature, restricting arguments to
  2618. be atomic expressions is called \emph{administrative normal form}, or
  2619. ANF for short~\citep{Danvy:1991fk,Flanagan:1993cg}.
  2620. \index{administrative normal form} \index{ANF}
  2621. \ocaml{Actually, ANF
  2622. as defined in~\citep{Flanagan:1993cg}
  2623. refers to a more restricted form in which the defining expressions of
  2624. \code{let}s cannot themselves contain \code{lets}s. This essentially
  2625. corresponds to the \LangCVar{} language.}
  2626. We recommend implementing this pass with two mutually recursive
  2627. functions, \code{rco-atom} and \code{rco-exp}. The idea is to apply
  2628. \code{rco-atom} to subexpressions that need to become atomic and to
  2629. apply \code{rco-exp} to subexpressions that do not. Both functions
  2630. take an \LangVar{} expression as input. The \code{rco-exp} function
  2631. returns an expression. The \code{rco-atom} function returns two
  2632. things: an atomic expression and alist \ocaml{(i.e. list of pairs)} mapping temporary variables to
  2633. complex subexpressions. You can return multiple things from a function
  2634. using Racket's \key{values} form and you can receive multiple things
  2635. from a function call using the \key{define-values} form. If you are
  2636. not familiar with these features, review the Racket documentation.
  2637. Also, the
  2638. \href{https://docs.racket-lang.org/reference/for.html#%28form._%28%28lib._racket%2Fprivate%2Fbase..rkt%29._for%2Flists%29%29}{\code{for/lists}}
  2639. form is useful for applying a function to each element of a list, in
  2640. the case where the function returns multiple values.
  2641. \index{for/lists}
  2642. \ocaml{OCaml: You can return multiple things from a function using a tuple
  2643. and binding the return value to a tuple pattern. Again, the \code{List.map}
  2644. function is handy.}
  2645. Returning to the example program \code{(+ 52 (- 10))}, the
  2646. subexpression \code{(- 10)} should be processed using the
  2647. \code{rco-atom} function because it is an argument of the \code{+} and
  2648. therefore needs to become atomic. The output of \code{rco-atom}
  2649. applied to \code{(- 10)} is as follows.
  2650. \begin{tabular}{lll}
  2651. \begin{minipage}{0.4\textwidth}
  2652. \begin{lstlisting}
  2653. (- 10)
  2654. \end{lstlisting}
  2655. \end{minipage}
  2656. &
  2657. $\Rightarrow$
  2658. &
  2659. \begin{minipage}{0.4\textwidth}
  2660. \begin{lstlisting}
  2661. tmp.1
  2662. ((tmp.1 . (- 10)))
  2663. \end{lstlisting}
  2664. \end{minipage}
  2665. \end{tabular}
  2666. Take special care of programs such as the following one that binds a
  2667. variable to an atomic expression. You should leave such variable
  2668. bindings unchanged, as shown in to the program on the right \\
  2669. \begin{tabular}{lll}
  2670. \begin{minipage}{0.4\textwidth}
  2671. % var_test_20.rkt
  2672. \begin{lstlisting}
  2673. (let ([a 42])
  2674. (let ([b a])
  2675. b))
  2676. \end{lstlisting}
  2677. \end{minipage}
  2678. &
  2679. $\Rightarrow$
  2680. &
  2681. \begin{minipage}{0.4\textwidth}
  2682. \begin{lstlisting}
  2683. (let ([a 42])
  2684. (let ([b a])
  2685. b))
  2686. \end{lstlisting}
  2687. \end{minipage}
  2688. \end{tabular} \\
  2689. A careless implementation of \key{rco-exp} and \key{rco-atom} might
  2690. produce the following output with unnecessary temporary variables.\\
  2691. \begin{minipage}{0.4\textwidth}
  2692. \begin{lstlisting}
  2693. (let ([tmp.1 42])
  2694. (let ([a tmp.1])
  2695. (let ([tmp.2 a])
  2696. (let ([b tmp.2])
  2697. b))))
  2698. \end{lstlisting}
  2699. \end{minipage}
  2700. \begin{exercise}\normalfont
  2701. %
  2702. Implement the \code{remove-complex-opera*} function in
  2703. \code{compiler.rkt}. \ocaml{Fill in the RemoveComplexOperations submodule in \code{Chapter2.ml}.
  2704. Be sure to include a checker that re-traverses the target AST to make sure that
  2705. all primop arguments are indeed now atomic, and that we haven't broken any of the
  2706. other invariants we expect to hold of \LangInt{} programs at this point.
  2707. Fill in the {\tt pass} definition appropriately.
  2708. }
  2709. %
  2710. Create three new \LangInt{} programs that exercise the interesting
  2711. code in the \code{remove-complex-opera*} pass (Following the same file
  2712. name guidelines as before.).
  2713. %
  2714. In the \code{run-tests.rkt} script, add the following entry to the
  2715. list of \code{passes} and then run the script to test your compiler.
  2716. \begin{lstlisting}
  2717. (list "remove-complex" remove-complex-opera* interp-Rvar type-check-Rvar)
  2718. \end{lstlisting}
  2719. \begin{ocamlx}
  2720. In \code{Chapter2.ml}, add an additional entry to the {\tt passes} list:
  2721. \begin{lstlisting}[style=ocaml]
  2722. let passes =
  2723. PCons(initial_pass,
  2724. PCons(Uniquify.pass,
  2725. PCons(RemoveComplexOperands.pass, PNil)))
  2726. \end{lstlisting}
  2727. \end{ocamlx}
  2728. While debugging your compiler, it is often useful to see the
  2729. intermediate programs that are output from each pass. To print the
  2730. intermediate programs, place the following before the call to
  2731. \code{interp-tests} in \code{run-tests.rkt}.
  2732. \begin{lstlisting}
  2733. (debug-level 1)
  2734. \end{lstlisting}
  2735. \begin{ocamlx}
  2736. Adjust the assignment near the bottom of \code{Chapter2.ml}:
  2737. \begin{lstlisting}[style=ocaml]
  2738. let _ = Util.debug_level := 2
  2739. \end{lstlisting}
  2740. \end{ocamlx}
  2741. \end{exercise}
  2742. \section{Explicate Control}
  2743. \label{sec:explicate-control-Rvar}
  2744. The \code{explicate-control} pass compiles \LangVar{} programs into \LangCVar{}
  2745. programs that make the order of execution explicit in their
  2746. syntax. For now this amounts to flattening \key{let} constructs into a
  2747. sequence of assignment statements. For example, consider the following
  2748. \LangVar{} program.\\
  2749. % var_test_11.rkt
  2750. \begin{minipage}{0.96\textwidth}
  2751. \begin{lstlisting}
  2752. (let ([y (let ([x 20])
  2753. (+ x (let ([x 22]) x)))])
  2754. y)
  2755. \end{lstlisting}
  2756. \end{minipage}\\
  2757. %
  2758. The output of the previous pass and of \code{explicate-control} is
  2759. shown below. Recall that the right-hand-side of a \key{let} executes
  2760. before its body, so the order of evaluation for this program is to
  2761. assign \code{20} to \code{x.1}, \code{22} to \code{x.2}, and
  2762. \code{(+ x.1 x.2)} to \code{y}, then return \code{y}. Indeed, the
  2763. output of \code{explicate-control} makes this ordering explicit.\\
  2764. \begin{tabular}{lll}
  2765. \begin{minipage}{0.4\textwidth}
  2766. \begin{lstlisting}
  2767. (let ([y (let ([x.1 20])
  2768. (let ([x.2 22])
  2769. (+ x.1 x.2)))])
  2770. y)
  2771. \end{lstlisting}
  2772. \end{minipage}
  2773. &
  2774. $\Rightarrow$
  2775. &
  2776. \begin{minipage}{0.4\textwidth}
  2777. \begin{lstlisting}[language=C]
  2778. start:
  2779. x.1 = 20;
  2780. x.2 = 22;
  2781. y = (+ x.1 x.2);
  2782. return y;
  2783. \end{lstlisting}
  2784. \end{minipage}
  2785. \end{tabular}
  2786. %
  2787. \begin{figure}[tbp]
  2788. \begin{lstlisting}
  2789. (define (explicate-tail e)
  2790. (match e
  2791. [(Var x) ___]
  2792. [(Int n) (Return (Int n))]
  2793. [(Let x rhs body) ___]
  2794. [(Prim op es) ___]
  2795. [else (error "explicate-tail unhandled case" e)]))
  2796. (define (explicate-assign e x cont)
  2797. (match e
  2798. [(Var x) ___]
  2799. [(Int n) (Seq (Assign (Var x) (Int n)) cont)]
  2800. [(Let y rhs body) ___]
  2801. [(Prim op es) ___]
  2802. [else (error "explicate-assign unhandled case" e)]))
  2803. (define (explicate-control p)
  2804. (match p
  2805. [(Program info body) ___]))
  2806. \end{lstlisting}
  2807. \caption{Skeleton for the \key{explicate-control} pass.}
  2808. \label{fig:explicate-control-Rvar}
  2809. \end{figure}
  2810. The organization of this pass depends on the notion of tail position
  2811. that we have alluded to earlier. Formally, \emph{tail
  2812. position}\index{tail position} in the context of \LangVar{} is
  2813. defined recursively by the following two rules.
  2814. \begin{enumerate}
  2815. \item In $\PROGRAM{\code{()}}{e}$, expression $e$ is in tail position.
  2816. \item If $\LET{x}{e_1}{e_2}$ is in tail position, then so is $e_2$.
  2817. \end{enumerate}
  2818. We recommend implementing \code{explicate-control} using two mutually
  2819. recursive functions, \code{explicate-tail} and
  2820. \code{explicate-assign}, as suggested in the skeleton code in
  2821. Figure~\ref{fig:explicate-control-Rvar}. The \code{explicate-tail}
  2822. function should be applied to expressions in tail position whereas the
  2823. \code{explicate-assign} should be applied to expressions that occur on
  2824. the right-hand-side of a \key{let}.
  2825. %
  2826. The \code{explicate-tail} function takes an \Exp{} in \LangVar{} as
  2827. input and produces a \Tail{} in \LangCVar{} (see
  2828. Figure~\ref{fig:c0-syntax}).
  2829. %
  2830. The \code{explicate-assign} function takes an \Exp{} in \LangVar{},
  2831. the variable that it is to be assigned to, and a \Tail{} in
  2832. \LangCVar{} for the code that will come after the assignment. The
  2833. \code{explicate-assign} function returns a $\Tail$ in \LangCVar{}.
  2834. The \code{explicate-assign} function is in accumulator-passing style
  2835. in that the \code{cont} parameter is used for accumulating the
  2836. output. The reader might be tempted to instead organize
  2837. \code{explicate-assign} in a more direct fashion, without the
  2838. \code{cont} parameter and perhaps using \code{append} to combine
  2839. statements. We warn against that alternative because the
  2840. accumulator-passing style is key to how we generate high-quality code
  2841. for conditional expressions in Chapter~\ref{ch:Rif}.
  2842. \begin{ocamlx}
  2843. Don't take this advice too seriously. Organize things in the cleanest way you
  2844. can find; it will always be possible to adjust your approach in later chapters.
  2845. \end{ocamlx}
  2846. \begin{exercise}\normalfont
  2847. %
  2848. Implement the \code{explicate-control} function in
  2849. \code{compiler.rkt}. \ocaml{Fill in the \code{ExplicateControl} submodule
  2850. of \code{Chapter2.ml} by implementing the \code{do\_program} function.
  2851. The checking field of this pass should invoke \code{CVar.check\_program},
  2852. which checks that the target code is properly bound (and also fills in
  2853. some information about the set of bound variables in the \code{'pinfo}
  2854. field of the program that will be useful in a later pass).}
  2855. %
  2856. Create three new \LangInt{} programs that
  2857. exercise the code in \code{explicate-control}.
  2858. %
  2859. In the \code{run-tests.rkt} script, add the following entry to the
  2860. list of \code{passes} and then run the script to test your compiler.
  2861. \begin{lstlisting}
  2862. (list "explicate control" explicate-control interp-Cvar type-check-Cvar)
  2863. \end{lstlisting}
  2864. \ocaml{Make the analogous change to the \code{passes} list in \code{Chapter2.ml}.}
  2865. \end{exercise}
  2866. \section{Select Instructions}
  2867. \label{sec:select-Rvar}
  2868. \index{instruction selection}
  2869. In the \code{select-instructions} pass we begin the work of
  2870. translating from \LangCVar{} to \LangXVar{}. The target language of
  2871. this pass is a variant of x86 that still uses variables, so we add an
  2872. AST node of the form $\VAR{\itm{var}}$ to the \Arg{} non-terminal of
  2873. the \LangXInt{} abstract syntax (Figure~\ref{fig:x86-int-ast}). \ocaml{Recall that
  2874. we use the same module to define \LangXInt{} and \LangXVar{}.}
  2875. We recommend implementing the \code{select-instructions} with
  2876. three auxiliary functions, one for each of the non-terminals of
  2877. \LangCVar{}: $\Atm$, $\Stmt$, and $\Tail$.
  2878. The cases for $\Atm$ are straightforward, variables stay
  2879. the same and integer constants are changed to immediates:
  2880. $\INT{n}$ changes to $\IMM{n}$.
  2881. Next we consider the cases for $\Stmt$, starting with arithmetic
  2882. operations. For example, consider the addition operation. We can use
  2883. the \key{addq} instruction, but it performs an in-place update. So we
  2884. could move $\itm{arg}_1$ into the left-hand side \itm{var} and then
  2885. add $\itm{arg}_2$ to \itm{var}. \\
  2886. \begin{tabular}{lll}
  2887. \begin{minipage}{0.4\textwidth}
  2888. \begin{lstlisting}
  2889. |$\itm{var}$| = (+ |$\itm{arg}_1$| |$\itm{arg}_2$|);
  2890. \end{lstlisting}
  2891. \end{minipage}
  2892. &
  2893. $\Rightarrow$
  2894. &
  2895. \begin{minipage}{0.4\textwidth}
  2896. \begin{lstlisting}
  2897. movq |$\itm{arg}_1$|, |$\itm{var}$|
  2898. addq |$\itm{arg}_2$|, |$\itm{var}$|
  2899. \end{lstlisting}
  2900. \end{minipage}
  2901. \end{tabular} \\
  2902. %
  2903. There are also cases that require special care to avoid generating
  2904. needlessly complicated code. For example, if one of the arguments of
  2905. the addition is the same variable as the left-hand side of the
  2906. assignment, then there is no need for the extra move instruction. The
  2907. assignment statement can be translated into a single \key{addq}
  2908. instruction as follows.\\
  2909. \begin{tabular}{lll}
  2910. \begin{minipage}{0.4\textwidth}
  2911. \begin{lstlisting}
  2912. |$\itm{var}$| = (+ |$\itm{arg}_1$| |$\itm{var}$|);
  2913. \end{lstlisting}
  2914. \end{minipage}
  2915. &
  2916. $\Rightarrow$
  2917. &
  2918. \begin{minipage}{0.4\textwidth}
  2919. \begin{lstlisting}
  2920. addq |$\itm{arg}_1$|, |$\itm{var}$|
  2921. \end{lstlisting}
  2922. \end{minipage}
  2923. \end{tabular}
  2924. The \key{read} operation does not have a direct counterpart in x86
  2925. assembly, so we provide this functionality with the function
  2926. \code{read\_int} in the file \code{runtime.c}, written in
  2927. C~\citep{Kernighan:1988nx}. In general, we refer to all of the
  2928. functionality in this file as the \emph{runtime system}\index{runtime
  2929. system}, or simply the \emph{runtime} for short. When compiling your
  2930. generated x86 assembly code, you need to compile \code{runtime.c} to
  2931. \code{runtime.o} (an ``object file'', using \code{gcc} option
  2932. \code{-c}) and link it into the executable. For our purposes of code
  2933. generation, all you need to do is translate an assignment of
  2934. \key{read} into a call to the \code{read\_int} function followed by a
  2935. move from \code{rax} to the left-hand-side variable. (Recall that the
  2936. return value of a function goes into \code{rax}.) \\
  2937. \begin{tabular}{lll}
  2938. \begin{minipage}{0.3\textwidth}
  2939. \begin{lstlisting}
  2940. |$\itm{var}$| = (read);
  2941. \end{lstlisting}
  2942. \end{minipage}
  2943. &
  2944. $\Rightarrow$
  2945. &
  2946. \begin{minipage}{0.3\textwidth}
  2947. \begin{lstlisting}
  2948. callq read_int
  2949. movq %rax, |$\itm{var}$|
  2950. \end{lstlisting}
  2951. \end{minipage}
  2952. \end{tabular}
  2953. There are two cases for the $\Tail$ non-terminal: \key{Return} and
  2954. \key{Seq}. Regarding \key{Return}, we recommend treating it as an
  2955. assignment to the \key{rax} register followed by a jump to the
  2956. conclusion of the program (so the conclusion needs to be labeled).
  2957. For $\SEQ{s}{t}$, you can translate the statement $s$ and tail $t$
  2958. recursively and then append the resulting instructions.
  2959. \begin{exercise}
  2960. \normalfont Implement the \key{select-instructions} pass in
  2961. \code{compiler.rkt}. \ocaml{Fill out the \code{SelectInstructions} submodule
  2962. of \code{Chapter2.ml}. The checking field of this pass should invoke
  2963. \code{X86Int.CheckLabels.check\_program}, passing a list of externally
  2964. defined labels (just \code{["read\_int"]}).}
  2965. Create three new example programs that are
  2966. designed to exercise all of the interesting cases in this pass.
  2967. %
  2968. In the \code{run-tests.rkt} script, add the following entry to the
  2969. list of \code{passes} and then run the script to test your compiler.
  2970. \begin{lstlisting}
  2971. (list "instruction selection" select-instructions interp-pseudo-x86-0)
  2972. \end{lstlisting}
  2973. \ocaml{Make the analogous change to the \code{passes} list in \code{Chapter2.ml}.}
  2974. \end{exercise}
  2975. \section{Assign Homes}
  2976. \label{sec:assign-Rvar}
  2977. The \key{assign-homes} pass compiles \LangXVar{} programs to
  2978. \LangXVar{} programs that no longer use program variables.
  2979. Thus, the \key{assign-homes} pass is responsible for placing all of
  2980. the program variables in registers or on the stack. For runtime
  2981. efficiency, it is better to place variables in registers, but as there
  2982. are only 16 registers, some programs must necessarily resort to
  2983. placing some variables on the stack. In this chapter we focus on the
  2984. mechanics of placing variables on the stack. We study an algorithm for
  2985. placing variables in registers in
  2986. Chapter~\ref{ch:register-allocation-Rvar}.
  2987. Consider again the following \LangVar{} program from
  2988. Section~\ref{sec:remove-complex-opera-Rvar}.
  2989. % var_test_20.rkt
  2990. \begin{lstlisting}
  2991. (let ([a 42])
  2992. (let ([b a])
  2993. b))
  2994. \end{lstlisting}
  2995. The output of \code{select-instructions} is shown on the left and the
  2996. output of \code{assign-homes} on the right. In this example, we
  2997. assign variable \code{a} to stack location \code{-8(\%rbp)} and
  2998. variable \code{b} to location \code{-16(\%rbp)}.\\
  2999. \begin{tabular}{l}
  3000. \begin{minipage}{0.4\textwidth}
  3001. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  3002. locals-types:
  3003. a : Integer, b : Integer
  3004. start:
  3005. movq $42, a
  3006. movq a, b
  3007. movq b, %rax
  3008. jmp conclusion
  3009. \end{lstlisting}
  3010. \end{minipage}
  3011. {$\Rightarrow$}
  3012. \begin{minipage}{0.4\textwidth}
  3013. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  3014. stack-space: 16
  3015. start:
  3016. movq $42, -8(%rbp)
  3017. movq -8(%rbp), -16(%rbp)
  3018. movq -16(%rbp), %rax
  3019. jmp conclusion
  3020. \end{lstlisting}
  3021. \end{minipage}
  3022. \end{tabular}
  3023. The \code{locals-types} entry in the $\itm{info}$ of the
  3024. \code{X86Program} node is an alist mapping all the variables in the
  3025. program to their types (for now just \code{Integer}). The
  3026. \code{assign-homes} pass should replace all uses of those variables
  3027. with stack locations. As an aside, the \code{locals-types} entry is
  3028. computed by \code{type-check-Cvar} in the support code, which installs
  3029. it in the $\itm{info}$ field of the \code{CProgram} node, which should
  3030. be propagated to the \code{X86Program} node.
  3031. \ocaml{The locals sets is represented as a \code{unit Env.t}.}
  3032. In the process of assigning variables to stack locations, it is
  3033. convenient for you to compute and store the size of the frame (in
  3034. bytes) in the $\itm{info}$ field of the \key{X86Program} node, with
  3035. the key \code{stack-space}, which is needed later to generate the
  3036. conclusion of the \code{main} procedure. The x86-64 standard requires
  3037. the frame size to be a multiple of 16 bytes.\index{frame}
  3038. \ocaml{The \code{'pinfo} parameter should be instantiated with an \code{int}
  3039. representing the frame size.}
  3040. \begin{exercise}\normalfont
  3041. Implement the \key{assign-homes} pass in \code{compiler.rkt}, defining
  3042. auxiliary functions for the non-terminals \Arg{}, \Instr{}, and
  3043. \Block{}. \ocaml{Fill in the definition of submodule \code{AssignHomes}.}
  3044. We recommend that the auxiliary functions take an extra
  3045. parameter that is an alist \ocaml{(\code{arg Env.t})} mapping variable names to homes (stack
  3046. locations for now). \ocaml{Use the same checker as in the previous pass.}
  3047. %
  3048. In the \code{run-tests.rkt} script, add the following entry to the
  3049. list of \code{passes} and then run the script to test your compiler.
  3050. \begin{lstlisting}
  3051. (list "assign homes" assign-homes interp-x86-0)
  3052. \end{lstlisting}
  3053. \ocaml{Make the analogous change to the \code{passes} list in \code{Chapter2.ml}.}
  3054. \end{exercise}
  3055. \section{Patch Instructions}
  3056. \label{sec:patch-s0}
  3057. The \code{patch-instructions} pass compiles from \LangXVar{} to
  3058. \LangXInt{} by making sure that each instruction adheres to the
  3059. restriction that at most one argument of an instruction may be a
  3060. memory reference. \ocaml{It also ensures that no immediate operand
  3061. to an ordinary instruction exceeds 32 bits, by introducing \code{movabsq}
  3062. instructions as needed. \code{movabsq} is the sole instruction that
  3063. allows a 64-bit immediate source operand; its destination must be a register.}
  3064. We return to the following example.
  3065. % var_test_20.rkt
  3066. \begin{lstlisting}
  3067. (let ([a 42])
  3068. (let ([b a])
  3069. b))
  3070. \end{lstlisting}
  3071. The \key{assign-homes} pass produces the following output
  3072. for this program. \\
  3073. \begin{minipage}{0.5\textwidth}
  3074. \begin{lstlisting}
  3075. stack-space: 16
  3076. start:
  3077. movq $42, -8(%rbp)
  3078. movq -8(%rbp), -16(%rbp)
  3079. movq -16(%rbp), %rax
  3080. jmp conclusion
  3081. \end{lstlisting}
  3082. \end{minipage}\\
  3083. The second \key{movq} instruction is problematic because both
  3084. arguments are stack locations. We suggest fixing this problem by
  3085. moving from the source location to the register \key{rax} and then
  3086. from \key{rax} to the destination location, as follows.
  3087. \begin{lstlisting}
  3088. movq -8(%rbp), %rax
  3089. movq %rax, -16(%rbp)
  3090. \end{lstlisting}
  3091. \begin{exercise}
  3092. \normalfont Implement the \key{patch-instructions} pass in
  3093. \code{compiler.rkt}. \ocaml{This task has been done for you, in the \code{PatchInstructions} submodule
  3094. of \code{Chapter2}.}
  3095. Create three new example programs that are
  3096. designed to exercise all of the interesting cases in this pass.
  3097. %
  3098. In the \code{run-tests.rkt} script, add the following entry to the
  3099. list of \code{passes} and then run the script to test your compiler.
  3100. \begin{lstlisting}
  3101. (list "patch instructions" patch-instructions interp-x86-0)
  3102. \end{lstlisting}
  3103. \end{exercise}
  3104. \section{Print x86}
  3105. \label{sec:print-x86}
  3106. The last step of the compiler from \LangVar{} to x86 is to convert the
  3107. \LangXInt{} AST (defined in Figure~\ref{fig:x86-int-ast}) to the
  3108. string representation (defined in
  3109. Figure~\ref{fig:x86-int-concrete}). The Racket \key{format} and
  3110. \key{string-append} functions are useful in this regard. \ocaml{The \code{Printf}
  3111. library is useful here.} The main work
  3112. that this step needs to perform is to create the \key{main} function
  3113. and the standard instructions for its prelude and conclusion, as shown
  3114. in Figure~\ref{fig:p1-x86} of Section~\ref{sec:x86}. You will need to
  3115. know the amount of space needed for the stack frame, which you can
  3116. obtain from the \code{stack-space} entry in the $\itm{info}$ field of
  3117. the \key{X86Program} node.
  3118. When running on Mac OS X, you compiler should prefix an underscore to
  3119. labels like \key{main}. The Racket call \code{(system-type 'os)} is
  3120. useful for determining which operating system the compiler is running
  3121. on. It returns \code{'macosx}, \code{'unix}, or \code{'windows}.
  3122. \ocaml{There is a similar utility function \code{get\_ostype}
  3123. provided in the \texttt{utils.ml} module.}
  3124. \begin{exercise}\normalfont
  3125. %
  3126. Implement the \key{print-x86} pass in \code{compiler.rkt}.
  3127. \ocaml{This task has been done for you; the relevant printing
  3128. code is in module \code{X86Int}.}
  3129. %
  3130. In the \code{run-tests.rkt} script, add the following entry to the
  3131. list of \code{passes} and then run the script to test your compiler.
  3132. \begin{lstlisting}
  3133. (list "print x86" print-x86 #f)
  3134. \end{lstlisting}
  3135. %
  3136. Uncomment the call to the \key{compiler-tests} function
  3137. (Appendix~\ref{appendix:utilities}), which tests your complete
  3138. compiler by executing the generated x86 code. Compile the provided
  3139. \key{runtime.c} file to \key{runtime.o} using \key{gcc}. Run the
  3140. script to test your compiler.
  3141. \ocaml{The OCaml version packages the process of emitting, assembling,
  3142. linking, and executing the assembly code as just another pass
  3143. (the \code{execute\_pass} defined in \code{Chapter2.ml}).
  3144. To emit code but not process it further, you can use the
  3145. \code{emit\_pass} instead; note that in this case, the test driver
  3146. should be configured not to compare initial and final values (since
  3147. there will be no useful final value).}
  3148. \end{exercise}
  3149. \section{Challenge: Partial Evaluator for \LangVar{}}
  3150. \label{sec:pe-Rvar}
  3151. \index{partial evaluation}
  3152. This section describes optional challenge exercises that involve
  3153. adapting and improving the partial evaluator for \LangInt{} that was
  3154. introduced in Section~\ref{sec:partial-evaluation}.
  3155. \begin{exercise}\label{ex:pe-Rvar}
  3156. \normalfont
  3157. Adapt the partial evaluator from Section~\ref{sec:partial-evaluation}
  3158. (Figure~\ref{fig:pe-arith}) so that it applies to \LangVar{} programs
  3159. instead of \LangInt{} programs. Recall that \LangVar{} adds \key{let} binding
  3160. and variables to the \LangInt{} language, so you will need to add cases for
  3161. them in the \code{pe-exp} function. Once complete, add the partial
  3162. evaluation pass to the front of your compiler and make sure that your
  3163. compiler still passes all of the tests.
  3164. \end{exercise}
  3165. The next exercise builds on Exercise~\ref{ex:pe-Rvar}.
  3166. \begin{exercise}
  3167. \normalfont
  3168. Improve on the partial evaluator by replacing the \code{pe-neg} and
  3169. \code{pe-add} auxiliary functions with functions that know more about
  3170. arithmetic. For example, your partial evaluator should translate
  3171. \[
  3172. \code{(+ 1 (+ (read) 1))} \qquad \text{into} \qquad
  3173. \code{(+ 2 (read))}
  3174. \]
  3175. To accomplish this, the \code{pe-exp} function should produce output
  3176. in the form of the $\itm{residual}$ non-terminal of the following
  3177. grammar. The idea is that when processing an addition expression, we
  3178. can always produce either 1) an integer constant, 2) and addition
  3179. expression with an integer constant on the left-hand side but not the
  3180. right-hand side, or 3) or an addition expression in which neither
  3181. subexpression is a constant.
  3182. \[
  3183. \begin{array}{lcl}
  3184. \itm{inert} &::=& \Var \mid \LP\key{read}\RP \mid \LP\key{-} \;\Var\RP
  3185. \mid \LP\key{-} \;\LP\key{read}\RP\RP
  3186. \mid \LP\key{+} \; \itm{inert} \; \itm{inert}\RP\\
  3187. &\mid& \LP\key{let}~\LP\LS\Var~\itm{inert}\RS\RP~ \itm{inert} \RP \\
  3188. \itm{residual} &::=& \Int \mid \LP\key{+}\; \Int\; \itm{inert}\RP \mid \itm{inert}
  3189. \end{array}
  3190. \]
  3191. The \code{pe-add} and \code{pe-neg} functions may assume that their
  3192. inputs are $\itm{residual}$ expressions and they should return
  3193. $\itm{residual}$ expressions. Once the improvements are complete,
  3194. make sure that your compiler still passes all of the tests. After
  3195. all, fast code is useless if it produces incorrect results!
  3196. \end{exercise}
  3197. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  3198. \chapter{Register Allocation}
  3199. \label{ch:register-allocation-Rvar}
  3200. \index{register allocation}
  3201. In Chapter~\ref{ch:Rvar} we learned how to store variables on the
  3202. stack. In this Chapter we learn how to improve the performance of the
  3203. generated code by placing some variables into registers. The CPU can
  3204. access a register in a single cycle, whereas accessing the stack can
  3205. take 10s to 100s of cycles. The program in Figure~\ref{fig:reg-eg}
  3206. serves as a running example. The source program is on the left and the
  3207. output of instruction selection is on the right. The program is almost
  3208. in the x86 assembly language but it still uses variables.
  3209. \begin{figure}
  3210. \begin{minipage}{0.45\textwidth}
  3211. Example \LangVar{} program:
  3212. % var_test_28.rkt
  3213. \begin{lstlisting}
  3214. (let ([v 1])
  3215. (let ([w 42])
  3216. (let ([x (+ v 7)])
  3217. (let ([y x])
  3218. (let ([z (+ x w)])
  3219. (+ z (- y)))))))
  3220. \end{lstlisting}
  3221. \end{minipage}
  3222. \begin{minipage}{0.45\textwidth}
  3223. After instruction selection:
  3224. \begin{lstlisting}
  3225. locals-types:
  3226. x : Integer, y : Integer,
  3227. z : Integer, t : Integer,
  3228. v : Integer, w : Integer
  3229. start:
  3230. movq $1, v
  3231. movq $42, w
  3232. movq v, x
  3233. addq $7, x
  3234. movq x, y
  3235. movq x, z
  3236. addq w, z
  3237. movq y, t
  3238. negq t
  3239. movq z, %rax
  3240. addq t, %rax
  3241. jmp conclusion
  3242. \end{lstlisting}
  3243. \end{minipage}
  3244. \caption{A running example for register allocation.}
  3245. \label{fig:reg-eg}
  3246. \end{figure}
  3247. The goal of register allocation is to fit as many variables into
  3248. registers as possible. Some programs have more variables than
  3249. registers so we cannot always map each variable to a different
  3250. register. Fortunately, it is common for different variables to be
  3251. needed during different periods of time during program execution, and
  3252. in such cases several variables can be mapped to the same register.
  3253. Consider variables \code{x} and \code{z} in Figure~\ref{fig:reg-eg}.
  3254. After the variable \code{x} is moved to \code{z} it is no longer
  3255. needed. Variable \code{z}, on the other hand, is used only after this
  3256. point, so \code{x} and \code{z} could share the same register. The
  3257. topic of Section~\ref{sec:liveness-analysis-Rvar} is how to compute
  3258. where a variable is needed. Once we have that information, we compute
  3259. which variables are needed at the same time, i.e., which ones
  3260. \emph{interfere} with each other, and represent this relation as an
  3261. undirected graph whose vertices are variables and edges indicate when
  3262. two variables interfere (Section~\ref{sec:build-interference}). We
  3263. then model register allocation as a graph coloring problem
  3264. (Section~\ref{sec:graph-coloring}).
  3265. If we run out of registers despite these efforts, we place the
  3266. remaining variables on the stack, similar to what we did in
  3267. Chapter~\ref{ch:Rvar}. It is common to use the verb \emph{spill}
  3268. for assigning a variable to a stack location. The decision to spill a
  3269. variable is handled as part of the graph coloring process
  3270. (Section~\ref{sec:graph-coloring}).
  3271. We make the simplifying assumption that each variable is assigned to
  3272. one location (a register or stack address). A more sophisticated
  3273. approach is to assign a variable to one or more locations in different
  3274. regions of the program. For example, if a variable is used many times
  3275. in short sequence and then only used again after many other
  3276. instructions, it could be more efficient to assign the variable to a
  3277. register during the initial sequence and then move it to the stack for
  3278. the rest of its lifetime. We refer the interested reader to
  3279. \citet{Cooper:2011aa} for more information about that approach.
  3280. % discuss prioritizing variables based on how much they are used.
  3281. \section{Registers and Calling Conventions}
  3282. \label{sec:calling-conventions}
  3283. \index{calling conventions}
  3284. As we perform register allocation, we need to be aware of the
  3285. \emph{calling conventions} \index{calling conventions} that govern how
  3286. functions calls are performed in x86.
  3287. %
  3288. Even though \LangVar{} does not include programmer-defined functions,
  3289. our generated code includes a \code{main} function that is called by
  3290. the operating system and our generated code contains calls to the
  3291. \code{read\_int} function.
  3292. Function calls require coordination between two pieces of code that
  3293. may be written by different programmers or generated by different
  3294. compilers. Here we follow the System V calling conventions that are
  3295. used by the GNU C compiler on Linux and
  3296. MacOS~\citep{Bryant:2005aa,Matz:2013aa}.
  3297. %
  3298. The calling conventions include rules about how functions share the
  3299. use of registers. In particular, the caller is responsible for freeing
  3300. up some registers prior to the function call for use by the callee.
  3301. These are called the \emph{caller-saved registers}
  3302. \index{caller-saved registers}
  3303. and they are
  3304. \begin{lstlisting}
  3305. rax rcx rdx rsi rdi r8 r9 r10 r11
  3306. \end{lstlisting}
  3307. On the other hand, the callee is responsible for preserving the values
  3308. of the \emph{callee-saved registers}, \index{callee-saved registers}
  3309. which are
  3310. \begin{lstlisting}
  3311. rsp rbp rbx r12 r13 r14 r15
  3312. \end{lstlisting}
  3313. We can think about this caller/callee convention from two points of
  3314. view, the caller view and the callee view:
  3315. \begin{itemize}
  3316. \item The caller should assume that all the caller-saved registers get
  3317. overwritten with arbitrary values by the callee. On the other hand,
  3318. the caller can safely assume that all the callee-saved registers
  3319. contain the same values after the call that they did before the
  3320. call.
  3321. \item The callee can freely use any of the caller-saved registers.
  3322. However, if the callee wants to use a callee-saved register, the
  3323. callee must arrange to put the original value back in the register
  3324. prior to returning to the caller. This can be accomplished by saving
  3325. the value to the stack in the prelude of the function and restoring
  3326. the value in the conclusion of the function.
  3327. \end{itemize}
  3328. In x86, registers are also used for passing arguments to a function
  3329. and for the return value. In particular, the first six arguments to a
  3330. function are passed in the following six registers, in this order.
  3331. \begin{lstlisting}
  3332. rdi rsi rdx rcx r8 r9
  3333. \end{lstlisting}
  3334. If there are more than six arguments, then the convention is to use
  3335. space on the frame of the caller for the rest of the
  3336. arguments. However, in Chapter~\ref{ch:Rfun} we arrange never to
  3337. need more than six arguments. For now, the only function we care about
  3338. is \code{read\_int} and it takes zero arguments.
  3339. %
  3340. The register \code{rax} is used for the return value of a function.
  3341. The next question is how these calling conventions impact register
  3342. allocation. Consider the \LangVar{} program in
  3343. Figure~\ref{fig:example-calling-conventions}. We first analyze this
  3344. example from the caller point of view and then from the callee point
  3345. of view.
  3346. The program makes two calls to the \code{read} function. Also, the
  3347. variable \code{x} is in use during the second call to \code{read}, so
  3348. we need to make sure that the value in \code{x} does not get
  3349. accidentally wiped out by the call to \code{read}. One obvious
  3350. approach is to save all the values in caller-saved registers to the
  3351. stack prior to each function call, and restore them after each
  3352. call. That way, if the register allocator chooses to assign \code{x}
  3353. to a caller-saved register, its value will be preserved across the
  3354. call to \code{read}. However, saving and restoring to the stack is
  3355. relatively slow. If \code{x} is not used many times, it may be better
  3356. to assign \code{x} to a stack location in the first place. Or better
  3357. yet, if we can arrange for \code{x} to be placed in a callee-saved
  3358. register, then it won't need to be saved and restored during function
  3359. calls. \ocaml{(By the caller, that is. The callee might still need to save the
  3360. register, but only if it actually needs to make use of that register for
  3361. its own purposes.)}
  3362. The approach that we recommend for variables that are in use during a
  3363. function call is to either assign them to callee-saved registers or to
  3364. spill them to the stack. On the other hand, for variables that are not
  3365. in use during a function call, we try the following alternatives in
  3366. order 1) look for an available caller-saved register (to leave room
  3367. for other variables in the callee-saved register), 2) look for a
  3368. callee-saved register, and 3) spill the variable to the stack.
  3369. \ocaml{To summarize all this in a slightly different way: our goal
  3370. is to assign variables to callee-save and caller-save
  3371. registers so as to minimize the chances that we actually need to
  3372. save and restore them at all! We need to do this on a per-function basis,
  3373. by processing each caller independently without knowledge of
  3374. the callee's internals. If a variable does does \emph{not}
  3375. need to be preserved across a call, it is best to put it in a
  3376. caller-save register, because we definitely know we won't actually
  3377. need to save and restore it. If a variable \emph{does} need to be
  3378. preserved, it's best to put it in a callee-save register, because
  3379. there is a chance that the callee won't need to save and restore
  3380. it.}
  3381. It is straightforward to implement this approach in a graph coloring
  3382. register allocator. First, we know which variables are in use during
  3383. every function call because we compute that information for every
  3384. instruction (Section~\ref{sec:liveness-analysis-Rvar}). Second, when we
  3385. build the interference graph (Section~\ref{sec:build-interference}),
  3386. we can place an edge between each of these variables and the
  3387. caller-saved registers in the interference graph. This will prevent
  3388. the graph coloring algorithm from assigning those variables to
  3389. caller-saved registers.
  3390. Returning to the example in
  3391. Figure~\ref{fig:example-calling-conventions}, let us analyze the
  3392. generated x86 code on the right-hand side, focusing on the
  3393. \code{start} block. Notice that variable \code{x} is assigned to
  3394. \code{rbx}, a callee-saved register. Thus, it is already in a safe
  3395. place during the second call to \code{read\_int}. Next, notice that
  3396. variable \code{y} is assigned to \code{rcx}, a caller-saved register,
  3397. because there are no function calls in the remainder of the block.
  3398. Next we analyze the example from the callee point of view, focusing on
  3399. the prelude and conclusion of the \code{main} function. As usual the
  3400. prelude begins with saving the \code{rbp} register to the stack and
  3401. setting the \code{rbp} to the current stack pointer. We now know why
  3402. it is necessary to save the \code{rbp}: it is a callee-saved register.
  3403. The prelude then pushes \code{rbx} to the stack because 1) \code{rbx}
  3404. is a callee-saved register and 2) \code{rbx} is assigned to a variable
  3405. (\code{x}). The other callee-saved registers are not saved in the
  3406. prelude because they are not used. The prelude subtracts 8 bytes from
  3407. the \code{rsp} to make it 16-byte aligned and then jumps to the
  3408. \code{start} block. Shifting attention to the \code{conclusion}, we
  3409. see that \code{rbx} is restored from the stack with a \code{popq}
  3410. instruction. \index{prelude}\index{conclusion}
  3411. \begin{figure}[tp]
  3412. \begin{minipage}{0.45\textwidth}
  3413. Example \LangVar{} program:
  3414. %var_test_14.rkt
  3415. \begin{lstlisting}
  3416. (let ([x (read)])
  3417. (let ([y (read)])
  3418. (+ (+ x y) 42)))
  3419. \end{lstlisting}
  3420. \end{minipage}
  3421. \begin{minipage}{0.45\textwidth}
  3422. Generated x86 assembly:
  3423. \begin{lstlisting}
  3424. start:
  3425. callq read_int
  3426. movq %rax, %rbx
  3427. callq read_int
  3428. movq %rax, %rcx
  3429. addq %rcx, %rbx
  3430. movq %rbx, %rax
  3431. addq $42, %rax
  3432. jmp _conclusion
  3433. .globl main
  3434. main:
  3435. pushq %rbp
  3436. movq %rsp, %rbp
  3437. pushq %rbx
  3438. subq $8, %rsp
  3439. jmp start
  3440. conclusion:
  3441. addq $8, %rsp
  3442. popq %rbx
  3443. popq %rbp
  3444. retq
  3445. \end{lstlisting}
  3446. \end{minipage}
  3447. \caption{An example with function calls.}
  3448. \label{fig:example-calling-conventions}
  3449. \end{figure}
  3450. \clearpage
  3451. \section{Liveness Analysis}
  3452. \label{sec:liveness-analysis-Rvar}
  3453. \index{liveness analysis}
  3454. The \code{uncover-live} pass performs \emph{liveness analysis}, that
  3455. is, it discovers which variables are in-use in different regions of a
  3456. program.
  3457. %
  3458. A variable or register is \emph{live} at a program point if its
  3459. current value is used at some later point in the program. We
  3460. refer to variables and registers collectively as \emph{locations}.
  3461. %
  3462. Consider the following code fragment in which there are two writes to
  3463. \code{b}. Are \code{a} and \code{b} both live at the same time?
  3464. \begin{center}
  3465. \begin{minipage}{0.96\textwidth}
  3466. \begin{lstlisting}[numbers=left,numberstyle=\tiny]
  3467. movq $5, a
  3468. movq $30, b
  3469. movq a, c
  3470. movq $10, b
  3471. addq b, c
  3472. \end{lstlisting}
  3473. \end{minipage}
  3474. \end{center}
  3475. The answer is no because \code{a} is live from line 1 to 3 and
  3476. \code{b} is live from line 4 to 5. The integer written to \code{b} on
  3477. line 2 is never used because it is overwritten (line 4) before the
  3478. next read (line 5).
  3479. \begin{wrapfigure}[19]{l}[1.0in]{0.6\textwidth}
  3480. \small
  3481. \begin{tcolorbox}[title=\href{https://docs.racket-lang.org/reference/sets.html}{The Racket Set Package}]
  3482. A \emph{set} is an unordered collection of elements without duplicates.
  3483. \index{set}
  3484. \begin{description}
  3485. \item[$\LP\code{set}\,v\,\ldots\RP$] constructs a set containing the specified elements.
  3486. \item[$\LP\code{set-union}\,set_1\,set_2\RP$] returns the union of the two sets.
  3487. \item[$\LP\code{set-subtract}\,set_1\,set_2\RP$] returns the difference of the two sets.
  3488. \item[$\LP\code{set-member?}\,set\,v\RP$] is element $v$ in $set$?
  3489. \item[$\LP\code{set-count}\,set\RP$] how many unique elements are in $set$?
  3490. \item[$\LP\code{set->list}\,set\RP$] converts the set to a list.
  3491. \end{description}
  3492. \end{tcolorbox}
  3493. \end{wrapfigure}
  3494. The live locations can be computed by traversing the instruction
  3495. sequence back to front (i.e., backwards in execution order). Let
  3496. $I_1,\ldots, I_n$ be the instruction sequence. We write
  3497. $L_{\mathsf{after}}(k)$ for the set of live locations after
  3498. instruction $I_k$ and $L_{\mathsf{before}}(k)$ for the set of live
  3499. locations before instruction $I_k$. The live locations after an
  3500. instruction are always the same as the live locations before the next
  3501. instruction. \index{live-after} \index{live-before}
  3502. \begin{equation} \label{eq:live-after-before-next}
  3503. L_{\mathsf{after}}(k) = L_{\mathsf{before}}(k+1)
  3504. \end{equation}
  3505. To start things off, there are no live locations after the last
  3506. instruction, so
  3507. \begin{equation}\label{eq:live-last-empty}
  3508. L_{\mathsf{after}}(n) = \emptyset
  3509. \end{equation}
  3510. We then apply the following rule repeatedly, traversing the
  3511. instruction sequence back to front.
  3512. \begin{equation}\label{eq:live-before-after-minus-writes-plus-reads}
  3513. L_{\mathtt{before}}(k) = (L_{\mathtt{after}}(k) - W(k)) \cup R(k),
  3514. \end{equation}
  3515. where $W(k)$ are the locations written to by instruction $I_k$ and
  3516. $R(k)$ are the locations read by instruction $I_k$.
  3517. \begin{ocamlx}
  3518. \noindent\fbox{%
  3519. \parbox{\textwidth}{%
  3520. The OCaml \code{Set} module is described in the standard library.
  3521. Like the \code{Map} module, it is a functor that must be instantiated
  3522. on the type of set elements. An appropriate definition for a module
  3523. \code{Locs} for repersenting sets of locations is at the top
  3524. of \code{Chapter3.ml}.
  3525. }%
  3526. }
  3527. \end{ocamlx}
  3528. There is a special case for \code{jmp} instructions. The locations
  3529. that are live before a \code{jmp} should be the locations in
  3530. $L_{\mathtt{before}}$ at the target of the jump. So we recommend
  3531. maintaining an alist named \code{label->live} \ocaml{(or a \code{liveset Env.t})} that maps each label to
  3532. the $L_{\mathtt{before}}$ for the first instruction in its block. For
  3533. now the only \code{jmp} in a \LangXVar{} program is the one at the
  3534. end, to the conclusion. (For example, see Figure~\ref{fig:reg-eg}.)
  3535. The conclusion reads from \ttm{rax} {\ocaml{(in the sense that it is where
  3536. the caller will find the return value after \code{retq})} and \ttm{rsp} \ocaml{(both
  3537. explicitly and implicitly via \code{popq} and \code{retq})}, so the alist should
  3538. map \code{conclusion} to the set $\{\ttm{rax},\ttm{rsp}\}$.
  3539. \ocaml{Since the OCaml version treats the entry and exit sequences as explicit parts
  3540. of the program, we could actually calculate this by processing the \code{conclusion}
  3541. block, assuming that $\ttm{rax}$ and $\ttm{rsp}$ are live before \code{retq}.
  3542. There is also another jump, from the \code{main} entry sequence to
  3543. the \code{start} label, and in principle we could also calculate liveness for
  3544. the \code{main} block, though only after calculating $L_{\mathtt{before}}$ for the
  3545. first instruction of the \code{start} block (which, for \LangXVar{}, will
  3546. always turn out to be just $\{\ttm{rsp}\}$) . In practice, since we
  3547. already have assigned fixed registers to all the arguments in the \code{main}
  3548. and \code{conclusion} blocks, there is no need to calculate liveness for them, and
  3549. in fact we should avoid doing so.}
  3550. Let us walk through the above example, applying these formulas
  3551. starting with the instruction on line 5. We collect the answers in
  3552. Figure~\ref{fig:liveness-example-0}. The $L_{\mathsf{after}}$ for the
  3553. \code{addq b, c} instruction is $\emptyset$ because it is the last
  3554. instruction (formula~\ref{eq:live-last-empty}). The
  3555. $L_{\mathsf{before}}$ for this instruction is $\{\ttm{b},\ttm{c}\}$
  3556. because it reads from variables \code{b} and \code{c}
  3557. (formula~\ref{eq:live-before-after-minus-writes-plus-reads}), that is
  3558. \[
  3559. L_{\mathsf{before}}(5) = (\emptyset - \{\ttm{c}\}) \cup \{ \ttm{b}, \ttm{c} \} = \{ \ttm{b}, \ttm{c} \}
  3560. \]
  3561. Moving on the the instruction \code{movq \$10, b} at line 4, we copy
  3562. the live-before set from line 5 to be the live-after set for this
  3563. instruction (formula~\ref{eq:live-after-before-next}).
  3564. \[
  3565. L_{\mathsf{after}}(4) = \{ \ttm{b}, \ttm{c} \}
  3566. \]
  3567. This move instruction writes to \code{b} and does not read from any
  3568. variables, so we have the following live-before set
  3569. (formula~\ref{eq:live-before-after-minus-writes-plus-reads}).
  3570. \[
  3571. L_{\mathsf{before}}(4) = (\{\ttm{b},\ttm{c}\} - \{\ttm{b}\}) \cup \emptyset = \{ \ttm{c} \}
  3572. \]
  3573. The live-before for instruction \code{movq a, c}
  3574. is $\{\ttm{a}\}$ because it writes to $\{\ttm{c}\}$ and reads from $\{\ttm{a}\}$
  3575. (formula~\ref{eq:live-before-after-minus-writes-plus-reads}). The
  3576. live-before for \code{movq \$30, b} is $\{\ttm{a}\}$ because it writes to a
  3577. variable that is not live and does not read from a variable.
  3578. Finally, the live-before for \code{movq \$5, a} is $\emptyset$
  3579. because it writes to variable \code{a}.
  3580. \begin{figure}[tbp]
  3581. \begin{minipage}{0.45\textwidth}
  3582. \begin{lstlisting}[numbers=left,numberstyle=\tiny]
  3583. movq $5, a
  3584. movq $30, b
  3585. movq a, c
  3586. movq $10, b
  3587. addq b, c
  3588. \end{lstlisting}
  3589. \end{minipage}
  3590. \vrule\hspace{10pt}
  3591. \begin{minipage}{0.45\textwidth}
  3592. \begin{align*}
  3593. L_{\mathsf{before}}(1)= \emptyset,
  3594. L_{\mathsf{after}}(1)= \{\ttm{a}\}\\
  3595. L_{\mathsf{before}}(2)= \{\ttm{a}\},
  3596. L_{\mathsf{after}}(2)= \{\ttm{a}\}\\
  3597. L_{\mathsf{before}}(3)= \{\ttm{a}\},
  3598. L_{\mathsf{after}}(2)= \{\ttm{c}\}\\
  3599. L_{\mathsf{before}}(4)= \{\ttm{c}\},
  3600. L_{\mathsf{after}}(4)= \{\ttm{b},\ttm{c}\}\\
  3601. L_{\mathsf{before}}(5)= \{\ttm{b},\ttm{c}\},
  3602. L_{\mathsf{after}}(5)= \emptyset
  3603. \end{align*}
  3604. \end{minipage}
  3605. \caption{Example output of liveness analysis on a short example.}
  3606. \label{fig:liveness-example-0}
  3607. \end{figure}
  3608. \begin{exercise}\normalfont
  3609. Perform liveness analysis on the running example in
  3610. Figure~\ref{fig:reg-eg}, computing the live-before and live-after
  3611. sets for each instruction. Compare your answers to the solution
  3612. shown in Figure~\ref{fig:live-eg}.
  3613. \end{exercise}
  3614. \begin{figure}[tp]
  3615. \hspace{20pt}
  3616. \begin{minipage}{0.45\textwidth}
  3617. \begin{lstlisting}
  3618. |$\{\ttm{rsp}\}$|
  3619. movq $1, v
  3620. |$\{\ttm{v},\ttm{rsp}\}$|
  3621. movq $42, w
  3622. |$\{\ttm{v},\ttm{w},\ttm{rsp}\}$|
  3623. movq v, x
  3624. |$\{\ttm{w},\ttm{x},\ttm{rsp}\}$|
  3625. addq $7, x
  3626. |$\{\ttm{w},\ttm{x},\ttm{rsp}\}$|
  3627. movq x, y
  3628. |$\{\ttm{w},\ttm{x},\ttm{y},\ttm{rsp}\}$|
  3629. movq x, z
  3630. |$\{\ttm{w},\ttm{y},\ttm{z},\ttm{rsp}\}$|
  3631. addq w, z
  3632. |$\{\ttm{y},\ttm{z},\ttm{rsp}\}$|
  3633. movq y, t
  3634. |$\{\ttm{t},\ttm{z},\ttm{rsp}\}$|
  3635. negq t
  3636. |$\{\ttm{t},\ttm{z},\ttm{rsp}\}$|
  3637. movq z, %rax
  3638. |$\{\ttm{rax},\ttm{t},\ttm{rsp}\}$|
  3639. addq t, %rax
  3640. |$\{\ttm{rax},\ttm{rsp}\}$|
  3641. jmp conclusion
  3642. \end{lstlisting}
  3643. \end{minipage}
  3644. \caption{The running example annotated with live-after sets.}
  3645. \label{fig:live-eg}
  3646. \end{figure}
  3647. \begin{exercise}\normalfont
  3648. Implement the \code{uncover-live} pass. Store the sequence of
  3649. live-after sets in the $\itm{info}$ field of the \code{Block}
  3650. structure. \ocaml{Put your implementation inside the
  3651. \code{UncoverLive} submodule in \code{Chapter3.ml} and
  3652. fill in the \code{pass} definition.
  3653. Instantiate the \code{'binfo} type
  3654. parameter with {\tt Locs.t list}, where {\tt Locs.t} is the
  3655. type of sets of locations. Only compute live-after sets for
  3656. the \code{"start"} block (not the \code{"main"} or \code{"conclusion"} blocks).
  3657. Do not attempt to do any extra checking on this pass.}
  3658. %
  3659. We recommend creating an auxiliary function that takes a list of
  3660. instructions and an initial live-after set (typically empty) and
  3661. returns the list of live-after sets.
  3662. %
  3663. We also recommend creating auxiliary functions to 1) compute the set
  3664. of locations that appear in an \Arg{}, 2) compute the locations read
  3665. by an instruction (the $R$ function), and 3) the locations written by
  3666. an instruction (the $W$ function). The \code{callq} instruction should
  3667. include all of the caller-saved registers in its write-set $W$ because
  3668. the calling convention says that those registers may be written to
  3669. during the function call. Likewise, the \code{callq} instruction
  3670. should include the appropriate argument-passing registers in its
  3671. read-set $R$, depending on the arity of the function being
  3672. called. (This is why the abstract syntax for \code{callq} includes the
  3673. arity.)
  3674. \end{exercise}
  3675. \clearpage
  3676. \section{Build the Interference Graph}
  3677. \label{sec:build-interference}
  3678. \begin{wrapfigure}[25]{r}[1.0in]{0.6\textwidth}
  3679. \small
  3680. \begin{tcolorbox}[title=\href{https://docs.racket-lang.org/graph/index.html}{The Racket Graph Library}]
  3681. A \emph{graph} is a collection of vertices and edges where each
  3682. edge connects two vertices. A graph is \emph{directed} if each
  3683. edge points from a source to a target. Otherwise the graph is
  3684. \emph{undirected}.
  3685. \index{graph}\index{directed graph}\index{undirected graph}
  3686. \begin{description}
  3687. %% We currently don't use directed graphs. We instead use
  3688. %% directed multi-graphs. -Jeremy
  3689. %% \item[$\LP\code{directed-graph}\,\itm{edges}\RP$] constructs a
  3690. %% directed graph from a list of edges. Each edge is a list
  3691. %% containing the source and target vertex.
  3692. \item[$\LP\code{undirected-graph}\,\itm{edges}\RP$] constructs a
  3693. undirected graph from a list of edges. Each edge is represented by
  3694. a list containing two vertices.
  3695. \item[$\LP\code{add-vertex!}\,\itm{graph}\,\itm{vertex}\RP$]
  3696. inserts a vertex into the graph.
  3697. \item[$\LP\code{add-edge!}\,\itm{graph}\,\itm{source}\,\itm{target}\RP$]
  3698. inserts an edge between the two vertices into the graph.
  3699. \item[$\LP\code{in-neighbors}\,\itm{graph}\,\itm{vertex}\RP$]
  3700. returns a sequence of all the neighbors of the given vertex.
  3701. \item[$\LP\code{in-vertices}\,\itm{graph}\RP$]
  3702. returns a sequence of all the vertices in the graph.
  3703. \end{description}
  3704. \end{tcolorbox}
  3705. \end{wrapfigure}
  3706. Based on the liveness analysis, we know where each location is live.
  3707. However, during register allocation, we need to answer questions of
  3708. the specific form: are locations $u$ and $v$ live at the same time?
  3709. (And therefore cannot be assigned to the same register.) To make this
  3710. question more efficient to answer, we create an explicit data
  3711. structure, an \emph{interference graph}\index{interference graph}. An
  3712. interference graph is an undirected graph that has an edge between two
  3713. locations if they are live at the same time, that is, if they
  3714. interfere with each other.
  3715. An obvious way to compute the interference graph is to look at the set
  3716. of live locations between each instruction and the next and add an edge to the graph
  3717. for every pair of variables in the same set. This approach is less
  3718. than ideal for two reasons. First, it can be expensive because it
  3719. takes $O(n^2)$ time to consider at every pair in a set of $n$ live
  3720. locations. Second, in the special case where two locations hold the
  3721. same value (because one was assigned to the other), they can be live
  3722. at the same time without interfering with each other.
  3723. A better way to compute the interference graph is to focus on
  3724. writes~\citep{Appel:2003fk}. The writes performed by an instruction
  3725. must not overwrite something in a live location. So for each
  3726. instruction, we create an edge between the locations being written to
  3727. and the live locations. (Except that one should not create self
  3728. edges.) Note that for the \key{callq} instruction, we consider all of
  3729. the caller-saved registers as being written to, so an edge is added
  3730. between every live variable and every caller-saved register. For
  3731. \key{movq}, we deal with the above-mentioned special case by not
  3732. adding an edge between a live variable $v$ and the destination if $v$
  3733. matches the source. So we have the following two rules.
  3734. \begin{enumerate}
  3735. \item If instruction $I_k$ is a move such as \key{movq} $s$\key{,}
  3736. $d$, then add the edge $(d,v)$ for every $v \in
  3737. L_{\mathsf{after}}(k)$ unless $v = d$ or $v = s$.
  3738. \item For any other instruction $I_k$, for every $d \in W(k)$
  3739. add an edge $(d,v)$ for every $v \in L_{\mathsf{after}}(k)$ unless $v = d$.
  3740. %% \item If instruction $I_k$ is an arithmetic instruction such as
  3741. %% \code{addq} $s$\key{,} $d$, then add the edge $(d,v)$ for every $v \in
  3742. %% L_{\mathsf{after}}(k)$ unless $v = d$.
  3743. %% \item If instruction $I_k$ is of the form \key{callq}
  3744. %% $\mathit{label}$, then add an edge $(r,v)$ for every caller-saved
  3745. %% register $r$ and every variable $v \in L_{\mathsf{after}}(k)$.
  3746. \end{enumerate}
  3747. Working from the top to bottom of Figure~\ref{fig:live-eg}, we apply
  3748. the above rules to each instruction. We highlight a few of the
  3749. instructions. The first instruction is \lstinline{movq $1, v} and the
  3750. live-after set is $\{\ttm{v},\ttm{rsp}\}$. Rule 1 applies, so \code{v}
  3751. interferes with \code{rsp}.
  3752. %
  3753. The fourth instruction is \lstinline{addq $7, x} and the live-after
  3754. set is $\{\ttm{w},\ttm{x},\ttm{rsp}\}$. Rule 2 applies so $\ttm{x}$
  3755. interferes with \ttm{w} and \ttm{rsp}.
  3756. %
  3757. The next instruction is \lstinline{movq x, y} and the live-after set
  3758. is $\{\ttm{w},\ttm{x},\ttm{y},\ttm{rsp}\}$. Rule 1 applies, so \ttm{y}
  3759. interferes with \ttm{w} and \ttm{rsp} but not \ttm{x} because \ttm{x}
  3760. is the source of the move and therefore \ttm{x} and \ttm{y} hold the
  3761. same value. Figure~\ref{fig:interference-results} lists the
  3762. interference results for all of the instructions and the resulting
  3763. interference graph is shown in Figure~\ref{fig:interfere}.
  3764. \begin{figure}[tbp]
  3765. \begin{quote}
  3766. \begin{tabular}{ll}
  3767. \lstinline!movq $1, v!& \ttm{v} interferes with \ttm{rsp},\\
  3768. \lstinline!movq $42, w!& \ttm{w} interferes with \ttm{v} and \ttm{rsp},\\
  3769. \lstinline!movq v, x!& \ttm{x} interferes with \ttm{w} and \ttm{rsp},\\
  3770. \lstinline!addq $7, x!& \ttm{x} interferes with \ttm{w} and \ttm{rsp},\\
  3771. \lstinline!movq x, y!& \ttm{y} interferes with \ttm{w} and \ttm{rsp} but not \ttm{x},\\
  3772. \lstinline!movq x, z!& \ttm{z} interferes with \ttm{w}, \ttm{y}, and \ttm{rsp},\\
  3773. \lstinline!addq w, z!& \ttm{z} interferes with \ttm{y} and \ttm{rsp}, \\
  3774. \lstinline!movq y, t!& \ttm{t} interferes with \ttm{z} and \ttm{rsp}, \\
  3775. \lstinline!negq t!& \ttm{t} interferes with \ttm{z} and \ttm{rsp}, \\
  3776. \lstinline!movq z, %rax! & \ttm{rax} interferes with \ttm{t} and \ttm{rsp}, \\
  3777. \lstinline!addq t, %rax! & \ttm{rax} interferes with \ttm{rsp}. \\
  3778. \lstinline!jmp conclusion!& no interference.
  3779. \end{tabular}
  3780. \end{quote}
  3781. \caption{Interference results for the running example.}
  3782. \label{fig:interference-results}
  3783. \end{figure}
  3784. \begin{figure}[tbp]
  3785. \large
  3786. \[
  3787. \begin{tikzpicture}[baseline=(current bounding box.center)]
  3788. \node (rax) at (0,0) {$\ttm{rax}$};
  3789. \node (rsp) at (9,2) {$\ttm{rsp}$};
  3790. \node (t1) at (0,2) {$\ttm{t}$};
  3791. \node (z) at (3,2) {$\ttm{z}$};
  3792. \node (x) at (6,2) {$\ttm{x}$};
  3793. \node (y) at (3,0) {$\ttm{y}$};
  3794. \node (w) at (6,0) {$\ttm{w}$};
  3795. \node (v) at (9,0) {$\ttm{v}$};
  3796. \draw (t1) to (rax);
  3797. \draw (t1) to (z);
  3798. \draw (z) to (y);
  3799. \draw (z) to (w);
  3800. \draw (x) to (w);
  3801. \draw (y) to (w);
  3802. \draw (v) to (w);
  3803. \draw (v) to (rsp);
  3804. \draw (w) to (rsp);
  3805. \draw (x) to (rsp);
  3806. \draw (y) to (rsp);
  3807. \path[-.,bend left=15] (z) edge node {} (rsp);
  3808. \path[-.,bend left=10] (t1) edge node {} (rsp);
  3809. \draw (rax) to (rsp);
  3810. \end{tikzpicture}
  3811. \]
  3812. \caption{The interference graph of the example program.}
  3813. \label{fig:interfere}
  3814. \end{figure}
  3815. %% Our next concern is to choose a data structure for representing the
  3816. %% interference graph. There are many choices for how to represent a
  3817. %% graph, for example, \emph{adjacency matrix}, \emph{adjacency list},
  3818. %% and \emph{edge set}~\citep{Cormen:2001uq}. The right way to choose a
  3819. %% data structure is to study the algorithm that uses the data structure,
  3820. %% determine what operations need to be performed, and then choose the
  3821. %% data structure that provide the most efficient implementations of
  3822. %% those operations. Often times the choice of data structure can have an
  3823. %% effect on the time complexity of the algorithm, as it does here. If
  3824. %% you skim the next section, you will see that the register allocation
  3825. %% algorithm needs to ask the graph for all of its vertices and, given a
  3826. %% vertex, it needs to known all of the adjacent vertices. Thus, the
  3827. %% correct choice of graph representation is that of an adjacency
  3828. %% list. There are helper functions in \code{utilities.rkt} for
  3829. %% representing graphs using the adjacency list representation:
  3830. %% \code{make-graph}, \code{add-edge}, and \code{adjacent}
  3831. %% (Appendix~\ref{appendix:utilities}).
  3832. %% %
  3833. %% \margincomment{\footnotesize To do: change to use the
  3834. %% Racket graph library. \\ --Jeremy}
  3835. %% %
  3836. %% In particular, those functions use a hash table to map each vertex to
  3837. %% the set of adjacent vertices, and the sets are represented using
  3838. %% Racket's \key{set}, which is also a hash table.
  3839. \begin{exercise}\normalfont
  3840. Implement the compiler pass named \code{build-interference} according
  3841. to the algorithm suggested above. We recommend using the \code{graph}
  3842. package to create and inspect the interference graph. The output
  3843. graph of this pass should be stored in the $\itm{info}$ field of the
  3844. program, under the key \code{conflicts}. \ocaml{Put your
  3845. implementation in the \code{BuildInterferenceGraph} submodule
  3846. in \code{Chapter3.ml} and fill in the \code{pass} definition.
  3847. Use the provided
  3848. \code{Graph} library (in {\tt graph.ml}) to represent graphs. Note that these
  3849. are \emph{immutable} graphs. Suitable declarations for
  3850. instantiating this graph package to a module \code{LocGraph} with a vertex type of locations
  3851. (\code{X86Int.arg}s) is in \code{Chapter3.ml}.
  3852. The output of this pass should be stored
  3853. in the \code{'pinfo} field of the program, paired with the existing
  3854. piece of information, the environment enumerating the program's variables.
  3855. This pass should only change the \code{'pinfo}, not the program code.
  3856. The graph you build should only describe the \code{"start"} block
  3857. (not the \code{"main"} or \code{"conclusion"} blocks). Do not attempt
  3858. to do any extra checking on this pass.}
  3859. \end{exercise}
  3860. \section{Graph Coloring via Sudoku}
  3861. \label{sec:graph-coloring}
  3862. \index{graph coloring}
  3863. \index{Sudoku}
  3864. \index{color}
  3865. We come to the main event, mapping variables to registers and stack
  3866. locations. Variables that interfere with each other must be mapped to
  3867. different locations. In terms of the interference graph, this means
  3868. that adjacent vertices must be mapped to different locations. If we
  3869. think of locations as colors, the register allocation problem becomes
  3870. the graph coloring problem~\citep{Balakrishnan:1996ve,Rosen:2002bh}.
  3871. The reader may be more familiar with the graph coloring problem than he
  3872. or she realizes; the popular game of Sudoku is an instance of the
  3873. graph coloring problem. The following describes how to build a graph
  3874. out of an initial Sudoku board.
  3875. \begin{itemize}
  3876. \item There is one vertex in the graph for each Sudoku square.
  3877. \item There is an edge between two vertices if the corresponding squares
  3878. are in the same row, in the same column, or if the squares are in
  3879. the same $3\times 3$ region.
  3880. \item Choose nine colors to correspond to the numbers $1$ to $9$.
  3881. \item Based on the initial assignment of numbers to squares in the
  3882. Sudoku board, assign the corresponding colors to the corresponding
  3883. vertices in the graph.
  3884. \end{itemize}
  3885. If you can color the remaining vertices in the graph with the nine
  3886. colors, then you have also solved the corresponding game of Sudoku.
  3887. Figure~\ref{fig:sudoku-graph} shows an initial Sudoku game board and
  3888. the corresponding graph with colored vertices. We map the Sudoku
  3889. number 1 to blue, 2 to yellow, and 3 to red. We only show edges for a
  3890. sampling of the vertices (the colored ones) because showing edges for
  3891. all of the vertices would make the graph unreadable.
  3892. \begin{figure}[tbp]
  3893. \includegraphics[width=0.45\textwidth]{figs/sudoku}
  3894. \includegraphics[width=0.5\textwidth]{figs/sudoku-graph}
  3895. \caption{A Sudoku game board and the corresponding colored graph.}
  3896. \label{fig:sudoku-graph}
  3897. \end{figure}
  3898. It turns out that some techniques for playing Sudoku correspond to
  3899. heuristics used in graph coloring algorithms. For example, one of the
  3900. basic techniques for Sudoku is called Pencil Marks. The idea is to use
  3901. a process of elimination to determine what numbers are no longer
  3902. available for a square and write down those numbers in the square
  3903. (writing very small). For example, if the number $1$ is assigned to a
  3904. square, then write the pencil mark $1$ in all the squares in the same
  3905. row, column, and region.
  3906. %
  3907. The Pencil Marks technique corresponds to the notion of
  3908. \emph{saturation}\index{saturation} due to \cite{Brelaz:1979eu}. The
  3909. saturation of a vertex, in Sudoku terms, is the set of numbers that
  3910. are no longer available. In graph terminology, we have the following
  3911. definition:
  3912. \begin{equation*}
  3913. \mathrm{saturation}(u) = \{ c \mid \exists v. v \in \mathrm{neighbors}(u)
  3914. \text{ and } \mathrm{color}(v) = c \}
  3915. \end{equation*}
  3916. where $\mathrm{neighbors}(u)$ is the set of vertices that share an
  3917. edge with $u$.
  3918. Using the Pencil Marks technique leads to a simple strategy for
  3919. filling in numbers: if there is a square with only one possible number
  3920. left, then choose that number! But what if there are no squares with
  3921. only one possibility left? One brute-force approach is to try them
  3922. all: choose the first one and if it ultimately leads to a solution,
  3923. great. If not, backtrack and choose the next possibility. One good
  3924. thing about Pencil Marks is that it reduces the degree of branching in
  3925. the search tree. Nevertheless, backtracking can be horribly time
  3926. consuming. One way to reduce the amount of backtracking is to use the
  3927. most-constrained-first heuristic. That is, when choosing a square,
  3928. always choose one with the fewest possibilities left (the vertex with
  3929. the highest saturation). The idea is that choosing highly constrained
  3930. squares earlier rather than later is better because later on there may
  3931. not be any possibilities left in the highly saturated squares.
  3932. However, register allocation is easier than Sudoku because the
  3933. register allocator can map variables to stack locations when the
  3934. registers run out. Thus, it makes sense to replace backtracking with
  3935. greedy search: make the best choice at the time and keep going. We
  3936. still wish to minimize the number of colors needed, so we use the
  3937. most-constrained-first heuristic in the greedy search.
  3938. Figure~\ref{fig:satur-algo} gives the pseudo-code for a simple greedy
  3939. algorithm for register allocation based on saturation and the
  3940. most-constrained-first heuristic. It is roughly equivalent to the
  3941. DSATUR
  3942. algorithm~\citep{Brelaz:1979eu,Gebremedhin:1999fk,Omari:2006uq}. Just
  3943. as in Sudoku, the algorithm represents colors with integers. The
  3944. integers $0$ through $k-1$ correspond to the $k$ registers that we use
  3945. for register allocation. The integers $k$ and larger correspond to
  3946. stack locations. The registers that are not used for register
  3947. allocation, such as \code{rax}, are assigned to negative integers. In
  3948. particular, we assign $-1$ to \code{rax} and $-2$ to \code{rsp}.
  3949. %% One might wonder why we include registers at all in the liveness
  3950. %% analysis and interference graph. For example, we never allocate a
  3951. %% variable to \code{rax} and \code{rsp}, so it would be harmless to
  3952. %% leave them out. As we see in Chapter~\ref{ch:Rvec}, when we begin
  3953. %% to use register for passing arguments to functions, it will be
  3954. %% necessary for those registers to appear in the interference graph
  3955. %% because those registers will also be assigned to variables, and we
  3956. %% don't want those two uses to encroach on each other. Regarding
  3957. %% registers such as \code{rax} and \code{rsp} that are not used for
  3958. %% variables, we could omit them from the interference graph but that
  3959. %% would require adding special cases to our algorithm, which would
  3960. %% complicate the logic for little gain.
  3961. \begin{figure}[btp]
  3962. \centering
  3963. \begin{lstlisting}[basicstyle=\rmfamily,deletekeywords={for,from,with,is,not,in,find},morekeywords={while},columns=fullflexible]
  3964. Algorithm: DSATUR
  3965. Input: a graph |$G$|
  3966. Output: an assignment |$\mathrm{color}[v]$| for each vertex |$v \in G$|
  3967. |$W \gets \mathrm{vertices}(G)$|
  3968. while |$W \neq \emptyset$| do
  3969. pick a vertex |$u$| from |$W$| with the highest saturation,
  3970. breaking ties randomly
  3971. find the lowest color |$c$| that is not in |$\{ \mathrm{color}[v] \;:\; v \in \mathrm{adjacent}(u)\}$|
  3972. |$\mathrm{color}[u] \gets c$|
  3973. |$W \gets W - \{u\}$|
  3974. \end{lstlisting}
  3975. \caption{The saturation-based greedy graph coloring algorithm.}
  3976. \label{fig:satur-algo}
  3977. \end{figure}
  3978. With the DSATUR algorithm in hand, let us return to the running
  3979. example and consider how to color the interference graph in
  3980. Figure~\ref{fig:interfere}.
  3981. %
  3982. We start by assigning the register nodes to their own color. For
  3983. example, \code{rax} is assigned the color $-1$ and \code{rsp} is
  3984. assigned $-2$. The variables are not yet colored, so they are
  3985. annotated with a dash. We then update the saturation for vertices that
  3986. are adjacent to a register, obtaining the following annotated
  3987. graph. For example, the saturation for \code{t} is $\{-1,-2\}$ because
  3988. it interferes with both \code{rax} and \code{rsp}.
  3989. \[
  3990. \begin{tikzpicture}[baseline=(current bounding box.center)]
  3991. \node (rax) at (0,0) {$\ttm{rax}:-1,\{-2\}$};
  3992. \node (rsp) at (10,2) {$\ttm{rsp}:-2,\{-1\}$};
  3993. \node (t1) at (0,2) {$\ttm{t}:-,\{-1,-2\}$};
  3994. \node (z) at (3,2) {$\ttm{z}:-,\{-2\}$};
  3995. \node (x) at (6,2) {$\ttm{x}:-,\{-2\}$};
  3996. \node (y) at (3,0) {$\ttm{y}:-,\{-2\}$};
  3997. \node (w) at (6,0) {$\ttm{w}:-,\{-2\}$};
  3998. \node (v) at (10,0) {$\ttm{v}:-,\{-2\}$};
  3999. \draw (t1) to (rax);
  4000. \draw (t1) to (z);
  4001. \draw (z) to (y);
  4002. \draw (z) to (w);
  4003. \draw (x) to (w);
  4004. \draw (y) to (w);
  4005. \draw (v) to (w);
  4006. \draw (v) to (rsp);
  4007. \draw (w) to (rsp);
  4008. \draw (x) to (rsp);
  4009. \draw (y) to (rsp);
  4010. \path[-.,bend left=15] (z) edge node {} (rsp);
  4011. \path[-.,bend left=10] (t1) edge node {} (rsp);
  4012. \draw (rax) to (rsp);
  4013. \end{tikzpicture}
  4014. \]
  4015. The algorithm says to select a maximally saturated vertex. So we pick
  4016. $\ttm{t}$ and color it with the first available integer, which is
  4017. $0$. We mark $0$ as no longer available for $\ttm{z}$, $\ttm{rax}$,
  4018. and \ttm{rsp} because they interfere with $\ttm{t}$.
  4019. \[
  4020. \begin{tikzpicture}[baseline=(current bounding box.center)]
  4021. \node (rax) at (0,0) {$\ttm{rax}:-1,\{0,-2\}$};
  4022. \node (rsp) at (10,2) {$\ttm{rsp}:-2,\{-1,0\}$};
  4023. \node (t1) at (0,2) {$\ttm{t}:0,\{-1,-2\}$};
  4024. \node (z) at (3,2) {$\ttm{z}:-,\{0,-2\}$};
  4025. \node (x) at (6,2) {$\ttm{x}:-,\{-2\}$};
  4026. \node (y) at (3,0) {$\ttm{y}:-,\{-2\}$};
  4027. \node (w) at (6,0) {$\ttm{w}:-,\{-2\}$};
  4028. \node (v) at (10,0) {$\ttm{v}:-,\{-2\}$};
  4029. \draw (t1) to (rax);
  4030. \draw (t1) to (z);
  4031. \draw (z) to (y);
  4032. \draw (z) to (w);
  4033. \draw (x) to (w);
  4034. \draw (y) to (w);
  4035. \draw (v) to (w);
  4036. \draw (v) to (rsp);
  4037. \draw (w) to (rsp);
  4038. \draw (x) to (rsp);
  4039. \draw (y) to (rsp);
  4040. \path[-.,bend left=15] (z) edge node {} (rsp);
  4041. \path[-.,bend left=10] (t1) edge node {} (rsp);
  4042. \draw (rax) to (rsp);
  4043. \end{tikzpicture}
  4044. \]
  4045. We repeat the process, selecting the next maximally saturated vertex,
  4046. which is \code{z}, and color it with the first available number, which
  4047. is $1$. We add $1$ to the saturation for the neighboring vertices
  4048. \code{t}, \code{y}, \code{w}, and \code{rsp}.
  4049. \[
  4050. \begin{tikzpicture}[baseline=(current bounding box.center)]
  4051. \node (rax) at (0,0) {$\ttm{rax}:-1,\{0,-2\}$};
  4052. \node (rsp) at (10,2) {$\ttm{rsp}:-2,\{-1,0,1\}$};
  4053. \node (t1) at (0,2) {$\ttm{t}:0,\{-1,1,-2\}$};
  4054. \node (z) at (3,2) {$\ttm{z}:1,\{0,-2\}$};
  4055. \node (x) at (6,2) {$\ttm{x}:-,\{-2\}$};
  4056. \node (y) at (3,0) {$\ttm{y}:-,\{1,-2\}$};
  4057. \node (w) at (6,0) {$\ttm{w}:-,\{1,-2\}$};
  4058. \node (v) at (10,0) {$\ttm{v}:-,\{-2\}$};
  4059. \draw (t1) to (rax);
  4060. \draw (t1) to (z);
  4061. \draw (z) to (y);
  4062. \draw (z) to (w);
  4063. \draw (x) to (w);
  4064. \draw (y) to (w);
  4065. \draw (v) to (w);
  4066. \draw (v) to (rsp);
  4067. \draw (w) to (rsp);
  4068. \draw (x) to (rsp);
  4069. \draw (y) to (rsp);
  4070. \path[-.,bend left=15] (z) edge node {} (rsp);
  4071. \path[-.,bend left=10] (t1) edge node {} (rsp);
  4072. \draw (rax) to (rsp);
  4073. \end{tikzpicture}
  4074. \]
  4075. The most saturated vertices are now \code{w} and \code{y}. We color
  4076. \code{w} with the first available color, which is $0$.
  4077. \[
  4078. \begin{tikzpicture}[baseline=(current bounding box.center)]
  4079. \node (rax) at (0,0) {$\ttm{rax}:-1,\{0,-2\}$};
  4080. \node (rsp) at (10,2) {$\ttm{rsp}:-2,\{-1,0,1\}$};
  4081. \node (t1) at (0,2) {$\ttm{t}:0,\{-1,1,-2\}$};
  4082. \node (z) at (3,2) {$\ttm{z}:1,\{0,-2\}$};
  4083. \node (x) at (6,2) {$\ttm{x}:-,\{0,-2\}$};
  4084. \node (y) at (3,0) {$\ttm{y}:-,\{0,1,-2\}$};
  4085. \node (w) at (6,0) {$\ttm{w}:0,\{1,-2\}$};
  4086. \node (v) at (10,0) {$\ttm{v}:-,\{0,-2\}$};
  4087. \draw (t1) to (rax);
  4088. \draw (t1) to (z);
  4089. \draw (z) to (y);
  4090. \draw (z) to (w);
  4091. \draw (x) to (w);
  4092. \draw (y) to (w);
  4093. \draw (v) to (w);
  4094. \draw (v) to (rsp);
  4095. \draw (w) to (rsp);
  4096. \draw (x) to (rsp);
  4097. \draw (y) to (rsp);
  4098. \path[-.,bend left=15] (z) edge node {} (rsp);
  4099. \path[-.,bend left=10] (t1) edge node {} (rsp);
  4100. \draw (rax) to (rsp);
  4101. \end{tikzpicture}
  4102. \]
  4103. Vertex \code{y} is now the most highly saturated, so we color \code{y}
  4104. with $2$. We cannot choose $0$ or $1$ because those numbers are in
  4105. \code{y}'s saturation set. Indeed, \code{y} interferes with \code{w}
  4106. and \code{z}, whose colors are $0$ and $1$ respectively.
  4107. \[
  4108. \begin{tikzpicture}[baseline=(current bounding box.center)]
  4109. \node (rax) at (0,0) {$\ttm{rax}:-1,\{0,-2\}$};
  4110. \node (rsp) at (10,2) {$\ttm{rsp}:-2,\{-1,0,1,2\}$};
  4111. \node (t1) at (0,2) {$\ttm{t}:0,\{-1,1,-2\}$};
  4112. \node (z) at (3,2) {$\ttm{z}:1,\{0,2,-2\}$};
  4113. \node (x) at (6,2) {$\ttm{x}:-,\{0,-2\}$};
  4114. \node (y) at (3,0) {$\ttm{y}:2,\{0,1,-2\}$};
  4115. \node (w) at (6,0) {$\ttm{w}:0,\{1,2,-2\}$};
  4116. \node (v) at (10,0) {$\ttm{v}:-,\{0,-2\}$};
  4117. \draw (t1) to (rax);
  4118. \draw (t1) to (z);
  4119. \draw (z) to (y);
  4120. \draw (z) to (w);
  4121. \draw (x) to (w);
  4122. \draw (y) to (w);
  4123. \draw (v) to (w);
  4124. \draw (v) to (rsp);
  4125. \draw (w) to (rsp);
  4126. \draw (x) to (rsp);
  4127. \draw (y) to (rsp);
  4128. \path[-.,bend left=15] (z) edge node {} (rsp);
  4129. \path[-.,bend left=10] (t1) edge node {} (rsp);
  4130. \draw (rax) to (rsp);
  4131. \end{tikzpicture}
  4132. \]
  4133. Now \code{x} and \code{v} are the most saturated, so we color \code{v} with $1$.
  4134. \[
  4135. \begin{tikzpicture}[baseline=(current bounding box.center)]
  4136. \node (rax) at (0,0) {$\ttm{rax}:-1,\{0,-2\}$};
  4137. \node (rsp) at (10,2) {$\ttm{rsp}:-2,\{-1,0,1,2\}$};
  4138. \node (t1) at (0,2) {$\ttm{t}:0,\{-1,1,-2\}$};
  4139. \node (z) at (3,2) {$\ttm{z}:1,\{0,2,-2\}$};
  4140. \node (x) at (6,2) {$\ttm{x}:-,\{0,-2\}$};
  4141. \node (y) at (3,0) {$\ttm{y}:2,\{0,1,-2\}$};
  4142. \node (w) at (6,0) {$\ttm{w}:0,\{1,2,-2\}$};
  4143. \node (v) at (10,0) {$\ttm{v}:1,\{0,-2\}$};
  4144. \draw (t1) to (rax);
  4145. \draw (t1) to (z);
  4146. \draw (z) to (y);
  4147. \draw (z) to (w);
  4148. \draw (x) to (w);
  4149. \draw (y) to (w);
  4150. \draw (v) to (w);
  4151. \draw (v) to (rsp);
  4152. \draw (w) to (rsp);
  4153. \draw (x) to (rsp);
  4154. \draw (y) to (rsp);
  4155. \path[-.,bend left=15] (z) edge node {} (rsp);
  4156. \path[-.,bend left=10] (t1) edge node {} (rsp);
  4157. \draw (rax) to (rsp);
  4158. \end{tikzpicture}
  4159. \]
  4160. In the last step of the algorithm, we color \code{x} with $1$.
  4161. \[
  4162. \begin{tikzpicture}[baseline=(current bounding box.center)]
  4163. \node (rax) at (0,0) {$\ttm{rax}:-1,\{0,-2\}$};
  4164. \node (rsp) at (10,2) {$\ttm{rsp}:-2,\{-1,0,1,2\}$};
  4165. \node (t1) at (0,2) {$\ttm{t}:0,\{-1,1,-2\}$};
  4166. \node (z) at (3,2) {$\ttm{z}:1,\{0,2,-2\}$};
  4167. \node (x) at (6,2) {$\ttm{x}:1,\{0,-2\}$};
  4168. \node (y) at (3,0) {$\ttm{y}:2,\{0,1,-2\}$};
  4169. \node (w) at (6,0) {$\ttm{w}:0,\{1,2,-2\}$};
  4170. \node (v) at (10,0) {$\ttm{v}:1,\{0,-2\}$};
  4171. \draw (t1) to (rax);
  4172. \draw (t1) to (z);
  4173. \draw (z) to (y);
  4174. \draw (z) to (w);
  4175. \draw (x) to (w);
  4176. \draw (y) to (w);
  4177. \draw (v) to (w);
  4178. \draw (v) to (rsp);
  4179. \draw (w) to (rsp);
  4180. \draw (x) to (rsp);
  4181. \draw (y) to (rsp);
  4182. \path[-.,bend left=15] (z) edge node {} (rsp);
  4183. \path[-.,bend left=10] (t1) edge node {} (rsp);
  4184. \draw (rax) to (rsp);
  4185. \end{tikzpicture}
  4186. \]
  4187. \begin{wrapfigure}[25]{r}[1.0in]{0.6\textwidth}
  4188. \small
  4189. \begin{tcolorbox}[title=Priority Queue]
  4190. A \emph{priority queue} is a collection of items in which the
  4191. removal of items is governed by priority. In a ``min'' queue,
  4192. lower priority items are removed first. An implementation is in
  4193. \code{priority\_queue.rkt} of the support code. \index{priority
  4194. queue} \index{minimum priority queue}
  4195. \begin{description}
  4196. \item[$\LP\code{make-pqueue}\,\itm{cmp}\RP$] constructs an empty
  4197. priority queue that uses the $\itm{cmp}$ predicate to determine
  4198. whether its first argument has lower or equal priority to its
  4199. second argument.
  4200. \item[$\LP\code{pqueue-count}\,\itm{queue}\RP$] returns the number of
  4201. items in the queue.
  4202. \item[$\LP\code{pqueue-push!}\,\itm{queue}\,\itm{item}\RP$] inserts
  4203. the item into the queue and returns a handle for the item in the
  4204. queue.
  4205. \item[$\LP\code{pqueue-pop!}\,\itm{queue}\RP$] returns the item with
  4206. the lowest priority.
  4207. \item[$\LP\code{pqueue-decrease-key!}\,\itm{queue}\,\itm{handle}\RP$]
  4208. notifies the queue that the priority has decreased for the item
  4209. associated with the given handle.
  4210. \end{description}
  4211. \end{tcolorbox}
  4212. \end{wrapfigure}
  4213. We recommend creating an auxiliary function named \code{color-graph}
  4214. that takes an interference graph and a list of all the variables in
  4215. the program. This function should return a mapping of variables to
  4216. their colors (represented as natural numbers). By creating this helper
  4217. function, you will be able to reuse it in Chapter~\ref{ch:Rfun}
  4218. when we add support for functions.
  4219. To prioritize the processing of highly saturated nodes inside the
  4220. \code{color-graph} function, we recommend using the priority queue
  4221. data structure (see the side bar on the right). In addition, you will
  4222. need to maintain a mapping from variables to their ``handles'' in the
  4223. priority queue so that you can notify the priority queue when their
  4224. saturation changes.
  4225. With the coloring complete, we finalize the assignment of variables to
  4226. registers and stack locations. We map the first $k$ colors to the $k$
  4227. registers and the rest of the colors to stack locations. Suppose for
  4228. the moment that we have just one register to use for register
  4229. allocation, \key{rcx}. Then we have the following map from colors to
  4230. locations.
  4231. \[
  4232. \{ 0 \mapsto \key{\%rcx}, \; 1 \mapsto \key{-8(\%rbp)}, \; 2 \mapsto \key{-16(\%rbp)} \}
  4233. \]
  4234. Composing this mapping with the coloring, we arrive at the following
  4235. assignment of variables to locations.
  4236. \begin{gather*}
  4237. \{ \ttm{v} \mapsto \key{-8(\%rbp)}, \,
  4238. \ttm{w} \mapsto \key{\%rcx}, \,
  4239. \ttm{x} \mapsto \key{-8(\%rbp)}, \,
  4240. \ttm{y} \mapsto \key{-16(\%rbp)}, \\
  4241. \ttm{z} \mapsto \key{-8(\%rbp)}, \,
  4242. \ttm{t} \mapsto \key{\%rcx} \}
  4243. \end{gather*}
  4244. Adapt the code from the \code{assign-homes} pass
  4245. (Section~\ref{sec:assign-Rvar}) to replace the variables with their
  4246. assigned location. Applying the above assignment to our running
  4247. example, on the left, yields the program on the right.
  4248. % why frame size of 32? -JGS
  4249. \begin{center}
  4250. \begin{minipage}{0.3\textwidth}
  4251. \begin{lstlisting}
  4252. movq $1, v
  4253. movq $42, w
  4254. movq v, x
  4255. addq $7, x
  4256. movq x, y
  4257. movq x, z
  4258. addq w, z
  4259. movq y, t
  4260. negq t
  4261. movq z, %rax
  4262. addq t, %rax
  4263. jmp conclusion
  4264. \end{lstlisting}
  4265. \end{minipage}
  4266. $\Rightarrow\qquad$
  4267. \begin{minipage}{0.45\textwidth}
  4268. \begin{lstlisting}
  4269. movq $1, -8(%rbp)
  4270. movq $42, %rcx
  4271. movq -8(%rbp), -8(%rbp)
  4272. addq $7, -8(%rbp)
  4273. movq -8(%rbp), -16(%rbp)
  4274. movq -8(%rbp), -8(%rbp)
  4275. addq %rcx, -8(%rbp)
  4276. movq -16(%rbp), %rcx
  4277. negq %rcx
  4278. movq -8(%rbp), %rax
  4279. addq %rcx, %rax
  4280. jmp conclusion
  4281. \end{lstlisting}
  4282. \end{minipage}
  4283. \end{center}
  4284. \begin{exercise}\normalfont
  4285. %
  4286. Implement the compiler pass \code{allocate-registers}.
  4287. %
  4288. \begin{ocamlx}
  4289. Put your solution in the \code{AllocateRegisters} submodule
  4290. of \code{Chapter3.ml}.
  4291. The graph coloring part of this exercise has been
  4292. done for you. The \code{Graph} library defines a function
  4293. \code{color : coloring -> Graph.t -> coloring}
  4294. \noindent
  4295. where \code{coloring} is a \code{Map} whose keys are vertices
  4296. and whose values are integer colors. The \code{color}
  4297. function takes a graph and an initial precoloring, which should be
  4298. used to pre-set colors for vertices that already represent
  4299. registers. (The registers you never want to used for storing variables
  4300. should be given negative numbers: these include \code{rax} and \code{rsp}.
  4301. The other registers that might appear in the graph are the caller-save
  4302. registers---if you have constructed the graph correctly, there will be
  4303. vertices for all the caller-save registers \emph{if} there are one or
  4304. more \code{callq} instructions in the function. These caller-save registers
  4305. should be pre-assigned colors $0,1,2,3,\ldots$. Can you see why?)
  4306. It then colors the remaining
  4307. vertices with colors 0,1,$\ldots$, trying to assign the smallest
  4308. possible color to each vertex. (The implementation of \code{color}
  4309. follows the general approach described in the book, but dispenses
  4310. with a priority queue.) The resulting coloring can be
  4311. printed out for debugging purposes using the \code{print\_coloring}
  4312. function.
  4313. The remaining tasks for you in this exercise are to compute
  4314. the precoloring, invoke the \code{color} function,
  4315. construct an assignment environment (mapping variable names to locations)
  4316. from the resulting coloring, and use this environment to map
  4317. variable arguments to registers and stack locations just as in
  4318. the \code{AssignHomes} pass in \code{Chapter2.ml}.
  4319. Your assignment construction should be parameterized by the reference
  4320. variable \code{max\_regs}, which says how many registers (0 to 13) to
  4321. use. Variables assigned to colors beyond this limit must be placed
  4322. in stack slots rather than registers. It can be very useful to try different values of this number when
  4323. debugging. The driver code (now in \code{driver.ml}) includes a flag to allow
  4324. the value of this variable to be set from the command line when testing.
  4325. You also need to compute the list of used callee-save registers; this should
  4326. then be passed to the function \code{X86Int.adjust\_entry\_exit}, which
  4327. will modify the \code{main} and \code{conclusion} blocks to include
  4328. code for spilling and reloading these registers.
  4329. The \code{'pinfo} field of the resulting program is an \code{int}
  4330. reperesnting the total size of the frame, including space for
  4331. any spilled callee-saves. Don't foret that the frame needs to
  4332. be a multiple of 16 bytes1
  4333. We do not recommend that you attempt to do any extra checking on the output
  4334. of this pass.
  4335. \end{ocamlx}
  4336. %
  4337. Create five programs that exercise all of the register allocation
  4338. algorithm, including spilling variables to the stack.
  4339. %
  4340. Replace \code{assign-homes} in the list of \code{passes} in the
  4341. \code{run-tests.rkt} script with the three new passes:
  4342. \code{uncover-live}, \code{build-interference}, and
  4343. \code{allocate-registers}.
  4344. %
  4345. \ocaml{Make the analogous changes in the \code{pass} list. Note
  4346. that this list has been moved to {\tt driver.ml} to make it
  4347. easier to combine passes from different chapters.}
  4348. %
  4349. Temporarily remove the \code{print-x86} pass from the list of passes
  4350. and the call to \code{compiler-tests}.
  4351. %
  4352. Run the script to test the register allocator.
  4353. \end{exercise}
  4354. \section{Patch Instructions}
  4355. \label{sec:patch-instructions}
  4356. The remaining step in the compilation to x86 is to ensure that the
  4357. instructions have at most one argument that is a memory access.
  4358. In the running example, the instruction \code{movq -8(\%rbp), -16(\%rbp)}
  4359. is problematic. The fix is to first move \code{-8(\%rbp)}
  4360. into \code{rax} and then move \code{rax} into \code{-16(\%rbp)}.
  4361. %
  4362. The two moves from \code{-8(\%rbp)} to \code{-8(\%rbp)} are also
  4363. problematic, but they can be fixed by simply deleting them. In
  4364. general, we recommend deleting all the trivial moves whose source and
  4365. destination are the same location.
  4366. %
  4367. The following is the output of \code{patch-instructions} on the
  4368. running example.
  4369. \begin{center}
  4370. \begin{minipage}{0.4\textwidth}
  4371. \begin{lstlisting}
  4372. movq $1, -8(%rbp)
  4373. movq $42, %rcx
  4374. movq -8(%rbp), -8(%rbp)
  4375. addq $7, -8(%rbp)
  4376. movq -8(%rbp), -16(%rbp)
  4377. movq -8(%rbp), -8(%rbp)
  4378. addq %rcx, -8(%rbp)
  4379. movq -16(%rbp), %rcx
  4380. negq %rcx
  4381. movq -8(%rbp), %rax
  4382. addq %rcx, %rax
  4383. jmp conclusion
  4384. \end{lstlisting}
  4385. \end{minipage}
  4386. $\Rightarrow\qquad$
  4387. \begin{minipage}{0.45\textwidth}
  4388. \begin{lstlisting}
  4389. movq $1, -8(%rbp)
  4390. movq $42, %rcx
  4391. addq $7, -8(%rbp)
  4392. movq -8(%rbp), %rax
  4393. movq %rax, -16(%rbp)
  4394. addq %rcx, -8(%rbp)
  4395. movq -16(%rbp), %rcx
  4396. negq %rcx
  4397. movq -8(%rbp), %rax
  4398. addq %rcx, %rax
  4399. jmp conclusion
  4400. \end{lstlisting}
  4401. \end{minipage}
  4402. \end{center}
  4403. \begin{exercise}\normalfont
  4404. %
  4405. Implement the \code{patch-instructions} compiler pass.\ocaml{This
  4406. exercise has been done for you; the code is provided in \code{Chapter3.ml}
  4407. (only slightly different from the version in \code{Chapter2.ml}).}
  4408. %
  4409. Insert it after \code{allocate-registers} in the list of \code{passes}
  4410. in the \code{run-tests.rkt} script.
  4411. %
  4412. Run the script to test the \code{patch-instructions} pass.
  4413. \end{exercise}
  4414. \section{Print x86}
  4415. \label{sec:print-x86-reg-alloc}
  4416. \index{calling conventions}
  4417. \index{prelude}\index{conclusion}
  4418. Recall that the \code{print-x86} pass generates the prelude and
  4419. conclusion instructions to satisfy the x86 calling conventions
  4420. (Section~\ref{sec:calling-conventions}). With the addition of the
  4421. register allocator, the callee-saved registers used by the register
  4422. allocator must be saved in the prelude and restored in the conclusion.
  4423. In the \code{allocate-registers} pass, add an entry to the \itm{info}
  4424. of \code{X86Program} named \code{used-callee} that stores the set of
  4425. callee-saved registers that were assigned to variables. The
  4426. \code{print-x86} pass can then access this information to decide which
  4427. callee-saved registers need to be saved and restored.
  4428. \ocaml{Storing this information in the program
  4429. is not necessary in the OCaml version, because the spilling and
  4430. reloading code is inserted into the X86 program AST rather than being
  4431. added at printing time.}
  4432. %
  4433. When calculating the size of the frame to adjust the \code{rsp} in the
  4434. prelude, make sure to take into account the space used for saving the
  4435. callee-saved registers. Also, don't forget that the frame needs to be
  4436. a multiple of 16 bytes! \ocaml{You do still need to compute this,
  4437. as part of the \code{AllocateRegisters} exercise.}
  4438. An overview of all of the passes involved in register allocation is
  4439. shown in Figure~\ref{fig:reg-alloc-passes}.
  4440. \begin{figure}[tbp]
  4441. \begin{tikzpicture}[baseline=(current bounding box.center)]
  4442. \node (Rvar) at (0,2) {\large \LangVar{}};
  4443. \node (Rvar-2) at (3,2) {\large \LangVar{}};
  4444. \node (Rvar-3) at (6,2) {\large \LangVar{}};
  4445. \node (Cvar-1) at (3,0) {\large \LangCVar{}};
  4446. \node (x86-2) at (3,-2) {\large \LangXVar{}};
  4447. \node (x86-3) at (6,-2) {\large \LangXVar{}};
  4448. \node (x86-4) at (9,-2) {\large \LangXInt{}};
  4449. \node (x86-5) at (9,-4) {\large \LangXInt{}};
  4450. \node (x86-2-1) at (3,-4) {\large \LangXVar{}};
  4451. \node (x86-2-2) at (6,-4) {\large \LangXVar{}};
  4452. \path[->,bend left=15] (Rvar) edge [above] node {\ttfamily\footnotesize uniquify} (Rvar-2);
  4453. \path[->,bend left=15] (Rvar-2) edge [above] node {\ttfamily\footnotesize remove-complex.} (Rvar-3);
  4454. \path[->,bend left=15] (Rvar-3) edge [right] node {\ttfamily\footnotesize explicate-control} (Cvar-1);
  4455. \path[->,bend right=15] (Cvar-1) edge [left] node {\ttfamily\footnotesize select-instr.} (x86-2);
  4456. \path[->,bend left=15] (x86-2) edge [right] node {\ttfamily\footnotesize uncover-live} (x86-2-1);
  4457. \path[->,bend right=15] (x86-2-1) edge [below] node {\ttfamily\footnotesize build-inter.} (x86-2-2);
  4458. \path[->,bend right=15] (x86-2-2) edge [right] node {\ttfamily\footnotesize allocate-reg.} (x86-3);
  4459. \path[->,bend left=15] (x86-3) edge [above] node {\ttfamily\footnotesize patch-instr.} (x86-4);
  4460. \path[->,bend left=15] (x86-4) edge [right] node {\ttfamily\footnotesize print-x86} (x86-5);
  4461. \end{tikzpicture}
  4462. \caption{Diagram of the passes for \LangVar{} with register allocation.}
  4463. \label{fig:reg-alloc-passes}
  4464. \end{figure}
  4465. \begin{exercise}\normalfont
  4466. Update the \code{print-x86} pass as described in this section.
  4467. \ocaml{This exercise has been done for you; the printing code is
  4468. in \code{X86Int} as before.}
  4469. %
  4470. In the \code{run-tests.rkt} script, reinstate \code{print-x86} in the
  4471. list of passes and the call to \code{compiler-tests}.
  4472. %
  4473. Run the script to test the complete compiler for \LangVar{} that
  4474. performs register allocation.
  4475. \end{exercise}
  4476. \section{Challenge: Move Biasing}
  4477. \label{sec:move-biasing}
  4478. \index{move biasing}
  4479. This section describes an enhancement to the register allocator for
  4480. students looking for an extra challenge or who have a deeper interest
  4481. in register allocation.
  4482. To motivate the need for move biasing we return to the running example
  4483. but this time use all of the general purpose registers. So we have
  4484. the following mapping of color numbers to registers.
  4485. \[
  4486. \{ 0 \mapsto \key{\%rcx}, \; 1 \mapsto \key{\%rdx}, \; 2 \mapsto \key{\%rsi} \}
  4487. \]
  4488. Using the same assignment of variables to color numbers that was
  4489. produced by the register allocator described in the last section, we
  4490. get the following program.
  4491. \begin{center}
  4492. \begin{minipage}{0.3\textwidth}
  4493. \begin{lstlisting}
  4494. movq $1, v
  4495. movq $42, w
  4496. movq v, x
  4497. addq $7, x
  4498. movq x, y
  4499. movq x, z
  4500. addq w, z
  4501. movq y, t
  4502. negq t
  4503. movq z, %rax
  4504. addq t, %rax
  4505. jmp conclusion
  4506. \end{lstlisting}
  4507. \end{minipage}
  4508. $\Rightarrow\qquad$
  4509. \begin{minipage}{0.45\textwidth}
  4510. \begin{lstlisting}
  4511. movq $1, %rdx
  4512. movq $42, %rcx
  4513. movq %rdx, %rdx
  4514. addq $7, %rdx
  4515. movq %rdx, %rsi
  4516. movq %rdx, %rdx
  4517. addq %rcx, %rdx
  4518. movq %rsi, %rcx
  4519. negq %rcx
  4520. movq %rdx, %rax
  4521. addq %rcx, %rax
  4522. jmp conclusion
  4523. \end{lstlisting}
  4524. \end{minipage}
  4525. \end{center}
  4526. In the above output code there are two \key{movq} instructions that
  4527. can be removed because their source and target are the same. However,
  4528. if we had put \key{t}, \key{v}, \key{x}, and \key{y} into the same
  4529. register, we could instead remove three \key{movq} instructions. We
  4530. can accomplish this by taking into account which variables appear in
  4531. \key{movq} instructions with which other variables.
  4532. We say that two variables $p$ and $q$ are \emph{move
  4533. related}\index{move related} if they participate together in a
  4534. \key{movq} instruction, that is, \key{movq} $p$\key{,} $q$ or
  4535. \key{movq} $q$\key{,} $p$. When the register allocator chooses a color
  4536. for a variable, it should prefer a color that has already been used
  4537. for a move-related variable (assuming that they do not interfere). Of
  4538. course, this preference should not override the preference for
  4539. registers over stack locations. This preference should be used as a
  4540. tie breaker when choosing between registers or when choosing between
  4541. stack locations.
  4542. We recommend representing the move relationships in a graph, similar
  4543. to how we represented interference. The following is the \emph{move
  4544. graph} for our running example.
  4545. \[
  4546. \begin{tikzpicture}[baseline=(current bounding box.center)]
  4547. \node (rax) at (0,0) {$\ttm{rax}$};
  4548. \node (rsp) at (9,2) {$\ttm{rsp}$};
  4549. \node (t) at (0,2) {$\ttm{t}$};
  4550. \node (z) at (3,2) {$\ttm{z}$};
  4551. \node (x) at (6,2) {$\ttm{x}$};
  4552. \node (y) at (3,0) {$\ttm{y}$};
  4553. \node (w) at (6,0) {$\ttm{w}$};
  4554. \node (v) at (9,0) {$\ttm{v}$};
  4555. \draw (v) to (x);
  4556. \draw (x) to (y);
  4557. \draw (x) to (z);
  4558. \draw (y) to (t);
  4559. \end{tikzpicture}
  4560. \]
  4561. Now we replay the graph coloring, pausing to see the coloring of
  4562. \code{y}. Recall the following configuration. The most saturated vertices
  4563. were \code{w} and \code{y}.
  4564. \[
  4565. \begin{tikzpicture}[baseline=(current bounding box.center)]
  4566. \node (rax) at (0,0) {$\ttm{rax}:-1,\{0,-2\}$};
  4567. \node (rsp) at (9,2) {$\ttm{rsp}:-2,\{-1,0,1,2\}$};
  4568. \node (t1) at (0,2) {$\ttm{t}:0,\{1,-2\}$};
  4569. \node (z) at (3,2) {$\ttm{z}:1,\{0,-2\}$};
  4570. \node (x) at (6,2) {$\ttm{x}:-,\{-2\}$};
  4571. \node (y) at (3,0) {$\ttm{y}:-,\{1,-2\}$};
  4572. \node (w) at (6,0) {$\ttm{w}:-,\{1,-2\}$};
  4573. \node (v) at (9,0) {$\ttm{v}:-,\{-2\}$};
  4574. \draw (t1) to (rax);
  4575. \draw (t1) to (z);
  4576. \draw (z) to (y);
  4577. \draw (z) to (w);
  4578. \draw (x) to (w);
  4579. \draw (y) to (w);
  4580. \draw (v) to (w);
  4581. \draw (v) to (rsp);
  4582. \draw (w) to (rsp);
  4583. \draw (x) to (rsp);
  4584. \draw (y) to (rsp);
  4585. \path[-.,bend left=15] (z) edge node {} (rsp);
  4586. \path[-.,bend left=10] (t1) edge node {} (rsp);
  4587. \draw (rax) to (rsp);
  4588. \end{tikzpicture}
  4589. \]
  4590. %
  4591. Last time we chose to color \code{w} with $0$. But this time we see
  4592. that \code{w} is not move related to any vertex, but \code{y} is move
  4593. related to \code{t}. So we choose to color \code{y} the same color as
  4594. \code{t}, $0$.
  4595. \[
  4596. \begin{tikzpicture}[baseline=(current bounding box.center)]
  4597. \node (rax) at (0,0) {$\ttm{rax}:-1,\{0,-2\}$};
  4598. \node (rsp) at (9,2) {$\ttm{rsp}:-2,\{-1,0,1,2\}$};
  4599. \node (t1) at (0,2) {$\ttm{t}:0,\{1,-2\}$};
  4600. \node (z) at (3,2) {$\ttm{z}:1,\{0,-2\}$};
  4601. \node (x) at (6,2) {$\ttm{x}:-,\{-2\}$};
  4602. \node (y) at (3,0) {$\ttm{y}:0,\{1,-2\}$};
  4603. \node (w) at (6,0) {$\ttm{w}:-,\{0,1,-2\}$};
  4604. \node (v) at (9,0) {$\ttm{v}:-,\{-2\}$};
  4605. \draw (t1) to (rax);
  4606. \draw (t1) to (z);
  4607. \draw (z) to (y);
  4608. \draw (z) to (w);
  4609. \draw (x) to (w);
  4610. \draw (y) to (w);
  4611. \draw (v) to (w);
  4612. \draw (v) to (rsp);
  4613. \draw (w) to (rsp);
  4614. \draw (x) to (rsp);
  4615. \draw (y) to (rsp);
  4616. \path[-.,bend left=15] (z) edge node {} (rsp);
  4617. \path[-.,bend left=10] (t1) edge node {} (rsp);
  4618. \draw (rax) to (rsp);
  4619. \end{tikzpicture}
  4620. \]
  4621. Now \code{w} is the most saturated, so we color it $2$.
  4622. \[
  4623. \begin{tikzpicture}[baseline=(current bounding box.center)]
  4624. \node (rax) at (0,0) {$\ttm{rax}:-1,\{0,-2\}$};
  4625. \node (rsp) at (9,2) {$\ttm{rsp}:-2,\{-1,0,1,2\}$};
  4626. \node (t1) at (0,2) {$\ttm{t}:0,\{1,-2\}$};
  4627. \node (z) at (3,2) {$\ttm{z}:1,\{0,2,-2\}$};
  4628. \node (x) at (6,2) {$\ttm{x}:-,\{2,-2\}$};
  4629. \node (y) at (3,0) {$\ttm{y}:0,\{1,2,-2\}$};
  4630. \node (w) at (6,0) {$\ttm{w}:2,\{0,1,-2\}$};
  4631. \node (v) at (9,0) {$\ttm{v}:-,\{2,-2\}$};
  4632. \draw (t1) to (rax);
  4633. \draw (t1) to (z);
  4634. \draw (z) to (y);
  4635. \draw (z) to (w);
  4636. \draw (x) to (w);
  4637. \draw (y) to (w);
  4638. \draw (v) to (w);
  4639. \draw (v) to (rsp);
  4640. \draw (w) to (rsp);
  4641. \draw (x) to (rsp);
  4642. \draw (y) to (rsp);
  4643. \path[-.,bend left=15] (z) edge node {} (rsp);
  4644. \path[-.,bend left=10] (t1) edge node {} (rsp);
  4645. \draw (rax) to (rsp);
  4646. \end{tikzpicture}
  4647. \]
  4648. At this point, vertices \code{x} and \code{v} are most saturated, but
  4649. \code{x} is move related to \code{y} and \code{z}, so we color
  4650. \code{x} to $0$ to match \code{y}. Finally, we color \code{v} to $0$.
  4651. \[
  4652. \begin{tikzpicture}[baseline=(current bounding box.center)]
  4653. \node (rax) at (0,0) {$\ttm{rax}:-1,\{0,-2\}$};
  4654. \node (rsp) at (9,2) {$\ttm{rsp}:-2,\{-1,0,1,2\}$};
  4655. \node (t) at (0,2) {$\ttm{t}:0,\{1,-2\}$};
  4656. \node (z) at (3,2) {$\ttm{z}:1,\{0,2,-2\}$};
  4657. \node (x) at (6,2) {$\ttm{x}:0,\{2,-2\}$};
  4658. \node (y) at (3,0) {$\ttm{y}:0,\{1,2,-2\}$};
  4659. \node (w) at (6,0) {$\ttm{w}:2,\{0,1,-2\}$};
  4660. \node (v) at (9,0) {$\ttm{v}:0,\{2,-2\}$};
  4661. \draw (t1) to (rax);
  4662. \draw (t) to (z);
  4663. \draw (z) to (y);
  4664. \draw (z) to (w);
  4665. \draw (x) to (w);
  4666. \draw (y) to (w);
  4667. \draw (v) to (w);
  4668. \draw (v) to (rsp);
  4669. \draw (w) to (rsp);
  4670. \draw (x) to (rsp);
  4671. \draw (y) to (rsp);
  4672. \path[-.,bend left=15] (z) edge node {} (rsp);
  4673. \path[-.,bend left=10] (t1) edge node {} (rsp);
  4674. \draw (rax) to (rsp);
  4675. \end{tikzpicture}
  4676. \]
  4677. So we have the following assignment of variables to registers.
  4678. \begin{gather*}
  4679. \{ \ttm{v} \mapsto \key{\%rcx}, \,
  4680. \ttm{w} \mapsto \key{\%rsi}, \,
  4681. \ttm{x} \mapsto \key{\%rcx}, \,
  4682. \ttm{y} \mapsto \key{\%rcx}, \,
  4683. \ttm{z} \mapsto \key{\%rdx}, \,
  4684. \ttm{t} \mapsto \key{\%rcx} \}
  4685. \end{gather*}
  4686. We apply this register assignment to the running example, on the left,
  4687. to obtain the code in the middle. The \code{patch-instructions} then
  4688. removes the three trivial moves to obtain the code on the right.
  4689. \begin{minipage}{0.25\textwidth}
  4690. \begin{lstlisting}
  4691. movq $1, v
  4692. movq $42, w
  4693. movq v, x
  4694. addq $7, x
  4695. movq x, y
  4696. movq x, z
  4697. addq w, z
  4698. movq y, t
  4699. negq t
  4700. movq z, %rax
  4701. addq t, %rax
  4702. jmp conclusion
  4703. \end{lstlisting}
  4704. \end{minipage}
  4705. $\Rightarrow\qquad$
  4706. \begin{minipage}{0.25\textwidth}
  4707. \begin{lstlisting}
  4708. movq $1, %rcx
  4709. movq $42, %rsi
  4710. movq %rcx, %rcx
  4711. addq $7, %rcx
  4712. movq %rcx, %rcx
  4713. movq %rcx, %rdx
  4714. addq %rsi, %rdx
  4715. movq %rcx, %rcx
  4716. negq %rcx
  4717. movq %rdx, %rax
  4718. addq %rcx, %rax
  4719. jmp conclusion
  4720. \end{lstlisting}
  4721. \end{minipage}
  4722. $\Rightarrow\qquad$
  4723. \begin{minipage}{0.25\textwidth}
  4724. \begin{lstlisting}
  4725. movq $1, %rcx
  4726. movq $42, %rsi
  4727. addq $7, %rcx
  4728. movq %rcx, %rdx
  4729. addq %rsi, %rdx
  4730. negq %rcx
  4731. movq %rdx, %rax
  4732. addq %rcx, %rax
  4733. jmp conclusion
  4734. \end{lstlisting}
  4735. \end{minipage}
  4736. \begin{exercise}\normalfont
  4737. Change your implementation of \code{allocate-registers} to take move
  4738. biasing into account. Create two new tests that include at least one
  4739. opportunity for move biasing and visually inspect the output x86
  4740. programs to make sure that your move biasing is working properly. Make
  4741. sure that your compiler still passes all of the tests.
  4742. \end{exercise}
  4743. \margincomment{\footnotesize To do: another neat challenge would be to do
  4744. live range splitting~\citep{Cooper:1998ly}. \\ --Jeremy}
  4745. %% \subsection{Output of the Running Example}
  4746. %% \label{sec:reg-alloc-output}
  4747. Figure~\ref{fig:running-example-x86} shows the x86 code generated for
  4748. the running example (Figure~\ref{fig:reg-eg}) with register allocation
  4749. and move biasing. To demonstrate both the use of registers and the
  4750. stack, we have limited the register allocator to use just two
  4751. registers: \code{rbx} and \code{rcx}. In the prelude\index{prelude}
  4752. of the \code{main} function, we push \code{rbx} onto the stack because
  4753. it is a callee-saved register and it was assigned to variable by the
  4754. register allocator. We subtract \code{8} from the \code{rsp} at the
  4755. end of the prelude to reserve space for the one spilled variable.
  4756. After that subtraction, the \code{rsp} is aligned to 16 bytes.
  4757. Moving on the the \code{start} block, we see how the registers were
  4758. allocated. Variables \code{v}, \code{x}, and \code{y} were assigned to
  4759. \code{rbx} and variable \code{z} was assigned to \code{rcx}. Variable
  4760. \code{w} was spilled to the stack location \code{-16(\%rbp)}. Recall
  4761. that the prelude saved the callee-save register \code{rbx} onto the
  4762. stack. The spilled variables must be placed lower on the stack than
  4763. the saved callee-save registers, so in this case \code{w} is placed at
  4764. \code{-16(\%rbp)}.
  4765. In the \code{conclusion}\index{conclusion}, we undo the work that was
  4766. done in the prelude. We move the stack pointer up by \code{8} bytes
  4767. (the room for spilled variables), then we pop the old values of
  4768. \code{rbx} and \code{rbp} (callee-saved registers), and finish with
  4769. \code{retq} to return control to the operating system.
  4770. \begin{figure}[tbp]
  4771. % var_test_28.rkt
  4772. % (use-minimal-set-of-registers! #t)
  4773. % and only rbx rcx
  4774. % tmp 0 rbx
  4775. % z 1 rcx
  4776. % y 0 rbx
  4777. % w 2 16(%rbp)
  4778. % v 0 rbx
  4779. % x 0 rbx
  4780. \begin{lstlisting}
  4781. start:
  4782. movq $1, %rbx
  4783. movq $42, -16(%rbp)
  4784. addq $7, %rbx
  4785. movq %rbx, %rcx
  4786. addq -16(%rbp), %rcx
  4787. negq %rbx
  4788. movq %rcx, %rax
  4789. addq %rbx, %rax
  4790. jmp conclusion
  4791. .globl main
  4792. main:
  4793. pushq %rbp
  4794. movq %rsp, %rbp
  4795. pushq %rbx
  4796. subq $8, %rsp
  4797. jmp start
  4798. conclusion:
  4799. addq $8, %rsp
  4800. popq %rbx
  4801. popq %rbp
  4802. retq
  4803. \end{lstlisting}
  4804. \caption{The x86 output from the running example (Figure~\ref{fig:reg-eg}).}
  4805. \label{fig:running-example-x86}
  4806. \end{figure}
  4807. % challenge: prioritize variables based on execution frequencies
  4808. % and the number of uses of a variable
  4809. % challenge: enhance the coloring algorithm using Chaitin's
  4810. % approach of prioritizing high-degree variables
  4811. % by removing low-degree variables (coloring them later)
  4812. % from the interference graph
  4813. \section{Further Reading}
  4814. \label{sec:register-allocation-further-reading}
  4815. Early register allocation algorithms were developed for Fortran
  4816. compilers in the 1950s~\citep{Horwitz:1966aa,Backus:1978aa}. The use
  4817. of graph coloring began in the late 1970s and early 1980s with the
  4818. work of \citet{Chaitin:1981vl} on an optimizing compiler for PL/I. The
  4819. algorithm is based on the following observation of
  4820. \citet{Kempe:1879aa} from the 1870s. If a graph $G$ has a vertex $v$
  4821. with degree lower than $k$, then $G$ is $k$ colorable if the subgraph
  4822. of $G$ with $v$ removed is also $k$ colorable. Suppose that the
  4823. subgraph is $k$ colorable. At worst the neighbors of $v$ are assigned
  4824. different colors, but since there are less than $k$ of them, there
  4825. will be one or more colors left over to use for coloring $v$ in $G$.
  4826. The algorithm of \citet{Chaitin:1981vl} removes a vertex $v$ of degree
  4827. less than $k$ from the graph and recursively colors the rest of the
  4828. graph. Upon returning from the recursion, it colors $v$ with one of
  4829. the available colors and returns. \citet{Chaitin:1982vn} augments
  4830. this algorithm to handle spilling as follows. If there are no vertices
  4831. of degree lower than $k$ then pick a vertex at random, spill it,
  4832. remove it from the graph, and proceed recursively to color the rest of
  4833. the graph.
  4834. Prior to coloring, \citet{Chaitin:1981vl} merge variables that are
  4835. move-related and that don't interfere with each other, a process
  4836. called \emph{coalescing}. While coalescing decreases the number of
  4837. moves, it can make the graph more difficult to
  4838. color. \citet{Briggs:1994kx} propose \emph{conservative coalescing} in
  4839. which two variables are merged only if they have fewer than $k$
  4840. neighbors of high degree. \citet{George:1996aa} observe that
  4841. conservative coalescing is sometimes too conservative and make it more
  4842. aggressive by iterating the coalescing with the removal of low-degree
  4843. vertices.
  4844. %
  4845. Attacking the problem from a different angle, \citet{Briggs:1994kx}
  4846. also propose \emph{biased coloring} in which a variable is assigned to
  4847. the same color as another move-related variable if possible, as
  4848. discussed in Section~\ref{sec:move-biasing}.
  4849. %
  4850. The algorithm of \citet{Chaitin:1981vl} and its successors iteratively
  4851. performs coalescing, graph coloring, and spill code insertion until
  4852. all variables have been assigned a location.
  4853. \citet{Briggs:1994kx} observes that \citet{Chaitin:1982vn} sometimes
  4854. spills variables that don't have to be: a high-degree variable can be
  4855. colorable if many of its neighbors are assigned the same color.
  4856. \citet{Briggs:1994kx} propose \emph{optimistic coloring}, in which a
  4857. high-degree vertex is not immediately spilled. Instead the decision is
  4858. deferred until after the recursive call, at which point it is apparent
  4859. whether there is actually an available color or not. We observe that
  4860. this algorithm is equivalent to the smallest-last ordering
  4861. algorithm~\citep{Matula:1972aa} if one takes the first $k$ colors to
  4862. be registers and the rest to be stack locations.
  4863. %% biased coloring
  4864. Earlier editions of the compiler course at Indiana University
  4865. \citep{Dybvig:2010aa} were based on the algorithm of
  4866. \citet{Briggs:1994kx}.
  4867. The smallest-last ordering algorithm is one of many \emph{greedy}
  4868. coloring algorithms. A greedy coloring algorithm visits all the
  4869. vertices in a particular order and assigns each one the first
  4870. available color. An \emph{offline} greedy algorithm chooses the
  4871. ordering up-front, prior to assigning colors. The algorithm of
  4872. \citet{Chaitin:1981vl} should be considered offline because the vertex
  4873. ordering does not depend on the colors assigned, so the algorithm
  4874. could be split into two phases. Other orderings are possible. For
  4875. example, \citet{Chow:1984ys} order variables according an estimate of
  4876. runtime cost.
  4877. An \emph{online} greedy coloring algorithm uses information about the
  4878. current assignment of colors to influence the order in which the
  4879. remaining vertices are colored. The saturation-based algorithm
  4880. described in this chapter is one such algorithm. We choose to use
  4881. saturation-based coloring is because it is fun to introduce graph
  4882. coloring via Sudoku.
  4883. A register allocator may choose to map each variable to just one
  4884. location, as in \citet{Chaitin:1981vl}, or it may choose to map a
  4885. variable to one or more locations. The later can be achieved by
  4886. \emph{live range splitting}, where a variable is replaced by several
  4887. variables that each handle part of its live
  4888. range~\citep{Chow:1984ys,Briggs:1994kx,Cooper:1998ly}.
  4889. %% 1950s, Sheldon Best, Fortran \cite{Backus:1978aa}, Belady's page
  4890. %% replacement algorithm, bottom-up local
  4891. %% \citep{Horwitz:1966aa} straight-line programs, single basic block,
  4892. %% Cooper: top-down (priority bassed), bottom-up
  4893. %% top-down
  4894. %% order variables by priority (estimated cost)
  4895. %% caveat: split variables into two groups:
  4896. %% constrained (>k neighbors) and unconstrained (<k neighbors)
  4897. %% color the constrained ones first
  4898. %% \citet{Schwartz:1975aa} graph-coloring, no spill
  4899. %% cite J. Cocke for an algorithm that colors variables
  4900. %% in a high-degree first ordering
  4901. %Register Allocation via Usage Counts, Freiburghouse CACM
  4902. \citet{Palsberg:2007si} observe that many of the interference graphs
  4903. that arise from Java programs in the JoeQ compiler are \emph{chordal},
  4904. that is, every cycle with four or more edges has an edge which is not
  4905. part of the cycle but which connects two vertices on the cycle. Such
  4906. graphs can be optimally colored by the greedy algorithm with a vertex
  4907. ordering determined by maximum cardinality search.
  4908. In situations where compile time is of utmost importance, such as in
  4909. just-in-time compilers, graph coloring algorithms can be too expensive
  4910. and the linear scan of \citet{Poletto:1999uq} may be more appropriate.
  4911. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  4912. \chapter{Booleans and Control Flow}
  4913. \label{ch:Rif}
  4914. \index{Boolean}
  4915. \index{control flow}
  4916. \index{conditional expression}
  4917. The \LangInt{} and \LangVar{} languages only have a single kind of
  4918. value, integers. In this chapter we add a second kind of value, the
  4919. Booleans, to create the \LangIf{} language. The Boolean values
  4920. \emph{true} and \emph{false} are written \key{\#t} and \key{\#f}
  4921. respectively in Racket. The \LangIf{} language includes several
  4922. operations that involve Booleans (\key{and}, \key{not}, \key{eq?},
  4923. \key{<}, etc.) and the conditional \key{if} expression. With the
  4924. addition of \key{if}, programs can have non-trivial control flow which
  4925. impacts \code{explicate-control} and liveness analysis. Also, because
  4926. we now have two kinds of values, we need to handle programs that apply
  4927. an operation to the wrong kind of value, such as \code{(not 1)}.
  4928. There are two language design options for such situations. One option
  4929. is to signal an error and the other is to provide a wider
  4930. interpretation of the operation. The Racket language uses a mixture of
  4931. these two options, depending on the operation and the kind of
  4932. value. For example, the result of \code{(not 1)} in Racket is
  4933. \code{\#f} because Racket treats non-zero integers as if they were
  4934. \code{\#t}. On the other hand, \code{(car 1)} results in a run-time
  4935. error in Racket because \code{car} expects a pair.
  4936. Typed Racket makes similar design choices as Racket, except much of
  4937. the error detection happens at compile time instead of run time. Typed
  4938. Racket accepts and runs \code{(not 1)}, producing \code{\#f}. But in
  4939. the case of \code{(car 1)}, Typed Racket reports a compile-time error
  4940. because Typed Racket expects the type of the argument to be of the
  4941. form \code{(Listof T)} or \code{(Pairof T1 T2)}.
  4942. The \LangIf{} language performs type checking during compilation like
  4943. Typed Racket. In Chapter~\ref{ch:Rdyn} we study the
  4944. alternative choice, that is, a dynamically typed language like Racket.
  4945. The \LangIf{} language is a subset of Typed Racket; for some
  4946. operations we are more restrictive, for example, rejecting
  4947. \code{(not 1)}.
  4948. This chapter is organized as follows. We begin by defining the syntax
  4949. and interpreter for the \LangIf{} language
  4950. (Section~\ref{sec:lang-if}). We then introduce the idea of type
  4951. checking and build a type checker for \LangIf{}
  4952. (Section~\ref{sec:type-check-Rif}). To compile \LangIf{} we need to
  4953. enlarge the intermediate language \LangCVar{} into \LangCIf{}
  4954. (Section~\ref{sec:Cif}) and \LangXInt{} into \LangXIf{}
  4955. (Section~\ref{sec:x86-if}). The remaining sections of this chapter
  4956. discuss how our compiler passes change to accommodate Booleans and
  4957. conditional control flow. There is one new pass, named \code{shrink},
  4958. that translates some operators into others, thereby reducing the
  4959. number of operators that need to be handled in later passes. The
  4960. largest changes occur in \code{explicate-control}, to translate
  4961. \code{if} expressions into control-flow graphs
  4962. (Section~\ref{sec:explicate-control-Rif}). Regarding register
  4963. allocation, the liveness analysis now has multiple basic blocks to
  4964. process and there is the interesting question of how to handle
  4965. conditional jumps.
  4966. \section{The \LangIf{} Language}
  4967. \label{sec:lang-if}
  4968. The concrete syntax of the \LangIf{} language is defined in
  4969. Figure~\ref{fig:Rif-concrete-syntax} and the abstract syntax is defined
  4970. in Figure~\ref{fig:Rif-syntax}. The \LangIf{} language includes all of
  4971. \LangVar{} (shown in gray), the Boolean literals \code{\#t} and
  4972. \code{\#f}, and the conditional \code{if} expression. We expand the
  4973. operators to include
  4974. \begin{enumerate}
  4975. \item subtraction on integers \ocaml{(OCaml version already had this)},
  4976. \item the logical operators \key{and}, \key{or} and \key{not},
  4977. \item the \key{eq?} operation for comparing two integers or two Booleans, and
  4978. \item the \key{<}, \key{<=}, \key{>}, and \key{>=} operations for
  4979. comparing integers.
  4980. \end{enumerate}
  4981. We reorganize the abstract syntax for the primitive operations in
  4982. Figure~\ref{fig:Rif-syntax}, using only one grammar rule for all of
  4983. them. This means that the grammar no longer checks whether the arity
  4984. of an operators matches the number of arguments. That responsibility
  4985. is moved to the type checker for \LangIf{}, which we introduce in
  4986. Section~\ref{sec:type-check-Rif}.
  4987. \begin{figure}[tp]
  4988. \centering
  4989. \fbox{
  4990. \begin{minipage}{0.96\textwidth}
  4991. \[
  4992. \begin{array}{lcl}
  4993. \itm{bool} &::=& \key{\#t} \mid \key{\#f} \\
  4994. \itm{cmp} &::= & \key{eq?} \mid \key{<} \mid \key{<=} \mid \key{>} \mid \key{>=} \\
  4995. \Exp &::=& \gray{ \Int \mid \CREAD{} \mid \CNEG{\Exp} \mid \CADD{\Exp}{\Exp} } \mid \CSUB{\Exp}{\Exp} \\
  4996. &\mid& \gray{ \Var \mid \CLET{\Var}{\Exp}{\Exp} } \\
  4997. &\mid& \itm{bool}
  4998. \mid (\key{and}\;\Exp\;\Exp) \mid (\key{or}\;\Exp\;\Exp)
  4999. \mid (\key{not}\;\Exp) \\
  5000. &\mid& (\itm{cmp}\;\Exp\;\Exp) \mid \CIF{\Exp}{\Exp}{\Exp} \\
  5001. \LangIf{} &::=& \Exp
  5002. \end{array}
  5003. \]
  5004. \end{minipage}
  5005. }
  5006. \begin{ocamlx}
  5007. \fbox{
  5008. \begin{minipage}{0.96\textwidth}
  5009. \[
  5010. \begin{array}{rcl}
  5011. \itm{bool} &::=& \key{\#t} \mid \key{\#f} \\
  5012. \itm{cmp} &::= & \key{=} \mid \key{<} \mid \key{<=} \mid \key{>} \mid \key{>=} \\
  5013. \Exp &::=& \gray{ \Int \mid \CREAD{} \mid \CNEG{\Exp} \mid \CADD{\Exp}{\Exp} \mid \CSUB{\Exp}{\Exp}} \\
  5014. &\mid& \gray{ \Var \mid \code{(let $\Var$ $\Exp$ $\Exp$)}}\\
  5015. &\mid& \itm{bool}
  5016. \mid (\key{and}\;\Exp\;\Exp) \mid (\key{or}\;\Exp\;\Exp)
  5017. \mid (\key{not}\;\Exp) \\
  5018. &\mid& (\itm{cmp}\;\Exp\;\Exp) \mid \CIF{\Exp}{\Exp}{\Exp} \\
  5019. \LangIf{} &::=& \Exp
  5020. \end{array}
  5021. \]
  5022. \end{minipage}
  5023. }
  5024. \end{ocamlx}
  5025. \caption{The concrete syntax of \LangIf{} \ocaml{for OCaml version}, extending \LangVar{}
  5026. (Figure~\ref{fig:r1-concrete-syntax}) with Booleans and conditionals.}
  5027. \label{fig:Rif-concrete-syntax}
  5028. \end{figure}
  5029. \begin{figure}[tp]
  5030. \centering
  5031. \fbox{
  5032. \begin{minipage}{0.96\textwidth}
  5033. \[
  5034. \begin{array}{lcl}
  5035. \itm{bool} &::=& \code{\#t} \mid \code{\#f} \\
  5036. \itm{cmp} &::= & \code{eq?} \mid \code{<} \mid \code{<=} \mid \code{>} \mid \code{>=} \\
  5037. \itm{op} &::= & \itm{cmp} \mid \code{read} \mid \code{+} \mid \code{-}
  5038. \mid \code{and} \mid \code{or} \mid \code{not} \\
  5039. \Exp &::=& \gray{ \INT{\Int} \mid \VAR{\Var} \mid \LET{\Var}{\Exp}{\Exp} } \\
  5040. &\mid& \PRIM{\itm{op}}{\Exp\ldots}\\
  5041. &\mid& \BOOL{\itm{bool}} \mid \IF{\Exp}{\Exp}{\Exp} \\
  5042. \LangIf{} &::=& \PROGRAM{\code{'()}}{\Exp}
  5043. \end{array}
  5044. \]
  5045. \end{minipage}
  5046. }
  5047. \begin{minipage}{0.96\textwidth}
  5048. \begin{lstlisting}[style=ocaml,frame=single]
  5049. type cmp = Eq | Lt | Le | Gt | Ge
  5050. type primop = Read | Neg | Add | Sub | And | Or | Not | Cmp of cmp
  5051. type var = string
  5052. type exp =
  5053. Int of int64
  5054. | Bool of bool
  5055. | Prim of primop * exp list
  5056. | Var of var
  5057. | Let of var * exp * exp
  5058. | If of exp * exp * exp
  5059. type 'info program = Program of 'info * exp
  5060. \end{lstlisting}
  5061. \end{minipage}
  5062. \caption{The abstract syntax of \LangIf{}.}
  5063. \label{fig:Rif-syntax}
  5064. \end{figure}
  5065. Figure~\ref{fig:interp-Rif} defines the interpreter for \LangIf{},
  5066. which inherits from the interpreter for \LangVar{}
  5067. (Figure~\ref{fig:interp-Rvar}). \ocaml{The OCaml interpreter
  5068. can be found in \code{RIf.ml}.} The literals \code{\#t} and \code{\#f}
  5069. evaluate to the corresponding Boolean values. The conditional
  5070. expression $(\key{if}\, \itm{cnd}\,\itm{thn}\,\itm{els})$ evaluates
  5071. \itm{cnd} and then either evaluates \itm{thn} or \itm{els} depending
  5072. on whether \itm{cnd} produced \code{\#t} or \code{\#f}. The logical
  5073. operations \code{not} and \code{and} behave as you might expect, but
  5074. note that the \code{and} operation is short-circuiting. That is, given
  5075. the expression $(\key{and}\,e_1\,e_2)$, the expression $e_2$ is not
  5076. evaluated if $e_1$ evaluates to \code{\#f}. \ocaml{Note also that
  5077. the \code{or} operation is \emph{not} short-circuiting; that is,
  5078. both operands are always evaluated. Having \code{and} and
  5079. \code{or} behave differently with respect to short-circuiting
  5080. would be bizarre in a production language, but here it gives
  5081. us an opportunity to compare the implementation of the two
  5082. styles of operators.}
  5083. With the increase in the number of primitive operations, the
  5084. interpreter would become repetitive without some care. We refactor
  5085. the case for \code{Prim}, moving the code that differs with each
  5086. operation into the \code{interp-op} method shown in in
  5087. Figure~\ref{fig:interp-op-Rif}. We handle the \code{and} operation
  5088. separately because of its short-circuiting behavior.
  5089. \begin{figure}[tbp]
  5090. \begin{lstlisting}
  5091. (define interp-Rif-class
  5092. (class interp-Rvar-class
  5093. (super-new)
  5094. (define/public (interp-op op) ...)
  5095. (define/override ((interp-exp env) e)
  5096. (define recur (interp-exp env))
  5097. (match e
  5098. [(Bool b) b]
  5099. [(If cnd thn els)
  5100. (match (recur cnd)
  5101. [#t (recur thn)]
  5102. [#f (recur els)])]
  5103. [(Prim 'and (list e1 e2))
  5104. (match (recur e1)
  5105. [#t (match (recur e2) [#t #t] [#f #f])]
  5106. [#f #f])]
  5107. [(Prim op args)
  5108. (apply (interp-op op) (for/list ([e args]) (recur e)))]
  5109. [else ((super interp-exp env) e)]))
  5110. ))
  5111. (define (interp-Rif p)
  5112. (send (new interp-Rif-class) interp-program p))
  5113. \end{lstlisting}
  5114. \caption{Interpreter for the \LangIf{} language. (See
  5115. Figure~\ref{fig:interp-op-Rif} for \code{interp-op}.)}
  5116. \label{fig:interp-Rif}
  5117. \end{figure}
  5118. \begin{figure}[tbp]
  5119. \begin{lstlisting}
  5120. (define/public (interp-op op)
  5121. (match op
  5122. ['+ fx+]
  5123. ['- fx-]
  5124. ['read read-fixnum]
  5125. ['not (lambda (v) (match v [#t #f] [#f #t]))]
  5126. ['or (lambda (v1 v2)
  5127. (cond [(and (boolean? v1) (boolean? v2))
  5128. (or v1 v2)]))]
  5129. ['eq? (lambda (v1 v2)
  5130. (cond [(or (and (fixnum? v1) (fixnum? v2))
  5131. (and (boolean? v1) (boolean? v2))
  5132. (and (vector? v1) (vector? v2)))
  5133. (eq? v1 v2)]))]
  5134. ['< (lambda (v1 v2)
  5135. (cond [(and (fixnum? v1) (fixnum? v2))
  5136. (< v1 v2)]))]
  5137. ['<= (lambda (v1 v2)
  5138. (cond [(and (fixnum? v1) (fixnum? v2))
  5139. (<= v1 v2)]))]
  5140. ['> (lambda (v1 v2)
  5141. (cond [(and (fixnum? v1) (fixnum? v2))
  5142. (> v1 v2)]))]
  5143. ['>= (lambda (v1 v2)
  5144. (cond [(and (fixnum? v1) (fixnum? v2))
  5145. (>= v1 v2)]))]
  5146. [else (error 'interp-op "unknown operator")]))
  5147. \end{lstlisting}
  5148. \caption{Interpreter for the primitive operators in the \LangIf{} language.}
  5149. \label{fig:interp-op-Rif}
  5150. \end{figure}
  5151. \section{Type Checking \LangIf{} Programs}
  5152. \label{sec:type-check-Rif}
  5153. \index{type checking}
  5154. \index{semantic analysis}
  5155. It is helpful to think about type checking in two complementary
  5156. ways. A type checker predicts the type of value that will be produced
  5157. by each expression in the program. For \LangIf{}, we have just two types,
  5158. \key{Integer} and \key{Boolean}. So a type checker should predict that
  5159. \begin{lstlisting}
  5160. (+ 10 (- (+ 12 20)))
  5161. \end{lstlisting}
  5162. produces an \key{Integer} while
  5163. \begin{lstlisting}
  5164. (and (not #f) #t)
  5165. \end{lstlisting}
  5166. produces a \key{Boolean}.
  5167. Another way to think about type checking is that it enforces a set of
  5168. rules about which operators can be applied to which kinds of
  5169. values. For example, our type checker for \LangIf{} signals an error
  5170. for the below expression
  5171. \begin{lstlisting}
  5172. (not (+ 10 (- (+ 12 20))))
  5173. \end{lstlisting}
  5174. The subexpression \code{(+ 10 (- (+ 12 20)))} has type \key{Integer}
  5175. but the type checker enforces the rule that the argument of \code{not}
  5176. must be a \key{Boolean}.
  5177. We implement type checking using classes and methods because they
  5178. provide the open recursion needed to reuse code as we extend the type
  5179. checker in later chapters, analogous to the use of classes and methods
  5180. for the interpreters (Section~\ref{sec:extensible-interp}).
  5181. We separate the type checker for the \LangVar{} fragment into its own
  5182. class, shown in Figure~\ref{fig:type-check-Rvar}. The type checker for
  5183. \LangIf{} is shown in Figure~\ref{fig:type-check-Rif} and it inherits
  5184. from the type checker for \LangVar{}. These type checkers are in the
  5185. files \code{type-check-Rvar.rkt} and \code{type-check-Rif.rkt} of the
  5186. support code. \ocaml{A single unified checker is in \code{RIf.ml}.}
  5187. %
  5188. Each type checker is a structurally recursive function over the AST.
  5189. Given an input expression \code{e}, the type checker either signals an
  5190. error or returns an expression and its type (\key{Integer} or
  5191. \key{Boolean}). It returns an expression because there are situations
  5192. in which we want to change or update the expression.
  5193. Next we discuss the \code{match} cases in \code{type-check-exp} of
  5194. Figure~\ref{fig:type-check-Rvar}. The type of an integer constant is
  5195. \code{Integer}. To handle variables, the type checker uses the
  5196. environment \code{env} to map variables to types. Consider the case
  5197. for \key{let}. We type check the initializing expression to obtain
  5198. its type \key{T} and then associate type \code{T} with the variable
  5199. \code{x} in the environment used to type check the body of the
  5200. \key{let}. Thus, when the type checker encounters a use of variable
  5201. \code{x}, it can find its type in the environment. Regarding
  5202. primitive operators, we recursively analyze the arguments and then
  5203. invoke \code{type-check-op} to check whether the argument types are
  5204. allowed.
  5205. Several auxiliary methods are used in the type checker. The method
  5206. \code{operator-types} defines a dictionary that maps the operator
  5207. names to their parameter and return types. The \code{type-equal?}
  5208. method determines whether two types are equal, which for now simply
  5209. dispatches to \code{equal?} (deep equality). The
  5210. \code{check-type-equal?} method triggers an error if the two types are
  5211. not equal. The \code{type-check-op} method looks up the operator in
  5212. the \code{operator-types} dictionary and then checks whether the
  5213. argument types are equal to the parameter types. The result is the
  5214. return type of the operator.
  5215. \begin{figure}[tbp]
  5216. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  5217. (define type-check-Rvar-class
  5218. (class object%
  5219. (super-new)
  5220. (define/public (operator-types)
  5221. '((+ . ((Integer Integer) . Integer))
  5222. (- . ((Integer) . Integer))
  5223. (read . (() . Integer))))
  5224. (define/public (type-equal? t1 t2) (equal? t1 t2))
  5225. (define/public (check-type-equal? t1 t2 e)
  5226. (unless (type-equal? t1 t2)
  5227. (error 'type-check "~a != ~a\nin ~v" t1 t2 e)))
  5228. (define/public (type-check-op op arg-types e)
  5229. (match (dict-ref (operator-types) op)
  5230. [`(,param-types . ,return-type)
  5231. (for ([at arg-types] [pt param-types])
  5232. (check-type-equal? at pt e))
  5233. return-type]
  5234. [else (error 'type-check-op "unrecognized ~a" op)]))
  5235. (define/public (type-check-exp env)
  5236. (lambda (e)
  5237. (match e
  5238. [(Int n) (values (Int n) 'Integer)]
  5239. [(Var x) (values (Var x) (dict-ref env x))]
  5240. [(Let x e body)
  5241. (define-values (e^ Te) ((type-check-exp env) e))
  5242. (define-values (b Tb) ((type-check-exp (dict-set env x Te)) body))
  5243. (values (Let x e^ b) Tb)]
  5244. [(Prim op es)
  5245. (define-values (new-es ts)
  5246. (for/lists (exprs types) ([e es]) ((type-check-exp env) e)))
  5247. (values (Prim op new-es) (type-check-op op ts e))]
  5248. [else (error 'type-check-exp "couldn't match" e)])))
  5249. (define/public (type-check-program e)
  5250. (match e
  5251. [(Program info body)
  5252. (define-values (body^ Tb) ((type-check-exp '()) body))
  5253. (check-type-equal? Tb 'Integer body)
  5254. (Program info body^)]
  5255. [else (error 'type-check-Rvar "couldn't match ~a" e)]))
  5256. ))
  5257. (define (type-check-Rvar p)
  5258. (send (new type-check-Rvar-class) type-check-program p))
  5259. \end{lstlisting}
  5260. \caption{Type checker for the \LangVar{} language.}
  5261. \label{fig:type-check-Rvar}
  5262. \end{figure}
  5263. \begin{figure}[tbp]
  5264. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  5265. (define type-check-Rif-class
  5266. (class type-check-Rvar-class
  5267. (super-new)
  5268. (inherit check-type-equal?)
  5269. (define/override (operator-types)
  5270. (append '((- . ((Integer Integer) . Integer))
  5271. (and . ((Boolean Boolean) . Boolean))
  5272. (or . ((Boolean Boolean) . Boolean))
  5273. (< . ((Integer Integer) . Boolean))
  5274. (<= . ((Integer Integer) . Boolean))
  5275. (> . ((Integer Integer) . Boolean))
  5276. (>= . ((Integer Integer) . Boolean))
  5277. (not . ((Boolean) . Boolean))
  5278. )
  5279. (super operator-types)))
  5280. (define/override (type-check-exp env)
  5281. (lambda (e)
  5282. (match e
  5283. [(Prim 'eq? (list e1 e2))
  5284. (define-values (e1^ T1) ((type-check-exp env) e1))
  5285. (define-values (e2^ T2) ((type-check-exp env) e2))
  5286. (check-type-equal? T1 T2 e)
  5287. (values (Prim 'eq? (list e1^ e2^)) 'Boolean)]
  5288. [(Bool b) (values (Bool b) 'Boolean)]
  5289. [(If cnd thn els)
  5290. (define-values (cnd^ Tc) ((type-check-exp env) cnd))
  5291. (define-values (thn^ Tt) ((type-check-exp env) thn))
  5292. (define-values (els^ Te) ((type-check-exp env) els))
  5293. (check-type-equal? Tc 'Boolean e)
  5294. (check-type-equal? Tt Te e)
  5295. (values (If cnd^ thn^ els^) Te)]
  5296. [else ((super type-check-exp env) e)])))
  5297. ))
  5298. (define (type-check-Rif p)
  5299. (send (new type-check-Rif-class) type-check-program p))
  5300. \end{lstlisting}
  5301. \caption{Type checker for the \LangIf{} language.}
  5302. \label{fig:type-check-Rif}
  5303. \end{figure}
  5304. Next we discuss the type checker for \LangIf{} in
  5305. Figure~\ref{fig:type-check-Rif}. The operator \code{eq?} requires the
  5306. two arguments to have the same type. The type of a Boolean constant is
  5307. \code{Boolean}. The condition of an \code{if} must be of
  5308. \code{Boolean} type and the two branches must have the same type. The
  5309. \code{operator-types} function adds dictionary entries for the other
  5310. new operators.
  5311. \begin{exercise}\normalfont
  5312. Create 10 new test programs in \LangIf{}. Half of the programs should
  5313. have a type error. For those programs, create an empty file with the
  5314. same base name but with file extension \code{.tyerr}. For example, if
  5315. the test \code{cond\_test\_14.rkt} is expected to error, then create
  5316. an empty file named \code{cond\_test\_14.tyerr}. This indicates to
  5317. \code{interp-tests} and \code{compiler-tests} that a type error is
  5318. expected. The other half of the test programs should not have type
  5319. errors.
  5320. In the \code{run-tests.rkt} script, change the second argument of
  5321. \code{interp-tests} and \code{compiler-tests} to
  5322. \code{type-check-Rif}, which causes the type checker to run prior to
  5323. the compiler passes. Temporarily change the \code{passes} to an empty
  5324. list and run the script, thereby checking that the new test programs
  5325. either type check or not as intended.
  5326. \end{exercise}
  5327. \section{The \LangCIf{} Intermediate Language}
  5328. \label{sec:Cif}
  5329. Figure~\ref{fig:c1-syntax} defines the abstract syntax of the
  5330. \LangCIf{} intermediate language. (The concrete syntax is in the
  5331. Appendix, Figure~\ref{fig:c1-concrete-syntax}.) Compared to
  5332. \LangCVar{}, the \LangCIf{} language adds logical and comparison
  5333. operators to the \Exp{} non-terminal and the literals \key{\#t} and
  5334. \key{\#f} to the \Arg{} non-terminal.
  5335. Regarding control flow, \LangCIf{} adds \key{goto} and \code{if}
  5336. statements to the \Tail{} non-terminal. The condition of an \code{if}
  5337. statement is a comparison operation and the branches are \code{goto}
  5338. statements, making it straightforward to compile \code{if} statements
  5339. to x86.
  5340. \begin{figure}[tp]
  5341. \fbox{
  5342. \begin{minipage}{0.96\textwidth}
  5343. \small
  5344. \[
  5345. \begin{array}{lcl}
  5346. \Atm &::=& \gray{\INT{\Int} \mid \VAR{\Var}} \mid \BOOL{\itm{bool}} \\
  5347. \itm{cmp} &::= & \key{eq?} \mid \key{<} \\
  5348. \Exp &::= & \gray{ \Atm \mid \READ{} }\\
  5349. &\mid& \gray{ \NEG{\Atm} \mid \ADD{\Atm}{\Atm} } \\
  5350. &\mid& \UNIOP{\key{'not}}{\Atm}
  5351. \mid \BINOP{\key{'}\itm{cmp}}{\Atm}{\Atm} \\
  5352. \Stmt &::=& \gray{ \ASSIGN{\VAR{\Var}}{\Exp} } \\
  5353. \Tail &::= & \gray{\RETURN{\Exp} \mid \SEQ{\Stmt}{\Tail} }
  5354. \mid \GOTO{\itm{label}} \\
  5355. &\mid& \IFSTMT{\BINOP{\itm{cmp}}{\Atm}{\Atm}}{\GOTO{\itm{label}}}{\GOTO{\itm{label}}} \\
  5356. \LangCIf{} & ::= & \gray{\CPROGRAM{\itm{info}}{\LP\LP\itm{label}\,\key{.}\,\Tail\RP\ldots\RP}}
  5357. \end{array}
  5358. \]
  5359. \end{minipage}
  5360. }
  5361. \begin{minipage}{0.96\textwidth}
  5362. \begin{lstlisting}[style=ocaml,frame=single]
  5363. type cmp = Eq | Lt
  5364. type primop = Read | Neg | Add | Not | Cmp of cmp
  5365. type var = string
  5366. type label = string
  5367. type atm =
  5368. Int of int64
  5369. | Bool of bool
  5370. | Var of var
  5371. type exp =
  5372. Atom of atm
  5373. | Prim of primop * atm list
  5374. type stmt =
  5375. Assign of var * exp
  5376. type tail =
  5377. Return of exp
  5378. | Seq of stmt*tail
  5379. | Goto of label
  5380. | IfStmt of cmp * atm * atm * label * label
  5381. type 'info program = Program of 'info * (label*tail) list
  5382. \end{lstlisting}
  5383. \end{minipage}
  5384. \caption{The abstract syntax of \LangCIf{}, an extension of \LangCVar{}
  5385. (Figure~\ref{fig:c0-syntax}).}
  5386. \label{fig:c1-syntax}
  5387. \end{figure}
  5388. \section{The \LangXIf{} Language}
  5389. \label{sec:x86-if}
  5390. \index{x86} To implement the new logical operations, the comparison
  5391. operations, and the \key{if} expression, we need to delve further into
  5392. the x86 language. Figures~\ref{fig:x86-1-concrete} and \ref{fig:x86-1}
  5393. define the concrete and abstract syntax for the \LangXIf{} subset
  5394. of x86, which includes instructions for logical operations,
  5395. comparisons, and conditional jumps. \ocaml{The OCaml concrete
  5396. syntax is in \code{X86If.ml}.}
  5397. One challenge is that x86 does not provide an instruction that
  5398. directly implements logical negation (\code{not} in \LangIf{} and
  5399. \LangCIf{}). However, the \code{xorq} instruction can be used to
  5400. encode \code{not}. The \key{xorq} instruction takes two arguments,
  5401. performs a pairwise exclusive-or ($\mathrm{XOR}$) operation on each
  5402. bit of its arguments, and writes the results into its second argument.
  5403. Recall the truth table for exclusive-or:
  5404. \begin{center}
  5405. \begin{tabular}{l|cc}
  5406. & 0 & 1 \\ \hline
  5407. 0 & 0 & 1 \\
  5408. 1 & 1 & 0
  5409. \end{tabular}
  5410. \end{center}
  5411. For example, applying $\mathrm{XOR}$ to each bit of the binary numbers
  5412. $0011$ and $0101$ yields $0110$. Notice that in the row of the table
  5413. for the bit $1$, the result is the opposite of the second bit. Thus,
  5414. the \code{not} operation can be implemented by \code{xorq} with $1$ as
  5415. the first argument:
  5416. \[
  5417. \Var~ \key{=}~ \LP\key{not}~\Arg\RP\key{;}
  5418. \qquad\Rightarrow\qquad
  5419. \begin{array}{l}
  5420. \key{movq}~ \Arg\key{,} \Var\\
  5421. \key{xorq}~ \key{\$1,} \Var
  5422. \end{array}
  5423. \]
  5424. \begin{figure}[tp]
  5425. \fbox{
  5426. \begin{minipage}{0.96\textwidth}
  5427. \[
  5428. \begin{array}{lcl}
  5429. \itm{bytereg} &::=& \key{ah} \mid \key{al} \mid \key{bh} \mid \key{bl}
  5430. \mid \key{ch} \mid \key{cl} \mid \key{dh} \mid \key{dl} \\
  5431. \Arg &::=& \gray{ \key{\$}\Int \mid \key{\%}\Reg \mid \Int\key{(}\key{\%}\Reg\key{)} } \mid \key{\%}\itm{bytereg}\\
  5432. \itm{cc} & ::= & \key{e} \mid \key{l} \mid \key{le} \mid \key{g} \mid \key{ge} \\
  5433. \Instr &::=& \gray{ \key{addq} \; \Arg\key{,} \Arg \mid
  5434. \key{subq} \; \Arg\key{,} \Arg \mid
  5435. \key{negq} \; \Arg \mid \key{movq} \; \Arg\key{,} \Arg \mid } \\
  5436. && \ocaml{\key{movabsq} \; \Arg\key{,} \Arg \mid} \\
  5437. && \gray{ \key{callq} \; \itm{label} \mid
  5438. \key{pushq}\;\Arg \mid \key{popq}\;\Arg \mid \key{retq} \mid \key{jmp}\,\itm{label} } \\
  5439. && \gray{ \itm{label}\key{:}\; \Instr }
  5440. \mid \key{xorq}~\Arg\key{,}~\Arg
  5441. \mid \key{cmpq}~\Arg\key{,}~\Arg \mid \\
  5442. && \key{set}cc~\Arg
  5443. \mid \key{movzbq}~\Arg\key{,}~\Arg
  5444. \mid \key{j}cc~\itm{label}
  5445. \\
  5446. \LangXIf{} &::= & \gray{ \key{.globl main} }\\
  5447. & & \gray{ \key{main:} \; \Instr\ldots }
  5448. \end{array}
  5449. \]
  5450. \end{minipage}
  5451. }
  5452. \caption{The concrete syntax of \LangXIf{} (extends \LangXInt{} of Figure~\ref{fig:x86-int-concrete}).}
  5453. \label{fig:x86-1-concrete}
  5454. \end{figure}
  5455. \begin{figure}[tp]
  5456. \fbox{
  5457. \begin{minipage}{0.98\textwidth}
  5458. \small
  5459. \[
  5460. \begin{array}{lcl}
  5461. \itm{bytereg} &::=& \key{ah} \mid \key{al} \mid \key{bh} \mid \key{bl}
  5462. \mid \key{ch} \mid \key{cl} \mid \key{dh} \mid \key{dl} \\
  5463. \Arg &::=& \gray{\IMM{\Int} \mid \REG{\Reg} \mid \DEREF{\Reg}{\Int}}
  5464. \mid \BYTEREG{\itm{bytereg}} \\
  5465. \itm{cc} & ::= & \key{e} \mid \key{l} \mid \key{le} \mid \key{g} \mid \key{ge} \\
  5466. \Instr &::=& \gray{ \BININSTR{\code{addq}}{\Arg}{\Arg}
  5467. \mid \BININSTR{\code{subq}}{\Arg}{\Arg} } \\
  5468. &\mid& \gray{ \BININSTR{\code{'movq}}{\Arg}{\Arg}
  5469. \mid \UNIINSTR{\code{negq}}{\Arg} } \\
  5470. &\mid& \gray{ \CALLQ{\itm{label}}{\itm{int}} \mid \RETQ{}
  5471. \mid \PUSHQ{\Arg} \mid \POPQ{\Arg} \mid \JMP{\itm{label}} } \\
  5472. &\mid& \BININSTR{\code{xorq}}{\Arg}{\Arg}
  5473. \mid \BININSTR{\code{cmpq}}{\Arg}{\Arg}\\
  5474. &\mid& \BININSTR{\code{set}}{\itm{cc}}{\Arg}
  5475. \mid \BININSTR{\code{movzbq}}{\Arg}{\Arg}\\
  5476. &\mid& \JMPIF{\itm{cc}}{\itm{label}} \\
  5477. \Block &::= & \gray{\BLOCK{\itm{info}}{\LP\Instr\ldots\RP}} \\
  5478. \LangXIf{} &::= & \gray{\XPROGRAM{\itm{info}}{\LP\LP\itm{label} \,\key{.}\, \Block \RP\ldots\RP}}
  5479. \end{array}
  5480. \]
  5481. \end{minipage}
  5482. }
  5483. \caption{The abstract syntax of \LangXIf{} (extends \LangXInt{} of Figure~\ref{fig:x86-int-ast}).}
  5484. \label{fig:x86-1}
  5485. \end{figure}
  5486. Next we consider the x86 instructions that are relevant for compiling
  5487. the comparison operations. The \key{cmpq} instruction compares its two
  5488. arguments to determine whether one argument is less than, equal, or
  5489. greater than the other argument. The \key{cmpq} instruction is unusual
  5490. regarding the order of its arguments and where the result is
  5491. placed. The argument order is backwards: if you want to test whether
  5492. $x < y$, then write \code{cmpq} $y$\code{,} $x$. The result of
  5493. \key{cmpq} is placed in the special EFLAGS register. This register
  5494. cannot be accessed directly but it can be queried by a number of
  5495. instructions, including the \key{set} instruction. The instruction
  5496. $\key{set}cc~d$ puts a \key{1} or \key{0} into the destination $d$
  5497. depending on whether the comparison comes out according to the
  5498. condition code \itm{cc} (\key{e} for equal, \key{l} for less, \key{le}
  5499. for less-or-equal, \key{g} for greater, \key{ge} for
  5500. greater-or-equal). The \key{set} instruction has an annoying quirk in
  5501. that its destination argument must be single byte register, such as
  5502. \code{al} (L for lower bits) or \code{ah} (H for higher bits), which
  5503. are part of the \code{rax} register. Thankfully, the \key{movzbq}
  5504. instruction can be used to move from a single byte register to a
  5505. normal 64-bit register. The abstract syntax for the \code{set}
  5506. instruction differs from the concrete syntax in that it separates the
  5507. instruction name from the condition code.
  5508. The x86 instruction for conditional jump is relevant to the
  5509. compilation of \key{if} expressions. The instruction
  5510. $\key{j}\itm{cc}~\itm{label}$ updates the program counter to point to
  5511. the instruction after \itm{label} depending on whether the result in
  5512. the EFLAGS register matches the condition code \itm{cc}, otherwise the
  5513. jump instruction falls through to the next instruction. Like the
  5514. abstract syntax for \code{set}, the abstract syntax for conditional
  5515. jump separates the instruction name from the condition code. For
  5516. example, \code{(JmpIf le foo)} corresponds to \code{jle foo}. Because
  5517. the conditional jump instruction relies on the EFLAGS register, it is
  5518. common for it to be immediately preceded by a \key{cmpq} instruction
  5519. to set the EFLAGS register.
  5520. \begin{ocamlx}
  5521. The EFLAGS register is affected not just by \code{cmpq}, but by almost
  5522. all the arithmetic and logical instructions. Clever coders can sometimes
  5523. figure out how combine a test with an othewise useful operation. But we
  5524. will always rely on \code{cmpq} to set EFLAGS. Moreover, we will always
  5525. place the \code{cmpq} immediately before the
  5526. \code{set} or $\key{j}\itm{cc}$ instruction that relies on EFLAGS.
  5527. The interpreter provided for {\tt X86If} code assumes this, and
  5528. will fail if it tries to execute an isolated instance of one
  5529. of these instructions.
  5530. \end{ocamlx}
  5531. \section{Shrink the \LangIf{} Language}
  5532. \label{sec:shrink-Rif}
  5533. The \LangIf{} language includes several operators that are easily
  5534. expressible with other operators. For example, subtraction is
  5535. expressible using addition and negation.
  5536. \[
  5537. \key{(-}\; e_1 \; e_2\key{)} \quad \Rightarrow \quad \LP\key{+} \; e_1 \; \LP\key{-} \; e_2\RP\RP
  5538. \]
  5539. Several of the comparison operations are expressible using less-than
  5540. and logical negation.
  5541. \[
  5542. \LP\key{<=}\; e_1 \; e_2\RP \quad \Rightarrow \quad
  5543. \LP\key{let}~\LP\LS\key{tmp.1}~e_1\RS\RP~\LP\key{not}\;\LP\key{<}\;e_2\;\key{tmp.1})\RP\RP
  5544. \]
  5545. The \key{let} is needed in the above translation to ensure that
  5546. expression $e_1$ is evaluated before $e_2$. \ocaml{However, such a \code{let}
  5547. should be inserted only if $e_1$ is not already a variable or integer.}
  5548. By performing these translations in the front-end of the compiler, the
  5549. later passes of the compiler do not need to deal with these operators,
  5550. making the passes shorter. \ocaml{On the other hand, unlike the
  5551. syntactic desugaring we performed in the parser in an earlier chapter,
  5552. we wait to perform this shrinking pass until after typechecking; that way,
  5553. any type error messages will be in terms of the original program.
  5554. }
  5555. %% On the other hand, sometimes
  5556. %% these translations make it more difficult to generate the most
  5557. %% efficient code with respect to the number of instructions. However,
  5558. %% these differences typically do not affect the number of accesses to
  5559. %% memory, which is the primary factor that determines execution time on
  5560. %% modern computer architectures.
  5561. \begin{exercise}\normalfont
  5562. Implement the pass \code{shrink} to remove subtraction, \key{and},
  5563. \key{or}, \key{<=}, \key{>}, and \key{>=} from the language by
  5564. translating them to other constructs in \LangIf{}.
  5565. %
  5566. \ocaml{Put your solution in the \code{Shrink} submodule of {\tt Chapter4.ml}.}
  5567. %
  5568. Create six test programs that involve these operators.
  5569. %
  5570. \ocaml{Make sure to include tests that confirm you have not altered
  5571. the order of evaluation of sub-expressions of these operators.
  5572. (Hint: use \code{read}s.)}
  5573. %
  5574. In the \code{run-tests.rkt} script, add the following entry for
  5575. \code{shrink} to the list of passes (it should be the only pass at
  5576. this point).
  5577. \begin{lstlisting}
  5578. (list "shrink" shrink interp-Rif type-check-Rif)
  5579. \end{lstlisting}
  5580. This instructs \code{interp-tests} to run the intepreter
  5581. \code{interp-Rif} and the type checker \code{type-check-Rif} on the
  5582. output of \code{shrink}.
  5583. %
  5584. \ocaml{You should consider writing an additional checking pass that
  5585. makes sure all the forbidden operators have really been removed,
  5586. in addition to invoking the standard \code{RIf} checker.}
  5587. %
  5588. Run the script to test your compiler on all the test programs.
  5589. \end{exercise}
  5590. \section{Uniquify Variables}
  5591. \label{sec:uniquify-Rif}
  5592. Add cases to \code{uniquify-exp} to handle Boolean constants and
  5593. \code{if} expressions.
  5594. \begin{exercise}\normalfont
  5595. \ocaml{This exercise has been done for you, in submodule \code{Uniquify}
  5596. of \code{Chapter4.ml}.}
  5597. Update the \code{uniquify-exp} for \LangIf{} and add the following
  5598. entry to the list of \code{passes} in the \code{run-tests.rkt} script.
  5599. \begin{lstlisting}
  5600. (list "uniquify" uniquify interp-Rif type-check-Rif)
  5601. \end{lstlisting}
  5602. Run the script to test your compiler.
  5603. \end{exercise}
  5604. \section{Remove Complex Operands}
  5605. \label{sec:remove-complex-opera-Rif}
  5606. The output language for this pass is \LangIfANF{}
  5607. (Figure~\ref{fig:Rif-anf-syntax}), the administrative normal form of
  5608. \LangIf{}. The \code{Bool} form is an atomic expressions but
  5609. \code{If} is not. All three sub-expressions of an \code{If} are
  5610. allowed to be complex expressions but the operands of \code{not} and
  5611. the comparisons must be atoms.
  5612. Add cases for \code{Bool} and \code{If} to the \code{rco-exp} and
  5613. \code{rco-atom} functions according to whether the output needs to be
  5614. \Exp{} or \Atm{} as specified in the grammar for \LangIfANF{}.
  5615. Regarding \code{If}, it is particularly important to \textbf{not}
  5616. replace its condition with a temporary variable because that would
  5617. interfere with the generation of high-quality output in the
  5618. \code{explicate-control} pass.
  5619. \begin{figure}[tp]
  5620. \centering
  5621. \fbox{
  5622. \begin{minipage}{0.96\textwidth}
  5623. \[
  5624. \begin{array}{rcl}
  5625. \Atm &::=& \gray{ \INT{\Int} \mid \VAR{\Var} } \mid \BOOL{\itm{bool}}\\
  5626. \Exp &::=& \gray{ \Atm \mid \READ{} } \\
  5627. &\mid& \gray{ \NEG{\Atm} \mid \ADD{\Atm}{\Atm} } \\
  5628. &\mid& \gray{ \LET{\Var}{\Exp}{\Exp} } \\
  5629. &\mid& \UNIOP{\key{not}}{\Atm} \\
  5630. &\mid& \BINOP{\itm{cmp}}{\Atm}{\Atm} \mid \IF{\Exp}{\Exp}{\Exp} \\
  5631. R^{\dagger}_2 &::=& \PROGRAM{\code{()}}{\Exp}
  5632. \end{array}
  5633. \]
  5634. \end{minipage}
  5635. }
  5636. \caption{\LangIfANF{} is \LangIf{} in administrative normal form (ANF).}
  5637. \label{fig:Rif-anf-syntax}
  5638. \end{figure}
  5639. \begin{exercise}\normalfont
  5640. \ocaml{This exercise has been done for you, in submodule \code{RemoveComplexOperands}
  5641. of \code{Chapter4.ml}.}
  5642. %
  5643. Add cases for Boolean constants and \code{if} to the \code{rco-atom}
  5644. and \code{rco-exp} functions in \code{compiler.rkt}.
  5645. %
  5646. Create three new \LangInt{} programs that exercise the interesting
  5647. code in this pass.
  5648. %
  5649. In the \code{run-tests.rkt} script, add the following entry to the
  5650. list of \code{passes} and then run the script to test your compiler.
  5651. \begin{lstlisting}
  5652. (list "remove-complex" remove-complex-opera* interp-Rif type-check-Rif)
  5653. \end{lstlisting}
  5654. \end{exercise}
  5655. \section{Explicate Control}
  5656. \label{sec:explicate-control-Rif}
  5657. Recall that the purpose of \code{explicate-control} is to make the
  5658. order of evaluation explicit in the syntax of the program. With the
  5659. addition of \key{if} this get more interesting.
  5660. As a motivating example, consider the following program that has an
  5661. \key{if} expression nested in the predicate of another \key{if}.
  5662. % cond_test_41.rkt
  5663. \begin{center}
  5664. \begin{minipage}{0.96\textwidth}
  5665. \begin{lstlisting}
  5666. (let ([x (read)])
  5667. (let ([y (read)])
  5668. (if (if (< x 1) (eq? x 0) (eq? x 2))
  5669. (+ y 2)
  5670. (+ y 10))))
  5671. \end{lstlisting}
  5672. \end{minipage}
  5673. \end{center}
  5674. %
  5675. The naive way to compile \key{if} and the comparison would be to
  5676. handle each of them in isolation, regardless of their context. Each
  5677. comparison would be translated into a \key{cmpq} instruction followed
  5678. by a couple instructions to move the result from the EFLAGS register
  5679. into a general purpose register or stack location. Each \key{if} would
  5680. be translated into a \key{cmpq} instruction followed by a conditional
  5681. jump. The generated code for the inner \key{if} in the above example
  5682. would be as follows.
  5683. \begin{center}
  5684. \begin{minipage}{0.96\textwidth}
  5685. \begin{lstlisting}
  5686. ...
  5687. cmpq $1, x ;; (< x 1)
  5688. setl %al
  5689. movzbq %al, tmp
  5690. cmpq $1, tmp ;; (if ...)
  5691. je then_branch_1
  5692. jmp else_branch_1
  5693. ...
  5694. \end{lstlisting}
  5695. \end{minipage}
  5696. \end{center}
  5697. However, if we take context into account we can do better and reduce
  5698. the use of \key{cmpq} instructions for accessing the EFLAG register.
  5699. Our goal will be compile \key{if} expressions so that the relevant
  5700. comparison instruction appears directly before the conditional jump.
  5701. For example, we want to generate the following code for the inner
  5702. \code{if}.
  5703. \begin{center}
  5704. \begin{minipage}{0.96\textwidth}
  5705. \begin{lstlisting}
  5706. ...
  5707. cmpq $1, x
  5708. je then_branch_1
  5709. jmp else_branch_1
  5710. ...
  5711. \end{lstlisting}
  5712. \end{minipage}
  5713. \end{center}
  5714. \ocaml{That first conditional jump instruction should actually be \code{jl then\_branch\_1}.}
  5715. One way to achieve this is to reorganize the code at the level of
  5716. \LangIf{}, pushing the outer \key{if} inside the inner one, yielding
  5717. the following code.
  5718. \begin{center}
  5719. \begin{minipage}{0.96\textwidth}
  5720. \begin{lstlisting}
  5721. (let ([x (read)])
  5722. (let ([y (read)])
  5723. (if (< x 1)
  5724. (if (eq? x 0)
  5725. (+ y 2)
  5726. (+ y 10))
  5727. (if (eq? x 2)
  5728. (+ y 2)
  5729. (+ y 10)))))
  5730. \end{lstlisting}
  5731. \end{minipage}
  5732. \end{center}
  5733. Unfortunately, this approach duplicates the two branches from the
  5734. outer \code{if} and a compiler must never duplicate code!
  5735. \ocaml{That may be a bit too strong. Sometimes duplicating
  5736. small amounts of code may actually produce a program that runs faster.
  5737. But it fair to say that a compiler should never duplicate
  5738. an \emph{unbounded} amount of code, as might happen with
  5739. the transformation here.}
  5740. We need a way to perform the above transformation but without
  5741. duplicating code. That is, we need a way for different parts of a
  5742. program to refer to the same piece of code. At the level of x86
  5743. assembly this is straightforward because we can label the code for
  5744. each branch and insert jumps in all the places that need to execute
  5745. the branch. In our intermediate language, we need to move away from
  5746. abstract syntax \emph{trees} and instead use \emph{graphs}. In
  5747. particular, we use a standard program representation called a
  5748. \emph{control flow graph} (CFG), due to Frances Elizabeth
  5749. \citet{Allen:1970uq}. \index{control-flow graph} Each vertex is a
  5750. labeled sequence of code, called a \emph{basic block}, and each edge
  5751. represents a jump to another block. The \key{CProgram} construct of
  5752. \LangCVar{} and \LangCIf{} contains a control flow graph represented
  5753. as an alist mapping labels to basic blocks. Each basic block is
  5754. represented by the $\Tail$ non-terminal. \ocaml{It is
  5755. a little confusing to call this representation a CFG, since it
  5756. does not make the flow edges explicit (they have to be deduced by looking
  5757. inside the $\Tail$s). When we get to register assignment for \LangCIf{},
  5758. we will construct a more explicit CFG data structure.}
  5759. Figure~\ref{fig:explicate-control-s1-38} shows the output of the
  5760. \code{remove-complex-opera*} pass and then the
  5761. \code{explicate-control} pass on the example program. We walk through
  5762. the output program and then discuss the algorithm.
  5763. %
  5764. Following the order of evaluation in the output of
  5765. \code{remove-complex-opera*}, we first have two calls to \code{(read)}
  5766. and then the comparison \lstinline{(< x 1)} in the predicate of the
  5767. inner \key{if}. In the output of \code{explicate-control}, in the
  5768. block labeled \code{start}, is two assignment statements followed by a
  5769. \code{if} statement that branches to \code{block40} or
  5770. \code{block41}. The blocks associated with those labels contain the
  5771. translations of the code \lstinline{(eq? x 0)} and \lstinline{(eq? x 2)},
  5772. respectively. In particular, we start \code{block40} with the
  5773. comparison \lstinline{(eq? x 0)} and then branch to \code{block38} or
  5774. \code{block39}, the two branches of the outer \key{if}, i.e.,
  5775. \lstinline{(+ y 2)} and \lstinline{(+ y 10)}. The story for
  5776. \code{block41} is similar.
  5777. \begin{figure}[tbp]
  5778. \begin{tabular}{lll}
  5779. \begin{minipage}{0.4\textwidth}
  5780. % cond_test_41.rkt
  5781. \begin{lstlisting}
  5782. (let ([x (read)])
  5783. (let ([y (read)])
  5784. (if (if (< x 1)
  5785. (eq? x 0)
  5786. (eq? x 2))
  5787. (+ y 2)
  5788. (+ y 10))))
  5789. \end{lstlisting}
  5790. \hspace{40pt}$\Downarrow$
  5791. \begin{lstlisting}
  5792. (let ([x (read)])
  5793. (let ([y (read)])
  5794. (if (if (< x 1)
  5795. (eq? x 0)
  5796. (eq? x 2))
  5797. (+ y 2)
  5798. (+ y 10))))
  5799. \end{lstlisting}
  5800. \end{minipage}
  5801. &
  5802. $\Rightarrow$
  5803. &
  5804. \begin{minipage}{0.55\textwidth}
  5805. \begin{lstlisting}
  5806. start:
  5807. x = (read);
  5808. y = (read);
  5809. if (< x 1) goto block40;
  5810. else goto block41;
  5811. block40:
  5812. if (eq? x 0) goto block38;
  5813. else goto block39;
  5814. block41:
  5815. if (eq? x 2) goto block38;
  5816. else goto block39;
  5817. block38:
  5818. return (+ y 2);
  5819. block39:
  5820. return (+ y 10);
  5821. \end{lstlisting}
  5822. \end{minipage}
  5823. \end{tabular}
  5824. \caption{Translation from \LangIf{} to \LangCIf{}
  5825. via the \code{explicate-control}.\ocaml{Note that the RCO pass does \emph{not} pull out the conditions from the \code{if} expressions.}}
  5826. \label{fig:explicate-control-s1-38}
  5827. \end{figure}
  5828. %% The nice thing about the output of \code{explicate-control} is that
  5829. %% there are no unnecessary comparisons and every comparison is part of a
  5830. %% conditional jump.
  5831. %% The down-side of this output is that it includes
  5832. %% trivial blocks, such as the blocks labeled \code{block92} through
  5833. %% \code{block95}, that only jump to another block. We discuss a solution
  5834. %% to this problem in Section~\ref{sec:opt-jumps}.
  5835. Recall that in Section~\ref{sec:explicate-control-Rvar} we implement
  5836. \code{explicate-control} for \LangVar{} using two mutually recursive
  5837. functions, \code{explicate-tail} and \code{explicate-assign}. The
  5838. former function translates expressions in tail position whereas the
  5839. later function translates expressions on the right-hand-side of a
  5840. \key{let}. With the addition of \key{if} expression in \LangIf{} we
  5841. have a new kind of position to deal with: the predicate position of
  5842. the \key{if}. We need another function, \code{explicate-pred}, that
  5843. takes an \LangIf{} expression and two blocks for the then-branch and
  5844. else-branch. The output of \code{explicate-pred} is a block.
  5845. %
  5846. In the following paragraphs we discuss specific cases in the
  5847. \code{explicate-pred} function as well as additions to the
  5848. \code{explicate-tail} and \code{explicate-assign} functions.
  5849. \begin{figure}[tbp]
  5850. \begin{lstlisting}
  5851. (define (explicate-pred cnd thn els)
  5852. (match cnd
  5853. [(Var x) ___]
  5854. [(Let x rhs body) ___]
  5855. [(Prim 'not (list e)) ___]
  5856. [(Prim op es) #:when (or (eq? op 'eq?) (eq? op '<))
  5857. (IfStmt (Prim op arg*) (force (block->goto thn))
  5858. (force (block->goto els)))]
  5859. [(Bool b) (if b thn els)]
  5860. [(If cnd^ thn^ els^) ___]
  5861. [else (error "explicate-pred unhandled case" cnd)]))
  5862. \end{lstlisting}
  5863. \caption{Skeleton for the \key{explicate-pred} auxiliary function.}
  5864. \label{fig:explicate-pred}
  5865. \end{figure}
  5866. The skeleton for the \code{explicate-pred} function is given in
  5867. Figure~\ref{fig:explicate-pred}. It has a case for every expression
  5868. that can have type \code{Boolean}. We detail a few cases here and
  5869. leave the rest for the reader. The input to this function is an
  5870. expression and two blocks, \code{thn} and \code{els}, for the two
  5871. branches of the enclosing \key{if}.
  5872. %
  5873. Consider the case for Boolean constants in
  5874. Figure~\ref{fig:explicate-pred}. We perform a kind of partial
  5875. evaluation\index{partial evaluation} and output either the \code{thn}
  5876. or \code{els} branch depending on whether the constant is true or
  5877. false. This case demonstrates that we sometimes discard the \code{thn}
  5878. or \code{els} blocks that are input to \code{explicate-pred}.
  5879. The case for \key{if} in \code{explicate-pred} is particularly
  5880. illuminating because it deals with the challenges we discussed above
  5881. regarding nested \key{if} expressions
  5882. (Figure~\ref{fig:explicate-control-s1-38}). The \lstinline{thn^} and
  5883. \lstinline{els^} branches of the \key{if} inherit their context from
  5884. the current one, that is, predicate context. So you should recursively
  5885. apply \code{explicate-pred} to the \lstinline{thn^} and
  5886. \lstinline{els^} branches. For both of those recursive calls, pass
  5887. \code{thn} and \code{els} as the extra parameters. Thus, \code{thn}
  5888. and \code{els} may get used twice, once inside each recursive call. As
  5889. discussed above, to avoid duplicating code, we need to add them to the
  5890. control-flow graph so that we can instead refer to them by name and
  5891. execute them with a \key{goto}. However, as we saw in the cases above
  5892. for Boolean constants, the blocks \code{thn} and \code{els} may not
  5893. get used at all and we don't want to prematurely add them to the
  5894. control-flow graph if they end up being discarded.
  5895. \ocaml{But this only happens quite rarely (when a \code{if}
  5896. tests a literal boolean value). Moreover, it is easy to forestall
  5897. this from happening by performing a partial-evaluation style pass
  5898. prior to \code{explicate-control}, or, alternatively, to
  5899. clean up any generated but unused blocks after the fact. So I suggest ignoring
  5900. the whole lazy evaluation story in the remainder of this section.
  5901. Instead, design \code{explicate\_pred} to take as arguments
  5902. two \emph{labels} representing where to transfer control when
  5903. the test expression is true or fale. It is the responsibility of
  5904. \emph{caller} of \code{explicate\_pred} to construct appropriate
  5905. blocks and pass their labels. }
  5906. The solution to this conundrum is to use \emph{lazy
  5907. evaluation}\index{lazy evaluation}\citep{Friedman:1976aa} to delay
  5908. adding the blocks to the control-flow graph until the points where we
  5909. know they will be used. Racket provides support for lazy evaluation
  5910. with the
  5911. \href{https://docs.racket-lang.org/reference/Delayed_Evaluation.html}{\code{racket/promise}}
  5912. package. The expression \key{(delay} $e_1 \ldots e_n$\key{)}
  5913. \index{delay} creates a \emph{promise}\index{promise} in which the
  5914. evaluation of the expressions is postponed. When \key{(force}
  5915. $p$\key{)}\index{force} is applied to a promise $p$ for the first
  5916. time, the expressions $e_1 \ldots e_n$ are evaluated and the result of
  5917. $e_n$ is cached in the promise and returned. If \code{force} is
  5918. applied again to the same promise, then the cached result is returned.
  5919. If \code{force} is applied to an argument that is not a promise,
  5920. \code{force} simply returns the argument.
  5921. We use lazy evaluation for the input and output blocks of the
  5922. functions \code{explicate-pred} and \code{explicate-assign} and for
  5923. the output block of \code{explicate-tail}. So instead of taking and
  5924. returning blocks, they take and return promises. Furthermore, when we
  5925. come to a situation in which we a block might be used more than once,
  5926. as in the case for \code{if} in \code{explicate-pred}, we transform
  5927. the promise into a new promise that will add the block to the
  5928. control-flow graph and return a \code{goto}. The following auxiliary
  5929. function named \code{block->goto} accomplishes this task. It begins
  5930. with \code{delay} to create a promise. When forced, this promise will
  5931. force the original promise. If that returns a \code{goto} (because the
  5932. block was already added to the control-flow graph), then we return the
  5933. \code{goto}. Otherwise we add the block to the control-flow graph with
  5934. another auxiliary function named \code{add-node}. That function
  5935. returns the label for the new block, which we use to create a
  5936. \code{goto}.
  5937. \begin{lstlisting}
  5938. (define (block->goto block)
  5939. (delay
  5940. (define b (force block))
  5941. (match b
  5942. [(Goto label) (Goto label)]
  5943. [else (Goto (add-node b))])))
  5944. \end{lstlisting}
  5945. Returning to the discussion of \code{explicate-pred}
  5946. (Figure~\ref{fig:explicate-pred}), consider the case for comparison
  5947. operators. This is one of the base cases of the recursive function so
  5948. we translate the comparison to an \code{if} statement. We apply
  5949. \code{block->goto} to \code{thn} and \code{els} to obtain two promises
  5950. that will add then to the control-flow graph, which we can immediately
  5951. \code{force} to obtain the two goto's that form the branches of the
  5952. \code{if} statement.
  5953. %% Getting back to the case for \code{if} in \code{explicate-pred}, we
  5954. %% make the recursive calls to \code{explicate-pred} on the ``then'' and
  5955. %% ``else'' branches with the arguments \code{(block->goto} $B_1$\code{)}
  5956. %% and \code{(block->goto} $B_2$\code{)}. Let $B_3$ and $B_4$ be the
  5957. %% results from the two recursive calls. We complete the case for
  5958. %% \code{if} by recursively apply \code{explicate-pred} to the condition
  5959. %% of the \code{if} with the promised blocks $B_3$ and $B_4$ to obtain
  5960. %% the result $B_5$.
  5961. %% \[
  5962. %% (\key{if}\; \itm{cnd}\; \itm{thn}\; \itm{els})
  5963. %% \quad\Rightarrow\quad
  5964. %% B_5
  5965. %% \]
  5966. The \code{explicate-tail} and \code{explicate-assign} functions need
  5967. additional cases for Boolean constants and \key{if}.
  5968. %
  5969. In the cases for \code{if}, the two branches inherit the current
  5970. context, so in \code{explicate-tail} they are in tail position and in
  5971. \code{explicate-assign} they are in assignment position. The
  5972. \code{cont} parameter of \code{explicate-assign} is used in both
  5973. recursive calls, so make sure to use \code{block->goto} on it.
  5974. %% In the case for \code{if} in \code{explicate-tail}, the two branches
  5975. %% inherit the current context, so they are in tail position. Thus, the
  5976. %% recursive calls on the ``then'' and ``else'' branch should be calls to
  5977. %% \code{explicate-tail}.
  5978. %% %
  5979. %% We need to pass $B_0$ as the accumulator argument for both of these
  5980. %% recursive calls, but we need to be careful not to duplicate $B_0$.
  5981. %% Thus, we first apply \code{block->goto} to $B_0$ so that it gets added
  5982. %% to the control-flow graph and obtain a promised goto $G_0$.
  5983. %% %
  5984. %% Let $B_1$ be the result of \code{explicate-tail} on the ``then''
  5985. %% branch and $G_0$ and let $B_2$ be the result of \code{explicate-tail}
  5986. %% on the ``else'' branch and $G_0$. Let $B_3$ be the result of applying
  5987. %% \code{explicate-pred} to the condition of the \key{if}, $B_1$, and
  5988. %% $B_2$. Then the \key{if} as a whole translates to promise $B_3$.
  5989. %% \[
  5990. %% (\key{if}\; \itm{cnd}\; \itm{thn}\; \itm{els}) \quad\Rightarrow\quad B_3
  5991. %% \]
  5992. %% In the above discussion, we use the metavariables $B_1$, $B_2$, and
  5993. %% $B_3$ to refer to blocks for the purposes of our discussion, but they
  5994. %% should not be confused with the labels for the blocks that appear in
  5995. %% the generated code. We initially construct unlabeled blocks; we only
  5996. %% attach labels to blocks when we add them to the control-flow graph, as
  5997. %% we see in the next case.
  5998. %% Next consider the case for \key{if} in the \code{explicate-assign}
  5999. %% function. The context of the \key{if} is an assignment to some
  6000. %% variable $x$ and then the control continues to some promised block
  6001. %% $B_1$. The code that we generate for both the ``then'' and ``else''
  6002. %% branches needs to continue to $B_1$, so to avoid duplicating $B_1$ we
  6003. %% apply \code{block->goto} to it and obtain a promised goto $G_1$. The
  6004. %% branches of the \key{if} inherit the current context, so they are in
  6005. %% assignment positions. Let $B_2$ be the result of applying
  6006. %% \code{explicate-assign} to the ``then'' branch, variable $x$, and
  6007. %% $G_1$. Let $B_3$ be the result of applying \code{explicate-assign} to
  6008. %% the ``else'' branch, variable $x$, and $G_1$. Finally, let $B_4$ be
  6009. %% the result of applying \code{explicate-pred} to the predicate
  6010. %% $\itm{cnd}$ and the promises $B_2$ and $B_3$. The \key{if} as a whole
  6011. %% translates to the promise $B_4$.
  6012. %% \[
  6013. %% (\key{if}\; \itm{cnd}\; \itm{thn}\; \itm{els}) \quad\Rightarrow\quad B_4
  6014. %% \]
  6015. %% This completes the description of \code{explicate-control} for \LangIf{}.
  6016. The way in which the \code{shrink} pass transforms logical operations
  6017. such as \code{and} and \code{or} can impact the quality of code
  6018. generated by \code{explicate-control}. For example, consider the
  6019. following program.
  6020. % cond_test_21.rkt
  6021. \begin{lstlisting}
  6022. (if (and (eq? (read) 0) (eq? (read) 1))
  6023. 0
  6024. 42)
  6025. \end{lstlisting}
  6026. The \code{and} operation should transform into something that the
  6027. \code{explicate-pred} function can still analyze and descend through to
  6028. reach the underlying \code{eq?} conditions. Ideally, your
  6029. \code{explicate-control} pass should generate code similar to the
  6030. following for the above program.
  6031. \begin{center}
  6032. \begin{lstlisting}
  6033. start:
  6034. tmp1 = (read);
  6035. if (eq? tmp1 0) goto block40;
  6036. else goto block39;
  6037. block40:
  6038. tmp2 = (read);
  6039. if (eq? tmp2 1) goto block38;
  6040. else goto block39;
  6041. block38:
  6042. return 0;
  6043. block39:
  6044. return 42;
  6045. \end{lstlisting}
  6046. \end{center}
  6047. \begin{exercise}\normalfont
  6048. Implement the pass \code{explicate-control} by adding the cases for
  6049. Boolean constants and \key{if} to the \code{explicate-tail} and
  6050. \code{explicate-assign}. Implement the auxiliary function
  6051. \code{explicate-pred} for predicate contexts.
  6052. %
  6053. \ocaml{Put your code in the \code{ExplicateControl} submodule of
  6054. \code{Chapter4.ml}. It is recommended that you base your code
  6055. on the skeleton already in that file.}
  6056. %
  6057. Create test cases that exercise all of the new cases in the code for
  6058. this pass.
  6059. %
  6060. Add the following entry to the list of \code{passes} in
  6061. \code{run-tests.rkt} and then run this script to test your compiler.
  6062. \begin{lstlisting}
  6063. (list "explicate-control" explicate-control interp-Cif type-check-Cif)
  6064. \end{lstlisting}
  6065. \end{exercise}
  6066. \section{Select Instructions}
  6067. \label{sec:select-Rif}
  6068. \index{instruction selection}
  6069. The \code{select-instructions} pass translate \LangCIf{} to
  6070. \LangXIfVar{}. Recall that we implement this pass using three
  6071. auxiliary functions, one for each of the non-terminals $\Atm$,
  6072. $\Stmt$, and $\Tail$.
  6073. For $\Atm$, we have new cases for the Booleans. We take the usual
  6074. approach of encoding them as integers, with true as 1 and false as 0.
  6075. \[
  6076. \key{\#t} \Rightarrow \key{1}
  6077. \qquad
  6078. \key{\#f} \Rightarrow \key{0}
  6079. \]
  6080. For $\Stmt$, we discuss a couple cases. The \code{not} operation can
  6081. be implemented in terms of \code{xorq} as we discussed at the
  6082. beginning of this section. Given an assignment
  6083. $\itm{var}$ \key{=} \key{(not} $\Atm$\key{);},
  6084. if the left-hand side $\itm{var}$ is
  6085. the same as $\Atm$, then just the \code{xorq} suffices.
  6086. \[
  6087. \Var~\key{=}~ \key{(not}\; \Var\key{);}
  6088. \quad\Rightarrow\quad
  6089. \key{xorq}~\key{\$}1\key{,}~\Var
  6090. \]
  6091. Otherwise, a \key{movq} is needed to adapt to the update-in-place
  6092. semantics of x86. Let $\Arg$ be the result of translating $\Atm$ to
  6093. x86. Then we have
  6094. \[
  6095. \Var~\key{=}~ \key{(not}\; \Atm\key{);}
  6096. \quad\Rightarrow\quad
  6097. \begin{array}{l}
  6098. \key{movq}~\Arg\key{,}~\Var\\
  6099. \key{xorq}~\key{\$}1\key{,}~\Var
  6100. \end{array}
  6101. \]
  6102. Next consider the cases for \code{eq?} and less-than comparison.
  6103. Translating these operations to x86 is slightly involved due to the
  6104. unusual nature of the \key{cmpq} instruction discussed above. We
  6105. recommend translating an assignment from \code{eq?} into the following
  6106. sequence of three instructions. \\
  6107. \begin{tabular}{lll}
  6108. \begin{minipage}{0.4\textwidth}
  6109. \begin{lstlisting}
  6110. |$\Var$| = (eq? |$\Atm_1$| |$\Atm_2$|);
  6111. \end{lstlisting}
  6112. \end{minipage}
  6113. &
  6114. $\Rightarrow$
  6115. &
  6116. \begin{minipage}{0.4\textwidth}
  6117. \begin{lstlisting}
  6118. cmpq |$\Arg_2$|, |$\Arg_1$|
  6119. sete %al
  6120. movzbq %al, |$\Var$|
  6121. \end{lstlisting}
  6122. \end{minipage}
  6123. \end{tabular} \\
  6124. Regarding the $\Tail$ non-terminal, we have two new cases: \key{goto}
  6125. and \key{if} statements. Both are straightforward to translate to
  6126. x86. A \key{goto} becomes a jump instruction.
  6127. \[
  6128. \key{goto}\; \ell\key{;} \quad \Rightarrow \quad \key{jmp}\;\ell
  6129. \]
  6130. An \key{if} statement becomes a compare instruction followed by a
  6131. conditional jump (for the ``then'' branch) and the fall-through is to
  6132. a regular jump (for the ``else'' branch).\\
  6133. \begin{tabular}{lll}
  6134. \begin{minipage}{0.4\textwidth}
  6135. \begin{lstlisting}
  6136. if (eq? |$\Atm_1$| |$\Atm_2$|) goto |$\ell_1$|;
  6137. else goto |$\ell_2$|;
  6138. \end{lstlisting}
  6139. \end{minipage}
  6140. &
  6141. $\Rightarrow$
  6142. &
  6143. \begin{minipage}{0.4\textwidth}
  6144. \begin{lstlisting}
  6145. cmpq |$\Arg_2$|, |$\Arg_1$|
  6146. je |$\ell_1$|
  6147. jmp |$\ell_2$|
  6148. \end{lstlisting}
  6149. \end{minipage}
  6150. \end{tabular} \\
  6151. \begin{exercise}\normalfont
  6152. Expand your \code{select-instructions} pass to handle the new features
  6153. of the \LangIf{} language.
  6154. %
  6155. \ocaml{Place your solution in the \code{SelectInstructions} submodule of
  6156. \code{Chapter4.ml}.}
  6157. %
  6158. Add the following entry to the list of \code{passes} in
  6159. \code{run-tests.rkt}
  6160. \begin{lstlisting}
  6161. (list "select-instructions" select-instructions interp-pseudo-x86-1)
  6162. \end{lstlisting}
  6163. %
  6164. Run the script to test your compiler on all the test programs.
  6165. \end{exercise}
  6166. \section{Register Allocation}
  6167. \label{sec:register-allocation-Rif}
  6168. \index{register allocation}
  6169. The changes required for \LangIf{} affect liveness analysis, building the
  6170. interference graph, and assigning homes, but the graph coloring
  6171. algorithm itself does not change.
  6172. \subsection{Liveness Analysis}
  6173. \label{sec:liveness-analysis-Rif}
  6174. \index{liveness analysis}
  6175. Recall that for \LangVar{} we implemented liveness analysis for a single
  6176. basic block (Section~\ref{sec:liveness-analysis-Rvar}). With the
  6177. addition of \key{if} expressions to \LangIf{}, \code{explicate-control}
  6178. produces many basic blocks arranged in a control-flow graph. We
  6179. recommend that you create a new auxiliary function named
  6180. \code{uncover-live-CFG} that applies liveness analysis to a
  6181. control-flow graph. \ocaml{This structuring suggestion is not crucial.}
  6182. The first question we is: what order should we process the basic
  6183. blocks in the control-flow graph? Recall that to perform liveness
  6184. analysis on a basic block we need to know its live-after set. If a
  6185. basic block has no successors (i.e. no out-edges in the control flow
  6186. graph), then it has an empty live-after set and we can immediately
  6187. apply liveness analysis to it. If a basic block has some successors,
  6188. then we need to complete liveness analysis on those blocks first. In
  6189. graph theory, a sequence of nodes is in \emph{topological
  6190. order}\index{topological order} if each vertex comes before its
  6191. successors. We need the opposite, so we can transpose the graph
  6192. before computing a topological order.
  6193. %
  6194. Use the \code{tsort} and \code{transpose} functions of the Racket
  6195. \code{graph} package to accomplish this.
  6196. %
  6197. \ocaml{Use the \code{topsort} and \code{transpose} functions of the
  6198. provided \code{Digraph} functor.}
  6199. %
  6200. As an aside, a topological ordering is only guaranteed to exist if the
  6201. graph does not contain any cycles. That is indeed the case for the
  6202. control-flow graphs that we generate from \LangIf{} programs.
  6203. However, in Chapter~\ref{ch:Rwhile} we add loops to \LangLoop{} and
  6204. learn how to handle cycles in the control-flow graph.
  6205. You'll need to construct a directed graph to represent the
  6206. control-flow graph. Do not use the \code{directed-graph} of the
  6207. \code{graph} package because that only allows at most one edge between
  6208. each pair of vertices, but a control-flow graph may have multiple
  6209. edges between a pair of vertices. The \code{multigraph.rkt} file in
  6210. the support code implements a graph representation that allows
  6211. multiple edges between a pair of vertices. \ocaml{There is no
  6212. need for a multigraph for our purposes in this chapter. Just
  6213. use the plain directed graphs in \code{digraph.ml}.}
  6214. The next question is how to analyze jump instructions. Recall that in
  6215. Section~\ref{sec:liveness-analysis-Rvar} we maintain an alist named
  6216. \code{label->live} that maps each label to the set of live locations
  6217. at the beginning of its block. We use \code{label->live} to determine
  6218. the live-before set for each $\JMP{\itm{label}}$ instruction. Now
  6219. that we have many basic blocks, \code{label->live} needs to be updated
  6220. as we process the blocks. In particular, after performing liveness
  6221. analysis on a block, we take the live-before set of its first
  6222. instruction and associate that with the block's label in the
  6223. \code{label->live}.
  6224. In \LangXIfVar{} we also have the conditional jump
  6225. $\JMPIF{\itm{cc}}{\itm{label}}$ to deal with. Liveness analysis for
  6226. this instruction is particularly interesting because during
  6227. compilation we do not know which way a conditional jump will go. So
  6228. we do not know whether to use the live-before set for the following
  6229. instruction or the live-before set for the $\itm{label}$. However,
  6230. there is no harm to the correctness of the compiler if we classify
  6231. more locations as live than the ones that are truly live during a
  6232. particular execution of the instruction. Thus, we can take the union
  6233. of the live-before sets from the following instruction and from the
  6234. mapping for $\itm{label}$ in \code{label->live}.
  6235. The auxiliary functions for computing the variables in an
  6236. instruction's argument and for computing the variables read-from ($R$)
  6237. or written-to ($W$) by an instruction need to be updated to handle the
  6238. new kinds of arguments and instructions in \LangXIfVar{}.
  6239. \begin{ocamlx}
  6240. It will now become convenient to process the \code{main} and \code{conclusion}
  6241. blocks uniformly with the others. That should be straightforward, but note
  6242. two things: (a) to avoid having \code{`framesize} appear as a live variable,
  6243. we should avoid adding it to the set of read variables; (b) The
  6244. \code{\%rbp} register may show up in some live sets; this is harmless,
  6245. so long as it is precolored with a negative color in {\tt AllocateRegisters}.
  6246. \end{ocamlx}
  6247. \begin{exercise}\normalfont
  6248. Update the \code{uncover-live} pass and implement the
  6249. \code{uncover-live-CFG} auxiliary function to apply liveness analysis
  6250. to the control-flow graph.
  6251. \ocaml{Place your solution in the \code{UncoverLive} submodule of \code{Chapter4.ml}.
  6252. You don't have to structure it with an auxiliary function unless
  6253. you find that useful.}
  6254. Add the following entry to the list of
  6255. \code{passes} in the \code{run-tests.rkt} script.
  6256. \begin{lstlisting}
  6257. (list "uncover-live" uncover-live interp-pseudo-x86-1)
  6258. \end{lstlisting}
  6259. \end{exercise}
  6260. \subsection{Build the Interference Graph}
  6261. \label{sec:build-interference-Rif}
  6262. Many of the new instructions in \LangXIfVar{} can be handled in the
  6263. same way as the instructions in \LangXVar{}. Thus, if your code was
  6264. already quite general, it will not need to be changed to handle the
  6265. new instructions. If you code is not general enough, we recommend that
  6266. you change your code to be more general. For example, you can factor
  6267. out the computing of the the read and write sets for each kind of
  6268. instruction into two auxiliary functions.
  6269. Note that the \key{movzbq} instruction requires some special care,
  6270. similar to the \key{movq} instruction. See rule number 1 in
  6271. Section~\ref{sec:build-interference}.
  6272. \begin{exercise}\normalfont
  6273. \ocaml{This exercise has been done for you, in submodule \code{BuildInterference}
  6274. of \code{Chapter4.ml}.}
  6275. Update the \code{build-interference} pass for \LangXIfVar{} and add the
  6276. following entries to the list of \code{passes} in the
  6277. \code{run-tests.rkt} script.
  6278. \begin{lstlisting}
  6279. (list "build-interference" build-interference interp-pseudo-x86-1)
  6280. (list "allocate-registers" allocate-registers interp-x86-1)
  6281. \end{lstlisting}
  6282. Run the script to test your compiler on all the \LangIf{} test
  6283. programs.
  6284. \end{exercise}
  6285. \section{Patch Instructions}
  6286. The second argument of the \key{cmpq} instruction must not be an
  6287. immediate value (such as an integer). So if you are comparing two
  6288. immediates, we recommend inserting a \key{movq} instruction to put the
  6289. second argument in \key{rax}. Also, recall that instructions may have
  6290. at most one memory reference.
  6291. %
  6292. The second argument of the \key{movzbq} must be a register.
  6293. %
  6294. There are no special restrictions on the jump instructions.
  6295. \begin{exercise}\normalfont
  6296. \ocaml{This exercise has been done for you, in submodule \code{PatchInstructions}
  6297. of \code{Chapter4.ml}.}
  6298. %
  6299. Update \code{patch-instructions} pass for \LangXIfVar{}.
  6300. %
  6301. Add the following entry to the list of \code{passes} in
  6302. \code{run-tests.rkt} and then run this script to test your compiler.
  6303. \begin{lstlisting}
  6304. (list "patch-instructions" patch-instructions interp-x86-1)
  6305. \end{lstlisting}
  6306. \end{exercise}
  6307. the \begin{figure}[tbp]
  6308. \begin{tikzpicture}[baseline=(current bounding box.center)]
  6309. \node (Rif) at (0,2) {\large \LangIf{}};
  6310. \node (Rif-2) at (3,2) {\large \LangIf{}};
  6311. \node (Rif-3) at (6,2) {\large \LangIf{}};
  6312. \node (Rif-4) at (9,2) {\large \LangIf{}};
  6313. \node (Rif-5) at (12,2) {\large \LangIf{}};
  6314. \node (C1-1) at (3,0) {\large \LangCIf{}};
  6315. \node (x86-2) at (3,-2) {\large \LangXIfVar{}};
  6316. \node (x86-2-1) at (3,-4) {\large \LangXIfVar{}};
  6317. \node (x86-2-2) at (6,-4) {\large \LangXIfVar{}};
  6318. \node (x86-3) at (6,-2) {\large \LangXIfVar{}};
  6319. \node (x86-4) at (9,-2) {\large \LangXIf{}};
  6320. \node (x86-5) at (9,-4) {\large \LangXIf{}};
  6321. \path[->,bend left=15] (Rif) edge [above] node {\ttfamily\footnotesize type-check} (Rif-2);
  6322. \path[->,bend left=15] (Rif-2) edge [above] node {\ttfamily\footnotesize shrink} (Rif-3);
  6323. \path[->,bend left=15] (Rif-3) edge [above] node {\ttfamily\footnotesize uniquify} (Rif-4);
  6324. \path[->,bend left=15] (Rif-4) edge [above] node {\ttfamily\footnotesize remove-complex.} (Rif-5);
  6325. \path[->,bend left=15] (Rif-5) edge [left] node {\ttfamily\footnotesize explicate-control} (C1-1);
  6326. \path[->,bend right=15] (C1-1) edge [left] node {\ttfamily\footnotesize select-instructions} (x86-2);
  6327. \path[->,bend left=15] (x86-2) edge [right] node {\ttfamily\footnotesize uncover-live} (x86-2-1);
  6328. \path[->,bend right=15] (x86-2-1) edge [below] node {\ttfamily\footnotesize build-inter.} (x86-2-2);
  6329. \path[->,bend right=15] (x86-2-2) edge [right] node {\ttfamily\footnotesize allocate-reg.} (x86-3);
  6330. \path[->,bend left=15] (x86-3) edge [above] node {\ttfamily\footnotesize patch-instr.} (x86-4);
  6331. \path[->,bend left=15] (x86-4) edge [right] node {\ttfamily\footnotesize print-x86 } (x86-5);
  6332. \end{tikzpicture}
  6333. \caption{Diagram of the passes for \LangIf{}, a language with conditionals.}
  6334. \label{fig:Rif-passes}
  6335. \end{figure}
  6336. Figure~\ref{fig:Rif-passes} lists all the passes needed for the
  6337. compilation of \LangIf{}.
  6338. \section{An Example Translation}
  6339. Figure~\ref{fig:if-example-x86} shows a simple example program in
  6340. \LangIf{} translated to x86, showing the results of
  6341. \code{explicate-control}, \code{select-instructions}, and the final
  6342. x86 assembly code.
  6343. \begin{figure}[tbp]
  6344. \begin{tabular}{lll}
  6345. \begin{minipage}{0.4\textwidth}
  6346. % cond_test_20.rkt
  6347. \begin{lstlisting}
  6348. (if (eq? (read) 1) 42 0)
  6349. \end{lstlisting}
  6350. $\Downarrow$
  6351. \begin{lstlisting}
  6352. start:
  6353. tmp7951 = (read);
  6354. if (eq? tmp7951 1)
  6355. goto block7952;
  6356. else
  6357. goto block7953;
  6358. block7952:
  6359. return 42;
  6360. block7953:
  6361. return 0;
  6362. \end{lstlisting}
  6363. $\Downarrow$
  6364. \begin{lstlisting}
  6365. start:
  6366. callq read_int
  6367. movq %rax, tmp7951
  6368. cmpq $1, tmp7951
  6369. je block7952
  6370. jmp block7953
  6371. block7953:
  6372. movq $0, %rax
  6373. jmp conclusion
  6374. block7952:
  6375. movq $42, %rax
  6376. jmp conclusion
  6377. \end{lstlisting}
  6378. \end{minipage}
  6379. &
  6380. $\Rightarrow\qquad$
  6381. \begin{minipage}{0.4\textwidth}
  6382. \begin{lstlisting}
  6383. start:
  6384. callq read_int
  6385. movq %rax, %rcx
  6386. cmpq $1, %rcx
  6387. je block7952
  6388. jmp block7953
  6389. block7953:
  6390. movq $0, %rax
  6391. jmp conclusion
  6392. block7952:
  6393. movq $42, %rax
  6394. jmp conclusion
  6395. .globl main
  6396. main:
  6397. pushq %rbp
  6398. movq %rsp, %rbp
  6399. pushq %r13
  6400. pushq %r12
  6401. pushq %rbx
  6402. pushq %r14
  6403. subq $0, %rsp
  6404. jmp start
  6405. conclusion:
  6406. addq $0, %rsp
  6407. popq %r14
  6408. popq %rbx
  6409. popq %r12
  6410. popq %r13
  6411. popq %rbp
  6412. retq
  6413. \end{lstlisting}
  6414. \end{minipage}
  6415. \end{tabular}
  6416. \caption{Example compilation of an \key{if} expression to x86.\ocaml{(For some reason, all the callee-save registers are being saved, even though they are not used.)}}
  6417. \label{fig:if-example-x86}
  6418. \end{figure}
  6419. \section{Challenge: Remove Jumps}
  6420. \label{sec:opt-jumps}
  6421. %% Recall that in the example output of \code{explicate-control} in
  6422. %% Figure~\ref{fig:explicate-control-s1-38}, \code{block57} through
  6423. %% \code{block60} are trivial blocks, they do nothing but jump to another
  6424. %% block. The first goal of this challenge assignment is to remove those
  6425. %% blocks. Figure~\ref{fig:optimize-jumps} repeats the result of
  6426. %% \code{explicate-control} on the left and shows the result of bypassing
  6427. %% the trivial blocks on the right. Let us focus on \code{block61}. The
  6428. %% \code{then} branch jumps to \code{block57}, which in turn jumps to
  6429. %% \code{block55}. The optimized code on the right of
  6430. %% Figure~\ref{fig:optimize-jumps} bypasses \code{block57}, with the
  6431. %% \code{then} branch jumping directly to \code{block55}. The story is
  6432. %% similar for the \code{else} branch, as well as for the two branches in
  6433. %% \code{block62}. After the jumps in \code{block61} and \code{block62}
  6434. %% have been optimized in this way, there are no longer any jumps to
  6435. %% blocks \code{block57} through \code{block60}, so they can be removed.
  6436. %% \begin{figure}[tbp]
  6437. %% \begin{tabular}{lll}
  6438. %% \begin{minipage}{0.4\textwidth}
  6439. %% \begin{lstlisting}
  6440. %% block62:
  6441. %% tmp54 = (read);
  6442. %% if (eq? tmp54 2) then
  6443. %% goto block59;
  6444. %% else
  6445. %% goto block60;
  6446. %% block61:
  6447. %% tmp53 = (read);
  6448. %% if (eq? tmp53 0) then
  6449. %% goto block57;
  6450. %% else
  6451. %% goto block58;
  6452. %% block60:
  6453. %% goto block56;
  6454. %% block59:
  6455. %% goto block55;
  6456. %% block58:
  6457. %% goto block56;
  6458. %% block57:
  6459. %% goto block55;
  6460. %% block56:
  6461. %% return (+ 700 77);
  6462. %% block55:
  6463. %% return (+ 10 32);
  6464. %% start:
  6465. %% tmp52 = (read);
  6466. %% if (eq? tmp52 1) then
  6467. %% goto block61;
  6468. %% else
  6469. %% goto block62;
  6470. %% \end{lstlisting}
  6471. %% \end{minipage}
  6472. %% &
  6473. %% $\Rightarrow$
  6474. %% &
  6475. %% \begin{minipage}{0.55\textwidth}
  6476. %% \begin{lstlisting}
  6477. %% block62:
  6478. %% tmp54 = (read);
  6479. %% if (eq? tmp54 2) then
  6480. %% goto block55;
  6481. %% else
  6482. %% goto block56;
  6483. %% block61:
  6484. %% tmp53 = (read);
  6485. %% if (eq? tmp53 0) then
  6486. %% goto block55;
  6487. %% else
  6488. %% goto block56;
  6489. %% block56:
  6490. %% return (+ 700 77);
  6491. %% block55:
  6492. %% return (+ 10 32);
  6493. %% start:
  6494. %% tmp52 = (read);
  6495. %% if (eq? tmp52 1) then
  6496. %% goto block61;
  6497. %% else
  6498. %% goto block62;
  6499. %% \end{lstlisting}
  6500. %% \end{minipage}
  6501. %% \end{tabular}
  6502. %% \caption{Optimize jumps by removing trivial blocks.}
  6503. %% \label{fig:optimize-jumps}
  6504. %% \end{figure}
  6505. %% The name of this pass is \code{optimize-jumps}. We recommend
  6506. %% implementing this pass in two phases. The first phrase builds a hash
  6507. %% table that maps labels to possibly improved labels. The second phase
  6508. %% changes the target of each \code{goto} to use the improved label. If
  6509. %% the label is for a trivial block, then the hash table should map the
  6510. %% label to the first non-trivial block that can be reached from this
  6511. %% label by jumping through trivial blocks. If the label is for a
  6512. %% non-trivial block, then the hash table should map the label to itself;
  6513. %% we do not want to change jumps to non-trivial blocks.
  6514. %% The first phase can be accomplished by constructing an empty hash
  6515. %% table, call it \code{short-cut}, and then iterating over the control
  6516. %% flow graph. Each time you encouter a block that is just a \code{goto},
  6517. %% then update the hash table, mapping the block's source to the target
  6518. %% of the \code{goto}. Also, the hash table may already have mapped some
  6519. %% labels to the block's source, to you must iterate through the hash
  6520. %% table and update all of those so that they instead map to the target
  6521. %% of the \code{goto}.
  6522. %% For the second phase, we recommend iterating through the $\Tail$ of
  6523. %% each block in the program, updating the target of every \code{goto}
  6524. %% according to the mapping in \code{short-cut}.
  6525. %% \begin{exercise}\normalfont
  6526. %% Implement the \code{optimize-jumps} pass as a transformation from
  6527. %% \LangCIf{} to \LangCIf{}, coming after the \code{explicate-control} pass.
  6528. %% Check that \code{optimize-jumps} removes trivial blocks in a few
  6529. %% example programs. Then check that your compiler still passes all of
  6530. %% your tests.
  6531. %% \end{exercise}
  6532. There is an opportunity for optimizing jumps that is apparent in the
  6533. example of Figure~\ref{fig:if-example-x86}. The \code{start} block
  6534. ends with a jump to \code{block7953} and there are no other jumps to
  6535. \code{block7953} in the rest of the program. In this situation we can
  6536. avoid the runtime overhead of this jump by merging \code{block7953}
  6537. into the preceding block, in this case the \code{start} block.
  6538. Figure~\ref{fig:remove-jumps} shows the output of
  6539. \code{select-instructions} on the left and the result of this
  6540. optimization on the right.
  6541. \begin{figure}[tbp]
  6542. \begin{tabular}{lll}
  6543. \begin{minipage}{0.5\textwidth}
  6544. % cond_test_20.rkt
  6545. \begin{lstlisting}
  6546. start:
  6547. callq read_int
  6548. movq %rax, tmp7951
  6549. cmpq $1, tmp7951
  6550. je block7952
  6551. jmp block7953
  6552. block7953:
  6553. movq $0, %rax
  6554. jmp conclusion
  6555. block7952:
  6556. movq $42, %rax
  6557. jmp conclusion
  6558. \end{lstlisting}
  6559. \end{minipage}
  6560. &
  6561. $\Rightarrow\qquad$
  6562. \begin{minipage}{0.4\textwidth}
  6563. \begin{lstlisting}
  6564. start:
  6565. callq read_int
  6566. movq %rax, tmp7951
  6567. cmpq $1, tmp7951
  6568. je block7952
  6569. movq $0, %rax
  6570. jmp conclusion
  6571. block7952:
  6572. movq $42, %rax
  6573. jmp conclusion
  6574. \end{lstlisting}
  6575. \end{minipage}
  6576. \end{tabular}
  6577. \caption{Merging basic blocks by removing unnecessary jumps.}
  6578. \label{fig:remove-jumps}
  6579. \end{figure}
  6580. \begin{exercise}\normalfont
  6581. %
  6582. Implement a pass named \code{remove-jumps} that merges basic blocks
  6583. into their preceding basic block, when there is only one preceding
  6584. block. The pass should translate from \LangXIfVar{} to \LangXIfVar{}.
  6585. %
  6586. In the \code{run-tests.rkt} script, add the following entry to the
  6587. list of \code{passes} between \code{allocate-registers}
  6588. and \code{patch-instructions}.
  6589. \begin{lstlisting}
  6590. (list "remove-jumps" remove-jumps interp-pseudo-x86-1)
  6591. \end{lstlisting}
  6592. Run this script to test your compiler.
  6593. %
  6594. Check that \code{remove-jumps} accomplishes the goal of merging basic
  6595. blocks on several test programs.
  6596. \end{exercise}
  6597. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  6598. \chapter{Tuples and Garbage Collection}
  6599. \label{ch:Rvec}
  6600. \index{tuple}
  6601. \index{vector}
  6602. \margincomment{\scriptsize To do: Flesh out this chapter, e.g., make sure
  6603. all the IR grammars are spelled out! \\ --Jeremy}
  6604. \margincomment{\scriptsize Be more explicit about how to deal with
  6605. the root stack. \\ --Jeremy}
  6606. In this chapter we study the implementation of mutable tuples, called
  6607. vectors in Racket. \ocaml{We will call them tuples!} This language feature is the first to use the
  6608. computer's \emph{heap}\index{heap} because the lifetime of a Racket
  6609. tuple is indefinite, that is, a tuple lives forever from the
  6610. programmer's viewpoint. Of course, from an implementer's viewpoint, it
  6611. is important to reclaim the space associated with a tuple when it is
  6612. no longer needed, which is why we also study \emph{garbage collection}
  6613. \emph{garbage collection} techniques in this chapter.
  6614. Section~\ref{sec:r3} introduces the \LangVec{} language including its
  6615. interpreter and type checker. The \LangVec{} language extends the \LangIf{}
  6616. language of Chapter~\ref{ch:Rif} with vectors and Racket's
  6617. \code{void} value. \ocaml{We will use a language \LangTuple{} that is an extension of the \LangLoop{} language from Chapter 9, which already added the \code{Void} type and void value \code{()}.} The reason for including the later \ocaml{(latter)} is that the
  6618. \code{vector-set!} operation returns a value of type
  6619. \code{Void}\footnote{Racket's \code{Void} type corresponds to what is
  6620. called the \code{Unit} type in the programming languages
  6621. literature. Racket's \code{Void} type is inhabited by a single value
  6622. \code{void} which corresponds to \code{unit} or \code{()} in the
  6623. literature~\citep{Pierce:2002hj}.}.
  6624. Section~\ref{sec:GC} describes a garbage collection algorithm based on
  6625. copying live objects back and forth between two halves of the
  6626. heap. The garbage collector requires coordination with the compiler so
  6627. that it can see all of the \emph{root} pointers, that is, pointers in
  6628. registers or on the procedure call stack.
  6629. Sections~\ref{sec:expose-allocation} through \ref{sec:print-x86-gc}
  6630. discuss all the necessary changes and additions to the compiler
  6631. passes, including a new compiler pass named \code{expose-allocation}.
  6632. \section{The \LangVec{} \ocaml{(\LangTuple{})} Language}
  6633. \label{sec:r3}
  6634. Figure~\ref{fig:Rvec-concrete-syntax} defines the concrete syntax for
  6635. \LangVec{} \ocaml{(\LangTuple{})} and Figure~\ref{fig:Rvec-syntax} defines the abstract syntax. The
  6636. \LangVec{} language includes three new forms: \code{vector} for creating a
  6637. tuple, \code{vector-ref} for reading an element of a tuple, and
  6638. \code{vector-set!} for writing to an element of a tuple.
  6639. \ocaml{In \LangTuple{}, we write \code{\#} to create a tuple, \code{!\;$n$} to read
  6640. the $n$th element of a tuple and \code{:=\;$n$} to write the $n$th element of
  6641. a tuple. Note that \code{:=} is overloaded: \code{(:= $x$ $e$)} sets variable
  6642. $x$ to $e$ (as in \LangLoop{}), whereas \code{(:= $n$ $e_1$ $e_2$)} writes
  6643. the value of $e_2$ to the $n$th element of the tuple obtained by evaluating $e_1$. Notice too
  6644. that the integer indices in \code{!} and \code{:=} are static constants, \emph{not} expressions that
  6645. might vary at runtime.}
  6646. The program
  6647. in Figure~\ref{fig:vector-eg} shows the usage of tuples in Racket. We
  6648. create a 3-tuple \code{t} and a 1-tuple that is stored at index $2$ of
  6649. the 3-tuple, demonstrating that tuples are first-class values. The
  6650. element at index $1$ of \code{t} is \code{\#t}, so the ``then'' branch
  6651. of the \key{if} is taken. The element at index $0$ of \code{t} is
  6652. \code{40}, to which we add \code{2}, the element at index $0$ of the
  6653. 1-tuple. So the result of the program is \code{42}.
  6654. \ocaml{The \LangTuple{} grammar also contains two other operations. \code{(:\;\Exp\;\Type)}
  6655. is a \emph{type ascription}: it can be read as ``\Exp\; has type \Type.''
  6656. These ascriptions are checked by the type-checker, but are ignored during
  6657. evaluation of the source language.
  6658. We are including them in the language as a hack: certain passes need to know the
  6659. types of sub-expressions, and the type-checker selectively insert ascriptions to make
  6660. that information available. Ascriptions are legal in source programs, but are
  6661. only useful as a kind of documentation about the types the programmer expects.
  6662. The other operation is allocation, written \code{(\#\#\;\Int\;\Type)}. This
  6663. is a strictly internal operation that is produced by an intermediate pass
  6664. in the compiler and is \emph{not} permitted in source code (but may be seen
  6665. in debugging output). Both of these forms explicitly mention types,
  6666. so for the first time we give concrete syntax for \Type. Note that the
  6667. type of a tuple is also written using \code{\#}, followed by a list of
  6668. the element types. Finally, note that we do \emph{not} implement an
  6669. equivalent to the \code{vector-length} operator, which is pretty useless,
  6670. since the length of every tuple is already known statically (see more below).}
  6671. \begin{figure}[tbp]
  6672. \centering
  6673. \fbox{
  6674. \begin{minipage}{0.96\textwidth}
  6675. \[
  6676. \begin{array}{lcl}
  6677. \Type &::=& \gray{\key{Integer} \mid \key{Boolean}}
  6678. \mid \LP\key{Vector}\;\Type\ldots\RP \mid \key{Void}\\
  6679. \Exp &::=& \gray{ \Int \mid \CREAD{} \mid \CNEG{\Exp} \mid \CADD{\Exp}{\Exp} \mid \CSUB{\Exp}{\Exp} } \\
  6680. &\mid& \gray{ \Var \mid \CLET{\Var}{\Exp}{\Exp} }\\
  6681. &\mid& \gray{ \key{\#t} \mid \key{\#f}
  6682. \mid \LP\key{and}\;\Exp\;\Exp\RP
  6683. \mid \LP\key{or}\;\Exp\;\Exp\RP
  6684. \mid \LP\key{not}\;\Exp\RP } \\
  6685. &\mid& \gray{ \LP\itm{cmp}\;\Exp\;\Exp\RP
  6686. \mid \CIF{\Exp}{\Exp}{\Exp} } \\
  6687. &\mid& \LP\key{vector}\;\Exp\ldots\RP
  6688. \mid \LP\key{vector-length}\;\Exp\RP \\
  6689. &\mid& \LP\key{vector-ref}\;\Exp\;\Int\RP
  6690. \mid \LP\key{vector-set!}\;\Exp\;\Int\;\Exp\RP \\
  6691. &\mid& \LP\key{void}\RP \mid \LP\key{has-type}~\Exp~\Type\RP\\
  6692. \LangVec{} &::=& \Exp
  6693. \end{array}
  6694. \]
  6695. \end{minipage}
  6696. }
  6697. \begin{ocamlx}
  6698. \fbox{
  6699. \begin{minipage}{0.96\textwidth}
  6700. \small
  6701. \[
  6702. \begin{array}{rcl}
  6703. \Type &::=& \gray{\key{int} \mid \key{bool} \mid \key{void}}
  6704. \mid \LP\key{\#}\;\Type\ldots\RP\\
  6705. \Exp &::=& \gray{ \Int \mid \CREAD{} \mid \CNEG{\Exp} \mid \CADD{\Exp}{\Exp} \mid \CSUB{\Exp}{\Exp}} \\
  6706. &\mid& \gray{ \Var \mid \code{(let $\Var$ $\Exp$ $\Exp$)}}\\
  6707. &\mid& \gray{\itm{bool}
  6708. \mid (\key{and}\;\Exp\;\Exp) \mid (\key{or}\;\Exp\;\Exp)
  6709. \mid (\key{not}\;\Exp)} \\
  6710. &\mid& \gray{(\itm{cmp}\;\Exp\;\Exp) \mid \CIF{\Exp}{\Exp}{\Exp}} \\
  6711. &\mid& \gray{\code{()} \mid \code{(:= $\Var$ $\Exp$)}
  6712. \mid \code{(seq \Exp\ldots \Exp)}
  6713. \mid \CWHILE{\Exp}{\Exp}} \\
  6714. &\mid& \LP\key{\#}\;\Exp\ldots\RP \mid \LP\key{!}\;\Int\;\Exp\RP \mid \LP\key{:=}\;\Int\;\Exp\;\Exp\RP\\
  6715. &\mid& \LP\key{:}\;\Exp\;\Type\RP \mid \LP\key{\#\#}\;\Int\;\Type\RP\\
  6716. \LangTuple{} &::=& \Exp
  6717. \end{array}
  6718. \]
  6719. \end{minipage}
  6720. }
  6721. \end{ocamlx}
  6722. \caption{The concrete syntax of \LangVec{}, extending \LangIf{}
  6723. (Figure~\ref{fig:Rif-concrete-syntax}). \ocaml{OCaml: The concrete syntax of \LangTuple{}, extending \LangLoop{} (Figure~\ref{fig:Rwhile-concrete-syntax}).}}
  6724. \label{fig:Rvec-concrete-syntax}
  6725. \end{figure}
  6726. \begin{figure}[tbp]
  6727. \begin{lstlisting}
  6728. (let ([t (vector 40 #t (vector 2))])
  6729. (if (vector-ref t 1)
  6730. (+ (vector-ref t 0)
  6731. (vector-ref (vector-ref t 2) 0))
  6732. 44))
  6733. \end{lstlisting}
  6734. \begin{lstlisting}[style=ocaml]
  6735. (let t (# 40 #t (# 2))
  6736. (if (! 1 t)
  6737. (+ (! 0 t)
  6738. (! 0 (! 2 t)))
  6739. 44))
  6740. \end{lstlisting}
  6741. \caption{Example program that creates tuples and reads from them.}
  6742. \label{fig:vector-eg}
  6743. \end{figure}
  6744. \begin{figure}[tp]
  6745. \centering
  6746. \fbox{
  6747. \begin{minipage}{0.96\textwidth}
  6748. \[
  6749. \begin{array}{lcl}
  6750. \itm{op} &::=& \ldots \mid \code{vector} \mid \code{vector-length} \\
  6751. \Exp &::=& \gray{ \INT{\Int} \mid \VAR{\Var} \mid \LET{\Var}{\Exp}{\Exp} } \\
  6752. &\mid& \gray{ \PRIM{\itm{op}}{\Exp\ldots}
  6753. \mid \BOOL{\itm{bool}}
  6754. \mid \IF{\Exp}{\Exp}{\Exp} } \\
  6755. &\mid& \VECREF{\Exp}{\INT{\Int}}\\
  6756. &\mid& \VECSET{\Exp}{\INT{\Int}}{\Exp} \\
  6757. &\mid& \VOID{} \mid \LP\key{HasType}~\Exp~\Type \RP \\
  6758. \LangVec{} &::=& \PROGRAM{\key{'()}}{\Exp}
  6759. \end{array}
  6760. \]
  6761. \end{minipage}
  6762. }
  6763. \begin{lstlisting}[style=ocaml,frame=single]
  6764. type typ = IntT | BoolT | VoidT | TupleT of typ list
  6765. type cmp = Eq | Lt | Le | Gt | Ge
  6766. type primop = Read | Neg | Add | Sub | And | Or | Not | Cmp of cmp
  6767. | GetField of int | SetField of int | Alloc of int * typ
  6768. type var = string
  6769. type exp =
  6770. Int of int64
  6771. | Bool of bool
  6772. | Prim of primop * exp list
  6773. | Var of var
  6774. | Let of var * exp * exp
  6775. | If of exp * exp * exp
  6776. | Void
  6777. | Set of var * exp
  6778. | Seq of exp list * exp
  6779. | While of exp * exp
  6780. | Tuple of exp list
  6781. | HasType of exp * typ
  6782. type 'info program = Program of 'info * exp
  6783. \end{lstlisting}
  6784. \caption{The abstract syntax of \LangVec{} \ocaml{\LangTuple{}}.}
  6785. \label{fig:Rvec-syntax}
  6786. \end{figure}
  6787. \index{allocate}
  6788. \index{heap allocate}
  6789. Tuples are our first encounter with heap-allocated data, which raises
  6790. several interesting issues. First, variable binding performs a
  6791. shallow-copy when dealing with tuples, which means that different
  6792. variables can refer to the same tuple, that is, different variables
  6793. can be \emph{aliases} for the same entity. Consider the following
  6794. example in which both \code{t1} and \code{t2} refer to the same tuple.
  6795. Thus, the mutation through \code{t2} is visible when referencing the
  6796. tuple from \code{t1}, so the result of this program is \code{42}.
  6797. \index{alias}\index{mutation}
  6798. \begin{center}
  6799. \begin{minipage}{0.96\textwidth}
  6800. \begin{lstlisting}
  6801. (let ([t1 (vector 3 7)])
  6802. (let ([t2 t1])
  6803. (let ([_ (vector-set! t2 0 42)])
  6804. (vector-ref t1 0))))
  6805. \end{lstlisting}
  6806. \end{minipage}
  6807. \begin{minipage}{0.96\textwidth}
  6808. \begin{lstlisting}[style=ocaml]
  6809. (let t1 (# 3 7)
  6810. (let t2 t1
  6811. (seq (:= 0 t2 42)
  6812. (! 0 t1))))
  6813. \end{lstlisting}
  6814. \end{minipage}
  6815. \end{center}
  6816. The next issue concerns the lifetime of tuples. Of course, they are
  6817. created by the \code{vector} form, but when does their lifetime end?
  6818. Notice that \LangVec{} \ocaml{(\LangTuple{})} does not include an operation for deleting
  6819. tuples. Furthermore, the lifetime of a tuple is not tied to any notion
  6820. of static scoping. For example, the following program returns
  6821. \code{42} even though the variable \code{w} goes out of scope prior to
  6822. the \code{vector-ref} that reads from the vector it was bound to.
  6823. \begin{center}
  6824. \begin{minipage}{0.96\textwidth}
  6825. \begin{lstlisting}
  6826. (let ([v (vector (vector 44))])
  6827. (let ([x (let ([w (vector 42)])
  6828. (let ([_ (vector-set! v 0 w)])
  6829. 0))])
  6830. (+ x (vector-ref (vector-ref v 0) 0))))
  6831. \end{lstlisting}
  6832. \end{minipage}
  6833. \begin{minipage}{0.96\textwidth}
  6834. \begin{lstlisting}[style=ocaml]
  6835. (let v (# (# 44))
  6836. (let x (let w (# 42)
  6837. (seq (:= 0 v w)
  6838. 0))
  6839. (+ x (! 0 (! 0 v)))))
  6840. \end{lstlisting}
  6841. \end{minipage}
  6842. \end{center}
  6843. From the perspective of programmer-observable behavior, tuples live
  6844. forever. Of course, if they really lived forever, then many programs
  6845. would run out of memory.\footnote{The \LangVec{} language does not have
  6846. looping or recursive functions, so it is nigh impossible to write a
  6847. program in \LangVec{} that will run out of memory. However, we add
  6848. recursive functions in the next Chapter! \ocaml{We have already added loops.}} A Racket \ocaml{(and \LangVec{} or \LangTuple{})} implementation
  6849. must therefore perform automatic garbage collection.
  6850. Figure~\ref{fig:interp-Rvec} shows the definitional interpreter for the
  6851. \LangVec{} language. \ocaml{The OCaml version is in file \code{RTuple.ml}.} We define the \code{vector}, \code{vector-length},
  6852. \code{vector-ref}, and \code{vector-set!} operations for \LangVec{} in
  6853. terms of the corresponding operations in Racket. \ocaml{In OCaml these are defined
  6854. in terms of operations on \code{array}s.} One subtle point is
  6855. that the \code{vector-set!} operation returns the \code{\#<void>}
  6856. value. The \code{\#<void>} value can be passed around just like other
  6857. values inside an \LangVec{} program and a \code{\#<void>} value can be
  6858. compared for equality with another \code{\#<void>} value. \ocaml{This is not true
  6859. in our version; just as for the other Void-typed expressions in \LangLoop{}, our typing
  6860. rules require that \code{:=\;$n$} operations appear only in effectful positions, e.g. a non-final
  6861. position of a \code{seq}.} However,
  6862. there are no other operations specific to the the \code{\#<void>}
  6863. value in \LangVec{}. In contrast, Racket defines the \code{void?} predicate
  6864. that returns \code{\#t} when applied to \code{\#<void>} and \code{\#f}
  6865. otherwise.
  6866. \begin{figure}[tbp]
  6867. \begin{lstlisting}
  6868. (define interp-Rvec-class
  6869. (class interp-Rif-class
  6870. (super-new)
  6871. (define/override (interp-op op)
  6872. (match op
  6873. ['eq? (lambda (v1 v2)
  6874. (cond [(or (and (fixnum? v1) (fixnum? v2))
  6875. (and (boolean? v1) (boolean? v2))
  6876. (and (vector? v1) (vector? v2))
  6877. (and (void? v1) (void? v2)))
  6878. (eq? v1 v2)]))]
  6879. ['vector vector]
  6880. ['vector-length vector-length]
  6881. ['vector-ref vector-ref]
  6882. ['vector-set! vector-set!]
  6883. [else (super interp-op op)]
  6884. ))
  6885. (define/override ((interp-exp env) e)
  6886. (define recur (interp-exp env))
  6887. (match e
  6888. [(HasType e t) (recur e)]
  6889. [(Void) (void)]
  6890. [else ((super interp-exp env) e)]
  6891. ))
  6892. ))
  6893. (define (interp-Rvec p)
  6894. (send (new interp-Rvec-class) interp-program p))
  6895. \end{lstlisting}
  6896. \caption{Interpreter for the \LangVec{} language.}
  6897. \label{fig:interp-Rvec}
  6898. \end{figure}
  6899. Figure~\ref{fig:type-check-Rvec} \ocaml{(file \code{Rtuple.ml})} shows the type checker for \LangVec{}, which
  6900. deserves some explanation. When allocating a vector, we need to know
  6901. which elements of the vector are pointers (i.e. are also vectors). We
  6902. can obtain this information during type checking. The type checker in
  6903. Figure~\ref{fig:type-check-Rvec} not only computes the type of an
  6904. expression, it also wraps every \key{vector} creation with the form
  6905. $(\key{HasType}~e~T)$ \ocaml{(\key{:}~e~T)}, where $T$ is the vector's type.
  6906. %
  6907. To create the s-expression for the \code{Vector} type in
  6908. Figure~\ref{fig:type-check-Rvec}, we use the
  6909. \href{https://docs.racket-lang.org/reference/quasiquote.html}{unquote-splicing
  6910. operator} \code{,@} to insert the list \code{t*} without its usual
  6911. start and end parentheses. \index{unquote-slicing}
  6912. \ocaml{Tuples can be compared for equality, using reference rather than structural
  6913. equality, i.e. separately allocated tuples compare as different even if their
  6914. contents are the same field by field. \LangTuple{} uses a stricter type check on equality than
  6915. \LangVec{}: only tuples of the same size amd element types can be compared.
  6916. Tuples can have any size between 0 and 50, inclusive. The upper limit is
  6917. due to implementation considerations discussed later. Zero-length tuples are
  6918. legal value, but of limited use (they are quite similar to the unit value \code{()},
  6919. except that each is separately allocated, so they can be used as unique labels).}
  6920. \begin{figure}[tp]
  6921. \begin{lstlisting}[basicstyle=\ttfamily\scriptsize]
  6922. (define type-check-Rvec-class
  6923. (class type-check-Rif-class
  6924. (super-new)
  6925. (inherit check-type-equal?)
  6926. (define/override (type-check-exp env)
  6927. (lambda (e)
  6928. (define recur (type-check-exp env))
  6929. (match e
  6930. [(Void) (values (Void) 'Void)]
  6931. [(Prim 'vector es)
  6932. (define-values (e* t*) (for/lists (e* t*) ([e es]) (recur e)))
  6933. (define t `(Vector ,@t*))
  6934. (values (HasType (Prim 'vector e*) t) t)]
  6935. [(Prim 'vector-ref (list e1 (Int i)))
  6936. (define-values (e1^ t) (recur e1))
  6937. (match t
  6938. [`(Vector ,ts ...)
  6939. (unless (and (0 . <= . i) (i . < . (length ts)))
  6940. (error 'type-check "index ~a out of bounds\nin ~v" i e))
  6941. (values (Prim 'vector-ref (list e1^ (Int i))) (list-ref ts i))]
  6942. [else (error 'type-check "expect Vector, not ~a\nin ~v" t e)])]
  6943. [(Prim 'vector-set! (list e1 (Int i) arg) )
  6944. (define-values (e-vec t-vec) (recur e1))
  6945. (define-values (e-arg^ t-arg) (recur arg))
  6946. (match t-vec
  6947. [`(Vector ,ts ...)
  6948. (unless (and (0 . <= . i) (i . < . (length ts)))
  6949. (error 'type-check "index ~a out of bounds\nin ~v" i e))
  6950. (check-type-equal? (list-ref ts i) t-arg e)
  6951. (values (Prim 'vector-set! (list e-vec (Int i) e-arg^)) 'Void)]
  6952. [else (error 'type-check "expect Vector, not ~a\nin ~v" t-vec e)])]
  6953. [(Prim 'vector-length (list e))
  6954. (define-values (e^ t) (recur e))
  6955. (match t
  6956. [`(Vector ,ts ...)
  6957. (values (Prim 'vector-length (list e^)) 'Integer)]
  6958. [else (error 'type-check "expect Vector, not ~a\nin ~v" t e)])]
  6959. [(Prim 'eq? (list arg1 arg2))
  6960. (define-values (e1 t1) (recur arg1))
  6961. (define-values (e2 t2) (recur arg2))
  6962. (match* (t1 t2)
  6963. [(`(Vector ,ts1 ...) `(Vector ,ts2 ...)) (void)]
  6964. [(other wise) (check-type-equal? t1 t2 e)])
  6965. (values (Prim 'eq? (list e1 e2)) 'Boolean)]
  6966. [(HasType (Prim 'vector es) t)
  6967. ((type-check-exp env) (Prim 'vector es))]
  6968. [(HasType e1 t)
  6969. (define-values (e1^ t^) (recur e1))
  6970. (check-type-equal? t t^ e)
  6971. (values (HasType e1^ t) t)]
  6972. [else ((super type-check-exp env) e)]
  6973. )))
  6974. ))
  6975. (define (type-check-Rvec p)
  6976. (send (new type-check-Rvec-class) type-check-program p))
  6977. \end{lstlisting}
  6978. \caption{Type checker for the \LangVec{} language.}
  6979. \label{fig:type-check-Rvec}
  6980. \end{figure}
  6981. \section{Garbage Collection}
  6982. \label{sec:GC}
  6983. Here we study a relatively simple algorithm for garbage collection
  6984. that is the basis of state-of-the-art garbage
  6985. collectors~\citep{Lieberman:1983aa,Ungar:1984aa,Jones:1996aa,Detlefs:2004aa,Dybvig:2006aa,Tene:2011kx}. In
  6986. particular, we describe a two-space copying
  6987. collector~\citep{Wilson:1992fk} that uses Cheney's algorithm to
  6988. perform the
  6989. copy~\citep{Cheney:1970aa}.
  6990. \index{copying collector}
  6991. \index{two-space copying collector}
  6992. Figure~\ref{fig:copying-collector} gives a
  6993. coarse-grained depiction of what happens in a two-space collector,
  6994. showing two time steps, prior to garbage collection (on the top) and
  6995. after garbage collection (on the bottom). In a two-space collector,
  6996. the heap is divided into two parts named the FromSpace and the
  6997. ToSpace. Initially, all allocations go to the FromSpace until there is
  6998. not enough room for the next allocation request. At that point, the
  6999. garbage collector goes to work to make more room.
  7000. \index{ToSpace}
  7001. \index{FromSpace}
  7002. The garbage collector must be careful not to reclaim tuples that will
  7003. be used by the program in the future. Of course, it is impossible in
  7004. general to predict what a program will do, but we can over approximate
  7005. the will-be-used tuples by preserving all tuples that could be
  7006. accessed by \emph{any} program given the current computer state. A
  7007. program could access any tuple whose address is in a register or on
  7008. the procedure call stack. These addresses are called the \emph{root
  7009. set}\index{root set}. In addition, a program could access any tuple that is
  7010. transitively reachable from the root set. Thus, it is safe for the
  7011. garbage collector to reclaim the tuples that are not reachable in this
  7012. way.
  7013. So the goal of the garbage collector is twofold:
  7014. \begin{enumerate}
  7015. \item preserve all tuple that are reachable from the root set via a
  7016. path of pointers, that is, the \emph{live} tuples, and
  7017. \item reclaim the memory of everything else, that is, the
  7018. \emph{garbage}.
  7019. \end{enumerate}
  7020. A copying collector accomplishes this by copying all of the live
  7021. objects from the FromSpace into the ToSpace and then performs a sleight
  7022. of hand, treating the ToSpace as the new FromSpace and the old
  7023. FromSpace as the new ToSpace. In the example of
  7024. Figure~\ref{fig:copying-collector}, there are three pointers in the
  7025. root set, one in a register and two on the stack. All of the live
  7026. objects have been copied to the ToSpace (the right-hand side of
  7027. Figure~\ref{fig:copying-collector}) in a way that preserves the
  7028. pointer relationships. For example, the pointer in the register still
  7029. points to a 2-tuple whose first element is a 3-tuple and whose second
  7030. element is a 2-tuple. There are four tuples that are not reachable
  7031. from the root set and therefore do not get copied into the ToSpace.
  7032. The exact situation in Figure~\ref{fig:copying-collector} cannot be
  7033. created by a well-typed program in \LangVec{} \ocaml{(or \LangTuple{})} because it contains a
  7034. cycle. However, creating cycles will be possible once we get to \LangAny{}.
  7035. \ocaml{Our inability to construct a cycle in the heap in \LangTuple{}
  7036. is due to the type system, not the operational semantics. To see why,
  7037. try assigning a type to \code{a} in \code{(let a (\# 0) (:= 0 a a))}.}
  7038. We design the garbage collector to deal with cycles to begin with so
  7039. we will not need to revisit this issue.
  7040. \begin{figure}[tbp]
  7041. \centering
  7042. \includegraphics[width=\textwidth]{figs/copy-collect-1} \\[5ex]
  7043. \includegraphics[width=\textwidth]{figs/copy-collect-2}
  7044. \caption{A copying collector in action.}
  7045. \label{fig:copying-collector}
  7046. \end{figure}
  7047. There are many alternatives to copying collectors (and their bigger
  7048. siblings, the generational collectors) when its comes to garbage
  7049. collection, such as mark-and-sweep~\citep{McCarthy:1960dz} and
  7050. reference counting~\citep{Collins:1960aa}. The strengths of copying
  7051. collectors are that allocation is fast (just a comparison and pointer
  7052. increment), there is no fragmentation, cyclic garbage is collected,
  7053. and the time complexity of collection only depends on the amount of
  7054. live data, and not on the amount of garbage~\citep{Wilson:1992fk}. The
  7055. main disadvantages of a two-space copying collector is that it uses a
  7056. lot of space and takes a long time to perform the copy, though these
  7057. problems are ameliorated in generational collectors. Racket and
  7058. Scheme programs tend to allocate many small objects and generate a lot
  7059. of garbage, so copying and generational collectors are a good fit.
  7060. Garbage collection is an active research topic, especially concurrent
  7061. garbage collection~\citep{Tene:2011kx}. Researchers are continuously
  7062. developing new techniques and revisiting old
  7063. trade-offs~\citep{Blackburn:2004aa,Jones:2011aa,Shahriyar:2013aa,Cutler:2015aa,Shidal:2015aa,Osterlund:2016aa,Jacek:2019aa,Gamari:2020aa}. Researchers
  7064. meet every year at the International Symposium on Memory Management to
  7065. present these findings.
  7066. \subsection{Graph Copying via Cheney's Algorithm}
  7067. \label{sec:cheney}
  7068. \index{Cheney's algorithm}
  7069. Let us take a closer look at the copying of the live objects. The
  7070. allocated objects and pointers can be viewed as a graph and we need to
  7071. copy the part of the graph that is reachable from the root set. To
  7072. make sure we copy all of the reachable vertices in the graph, we need
  7073. an exhaustive graph traversal algorithm, such as depth-first search or
  7074. breadth-first search~\citep{Moore:1959aa,Cormen:2001uq}. Recall that
  7075. such algorithms take into account the possibility of cycles by marking
  7076. which vertices have already been visited, so as to ensure termination
  7077. of the algorithm. These search algorithms also use a data structure
  7078. such as a stack or queue as a to-do list to keep track of the vertices
  7079. that need to be visited. We use breadth-first search and a trick
  7080. due to \citet{Cheney:1970aa} for simultaneously representing the queue
  7081. and copying tuples into the ToSpace.
  7082. Figure~\ref{fig:cheney} shows several snapshots of the ToSpace as the
  7083. copy progresses. The queue is represented by a chunk of contiguous
  7084. memory at the beginning of the ToSpace, using two pointers to track
  7085. the front and the back of the queue. The algorithm starts by copying
  7086. all tuples that are immediately reachable from the root set into the
  7087. ToSpace to form the initial queue. When we copy a tuple, we mark the
  7088. old tuple to indicate that it has been visited. We discuss how this
  7089. marking is accomplish in Section~\ref{sec:data-rep-gc}. Note that any
  7090. pointers inside the copied tuples in the queue still point back to the
  7091. FromSpace. Once the initial queue has been created, the algorithm
  7092. enters a loop in which it repeatedly processes the tuple at the front
  7093. of the queue and pops it off the queue. To process a tuple, the
  7094. algorithm copies all the tuple that are directly reachable from it to
  7095. the ToSpace, placing them at the back of the queue. The algorithm then
  7096. updates the pointers in the popped tuple so they point to the newly
  7097. copied tuples.
  7098. \begin{figure}[tbp]
  7099. \centering \includegraphics[width=0.9\textwidth]{figs/cheney}
  7100. \caption{Depiction of the Cheney algorithm copying the live tuples.}
  7101. \label{fig:cheney}
  7102. \end{figure}
  7103. Getting back to Figure~\ref{fig:cheney}, in the first step we copy the
  7104. tuple whose second element is $42$ to the back of the queue. The other
  7105. pointer goes to a tuple that has already been copied, so we do not
  7106. need to copy it again, but we do need to update the pointer to the new
  7107. location. This can be accomplished by storing a \emph{forwarding
  7108. pointer} to the new location in the old tuple, back when we initially
  7109. copied the tuple into the ToSpace. This completes one step of the
  7110. algorithm. The algorithm continues in this way until the front of the
  7111. queue is empty, that is, until the front catches up with the back.
  7112. \subsection{Data Representation}
  7113. \label{sec:data-rep-gc}
  7114. The garbage collector places some requirements on the data
  7115. representations used by our compiler. First, the garbage collector
  7116. needs to distinguish between pointers and other kinds of data. There
  7117. are several ways to accomplish this.
  7118. \begin{enumerate}
  7119. \item Attached a tag to each object that identifies what type of
  7120. object it is~\citep{McCarthy:1960dz}.
  7121. \item Store different types of objects in different
  7122. regions~\citep{Steele:1977ab}.
  7123. \item Use type information from the program to either generate
  7124. type-specific code for collecting or to generate tables that can
  7125. guide the
  7126. collector~\citep{Appel:1989aa,Goldberg:1991aa,Diwan:1992aa}.
  7127. \end{enumerate}
  7128. Dynamically typed languages, such as Lisp, need to tag objects
  7129. anyways, so option 1 is a natural choice for those languages.
  7130. However, \LangVec{} is a statically typed language, so it would be
  7131. unfortunate to require tags on every object, especially small and
  7132. pervasive objects like integers and Booleans. Option 3 is the
  7133. best-performing choice for statically typed languages, but comes with
  7134. a relatively high implementation complexity. To keep this chapter
  7135. within a 2-week time budget, we recommend a combination of options 1
  7136. and 2, using separate strategies for the stack and the heap.
  7137. Regarding the stack, we recommend using a separate stack for pointers,
  7138. which we call a \emph{root stack}\index{root stack} (a.k.a. ``shadow
  7139. stack'')~\citep{Siebert:2001aa,Henderson:2002aa,Baker:2009aa}. That
  7140. is, when a local variable needs to be spilled and is of type
  7141. \code{(Vector $\Type_1 \ldots \Type_n$)}, then we put it on the root
  7142. stack instead of the normal procedure call stack. Furthermore, we
  7143. always spill vector-typed variables if they are live during a call to
  7144. the collector, thereby ensuring that no pointers are in registers
  7145. during a collection. Figure~\ref{fig:shadow-stack} reproduces the
  7146. example from Figure~\ref{fig:copying-collector} and contrasts it with
  7147. the data layout using a root stack. The root stack contains the two
  7148. pointers from the regular stack and also the pointer in the second
  7149. register.
  7150. \ocaml{Because our language still defines just one function, \code{main},
  7151. it may not be clear that the root stack (just like the regular stack)
  7152. is designed to be shared among all functions. This will
  7153. allow the collector to find all the roots from all the
  7154. currently suspended functions (waiting to be returned to) as well as from
  7155. the current function.}
  7156. \begin{figure}[tbp]
  7157. \centering \includegraphics[width=0.60\textwidth]{figs/root-stack}
  7158. \caption{Maintaining a root stack to facilitate garbage collection.}
  7159. \label{fig:shadow-stack}
  7160. \end{figure}
  7161. The problem of distinguishing between pointers and other kinds of data
  7162. also arises inside of each tuple on the heap. We solve this problem by
  7163. attaching a tag, an extra 64-bits, to each
  7164. tuple. Figure~\ref{fig:tuple-rep} zooms in on the tags for two of the
  7165. tuples in the example from Figure~\ref{fig:copying-collector}. Note
  7166. that we have drawn the bits in a big-endian way, from right-to-left,
  7167. with bit location 0 (the least significant bit) on the far right,
  7168. which corresponds to the direction of the x86 shifting instructions
  7169. \key{salq} (shift left) and \key{sarq} (shift right). Part of each tag
  7170. is dedicated to specifying which elements of the tuple are pointers,
  7171. the part labeled ``pointer mask''. Within the pointer mask, a 1 bit
  7172. indicates there is a pointer and a 0 bit indicates some other kind of
  7173. data. \ocaml{The least significant bit corresponds to the status of the
  7174. first tuple element, the next-least signficant to the second tuple element, and so on.
  7175. The tag itself is not considered an element, and so does not get a corresponding bit.}
  7176. The pointer mask starts at bit location 7. We have limited
  7177. tuples to a maximum size of 50 elements, so we just need 50 bits for
  7178. the pointer mask. The tag also contains two other pieces of
  7179. information. The length of the tuple (number of elements \ocaml{not including the tag itself}) is stored in
  7180. bits location 1 through 6. Finally, the bit at location 0 indicates
  7181. whether the tuple has yet to be copied to the ToSpace. If the bit has
  7182. value 1, then this tuple has not yet been copied. If the bit has
  7183. value 0 then the entire tag is a forwarding pointer. (The lower 3 bits
  7184. of a pointer are always zero anyways because our tuples are 8-byte
  7185. aligned.)
  7186. \begin{figure}[tbp]
  7187. \centering \includegraphics[width=0.8\textwidth]{figs/tuple-rep}
  7188. \caption{Representation of tuples in the heap.}
  7189. \label{fig:tuple-rep}
  7190. \end{figure}
  7191. \subsection{Implementation of the Garbage Collector}
  7192. \label{sec:organize-gz}
  7193. \index{prelude}
  7194. An implementation of the copying collector is provided in the
  7195. \code{runtime.c} file. Figure~\ref{fig:gc-header} defines the
  7196. interface to the garbage collector that is used by the compiler. The
  7197. \code{initialize} function creates the FromSpace, ToSpace, and root
  7198. stack and should be called in the prelude of the \code{main}
  7199. function. The arguments of \code{initialize} are the root stack size
  7200. and the \ocaml{initial} heap size \ocaml{in bytes}. Both need to be multiples of $64$ \ocaml{$8$}} and $16384$ is a
  7201. good choice for both. \ocaml{Really, these choices are quite arbitrary! The root stack size
  7202. should be large enough to make sure that this stack does not overflow (because we will
  7203. live dangerously and not check for this). Since \LangTuple{} lacks recursion, this stack can never have more
  7204. than one entry for each static tuple creation in the program, so a few hundred slots should be plenty!
  7205. Our collector implementation automatically resizes the heap as needed, so the initial heap size
  7206. doesn't matter much, but it should be set small (say to 8 bytes; 0 is too small!) if you want to exercise
  7207. the collector as vigorously as possible.}
  7208. The \code{initialize} function puts the address
  7209. of the beginning of the FromSpace into the global variable
  7210. \code{free\_ptr}. The global variable \code{fromspace\_end} points to
  7211. the address that is 1-past the last element of the FromSpace. (We use
  7212. half-open intervals to represent chunks of
  7213. memory~\citep{Dijkstra:1982aa}.) The \code{rootstack\_begin} variable
  7214. points to the first element of the root stack. \ocaml{The value of \code{rootstack\_begin}
  7215. is returned as the result of \code{initialize}.}
  7216. As long as there is room left in the FromSpace, your generated code
  7217. can allocate tuples simply by moving the \code{free\_ptr} forward.
  7218. %
  7219. The amount of room left in FromSpace is the difference between the
  7220. \code{fromspace\_end} and the \code{free\_ptr}. The \code{collect}
  7221. function should be called when there is not enough room left in the
  7222. FromSpace for the next allocation. The \code{collect} function takes
  7223. a pointer to the current top of the root stack (one past the last item
  7224. that was pushed) and the number of bytes that need to be
  7225. allocated. The \code{collect} function performs the copying collection
  7226. and leaves the heap in a state such that the next allocation will
  7227. succeed.
  7228. \begin{figure}[tbp]
  7229. \begin{lstlisting}
  7230. void initialize(uint64_t rootstack_size, uint64_t heap_size);
  7231. void collect(int64_t** rootstack_ptr, uint64_t bytes_requested);
  7232. int64_t* free_ptr;
  7233. int64_t* fromspace_begin;
  7234. int64_t* fromspace_end;
  7235. int64_t** rootstack_begin;
  7236. \end{lstlisting}
  7237. \caption{The compiler's interface to the garbage collector.}
  7238. \label{fig:gc-header}
  7239. \end{figure}
  7240. \begin{ocamlx}
  7241. For simplicity, we will package things slightly differently. Instead of
  7242. performing the heap limit check and allocation inline in the generated
  7243. code, you should instead invoke the \code{alloc} function provided in
  7244. \code{runtime.c}. This function takes the top of the root stack,
  7245. the number of bytes to be allocated (including tag), and the tag value;
  7246. it does the limit check, invokes \code{collect}
  7247. if necessary, writes the tag, and returns a pointer to the allocated bytes.
  7248. This approach has the advantage of hiding most details of allocation and collection from the
  7249. code generator. On the other hand, it is a lot less efficient than in-line
  7250. allocation, and thus would be inappropriate for a production compiler for
  7251. a heavily-allocating language (like Racket or OCaml!), although it might be
  7252. fine for a typical OO language like Java.
  7253. \end{ocamlx}
  7254. %% \begin{exercise}
  7255. %% In the file \code{runtime.c} you will find the implementation of
  7256. %% \code{initialize} and a partial implementation of \code{collect}.
  7257. %% The \code{collect} function calls another function, \code{cheney},
  7258. %% to perform the actual copy, and that function is left to the reader
  7259. %% to implement. The following is the prototype for \code{cheney}.
  7260. %% \begin{lstlisting}
  7261. %% static void cheney(int64_t** rootstack_ptr);
  7262. %% \end{lstlisting}
  7263. %% The parameter \code{rootstack\_ptr} is a pointer to the top of the
  7264. %% rootstack (which is an array of pointers). The \code{cheney} function
  7265. %% also communicates with \code{collect} through the global
  7266. %% variables \code{fromspace\_begin} and \code{fromspace\_end}
  7267. %% mentioned in Figure~\ref{fig:gc-header} as well as the pointers for
  7268. %% the ToSpace:
  7269. %% \begin{lstlisting}
  7270. %% static int64_t* tospace_begin;
  7271. %% static int64_t* tospace_end;
  7272. %% \end{lstlisting}
  7273. %% The job of the \code{cheney} function is to copy all the live
  7274. %% objects (reachable from the root stack) into the ToSpace, update
  7275. %% \code{free\_ptr} to point to the next unused spot in the ToSpace,
  7276. %% update the root stack so that it points to the objects in the
  7277. %% ToSpace, and finally to swap the global pointers for the FromSpace
  7278. %% and ToSpace.
  7279. %% \end{exercise}
  7280. %% \section{Compiler Passes}
  7281. %% \label{sec:code-generation-gc}
  7282. The introduction of garbage collection has a non-trivial impact on our
  7283. compiler passes. We introduce a new compiler pass named
  7284. \code{expose-allocation}. We make
  7285. significant changes to \code{select-instructions},
  7286. \code{build-interference}, \code{allocate-registers}, and
  7287. \code{print-x86} and make minor changes in several more passes. The
  7288. following program will serve as our running example. It creates two
  7289. tuples, one nested inside the other. Both tuples have length one. The
  7290. program accesses the element in the inner tuple tuple via two vector
  7291. references.
  7292. % tests/s2_17.rkt
  7293. \begin{lstlisting}
  7294. (vector-ref (vector-ref (vector (vector 42)) 0) 0)
  7295. \end{lstlisting}
  7296. \begin{ocamlx}
  7297. \begin{lstlisting}
  7298. (! 0 (! 0 (# (# 42))))
  7299. \end{lstlisting}
  7300. \end{ocamlx}
  7301. \section{Shrink}
  7302. \label{sec:shrink-Rvec}
  7303. Recall that the \code{shrink} pass translates the primitives operators
  7304. into a smaller set of primitives. Because this pass comes after type
  7305. checking, but before the passes that require the type information in
  7306. the \code{HasType} AST nodes, the \code{shrink} pass must be modified
  7307. to wrap \code{HasType} around each AST node that it generates.
  7308. \ocaml{This is a mysterious statement, which I suspect is due to versions
  7309. shifting underneath this book. In any case, we have only put a \code{HasType} around
  7310. each \code{Tuple} node. We just need to make sure that these are preserved.}
  7311. \section{Expose Allocation}
  7312. \label{sec:expose-allocation}
  7313. The pass \code{expose-allocation} lowers the \code{vector} creation
  7314. form into a conditional call to the collector followed by the
  7315. allocation. We choose to place the \code{expose-allocation} pass
  7316. before \code{remove-complex-opera*} because the code generated by
  7317. \code{expose-allocation} contains complex operands. We also place
  7318. \code{expose-allocation} before \code{explicate-control} because
  7319. \code{expose-allocation} introduces new variables using \code{let},
  7320. but \code{let} is gone after \code{explicate-control}.
  7321. The output of \code{expose-allocation} is a language \LangAlloc{} \ocaml{(we remain
  7322. within the \LangTuple{} language)} that
  7323. extends \LangVec{} with the three new forms that we use in the translation
  7324. of the \code{vector} form.
  7325. \[
  7326. \begin{array}{lcl}
  7327. \Exp &::=& \cdots
  7328. \mid (\key{collect} \,\itm{int})
  7329. \mid (\key{allocate} \,\itm{int}\,\itm{type})
  7330. \mid (\key{global-value} \,\itm{name})
  7331. \end{array}
  7332. \]
  7333. The $(\key{collect}\,n)$ form runs the garbage collector, requesting
  7334. $n$ bytes. It will become a call to the \code{collect} function in
  7335. \code{runtime.c} in \code{select-instructions}. The
  7336. $(\key{allocate}\,n\,T)$ form creates an tuple of $n$ elements.
  7337. \index{allocate}
  7338. The $T$ parameter is the type of the tuple: \code{(Vector $\Type_1 \ldots
  7339. \Type_n$)} where $\Type_i$ is the type of the $i$th element in the
  7340. tuple. The $(\key{global-value}\,\itm{name})$ form reads the value of
  7341. a global variable, such as \code{free\_ptr}.
  7342. \ocaml{Of these, we retain only an \code{Alloc} primop, written \code{\#\#}
  7343. in concrete syntax produced by debug output. This operation includes the
  7344. heap limit checking and conditional call to the collector described in
  7345. Section~\ref{sec:organize-gz}. This pass should remove all \text{Tuple}
  7346. and \text{HasType} constructors.}
  7347. In the following, we show the transformation for the \code{vector}
  7348. form into 1) a sequence of let-bindings for the initializing
  7349. expressions, 2) a conditional call to \code{collect} \ocaml{(not for us)}, 3) a call to
  7350. \code{allocate}, and 4) the initialization of the vector. In the
  7351. following, \itm{len} refers to the length of the vector \ocaml{(\emph{excluding} the tag)} and
  7352. \itm{bytes} is how many total bytes need to be allocated for the
  7353. vector \ocaml{(\emph{including} the tag)}, which is 8 for the tag plus \itm{len} times 8.
  7354. \begin{lstlisting}
  7355. (has-type (vector |$e_0 \ldots e_{n-1}$|) |\itm{type}|)
  7356. |$\Longrightarrow$|
  7357. (let ([|$x_0$| |$e_0$|]) ... (let ([|$x_{n-1}$| |$e_{n-1}$|])
  7358. (let ([_ (if (< (+ (global-value free_ptr) |\itm{bytes}|)
  7359. (global-value fromspace_end))
  7360. (void)
  7361. (collect |\itm{bytes}|))])
  7362. (let ([|$v$| (allocate |\itm{len}| |\itm{type}|)])
  7363. (let ([_ (vector-set! |$v$| |$0$| |$x_0$|)]) ...
  7364. (let ([_ (vector-set! |$v$| |$n-1$| |$x_{n-1}$|)])
  7365. |$v$|) ... )))) ...)
  7366. \end{lstlisting}
  7367. In the above, we suppressed all of the \code{has-type} forms in the
  7368. output for the sake of readability. \ocaml{(Again, this is mysterious; never mind.)} The placement of the initializing
  7369. expressions $e_0,\ldots,e_{n-1}$ prior to the \code{allocate} and the
  7370. sequence of \code{vector-set!} is important, as those expressions may
  7371. trigger garbage collection and we cannot have an allocated but
  7372. uninitialized tuple on the heap during a collection.
  7373. \begin{ocamlx}
  7374. Here is our equivalent:
  7375. \begin{lstlisting}
  7376. (: (# |$e_0 \ldots e_{n-1}$|) |\itm{type}|)
  7377. |$\Longrightarrow$|
  7378. (let |$x_0$| |$e_0$| ... (let |$x_{n-1}$| |$e_{n-1}$|
  7379. (let |$v$| (## |\itm{len}| |\itm{type}|)
  7380. (seq (:= |$0$| |$v$| |$x_0$|) ...
  7381. (:= |$n-1$| |$v$| |$x_{n-1}$|)
  7382. |$v$|) ... )) ...)
  7383. \end{lstlisting}
  7384. Actually, we can (and should) do a little better than this: any $e_i$ that is already an atom can
  7385. be used directly in the assignment without the need for defining a fresh variable $x_i$. The
  7386. parallels to RemoveComplexOperands should be obvious.
  7387. \end{ocamlx}
  7388. Figure~\ref{fig:expose-alloc-output} shows the output of the
  7389. \code{expose-allocation} pass on our running example.
  7390. \begin{figure}[tbp]
  7391. % tests/s2_17.rkt
  7392. \begin{lstlisting}
  7393. (vector-ref
  7394. (vector-ref
  7395. (let ([vecinit7976
  7396. (let ([vecinit7972 42])
  7397. (let ([collectret7974
  7398. (if (< (+ (global-value free_ptr) 16)
  7399. (global-value fromspace_end))
  7400. (void)
  7401. (collect 16)
  7402. )])
  7403. (let ([alloc7971 (allocate 1 (Vector Integer))])
  7404. (let ([initret7973 (vector-set! alloc7971 0 vecinit7972)])
  7405. alloc7971)
  7406. )
  7407. )
  7408. )
  7409. ])
  7410. (let ([collectret7978
  7411. (if (< (+ (global-value free_ptr) 16)
  7412. (global-value fromspace_end))
  7413. (void)
  7414. (collect 16)
  7415. )])
  7416. (let ([alloc7975 (allocate 1 (Vector (Vector Integer)))])
  7417. (let ([initret7977 (vector-set! alloc7975 0 vecinit7976)])
  7418. alloc7975)
  7419. )
  7420. )
  7421. )
  7422. 0)
  7423. 0)
  7424. \end{lstlisting}
  7425. \begin{lstlisting}[style=ocaml]
  7426. (! 0
  7427. (! 0
  7428. (let `field.2
  7429. (let `tuple.3
  7430. (## 1 (# int))
  7431. (seq
  7432. (:= 0 `tuple.3 42)
  7433. `tuple.3))
  7434. (let `tuple.1
  7435. (## 1 (# (# int)))
  7436. (seq
  7437. (:= 0 `tuple.1 `field.2)
  7438. `tuple.1)))))
  7439. \end{lstlisting}
  7440. \caption{Output of the \code{expose-allocation} pass, minus
  7441. all of the \code{has-type} forms.}
  7442. \label{fig:expose-alloc-output}
  7443. \end{figure}
  7444. \section{Remove Complex Operands}
  7445. \label{sec:remove-complex-opera-Rvec}
  7446. The new forms \code{collect}, \code{allocate}, and \code{global-value}
  7447. should all be treated as complex operands.
  7448. %% A new case for
  7449. %% \code{HasType} is needed and the case for \code{Prim} needs to be
  7450. %% handled carefully to prevent the \code{Prim} node from being separated
  7451. %% from its enclosing \code{HasType}.
  7452. Figure~\ref{fig:Rvec-anf-syntax}
  7453. shows the grammar for the output language \LangVecANF{} of this
  7454. pass, which is \LangVec{} in administrative normal form.
  7455. \ocaml{For us, there is nothing new to do here at all, since the
  7456. tuple primops are already treated as complex.}
  7457. \begin{figure}[tp]
  7458. \centering
  7459. \fbox{
  7460. \begin{minipage}{0.96\textwidth}
  7461. \small
  7462. \[
  7463. \begin{array}{rcl}
  7464. \Atm &::=& \gray{ \INT{\Int} \mid \VAR{\Var} \mid \BOOL{\itm{bool}} }
  7465. \mid \VOID{} \\
  7466. \Exp &::=& \gray{ \Atm \mid \READ{} } \\
  7467. &\mid& \gray{ \NEG{\Atm} \mid \ADD{\Atm}{\Atm} } \\
  7468. &\mid& \gray{ \LET{\Var}{\Exp}{\Exp} } \\
  7469. &\mid& \gray{ \UNIOP{\key{'not}}{\Atm} } \\
  7470. &\mid& \gray{ \BINOP{\itm{cmp}}{\Atm}{\Atm} \mid \IF{\Exp}{\Exp}{\Exp} }\\
  7471. &\mid& \LP\key{Collect}~\Int\RP \mid \LP\key{Allocate}~\Int~\Type\RP
  7472. \mid \LP\key{GlobalValue}~\Var\RP\\
  7473. % &\mid& \LP\key{HasType}~\Exp~\Type\RP \\
  7474. R^{\dagger}_3 &::=& \gray{ \PROGRAM{\code{'()}}{\Exp} }
  7475. \end{array}
  7476. \]
  7477. \end{minipage}
  7478. }
  7479. \caption{\LangVecANF{} is \LangVec{} in administrative normal form (ANF).}
  7480. \label{fig:Rvec-anf-syntax}
  7481. \end{figure}
  7482. \section{Explicate Control and the \LangCVec{} \ocaml{\LangCTuple{}} language}
  7483. \label{sec:explicate-control-r3}
  7484. \begin{figure}[tp]
  7485. \fbox{
  7486. \begin{minipage}{0.96\textwidth}
  7487. \small
  7488. \[
  7489. \begin{array}{lcl}
  7490. \Atm &::=& \gray{ \INT{\Int} \mid \VAR{\Var} \mid \BOOL{\itm{bool}} }\\
  7491. \itm{cmp} &::= & \gray{ \key{eq?} \mid \key{<} } \\
  7492. \Exp &::= & \gray{ \Atm \mid \READ{} } \\
  7493. &\mid& \gray{ \NEG{\Atm} \mid \ADD{\Atm}{\Atm} }\\
  7494. &\mid& \gray{ \UNIOP{\key{not}}{\Atm} \mid \BINOP{\itm{cmp}}{\Atm}{\Atm} } \\
  7495. &\mid& \LP\key{Allocate} \,\itm{int}\,\itm{type}\RP \\
  7496. &\mid& \BINOP{\key{'vector-ref}}{\Atm}{\INT{\Int}} \\
  7497. &\mid& \LP\key{Prim}~\key{'vector-set!}\,\LP\Atm\,\INT{\Int}\,\Atm\RP\RP\\
  7498. &\mid& \LP\key{GlobalValue} \,\Var\RP \mid \LP\key{Void}\RP\\
  7499. \Stmt &::=& \gray{ \ASSIGN{\VAR{\Var}}{\Exp} }
  7500. \mid \LP\key{Collect} \,\itm{int}\RP \\
  7501. \Tail &::= & \gray{ \RETURN{\Exp} \mid \SEQ{\Stmt}{\Tail}
  7502. \mid \GOTO{\itm{label}} } \\
  7503. &\mid& \gray{ \IFSTMT{\BINOP{\itm{cmp}}{\Atm}{\Atm}}{\GOTO{\itm{label}}}{\GOTO{\itm{label}}} }\\
  7504. \LangCVec{} & ::= & \gray{ \CPROGRAM{\itm{info}}{\LP\LP\itm{label}\,\key{.}\,\Tail\RP\ldots\RP} }
  7505. \end{array}
  7506. \]
  7507. \end{minipage}
  7508. }
  7509. \caption{The abstract syntax of \LangCVec{}, extending \LangCIf{}
  7510. (Figure~\ref{fig:c1-syntax}).}
  7511. \label{fig:c2-syntax}
  7512. \end{figure}
  7513. The output of \code{explicate-control} is a program in the
  7514. intermediate language \LangCVec{} \ocaml{(\LangCTuple{})}, whose abstract syntax is defined in
  7515. Figure~\ref{fig:c2-syntax} \ocaml{(in file \code{CTuple.ml})}. (The concrete syntax is defined in
  7516. Figure~\ref{fig:c2-concrete-syntax} of the Appendix.) The new forms
  7517. of \LangCVec{} include the \key{allocate}, \key{vector-ref}, and
  7518. \key{vector-set!}, and \key{global-value} expressions and the
  7519. \code{collect} statement. The \code{explicate-control} pass can treat
  7520. these new forms much like the other expression forms that we've
  7521. already encoutered.
  7522. \ocaml{In \LangCTuple{}, the \key{GetField} and \key{Alloc} primops from
  7523. \LangTuple{} continue to be primops. But but \code{SetField} needs to be
  7524. turned into a new kind of side-effecting statement (\code{stmt}), as an alternative
  7525. to \code{Assign}.
  7526. Also, note that there is an awkward case to deal with if a \code{GetField}
  7527. is used in a predicate position: we have to create a new temporary on the
  7528. fly to hold the fetched value and compare it \code{Bool true} just as for
  7529. (existing) variables.}
  7530. \section{Select Instructions and the \LangXGlobal{} Language}
  7531. \label{sec:select-instructions-gc}
  7532. \index{instruction selection}
  7533. %% void (rep as zero)
  7534. %% allocate
  7535. %% collect (callq collect)
  7536. %% vector-ref
  7537. %% vector-set!
  7538. %% global (postpone)
  7539. In this pass we generate x86 code for most of the new operations that
  7540. were needed to compile tuples, including \code{Allocate},
  7541. \code{Collect}, \code{vector-ref}, \code{vector-set!}, and
  7542. \code{void}. We compile \code{GlobalValue} to \code{Global} because
  7543. the later has a different concrete syntax (see
  7544. Figures~\ref{fig:x86-2-concrete} and \ref{fig:x86-2}).
  7545. \index{x86}\ocaml{(We would have to translate it anyway, since
  7546. two different OCaml datatypes are involved.)}
  7547. The \code{vector-ref} \ocaml{(\code{!\;$n$})} and \code{vector-set!} \ocaml{\code{(:=\;$n$)}} forms translate into
  7548. \code{movq} instructions. (The plus one in the offset is to get past
  7549. the tag at the beginning of the tuple representation.)
  7550. \begin{lstlisting}
  7551. |$\itm{lhs}$| = (vector-ref |$\itm{vec}$| |$n$|);
  7552. |$\Longrightarrow$|
  7553. movq |$\itm{vec}'$|, %r11
  7554. movq |$8(n+1)$|(%r11), |$\itm{lhs'}$|
  7555. |$\itm{lhs}$| = (vector-set! |$\itm{vec}$| |$n$| |$\itm{arg}$|);
  7556. |$\Longrightarrow$|
  7557. movq |$\itm{vec}'$|, %r11
  7558. movq |$\itm{arg}'$|, |$8(n+1)$|(%r11)
  7559. movq $0, |$\itm{lhs'}$|
  7560. \end{lstlisting}
  7561. \ocaml{Execept that for \code{:=\;$n$} we don't need the final \code{movq} because we don't bind a result for
  7562. this void-valued operation.}
  7563. The $\itm{lhs}'$, $\itm{vec}'$, and $\itm{arg}'$ are obtained by
  7564. translating $\itm{vec}$ and $\itm{arg}$ to x86. The move of $\itm{vec}'$ to
  7565. register \code{r11} ensures that offset expression
  7566. \code{$-8(n+1)$(\%r11)} contains a register operand. This requires
  7567. removing \code{r11} from consideration by the register allocating \ocaml{allocator}.
  7568. Why not use \code{rax} instead of \code{r11}? Suppose we instead used
  7569. \code{rax}. Then the generated code for \code{vector-set!} would be
  7570. \begin{lstlisting}
  7571. movq |$\itm{vec}'$|, %rax
  7572. movq |$\itm{arg}'$|, |$8(n+1)$|(%rax)
  7573. movq $0, |$\itm{lhs}'$|
  7574. \end{lstlisting}
  7575. Next, suppose that $\itm{arg}'$ ends up as a stack location, so
  7576. \code{patch-instructions} would insert a move through \code{rax}
  7577. as follows.
  7578. \begin{lstlisting}
  7579. movq |$\itm{vec}'$|, %rax
  7580. movq |$\itm{arg}'$|, %rax
  7581. movq %rax, |$8(n+1)$|(%rax)
  7582. movq $0, |$\itm{lhs}'$|
  7583. \end{lstlisting}
  7584. But the above sequence of instructions does not work because we're
  7585. trying to use \code{rax} for two different values ($\itm{vec}'$ and
  7586. $\itm{arg}'$) at the same time!
  7587. \ocaml{The next two paragraphs are substantially different for us, because
  7588. we have a runtime system \code{alloc} function that incorporates the
  7589. actual allocation, invoking \code{collect} if necessary. See more below.}
  7590. We compile the \code{allocate} form to operations on the
  7591. \code{free\_ptr}, as shown below. The address in the \code{free\_ptr}
  7592. is the next free address in the FromSpace, so we copy it into
  7593. \code{r11} and then move it forward by enough space for the tuple
  7594. being allocated, which is $8(\itm{len}+1)$ bytes because each element
  7595. is 8 bytes (64 bits) and we use 8 bytes for the tag. We then
  7596. initialize the \itm{tag} and finally copy the address in \code{r11} to
  7597. the left-hand-side. Refer to Figure~\ref{fig:tuple-rep} to see how the
  7598. tag is organized. We recommend using the Racket operations
  7599. \code{bitwise-ior} and \code{arithmetic-shift} to compute the tag
  7600. during compilation. The type annotation in the \code{vector} form is
  7601. used to determine the pointer mask region of the tag.
  7602. \begin{lstlisting}
  7603. |$\itm{lhs}$| = (allocate |$\itm{len}$| (Vector |$\itm{type} \ldots$|));
  7604. |$\Longrightarrow$|
  7605. movq free_ptr(%rip), %r11
  7606. addq |$8(\itm{len}+1)$|, free_ptr(%rip)
  7607. movq $|$\itm{tag}$|, 0(%r11)
  7608. movq %r11, |$\itm{lhs}'$|
  7609. \end{lstlisting}
  7610. The \code{collect} form is compiled to a call to the \code{collect}
  7611. function in the runtime. The arguments to \code{collect} are 1) the
  7612. top of the root stack and 2) the number of bytes that need to be
  7613. allocated. We use another dedicated register, \code{r15}, to
  7614. store the pointer to the top of the root stack. So \code{r15} is not
  7615. available for use by the register allocator.
  7616. \begin{lstlisting}
  7617. (collect |$\itm{bytes}$|)
  7618. |$\Longrightarrow$|
  7619. movq %r15, %rdi
  7620. movq $|\itm{bytes}|, %rsi
  7621. callq collect
  7622. \end{lstlisting}
  7623. \begin{ocamlx}
  7624. For the OCaml version, we use the following translation:
  7625. \begin{color}{blue}
  7626. \begin{lstlisting}
  7627. |$\itm{lhs}$| = (## |$\itm{len}$| (# |$\itm{type} \ldots$|));
  7628. |$\Longrightarrow$|
  7629. movq %r15, %rdi
  7630. movq $|$(\itm{len}+1)$|, %rsi
  7631. movq $|$\itm{tag}$|, %rdx
  7632. callq alloc
  7633. movq %rax, |$\itm{lhs}'$|
  7634. \end{lstlisting}
  7635. \end{color}
  7636. Here $\itm{tag}$ is the tag value (refer to Figure~\ref{fig:tuple-rep}), which you can compute from $\itm{len}$ and
  7637. the list of element $\itm{type}$s, using the OCaml \code{Int64} bit-wise operations. The first argument to \code{alloc}
  7638. is the top of the root stack; see the previous paragraph about the use of \code{\%r15}.
  7639. \end{ocamlx}
  7640. \begin{figure}[tp]
  7641. \fbox{
  7642. \begin{minipage}{0.96\textwidth}
  7643. \[
  7644. \begin{array}{lcl}
  7645. \Arg &::=& \gray{ \key{\$}\Int \mid \key{\%}\Reg \mid \Int\key{(}\key{\%}\Reg\key{)} \mid \key{\%}\itm{bytereg} } \mid \Var \key{(\%rip)} \\
  7646. \LangXGlobal{} &::= & \gray{ \key{.globl main} }\\
  7647. & & \gray{ \key{main:} \; \Instr\ldots }
  7648. \end{array}
  7649. \]
  7650. \end{minipage}
  7651. }
  7652. \caption{The concrete syntax of \LangXGlobal{} (extends \LangXIf{} of Figure~\ref{fig:x86-1-concrete}).}
  7653. \label{fig:x86-2-concrete}
  7654. \end{figure}
  7655. \begin{figure}[tp]
  7656. \fbox{
  7657. \begin{minipage}{0.96\textwidth}
  7658. \small
  7659. \[
  7660. \begin{array}{lcl}
  7661. \Arg &::=& \gray{ \INT{\Int} \mid \REG{\Reg} \mid \DEREF{\Reg}{\Int}
  7662. \mid \BYTEREG{\Reg}} \\
  7663. &\mid& (\key{Global}~\Var) \\
  7664. \LangXGlobal{} &::= & \gray{ \XPROGRAM{\itm{info}}{\LP\LP\itm{label} \,\key{.}\, \Block \RP\ldots\RP} }
  7665. \end{array}
  7666. \]
  7667. \end{minipage}
  7668. }
  7669. \caption{The abstract syntax of \LangXGlobal{} (extends \LangXIf{} of Figure~\ref{fig:x86-1}).}
  7670. \label{fig:x86-2}
  7671. \end{figure}
  7672. The concrete and abstract syntax of the \LangXGlobal{} language is
  7673. defined in Figures~\ref{fig:x86-2-concrete} and \ref{fig:x86-2}. It
  7674. differs from \LangXIf{} just in the addition of the form for global
  7675. variables.
  7676. \begin{ocamlx}
  7677. We use \LangXAlloc{}, which doesn't differ from \LangXIf{} at all in
  7678. its syntax, but has a revised checker and interpreter that can handle the
  7679. richer code we are generating here. In particular, the interpreter supports
  7680. the \code{alloc} function, allowing you to debug code at this level. Note
  7681. that the interpreter does \emph{not} include a collector, so you should
  7682. select a heap size that is large enough to allow tests to run to completion
  7683. without needing collection. The relevant parameters are in
  7684. ref variables defined at the top of \code{X86Alloc.ml}. These parameters
  7685. can be set by driver flags.
  7686. There are some changes in how the entry and exit blocks get built, initially in
  7687. a dummy version and later in a correct one. See comments in the \code{Chapter5.ml}
  7688. template code and the \code{X86Alloc.ml} code for more details.
  7689. \end{ocamlx}
  7690. %
  7691. Figure~\ref{fig:select-instr-output-gc} shows the output of the
  7692. \code{select-instructions} pass on the running example.
  7693. \begin{figure}[tbp]
  7694. \centering
  7695. % tests/s2_17.rkt
  7696. \begin{minipage}[t]{0.5\textwidth}
  7697. \begin{lstlisting}[basicstyle=\ttfamily\scriptsize]
  7698. block35:
  7699. movq free_ptr(%rip), alloc9024
  7700. addq $16, free_ptr(%rip)
  7701. movq alloc9024, %r11
  7702. movq $131, 0(%r11)
  7703. movq alloc9024, %r11
  7704. movq vecinit9025, 8(%r11)
  7705. movq $0, initret9026
  7706. movq alloc9024, %r11
  7707. movq 8(%r11), tmp9034
  7708. movq tmp9034, %r11
  7709. movq 8(%r11), %rax
  7710. jmp conclusion
  7711. block36:
  7712. movq $0, collectret9027
  7713. jmp block35
  7714. block38:
  7715. movq free_ptr(%rip), alloc9020
  7716. addq $16, free_ptr(%rip)
  7717. movq alloc9020, %r11
  7718. movq $3, 0(%r11)
  7719. movq alloc9020, %r11
  7720. movq vecinit9021, 8(%r11)
  7721. movq $0, initret9022
  7722. movq alloc9020, vecinit9025
  7723. movq free_ptr(%rip), tmp9031
  7724. movq tmp9031, tmp9032
  7725. addq $16, tmp9032
  7726. movq fromspace_end(%rip), tmp9033
  7727. cmpq tmp9033, tmp9032
  7728. jl block36
  7729. jmp block37
  7730. block37:
  7731. movq %r15, %rdi
  7732. movq $16, %rsi
  7733. callq 'collect
  7734. jmp block35
  7735. block39:
  7736. movq $0, collectret9023
  7737. jmp block38
  7738. \end{lstlisting}
  7739. \end{minipage}
  7740. \begin{minipage}[t]{0.45\textwidth}
  7741. \begin{lstlisting}[basicstyle=\ttfamily\scriptsize]
  7742. start:
  7743. movq $42, vecinit9021
  7744. movq free_ptr(%rip), tmp9028
  7745. movq tmp9028, tmp9029
  7746. addq $16, tmp9029
  7747. movq fromspace_end(%rip), tmp9030
  7748. cmpq tmp9030, tmp9029
  7749. jl block39
  7750. jmp block40
  7751. block40:
  7752. movq %r15, %rdi
  7753. movq $16, %rsi
  7754. callq 'collect
  7755. jmp block38
  7756. \end{lstlisting}
  7757. \begin{lstlisting}[style=ocaml]
  7758. .globl _main
  7759. _main:
  7760. jmp _start
  7761. _conclusion:
  7762. retq
  7763. _start:
  7764. movq %r15, %rdi
  7765. movq $2, %rsi
  7766. movq $3, %rdx
  7767. callq _alloc
  7768. movq %rax, `tuple.3
  7769. movq `tuple.3, %r11
  7770. movq $42, 8(%r11)
  7771. movq `tuple.3, `field.2
  7772. movq %r15, %rdi
  7773. movq $2, %rsi
  7774. movq $131, %rdx
  7775. callq _alloc
  7776. movq %rax, `tuple.1
  7777. movq `tuple.1, %r11
  7778. movq `field.2, 8(%r11)
  7779. movq `tuple.1, `tmp.2
  7780. movq `tmp.2, %r11
  7781. movq 8(%r11), `tmp.1
  7782. movq `tmp.1, %r11
  7783. movq 8(%r11), %rax
  7784. jmp _conclusion
  7785. \end{lstlisting}
  7786. \end{minipage}
  7787. \caption{Output of the \code{select-instructions} pass.}
  7788. \label{fig:select-instr-output-gc}
  7789. \end{figure}
  7790. \clearpage
  7791. \section{Register Allocation}
  7792. \label{sec:reg-alloc-gc}
  7793. \index{register allocation}
  7794. As discussed earlier in this chapter, the garbage collector needs to
  7795. access all the pointers in the root set, that is, all variables that
  7796. are vectors. It will be the responsibility of the register allocator
  7797. to make sure that:
  7798. \begin{enumerate}
  7799. \item the root stack is used for spilling vector-typed variables, and
  7800. \item if a vector-typed variable is live during a call to the
  7801. collector, it must be spilled to ensure it is visible to the
  7802. collector.
  7803. \end{enumerate}
  7804. The later responsibility can be handled during construction of the
  7805. interference graph, by adding interference edges between the call-live
  7806. vector-typed variables and all the callee-saved registers. (They
  7807. already interfere with the caller-saved registers.) The type
  7808. information for variables is in the \code{Program} form, so we
  7809. recommend adding another parameter to the \code{build-interference}
  7810. function to communicate this alist.
  7811. The spilling of vector-typed variables to the root stack can be
  7812. handled after graph coloring, when choosing how to assign the colors
  7813. (integers) to registers and stack locations. The \code{Program} output
  7814. of this pass changes to also record the number of spills to the root
  7815. stack.
  7816. % build-interference
  7817. %
  7818. % callq
  7819. % extra parameter for var->type assoc. list
  7820. % update 'program' and 'if'
  7821. % allocate-registers
  7822. % allocate spilled vectors to the rootstack
  7823. % don't change color-graph
  7824. \section{Print x86}
  7825. \label{sec:print-x86-gc}
  7826. \index{prelude}\index{conclusion}
  7827. Figure~\ref{fig:print-x86-output-gc} shows the output of the
  7828. \code{print-x86} pass on the running example. In the prelude and
  7829. conclusion of the \code{main} function, we treat the root stack very
  7830. much like the regular stack in that we move the root stack pointer
  7831. (\code{r15}) to make room for the spills to the root stack, except
  7832. that the root stack grows up instead of down. For the running
  7833. example, there was just one spill so we increment \code{r15} by 8
  7834. bytes. In the conclusion we decrement \code{r15} by 8 bytes.
  7835. \ocaml{Out of sheer laziness, we don't check for possible overflow
  7836. of the root stack. A production system would need to do this.}
  7837. One issue that deserves special care is that there may be a call to
  7838. \code{collect} prior to the initializing assignments for all the
  7839. variables in the root stack. We do not want the garbage collector to
  7840. accidentally think that some uninitialized variable is a pointer that
  7841. needs to be followed. Thus, we zero-out all locations on the root
  7842. stack in the prelude of \code{main}. In
  7843. Figure~\ref{fig:print-x86-output-gc}, the instruction
  7844. %
  7845. \lstinline{movq $0, (%r15)}
  7846. %
  7847. accomplishes this task. The garbage collector tests each root to see
  7848. if it is null prior to dereferencing it.
  7849. \begin{figure}[htbp]
  7850. \begin{minipage}[t]{0.5\textwidth}
  7851. \begin{lstlisting}[basicstyle=\ttfamily\scriptsize]
  7852. block35:
  7853. movq free_ptr(%rip), %rcx
  7854. addq $16, free_ptr(%rip)
  7855. movq %rcx, %r11
  7856. movq $131, 0(%r11)
  7857. movq %rcx, %r11
  7858. movq -8(%r15), %rax
  7859. movq %rax, 8(%r11)
  7860. movq $0, %rdx
  7861. movq %rcx, %r11
  7862. movq 8(%r11), %rcx
  7863. movq %rcx, %r11
  7864. movq 8(%r11), %rax
  7865. jmp conclusion
  7866. block36:
  7867. movq $0, %rcx
  7868. jmp block35
  7869. block38:
  7870. movq free_ptr(%rip), %rcx
  7871. addq $16, free_ptr(%rip)
  7872. movq %rcx, %r11
  7873. movq $3, 0(%r11)
  7874. movq %rcx, %r11
  7875. movq %rbx, 8(%r11)
  7876. movq $0, %rdx
  7877. movq %rcx, -8(%r15)
  7878. movq free_ptr(%rip), %rcx
  7879. addq $16, %rcx
  7880. movq fromspace_end(%rip), %rdx
  7881. cmpq %rdx, %rcx
  7882. jl block36
  7883. movq %r15, %rdi
  7884. movq $16, %rsi
  7885. callq collect
  7886. jmp block35
  7887. block39:
  7888. movq $0, %rcx
  7889. jmp block38
  7890. \end{lstlisting}
  7891. \end{minipage}
  7892. \begin{minipage}[t]{0.45\textwidth}
  7893. \begin{lstlisting}[basicstyle=\ttfamily\scriptsize]
  7894. start:
  7895. movq $42, %rbx
  7896. movq free_ptr(%rip), %rdx
  7897. addq $16, %rdx
  7898. movq fromspace_end(%rip), %rcx
  7899. cmpq %rcx, %rdx
  7900. jl block39
  7901. movq %r15, %rdi
  7902. movq $16, %rsi
  7903. callq collect
  7904. jmp block38
  7905. .globl main
  7906. main:
  7907. pushq %rbp
  7908. movq %rsp, %rbp
  7909. pushq %r13
  7910. pushq %r12
  7911. pushq %rbx
  7912. pushq %r14
  7913. subq $0, %rsp
  7914. movq $16384, %rdi
  7915. movq $16384, %rsi
  7916. callq initialize
  7917. movq rootstack_begin(%rip), %r15
  7918. movq $0, (%r15)
  7919. addq $8, %r15
  7920. jmp start
  7921. conclusion:
  7922. subq $8, %r15
  7923. addq $0, %rsp
  7924. popq %r14
  7925. popq %rbx
  7926. popq %r12
  7927. popq %r13
  7928. popq %rbp
  7929. retq
  7930. \end{lstlisting}
  7931. \end{minipage}
  7932. \begin{minipage}{0.45\textwidth}
  7933. \begin{lstlisting}[basicstyle=\ttfamily\scriptsize,style=ocaml]
  7934. .globl main
  7935. _main:
  7936. pushq %rbp
  7937. movq %rsp, %rbp
  7938. subq $0, %rsp
  7939. movq $16384, %rsi
  7940. movq $16384, %rdi
  7941. callq _initialize
  7942. movq %rax, %r15
  7943. movq $0, 0(%r15)
  7944. addq $8, %r15
  7945. jmp _start
  7946. _conclusion:
  7947. subq $8, %r15
  7948. addq $0, %rsp
  7949. popq %rbp
  7950. retq
  7951. \end{lstlisting}
  7952. \end{minipage}
  7953. \begin{minipage}[r]{0.45\textwidth}
  7954. \begin{lstlisting}[basicstyle=\ttfamily\scriptsize,style=ocaml]
  7955. _start:
  7956. movq %r15, %rdi
  7957. movq $2, %rsi
  7958. movq $3, %rdx
  7959. callq _alloc
  7960. movq %rax, %rcx
  7961. movq %rcx, %r11
  7962. movq $42, 8(%r11)
  7963. movq %rcx, -8(%r15)
  7964. movq %r15, %rdi
  7965. movq $2, %rsi
  7966. movq $131, %rdx
  7967. callq _alloc
  7968. movq %rax, %rcx
  7969. movq %rcx, %r11
  7970. movq -8(%r15), %rax
  7971. movq %rax, 8(%r11)
  7972. movq %rcx, %r11
  7973. movq 8(%r11), %rcx
  7974. movq %rcx, %r11
  7975. movq 8(%r11), %rax
  7976. jmp _conclusion
  7977. \end{lstlisting}
  7978. \end{minipage}
  7979. \caption{Output of the \code{print-x86} pass.}
  7980. \label{fig:print-x86-output-gc}
  7981. \end{figure}
  7982. \begin{figure}[p]
  7983. \begin{tikzpicture}[baseline=(current bounding box.center)]
  7984. \node (Rvec) at (0,2) {\large \LangVec{}};
  7985. \node (Rvec-2) at (3,2) {\large \LangVec{}};
  7986. \node (Rvec-3) at (6,2) {\large \LangVec{}};
  7987. \node (Rvec-4) at (9,2) {\large \LangVec{}};
  7988. \node (Rvec-5) at (12,2) {\large \LangAlloc{}};
  7989. \node (C2-4) at (3,0) {\large \LangCVec{}};
  7990. \node (x86-2) at (3,-2) {\large \LangXGlobalVar{}};
  7991. \node (x86-2-1) at (3,-4) {\large \LangXGlobalVar{}};
  7992. \node (x86-2-2) at (6,-4) {\large \LangXGlobalVar{}};
  7993. \node (x86-3) at (6,-2) {\large \LangXGlobalVar{}};
  7994. \node (x86-4) at (9,-2) {\large \LangXGlobal{}};
  7995. \node (x86-5) at (9,-4) {\large \LangXGlobal{}};
  7996. %\path[->,bend left=15] (Rvec) edge [above] node {\ttfamily\footnotesize type-check} (Rvec-2);
  7997. \path[->,bend left=15] (Rvec) edge [above] node {\ttfamily\footnotesize shrink} (Rvec-2);
  7998. \path[->,bend left=15] (Rvec-2) edge [above] node {\ttfamily\footnotesize uniquify} (Rvec-3);
  7999. \path[->,bend left=15] (Rvec-3) edge [above] node {\ttfamily\footnotesize expose-alloc.} (Rvec-4);
  8000. \path[->,bend left=15] (Rvec-4) edge [above] node {\ttfamily\footnotesize remove-complex.} (Rvec-5);
  8001. \path[->,bend left=20] (Rvec-5) edge [left] node {\ttfamily\footnotesize explicate-control} (C2-4);
  8002. \path[->,bend left=15] (C2-4) edge [right] node {\ttfamily\footnotesize select-instr.} (x86-2);
  8003. \path[->,bend right=15] (x86-2) edge [left] node {\ttfamily\footnotesize uncover-live} (x86-2-1);
  8004. \path[->,bend right=15] (x86-2-1) edge [below] node {\ttfamily\footnotesize build-inter.} (x86-2-2);
  8005. \path[->,bend right=15] (x86-2-2) edge [right] node {\ttfamily\footnotesize allocate-reg.} (x86-3);
  8006. \path[->,bend left=15] (x86-3) edge [above] node {\ttfamily\footnotesize patch-instr.} (x86-4);
  8007. \path[->,bend left=15] (x86-4) edge [right] node {\ttfamily\footnotesize print-x86} (x86-5);
  8008. \end{tikzpicture}
  8009. \caption{Diagram of the passes for \LangVec{}, a language with tuples.}
  8010. \label{fig:Rvec-passes}
  8011. \end{figure}
  8012. Figure~\ref{fig:Rvec-passes} gives an overview of all the passes needed
  8013. for the compilation of \LangVec{}.
  8014. \section{Challenge: Simple Structures}
  8015. \label{sec:simple-structures}
  8016. \index{struct}
  8017. \index{structure}
  8018. Figure~\ref{fig:r3s-concrete-syntax} defines the concrete syntax for
  8019. \LangStruct{}, which extends \LangVec{} with support for simple structures.
  8020. Recall that a \code{struct} in Typed Racket is a user-defined data
  8021. type that contains named fields and that is heap allocated, similar to
  8022. a vector. The following is an example of a structure definition, in
  8023. this case the definition of a \code{point} type.
  8024. \begin{lstlisting}
  8025. (struct point ([x : Integer] [y : Integer]) #:mutable)
  8026. \end{lstlisting}
  8027. \begin{figure}[tbp]
  8028. \centering
  8029. \fbox{
  8030. \begin{minipage}{0.96\textwidth}
  8031. \[
  8032. \begin{array}{lcl}
  8033. \Type &::=& \gray{\key{Integer} \mid \key{Boolean}
  8034. \mid (\key{Vector}\;\Type \ldots) \mid \key{Void} } \mid \Var \\
  8035. \itm{cmp} &::= & \gray{ \key{eq?} \mid \key{<} \mid \key{<=} \mid \key{>} \mid \key{>=} } \\
  8036. \Exp &::=& \gray{ \Int \mid (\key{read}) \mid (\key{-}\;\Exp) \mid (\key{+} \; \Exp\;\Exp) \mid (\key{-}\;\Exp\;\Exp) } \\
  8037. &\mid& \gray{ \Var \mid (\key{let}~([\Var~\Exp])~\Exp) }\\
  8038. &\mid& \gray{ \key{\#t} \mid \key{\#f}
  8039. \mid (\key{and}\;\Exp\;\Exp)
  8040. \mid (\key{or}\;\Exp\;\Exp)
  8041. \mid (\key{not}\;\Exp) } \\
  8042. &\mid& \gray{ (\itm{cmp}\;\Exp\;\Exp)
  8043. \mid (\key{if}~\Exp~\Exp~\Exp) } \\
  8044. &\mid& \gray{ (\key{vector}\;\Exp \ldots)
  8045. \mid (\key{vector-ref}\;\Exp\;\Int) } \\
  8046. &\mid& \gray{ (\key{vector-set!}\;\Exp\;\Int\;\Exp) }\\
  8047. &\mid& \gray{ (\key{void}) } \mid (\Var\;\Exp \ldots)\\
  8048. \Def &::=& (\key{struct}\; \Var \; ([\Var \,\key{:}\, \Type] \ldots)\; \code{\#:mutable})\\
  8049. \LangStruct{} &::=& \Def \ldots \; \Exp
  8050. \end{array}
  8051. \]
  8052. \end{minipage}
  8053. }
  8054. \caption{The concrete syntax of \LangStruct{}, extending \LangVec{}
  8055. (Figure~\ref{fig:Rvec-concrete-syntax}).}
  8056. \label{fig:r3s-concrete-syntax}
  8057. \end{figure}
  8058. An instance of a structure is created using function call syntax, with
  8059. the name of the structure in the function position:
  8060. \begin{lstlisting}
  8061. (point 7 12)
  8062. \end{lstlisting}
  8063. Function-call syntax is also used to read the value in a field of a
  8064. structure. The function name is formed by the structure name, a dash,
  8065. and the field name. The following example uses \code{point-x} and
  8066. \code{point-y} to access the \code{x} and \code{y} fields of two point
  8067. instances.
  8068. \begin{center}
  8069. \begin{lstlisting}
  8070. (let ([pt1 (point 7 12)])
  8071. (let ([pt2 (point 4 3)])
  8072. (+ (- (point-x pt1) (point-x pt2))
  8073. (- (point-y pt1) (point-y pt2)))))
  8074. \end{lstlisting}
  8075. \end{center}
  8076. Similarly, to write to a field of a structure, use its set function,
  8077. whose name starts with \code{set-}, followed by the structure name,
  8078. then a dash, then the field name, and concluded with an exclamation
  8079. mark. The following example uses \code{set-point-x!} to change the
  8080. \code{x} field from \code{7} to \code{42}.
  8081. \begin{center}
  8082. \begin{lstlisting}
  8083. (let ([pt (point 7 12)])
  8084. (let ([_ (set-point-x! pt 42)])
  8085. (point-x pt)))
  8086. \end{lstlisting}
  8087. \end{center}
  8088. \begin{exercise}\normalfont
  8089. Extend your compiler with support for simple structures, compiling
  8090. \LangStruct{} to x86 assembly code. Create five new test cases that use
  8091. structures and test your compiler.
  8092. \end{exercise}
  8093. \section{Challenge: Generational Collection}
  8094. The copying collector described in Section~\ref{sec:GC} can incur
  8095. significant runtime overhead because the call to \code{collect} takes
  8096. time proportional to all of the live data. One way to reduce this
  8097. overhead is to reduce how much data is inspected in each call to
  8098. \code{collect}. In particular, researchers have observed that recently
  8099. allocated data is more likely to become garbage then data that has
  8100. survived one or more previous calls to \code{collect}. This insight
  8101. motivated the creation of \emph{generational garbage collectors}
  8102. \index{generational garbage collector} that
  8103. 1) segregates data according to its age into two or more generations,
  8104. 2) allocates less space for younger generations, so collecting them is
  8105. faster, and more space for the older generations, and 3) performs
  8106. collection on the younger generations more frequently then for older
  8107. generations~\citep{Wilson:1992fk}.
  8108. For this challenge assignment, the goal is to adapt the copying
  8109. collector implemented in \code{runtime.c} to use two generations, one
  8110. for young data and one for old data. Each generation consists of a
  8111. FromSpace and a ToSpace. The following is a sketch of how to adapt the
  8112. \code{collect} function to use the two generations.
  8113. \begin{enumerate}
  8114. \item Copy the young generation's FromSpace to its ToSpace then switch
  8115. the role of the ToSpace and FromSpace
  8116. \item If there is enough space for the requested number of bytes in
  8117. the young FromSpace, then return from \code{collect}.
  8118. \item If there is not enough space in the young FromSpace for the
  8119. requested bytes, then move the data from the young generation to the
  8120. old one with the following steps:
  8121. \begin{enumerate}
  8122. \item If there is enough room in the old FromSpace, copy the young
  8123. FromSpace to the old FromSpace and then return.
  8124. \item If there is not enough room in the old FromSpace, then collect
  8125. the old generation by copying the old FromSpace to the old ToSpace
  8126. and swap the roles of the old FromSpace and ToSpace.
  8127. \item If there is enough room now, copy the young FromSpace to the
  8128. old FromSpace and return. Otherwise, allocate a larger FromSpace
  8129. and ToSpace for the old generation. Copy the young FromSpace and
  8130. the old FromSpace into the larger FromSpace for the old
  8131. generation and then return.
  8132. \end{enumerate}
  8133. \end{enumerate}
  8134. We recommend that you generalize the \code{cheney} function so that it
  8135. can be used for all the copies mentioned above: between the young
  8136. FromSpace and ToSpace, between the old FromSpace and ToSpace, and
  8137. between the young FromSpace and old FromSpace. This can be
  8138. accomplished by adding parameters to \code{cheney} that replace its
  8139. use of the global variables \code{fromspace\_begin},
  8140. \code{fromspace\_end}, \code{tospace\_begin}, and \code{tospace\_end}.
  8141. Note that the collection of the young generation does not traverse the
  8142. old generation. This introduces a potential problem: there may be
  8143. young data that is only reachable through pointers in the old
  8144. generation. If these pointers are not taken into account, the
  8145. collector could throw away young data that is live! One solution,
  8146. called \emph{pointer recording}, is to maintain a set of all the
  8147. pointers from the old generation into the new generation and consider
  8148. this set as part of the root set. To maintain this set, the compiler
  8149. must insert extra instructions around every \code{vector-set!}. If the
  8150. vector being modified is in the old generation, and if the value being
  8151. written is a pointer into the new generation, than that pointer must
  8152. be added to the set. Also, if the value being overwritten was a
  8153. pointer into the new generation, then that pointer should be removed
  8154. from the set.
  8155. \begin{exercise}\normalfont
  8156. Adapt the \code{collect} function in \code{runtime.c} to implement
  8157. generational garbage collection, as outlined in this section.
  8158. Update the code generation for \code{vector-set!} to implement
  8159. pointer recording. Make sure that your new compiler and runtime
  8160. passes your test suite.
  8161. \end{exercise}
  8162. % Further Reading
  8163. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  8164. \chapter{Functions}
  8165. \label{ch:Rfun}
  8166. \index{function}
  8167. This chapter studies the compilation of functions similar to those
  8168. found in the C language. This corresponds to a subset of Typed Racket
  8169. in which only top-level function definitions are allowed. This kind of
  8170. function is an important stepping stone to implementing
  8171. lexically-scoped functions, that is, \key{lambda} abstractions, which
  8172. is the topic of Chapter~\ref{ch:Rlam}.
  8173. \section{The \LangFun{} Language}
  8174. The concrete and abstract syntax for function definitions and function
  8175. application is shown in Figures~\ref{fig:Rfun-concrete-syntax} and
  8176. \ref{fig:Rfun-syntax}, where we define the \LangFun{} language. Programs in
  8177. \LangFun{} begin with zero or more function definitions. The function
  8178. names from these definitions are in-scope for the entire program,
  8179. including all other function definitions (so the ordering of function
  8180. definitions does not matter). The concrete syntax for function
  8181. application\index{function application} is $(\Exp \; \Exp \ldots)$
  8182. where the first expression must
  8183. evaluate to a function and the rest are the arguments.
  8184. The abstract syntax for function application is
  8185. $\APPLY{\Exp}{\Exp\ldots}$.
  8186. %% The syntax for function application does not include an explicit
  8187. %% keyword, which is error prone when using \code{match}. To alleviate
  8188. %% this problem, we translate the syntax from $(\Exp \; \Exp \ldots)$ to
  8189. %% $(\key{app}\; \Exp \; \Exp \ldots)$ during type checking.
  8190. Functions are first-class in the sense that a function pointer
  8191. \index{function pointer} is data and can be stored in memory or passed
  8192. as a parameter to another function. Thus, we introduce a function
  8193. type, written
  8194. \begin{lstlisting}
  8195. (|$\Type_1$| |$\cdots$| |$\Type_n$| -> |$\Type_r$|)
  8196. \end{lstlisting}
  8197. for a function whose $n$ parameters have the types $\Type_1$ through
  8198. $\Type_n$ and whose return type is $\Type_r$. The main limitation of
  8199. these functions (with respect to Racket \ocaml{(or, for that matter, OCaml or Haskell)} functions) is that they are
  8200. not lexically scoped. That is, the only external entities that can be
  8201. referenced from inside a function body are other globally-defined
  8202. functions. The syntax of \LangFun{} prevents functions from being nested
  8203. inside each other. \ocaml{\LangFun{} is essentially similar to C with function pointers.}
  8204. \begin{figure}[tp]
  8205. \centering
  8206. \fbox{
  8207. \begin{minipage}{0.96\textwidth}
  8208. \small
  8209. \[
  8210. \begin{array}{lcl}
  8211. \Type &::=& \gray{ \key{Integer} \mid \key{Boolean}
  8212. \mid (\key{Vector}\;\Type\ldots) \mid \key{Void} } \mid (\Type \ldots \; \key{->}\; \Type) \\
  8213. \itm{cmp} &::= & \gray{ \key{eq?} \mid \key{<} \mid \key{<=} \mid \key{>} \mid \key{>=} } \\
  8214. \Exp &::=& \gray{ \Int \mid \CREAD{} \mid \CNEG{\Exp} \mid \CADD{\Exp}{\Exp} \mid \CSUB{\Exp}{\Exp} } \\
  8215. &\mid& \gray{ \Var \mid \CLET{\Var}{\Exp}{\Exp} }\\
  8216. &\mid& \gray{ \key{\#t} \mid \key{\#f}
  8217. \mid (\key{and}\;\Exp\;\Exp)
  8218. \mid (\key{or}\;\Exp\;\Exp)
  8219. \mid (\key{not}\;\Exp)} \\
  8220. &\mid& \gray{(\itm{cmp}\;\Exp\;\Exp) \mid \CIF{\Exp}{\Exp}{\Exp} } \\
  8221. &\mid& \gray{(\key{vector}\;\Exp\ldots) \mid
  8222. (\key{vector-ref}\;\Exp\;\Int)} \\
  8223. &\mid& \gray{(\key{vector-set!}\;\Exp\;\Int\;\Exp)\mid (\key{void})
  8224. \mid \LP\key{has-type}~\Exp~\Type\RP } \\
  8225. &\mid& \LP\Exp \; \Exp \ldots\RP \\
  8226. \Def &::=& \CDEF{\Var}{\LS\Var \key{:} \Type\RS \ldots}{\Type}{\Exp} \\
  8227. \LangFun{} &::=& \Def \ldots \; \Exp
  8228. \end{array}
  8229. \]
  8230. \end{minipage}
  8231. }
  8232. \begin{ocamlx}
  8233. \fbox{
  8234. \begin{minipage}{0.96\textwidth}
  8235. \small
  8236. \[
  8237. \begin{array}{rcl}
  8238. \Type &::=& \gray{\key{int} \mid \key{bool} \mid \key{void}}
  8239. \mid \gray{\LP\key{\#}\;\Type\ldots\RP} \mid (\Type \ldots \; \key{->}\; \Type)\\
  8240. \Exp &::=& \gray{ \Int \mid \CREAD{} \mid \CNEG{\Exp} \mid \CADD{\Exp}{\Exp} \mid \CSUB{\Exp}{\Exp}} \\
  8241. &\mid& \gray{ \Var \mid \code{(let $\Var$ $\Exp$ $\Exp$)}}\\
  8242. &\mid& \gray{\itm{bool}
  8243. \mid (\key{and}\;\Exp\;\Exp) \mid (\key{or}\;\Exp\;\Exp)
  8244. \mid (\key{not}\;\Exp)} \\
  8245. &\mid& \gray{(\itm{cmp}\;\Exp\;\Exp) \mid \CIF{\Exp}{\Exp}{\Exp}} \\
  8246. &\mid& \gray{\code{()} \mid \code{(:= $\Var$ $\Exp$)}
  8247. \mid \code{(seq \Exp\ldots \Exp)}
  8248. \mid \CWHILE{\Exp}{\Exp}} \\
  8249. &\mid& \gray{\LP\key{\#}\;\Exp\ldots\RP \mid \LP\key{!}\;\Int\;\Exp\RP \mid \LP\key{:=}\;\Int\;\Exp\;\Exp\RP}\\
  8250. &\mid& \gray{\LP\key{:}\;\Exp\;\Type\RP \mid \LP\key{\#\#}\;\Int\;\Type\RP}\\
  8251. &\mid& \LP\Exp \; \Exp \ldots\RP \mid \LP\key{\&}\;\Var\RP\\
  8252. \Def &::=& \LP\key{define}\;\Var\;\LP\Var\;\key{:}\;\Type\RP\;\ldots\RP\;\key{:}\;{\Type}\;{\Exp}\RP \\
  8253. \LangFun{} &::=& \Def \ldots \; \Exp
  8254. \end{array}
  8255. \]
  8256. \end{minipage}
  8257. }
  8258. \end{ocamlx}
  8259. \caption{The concrete syntax of \LangFun{}, extending \LangVec{} \ocaml{(\LangTuple{})} (Figure~\ref{fig:Rvec-concrete-syntax}).}
  8260. \label{fig:Rfun-concrete-syntax}
  8261. \end{figure}
  8262. \begin{figure}[tp]
  8263. \centering
  8264. \fbox{
  8265. \begin{minipage}{0.96\textwidth}
  8266. \small
  8267. \[
  8268. \begin{array}{lcl}
  8269. \Exp &::=& \gray{ \INT{\Int} \VAR{\Var} \mid \LET{\Var}{\Exp}{\Exp} } \\
  8270. &\mid& \gray{ \PRIM{\itm{op}}{\Exp\ldots} }\\
  8271. &\mid& \gray{ \BOOL{\itm{bool}}
  8272. \mid \IF{\Exp}{\Exp}{\Exp} } \\
  8273. &\mid& \gray{ \VOID{} \mid \LP\key{HasType}~\Exp~\Type \RP }
  8274. \mid \APPLY{\Exp}{\Exp\ldots}\\
  8275. \Def &::=& \FUNDEF{\Var}{\LP[\Var \code{:} \Type]\ldots\RP}{\Type}{\code{'()}}{\Exp}\\
  8276. \LangFun{} &::=& \PROGRAMDEFSEXP{\code{'()}}{\LP\Def\ldots\RP)}{\Exp}
  8277. \end{array}
  8278. \]
  8279. \end{minipage}
  8280. }
  8281. \begin{lstlisting}[style=ocaml,frame=single]
  8282. type typ = IntT | BoolT | VoidT | TupleT of typ list
  8283. | FunT of typ list * typ
  8284. type cmp = Eq | Lt | Le | Gt | Ge
  8285. type primop = Read | Neg | Add | Sub | And | Or | Not | Cmp of cmp
  8286. | GetField of int | SetField of int | Alloc of int * typ
  8287. type var = string
  8288. type exp =
  8289. Int of int64
  8290. | Bool of bool
  8291. | Prim of primop * exp list
  8292. | Var of var
  8293. | Let of var * exp * exp
  8294. | If of exp * exp * exp
  8295. | Void
  8296. | Set of var * exp
  8297. | Seq of exp list * exp
  8298. | While of exp * exp
  8299. | Tuple of exp list
  8300. | HasType of exp * typ
  8301. | Apply of exp * exp list
  8302. | FunRef of var
  8303. type 'finfo func =
  8304. Func of var * (var * typ) list * typ * 'finfo * exp
  8305. type ('pinfo,'finfo) program =
  8306. Program of 'pinfo * ('finfo func) list * exp option
  8307. \end{lstlisting}
  8308. \caption{The abstract syntax of \LangFun{}, extending \LangVec{} \ocaml{(\LangTuple{})} (Figure~\ref{fig:Rvec-syntax}).}
  8309. \label{fig:Rfun-syntax}
  8310. \end{figure}
  8311. The program in Figure~\ref{fig:Rfun-function-example} is a
  8312. representative example of defining and using functions in \LangFun{}. We
  8313. define a function \code{map-vec} that applies some other function
  8314. \code{f} to both elements of a vector and returns a new
  8315. vector containing the results. We also define a function \code{add1}.
  8316. The program applies
  8317. \code{map-vec} to \code{add1} and \code{(vector 0 41)}. The result is
  8318. \code{(vector 1 42)}, from which we return the \code{42}.
  8319. \begin{figure}[tbp]
  8320. \begin{lstlisting}
  8321. (define (map-vec [f : (Integer -> Integer)]
  8322. [v : (Vector Integer Integer)])
  8323. : (Vector Integer Integer)
  8324. (vector (f (vector-ref v 0)) (f (vector-ref v 1))))
  8325. (define (add1 [x : Integer]) : Integer
  8326. (+ x 1))
  8327. (vector-ref (map-vec add1 (vector 0 41)) 1)
  8328. \end{lstlisting}
  8329. \begin{lstlisting}[style=ocaml]
  8330. (define mapvec (f : (int -> int)) (v : (# int int)) : (# int int)
  8331. (# (f (! 0 v)) (f (! 1 v))))
  8332. (define add1 (x : int) : int
  8333. (+ x 1))
  8334. (! 1 (mapvec add1 (# 0 41)))
  8335. \end{lstlisting}
  8336. \caption{Example of using functions in \LangFun{}.}
  8337. \label{fig:Rfun-function-example}
  8338. \end{figure}
  8339. \begin{ocamlx}
  8340. Note that the concrete syntax of \LangFun{} is a strict superset of our
  8341. earlier languages, since a program is allowed to have zero functions.
  8342. Functions are allowed to have zero arguments.
  8343. When writing concrete programs, be alert to the fact that there must be
  8344. spaces around each colon (\code{:}) and around the arrow (\code{->})
  8345. in function types. Also, although the parser will accept fairly arbitrary
  8346. character strings as function names (as does Racket), these will ultimately need to appear
  8347. as X86 assembly labels, which are fairly restricted in form (no dashes
  8348. or question marks, for example); if you stick to alphabetic names you should have no troubles.
  8349. There are two features of the \LangFun{} AST that are not intended for
  8350. use by user programs and are not accepted by the parser, but may
  8351. be displayed in debug output. The first is the \code{(\& \Var)} expression
  8352. form, which is generated internally by the type checker, as described below.
  8353. The second if that the top-level expression is optional; it must always
  8354. be present in source programs, but will be removed by the Shrink pass
  8355. (Section~\ref{sec:shrink-r4}).
  8356. \end{ocamlx}
  8357. The definitional interpreter for \LangFun{} is in
  8358. Figure~\ref{fig:interp-Rfun}. \ocaml{(The OCaml version is in file \code{RFun.ml}.)}
  8359. The case for the \code{ProgramDefsExp} form is
  8360. responsible for setting up the mutual recursion between the top-level
  8361. function definitions. We use the classic back-patching \index{back-patching}
  8362. approach that uses mutable variables and makes two passes over the function
  8363. definitions~\citep{Kelsey:1998di}. In the first pass we set up the
  8364. top-level environment using a mutable cons cell for each function
  8365. definition. Note that the \code{lambda} value for each function is
  8366. incomplete; it does not yet include the environment. Once the
  8367. top-level environment is constructed, we then iterate over it and
  8368. update the \code{lambda} values to use the top-level environment.
  8369. \ocaml{This complication is really not needed. In the OCaml version,
  8370. we do not associate environments with function values, but instead
  8371. use a single separate environment of (top-level) functions that is passed
  8372. down to the recursive evaluator, together with the usual environment for
  8373. local variables (which also holds function parameters).}
  8374. \begin{figure}[tp]
  8375. \begin{lstlisting}
  8376. (define interp-Rfun-class
  8377. (class interp-Rvec-class
  8378. (super-new)
  8379. (define/override ((interp-exp env) e)
  8380. (define recur (interp-exp env))
  8381. (match e
  8382. [(Var x) (unbox (dict-ref env x))]
  8383. [(Let x e body)
  8384. (define new-env (dict-set env x (box (recur e))))
  8385. ((interp-exp new-env) body)]
  8386. [(Apply fun args)
  8387. (define fun-val (recur fun))
  8388. (define arg-vals (for/list ([e args]) (recur e)))
  8389. (match fun-val
  8390. [`(function (,xs ...) ,body ,fun-env)
  8391. (define params-args (for/list ([x xs] [arg arg-vals])
  8392. (cons x (box arg))))
  8393. (define new-env (append params-args fun-env))
  8394. ((interp-exp new-env) body)]
  8395. [else (error 'interp-exp "expected function, not ~a" fun-val)])]
  8396. [else ((super interp-exp env) e)]
  8397. ))
  8398. (define/public (interp-def d)
  8399. (match d
  8400. [(Def f (list `[,xs : ,ps] ...) rt _ body)
  8401. (cons f (box `(function ,xs ,body ())))]))
  8402. (define/override (interp-program p)
  8403. (match p
  8404. [(ProgramDefsExp info ds body)
  8405. (let ([top-level (for/list ([d ds]) (interp-def d))])
  8406. (for/list ([f (in-dict-values top-level)])
  8407. (set-box! f (match (unbox f)
  8408. [`(function ,xs ,body ())
  8409. `(function ,xs ,body ,top-level)])))
  8410. ((interp-exp top-level) body))]))
  8411. ))
  8412. (define (interp-Rfun p)
  8413. (send (new interp-Rfun-class) interp-program p))
  8414. \end{lstlisting}
  8415. \caption{Interpreter for the \LangFun{} language.}
  8416. \label{fig:interp-Rfun}
  8417. \end{figure}
  8418. \margincomment{TODO: explain type checker}
  8419. The type checker for \LangFun{} is is in Figure~\ref{fig:type-check-Rfun}.
  8420. \ocaml{The OCaml version is in \code{RFun.ml}. Checking of function definitions and
  8421. applications is straightforward. All functions must have distinct names, and
  8422. the parameters to each function must have distinct names.
  8423. Functions are limited to a maximum of six parameters, to simplify the implementation
  8424. (more on this in Section~\ref{sec:fun-x86}).
  8425. Also, functions are not permitted have a return type of
  8426. \code{Void}; this slightly simplifies the implementation while having minimal impact on
  8427. the language's expressiveness (since we have no printing or global variables).
  8428. As a by-product of checking, references to function names are turned into explicit
  8429. uses of the \code{(\&\;\Var)} operator; this has the same effect as the Reveal Functions
  8430. pass described in Section~\ref{sec:reveal-functions-r4}, and makes that pass unnecessary.}
  8431. \begin{figure}[tp]
  8432. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  8433. (define type-check-Rfun-class
  8434. (class type-check-Rvec-class
  8435. (super-new)
  8436. (inherit check-type-equal?)
  8437. (define/public (type-check-apply env e es)
  8438. (define-values (e^ ty) ((type-check-exp env) e))
  8439. (define-values (e* ty*) (for/lists (e* ty*) ([e (in-list es)])
  8440. ((type-check-exp env) e)))
  8441. (match ty
  8442. [`(,ty^* ... -> ,rt)
  8443. (for ([arg-ty ty*] [param-ty ty^*])
  8444. (check-type-equal? arg-ty param-ty (Apply e es)))
  8445. (values e^ e* rt)]))
  8446. (define/override (type-check-exp env)
  8447. (lambda (e)
  8448. (match e
  8449. [(FunRef f)
  8450. (values (FunRef f) (dict-ref env f))]
  8451. [(Apply e es)
  8452. (define-values (e^ es^ rt) (type-check-apply env e es))
  8453. (values (Apply e^ es^) rt)]
  8454. [(Call e es)
  8455. (define-values (e^ es^ rt) (type-check-apply env e es))
  8456. (values (Call e^ es^) rt)]
  8457. [else ((super type-check-exp env) e)])))
  8458. (define/public (type-check-def env)
  8459. (lambda (e)
  8460. (match e
  8461. [(Def f (and p:t* (list `[,xs : ,ps] ...)) rt info body)
  8462. (define new-env (append (map cons xs ps) env))
  8463. (define-values (body^ ty^) ((type-check-exp new-env) body))
  8464. (check-type-equal? ty^ rt body)
  8465. (Def f p:t* rt info body^)])))
  8466. (define/public (fun-def-type d)
  8467. (match d
  8468. [(Def f (list `[,xs : ,ps] ...) rt info body) `(,@ps -> ,rt)]))
  8469. (define/override (type-check-program e)
  8470. (match e
  8471. [(ProgramDefsExp info ds body)
  8472. (define new-env (for/list ([d ds])
  8473. (cons (Def-name d) (fun-def-type d))))
  8474. (define ds^ (for/list ([d ds]) ((type-check-def new-env) d)))
  8475. (define-values (body^ ty) ((type-check-exp new-env) body))
  8476. (check-type-equal? ty 'Integer body)
  8477. (ProgramDefsExp info ds^ body^)]))))
  8478. (define (type-check-Rfun p)
  8479. (send (new type-check-Rfun-class) type-check-program p))
  8480. \end{lstlisting}
  8481. \caption{Type checker for the \LangFun{} language.}
  8482. \label{fig:type-check-Rfun}
  8483. \end{figure}
  8484. \section{Functions in x86}
  8485. \label{sec:fun-x86}
  8486. \margincomment{\tiny Make sure callee-saved registers are discussed
  8487. in enough depth, especially updating Fig 6.4 \\ --Jeremy }
  8488. \margincomment{\tiny Talk about the return address on the
  8489. stack and what callq and retq does.\\ --Jeremy }
  8490. The x86 architecture provides a few features to support the
  8491. implementation of functions. We have already seen that x86 provides
  8492. labels so that one can refer to the location of an instruction, as is
  8493. needed for jump instructions. Labels can also be used to mark the
  8494. beginning of the instructions for a function. Going further, we can
  8495. obtain the address of a label by using the \key{leaq} instruction and
  8496. PC-relative addressing. For example, the following puts the
  8497. address of the \code{add1} label into the \code{rbx} register.
  8498. \begin{lstlisting}
  8499. leaq add1(%rip), %rbx
  8500. \end{lstlisting}
  8501. The instruction pointer register \key{rip} (aka. the program counter
  8502. \index{program counter}) always points to the next instruction to be
  8503. executed. When combined with an label, as in \code{add1(\%rip)}, the
  8504. linker computes the distance $d$ between the address of \code{add1}
  8505. and where the \code{rip} would be at that moment and then changes
  8506. \code{add1(\%rip)} to \code{$d$(\%rip)}, which at runtime will compute
  8507. the address of \code{add1}.
  8508. In Section~\ref{sec:x86} we used of \ocaml{[sic]} the \code{callq} instruction to
  8509. jump to a function whose location is given by a label. To support
  8510. function calls in this chapter we instead will be jumping to a
  8511. function whose location is given by an address in a register, that is,
  8512. we need to make an \emph{indirect function call}.
  8513. The x86 syntax for this is a \code{callq} instruction but with an asterisk before the
  8514. register name.\index{indirect function call}
  8515. \begin{lstlisting}
  8516. callq *%rbx
  8517. \end{lstlisting}
  8518. \begin{ocamlx}
  8519. We will improve on this scheme by using a combination of direct calls
  8520. (when the target function is statically known) and indirect calls (when it is not).
  8521. \end{ocamlx}
  8522. \subsection{Calling Conventions}
  8523. \index{calling conventions}
  8524. The \code{callq} instruction provides partial support for implementing
  8525. functions: it pushes the return address on the stack and it jumps to
  8526. the target. However, \code{callq} does not handle
  8527. \begin{enumerate}
  8528. \item parameter passing,
  8529. \item pushing frames on the procedure call stack and popping them off,
  8530. or
  8531. \item determining how registers are shared by different functions.
  8532. \end{enumerate}
  8533. Regarding (1) parameter passing, recall that the following six
  8534. registers are used to pass arguments to a function, in this order.
  8535. \begin{lstlisting}
  8536. rdi rsi rdx rcx r8 r9
  8537. \end{lstlisting}
  8538. If there are
  8539. more than six arguments, then the convention is to use space on the
  8540. frame of the caller for the rest of the arguments. However, to ease
  8541. the implementation of efficient tail calls
  8542. (Section~\ref{sec:tail-call}), we arrange never to need more than six
  8543. arguments.
  8544. %
  8545. \ocaml{We'll do this by simply prohibiting functions with more than six
  8546. arguments from passing the type-checker; this is a useful simplification
  8547. even though we will not be implementing efficient tail calls.}
  8548. %
  8549. Also recall that the register \code{rax} is for the return value of
  8550. the function.
  8551. \index{prelude}\index{conclusion}
  8552. Regarding (2) frames \index{frame} and the procedure call stack,
  8553. \index{procedure call stack} recall from Section~\ref{sec:x86} that
  8554. the stack grows down, with each function call using a chunk of space
  8555. called a frame. The caller sets the stack pointer, register
  8556. \code{rsp}, to the last data item in its frame. The callee must not
  8557. change anything in the caller's frame, that is, anything that is at or
  8558. above the stack pointer. The callee is free to use locations that are
  8559. below the stack pointer.
  8560. Recall that we are storing variables of vector type on the root stack.
  8561. So the prelude needs to move the root stack pointer \code{r15} up and
  8562. the conclusion needs to move the root stack pointer back down. Also,
  8563. the prelude must initialize to \code{0} this frame's slots in the root
  8564. stack to signal to the garbage collector that those slots do not yet
  8565. contain a pointer to a vector. Otherwise the garbage collector will
  8566. interpret the garbage bits in those slots as memory addresses and try
  8567. to traverse them, causing serious mayhem!
  8568. Regarding (3) the sharing of registers between different functions,
  8569. recall from Section~\ref{sec:calling-conventions} that the registers
  8570. are divided into two groups, the caller-saved registers and the
  8571. callee-saved registers. The caller should assume that all the
  8572. caller-saved registers get overwritten with arbitrary values by the
  8573. callee. That is why we recommend in
  8574. Section~\ref{sec:calling-conventions} that variables that are live
  8575. during a function call should not be assigned to caller-saved
  8576. registers.
  8577. On the flip side, if the callee wants to use a callee-saved register,
  8578. the callee must save the contents of those registers on their stack
  8579. frame and then put them back prior to returning to the caller. That
  8580. is why we recommended in Section~\ref{sec:calling-conventions} that if
  8581. the register allocator assigns a variable to a callee-saved register,
  8582. then the prelude of the \code{main} function must save that register
  8583. to the stack and the conclusion of \code{main} must restore it. This
  8584. recommendation now generalizes to all functions.
  8585. %
  8586. \ocaml{Warning: the code to do this in earlier versions of \code{X86*.ml}
  8587. was seriously broken (an off-by-one error), but since we weren't making
  8588. any function calls ourselves, it wasn't revealed by testing! The code
  8589. in \code{X86Fun.ml} should be ok.}
  8590. Also recall that the base pointer, register \code{rbp}, is used as a
  8591. point-of-reference within a frame, so that each local variable can be
  8592. accessed at a fixed offset from the base pointer
  8593. (Section~\ref{sec:x86}).
  8594. %
  8595. Figure~\ref{fig:call-frames} shows the general layout of the caller
  8596. and callee frames.
  8597. \begin{figure}[tbp]
  8598. \centering
  8599. \begin{tabular}{r|r|l|l} \hline
  8600. Caller View & Callee View & Contents & Frame \\ \hline
  8601. 8(\key{\%rbp}) & & return address & \multirow{5}{*}{Caller}\\
  8602. 0(\key{\%rbp}) & & old \key{rbp} \\
  8603. -8(\key{\%rbp}) & & callee-saved $1$ \\
  8604. \ldots & & \ldots \\
  8605. $-8j$(\key{\%rbp}) & & callee-saved $j$ \\
  8606. $-8(j+1)$(\key{\%rbp}) & & local variable $1$ \\
  8607. \ldots & & \ldots \\
  8608. $-8(j+k)$(\key{\%rbp}) & & local variable $k$ \\
  8609. %% & & \\
  8610. %% $8n-8$\key{(\%rsp)} & $8n+8$(\key{\%rbp})& argument $n$ \\
  8611. %% & \ldots & \ldots \\
  8612. %% 0\key{(\%rsp)} & 16(\key{\%rbp}) & argument $1$ & \\
  8613. \hline
  8614. & 8(\key{\%rbp}) & return address & \multirow{5}{*}{Callee}\\
  8615. & 0(\key{\%rbp}) & old \key{rbp} \\
  8616. & -8(\key{\%rbp}) & callee-saved $1$ \\
  8617. & \ldots & \ldots \\
  8618. & $-8n$(\key{\%rbp}) & callee-saved $n$ \\
  8619. & $-8(n+1)$(\key{\%rbp}) & local variable $1$ \\
  8620. & \ldots & \ldots \\
  8621. & $-8(n+m)$(\key{\%rsp}) & local variable $m$\\ \hline
  8622. \end{tabular}
  8623. \caption{Memory layout of caller and callee frames.}
  8624. \label{fig:call-frames}
  8625. \end{figure}
  8626. %% Recall from Section~\ref{sec:x86} that the stack is also used for
  8627. %% local variables and for storing the values of callee-saved registers
  8628. %% (we shall refer to all of these collectively as ``locals''), and that
  8629. %% at the beginning of a function we move the stack pointer \code{rsp}
  8630. %% down to make room for them.
  8631. %% We recommend storing the local variables
  8632. %% first and then the callee-saved registers, so that the local variables
  8633. %% can be accessed using \code{rbp} the same as before the addition of
  8634. %% functions.
  8635. %% To make additional room for passing arguments, we shall
  8636. %% move the stack pointer even further down. We count how many stack
  8637. %% arguments are needed for each function call that occurs inside the
  8638. %% body of the function and find their maximum. Adding this number to the
  8639. %% number of locals gives us how much the \code{rsp} should be moved at
  8640. %% the beginning of the function. In preparation for a function call, we
  8641. %% offset from \code{rsp} to set up the stack arguments. We put the first
  8642. %% stack argument in \code{0(\%rsp)}, the second in \code{8(\%rsp)}, and
  8643. %% so on.
  8644. %% Upon calling the function, the stack arguments are retrieved by the
  8645. %% callee using the base pointer \code{rbp}. The address \code{16(\%rbp)}
  8646. %% is the location of the first stack argument, \code{24(\%rbp)} is the
  8647. %% address of the second, and so on. Figure~\ref{fig:call-frames} shows
  8648. %% the layout of the caller and callee frames. Notice how important it is
  8649. %% that we correctly compute the maximum number of arguments needed for
  8650. %% function calls; if that number is too small then the arguments and
  8651. %% local variables will smash into each other!
  8652. \subsection{Efficient Tail Calls}
  8653. \label{sec:tail-call}
  8654. In general, the amount of stack space used by a program is determined
  8655. by the longest chain of nested function calls. That is, if function
  8656. $f_1$ calls $f_2$, $f_2$ calls $f_3$, $\ldots$, and $f_{n-1}$ calls
  8657. $f_n$, then the amount of stack space is bounded by $O(n)$. The depth
  8658. $n$ can grow quite large in the case of recursive or mutually
  8659. recursive functions. However, in some cases we can arrange to use only
  8660. constant space, i.e. $O(1)$, instead of $O(n)$.
  8661. If a function call is the last action in a function body, then that
  8662. call is said to be a \emph{tail call}\index{tail call}.
  8663. For example, in the following
  8664. program, the recursive call to \code{tail-sum} is a tail call.
  8665. \begin{center}
  8666. \begin{lstlisting}
  8667. (define (tail-sum [n : Integer] [r : Integer]) : Integer
  8668. (if (eq? n 0)
  8669. r
  8670. (tail-sum (- n 1) (+ n r))))
  8671. (+ (tail-sum 5 0) 27)
  8672. \end{lstlisting}
  8673. \end{center}
  8674. At a tail call, the frame of the caller is no longer needed, so we
  8675. can pop the caller's frame before making the tail call. With this
  8676. approach, a recursive function that only makes tail calls will only
  8677. use $O(1)$ stack space. Functional languages like Racket typically
  8678. rely heavily on recursive functions, so they typically guarantee that
  8679. all tail calls will be optimized in this way.
  8680. \index{frame}
  8681. \ocaml{For simplicity, we will not implement the tail call optimization
  8682. described here. While functional languages often depend
  8683. on this optimization (Scheme and its dialects typically demand that
  8684. a conforming implementation perform it), imperative languages with loops
  8685. can be more flexible.}
  8686. However, some care is needed with regards to argument passing in tail
  8687. calls. As mentioned above, for arguments beyond the sixth, the
  8688. convention is to use space in the caller's frame for passing
  8689. arguments. But for a tail call we pop the caller's frame and can no
  8690. longer use it. Another alternative is to use space in the callee's
  8691. frame for passing arguments. However, this option is also problematic
  8692. because the caller and callee's frame overlap in memory. As we begin
  8693. to copy the arguments from their sources in the caller's frame, the
  8694. target locations in the callee's frame might overlap with the sources
  8695. for later arguments! We solve this problem by not using the stack for
  8696. passing more than six arguments but instead using the heap, as we
  8697. describe in the Section~\ref{sec:limit-functions-r4}.
  8698. \ocaml{Since we won't do this tail-call optimization, we could
  8699. follow the convention of using space in the caller's frame for
  8700. passing arguments beyond the sixth one. But is is easer to just
  8701. prohibit functions with more than six arguments, which we do
  8702. in the typechecker.}
  8703. As mentioned above, for a tail call we pop the caller's frame prior to
  8704. making the tail call. The instructions for popping a frame are the
  8705. instructions that we usually place in the conclusion of a
  8706. function. Thus, we also need to place such code immediately before
  8707. each tail call. These instructions include restoring the callee-saved
  8708. registers, so it is good that the argument passing registers are all
  8709. caller-saved registers.
  8710. One last note regarding which instruction to use to make the tail
  8711. call. When the callee is finished, it should not return to the current
  8712. function, but it should return to the function that called the current
  8713. one. Thus, the return address that is already on the stack is the
  8714. right one, and we should not use \key{callq} to make the tail call, as
  8715. that would unnecessarily overwrite the return address. Instead we can
  8716. simply use the \key{jmp} instruction. Like the indirect function call,
  8717. we write an \emph{indirect jump}\index{indirect jump} with a register
  8718. prefixed with an asterisk. We recommend using \code{rax} to hold the
  8719. jump target because the preceding conclusion overwrites just about
  8720. everything else.
  8721. \begin{lstlisting}
  8722. jmp *%rax
  8723. \end{lstlisting}
  8724. \section{Shrink \LangFun{}}
  8725. \label{sec:shrink-r4}
  8726. The \code{shrink} pass performs a minor modification to ease the
  8727. later passes. This pass introduces an explicit \code{main} function
  8728. and changes the top \code{ProgramDefsExp} form to
  8729. \code{ProgramDefs} as follows.
  8730. \begin{lstlisting}
  8731. (ProgramDefsExp |$\itm{info}$| (|$\Def\ldots$|) |$\Exp$|)
  8732. |$\Rightarrow$| (ProgramDefs |$\itm{info}$| (|$\Def\ldots$| |$\itm{mainDef}$|))
  8733. \end{lstlisting}
  8734. where $\itm{mainDef}$ is
  8735. \begin{lstlisting}
  8736. (Def 'main '() 'Integer '() |$\Exp'$|)
  8737. \end{lstlisting}
  8738. \ocaml{In OCaml, the Shrink pass does this by adding a new \code{main}
  8739. definition and changing the top-level expression option to \code{None}.}
  8740. \section{Reveal Functions and the \LangFunRef{} language}
  8741. \label{sec:reveal-functions-r4}
  8742. The syntax of \LangFun{} is inconvenient for purposes of compilation in one
  8743. respect: it conflates the use of function names and local
  8744. variables. This is a problem because we need to compile the use of a
  8745. function name differently than the use of a local variable; we need to
  8746. use \code{leaq} to convert the function name (a label in x86) to an
  8747. address in a register. Thus, it is a good idea to create a new pass
  8748. that changes function references from just a symbol $f$ to
  8749. $\FUNREF{f}$. This pass is named \code{reveal-functions} and the
  8750. output language, \LangFunRef{}, is defined in Figure~\ref{fig:f1-syntax}.
  8751. The concrete syntax for a function reference is $\CFUNREF{f}$ \ocaml{\code{(\&\;$f$)}}.
  8752. \begin{figure}[tp]
  8753. \centering
  8754. \fbox{
  8755. \begin{minipage}{0.96\textwidth}
  8756. \[
  8757. \begin{array}{lcl}
  8758. \Exp &::=& \ldots \mid \FUNREF{\Var}\\
  8759. \Def &::=& \gray{ \FUNDEF{\Var}{([\Var \code{:} \Type]\ldots)}{\Type}{\code{'()}}{\Exp} }\\
  8760. \LangFunRef{} &::=& \PROGRAMDEFS{\code{'()}}{\LP \Def\ldots \RP}
  8761. \end{array}
  8762. \]
  8763. \end{minipage}
  8764. }
  8765. \caption{The abstract syntax \LangFunRef{}, an extension of \LangFun{}
  8766. (Figure~\ref{fig:Rfun-syntax}).}
  8767. \label{fig:f1-syntax}
  8768. \end{figure}
  8769. %% Distinguishing between calls in tail position and non-tail position
  8770. %% requires the pass to have some notion of context. We recommend using
  8771. %% two mutually recursive functions, one for processing expressions in
  8772. %% tail position and another for the rest.
  8773. Placing this pass after \code{uniquify} will make sure that there are
  8774. no local variables and functions that share the same name. On the
  8775. other hand, \code{reveal-functions} needs to come before the
  8776. \code{explicate-control} pass because that pass helps us compile
  8777. \code{FunRef} forms into assignment statements.
  8778. \ocaml{We choose instead to fold this transformation into the \LangFun{} type checker.
  8779. Performing it before \code{uniquify} is actually no problem, because
  8780. function names are already checked to be unique across the program
  8781. and they can never hide local variable names.}
  8782. \section{Limit Functions}
  8783. \label{sec:limit-functions-r4}
  8784. \ocaml{We do not need this pass, since we simply limit the number of
  8785. function parameters to a maximum of six in the type checker.}
  8786. Recall that we wish to limit the number of function parameters to six
  8787. so that we do not need to use the stack for argument passing, which
  8788. makes it easier to implement efficient tail calls. However, because
  8789. the input language \LangFun{} supports arbitrary numbers of function
  8790. arguments, we have some work to do!
  8791. This pass transforms functions and function calls that involve more
  8792. than six arguments to pass the first five arguments as usual, but it
  8793. packs the rest of the arguments into a vector and passes it as the
  8794. sixth argument.
  8795. Each function definition with too many parameters is transformed as
  8796. follows.
  8797. \begin{lstlisting}
  8798. (Def |$f$| ([|$x_1$|:|$T_1$|] |$\ldots$| [|$x_n$|:|$T_n$|]) |$T_r$| |$\itm{info}$| |$\itm{body}$|)
  8799. |$\Rightarrow$|
  8800. (Def |$f$| ([|$x_1$|:|$T_1$|] |$\ldots$| [|$x_5$|:|$T_5$|] [vec : (Vector |$T_6 \ldots T_n$|)]) |$T_r$| |$\itm{info}$| |$\itm{body}'$|)
  8801. \end{lstlisting}
  8802. where the $\itm{body}$ is transformed into $\itm{body}'$ by replacing
  8803. the occurrences of the later parameters with vector references.
  8804. \begin{lstlisting}
  8805. (Var |$x_i$|) |$\Rightarrow$| (Prim 'vector-ref (list vec (Int |$(i - 6)$|)))
  8806. \end{lstlisting}
  8807. For function calls with too many arguments, the \code{limit-functions}
  8808. pass transforms them in the following way.
  8809. \begin{tabular}{lll}
  8810. \begin{minipage}{0.2\textwidth}
  8811. \begin{lstlisting}
  8812. (|$e_0$| |$e_1$| |$\ldots$| |$e_n$|)
  8813. \end{lstlisting}
  8814. \end{minipage}
  8815. &
  8816. $\Rightarrow$
  8817. &
  8818. \begin{minipage}{0.4\textwidth}
  8819. \begin{lstlisting}
  8820. (|$e_0$| |$e_1 \ldots e_5$| (vector |$e_6 \ldots e_n$|))
  8821. \end{lstlisting}
  8822. \end{minipage}
  8823. \end{tabular}
  8824. \section{Remove Complex Operands}
  8825. \label{sec:rco-r4}
  8826. The primary decisions to make for this pass is whether to classify
  8827. \code{FunRef} and \code{Apply} as either atomic or complex
  8828. expressions. Recall that a simple expression will eventually end up as
  8829. just an immediate argument of an x86 instruction. Function
  8830. application will be translated to a sequence of instructions, so
  8831. \code{Apply} must be classified as complex expression.
  8832. On the other hand, the arguments of \code{Apply} should be
  8833. atomic expressions.
  8834. \ocaml{So far, same in OCaml.}
  8835. %
  8836. Regarding \code{FunRef}, as discussed above, the function label needs
  8837. to be converted to an address using the \code{leaq} instruction. Thus,
  8838. even though \code{FunRef} seems rather simple, it needs to be
  8839. classified as a complex expression so that we generate an assignment
  8840. statement with a left-hand side that can serve as the target of the
  8841. \code{leaq}. \ocaml{It is actually easier to classify \code{FunRef}
  8842. as an atomic form. The few places where we need to generate an
  8843. \code{leaq} are very stylized and can be recognized at the very
  8844. end of code generation, in Patch Instructions.}
  8845. Figure~\ref{fig:Rfun-anf-syntax} defines the
  8846. output language \LangFunANF{} of this pass.\ocaml{For us, \code{(FunRef$\;\Var$)}
  8847. should be an $\Atm$.}
  8848. \begin{figure}[tp]
  8849. \centering
  8850. \fbox{
  8851. \begin{minipage}{0.96\textwidth}
  8852. \small
  8853. \[
  8854. \begin{array}{rcl}
  8855. \Atm &::=& \gray{ \INT{\Int} \mid \VAR{\Var} \mid \BOOL{\itm{bool}}
  8856. \mid \VOID{} } \\
  8857. \Exp &::=& \gray{ \Atm \mid \READ{} } \\
  8858. &\mid& \gray{ \NEG{\Atm} \mid \ADD{\Atm}{\Atm} } \\
  8859. &\mid& \gray{ \LET{\Var}{\Exp}{\Exp} } \\
  8860. &\mid& \gray{ \UNIOP{\key{'not}}{\Atm} } \\
  8861. &\mid& \gray{ \BINOP{\itm{cmp}}{\Atm}{\Atm} \mid \IF{\Exp}{\Exp}{\Exp} }\\
  8862. &\mid& \gray{ \LP\key{Collect}~\Int\RP \mid \LP\key{Allocate}~\Int~\Type\RP
  8863. \mid \LP\key{GlobalValue}~\Var\RP }\\
  8864. &\mid& \FUNREF{\Var} \mid \APPLY{\Atm}{\Atm\ldots}\\
  8865. \Def &::=& \gray{ \FUNDEF{\Var}{([\Var \code{:} \Type]\ldots)}{\Type}{\code{'()}}{\Exp} }\\
  8866. R^{\dagger}_4 &::=& \gray{ \PROGRAMDEFS{\code{'()}}{\Def} }
  8867. \end{array}
  8868. \]
  8869. \end{minipage}
  8870. }
  8871. \caption{\LangFunANF{} is \LangFun{} in administrative normal form (ANF).}
  8872. \label{fig:Rfun-anf-syntax}
  8873. \end{figure}
  8874. \section{Explicate Control and the \LangCFun{} language}
  8875. \label{sec:explicate-control-r4}
  8876. Figure~\ref{fig:c3-syntax} defines the abstract syntax for \LangCFun{}, the
  8877. output of \key{explicate-control}. \ocaml{OCaml: In file \code{CFun.ml}.
  8878. Following the remarks in the previous sections, we make \code{(FunRef\;{\itm{label}})} an $\Atm$ rather than an $\Exp$,
  8879. and there is no \code{TailCall} form.}
  8880. (The concrete syntax is given in
  8881. Figure~\ref{fig:c3-concrete-syntax} of the Appendix.) The auxiliary
  8882. functions for assignment and tail contexts should be updated with
  8883. cases for \code{Apply} and \code{FunRef} and the function for
  8884. predicate context should be updated for \code{Apply} but not
  8885. \code{FunRef}. (A \code{FunRef} can't be a Boolean.) \ocaml{The predicate
  8886. context treatment of \code{Apply} will need to be handled similarly
  8887. to \code{GetField} introduced in \LangTuple{}. Neither of the new forms
  8888. should be added to the function for effectful contexts (a \code{FunRef}
  8889. cannot have type Void, and our \LangFun{} type checker prohibits
  8890. functions from having return type Void too).}
  8891. In assignment
  8892. and predicate contexts, \code{Apply} becomes \code{Call}, whereas in
  8893. tail position \code{Apply} becomes \code{TailCall}. \ocaml{For us, \code{Apply}
  8894. becomes \code{Call} even in tail position.}
  8895. We recommend
  8896. defining a new auxiliary function for processing function definitions.
  8897. This code is similar to the case for \code{Program} in \LangVec{}. The
  8898. top-level \code{explicate-control} function that handles the
  8899. \code{ProgramDefs} form of \LangFun{} can then apply this new function to
  8900. all the function definitions. \ocaml{Note that the \LangCFun{} type checker
  8901. adds information about the variables of each function to the per-function
  8902. information field (just as in earlier languages this information was added
  8903. to the program information field).}
  8904. \begin{figure}[tp]
  8905. \fbox{
  8906. \begin{minipage}{0.96\textwidth}
  8907. \small
  8908. \[
  8909. \begin{array}{lcl}
  8910. \Atm &::=& \gray{ \INT{\Int} \mid \VAR{\Var} \mid \BOOL{\itm{bool}} }\\
  8911. \itm{cmp} &::= & \gray{ \key{eq?} \mid \key{<} } \\
  8912. \Exp &::= & \gray{ \Atm \mid \READ{} } \\
  8913. &\mid& \gray{ \NEG{\Atm} \mid \ADD{\Atm}{\Atm} }\\
  8914. &\mid& \gray{ \UNIOP{\key{not}}{\Atm} \mid \BINOP{\itm{cmp}}{\Atm}{\Atm} } \\
  8915. &\mid& \gray{ \LP\key{Allocate} \,\itm{int}\,\itm{type}\RP } \\
  8916. &\mid& \gray{ \BINOP{\key{'vector-ref}}{\Atm}{\INT{\Int}} }\\
  8917. &\mid& \gray{ \LP\key{Prim}~\key{'vector-set!}\,\LP\key{list}\,\Atm\,\INT{\Int}\,\Atm\RP\RP }\\
  8918. &\mid& \gray{ \LP\key{GlobalValue} \,\Var\RP \mid \LP\key{Void}\RP }\\
  8919. &\mid& \FUNREF{\itm{label}} \mid \CALL{\Atm}{\LP\Atm\ldots\RP} \\
  8920. \Stmt &::=& \gray{ \ASSIGN{\VAR{\Var}}{\Exp}
  8921. \mid \LP\key{Collect} \,\itm{int}\RP } \\
  8922. \Tail &::= & \gray{ \RETURN{\Exp} \mid \SEQ{\Stmt}{\Tail}
  8923. \mid \GOTO{\itm{label}} } \\
  8924. &\mid& \gray{ \IFSTMT{\BINOP{\itm{cmp}}{\Atm}{\Atm}}{\GOTO{\itm{label}}}{\GOTO{\itm{label}}} }\\
  8925. &\mid& \TAILCALL{\Atm}{\Atm\ldots} \\
  8926. \Def &::=& \DEF{\itm{label}}{\LP[\Var\key{:}\Type]\ldots\RP}{\Type}{\itm{info}}{\LP\LP\itm{label}\,\key{.}\,\Tail\RP\ldots\RP}\\
  8927. \LangCFun{} & ::= & \PROGRAMDEFS{\itm{info}}{\LP\Def\ldots\RP}
  8928. \end{array}
  8929. \]
  8930. \end{minipage}
  8931. }
  8932. \caption{The abstract syntax of \LangCFun{}, extending \LangCVec{} (Figure~\ref{fig:c2-syntax}).}
  8933. \label{fig:c3-syntax}
  8934. \end{figure}
  8935. \section{Select Instructions and the \LangXIndCall{} \ocaml{(\LangXFun{})} Language}
  8936. \label{sec:select-r4}
  8937. \index{instruction selection}
  8938. The output of select instructions is a program in the \LangXIndCall{} \ocaml{(\LangXFun{})}
  8939. language, whose syntax is defined in Figure~\ref{fig:x86-3}. \ocaml{The OCaml version is
  8940. in \code{X86Fun.ml}. It does not have a $\Var \key{(\%rip)}$ or \key{tailjmp} form.}
  8941. \index{x86}
  8942. \begin{figure}[tp]
  8943. \fbox{
  8944. \begin{minipage}{0.96\textwidth}
  8945. \small
  8946. \[
  8947. \begin{array}{lcl}
  8948. \Arg &::=& \gray{ \key{\$}\Int \mid \key{\%}\Reg \mid \Int\key{(}\key{\%}\Reg\key{)} \mid \key{\%}\itm{bytereg} } \mid \Var \key{(\%rip)}
  8949. \mid \LP\key{fun-ref}\; \itm{label}\RP\\
  8950. \itm{cc} & ::= & \gray{ \key{e} \mid \key{l} \mid \key{le} \mid \key{g} \mid \key{ge} } \\
  8951. \Instr &::=& \ldots
  8952. \mid \key{callq}\;\key{*}\Arg \mid \key{tailjmp}\;\Arg
  8953. \mid \key{leaq}\;\Arg\key{,}\;\key{\%}\Reg \\
  8954. \Block &::= & \Instr\ldots \\
  8955. \Def &::= & \LP\key{define} \; \LP\itm{label}\RP \;\LP\LP\itm{label} \,\key{.}\, \Block\RP\ldots\RP\RP\\
  8956. \LangXIndCall{} &::= & \Def\ldots
  8957. \end{array}
  8958. \]
  8959. \end{minipage}
  8960. }
  8961. \caption{The concrete syntax of \LangXIndCall{} (extends \LangXGlobal{} of Figure~\ref{fig:x86-2-concrete}).}
  8962. \label{fig:x86-3-concrete}
  8963. \end{figure}
  8964. \begin{figure}[tp]
  8965. \fbox{
  8966. \begin{minipage}{0.96\textwidth}
  8967. \small
  8968. \[
  8969. \begin{array}{lcl}
  8970. \Arg &::=& \gray{ \INT{\Int} \mid \REG{\Reg} \mid \DEREF{\Reg}{\Int}
  8971. \mid \BYTEREG{\Reg} } \\
  8972. &\mid& \gray{ (\key{Global}~\Var) } \mid \FUNREF{\itm{label}} \\
  8973. \Instr &::=& \ldots \mid \INDCALLQ{\Arg}{\itm{int}}
  8974. \mid \TAILJMP{\Arg}{\itm{int}}\\
  8975. &\mid& \BININSTR{\code{'leaq}}{\Arg}{\REG{\Reg}}\\
  8976. \Block &::= & \BLOCK{\itm{info}}{\LP\Instr\ldots\RP}\\
  8977. \Def &::= & \DEF{\itm{label}}{\code{'()}}{\Type}{\itm{info}}{\LP\LP\itm{label}\,\key{.}\,\Block\RP\ldots\RP} \\
  8978. \LangXIndCall{} &::= & \PROGRAMDEFS{\itm{info}}{\LP\Def\ldots\RP}
  8979. \end{array}
  8980. \]
  8981. \end{minipage}
  8982. }
  8983. \caption{The abstract syntax of \LangXIndCall{} (extends
  8984. \LangXGlobal{} of Figure~\ref{fig:x86-2}).}
  8985. \label{fig:x86-3}
  8986. \end{figure}
  8987. An assignment of a function reference to a variable becomes a
  8988. load-effective-address instruction as follows: \\
  8989. \begin{tabular}{lcl}
  8990. \begin{minipage}{0.35\textwidth}
  8991. \begin{lstlisting}
  8992. |$\itm{lhs}$| = (fun-ref |$f$|);
  8993. \end{lstlisting}
  8994. \end{minipage}
  8995. &
  8996. $\Rightarrow$\qquad\qquad
  8997. &
  8998. \begin{minipage}{0.3\textwidth}
  8999. \begin{lstlisting}
  9000. leaq (fun-ref |$f$|), |$\itm{lhs}'$|
  9001. \end{lstlisting}
  9002. \end{minipage}
  9003. \end{tabular} \\
  9004. \ocaml{We defer this transformation to the Patch Instructions phase. For now, there is
  9005. no need to treat \code{FunRef}s specially: simply generate
  9006. the usual \code{movq} instruction with \code{FunRef\;$f$} as the source argument.
  9007. The code you generate at this stage should not include \code{leaq} instructions.}
  9008. Regarding function definitions, we need to remove the parameters and
  9009. instead perform parameter passing using the conventions discussed in
  9010. Section~\ref{sec:fun-x86}. That is, the arguments are passed in
  9011. registers. We recommend turning the parameters into local variables
  9012. and generating instructions at the beginning of the function to move
  9013. from the argument passing registers to these local variables.
  9014. \begin{lstlisting}
  9015. (Def |$f$| '([|$x_1$| : |$T_1$|] [|$x_2$| : |$T_2$|] |$\ldots$| ) |$T_r$| |$\itm{info}$| |$G$|)
  9016. |$\Rightarrow$|
  9017. (Def |$f$| '() 'Integer |$\itm{info}'$| |$G'$|)
  9018. \end{lstlisting}
  9019. \begin{lstlisting}[style=ocaml]
  9020. CFun.Func(~$f$~,~$args$~,~$resty$~,~$vars$~,~$G$~)
  9021. ~$\Rightarrow$~
  9022. X86Fun.Func(~$f$~,~$vars$~,~$G'$~)
  9023. \end{lstlisting}
  9024. \ocaml{Note that we copy over the function $vars$ environment unchanged.}
  9025. The $G'$ control-flow graph is the same as $G$ except that the
  9026. \code{start} block is modified to add the instructions for moving from
  9027. the argument registers to the parameter variables. So the \code{start}
  9028. block of $G$ shown on the left is changed to the code on the right.
  9029. \begin{center}
  9030. \begin{minipage}{0.3\textwidth}
  9031. \begin{lstlisting}
  9032. start:
  9033. |$\itm{instr}_1$|
  9034. |$\vdots$|
  9035. |$\itm{instr}_n$|
  9036. \end{lstlisting}
  9037. \end{minipage}
  9038. $\Rightarrow$
  9039. \begin{minipage}{0.3\textwidth}
  9040. \begin{lstlisting}
  9041. start:
  9042. movq %rdi, |$x_1$|
  9043. movq %rsi, |$x_2$|
  9044. |$\vdots$|
  9045. |$\itm{instr}_1$|
  9046. |$\vdots$|
  9047. |$\itm{instr}_n$|
  9048. \end{lstlisting}
  9049. \end{minipage}
  9050. \end{center}
  9051. By changing the parameters to local variables, we are giving the
  9052. register allocator control over which registers or stack locations to
  9053. use for them. If you implemented the move-biasing challenge
  9054. (Section~\ref{sec:move-biasing}), the register allocator will try to
  9055. assign the parameter variables to the corresponding argument register,
  9056. in which case the \code{patch-instructions} pass will remove the
  9057. \code{movq} instruction. This happens in the example translation in
  9058. Figure~\ref{fig:add-fun} of Section~\ref{sec:functions-example}, in
  9059. the \code{add} function.
  9060. %
  9061. Also, note that the register allocator will perform liveness analysis
  9062. on this sequence of move instructions and build the interference
  9063. graph. So, for example, $x_1$ will be marked as interfering with
  9064. \code{rsi} and that will prevent the assignment of $x_1$ to
  9065. \code{rsi}, which is good, because that would overwrite the argument
  9066. that needs to move into $x_2$.
  9067. Next, consider the compilation of function calls. In the mirror image
  9068. of handling the parameters of function definitions, the arguments need
  9069. to be moved to the argument passing registers. The function call
  9070. itself is performed with an indirect function call. The return value
  9071. from the function is stored in \code{rax}, so it needs to be moved
  9072. into the \itm{lhs}.
  9073. \begin{lstlisting}
  9074. |\itm{lhs}| = (call |\itm{fun}| |$\itm{arg}_1~\itm{arg}_2\ldots$|));
  9075. |$\Rightarrow$|
  9076. movq |$\itm{arg}_1$|, %rdi
  9077. movq |$\itm{arg}_2$|, %rsi
  9078. |$\vdots$|
  9079. callq *|\itm{fun}|
  9080. movq %rax, |\itm{lhs}|
  9081. \end{lstlisting}
  9082. The \code{IndirectCallq} AST node includes an integer for the arity of
  9083. the function, i.e., the number of parameters. That information is
  9084. useful in the \code{uncover-live} pass for determining which
  9085. argument-passing registers are potentially read during the call.
  9086. \ocaml{This paragraph is irrelevant for us, since we are not optimizing tail calls.}
  9087. For tail calls, the parameter passing is the same as non-tail calls:
  9088. generate instructions to move the arguments into to the argument
  9089. passing registers. After that we need to pop the frame from the
  9090. procedure call stack. However, we do not yet know how big the frame
  9091. is; that gets determined during register allocation. So instead of
  9092. generating those instructions here, we invent a new instruction that
  9093. means ``pop the frame and then do an indirect jump'', which we name
  9094. \code{TailJmp}. The abstract syntax for this instruction includes an
  9095. argument that specifies where to jump and an integer that represents
  9096. the arity of the function being called.
  9097. Recall that in Section~\ref{sec:explicate-control-Rvar} we recommended
  9098. using the label \code{start} for the initial block of a program, and
  9099. in Section~\ref{sec:select-Rvar} we recommended labeling the conclusion
  9100. of the program with \code{conclusion}, so that $(\key{Return}\;\Arg)$
  9101. can be compiled to an assignment to \code{rax} followed by a jump to
  9102. \code{conclusion}. With the addition of function definitions, we will
  9103. have a starting block and conclusion for each function, but their
  9104. labels need to be unique. We recommend prepending the function's name
  9105. to \code{start} and \code{conclusion}, respectively, to obtain unique
  9106. labels. \ocaml{The \code{dummy\_func\_entry\_exit} helper functions in \code{X86Fun.ml}
  9107. assume this convention and take the function name as a parameter.}
  9108. (Alternatively, one could \code{gensym} labels for the start
  9109. and conclusion and store them in the $\itm{info}$ field of the
  9110. function definition.)
  9111. \section{Register Allocation}
  9112. \label{sec:register-allocation-r4}
  9113. \subsection{Liveness Analysis}
  9114. \label{sec:liveness-analysis-r4}
  9115. \index{liveness analysis}
  9116. %% The rest of the passes need only minor modifications to handle the new
  9117. %% kinds of AST nodes: \code{fun-ref}, \code{indirect-callq}, and
  9118. %% \code{leaq}.
  9119. \ocaml{With the addition of function definitions, we perform liveness analysis
  9120. separately on each function (not just once for the whole program).}
  9121. The \code{IndirectCallq} instruction should be treated like
  9122. \code{Callq} regarding its written locations $W$, in that they should
  9123. include all the caller-saved registers. Recall that the reason for
  9124. that is to force call-live variables to be assigned to callee-saved
  9125. registers or to be spilled to the stack.
  9126. Regarding the set of read locations $R$ the arity field of
  9127. \code{TailJmp} \ocaml{(not for us)} and \code{IndirectCallq} determines how many of the
  9128. argument-passing registers should be considered as read by those
  9129. instructions. \ocaml{Don't forget that the target argument to \code{IndirectCallq}
  9130. is itself a location that is read.}
  9131. \subsection{Build Interference Graph}
  9132. \label{sec:build-interference-r4}
  9133. With the addition of function definitions, we compute an interference
  9134. graph for each function (not just one for the whole program).
  9135. \ocaml{The generated interference graph is now attached as one
  9136. element of the per-function information field, rather than
  9137. the program information field.}
  9138. Recall that in Section~\ref{sec:reg-alloc-gc} we discussed the need to
  9139. spill vector-typed variables that are live during a call to the
  9140. \code{collect}. With the addition of functions to our language, we
  9141. need to revisit this issue. Many functions perform allocation and
  9142. therefore have calls to the collector inside of them. Thus, we should
  9143. not only spill a vector-typed variable when it is live during a call
  9144. to \code{collect}, but we should spill the variable if it is live
  9145. during any function call. \ocaml{Except for a call to a
  9146. known external function such as \code{read\_int}.}
  9147. Thus, in the \code{build-interference} pass,
  9148. we recommend adding interference edges between call-live vector-typed
  9149. variables and the callee-saved registers (in addition to the usual
  9150. addition of edges between call-live variables and the caller-saved
  9151. registers). \ocaml{Depending on how you coded your solution for \LangTuple{},
  9152. you may already be doing the right thing here.}
  9153. \subsection{Allocate Registers}
  9154. The primary change to the \code{allocate-registers} pass is adding an
  9155. auxiliary function for handling definitions (the \Def{} non-terminal
  9156. in Figure~\ref{fig:x86-3}) with one case for function definitions. The
  9157. logic is the same as described in
  9158. Chapter~\ref{ch:register-allocation-Rvar}, except now register
  9159. allocation is performed many times, once for each function definition,
  9160. instead of just once for the whole program.
  9161. \ocaml{The frame size and rootframe size information produced by this pass
  9162. now form the per-function information, rather than the per-program information.
  9163. This is also the right pass to replace the dummy entry and exit blocks by
  9164. the real ones generated by the \code{func\_entry\_exit} function in \code{X86Fun.ml}
  9165. The details of what these produce is described under ``Print x86'' below.}
  9166. \section{Patch Instructions}
  9167. \ocaml{This paragraph is not relevant to us.}
  9168. In \code{patch-instructions}, you should deal with the x86
  9169. idiosyncrasy that the destination argument of \code{leaq} must be a
  9170. register. Additionally, you should ensure that the argument of
  9171. \code{TailJmp} is \itm{rax}, our reserved register---this is to make
  9172. code generation more convenient, because we trample many registers
  9173. before the tail call (as explained in the next section).
  9174. \begin{ocamlx}
  9175. In the Patch Instructions phase, we finally deal with the
  9176. fact that our X86 code has \code{FunRef} operands that need
  9177. to be translated into real machine-level mechanisms. If all
  9178. the previous passes have done their job, there
  9179. are just two places where these operands can appear.
  9180. \begin{enumerate}
  9181. \item As the target argument to an
  9182. \code{IndirectCallq} instruction. In this case,
  9183. the indirect call can be converted to a simpler direct call.
  9184. \begin{lstlisting}[style=ocaml]
  9185. IndirectCallq(FunRef ~$f$~,~$ar$~)
  9186. ~$\Rightarrow$~
  9187. Callq(~$f$~,~$ar$~)
  9188. \end{lstlisting}
  9189. \item As the source argument of a \code{movq} instruction.
  9190. In this case, we must introduce an \code{leaq} instruction
  9191. with the \code{FunRef} as its source,
  9192. to compute the address of the function. If the destination
  9193. of the original \code{movq} is a register, we can use it
  9194. directly as the destination of the \code{leaq}; otherwise
  9195. use \code{\%rax} as an intermediate (\code{leaq} requires
  9196. its destination to be a register).
  9197. \end{enumerate}
  9198. \end{ocamlx}
  9199. \section{Print x86}
  9200. For the \code{print-x86} pass, the cases for \code{FunRef} and
  9201. \code{IndirectCallq} are straightforward: output their concrete
  9202. syntax.
  9203. \begin{lstlisting}
  9204. (FunRef |\itm{label}|) |$\Rightarrow$| |\itm{label}|(%rip)
  9205. (IndirectCallq |\itm{arg}| |\itm{int}|) |$\Rightarrow$| callq *|\itm{arg}'|
  9206. \end{lstlisting}
  9207. \ocaml{This paragraph is irrelevant for us.}
  9208. The \code{TailJmp} node requires a bit work. A straightforward
  9209. translation of \code{TailJmp} would be \code{jmp *$\itm{arg}$}, but
  9210. before the jump we need to pop the current frame. This sequence of
  9211. instructions is the same as the code for the conclusion of a function,
  9212. except the \code{retq} is replaced with \code{jmp *$\itm{arg}$}.
  9213. Regarding function definitions, you will need to generate a prelude
  9214. and conclusion for each one. This code is similar to the prelude and
  9215. conclusion that you generated for the \code{main} function in
  9216. Chapter~\ref{ch:Rvec}. To review, the prelude of every function
  9217. should carry out the following steps.
  9218. \begin{enumerate}
  9219. \item Start with \code{.global} and \code{.align} directives followed
  9220. by the label for the function. (See Figure~\ref{fig:add-fun} for an
  9221. example.)
  9222. \item Push \code{rbp} to the stack and set \code{rbp} to current stack
  9223. pointer.
  9224. \item Push to the stack all of the callee-saved registers that were
  9225. used for register allocation.
  9226. \item Move the stack pointer \code{rsp} down by the size of the stack
  9227. frame for this function, which depends on the number of regular
  9228. spills. (Aligned to 16 bytes.)
  9229. \item Move the root stack pointer \code{r15} up by the size of the
  9230. root-stack frame for this function, which depends on the number of
  9231. spilled vectors. \label{root-stack-init}
  9232. \item Initialize to zero all of the entries in the root-stack frame.
  9233. \item Jump to the start block.
  9234. \end{enumerate}
  9235. The prelude of the \code{main} function has one additional task: call
  9236. the \code{initialize} function to set up the garbage collector and
  9237. move the value of the global \code{rootstack\_begin} in
  9238. \code{r15}. This should happen before step \ref{root-stack-init}
  9239. above, which depends on \code{r15}.
  9240. The conclusion of every function should do the following.
  9241. \begin{enumerate}
  9242. \item Move the stack pointer back up by the size of the stack frame
  9243. for this function.
  9244. \item Restore the callee-saved registers by popping them from the
  9245. stack.
  9246. \item Move the root stack pointer back down by the size of the
  9247. root-stack frame for this function.
  9248. \item Restore \code{rbp} by popping it from the stack.
  9249. \item Return to the caller with the \code{retq} instruction.
  9250. \end{enumerate}
  9251. \ocaml{All the work required here is already embedded in the
  9252. \code{func\_entry\_exit} function in \code{X86Fun.ml}. The blocks
  9253. it produces should be patched in during \code{AllocateRegisters}.}
  9254. \begin{exercise}\normalfont
  9255. Expand your compiler to handle \LangFun{} as outlined in this chapter.
  9256. Create 5 new programs that use functions, including examples that pass
  9257. functions and return functions from other functions, recursive
  9258. functions, functions that create vectors, and functions that make tail
  9259. calls. Test your compiler on these new programs and all of your
  9260. previously created test programs.
  9261. \end{exercise}
  9262. \begin{figure}[tbp]
  9263. \begin{tikzpicture}[baseline=(current bounding box.center)]
  9264. \node (Rfun) at (0,2) {\large \LangFun{}};
  9265. \node (Rfun-1) at (3,2) {\large \LangFun{}};
  9266. \node (Rfun-2) at (6,2) {\large \LangFun{}};
  9267. \node (F1-1) at (12,0) {\large \LangFunRef{}};
  9268. \node (F1-2) at (9,0) {\large \LangFunRef{}};
  9269. \node (F1-3) at (6,0) {\large \LangFunRefAlloc{}};
  9270. \node (F1-4) at (3,0) {\large \LangFunRefAlloc{}};
  9271. \node (C3-2) at (3,-2) {\large \LangCFun{}};
  9272. \node (x86-2) at (3,-4) {\large \LangXIndCallVar{}};
  9273. \node (x86-3) at (6,-4) {\large \LangXIndCallVar{}};
  9274. \node (x86-4) at (9,-4) {\large \LangXIndCall{}};
  9275. \node (x86-5) at (9,-6) {\large \LangXIndCall{}};
  9276. \node (x86-2-1) at (3,-6) {\large \LangXIndCallVar{}};
  9277. \node (x86-2-2) at (6,-6) {\large \LangXIndCallVar{}};
  9278. \path[->,bend left=15] (Rfun) edge [above] node
  9279. {\ttfamily\footnotesize shrink} (Rfun-1);
  9280. \path[->,bend left=15] (Rfun-1) edge [above] node
  9281. {\ttfamily\footnotesize uniquify} (Rfun-2);
  9282. \path[->,bend left=15] (Rfun-2) edge [right] node
  9283. {\ttfamily\footnotesize ~~reveal-functions} (F1-1);
  9284. \path[->,bend left=15] (F1-1) edge [below] node
  9285. {\ttfamily\footnotesize limit-functions} (F1-2);
  9286. \path[->,bend right=15] (F1-2) edge [above] node
  9287. {\ttfamily\footnotesize expose-alloc.} (F1-3);
  9288. \path[->,bend right=15] (F1-3) edge [above] node
  9289. {\ttfamily\footnotesize remove-complex.} (F1-4);
  9290. \path[->,bend left=15] (F1-4) edge [right] node
  9291. {\ttfamily\footnotesize explicate-control} (C3-2);
  9292. \path[->,bend right=15] (C3-2) edge [left] node
  9293. {\ttfamily\footnotesize select-instr.} (x86-2);
  9294. \path[->,bend left=15] (x86-2) edge [left] node
  9295. {\ttfamily\footnotesize uncover-live} (x86-2-1);
  9296. \path[->,bend right=15] (x86-2-1) edge [below] node
  9297. {\ttfamily\footnotesize build-inter.} (x86-2-2);
  9298. \path[->,bend right=15] (x86-2-2) edge [left] node
  9299. {\ttfamily\footnotesize allocate-reg.} (x86-3);
  9300. \path[->,bend left=15] (x86-3) edge [above] node
  9301. {\ttfamily\footnotesize patch-instr.} (x86-4);
  9302. \path[->,bend right=15] (x86-4) edge [left] node {\ttfamily\footnotesize print-x86} (x86-5);
  9303. \end{tikzpicture}
  9304. \caption{Diagram of the passes for \LangFun{}, a language with functions.}
  9305. \label{fig:Rfun-passes}
  9306. \end{figure}
  9307. Figure~\ref{fig:Rfun-passes} gives an overview of the passes for
  9308. compiling \LangFun{} to x86. \ocaml{We omit the passes called
  9309. \code{reveal-functions} and \code{limit-functions}.}
  9310. \section{An Example Translation}
  9311. \label{sec:functions-example}
  9312. Figure~\ref{fig:add-fun} shows an example translation of a simple
  9313. function in \LangFun{} to x86. The figure also includes the results of the
  9314. \code{explicate-control} and \code{select-instructions} passes.
  9315. \ocaml{The OCaml version in \ref{fig:add-fun-ocaml} does \emph{not} show the effect of tail-recursion
  9316. optimization nor of move-biasing in the register allocator.}
  9317. \begin{figure}[htbp]
  9318. \begin{tabular}{ll}
  9319. \begin{minipage}{0.5\textwidth}
  9320. % s3_2.rkt
  9321. \begin{lstlisting}[basicstyle=\ttfamily\scriptsize]
  9322. (define (add [x : Integer] [y : Integer])
  9323. : Integer
  9324. (+ x y))
  9325. (add 40 2)
  9326. \end{lstlisting}
  9327. $\Downarrow$
  9328. \begin{lstlisting}[basicstyle=\ttfamily\scriptsize]
  9329. (define (add86 [x87 : Integer]
  9330. [y88 : Integer]) : Integer
  9331. add86start:
  9332. return (+ x87 y88);
  9333. )
  9334. (define (main) : Integer ()
  9335. mainstart:
  9336. tmp89 = (fun-ref add86);
  9337. (tail-call tmp89 40 2)
  9338. )
  9339. \end{lstlisting}
  9340. \end{minipage}
  9341. &
  9342. $\Rightarrow$
  9343. \begin{minipage}{0.5\textwidth}
  9344. \begin{lstlisting}[basicstyle=\ttfamily\scriptsize]
  9345. (define (add86) : Integer
  9346. add86start:
  9347. movq %rdi, x87
  9348. movq %rsi, y88
  9349. movq x87, %rax
  9350. addq y88, %rax
  9351. jmp add11389conclusion
  9352. )
  9353. (define (main) : Integer
  9354. mainstart:
  9355. leaq (fun-ref add86), tmp89
  9356. movq $40, %rdi
  9357. movq $2, %rsi
  9358. tail-jmp tmp89
  9359. )
  9360. \end{lstlisting}
  9361. $\Downarrow$
  9362. \end{minipage}
  9363. \end{tabular}
  9364. \begin{tabular}{ll}
  9365. \begin{minipage}{0.3\textwidth}
  9366. \begin{lstlisting}[basicstyle=\ttfamily\scriptsize]
  9367. .globl add86
  9368. .align 16
  9369. add86:
  9370. pushq %rbp
  9371. movq %rsp, %rbp
  9372. jmp add86start
  9373. add86start:
  9374. movq %rdi, %rax
  9375. addq %rsi, %rax
  9376. jmp add86conclusion
  9377. add86conclusion:
  9378. popq %rbp
  9379. retq
  9380. \end{lstlisting}
  9381. \end{minipage}
  9382. &
  9383. \begin{minipage}{0.5\textwidth}
  9384. \begin{lstlisting}[basicstyle=\ttfamily\scriptsize]
  9385. .globl main
  9386. .align 16
  9387. main:
  9388. pushq %rbp
  9389. movq %rsp, %rbp
  9390. movq $16384, %rdi
  9391. movq $16384, %rsi
  9392. callq initialize
  9393. movq rootstack_begin(%rip), %r15
  9394. jmp mainstart
  9395. mainstart:
  9396. leaq add86(%rip), %rcx
  9397. movq $40, %rdi
  9398. movq $2, %rsi
  9399. movq %rcx, %rax
  9400. popq %rbp
  9401. jmp *%rax
  9402. mainconclusion:
  9403. popq %rbp
  9404. retq
  9405. \end{lstlisting}
  9406. \end{minipage}
  9407. \end{tabular}
  9408. \caption{Example compilation of a simple function to x86.}
  9409. \label{fig:add-fun}
  9410. \end{figure}
  9411. \begin{ocamlx}
  9412. \begin{figure}[htbp]
  9413. \begin{tabular}{ll}
  9414. \begin{minipage}{0.5\textwidth}
  9415. % s3_2.rkt
  9416. \begin{lstlisting}[basicstyle=\ttfamily\scriptsize,style=ocaml]
  9417. (define (add (x : int) (y : int) : int
  9418. (+ x y))
  9419. (add 40 2)
  9420. \end{lstlisting}
  9421. $\Downarrow$
  9422. \begin{lstlisting}[basicstyle=\ttfamily\scriptsize,style=ocaml]
  9423. define main () : int
  9424. start:
  9425. return (call (& add) 40 2)
  9426. define add ((x : int) (y : int)) : int
  9427. start:
  9428. return (+ x y)
  9429. \end{lstlisting}
  9430. \end{minipage}
  9431. &
  9432. $\Rightarrow$
  9433. \begin{minipage}{0.5\textwidth}
  9434. \begin{lstlisting}[basicstyle=\ttfamily\scriptsize,style=ocaml]
  9435. .globl _main
  9436. .align 16
  9437. _main:
  9438. jmp _mainstart
  9439. _mainconclusion:
  9440. retq
  9441. _mainstart:
  9442. movq $40, %rdi
  9443. movq $2, %rsi
  9444. callq *&_add
  9445. movq %rax, %rax
  9446. jmp _mainconclusion
  9447. .globl _add
  9448. .align 16
  9449. _add:
  9450. jmp _addstart
  9451. _addconclusion:
  9452. retq
  9453. _addstart:
  9454. movq %rdi, x
  9455. movq %rsi, y
  9456. movq x, %rax
  9457. addq y, %rax
  9458. jmp _addconclusion
  9459. \end{lstlisting}
  9460. $\Downarrow$
  9461. \end{minipage}
  9462. \end{tabular}
  9463. \begin{tabular}{ll}
  9464. \begin{minipage}{0.4\textwidth}
  9465. \begin{lstlisting}[basicstyle=\ttfamily\scriptsize,style=ocaml]
  9466. .globl _main
  9467. .align 16
  9468. _main:
  9469. pushq %rbp
  9470. movq %rsp, %rbp
  9471. movq $16384, %rsi
  9472. movq $16384, %rdi
  9473. callq _initialize
  9474. movq %rax, %r15
  9475. jmp _mainstart
  9476. _mainconclusion:
  9477. popq %rbp
  9478. retq
  9479. _mainstart:
  9480. movq $40, %rdi
  9481. movq $2, %rsi
  9482. callq _add
  9483. jmp _mainconclusion
  9484. \end{lstlisting}
  9485. \end{minipage}
  9486. &
  9487. \begin{minipage}{0.5\textwidth}
  9488. \begin{lstlisting}[basicstyle=\ttfamily\scriptsize,style=ocaml]
  9489. .globl _add
  9490. .align 16
  9491. _add:
  9492. pushq %rbp
  9493. movq %rsp, %rbp
  9494. jmp _addstart
  9495. _addconclusion:
  9496. popq %rbp
  9497. retq
  9498. _addstart:
  9499. movq %rdi, %rdx
  9500. movq %rsi, %rcx
  9501. movq %rdx, %rax
  9502. addq %rcx, %rax
  9503. jmp _addconclusion
  9504. \end{lstlisting}
  9505. \end{minipage}
  9506. \end{tabular}
  9507. \caption{\ocaml{(OCaml) Example compilation of a simple function to x86.}}
  9508. \label{fig:add-fun-ocaml}
  9509. \end{figure}
  9510. \end{ocamlx}
  9511. % Challenge idea: inlining! (simple version)
  9512. % Further Reading
  9513. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  9514. \chapter{Lexically Scoped Functions}
  9515. \label{ch:Rlam}
  9516. \index{lambda}
  9517. \index{lexical scoping}
  9518. This chapter studies lexically scoped functions as they appear in
  9519. functional languages such as Racket. By lexical scoping we mean that a
  9520. function's body may refer to variables whose binding site is outside
  9521. of the function, in an enclosing scope.
  9522. %
  9523. Consider the example in Figure~\ref{fig:lexical-scoping} written in
  9524. \LangLam{}, which extends \LangFun{} with anonymous functions using the
  9525. \key{lambda} form. The body of the \key{lambda}, refers to three
  9526. variables: \code{x}, \code{y}, and \code{z}. The binding sites for
  9527. \code{x} and \code{y} are outside of the \key{lambda}. Variable
  9528. \code{y} is bound by the enclosing \key{let} and \code{x} is a
  9529. parameter of function \code{f}. The \key{lambda} is returned from the
  9530. function \code{f}. The main expression of the program includes two
  9531. calls to \code{f} with different arguments for \code{x}, first
  9532. \code{5} then \code{3}. The functions returned from \code{f} are bound
  9533. to variables \code{g} and \code{h}. Even though these two functions
  9534. were created by the same \code{lambda}, they are really different
  9535. functions because they use different values for \code{x}. Applying
  9536. \code{g} to \code{11} produces \code{20} whereas applying \code{h} to
  9537. \code{15} produces \code{22}. The result of this program is \code{42}.
  9538. \begin{figure}[btp]
  9539. % s4_6.rkt
  9540. \begin{lstlisting}
  9541. (define (f [x : Integer]) : (Integer -> Integer)
  9542. (let ([y 4])
  9543. (lambda: ([z : Integer]) : Integer
  9544. (+ x (+ y z)))))
  9545. (let ([g (f 5)])
  9546. (let ([h (f 3)])
  9547. (+ (g 11) (h 15))))
  9548. \end{lstlisting}
  9549. \caption{Example of a lexically scoped function.}
  9550. \label{fig:lexical-scoping}
  9551. \end{figure}
  9552. The approach that we take for implementing lexically scoped
  9553. functions is to compile them into top-level function definitions,
  9554. translating from \LangLam{} into \LangFun{}. However, the compiler will need to
  9555. provide special treatment for variable occurrences such as \code{x}
  9556. and \code{y} in the body of the \code{lambda} of
  9557. Figure~\ref{fig:lexical-scoping}. After all, an \LangFun{} function may not
  9558. refer to variables defined outside of it. To identify such variable
  9559. occurrences, we review the standard notion of free variable.
  9560. \begin{definition}
  9561. A variable is \emph{free in expression} $e$ if the variable occurs
  9562. inside $e$ but does not have an enclosing binding in $e$.\index{free
  9563. variable}
  9564. \end{definition}
  9565. For example, in the expression \code{(+ x (+ y z))} the variables
  9566. \code{x}, \code{y}, and \code{z} are all free. On the other hand,
  9567. only \code{x} and \code{y} are free in the following expression
  9568. because \code{z} is bound by the \code{lambda}.
  9569. \begin{lstlisting}
  9570. (lambda: ([z : Integer]) : Integer
  9571. (+ x (+ y z)))
  9572. \end{lstlisting}
  9573. So the free variables of a \code{lambda} are the ones that will need
  9574. special treatment. We need to arrange for some way to transport, at
  9575. runtime, the values of those variables from the point where the
  9576. \code{lambda} was created to the point where the \code{lambda} is
  9577. applied. An efficient solution to the problem, due to
  9578. \citet{Cardelli:1983aa}, is to bundle into a vector the values of the
  9579. free variables together with the function pointer for the lambda's
  9580. code, an arrangement called a \emph{flat closure} (which we shorten to
  9581. just ``closure''). \index{closure}\index{flat closure} Fortunately,
  9582. we have all the ingredients to make closures, Chapter~\ref{ch:Rvec}
  9583. gave us vectors and Chapter~\ref{ch:Rfun} gave us function
  9584. pointers. The function pointer resides at index $0$ and the
  9585. values for the free variables will fill in the rest of the vector.
  9586. Let us revisit the example in Figure~\ref{fig:lexical-scoping} to see
  9587. how closures work. It's a three-step dance. The program first calls
  9588. function \code{f}, which creates a closure for the \code{lambda}. The
  9589. closure is a vector whose first element is a pointer to the top-level
  9590. function that we will generate for the \code{lambda}, the second
  9591. element is the value of \code{x}, which is \code{5}, and the third
  9592. element is \code{4}, the value of \code{y}. The closure does not
  9593. contain an element for \code{z} because \code{z} is not a free
  9594. variable of the \code{lambda}. Creating the closure is step 1 of the
  9595. dance. The closure is returned from \code{f} and bound to \code{g}, as
  9596. shown in Figure~\ref{fig:closures}.
  9597. %
  9598. The second call to \code{f} creates another closure, this time with
  9599. \code{3} in the second slot (for \code{x}). This closure is also
  9600. returned from \code{f} but bound to \code{h}, which is also shown in
  9601. Figure~\ref{fig:closures}.
  9602. \begin{figure}[tbp]
  9603. \centering \includegraphics[width=0.6\textwidth]{figs/closures}
  9604. \caption{Example closure representation for the \key{lambda}'s
  9605. in Figure~\ref{fig:lexical-scoping}.}
  9606. \label{fig:closures}
  9607. \end{figure}
  9608. Continuing with the example, consider the application of \code{g} to
  9609. \code{11} in Figure~\ref{fig:lexical-scoping}. To apply a closure, we
  9610. obtain the function pointer in the first element of the closure and
  9611. call it, passing in the closure itself and then the regular arguments,
  9612. in this case \code{11}. This technique for applying a closure is step
  9613. 2 of the dance.
  9614. %
  9615. But doesn't this \code{lambda} only take 1 argument, for parameter
  9616. \code{z}? The third and final step of the dance is generating a
  9617. top-level function for a \code{lambda}. We add an additional
  9618. parameter for the closure and we insert a \code{let} at the beginning
  9619. of the function for each free variable, to bind those variables to the
  9620. appropriate elements from the closure parameter.
  9621. %
  9622. This three-step dance is known as \emph{closure conversion}. We
  9623. discuss the details of closure conversion in
  9624. Section~\ref{sec:closure-conversion} and the code generated from the
  9625. example in Section~\ref{sec:example-lambda}. But first we define the
  9626. syntax and semantics of \LangLam{} in Section~\ref{sec:r5}.
  9627. \section{The \LangLam{} Language}
  9628. \label{sec:r5}
  9629. The concrete and abstract syntax for \LangLam{}, a language with anonymous
  9630. functions and lexical scoping, is defined in
  9631. Figures~\ref{fig:Rlam-concrete-syntax} and ~\ref{fig:Rlam-syntax}. It adds
  9632. the \key{lambda} form to the grammar for \LangFun{}, which already has
  9633. syntax for function application.
  9634. \begin{figure}[tp]
  9635. \centering
  9636. \fbox{
  9637. \begin{minipage}{0.96\textwidth}
  9638. \small
  9639. \[
  9640. \begin{array}{lcl}
  9641. \Type &::=& \gray{\key{Integer} \mid \key{Boolean}
  9642. \mid (\key{Vector}\;\Type\ldots) \mid \key{Void}
  9643. \mid (\Type\ldots \; \key{->}\; \Type)} \\
  9644. \Exp &::=& \gray{ \Int \mid \CREAD{} \mid \CNEG{\Exp}
  9645. \mid \CADD{\Exp}{\Exp} \mid \CSUB{\Exp}{\Exp} } \\
  9646. &\mid& \gray{ \Var \mid \CLET{\Var}{\Exp}{\Exp} }\\
  9647. &\mid& \gray{\key{\#t} \mid \key{\#f}
  9648. \mid (\key{and}\;\Exp\;\Exp)
  9649. \mid (\key{or}\;\Exp\;\Exp)
  9650. \mid (\key{not}\;\Exp) } \\
  9651. &\mid& \gray{ (\key{eq?}\;\Exp\;\Exp) \mid \CIF{\Exp}{\Exp}{\Exp} } \\
  9652. &\mid& \gray{ (\key{vector}\;\Exp\ldots) \mid
  9653. (\key{vector-ref}\;\Exp\;\Int)} \\
  9654. &\mid& \gray{(\key{vector-set!}\;\Exp\;\Int\;\Exp)\mid (\key{void})
  9655. \mid (\Exp \; \Exp\ldots) } \\
  9656. &\mid& \LP \key{procedure-arity}~\Exp\RP \\
  9657. &\mid& \CLAMBDA{\LP\LS\Var \key{:} \Type\RS\ldots\RP}{\Type}{\Exp} \\
  9658. \Def &::=& \gray{ \CDEF{\Var}{\LS\Var \key{:} \Type\RS\ldots}{\Type}{\Exp} } \\
  9659. \LangLam{} &::=& \gray{\Def\ldots \; \Exp}
  9660. \end{array}
  9661. \]
  9662. \end{minipage}
  9663. }
  9664. \caption{The concrete syntax of \LangLam{}, extending \LangFun{} (Figure~\ref{fig:Rfun-concrete-syntax})
  9665. with \key{lambda}.}
  9666. \label{fig:Rlam-concrete-syntax}
  9667. \end{figure}
  9668. \begin{figure}[tp]
  9669. \centering
  9670. \fbox{
  9671. \begin{minipage}{0.96\textwidth}
  9672. \small
  9673. \[
  9674. \begin{array}{lcl}
  9675. \itm{op} &::=& \ldots \mid \code{procedure-arity} \\
  9676. \Exp &::=& \gray{ \INT{\Int} \VAR{\Var} \mid \LET{\Var}{\Exp}{\Exp} } \\
  9677. &\mid& \gray{ \PRIM{\itm{op}}{\Exp\ldots} }\\
  9678. &\mid& \gray{ \BOOL{\itm{bool}}
  9679. \mid \IF{\Exp}{\Exp}{\Exp} } \\
  9680. &\mid& \gray{ \VOID{} \mid \LP\key{HasType}~\Exp~\Type \RP
  9681. \mid \APPLY{\Exp}{\Exp\ldots} }\\
  9682. &\mid& \LAMBDA{\LP\LS\Var\code{:}\Type\RS\ldots\RP}{\Type}{\Exp}\\
  9683. \Def &::=& \gray{ \FUNDEF{\Var}{\LP\LS\Var \code{:} \Type\RS\ldots\RP}{\Type}{\code{'()}}{\Exp} }\\
  9684. \LangLam{} &::=& \gray{ \PROGRAMDEFSEXP{\code{'()}}{\LP\Def\ldots\RP}{\Exp} }
  9685. \end{array}
  9686. \]
  9687. \end{minipage}
  9688. }
  9689. \caption{The abstract syntax of \LangLam{}, extending \LangFun{} (Figure~\ref{fig:Rfun-syntax}).}
  9690. \label{fig:Rlam-syntax}
  9691. \end{figure}
  9692. \index{interpreter}
  9693. \label{sec:interp-Rlambda}
  9694. Figure~\ref{fig:interp-Rlambda} shows the definitional interpreter for
  9695. \LangLam{}. The case for \key{lambda} saves the current environment
  9696. inside the returned \key{lambda}. Then the case for \key{Apply} uses
  9697. the environment from the \key{lambda}, the \code{lam-env}, when
  9698. interpreting the body of the \key{lambda}. The \code{lam-env}
  9699. environment is extended with the mapping of parameters to argument
  9700. values.
  9701. \begin{figure}[tbp]
  9702. \begin{lstlisting}
  9703. (define interp-Rlambda-class
  9704. (class interp-Rfun-class
  9705. (super-new)
  9706. (define/override (interp-op op)
  9707. (match op
  9708. ['procedure-arity
  9709. (lambda (v)
  9710. (match v
  9711. [`(function (,xs ...) ,body ,lam-env) (length xs)]
  9712. [else (error 'interp-op "expected a function, not ~a" v)]))]
  9713. [else (super interp-op op)]))
  9714. (define/override ((interp-exp env) e)
  9715. (define recur (interp-exp env))
  9716. (match e
  9717. [(Lambda (list `[,xs : ,Ts] ...) rT body)
  9718. `(function ,xs ,body ,env)]
  9719. [else ((super interp-exp env) e)]))
  9720. ))
  9721. (define (interp-Rlambda p)
  9722. (send (new interp-Rlambda-class) interp-program p))
  9723. \end{lstlisting}
  9724. \caption{Interpreter for \LangLam{}.}
  9725. \label{fig:interp-Rlambda}
  9726. \end{figure}
  9727. \label{sec:type-check-r5}
  9728. \index{type checking}
  9729. Figure~\ref{fig:type-check-Rlambda} shows how to type check the new
  9730. \key{lambda} form. The body of the \key{lambda} is checked in an
  9731. environment that includes the current environment (because it is
  9732. lexically scoped) and also includes the \key{lambda}'s parameters. We
  9733. require the body's type to match the declared return type.
  9734. \begin{figure}[tbp]
  9735. \begin{lstlisting}
  9736. (define (type-check-Rlambda env)
  9737. (lambda (e)
  9738. (match e
  9739. [(Lambda (and params `([,xs : ,Ts] ...)) rT body)
  9740. (define-values (new-body bodyT)
  9741. ((type-check-exp (append (map cons xs Ts) env)) body))
  9742. (define ty `(,@Ts -> ,rT))
  9743. (cond
  9744. [(equal? rT bodyT)
  9745. (values (HasType (Lambda params rT new-body) ty) ty)]
  9746. [else
  9747. (error "mismatch in return type" bodyT rT)])]
  9748. ...
  9749. )))
  9750. \end{lstlisting}
  9751. \caption{Type checking the \key{lambda}'s in \LangLam{}.}
  9752. \label{fig:type-check-Rlambda}
  9753. \end{figure}
  9754. \section{Reveal Functions and the $F_2$ language}
  9755. \label{sec:reveal-functions-r5}
  9756. To support the \code{procedure-arity} operator we need to communicate
  9757. the arity of a function to the point of closure creation. We can
  9758. accomplish this by replacing the $\FUNREF{\Var}$ struct with one that
  9759. has a second field for the arity: $\FUNREFARITY{\Var}{\Int}$. The
  9760. output of this pass is the language $F_2$, whose syntax is defined in
  9761. Figure~\ref{fig:f2-syntax}.
  9762. \begin{figure}[tp]
  9763. \centering
  9764. \fbox{
  9765. \begin{minipage}{0.96\textwidth}
  9766. \[
  9767. \begin{array}{lcl}
  9768. \Exp &::=& \ldots \mid \FUNREFARITY{\Var}{\Int}\\
  9769. \Def &::=& \gray{ \FUNDEF{\Var}{([\Var \code{:} \Type]\ldots)}{\Type}{\code{'()}}{\Exp} }\\
  9770. F_2 &::=& \gray{\PROGRAMDEFS{\code{'()}}{\LP \Def\ldots \RP}}
  9771. \end{array}
  9772. \]
  9773. \end{minipage}
  9774. }
  9775. \caption{The abstract syntax $F_2$, an extension of \LangLam{}
  9776. (Figure~\ref{fig:Rlam-syntax}).}
  9777. \label{fig:f2-syntax}
  9778. \end{figure}
  9779. \section{Closure Conversion}
  9780. \label{sec:closure-conversion}
  9781. \index{closure conversion}
  9782. The compiling of lexically-scoped functions into top-level function
  9783. definitions is accomplished in the pass \code{convert-to-closures}
  9784. that comes after \code{reveal-functions} and before
  9785. \code{limit-functions}.
  9786. As usual, we implement the pass as a recursive function over the
  9787. AST. All of the action is in the cases for \key{Lambda} and
  9788. \key{Apply}. We transform a \key{Lambda} expression into an expression
  9789. that creates a closure, that is, a vector whose first element is a
  9790. function pointer and the rest of the elements are the free variables
  9791. of the \key{Lambda}. We use the struct \code{Closure} here instead of
  9792. using \code{vector} so that we can distinguish closures from vectors
  9793. in Section~\ref{sec:optimize-closures} and to record the arity. In
  9794. the generated code below, the \itm{name} is a unique symbol generated
  9795. to identify the function and the \itm{arity} is the number of
  9796. parameters (the length of \itm{ps}).
  9797. \begin{lstlisting}
  9798. (Lambda |\itm{ps}| |\itm{rt}| |\itm{body}|)
  9799. |$\Rightarrow$|
  9800. (Closure |\itm{arity}| (cons (FunRef |\itm{name}|) |\itm{fvs}|))
  9801. \end{lstlisting}
  9802. In addition to transforming each \key{Lambda} into a \key{Closure}, we
  9803. create a top-level function definition for each \key{Lambda}, as
  9804. shown below.\\
  9805. \begin{minipage}{0.8\textwidth}
  9806. \begin{lstlisting}
  9807. (Def |\itm{name}| ([clos : (Vector _ |\itm{fvts}| ...)] |\itm{ps'}| ...) |\itm{rt'}|
  9808. (Let |$\itm{fvs}_1$| (Prim 'vector-ref (list (Var clos) (Int 1)))
  9809. ...
  9810. (Let |$\itm{fvs}_n$| (Prim 'vector-ref (list (Var clos) (Int |$n$|)))
  9811. |\itm{body'}|)...))
  9812. \end{lstlisting}
  9813. \end{minipage}\\
  9814. The \code{clos} parameter refers to the closure. Translate the type
  9815. annotations in \itm{ps} and the return type \itm{rt}, as discussed in
  9816. the next paragraph, to obtain \itm{ps'} and \itm{rt'}. The types
  9817. $\itm{fvts}$ are the types of the free variables in the lambda and the
  9818. underscore \code{\_} is a dummy type that we use because it is rather
  9819. difficult to give a type to the function in the closure's
  9820. type.\footnote{To give an accurate type to a closure, we would need to
  9821. add existential types to the type checker~\citep{Minamide:1996ys}.}
  9822. The dummy type is considered to be equal to any other type during type
  9823. checking. The sequence of \key{Let} forms bind the free variables to
  9824. their values obtained from the closure.
  9825. Closure conversion turns functions into vectors, so the type
  9826. annotations in the program must also be translated. We recommend
  9827. defining a auxiliary recursive function for this purpose. Function
  9828. types should be translated as follows.
  9829. \begin{lstlisting}
  9830. (|$T_1, \ldots, T_n$| -> |$T_r$|)
  9831. |$\Rightarrow$|
  9832. (Vector ((Vector _) |$T'_1, \ldots, T'_n$| -> |$T'_r$|))
  9833. \end{lstlisting}
  9834. The above type says that the first thing in the vector is a function
  9835. pointer. The first parameter of the function pointer is a vector (a
  9836. closure) and the rest of the parameters are the ones from the original
  9837. function, with types $T'_1, \ldots, T'_n$. The \code{Vector} type for
  9838. the closure omits the types of the free variables because 1) those
  9839. types are not available in this context and 2) we do not need them in
  9840. the code that is generated for function application.
  9841. We transform function application into code that retrieves the
  9842. function pointer from the closure and then calls the function, passing
  9843. in the closure as the first argument. We bind $e'$ to a temporary
  9844. variable to avoid code duplication.
  9845. \begin{lstlisting}
  9846. (Apply |$e$| |\itm{es}|)
  9847. |$\Rightarrow$|
  9848. (Let |\itm{tmp}| |$e'$|
  9849. (Apply (Prim 'vector-ref (list (Var |\itm{tmp}|) (Int 0))) (cons |\itm{tmp}| |\itm{es'}|)))
  9850. \end{lstlisting}
  9851. There is also the question of what to do with references top-level
  9852. function definitions. To maintain a uniform translation of function
  9853. application, we turn function references into closures.
  9854. \begin{tabular}{lll}
  9855. \begin{minipage}{0.3\textwidth}
  9856. \begin{lstlisting}
  9857. (FunRefArity |$f$| |$n$|)
  9858. \end{lstlisting}
  9859. \end{minipage}
  9860. &
  9861. $\Rightarrow$
  9862. &
  9863. \begin{minipage}{0.5\textwidth}
  9864. \begin{lstlisting}
  9865. (Closure |$n$| (FunRef |$f$|) '())
  9866. \end{lstlisting}
  9867. \end{minipage}
  9868. \end{tabular} \\
  9869. %
  9870. The top-level function definitions need to be updated as well to take
  9871. an extra closure parameter.
  9872. \section{An Example Translation}
  9873. \label{sec:example-lambda}
  9874. Figure~\ref{fig:lexical-functions-example} shows the result of
  9875. \code{reveal-functions} and \code{convert-to-closures} for the example
  9876. program demonstrating lexical scoping that we discussed at the
  9877. beginning of this chapter.
  9878. \begin{figure}[tbp]
  9879. \begin{minipage}{0.8\textwidth}
  9880. % tests/lambda_test_6.rkt
  9881. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  9882. (define (f6 [x7 : Integer]) : (Integer -> Integer)
  9883. (let ([y8 4])
  9884. (lambda: ([z9 : Integer]) : Integer
  9885. (+ x7 (+ y8 z9)))))
  9886. (define (main) : Integer
  9887. (let ([g0 ((fun-ref-arity f6 1) 5)])
  9888. (let ([h1 ((fun-ref-arity f6 1) 3)])
  9889. (+ (g0 11) (h1 15)))))
  9890. \end{lstlisting}
  9891. $\Rightarrow$
  9892. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  9893. (define (f6 [fvs4 : _] [x7 : Integer]) : (Vector ((Vector _) Integer -> Integer))
  9894. (let ([y8 4])
  9895. (closure 1 (list (fun-ref lambda2) x7 y8))))
  9896. (define (lambda2 [fvs3 : (Vector _ Integer Integer)] [z9 : Integer]) : Integer
  9897. (let ([x7 (vector-ref fvs3 1)])
  9898. (let ([y8 (vector-ref fvs3 2)])
  9899. (+ x7 (+ y8 z9)))))
  9900. (define (main) : Integer
  9901. (let ([g0 (let ([clos5 (closure 1 (list (fun-ref f6)))])
  9902. ((vector-ref clos5 0) clos5 5))])
  9903. (let ([h1 (let ([clos6 (closure 1 (list (fun-ref f6)))])
  9904. ((vector-ref clos6 0) clos6 3))])
  9905. (+ ((vector-ref g0 0) g0 11) ((vector-ref h1 0) h1 15)))))
  9906. \end{lstlisting}
  9907. \end{minipage}
  9908. \caption{Example of closure conversion.}
  9909. \label{fig:lexical-functions-example}
  9910. \end{figure}
  9911. \begin{exercise}\normalfont
  9912. Expand your compiler to handle \LangLam{} as outlined in this chapter.
  9913. Create 5 new programs that use \key{lambda} functions and make use of
  9914. lexical scoping. Test your compiler on these new programs and all of
  9915. your previously created test programs.
  9916. \end{exercise}
  9917. \section{Expose Allocation}
  9918. \label{sec:expose-allocation-r5}
  9919. Compile the $\CLOSURE{\itm{arity}}{\LP\Exp\ldots\RP}$ form into code
  9920. that allocates and initializes a vector, similar to the translation of
  9921. the \code{vector} operator in Section~\ref{sec:expose-allocation}.
  9922. The only difference is replacing the use of
  9923. \ALLOC{\itm{len}}{\itm{type}} with
  9924. \ALLOCCLOS{\itm{len}}{\itm{type}}{\itm{arity}}.
  9925. \section{Explicate Control and \LangCLam{}}
  9926. \label{sec:explicate-r5}
  9927. The output language of \code{explicate-control} is \LangCLam{} whose
  9928. abstract syntax is defined in Figure~\ref{fig:c4-syntax}. The only
  9929. difference with respect to \LangCFun{} is the addition of the
  9930. \code{AllocateClosure} form to the grammar for $\Exp$. The handling
  9931. of \code{AllocateClosure} in the \code{explicate-control} pass is
  9932. similar to the handling of other expressions such as primitive
  9933. operators.
  9934. \begin{figure}[tp]
  9935. \fbox{
  9936. \begin{minipage}{0.96\textwidth}
  9937. \small
  9938. \[
  9939. \begin{array}{lcl}
  9940. \Exp &::= & \ldots
  9941. \mid \ALLOCCLOS{\Int}{\Type}{\Int} \\
  9942. \Stmt &::=& \gray{ \ASSIGN{\VAR{\Var}}{\Exp}
  9943. \mid \LP\key{Collect} \,\itm{int}\RP } \\
  9944. \Tail &::= & \gray{ \RETURN{\Exp} \mid \SEQ{\Stmt}{\Tail}
  9945. \mid \GOTO{\itm{label}} } \\
  9946. &\mid& \gray{ \IFSTMT{\BINOP{\itm{cmp}}{\Atm}{\Atm}}{\GOTO{\itm{label}}}{\GOTO{\itm{label}}} }\\
  9947. &\mid& \gray{ \TAILCALL{\Atm}{\Atm\ldots} } \\
  9948. \Def &::=& \gray{ \DEF{\itm{label}}{\LP[\Var\key{:}\Type]\ldots\RP}{\Type}{\itm{info}}{\LP\LP\itm{label}\,\key{.}\,\Tail\RP\ldots\RP} }\\
  9949. \LangCLam{} & ::= & \gray{ \PROGRAMDEFS{\itm{info}}{\LP\Def\ldots\RP} }
  9950. \end{array}
  9951. \]
  9952. \end{minipage}
  9953. }
  9954. \caption{The abstract syntax of \LangCLam{}, extending \LangCFun{} (Figure~\ref{fig:c3-syntax}).}
  9955. \label{fig:c4-syntax}
  9956. \end{figure}
  9957. \section{Select Instructions}
  9958. \label{sec:select-instructions-Rlambda}
  9959. Compile \ALLOCCLOS{\itm{len}}{\itm{type}}{\itm{arity}} in almost the
  9960. same way as the \ALLOC{\itm{len}}{\itm{type}} form
  9961. (Section~\ref{sec:select-instructions-gc}). The only difference is
  9962. that you should place the \itm{arity} in the tag that is stored at
  9963. position $0$ of the vector. Recall that in
  9964. Section~\ref{sec:select-instructions-gc} a portion of the 64-bit tag
  9965. was not used. We store the arity in the $5$ bits starting at position
  9966. $58$.
  9967. Compile the \code{procedure-arity} operator into a sequence of
  9968. instructions that access the tag from position $0$ of the vector and
  9969. extract the $5$-bits starting at position $58$ from the tag.
  9970. \begin{figure}[p]
  9971. \begin{tikzpicture}[baseline=(current bounding box.center)]
  9972. \node (Rfun) at (0,2) {\large \LangFun{}};
  9973. \node (Rfun-2) at (3,2) {\large \LangFun{}};
  9974. \node (Rfun-3) at (6,2) {\large \LangFun{}};
  9975. \node (F1-1) at (12,0) {\large \LangFunRef{}};
  9976. \node (F1-2) at (9,0) {\large \LangFunRef{}};
  9977. \node (F1-3) at (6,0) {\large $F_1$};
  9978. \node (F1-4) at (3,0) {\large $F_1$};
  9979. \node (F1-5) at (0,0) {\large $F_1$};
  9980. \node (C3-2) at (3,-2) {\large \LangCFun{}};
  9981. \node (x86-2) at (3,-4) {\large \LangXIndCallVar{}};
  9982. \node (x86-2-1) at (3,-6) {\large \LangXIndCallVar{}};
  9983. \node (x86-2-2) at (6,-6) {\large \LangXIndCallVar{}};
  9984. \node (x86-3) at (6,-4) {\large \LangXIndCallVar{}};
  9985. \node (x86-4) at (9,-4) {\large \LangXIndCall{}};
  9986. \node (x86-5) at (9,-6) {\large \LangXIndCall{}};
  9987. \path[->,bend left=15] (Rfun) edge [above] node
  9988. {\ttfamily\footnotesize shrink} (Rfun-2);
  9989. \path[->,bend left=15] (Rfun-2) edge [above] node
  9990. {\ttfamily\footnotesize uniquify} (Rfun-3);
  9991. \path[->,bend left=15] (Rfun-3) edge [right] node
  9992. {\ttfamily\footnotesize reveal-functions} (F1-1);
  9993. \path[->,bend left=15] (F1-1) edge [below] node
  9994. {\ttfamily\footnotesize convert-to-clos.} (F1-2);
  9995. \path[->,bend right=15] (F1-2) edge [above] node
  9996. {\ttfamily\footnotesize limit-fun.} (F1-3);
  9997. \path[->,bend right=15] (F1-3) edge [above] node
  9998. {\ttfamily\footnotesize expose-alloc.} (F1-4);
  9999. \path[->,bend right=15] (F1-4) edge [above] node
  10000. {\ttfamily\footnotesize remove-complex.} (F1-5);
  10001. \path[->,bend right=15] (F1-5) edge [right] node
  10002. {\ttfamily\footnotesize explicate-control} (C3-2);
  10003. \path[->,bend left=15] (C3-2) edge [left] node
  10004. {\ttfamily\footnotesize select-instr.} (x86-2);
  10005. \path[->,bend right=15] (x86-2) edge [left] node
  10006. {\ttfamily\footnotesize uncover-live} (x86-2-1);
  10007. \path[->,bend right=15] (x86-2-1) edge [below] node
  10008. {\ttfamily\footnotesize build-inter.} (x86-2-2);
  10009. \path[->,bend right=15] (x86-2-2) edge [left] node
  10010. {\ttfamily\footnotesize allocate-reg.} (x86-3);
  10011. \path[->,bend left=15] (x86-3) edge [above] node
  10012. {\ttfamily\footnotesize patch-instr.} (x86-4);
  10013. \path[->,bend left=15] (x86-4) edge [right] node
  10014. {\ttfamily\footnotesize print-x86} (x86-5);
  10015. \end{tikzpicture}
  10016. \caption{Diagram of the passes for \LangLam{}, a language with lexically-scoped
  10017. functions.}
  10018. \label{fig:Rlambda-passes}
  10019. \end{figure}
  10020. Figure~\ref{fig:Rlambda-passes} provides an overview of all the passes needed
  10021. for the compilation of \LangLam{}.
  10022. \clearpage
  10023. \section{Challenge: Optimize Closures}
  10024. \label{sec:optimize-closures}
  10025. In this chapter we compiled lexically-scoped functions into a
  10026. relatively efficient representation: flat closures. However, even this
  10027. representation comes with some overhead. For example, consider the
  10028. following program with a function \code{tail-sum} that does not have
  10029. any free variables and where all the uses of \code{tail-sum} are in
  10030. applications where we know that only \code{tail-sum} is being applied
  10031. (and not any other functions).
  10032. \begin{center}
  10033. \begin{minipage}{0.95\textwidth}
  10034. \begin{lstlisting}
  10035. (define (tail-sum [n : Integer] [r : Integer]) : Integer
  10036. (if (eq? n 0)
  10037. r
  10038. (tail-sum (- n 1) (+ n r))))
  10039. (+ (tail-sum 5 0) 27)
  10040. \end{lstlisting}
  10041. \end{minipage}
  10042. \end{center}
  10043. As described in this chapter, we uniformly apply closure conversion to
  10044. all functions, obtaining the following output for this program.
  10045. \begin{center}
  10046. \begin{minipage}{0.95\textwidth}
  10047. \begin{lstlisting}
  10048. (define (tail_sum1 [fvs5 : _] [n2 : Integer] [r3 : Integer]) : Integer
  10049. (if (eq? n2 0)
  10050. r3
  10051. (let ([clos4 (closure (list (fun-ref tail_sum1)))])
  10052. ((vector-ref clos4 0) clos4 (+ n2 -1) (+ n2 r3)))))
  10053. (define (main) : Integer
  10054. (+ (let ([clos6 (closure (list (fun-ref tail_sum1)))])
  10055. ((vector-ref clos6 0) clos6 5 0)) 27))
  10056. \end{lstlisting}
  10057. \end{minipage}
  10058. \end{center}
  10059. In the previous Chapter, there would be no allocation in the program
  10060. and the calls to \code{tail-sum} would be direct calls. In contrast,
  10061. the above program allocates memory for each \code{closure} and the
  10062. calls to \code{tail-sum} are indirect. These two differences incur
  10063. considerable overhead in a program such as this one, where the
  10064. allocations and indirect calls occur inside a tight loop.
  10065. One might think that this problem is trivial to solve: can't we just
  10066. recognize calls of the form \code{((fun-ref $f$) $e_1 \ldots e_n$)}
  10067. and compile them to direct calls \code{((fun-ref $f$) $e'_1 \ldots
  10068. e'_n$)} instead of treating it like a call to a closure? We would
  10069. also drop the \code{fvs5} parameter of \code{tail\_sum1}.
  10070. %
  10071. However, this problem is not so trivial because a global function may
  10072. ``escape'' and become involved in applications that also involve
  10073. closures. Consider the following example in which the application
  10074. \code{(f 41)} needs to be compiled into a closure application, because
  10075. the \code{lambda} may get bound to \code{f}, but the \code{add1}
  10076. function might also get bound to \code{f}.
  10077. \begin{lstlisting}
  10078. (define (add1 [x : Integer]) : Integer
  10079. (+ x 1))
  10080. (let ([y (read)])
  10081. (let ([f (if (eq? (read) 0)
  10082. add1
  10083. (lambda: ([x : Integer]) : Integer (- x y)))])
  10084. (f 41)))
  10085. \end{lstlisting}
  10086. If a global function name is used in any way other than as the
  10087. operator in a direct call, then we say that the function
  10088. \emph{escapes}. If a global function does not escape, then we do not
  10089. need to perform closure conversion on the function.
  10090. \begin{exercise}\normalfont
  10091. Implement an auxiliary function for detecting which global
  10092. functions escape. Using that function, implement an improved version
  10093. of closure conversion that does not apply closure conversion to
  10094. global functions that do not escape but instead compiles them as
  10095. regular functions. Create several new test cases that check whether
  10096. you properly detect whether global functions escape or not.
  10097. \end{exercise}
  10098. So far we have reduced the overhead of calling global functions, but
  10099. it would also be nice to reduce the overhead of calling a
  10100. \code{lambda} when we can determine at compile time which
  10101. \code{lambda} will be called. We refer to such calls as \emph{known
  10102. calls}. Consider the following example in which a \code{lambda} is
  10103. bound to \code{f} and then applied.
  10104. \begin{lstlisting}
  10105. (let ([y (read)])
  10106. (let ([f (lambda: ([x : Integer]) : Integer
  10107. (+ x y))])
  10108. (f 21)))
  10109. \end{lstlisting}
  10110. Closure conversion compiles \code{(f 21)} into an indirect call:
  10111. \begin{lstlisting}
  10112. (define (lambda5 [fvs6 : (Vector _ Integer)] [x3 : Integer]) : Integer
  10113. (let ([y2 (vector-ref fvs6 1)])
  10114. (+ x3 y2)))
  10115. (define (main) : Integer
  10116. (let ([y2 (read)])
  10117. (let ([f4 (Closure 1 (list (fun-ref lambda5) y2))])
  10118. ((vector-ref f4 0) f4 21))))
  10119. \end{lstlisting}
  10120. but we can instead compile the application \code{(f 21)} into a direct call
  10121. to \code{lambda5}:
  10122. \begin{lstlisting}
  10123. (define (main) : Integer
  10124. (let ([y2 (read)])
  10125. (let ([f4 (Closure 1 (list (fun-ref lambda5) y2))])
  10126. ((fun-ref lambda5) f4 21))))
  10127. \end{lstlisting}
  10128. The problem of determining which lambda will be called from a
  10129. particular application is quite challenging in general and the topic
  10130. of considerable research~\citep{Shivers:1988aa,Gilray:2016aa}. For the
  10131. following exercise we recommend that you compile an application to a
  10132. direct call when the operator is a variable and the variable is
  10133. \code{let}-bound to a closure. This can be accomplished by maintaining
  10134. an environment mapping \code{let}-bound variables to function names.
  10135. Extend the environment whenever you encounter a closure on the
  10136. right-hand side of a \code{let}, mapping the \code{let}-bound variable
  10137. to the name of the global function for the closure. This pass should
  10138. come after closure conversion.
  10139. \begin{exercise}\normalfont
  10140. Implement a compiler pass, named \code{optimize-known-calls}, that
  10141. compiles known calls into direct calls. Verify that your compiler is
  10142. successful in this regard on several example programs.
  10143. \end{exercise}
  10144. These exercises only scratches the surface of optimizing of
  10145. closures. A good next step for the interested reader is to look at the
  10146. work of \citet{Keep:2012ab}.
  10147. \section{Further Reading}
  10148. The notion of lexically scoped anonymous functions predates modern
  10149. computers by about a decade. They were invented by
  10150. \citet{Church:1932aa}, who proposed the $\lambda$ calculus as a
  10151. foundation for logic. Anonymous functions were included in the
  10152. LISP~\citep{McCarthy:1960dz} programming language but were initially
  10153. dynamically scoped. The Scheme dialect of LISP adopted lexical scoping
  10154. and \citet{Guy-L.-Steele:1978yq} demonstrated how to efficiently
  10155. compile Scheme programs. However, environments were represented as
  10156. linked lists, so variable lookup was linear in the size of the
  10157. environment. In this chapter we represent environments using flat
  10158. closures, which were invented by
  10159. \citet{Cardelli:1983aa,Cardelli:1984aa} for the purposes of compiling
  10160. the ML language~\citep{Gordon:1978aa,Milner:1990fk}. With flat
  10161. closures, variable lookup is constant time but the time to create a
  10162. closure is proportional to the number of its free variables. Flat
  10163. closures were reinvented by \citet{Dybvig:1987ab} in his Ph.D. thesis
  10164. and used in Chez Scheme version 1~\citep{Dybvig:2006aa}.
  10165. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  10166. \chapter{Dynamic Typing}
  10167. \label{ch:Rdyn}
  10168. \index{dynamic typing}
  10169. In this chapter we discuss the compilation of \LangDyn{}, a dynamically
  10170. typed language that is a subset of Racket. This is in contrast to the
  10171. previous chapters, which have studied the compilation of Typed
  10172. Racket. In dynamically typed languages such as \LangDyn{}, a given
  10173. expression may produce a value of a different type each time it is
  10174. executed. Consider the following example with a conditional \code{if}
  10175. expression that may return a Boolean or an integer depending on the
  10176. input to the program.
  10177. % part of dynamic_test_25.rkt
  10178. \begin{lstlisting}
  10179. (not (if (eq? (read) 1) #f 0))
  10180. \end{lstlisting}
  10181. Languages that allow expressions to produce different kinds of values
  10182. are called \emph{polymorphic}, a word composed of the Greek roots
  10183. ``poly'', meaning ``many'', and ``morph'', meaning ``shape''. There
  10184. are several kinds of polymorphism in programming languages, such as
  10185. subtype polymorphism and parametric
  10186. polymorphism~\citep{Cardelli:1985kx}. The kind of polymorphism we
  10187. study in this chapter does not have a special name but it is the kind
  10188. that arises in dynamically typed languages.
  10189. Another characteristic of dynamically typed languages is that
  10190. primitive operations, such as \code{not}, are often defined to operate
  10191. on many different types of values. In fact, in Racket, the \code{not}
  10192. operator produces a result for any kind of value: given \code{\#f} it
  10193. returns \code{\#t} and given anything else it returns \code{\#f}.
  10194. Furthermore, even when primitive operations restrict their inputs to
  10195. values of a certain type, this restriction is enforced at runtime
  10196. instead of during compilation. For example, the following vector
  10197. reference results in a run-time contract violation because the index
  10198. must be in integer, not a Boolean such as \code{\#t}.
  10199. \begin{lstlisting}
  10200. (vector-ref (vector 42) #t)
  10201. \end{lstlisting}
  10202. \begin{figure}[tp]
  10203. \centering
  10204. \fbox{
  10205. \begin{minipage}{0.97\textwidth}
  10206. \[
  10207. \begin{array}{rcl}
  10208. \itm{cmp} &::= & \key{eq?} \mid \key{<} \mid \key{<=} \mid \key{>} \mid \key{>=} \\
  10209. \Exp &::=& \Int \mid \CREAD{} \mid \CNEG{\Exp}
  10210. \mid \CADD{\Exp}{\Exp} \mid \CSUB{\Exp}{\Exp} \\
  10211. &\mid& \Var \mid \CLET{\Var}{\Exp}{\Exp} \\
  10212. &\mid& \key{\#t} \mid \key{\#f}
  10213. \mid \CBINOP{\key{and}}{\Exp}{\Exp}
  10214. \mid \CBINOP{\key{or}}{\Exp}{\Exp}
  10215. \mid \CUNIOP{\key{not}}{\Exp} \\
  10216. &\mid& \LP\itm{cmp}\;\Exp\;\Exp\RP \mid \CIF{\Exp}{\Exp}{\Exp} \\
  10217. &\mid& \LP\key{vector}\;\Exp\ldots\RP \mid
  10218. \LP\key{vector-ref}\;\Exp\;\Exp\RP \\
  10219. &\mid& \LP\key{vector-set!}\;\Exp\;\Exp\;\Exp\RP \mid \LP\key{void}\RP \\
  10220. &\mid& \LP\Exp \; \Exp\ldots\RP
  10221. \mid \LP\key{lambda}\;\LP\Var\ldots\RP\;\Exp\RP \\
  10222. & \mid & \LP\key{boolean?}\;\Exp\RP \mid \LP\key{integer?}\;\Exp\RP\\
  10223. & \mid & \LP\key{vector?}\;\Exp\RP \mid \LP\key{procedure?}\;\Exp\RP \mid \LP\key{void?}\;\Exp\RP \\
  10224. \Def &::=& \LP\key{define}\; \LP\Var \; \Var\ldots\RP \; \Exp\RP \\
  10225. \LangDyn{} &::=& \Def\ldots\; \Exp
  10226. \end{array}
  10227. \]
  10228. \end{minipage}
  10229. }
  10230. \caption{Syntax of \LangDyn{}, an untyped language (a subset of Racket).}
  10231. \label{fig:r7-concrete-syntax}
  10232. \end{figure}
  10233. \begin{figure}[tp]
  10234. \centering
  10235. \fbox{
  10236. \begin{minipage}{0.96\textwidth}
  10237. \small
  10238. \[
  10239. \begin{array}{lcl}
  10240. \Exp &::=& \INT{\Int} \mid \VAR{\Var} \mid \LET{\Var}{\Exp}{\Exp} \\
  10241. &\mid& \PRIM{\itm{op}}{\Exp\ldots} \\
  10242. &\mid& \BOOL{\itm{bool}}
  10243. \mid \IF{\Exp}{\Exp}{\Exp} \\
  10244. &\mid& \VOID{} \mid \APPLY{\Exp}{\Exp\ldots} \\
  10245. &\mid& \LAMBDA{\LP\Var\ldots\RP}{\code{'Any}}{\Exp}\\
  10246. \Def &::=& \FUNDEF{\Var}{\LP\Var\ldots\RP}{\code{'Any}}{\code{'()}}{\Exp} \\
  10247. \LangDyn{} &::=& \PROGRAMDEFSEXP{\code{'()}}{\LP\Def\ldots\RP}{\Exp}
  10248. \end{array}
  10249. \]
  10250. \end{minipage}
  10251. }
  10252. \caption{The abstract syntax of \LangDyn{}.}
  10253. \label{fig:r7-syntax}
  10254. \end{figure}
  10255. The concrete and abstract syntax of \LangDyn{}, our subset of Racket, is
  10256. defined in Figures~\ref{fig:r7-concrete-syntax} and
  10257. \ref{fig:r7-syntax}.
  10258. %
  10259. There is no type checker for \LangDyn{} because it is not a statically
  10260. typed language (it's dynamically typed!).
  10261. The definitional interpreter for \LangDyn{} is presented in
  10262. Figure~\ref{fig:interp-Rdyn} and its auxiliary functions are defined i
  10263. Figure~\ref{fig:interp-Rdyn-aux}. Consider the match case for
  10264. \code{(Int n)}. Instead of simply returning the integer \code{n} (as
  10265. in the interpreter for \LangVar{} in Figure~\ref{fig:interp-Rvar}), the
  10266. interpreter for \LangDyn{} creates a \emph{tagged value}\index{tagged
  10267. value} that combines an underlying value with a tag that identifies
  10268. what kind of value it is. We define the following struct
  10269. to represented tagged values.
  10270. \begin{lstlisting}
  10271. (struct Tagged (value tag) #:transparent)
  10272. \end{lstlisting}
  10273. The tags are \code{Integer}, \code{Boolean}, \code{Void},
  10274. \code{Vector}, and \code{Procedure}. Tags are closely related to types
  10275. but don't always capture all the information that a type does. For
  10276. example, a vector of type \code{(Vector Any Any)} is tagged with
  10277. \code{Vector} and a procedure of type \code{(Any Any -> Any)}
  10278. is tagged with \code{Procedure}.
  10279. Next consider the match case for \code{vector-ref}. The
  10280. \code{check-tag} auxiliary function (Figure~\ref{fig:interp-Rdyn-aux})
  10281. is used to ensure that the first argument is a vector and the second
  10282. is an integer. If they are not, a \code{trapped-error} is raised.
  10283. Recall from Section~\ref{sec:interp-Rint} that when a definition
  10284. interpreter raises a \code{trapped-error} error, the compiled code
  10285. must also signal an error by exiting with return code \code{255}. A
  10286. \code{trapped-error} is also raised if the index is not less than
  10287. length of the vector.
  10288. \begin{figure}[tbp]
  10289. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  10290. (define ((interp-Rdyn-exp env) ast)
  10291. (define recur (interp-Rdyn-exp env))
  10292. (match ast
  10293. [(Var x) (lookup x env)]
  10294. [(Int n) (Tagged n 'Integer)]
  10295. [(Bool b) (Tagged b 'Boolean)]
  10296. [(Lambda xs rt body)
  10297. (Tagged `(function ,xs ,body ,env) 'Procedure)]
  10298. [(Prim 'vector es)
  10299. (Tagged (apply vector (for/list ([e es]) (recur e))) 'Vector)]
  10300. [(Prim 'vector-ref (list e1 e2))
  10301. (define vec (recur e1)) (define i (recur e2))
  10302. (check-tag vec 'Vector ast) (check-tag i 'Integer ast)
  10303. (unless (< (Tagged-value i) (vector-length (Tagged-value vec)))
  10304. (error 'trapped-error "index ~a too big\nin ~v" (Tagged-value i) ast))
  10305. (vector-ref (Tagged-value vec) (Tagged-value i))]
  10306. [(Prim 'vector-set! (list e1 e2 e3))
  10307. (define vec (recur e1)) (define i (recur e2)) (define arg (recur e3))
  10308. (check-tag vec 'Vector ast) (check-tag i 'Integer ast)
  10309. (unless (< (Tagged-value i) (vector-length (Tagged-value vec)))
  10310. (error 'trapped-error "index ~a too big\nin ~v" (Tagged-value i) ast))
  10311. (vector-set! (Tagged-value vec) (Tagged-value i) arg)
  10312. (Tagged (void) 'Void)]
  10313. [(Let x e body) ((interp-Rdyn-exp (cons (cons x (recur e)) env)) body)]
  10314. [(Prim 'and (list e1 e2)) (recur (If e1 e2 (Bool #f)))]
  10315. [(Prim 'or (list e1 e2))
  10316. (define v1 (recur e1))
  10317. (match (Tagged-value v1) [#f (recur e2)] [else v1])]
  10318. [(Prim 'eq? (list l r)) (Tagged (equal? (recur l) (recur r)) 'Boolean)]
  10319. [(Prim op (list e1))
  10320. #:when (set-member? type-predicates op)
  10321. (tag-value ((interp-op op) (Tagged-value (recur e1))))]
  10322. [(Prim op es)
  10323. (define args (map recur es))
  10324. (define tags (for/list ([arg args]) (Tagged-tag arg)))
  10325. (unless (for/or ([expected-tags (op-tags op)])
  10326. (equal? expected-tags tags))
  10327. (error 'trapped-error "illegal argument tags ~a\nin ~v" tags ast))
  10328. (tag-value
  10329. (apply (interp-op op) (for/list ([a args]) (Tagged-value a))))]
  10330. [(If q t f)
  10331. (match (Tagged-value (recur q)) [#f (recur f)] [else (recur t)])]
  10332. [(Apply f es)
  10333. (define new-f (recur f)) (define args (map recur es))
  10334. (check-tag new-f 'Procedure ast) (define f-val (Tagged-value new-f))
  10335. (match f-val
  10336. [`(function ,xs ,body ,lam-env)
  10337. (unless (eq? (length xs) (length args))
  10338. (error 'trapped-error "~a != ~a\nin ~v" (length args) (length xs) ast))
  10339. (define new-env (append (map cons xs args) lam-env))
  10340. ((interp-Rdyn-exp new-env) body)]
  10341. [else (error "interp-Rdyn-exp, expected function, not" f-val)])]))
  10342. \end{lstlisting}
  10343. \caption{Interpreter for the \LangDyn{} language.}
  10344. \label{fig:interp-Rdyn}
  10345. \end{figure}
  10346. \begin{figure}[tbp]
  10347. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  10348. (define (interp-op op)
  10349. (match op
  10350. ['+ fx+]
  10351. ['- fx-]
  10352. ['read read-fixnum]
  10353. ['not (lambda (v) (match v [#t #f] [#f #t]))]
  10354. ['< (lambda (v1 v2)
  10355. (cond [(and (fixnum? v1) (fixnum? v2)) (< v1 v2)]))]
  10356. ['<= (lambda (v1 v2)
  10357. (cond [(and (fixnum? v1) (fixnum? v2)) (<= v1 v2)]))]
  10358. ['> (lambda (v1 v2)
  10359. (cond [(and (fixnum? v1) (fixnum? v2)) (> v1 v2)]))]
  10360. ['>= (lambda (v1 v2)
  10361. (cond [(and (fixnum? v1) (fixnum? v2)) (>= v1 v2)]))]
  10362. ['boolean? boolean?]
  10363. ['integer? fixnum?]
  10364. ['void? void?]
  10365. ['vector? vector?]
  10366. ['vector-length vector-length]
  10367. ['procedure? (match-lambda
  10368. [`(functions ,xs ,body ,env) #t] [else #f])]
  10369. [else (error 'interp-op "unknown operator" op)]))
  10370. (define (op-tags op)
  10371. (match op
  10372. ['+ '((Integer Integer))]
  10373. ['- '((Integer Integer) (Integer))]
  10374. ['read '(())]
  10375. ['not '((Boolean))]
  10376. ['< '((Integer Integer))]
  10377. ['<= '((Integer Integer))]
  10378. ['> '((Integer Integer))]
  10379. ['>= '((Integer Integer))]
  10380. ['vector-length '((Vector))]))
  10381. (define type-predicates
  10382. (set 'boolean? 'integer? 'vector? 'procedure? 'void?))
  10383. (define (tag-value v)
  10384. (cond [(boolean? v) (Tagged v 'Boolean)]
  10385. [(fixnum? v) (Tagged v 'Integer)]
  10386. [(procedure? v) (Tagged v 'Procedure)]
  10387. [(vector? v) (Tagged v 'Vector)]
  10388. [(void? v) (Tagged v 'Void)]
  10389. [else (error 'tag-value "unidentified value ~a" v)]))
  10390. (define (check-tag val expected ast)
  10391. (define tag (Tagged-tag val))
  10392. (unless (eq? tag expected)
  10393. (error 'trapped-error "expected ~a, not ~a\nin ~v" expected tag ast)))
  10394. \end{lstlisting}
  10395. \caption{Auxiliary functions for the \LangDyn{} interpreter.}
  10396. \label{fig:interp-Rdyn-aux}
  10397. \end{figure}
  10398. \clearpage
  10399. \section{Representation of Tagged Values}
  10400. The interpreter for \LangDyn{} introduced a new kind of value, a tagged
  10401. value. To compile \LangDyn{} to x86 we must decide how to represent tagged
  10402. values at the bit level. Because almost every operation in \LangDyn{}
  10403. involves manipulating tagged values, the representation must be
  10404. efficient. Recall that all of our values are 64 bits. We shall steal
  10405. the 3 right-most bits to encode the tag. We use $001$ to identify
  10406. integers, $100$ for Booleans, $010$ for vectors, $011$ for procedures,
  10407. and $101$ for the void value. We define the following auxiliary
  10408. function for mapping types to tag codes.
  10409. \begin{align*}
  10410. \itm{tagof}(\key{Integer}) &= 001 \\
  10411. \itm{tagof}(\key{Boolean}) &= 100 \\
  10412. \itm{tagof}((\key{Vector} \ldots)) &= 010 \\
  10413. \itm{tagof}((\ldots \key{->} \ldots)) &= 011 \\
  10414. \itm{tagof}(\key{Void}) &= 101
  10415. \end{align*}
  10416. This stealing of 3 bits comes at some price: our integers are reduced
  10417. to ranging from $-2^{60}$ to $2^{60}$. The stealing does not adversely
  10418. affect vectors and procedures because those values are addresses, and
  10419. our addresses are 8-byte aligned so the rightmost 3 bits are unused,
  10420. they are always $000$. Thus, we do not lose information by overwriting
  10421. the rightmost 3 bits with the tag and we can simply zero-out the tag
  10422. to recover the original address.
  10423. To make tagged values into first-class entities, we can give them a
  10424. type, called \code{Any}, and define operations such as \code{Inject}
  10425. and \code{Project} for creating and using them, yielding the \LangAny{}
  10426. intermediate language. We describe how to compile \LangDyn{} to \LangAny{} in
  10427. Section~\ref{sec:compile-r7} but first we describe the \LangAny{} language
  10428. in greater detail.
  10429. \section{The \LangAny{} Language}
  10430. \label{sec:Rany-lang}
  10431. \begin{figure}[tp]
  10432. \centering
  10433. \fbox{
  10434. \begin{minipage}{0.96\textwidth}
  10435. \small
  10436. \[
  10437. \begin{array}{lcl}
  10438. \Type &::= & \ldots \mid \key{Any} \\
  10439. \itm{op} &::= & \ldots \mid \code{any-vector-length}
  10440. \mid \code{any-vector-ref} \mid \code{any-vector-set!}\\
  10441. &\mid& \code{boolean?} \mid \code{integer?} \mid \code{vector?}
  10442. \mid \code{procedure?} \mid \code{void?} \\
  10443. \Exp &::=& \ldots
  10444. \mid \gray{ \PRIM{\itm{op}}{\Exp\ldots} } \\
  10445. &\mid& \INJECT{\Exp}{\FType} \mid \PROJECT{\Exp}{\FType} \\
  10446. \Def &::=& \gray{ \FUNDEF{\Var}{\LP[\Var \code{:} \Type]\ldots\RP}{\Type}{\code{'()}}{\Exp} }\\
  10447. \LangAny{} &::=& \gray{ \PROGRAMDEFSEXP{\code{'()}}{\LP\Def\ldots\RP}{\Exp} }
  10448. \end{array}
  10449. \]
  10450. \end{minipage}
  10451. }
  10452. \caption{The abstract syntax of \LangAny{}, extending \LangLam{} (Figure~\ref{fig:Rlam-syntax}).}
  10453. \label{fig:Rany-syntax}
  10454. \end{figure}
  10455. The abstract syntax of \LangAny{} is defined in Figure~\ref{fig:Rany-syntax}.
  10456. (The concrete syntax of \LangAny{} is in the Appendix,
  10457. Figure~\ref{fig:Rany-concrete-syntax}.) The $\INJECT{e}{T}$ form
  10458. converts the value produced by expression $e$ of type $T$ into a
  10459. tagged value. The $\PROJECT{e}{T}$ form converts the tagged value
  10460. produced by expression $e$ into a value of type $T$ or else halts the
  10461. program if the type tag is not equivalent to $T$.
  10462. %
  10463. Note that in both \code{Inject} and \code{Project}, the type $T$ is
  10464. restricted to a flat type $\FType$, which simplifies the
  10465. implementation and corresponds with what is needed for compiling \LangDyn{}.
  10466. The \code{any-vector} operators adapt the vector operations so that
  10467. they can be applied to a value of type \code{Any}. They also
  10468. generalize the vector operations in that the index is not restricted
  10469. to be a literal integer in the grammar but is allowed to be any
  10470. expression.
  10471. The type predicates such as \key{boolean?} expect their argument to
  10472. produce a tagged value; they return \key{\#t} if the tag corresponds
  10473. to the predicate and they return \key{\#f} otherwise.
  10474. The type checker for \LangAny{} is shown in
  10475. Figures~\ref{fig:type-check-Rany-part-1} and
  10476. \ref{fig:type-check-Rany-part-2} and uses the auxiliary functions in
  10477. Figure~\ref{fig:type-check-Rany-aux}.
  10478. %
  10479. The interpreter for \LangAny{} is in Figure~\ref{fig:interp-Rany} and the
  10480. auxiliary functions \code{apply-inject} and \code{apply-project} are
  10481. in Figure~\ref{fig:apply-project}.
  10482. \begin{figure}[btp]
  10483. \begin{lstlisting}[basicstyle=\ttfamily\small]
  10484. (define type-check-Rany-class
  10485. (class type-check-Rlambda-class
  10486. (super-new)
  10487. (inherit check-type-equal?)
  10488. (define/override (type-check-exp env)
  10489. (lambda (e)
  10490. (define recur (type-check-exp env))
  10491. (match e
  10492. [(Inject e1 ty)
  10493. (unless (flat-ty? ty)
  10494. (error 'type-check "may only inject from flat type, not ~a" ty))
  10495. (define-values (new-e1 e-ty) (recur e1))
  10496. (check-type-equal? e-ty ty e)
  10497. (values (Inject new-e1 ty) 'Any)]
  10498. [(Project e1 ty)
  10499. (unless (flat-ty? ty)
  10500. (error 'type-check "may only project to flat type, not ~a" ty))
  10501. (define-values (new-e1 e-ty) (recur e1))
  10502. (check-type-equal? e-ty 'Any e)
  10503. (values (Project new-e1 ty) ty)]
  10504. [(Prim 'any-vector-length (list e1))
  10505. (define-values (e1^ t1) (recur e1))
  10506. (check-type-equal? t1 'Any e)
  10507. (values (Prim 'any-vector-length (list e1^)) 'Integer)]
  10508. [(Prim 'any-vector-ref (list e1 e2))
  10509. (define-values (e1^ t1) (recur e1))
  10510. (define-values (e2^ t2) (recur e2))
  10511. (check-type-equal? t1 'Any e)
  10512. (check-type-equal? t2 'Integer e)
  10513. (values (Prim 'any-vector-ref (list e1^ e2^)) 'Any)]
  10514. [(Prim 'any-vector-set! (list e1 e2 e3))
  10515. (define-values (e1^ t1) (recur e1))
  10516. (define-values (e2^ t2) (recur e2))
  10517. (define-values (e3^ t3) (recur e3))
  10518. (check-type-equal? t1 'Any e)
  10519. (check-type-equal? t2 'Integer e)
  10520. (check-type-equal? t3 'Any e)
  10521. (values (Prim 'any-vector-set! (list e1^ e2^ e3^)) 'Void)]
  10522. \end{lstlisting}
  10523. \caption{Type checker for the \LangAny{} language, part 1.}
  10524. \label{fig:type-check-Rany-part-1}
  10525. \end{figure}
  10526. \begin{figure}[btp]
  10527. \begin{lstlisting}[basicstyle=\ttfamily\small]
  10528. [(ValueOf e ty)
  10529. (define-values (new-e e-ty) (recur e))
  10530. (values (ValueOf new-e ty) ty)]
  10531. [(Prim pred (list e1))
  10532. #:when (set-member? (type-predicates) pred)
  10533. (define-values (new-e1 e-ty) (recur e1))
  10534. (check-type-equal? e-ty 'Any e)
  10535. (values (Prim pred (list new-e1)) 'Boolean)]
  10536. [(If cnd thn els)
  10537. (define-values (cnd^ Tc) (recur cnd))
  10538. (define-values (thn^ Tt) (recur thn))
  10539. (define-values (els^ Te) (recur els))
  10540. (check-type-equal? Tc 'Boolean cnd)
  10541. (check-type-equal? Tt Te e)
  10542. (values (If cnd^ thn^ els^) (combine-types Tt Te))]
  10543. [(Exit) (values (Exit) '_)]
  10544. [(Prim 'eq? (list arg1 arg2))
  10545. (define-values (e1 t1) (recur arg1))
  10546. (define-values (e2 t2) (recur arg2))
  10547. (match* (t1 t2)
  10548. [(`(Vector ,ts1 ...) `(Vector ,ts2 ...)) (void)]
  10549. [(other wise) (check-type-equal? t1 t2 e)])
  10550. (values (Prim 'eq? (list e1 e2)) 'Boolean)]
  10551. [else ((super type-check-exp env) e)])))
  10552. ))
  10553. \end{lstlisting}
  10554. \caption{Type checker for the \LangAny{} language, part 2.}
  10555. \label{fig:type-check-Rany-part-2}
  10556. \end{figure}
  10557. \begin{figure}[tbp]
  10558. \begin{lstlisting}
  10559. (define/override (operator-types)
  10560. (append
  10561. '((integer? . ((Any) . Boolean))
  10562. (vector? . ((Any) . Boolean))
  10563. (procedure? . ((Any) . Boolean))
  10564. (void? . ((Any) . Boolean))
  10565. (tag-of-any . ((Any) . Integer))
  10566. (make-any . ((_ Integer) . Any))
  10567. )
  10568. (super operator-types)))
  10569. (define/public (type-predicates)
  10570. (set 'boolean? 'integer? 'vector? 'procedure? 'void?))
  10571. (define/public (combine-types t1 t2)
  10572. (match (list t1 t2)
  10573. [(list '_ t2) t2]
  10574. [(list t1 '_) t1]
  10575. [(list `(Vector ,ts1 ...)
  10576. `(Vector ,ts2 ...))
  10577. `(Vector ,@(for/list ([t1 ts1] [t2 ts2])
  10578. (combine-types t1 t2)))]
  10579. [(list `(,ts1 ... -> ,rt1)
  10580. `(,ts2 ... -> ,rt2))
  10581. `(,@(for/list ([t1 ts1] [t2 ts2])
  10582. (combine-types t1 t2))
  10583. -> ,(combine-types rt1 rt2))]
  10584. [else t1]))
  10585. (define/public (flat-ty? ty)
  10586. (match ty
  10587. [(or `Integer `Boolean '_ `Void) #t]
  10588. [`(Vector ,ts ...) (for/and ([t ts]) (eq? t 'Any))]
  10589. [`(,ts ... -> ,rt)
  10590. (and (eq? rt 'Any) (for/and ([t ts]) (eq? t 'Any)))]
  10591. [else #f]))
  10592. \end{lstlisting}
  10593. \caption{Auxiliary methods for type checking \LangAny{}.}
  10594. \label{fig:type-check-Rany-aux}
  10595. \end{figure}
  10596. \begin{figure}[btp]
  10597. \begin{lstlisting}
  10598. (define interp-Rany-class
  10599. (class interp-Rlambda-class
  10600. (super-new)
  10601. (define/override (interp-op op)
  10602. (match op
  10603. ['boolean? (match-lambda
  10604. [`(tagged ,v1 ,tg) (equal? tg (any-tag 'Boolean))]
  10605. [else #f])]
  10606. ['integer? (match-lambda
  10607. [`(tagged ,v1 ,tg) (equal? tg (any-tag 'Integer))]
  10608. [else #f])]
  10609. ['vector? (match-lambda
  10610. [`(tagged ,v1 ,tg) (equal? tg (any-tag `(Vector Any)))]
  10611. [else #f])]
  10612. ['procedure? (match-lambda
  10613. [`(tagged ,v1 ,tg) (equal? tg (any-tag `(Any -> Any)))]
  10614. [else #f])]
  10615. ['eq? (match-lambda*
  10616. [`((tagged ,v1^ ,tg1) (tagged ,v2^ ,tg2))
  10617. (and (eq? v1^ v2^) (equal? tg1 tg2))]
  10618. [ls (apply (super interp-op op) ls)])]
  10619. ['any-vector-ref (lambda (v i)
  10620. (match v [`(tagged ,v^ ,tg) (vector-ref v^ i)]))]
  10621. ['any-vector-set! (lambda (v i a)
  10622. (match v [`(tagged ,v^ ,tg) (vector-set! v^ i a)]))]
  10623. ['any-vector-length (lambda (v)
  10624. (match v [`(tagged ,v^ ,tg) (vector-length v^)]))]
  10625. [else (super interp-op op)]))
  10626. (define/override ((interp-exp env) e)
  10627. (define recur (interp-exp env))
  10628. (match e
  10629. [(Inject e ty) `(tagged ,(recur e) ,(any-tag ty))]
  10630. [(Project e ty2) (apply-project (recur e) ty2)]
  10631. [else ((super interp-exp env) e)]))
  10632. ))
  10633. (define (interp-Rany p)
  10634. (send (new interp-Rany-class) interp-program p))
  10635. \end{lstlisting}
  10636. \caption{Interpreter for \LangAny{}.}
  10637. \label{fig:interp-Rany}
  10638. \end{figure}
  10639. \begin{figure}[tbp]
  10640. \begin{lstlisting}
  10641. (define/public (apply-inject v tg) (Tagged v tg))
  10642. (define/public (apply-project v ty2)
  10643. (define tag2 (any-tag ty2))
  10644. (match v
  10645. [(Tagged v1 tag1)
  10646. (cond
  10647. [(eq? tag1 tag2)
  10648. (match ty2
  10649. [`(Vector ,ts ...)
  10650. (define l1 ((interp-op 'vector-length) v1))
  10651. (cond
  10652. [(eq? l1 (length ts)) v1]
  10653. [else (error 'apply-project "vector length mismatch, ~a != ~a"
  10654. l1 (length ts))])]
  10655. [`(,ts ... -> ,rt)
  10656. (match v1
  10657. [`(function ,xs ,body ,env)
  10658. (cond [(eq? (length xs) (length ts)) v1]
  10659. [else
  10660. (error 'apply-project "arity mismatch ~a != ~a"
  10661. (length xs) (length ts))])]
  10662. [else (error 'apply-project "expected function not ~a" v1)])]
  10663. [else v1])]
  10664. [else (error 'apply-project "tag mismatch ~a != ~a" tag1 tag2)])]
  10665. [else (error 'apply-project "expected tagged value, not ~a" v)]))
  10666. \end{lstlisting}
  10667. \caption{Auxiliary functions for injection and projection.}
  10668. \label{fig:apply-project}
  10669. \end{figure}
  10670. \clearpage
  10671. \section{Cast Insertion: Compiling \LangDyn{} to \LangAny{}}
  10672. \label{sec:compile-r7}
  10673. The \code{cast-insert} pass compiles from \LangDyn{} to \LangAny{}.
  10674. Figure~\ref{fig:compile-r7-Rany} shows the compilation of many of the
  10675. \LangDyn{} forms into \LangAny{}. An important invariant of this pass is that
  10676. given a subexpression $e$ in the \LangDyn{} program, the pass will produce
  10677. an expression $e'$ in \LangAny{} that has type \key{Any}. For example, the
  10678. first row in Figure~\ref{fig:compile-r7-Rany} shows the compilation of
  10679. the Boolean \code{\#t}, which must be injected to produce an
  10680. expression of type \key{Any}.
  10681. %
  10682. The second row of Figure~\ref{fig:compile-r7-Rany}, the compilation of
  10683. addition, is representative of compilation for many primitive
  10684. operations: the arguments have type \key{Any} and must be projected to
  10685. \key{Integer} before the addition can be performed.
  10686. The compilation of \key{lambda} (third row of
  10687. Figure~\ref{fig:compile-r7-Rany}) shows what happens when we need to
  10688. produce type annotations: we simply use \key{Any}.
  10689. %
  10690. The compilation of \code{if} and \code{eq?} demonstrate how this pass
  10691. has to account for some differences in behavior between \LangDyn{} and
  10692. \LangAny{}. The \LangDyn{} language is more permissive than \LangAny{} regarding what
  10693. kind of values can be used in various places. For example, the
  10694. condition of an \key{if} does not have to be a Boolean. For \key{eq?},
  10695. the arguments need not be of the same type (in that case the
  10696. result is \code{\#f}).
  10697. \begin{figure}[btp]
  10698. \centering
  10699. \begin{tabular}{|lll|} \hline
  10700. \begin{minipage}{0.27\textwidth}
  10701. \begin{lstlisting}
  10702. #t
  10703. \end{lstlisting}
  10704. \end{minipage}
  10705. &
  10706. $\Rightarrow$
  10707. &
  10708. \begin{minipage}{0.65\textwidth}
  10709. \begin{lstlisting}
  10710. (inject #t Boolean)
  10711. \end{lstlisting}
  10712. \end{minipage}
  10713. \\[2ex]\hline
  10714. \begin{minipage}{0.27\textwidth}
  10715. \begin{lstlisting}
  10716. (+ |$e_1$| |$e_2$|)
  10717. \end{lstlisting}
  10718. \end{minipage}
  10719. &
  10720. $\Rightarrow$
  10721. &
  10722. \begin{minipage}{0.65\textwidth}
  10723. \begin{lstlisting}
  10724. (inject
  10725. (+ (project |$e'_1$| Integer)
  10726. (project |$e'_2$| Integer))
  10727. Integer)
  10728. \end{lstlisting}
  10729. \end{minipage}
  10730. \\[2ex]\hline
  10731. \begin{minipage}{0.27\textwidth}
  10732. \begin{lstlisting}
  10733. (lambda (|$x_1 \ldots x_n$|) |$e$|)
  10734. \end{lstlisting}
  10735. \end{minipage}
  10736. &
  10737. $\Rightarrow$
  10738. &
  10739. \begin{minipage}{0.65\textwidth}
  10740. \begin{lstlisting}
  10741. (inject
  10742. (lambda: ([|$x_1$|:Any]|$\ldots$|[|$x_n$|:Any]):Any |$e'$|)
  10743. (Any|$\ldots$|Any -> Any))
  10744. \end{lstlisting}
  10745. \end{minipage}
  10746. \\[2ex]\hline
  10747. \begin{minipage}{0.27\textwidth}
  10748. \begin{lstlisting}
  10749. (|$e_0$| |$e_1 \ldots e_n$|)
  10750. \end{lstlisting}
  10751. \end{minipage}
  10752. &
  10753. $\Rightarrow$
  10754. &
  10755. \begin{minipage}{0.65\textwidth}
  10756. \begin{lstlisting}
  10757. ((project |$e'_0$| (Any|$\ldots$|Any -> Any)) |$e'_1 \ldots e'_n$|)
  10758. \end{lstlisting}
  10759. \end{minipage}
  10760. \\[2ex]\hline
  10761. \begin{minipage}{0.27\textwidth}
  10762. \begin{lstlisting}
  10763. (vector-ref |$e_1$| |$e_2$|)
  10764. \end{lstlisting}
  10765. \end{minipage}
  10766. &
  10767. $\Rightarrow$
  10768. &
  10769. \begin{minipage}{0.65\textwidth}
  10770. \begin{lstlisting}
  10771. (any-vector-ref |$e_1'$| |$e_2'$|)
  10772. \end{lstlisting}
  10773. \end{minipage}
  10774. \\[2ex]\hline
  10775. \begin{minipage}{0.27\textwidth}
  10776. \begin{lstlisting}
  10777. (if |$e_1$| |$e_2$| |$e_3$|)
  10778. \end{lstlisting}
  10779. \end{minipage}
  10780. &
  10781. $\Rightarrow$
  10782. &
  10783. \begin{minipage}{0.65\textwidth}
  10784. \begin{lstlisting}
  10785. (if (eq? |$e'_1$| (inject #f Boolean)) |$e'_3$| |$e'_2$|)
  10786. \end{lstlisting}
  10787. \end{minipage}
  10788. \\[2ex]\hline
  10789. \begin{minipage}{0.27\textwidth}
  10790. \begin{lstlisting}
  10791. (eq? |$e_1$| |$e_2$|)
  10792. \end{lstlisting}
  10793. \end{minipage}
  10794. &
  10795. $\Rightarrow$
  10796. &
  10797. \begin{minipage}{0.65\textwidth}
  10798. \begin{lstlisting}
  10799. (inject (eq? |$e'_1$| |$e'_2$|) Boolean)
  10800. \end{lstlisting}
  10801. \end{minipage}
  10802. \\[2ex]\hline
  10803. \begin{minipage}{0.27\textwidth}
  10804. \begin{lstlisting}
  10805. (not |$e_1$|)
  10806. \end{lstlisting}
  10807. \end{minipage}
  10808. &
  10809. $\Rightarrow$
  10810. &
  10811. \begin{minipage}{0.65\textwidth}
  10812. \begin{lstlisting}
  10813. (if (eq? |$e'_1$| (inject #f Boolean))
  10814. (inject #t Boolean) (inject #f Boolean))
  10815. \end{lstlisting}
  10816. \end{minipage}
  10817. \\[2ex]\hline
  10818. \end{tabular}
  10819. \caption{Cast Insertion}
  10820. \label{fig:compile-r7-Rany}
  10821. \end{figure}
  10822. \section{Reveal Casts}
  10823. \label{sec:reveal-casts-Rany}
  10824. % TODO: define R'_6
  10825. In the \code{reveal-casts} pass we recommend compiling \code{project}
  10826. into an \code{if} expression that checks whether the value's tag
  10827. matches the target type; if it does, the value is converted to a value
  10828. of the target type by removing the tag; if it does not, the program
  10829. exits. To perform these actions we need a new primitive operation,
  10830. \code{tag-of-any}, and two new forms, \code{ValueOf} and \code{Exit}.
  10831. The \code{tag-of-any} operation retrieves the type tag from a tagged
  10832. value of type \code{Any}. The \code{ValueOf} form retrieves the
  10833. underlying value from a tagged value. The \code{ValueOf} form
  10834. includes the type for the underlying value which is used by the type
  10835. checker. Finally, the \code{Exit} form ends the execution of the
  10836. program.
  10837. If the target type of the projection is \code{Boolean} or
  10838. \code{Integer}, then \code{Project} can be translated as follows.
  10839. \begin{center}
  10840. \begin{minipage}{1.0\textwidth}
  10841. \begin{lstlisting}
  10842. (Project |$e$| |$\FType$|)
  10843. |$\Rightarrow$|
  10844. (Let |$\itm{tmp}$| |$e'$|
  10845. (If (Prim 'eq? (list (Prim 'tag-of-any (list (Var |$\itm{tmp}$|)))
  10846. (Int |$\itm{tagof}(\FType)$|)))
  10847. (ValueOf |$\itm{tmp}$| |$\FType$|)
  10848. (Exit)))
  10849. \end{lstlisting}
  10850. \end{minipage}
  10851. \end{center}
  10852. If the target type of the projection is a vector or function type,
  10853. then there is a bit more work to do. For vectors, check that the
  10854. length of the vector type matches the length of the vector (using the
  10855. \code{vector-length} primitive). For functions, check that the number
  10856. of parameters in the function type matches the function's arity (using
  10857. \code{procedure-arity}).
  10858. Regarding \code{inject}, we recommend compiling it to a slightly
  10859. lower-level primitive operation named \code{make-any}. This operation
  10860. takes a tag instead of a type.
  10861. \begin{center}
  10862. \begin{minipage}{1.0\textwidth}
  10863. \begin{lstlisting}
  10864. (Inject |$e$| |$\FType$|)
  10865. |$\Rightarrow$|
  10866. (Prim 'make-any (list |$e'$| (Int |$\itm{tagof}(\FType)$|)))
  10867. \end{lstlisting}
  10868. \end{minipage}
  10869. \end{center}
  10870. The type predicates (\code{boolean?}, etc.) can be translated into
  10871. uses of \code{tag-of-any} and \code{eq?} in a similar way as in the
  10872. translation of \code{Project}.
  10873. The \code{any-vector-ref} and \code{any-vector-set!} operations
  10874. combine the projection action with the vector operation. Also, the
  10875. read and write operations allow arbitrary expressions for the index so
  10876. the type checker for \LangAny{} (Figure~\ref{fig:type-check-Rany-part-1})
  10877. cannot guarantee that the index is within bounds. Thus, we insert code
  10878. to perform bounds checking at runtime. The translation for
  10879. \code{any-vector-ref} is as follows and the other two operations are
  10880. translated in a similar way.
  10881. \begin{lstlisting}
  10882. (Prim 'any-vector-ref (list |$e_1$| |$e_2$|))
  10883. |$\Rightarrow$|
  10884. (Let |$v$| |$e'_1$|
  10885. (Let |$i$| |$e'_2$|
  10886. (If (Prim 'eq? (list (Prim 'tag-of-any (list (Var |$v$|))) (Int 2)))
  10887. (If (Prim '< (list (Var |$i$|)
  10888. (Prim 'any-vector-length (list (Var |$v$|)))))
  10889. (Prim 'any-vector-ref (list (Var |$v$|) (Var |$i$|)))
  10890. (Exit))))
  10891. \end{lstlisting}
  10892. \section{Remove Complex Operands}
  10893. \label{sec:rco-Rany}
  10894. The \code{ValueOf} and \code{Exit} forms are both complex expressions.
  10895. The subexpression of \code{ValueOf} must be atomic.
  10896. \section{Explicate Control and \LangCAny{}}
  10897. \label{sec:explicate-Rany}
  10898. The output of \code{explicate-control} is the \LangCAny{} language whose
  10899. syntax is defined in Figure~\ref{fig:c5-syntax}. The \code{ValueOf}
  10900. form that we added to \LangAny{} remains an expression and the \code{Exit}
  10901. expression becomes a $\Tail$. Also, note that the index argument of
  10902. \code{vector-ref} and \code{vector-set!} is an $\Atm$ instead
  10903. of an integer, as in \LangCVec{} (Figure~\ref{fig:c2-syntax}).
  10904. \begin{figure}[tp]
  10905. \fbox{
  10906. \begin{minipage}{0.96\textwidth}
  10907. \small
  10908. \[
  10909. \begin{array}{lcl}
  10910. \Exp &::= & \ldots
  10911. \mid \BINOP{\key{'any-vector-ref}}{\Atm}{\Atm} \\
  10912. &\mid& (\key{Prim}~\key{'any-vector-set!}\,(\key{list}\,\Atm\,\Atm\,\Atm))\\
  10913. &\mid& \VALUEOF{\Exp}{\FType} \\
  10914. \Stmt &::=& \gray{ \ASSIGN{\VAR{\Var}}{\Exp}
  10915. \mid \LP\key{Collect} \,\itm{int}\RP }\\
  10916. \Tail &::= & \gray{ \RETURN{\Exp} \mid \SEQ{\Stmt}{\Tail}
  10917. \mid \GOTO{\itm{label}} } \\
  10918. &\mid& \gray{ \IFSTMT{\BINOP{\itm{cmp}}{\Atm}{\Atm}}{\GOTO{\itm{label}}}{\GOTO{\itm{label}}} }\\
  10919. &\mid& \gray{ \TAILCALL{\Atm}{\Atm\ldots} }
  10920. \mid \LP\key{Exit}\RP \\
  10921. \Def &::=& \gray{ \DEF{\itm{label}}{\LP[\Var\key{:}\Type]\ldots\RP}{\Type}{\itm{info}}{\LP\LP\itm{label}\,\key{.}\,\Tail\RP\ldots\RP} }\\
  10922. \LangCLam{} & ::= & \gray{ \PROGRAMDEFS{\itm{info}}{\LP\Def\ldots\RP} }
  10923. \end{array}
  10924. \]
  10925. \end{minipage}
  10926. }
  10927. \caption{The abstract syntax of \LangCAny{}, extending \LangCLam{} (Figure~\ref{fig:c4-syntax}).}
  10928. \label{fig:c5-syntax}
  10929. \end{figure}
  10930. \section{Select Instructions}
  10931. \label{sec:select-Rany}
  10932. In the \code{select-instructions} pass we translate the primitive
  10933. operations on the \code{Any} type to x86 instructions that involve
  10934. manipulating the 3 tag bits of the tagged value.
  10935. \paragraph{Make-any}
  10936. We recommend compiling the \key{make-any} primitive as follows if the
  10937. tag is for \key{Integer} or \key{Boolean}. The \key{salq} instruction
  10938. shifts the destination to the left by the number of bits specified its
  10939. source argument (in this case $3$, the length of the tag) and it
  10940. preserves the sign of the integer. We use the \key{orq} instruction to
  10941. combine the tag and the value to form the tagged value. \\
  10942. \begin{lstlisting}
  10943. (Assign |\itm{lhs}| (Prim 'make-any (list |$e$| (Int |$\itm{tag}$|))))
  10944. |$\Rightarrow$|
  10945. movq |$e'$|, |\itm{lhs'}|
  10946. salq $3, |\itm{lhs'}|
  10947. orq $|$\itm{tag}$|, |\itm{lhs'}|
  10948. \end{lstlisting}
  10949. The instruction selection for vectors and procedures is different
  10950. because their is no need to shift them to the left. The rightmost 3
  10951. bits are already zeros as described at the beginning of this
  10952. chapter. So we just combine the value and the tag using \key{orq}. \\
  10953. \begin{lstlisting}
  10954. (Assign |\itm{lhs}| (Prim 'make-any (list |$e$| (Int |$\itm{tag}$|))))
  10955. |$\Rightarrow$|
  10956. movq |$e'$|, |\itm{lhs'}|
  10957. orq $|$\itm{tag}$|, |\itm{lhs'}|
  10958. \end{lstlisting}
  10959. \paragraph{Tag-of-any}
  10960. Recall that the \code{tag-of-any} operation extracts the type tag from
  10961. a value of type \code{Any}. The type tag is the bottom three bits, so
  10962. we obtain the tag by taking the bitwise-and of the value with $111$
  10963. ($7$ in decimal).
  10964. \begin{lstlisting}
  10965. (Assign |\itm{lhs}| (Prim 'tag-of-any (list |$e$|)))
  10966. |$\Rightarrow$|
  10967. movq |$e'$|, |\itm{lhs'}|
  10968. andq $7, |\itm{lhs'}|
  10969. \end{lstlisting}
  10970. \paragraph{ValueOf}
  10971. Like \key{make-any}, the instructions for \key{ValueOf} are different
  10972. depending on whether the type $T$ is a pointer (vector or procedure)
  10973. or not (Integer or Boolean). The following shows the instruction
  10974. selection for Integer and Boolean. We produce an untagged value by
  10975. shifting it to the right by 3 bits.
  10976. \begin{lstlisting}
  10977. (Assign |\itm{lhs}| (ValueOf |$e$| |$T$|))
  10978. |$\Rightarrow$|
  10979. movq |$e'$|, |\itm{lhs'}|
  10980. sarq $3, |\itm{lhs'}|
  10981. \end{lstlisting}
  10982. %
  10983. In the case for vectors and procedures, there is no need to
  10984. shift. Instead we just need to zero-out the rightmost 3 bits. We
  10985. accomplish this by creating the bit pattern $\ldots 0111$ ($7$ in
  10986. decimal) and apply \code{bitwise-not} to obtain $\ldots 11111000$ (-8
  10987. in decimal) which we \code{movq} into the destination $\itm{lhs}$. We
  10988. then apply \code{andq} with the tagged value to get the desired
  10989. result. \\
  10990. \begin{lstlisting}
  10991. (Assign |\itm{lhs}| (ValueOf |$e$| |$T$|))
  10992. |$\Rightarrow$|
  10993. movq $|$-8$|, |\itm{lhs'}|
  10994. andq |$e'$|, |\itm{lhs'}|
  10995. \end{lstlisting}
  10996. %% \paragraph{Type Predicates} We leave it to the reader to
  10997. %% devise a sequence of instructions to implement the type predicates
  10998. %% \key{boolean?}, \key{integer?}, \key{vector?}, and \key{procedure?}.
  10999. \paragraph{Any-vector-length}
  11000. \begin{lstlisting}
  11001. (Assign |$\itm{lhs}$| (Prim 'any-vector-length (list |$a_1$|)))
  11002. |$\Longrightarrow$|
  11003. movq |$\neg 111$|, %r11
  11004. andq |$a_1'$|, %r11
  11005. movq 0(%r11), %r11
  11006. andq $126, %r11
  11007. sarq $1, %r11
  11008. movq %r11, |$\itm{lhs'}$|
  11009. \end{lstlisting}
  11010. \paragraph{Any-vector-ref}
  11011. The index may be an arbitrary atom so instead of computing the offset
  11012. at compile time, instructions need to be generated to compute the
  11013. offset at runtime as follows. Note the use of the new instruction
  11014. \code{imulq}.
  11015. \begin{center}
  11016. \begin{minipage}{0.96\textwidth}
  11017. \begin{lstlisting}
  11018. (Assign |$\itm{lhs}$| (Prim 'any-vector-ref (list |$a_1$| |$a_2$|)))
  11019. |$\Longrightarrow$|
  11020. movq |$\neg 111$|, %r11
  11021. andq |$a_1'$|, %r11
  11022. movq |$a_2'$|, %rax
  11023. addq $1, %rax
  11024. imulq $8, %rax
  11025. addq %rax, %r11
  11026. movq 0(%r11) |$\itm{lhs'}$|
  11027. \end{lstlisting}
  11028. \end{minipage}
  11029. \end{center}
  11030. \paragraph{Any-vector-set!}
  11031. The code generation for \code{any-vector-set!} is similar to the other
  11032. \code{any-vector} operations.
  11033. \section{Register Allocation for \LangAny{}}
  11034. \label{sec:register-allocation-Rany}
  11035. \index{register allocation}
  11036. There is an interesting interaction between tagged values and garbage
  11037. collection that has an impact on register allocation. A variable of
  11038. type \code{Any} might refer to a vector and therefore it might be a
  11039. root that needs to be inspected and copied during garbage
  11040. collection. Thus, we need to treat variables of type \code{Any} in a
  11041. similar way to variables of type \code{Vector} for purposes of
  11042. register allocation. In particular,
  11043. \begin{itemize}
  11044. \item If a variable of type \code{Any} is live during a function call,
  11045. then it must be spilled. This can be accomplished by changing
  11046. \code{build-interference} to mark all variables of type \code{Any}
  11047. that are live after a \code{callq} as interfering with all the
  11048. registers.
  11049. \item If a variable of type \code{Any} is spilled, it must be spilled
  11050. to the root stack instead of the normal procedure call stack.
  11051. \end{itemize}
  11052. Another concern regarding the root stack is that the garbage collector
  11053. needs to differentiate between (1) plain old pointers to tuples, (2) a
  11054. tagged value that points to a tuple, and (3) a tagged value that is
  11055. not a tuple. We enable this differentiation by choosing not to use the
  11056. tag $000$ in the $\itm{tagof}$ function. Instead, that bit pattern is
  11057. reserved for identifying plain old pointers to tuples. That way, if
  11058. one of the first three bits is set, then we have a tagged value and
  11059. inspecting the tag can differentiation between vectors ($010$) and the
  11060. other kinds of values.
  11061. \begin{exercise}\normalfont
  11062. Expand your compiler to handle \LangAny{} as discussed in the last few
  11063. sections. Create 5 new programs that use the \code{Any} type and the
  11064. new operations (\code{inject}, \code{project}, \code{boolean?},
  11065. etc.). Test your compiler on these new programs and all of your
  11066. previously created test programs.
  11067. \end{exercise}
  11068. \begin{exercise}\normalfont
  11069. Expand your compiler to handle \LangDyn{} as outlined in this chapter.
  11070. Create tests for \LangDyn{} by adapting ten of your previous test programs
  11071. by removing type annotations. Add 5 more tests programs that
  11072. specifically rely on the language being dynamically typed. That is,
  11073. they should not be legal programs in a statically typed language, but
  11074. nevertheless, they should be valid \LangDyn{} programs that run to
  11075. completion without error.
  11076. \end{exercise}
  11077. \begin{figure}[p]
  11078. \begin{tikzpicture}[baseline=(current bounding box.center)]
  11079. \node (Rfun) at (0,4) {\large \LangDyn{}};
  11080. \node (Rfun-2) at (3,4) {\large \LangDyn{}};
  11081. \node (Rfun-3) at (6,4) {\large \LangDyn{}};
  11082. \node (Rfun-4) at (9,4) {\large \LangDynFunRef{}};
  11083. \node (Rfun-5) at (9,2) {\large \LangAnyFunRef{}};
  11084. \node (Rfun-6) at (12,2) {\large \LangAnyFunRef{}};
  11085. \node (Rfun-7) at (12,0) {\large \LangAnyFunRef{}};
  11086. \node (F1-2) at (9,0) {\large \LangAnyFunRef{}};
  11087. \node (F1-3) at (6,0) {\large \LangAnyFunRef{}};
  11088. \node (F1-4) at (3,0) {\large \LangAnyAlloc{}};
  11089. \node (F1-5) at (0,0) {\large \LangAnyAlloc{}};
  11090. \node (C3-2) at (3,-2) {\large \LangCAny{}};
  11091. \node (x86-2) at (3,-4) {\large \LangXIndCallVar{}};
  11092. \node (x86-2-1) at (3,-6) {\large \LangXIndCallVar{}};
  11093. \node (x86-2-2) at (6,-6) {\large \LangXIndCallVar{}};
  11094. \node (x86-3) at (6,-4) {\large \LangXIndCallVar{}};
  11095. \node (x86-4) at (9,-4) {\large \LangXIndCall{}};
  11096. \node (x86-5) at (9,-6) {\large \LangXIndCall{}};
  11097. \path[->,bend left=15] (Rfun) edge [above] node
  11098. {\ttfamily\footnotesize shrink} (Rfun-2);
  11099. \path[->,bend left=15] (Rfun-2) edge [above] node
  11100. {\ttfamily\footnotesize uniquify} (Rfun-3);
  11101. \path[->,bend left=15] (Rfun-3) edge [above] node
  11102. {\ttfamily\footnotesize reveal-functions} (Rfun-4);
  11103. \path[->,bend right=15] (Rfun-4) edge [left] node
  11104. {\ttfamily\footnotesize cast-insert} (Rfun-5);
  11105. \path[->,bend left=15] (Rfun-5) edge [above] node
  11106. {\ttfamily\footnotesize check-bounds} (Rfun-6);
  11107. \path[->,bend left=15] (Rfun-6) edge [left] node
  11108. {\ttfamily\footnotesize reveal-casts} (Rfun-7);
  11109. \path[->,bend left=15] (Rfun-7) edge [below] node
  11110. {\ttfamily\footnotesize convert-to-clos.} (F1-2);
  11111. \path[->,bend right=15] (F1-2) edge [above] node
  11112. {\ttfamily\footnotesize limit-fun.} (F1-3);
  11113. \path[->,bend right=15] (F1-3) edge [above] node
  11114. {\ttfamily\footnotesize expose-alloc.} (F1-4);
  11115. \path[->,bend right=15] (F1-4) edge [above] node
  11116. {\ttfamily\footnotesize remove-complex.} (F1-5);
  11117. \path[->,bend right=15] (F1-5) edge [right] node
  11118. {\ttfamily\footnotesize explicate-control} (C3-2);
  11119. \path[->,bend left=15] (C3-2) edge [left] node
  11120. {\ttfamily\footnotesize select-instr.} (x86-2);
  11121. \path[->,bend right=15] (x86-2) edge [left] node
  11122. {\ttfamily\footnotesize uncover-live} (x86-2-1);
  11123. \path[->,bend right=15] (x86-2-1) edge [below] node
  11124. {\ttfamily\footnotesize build-inter.} (x86-2-2);
  11125. \path[->,bend right=15] (x86-2-2) edge [left] node
  11126. {\ttfamily\footnotesize allocate-reg.} (x86-3);
  11127. \path[->,bend left=15] (x86-3) edge [above] node
  11128. {\ttfamily\footnotesize patch-instr.} (x86-4);
  11129. \path[->,bend left=15] (x86-4) edge [right] node
  11130. {\ttfamily\footnotesize print-x86} (x86-5);
  11131. \end{tikzpicture}
  11132. \caption{Diagram of the passes for \LangDyn{}, a dynamically typed language.}
  11133. \label{fig:Rdyn-passes}
  11134. \end{figure}
  11135. Figure~\ref{fig:Rdyn-passes} provides an overview of all the passes needed
  11136. for the compilation of \LangDyn{}.
  11137. % Further Reading
  11138. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  11139. \chapter{Loops and Assignment}
  11140. \label{ch:Rwhile}
  11141. % TODO: define R'_8
  11142. % TODO: multi-graph
  11143. \begin{ocamlx}
  11144. In this OCaml version of the course, we are studying this chapter
  11145. earlier than its numerical order would indicate. The book is focused on
  11146. compiling functional languages (such as Racket or OCaml themselves), but
  11147. most languages are more imperative in style, so it is important to
  11148. consider the impact of imperative features early on (beyond just the
  11149. \code{read} primitive that we started with). At this point in the book,
  11150. the source language has been expanded to include heap-allocated records,
  11151. functions (both top-level and lambdas), and dynamic typing---but we will ignore
  11152. those features and omit them from our implementation for now.
  11153. \end{ocamlx}
  11154. In this chapter we study two features that are the hallmarks of
  11155. imperative programming languages: loops and assignments to local
  11156. variables. The following example demonstrates these new features by
  11157. computing the sum of the first five positive integers.
  11158. % similar to loop_test_1.rkt
  11159. \begin{lstlisting}
  11160. (let ([sum 0])
  11161. (let ([i 5])
  11162. (begin
  11163. (while (> i 0)
  11164. (begin
  11165. (set! sum (+ sum i))
  11166. (set! i (- i 1))))
  11167. sum)))
  11168. \end{lstlisting}
  11169. \ocaml{OCaml version:}
  11170. \begin{lstlisting}[style=ocaml]
  11171. (let sum 0
  11172. (let i 5
  11173. (seq
  11174. (while (> i 0)
  11175. (seq
  11176. (:= sum (+ sum i))
  11177. (:= i (- i 1))))
  11178. sum)))
  11179. \end{lstlisting}
  11180. The \code{while} loop consists of a condition and a body.
  11181. %
  11182. The \code{set!} \ocaml{(OCaml: \code{:=})} consists of a variable and a right-hand-side expression.
  11183. %
  11184. The primary \ocaml{(indeed only)} purpose of both the \code{while} loop and \code{set!} is
  11185. to cause side effects, so it is convenient to also include in a
  11186. language feature for sequencing side effects: the \code{begin} \ocaml{(OCaml: \code{seq})}
  11187. expression. It consists of one or more subexpressions that are
  11188. evaluated left-to-right.
  11189. \ocaml{All the subexpressions but the last are evaluated just for
  11190. their side effects; the value of the last subexpression becomes the value of the entire \code{seq}.
  11191. We also include an equivalent of the Racket \code{(void)} expression (introduced at the
  11192. start of Chapter~\ref{ch:Rvec}), which we write simply as \code{()}. It is useful for writing
  11193. ``one-armed'' \code{if} expressions, e.g. \code{(if b (:= x 10) ())} sets {\tt x} if
  11194. {\tt b} is true, and does nothing at all if {\tt b} is false.}
  11195. \section{The \LangLoop{} Language}
  11196. \begin{figure}[tp]
  11197. \centering
  11198. \fbox{
  11199. \begin{minipage}{0.96\textwidth}
  11200. \small
  11201. \[
  11202. \begin{array}{lcl}
  11203. \Exp &::=& \gray{ \Int \mid \CREAD{} \mid \CNEG{\Exp}
  11204. \mid \CADD{\Exp}{\Exp} \mid \CSUB{\Exp}{\Exp} } \\
  11205. &\mid& \gray{ \Var \mid \CLET{\Var}{\Exp}{\Exp} }\\
  11206. &\mid& \gray{\key{\#t} \mid \key{\#f}
  11207. \mid (\key{and}\;\Exp\;\Exp)
  11208. \mid (\key{or}\;\Exp\;\Exp)
  11209. \mid (\key{not}\;\Exp) } \\
  11210. &\mid& \gray{ (\key{eq?}\;\Exp\;\Exp) \mid \CIF{\Exp}{\Exp}{\Exp} } \\
  11211. &\mid& \gray{ (\key{vector}\;\Exp\ldots) \mid
  11212. (\key{vector-ref}\;\Exp\;\Int)} \\
  11213. &\mid& \gray{(\key{vector-set!}\;\Exp\;\Int\;\Exp)\mid (\key{void})
  11214. \mid (\Exp \; \Exp\ldots) } \\
  11215. &\mid& \gray{ \LP \key{procedure-arity}~\Exp\RP
  11216. \mid \CLAMBDA{\LP\LS\Var \key{:} \Type\RS\ldots\RP}{\Type}{\Exp} } \\
  11217. &\mid& \CSETBANG{\Var}{\Exp}
  11218. \mid \CBEGIN{\Exp\ldots}{\Exp}
  11219. \mid \CWHILE{\Exp}{\Exp} \\
  11220. \Def &::=& \gray{ \CDEF{\Var}{\LS\Var \key{:} \Type\RS\ldots}{\Type}{\Exp} } \\
  11221. \LangLoop{} &::=& \gray{\Def\ldots \; \Exp}
  11222. \end{array}
  11223. \]
  11224. \end{minipage}
  11225. }
  11226. %
  11227. \begin{ocamlx}
  11228. \fbox{
  11229. \begin{minipage}{0.96\textwidth}
  11230. \small
  11231. \[
  11232. \begin{array}{rcl}
  11233. \gray{\itm{bool}} &::=& \gray{\key{\#t} \mid \key{\#f}} \\
  11234. \gray{\itm{cmp}} &::= & \gray{\key{=} \mid \key{<} \mid \key{<=} \mid \key{>} \mid \key{>=}} \\
  11235. \Exp &::=& \gray{ \Int \mid \CREAD{} \mid \CNEG{\Exp} \mid \CADD{\Exp}{\Exp} \mid \CSUB{\Exp}{\Exp}} \\
  11236. &\mid& \gray{ \Var \mid \code{(let $\Var$ $\Exp$ $\Exp$)}}\\
  11237. &\mid& \gray{\itm{bool}
  11238. \mid (\key{and}\;\Exp\;\Exp) \mid (\key{or}\;\Exp\;\Exp)
  11239. \mid (\key{not}\;\Exp)} \\
  11240. &\mid& \gray{(\itm{cmp}\;\Exp\;\Exp) \mid \CIF{\Exp}{\Exp}{\Exp}} \\
  11241. &\mid& \code{()} \mid \code{(:= $\Var$ $\Exp$)}
  11242. \mid \code{(seq \Exp\ldots \Exp)}
  11243. \mid \CWHILE{\Exp}{\Exp} \\
  11244. \LangLoop{} &::=& \Exp
  11245. \end{array}
  11246. \]
  11247. \end{minipage}
  11248. }
  11249. \end{ocamlx}
  11250. \caption{The concrete syntax of \LangLoop{}, extending \LangAny{} (Figure~\ref{fig:Rany-concrete-syntax}).
  11251. \ocaml{The OCaml version extends \LangIf{} (Figure~\ref{fig:Rif-concrete-syntax}).}}
  11252. \label{fig:Rwhile-concrete-syntax}
  11253. \end{figure}
  11254. \begin{figure}[tp]
  11255. \centering
  11256. \fbox{
  11257. \begin{minipage}{0.96\textwidth}
  11258. \small
  11259. \[
  11260. \begin{array}{lcl}
  11261. \Exp &::=& \gray{ \INT{\Int} \VAR{\Var} \mid \LET{\Var}{\Exp}{\Exp} } \\
  11262. &\mid& \gray{ \PRIM{\itm{op}}{\Exp\ldots} }\\
  11263. &\mid& \gray{ \BOOL{\itm{bool}}
  11264. \mid \IF{\Exp}{\Exp}{\Exp} } \\
  11265. &\mid& \gray{ \VOID{} \mid \LP\key{HasType}~\Exp~\Type \RP
  11266. \mid \APPLY{\Exp}{\Exp\ldots} }\\
  11267. &\mid& \gray{ \LAMBDA{\LP\LS\Var\code{:}\Type\RS\ldots\RP}{\Type}{\Exp} }\\
  11268. &\mid& \SETBANG{\Var}{\Exp} \mid \BEGIN{\LP\Exp\ldots\RP}{\Exp}
  11269. \mid \WHILE{\Exp}{\Exp} \\
  11270. \Def &::=& \gray{ \FUNDEF{\Var}{\LP\LS\Var \code{:} \Type\RS\ldots\RP}{\Type}{\code{'()}}{\Exp} }\\
  11271. \LangLoop{} &::=& \gray{ \PROGRAMDEFSEXP{\code{'()}}{\LP\Def\ldots\RP}{\Exp} }
  11272. \end{array}
  11273. \]
  11274. \end{minipage}
  11275. }
  11276. \begin{lstlisting}[style=ocaml,frame=single]
  11277. type cmp = Eq | Lt | Le | Gt | Ge
  11278. type primop = Read | Neg | Add | Sub | And | Or | Not | Cmp of cmp
  11279. type var = string
  11280. type exp =
  11281. Int of int64
  11282. | Bool of bool
  11283. | Prim of primop * exp list
  11284. | Var of var
  11285. | Let of var * exp * exp
  11286. | If of exp * exp * exp
  11287. | Void
  11288. | Set of var * exp
  11289. | Seq of exp list * exp
  11290. | While of exp * exp
  11291. type 'info program = Program of 'info * exp
  11292. \end{lstlisting}
  11293. \caption{The abstract syntax of \LangLoop{}, extending \LangAny{} (Figure~\ref{fig:Rany-syntax}) \ocaml{(OCaml: \LangIf{} (Figure~\ref{fig:Rif-syntax}))}}
  11294. \label{fig:Rwhile-syntax}
  11295. \end{figure}
  11296. The concrete syntax of \LangLoop{} is defined in
  11297. Figure~\ref{fig:Rwhile-concrete-syntax} and its abstract syntax is defined
  11298. in Figure~\ref{fig:Rwhile-syntax}.
  11299. %
  11300. The definitional interpreter for \LangLoop{} is shown in
  11301. Figure~\ref{fig:interp-Rwhile}. \ocaml{The OCaml version is
  11302. in file \code{RWhile.ml}}. We add three new cases for \code{SetBang},
  11303. \code{WhileLoop}, and \code{Begin} and we make changes to the cases
  11304. for \code{Var}, \code{Let}, and \code{Apply} regarding variables. To
  11305. support assignment to variables and to make their lifetimes indefinite
  11306. (see the second example in Section~\ref{sec:assignment-scoping}), we
  11307. box the value that is bound to each variable (in \code{Let}) and
  11308. function parameter (in \code{Apply}). The case for \code{Var} unboxes
  11309. the value. \ocaml{Since we do not yet have first-class functions (lambdas)
  11310. in this language, the ``indefinite lifetimes'' motivation doesn't apply.
  11311. But it is still very convenient for the interpreter to box all variables.
  11312. In OCaml, this is done by using \code{ref} to create a boxed value;
  11313. the \code{!} operator retrieves the current value of the box and
  11314. \code{:=} updates the value in the box.}
  11315. %
  11316. Now to discuss the new cases. For \code{SetBang} \ocaml{(\code{:=})}, we lookup the
  11317. variable in the environment to obtain a boxed value and then we change
  11318. it using \code{set-box!} to the result of evaluating the right-hand
  11319. side. The result value of a \code{SetBang} is \code{void}.
  11320. %
  11321. For the \code{WhileLoop}, we repeatedly 1) evaluate the condition, and
  11322. if the result is true, 2) evaluate the body.
  11323. The result value of a \code{while} loop is also \code{void}.
  11324. %
  11325. Finally, the $\BEGIN{\itm{es}}{\itm{body}}$ \ocaml{(\code{seq})} expression evaluates the
  11326. subexpressions \itm{es} for their effects and then evaluates
  11327. and returns the result from \itm{body}.
  11328. \begin{figure}[tbp]
  11329. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  11330. (define interp-Rwhile-class
  11331. (class interp-Rany-class
  11332. (super-new)
  11333. (define/override ((interp-exp env) e)
  11334. (define recur (interp-exp env))
  11335. (match e
  11336. [(SetBang x rhs)
  11337. (set-box! (lookup x env) (recur rhs))]
  11338. [(WhileLoop cnd body)
  11339. (define (loop)
  11340. (cond [(recur cnd) (recur body) (loop)]
  11341. [else (void)]))
  11342. (loop)]
  11343. [(Begin es body)
  11344. (for ([e es]) (recur e))
  11345. (recur body)]
  11346. [else ((super interp-exp env) e)]))
  11347. ))
  11348. (define (interp-Rwhile p)
  11349. (send (new interp-Rwhile-class) interp-program p))
  11350. \end{lstlisting}
  11351. \caption{Interpreter for \LangLoop{}.}
  11352. \label{fig:interp-Rwhile}
  11353. \end{figure}
  11354. The type checker for \LangLoop{} is define\ocaml{d} in
  11355. Figure~\ref{fig:type-check-Rwhile} \ocaml{(OCaml: In file \code{RWhile.ml})}. For \code{SetBang}, the type of the
  11356. variable and the right-hand-side must agree. The result type is
  11357. \code{Void}. For the \code{WhileLoop}, the condition must be a
  11358. \code{Boolean}. The result type is also \code{Void}. For
  11359. \code{Begin}, the result type is the type of its last subexpression.
  11360. \begin{ocamlx}
  11361. For the OCaml version, we have added further typing restrictions surrounding
  11362. the use of \code{Void}-typed expressions, i.e. expressions evaluated only for
  11363. their side-effects. \code{Void}-typed expressions are prohibited as the right-hand sides of \code{let}s;
  11364. since \code{:=} never changes the type of a variable, this implies that variables always
  11365. have non-\code{Void} values. Also, no primitive operator allows \code{Void}-typed arguments;
  11366. in particular, the \code{=} operator allows only two integers or two booleans. And the return
  11367. value of the function must still be of type \code{Int} (hence not of type \code{Void}). On the other
  11368. hand, the body of a \code{while} and all but the last subexpression of a \code{seq} are \emph{required}
  11369. to have type \code{Void}. This enforces a useful discipline on the \LangLoop{} programmer,
  11370. and also simplifies the task of the compiler by restricting the contexts in which various
  11371. expressions can appear.
  11372. \end{ocamlx}
  11373. \begin{figure}[tbp]
  11374. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  11375. (define type-check-Rwhile-class
  11376. (class type-check-Rany-class
  11377. (super-new)
  11378. (inherit check-type-equal?)
  11379. (define/override (type-check-exp env)
  11380. (lambda (e)
  11381. (define recur (type-check-exp env))
  11382. (match e
  11383. [(SetBang x rhs)
  11384. (define-values (rhs^ rhsT) (recur rhs))
  11385. (define varT (dict-ref env x))
  11386. (check-type-equal? rhsT varT e)
  11387. (values (SetBang x rhs^) 'Void)]
  11388. [(WhileLoop cnd body)
  11389. (define-values (cnd^ Tc) (recur cnd))
  11390. (check-type-equal? Tc 'Boolean e)
  11391. (define-values (body^ Tbody) ((type-check-exp env) body))
  11392. (values (WhileLoop cnd^ body^) 'Void)]
  11393. [(Begin es body)
  11394. (define-values (es^ ts)
  11395. (for/lists (l1 l2) ([e es]) (recur e)))
  11396. (define-values (body^ Tbody) (recur body))
  11397. (values (Begin es^ body^) Tbody)]
  11398. [else ((super type-check-exp env) e)])))
  11399. ))
  11400. (define (type-check-Rwhile p)
  11401. (send (new type-check-Rwhile-class) type-check-program p))
  11402. \end{lstlisting}
  11403. \caption{Type checking \key{SetBang}, \key{WhileLoop},
  11404. and \code{Begin} in \LangLoop{}.}
  11405. \label{fig:type-check-Rwhile}
  11406. \end{figure}
  11407. At first glance, the translation of these language features to x86
  11408. seems straightforward because the \LangCFun{} \ocaml{(OCaml: \LangCIf{})} intermediate language already
  11409. supports all of the ingredients that we need: assignment, \code{goto},
  11410. conditional branching, and sequencing. However, there are two
  11411. complications that arise which we discuss in the next two
  11412. sections. \ocaml{Only one for us.} After that we introduce one new compiler pass and the
  11413. changes necessary to the existing passes.
  11414. \section{Assignment and Lexically Scoped Functions}
  11415. \label{sec:assignment-scoping}
  11416. \ocaml{This section is not relevant to the OCaml version, since we have no functions yet.}
  11417. The addition of assignment raises a problem with our approach to
  11418. implementing lexically-scoped functions. Consider the following
  11419. example in which function \code{f} has a free variable \code{x} that
  11420. is changed after \code{f} is created but before the call to \code{f}.
  11421. % loop_test_11.rkt
  11422. \begin{lstlisting}
  11423. (let ([x 0])
  11424. (let ([y 0])
  11425. (let ([z 20])
  11426. (let ([f (lambda: ([a : Integer]) : Integer (+ a (+ x z)))])
  11427. (begin
  11428. (set! x 10)
  11429. (set! y 12)
  11430. (f y))))))
  11431. \end{lstlisting}
  11432. The correct output for this example is \code{42} because the call to
  11433. \code{f} is required to use the current value of \code{x} (which is
  11434. \code{10}). Unfortunately, the closure conversion pass
  11435. (Section~\ref{sec:closure-conversion}) generates code for the
  11436. \code{lambda} that copies the old value of \code{x} into a
  11437. closure. Thus, if we naively add support for assignment to our current
  11438. compiler, the output of this program would be \code{32}.
  11439. A first attempt at solving this problem would be to save a pointer to
  11440. \code{x} in the closure and change the occurrences of \code{x} inside
  11441. the lambda to dereference the pointer. Of course, this would require
  11442. assigning \code{x} to the stack and not to a register. However, the
  11443. problem goes a bit deeper. Consider the following example in which we
  11444. create a counter abstraction by creating a pair of functions that
  11445. share the free variable \code{x}.
  11446. % similar to loop_test_10.rkt
  11447. \begin{lstlisting}
  11448. (define (f [x : Integer]) : (Vector ( -> Integer) ( -> Void))
  11449. (vector
  11450. (lambda: () : Integer x)
  11451. (lambda: () : Void (set! x (+ 1 x)))))
  11452. (let ([counter (f 0)])
  11453. (let ([get (vector-ref counter 0)])
  11454. (let ([inc (vector-ref counter 1)])
  11455. (begin
  11456. (inc)
  11457. (get)))))
  11458. \end{lstlisting}
  11459. In this example, the lifetime of \code{x} extends beyond the lifetime
  11460. of the call to \code{f}. Thus, if we were to store \code{x} on the
  11461. stack frame for the call to \code{f}, it would be gone by the time we
  11462. call \code{inc} and \code{get}, leaving us with dangling pointers for
  11463. \code{x}. This example demonstrates that when a variable occurs free
  11464. inside a \code{lambda}, its lifetime becomes indefinite. Thus, the
  11465. value of the variable needs to live on the heap. The verb ``box'' is
  11466. often used for allocating a single value on the heap, producing a
  11467. pointer, and ``unbox'' for dereferencing the pointer.
  11468. We recommend solving these problems by ``boxing'' the local variables
  11469. that are in the intersection of 1) variables that appear on the
  11470. left-hand-side of a \code{set!} and 2) variables that occur free
  11471. inside a \code{lambda}. We shall introduce a new pass named
  11472. \code{convert-assignments} in Section~\ref{sec:convert-assignments} to
  11473. perform this translation. But before diving into the compiler passes,
  11474. we one more problem to discuss.
  11475. \section{Cyclic Control Flow and Dataflow Analysis}
  11476. \label{sec:dataflow-analysis}
  11477. Up until this point the control-flow graphs generated in
  11478. \code{explicate-control} were guaranteed to be acyclic. However, each
  11479. \code{while} loop introduces a cycle in the control-flow graph.
  11480. But does that matter?
  11481. %
  11482. Indeed it does. Recall that for register allocation, the compiler
  11483. performs liveness analysis to determine which variables can share the
  11484. same register. In Section~\ref{sec:liveness-analysis-Rif} we analyze
  11485. the control-flow graph in reverse topological order, but topological
  11486. order is only well-defined for acyclic graphs.
  11487. Let us return to the example of computing the sum of the first five
  11488. positive integers. Here is the program after instruction selection but
  11489. before register allocation.
  11490. \begin{center}
  11491. \begin{minipage}{0.45\textwidth}
  11492. \begin{lstlisting}
  11493. (define (main) : Integer
  11494. mainstart:
  11495. movq $0, sum1
  11496. movq $5, i2
  11497. jmp block5
  11498. block5:
  11499. movq i2, tmp3
  11500. cmpq tmp3, $0
  11501. jl block7
  11502. jmp block8
  11503. \end{lstlisting}
  11504. \end{minipage}
  11505. \begin{minipage}{0.45\textwidth}
  11506. \begin{lstlisting}
  11507. block7:
  11508. addq i2, sum1
  11509. movq $1, tmp4
  11510. negq tmp4
  11511. addq tmp4, i2
  11512. jmp block5
  11513. block8:
  11514. movq $27, %rax
  11515. addq sum1, %rax
  11516. jmp mainconclusion
  11517. )
  11518. \end{lstlisting}
  11519. \end{minipage}
  11520. \end{center}
  11521. Recall that liveness analysis works backwards, starting at the end
  11522. of each function. For this example we could start with \code{block8}
  11523. because we know what is live at the beginning of the conclusion,
  11524. just \code{rax} and \code{rsp}. So the live-before set
  11525. for \code{block8} is $\{\ttm{rsp},\ttm{sum1}\}$.
  11526. %
  11527. Next we might try to analyze \code{block5} or \code{block7}, but
  11528. \code{block5} jumps to \code{block7} and vice versa, so it seems that
  11529. we are stuck.
  11530. The way out of this impasse comes from the realization that one can
  11531. perform liveness analysis starting with an empty live-after set to
  11532. compute an under-approximation of the live-before set. By
  11533. \emph{under-approximation}, we mean that the set only contains
  11534. variables that are really live, but it may be missing some. Next, the
  11535. under-approximations for each block can be improved by 1) updating the
  11536. live-after set for each block using the approximate live-before sets
  11537. from the other blocks and 2) perform liveness analysis again on each
  11538. block. In fact, by iterating this process, the under-approximations
  11539. eventually become the correct solutions!
  11540. %
  11541. This approach of iteratively analyzing a control-flow graph is
  11542. applicable to many static analysis problems and goes by the name
  11543. \emph{dataflow analysis}\index{dataflow analysis}. It was invented by
  11544. \citet{Kildall:1973vn} in his Ph.D. thesis at the University of
  11545. Washington.
  11546. Let us apply this approach to the above example. We use the empty set
  11547. for the initial live-before set for each block. Let $m_0$ be the
  11548. following mapping from label names to sets of locations (variables and
  11549. registers).
  11550. \begin{center}
  11551. \begin{lstlisting}
  11552. mainstart: {}
  11553. block5: {}
  11554. block7: {}
  11555. block8: {}
  11556. \end{lstlisting}
  11557. \end{center}
  11558. Using the above live-before approximations, we determine the
  11559. live-after for each block and then apply liveness analysis to each
  11560. block. This produces our next approximation $m_1$ of the live-before
  11561. sets.
  11562. \begin{center}
  11563. \begin{lstlisting}
  11564. mainstart: {}
  11565. block5: {i2}
  11566. block7: {i2, sum1}
  11567. block8: {rsp, sum1}
  11568. \end{lstlisting}
  11569. \end{center}
  11570. For the second round, the live-after for \code{mainstart} is the
  11571. current live-before for \code{block5}, which is \code{\{i2\}}. So the
  11572. liveness analysis for \code{mainstart} computes the empty set. The
  11573. live-after for \code{block5} is the union of the live-before sets for
  11574. \code{block7} and \code{block8}, which is \code{\{i2 , rsp, sum1\}}.
  11575. So the liveness analysis for \code{block5} computes \code{\{i2 , rsp,
  11576. sum1\}}. The live-after for \code{block7} is the live-before for
  11577. \code{block5} (from the previous iteration), which is \code{\{i2\}}.
  11578. So the liveness analysis for \code{block7} remains \code{\{i2,
  11579. sum1\}}. Together these yield the following approximation $m_2$ of
  11580. the live-before sets.
  11581. \begin{center}
  11582. \begin{lstlisting}
  11583. mainstart: {}
  11584. block5: {i2, rsp, sum1}
  11585. block7: {i2, sum1}
  11586. block8: {rsp, sum1}
  11587. \end{lstlisting}
  11588. \end{center}
  11589. In the preceding iteration, only \code{block5} changed, so we can
  11590. limit our attention to \code{mainstart} and \code{block7}, the two
  11591. blocks that jump to \code{block5}. As a result, the live-before sets
  11592. for \code{mainstart} and \code{block7} are updated to include
  11593. \code{rsp}, yielding the following approximation $m_3$.
  11594. \begin{center}
  11595. \begin{lstlisting}
  11596. mainstart: {rsp}
  11597. block5: {i2, rsp, sum1}
  11598. block7: {i2, rsp, sum1}
  11599. block8: {rsp, sum1}
  11600. \end{lstlisting}
  11601. \end{center}
  11602. Because \code{block7} changed, we analyze \code{block5} once more, but
  11603. its live-before set remains \code{\{ i2, rsp, sum1 \}}. At this point
  11604. our approximations have converged, so $m_3$ is the solution.
  11605. This iteration process is guaranteed to converge to a solution by the
  11606. Kleene Fixed-Point Theorem, a general theorem about functions on
  11607. lattices~\citep{Kleene:1952aa}. Roughly speaking, a \emph{lattice} is
  11608. any collection that comes with a partial ordering $\sqsubseteq$ on its
  11609. elements, a least element $\bot$ (pronounced bottom), and a join
  11610. operator $\sqcup$.\index{lattice}\index{bottom}\index{partial
  11611. ordering}\index{join}\footnote{Technically speaking, we will be
  11612. working with join semi-lattices.} When two elements are ordered $m_i
  11613. \sqsubseteq m_j$, it means that $m_j$ contains at least as much
  11614. information as $m_i$, so we can think of $m_j$ as a better-or-equal
  11615. approximation than $m_i$. The bottom element $\bot$ represents the
  11616. complete lack of information, i.e., the worst approximation. The join
  11617. operator takes two lattice elements and combines their information,
  11618. i.e., it produces the least upper bound of the two.\index{least upper
  11619. bound}
  11620. A dataflow analysis typically involves two lattices: one lattice to
  11621. represent abstract states and another lattice that aggregates the
  11622. abstract states of all the blocks in the control-flow graph. For
  11623. liveness analysis, an abstract state is a set of locations. We form
  11624. the lattice $L$ by taking its elements to be sets of locations, the
  11625. ordering to be set inclusion ($\subseteq$), the bottom to be the empty
  11626. set, and the join operator to be set union.
  11627. %
  11628. We form a second lattice $M$ by taking its elements to be mappings
  11629. from the block labels to sets of locations (elements of $L$). We
  11630. order the mappings point-wise, using the ordering of $L$. So given any
  11631. two mappings $m_i$ and $m_j$, $m_i \sqsubseteq_M m_j$ when $m_i(\ell)
  11632. \subseteq m_j(\ell)$ for every block label $\ell$ in the program. The
  11633. bottom element of $M$ is the mapping $\bot_M$ that sends every label
  11634. to the empty set, i.e., $\bot_M(\ell) = \emptyset$.
  11635. We can think of one iteration of liveness analysis as being a function
  11636. $f$ on the lattice $M$. It takes a mapping as input and computes a new
  11637. mapping.
  11638. \[
  11639. f(m_i) = m_{i+1}
  11640. \]
  11641. Next let us think for a moment about what a final solution $m_s$
  11642. should look like. If we perform liveness analysis using the solution
  11643. $m_s$ as input, we should get $m_s$ again as the output. That is, the
  11644. solution should be a \emph{fixed point} of the function $f$.\index{fixed point}
  11645. \[
  11646. f(m_s) = m_s
  11647. \]
  11648. Furthermore, the solution should only include locations that are
  11649. forced to be there by performing liveness analysis on the program, so
  11650. the solution should be the \emph{least} fixed point.\index{least fixed point}
  11651. The Kleene Fixed-Point Theorem states that if a function $f$ is
  11652. monotone (better inputs produce better outputs), then the least fixed
  11653. point of $f$ is the least upper bound of the \emph{ascending Kleene
  11654. chain} obtained by starting at $\bot$ and iterating $f$ as
  11655. follows.\index{Kleene Fixed-Point Theorem}
  11656. \[
  11657. \bot \sqsubseteq f(\bot) \sqsubseteq f(f(\bot)) \sqsubseteq \cdots
  11658. \sqsubseteq f^n(\bot) \sqsubseteq \cdots
  11659. \]
  11660. When a lattice contains only finitely-long ascending chains, then
  11661. every Kleene chain tops out at some fixed point after a number of
  11662. iterations of $f$. So that fixed point is also a least upper
  11663. bound of the chain.
  11664. \[
  11665. \bot \sqsubseteq f(\bot) \sqsubseteq f(f(\bot)) \sqsubseteq \cdots
  11666. \sqsubseteq f^k(\bot) = f^{k+1}(\bot) = m_s
  11667. \]
  11668. The liveness analysis is indeed a monotone function and the lattice
  11669. $M$ only has finitely-long ascending chains because there are only a
  11670. finite number of variables and blocks in the program. Thus we are
  11671. guaranteed that iteratively applying liveness analysis to all blocks
  11672. in the program will eventually produce the least fixed point solution.
  11673. Next let us consider dataflow analysis in general and discuss the
  11674. generic work list algorithm (Figure~\ref{fig:generic-dataflow}).
  11675. %
  11676. The algorithm has four parameters: the control-flow graph \code{G}, a
  11677. function \code{transfer} that applies the analysis to one block, the
  11678. \code{bottom} and \code{join} operator for the lattice of abstract
  11679. states. The algorithm begins by creating the bottom mapping,
  11680. represented by a hash table. It then pushes all of the nodes in the
  11681. control-flow graph onto the work list (a queue).
  11682. \ocaml{(The order in which this is done does not matter for correctness,
  11683. but can have a major effect on efficiency; see below.)}
  11684. The algorithm repeats
  11685. the \code{while} loop as long as there are items in the work list. In
  11686. each iteration, a node is popped from the work list and processed. The
  11687. \code{input} for the node is computed by taking the join of the
  11688. abstract states of all the predecessor nodes. The \code{transfer}
  11689. function is then applied to obtain the \code{output} abstract
  11690. state. If the output differs from the previous state for this block,
  11691. the mapping for this block is updated and its successor nodes are
  11692. pushed onto the work list.
  11693. \begin{ocamlx}
  11694. As stated in Figure~\ref{fig:generic-dataflow}, the algorithm solves \emph{forward} dataflow problems,
  11695. in which the abstract state at the beginning of a block is computed from
  11696. the abstract states at the end of its predecessor blocks. Liveness
  11697. analysis is actually a \emph{backward} dataflow problem, in which the
  11698. abstract state (set of live variables) at the \emph{end} of a block
  11699. is computed from the abstract states at the \emph{beginning} of its
  11700. \emph{successor} blocks. To use this algorithm on a backward problem,
  11701. it suffices simply to pass in the transpose of the CFG, so that
  11702. the roles of predecessor and successor are interchanged.
  11703. Although this algorithm is guaranteed to always converge to a least fixed
  11704. point (provided the lattice has only finitely-long ascending chains), it
  11705. can take many iterations to do so. For example, liveness analysis on a
  11706. function with $n$ variables and $b$ blocks can require $n\times b$ iterations
  11707. in the worst case! Fortunately, much better efficiency can usually be obtained
  11708. by a wise choice of work-list order. For a forward dataflow problem, it is
  11709. best to visit a block only after its predecessors have been visited;
  11710. a topological ordering of the CFG is the closest possible approximation
  11711. to this ideal, considering that there may be cycles in the graph.
  11712. (For a reverse dataflow problem, we want a topological ordering on the
  11713. transposed CFG.) For liveness analysis, choosing this order reduces
  11714. the maximum number of iterations to the depth (longest acyclic path) of
  11715. the CFG plus a small constant.
  11716. \end{ocamlx}
  11717. \begin{figure}[tb]
  11718. \begin{lstlisting}
  11719. (define (analyze-dataflow G transfer bottom join)
  11720. (define mapping (make-hash))
  11721. (for ([v (in-vertices G)])
  11722. (dict-set! mapping v bottom))
  11723. (define worklist (make-queue))
  11724. (for ([v (in-vertices G)])
  11725. (enqueue! worklist v))
  11726. (define trans-G (transpose G))
  11727. (while (not (queue-empty? worklist))
  11728. (define node (dequeue! worklist))
  11729. (define input (for/fold ([state bottom])
  11730. ([pred (in-neighbors trans-G node)])
  11731. (join state (dict-ref mapping pred))))
  11732. (define output (transfer node input))
  11733. (cond [(not (equal? output (dict-ref mapping node)))
  11734. (dict-set! mapping node output)
  11735. (for ([v (in-neighbors G node)])
  11736. (enqueue! worklist v))]))
  11737. mapping)
  11738. \end{lstlisting}
  11739. \caption{Generic work list algorithm for dataflow analysis}
  11740. \label{fig:generic-dataflow}
  11741. \end{figure}
  11742. Having discussed the two complications that arise from adding support
  11743. for assignment and loops, we turn to discussing the one new compiler
  11744. pass and the significant changes to existing passes.
  11745. \section{Convert Assignments}
  11746. \label{sec:convert-assignments}
  11747. \ocaml{OCaml version: We do not need this pass, because we have no lexically-scoped functions.}
  11748. Recall that in Section~\ref{sec:assignment-scoping} we learned that
  11749. the combination of assignments and lexically-scoped functions requires
  11750. that we box those variables that are both assigned-to and that appear
  11751. free inside a \code{lambda}. The purpose of the
  11752. \code{convert-assignments} pass is to carry out that transformation.
  11753. We recommend placing this pass after \code{uniquify} but before
  11754. \code{reveal-functions}.
  11755. Consider again the first example from
  11756. Section~\ref{sec:assignment-scoping}:
  11757. \begin{lstlisting}
  11758. (let ([x 0])
  11759. (let ([y 0])
  11760. (let ([z 20])
  11761. (let ([f (lambda: ([a : Integer]) : Integer (+ a (+ x z)))])
  11762. (begin
  11763. (set! x 10)
  11764. (set! y 12)
  11765. (f y))))))
  11766. \end{lstlisting}
  11767. The variables \code{x} and \code{y} are assigned-to. The variables
  11768. \code{x} and \code{z} occur free inside the \code{lambda}. Thus,
  11769. variable \code{x} needs to be boxed but not \code{y} and \code{z}.
  11770. The boxing of \code{x} consists of three transformations: initialize
  11771. \code{x} with a vector, replace reads from \code{x} with
  11772. \code{vector-ref}'s, and replace each \code{set!} on \code{x} with a
  11773. \code{vector-set!}. The output of \code{convert-assignments} for this
  11774. example is as follows.
  11775. \begin{lstlisting}
  11776. (define (main) : Integer
  11777. (let ([x0 (vector 0)])
  11778. (let ([y1 0])
  11779. (let ([z2 20])
  11780. (let ([f4 (lambda: ([a3 : Integer]) : Integer
  11781. (+ a3 (+ (vector-ref x0 0) z2)))])
  11782. (begin
  11783. (vector-set! x0 0 10)
  11784. (set! y1 12)
  11785. (f4 y1)))))))
  11786. \end{lstlisting}
  11787. \paragraph{Assigned \& Free}
  11788. We recommend defining an auxiliary function named
  11789. \code{assigned\&free} that takes an expression and simultaneously
  11790. computes 1) a set of assigned variables $A$, 2) a set $F$ of variables
  11791. that occur free within lambda's, and 3) a new version of the
  11792. expression that records which bound variables occurred in the
  11793. intersection of $A$ and $F$. You can use the struct
  11794. \code{AssignedFree} to do this. Consider the case for
  11795. $\LET{x}{\itm{rhs}}{\itm{body}}$. Suppose the the recursive call on
  11796. $\itm{rhs}$ produces $\itm{rhs}'$, $A_r$, and $F_r$ and the recursive
  11797. call on the $\itm{body}$ produces $\itm{body}'$, $A_b$, and $F_b$. If
  11798. $x$ is in $A_b\cap F_b$, then transforms the \code{Let} as follows.
  11799. \begin{lstlisting}
  11800. (Let |$x$| |$rhs$| |$body$|)
  11801. |$\Rightarrow$|
  11802. (Let (AssignedFree |$x$|) |$rhs'$| |$body'$|)
  11803. \end{lstlisting}
  11804. If $x$ is not in $A_b\cap F_b$ then omit the use of \code{AssignedFree}.
  11805. The set of assigned variables for this \code{Let} is
  11806. $A_r \cup (A_b - \{x\})$
  11807. and the set of variables free in lambda's is
  11808. $F_r \cup (F_b - \{x\})$.
  11809. The case for $\SETBANG{x}{\itm{rhs}}$ is straightforward but
  11810. important. Recursively process \itm{rhs} to obtain \itm{rhs'}, $A_r$,
  11811. and $F_r$. The result is $\SETBANG{x}{\itm{rhs'}}$, $\{x\} \cup A_r$,
  11812. and $F_r$.
  11813. The case for $\LAMBDA{\itm{params}}{T}{\itm{body}}$ is a bit more
  11814. involved. Let \itm{body'}, $A_b$, and $F_b$ be the result of
  11815. recursively processing \itm{body}. Wrap each of parameter that occurs
  11816. in $A_b \cap F_b$ with \code{AssignedFree} to produce \itm{params'}.
  11817. Let $P$ be the set of parameter names in \itm{params}. The result is
  11818. $\LAMBDA{\itm{params'}}{T}{\itm{body'}}$, $A_b - P$, and $(F_b \cup
  11819. \mathrm{FV}(\itm{body})) - P$, where $\mathrm{FV}$ computes the free
  11820. variables of an expression (see Chapter~\ref{ch:Rlam}).
  11821. \paragraph{Convert Assignments}
  11822. Next we discuss the \code{convert-assignment} pass with its auxiliary
  11823. functions for expressions and definitions. The function for
  11824. expressions, \code{cnvt-assign-exp}, should take an expression and a
  11825. set of assigned-and-free variables (obtained from the result of
  11826. \code{assigned\&free}. In the case for $\VAR{x}$, if $x$ is
  11827. assigned-and-free, then unbox it by translating $\VAR{x}$ to a
  11828. \code{vector-ref}.
  11829. \begin{lstlisting}
  11830. (Var |$x$|)
  11831. |$\Rightarrow$|
  11832. (Prim 'vector-ref (list (Var |$x$|) (Int 0)))
  11833. \end{lstlisting}
  11834. %
  11835. In the case for $\LET{\LP\code{AssignedFree}\,
  11836. x\RP}{\itm{rhs}}{\itm{body}}$, recursively process \itm{rhs} to
  11837. obtain \itm{rhs'}. Next, recursively process \itm{body} to obtain
  11838. \itm{body'} but with $x$ added to the set of assigned-and-free
  11839. variables. Translate the let-expression as follows to bind $x$ to a
  11840. boxed value.
  11841. \begin{lstlisting}
  11842. (Let (AssignedFree |$x$|) |$rhs$| |$body$|)
  11843. |$\Rightarrow$|
  11844. (Let |$x$| (Prim 'vector (list |$rhs'$|)) |$body'$|)
  11845. \end{lstlisting}
  11846. %
  11847. In the case for $\SETBANG{x}{\itm{rhs}}$, recursively process
  11848. \itm{rhs} to obtain \itm{rhs'}. If $x$ is in the assigned-and-free
  11849. variables, translate the \code{set!} into a \code{vector-set!}
  11850. as follows.
  11851. \begin{lstlisting}
  11852. (SetBang |$x$| |$\itm{rhs}$|)
  11853. |$\Rightarrow$|
  11854. (Prim 'vector-set! (list (Var |$x$|) (Int 0) |$\itm{rhs'}$|))
  11855. \end{lstlisting}
  11856. %
  11857. The case for \code{Lambda} is non-trivial, but it is similar to the
  11858. case for function definitions, which we discuss next.
  11859. The auxiliary function for definitions, \code{cnvt-assign-def},
  11860. applies assignment conversion to function definitions.
  11861. We translate a function definition as follows.
  11862. \begin{lstlisting}
  11863. (Def |$f$| |$\itm{params}$| |$T$| |$\itm{info}$| |$\itm{body_1}$|)
  11864. |$\Rightarrow$|
  11865. (Def |$f$| |$\itm{params'}$| |$T$| |$\itm{info}$| |$\itm{body_4}$|)
  11866. \end{lstlisting}
  11867. So it remains to explain \itm{params'} and $\itm{body}_4$.
  11868. Let \itm{body_2}, $A_b$, and $F_b$ be the result of
  11869. \code{assigned\&free} on $\itm{body_1}$.
  11870. Let $P$ be the parameter names in \itm{params}.
  11871. We then apply \code{cnvt-assign-exp} to $\itm{body_2}$ to
  11872. obtain \itm{body_3}, passing $A_b \cap F_b \cap P$
  11873. as the set of assigned-and-free variables.
  11874. Finally, we obtain \itm{body_4} by wrapping \itm{body_3}
  11875. in a sequence of let-expressions that box the parameters
  11876. that are in $A_b \cap F_b$.
  11877. %
  11878. Regarding \itm{params'}, change the names of the parameters that are
  11879. in $A_b \cap F_b$ to maintain uniqueness (and so the let-bound
  11880. variables can retain the original names). Recall the second example in
  11881. Section~\ref{sec:assignment-scoping} involving a counter
  11882. abstraction. The following is the output of assignment version for
  11883. function \code{f}.
  11884. \begin{lstlisting}
  11885. (define (f0 [x1 : Integer]) : (Vector ( -> Integer) ( -> Void))
  11886. (vector
  11887. (lambda: () : Integer x1)
  11888. (lambda: () : Void (set! x1 (+ 1 x1)))))
  11889. |$\Rightarrow$|
  11890. (define (f0 [param_x1 : Integer]) : (Vector (-> Integer) (-> Void))
  11891. (let ([x1 (vector param_x1)])
  11892. (vector (lambda: () : Integer (vector-ref x1 0))
  11893. (lambda: () : Void
  11894. (vector-set! x1 0 (+ 1 (vector-ref x1 0)))))))
  11895. \end{lstlisting}
  11896. \section{Remove Complex Operands}
  11897. \label{sec:rco-loop}
  11898. The three new language forms, \code{while}, \code{set!}, and
  11899. \code{begin} are all complex expressions and their subexpressions are
  11900. allowed to be complex. \ocaml{The void expression \code{()} is an atom.}
  11901. Figure~\ref{fig:Rfun-anf-syntax} defines the
  11902. output language \LangFunANF{} of this pass. \ocaml{The OCaml version is
  11903. analogous.}
  11904. \begin{figure}[tp]
  11905. \centering
  11906. \fbox{
  11907. \begin{minipage}{0.96\textwidth}
  11908. \small
  11909. \[
  11910. \begin{array}{rcl}
  11911. \Atm &::=& \gray{ \INT{\Int} \mid \VAR{\Var} \mid \BOOL{\itm{bool}}
  11912. \mid \VOID{} } \\
  11913. \Exp &::=& \ldots \mid \gray{ \LET{\Var}{\Exp}{\Exp} } \\
  11914. &\mid& \WHILE{\Exp}{\Exp} \mid \SETBANG{\Var}{\Exp}
  11915. \mid \BEGIN{\LP\Exp\ldots\RP}{\Exp} \\
  11916. \Def &::=& \gray{ \FUNDEF{\Var}{([\Var \code{:} \Type]\ldots)}{\Type}{\code{'()}}{\Exp} }\\
  11917. R^{\dagger}_8 &::=& \gray{ \PROGRAMDEFS{\code{'()}}{\Def} }
  11918. \end{array}
  11919. \]
  11920. \end{minipage}
  11921. }
  11922. \caption{\LangLoopANF{} is \LangLoop{} in administrative normal form (ANF).}
  11923. \label{fig:Rwhile-anf-syntax}
  11924. \end{figure}
  11925. As usual, when a complex expression appears in a grammar position that
  11926. needs to be atomic, such as the argument of a primitive operator, we
  11927. must introduce a temporary variable and bind it to the complex
  11928. expression. This approach applies, unchanged, to handle the new
  11929. language forms. For example, in the following code there are two
  11930. \code{begin} expressions appearing as arguments to \code{+}. The
  11931. output of \code{rco-exp} is shown below, in which the \code{begin}
  11932. expressions have been bound to temporary variables. Recall that
  11933. \code{let} expressions in \LangLoopANF{} are allowed to have
  11934. arbitrary expressions in their right-hand-side expression, so it is
  11935. fine to place \code{begin} there.
  11936. \begin{lstlisting}
  11937. (let ([x0 10])
  11938. (let ([y1 0])
  11939. (+ (+ (begin (set! y1 (read)) x0)
  11940. (begin (set! x0 (read)) y1))
  11941. x0)))
  11942. |$\Rightarrow$|
  11943. (let ([x0 10])
  11944. (let ([y1 0])
  11945. (let ([tmp2 (begin (set! y1 (read)) x0)])
  11946. (let ([tmp3 (begin (set! x0 (read)) y1)])
  11947. (let ([tmp4 (+ tmp2 tmp3)])
  11948. (+ tmp4 x0))))))
  11949. \end{lstlisting}
  11950. \section{Explicate Control and \LangCLoop{}}
  11951. \label{sec:explicate-loop}
  11952. Recall that in the \code{explicate-control} pass we define one helper
  11953. function for each kind of position in the program. For the \LangVar{}
  11954. language of integers and variables we needed \ocaml{two} kinds of positions:
  11955. assignment and tail. The \code{if} expressions of \LangIf{} introduced
  11956. predicate positions. For \LangLoop{}, the \code{begin} expression introduces
  11957. yet another kind of position: effect position. Except for the last
  11958. subexpression, the subexpressions inside a \code{begin} are evaluated
  11959. only for their effect. Their result values are discarded. We can
  11960. generate better code by taking this fact into account.
  11961. The output language of \code{explicate-control} is \LangCLoop{}
  11962. (Figure~\ref{fig:c7-syntax}), which is nearly identical to
  11963. \LangCLam{}.
  11964. \ocaml{For the OCaml version, it suffices to reuse \LangCIf{}
  11965. (Figure~\ref{fig:c1-syntax}) (with a properly generalized type-checker
  11966. that can cope with arbitrary control flow graphs).}
  11967. The only syntactic difference is that \code{Call},
  11968. \code{vector-set!}, and \code{read} may also appear as statements.
  11969. \ocaml{Of these features, we support only \code{read}, and we don't allow that
  11970. in a context where the result is thrown away. So there is no point in
  11971. extending $\Stmt$ as shown here.}
  11972. The most significant difference between \LangCLam{} and \LangCLoop{}
  11973. is that the control-flow graphs of the later may contain cycles.
  11974. \begin{figure}[tp]
  11975. \fbox{
  11976. \begin{minipage}{0.96\textwidth}
  11977. \small
  11978. \[
  11979. \begin{array}{lcl}
  11980. \Stmt &::=& \gray{ \ASSIGN{\VAR{\Var}}{\Exp}
  11981. \mid \LP\key{Collect} \,\itm{int}\RP } \\
  11982. &\mid& \CALL{\Atm}{\LP\Atm\ldots\RP} \mid \READ{}\\
  11983. &\mid& \LP\key{Prim}~\key{'vector-set!}\,\LP\key{list}\,\Atm\,\INT{\Int}\,\Atm\RP\RP \\
  11984. \Def &::=& \DEF{\itm{label}}{\LP\LS\Var\key{:}\Type\RS\ldots\RP}{\Type}{\itm{info}}{\LP\LP\itm{label}\,\key{.}\,\Tail\RP\ldots\RP}\\
  11985. \LangCLoop{} & ::= & \PROGRAMDEFS{\itm{info}}{\LP\Def\ldots\RP}
  11986. \end{array}
  11987. \]
  11988. \end{minipage}
  11989. }
  11990. \caption{The abstract syntax of \LangCLoop{}, extending \LangCLam{} (Figure~\ref{fig:c4-syntax}).}
  11991. \label{fig:c7-syntax}
  11992. \end{figure}
  11993. The new auxiliary function \code{explicate-effect} takes an expression
  11994. (in an effect position) and a promise of a continuation block. \ocaml{Again,
  11995. it is easier to just provide the block and not worry about laziness.}
  11996. The function returns a promise for a $\Tail$ \ocaml{(just a $\Tail$)} that includes the generated
  11997. code for the input expression followed by the continuation block. If
  11998. the expression is obviously pure, that is, never causes side effects,
  11999. then the expression can be removed, so the result is just the
  12000. continuation block. \ocaml{This can almost never happen under our typing restrictions,
  12001. because only \code{Void}-typed expressions can appear in effect position,
  12002. and there are by nature almost all side-effecting. However, the void
  12003. value \code{()} \emph{is} pure, and can be used to construct larger pure
  12004. expressions of \code{Void} type.}
  12005. %
  12006. The $\WHILE{\itm{cnd}}{\itm{body}}$ expression is the most interesting
  12007. case. First, you will need a fresh label $\itm{loop}$ for the top of
  12008. the loop. Recursively process the \itm{body} (in effect position)
  12009. with the a \code{goto} to $\itm{loop}$ as the continuation, producing
  12010. \itm{body'}. Next, process the \itm{cnd} (in predicate position) with
  12011. \itm{body'} as the then-branch and the continuation block as the
  12012. else-branch. The result should be added to the control-flow graph with
  12013. the label \itm{loop}. The result for the whole \code{while} loop is a
  12014. \code{goto} to the \itm{loop} label. Note that the loop should only be
  12015. added to the control-flow graph if the loop is indeed used, which can
  12016. be accomplished using \code{delay}.
  12017. \ocaml{Again, the laziness is not really necessary.}
  12018. The auxiliary functions for tail, assignment, and predicate positions
  12019. need to be updated. The three new language forms, \code{while},
  12020. \code{set!}, and \code{begin}, can appear in assignment and tail
  12021. positions. Only \code{begin} may appear in predicate positions; the
  12022. other two have result type \code{Void}. \ocaml{In our version,
  12023. the typing restrictions imply that
  12024. \code{while} and \code{:=} \emph{cannot} appear in tail, assignment, or
  12025. predicate positions.
  12026. A \code{seq} \emph{can} appear in any of these three positions, provided
  12027. that its final sub-expression has an appropriate type
  12028. (\code{Int} for tail position; \code{Int} or \code{Bool}, as appropriate, for
  12029. assignment positions; \code{Bool} for predicate positions).}
  12030. \ocaml{Note that it should never be necessary to generate a \LangCIf{}
  12031. \code{atom} corresponding to the \LangLoop{} void constant \code{()}.}
  12032. \section{Select Instructions}
  12033. \label{sec:select-instructions-loop}
  12034. Only three small additions are needed in the
  12035. \code{select-instructions} pass to handle the changes to \LangCLoop{}. That
  12036. is, \code{Call}, \code{read}, and \code{vector-set!} may now appear as
  12037. stand-alone statements instead of only appearing on the right-hand
  12038. side of an assignment statement. The code generation is nearly
  12039. identical; just leave off the instruction for moving the result into
  12040. the left-hand side. \ocaml{Since we are continuing to use \LangCIf{},
  12041. no changes to SelectInstructions are needed at all.}
  12042. \section{Register Allocation}
  12043. \label{sec:register-allocation-loop}
  12044. As discussed in Section~\ref{sec:dataflow-analysis}, the presence of
  12045. loops in \LangLoop{} means that the control-flow graphs may contain cycles,
  12046. which complicates the liveness analysis needed for register
  12047. allocation.
  12048. \subsection{Liveness Analysis}
  12049. \label{sec:liveness-analysis-r8}
  12050. We recommend using the generic \code{analyze-dataflow} function that
  12051. was presented at the end of Section~\ref{sec:dataflow-analysis} to
  12052. perform liveness analysis, replacing the code in
  12053. \code{uncover-live-CFG} that processed the basic blocks in topological
  12054. order (Section~\ref{sec:liveness-analysis-Rif}). \ocaml{An implementation
  12055. of this algorithm is provided to you as a functor in file \code{dataflow.ml}.}
  12056. The \code{analyze-dataflow} function has four parameters.
  12057. \begin{enumerate}
  12058. \item The first parameter \code{G} should be a directed graph from the
  12059. \code{racket/graph} package (see the sidebar in
  12060. Section~\ref{sec:build-interference}) that represents the
  12061. control-flow graph. \ocaml{Remember that it is necessary to
  12062. transpose the CFG for a backward dataflow problem. The functor
  12063. provides separate entry points for forward and backward analyses.}
  12064. \item The second parameter \code{transfer} is a function that applies
  12065. liveness analysis to a basic block. It takes two parameters: the
  12066. label for the block to analyze and the live-after set for that
  12067. block. The transfer function should return the live-before set for
  12068. the block. Also, as a side-effect, it should update the block's
  12069. $\itm{info}$ with the liveness information for each instruction. To
  12070. implement the \code{transfer} function, you should be able to reuse
  12071. the code you already have for analyzing basic blocks. \ocaml{Depending on
  12072. how you wrote that code, you may need to refactor it slightly.}
  12073. \item The third and fourth parameters of \code{analyze-dataflow} are
  12074. \code{bottom} and \code{join} for the lattice of abstract states,
  12075. i.e. sets of locations. The bottom of the lattice is the empty set
  12076. \code{(set)} and the join operator is \code{set-union}. \ocaml{These
  12077. parameters are provided once-and-for-all when the functor is
  12078. instanstantiated.}
  12079. \end{enumerate}
  12080. \begin{figure}[p]
  12081. \begin{tikzpicture}[baseline=(current bounding box.center)]
  12082. \node (Rfun) at (0,2) {\large \LangLoop{}};
  12083. \node (Rfun-2) at (3,2) {\large \LangLoop{}};
  12084. \node (Rfun-3) at (6,2) {\large \LangLoop{}};
  12085. \node (Rfun-4) at (9,2) {\large \LangLoopFunRef{}};
  12086. \node (F1-1) at (12,0) {\large \LangLoopFunRef{}};
  12087. \node (F1-2) at (9,0) {\large \LangLoopFunRef{}};
  12088. \node (F1-3) at (6,0) {\large \LangLoopFunRef{}};
  12089. \node (F1-4) at (3,0) {\large \LangLoopAlloc{}};
  12090. \node (F1-5) at (0,0) {\large \LangLoopAlloc{}};
  12091. \node (C3-2) at (3,-2) {\large \LangCLoop{}};
  12092. \node (x86-2) at (3,-4) {\large \LangXIndCallVar{}};
  12093. \node (x86-2-1) at (3,-6) {\large \LangXIndCallVar{}};
  12094. \node (x86-2-2) at (6,-6) {\large \LangXIndCallVar{}};
  12095. \node (x86-3) at (6,-4) {\large \LangXIndCallVar{}};
  12096. \node (x86-4) at (9,-4) {\large \LangXIndCall{}};
  12097. \node (x86-5) at (9,-6) {\large \LangXIndCall{}};
  12098. %% \path[->,bend left=15] (Rfun) edge [above] node
  12099. %% {\ttfamily\footnotesize type-check} (Rfun-2);
  12100. \path[->,bend left=15] (Rfun) edge [above] node
  12101. {\ttfamily\footnotesize shrink} (Rfun-2);
  12102. \path[->,bend left=15] (Rfun-2) edge [above] node
  12103. {\ttfamily\footnotesize uniquify} (Rfun-3);
  12104. \path[->,bend left=15] (Rfun-3) edge [above] node
  12105. {\ttfamily\footnotesize reveal-functions} (Rfun-4);
  12106. \path[->,bend left=15] (Rfun-4) edge [right] node
  12107. {\ttfamily\footnotesize convert-assignments} (F1-1);
  12108. \path[->,bend left=15] (F1-1) edge [below] node
  12109. {\ttfamily\footnotesize convert-to-clos.} (F1-2);
  12110. \path[->,bend right=15] (F1-2) edge [above] node
  12111. {\ttfamily\footnotesize limit-fun.} (F1-3);
  12112. \path[->,bend right=15] (F1-3) edge [above] node
  12113. {\ttfamily\footnotesize expose-alloc.} (F1-4);
  12114. \path[->,bend right=15] (F1-4) edge [above] node
  12115. {\ttfamily\footnotesize remove-complex.} (F1-5);
  12116. \path[->,bend right=15] (F1-5) edge [right] node
  12117. {\ttfamily\footnotesize explicate-control} (C3-2);
  12118. \path[->,bend left=15] (C3-2) edge [left] node
  12119. {\ttfamily\footnotesize select-instr.} (x86-2);
  12120. \path[->,bend right=15] (x86-2) edge [left] node
  12121. {\ttfamily\footnotesize uncover-live} (x86-2-1);
  12122. \path[->,bend right=15] (x86-2-1) edge [below] node
  12123. {\ttfamily\footnotesize build-inter.} (x86-2-2);
  12124. \path[->,bend right=15] (x86-2-2) edge [left] node
  12125. {\ttfamily\footnotesize allocate-reg.} (x86-3);
  12126. \path[->,bend left=15] (x86-3) edge [above] node
  12127. {\ttfamily\footnotesize patch-instr.} (x86-4);
  12128. \path[->,bend left=15] (x86-4) edge [right] node {\ttfamily\footnotesize print-x86} (x86-5);
  12129. \end{tikzpicture}
  12130. \caption{Diagram of the passes for \LangLoop{} (loops and assignment).}
  12131. \label{fig:Rwhile-passes}
  12132. \end{figure}
  12133. Figure~\ref{fig:Rwhile-passes} provides an overview of all the passes needed
  12134. for the compilation of \LangLoop{}.
  12135. \section{Challenge: Arrays}
  12136. \label{sec:arrays}
  12137. In Chapter~\ref{ch:Rvec} we studied tuples, that is, sequences of
  12138. elements whose length is determined at compile-time and where each
  12139. element of a tuple may have a different type (they are
  12140. heterogeous). This challenge is also about sequences, but this time
  12141. the length is determined at run-time and all the elements have the same
  12142. type (they are homogeneous). We use the term ``array'' for this later
  12143. kind of sequence.
  12144. \begin{ocamlx}
  12145. For this challenge, you will implement \LangArray{}, a variant of \LangFun{}
  12146. supporting arrays. Unlike previous chapters, all that will be provided to you
  12147. are a specification of the concrete input grammar for \LangArray{} and
  12148. an improved version of \code{runtime.c} that supports garbage collection of
  12149. arrays (according to a particular specified memory layout convention).
  12150. It is up to you to produce appropriately modified versions of \code{RFun.ml}, \code{CFun.ml},
  12151. and \code{X86Fun.ml}, as well as the passes that glue them together, which you should
  12152. put in a file \code{Chapter9Arrays.ml}. You must implement a type checker for
  12153. source \LangArray{} programs. Otherwise, you
  12154. hou have complete freedom to add
  12155. features as needed to the intermediate languages and the set of X86 instructions
  12156. you use.
  12157. \end{ocamlx}
  12158. The Racket language does not distinguish between tuples and arrays,
  12159. they are both represented by vectors. However, Typed Racket
  12160. distinguishes between tuples and arrays: the \code{Vector} type is for
  12161. tuples and the \code{Vectorof} type is for arrays.
  12162. %
  12163. Figure~\ref{fig:Rvecof-concrete-syntax} defines the concrete syntax
  12164. for \LangArray{}, extending \LangLoop{} with the \code{Vectorof} type
  12165. and the \code{make-vector} primitive operator for creating an array,
  12166. whose arguments are the length of the array and an initial value for
  12167. all the elements in the array. The \code{vector-length},
  12168. \code{vector-ref}, and \code{vector-ref!} operators that we defined
  12169. for tuples become overloaded for use with arrays.
  12170. %
  12171. We also include integer multiplication in \LangArray{}, as it is
  12172. useful in many examples involving arrays such as computing the
  12173. inner-product of two arrays (Figure~\ref{fig:inner-product}).
  12174. \begin{ocamlx}
  12175. For our version of \LangArray{} we will not overload existing operators.
  12176. Instead, we will use the following concrete syntax:
  12177. \begin{itemize}
  12178. \item An array is created with \code{(array $e_1$ $e_2$)} where $e_1$ evaluates
  12179. to an integer representing the length of the array, and $e_2$ evaluates to the
  12180. initial value to be used for all the array elements. (Note that $e_2$ is evaluated
  12181. just once per array creation, not once per element!)
  12182. \item The length of an array is returned by \code{(len $e$)} where $e$ evaluates to an array.
  12183. \item Reading from the array is denoted by \code{(@ $e_1$ $e_2$)} where $e_1$ evaluates to an
  12184. array and $e_2$ evaluates to an integer index into the array (counting from 0).
  12185. \item Writing to the array is denoted by \code{(@:= $e_1$ $e_2$ $e_3$)}, where
  12186. $e_1$ evaluates to an array, $e_2$ to an integer index, and $e_3$ to the new value
  12187. to store.
  12188. \end{itemize}
  12189. As suggested, we will also add integer multiplication, written \code{(* $e_1$ $e_2$)}.
  12190. You may also find it useful to extend the AST for \LangArray{} with other constructs
  12191. that are generated by various passes; as in previous chapters, any such extensions should not be
  12192. parseable, but may appear in debug output.
  12193. \end{ocamlx}
  12194. \begin{figure}[tp]
  12195. \centering
  12196. \fbox{
  12197. \begin{minipage}{0.96\textwidth}
  12198. \small
  12199. \[
  12200. \begin{array}{lcl}
  12201. \Type &::=& \ldots \mid \LP \key{Vectorof}~\Type \RP \\
  12202. \Exp &::=& \gray{ \Int \mid \CREAD{} \mid \CNEG{\Exp}
  12203. \mid \CADD{\Exp}{\Exp} \mid \CSUB{\Exp}{\Exp} } \mid \CMUL{\Exp}{\Exp}\\
  12204. &\mid& \gray{ \Var \mid \CLET{\Var}{\Exp}{\Exp} }\\
  12205. &\mid& \gray{\key{\#t} \mid \key{\#f}
  12206. \mid \LP\key{and}\;\Exp\;\Exp\RP
  12207. \mid \LP\key{or}\;\Exp\;\Exp\RP
  12208. \mid \LP\key{not}\;\Exp\RP } \\
  12209. &\mid& \gray{ \LP\key{eq?}\;\Exp\;\Exp\RP \mid \CIF{\Exp}{\Exp}{\Exp} } \\
  12210. &\mid& \gray{ \LP\key{vector}\;\Exp\ldots\RP \mid
  12211. \LP\key{vector-ref}\;\Exp\;\Int\RP} \\
  12212. &\mid& \gray{\LP\key{vector-set!}\;\Exp\;\Int\;\Exp\RP\mid \LP\key{void}\RP
  12213. \mid \LP\Exp \; \Exp\ldots\RP } \\
  12214. &\mid& \gray{ \LP \key{procedure-arity}~\Exp\RP
  12215. \mid \CLAMBDA{\LP\LS\Var \key{:} \Type\RS\ldots\RP}{\Type}{\Exp} } \\
  12216. &\mid& \gray{ \CSETBANG{\Var}{\Exp}
  12217. \mid \CBEGIN{\Exp\ldots}{\Exp}
  12218. \mid \CWHILE{\Exp}{\Exp} } \\
  12219. &\mid& \CMAKEVEC{\Exp}{\Exp} \\
  12220. \Def &::=& \gray{ \CDEF{\Var}{\LS\Var \key{:} \Type\RS\ldots}{\Type}{\Exp} } \\
  12221. \LangArray{} &::=& \gray{\Def\ldots \; \Exp}
  12222. \end{array}
  12223. \]
  12224. \end{minipage}
  12225. }
  12226. \caption{The concrete syntax of \LangArray{}, extending \LangLoop{} (Figure~\ref{fig:Rwhile-concrete-syntax}).\ocaml{See the text for
  12227. OCaml version of this.}}
  12228. \label{fig:Rvecof-concrete-syntax}
  12229. \end{figure}
  12230. \begin{figure}[tp]
  12231. \begin{lstlisting}
  12232. (define (inner-product [A : (Vectorof Integer)] [B : (Vectorof Integer)]
  12233. [n : Integer]) : Integer
  12234. (let ([i 0])
  12235. (let ([prod 0])
  12236. (begin
  12237. (while (< i n)
  12238. (begin
  12239. (set! prod (+ prod (* (vector-ref A i)
  12240. (vector-ref B i))))
  12241. (set! i (+ i 1))
  12242. ))
  12243. prod))))
  12244. (let ([A (make-vector 2 2)])
  12245. (let ([B (make-vector 2 3)])
  12246. (+ (inner-product A B 2)
  12247. 30)))
  12248. \end{lstlisting}
  12249. \begin{lstlisting}[style=ocaml]
  12250. (define innerproduct (A : (array int)) (B : (array int)) (n : int) : int
  12251. (let i 0
  12252. (let prod 0
  12253. (seq
  12254. (while (< i n)
  12255. (seq
  12256. (:= prod (+ prod ~\texttt{(*}~ (@ A i) (@ B i))))
  12257. (:= i (+ i 1))))
  12258. prod))))
  12259. (let A (array 2 2)
  12260. (let B (array 2 3)
  12261. (+ (innerproduct A B 2) 30)))
  12262. \end{lstlisting}
  12263. \caption{Example program that computes the inner-product.}
  12264. \label{fig:inner-product}
  12265. \end{figure}
  12266. The type checker for \LangArray{} is define in
  12267. Figure~\ref{fig:type-check-Rvecof}. The result type of
  12268. \code{make-vector} is \code{(Vectorof T)} \ocaml{\code{(array T)}} where \code{T} is the type
  12269. of the intializing expression. The length expression is required to
  12270. have type \code{Integer}. \ocaml{The rest of this paragraph is only vaguely relevant:
  12271. we are introducing
  12272. new operators rather than overloading existing ones, and we are not
  12273. building on the language supporting \code{Any} types.}
  12274. The type checking of the operators
  12275. \code{vector-length}, \code{vector-ref}, and \code{vector-set!} is
  12276. updated to handle the situation where the vector has type
  12277. \code{Vectorof}. In these cases we translate the operators to their
  12278. \code{vectorof} form so that later passes can easily distinguish
  12279. between operations on tuples versus arrays. We override the
  12280. \code{operator-types} method to provide the type signature for
  12281. multiplication: it takes two integers and returns an integer. To
  12282. support injection and projection of arrays to the \code{Any} type
  12283. (Section~\ref{sec:Rany-lang}), we also override the \code{flat-ty?}
  12284. predicate.
  12285. \begin{figure}[tbp]
  12286. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  12287. (define type-check-Rvecof-class
  12288. (class type-check-Rwhile-class
  12289. (super-new)
  12290. (inherit check-type-equal?)
  12291. (define/override (flat-ty? ty)
  12292. (match ty
  12293. ['(Vectorof Any) #t]
  12294. [else (super flat-ty? ty)]))
  12295. (define/override (operator-types)
  12296. (append '((* . ((Integer Integer) . Integer)))
  12297. (super operator-types)))
  12298. (define/override (type-check-exp env)
  12299. (lambda (e)
  12300. (define recur (type-check-exp env))
  12301. (match e
  12302. [(Prim 'make-vector (list e1 e2))
  12303. (define-values (e1^ t1) (recur e1))
  12304. (define-values (e2^ elt-type) (recur e2))
  12305. (define vec-type `(Vectorof ,elt-type))
  12306. (values (HasType (Prim 'make-vector (list e1^ e2^)) vec-type)
  12307. vec-type)]
  12308. [(Prim 'vector-ref (list e1 e2))
  12309. (define-values (e1^ t1) (recur e1))
  12310. (define-values (e2^ t2) (recur e2))
  12311. (match* (t1 t2)
  12312. [(`(Vectorof ,elt-type) 'Integer)
  12313. (values (Prim 'vectorof-ref (list e1^ e2^)) elt-type)]
  12314. [(other wise) ((super type-check-exp env) e)])]
  12315. [(Prim 'vector-set! (list e1 e2 e3) )
  12316. (define-values (e-vec t-vec) (recur e1))
  12317. (define-values (e2^ t2) (recur e2))
  12318. (define-values (e-arg^ t-arg) (recur e3))
  12319. (match t-vec
  12320. [`(Vectorof ,elt-type)
  12321. (check-type-equal? elt-type t-arg e)
  12322. (values (Prim 'vectorof-set! (list e-vec e2^ e-arg^)) 'Void)]
  12323. [else ((super type-check-exp env) e)])]
  12324. [(Prim 'vector-length (list e1))
  12325. (define-values (e1^ t1) (recur e1))
  12326. (match t1
  12327. [`(Vectorof ,t)
  12328. (values (Prim 'vectorof-length (list e1^)) 'Integer)]
  12329. [else ((super type-check-exp env) e)])]
  12330. [else ((super type-check-exp env) e)])))
  12331. ))
  12332. (define (type-check-Rvecof p)
  12333. (send (new type-check-Rvecof-class) type-check-program p))
  12334. \end{lstlisting}
  12335. \caption{Type checker for the \LangArray{} language.}
  12336. \label{fig:type-check-Rvecof}
  12337. \end{figure}
  12338. The interpreter for \LangArray{} is defined in
  12339. Figure~\ref{fig:interp-Rvecof}. The \code{make-vector} operator is
  12340. implemented with Racket's \code{make-vector} function and
  12341. multiplication is \code{fx*}, multiplication for \code{fixnum}
  12342. integers.
  12343. \begin{figure}[tbp]
  12344. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  12345. (define interp-Rvecof-class
  12346. (class interp-Rwhile-class
  12347. (super-new)
  12348. (define/override (interp-op op)
  12349. (verbose "Rvecof/interp-op" op)
  12350. (match op
  12351. ['make-vector make-vector]
  12352. ['* fx*]
  12353. [else (super interp-op op)]))
  12354. ))
  12355. (define (interp-Rvecof p)
  12356. (send (new interp-Rvecof-class) interp-program p))
  12357. \end{lstlisting}
  12358. \caption{Interpreter for \LangArray{}.}
  12359. \label{fig:interp-Rvecof}
  12360. \end{figure}
  12361. \subsection{Data Representation}
  12362. \label{sec:array-rep}
  12363. \ocaml{You need to follow these guidelines precisely in order to use
  12364. the garbage collection code in \code{runtime.c}.}
  12365. Just like tuples, we store arrays on the heap which means that the
  12366. garbage collector will need to inspect arrays. An immediate thought is
  12367. to use the same representation for arrays that we use for tuples.
  12368. However, we limit tuples to a length of $50$ so that their length and
  12369. pointer mask can fit into the 64-bit tag at the beginning of each
  12370. tuple (Section~\ref{sec:data-rep-gc}). We intend arrays to allow
  12371. millions of elements, so we need more bits to store the length.
  12372. However, because arrays are homogeneous, we only need $1$ bit for the
  12373. pointer mask instead of one bit per array elements. Finally, the
  12374. garbage collector will need to be able to distinguish between tuples
  12375. and arrays, so we need to reserve $1$ bit for that purpose. So we
  12376. arrive at the following layout for the 64-bit tag at the beginning of
  12377. an array:
  12378. \begin{itemize}
  12379. \item The right-most bit is the forwarding bit, just like in a tuple.
  12380. A $0$ indicates it is a forwarding pointer and a $1$ indicates
  12381. it is not.
  12382. \item The next bit to the left is the pointer mask. A $0$ indicates
  12383. that none of the elements are pointers to the heap and a $1$
  12384. indicates that all of the elements are pointers.
  12385. \item The next $61$ bits store the length of the array.
  12386. \item The left-most bit distinguishes between a tuple ($0$) versus an
  12387. array ($1$).
  12388. \end{itemize}
  12389. Recall that in Chapter~\ref{ch:Rdyn}, we use a $3$-bit tag to
  12390. differentiate the kinds of values that have been injected into the
  12391. \code{Any} type. We use the bit pattern \code{110} (or $6$ in decimal)
  12392. to indicate that the value is an array. \ocaml{We do not have \code{Any}
  12393. types.}
  12394. In the following subsections we provide hints regarding how to update
  12395. the passes to handle arrays. \ocaml{Some of these are not too relevant
  12396. to our version, though.}
  12397. \subsection{Reveal Casts}
  12398. \ocaml{Don't try to follow this section too closely; there are too many
  12399. different assumptions at play. But you will indeed need to introduce code
  12400. to check at runtime that the indices of \code{@} and \code{@:=} operations
  12401. are within bounds, and also that the length parameter to \code{array}
  12402. creation is non-negative. If any of these conditions are violated, the
  12403. generated code should call a (newly provided) function in {\tt runtime.c} called
  12404. \code{fatal\_exit}; this will cause the program to terminate immediately
  12405. with return code 255. By the way, there is a very cute way to check that
  12406. an index is less than a fixed bound \emph{and} non-negative using a single
  12407. \emph{unsigned} comparison instruction.}
  12408. The array-access operators \code{vectorof-ref} and
  12409. \code{vectorof-set!} are similar to the \code{any-vector-ref} and
  12410. \code{any-vector-set!} operators of Chapter~\ref{ch:Rdyn} in
  12411. that the type checker cannot tell whether the index will be in bounds,
  12412. so the bounds check must be performed at run time. Recall that the
  12413. \code{reveal-casts} pass (Section~\ref{sec:reveal-casts-Rany}) wraps
  12414. an \code{If} arround a vector reference for update to check whether
  12415. the index is less than the length. You should do the same for
  12416. \code{vectorof-ref} and \code{vectorof-set!} .
  12417. In addition, the handling of the \code{any-vector} operators in
  12418. \code{reveal-casts} needs to be updated to account for arrays that are
  12419. injected to \code{Any}. For the \code{any-vector-length} operator, the
  12420. generated code should test whether the tag is for tuples (\code{010})
  12421. or arrays (\code{110}) and then dispatch to either
  12422. \code{any-vector-length} or \code{any-vectorof-length}. For the later
  12423. we add a case in \code{select-instructions} to generate the
  12424. appropriate instructions for accessing the array length from the
  12425. header of an array.
  12426. For the \code{any-vector-ref} and \code{any-vector-set!} operators,
  12427. the generated code needs to check that the index is less than the
  12428. vector length, so like the code for \code{any-vector-length}, check
  12429. the tag to determine whether to use \code{any-vector-length} or
  12430. \code{any-vectorof-length} for this purpose. Once the bounds checking
  12431. is complete, the generated code can use \code{any-vector-ref} and
  12432. \code{any-vector-set!} for both tuples and arrays because the
  12433. instructions used for those operators do not look at the tag at the
  12434. front of the tuple or array.
  12435. \subsection{Expose Allocation}
  12436. \ocaml{The advice here is fairly relevant. As an alternative to
  12437. defining a new \code{AllocateArray} AST form, you may wish to
  12438. modify the existing \code{Alloc} form so that it can be
  12439. used for both tuples and arrays.}
  12440. This pass should translate the \code{make-vector} operator into
  12441. lower-level operations. In particular, the new AST node
  12442. $\LP\key{AllocateArray}~\Exp~\Type\RP$ allocates an array of the
  12443. length specified by the $\Exp$, but does not initialize the elements
  12444. of the array. (Analogous to the \code{Allocate} AST node for tuples.)
  12445. The $\Type$ argument must be $\LP\key{Vectorof}~T\RP$ where $T$ is the
  12446. element type for the array. Regarding the initialization of the array,
  12447. we recommend generated a \code{while} loop that uses
  12448. \code{vector-set!} to put the initializing value into every element of
  12449. the array.
  12450. \subsection{Remove Complex Operands}
  12451. Add cases in the \code{rco-atom} and \code{rco-exp} for
  12452. \code{AllocateArray}. In particular, an \code{AllocateArray} node is
  12453. complex and its subexpression must be atomic.
  12454. \subsection{Explicate Control}
  12455. Add cases for \code{AllocateArray} to \code{explicate-tail} and
  12456. \code{explicate-assign}.
  12457. \subsection{Select Instructions}
  12458. Generate instructions for \code{AllocateArray} similar to those for
  12459. \code{Allocate} in Section~\ref{sec:select-instructions-gc} except
  12460. that the tag at the front of the array should instead use the
  12461. representation discussed in Section~\ref{sec:array-rep}.
  12462. Regarding \code{vectorof-length}, extract the length from the tag
  12463. according to the representation discussed in
  12464. Section~\ref{sec:array-rep}.
  12465. The instructions generated for \code{vectorof-ref} differ from those
  12466. for \code{vector-ref} (Section~\ref{sec:select-instructions-gc}) in
  12467. that the index is not a constant so the offset must be computed at
  12468. runtime, similar to the instructions generated for
  12469. \code{any-vector-of-ref} (Section~\ref{sec:select-Rany}). \ocaml{You
  12470. might want to look at that section for inspiration; the relevant
  12471. code is actually for \code{any-vector-ref}. But by the way, remember that
  12472. multiplication by a constant power of two can be more cheaply done using a shift instruction.}
  12473. The same is
  12474. true for \code{vectorof-set!}. Also, the \code{vectorof-set!} may
  12475. appear in an assignment and as a stand-alone statement, so make sure
  12476. to handle both situations in this pass. \ocaml{This last statement
  12477. won't be true if you give \code{@:=} void type, as you presumably do!}
  12478. Finally, the instructions for \code{any-vectorof-length} should be
  12479. similar to those for \code{vectorof-length}, except that one must
  12480. first project the array by writing zeroes into the $3$-bit tag. \ocaml{Not relevant for us.}
  12481. \ocaml{For multiplication, use the X86 {\tt imul} instruction. Note that it has a peculiarity:
  12482. its destination must be a register.}
  12483. \begin{exercise}\normalfont
  12484. Implement a compiler for the \LangArray{} language by extending your
  12485. compiler for \LangLoop{}. Test your compiler on a half dozen new
  12486. programs, including the one in Figure~\ref{fig:inner-product} and also
  12487. a program that multiplies two matrices. Note that matrices are
  12488. 2-dimensional arrays, but those can be encoded into 1-dimensional
  12489. arrays by laying out each row in the array, one after the next.
  12490. \ocaml{Alternatively, they can be encoded as arrays of arrays.
  12491. You should try writing both versions of matrix multiply!}
  12492. \end{exercise}
  12493. % Further Reading: dataflow analysis
  12494. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  12495. \chapter{Gradual Typing}
  12496. \label{ch:Rgrad}
  12497. \index{gradual typing}
  12498. This chapter studies a language, \LangGrad{}, in which the programmer
  12499. can choose between static and dynamic type checking in different parts
  12500. of a program, thereby mixing the statically typed \LangLoop{} language
  12501. with the dynamically typed \LangDyn{}. There are several approaches to
  12502. mixing static and dynamic typing, including multi-language
  12503. integration~\citep{Tobin-Hochstadt:2006fk,Matthews:2007zr} and hybrid
  12504. type checking~\citep{Flanagan:2006mn,Gronski:2006uq}. In this chapter
  12505. we focus on \emph{gradual typing}\index{gradual typing}, in which the
  12506. programmer controls the amount of static versus dynamic checking by
  12507. adding or removing type annotations on parameters and
  12508. variables~\citep{Anderson:2002kd,Siek:2006bh}.
  12509. %
  12510. The concrete syntax of \LangGrad{} is defined in
  12511. Figure~\ref{fig:Rgrad-concrete-syntax} and its abstract syntax is defined
  12512. in Figure~\ref{fig:Rgrad-syntax}. The main syntactic difference between
  12513. \LangLoop{} and \LangGrad{} is the additional \itm{param} and \itm{ret}
  12514. non-terminals that make type annotations optional. The return types
  12515. are not optional in the abstract syntax; the parser fills in
  12516. \code{Any} when the return type is not specified in the concrete
  12517. syntax.
  12518. \begin{figure}[tp]
  12519. \centering
  12520. \fbox{
  12521. \begin{minipage}{0.96\textwidth}
  12522. \small
  12523. \[
  12524. \begin{array}{lcl}
  12525. \itm{param} &::=& \Var \mid \LS\Var \key{:} \Type\RS \\
  12526. \itm{ret} &::=& \epsilon \mid \key{:} \Type \\
  12527. \Exp &::=& \gray{ \Int \mid \CREAD{} \mid \CNEG{\Exp}
  12528. \mid \CADD{\Exp}{\Exp} \mid \CSUB{\Exp}{\Exp} } \\
  12529. &\mid& \gray{ \Var \mid \CLET{\Var}{\Exp}{\Exp} }\\
  12530. &\mid& \gray{\key{\#t} \mid \key{\#f}
  12531. \mid (\key{and}\;\Exp\;\Exp)
  12532. \mid (\key{or}\;\Exp\;\Exp)
  12533. \mid (\key{not}\;\Exp) } \\
  12534. &\mid& \gray{ (\key{eq?}\;\Exp\;\Exp) \mid \CIF{\Exp}{\Exp}{\Exp} } \\
  12535. &\mid& \gray{ (\key{vector}\;\Exp\ldots) \mid
  12536. (\key{vector-ref}\;\Exp\;\Int)} \\
  12537. &\mid& \gray{(\key{vector-set!}\;\Exp\;\Int\;\Exp)\mid (\key{void})
  12538. \mid (\Exp \; \Exp\ldots) } \\
  12539. &\mid& \gray{ \LP \key{procedure-arity}~\Exp\RP }
  12540. \mid \CGLAMBDA{\LP\itm{param}\ldots\RP}{\itm{ret}}{\Exp} \\
  12541. &\mid& \gray{ \CSETBANG{\Var}{\Exp}
  12542. \mid \CBEGIN{\Exp\ldots}{\Exp}
  12543. \mid \CWHILE{\Exp}{\Exp} } \\
  12544. \Def &::=& \CGDEF{\Var}{\itm{param}\ldots}{\itm{ret}}{\Exp} \\
  12545. \LangGrad{} &::=& \gray{\Def\ldots \; \Exp}
  12546. \end{array}
  12547. \]
  12548. \end{minipage}
  12549. }
  12550. \caption{The concrete syntax of \LangGrad{}, extending \LangLoop{} (Figure~\ref{fig:Rwhile-concrete-syntax}).}
  12551. \label{fig:Rgrad-concrete-syntax}
  12552. \end{figure}
  12553. \begin{figure}[tp]
  12554. \centering
  12555. \fbox{
  12556. \begin{minipage}{0.96\textwidth}
  12557. \small
  12558. \[
  12559. \begin{array}{lcl}
  12560. \itm{param} &::=& \Var \mid \LS\Var \key{:} \Type\RS \\
  12561. \Exp &::=& \gray{ \INT{\Int} \VAR{\Var} \mid \LET{\Var}{\Exp}{\Exp} } \\
  12562. &\mid& \gray{ \PRIM{\itm{op}}{\Exp\ldots} }\\
  12563. &\mid& \gray{ \BOOL{\itm{bool}}
  12564. \mid \IF{\Exp}{\Exp}{\Exp} } \\
  12565. &\mid& \gray{ \VOID{} \mid \LP\key{HasType}~\Exp~\Type \RP
  12566. \mid \APPLY{\Exp}{\Exp\ldots} }\\
  12567. &\mid& \LAMBDA{\LP\itm{param}\ldots\RP}{\Type}{\Exp} \\
  12568. &\mid& \gray{ \SETBANG{\Var}{\Exp} \mid \BEGIN{\LP\Exp\ldots\RP}{\Exp} } \\
  12569. &\mid& \gray{ \WHILE{\Exp}{\Exp} } \\
  12570. \Def &::=& \FUNDEF{\Var}{\LP\itm{param}\ldots\RP}{\Type}{\code{'()}}{\Exp} \\
  12571. \LangGrad{} &::=& \gray{ \PROGRAMDEFSEXP{\code{'()}}{\LP\Def\ldots\RP}{\Exp} }
  12572. \end{array}
  12573. \]
  12574. \end{minipage}
  12575. }
  12576. \caption{The abstract syntax of \LangGrad{}, extending \LangLoop{} (Figure~\ref{fig:Rwhile-syntax}).}
  12577. \label{fig:Rgrad-syntax}
  12578. \end{figure}
  12579. Both the type checker and the interpreter for \LangGrad{} require some
  12580. interesting changes to enable gradual typing, which we discuss in the
  12581. next two sections in the context of the \code{map-vec} example from
  12582. Chapter~\ref{ch:Rfun}. In Figure~\ref{fig:gradual-map-vec} we
  12583. revised the \code{map-vec} example, omitting the type annotations from
  12584. the \code{add1} function.
  12585. \begin{figure}[btp]
  12586. % gradual_test_9.rkt
  12587. \begin{lstlisting}
  12588. (define (map-vec [f : (Integer -> Integer)]
  12589. [v : (Vector Integer Integer)])
  12590. : (Vector Integer Integer)
  12591. (vector (f (vector-ref v 0)) (f (vector-ref v 1))))
  12592. (define (add1 x) (+ x 1))
  12593. (vector-ref (map-vec add1 (vector 0 41)) 1)
  12594. \end{lstlisting}
  12595. \caption{A partially-typed version of the \code{map-vec} example.}
  12596. \label{fig:gradual-map-vec}
  12597. \end{figure}
  12598. \section{Type Checking \LangGrad{}, Casts, and \LangCast{}}
  12599. \label{sec:gradual-type-check}
  12600. The type checker for \LangGrad{} uses the \code{Any} type for missing
  12601. parameter and return types. For example, the \code{x} parameter of
  12602. \code{add1} in Figure~\ref{fig:gradual-map-vec} is given the type
  12603. \code{Any} and the return type of \code{add1} is \code{Any}. Next
  12604. consider the \code{+} operator inside \code{add1}. It expects both
  12605. arguments to have type \code{Integer}, but its first argument \code{x}
  12606. has type \code{Any}. In a gradually typed language, such differences
  12607. are allowed so long as the types are \emph{consistent}, that is, they
  12608. are equal except in places where there is an \code{Any} type. The type
  12609. \code{Any} is consistent with every other type.
  12610. Figure~\ref{fig:consistent} defines the \code{consistent?} predicate.
  12611. \begin{figure}[tbp]
  12612. \begin{lstlisting}
  12613. (define/public (consistent? t1 t2)
  12614. (match* (t1 t2)
  12615. [('Integer 'Integer) #t]
  12616. [('Boolean 'Boolean) #t]
  12617. [('Void 'Void) #t]
  12618. [('Any t2) #t]
  12619. [(t1 'Any) #t]
  12620. [(`(Vector ,ts1 ...) `(Vector ,ts2 ...))
  12621. (for/and ([t1 ts1] [t2 ts2]) (consistent? t1 t2))]
  12622. [(`(,ts1 ... -> ,rt1) `(,ts2 ... -> ,rt2))
  12623. (and (for/and ([t1 ts1] [t2 ts2]) (consistent? t1 t2))
  12624. (consistent? rt1 rt2))]
  12625. [(other wise) #f]))
  12626. \end{lstlisting}
  12627. \caption{The consistency predicate on types.}
  12628. \label{fig:consistent}
  12629. \end{figure}
  12630. Returning to the \code{map-vec} example of
  12631. Figure~\ref{fig:gradual-map-vec}, the \code{add1} function has type
  12632. \code{(Any -> Any)} but parameter \code{f} of \code{map-vec} has type
  12633. \code{(Integer -> Integer)}. The type checker for \LangGrad{} allows this
  12634. because the two types are consistent. In particular, \code{->} is
  12635. equal to \code{->} and because \code{Any} is consistent with
  12636. \code{Integer}.
  12637. Next consider a program with an error, such as applying the
  12638. \code{map-vec} to a function that sometimes returns a Boolean, as
  12639. shown in Figure~\ref{fig:map-vec-maybe-add1}. The type checker for
  12640. \LangGrad{} accepts this program because the type of \code{maybe-add1} is
  12641. consistent with the type of parameter \code{f} of \code{map-vec}, that
  12642. is, \code{(Any -> Any)} is consistent with \code{(Integer ->
  12643. Integer)}. One might say that a gradual type checker is optimistic
  12644. in that it accepts programs that might execute without a runtime type
  12645. error.
  12646. %
  12647. Unfortunately, running this program with input \code{1} triggers an
  12648. error when the \code{maybe-add1} function returns \code{\#t}. \LangGrad{}
  12649. performs checking at runtime to ensure the integrity of the static
  12650. types, such as the \code{(Integer -> Integer)} annotation on parameter
  12651. \code{f} of \code{map-vec}. This runtime checking is carried out by a
  12652. new \code{Cast} form that is inserted by the type checker. Thus, the
  12653. output of the type checker is a program in the \LangCast{} language, which
  12654. adds \code{Cast} to \LangLoop{}, as shown in
  12655. Figure~\ref{fig:Rgrad-prime-syntax}.
  12656. \begin{figure}[tp]
  12657. \centering
  12658. \fbox{
  12659. \begin{minipage}{0.96\textwidth}
  12660. \small
  12661. \[
  12662. \begin{array}{lcl}
  12663. \Exp &::=& \ldots \mid \CAST{\Exp}{\Type}{\Type} \\
  12664. \LangCast{} &::=& \gray{ \PROGRAMDEFSEXP{\code{'()}}{\LP\Def\ldots\RP}{\Exp} }
  12665. \end{array}
  12666. \]
  12667. \end{minipage}
  12668. }
  12669. \caption{The abstract syntax of \LangCast{}, extending \LangLoop{} (Figure~\ref{fig:Rwhile-syntax}).}
  12670. \label{fig:Rgrad-prime-syntax}
  12671. \end{figure}
  12672. \begin{figure}[tbp]
  12673. \begin{lstlisting}
  12674. (define (map-vec [f : (Integer -> Integer)]
  12675. [v : (Vector Integer Integer)])
  12676. : (Vector Integer Integer)
  12677. (vector (f (vector-ref v 0)) (f (vector-ref v 1))))
  12678. (define (add1 x) (+ x 1))
  12679. (define (true) #t)
  12680. (define (maybe-add1 x) (if (eq? 0 (read)) (add1 x) (true)))
  12681. (vector-ref (map-vec maybe-add1 (vector 0 41)) 0)
  12682. \end{lstlisting}
  12683. \caption{A variant of the \code{map-vec} example with an error.}
  12684. \label{fig:map-vec-maybe-add1}
  12685. \end{figure}
  12686. Figure~\ref{fig:map-vec-cast} shows the output of the type checker for
  12687. \code{map-vec} and \code{maybe-add1}. The idea is that \code{Cast} is
  12688. inserted every time the type checker sees two types that are
  12689. consistent but not equal. In the \code{add1} function, \code{x} is
  12690. cast to \code{Integer} and the result of the \code{+} is cast to
  12691. \code{Any}. In the call to \code{map-vec}, the \code{add1} argument
  12692. is cast from \code{(Any -> Any)} to \code{(Integer -> Integer)}.
  12693. \begin{figure}[btp]
  12694. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  12695. (define (map-vec [f : (Integer -> Integer)] [v : (Vector Integer Integer)])
  12696. : (Vector Integer Integer)
  12697. (vector (f (vector-ref v 0)) (f (vector-ref v 1))))
  12698. (define (add1 [x : Any]) : Any
  12699. (cast (+ (cast x Any Integer) 1) Integer Any))
  12700. (define (true) : Any (cast #t Boolean Any))
  12701. (define (maybe-add1 [x : Any]) : Any
  12702. (if (eq? 0 (read)) (add1 x) (true)))
  12703. (vector-ref (map-vec (cast maybe-add1 (Any -> Any) (Integer -> Integer))
  12704. (vector 0 41)) 0)
  12705. \end{lstlisting}
  12706. \caption{Output of type checking \code{map-vec}
  12707. and \code{maybe-add1}.}
  12708. \label{fig:map-vec-cast}
  12709. \end{figure}
  12710. The type checker for \LangGrad{} is defined in
  12711. Figures~\ref{fig:type-check-Rgradual-1}, \ref{fig:type-check-Rgradual-2},
  12712. and \ref{fig:type-check-Rgradual-3}.
  12713. \begin{figure}[tbp]
  12714. \begin{lstlisting}[basicstyle=\ttfamily\scriptsize]
  12715. (define type-check-gradual-class
  12716. (class type-check-Rwhile-class
  12717. (super-new)
  12718. (inherit operator-types type-predicates)
  12719. (define/override (type-check-exp env)
  12720. (lambda (e)
  12721. (define recur (type-check-exp env))
  12722. (match e
  12723. [(Prim 'vector-length (list e1))
  12724. (define-values (e1^ t) (recur e1))
  12725. (match t
  12726. [`(Vector ,ts ...)
  12727. (values (Prim 'vector-length (list e1^)) 'Integer)]
  12728. ['Any (values (Prim 'any-vector-length (list e1^)) 'Integer)])]
  12729. [(Prim 'vector-ref (list e1 e2))
  12730. (define-values (e1^ t1) (recur e1))
  12731. (define-values (e2^ t2) (recur e2))
  12732. (check-consistent? t2 'Integer e)
  12733. (match t1
  12734. [`(Vector ,ts ...)
  12735. (match e2^
  12736. [(Int i)
  12737. (unless (and (0 . <= . i) (i . < . (length ts)))
  12738. (error 'type-check "invalid index ~a in ~a" i e))
  12739. (values (Prim 'vector-ref (list e1^ (Int i))) (list-ref ts i))]
  12740. [else (define e1^^ (make-cast e1^ t1 'Any))
  12741. (define e2^^ (make-cast e2^ t2 'Integer))
  12742. (values (Prim 'any-vector-ref (list e1^^ e2^^)) 'Any)])]
  12743. ['Any
  12744. (define e2^^ (make-cast e2^ t2 'Integer))
  12745. (values (Prim 'any-vector-ref (list e1^ e2^^)) 'Any)]
  12746. [else (error 'type-check "expected vector not ~a\nin ~v" t1 e)])]
  12747. [(Prim 'vector-set! (list e1 e2 e3) )
  12748. (define-values (e1^ t1) (recur e1))
  12749. (define-values (e2^ t2) (recur e2))
  12750. (define-values (e3^ t3) (recur e3))
  12751. (check-consistent? t2 'Integer e)
  12752. (match t1
  12753. [`(Vector ,ts ...)
  12754. (match e2^
  12755. [(Int i)
  12756. (unless (and (0 . <= . i) (i . < . (length ts)))
  12757. (error 'type-check "invalid index ~a in ~a" i e))
  12758. (check-consistent? (list-ref ts i) t3 e)
  12759. (define e3^^ (make-cast e3^ t3 (list-ref ts i)))
  12760. (values (Prim 'vector-set! (list e1^ (Int i) e3^^)) 'Void)]
  12761. [else
  12762. (define e1^^ (make-cast e1^ t1 'Any))
  12763. (define e2^^ (make-cast e2^ t2 'Integer))
  12764. (define e3^^ (make-cast e3^ t3 'Any))
  12765. (values (Prim 'any-vector-set! (list e1^^ e2^^ e3^^)) 'Void)])]
  12766. ['Any
  12767. (define e2^^ (make-cast e2^ t2 'Integer))
  12768. (define e3^^ (make-cast e3^ t3 'Any))
  12769. (values (Prim 'any-vector-set! (list e1^ e2^^ e3^^)) 'Void)]
  12770. [else (error 'type-check "expected vector not ~a\nin ~v" t1 e)])]
  12771. \end{lstlisting}
  12772. \caption{Type checker for the \LangGrad{} language, part 1.}
  12773. \label{fig:type-check-Rgradual-1}
  12774. \end{figure}
  12775. \begin{figure}[tbp]
  12776. \begin{lstlisting}[basicstyle=\ttfamily\scriptsize]
  12777. [(Prim 'eq? (list e1 e2))
  12778. (define-values (e1^ t1) (recur e1))
  12779. (define-values (e2^ t2) (recur e2))
  12780. (check-consistent? t1 t2 e)
  12781. (define T (meet t1 t2))
  12782. (values (Prim 'eq? (list (make-cast e1^ t1 T) (make-cast e2^ t2 T)))
  12783. 'Boolean)]
  12784. [(Prim 'not (list e1))
  12785. (define-values (e1^ t1) (recur e1))
  12786. (match t1
  12787. ['Any
  12788. (recur (If (Prim 'eq? (list e1 (Inject (Bool #f) 'Boolean)))
  12789. (Bool #t) (Bool #f)))]
  12790. [else
  12791. (define-values (t-ret new-es^)
  12792. (type-check-op 'not (list t1) (list e1^) e))
  12793. (values (Prim 'not new-es^) t-ret)])]
  12794. [(Prim 'and (list e1 e2))
  12795. (recur (If e1 e2 (Bool #f)))]
  12796. [(Prim 'or (list e1 e2))
  12797. (define tmp (gensym 'tmp))
  12798. (recur (Let tmp e1 (If (Var tmp) (Var tmp) e2)))]
  12799. [(Prim op es)
  12800. #:when (not (set-member? explicit-prim-ops op))
  12801. (define-values (new-es ts)
  12802. (for/lists (exprs types) ([e es])
  12803. (recur e)))
  12804. (define-values (t-ret new-es^) (type-check-op op ts new-es e))
  12805. (values (Prim op new-es^) t-ret)]
  12806. [(If e1 e2 e3)
  12807. (define-values (e1^ T1) (recur e1))
  12808. (define-values (e2^ T2) (recur e2))
  12809. (define-values (e3^ T3) (recur e3))
  12810. (check-consistent? T2 T3 e)
  12811. (match T1
  12812. ['Boolean
  12813. (define Tif (join T2 T3))
  12814. (values (If e1^ (make-cast e2^ T2 Tif)
  12815. (make-cast e3^ T3 Tif)) Tif)]
  12816. ['Any
  12817. (define Tif (meet T2 T3))
  12818. (values (If (Prim 'eq? (list e1^ (Inject (Bool #f) 'Boolean)))
  12819. (make-cast e3^ T3 Tif) (make-cast e2^ T2 Tif))
  12820. Tif)]
  12821. [else (error 'type-check "expected Boolean not ~a\nin ~v" T1 e)])]
  12822. [(HasType e1 T)
  12823. (define-values (e1^ T1) (recur e1))
  12824. (check-consistent? T1 T)
  12825. (values (make-cast e1^ T1 T) T)]
  12826. [(SetBang x e1)
  12827. (define-values (e1^ T1) (recur e1))
  12828. (define varT (dict-ref env x))
  12829. (check-consistent? T1 varT e)
  12830. (values (SetBang x (make-cast e1^ T1 varT)) 'Void)]
  12831. [(WhileLoop e1 e2)
  12832. (define-values (e1^ T1) (recur e1))
  12833. (check-consistent? T1 'Boolean e)
  12834. (define-values (e2^ T2) ((type-check-exp env) e2))
  12835. (values (WhileLoop (make-cast e1^ T1 'Boolean) e2^) 'Void)]
  12836. \end{lstlisting}
  12837. \caption{Type checker for the \LangGrad{} language, part 2.}
  12838. \label{fig:type-check-Rgradual-2}
  12839. \end{figure}
  12840. \begin{figure}[tbp]
  12841. \begin{lstlisting}[basicstyle=\ttfamily\scriptsize]
  12842. [(Apply e1 e2s)
  12843. (define-values (e1^ T1) (recur e1))
  12844. (define-values (e2s^ T2s) (for/lists (e* ty*) ([e2 e2s]) (recur e2)))
  12845. (match T1
  12846. [`(,T1ps ... -> ,T1rt)
  12847. (for ([T2 T2s] [Tp T1ps])
  12848. (check-consistent? T2 Tp e))
  12849. (define e2s^^ (for/list ([e2 e2s^] [src T2s] [tgt T1ps])
  12850. (make-cast e2 src tgt)))
  12851. (values (Apply e1^ e2s^^) T1rt)]
  12852. [`Any
  12853. (define e1^^ (make-cast e1^ 'Any
  12854. `(,@(for/list ([e e2s]) 'Any) -> Any)))
  12855. (define e2s^^ (for/list ([e2 e2s^] [src T2s])
  12856. (make-cast e2 src 'Any)))
  12857. (values (Apply e1^^ e2s^^) 'Any)]
  12858. [else (error 'type-check "expected function not ~a\nin ~v" T1 e)])]
  12859. [(Lambda params Tr e1)
  12860. (define-values (xs Ts) (for/lists (l1 l2) ([p params])
  12861. (match p
  12862. [`[,x : ,T] (values x T)]
  12863. [(? symbol? x) (values x 'Any)])))
  12864. (define-values (e1^ T1)
  12865. ((type-check-exp (append (map cons xs Ts) env)) e1))
  12866. (check-consistent? Tr T1 e)
  12867. (values (Lambda (for/list ([x xs] [T Ts]) `[,x : ,T]) Tr
  12868. (make-cast e1^ T1 Tr)) `(,@Ts -> ,Tr))]
  12869. [else ((super type-check-exp env) e)]
  12870. )))
  12871. \end{lstlisting}
  12872. \caption{Type checker for the \LangGrad{} language, part 3.}
  12873. \label{fig:type-check-Rgradual-3}
  12874. \end{figure}
  12875. \begin{figure}[tbp]
  12876. \begin{lstlisting}[basicstyle=\ttfamily\scriptsize]
  12877. (define/public (join t1 t2)
  12878. (match* (t1 t2)
  12879. [('Integer 'Integer) 'Integer]
  12880. [('Boolean 'Boolean) 'Boolean]
  12881. [('Void 'Void) 'Void]
  12882. [('Any t2) t2]
  12883. [(t1 'Any) t1]
  12884. [(`(Vector ,ts1 ...) `(Vector ,ts2 ...))
  12885. `(Vector ,@(for/list ([t1 ts1] [t2 ts2]) (join t1 t2)))]
  12886. [(`(,ts1 ... -> ,rt1) `(,ts2 ... -> ,rt2))
  12887. `(,@(for/list ([t1 ts1] [t2 ts2]) (join t1 t2))
  12888. -> ,(join rt1 rt2))]))
  12889. (define/public (meet t1 t2)
  12890. (match* (t1 t2)
  12891. [('Integer 'Integer) 'Integer]
  12892. [('Boolean 'Boolean) 'Boolean]
  12893. [('Void 'Void) 'Void]
  12894. [('Any t2) 'Any]
  12895. [(t1 'Any) 'Any]
  12896. [(`(Vector ,ts1 ...) `(Vector ,ts2 ...))
  12897. `(Vector ,@(for/list ([t1 ts1] [t2 ts2]) (meet t1 t2)))]
  12898. [(`(,ts1 ... -> ,rt1) `(,ts2 ... -> ,rt2))
  12899. `(,@(for/list ([t1 ts1] [t2 ts2]) (meet t1 t2))
  12900. -> ,(meet rt1 rt2))]))
  12901. (define/public (make-cast e src tgt)
  12902. (cond [(equal? src tgt) e] [else (Cast e src tgt)]))
  12903. (define/public (check-consistent? t1 t2 e)
  12904. (unless (consistent? t1 t2)
  12905. (error 'type-check "~a is inconsistent with ~a\nin ~v" t1 t2 e)))
  12906. (define/override (type-check-op op arg-types args e)
  12907. (match (dict-ref (operator-types) op)
  12908. [`(,param-types . ,return-type)
  12909. (for ([at arg-types] [pt param-types])
  12910. (check-consistent? at pt e))
  12911. (values return-type
  12912. (for/list ([e args] [s arg-types] [t param-types])
  12913. (make-cast e s t)))]
  12914. [else (error 'type-check-op "unrecognized ~a" op)]))
  12915. (define explicit-prim-ops
  12916. (set-union
  12917. (type-predicates)
  12918. (set 'procedure-arity 'eq?
  12919. 'vector 'vector-length 'vector-ref 'vector-set!
  12920. 'any-vector-length 'any-vector-ref 'any-vector-set!)))
  12921. (define/override (fun-def-type d)
  12922. (match d
  12923. [(Def f params rt info body)
  12924. (define ps
  12925. (for/list ([p params])
  12926. (match p
  12927. [`[,x : ,T] T]
  12928. [(? symbol?) 'Any]
  12929. [else (error 'fun-def-type "unmatched parameter ~a" p)])))
  12930. `(,@ps -> ,rt)]
  12931. [else (error 'fun-def-type "ill-formed function definition in ~a" d)]))
  12932. \end{lstlisting}
  12933. \caption{Auxiliary functions for type checking \LangGrad{}.}
  12934. \label{fig:type-check-Rgradual-aux}
  12935. \end{figure}
  12936. \clearpage
  12937. \section{Interpreting \LangCast{}}
  12938. \label{sec:interp-casts}
  12939. The runtime behavior of first-order casts is straightforward, that is,
  12940. casts involving simple types such as \code{Integer} and
  12941. \code{Boolean}. For example, a cast from \code{Integer} to \code{Any}
  12942. can be accomplished with the \code{Inject} operator of \LangAny{}, which
  12943. puts the integer into a tagged value
  12944. (Figure~\ref{fig:interp-Rany}). Similarly, a cast from \code{Any} to
  12945. \code{Integer} is accomplished with the \code{Project} operator, that
  12946. is, by checking the value's tag and either retrieving the underlying
  12947. integer or signaling an error if it the tag is not the one for
  12948. integers (Figure~\ref{fig:apply-project}).
  12949. %
  12950. Things get more interesting for higher-order casts, that is, casts
  12951. involving function or vector types.
  12952. Consider the cast of the function \code{maybe-add1} from \code{(Any ->
  12953. Any)} to \code{(Integer -> Integer)}. When a function flows through
  12954. this cast at runtime, we can't know in general whether the function
  12955. will always return an integer.\footnote{Predicting the return value of
  12956. a function is equivalent to the halting problem, which is
  12957. undecidable.} The \LangCast{} interpreter therefore delays the checking
  12958. of the cast until the function is applied. This is accomplished by
  12959. wrapping \code{maybe-add1} in a new function that casts its parameter
  12960. from \code{Integer} to \code{Any}, applies \code{maybe-add1}, and then
  12961. casts the return value from \code{Any} to \code{Integer}.
  12962. Turning our attention to casts involving vector types, we consider the
  12963. example in Figure~\ref{fig:map-vec-bang} that defines a
  12964. partially-typed version of \code{map-vec} whose parameter \code{v} has
  12965. type \code{(Vector Any Any)} and that updates \code{v} in place
  12966. instead of returning a new vector. So we name this function
  12967. \code{map-vec!}. We apply \code{map-vec!} to a vector of integers, so
  12968. the type checker inserts a cast from \code{(Vector Integer Integer)}
  12969. to \code{(Vector Any Any)}. A naive way for the \LangCast{} interpreter to
  12970. cast between vector types would be a build a new vector whose elements
  12971. are the result of casting each of the original elements to the
  12972. appropriate target type. However, this approach is only valid for
  12973. immutable vectors; and our vectors are mutable. In the example of
  12974. Figure~\ref{fig:map-vec-bang}, if the cast created a new vector, then
  12975. the updates inside of \code{map-vec!} would happen to the new vector
  12976. and not the original one.
  12977. \begin{figure}[tbp]
  12978. % gradual_test_11.rkt
  12979. \begin{lstlisting}
  12980. (define (map-vec! [f : (Any -> Any)]
  12981. [v : (Vector Any Any)]) : Void
  12982. (begin
  12983. (vector-set! v 0 (f (vector-ref v 0)))
  12984. (vector-set! v 1 (f (vector-ref v 1)))))
  12985. (define (add1 x) (+ x 1))
  12986. (let ([v (vector 0 41)])
  12987. (begin (map-vec! add1 v) (vector-ref v 1)))
  12988. \end{lstlisting}
  12989. \caption{An example involving casts on vectors.}
  12990. \label{fig:map-vec-bang}
  12991. \end{figure}
  12992. Instead the interpreter needs to create a new kind of value, a
  12993. \emph{vector proxy}, that intercepts every vector operation. On a
  12994. read, the proxy reads from the underlying vector and then applies a
  12995. cast to the resulting value. On a write, the proxy casts the argument
  12996. value and then performs the write to the underlying vector. For the
  12997. first \code{(vector-ref v 0)} in \code{map-vec!}, the proxy casts
  12998. \code{0} from \code{Integer} to \code{Any}. For the first
  12999. \code{vector-set!}, the proxy casts a tagged \code{1} from \code{Any}
  13000. to \code{Integer}.
  13001. The final category of cast that we need to consider are casts between
  13002. the \code{Any} type and either a function or a vector
  13003. type. Figure~\ref{fig:map-vec-any} shows a variant of \code{map-vec!}
  13004. in which parameter \code{v} does not have a type annotation, so it is
  13005. given type \code{Any}. In the call to \code{map-vec!}, the vector has
  13006. type \code{(Vector Integer Integer)} so the type checker inserts a
  13007. cast from \code{(Vector Integer Integer)} to \code{Any}. A first
  13008. thought is to use \code{Inject}, but that doesn't work because
  13009. \code{(Vector Integer Integer)} is not a flat type. Instead, we must
  13010. first cast to \code{(Vector Any Any)} (which is flat) and then inject
  13011. to \code{Any}.
  13012. \begin{figure}[tbp]
  13013. \begin{lstlisting}
  13014. (define (map-vec! [f : (Any -> Any)] v) : Void
  13015. (begin
  13016. (vector-set! v 0 (f (vector-ref v 0)))
  13017. (vector-set! v 1 (f (vector-ref v 1)))))
  13018. (define (add1 x) (+ x 1))
  13019. (let ([v (vector 0 41)])
  13020. (begin (map-vec! add1 v) (vector-ref v 1)))
  13021. \end{lstlisting}
  13022. \caption{Casting a vector to \code{Any}.}
  13023. \label{fig:map-vec-any}
  13024. \end{figure}
  13025. The \LangCast{} interpreter uses an auxiliary function named
  13026. \code{apply-cast} to cast a value from a source type to a target type,
  13027. shown in Figure~\ref{fig:apply-cast}. You'll find that it handles all
  13028. of the kinds of casts that we've discussed in this section.
  13029. \begin{figure}[tbp]
  13030. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  13031. (define/public (apply-cast v s t)
  13032. (match* (s t)
  13033. [(t1 t2) #:when (equal? t1 t2) v]
  13034. [('Any t2)
  13035. (match t2
  13036. [`(,ts ... -> ,rt)
  13037. (define any->any `(,@(for/list ([t ts]) 'Any) -> Any))
  13038. (define v^ (apply-project v any->any))
  13039. (apply-cast v^ any->any `(,@ts -> ,rt))]
  13040. [`(Vector ,ts ...)
  13041. (define vec-any `(Vector ,@(for/list ([t ts]) 'Any)))
  13042. (define v^ (apply-project v vec-any))
  13043. (apply-cast v^ vec-any `(Vector ,@ts))]
  13044. [else (apply-project v t2)])]
  13045. [(t1 'Any)
  13046. (match t1
  13047. [`(,ts ... -> ,rt)
  13048. (define any->any `(,@(for/list ([t ts]) 'Any) -> Any))
  13049. (define v^ (apply-cast v `(,@ts -> ,rt) any->any))
  13050. (apply-inject v^ (any-tag any->any))]
  13051. [`(Vector ,ts ...)
  13052. (define vec-any `(Vector ,@(for/list ([t ts]) 'Any)))
  13053. (define v^ (apply-cast v `(Vector ,@ts) vec-any))
  13054. (apply-inject v^ (any-tag vec-any))]
  13055. [else (apply-inject v (any-tag t1))])]
  13056. [(`(Vector ,ts1 ...) `(Vector ,ts2 ...))
  13057. (define x (gensym 'x))
  13058. (define cast-reads (for/list ([t1 ts1] [t2 ts2])
  13059. `(function (,x) ,(Cast (Var x) t1 t2) ())))
  13060. (define cast-writes
  13061. (for/list ([t1 ts1] [t2 ts2])
  13062. `(function (,x) ,(Cast (Var x) t2 t1) ())))
  13063. `(vector-proxy ,(vector v (apply vector cast-reads)
  13064. (apply vector cast-writes)))]
  13065. [(`(,ts1 ... -> ,rt1) `(,ts2 ... -> ,rt2))
  13066. (define xs (for/list ([t2 ts2]) (gensym 'x)))
  13067. `(function ,xs ,(Cast
  13068. (Apply (Value v)
  13069. (for/list ([x xs][t1 ts1][t2 ts2])
  13070. (Cast (Var x) t2 t1)))
  13071. rt1 rt2) ())]
  13072. ))
  13073. \end{lstlisting}
  13074. \caption{The \code{apply-cast} auxiliary method.}
  13075. \label{fig:apply-cast}
  13076. \end{figure}
  13077. The interpreter for \LangCast{} is defined in
  13078. Figure~\ref{fig:interp-Rcast}, with the case for \code{Cast}
  13079. dispatching to \code{apply-cast}. To handle the addition of vector
  13080. proxies, we update the vector primitives in \code{interp-op} using the
  13081. functions in Figure~\ref{fig:guarded-vector}.
  13082. \begin{figure}[tbp]
  13083. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  13084. (define interp-Rcast-class
  13085. (class interp-Rwhile-class
  13086. (super-new)
  13087. (inherit apply-fun apply-inject apply-project)
  13088. (define/override (interp-op op)
  13089. (match op
  13090. ['vector-length guarded-vector-length]
  13091. ['vector-ref guarded-vector-ref]
  13092. ['vector-set! guarded-vector-set!]
  13093. ['any-vector-ref (lambda (v i)
  13094. (match v [`(tagged ,v^ ,tg)
  13095. (guarded-vector-ref v^ i)]))]
  13096. ['any-vector-set! (lambda (v i a)
  13097. (match v [`(tagged ,v^ ,tg)
  13098. (guarded-vector-set! v^ i a)]))]
  13099. ['any-vector-length (lambda (v)
  13100. (match v [`(tagged ,v^ ,tg)
  13101. (guarded-vector-length v^)]))]
  13102. [else (super interp-op op)]
  13103. ))
  13104. (define/override ((interp-exp env) e)
  13105. (define (recur e) ((interp-exp env) e))
  13106. (match e
  13107. [(Value v) v]
  13108. [(Cast e src tgt) (apply-cast (recur e) src tgt)]
  13109. [else ((super interp-exp env) e)]))
  13110. ))
  13111. (define (interp-Rcast p)
  13112. (send (new interp-Rcast-class) interp-program p))
  13113. \end{lstlisting}
  13114. \caption{The interpreter for \LangCast{}.}
  13115. \label{fig:interp-Rcast}
  13116. \end{figure}
  13117. \begin{figure}[tbp]
  13118. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  13119. (define (guarded-vector-ref vec i)
  13120. (match vec
  13121. [`(vector-proxy ,proxy)
  13122. (define val (guarded-vector-ref (vector-ref proxy 0) i))
  13123. (define rd (vector-ref (vector-ref proxy 1) i))
  13124. (apply-fun rd (list val) 'guarded-vector-ref)]
  13125. [else (vector-ref vec i)]))
  13126. (define (guarded-vector-set! vec i arg)
  13127. (match vec
  13128. [`(vector-proxy ,proxy)
  13129. (define wr (vector-ref (vector-ref proxy 2) i))
  13130. (define arg^ (apply-fun wr (list arg) 'guarded-vector-set!))
  13131. (guarded-vector-set! (vector-ref proxy 0) i arg^)]
  13132. [else (vector-set! vec i arg)]))
  13133. (define (guarded-vector-length vec)
  13134. (match vec
  13135. [`(vector-proxy ,proxy)
  13136. (guarded-vector-length (vector-ref proxy 0))]
  13137. [else (vector-length vec)]))
  13138. \end{lstlisting}
  13139. \caption{The guarded-vector auxiliary functions.}
  13140. \label{fig:guarded-vector}
  13141. \end{figure}
  13142. \section{Lower Casts}
  13143. \label{sec:lower-casts}
  13144. The next step in the journey towards x86 is the \code{lower-casts}
  13145. pass that translates the casts in \LangCast{} to the lower-level
  13146. \code{Inject} and \code{Project} operators and a new operator for
  13147. creating vector proxies, extending the \LangLoop{} language to create
  13148. \LangProxy{}. We recommend creating an auxiliary function named
  13149. \code{lower-cast} that takes an expression (in \LangCast{}), a source type,
  13150. and a target type, and translates it to expression in \LangProxy{} that has
  13151. the same behavior as casting the expression from the source to the
  13152. target type in the interpreter.
  13153. The \code{lower-cast} function can follow a code structure similar to
  13154. the \code{apply-cast} function (Figure~\ref{fig:apply-cast}) used in
  13155. the interpreter for \LangCast{} because it must handle the same cases as
  13156. \code{apply-cast} and it needs to mimic the behavior of
  13157. \code{apply-cast}. The most interesting cases are those concerning the
  13158. casts between two vector types and between two function types.
  13159. As mentioned in Section~\ref{sec:interp-casts}, a cast from one vector
  13160. type to another vector type is accomplished by creating a proxy that
  13161. intercepts the operations on the underlying vector. Here we make the
  13162. creation of the proxy explicit with the \code{vector-proxy} primitive
  13163. operation. It takes three arguments, the first is an expression for
  13164. the vector, the second is a vector of functions for casting an element
  13165. that is being read from the vector, and the third is a vector of
  13166. functions for casting an element that is being written to the vector.
  13167. You can create the functions using \code{Lambda}. Also, as we shall
  13168. see in the next section, we need to differentiate these vectors from
  13169. the user-created ones, so we recommend using a new primitive operator
  13170. named \code{raw-vector} instead of \code{vector} to create these
  13171. vectors of functions. Figure~\ref{fig:map-vec-bang-lower-cast} shows
  13172. the output of \code{lower-casts} on the example in
  13173. Figure~\ref{fig:map-vec-bang} that involved casting a vector of
  13174. integers to a vector of \code{Any}.
  13175. \begin{figure}[tbp]
  13176. \begin{lstlisting}
  13177. (define (map-vec! [f : (Any -> Any)] [v : (Vector Any Any)]) : Void
  13178. (begin
  13179. (vector-set! v 0 (f (vector-ref v 0)))
  13180. (vector-set! v 1 (f (vector-ref v 1)))))
  13181. (define (add1 [x : Any]) : Any
  13182. (inject (+ (project x Integer) 1) Integer))
  13183. (let ([v (vector 0 41)])
  13184. (begin
  13185. (map-vec! add1 (vector-proxy v
  13186. (raw-vector (lambda: ([x9 : Integer]) : Any
  13187. (inject x9 Integer))
  13188. (lambda: ([x9 : Integer]) : Any
  13189. (inject x9 Integer)))
  13190. (raw-vector (lambda: ([x9 : Any]) : Integer
  13191. (project x9 Integer))
  13192. (lambda: ([x9 : Any]) : Integer
  13193. (project x9 Integer)))))
  13194. (vector-ref v 1)))
  13195. \end{lstlisting}
  13196. \caption{Output of \code{lower-casts} on the example in
  13197. Figure~\ref{fig:map-vec-bang}.}
  13198. \label{fig:map-vec-bang-lower-cast}
  13199. \end{figure}
  13200. A cast from one function type to another function type is accomplished
  13201. by generating a \code{Lambda} whose parameter and return types match
  13202. the target function type. The body of the \code{Lambda} should cast
  13203. the parameters from the target type to the source type (yes,
  13204. backwards! functions are contravariant\index{contravariant} in the
  13205. parameters), then call the underlying function, and finally cast the
  13206. result from the source return type to the target return type.
  13207. Figure~\ref{fig:map-vec-lower-cast} shows the output of the
  13208. \code{lower-casts} pass on the \code{map-vec} example in
  13209. Figure~\ref{fig:gradual-map-vec}. Note that the \code{add1} argument
  13210. in the call to \code{map-vec} is wrapped in a \code{lambda}.
  13211. \begin{figure}[tbp]
  13212. \begin{lstlisting}
  13213. (define (map-vec [f : (Integer -> Integer)]
  13214. [v : (Vector Integer Integer)])
  13215. : (Vector Integer Integer)
  13216. (vector (f (vector-ref v 0)) (f (vector-ref v 1))))
  13217. (define (add1 [x : Any]) : Any
  13218. (inject (+ (project x Integer) 1) Integer))
  13219. (vector-ref (map-vec (lambda: ([x9 : Integer]) : Integer
  13220. (project (add1 (inject x9 Integer)) Integer))
  13221. (vector 0 41)) 1)
  13222. \end{lstlisting}
  13223. \caption{Output of \code{lower-casts} on the example in
  13224. Figure~\ref{fig:gradual-map-vec}.}
  13225. \label{fig:map-vec-lower-cast}
  13226. \end{figure}
  13227. \section{Differentiate Proxies}
  13228. \label{sec:differentiate-proxies}
  13229. So far the job of differentiating vectors and vector proxies has been
  13230. the job of the interpreter. For example, the interpreter for \LangCast{}
  13231. implements \code{vector-ref} using the \code{guarded-vector-ref}
  13232. function in Figure~\ref{fig:guarded-vector}. In the
  13233. \code{differentiate-proxies} pass we shift this responsibility to the
  13234. generated code.
  13235. We begin by designing the output language $R^p_8$. In
  13236. \LangGrad{} we used the type \code{Vector} for both real vectors and vector
  13237. proxies. In $R^p_8$ we return the \code{Vector} type to
  13238. its original meaning, as the type of real vectors, and we introduce a
  13239. new type, \code{PVector}, whose values can be either real vectors or
  13240. vector proxies. This new type comes with a suite of new primitive
  13241. operations for creating and using values of type \code{PVector}. We
  13242. don't need to introduce a new type to represent vector proxies. A
  13243. proxy is represented by a vector containing three things: 1) the
  13244. underlying vector, 2) a vector of functions for casting elements that
  13245. are read from the vector, and 3) a vector of functions for casting
  13246. values to be written to the vector. So we define the following
  13247. abbreviation for the type of a vector proxy:
  13248. \[
  13249. \itm{Proxy} (T\ldots \Rightarrow T'\ldots)
  13250. = (\ttm{Vector}~(\ttm{PVector}~ T\ldots) ~R~ W)
  13251. \to (\key{PVector}~ T' \ldots)
  13252. \]
  13253. where $R = (\ttm{Vector}~(T\to T') \ldots)$ and
  13254. $W = (\ttm{Vector}~(T'\to T) \ldots)$.
  13255. %
  13256. Next we describe each of the new primitive operations.
  13257. \begin{description}
  13258. \item[\code{inject-vector} : (\key{Vector} $T \ldots$) $\to$
  13259. (\key{PVector} $T \ldots$)]\ \\
  13260. %
  13261. This operation brands a vector as a value of the \code{PVector} type.
  13262. \item[\code{inject-proxy} : $\itm{Proxy}(T\ldots \Rightarrow T'\ldots)$
  13263. $\to$ (\key{PVector} $T' \ldots$)]\ \\
  13264. %
  13265. This operation brands a vector proxy as value of the \code{PVector} type.
  13266. \item[\code{proxy?} : (\key{PVector} $T \ldots$) $\to$
  13267. \code{Boolean}] \ \\
  13268. %
  13269. returns true if the value is a vector proxy and false if it is a
  13270. real vector.
  13271. \item[\code{project-vector} : (\key{PVector} $T \ldots$) $\to$
  13272. (\key{Vector} $T \ldots$)]\ \\
  13273. %
  13274. Assuming that the input is a vector (and not a proxy), this
  13275. operation returns the vector.
  13276. \item[\code{proxy-vector-length} : (\key{PVector} $T \ldots$)
  13277. $\to$ \code{Boolean}]\ \\
  13278. %
  13279. Given a vector proxy, this operation returns the length of the
  13280. underlying vector.
  13281. \item[\code{proxy-vector-ref} : (\key{PVector} $T \ldots$)
  13282. $\to$ ($i$ : \code{Integer}) $\to$ $T_i$]\ \\
  13283. %
  13284. Given a vector proxy, this operation returns the $i$th element of
  13285. the underlying vector.
  13286. \item[\code{proxy-vector-set!} : (\key{PVector} $T \ldots$) $\to$ ($i$
  13287. : \code{Integer}) $\to$ $T_i$ $\to$ \key{Void}]\ \\ Given a vector
  13288. proxy, this operation writes a value to the $i$th element of the
  13289. underlying vector.
  13290. \end{description}
  13291. Now to discuss the translation that differentiates vectors from
  13292. proxies. First, every type annotation in the program must be
  13293. translated (recursively) to replace \code{Vector} with \code{PVector}.
  13294. Next, we must insert uses of \code{PVector} operations in the
  13295. appropriate places. For example, we wrap every vector creation with an
  13296. \code{inject-vector}.
  13297. \begin{lstlisting}
  13298. (vector |$e_1 \ldots e_n$|)
  13299. |$\Rightarrow$|
  13300. (inject-vector (vector |$e'_1 \ldots e'_n$|))
  13301. \end{lstlisting}
  13302. The \code{raw-vector} operator that we introduced in the previous
  13303. section does not get injected.
  13304. \begin{lstlisting}
  13305. (raw-vector |$e_1 \ldots e_n$|)
  13306. |$\Rightarrow$|
  13307. (vector |$e'_1 \ldots e'_n$|)
  13308. \end{lstlisting}
  13309. The \code{vector-proxy} primitive translates as follows.
  13310. \begin{lstlisting}
  13311. (vector-proxy |$e_1~e_2~e_3$|)
  13312. |$\Rightarrow$|
  13313. (inject-proxy (vector |$e'_1~e'_2~e'_3$|))
  13314. \end{lstlisting}
  13315. We translate the vector operations into conditional expressions that
  13316. check whether the value is a proxy and then dispatch to either the
  13317. appropriate proxy vector operation or the regular vector operation.
  13318. For example, the following is the translation for \code{vector-ref}.
  13319. \begin{lstlisting}
  13320. (vector-ref |$e_1$| |$i$|)
  13321. |$\Rightarrow$|
  13322. (let ([|$v~e_1$|])
  13323. (if (proxy? |$v$|)
  13324. (proxy-vector-ref |$v$| |$i$|)
  13325. (vector-ref (project-vector |$v$|) |$i$|)
  13326. \end{lstlisting}
  13327. Note in the case of a real vector, we must apply \code{project-vector}
  13328. before the \code{vector-ref}.
  13329. \section{Reveal Casts}
  13330. \label{sec:reveal-casts-gradual}
  13331. Recall that the \code{reveal-casts} pass
  13332. (Section~\ref{sec:reveal-casts-Rany}) is responsible for lowering
  13333. \code{Inject} and \code{Project} into lower-level operations. In
  13334. particular, \code{Project} turns into a conditional expression that
  13335. inspects the tag and retrieves the underlying value. Here we need to
  13336. augment the translation of \code{Project} to handle the situation when
  13337. the target type is \code{PVector}. Instead of using
  13338. \code{vector-length} we need to use \code{proxy-vector-length}.
  13339. \begin{lstlisting}
  13340. (project |$e$| (PVector Any|$_1$| |$\ldots$| Any|$_n$|))
  13341. |$\Rightarrow$|
  13342. (let |$\itm{tmp}$| |$e'$|
  13343. (if (eq? (tag-of-any |$\itm{tmp}$| 2))
  13344. (let |$\itm{vec}$| (value-of |$\itm{tmp}$| (PVector Any |$\ldots$| Any))
  13345. (if (eq? (proxy-vector-length |$\itm{vec}$|) |$n$|) |$\itm{vec}$| (exit)))
  13346. (exit)))
  13347. \end{lstlisting}
  13348. \section{Closure Conversion}
  13349. \label{sec:closure-conversion-gradual}
  13350. The closure conversion pass only requires one minor adjustment. The
  13351. auxiliary function that translates type annotations needs to be
  13352. updated to handle the \code{PVector} type.
  13353. \section{Explicate Control}
  13354. \label{sec:explicate-control-gradual}
  13355. Update the \code{explicate-control} pass to handle the new primitive
  13356. operations on the \code{PVector} type.
  13357. \section{Select Instructions}
  13358. \label{sec:select-instructions-gradual}
  13359. Recall that the \code{select-instructions} pass is responsible for
  13360. lowering the primitive operations into x86 instructions. So we need
  13361. to translate the new \code{PVector} operations to x86. To do so, the
  13362. first question we need to answer is how will we differentiate the two
  13363. kinds of values (vectors and proxies) that can inhabit \code{PVector}.
  13364. We need just one bit to accomplish this, and use the bit in position
  13365. $57$ of the 64-bit tag at the front of every vector (see
  13366. Figure~\ref{fig:tuple-rep}). So far, this bit has been set to $0$, so
  13367. for \code{inject-vector} we leave it that way.
  13368. \begin{lstlisting}
  13369. (Assign |$\itm{lhs}$| (Prim 'inject-vector (list |$e_1$|)))
  13370. |$\Rightarrow$|
  13371. movq |$e'_1$|, |$\itm{lhs'}$|
  13372. \end{lstlisting}
  13373. On the other hand, \code{inject-proxy} sets bit $57$ to $1$.
  13374. \begin{lstlisting}
  13375. (Assign |$\itm{lhs}$| (Prim 'inject-proxy (list |$e_1$|)))
  13376. |$\Rightarrow$|
  13377. movq |$e'_1$|, %r11
  13378. movq |$(1 << 57)$|, %rax
  13379. orq 0(%r11), %rax
  13380. movq %rax, 0(%r11)
  13381. movq %r11, |$\itm{lhs'}$|
  13382. \end{lstlisting}
  13383. The \code{proxy?} operation consumes the information so carefully
  13384. stashed away by \code{inject-vector} and \code{inject-proxy}. It
  13385. isolates the $57$th bit to tell whether the value is a real vector or
  13386. a proxy.
  13387. \begin{lstlisting}
  13388. (Assign |$\itm{lhs}$| (Prim 'proxy? (list e)))
  13389. |$\Rightarrow$|
  13390. movq |$e_1'$|, %r11
  13391. movq 0(%r11), %rax
  13392. sarq $57, %rax
  13393. andq $1, %rax
  13394. movq %rax, |$\itm{lhs'}$|
  13395. \end{lstlisting}
  13396. The \code{project-vector} operation is straightforward to translate,
  13397. so we leave it up to the reader.
  13398. Regarding the \code{proxy-vector} operations, the runtime provides
  13399. procedures that implement them (they are recursive functions!) so
  13400. here we simply need to translate these vector operations into the
  13401. appropriate function call. For example, here is the translation for
  13402. \code{proxy-vector-ref}.
  13403. \begin{lstlisting}
  13404. (Assign |$\itm{lhs}$| (Prim 'proxy-vector-ref (list |$e_1$| |$e_2$|)))
  13405. |$\Rightarrow$|
  13406. movq |$e_1'$|, %rdi
  13407. movq |$e_2'$|, %rsi
  13408. callq proxy_vector_ref
  13409. movq %rax, |$\itm{lhs'}$|
  13410. \end{lstlisting}
  13411. We have another batch of vector operations to deal with, those for the
  13412. \code{Any} type. Recall that the type checker for \LangGrad{} generates an
  13413. \code{any-vector-ref} when there is a \code{vector-ref} on something
  13414. of type \code{Any}, and similarly for \code{any-vector-set!} and
  13415. \code{any-vector-length} (Figure~\ref{fig:type-check-Rgradual-1}). In
  13416. Section~\ref{sec:select-Rany} we selected instructions for these
  13417. operations based on the idea that the underlying value was a real
  13418. vector. But in the current setting, the underlying value is of type
  13419. \code{PVector}. So \code{any-vector-ref} can be translates to
  13420. pseudo-x86 as follows. We begin by projecting the underlying value out
  13421. of the tagged value and then call the \code{proxy\_vector\_ref}
  13422. procedure in the runtime.
  13423. \begin{lstlisting}
  13424. (Assign |$\itm{lhs}$| (Prim 'any-vector-ref (list |$e_1$| |$e_2$|)))
  13425. movq |$\neg 111$|, %rdi
  13426. andq |$e_1'$|, %rdi
  13427. movq |$e_2'$|, %rsi
  13428. callq proxy_vector_ref
  13429. movq %rax, |$\itm{lhs'}$|
  13430. \end{lstlisting}
  13431. The \code{any-vector-set!} and \code{any-vector-length} operators can
  13432. be translated in a similar way.
  13433. \begin{exercise}\normalfont
  13434. Implement a compiler for the gradually-typed \LangGrad{} language by
  13435. extending and adapting your compiler for \LangLoop{}. Create 10 new
  13436. partially-typed test programs. In addition to testing with these
  13437. new programs, also test your compiler on all the tests for \LangLoop{}
  13438. and tests for \LangDyn{}. Sometimes you may get a type checking error
  13439. on the \LangDyn{} programs but you can adapt them by inserting
  13440. a cast to the \code{Any} type around each subexpression
  13441. causing a type error. While \LangDyn{} doesn't have explicit casts,
  13442. you can induce one by wrapping the subexpression \code{e}
  13443. with a call to an un-annotated identity function, like this:
  13444. \code{((lambda (x) x) e)}.
  13445. \end{exercise}
  13446. \begin{figure}[p]
  13447. \begin{tikzpicture}[baseline=(current bounding box.center)]
  13448. \node (Rgradual) at (6,4) {\large \LangGrad{}};
  13449. \node (Rgradualp) at (3,4) {\large \LangCast{}};
  13450. \node (Rwhilepp) at (0,4) {\large \LangProxy{}};
  13451. \node (Rwhileproxy) at (0,2) {\large \LangPVec{}};
  13452. \node (Rwhileproxy-2) at (3,2) {\large \LangPVec{}};
  13453. \node (Rwhileproxy-3) at (6,2) {\large \LangPVec{}};
  13454. \node (Rwhileproxy-4) at (9,2) {\large \LangPVecFunRef{}};
  13455. \node (Rwhileproxy-5) at (12,2) {\large \LangPVecFunRef{}};
  13456. \node (F1-1) at (12,0) {\large \LangPVecFunRef{}};
  13457. \node (F1-2) at (9,0) {\large \LangPVecFunRef{}};
  13458. \node (F1-3) at (6,0) {\large \LangPVecFunRef{}};
  13459. \node (F1-4) at (3,0) {\large \LangPVecAlloc{}};
  13460. \node (F1-5) at (0,0) {\large \LangPVecAlloc{}};
  13461. \node (C3-2) at (3,-2) {\large \LangCLoopPVec{}};
  13462. \node (x86-2) at (3,-4) {\large \LangXIndCallVar{}};
  13463. \node (x86-2-1) at (3,-6) {\large \LangXIndCallVar{}};
  13464. \node (x86-2-2) at (6,-6) {\large \LangXIndCallVar{}};
  13465. \node (x86-3) at (6,-4) {\large \LangXIndCallVar{}};
  13466. \node (x86-4) at (9,-4) {\large \LangXIndCall{}};
  13467. \node (x86-5) at (9,-6) {\large \LangXIndCall{}};
  13468. \path[->,bend right=15] (Rgradual) edge [above] node
  13469. {\ttfamily\footnotesize type-check} (Rgradualp);
  13470. \path[->,bend right=15] (Rgradualp) edge [above] node
  13471. {\ttfamily\footnotesize lower-casts} (Rwhilepp);
  13472. \path[->,bend right=15] (Rwhilepp) edge [right] node
  13473. {\ttfamily\footnotesize differentiate-proxies} (Rwhileproxy);
  13474. \path[->,bend left=15] (Rwhileproxy) edge [above] node
  13475. {\ttfamily\footnotesize shrink} (Rwhileproxy-2);
  13476. \path[->,bend left=15] (Rwhileproxy-2) edge [above] node
  13477. {\ttfamily\footnotesize uniquify} (Rwhileproxy-3);
  13478. \path[->,bend left=15] (Rwhileproxy-3) edge [above] node
  13479. {\ttfamily\footnotesize reveal-functions} (Rwhileproxy-4);
  13480. \path[->,bend left=15] (Rwhileproxy-4) edge [above] node
  13481. {\ttfamily\footnotesize reveal-casts} (Rwhileproxy-5);
  13482. \path[->,bend left=15] (Rwhileproxy-5) edge [left] node
  13483. {\ttfamily\footnotesize convert-assignments} (F1-1);
  13484. \path[->,bend left=15] (F1-1) edge [below] node
  13485. {\ttfamily\footnotesize convert-to-clos.} (F1-2);
  13486. \path[->,bend right=15] (F1-2) edge [above] node
  13487. {\ttfamily\footnotesize limit-fun.} (F1-3);
  13488. \path[->,bend right=15] (F1-3) edge [above] node
  13489. {\ttfamily\footnotesize expose-alloc.} (F1-4);
  13490. \path[->,bend right=15] (F1-4) edge [above] node
  13491. {\ttfamily\footnotesize remove-complex.} (F1-5);
  13492. \path[->,bend right=15] (F1-5) edge [right] node
  13493. {\ttfamily\footnotesize explicate-control} (C3-2);
  13494. \path[->,bend left=15] (C3-2) edge [left] node
  13495. {\ttfamily\footnotesize select-instr.} (x86-2);
  13496. \path[->,bend right=15] (x86-2) edge [left] node
  13497. {\ttfamily\footnotesize uncover-live} (x86-2-1);
  13498. \path[->,bend right=15] (x86-2-1) edge [below] node
  13499. {\ttfamily\footnotesize build-inter.} (x86-2-2);
  13500. \path[->,bend right=15] (x86-2-2) edge [left] node
  13501. {\ttfamily\footnotesize allocate-reg.} (x86-3);
  13502. \path[->,bend left=15] (x86-3) edge [above] node
  13503. {\ttfamily\footnotesize patch-instr.} (x86-4);
  13504. \path[->,bend left=15] (x86-4) edge [right] node {\ttfamily\footnotesize print-x86} (x86-5);
  13505. \end{tikzpicture}
  13506. \caption{Diagram of the passes for \LangGrad{} (gradual typing).}
  13507. \label{fig:Rgradual-passes}
  13508. \end{figure}
  13509. Figure~\ref{fig:Rgradual-passes} provides an overview of all the passes needed
  13510. for the compilation of \LangGrad{}.
  13511. \section{Further Reading}
  13512. This chapter just scratches the surface of gradual typing. The basic
  13513. approach described here is missing two key ingredients that one would
  13514. want in a implementation of gradual typing: blame
  13515. tracking~\citep{Tobin-Hochstadt:2006fk,Wadler:2009qv} and
  13516. space-efficient casts~\citep{Herman:2006uq,Herman:2010aa}. The
  13517. problem addressed by blame tracking is that when a cast on a
  13518. higher-order value fails, it often does so at a point in the program
  13519. that is far removed from the original cast. Blame tracking is a
  13520. technique for propagating extra information through casts and proxies
  13521. so that when a cast fails, the error message can point back to the
  13522. original location of the cast in the source program.
  13523. The problem addressed by space-efficient casts also relates to
  13524. higher-order casts. It turns out that in partially typed programs, a
  13525. function or vector can flow through very-many casts at runtime. With
  13526. the approach described in this chapter, each cast adds another
  13527. \code{lambda} wrapper or a vector proxy. Not only does this take up
  13528. considerable space, but it also makes the function calls and vector
  13529. operations slow. For example, a partially-typed version of quicksort
  13530. could, in the worst case, build a chain of proxies of length $O(n)$
  13531. around the vector, changing the overall time complexity of the
  13532. algorithm from $O(n^2)$ to $O(n^3)$! \citet{Herman:2006uq} suggested a
  13533. solution to this problem by representing casts using the coercion
  13534. calculus of \citet{Henglein:1994nz}, which prevents the creation of
  13535. long chains of proxies by compressing them into a concise normal
  13536. form. \citet{Siek:2015ab} give and algorithm for compressing coercions
  13537. and \citet{Kuhlenschmidt:2019aa} show how to implement these ideas in
  13538. the Grift compiler.
  13539. \begin{center}
  13540. \url{https://github.com/Gradual-Typing/Grift}
  13541. \end{center}
  13542. There are also interesting interactions between gradual typing and
  13543. other language features, such as parametetric polymorphism,
  13544. information-flow types, and type inference, to name a few. We
  13545. recommend the reader to the online gradual typing bibliography:
  13546. \begin{center}
  13547. \url{http://samth.github.io/gradual-typing-bib/}
  13548. \end{center}
  13549. % TODO: challenge problem:
  13550. % type analysis and type specialization?
  13551. % coercions?
  13552. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  13553. \chapter{Parametric Polymorphism}
  13554. \label{ch:Rpoly}
  13555. \index{parametric polymorphism}
  13556. \index{generics}
  13557. This chapter studies the compilation of parametric
  13558. polymorphism\index{parametric polymorphism}
  13559. (aka. generics\index{generics}) in the subset \LangPoly{} of Typed
  13560. Racket. Parametric polymorphism enables improved code reuse by
  13561. parameterizing functions and data structures with respect to the types
  13562. that they operate on. For example, Figure~\ref{fig:map-vec-poly}
  13563. revisits the \code{map-vec} example but this time gives it a more
  13564. fitting type. This \code{map-vec} function is parameterized with
  13565. respect to the element type of the vector. The type of \code{map-vec}
  13566. is the following polymorphic type as specified by the \code{All} and
  13567. the type parameter \code{a}.
  13568. \begin{lstlisting}
  13569. (All (a) ((a -> a) (Vector a a) -> (Vector a a)))
  13570. \end{lstlisting}
  13571. The idea is that \code{map-vec} can be used at \emph{all} choices of a
  13572. type for parameter \code{a}. In Figure~\ref{fig:map-vec-poly} we apply
  13573. \code{map-vec} to a vector of integers, a choice of \code{Integer} for
  13574. \code{a}, but we could have just as well applied \code{map-vec} to a
  13575. vector of Booleans (and a function on Booleans).
  13576. \begin{figure}[tbp]
  13577. % poly_test_2.rkt
  13578. \begin{lstlisting}
  13579. (: map-vec (All (a) ((a -> a) (Vector a a) -> (Vector a a))))
  13580. (define (map-vec f v)
  13581. (vector (f (vector-ref v 0)) (f (vector-ref v 1))))
  13582. (define (add1 [x : Integer]) : Integer (+ x 1))
  13583. (vector-ref (map-vec add1 (vector 0 41)) 1)
  13584. \end{lstlisting}
  13585. \caption{The \code{map-vec} example using parametric polymorphism.}
  13586. \label{fig:map-vec-poly}
  13587. \end{figure}
  13588. Figure~\ref{fig:Rpoly-concrete-syntax} defines the concrete syntax of
  13589. \LangPoly{} and Figure~\ref{fig:Rpoly-syntax} defines the abstract
  13590. syntax. We add a second form for function definitions in which a type
  13591. declaration comes before the \code{define}. In the abstract syntax,
  13592. the return type in the \code{Def} is \code{Any}, but that should be
  13593. ignored in favor of the return type in the type declaration. (The
  13594. \code{Any} comes from using the same parser as in
  13595. Chapter~\ref{ch:Rdyn}.) The presence of a type declaration
  13596. enables the use of an \code{All} type for a function, thereby making
  13597. it polymorphic. The grammar for types is extended to include
  13598. polymorphic types and type variables.
  13599. \begin{figure}[tp]
  13600. \centering
  13601. \fbox{
  13602. \begin{minipage}{0.96\textwidth}
  13603. \small
  13604. \[
  13605. \begin{array}{lcl}
  13606. \Type &::=& \ldots \mid \LP\key{All}~\LP\Var\ldots\RP~ \Type\RP \mid \Var \\
  13607. \Def &::=& \gray{ \CDEF{\Var}{\LS\Var \key{:} \Type\RS \ldots}{\Type}{\Exp} } \\
  13608. &\mid& \LP\key{:}~\Var~\Type\RP \\
  13609. && \LP\key{define}~ \LP\Var ~ \Var\ldots\RP ~ \Exp\RP \\
  13610. \LangPoly{} &::=& \gray{ \Def \ldots ~ \Exp }
  13611. \end{array}
  13612. \]
  13613. \end{minipage}
  13614. }
  13615. \caption{The concrete syntax of \LangPoly{}, extending \LangLoop{}
  13616. (Figure~\ref{fig:Rwhile-concrete-syntax}).}
  13617. \label{fig:Rpoly-concrete-syntax}
  13618. \end{figure}
  13619. \begin{figure}[tp]
  13620. \centering
  13621. \fbox{
  13622. \begin{minipage}{0.96\textwidth}
  13623. \small
  13624. \[
  13625. \begin{array}{lcl}
  13626. \Type &::=& \ldots \mid \LP\key{All}~\LP\Var\ldots\RP~ \Type\RP \mid \Var \\
  13627. \Def &::=& \gray{ \DEF{\Var}{\LP\LS\Var \key{:} \Type\RS \ldots\RP}{\Type}{\code{'()}}{\Exp} } \\
  13628. &\mid& \DECL{\Var}{\Type} \\
  13629. && \DEF{\Var}{\LP\Var \ldots\RP}{\key{'Any}}{\code{'()}}{\Exp} \\
  13630. \LangPoly{} &::=& \gray{ \PROGRAMDEFSEXP{\code{'()}}{\LP\Def\ldots\RP}{\Exp} }
  13631. \end{array}
  13632. \]
  13633. \end{minipage}
  13634. }
  13635. \caption{The abstract syntax of \LangPoly{}, extending \LangLoop{}
  13636. (Figure~\ref{fig:Rwhile-syntax}).}
  13637. \label{fig:Rpoly-syntax}
  13638. \end{figure}
  13639. By including polymorphic types in the $\Type$ non-terminal we choose
  13640. to make them first-class which has interesting repercussions on the
  13641. compiler. Many languages with polymorphism, such as
  13642. C++~\citep{stroustrup88:_param_types} and Standard
  13643. ML~\citep{Milner:1990fk}, only support second-class polymorphism, so
  13644. it is useful to see an example of first-class polymorphism. In
  13645. Figure~\ref{fig:apply-twice} we define a function \code{apply-twice}
  13646. whose parameter is a polymorphic function. The occurrence of a
  13647. polymorphic type underneath a function type is enabled by the normal
  13648. recursive structure of the grammar for $\Type$ and the categorization
  13649. of the \code{All} type as a $\Type$. The body of \code{apply-twice}
  13650. applies the polymorphic function to a Boolean and to an integer.
  13651. \begin{figure}[tbp]
  13652. \begin{lstlisting}
  13653. (: apply-twice ((All (b) (b -> b)) -> Integer))
  13654. (define (apply-twice f)
  13655. (if (f #t) (f 42) (f 777)))
  13656. (: id (All (a) (a -> a)))
  13657. (define (id x) x)
  13658. (apply-twice id)
  13659. \end{lstlisting}
  13660. \caption{An example illustrating first-class polymorphism.}
  13661. \label{fig:apply-twice}
  13662. \end{figure}
  13663. The type checker for \LangPoly{} in Figure~\ref{fig:type-check-Rvar0} has
  13664. three new responsibilities (compared to \LangLoop{}). The type checking of
  13665. function application is extended to handle the case where the operator
  13666. expression is a polymorphic function. In that case the type arguments
  13667. are deduced by matching the type of the parameters with the types of
  13668. the arguments.
  13669. %
  13670. The \code{match-types} auxiliary function carries out this deduction
  13671. by recursively descending through a parameter type \code{pt} and the
  13672. corresponding argument type \code{at}, making sure that they are equal
  13673. except when there is a type parameter on the left (in the parameter
  13674. type). If it's the first time that the type parameter has been
  13675. encountered, then the algorithm deduces an association of the type
  13676. parameter to the corresponding type on the right (in the argument
  13677. type). If it's not the first time that the type parameter has been
  13678. encountered, the algorithm looks up its deduced type and makes sure
  13679. that it is equal to the type on the right.
  13680. %
  13681. Once the type arguments are deduced, the operator expression is
  13682. wrapped in an \code{Inst} AST node (for instantiate) that records the
  13683. type of the operator, but more importantly, records the deduced type
  13684. arguments. The return type of the application is the return type of
  13685. the polymorphic function, but with the type parameters replaced by the
  13686. deduced type arguments, using the \code{subst-type} function.
  13687. The second responsibility of the type checker is extending the
  13688. function \code{type-equal?} to handle the \code{All} type. This is
  13689. not quite a simple as equal on other types, such as function and
  13690. vector types, because two polymorphic types can be syntactically
  13691. different even though they are equivalent types. For example,
  13692. \code{(All (a) (a -> a))} is equivalent to \code{(All (b) (b -> b))}.
  13693. Two polymorphic types should be considered equal if they differ only
  13694. in the choice of the names of the type parameters. The
  13695. \code{type-equal?} function in Figure~\ref{fig:type-check-Rvar0-aux}
  13696. renames the type parameters of the first type to match the type
  13697. parameters of the second type.
  13698. The third responsibility of the type checker is making sure that only
  13699. defined type variables appear in type annotations. The
  13700. \code{check-well-formed} function defined in
  13701. Figure~\ref{fig:well-formed-types} recursively inspects a type, making
  13702. sure that each type variable has been defined.
  13703. The output language of the type checker is \LangInst{}, defined in
  13704. Figure~\ref{fig:Rpoly-prime-syntax}. The type checker combines the type
  13705. declaration and polymorphic function into a single definition, using
  13706. the \code{Poly} form, to make polymorphic functions more convenient to
  13707. process in next pass of the compiler.
  13708. \begin{figure}[tp]
  13709. \centering
  13710. \fbox{
  13711. \begin{minipage}{0.96\textwidth}
  13712. \small
  13713. \[
  13714. \begin{array}{lcl}
  13715. \Type &::=& \ldots \mid \LP\key{All}~\LP\Var\ldots\RP~ \Type\RP \mid \Var \\
  13716. \Exp &::=& \ldots \mid \INST{\Exp}{\Type}{\LP\Type\ldots\RP} \\
  13717. \Def &::=& \gray{ \DEF{\Var}{\LP\LS\Var \key{:} \Type\RS \ldots\RP}{\Type}{\code{'()}}{\Exp} } \\
  13718. &\mid& \LP\key{Poly}~\LP\Var\ldots\RP~ \DEF{\Var}{\LP\LS\Var \key{:} \Type\RS \ldots\RP}{\Type}{\code{'()}}{\Exp}\RP \\
  13719. \LangInst{} &::=& \gray{ \PROGRAMDEFSEXP{\code{'()}}{\LP\Def\ldots\RP}{\Exp} }
  13720. \end{array}
  13721. \]
  13722. \end{minipage}
  13723. }
  13724. \caption{The abstract syntax of \LangInst{}, extending \LangLoop{}
  13725. (Figure~\ref{fig:Rwhile-syntax}).}
  13726. \label{fig:Rpoly-prime-syntax}
  13727. \end{figure}
  13728. The output of the type checker on the polymorphic \code{map-vec}
  13729. example is listed in Figure~\ref{fig:map-vec-type-check}.
  13730. \begin{figure}[tbp]
  13731. % poly_test_2.rkt
  13732. \begin{lstlisting}
  13733. (poly (a) (define (map-vec [f : (a -> a)] [v : (Vector a a)]) : (Vector a a)
  13734. (vector (f (vector-ref v 0)) (f (vector-ref v 1)))))
  13735. (define (add1 [x : Integer]) : Integer (+ x 1))
  13736. (vector-ref ((inst map-vec (All (a) ((a -> a) (Vector a a) -> (Vector a a)))
  13737. (Integer))
  13738. add1 (vector 0 41)) 1)
  13739. \end{lstlisting}
  13740. \caption{Output of the type checker on the \code{map-vec} example.}
  13741. \label{fig:map-vec-type-check}
  13742. \end{figure}
  13743. \begin{figure}[tbp]
  13744. \begin{lstlisting}[basicstyle=\ttfamily\scriptsize]
  13745. (define type-check-poly-class
  13746. (class type-check-Rwhile-class
  13747. (super-new)
  13748. (inherit check-type-equal?)
  13749. (define/override (type-check-apply env e1 es)
  13750. (define-values (e^ ty) ((type-check-exp env) e1))
  13751. (define-values (es^ ty*) (for/lists (es^ ty*) ([e (in-list es)])
  13752. ((type-check-exp env) e)))
  13753. (match ty
  13754. [`(,ty^* ... -> ,rt)
  13755. (for ([arg-ty ty*] [param-ty ty^*])
  13756. (check-type-equal? arg-ty param-ty (Apply e1 es)))
  13757. (values e^ es^ rt)]
  13758. [`(All ,xs (,tys ... -> ,rt))
  13759. (define env^ (append (for/list ([x xs]) (cons x 'Type)) env))
  13760. (define env^^ (for/fold ([env^^ env^]) ([arg-ty ty*] [param-ty tys])
  13761. (match-types env^^ param-ty arg-ty)))
  13762. (define targs
  13763. (for/list ([x xs])
  13764. (match (dict-ref env^^ x (lambda () #f))
  13765. [#f (error 'type-check "type variable ~a not deduced\nin ~v"
  13766. x (Apply e1 es))]
  13767. [ty ty])))
  13768. (values (Inst e^ ty targs) es^ (subst-type env^^ rt))]
  13769. [else (error 'type-check "expected a function, not ~a" ty)]))
  13770. (define/override ((type-check-exp env) e)
  13771. (match e
  13772. [(Lambda `([,xs : ,Ts] ...) rT body)
  13773. (for ([T Ts]) ((check-well-formed env) T))
  13774. ((check-well-formed env) rT)
  13775. ((super type-check-exp env) e)]
  13776. [(HasType e1 ty)
  13777. ((check-well-formed env) ty)
  13778. ((super type-check-exp env) e)]
  13779. [else ((super type-check-exp env) e)]))
  13780. (define/override ((type-check-def env) d)
  13781. (verbose 'type-check "poly/def" d)
  13782. (match d
  13783. [(Generic ts (Def f (and p:t* (list `[,xs : ,ps] ...)) rt info body))
  13784. (define ts-env (for/list ([t ts]) (cons t 'Type)))
  13785. (for ([p ps]) ((check-well-formed ts-env) p))
  13786. ((check-well-formed ts-env) rt)
  13787. (define new-env (append ts-env (map cons xs ps) env))
  13788. (define-values (body^ ty^) ((type-check-exp new-env) body))
  13789. (check-type-equal? ty^ rt body)
  13790. (Generic ts (Def f p:t* rt info body^))]
  13791. [else ((super type-check-def env) d)]))
  13792. (define/override (type-check-program p)
  13793. (match p
  13794. [(Program info body)
  13795. (type-check-program (ProgramDefsExp info '() body))]
  13796. [(ProgramDefsExp info ds body)
  13797. (define ds^ (combine-decls-defs ds))
  13798. (define new-env (for/list ([d ds^])
  13799. (cons (def-name d) (fun-def-type d))))
  13800. (define ds^^ (for/list ([d ds^]) ((type-check-def new-env) d)))
  13801. (define-values (body^ ty) ((type-check-exp new-env) body))
  13802. (check-type-equal? ty 'Integer body)
  13803. (ProgramDefsExp info ds^^ body^)]))
  13804. ))
  13805. \end{lstlisting}
  13806. \caption{Type checker for the \LangPoly{} language.}
  13807. \label{fig:type-check-Rvar0}
  13808. \end{figure}
  13809. \begin{figure}[tbp]
  13810. \begin{lstlisting}[basicstyle=\ttfamily\scriptsize]
  13811. (define/override (type-equal? t1 t2)
  13812. (match* (t1 t2)
  13813. [(`(All ,xs ,T1) `(All ,ys ,T2))
  13814. (define env (map cons xs ys))
  13815. (type-equal? (subst-type env T1) T2)]
  13816. [(other wise)
  13817. (super type-equal? t1 t2)]))
  13818. (define/public (match-types env pt at)
  13819. (match* (pt at)
  13820. [('Integer 'Integer) env] [('Boolean 'Boolean) env]
  13821. [('Void 'Void) env] [('Any 'Any) env]
  13822. [(`(Vector ,pts ...) `(Vector ,ats ...))
  13823. (for/fold ([env^ env]) ([pt1 pts] [at1 ats])
  13824. (match-types env^ pt1 at1))]
  13825. [(`(,pts ... -> ,prt) `(,ats ... -> ,art))
  13826. (define env^ (match-types env prt art))
  13827. (for/fold ([env^^ env^]) ([pt1 pts] [at1 ats])
  13828. (match-types env^^ pt1 at1))]
  13829. [(`(All ,pxs ,pt1) `(All ,axs ,at1))
  13830. (define env^ (append (map cons pxs axs) env))
  13831. (match-types env^ pt1 at1)]
  13832. [((? symbol? x) at)
  13833. (match (dict-ref env x (lambda () #f))
  13834. [#f (error 'type-check "undefined type variable ~a" x)]
  13835. ['Type (cons (cons x at) env)]
  13836. [t^ (check-type-equal? at t^ 'matching) env])]
  13837. [(other wise) (error 'type-check "mismatch ~a != a" pt at)]))
  13838. (define/public (subst-type env pt)
  13839. (match pt
  13840. ['Integer 'Integer] ['Boolean 'Boolean]
  13841. ['Void 'Void] ['Any 'Any]
  13842. [`(Vector ,ts ...)
  13843. `(Vector ,@(for/list ([t ts]) (subst-type env t)))]
  13844. [`(,ts ... -> ,rt)
  13845. `(,@(for/list ([t ts]) (subst-type env t)) -> ,(subst-type env rt))]
  13846. [`(All ,xs ,t)
  13847. `(All ,xs ,(subst-type (append (map cons xs xs) env) t))]
  13848. [(? symbol? x) (dict-ref env x)]
  13849. [else (error 'type-check "expected a type not ~a" pt)]))
  13850. (define/public (combine-decls-defs ds)
  13851. (match ds
  13852. ['() '()]
  13853. [`(,(Decl name type) . (,(Def f params _ info body) . ,ds^))
  13854. (unless (equal? name f)
  13855. (error 'type-check "name mismatch, ~a != ~a" name f))
  13856. (match type
  13857. [`(All ,xs (,ps ... -> ,rt))
  13858. (define params^ (for/list ([x params] [T ps]) `[,x : ,T]))
  13859. (cons (Generic xs (Def name params^ rt info body))
  13860. (combine-decls-defs ds^))]
  13861. [`(,ps ... -> ,rt)
  13862. (define params^ (for/list ([x params] [T ps]) `[,x : ,T]))
  13863. (cons (Def name params^ rt info body) (combine-decls-defs ds^))]
  13864. [else (error 'type-check "expected a function type, not ~a" type) ])]
  13865. [`(,(Def f params rt info body) . ,ds^)
  13866. (cons (Def f params rt info body) (combine-decls-defs ds^))]))
  13867. \end{lstlisting}
  13868. \caption{Auxiliary functions for type checking \LangPoly{}.}
  13869. \label{fig:type-check-Rvar0-aux}
  13870. \end{figure}
  13871. \begin{figure}[tbp]
  13872. \begin{lstlisting}%[basicstyle=\ttfamily\scriptsize]
  13873. (define/public ((check-well-formed env) ty)
  13874. (match ty
  13875. ['Integer (void)]
  13876. ['Boolean (void)]
  13877. ['Void (void)]
  13878. [(? symbol? a)
  13879. (match (dict-ref env a (lambda () #f))
  13880. ['Type (void)]
  13881. [else (error 'type-check "undefined type variable ~a" a)])]
  13882. [`(Vector ,ts ...)
  13883. (for ([t ts]) ((check-well-formed env) t))]
  13884. [`(,ts ... -> ,t)
  13885. (for ([t ts]) ((check-well-formed env) t))
  13886. ((check-well-formed env) t)]
  13887. [`(All ,xs ,t)
  13888. (define env^ (append (for/list ([x xs]) (cons x 'Type)) env))
  13889. ((check-well-formed env^) t)]
  13890. [else (error 'type-check "unrecognized type ~a" ty)]))
  13891. \end{lstlisting}
  13892. \caption{Well-formed types.}
  13893. \label{fig:well-formed-types}
  13894. \end{figure}
  13895. % TODO: interpreter for R'_10
  13896. \section{Compiling Polymorphism}
  13897. \label{sec:compiling-poly}
  13898. Broadly speaking, there are four approaches to compiling parametric
  13899. polymorphism, which we describe below.
  13900. \begin{description}
  13901. \item[Monomorphization] generates a different version of a polymorphic
  13902. function for each set of type arguments that it is used with,
  13903. producing type-specialized code. This approach results in the most
  13904. efficient code but requires whole-program compilation (no separate
  13905. compilation) and increases code size. For our current purposes
  13906. monomorphization is a non-starter because, with first-class
  13907. polymorphism, it is sometimes not possible to determine which
  13908. generic functions are used with which type arguments during
  13909. compilation. (It can be done at runtime, with just-in-time
  13910. compilation.) This approach is used to compile C++
  13911. templates~\citep{stroustrup88:_param_types} and polymorphic
  13912. functions in NESL~\citep{Blelloch:1993aa} and
  13913. ML~\citep{Weeks:2006aa}.
  13914. \item[Uniform representation] generates one version of each
  13915. polymorphic function but requires all values have a common ``boxed''
  13916. format, such as the tagged values of type \code{Any} in
  13917. \LangAny{}. Non-polymorphic code (i.e. monomorphic code) is compiled
  13918. similarly to code in a dynamically typed language (like \LangDyn{}),
  13919. in which primitive operators require their arguments to be projected
  13920. from \code{Any} and their results are injected into \code{Any}. (In
  13921. object-oriented languages, the projection is accomplished via
  13922. virtual method dispatch.) The uniform representation approach is
  13923. compatible with separate compilation and with first-class
  13924. polymorphism. However, it produces the least-efficient code because
  13925. it introduces overhead in the entire program, including
  13926. non-polymorphic code. This approach is used in implementations of
  13927. CLU~\cite{liskov79:_clu_ref,Liskov:1993dk},
  13928. ML~\citep{Cardelli:1984aa,Appel:1987aa}, and
  13929. Java~\citep{Bracha:1998fk}.
  13930. \item[Mixed representation] generates one version of each polymorphic
  13931. function, using a boxed representation for type
  13932. variables. Monomorphic code is compiled as usual (as in \LangLoop{})
  13933. and conversions are performed at the boundaries between monomorphic
  13934. and polymorphic (e.g. when a polymorphic function is instantiated
  13935. and called). This approach is compatible with separate compilation
  13936. and first-class polymorphism and maintains the efficiency of
  13937. monomorphic code. The tradeoff is increased overhead at the boundary
  13938. between monomorphic and polymorphic code. This approach is used in
  13939. implementations of ML~\citep{Leroy:1992qb} and Java, starting in
  13940. Java 5 with the addition of autoboxing.
  13941. \item[Type passing] uses the unboxed representation in both
  13942. monomorphic and polymorphic code. Each polymorphic function is
  13943. compiled to a single function with extra parameters that describe
  13944. the type arguments. The type information is used by the generated
  13945. code to know how to access the unboxed values at runtime. This
  13946. approach is used in implementation of the Napier88
  13947. language~\citep{Morrison:1991aa} and ML~\citep{Harper:1995um}. Type
  13948. passing is compatible with separate compilation and first-class
  13949. polymorphism and maintains the efficiency for monomorphic
  13950. code. There is runtime overhead in polymorphic code from dispatching
  13951. on type information.
  13952. \end{description}
  13953. In this chapter we use the mixed representation approach, partly
  13954. because of its favorable attributes, and partly because it is
  13955. straightforward to implement using the tools that we have already
  13956. built to support gradual typing. To compile polymorphic functions, we
  13957. add just one new pass, \code{erase-types}, to compile \LangInst{} to
  13958. \LangCast{}.
  13959. \section{Erase Types}
  13960. \label{sec:erase-types}
  13961. We use the \code{Any} type from Chapter~\ref{ch:Rdyn} to
  13962. represent type variables. For example, Figure~\ref{fig:map-vec-erase}
  13963. shows the output of the \code{erase-types} pass on the polymorphic
  13964. \code{map-vec} (Figure~\ref{fig:map-vec-poly}). The occurrences of
  13965. type parameter \code{a} are replaced by \code{Any} and the polymorphic
  13966. \code{All} types are removed from the type of \code{map-vec}.
  13967. \begin{figure}[tbp]
  13968. \begin{lstlisting}
  13969. (define (map-vec [f : (Any -> Any)] [v : (Vector Any Any)])
  13970. : (Vector Any Any)
  13971. (vector (f (vector-ref v 0)) (f (vector-ref v 1))))
  13972. (define (add1 [x : Integer]) : Integer (+ x 1))
  13973. (vector-ref ((cast map-vec
  13974. ((Any -> Any) (Vector Any Any) -> (Vector Any Any))
  13975. ((Integer -> Integer) (Vector Integer Integer)
  13976. -> (Vector Integer Integer)))
  13977. add1 (vector 0 41)) 1)
  13978. \end{lstlisting}
  13979. \caption{The polymorphic \code{map-vec} example after type erasure.}
  13980. \label{fig:map-vec-erase}
  13981. \end{figure}
  13982. This process of type erasure creates a challenge at points of
  13983. instantiation. For example, consider the instantiation of
  13984. \code{map-vec} in Figure~\ref{fig:map-vec-type-check}.
  13985. The type of \code{map-vec} is
  13986. \begin{lstlisting}
  13987. (All (a) ((a -> a) (Vector a a) -> (Vector a a)))
  13988. \end{lstlisting}
  13989. and it is instantiated to
  13990. \begin{lstlisting}
  13991. ((Integer -> Integer) (Vector Integer Integer)
  13992. -> (Vector Integer Integer))
  13993. \end{lstlisting}
  13994. After erasure, the type of \code{map-vec} is
  13995. \begin{lstlisting}
  13996. ((Any -> Any) (Vector Any Any) -> (Vector Any Any))
  13997. \end{lstlisting}
  13998. but we need to convert it to the instantiated type. This is easy to
  13999. do in the target language \LangCast{} with a single \code{cast}. In
  14000. Figure~\ref{fig:map-vec-erase}, the instantiation of \code{map-vec}
  14001. has been compiled to a \code{cast} from the type of \code{map-vec} to
  14002. the instantiated type. The source and target type of a cast must be
  14003. consistent (Figure~\ref{fig:consistent}), which indeed is the case
  14004. because both the source and target are obtained from the same
  14005. polymorphic type of \code{map-vec}, replacing the type parameters with
  14006. \code{Any} in the former and with the deduced type arguments in the
  14007. later. (Recall that the \code{Any} type is consistent with any type.)
  14008. To implement the \code{erase-types} pass, we recommend defining a
  14009. recursive auxiliary function named \code{erase-type} that applies the
  14010. following two transformations. It replaces type variables with
  14011. \code{Any}
  14012. \begin{lstlisting}
  14013. |$x$|
  14014. |$\Rightarrow$|
  14015. Any
  14016. \end{lstlisting}
  14017. and it removes the polymorphic \code{All} types.
  14018. \begin{lstlisting}
  14019. (All |$xs$| |$T_1$|)
  14020. |$\Rightarrow$|
  14021. |$T'_1$|
  14022. \end{lstlisting}
  14023. Apply the \code{erase-type} function to all of the type annotations in
  14024. the program.
  14025. Regarding the translation of expressions, the case for \code{Inst} is
  14026. the interesting one. We translate it into a \code{Cast}, as shown
  14027. below. The type of the subexpression $e$ is the polymorphic type
  14028. $\LP\key{All} xs T\RP$. The source type of the cast is the erasure of
  14029. $T$, the type $T'$. The target type $T''$ is the result of
  14030. substituting the arguments types $ts$ for the type parameters $xs$ in
  14031. $T$ followed by doing type erasure.
  14032. \begin{lstlisting}
  14033. (Inst |$e$| (All |$xs$| |$T$|) |$ts$|)
  14034. |$\Rightarrow$|
  14035. (Cast |$e'$| |$T'$| |$T''$|)
  14036. \end{lstlisting}
  14037. where $T'' = \LP\code{erase-type}~\LP\code{subst-type}~s~T\RP\RP$
  14038. and $s = \LP\code{map}~\code{cons}~xs~ts\RP$.
  14039. Finally, each polymorphic function is translated to a regular
  14040. functions in which type erasure has been applied to all the type
  14041. annotations and the body.
  14042. \begin{lstlisting}
  14043. (Poly |$ts$| (Def |$f$| ([|$x_1$| : |$T_1$|] |$\ldots$|) |$T_r$| |$\itm{info}$| |$e$|))
  14044. |$\Rightarrow$|
  14045. (Def |$f$| ([|$x_1$| : |$T'_1$|] |$\ldots$|) |$T'_r$| |$\itm{info}$| |$e'$|)
  14046. \end{lstlisting}
  14047. \begin{exercise}\normalfont
  14048. Implement a compiler for the polymorphic language \LangPoly{} by
  14049. extending and adapting your compiler for \LangGrad{}. Create 6 new test
  14050. programs that use polymorphic functions. Some of them should make
  14051. use of first-class polymorphism.
  14052. \end{exercise}
  14053. \begin{figure}[p]
  14054. \begin{tikzpicture}[baseline=(current bounding box.center)]
  14055. \node (Rpoly) at (9,4) {\large \LangPoly{}};
  14056. \node (Rpolyp) at (6,4) {\large \LangInst{}};
  14057. \node (Rgradualp) at (3,4) {\large \LangCast{}};
  14058. \node (Rwhilepp) at (0,4) {\large \LangProxy{}};
  14059. \node (Rwhileproxy) at (0,2) {\large \LangPVec{}};
  14060. \node (Rwhileproxy-2) at (3,2) {\large \LangPVec{}};
  14061. \node (Rwhileproxy-3) at (6,2) {\large \LangPVec{}};
  14062. \node (Rwhileproxy-4) at (9,2) {\large \LangPVecFunRef{}};
  14063. \node (Rwhileproxy-5) at (12,2) {\large \LangPVecFunRef{}};
  14064. \node (F1-1) at (12,0) {\large \LangPVecFunRef{}};
  14065. \node (F1-2) at (9,0) {\large \LangPVecFunRef{}};
  14066. \node (F1-3) at (6,0) {\large \LangPVecFunRef{}};
  14067. \node (F1-4) at (3,0) {\large \LangPVecAlloc{}};
  14068. \node (F1-5) at (0,0) {\large \LangPVecAlloc{}};
  14069. \node (C3-2) at (3,-2) {\large \LangCLoopPVec{}};
  14070. \node (x86-2) at (3,-4) {\large \LangXIndCallVar{}};
  14071. \node (x86-2-1) at (3,-6) {\large \LangXIndCallVar{}};
  14072. \node (x86-2-2) at (6,-6) {\large \LangXIndCallVar{}};
  14073. \node (x86-3) at (6,-4) {\large \LangXIndCallVar{}};
  14074. \node (x86-4) at (9,-4) {\large \LangXIndCall{}};
  14075. \node (x86-5) at (9,-6) {\large \LangXIndCall{}};
  14076. \path[->,bend right=15] (Rpoly) edge [above] node
  14077. {\ttfamily\footnotesize type-check} (Rpolyp);
  14078. \path[->,bend right=15] (Rpolyp) edge [above] node
  14079. {\ttfamily\footnotesize erase-types} (Rgradualp);
  14080. \path[->,bend right=15] (Rgradualp) edge [above] node
  14081. {\ttfamily\footnotesize lower-casts} (Rwhilepp);
  14082. \path[->,bend right=15] (Rwhilepp) edge [right] node
  14083. {\ttfamily\footnotesize differentiate-proxies} (Rwhileproxy);
  14084. \path[->,bend left=15] (Rwhileproxy) edge [above] node
  14085. {\ttfamily\footnotesize shrink} (Rwhileproxy-2);
  14086. \path[->,bend left=15] (Rwhileproxy-2) edge [above] node
  14087. {\ttfamily\footnotesize uniquify} (Rwhileproxy-3);
  14088. \path[->,bend left=15] (Rwhileproxy-3) edge [above] node
  14089. {\ttfamily\footnotesize reveal-functions} (Rwhileproxy-4);
  14090. \path[->,bend left=15] (Rwhileproxy-4) edge [above] node
  14091. {\ttfamily\footnotesize reveal-casts} (Rwhileproxy-5);
  14092. \path[->,bend left=15] (Rwhileproxy-5) edge [left] node
  14093. {\ttfamily\footnotesize convert-assignments} (F1-1);
  14094. \path[->,bend left=15] (F1-1) edge [below] node
  14095. {\ttfamily\footnotesize convert-to-clos.} (F1-2);
  14096. \path[->,bend right=15] (F1-2) edge [above] node
  14097. {\ttfamily\footnotesize limit-fun.} (F1-3);
  14098. \path[->,bend right=15] (F1-3) edge [above] node
  14099. {\ttfamily\footnotesize expose-alloc.} (F1-4);
  14100. \path[->,bend right=15] (F1-4) edge [above] node
  14101. {\ttfamily\footnotesize remove-complex.} (F1-5);
  14102. \path[->,bend right=15] (F1-5) edge [right] node
  14103. {\ttfamily\footnotesize explicate-control} (C3-2);
  14104. \path[->,bend left=15] (C3-2) edge [left] node
  14105. {\ttfamily\footnotesize select-instr.} (x86-2);
  14106. \path[->,bend right=15] (x86-2) edge [left] node
  14107. {\ttfamily\footnotesize uncover-live} (x86-2-1);
  14108. \path[->,bend right=15] (x86-2-1) edge [below] node
  14109. {\ttfamily\footnotesize build-inter.} (x86-2-2);
  14110. \path[->,bend right=15] (x86-2-2) edge [left] node
  14111. {\ttfamily\footnotesize allocate-reg.} (x86-3);
  14112. \path[->,bend left=15] (x86-3) edge [above] node
  14113. {\ttfamily\footnotesize patch-instr.} (x86-4);
  14114. \path[->,bend left=15] (x86-4) edge [right] node {\ttfamily\footnotesize print-x86} (x86-5);
  14115. \end{tikzpicture}
  14116. \caption{Diagram of the passes for \LangPoly{} (parametric polymorphism).}
  14117. \label{fig:Rpoly-passes}
  14118. \end{figure}
  14119. Figure~\ref{fig:Rpoly-passes} provides an overview of all the passes needed
  14120. for the compilation of \LangPoly{}.
  14121. % TODO: challenge problem: specialization of instantiations
  14122. % Further Reading
  14123. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  14124. \chapter{Appendix}
  14125. \section{Interpreters}
  14126. \label{appendix:interp}
  14127. \index{interpreter}
  14128. We provide interpreters for each of the source languages \LangInt{},
  14129. \LangVar{}, $\ldots$ in the files \code{interp-Rint.rkt},
  14130. \code{interp-Rvar.rkt}, etc. The interpreters for the intermediate
  14131. languages \LangCVar{} and \LangCIf{} are in \code{interp-Cvar.rkt} and
  14132. \code{interp-C1.rkt}. The interpreters for \LangCVec{}, \LangCFun{}, pseudo-x86,
  14133. and x86 are in the \key{interp.rkt} file.
  14134. \section{Utility Functions}
  14135. \label{appendix:utilities}
  14136. The utility functions described in this section are in the
  14137. \key{utilities.rkt} file of the support code.
  14138. \paragraph{\code{interp-tests}}
  14139. The \key{interp-tests} function runs the compiler passes and the
  14140. interpreters on each of the specified tests to check whether each pass
  14141. is correct. The \key{interp-tests} function has the following
  14142. parameters:
  14143. \begin{description}
  14144. \item[name (a string)] a name to identify the compiler,
  14145. \item[typechecker] a function of exactly one argument that either
  14146. raises an error using the \code{error} function when it encounters a
  14147. type error, or returns \code{\#f} when it encounters a type
  14148. error. If there is no type error, the type checker returns the
  14149. program.
  14150. \item[passes] a list with one entry per pass. An entry is a list with
  14151. four things:
  14152. \begin{enumerate}
  14153. \item a string giving the name of the pass,
  14154. \item the function that implements the pass (a translator from AST
  14155. to AST),
  14156. \item a function that implements the interpreter (a function from
  14157. AST to result value) for the output language,
  14158. \item and a type checker for the output language. Type checkers for
  14159. the $R$ and $C$ languages are provided in the support code. For
  14160. example, the type checkers for \LangVar{} and \LangCVar{} are in
  14161. \code{type-check-Rvar.rkt} and \code{type-check-Cvar.rkt}. The
  14162. type checker entry is optional. The support code does not provide
  14163. type checkers for the x86 languages.
  14164. \end{enumerate}
  14165. \item[source-interp] an interpreter for the source language. The
  14166. interpreters from Appendix~\ref{appendix:interp} make a good choice.
  14167. \item[test-family (a string)] for example, \code{"r1"}, \code{"r2"}, etc.
  14168. \item[tests] a list of test numbers that specifies which tests to
  14169. run. (see below)
  14170. \end{description}
  14171. %
  14172. The \key{interp-tests} function assumes that the subdirectory
  14173. \key{tests} has a collection of Racket programs whose names all start
  14174. with the family name, followed by an underscore and then the test
  14175. number, ending with the file extension \key{.rkt}. Also, for each test
  14176. program that calls \code{read} one or more times, there is a file with
  14177. the same name except that the file extension is \key{.in} that
  14178. provides the input for the Racket program. If the test program is
  14179. expected to fail type checking, then there should be an empty file of
  14180. the same name but with extension \key{.tyerr}.
  14181. \paragraph{\code{compiler-tests}}
  14182. runs the compiler passes to generate x86 (a \key{.s} file) and then
  14183. runs the GNU C compiler (gcc) to generate machine code. It runs the
  14184. machine code and checks that the output is $42$. The parameters to the
  14185. \code{compiler-tests} function are similar to those of the
  14186. \code{interp-tests} function, and consist of
  14187. \begin{itemize}
  14188. \item a compiler name (a string),
  14189. \item a type checker,
  14190. \item description of the passes,
  14191. \item name of a test-family, and
  14192. \item a list of test numbers.
  14193. \end{itemize}
  14194. \paragraph{\code{compile-file}}
  14195. takes a description of the compiler passes (see the comment for
  14196. \key{interp-tests}) and returns a function that, given a program file
  14197. name (a string ending in \key{.rkt}), applies all of the passes and
  14198. writes the output to a file whose name is the same as the program file
  14199. name but with \key{.rkt} replaced with \key{.s}.
  14200. \paragraph{\code{read-program}}
  14201. takes a file path and parses that file (it must be a Racket program)
  14202. into an abstract syntax tree.
  14203. \paragraph{\code{parse-program}}
  14204. takes an S-expression representation of an abstract syntax tree and converts it into
  14205. the struct-based representation.
  14206. \paragraph{\code{assert}}
  14207. takes two parameters, a string (\code{msg}) and Boolean (\code{bool}),
  14208. and displays the message \key{msg} if the Boolean \key{bool} is false.
  14209. \paragraph{\code{lookup}}
  14210. % remove discussion of lookup? -Jeremy
  14211. takes a key and an alist, and returns the first value that is
  14212. associated with the given key, if there is one. If not, an error is
  14213. triggered. The alist may contain both immutable pairs (built with
  14214. \key{cons}) and mutable pairs (built with \key{mcons}).
  14215. %The \key{map2} function ...
  14216. \section{x86 Instruction Set Quick-Reference}
  14217. \label{sec:x86-quick-reference}
  14218. \index{x86}
  14219. Table~\ref{tab:x86-instr} lists some x86 instructions and what they
  14220. do. We write $A \to B$ to mean that the value of $A$ is written into
  14221. location $B$. Address offsets are given in bytes. The instruction
  14222. arguments $A, B, C$ can be immediate constants (such as \code{\$4}),
  14223. registers (such as \code{\%rax}), or memory references (such as
  14224. \code{-4(\%ebp)}). Most x86 instructions only allow at most one memory
  14225. reference per instruction. Other operands must be immediates or
  14226. registers.
  14227. \begin{table}[tbp]
  14228. \centering
  14229. \begin{tabular}{l|l}
  14230. \textbf{Instruction} & \textbf{Operation} \\ \hline
  14231. \texttt{addq} $A$, $B$ & $A + B \to B$\\
  14232. \texttt{negq} $A$ & $- A \to A$ \\
  14233. \texttt{subq} $A$, $B$ & $B - A \to B$\\
  14234. \texttt{imulq} $A$, $B$ & $A \times B \to B$\\
  14235. \texttt{callq} $L$ & Pushes the return address and jumps to label $L$ \\
  14236. \texttt{callq} \texttt{*}$A$ & Calls the function at the address $A$. \\
  14237. %\texttt{leave} & $\texttt{ebp} \to \texttt{esp};$ \texttt{popl \%ebp} \\
  14238. \texttt{retq} & Pops the return address and jumps to it \\
  14239. \texttt{popq} $A$ & $*\mathtt{rsp} \to A; \mathtt{rsp} + 8 \to \mathtt{rsp}$ \\
  14240. \texttt{pushq} $A$ & $\texttt{rsp} - 8 \to \texttt{rsp}; A \to *\texttt{rsp}$\\
  14241. \texttt{leaq} $A$,$B$ & $A \to B$ ($B$ must be a register) \\
  14242. \texttt{cmpq} $A$, $B$ & compare $A$ and $B$ and set the flag register ($B$ must not
  14243. be an immediate) \\
  14244. \texttt{je} $L$ & \multirow{5}{3.7in}{Jump to label $L$ if the flag register
  14245. matches the condition code of the instruction, otherwise go to the
  14246. next instructions. The condition codes are \key{e} for ``equal'',
  14247. \key{l} for ``less'', \key{le} for ``less or equal'', \key{g}
  14248. for ``greater'', and \key{ge} for ``greater or equal''.} \\
  14249. \texttt{jl} $L$ & \\
  14250. \texttt{jle} $L$ & \\
  14251. \texttt{jg} $L$ & \\
  14252. \texttt{jge} $L$ & \\
  14253. \texttt{jmp} $L$ & Jump to label $L$ \\
  14254. \texttt{movq} $A$, $B$ & $A \to B$ \\
  14255. \texttt{movzbq} $A$, $B$ &
  14256. \multirow{3}{3.7in}{$A \to B$, \text{where } $A$ is a single-byte register
  14257. (e.g., \texttt{al} or \texttt{cl}), $B$ is a 8-byte register,
  14258. and the extra bytes of $B$ are set to zero.} \\
  14259. & \\
  14260. & \\
  14261. \texttt{notq} $A$ & $\sim A \to A$ \qquad (bitwise complement)\\
  14262. \texttt{orq} $A$, $B$ & $A | B \to B$ \qquad (bitwise-or)\\
  14263. \texttt{andq} $A$, $B$ & $A \& B \to B$ \qquad (bitwise-and)\\
  14264. \texttt{salq} $A$, $B$ & $B$ \texttt{<<} $A \to B$ (arithmetic shift left, where $A$ is a constant)\\
  14265. \texttt{sarq} $A$, $B$ & $B$ \texttt{>>} $A \to B$ (arithmetic shift right, where $A$ is a constant)\\
  14266. \texttt{sete} $A$ & \multirow{5}{3.7in}{If the flag matches the condition code,
  14267. then $1 \to A$, else $0 \to A$. Refer to \texttt{je} above for the
  14268. description of the condition codes. $A$ must be a single byte register
  14269. (e.g., \texttt{al} or \texttt{cl}).} \\
  14270. \texttt{setl} $A$ & \\
  14271. \texttt{setle} $A$ & \\
  14272. \texttt{setg} $A$ & \\
  14273. \texttt{setge} $A$ &
  14274. \end{tabular}
  14275. \vspace{5pt}
  14276. \caption{Quick-reference for the x86 instructions used in this book.}
  14277. \label{tab:x86-instr}
  14278. \end{table}
  14279. \cleardoublepage
  14280. \section{Concrete Syntax for Intermediate Languages}
  14281. The concrete syntax of \LangAny{} is defined in
  14282. Figure~\ref{fig:Rany-concrete-syntax}.
  14283. \begin{figure}[tp]
  14284. \centering
  14285. \fbox{
  14286. \begin{minipage}{0.97\textwidth}\small
  14287. \[
  14288. \begin{array}{lcl}
  14289. \Type &::=& \gray{\key{Integer} \mid \key{Boolean}
  14290. \mid \LP\key{Vector}\;\Type\ldots\RP \mid \key{Void}} \\
  14291. &\mid& \gray{\LP\Type\ldots \; \key{->}\; \Type\RP} \mid \key{Any} \\
  14292. \FType &::=& \key{Integer} \mid \key{Boolean} \mid \key{Void}
  14293. \mid \LP\key{Vector}\; \key{Any}\ldots\RP \\
  14294. &\mid& \LP\key{Any}\ldots \; \key{->}\; \key{Any}\RP\\
  14295. \Exp &::=& \ldots \CINJECT{\Exp}{\FType}\RP \mid \CPROJECT{\Exp}{\FType}\\
  14296. &\mid& \LP\key{any-vector-length}\;\Exp\RP
  14297. \mid \LP\key{any-vector-ref}\;\Exp\;\Exp\RP \\
  14298. &\mid& \LP\key{any-vector-set!}\;\Exp\;\Exp\;\Exp\RP\\
  14299. &\mid& \LP\key{boolean?}\;\Exp\RP \mid \LP\key{integer?}\;\Exp\RP
  14300. \mid \LP\key{void?}\;\Exp\RP \\
  14301. &\mid& \LP\key{vector?}\;\Exp\RP \mid \LP\key{procedure?}\;\Exp\RP \\
  14302. \Def &::=& \gray{ \CDEF{\Var}{\LS\Var \key{:} \Type\RS\ldots}{\Type}{\Exp} } \\
  14303. \LangAny{} &::=& \gray{\Def\ldots \; \Exp}
  14304. \end{array}
  14305. \]
  14306. \end{minipage}
  14307. }
  14308. \caption{The concrete syntax of \LangAny{}, extending \LangLam{}
  14309. (Figure~\ref{fig:Rlam-syntax}).}
  14310. \label{fig:Rany-concrete-syntax}
  14311. \end{figure}
  14312. The concrete syntax for \LangCVar{}, \LangCIf{}, \LangCVec{} and \LangCFun{} is
  14313. defined in Figures~\ref{fig:c0-concrete-syntax},
  14314. \ref{fig:c1-concrete-syntax}, \ref{fig:c2-concrete-syntax},
  14315. and \ref{fig:c3-concrete-syntax}, respectively.
  14316. \begin{figure}[tbp]
  14317. \fbox{
  14318. \begin{minipage}{0.96\textwidth}
  14319. \[
  14320. \begin{array}{lcl}
  14321. \Atm &::=& \Int \mid \Var \\
  14322. \Exp &::=& \Atm \mid \key{(read)} \mid \key{(-}~\Atm\key{)} \mid \key{(+}~\Atm~\Atm\key{)}\\
  14323. \Stmt &::=& \Var~\key{=}~\Exp\key{;} \\
  14324. \Tail &::= & \key{return}~\Exp\key{;} \mid \Stmt~\Tail \\
  14325. \LangCVar{} & ::= & (\itm{label}\key{:}~ \Tail)\ldots
  14326. \end{array}
  14327. \]
  14328. \end{minipage}
  14329. }
  14330. \caption{The concrete syntax of the \LangCVar{} intermediate language.}
  14331. \label{fig:c0-concrete-syntax}
  14332. \end{figure}
  14333. \begin{figure}[tbp]
  14334. \fbox{
  14335. \begin{minipage}{0.96\textwidth}
  14336. \small
  14337. \[
  14338. \begin{array}{lcl}
  14339. \Atm &::=& \gray{ \Int \mid \Var } \mid \itm{bool} \\
  14340. \itm{cmp} &::= & \key{eq?} \mid \key{<} \\
  14341. \Exp &::=& \gray{ \Atm \mid \key{(read)} \mid \key{(-}~\Atm\key{)} \mid \key{(+}~\Atm~\Atm\key{)} } \\
  14342. &\mid& \LP \key{not}~\Atm \RP \mid \LP \itm{cmp}~\Atm~\Atm\RP \\
  14343. \Stmt &::=& \gray{ \Var~\key{=}~\Exp\key{;} } \\
  14344. \Tail &::= & \gray{ \key{return}~\Exp\key{;} \mid \Stmt~\Tail }
  14345. \mid \key{goto}~\itm{label}\key{;}\\
  14346. &\mid& \key{if}~\LP \itm{cmp}~\Atm~\Atm \RP~ \key{goto}~\itm{label}\key{;} ~\key{else}~\key{goto}~\itm{label}\key{;} \\
  14347. \LangCIf{} & ::= & \gray{ (\itm{label}\key{:}~ \Tail)\ldots }
  14348. \end{array}
  14349. \]
  14350. \end{minipage}
  14351. }
  14352. \caption{The concrete syntax of the \LangCIf{} intermediate language.}
  14353. \label{fig:c1-concrete-syntax}
  14354. \end{figure}
  14355. \begin{figure}[tbp]
  14356. \fbox{
  14357. \begin{minipage}{0.96\textwidth}
  14358. \small
  14359. \[
  14360. \begin{array}{lcl}
  14361. \Atm &::=& \gray{ \Int \mid \Var \mid \itm{bool} } \\
  14362. \itm{cmp} &::= & \gray{ \key{eq?} \mid \key{<} } \\
  14363. \Exp &::=& \gray{ \Atm \mid \key{(read)} \mid \key{(-}~\Atm\key{)} \mid \key{(+}~\Atm~\Atm\key{)} } \\
  14364. &\mid& \gray{ \LP \key{not}~\Atm \RP \mid \LP \itm{cmp}~\Atm~\Atm\RP } \\
  14365. &\mid& \LP \key{allocate}~\Int~\Type \RP \\
  14366. &\mid& (\key{vector-ref}\;\Atm\;\Int) \mid (\key{vector-set!}\;\Atm\;\Int\;\Atm)\\
  14367. &\mid& \LP \key{global-value}~\Var \RP \mid \LP \key{void} \RP \\
  14368. \Stmt &::=& \gray{ \Var~\key{=}~\Exp\key{;} } \mid \LP\key{collect}~\Int \RP\\
  14369. \Tail &::= & \gray{ \key{return}~\Exp\key{;} \mid \Stmt~\Tail }
  14370. \mid \gray{ \key{goto}~\itm{label}\key{;} }\\
  14371. &\mid& \gray{ \key{if}~\LP \itm{cmp}~\Atm~\Atm \RP~ \key{goto}~\itm{label}\key{;} ~\key{else}~\key{goto}~\itm{label}\key{;} } \\
  14372. \LangCVec{} & ::= & \gray{ (\itm{label}\key{:}~ \Tail)\ldots }
  14373. \end{array}
  14374. \]
  14375. \end{minipage}
  14376. }
  14377. \caption{The concrete syntax of the \LangCVec{} intermediate language.}
  14378. \label{fig:c2-concrete-syntax}
  14379. \end{figure}
  14380. \begin{figure}[tp]
  14381. \fbox{
  14382. \begin{minipage}{0.96\textwidth}
  14383. \small
  14384. \[
  14385. \begin{array}{lcl}
  14386. \Atm &::=& \gray{ \Int \mid \Var \mid \key{\#t} \mid \key{\#f} }
  14387. \\
  14388. \itm{cmp} &::= & \gray{ \key{eq?} \mid \key{<} } \\
  14389. \Exp &::= & \gray{ \Atm \mid \LP\key{read}\RP \mid \LP\key{-}\;\Atm\RP \mid \LP\key{+} \; \Atm\;\Atm\RP
  14390. \mid \LP\key{not}\;\Atm\RP \mid \LP\itm{cmp}\;\Atm\;\Atm\RP } \\
  14391. &\mid& \gray{ \LP\key{allocate}\,\Int\,\Type\RP
  14392. \mid \LP\key{vector-ref}\, \Atm\, \Int\RP } \\
  14393. &\mid& \gray{ \LP\key{vector-set!}\,\Atm\,\Int\,\Atm\RP \mid \LP\key{global-value} \,\itm{name}\RP \mid \LP\key{void}\RP } \\
  14394. &\mid& \LP\key{fun-ref}~\itm{label}\RP \mid \LP\key{call} \,\Atm\,\Atm\ldots\RP \\
  14395. \Stmt &::=& \gray{ \ASSIGN{\Var}{\Exp} \mid \RETURN{\Exp}
  14396. \mid \LP\key{collect} \,\itm{int}\RP }\\
  14397. \Tail &::= & \gray{\RETURN{\Exp} \mid \LP\key{seq}\;\Stmt\;\Tail\RP} \\
  14398. &\mid& \gray{\LP\key{goto}\,\itm{label}\RP
  14399. \mid \IF{\LP\itm{cmp}\, \Atm\,\Atm\RP}{\LP\key{goto}\,\itm{label}\RP}{\LP\key{goto}\,\itm{label}\RP}} \\
  14400. &\mid& \LP\key{tail-call}\,\Atm\,\Atm\ldots\RP \\
  14401. \Def &::=& \LP\key{define}\; \LP\itm{label} \; [\Var \key{:} \Type]\ldots\RP \key{:} \Type \; \LP\LP\itm{label}\,\key{.}\,\Tail\RP\ldots\RP\RP \\
  14402. \LangCFun{} & ::= & \Def\ldots
  14403. \end{array}
  14404. \]
  14405. \end{minipage}
  14406. }
  14407. \caption{The \LangCFun{} language, extending \LangCVec{} (Figure~\ref{fig:c2-concrete-syntax}) with functions.}
  14408. \label{fig:c3-concrete-syntax}
  14409. \end{figure}
  14410. \cleardoublepage
  14411. \addcontentsline{toc}{chapter}{Index}
  14412. \printindex
  14413. \cleardoublepage
  14414. \bibliographystyle{plainnat}
  14415. \bibliography{all}
  14416. \addcontentsline{toc}{chapter}{Bibliography}
  14417. \end{document}
  14418. %% LocalWords: Dybvig Waddell Abdulaziz Ghuloum Dipanwita Sussman
  14419. %% LocalWords: Sarkar lcl Matz aa representable Chez Ph Dan's nano
  14420. %% LocalWords: fk bh Siek plt uq Felleisen Bor Yuh ASTs AST Naur eq
  14421. %% LocalWords: BNF fixnum datatype arith prog backquote quasiquote
  14422. %% LocalWords: ast Reynold's reynolds interp cond fx evaluator jane
  14423. %% LocalWords: quasiquotes pe nullary unary rcl env lookup gcc rax
  14424. %% LocalWords: addq movq callq rsp rbp rbx rcx rdx rsi rdi subq nx
  14425. %% LocalWords: negq pushq popq retq globl Kernighan uniquify lll ve
  14426. %% LocalWords: allocator gensym env subdirectory scm rkt tmp lhs Tt
  14427. %% LocalWords: runtime Liveness liveness undirected Balakrishnan je
  14428. %% LocalWords: Rosen DSATUR SDO Gebremedhin Omari morekeywords cnd
  14429. %% LocalWords: fullflexible vertices Booleans Listof Pairof thn els
  14430. %% LocalWords: boolean type-check notq cmpq sete movzbq jmp al xorq
  14431. %% LocalWords: EFLAGS thns elss elselabel endlabel Tuples tuples os
  14432. %% LocalWords: tuple args lexically leaq Polymorphism msg bool nums
  14433. %% LocalWords: macosx unix Cormen vec callee xs maxStack numParams
  14434. %% LocalWords: arg bitwise XOR'd thenlabel immediates optimizations
  14435. %% LocalWords: deallocating Ungar Detlefs Tene kx FromSpace ToSpace
  14436. %% LocalWords: Appel Diwan Siebert ptr fromspace rootstack typedef
  14437. %% LocalWords: len prev rootlen heaplen setl lt Kohlbecker dk multi
  14438. % LocalWords: Bloomington Wollowski definitional whitespace deref JM
  14439. % LocalWords: subexpression subexpressions iteratively ANF Danvy rco
  14440. % LocalWords: goto stmt JS ly cmp ty le ge jle goto's EFLAG CFG pred
  14441. % LocalWords: acyclic worklist Aho qf tsort implementer's hj Shidal
  14442. % LocalWords: nonnegative Shahriyar endian salq sarq uint cheney ior
  14443. % LocalWords: tospace vecinit collectret alloc initret decrement jl
  14444. % LocalWords: dereferencing GC di vals ps mcons ds mcdr callee's th
  14445. % LocalWords: mainDef tailcall prepending mainstart num params rT qb
  14446. % LocalWords: mainconclusion Cardelli bodyT fvs clos fvts subtype uj
  14447. % LocalWords: polymorphism untyped elts tys tagof Vectorof tyeq orq
  14448. % LocalWords: andq untagged Shao inlining ebp jge setle setg setge
  14449. % LocalWords: struct Friedman's MacOS Nystrom alist sam kate
  14450. % LocalWords: alists arity github unordered pqueue exprs ret param
  14451. % LocalWords: tyerr bytereg dh dl JmpIf HasType Osterlund Jacek TODO
  14452. % LocalWords: Gamari GlobalValue ProgramDefsExp prm ProgramDefs vn
  14453. % LocalWords: FunRef TailCall tailjmp IndirectCallq TailJmp Gilray
  14454. % LocalWords: dereference unbox Dataflow versa dataflow Kildall rhs
  14455. % LocalWords: Kleene enqueue dequeue AssignedFree FV cnvt SetBang tg
  14456. % LocalWords: ValueOf typechecker