123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586558755885589559055915592559355945595559655975598559956005601560256035604560556065607560856095610561156125613561456155616561756185619562056215622562356245625562656275628562956305631563256335634563556365637563856395640564156425643564456455646564756485649565056515652565356545655565656575658565956605661566256635664566556665667566856695670567156725673567456755676567756785679568056815682568356845685568656875688568956905691569256935694569556965697569856995700570157025703570457055706570757085709571057115712571357145715571657175718571957205721572257235724572557265727572857295730573157325733573457355736573757385739574057415742574357445745574657475748574957505751575257535754575557565757575857595760576157625763576457655766576757685769577057715772577357745775577657775778577957805781578257835784578557865787578857895790579157925793579457955796579757985799580058015802580358045805580658075808580958105811581258135814581558165817581858195820582158225823582458255826582758285829583058315832583358345835583658375838583958405841584258435844584558465847584858495850585158525853585458555856585758585859586058615862586358645865586658675868586958705871587258735874587558765877587858795880588158825883588458855886588758885889589058915892589358945895589658975898589959005901590259035904590559065907590859095910591159125913591459155916591759185919592059215922592359245925592659275928592959305931593259335934593559365937593859395940594159425943594459455946594759485949595059515952595359545955595659575958595959605961596259635964596559665967596859695970597159725973597459755976597759785979598059815982598359845985598659875988598959905991599259935994599559965997599859996000600160026003600460056006600760086009601060116012601360146015601660176018601960206021602260236024602560266027602860296030603160326033603460356036603760386039604060416042604360446045604660476048604960506051605260536054605560566057605860596060606160626063606460656066606760686069607060716072607360746075607660776078607960806081608260836084608560866087608860896090609160926093609460956096609760986099610061016102610361046105610661076108610961106111611261136114611561166117611861196120612161226123612461256126612761286129613061316132613361346135613661376138613961406141614261436144614561466147614861496150615161526153615461556156615761586159616061616162616361646165616661676168616961706171617261736174617561766177617861796180618161826183618461856186618761886189619061916192619361946195619661976198619962006201620262036204620562066207620862096210621162126213621462156216621762186219622062216222622362246225622662276228622962306231623262336234623562366237623862396240624162426243624462456246624762486249625062516252625362546255625662576258625962606261626262636264626562666267626862696270627162726273627462756276627762786279628062816282628362846285628662876288628962906291629262936294629562966297629862996300630163026303630463056306630763086309631063116312631363146315631663176318631963206321632263236324632563266327632863296330633163326333633463356336633763386339634063416342634363446345634663476348634963506351635263536354635563566357635863596360636163626363636463656366636763686369637063716372637363746375637663776378637963806381638263836384638563866387638863896390639163926393639463956396639763986399640064016402640364046405640664076408640964106411641264136414641564166417641864196420642164226423642464256426642764286429643064316432643364346435643664376438643964406441644264436444644564466447644864496450645164526453645464556456645764586459646064616462646364646465646664676468646964706471647264736474647564766477647864796480648164826483648464856486648764886489649064916492649364946495649664976498649965006501650265036504650565066507650865096510651165126513651465156516651765186519652065216522652365246525652665276528652965306531653265336534653565366537653865396540654165426543654465456546654765486549655065516552655365546555655665576558655965606561656265636564656565666567656865696570657165726573657465756576657765786579658065816582658365846585658665876588658965906591659265936594659565966597659865996600660166026603660466056606660766086609661066116612661366146615661666176618661966206621662266236624662566266627662866296630663166326633663466356636663766386639664066416642664366446645664666476648664966506651665266536654665566566657665866596660666166626663666466656666666766686669667066716672667366746675667666776678667966806681668266836684668566866687668866896690669166926693669466956696669766986699670067016702670367046705670667076708670967106711671267136714671567166717671867196720672167226723672467256726672767286729673067316732673367346735673667376738673967406741674267436744674567466747674867496750675167526753675467556756675767586759676067616762676367646765676667676768676967706771677267736774677567766777677867796780678167826783678467856786678767886789679067916792679367946795679667976798679968006801680268036804680568066807680868096810681168126813681468156816681768186819682068216822682368246825682668276828682968306831683268336834683568366837683868396840684168426843684468456846684768486849685068516852685368546855685668576858685968606861686268636864686568666867686868696870687168726873687468756876687768786879688068816882688368846885688668876888688968906891689268936894689568966897689868996900690169026903690469056906690769086909691069116912691369146915691669176918691969206921692269236924692569266927692869296930693169326933693469356936693769386939694069416942694369446945694669476948694969506951695269536954695569566957695869596960696169626963696469656966696769686969697069716972697369746975697669776978697969806981698269836984698569866987698869896990699169926993699469956996699769986999700070017002700370047005700670077008700970107011701270137014701570167017701870197020702170227023702470257026702770287029703070317032703370347035703670377038703970407041704270437044704570467047704870497050705170527053705470557056705770587059706070617062706370647065706670677068706970707071707270737074707570767077707870797080708170827083708470857086708770887089709070917092709370947095709670977098709971007101710271037104710571067107710871097110711171127113711471157116711771187119712071217122712371247125712671277128712971307131713271337134713571367137713871397140714171427143714471457146714771487149715071517152715371547155715671577158715971607161716271637164716571667167716871697170717171727173717471757176717771787179718071817182718371847185718671877188718971907191719271937194719571967197719871997200720172027203720472057206720772087209721072117212721372147215721672177218721972207221722272237224722572267227722872297230723172327233723472357236723772387239724072417242724372447245724672477248724972507251725272537254725572567257725872597260726172627263726472657266726772687269727072717272727372747275727672777278727972807281728272837284728572867287728872897290729172927293729472957296729772987299730073017302730373047305730673077308730973107311731273137314731573167317731873197320732173227323732473257326732773287329733073317332733373347335733673377338733973407341734273437344734573467347734873497350735173527353735473557356735773587359736073617362736373647365736673677368736973707371737273737374737573767377737873797380738173827383738473857386738773887389739073917392739373947395739673977398739974007401740274037404740574067407740874097410741174127413741474157416741774187419742074217422742374247425742674277428742974307431743274337434743574367437743874397440744174427443744474457446744774487449745074517452745374547455745674577458745974607461746274637464746574667467746874697470747174727473747474757476747774787479748074817482748374847485748674877488748974907491749274937494749574967497749874997500750175027503750475057506750775087509751075117512751375147515751675177518751975207521752275237524752575267527752875297530753175327533753475357536753775387539754075417542754375447545754675477548754975507551755275537554755575567557755875597560756175627563756475657566756775687569757075717572757375747575757675777578757975807581758275837584758575867587758875897590759175927593759475957596759775987599760076017602760376047605760676077608760976107611761276137614761576167617761876197620762176227623762476257626762776287629763076317632763376347635763676377638763976407641764276437644764576467647764876497650765176527653765476557656765776587659766076617662766376647665766676677668766976707671767276737674767576767677767876797680768176827683768476857686768776887689769076917692769376947695769676977698769977007701770277037704770577067707770877097710771177127713771477157716771777187719772077217722772377247725772677277728772977307731773277337734773577367737773877397740774177427743774477457746774777487749775077517752775377547755775677577758775977607761776277637764776577667767776877697770777177727773777477757776777777787779778077817782778377847785778677877788778977907791779277937794779577967797779877997800780178027803780478057806780778087809781078117812781378147815781678177818781978207821782278237824782578267827782878297830783178327833783478357836783778387839784078417842784378447845784678477848784978507851785278537854785578567857785878597860786178627863786478657866786778687869787078717872787378747875787678777878787978807881788278837884788578867887788878897890789178927893789478957896789778987899790079017902790379047905790679077908790979107911791279137914791579167917791879197920792179227923792479257926792779287929793079317932793379347935793679377938793979407941794279437944794579467947794879497950795179527953795479557956795779587959796079617962796379647965796679677968796979707971797279737974797579767977797879797980798179827983798479857986798779887989799079917992799379947995799679977998799980008001800280038004800580068007800880098010801180128013801480158016801780188019802080218022802380248025802680278028802980308031803280338034803580368037803880398040804180428043804480458046804780488049805080518052805380548055805680578058805980608061806280638064806580668067806880698070807180728073807480758076807780788079808080818082808380848085808680878088808980908091809280938094809580968097809880998100810181028103810481058106810781088109811081118112811381148115811681178118811981208121812281238124812581268127812881298130813181328133813481358136813781388139814081418142814381448145814681478148814981508151815281538154815581568157815881598160816181628163816481658166816781688169817081718172817381748175817681778178817981808181818281838184818581868187818881898190819181928193819481958196819781988199820082018202820382048205820682078208820982108211821282138214821582168217821882198220822182228223822482258226822782288229823082318232823382348235823682378238823982408241824282438244824582468247824882498250825182528253825482558256825782588259826082618262826382648265826682678268826982708271827282738274827582768277827882798280828182828283828482858286828782888289829082918292829382948295829682978298829983008301830283038304830583068307830883098310831183128313831483158316831783188319832083218322832383248325832683278328832983308331833283338334833583368337833883398340834183428343834483458346834783488349835083518352835383548355835683578358835983608361836283638364836583668367836883698370837183728373837483758376837783788379838083818382838383848385838683878388838983908391839283938394839583968397839883998400840184028403840484058406840784088409841084118412841384148415841684178418841984208421842284238424842584268427842884298430843184328433843484358436843784388439844084418442844384448445844684478448844984508451845284538454845584568457845884598460846184628463846484658466846784688469847084718472847384748475847684778478847984808481848284838484848584868487848884898490849184928493849484958496849784988499850085018502850385048505850685078508850985108511851285138514851585168517851885198520852185228523852485258526852785288529853085318532853385348535853685378538853985408541854285438544854585468547854885498550855185528553855485558556855785588559856085618562856385648565856685678568856985708571857285738574857585768577857885798580858185828583858485858586858785888589859085918592859385948595859685978598859986008601860286038604860586068607860886098610861186128613861486158616861786188619862086218622862386248625862686278628862986308631863286338634863586368637863886398640864186428643864486458646864786488649865086518652865386548655865686578658865986608661866286638664866586668667866886698670867186728673867486758676867786788679868086818682868386848685868686878688868986908691869286938694869586968697869886998700870187028703870487058706870787088709871087118712871387148715871687178718871987208721872287238724872587268727872887298730873187328733873487358736873787388739874087418742874387448745874687478748874987508751875287538754875587568757875887598760876187628763876487658766876787688769877087718772877387748775877687778778877987808781878287838784878587868787878887898790879187928793879487958796879787988799880088018802880388048805880688078808880988108811881288138814881588168817881888198820882188228823882488258826882788288829883088318832883388348835883688378838883988408841884288438844884588468847884888498850885188528853885488558856885788588859886088618862886388648865886688678868886988708871887288738874887588768877887888798880888188828883888488858886888788888889889088918892889388948895889688978898889989008901890289038904890589068907890889098910891189128913891489158916891789188919892089218922892389248925892689278928892989308931893289338934893589368937893889398940894189428943894489458946894789488949895089518952895389548955895689578958895989608961896289638964896589668967896889698970897189728973897489758976897789788979898089818982898389848985898689878988898989908991899289938994899589968997899889999000900190029003900490059006900790089009901090119012901390149015901690179018901990209021902290239024902590269027902890299030903190329033903490359036903790389039904090419042904390449045904690479048904990509051905290539054905590569057905890599060906190629063906490659066906790689069907090719072907390749075907690779078907990809081908290839084908590869087908890899090909190929093909490959096909790989099910091019102910391049105910691079108910991109111911291139114911591169117911891199120912191229123912491259126912791289129913091319132913391349135913691379138913991409141914291439144914591469147914891499150915191529153915491559156915791589159916091619162916391649165916691679168916991709171917291739174917591769177917891799180918191829183918491859186918791889189919091919192919391949195919691979198919992009201920292039204920592069207920892099210921192129213921492159216921792189219922092219222922392249225922692279228922992309231923292339234923592369237923892399240924192429243924492459246924792489249925092519252925392549255925692579258925992609261926292639264926592669267926892699270927192729273927492759276927792789279928092819282928392849285928692879288928992909291929292939294929592969297929892999300930193029303930493059306930793089309931093119312931393149315931693179318931993209321932293239324932593269327932893299330933193329333933493359336933793389339934093419342934393449345934693479348934993509351935293539354935593569357935893599360936193629363936493659366936793689369937093719372937393749375937693779378937993809381938293839384938593869387938893899390939193929393939493959396939793989399940094019402940394049405940694079408940994109411941294139414941594169417941894199420942194229423942494259426942794289429943094319432943394349435943694379438943994409441944294439444944594469447944894499450945194529453945494559456945794589459946094619462946394649465946694679468946994709471947294739474947594769477947894799480948194829483948494859486948794889489949094919492949394949495949694979498949995009501950295039504950595069507950895099510951195129513951495159516951795189519952095219522952395249525952695279528952995309531953295339534953595369537953895399540954195429543954495459546954795489549955095519552955395549555955695579558955995609561956295639564956595669567956895699570957195729573957495759576957795789579958095819582958395849585958695879588958995909591959295939594959595969597959895999600960196029603960496059606960796089609961096119612961396149615961696179618961996209621962296239624962596269627962896299630963196329633963496359636963796389639964096419642964396449645964696479648964996509651965296539654965596569657965896599660966196629663966496659666966796689669967096719672967396749675967696779678967996809681968296839684968596869687968896899690969196929693969496959696969796989699970097019702970397049705970697079708970997109711971297139714971597169717971897199720972197229723972497259726972797289729973097319732973397349735973697379738973997409741974297439744974597469747974897499750975197529753975497559756975797589759976097619762976397649765976697679768976997709771977297739774977597769777977897799780978197829783978497859786978797889789979097919792979397949795979697979798979998009801980298039804980598069807980898099810981198129813981498159816981798189819982098219822982398249825982698279828982998309831983298339834983598369837983898399840984198429843984498459846984798489849985098519852985398549855985698579858985998609861986298639864986598669867986898699870987198729873987498759876987798789879988098819882988398849885988698879888988998909891989298939894989598969897989898999900990199029903990499059906990799089909991099119912991399149915991699179918991999209921992299239924992599269927992899299930993199329933993499359936993799389939994099419942994399449945994699479948994999509951995299539954995599569957995899599960996199629963996499659966996799689969997099719972997399749975997699779978997999809981998299839984998599869987998899899990999199929993999499959996999799989999100001000110002100031000410005100061000710008100091001010011100121001310014100151001610017100181001910020100211002210023100241002510026100271002810029100301003110032100331003410035100361003710038100391004010041100421004310044100451004610047100481004910050100511005210053100541005510056100571005810059100601006110062100631006410065100661006710068100691007010071100721007310074100751007610077100781007910080100811008210083100841008510086100871008810089100901009110092100931009410095100961009710098100991010010101101021010310104101051010610107101081010910110101111011210113101141011510116101171011810119101201012110122101231012410125101261012710128101291013010131101321013310134101351013610137101381013910140101411014210143101441014510146101471014810149101501015110152101531015410155101561015710158101591016010161101621016310164101651016610167101681016910170101711017210173101741017510176101771017810179101801018110182101831018410185101861018710188101891019010191101921019310194101951019610197101981019910200102011020210203102041020510206102071020810209102101021110212102131021410215102161021710218102191022010221102221022310224102251022610227102281022910230102311023210233102341023510236102371023810239102401024110242102431024410245102461024710248102491025010251102521025310254102551025610257102581025910260102611026210263102641026510266102671026810269102701027110272102731027410275102761027710278102791028010281102821028310284102851028610287102881028910290102911029210293102941029510296102971029810299103001030110302103031030410305103061030710308103091031010311103121031310314103151031610317103181031910320103211032210323103241032510326103271032810329103301033110332103331033410335103361033710338103391034010341103421034310344103451034610347103481034910350103511035210353103541035510356103571035810359103601036110362103631036410365103661036710368103691037010371103721037310374103751037610377103781037910380103811038210383103841038510386103871038810389103901039110392103931039410395103961039710398103991040010401104021040310404104051040610407104081040910410104111041210413104141041510416104171041810419104201042110422104231042410425104261042710428104291043010431104321043310434104351043610437104381043910440104411044210443104441044510446104471044810449104501045110452104531045410455104561045710458104591046010461104621046310464104651046610467104681046910470104711047210473104741047510476104771047810479104801048110482104831048410485104861048710488104891049010491104921049310494104951049610497104981049910500105011050210503105041050510506105071050810509105101051110512105131051410515105161051710518105191052010521105221052310524105251052610527105281052910530105311053210533105341053510536105371053810539105401054110542105431054410545105461054710548105491055010551105521055310554105551055610557105581055910560105611056210563105641056510566105671056810569105701057110572105731057410575105761057710578105791058010581105821058310584105851058610587105881058910590105911059210593105941059510596105971059810599106001060110602106031060410605106061060710608106091061010611106121061310614106151061610617106181061910620106211062210623106241062510626106271062810629106301063110632106331063410635106361063710638106391064010641106421064310644106451064610647106481064910650106511065210653106541065510656106571065810659106601066110662106631066410665106661066710668106691067010671106721067310674106751067610677106781067910680106811068210683106841068510686106871068810689106901069110692106931069410695106961069710698106991070010701107021070310704107051070610707107081070910710107111071210713107141071510716107171071810719107201072110722107231072410725107261072710728107291073010731107321073310734107351073610737107381073910740107411074210743107441074510746107471074810749107501075110752107531075410755107561075710758107591076010761107621076310764107651076610767107681076910770107711077210773107741077510776107771077810779107801078110782107831078410785107861078710788107891079010791107921079310794107951079610797107981079910800108011080210803108041080510806108071080810809108101081110812108131081410815108161081710818108191082010821108221082310824108251082610827108281082910830108311083210833108341083510836108371083810839108401084110842108431084410845108461084710848108491085010851108521085310854108551085610857108581085910860108611086210863108641086510866108671086810869108701087110872108731087410875108761087710878108791088010881108821088310884108851088610887108881088910890108911089210893108941089510896108971089810899109001090110902109031090410905109061090710908109091091010911109121091310914109151091610917109181091910920109211092210923109241092510926109271092810929109301093110932109331093410935109361093710938109391094010941109421094310944109451094610947109481094910950109511095210953109541095510956109571095810959109601096110962109631096410965109661096710968109691097010971109721097310974109751097610977109781097910980109811098210983109841098510986109871098810989109901099110992109931099410995109961099710998109991100011001110021100311004110051100611007110081100911010110111101211013110141101511016110171101811019110201102111022110231102411025110261102711028110291103011031110321103311034110351103611037110381103911040110411104211043110441104511046110471104811049110501105111052110531105411055110561105711058110591106011061110621106311064110651106611067110681106911070110711107211073110741107511076110771107811079110801108111082110831108411085110861108711088110891109011091110921109311094110951109611097110981109911100111011110211103111041110511106111071110811109111101111111112111131111411115111161111711118111191112011121111221112311124111251112611127111281112911130111311113211133111341113511136111371113811139111401114111142111431114411145111461114711148111491115011151111521115311154111551115611157111581115911160111611116211163111641116511166111671116811169111701117111172111731117411175111761117711178111791118011181111821118311184111851118611187111881118911190111911119211193111941119511196111971119811199112001120111202112031120411205112061120711208112091121011211112121121311214112151121611217112181121911220112211122211223112241122511226112271122811229112301123111232112331123411235112361123711238112391124011241112421124311244112451124611247112481124911250112511125211253112541125511256112571125811259112601126111262112631126411265112661126711268112691127011271112721127311274112751127611277112781127911280112811128211283112841128511286112871128811289112901129111292112931129411295112961129711298112991130011301113021130311304113051130611307113081130911310113111131211313113141131511316113171131811319113201132111322113231132411325113261132711328113291133011331113321133311334113351133611337113381133911340113411134211343113441134511346113471134811349113501135111352113531135411355113561135711358113591136011361113621136311364113651136611367113681136911370113711137211373113741137511376113771137811379113801138111382113831138411385113861138711388113891139011391113921139311394113951139611397113981139911400114011140211403114041140511406114071140811409114101141111412114131141411415114161141711418114191142011421114221142311424114251142611427114281142911430114311143211433114341143511436114371143811439114401144111442114431144411445114461144711448114491145011451114521145311454114551145611457114581145911460114611146211463114641146511466114671146811469114701147111472114731147411475114761147711478114791148011481114821148311484114851148611487114881148911490114911149211493114941149511496114971149811499115001150111502115031150411505115061150711508115091151011511115121151311514115151151611517115181151911520115211152211523115241152511526115271152811529115301153111532115331153411535115361153711538115391154011541115421154311544115451154611547115481154911550115511155211553115541155511556115571155811559115601156111562115631156411565115661156711568115691157011571115721157311574115751157611577115781157911580115811158211583115841158511586115871158811589115901159111592115931159411595115961159711598115991160011601116021160311604116051160611607116081160911610116111161211613116141161511616116171161811619116201162111622116231162411625116261162711628116291163011631116321163311634116351163611637116381163911640116411164211643116441164511646116471164811649116501165111652116531165411655116561165711658116591166011661116621166311664116651166611667116681166911670116711167211673116741167511676116771167811679116801168111682116831168411685116861168711688116891169011691116921169311694116951169611697116981169911700117011170211703117041170511706117071170811709117101171111712117131171411715117161171711718117191172011721117221172311724117251172611727117281172911730117311173211733117341173511736117371173811739117401174111742117431174411745117461174711748117491175011751117521175311754117551175611757117581175911760117611176211763117641176511766117671176811769117701177111772117731177411775117761177711778117791178011781117821178311784117851178611787117881178911790117911179211793117941179511796117971179811799118001180111802118031180411805118061180711808118091181011811118121181311814118151181611817118181181911820118211182211823118241182511826118271182811829118301183111832118331183411835118361183711838118391184011841118421184311844118451184611847118481184911850118511185211853118541185511856118571185811859118601186111862118631186411865118661186711868118691187011871118721187311874118751187611877118781187911880118811188211883118841188511886118871188811889118901189111892118931189411895118961189711898118991190011901119021190311904119051190611907119081190911910119111191211913119141191511916119171191811919119201192111922119231192411925119261192711928119291193011931119321193311934119351193611937119381193911940119411194211943119441194511946119471194811949119501195111952119531195411955119561195711958119591196011961119621196311964119651196611967119681196911970119711197211973119741197511976119771197811979119801198111982119831198411985119861198711988119891199011991119921199311994119951199611997119981199912000120011200212003120041200512006120071200812009120101201112012120131201412015120161201712018120191202012021120221202312024120251202612027120281202912030120311203212033120341203512036120371203812039120401204112042120431204412045120461204712048120491205012051120521205312054120551205612057120581205912060120611206212063120641206512066120671206812069120701207112072120731207412075120761207712078120791208012081120821208312084120851208612087120881208912090120911209212093120941209512096120971209812099121001210112102121031210412105121061210712108121091211012111121121211312114121151211612117121181211912120121211212212123121241212512126121271212812129121301213112132121331213412135121361213712138121391214012141121421214312144121451214612147121481214912150121511215212153121541215512156121571215812159121601216112162121631216412165121661216712168121691217012171121721217312174121751217612177121781217912180121811218212183121841218512186121871218812189121901219112192121931219412195121961219712198121991220012201122021220312204122051220612207122081220912210122111221212213122141221512216122171221812219122201222112222122231222412225122261222712228122291223012231122321223312234122351223612237122381223912240122411224212243122441224512246122471224812249122501225112252122531225412255122561225712258122591226012261122621226312264122651226612267122681226912270122711227212273122741227512276122771227812279122801228112282122831228412285122861228712288122891229012291122921229312294122951229612297122981229912300123011230212303123041230512306123071230812309123101231112312123131231412315123161231712318123191232012321123221232312324123251232612327123281232912330123311233212333123341233512336123371233812339123401234112342123431234412345123461234712348123491235012351123521235312354123551235612357123581235912360123611236212363123641236512366123671236812369123701237112372123731237412375123761237712378123791238012381123821238312384123851238612387123881238912390123911239212393123941239512396123971239812399124001240112402124031240412405124061240712408124091241012411124121241312414124151241612417124181241912420124211242212423124241242512426124271242812429124301243112432124331243412435124361243712438124391244012441124421244312444124451244612447124481244912450124511245212453124541245512456124571245812459124601246112462124631246412465124661246712468124691247012471124721247312474124751247612477124781247912480124811248212483124841248512486124871248812489124901249112492124931249412495124961249712498124991250012501125021250312504125051250612507125081250912510125111251212513125141251512516125171251812519125201252112522125231252412525125261252712528125291253012531125321253312534125351253612537125381253912540125411254212543125441254512546125471254812549125501255112552125531255412555125561255712558125591256012561125621256312564125651256612567125681256912570125711257212573125741257512576125771257812579125801258112582125831258412585125861258712588125891259012591125921259312594125951259612597125981259912600126011260212603126041260512606126071260812609126101261112612126131261412615126161261712618126191262012621126221262312624126251262612627126281262912630126311263212633126341263512636126371263812639126401264112642126431264412645126461264712648126491265012651126521265312654126551265612657126581265912660126611266212663126641266512666126671266812669126701267112672126731267412675126761267712678126791268012681126821268312684126851268612687126881268912690126911269212693126941269512696126971269812699127001270112702127031270412705127061270712708127091271012711127121271312714127151271612717127181271912720127211272212723127241272512726127271272812729127301273112732127331273412735127361273712738127391274012741127421274312744127451274612747127481274912750127511275212753127541275512756127571275812759127601276112762127631276412765127661276712768127691277012771127721277312774127751277612777127781277912780127811278212783127841278512786127871278812789127901279112792127931279412795127961279712798127991280012801128021280312804128051280612807128081280912810128111281212813128141281512816128171281812819128201282112822128231282412825128261282712828128291283012831128321283312834128351283612837128381283912840128411284212843128441284512846128471284812849128501285112852128531285412855128561285712858128591286012861128621286312864128651286612867128681286912870128711287212873128741287512876128771287812879128801288112882128831288412885128861288712888128891289012891128921289312894128951289612897128981289912900129011290212903129041290512906129071290812909129101291112912129131291412915129161291712918129191292012921129221292312924129251292612927129281292912930129311293212933129341293512936129371293812939129401294112942129431294412945129461294712948129491295012951129521295312954129551295612957129581295912960129611296212963129641296512966129671296812969129701297112972129731297412975129761297712978129791298012981129821298312984129851298612987129881298912990129911299212993129941299512996129971299812999130001300113002130031300413005130061300713008130091301013011130121301313014130151301613017130181301913020130211302213023130241302513026130271302813029130301303113032130331303413035130361303713038130391304013041130421304313044130451304613047130481304913050130511305213053130541305513056130571305813059130601306113062130631306413065130661306713068130691307013071130721307313074130751307613077130781307913080130811308213083130841308513086130871308813089130901309113092130931309413095130961309713098130991310013101131021310313104131051310613107131081310913110131111311213113131141311513116131171311813119131201312113122131231312413125131261312713128131291313013131131321313313134131351313613137131381313913140131411314213143131441314513146131471314813149131501315113152131531315413155131561315713158131591316013161131621316313164131651316613167131681316913170131711317213173131741317513176131771317813179131801318113182131831318413185131861318713188131891319013191131921319313194131951319613197131981319913200132011320213203132041320513206132071320813209132101321113212132131321413215132161321713218132191322013221132221322313224132251322613227132281322913230132311323213233132341323513236132371323813239132401324113242132431324413245132461324713248132491325013251132521325313254132551325613257132581325913260132611326213263132641326513266132671326813269132701327113272132731327413275132761327713278132791328013281132821328313284132851328613287132881328913290132911329213293132941329513296132971329813299133001330113302133031330413305133061330713308133091331013311133121331313314133151331613317133181331913320133211332213323133241332513326133271332813329133301333113332133331333413335133361333713338133391334013341133421334313344133451334613347133481334913350133511335213353133541335513356133571335813359133601336113362133631336413365133661336713368133691337013371133721337313374133751337613377133781337913380133811338213383133841338513386133871338813389133901339113392133931339413395133961339713398133991340013401134021340313404134051340613407134081340913410134111341213413134141341513416134171341813419134201342113422134231342413425134261342713428134291343013431134321343313434134351343613437134381343913440134411344213443134441344513446134471344813449134501345113452134531345413455134561345713458134591346013461134621346313464134651346613467134681346913470134711347213473134741347513476134771347813479134801348113482134831348413485134861348713488134891349013491134921349313494134951349613497134981349913500135011350213503135041350513506135071350813509135101351113512135131351413515135161351713518135191352013521135221352313524135251352613527135281352913530135311353213533135341353513536135371353813539135401354113542135431354413545135461354713548135491355013551135521355313554135551355613557135581355913560135611356213563135641356513566135671356813569135701357113572135731357413575135761357713578135791358013581135821358313584135851358613587135881358913590135911359213593135941359513596135971359813599136001360113602136031360413605136061360713608136091361013611136121361313614136151361613617136181361913620136211362213623136241362513626136271362813629136301363113632136331363413635136361363713638136391364013641136421364313644136451364613647136481364913650136511365213653136541365513656136571365813659136601366113662136631366413665136661366713668136691367013671136721367313674136751367613677136781367913680136811368213683136841368513686136871368813689136901369113692136931369413695136961369713698136991370013701137021370313704137051370613707137081370913710137111371213713137141371513716137171371813719137201372113722137231372413725137261372713728137291373013731137321373313734137351373613737137381373913740137411374213743137441374513746137471374813749137501375113752137531375413755137561375713758137591376013761137621376313764137651376613767137681376913770137711377213773137741377513776137771377813779137801378113782137831378413785137861378713788137891379013791137921379313794137951379613797137981379913800138011380213803138041380513806138071380813809138101381113812138131381413815138161381713818138191382013821138221382313824138251382613827138281382913830138311383213833138341383513836138371383813839138401384113842138431384413845138461384713848138491385013851138521385313854138551385613857138581385913860138611386213863138641386513866138671386813869138701387113872138731387413875138761387713878138791388013881138821388313884138851388613887138881388913890138911389213893138941389513896138971389813899139001390113902139031390413905139061390713908139091391013911139121391313914139151391613917139181391913920139211392213923139241392513926139271392813929139301393113932139331393413935139361393713938139391394013941139421394313944139451394613947139481394913950139511395213953139541395513956139571395813959139601396113962139631396413965139661396713968139691397013971139721397313974139751397613977139781397913980139811398213983139841398513986139871398813989139901399113992139931399413995139961399713998139991400014001140021400314004140051400614007140081400914010140111401214013140141401514016140171401814019140201402114022140231402414025140261402714028140291403014031140321403314034140351403614037140381403914040140411404214043140441404514046140471404814049140501405114052140531405414055140561405714058140591406014061140621406314064140651406614067140681406914070140711407214073140741407514076140771407814079140801408114082140831408414085140861408714088140891409014091140921409314094140951409614097140981409914100141011410214103141041410514106141071410814109141101411114112141131411414115141161411714118141191412014121141221412314124141251412614127141281412914130141311413214133141341413514136141371413814139141401414114142141431414414145141461414714148141491415014151141521415314154141551415614157141581415914160141611416214163141641416514166141671416814169141701417114172141731417414175141761417714178141791418014181141821418314184141851418614187141881418914190141911419214193141941419514196141971419814199142001420114202142031420414205142061420714208142091421014211142121421314214142151421614217142181421914220142211422214223142241422514226142271422814229142301423114232142331423414235142361423714238142391424014241142421424314244142451424614247142481424914250142511425214253142541425514256142571425814259142601426114262142631426414265142661426714268142691427014271142721427314274142751427614277142781427914280142811428214283142841428514286142871428814289142901429114292142931429414295142961429714298142991430014301143021430314304143051430614307143081430914310143111431214313143141431514316143171431814319143201432114322143231432414325143261432714328143291433014331143321433314334143351433614337143381433914340143411434214343143441434514346143471434814349143501435114352143531435414355143561435714358143591436014361143621436314364143651436614367143681436914370143711437214373143741437514376143771437814379143801438114382143831438414385143861438714388143891439014391143921439314394143951439614397143981439914400144011440214403144041440514406144071440814409144101441114412144131441414415144161441714418144191442014421144221442314424144251442614427144281442914430144311443214433144341443514436144371443814439144401444114442144431444414445144461444714448144491445014451144521445314454144551445614457144581445914460144611446214463144641446514466144671446814469144701447114472144731447414475144761447714478144791448014481144821448314484144851448614487144881448914490144911449214493144941449514496144971449814499145001450114502145031450414505145061450714508145091451014511145121451314514145151451614517145181451914520145211452214523145241452514526145271452814529145301453114532145331453414535145361453714538145391454014541145421454314544145451454614547145481454914550145511455214553145541455514556145571455814559145601456114562145631456414565145661456714568145691457014571145721457314574145751457614577145781457914580145811458214583145841458514586145871458814589145901459114592145931459414595145961459714598145991460014601146021460314604146051460614607146081460914610146111461214613146141461514616146171461814619146201462114622146231462414625146261462714628146291463014631146321463314634146351463614637146381463914640146411464214643146441464514646146471464814649146501465114652146531465414655146561465714658146591466014661146621466314664146651466614667146681466914670146711467214673146741467514676146771467814679146801468114682146831468414685146861468714688146891469014691146921469314694146951469614697146981469914700147011470214703147041470514706147071470814709147101471114712147131471414715147161471714718147191472014721147221472314724147251472614727147281472914730147311473214733147341473514736147371473814739147401474114742147431474414745147461474714748147491475014751147521475314754147551475614757147581475914760147611476214763147641476514766147671476814769147701477114772147731477414775147761477714778147791478014781147821478314784147851478614787147881478914790147911479214793147941479514796147971479814799148001480114802148031480414805148061480714808148091481014811148121481314814148151481614817148181481914820148211482214823148241482514826148271482814829148301483114832148331483414835148361483714838148391484014841148421484314844148451484614847148481484914850148511485214853148541485514856148571485814859148601486114862148631486414865148661486714868148691487014871148721487314874148751487614877148781487914880148811488214883148841488514886148871488814889148901489114892148931489414895148961489714898148991490014901149021490314904149051490614907149081490914910149111491214913149141491514916149171491814919149201492114922149231492414925149261492714928149291493014931149321493314934149351493614937149381493914940149411494214943149441494514946149471494814949149501495114952149531495414955149561495714958149591496014961149621496314964149651496614967149681496914970149711497214973149741497514976149771497814979149801498114982149831498414985149861498714988149891499014991149921499314994149951499614997149981499915000150011500215003150041500515006150071500815009150101501115012150131501415015150161501715018150191502015021150221502315024150251502615027150281502915030150311503215033150341503515036150371503815039150401504115042150431504415045150461504715048150491505015051150521505315054150551505615057150581505915060150611506215063150641506515066150671506815069150701507115072150731507415075150761507715078150791508015081150821508315084150851508615087150881508915090150911509215093150941509515096150971509815099151001510115102151031510415105151061510715108151091511015111151121511315114151151511615117151181511915120151211512215123151241512515126151271512815129151301513115132151331513415135151361513715138151391514015141151421514315144151451514615147151481514915150151511515215153151541515515156151571515815159151601516115162151631516415165151661516715168151691517015171151721517315174151751517615177151781517915180151811518215183151841518515186151871518815189151901519115192151931519415195151961519715198151991520015201152021520315204152051520615207152081520915210152111521215213152141521515216152171521815219152201522115222152231522415225152261522715228152291523015231152321523315234152351523615237152381523915240152411524215243152441524515246152471524815249152501525115252152531525415255152561525715258152591526015261152621526315264152651526615267152681526915270152711527215273152741527515276152771527815279152801528115282152831528415285152861528715288152891529015291152921529315294152951529615297152981529915300153011530215303153041530515306153071530815309153101531115312153131531415315153161531715318153191532015321153221532315324153251532615327153281532915330153311533215333153341533515336153371533815339153401534115342153431534415345153461534715348153491535015351153521535315354153551535615357153581535915360153611536215363153641536515366153671536815369153701537115372153731537415375153761537715378153791538015381153821538315384153851538615387153881538915390153911539215393153941539515396153971539815399154001540115402154031540415405154061540715408154091541015411154121541315414154151541615417154181541915420154211542215423154241542515426154271542815429154301543115432154331543415435154361543715438154391544015441154421544315444154451544615447154481544915450154511545215453154541545515456154571545815459154601546115462154631546415465154661546715468154691547015471154721547315474154751547615477154781547915480154811548215483154841548515486154871548815489154901549115492154931549415495154961549715498154991550015501155021550315504155051550615507155081550915510155111551215513155141551515516155171551815519155201552115522155231552415525155261552715528155291553015531155321553315534155351553615537155381553915540155411554215543155441554515546155471554815549155501555115552155531555415555155561555715558155591556015561155621556315564155651556615567155681556915570155711557215573155741557515576155771557815579155801558115582155831558415585155861558715588155891559015591155921559315594155951559615597155981559915600156011560215603156041560515606156071560815609156101561115612156131561415615156161561715618156191562015621156221562315624156251562615627156281562915630156311563215633156341563515636156371563815639156401564115642156431564415645156461564715648156491565015651156521565315654156551565615657156581565915660156611566215663156641566515666156671566815669156701567115672156731567415675156761567715678156791568015681156821568315684156851568615687156881568915690156911569215693156941569515696156971569815699157001570115702157031570415705157061570715708157091571015711157121571315714157151571615717157181571915720157211572215723157241572515726157271572815729157301573115732157331573415735157361573715738157391574015741157421574315744157451574615747157481574915750157511575215753157541575515756157571575815759157601576115762157631576415765157661576715768157691577015771157721577315774157751577615777157781577915780157811578215783157841578515786157871578815789157901579115792157931579415795157961579715798157991580015801158021580315804158051580615807158081580915810158111581215813158141581515816158171581815819158201582115822158231582415825158261582715828158291583015831158321583315834158351583615837158381583915840158411584215843158441584515846158471584815849158501585115852158531585415855158561585715858158591586015861158621586315864158651586615867158681586915870158711587215873158741587515876158771587815879158801588115882158831588415885158861588715888158891589015891158921589315894158951589615897158981589915900159011590215903159041590515906159071590815909159101591115912159131591415915159161591715918 |
- % Why direct style instead of continuation passing style?
- %% Student project ideas:
- %% * high-level optimizations like procedure inlining, etc.
- %% * closure optimization
- %% * adding letrec to the language
- %% (Thought: in the book and regular course, replace top-level defines
- %% with letrec.)
- %% * alternative back ends (ARM!, LLVM)
- %% * alternative calling convention (a la Dybvig)
- %% * lazy evaluation
- %% * continuations (frames in heap a la SML or segmented stack a la Dybvig)
- %% * exceptions
- %% * self hosting
- %% * I/O
- %% * foreign function interface
- %% * quasi-quote and unquote
- %% * macros (too difficult?)
- %% * alternative garbage collector
- %% * alternative register allocator
- %% * type classes
- %% * loop optimization (fusion, etc.)
- %% * deforestation
- %% * records with subtyping
- %% * object-oriented features
- %% - objects, object types, and structural subtyping (e.g. Abadi & Cardelli)
- %% - class-based objects and nominal subtyping (e.g. Featherweight Java)
- %% * multi-threading, fork join, futures, implicit parallelism
- %% * type analysis and specialization
- \documentclass[11pt]{book}
- \usepackage[T1]{fontenc}
- \usepackage[utf8]{inputenc}
- \usepackage{lmodern}
- \usepackage{hyperref}
- \usepackage{graphicx}
- \usepackage[english]{babel}
- \usepackage{listings}
- \usepackage{amsmath}
- \usepackage{amsthm}
- \usepackage{amssymb}
- \usepackage[numbers]{natbib}
- \usepackage{stmaryrd}
- \usepackage{xypic}
- \usepackage{semantic}
- \usepackage{wrapfig}
- \usepackage{tcolorbox}
- \usepackage{multirow}
- \usepackage{color}
- \usepackage{upquote}
- \usepackage{makeidx}
- \makeindex
- \definecolor{lightgray}{gray}{1}
- \newcommand{\black}[1]{{\color{black} #1}}
- %\newcommand{\gray}[1]{{\color{lightgray} #1}}
- \newcommand{\gray}[1]{{\color{gray} #1}}
- %% For pictures
- \usepackage{tikz}
- \usetikzlibrary{arrows.meta}
- \tikzset{baseline=(current bounding box.center), >/.tip={Triangle[scale=1.4]}}
- % Computer Modern is already the default. -Jeremy
- %\renewcommand{\ttdefault}{cmtt}
- \definecolor{comment-red}{rgb}{0.8,0,0}
- \if01
- \newcommand{\rn}[1]{{\color{comment-red}{(RRN: #1)}}}
- \newcommand{\margincomment}[1]{\marginpar{\color{comment-red}\tiny #1}}
- \else
- \newcommand{\rn}[1]{}
- \newcommand{\margincomment}[1]{}
- \fi
- \newcommand{\ocaml}[1]{{\color{blue}{#1}}}
- \newenvironment{ocamlx}{
- \begin{color}{blue}
- }
- {
- \end{color}
- }
- \definecolor{BLUE}{rgb}{0,0,1} % no idea why we need this
- \lstdefinestyle{racket}{
- language=Lisp,
- basicstyle=\ttfamily\small,
- morekeywords={seq,assign,program,block,define,lambda,match,goto,if,else,then,struct,Integer,Boolean,Vector,Void,Any,while,begin,define,public,override,class},
- deletekeywords={read,mapping,vector},
- escapechar=|,
- columns=flexible,
- moredelim=[is][\color{red}]{~}{~},
- showstringspaces=false
- }
-
- \lstset{style=racket}
- \lstdefinestyle{ocaml}{
- language=[Objective]Caml,
- basicstyle=\ttfamily\small\color{blue},
- columns=flexible,
- escapechar=~,
- showstringspaces=false
- }
- \newtheorem{theorem}{Theorem}
- \newtheorem{lemma}[theorem]{Lemma}
- \newtheorem{corollary}[theorem]{Corollary}
- \newtheorem{proposition}[theorem]{Proposition}
- \newtheorem{constraint}[theorem]{Constraint}
- \newtheorem{definition}[theorem]{Definition}
- \newtheorem{exercise}[theorem]{Exercise}
- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
- % 'dedication' environment: To add a dedication paragraph at the start of book %
- % Source: http://www.tug.org/pipermail/texhax/2010-June/015184.html %
- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
- \newenvironment{dedication}
- {
- \cleardoublepage
- \thispagestyle{empty}
- \vspace*{\stretch{1}}
- \hfill\begin{minipage}[t]{0.66\textwidth}
- \raggedright
- }
- {
- \end{minipage}
- \vspace*{\stretch{3}}
- \clearpage
- }
- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
- % Chapter quote at the start of chapter %
- % Source: http://tex.stackexchange.com/a/53380 %
- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
- \makeatletter
- \renewcommand{\@chapapp}{}% Not necessary...
- \newenvironment{chapquote}[2][2em]
- {\setlength{\@tempdima}{#1}%
- \def\chapquote@author{#2}%
- \parshape 1 \@tempdima \dimexpr\textwidth-2\@tempdima\relax%
- \itshape}
- {\par\normalfont\hfill--\ \chapquote@author\hspace*{\@tempdima}\par\bigskip}
- \makeatother
- \input{defs}
- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
- \title{\Huge \textbf{Essentials of Compilation} \\
- \huge The Incremental, Nano-Pass Approach}
- \author{\textsc{Jeremy G. Siek} \\
- %\thanks{\url{http://homes.soic.indiana.edu/jsiek/}} \\
- Indiana University \\
- \\
- with contributions from: \\
- Carl Factora \\
- Andre Kuhlenschmidt \\
- Ryan R. Newton \\
- Ryan Scott \\
- Cameron Swords \\
- Michael M. Vitousek \\
- Michael Vollmer \\
- \\
- \ocaml{OCaml version:} \\
- \ocaml{Andrew Tolmach} \\
- \ocaml{(with inspiration from a Haskell version by Ian Winter)}
- }
- \begin{document}
- \frontmatter
- \maketitle
- \begin{dedication}
- This book is dedicated to the programming language wonks at Indiana
- University.
- \end{dedication}
- \tableofcontents
- \listoffigures
- %\listoftables
- \mainmatter
- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
- \chapter*{Preface}
- There is a magical moment when a programmer presses the ``run'' button
- and the software begins to execute. Somehow a program written in a
- high-level language is running on a computer that is only capable of
- shuffling bits. Here we reveal the wizardry that makes that moment
- possible. Beginning with the groundbreaking work of Backus and
- colleagues in the 1950s, computer scientists discovered techniques for
- constructing programs, called \emph{compilers}, that automatically
- translate high-level programs into machine code.
- We take you on a journey by constructing your own compiler for a small
- but powerful language. Along the way we explain the essential
- concepts, algorithms, and data structures that underlie compilers. We
- develop your understanding of how programs are mapped onto computer
- hardware, which is helpful when reasoning about properties at the
- junction between hardware and software such as execution time,
- software errors, and security vulnerabilities. For those interested
- in pursuing compiler construction, our goal is to provide a
- stepping-stone to advanced topics such as just-in-time compilation,
- program analysis, and program optimization. For those interested in
- designing and implementing their own programming languages, we connect
- language design choices to their impact on the compiler its generated
- code.
- A compiler is typically organized as a sequence of stages that
- progressively translates a program to code that runs on hardware. We
- take this approach to the extreme by partitioning our compiler into a
- large number of \emph{nanopasses}, each of which performs a single
- task. This allows us to test the output of each pass in isolation, and
- furthermore, allows us to focus our attention making the compiler far
- easier to understand.
- %% [TODO: easier to understand/debug for those maintaining the compiler,
- %% proving correctness]
- The most familiar approach to describing compilers is with one pass
- per chapter. The problem with that is it obfuscates how language
- features motivate design choices in a compiler. We take an
- \emph{incremental} approach in which we build a complete compiler in
- each chapter, starting with arithmetic and variables and add new
- features in subsequent chapters.
- Our choice of language features is designed to elicit the fundamental
- concepts and algorithms used in compilers.
- \begin{itemize}
- \item We begin with integer arithmetic and local variables in
- Chapters~\ref{ch:trees-recur} and \ref{ch:Rvar}, where we introduce
- the fundamental tools of compiler construction: \emph{abstract
- syntax trees} and \emph{recursive functions}.
- \item In Chapter~\ref{ch:register-allocation-Rvar} we apply
- \emph{graph coloring} to assign variables to machine registers.
- \item Chapter~\ref{ch:Rif} adds \code{if} expressions, which motivates
- an elegant recursive algorithm for mapping expressions to
- \emph{control-flow graphs}.
- \item Chapter~\ref{ch:Rvec} adds heap-allocated tuples, motivating
- \emph{garbage collection}.
- \item Chapter~\ref{ch:Rfun} adds functions that are first-class values
- but lack lexical scoping, similar to the C programming
- language~\citep{Kernighan:1988nx} except that we generate efficient
- tail calls. The reader learns about the procedure call stack,
- \emph{calling conventions}, and their interaction with register
- allocation and garbage collection.
- \item Chapter~\ref{ch:Rlam} adds anonymous functions with lexical
- scoping, i.e., \emph{lambda abstraction}. The reader learns about
- \emph{closure conversion}, in which lambdas are translated into a
- combination of functions and tuples.
- \item Chapter~\ref{ch:Rdyn} adds \emph{dynamic typing}. Prior to this
- point the input languages are statically typed. The reader extends
- the statically typed language with an \code{Any} type which serves
- as a target for compiling the dynamically typed language.
- \item Chapter~\ref{ch:Rwhile} fleshes out support for imperative
- programming languages with the addition of loops and mutable
- variables. These additions elicit the need for \emph{dataflow
- analysis} in the register allocator.
- \item Chapter~\ref{ch:Rgrad} uses the \code{Any} type of
- Chapter~\ref{ch:Rdyn} to implement a \emph{gradually typed language}
- in which different regions of a program may be static or dynamically
- typed. The reader implements runtime support for \emph{proxies} that
- allow values to safely move between regions.
- \item Chapter~\ref{ch:Rpoly} adds \emph{generics} with autoboxing,
- leveraging the \code{Any} type and type casts developed in Chapters
- \ref{ch:Rdyn} and \ref{ch:Rgrad}.
- \end{itemize}
- There are many language features that we do not include. Our choices
- weigh the incidental complexity of a feature against the fundamental
- concepts that it exposes. For example, we include tuples and not
- records because they both elicit the study of heap allocation and
- garbage collection but records come with more incidental complexity.
- Since 2016 this book has served as the textbook for the compiler
- course at Indiana University, a 16-week course for upper-level
- undergraduates and first-year graduate students.
- %
- Prior to this course, students learn to program in both imperative and
- functional languages, study data structures and algorithms, and take
- discrete mathematics.
- %
- At the beginning of the course, students form groups of 2-4 people.
- The groups complete one chapter every two weeks, starting with
- Chapter~\ref{ch:Rvar} and finishing with Chapter~\ref{ch:Rdyn}. Many
- chapters include a challenge problem that we assign to the graduate
- students. The last two weeks of the course involve a final project in
- which students design and implement a compiler extension of their
- choosing. Chapters~\ref{ch:Rwhile}, \ref{ch:Rgrad}, and
- \ref{ch:Rpoly} can be used in support of these projects or they can
- replace some of the earlier chapters. For example, a course with an
- emphasis on statically-typed imperative languages would skip
- Chapter~\ref{ch:Rdyn} in favor of
- Chapter~\ref{ch:Rwhile}. Figure~\ref{fig:chapter-dependences} depicts
- the dependencies between chapters.
- This book has also been used in compiler courses at California
- Polytechnic State University, Rose–Hulman Institute of Technology, and
- University of Massachusetts Lowell.
- \begin{figure}[tp]
- \begin{tikzpicture}[baseline=(current bounding box.center)]
- \node (C1) at (0,1.5) {\small Ch.~\ref{ch:trees-recur} Preliminaries};
- \node (C2) at (4,1.5) {\small Ch.~\ref{ch:Rvar} Variables};
- \node (C3) at (8,1.5) {\small Ch.~\ref{ch:register-allocation-Rvar} Registers};
- \node (C4) at (0,0) {\small Ch.~\ref{ch:Rif} Control Flow};
- \node (C5) at (4,0) {\small Ch.~\ref{ch:Rvec} Tuples};
- \node (C6) at (8,0) {\small Ch.~\ref{ch:Rfun} Functions};
- \node (C9) at (0,-1.5) {\small Ch.~\ref{ch:Rwhile} Loops};
- \node (C8) at (4,-1.5) {\small Ch.~\ref{ch:Rdyn} Dynamic};
- \node (C7) at (8,-1.5) {\small Ch.~\ref{ch:Rlam} Lambda};
- \node (C10) at (4,-3) {\small Ch.~\ref{ch:Rgrad} Gradual};
- \node (C11) at (8,-3) {\small Ch.~\ref{ch:Rpoly} Generics};
- \path[->] (C1) edge [above] node {} (C2);
- \path[->] (C2) edge [above] node {} (C3);
- \path[->] (C3) edge [above] node {} (C4);
- \path[->] (C4) edge [above] node {} (C5);
- \path[->] (C5) edge [above] node {} (C6);
- \path[->] (C6) edge [above] node {} (C7);
- \path[->] (C4) edge [above] node {} (C8);
- \path[->] (C4) edge [above] node {} (C9);
- \path[->] (C8) edge [above] node {} (C10);
- \path[->] (C10) edge [above] node {} (C11);
- \end{tikzpicture}
- \caption{Diagram of chapter dependencies.}
- \label{fig:chapter-dependences}
- \end{figure}
- We use the \href{https://racket-lang.org/}{Racket} language both for
- the implementation of the compiler and for the input language, so the
- reader should be proficient with Racket or Scheme. There are many
- excellent resources for learning Scheme and
- Racket~\citep{Dybvig:1987aa,Abelson:1996uq,Friedman:1996aa,Felleisen:2001aa,Felleisen:2013aa,Flatt:2014aa}. The
- support code for this book is in the \code{github} repository at the
- following URL:
- \begin{center}\small
- \url{https://github.com/IUCompilerCourse/public-student-support-code}
- \end{center}
- The compiler targets x86 assembly language~\citep{Intel:2015aa}, so it
- is helpful but not necessary for the reader to have taken a computer
- systems course~\citep{Bryant:2010aa}. This book introduces the parts
- of x86-64 assembly language that are needed.
- %
- We follow the System V calling
- conventions~\citep{Bryant:2005aa,Matz:2013aa}, so the assembly code
- that we generate works with the runtime system (written in C) when it
- is compiled using the GNU C compiler (\code{gcc}) on Linux and MacOS
- operating systems.
- %
- On the Windows operating system, \code{gcc} uses the Microsoft x64
- calling convention~\citep{Microsoft:2018aa,Microsoft:2020aa}. So the
- assembly code that we generate does \emph{not} work with the runtime
- system on Windows. One workaround is to use a virtual machine with
- Linux as the guest operating system.
- \section*{Acknowledgments}
- The tradition of compiler construction at Indiana University goes back
- to research and courses on programming languages by Daniel Friedman in
- the 1970's and 1980's. One of his students, Kent Dybvig, implemented
- Chez Scheme~\citep{Dybvig:2006aa}, a production-quality, efficient
- compiler for Scheme. Throughout the 1990's and 2000's, Dybvig taught
- the compiler course and continued the development of Chez Scheme.
- %
- The compiler course evolved to incorporate novel pedagogical ideas
- while also including elements of efficient real-world compilers. One
- of Friedman's ideas was to split the compiler into many small
- passes. Another idea, called ``the game'', was to test the code
- generated by each pass on interpreters.
- Dybvig, with help from his students Dipanwita Sarkar and Andrew Keep,
- developed infrastructure to support this approach and evolved the
- course to use even smaller
- nanopasses~\citep{Sarkar:2004fk,Keep:2012aa}. Many of the compiler
- design decisions in this book are inspired by the assignment
- descriptions of \citet{Dybvig:2010aa}. In the mid 2000's a student of
- Dybvig's named Abdulaziz Ghuloum observed that the front-to-back
- organization of the course made it difficult for students to
- understand the rationale for the compiler design. Ghuloum proposed the
- incremental approach~\citep{Ghuloum:2006bh}.
- We thank Bor-Yuh Chang, John Clements, Jay McCarthy, Joseph Near, Nate
- Nystrom, and Michael Wollowski for teaching courses based on early
- drafts.
- We thank Ronald Garcia for being Jeremy's partner when they took the
- compiler course in the early 2000's and especially for finding the bug
- that sent the garbage collector on a wild goose chase!
- \mbox{}\\
- \noindent Jeremy G. Siek \\
- Bloomington, Indiana
- %Oscar Waddell ??
- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
- \chapter{Preliminaries}
- \label{ch:trees-recur}
- \begin{ocamlx}
- Text in blue, like this, represents additions to the original book
- text to support the use of OCaml rather than Racket as our compiler
- implementation language. The original text is never changed, so you
- can see both the Racket and OCaml versions in parallel. The main
- motivation for this is to save a lot of rote editing: the bulk of
- the story being told in this book is substantially the same
- regardless of implementation language, so most of what has been
- written about the Racket version applies directly to OCaml
- with just small mental adjustments between the syntaxes of the two
- languages. A secondary motivation is that it is sometimes easier to
- see key underlying ideas when they are expressed in more than one
- way.
- In many respects, Racket and OCaml are very similar languages: they
- both encourage a purely functional style of programming while also supporting
- imperative programming, provide higher-order functions, use
- garbage collection to guarantee memory safety, etc. Indeed, the
- ``back ends'' of Racket and OCaml implementations are nearly
- interchangeable. By far the most fundamental difference between them is
- that OCaml uses static typing, whereas Racket uses runtime typing.
- The latter can provide useful flexibility, but the former has the
- big advantage of providing compile-time feedback on type errors.
- This is our main motivation for using OCaml.
- \end{ocamlx}
- In this chapter we review the basic tools that are needed to implement
- a compiler. Programs are typically input by a programmer as text,
- i.e., a sequence of characters. The program-as-text representation is
- called \emph{concrete syntax}. We use concrete syntax to concisely
- write down and talk about programs. Inside the compiler, we use
- \emph{abstract syntax trees} (ASTs) to represent programs in a way
- that efficiently supports the operations that the compiler needs to
- perform.\index{concrete syntax}\index{abstract syntax}\index{abstract
- syntax tree}\index{AST}\index{program}\index{parse} The translation
- from concrete syntax to abstract syntax is a process called
- \emph{parsing}~\citep{Aho:1986qf}. We do not cover the theory and
- implementation of parsing in this book. A parser is provided in the
- support code for translating from concrete to abstract syntax.
- ASTs can be represented in many different ways inside the compiler,
- depending on the programming language used to write the compiler.
- %
- We use Racket's
- \href{https://docs.racket-lang.org/guide/define-struct.html}{\code{struct}}
- feature to represent ASTs (Section~\ref{sec:ast}).
- \ocaml{OCaml: we use \emph{variants} (also called algebraic data types) to
- represent ASTs.}
- We use grammars to
- define the abstract syntax of programming languages
- (Section~\ref{sec:grammar}) and pattern matching to inspect individual
- nodes in an AST (Section~\ref{sec:pattern-matching}). We use
- recursive functions to construct and deconstruct ASTs
- (Section~\ref{sec:recursion}). This chapter provides an brief
- introduction to these ideas. \index{struct}
- \section{Abstract Syntax Trees and Racket Structures \ocaml{/ OCaml Variants}}
- \label{sec:ast}
- Compilers use abstract syntax trees to represent programs because they
- often need to ask questions like: for a given part of a program, what
- kind of language feature is it? What are its sub-parts? Consider the
- program on the left and its AST on the right.
- \begin{ocamlx}
- This program is
- itself in Racket; in addition to using Racket as the compiler implementation
- language, the original version of this book uses subsets of Racket as the
- \emph{source} languages that we compile. In the OCaml version we will be using
- ad-hoc source languages that look a lot like subsets of Racket, but sometimes
- made simpler (because there is no particular advantage to matching the messier details
- of Racket syntax). The code on the left will be valid in all of our source languages too.
- \end{ocamlx}
- This program is an
- addition operation and it has two sub-parts, a read operation and a
- negation. The negation has another sub-part, the integer constant
- \code{8}. By using a tree to represent the program, we can easily
- follow the links to go from one part of a program to its sub-parts.
- \begin{center}
- \begin{minipage}{0.4\textwidth}
- \begin{lstlisting}
- (+ (read) (- 8))
- \end{lstlisting}
- \end{minipage}
- \begin{minipage}{0.4\textwidth}
- \begin{equation}
- \begin{tikzpicture}
- \node[draw, circle] (plus) at (0 , 0) {\key{+}};
- \node[draw, circle] (read) at (-1, -1.5) {{\footnotesize\key{read}}};
- \node[draw, circle] (minus) at (1 , -1.5) {$\key{-}$};
- \node[draw, circle] (8) at (1 , -3) {\key{8}};
- \draw[->] (plus) to (read);
- \draw[->] (plus) to (minus);
- \draw[->] (minus) to (8);
- \end{tikzpicture}
- \label{eq:arith-prog}
- \end{equation}
- \end{minipage}
- \end{center}
- We use the standard terminology for trees to describe ASTs: each
- circle above is called a \emph{node}. The arrows connect a node to its
- \emph{children} (which are also nodes). The top-most node is the
- \emph{root}. Every node except for the root has a \emph{parent} (the
- node it is the child of). If a node has no children, it is a
- \emph{leaf} node. Otherwise it is an \emph{internal} node.
- \index{node}
- \index{children}
- \index{root}
- \index{parent}
- \index{leaf}
- \index{internal node}
- %% Recall that an \emph{symbolic expression} (S-expression) is either
- %% \begin{enumerate}
- %% \item an atom, or
- %% \item a pair of two S-expressions, written $(e_1 \key{.} e_2)$,
- %% where $e_1$ and $e_2$ are each an S-expression.
- %% \end{enumerate}
- %% An \emph{atom} can be a symbol, such as \code{`hello}, a number, the
- %% null value \code{'()}, etc. We can create an S-expression in Racket
- %% simply by writing a backquote (called a quasi-quote in Racket)
- %% followed by the textual representation of the S-expression. It is
- %% quite common to use S-expressions to represent a list, such as $a, b
- %% ,c$ in the following way:
- %% \begin{lstlisting}
- %% `(a . (b . (c . ())))
- %% \end{lstlisting}
- %% Each element of the list is in the first slot of a pair, and the
- %% second slot is either the rest of the list or the null value, to mark
- %% the end of the list. Such lists are so common that Racket provides
- %% special notation for them that removes the need for the periods
- %% and so many parenthesis:
- %% \begin{lstlisting}
- %% `(a b c)
- %% \end{lstlisting}
- %% The following expression creates an S-expression that represents AST
- %% \eqref{eq:arith-prog}.
- %% \begin{lstlisting}
- %% `(+ (read) (- 8))
- %% \end{lstlisting}
- %% When using S-expressions to represent ASTs, the convention is to
- %% represent each AST node as a list and to put the operation symbol at
- %% the front of the list. The rest of the list contains the children. So
- %% in the above case, the root AST node has operation \code{`+} and its
- %% two children are \code{`(read)} and \code{`(- 8)}, just as in the
- %% diagram \eqref{eq:arith-prog}.
- %% To build larger S-expressions one often needs to splice together
- %% several smaller S-expressions. Racket provides the comma operator to
- %% splice an S-expression into a larger one. For example, instead of
- %% creating the S-expression for AST \eqref{eq:arith-prog} all at once,
- %% we could have first created an S-expression for AST
- %% \eqref{eq:arith-neg8} and then spliced that into the addition
- %% S-expression.
- %% \begin{lstlisting}
- %% (define ast1.4 `(- 8))
- %% (define ast1.1 `(+ (read) ,ast1.4))
- %% \end{lstlisting}
- %% In general, the Racket expression that follows the comma (splice)
- %% can be any expression that produces an S-expression.
- We define a Racket \code{struct} for each kind of node. For this
- chapter we require just two kinds of nodes: one for integer constants
- and one for primitive operations. The following is the \code{struct}
- definition for integer constants.
- \begin{lstlisting}
- (struct Int (value))
- \end{lstlisting}
- An integer node includes just one thing: the integer value.
- To create a AST node for the integer $8$, we write \code{(Int 8)}.
- \begin{lstlisting}
- (define eight (Int 8))
- \end{lstlisting}
- We say that the value created by \code{(Int 8)} is an
- \emph{instance} of the \code{Int} structure.
- The following is the \code{struct} definition for primitives operations.
- \begin{lstlisting}
- (struct Prim (op args))
- \end{lstlisting}
- A primitive operation node includes an operator symbol \code{op}
- and a list of children \code{args}. For example, to create
- an AST that negates the number $8$, we write \code{(Prim '- (list eight))}.
- \begin{lstlisting}
- (define neg-eight (Prim '- (list eight)))
- \end{lstlisting}
- Primitive operations may have zero or more children. The \code{read}
- operator has zero children:
- \begin{lstlisting}
- (define rd (Prim 'read '()))
- \end{lstlisting}
- whereas the addition operator has two children:
- \begin{lstlisting}
- (define ast1.1 (Prim '+ (list rd neg-eight)))
- \end{lstlisting}
- \begin{ocamlx}
- We define an OCaml variant type for ASTs, with a different constructor for each
- kind of node:
- \begin{lstlisting}[style=ocaml]
- type exp =
- Int of int
- | Prim of primop * exp list
- \end{lstlisting}
- This definition depends on the definition of another variant type that enumerates the possible primops
- (in place of the single-quoted symbols used in Racket):
- \begin{lstlisting}[style=ocaml]
- type primop =
- Read
- | Neg
- | Add
- \end{lstlisting}
- To create an AST node for the integer 8, we write \code{Int 8}.
- To create an AST that negates
- the number 8, we write \code{Prim(Neg,[Int 8])}, and so on:
- \begin{lstlisting}[style=ocaml]
- let eight = Int 8
- let neg_eight = Prim(Neg,[eight])
- let rd = Prim(Read,[])
- let ast1_1 = Prim(Add,[rd,neg_eight])
- \end{lstlisting}
- Note that OCaml identifiers are more restricted in form than those of Racket; we will typically replace uses of dash (\code{-}), dot (\code{.}), etc. by underscores (\code{\_}).
- \end{ocamlx}
- We have made a design choice regarding the \code{Prim} structure.
- Instead of using one structure for many different operations
- (\code{read}, \code{+}, and \code{-}), we could have instead defined a
- structure for each operation, as follows.
- \begin{lstlisting}
- (struct Read ())
- (struct Add (left right))
- (struct Neg (value))
- \end{lstlisting}
- The reason we choose to use just one structure is that in many parts
- of the compiler the code for the different primitive operators is the
- same, so we might as well just write that code once, which is enabled
- by using a single structure.
- \begin{ocamlx}
- We have made a similar design choice in OCaml. The corresponding
- alternative would have been to define our AST type as
- \begin{lstlisting}[style=ocaml]
- type exp =
- Int of int
- | Read
- | Add of exp * exp
- | Neg of exp
- \end{lstlisting}
- Note that one advantage of using this alternative is that it would explicitly enforce
- that each primitive operator is given the correct number of arguments (its \emph{arity});
- this restriction is not captured in the list-based version.
- \end{ocamlx}
- When compiling a program such as \eqref{eq:arith-prog}, we need to
- know that the operation associated with the root node is addition and
- we need to be able to access its two children. Racket provides pattern
- matching to support these kinds of queries, as we see in
- Section~\ref{sec:pattern-matching}. \ocaml{So does OCaml.}
- In this book, we often write down the concrete syntax of a program
- even when we really have in mind the AST because the concrete syntax
- is more concise. We recommend that, in your mind, you always think of
- programs as abstract syntax trees.
- \section{Grammars}
- \label{sec:grammar}
- \index{integer}
- \index{literal}
- \index{constant}
- A programming language can be thought of as a \emph{set} of programs.
- The set is typically infinite (one can always create larger and larger
- programs), so one cannot simply describe a language by listing all of
- the programs in the language. Instead we write down a set of rules, a
- \emph{grammar}, for building programs. Grammars are often used to
- define the concrete syntax of a language, but they can also be used to
- describe the abstract syntax. We write our rules in a variant of
- Backus-Naur Form (BNF)~\citep{Backus:1960aa,Knuth:1964aa}.
- \index{Backus-Naur Form}\index{BNF}
- As an example, we describe a small language, named \LangInt{}, that consists of
- integers and arithmetic operations.
- \index{grammar}
- \begin{ocamlx}
- Using a grammar to describe abstract syntax is less useful in OCaml than in
- Racket, because our variant type definition for ASTs already serves to specify
- the legal forms of tree (except that it is overly flexible about the arity of
- primops, as mentioned above). So don't worry too much about the details of
- the AST grammar here---but do make sure you understand how the same ideas
- are applied to \emph{concrete} grammars, below.
- \end{ocamlx}
-
- The first grammar rule for the abstract syntax of \LangInt{} says that an
- instance of the \code{Int} structure is an expression:
- \begin{equation}
- \Exp ::= \INT{\Int} \label{eq:arith-int}
- \end{equation}
- %
- Each rule has a left-hand-side and a right-hand-side. The way to read
- a rule is that if you have an AST node that matches the
- right-hand-side, then you can categorize it according to the
- left-hand-side.
- %
- A name such as $\Exp$ that is defined by the grammar rules is a
- \emph{non-terminal}. \index{non-terminal}
- %
- The name $\Int$ is a also a non-terminal, but instead of defining it
- with a grammar rule, we define it with the following explanation. We
- make the simplifying design decision that all of the languages in this
- book only handle machine-representable integers. On most modern
- machines this corresponds to integers represented with 64-bits, i.e.,
- the in range $-2^{63}$ to $2^{63}-1$. We restrict this range further
- to match the Racket \texttt{fixnum} datatype, which allows 63-bit
- integers on a 64-bit machine. So an $\Int$ is a sequence of decimals
- ($0$ to $9$), possibly starting with $-$ (for negative integers), such
- that the sequence of decimals represent an integer in range $-2^{62}$
- to $2^{62}-1$.
- \ocaml{As it happens, OCaml's standard integer type
- (\code{int}) is also 63 bits on a 64-bit machine. Initially, we
- will adopt the corresponding convention that $\Int$ is a 63-bit integer,
- but soon we will move to full 64-bit integers.}
- The second grammar rule is the \texttt{read} operation that receives
- an input integer from the user of the program.
- \begin{equation}
- \Exp ::= \READ{} \label{eq:arith-read}
- \end{equation}
- The third rule says that, given an $\Exp$ node, the negation of that
- node is also an $\Exp$.
- \begin{equation}
- \Exp ::= \NEG{\Exp} \label{eq:arith-neg}
- \end{equation}
- Symbols in typewriter font such as \key{-} and \key{read} are
- \emph{terminal} symbols and must literally appear in the program for
- the rule to be applicable.
- \index{terminal}
- We can apply these rules to categorize the ASTs that are in the
- \LangInt{} language. For example, by rule \eqref{eq:arith-int}
- \texttt{(Int 8)} is an $\Exp$, then by rule \eqref{eq:arith-neg} the
- following AST is an $\Exp$.
- \begin{center}
- \begin{minipage}{0.4\textwidth}
- \begin{lstlisting}
- (Prim '- (list (Int 8)))
- \end{lstlisting}
- \end{minipage}
- \begin{minipage}{0.25\textwidth}
- \begin{equation}
- \begin{tikzpicture}
- \node[draw, circle] (minus) at (0, 0) {$\text{--}$};
- \node[draw, circle] (8) at (0, -1.2) {$8$};
- \draw[->] (minus) to (8);
- \end{tikzpicture}
- \label{eq:arith-neg8}
- \end{equation}
- \end{minipage}
- \end{center}
- \begin{ocamlx}
- The corresponding OCaml AST expression is \code{Prim(Neg,[Int 8])}.
- \end{ocamlx}
- The next grammar rule is for addition expressions:
- \begin{equation}
- \Exp ::= \ADD{\Exp}{\Exp} \label{eq:arith-add}
- \end{equation}
- We can now justify that the AST \eqref{eq:arith-prog} is an $\Exp$ in
- \LangInt{}. We know that \lstinline{(Prim 'read '())} is an $\Exp$ by rule
- \eqref{eq:arith-read} and we have already categorized \code{(Prim '-
- (list (Int 8)))} as an $\Exp$, so we apply rule \eqref{eq:arith-add}
- to show that
- \begin{lstlisting}
- (Prim '+ (list (Prim 'read '()) (Prim '- (list (Int 8)))))
- \end{lstlisting}
- is an $\Exp$ in the \LangInt{} language.
- \ocaml{\\ OCaml: \code{Prim(Add,[Prim(Read,[]);Prim(Neg,[Int 8])])}.}
- If you have an AST for which the above rules do not apply, then the
- AST is not in \LangInt{}. For example, the program \code{(- (read) (+ 8))}
- is not in \LangInt{} because there are no rules for \code{+} with only one
- argument, nor for \key{-} with two arguments. Whenever we define a
- language with a grammar, the language only includes those programs
- that are justified by the rules.
- The last grammar rule for \LangInt{} states that there is a \code{Program}
- node to mark the top of the whole program:
- \[
- \LangInt{} ::= \PROGRAM{\code{'()}}{\Exp}
- \]
- The \code{Program} structure is defined as follows
- \begin{lstlisting}
- (struct Program (info body))
- \end{lstlisting}
- where \code{body} is an expression. In later chapters, the \code{info}
- part will be used to store auxiliary information but for now it is
- just the empty list.
- \begin{ocamlx}
- In OCaml:
- \begin{lstlisting}[style=ocaml]
- type 'info program = Program of 'info * exp
- \end{lstlisting}
- Again, we represent the structure as a variant type
- (\code{rint\_program}), this time just with one constructor
- (\code{Program)}. We \emph{parameterize} \code{program} by a
- \emph{type variable} \code{'info} (type variables are distinguished by having
- a leading tick mark). This says that \code{rint\_program} is a family of types which can
- be instantiated to represent programs holding a particular kind of auxiliary information.
- For now, we'll just instantiate \code{'info}
- with the \emph{unit} type, written \code{unit}, whose sole (boring)
- value is written \code{()}.
- \begin{lstlisting}[style=ocaml]
- let p : unit program = Program () body
- \end{lstlisting}
- Here the colon (\code{:}) introduces an explicit type annotation on \code{p}; it can be read ``has type.''
- \end{ocamlx}
- It is common to have many grammar rules with the same left-hand side
- but different right-hand sides, such as the rules for $\Exp$ in the
- grammar of \LangInt{}. As a short-hand, a vertical bar can be used to
- combine several right-hand-sides into a single rule.
- We collect all of the grammar rules for the abstract syntax of \LangInt{}
- in Figure~\ref{fig:r0-syntax} \ocaml{along with the corresponding OCaml type definitions}.
- The concrete syntax for \LangInt{} is
- defined in Figure~\ref{fig:r0-concrete-syntax}.
- The \code{read-program} function provided in \code{utilities.rkt} of
- the support code reads a program in from a file (the sequence of
- characters in the concrete syntax of Racket) and parses it into an
- abstract syntax tree. See the description of \code{read-program} in
- Appendix~\ref{appendix:utilities} for more details.
- \begin{ocamlx}
- As noted above, the concrete syntaxes we will use are similar to Racket's own syntax.
- In particular, programs are described as \emph{S-expressions}. An S-expression can be
- either an atom (an integer, symbol, or quoted string) or a list of S-expressions enclosed in
- parentheses. You can see that the concrete syntax for \LangInt{} is written as
- S-expressions where the symbols used are \code{read},\code{-}, and \code{+}, and
- a primitive operation invocation is described by a list whose first element is
- the operation symbol and whose remaining elements (0 or more of them) are
- S-expressions representing the arguments (which can themselves be lists).
- All the source languages we consider in this book will be written as S-expressions in
- a similar style; the details of which symbols and shapes of list are allowed
- will vary from language to language.
-
- To handle all this neatly in OCaml, we split the parsing of concrete
- programs into two phases. First, the \code{parse} function provided
- in \code{sexpr.ml} of the support code reads text from a file and
- parses it into a generic S-expression data type. (This code is a
- bit complicated and messy, but you don't have to understand its
- internals in order to use it.) Then, a source-language-specific
- program is used to convert the S-expression into the abstract syntax
- of that particular language. We will see later on that OCaml's pattern
- matching facilities make it very easy to write such conversion
- routines. This is particularly true because the S-expression format
- we use for our concrete source languages is already very close to an
- abstract syntax, which means the conversion has very little work to
- do. For example, as you have seen, primitive operations are all
- written in prefix, rather than infix, notation, so there is no need
- to worry about issues like precedence and associativity of operators
- in an expression like \code{(2 * 3 + 4)}: the S-expression syntax
- will be either \code{(+ (* 2 3) 4)} or \code{(* 2 (+ 3 4))}, so
- there is no possible ambiguity. The downside is that source programs
- are a bit more tedious to write, and may sometimes seem to be drowning in
- parentheses.
- The OCaml representation of generic S-expressions is just another
- variant type:
- \begin{lstlisting}[style=ocaml]
- type sexp =
- | SList of sexp list
- (* list of expressions delimited by parentheses *)
- | SNum of Int64.t
- (* 64-bit integers *)
- | SSym of string
- (* character sequence starting with non-digit,
- delimited by white space *)
- | SString of string
- (* arbitrary character sequence delimited by double quotes *)
- \end{lstlisting}
- The generic S-expression parser handles (nestable) comments delimited by
- curly braces (\code{\{} and \code{\}}). Symbols must start with a non-digit
- character and can contain any
- non-whitespace characters except parentheses, curly braces, and
- the back tick (\code{\`}); this last exclusion is handy when we want to
- generate internal names during compilation and be sure they don't clash
- with a user-defined symbol.
- \end{ocamlx}
-
- \begin{figure}[tp]
- \fbox{
- \begin{minipage}{0.96\textwidth}
- \[
- \begin{array}{rcl}
- \begin{array}{rcl}
- \Exp &::=& \Int \mid \LP\key{read}\RP \mid \LP\key{-}\;\Exp\RP \mid \LP\key{+} \; \Exp\;\Exp\RP\\
- \LangInt{} &::=& \Exp
- \end{array}
- \end{array}
- \]
- \end{minipage}
- }
- \caption{The concrete syntax of \LangInt{}.}
- \label{fig:r0-concrete-syntax}
- \end{figure}
- \begin{figure}[tp]
- \fbox{
- \begin{minipage}{0.96\textwidth}
- \[
- \begin{array}{rcl}
- \Exp &::=& \INT{\Int} \mid \READ{} \mid \NEG{\Exp} \\
- &\mid& \ADD{\Exp}{\Exp} \\
- \LangInt{} &::=& \PROGRAM{\code{'()}}{\Exp}
- \end{array}
- \]
- \end{minipage}
- }
- \begin{minipage}{0.96\textwidth}
- \begin{lstlisting}[style=ocaml,frame=single]
- type primop =
- Read
- | Neg
- | Add
- type exp =
- Int of int
- | Prim of primop * exp list
- type 'info program = Program of 'info * exp
- \end{lstlisting}
- \end{minipage}
- \caption{The abstract syntax of \LangInt{}.}
- \label{fig:r0-syntax}
- \end{figure}
- \section{Pattern Matching}
- \label{sec:pattern-matching}
- As mentioned in Section~\ref{sec:ast}, compilers often need to access
- the parts of an AST node. Racket provides the \texttt{match} form to
- access the parts of a structure. Consider the following example and
- the output on the right. \index{match} \index{pattern matching}
- \begin{center}
- \begin{minipage}{0.5\textwidth}
- \begin{lstlisting}
- (match ast1.1
- [(Prim op (list child1 child2))
- (print op)])
- \end{lstlisting}
- \end{minipage}
- \vrule
- \begin{minipage}{0.25\textwidth}
- \begin{lstlisting}
- '+
- \end{lstlisting}
- \end{minipage}
- \end{center}
- In the above example, the \texttt{match} form takes an AST
- \eqref{eq:arith-prog} and binds its parts to the three pattern
- variables \texttt{op}, \texttt{child1}, and \texttt{child2}, and then
- prints out the operator. In general, a match clause consists of a
- \emph{pattern} and a \emph{body}.\index{pattern} Patterns are
- recursively defined to be either a pattern variable, a structure name
- followed by a pattern for each of the structure's arguments, or an
- S-expression (symbols, lists, etc.). (See Chapter 12 of The Racket
- Guide\footnote{\url{https://docs.racket-lang.org/guide/match.html}}
- and Chapter 9 of The Racket
- Reference\footnote{\url{https://docs.racket-lang.org/reference/match.html}}
- for a complete description of \code{match}.)
- %
- The body of a match clause may contain arbitrary Racket code. The
- pattern variables can be used in the scope of the body, such as
- \code{op} in \code{(print op)}.
- \begin{ocamlx}
- Here is the OCaml version, which is quite similar:
- \begin{center}
- \begin{minipage}{0.5\textwidth}
- \begin{lstlisting}[style=ocaml]
- match ast1_1 with
- | Prim(op,[child1;child2]) -> op
- \end{lstlisting}
- \end{minipage}
- \vrule
- \begin{minipage}{0.25\textwidth}
- \begin{lstlisting}[style=ocaml]
- Add
- \end{lstlisting}
- \end{minipage}
- \end{center}
- \end{ocamlx}
- A \code{match} form may contain several clauses, as in the following
- function \code{leaf?} that recognizes when an \LangInt{} node is a leaf in
- the AST. The \code{match} proceeds through the clauses in order,
- checking whether the pattern can match the input AST. The body of the
- first clause that matches is executed.
- \begin{ocamlx}
- In fact, in OCaml, we will get a warning message about the code above, because the \code{match} only contains
- a clause for a {\tt Prim} with two children, not for other other possible forms of \code{exp}.
- Although in this particular instance, that's OK (because of the value of \code{ast1\_1}), in general
- it suggests a possible error. Getting warnings like this is one of the advantages of static typing.
- \end{ocamlx}
- The output of \code{leaf?} for
- several ASTs is shown on the right.
- \begin{center}
- \begin{minipage}{0.6\textwidth}
- \begin{lstlisting}
- (define (leaf? arith)
- (match arith
- [(Int n) #t]
- [(Prim 'read '()) #t]
- [(Prim '- (list e1)) #f]
- [(Prim '+ (list e1 e2)) #f]))
- (leaf? (Prim 'read '()))
- (leaf? (Prim '- (list (Int 8))))
- (leaf? (Int 8))
- \end{lstlisting}
- \end{minipage}
- \vrule
- \begin{minipage}{0.25\textwidth}
- \begin{lstlisting}
-
- #t
- #f
- #t
- \end{lstlisting}
- \end{minipage}
- \end{center}
- When writing a \code{match}, we refer to the grammar definition to
- identify which non-terminal we are expecting to match against, then we
- make sure that 1) we have one clause for each alternative of that
- non-terminal and 2) that the pattern in each clause corresponds to the
- corresponding right-hand side of a grammar rule. For the \code{match}
- in the \code{leaf?} function, we refer to the grammar for \LangInt{} in
- Figure~\ref{fig:r0-syntax}. The $\Exp$ non-terminal has 4
- alternatives, so the \code{match} has 4 clauses. The pattern in each
- clause corresponds to the right-hand side of a grammar rule. For
- example, the pattern \code{(Prim '+ (list e1 e2))} corresponds to the
- right-hand side $\ADD{\Exp}{\Exp}$. When translating from grammars to
- patterns, replace non-terminals such as $\Exp$ with pattern variables
- of your choice (e.g. \code{e1} and \code{e2}).
- \begin{ocamlx}
- Here is the directly corresponding OCaml version.
- \begin{center}
- \begin{minipage}{0.6\textwidth}
- \begin{lstlisting}[style=ocaml]
- let is_leaf arith =
- match arith with
- | Int n -> true
- | Prim(Read,[]) -> true
- | Prim(Neg,[e1]) -> false
- | Prim(Add,[e1;e2]) -> false
- | _ -> assert false
-
- is_leaf (Prim(Read,[]))
- is_leaf (Prim(Neg,[Int 8]))
- is_leaf (Int 8)
- \end{lstlisting}
- \end{minipage}
- \vrule
- \begin{minipage}{0.25\textwidth}
- \begin{lstlisting}[style=ocaml]
-
-
-
- true
- false
- true
- \end{lstlisting}
- \end{minipage}
- \end{center}
- The final clause uses a wildcard pattern {\tt \_}, which matches anything of type \code{exp},
- to cover the (ill-formed) cases where a primop is given the wrong number of arguments;
- otherwise, the compiler will again issue a warning that not all cases have been considered.
- The \code{assert false} causes OCaml execution to halt with an uncaught exception message.
- In this particular case, we can use wildcards to write a more idiomatic version of
- \code{is\_leaf} that doesn't require a catch-all case (and is also ``future-proof''
- against later additions to the \code{primop} type). We also make use of the following
- short-cut: a function that takes an argument $arg$ and then immediately performs
- a \code{match} over $arg$ can be written more concisely using the \code{function} keyword.
- \begin{center}
- \begin{minipage}{0.5\textwidth}
- \begin{lstlisting}[style=ocaml]
- let is_leaf = function
- | Int _ -> true
- | Prim(_,[]) -> true
- | _ -> false
- \end{lstlisting}
- \end{minipage}
- \end{center}
- \end{ocamlx}
- \section{Recursive Functions}
- \label{sec:recursion}
- \index{recursive function}
- Programs are inherently recursive. For example, an \LangInt{} expression is
- often made of smaller expressions. Thus, the natural way to process an
- entire program is with a recursive function. As a first example of
- such a recursive function, we define \texttt{exp?} below, which takes
- an arbitrary value and determines whether or not it is an \LangInt{}
- expression.
- %
- We say that a function is defined by \emph{structural recursion} when
- it is defined using a sequence of match clauses that correspond to a
- grammar, and the body of each clause makes a recursive call on each
- child node.\footnote{This principle of structuring code according to
- the data definition is advocated in the book \emph{How to Design
- Programs} \url{http://www.ccs.neu.edu/home/matthias/HtDP2e/}.}.
- Below we also define a second function, named \code{Rint?}, that
- determines whether an AST is an \LangInt{} program. In general we can
- expect to write one recursive function to handle each non-terminal in
- a grammar.\index{structural recursion}
- %
- \begin{center}
- \begin{minipage}{0.7\textwidth}
- \begin{lstlisting}
- (define (exp? ast)
- (match ast
- [(Int n) #t]
- [(Prim 'read '()) #t]
- [(Prim '- (list e)) (exp? e)]
- [(Prim '+ (list e1 e2))
- (and (exp? e1) (exp? e2))]
- [else #f]))
- (define (Rint? ast)
- (match ast
- [(Program '() e) (exp? e)]
- [else #f]))
- (Rint? (Program '() ast1.1)
- (Rint? (Program '()
- (Prim '- (list (Prim 'read '())
- (Prim '+ (list (Num 8)))))))
- \end{lstlisting}
- \end{minipage}
- \vrule
- \begin{minipage}{0.25\textwidth}
- \begin{lstlisting}
- #t
- #f
- \end{lstlisting}
- \end{minipage}
- \end{center}
- You may be tempted to merge the two functions into one, like this:
- \begin{center}
- \begin{minipage}{0.5\textwidth}
- \begin{lstlisting}
- (define (Rint? ast)
- (match ast
- [(Int n) #t]
- [(Prim 'read '()) #t]
- [(Prim '- (list e)) (Rint? e)]
- [(Prim '+ (list e1 e2)) (and (Rint? e1) (Rint? e2))]
- [(Program '() e) (Rint? e)]
- [else #f]))
- \end{lstlisting}
- \end{minipage}
- \end{center}
- %
- Sometimes such a trick will save a few lines of code, especially when
- it comes to the \code{Program} wrapper. Yet this style is generally
- \emph{not} recommended because it can get you into trouble.
- %
- For example, the above function is subtly wrong:
- \lstinline{(Rint? (Program '() (Program '() (Int 3))))}
- returns true when it should return false.
- \begin{ocamlx}
- There is almost no point in writing OCaml analogs to \code{exp?} or \code{Rint?}, because static
- typing guarantees that values claimed to be in type \code{exp} or \code{rint\_program} really are
- (or the OCaml program will not pass the OCaml typechecker). However, it is still worth
- writing a function to check that primops are applied to the right number of arguments.
- Here is an idiomatic way to do that:
- \begin{center}
- \begin{minipage}{0.85\textwidth}
- \begin{lstlisting}[style=ocaml]
- let arity = function
- | Read -> 0
- | Neg -> 1
- | Add -> 2
- let rec check_exp = function
- | Int _ -> true
- | Prim(op,args) ->
- List.length args = arity op && check_exps args
- and check_exps = function
- | [] -> true
- | (exp::exps') -> check_exp exp && check_exps exps'
- let check_program (Program(_,e)) = check_exp e
- check_program (Program((),ast1_1))
- check_program (Program((),Prim(Neg,[Prim(Read,[]);
- Prim(Plus,[Int 8])])))
- \end{lstlisting}
- \end{minipage}
- \vrule
- \begin{minipage}{0.1\textwidth}
- \begin{lstlisting}[style=ocaml]
-
- true
- false
- \end{lstlisting}
- \end{minipage}
- \end{center}
- In the definition of \code{check\_program}, since the argument type \code{rint\_program}
- has only one constructor, we can write a pattern \code{Program(\_,e)} which matches that constructor directly in
- place of an argument name; this binds the variable(s) (here \code{e}) of the pattern in the body of the function.
- Note that \code{check\_exp} is declared to be recursive by using the \code{rec} keyword;
- in fact, \code{check\_exp} and \code{check\_exps} are \emph{mutually} recursive because
- their definitions are connected by the \code{and} keyword. \code{List.length} is a library
- function that returns the length of a list. Actually, the library also has a handy higher-order
- function \code{List.for\_all} that applies a specified boolean-value function to a list and returns
- whether it is true on all elements. Using that, we could rewrite the \code{Prim}
- clause of \code{check\_exp} as
- \begin{lstlisting}[style=ocaml]
- | Prim(op,args) ->
- List.length args = arity op && List.for_all check_exp args
- \end{lstlisting}
- and dispense with \code{check\_exps} altogether. Being able to operate on entire lists
- uniformly like this is one of the payoffs for using a single generic \code{Prim} constructor.
- \end{ocamlx}
-
- \section{Interpreters}
- \label{sec:interp-Rint}
- \index{interpreter}
- In general, the intended behavior of a program is defined by the
- specification of the language. For example, the Scheme language is
- defined in the report by \cite{SPERBER:2009aa}. The Racket language is
- defined in its reference manual~\citep{plt-tr}. In this book we use
- interpreters to specify each language that we consider. An interpreter
- that is designated as the definition of a language is called a
- \emph{definitional interpreter}~\citep{reynolds72:_def_interp}.
- \index{definitional interpreter} We warm up by creating a definitional
- interpreter for the \LangInt{} language, which serves as a second example
- of structural recursion. The \texttt{interp-Rint} function is defined in
- Figure~\ref{fig:interp-Rint}. The body of the function is a match on the
- input program followed by a call to the \lstinline{interp-exp} helper
- function, which in turn has one match clause per grammar rule for
- \LangInt{} expressions. \ocaml{The OCaml version is in Figure~\ref{fig:ocaml-interp-Rint}.}
- \begin{figure}[tp]
- \begin{lstlisting}
- (define (interp-exp e)
- (match e
- [(Int n) n]
- [(Prim 'read '())
- (define r (read))
- (cond [(fixnum? r) r]
- [else (error 'interp-exp "read expected an integer" r)])]
- [(Prim '- (list e))
- (define v (interp-exp e))
- (fx- 0 v)]
- [(Prim '+ (list e1 e2))
- (define v1 (interp-exp e1))
- (define v2 (interp-exp e2))
- (fx+ v1 v2)]))
- (define (interp-Rint p)
- (match p
- [(Program '() e) (interp-exp e)]))
- \end{lstlisting}
- \caption{Interpreter for the \LangInt{} language.}
- \label{fig:interp-Rint}
- \end{figure}
- \begin{figure}[tp]
- \begin{lstlisting}[style=ocaml]
- let interp_exp exp =
- match exp with
- | Int n -> n
- | Prim(Read,[]) -> read_int()
- | Prim(Neg,[e]) -> - (interp_exp e)
- | Prim(Add,[e1;e2]) ->
- (* must explicitly sequence evaluation order! *)
- let v1 = interp_exp e1 in
- let v2 = interp_exp e2 in
- v1 + v2
- | _ -> assert false (* arity mismatch *)
-
- let interp_program (Program(_,e)) = interp_exp e
- \end{lstlisting}
- \caption{\ocaml{OCaml interpreter for the \LangInt{} language.}}
- \label{fig:ocaml-interp-Rint}
- \end{figure}
- Let us consider the result of interpreting a few \LangInt{} programs. The
- following program adds two integers.
- \begin{lstlisting}
- (+ 10 32)
- \end{lstlisting}
- The result is \key{42}, the answer to life, the universe, and
- everything: \code{42}!\footnote{\emph{The Hitchhiker's Guide to the
- Galaxy} by Douglas Adams.}.
- %
- We wrote the above program in concrete syntax whereas the parsed
- abstract syntax is:
- \begin{lstlisting}
- (Program '() (Prim '+ (list (Int 10) (Int 32))))
- \end{lstlisting}
- \begin{ocamlx}
- Ocaml:
- \begin{lstlisting}[style=ocaml]
- Program((),Prim(Add,[Int 10; Int 32]))
- \end{lstlisting}
- \end{ocamlx}
- The next example demonstrates that expressions may be nested within
- each other, in this case nesting several additions and negations.
- \begin{lstlisting}
- (+ 10 (- (+ 12 20)))
- \end{lstlisting}
- What is the result of the above program?
- As mentioned previously, the \LangInt{} language does not support
- arbitrarily-large integers, but only $63$-bit integers, so we
- interpret the arithmetic operations of \LangInt{} using fixnum arithmetic
- in Racket.
- Suppose
- \[
- n = 999999999999999999
- \]
- which indeed fits in $63$-bits. What happens when we run the
- following program in our interpreter?
- \begin{lstlisting}
- (+ (+ (+ |$n$| |$n$|) (+ |$n$| |$n$|)) (+ (+ |$n$| |$n$|) (+ |$n$| |$n$|)))))
- \end{lstlisting}
- It produces an error:
- \begin{lstlisting}
- fx+: result is not a fixnum
- \end{lstlisting}
- We establish the convention that if running the definitional
- interpreter on a program produces an error then the meaning of that
- program is \emph{unspecified}\index{unspecified behavior}, unless the
- error is a \code{trapped-error}. A compiler for the language is under
- no obligations regarding programs with unspecified behavior; it does
- not have to produce an executable, and if it does, that executable can
- do anything. On the other hand, if the error is a
- \code{trapped-error}, then the compiler must produce an executable and
- it is required to report that an error occurred. To signal an error,
- exit with a return code of \code{255}. The interpreters in chapters
- \ref{ch:Rdyn} and \ref{ch:Rgrad} use
- \code{trapped-error}.
- \begin{ocamlx}
- In OCaml, overflow does not cause a trap; instead values ``wrap around''
- to produce results modulo $2^{63}$. The result of this program is
- \key{-1223372036854775816}. We will embrace this wrap-around behavior
- as the intended one for \LangInt{}, so the OCaml version will have
- no undefined behaviors due to overflow.
- \end{ocamlx}
- %% This convention applies to the languages defined in this
- %% book, as a way to simplify the student's task of implementing them,
- %% but this convention is not applicable to all programming languages.
- %%
- Moving on to the last feature of the \LangInt{} language, the \key{read}
- operation prompts the user of the program for an integer. \ocaml{The \code{read\_int}
- function is in the standard library.} Recall that
- program \eqref{eq:arith-prog} performs a \key{read} and then subtracts
- \code{8}. So if we run
- \begin{lstlisting}
- (interp-Rint (Program '() ast1.1))
- \end{lstlisting}
- and if the input is \code{50}, the result is \code{42}.
- We include the \key{read} operation in \LangInt{} so a clever student
- cannot implement a compiler for \LangInt{} that simply runs the interpreter
- during compilation to obtain the output and then generates the trivial
- code to produce the output. (Yes, a clever student did this in the
- first instance of this course.)
- The job of a compiler is to translate a program in one language into a
- program in another language so that the output program behaves the
- same way as the input program does. This idea is depicted in the
- following diagram. Suppose we have two languages, $\mathcal{L}_1$ and
- $\mathcal{L}_2$, and a definitional interpreter for each language.
- Given a compiler that translates from language $\mathcal{L}_1$ to
- $\mathcal{L}_2$ and given any program $P_1$ in $\mathcal{L}_1$, the
- compiler must translate it into some program $P_2$ such that
- interpreting $P_1$ and $P_2$ on their respective interpreters with
- same input $i$ yields the same output $o$.
- \begin{equation} \label{eq:compile-correct}
- \begin{tikzpicture}[baseline=(current bounding box.center)]
- \node (p1) at (0, 0) {$P_1$};
- \node (p2) at (3, 0) {$P_2$};
- \node (o) at (3, -2.5) {$o$};
- \path[->] (p1) edge [above] node {compile} (p2);
- \path[->] (p2) edge [right] node {interp-$\mathcal{L}_2$($i$)} (o);
- \path[->] (p1) edge [left] node {interp-$\mathcal{L}_1$($i$)} (o);
- \end{tikzpicture}
- \end{equation}
- In the next section we see our first example of a compiler.
- \section{Example Compiler: a Partial Evaluator}
- \label{sec:partial-evaluation}
- In this section we consider a compiler that translates \LangInt{} programs
- into \LangInt{} programs that may be more efficient, that is, this compiler
- is an optimizer. This optimizer eagerly computes the parts of the
- program that do not depend on any inputs, a process known as
- \emph{partial evaluation}~\citep{Jones:1993uq}.
- \index{partial evaluation}
- For example, given the following program
- \begin{lstlisting}
- (+ (read) (- (+ 5 3)))
- \end{lstlisting}
- our compiler will translate it into the program
- \begin{lstlisting}
- (+ (read) -8)
- \end{lstlisting}
- Figure~\ref{fig:pe-arith} gives the code for a simple partial
- evaluator for the \LangInt{} language. The output of the partial evaluator
- is an \LangInt{} program. In Figure~\ref{fig:pe-arith}, the structural
- recursion over $\Exp$ is captured in the \code{pe-exp} function
- whereas the code for partially evaluating the negation and addition
- operations is factored into two separate helper functions:
- \code{pe-neg} and \code{pe-add}. The input to these helper
- functions is the output of partially evaluating the children.
- \begin{figure}[tp]
- \begin{lstlisting}
- (define (pe-neg r)
- (match r
- [(Int n) (Int (fx- 0 n))]
- [else (Prim '- (list r))]))
- (define (pe-add r1 r2)
- (match* (r1 r2)
- [((Int n1) (Int n2)) (Int (fx+ n1 n2))]
- [(_ _) (Prim '+ (list r1 r2))]))
- (define (pe-exp e)
- (match e
- [(Int n) (Int n)]
- [(Prim 'read '()) (Prim 'read '())]
- [(Prim '- (list e1)) (pe-neg (pe-exp e1))]
- [(Prim '+ (list e1 e2)) (pe-add (pe-exp e1) (pe-exp e2))]))
- (define (pe-Rint p)
- (match p
- [(Program '() e) (Program '() (pe-exp e))]))
- \end{lstlisting}
- \caption{A partial evaluator for \LangInt{}.}
- \label{fig:pe-arith}
- \end{figure}
- The \texttt{pe-neg} and \texttt{pe-add} functions check whether their
- arguments are integers and if they are, perform the appropriate
- arithmetic. Otherwise, they create an AST node for the arithmetic
- operation.
- \begin{ocamlx}
- The corresponding OCaml code is in Figure~\ref{fig:ocaml-pe-arith}. In \code{pe\_add}, note
- the syntax for matching over a pair of values simultaneously.
- \begin{figure}[tp]
- \begin{lstlisting}[style=ocaml]
- let pe_neg = function
- Int n -> Int (-n)
- | e -> Prim(Neg,[e])
- let pe_add e1 e2 =
- match e1,e2 with
- Int n1,Int n2 -> Int (n1+n2)
- | e1,e2 -> Prim(Add,[e1;e2])
- let rec pe_exp = function
- Prim(Neg,[e]) -> pe_neg (pe_exp e)
- | Prim(Add,[e1;e2]) -> pe_add (pe_exp e1) (pe_exp e2)
- | e -> e
- let pe_program (Program(info,e)) = Program(info,pe_exp e)
- \end{lstlisting}
- \caption{\ocaml{An OCaml partial evaluator for \LangInt{}}.}
- \label{fig:ocaml-pe-arith}
- \end{figure}
- \end{ocamlx}
- To gain some confidence that the partial evaluator is correct, we can
- test whether it produces programs that get the same result as the
- input programs. That is, we can test whether it satisfies Diagram
- \ref{eq:compile-correct}. The following code runs the partial
- evaluator on several examples and tests the output program. The
- \texttt{parse-program} and \texttt{assert} functions are defined in
- Appendix~\ref{appendix:utilities}.\\
- \begin{minipage}{1.0\textwidth}
- \begin{lstlisting}
- (define (test-pe p)
- (assert "testing pe-Rint"
- (equal? (interp-Rint p) (interp-Rint (pe-Rint p)))))
- (test-pe (parse-program `(program () (+ 10 (- (+ 5 3))))))
- (test-pe (parse-program `(program () (+ 1 (+ 3 1)))))
- (test-pe (parse-program `(program () (- (+ 3 (- 5))))))
- \end{lstlisting}
- \end{minipage}
- \begin{ocamlx}
- We can perform a similar kind of test in OCaml using a utility
- function called \code{interp\_from\_string} which is in the support
- code for this chapter (not yet in the Appendix).
- Note, however, that comparing
- results like this isn't a very satisfactory way of testing programs
- that use \code{Read} anyhow, because it requires us to input the
- same values twice, once for each execution, or the test will fail!
- A more straightforward approach is to know what result value we
- expect from each test program on a given set of input, and simply check
- that the partially evaluated program still produces that result.
- The support code also contains a simple driver that implements this approach.
- \end{ocamlx}
- \begin{ocamlx}
- {\bf Warmup Exercises}
- 1. Extend the concrete language and implementation for \LangInt{} with an additional arity-2 primop that
- performs subtraction. The concrete form for this is \code{(- $e_1$ $e_2$)} where
- $e_1$ and $e_2$ are expressions. Note that there are several ways to do this: you can add
- an additional primop \code{Sub} to the AST, and add new code to check and interpret it,
- or you can choose to ``de-sugar'' the new form into a combination of existing primops when
- converting S-expressions to ASTs. Either way, make sure that you understand why the concrete
- language remains unambiguous even though (a) we already have a unary negation operaror that is also written
- with \code{-}, and (b) unlike addition, subtraction is not an associative operator, i.e.
- $((a-b)-c$ is not generally the same thing as $(a-(b-c))$.
- 2. Make some non-trivial improvement to the partial evaluator. This task is intentionally open-ended, but here
- are some suggestions, in increasing order of difficulty.
- \begin{itemize}
- \item
- If you added a new primop for subtraction in part 1, add support for
- partially evaluating subtractions involving constants, analogous to what is already there
- for addition.
- \item
- Add support for simplifying expressions
- based on simple algebraic identities, e.g. $x + 0 = x$ for all $x$.
- \item Try to simplify expressions to
- the point where they contain no more than one \code{Int} leaf expression (the remaining leaves should all be
- \code{Read}s).
- \end{itemize}
- 3. Change the AST, interpreter and (improved) partial evaluator for \LangInt{} so that they
- use true 64-bit integers throughout.
- (Currently, these are used in S-expressions in the front end, but everything else uses 63-bit integers instead.)
- This will bring our interpreter and partial evaluator in line with X86-64 machine code, our ultimate
- compilation target.
- The point of this exercise is to get you familiar with exploring an OCaml library, in this case \code{Int64},
- which is documented at \url{https://ocaml.org/releases/4.12/api/Int64.html}.
- \end{ocamlx}
- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
- \chapter{Integers and Variables}
- \label{ch:Rvar}
- This chapter is about compiling a subset of Racket to x86-64 assembly
- code~\citep{Intel:2015aa}. The subset, named \LangVar{}, includes
- integer arithmetic and local variable binding. We often refer to
- x86-64 simply as x86. The chapter begins with a description of the
- \LangVar{} language (Section~\ref{sec:s0}) followed by an introduction
- to of x86 assembly (Section~\ref{sec:x86}). The x86 assembly language
- is large so we discuss only the instructions needed for compiling
- \LangVar{}. We introduce more x86 instructions in later chapters.
- After introducing \LangVar{} and x86, we reflect on their differences
- and come up with a plan to break down the translation from \LangVar{}
- to x86 into a handful of steps (Section~\ref{sec:plan-s0-x86}). The
- rest of the sections in this chapter give detailed hints regarding
- each step (Sections~\ref{sec:uniquify-Rvar} through \ref{sec:patch-s0}).
- We hope to give enough hints that the well-prepared reader, together
- with a few friends, can implement a compiler from \LangVar{} to x86 in
- a couple weeks. To give the reader a feeling for the scale of this
- first compiler, the instructor solution for the \LangVar{} compiler is
- approximately 500 lines of code. \ocaml{For the OCaml-based course,
- several pieces of the compiler will be provided for you, leaving enough
- work for a week-long assignment. The instructor solution for
- the tasks left to you is under 200 lines of code.
- However, in return for not writing so much code,
- you will need to \emph{read} more existing code.}
- \section{The \LangVar{} Language}
- \label{sec:s0}
- \index{variable}
- The \LangVar{} language extends the \LangInt{} language with variable
- definitions. The concrete syntax of the \LangVar{} language is defined by
- the grammar in Figure~\ref{fig:r1-concrete-syntax} and the abstract
- syntax is defined in Figure~\ref{fig:r1-syntax}. \ocaml{For the OCaml
- version, we don't feel the need to match the syntax of Racket exactly,
- so we can simplify the concrete syntax of \key{let} bindings.} The non-terminal
- \Var{} may be any Racket identifier. \ocaml{For OCaml, it can be any S-expression symbol.}
- As in \LangInt{}, \key{read} is a
- nullary operator, \key{-} is a unary operator, and \key{+} is a binary
- operator. \ocaml{We also add \key{-} as a binary subtraction operator in
- the concrete syntax, but not in the abstract syntax:
- we will ``de-sugar'' substraction into a combination
- of addition and negation.}Similar to \LangInt{}, the abstract syntax of \LangVar{} includes the
- \key{Program} struct to mark the top of the program.
- %% The $\itm{info}$
- %% field of the \key{Program} structure contains an \emph{association
- %% list} (a list of key-value pairs) that is used to communicate
- %% auxiliary data from one compiler pass the next.
- Despite the simplicity of the \LangVar{} language, it is rich enough to
- exhibit several compilation techniques.
- \begin{figure}[tp]
- \centering
- \fbox{
- \begin{minipage}{0.96\textwidth}
- \[
- \begin{array}{rcl}
- \Exp &::=& \Int \mid \CREAD{} \mid \CNEG{\Exp} \mid \CADD{\Exp}{\Exp}\\
- &\mid& \Var \mid \CLET{\Var}{\Exp}{\Exp} \\
- \LangVar{} &::=& \Exp
- \end{array}
- \]
- \end{minipage}
- }
- \begin{ocamlx}
- \fbox{
- \begin{minipage}{0.96\textwidth}
- \[
- \begin{array}{rcl}
- \Exp &::=& \Int \mid \CREAD{} \mid \CNEG{\Exp} \mid \CADD{\Exp}{\Exp} \mid \CSUB{\Exp}{\Exp}\\
- &\mid& \Var \mid \code{(let $\Var$ $\Exp$ $\Exp$)}\\
- \LangVar{} &::=& \Exp
- \end{array}
- \]
- \end{minipage}
- }
- \end{ocamlx}
- \caption{The concrete syntax of \LangVar{} \ocaml{in OCaml}.}
- \label{fig:r1-concrete-syntax}
- \end{figure}
- \begin{figure}[tp]
- \centering
- \fbox{
- \begin{minipage}{0.96\textwidth}
- \[
- \begin{array}{rcl}
- \Exp &::=& \INT{\Int} \mid \READ{} \\
- &\mid& \NEG{\Exp} \mid \ADD{\Exp}{\Exp} \\
- &\mid& \VAR{\Var} \mid \LET{\Var}{\Exp}{\Exp} \\
- \LangVar{} &::=& \PROGRAM{\code{'()}}{\Exp}
- \end{array}
- \]
- \end{minipage}
- }
- \begin{lstlisting}[style=ocaml,frame=single]
- type primop =
- Read
- | Neg
- | Add
- type var = string
- type exp =
- Int of int64
- | Prim of primop * exp list
- | Var of var
- | Let of var * exp * exp
- type 'info program = Program of 'info * exp
- \end{lstlisting}
- \caption{The abstract syntax of \LangVar{}.}
- \label{fig:r1-syntax}
- \end{figure}
- Let us dive further into the syntax and semantics of the \LangVar{}
- language. The \key{let} feature defines a variable for use within its
- body and initializes the variable with the value of an expression.
- The abstract syntax for \key{let} is defined in
- Figure~\ref{fig:r1-syntax}. The concrete syntax for \key{let} is
- \begin{lstlisting}
- (let ([|$\itm{var}$| |$\itm{exp}$|]) |$\itm{exp}$|)
- \end{lstlisting}
- \begin{lstlisting}[style=ocaml]
- (let ~$\itm{var}$~ ~$\itm{exp}$~ ~$\itm{exp}$~)
- \end{lstlisting}
- For example, the following program initializes \code{x} to $32$ and then
- evaluates the body \code{(+ 10 x)}, producing $42$.
- \begin{lstlisting}
- (let ([x (+ 12 20)]) (+ 10 x))
- \end{lstlisting}
- \begin{lstlisting}[style=ocaml]
- (let x (+ 12 20) (+ 10 x))
- \end{lstlisting}
- When there are multiple \key{let}'s for the same variable, the closest
- enclosing \key{let} is used. That is, variable definitions overshadow
- prior definitions. Consider the following program with two \key{let}'s
- that define variables named \code{x}. Can you figure out the result?
- \begin{lstlisting}
- (let ([x 32]) (+ (let ([x 10]) x) x))
- \end{lstlisting}
- \begin{lstlisting}[style=ocaml]
- (let x 32 (+ (let x 10 x) x))
- \end{lstlisting}
- For the purposes of depicting which variable uses correspond to which
- definitions, the following shows the \code{x}'s annotated with
- subscripts to distinguish them. Double check that your answer for the
- above is the same as your answer for this annotated version of the
- program.
- \begin{lstlisting}
- (let ([x|$_1$| 32]) (+ (let ([x|$_2$| 10]) x|$_2$|) x|$_1$|))
- \end{lstlisting}
- \begin{lstlisting}[style=ocaml]
- (let x~$_1$~ 32 (+ (let x~$_2$~ 10 x~$_2$~) x~$_1$~))
- \end{lstlisting}
- The initializing expression is always evaluated before the body of the
- \key{let}, so in the following, the \key{read} for \code{x} is
- performed before the \key{read} for \code{y}. Given the input
- $52$ then $10$, the following produces $42$ (not $-42$).
- \begin{lstlisting}
- (let ([x (read)]) (let ([y (read)]) (+ x (- y))))
- \end{lstlisting}
- \begin{lstlisting}[style=ocaml]
- (let x (read) (let y (read) (+ x (- y)))))
- \end{lstlisting}
- \subsection{Extensible Interpreters via Method Overriding}
- \label{sec:extensible-interp}
- \begin{ocamlx}
- We are not going to bother with making our OCaml interpreters
- extensible, although there are several mechanisms in OCaml that
- we could use to acheive this. The languages involved here just
- don't seem big enough to warrant the added complexity.
- We will, however, break out the definition and interpretation of
- primops into a separate module, so that this can be easily shared among
- different languages.
- \end{ocamlx}
- To prepare for discussing the interpreter for \LangVar{}, we need to
- explain why we choose to implement the interpreter using
- object-oriented programming, that is, as a collection of methods
- inside of a class. Throughout this book we define many interpreters,
- one for each of the languages that we study. Because each language
- builds on the prior one, there is a lot of commonality between their
- interpreters. We want to write down those common parts just once
- instead of many times. A naive approach would be to have, for example,
- the interpreter for \LangIf{} handle all of the new features in that
- language and then have a default case that dispatches to the
- interpreter for \LangVar{}. The following code sketches this idea.
- \begin{center}
- \begin{minipage}{0.45\textwidth}
- \begin{lstlisting}
- (define (interp-Rvar e)
- (match e
- [(Prim '- (list e))
- (fx- 0 (interp-Rvar e))]
- ...))
- \end{lstlisting}
- \end{minipage}
- \begin{minipage}{0.45\textwidth}
- \begin{lstlisting}
- (define (interp-Rif e)
- (match e
- [(If cnd thn els)
- (match (interp-Rif cnd)
- [#t (interp-Rif thn)]
- [#f (interp-Rif els)])]
- ...
- [else (interp-Rvar e)]))
- \end{lstlisting}
- \end{minipage}
- \end{center}
- The problem with this approach is that it does not handle situations
- in which an \LangIf{} feature, like \code{If}, is nested inside an \LangVar{}
- feature, like the \code{-} operator, as in the following program.
- \begin{lstlisting}
- (Prim '- (list (If (Bool #t) (Int 42) (Int 0))))
- \end{lstlisting}
- If we invoke \code{interp-Rif} on this program, it dispatches to
- \code{interp-Rvar} to handle the \code{-} operator, but then it
- recurisvely calls \code{interp-Rvar} again on the argument of \code{-},
- which is an \code{If}. But there is no case for \code{If} in
- \code{interp-Rvar}, so we get an error!
- To make our interpreters extensible we need something called
- \emph{open recursion}\index{open recursion}, where the tying of the
- recursive knot is delayed to when the functions are
- composed. Object-oriented languages provide open recursion with the
- late-binding of overridden methods\index{method overriding}. The
- following code sketches this idea for interpreting \LangVar{} and
- \LangIf{} using the
- \href{https://docs.racket-lang.org/guide/classes.html}{\code{class}}
- \index{class} feature of Racket. We define one class for each
- language and define a method for interpreting expressions inside each
- class. The class for \LangIf{} inherits from the class for \LangVar{}
- and the method \code{interp-exp} in \LangIf{} overrides the
- \code{interp-exp} in \LangVar{}. Note that the default case of
- \code{interp-exp} in \LangIf{} uses \code{super} to invoke
- \code{interp-exp}, and because \LangIf{} inherits from \LangVar{},
- that dispatches to the \code{interp-exp} in \LangVar{}.
- \begin{center}
- \begin{minipage}{0.45\textwidth}
- \begin{lstlisting}
- (define interp-Rvar-class
- (class object%
- (define/public (interp-exp e)
- (match e
- [(Prim '- (list e))
- (fx- 0 (interp-exp e))]
- ...))
- ...))
- \end{lstlisting}
- \end{minipage}
- \begin{minipage}{0.45\textwidth}
- \begin{lstlisting}
- (define interp-Rif-class
- (class interp-Rvar-class
- (define/override (interp-exp e)
- (match e
- [(If cnd thn els)
- (match (interp-exp cnd)
- [#t (interp-exp thn)]
- [#f (interp-exp els)])]
- ...
- [else (super interp-exp e)]))
- ...
- ))
- \end{lstlisting}
- \end{minipage}
- \end{center}
- Getting back to the troublesome example, repeated here:
- \begin{lstlisting}
- (define e0 (Prim '- (list (If (Bool #t) (Int 42) (Int 0)))))
- \end{lstlisting}
- We can invoke the \code{interp-exp} method for \LangIf{} on this
- expression by creating an object of the \LangIf{} class and sending it the
- \code{interp-exp} method with the argument \code{e0}.
- \begin{lstlisting}
- (send (new interp-Rif-class) interp-exp e0)
- \end{lstlisting}
- The default case of \code{interp-exp} in \LangIf{} handles it by
- dispatching to the \code{interp-exp} method in \LangVar{}, which
- handles the \code{-} operator. But then for the recursive method call,
- it dispatches back to \code{interp-exp} in \LangIf{}, where the
- \code{If} is handled correctly. Thus, method overriding gives us the
- open recursion that we need to implement our interpreters in an
- extensible way.
- \newpage
- \subsection{Definitional Interpreter for \LangVar{}}
- \begin{wrapfigure}[25]{r}[1.0in]{0.6\textwidth}
- \small
- \begin{tcolorbox}[title=Association Lists as Dictionaries]
- An \emph{association list} (alist) is a list of key-value pairs.
- For example, we can map people to their ages with an alist.
- \index{alist}\index{association list}
- \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
- (define ages
- '((jane . 25) (sam . 24) (kate . 45)))
- \end{lstlisting}
- The \emph{dictionary} interface is for mapping keys to values.
- Every alist implements this interface. \index{dictionary} The package
- \href{https://docs.racket-lang.org/reference/dicts.html}{\code{racket/dict}}
- provides many functions for working with dictionaries. Here
- are a few of them:
- \begin{description}
- \item[$\LP\key{dict-ref}\,\itm{dict}\,\itm{key}\RP$]
- returns the value associated with the given $\itm{key}$.
- \item[$\LP\key{dict-set}\,\itm{dict}\,\itm{key}\,\itm{val}\RP$]
- returns a new dictionary that maps $\itm{key}$ to $\itm{val}$
- but otherwise is the same as $\itm{dict}$.
- \item[$\LP\code{in-dict}\,\itm{dict}\RP$] returns the
- \href{https://docs.racket-lang.org/reference/sequences.html}{sequence}
- of keys and values in $\itm{dict}$. For example, the following
- creates a new alist in which the ages are incremented.
- \end{description}
- \vspace{-10pt}
- \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
- (for/list ([(k v) (in-dict ages)])
- (cons k (add1 v)))
- \end{lstlisting}
- \end{tcolorbox}
- \end{wrapfigure}
- Having justified the use of classes and methods to implement
- interpreters \ocaml{(or not)}, we turn to the definitional interpreter for \LangVar{}
- in Figure~\ref{fig:interp-Rvar} \ocaml{(Figure~\ref{fig:interp-Rvar-ocaml})}.
- It is similar to the interpreter for
- \LangInt{} but adds two new \key{match} cases for variables and
- \key{let}. \ocaml{Also, the code for performing primops has been split out
- into a separate function. We rely on the fact that
- \code{List.map} processes list elements from left to right to
- enforce the intended order of evaluation of primop subexpressions.}
- For \key{let} we need a way to communicate the value bound
- to a variable to all the uses of the variable. To accomplish this, we
- maintain a mapping from variables to values. Throughout the compiler
- we often need to map variables to information about them. We refer to
- these mappings as
- \emph{environments}\index{environment}.\footnote{Another common term
- for environment in the compiler literature is \emph{symbol
- table}\index{symbol table}.}
- %
- For simplicity, we use an association list (alist) to represent the
- environment. The sidebar to the right gives a brief introduction to
- alists and the \code{racket/dict} package. The \code{interp-exp}
- function takes the current environment, \code{env}, as an extra
- parameter. When the interpreter encounters a variable, it finds the
- corresponding value using the \code{dict-ref} function. When the
- interpreter encounters a \key{Let}, it evaluates the initializing
- expression, extends the environment with the result value bound to the
- variable, using \code{dict-set}, then evaluates the body of the
- \key{Let}.
- \begin{ocamlx}
- In OCaml, we thread environments in the same way, but
- it is convenient to represent environments using
- the \code{Map} library module, which provides efficient
- mappings from keys to values (using balanced binary trees,
- although that is an implementation detail we don't need to
- know about). \code{Map} is an example of a module that
- is \emph{parameterized} by another module signature; this
- is sometimes called a \emph{functor}. Here we use \code{Map.Make}
- to \emph{apply} the functor, thereby defining a module \code{Env} that provides operations
- specialized to \code{string} keys (suitable for variables).
- The type of environments is written \code{'a Env.t}; it is
- parametric in the type \code{'a} of values stored in the map.
- Here we will be using \LangVar{}
- values, i.e. \code{int64}s, so the type is \code{int64 Env.t}.
- \code{Env.empty} represents an empty environment.
- \code{Env.find $x$ $env$} returns the value associated with
- variable $x$ in $env$ (throwing an exception if $x$ is not found).
- \code{Env.add $x$ $v$ $env$} produces a new environment
- that is the same as $env$ except that variable $x$ is associated to
- value $v$. Note that these operations are \emph{pure}; that is, they
- do not mutate any environment.
- \end{ocamlx}
- \begin{ocamlx}
- The OCaml code for \LangVar{} ASTs, concrete parsing and printing (for debug purposes),
- and interpretation are in file \texttt{RVar.ml}, which also imports
- from file \texttt{Primops.ml}. These files also contain code for
- static checking of \LangVar{} programs. The checker makes sure that
- (i) every use of a variable is in the scope of a corresponding \code{let} binding;
- and (ii) each primop is applied to the correct number of arguments.
- Note that if a source program fails the checker for reason (i), this is a static user error
- that should be reported as such. (Violations of (ii) in user programs
- should be caught by the parser; parse errors are always reported as user errors.)
- Your compiler should stop trying to process a file as soon as it reports a static user
- error! (That's what the provided test driver will do.)
- However, if a program initially passes
- the checker but is subsequently transformed by the compiler and then
- fails a re-check, this indicates that the problem is the compiler's fault.
- In this case, the compiler itself should halt with a suitable error message.
- The checker has a boolean flag to distinguish these cases.
- \end{ocamlx}
- \begin{figure}[tp]
- \begin{lstlisting}
- (define interp-Rvar-class
- (class object%
- (super-new)
-
- (define/public ((interp-exp env) e)
- (match e
- [(Int n) n]
- [(Prim 'read '())
- (define r (read))
- (cond [(fixnum? r) r]
- [else (error 'interp-exp "expected an integer" r)])]
- [(Prim '- (list e)) (fx- 0 ((interp-exp env) e))]
- [(Prim '+ (list e1 e2))
- (fx+ ((interp-exp env) e1) ((interp-exp env) e2))]
- [(Var x) (dict-ref env x)]
- [(Let x e body)
- (define new-env (dict-set env x ((interp-exp env) e)))
- ((interp-exp new-env) body)]))
- (define/public (interp-program p)
- (match p
- [(Program '() e) ((interp-exp '()) e)]))
- ))
- (define (interp-Rvar p)
- (send (new interp-Rvar-class) interp-program p))
- \end{lstlisting}
- \caption{Interpreter for the \LangVar{} language.}
- \label{fig:interp-Rvar}
- \end{figure}
- \begin{figure}[tp]
- \begin{lstlisting}[style=ocaml]
- type value = int64
-
- let interp_primop (op:primop) (args: value list) : value =
- match op,args with
- Read,[] -> read_int()
- | Neg,[v] -> Int64.neg v
- | Add,[v1;v2] -> Int64.add v1 v2
- | _,_ -> assert false (* arity mismatch *)
- module StringKey = struct type t = string let compare = String.compare end
- module Env = Map.Make(StringKey)
- let rec interp_exp (env:value Env.t) = function
- Int n -> n
- | Prim(op,args) -> interp_primop op (List.map (interp_exp env) args)
- | Var x -> Env.find x env
- | Let (x,e1,e2) -> interp_exp (Env.add x (interp_exp env e1) env) e2
- let interp_program (Program(_,e)) = interp_exp Env.empty e
- \end{lstlisting}
- \caption{\ocaml{Ocaml interpreter for the \LangVar{} language.}}
- \label{fig:interp-Rvar-ocaml}
- \end{figure}
- The goal for this chapter is to implement a compiler that translates
- any program $P_1$ written in the \LangVar{} language into an x86 assembly
- program $P_2$ such that $P_2$ exhibits the same behavior when run on a
- computer as the $P_1$ program interpreted by \code{interp-Rvar}. That
- is, they output the same integer $n$. We depict this correctness
- criteria in the following diagram.
- \[
- \begin{tikzpicture}[baseline=(current bounding box.center)]
- \node (p1) at (0, 0) {$P_1$};
- \node (p2) at (4, 0) {$P_2$};
- \node (o) at (4, -2) {$n$};
- \path[->] (p1) edge [above] node {\footnotesize compile} (p2);
- \path[->] (p1) edge [left] node {\footnotesize\code{interp-Rvar}} (o);
- \path[->] (p2) edge [right] node {\footnotesize\code{interp-x86int}} (o);
- \end{tikzpicture}
- \]
- In the next section we introduce the \LangXInt{} subset of x86 that
- suffices for compiling \LangVar{}.
- \section{The \LangXInt{} Assembly Language}
- \label{sec:x86}
- \index{x86}
- Figure~\ref{fig:x86-int-concrete} defines the concrete syntax for
- \LangXInt{}. We use the AT\&T syntax expected by the GNU
- assembler.
- %
- A program begins with a \code{main} label followed by a sequence of
- instructions. The \key{globl} directive says that the \key{main}
- procedure is externally visible, which is necessary so that the
- operating system can call it. In the grammar, ellipses such as
- $\ldots$ are used to indicate a sequence of items, e.g., $\Instr
- \ldots$ is a sequence of instructions.\index{instruction}
- %
- An x86 program is stored in the computer's memory. For our purposes,
- the computer's memory is as a mapping of 64-bit addresses to 64-bit
- values. The computer has a \emph{program counter} (PC)\index{program
- counter}\index{PC} stored in the \code{rip} register that points to
- the address of the next instruction to be executed. For most
- instructions, the program counter is incremented after the instruction
- is executed, so it points to the next instruction in memory. Most x86
- instructions take two operands, where each operand is either an
- integer constant (called \emph{immediate value}\index{immediate
- value}), a \emph{register}\index{register}, or a memory location.
- \newcommand{\allregisters}{\key{rsp} \mid \key{rbp} \mid \key{rax} \mid \key{rbx} \mid \key{rcx}
- \mid \key{rdx} \mid \key{rsi} \mid \key{rdi} \mid \\
- && \key{r8} \mid \key{r9} \mid \key{r10}
- \mid \key{r11} \mid \key{r12} \mid \key{r13}
- \mid \key{r14} \mid \key{r15}}
- \begin{figure}[tp]
- \fbox{
- \begin{minipage}{0.96\textwidth}
- \[
- \begin{array}{lcl}
- \Reg &::=& \allregisters{} \\
- \Arg &::=& \key{\$}\Int \mid \key{\%}\Reg \mid \Int\key{(}\key{\%}\Reg\key{)}\\
- \Instr &::=& \key{addq} \; \Arg\key{,} \Arg \mid
- \key{subq} \; \Arg\key{,} \Arg \mid
- \key{negq} \; \Arg \mid \\
- && \key{movq} \; \Arg\key{,} \Arg \mid \ocaml{\key{movabsq} \; \Arg\key{,} \Arg \mid} \\
- && \key{callq} \; \mathit{label} \mid
- \key{pushq}\;\Arg \mid \key{popq}\;\Arg \mid \key{retq} \mid \key{jmp}\,\itm{label} \\
- && \itm{label}\key{:}\; \Instr \\
- \LangXInt{} &::= & \key{.globl main}\\
- & & \key{main:} \; \Instr\ldots
- \end{array}
- \]
- \end{minipage}
- }
- \caption{The syntax of the \LangXInt{} assembly language (AT\&T syntax).}
- \label{fig:x86-int-concrete}
- \end{figure}
- A register is a special kind of variable. Each one holds a 64-bit
- value; there are 16 general-purpose registers in the computer and
- their names are given in Figure~\ref{fig:x86-int-concrete}. A register
- is written with a \key{\%} followed by the register name, such as
- \key{\%rax}.
- An immediate value is written using the notation \key{\$}$n$ where $n$
- is an integer.
- %
- %
- An access to memory is specified using the syntax $n(\key{\%}r)$,
- which obtains the address stored in register $r$ and then adds $n$
- bytes to the address. The resulting address is used to load or store
- to memory depending on whether it occurs as a source or destination
- argument of an instruction.
- An arithmetic instruction such as $\key{addq}\,s\key{,}\,d$ reads from the
- source $s$ and destination $d$, applies the arithmetic operation, then
- writes the result back to the destination $d$.
- %
- The move instruction $\key{movq}\,s\key{,}\,d$ reads from $s$ and
- stores the result in $d$.
- %
- The $\key{callq}\,\itm{label}$ instruction jumps to the procedure
- specified by the label and $\key{retq}$ returns from a procedure to
- its caller.
- %
- We discuss procedure calls in more detail later in this chapter and in
- Chapter~\ref{ch:Rfun}. The instruction $\key{jmp}\,\itm{label}$
- updates the program counter to the address of the instruction after
- the specified label.
- Appendix~\ref{sec:x86-quick-reference} contains a quick-reference for
- all of the x86 instructions used in this book.
- Figure~\ref{fig:p0-x86} depicts an x86 program that is equivalent to
- \code{(+ 10 32)}. The instruction \lstinline{movq $10, %rax}
- puts $10$ into register \key{rax} and then \lstinline{addq $32, %rax}
- adds $32$ to the $10$ in \key{rax} and
- puts the result, $42$, back into \key{rax}.
- %
- The last instruction, \key{retq}, finishes the \key{main} function by
- returning the integer in \key{rax} to the operating system. The
- operating system interprets this integer as the program's exit
- code. By convention, an exit code of 0 indicates that a program
- completed successfully, and all other exit codes indicate various
- errors. \ocaml{Also, exit codes are unsigned bytes, so they cannot accurately represent
- arbitrary \code{int64}s.} Nevertheless, in this book we return the result of the program
- as the exit code. \ocaml{(Incidentally, if you run a program at the unix shell
- prompt, you can retrieve its exit code by typing \texttt{echo \$?} as the very next command.)}
- \begin{figure}[tbp]
- \begin{lstlisting}
- .globl main
- main:
- movq $10, %rax
- addq $32, %rax
- retq
- \end{lstlisting}
- \caption{An x86 program equivalent to \code{(+ 10 32)}.}
- \label{fig:p0-x86}
- \end{figure}
- The x86 assembly language varies in a couple ways depending on what
- operating system it is assembled in. The code examples shown here are
- correct on Linux and most Unix-like platforms, but when assembled on
- Mac OS X, labels like \key{main} must be prefixed with an underscore,
- as in \key{\_main}. \ocaml{There is a utility function \code{get\_ostype}
- provided in the \texttt{utils.ml} module provided with the support materials.}
- We exhibit the use of memory for storing intermediate results in the
- next example. Figure~\ref{fig:p1-x86} lists an x86 program that is
- equivalent to \code{(+ 52 (- 10))}. This program uses a region of
- memory called the \emph{procedure call stack} (or \emph{stack} for
- short). \index{stack}\index{procedure call stack} The stack consists
- of a separate \emph{frame}\index{frame} for each procedure call. The
- memory layout for an individual frame is shown in
- Figure~\ref{fig:frame}. The register \key{rsp} is called the
- \emph{stack pointer}\index{stack pointer} and points to the item at
- the top of the stack. The stack grows downward in memory, so we
- increase the size of the stack by subtracting from the stack pointer.
- In the context of a procedure call, the \emph{return
- address}\index{return address} is the instruction after the call
- instruction on the caller side. The function call instruction,
- \code{callq}, pushes the return address onto the stack prior to
- jumping to the procedure. The register \key{rbp} is the \emph{base
- pointer}\index{base pointer} and is used to access variables that
- are stored in the frame of the current procedure call. The base
- pointer of the caller is pushed onto the stack after the return
- address and then the base pointer is set to the location of the old
- base pointer. In Figure~\ref{fig:frame} we number the variables from
- $1$ to $n$. Variable $1$ is stored at address $-8\key{(\%rbp)}$,
- variable $2$ at $-16\key{(\%rbp)}$, etc.
- \begin{figure}[tbp]
- \begin{lstlisting}
- start:
- movq $10, -8(%rbp)
- negq -8(%rbp)
- movq -8(%rbp), %rax
- addq $52, %rax
- jmp conclusion
- .globl main
- main:
- pushq %rbp
- movq %rsp, %rbp
- subq $16, %rsp
- jmp start
- conclusion:
- addq $16, %rsp
- popq %rbp
- retq
- \end{lstlisting}
- \caption{An x86 program equivalent to \code{(+ 52 (- 10))}.}
- \label{fig:p1-x86}
- \end{figure}
- \begin{figure}[tbp]
- \centering
- \begin{tabular}{|r|l|} \hline
- Position & Contents \\ \hline
- 8(\key{\%rbp}) & return address \\
- 0(\key{\%rbp}) & old \key{rbp} \\
- -8(\key{\%rbp}) & variable $1$ \\
- -16(\key{\%rbp}) & variable $2$ \\
- \ldots & \ldots \\
- 0(\key{\%rsp}) & variable $n$\\ \hline
- \end{tabular}
- \caption{Memory layout of a frame.}
- \label{fig:frame}
- \end{figure}
- Getting back to the program in Figure~\ref{fig:p1-x86}, consider how
- control is transferred from the operating system to the \code{main}
- function. The operating system issues a \code{callq main} instruction
- which pushes its return address on the stack and then jumps to
- \code{main}. In x86-64, the stack pointer \code{rsp} must be divisible
- by 16 bytes prior to the execution of any \code{callq} instruction, so
- when control arrives at \code{main}, the \code{rsp} is 8 bytes out of
- alignment (because the \code{callq} pushed the return address). The
- first three instructions are the typical \emph{prelude}\index{prelude}
- for a procedure. The instruction \code{pushq \%rbp} saves the base
- pointer for the caller onto the stack and subtracts $8$ from the stack
- pointer. The second instruction \code{movq \%rsp, \%rbp} changes the
- base pointer so that it points the location of the old base
- pointer. The instruction \code{subq \$16, \%rsp} moves the stack
- pointer down to make enough room for storing variables. This program
- needs one variable ($8$ bytes) but we round up to 16 bytes so that
- \code{rsp} is 16-byte aligned and we're ready to make calls to other
- functions. The last instruction of the prelude is \code{jmp start},
- which transfers control to the instructions that were generated from
- the Racket expression \code{(+ 52 (- 10))}.
- The first instruction under the \code{start} label is
- \code{movq \$10, -8(\%rbp)}, which stores $10$ in variable $1$.
- %
- The instruction \code{negq -8(\%rbp)} changes variable $1$ to $-10$.
- %
- The next instruction moves the $-10$ from variable $1$ into the
- \code{rax} register. Finally, \code{addq \$52, \%rax} adds $52$ to
- the value in \code{rax}, updating its contents to $42$.
- The three instructions under the label \code{conclusion} are the
- typical \emph{conclusion}\index{conclusion} of a procedure. The first
- two instructions restore the \code{rsp} and \code{rbp} registers to
- the state they were in at the beginning of the procedure. The
- instruction \key{addq \$16, \%rsp} moves the stack pointer back to
- point at the old base pointer. Then \key{popq \%rbp} returns the old
- base pointer to \key{rbp} and adds $8$ to the stack pointer. The last
- instruction, \key{retq}, jumps back to the procedure that called this
- one and adds $8$ to the stack pointer.
- The compiler needs a convenient representation for manipulating x86
- programs, so we define an abstract syntax for x86 in
- Figure~\ref{fig:x86-int-ast}. We refer to this language as
- \LangXInt{}. The main difference compared to the concrete syntax of
- \LangXInt{} (Figure~\ref{fig:x86-int-concrete}) is that labels are not
- allowed in front of every instructions. Instead instructions are
- grouped into \emph{blocks}\index{block}\index{basic block} with a
- label associated with every block, which is why the \key{X86Program}
- struct includes an alist mapping labels to blocks. The reason for this
- organization becomes apparent in Chapter~\ref{ch:Rif} when we
- introduce conditional branching. The \code{Block} structure includes
- an $\itm{info}$ field that is not needed for this chapter, but becomes
- useful in Chapter~\ref{ch:register-allocation-Rvar}. For now, the
- $\itm{info}$ field should contain an empty list. \ocaml{The \code{'binfo}
- type parameter should be instantiated with \code{unit}.}
- Also, regarding the
- abstract syntax for \code{callq}, the \code{Callq} struct includes an
- integer for representing the arity of the function, i.e., the number
- of arguments, which is helpful to know during register allocation
- (Chapter~\ref{ch:register-allocation-Rvar}).
- \begin{ocamlx}
- The OCaml code for \LangXInt{} AST, printing, and checking is
- in file \texttt{X86Int.ml}. Printing is used to produce \texttt{.s} files that
- can be input to the system assembler; it can also be useful for debugging.
- File \texttt{utils.ml} contains functions for invoking the assembler and linker and
- running the resulting executables from inside OCaml; these are invoked
- from the test drivers also defined in that file.
- \end{ocamlx}
- \begin{figure}[tp]
- \fbox{
- \begin{minipage}{0.98\textwidth}
- \small
- \[
- \begin{array}{lcl}
- \Reg &::=& \allregisters{} \\
- \Arg &::=& \IMM{\Int} \mid \REG{\Reg}
- \mid \DEREF{\Reg}{\Int} \\
- \Instr &::=& \BININSTR{\code{addq}}{\Arg}{\Arg}
- \mid \BININSTR{\code{subq}}{\Arg}{\Arg} \\
- &\mid& \UNIINSTR{\code{negq}}{\Arg}\\
- &\mid& \BININSTR{\code{movq}}{\Arg}{\Arg}
- \ocaml{\mid \BININSTR{\code{movabsq}}{\Arg}{\Arg}} \\
- &\mid& \CALLQ{\itm{label}}{\itm{int}} \mid \RETQ{}
- \mid \PUSHQ{\Arg} \mid \POPQ{\Arg} \mid \JMP{\itm{label}} \\
- \Block &::= & \BLOCK{\itm{info}}{\LP\Instr\ldots\RP} \\
- \LangXInt{} &::= & \XPROGRAM{\itm{info}}{\LP\LP\itm{label} \,\key{.}\, \Block \RP\ldots\RP}
- \end{array}
- \]
- \end{minipage}
- }
- \begin{lstlisting}[style=ocaml,frame=single]
- type reg =
- RSP | RBP | RAX | RBX | RCX | RDX | RSI | RDI
- | R8 | R9 | R10 | R11 | R12 | R13 | R14 | R15
- type label = string
- type arg =
- Imm of int64 (* in most cases must actually be an int32 *)
- | Reg of reg
- | Deref of reg*int32
- | Var of string (* a pseudo-argument for ~$\LangXVar{}$~ *)
- type instr =
- Addq of arg*arg | Subq of arg*arg | Negq of arg
- | Movq of arg*arg | Movabsq of arg*arg | Callq of label*int
- | Retq | Pushq of arg | Popq of arg | Jmp of label
- type 'binfo block = Block of 'binfo * instr list
- type ('pinfo,'binfo) program =
- Program of 'pinfo * (label * 'binfo block) list
- \end{lstlisting}
- \caption{The abstract syntax of \LangXInt{} \ocaml{and \LangXVar{}} assembly.}
- \label{fig:x86-int-ast}
- \end{figure}
- \section{Planning the trip to x86 via the \LangCVar{} language}
- \label{sec:plan-s0-x86}
- To compile one language to another it helps to focus on the
- differences between the two languages because the compiler will need
- to bridge those differences. What are the differences between \LangVar{}
- and x86 assembly? Here are some of the most important ones:
- \begin{enumerate}
- \item[(a)] x86 arithmetic instructions typically have two arguments
- and update the second argument in place. In contrast, \LangVar{}
- arithmetic operations take two arguments and produce a new value.
- An x86 instruction may have at most one memory-accessing argument.
- Furthermore, some instructions place special restrictions on their
- arguments. \ocaml{For example, immediate operands are usually restricted
- to fit in 32 bits (except for the \code{movabsq} instruction).}
- \item[(b)] An argument of an \LangVar{} operator can be a deeply-nested
- expression, whereas x86 instructions restrict their arguments to be
- integers constants, registers, and memory locations.
- \item[(c)] The order of execution in x86 is explicit in the syntax: a
- sequence of instructions and jumps to labeled positions, whereas in
- \LangVar{} the order of evaluation is a left-to-right depth-first
- traversal of the abstract syntax tree.
- \item[(d)] A program in \LangVar{} can have any number of variables
- whereas x86 has 16 registers and the procedure calls stack.
- \item[(e)] Variables in \LangVar{} can overshadow other variables with the
- same name. In x86, registers have unique names and memory locations
- have unique addresses.
- \end{enumerate}
- We ease the challenge of compiling from \LangVar{} to x86 by breaking down
- the problem into several steps, dealing with the above differences one
- at a time. Each of these steps is called a \emph{pass} of the
- compiler.\index{pass}\index{compiler pass}
- %
- This terminology comes from the way each step passes over the AST of
- the program.
- %
- We begin by sketching how we might implement each pass, and give them
- names. We then figure out an ordering of the passes and the
- input/output language for each pass. The very first pass has
- \LangVar{} as its input language and the last pass has \LangXInt{} as
- its output language. In between we can choose whichever language is
- most convenient for expressing the output of each pass, whether that
- be \LangVar{}, \LangXInt{}, or new \emph{intermediate languages} of
- our own design. Finally, to implement each pass we write one
- recursive function per non-terminal in the grammar of the input
- language of the pass. \index{intermediate language}
- \begin{description}
- \item[\key{select-instructions}] handles the difference between
- \LangVar{} operations and x86 instructions. This pass converts each
- \LangVar{} operation to a short sequence of instructions that
- accomplishes the same task.
- \item[\key{remove-complex-opera*}] ensures that each subexpression of
- a primitive operation is a variable or integer, that is, an
- \emph{atomic} expression. We refer to non-atomic expressions as
- \emph{complex}. This pass introduces temporary variables to hold
- the results of complex subexpressions.\index{atomic
- expression}\index{complex expression}%
- \footnote{The subexpressions of an operation are often called
- operators and operands which explains the presence of
- \code{opera*} in the name of this pass.}
-
- \item[\key{explicate-control}] makes the execution order of the
- program explicit. It convert the abstract syntax tree representation
- into a control-flow graph in which each node contains a sequence of
- statements and the edges between nodes say which nodes contain jumps
- to other nodes.
- \item[\key{assign-homes}] replaces the variables in \LangVar{} with
- registers or stack locations in x86.
- \item[\key{uniquify}] deals with the shadowing of variables by
- renaming every variable to a unique name.
- \end{description}
- The next question is: in what order should we apply these passes? This
- question can be challenging because it is difficult to know ahead of
- time which orderings will be better (easier to implement, produce more
- efficient code, etc.) so oftentimes trial-and-error is
- involved. Nevertheless, we can try to plan ahead and make educated
- choices regarding the ordering.
- What should be the ordering of \key{explicate-control} with respect to
- \key{uniquify}? The \key{uniquify} pass should come first because
- \key{explicate-control} changes all the \key{let}-bound variables to
- become local variables whose scope is the entire program, which would
- confuse variables with the same name.
- %
- We place \key{remove-complex-opera*} before \key{explicate-control}
- because the latter removes the \key{let} form, but it is convenient to
- use \key{let} in the output of \key{remove-complex-opera*}.
- %
- The ordering of \key{uniquify} with respect to
- \key{remove-complex-opera*} does not matter so we arbitrarily choose
- \key{uniquify} to come first.
- Last, we consider \key{select-instructions} and \key{assign-homes}.
- These two passes are intertwined. In Chapter~\ref{ch:Rfun} we
- learn that, in x86, registers are used for passing arguments to
- functions and it is preferable to assign parameters to their
- corresponding registers. On the other hand, by selecting instructions
- first we may run into a dead end in \key{assign-homes}. Recall that
- only one argument of an x86 instruction may be a memory access but
- \key{assign-homes} might fail to assign even one of them to a
- register.
- %
- A sophisticated approach is to iteratively repeat the two passes until
- a solution is found. However, to reduce implementation complexity we
- recommend a simpler approach in which \key{select-instructions} comes
- first, followed by the \key{assign-homes}, then a third pass named
- \key{patch-instructions} that uses a reserved register to fix
- outstanding problems.
- \begin{figure}[tbp]
- \begin{tikzpicture}[baseline=(current bounding box.center)]
- \node (Rvar) at (0,2) {\large \LangVar{}};
- \node (Rvar-2) at (3,2) {\large \LangVar{}};
- \node (Rvar-3) at (6,2) {\large \LangVarANF{}};
- %\node (Cvar-1) at (6,0) {\large \LangCVar{}};
- \node (Cvar-2) at (3,0) {\large \LangCVar{}};
- \node (x86-2) at (3,-2) {\large \LangXVar{}};
- \node (x86-3) at (6,-2) {\large \LangXVar{}};
- \node (x86-4) at (9,-2) {\large \LangXInt{}};
- \node (x86-5) at (12,-2) {\large \LangXInt{}};
- \path[->,bend left=15] (Rvar) edge [above] node {\ttfamily\footnotesize uniquify} (Rvar-2);
- \path[->,bend left=15] (Rvar-2) edge [above] node {\ttfamily\footnotesize remove-complex.} (Rvar-3);
- \path[->,bend left=15] (Rvar-3) edge [right] node {\ttfamily\footnotesize explicate-control} (Cvar-2);
- \path[->,bend right=15] (Cvar-2) edge [left] node {\ttfamily\footnotesize select-instr.} (x86-2);
- \path[->,bend left=15] (x86-2) edge [above] node {\ttfamily\footnotesize assign-homes} (x86-3);
- \path[->,bend left=15] (x86-3) edge [above] node {\ttfamily\footnotesize patch-instr.} (x86-4);
- \path[->,bend left=15] (x86-4) edge [above] node {\ttfamily\footnotesize print-x86} (x86-5);
- \end{tikzpicture}
- \caption{Diagram of the passes for compiling \LangVar{}. }
- \label{fig:Rvar-passes}
- \end{figure}
- Figure~\ref{fig:Rvar-passes} presents the ordering of the compiler
- passes and identifies the input and output language of each pass. The
- last pass, \key{print-x86}, converts from the abstract syntax of
- \LangXInt{} to the concrete syntax. In the following two sections
- we discuss the \LangCVar{} intermediate language and the \LangXVar{}
- dialect of x86. The remainder of this chapter gives hints regarding
- the implementation of each of the compiler passes in
- Figure~\ref{fig:Rvar-passes}.
- %% The output of \key{uniquify} and \key{remove-complex-opera*}
- %% are programs that are still in the \LangVar{} language, though the
- %% output of the later is a subset of \LangVar{} named \LangVarANF{}
- %% (Section~\ref{sec:remove-complex-opera-Rvar}).
- %% %
- %% The output of \key{explicate-control} is in an intermediate language
- %% \LangCVar{} designed to make the order of evaluation explicit in its
- %% syntax, which we introduce in the next section. The
- %% \key{select-instruction} pass translates from \LangCVar{} to
- %% \LangXVar{}. The \key{assign-homes} and
- %% \key{patch-instructions}
- %% passes input and output variants of x86 assembly.
- \subsection{The \LangCVar{} Intermediate Language}
- The output of \key{explicate-control} is similar to the $C$
- language~\citep{Kernighan:1988nx} in that it has separate syntactic
- categories for expressions and statements, so we name it \LangCVar{}. The
- abstract syntax for \LangCVar{} is defined in Figure~\ref{fig:c0-syntax}.
- (The concrete syntax for \LangCVar{} is in the Appendix,
- Figure~\ref{fig:c0-concrete-syntax}. \ocaml{(This appendix is not quite accurate
- for the OCaml version, but the details of the concrete syntax of
- an IR like this don't matter much, since it will normally be used
- only to dump out information when debugging; it won't be parsed.})
- %
- The \LangCVar{} language supports the same operators as \LangVar{} but
- the arguments of operators are restricted to atomic
- expressions. Instead of \key{let} expressions, \LangCVar{} has
- assignment statements which can be executed in sequence using the
- \key{Seq} form. A sequence of statements always ends with
- \key{Return}, a guarantee that is baked into the grammar rules for
- \itm{tail}. The naming of this non-terminal comes from the term
- \emph{tail position}\index{tail position}, which refers to an
- expression that is the last one to execute within a function.
- A \LangCVar{} program consists of a control-flow graph represented as
- an alist mapping labels to tails \ocaml{(that is, a list of \code{(label*tail)} pairs)}.
- This is more general than necessary
- for the present chapter, as we do not yet introduce \key{goto} for
- jumping to labels, but it saves us from having to change the syntax in
- Chapter~\ref{ch:Rif}. For now there will be just one label,
- \key{start}, and the whole program \ocaml{body} is its tail.
- %
- The $\itm{info}$ field of the \key{CProgram} form, after the
- \key{explicate-control} pass, contains a mapping from the symbol
- \key{locals} to a list of variables, that is, a list of all the
- variables used in the program. \ocaml{It is represented as a \code{unit Env.t},
- a kind of degenerate map that effectively acts like a set.}
- At the start of the program, these
- variables are uninitialized; they become initialized on their first
- assignment.
- \begin{figure}[tbp]
- \fbox{
- \begin{minipage}{0.96\textwidth}
- \[
- \begin{array}{lcl}
- \Atm &::=& \INT{\Int} \mid \VAR{\Var} \\
- \Exp &::=& \Atm \mid \READ{} \mid \NEG{\Atm} \\
- &\mid& \ADD{\Atm}{\Atm}\\
- \Stmt &::=& \ASSIGN{\VAR{\Var}}{\Exp} \\
- \Tail &::= & \RETURN{\Exp} \mid \SEQ{\Stmt}{\Tail} \\
- \LangCVar{} & ::= & \CPROGRAM{\itm{info}}{\LP\LP\itm{label}\,\key{.}\,\Tail\RP\ldots\RP}
- \end{array}
- \]
- \end{minipage}
- }
- \begin{lstlisting}[style=ocaml,frame=single]
- type var = string
- type label = string
- type atm =
- Int of int64
- | Var of var
- type exp =
- Atom of atm
- | Prim of primop * atm list
- type stmt =
- Assign of var * exp
- type tail =
- Return of exp
- | Seq of stmt*tail
- type 'pinfo program = Program of 'pinfo * (label*tail) list
- \end{lstlisting}
- \caption{The abstract syntax of the \LangCVar{} intermediate language.}
- \label{fig:c0-syntax}
- \end{figure}
- The definitional interpreter for \LangCVar{} is in the support code,
- in the file \code{interp-Cvar.rkt}.
- \begin{ocamlx}
- The OCaml code for \LangCVar{} AST, checking, printing (for debug purposes),
- and interpretation is in file \texttt{CVar.ml}.
- \end{ocamlx}
- \subsection{The \LangXVar{} dialect}
- The \LangXVar{} language is the output of the pass
- \key{select-instructions}. It extends \LangXInt{} with an unbounded
- number of program-scope variables and removes the restrictions
- regarding instruction arguments.
- \begin{ocamlx}
- For simplicity, we treat \LangXInt{} and \LangXVar{} as the same
- language, defined in \texttt{X86Int.ml}. In particular, we allow \code{Var}
- as one of the possible forms for an instruction argument (\code{arg}).
- We provide two different check routines.
- \begin{itemize}
- \item \code{CheckLabels.check\_program}
- just checks that all label
- declarations are unique and that all jump targets are defined; this
- is suitable for checking the code produced from the \key{select-instructions}
- pass, which will use \code{Var} arguments freely.
- \item
- \code{CheckArgs.check\_program} checks that all arguments are legal for the
- actual X86-64 machine (in particular, that they are not \code{Var} arguments);
- this is suitable for checking the output of the \key{patch-instr} pass.
- \end{itemize}
- \end{ocamlx}
- \section{Uniquify Variables}
- \label{sec:uniquify-Rvar}
- The \code{uniquify} pass compiles \LangVar{} programs into \LangVar{}
- programs in which every \key{let} binds a unique variable name. For
- example, the \code{uniquify} pass should translate the program on the
- left into the program on the right. \\
- \begin{tabular}{lll}
- \begin{minipage}{0.4\textwidth}
- \begin{lstlisting}
- (let ([x 32])
- (+ (let ([x 10]) x) x))
- \end{lstlisting}
- \end{minipage}
- &
- $\Rightarrow$
- &
- \begin{minipage}{0.4\textwidth}
- \begin{lstlisting}
- (let ([x.1 32])
- (+ (let ([x.2 10]) x.2) x.1))
- \end{lstlisting}
- \end{minipage}
- \end{tabular} \\
- %
- \begin{tabular}{lll}
- \begin{minipage}{0.4\textwidth}
- \begin{lstlisting}[style=ocaml]
- (let x 32
- (+ (let x 10 x) x))
- \end{lstlisting}
- \end{minipage}
- &
- \ocaml{$\Rightarrow$}
- &
- \begin{minipage}{0.4\textwidth}
- \begin{lstlisting}[style=ocaml]
- (let x.1 32
- (+ (let x.2 10 x.2) x.1))
- \end{lstlisting}
- \end{minipage}
- \end{tabular} \\
- %
- The following is another example translation, this time of a program
- with a \key{let} nested inside the initializing expression of another
- \key{let}.\\
- \begin{tabular}{lll}
- \begin{minipage}{0.4\textwidth}
- \begin{lstlisting}
- (let ([x (let ([x 4])
- (+ x 1))])
- (+ x 2))
- \end{lstlisting}
- \end{minipage}
- &
- $\Rightarrow$
- &
- \begin{minipage}{0.4\textwidth}
- \begin{lstlisting}
- (let ([x.2 (let ([x.1 4])
- (+ x.1 1))])
- (+ x.2 2))
- \end{lstlisting}
- \end{minipage}
- \end{tabular}
- \ocaml{You can transliterate examples like this for yourself by now...}
- We recommend implementing \code{uniquify} by creating a structurally
- recursive function named \code{uniquify-exp} that mostly just copies
- an expression. However, when encountering a \key{let}, it should
- generate a unique name for the variable and associate the old name
- with the new name in an alist \ocaml{(Ocaml: \key{Env})}.\footnote{The Racket function
- \code{gensym} is handy for generating unique variable names. \ocaml{There is a similar
- function defined in \texttt{utils.ml}.}} The
- \code{uniquify-exp} function needs to access this alist \ocaml{(\key{Env})} when it gets
- to a variable reference, so we add a parameter to \code{uniquify-exp}
- for the alist \ocaml{(\key{Env})} .
- The skeleton of the \code{uniquify-exp} function is shown in
- Figure~\ref{fig:uniquify-Rvar}. The function is curried so that it is
- convenient to partially apply it to an alist \ocaml{(\key{Env})} and then apply it to
- different expressions, as in the last case for primitive operations in
- Figure~\ref{fig:uniquify-Rvar}. The
- %
- \href{https://docs.racket-lang.org/reference/for.html#%28form._%28%28lib._racket%2Fprivate%2Fbase..rkt%29._for%2Flist%29%29}{\key{for/list}}
- %
- form of Racket is useful for transforming each element of a list to
- produce a new list.\index{for/list}
- \ocaml{The \code{List.map} function is similar.}
- \ocaml{In addition to writing the \code{uniquify} transformation, it is worthwhile
- to write a \emph{checker} to make sure that the result obeys any invariants we
- expect to hold. (Sometimes these invariants are baked into the abstract syntax
- of the target, but that's not the case here.) Our checker should re-traverse the
- result AST and make sure that no identifier is bound more than once. It should also
- re-run the \LangVar{} checker defined in module \code{RVar} to make sure that
- all variables uses are in the scope of a binding (something we might easily have
- messed up) and that we have not accidentally introduced a primop arity error (much
- less likely, but still possible).
- }
- \begin{exercise}
- \normalfont % I don't like the italics for exercises. -Jeremy
- Complete the \code{uniquify} pass by filling in the blanks in
- Figure~\ref{fig:uniquify-Rvar}, that is, implement the cases for
- variables and for the \key{let} form in the file \code{compiler.rkt}
- in the support code. \ocaml{This exercise is done for you, in the
- \code{Uniquify} module of file \code{Chapter2.ml}.}
- \end{exercise}
- \begin{figure}[tbp]
- \begin{lstlisting}
- (define (uniquify-exp env)
- (lambda (e)
- (match e
- [(Var x) ___]
- [(Int n) (Int n)]
- [(Let x e body) ___]
- [(Prim op es)
- (Prim op (for/list ([e es]) ((uniquify-exp env) e)))])))
- (define (uniquify p)
- (match p
- [(Program '() e) (Program '() ((uniquify-exp '()) e))]))
- \end{lstlisting}
- \caption{Skeleton for the \key{uniquify} pass.}
- \label{fig:uniquify-Rvar}
- \end{figure}
- \begin{exercise}
- \normalfont % I don't like the italics for exercises. -Jeremy
- Create five \LangVar{} programs that exercise the most interesting
- parts of the \key{uniquify} pass, that is, the programs should include
- \key{let} forms, variables, and variables that overshadow each other.
- The five programs should be placed in the subdirectory named
- \key{tests} and the file names should start with \code{var\_test\_}
- followed by a unique integer and end with the file extension
- \key{.rkt}. \ocaml{OCaml: use extension \key{.r}.}
- %
- The \key{run-tests.rkt} script in the support code \ocaml{(\key{test\_files}
- function in \code{Chapter2.ml}, which is invoked by the \code{driver}
- executable)} checks whether the
- output programs produce the same result as the input programs. The
- script uses the \key{interp-tests} function
- (Appendix~\ref{appendix:utilities}) from \key{utilities.rkt} \ocaml{(\key{test\_files}
- function from \code{utils.ml})} to test
- your \key{uniquify} pass on the example programs. The \code{passes}
- parameter of \key{interp-tests} is a list that should have one entry
- for each pass in your compiler. For now, define \code{passes} to
- contain just one entry for \code{uniquify} \ocaml{(plus the fixed initial pass)} as follows.
- \begin{lstlisting}
- (define passes
- (list (list "uniquify" uniquify interp-Rvar type-check-Rvar)))
- \end{lstlisting}
- \begin{ocamlx}
- \begin{lstlisting}{style=ocaml}
- let passes = PCons(initial_pass,
- PCons(Uniquify.pass,PNil))
- \end{lstlisting}
- \end{ocamlx}
- Run the \key{run-tests.rkt} script in the support code
- \ocaml{(the \key{driver} executable)} to check
- whether the output programs produce the same result as the input
- programs.
- \end{exercise}
- \section{Remove Complex Operands}
- \label{sec:remove-complex-opera-Rvar}
- The \code{remove-complex-opera*} pass compiles \LangVar{} programs
- into a restricted form in which the arguments of operations are atomic
- expressions. Put another way, this pass removes complex
- operands\index{complex operand}, such as the expression \code{(- 10)}
- in the program below. This is accomplished by introducing a new
- \key{let}-bound variable, binding the complex operand to the new
- variable, and then using the new variable in place of the complex
- operand, as shown in the output of \code{remove-complex-opera*} on the
- right.\\
- \begin{tabular}{lll}
- \begin{minipage}{0.4\textwidth}
- % var_test_19.rkt
- \begin{lstlisting}
- (+ 52 (- 10))
- \end{lstlisting}
- \end{minipage}
- &
- $\Rightarrow$
- &
- \begin{minipage}{0.4\textwidth}
- \begin{lstlisting}
- (let ([tmp.1 (- 10)])
- (+ 52 tmp.1))
- \end{lstlisting}
- \end{minipage}
- \end{tabular}
- \begin{ocamlx}
- We suggest generating temporary names that begin with a back-tick (\verb'`')
- since these are illegal as S-expression symbols, and so cannot conflict with existing
- user-defined names.
- \end{ocamlx}
- \begin{figure}[tp]
- \centering
- \fbox{
- \begin{minipage}{0.96\textwidth}
- \[
- \begin{array}{rcl}
- \Atm &::=& \INT{\Int} \mid \VAR{\Var} \\
- \Exp &::=& \Atm \mid \READ{} \\
- &\mid& \NEG{\Atm} \mid \ADD{\Atm}{\Atm} \\
- &\mid& \LET{\Var}{\Exp}{\Exp} \\
- R^{\dagger}_1 &::=& \PROGRAM{\code{'()}}{\Exp}
- \end{array}
- \]
- \end{minipage}
- }
- \caption{\LangVarANF{} is \LangVar{} in administrative normal form (ANF).}
- \label{fig:r1-anf-syntax}
- \end{figure}
- Figure~\ref{fig:r1-anf-syntax} presents the grammar for the output of
- this pass, the language \LangVarANF{}. The only difference is that
- operator arguments are restricted to be atomic expressions that are
- defined by the \Atm{} non-terminal. In particular, integer constants
- and variables are atomic. In the literature, restricting arguments to
- be atomic expressions is called \emph{administrative normal form}, or
- ANF for short~\citep{Danvy:1991fk,Flanagan:1993cg}.
- \index{administrative normal form} \index{ANF}
- \ocaml{Actually, ANF
- as defined in~\citep{Flanagan:1993cg}
- refers to a more restricted form in which the defining expressions of
- \code{let}s cannot themselves contain \code{lets}s. This essentially
- corresponds to the \LangCVar{} language.}
- We recommend implementing this pass with two mutually recursive
- functions, \code{rco-atom} and \code{rco-exp}. The idea is to apply
- \code{rco-atom} to subexpressions that need to become atomic and to
- apply \code{rco-exp} to subexpressions that do not. Both functions
- take an \LangVar{} expression as input. The \code{rco-exp} function
- returns an expression. The \code{rco-atom} function returns two
- things: an atomic expression and alist \ocaml{(i.e. list of pairs)} mapping temporary variables to
- complex subexpressions. You can return multiple things from a function
- using Racket's \key{values} form and you can receive multiple things
- from a function call using the \key{define-values} form. If you are
- not familiar with these features, review the Racket documentation.
- Also, the
- \href{https://docs.racket-lang.org/reference/for.html#%28form._%28%28lib._racket%2Fprivate%2Fbase..rkt%29._for%2Flists%29%29}{\code{for/lists}}
- form is useful for applying a function to each element of a list, in
- the case where the function returns multiple values.
- \index{for/lists}
- \ocaml{OCaml: You can return multiple things from a function using a tuple
- and binding the return value to a tuple pattern. Again, the \code{List.map}
- function is handy.}
- Returning to the example program \code{(+ 52 (- 10))}, the
- subexpression \code{(- 10)} should be processed using the
- \code{rco-atom} function because it is an argument of the \code{+} and
- therefore needs to become atomic. The output of \code{rco-atom}
- applied to \code{(- 10)} is as follows.
- \begin{tabular}{lll}
- \begin{minipage}{0.4\textwidth}
- \begin{lstlisting}
- (- 10)
- \end{lstlisting}
- \end{minipage}
- &
- $\Rightarrow$
- &
- \begin{minipage}{0.4\textwidth}
- \begin{lstlisting}
- tmp.1
- ((tmp.1 . (- 10)))
- \end{lstlisting}
- \end{minipage}
- \end{tabular}
- Take special care of programs such as the following one that binds a
- variable to an atomic expression. You should leave such variable
- bindings unchanged, as shown in to the program on the right \\
- \begin{tabular}{lll}
- \begin{minipage}{0.4\textwidth}
- % var_test_20.rkt
- \begin{lstlisting}
- (let ([a 42])
- (let ([b a])
- b))
- \end{lstlisting}
- \end{minipage}
- &
- $\Rightarrow$
- &
- \begin{minipage}{0.4\textwidth}
- \begin{lstlisting}
- (let ([a 42])
- (let ([b a])
- b))
- \end{lstlisting}
- \end{minipage}
- \end{tabular} \\
- A careless implementation of \key{rco-exp} and \key{rco-atom} might
- produce the following output with unnecessary temporary variables.\\
- \begin{minipage}{0.4\textwidth}
- \begin{lstlisting}
- (let ([tmp.1 42])
- (let ([a tmp.1])
- (let ([tmp.2 a])
- (let ([b tmp.2])
- b))))
- \end{lstlisting}
- \end{minipage}
- \begin{exercise}\normalfont
- %
- Implement the \code{remove-complex-opera*} function in
- \code{compiler.rkt}. \ocaml{Fill in the RemoveComplexOperations submodule in \code{Chapter2.ml}.
- Be sure to include a checker that re-traverses the target AST to make sure that
- all primop arguments are indeed now atomic, and that we haven't broken any of the
- other invariants we expect to hold of \LangInt{} programs at this point.
- Fill in the {\tt pass} definition appropriately.
- }
- %
- Create three new \LangInt{} programs that exercise the interesting
- code in the \code{remove-complex-opera*} pass (Following the same file
- name guidelines as before.).
- %
- In the \code{run-tests.rkt} script, add the following entry to the
- list of \code{passes} and then run the script to test your compiler.
- \begin{lstlisting}
- (list "remove-complex" remove-complex-opera* interp-Rvar type-check-Rvar)
- \end{lstlisting}
- \begin{ocamlx}
- In \code{Chapter2.ml}, add an additional entry to the {\tt passes} list:
- \begin{lstlisting}[style=ocaml]
- let passes =
- PCons(initial_pass,
- PCons(Uniquify.pass,
- PCons(RemoveComplexOperands.pass, PNil)))
- \end{lstlisting}
- \end{ocamlx}
- While debugging your compiler, it is often useful to see the
- intermediate programs that are output from each pass. To print the
- intermediate programs, place the following before the call to
- \code{interp-tests} in \code{run-tests.rkt}.
- \begin{lstlisting}
- (debug-level 1)
- \end{lstlisting}
- \begin{ocamlx}
- Adjust the assignment near the bottom of \code{Chapter2.ml}:
- \begin{lstlisting}[style=ocaml]
- let _ = Util.debug_level := 2
- \end{lstlisting}
- \end{ocamlx}
- \end{exercise}
- \section{Explicate Control}
- \label{sec:explicate-control-Rvar}
- The \code{explicate-control} pass compiles \LangVar{} programs into \LangCVar{}
- programs that make the order of execution explicit in their
- syntax. For now this amounts to flattening \key{let} constructs into a
- sequence of assignment statements. For example, consider the following
- \LangVar{} program.\\
- % var_test_11.rkt
- \begin{minipage}{0.96\textwidth}
- \begin{lstlisting}
- (let ([y (let ([x 20])
- (+ x (let ([x 22]) x)))])
- y)
- \end{lstlisting}
- \end{minipage}\\
- %
- The output of the previous pass and of \code{explicate-control} is
- shown below. Recall that the right-hand-side of a \key{let} executes
- before its body, so the order of evaluation for this program is to
- assign \code{20} to \code{x.1}, \code{22} to \code{x.2}, and
- \code{(+ x.1 x.2)} to \code{y}, then return \code{y}. Indeed, the
- output of \code{explicate-control} makes this ordering explicit.\\
- \begin{tabular}{lll}
- \begin{minipage}{0.4\textwidth}
- \begin{lstlisting}
- (let ([y (let ([x.1 20])
- (let ([x.2 22])
- (+ x.1 x.2)))])
- y)
- \end{lstlisting}
- \end{minipage}
- &
- $\Rightarrow$
- &
- \begin{minipage}{0.4\textwidth}
- \begin{lstlisting}[language=C]
- start:
- x.1 = 20;
- x.2 = 22;
- y = (+ x.1 x.2);
- return y;
- \end{lstlisting}
- \end{minipage}
- \end{tabular}
- %
- \begin{figure}[tbp]
- \begin{lstlisting}
- (define (explicate-tail e)
- (match e
- [(Var x) ___]
- [(Int n) (Return (Int n))]
- [(Let x rhs body) ___]
- [(Prim op es) ___]
- [else (error "explicate-tail unhandled case" e)]))
- (define (explicate-assign e x cont)
- (match e
- [(Var x) ___]
- [(Int n) (Seq (Assign (Var x) (Int n)) cont)]
- [(Let y rhs body) ___]
- [(Prim op es) ___]
- [else (error "explicate-assign unhandled case" e)]))
- (define (explicate-control p)
- (match p
- [(Program info body) ___]))
- \end{lstlisting}
- \caption{Skeleton for the \key{explicate-control} pass.}
- \label{fig:explicate-control-Rvar}
- \end{figure}
- The organization of this pass depends on the notion of tail position
- that we have alluded to earlier. Formally, \emph{tail
- position}\index{tail position} in the context of \LangVar{} is
- defined recursively by the following two rules.
- \begin{enumerate}
- \item In $\PROGRAM{\code{()}}{e}$, expression $e$ is in tail position.
- \item If $\LET{x}{e_1}{e_2}$ is in tail position, then so is $e_2$.
- \end{enumerate}
- We recommend implementing \code{explicate-control} using two mutually
- recursive functions, \code{explicate-tail} and
- \code{explicate-assign}, as suggested in the skeleton code in
- Figure~\ref{fig:explicate-control-Rvar}. The \code{explicate-tail}
- function should be applied to expressions in tail position whereas the
- \code{explicate-assign} should be applied to expressions that occur on
- the right-hand-side of a \key{let}.
- %
- The \code{explicate-tail} function takes an \Exp{} in \LangVar{} as
- input and produces a \Tail{} in \LangCVar{} (see
- Figure~\ref{fig:c0-syntax}).
- %
- The \code{explicate-assign} function takes an \Exp{} in \LangVar{},
- the variable that it is to be assigned to, and a \Tail{} in
- \LangCVar{} for the code that will come after the assignment. The
- \code{explicate-assign} function returns a $\Tail$ in \LangCVar{}.
- The \code{explicate-assign} function is in accumulator-passing style
- in that the \code{cont} parameter is used for accumulating the
- output. The reader might be tempted to instead organize
- \code{explicate-assign} in a more direct fashion, without the
- \code{cont} parameter and perhaps using \code{append} to combine
- statements. We warn against that alternative because the
- accumulator-passing style is key to how we generate high-quality code
- for conditional expressions in Chapter~\ref{ch:Rif}.
- \begin{ocamlx}
- Don't take this advice too seriously. Organize things in the cleanest way you
- can find; it will always be possible to adjust your approach in later chapters.
- \end{ocamlx}
- \begin{exercise}\normalfont
- %
- Implement the \code{explicate-control} function in
- \code{compiler.rkt}. \ocaml{Fill in the \code{ExplicateControl} submodule
- of \code{Chapter2.ml} by implementing the \code{do\_program} function.
- The checking field of this pass should invoke \code{CVar.check\_program},
- which checks that the target code is properly bound (and also fills in
- some information about the set of bound variables in the \code{'pinfo}
- field of the program that will be useful in a later pass).}
- %
- Create three new \LangInt{} programs that
- exercise the code in \code{explicate-control}.
- %
- In the \code{run-tests.rkt} script, add the following entry to the
- list of \code{passes} and then run the script to test your compiler.
- \begin{lstlisting}
- (list "explicate control" explicate-control interp-Cvar type-check-Cvar)
- \end{lstlisting}
- \ocaml{Make the analogous change to the \code{passes} list in \code{Chapter2.ml}.}
- \end{exercise}
- \section{Select Instructions}
- \label{sec:select-Rvar}
- \index{instruction selection}
- In the \code{select-instructions} pass we begin the work of
- translating from \LangCVar{} to \LangXVar{}. The target language of
- this pass is a variant of x86 that still uses variables, so we add an
- AST node of the form $\VAR{\itm{var}}$ to the \Arg{} non-terminal of
- the \LangXInt{} abstract syntax (Figure~\ref{fig:x86-int-ast}). \ocaml{Recall that
- we use the same module to define \LangXInt{} and \LangXVar{}.}
- We recommend implementing the \code{select-instructions} with
- three auxiliary functions, one for each of the non-terminals of
- \LangCVar{}: $\Atm$, $\Stmt$, and $\Tail$.
- The cases for $\Atm$ are straightforward, variables stay
- the same and integer constants are changed to immediates:
- $\INT{n}$ changes to $\IMM{n}$.
- Next we consider the cases for $\Stmt$, starting with arithmetic
- operations. For example, consider the addition operation. We can use
- the \key{addq} instruction, but it performs an in-place update. So we
- could move $\itm{arg}_1$ into the left-hand side \itm{var} and then
- add $\itm{arg}_2$ to \itm{var}. \\
- \begin{tabular}{lll}
- \begin{minipage}{0.4\textwidth}
- \begin{lstlisting}
- |$\itm{var}$| = (+ |$\itm{arg}_1$| |$\itm{arg}_2$|);
- \end{lstlisting}
- \end{minipage}
- &
- $\Rightarrow$
- &
- \begin{minipage}{0.4\textwidth}
- \begin{lstlisting}
- movq |$\itm{arg}_1$|, |$\itm{var}$|
- addq |$\itm{arg}_2$|, |$\itm{var}$|
- \end{lstlisting}
- \end{minipage}
- \end{tabular} \\
- %
- There are also cases that require special care to avoid generating
- needlessly complicated code. For example, if one of the arguments of
- the addition is the same variable as the left-hand side of the
- assignment, then there is no need for the extra move instruction. The
- assignment statement can be translated into a single \key{addq}
- instruction as follows.\\
- \begin{tabular}{lll}
- \begin{minipage}{0.4\textwidth}
- \begin{lstlisting}
- |$\itm{var}$| = (+ |$\itm{arg}_1$| |$\itm{var}$|);
- \end{lstlisting}
- \end{minipage}
- &
- $\Rightarrow$
- &
- \begin{minipage}{0.4\textwidth}
- \begin{lstlisting}
- addq |$\itm{arg}_1$|, |$\itm{var}$|
- \end{lstlisting}
- \end{minipage}
- \end{tabular}
- The \key{read} operation does not have a direct counterpart in x86
- assembly, so we provide this functionality with the function
- \code{read\_int} in the file \code{runtime.c}, written in
- C~\citep{Kernighan:1988nx}. In general, we refer to all of the
- functionality in this file as the \emph{runtime system}\index{runtime
- system}, or simply the \emph{runtime} for short. When compiling your
- generated x86 assembly code, you need to compile \code{runtime.c} to
- \code{runtime.o} (an ``object file'', using \code{gcc} option
- \code{-c}) and link it into the executable. For our purposes of code
- generation, all you need to do is translate an assignment of
- \key{read} into a call to the \code{read\_int} function followed by a
- move from \code{rax} to the left-hand-side variable. (Recall that the
- return value of a function goes into \code{rax}.) \\
- \begin{tabular}{lll}
- \begin{minipage}{0.3\textwidth}
- \begin{lstlisting}
- |$\itm{var}$| = (read);
- \end{lstlisting}
- \end{minipage}
- &
- $\Rightarrow$
- &
- \begin{minipage}{0.3\textwidth}
- \begin{lstlisting}
- callq read_int
- movq %rax, |$\itm{var}$|
- \end{lstlisting}
- \end{minipage}
- \end{tabular}
- There are two cases for the $\Tail$ non-terminal: \key{Return} and
- \key{Seq}. Regarding \key{Return}, we recommend treating it as an
- assignment to the \key{rax} register followed by a jump to the
- conclusion of the program (so the conclusion needs to be labeled).
- For $\SEQ{s}{t}$, you can translate the statement $s$ and tail $t$
- recursively and then append the resulting instructions.
- \begin{exercise}
- \normalfont Implement the \key{select-instructions} pass in
- \code{compiler.rkt}. \ocaml{Fill out the \code{SelectInstructions} submodule
- of \code{Chapter2.ml}. The checking field of this pass should invoke
- \code{X86Int.CheckLabels.check\_program}, passing a list of externally
- defined labels (just \code{["read\_int"]}).}
- Create three new example programs that are
- designed to exercise all of the interesting cases in this pass.
- %
- In the \code{run-tests.rkt} script, add the following entry to the
- list of \code{passes} and then run the script to test your compiler.
- \begin{lstlisting}
- (list "instruction selection" select-instructions interp-pseudo-x86-0)
- \end{lstlisting}
- \ocaml{Make the analogous change to the \code{passes} list in \code{Chapter2.ml}.}
- \end{exercise}
- \section{Assign Homes}
- \label{sec:assign-Rvar}
- The \key{assign-homes} pass compiles \LangXVar{} programs to
- \LangXVar{} programs that no longer use program variables.
- Thus, the \key{assign-homes} pass is responsible for placing all of
- the program variables in registers or on the stack. For runtime
- efficiency, it is better to place variables in registers, but as there
- are only 16 registers, some programs must necessarily resort to
- placing some variables on the stack. In this chapter we focus on the
- mechanics of placing variables on the stack. We study an algorithm for
- placing variables in registers in
- Chapter~\ref{ch:register-allocation-Rvar}.
- Consider again the following \LangVar{} program from
- Section~\ref{sec:remove-complex-opera-Rvar}.
- % var_test_20.rkt
- \begin{lstlisting}
- (let ([a 42])
- (let ([b a])
- b))
- \end{lstlisting}
- The output of \code{select-instructions} is shown on the left and the
- output of \code{assign-homes} on the right. In this example, we
- assign variable \code{a} to stack location \code{-8(\%rbp)} and
- variable \code{b} to location \code{-16(\%rbp)}.\\
- \begin{tabular}{l}
- \begin{minipage}{0.4\textwidth}
- \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
- locals-types:
- a : Integer, b : Integer
- start:
- movq $42, a
- movq a, b
- movq b, %rax
- jmp conclusion
- \end{lstlisting}
- \end{minipage}
- {$\Rightarrow$}
- \begin{minipage}{0.4\textwidth}
- \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
- stack-space: 16
- start:
- movq $42, -8(%rbp)
- movq -8(%rbp), -16(%rbp)
- movq -16(%rbp), %rax
- jmp conclusion
- \end{lstlisting}
- \end{minipage}
- \end{tabular}
- The \code{locals-types} entry in the $\itm{info}$ of the
- \code{X86Program} node is an alist mapping all the variables in the
- program to their types (for now just \code{Integer}). The
- \code{assign-homes} pass should replace all uses of those variables
- with stack locations. As an aside, the \code{locals-types} entry is
- computed by \code{type-check-Cvar} in the support code, which installs
- it in the $\itm{info}$ field of the \code{CProgram} node, which should
- be propagated to the \code{X86Program} node.
- \ocaml{The locals sets is represented as a \code{unit Env.t}.}
- In the process of assigning variables to stack locations, it is
- convenient for you to compute and store the size of the frame (in
- bytes) in the $\itm{info}$ field of the \key{X86Program} node, with
- the key \code{stack-space}, which is needed later to generate the
- conclusion of the \code{main} procedure. The x86-64 standard requires
- the frame size to be a multiple of 16 bytes.\index{frame}
- \ocaml{The \code{'pinfo} parameter should be instantiated with an \code{int}
- representing the frame size.}
- \begin{exercise}\normalfont
- Implement the \key{assign-homes} pass in \code{compiler.rkt}, defining
- auxiliary functions for the non-terminals \Arg{}, \Instr{}, and
- \Block{}. \ocaml{Fill in the definition of submodule \code{AssignHomes}.}
- We recommend that the auxiliary functions take an extra
- parameter that is an alist \ocaml{(\code{arg Env.t})} mapping variable names to homes (stack
- locations for now). \ocaml{Use the same checker as in the previous pass.}
- %
- In the \code{run-tests.rkt} script, add the following entry to the
- list of \code{passes} and then run the script to test your compiler.
- \begin{lstlisting}
- (list "assign homes" assign-homes interp-x86-0)
- \end{lstlisting}
- \ocaml{Make the analogous change to the \code{passes} list in \code{Chapter2.ml}.}
- \end{exercise}
- \section{Patch Instructions}
- \label{sec:patch-s0}
- The \code{patch-instructions} pass compiles from \LangXVar{} to
- \LangXInt{} by making sure that each instruction adheres to the
- restriction that at most one argument of an instruction may be a
- memory reference. \ocaml{It also ensures that no immediate operand
- to an ordinary instruction exceeds 32 bits, by introducing \code{movabsq}
- instructions as needed. \code{movabsq} is the sole instruction that
- allows a 64-bit immediate source operand; its destination must be a register.}
- We return to the following example.
- % var_test_20.rkt
- \begin{lstlisting}
- (let ([a 42])
- (let ([b a])
- b))
- \end{lstlisting}
- The \key{assign-homes} pass produces the following output
- for this program. \\
- \begin{minipage}{0.5\textwidth}
- \begin{lstlisting}
- stack-space: 16
- start:
- movq $42, -8(%rbp)
- movq -8(%rbp), -16(%rbp)
- movq -16(%rbp), %rax
- jmp conclusion
- \end{lstlisting}
- \end{minipage}\\
- The second \key{movq} instruction is problematic because both
- arguments are stack locations. We suggest fixing this problem by
- moving from the source location to the register \key{rax} and then
- from \key{rax} to the destination location, as follows.
- \begin{lstlisting}
- movq -8(%rbp), %rax
- movq %rax, -16(%rbp)
- \end{lstlisting}
- \begin{exercise}
- \normalfont Implement the \key{patch-instructions} pass in
- \code{compiler.rkt}. \ocaml{This task has been done for you, in the \code{PatchInstructions} submodule
- of \code{Chapter2}.}
- Create three new example programs that are
- designed to exercise all of the interesting cases in this pass.
- %
- In the \code{run-tests.rkt} script, add the following entry to the
- list of \code{passes} and then run the script to test your compiler.
- \begin{lstlisting}
- (list "patch instructions" patch-instructions interp-x86-0)
- \end{lstlisting}
- \end{exercise}
- \section{Print x86}
- \label{sec:print-x86}
- The last step of the compiler from \LangVar{} to x86 is to convert the
- \LangXInt{} AST (defined in Figure~\ref{fig:x86-int-ast}) to the
- string representation (defined in
- Figure~\ref{fig:x86-int-concrete}). The Racket \key{format} and
- \key{string-append} functions are useful in this regard. \ocaml{The \code{Printf}
- library is useful here.} The main work
- that this step needs to perform is to create the \key{main} function
- and the standard instructions for its prelude and conclusion, as shown
- in Figure~\ref{fig:p1-x86} of Section~\ref{sec:x86}. You will need to
- know the amount of space needed for the stack frame, which you can
- obtain from the \code{stack-space} entry in the $\itm{info}$ field of
- the \key{X86Program} node.
- When running on Mac OS X, you compiler should prefix an underscore to
- labels like \key{main}. The Racket call \code{(system-type 'os)} is
- useful for determining which operating system the compiler is running
- on. It returns \code{'macosx}, \code{'unix}, or \code{'windows}.
- \ocaml{There is a similar utility function \code{get\_ostype}
- provided in the \texttt{utils.ml} module.}
- \begin{exercise}\normalfont
- %
- Implement the \key{print-x86} pass in \code{compiler.rkt}.
- \ocaml{This task has been done for you; the relevant printing
- code is in module \code{X86Int}.}
- %
- In the \code{run-tests.rkt} script, add the following entry to the
- list of \code{passes} and then run the script to test your compiler.
- \begin{lstlisting}
- (list "print x86" print-x86 #f)
- \end{lstlisting}
- %
- Uncomment the call to the \key{compiler-tests} function
- (Appendix~\ref{appendix:utilities}), which tests your complete
- compiler by executing the generated x86 code. Compile the provided
- \key{runtime.c} file to \key{runtime.o} using \key{gcc}. Run the
- script to test your compiler.
- \ocaml{The OCaml version packages the process of emitting, assembling,
- linking, and executing the assembly code as just another pass
- (the \code{execute\_pass} defined in \code{Chapter2.ml}).
- To emit code but not process it further, you can use the
- \code{emit\_pass} instead; note that in this case, the test driver
- should be configured not to compare initial and final values (since
- there will be no useful final value).}
- \end{exercise}
- \section{Challenge: Partial Evaluator for \LangVar{}}
- \label{sec:pe-Rvar}
- \index{partial evaluation}
- This section describes optional challenge exercises that involve
- adapting and improving the partial evaluator for \LangInt{} that was
- introduced in Section~\ref{sec:partial-evaluation}.
- \begin{exercise}\label{ex:pe-Rvar}
- \normalfont
-
- Adapt the partial evaluator from Section~\ref{sec:partial-evaluation}
- (Figure~\ref{fig:pe-arith}) so that it applies to \LangVar{} programs
- instead of \LangInt{} programs. Recall that \LangVar{} adds \key{let} binding
- and variables to the \LangInt{} language, so you will need to add cases for
- them in the \code{pe-exp} function. Once complete, add the partial
- evaluation pass to the front of your compiler and make sure that your
- compiler still passes all of the tests.
- \end{exercise}
- The next exercise builds on Exercise~\ref{ex:pe-Rvar}.
- \begin{exercise}
- \normalfont
- Improve on the partial evaluator by replacing the \code{pe-neg} and
- \code{pe-add} auxiliary functions with functions that know more about
- arithmetic. For example, your partial evaluator should translate
- \[
- \code{(+ 1 (+ (read) 1))} \qquad \text{into} \qquad
- \code{(+ 2 (read))}
- \]
- To accomplish this, the \code{pe-exp} function should produce output
- in the form of the $\itm{residual}$ non-terminal of the following
- grammar. The idea is that when processing an addition expression, we
- can always produce either 1) an integer constant, 2) and addition
- expression with an integer constant on the left-hand side but not the
- right-hand side, or 3) or an addition expression in which neither
- subexpression is a constant.
- \[
- \begin{array}{lcl}
- \itm{inert} &::=& \Var \mid \LP\key{read}\RP \mid \LP\key{-} \;\Var\RP
- \mid \LP\key{-} \;\LP\key{read}\RP\RP
- \mid \LP\key{+} \; \itm{inert} \; \itm{inert}\RP\\
- &\mid& \LP\key{let}~\LP\LS\Var~\itm{inert}\RS\RP~ \itm{inert} \RP \\
- \itm{residual} &::=& \Int \mid \LP\key{+}\; \Int\; \itm{inert}\RP \mid \itm{inert}
- \end{array}
- \]
- The \code{pe-add} and \code{pe-neg} functions may assume that their
- inputs are $\itm{residual}$ expressions and they should return
- $\itm{residual}$ expressions. Once the improvements are complete,
- make sure that your compiler still passes all of the tests. After
- all, fast code is useless if it produces incorrect results!
- \end{exercise}
- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
- \chapter{Register Allocation}
- \label{ch:register-allocation-Rvar}
- \index{register allocation}
- In Chapter~\ref{ch:Rvar} we learned how to store variables on the
- stack. In this Chapter we learn how to improve the performance of the
- generated code by placing some variables into registers. The CPU can
- access a register in a single cycle, whereas accessing the stack can
- take 10s to 100s of cycles. The program in Figure~\ref{fig:reg-eg}
- serves as a running example. The source program is on the left and the
- output of instruction selection is on the right. The program is almost
- in the x86 assembly language but it still uses variables.
- \begin{figure}
- \begin{minipage}{0.45\textwidth}
- Example \LangVar{} program:
- % var_test_28.rkt
- \begin{lstlisting}
- (let ([v 1])
- (let ([w 42])
- (let ([x (+ v 7)])
- (let ([y x])
- (let ([z (+ x w)])
- (+ z (- y)))))))
- \end{lstlisting}
- \end{minipage}
- \begin{minipage}{0.45\textwidth}
- After instruction selection:
- \begin{lstlisting}
- locals-types:
- x : Integer, y : Integer,
- z : Integer, t : Integer,
- v : Integer, w : Integer
- start:
- movq $1, v
- movq $42, w
- movq v, x
- addq $7, x
- movq x, y
- movq x, z
- addq w, z
- movq y, t
- negq t
- movq z, %rax
- addq t, %rax
- jmp conclusion
- \end{lstlisting}
- \end{minipage}
- \caption{A running example for register allocation.}
- \label{fig:reg-eg}
- \end{figure}
- The goal of register allocation is to fit as many variables into
- registers as possible. Some programs have more variables than
- registers so we cannot always map each variable to a different
- register. Fortunately, it is common for different variables to be
- needed during different periods of time during program execution, and
- in such cases several variables can be mapped to the same register.
- Consider variables \code{x} and \code{z} in Figure~\ref{fig:reg-eg}.
- After the variable \code{x} is moved to \code{z} it is no longer
- needed. Variable \code{z}, on the other hand, is used only after this
- point, so \code{x} and \code{z} could share the same register. The
- topic of Section~\ref{sec:liveness-analysis-Rvar} is how to compute
- where a variable is needed. Once we have that information, we compute
- which variables are needed at the same time, i.e., which ones
- \emph{interfere} with each other, and represent this relation as an
- undirected graph whose vertices are variables and edges indicate when
- two variables interfere (Section~\ref{sec:build-interference}). We
- then model register allocation as a graph coloring problem
- (Section~\ref{sec:graph-coloring}).
- If we run out of registers despite these efforts, we place the
- remaining variables on the stack, similar to what we did in
- Chapter~\ref{ch:Rvar}. It is common to use the verb \emph{spill}
- for assigning a variable to a stack location. The decision to spill a
- variable is handled as part of the graph coloring process
- (Section~\ref{sec:graph-coloring}).
- We make the simplifying assumption that each variable is assigned to
- one location (a register or stack address). A more sophisticated
- approach is to assign a variable to one or more locations in different
- regions of the program. For example, if a variable is used many times
- in short sequence and then only used again after many other
- instructions, it could be more efficient to assign the variable to a
- register during the initial sequence and then move it to the stack for
- the rest of its lifetime. We refer the interested reader to
- \citet{Cooper:2011aa} for more information about that approach.
- % discuss prioritizing variables based on how much they are used.
- \section{Registers and Calling Conventions}
- \label{sec:calling-conventions}
- \index{calling conventions}
- As we perform register allocation, we need to be aware of the
- \emph{calling conventions} \index{calling conventions} that govern how
- functions calls are performed in x86.
- %
- Even though \LangVar{} does not include programmer-defined functions,
- our generated code includes a \code{main} function that is called by
- the operating system and our generated code contains calls to the
- \code{read\_int} function.
- Function calls require coordination between two pieces of code that
- may be written by different programmers or generated by different
- compilers. Here we follow the System V calling conventions that are
- used by the GNU C compiler on Linux and
- MacOS~\citep{Bryant:2005aa,Matz:2013aa}.
- %
- The calling conventions include rules about how functions share the
- use of registers. In particular, the caller is responsible for freeing
- up some registers prior to the function call for use by the callee.
- These are called the \emph{caller-saved registers}
- \index{caller-saved registers}
- and they are
- \begin{lstlisting}
- rax rcx rdx rsi rdi r8 r9 r10 r11
- \end{lstlisting}
- On the other hand, the callee is responsible for preserving the values
- of the \emph{callee-saved registers}, \index{callee-saved registers}
- which are
- \begin{lstlisting}
- rsp rbp rbx r12 r13 r14 r15
- \end{lstlisting}
- We can think about this caller/callee convention from two points of
- view, the caller view and the callee view:
- \begin{itemize}
- \item The caller should assume that all the caller-saved registers get
- overwritten with arbitrary values by the callee. On the other hand,
- the caller can safely assume that all the callee-saved registers
- contain the same values after the call that they did before the
- call.
- \item The callee can freely use any of the caller-saved registers.
- However, if the callee wants to use a callee-saved register, the
- callee must arrange to put the original value back in the register
- prior to returning to the caller. This can be accomplished by saving
- the value to the stack in the prelude of the function and restoring
- the value in the conclusion of the function.
- \end{itemize}
- In x86, registers are also used for passing arguments to a function
- and for the return value. In particular, the first six arguments to a
- function are passed in the following six registers, in this order.
- \begin{lstlisting}
- rdi rsi rdx rcx r8 r9
- \end{lstlisting}
- If there are more than six arguments, then the convention is to use
- space on the frame of the caller for the rest of the
- arguments. However, in Chapter~\ref{ch:Rfun} we arrange never to
- need more than six arguments. For now, the only function we care about
- is \code{read\_int} and it takes zero arguments.
- %
- The register \code{rax} is used for the return value of a function.
- The next question is how these calling conventions impact register
- allocation. Consider the \LangVar{} program in
- Figure~\ref{fig:example-calling-conventions}. We first analyze this
- example from the caller point of view and then from the callee point
- of view.
- The program makes two calls to the \code{read} function. Also, the
- variable \code{x} is in use during the second call to \code{read}, so
- we need to make sure that the value in \code{x} does not get
- accidentally wiped out by the call to \code{read}. One obvious
- approach is to save all the values in caller-saved registers to the
- stack prior to each function call, and restore them after each
- call. That way, if the register allocator chooses to assign \code{x}
- to a caller-saved register, its value will be preserved across the
- call to \code{read}. However, saving and restoring to the stack is
- relatively slow. If \code{x} is not used many times, it may be better
- to assign \code{x} to a stack location in the first place. Or better
- yet, if we can arrange for \code{x} to be placed in a callee-saved
- register, then it won't need to be saved and restored during function
- calls. \ocaml{(By the caller, that is. The callee might still need to save the
- register, but only if it actually needs to make use of that register for
- its own purposes.)}
- The approach that we recommend for variables that are in use during a
- function call is to either assign them to callee-saved registers or to
- spill them to the stack. On the other hand, for variables that are not
- in use during a function call, we try the following alternatives in
- order 1) look for an available caller-saved register (to leave room
- for other variables in the callee-saved register), 2) look for a
- callee-saved register, and 3) spill the variable to the stack.
- \ocaml{To summarize all this in a slightly different way: our goal
- is to assign variables to callee-save and caller-save
- registers so as to minimize the chances that we actually need to
- save and restore them at all! We need to do this on a per-function basis,
- by processing each caller independently without knowledge of
- the callee's internals. If a variable does does \emph{not}
- need to be preserved across a call, it is best to put it in a
- caller-save register, because we definitely know we won't actually
- need to save and restore it. If a variable \emph{does} need to be
- preserved, it's best to put it in a callee-save register, because
- there is a chance that the callee won't need to save and restore
- it.}
-
- It is straightforward to implement this approach in a graph coloring
- register allocator. First, we know which variables are in use during
- every function call because we compute that information for every
- instruction (Section~\ref{sec:liveness-analysis-Rvar}). Second, when we
- build the interference graph (Section~\ref{sec:build-interference}),
- we can place an edge between each of these variables and the
- caller-saved registers in the interference graph. This will prevent
- the graph coloring algorithm from assigning those variables to
- caller-saved registers.
- Returning to the example in
- Figure~\ref{fig:example-calling-conventions}, let us analyze the
- generated x86 code on the right-hand side, focusing on the
- \code{start} block. Notice that variable \code{x} is assigned to
- \code{rbx}, a callee-saved register. Thus, it is already in a safe
- place during the second call to \code{read\_int}. Next, notice that
- variable \code{y} is assigned to \code{rcx}, a caller-saved register,
- because there are no function calls in the remainder of the block.
- Next we analyze the example from the callee point of view, focusing on
- the prelude and conclusion of the \code{main} function. As usual the
- prelude begins with saving the \code{rbp} register to the stack and
- setting the \code{rbp} to the current stack pointer. We now know why
- it is necessary to save the \code{rbp}: it is a callee-saved register.
- The prelude then pushes \code{rbx} to the stack because 1) \code{rbx}
- is a callee-saved register and 2) \code{rbx} is assigned to a variable
- (\code{x}). The other callee-saved registers are not saved in the
- prelude because they are not used. The prelude subtracts 8 bytes from
- the \code{rsp} to make it 16-byte aligned and then jumps to the
- \code{start} block. Shifting attention to the \code{conclusion}, we
- see that \code{rbx} is restored from the stack with a \code{popq}
- instruction. \index{prelude}\index{conclusion}
- \begin{figure}[tp]
- \begin{minipage}{0.45\textwidth}
- Example \LangVar{} program:
- %var_test_14.rkt
- \begin{lstlisting}
- (let ([x (read)])
- (let ([y (read)])
- (+ (+ x y) 42)))
- \end{lstlisting}
- \end{minipage}
- \begin{minipage}{0.45\textwidth}
- Generated x86 assembly:
- \begin{lstlisting}
- start:
- callq read_int
- movq %rax, %rbx
- callq read_int
- movq %rax, %rcx
- addq %rcx, %rbx
- movq %rbx, %rax
- addq $42, %rax
- jmp _conclusion
- .globl main
- main:
- pushq %rbp
- movq %rsp, %rbp
- pushq %rbx
- subq $8, %rsp
- jmp start
- conclusion:
- addq $8, %rsp
- popq %rbx
- popq %rbp
- retq
- \end{lstlisting}
- \end{minipage}
- \caption{An example with function calls.}
- \label{fig:example-calling-conventions}
- \end{figure}
- \clearpage
- \section{Liveness Analysis}
- \label{sec:liveness-analysis-Rvar}
- \index{liveness analysis}
- The \code{uncover-live} pass performs \emph{liveness analysis}, that
- is, it discovers which variables are in-use in different regions of a
- program.
- %
- A variable or register is \emph{live} at a program point if its
- current value is used at some later point in the program. We
- refer to variables and registers collectively as \emph{locations}.
- %
- Consider the following code fragment in which there are two writes to
- \code{b}. Are \code{a} and \code{b} both live at the same time?
- \begin{center}
- \begin{minipage}{0.96\textwidth}
- \begin{lstlisting}[numbers=left,numberstyle=\tiny]
- movq $5, a
- movq $30, b
- movq a, c
- movq $10, b
- addq b, c
- \end{lstlisting}
- \end{minipage}
- \end{center}
- The answer is no because \code{a} is live from line 1 to 3 and
- \code{b} is live from line 4 to 5. The integer written to \code{b} on
- line 2 is never used because it is overwritten (line 4) before the
- next read (line 5).
- \begin{wrapfigure}[19]{l}[1.0in]{0.6\textwidth}
- \small
- \begin{tcolorbox}[title=\href{https://docs.racket-lang.org/reference/sets.html}{The Racket Set Package}]
- A \emph{set} is an unordered collection of elements without duplicates.
- \index{set}
- \begin{description}
- \item[$\LP\code{set}\,v\,\ldots\RP$] constructs a set containing the specified elements.
- \item[$\LP\code{set-union}\,set_1\,set_2\RP$] returns the union of the two sets.
- \item[$\LP\code{set-subtract}\,set_1\,set_2\RP$] returns the difference of the two sets.
- \item[$\LP\code{set-member?}\,set\,v\RP$] is element $v$ in $set$?
- \item[$\LP\code{set-count}\,set\RP$] how many unique elements are in $set$?
- \item[$\LP\code{set->list}\,set\RP$] converts the set to a list.
- \end{description}
- \end{tcolorbox}
- \end{wrapfigure}
- The live locations can be computed by traversing the instruction
- sequence back to front (i.e., backwards in execution order). Let
- $I_1,\ldots, I_n$ be the instruction sequence. We write
- $L_{\mathsf{after}}(k)$ for the set of live locations after
- instruction $I_k$ and $L_{\mathsf{before}}(k)$ for the set of live
- locations before instruction $I_k$. The live locations after an
- instruction are always the same as the live locations before the next
- instruction. \index{live-after} \index{live-before}
- \begin{equation} \label{eq:live-after-before-next}
- L_{\mathsf{after}}(k) = L_{\mathsf{before}}(k+1)
- \end{equation}
- To start things off, there are no live locations after the last
- instruction, so
- \begin{equation}\label{eq:live-last-empty}
- L_{\mathsf{after}}(n) = \emptyset
- \end{equation}
- We then apply the following rule repeatedly, traversing the
- instruction sequence back to front.
- \begin{equation}\label{eq:live-before-after-minus-writes-plus-reads}
- L_{\mathtt{before}}(k) = (L_{\mathtt{after}}(k) - W(k)) \cup R(k),
- \end{equation}
- where $W(k)$ are the locations written to by instruction $I_k$ and
- $R(k)$ are the locations read by instruction $I_k$.
- \begin{ocamlx}
- \noindent\fbox{%
- \parbox{\textwidth}{%
- The OCaml \code{Set} module is described in the standard library.
- Like the \code{Map} module, it is a functor that must be instantiated
- on the type of set elements. An appropriate definition for a module
- \code{Locs} for repersenting sets of locations is at the top
- of \code{Chapter3.ml}.
- }%
- }
- \end{ocamlx}
- There is a special case for \code{jmp} instructions. The locations
- that are live before a \code{jmp} should be the locations in
- $L_{\mathtt{before}}$ at the target of the jump. So we recommend
- maintaining an alist named \code{label->live} \ocaml{(or a \code{liveset Env.t})} that maps each label to
- the $L_{\mathtt{before}}$ for the first instruction in its block. For
- now the only \code{jmp} in a \LangXVar{} program is the one at the
- end, to the conclusion. (For example, see Figure~\ref{fig:reg-eg}.)
- The conclusion reads from \ttm{rax} {\ocaml{(in the sense that it is where
- the caller will find the return value after \code{retq})} and \ttm{rsp} \ocaml{(both
- explicitly and implicitly via \code{popq} and \code{retq})}, so the alist should
- map \code{conclusion} to the set $\{\ttm{rax},\ttm{rsp}\}$.
- \ocaml{Since the OCaml version treats the entry and exit sequences as explicit parts
- of the program, we could actually calculate this by processing the \code{conclusion}
- block, assuming that $\ttm{rax}$ and $\ttm{rsp}$ are live before \code{retq}.
- There is also another jump, from the \code{main} entry sequence to
- the \code{start} label, and in principle we could also calculate liveness for
- the \code{main} block, though only after calculating $L_{\mathtt{before}}$ for the
- first instruction of the \code{start} block (which, for \LangXVar{}, will
- always turn out to be just $\{\ttm{rsp}\}$) . In practice, since we
- already have assigned fixed registers to all the arguments in the \code{main}
- and \code{conclusion} blocks, there is no need to calculate liveness for them, and
- in fact we should avoid doing so.}
- Let us walk through the above example, applying these formulas
- starting with the instruction on line 5. We collect the answers in
- Figure~\ref{fig:liveness-example-0}. The $L_{\mathsf{after}}$ for the
- \code{addq b, c} instruction is $\emptyset$ because it is the last
- instruction (formula~\ref{eq:live-last-empty}). The
- $L_{\mathsf{before}}$ for this instruction is $\{\ttm{b},\ttm{c}\}$
- because it reads from variables \code{b} and \code{c}
- (formula~\ref{eq:live-before-after-minus-writes-plus-reads}), that is
- \[
- L_{\mathsf{before}}(5) = (\emptyset - \{\ttm{c}\}) \cup \{ \ttm{b}, \ttm{c} \} = \{ \ttm{b}, \ttm{c} \}
- \]
- Moving on the the instruction \code{movq \$10, b} at line 4, we copy
- the live-before set from line 5 to be the live-after set for this
- instruction (formula~\ref{eq:live-after-before-next}).
- \[
- L_{\mathsf{after}}(4) = \{ \ttm{b}, \ttm{c} \}
- \]
- This move instruction writes to \code{b} and does not read from any
- variables, so we have the following live-before set
- (formula~\ref{eq:live-before-after-minus-writes-plus-reads}).
- \[
- L_{\mathsf{before}}(4) = (\{\ttm{b},\ttm{c}\} - \{\ttm{b}\}) \cup \emptyset = \{ \ttm{c} \}
- \]
- The live-before for instruction \code{movq a, c}
- is $\{\ttm{a}\}$ because it writes to $\{\ttm{c}\}$ and reads from $\{\ttm{a}\}$
- (formula~\ref{eq:live-before-after-minus-writes-plus-reads}). The
- live-before for \code{movq \$30, b} is $\{\ttm{a}\}$ because it writes to a
- variable that is not live and does not read from a variable.
- Finally, the live-before for \code{movq \$5, a} is $\emptyset$
- because it writes to variable \code{a}.
- \begin{figure}[tbp]
- \begin{minipage}{0.45\textwidth}
- \begin{lstlisting}[numbers=left,numberstyle=\tiny]
- movq $5, a
- movq $30, b
- movq a, c
- movq $10, b
- addq b, c
- \end{lstlisting}
- \end{minipage}
- \vrule\hspace{10pt}
- \begin{minipage}{0.45\textwidth}
- \begin{align*}
- L_{\mathsf{before}}(1)= \emptyset,
- L_{\mathsf{after}}(1)= \{\ttm{a}\}\\
- L_{\mathsf{before}}(2)= \{\ttm{a}\},
- L_{\mathsf{after}}(2)= \{\ttm{a}\}\\
- L_{\mathsf{before}}(3)= \{\ttm{a}\},
- L_{\mathsf{after}}(2)= \{\ttm{c}\}\\
- L_{\mathsf{before}}(4)= \{\ttm{c}\},
- L_{\mathsf{after}}(4)= \{\ttm{b},\ttm{c}\}\\
- L_{\mathsf{before}}(5)= \{\ttm{b},\ttm{c}\},
- L_{\mathsf{after}}(5)= \emptyset
- \end{align*}
- \end{minipage}
- \caption{Example output of liveness analysis on a short example.}
- \label{fig:liveness-example-0}
- \end{figure}
- \begin{exercise}\normalfont
- Perform liveness analysis on the running example in
- Figure~\ref{fig:reg-eg}, computing the live-before and live-after
- sets for each instruction. Compare your answers to the solution
- shown in Figure~\ref{fig:live-eg}.
- \end{exercise}
- \begin{figure}[tp]
- \hspace{20pt}
- \begin{minipage}{0.45\textwidth}
- \begin{lstlisting}
- |$\{\ttm{rsp}\}$|
- movq $1, v
- |$\{\ttm{v},\ttm{rsp}\}$|
- movq $42, w
- |$\{\ttm{v},\ttm{w},\ttm{rsp}\}$|
- movq v, x
- |$\{\ttm{w},\ttm{x},\ttm{rsp}\}$|
- addq $7, x
- |$\{\ttm{w},\ttm{x},\ttm{rsp}\}$|
- movq x, y
- |$\{\ttm{w},\ttm{x},\ttm{y},\ttm{rsp}\}$|
- movq x, z
- |$\{\ttm{w},\ttm{y},\ttm{z},\ttm{rsp}\}$|
- addq w, z
- |$\{\ttm{y},\ttm{z},\ttm{rsp}\}$|
- movq y, t
- |$\{\ttm{t},\ttm{z},\ttm{rsp}\}$|
- negq t
- |$\{\ttm{t},\ttm{z},\ttm{rsp}\}$|
- movq z, %rax
- |$\{\ttm{rax},\ttm{t},\ttm{rsp}\}$|
- addq t, %rax
- |$\{\ttm{rax},\ttm{rsp}\}$|
- jmp conclusion
- \end{lstlisting}
- \end{minipage}
- \caption{The running example annotated with live-after sets.}
- \label{fig:live-eg}
- \end{figure}
- \begin{exercise}\normalfont
- Implement the \code{uncover-live} pass. Store the sequence of
- live-after sets in the $\itm{info}$ field of the \code{Block}
- structure. \ocaml{Put your implementation inside the
- \code{UncoverLive} submodule in \code{Chapter3.ml} and
- fill in the \code{pass} definition.
- Instantiate the \code{'binfo} type
- parameter with {\tt Locs.t list}, where {\tt Locs.t} is the
- type of sets of locations. Only compute live-after sets for
- the \code{"start"} block (not the \code{"main"} or \code{"conclusion"} blocks).
- Do not attempt to do any extra checking on this pass.}
- %
- We recommend creating an auxiliary function that takes a list of
- instructions and an initial live-after set (typically empty) and
- returns the list of live-after sets.
- %
- We also recommend creating auxiliary functions to 1) compute the set
- of locations that appear in an \Arg{}, 2) compute the locations read
- by an instruction (the $R$ function), and 3) the locations written by
- an instruction (the $W$ function). The \code{callq} instruction should
- include all of the caller-saved registers in its write-set $W$ because
- the calling convention says that those registers may be written to
- during the function call. Likewise, the \code{callq} instruction
- should include the appropriate argument-passing registers in its
- read-set $R$, depending on the arity of the function being
- called. (This is why the abstract syntax for \code{callq} includes the
- arity.)
- \end{exercise}
- \clearpage
- \section{Build the Interference Graph}
- \label{sec:build-interference}
- \begin{wrapfigure}[25]{r}[1.0in]{0.6\textwidth}
- \small
- \begin{tcolorbox}[title=\href{https://docs.racket-lang.org/graph/index.html}{The Racket Graph Library}]
- A \emph{graph} is a collection of vertices and edges where each
- edge connects two vertices. A graph is \emph{directed} if each
- edge points from a source to a target. Otherwise the graph is
- \emph{undirected}.
- \index{graph}\index{directed graph}\index{undirected graph}
- \begin{description}
- %% We currently don't use directed graphs. We instead use
- %% directed multi-graphs. -Jeremy
- %% \item[$\LP\code{directed-graph}\,\itm{edges}\RP$] constructs a
- %% directed graph from a list of edges. Each edge is a list
- %% containing the source and target vertex.
- \item[$\LP\code{undirected-graph}\,\itm{edges}\RP$] constructs a
- undirected graph from a list of edges. Each edge is represented by
- a list containing two vertices.
- \item[$\LP\code{add-vertex!}\,\itm{graph}\,\itm{vertex}\RP$]
- inserts a vertex into the graph.
- \item[$\LP\code{add-edge!}\,\itm{graph}\,\itm{source}\,\itm{target}\RP$]
- inserts an edge between the two vertices into the graph.
- \item[$\LP\code{in-neighbors}\,\itm{graph}\,\itm{vertex}\RP$]
- returns a sequence of all the neighbors of the given vertex.
- \item[$\LP\code{in-vertices}\,\itm{graph}\RP$]
- returns a sequence of all the vertices in the graph.
- \end{description}
- \end{tcolorbox}
- \end{wrapfigure}
- Based on the liveness analysis, we know where each location is live.
- However, during register allocation, we need to answer questions of
- the specific form: are locations $u$ and $v$ live at the same time?
- (And therefore cannot be assigned to the same register.) To make this
- question more efficient to answer, we create an explicit data
- structure, an \emph{interference graph}\index{interference graph}. An
- interference graph is an undirected graph that has an edge between two
- locations if they are live at the same time, that is, if they
- interfere with each other.
- An obvious way to compute the interference graph is to look at the set
- of live locations between each instruction and the next and add an edge to the graph
- for every pair of variables in the same set. This approach is less
- than ideal for two reasons. First, it can be expensive because it
- takes $O(n^2)$ time to consider at every pair in a set of $n$ live
- locations. Second, in the special case where two locations hold the
- same value (because one was assigned to the other), they can be live
- at the same time without interfering with each other.
- A better way to compute the interference graph is to focus on
- writes~\citep{Appel:2003fk}. The writes performed by an instruction
- must not overwrite something in a live location. So for each
- instruction, we create an edge between the locations being written to
- and the live locations. (Except that one should not create self
- edges.) Note that for the \key{callq} instruction, we consider all of
- the caller-saved registers as being written to, so an edge is added
- between every live variable and every caller-saved register. For
- \key{movq}, we deal with the above-mentioned special case by not
- adding an edge between a live variable $v$ and the destination if $v$
- matches the source. So we have the following two rules.
- \begin{enumerate}
- \item If instruction $I_k$ is a move such as \key{movq} $s$\key{,}
- $d$, then add the edge $(d,v)$ for every $v \in
- L_{\mathsf{after}}(k)$ unless $v = d$ or $v = s$.
- \item For any other instruction $I_k$, for every $d \in W(k)$
- add an edge $(d,v)$ for every $v \in L_{\mathsf{after}}(k)$ unless $v = d$.
-
- %% \item If instruction $I_k$ is an arithmetic instruction such as
- %% \code{addq} $s$\key{,} $d$, then add the edge $(d,v)$ for every $v \in
- %% L_{\mathsf{after}}(k)$ unless $v = d$.
- %% \item If instruction $I_k$ is of the form \key{callq}
- %% $\mathit{label}$, then add an edge $(r,v)$ for every caller-saved
- %% register $r$ and every variable $v \in L_{\mathsf{after}}(k)$.
- \end{enumerate}
- Working from the top to bottom of Figure~\ref{fig:live-eg}, we apply
- the above rules to each instruction. We highlight a few of the
- instructions. The first instruction is \lstinline{movq $1, v} and the
- live-after set is $\{\ttm{v},\ttm{rsp}\}$. Rule 1 applies, so \code{v}
- interferes with \code{rsp}.
- %
- The fourth instruction is \lstinline{addq $7, x} and the live-after
- set is $\{\ttm{w},\ttm{x},\ttm{rsp}\}$. Rule 2 applies so $\ttm{x}$
- interferes with \ttm{w} and \ttm{rsp}.
- %
- The next instruction is \lstinline{movq x, y} and the live-after set
- is $\{\ttm{w},\ttm{x},\ttm{y},\ttm{rsp}\}$. Rule 1 applies, so \ttm{y}
- interferes with \ttm{w} and \ttm{rsp} but not \ttm{x} because \ttm{x}
- is the source of the move and therefore \ttm{x} and \ttm{y} hold the
- same value. Figure~\ref{fig:interference-results} lists the
- interference results for all of the instructions and the resulting
- interference graph is shown in Figure~\ref{fig:interfere}.
- \begin{figure}[tbp]
- \begin{quote}
- \begin{tabular}{ll}
- \lstinline!movq $1, v!& \ttm{v} interferes with \ttm{rsp},\\
- \lstinline!movq $42, w!& \ttm{w} interferes with \ttm{v} and \ttm{rsp},\\
- \lstinline!movq v, x!& \ttm{x} interferes with \ttm{w} and \ttm{rsp},\\
- \lstinline!addq $7, x!& \ttm{x} interferes with \ttm{w} and \ttm{rsp},\\
- \lstinline!movq x, y!& \ttm{y} interferes with \ttm{w} and \ttm{rsp} but not \ttm{x},\\
- \lstinline!movq x, z!& \ttm{z} interferes with \ttm{w}, \ttm{y}, and \ttm{rsp},\\
- \lstinline!addq w, z!& \ttm{z} interferes with \ttm{y} and \ttm{rsp}, \\
- \lstinline!movq y, t!& \ttm{t} interferes with \ttm{z} and \ttm{rsp}, \\
- \lstinline!negq t!& \ttm{t} interferes with \ttm{z} and \ttm{rsp}, \\
- \lstinline!movq z, %rax! & \ttm{rax} interferes with \ttm{t} and \ttm{rsp}, \\
- \lstinline!addq t, %rax! & \ttm{rax} interferes with \ttm{rsp}. \\
- \lstinline!jmp conclusion!& no interference.
- \end{tabular}
- \end{quote}
- \caption{Interference results for the running example.}
- \label{fig:interference-results}
- \end{figure}
- \begin{figure}[tbp]
- \large
- \[
- \begin{tikzpicture}[baseline=(current bounding box.center)]
- \node (rax) at (0,0) {$\ttm{rax}$};
- \node (rsp) at (9,2) {$\ttm{rsp}$};
- \node (t1) at (0,2) {$\ttm{t}$};
- \node (z) at (3,2) {$\ttm{z}$};
- \node (x) at (6,2) {$\ttm{x}$};
- \node (y) at (3,0) {$\ttm{y}$};
- \node (w) at (6,0) {$\ttm{w}$};
- \node (v) at (9,0) {$\ttm{v}$};
- \draw (t1) to (rax);
- \draw (t1) to (z);
- \draw (z) to (y);
- \draw (z) to (w);
- \draw (x) to (w);
- \draw (y) to (w);
- \draw (v) to (w);
- \draw (v) to (rsp);
- \draw (w) to (rsp);
- \draw (x) to (rsp);
- \draw (y) to (rsp);
- \path[-.,bend left=15] (z) edge node {} (rsp);
- \path[-.,bend left=10] (t1) edge node {} (rsp);
- \draw (rax) to (rsp);
- \end{tikzpicture}
- \]
- \caption{The interference graph of the example program.}
- \label{fig:interfere}
- \end{figure}
- %% Our next concern is to choose a data structure for representing the
- %% interference graph. There are many choices for how to represent a
- %% graph, for example, \emph{adjacency matrix}, \emph{adjacency list},
- %% and \emph{edge set}~\citep{Cormen:2001uq}. The right way to choose a
- %% data structure is to study the algorithm that uses the data structure,
- %% determine what operations need to be performed, and then choose the
- %% data structure that provide the most efficient implementations of
- %% those operations. Often times the choice of data structure can have an
- %% effect on the time complexity of the algorithm, as it does here. If
- %% you skim the next section, you will see that the register allocation
- %% algorithm needs to ask the graph for all of its vertices and, given a
- %% vertex, it needs to known all of the adjacent vertices. Thus, the
- %% correct choice of graph representation is that of an adjacency
- %% list. There are helper functions in \code{utilities.rkt} for
- %% representing graphs using the adjacency list representation:
- %% \code{make-graph}, \code{add-edge}, and \code{adjacent}
- %% (Appendix~\ref{appendix:utilities}).
- %% %
- %% \margincomment{\footnotesize To do: change to use the
- %% Racket graph library. \\ --Jeremy}
- %% %
- %% In particular, those functions use a hash table to map each vertex to
- %% the set of adjacent vertices, and the sets are represented using
- %% Racket's \key{set}, which is also a hash table.
- \begin{exercise}\normalfont
- Implement the compiler pass named \code{build-interference} according
- to the algorithm suggested above. We recommend using the \code{graph}
- package to create and inspect the interference graph. The output
- graph of this pass should be stored in the $\itm{info}$ field of the
- program, under the key \code{conflicts}. \ocaml{Put your
- implementation in the \code{BuildInterferenceGraph} submodule
- in \code{Chapter3.ml} and fill in the \code{pass} definition.
- Use the provided
- \code{Graph} library (in {\tt graph.ml}) to represent graphs. Note that these
- are \emph{immutable} graphs. Suitable declarations for
- instantiating this graph package to a module \code{LocGraph} with a vertex type of locations
- (\code{X86Int.arg}s) is in \code{Chapter3.ml}.
- The output of this pass should be stored
- in the \code{'pinfo} field of the program, paired with the existing
- piece of information, the environment enumerating the program's variables.
- This pass should only change the \code{'pinfo}, not the program code.
- The graph you build should only describe the \code{"start"} block
- (not the \code{"main"} or \code{"conclusion"} blocks). Do not attempt
- to do any extra checking on this pass.}
- \end{exercise}
-
- \section{Graph Coloring via Sudoku}
- \label{sec:graph-coloring}
- \index{graph coloring}
- \index{Sudoku}
- \index{color}
- We come to the main event, mapping variables to registers and stack
- locations. Variables that interfere with each other must be mapped to
- different locations. In terms of the interference graph, this means
- that adjacent vertices must be mapped to different locations. If we
- think of locations as colors, the register allocation problem becomes
- the graph coloring problem~\citep{Balakrishnan:1996ve,Rosen:2002bh}.
- The reader may be more familiar with the graph coloring problem than he
- or she realizes; the popular game of Sudoku is an instance of the
- graph coloring problem. The following describes how to build a graph
- out of an initial Sudoku board.
- \begin{itemize}
- \item There is one vertex in the graph for each Sudoku square.
- \item There is an edge between two vertices if the corresponding squares
- are in the same row, in the same column, or if the squares are in
- the same $3\times 3$ region.
- \item Choose nine colors to correspond to the numbers $1$ to $9$.
- \item Based on the initial assignment of numbers to squares in the
- Sudoku board, assign the corresponding colors to the corresponding
- vertices in the graph.
- \end{itemize}
- If you can color the remaining vertices in the graph with the nine
- colors, then you have also solved the corresponding game of Sudoku.
- Figure~\ref{fig:sudoku-graph} shows an initial Sudoku game board and
- the corresponding graph with colored vertices. We map the Sudoku
- number 1 to blue, 2 to yellow, and 3 to red. We only show edges for a
- sampling of the vertices (the colored ones) because showing edges for
- all of the vertices would make the graph unreadable.
- \begin{figure}[tbp]
- \includegraphics[width=0.45\textwidth]{figs/sudoku}
- \includegraphics[width=0.5\textwidth]{figs/sudoku-graph}
- \caption{A Sudoku game board and the corresponding colored graph.}
- \label{fig:sudoku-graph}
- \end{figure}
- It turns out that some techniques for playing Sudoku correspond to
- heuristics used in graph coloring algorithms. For example, one of the
- basic techniques for Sudoku is called Pencil Marks. The idea is to use
- a process of elimination to determine what numbers are no longer
- available for a square and write down those numbers in the square
- (writing very small). For example, if the number $1$ is assigned to a
- square, then write the pencil mark $1$ in all the squares in the same
- row, column, and region.
- %
- The Pencil Marks technique corresponds to the notion of
- \emph{saturation}\index{saturation} due to \cite{Brelaz:1979eu}. The
- saturation of a vertex, in Sudoku terms, is the set of numbers that
- are no longer available. In graph terminology, we have the following
- definition:
- \begin{equation*}
- \mathrm{saturation}(u) = \{ c \mid \exists v. v \in \mathrm{neighbors}(u)
- \text{ and } \mathrm{color}(v) = c \}
- \end{equation*}
- where $\mathrm{neighbors}(u)$ is the set of vertices that share an
- edge with $u$.
- Using the Pencil Marks technique leads to a simple strategy for
- filling in numbers: if there is a square with only one possible number
- left, then choose that number! But what if there are no squares with
- only one possibility left? One brute-force approach is to try them
- all: choose the first one and if it ultimately leads to a solution,
- great. If not, backtrack and choose the next possibility. One good
- thing about Pencil Marks is that it reduces the degree of branching in
- the search tree. Nevertheless, backtracking can be horribly time
- consuming. One way to reduce the amount of backtracking is to use the
- most-constrained-first heuristic. That is, when choosing a square,
- always choose one with the fewest possibilities left (the vertex with
- the highest saturation). The idea is that choosing highly constrained
- squares earlier rather than later is better because later on there may
- not be any possibilities left in the highly saturated squares.
- However, register allocation is easier than Sudoku because the
- register allocator can map variables to stack locations when the
- registers run out. Thus, it makes sense to replace backtracking with
- greedy search: make the best choice at the time and keep going. We
- still wish to minimize the number of colors needed, so we use the
- most-constrained-first heuristic in the greedy search.
- Figure~\ref{fig:satur-algo} gives the pseudo-code for a simple greedy
- algorithm for register allocation based on saturation and the
- most-constrained-first heuristic. It is roughly equivalent to the
- DSATUR
- algorithm~\citep{Brelaz:1979eu,Gebremedhin:1999fk,Omari:2006uq}. Just
- as in Sudoku, the algorithm represents colors with integers. The
- integers $0$ through $k-1$ correspond to the $k$ registers that we use
- for register allocation. The integers $k$ and larger correspond to
- stack locations. The registers that are not used for register
- allocation, such as \code{rax}, are assigned to negative integers. In
- particular, we assign $-1$ to \code{rax} and $-2$ to \code{rsp}.
- %% One might wonder why we include registers at all in the liveness
- %% analysis and interference graph. For example, we never allocate a
- %% variable to \code{rax} and \code{rsp}, so it would be harmless to
- %% leave them out. As we see in Chapter~\ref{ch:Rvec}, when we begin
- %% to use register for passing arguments to functions, it will be
- %% necessary for those registers to appear in the interference graph
- %% because those registers will also be assigned to variables, and we
- %% don't want those two uses to encroach on each other. Regarding
- %% registers such as \code{rax} and \code{rsp} that are not used for
- %% variables, we could omit them from the interference graph but that
- %% would require adding special cases to our algorithm, which would
- %% complicate the logic for little gain.
- \begin{figure}[btp]
- \centering
- \begin{lstlisting}[basicstyle=\rmfamily,deletekeywords={for,from,with,is,not,in,find},morekeywords={while},columns=fullflexible]
- Algorithm: DSATUR
- Input: a graph |$G$|
- Output: an assignment |$\mathrm{color}[v]$| for each vertex |$v \in G$|
- |$W \gets \mathrm{vertices}(G)$|
- while |$W \neq \emptyset$| do
- pick a vertex |$u$| from |$W$| with the highest saturation,
- breaking ties randomly
- find the lowest color |$c$| that is not in |$\{ \mathrm{color}[v] \;:\; v \in \mathrm{adjacent}(u)\}$|
- |$\mathrm{color}[u] \gets c$|
- |$W \gets W - \{u\}$|
- \end{lstlisting}
- \caption{The saturation-based greedy graph coloring algorithm.}
- \label{fig:satur-algo}
- \end{figure}
- With the DSATUR algorithm in hand, let us return to the running
- example and consider how to color the interference graph in
- Figure~\ref{fig:interfere}.
- %
- We start by assigning the register nodes to their own color. For
- example, \code{rax} is assigned the color $-1$ and \code{rsp} is
- assigned $-2$. The variables are not yet colored, so they are
- annotated with a dash. We then update the saturation for vertices that
- are adjacent to a register, obtaining the following annotated
- graph. For example, the saturation for \code{t} is $\{-1,-2\}$ because
- it interferes with both \code{rax} and \code{rsp}.
- \[
- \begin{tikzpicture}[baseline=(current bounding box.center)]
- \node (rax) at (0,0) {$\ttm{rax}:-1,\{-2\}$};
- \node (rsp) at (10,2) {$\ttm{rsp}:-2,\{-1\}$};
- \node (t1) at (0,2) {$\ttm{t}:-,\{-1,-2\}$};
- \node (z) at (3,2) {$\ttm{z}:-,\{-2\}$};
- \node (x) at (6,2) {$\ttm{x}:-,\{-2\}$};
- \node (y) at (3,0) {$\ttm{y}:-,\{-2\}$};
- \node (w) at (6,0) {$\ttm{w}:-,\{-2\}$};
- \node (v) at (10,0) {$\ttm{v}:-,\{-2\}$};
- \draw (t1) to (rax);
- \draw (t1) to (z);
- \draw (z) to (y);
- \draw (z) to (w);
- \draw (x) to (w);
- \draw (y) to (w);
- \draw (v) to (w);
- \draw (v) to (rsp);
- \draw (w) to (rsp);
- \draw (x) to (rsp);
- \draw (y) to (rsp);
- \path[-.,bend left=15] (z) edge node {} (rsp);
- \path[-.,bend left=10] (t1) edge node {} (rsp);
- \draw (rax) to (rsp);
- \end{tikzpicture}
- \]
- The algorithm says to select a maximally saturated vertex. So we pick
- $\ttm{t}$ and color it with the first available integer, which is
- $0$. We mark $0$ as no longer available for $\ttm{z}$, $\ttm{rax}$,
- and \ttm{rsp} because they interfere with $\ttm{t}$.
- \[
- \begin{tikzpicture}[baseline=(current bounding box.center)]
- \node (rax) at (0,0) {$\ttm{rax}:-1,\{0,-2\}$};
- \node (rsp) at (10,2) {$\ttm{rsp}:-2,\{-1,0\}$};
- \node (t1) at (0,2) {$\ttm{t}:0,\{-1,-2\}$};
- \node (z) at (3,2) {$\ttm{z}:-,\{0,-2\}$};
- \node (x) at (6,2) {$\ttm{x}:-,\{-2\}$};
- \node (y) at (3,0) {$\ttm{y}:-,\{-2\}$};
- \node (w) at (6,0) {$\ttm{w}:-,\{-2\}$};
- \node (v) at (10,0) {$\ttm{v}:-,\{-2\}$};
- \draw (t1) to (rax);
- \draw (t1) to (z);
- \draw (z) to (y);
- \draw (z) to (w);
- \draw (x) to (w);
- \draw (y) to (w);
- \draw (v) to (w);
- \draw (v) to (rsp);
- \draw (w) to (rsp);
- \draw (x) to (rsp);
- \draw (y) to (rsp);
- \path[-.,bend left=15] (z) edge node {} (rsp);
- \path[-.,bend left=10] (t1) edge node {} (rsp);
- \draw (rax) to (rsp);
- \end{tikzpicture}
- \]
- We repeat the process, selecting the next maximally saturated vertex,
- which is \code{z}, and color it with the first available number, which
- is $1$. We add $1$ to the saturation for the neighboring vertices
- \code{t}, \code{y}, \code{w}, and \code{rsp}.
- \[
- \begin{tikzpicture}[baseline=(current bounding box.center)]
- \node (rax) at (0,0) {$\ttm{rax}:-1,\{0,-2\}$};
- \node (rsp) at (10,2) {$\ttm{rsp}:-2,\{-1,0,1\}$};
- \node (t1) at (0,2) {$\ttm{t}:0,\{-1,1,-2\}$};
- \node (z) at (3,2) {$\ttm{z}:1,\{0,-2\}$};
- \node (x) at (6,2) {$\ttm{x}:-,\{-2\}$};
- \node (y) at (3,0) {$\ttm{y}:-,\{1,-2\}$};
- \node (w) at (6,0) {$\ttm{w}:-,\{1,-2\}$};
- \node (v) at (10,0) {$\ttm{v}:-,\{-2\}$};
- \draw (t1) to (rax);
- \draw (t1) to (z);
- \draw (z) to (y);
- \draw (z) to (w);
- \draw (x) to (w);
- \draw (y) to (w);
- \draw (v) to (w);
- \draw (v) to (rsp);
- \draw (w) to (rsp);
- \draw (x) to (rsp);
- \draw (y) to (rsp);
- \path[-.,bend left=15] (z) edge node {} (rsp);
- \path[-.,bend left=10] (t1) edge node {} (rsp);
- \draw (rax) to (rsp);
- \end{tikzpicture}
- \]
- The most saturated vertices are now \code{w} and \code{y}. We color
- \code{w} with the first available color, which is $0$.
- \[
- \begin{tikzpicture}[baseline=(current bounding box.center)]
- \node (rax) at (0,0) {$\ttm{rax}:-1,\{0,-2\}$};
- \node (rsp) at (10,2) {$\ttm{rsp}:-2,\{-1,0,1\}$};
- \node (t1) at (0,2) {$\ttm{t}:0,\{-1,1,-2\}$};
- \node (z) at (3,2) {$\ttm{z}:1,\{0,-2\}$};
- \node (x) at (6,2) {$\ttm{x}:-,\{0,-2\}$};
- \node (y) at (3,0) {$\ttm{y}:-,\{0,1,-2\}$};
- \node (w) at (6,0) {$\ttm{w}:0,\{1,-2\}$};
- \node (v) at (10,0) {$\ttm{v}:-,\{0,-2\}$};
- \draw (t1) to (rax);
- \draw (t1) to (z);
- \draw (z) to (y);
- \draw (z) to (w);
- \draw (x) to (w);
- \draw (y) to (w);
- \draw (v) to (w);
- \draw (v) to (rsp);
- \draw (w) to (rsp);
- \draw (x) to (rsp);
- \draw (y) to (rsp);
- \path[-.,bend left=15] (z) edge node {} (rsp);
- \path[-.,bend left=10] (t1) edge node {} (rsp);
- \draw (rax) to (rsp);
- \end{tikzpicture}
- \]
- Vertex \code{y} is now the most highly saturated, so we color \code{y}
- with $2$. We cannot choose $0$ or $1$ because those numbers are in
- \code{y}'s saturation set. Indeed, \code{y} interferes with \code{w}
- and \code{z}, whose colors are $0$ and $1$ respectively.
- \[
- \begin{tikzpicture}[baseline=(current bounding box.center)]
- \node (rax) at (0,0) {$\ttm{rax}:-1,\{0,-2\}$};
- \node (rsp) at (10,2) {$\ttm{rsp}:-2,\{-1,0,1,2\}$};
- \node (t1) at (0,2) {$\ttm{t}:0,\{-1,1,-2\}$};
- \node (z) at (3,2) {$\ttm{z}:1,\{0,2,-2\}$};
- \node (x) at (6,2) {$\ttm{x}:-,\{0,-2\}$};
- \node (y) at (3,0) {$\ttm{y}:2,\{0,1,-2\}$};
- \node (w) at (6,0) {$\ttm{w}:0,\{1,2,-2\}$};
- \node (v) at (10,0) {$\ttm{v}:-,\{0,-2\}$};
- \draw (t1) to (rax);
- \draw (t1) to (z);
- \draw (z) to (y);
- \draw (z) to (w);
- \draw (x) to (w);
- \draw (y) to (w);
- \draw (v) to (w);
- \draw (v) to (rsp);
- \draw (w) to (rsp);
- \draw (x) to (rsp);
- \draw (y) to (rsp);
- \path[-.,bend left=15] (z) edge node {} (rsp);
- \path[-.,bend left=10] (t1) edge node {} (rsp);
- \draw (rax) to (rsp);
- \end{tikzpicture}
- \]
- Now \code{x} and \code{v} are the most saturated, so we color \code{v} with $1$.
- \[
- \begin{tikzpicture}[baseline=(current bounding box.center)]
- \node (rax) at (0,0) {$\ttm{rax}:-1,\{0,-2\}$};
- \node (rsp) at (10,2) {$\ttm{rsp}:-2,\{-1,0,1,2\}$};
- \node (t1) at (0,2) {$\ttm{t}:0,\{-1,1,-2\}$};
- \node (z) at (3,2) {$\ttm{z}:1,\{0,2,-2\}$};
- \node (x) at (6,2) {$\ttm{x}:-,\{0,-2\}$};
- \node (y) at (3,0) {$\ttm{y}:2,\{0,1,-2\}$};
- \node (w) at (6,0) {$\ttm{w}:0,\{1,2,-2\}$};
- \node (v) at (10,0) {$\ttm{v}:1,\{0,-2\}$};
- \draw (t1) to (rax);
- \draw (t1) to (z);
- \draw (z) to (y);
- \draw (z) to (w);
- \draw (x) to (w);
- \draw (y) to (w);
- \draw (v) to (w);
- \draw (v) to (rsp);
- \draw (w) to (rsp);
- \draw (x) to (rsp);
- \draw (y) to (rsp);
- \path[-.,bend left=15] (z) edge node {} (rsp);
- \path[-.,bend left=10] (t1) edge node {} (rsp);
- \draw (rax) to (rsp);
- \end{tikzpicture}
- \]
- In the last step of the algorithm, we color \code{x} with $1$.
- \[
- \begin{tikzpicture}[baseline=(current bounding box.center)]
- \node (rax) at (0,0) {$\ttm{rax}:-1,\{0,-2\}$};
- \node (rsp) at (10,2) {$\ttm{rsp}:-2,\{-1,0,1,2\}$};
- \node (t1) at (0,2) {$\ttm{t}:0,\{-1,1,-2\}$};
- \node (z) at (3,2) {$\ttm{z}:1,\{0,2,-2\}$};
- \node (x) at (6,2) {$\ttm{x}:1,\{0,-2\}$};
- \node (y) at (3,0) {$\ttm{y}:2,\{0,1,-2\}$};
- \node (w) at (6,0) {$\ttm{w}:0,\{1,2,-2\}$};
- \node (v) at (10,0) {$\ttm{v}:1,\{0,-2\}$};
- \draw (t1) to (rax);
- \draw (t1) to (z);
- \draw (z) to (y);
- \draw (z) to (w);
- \draw (x) to (w);
- \draw (y) to (w);
- \draw (v) to (w);
- \draw (v) to (rsp);
- \draw (w) to (rsp);
- \draw (x) to (rsp);
- \draw (y) to (rsp);
- \path[-.,bend left=15] (z) edge node {} (rsp);
- \path[-.,bend left=10] (t1) edge node {} (rsp);
- \draw (rax) to (rsp);
- \end{tikzpicture}
- \]
- \begin{wrapfigure}[25]{r}[1.0in]{0.6\textwidth}
- \small
- \begin{tcolorbox}[title=Priority Queue]
- A \emph{priority queue} is a collection of items in which the
- removal of items is governed by priority. In a ``min'' queue,
- lower priority items are removed first. An implementation is in
- \code{priority\_queue.rkt} of the support code. \index{priority
- queue} \index{minimum priority queue}
- \begin{description}
- \item[$\LP\code{make-pqueue}\,\itm{cmp}\RP$] constructs an empty
- priority queue that uses the $\itm{cmp}$ predicate to determine
- whether its first argument has lower or equal priority to its
- second argument.
- \item[$\LP\code{pqueue-count}\,\itm{queue}\RP$] returns the number of
- items in the queue.
- \item[$\LP\code{pqueue-push!}\,\itm{queue}\,\itm{item}\RP$] inserts
- the item into the queue and returns a handle for the item in the
- queue.
- \item[$\LP\code{pqueue-pop!}\,\itm{queue}\RP$] returns the item with
- the lowest priority.
- \item[$\LP\code{pqueue-decrease-key!}\,\itm{queue}\,\itm{handle}\RP$]
- notifies the queue that the priority has decreased for the item
- associated with the given handle.
- \end{description}
- \end{tcolorbox}
- \end{wrapfigure}
- We recommend creating an auxiliary function named \code{color-graph}
- that takes an interference graph and a list of all the variables in
- the program. This function should return a mapping of variables to
- their colors (represented as natural numbers). By creating this helper
- function, you will be able to reuse it in Chapter~\ref{ch:Rfun}
- when we add support for functions.
- To prioritize the processing of highly saturated nodes inside the
- \code{color-graph} function, we recommend using the priority queue
- data structure (see the side bar on the right). In addition, you will
- need to maintain a mapping from variables to their ``handles'' in the
- priority queue so that you can notify the priority queue when their
- saturation changes.
- With the coloring complete, we finalize the assignment of variables to
- registers and stack locations. We map the first $k$ colors to the $k$
- registers and the rest of the colors to stack locations. Suppose for
- the moment that we have just one register to use for register
- allocation, \key{rcx}. Then we have the following map from colors to
- locations.
- \[
- \{ 0 \mapsto \key{\%rcx}, \; 1 \mapsto \key{-8(\%rbp)}, \; 2 \mapsto \key{-16(\%rbp)} \}
- \]
- Composing this mapping with the coloring, we arrive at the following
- assignment of variables to locations.
- \begin{gather*}
- \{ \ttm{v} \mapsto \key{-8(\%rbp)}, \,
- \ttm{w} \mapsto \key{\%rcx}, \,
- \ttm{x} \mapsto \key{-8(\%rbp)}, \,
- \ttm{y} \mapsto \key{-16(\%rbp)}, \\
- \ttm{z} \mapsto \key{-8(\%rbp)}, \,
- \ttm{t} \mapsto \key{\%rcx} \}
- \end{gather*}
- Adapt the code from the \code{assign-homes} pass
- (Section~\ref{sec:assign-Rvar}) to replace the variables with their
- assigned location. Applying the above assignment to our running
- example, on the left, yields the program on the right.
- % why frame size of 32? -JGS
- \begin{center}
- \begin{minipage}{0.3\textwidth}
- \begin{lstlisting}
- movq $1, v
- movq $42, w
- movq v, x
- addq $7, x
- movq x, y
- movq x, z
- addq w, z
- movq y, t
- negq t
- movq z, %rax
- addq t, %rax
- jmp conclusion
- \end{lstlisting}
- \end{minipage}
- $\Rightarrow\qquad$
- \begin{minipage}{0.45\textwidth}
- \begin{lstlisting}
- movq $1, -8(%rbp)
- movq $42, %rcx
- movq -8(%rbp), -8(%rbp)
- addq $7, -8(%rbp)
- movq -8(%rbp), -16(%rbp)
- movq -8(%rbp), -8(%rbp)
- addq %rcx, -8(%rbp)
- movq -16(%rbp), %rcx
- negq %rcx
- movq -8(%rbp), %rax
- addq %rcx, %rax
- jmp conclusion
- \end{lstlisting}
- \end{minipage}
- \end{center}
- \begin{exercise}\normalfont
- %
- Implement the compiler pass \code{allocate-registers}.
- %
- \begin{ocamlx}
- Put your solution in the \code{AllocateRegisters} submodule
- of \code{Chapter3.ml}.
- The graph coloring part of this exercise has been
- done for you. The \code{Graph} library defines a function
- \code{color : coloring -> Graph.t -> coloring}
- \noindent
- where \code{coloring} is a \code{Map} whose keys are vertices
- and whose values are integer colors. The \code{color}
- function takes a graph and an initial precoloring, which should be
- used to pre-set colors for vertices that already represent
- registers. (The registers you never want to used for storing variables
- should be given negative numbers: these include \code{rax} and \code{rsp}.
- The other registers that might appear in the graph are the caller-save
- registers---if you have constructed the graph correctly, there will be
- vertices for all the caller-save registers \emph{if} there are one or
- more \code{callq} instructions in the function. These caller-save registers
- should be pre-assigned colors $0,1,2,3,\ldots$. Can you see why?)
- It then colors the remaining
- vertices with colors 0,1,$\ldots$, trying to assign the smallest
- possible color to each vertex. (The implementation of \code{color}
- follows the general approach described in the book, but dispenses
- with a priority queue.) The resulting coloring can be
- printed out for debugging purposes using the \code{print\_coloring}
- function.
- The remaining tasks for you in this exercise are to compute
- the precoloring, invoke the \code{color} function,
- construct an assignment environment (mapping variable names to locations)
- from the resulting coloring, and use this environment to map
- variable arguments to registers and stack locations just as in
- the \code{AssignHomes} pass in \code{Chapter2.ml}.
- Your assignment construction should be parameterized by the reference
- variable \code{max\_regs}, which says how many registers (0 to 13) to
- use. Variables assigned to colors beyond this limit must be placed
- in stack slots rather than registers. It can be very useful to try different values of this number when
- debugging. The driver code (now in \code{driver.ml}) includes a flag to allow
- the value of this variable to be set from the command line when testing.
- You also need to compute the list of used callee-save registers; this should
- then be passed to the function \code{X86Int.adjust\_entry\_exit}, which
- will modify the \code{main} and \code{conclusion} blocks to include
- code for spilling and reloading these registers.
- The \code{'pinfo} field of the resulting program is an \code{int}
- reperesnting the total size of the frame, including space for
- any spilled callee-saves. Don't foret that the frame needs to
- be a multiple of 16 bytes1
-
- We do not recommend that you attempt to do any extra checking on the output
- of this pass.
- \end{ocamlx}
- %
- Create five programs that exercise all of the register allocation
- algorithm, including spilling variables to the stack.
- %
- Replace \code{assign-homes} in the list of \code{passes} in the
- \code{run-tests.rkt} script with the three new passes:
- \code{uncover-live}, \code{build-interference}, and
- \code{allocate-registers}.
- %
- \ocaml{Make the analogous changes in the \code{pass} list. Note
- that this list has been moved to {\tt driver.ml} to make it
- easier to combine passes from different chapters.}
- %
- Temporarily remove the \code{print-x86} pass from the list of passes
- and the call to \code{compiler-tests}.
- %
- Run the script to test the register allocator.
- \end{exercise}
- \section{Patch Instructions}
- \label{sec:patch-instructions}
- The remaining step in the compilation to x86 is to ensure that the
- instructions have at most one argument that is a memory access.
- In the running example, the instruction \code{movq -8(\%rbp), -16(\%rbp)}
- is problematic. The fix is to first move \code{-8(\%rbp)}
- into \code{rax} and then move \code{rax} into \code{-16(\%rbp)}.
- %
- The two moves from \code{-8(\%rbp)} to \code{-8(\%rbp)} are also
- problematic, but they can be fixed by simply deleting them. In
- general, we recommend deleting all the trivial moves whose source and
- destination are the same location.
- %
- The following is the output of \code{patch-instructions} on the
- running example.
- \begin{center}
- \begin{minipage}{0.4\textwidth}
- \begin{lstlisting}
- movq $1, -8(%rbp)
- movq $42, %rcx
- movq -8(%rbp), -8(%rbp)
- addq $7, -8(%rbp)
- movq -8(%rbp), -16(%rbp)
- movq -8(%rbp), -8(%rbp)
- addq %rcx, -8(%rbp)
- movq -16(%rbp), %rcx
- negq %rcx
- movq -8(%rbp), %rax
- addq %rcx, %rax
- jmp conclusion
- \end{lstlisting}
- \end{minipage}
- $\Rightarrow\qquad$
- \begin{minipage}{0.45\textwidth}
- \begin{lstlisting}
- movq $1, -8(%rbp)
- movq $42, %rcx
- addq $7, -8(%rbp)
- movq -8(%rbp), %rax
- movq %rax, -16(%rbp)
- addq %rcx, -8(%rbp)
- movq -16(%rbp), %rcx
- negq %rcx
- movq -8(%rbp), %rax
- addq %rcx, %rax
- jmp conclusion
- \end{lstlisting}
- \end{minipage}
- \end{center}
-
- \begin{exercise}\normalfont
- %
- Implement the \code{patch-instructions} compiler pass.\ocaml{This
- exercise has been done for you; the code is provided in \code{Chapter3.ml}
- (only slightly different from the version in \code{Chapter2.ml}).}
- %
- Insert it after \code{allocate-registers} in the list of \code{passes}
- in the \code{run-tests.rkt} script.
- %
- Run the script to test the \code{patch-instructions} pass.
- \end{exercise}
- \section{Print x86}
- \label{sec:print-x86-reg-alloc}
- \index{calling conventions}
- \index{prelude}\index{conclusion}
- Recall that the \code{print-x86} pass generates the prelude and
- conclusion instructions to satisfy the x86 calling conventions
- (Section~\ref{sec:calling-conventions}). With the addition of the
- register allocator, the callee-saved registers used by the register
- allocator must be saved in the prelude and restored in the conclusion.
- In the \code{allocate-registers} pass, add an entry to the \itm{info}
- of \code{X86Program} named \code{used-callee} that stores the set of
- callee-saved registers that were assigned to variables. The
- \code{print-x86} pass can then access this information to decide which
- callee-saved registers need to be saved and restored.
- \ocaml{Storing this information in the program
- is not necessary in the OCaml version, because the spilling and
- reloading code is inserted into the X86 program AST rather than being
- added at printing time.}
- %
- When calculating the size of the frame to adjust the \code{rsp} in the
- prelude, make sure to take into account the space used for saving the
- callee-saved registers. Also, don't forget that the frame needs to be
- a multiple of 16 bytes! \ocaml{You do still need to compute this,
- as part of the \code{AllocateRegisters} exercise.}
- An overview of all of the passes involved in register allocation is
- shown in Figure~\ref{fig:reg-alloc-passes}.
- \begin{figure}[tbp]
- \begin{tikzpicture}[baseline=(current bounding box.center)]
- \node (Rvar) at (0,2) {\large \LangVar{}};
- \node (Rvar-2) at (3,2) {\large \LangVar{}};
- \node (Rvar-3) at (6,2) {\large \LangVar{}};
- \node (Cvar-1) at (3,0) {\large \LangCVar{}};
- \node (x86-2) at (3,-2) {\large \LangXVar{}};
- \node (x86-3) at (6,-2) {\large \LangXVar{}};
- \node (x86-4) at (9,-2) {\large \LangXInt{}};
- \node (x86-5) at (9,-4) {\large \LangXInt{}};
- \node (x86-2-1) at (3,-4) {\large \LangXVar{}};
- \node (x86-2-2) at (6,-4) {\large \LangXVar{}};
- \path[->,bend left=15] (Rvar) edge [above] node {\ttfamily\footnotesize uniquify} (Rvar-2);
- \path[->,bend left=15] (Rvar-2) edge [above] node {\ttfamily\footnotesize remove-complex.} (Rvar-3);
- \path[->,bend left=15] (Rvar-3) edge [right] node {\ttfamily\footnotesize explicate-control} (Cvar-1);
- \path[->,bend right=15] (Cvar-1) edge [left] node {\ttfamily\footnotesize select-instr.} (x86-2);
- \path[->,bend left=15] (x86-2) edge [right] node {\ttfamily\footnotesize uncover-live} (x86-2-1);
- \path[->,bend right=15] (x86-2-1) edge [below] node {\ttfamily\footnotesize build-inter.} (x86-2-2);
- \path[->,bend right=15] (x86-2-2) edge [right] node {\ttfamily\footnotesize allocate-reg.} (x86-3);
- \path[->,bend left=15] (x86-3) edge [above] node {\ttfamily\footnotesize patch-instr.} (x86-4);
- \path[->,bend left=15] (x86-4) edge [right] node {\ttfamily\footnotesize print-x86} (x86-5);
- \end{tikzpicture}
- \caption{Diagram of the passes for \LangVar{} with register allocation.}
- \label{fig:reg-alloc-passes}
- \end{figure}
- \begin{exercise}\normalfont
- Update the \code{print-x86} pass as described in this section.
- \ocaml{This exercise has been done for you; the printing code is
- in \code{X86Int} as before.}
- %
- In the \code{run-tests.rkt} script, reinstate \code{print-x86} in the
- list of passes and the call to \code{compiler-tests}.
- %
- Run the script to test the complete compiler for \LangVar{} that
- performs register allocation.
- \end{exercise}
- \section{Challenge: Move Biasing}
- \label{sec:move-biasing}
- \index{move biasing}
- This section describes an enhancement to the register allocator for
- students looking for an extra challenge or who have a deeper interest
- in register allocation.
- To motivate the need for move biasing we return to the running example
- but this time use all of the general purpose registers. So we have
- the following mapping of color numbers to registers.
- \[
- \{ 0 \mapsto \key{\%rcx}, \; 1 \mapsto \key{\%rdx}, \; 2 \mapsto \key{\%rsi} \}
- \]
- Using the same assignment of variables to color numbers that was
- produced by the register allocator described in the last section, we
- get the following program.
- \begin{center}
- \begin{minipage}{0.3\textwidth}
- \begin{lstlisting}
- movq $1, v
- movq $42, w
- movq v, x
- addq $7, x
- movq x, y
- movq x, z
- addq w, z
- movq y, t
- negq t
- movq z, %rax
- addq t, %rax
- jmp conclusion
- \end{lstlisting}
- \end{minipage}
- $\Rightarrow\qquad$
- \begin{minipage}{0.45\textwidth}
- \begin{lstlisting}
- movq $1, %rdx
- movq $42, %rcx
- movq %rdx, %rdx
- addq $7, %rdx
- movq %rdx, %rsi
- movq %rdx, %rdx
- addq %rcx, %rdx
- movq %rsi, %rcx
- negq %rcx
- movq %rdx, %rax
- addq %rcx, %rax
- jmp conclusion
- \end{lstlisting}
- \end{minipage}
- \end{center}
- In the above output code there are two \key{movq} instructions that
- can be removed because their source and target are the same. However,
- if we had put \key{t}, \key{v}, \key{x}, and \key{y} into the same
- register, we could instead remove three \key{movq} instructions. We
- can accomplish this by taking into account which variables appear in
- \key{movq} instructions with which other variables.
- We say that two variables $p$ and $q$ are \emph{move
- related}\index{move related} if they participate together in a
- \key{movq} instruction, that is, \key{movq} $p$\key{,} $q$ or
- \key{movq} $q$\key{,} $p$. When the register allocator chooses a color
- for a variable, it should prefer a color that has already been used
- for a move-related variable (assuming that they do not interfere). Of
- course, this preference should not override the preference for
- registers over stack locations. This preference should be used as a
- tie breaker when choosing between registers or when choosing between
- stack locations.
- We recommend representing the move relationships in a graph, similar
- to how we represented interference. The following is the \emph{move
- graph} for our running example.
- \[
- \begin{tikzpicture}[baseline=(current bounding box.center)]
- \node (rax) at (0,0) {$\ttm{rax}$};
- \node (rsp) at (9,2) {$\ttm{rsp}$};
- \node (t) at (0,2) {$\ttm{t}$};
- \node (z) at (3,2) {$\ttm{z}$};
- \node (x) at (6,2) {$\ttm{x}$};
- \node (y) at (3,0) {$\ttm{y}$};
- \node (w) at (6,0) {$\ttm{w}$};
- \node (v) at (9,0) {$\ttm{v}$};
- \draw (v) to (x);
- \draw (x) to (y);
- \draw (x) to (z);
- \draw (y) to (t);
- \end{tikzpicture}
- \]
- Now we replay the graph coloring, pausing to see the coloring of
- \code{y}. Recall the following configuration. The most saturated vertices
- were \code{w} and \code{y}.
- \[
- \begin{tikzpicture}[baseline=(current bounding box.center)]
- \node (rax) at (0,0) {$\ttm{rax}:-1,\{0,-2\}$};
- \node (rsp) at (9,2) {$\ttm{rsp}:-2,\{-1,0,1,2\}$};
- \node (t1) at (0,2) {$\ttm{t}:0,\{1,-2\}$};
- \node (z) at (3,2) {$\ttm{z}:1,\{0,-2\}$};
- \node (x) at (6,2) {$\ttm{x}:-,\{-2\}$};
- \node (y) at (3,0) {$\ttm{y}:-,\{1,-2\}$};
- \node (w) at (6,0) {$\ttm{w}:-,\{1,-2\}$};
- \node (v) at (9,0) {$\ttm{v}:-,\{-2\}$};
- \draw (t1) to (rax);
- \draw (t1) to (z);
- \draw (z) to (y);
- \draw (z) to (w);
- \draw (x) to (w);
- \draw (y) to (w);
- \draw (v) to (w);
- \draw (v) to (rsp);
- \draw (w) to (rsp);
- \draw (x) to (rsp);
- \draw (y) to (rsp);
- \path[-.,bend left=15] (z) edge node {} (rsp);
- \path[-.,bend left=10] (t1) edge node {} (rsp);
- \draw (rax) to (rsp);
- \end{tikzpicture}
- \]
- %
- Last time we chose to color \code{w} with $0$. But this time we see
- that \code{w} is not move related to any vertex, but \code{y} is move
- related to \code{t}. So we choose to color \code{y} the same color as
- \code{t}, $0$.
- \[
- \begin{tikzpicture}[baseline=(current bounding box.center)]
- \node (rax) at (0,0) {$\ttm{rax}:-1,\{0,-2\}$};
- \node (rsp) at (9,2) {$\ttm{rsp}:-2,\{-1,0,1,2\}$};
- \node (t1) at (0,2) {$\ttm{t}:0,\{1,-2\}$};
- \node (z) at (3,2) {$\ttm{z}:1,\{0,-2\}$};
- \node (x) at (6,2) {$\ttm{x}:-,\{-2\}$};
- \node (y) at (3,0) {$\ttm{y}:0,\{1,-2\}$};
- \node (w) at (6,0) {$\ttm{w}:-,\{0,1,-2\}$};
- \node (v) at (9,0) {$\ttm{v}:-,\{-2\}$};
- \draw (t1) to (rax);
- \draw (t1) to (z);
- \draw (z) to (y);
- \draw (z) to (w);
- \draw (x) to (w);
- \draw (y) to (w);
- \draw (v) to (w);
- \draw (v) to (rsp);
- \draw (w) to (rsp);
- \draw (x) to (rsp);
- \draw (y) to (rsp);
- \path[-.,bend left=15] (z) edge node {} (rsp);
- \path[-.,bend left=10] (t1) edge node {} (rsp);
- \draw (rax) to (rsp);
- \end{tikzpicture}
- \]
- Now \code{w} is the most saturated, so we color it $2$.
- \[
- \begin{tikzpicture}[baseline=(current bounding box.center)]
- \node (rax) at (0,0) {$\ttm{rax}:-1,\{0,-2\}$};
- \node (rsp) at (9,2) {$\ttm{rsp}:-2,\{-1,0,1,2\}$};
- \node (t1) at (0,2) {$\ttm{t}:0,\{1,-2\}$};
- \node (z) at (3,2) {$\ttm{z}:1,\{0,2,-2\}$};
- \node (x) at (6,2) {$\ttm{x}:-,\{2,-2\}$};
- \node (y) at (3,0) {$\ttm{y}:0,\{1,2,-2\}$};
- \node (w) at (6,0) {$\ttm{w}:2,\{0,1,-2\}$};
- \node (v) at (9,0) {$\ttm{v}:-,\{2,-2\}$};
- \draw (t1) to (rax);
- \draw (t1) to (z);
- \draw (z) to (y);
- \draw (z) to (w);
- \draw (x) to (w);
- \draw (y) to (w);
- \draw (v) to (w);
- \draw (v) to (rsp);
- \draw (w) to (rsp);
- \draw (x) to (rsp);
- \draw (y) to (rsp);
- \path[-.,bend left=15] (z) edge node {} (rsp);
- \path[-.,bend left=10] (t1) edge node {} (rsp);
- \draw (rax) to (rsp);
- \end{tikzpicture}
- \]
- At this point, vertices \code{x} and \code{v} are most saturated, but
- \code{x} is move related to \code{y} and \code{z}, so we color
- \code{x} to $0$ to match \code{y}. Finally, we color \code{v} to $0$.
- \[
- \begin{tikzpicture}[baseline=(current bounding box.center)]
- \node (rax) at (0,0) {$\ttm{rax}:-1,\{0,-2\}$};
- \node (rsp) at (9,2) {$\ttm{rsp}:-2,\{-1,0,1,2\}$};
- \node (t) at (0,2) {$\ttm{t}:0,\{1,-2\}$};
- \node (z) at (3,2) {$\ttm{z}:1,\{0,2,-2\}$};
- \node (x) at (6,2) {$\ttm{x}:0,\{2,-2\}$};
- \node (y) at (3,0) {$\ttm{y}:0,\{1,2,-2\}$};
- \node (w) at (6,0) {$\ttm{w}:2,\{0,1,-2\}$};
- \node (v) at (9,0) {$\ttm{v}:0,\{2,-2\}$};
- \draw (t1) to (rax);
- \draw (t) to (z);
- \draw (z) to (y);
- \draw (z) to (w);
- \draw (x) to (w);
- \draw (y) to (w);
- \draw (v) to (w);
- \draw (v) to (rsp);
- \draw (w) to (rsp);
- \draw (x) to (rsp);
- \draw (y) to (rsp);
- \path[-.,bend left=15] (z) edge node {} (rsp);
- \path[-.,bend left=10] (t1) edge node {} (rsp);
- \draw (rax) to (rsp);
- \end{tikzpicture}
- \]
- So we have the following assignment of variables to registers.
- \begin{gather*}
- \{ \ttm{v} \mapsto \key{\%rcx}, \,
- \ttm{w} \mapsto \key{\%rsi}, \,
- \ttm{x} \mapsto \key{\%rcx}, \,
- \ttm{y} \mapsto \key{\%rcx}, \,
- \ttm{z} \mapsto \key{\%rdx}, \,
- \ttm{t} \mapsto \key{\%rcx} \}
- \end{gather*}
- We apply this register assignment to the running example, on the left,
- to obtain the code in the middle. The \code{patch-instructions} then
- removes the three trivial moves to obtain the code on the right.
- \begin{minipage}{0.25\textwidth}
- \begin{lstlisting}
- movq $1, v
- movq $42, w
- movq v, x
- addq $7, x
- movq x, y
- movq x, z
- addq w, z
- movq y, t
- negq t
- movq z, %rax
- addq t, %rax
- jmp conclusion
- \end{lstlisting}
- \end{minipage}
- $\Rightarrow\qquad$
- \begin{minipage}{0.25\textwidth}
- \begin{lstlisting}
- movq $1, %rcx
- movq $42, %rsi
- movq %rcx, %rcx
- addq $7, %rcx
- movq %rcx, %rcx
- movq %rcx, %rdx
- addq %rsi, %rdx
- movq %rcx, %rcx
- negq %rcx
- movq %rdx, %rax
- addq %rcx, %rax
- jmp conclusion
- \end{lstlisting}
- \end{minipage}
- $\Rightarrow\qquad$
- \begin{minipage}{0.25\textwidth}
- \begin{lstlisting}
- movq $1, %rcx
- movq $42, %rsi
- addq $7, %rcx
- movq %rcx, %rdx
- addq %rsi, %rdx
- negq %rcx
- movq %rdx, %rax
- addq %rcx, %rax
- jmp conclusion
- \end{lstlisting}
- \end{minipage}
- \begin{exercise}\normalfont
- Change your implementation of \code{allocate-registers} to take move
- biasing into account. Create two new tests that include at least one
- opportunity for move biasing and visually inspect the output x86
- programs to make sure that your move biasing is working properly. Make
- sure that your compiler still passes all of the tests.
- \end{exercise}
- \margincomment{\footnotesize To do: another neat challenge would be to do
- live range splitting~\citep{Cooper:1998ly}. \\ --Jeremy}
- %% \subsection{Output of the Running Example}
- %% \label{sec:reg-alloc-output}
- Figure~\ref{fig:running-example-x86} shows the x86 code generated for
- the running example (Figure~\ref{fig:reg-eg}) with register allocation
- and move biasing. To demonstrate both the use of registers and the
- stack, we have limited the register allocator to use just two
- registers: \code{rbx} and \code{rcx}. In the prelude\index{prelude}
- of the \code{main} function, we push \code{rbx} onto the stack because
- it is a callee-saved register and it was assigned to variable by the
- register allocator. We subtract \code{8} from the \code{rsp} at the
- end of the prelude to reserve space for the one spilled variable.
- After that subtraction, the \code{rsp} is aligned to 16 bytes.
- Moving on the the \code{start} block, we see how the registers were
- allocated. Variables \code{v}, \code{x}, and \code{y} were assigned to
- \code{rbx} and variable \code{z} was assigned to \code{rcx}. Variable
- \code{w} was spilled to the stack location \code{-16(\%rbp)}. Recall
- that the prelude saved the callee-save register \code{rbx} onto the
- stack. The spilled variables must be placed lower on the stack than
- the saved callee-save registers, so in this case \code{w} is placed at
- \code{-16(\%rbp)}.
- In the \code{conclusion}\index{conclusion}, we undo the work that was
- done in the prelude. We move the stack pointer up by \code{8} bytes
- (the room for spilled variables), then we pop the old values of
- \code{rbx} and \code{rbp} (callee-saved registers), and finish with
- \code{retq} to return control to the operating system.
-
- \begin{figure}[tbp]
- % var_test_28.rkt
- % (use-minimal-set-of-registers! #t)
- % and only rbx rcx
- % tmp 0 rbx
- % z 1 rcx
- % y 0 rbx
- % w 2 16(%rbp)
- % v 0 rbx
- % x 0 rbx
- \begin{lstlisting}
- start:
- movq $1, %rbx
- movq $42, -16(%rbp)
- addq $7, %rbx
- movq %rbx, %rcx
- addq -16(%rbp), %rcx
- negq %rbx
- movq %rcx, %rax
- addq %rbx, %rax
- jmp conclusion
- .globl main
- main:
- pushq %rbp
- movq %rsp, %rbp
- pushq %rbx
- subq $8, %rsp
- jmp start
-
- conclusion:
- addq $8, %rsp
- popq %rbx
- popq %rbp
- retq
- \end{lstlisting}
- \caption{The x86 output from the running example (Figure~\ref{fig:reg-eg}).}
- \label{fig:running-example-x86}
- \end{figure}
- % challenge: prioritize variables based on execution frequencies
- % and the number of uses of a variable
- % challenge: enhance the coloring algorithm using Chaitin's
- % approach of prioritizing high-degree variables
- % by removing low-degree variables (coloring them later)
- % from the interference graph
- \section{Further Reading}
- \label{sec:register-allocation-further-reading}
- Early register allocation algorithms were developed for Fortran
- compilers in the 1950s~\citep{Horwitz:1966aa,Backus:1978aa}. The use
- of graph coloring began in the late 1970s and early 1980s with the
- work of \citet{Chaitin:1981vl} on an optimizing compiler for PL/I. The
- algorithm is based on the following observation of
- \citet{Kempe:1879aa} from the 1870s. If a graph $G$ has a vertex $v$
- with degree lower than $k$, then $G$ is $k$ colorable if the subgraph
- of $G$ with $v$ removed is also $k$ colorable. Suppose that the
- subgraph is $k$ colorable. At worst the neighbors of $v$ are assigned
- different colors, but since there are less than $k$ of them, there
- will be one or more colors left over to use for coloring $v$ in $G$.
- The algorithm of \citet{Chaitin:1981vl} removes a vertex $v$ of degree
- less than $k$ from the graph and recursively colors the rest of the
- graph. Upon returning from the recursion, it colors $v$ with one of
- the available colors and returns. \citet{Chaitin:1982vn} augments
- this algorithm to handle spilling as follows. If there are no vertices
- of degree lower than $k$ then pick a vertex at random, spill it,
- remove it from the graph, and proceed recursively to color the rest of
- the graph.
- Prior to coloring, \citet{Chaitin:1981vl} merge variables that are
- move-related and that don't interfere with each other, a process
- called \emph{coalescing}. While coalescing decreases the number of
- moves, it can make the graph more difficult to
- color. \citet{Briggs:1994kx} propose \emph{conservative coalescing} in
- which two variables are merged only if they have fewer than $k$
- neighbors of high degree. \citet{George:1996aa} observe that
- conservative coalescing is sometimes too conservative and make it more
- aggressive by iterating the coalescing with the removal of low-degree
- vertices.
- %
- Attacking the problem from a different angle, \citet{Briggs:1994kx}
- also propose \emph{biased coloring} in which a variable is assigned to
- the same color as another move-related variable if possible, as
- discussed in Section~\ref{sec:move-biasing}.
- %
- The algorithm of \citet{Chaitin:1981vl} and its successors iteratively
- performs coalescing, graph coloring, and spill code insertion until
- all variables have been assigned a location.
- \citet{Briggs:1994kx} observes that \citet{Chaitin:1982vn} sometimes
- spills variables that don't have to be: a high-degree variable can be
- colorable if many of its neighbors are assigned the same color.
- \citet{Briggs:1994kx} propose \emph{optimistic coloring}, in which a
- high-degree vertex is not immediately spilled. Instead the decision is
- deferred until after the recursive call, at which point it is apparent
- whether there is actually an available color or not. We observe that
- this algorithm is equivalent to the smallest-last ordering
- algorithm~\citep{Matula:1972aa} if one takes the first $k$ colors to
- be registers and the rest to be stack locations.
- %% biased coloring
- Earlier editions of the compiler course at Indiana University
- \citep{Dybvig:2010aa} were based on the algorithm of
- \citet{Briggs:1994kx}.
- The smallest-last ordering algorithm is one of many \emph{greedy}
- coloring algorithms. A greedy coloring algorithm visits all the
- vertices in a particular order and assigns each one the first
- available color. An \emph{offline} greedy algorithm chooses the
- ordering up-front, prior to assigning colors. The algorithm of
- \citet{Chaitin:1981vl} should be considered offline because the vertex
- ordering does not depend on the colors assigned, so the algorithm
- could be split into two phases. Other orderings are possible. For
- example, \citet{Chow:1984ys} order variables according an estimate of
- runtime cost.
- An \emph{online} greedy coloring algorithm uses information about the
- current assignment of colors to influence the order in which the
- remaining vertices are colored. The saturation-based algorithm
- described in this chapter is one such algorithm. We choose to use
- saturation-based coloring is because it is fun to introduce graph
- coloring via Sudoku.
- A register allocator may choose to map each variable to just one
- location, as in \citet{Chaitin:1981vl}, or it may choose to map a
- variable to one or more locations. The later can be achieved by
- \emph{live range splitting}, where a variable is replaced by several
- variables that each handle part of its live
- range~\citep{Chow:1984ys,Briggs:1994kx,Cooper:1998ly}.
- %% 1950s, Sheldon Best, Fortran \cite{Backus:1978aa}, Belady's page
- %% replacement algorithm, bottom-up local
- %% \citep{Horwitz:1966aa} straight-line programs, single basic block,
- %% Cooper: top-down (priority bassed), bottom-up
- %% top-down
- %% order variables by priority (estimated cost)
- %% caveat: split variables into two groups:
- %% constrained (>k neighbors) and unconstrained (<k neighbors)
- %% color the constrained ones first
- %% \citet{Schwartz:1975aa} graph-coloring, no spill
- %% cite J. Cocke for an algorithm that colors variables
- %% in a high-degree first ordering
- %Register Allocation via Usage Counts, Freiburghouse CACM
- \citet{Palsberg:2007si} observe that many of the interference graphs
- that arise from Java programs in the JoeQ compiler are \emph{chordal},
- that is, every cycle with four or more edges has an edge which is not
- part of the cycle but which connects two vertices on the cycle. Such
- graphs can be optimally colored by the greedy algorithm with a vertex
- ordering determined by maximum cardinality search.
- In situations where compile time is of utmost importance, such as in
- just-in-time compilers, graph coloring algorithms can be too expensive
- and the linear scan of \citet{Poletto:1999uq} may be more appropriate.
- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
- \chapter{Booleans and Control Flow}
- \label{ch:Rif}
- \index{Boolean}
- \index{control flow}
- \index{conditional expression}
- The \LangInt{} and \LangVar{} languages only have a single kind of
- value, integers. In this chapter we add a second kind of value, the
- Booleans, to create the \LangIf{} language. The Boolean values
- \emph{true} and \emph{false} are written \key{\#t} and \key{\#f}
- respectively in Racket. The \LangIf{} language includes several
- operations that involve Booleans (\key{and}, \key{not}, \key{eq?},
- \key{<}, etc.) and the conditional \key{if} expression. With the
- addition of \key{if}, programs can have non-trivial control flow which
- impacts \code{explicate-control} and liveness analysis. Also, because
- we now have two kinds of values, we need to handle programs that apply
- an operation to the wrong kind of value, such as \code{(not 1)}.
- There are two language design options for such situations. One option
- is to signal an error and the other is to provide a wider
- interpretation of the operation. The Racket language uses a mixture of
- these two options, depending on the operation and the kind of
- value. For example, the result of \code{(not 1)} in Racket is
- \code{\#f} because Racket treats non-zero integers as if they were
- \code{\#t}. On the other hand, \code{(car 1)} results in a run-time
- error in Racket because \code{car} expects a pair.
- Typed Racket makes similar design choices as Racket, except much of
- the error detection happens at compile time instead of run time. Typed
- Racket accepts and runs \code{(not 1)}, producing \code{\#f}. But in
- the case of \code{(car 1)}, Typed Racket reports a compile-time error
- because Typed Racket expects the type of the argument to be of the
- form \code{(Listof T)} or \code{(Pairof T1 T2)}.
- The \LangIf{} language performs type checking during compilation like
- Typed Racket. In Chapter~\ref{ch:Rdyn} we study the
- alternative choice, that is, a dynamically typed language like Racket.
- The \LangIf{} language is a subset of Typed Racket; for some
- operations we are more restrictive, for example, rejecting
- \code{(not 1)}.
- This chapter is organized as follows. We begin by defining the syntax
- and interpreter for the \LangIf{} language
- (Section~\ref{sec:lang-if}). We then introduce the idea of type
- checking and build a type checker for \LangIf{}
- (Section~\ref{sec:type-check-Rif}). To compile \LangIf{} we need to
- enlarge the intermediate language \LangCVar{} into \LangCIf{}
- (Section~\ref{sec:Cif}) and \LangXInt{} into \LangXIf{}
- (Section~\ref{sec:x86-if}). The remaining sections of this chapter
- discuss how our compiler passes change to accommodate Booleans and
- conditional control flow. There is one new pass, named \code{shrink},
- that translates some operators into others, thereby reducing the
- number of operators that need to be handled in later passes. The
- largest changes occur in \code{explicate-control}, to translate
- \code{if} expressions into control-flow graphs
- (Section~\ref{sec:explicate-control-Rif}). Regarding register
- allocation, the liveness analysis now has multiple basic blocks to
- process and there is the interesting question of how to handle
- conditional jumps.
- \section{The \LangIf{} Language}
- \label{sec:lang-if}
- The concrete syntax of the \LangIf{} language is defined in
- Figure~\ref{fig:Rif-concrete-syntax} and the abstract syntax is defined
- in Figure~\ref{fig:Rif-syntax}. The \LangIf{} language includes all of
- \LangVar{} (shown in gray), the Boolean literals \code{\#t} and
- \code{\#f}, and the conditional \code{if} expression. We expand the
- operators to include
- \begin{enumerate}
- \item subtraction on integers \ocaml{(OCaml version already had this)},
- \item the logical operators \key{and}, \key{or} and \key{not},
- \item the \key{eq?} operation for comparing two integers or two Booleans, and
- \item the \key{<}, \key{<=}, \key{>}, and \key{>=} operations for
- comparing integers.
- \end{enumerate}
- We reorganize the abstract syntax for the primitive operations in
- Figure~\ref{fig:Rif-syntax}, using only one grammar rule for all of
- them. This means that the grammar no longer checks whether the arity
- of an operators matches the number of arguments. That responsibility
- is moved to the type checker for \LangIf{}, which we introduce in
- Section~\ref{sec:type-check-Rif}.
- \begin{figure}[tp]
- \centering
- \fbox{
- \begin{minipage}{0.96\textwidth}
- \[
- \begin{array}{lcl}
- \itm{bool} &::=& \key{\#t} \mid \key{\#f} \\
- \itm{cmp} &::= & \key{eq?} \mid \key{<} \mid \key{<=} \mid \key{>} \mid \key{>=} \\
- \Exp &::=& \gray{ \Int \mid \CREAD{} \mid \CNEG{\Exp} \mid \CADD{\Exp}{\Exp} } \mid \CSUB{\Exp}{\Exp} \\
- &\mid& \gray{ \Var \mid \CLET{\Var}{\Exp}{\Exp} } \\
- &\mid& \itm{bool}
- \mid (\key{and}\;\Exp\;\Exp) \mid (\key{or}\;\Exp\;\Exp)
- \mid (\key{not}\;\Exp) \\
- &\mid& (\itm{cmp}\;\Exp\;\Exp) \mid \CIF{\Exp}{\Exp}{\Exp} \\
- \LangIf{} &::=& \Exp
- \end{array}
- \]
- \end{minipage}
- }
- \begin{ocamlx}
- \fbox{
- \begin{minipage}{0.96\textwidth}
- \[
- \begin{array}{rcl}
- \itm{bool} &::=& \key{\#t} \mid \key{\#f} \\
- \itm{cmp} &::= & \key{=} \mid \key{<} \mid \key{<=} \mid \key{>} \mid \key{>=} \\
- \Exp &::=& \gray{ \Int \mid \CREAD{} \mid \CNEG{\Exp} \mid \CADD{\Exp}{\Exp} \mid \CSUB{\Exp}{\Exp}} \\
- &\mid& \gray{ \Var \mid \code{(let $\Var$ $\Exp$ $\Exp$)}}\\
- &\mid& \itm{bool}
- \mid (\key{and}\;\Exp\;\Exp) \mid (\key{or}\;\Exp\;\Exp)
- \mid (\key{not}\;\Exp) \\
- &\mid& (\itm{cmp}\;\Exp\;\Exp) \mid \CIF{\Exp}{\Exp}{\Exp} \\
- \LangIf{} &::=& \Exp
- \end{array}
- \]
- \end{minipage}
- }
- \end{ocamlx}
- \caption{The concrete syntax of \LangIf{} \ocaml{for OCaml version}, extending \LangVar{}
- (Figure~\ref{fig:r1-concrete-syntax}) with Booleans and conditionals.}
- \label{fig:Rif-concrete-syntax}
- \end{figure}
- \begin{figure}[tp]
- \centering
- \fbox{
- \begin{minipage}{0.96\textwidth}
- \[
- \begin{array}{lcl}
- \itm{bool} &::=& \code{\#t} \mid \code{\#f} \\
- \itm{cmp} &::= & \code{eq?} \mid \code{<} \mid \code{<=} \mid \code{>} \mid \code{>=} \\
- \itm{op} &::= & \itm{cmp} \mid \code{read} \mid \code{+} \mid \code{-}
- \mid \code{and} \mid \code{or} \mid \code{not} \\
- \Exp &::=& \gray{ \INT{\Int} \mid \VAR{\Var} \mid \LET{\Var}{\Exp}{\Exp} } \\
- &\mid& \PRIM{\itm{op}}{\Exp\ldots}\\
- &\mid& \BOOL{\itm{bool}} \mid \IF{\Exp}{\Exp}{\Exp} \\
- \LangIf{} &::=& \PROGRAM{\code{'()}}{\Exp}
- \end{array}
- \]
- \end{minipage}
- }
- \begin{minipage}{0.96\textwidth}
- \begin{lstlisting}[style=ocaml,frame=single]
- type cmp = Eq | Lt | Le | Gt | Ge
- type primop = Read | Neg | Add | Sub | And | Or | Not | Cmp of cmp
- type var = string
- type exp =
- Int of int64
- | Bool of bool
- | Prim of primop * exp list
- | Var of var
- | Let of var * exp * exp
- | If of exp * exp * exp
- type 'info program = Program of 'info * exp
- \end{lstlisting}
- \end{minipage}
- \caption{The abstract syntax of \LangIf{}.}
- \label{fig:Rif-syntax}
- \end{figure}
- Figure~\ref{fig:interp-Rif} defines the interpreter for \LangIf{},
- which inherits from the interpreter for \LangVar{}
- (Figure~\ref{fig:interp-Rvar}). \ocaml{The OCaml interpreter
- can be found in \code{RIf.ml}.} The literals \code{\#t} and \code{\#f}
- evaluate to the corresponding Boolean values. The conditional
- expression $(\key{if}\, \itm{cnd}\,\itm{thn}\,\itm{els})$ evaluates
- \itm{cnd} and then either evaluates \itm{thn} or \itm{els} depending
- on whether \itm{cnd} produced \code{\#t} or \code{\#f}. The logical
- operations \code{not} and \code{and} behave as you might expect, but
- note that the \code{and} operation is short-circuiting. That is, given
- the expression $(\key{and}\,e_1\,e_2)$, the expression $e_2$ is not
- evaluated if $e_1$ evaluates to \code{\#f}. \ocaml{Note also that
- the \code{or} operation is \emph{not} short-circuiting; that is,
- both operands are always evaluated. Having \code{and} and
- \code{or} behave differently with respect to short-circuiting
- would be bizarre in a production language, but here it gives
- us an opportunity to compare the implementation of the two
- styles of operators.}
- With the increase in the number of primitive operations, the
- interpreter would become repetitive without some care. We refactor
- the case for \code{Prim}, moving the code that differs with each
- operation into the \code{interp-op} method shown in in
- Figure~\ref{fig:interp-op-Rif}. We handle the \code{and} operation
- separately because of its short-circuiting behavior.
- \begin{figure}[tbp]
- \begin{lstlisting}
- (define interp-Rif-class
- (class interp-Rvar-class
- (super-new)
- (define/public (interp-op op) ...)
- (define/override ((interp-exp env) e)
- (define recur (interp-exp env))
- (match e
- [(Bool b) b]
- [(If cnd thn els)
- (match (recur cnd)
- [#t (recur thn)]
- [#f (recur els)])]
- [(Prim 'and (list e1 e2))
- (match (recur e1)
- [#t (match (recur e2) [#t #t] [#f #f])]
- [#f #f])]
- [(Prim op args)
- (apply (interp-op op) (for/list ([e args]) (recur e)))]
- [else ((super interp-exp env) e)]))
- ))
- (define (interp-Rif p)
- (send (new interp-Rif-class) interp-program p))
- \end{lstlisting}
- \caption{Interpreter for the \LangIf{} language. (See
- Figure~\ref{fig:interp-op-Rif} for \code{interp-op}.)}
- \label{fig:interp-Rif}
- \end{figure}
- \begin{figure}[tbp]
- \begin{lstlisting}
- (define/public (interp-op op)
- (match op
- ['+ fx+]
- ['- fx-]
- ['read read-fixnum]
- ['not (lambda (v) (match v [#t #f] [#f #t]))]
- ['or (lambda (v1 v2)
- (cond [(and (boolean? v1) (boolean? v2))
- (or v1 v2)]))]
- ['eq? (lambda (v1 v2)
- (cond [(or (and (fixnum? v1) (fixnum? v2))
- (and (boolean? v1) (boolean? v2))
- (and (vector? v1) (vector? v2)))
- (eq? v1 v2)]))]
- ['< (lambda (v1 v2)
- (cond [(and (fixnum? v1) (fixnum? v2))
- (< v1 v2)]))]
- ['<= (lambda (v1 v2)
- (cond [(and (fixnum? v1) (fixnum? v2))
- (<= v1 v2)]))]
- ['> (lambda (v1 v2)
- (cond [(and (fixnum? v1) (fixnum? v2))
- (> v1 v2)]))]
- ['>= (lambda (v1 v2)
- (cond [(and (fixnum? v1) (fixnum? v2))
- (>= v1 v2)]))]
- [else (error 'interp-op "unknown operator")]))
- \end{lstlisting}
- \caption{Interpreter for the primitive operators in the \LangIf{} language.}
- \label{fig:interp-op-Rif}
- \end{figure}
- \section{Type Checking \LangIf{} Programs}
- \label{sec:type-check-Rif}
- \index{type checking}
- \index{semantic analysis}
- It is helpful to think about type checking in two complementary
- ways. A type checker predicts the type of value that will be produced
- by each expression in the program. For \LangIf{}, we have just two types,
- \key{Integer} and \key{Boolean}. So a type checker should predict that
- \begin{lstlisting}
- (+ 10 (- (+ 12 20)))
- \end{lstlisting}
- produces an \key{Integer} while
- \begin{lstlisting}
- (and (not #f) #t)
- \end{lstlisting}
- produces a \key{Boolean}.
- Another way to think about type checking is that it enforces a set of
- rules about which operators can be applied to which kinds of
- values. For example, our type checker for \LangIf{} signals an error
- for the below expression
- \begin{lstlisting}
- (not (+ 10 (- (+ 12 20))))
- \end{lstlisting}
- The subexpression \code{(+ 10 (- (+ 12 20)))} has type \key{Integer}
- but the type checker enforces the rule that the argument of \code{not}
- must be a \key{Boolean}.
- We implement type checking using classes and methods because they
- provide the open recursion needed to reuse code as we extend the type
- checker in later chapters, analogous to the use of classes and methods
- for the interpreters (Section~\ref{sec:extensible-interp}).
- We separate the type checker for the \LangVar{} fragment into its own
- class, shown in Figure~\ref{fig:type-check-Rvar}. The type checker for
- \LangIf{} is shown in Figure~\ref{fig:type-check-Rif} and it inherits
- from the type checker for \LangVar{}. These type checkers are in the
- files \code{type-check-Rvar.rkt} and \code{type-check-Rif.rkt} of the
- support code. \ocaml{A single unified checker is in \code{RIf.ml}.}
- %
- Each type checker is a structurally recursive function over the AST.
- Given an input expression \code{e}, the type checker either signals an
- error or returns an expression and its type (\key{Integer} or
- \key{Boolean}). It returns an expression because there are situations
- in which we want to change or update the expression.
- Next we discuss the \code{match} cases in \code{type-check-exp} of
- Figure~\ref{fig:type-check-Rvar}. The type of an integer constant is
- \code{Integer}. To handle variables, the type checker uses the
- environment \code{env} to map variables to types. Consider the case
- for \key{let}. We type check the initializing expression to obtain
- its type \key{T} and then associate type \code{T} with the variable
- \code{x} in the environment used to type check the body of the
- \key{let}. Thus, when the type checker encounters a use of variable
- \code{x}, it can find its type in the environment. Regarding
- primitive operators, we recursively analyze the arguments and then
- invoke \code{type-check-op} to check whether the argument types are
- allowed.
- Several auxiliary methods are used in the type checker. The method
- \code{operator-types} defines a dictionary that maps the operator
- names to their parameter and return types. The \code{type-equal?}
- method determines whether two types are equal, which for now simply
- dispatches to \code{equal?} (deep equality). The
- \code{check-type-equal?} method triggers an error if the two types are
- not equal. The \code{type-check-op} method looks up the operator in
- the \code{operator-types} dictionary and then checks whether the
- argument types are equal to the parameter types. The result is the
- return type of the operator.
- \begin{figure}[tbp]
- \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
- (define type-check-Rvar-class
- (class object%
- (super-new)
- (define/public (operator-types)
- '((+ . ((Integer Integer) . Integer))
- (- . ((Integer) . Integer))
- (read . (() . Integer))))
- (define/public (type-equal? t1 t2) (equal? t1 t2))
- (define/public (check-type-equal? t1 t2 e)
- (unless (type-equal? t1 t2)
- (error 'type-check "~a != ~a\nin ~v" t1 t2 e)))
- (define/public (type-check-op op arg-types e)
- (match (dict-ref (operator-types) op)
- [`(,param-types . ,return-type)
- (for ([at arg-types] [pt param-types])
- (check-type-equal? at pt e))
- return-type]
- [else (error 'type-check-op "unrecognized ~a" op)]))
- (define/public (type-check-exp env)
- (lambda (e)
- (match e
- [(Int n) (values (Int n) 'Integer)]
- [(Var x) (values (Var x) (dict-ref env x))]
- [(Let x e body)
- (define-values (e^ Te) ((type-check-exp env) e))
- (define-values (b Tb) ((type-check-exp (dict-set env x Te)) body))
- (values (Let x e^ b) Tb)]
- [(Prim op es)
- (define-values (new-es ts)
- (for/lists (exprs types) ([e es]) ((type-check-exp env) e)))
- (values (Prim op new-es) (type-check-op op ts e))]
- [else (error 'type-check-exp "couldn't match" e)])))
- (define/public (type-check-program e)
- (match e
- [(Program info body)
- (define-values (body^ Tb) ((type-check-exp '()) body))
- (check-type-equal? Tb 'Integer body)
- (Program info body^)]
- [else (error 'type-check-Rvar "couldn't match ~a" e)]))
- ))
- (define (type-check-Rvar p)
- (send (new type-check-Rvar-class) type-check-program p))
- \end{lstlisting}
- \caption{Type checker for the \LangVar{} language.}
- \label{fig:type-check-Rvar}
- \end{figure}
- \begin{figure}[tbp]
- \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
- (define type-check-Rif-class
- (class type-check-Rvar-class
- (super-new)
- (inherit check-type-equal?)
-
- (define/override (operator-types)
- (append '((- . ((Integer Integer) . Integer))
- (and . ((Boolean Boolean) . Boolean))
- (or . ((Boolean Boolean) . Boolean))
- (< . ((Integer Integer) . Boolean))
- (<= . ((Integer Integer) . Boolean))
- (> . ((Integer Integer) . Boolean))
- (>= . ((Integer Integer) . Boolean))
- (not . ((Boolean) . Boolean))
- )
- (super operator-types)))
- (define/override (type-check-exp env)
- (lambda (e)
- (match e
- [(Prim 'eq? (list e1 e2))
- (define-values (e1^ T1) ((type-check-exp env) e1))
- (define-values (e2^ T2) ((type-check-exp env) e2))
- (check-type-equal? T1 T2 e)
- (values (Prim 'eq? (list e1^ e2^)) 'Boolean)]
- [(Bool b) (values (Bool b) 'Boolean)]
- [(If cnd thn els)
- (define-values (cnd^ Tc) ((type-check-exp env) cnd))
- (define-values (thn^ Tt) ((type-check-exp env) thn))
- (define-values (els^ Te) ((type-check-exp env) els))
- (check-type-equal? Tc 'Boolean e)
- (check-type-equal? Tt Te e)
- (values (If cnd^ thn^ els^) Te)]
- [else ((super type-check-exp env) e)])))
- ))
- (define (type-check-Rif p)
- (send (new type-check-Rif-class) type-check-program p))
- \end{lstlisting}
- \caption{Type checker for the \LangIf{} language.}
- \label{fig:type-check-Rif}
- \end{figure}
- Next we discuss the type checker for \LangIf{} in
- Figure~\ref{fig:type-check-Rif}. The operator \code{eq?} requires the
- two arguments to have the same type. The type of a Boolean constant is
- \code{Boolean}. The condition of an \code{if} must be of
- \code{Boolean} type and the two branches must have the same type. The
- \code{operator-types} function adds dictionary entries for the other
- new operators.
- \begin{exercise}\normalfont
- Create 10 new test programs in \LangIf{}. Half of the programs should
- have a type error. For those programs, create an empty file with the
- same base name but with file extension \code{.tyerr}. For example, if
- the test \code{cond\_test\_14.rkt} is expected to error, then create
- an empty file named \code{cond\_test\_14.tyerr}. This indicates to
- \code{interp-tests} and \code{compiler-tests} that a type error is
- expected. The other half of the test programs should not have type
- errors.
- In the \code{run-tests.rkt} script, change the second argument of
- \code{interp-tests} and \code{compiler-tests} to
- \code{type-check-Rif}, which causes the type checker to run prior to
- the compiler passes. Temporarily change the \code{passes} to an empty
- list and run the script, thereby checking that the new test programs
- either type check or not as intended.
- \end{exercise}
- \section{The \LangCIf{} Intermediate Language}
- \label{sec:Cif}
- Figure~\ref{fig:c1-syntax} defines the abstract syntax of the
- \LangCIf{} intermediate language. (The concrete syntax is in the
- Appendix, Figure~\ref{fig:c1-concrete-syntax}.) Compared to
- \LangCVar{}, the \LangCIf{} language adds logical and comparison
- operators to the \Exp{} non-terminal and the literals \key{\#t} and
- \key{\#f} to the \Arg{} non-terminal.
- Regarding control flow, \LangCIf{} adds \key{goto} and \code{if}
- statements to the \Tail{} non-terminal. The condition of an \code{if}
- statement is a comparison operation and the branches are \code{goto}
- statements, making it straightforward to compile \code{if} statements
- to x86.
- \begin{figure}[tp]
- \fbox{
- \begin{minipage}{0.96\textwidth}
- \small
- \[
- \begin{array}{lcl}
- \Atm &::=& \gray{\INT{\Int} \mid \VAR{\Var}} \mid \BOOL{\itm{bool}} \\
- \itm{cmp} &::= & \key{eq?} \mid \key{<} \\
- \Exp &::= & \gray{ \Atm \mid \READ{} }\\
- &\mid& \gray{ \NEG{\Atm} \mid \ADD{\Atm}{\Atm} } \\
- &\mid& \UNIOP{\key{'not}}{\Atm}
- \mid \BINOP{\key{'}\itm{cmp}}{\Atm}{\Atm} \\
- \Stmt &::=& \gray{ \ASSIGN{\VAR{\Var}}{\Exp} } \\
- \Tail &::= & \gray{\RETURN{\Exp} \mid \SEQ{\Stmt}{\Tail} }
- \mid \GOTO{\itm{label}} \\
- &\mid& \IFSTMT{\BINOP{\itm{cmp}}{\Atm}{\Atm}}{\GOTO{\itm{label}}}{\GOTO{\itm{label}}} \\
- \LangCIf{} & ::= & \gray{\CPROGRAM{\itm{info}}{\LP\LP\itm{label}\,\key{.}\,\Tail\RP\ldots\RP}}
- \end{array}
- \]
- \end{minipage}
- }
- \begin{minipage}{0.96\textwidth}
- \begin{lstlisting}[style=ocaml,frame=single]
- type cmp = Eq | Lt
- type primop = Read | Neg | Add | Not | Cmp of cmp
- type var = string
- type label = string
- type atm =
- Int of int64
- | Bool of bool
- | Var of var
- type exp =
- Atom of atm
- | Prim of primop * atm list
- type stmt =
- Assign of var * exp
- type tail =
- Return of exp
- | Seq of stmt*tail
- | Goto of label
- | IfStmt of cmp * atm * atm * label * label
- type 'info program = Program of 'info * (label*tail) list
- \end{lstlisting}
- \end{minipage}
- \caption{The abstract syntax of \LangCIf{}, an extension of \LangCVar{}
- (Figure~\ref{fig:c0-syntax}).}
- \label{fig:c1-syntax}
- \end{figure}
- \section{The \LangXIf{} Language}
- \label{sec:x86-if}
- \index{x86} To implement the new logical operations, the comparison
- operations, and the \key{if} expression, we need to delve further into
- the x86 language. Figures~\ref{fig:x86-1-concrete} and \ref{fig:x86-1}
- define the concrete and abstract syntax for the \LangXIf{} subset
- of x86, which includes instructions for logical operations,
- comparisons, and conditional jumps. \ocaml{The OCaml concrete
- syntax is in \code{X86If.ml}.}
- One challenge is that x86 does not provide an instruction that
- directly implements logical negation (\code{not} in \LangIf{} and
- \LangCIf{}). However, the \code{xorq} instruction can be used to
- encode \code{not}. The \key{xorq} instruction takes two arguments,
- performs a pairwise exclusive-or ($\mathrm{XOR}$) operation on each
- bit of its arguments, and writes the results into its second argument.
- Recall the truth table for exclusive-or:
- \begin{center}
- \begin{tabular}{l|cc}
- & 0 & 1 \\ \hline
- 0 & 0 & 1 \\
- 1 & 1 & 0
- \end{tabular}
- \end{center}
- For example, applying $\mathrm{XOR}$ to each bit of the binary numbers
- $0011$ and $0101$ yields $0110$. Notice that in the row of the table
- for the bit $1$, the result is the opposite of the second bit. Thus,
- the \code{not} operation can be implemented by \code{xorq} with $1$ as
- the first argument:
- \[
- \Var~ \key{=}~ \LP\key{not}~\Arg\RP\key{;}
- \qquad\Rightarrow\qquad
- \begin{array}{l}
- \key{movq}~ \Arg\key{,} \Var\\
- \key{xorq}~ \key{\$1,} \Var
- \end{array}
- \]
- \begin{figure}[tp]
- \fbox{
- \begin{minipage}{0.96\textwidth}
- \[
- \begin{array}{lcl}
- \itm{bytereg} &::=& \key{ah} \mid \key{al} \mid \key{bh} \mid \key{bl}
- \mid \key{ch} \mid \key{cl} \mid \key{dh} \mid \key{dl} \\
- \Arg &::=& \gray{ \key{\$}\Int \mid \key{\%}\Reg \mid \Int\key{(}\key{\%}\Reg\key{)} } \mid \key{\%}\itm{bytereg}\\
- \itm{cc} & ::= & \key{e} \mid \key{l} \mid \key{le} \mid \key{g} \mid \key{ge} \\
- \Instr &::=& \gray{ \key{addq} \; \Arg\key{,} \Arg \mid
- \key{subq} \; \Arg\key{,} \Arg \mid
- \key{negq} \; \Arg \mid \key{movq} \; \Arg\key{,} \Arg \mid } \\
- && \ocaml{\key{movabsq} \; \Arg\key{,} \Arg \mid} \\
- && \gray{ \key{callq} \; \itm{label} \mid
- \key{pushq}\;\Arg \mid \key{popq}\;\Arg \mid \key{retq} \mid \key{jmp}\,\itm{label} } \\
- && \gray{ \itm{label}\key{:}\; \Instr }
- \mid \key{xorq}~\Arg\key{,}~\Arg
- \mid \key{cmpq}~\Arg\key{,}~\Arg \mid \\
- && \key{set}cc~\Arg
- \mid \key{movzbq}~\Arg\key{,}~\Arg
- \mid \key{j}cc~\itm{label}
- \\
- \LangXIf{} &::= & \gray{ \key{.globl main} }\\
- & & \gray{ \key{main:} \; \Instr\ldots }
- \end{array}
- \]
- \end{minipage}
- }
- \caption{The concrete syntax of \LangXIf{} (extends \LangXInt{} of Figure~\ref{fig:x86-int-concrete}).}
- \label{fig:x86-1-concrete}
- \end{figure}
- \begin{figure}[tp]
- \fbox{
- \begin{minipage}{0.98\textwidth}
- \small
- \[
- \begin{array}{lcl}
- \itm{bytereg} &::=& \key{ah} \mid \key{al} \mid \key{bh} \mid \key{bl}
- \mid \key{ch} \mid \key{cl} \mid \key{dh} \mid \key{dl} \\
- \Arg &::=& \gray{\IMM{\Int} \mid \REG{\Reg} \mid \DEREF{\Reg}{\Int}}
- \mid \BYTEREG{\itm{bytereg}} \\
- \itm{cc} & ::= & \key{e} \mid \key{l} \mid \key{le} \mid \key{g} \mid \key{ge} \\
- \Instr &::=& \gray{ \BININSTR{\code{addq}}{\Arg}{\Arg}
- \mid \BININSTR{\code{subq}}{\Arg}{\Arg} } \\
- &\mid& \gray{ \BININSTR{\code{'movq}}{\Arg}{\Arg}
- \mid \UNIINSTR{\code{negq}}{\Arg} } \\
- &\mid& \gray{ \CALLQ{\itm{label}}{\itm{int}} \mid \RETQ{}
- \mid \PUSHQ{\Arg} \mid \POPQ{\Arg} \mid \JMP{\itm{label}} } \\
- &\mid& \BININSTR{\code{xorq}}{\Arg}{\Arg}
- \mid \BININSTR{\code{cmpq}}{\Arg}{\Arg}\\
- &\mid& \BININSTR{\code{set}}{\itm{cc}}{\Arg}
- \mid \BININSTR{\code{movzbq}}{\Arg}{\Arg}\\
- &\mid& \JMPIF{\itm{cc}}{\itm{label}} \\
- \Block &::= & \gray{\BLOCK{\itm{info}}{\LP\Instr\ldots\RP}} \\
- \LangXIf{} &::= & \gray{\XPROGRAM{\itm{info}}{\LP\LP\itm{label} \,\key{.}\, \Block \RP\ldots\RP}}
- \end{array}
- \]
- \end{minipage}
- }
- \caption{The abstract syntax of \LangXIf{} (extends \LangXInt{} of Figure~\ref{fig:x86-int-ast}).}
- \label{fig:x86-1}
- \end{figure}
- Next we consider the x86 instructions that are relevant for compiling
- the comparison operations. The \key{cmpq} instruction compares its two
- arguments to determine whether one argument is less than, equal, or
- greater than the other argument. The \key{cmpq} instruction is unusual
- regarding the order of its arguments and where the result is
- placed. The argument order is backwards: if you want to test whether
- $x < y$, then write \code{cmpq} $y$\code{,} $x$. The result of
- \key{cmpq} is placed in the special EFLAGS register. This register
- cannot be accessed directly but it can be queried by a number of
- instructions, including the \key{set} instruction. The instruction
- $\key{set}cc~d$ puts a \key{1} or \key{0} into the destination $d$
- depending on whether the comparison comes out according to the
- condition code \itm{cc} (\key{e} for equal, \key{l} for less, \key{le}
- for less-or-equal, \key{g} for greater, \key{ge} for
- greater-or-equal). The \key{set} instruction has an annoying quirk in
- that its destination argument must be single byte register, such as
- \code{al} (L for lower bits) or \code{ah} (H for higher bits), which
- are part of the \code{rax} register. Thankfully, the \key{movzbq}
- instruction can be used to move from a single byte register to a
- normal 64-bit register. The abstract syntax for the \code{set}
- instruction differs from the concrete syntax in that it separates the
- instruction name from the condition code.
- The x86 instruction for conditional jump is relevant to the
- compilation of \key{if} expressions. The instruction
- $\key{j}\itm{cc}~\itm{label}$ updates the program counter to point to
- the instruction after \itm{label} depending on whether the result in
- the EFLAGS register matches the condition code \itm{cc}, otherwise the
- jump instruction falls through to the next instruction. Like the
- abstract syntax for \code{set}, the abstract syntax for conditional
- jump separates the instruction name from the condition code. For
- example, \code{(JmpIf le foo)} corresponds to \code{jle foo}. Because
- the conditional jump instruction relies on the EFLAGS register, it is
- common for it to be immediately preceded by a \key{cmpq} instruction
- to set the EFLAGS register.
- \begin{ocamlx}
- The EFLAGS register is affected not just by \code{cmpq}, but by almost
- all the arithmetic and logical instructions. Clever coders can sometimes
- figure out how combine a test with an othewise useful operation. But we
- will always rely on \code{cmpq} to set EFLAGS. Moreover, we will always
- place the \code{cmpq} immediately before the
- \code{set} or $\key{j}\itm{cc}$ instruction that relies on EFLAGS.
- The interpreter provided for {\tt X86If} code assumes this, and
- will fail if it tries to execute an isolated instance of one
- of these instructions.
- \end{ocamlx}
- \section{Shrink the \LangIf{} Language}
- \label{sec:shrink-Rif}
- The \LangIf{} language includes several operators that are easily
- expressible with other operators. For example, subtraction is
- expressible using addition and negation.
- \[
- \key{(-}\; e_1 \; e_2\key{)} \quad \Rightarrow \quad \LP\key{+} \; e_1 \; \LP\key{-} \; e_2\RP\RP
- \]
- Several of the comparison operations are expressible using less-than
- and logical negation.
- \[
- \LP\key{<=}\; e_1 \; e_2\RP \quad \Rightarrow \quad
- \LP\key{let}~\LP\LS\key{tmp.1}~e_1\RS\RP~\LP\key{not}\;\LP\key{<}\;e_2\;\key{tmp.1})\RP\RP
- \]
- The \key{let} is needed in the above translation to ensure that
- expression $e_1$ is evaluated before $e_2$. \ocaml{However, such a \code{let}
- should be inserted only if $e_1$ is not already a variable or integer.}
- By performing these translations in the front-end of the compiler, the
- later passes of the compiler do not need to deal with these operators,
- making the passes shorter. \ocaml{On the other hand, unlike the
- syntactic desugaring we performed in the parser in an earlier chapter,
- we wait to perform this shrinking pass until after typechecking; that way,
- any type error messages will be in terms of the original program.
- }
- %% On the other hand, sometimes
- %% these translations make it more difficult to generate the most
- %% efficient code with respect to the number of instructions. However,
- %% these differences typically do not affect the number of accesses to
- %% memory, which is the primary factor that determines execution time on
- %% modern computer architectures.
- \begin{exercise}\normalfont
- Implement the pass \code{shrink} to remove subtraction, \key{and},
- \key{or}, \key{<=}, \key{>}, and \key{>=} from the language by
- translating them to other constructs in \LangIf{}.
- %
- \ocaml{Put your solution in the \code{Shrink} submodule of {\tt Chapter4.ml}.}
- %
- Create six test programs that involve these operators.
- %
- \ocaml{Make sure to include tests that confirm you have not altered
- the order of evaluation of sub-expressions of these operators.
- (Hint: use \code{read}s.)}
- %
- In the \code{run-tests.rkt} script, add the following entry for
- \code{shrink} to the list of passes (it should be the only pass at
- this point).
- \begin{lstlisting}
- (list "shrink" shrink interp-Rif type-check-Rif)
- \end{lstlisting}
- This instructs \code{interp-tests} to run the intepreter
- \code{interp-Rif} and the type checker \code{type-check-Rif} on the
- output of \code{shrink}.
- %
- \ocaml{You should consider writing an additional checking pass that
- makes sure all the forbidden operators have really been removed,
- in addition to invoking the standard \code{RIf} checker.}
- %
- Run the script to test your compiler on all the test programs.
- \end{exercise}
- \section{Uniquify Variables}
- \label{sec:uniquify-Rif}
- Add cases to \code{uniquify-exp} to handle Boolean constants and
- \code{if} expressions.
- \begin{exercise}\normalfont
- \ocaml{This exercise has been done for you, in submodule \code{Uniquify}
- of \code{Chapter4.ml}.}
- Update the \code{uniquify-exp} for \LangIf{} and add the following
- entry to the list of \code{passes} in the \code{run-tests.rkt} script.
- \begin{lstlisting}
- (list "uniquify" uniquify interp-Rif type-check-Rif)
- \end{lstlisting}
- Run the script to test your compiler.
- \end{exercise}
- \section{Remove Complex Operands}
- \label{sec:remove-complex-opera-Rif}
- The output language for this pass is \LangIfANF{}
- (Figure~\ref{fig:Rif-anf-syntax}), the administrative normal form of
- \LangIf{}. The \code{Bool} form is an atomic expressions but
- \code{If} is not. All three sub-expressions of an \code{If} are
- allowed to be complex expressions but the operands of \code{not} and
- the comparisons must be atoms.
- Add cases for \code{Bool} and \code{If} to the \code{rco-exp} and
- \code{rco-atom} functions according to whether the output needs to be
- \Exp{} or \Atm{} as specified in the grammar for \LangIfANF{}.
- Regarding \code{If}, it is particularly important to \textbf{not}
- replace its condition with a temporary variable because that would
- interfere with the generation of high-quality output in the
- \code{explicate-control} pass.
- \begin{figure}[tp]
- \centering
- \fbox{
- \begin{minipage}{0.96\textwidth}
- \[
- \begin{array}{rcl}
- \Atm &::=& \gray{ \INT{\Int} \mid \VAR{\Var} } \mid \BOOL{\itm{bool}}\\
- \Exp &::=& \gray{ \Atm \mid \READ{} } \\
- &\mid& \gray{ \NEG{\Atm} \mid \ADD{\Atm}{\Atm} } \\
- &\mid& \gray{ \LET{\Var}{\Exp}{\Exp} } \\
- &\mid& \UNIOP{\key{not}}{\Atm} \\
- &\mid& \BINOP{\itm{cmp}}{\Atm}{\Atm} \mid \IF{\Exp}{\Exp}{\Exp} \\
- R^{\dagger}_2 &::=& \PROGRAM{\code{()}}{\Exp}
- \end{array}
- \]
- \end{minipage}
- }
- \caption{\LangIfANF{} is \LangIf{} in administrative normal form (ANF).}
- \label{fig:Rif-anf-syntax}
- \end{figure}
- \begin{exercise}\normalfont
- \ocaml{This exercise has been done for you, in submodule \code{RemoveComplexOperands}
- of \code{Chapter4.ml}.}
- %
- Add cases for Boolean constants and \code{if} to the \code{rco-atom}
- and \code{rco-exp} functions in \code{compiler.rkt}.
- %
- Create three new \LangInt{} programs that exercise the interesting
- code in this pass.
- %
- In the \code{run-tests.rkt} script, add the following entry to the
- list of \code{passes} and then run the script to test your compiler.
- \begin{lstlisting}
- (list "remove-complex" remove-complex-opera* interp-Rif type-check-Rif)
- \end{lstlisting}
- \end{exercise}
- \section{Explicate Control}
- \label{sec:explicate-control-Rif}
- Recall that the purpose of \code{explicate-control} is to make the
- order of evaluation explicit in the syntax of the program. With the
- addition of \key{if} this get more interesting.
- As a motivating example, consider the following program that has an
- \key{if} expression nested in the predicate of another \key{if}.
- % cond_test_41.rkt
- \begin{center}
- \begin{minipage}{0.96\textwidth}
- \begin{lstlisting}
- (let ([x (read)])
- (let ([y (read)])
- (if (if (< x 1) (eq? x 0) (eq? x 2))
- (+ y 2)
- (+ y 10))))
- \end{lstlisting}
- \end{minipage}
- \end{center}
- %
- The naive way to compile \key{if} and the comparison would be to
- handle each of them in isolation, regardless of their context. Each
- comparison would be translated into a \key{cmpq} instruction followed
- by a couple instructions to move the result from the EFLAGS register
- into a general purpose register or stack location. Each \key{if} would
- be translated into a \key{cmpq} instruction followed by a conditional
- jump. The generated code for the inner \key{if} in the above example
- would be as follows.
- \begin{center}
- \begin{minipage}{0.96\textwidth}
- \begin{lstlisting}
- ...
- cmpq $1, x ;; (< x 1)
- setl %al
- movzbq %al, tmp
- cmpq $1, tmp ;; (if ...)
- je then_branch_1
- jmp else_branch_1
- ...
- \end{lstlisting}
- \end{minipage}
- \end{center}
- However, if we take context into account we can do better and reduce
- the use of \key{cmpq} instructions for accessing the EFLAG register.
- Our goal will be compile \key{if} expressions so that the relevant
- comparison instruction appears directly before the conditional jump.
- For example, we want to generate the following code for the inner
- \code{if}.
- \begin{center}
- \begin{minipage}{0.96\textwidth}
- \begin{lstlisting}
- ...
- cmpq $1, x
- je then_branch_1
- jmp else_branch_1
- ...
- \end{lstlisting}
- \end{minipage}
- \end{center}
- \ocaml{That first conditional jump instruction should actually be \code{jl then\_branch\_1}.}
- One way to achieve this is to reorganize the code at the level of
- \LangIf{}, pushing the outer \key{if} inside the inner one, yielding
- the following code.
- \begin{center}
- \begin{minipage}{0.96\textwidth}
- \begin{lstlisting}
- (let ([x (read)])
- (let ([y (read)])
- (if (< x 1)
- (if (eq? x 0)
- (+ y 2)
- (+ y 10))
- (if (eq? x 2)
- (+ y 2)
- (+ y 10)))))
- \end{lstlisting}
- \end{minipage}
- \end{center}
- Unfortunately, this approach duplicates the two branches from the
- outer \code{if} and a compiler must never duplicate code!
- \ocaml{That may be a bit too strong. Sometimes duplicating
- small amounts of code may actually produce a program that runs faster.
- But it fair to say that a compiler should never duplicate
- an \emph{unbounded} amount of code, as might happen with
- the transformation here.}
- We need a way to perform the above transformation but without
- duplicating code. That is, we need a way for different parts of a
- program to refer to the same piece of code. At the level of x86
- assembly this is straightforward because we can label the code for
- each branch and insert jumps in all the places that need to execute
- the branch. In our intermediate language, we need to move away from
- abstract syntax \emph{trees} and instead use \emph{graphs}. In
- particular, we use a standard program representation called a
- \emph{control flow graph} (CFG), due to Frances Elizabeth
- \citet{Allen:1970uq}. \index{control-flow graph} Each vertex is a
- labeled sequence of code, called a \emph{basic block}, and each edge
- represents a jump to another block. The \key{CProgram} construct of
- \LangCVar{} and \LangCIf{} contains a control flow graph represented
- as an alist mapping labels to basic blocks. Each basic block is
- represented by the $\Tail$ non-terminal. \ocaml{It is
- a little confusing to call this representation a CFG, since it
- does not make the flow edges explicit (they have to be deduced by looking
- inside the $\Tail$s). When we get to register assignment for \LangCIf{},
- we will construct a more explicit CFG data structure.}
- Figure~\ref{fig:explicate-control-s1-38} shows the output of the
- \code{remove-complex-opera*} pass and then the
- \code{explicate-control} pass on the example program. We walk through
- the output program and then discuss the algorithm.
- %
- Following the order of evaluation in the output of
- \code{remove-complex-opera*}, we first have two calls to \code{(read)}
- and then the comparison \lstinline{(< x 1)} in the predicate of the
- inner \key{if}. In the output of \code{explicate-control}, in the
- block labeled \code{start}, is two assignment statements followed by a
- \code{if} statement that branches to \code{block40} or
- \code{block41}. The blocks associated with those labels contain the
- translations of the code \lstinline{(eq? x 0)} and \lstinline{(eq? x 2)},
- respectively. In particular, we start \code{block40} with the
- comparison \lstinline{(eq? x 0)} and then branch to \code{block38} or
- \code{block39}, the two branches of the outer \key{if}, i.e.,
- \lstinline{(+ y 2)} and \lstinline{(+ y 10)}. The story for
- \code{block41} is similar.
- \begin{figure}[tbp]
- \begin{tabular}{lll}
- \begin{minipage}{0.4\textwidth}
- % cond_test_41.rkt
- \begin{lstlisting}
- (let ([x (read)])
- (let ([y (read)])
- (if (if (< x 1)
- (eq? x 0)
- (eq? x 2))
- (+ y 2)
- (+ y 10))))
- \end{lstlisting}
- \hspace{40pt}$\Downarrow$
- \begin{lstlisting}
- (let ([x (read)])
- (let ([y (read)])
- (if (if (< x 1)
- (eq? x 0)
- (eq? x 2))
- (+ y 2)
- (+ y 10))))
- \end{lstlisting}
- \end{minipage}
- &
- $\Rightarrow$
- &
- \begin{minipage}{0.55\textwidth}
- \begin{lstlisting}
- start:
- x = (read);
- y = (read);
- if (< x 1) goto block40;
- else goto block41;
- block40:
- if (eq? x 0) goto block38;
- else goto block39;
- block41:
- if (eq? x 2) goto block38;
- else goto block39;
- block38:
- return (+ y 2);
- block39:
- return (+ y 10);
- \end{lstlisting}
- \end{minipage}
- \end{tabular}
- \caption{Translation from \LangIf{} to \LangCIf{}
- via the \code{explicate-control}.\ocaml{Note that the RCO pass does \emph{not} pull out the conditions from the \code{if} expressions.}}
- \label{fig:explicate-control-s1-38}
- \end{figure}
- %% The nice thing about the output of \code{explicate-control} is that
- %% there are no unnecessary comparisons and every comparison is part of a
- %% conditional jump.
- %% The down-side of this output is that it includes
- %% trivial blocks, such as the blocks labeled \code{block92} through
- %% \code{block95}, that only jump to another block. We discuss a solution
- %% to this problem in Section~\ref{sec:opt-jumps}.
- Recall that in Section~\ref{sec:explicate-control-Rvar} we implement
- \code{explicate-control} for \LangVar{} using two mutually recursive
- functions, \code{explicate-tail} and \code{explicate-assign}. The
- former function translates expressions in tail position whereas the
- later function translates expressions on the right-hand-side of a
- \key{let}. With the addition of \key{if} expression in \LangIf{} we
- have a new kind of position to deal with: the predicate position of
- the \key{if}. We need another function, \code{explicate-pred}, that
- takes an \LangIf{} expression and two blocks for the then-branch and
- else-branch. The output of \code{explicate-pred} is a block.
- %
- In the following paragraphs we discuss specific cases in the
- \code{explicate-pred} function as well as additions to the
- \code{explicate-tail} and \code{explicate-assign} functions.
- \begin{figure}[tbp]
- \begin{lstlisting}
- (define (explicate-pred cnd thn els)
- (match cnd
- [(Var x) ___]
- [(Let x rhs body) ___]
- [(Prim 'not (list e)) ___]
- [(Prim op es) #:when (or (eq? op 'eq?) (eq? op '<))
- (IfStmt (Prim op arg*) (force (block->goto thn))
- (force (block->goto els)))]
- [(Bool b) (if b thn els)]
- [(If cnd^ thn^ els^) ___]
- [else (error "explicate-pred unhandled case" cnd)]))
- \end{lstlisting}
- \caption{Skeleton for the \key{explicate-pred} auxiliary function.}
- \label{fig:explicate-pred}
- \end{figure}
- The skeleton for the \code{explicate-pred} function is given in
- Figure~\ref{fig:explicate-pred}. It has a case for every expression
- that can have type \code{Boolean}. We detail a few cases here and
- leave the rest for the reader. The input to this function is an
- expression and two blocks, \code{thn} and \code{els}, for the two
- branches of the enclosing \key{if}.
- %
- Consider the case for Boolean constants in
- Figure~\ref{fig:explicate-pred}. We perform a kind of partial
- evaluation\index{partial evaluation} and output either the \code{thn}
- or \code{els} branch depending on whether the constant is true or
- false. This case demonstrates that we sometimes discard the \code{thn}
- or \code{els} blocks that are input to \code{explicate-pred}.
- The case for \key{if} in \code{explicate-pred} is particularly
- illuminating because it deals with the challenges we discussed above
- regarding nested \key{if} expressions
- (Figure~\ref{fig:explicate-control-s1-38}). The \lstinline{thn^} and
- \lstinline{els^} branches of the \key{if} inherit their context from
- the current one, that is, predicate context. So you should recursively
- apply \code{explicate-pred} to the \lstinline{thn^} and
- \lstinline{els^} branches. For both of those recursive calls, pass
- \code{thn} and \code{els} as the extra parameters. Thus, \code{thn}
- and \code{els} may get used twice, once inside each recursive call. As
- discussed above, to avoid duplicating code, we need to add them to the
- control-flow graph so that we can instead refer to them by name and
- execute them with a \key{goto}. However, as we saw in the cases above
- for Boolean constants, the blocks \code{thn} and \code{els} may not
- get used at all and we don't want to prematurely add them to the
- control-flow graph if they end up being discarded.
- \ocaml{But this only happens quite rarely (when a \code{if}
- tests a literal boolean value). Moreover, it is easy to forestall
- this from happening by performing a partial-evaluation style pass
- prior to \code{explicate-control}, or, alternatively, to
- clean up any generated but unused blocks after the fact. So I suggest ignoring
- the whole lazy evaluation story in the remainder of this section.
- Instead, design \code{explicate\_pred} to take as arguments
- two \emph{labels} representing where to transfer control when
- the test expression is true or fale. It is the responsibility of
- \emph{caller} of \code{explicate\_pred} to construct appropriate
- blocks and pass their labels. }
-
- The solution to this conundrum is to use \emph{lazy
- evaluation}\index{lazy evaluation}\citep{Friedman:1976aa} to delay
- adding the blocks to the control-flow graph until the points where we
- know they will be used. Racket provides support for lazy evaluation
- with the
- \href{https://docs.racket-lang.org/reference/Delayed_Evaluation.html}{\code{racket/promise}}
- package. The expression \key{(delay} $e_1 \ldots e_n$\key{)}
- \index{delay} creates a \emph{promise}\index{promise} in which the
- evaluation of the expressions is postponed. When \key{(force}
- $p$\key{)}\index{force} is applied to a promise $p$ for the first
- time, the expressions $e_1 \ldots e_n$ are evaluated and the result of
- $e_n$ is cached in the promise and returned. If \code{force} is
- applied again to the same promise, then the cached result is returned.
- If \code{force} is applied to an argument that is not a promise,
- \code{force} simply returns the argument.
- We use lazy evaluation for the input and output blocks of the
- functions \code{explicate-pred} and \code{explicate-assign} and for
- the output block of \code{explicate-tail}. So instead of taking and
- returning blocks, they take and return promises. Furthermore, when we
- come to a situation in which we a block might be used more than once,
- as in the case for \code{if} in \code{explicate-pred}, we transform
- the promise into a new promise that will add the block to the
- control-flow graph and return a \code{goto}. The following auxiliary
- function named \code{block->goto} accomplishes this task. It begins
- with \code{delay} to create a promise. When forced, this promise will
- force the original promise. If that returns a \code{goto} (because the
- block was already added to the control-flow graph), then we return the
- \code{goto}. Otherwise we add the block to the control-flow graph with
- another auxiliary function named \code{add-node}. That function
- returns the label for the new block, which we use to create a
- \code{goto}.
- \begin{lstlisting}
- (define (block->goto block)
- (delay
- (define b (force block))
- (match b
- [(Goto label) (Goto label)]
- [else (Goto (add-node b))])))
- \end{lstlisting}
- Returning to the discussion of \code{explicate-pred}
- (Figure~\ref{fig:explicate-pred}), consider the case for comparison
- operators. This is one of the base cases of the recursive function so
- we translate the comparison to an \code{if} statement. We apply
- \code{block->goto} to \code{thn} and \code{els} to obtain two promises
- that will add then to the control-flow graph, which we can immediately
- \code{force} to obtain the two goto's that form the branches of the
- \code{if} statement.
- %% Getting back to the case for \code{if} in \code{explicate-pred}, we
- %% make the recursive calls to \code{explicate-pred} on the ``then'' and
- %% ``else'' branches with the arguments \code{(block->goto} $B_1$\code{)}
- %% and \code{(block->goto} $B_2$\code{)}. Let $B_3$ and $B_4$ be the
- %% results from the two recursive calls. We complete the case for
- %% \code{if} by recursively apply \code{explicate-pred} to the condition
- %% of the \code{if} with the promised blocks $B_3$ and $B_4$ to obtain
- %% the result $B_5$.
- %% \[
- %% (\key{if}\; \itm{cnd}\; \itm{thn}\; \itm{els})
- %% \quad\Rightarrow\quad
- %% B_5
- %% \]
- The \code{explicate-tail} and \code{explicate-assign} functions need
- additional cases for Boolean constants and \key{if}.
- %
- In the cases for \code{if}, the two branches inherit the current
- context, so in \code{explicate-tail} they are in tail position and in
- \code{explicate-assign} they are in assignment position. The
- \code{cont} parameter of \code{explicate-assign} is used in both
- recursive calls, so make sure to use \code{block->goto} on it.
- %% In the case for \code{if} in \code{explicate-tail}, the two branches
- %% inherit the current context, so they are in tail position. Thus, the
- %% recursive calls on the ``then'' and ``else'' branch should be calls to
- %% \code{explicate-tail}.
- %% %
- %% We need to pass $B_0$ as the accumulator argument for both of these
- %% recursive calls, but we need to be careful not to duplicate $B_0$.
- %% Thus, we first apply \code{block->goto} to $B_0$ so that it gets added
- %% to the control-flow graph and obtain a promised goto $G_0$.
- %% %
- %% Let $B_1$ be the result of \code{explicate-tail} on the ``then''
- %% branch and $G_0$ and let $B_2$ be the result of \code{explicate-tail}
- %% on the ``else'' branch and $G_0$. Let $B_3$ be the result of applying
- %% \code{explicate-pred} to the condition of the \key{if}, $B_1$, and
- %% $B_2$. Then the \key{if} as a whole translates to promise $B_3$.
- %% \[
- %% (\key{if}\; \itm{cnd}\; \itm{thn}\; \itm{els}) \quad\Rightarrow\quad B_3
- %% \]
- %% In the above discussion, we use the metavariables $B_1$, $B_2$, and
- %% $B_3$ to refer to blocks for the purposes of our discussion, but they
- %% should not be confused with the labels for the blocks that appear in
- %% the generated code. We initially construct unlabeled blocks; we only
- %% attach labels to blocks when we add them to the control-flow graph, as
- %% we see in the next case.
- %% Next consider the case for \key{if} in the \code{explicate-assign}
- %% function. The context of the \key{if} is an assignment to some
- %% variable $x$ and then the control continues to some promised block
- %% $B_1$. The code that we generate for both the ``then'' and ``else''
- %% branches needs to continue to $B_1$, so to avoid duplicating $B_1$ we
- %% apply \code{block->goto} to it and obtain a promised goto $G_1$. The
- %% branches of the \key{if} inherit the current context, so they are in
- %% assignment positions. Let $B_2$ be the result of applying
- %% \code{explicate-assign} to the ``then'' branch, variable $x$, and
- %% $G_1$. Let $B_3$ be the result of applying \code{explicate-assign} to
- %% the ``else'' branch, variable $x$, and $G_1$. Finally, let $B_4$ be
- %% the result of applying \code{explicate-pred} to the predicate
- %% $\itm{cnd}$ and the promises $B_2$ and $B_3$. The \key{if} as a whole
- %% translates to the promise $B_4$.
- %% \[
- %% (\key{if}\; \itm{cnd}\; \itm{thn}\; \itm{els}) \quad\Rightarrow\quad B_4
- %% \]
- %% This completes the description of \code{explicate-control} for \LangIf{}.
- The way in which the \code{shrink} pass transforms logical operations
- such as \code{and} and \code{or} can impact the quality of code
- generated by \code{explicate-control}. For example, consider the
- following program.
- % cond_test_21.rkt
- \begin{lstlisting}
- (if (and (eq? (read) 0) (eq? (read) 1))
- 0
- 42)
- \end{lstlisting}
- The \code{and} operation should transform into something that the
- \code{explicate-pred} function can still analyze and descend through to
- reach the underlying \code{eq?} conditions. Ideally, your
- \code{explicate-control} pass should generate code similar to the
- following for the above program.
- \begin{center}
- \begin{lstlisting}
- start:
- tmp1 = (read);
- if (eq? tmp1 0) goto block40;
- else goto block39;
- block40:
- tmp2 = (read);
- if (eq? tmp2 1) goto block38;
- else goto block39;
- block38:
- return 0;
- block39:
- return 42;
- \end{lstlisting}
- \end{center}
- \begin{exercise}\normalfont
- Implement the pass \code{explicate-control} by adding the cases for
- Boolean constants and \key{if} to the \code{explicate-tail} and
- \code{explicate-assign}. Implement the auxiliary function
- \code{explicate-pred} for predicate contexts.
- %
- \ocaml{Put your code in the \code{ExplicateControl} submodule of
- \code{Chapter4.ml}. It is recommended that you base your code
- on the skeleton already in that file.}
- %
- Create test cases that exercise all of the new cases in the code for
- this pass.
- %
- Add the following entry to the list of \code{passes} in
- \code{run-tests.rkt} and then run this script to test your compiler.
- \begin{lstlisting}
- (list "explicate-control" explicate-control interp-Cif type-check-Cif)
- \end{lstlisting}
- \end{exercise}
- \section{Select Instructions}
- \label{sec:select-Rif}
- \index{instruction selection}
- The \code{select-instructions} pass translate \LangCIf{} to
- \LangXIfVar{}. Recall that we implement this pass using three
- auxiliary functions, one for each of the non-terminals $\Atm$,
- $\Stmt$, and $\Tail$.
- For $\Atm$, we have new cases for the Booleans. We take the usual
- approach of encoding them as integers, with true as 1 and false as 0.
- \[
- \key{\#t} \Rightarrow \key{1}
- \qquad
- \key{\#f} \Rightarrow \key{0}
- \]
- For $\Stmt$, we discuss a couple cases. The \code{not} operation can
- be implemented in terms of \code{xorq} as we discussed at the
- beginning of this section. Given an assignment
- $\itm{var}$ \key{=} \key{(not} $\Atm$\key{);},
- if the left-hand side $\itm{var}$ is
- the same as $\Atm$, then just the \code{xorq} suffices.
- \[
- \Var~\key{=}~ \key{(not}\; \Var\key{);}
- \quad\Rightarrow\quad
- \key{xorq}~\key{\$}1\key{,}~\Var
- \]
- Otherwise, a \key{movq} is needed to adapt to the update-in-place
- semantics of x86. Let $\Arg$ be the result of translating $\Atm$ to
- x86. Then we have
- \[
- \Var~\key{=}~ \key{(not}\; \Atm\key{);}
- \quad\Rightarrow\quad
- \begin{array}{l}
- \key{movq}~\Arg\key{,}~\Var\\
- \key{xorq}~\key{\$}1\key{,}~\Var
- \end{array}
- \]
- Next consider the cases for \code{eq?} and less-than comparison.
- Translating these operations to x86 is slightly involved due to the
- unusual nature of the \key{cmpq} instruction discussed above. We
- recommend translating an assignment from \code{eq?} into the following
- sequence of three instructions. \\
- \begin{tabular}{lll}
- \begin{minipage}{0.4\textwidth}
- \begin{lstlisting}
- |$\Var$| = (eq? |$\Atm_1$| |$\Atm_2$|);
- \end{lstlisting}
- \end{minipage}
- &
- $\Rightarrow$
- &
- \begin{minipage}{0.4\textwidth}
- \begin{lstlisting}
- cmpq |$\Arg_2$|, |$\Arg_1$|
- sete %al
- movzbq %al, |$\Var$|
- \end{lstlisting}
- \end{minipage}
- \end{tabular} \\
- Regarding the $\Tail$ non-terminal, we have two new cases: \key{goto}
- and \key{if} statements. Both are straightforward to translate to
- x86. A \key{goto} becomes a jump instruction.
- \[
- \key{goto}\; \ell\key{;} \quad \Rightarrow \quad \key{jmp}\;\ell
- \]
- An \key{if} statement becomes a compare instruction followed by a
- conditional jump (for the ``then'' branch) and the fall-through is to
- a regular jump (for the ``else'' branch).\\
- \begin{tabular}{lll}
- \begin{minipage}{0.4\textwidth}
- \begin{lstlisting}
- if (eq? |$\Atm_1$| |$\Atm_2$|) goto |$\ell_1$|;
- else goto |$\ell_2$|;
- \end{lstlisting}
- \end{minipage}
- &
- $\Rightarrow$
- &
- \begin{minipage}{0.4\textwidth}
- \begin{lstlisting}
- cmpq |$\Arg_2$|, |$\Arg_1$|
- je |$\ell_1$|
- jmp |$\ell_2$|
- \end{lstlisting}
- \end{minipage}
- \end{tabular} \\
- \begin{exercise}\normalfont
- Expand your \code{select-instructions} pass to handle the new features
- of the \LangIf{} language.
- %
- \ocaml{Place your solution in the \code{SelectInstructions} submodule of
- \code{Chapter4.ml}.}
- %
- Add the following entry to the list of \code{passes} in
- \code{run-tests.rkt}
- \begin{lstlisting}
- (list "select-instructions" select-instructions interp-pseudo-x86-1)
- \end{lstlisting}
- %
- Run the script to test your compiler on all the test programs.
- \end{exercise}
- \section{Register Allocation}
- \label{sec:register-allocation-Rif}
- \index{register allocation}
- The changes required for \LangIf{} affect liveness analysis, building the
- interference graph, and assigning homes, but the graph coloring
- algorithm itself does not change.
- \subsection{Liveness Analysis}
- \label{sec:liveness-analysis-Rif}
- \index{liveness analysis}
- Recall that for \LangVar{} we implemented liveness analysis for a single
- basic block (Section~\ref{sec:liveness-analysis-Rvar}). With the
- addition of \key{if} expressions to \LangIf{}, \code{explicate-control}
- produces many basic blocks arranged in a control-flow graph. We
- recommend that you create a new auxiliary function named
- \code{uncover-live-CFG} that applies liveness analysis to a
- control-flow graph. \ocaml{This structuring suggestion is not crucial.}
- The first question we is: what order should we process the basic
- blocks in the control-flow graph? Recall that to perform liveness
- analysis on a basic block we need to know its live-after set. If a
- basic block has no successors (i.e. no out-edges in the control flow
- graph), then it has an empty live-after set and we can immediately
- apply liveness analysis to it. If a basic block has some successors,
- then we need to complete liveness analysis on those blocks first. In
- graph theory, a sequence of nodes is in \emph{topological
- order}\index{topological order} if each vertex comes before its
- successors. We need the opposite, so we can transpose the graph
- before computing a topological order.
- %
- Use the \code{tsort} and \code{transpose} functions of the Racket
- \code{graph} package to accomplish this.
- %
- \ocaml{Use the \code{topsort} and \code{transpose} functions of the
- provided \code{Digraph} functor.}
- %
- As an aside, a topological ordering is only guaranteed to exist if the
- graph does not contain any cycles. That is indeed the case for the
- control-flow graphs that we generate from \LangIf{} programs.
- However, in Chapter~\ref{ch:Rwhile} we add loops to \LangLoop{} and
- learn how to handle cycles in the control-flow graph.
- You'll need to construct a directed graph to represent the
- control-flow graph. Do not use the \code{directed-graph} of the
- \code{graph} package because that only allows at most one edge between
- each pair of vertices, but a control-flow graph may have multiple
- edges between a pair of vertices. The \code{multigraph.rkt} file in
- the support code implements a graph representation that allows
- multiple edges between a pair of vertices. \ocaml{There is no
- need for a multigraph for our purposes in this chapter. Just
- use the plain directed graphs in \code{digraph.ml}.}
- The next question is how to analyze jump instructions. Recall that in
- Section~\ref{sec:liveness-analysis-Rvar} we maintain an alist named
- \code{label->live} that maps each label to the set of live locations
- at the beginning of its block. We use \code{label->live} to determine
- the live-before set for each $\JMP{\itm{label}}$ instruction. Now
- that we have many basic blocks, \code{label->live} needs to be updated
- as we process the blocks. In particular, after performing liveness
- analysis on a block, we take the live-before set of its first
- instruction and associate that with the block's label in the
- \code{label->live}.
- In \LangXIfVar{} we also have the conditional jump
- $\JMPIF{\itm{cc}}{\itm{label}}$ to deal with. Liveness analysis for
- this instruction is particularly interesting because during
- compilation we do not know which way a conditional jump will go. So
- we do not know whether to use the live-before set for the following
- instruction or the live-before set for the $\itm{label}$. However,
- there is no harm to the correctness of the compiler if we classify
- more locations as live than the ones that are truly live during a
- particular execution of the instruction. Thus, we can take the union
- of the live-before sets from the following instruction and from the
- mapping for $\itm{label}$ in \code{label->live}.
- The auxiliary functions for computing the variables in an
- instruction's argument and for computing the variables read-from ($R$)
- or written-to ($W$) by an instruction need to be updated to handle the
- new kinds of arguments and instructions in \LangXIfVar{}.
- \begin{ocamlx}
- It will now become convenient to process the \code{main} and \code{conclusion}
- blocks uniformly with the others. That should be straightforward, but note
- two things: (a) to avoid having \code{`framesize} appear as a live variable,
- we should avoid adding it to the set of read variables; (b) The
- \code{\%rbp} register may show up in some live sets; this is harmless,
- so long as it is precolored with a negative color in {\tt AllocateRegisters}.
- \end{ocamlx}
- \begin{exercise}\normalfont
- Update the \code{uncover-live} pass and implement the
- \code{uncover-live-CFG} auxiliary function to apply liveness analysis
- to the control-flow graph.
- \ocaml{Place your solution in the \code{UncoverLive} submodule of \code{Chapter4.ml}.
- You don't have to structure it with an auxiliary function unless
- you find that useful.}
- Add the following entry to the list of
- \code{passes} in the \code{run-tests.rkt} script.
- \begin{lstlisting}
- (list "uncover-live" uncover-live interp-pseudo-x86-1)
- \end{lstlisting}
- \end{exercise}
- \subsection{Build the Interference Graph}
- \label{sec:build-interference-Rif}
- Many of the new instructions in \LangXIfVar{} can be handled in the
- same way as the instructions in \LangXVar{}. Thus, if your code was
- already quite general, it will not need to be changed to handle the
- new instructions. If you code is not general enough, we recommend that
- you change your code to be more general. For example, you can factor
- out the computing of the the read and write sets for each kind of
- instruction into two auxiliary functions.
- Note that the \key{movzbq} instruction requires some special care,
- similar to the \key{movq} instruction. See rule number 1 in
- Section~\ref{sec:build-interference}.
- \begin{exercise}\normalfont
- \ocaml{This exercise has been done for you, in submodule \code{BuildInterference}
- of \code{Chapter4.ml}.}
- Update the \code{build-interference} pass for \LangXIfVar{} and add the
- following entries to the list of \code{passes} in the
- \code{run-tests.rkt} script.
- \begin{lstlisting}
- (list "build-interference" build-interference interp-pseudo-x86-1)
- (list "allocate-registers" allocate-registers interp-x86-1)
- \end{lstlisting}
- Run the script to test your compiler on all the \LangIf{} test
- programs.
- \end{exercise}
- \section{Patch Instructions}
- The second argument of the \key{cmpq} instruction must not be an
- immediate value (such as an integer). So if you are comparing two
- immediates, we recommend inserting a \key{movq} instruction to put the
- second argument in \key{rax}. Also, recall that instructions may have
- at most one memory reference.
- %
- The second argument of the \key{movzbq} must be a register.
- %
- There are no special restrictions on the jump instructions.
- \begin{exercise}\normalfont
- \ocaml{This exercise has been done for you, in submodule \code{PatchInstructions}
- of \code{Chapter4.ml}.}
- %
- Update \code{patch-instructions} pass for \LangXIfVar{}.
- %
- Add the following entry to the list of \code{passes} in
- \code{run-tests.rkt} and then run this script to test your compiler.
- \begin{lstlisting}
- (list "patch-instructions" patch-instructions interp-x86-1)
- \end{lstlisting}
- \end{exercise}
- the \begin{figure}[tbp]
- \begin{tikzpicture}[baseline=(current bounding box.center)]
- \node (Rif) at (0,2) {\large \LangIf{}};
- \node (Rif-2) at (3,2) {\large \LangIf{}};
- \node (Rif-3) at (6,2) {\large \LangIf{}};
- \node (Rif-4) at (9,2) {\large \LangIf{}};
- \node (Rif-5) at (12,2) {\large \LangIf{}};
- \node (C1-1) at (3,0) {\large \LangCIf{}};
- \node (x86-2) at (3,-2) {\large \LangXIfVar{}};
- \node (x86-2-1) at (3,-4) {\large \LangXIfVar{}};
- \node (x86-2-2) at (6,-4) {\large \LangXIfVar{}};
- \node (x86-3) at (6,-2) {\large \LangXIfVar{}};
- \node (x86-4) at (9,-2) {\large \LangXIf{}};
- \node (x86-5) at (9,-4) {\large \LangXIf{}};
- \path[->,bend left=15] (Rif) edge [above] node {\ttfamily\footnotesize type-check} (Rif-2);
- \path[->,bend left=15] (Rif-2) edge [above] node {\ttfamily\footnotesize shrink} (Rif-3);
- \path[->,bend left=15] (Rif-3) edge [above] node {\ttfamily\footnotesize uniquify} (Rif-4);
- \path[->,bend left=15] (Rif-4) edge [above] node {\ttfamily\footnotesize remove-complex.} (Rif-5);
- \path[->,bend left=15] (Rif-5) edge [left] node {\ttfamily\footnotesize explicate-control} (C1-1);
- \path[->,bend right=15] (C1-1) edge [left] node {\ttfamily\footnotesize select-instructions} (x86-2);
- \path[->,bend left=15] (x86-2) edge [right] node {\ttfamily\footnotesize uncover-live} (x86-2-1);
- \path[->,bend right=15] (x86-2-1) edge [below] node {\ttfamily\footnotesize build-inter.} (x86-2-2);
- \path[->,bend right=15] (x86-2-2) edge [right] node {\ttfamily\footnotesize allocate-reg.} (x86-3);
- \path[->,bend left=15] (x86-3) edge [above] node {\ttfamily\footnotesize patch-instr.} (x86-4);
- \path[->,bend left=15] (x86-4) edge [right] node {\ttfamily\footnotesize print-x86 } (x86-5);
- \end{tikzpicture}
- \caption{Diagram of the passes for \LangIf{}, a language with conditionals.}
- \label{fig:Rif-passes}
- \end{figure}
- Figure~\ref{fig:Rif-passes} lists all the passes needed for the
- compilation of \LangIf{}.
- \section{An Example Translation}
- Figure~\ref{fig:if-example-x86} shows a simple example program in
- \LangIf{} translated to x86, showing the results of
- \code{explicate-control}, \code{select-instructions}, and the final
- x86 assembly code.
- \begin{figure}[tbp]
- \begin{tabular}{lll}
- \begin{minipage}{0.4\textwidth}
- % cond_test_20.rkt
- \begin{lstlisting}
- (if (eq? (read) 1) 42 0)
- \end{lstlisting}
- $\Downarrow$
- \begin{lstlisting}
- start:
- tmp7951 = (read);
- if (eq? tmp7951 1)
- goto block7952;
- else
- goto block7953;
- block7952:
- return 42;
- block7953:
- return 0;
- \end{lstlisting}
- $\Downarrow$
- \begin{lstlisting}
- start:
- callq read_int
- movq %rax, tmp7951
- cmpq $1, tmp7951
- je block7952
- jmp block7953
- block7953:
- movq $0, %rax
- jmp conclusion
- block7952:
- movq $42, %rax
- jmp conclusion
- \end{lstlisting}
- \end{minipage}
- &
- $\Rightarrow\qquad$
- \begin{minipage}{0.4\textwidth}
- \begin{lstlisting}
- start:
- callq read_int
- movq %rax, %rcx
- cmpq $1, %rcx
- je block7952
- jmp block7953
- block7953:
- movq $0, %rax
- jmp conclusion
- block7952:
- movq $42, %rax
- jmp conclusion
- .globl main
- main:
- pushq %rbp
- movq %rsp, %rbp
- pushq %r13
- pushq %r12
- pushq %rbx
- pushq %r14
- subq $0, %rsp
- jmp start
- conclusion:
- addq $0, %rsp
- popq %r14
- popq %rbx
- popq %r12
- popq %r13
- popq %rbp
- retq
- \end{lstlisting}
- \end{minipage}
- \end{tabular}
- \caption{Example compilation of an \key{if} expression to x86.\ocaml{(For some reason, all the callee-save registers are being saved, even though they are not used.)}}
- \label{fig:if-example-x86}
- \end{figure}
- \section{Challenge: Remove Jumps}
- \label{sec:opt-jumps}
- %% Recall that in the example output of \code{explicate-control} in
- %% Figure~\ref{fig:explicate-control-s1-38}, \code{block57} through
- %% \code{block60} are trivial blocks, they do nothing but jump to another
- %% block. The first goal of this challenge assignment is to remove those
- %% blocks. Figure~\ref{fig:optimize-jumps} repeats the result of
- %% \code{explicate-control} on the left and shows the result of bypassing
- %% the trivial blocks on the right. Let us focus on \code{block61}. The
- %% \code{then} branch jumps to \code{block57}, which in turn jumps to
- %% \code{block55}. The optimized code on the right of
- %% Figure~\ref{fig:optimize-jumps} bypasses \code{block57}, with the
- %% \code{then} branch jumping directly to \code{block55}. The story is
- %% similar for the \code{else} branch, as well as for the two branches in
- %% \code{block62}. After the jumps in \code{block61} and \code{block62}
- %% have been optimized in this way, there are no longer any jumps to
- %% blocks \code{block57} through \code{block60}, so they can be removed.
- %% \begin{figure}[tbp]
- %% \begin{tabular}{lll}
- %% \begin{minipage}{0.4\textwidth}
- %% \begin{lstlisting}
- %% block62:
- %% tmp54 = (read);
- %% if (eq? tmp54 2) then
- %% goto block59;
- %% else
- %% goto block60;
- %% block61:
- %% tmp53 = (read);
- %% if (eq? tmp53 0) then
- %% goto block57;
- %% else
- %% goto block58;
- %% block60:
- %% goto block56;
- %% block59:
- %% goto block55;
- %% block58:
- %% goto block56;
- %% block57:
- %% goto block55;
- %% block56:
- %% return (+ 700 77);
- %% block55:
- %% return (+ 10 32);
- %% start:
- %% tmp52 = (read);
- %% if (eq? tmp52 1) then
- %% goto block61;
- %% else
- %% goto block62;
- %% \end{lstlisting}
- %% \end{minipage}
- %% &
- %% $\Rightarrow$
- %% &
- %% \begin{minipage}{0.55\textwidth}
- %% \begin{lstlisting}
- %% block62:
- %% tmp54 = (read);
- %% if (eq? tmp54 2) then
- %% goto block55;
- %% else
- %% goto block56;
- %% block61:
- %% tmp53 = (read);
- %% if (eq? tmp53 0) then
- %% goto block55;
- %% else
- %% goto block56;
- %% block56:
- %% return (+ 700 77);
- %% block55:
- %% return (+ 10 32);
- %% start:
- %% tmp52 = (read);
- %% if (eq? tmp52 1) then
- %% goto block61;
- %% else
- %% goto block62;
- %% \end{lstlisting}
- %% \end{minipage}
- %% \end{tabular}
- %% \caption{Optimize jumps by removing trivial blocks.}
- %% \label{fig:optimize-jumps}
- %% \end{figure}
- %% The name of this pass is \code{optimize-jumps}. We recommend
- %% implementing this pass in two phases. The first phrase builds a hash
- %% table that maps labels to possibly improved labels. The second phase
- %% changes the target of each \code{goto} to use the improved label. If
- %% the label is for a trivial block, then the hash table should map the
- %% label to the first non-trivial block that can be reached from this
- %% label by jumping through trivial blocks. If the label is for a
- %% non-trivial block, then the hash table should map the label to itself;
- %% we do not want to change jumps to non-trivial blocks.
- %% The first phase can be accomplished by constructing an empty hash
- %% table, call it \code{short-cut}, and then iterating over the control
- %% flow graph. Each time you encouter a block that is just a \code{goto},
- %% then update the hash table, mapping the block's source to the target
- %% of the \code{goto}. Also, the hash table may already have mapped some
- %% labels to the block's source, to you must iterate through the hash
- %% table and update all of those so that they instead map to the target
- %% of the \code{goto}.
- %% For the second phase, we recommend iterating through the $\Tail$ of
- %% each block in the program, updating the target of every \code{goto}
- %% according to the mapping in \code{short-cut}.
- %% \begin{exercise}\normalfont
- %% Implement the \code{optimize-jumps} pass as a transformation from
- %% \LangCIf{} to \LangCIf{}, coming after the \code{explicate-control} pass.
- %% Check that \code{optimize-jumps} removes trivial blocks in a few
- %% example programs. Then check that your compiler still passes all of
- %% your tests.
- %% \end{exercise}
- There is an opportunity for optimizing jumps that is apparent in the
- example of Figure~\ref{fig:if-example-x86}. The \code{start} block
- ends with a jump to \code{block7953} and there are no other jumps to
- \code{block7953} in the rest of the program. In this situation we can
- avoid the runtime overhead of this jump by merging \code{block7953}
- into the preceding block, in this case the \code{start} block.
- Figure~\ref{fig:remove-jumps} shows the output of
- \code{select-instructions} on the left and the result of this
- optimization on the right.
- \begin{figure}[tbp]
- \begin{tabular}{lll}
- \begin{minipage}{0.5\textwidth}
- % cond_test_20.rkt
- \begin{lstlisting}
- start:
- callq read_int
- movq %rax, tmp7951
- cmpq $1, tmp7951
- je block7952
- jmp block7953
- block7953:
- movq $0, %rax
- jmp conclusion
- block7952:
- movq $42, %rax
- jmp conclusion
- \end{lstlisting}
- \end{minipage}
- &
- $\Rightarrow\qquad$
- \begin{minipage}{0.4\textwidth}
- \begin{lstlisting}
- start:
- callq read_int
- movq %rax, tmp7951
- cmpq $1, tmp7951
- je block7952
- movq $0, %rax
- jmp conclusion
- block7952:
- movq $42, %rax
- jmp conclusion
- \end{lstlisting}
- \end{minipage}
- \end{tabular}
- \caption{Merging basic blocks by removing unnecessary jumps.}
- \label{fig:remove-jumps}
- \end{figure}
- \begin{exercise}\normalfont
- %
- Implement a pass named \code{remove-jumps} that merges basic blocks
- into their preceding basic block, when there is only one preceding
- block. The pass should translate from \LangXIfVar{} to \LangXIfVar{}.
- %
- In the \code{run-tests.rkt} script, add the following entry to the
- list of \code{passes} between \code{allocate-registers}
- and \code{patch-instructions}.
- \begin{lstlisting}
- (list "remove-jumps" remove-jumps interp-pseudo-x86-1)
- \end{lstlisting}
- Run this script to test your compiler.
- %
- Check that \code{remove-jumps} accomplishes the goal of merging basic
- blocks on several test programs.
- \end{exercise}
- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
- \chapter{Tuples and Garbage Collection}
- \label{ch:Rvec}
- \index{tuple}
- \index{vector}
- \margincomment{\scriptsize To do: Flesh out this chapter, e.g., make sure
- all the IR grammars are spelled out! \\ --Jeremy}
- \margincomment{\scriptsize Be more explicit about how to deal with
- the root stack. \\ --Jeremy}
- In this chapter we study the implementation of mutable tuples, called
- vectors in Racket. \ocaml{We will call them tuples!} This language feature is the first to use the
- computer's \emph{heap}\index{heap} because the lifetime of a Racket
- tuple is indefinite, that is, a tuple lives forever from the
- programmer's viewpoint. Of course, from an implementer's viewpoint, it
- is important to reclaim the space associated with a tuple when it is
- no longer needed, which is why we also study \emph{garbage collection}
- \emph{garbage collection} techniques in this chapter.
- Section~\ref{sec:r3} introduces the \LangVec{} language including its
- interpreter and type checker. The \LangVec{} language extends the \LangIf{}
- language of Chapter~\ref{ch:Rif} with vectors and Racket's
- \code{void} value. \ocaml{We will use a language \LangTuple{} that is an extension of the \LangLoop{} language from Chapter 9, which already added the \code{Void} type and void value \code{()}.} The reason for including the later \ocaml{(latter)} is that the
- \code{vector-set!} operation returns a value of type
- \code{Void}\footnote{Racket's \code{Void} type corresponds to what is
- called the \code{Unit} type in the programming languages
- literature. Racket's \code{Void} type is inhabited by a single value
- \code{void} which corresponds to \code{unit} or \code{()} in the
- literature~\citep{Pierce:2002hj}.}.
- Section~\ref{sec:GC} describes a garbage collection algorithm based on
- copying live objects back and forth between two halves of the
- heap. The garbage collector requires coordination with the compiler so
- that it can see all of the \emph{root} pointers, that is, pointers in
- registers or on the procedure call stack.
- Sections~\ref{sec:expose-allocation} through \ref{sec:print-x86-gc}
- discuss all the necessary changes and additions to the compiler
- passes, including a new compiler pass named \code{expose-allocation}.
- \section{The \LangVec{} \ocaml{(\LangTuple{})} Language}
- \label{sec:r3}
- Figure~\ref{fig:Rvec-concrete-syntax} defines the concrete syntax for
- \LangVec{} \ocaml{(\LangTuple{})} and Figure~\ref{fig:Rvec-syntax} defines the abstract syntax. The
- \LangVec{} language includes three new forms: \code{vector} for creating a
- tuple, \code{vector-ref} for reading an element of a tuple, and
- \code{vector-set!} for writing to an element of a tuple.
- \ocaml{In \LangTuple{}, we write \code{\#} to create a tuple, \code{!\;$n$} to read
- the $n$th element of a tuple and \code{:=\;$n$} to write the $n$th element of
- a tuple. Note that \code{:=} is overloaded: \code{(:= $x$ $e$)} sets variable
- $x$ to $e$ (as in \LangLoop{}), whereas \code{(:= $n$ $e_1$ $e_2$)} writes
- the value of $e_2$ to the $n$th element of the tuple obtained by evaluating $e_1$. Notice too
- that the integer indices in \code{!} and \code{:=} are static constants, \emph{not} expressions that
- might vary at runtime.}
- The program
- in Figure~\ref{fig:vector-eg} shows the usage of tuples in Racket. We
- create a 3-tuple \code{t} and a 1-tuple that is stored at index $2$ of
- the 3-tuple, demonstrating that tuples are first-class values. The
- element at index $1$ of \code{t} is \code{\#t}, so the ``then'' branch
- of the \key{if} is taken. The element at index $0$ of \code{t} is
- \code{40}, to which we add \code{2}, the element at index $0$ of the
- 1-tuple. So the result of the program is \code{42}.
- \ocaml{The \LangTuple{} grammar also contains two other operations. \code{(:\;\Exp\;\Type)}
- is a \emph{type ascription}: it can be read as ``\Exp\; has type \Type.''
- These ascriptions are checked by the type-checker, but are ignored during
- evaluation of the source language.
- We are including them in the language as a hack: certain passes need to know the
- types of sub-expressions, and the type-checker selectively insert ascriptions to make
- that information available. Ascriptions are legal in source programs, but are
- only useful as a kind of documentation about the types the programmer expects.
- The other operation is allocation, written \code{(\#\#\;\Int\;\Type)}. This
- is a strictly internal operation that is produced by an intermediate pass
- in the compiler and is \emph{not} permitted in source code (but may be seen
- in debugging output). Both of these forms explicitly mention types,
- so for the first time we give concrete syntax for \Type. Note that the
- type of a tuple is also written using \code{\#}, followed by a list of
- the element types. Finally, note that we do \emph{not} implement an
- equivalent to the \code{vector-length} operator, which is pretty useless,
- since the length of every tuple is already known statically (see more below).}
- \begin{figure}[tbp]
- \centering
- \fbox{
- \begin{minipage}{0.96\textwidth}
- \[
- \begin{array}{lcl}
- \Type &::=& \gray{\key{Integer} \mid \key{Boolean}}
- \mid \LP\key{Vector}\;\Type\ldots\RP \mid \key{Void}\\
- \Exp &::=& \gray{ \Int \mid \CREAD{} \mid \CNEG{\Exp} \mid \CADD{\Exp}{\Exp} \mid \CSUB{\Exp}{\Exp} } \\
- &\mid& \gray{ \Var \mid \CLET{\Var}{\Exp}{\Exp} }\\
- &\mid& \gray{ \key{\#t} \mid \key{\#f}
- \mid \LP\key{and}\;\Exp\;\Exp\RP
- \mid \LP\key{or}\;\Exp\;\Exp\RP
- \mid \LP\key{not}\;\Exp\RP } \\
- &\mid& \gray{ \LP\itm{cmp}\;\Exp\;\Exp\RP
- \mid \CIF{\Exp}{\Exp}{\Exp} } \\
- &\mid& \LP\key{vector}\;\Exp\ldots\RP
- \mid \LP\key{vector-length}\;\Exp\RP \\
- &\mid& \LP\key{vector-ref}\;\Exp\;\Int\RP
- \mid \LP\key{vector-set!}\;\Exp\;\Int\;\Exp\RP \\
- &\mid& \LP\key{void}\RP \mid \LP\key{has-type}~\Exp~\Type\RP\\
- \LangVec{} &::=& \Exp
- \end{array}
- \]
- \end{minipage}
- }
- \begin{ocamlx}
- \fbox{
- \begin{minipage}{0.96\textwidth}
- \small
- \[
- \begin{array}{rcl}
- \Type &::=& \gray{\key{int} \mid \key{bool} \mid \key{void}}
- \mid \LP\key{\#}\;\Type\ldots\RP\\
- \Exp &::=& \gray{ \Int \mid \CREAD{} \mid \CNEG{\Exp} \mid \CADD{\Exp}{\Exp} \mid \CSUB{\Exp}{\Exp}} \\
- &\mid& \gray{ \Var \mid \code{(let $\Var$ $\Exp$ $\Exp$)}}\\
- &\mid& \gray{\itm{bool}
- \mid (\key{and}\;\Exp\;\Exp) \mid (\key{or}\;\Exp\;\Exp)
- \mid (\key{not}\;\Exp)} \\
- &\mid& \gray{(\itm{cmp}\;\Exp\;\Exp) \mid \CIF{\Exp}{\Exp}{\Exp}} \\
- &\mid& \gray{\code{()} \mid \code{(:= $\Var$ $\Exp$)}
- \mid \code{(seq \Exp\ldots \Exp)}
- \mid \CWHILE{\Exp}{\Exp}} \\
- &\mid& \LP\key{\#}\;\Exp\ldots\RP \mid \LP\key{!}\;\Int\;\Exp\RP \mid \LP\key{:=}\;\Int\;\Exp\;\Exp\RP\\
- &\mid& \LP\key{:}\;\Exp\;\Type\RP \mid \LP\key{\#\#}\;\Int\;\Type\RP\\
- \LangTuple{} &::=& \Exp
- \end{array}
- \]
- \end{minipage}
- }
- \end{ocamlx}
- \caption{The concrete syntax of \LangVec{}, extending \LangIf{}
- (Figure~\ref{fig:Rif-concrete-syntax}). \ocaml{OCaml: The concrete syntax of \LangTuple{}, extending \LangLoop{} (Figure~\ref{fig:Rwhile-concrete-syntax}).}}
- \label{fig:Rvec-concrete-syntax}
- \end{figure}
- \begin{figure}[tbp]
- \begin{lstlisting}
- (let ([t (vector 40 #t (vector 2))])
- (if (vector-ref t 1)
- (+ (vector-ref t 0)
- (vector-ref (vector-ref t 2) 0))
- 44))
- \end{lstlisting}
- \begin{lstlisting}[style=ocaml]
- (let t (# 40 #t (# 2))
- (if (! 1 t)
- (+ (! 0 t)
- (! 0 (! 2 t)))
- 44))
- \end{lstlisting}
- \caption{Example program that creates tuples and reads from them.}
- \label{fig:vector-eg}
- \end{figure}
- \begin{figure}[tp]
- \centering
- \fbox{
- \begin{minipage}{0.96\textwidth}
- \[
- \begin{array}{lcl}
- \itm{op} &::=& \ldots \mid \code{vector} \mid \code{vector-length} \\
- \Exp &::=& \gray{ \INT{\Int} \mid \VAR{\Var} \mid \LET{\Var}{\Exp}{\Exp} } \\
- &\mid& \gray{ \PRIM{\itm{op}}{\Exp\ldots}
- \mid \BOOL{\itm{bool}}
- \mid \IF{\Exp}{\Exp}{\Exp} } \\
- &\mid& \VECREF{\Exp}{\INT{\Int}}\\
- &\mid& \VECSET{\Exp}{\INT{\Int}}{\Exp} \\
- &\mid& \VOID{} \mid \LP\key{HasType}~\Exp~\Type \RP \\
- \LangVec{} &::=& \PROGRAM{\key{'()}}{\Exp}
- \end{array}
- \]
- \end{minipage}
- }
- \begin{lstlisting}[style=ocaml,frame=single]
- type typ = IntT | BoolT | VoidT | TupleT of typ list
- type cmp = Eq | Lt | Le | Gt | Ge
- type primop = Read | Neg | Add | Sub | And | Or | Not | Cmp of cmp
- | GetField of int | SetField of int | Alloc of int * typ
- type var = string
- type exp =
- Int of int64
- | Bool of bool
- | Prim of primop * exp list
- | Var of var
- | Let of var * exp * exp
- | If of exp * exp * exp
- | Void
- | Set of var * exp
- | Seq of exp list * exp
- | While of exp * exp
- | Tuple of exp list
- | HasType of exp * typ
- type 'info program = Program of 'info * exp
- \end{lstlisting}
- \caption{The abstract syntax of \LangVec{} \ocaml{\LangTuple{}}.}
- \label{fig:Rvec-syntax}
- \end{figure}
- \index{allocate}
- \index{heap allocate}
- Tuples are our first encounter with heap-allocated data, which raises
- several interesting issues. First, variable binding performs a
- shallow-copy when dealing with tuples, which means that different
- variables can refer to the same tuple, that is, different variables
- can be \emph{aliases} for the same entity. Consider the following
- example in which both \code{t1} and \code{t2} refer to the same tuple.
- Thus, the mutation through \code{t2} is visible when referencing the
- tuple from \code{t1}, so the result of this program is \code{42}.
- \index{alias}\index{mutation}
- \begin{center}
- \begin{minipage}{0.96\textwidth}
- \begin{lstlisting}
- (let ([t1 (vector 3 7)])
- (let ([t2 t1])
- (let ([_ (vector-set! t2 0 42)])
- (vector-ref t1 0))))
- \end{lstlisting}
- \end{minipage}
- \begin{minipage}{0.96\textwidth}
- \begin{lstlisting}[style=ocaml]
- (let t1 (# 3 7)
- (let t2 t1
- (seq (:= 0 t2 42)
- (! 0 t1))))
- \end{lstlisting}
- \end{minipage}
- \end{center}
- The next issue concerns the lifetime of tuples. Of course, they are
- created by the \code{vector} form, but when does their lifetime end?
- Notice that \LangVec{} \ocaml{(\LangTuple{})} does not include an operation for deleting
- tuples. Furthermore, the lifetime of a tuple is not tied to any notion
- of static scoping. For example, the following program returns
- \code{42} even though the variable \code{w} goes out of scope prior to
- the \code{vector-ref} that reads from the vector it was bound to.
- \begin{center}
- \begin{minipage}{0.96\textwidth}
- \begin{lstlisting}
- (let ([v (vector (vector 44))])
- (let ([x (let ([w (vector 42)])
- (let ([_ (vector-set! v 0 w)])
- 0))])
- (+ x (vector-ref (vector-ref v 0) 0))))
- \end{lstlisting}
- \end{minipage}
- \begin{minipage}{0.96\textwidth}
- \begin{lstlisting}[style=ocaml]
- (let v (# (# 44))
- (let x (let w (# 42)
- (seq (:= 0 v w)
- 0))
- (+ x (! 0 (! 0 v)))))
- \end{lstlisting}
- \end{minipage}
- \end{center}
- From the perspective of programmer-observable behavior, tuples live
- forever. Of course, if they really lived forever, then many programs
- would run out of memory.\footnote{The \LangVec{} language does not have
- looping or recursive functions, so it is nigh impossible to write a
- program in \LangVec{} that will run out of memory. However, we add
- recursive functions in the next Chapter! \ocaml{We have already added loops.}} A Racket \ocaml{(and \LangVec{} or \LangTuple{})} implementation
- must therefore perform automatic garbage collection.
- Figure~\ref{fig:interp-Rvec} shows the definitional interpreter for the
- \LangVec{} language. \ocaml{The OCaml version is in file \code{RTuple.ml}.} We define the \code{vector}, \code{vector-length},
- \code{vector-ref}, and \code{vector-set!} operations for \LangVec{} in
- terms of the corresponding operations in Racket. \ocaml{In OCaml these are defined
- in terms of operations on \code{array}s.} One subtle point is
- that the \code{vector-set!} operation returns the \code{\#<void>}
- value. The \code{\#<void>} value can be passed around just like other
- values inside an \LangVec{} program and a \code{\#<void>} value can be
- compared for equality with another \code{\#<void>} value. \ocaml{This is not true
- in our version; just as for the other Void-typed expressions in \LangLoop{}, our typing
- rules require that \code{:=\;$n$} operations appear only in effectful positions, e.g. a non-final
- position of a \code{seq}.} However,
- there are no other operations specific to the the \code{\#<void>}
- value in \LangVec{}. In contrast, Racket defines the \code{void?} predicate
- that returns \code{\#t} when applied to \code{\#<void>} and \code{\#f}
- otherwise.
- \begin{figure}[tbp]
- \begin{lstlisting}
- (define interp-Rvec-class
- (class interp-Rif-class
- (super-new)
- (define/override (interp-op op)
- (match op
- ['eq? (lambda (v1 v2)
- (cond [(or (and (fixnum? v1) (fixnum? v2))
- (and (boolean? v1) (boolean? v2))
- (and (vector? v1) (vector? v2))
- (and (void? v1) (void? v2)))
- (eq? v1 v2)]))]
- ['vector vector]
- ['vector-length vector-length]
- ['vector-ref vector-ref]
- ['vector-set! vector-set!]
- [else (super interp-op op)]
- ))
- (define/override ((interp-exp env) e)
- (define recur (interp-exp env))
- (match e
- [(HasType e t) (recur e)]
- [(Void) (void)]
- [else ((super interp-exp env) e)]
- ))
- ))
- (define (interp-Rvec p)
- (send (new interp-Rvec-class) interp-program p))
- \end{lstlisting}
- \caption{Interpreter for the \LangVec{} language.}
- \label{fig:interp-Rvec}
- \end{figure}
- Figure~\ref{fig:type-check-Rvec} \ocaml{(file \code{Rtuple.ml})} shows the type checker for \LangVec{}, which
- deserves some explanation. When allocating a vector, we need to know
- which elements of the vector are pointers (i.e. are also vectors). We
- can obtain this information during type checking. The type checker in
- Figure~\ref{fig:type-check-Rvec} not only computes the type of an
- expression, it also wraps every \key{vector} creation with the form
- $(\key{HasType}~e~T)$ \ocaml{(\key{:}~e~T)}, where $T$ is the vector's type.
- %
- To create the s-expression for the \code{Vector} type in
- Figure~\ref{fig:type-check-Rvec}, we use the
- \href{https://docs.racket-lang.org/reference/quasiquote.html}{unquote-splicing
- operator} \code{,@} to insert the list \code{t*} without its usual
- start and end parentheses. \index{unquote-slicing}
- \ocaml{Tuples can be compared for equality, using reference rather than structural
- equality, i.e. separately allocated tuples compare as different even if their
- contents are the same field by field. \LangTuple{} uses a stricter type check on equality than
- \LangVec{}: only tuples of the same size amd element types can be compared.
- Tuples can have any size between 0 and 50, inclusive. The upper limit is
- due to implementation considerations discussed later. Zero-length tuples are
- legal value, but of limited use (they are quite similar to the unit value \code{()},
- except that each is separately allocated, so they can be used as unique labels).}
- \begin{figure}[tp]
- \begin{lstlisting}[basicstyle=\ttfamily\scriptsize]
- (define type-check-Rvec-class
- (class type-check-Rif-class
- (super-new)
- (inherit check-type-equal?)
- (define/override (type-check-exp env)
- (lambda (e)
- (define recur (type-check-exp env))
- (match e
- [(Void) (values (Void) 'Void)]
- [(Prim 'vector es)
- (define-values (e* t*) (for/lists (e* t*) ([e es]) (recur e)))
- (define t `(Vector ,@t*))
- (values (HasType (Prim 'vector e*) t) t)]
- [(Prim 'vector-ref (list e1 (Int i)))
- (define-values (e1^ t) (recur e1))
- (match t
- [`(Vector ,ts ...)
- (unless (and (0 . <= . i) (i . < . (length ts)))
- (error 'type-check "index ~a out of bounds\nin ~v" i e))
- (values (Prim 'vector-ref (list e1^ (Int i))) (list-ref ts i))]
- [else (error 'type-check "expect Vector, not ~a\nin ~v" t e)])]
- [(Prim 'vector-set! (list e1 (Int i) arg) )
- (define-values (e-vec t-vec) (recur e1))
- (define-values (e-arg^ t-arg) (recur arg))
- (match t-vec
- [`(Vector ,ts ...)
- (unless (and (0 . <= . i) (i . < . (length ts)))
- (error 'type-check "index ~a out of bounds\nin ~v" i e))
- (check-type-equal? (list-ref ts i) t-arg e)
- (values (Prim 'vector-set! (list e-vec (Int i) e-arg^)) 'Void)]
- [else (error 'type-check "expect Vector, not ~a\nin ~v" t-vec e)])]
- [(Prim 'vector-length (list e))
- (define-values (e^ t) (recur e))
- (match t
- [`(Vector ,ts ...)
- (values (Prim 'vector-length (list e^)) 'Integer)]
- [else (error 'type-check "expect Vector, not ~a\nin ~v" t e)])]
- [(Prim 'eq? (list arg1 arg2))
- (define-values (e1 t1) (recur arg1))
- (define-values (e2 t2) (recur arg2))
- (match* (t1 t2)
- [(`(Vector ,ts1 ...) `(Vector ,ts2 ...)) (void)]
- [(other wise) (check-type-equal? t1 t2 e)])
- (values (Prim 'eq? (list e1 e2)) 'Boolean)]
- [(HasType (Prim 'vector es) t)
- ((type-check-exp env) (Prim 'vector es))]
- [(HasType e1 t)
- (define-values (e1^ t^) (recur e1))
- (check-type-equal? t t^ e)
- (values (HasType e1^ t) t)]
- [else ((super type-check-exp env) e)]
- )))
- ))
- (define (type-check-Rvec p)
- (send (new type-check-Rvec-class) type-check-program p))
- \end{lstlisting}
- \caption{Type checker for the \LangVec{} language.}
- \label{fig:type-check-Rvec}
- \end{figure}
- \section{Garbage Collection}
- \label{sec:GC}
- Here we study a relatively simple algorithm for garbage collection
- that is the basis of state-of-the-art garbage
- collectors~\citep{Lieberman:1983aa,Ungar:1984aa,Jones:1996aa,Detlefs:2004aa,Dybvig:2006aa,Tene:2011kx}. In
- particular, we describe a two-space copying
- collector~\citep{Wilson:1992fk} that uses Cheney's algorithm to
- perform the
- copy~\citep{Cheney:1970aa}.
- \index{copying collector}
- \index{two-space copying collector}
- Figure~\ref{fig:copying-collector} gives a
- coarse-grained depiction of what happens in a two-space collector,
- showing two time steps, prior to garbage collection (on the top) and
- after garbage collection (on the bottom). In a two-space collector,
- the heap is divided into two parts named the FromSpace and the
- ToSpace. Initially, all allocations go to the FromSpace until there is
- not enough room for the next allocation request. At that point, the
- garbage collector goes to work to make more room.
- \index{ToSpace}
- \index{FromSpace}
- The garbage collector must be careful not to reclaim tuples that will
- be used by the program in the future. Of course, it is impossible in
- general to predict what a program will do, but we can over approximate
- the will-be-used tuples by preserving all tuples that could be
- accessed by \emph{any} program given the current computer state. A
- program could access any tuple whose address is in a register or on
- the procedure call stack. These addresses are called the \emph{root
- set}\index{root set}. In addition, a program could access any tuple that is
- transitively reachable from the root set. Thus, it is safe for the
- garbage collector to reclaim the tuples that are not reachable in this
- way.
- So the goal of the garbage collector is twofold:
- \begin{enumerate}
- \item preserve all tuple that are reachable from the root set via a
- path of pointers, that is, the \emph{live} tuples, and
- \item reclaim the memory of everything else, that is, the
- \emph{garbage}.
- \end{enumerate}
- A copying collector accomplishes this by copying all of the live
- objects from the FromSpace into the ToSpace and then performs a sleight
- of hand, treating the ToSpace as the new FromSpace and the old
- FromSpace as the new ToSpace. In the example of
- Figure~\ref{fig:copying-collector}, there are three pointers in the
- root set, one in a register and two on the stack. All of the live
- objects have been copied to the ToSpace (the right-hand side of
- Figure~\ref{fig:copying-collector}) in a way that preserves the
- pointer relationships. For example, the pointer in the register still
- points to a 2-tuple whose first element is a 3-tuple and whose second
- element is a 2-tuple. There are four tuples that are not reachable
- from the root set and therefore do not get copied into the ToSpace.
- The exact situation in Figure~\ref{fig:copying-collector} cannot be
- created by a well-typed program in \LangVec{} \ocaml{(or \LangTuple{})} because it contains a
- cycle. However, creating cycles will be possible once we get to \LangAny{}.
- \ocaml{Our inability to construct a cycle in the heap in \LangTuple{}
- is due to the type system, not the operational semantics. To see why,
- try assigning a type to \code{a} in \code{(let a (\# 0) (:= 0 a a))}.}
- We design the garbage collector to deal with cycles to begin with so
- we will not need to revisit this issue.
- \begin{figure}[tbp]
- \centering
- \includegraphics[width=\textwidth]{figs/copy-collect-1} \\[5ex]
- \includegraphics[width=\textwidth]{figs/copy-collect-2}
- \caption{A copying collector in action.}
- \label{fig:copying-collector}
- \end{figure}
- There are many alternatives to copying collectors (and their bigger
- siblings, the generational collectors) when its comes to garbage
- collection, such as mark-and-sweep~\citep{McCarthy:1960dz} and
- reference counting~\citep{Collins:1960aa}. The strengths of copying
- collectors are that allocation is fast (just a comparison and pointer
- increment), there is no fragmentation, cyclic garbage is collected,
- and the time complexity of collection only depends on the amount of
- live data, and not on the amount of garbage~\citep{Wilson:1992fk}. The
- main disadvantages of a two-space copying collector is that it uses a
- lot of space and takes a long time to perform the copy, though these
- problems are ameliorated in generational collectors. Racket and
- Scheme programs tend to allocate many small objects and generate a lot
- of garbage, so copying and generational collectors are a good fit.
- Garbage collection is an active research topic, especially concurrent
- garbage collection~\citep{Tene:2011kx}. Researchers are continuously
- developing new techniques and revisiting old
- trade-offs~\citep{Blackburn:2004aa,Jones:2011aa,Shahriyar:2013aa,Cutler:2015aa,Shidal:2015aa,Osterlund:2016aa,Jacek:2019aa,Gamari:2020aa}. Researchers
- meet every year at the International Symposium on Memory Management to
- present these findings.
- \subsection{Graph Copying via Cheney's Algorithm}
- \label{sec:cheney}
- \index{Cheney's algorithm}
- Let us take a closer look at the copying of the live objects. The
- allocated objects and pointers can be viewed as a graph and we need to
- copy the part of the graph that is reachable from the root set. To
- make sure we copy all of the reachable vertices in the graph, we need
- an exhaustive graph traversal algorithm, such as depth-first search or
- breadth-first search~\citep{Moore:1959aa,Cormen:2001uq}. Recall that
- such algorithms take into account the possibility of cycles by marking
- which vertices have already been visited, so as to ensure termination
- of the algorithm. These search algorithms also use a data structure
- such as a stack or queue as a to-do list to keep track of the vertices
- that need to be visited. We use breadth-first search and a trick
- due to \citet{Cheney:1970aa} for simultaneously representing the queue
- and copying tuples into the ToSpace.
- Figure~\ref{fig:cheney} shows several snapshots of the ToSpace as the
- copy progresses. The queue is represented by a chunk of contiguous
- memory at the beginning of the ToSpace, using two pointers to track
- the front and the back of the queue. The algorithm starts by copying
- all tuples that are immediately reachable from the root set into the
- ToSpace to form the initial queue. When we copy a tuple, we mark the
- old tuple to indicate that it has been visited. We discuss how this
- marking is accomplish in Section~\ref{sec:data-rep-gc}. Note that any
- pointers inside the copied tuples in the queue still point back to the
- FromSpace. Once the initial queue has been created, the algorithm
- enters a loop in which it repeatedly processes the tuple at the front
- of the queue and pops it off the queue. To process a tuple, the
- algorithm copies all the tuple that are directly reachable from it to
- the ToSpace, placing them at the back of the queue. The algorithm then
- updates the pointers in the popped tuple so they point to the newly
- copied tuples.
- \begin{figure}[tbp]
- \centering \includegraphics[width=0.9\textwidth]{figs/cheney}
- \caption{Depiction of the Cheney algorithm copying the live tuples.}
- \label{fig:cheney}
- \end{figure}
- Getting back to Figure~\ref{fig:cheney}, in the first step we copy the
- tuple whose second element is $42$ to the back of the queue. The other
- pointer goes to a tuple that has already been copied, so we do not
- need to copy it again, but we do need to update the pointer to the new
- location. This can be accomplished by storing a \emph{forwarding
- pointer} to the new location in the old tuple, back when we initially
- copied the tuple into the ToSpace. This completes one step of the
- algorithm. The algorithm continues in this way until the front of the
- queue is empty, that is, until the front catches up with the back.
- \subsection{Data Representation}
- \label{sec:data-rep-gc}
- The garbage collector places some requirements on the data
- representations used by our compiler. First, the garbage collector
- needs to distinguish between pointers and other kinds of data. There
- are several ways to accomplish this.
- \begin{enumerate}
- \item Attached a tag to each object that identifies what type of
- object it is~\citep{McCarthy:1960dz}.
- \item Store different types of objects in different
- regions~\citep{Steele:1977ab}.
- \item Use type information from the program to either generate
- type-specific code for collecting or to generate tables that can
- guide the
- collector~\citep{Appel:1989aa,Goldberg:1991aa,Diwan:1992aa}.
- \end{enumerate}
- Dynamically typed languages, such as Lisp, need to tag objects
- anyways, so option 1 is a natural choice for those languages.
- However, \LangVec{} is a statically typed language, so it would be
- unfortunate to require tags on every object, especially small and
- pervasive objects like integers and Booleans. Option 3 is the
- best-performing choice for statically typed languages, but comes with
- a relatively high implementation complexity. To keep this chapter
- within a 2-week time budget, we recommend a combination of options 1
- and 2, using separate strategies for the stack and the heap.
- Regarding the stack, we recommend using a separate stack for pointers,
- which we call a \emph{root stack}\index{root stack} (a.k.a. ``shadow
- stack'')~\citep{Siebert:2001aa,Henderson:2002aa,Baker:2009aa}. That
- is, when a local variable needs to be spilled and is of type
- \code{(Vector $\Type_1 \ldots \Type_n$)}, then we put it on the root
- stack instead of the normal procedure call stack. Furthermore, we
- always spill vector-typed variables if they are live during a call to
- the collector, thereby ensuring that no pointers are in registers
- during a collection. Figure~\ref{fig:shadow-stack} reproduces the
- example from Figure~\ref{fig:copying-collector} and contrasts it with
- the data layout using a root stack. The root stack contains the two
- pointers from the regular stack and also the pointer in the second
- register.
- \ocaml{Because our language still defines just one function, \code{main},
- it may not be clear that the root stack (just like the regular stack)
- is designed to be shared among all functions. This will
- allow the collector to find all the roots from all the
- currently suspended functions (waiting to be returned to) as well as from
- the current function.}
- \begin{figure}[tbp]
- \centering \includegraphics[width=0.60\textwidth]{figs/root-stack}
- \caption{Maintaining a root stack to facilitate garbage collection.}
- \label{fig:shadow-stack}
- \end{figure}
- The problem of distinguishing between pointers and other kinds of data
- also arises inside of each tuple on the heap. We solve this problem by
- attaching a tag, an extra 64-bits, to each
- tuple. Figure~\ref{fig:tuple-rep} zooms in on the tags for two of the
- tuples in the example from Figure~\ref{fig:copying-collector}. Note
- that we have drawn the bits in a big-endian way, from right-to-left,
- with bit location 0 (the least significant bit) on the far right,
- which corresponds to the direction of the x86 shifting instructions
- \key{salq} (shift left) and \key{sarq} (shift right). Part of each tag
- is dedicated to specifying which elements of the tuple are pointers,
- the part labeled ``pointer mask''. Within the pointer mask, a 1 bit
- indicates there is a pointer and a 0 bit indicates some other kind of
- data. \ocaml{The least significant bit corresponds to the status of the
- first tuple element, the next-least signficant to the second tuple element, and so on.
- The tag itself is not considered an element, and so does not get a corresponding bit.}
- The pointer mask starts at bit location 7. We have limited
- tuples to a maximum size of 50 elements, so we just need 50 bits for
- the pointer mask. The tag also contains two other pieces of
- information. The length of the tuple (number of elements \ocaml{not including the tag itself}) is stored in
- bits location 1 through 6. Finally, the bit at location 0 indicates
- whether the tuple has yet to be copied to the ToSpace. If the bit has
- value 1, then this tuple has not yet been copied. If the bit has
- value 0 then the entire tag is a forwarding pointer. (The lower 3 bits
- of a pointer are always zero anyways because our tuples are 8-byte
- aligned.)
- \begin{figure}[tbp]
- \centering \includegraphics[width=0.8\textwidth]{figs/tuple-rep}
- \caption{Representation of tuples in the heap.}
- \label{fig:tuple-rep}
- \end{figure}
- \subsection{Implementation of the Garbage Collector}
- \label{sec:organize-gz}
- \index{prelude}
- An implementation of the copying collector is provided in the
- \code{runtime.c} file. Figure~\ref{fig:gc-header} defines the
- interface to the garbage collector that is used by the compiler. The
- \code{initialize} function creates the FromSpace, ToSpace, and root
- stack and should be called in the prelude of the \code{main}
- function. The arguments of \code{initialize} are the root stack size
- and the \ocaml{initial} heap size \ocaml{in bytes}. Both need to be multiples of $64$ \ocaml{$8$}} and $16384$ is a
- good choice for both. \ocaml{Really, these choices are quite arbitrary! The root stack size
- should be large enough to make sure that this stack does not overflow (because we will
- live dangerously and not check for this). Since \LangTuple{} lacks recursion, this stack can never have more
- than one entry for each static tuple creation in the program, so a few hundred slots should be plenty!
- Our collector implementation automatically resizes the heap as needed, so the initial heap size
- doesn't matter much, but it should be set small (say to 8 bytes; 0 is too small!) if you want to exercise
- the collector as vigorously as possible.}
- The \code{initialize} function puts the address
- of the beginning of the FromSpace into the global variable
- \code{free\_ptr}. The global variable \code{fromspace\_end} points to
- the address that is 1-past the last element of the FromSpace. (We use
- half-open intervals to represent chunks of
- memory~\citep{Dijkstra:1982aa}.) The \code{rootstack\_begin} variable
- points to the first element of the root stack. \ocaml{The value of \code{rootstack\_begin}
- is returned as the result of \code{initialize}.}
- As long as there is room left in the FromSpace, your generated code
- can allocate tuples simply by moving the \code{free\_ptr} forward.
- %
- The amount of room left in FromSpace is the difference between the
- \code{fromspace\_end} and the \code{free\_ptr}. The \code{collect}
- function should be called when there is not enough room left in the
- FromSpace for the next allocation. The \code{collect} function takes
- a pointer to the current top of the root stack (one past the last item
- that was pushed) and the number of bytes that need to be
- allocated. The \code{collect} function performs the copying collection
- and leaves the heap in a state such that the next allocation will
- succeed.
- \begin{figure}[tbp]
- \begin{lstlisting}
- void initialize(uint64_t rootstack_size, uint64_t heap_size);
- void collect(int64_t** rootstack_ptr, uint64_t bytes_requested);
- int64_t* free_ptr;
- int64_t* fromspace_begin;
- int64_t* fromspace_end;
- int64_t** rootstack_begin;
- \end{lstlisting}
- \caption{The compiler's interface to the garbage collector.}
- \label{fig:gc-header}
- \end{figure}
- \begin{ocamlx}
- For simplicity, we will package things slightly differently. Instead of
- performing the heap limit check and allocation inline in the generated
- code, you should instead invoke the \code{alloc} function provided in
- \code{runtime.c}. This function takes the top of the root stack,
- the number of bytes to be allocated (including tag), and the tag value;
- it does the limit check, invokes \code{collect}
- if necessary, writes the tag, and returns a pointer to the allocated bytes.
- This approach has the advantage of hiding most details of allocation and collection from the
- code generator. On the other hand, it is a lot less efficient than in-line
- allocation, and thus would be inappropriate for a production compiler for
- a heavily-allocating language (like Racket or OCaml!), although it might be
- fine for a typical OO language like Java.
- \end{ocamlx}
- %% \begin{exercise}
- %% In the file \code{runtime.c} you will find the implementation of
- %% \code{initialize} and a partial implementation of \code{collect}.
- %% The \code{collect} function calls another function, \code{cheney},
- %% to perform the actual copy, and that function is left to the reader
- %% to implement. The following is the prototype for \code{cheney}.
- %% \begin{lstlisting}
- %% static void cheney(int64_t** rootstack_ptr);
- %% \end{lstlisting}
- %% The parameter \code{rootstack\_ptr} is a pointer to the top of the
- %% rootstack (which is an array of pointers). The \code{cheney} function
- %% also communicates with \code{collect} through the global
- %% variables \code{fromspace\_begin} and \code{fromspace\_end}
- %% mentioned in Figure~\ref{fig:gc-header} as well as the pointers for
- %% the ToSpace:
- %% \begin{lstlisting}
- %% static int64_t* tospace_begin;
- %% static int64_t* tospace_end;
- %% \end{lstlisting}
- %% The job of the \code{cheney} function is to copy all the live
- %% objects (reachable from the root stack) into the ToSpace, update
- %% \code{free\_ptr} to point to the next unused spot in the ToSpace,
- %% update the root stack so that it points to the objects in the
- %% ToSpace, and finally to swap the global pointers for the FromSpace
- %% and ToSpace.
- %% \end{exercise}
- %% \section{Compiler Passes}
- %% \label{sec:code-generation-gc}
- The introduction of garbage collection has a non-trivial impact on our
- compiler passes. We introduce a new compiler pass named
- \code{expose-allocation}. We make
- significant changes to \code{select-instructions},
- \code{build-interference}, \code{allocate-registers}, and
- \code{print-x86} and make minor changes in several more passes. The
- following program will serve as our running example. It creates two
- tuples, one nested inside the other. Both tuples have length one. The
- program accesses the element in the inner tuple tuple via two vector
- references.
- % tests/s2_17.rkt
- \begin{lstlisting}
- (vector-ref (vector-ref (vector (vector 42)) 0) 0)
- \end{lstlisting}
- \begin{ocamlx}
- \begin{lstlisting}
- (! 0 (! 0 (# (# 42))))
- \end{lstlisting}
- \end{ocamlx}
- \section{Shrink}
- \label{sec:shrink-Rvec}
- Recall that the \code{shrink} pass translates the primitives operators
- into a smaller set of primitives. Because this pass comes after type
- checking, but before the passes that require the type information in
- the \code{HasType} AST nodes, the \code{shrink} pass must be modified
- to wrap \code{HasType} around each AST node that it generates.
- \ocaml{This is a mysterious statement, which I suspect is due to versions
- shifting underneath this book. In any case, we have only put a \code{HasType} around
- each \code{Tuple} node. We just need to make sure that these are preserved.}
- \section{Expose Allocation}
- \label{sec:expose-allocation}
- The pass \code{expose-allocation} lowers the \code{vector} creation
- form into a conditional call to the collector followed by the
- allocation. We choose to place the \code{expose-allocation} pass
- before \code{remove-complex-opera*} because the code generated by
- \code{expose-allocation} contains complex operands. We also place
- \code{expose-allocation} before \code{explicate-control} because
- \code{expose-allocation} introduces new variables using \code{let},
- but \code{let} is gone after \code{explicate-control}.
- The output of \code{expose-allocation} is a language \LangAlloc{} \ocaml{(we remain
- within the \LangTuple{} language)} that
- extends \LangVec{} with the three new forms that we use in the translation
- of the \code{vector} form.
- \[
- \begin{array}{lcl}
- \Exp &::=& \cdots
- \mid (\key{collect} \,\itm{int})
- \mid (\key{allocate} \,\itm{int}\,\itm{type})
- \mid (\key{global-value} \,\itm{name})
- \end{array}
- \]
- The $(\key{collect}\,n)$ form runs the garbage collector, requesting
- $n$ bytes. It will become a call to the \code{collect} function in
- \code{runtime.c} in \code{select-instructions}. The
- $(\key{allocate}\,n\,T)$ form creates an tuple of $n$ elements.
- \index{allocate}
- The $T$ parameter is the type of the tuple: \code{(Vector $\Type_1 \ldots
- \Type_n$)} where $\Type_i$ is the type of the $i$th element in the
- tuple. The $(\key{global-value}\,\itm{name})$ form reads the value of
- a global variable, such as \code{free\_ptr}.
- \ocaml{Of these, we retain only an \code{Alloc} primop, written \code{\#\#}
- in concrete syntax produced by debug output. This operation includes the
- heap limit checking and conditional call to the collector described in
- Section~\ref{sec:organize-gz}. This pass should remove all \text{Tuple}
- and \text{HasType} constructors.}
- In the following, we show the transformation for the \code{vector}
- form into 1) a sequence of let-bindings for the initializing
- expressions, 2) a conditional call to \code{collect} \ocaml{(not for us)}, 3) a call to
- \code{allocate}, and 4) the initialization of the vector. In the
- following, \itm{len} refers to the length of the vector \ocaml{(\emph{excluding} the tag)} and
- \itm{bytes} is how many total bytes need to be allocated for the
- vector \ocaml{(\emph{including} the tag)}, which is 8 for the tag plus \itm{len} times 8.
- \begin{lstlisting}
- (has-type (vector |$e_0 \ldots e_{n-1}$|) |\itm{type}|)
- |$\Longrightarrow$|
- (let ([|$x_0$| |$e_0$|]) ... (let ([|$x_{n-1}$| |$e_{n-1}$|])
- (let ([_ (if (< (+ (global-value free_ptr) |\itm{bytes}|)
- (global-value fromspace_end))
- (void)
- (collect |\itm{bytes}|))])
- (let ([|$v$| (allocate |\itm{len}| |\itm{type}|)])
- (let ([_ (vector-set! |$v$| |$0$| |$x_0$|)]) ...
- (let ([_ (vector-set! |$v$| |$n-1$| |$x_{n-1}$|)])
- |$v$|) ... )))) ...)
- \end{lstlisting}
- In the above, we suppressed all of the \code{has-type} forms in the
- output for the sake of readability. \ocaml{(Again, this is mysterious; never mind.)} The placement of the initializing
- expressions $e_0,\ldots,e_{n-1}$ prior to the \code{allocate} and the
- sequence of \code{vector-set!} is important, as those expressions may
- trigger garbage collection and we cannot have an allocated but
- uninitialized tuple on the heap during a collection.
- \begin{ocamlx}
- Here is our equivalent:
- \begin{lstlisting}
- (: (# |$e_0 \ldots e_{n-1}$|) |\itm{type}|)
- |$\Longrightarrow$|
- (let |$x_0$| |$e_0$| ... (let |$x_{n-1}$| |$e_{n-1}$|
- (let |$v$| (## |\itm{len}| |\itm{type}|)
- (seq (:= |$0$| |$v$| |$x_0$|) ...
- (:= |$n-1$| |$v$| |$x_{n-1}$|)
- |$v$|) ... )) ...)
- \end{lstlisting}
- Actually, we can (and should) do a little better than this: any $e_i$ that is already an atom can
- be used directly in the assignment without the need for defining a fresh variable $x_i$. The
- parallels to RemoveComplexOperands should be obvious.
- \end{ocamlx}
- Figure~\ref{fig:expose-alloc-output} shows the output of the
- \code{expose-allocation} pass on our running example.
- \begin{figure}[tbp]
- % tests/s2_17.rkt
- \begin{lstlisting}
- (vector-ref
- (vector-ref
- (let ([vecinit7976
- (let ([vecinit7972 42])
- (let ([collectret7974
- (if (< (+ (global-value free_ptr) 16)
- (global-value fromspace_end))
- (void)
- (collect 16)
- )])
- (let ([alloc7971 (allocate 1 (Vector Integer))])
- (let ([initret7973 (vector-set! alloc7971 0 vecinit7972)])
- alloc7971)
- )
- )
- )
- ])
- (let ([collectret7978
- (if (< (+ (global-value free_ptr) 16)
- (global-value fromspace_end))
- (void)
- (collect 16)
- )])
- (let ([alloc7975 (allocate 1 (Vector (Vector Integer)))])
- (let ([initret7977 (vector-set! alloc7975 0 vecinit7976)])
- alloc7975)
- )
- )
- )
- 0)
- 0)
- \end{lstlisting}
- \begin{lstlisting}[style=ocaml]
- (! 0
- (! 0
- (let `field.2
- (let `tuple.3
- (## 1 (# int))
- (seq
- (:= 0 `tuple.3 42)
- `tuple.3))
- (let `tuple.1
- (## 1 (# (# int)))
- (seq
- (:= 0 `tuple.1 `field.2)
- `tuple.1)))))
- \end{lstlisting}
- \caption{Output of the \code{expose-allocation} pass, minus
- all of the \code{has-type} forms.}
- \label{fig:expose-alloc-output}
- \end{figure}
- \section{Remove Complex Operands}
- \label{sec:remove-complex-opera-Rvec}
- The new forms \code{collect}, \code{allocate}, and \code{global-value}
- should all be treated as complex operands.
- %% A new case for
- %% \code{HasType} is needed and the case for \code{Prim} needs to be
- %% handled carefully to prevent the \code{Prim} node from being separated
- %% from its enclosing \code{HasType}.
- Figure~\ref{fig:Rvec-anf-syntax}
- shows the grammar for the output language \LangVecANF{} of this
- pass, which is \LangVec{} in administrative normal form.
- \ocaml{For us, there is nothing new to do here at all, since the
- tuple primops are already treated as complex.}
- \begin{figure}[tp]
- \centering
- \fbox{
- \begin{minipage}{0.96\textwidth}
- \small
- \[
- \begin{array}{rcl}
- \Atm &::=& \gray{ \INT{\Int} \mid \VAR{\Var} \mid \BOOL{\itm{bool}} }
- \mid \VOID{} \\
- \Exp &::=& \gray{ \Atm \mid \READ{} } \\
- &\mid& \gray{ \NEG{\Atm} \mid \ADD{\Atm}{\Atm} } \\
- &\mid& \gray{ \LET{\Var}{\Exp}{\Exp} } \\
- &\mid& \gray{ \UNIOP{\key{'not}}{\Atm} } \\
- &\mid& \gray{ \BINOP{\itm{cmp}}{\Atm}{\Atm} \mid \IF{\Exp}{\Exp}{\Exp} }\\
- &\mid& \LP\key{Collect}~\Int\RP \mid \LP\key{Allocate}~\Int~\Type\RP
- \mid \LP\key{GlobalValue}~\Var\RP\\
- % &\mid& \LP\key{HasType}~\Exp~\Type\RP \\
- R^{\dagger}_3 &::=& \gray{ \PROGRAM{\code{'()}}{\Exp} }
- \end{array}
- \]
- \end{minipage}
- }
- \caption{\LangVecANF{} is \LangVec{} in administrative normal form (ANF).}
- \label{fig:Rvec-anf-syntax}
- \end{figure}
- \section{Explicate Control and the \LangCVec{} \ocaml{\LangCTuple{}} language}
- \label{sec:explicate-control-r3}
- \begin{figure}[tp]
- \fbox{
- \begin{minipage}{0.96\textwidth}
- \small
- \[
- \begin{array}{lcl}
- \Atm &::=& \gray{ \INT{\Int} \mid \VAR{\Var} \mid \BOOL{\itm{bool}} }\\
- \itm{cmp} &::= & \gray{ \key{eq?} \mid \key{<} } \\
- \Exp &::= & \gray{ \Atm \mid \READ{} } \\
- &\mid& \gray{ \NEG{\Atm} \mid \ADD{\Atm}{\Atm} }\\
- &\mid& \gray{ \UNIOP{\key{not}}{\Atm} \mid \BINOP{\itm{cmp}}{\Atm}{\Atm} } \\
- &\mid& \LP\key{Allocate} \,\itm{int}\,\itm{type}\RP \\
- &\mid& \BINOP{\key{'vector-ref}}{\Atm}{\INT{\Int}} \\
- &\mid& \LP\key{Prim}~\key{'vector-set!}\,\LP\Atm\,\INT{\Int}\,\Atm\RP\RP\\
- &\mid& \LP\key{GlobalValue} \,\Var\RP \mid \LP\key{Void}\RP\\
- \Stmt &::=& \gray{ \ASSIGN{\VAR{\Var}}{\Exp} }
- \mid \LP\key{Collect} \,\itm{int}\RP \\
- \Tail &::= & \gray{ \RETURN{\Exp} \mid \SEQ{\Stmt}{\Tail}
- \mid \GOTO{\itm{label}} } \\
- &\mid& \gray{ \IFSTMT{\BINOP{\itm{cmp}}{\Atm}{\Atm}}{\GOTO{\itm{label}}}{\GOTO{\itm{label}}} }\\
- \LangCVec{} & ::= & \gray{ \CPROGRAM{\itm{info}}{\LP\LP\itm{label}\,\key{.}\,\Tail\RP\ldots\RP} }
- \end{array}
- \]
- \end{minipage}
- }
- \caption{The abstract syntax of \LangCVec{}, extending \LangCIf{}
- (Figure~\ref{fig:c1-syntax}).}
- \label{fig:c2-syntax}
- \end{figure}
- The output of \code{explicate-control} is a program in the
- intermediate language \LangCVec{} \ocaml{(\LangCTuple{})}, whose abstract syntax is defined in
- Figure~\ref{fig:c2-syntax} \ocaml{(in file \code{CTuple.ml})}. (The concrete syntax is defined in
- Figure~\ref{fig:c2-concrete-syntax} of the Appendix.) The new forms
- of \LangCVec{} include the \key{allocate}, \key{vector-ref}, and
- \key{vector-set!}, and \key{global-value} expressions and the
- \code{collect} statement. The \code{explicate-control} pass can treat
- these new forms much like the other expression forms that we've
- already encoutered.
- \ocaml{In \LangCTuple{}, the \key{GetField} and \key{Alloc} primops from
- \LangTuple{} continue to be primops. But but \code{SetField} needs to be
- turned into a new kind of side-effecting statement (\code{stmt}), as an alternative
- to \code{Assign}.
- Also, note that there is an awkward case to deal with if a \code{GetField}
- is used in a predicate position: we have to create a new temporary on the
- fly to hold the fetched value and compare it \code{Bool true} just as for
- (existing) variables.}
- \section{Select Instructions and the \LangXGlobal{} Language}
- \label{sec:select-instructions-gc}
- \index{instruction selection}
- %% void (rep as zero)
- %% allocate
- %% collect (callq collect)
- %% vector-ref
- %% vector-set!
- %% global (postpone)
- In this pass we generate x86 code for most of the new operations that
- were needed to compile tuples, including \code{Allocate},
- \code{Collect}, \code{vector-ref}, \code{vector-set!}, and
- \code{void}. We compile \code{GlobalValue} to \code{Global} because
- the later has a different concrete syntax (see
- Figures~\ref{fig:x86-2-concrete} and \ref{fig:x86-2}).
- \index{x86}\ocaml{(We would have to translate it anyway, since
- two different OCaml datatypes are involved.)}
- The \code{vector-ref} \ocaml{(\code{!\;$n$})} and \code{vector-set!} \ocaml{\code{(:=\;$n$)}} forms translate into
- \code{movq} instructions. (The plus one in the offset is to get past
- the tag at the beginning of the tuple representation.)
- \begin{lstlisting}
- |$\itm{lhs}$| = (vector-ref |$\itm{vec}$| |$n$|);
- |$\Longrightarrow$|
- movq |$\itm{vec}'$|, %r11
- movq |$8(n+1)$|(%r11), |$\itm{lhs'}$|
- |$\itm{lhs}$| = (vector-set! |$\itm{vec}$| |$n$| |$\itm{arg}$|);
- |$\Longrightarrow$|
- movq |$\itm{vec}'$|, %r11
- movq |$\itm{arg}'$|, |$8(n+1)$|(%r11)
- movq $0, |$\itm{lhs'}$|
- \end{lstlisting}
- \ocaml{Execept that for \code{:=\;$n$} we don't need the final \code{movq} because we don't bind a result for
- this void-valued operation.}
- The $\itm{lhs}'$, $\itm{vec}'$, and $\itm{arg}'$ are obtained by
- translating $\itm{vec}$ and $\itm{arg}$ to x86. The move of $\itm{vec}'$ to
- register \code{r11} ensures that offset expression
- \code{$-8(n+1)$(\%r11)} contains a register operand. This requires
- removing \code{r11} from consideration by the register allocating \ocaml{allocator}.
- Why not use \code{rax} instead of \code{r11}? Suppose we instead used
- \code{rax}. Then the generated code for \code{vector-set!} would be
- \begin{lstlisting}
- movq |$\itm{vec}'$|, %rax
- movq |$\itm{arg}'$|, |$8(n+1)$|(%rax)
- movq $0, |$\itm{lhs}'$|
- \end{lstlisting}
- Next, suppose that $\itm{arg}'$ ends up as a stack location, so
- \code{patch-instructions} would insert a move through \code{rax}
- as follows.
- \begin{lstlisting}
- movq |$\itm{vec}'$|, %rax
- movq |$\itm{arg}'$|, %rax
- movq %rax, |$8(n+1)$|(%rax)
- movq $0, |$\itm{lhs}'$|
- \end{lstlisting}
- But the above sequence of instructions does not work because we're
- trying to use \code{rax} for two different values ($\itm{vec}'$ and
- $\itm{arg}'$) at the same time!
- \ocaml{The next two paragraphs are substantially different for us, because
- we have a runtime system \code{alloc} function that incorporates the
- actual allocation, invoking \code{collect} if necessary. See more below.}
- We compile the \code{allocate} form to operations on the
- \code{free\_ptr}, as shown below. The address in the \code{free\_ptr}
- is the next free address in the FromSpace, so we copy it into
- \code{r11} and then move it forward by enough space for the tuple
- being allocated, which is $8(\itm{len}+1)$ bytes because each element
- is 8 bytes (64 bits) and we use 8 bytes for the tag. We then
- initialize the \itm{tag} and finally copy the address in \code{r11} to
- the left-hand-side. Refer to Figure~\ref{fig:tuple-rep} to see how the
- tag is organized. We recommend using the Racket operations
- \code{bitwise-ior} and \code{arithmetic-shift} to compute the tag
- during compilation. The type annotation in the \code{vector} form is
- used to determine the pointer mask region of the tag.
- \begin{lstlisting}
- |$\itm{lhs}$| = (allocate |$\itm{len}$| (Vector |$\itm{type} \ldots$|));
- |$\Longrightarrow$|
- movq free_ptr(%rip), %r11
- addq |$8(\itm{len}+1)$|, free_ptr(%rip)
- movq $|$\itm{tag}$|, 0(%r11)
- movq %r11, |$\itm{lhs}'$|
- \end{lstlisting}
- The \code{collect} form is compiled to a call to the \code{collect}
- function in the runtime. The arguments to \code{collect} are 1) the
- top of the root stack and 2) the number of bytes that need to be
- allocated. We use another dedicated register, \code{r15}, to
- store the pointer to the top of the root stack. So \code{r15} is not
- available for use by the register allocator.
- \begin{lstlisting}
- (collect |$\itm{bytes}$|)
- |$\Longrightarrow$|
- movq %r15, %rdi
- movq $|\itm{bytes}|, %rsi
- callq collect
- \end{lstlisting}
- \begin{ocamlx}
- For the OCaml version, we use the following translation:
-
- \begin{color}{blue}
- \begin{lstlisting}
- |$\itm{lhs}$| = (## |$\itm{len}$| (# |$\itm{type} \ldots$|));
- |$\Longrightarrow$|
- movq %r15, %rdi
- movq $|$(\itm{len}+1)$|, %rsi
- movq $|$\itm{tag}$|, %rdx
- callq alloc
- movq %rax, |$\itm{lhs}'$|
- \end{lstlisting}
- \end{color}
- Here $\itm{tag}$ is the tag value (refer to Figure~\ref{fig:tuple-rep}), which you can compute from $\itm{len}$ and
- the list of element $\itm{type}$s, using the OCaml \code{Int64} bit-wise operations. The first argument to \code{alloc}
- is the top of the root stack; see the previous paragraph about the use of \code{\%r15}.
- \end{ocamlx}
- \begin{figure}[tp]
- \fbox{
- \begin{minipage}{0.96\textwidth}
- \[
- \begin{array}{lcl}
- \Arg &::=& \gray{ \key{\$}\Int \mid \key{\%}\Reg \mid \Int\key{(}\key{\%}\Reg\key{)} \mid \key{\%}\itm{bytereg} } \mid \Var \key{(\%rip)} \\
- \LangXGlobal{} &::= & \gray{ \key{.globl main} }\\
- & & \gray{ \key{main:} \; \Instr\ldots }
- \end{array}
- \]
- \end{minipage}
- }
- \caption{The concrete syntax of \LangXGlobal{} (extends \LangXIf{} of Figure~\ref{fig:x86-1-concrete}).}
- \label{fig:x86-2-concrete}
- \end{figure}
- \begin{figure}[tp]
- \fbox{
- \begin{minipage}{0.96\textwidth}
- \small
- \[
- \begin{array}{lcl}
- \Arg &::=& \gray{ \INT{\Int} \mid \REG{\Reg} \mid \DEREF{\Reg}{\Int}
- \mid \BYTEREG{\Reg}} \\
- &\mid& (\key{Global}~\Var) \\
- \LangXGlobal{} &::= & \gray{ \XPROGRAM{\itm{info}}{\LP\LP\itm{label} \,\key{.}\, \Block \RP\ldots\RP} }
- \end{array}
- \]
- \end{minipage}
- }
- \caption{The abstract syntax of \LangXGlobal{} (extends \LangXIf{} of Figure~\ref{fig:x86-1}).}
- \label{fig:x86-2}
- \end{figure}
- The concrete and abstract syntax of the \LangXGlobal{} language is
- defined in Figures~\ref{fig:x86-2-concrete} and \ref{fig:x86-2}. It
- differs from \LangXIf{} just in the addition of the form for global
- variables.
- \begin{ocamlx}
- We use \LangXAlloc{}, which doesn't differ from \LangXIf{} at all in
- its syntax, but has a revised checker and interpreter that can handle the
- richer code we are generating here. In particular, the interpreter supports
- the \code{alloc} function, allowing you to debug code at this level. Note
- that the interpreter does \emph{not} include a collector, so you should
- select a heap size that is large enough to allow tests to run to completion
- without needing collection. The relevant parameters are in
- ref variables defined at the top of \code{X86Alloc.ml}. These parameters
- can be set by driver flags.
- There are some changes in how the entry and exit blocks get built, initially in
- a dummy version and later in a correct one. See comments in the \code{Chapter5.ml}
- template code and the \code{X86Alloc.ml} code for more details.
- \end{ocamlx}
- %
- Figure~\ref{fig:select-instr-output-gc} shows the output of the
- \code{select-instructions} pass on the running example.
- \begin{figure}[tbp]
- \centering
- % tests/s2_17.rkt
- \begin{minipage}[t]{0.5\textwidth}
- \begin{lstlisting}[basicstyle=\ttfamily\scriptsize]
- block35:
- movq free_ptr(%rip), alloc9024
- addq $16, free_ptr(%rip)
- movq alloc9024, %r11
- movq $131, 0(%r11)
- movq alloc9024, %r11
- movq vecinit9025, 8(%r11)
- movq $0, initret9026
- movq alloc9024, %r11
- movq 8(%r11), tmp9034
- movq tmp9034, %r11
- movq 8(%r11), %rax
- jmp conclusion
- block36:
- movq $0, collectret9027
- jmp block35
- block38:
- movq free_ptr(%rip), alloc9020
- addq $16, free_ptr(%rip)
- movq alloc9020, %r11
- movq $3, 0(%r11)
- movq alloc9020, %r11
- movq vecinit9021, 8(%r11)
- movq $0, initret9022
- movq alloc9020, vecinit9025
- movq free_ptr(%rip), tmp9031
- movq tmp9031, tmp9032
- addq $16, tmp9032
- movq fromspace_end(%rip), tmp9033
- cmpq tmp9033, tmp9032
- jl block36
- jmp block37
- block37:
- movq %r15, %rdi
- movq $16, %rsi
- callq 'collect
- jmp block35
- block39:
- movq $0, collectret9023
- jmp block38
- \end{lstlisting}
- \end{minipage}
- \begin{minipage}[t]{0.45\textwidth}
- \begin{lstlisting}[basicstyle=\ttfamily\scriptsize]
- start:
- movq $42, vecinit9021
- movq free_ptr(%rip), tmp9028
- movq tmp9028, tmp9029
- addq $16, tmp9029
- movq fromspace_end(%rip), tmp9030
- cmpq tmp9030, tmp9029
- jl block39
- jmp block40
- block40:
- movq %r15, %rdi
- movq $16, %rsi
- callq 'collect
- jmp block38
- \end{lstlisting}
- \begin{lstlisting}[style=ocaml]
- .globl _main
- _main:
- jmp _start
- _conclusion:
- retq
- _start:
- movq %r15, %rdi
- movq $2, %rsi
- movq $3, %rdx
- callq _alloc
- movq %rax, `tuple.3
- movq `tuple.3, %r11
- movq $42, 8(%r11)
- movq `tuple.3, `field.2
- movq %r15, %rdi
- movq $2, %rsi
- movq $131, %rdx
- callq _alloc
- movq %rax, `tuple.1
- movq `tuple.1, %r11
- movq `field.2, 8(%r11)
- movq `tuple.1, `tmp.2
- movq `tmp.2, %r11
- movq 8(%r11), `tmp.1
- movq `tmp.1, %r11
- movq 8(%r11), %rax
- jmp _conclusion
- \end{lstlisting}
- \end{minipage}
- \caption{Output of the \code{select-instructions} pass.}
- \label{fig:select-instr-output-gc}
- \end{figure}
- \clearpage
- \section{Register Allocation}
- \label{sec:reg-alloc-gc}
- \index{register allocation}
- As discussed earlier in this chapter, the garbage collector needs to
- access all the pointers in the root set, that is, all variables that
- are vectors. It will be the responsibility of the register allocator
- to make sure that:
- \begin{enumerate}
- \item the root stack is used for spilling vector-typed variables, and
- \item if a vector-typed variable is live during a call to the
- collector, it must be spilled to ensure it is visible to the
- collector.
- \end{enumerate}
- The later responsibility can be handled during construction of the
- interference graph, by adding interference edges between the call-live
- vector-typed variables and all the callee-saved registers. (They
- already interfere with the caller-saved registers.) The type
- information for variables is in the \code{Program} form, so we
- recommend adding another parameter to the \code{build-interference}
- function to communicate this alist.
- The spilling of vector-typed variables to the root stack can be
- handled after graph coloring, when choosing how to assign the colors
- (integers) to registers and stack locations. The \code{Program} output
- of this pass changes to also record the number of spills to the root
- stack.
- % build-interference
- %
- % callq
- % extra parameter for var->type assoc. list
- % update 'program' and 'if'
- % allocate-registers
- % allocate spilled vectors to the rootstack
- % don't change color-graph
- \section{Print x86}
- \label{sec:print-x86-gc}
- \index{prelude}\index{conclusion}
- Figure~\ref{fig:print-x86-output-gc} shows the output of the
- \code{print-x86} pass on the running example. In the prelude and
- conclusion of the \code{main} function, we treat the root stack very
- much like the regular stack in that we move the root stack pointer
- (\code{r15}) to make room for the spills to the root stack, except
- that the root stack grows up instead of down. For the running
- example, there was just one spill so we increment \code{r15} by 8
- bytes. In the conclusion we decrement \code{r15} by 8 bytes.
- \ocaml{Out of sheer laziness, we don't check for possible overflow
- of the root stack. A production system would need to do this.}
- One issue that deserves special care is that there may be a call to
- \code{collect} prior to the initializing assignments for all the
- variables in the root stack. We do not want the garbage collector to
- accidentally think that some uninitialized variable is a pointer that
- needs to be followed. Thus, we zero-out all locations on the root
- stack in the prelude of \code{main}. In
- Figure~\ref{fig:print-x86-output-gc}, the instruction
- %
- \lstinline{movq $0, (%r15)}
- %
- accomplishes this task. The garbage collector tests each root to see
- if it is null prior to dereferencing it.
- \begin{figure}[htbp]
- \begin{minipage}[t]{0.5\textwidth}
- \begin{lstlisting}[basicstyle=\ttfamily\scriptsize]
- block35:
- movq free_ptr(%rip), %rcx
- addq $16, free_ptr(%rip)
- movq %rcx, %r11
- movq $131, 0(%r11)
- movq %rcx, %r11
- movq -8(%r15), %rax
- movq %rax, 8(%r11)
- movq $0, %rdx
- movq %rcx, %r11
- movq 8(%r11), %rcx
- movq %rcx, %r11
- movq 8(%r11), %rax
- jmp conclusion
- block36:
- movq $0, %rcx
- jmp block35
- block38:
- movq free_ptr(%rip), %rcx
- addq $16, free_ptr(%rip)
- movq %rcx, %r11
- movq $3, 0(%r11)
- movq %rcx, %r11
- movq %rbx, 8(%r11)
- movq $0, %rdx
- movq %rcx, -8(%r15)
- movq free_ptr(%rip), %rcx
- addq $16, %rcx
- movq fromspace_end(%rip), %rdx
- cmpq %rdx, %rcx
- jl block36
- movq %r15, %rdi
- movq $16, %rsi
- callq collect
- jmp block35
- block39:
- movq $0, %rcx
- jmp block38
- \end{lstlisting}
- \end{minipage}
- \begin{minipage}[t]{0.45\textwidth}
- \begin{lstlisting}[basicstyle=\ttfamily\scriptsize]
- start:
- movq $42, %rbx
- movq free_ptr(%rip), %rdx
- addq $16, %rdx
- movq fromspace_end(%rip), %rcx
- cmpq %rcx, %rdx
- jl block39
- movq %r15, %rdi
- movq $16, %rsi
- callq collect
- jmp block38
-
- .globl main
- main:
- pushq %rbp
- movq %rsp, %rbp
- pushq %r13
- pushq %r12
- pushq %rbx
- pushq %r14
- subq $0, %rsp
- movq $16384, %rdi
- movq $16384, %rsi
- callq initialize
- movq rootstack_begin(%rip), %r15
- movq $0, (%r15)
- addq $8, %r15
- jmp start
- conclusion:
- subq $8, %r15
- addq $0, %rsp
- popq %r14
- popq %rbx
- popq %r12
- popq %r13
- popq %rbp
- retq
- \end{lstlisting}
- \end{minipage}
- \begin{minipage}{0.45\textwidth}
- \begin{lstlisting}[basicstyle=\ttfamily\scriptsize,style=ocaml]
- .globl main
- _main:
- pushq %rbp
- movq %rsp, %rbp
- subq $0, %rsp
- movq $16384, %rsi
- movq $16384, %rdi
- callq _initialize
- movq %rax, %r15
- movq $0, 0(%r15)
- addq $8, %r15
- jmp _start
- _conclusion:
- subq $8, %r15
- addq $0, %rsp
- popq %rbp
- retq
- \end{lstlisting}
- \end{minipage}
- \begin{minipage}[r]{0.45\textwidth}
- \begin{lstlisting}[basicstyle=\ttfamily\scriptsize,style=ocaml]
- _start:
- movq %r15, %rdi
- movq $2, %rsi
- movq $3, %rdx
- callq _alloc
- movq %rax, %rcx
- movq %rcx, %r11
- movq $42, 8(%r11)
- movq %rcx, -8(%r15)
- movq %r15, %rdi
- movq $2, %rsi
- movq $131, %rdx
- callq _alloc
- movq %rax, %rcx
- movq %rcx, %r11
- movq -8(%r15), %rax
- movq %rax, 8(%r11)
- movq %rcx, %r11
- movq 8(%r11), %rcx
- movq %rcx, %r11
- movq 8(%r11), %rax
- jmp _conclusion
- \end{lstlisting}
- \end{minipage}
- \caption{Output of the \code{print-x86} pass.}
- \label{fig:print-x86-output-gc}
- \end{figure}
- \begin{figure}[p]
- \begin{tikzpicture}[baseline=(current bounding box.center)]
- \node (Rvec) at (0,2) {\large \LangVec{}};
- \node (Rvec-2) at (3,2) {\large \LangVec{}};
- \node (Rvec-3) at (6,2) {\large \LangVec{}};
- \node (Rvec-4) at (9,2) {\large \LangVec{}};
- \node (Rvec-5) at (12,2) {\large \LangAlloc{}};
- \node (C2-4) at (3,0) {\large \LangCVec{}};
- \node (x86-2) at (3,-2) {\large \LangXGlobalVar{}};
- \node (x86-2-1) at (3,-4) {\large \LangXGlobalVar{}};
- \node (x86-2-2) at (6,-4) {\large \LangXGlobalVar{}};
- \node (x86-3) at (6,-2) {\large \LangXGlobalVar{}};
- \node (x86-4) at (9,-2) {\large \LangXGlobal{}};
- \node (x86-5) at (9,-4) {\large \LangXGlobal{}};
- %\path[->,bend left=15] (Rvec) edge [above] node {\ttfamily\footnotesize type-check} (Rvec-2);
- \path[->,bend left=15] (Rvec) edge [above] node {\ttfamily\footnotesize shrink} (Rvec-2);
- \path[->,bend left=15] (Rvec-2) edge [above] node {\ttfamily\footnotesize uniquify} (Rvec-3);
- \path[->,bend left=15] (Rvec-3) edge [above] node {\ttfamily\footnotesize expose-alloc.} (Rvec-4);
- \path[->,bend left=15] (Rvec-4) edge [above] node {\ttfamily\footnotesize remove-complex.} (Rvec-5);
- \path[->,bend left=20] (Rvec-5) edge [left] node {\ttfamily\footnotesize explicate-control} (C2-4);
- \path[->,bend left=15] (C2-4) edge [right] node {\ttfamily\footnotesize select-instr.} (x86-2);
- \path[->,bend right=15] (x86-2) edge [left] node {\ttfamily\footnotesize uncover-live} (x86-2-1);
- \path[->,bend right=15] (x86-2-1) edge [below] node {\ttfamily\footnotesize build-inter.} (x86-2-2);
- \path[->,bend right=15] (x86-2-2) edge [right] node {\ttfamily\footnotesize allocate-reg.} (x86-3);
- \path[->,bend left=15] (x86-3) edge [above] node {\ttfamily\footnotesize patch-instr.} (x86-4);
- \path[->,bend left=15] (x86-4) edge [right] node {\ttfamily\footnotesize print-x86} (x86-5);
- \end{tikzpicture}
- \caption{Diagram of the passes for \LangVec{}, a language with tuples.}
- \label{fig:Rvec-passes}
- \end{figure}
- Figure~\ref{fig:Rvec-passes} gives an overview of all the passes needed
- for the compilation of \LangVec{}.
- \section{Challenge: Simple Structures}
- \label{sec:simple-structures}
- \index{struct}
- \index{structure}
- Figure~\ref{fig:r3s-concrete-syntax} defines the concrete syntax for
- \LangStruct{}, which extends \LangVec{} with support for simple structures.
- Recall that a \code{struct} in Typed Racket is a user-defined data
- type that contains named fields and that is heap allocated, similar to
- a vector. The following is an example of a structure definition, in
- this case the definition of a \code{point} type.
- \begin{lstlisting}
- (struct point ([x : Integer] [y : Integer]) #:mutable)
- \end{lstlisting}
- \begin{figure}[tbp]
- \centering
- \fbox{
- \begin{minipage}{0.96\textwidth}
- \[
- \begin{array}{lcl}
- \Type &::=& \gray{\key{Integer} \mid \key{Boolean}
- \mid (\key{Vector}\;\Type \ldots) \mid \key{Void} } \mid \Var \\
- \itm{cmp} &::= & \gray{ \key{eq?} \mid \key{<} \mid \key{<=} \mid \key{>} \mid \key{>=} } \\
- \Exp &::=& \gray{ \Int \mid (\key{read}) \mid (\key{-}\;\Exp) \mid (\key{+} \; \Exp\;\Exp) \mid (\key{-}\;\Exp\;\Exp) } \\
- &\mid& \gray{ \Var \mid (\key{let}~([\Var~\Exp])~\Exp) }\\
- &\mid& \gray{ \key{\#t} \mid \key{\#f}
- \mid (\key{and}\;\Exp\;\Exp)
- \mid (\key{or}\;\Exp\;\Exp)
- \mid (\key{not}\;\Exp) } \\
- &\mid& \gray{ (\itm{cmp}\;\Exp\;\Exp)
- \mid (\key{if}~\Exp~\Exp~\Exp) } \\
- &\mid& \gray{ (\key{vector}\;\Exp \ldots)
- \mid (\key{vector-ref}\;\Exp\;\Int) } \\
- &\mid& \gray{ (\key{vector-set!}\;\Exp\;\Int\;\Exp) }\\
- &\mid& \gray{ (\key{void}) } \mid (\Var\;\Exp \ldots)\\
- \Def &::=& (\key{struct}\; \Var \; ([\Var \,\key{:}\, \Type] \ldots)\; \code{\#:mutable})\\
- \LangStruct{} &::=& \Def \ldots \; \Exp
- \end{array}
- \]
- \end{minipage}
- }
- \caption{The concrete syntax of \LangStruct{}, extending \LangVec{}
- (Figure~\ref{fig:Rvec-concrete-syntax}).}
- \label{fig:r3s-concrete-syntax}
- \end{figure}
- An instance of a structure is created using function call syntax, with
- the name of the structure in the function position:
- \begin{lstlisting}
- (point 7 12)
- \end{lstlisting}
- Function-call syntax is also used to read the value in a field of a
- structure. The function name is formed by the structure name, a dash,
- and the field name. The following example uses \code{point-x} and
- \code{point-y} to access the \code{x} and \code{y} fields of two point
- instances.
- \begin{center}
- \begin{lstlisting}
- (let ([pt1 (point 7 12)])
- (let ([pt2 (point 4 3)])
- (+ (- (point-x pt1) (point-x pt2))
- (- (point-y pt1) (point-y pt2)))))
- \end{lstlisting}
- \end{center}
- Similarly, to write to a field of a structure, use its set function,
- whose name starts with \code{set-}, followed by the structure name,
- then a dash, then the field name, and concluded with an exclamation
- mark. The following example uses \code{set-point-x!} to change the
- \code{x} field from \code{7} to \code{42}.
- \begin{center}
- \begin{lstlisting}
- (let ([pt (point 7 12)])
- (let ([_ (set-point-x! pt 42)])
- (point-x pt)))
- \end{lstlisting}
- \end{center}
- \begin{exercise}\normalfont
- Extend your compiler with support for simple structures, compiling
- \LangStruct{} to x86 assembly code. Create five new test cases that use
- structures and test your compiler.
- \end{exercise}
- \section{Challenge: Generational Collection}
- The copying collector described in Section~\ref{sec:GC} can incur
- significant runtime overhead because the call to \code{collect} takes
- time proportional to all of the live data. One way to reduce this
- overhead is to reduce how much data is inspected in each call to
- \code{collect}. In particular, researchers have observed that recently
- allocated data is more likely to become garbage then data that has
- survived one or more previous calls to \code{collect}. This insight
- motivated the creation of \emph{generational garbage collectors}
- \index{generational garbage collector} that
- 1) segregates data according to its age into two or more generations,
- 2) allocates less space for younger generations, so collecting them is
- faster, and more space for the older generations, and 3) performs
- collection on the younger generations more frequently then for older
- generations~\citep{Wilson:1992fk}.
- For this challenge assignment, the goal is to adapt the copying
- collector implemented in \code{runtime.c} to use two generations, one
- for young data and one for old data. Each generation consists of a
- FromSpace and a ToSpace. The following is a sketch of how to adapt the
- \code{collect} function to use the two generations.
- \begin{enumerate}
- \item Copy the young generation's FromSpace to its ToSpace then switch
- the role of the ToSpace and FromSpace
- \item If there is enough space for the requested number of bytes in
- the young FromSpace, then return from \code{collect}.
- \item If there is not enough space in the young FromSpace for the
- requested bytes, then move the data from the young generation to the
- old one with the following steps:
- \begin{enumerate}
- \item If there is enough room in the old FromSpace, copy the young
- FromSpace to the old FromSpace and then return.
- \item If there is not enough room in the old FromSpace, then collect
- the old generation by copying the old FromSpace to the old ToSpace
- and swap the roles of the old FromSpace and ToSpace.
- \item If there is enough room now, copy the young FromSpace to the
- old FromSpace and return. Otherwise, allocate a larger FromSpace
- and ToSpace for the old generation. Copy the young FromSpace and
- the old FromSpace into the larger FromSpace for the old
- generation and then return.
- \end{enumerate}
- \end{enumerate}
- We recommend that you generalize the \code{cheney} function so that it
- can be used for all the copies mentioned above: between the young
- FromSpace and ToSpace, between the old FromSpace and ToSpace, and
- between the young FromSpace and old FromSpace. This can be
- accomplished by adding parameters to \code{cheney} that replace its
- use of the global variables \code{fromspace\_begin},
- \code{fromspace\_end}, \code{tospace\_begin}, and \code{tospace\_end}.
- Note that the collection of the young generation does not traverse the
- old generation. This introduces a potential problem: there may be
- young data that is only reachable through pointers in the old
- generation. If these pointers are not taken into account, the
- collector could throw away young data that is live! One solution,
- called \emph{pointer recording}, is to maintain a set of all the
- pointers from the old generation into the new generation and consider
- this set as part of the root set. To maintain this set, the compiler
- must insert extra instructions around every \code{vector-set!}. If the
- vector being modified is in the old generation, and if the value being
- written is a pointer into the new generation, than that pointer must
- be added to the set. Also, if the value being overwritten was a
- pointer into the new generation, then that pointer should be removed
- from the set.
- \begin{exercise}\normalfont
- Adapt the \code{collect} function in \code{runtime.c} to implement
- generational garbage collection, as outlined in this section.
- Update the code generation for \code{vector-set!} to implement
- pointer recording. Make sure that your new compiler and runtime
- passes your test suite.
- \end{exercise}
- % Further Reading
- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
- \chapter{Functions}
- \label{ch:Rfun}
- \index{function}
- This chapter studies the compilation of functions similar to those
- found in the C language. This corresponds to a subset of Typed Racket
- in which only top-level function definitions are allowed. This kind of
- function is an important stepping stone to implementing
- lexically-scoped functions, that is, \key{lambda} abstractions, which
- is the topic of Chapter~\ref{ch:Rlam}.
- \section{The \LangFun{} Language}
- The concrete and abstract syntax for function definitions and function
- application is shown in Figures~\ref{fig:Rfun-concrete-syntax} and
- \ref{fig:Rfun-syntax}, where we define the \LangFun{} language. Programs in
- \LangFun{} begin with zero or more function definitions. The function
- names from these definitions are in-scope for the entire program,
- including all other function definitions (so the ordering of function
- definitions does not matter). The concrete syntax for function
- application\index{function application} is $(\Exp \; \Exp \ldots)$
- where the first expression must
- evaluate to a function and the rest are the arguments.
- The abstract syntax for function application is
- $\APPLY{\Exp}{\Exp\ldots}$.
- %% The syntax for function application does not include an explicit
- %% keyword, which is error prone when using \code{match}. To alleviate
- %% this problem, we translate the syntax from $(\Exp \; \Exp \ldots)$ to
- %% $(\key{app}\; \Exp \; \Exp \ldots)$ during type checking.
- Functions are first-class in the sense that a function pointer
- \index{function pointer} is data and can be stored in memory or passed
- as a parameter to another function. Thus, we introduce a function
- type, written
- \begin{lstlisting}
- (|$\Type_1$| |$\cdots$| |$\Type_n$| -> |$\Type_r$|)
- \end{lstlisting}
- for a function whose $n$ parameters have the types $\Type_1$ through
- $\Type_n$ and whose return type is $\Type_r$. The main limitation of
- these functions (with respect to Racket \ocaml{(or, for that matter, OCaml or Haskell)} functions) is that they are
- not lexically scoped. That is, the only external entities that can be
- referenced from inside a function body are other globally-defined
- functions. The syntax of \LangFun{} prevents functions from being nested
- inside each other. \ocaml{\LangFun{} is essentially similar to C with function pointers.}
- \begin{figure}[tp]
- \centering
- \fbox{
- \begin{minipage}{0.96\textwidth}
- \small
- \[
- \begin{array}{lcl}
- \Type &::=& \gray{ \key{Integer} \mid \key{Boolean}
- \mid (\key{Vector}\;\Type\ldots) \mid \key{Void} } \mid (\Type \ldots \; \key{->}\; \Type) \\
- \itm{cmp} &::= & \gray{ \key{eq?} \mid \key{<} \mid \key{<=} \mid \key{>} \mid \key{>=} } \\
- \Exp &::=& \gray{ \Int \mid \CREAD{} \mid \CNEG{\Exp} \mid \CADD{\Exp}{\Exp} \mid \CSUB{\Exp}{\Exp} } \\
- &\mid& \gray{ \Var \mid \CLET{\Var}{\Exp}{\Exp} }\\
- &\mid& \gray{ \key{\#t} \mid \key{\#f}
- \mid (\key{and}\;\Exp\;\Exp)
- \mid (\key{or}\;\Exp\;\Exp)
- \mid (\key{not}\;\Exp)} \\
- &\mid& \gray{(\itm{cmp}\;\Exp\;\Exp) \mid \CIF{\Exp}{\Exp}{\Exp} } \\
- &\mid& \gray{(\key{vector}\;\Exp\ldots) \mid
- (\key{vector-ref}\;\Exp\;\Int)} \\
- &\mid& \gray{(\key{vector-set!}\;\Exp\;\Int\;\Exp)\mid (\key{void})
- \mid \LP\key{has-type}~\Exp~\Type\RP } \\
- &\mid& \LP\Exp \; \Exp \ldots\RP \\
- \Def &::=& \CDEF{\Var}{\LS\Var \key{:} \Type\RS \ldots}{\Type}{\Exp} \\
- \LangFun{} &::=& \Def \ldots \; \Exp
- \end{array}
- \]
- \end{minipage}
- }
- \begin{ocamlx}
- \fbox{
- \begin{minipage}{0.96\textwidth}
- \small
- \[
- \begin{array}{rcl}
- \Type &::=& \gray{\key{int} \mid \key{bool} \mid \key{void}}
- \mid \gray{\LP\key{\#}\;\Type\ldots\RP} \mid (\Type \ldots \; \key{->}\; \Type)\\
- \Exp &::=& \gray{ \Int \mid \CREAD{} \mid \CNEG{\Exp} \mid \CADD{\Exp}{\Exp} \mid \CSUB{\Exp}{\Exp}} \\
- &\mid& \gray{ \Var \mid \code{(let $\Var$ $\Exp$ $\Exp$)}}\\
- &\mid& \gray{\itm{bool}
- \mid (\key{and}\;\Exp\;\Exp) \mid (\key{or}\;\Exp\;\Exp)
- \mid (\key{not}\;\Exp)} \\
- &\mid& \gray{(\itm{cmp}\;\Exp\;\Exp) \mid \CIF{\Exp}{\Exp}{\Exp}} \\
- &\mid& \gray{\code{()} \mid \code{(:= $\Var$ $\Exp$)}
- \mid \code{(seq \Exp\ldots \Exp)}
- \mid \CWHILE{\Exp}{\Exp}} \\
- &\mid& \gray{\LP\key{\#}\;\Exp\ldots\RP \mid \LP\key{!}\;\Int\;\Exp\RP \mid \LP\key{:=}\;\Int\;\Exp\;\Exp\RP}\\
- &\mid& \gray{\LP\key{:}\;\Exp\;\Type\RP \mid \LP\key{\#\#}\;\Int\;\Type\RP}\\
- &\mid& \LP\Exp \; \Exp \ldots\RP \mid \LP\key{\&}\;\Var\RP\\
- \Def &::=& \LP\key{define}\;\Var\;\LP\Var\;\key{:}\;\Type\RP\;\ldots\RP\;\key{:}\;{\Type}\;{\Exp}\RP \\
- \LangFun{} &::=& \Def \ldots \; \Exp
- \end{array}
- \]
- \end{minipage}
- }
- \end{ocamlx}
- \caption{The concrete syntax of \LangFun{}, extending \LangVec{} \ocaml{(\LangTuple{})} (Figure~\ref{fig:Rvec-concrete-syntax}).}
- \label{fig:Rfun-concrete-syntax}
- \end{figure}
- \begin{figure}[tp]
- \centering
- \fbox{
- \begin{minipage}{0.96\textwidth}
- \small
- \[
- \begin{array}{lcl}
- \Exp &::=& \gray{ \INT{\Int} \VAR{\Var} \mid \LET{\Var}{\Exp}{\Exp} } \\
- &\mid& \gray{ \PRIM{\itm{op}}{\Exp\ldots} }\\
- &\mid& \gray{ \BOOL{\itm{bool}}
- \mid \IF{\Exp}{\Exp}{\Exp} } \\
- &\mid& \gray{ \VOID{} \mid \LP\key{HasType}~\Exp~\Type \RP }
- \mid \APPLY{\Exp}{\Exp\ldots}\\
- \Def &::=& \FUNDEF{\Var}{\LP[\Var \code{:} \Type]\ldots\RP}{\Type}{\code{'()}}{\Exp}\\
- \LangFun{} &::=& \PROGRAMDEFSEXP{\code{'()}}{\LP\Def\ldots\RP)}{\Exp}
- \end{array}
- \]
- \end{minipage}
- }
- \begin{lstlisting}[style=ocaml,frame=single]
- type typ = IntT | BoolT | VoidT | TupleT of typ list
- | FunT of typ list * typ
- type cmp = Eq | Lt | Le | Gt | Ge
- type primop = Read | Neg | Add | Sub | And | Or | Not | Cmp of cmp
- | GetField of int | SetField of int | Alloc of int * typ
- type var = string
- type exp =
- Int of int64
- | Bool of bool
- | Prim of primop * exp list
- | Var of var
- | Let of var * exp * exp
- | If of exp * exp * exp
- | Void
- | Set of var * exp
- | Seq of exp list * exp
- | While of exp * exp
- | Tuple of exp list
- | HasType of exp * typ
- | Apply of exp * exp list
- | FunRef of var
- type 'finfo func =
- Func of var * (var * typ) list * typ * 'finfo * exp
- type ('pinfo,'finfo) program =
- Program of 'pinfo * ('finfo func) list * exp option
- \end{lstlisting}
- \caption{The abstract syntax of \LangFun{}, extending \LangVec{} \ocaml{(\LangTuple{})} (Figure~\ref{fig:Rvec-syntax}).}
- \label{fig:Rfun-syntax}
- \end{figure}
- The program in Figure~\ref{fig:Rfun-function-example} is a
- representative example of defining and using functions in \LangFun{}. We
- define a function \code{map-vec} that applies some other function
- \code{f} to both elements of a vector and returns a new
- vector containing the results. We also define a function \code{add1}.
- The program applies
- \code{map-vec} to \code{add1} and \code{(vector 0 41)}. The result is
- \code{(vector 1 42)}, from which we return the \code{42}.
- \begin{figure}[tbp]
- \begin{lstlisting}
- (define (map-vec [f : (Integer -> Integer)]
- [v : (Vector Integer Integer)])
- : (Vector Integer Integer)
- (vector (f (vector-ref v 0)) (f (vector-ref v 1))))
- (define (add1 [x : Integer]) : Integer
- (+ x 1))
- (vector-ref (map-vec add1 (vector 0 41)) 1)
- \end{lstlisting}
- \begin{lstlisting}[style=ocaml]
- (define mapvec (f : (int -> int)) (v : (# int int)) : (# int int)
- (# (f (! 0 v)) (f (! 1 v))))
- (define add1 (x : int) : int
- (+ x 1))
- (! 1 (mapvec add1 (# 0 41)))
- \end{lstlisting}
- \caption{Example of using functions in \LangFun{}.}
- \label{fig:Rfun-function-example}
- \end{figure}
- \begin{ocamlx}
- Note that the concrete syntax of \LangFun{} is a strict superset of our
- earlier languages, since a program is allowed to have zero functions.
- Functions are allowed to have zero arguments.
- When writing concrete programs, be alert to the fact that there must be
- spaces around each colon (\code{:}) and around the arrow (\code{->})
- in function types. Also, although the parser will accept fairly arbitrary
- character strings as function names (as does Racket), these will ultimately need to appear
- as X86 assembly labels, which are fairly restricted in form (no dashes
- or question marks, for example); if you stick to alphabetic names you should have no troubles.
- There are two features of the \LangFun{} AST that are not intended for
- use by user programs and are not accepted by the parser, but may
- be displayed in debug output. The first is the \code{(\& \Var)} expression
- form, which is generated internally by the type checker, as described below.
- The second if that the top-level expression is optional; it must always
- be present in source programs, but will be removed by the Shrink pass
- (Section~\ref{sec:shrink-r4}).
- \end{ocamlx}
- The definitional interpreter for \LangFun{} is in
- Figure~\ref{fig:interp-Rfun}. \ocaml{(The OCaml version is in file \code{RFun.ml}.)}
- The case for the \code{ProgramDefsExp} form is
- responsible for setting up the mutual recursion between the top-level
- function definitions. We use the classic back-patching \index{back-patching}
- approach that uses mutable variables and makes two passes over the function
- definitions~\citep{Kelsey:1998di}. In the first pass we set up the
- top-level environment using a mutable cons cell for each function
- definition. Note that the \code{lambda} value for each function is
- incomplete; it does not yet include the environment. Once the
- top-level environment is constructed, we then iterate over it and
- update the \code{lambda} values to use the top-level environment.
- \ocaml{This complication is really not needed. In the OCaml version,
- we do not associate environments with function values, but instead
- use a single separate environment of (top-level) functions that is passed
- down to the recursive evaluator, together with the usual environment for
- local variables (which also holds function parameters).}
- \begin{figure}[tp]
- \begin{lstlisting}
- (define interp-Rfun-class
- (class interp-Rvec-class
- (super-new)
- (define/override ((interp-exp env) e)
- (define recur (interp-exp env))
- (match e
- [(Var x) (unbox (dict-ref env x))]
- [(Let x e body)
- (define new-env (dict-set env x (box (recur e))))
- ((interp-exp new-env) body)]
- [(Apply fun args)
- (define fun-val (recur fun))
- (define arg-vals (for/list ([e args]) (recur e)))
- (match fun-val
- [`(function (,xs ...) ,body ,fun-env)
- (define params-args (for/list ([x xs] [arg arg-vals])
- (cons x (box arg))))
- (define new-env (append params-args fun-env))
- ((interp-exp new-env) body)]
- [else (error 'interp-exp "expected function, not ~a" fun-val)])]
- [else ((super interp-exp env) e)]
- ))
- (define/public (interp-def d)
- (match d
- [(Def f (list `[,xs : ,ps] ...) rt _ body)
- (cons f (box `(function ,xs ,body ())))]))
- (define/override (interp-program p)
- (match p
- [(ProgramDefsExp info ds body)
- (let ([top-level (for/list ([d ds]) (interp-def d))])
- (for/list ([f (in-dict-values top-level)])
- (set-box! f (match (unbox f)
- [`(function ,xs ,body ())
- `(function ,xs ,body ,top-level)])))
- ((interp-exp top-level) body))]))
- ))
- (define (interp-Rfun p)
- (send (new interp-Rfun-class) interp-program p))
- \end{lstlisting}
- \caption{Interpreter for the \LangFun{} language.}
- \label{fig:interp-Rfun}
- \end{figure}
- \margincomment{TODO: explain type checker}
- The type checker for \LangFun{} is is in Figure~\ref{fig:type-check-Rfun}.
- \ocaml{The OCaml version is in \code{RFun.ml}. Checking of function definitions and
- applications is straightforward. All functions must have distinct names, and
- the parameters to each function must have distinct names.
- Functions are limited to a maximum of six parameters, to simplify the implementation
- (more on this in Section~\ref{sec:fun-x86}).
- Also, functions are not permitted have a return type of
- \code{Void}; this slightly simplifies the implementation while having minimal impact on
- the language's expressiveness (since we have no printing or global variables).
- As a by-product of checking, references to function names are turned into explicit
- uses of the \code{(\&\;\Var)} operator; this has the same effect as the Reveal Functions
- pass described in Section~\ref{sec:reveal-functions-r4}, and makes that pass unnecessary.}
- \begin{figure}[tp]
- \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
- (define type-check-Rfun-class
- (class type-check-Rvec-class
- (super-new)
- (inherit check-type-equal?)
- (define/public (type-check-apply env e es)
- (define-values (e^ ty) ((type-check-exp env) e))
- (define-values (e* ty*) (for/lists (e* ty*) ([e (in-list es)])
- ((type-check-exp env) e)))
- (match ty
- [`(,ty^* ... -> ,rt)
- (for ([arg-ty ty*] [param-ty ty^*])
- (check-type-equal? arg-ty param-ty (Apply e es)))
- (values e^ e* rt)]))
- (define/override (type-check-exp env)
- (lambda (e)
- (match e
- [(FunRef f)
- (values (FunRef f) (dict-ref env f))]
- [(Apply e es)
- (define-values (e^ es^ rt) (type-check-apply env e es))
- (values (Apply e^ es^) rt)]
- [(Call e es)
- (define-values (e^ es^ rt) (type-check-apply env e es))
- (values (Call e^ es^) rt)]
- [else ((super type-check-exp env) e)])))
- (define/public (type-check-def env)
- (lambda (e)
- (match e
- [(Def f (and p:t* (list `[,xs : ,ps] ...)) rt info body)
- (define new-env (append (map cons xs ps) env))
- (define-values (body^ ty^) ((type-check-exp new-env) body))
- (check-type-equal? ty^ rt body)
- (Def f p:t* rt info body^)])))
- (define/public (fun-def-type d)
- (match d
- [(Def f (list `[,xs : ,ps] ...) rt info body) `(,@ps -> ,rt)]))
- (define/override (type-check-program e)
- (match e
- [(ProgramDefsExp info ds body)
- (define new-env (for/list ([d ds])
- (cons (Def-name d) (fun-def-type d))))
- (define ds^ (for/list ([d ds]) ((type-check-def new-env) d)))
- (define-values (body^ ty) ((type-check-exp new-env) body))
- (check-type-equal? ty 'Integer body)
- (ProgramDefsExp info ds^ body^)]))))
- (define (type-check-Rfun p)
- (send (new type-check-Rfun-class) type-check-program p))
- \end{lstlisting}
- \caption{Type checker for the \LangFun{} language.}
- \label{fig:type-check-Rfun}
- \end{figure}
- \section{Functions in x86}
- \label{sec:fun-x86}
- \margincomment{\tiny Make sure callee-saved registers are discussed
- in enough depth, especially updating Fig 6.4 \\ --Jeremy }
- \margincomment{\tiny Talk about the return address on the
- stack and what callq and retq does.\\ --Jeremy }
- The x86 architecture provides a few features to support the
- implementation of functions. We have already seen that x86 provides
- labels so that one can refer to the location of an instruction, as is
- needed for jump instructions. Labels can also be used to mark the
- beginning of the instructions for a function. Going further, we can
- obtain the address of a label by using the \key{leaq} instruction and
- PC-relative addressing. For example, the following puts the
- address of the \code{add1} label into the \code{rbx} register.
- \begin{lstlisting}
- leaq add1(%rip), %rbx
- \end{lstlisting}
- The instruction pointer register \key{rip} (aka. the program counter
- \index{program counter}) always points to the next instruction to be
- executed. When combined with an label, as in \code{add1(\%rip)}, the
- linker computes the distance $d$ between the address of \code{add1}
- and where the \code{rip} would be at that moment and then changes
- \code{add1(\%rip)} to \code{$d$(\%rip)}, which at runtime will compute
- the address of \code{add1}.
- In Section~\ref{sec:x86} we used of \ocaml{[sic]} the \code{callq} instruction to
- jump to a function whose location is given by a label. To support
- function calls in this chapter we instead will be jumping to a
- function whose location is given by an address in a register, that is,
- we need to make an \emph{indirect function call}.
- The x86 syntax for this is a \code{callq} instruction but with an asterisk before the
- register name.\index{indirect function call}
- \begin{lstlisting}
- callq *%rbx
- \end{lstlisting}
- \begin{ocamlx}
- We will improve on this scheme by using a combination of direct calls
- (when the target function is statically known) and indirect calls (when it is not).
- \end{ocamlx}
- \subsection{Calling Conventions}
- \index{calling conventions}
- The \code{callq} instruction provides partial support for implementing
- functions: it pushes the return address on the stack and it jumps to
- the target. However, \code{callq} does not handle
- \begin{enumerate}
- \item parameter passing,
- \item pushing frames on the procedure call stack and popping them off,
- or
- \item determining how registers are shared by different functions.
- \end{enumerate}
- Regarding (1) parameter passing, recall that the following six
- registers are used to pass arguments to a function, in this order.
- \begin{lstlisting}
- rdi rsi rdx rcx r8 r9
- \end{lstlisting}
- If there are
- more than six arguments, then the convention is to use space on the
- frame of the caller for the rest of the arguments. However, to ease
- the implementation of efficient tail calls
- (Section~\ref{sec:tail-call}), we arrange never to need more than six
- arguments.
- %
- \ocaml{We'll do this by simply prohibiting functions with more than six
- arguments from passing the type-checker; this is a useful simplification
- even though we will not be implementing efficient tail calls.}
- %
- Also recall that the register \code{rax} is for the return value of
- the function.
- \index{prelude}\index{conclusion}
- Regarding (2) frames \index{frame} and the procedure call stack,
- \index{procedure call stack} recall from Section~\ref{sec:x86} that
- the stack grows down, with each function call using a chunk of space
- called a frame. The caller sets the stack pointer, register
- \code{rsp}, to the last data item in its frame. The callee must not
- change anything in the caller's frame, that is, anything that is at or
- above the stack pointer. The callee is free to use locations that are
- below the stack pointer.
- Recall that we are storing variables of vector type on the root stack.
- So the prelude needs to move the root stack pointer \code{r15} up and
- the conclusion needs to move the root stack pointer back down. Also,
- the prelude must initialize to \code{0} this frame's slots in the root
- stack to signal to the garbage collector that those slots do not yet
- contain a pointer to a vector. Otherwise the garbage collector will
- interpret the garbage bits in those slots as memory addresses and try
- to traverse them, causing serious mayhem!
- Regarding (3) the sharing of registers between different functions,
- recall from Section~\ref{sec:calling-conventions} that the registers
- are divided into two groups, the caller-saved registers and the
- callee-saved registers. The caller should assume that all the
- caller-saved registers get overwritten with arbitrary values by the
- callee. That is why we recommend in
- Section~\ref{sec:calling-conventions} that variables that are live
- during a function call should not be assigned to caller-saved
- registers.
- On the flip side, if the callee wants to use a callee-saved register,
- the callee must save the contents of those registers on their stack
- frame and then put them back prior to returning to the caller. That
- is why we recommended in Section~\ref{sec:calling-conventions} that if
- the register allocator assigns a variable to a callee-saved register,
- then the prelude of the \code{main} function must save that register
- to the stack and the conclusion of \code{main} must restore it. This
- recommendation now generalizes to all functions.
- %
- \ocaml{Warning: the code to do this in earlier versions of \code{X86*.ml}
- was seriously broken (an off-by-one error), but since we weren't making
- any function calls ourselves, it wasn't revealed by testing! The code
- in \code{X86Fun.ml} should be ok.}
- Also recall that the base pointer, register \code{rbp}, is used as a
- point-of-reference within a frame, so that each local variable can be
- accessed at a fixed offset from the base pointer
- (Section~\ref{sec:x86}).
- %
- Figure~\ref{fig:call-frames} shows the general layout of the caller
- and callee frames.
- \begin{figure}[tbp]
- \centering
- \begin{tabular}{r|r|l|l} \hline
- Caller View & Callee View & Contents & Frame \\ \hline
- 8(\key{\%rbp}) & & return address & \multirow{5}{*}{Caller}\\
- 0(\key{\%rbp}) & & old \key{rbp} \\
- -8(\key{\%rbp}) & & callee-saved $1$ \\
- \ldots & & \ldots \\
- $-8j$(\key{\%rbp}) & & callee-saved $j$ \\
- $-8(j+1)$(\key{\%rbp}) & & local variable $1$ \\
- \ldots & & \ldots \\
- $-8(j+k)$(\key{\%rbp}) & & local variable $k$ \\
- %% & & \\
- %% $8n-8$\key{(\%rsp)} & $8n+8$(\key{\%rbp})& argument $n$ \\
- %% & \ldots & \ldots \\
- %% 0\key{(\%rsp)} & 16(\key{\%rbp}) & argument $1$ & \\
- \hline
- & 8(\key{\%rbp}) & return address & \multirow{5}{*}{Callee}\\
- & 0(\key{\%rbp}) & old \key{rbp} \\
- & -8(\key{\%rbp}) & callee-saved $1$ \\
- & \ldots & \ldots \\
- & $-8n$(\key{\%rbp}) & callee-saved $n$ \\
- & $-8(n+1)$(\key{\%rbp}) & local variable $1$ \\
- & \ldots & \ldots \\
- & $-8(n+m)$(\key{\%rsp}) & local variable $m$\\ \hline
- \end{tabular}
- \caption{Memory layout of caller and callee frames.}
- \label{fig:call-frames}
- \end{figure}
- %% Recall from Section~\ref{sec:x86} that the stack is also used for
- %% local variables and for storing the values of callee-saved registers
- %% (we shall refer to all of these collectively as ``locals''), and that
- %% at the beginning of a function we move the stack pointer \code{rsp}
- %% down to make room for them.
- %% We recommend storing the local variables
- %% first and then the callee-saved registers, so that the local variables
- %% can be accessed using \code{rbp} the same as before the addition of
- %% functions.
- %% To make additional room for passing arguments, we shall
- %% move the stack pointer even further down. We count how many stack
- %% arguments are needed for each function call that occurs inside the
- %% body of the function and find their maximum. Adding this number to the
- %% number of locals gives us how much the \code{rsp} should be moved at
- %% the beginning of the function. In preparation for a function call, we
- %% offset from \code{rsp} to set up the stack arguments. We put the first
- %% stack argument in \code{0(\%rsp)}, the second in \code{8(\%rsp)}, and
- %% so on.
- %% Upon calling the function, the stack arguments are retrieved by the
- %% callee using the base pointer \code{rbp}. The address \code{16(\%rbp)}
- %% is the location of the first stack argument, \code{24(\%rbp)} is the
- %% address of the second, and so on. Figure~\ref{fig:call-frames} shows
- %% the layout of the caller and callee frames. Notice how important it is
- %% that we correctly compute the maximum number of arguments needed for
- %% function calls; if that number is too small then the arguments and
- %% local variables will smash into each other!
- \subsection{Efficient Tail Calls}
- \label{sec:tail-call}
- In general, the amount of stack space used by a program is determined
- by the longest chain of nested function calls. That is, if function
- $f_1$ calls $f_2$, $f_2$ calls $f_3$, $\ldots$, and $f_{n-1}$ calls
- $f_n$, then the amount of stack space is bounded by $O(n)$. The depth
- $n$ can grow quite large in the case of recursive or mutually
- recursive functions. However, in some cases we can arrange to use only
- constant space, i.e. $O(1)$, instead of $O(n)$.
- If a function call is the last action in a function body, then that
- call is said to be a \emph{tail call}\index{tail call}.
- For example, in the following
- program, the recursive call to \code{tail-sum} is a tail call.
- \begin{center}
- \begin{lstlisting}
- (define (tail-sum [n : Integer] [r : Integer]) : Integer
- (if (eq? n 0)
- r
- (tail-sum (- n 1) (+ n r))))
- (+ (tail-sum 5 0) 27)
- \end{lstlisting}
- \end{center}
- At a tail call, the frame of the caller is no longer needed, so we
- can pop the caller's frame before making the tail call. With this
- approach, a recursive function that only makes tail calls will only
- use $O(1)$ stack space. Functional languages like Racket typically
- rely heavily on recursive functions, so they typically guarantee that
- all tail calls will be optimized in this way.
- \index{frame}
- \ocaml{For simplicity, we will not implement the tail call optimization
- described here. While functional languages often depend
- on this optimization (Scheme and its dialects typically demand that
- a conforming implementation perform it), imperative languages with loops
- can be more flexible.}
- However, some care is needed with regards to argument passing in tail
- calls. As mentioned above, for arguments beyond the sixth, the
- convention is to use space in the caller's frame for passing
- arguments. But for a tail call we pop the caller's frame and can no
- longer use it. Another alternative is to use space in the callee's
- frame for passing arguments. However, this option is also problematic
- because the caller and callee's frame overlap in memory. As we begin
- to copy the arguments from their sources in the caller's frame, the
- target locations in the callee's frame might overlap with the sources
- for later arguments! We solve this problem by not using the stack for
- passing more than six arguments but instead using the heap, as we
- describe in the Section~\ref{sec:limit-functions-r4}.
- \ocaml{Since we won't do this tail-call optimization, we could
- follow the convention of using space in the caller's frame for
- passing arguments beyond the sixth one. But is is easer to just
- prohibit functions with more than six arguments, which we do
- in the typechecker.}
- As mentioned above, for a tail call we pop the caller's frame prior to
- making the tail call. The instructions for popping a frame are the
- instructions that we usually place in the conclusion of a
- function. Thus, we also need to place such code immediately before
- each tail call. These instructions include restoring the callee-saved
- registers, so it is good that the argument passing registers are all
- caller-saved registers.
- One last note regarding which instruction to use to make the tail
- call. When the callee is finished, it should not return to the current
- function, but it should return to the function that called the current
- one. Thus, the return address that is already on the stack is the
- right one, and we should not use \key{callq} to make the tail call, as
- that would unnecessarily overwrite the return address. Instead we can
- simply use the \key{jmp} instruction. Like the indirect function call,
- we write an \emph{indirect jump}\index{indirect jump} with a register
- prefixed with an asterisk. We recommend using \code{rax} to hold the
- jump target because the preceding conclusion overwrites just about
- everything else.
- \begin{lstlisting}
- jmp *%rax
- \end{lstlisting}
- \section{Shrink \LangFun{}}
- \label{sec:shrink-r4}
- The \code{shrink} pass performs a minor modification to ease the
- later passes. This pass introduces an explicit \code{main} function
- and changes the top \code{ProgramDefsExp} form to
- \code{ProgramDefs} as follows.
- \begin{lstlisting}
- (ProgramDefsExp |$\itm{info}$| (|$\Def\ldots$|) |$\Exp$|)
- |$\Rightarrow$| (ProgramDefs |$\itm{info}$| (|$\Def\ldots$| |$\itm{mainDef}$|))
- \end{lstlisting}
- where $\itm{mainDef}$ is
- \begin{lstlisting}
- (Def 'main '() 'Integer '() |$\Exp'$|)
- \end{lstlisting}
- \ocaml{In OCaml, the Shrink pass does this by adding a new \code{main}
- definition and changing the top-level expression option to \code{None}.}
- \section{Reveal Functions and the \LangFunRef{} language}
- \label{sec:reveal-functions-r4}
- The syntax of \LangFun{} is inconvenient for purposes of compilation in one
- respect: it conflates the use of function names and local
- variables. This is a problem because we need to compile the use of a
- function name differently than the use of a local variable; we need to
- use \code{leaq} to convert the function name (a label in x86) to an
- address in a register. Thus, it is a good idea to create a new pass
- that changes function references from just a symbol $f$ to
- $\FUNREF{f}$. This pass is named \code{reveal-functions} and the
- output language, \LangFunRef{}, is defined in Figure~\ref{fig:f1-syntax}.
- The concrete syntax for a function reference is $\CFUNREF{f}$ \ocaml{\code{(\&\;$f$)}}.
- \begin{figure}[tp]
- \centering
- \fbox{
- \begin{minipage}{0.96\textwidth}
- \[
- \begin{array}{lcl}
- \Exp &::=& \ldots \mid \FUNREF{\Var}\\
- \Def &::=& \gray{ \FUNDEF{\Var}{([\Var \code{:} \Type]\ldots)}{\Type}{\code{'()}}{\Exp} }\\
- \LangFunRef{} &::=& \PROGRAMDEFS{\code{'()}}{\LP \Def\ldots \RP}
- \end{array}
- \]
- \end{minipage}
- }
- \caption{The abstract syntax \LangFunRef{}, an extension of \LangFun{}
- (Figure~\ref{fig:Rfun-syntax}).}
- \label{fig:f1-syntax}
- \end{figure}
- %% Distinguishing between calls in tail position and non-tail position
- %% requires the pass to have some notion of context. We recommend using
- %% two mutually recursive functions, one for processing expressions in
- %% tail position and another for the rest.
- Placing this pass after \code{uniquify} will make sure that there are
- no local variables and functions that share the same name. On the
- other hand, \code{reveal-functions} needs to come before the
- \code{explicate-control} pass because that pass helps us compile
- \code{FunRef} forms into assignment statements.
- \ocaml{We choose instead to fold this transformation into the \LangFun{} type checker.
- Performing it before \code{uniquify} is actually no problem, because
- function names are already checked to be unique across the program
- and they can never hide local variable names.}
- \section{Limit Functions}
- \label{sec:limit-functions-r4}
- \ocaml{We do not need this pass, since we simply limit the number of
- function parameters to a maximum of six in the type checker.}
- Recall that we wish to limit the number of function parameters to six
- so that we do not need to use the stack for argument passing, which
- makes it easier to implement efficient tail calls. However, because
- the input language \LangFun{} supports arbitrary numbers of function
- arguments, we have some work to do!
- This pass transforms functions and function calls that involve more
- than six arguments to pass the first five arguments as usual, but it
- packs the rest of the arguments into a vector and passes it as the
- sixth argument.
- Each function definition with too many parameters is transformed as
- follows.
- \begin{lstlisting}
- (Def |$f$| ([|$x_1$|:|$T_1$|] |$\ldots$| [|$x_n$|:|$T_n$|]) |$T_r$| |$\itm{info}$| |$\itm{body}$|)
- |$\Rightarrow$|
- (Def |$f$| ([|$x_1$|:|$T_1$|] |$\ldots$| [|$x_5$|:|$T_5$|] [vec : (Vector |$T_6 \ldots T_n$|)]) |$T_r$| |$\itm{info}$| |$\itm{body}'$|)
- \end{lstlisting}
- where the $\itm{body}$ is transformed into $\itm{body}'$ by replacing
- the occurrences of the later parameters with vector references.
- \begin{lstlisting}
- (Var |$x_i$|) |$\Rightarrow$| (Prim 'vector-ref (list vec (Int |$(i - 6)$|)))
- \end{lstlisting}
- For function calls with too many arguments, the \code{limit-functions}
- pass transforms them in the following way.
- \begin{tabular}{lll}
- \begin{minipage}{0.2\textwidth}
- \begin{lstlisting}
- (|$e_0$| |$e_1$| |$\ldots$| |$e_n$|)
- \end{lstlisting}
- \end{minipage}
- &
- $\Rightarrow$
- &
- \begin{minipage}{0.4\textwidth}
- \begin{lstlisting}
- (|$e_0$| |$e_1 \ldots e_5$| (vector |$e_6 \ldots e_n$|))
- \end{lstlisting}
- \end{minipage}
- \end{tabular}
- \section{Remove Complex Operands}
- \label{sec:rco-r4}
- The primary decisions to make for this pass is whether to classify
- \code{FunRef} and \code{Apply} as either atomic or complex
- expressions. Recall that a simple expression will eventually end up as
- just an immediate argument of an x86 instruction. Function
- application will be translated to a sequence of instructions, so
- \code{Apply} must be classified as complex expression.
- On the other hand, the arguments of \code{Apply} should be
- atomic expressions.
- \ocaml{So far, same in OCaml.}
- %
- Regarding \code{FunRef}, as discussed above, the function label needs
- to be converted to an address using the \code{leaq} instruction. Thus,
- even though \code{FunRef} seems rather simple, it needs to be
- classified as a complex expression so that we generate an assignment
- statement with a left-hand side that can serve as the target of the
- \code{leaq}. \ocaml{It is actually easier to classify \code{FunRef}
- as an atomic form. The few places where we need to generate an
- \code{leaq} are very stylized and can be recognized at the very
- end of code generation, in Patch Instructions.}
- Figure~\ref{fig:Rfun-anf-syntax} defines the
- output language \LangFunANF{} of this pass.\ocaml{For us, \code{(FunRef$\;\Var$)}
- should be an $\Atm$.}
- \begin{figure}[tp]
- \centering
- \fbox{
- \begin{minipage}{0.96\textwidth}
- \small
- \[
- \begin{array}{rcl}
- \Atm &::=& \gray{ \INT{\Int} \mid \VAR{\Var} \mid \BOOL{\itm{bool}}
- \mid \VOID{} } \\
- \Exp &::=& \gray{ \Atm \mid \READ{} } \\
- &\mid& \gray{ \NEG{\Atm} \mid \ADD{\Atm}{\Atm} } \\
- &\mid& \gray{ \LET{\Var}{\Exp}{\Exp} } \\
- &\mid& \gray{ \UNIOP{\key{'not}}{\Atm} } \\
- &\mid& \gray{ \BINOP{\itm{cmp}}{\Atm}{\Atm} \mid \IF{\Exp}{\Exp}{\Exp} }\\
- &\mid& \gray{ \LP\key{Collect}~\Int\RP \mid \LP\key{Allocate}~\Int~\Type\RP
- \mid \LP\key{GlobalValue}~\Var\RP }\\
- &\mid& \FUNREF{\Var} \mid \APPLY{\Atm}{\Atm\ldots}\\
- \Def &::=& \gray{ \FUNDEF{\Var}{([\Var \code{:} \Type]\ldots)}{\Type}{\code{'()}}{\Exp} }\\
- R^{\dagger}_4 &::=& \gray{ \PROGRAMDEFS{\code{'()}}{\Def} }
- \end{array}
- \]
- \end{minipage}
- }
- \caption{\LangFunANF{} is \LangFun{} in administrative normal form (ANF).}
- \label{fig:Rfun-anf-syntax}
- \end{figure}
- \section{Explicate Control and the \LangCFun{} language}
- \label{sec:explicate-control-r4}
- Figure~\ref{fig:c3-syntax} defines the abstract syntax for \LangCFun{}, the
- output of \key{explicate-control}. \ocaml{OCaml: In file \code{CFun.ml}.
- Following the remarks in the previous sections, we make \code{(FunRef\;{\itm{label}})} an $\Atm$ rather than an $\Exp$,
- and there is no \code{TailCall} form.}
- (The concrete syntax is given in
- Figure~\ref{fig:c3-concrete-syntax} of the Appendix.) The auxiliary
- functions for assignment and tail contexts should be updated with
- cases for \code{Apply} and \code{FunRef} and the function for
- predicate context should be updated for \code{Apply} but not
- \code{FunRef}. (A \code{FunRef} can't be a Boolean.) \ocaml{The predicate
- context treatment of \code{Apply} will need to be handled similarly
- to \code{GetField} introduced in \LangTuple{}. Neither of the new forms
- should be added to the function for effectful contexts (a \code{FunRef}
- cannot have type Void, and our \LangFun{} type checker prohibits
- functions from having return type Void too).}
- In assignment
- and predicate contexts, \code{Apply} becomes \code{Call}, whereas in
- tail position \code{Apply} becomes \code{TailCall}. \ocaml{For us, \code{Apply}
- becomes \code{Call} even in tail position.}
- We recommend
- defining a new auxiliary function for processing function definitions.
- This code is similar to the case for \code{Program} in \LangVec{}. The
- top-level \code{explicate-control} function that handles the
- \code{ProgramDefs} form of \LangFun{} can then apply this new function to
- all the function definitions. \ocaml{Note that the \LangCFun{} type checker
- adds information about the variables of each function to the per-function
- information field (just as in earlier languages this information was added
- to the program information field).}
- \begin{figure}[tp]
- \fbox{
- \begin{minipage}{0.96\textwidth}
- \small
- \[
- \begin{array}{lcl}
- \Atm &::=& \gray{ \INT{\Int} \mid \VAR{\Var} \mid \BOOL{\itm{bool}} }\\
- \itm{cmp} &::= & \gray{ \key{eq?} \mid \key{<} } \\
- \Exp &::= & \gray{ \Atm \mid \READ{} } \\
- &\mid& \gray{ \NEG{\Atm} \mid \ADD{\Atm}{\Atm} }\\
- &\mid& \gray{ \UNIOP{\key{not}}{\Atm} \mid \BINOP{\itm{cmp}}{\Atm}{\Atm} } \\
- &\mid& \gray{ \LP\key{Allocate} \,\itm{int}\,\itm{type}\RP } \\
- &\mid& \gray{ \BINOP{\key{'vector-ref}}{\Atm}{\INT{\Int}} }\\
- &\mid& \gray{ \LP\key{Prim}~\key{'vector-set!}\,\LP\key{list}\,\Atm\,\INT{\Int}\,\Atm\RP\RP }\\
- &\mid& \gray{ \LP\key{GlobalValue} \,\Var\RP \mid \LP\key{Void}\RP }\\
- &\mid& \FUNREF{\itm{label}} \mid \CALL{\Atm}{\LP\Atm\ldots\RP} \\
- \Stmt &::=& \gray{ \ASSIGN{\VAR{\Var}}{\Exp}
- \mid \LP\key{Collect} \,\itm{int}\RP } \\
- \Tail &::= & \gray{ \RETURN{\Exp} \mid \SEQ{\Stmt}{\Tail}
- \mid \GOTO{\itm{label}} } \\
- &\mid& \gray{ \IFSTMT{\BINOP{\itm{cmp}}{\Atm}{\Atm}}{\GOTO{\itm{label}}}{\GOTO{\itm{label}}} }\\
- &\mid& \TAILCALL{\Atm}{\Atm\ldots} \\
- \Def &::=& \DEF{\itm{label}}{\LP[\Var\key{:}\Type]\ldots\RP}{\Type}{\itm{info}}{\LP\LP\itm{label}\,\key{.}\,\Tail\RP\ldots\RP}\\
- \LangCFun{} & ::= & \PROGRAMDEFS{\itm{info}}{\LP\Def\ldots\RP}
- \end{array}
- \]
- \end{minipage}
- }
- \caption{The abstract syntax of \LangCFun{}, extending \LangCVec{} (Figure~\ref{fig:c2-syntax}).}
- \label{fig:c3-syntax}
- \end{figure}
- \section{Select Instructions and the \LangXIndCall{} \ocaml{(\LangXFun{})} Language}
- \label{sec:select-r4}
- \index{instruction selection}
- The output of select instructions is a program in the \LangXIndCall{} \ocaml{(\LangXFun{})}
- language, whose syntax is defined in Figure~\ref{fig:x86-3}. \ocaml{The OCaml version is
- in \code{X86Fun.ml}. It does not have a $\Var \key{(\%rip)}$ or \key{tailjmp} form.}
- \index{x86}
- \begin{figure}[tp]
- \fbox{
- \begin{minipage}{0.96\textwidth}
- \small
- \[
- \begin{array}{lcl}
- \Arg &::=& \gray{ \key{\$}\Int \mid \key{\%}\Reg \mid \Int\key{(}\key{\%}\Reg\key{)} \mid \key{\%}\itm{bytereg} } \mid \Var \key{(\%rip)}
- \mid \LP\key{fun-ref}\; \itm{label}\RP\\
- \itm{cc} & ::= & \gray{ \key{e} \mid \key{l} \mid \key{le} \mid \key{g} \mid \key{ge} } \\
- \Instr &::=& \ldots
- \mid \key{callq}\;\key{*}\Arg \mid \key{tailjmp}\;\Arg
- \mid \key{leaq}\;\Arg\key{,}\;\key{\%}\Reg \\
- \Block &::= & \Instr\ldots \\
- \Def &::= & \LP\key{define} \; \LP\itm{label}\RP \;\LP\LP\itm{label} \,\key{.}\, \Block\RP\ldots\RP\RP\\
- \LangXIndCall{} &::= & \Def\ldots
- \end{array}
- \]
- \end{minipage}
- }
- \caption{The concrete syntax of \LangXIndCall{} (extends \LangXGlobal{} of Figure~\ref{fig:x86-2-concrete}).}
- \label{fig:x86-3-concrete}
- \end{figure}
- \begin{figure}[tp]
- \fbox{
- \begin{minipage}{0.96\textwidth}
- \small
- \[
- \begin{array}{lcl}
- \Arg &::=& \gray{ \INT{\Int} \mid \REG{\Reg} \mid \DEREF{\Reg}{\Int}
- \mid \BYTEREG{\Reg} } \\
- &\mid& \gray{ (\key{Global}~\Var) } \mid \FUNREF{\itm{label}} \\
- \Instr &::=& \ldots \mid \INDCALLQ{\Arg}{\itm{int}}
- \mid \TAILJMP{\Arg}{\itm{int}}\\
- &\mid& \BININSTR{\code{'leaq}}{\Arg}{\REG{\Reg}}\\
- \Block &::= & \BLOCK{\itm{info}}{\LP\Instr\ldots\RP}\\
- \Def &::= & \DEF{\itm{label}}{\code{'()}}{\Type}{\itm{info}}{\LP\LP\itm{label}\,\key{.}\,\Block\RP\ldots\RP} \\
- \LangXIndCall{} &::= & \PROGRAMDEFS{\itm{info}}{\LP\Def\ldots\RP}
- \end{array}
- \]
- \end{minipage}
- }
- \caption{The abstract syntax of \LangXIndCall{} (extends
- \LangXGlobal{} of Figure~\ref{fig:x86-2}).}
- \label{fig:x86-3}
- \end{figure}
- An assignment of a function reference to a variable becomes a
- load-effective-address instruction as follows: \\
- \begin{tabular}{lcl}
- \begin{minipage}{0.35\textwidth}
- \begin{lstlisting}
- |$\itm{lhs}$| = (fun-ref |$f$|);
- \end{lstlisting}
- \end{minipage}
- &
- $\Rightarrow$\qquad\qquad
- &
- \begin{minipage}{0.3\textwidth}
- \begin{lstlisting}
- leaq (fun-ref |$f$|), |$\itm{lhs}'$|
- \end{lstlisting}
- \end{minipage}
- \end{tabular} \\
- \ocaml{We defer this transformation to the Patch Instructions phase. For now, there is
- no need to treat \code{FunRef}s specially: simply generate
- the usual \code{movq} instruction with \code{FunRef\;$f$} as the source argument.
- The code you generate at this stage should not include \code{leaq} instructions.}
- Regarding function definitions, we need to remove the parameters and
- instead perform parameter passing using the conventions discussed in
- Section~\ref{sec:fun-x86}. That is, the arguments are passed in
- registers. We recommend turning the parameters into local variables
- and generating instructions at the beginning of the function to move
- from the argument passing registers to these local variables.
- \begin{lstlisting}
- (Def |$f$| '([|$x_1$| : |$T_1$|] [|$x_2$| : |$T_2$|] |$\ldots$| ) |$T_r$| |$\itm{info}$| |$G$|)
- |$\Rightarrow$|
- (Def |$f$| '() 'Integer |$\itm{info}'$| |$G'$|)
- \end{lstlisting}
- \begin{lstlisting}[style=ocaml]
- CFun.Func(~$f$~,~$args$~,~$resty$~,~$vars$~,~$G$~)
- ~$\Rightarrow$~
- X86Fun.Func(~$f$~,~$vars$~,~$G'$~)
- \end{lstlisting}
-
- \ocaml{Note that we copy over the function $vars$ environment unchanged.}
- The $G'$ control-flow graph is the same as $G$ except that the
- \code{start} block is modified to add the instructions for moving from
- the argument registers to the parameter variables. So the \code{start}
- block of $G$ shown on the left is changed to the code on the right.
- \begin{center}
- \begin{minipage}{0.3\textwidth}
- \begin{lstlisting}
- start:
- |$\itm{instr}_1$|
- |$\vdots$|
- |$\itm{instr}_n$|
- \end{lstlisting}
- \end{minipage}
- $\Rightarrow$
- \begin{minipage}{0.3\textwidth}
- \begin{lstlisting}
- start:
- movq %rdi, |$x_1$|
- movq %rsi, |$x_2$|
- |$\vdots$|
- |$\itm{instr}_1$|
- |$\vdots$|
- |$\itm{instr}_n$|
- \end{lstlisting}
- \end{minipage}
- \end{center}
- By changing the parameters to local variables, we are giving the
- register allocator control over which registers or stack locations to
- use for them. If you implemented the move-biasing challenge
- (Section~\ref{sec:move-biasing}), the register allocator will try to
- assign the parameter variables to the corresponding argument register,
- in which case the \code{patch-instructions} pass will remove the
- \code{movq} instruction. This happens in the example translation in
- Figure~\ref{fig:add-fun} of Section~\ref{sec:functions-example}, in
- the \code{add} function.
- %
- Also, note that the register allocator will perform liveness analysis
- on this sequence of move instructions and build the interference
- graph. So, for example, $x_1$ will be marked as interfering with
- \code{rsi} and that will prevent the assignment of $x_1$ to
- \code{rsi}, which is good, because that would overwrite the argument
- that needs to move into $x_2$.
- Next, consider the compilation of function calls. In the mirror image
- of handling the parameters of function definitions, the arguments need
- to be moved to the argument passing registers. The function call
- itself is performed with an indirect function call. The return value
- from the function is stored in \code{rax}, so it needs to be moved
- into the \itm{lhs}.
- \begin{lstlisting}
- |\itm{lhs}| = (call |\itm{fun}| |$\itm{arg}_1~\itm{arg}_2\ldots$|));
- |$\Rightarrow$|
- movq |$\itm{arg}_1$|, %rdi
- movq |$\itm{arg}_2$|, %rsi
- |$\vdots$|
- callq *|\itm{fun}|
- movq %rax, |\itm{lhs}|
- \end{lstlisting}
- The \code{IndirectCallq} AST node includes an integer for the arity of
- the function, i.e., the number of parameters. That information is
- useful in the \code{uncover-live} pass for determining which
- argument-passing registers are potentially read during the call.
- \ocaml{This paragraph is irrelevant for us, since we are not optimizing tail calls.}
- For tail calls, the parameter passing is the same as non-tail calls:
- generate instructions to move the arguments into to the argument
- passing registers. After that we need to pop the frame from the
- procedure call stack. However, we do not yet know how big the frame
- is; that gets determined during register allocation. So instead of
- generating those instructions here, we invent a new instruction that
- means ``pop the frame and then do an indirect jump'', which we name
- \code{TailJmp}. The abstract syntax for this instruction includes an
- argument that specifies where to jump and an integer that represents
- the arity of the function being called.
- Recall that in Section~\ref{sec:explicate-control-Rvar} we recommended
- using the label \code{start} for the initial block of a program, and
- in Section~\ref{sec:select-Rvar} we recommended labeling the conclusion
- of the program with \code{conclusion}, so that $(\key{Return}\;\Arg)$
- can be compiled to an assignment to \code{rax} followed by a jump to
- \code{conclusion}. With the addition of function definitions, we will
- have a starting block and conclusion for each function, but their
- labels need to be unique. We recommend prepending the function's name
- to \code{start} and \code{conclusion}, respectively, to obtain unique
- labels. \ocaml{The \code{dummy\_func\_entry\_exit} helper functions in \code{X86Fun.ml}
- assume this convention and take the function name as a parameter.}
- (Alternatively, one could \code{gensym} labels for the start
- and conclusion and store them in the $\itm{info}$ field of the
- function definition.)
- \section{Register Allocation}
- \label{sec:register-allocation-r4}
- \subsection{Liveness Analysis}
- \label{sec:liveness-analysis-r4}
- \index{liveness analysis}
- %% The rest of the passes need only minor modifications to handle the new
- %% kinds of AST nodes: \code{fun-ref}, \code{indirect-callq}, and
- %% \code{leaq}.
- \ocaml{With the addition of function definitions, we perform liveness analysis
- separately on each function (not just once for the whole program).}
- The \code{IndirectCallq} instruction should be treated like
- \code{Callq} regarding its written locations $W$, in that they should
- include all the caller-saved registers. Recall that the reason for
- that is to force call-live variables to be assigned to callee-saved
- registers or to be spilled to the stack.
- Regarding the set of read locations $R$ the arity field of
- \code{TailJmp} \ocaml{(not for us)} and \code{IndirectCallq} determines how many of the
- argument-passing registers should be considered as read by those
- instructions. \ocaml{Don't forget that the target argument to \code{IndirectCallq}
- is itself a location that is read.}
- \subsection{Build Interference Graph}
- \label{sec:build-interference-r4}
- With the addition of function definitions, we compute an interference
- graph for each function (not just one for the whole program).
- \ocaml{The generated interference graph is now attached as one
- element of the per-function information field, rather than
- the program information field.}
- Recall that in Section~\ref{sec:reg-alloc-gc} we discussed the need to
- spill vector-typed variables that are live during a call to the
- \code{collect}. With the addition of functions to our language, we
- need to revisit this issue. Many functions perform allocation and
- therefore have calls to the collector inside of them. Thus, we should
- not only spill a vector-typed variable when it is live during a call
- to \code{collect}, but we should spill the variable if it is live
- during any function call. \ocaml{Except for a call to a
- known external function such as \code{read\_int}.}
- Thus, in the \code{build-interference} pass,
- we recommend adding interference edges between call-live vector-typed
- variables and the callee-saved registers (in addition to the usual
- addition of edges between call-live variables and the caller-saved
- registers). \ocaml{Depending on how you coded your solution for \LangTuple{},
- you may already be doing the right thing here.}
- \subsection{Allocate Registers}
- The primary change to the \code{allocate-registers} pass is adding an
- auxiliary function for handling definitions (the \Def{} non-terminal
- in Figure~\ref{fig:x86-3}) with one case for function definitions. The
- logic is the same as described in
- Chapter~\ref{ch:register-allocation-Rvar}, except now register
- allocation is performed many times, once for each function definition,
- instead of just once for the whole program.
- \ocaml{The frame size and rootframe size information produced by this pass
- now form the per-function information, rather than the per-program information.
- This is also the right pass to replace the dummy entry and exit blocks by
- the real ones generated by the \code{func\_entry\_exit} function in \code{X86Fun.ml}
- The details of what these produce is described under ``Print x86'' below.}
- \section{Patch Instructions}
- \ocaml{This paragraph is not relevant to us.}
- In \code{patch-instructions}, you should deal with the x86
- idiosyncrasy that the destination argument of \code{leaq} must be a
- register. Additionally, you should ensure that the argument of
- \code{TailJmp} is \itm{rax}, our reserved register---this is to make
- code generation more convenient, because we trample many registers
- before the tail call (as explained in the next section).
- \begin{ocamlx}
- In the Patch Instructions phase, we finally deal with the
- fact that our X86 code has \code{FunRef} operands that need
- to be translated into real machine-level mechanisms. If all
- the previous passes have done their job, there
- are just two places where these operands can appear.
- \begin{enumerate}
- \item As the target argument to an
- \code{IndirectCallq} instruction. In this case,
- the indirect call can be converted to a simpler direct call.
- \begin{lstlisting}[style=ocaml]
- IndirectCallq(FunRef ~$f$~,~$ar$~)
- ~$\Rightarrow$~
- Callq(~$f$~,~$ar$~)
- \end{lstlisting}
- \item As the source argument of a \code{movq} instruction.
- In this case, we must introduce an \code{leaq} instruction
- with the \code{FunRef} as its source,
- to compute the address of the function. If the destination
- of the original \code{movq} is a register, we can use it
- directly as the destination of the \code{leaq}; otherwise
- use \code{\%rax} as an intermediate (\code{leaq} requires
- its destination to be a register).
- \end{enumerate}
- \end{ocamlx}
- \section{Print x86}
- For the \code{print-x86} pass, the cases for \code{FunRef} and
- \code{IndirectCallq} are straightforward: output their concrete
- syntax.
- \begin{lstlisting}
- (FunRef |\itm{label}|) |$\Rightarrow$| |\itm{label}|(%rip)
- (IndirectCallq |\itm{arg}| |\itm{int}|) |$\Rightarrow$| callq *|\itm{arg}'|
- \end{lstlisting}
- \ocaml{This paragraph is irrelevant for us.}
- The \code{TailJmp} node requires a bit work. A straightforward
- translation of \code{TailJmp} would be \code{jmp *$\itm{arg}$}, but
- before the jump we need to pop the current frame. This sequence of
- instructions is the same as the code for the conclusion of a function,
- except the \code{retq} is replaced with \code{jmp *$\itm{arg}$}.
- Regarding function definitions, you will need to generate a prelude
- and conclusion for each one. This code is similar to the prelude and
- conclusion that you generated for the \code{main} function in
- Chapter~\ref{ch:Rvec}. To review, the prelude of every function
- should carry out the following steps.
- \begin{enumerate}
- \item Start with \code{.global} and \code{.align} directives followed
- by the label for the function. (See Figure~\ref{fig:add-fun} for an
- example.)
- \item Push \code{rbp} to the stack and set \code{rbp} to current stack
- pointer.
- \item Push to the stack all of the callee-saved registers that were
- used for register allocation.
- \item Move the stack pointer \code{rsp} down by the size of the stack
- frame for this function, which depends on the number of regular
- spills. (Aligned to 16 bytes.)
- \item Move the root stack pointer \code{r15} up by the size of the
- root-stack frame for this function, which depends on the number of
- spilled vectors. \label{root-stack-init}
- \item Initialize to zero all of the entries in the root-stack frame.
- \item Jump to the start block.
- \end{enumerate}
- The prelude of the \code{main} function has one additional task: call
- the \code{initialize} function to set up the garbage collector and
- move the value of the global \code{rootstack\_begin} in
- \code{r15}. This should happen before step \ref{root-stack-init}
- above, which depends on \code{r15}.
- The conclusion of every function should do the following.
- \begin{enumerate}
- \item Move the stack pointer back up by the size of the stack frame
- for this function.
- \item Restore the callee-saved registers by popping them from the
- stack.
- \item Move the root stack pointer back down by the size of the
- root-stack frame for this function.
- \item Restore \code{rbp} by popping it from the stack.
- \item Return to the caller with the \code{retq} instruction.
- \end{enumerate}
- \ocaml{All the work required here is already embedded in the
- \code{func\_entry\_exit} function in \code{X86Fun.ml}. The blocks
- it produces should be patched in during \code{AllocateRegisters}.}
-
- \begin{exercise}\normalfont
- Expand your compiler to handle \LangFun{} as outlined in this chapter.
- Create 5 new programs that use functions, including examples that pass
- functions and return functions from other functions, recursive
- functions, functions that create vectors, and functions that make tail
- calls. Test your compiler on these new programs and all of your
- previously created test programs.
- \end{exercise}
- \begin{figure}[tbp]
- \begin{tikzpicture}[baseline=(current bounding box.center)]
- \node (Rfun) at (0,2) {\large \LangFun{}};
- \node (Rfun-1) at (3,2) {\large \LangFun{}};
- \node (Rfun-2) at (6,2) {\large \LangFun{}};
- \node (F1-1) at (12,0) {\large \LangFunRef{}};
- \node (F1-2) at (9,0) {\large \LangFunRef{}};
- \node (F1-3) at (6,0) {\large \LangFunRefAlloc{}};
- \node (F1-4) at (3,0) {\large \LangFunRefAlloc{}};
- \node (C3-2) at (3,-2) {\large \LangCFun{}};
- \node (x86-2) at (3,-4) {\large \LangXIndCallVar{}};
- \node (x86-3) at (6,-4) {\large \LangXIndCallVar{}};
- \node (x86-4) at (9,-4) {\large \LangXIndCall{}};
- \node (x86-5) at (9,-6) {\large \LangXIndCall{}};
- \node (x86-2-1) at (3,-6) {\large \LangXIndCallVar{}};
- \node (x86-2-2) at (6,-6) {\large \LangXIndCallVar{}};
- \path[->,bend left=15] (Rfun) edge [above] node
- {\ttfamily\footnotesize shrink} (Rfun-1);
- \path[->,bend left=15] (Rfun-1) edge [above] node
- {\ttfamily\footnotesize uniquify} (Rfun-2);
- \path[->,bend left=15] (Rfun-2) edge [right] node
- {\ttfamily\footnotesize ~~reveal-functions} (F1-1);
- \path[->,bend left=15] (F1-1) edge [below] node
- {\ttfamily\footnotesize limit-functions} (F1-2);
- \path[->,bend right=15] (F1-2) edge [above] node
- {\ttfamily\footnotesize expose-alloc.} (F1-3);
- \path[->,bend right=15] (F1-3) edge [above] node
- {\ttfamily\footnotesize remove-complex.} (F1-4);
- \path[->,bend left=15] (F1-4) edge [right] node
- {\ttfamily\footnotesize explicate-control} (C3-2);
- \path[->,bend right=15] (C3-2) edge [left] node
- {\ttfamily\footnotesize select-instr.} (x86-2);
- \path[->,bend left=15] (x86-2) edge [left] node
- {\ttfamily\footnotesize uncover-live} (x86-2-1);
- \path[->,bend right=15] (x86-2-1) edge [below] node
- {\ttfamily\footnotesize build-inter.} (x86-2-2);
- \path[->,bend right=15] (x86-2-2) edge [left] node
- {\ttfamily\footnotesize allocate-reg.} (x86-3);
- \path[->,bend left=15] (x86-3) edge [above] node
- {\ttfamily\footnotesize patch-instr.} (x86-4);
- \path[->,bend right=15] (x86-4) edge [left] node {\ttfamily\footnotesize print-x86} (x86-5);
- \end{tikzpicture}
- \caption{Diagram of the passes for \LangFun{}, a language with functions.}
- \label{fig:Rfun-passes}
- \end{figure}
- Figure~\ref{fig:Rfun-passes} gives an overview of the passes for
- compiling \LangFun{} to x86. \ocaml{We omit the passes called
- \code{reveal-functions} and \code{limit-functions}.}
- \section{An Example Translation}
- \label{sec:functions-example}
- Figure~\ref{fig:add-fun} shows an example translation of a simple
- function in \LangFun{} to x86. The figure also includes the results of the
- \code{explicate-control} and \code{select-instructions} passes.
- \ocaml{The OCaml version in \ref{fig:add-fun-ocaml} does \emph{not} show the effect of tail-recursion
- optimization nor of move-biasing in the register allocator.}
- \begin{figure}[htbp]
- \begin{tabular}{ll}
- \begin{minipage}{0.5\textwidth}
- % s3_2.rkt
- \begin{lstlisting}[basicstyle=\ttfamily\scriptsize]
- (define (add [x : Integer] [y : Integer])
- : Integer
- (+ x y))
- (add 40 2)
- \end{lstlisting}
- $\Downarrow$
- \begin{lstlisting}[basicstyle=\ttfamily\scriptsize]
- (define (add86 [x87 : Integer]
- [y88 : Integer]) : Integer
- add86start:
- return (+ x87 y88);
- )
- (define (main) : Integer ()
- mainstart:
- tmp89 = (fun-ref add86);
- (tail-call tmp89 40 2)
- )
- \end{lstlisting}
- \end{minipage}
- &
- $\Rightarrow$
- \begin{minipage}{0.5\textwidth}
- \begin{lstlisting}[basicstyle=\ttfamily\scriptsize]
- (define (add86) : Integer
- add86start:
- movq %rdi, x87
- movq %rsi, y88
- movq x87, %rax
- addq y88, %rax
- jmp add11389conclusion
- )
- (define (main) : Integer
- mainstart:
- leaq (fun-ref add86), tmp89
- movq $40, %rdi
- movq $2, %rsi
- tail-jmp tmp89
- )
- \end{lstlisting}
- $\Downarrow$
- \end{minipage}
- \end{tabular}
- \begin{tabular}{ll}
- \begin{minipage}{0.3\textwidth}
- \begin{lstlisting}[basicstyle=\ttfamily\scriptsize]
- .globl add86
- .align 16
- add86:
- pushq %rbp
- movq %rsp, %rbp
- jmp add86start
- add86start:
- movq %rdi, %rax
- addq %rsi, %rax
- jmp add86conclusion
- add86conclusion:
- popq %rbp
- retq
- \end{lstlisting}
- \end{minipage}
- &
- \begin{minipage}{0.5\textwidth}
- \begin{lstlisting}[basicstyle=\ttfamily\scriptsize]
- .globl main
- .align 16
- main:
- pushq %rbp
- movq %rsp, %rbp
- movq $16384, %rdi
- movq $16384, %rsi
- callq initialize
- movq rootstack_begin(%rip), %r15
- jmp mainstart
- mainstart:
- leaq add86(%rip), %rcx
- movq $40, %rdi
- movq $2, %rsi
- movq %rcx, %rax
- popq %rbp
- jmp *%rax
- mainconclusion:
- popq %rbp
- retq
- \end{lstlisting}
- \end{minipage}
- \end{tabular}
- \caption{Example compilation of a simple function to x86.}
- \label{fig:add-fun}
- \end{figure}
- \begin{ocamlx}
- \begin{figure}[htbp]
- \begin{tabular}{ll}
- \begin{minipage}{0.5\textwidth}
- % s3_2.rkt
- \begin{lstlisting}[basicstyle=\ttfamily\scriptsize,style=ocaml]
- (define (add (x : int) (y : int) : int
- (+ x y))
- (add 40 2)
- \end{lstlisting}
- $\Downarrow$
- \begin{lstlisting}[basicstyle=\ttfamily\scriptsize,style=ocaml]
- define main () : int
- start:
- return (call (& add) 40 2)
- define add ((x : int) (y : int)) : int
- start:
- return (+ x y)
- \end{lstlisting}
- \end{minipage}
- &
- $\Rightarrow$
- \begin{minipage}{0.5\textwidth}
- \begin{lstlisting}[basicstyle=\ttfamily\scriptsize,style=ocaml]
- .globl _main
- .align 16
- _main:
- jmp _mainstart
- _mainconclusion:
- retq
- _mainstart:
- movq $40, %rdi
- movq $2, %rsi
- callq *&_add
- movq %rax, %rax
- jmp _mainconclusion
- .globl _add
- .align 16
- _add:
- jmp _addstart
- _addconclusion:
- retq
- _addstart:
- movq %rdi, x
- movq %rsi, y
- movq x, %rax
- addq y, %rax
- jmp _addconclusion
- \end{lstlisting}
- $\Downarrow$
- \end{minipage}
- \end{tabular}
- \begin{tabular}{ll}
- \begin{minipage}{0.4\textwidth}
- \begin{lstlisting}[basicstyle=\ttfamily\scriptsize,style=ocaml]
- .globl _main
- .align 16
- _main:
- pushq %rbp
- movq %rsp, %rbp
- movq $16384, %rsi
- movq $16384, %rdi
- callq _initialize
- movq %rax, %r15
- jmp _mainstart
- _mainconclusion:
- popq %rbp
- retq
- _mainstart:
- movq $40, %rdi
- movq $2, %rsi
- callq _add
- jmp _mainconclusion
- \end{lstlisting}
- \end{minipage}
- &
- \begin{minipage}{0.5\textwidth}
- \begin{lstlisting}[basicstyle=\ttfamily\scriptsize,style=ocaml]
- .globl _add
- .align 16
- _add:
- pushq %rbp
- movq %rsp, %rbp
- jmp _addstart
- _addconclusion:
- popq %rbp
- retq
- _addstart:
- movq %rdi, %rdx
- movq %rsi, %rcx
- movq %rdx, %rax
- addq %rcx, %rax
- jmp _addconclusion
- \end{lstlisting}
- \end{minipage}
- \end{tabular}
- \caption{\ocaml{(OCaml) Example compilation of a simple function to x86.}}
- \label{fig:add-fun-ocaml}
- \end{figure}
- \end{ocamlx}
- % Challenge idea: inlining! (simple version)
- % Further Reading
- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
- \chapter{Lexically Scoped Functions}
- \label{ch:Rlam}
- \index{lambda}
- \index{lexical scoping}
- This chapter studies lexically scoped functions as they appear in
- functional languages such as Racket. By lexical scoping we mean that a
- function's body may refer to variables whose binding site is outside
- of the function, in an enclosing scope.
- %
- Consider the example in Figure~\ref{fig:lexical-scoping} written in
- \LangLam{}, which extends \LangFun{} with anonymous functions using the
- \key{lambda} form. The body of the \key{lambda}, refers to three
- variables: \code{x}, \code{y}, and \code{z}. The binding sites for
- \code{x} and \code{y} are outside of the \key{lambda}. Variable
- \code{y} is bound by the enclosing \key{let} and \code{x} is a
- parameter of function \code{f}. The \key{lambda} is returned from the
- function \code{f}. The main expression of the program includes two
- calls to \code{f} with different arguments for \code{x}, first
- \code{5} then \code{3}. The functions returned from \code{f} are bound
- to variables \code{g} and \code{h}. Even though these two functions
- were created by the same \code{lambda}, they are really different
- functions because they use different values for \code{x}. Applying
- \code{g} to \code{11} produces \code{20} whereas applying \code{h} to
- \code{15} produces \code{22}. The result of this program is \code{42}.
- \begin{figure}[btp]
- % s4_6.rkt
- \begin{lstlisting}
- (define (f [x : Integer]) : (Integer -> Integer)
- (let ([y 4])
- (lambda: ([z : Integer]) : Integer
- (+ x (+ y z)))))
- (let ([g (f 5)])
- (let ([h (f 3)])
- (+ (g 11) (h 15))))
- \end{lstlisting}
- \caption{Example of a lexically scoped function.}
- \label{fig:lexical-scoping}
- \end{figure}
- The approach that we take for implementing lexically scoped
- functions is to compile them into top-level function definitions,
- translating from \LangLam{} into \LangFun{}. However, the compiler will need to
- provide special treatment for variable occurrences such as \code{x}
- and \code{y} in the body of the \code{lambda} of
- Figure~\ref{fig:lexical-scoping}. After all, an \LangFun{} function may not
- refer to variables defined outside of it. To identify such variable
- occurrences, we review the standard notion of free variable.
- \begin{definition}
- A variable is \emph{free in expression} $e$ if the variable occurs
- inside $e$ but does not have an enclosing binding in $e$.\index{free
- variable}
- \end{definition}
- For example, in the expression \code{(+ x (+ y z))} the variables
- \code{x}, \code{y}, and \code{z} are all free. On the other hand,
- only \code{x} and \code{y} are free in the following expression
- because \code{z} is bound by the \code{lambda}.
- \begin{lstlisting}
- (lambda: ([z : Integer]) : Integer
- (+ x (+ y z)))
- \end{lstlisting}
- So the free variables of a \code{lambda} are the ones that will need
- special treatment. We need to arrange for some way to transport, at
- runtime, the values of those variables from the point where the
- \code{lambda} was created to the point where the \code{lambda} is
- applied. An efficient solution to the problem, due to
- \citet{Cardelli:1983aa}, is to bundle into a vector the values of the
- free variables together with the function pointer for the lambda's
- code, an arrangement called a \emph{flat closure} (which we shorten to
- just ``closure''). \index{closure}\index{flat closure} Fortunately,
- we have all the ingredients to make closures, Chapter~\ref{ch:Rvec}
- gave us vectors and Chapter~\ref{ch:Rfun} gave us function
- pointers. The function pointer resides at index $0$ and the
- values for the free variables will fill in the rest of the vector.
- Let us revisit the example in Figure~\ref{fig:lexical-scoping} to see
- how closures work. It's a three-step dance. The program first calls
- function \code{f}, which creates a closure for the \code{lambda}. The
- closure is a vector whose first element is a pointer to the top-level
- function that we will generate for the \code{lambda}, the second
- element is the value of \code{x}, which is \code{5}, and the third
- element is \code{4}, the value of \code{y}. The closure does not
- contain an element for \code{z} because \code{z} is not a free
- variable of the \code{lambda}. Creating the closure is step 1 of the
- dance. The closure is returned from \code{f} and bound to \code{g}, as
- shown in Figure~\ref{fig:closures}.
- %
- The second call to \code{f} creates another closure, this time with
- \code{3} in the second slot (for \code{x}). This closure is also
- returned from \code{f} but bound to \code{h}, which is also shown in
- Figure~\ref{fig:closures}.
- \begin{figure}[tbp]
- \centering \includegraphics[width=0.6\textwidth]{figs/closures}
- \caption{Example closure representation for the \key{lambda}'s
- in Figure~\ref{fig:lexical-scoping}.}
- \label{fig:closures}
- \end{figure}
- Continuing with the example, consider the application of \code{g} to
- \code{11} in Figure~\ref{fig:lexical-scoping}. To apply a closure, we
- obtain the function pointer in the first element of the closure and
- call it, passing in the closure itself and then the regular arguments,
- in this case \code{11}. This technique for applying a closure is step
- 2 of the dance.
- %
- But doesn't this \code{lambda} only take 1 argument, for parameter
- \code{z}? The third and final step of the dance is generating a
- top-level function for a \code{lambda}. We add an additional
- parameter for the closure and we insert a \code{let} at the beginning
- of the function for each free variable, to bind those variables to the
- appropriate elements from the closure parameter.
- %
- This three-step dance is known as \emph{closure conversion}. We
- discuss the details of closure conversion in
- Section~\ref{sec:closure-conversion} and the code generated from the
- example in Section~\ref{sec:example-lambda}. But first we define the
- syntax and semantics of \LangLam{} in Section~\ref{sec:r5}.
- \section{The \LangLam{} Language}
- \label{sec:r5}
- The concrete and abstract syntax for \LangLam{}, a language with anonymous
- functions and lexical scoping, is defined in
- Figures~\ref{fig:Rlam-concrete-syntax} and ~\ref{fig:Rlam-syntax}. It adds
- the \key{lambda} form to the grammar for \LangFun{}, which already has
- syntax for function application.
- \begin{figure}[tp]
- \centering
- \fbox{
- \begin{minipage}{0.96\textwidth}
- \small
- \[
- \begin{array}{lcl}
- \Type &::=& \gray{\key{Integer} \mid \key{Boolean}
- \mid (\key{Vector}\;\Type\ldots) \mid \key{Void}
- \mid (\Type\ldots \; \key{->}\; \Type)} \\
- \Exp &::=& \gray{ \Int \mid \CREAD{} \mid \CNEG{\Exp}
- \mid \CADD{\Exp}{\Exp} \mid \CSUB{\Exp}{\Exp} } \\
- &\mid& \gray{ \Var \mid \CLET{\Var}{\Exp}{\Exp} }\\
- &\mid& \gray{\key{\#t} \mid \key{\#f}
- \mid (\key{and}\;\Exp\;\Exp)
- \mid (\key{or}\;\Exp\;\Exp)
- \mid (\key{not}\;\Exp) } \\
- &\mid& \gray{ (\key{eq?}\;\Exp\;\Exp) \mid \CIF{\Exp}{\Exp}{\Exp} } \\
- &\mid& \gray{ (\key{vector}\;\Exp\ldots) \mid
- (\key{vector-ref}\;\Exp\;\Int)} \\
- &\mid& \gray{(\key{vector-set!}\;\Exp\;\Int\;\Exp)\mid (\key{void})
- \mid (\Exp \; \Exp\ldots) } \\
- &\mid& \LP \key{procedure-arity}~\Exp\RP \\
- &\mid& \CLAMBDA{\LP\LS\Var \key{:} \Type\RS\ldots\RP}{\Type}{\Exp} \\
- \Def &::=& \gray{ \CDEF{\Var}{\LS\Var \key{:} \Type\RS\ldots}{\Type}{\Exp} } \\
- \LangLam{} &::=& \gray{\Def\ldots \; \Exp}
- \end{array}
- \]
- \end{minipage}
- }
- \caption{The concrete syntax of \LangLam{}, extending \LangFun{} (Figure~\ref{fig:Rfun-concrete-syntax})
- with \key{lambda}.}
- \label{fig:Rlam-concrete-syntax}
- \end{figure}
- \begin{figure}[tp]
- \centering
- \fbox{
- \begin{minipage}{0.96\textwidth}
- \small
- \[
- \begin{array}{lcl}
- \itm{op} &::=& \ldots \mid \code{procedure-arity} \\
- \Exp &::=& \gray{ \INT{\Int} \VAR{\Var} \mid \LET{\Var}{\Exp}{\Exp} } \\
- &\mid& \gray{ \PRIM{\itm{op}}{\Exp\ldots} }\\
- &\mid& \gray{ \BOOL{\itm{bool}}
- \mid \IF{\Exp}{\Exp}{\Exp} } \\
- &\mid& \gray{ \VOID{} \mid \LP\key{HasType}~\Exp~\Type \RP
- \mid \APPLY{\Exp}{\Exp\ldots} }\\
- &\mid& \LAMBDA{\LP\LS\Var\code{:}\Type\RS\ldots\RP}{\Type}{\Exp}\\
- \Def &::=& \gray{ \FUNDEF{\Var}{\LP\LS\Var \code{:} \Type\RS\ldots\RP}{\Type}{\code{'()}}{\Exp} }\\
- \LangLam{} &::=& \gray{ \PROGRAMDEFSEXP{\code{'()}}{\LP\Def\ldots\RP}{\Exp} }
- \end{array}
- \]
- \end{minipage}
- }
- \caption{The abstract syntax of \LangLam{}, extending \LangFun{} (Figure~\ref{fig:Rfun-syntax}).}
- \label{fig:Rlam-syntax}
- \end{figure}
- \index{interpreter}
- \label{sec:interp-Rlambda}
- Figure~\ref{fig:interp-Rlambda} shows the definitional interpreter for
- \LangLam{}. The case for \key{lambda} saves the current environment
- inside the returned \key{lambda}. Then the case for \key{Apply} uses
- the environment from the \key{lambda}, the \code{lam-env}, when
- interpreting the body of the \key{lambda}. The \code{lam-env}
- environment is extended with the mapping of parameters to argument
- values.
- \begin{figure}[tbp]
- \begin{lstlisting}
- (define interp-Rlambda-class
- (class interp-Rfun-class
- (super-new)
- (define/override (interp-op op)
- (match op
- ['procedure-arity
- (lambda (v)
- (match v
- [`(function (,xs ...) ,body ,lam-env) (length xs)]
- [else (error 'interp-op "expected a function, not ~a" v)]))]
- [else (super interp-op op)]))
- (define/override ((interp-exp env) e)
- (define recur (interp-exp env))
- (match e
- [(Lambda (list `[,xs : ,Ts] ...) rT body)
- `(function ,xs ,body ,env)]
- [else ((super interp-exp env) e)]))
- ))
- (define (interp-Rlambda p)
- (send (new interp-Rlambda-class) interp-program p))
- \end{lstlisting}
- \caption{Interpreter for \LangLam{}.}
- \label{fig:interp-Rlambda}
- \end{figure}
- \label{sec:type-check-r5}
- \index{type checking}
- Figure~\ref{fig:type-check-Rlambda} shows how to type check the new
- \key{lambda} form. The body of the \key{lambda} is checked in an
- environment that includes the current environment (because it is
- lexically scoped) and also includes the \key{lambda}'s parameters. We
- require the body's type to match the declared return type.
- \begin{figure}[tbp]
- \begin{lstlisting}
- (define (type-check-Rlambda env)
- (lambda (e)
- (match e
- [(Lambda (and params `([,xs : ,Ts] ...)) rT body)
- (define-values (new-body bodyT)
- ((type-check-exp (append (map cons xs Ts) env)) body))
- (define ty `(,@Ts -> ,rT))
- (cond
- [(equal? rT bodyT)
- (values (HasType (Lambda params rT new-body) ty) ty)]
- [else
- (error "mismatch in return type" bodyT rT)])]
- ...
- )))
- \end{lstlisting}
- \caption{Type checking the \key{lambda}'s in \LangLam{}.}
- \label{fig:type-check-Rlambda}
- \end{figure}
- \section{Reveal Functions and the $F_2$ language}
- \label{sec:reveal-functions-r5}
- To support the \code{procedure-arity} operator we need to communicate
- the arity of a function to the point of closure creation. We can
- accomplish this by replacing the $\FUNREF{\Var}$ struct with one that
- has a second field for the arity: $\FUNREFARITY{\Var}{\Int}$. The
- output of this pass is the language $F_2$, whose syntax is defined in
- Figure~\ref{fig:f2-syntax}.
- \begin{figure}[tp]
- \centering
- \fbox{
- \begin{minipage}{0.96\textwidth}
- \[
- \begin{array}{lcl}
- \Exp &::=& \ldots \mid \FUNREFARITY{\Var}{\Int}\\
- \Def &::=& \gray{ \FUNDEF{\Var}{([\Var \code{:} \Type]\ldots)}{\Type}{\code{'()}}{\Exp} }\\
- F_2 &::=& \gray{\PROGRAMDEFS{\code{'()}}{\LP \Def\ldots \RP}}
- \end{array}
- \]
- \end{minipage}
- }
- \caption{The abstract syntax $F_2$, an extension of \LangLam{}
- (Figure~\ref{fig:Rlam-syntax}).}
- \label{fig:f2-syntax}
- \end{figure}
- \section{Closure Conversion}
- \label{sec:closure-conversion}
- \index{closure conversion}
- The compiling of lexically-scoped functions into top-level function
- definitions is accomplished in the pass \code{convert-to-closures}
- that comes after \code{reveal-functions} and before
- \code{limit-functions}.
- As usual, we implement the pass as a recursive function over the
- AST. All of the action is in the cases for \key{Lambda} and
- \key{Apply}. We transform a \key{Lambda} expression into an expression
- that creates a closure, that is, a vector whose first element is a
- function pointer and the rest of the elements are the free variables
- of the \key{Lambda}. We use the struct \code{Closure} here instead of
- using \code{vector} so that we can distinguish closures from vectors
- in Section~\ref{sec:optimize-closures} and to record the arity. In
- the generated code below, the \itm{name} is a unique symbol generated
- to identify the function and the \itm{arity} is the number of
- parameters (the length of \itm{ps}).
- \begin{lstlisting}
- (Lambda |\itm{ps}| |\itm{rt}| |\itm{body}|)
- |$\Rightarrow$|
- (Closure |\itm{arity}| (cons (FunRef |\itm{name}|) |\itm{fvs}|))
- \end{lstlisting}
- In addition to transforming each \key{Lambda} into a \key{Closure}, we
- create a top-level function definition for each \key{Lambda}, as
- shown below.\\
- \begin{minipage}{0.8\textwidth}
- \begin{lstlisting}
- (Def |\itm{name}| ([clos : (Vector _ |\itm{fvts}| ...)] |\itm{ps'}| ...) |\itm{rt'}|
- (Let |$\itm{fvs}_1$| (Prim 'vector-ref (list (Var clos) (Int 1)))
- ...
- (Let |$\itm{fvs}_n$| (Prim 'vector-ref (list (Var clos) (Int |$n$|)))
- |\itm{body'}|)...))
- \end{lstlisting}
- \end{minipage}\\
- The \code{clos} parameter refers to the closure. Translate the type
- annotations in \itm{ps} and the return type \itm{rt}, as discussed in
- the next paragraph, to obtain \itm{ps'} and \itm{rt'}. The types
- $\itm{fvts}$ are the types of the free variables in the lambda and the
- underscore \code{\_} is a dummy type that we use because it is rather
- difficult to give a type to the function in the closure's
- type.\footnote{To give an accurate type to a closure, we would need to
- add existential types to the type checker~\citep{Minamide:1996ys}.}
- The dummy type is considered to be equal to any other type during type
- checking. The sequence of \key{Let} forms bind the free variables to
- their values obtained from the closure.
- Closure conversion turns functions into vectors, so the type
- annotations in the program must also be translated. We recommend
- defining a auxiliary recursive function for this purpose. Function
- types should be translated as follows.
- \begin{lstlisting}
- (|$T_1, \ldots, T_n$| -> |$T_r$|)
- |$\Rightarrow$|
- (Vector ((Vector _) |$T'_1, \ldots, T'_n$| -> |$T'_r$|))
- \end{lstlisting}
- The above type says that the first thing in the vector is a function
- pointer. The first parameter of the function pointer is a vector (a
- closure) and the rest of the parameters are the ones from the original
- function, with types $T'_1, \ldots, T'_n$. The \code{Vector} type for
- the closure omits the types of the free variables because 1) those
- types are not available in this context and 2) we do not need them in
- the code that is generated for function application.
- We transform function application into code that retrieves the
- function pointer from the closure and then calls the function, passing
- in the closure as the first argument. We bind $e'$ to a temporary
- variable to avoid code duplication.
- \begin{lstlisting}
- (Apply |$e$| |\itm{es}|)
- |$\Rightarrow$|
- (Let |\itm{tmp}| |$e'$|
- (Apply (Prim 'vector-ref (list (Var |\itm{tmp}|) (Int 0))) (cons |\itm{tmp}| |\itm{es'}|)))
- \end{lstlisting}
- There is also the question of what to do with references top-level
- function definitions. To maintain a uniform translation of function
- application, we turn function references into closures.
- \begin{tabular}{lll}
- \begin{minipage}{0.3\textwidth}
- \begin{lstlisting}
- (FunRefArity |$f$| |$n$|)
- \end{lstlisting}
- \end{minipage}
- &
- $\Rightarrow$
- &
- \begin{minipage}{0.5\textwidth}
- \begin{lstlisting}
- (Closure |$n$| (FunRef |$f$|) '())
- \end{lstlisting}
- \end{minipage}
- \end{tabular} \\
- %
- The top-level function definitions need to be updated as well to take
- an extra closure parameter.
- \section{An Example Translation}
- \label{sec:example-lambda}
- Figure~\ref{fig:lexical-functions-example} shows the result of
- \code{reveal-functions} and \code{convert-to-closures} for the example
- program demonstrating lexical scoping that we discussed at the
- beginning of this chapter.
- \begin{figure}[tbp]
- \begin{minipage}{0.8\textwidth}
- % tests/lambda_test_6.rkt
- \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
- (define (f6 [x7 : Integer]) : (Integer -> Integer)
- (let ([y8 4])
- (lambda: ([z9 : Integer]) : Integer
- (+ x7 (+ y8 z9)))))
- (define (main) : Integer
- (let ([g0 ((fun-ref-arity f6 1) 5)])
- (let ([h1 ((fun-ref-arity f6 1) 3)])
- (+ (g0 11) (h1 15)))))
- \end{lstlisting}
- $\Rightarrow$
- \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
- (define (f6 [fvs4 : _] [x7 : Integer]) : (Vector ((Vector _) Integer -> Integer))
- (let ([y8 4])
- (closure 1 (list (fun-ref lambda2) x7 y8))))
- (define (lambda2 [fvs3 : (Vector _ Integer Integer)] [z9 : Integer]) : Integer
- (let ([x7 (vector-ref fvs3 1)])
- (let ([y8 (vector-ref fvs3 2)])
- (+ x7 (+ y8 z9)))))
- (define (main) : Integer
- (let ([g0 (let ([clos5 (closure 1 (list (fun-ref f6)))])
- ((vector-ref clos5 0) clos5 5))])
- (let ([h1 (let ([clos6 (closure 1 (list (fun-ref f6)))])
- ((vector-ref clos6 0) clos6 3))])
- (+ ((vector-ref g0 0) g0 11) ((vector-ref h1 0) h1 15)))))
- \end{lstlisting}
- \end{minipage}
- \caption{Example of closure conversion.}
- \label{fig:lexical-functions-example}
- \end{figure}
- \begin{exercise}\normalfont
- Expand your compiler to handle \LangLam{} as outlined in this chapter.
- Create 5 new programs that use \key{lambda} functions and make use of
- lexical scoping. Test your compiler on these new programs and all of
- your previously created test programs.
- \end{exercise}
- \section{Expose Allocation}
- \label{sec:expose-allocation-r5}
- Compile the $\CLOSURE{\itm{arity}}{\LP\Exp\ldots\RP}$ form into code
- that allocates and initializes a vector, similar to the translation of
- the \code{vector} operator in Section~\ref{sec:expose-allocation}.
- The only difference is replacing the use of
- \ALLOC{\itm{len}}{\itm{type}} with
- \ALLOCCLOS{\itm{len}}{\itm{type}}{\itm{arity}}.
- \section{Explicate Control and \LangCLam{}}
- \label{sec:explicate-r5}
- The output language of \code{explicate-control} is \LangCLam{} whose
- abstract syntax is defined in Figure~\ref{fig:c4-syntax}. The only
- difference with respect to \LangCFun{} is the addition of the
- \code{AllocateClosure} form to the grammar for $\Exp$. The handling
- of \code{AllocateClosure} in the \code{explicate-control} pass is
- similar to the handling of other expressions such as primitive
- operators.
- \begin{figure}[tp]
- \fbox{
- \begin{minipage}{0.96\textwidth}
- \small
- \[
- \begin{array}{lcl}
- \Exp &::= & \ldots
- \mid \ALLOCCLOS{\Int}{\Type}{\Int} \\
- \Stmt &::=& \gray{ \ASSIGN{\VAR{\Var}}{\Exp}
- \mid \LP\key{Collect} \,\itm{int}\RP } \\
- \Tail &::= & \gray{ \RETURN{\Exp} \mid \SEQ{\Stmt}{\Tail}
- \mid \GOTO{\itm{label}} } \\
- &\mid& \gray{ \IFSTMT{\BINOP{\itm{cmp}}{\Atm}{\Atm}}{\GOTO{\itm{label}}}{\GOTO{\itm{label}}} }\\
- &\mid& \gray{ \TAILCALL{\Atm}{\Atm\ldots} } \\
- \Def &::=& \gray{ \DEF{\itm{label}}{\LP[\Var\key{:}\Type]\ldots\RP}{\Type}{\itm{info}}{\LP\LP\itm{label}\,\key{.}\,\Tail\RP\ldots\RP} }\\
- \LangCLam{} & ::= & \gray{ \PROGRAMDEFS{\itm{info}}{\LP\Def\ldots\RP} }
- \end{array}
- \]
- \end{minipage}
- }
- \caption{The abstract syntax of \LangCLam{}, extending \LangCFun{} (Figure~\ref{fig:c3-syntax}).}
- \label{fig:c4-syntax}
- \end{figure}
- \section{Select Instructions}
- \label{sec:select-instructions-Rlambda}
- Compile \ALLOCCLOS{\itm{len}}{\itm{type}}{\itm{arity}} in almost the
- same way as the \ALLOC{\itm{len}}{\itm{type}} form
- (Section~\ref{sec:select-instructions-gc}). The only difference is
- that you should place the \itm{arity} in the tag that is stored at
- position $0$ of the vector. Recall that in
- Section~\ref{sec:select-instructions-gc} a portion of the 64-bit tag
- was not used. We store the arity in the $5$ bits starting at position
- $58$.
- Compile the \code{procedure-arity} operator into a sequence of
- instructions that access the tag from position $0$ of the vector and
- extract the $5$-bits starting at position $58$ from the tag.
- \begin{figure}[p]
- \begin{tikzpicture}[baseline=(current bounding box.center)]
- \node (Rfun) at (0,2) {\large \LangFun{}};
- \node (Rfun-2) at (3,2) {\large \LangFun{}};
- \node (Rfun-3) at (6,2) {\large \LangFun{}};
- \node (F1-1) at (12,0) {\large \LangFunRef{}};
- \node (F1-2) at (9,0) {\large \LangFunRef{}};
- \node (F1-3) at (6,0) {\large $F_1$};
- \node (F1-4) at (3,0) {\large $F_1$};
- \node (F1-5) at (0,0) {\large $F_1$};
- \node (C3-2) at (3,-2) {\large \LangCFun{}};
- \node (x86-2) at (3,-4) {\large \LangXIndCallVar{}};
- \node (x86-2-1) at (3,-6) {\large \LangXIndCallVar{}};
- \node (x86-2-2) at (6,-6) {\large \LangXIndCallVar{}};
- \node (x86-3) at (6,-4) {\large \LangXIndCallVar{}};
- \node (x86-4) at (9,-4) {\large \LangXIndCall{}};
- \node (x86-5) at (9,-6) {\large \LangXIndCall{}};
- \path[->,bend left=15] (Rfun) edge [above] node
- {\ttfamily\footnotesize shrink} (Rfun-2);
- \path[->,bend left=15] (Rfun-2) edge [above] node
- {\ttfamily\footnotesize uniquify} (Rfun-3);
- \path[->,bend left=15] (Rfun-3) edge [right] node
- {\ttfamily\footnotesize reveal-functions} (F1-1);
- \path[->,bend left=15] (F1-1) edge [below] node
- {\ttfamily\footnotesize convert-to-clos.} (F1-2);
- \path[->,bend right=15] (F1-2) edge [above] node
- {\ttfamily\footnotesize limit-fun.} (F1-3);
- \path[->,bend right=15] (F1-3) edge [above] node
- {\ttfamily\footnotesize expose-alloc.} (F1-4);
- \path[->,bend right=15] (F1-4) edge [above] node
- {\ttfamily\footnotesize remove-complex.} (F1-5);
- \path[->,bend right=15] (F1-5) edge [right] node
- {\ttfamily\footnotesize explicate-control} (C3-2);
- \path[->,bend left=15] (C3-2) edge [left] node
- {\ttfamily\footnotesize select-instr.} (x86-2);
- \path[->,bend right=15] (x86-2) edge [left] node
- {\ttfamily\footnotesize uncover-live} (x86-2-1);
- \path[->,bend right=15] (x86-2-1) edge [below] node
- {\ttfamily\footnotesize build-inter.} (x86-2-2);
- \path[->,bend right=15] (x86-2-2) edge [left] node
- {\ttfamily\footnotesize allocate-reg.} (x86-3);
- \path[->,bend left=15] (x86-3) edge [above] node
- {\ttfamily\footnotesize patch-instr.} (x86-4);
- \path[->,bend left=15] (x86-4) edge [right] node
- {\ttfamily\footnotesize print-x86} (x86-5);
- \end{tikzpicture}
- \caption{Diagram of the passes for \LangLam{}, a language with lexically-scoped
- functions.}
- \label{fig:Rlambda-passes}
- \end{figure}
- Figure~\ref{fig:Rlambda-passes} provides an overview of all the passes needed
- for the compilation of \LangLam{}.
- \clearpage
- \section{Challenge: Optimize Closures}
- \label{sec:optimize-closures}
- In this chapter we compiled lexically-scoped functions into a
- relatively efficient representation: flat closures. However, even this
- representation comes with some overhead. For example, consider the
- following program with a function \code{tail-sum} that does not have
- any free variables and where all the uses of \code{tail-sum} are in
- applications where we know that only \code{tail-sum} is being applied
- (and not any other functions).
- \begin{center}
- \begin{minipage}{0.95\textwidth}
- \begin{lstlisting}
- (define (tail-sum [n : Integer] [r : Integer]) : Integer
- (if (eq? n 0)
- r
- (tail-sum (- n 1) (+ n r))))
- (+ (tail-sum 5 0) 27)
- \end{lstlisting}
- \end{minipage}
- \end{center}
- As described in this chapter, we uniformly apply closure conversion to
- all functions, obtaining the following output for this program.
- \begin{center}
- \begin{minipage}{0.95\textwidth}
- \begin{lstlisting}
- (define (tail_sum1 [fvs5 : _] [n2 : Integer] [r3 : Integer]) : Integer
- (if (eq? n2 0)
- r3
- (let ([clos4 (closure (list (fun-ref tail_sum1)))])
- ((vector-ref clos4 0) clos4 (+ n2 -1) (+ n2 r3)))))
- (define (main) : Integer
- (+ (let ([clos6 (closure (list (fun-ref tail_sum1)))])
- ((vector-ref clos6 0) clos6 5 0)) 27))
- \end{lstlisting}
- \end{minipage}
- \end{center}
- In the previous Chapter, there would be no allocation in the program
- and the calls to \code{tail-sum} would be direct calls. In contrast,
- the above program allocates memory for each \code{closure} and the
- calls to \code{tail-sum} are indirect. These two differences incur
- considerable overhead in a program such as this one, where the
- allocations and indirect calls occur inside a tight loop.
- One might think that this problem is trivial to solve: can't we just
- recognize calls of the form \code{((fun-ref $f$) $e_1 \ldots e_n$)}
- and compile them to direct calls \code{((fun-ref $f$) $e'_1 \ldots
- e'_n$)} instead of treating it like a call to a closure? We would
- also drop the \code{fvs5} parameter of \code{tail\_sum1}.
- %
- However, this problem is not so trivial because a global function may
- ``escape'' and become involved in applications that also involve
- closures. Consider the following example in which the application
- \code{(f 41)} needs to be compiled into a closure application, because
- the \code{lambda} may get bound to \code{f}, but the \code{add1}
- function might also get bound to \code{f}.
- \begin{lstlisting}
- (define (add1 [x : Integer]) : Integer
- (+ x 1))
- (let ([y (read)])
- (let ([f (if (eq? (read) 0)
- add1
- (lambda: ([x : Integer]) : Integer (- x y)))])
- (f 41)))
- \end{lstlisting}
- If a global function name is used in any way other than as the
- operator in a direct call, then we say that the function
- \emph{escapes}. If a global function does not escape, then we do not
- need to perform closure conversion on the function.
- \begin{exercise}\normalfont
- Implement an auxiliary function for detecting which global
- functions escape. Using that function, implement an improved version
- of closure conversion that does not apply closure conversion to
- global functions that do not escape but instead compiles them as
- regular functions. Create several new test cases that check whether
- you properly detect whether global functions escape or not.
- \end{exercise}
- So far we have reduced the overhead of calling global functions, but
- it would also be nice to reduce the overhead of calling a
- \code{lambda} when we can determine at compile time which
- \code{lambda} will be called. We refer to such calls as \emph{known
- calls}. Consider the following example in which a \code{lambda} is
- bound to \code{f} and then applied.
- \begin{lstlisting}
- (let ([y (read)])
- (let ([f (lambda: ([x : Integer]) : Integer
- (+ x y))])
- (f 21)))
- \end{lstlisting}
- Closure conversion compiles \code{(f 21)} into an indirect call:
- \begin{lstlisting}
- (define (lambda5 [fvs6 : (Vector _ Integer)] [x3 : Integer]) : Integer
- (let ([y2 (vector-ref fvs6 1)])
- (+ x3 y2)))
- (define (main) : Integer
- (let ([y2 (read)])
- (let ([f4 (Closure 1 (list (fun-ref lambda5) y2))])
- ((vector-ref f4 0) f4 21))))
- \end{lstlisting}
- but we can instead compile the application \code{(f 21)} into a direct call
- to \code{lambda5}:
- \begin{lstlisting}
- (define (main) : Integer
- (let ([y2 (read)])
- (let ([f4 (Closure 1 (list (fun-ref lambda5) y2))])
- ((fun-ref lambda5) f4 21))))
- \end{lstlisting}
- The problem of determining which lambda will be called from a
- particular application is quite challenging in general and the topic
- of considerable research~\citep{Shivers:1988aa,Gilray:2016aa}. For the
- following exercise we recommend that you compile an application to a
- direct call when the operator is a variable and the variable is
- \code{let}-bound to a closure. This can be accomplished by maintaining
- an environment mapping \code{let}-bound variables to function names.
- Extend the environment whenever you encounter a closure on the
- right-hand side of a \code{let}, mapping the \code{let}-bound variable
- to the name of the global function for the closure. This pass should
- come after closure conversion.
- \begin{exercise}\normalfont
- Implement a compiler pass, named \code{optimize-known-calls}, that
- compiles known calls into direct calls. Verify that your compiler is
- successful in this regard on several example programs.
- \end{exercise}
- These exercises only scratches the surface of optimizing of
- closures. A good next step for the interested reader is to look at the
- work of \citet{Keep:2012ab}.
- \section{Further Reading}
- The notion of lexically scoped anonymous functions predates modern
- computers by about a decade. They were invented by
- \citet{Church:1932aa}, who proposed the $\lambda$ calculus as a
- foundation for logic. Anonymous functions were included in the
- LISP~\citep{McCarthy:1960dz} programming language but were initially
- dynamically scoped. The Scheme dialect of LISP adopted lexical scoping
- and \citet{Guy-L.-Steele:1978yq} demonstrated how to efficiently
- compile Scheme programs. However, environments were represented as
- linked lists, so variable lookup was linear in the size of the
- environment. In this chapter we represent environments using flat
- closures, which were invented by
- \citet{Cardelli:1983aa,Cardelli:1984aa} for the purposes of compiling
- the ML language~\citep{Gordon:1978aa,Milner:1990fk}. With flat
- closures, variable lookup is constant time but the time to create a
- closure is proportional to the number of its free variables. Flat
- closures were reinvented by \citet{Dybvig:1987ab} in his Ph.D. thesis
- and used in Chez Scheme version 1~\citep{Dybvig:2006aa}.
- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
- \chapter{Dynamic Typing}
- \label{ch:Rdyn}
- \index{dynamic typing}
- In this chapter we discuss the compilation of \LangDyn{}, a dynamically
- typed language that is a subset of Racket. This is in contrast to the
- previous chapters, which have studied the compilation of Typed
- Racket. In dynamically typed languages such as \LangDyn{}, a given
- expression may produce a value of a different type each time it is
- executed. Consider the following example with a conditional \code{if}
- expression that may return a Boolean or an integer depending on the
- input to the program.
- % part of dynamic_test_25.rkt
- \begin{lstlisting}
- (not (if (eq? (read) 1) #f 0))
- \end{lstlisting}
- Languages that allow expressions to produce different kinds of values
- are called \emph{polymorphic}, a word composed of the Greek roots
- ``poly'', meaning ``many'', and ``morph'', meaning ``shape''. There
- are several kinds of polymorphism in programming languages, such as
- subtype polymorphism and parametric
- polymorphism~\citep{Cardelli:1985kx}. The kind of polymorphism we
- study in this chapter does not have a special name but it is the kind
- that arises in dynamically typed languages.
- Another characteristic of dynamically typed languages is that
- primitive operations, such as \code{not}, are often defined to operate
- on many different types of values. In fact, in Racket, the \code{not}
- operator produces a result for any kind of value: given \code{\#f} it
- returns \code{\#t} and given anything else it returns \code{\#f}.
- Furthermore, even when primitive operations restrict their inputs to
- values of a certain type, this restriction is enforced at runtime
- instead of during compilation. For example, the following vector
- reference results in a run-time contract violation because the index
- must be in integer, not a Boolean such as \code{\#t}.
- \begin{lstlisting}
- (vector-ref (vector 42) #t)
- \end{lstlisting}
- \begin{figure}[tp]
- \centering
- \fbox{
- \begin{minipage}{0.97\textwidth}
- \[
- \begin{array}{rcl}
- \itm{cmp} &::= & \key{eq?} \mid \key{<} \mid \key{<=} \mid \key{>} \mid \key{>=} \\
- \Exp &::=& \Int \mid \CREAD{} \mid \CNEG{\Exp}
- \mid \CADD{\Exp}{\Exp} \mid \CSUB{\Exp}{\Exp} \\
- &\mid& \Var \mid \CLET{\Var}{\Exp}{\Exp} \\
- &\mid& \key{\#t} \mid \key{\#f}
- \mid \CBINOP{\key{and}}{\Exp}{\Exp}
- \mid \CBINOP{\key{or}}{\Exp}{\Exp}
- \mid \CUNIOP{\key{not}}{\Exp} \\
- &\mid& \LP\itm{cmp}\;\Exp\;\Exp\RP \mid \CIF{\Exp}{\Exp}{\Exp} \\
- &\mid& \LP\key{vector}\;\Exp\ldots\RP \mid
- \LP\key{vector-ref}\;\Exp\;\Exp\RP \\
- &\mid& \LP\key{vector-set!}\;\Exp\;\Exp\;\Exp\RP \mid \LP\key{void}\RP \\
- &\mid& \LP\Exp \; \Exp\ldots\RP
- \mid \LP\key{lambda}\;\LP\Var\ldots\RP\;\Exp\RP \\
- & \mid & \LP\key{boolean?}\;\Exp\RP \mid \LP\key{integer?}\;\Exp\RP\\
- & \mid & \LP\key{vector?}\;\Exp\RP \mid \LP\key{procedure?}\;\Exp\RP \mid \LP\key{void?}\;\Exp\RP \\
- \Def &::=& \LP\key{define}\; \LP\Var \; \Var\ldots\RP \; \Exp\RP \\
- \LangDyn{} &::=& \Def\ldots\; \Exp
- \end{array}
- \]
- \end{minipage}
- }
- \caption{Syntax of \LangDyn{}, an untyped language (a subset of Racket).}
- \label{fig:r7-concrete-syntax}
- \end{figure}
- \begin{figure}[tp]
- \centering
- \fbox{
- \begin{minipage}{0.96\textwidth}
- \small
- \[
- \begin{array}{lcl}
- \Exp &::=& \INT{\Int} \mid \VAR{\Var} \mid \LET{\Var}{\Exp}{\Exp} \\
- &\mid& \PRIM{\itm{op}}{\Exp\ldots} \\
- &\mid& \BOOL{\itm{bool}}
- \mid \IF{\Exp}{\Exp}{\Exp} \\
- &\mid& \VOID{} \mid \APPLY{\Exp}{\Exp\ldots} \\
- &\mid& \LAMBDA{\LP\Var\ldots\RP}{\code{'Any}}{\Exp}\\
- \Def &::=& \FUNDEF{\Var}{\LP\Var\ldots\RP}{\code{'Any}}{\code{'()}}{\Exp} \\
- \LangDyn{} &::=& \PROGRAMDEFSEXP{\code{'()}}{\LP\Def\ldots\RP}{\Exp}
- \end{array}
- \]
- \end{minipage}
- }
- \caption{The abstract syntax of \LangDyn{}.}
- \label{fig:r7-syntax}
- \end{figure}
- The concrete and abstract syntax of \LangDyn{}, our subset of Racket, is
- defined in Figures~\ref{fig:r7-concrete-syntax} and
- \ref{fig:r7-syntax}.
- %
- There is no type checker for \LangDyn{} because it is not a statically
- typed language (it's dynamically typed!).
- The definitional interpreter for \LangDyn{} is presented in
- Figure~\ref{fig:interp-Rdyn} and its auxiliary functions are defined i
- Figure~\ref{fig:interp-Rdyn-aux}. Consider the match case for
- \code{(Int n)}. Instead of simply returning the integer \code{n} (as
- in the interpreter for \LangVar{} in Figure~\ref{fig:interp-Rvar}), the
- interpreter for \LangDyn{} creates a \emph{tagged value}\index{tagged
- value} that combines an underlying value with a tag that identifies
- what kind of value it is. We define the following struct
- to represented tagged values.
- \begin{lstlisting}
- (struct Tagged (value tag) #:transparent)
- \end{lstlisting}
- The tags are \code{Integer}, \code{Boolean}, \code{Void},
- \code{Vector}, and \code{Procedure}. Tags are closely related to types
- but don't always capture all the information that a type does. For
- example, a vector of type \code{(Vector Any Any)} is tagged with
- \code{Vector} and a procedure of type \code{(Any Any -> Any)}
- is tagged with \code{Procedure}.
- Next consider the match case for \code{vector-ref}. The
- \code{check-tag} auxiliary function (Figure~\ref{fig:interp-Rdyn-aux})
- is used to ensure that the first argument is a vector and the second
- is an integer. If they are not, a \code{trapped-error} is raised.
- Recall from Section~\ref{sec:interp-Rint} that when a definition
- interpreter raises a \code{trapped-error} error, the compiled code
- must also signal an error by exiting with return code \code{255}. A
- \code{trapped-error} is also raised if the index is not less than
- length of the vector.
- \begin{figure}[tbp]
- \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
- (define ((interp-Rdyn-exp env) ast)
- (define recur (interp-Rdyn-exp env))
- (match ast
- [(Var x) (lookup x env)]
- [(Int n) (Tagged n 'Integer)]
- [(Bool b) (Tagged b 'Boolean)]
- [(Lambda xs rt body)
- (Tagged `(function ,xs ,body ,env) 'Procedure)]
- [(Prim 'vector es)
- (Tagged (apply vector (for/list ([e es]) (recur e))) 'Vector)]
- [(Prim 'vector-ref (list e1 e2))
- (define vec (recur e1)) (define i (recur e2))
- (check-tag vec 'Vector ast) (check-tag i 'Integer ast)
- (unless (< (Tagged-value i) (vector-length (Tagged-value vec)))
- (error 'trapped-error "index ~a too big\nin ~v" (Tagged-value i) ast))
- (vector-ref (Tagged-value vec) (Tagged-value i))]
- [(Prim 'vector-set! (list e1 e2 e3))
- (define vec (recur e1)) (define i (recur e2)) (define arg (recur e3))
- (check-tag vec 'Vector ast) (check-tag i 'Integer ast)
- (unless (< (Tagged-value i) (vector-length (Tagged-value vec)))
- (error 'trapped-error "index ~a too big\nin ~v" (Tagged-value i) ast))
- (vector-set! (Tagged-value vec) (Tagged-value i) arg)
- (Tagged (void) 'Void)]
- [(Let x e body) ((interp-Rdyn-exp (cons (cons x (recur e)) env)) body)]
- [(Prim 'and (list e1 e2)) (recur (If e1 e2 (Bool #f)))]
- [(Prim 'or (list e1 e2))
- (define v1 (recur e1))
- (match (Tagged-value v1) [#f (recur e2)] [else v1])]
- [(Prim 'eq? (list l r)) (Tagged (equal? (recur l) (recur r)) 'Boolean)]
- [(Prim op (list e1))
- #:when (set-member? type-predicates op)
- (tag-value ((interp-op op) (Tagged-value (recur e1))))]
- [(Prim op es)
- (define args (map recur es))
- (define tags (for/list ([arg args]) (Tagged-tag arg)))
- (unless (for/or ([expected-tags (op-tags op)])
- (equal? expected-tags tags))
- (error 'trapped-error "illegal argument tags ~a\nin ~v" tags ast))
- (tag-value
- (apply (interp-op op) (for/list ([a args]) (Tagged-value a))))]
- [(If q t f)
- (match (Tagged-value (recur q)) [#f (recur f)] [else (recur t)])]
- [(Apply f es)
- (define new-f (recur f)) (define args (map recur es))
- (check-tag new-f 'Procedure ast) (define f-val (Tagged-value new-f))
- (match f-val
- [`(function ,xs ,body ,lam-env)
- (unless (eq? (length xs) (length args))
- (error 'trapped-error "~a != ~a\nin ~v" (length args) (length xs) ast))
- (define new-env (append (map cons xs args) lam-env))
- ((interp-Rdyn-exp new-env) body)]
- [else (error "interp-Rdyn-exp, expected function, not" f-val)])]))
- \end{lstlisting}
- \caption{Interpreter for the \LangDyn{} language.}
- \label{fig:interp-Rdyn}
- \end{figure}
- \begin{figure}[tbp]
- \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
- (define (interp-op op)
- (match op
- ['+ fx+]
- ['- fx-]
- ['read read-fixnum]
- ['not (lambda (v) (match v [#t #f] [#f #t]))]
- ['< (lambda (v1 v2)
- (cond [(and (fixnum? v1) (fixnum? v2)) (< v1 v2)]))]
- ['<= (lambda (v1 v2)
- (cond [(and (fixnum? v1) (fixnum? v2)) (<= v1 v2)]))]
- ['> (lambda (v1 v2)
- (cond [(and (fixnum? v1) (fixnum? v2)) (> v1 v2)]))]
- ['>= (lambda (v1 v2)
- (cond [(and (fixnum? v1) (fixnum? v2)) (>= v1 v2)]))]
- ['boolean? boolean?]
- ['integer? fixnum?]
- ['void? void?]
- ['vector? vector?]
- ['vector-length vector-length]
- ['procedure? (match-lambda
- [`(functions ,xs ,body ,env) #t] [else #f])]
- [else (error 'interp-op "unknown operator" op)]))
- (define (op-tags op)
- (match op
- ['+ '((Integer Integer))]
- ['- '((Integer Integer) (Integer))]
- ['read '(())]
- ['not '((Boolean))]
- ['< '((Integer Integer))]
- ['<= '((Integer Integer))]
- ['> '((Integer Integer))]
- ['>= '((Integer Integer))]
- ['vector-length '((Vector))]))
- (define type-predicates
- (set 'boolean? 'integer? 'vector? 'procedure? 'void?))
- (define (tag-value v)
- (cond [(boolean? v) (Tagged v 'Boolean)]
- [(fixnum? v) (Tagged v 'Integer)]
- [(procedure? v) (Tagged v 'Procedure)]
- [(vector? v) (Tagged v 'Vector)]
- [(void? v) (Tagged v 'Void)]
- [else (error 'tag-value "unidentified value ~a" v)]))
- (define (check-tag val expected ast)
- (define tag (Tagged-tag val))
- (unless (eq? tag expected)
- (error 'trapped-error "expected ~a, not ~a\nin ~v" expected tag ast)))
- \end{lstlisting}
- \caption{Auxiliary functions for the \LangDyn{} interpreter.}
- \label{fig:interp-Rdyn-aux}
- \end{figure}
- \clearpage
- \section{Representation of Tagged Values}
- The interpreter for \LangDyn{} introduced a new kind of value, a tagged
- value. To compile \LangDyn{} to x86 we must decide how to represent tagged
- values at the bit level. Because almost every operation in \LangDyn{}
- involves manipulating tagged values, the representation must be
- efficient. Recall that all of our values are 64 bits. We shall steal
- the 3 right-most bits to encode the tag. We use $001$ to identify
- integers, $100$ for Booleans, $010$ for vectors, $011$ for procedures,
- and $101$ for the void value. We define the following auxiliary
- function for mapping types to tag codes.
- \begin{align*}
- \itm{tagof}(\key{Integer}) &= 001 \\
- \itm{tagof}(\key{Boolean}) &= 100 \\
- \itm{tagof}((\key{Vector} \ldots)) &= 010 \\
- \itm{tagof}((\ldots \key{->} \ldots)) &= 011 \\
- \itm{tagof}(\key{Void}) &= 101
- \end{align*}
- This stealing of 3 bits comes at some price: our integers are reduced
- to ranging from $-2^{60}$ to $2^{60}$. The stealing does not adversely
- affect vectors and procedures because those values are addresses, and
- our addresses are 8-byte aligned so the rightmost 3 bits are unused,
- they are always $000$. Thus, we do not lose information by overwriting
- the rightmost 3 bits with the tag and we can simply zero-out the tag
- to recover the original address.
- To make tagged values into first-class entities, we can give them a
- type, called \code{Any}, and define operations such as \code{Inject}
- and \code{Project} for creating and using them, yielding the \LangAny{}
- intermediate language. We describe how to compile \LangDyn{} to \LangAny{} in
- Section~\ref{sec:compile-r7} but first we describe the \LangAny{} language
- in greater detail.
- \section{The \LangAny{} Language}
- \label{sec:Rany-lang}
- \begin{figure}[tp]
- \centering
- \fbox{
- \begin{minipage}{0.96\textwidth}
- \small
- \[
- \begin{array}{lcl}
- \Type &::= & \ldots \mid \key{Any} \\
- \itm{op} &::= & \ldots \mid \code{any-vector-length}
- \mid \code{any-vector-ref} \mid \code{any-vector-set!}\\
- &\mid& \code{boolean?} \mid \code{integer?} \mid \code{vector?}
- \mid \code{procedure?} \mid \code{void?} \\
- \Exp &::=& \ldots
- \mid \gray{ \PRIM{\itm{op}}{\Exp\ldots} } \\
- &\mid& \INJECT{\Exp}{\FType} \mid \PROJECT{\Exp}{\FType} \\
- \Def &::=& \gray{ \FUNDEF{\Var}{\LP[\Var \code{:} \Type]\ldots\RP}{\Type}{\code{'()}}{\Exp} }\\
- \LangAny{} &::=& \gray{ \PROGRAMDEFSEXP{\code{'()}}{\LP\Def\ldots\RP}{\Exp} }
- \end{array}
- \]
- \end{minipage}
- }
- \caption{The abstract syntax of \LangAny{}, extending \LangLam{} (Figure~\ref{fig:Rlam-syntax}).}
- \label{fig:Rany-syntax}
- \end{figure}
- The abstract syntax of \LangAny{} is defined in Figure~\ref{fig:Rany-syntax}.
- (The concrete syntax of \LangAny{} is in the Appendix,
- Figure~\ref{fig:Rany-concrete-syntax}.) The $\INJECT{e}{T}$ form
- converts the value produced by expression $e$ of type $T$ into a
- tagged value. The $\PROJECT{e}{T}$ form converts the tagged value
- produced by expression $e$ into a value of type $T$ or else halts the
- program if the type tag is not equivalent to $T$.
- %
- Note that in both \code{Inject} and \code{Project}, the type $T$ is
- restricted to a flat type $\FType$, which simplifies the
- implementation and corresponds with what is needed for compiling \LangDyn{}.
- The \code{any-vector} operators adapt the vector operations so that
- they can be applied to a value of type \code{Any}. They also
- generalize the vector operations in that the index is not restricted
- to be a literal integer in the grammar but is allowed to be any
- expression.
- The type predicates such as \key{boolean?} expect their argument to
- produce a tagged value; they return \key{\#t} if the tag corresponds
- to the predicate and they return \key{\#f} otherwise.
- The type checker for \LangAny{} is shown in
- Figures~\ref{fig:type-check-Rany-part-1} and
- \ref{fig:type-check-Rany-part-2} and uses the auxiliary functions in
- Figure~\ref{fig:type-check-Rany-aux}.
- %
- The interpreter for \LangAny{} is in Figure~\ref{fig:interp-Rany} and the
- auxiliary functions \code{apply-inject} and \code{apply-project} are
- in Figure~\ref{fig:apply-project}.
- \begin{figure}[btp]
- \begin{lstlisting}[basicstyle=\ttfamily\small]
- (define type-check-Rany-class
- (class type-check-Rlambda-class
- (super-new)
- (inherit check-type-equal?)
- (define/override (type-check-exp env)
- (lambda (e)
- (define recur (type-check-exp env))
- (match e
- [(Inject e1 ty)
- (unless (flat-ty? ty)
- (error 'type-check "may only inject from flat type, not ~a" ty))
- (define-values (new-e1 e-ty) (recur e1))
- (check-type-equal? e-ty ty e)
- (values (Inject new-e1 ty) 'Any)]
- [(Project e1 ty)
- (unless (flat-ty? ty)
- (error 'type-check "may only project to flat type, not ~a" ty))
- (define-values (new-e1 e-ty) (recur e1))
- (check-type-equal? e-ty 'Any e)
- (values (Project new-e1 ty) ty)]
- [(Prim 'any-vector-length (list e1))
- (define-values (e1^ t1) (recur e1))
- (check-type-equal? t1 'Any e)
- (values (Prim 'any-vector-length (list e1^)) 'Integer)]
- [(Prim 'any-vector-ref (list e1 e2))
- (define-values (e1^ t1) (recur e1))
- (define-values (e2^ t2) (recur e2))
- (check-type-equal? t1 'Any e)
- (check-type-equal? t2 'Integer e)
- (values (Prim 'any-vector-ref (list e1^ e2^)) 'Any)]
- [(Prim 'any-vector-set! (list e1 e2 e3))
- (define-values (e1^ t1) (recur e1))
- (define-values (e2^ t2) (recur e2))
- (define-values (e3^ t3) (recur e3))
- (check-type-equal? t1 'Any e)
- (check-type-equal? t2 'Integer e)
- (check-type-equal? t3 'Any e)
- (values (Prim 'any-vector-set! (list e1^ e2^ e3^)) 'Void)]
- \end{lstlisting}
- \caption{Type checker for the \LangAny{} language, part 1.}
- \label{fig:type-check-Rany-part-1}
- \end{figure}
- \begin{figure}[btp]
- \begin{lstlisting}[basicstyle=\ttfamily\small]
- [(ValueOf e ty)
- (define-values (new-e e-ty) (recur e))
- (values (ValueOf new-e ty) ty)]
- [(Prim pred (list e1))
- #:when (set-member? (type-predicates) pred)
- (define-values (new-e1 e-ty) (recur e1))
- (check-type-equal? e-ty 'Any e)
- (values (Prim pred (list new-e1)) 'Boolean)]
- [(If cnd thn els)
- (define-values (cnd^ Tc) (recur cnd))
- (define-values (thn^ Tt) (recur thn))
- (define-values (els^ Te) (recur els))
- (check-type-equal? Tc 'Boolean cnd)
- (check-type-equal? Tt Te e)
- (values (If cnd^ thn^ els^) (combine-types Tt Te))]
- [(Exit) (values (Exit) '_)]
- [(Prim 'eq? (list arg1 arg2))
- (define-values (e1 t1) (recur arg1))
- (define-values (e2 t2) (recur arg2))
- (match* (t1 t2)
- [(`(Vector ,ts1 ...) `(Vector ,ts2 ...)) (void)]
- [(other wise) (check-type-equal? t1 t2 e)])
- (values (Prim 'eq? (list e1 e2)) 'Boolean)]
- [else ((super type-check-exp env) e)])))
- ))
- \end{lstlisting}
- \caption{Type checker for the \LangAny{} language, part 2.}
- \label{fig:type-check-Rany-part-2}
- \end{figure}
- \begin{figure}[tbp]
- \begin{lstlisting}
- (define/override (operator-types)
- (append
- '((integer? . ((Any) . Boolean))
- (vector? . ((Any) . Boolean))
- (procedure? . ((Any) . Boolean))
- (void? . ((Any) . Boolean))
- (tag-of-any . ((Any) . Integer))
- (make-any . ((_ Integer) . Any))
- )
- (super operator-types)))
- (define/public (type-predicates)
- (set 'boolean? 'integer? 'vector? 'procedure? 'void?))
- (define/public (combine-types t1 t2)
- (match (list t1 t2)
- [(list '_ t2) t2]
- [(list t1 '_) t1]
- [(list `(Vector ,ts1 ...)
- `(Vector ,ts2 ...))
- `(Vector ,@(for/list ([t1 ts1] [t2 ts2])
- (combine-types t1 t2)))]
- [(list `(,ts1 ... -> ,rt1)
- `(,ts2 ... -> ,rt2))
- `(,@(for/list ([t1 ts1] [t2 ts2])
- (combine-types t1 t2))
- -> ,(combine-types rt1 rt2))]
- [else t1]))
- (define/public (flat-ty? ty)
- (match ty
- [(or `Integer `Boolean '_ `Void) #t]
- [`(Vector ,ts ...) (for/and ([t ts]) (eq? t 'Any))]
- [`(,ts ... -> ,rt)
- (and (eq? rt 'Any) (for/and ([t ts]) (eq? t 'Any)))]
- [else #f]))
- \end{lstlisting}
- \caption{Auxiliary methods for type checking \LangAny{}.}
- \label{fig:type-check-Rany-aux}
- \end{figure}
- \begin{figure}[btp]
- \begin{lstlisting}
- (define interp-Rany-class
- (class interp-Rlambda-class
- (super-new)
- (define/override (interp-op op)
- (match op
- ['boolean? (match-lambda
- [`(tagged ,v1 ,tg) (equal? tg (any-tag 'Boolean))]
- [else #f])]
- ['integer? (match-lambda
- [`(tagged ,v1 ,tg) (equal? tg (any-tag 'Integer))]
- [else #f])]
- ['vector? (match-lambda
- [`(tagged ,v1 ,tg) (equal? tg (any-tag `(Vector Any)))]
- [else #f])]
- ['procedure? (match-lambda
- [`(tagged ,v1 ,tg) (equal? tg (any-tag `(Any -> Any)))]
- [else #f])]
- ['eq? (match-lambda*
- [`((tagged ,v1^ ,tg1) (tagged ,v2^ ,tg2))
- (and (eq? v1^ v2^) (equal? tg1 tg2))]
- [ls (apply (super interp-op op) ls)])]
- ['any-vector-ref (lambda (v i)
- (match v [`(tagged ,v^ ,tg) (vector-ref v^ i)]))]
- ['any-vector-set! (lambda (v i a)
- (match v [`(tagged ,v^ ,tg) (vector-set! v^ i a)]))]
- ['any-vector-length (lambda (v)
- (match v [`(tagged ,v^ ,tg) (vector-length v^)]))]
- [else (super interp-op op)]))
- (define/override ((interp-exp env) e)
- (define recur (interp-exp env))
- (match e
- [(Inject e ty) `(tagged ,(recur e) ,(any-tag ty))]
- [(Project e ty2) (apply-project (recur e) ty2)]
- [else ((super interp-exp env) e)]))
- ))
- (define (interp-Rany p)
- (send (new interp-Rany-class) interp-program p))
- \end{lstlisting}
- \caption{Interpreter for \LangAny{}.}
- \label{fig:interp-Rany}
- \end{figure}
- \begin{figure}[tbp]
- \begin{lstlisting}
- (define/public (apply-inject v tg) (Tagged v tg))
- (define/public (apply-project v ty2)
- (define tag2 (any-tag ty2))
- (match v
- [(Tagged v1 tag1)
- (cond
- [(eq? tag1 tag2)
- (match ty2
- [`(Vector ,ts ...)
- (define l1 ((interp-op 'vector-length) v1))
- (cond
- [(eq? l1 (length ts)) v1]
- [else (error 'apply-project "vector length mismatch, ~a != ~a"
- l1 (length ts))])]
- [`(,ts ... -> ,rt)
- (match v1
- [`(function ,xs ,body ,env)
- (cond [(eq? (length xs) (length ts)) v1]
- [else
- (error 'apply-project "arity mismatch ~a != ~a"
- (length xs) (length ts))])]
- [else (error 'apply-project "expected function not ~a" v1)])]
- [else v1])]
- [else (error 'apply-project "tag mismatch ~a != ~a" tag1 tag2)])]
- [else (error 'apply-project "expected tagged value, not ~a" v)]))
- \end{lstlisting}
- \caption{Auxiliary functions for injection and projection.}
- \label{fig:apply-project}
- \end{figure}
- \clearpage
- \section{Cast Insertion: Compiling \LangDyn{} to \LangAny{}}
- \label{sec:compile-r7}
- The \code{cast-insert} pass compiles from \LangDyn{} to \LangAny{}.
- Figure~\ref{fig:compile-r7-Rany} shows the compilation of many of the
- \LangDyn{} forms into \LangAny{}. An important invariant of this pass is that
- given a subexpression $e$ in the \LangDyn{} program, the pass will produce
- an expression $e'$ in \LangAny{} that has type \key{Any}. For example, the
- first row in Figure~\ref{fig:compile-r7-Rany} shows the compilation of
- the Boolean \code{\#t}, which must be injected to produce an
- expression of type \key{Any}.
- %
- The second row of Figure~\ref{fig:compile-r7-Rany}, the compilation of
- addition, is representative of compilation for many primitive
- operations: the arguments have type \key{Any} and must be projected to
- \key{Integer} before the addition can be performed.
- The compilation of \key{lambda} (third row of
- Figure~\ref{fig:compile-r7-Rany}) shows what happens when we need to
- produce type annotations: we simply use \key{Any}.
- %
- The compilation of \code{if} and \code{eq?} demonstrate how this pass
- has to account for some differences in behavior between \LangDyn{} and
- \LangAny{}. The \LangDyn{} language is more permissive than \LangAny{} regarding what
- kind of values can be used in various places. For example, the
- condition of an \key{if} does not have to be a Boolean. For \key{eq?},
- the arguments need not be of the same type (in that case the
- result is \code{\#f}).
- \begin{figure}[btp]
- \centering
- \begin{tabular}{|lll|} \hline
- \begin{minipage}{0.27\textwidth}
- \begin{lstlisting}
- #t
- \end{lstlisting}
- \end{minipage}
- &
- $\Rightarrow$
- &
- \begin{minipage}{0.65\textwidth}
- \begin{lstlisting}
- (inject #t Boolean)
- \end{lstlisting}
- \end{minipage}
- \\[2ex]\hline
- \begin{minipage}{0.27\textwidth}
- \begin{lstlisting}
- (+ |$e_1$| |$e_2$|)
- \end{lstlisting}
- \end{minipage}
- &
- $\Rightarrow$
- &
- \begin{minipage}{0.65\textwidth}
- \begin{lstlisting}
- (inject
- (+ (project |$e'_1$| Integer)
- (project |$e'_2$| Integer))
- Integer)
- \end{lstlisting}
- \end{minipage}
- \\[2ex]\hline
- \begin{minipage}{0.27\textwidth}
- \begin{lstlisting}
- (lambda (|$x_1 \ldots x_n$|) |$e$|)
- \end{lstlisting}
- \end{minipage}
- &
- $\Rightarrow$
- &
- \begin{minipage}{0.65\textwidth}
- \begin{lstlisting}
- (inject
- (lambda: ([|$x_1$|:Any]|$\ldots$|[|$x_n$|:Any]):Any |$e'$|)
- (Any|$\ldots$|Any -> Any))
- \end{lstlisting}
- \end{minipage}
- \\[2ex]\hline
- \begin{minipage}{0.27\textwidth}
- \begin{lstlisting}
- (|$e_0$| |$e_1 \ldots e_n$|)
- \end{lstlisting}
- \end{minipage}
- &
- $\Rightarrow$
- &
- \begin{minipage}{0.65\textwidth}
- \begin{lstlisting}
- ((project |$e'_0$| (Any|$\ldots$|Any -> Any)) |$e'_1 \ldots e'_n$|)
- \end{lstlisting}
- \end{minipage}
- \\[2ex]\hline
- \begin{minipage}{0.27\textwidth}
- \begin{lstlisting}
- (vector-ref |$e_1$| |$e_2$|)
- \end{lstlisting}
- \end{minipage}
- &
- $\Rightarrow$
- &
- \begin{minipage}{0.65\textwidth}
- \begin{lstlisting}
- (any-vector-ref |$e_1'$| |$e_2'$|)
- \end{lstlisting}
- \end{minipage}
- \\[2ex]\hline
- \begin{minipage}{0.27\textwidth}
- \begin{lstlisting}
- (if |$e_1$| |$e_2$| |$e_3$|)
- \end{lstlisting}
- \end{minipage}
- &
- $\Rightarrow$
- &
- \begin{minipage}{0.65\textwidth}
- \begin{lstlisting}
- (if (eq? |$e'_1$| (inject #f Boolean)) |$e'_3$| |$e'_2$|)
- \end{lstlisting}
- \end{minipage}
- \\[2ex]\hline
- \begin{minipage}{0.27\textwidth}
- \begin{lstlisting}
- (eq? |$e_1$| |$e_2$|)
- \end{lstlisting}
- \end{minipage}
- &
- $\Rightarrow$
- &
- \begin{minipage}{0.65\textwidth}
- \begin{lstlisting}
- (inject (eq? |$e'_1$| |$e'_2$|) Boolean)
- \end{lstlisting}
- \end{minipage}
- \\[2ex]\hline
- \begin{minipage}{0.27\textwidth}
- \begin{lstlisting}
- (not |$e_1$|)
- \end{lstlisting}
- \end{minipage}
- &
- $\Rightarrow$
- &
- \begin{minipage}{0.65\textwidth}
- \begin{lstlisting}
- (if (eq? |$e'_1$| (inject #f Boolean))
- (inject #t Boolean) (inject #f Boolean))
- \end{lstlisting}
- \end{minipage}
- \\[2ex]\hline
- \end{tabular}
- \caption{Cast Insertion}
- \label{fig:compile-r7-Rany}
- \end{figure}
- \section{Reveal Casts}
- \label{sec:reveal-casts-Rany}
- % TODO: define R'_6
- In the \code{reveal-casts} pass we recommend compiling \code{project}
- into an \code{if} expression that checks whether the value's tag
- matches the target type; if it does, the value is converted to a value
- of the target type by removing the tag; if it does not, the program
- exits. To perform these actions we need a new primitive operation,
- \code{tag-of-any}, and two new forms, \code{ValueOf} and \code{Exit}.
- The \code{tag-of-any} operation retrieves the type tag from a tagged
- value of type \code{Any}. The \code{ValueOf} form retrieves the
- underlying value from a tagged value. The \code{ValueOf} form
- includes the type for the underlying value which is used by the type
- checker. Finally, the \code{Exit} form ends the execution of the
- program.
- If the target type of the projection is \code{Boolean} or
- \code{Integer}, then \code{Project} can be translated as follows.
- \begin{center}
- \begin{minipage}{1.0\textwidth}
- \begin{lstlisting}
- (Project |$e$| |$\FType$|)
- |$\Rightarrow$|
- (Let |$\itm{tmp}$| |$e'$|
- (If (Prim 'eq? (list (Prim 'tag-of-any (list (Var |$\itm{tmp}$|)))
- (Int |$\itm{tagof}(\FType)$|)))
- (ValueOf |$\itm{tmp}$| |$\FType$|)
- (Exit)))
- \end{lstlisting}
- \end{minipage}
- \end{center}
- If the target type of the projection is a vector or function type,
- then there is a bit more work to do. For vectors, check that the
- length of the vector type matches the length of the vector (using the
- \code{vector-length} primitive). For functions, check that the number
- of parameters in the function type matches the function's arity (using
- \code{procedure-arity}).
- Regarding \code{inject}, we recommend compiling it to a slightly
- lower-level primitive operation named \code{make-any}. This operation
- takes a tag instead of a type.
- \begin{center}
- \begin{minipage}{1.0\textwidth}
- \begin{lstlisting}
- (Inject |$e$| |$\FType$|)
- |$\Rightarrow$|
- (Prim 'make-any (list |$e'$| (Int |$\itm{tagof}(\FType)$|)))
- \end{lstlisting}
- \end{minipage}
- \end{center}
- The type predicates (\code{boolean?}, etc.) can be translated into
- uses of \code{tag-of-any} and \code{eq?} in a similar way as in the
- translation of \code{Project}.
- The \code{any-vector-ref} and \code{any-vector-set!} operations
- combine the projection action with the vector operation. Also, the
- read and write operations allow arbitrary expressions for the index so
- the type checker for \LangAny{} (Figure~\ref{fig:type-check-Rany-part-1})
- cannot guarantee that the index is within bounds. Thus, we insert code
- to perform bounds checking at runtime. The translation for
- \code{any-vector-ref} is as follows and the other two operations are
- translated in a similar way.
- \begin{lstlisting}
- (Prim 'any-vector-ref (list |$e_1$| |$e_2$|))
- |$\Rightarrow$|
- (Let |$v$| |$e'_1$|
- (Let |$i$| |$e'_2$|
- (If (Prim 'eq? (list (Prim 'tag-of-any (list (Var |$v$|))) (Int 2)))
- (If (Prim '< (list (Var |$i$|)
- (Prim 'any-vector-length (list (Var |$v$|)))))
- (Prim 'any-vector-ref (list (Var |$v$|) (Var |$i$|)))
- (Exit))))
- \end{lstlisting}
- \section{Remove Complex Operands}
- \label{sec:rco-Rany}
- The \code{ValueOf} and \code{Exit} forms are both complex expressions.
- The subexpression of \code{ValueOf} must be atomic.
- \section{Explicate Control and \LangCAny{}}
- \label{sec:explicate-Rany}
- The output of \code{explicate-control} is the \LangCAny{} language whose
- syntax is defined in Figure~\ref{fig:c5-syntax}. The \code{ValueOf}
- form that we added to \LangAny{} remains an expression and the \code{Exit}
- expression becomes a $\Tail$. Also, note that the index argument of
- \code{vector-ref} and \code{vector-set!} is an $\Atm$ instead
- of an integer, as in \LangCVec{} (Figure~\ref{fig:c2-syntax}).
- \begin{figure}[tp]
- \fbox{
- \begin{minipage}{0.96\textwidth}
- \small
- \[
- \begin{array}{lcl}
- \Exp &::= & \ldots
- \mid \BINOP{\key{'any-vector-ref}}{\Atm}{\Atm} \\
- &\mid& (\key{Prim}~\key{'any-vector-set!}\,(\key{list}\,\Atm\,\Atm\,\Atm))\\
- &\mid& \VALUEOF{\Exp}{\FType} \\
- \Stmt &::=& \gray{ \ASSIGN{\VAR{\Var}}{\Exp}
- \mid \LP\key{Collect} \,\itm{int}\RP }\\
- \Tail &::= & \gray{ \RETURN{\Exp} \mid \SEQ{\Stmt}{\Tail}
- \mid \GOTO{\itm{label}} } \\
- &\mid& \gray{ \IFSTMT{\BINOP{\itm{cmp}}{\Atm}{\Atm}}{\GOTO{\itm{label}}}{\GOTO{\itm{label}}} }\\
- &\mid& \gray{ \TAILCALL{\Atm}{\Atm\ldots} }
- \mid \LP\key{Exit}\RP \\
- \Def &::=& \gray{ \DEF{\itm{label}}{\LP[\Var\key{:}\Type]\ldots\RP}{\Type}{\itm{info}}{\LP\LP\itm{label}\,\key{.}\,\Tail\RP\ldots\RP} }\\
- \LangCLam{} & ::= & \gray{ \PROGRAMDEFS{\itm{info}}{\LP\Def\ldots\RP} }
- \end{array}
- \]
- \end{minipage}
- }
- \caption{The abstract syntax of \LangCAny{}, extending \LangCLam{} (Figure~\ref{fig:c4-syntax}).}
- \label{fig:c5-syntax}
- \end{figure}
- \section{Select Instructions}
- \label{sec:select-Rany}
- In the \code{select-instructions} pass we translate the primitive
- operations on the \code{Any} type to x86 instructions that involve
- manipulating the 3 tag bits of the tagged value.
- \paragraph{Make-any}
- We recommend compiling the \key{make-any} primitive as follows if the
- tag is for \key{Integer} or \key{Boolean}. The \key{salq} instruction
- shifts the destination to the left by the number of bits specified its
- source argument (in this case $3$, the length of the tag) and it
- preserves the sign of the integer. We use the \key{orq} instruction to
- combine the tag and the value to form the tagged value. \\
- \begin{lstlisting}
- (Assign |\itm{lhs}| (Prim 'make-any (list |$e$| (Int |$\itm{tag}$|))))
- |$\Rightarrow$|
- movq |$e'$|, |\itm{lhs'}|
- salq $3, |\itm{lhs'}|
- orq $|$\itm{tag}$|, |\itm{lhs'}|
- \end{lstlisting}
- The instruction selection for vectors and procedures is different
- because their is no need to shift them to the left. The rightmost 3
- bits are already zeros as described at the beginning of this
- chapter. So we just combine the value and the tag using \key{orq}. \\
- \begin{lstlisting}
- (Assign |\itm{lhs}| (Prim 'make-any (list |$e$| (Int |$\itm{tag}$|))))
- |$\Rightarrow$|
- movq |$e'$|, |\itm{lhs'}|
- orq $|$\itm{tag}$|, |\itm{lhs'}|
- \end{lstlisting}
- \paragraph{Tag-of-any}
- Recall that the \code{tag-of-any} operation extracts the type tag from
- a value of type \code{Any}. The type tag is the bottom three bits, so
- we obtain the tag by taking the bitwise-and of the value with $111$
- ($7$ in decimal).
- \begin{lstlisting}
- (Assign |\itm{lhs}| (Prim 'tag-of-any (list |$e$|)))
- |$\Rightarrow$|
- movq |$e'$|, |\itm{lhs'}|
- andq $7, |\itm{lhs'}|
- \end{lstlisting}
- \paragraph{ValueOf}
- Like \key{make-any}, the instructions for \key{ValueOf} are different
- depending on whether the type $T$ is a pointer (vector or procedure)
- or not (Integer or Boolean). The following shows the instruction
- selection for Integer and Boolean. We produce an untagged value by
- shifting it to the right by 3 bits.
- \begin{lstlisting}
- (Assign |\itm{lhs}| (ValueOf |$e$| |$T$|))
- |$\Rightarrow$|
- movq |$e'$|, |\itm{lhs'}|
- sarq $3, |\itm{lhs'}|
- \end{lstlisting}
- %
- In the case for vectors and procedures, there is no need to
- shift. Instead we just need to zero-out the rightmost 3 bits. We
- accomplish this by creating the bit pattern $\ldots 0111$ ($7$ in
- decimal) and apply \code{bitwise-not} to obtain $\ldots 11111000$ (-8
- in decimal) which we \code{movq} into the destination $\itm{lhs}$. We
- then apply \code{andq} with the tagged value to get the desired
- result. \\
- \begin{lstlisting}
- (Assign |\itm{lhs}| (ValueOf |$e$| |$T$|))
- |$\Rightarrow$|
- movq $|$-8$|, |\itm{lhs'}|
- andq |$e'$|, |\itm{lhs'}|
- \end{lstlisting}
- %% \paragraph{Type Predicates} We leave it to the reader to
- %% devise a sequence of instructions to implement the type predicates
- %% \key{boolean?}, \key{integer?}, \key{vector?}, and \key{procedure?}.
- \paragraph{Any-vector-length}
- \begin{lstlisting}
- (Assign |$\itm{lhs}$| (Prim 'any-vector-length (list |$a_1$|)))
- |$\Longrightarrow$|
- movq |$\neg 111$|, %r11
- andq |$a_1'$|, %r11
- movq 0(%r11), %r11
- andq $126, %r11
- sarq $1, %r11
- movq %r11, |$\itm{lhs'}$|
- \end{lstlisting}
- \paragraph{Any-vector-ref}
- The index may be an arbitrary atom so instead of computing the offset
- at compile time, instructions need to be generated to compute the
- offset at runtime as follows. Note the use of the new instruction
- \code{imulq}.
- \begin{center}
- \begin{minipage}{0.96\textwidth}
- \begin{lstlisting}
- (Assign |$\itm{lhs}$| (Prim 'any-vector-ref (list |$a_1$| |$a_2$|)))
- |$\Longrightarrow$|
- movq |$\neg 111$|, %r11
- andq |$a_1'$|, %r11
- movq |$a_2'$|, %rax
- addq $1, %rax
- imulq $8, %rax
- addq %rax, %r11
- movq 0(%r11) |$\itm{lhs'}$|
- \end{lstlisting}
- \end{minipage}
- \end{center}
- \paragraph{Any-vector-set!}
- The code generation for \code{any-vector-set!} is similar to the other
- \code{any-vector} operations.
- \section{Register Allocation for \LangAny{}}
- \label{sec:register-allocation-Rany}
- \index{register allocation}
- There is an interesting interaction between tagged values and garbage
- collection that has an impact on register allocation. A variable of
- type \code{Any} might refer to a vector and therefore it might be a
- root that needs to be inspected and copied during garbage
- collection. Thus, we need to treat variables of type \code{Any} in a
- similar way to variables of type \code{Vector} for purposes of
- register allocation. In particular,
- \begin{itemize}
- \item If a variable of type \code{Any} is live during a function call,
- then it must be spilled. This can be accomplished by changing
- \code{build-interference} to mark all variables of type \code{Any}
- that are live after a \code{callq} as interfering with all the
- registers.
- \item If a variable of type \code{Any} is spilled, it must be spilled
- to the root stack instead of the normal procedure call stack.
- \end{itemize}
- Another concern regarding the root stack is that the garbage collector
- needs to differentiate between (1) plain old pointers to tuples, (2) a
- tagged value that points to a tuple, and (3) a tagged value that is
- not a tuple. We enable this differentiation by choosing not to use the
- tag $000$ in the $\itm{tagof}$ function. Instead, that bit pattern is
- reserved for identifying plain old pointers to tuples. That way, if
- one of the first three bits is set, then we have a tagged value and
- inspecting the tag can differentiation between vectors ($010$) and the
- other kinds of values.
- \begin{exercise}\normalfont
- Expand your compiler to handle \LangAny{} as discussed in the last few
- sections. Create 5 new programs that use the \code{Any} type and the
- new operations (\code{inject}, \code{project}, \code{boolean?},
- etc.). Test your compiler on these new programs and all of your
- previously created test programs.
- \end{exercise}
- \begin{exercise}\normalfont
- Expand your compiler to handle \LangDyn{} as outlined in this chapter.
- Create tests for \LangDyn{} by adapting ten of your previous test programs
- by removing type annotations. Add 5 more tests programs that
- specifically rely on the language being dynamically typed. That is,
- they should not be legal programs in a statically typed language, but
- nevertheless, they should be valid \LangDyn{} programs that run to
- completion without error.
- \end{exercise}
- \begin{figure}[p]
- \begin{tikzpicture}[baseline=(current bounding box.center)]
- \node (Rfun) at (0,4) {\large \LangDyn{}};
- \node (Rfun-2) at (3,4) {\large \LangDyn{}};
- \node (Rfun-3) at (6,4) {\large \LangDyn{}};
- \node (Rfun-4) at (9,4) {\large \LangDynFunRef{}};
- \node (Rfun-5) at (9,2) {\large \LangAnyFunRef{}};
- \node (Rfun-6) at (12,2) {\large \LangAnyFunRef{}};
- \node (Rfun-7) at (12,0) {\large \LangAnyFunRef{}};
- \node (F1-2) at (9,0) {\large \LangAnyFunRef{}};
- \node (F1-3) at (6,0) {\large \LangAnyFunRef{}};
- \node (F1-4) at (3,0) {\large \LangAnyAlloc{}};
- \node (F1-5) at (0,0) {\large \LangAnyAlloc{}};
- \node (C3-2) at (3,-2) {\large \LangCAny{}};
- \node (x86-2) at (3,-4) {\large \LangXIndCallVar{}};
- \node (x86-2-1) at (3,-6) {\large \LangXIndCallVar{}};
- \node (x86-2-2) at (6,-6) {\large \LangXIndCallVar{}};
- \node (x86-3) at (6,-4) {\large \LangXIndCallVar{}};
- \node (x86-4) at (9,-4) {\large \LangXIndCall{}};
- \node (x86-5) at (9,-6) {\large \LangXIndCall{}};
- \path[->,bend left=15] (Rfun) edge [above] node
- {\ttfamily\footnotesize shrink} (Rfun-2);
- \path[->,bend left=15] (Rfun-2) edge [above] node
- {\ttfamily\footnotesize uniquify} (Rfun-3);
- \path[->,bend left=15] (Rfun-3) edge [above] node
- {\ttfamily\footnotesize reveal-functions} (Rfun-4);
- \path[->,bend right=15] (Rfun-4) edge [left] node
- {\ttfamily\footnotesize cast-insert} (Rfun-5);
- \path[->,bend left=15] (Rfun-5) edge [above] node
- {\ttfamily\footnotesize check-bounds} (Rfun-6);
- \path[->,bend left=15] (Rfun-6) edge [left] node
- {\ttfamily\footnotesize reveal-casts} (Rfun-7);
-
- \path[->,bend left=15] (Rfun-7) edge [below] node
- {\ttfamily\footnotesize convert-to-clos.} (F1-2);
- \path[->,bend right=15] (F1-2) edge [above] node
- {\ttfamily\footnotesize limit-fun.} (F1-3);
- \path[->,bend right=15] (F1-3) edge [above] node
- {\ttfamily\footnotesize expose-alloc.} (F1-4);
- \path[->,bend right=15] (F1-4) edge [above] node
- {\ttfamily\footnotesize remove-complex.} (F1-5);
- \path[->,bend right=15] (F1-5) edge [right] node
- {\ttfamily\footnotesize explicate-control} (C3-2);
- \path[->,bend left=15] (C3-2) edge [left] node
- {\ttfamily\footnotesize select-instr.} (x86-2);
- \path[->,bend right=15] (x86-2) edge [left] node
- {\ttfamily\footnotesize uncover-live} (x86-2-1);
- \path[->,bend right=15] (x86-2-1) edge [below] node
- {\ttfamily\footnotesize build-inter.} (x86-2-2);
- \path[->,bend right=15] (x86-2-2) edge [left] node
- {\ttfamily\footnotesize allocate-reg.} (x86-3);
- \path[->,bend left=15] (x86-3) edge [above] node
- {\ttfamily\footnotesize patch-instr.} (x86-4);
- \path[->,bend left=15] (x86-4) edge [right] node
- {\ttfamily\footnotesize print-x86} (x86-5);
- \end{tikzpicture}
- \caption{Diagram of the passes for \LangDyn{}, a dynamically typed language.}
- \label{fig:Rdyn-passes}
- \end{figure}
- Figure~\ref{fig:Rdyn-passes} provides an overview of all the passes needed
- for the compilation of \LangDyn{}.
- % Further Reading
- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
- \chapter{Loops and Assignment}
- \label{ch:Rwhile}
- % TODO: define R'_8
- % TODO: multi-graph
- \begin{ocamlx}
- In this OCaml version of the course, we are studying this chapter
- earlier than its numerical order would indicate. The book is focused on
- compiling functional languages (such as Racket or OCaml themselves), but
- most languages are more imperative in style, so it is important to
- consider the impact of imperative features early on (beyond just the
- \code{read} primitive that we started with). At this point in the book,
- the source language has been expanded to include heap-allocated records,
- functions (both top-level and lambdas), and dynamic typing---but we will ignore
- those features and omit them from our implementation for now.
- \end{ocamlx}
- In this chapter we study two features that are the hallmarks of
- imperative programming languages: loops and assignments to local
- variables. The following example demonstrates these new features by
- computing the sum of the first five positive integers.
- % similar to loop_test_1.rkt
- \begin{lstlisting}
- (let ([sum 0])
- (let ([i 5])
- (begin
- (while (> i 0)
- (begin
- (set! sum (+ sum i))
- (set! i (- i 1))))
- sum)))
- \end{lstlisting}
- \ocaml{OCaml version:}
- \begin{lstlisting}[style=ocaml]
- (let sum 0
- (let i 5
- (seq
- (while (> i 0)
- (seq
- (:= sum (+ sum i))
- (:= i (- i 1))))
- sum)))
- \end{lstlisting}
- The \code{while} loop consists of a condition and a body.
- %
- The \code{set!} \ocaml{(OCaml: \code{:=})} consists of a variable and a right-hand-side expression.
- %
- The primary \ocaml{(indeed only)} purpose of both the \code{while} loop and \code{set!} is
- to cause side effects, so it is convenient to also include in a
- language feature for sequencing side effects: the \code{begin} \ocaml{(OCaml: \code{seq})}
- expression. It consists of one or more subexpressions that are
- evaluated left-to-right.
- \ocaml{All the subexpressions but the last are evaluated just for
- their side effects; the value of the last subexpression becomes the value of the entire \code{seq}.
- We also include an equivalent of the Racket \code{(void)} expression (introduced at the
- start of Chapter~\ref{ch:Rvec}), which we write simply as \code{()}. It is useful for writing
- ``one-armed'' \code{if} expressions, e.g. \code{(if b (:= x 10) ())} sets {\tt x} if
- {\tt b} is true, and does nothing at all if {\tt b} is false.}
- \section{The \LangLoop{} Language}
- \begin{figure}[tp]
- \centering
- \fbox{
- \begin{minipage}{0.96\textwidth}
- \small
- \[
- \begin{array}{lcl}
- \Exp &::=& \gray{ \Int \mid \CREAD{} \mid \CNEG{\Exp}
- \mid \CADD{\Exp}{\Exp} \mid \CSUB{\Exp}{\Exp} } \\
- &\mid& \gray{ \Var \mid \CLET{\Var}{\Exp}{\Exp} }\\
- &\mid& \gray{\key{\#t} \mid \key{\#f}
- \mid (\key{and}\;\Exp\;\Exp)
- \mid (\key{or}\;\Exp\;\Exp)
- \mid (\key{not}\;\Exp) } \\
- &\mid& \gray{ (\key{eq?}\;\Exp\;\Exp) \mid \CIF{\Exp}{\Exp}{\Exp} } \\
- &\mid& \gray{ (\key{vector}\;\Exp\ldots) \mid
- (\key{vector-ref}\;\Exp\;\Int)} \\
- &\mid& \gray{(\key{vector-set!}\;\Exp\;\Int\;\Exp)\mid (\key{void})
- \mid (\Exp \; \Exp\ldots) } \\
- &\mid& \gray{ \LP \key{procedure-arity}~\Exp\RP
- \mid \CLAMBDA{\LP\LS\Var \key{:} \Type\RS\ldots\RP}{\Type}{\Exp} } \\
- &\mid& \CSETBANG{\Var}{\Exp}
- \mid \CBEGIN{\Exp\ldots}{\Exp}
- \mid \CWHILE{\Exp}{\Exp} \\
- \Def &::=& \gray{ \CDEF{\Var}{\LS\Var \key{:} \Type\RS\ldots}{\Type}{\Exp} } \\
- \LangLoop{} &::=& \gray{\Def\ldots \; \Exp}
- \end{array}
- \]
- \end{minipage}
- }
- %
- \begin{ocamlx}
- \fbox{
- \begin{minipage}{0.96\textwidth}
- \small
- \[
- \begin{array}{rcl}
- \gray{\itm{bool}} &::=& \gray{\key{\#t} \mid \key{\#f}} \\
- \gray{\itm{cmp}} &::= & \gray{\key{=} \mid \key{<} \mid \key{<=} \mid \key{>} \mid \key{>=}} \\
- \Exp &::=& \gray{ \Int \mid \CREAD{} \mid \CNEG{\Exp} \mid \CADD{\Exp}{\Exp} \mid \CSUB{\Exp}{\Exp}} \\
- &\mid& \gray{ \Var \mid \code{(let $\Var$ $\Exp$ $\Exp$)}}\\
- &\mid& \gray{\itm{bool}
- \mid (\key{and}\;\Exp\;\Exp) \mid (\key{or}\;\Exp\;\Exp)
- \mid (\key{not}\;\Exp)} \\
- &\mid& \gray{(\itm{cmp}\;\Exp\;\Exp) \mid \CIF{\Exp}{\Exp}{\Exp}} \\
- &\mid& \code{()} \mid \code{(:= $\Var$ $\Exp$)}
- \mid \code{(seq \Exp\ldots \Exp)}
- \mid \CWHILE{\Exp}{\Exp} \\
- \LangLoop{} &::=& \Exp
- \end{array}
- \]
- \end{minipage}
- }
- \end{ocamlx}
- \caption{The concrete syntax of \LangLoop{}, extending \LangAny{} (Figure~\ref{fig:Rany-concrete-syntax}).
- \ocaml{The OCaml version extends \LangIf{} (Figure~\ref{fig:Rif-concrete-syntax}).}}
- \label{fig:Rwhile-concrete-syntax}
- \end{figure}
- \begin{figure}[tp]
- \centering
- \fbox{
- \begin{minipage}{0.96\textwidth}
- \small
- \[
- \begin{array}{lcl}
- \Exp &::=& \gray{ \INT{\Int} \VAR{\Var} \mid \LET{\Var}{\Exp}{\Exp} } \\
- &\mid& \gray{ \PRIM{\itm{op}}{\Exp\ldots} }\\
- &\mid& \gray{ \BOOL{\itm{bool}}
- \mid \IF{\Exp}{\Exp}{\Exp} } \\
- &\mid& \gray{ \VOID{} \mid \LP\key{HasType}~\Exp~\Type \RP
- \mid \APPLY{\Exp}{\Exp\ldots} }\\
- &\mid& \gray{ \LAMBDA{\LP\LS\Var\code{:}\Type\RS\ldots\RP}{\Type}{\Exp} }\\
- &\mid& \SETBANG{\Var}{\Exp} \mid \BEGIN{\LP\Exp\ldots\RP}{\Exp}
- \mid \WHILE{\Exp}{\Exp} \\
- \Def &::=& \gray{ \FUNDEF{\Var}{\LP\LS\Var \code{:} \Type\RS\ldots\RP}{\Type}{\code{'()}}{\Exp} }\\
- \LangLoop{} &::=& \gray{ \PROGRAMDEFSEXP{\code{'()}}{\LP\Def\ldots\RP}{\Exp} }
- \end{array}
- \]
- \end{minipage}
- }
- \begin{lstlisting}[style=ocaml,frame=single]
- type cmp = Eq | Lt | Le | Gt | Ge
- type primop = Read | Neg | Add | Sub | And | Or | Not | Cmp of cmp
- type var = string
- type exp =
- Int of int64
- | Bool of bool
- | Prim of primop * exp list
- | Var of var
- | Let of var * exp * exp
- | If of exp * exp * exp
- | Void
- | Set of var * exp
- | Seq of exp list * exp
- | While of exp * exp
- type 'info program = Program of 'info * exp
- \end{lstlisting}
- \caption{The abstract syntax of \LangLoop{}, extending \LangAny{} (Figure~\ref{fig:Rany-syntax}) \ocaml{(OCaml: \LangIf{} (Figure~\ref{fig:Rif-syntax}))}}
- \label{fig:Rwhile-syntax}
- \end{figure}
- The concrete syntax of \LangLoop{} is defined in
- Figure~\ref{fig:Rwhile-concrete-syntax} and its abstract syntax is defined
- in Figure~\ref{fig:Rwhile-syntax}.
- %
- The definitional interpreter for \LangLoop{} is shown in
- Figure~\ref{fig:interp-Rwhile}. \ocaml{The OCaml version is
- in file \code{RWhile.ml}}. We add three new cases for \code{SetBang},
- \code{WhileLoop}, and \code{Begin} and we make changes to the cases
- for \code{Var}, \code{Let}, and \code{Apply} regarding variables. To
- support assignment to variables and to make their lifetimes indefinite
- (see the second example in Section~\ref{sec:assignment-scoping}), we
- box the value that is bound to each variable (in \code{Let}) and
- function parameter (in \code{Apply}). The case for \code{Var} unboxes
- the value. \ocaml{Since we do not yet have first-class functions (lambdas)
- in this language, the ``indefinite lifetimes'' motivation doesn't apply.
- But it is still very convenient for the interpreter to box all variables.
- In OCaml, this is done by using \code{ref} to create a boxed value;
- the \code{!} operator retrieves the current value of the box and
- \code{:=} updates the value in the box.}
- %
- Now to discuss the new cases. For \code{SetBang} \ocaml{(\code{:=})}, we lookup the
- variable in the environment to obtain a boxed value and then we change
- it using \code{set-box!} to the result of evaluating the right-hand
- side. The result value of a \code{SetBang} is \code{void}.
- %
- For the \code{WhileLoop}, we repeatedly 1) evaluate the condition, and
- if the result is true, 2) evaluate the body.
- The result value of a \code{while} loop is also \code{void}.
- %
- Finally, the $\BEGIN{\itm{es}}{\itm{body}}$ \ocaml{(\code{seq})} expression evaluates the
- subexpressions \itm{es} for their effects and then evaluates
- and returns the result from \itm{body}.
- \begin{figure}[tbp]
- \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
- (define interp-Rwhile-class
- (class interp-Rany-class
- (super-new)
- (define/override ((interp-exp env) e)
- (define recur (interp-exp env))
- (match e
- [(SetBang x rhs)
- (set-box! (lookup x env) (recur rhs))]
- [(WhileLoop cnd body)
- (define (loop)
- (cond [(recur cnd) (recur body) (loop)]
- [else (void)]))
- (loop)]
- [(Begin es body)
- (for ([e es]) (recur e))
- (recur body)]
- [else ((super interp-exp env) e)]))
- ))
- (define (interp-Rwhile p)
- (send (new interp-Rwhile-class) interp-program p))
- \end{lstlisting}
- \caption{Interpreter for \LangLoop{}.}
- \label{fig:interp-Rwhile}
- \end{figure}
- The type checker for \LangLoop{} is define\ocaml{d} in
- Figure~\ref{fig:type-check-Rwhile} \ocaml{(OCaml: In file \code{RWhile.ml})}. For \code{SetBang}, the type of the
- variable and the right-hand-side must agree. The result type is
- \code{Void}. For the \code{WhileLoop}, the condition must be a
- \code{Boolean}. The result type is also \code{Void}. For
- \code{Begin}, the result type is the type of its last subexpression.
- \begin{ocamlx}
- For the OCaml version, we have added further typing restrictions surrounding
- the use of \code{Void}-typed expressions, i.e. expressions evaluated only for
- their side-effects. \code{Void}-typed expressions are prohibited as the right-hand sides of \code{let}s;
- since \code{:=} never changes the type of a variable, this implies that variables always
- have non-\code{Void} values. Also, no primitive operator allows \code{Void}-typed arguments;
- in particular, the \code{=} operator allows only two integers or two booleans. And the return
- value of the function must still be of type \code{Int} (hence not of type \code{Void}). On the other
- hand, the body of a \code{while} and all but the last subexpression of a \code{seq} are \emph{required}
- to have type \code{Void}. This enforces a useful discipline on the \LangLoop{} programmer,
- and also simplifies the task of the compiler by restricting the contexts in which various
- expressions can appear.
- \end{ocamlx}
- \begin{figure}[tbp]
- \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
- (define type-check-Rwhile-class
- (class type-check-Rany-class
- (super-new)
- (inherit check-type-equal?)
- (define/override (type-check-exp env)
- (lambda (e)
- (define recur (type-check-exp env))
- (match e
- [(SetBang x rhs)
- (define-values (rhs^ rhsT) (recur rhs))
- (define varT (dict-ref env x))
- (check-type-equal? rhsT varT e)
- (values (SetBang x rhs^) 'Void)]
- [(WhileLoop cnd body)
- (define-values (cnd^ Tc) (recur cnd))
- (check-type-equal? Tc 'Boolean e)
- (define-values (body^ Tbody) ((type-check-exp env) body))
- (values (WhileLoop cnd^ body^) 'Void)]
- [(Begin es body)
- (define-values (es^ ts)
- (for/lists (l1 l2) ([e es]) (recur e)))
- (define-values (body^ Tbody) (recur body))
- (values (Begin es^ body^) Tbody)]
- [else ((super type-check-exp env) e)])))
- ))
- (define (type-check-Rwhile p)
- (send (new type-check-Rwhile-class) type-check-program p))
- \end{lstlisting}
- \caption{Type checking \key{SetBang}, \key{WhileLoop},
- and \code{Begin} in \LangLoop{}.}
- \label{fig:type-check-Rwhile}
- \end{figure}
-
- At first glance, the translation of these language features to x86
- seems straightforward because the \LangCFun{} \ocaml{(OCaml: \LangCIf{})} intermediate language already
- supports all of the ingredients that we need: assignment, \code{goto},
- conditional branching, and sequencing. However, there are two
- complications that arise which we discuss in the next two
- sections. \ocaml{Only one for us.} After that we introduce one new compiler pass and the
- changes necessary to the existing passes.
- \section{Assignment and Lexically Scoped Functions}
- \label{sec:assignment-scoping}
- \ocaml{This section is not relevant to the OCaml version, since we have no functions yet.}
- The addition of assignment raises a problem with our approach to
- implementing lexically-scoped functions. Consider the following
- example in which function \code{f} has a free variable \code{x} that
- is changed after \code{f} is created but before the call to \code{f}.
- % loop_test_11.rkt
- \begin{lstlisting}
- (let ([x 0])
- (let ([y 0])
- (let ([z 20])
- (let ([f (lambda: ([a : Integer]) : Integer (+ a (+ x z)))])
- (begin
- (set! x 10)
- (set! y 12)
- (f y))))))
- \end{lstlisting}
- The correct output for this example is \code{42} because the call to
- \code{f} is required to use the current value of \code{x} (which is
- \code{10}). Unfortunately, the closure conversion pass
- (Section~\ref{sec:closure-conversion}) generates code for the
- \code{lambda} that copies the old value of \code{x} into a
- closure. Thus, if we naively add support for assignment to our current
- compiler, the output of this program would be \code{32}.
- A first attempt at solving this problem would be to save a pointer to
- \code{x} in the closure and change the occurrences of \code{x} inside
- the lambda to dereference the pointer. Of course, this would require
- assigning \code{x} to the stack and not to a register. However, the
- problem goes a bit deeper. Consider the following example in which we
- create a counter abstraction by creating a pair of functions that
- share the free variable \code{x}.
- % similar to loop_test_10.rkt
- \begin{lstlisting}
- (define (f [x : Integer]) : (Vector ( -> Integer) ( -> Void))
- (vector
- (lambda: () : Integer x)
- (lambda: () : Void (set! x (+ 1 x)))))
- (let ([counter (f 0)])
- (let ([get (vector-ref counter 0)])
- (let ([inc (vector-ref counter 1)])
- (begin
- (inc)
- (get)))))
- \end{lstlisting}
- In this example, the lifetime of \code{x} extends beyond the lifetime
- of the call to \code{f}. Thus, if we were to store \code{x} on the
- stack frame for the call to \code{f}, it would be gone by the time we
- call \code{inc} and \code{get}, leaving us with dangling pointers for
- \code{x}. This example demonstrates that when a variable occurs free
- inside a \code{lambda}, its lifetime becomes indefinite. Thus, the
- value of the variable needs to live on the heap. The verb ``box'' is
- often used for allocating a single value on the heap, producing a
- pointer, and ``unbox'' for dereferencing the pointer.
- We recommend solving these problems by ``boxing'' the local variables
- that are in the intersection of 1) variables that appear on the
- left-hand-side of a \code{set!} and 2) variables that occur free
- inside a \code{lambda}. We shall introduce a new pass named
- \code{convert-assignments} in Section~\ref{sec:convert-assignments} to
- perform this translation. But before diving into the compiler passes,
- we one more problem to discuss.
- \section{Cyclic Control Flow and Dataflow Analysis}
- \label{sec:dataflow-analysis}
- Up until this point the control-flow graphs generated in
- \code{explicate-control} were guaranteed to be acyclic. However, each
- \code{while} loop introduces a cycle in the control-flow graph.
- But does that matter?
- %
- Indeed it does. Recall that for register allocation, the compiler
- performs liveness analysis to determine which variables can share the
- same register. In Section~\ref{sec:liveness-analysis-Rif} we analyze
- the control-flow graph in reverse topological order, but topological
- order is only well-defined for acyclic graphs.
- Let us return to the example of computing the sum of the first five
- positive integers. Here is the program after instruction selection but
- before register allocation.
- \begin{center}
- \begin{minipage}{0.45\textwidth}
- \begin{lstlisting}
- (define (main) : Integer
- mainstart:
- movq $0, sum1
- movq $5, i2
- jmp block5
- block5:
- movq i2, tmp3
- cmpq tmp3, $0
- jl block7
- jmp block8
- \end{lstlisting}
- \end{minipage}
- \begin{minipage}{0.45\textwidth}
- \begin{lstlisting}
-
- block7:
- addq i2, sum1
- movq $1, tmp4
- negq tmp4
- addq tmp4, i2
- jmp block5
- block8:
- movq $27, %rax
- addq sum1, %rax
- jmp mainconclusion
- )
- \end{lstlisting}
- \end{minipage}
- \end{center}
- Recall that liveness analysis works backwards, starting at the end
- of each function. For this example we could start with \code{block8}
- because we know what is live at the beginning of the conclusion,
- just \code{rax} and \code{rsp}. So the live-before set
- for \code{block8} is $\{\ttm{rsp},\ttm{sum1}\}$.
- %
- Next we might try to analyze \code{block5} or \code{block7}, but
- \code{block5} jumps to \code{block7} and vice versa, so it seems that
- we are stuck.
- The way out of this impasse comes from the realization that one can
- perform liveness analysis starting with an empty live-after set to
- compute an under-approximation of the live-before set. By
- \emph{under-approximation}, we mean that the set only contains
- variables that are really live, but it may be missing some. Next, the
- under-approximations for each block can be improved by 1) updating the
- live-after set for each block using the approximate live-before sets
- from the other blocks and 2) perform liveness analysis again on each
- block. In fact, by iterating this process, the under-approximations
- eventually become the correct solutions!
- %
- This approach of iteratively analyzing a control-flow graph is
- applicable to many static analysis problems and goes by the name
- \emph{dataflow analysis}\index{dataflow analysis}. It was invented by
- \citet{Kildall:1973vn} in his Ph.D. thesis at the University of
- Washington.
- Let us apply this approach to the above example. We use the empty set
- for the initial live-before set for each block. Let $m_0$ be the
- following mapping from label names to sets of locations (variables and
- registers).
- \begin{center}
- \begin{lstlisting}
- mainstart: {}
- block5: {}
- block7: {}
- block8: {}
- \end{lstlisting}
- \end{center}
- Using the above live-before approximations, we determine the
- live-after for each block and then apply liveness analysis to each
- block. This produces our next approximation $m_1$ of the live-before
- sets.
- \begin{center}
- \begin{lstlisting}
- mainstart: {}
- block5: {i2}
- block7: {i2, sum1}
- block8: {rsp, sum1}
- \end{lstlisting}
- \end{center}
- For the second round, the live-after for \code{mainstart} is the
- current live-before for \code{block5}, which is \code{\{i2\}}. So the
- liveness analysis for \code{mainstart} computes the empty set. The
- live-after for \code{block5} is the union of the live-before sets for
- \code{block7} and \code{block8}, which is \code{\{i2 , rsp, sum1\}}.
- So the liveness analysis for \code{block5} computes \code{\{i2 , rsp,
- sum1\}}. The live-after for \code{block7} is the live-before for
- \code{block5} (from the previous iteration), which is \code{\{i2\}}.
- So the liveness analysis for \code{block7} remains \code{\{i2,
- sum1\}}. Together these yield the following approximation $m_2$ of
- the live-before sets.
- \begin{center}
- \begin{lstlisting}
- mainstart: {}
- block5: {i2, rsp, sum1}
- block7: {i2, sum1}
- block8: {rsp, sum1}
- \end{lstlisting}
- \end{center}
- In the preceding iteration, only \code{block5} changed, so we can
- limit our attention to \code{mainstart} and \code{block7}, the two
- blocks that jump to \code{block5}. As a result, the live-before sets
- for \code{mainstart} and \code{block7} are updated to include
- \code{rsp}, yielding the following approximation $m_3$.
- \begin{center}
- \begin{lstlisting}
- mainstart: {rsp}
- block5: {i2, rsp, sum1}
- block7: {i2, rsp, sum1}
- block8: {rsp, sum1}
- \end{lstlisting}
- \end{center}
- Because \code{block7} changed, we analyze \code{block5} once more, but
- its live-before set remains \code{\{ i2, rsp, sum1 \}}. At this point
- our approximations have converged, so $m_3$ is the solution.
- This iteration process is guaranteed to converge to a solution by the
- Kleene Fixed-Point Theorem, a general theorem about functions on
- lattices~\citep{Kleene:1952aa}. Roughly speaking, a \emph{lattice} is
- any collection that comes with a partial ordering $\sqsubseteq$ on its
- elements, a least element $\bot$ (pronounced bottom), and a join
- operator $\sqcup$.\index{lattice}\index{bottom}\index{partial
- ordering}\index{join}\footnote{Technically speaking, we will be
- working with join semi-lattices.} When two elements are ordered $m_i
- \sqsubseteq m_j$, it means that $m_j$ contains at least as much
- information as $m_i$, so we can think of $m_j$ as a better-or-equal
- approximation than $m_i$. The bottom element $\bot$ represents the
- complete lack of information, i.e., the worst approximation. The join
- operator takes two lattice elements and combines their information,
- i.e., it produces the least upper bound of the two.\index{least upper
- bound}
- A dataflow analysis typically involves two lattices: one lattice to
- represent abstract states and another lattice that aggregates the
- abstract states of all the blocks in the control-flow graph. For
- liveness analysis, an abstract state is a set of locations. We form
- the lattice $L$ by taking its elements to be sets of locations, the
- ordering to be set inclusion ($\subseteq$), the bottom to be the empty
- set, and the join operator to be set union.
- %
- We form a second lattice $M$ by taking its elements to be mappings
- from the block labels to sets of locations (elements of $L$). We
- order the mappings point-wise, using the ordering of $L$. So given any
- two mappings $m_i$ and $m_j$, $m_i \sqsubseteq_M m_j$ when $m_i(\ell)
- \subseteq m_j(\ell)$ for every block label $\ell$ in the program. The
- bottom element of $M$ is the mapping $\bot_M$ that sends every label
- to the empty set, i.e., $\bot_M(\ell) = \emptyset$.
- We can think of one iteration of liveness analysis as being a function
- $f$ on the lattice $M$. It takes a mapping as input and computes a new
- mapping.
- \[
- f(m_i) = m_{i+1}
- \]
- Next let us think for a moment about what a final solution $m_s$
- should look like. If we perform liveness analysis using the solution
- $m_s$ as input, we should get $m_s$ again as the output. That is, the
- solution should be a \emph{fixed point} of the function $f$.\index{fixed point}
- \[
- f(m_s) = m_s
- \]
- Furthermore, the solution should only include locations that are
- forced to be there by performing liveness analysis on the program, so
- the solution should be the \emph{least} fixed point.\index{least fixed point}
- The Kleene Fixed-Point Theorem states that if a function $f$ is
- monotone (better inputs produce better outputs), then the least fixed
- point of $f$ is the least upper bound of the \emph{ascending Kleene
- chain} obtained by starting at $\bot$ and iterating $f$ as
- follows.\index{Kleene Fixed-Point Theorem}
- \[
- \bot \sqsubseteq f(\bot) \sqsubseteq f(f(\bot)) \sqsubseteq \cdots
- \sqsubseteq f^n(\bot) \sqsubseteq \cdots
- \]
- When a lattice contains only finitely-long ascending chains, then
- every Kleene chain tops out at some fixed point after a number of
- iterations of $f$. So that fixed point is also a least upper
- bound of the chain.
- \[
- \bot \sqsubseteq f(\bot) \sqsubseteq f(f(\bot)) \sqsubseteq \cdots
- \sqsubseteq f^k(\bot) = f^{k+1}(\bot) = m_s
- \]
- The liveness analysis is indeed a monotone function and the lattice
- $M$ only has finitely-long ascending chains because there are only a
- finite number of variables and blocks in the program. Thus we are
- guaranteed that iteratively applying liveness analysis to all blocks
- in the program will eventually produce the least fixed point solution.
- Next let us consider dataflow analysis in general and discuss the
- generic work list algorithm (Figure~\ref{fig:generic-dataflow}).
- %
- The algorithm has four parameters: the control-flow graph \code{G}, a
- function \code{transfer} that applies the analysis to one block, the
- \code{bottom} and \code{join} operator for the lattice of abstract
- states. The algorithm begins by creating the bottom mapping,
- represented by a hash table. It then pushes all of the nodes in the
- control-flow graph onto the work list (a queue).
- \ocaml{(The order in which this is done does not matter for correctness,
- but can have a major effect on efficiency; see below.)}
- The algorithm repeats
- the \code{while} loop as long as there are items in the work list. In
- each iteration, a node is popped from the work list and processed. The
- \code{input} for the node is computed by taking the join of the
- abstract states of all the predecessor nodes. The \code{transfer}
- function is then applied to obtain the \code{output} abstract
- state. If the output differs from the previous state for this block,
- the mapping for this block is updated and its successor nodes are
- pushed onto the work list.
- \begin{ocamlx}
- As stated in Figure~\ref{fig:generic-dataflow}, the algorithm solves \emph{forward} dataflow problems,
- in which the abstract state at the beginning of a block is computed from
- the abstract states at the end of its predecessor blocks. Liveness
- analysis is actually a \emph{backward} dataflow problem, in which the
- abstract state (set of live variables) at the \emph{end} of a block
- is computed from the abstract states at the \emph{beginning} of its
- \emph{successor} blocks. To use this algorithm on a backward problem,
- it suffices simply to pass in the transpose of the CFG, so that
- the roles of predecessor and successor are interchanged.
- Although this algorithm is guaranteed to always converge to a least fixed
- point (provided the lattice has only finitely-long ascending chains), it
- can take many iterations to do so. For example, liveness analysis on a
- function with $n$ variables and $b$ blocks can require $n\times b$ iterations
- in the worst case! Fortunately, much better efficiency can usually be obtained
- by a wise choice of work-list order. For a forward dataflow problem, it is
- best to visit a block only after its predecessors have been visited;
- a topological ordering of the CFG is the closest possible approximation
- to this ideal, considering that there may be cycles in the graph.
- (For a reverse dataflow problem, we want a topological ordering on the
- transposed CFG.) For liveness analysis, choosing this order reduces
- the maximum number of iterations to the depth (longest acyclic path) of
- the CFG plus a small constant.
- \end{ocamlx}
- \begin{figure}[tb]
- \begin{lstlisting}
- (define (analyze-dataflow G transfer bottom join)
- (define mapping (make-hash))
- (for ([v (in-vertices G)])
- (dict-set! mapping v bottom))
- (define worklist (make-queue))
- (for ([v (in-vertices G)])
- (enqueue! worklist v))
- (define trans-G (transpose G))
- (while (not (queue-empty? worklist))
- (define node (dequeue! worklist))
- (define input (for/fold ([state bottom])
- ([pred (in-neighbors trans-G node)])
- (join state (dict-ref mapping pred))))
- (define output (transfer node input))
- (cond [(not (equal? output (dict-ref mapping node)))
- (dict-set! mapping node output)
- (for ([v (in-neighbors G node)])
- (enqueue! worklist v))]))
- mapping)
- \end{lstlisting}
- \caption{Generic work list algorithm for dataflow analysis}
- \label{fig:generic-dataflow}
- \end{figure}
- Having discussed the two complications that arise from adding support
- for assignment and loops, we turn to discussing the one new compiler
- pass and the significant changes to existing passes.
- \section{Convert Assignments}
- \label{sec:convert-assignments}
- \ocaml{OCaml version: We do not need this pass, because we have no lexically-scoped functions.}
- Recall that in Section~\ref{sec:assignment-scoping} we learned that
- the combination of assignments and lexically-scoped functions requires
- that we box those variables that are both assigned-to and that appear
- free inside a \code{lambda}. The purpose of the
- \code{convert-assignments} pass is to carry out that transformation.
- We recommend placing this pass after \code{uniquify} but before
- \code{reveal-functions}.
- Consider again the first example from
- Section~\ref{sec:assignment-scoping}:
- \begin{lstlisting}
- (let ([x 0])
- (let ([y 0])
- (let ([z 20])
- (let ([f (lambda: ([a : Integer]) : Integer (+ a (+ x z)))])
- (begin
- (set! x 10)
- (set! y 12)
- (f y))))))
- \end{lstlisting}
- The variables \code{x} and \code{y} are assigned-to. The variables
- \code{x} and \code{z} occur free inside the \code{lambda}. Thus,
- variable \code{x} needs to be boxed but not \code{y} and \code{z}.
- The boxing of \code{x} consists of three transformations: initialize
- \code{x} with a vector, replace reads from \code{x} with
- \code{vector-ref}'s, and replace each \code{set!} on \code{x} with a
- \code{vector-set!}. The output of \code{convert-assignments} for this
- example is as follows.
- \begin{lstlisting}
- (define (main) : Integer
- (let ([x0 (vector 0)])
- (let ([y1 0])
- (let ([z2 20])
- (let ([f4 (lambda: ([a3 : Integer]) : Integer
- (+ a3 (+ (vector-ref x0 0) z2)))])
- (begin
- (vector-set! x0 0 10)
- (set! y1 12)
- (f4 y1)))))))
- \end{lstlisting}
- \paragraph{Assigned \& Free}
- We recommend defining an auxiliary function named
- \code{assigned\&free} that takes an expression and simultaneously
- computes 1) a set of assigned variables $A$, 2) a set $F$ of variables
- that occur free within lambda's, and 3) a new version of the
- expression that records which bound variables occurred in the
- intersection of $A$ and $F$. You can use the struct
- \code{AssignedFree} to do this. Consider the case for
- $\LET{x}{\itm{rhs}}{\itm{body}}$. Suppose the the recursive call on
- $\itm{rhs}$ produces $\itm{rhs}'$, $A_r$, and $F_r$ and the recursive
- call on the $\itm{body}$ produces $\itm{body}'$, $A_b$, and $F_b$. If
- $x$ is in $A_b\cap F_b$, then transforms the \code{Let} as follows.
- \begin{lstlisting}
- (Let |$x$| |$rhs$| |$body$|)
- |$\Rightarrow$|
- (Let (AssignedFree |$x$|) |$rhs'$| |$body'$|)
- \end{lstlisting}
- If $x$ is not in $A_b\cap F_b$ then omit the use of \code{AssignedFree}.
- The set of assigned variables for this \code{Let} is
- $A_r \cup (A_b - \{x\})$
- and the set of variables free in lambda's is
- $F_r \cup (F_b - \{x\})$.
- The case for $\SETBANG{x}{\itm{rhs}}$ is straightforward but
- important. Recursively process \itm{rhs} to obtain \itm{rhs'}, $A_r$,
- and $F_r$. The result is $\SETBANG{x}{\itm{rhs'}}$, $\{x\} \cup A_r$,
- and $F_r$.
- The case for $\LAMBDA{\itm{params}}{T}{\itm{body}}$ is a bit more
- involved. Let \itm{body'}, $A_b$, and $F_b$ be the result of
- recursively processing \itm{body}. Wrap each of parameter that occurs
- in $A_b \cap F_b$ with \code{AssignedFree} to produce \itm{params'}.
- Let $P$ be the set of parameter names in \itm{params}. The result is
- $\LAMBDA{\itm{params'}}{T}{\itm{body'}}$, $A_b - P$, and $(F_b \cup
- \mathrm{FV}(\itm{body})) - P$, where $\mathrm{FV}$ computes the free
- variables of an expression (see Chapter~\ref{ch:Rlam}).
- \paragraph{Convert Assignments}
- Next we discuss the \code{convert-assignment} pass with its auxiliary
- functions for expressions and definitions. The function for
- expressions, \code{cnvt-assign-exp}, should take an expression and a
- set of assigned-and-free variables (obtained from the result of
- \code{assigned\&free}. In the case for $\VAR{x}$, if $x$ is
- assigned-and-free, then unbox it by translating $\VAR{x}$ to a
- \code{vector-ref}.
- \begin{lstlisting}
- (Var |$x$|)
- |$\Rightarrow$|
- (Prim 'vector-ref (list (Var |$x$|) (Int 0)))
- \end{lstlisting}
- %
- In the case for $\LET{\LP\code{AssignedFree}\,
- x\RP}{\itm{rhs}}{\itm{body}}$, recursively process \itm{rhs} to
- obtain \itm{rhs'}. Next, recursively process \itm{body} to obtain
- \itm{body'} but with $x$ added to the set of assigned-and-free
- variables. Translate the let-expression as follows to bind $x$ to a
- boxed value.
- \begin{lstlisting}
- (Let (AssignedFree |$x$|) |$rhs$| |$body$|)
- |$\Rightarrow$|
- (Let |$x$| (Prim 'vector (list |$rhs'$|)) |$body'$|)
- \end{lstlisting}
- %
- In the case for $\SETBANG{x}{\itm{rhs}}$, recursively process
- \itm{rhs} to obtain \itm{rhs'}. If $x$ is in the assigned-and-free
- variables, translate the \code{set!} into a \code{vector-set!}
- as follows.
- \begin{lstlisting}
- (SetBang |$x$| |$\itm{rhs}$|)
- |$\Rightarrow$|
- (Prim 'vector-set! (list (Var |$x$|) (Int 0) |$\itm{rhs'}$|))
- \end{lstlisting}
- %
- The case for \code{Lambda} is non-trivial, but it is similar to the
- case for function definitions, which we discuss next.
- The auxiliary function for definitions, \code{cnvt-assign-def},
- applies assignment conversion to function definitions.
- We translate a function definition as follows.
- \begin{lstlisting}
- (Def |$f$| |$\itm{params}$| |$T$| |$\itm{info}$| |$\itm{body_1}$|)
- |$\Rightarrow$|
- (Def |$f$| |$\itm{params'}$| |$T$| |$\itm{info}$| |$\itm{body_4}$|)
- \end{lstlisting}
- So it remains to explain \itm{params'} and $\itm{body}_4$.
- Let \itm{body_2}, $A_b$, and $F_b$ be the result of
- \code{assigned\&free} on $\itm{body_1}$.
- Let $P$ be the parameter names in \itm{params}.
- We then apply \code{cnvt-assign-exp} to $\itm{body_2}$ to
- obtain \itm{body_3}, passing $A_b \cap F_b \cap P$
- as the set of assigned-and-free variables.
- Finally, we obtain \itm{body_4} by wrapping \itm{body_3}
- in a sequence of let-expressions that box the parameters
- that are in $A_b \cap F_b$.
- %
- Regarding \itm{params'}, change the names of the parameters that are
- in $A_b \cap F_b$ to maintain uniqueness (and so the let-bound
- variables can retain the original names). Recall the second example in
- Section~\ref{sec:assignment-scoping} involving a counter
- abstraction. The following is the output of assignment version for
- function \code{f}.
- \begin{lstlisting}
- (define (f0 [x1 : Integer]) : (Vector ( -> Integer) ( -> Void))
- (vector
- (lambda: () : Integer x1)
- (lambda: () : Void (set! x1 (+ 1 x1)))))
- |$\Rightarrow$|
- (define (f0 [param_x1 : Integer]) : (Vector (-> Integer) (-> Void))
- (let ([x1 (vector param_x1)])
- (vector (lambda: () : Integer (vector-ref x1 0))
- (lambda: () : Void
- (vector-set! x1 0 (+ 1 (vector-ref x1 0)))))))
- \end{lstlisting}
- \section{Remove Complex Operands}
- \label{sec:rco-loop}
- The three new language forms, \code{while}, \code{set!}, and
- \code{begin} are all complex expressions and their subexpressions are
- allowed to be complex. \ocaml{The void expression \code{()} is an atom.}
- Figure~\ref{fig:Rfun-anf-syntax} defines the
- output language \LangFunANF{} of this pass. \ocaml{The OCaml version is
- analogous.}
- \begin{figure}[tp]
- \centering
- \fbox{
- \begin{minipage}{0.96\textwidth}
- \small
- \[
- \begin{array}{rcl}
- \Atm &::=& \gray{ \INT{\Int} \mid \VAR{\Var} \mid \BOOL{\itm{bool}}
- \mid \VOID{} } \\
- \Exp &::=& \ldots \mid \gray{ \LET{\Var}{\Exp}{\Exp} } \\
- &\mid& \WHILE{\Exp}{\Exp} \mid \SETBANG{\Var}{\Exp}
- \mid \BEGIN{\LP\Exp\ldots\RP}{\Exp} \\
- \Def &::=& \gray{ \FUNDEF{\Var}{([\Var \code{:} \Type]\ldots)}{\Type}{\code{'()}}{\Exp} }\\
- R^{\dagger}_8 &::=& \gray{ \PROGRAMDEFS{\code{'()}}{\Def} }
- \end{array}
- \]
- \end{minipage}
- }
- \caption{\LangLoopANF{} is \LangLoop{} in administrative normal form (ANF).}
- \label{fig:Rwhile-anf-syntax}
- \end{figure}
- As usual, when a complex expression appears in a grammar position that
- needs to be atomic, such as the argument of a primitive operator, we
- must introduce a temporary variable and bind it to the complex
- expression. This approach applies, unchanged, to handle the new
- language forms. For example, in the following code there are two
- \code{begin} expressions appearing as arguments to \code{+}. The
- output of \code{rco-exp} is shown below, in which the \code{begin}
- expressions have been bound to temporary variables. Recall that
- \code{let} expressions in \LangLoopANF{} are allowed to have
- arbitrary expressions in their right-hand-side expression, so it is
- fine to place \code{begin} there.
- \begin{lstlisting}
- (let ([x0 10])
- (let ([y1 0])
- (+ (+ (begin (set! y1 (read)) x0)
- (begin (set! x0 (read)) y1))
- x0)))
- |$\Rightarrow$|
- (let ([x0 10])
- (let ([y1 0])
- (let ([tmp2 (begin (set! y1 (read)) x0)])
- (let ([tmp3 (begin (set! x0 (read)) y1)])
- (let ([tmp4 (+ tmp2 tmp3)])
- (+ tmp4 x0))))))
- \end{lstlisting}
- \section{Explicate Control and \LangCLoop{}}
- \label{sec:explicate-loop}
- Recall that in the \code{explicate-control} pass we define one helper
- function for each kind of position in the program. For the \LangVar{}
- language of integers and variables we needed \ocaml{two} kinds of positions:
- assignment and tail. The \code{if} expressions of \LangIf{} introduced
- predicate positions. For \LangLoop{}, the \code{begin} expression introduces
- yet another kind of position: effect position. Except for the last
- subexpression, the subexpressions inside a \code{begin} are evaluated
- only for their effect. Their result values are discarded. We can
- generate better code by taking this fact into account.
- The output language of \code{explicate-control} is \LangCLoop{}
- (Figure~\ref{fig:c7-syntax}), which is nearly identical to
- \LangCLam{}.
- \ocaml{For the OCaml version, it suffices to reuse \LangCIf{}
- (Figure~\ref{fig:c1-syntax}) (with a properly generalized type-checker
- that can cope with arbitrary control flow graphs).}
- The only syntactic difference is that \code{Call},
- \code{vector-set!}, and \code{read} may also appear as statements.
- \ocaml{Of these features, we support only \code{read}, and we don't allow that
- in a context where the result is thrown away. So there is no point in
- extending $\Stmt$ as shown here.}
- The most significant difference between \LangCLam{} and \LangCLoop{}
- is that the control-flow graphs of the later may contain cycles.
- \begin{figure}[tp]
- \fbox{
- \begin{minipage}{0.96\textwidth}
- \small
- \[
- \begin{array}{lcl}
- \Stmt &::=& \gray{ \ASSIGN{\VAR{\Var}}{\Exp}
- \mid \LP\key{Collect} \,\itm{int}\RP } \\
- &\mid& \CALL{\Atm}{\LP\Atm\ldots\RP} \mid \READ{}\\
- &\mid& \LP\key{Prim}~\key{'vector-set!}\,\LP\key{list}\,\Atm\,\INT{\Int}\,\Atm\RP\RP \\
- \Def &::=& \DEF{\itm{label}}{\LP\LS\Var\key{:}\Type\RS\ldots\RP}{\Type}{\itm{info}}{\LP\LP\itm{label}\,\key{.}\,\Tail\RP\ldots\RP}\\
- \LangCLoop{} & ::= & \PROGRAMDEFS{\itm{info}}{\LP\Def\ldots\RP}
- \end{array}
- \]
- \end{minipage}
- }
- \caption{The abstract syntax of \LangCLoop{}, extending \LangCLam{} (Figure~\ref{fig:c4-syntax}).}
- \label{fig:c7-syntax}
- \end{figure}
- The new auxiliary function \code{explicate-effect} takes an expression
- (in an effect position) and a promise of a continuation block. \ocaml{Again,
- it is easier to just provide the block and not worry about laziness.}
- The function returns a promise for a $\Tail$ \ocaml{(just a $\Tail$)} that includes the generated
- code for the input expression followed by the continuation block. If
- the expression is obviously pure, that is, never causes side effects,
- then the expression can be removed, so the result is just the
- continuation block. \ocaml{This can almost never happen under our typing restrictions,
- because only \code{Void}-typed expressions can appear in effect position,
- and there are by nature almost all side-effecting. However, the void
- value \code{()} \emph{is} pure, and can be used to construct larger pure
- expressions of \code{Void} type.}
- %
- The $\WHILE{\itm{cnd}}{\itm{body}}$ expression is the most interesting
- case. First, you will need a fresh label $\itm{loop}$ for the top of
- the loop. Recursively process the \itm{body} (in effect position)
- with the a \code{goto} to $\itm{loop}$ as the continuation, producing
- \itm{body'}. Next, process the \itm{cnd} (in predicate position) with
- \itm{body'} as the then-branch and the continuation block as the
- else-branch. The result should be added to the control-flow graph with
- the label \itm{loop}. The result for the whole \code{while} loop is a
- \code{goto} to the \itm{loop} label. Note that the loop should only be
- added to the control-flow graph if the loop is indeed used, which can
- be accomplished using \code{delay}.
- \ocaml{Again, the laziness is not really necessary.}
- The auxiliary functions for tail, assignment, and predicate positions
- need to be updated. The three new language forms, \code{while},
- \code{set!}, and \code{begin}, can appear in assignment and tail
- positions. Only \code{begin} may appear in predicate positions; the
- other two have result type \code{Void}. \ocaml{In our version,
- the typing restrictions imply that
- \code{while} and \code{:=} \emph{cannot} appear in tail, assignment, or
- predicate positions.
- A \code{seq} \emph{can} appear in any of these three positions, provided
- that its final sub-expression has an appropriate type
- (\code{Int} for tail position; \code{Int} or \code{Bool}, as appropriate, for
- assignment positions; \code{Bool} for predicate positions).}
- \ocaml{Note that it should never be necessary to generate a \LangCIf{}
- \code{atom} corresponding to the \LangLoop{} void constant \code{()}.}
- \section{Select Instructions}
- \label{sec:select-instructions-loop}
- Only three small additions are needed in the
- \code{select-instructions} pass to handle the changes to \LangCLoop{}. That
- is, \code{Call}, \code{read}, and \code{vector-set!} may now appear as
- stand-alone statements instead of only appearing on the right-hand
- side of an assignment statement. The code generation is nearly
- identical; just leave off the instruction for moving the result into
- the left-hand side. \ocaml{Since we are continuing to use \LangCIf{},
- no changes to SelectInstructions are needed at all.}
- \section{Register Allocation}
- \label{sec:register-allocation-loop}
- As discussed in Section~\ref{sec:dataflow-analysis}, the presence of
- loops in \LangLoop{} means that the control-flow graphs may contain cycles,
- which complicates the liveness analysis needed for register
- allocation.
- \subsection{Liveness Analysis}
- \label{sec:liveness-analysis-r8}
- We recommend using the generic \code{analyze-dataflow} function that
- was presented at the end of Section~\ref{sec:dataflow-analysis} to
- perform liveness analysis, replacing the code in
- \code{uncover-live-CFG} that processed the basic blocks in topological
- order (Section~\ref{sec:liveness-analysis-Rif}). \ocaml{An implementation
- of this algorithm is provided to you as a functor in file \code{dataflow.ml}.}
- The \code{analyze-dataflow} function has four parameters.
- \begin{enumerate}
- \item The first parameter \code{G} should be a directed graph from the
- \code{racket/graph} package (see the sidebar in
- Section~\ref{sec:build-interference}) that represents the
- control-flow graph. \ocaml{Remember that it is necessary to
- transpose the CFG for a backward dataflow problem. The functor
- provides separate entry points for forward and backward analyses.}
- \item The second parameter \code{transfer} is a function that applies
- liveness analysis to a basic block. It takes two parameters: the
- label for the block to analyze and the live-after set for that
- block. The transfer function should return the live-before set for
- the block. Also, as a side-effect, it should update the block's
- $\itm{info}$ with the liveness information for each instruction. To
- implement the \code{transfer} function, you should be able to reuse
- the code you already have for analyzing basic blocks. \ocaml{Depending on
- how you wrote that code, you may need to refactor it slightly.}
- \item The third and fourth parameters of \code{analyze-dataflow} are
- \code{bottom} and \code{join} for the lattice of abstract states,
- i.e. sets of locations. The bottom of the lattice is the empty set
- \code{(set)} and the join operator is \code{set-union}. \ocaml{These
- parameters are provided once-and-for-all when the functor is
- instanstantiated.}
- \end{enumerate}
- \begin{figure}[p]
- \begin{tikzpicture}[baseline=(current bounding box.center)]
- \node (Rfun) at (0,2) {\large \LangLoop{}};
- \node (Rfun-2) at (3,2) {\large \LangLoop{}};
- \node (Rfun-3) at (6,2) {\large \LangLoop{}};
- \node (Rfun-4) at (9,2) {\large \LangLoopFunRef{}};
- \node (F1-1) at (12,0) {\large \LangLoopFunRef{}};
- \node (F1-2) at (9,0) {\large \LangLoopFunRef{}};
- \node (F1-3) at (6,0) {\large \LangLoopFunRef{}};
- \node (F1-4) at (3,0) {\large \LangLoopAlloc{}};
- \node (F1-5) at (0,0) {\large \LangLoopAlloc{}};
- \node (C3-2) at (3,-2) {\large \LangCLoop{}};
- \node (x86-2) at (3,-4) {\large \LangXIndCallVar{}};
- \node (x86-2-1) at (3,-6) {\large \LangXIndCallVar{}};
- \node (x86-2-2) at (6,-6) {\large \LangXIndCallVar{}};
- \node (x86-3) at (6,-4) {\large \LangXIndCallVar{}};
- \node (x86-4) at (9,-4) {\large \LangXIndCall{}};
- \node (x86-5) at (9,-6) {\large \LangXIndCall{}};
- %% \path[->,bend left=15] (Rfun) edge [above] node
- %% {\ttfamily\footnotesize type-check} (Rfun-2);
- \path[->,bend left=15] (Rfun) edge [above] node
- {\ttfamily\footnotesize shrink} (Rfun-2);
- \path[->,bend left=15] (Rfun-2) edge [above] node
- {\ttfamily\footnotesize uniquify} (Rfun-3);
- \path[->,bend left=15] (Rfun-3) edge [above] node
- {\ttfamily\footnotesize reveal-functions} (Rfun-4);
- \path[->,bend left=15] (Rfun-4) edge [right] node
- {\ttfamily\footnotesize convert-assignments} (F1-1);
- \path[->,bend left=15] (F1-1) edge [below] node
- {\ttfamily\footnotesize convert-to-clos.} (F1-2);
- \path[->,bend right=15] (F1-2) edge [above] node
- {\ttfamily\footnotesize limit-fun.} (F1-3);
- \path[->,bend right=15] (F1-3) edge [above] node
- {\ttfamily\footnotesize expose-alloc.} (F1-4);
- \path[->,bend right=15] (F1-4) edge [above] node
- {\ttfamily\footnotesize remove-complex.} (F1-5);
- \path[->,bend right=15] (F1-5) edge [right] node
- {\ttfamily\footnotesize explicate-control} (C3-2);
- \path[->,bend left=15] (C3-2) edge [left] node
- {\ttfamily\footnotesize select-instr.} (x86-2);
- \path[->,bend right=15] (x86-2) edge [left] node
- {\ttfamily\footnotesize uncover-live} (x86-2-1);
- \path[->,bend right=15] (x86-2-1) edge [below] node
- {\ttfamily\footnotesize build-inter.} (x86-2-2);
- \path[->,bend right=15] (x86-2-2) edge [left] node
- {\ttfamily\footnotesize allocate-reg.} (x86-3);
- \path[->,bend left=15] (x86-3) edge [above] node
- {\ttfamily\footnotesize patch-instr.} (x86-4);
- \path[->,bend left=15] (x86-4) edge [right] node {\ttfamily\footnotesize print-x86} (x86-5);
- \end{tikzpicture}
- \caption{Diagram of the passes for \LangLoop{} (loops and assignment).}
- \label{fig:Rwhile-passes}
- \end{figure}
- Figure~\ref{fig:Rwhile-passes} provides an overview of all the passes needed
- for the compilation of \LangLoop{}.
- \section{Challenge: Arrays}
- \label{sec:arrays}
- In Chapter~\ref{ch:Rvec} we studied tuples, that is, sequences of
- elements whose length is determined at compile-time and where each
- element of a tuple may have a different type (they are
- heterogeous). This challenge is also about sequences, but this time
- the length is determined at run-time and all the elements have the same
- type (they are homogeneous). We use the term ``array'' for this later
- kind of sequence.
- \begin{ocamlx}
- For this challenge, you will implement \LangArray{}, a variant of \LangFun{}
- supporting arrays. Unlike previous chapters, all that will be provided to you
- are a specification of the concrete input grammar for \LangArray{} and
- an improved version of \code{runtime.c} that supports garbage collection of
- arrays (according to a particular specified memory layout convention).
- It is up to you to produce appropriately modified versions of \code{RFun.ml}, \code{CFun.ml},
- and \code{X86Fun.ml}, as well as the passes that glue them together, which you should
- put in a file \code{Chapter9Arrays.ml}. You must implement a type checker for
- source \LangArray{} programs. Otherwise, you
- hou have complete freedom to add
- features as needed to the intermediate languages and the set of X86 instructions
- you use.
- \end{ocamlx}
- The Racket language does not distinguish between tuples and arrays,
- they are both represented by vectors. However, Typed Racket
- distinguishes between tuples and arrays: the \code{Vector} type is for
- tuples and the \code{Vectorof} type is for arrays.
- %
- Figure~\ref{fig:Rvecof-concrete-syntax} defines the concrete syntax
- for \LangArray{}, extending \LangLoop{} with the \code{Vectorof} type
- and the \code{make-vector} primitive operator for creating an array,
- whose arguments are the length of the array and an initial value for
- all the elements in the array. The \code{vector-length},
- \code{vector-ref}, and \code{vector-ref!} operators that we defined
- for tuples become overloaded for use with arrays.
- %
- We also include integer multiplication in \LangArray{}, as it is
- useful in many examples involving arrays such as computing the
- inner-product of two arrays (Figure~\ref{fig:inner-product}).
- \begin{ocamlx}
- For our version of \LangArray{} we will not overload existing operators.
- Instead, we will use the following concrete syntax:
- \begin{itemize}
- \item An array is created with \code{(array $e_1$ $e_2$)} where $e_1$ evaluates
- to an integer representing the length of the array, and $e_2$ evaluates to the
- initial value to be used for all the array elements. (Note that $e_2$ is evaluated
- just once per array creation, not once per element!)
- \item The length of an array is returned by \code{(len $e$)} where $e$ evaluates to an array.
- \item Reading from the array is denoted by \code{(@ $e_1$ $e_2$)} where $e_1$ evaluates to an
- array and $e_2$ evaluates to an integer index into the array (counting from 0).
- \item Writing to the array is denoted by \code{(@:= $e_1$ $e_2$ $e_3$)}, where
- $e_1$ evaluates to an array, $e_2$ to an integer index, and $e_3$ to the new value
- to store.
- \end{itemize}
- As suggested, we will also add integer multiplication, written \code{(* $e_1$ $e_2$)}.
- You may also find it useful to extend the AST for \LangArray{} with other constructs
- that are generated by various passes; as in previous chapters, any such extensions should not be
- parseable, but may appear in debug output.
- \end{ocamlx}
- \begin{figure}[tp]
- \centering
- \fbox{
- \begin{minipage}{0.96\textwidth}
- \small
- \[
- \begin{array}{lcl}
- \Type &::=& \ldots \mid \LP \key{Vectorof}~\Type \RP \\
- \Exp &::=& \gray{ \Int \mid \CREAD{} \mid \CNEG{\Exp}
- \mid \CADD{\Exp}{\Exp} \mid \CSUB{\Exp}{\Exp} } \mid \CMUL{\Exp}{\Exp}\\
- &\mid& \gray{ \Var \mid \CLET{\Var}{\Exp}{\Exp} }\\
- &\mid& \gray{\key{\#t} \mid \key{\#f}
- \mid \LP\key{and}\;\Exp\;\Exp\RP
- \mid \LP\key{or}\;\Exp\;\Exp\RP
- \mid \LP\key{not}\;\Exp\RP } \\
- &\mid& \gray{ \LP\key{eq?}\;\Exp\;\Exp\RP \mid \CIF{\Exp}{\Exp}{\Exp} } \\
- &\mid& \gray{ \LP\key{vector}\;\Exp\ldots\RP \mid
- \LP\key{vector-ref}\;\Exp\;\Int\RP} \\
- &\mid& \gray{\LP\key{vector-set!}\;\Exp\;\Int\;\Exp\RP\mid \LP\key{void}\RP
- \mid \LP\Exp \; \Exp\ldots\RP } \\
- &\mid& \gray{ \LP \key{procedure-arity}~\Exp\RP
- \mid \CLAMBDA{\LP\LS\Var \key{:} \Type\RS\ldots\RP}{\Type}{\Exp} } \\
- &\mid& \gray{ \CSETBANG{\Var}{\Exp}
- \mid \CBEGIN{\Exp\ldots}{\Exp}
- \mid \CWHILE{\Exp}{\Exp} } \\
- &\mid& \CMAKEVEC{\Exp}{\Exp} \\
- \Def &::=& \gray{ \CDEF{\Var}{\LS\Var \key{:} \Type\RS\ldots}{\Type}{\Exp} } \\
- \LangArray{} &::=& \gray{\Def\ldots \; \Exp}
- \end{array}
- \]
- \end{minipage}
- }
- \caption{The concrete syntax of \LangArray{}, extending \LangLoop{} (Figure~\ref{fig:Rwhile-concrete-syntax}).\ocaml{See the text for
- OCaml version of this.}}
- \label{fig:Rvecof-concrete-syntax}
- \end{figure}
- \begin{figure}[tp]
- \begin{lstlisting}
- (define (inner-product [A : (Vectorof Integer)] [B : (Vectorof Integer)]
- [n : Integer]) : Integer
- (let ([i 0])
- (let ([prod 0])
- (begin
- (while (< i n)
- (begin
- (set! prod (+ prod (* (vector-ref A i)
- (vector-ref B i))))
- (set! i (+ i 1))
- ))
- prod))))
-
- (let ([A (make-vector 2 2)])
- (let ([B (make-vector 2 3)])
- (+ (inner-product A B 2)
- 30)))
- \end{lstlisting}
- \begin{lstlisting}[style=ocaml]
- (define innerproduct (A : (array int)) (B : (array int)) (n : int) : int
- (let i 0
- (let prod 0
- (seq
- (while (< i n)
- (seq
- (:= prod (+ prod ~\texttt{(*}~ (@ A i) (@ B i))))
- (:= i (+ i 1))))
- prod))))
- (let A (array 2 2)
- (let B (array 2 3)
- (+ (innerproduct A B 2) 30)))
- \end{lstlisting}
- \caption{Example program that computes the inner-product.}
- \label{fig:inner-product}
- \end{figure}
- The type checker for \LangArray{} is define in
- Figure~\ref{fig:type-check-Rvecof}. The result type of
- \code{make-vector} is \code{(Vectorof T)} \ocaml{\code{(array T)}} where \code{T} is the type
- of the intializing expression. The length expression is required to
- have type \code{Integer}. \ocaml{The rest of this paragraph is only vaguely relevant:
- we are introducing
- new operators rather than overloading existing ones, and we are not
- building on the language supporting \code{Any} types.}
- The type checking of the operators
- \code{vector-length}, \code{vector-ref}, and \code{vector-set!} is
- updated to handle the situation where the vector has type
- \code{Vectorof}. In these cases we translate the operators to their
- \code{vectorof} form so that later passes can easily distinguish
- between operations on tuples versus arrays. We override the
- \code{operator-types} method to provide the type signature for
- multiplication: it takes two integers and returns an integer. To
- support injection and projection of arrays to the \code{Any} type
- (Section~\ref{sec:Rany-lang}), we also override the \code{flat-ty?}
- predicate.
- \begin{figure}[tbp]
- \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
- (define type-check-Rvecof-class
- (class type-check-Rwhile-class
- (super-new)
- (inherit check-type-equal?)
- (define/override (flat-ty? ty)
- (match ty
- ['(Vectorof Any) #t]
- [else (super flat-ty? ty)]))
-
- (define/override (operator-types)
- (append '((* . ((Integer Integer) . Integer)))
- (super operator-types)))
-
- (define/override (type-check-exp env)
- (lambda (e)
- (define recur (type-check-exp env))
- (match e
- [(Prim 'make-vector (list e1 e2))
- (define-values (e1^ t1) (recur e1))
- (define-values (e2^ elt-type) (recur e2))
- (define vec-type `(Vectorof ,elt-type))
- (values (HasType (Prim 'make-vector (list e1^ e2^)) vec-type)
- vec-type)]
- [(Prim 'vector-ref (list e1 e2))
- (define-values (e1^ t1) (recur e1))
- (define-values (e2^ t2) (recur e2))
- (match* (t1 t2)
- [(`(Vectorof ,elt-type) 'Integer)
- (values (Prim 'vectorof-ref (list e1^ e2^)) elt-type)]
- [(other wise) ((super type-check-exp env) e)])]
- [(Prim 'vector-set! (list e1 e2 e3) )
- (define-values (e-vec t-vec) (recur e1))
- (define-values (e2^ t2) (recur e2))
- (define-values (e-arg^ t-arg) (recur e3))
- (match t-vec
- [`(Vectorof ,elt-type)
- (check-type-equal? elt-type t-arg e)
- (values (Prim 'vectorof-set! (list e-vec e2^ e-arg^)) 'Void)]
- [else ((super type-check-exp env) e)])]
- [(Prim 'vector-length (list e1))
- (define-values (e1^ t1) (recur e1))
- (match t1
- [`(Vectorof ,t)
- (values (Prim 'vectorof-length (list e1^)) 'Integer)]
- [else ((super type-check-exp env) e)])]
- [else ((super type-check-exp env) e)])))
- ))
- (define (type-check-Rvecof p)
- (send (new type-check-Rvecof-class) type-check-program p))
- \end{lstlisting}
- \caption{Type checker for the \LangArray{} language.}
- \label{fig:type-check-Rvecof}
- \end{figure}
- The interpreter for \LangArray{} is defined in
- Figure~\ref{fig:interp-Rvecof}. The \code{make-vector} operator is
- implemented with Racket's \code{make-vector} function and
- multiplication is \code{fx*}, multiplication for \code{fixnum}
- integers.
- \begin{figure}[tbp]
- \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
- (define interp-Rvecof-class
- (class interp-Rwhile-class
- (super-new)
- (define/override (interp-op op)
- (verbose "Rvecof/interp-op" op)
- (match op
- ['make-vector make-vector]
- ['* fx*]
- [else (super interp-op op)]))
- ))
- (define (interp-Rvecof p)
- (send (new interp-Rvecof-class) interp-program p))
- \end{lstlisting}
- \caption{Interpreter for \LangArray{}.}
- \label{fig:interp-Rvecof}
- \end{figure}
- \subsection{Data Representation}
- \label{sec:array-rep}
- \ocaml{You need to follow these guidelines precisely in order to use
- the garbage collection code in \code{runtime.c}.}
- Just like tuples, we store arrays on the heap which means that the
- garbage collector will need to inspect arrays. An immediate thought is
- to use the same representation for arrays that we use for tuples.
- However, we limit tuples to a length of $50$ so that their length and
- pointer mask can fit into the 64-bit tag at the beginning of each
- tuple (Section~\ref{sec:data-rep-gc}). We intend arrays to allow
- millions of elements, so we need more bits to store the length.
- However, because arrays are homogeneous, we only need $1$ bit for the
- pointer mask instead of one bit per array elements. Finally, the
- garbage collector will need to be able to distinguish between tuples
- and arrays, so we need to reserve $1$ bit for that purpose. So we
- arrive at the following layout for the 64-bit tag at the beginning of
- an array:
- \begin{itemize}
- \item The right-most bit is the forwarding bit, just like in a tuple.
- A $0$ indicates it is a forwarding pointer and a $1$ indicates
- it is not.
-
- \item The next bit to the left is the pointer mask. A $0$ indicates
- that none of the elements are pointers to the heap and a $1$
- indicates that all of the elements are pointers.
- \item The next $61$ bits store the length of the array.
- \item The left-most bit distinguishes between a tuple ($0$) versus an
- array ($1$).
- \end{itemize}
- Recall that in Chapter~\ref{ch:Rdyn}, we use a $3$-bit tag to
- differentiate the kinds of values that have been injected into the
- \code{Any} type. We use the bit pattern \code{110} (or $6$ in decimal)
- to indicate that the value is an array. \ocaml{We do not have \code{Any}
- types.}
- In the following subsections we provide hints regarding how to update
- the passes to handle arrays. \ocaml{Some of these are not too relevant
- to our version, though.}
- \subsection{Reveal Casts}
- \ocaml{Don't try to follow this section too closely; there are too many
- different assumptions at play. But you will indeed need to introduce code
- to check at runtime that the indices of \code{@} and \code{@:=} operations
- are within bounds, and also that the length parameter to \code{array}
- creation is non-negative. If any of these conditions are violated, the
- generated code should call a (newly provided) function in {\tt runtime.c} called
- \code{fatal\_exit}; this will cause the program to terminate immediately
- with return code 255. By the way, there is a very cute way to check that
- an index is less than a fixed bound \emph{and} non-negative using a single
- \emph{unsigned} comparison instruction.}
-
- The array-access operators \code{vectorof-ref} and
- \code{vectorof-set!} are similar to the \code{any-vector-ref} and
- \code{any-vector-set!} operators of Chapter~\ref{ch:Rdyn} in
- that the type checker cannot tell whether the index will be in bounds,
- so the bounds check must be performed at run time. Recall that the
- \code{reveal-casts} pass (Section~\ref{sec:reveal-casts-Rany}) wraps
- an \code{If} arround a vector reference for update to check whether
- the index is less than the length. You should do the same for
- \code{vectorof-ref} and \code{vectorof-set!} .
- In addition, the handling of the \code{any-vector} operators in
- \code{reveal-casts} needs to be updated to account for arrays that are
- injected to \code{Any}. For the \code{any-vector-length} operator, the
- generated code should test whether the tag is for tuples (\code{010})
- or arrays (\code{110}) and then dispatch to either
- \code{any-vector-length} or \code{any-vectorof-length}. For the later
- we add a case in \code{select-instructions} to generate the
- appropriate instructions for accessing the array length from the
- header of an array.
- For the \code{any-vector-ref} and \code{any-vector-set!} operators,
- the generated code needs to check that the index is less than the
- vector length, so like the code for \code{any-vector-length}, check
- the tag to determine whether to use \code{any-vector-length} or
- \code{any-vectorof-length} for this purpose. Once the bounds checking
- is complete, the generated code can use \code{any-vector-ref} and
- \code{any-vector-set!} for both tuples and arrays because the
- instructions used for those operators do not look at the tag at the
- front of the tuple or array.
- \subsection{Expose Allocation}
- \ocaml{The advice here is fairly relevant. As an alternative to
- defining a new \code{AllocateArray} AST form, you may wish to
- modify the existing \code{Alloc} form so that it can be
- used for both tuples and arrays.}
- This pass should translate the \code{make-vector} operator into
- lower-level operations. In particular, the new AST node
- $\LP\key{AllocateArray}~\Exp~\Type\RP$ allocates an array of the
- length specified by the $\Exp$, but does not initialize the elements
- of the array. (Analogous to the \code{Allocate} AST node for tuples.)
- The $\Type$ argument must be $\LP\key{Vectorof}~T\RP$ where $T$ is the
- element type for the array. Regarding the initialization of the array,
- we recommend generated a \code{while} loop that uses
- \code{vector-set!} to put the initializing value into every element of
- the array.
- \subsection{Remove Complex Operands}
- Add cases in the \code{rco-atom} and \code{rco-exp} for
- \code{AllocateArray}. In particular, an \code{AllocateArray} node is
- complex and its subexpression must be atomic.
- \subsection{Explicate Control}
- Add cases for \code{AllocateArray} to \code{explicate-tail} and
- \code{explicate-assign}.
- \subsection{Select Instructions}
- Generate instructions for \code{AllocateArray} similar to those for
- \code{Allocate} in Section~\ref{sec:select-instructions-gc} except
- that the tag at the front of the array should instead use the
- representation discussed in Section~\ref{sec:array-rep}.
- Regarding \code{vectorof-length}, extract the length from the tag
- according to the representation discussed in
- Section~\ref{sec:array-rep}.
- The instructions generated for \code{vectorof-ref} differ from those
- for \code{vector-ref} (Section~\ref{sec:select-instructions-gc}) in
- that the index is not a constant so the offset must be computed at
- runtime, similar to the instructions generated for
- \code{any-vector-of-ref} (Section~\ref{sec:select-Rany}). \ocaml{You
- might want to look at that section for inspiration; the relevant
- code is actually for \code{any-vector-ref}. But by the way, remember that
- multiplication by a constant power of two can be more cheaply done using a shift instruction.}
- The same is
- true for \code{vectorof-set!}. Also, the \code{vectorof-set!} may
- appear in an assignment and as a stand-alone statement, so make sure
- to handle both situations in this pass. \ocaml{This last statement
- won't be true if you give \code{@:=} void type, as you presumably do!}
- Finally, the instructions for \code{any-vectorof-length} should be
- similar to those for \code{vectorof-length}, except that one must
- first project the array by writing zeroes into the $3$-bit tag. \ocaml{Not relevant for us.}
- \ocaml{For multiplication, use the X86 {\tt imul} instruction. Note that it has a peculiarity:
- its destination must be a register.}
- \begin{exercise}\normalfont
- Implement a compiler for the \LangArray{} language by extending your
- compiler for \LangLoop{}. Test your compiler on a half dozen new
- programs, including the one in Figure~\ref{fig:inner-product} and also
- a program that multiplies two matrices. Note that matrices are
- 2-dimensional arrays, but those can be encoded into 1-dimensional
- arrays by laying out each row in the array, one after the next.
- \ocaml{Alternatively, they can be encoded as arrays of arrays.
- You should try writing both versions of matrix multiply!}
-
- \end{exercise}
- % Further Reading: dataflow analysis
- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
- \chapter{Gradual Typing}
- \label{ch:Rgrad}
- \index{gradual typing}
- This chapter studies a language, \LangGrad{}, in which the programmer
- can choose between static and dynamic type checking in different parts
- of a program, thereby mixing the statically typed \LangLoop{} language
- with the dynamically typed \LangDyn{}. There are several approaches to
- mixing static and dynamic typing, including multi-language
- integration~\citep{Tobin-Hochstadt:2006fk,Matthews:2007zr} and hybrid
- type checking~\citep{Flanagan:2006mn,Gronski:2006uq}. In this chapter
- we focus on \emph{gradual typing}\index{gradual typing}, in which the
- programmer controls the amount of static versus dynamic checking by
- adding or removing type annotations on parameters and
- variables~\citep{Anderson:2002kd,Siek:2006bh}.
- %
- The concrete syntax of \LangGrad{} is defined in
- Figure~\ref{fig:Rgrad-concrete-syntax} and its abstract syntax is defined
- in Figure~\ref{fig:Rgrad-syntax}. The main syntactic difference between
- \LangLoop{} and \LangGrad{} is the additional \itm{param} and \itm{ret}
- non-terminals that make type annotations optional. The return types
- are not optional in the abstract syntax; the parser fills in
- \code{Any} when the return type is not specified in the concrete
- syntax.
- \begin{figure}[tp]
- \centering
- \fbox{
- \begin{minipage}{0.96\textwidth}
- \small
- \[
- \begin{array}{lcl}
- \itm{param} &::=& \Var \mid \LS\Var \key{:} \Type\RS \\
- \itm{ret} &::=& \epsilon \mid \key{:} \Type \\
- \Exp &::=& \gray{ \Int \mid \CREAD{} \mid \CNEG{\Exp}
- \mid \CADD{\Exp}{\Exp} \mid \CSUB{\Exp}{\Exp} } \\
- &\mid& \gray{ \Var \mid \CLET{\Var}{\Exp}{\Exp} }\\
- &\mid& \gray{\key{\#t} \mid \key{\#f}
- \mid (\key{and}\;\Exp\;\Exp)
- \mid (\key{or}\;\Exp\;\Exp)
- \mid (\key{not}\;\Exp) } \\
- &\mid& \gray{ (\key{eq?}\;\Exp\;\Exp) \mid \CIF{\Exp}{\Exp}{\Exp} } \\
- &\mid& \gray{ (\key{vector}\;\Exp\ldots) \mid
- (\key{vector-ref}\;\Exp\;\Int)} \\
- &\mid& \gray{(\key{vector-set!}\;\Exp\;\Int\;\Exp)\mid (\key{void})
- \mid (\Exp \; \Exp\ldots) } \\
- &\mid& \gray{ \LP \key{procedure-arity}~\Exp\RP }
- \mid \CGLAMBDA{\LP\itm{param}\ldots\RP}{\itm{ret}}{\Exp} \\
- &\mid& \gray{ \CSETBANG{\Var}{\Exp}
- \mid \CBEGIN{\Exp\ldots}{\Exp}
- \mid \CWHILE{\Exp}{\Exp} } \\
- \Def &::=& \CGDEF{\Var}{\itm{param}\ldots}{\itm{ret}}{\Exp} \\
- \LangGrad{} &::=& \gray{\Def\ldots \; \Exp}
- \end{array}
- \]
- \end{minipage}
- }
- \caption{The concrete syntax of \LangGrad{}, extending \LangLoop{} (Figure~\ref{fig:Rwhile-concrete-syntax}).}
- \label{fig:Rgrad-concrete-syntax}
- \end{figure}
- \begin{figure}[tp]
- \centering
- \fbox{
- \begin{minipage}{0.96\textwidth}
- \small
- \[
- \begin{array}{lcl}
- \itm{param} &::=& \Var \mid \LS\Var \key{:} \Type\RS \\
- \Exp &::=& \gray{ \INT{\Int} \VAR{\Var} \mid \LET{\Var}{\Exp}{\Exp} } \\
- &\mid& \gray{ \PRIM{\itm{op}}{\Exp\ldots} }\\
- &\mid& \gray{ \BOOL{\itm{bool}}
- \mid \IF{\Exp}{\Exp}{\Exp} } \\
- &\mid& \gray{ \VOID{} \mid \LP\key{HasType}~\Exp~\Type \RP
- \mid \APPLY{\Exp}{\Exp\ldots} }\\
- &\mid& \LAMBDA{\LP\itm{param}\ldots\RP}{\Type}{\Exp} \\
- &\mid& \gray{ \SETBANG{\Var}{\Exp} \mid \BEGIN{\LP\Exp\ldots\RP}{\Exp} } \\
- &\mid& \gray{ \WHILE{\Exp}{\Exp} } \\
- \Def &::=& \FUNDEF{\Var}{\LP\itm{param}\ldots\RP}{\Type}{\code{'()}}{\Exp} \\
- \LangGrad{} &::=& \gray{ \PROGRAMDEFSEXP{\code{'()}}{\LP\Def\ldots\RP}{\Exp} }
- \end{array}
- \]
- \end{minipage}
- }
- \caption{The abstract syntax of \LangGrad{}, extending \LangLoop{} (Figure~\ref{fig:Rwhile-syntax}).}
- \label{fig:Rgrad-syntax}
- \end{figure}
- Both the type checker and the interpreter for \LangGrad{} require some
- interesting changes to enable gradual typing, which we discuss in the
- next two sections in the context of the \code{map-vec} example from
- Chapter~\ref{ch:Rfun}. In Figure~\ref{fig:gradual-map-vec} we
- revised the \code{map-vec} example, omitting the type annotations from
- the \code{add1} function.
- \begin{figure}[btp]
- % gradual_test_9.rkt
- \begin{lstlisting}
- (define (map-vec [f : (Integer -> Integer)]
- [v : (Vector Integer Integer)])
- : (Vector Integer Integer)
- (vector (f (vector-ref v 0)) (f (vector-ref v 1))))
- (define (add1 x) (+ x 1))
- (vector-ref (map-vec add1 (vector 0 41)) 1)
- \end{lstlisting}
- \caption{A partially-typed version of the \code{map-vec} example.}
- \label{fig:gradual-map-vec}
- \end{figure}
- \section{Type Checking \LangGrad{}, Casts, and \LangCast{}}
- \label{sec:gradual-type-check}
- The type checker for \LangGrad{} uses the \code{Any} type for missing
- parameter and return types. For example, the \code{x} parameter of
- \code{add1} in Figure~\ref{fig:gradual-map-vec} is given the type
- \code{Any} and the return type of \code{add1} is \code{Any}. Next
- consider the \code{+} operator inside \code{add1}. It expects both
- arguments to have type \code{Integer}, but its first argument \code{x}
- has type \code{Any}. In a gradually typed language, such differences
- are allowed so long as the types are \emph{consistent}, that is, they
- are equal except in places where there is an \code{Any} type. The type
- \code{Any} is consistent with every other type.
- Figure~\ref{fig:consistent} defines the \code{consistent?} predicate.
- \begin{figure}[tbp]
- \begin{lstlisting}
- (define/public (consistent? t1 t2)
- (match* (t1 t2)
- [('Integer 'Integer) #t]
- [('Boolean 'Boolean) #t]
- [('Void 'Void) #t]
- [('Any t2) #t]
- [(t1 'Any) #t]
- [(`(Vector ,ts1 ...) `(Vector ,ts2 ...))
- (for/and ([t1 ts1] [t2 ts2]) (consistent? t1 t2))]
- [(`(,ts1 ... -> ,rt1) `(,ts2 ... -> ,rt2))
- (and (for/and ([t1 ts1] [t2 ts2]) (consistent? t1 t2))
- (consistent? rt1 rt2))]
- [(other wise) #f]))
- \end{lstlisting}
- \caption{The consistency predicate on types.}
- \label{fig:consistent}
- \end{figure}
- Returning to the \code{map-vec} example of
- Figure~\ref{fig:gradual-map-vec}, the \code{add1} function has type
- \code{(Any -> Any)} but parameter \code{f} of \code{map-vec} has type
- \code{(Integer -> Integer)}. The type checker for \LangGrad{} allows this
- because the two types are consistent. In particular, \code{->} is
- equal to \code{->} and because \code{Any} is consistent with
- \code{Integer}.
- Next consider a program with an error, such as applying the
- \code{map-vec} to a function that sometimes returns a Boolean, as
- shown in Figure~\ref{fig:map-vec-maybe-add1}. The type checker for
- \LangGrad{} accepts this program because the type of \code{maybe-add1} is
- consistent with the type of parameter \code{f} of \code{map-vec}, that
- is, \code{(Any -> Any)} is consistent with \code{(Integer ->
- Integer)}. One might say that a gradual type checker is optimistic
- in that it accepts programs that might execute without a runtime type
- error.
- %
- Unfortunately, running this program with input \code{1} triggers an
- error when the \code{maybe-add1} function returns \code{\#t}. \LangGrad{}
- performs checking at runtime to ensure the integrity of the static
- types, such as the \code{(Integer -> Integer)} annotation on parameter
- \code{f} of \code{map-vec}. This runtime checking is carried out by a
- new \code{Cast} form that is inserted by the type checker. Thus, the
- output of the type checker is a program in the \LangCast{} language, which
- adds \code{Cast} to \LangLoop{}, as shown in
- Figure~\ref{fig:Rgrad-prime-syntax}.
- \begin{figure}[tp]
- \centering
- \fbox{
- \begin{minipage}{0.96\textwidth}
- \small
- \[
- \begin{array}{lcl}
- \Exp &::=& \ldots \mid \CAST{\Exp}{\Type}{\Type} \\
- \LangCast{} &::=& \gray{ \PROGRAMDEFSEXP{\code{'()}}{\LP\Def\ldots\RP}{\Exp} }
- \end{array}
- \]
- \end{minipage}
- }
- \caption{The abstract syntax of \LangCast{}, extending \LangLoop{} (Figure~\ref{fig:Rwhile-syntax}).}
- \label{fig:Rgrad-prime-syntax}
- \end{figure}
- \begin{figure}[tbp]
- \begin{lstlisting}
- (define (map-vec [f : (Integer -> Integer)]
- [v : (Vector Integer Integer)])
- : (Vector Integer Integer)
- (vector (f (vector-ref v 0)) (f (vector-ref v 1))))
- (define (add1 x) (+ x 1))
- (define (true) #t)
- (define (maybe-add1 x) (if (eq? 0 (read)) (add1 x) (true)))
- (vector-ref (map-vec maybe-add1 (vector 0 41)) 0)
- \end{lstlisting}
- \caption{A variant of the \code{map-vec} example with an error.}
- \label{fig:map-vec-maybe-add1}
- \end{figure}
- Figure~\ref{fig:map-vec-cast} shows the output of the type checker for
- \code{map-vec} and \code{maybe-add1}. The idea is that \code{Cast} is
- inserted every time the type checker sees two types that are
- consistent but not equal. In the \code{add1} function, \code{x} is
- cast to \code{Integer} and the result of the \code{+} is cast to
- \code{Any}. In the call to \code{map-vec}, the \code{add1} argument
- is cast from \code{(Any -> Any)} to \code{(Integer -> Integer)}.
- \begin{figure}[btp]
- \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
- (define (map-vec [f : (Integer -> Integer)] [v : (Vector Integer Integer)])
- : (Vector Integer Integer)
- (vector (f (vector-ref v 0)) (f (vector-ref v 1))))
- (define (add1 [x : Any]) : Any
- (cast (+ (cast x Any Integer) 1) Integer Any))
- (define (true) : Any (cast #t Boolean Any))
- (define (maybe-add1 [x : Any]) : Any
- (if (eq? 0 (read)) (add1 x) (true)))
- (vector-ref (map-vec (cast maybe-add1 (Any -> Any) (Integer -> Integer))
- (vector 0 41)) 0)
- \end{lstlisting}
- \caption{Output of type checking \code{map-vec}
- and \code{maybe-add1}.}
- \label{fig:map-vec-cast}
- \end{figure}
- The type checker for \LangGrad{} is defined in
- Figures~\ref{fig:type-check-Rgradual-1}, \ref{fig:type-check-Rgradual-2},
- and \ref{fig:type-check-Rgradual-3}.
- \begin{figure}[tbp]
- \begin{lstlisting}[basicstyle=\ttfamily\scriptsize]
- (define type-check-gradual-class
- (class type-check-Rwhile-class
- (super-new)
- (inherit operator-types type-predicates)
- (define/override (type-check-exp env)
- (lambda (e)
- (define recur (type-check-exp env))
- (match e
- [(Prim 'vector-length (list e1))
- (define-values (e1^ t) (recur e1))
- (match t
- [`(Vector ,ts ...)
- (values (Prim 'vector-length (list e1^)) 'Integer)]
- ['Any (values (Prim 'any-vector-length (list e1^)) 'Integer)])]
- [(Prim 'vector-ref (list e1 e2))
- (define-values (e1^ t1) (recur e1))
- (define-values (e2^ t2) (recur e2))
- (check-consistent? t2 'Integer e)
- (match t1
- [`(Vector ,ts ...)
- (match e2^
- [(Int i)
- (unless (and (0 . <= . i) (i . < . (length ts)))
- (error 'type-check "invalid index ~a in ~a" i e))
- (values (Prim 'vector-ref (list e1^ (Int i))) (list-ref ts i))]
- [else (define e1^^ (make-cast e1^ t1 'Any))
- (define e2^^ (make-cast e2^ t2 'Integer))
- (values (Prim 'any-vector-ref (list e1^^ e2^^)) 'Any)])]
- ['Any
- (define e2^^ (make-cast e2^ t2 'Integer))
- (values (Prim 'any-vector-ref (list e1^ e2^^)) 'Any)]
- [else (error 'type-check "expected vector not ~a\nin ~v" t1 e)])]
- [(Prim 'vector-set! (list e1 e2 e3) )
- (define-values (e1^ t1) (recur e1))
- (define-values (e2^ t2) (recur e2))
- (define-values (e3^ t3) (recur e3))
- (check-consistent? t2 'Integer e)
- (match t1
- [`(Vector ,ts ...)
- (match e2^
- [(Int i)
- (unless (and (0 . <= . i) (i . < . (length ts)))
- (error 'type-check "invalid index ~a in ~a" i e))
- (check-consistent? (list-ref ts i) t3 e)
- (define e3^^ (make-cast e3^ t3 (list-ref ts i)))
- (values (Prim 'vector-set! (list e1^ (Int i) e3^^)) 'Void)]
- [else
- (define e1^^ (make-cast e1^ t1 'Any))
- (define e2^^ (make-cast e2^ t2 'Integer))
- (define e3^^ (make-cast e3^ t3 'Any))
- (values (Prim 'any-vector-set! (list e1^^ e2^^ e3^^)) 'Void)])]
- ['Any
- (define e2^^ (make-cast e2^ t2 'Integer))
- (define e3^^ (make-cast e3^ t3 'Any))
- (values (Prim 'any-vector-set! (list e1^ e2^^ e3^^)) 'Void)]
- [else (error 'type-check "expected vector not ~a\nin ~v" t1 e)])]
- \end{lstlisting}
- \caption{Type checker for the \LangGrad{} language, part 1.}
- \label{fig:type-check-Rgradual-1}
- \end{figure}
- \begin{figure}[tbp]
- \begin{lstlisting}[basicstyle=\ttfamily\scriptsize]
- [(Prim 'eq? (list e1 e2))
- (define-values (e1^ t1) (recur e1))
- (define-values (e2^ t2) (recur e2))
- (check-consistent? t1 t2 e)
- (define T (meet t1 t2))
- (values (Prim 'eq? (list (make-cast e1^ t1 T) (make-cast e2^ t2 T)))
- 'Boolean)]
- [(Prim 'not (list e1))
- (define-values (e1^ t1) (recur e1))
- (match t1
- ['Any
- (recur (If (Prim 'eq? (list e1 (Inject (Bool #f) 'Boolean)))
- (Bool #t) (Bool #f)))]
- [else
- (define-values (t-ret new-es^)
- (type-check-op 'not (list t1) (list e1^) e))
- (values (Prim 'not new-es^) t-ret)])]
- [(Prim 'and (list e1 e2))
- (recur (If e1 e2 (Bool #f)))]
- [(Prim 'or (list e1 e2))
- (define tmp (gensym 'tmp))
- (recur (Let tmp e1 (If (Var tmp) (Var tmp) e2)))]
- [(Prim op es)
- #:when (not (set-member? explicit-prim-ops op))
- (define-values (new-es ts)
- (for/lists (exprs types) ([e es])
- (recur e)))
- (define-values (t-ret new-es^) (type-check-op op ts new-es e))
- (values (Prim op new-es^) t-ret)]
- [(If e1 e2 e3)
- (define-values (e1^ T1) (recur e1))
- (define-values (e2^ T2) (recur e2))
- (define-values (e3^ T3) (recur e3))
- (check-consistent? T2 T3 e)
- (match T1
- ['Boolean
- (define Tif (join T2 T3))
- (values (If e1^ (make-cast e2^ T2 Tif)
- (make-cast e3^ T3 Tif)) Tif)]
- ['Any
- (define Tif (meet T2 T3))
- (values (If (Prim 'eq? (list e1^ (Inject (Bool #f) 'Boolean)))
- (make-cast e3^ T3 Tif) (make-cast e2^ T2 Tif))
- Tif)]
- [else (error 'type-check "expected Boolean not ~a\nin ~v" T1 e)])]
- [(HasType e1 T)
- (define-values (e1^ T1) (recur e1))
- (check-consistent? T1 T)
- (values (make-cast e1^ T1 T) T)]
- [(SetBang x e1)
- (define-values (e1^ T1) (recur e1))
- (define varT (dict-ref env x))
- (check-consistent? T1 varT e)
- (values (SetBang x (make-cast e1^ T1 varT)) 'Void)]
- [(WhileLoop e1 e2)
- (define-values (e1^ T1) (recur e1))
- (check-consistent? T1 'Boolean e)
- (define-values (e2^ T2) ((type-check-exp env) e2))
- (values (WhileLoop (make-cast e1^ T1 'Boolean) e2^) 'Void)]
- \end{lstlisting}
- \caption{Type checker for the \LangGrad{} language, part 2.}
- \label{fig:type-check-Rgradual-2}
- \end{figure}
- \begin{figure}[tbp]
- \begin{lstlisting}[basicstyle=\ttfamily\scriptsize]
- [(Apply e1 e2s)
- (define-values (e1^ T1) (recur e1))
- (define-values (e2s^ T2s) (for/lists (e* ty*) ([e2 e2s]) (recur e2)))
- (match T1
- [`(,T1ps ... -> ,T1rt)
- (for ([T2 T2s] [Tp T1ps])
- (check-consistent? T2 Tp e))
- (define e2s^^ (for/list ([e2 e2s^] [src T2s] [tgt T1ps])
- (make-cast e2 src tgt)))
- (values (Apply e1^ e2s^^) T1rt)]
- [`Any
- (define e1^^ (make-cast e1^ 'Any
- `(,@(for/list ([e e2s]) 'Any) -> Any)))
- (define e2s^^ (for/list ([e2 e2s^] [src T2s])
- (make-cast e2 src 'Any)))
- (values (Apply e1^^ e2s^^) 'Any)]
- [else (error 'type-check "expected function not ~a\nin ~v" T1 e)])]
- [(Lambda params Tr e1)
- (define-values (xs Ts) (for/lists (l1 l2) ([p params])
- (match p
- [`[,x : ,T] (values x T)]
- [(? symbol? x) (values x 'Any)])))
- (define-values (e1^ T1)
- ((type-check-exp (append (map cons xs Ts) env)) e1))
- (check-consistent? Tr T1 e)
- (values (Lambda (for/list ([x xs] [T Ts]) `[,x : ,T]) Tr
- (make-cast e1^ T1 Tr)) `(,@Ts -> ,Tr))]
- [else ((super type-check-exp env) e)]
- )))
- \end{lstlisting}
- \caption{Type checker for the \LangGrad{} language, part 3.}
- \label{fig:type-check-Rgradual-3}
- \end{figure}
- \begin{figure}[tbp]
- \begin{lstlisting}[basicstyle=\ttfamily\scriptsize]
- (define/public (join t1 t2)
- (match* (t1 t2)
- [('Integer 'Integer) 'Integer]
- [('Boolean 'Boolean) 'Boolean]
- [('Void 'Void) 'Void]
- [('Any t2) t2]
- [(t1 'Any) t1]
- [(`(Vector ,ts1 ...) `(Vector ,ts2 ...))
- `(Vector ,@(for/list ([t1 ts1] [t2 ts2]) (join t1 t2)))]
- [(`(,ts1 ... -> ,rt1) `(,ts2 ... -> ,rt2))
- `(,@(for/list ([t1 ts1] [t2 ts2]) (join t1 t2))
- -> ,(join rt1 rt2))]))
- (define/public (meet t1 t2)
- (match* (t1 t2)
- [('Integer 'Integer) 'Integer]
- [('Boolean 'Boolean) 'Boolean]
- [('Void 'Void) 'Void]
- [('Any t2) 'Any]
- [(t1 'Any) 'Any]
- [(`(Vector ,ts1 ...) `(Vector ,ts2 ...))
- `(Vector ,@(for/list ([t1 ts1] [t2 ts2]) (meet t1 t2)))]
- [(`(,ts1 ... -> ,rt1) `(,ts2 ... -> ,rt2))
- `(,@(for/list ([t1 ts1] [t2 ts2]) (meet t1 t2))
- -> ,(meet rt1 rt2))]))
- (define/public (make-cast e src tgt)
- (cond [(equal? src tgt) e] [else (Cast e src tgt)]))
- (define/public (check-consistent? t1 t2 e)
- (unless (consistent? t1 t2)
- (error 'type-check "~a is inconsistent with ~a\nin ~v" t1 t2 e)))
- (define/override (type-check-op op arg-types args e)
- (match (dict-ref (operator-types) op)
- [`(,param-types . ,return-type)
- (for ([at arg-types] [pt param-types])
- (check-consistent? at pt e))
- (values return-type
- (for/list ([e args] [s arg-types] [t param-types])
- (make-cast e s t)))]
- [else (error 'type-check-op "unrecognized ~a" op)]))
- (define explicit-prim-ops
- (set-union
- (type-predicates)
- (set 'procedure-arity 'eq?
- 'vector 'vector-length 'vector-ref 'vector-set!
- 'any-vector-length 'any-vector-ref 'any-vector-set!)))
- (define/override (fun-def-type d)
- (match d
- [(Def f params rt info body)
- (define ps
- (for/list ([p params])
- (match p
- [`[,x : ,T] T]
- [(? symbol?) 'Any]
- [else (error 'fun-def-type "unmatched parameter ~a" p)])))
- `(,@ps -> ,rt)]
- [else (error 'fun-def-type "ill-formed function definition in ~a" d)]))
- \end{lstlisting}
- \caption{Auxiliary functions for type checking \LangGrad{}.}
- \label{fig:type-check-Rgradual-aux}
- \end{figure}
- \clearpage
- \section{Interpreting \LangCast{}}
- \label{sec:interp-casts}
- The runtime behavior of first-order casts is straightforward, that is,
- casts involving simple types such as \code{Integer} and
- \code{Boolean}. For example, a cast from \code{Integer} to \code{Any}
- can be accomplished with the \code{Inject} operator of \LangAny{}, which
- puts the integer into a tagged value
- (Figure~\ref{fig:interp-Rany}). Similarly, a cast from \code{Any} to
- \code{Integer} is accomplished with the \code{Project} operator, that
- is, by checking the value's tag and either retrieving the underlying
- integer or signaling an error if it the tag is not the one for
- integers (Figure~\ref{fig:apply-project}).
- %
- Things get more interesting for higher-order casts, that is, casts
- involving function or vector types.
- Consider the cast of the function \code{maybe-add1} from \code{(Any ->
- Any)} to \code{(Integer -> Integer)}. When a function flows through
- this cast at runtime, we can't know in general whether the function
- will always return an integer.\footnote{Predicting the return value of
- a function is equivalent to the halting problem, which is
- undecidable.} The \LangCast{} interpreter therefore delays the checking
- of the cast until the function is applied. This is accomplished by
- wrapping \code{maybe-add1} in a new function that casts its parameter
- from \code{Integer} to \code{Any}, applies \code{maybe-add1}, and then
- casts the return value from \code{Any} to \code{Integer}.
- Turning our attention to casts involving vector types, we consider the
- example in Figure~\ref{fig:map-vec-bang} that defines a
- partially-typed version of \code{map-vec} whose parameter \code{v} has
- type \code{(Vector Any Any)} and that updates \code{v} in place
- instead of returning a new vector. So we name this function
- \code{map-vec!}. We apply \code{map-vec!} to a vector of integers, so
- the type checker inserts a cast from \code{(Vector Integer Integer)}
- to \code{(Vector Any Any)}. A naive way for the \LangCast{} interpreter to
- cast between vector types would be a build a new vector whose elements
- are the result of casting each of the original elements to the
- appropriate target type. However, this approach is only valid for
- immutable vectors; and our vectors are mutable. In the example of
- Figure~\ref{fig:map-vec-bang}, if the cast created a new vector, then
- the updates inside of \code{map-vec!} would happen to the new vector
- and not the original one.
- \begin{figure}[tbp]
- % gradual_test_11.rkt
- \begin{lstlisting}
- (define (map-vec! [f : (Any -> Any)]
- [v : (Vector Any Any)]) : Void
- (begin
- (vector-set! v 0 (f (vector-ref v 0)))
- (vector-set! v 1 (f (vector-ref v 1)))))
- (define (add1 x) (+ x 1))
- (let ([v (vector 0 41)])
- (begin (map-vec! add1 v) (vector-ref v 1)))
- \end{lstlisting}
- \caption{An example involving casts on vectors.}
- \label{fig:map-vec-bang}
- \end{figure}
- Instead the interpreter needs to create a new kind of value, a
- \emph{vector proxy}, that intercepts every vector operation. On a
- read, the proxy reads from the underlying vector and then applies a
- cast to the resulting value. On a write, the proxy casts the argument
- value and then performs the write to the underlying vector. For the
- first \code{(vector-ref v 0)} in \code{map-vec!}, the proxy casts
- \code{0} from \code{Integer} to \code{Any}. For the first
- \code{vector-set!}, the proxy casts a tagged \code{1} from \code{Any}
- to \code{Integer}.
- The final category of cast that we need to consider are casts between
- the \code{Any} type and either a function or a vector
- type. Figure~\ref{fig:map-vec-any} shows a variant of \code{map-vec!}
- in which parameter \code{v} does not have a type annotation, so it is
- given type \code{Any}. In the call to \code{map-vec!}, the vector has
- type \code{(Vector Integer Integer)} so the type checker inserts a
- cast from \code{(Vector Integer Integer)} to \code{Any}. A first
- thought is to use \code{Inject}, but that doesn't work because
- \code{(Vector Integer Integer)} is not a flat type. Instead, we must
- first cast to \code{(Vector Any Any)} (which is flat) and then inject
- to \code{Any}.
- \begin{figure}[tbp]
- \begin{lstlisting}
- (define (map-vec! [f : (Any -> Any)] v) : Void
- (begin
- (vector-set! v 0 (f (vector-ref v 0)))
- (vector-set! v 1 (f (vector-ref v 1)))))
- (define (add1 x) (+ x 1))
- (let ([v (vector 0 41)])
- (begin (map-vec! add1 v) (vector-ref v 1)))
- \end{lstlisting}
- \caption{Casting a vector to \code{Any}.}
- \label{fig:map-vec-any}
- \end{figure}
- The \LangCast{} interpreter uses an auxiliary function named
- \code{apply-cast} to cast a value from a source type to a target type,
- shown in Figure~\ref{fig:apply-cast}. You'll find that it handles all
- of the kinds of casts that we've discussed in this section.
- \begin{figure}[tbp]
- \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
- (define/public (apply-cast v s t)
- (match* (s t)
- [(t1 t2) #:when (equal? t1 t2) v]
- [('Any t2)
- (match t2
- [`(,ts ... -> ,rt)
- (define any->any `(,@(for/list ([t ts]) 'Any) -> Any))
- (define v^ (apply-project v any->any))
- (apply-cast v^ any->any `(,@ts -> ,rt))]
- [`(Vector ,ts ...)
- (define vec-any `(Vector ,@(for/list ([t ts]) 'Any)))
- (define v^ (apply-project v vec-any))
- (apply-cast v^ vec-any `(Vector ,@ts))]
- [else (apply-project v t2)])]
- [(t1 'Any)
- (match t1
- [`(,ts ... -> ,rt)
- (define any->any `(,@(for/list ([t ts]) 'Any) -> Any))
- (define v^ (apply-cast v `(,@ts -> ,rt) any->any))
- (apply-inject v^ (any-tag any->any))]
- [`(Vector ,ts ...)
- (define vec-any `(Vector ,@(for/list ([t ts]) 'Any)))
- (define v^ (apply-cast v `(Vector ,@ts) vec-any))
- (apply-inject v^ (any-tag vec-any))]
- [else (apply-inject v (any-tag t1))])]
- [(`(Vector ,ts1 ...) `(Vector ,ts2 ...))
- (define x (gensym 'x))
- (define cast-reads (for/list ([t1 ts1] [t2 ts2])
- `(function (,x) ,(Cast (Var x) t1 t2) ())))
- (define cast-writes
- (for/list ([t1 ts1] [t2 ts2])
- `(function (,x) ,(Cast (Var x) t2 t1) ())))
- `(vector-proxy ,(vector v (apply vector cast-reads)
- (apply vector cast-writes)))]
- [(`(,ts1 ... -> ,rt1) `(,ts2 ... -> ,rt2))
- (define xs (for/list ([t2 ts2]) (gensym 'x)))
- `(function ,xs ,(Cast
- (Apply (Value v)
- (for/list ([x xs][t1 ts1][t2 ts2])
- (Cast (Var x) t2 t1)))
- rt1 rt2) ())]
- ))
- \end{lstlisting}
- \caption{The \code{apply-cast} auxiliary method.}
- \label{fig:apply-cast}
- \end{figure}
- The interpreter for \LangCast{} is defined in
- Figure~\ref{fig:interp-Rcast}, with the case for \code{Cast}
- dispatching to \code{apply-cast}. To handle the addition of vector
- proxies, we update the vector primitives in \code{interp-op} using the
- functions in Figure~\ref{fig:guarded-vector}.
- \begin{figure}[tbp]
- \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
- (define interp-Rcast-class
- (class interp-Rwhile-class
- (super-new)
- (inherit apply-fun apply-inject apply-project)
- (define/override (interp-op op)
- (match op
- ['vector-length guarded-vector-length]
- ['vector-ref guarded-vector-ref]
- ['vector-set! guarded-vector-set!]
- ['any-vector-ref (lambda (v i)
- (match v [`(tagged ,v^ ,tg)
- (guarded-vector-ref v^ i)]))]
- ['any-vector-set! (lambda (v i a)
- (match v [`(tagged ,v^ ,tg)
- (guarded-vector-set! v^ i a)]))]
- ['any-vector-length (lambda (v)
- (match v [`(tagged ,v^ ,tg)
- (guarded-vector-length v^)]))]
- [else (super interp-op op)]
- ))
- (define/override ((interp-exp env) e)
- (define (recur e) ((interp-exp env) e))
- (match e
- [(Value v) v]
- [(Cast e src tgt) (apply-cast (recur e) src tgt)]
- [else ((super interp-exp env) e)]))
- ))
- (define (interp-Rcast p)
- (send (new interp-Rcast-class) interp-program p))
- \end{lstlisting}
- \caption{The interpreter for \LangCast{}.}
- \label{fig:interp-Rcast}
- \end{figure}
- \begin{figure}[tbp]
- \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
- (define (guarded-vector-ref vec i)
- (match vec
- [`(vector-proxy ,proxy)
- (define val (guarded-vector-ref (vector-ref proxy 0) i))
- (define rd (vector-ref (vector-ref proxy 1) i))
- (apply-fun rd (list val) 'guarded-vector-ref)]
- [else (vector-ref vec i)]))
-
- (define (guarded-vector-set! vec i arg)
- (match vec
- [`(vector-proxy ,proxy)
- (define wr (vector-ref (vector-ref proxy 2) i))
- (define arg^ (apply-fun wr (list arg) 'guarded-vector-set!))
- (guarded-vector-set! (vector-ref proxy 0) i arg^)]
- [else (vector-set! vec i arg)]))
-
- (define (guarded-vector-length vec)
- (match vec
- [`(vector-proxy ,proxy)
- (guarded-vector-length (vector-ref proxy 0))]
- [else (vector-length vec)]))
- \end{lstlisting}
- \caption{The guarded-vector auxiliary functions.}
- \label{fig:guarded-vector}
- \end{figure}
- \section{Lower Casts}
- \label{sec:lower-casts}
- The next step in the journey towards x86 is the \code{lower-casts}
- pass that translates the casts in \LangCast{} to the lower-level
- \code{Inject} and \code{Project} operators and a new operator for
- creating vector proxies, extending the \LangLoop{} language to create
- \LangProxy{}. We recommend creating an auxiliary function named
- \code{lower-cast} that takes an expression (in \LangCast{}), a source type,
- and a target type, and translates it to expression in \LangProxy{} that has
- the same behavior as casting the expression from the source to the
- target type in the interpreter.
- The \code{lower-cast} function can follow a code structure similar to
- the \code{apply-cast} function (Figure~\ref{fig:apply-cast}) used in
- the interpreter for \LangCast{} because it must handle the same cases as
- \code{apply-cast} and it needs to mimic the behavior of
- \code{apply-cast}. The most interesting cases are those concerning the
- casts between two vector types and between two function types.
- As mentioned in Section~\ref{sec:interp-casts}, a cast from one vector
- type to another vector type is accomplished by creating a proxy that
- intercepts the operations on the underlying vector. Here we make the
- creation of the proxy explicit with the \code{vector-proxy} primitive
- operation. It takes three arguments, the first is an expression for
- the vector, the second is a vector of functions for casting an element
- that is being read from the vector, and the third is a vector of
- functions for casting an element that is being written to the vector.
- You can create the functions using \code{Lambda}. Also, as we shall
- see in the next section, we need to differentiate these vectors from
- the user-created ones, so we recommend using a new primitive operator
- named \code{raw-vector} instead of \code{vector} to create these
- vectors of functions. Figure~\ref{fig:map-vec-bang-lower-cast} shows
- the output of \code{lower-casts} on the example in
- Figure~\ref{fig:map-vec-bang} that involved casting a vector of
- integers to a vector of \code{Any}.
- \begin{figure}[tbp]
- \begin{lstlisting}
- (define (map-vec! [f : (Any -> Any)] [v : (Vector Any Any)]) : Void
- (begin
- (vector-set! v 0 (f (vector-ref v 0)))
- (vector-set! v 1 (f (vector-ref v 1)))))
-
- (define (add1 [x : Any]) : Any
- (inject (+ (project x Integer) 1) Integer))
- (let ([v (vector 0 41)])
- (begin
- (map-vec! add1 (vector-proxy v
- (raw-vector (lambda: ([x9 : Integer]) : Any
- (inject x9 Integer))
- (lambda: ([x9 : Integer]) : Any
- (inject x9 Integer)))
- (raw-vector (lambda: ([x9 : Any]) : Integer
- (project x9 Integer))
- (lambda: ([x9 : Any]) : Integer
- (project x9 Integer)))))
- (vector-ref v 1)))
- \end{lstlisting}
- \caption{Output of \code{lower-casts} on the example in
- Figure~\ref{fig:map-vec-bang}.}
- \label{fig:map-vec-bang-lower-cast}
- \end{figure}
- A cast from one function type to another function type is accomplished
- by generating a \code{Lambda} whose parameter and return types match
- the target function type. The body of the \code{Lambda} should cast
- the parameters from the target type to the source type (yes,
- backwards! functions are contravariant\index{contravariant} in the
- parameters), then call the underlying function, and finally cast the
- result from the source return type to the target return type.
- Figure~\ref{fig:map-vec-lower-cast} shows the output of the
- \code{lower-casts} pass on the \code{map-vec} example in
- Figure~\ref{fig:gradual-map-vec}. Note that the \code{add1} argument
- in the call to \code{map-vec} is wrapped in a \code{lambda}.
- \begin{figure}[tbp]
- \begin{lstlisting}
- (define (map-vec [f : (Integer -> Integer)]
- [v : (Vector Integer Integer)])
- : (Vector Integer Integer)
- (vector (f (vector-ref v 0)) (f (vector-ref v 1))))
- (define (add1 [x : Any]) : Any
- (inject (+ (project x Integer) 1) Integer))
- (vector-ref (map-vec (lambda: ([x9 : Integer]) : Integer
- (project (add1 (inject x9 Integer)) Integer))
- (vector 0 41)) 1)
- \end{lstlisting}
- \caption{Output of \code{lower-casts} on the example in
- Figure~\ref{fig:gradual-map-vec}.}
- \label{fig:map-vec-lower-cast}
- \end{figure}
- \section{Differentiate Proxies}
- \label{sec:differentiate-proxies}
- So far the job of differentiating vectors and vector proxies has been
- the job of the interpreter. For example, the interpreter for \LangCast{}
- implements \code{vector-ref} using the \code{guarded-vector-ref}
- function in Figure~\ref{fig:guarded-vector}. In the
- \code{differentiate-proxies} pass we shift this responsibility to the
- generated code.
- We begin by designing the output language $R^p_8$. In
- \LangGrad{} we used the type \code{Vector} for both real vectors and vector
- proxies. In $R^p_8$ we return the \code{Vector} type to
- its original meaning, as the type of real vectors, and we introduce a
- new type, \code{PVector}, whose values can be either real vectors or
- vector proxies. This new type comes with a suite of new primitive
- operations for creating and using values of type \code{PVector}. We
- don't need to introduce a new type to represent vector proxies. A
- proxy is represented by a vector containing three things: 1) the
- underlying vector, 2) a vector of functions for casting elements that
- are read from the vector, and 3) a vector of functions for casting
- values to be written to the vector. So we define the following
- abbreviation for the type of a vector proxy:
- \[
- \itm{Proxy} (T\ldots \Rightarrow T'\ldots)
- = (\ttm{Vector}~(\ttm{PVector}~ T\ldots) ~R~ W)
- \to (\key{PVector}~ T' \ldots)
- \]
- where $R = (\ttm{Vector}~(T\to T') \ldots)$ and
- $W = (\ttm{Vector}~(T'\to T) \ldots)$.
- %
- Next we describe each of the new primitive operations.
- \begin{description}
- \item[\code{inject-vector} : (\key{Vector} $T \ldots$) $\to$
- (\key{PVector} $T \ldots$)]\ \\
- %
- This operation brands a vector as a value of the \code{PVector} type.
- \item[\code{inject-proxy} : $\itm{Proxy}(T\ldots \Rightarrow T'\ldots)$
- $\to$ (\key{PVector} $T' \ldots$)]\ \\
- %
- This operation brands a vector proxy as value of the \code{PVector} type.
- \item[\code{proxy?} : (\key{PVector} $T \ldots$) $\to$
- \code{Boolean}] \ \\
- %
- returns true if the value is a vector proxy and false if it is a
- real vector.
- \item[\code{project-vector} : (\key{PVector} $T \ldots$) $\to$
- (\key{Vector} $T \ldots$)]\ \\
- %
- Assuming that the input is a vector (and not a proxy), this
- operation returns the vector.
-
- \item[\code{proxy-vector-length} : (\key{PVector} $T \ldots$)
- $\to$ \code{Boolean}]\ \\
- %
- Given a vector proxy, this operation returns the length of the
- underlying vector.
-
- \item[\code{proxy-vector-ref} : (\key{PVector} $T \ldots$)
- $\to$ ($i$ : \code{Integer}) $\to$ $T_i$]\ \\
- %
- Given a vector proxy, this operation returns the $i$th element of
- the underlying vector.
-
- \item[\code{proxy-vector-set!} : (\key{PVector} $T \ldots$) $\to$ ($i$
- : \code{Integer}) $\to$ $T_i$ $\to$ \key{Void}]\ \\ Given a vector
- proxy, this operation writes a value to the $i$th element of the
- underlying vector.
- \end{description}
- Now to discuss the translation that differentiates vectors from
- proxies. First, every type annotation in the program must be
- translated (recursively) to replace \code{Vector} with \code{PVector}.
- Next, we must insert uses of \code{PVector} operations in the
- appropriate places. For example, we wrap every vector creation with an
- \code{inject-vector}.
- \begin{lstlisting}
- (vector |$e_1 \ldots e_n$|)
- |$\Rightarrow$|
- (inject-vector (vector |$e'_1 \ldots e'_n$|))
- \end{lstlisting}
- The \code{raw-vector} operator that we introduced in the previous
- section does not get injected.
- \begin{lstlisting}
- (raw-vector |$e_1 \ldots e_n$|)
- |$\Rightarrow$|
- (vector |$e'_1 \ldots e'_n$|)
- \end{lstlisting}
- The \code{vector-proxy} primitive translates as follows.
- \begin{lstlisting}
- (vector-proxy |$e_1~e_2~e_3$|)
- |$\Rightarrow$|
- (inject-proxy (vector |$e'_1~e'_2~e'_3$|))
- \end{lstlisting}
- We translate the vector operations into conditional expressions that
- check whether the value is a proxy and then dispatch to either the
- appropriate proxy vector operation or the regular vector operation.
- For example, the following is the translation for \code{vector-ref}.
- \begin{lstlisting}
- (vector-ref |$e_1$| |$i$|)
- |$\Rightarrow$|
- (let ([|$v~e_1$|])
- (if (proxy? |$v$|)
- (proxy-vector-ref |$v$| |$i$|)
- (vector-ref (project-vector |$v$|) |$i$|)
- \end{lstlisting}
- Note in the case of a real vector, we must apply \code{project-vector}
- before the \code{vector-ref}.
- \section{Reveal Casts}
- \label{sec:reveal-casts-gradual}
- Recall that the \code{reveal-casts} pass
- (Section~\ref{sec:reveal-casts-Rany}) is responsible for lowering
- \code{Inject} and \code{Project} into lower-level operations. In
- particular, \code{Project} turns into a conditional expression that
- inspects the tag and retrieves the underlying value. Here we need to
- augment the translation of \code{Project} to handle the situation when
- the target type is \code{PVector}. Instead of using
- \code{vector-length} we need to use \code{proxy-vector-length}.
- \begin{lstlisting}
- (project |$e$| (PVector Any|$_1$| |$\ldots$| Any|$_n$|))
- |$\Rightarrow$|
- (let |$\itm{tmp}$| |$e'$|
- (if (eq? (tag-of-any |$\itm{tmp}$| 2))
- (let |$\itm{vec}$| (value-of |$\itm{tmp}$| (PVector Any |$\ldots$| Any))
- (if (eq? (proxy-vector-length |$\itm{vec}$|) |$n$|) |$\itm{vec}$| (exit)))
- (exit)))
- \end{lstlisting}
- \section{Closure Conversion}
- \label{sec:closure-conversion-gradual}
- The closure conversion pass only requires one minor adjustment. The
- auxiliary function that translates type annotations needs to be
- updated to handle the \code{PVector} type.
- \section{Explicate Control}
- \label{sec:explicate-control-gradual}
- Update the \code{explicate-control} pass to handle the new primitive
- operations on the \code{PVector} type.
- \section{Select Instructions}
- \label{sec:select-instructions-gradual}
- Recall that the \code{select-instructions} pass is responsible for
- lowering the primitive operations into x86 instructions. So we need
- to translate the new \code{PVector} operations to x86. To do so, the
- first question we need to answer is how will we differentiate the two
- kinds of values (vectors and proxies) that can inhabit \code{PVector}.
- We need just one bit to accomplish this, and use the bit in position
- $57$ of the 64-bit tag at the front of every vector (see
- Figure~\ref{fig:tuple-rep}). So far, this bit has been set to $0$, so
- for \code{inject-vector} we leave it that way.
- \begin{lstlisting}
- (Assign |$\itm{lhs}$| (Prim 'inject-vector (list |$e_1$|)))
- |$\Rightarrow$|
- movq |$e'_1$|, |$\itm{lhs'}$|
- \end{lstlisting}
- On the other hand, \code{inject-proxy} sets bit $57$ to $1$.
- \begin{lstlisting}
- (Assign |$\itm{lhs}$| (Prim 'inject-proxy (list |$e_1$|)))
- |$\Rightarrow$|
- movq |$e'_1$|, %r11
- movq |$(1 << 57)$|, %rax
- orq 0(%r11), %rax
- movq %rax, 0(%r11)
- movq %r11, |$\itm{lhs'}$|
- \end{lstlisting}
- The \code{proxy?} operation consumes the information so carefully
- stashed away by \code{inject-vector} and \code{inject-proxy}. It
- isolates the $57$th bit to tell whether the value is a real vector or
- a proxy.
- \begin{lstlisting}
- (Assign |$\itm{lhs}$| (Prim 'proxy? (list e)))
- |$\Rightarrow$|
- movq |$e_1'$|, %r11
- movq 0(%r11), %rax
- sarq $57, %rax
- andq $1, %rax
- movq %rax, |$\itm{lhs'}$|
- \end{lstlisting}
- The \code{project-vector} operation is straightforward to translate,
- so we leave it up to the reader.
- Regarding the \code{proxy-vector} operations, the runtime provides
- procedures that implement them (they are recursive functions!) so
- here we simply need to translate these vector operations into the
- appropriate function call. For example, here is the translation for
- \code{proxy-vector-ref}.
- \begin{lstlisting}
- (Assign |$\itm{lhs}$| (Prim 'proxy-vector-ref (list |$e_1$| |$e_2$|)))
- |$\Rightarrow$|
- movq |$e_1'$|, %rdi
- movq |$e_2'$|, %rsi
- callq proxy_vector_ref
- movq %rax, |$\itm{lhs'}$|
- \end{lstlisting}
- We have another batch of vector operations to deal with, those for the
- \code{Any} type. Recall that the type checker for \LangGrad{} generates an
- \code{any-vector-ref} when there is a \code{vector-ref} on something
- of type \code{Any}, and similarly for \code{any-vector-set!} and
- \code{any-vector-length} (Figure~\ref{fig:type-check-Rgradual-1}). In
- Section~\ref{sec:select-Rany} we selected instructions for these
- operations based on the idea that the underlying value was a real
- vector. But in the current setting, the underlying value is of type
- \code{PVector}. So \code{any-vector-ref} can be translates to
- pseudo-x86 as follows. We begin by projecting the underlying value out
- of the tagged value and then call the \code{proxy\_vector\_ref}
- procedure in the runtime.
- \begin{lstlisting}
- (Assign |$\itm{lhs}$| (Prim 'any-vector-ref (list |$e_1$| |$e_2$|)))
- movq |$\neg 111$|, %rdi
- andq |$e_1'$|, %rdi
- movq |$e_2'$|, %rsi
- callq proxy_vector_ref
- movq %rax, |$\itm{lhs'}$|
- \end{lstlisting}
- The \code{any-vector-set!} and \code{any-vector-length} operators can
- be translated in a similar way.
- \begin{exercise}\normalfont
- Implement a compiler for the gradually-typed \LangGrad{} language by
- extending and adapting your compiler for \LangLoop{}. Create 10 new
- partially-typed test programs. In addition to testing with these
- new programs, also test your compiler on all the tests for \LangLoop{}
- and tests for \LangDyn{}. Sometimes you may get a type checking error
- on the \LangDyn{} programs but you can adapt them by inserting
- a cast to the \code{Any} type around each subexpression
- causing a type error. While \LangDyn{} doesn't have explicit casts,
- you can induce one by wrapping the subexpression \code{e}
- with a call to an un-annotated identity function, like this:
- \code{((lambda (x) x) e)}.
- \end{exercise}
- \begin{figure}[p]
- \begin{tikzpicture}[baseline=(current bounding box.center)]
- \node (Rgradual) at (6,4) {\large \LangGrad{}};
- \node (Rgradualp) at (3,4) {\large \LangCast{}};
- \node (Rwhilepp) at (0,4) {\large \LangProxy{}};
- \node (Rwhileproxy) at (0,2) {\large \LangPVec{}};
- \node (Rwhileproxy-2) at (3,2) {\large \LangPVec{}};
- \node (Rwhileproxy-3) at (6,2) {\large \LangPVec{}};
- \node (Rwhileproxy-4) at (9,2) {\large \LangPVecFunRef{}};
- \node (Rwhileproxy-5) at (12,2) {\large \LangPVecFunRef{}};
- \node (F1-1) at (12,0) {\large \LangPVecFunRef{}};
- \node (F1-2) at (9,0) {\large \LangPVecFunRef{}};
- \node (F1-3) at (6,0) {\large \LangPVecFunRef{}};
- \node (F1-4) at (3,0) {\large \LangPVecAlloc{}};
- \node (F1-5) at (0,0) {\large \LangPVecAlloc{}};
- \node (C3-2) at (3,-2) {\large \LangCLoopPVec{}};
- \node (x86-2) at (3,-4) {\large \LangXIndCallVar{}};
- \node (x86-2-1) at (3,-6) {\large \LangXIndCallVar{}};
- \node (x86-2-2) at (6,-6) {\large \LangXIndCallVar{}};
- \node (x86-3) at (6,-4) {\large \LangXIndCallVar{}};
- \node (x86-4) at (9,-4) {\large \LangXIndCall{}};
- \node (x86-5) at (9,-6) {\large \LangXIndCall{}};
- \path[->,bend right=15] (Rgradual) edge [above] node
- {\ttfamily\footnotesize type-check} (Rgradualp);
- \path[->,bend right=15] (Rgradualp) edge [above] node
- {\ttfamily\footnotesize lower-casts} (Rwhilepp);
- \path[->,bend right=15] (Rwhilepp) edge [right] node
- {\ttfamily\footnotesize differentiate-proxies} (Rwhileproxy);
- \path[->,bend left=15] (Rwhileproxy) edge [above] node
- {\ttfamily\footnotesize shrink} (Rwhileproxy-2);
- \path[->,bend left=15] (Rwhileproxy-2) edge [above] node
- {\ttfamily\footnotesize uniquify} (Rwhileproxy-3);
- \path[->,bend left=15] (Rwhileproxy-3) edge [above] node
- {\ttfamily\footnotesize reveal-functions} (Rwhileproxy-4);
- \path[->,bend left=15] (Rwhileproxy-4) edge [above] node
- {\ttfamily\footnotesize reveal-casts} (Rwhileproxy-5);
- \path[->,bend left=15] (Rwhileproxy-5) edge [left] node
- {\ttfamily\footnotesize convert-assignments} (F1-1);
- \path[->,bend left=15] (F1-1) edge [below] node
- {\ttfamily\footnotesize convert-to-clos.} (F1-2);
- \path[->,bend right=15] (F1-2) edge [above] node
- {\ttfamily\footnotesize limit-fun.} (F1-3);
- \path[->,bend right=15] (F1-3) edge [above] node
- {\ttfamily\footnotesize expose-alloc.} (F1-4);
- \path[->,bend right=15] (F1-4) edge [above] node
- {\ttfamily\footnotesize remove-complex.} (F1-5);
- \path[->,bend right=15] (F1-5) edge [right] node
- {\ttfamily\footnotesize explicate-control} (C3-2);
- \path[->,bend left=15] (C3-2) edge [left] node
- {\ttfamily\footnotesize select-instr.} (x86-2);
- \path[->,bend right=15] (x86-2) edge [left] node
- {\ttfamily\footnotesize uncover-live} (x86-2-1);
- \path[->,bend right=15] (x86-2-1) edge [below] node
- {\ttfamily\footnotesize build-inter.} (x86-2-2);
- \path[->,bend right=15] (x86-2-2) edge [left] node
- {\ttfamily\footnotesize allocate-reg.} (x86-3);
- \path[->,bend left=15] (x86-3) edge [above] node
- {\ttfamily\footnotesize patch-instr.} (x86-4);
- \path[->,bend left=15] (x86-4) edge [right] node {\ttfamily\footnotesize print-x86} (x86-5);
- \end{tikzpicture}
- \caption{Diagram of the passes for \LangGrad{} (gradual typing).}
- \label{fig:Rgradual-passes}
- \end{figure}
- Figure~\ref{fig:Rgradual-passes} provides an overview of all the passes needed
- for the compilation of \LangGrad{}.
- \section{Further Reading}
- This chapter just scratches the surface of gradual typing. The basic
- approach described here is missing two key ingredients that one would
- want in a implementation of gradual typing: blame
- tracking~\citep{Tobin-Hochstadt:2006fk,Wadler:2009qv} and
- space-efficient casts~\citep{Herman:2006uq,Herman:2010aa}. The
- problem addressed by blame tracking is that when a cast on a
- higher-order value fails, it often does so at a point in the program
- that is far removed from the original cast. Blame tracking is a
- technique for propagating extra information through casts and proxies
- so that when a cast fails, the error message can point back to the
- original location of the cast in the source program.
- The problem addressed by space-efficient casts also relates to
- higher-order casts. It turns out that in partially typed programs, a
- function or vector can flow through very-many casts at runtime. With
- the approach described in this chapter, each cast adds another
- \code{lambda} wrapper or a vector proxy. Not only does this take up
- considerable space, but it also makes the function calls and vector
- operations slow. For example, a partially-typed version of quicksort
- could, in the worst case, build a chain of proxies of length $O(n)$
- around the vector, changing the overall time complexity of the
- algorithm from $O(n^2)$ to $O(n^3)$! \citet{Herman:2006uq} suggested a
- solution to this problem by representing casts using the coercion
- calculus of \citet{Henglein:1994nz}, which prevents the creation of
- long chains of proxies by compressing them into a concise normal
- form. \citet{Siek:2015ab} give and algorithm for compressing coercions
- and \citet{Kuhlenschmidt:2019aa} show how to implement these ideas in
- the Grift compiler.
- \begin{center}
- \url{https://github.com/Gradual-Typing/Grift}
- \end{center}
- There are also interesting interactions between gradual typing and
- other language features, such as parametetric polymorphism,
- information-flow types, and type inference, to name a few. We
- recommend the reader to the online gradual typing bibliography:
- \begin{center}
- \url{http://samth.github.io/gradual-typing-bib/}
- \end{center}
- % TODO: challenge problem:
- % type analysis and type specialization?
- % coercions?
- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
- \chapter{Parametric Polymorphism}
- \label{ch:Rpoly}
- \index{parametric polymorphism}
- \index{generics}
- This chapter studies the compilation of parametric
- polymorphism\index{parametric polymorphism}
- (aka. generics\index{generics}) in the subset \LangPoly{} of Typed
- Racket. Parametric polymorphism enables improved code reuse by
- parameterizing functions and data structures with respect to the types
- that they operate on. For example, Figure~\ref{fig:map-vec-poly}
- revisits the \code{map-vec} example but this time gives it a more
- fitting type. This \code{map-vec} function is parameterized with
- respect to the element type of the vector. The type of \code{map-vec}
- is the following polymorphic type as specified by the \code{All} and
- the type parameter \code{a}.
- \begin{lstlisting}
- (All (a) ((a -> a) (Vector a a) -> (Vector a a)))
- \end{lstlisting}
- The idea is that \code{map-vec} can be used at \emph{all} choices of a
- type for parameter \code{a}. In Figure~\ref{fig:map-vec-poly} we apply
- \code{map-vec} to a vector of integers, a choice of \code{Integer} for
- \code{a}, but we could have just as well applied \code{map-vec} to a
- vector of Booleans (and a function on Booleans).
- \begin{figure}[tbp]
- % poly_test_2.rkt
- \begin{lstlisting}
- (: map-vec (All (a) ((a -> a) (Vector a a) -> (Vector a a))))
- (define (map-vec f v)
- (vector (f (vector-ref v 0)) (f (vector-ref v 1))))
- (define (add1 [x : Integer]) : Integer (+ x 1))
- (vector-ref (map-vec add1 (vector 0 41)) 1)
- \end{lstlisting}
- \caption{The \code{map-vec} example using parametric polymorphism.}
- \label{fig:map-vec-poly}
- \end{figure}
- Figure~\ref{fig:Rpoly-concrete-syntax} defines the concrete syntax of
- \LangPoly{} and Figure~\ref{fig:Rpoly-syntax} defines the abstract
- syntax. We add a second form for function definitions in which a type
- declaration comes before the \code{define}. In the abstract syntax,
- the return type in the \code{Def} is \code{Any}, but that should be
- ignored in favor of the return type in the type declaration. (The
- \code{Any} comes from using the same parser as in
- Chapter~\ref{ch:Rdyn}.) The presence of a type declaration
- enables the use of an \code{All} type for a function, thereby making
- it polymorphic. The grammar for types is extended to include
- polymorphic types and type variables.
- \begin{figure}[tp]
- \centering
- \fbox{
- \begin{minipage}{0.96\textwidth}
- \small
- \[
- \begin{array}{lcl}
- \Type &::=& \ldots \mid \LP\key{All}~\LP\Var\ldots\RP~ \Type\RP \mid \Var \\
- \Def &::=& \gray{ \CDEF{\Var}{\LS\Var \key{:} \Type\RS \ldots}{\Type}{\Exp} } \\
- &\mid& \LP\key{:}~\Var~\Type\RP \\
- && \LP\key{define}~ \LP\Var ~ \Var\ldots\RP ~ \Exp\RP \\
- \LangPoly{} &::=& \gray{ \Def \ldots ~ \Exp }
- \end{array}
- \]
- \end{minipage}
- }
- \caption{The concrete syntax of \LangPoly{}, extending \LangLoop{}
- (Figure~\ref{fig:Rwhile-concrete-syntax}).}
- \label{fig:Rpoly-concrete-syntax}
- \end{figure}
- \begin{figure}[tp]
- \centering
- \fbox{
- \begin{minipage}{0.96\textwidth}
- \small
- \[
- \begin{array}{lcl}
- \Type &::=& \ldots \mid \LP\key{All}~\LP\Var\ldots\RP~ \Type\RP \mid \Var \\
- \Def &::=& \gray{ \DEF{\Var}{\LP\LS\Var \key{:} \Type\RS \ldots\RP}{\Type}{\code{'()}}{\Exp} } \\
- &\mid& \DECL{\Var}{\Type} \\
- && \DEF{\Var}{\LP\Var \ldots\RP}{\key{'Any}}{\code{'()}}{\Exp} \\
- \LangPoly{} &::=& \gray{ \PROGRAMDEFSEXP{\code{'()}}{\LP\Def\ldots\RP}{\Exp} }
- \end{array}
- \]
- \end{minipage}
- }
- \caption{The abstract syntax of \LangPoly{}, extending \LangLoop{}
- (Figure~\ref{fig:Rwhile-syntax}).}
- \label{fig:Rpoly-syntax}
- \end{figure}
- By including polymorphic types in the $\Type$ non-terminal we choose
- to make them first-class which has interesting repercussions on the
- compiler. Many languages with polymorphism, such as
- C++~\citep{stroustrup88:_param_types} and Standard
- ML~\citep{Milner:1990fk}, only support second-class polymorphism, so
- it is useful to see an example of first-class polymorphism. In
- Figure~\ref{fig:apply-twice} we define a function \code{apply-twice}
- whose parameter is a polymorphic function. The occurrence of a
- polymorphic type underneath a function type is enabled by the normal
- recursive structure of the grammar for $\Type$ and the categorization
- of the \code{All} type as a $\Type$. The body of \code{apply-twice}
- applies the polymorphic function to a Boolean and to an integer.
- \begin{figure}[tbp]
- \begin{lstlisting}
- (: apply-twice ((All (b) (b -> b)) -> Integer))
- (define (apply-twice f)
- (if (f #t) (f 42) (f 777)))
- (: id (All (a) (a -> a)))
- (define (id x) x)
- (apply-twice id)
- \end{lstlisting}
- \caption{An example illustrating first-class polymorphism.}
- \label{fig:apply-twice}
- \end{figure}
- The type checker for \LangPoly{} in Figure~\ref{fig:type-check-Rvar0} has
- three new responsibilities (compared to \LangLoop{}). The type checking of
- function application is extended to handle the case where the operator
- expression is a polymorphic function. In that case the type arguments
- are deduced by matching the type of the parameters with the types of
- the arguments.
- %
- The \code{match-types} auxiliary function carries out this deduction
- by recursively descending through a parameter type \code{pt} and the
- corresponding argument type \code{at}, making sure that they are equal
- except when there is a type parameter on the left (in the parameter
- type). If it's the first time that the type parameter has been
- encountered, then the algorithm deduces an association of the type
- parameter to the corresponding type on the right (in the argument
- type). If it's not the first time that the type parameter has been
- encountered, the algorithm looks up its deduced type and makes sure
- that it is equal to the type on the right.
- %
- Once the type arguments are deduced, the operator expression is
- wrapped in an \code{Inst} AST node (for instantiate) that records the
- type of the operator, but more importantly, records the deduced type
- arguments. The return type of the application is the return type of
- the polymorphic function, but with the type parameters replaced by the
- deduced type arguments, using the \code{subst-type} function.
- The second responsibility of the type checker is extending the
- function \code{type-equal?} to handle the \code{All} type. This is
- not quite a simple as equal on other types, such as function and
- vector types, because two polymorphic types can be syntactically
- different even though they are equivalent types. For example,
- \code{(All (a) (a -> a))} is equivalent to \code{(All (b) (b -> b))}.
- Two polymorphic types should be considered equal if they differ only
- in the choice of the names of the type parameters. The
- \code{type-equal?} function in Figure~\ref{fig:type-check-Rvar0-aux}
- renames the type parameters of the first type to match the type
- parameters of the second type.
- The third responsibility of the type checker is making sure that only
- defined type variables appear in type annotations. The
- \code{check-well-formed} function defined in
- Figure~\ref{fig:well-formed-types} recursively inspects a type, making
- sure that each type variable has been defined.
- The output language of the type checker is \LangInst{}, defined in
- Figure~\ref{fig:Rpoly-prime-syntax}. The type checker combines the type
- declaration and polymorphic function into a single definition, using
- the \code{Poly} form, to make polymorphic functions more convenient to
- process in next pass of the compiler.
- \begin{figure}[tp]
- \centering
- \fbox{
- \begin{minipage}{0.96\textwidth}
- \small
- \[
- \begin{array}{lcl}
- \Type &::=& \ldots \mid \LP\key{All}~\LP\Var\ldots\RP~ \Type\RP \mid \Var \\
- \Exp &::=& \ldots \mid \INST{\Exp}{\Type}{\LP\Type\ldots\RP} \\
- \Def &::=& \gray{ \DEF{\Var}{\LP\LS\Var \key{:} \Type\RS \ldots\RP}{\Type}{\code{'()}}{\Exp} } \\
- &\mid& \LP\key{Poly}~\LP\Var\ldots\RP~ \DEF{\Var}{\LP\LS\Var \key{:} \Type\RS \ldots\RP}{\Type}{\code{'()}}{\Exp}\RP \\
- \LangInst{} &::=& \gray{ \PROGRAMDEFSEXP{\code{'()}}{\LP\Def\ldots\RP}{\Exp} }
- \end{array}
- \]
- \end{minipage}
- }
- \caption{The abstract syntax of \LangInst{}, extending \LangLoop{}
- (Figure~\ref{fig:Rwhile-syntax}).}
- \label{fig:Rpoly-prime-syntax}
- \end{figure}
- The output of the type checker on the polymorphic \code{map-vec}
- example is listed in Figure~\ref{fig:map-vec-type-check}.
- \begin{figure}[tbp]
- % poly_test_2.rkt
- \begin{lstlisting}
- (poly (a) (define (map-vec [f : (a -> a)] [v : (Vector a a)]) : (Vector a a)
- (vector (f (vector-ref v 0)) (f (vector-ref v 1)))))
- (define (add1 [x : Integer]) : Integer (+ x 1))
- (vector-ref ((inst map-vec (All (a) ((a -> a) (Vector a a) -> (Vector a a)))
- (Integer))
- add1 (vector 0 41)) 1)
- \end{lstlisting}
- \caption{Output of the type checker on the \code{map-vec} example.}
- \label{fig:map-vec-type-check}
- \end{figure}
- \begin{figure}[tbp]
- \begin{lstlisting}[basicstyle=\ttfamily\scriptsize]
- (define type-check-poly-class
- (class type-check-Rwhile-class
- (super-new)
- (inherit check-type-equal?)
-
- (define/override (type-check-apply env e1 es)
- (define-values (e^ ty) ((type-check-exp env) e1))
- (define-values (es^ ty*) (for/lists (es^ ty*) ([e (in-list es)])
- ((type-check-exp env) e)))
- (match ty
- [`(,ty^* ... -> ,rt)
- (for ([arg-ty ty*] [param-ty ty^*])
- (check-type-equal? arg-ty param-ty (Apply e1 es)))
- (values e^ es^ rt)]
- [`(All ,xs (,tys ... -> ,rt))
- (define env^ (append (for/list ([x xs]) (cons x 'Type)) env))
- (define env^^ (for/fold ([env^^ env^]) ([arg-ty ty*] [param-ty tys])
- (match-types env^^ param-ty arg-ty)))
- (define targs
- (for/list ([x xs])
- (match (dict-ref env^^ x (lambda () #f))
- [#f (error 'type-check "type variable ~a not deduced\nin ~v"
- x (Apply e1 es))]
- [ty ty])))
- (values (Inst e^ ty targs) es^ (subst-type env^^ rt))]
- [else (error 'type-check "expected a function, not ~a" ty)]))
-
- (define/override ((type-check-exp env) e)
- (match e
- [(Lambda `([,xs : ,Ts] ...) rT body)
- (for ([T Ts]) ((check-well-formed env) T))
- ((check-well-formed env) rT)
- ((super type-check-exp env) e)]
- [(HasType e1 ty)
- ((check-well-formed env) ty)
- ((super type-check-exp env) e)]
- [else ((super type-check-exp env) e)]))
- (define/override ((type-check-def env) d)
- (verbose 'type-check "poly/def" d)
- (match d
- [(Generic ts (Def f (and p:t* (list `[,xs : ,ps] ...)) rt info body))
- (define ts-env (for/list ([t ts]) (cons t 'Type)))
- (for ([p ps]) ((check-well-formed ts-env) p))
- ((check-well-formed ts-env) rt)
- (define new-env (append ts-env (map cons xs ps) env))
- (define-values (body^ ty^) ((type-check-exp new-env) body))
- (check-type-equal? ty^ rt body)
- (Generic ts (Def f p:t* rt info body^))]
- [else ((super type-check-def env) d)]))
- (define/override (type-check-program p)
- (match p
- [(Program info body)
- (type-check-program (ProgramDefsExp info '() body))]
- [(ProgramDefsExp info ds body)
- (define ds^ (combine-decls-defs ds))
- (define new-env (for/list ([d ds^])
- (cons (def-name d) (fun-def-type d))))
- (define ds^^ (for/list ([d ds^]) ((type-check-def new-env) d)))
- (define-values (body^ ty) ((type-check-exp new-env) body))
- (check-type-equal? ty 'Integer body)
- (ProgramDefsExp info ds^^ body^)]))
- ))
- \end{lstlisting}
- \caption{Type checker for the \LangPoly{} language.}
- \label{fig:type-check-Rvar0}
- \end{figure}
- \begin{figure}[tbp]
- \begin{lstlisting}[basicstyle=\ttfamily\scriptsize]
- (define/override (type-equal? t1 t2)
- (match* (t1 t2)
- [(`(All ,xs ,T1) `(All ,ys ,T2))
- (define env (map cons xs ys))
- (type-equal? (subst-type env T1) T2)]
- [(other wise)
- (super type-equal? t1 t2)]))
- (define/public (match-types env pt at)
- (match* (pt at)
- [('Integer 'Integer) env] [('Boolean 'Boolean) env]
- [('Void 'Void) env] [('Any 'Any) env]
- [(`(Vector ,pts ...) `(Vector ,ats ...))
- (for/fold ([env^ env]) ([pt1 pts] [at1 ats])
- (match-types env^ pt1 at1))]
- [(`(,pts ... -> ,prt) `(,ats ... -> ,art))
- (define env^ (match-types env prt art))
- (for/fold ([env^^ env^]) ([pt1 pts] [at1 ats])
- (match-types env^^ pt1 at1))]
- [(`(All ,pxs ,pt1) `(All ,axs ,at1))
- (define env^ (append (map cons pxs axs) env))
- (match-types env^ pt1 at1)]
- [((? symbol? x) at)
- (match (dict-ref env x (lambda () #f))
- [#f (error 'type-check "undefined type variable ~a" x)]
- ['Type (cons (cons x at) env)]
- [t^ (check-type-equal? at t^ 'matching) env])]
- [(other wise) (error 'type-check "mismatch ~a != a" pt at)]))
- (define/public (subst-type env pt)
- (match pt
- ['Integer 'Integer] ['Boolean 'Boolean]
- ['Void 'Void] ['Any 'Any]
- [`(Vector ,ts ...)
- `(Vector ,@(for/list ([t ts]) (subst-type env t)))]
- [`(,ts ... -> ,rt)
- `(,@(for/list ([t ts]) (subst-type env t)) -> ,(subst-type env rt))]
- [`(All ,xs ,t)
- `(All ,xs ,(subst-type (append (map cons xs xs) env) t))]
- [(? symbol? x) (dict-ref env x)]
- [else (error 'type-check "expected a type not ~a" pt)]))
- (define/public (combine-decls-defs ds)
- (match ds
- ['() '()]
- [`(,(Decl name type) . (,(Def f params _ info body) . ,ds^))
- (unless (equal? name f)
- (error 'type-check "name mismatch, ~a != ~a" name f))
- (match type
- [`(All ,xs (,ps ... -> ,rt))
- (define params^ (for/list ([x params] [T ps]) `[,x : ,T]))
- (cons (Generic xs (Def name params^ rt info body))
- (combine-decls-defs ds^))]
- [`(,ps ... -> ,rt)
- (define params^ (for/list ([x params] [T ps]) `[,x : ,T]))
- (cons (Def name params^ rt info body) (combine-decls-defs ds^))]
- [else (error 'type-check "expected a function type, not ~a" type) ])]
- [`(,(Def f params rt info body) . ,ds^)
- (cons (Def f params rt info body) (combine-decls-defs ds^))]))
- \end{lstlisting}
- \caption{Auxiliary functions for type checking \LangPoly{}.}
- \label{fig:type-check-Rvar0-aux}
- \end{figure}
- \begin{figure}[tbp]
- \begin{lstlisting}%[basicstyle=\ttfamily\scriptsize]
- (define/public ((check-well-formed env) ty)
- (match ty
- ['Integer (void)]
- ['Boolean (void)]
- ['Void (void)]
- [(? symbol? a)
- (match (dict-ref env a (lambda () #f))
- ['Type (void)]
- [else (error 'type-check "undefined type variable ~a" a)])]
- [`(Vector ,ts ...)
- (for ([t ts]) ((check-well-formed env) t))]
- [`(,ts ... -> ,t)
- (for ([t ts]) ((check-well-formed env) t))
- ((check-well-formed env) t)]
- [`(All ,xs ,t)
- (define env^ (append (for/list ([x xs]) (cons x 'Type)) env))
- ((check-well-formed env^) t)]
- [else (error 'type-check "unrecognized type ~a" ty)]))
- \end{lstlisting}
- \caption{Well-formed types.}
- \label{fig:well-formed-types}
- \end{figure}
- % TODO: interpreter for R'_10
- \section{Compiling Polymorphism}
- \label{sec:compiling-poly}
- Broadly speaking, there are four approaches to compiling parametric
- polymorphism, which we describe below.
- \begin{description}
- \item[Monomorphization] generates a different version of a polymorphic
- function for each set of type arguments that it is used with,
- producing type-specialized code. This approach results in the most
- efficient code but requires whole-program compilation (no separate
- compilation) and increases code size. For our current purposes
- monomorphization is a non-starter because, with first-class
- polymorphism, it is sometimes not possible to determine which
- generic functions are used with which type arguments during
- compilation. (It can be done at runtime, with just-in-time
- compilation.) This approach is used to compile C++
- templates~\citep{stroustrup88:_param_types} and polymorphic
- functions in NESL~\citep{Blelloch:1993aa} and
- ML~\citep{Weeks:2006aa}.
-
- \item[Uniform representation] generates one version of each
- polymorphic function but requires all values have a common ``boxed''
- format, such as the tagged values of type \code{Any} in
- \LangAny{}. Non-polymorphic code (i.e. monomorphic code) is compiled
- similarly to code in a dynamically typed language (like \LangDyn{}),
- in which primitive operators require their arguments to be projected
- from \code{Any} and their results are injected into \code{Any}. (In
- object-oriented languages, the projection is accomplished via
- virtual method dispatch.) The uniform representation approach is
- compatible with separate compilation and with first-class
- polymorphism. However, it produces the least-efficient code because
- it introduces overhead in the entire program, including
- non-polymorphic code. This approach is used in implementations of
- CLU~\cite{liskov79:_clu_ref,Liskov:1993dk},
- ML~\citep{Cardelli:1984aa,Appel:1987aa}, and
- Java~\citep{Bracha:1998fk}.
-
- \item[Mixed representation] generates one version of each polymorphic
- function, using a boxed representation for type
- variables. Monomorphic code is compiled as usual (as in \LangLoop{})
- and conversions are performed at the boundaries between monomorphic
- and polymorphic (e.g. when a polymorphic function is instantiated
- and called). This approach is compatible with separate compilation
- and first-class polymorphism and maintains the efficiency of
- monomorphic code. The tradeoff is increased overhead at the boundary
- between monomorphic and polymorphic code. This approach is used in
- implementations of ML~\citep{Leroy:1992qb} and Java, starting in
- Java 5 with the addition of autoboxing.
-
- \item[Type passing] uses the unboxed representation in both
- monomorphic and polymorphic code. Each polymorphic function is
- compiled to a single function with extra parameters that describe
- the type arguments. The type information is used by the generated
- code to know how to access the unboxed values at runtime. This
- approach is used in implementation of the Napier88
- language~\citep{Morrison:1991aa} and ML~\citep{Harper:1995um}. Type
- passing is compatible with separate compilation and first-class
- polymorphism and maintains the efficiency for monomorphic
- code. There is runtime overhead in polymorphic code from dispatching
- on type information.
- \end{description}
- In this chapter we use the mixed representation approach, partly
- because of its favorable attributes, and partly because it is
- straightforward to implement using the tools that we have already
- built to support gradual typing. To compile polymorphic functions, we
- add just one new pass, \code{erase-types}, to compile \LangInst{} to
- \LangCast{}.
- \section{Erase Types}
- \label{sec:erase-types}
- We use the \code{Any} type from Chapter~\ref{ch:Rdyn} to
- represent type variables. For example, Figure~\ref{fig:map-vec-erase}
- shows the output of the \code{erase-types} pass on the polymorphic
- \code{map-vec} (Figure~\ref{fig:map-vec-poly}). The occurrences of
- type parameter \code{a} are replaced by \code{Any} and the polymorphic
- \code{All} types are removed from the type of \code{map-vec}.
- \begin{figure}[tbp]
- \begin{lstlisting}
- (define (map-vec [f : (Any -> Any)] [v : (Vector Any Any)])
- : (Vector Any Any)
- (vector (f (vector-ref v 0)) (f (vector-ref v 1))))
- (define (add1 [x : Integer]) : Integer (+ x 1))
- (vector-ref ((cast map-vec
- ((Any -> Any) (Vector Any Any) -> (Vector Any Any))
- ((Integer -> Integer) (Vector Integer Integer)
- -> (Vector Integer Integer)))
- add1 (vector 0 41)) 1)
- \end{lstlisting}
- \caption{The polymorphic \code{map-vec} example after type erasure.}
- \label{fig:map-vec-erase}
- \end{figure}
- This process of type erasure creates a challenge at points of
- instantiation. For example, consider the instantiation of
- \code{map-vec} in Figure~\ref{fig:map-vec-type-check}.
- The type of \code{map-vec} is
- \begin{lstlisting}
- (All (a) ((a -> a) (Vector a a) -> (Vector a a)))
- \end{lstlisting}
- and it is instantiated to
- \begin{lstlisting}
- ((Integer -> Integer) (Vector Integer Integer)
- -> (Vector Integer Integer))
- \end{lstlisting}
- After erasure, the type of \code{map-vec} is
- \begin{lstlisting}
- ((Any -> Any) (Vector Any Any) -> (Vector Any Any))
- \end{lstlisting}
- but we need to convert it to the instantiated type. This is easy to
- do in the target language \LangCast{} with a single \code{cast}. In
- Figure~\ref{fig:map-vec-erase}, the instantiation of \code{map-vec}
- has been compiled to a \code{cast} from the type of \code{map-vec} to
- the instantiated type. The source and target type of a cast must be
- consistent (Figure~\ref{fig:consistent}), which indeed is the case
- because both the source and target are obtained from the same
- polymorphic type of \code{map-vec}, replacing the type parameters with
- \code{Any} in the former and with the deduced type arguments in the
- later. (Recall that the \code{Any} type is consistent with any type.)
- To implement the \code{erase-types} pass, we recommend defining a
- recursive auxiliary function named \code{erase-type} that applies the
- following two transformations. It replaces type variables with
- \code{Any}
- \begin{lstlisting}
- |$x$|
- |$\Rightarrow$|
- Any
- \end{lstlisting}
- and it removes the polymorphic \code{All} types.
- \begin{lstlisting}
- (All |$xs$| |$T_1$|)
- |$\Rightarrow$|
- |$T'_1$|
- \end{lstlisting}
- Apply the \code{erase-type} function to all of the type annotations in
- the program.
- Regarding the translation of expressions, the case for \code{Inst} is
- the interesting one. We translate it into a \code{Cast}, as shown
- below. The type of the subexpression $e$ is the polymorphic type
- $\LP\key{All} xs T\RP$. The source type of the cast is the erasure of
- $T$, the type $T'$. The target type $T''$ is the result of
- substituting the arguments types $ts$ for the type parameters $xs$ in
- $T$ followed by doing type erasure.
- \begin{lstlisting}
- (Inst |$e$| (All |$xs$| |$T$|) |$ts$|)
- |$\Rightarrow$|
- (Cast |$e'$| |$T'$| |$T''$|)
- \end{lstlisting}
- where $T'' = \LP\code{erase-type}~\LP\code{subst-type}~s~T\RP\RP$
- and $s = \LP\code{map}~\code{cons}~xs~ts\RP$.
- Finally, each polymorphic function is translated to a regular
- functions in which type erasure has been applied to all the type
- annotations and the body.
- \begin{lstlisting}
- (Poly |$ts$| (Def |$f$| ([|$x_1$| : |$T_1$|] |$\ldots$|) |$T_r$| |$\itm{info}$| |$e$|))
- |$\Rightarrow$|
- (Def |$f$| ([|$x_1$| : |$T'_1$|] |$\ldots$|) |$T'_r$| |$\itm{info}$| |$e'$|)
- \end{lstlisting}
- \begin{exercise}\normalfont
- Implement a compiler for the polymorphic language \LangPoly{} by
- extending and adapting your compiler for \LangGrad{}. Create 6 new test
- programs that use polymorphic functions. Some of them should make
- use of first-class polymorphism.
- \end{exercise}
- \begin{figure}[p]
- \begin{tikzpicture}[baseline=(current bounding box.center)]
- \node (Rpoly) at (9,4) {\large \LangPoly{}};
- \node (Rpolyp) at (6,4) {\large \LangInst{}};
- \node (Rgradualp) at (3,4) {\large \LangCast{}};
- \node (Rwhilepp) at (0,4) {\large \LangProxy{}};
- \node (Rwhileproxy) at (0,2) {\large \LangPVec{}};
- \node (Rwhileproxy-2) at (3,2) {\large \LangPVec{}};
- \node (Rwhileproxy-3) at (6,2) {\large \LangPVec{}};
- \node (Rwhileproxy-4) at (9,2) {\large \LangPVecFunRef{}};
- \node (Rwhileproxy-5) at (12,2) {\large \LangPVecFunRef{}};
- \node (F1-1) at (12,0) {\large \LangPVecFunRef{}};
- \node (F1-2) at (9,0) {\large \LangPVecFunRef{}};
- \node (F1-3) at (6,0) {\large \LangPVecFunRef{}};
- \node (F1-4) at (3,0) {\large \LangPVecAlloc{}};
- \node (F1-5) at (0,0) {\large \LangPVecAlloc{}};
- \node (C3-2) at (3,-2) {\large \LangCLoopPVec{}};
- \node (x86-2) at (3,-4) {\large \LangXIndCallVar{}};
- \node (x86-2-1) at (3,-6) {\large \LangXIndCallVar{}};
- \node (x86-2-2) at (6,-6) {\large \LangXIndCallVar{}};
- \node (x86-3) at (6,-4) {\large \LangXIndCallVar{}};
- \node (x86-4) at (9,-4) {\large \LangXIndCall{}};
- \node (x86-5) at (9,-6) {\large \LangXIndCall{}};
- \path[->,bend right=15] (Rpoly) edge [above] node
- {\ttfamily\footnotesize type-check} (Rpolyp);
- \path[->,bend right=15] (Rpolyp) edge [above] node
- {\ttfamily\footnotesize erase-types} (Rgradualp);
- \path[->,bend right=15] (Rgradualp) edge [above] node
- {\ttfamily\footnotesize lower-casts} (Rwhilepp);
- \path[->,bend right=15] (Rwhilepp) edge [right] node
- {\ttfamily\footnotesize differentiate-proxies} (Rwhileproxy);
- \path[->,bend left=15] (Rwhileproxy) edge [above] node
- {\ttfamily\footnotesize shrink} (Rwhileproxy-2);
- \path[->,bend left=15] (Rwhileproxy-2) edge [above] node
- {\ttfamily\footnotesize uniquify} (Rwhileproxy-3);
- \path[->,bend left=15] (Rwhileproxy-3) edge [above] node
- {\ttfamily\footnotesize reveal-functions} (Rwhileproxy-4);
- \path[->,bend left=15] (Rwhileproxy-4) edge [above] node
- {\ttfamily\footnotesize reveal-casts} (Rwhileproxy-5);
- \path[->,bend left=15] (Rwhileproxy-5) edge [left] node
- {\ttfamily\footnotesize convert-assignments} (F1-1);
- \path[->,bend left=15] (F1-1) edge [below] node
- {\ttfamily\footnotesize convert-to-clos.} (F1-2);
- \path[->,bend right=15] (F1-2) edge [above] node
- {\ttfamily\footnotesize limit-fun.} (F1-3);
- \path[->,bend right=15] (F1-3) edge [above] node
- {\ttfamily\footnotesize expose-alloc.} (F1-4);
- \path[->,bend right=15] (F1-4) edge [above] node
- {\ttfamily\footnotesize remove-complex.} (F1-5);
- \path[->,bend right=15] (F1-5) edge [right] node
- {\ttfamily\footnotesize explicate-control} (C3-2);
- \path[->,bend left=15] (C3-2) edge [left] node
- {\ttfamily\footnotesize select-instr.} (x86-2);
- \path[->,bend right=15] (x86-2) edge [left] node
- {\ttfamily\footnotesize uncover-live} (x86-2-1);
- \path[->,bend right=15] (x86-2-1) edge [below] node
- {\ttfamily\footnotesize build-inter.} (x86-2-2);
- \path[->,bend right=15] (x86-2-2) edge [left] node
- {\ttfamily\footnotesize allocate-reg.} (x86-3);
- \path[->,bend left=15] (x86-3) edge [above] node
- {\ttfamily\footnotesize patch-instr.} (x86-4);
- \path[->,bend left=15] (x86-4) edge [right] node {\ttfamily\footnotesize print-x86} (x86-5);
- \end{tikzpicture}
- \caption{Diagram of the passes for \LangPoly{} (parametric polymorphism).}
- \label{fig:Rpoly-passes}
- \end{figure}
- Figure~\ref{fig:Rpoly-passes} provides an overview of all the passes needed
- for the compilation of \LangPoly{}.
- % TODO: challenge problem: specialization of instantiations
- % Further Reading
- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
- \chapter{Appendix}
- \section{Interpreters}
- \label{appendix:interp}
- \index{interpreter}
- We provide interpreters for each of the source languages \LangInt{},
- \LangVar{}, $\ldots$ in the files \code{interp-Rint.rkt},
- \code{interp-Rvar.rkt}, etc. The interpreters for the intermediate
- languages \LangCVar{} and \LangCIf{} are in \code{interp-Cvar.rkt} and
- \code{interp-C1.rkt}. The interpreters for \LangCVec{}, \LangCFun{}, pseudo-x86,
- and x86 are in the \key{interp.rkt} file.
- \section{Utility Functions}
- \label{appendix:utilities}
- The utility functions described in this section are in the
- \key{utilities.rkt} file of the support code.
- \paragraph{\code{interp-tests}}
- The \key{interp-tests} function runs the compiler passes and the
- interpreters on each of the specified tests to check whether each pass
- is correct. The \key{interp-tests} function has the following
- parameters:
- \begin{description}
- \item[name (a string)] a name to identify the compiler,
- \item[typechecker] a function of exactly one argument that either
- raises an error using the \code{error} function when it encounters a
- type error, or returns \code{\#f} when it encounters a type
- error. If there is no type error, the type checker returns the
- program.
- \item[passes] a list with one entry per pass. An entry is a list with
- four things:
- \begin{enumerate}
- \item a string giving the name of the pass,
- \item the function that implements the pass (a translator from AST
- to AST),
- \item a function that implements the interpreter (a function from
- AST to result value) for the output language,
- \item and a type checker for the output language. Type checkers for
- the $R$ and $C$ languages are provided in the support code. For
- example, the type checkers for \LangVar{} and \LangCVar{} are in
- \code{type-check-Rvar.rkt} and \code{type-check-Cvar.rkt}. The
- type checker entry is optional. The support code does not provide
- type checkers for the x86 languages.
- \end{enumerate}
- \item[source-interp] an interpreter for the source language. The
- interpreters from Appendix~\ref{appendix:interp} make a good choice.
-
- \item[test-family (a string)] for example, \code{"r1"}, \code{"r2"}, etc.
- \item[tests] a list of test numbers that specifies which tests to
- run. (see below)
- \end{description}
- %
- The \key{interp-tests} function assumes that the subdirectory
- \key{tests} has a collection of Racket programs whose names all start
- with the family name, followed by an underscore and then the test
- number, ending with the file extension \key{.rkt}. Also, for each test
- program that calls \code{read} one or more times, there is a file with
- the same name except that the file extension is \key{.in} that
- provides the input for the Racket program. If the test program is
- expected to fail type checking, then there should be an empty file of
- the same name but with extension \key{.tyerr}.
- \paragraph{\code{compiler-tests}}
- runs the compiler passes to generate x86 (a \key{.s} file) and then
- runs the GNU C compiler (gcc) to generate machine code. It runs the
- machine code and checks that the output is $42$. The parameters to the
- \code{compiler-tests} function are similar to those of the
- \code{interp-tests} function, and consist of
- \begin{itemize}
- \item a compiler name (a string),
- \item a type checker,
- \item description of the passes,
- \item name of a test-family, and
- \item a list of test numbers.
- \end{itemize}
- \paragraph{\code{compile-file}}
- takes a description of the compiler passes (see the comment for
- \key{interp-tests}) and returns a function that, given a program file
- name (a string ending in \key{.rkt}), applies all of the passes and
- writes the output to a file whose name is the same as the program file
- name but with \key{.rkt} replaced with \key{.s}.
- \paragraph{\code{read-program}}
- takes a file path and parses that file (it must be a Racket program)
- into an abstract syntax tree.
- \paragraph{\code{parse-program}}
- takes an S-expression representation of an abstract syntax tree and converts it into
- the struct-based representation.
- \paragraph{\code{assert}}
- takes two parameters, a string (\code{msg}) and Boolean (\code{bool}),
- and displays the message \key{msg} if the Boolean \key{bool} is false.
- \paragraph{\code{lookup}}
- % remove discussion of lookup? -Jeremy
- takes a key and an alist, and returns the first value that is
- associated with the given key, if there is one. If not, an error is
- triggered. The alist may contain both immutable pairs (built with
- \key{cons}) and mutable pairs (built with \key{mcons}).
- %The \key{map2} function ...
- \section{x86 Instruction Set Quick-Reference}
- \label{sec:x86-quick-reference}
- \index{x86}
- Table~\ref{tab:x86-instr} lists some x86 instructions and what they
- do. We write $A \to B$ to mean that the value of $A$ is written into
- location $B$. Address offsets are given in bytes. The instruction
- arguments $A, B, C$ can be immediate constants (such as \code{\$4}),
- registers (such as \code{\%rax}), or memory references (such as
- \code{-4(\%ebp)}). Most x86 instructions only allow at most one memory
- reference per instruction. Other operands must be immediates or
- registers.
- \begin{table}[tbp]
- \centering
- \begin{tabular}{l|l}
- \textbf{Instruction} & \textbf{Operation} \\ \hline
- \texttt{addq} $A$, $B$ & $A + B \to B$\\
- \texttt{negq} $A$ & $- A \to A$ \\
- \texttt{subq} $A$, $B$ & $B - A \to B$\\
- \texttt{imulq} $A$, $B$ & $A \times B \to B$\\
- \texttt{callq} $L$ & Pushes the return address and jumps to label $L$ \\
- \texttt{callq} \texttt{*}$A$ & Calls the function at the address $A$. \\
- %\texttt{leave} & $\texttt{ebp} \to \texttt{esp};$ \texttt{popl \%ebp} \\
- \texttt{retq} & Pops the return address and jumps to it \\
- \texttt{popq} $A$ & $*\mathtt{rsp} \to A; \mathtt{rsp} + 8 \to \mathtt{rsp}$ \\
- \texttt{pushq} $A$ & $\texttt{rsp} - 8 \to \texttt{rsp}; A \to *\texttt{rsp}$\\
- \texttt{leaq} $A$,$B$ & $A \to B$ ($B$ must be a register) \\
- \texttt{cmpq} $A$, $B$ & compare $A$ and $B$ and set the flag register ($B$ must not
- be an immediate) \\
- \texttt{je} $L$ & \multirow{5}{3.7in}{Jump to label $L$ if the flag register
- matches the condition code of the instruction, otherwise go to the
- next instructions. The condition codes are \key{e} for ``equal'',
- \key{l} for ``less'', \key{le} for ``less or equal'', \key{g}
- for ``greater'', and \key{ge} for ``greater or equal''.} \\
- \texttt{jl} $L$ & \\
- \texttt{jle} $L$ & \\
- \texttt{jg} $L$ & \\
- \texttt{jge} $L$ & \\
- \texttt{jmp} $L$ & Jump to label $L$ \\
- \texttt{movq} $A$, $B$ & $A \to B$ \\
- \texttt{movzbq} $A$, $B$ &
- \multirow{3}{3.7in}{$A \to B$, \text{where } $A$ is a single-byte register
- (e.g., \texttt{al} or \texttt{cl}), $B$ is a 8-byte register,
- and the extra bytes of $B$ are set to zero.} \\
- & \\
- & \\
- \texttt{notq} $A$ & $\sim A \to A$ \qquad (bitwise complement)\\
- \texttt{orq} $A$, $B$ & $A | B \to B$ \qquad (bitwise-or)\\
- \texttt{andq} $A$, $B$ & $A \& B \to B$ \qquad (bitwise-and)\\
- \texttt{salq} $A$, $B$ & $B$ \texttt{<<} $A \to B$ (arithmetic shift left, where $A$ is a constant)\\
- \texttt{sarq} $A$, $B$ & $B$ \texttt{>>} $A \to B$ (arithmetic shift right, where $A$ is a constant)\\
- \texttt{sete} $A$ & \multirow{5}{3.7in}{If the flag matches the condition code,
- then $1 \to A$, else $0 \to A$. Refer to \texttt{je} above for the
- description of the condition codes. $A$ must be a single byte register
- (e.g., \texttt{al} or \texttt{cl}).} \\
- \texttt{setl} $A$ & \\
- \texttt{setle} $A$ & \\
- \texttt{setg} $A$ & \\
- \texttt{setge} $A$ &
- \end{tabular}
- \vspace{5pt}
- \caption{Quick-reference for the x86 instructions used in this book.}
- \label{tab:x86-instr}
- \end{table}
- \cleardoublepage
- \section{Concrete Syntax for Intermediate Languages}
- The concrete syntax of \LangAny{} is defined in
- Figure~\ref{fig:Rany-concrete-syntax}.
- \begin{figure}[tp]
- \centering
- \fbox{
- \begin{minipage}{0.97\textwidth}\small
- \[
- \begin{array}{lcl}
- \Type &::=& \gray{\key{Integer} \mid \key{Boolean}
- \mid \LP\key{Vector}\;\Type\ldots\RP \mid \key{Void}} \\
- &\mid& \gray{\LP\Type\ldots \; \key{->}\; \Type\RP} \mid \key{Any} \\
- \FType &::=& \key{Integer} \mid \key{Boolean} \mid \key{Void}
- \mid \LP\key{Vector}\; \key{Any}\ldots\RP \\
- &\mid& \LP\key{Any}\ldots \; \key{->}\; \key{Any}\RP\\
- \Exp &::=& \ldots \CINJECT{\Exp}{\FType}\RP \mid \CPROJECT{\Exp}{\FType}\\
- &\mid& \LP\key{any-vector-length}\;\Exp\RP
- \mid \LP\key{any-vector-ref}\;\Exp\;\Exp\RP \\
- &\mid& \LP\key{any-vector-set!}\;\Exp\;\Exp\;\Exp\RP\\
- &\mid& \LP\key{boolean?}\;\Exp\RP \mid \LP\key{integer?}\;\Exp\RP
- \mid \LP\key{void?}\;\Exp\RP \\
- &\mid& \LP\key{vector?}\;\Exp\RP \mid \LP\key{procedure?}\;\Exp\RP \\
- \Def &::=& \gray{ \CDEF{\Var}{\LS\Var \key{:} \Type\RS\ldots}{\Type}{\Exp} } \\
- \LangAny{} &::=& \gray{\Def\ldots \; \Exp}
- \end{array}
- \]
- \end{minipage}
- }
- \caption{The concrete syntax of \LangAny{}, extending \LangLam{}
- (Figure~\ref{fig:Rlam-syntax}).}
- \label{fig:Rany-concrete-syntax}
- \end{figure}
- The concrete syntax for \LangCVar{}, \LangCIf{}, \LangCVec{} and \LangCFun{} is
- defined in Figures~\ref{fig:c0-concrete-syntax},
- \ref{fig:c1-concrete-syntax}, \ref{fig:c2-concrete-syntax},
- and \ref{fig:c3-concrete-syntax}, respectively.
- \begin{figure}[tbp]
- \fbox{
- \begin{minipage}{0.96\textwidth}
- \[
- \begin{array}{lcl}
- \Atm &::=& \Int \mid \Var \\
- \Exp &::=& \Atm \mid \key{(read)} \mid \key{(-}~\Atm\key{)} \mid \key{(+}~\Atm~\Atm\key{)}\\
- \Stmt &::=& \Var~\key{=}~\Exp\key{;} \\
- \Tail &::= & \key{return}~\Exp\key{;} \mid \Stmt~\Tail \\
- \LangCVar{} & ::= & (\itm{label}\key{:}~ \Tail)\ldots
- \end{array}
- \]
- \end{minipage}
- }
- \caption{The concrete syntax of the \LangCVar{} intermediate language.}
- \label{fig:c0-concrete-syntax}
- \end{figure}
- \begin{figure}[tbp]
- \fbox{
- \begin{minipage}{0.96\textwidth}
- \small
- \[
- \begin{array}{lcl}
- \Atm &::=& \gray{ \Int \mid \Var } \mid \itm{bool} \\
- \itm{cmp} &::= & \key{eq?} \mid \key{<} \\
- \Exp &::=& \gray{ \Atm \mid \key{(read)} \mid \key{(-}~\Atm\key{)} \mid \key{(+}~\Atm~\Atm\key{)} } \\
- &\mid& \LP \key{not}~\Atm \RP \mid \LP \itm{cmp}~\Atm~\Atm\RP \\
- \Stmt &::=& \gray{ \Var~\key{=}~\Exp\key{;} } \\
- \Tail &::= & \gray{ \key{return}~\Exp\key{;} \mid \Stmt~\Tail }
- \mid \key{goto}~\itm{label}\key{;}\\
- &\mid& \key{if}~\LP \itm{cmp}~\Atm~\Atm \RP~ \key{goto}~\itm{label}\key{;} ~\key{else}~\key{goto}~\itm{label}\key{;} \\
- \LangCIf{} & ::= & \gray{ (\itm{label}\key{:}~ \Tail)\ldots }
- \end{array}
- \]
- \end{minipage}
- }
- \caption{The concrete syntax of the \LangCIf{} intermediate language.}
- \label{fig:c1-concrete-syntax}
- \end{figure}
- \begin{figure}[tbp]
- \fbox{
- \begin{minipage}{0.96\textwidth}
- \small
- \[
- \begin{array}{lcl}
- \Atm &::=& \gray{ \Int \mid \Var \mid \itm{bool} } \\
- \itm{cmp} &::= & \gray{ \key{eq?} \mid \key{<} } \\
- \Exp &::=& \gray{ \Atm \mid \key{(read)} \mid \key{(-}~\Atm\key{)} \mid \key{(+}~\Atm~\Atm\key{)} } \\
- &\mid& \gray{ \LP \key{not}~\Atm \RP \mid \LP \itm{cmp}~\Atm~\Atm\RP } \\
- &\mid& \LP \key{allocate}~\Int~\Type \RP \\
- &\mid& (\key{vector-ref}\;\Atm\;\Int) \mid (\key{vector-set!}\;\Atm\;\Int\;\Atm)\\
- &\mid& \LP \key{global-value}~\Var \RP \mid \LP \key{void} \RP \\
- \Stmt &::=& \gray{ \Var~\key{=}~\Exp\key{;} } \mid \LP\key{collect}~\Int \RP\\
- \Tail &::= & \gray{ \key{return}~\Exp\key{;} \mid \Stmt~\Tail }
- \mid \gray{ \key{goto}~\itm{label}\key{;} }\\
- &\mid& \gray{ \key{if}~\LP \itm{cmp}~\Atm~\Atm \RP~ \key{goto}~\itm{label}\key{;} ~\key{else}~\key{goto}~\itm{label}\key{;} } \\
- \LangCVec{} & ::= & \gray{ (\itm{label}\key{:}~ \Tail)\ldots }
- \end{array}
- \]
- \end{minipage}
- }
- \caption{The concrete syntax of the \LangCVec{} intermediate language.}
- \label{fig:c2-concrete-syntax}
- \end{figure}
- \begin{figure}[tp]
- \fbox{
- \begin{minipage}{0.96\textwidth}
- \small
- \[
- \begin{array}{lcl}
- \Atm &::=& \gray{ \Int \mid \Var \mid \key{\#t} \mid \key{\#f} }
- \\
- \itm{cmp} &::= & \gray{ \key{eq?} \mid \key{<} } \\
- \Exp &::= & \gray{ \Atm \mid \LP\key{read}\RP \mid \LP\key{-}\;\Atm\RP \mid \LP\key{+} \; \Atm\;\Atm\RP
- \mid \LP\key{not}\;\Atm\RP \mid \LP\itm{cmp}\;\Atm\;\Atm\RP } \\
- &\mid& \gray{ \LP\key{allocate}\,\Int\,\Type\RP
- \mid \LP\key{vector-ref}\, \Atm\, \Int\RP } \\
- &\mid& \gray{ \LP\key{vector-set!}\,\Atm\,\Int\,\Atm\RP \mid \LP\key{global-value} \,\itm{name}\RP \mid \LP\key{void}\RP } \\
- &\mid& \LP\key{fun-ref}~\itm{label}\RP \mid \LP\key{call} \,\Atm\,\Atm\ldots\RP \\
- \Stmt &::=& \gray{ \ASSIGN{\Var}{\Exp} \mid \RETURN{\Exp}
- \mid \LP\key{collect} \,\itm{int}\RP }\\
- \Tail &::= & \gray{\RETURN{\Exp} \mid \LP\key{seq}\;\Stmt\;\Tail\RP} \\
- &\mid& \gray{\LP\key{goto}\,\itm{label}\RP
- \mid \IF{\LP\itm{cmp}\, \Atm\,\Atm\RP}{\LP\key{goto}\,\itm{label}\RP}{\LP\key{goto}\,\itm{label}\RP}} \\
- &\mid& \LP\key{tail-call}\,\Atm\,\Atm\ldots\RP \\
- \Def &::=& \LP\key{define}\; \LP\itm{label} \; [\Var \key{:} \Type]\ldots\RP \key{:} \Type \; \LP\LP\itm{label}\,\key{.}\,\Tail\RP\ldots\RP\RP \\
- \LangCFun{} & ::= & \Def\ldots
- \end{array}
- \]
- \end{minipage}
- }
- \caption{The \LangCFun{} language, extending \LangCVec{} (Figure~\ref{fig:c2-concrete-syntax}) with functions.}
- \label{fig:c3-concrete-syntax}
- \end{figure}
- \cleardoublepage
- \addcontentsline{toc}{chapter}{Index}
- \printindex
- \cleardoublepage
- \bibliographystyle{plainnat}
- \bibliography{all}
- \addcontentsline{toc}{chapter}{Bibliography}
- \end{document}
- %% LocalWords: Dybvig Waddell Abdulaziz Ghuloum Dipanwita Sussman
- %% LocalWords: Sarkar lcl Matz aa representable Chez Ph Dan's nano
- %% LocalWords: fk bh Siek plt uq Felleisen Bor Yuh ASTs AST Naur eq
- %% LocalWords: BNF fixnum datatype arith prog backquote quasiquote
- %% LocalWords: ast Reynold's reynolds interp cond fx evaluator jane
- %% LocalWords: quasiquotes pe nullary unary rcl env lookup gcc rax
- %% LocalWords: addq movq callq rsp rbp rbx rcx rdx rsi rdi subq nx
- %% LocalWords: negq pushq popq retq globl Kernighan uniquify lll ve
- %% LocalWords: allocator gensym env subdirectory scm rkt tmp lhs Tt
- %% LocalWords: runtime Liveness liveness undirected Balakrishnan je
- %% LocalWords: Rosen DSATUR SDO Gebremedhin Omari morekeywords cnd
- %% LocalWords: fullflexible vertices Booleans Listof Pairof thn els
- %% LocalWords: boolean type-check notq cmpq sete movzbq jmp al xorq
- %% LocalWords: EFLAGS thns elss elselabel endlabel Tuples tuples os
- %% LocalWords: tuple args lexically leaq Polymorphism msg bool nums
- %% LocalWords: macosx unix Cormen vec callee xs maxStack numParams
- %% LocalWords: arg bitwise XOR'd thenlabel immediates optimizations
- %% LocalWords: deallocating Ungar Detlefs Tene kx FromSpace ToSpace
- %% LocalWords: Appel Diwan Siebert ptr fromspace rootstack typedef
- %% LocalWords: len prev rootlen heaplen setl lt Kohlbecker dk multi
- % LocalWords: Bloomington Wollowski definitional whitespace deref JM
- % LocalWords: subexpression subexpressions iteratively ANF Danvy rco
- % LocalWords: goto stmt JS ly cmp ty le ge jle goto's EFLAG CFG pred
- % LocalWords: acyclic worklist Aho qf tsort implementer's hj Shidal
- % LocalWords: nonnegative Shahriyar endian salq sarq uint cheney ior
- % LocalWords: tospace vecinit collectret alloc initret decrement jl
- % LocalWords: dereferencing GC di vals ps mcons ds mcdr callee's th
- % LocalWords: mainDef tailcall prepending mainstart num params rT qb
- % LocalWords: mainconclusion Cardelli bodyT fvs clos fvts subtype uj
- % LocalWords: polymorphism untyped elts tys tagof Vectorof tyeq orq
- % LocalWords: andq untagged Shao inlining ebp jge setle setg setge
- % LocalWords: struct Friedman's MacOS Nystrom alist sam kate
- % LocalWords: alists arity github unordered pqueue exprs ret param
- % LocalWords: tyerr bytereg dh dl JmpIf HasType Osterlund Jacek TODO
- % LocalWords: Gamari GlobalValue ProgramDefsExp prm ProgramDefs vn
- % LocalWords: FunRef TailCall tailjmp IndirectCallq TailJmp Gilray
- % LocalWords: dereference unbox Dataflow versa dataflow Kildall rhs
- % LocalWords: Kleene enqueue dequeue AssignedFree FV cnvt SetBang tg
- % LocalWords: ValueOf typechecker
|