book.tex 620 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137613861396140614161426143614461456146614761486149615061516152615361546155615661576158615961606161616261636164616561666167616861696170617161726173617461756176617761786179618061816182618361846185618661876188618961906191619261936194619561966197619861996200620162026203620462056206620762086209621062116212621362146215621662176218621962206221622262236224622562266227622862296230623162326233623462356236623762386239624062416242624362446245624662476248624962506251625262536254625562566257625862596260626162626263626462656266626762686269627062716272627362746275627662776278627962806281628262836284628562866287628862896290629162926293629462956296629762986299630063016302630363046305630663076308630963106311631263136314631563166317631863196320632163226323632463256326632763286329633063316332633363346335633663376338633963406341634263436344634563466347634863496350635163526353635463556356635763586359636063616362636363646365636663676368636963706371637263736374637563766377637863796380638163826383638463856386638763886389639063916392639363946395639663976398639964006401640264036404640564066407640864096410641164126413641464156416641764186419642064216422642364246425642664276428642964306431643264336434643564366437643864396440644164426443644464456446644764486449645064516452645364546455645664576458645964606461646264636464646564666467646864696470647164726473647464756476647764786479648064816482648364846485648664876488648964906491649264936494649564966497649864996500650165026503650465056506650765086509651065116512651365146515651665176518651965206521652265236524652565266527652865296530653165326533653465356536653765386539654065416542654365446545654665476548654965506551655265536554655565566557655865596560656165626563656465656566656765686569657065716572657365746575657665776578657965806581658265836584658565866587658865896590659165926593659465956596659765986599660066016602660366046605660666076608660966106611661266136614661566166617661866196620662166226623662466256626662766286629663066316632663366346635663666376638663966406641664266436644664566466647664866496650665166526653665466556656665766586659666066616662666366646665666666676668666966706671667266736674667566766677667866796680668166826683668466856686668766886689669066916692669366946695669666976698669967006701670267036704670567066707670867096710671167126713671467156716671767186719672067216722672367246725672667276728672967306731673267336734673567366737673867396740674167426743674467456746674767486749675067516752675367546755675667576758675967606761676267636764676567666767676867696770677167726773677467756776677767786779678067816782678367846785678667876788678967906791679267936794679567966797679867996800680168026803680468056806680768086809681068116812681368146815681668176818681968206821682268236824682568266827682868296830683168326833683468356836683768386839684068416842684368446845684668476848684968506851685268536854685568566857685868596860686168626863686468656866686768686869687068716872687368746875687668776878687968806881688268836884688568866887688868896890689168926893689468956896689768986899690069016902690369046905690669076908690969106911691269136914691569166917691869196920692169226923692469256926692769286929693069316932693369346935693669376938693969406941694269436944694569466947694869496950695169526953695469556956695769586959696069616962696369646965696669676968696969706971697269736974697569766977697869796980698169826983698469856986698769886989699069916992699369946995699669976998699970007001700270037004700570067007700870097010701170127013701470157016701770187019702070217022702370247025702670277028702970307031703270337034703570367037703870397040704170427043704470457046704770487049705070517052705370547055705670577058705970607061706270637064706570667067706870697070707170727073707470757076707770787079708070817082708370847085708670877088708970907091709270937094709570967097709870997100710171027103710471057106710771087109711071117112711371147115711671177118711971207121712271237124712571267127712871297130713171327133713471357136713771387139714071417142714371447145714671477148714971507151715271537154715571567157715871597160716171627163716471657166716771687169717071717172717371747175717671777178717971807181718271837184718571867187718871897190719171927193719471957196719771987199720072017202720372047205720672077208720972107211721272137214721572167217721872197220722172227223722472257226722772287229723072317232723372347235723672377238723972407241724272437244724572467247724872497250725172527253725472557256725772587259726072617262726372647265726672677268726972707271727272737274727572767277727872797280728172827283728472857286728772887289729072917292729372947295729672977298729973007301730273037304730573067307730873097310731173127313731473157316731773187319732073217322732373247325732673277328732973307331733273337334733573367337733873397340734173427343734473457346734773487349735073517352735373547355735673577358735973607361736273637364736573667367736873697370737173727373737473757376737773787379738073817382738373847385738673877388738973907391739273937394739573967397739873997400740174027403740474057406740774087409741074117412741374147415741674177418741974207421742274237424742574267427742874297430743174327433743474357436743774387439744074417442744374447445744674477448744974507451745274537454745574567457745874597460746174627463746474657466746774687469747074717472747374747475747674777478747974807481748274837484748574867487748874897490749174927493749474957496749774987499750075017502750375047505750675077508750975107511751275137514751575167517751875197520752175227523752475257526752775287529753075317532753375347535753675377538753975407541754275437544754575467547754875497550755175527553755475557556755775587559756075617562756375647565756675677568756975707571757275737574757575767577757875797580758175827583758475857586758775887589759075917592759375947595759675977598759976007601760276037604760576067607760876097610761176127613761476157616761776187619762076217622762376247625762676277628762976307631763276337634763576367637763876397640764176427643764476457646764776487649765076517652765376547655765676577658765976607661766276637664766576667667766876697670767176727673767476757676767776787679768076817682768376847685768676877688768976907691769276937694769576967697769876997700770177027703770477057706770777087709771077117712771377147715771677177718771977207721772277237724772577267727772877297730773177327733773477357736773777387739774077417742774377447745774677477748774977507751775277537754775577567757775877597760776177627763776477657766776777687769777077717772777377747775777677777778777977807781778277837784778577867787778877897790779177927793779477957796779777987799780078017802780378047805780678077808780978107811781278137814781578167817781878197820782178227823782478257826782778287829783078317832783378347835783678377838783978407841784278437844784578467847784878497850785178527853785478557856785778587859786078617862786378647865786678677868786978707871787278737874787578767877787878797880788178827883788478857886788778887889789078917892789378947895789678977898789979007901790279037904790579067907790879097910791179127913791479157916791779187919792079217922792379247925792679277928792979307931793279337934793579367937793879397940794179427943794479457946794779487949795079517952795379547955795679577958795979607961796279637964796579667967796879697970797179727973797479757976797779787979798079817982798379847985798679877988798979907991799279937994799579967997799879998000800180028003800480058006800780088009801080118012801380148015801680178018801980208021802280238024802580268027802880298030803180328033803480358036803780388039804080418042804380448045804680478048804980508051805280538054805580568057805880598060806180628063806480658066806780688069807080718072807380748075807680778078807980808081808280838084808580868087808880898090809180928093809480958096809780988099810081018102810381048105810681078108810981108111811281138114811581168117811881198120812181228123812481258126812781288129813081318132813381348135813681378138813981408141814281438144814581468147814881498150815181528153815481558156815781588159816081618162816381648165816681678168816981708171817281738174817581768177817881798180818181828183818481858186818781888189819081918192819381948195819681978198819982008201820282038204820582068207820882098210821182128213821482158216821782188219822082218222822382248225822682278228822982308231823282338234823582368237823882398240824182428243824482458246824782488249825082518252825382548255825682578258825982608261826282638264826582668267826882698270827182728273827482758276827782788279828082818282828382848285828682878288828982908291829282938294829582968297829882998300830183028303830483058306830783088309831083118312831383148315831683178318831983208321832283238324832583268327832883298330833183328333833483358336833783388339834083418342834383448345834683478348834983508351835283538354835583568357835883598360836183628363836483658366836783688369837083718372837383748375837683778378837983808381838283838384838583868387838883898390839183928393839483958396839783988399840084018402840384048405840684078408840984108411841284138414841584168417841884198420842184228423842484258426842784288429843084318432843384348435843684378438843984408441844284438444844584468447844884498450845184528453845484558456845784588459846084618462846384648465846684678468846984708471847284738474847584768477847884798480848184828483848484858486848784888489849084918492849384948495849684978498849985008501850285038504850585068507850885098510851185128513851485158516851785188519852085218522852385248525852685278528852985308531853285338534853585368537853885398540854185428543854485458546854785488549855085518552855385548555855685578558855985608561856285638564856585668567856885698570857185728573857485758576857785788579858085818582858385848585858685878588858985908591859285938594859585968597859885998600860186028603860486058606860786088609861086118612861386148615861686178618861986208621862286238624862586268627862886298630863186328633863486358636863786388639864086418642864386448645864686478648864986508651865286538654865586568657865886598660866186628663866486658666866786688669867086718672867386748675867686778678867986808681868286838684868586868687868886898690869186928693869486958696869786988699870087018702870387048705870687078708870987108711871287138714871587168717871887198720872187228723872487258726872787288729873087318732873387348735873687378738873987408741874287438744874587468747874887498750875187528753875487558756875787588759876087618762876387648765876687678768876987708771877287738774877587768777877887798780878187828783878487858786878787888789879087918792879387948795879687978798879988008801880288038804880588068807880888098810881188128813881488158816881788188819882088218822882388248825882688278828882988308831883288338834883588368837883888398840884188428843884488458846884788488849885088518852885388548855885688578858885988608861886288638864886588668867886888698870887188728873887488758876887788788879888088818882888388848885888688878888888988908891889288938894889588968897889888998900890189028903890489058906890789088909891089118912891389148915891689178918891989208921892289238924892589268927892889298930893189328933893489358936893789388939894089418942894389448945894689478948894989508951895289538954895589568957895889598960896189628963896489658966896789688969897089718972897389748975897689778978897989808981898289838984898589868987898889898990899189928993899489958996899789988999900090019002900390049005900690079008900990109011901290139014901590169017901890199020902190229023902490259026902790289029903090319032903390349035903690379038903990409041904290439044904590469047904890499050905190529053905490559056905790589059906090619062906390649065906690679068906990709071907290739074907590769077907890799080908190829083908490859086908790889089909090919092909390949095909690979098909991009101910291039104910591069107910891099110911191129113911491159116911791189119912091219122912391249125912691279128912991309131913291339134913591369137913891399140914191429143914491459146914791489149915091519152915391549155915691579158915991609161916291639164916591669167916891699170917191729173917491759176917791789179918091819182918391849185918691879188918991909191919291939194919591969197919891999200920192029203920492059206920792089209921092119212921392149215921692179218921992209221922292239224922592269227922892299230923192329233923492359236923792389239924092419242924392449245924692479248924992509251925292539254925592569257925892599260926192629263926492659266926792689269927092719272927392749275927692779278927992809281928292839284928592869287928892899290929192929293929492959296929792989299930093019302930393049305930693079308930993109311931293139314931593169317931893199320932193229323932493259326932793289329933093319332933393349335933693379338933993409341934293439344934593469347934893499350935193529353935493559356935793589359936093619362936393649365936693679368936993709371937293739374937593769377937893799380938193829383938493859386938793889389939093919392939393949395939693979398939994009401940294039404940594069407940894099410941194129413941494159416941794189419942094219422942394249425942694279428942994309431943294339434943594369437943894399440944194429443944494459446944794489449945094519452945394549455945694579458945994609461946294639464946594669467946894699470947194729473947494759476947794789479948094819482948394849485948694879488948994909491949294939494949594969497949894999500950195029503950495059506950795089509951095119512951395149515951695179518951995209521952295239524952595269527952895299530953195329533953495359536953795389539954095419542954395449545954695479548954995509551955295539554955595569557955895599560956195629563956495659566956795689569957095719572957395749575957695779578957995809581958295839584958595869587958895899590959195929593959495959596959795989599960096019602960396049605960696079608960996109611961296139614961596169617961896199620962196229623962496259626962796289629963096319632963396349635963696379638963996409641964296439644964596469647964896499650965196529653965496559656965796589659966096619662966396649665966696679668966996709671967296739674967596769677967896799680968196829683968496859686968796889689969096919692969396949695969696979698969997009701970297039704970597069707970897099710971197129713971497159716971797189719972097219722972397249725972697279728972997309731973297339734973597369737973897399740974197429743974497459746974797489749975097519752975397549755975697579758975997609761976297639764976597669767976897699770977197729773977497759776977797789779978097819782978397849785978697879788978997909791979297939794979597969797979897999800980198029803980498059806980798089809981098119812981398149815981698179818981998209821982298239824982598269827982898299830983198329833983498359836983798389839984098419842984398449845984698479848984998509851985298539854985598569857985898599860986198629863986498659866986798689869987098719872987398749875987698779878987998809881988298839884988598869887988898899890989198929893989498959896989798989899990099019902990399049905990699079908990999109911991299139914991599169917991899199920992199229923992499259926992799289929993099319932993399349935993699379938993999409941994299439944994599469947994899499950995199529953995499559956995799589959996099619962996399649965996699679968996999709971997299739974997599769977997899799980998199829983998499859986998799889989999099919992999399949995999699979998999910000100011000210003100041000510006100071000810009100101001110012100131001410015100161001710018100191002010021100221002310024100251002610027100281002910030100311003210033100341003510036100371003810039100401004110042100431004410045100461004710048100491005010051100521005310054100551005610057100581005910060100611006210063100641006510066100671006810069100701007110072100731007410075100761007710078100791008010081100821008310084100851008610087100881008910090100911009210093100941009510096100971009810099101001010110102101031010410105101061010710108101091011010111101121011310114101151011610117101181011910120101211012210123101241012510126101271012810129101301013110132101331013410135101361013710138101391014010141101421014310144101451014610147101481014910150101511015210153101541015510156101571015810159101601016110162101631016410165101661016710168101691017010171101721017310174101751017610177101781017910180101811018210183101841018510186101871018810189101901019110192101931019410195101961019710198101991020010201102021020310204102051020610207102081020910210102111021210213102141021510216102171021810219102201022110222102231022410225102261022710228102291023010231102321023310234102351023610237102381023910240102411024210243102441024510246102471024810249102501025110252102531025410255102561025710258102591026010261102621026310264102651026610267102681026910270102711027210273102741027510276102771027810279102801028110282102831028410285102861028710288102891029010291102921029310294102951029610297102981029910300103011030210303103041030510306103071030810309103101031110312103131031410315103161031710318103191032010321103221032310324103251032610327103281032910330103311033210333103341033510336103371033810339103401034110342103431034410345103461034710348103491035010351103521035310354103551035610357103581035910360103611036210363103641036510366103671036810369103701037110372103731037410375103761037710378103791038010381103821038310384103851038610387103881038910390103911039210393103941039510396103971039810399104001040110402104031040410405104061040710408104091041010411104121041310414104151041610417104181041910420104211042210423104241042510426104271042810429104301043110432104331043410435104361043710438104391044010441104421044310444104451044610447104481044910450104511045210453104541045510456104571045810459104601046110462104631046410465104661046710468104691047010471104721047310474104751047610477104781047910480104811048210483104841048510486104871048810489104901049110492104931049410495104961049710498104991050010501105021050310504105051050610507105081050910510105111051210513105141051510516105171051810519105201052110522105231052410525105261052710528105291053010531105321053310534105351053610537105381053910540105411054210543105441054510546105471054810549105501055110552105531055410555105561055710558105591056010561105621056310564105651056610567105681056910570105711057210573105741057510576105771057810579105801058110582105831058410585105861058710588105891059010591105921059310594105951059610597105981059910600106011060210603106041060510606106071060810609106101061110612106131061410615106161061710618106191062010621106221062310624106251062610627106281062910630106311063210633106341063510636106371063810639106401064110642106431064410645106461064710648106491065010651106521065310654106551065610657106581065910660106611066210663106641066510666106671066810669106701067110672106731067410675106761067710678106791068010681106821068310684106851068610687106881068910690106911069210693106941069510696106971069810699107001070110702107031070410705107061070710708107091071010711107121071310714107151071610717107181071910720107211072210723107241072510726107271072810729107301073110732107331073410735107361073710738107391074010741107421074310744107451074610747107481074910750107511075210753107541075510756107571075810759107601076110762107631076410765107661076710768107691077010771107721077310774107751077610777107781077910780107811078210783107841078510786107871078810789107901079110792107931079410795107961079710798107991080010801108021080310804108051080610807108081080910810108111081210813108141081510816108171081810819108201082110822108231082410825108261082710828108291083010831108321083310834108351083610837108381083910840108411084210843108441084510846108471084810849108501085110852108531085410855108561085710858108591086010861108621086310864108651086610867108681086910870108711087210873108741087510876108771087810879108801088110882108831088410885108861088710888108891089010891108921089310894108951089610897108981089910900109011090210903109041090510906109071090810909109101091110912109131091410915109161091710918109191092010921109221092310924109251092610927109281092910930109311093210933109341093510936109371093810939109401094110942109431094410945109461094710948109491095010951109521095310954109551095610957109581095910960109611096210963109641096510966109671096810969109701097110972109731097410975109761097710978109791098010981109821098310984109851098610987109881098910990109911099210993109941099510996109971099810999110001100111002110031100411005110061100711008110091101011011110121101311014110151101611017110181101911020110211102211023110241102511026110271102811029110301103111032110331103411035110361103711038110391104011041110421104311044110451104611047110481104911050110511105211053110541105511056110571105811059110601106111062110631106411065110661106711068110691107011071110721107311074110751107611077110781107911080110811108211083110841108511086110871108811089110901109111092110931109411095110961109711098110991110011101111021110311104111051110611107111081110911110111111111211113111141111511116111171111811119111201112111122111231112411125111261112711128111291113011131111321113311134111351113611137111381113911140111411114211143111441114511146111471114811149111501115111152111531115411155111561115711158111591116011161111621116311164111651116611167111681116911170111711117211173111741117511176111771117811179111801118111182111831118411185111861118711188111891119011191111921119311194111951119611197111981119911200112011120211203112041120511206112071120811209112101121111212112131121411215112161121711218112191122011221112221122311224112251122611227112281122911230112311123211233112341123511236112371123811239112401124111242112431124411245112461124711248112491125011251112521125311254112551125611257112581125911260112611126211263112641126511266112671126811269112701127111272112731127411275112761127711278112791128011281112821128311284112851128611287112881128911290112911129211293112941129511296112971129811299113001130111302113031130411305113061130711308113091131011311113121131311314113151131611317113181131911320113211132211323113241132511326113271132811329113301133111332113331133411335113361133711338113391134011341113421134311344113451134611347113481134911350113511135211353113541135511356113571135811359113601136111362113631136411365113661136711368113691137011371113721137311374113751137611377113781137911380113811138211383113841138511386113871138811389113901139111392113931139411395113961139711398113991140011401114021140311404114051140611407114081140911410114111141211413114141141511416114171141811419114201142111422114231142411425114261142711428114291143011431114321143311434114351143611437114381143911440114411144211443114441144511446114471144811449114501145111452114531145411455114561145711458114591146011461114621146311464114651146611467114681146911470114711147211473114741147511476114771147811479114801148111482114831148411485114861148711488114891149011491114921149311494114951149611497114981149911500115011150211503115041150511506115071150811509115101151111512115131151411515115161151711518115191152011521115221152311524115251152611527115281152911530115311153211533115341153511536115371153811539115401154111542115431154411545115461154711548115491155011551115521155311554115551155611557115581155911560115611156211563115641156511566115671156811569115701157111572115731157411575115761157711578115791158011581115821158311584115851158611587115881158911590115911159211593115941159511596115971159811599116001160111602116031160411605116061160711608116091161011611116121161311614116151161611617116181161911620116211162211623116241162511626116271162811629116301163111632116331163411635116361163711638116391164011641116421164311644116451164611647116481164911650116511165211653116541165511656116571165811659116601166111662116631166411665116661166711668116691167011671116721167311674116751167611677116781167911680116811168211683116841168511686116871168811689116901169111692116931169411695116961169711698116991170011701117021170311704117051170611707117081170911710117111171211713117141171511716117171171811719117201172111722117231172411725117261172711728117291173011731117321173311734117351173611737117381173911740117411174211743117441174511746117471174811749117501175111752117531175411755117561175711758117591176011761117621176311764117651176611767117681176911770117711177211773117741177511776117771177811779117801178111782117831178411785117861178711788117891179011791117921179311794117951179611797117981179911800118011180211803118041180511806118071180811809118101181111812118131181411815118161181711818118191182011821118221182311824118251182611827118281182911830118311183211833118341183511836118371183811839118401184111842118431184411845118461184711848118491185011851118521185311854118551185611857118581185911860118611186211863118641186511866118671186811869118701187111872118731187411875118761187711878118791188011881118821188311884118851188611887118881188911890118911189211893118941189511896118971189811899119001190111902119031190411905119061190711908119091191011911119121191311914119151191611917119181191911920119211192211923119241192511926119271192811929119301193111932119331193411935119361193711938119391194011941119421194311944119451194611947119481194911950119511195211953119541195511956119571195811959119601196111962119631196411965119661196711968119691197011971119721197311974119751197611977119781197911980119811198211983119841198511986119871198811989119901199111992119931199411995119961199711998119991200012001120021200312004120051200612007120081200912010120111201212013120141201512016120171201812019120201202112022120231202412025120261202712028120291203012031120321203312034120351203612037120381203912040120411204212043120441204512046120471204812049120501205112052120531205412055120561205712058120591206012061120621206312064120651206612067120681206912070120711207212073120741207512076120771207812079120801208112082120831208412085120861208712088120891209012091120921209312094120951209612097120981209912100121011210212103121041210512106121071210812109121101211112112121131211412115121161211712118121191212012121121221212312124121251212612127121281212912130121311213212133121341213512136121371213812139121401214112142121431214412145121461214712148121491215012151121521215312154121551215612157121581215912160121611216212163121641216512166121671216812169121701217112172121731217412175121761217712178121791218012181121821218312184121851218612187121881218912190121911219212193121941219512196121971219812199122001220112202122031220412205122061220712208122091221012211122121221312214122151221612217122181221912220122211222212223122241222512226122271222812229122301223112232122331223412235122361223712238122391224012241122421224312244122451224612247122481224912250122511225212253122541225512256122571225812259122601226112262122631226412265122661226712268122691227012271122721227312274122751227612277122781227912280122811228212283122841228512286122871228812289122901229112292122931229412295122961229712298122991230012301123021230312304123051230612307123081230912310123111231212313123141231512316123171231812319123201232112322123231232412325123261232712328123291233012331123321233312334123351233612337123381233912340123411234212343123441234512346123471234812349123501235112352123531235412355123561235712358123591236012361123621236312364123651236612367123681236912370123711237212373123741237512376123771237812379123801238112382123831238412385123861238712388123891239012391123921239312394123951239612397123981239912400124011240212403124041240512406124071240812409124101241112412124131241412415124161241712418124191242012421124221242312424124251242612427124281242912430124311243212433124341243512436124371243812439124401244112442124431244412445124461244712448124491245012451124521245312454124551245612457124581245912460124611246212463124641246512466124671246812469124701247112472124731247412475124761247712478124791248012481124821248312484124851248612487124881248912490124911249212493124941249512496124971249812499125001250112502125031250412505125061250712508125091251012511125121251312514125151251612517125181251912520125211252212523125241252512526125271252812529125301253112532125331253412535125361253712538125391254012541125421254312544125451254612547125481254912550125511255212553125541255512556125571255812559125601256112562125631256412565125661256712568125691257012571125721257312574125751257612577125781257912580125811258212583125841258512586125871258812589125901259112592125931259412595125961259712598125991260012601126021260312604126051260612607126081260912610126111261212613126141261512616126171261812619126201262112622126231262412625126261262712628126291263012631126321263312634126351263612637126381263912640126411264212643126441264512646126471264812649126501265112652126531265412655126561265712658126591266012661126621266312664126651266612667126681266912670126711267212673126741267512676126771267812679126801268112682126831268412685126861268712688126891269012691126921269312694126951269612697126981269912700127011270212703127041270512706127071270812709127101271112712127131271412715127161271712718127191272012721127221272312724127251272612727127281272912730127311273212733127341273512736127371273812739127401274112742127431274412745127461274712748127491275012751127521275312754127551275612757127581275912760127611276212763127641276512766127671276812769127701277112772127731277412775127761277712778127791278012781127821278312784127851278612787127881278912790127911279212793127941279512796127971279812799128001280112802128031280412805128061280712808128091281012811128121281312814128151281612817128181281912820128211282212823128241282512826128271282812829128301283112832128331283412835128361283712838128391284012841128421284312844128451284612847128481284912850128511285212853128541285512856128571285812859128601286112862128631286412865128661286712868128691287012871128721287312874128751287612877128781287912880128811288212883128841288512886128871288812889128901289112892128931289412895128961289712898128991290012901129021290312904129051290612907129081290912910129111291212913129141291512916129171291812919129201292112922129231292412925129261292712928129291293012931129321293312934129351293612937129381293912940129411294212943129441294512946129471294812949129501295112952129531295412955129561295712958129591296012961129621296312964129651296612967129681296912970129711297212973129741297512976129771297812979129801298112982129831298412985129861298712988129891299012991129921299312994129951299612997129981299913000130011300213003130041300513006130071300813009130101301113012130131301413015130161301713018130191302013021130221302313024130251302613027130281302913030130311303213033130341303513036130371303813039130401304113042130431304413045130461304713048130491305013051130521305313054130551305613057130581305913060130611306213063130641306513066130671306813069130701307113072130731307413075130761307713078130791308013081130821308313084130851308613087130881308913090130911309213093130941309513096130971309813099131001310113102131031310413105131061310713108131091311013111131121311313114131151311613117131181311913120131211312213123131241312513126131271312813129131301313113132131331313413135131361313713138131391314013141131421314313144131451314613147131481314913150131511315213153131541315513156131571315813159131601316113162131631316413165131661316713168131691317013171131721317313174131751317613177131781317913180131811318213183131841318513186131871318813189131901319113192131931319413195131961319713198131991320013201132021320313204132051320613207132081320913210132111321213213132141321513216132171321813219132201322113222132231322413225132261322713228132291323013231132321323313234132351323613237132381323913240132411324213243132441324513246132471324813249132501325113252132531325413255132561325713258132591326013261132621326313264132651326613267132681326913270132711327213273132741327513276132771327813279132801328113282132831328413285132861328713288132891329013291132921329313294132951329613297132981329913300133011330213303133041330513306133071330813309133101331113312133131331413315133161331713318133191332013321133221332313324133251332613327133281332913330133311333213333133341333513336133371333813339133401334113342133431334413345133461334713348133491335013351133521335313354133551335613357133581335913360133611336213363133641336513366133671336813369133701337113372133731337413375133761337713378133791338013381133821338313384133851338613387133881338913390133911339213393133941339513396133971339813399134001340113402134031340413405134061340713408134091341013411134121341313414134151341613417134181341913420134211342213423134241342513426134271342813429134301343113432134331343413435134361343713438134391344013441134421344313444134451344613447134481344913450134511345213453134541345513456134571345813459134601346113462134631346413465134661346713468134691347013471134721347313474134751347613477134781347913480134811348213483134841348513486134871348813489134901349113492134931349413495134961349713498134991350013501135021350313504135051350613507135081350913510135111351213513135141351513516135171351813519135201352113522135231352413525135261352713528135291353013531135321353313534135351353613537135381353913540135411354213543135441354513546135471354813549135501355113552135531355413555135561355713558135591356013561135621356313564135651356613567135681356913570135711357213573135741357513576135771357813579135801358113582135831358413585135861358713588135891359013591135921359313594135951359613597135981359913600136011360213603136041360513606136071360813609136101361113612136131361413615136161361713618136191362013621136221362313624136251362613627136281362913630136311363213633136341363513636136371363813639136401364113642136431364413645136461364713648136491365013651136521365313654136551365613657136581365913660136611366213663136641366513666136671366813669136701367113672136731367413675136761367713678136791368013681136821368313684136851368613687136881368913690136911369213693136941369513696136971369813699137001370113702137031370413705137061370713708137091371013711137121371313714137151371613717137181371913720137211372213723137241372513726137271372813729137301373113732137331373413735137361373713738137391374013741137421374313744137451374613747137481374913750137511375213753137541375513756137571375813759137601376113762137631376413765137661376713768137691377013771137721377313774137751377613777137781377913780137811378213783137841378513786137871378813789137901379113792137931379413795137961379713798137991380013801138021380313804138051380613807138081380913810138111381213813138141381513816138171381813819138201382113822138231382413825138261382713828138291383013831138321383313834138351383613837138381383913840138411384213843138441384513846138471384813849138501385113852138531385413855138561385713858138591386013861138621386313864138651386613867138681386913870138711387213873138741387513876138771387813879138801388113882138831388413885138861388713888138891389013891138921389313894138951389613897138981389913900139011390213903139041390513906139071390813909139101391113912139131391413915139161391713918139191392013921139221392313924139251392613927139281392913930139311393213933139341393513936139371393813939139401394113942139431394413945139461394713948139491395013951139521395313954139551395613957139581395913960139611396213963139641396513966139671396813969139701397113972139731397413975139761397713978139791398013981139821398313984139851398613987139881398913990139911399213993139941399513996139971399813999140001400114002140031400414005140061400714008140091401014011140121401314014140151401614017140181401914020140211402214023140241402514026140271402814029140301403114032140331403414035140361403714038140391404014041140421404314044140451404614047140481404914050140511405214053140541405514056140571405814059140601406114062140631406414065140661406714068140691407014071140721407314074140751407614077140781407914080140811408214083140841408514086140871408814089140901409114092140931409414095140961409714098140991410014101141021410314104141051410614107141081410914110141111411214113141141411514116141171411814119141201412114122141231412414125141261412714128141291413014131141321413314134141351413614137141381413914140141411414214143141441414514146141471414814149141501415114152141531415414155141561415714158141591416014161141621416314164141651416614167141681416914170141711417214173141741417514176141771417814179141801418114182141831418414185141861418714188141891419014191141921419314194141951419614197141981419914200142011420214203142041420514206142071420814209142101421114212142131421414215142161421714218142191422014221142221422314224142251422614227142281422914230142311423214233142341423514236142371423814239142401424114242142431424414245142461424714248142491425014251142521425314254142551425614257142581425914260142611426214263142641426514266142671426814269142701427114272142731427414275142761427714278142791428014281142821428314284142851428614287142881428914290142911429214293142941429514296142971429814299143001430114302143031430414305143061430714308143091431014311143121431314314143151431614317143181431914320143211432214323143241432514326143271432814329143301433114332143331433414335143361433714338143391434014341143421434314344143451434614347143481434914350143511435214353143541435514356143571435814359143601436114362143631436414365143661436714368143691437014371143721437314374143751437614377143781437914380143811438214383143841438514386143871438814389143901439114392143931439414395143961439714398143991440014401144021440314404144051440614407144081440914410144111441214413144141441514416144171441814419144201442114422144231442414425144261442714428144291443014431144321443314434144351443614437144381443914440144411444214443144441444514446144471444814449144501445114452144531445414455144561445714458144591446014461144621446314464144651446614467144681446914470144711447214473144741447514476144771447814479144801448114482144831448414485144861448714488144891449014491144921449314494144951449614497144981449914500145011450214503145041450514506145071450814509145101451114512145131451414515145161451714518145191452014521145221452314524145251452614527145281452914530145311453214533145341453514536145371453814539145401454114542145431454414545145461454714548145491455014551145521455314554145551455614557145581455914560145611456214563145641456514566145671456814569145701457114572145731457414575145761457714578145791458014581145821458314584145851458614587145881458914590145911459214593145941459514596145971459814599146001460114602146031460414605146061460714608146091461014611146121461314614146151461614617146181461914620146211462214623146241462514626146271462814629146301463114632146331463414635146361463714638146391464014641146421464314644146451464614647146481464914650146511465214653146541465514656146571465814659146601466114662146631466414665146661466714668146691467014671146721467314674146751467614677146781467914680146811468214683146841468514686146871468814689146901469114692146931469414695146961469714698146991470014701147021470314704147051470614707147081470914710147111471214713147141471514716147171471814719147201472114722147231472414725147261472714728147291473014731147321473314734147351473614737147381473914740147411474214743147441474514746147471474814749147501475114752147531475414755147561475714758147591476014761147621476314764147651476614767147681476914770147711477214773147741477514776147771477814779147801478114782147831478414785147861478714788147891479014791147921479314794147951479614797147981479914800148011480214803148041480514806148071480814809148101481114812148131481414815148161481714818148191482014821148221482314824148251482614827148281482914830148311483214833148341483514836148371483814839148401484114842148431484414845148461484714848148491485014851148521485314854148551485614857148581485914860148611486214863148641486514866148671486814869148701487114872148731487414875148761487714878148791488014881148821488314884148851488614887148881488914890148911489214893148941489514896148971489814899149001490114902149031490414905149061490714908149091491014911149121491314914149151491614917149181491914920149211492214923149241492514926149271492814929149301493114932149331493414935149361493714938149391494014941149421494314944149451494614947149481494914950149511495214953149541495514956149571495814959149601496114962149631496414965149661496714968149691497014971149721497314974149751497614977149781497914980149811498214983149841498514986149871498814989149901499114992149931499414995149961499714998149991500015001150021500315004150051500615007150081500915010150111501215013150141501515016150171501815019150201502115022150231502415025150261502715028150291503015031150321503315034150351503615037150381503915040150411504215043150441504515046150471504815049150501505115052150531505415055150561505715058150591506015061150621506315064150651506615067150681506915070150711507215073150741507515076150771507815079150801508115082150831508415085150861508715088150891509015091150921509315094150951509615097150981509915100151011510215103151041510515106151071510815109151101511115112151131511415115151161511715118151191512015121151221512315124151251512615127151281512915130151311513215133151341513515136151371513815139151401514115142151431514415145151461514715148151491515015151151521515315154151551515615157151581515915160151611516215163151641516515166151671516815169151701517115172151731517415175151761517715178151791518015181151821518315184151851518615187151881518915190151911519215193151941519515196151971519815199152001520115202152031520415205152061520715208152091521015211152121521315214152151521615217152181521915220152211522215223152241522515226152271522815229152301523115232152331523415235152361523715238152391524015241152421524315244152451524615247152481524915250152511525215253152541525515256152571525815259152601526115262152631526415265152661526715268152691527015271152721527315274152751527615277152781527915280152811528215283152841528515286152871528815289152901529115292152931529415295152961529715298152991530015301153021530315304153051530615307153081530915310153111531215313153141531515316153171531815319153201532115322153231532415325153261532715328153291533015331153321533315334153351533615337153381533915340153411534215343153441534515346153471534815349153501535115352153531535415355153561535715358153591536015361153621536315364153651536615367153681536915370153711537215373153741537515376153771537815379153801538115382153831538415385153861538715388153891539015391153921539315394153951539615397153981539915400154011540215403154041540515406154071540815409154101541115412154131541415415154161541715418154191542015421154221542315424154251542615427154281542915430154311543215433154341543515436154371543815439154401544115442154431544415445154461544715448154491545015451154521545315454154551545615457154581545915460154611546215463154641546515466154671546815469154701547115472154731547415475154761547715478154791548015481154821548315484154851548615487154881548915490154911549215493154941549515496154971549815499155001550115502155031550415505155061550715508155091551015511155121551315514155151551615517155181551915520155211552215523155241552515526155271552815529155301553115532155331553415535155361553715538155391554015541155421554315544155451554615547155481554915550155511555215553155541555515556155571555815559155601556115562155631556415565155661556715568155691557015571155721557315574155751557615577155781557915580155811558215583155841558515586155871558815589155901559115592155931559415595155961559715598155991560015601156021560315604156051560615607156081560915610156111561215613156141561515616156171561815619156201562115622156231562415625156261562715628156291563015631156321563315634156351563615637156381563915640156411564215643156441564515646156471564815649156501565115652156531565415655156561565715658156591566015661156621566315664156651566615667156681566915670156711567215673156741567515676156771567815679156801568115682156831568415685156861568715688156891569015691156921569315694156951569615697156981569915700157011570215703157041570515706157071570815709157101571115712157131571415715157161571715718157191572015721157221572315724157251572615727157281572915730157311573215733157341573515736157371573815739157401574115742157431574415745157461574715748157491575015751157521575315754157551575615757157581575915760157611576215763157641576515766157671576815769157701577115772157731577415775157761577715778157791578015781157821578315784157851578615787157881578915790157911579215793157941579515796157971579815799158001580115802158031580415805158061580715808158091581015811158121581315814158151581615817158181581915820158211582215823158241582515826158271582815829158301583115832158331583415835158361583715838158391584015841158421584315844158451584615847158481584915850158511585215853158541585515856158571585815859158601586115862158631586415865158661586715868158691587015871158721587315874158751587615877158781587915880158811588215883158841588515886158871588815889158901589115892158931589415895158961589715898158991590015901159021590315904159051590615907159081590915910159111591215913159141591515916159171591815919159201592115922159231592415925159261592715928159291593015931159321593315934159351593615937159381593915940159411594215943159441594515946159471594815949159501595115952159531595415955159561595715958159591596015961159621596315964159651596615967159681596915970159711597215973159741597515976159771597815979159801598115982159831598415985159861598715988159891599015991159921599315994159951599615997159981599916000160011600216003160041600516006160071600816009160101601116012160131601416015160161601716018160191602016021160221602316024160251602616027160281602916030160311603216033160341603516036160371603816039160401604116042160431604416045160461604716048160491605016051160521605316054160551605616057160581605916060160611606216063160641606516066160671606816069160701607116072160731607416075160761607716078160791608016081160821608316084160851608616087160881608916090160911609216093160941609516096160971609816099161001610116102161031610416105161061610716108161091611016111161121611316114161151611616117161181611916120161211612216123161241612516126161271612816129161301613116132161331613416135161361613716138161391614016141161421614316144161451614616147161481614916150161511615216153161541615516156161571615816159161601616116162161631616416165161661616716168161691617016171161721617316174161751617616177161781617916180161811618216183161841618516186161871618816189161901619116192161931619416195161961619716198161991620016201162021620316204162051620616207162081620916210162111621216213162141621516216162171621816219162201622116222162231622416225162261622716228162291623016231162321623316234162351623616237162381623916240162411624216243162441624516246162471624816249162501625116252162531625416255162561625716258162591626016261162621626316264162651626616267162681626916270162711627216273162741627516276162771627816279162801628116282162831628416285162861628716288162891629016291162921629316294162951629616297162981629916300163011630216303163041630516306163071630816309163101631116312163131631416315163161631716318163191632016321163221632316324163251632616327163281632916330163311633216333163341633516336163371633816339163401634116342163431634416345163461634716348163491635016351163521635316354163551635616357163581635916360163611636216363163641636516366163671636816369163701637116372163731637416375163761637716378163791638016381163821638316384163851638616387163881638916390163911639216393163941639516396163971639816399164001640116402164031640416405164061640716408164091641016411164121641316414164151641616417164181641916420164211642216423164241642516426164271642816429164301643116432164331643416435164361643716438164391644016441164421644316444164451644616447164481644916450164511645216453164541645516456164571645816459164601646116462164631646416465164661646716468164691647016471164721647316474164751647616477164781647916480164811648216483164841648516486164871648816489164901649116492164931649416495164961649716498164991650016501165021650316504165051650616507165081650916510165111651216513165141651516516165171651816519165201652116522165231652416525165261652716528165291653016531165321653316534165351653616537165381653916540165411654216543165441654516546165471654816549165501655116552165531655416555165561655716558165591656016561165621656316564165651656616567165681656916570165711657216573165741657516576165771657816579165801658116582165831658416585165861658716588165891659016591165921659316594165951659616597165981659916600166011660216603166041660516606166071660816609166101661116612166131661416615166161661716618166191662016621166221662316624166251662616627166281662916630166311663216633166341663516636166371663816639166401664116642166431664416645166461664716648166491665016651166521665316654166551665616657166581665916660166611666216663166641666516666166671666816669166701667116672166731667416675166761667716678166791668016681166821668316684166851668616687166881668916690166911669216693166941669516696166971669816699167001670116702167031670416705167061670716708167091671016711167121671316714167151671616717167181671916720167211672216723167241672516726167271672816729167301673116732167331673416735167361673716738167391674016741167421674316744167451674616747167481674916750167511675216753167541675516756167571675816759167601676116762167631676416765167661676716768167691677016771167721677316774167751677616777167781677916780167811678216783167841678516786167871678816789167901679116792167931679416795167961679716798167991680016801168021680316804168051680616807168081680916810168111681216813168141681516816168171681816819168201682116822168231682416825168261682716828168291683016831168321683316834168351683616837168381683916840168411684216843168441684516846168471684816849168501685116852168531685416855168561685716858168591686016861168621686316864168651686616867168681686916870168711687216873168741687516876168771687816879168801688116882168831688416885
  1. %\documentclass[]{TimesAPriori_MIT}%%6x9
  2. \documentclass[7x10]{TimesAPriori_MIT}%%7x10
  3. %\documentclass[8x10]{TimesAPriori_MIT}%%8x10
  4. \usepackage[utf8]{inputenc}
  5. %% \usepackage{setspace}
  6. %% \doublespacing
  7. \usepackage{listings}
  8. \usepackage{verbatim}
  9. \usepackage{amssymb}
  10. \usepackage{lmodern} % better typewriter font for code
  11. %\usepackage{wrapfig}
  12. \usepackage{multirow}
  13. \usepackage{tcolorbox}
  14. \usepackage{color}
  15. %\usepackage{ifthen}
  16. \usepackage{upquote}
  17. \definecolor{lightgray}{gray}{1}
  18. \newcommand{\black}[1]{{\color{black} #1}}
  19. %\newcommand{\gray}[1]{{\color{lightgray} #1}}
  20. \newcommand{\gray}[1]{{\color{gray} #1}}
  21. \def\racketEd{0}
  22. \def\pythonEd{1}
  23. \def\edition{0}
  24. % material that is specific to the Racket edition of the book
  25. \newcommand{\racket}[1]{{\if\edition\racketEd\color{olive}{#1}\fi}}
  26. % would like a command for: \if\edition\racketEd\color{olive}
  27. % and : \fi\color{black}
  28. % material that is specific to the Python edition of the book
  29. \newcommand{\python}[1]{{\if\edition\pythonEd #1\fi}}
  30. %% For multiple indices:
  31. \usepackage{multind}
  32. \makeindex{subject}
  33. \makeindex{authors}
  34. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  35. \if\edition\racketEd
  36. \lstset{%
  37. language=Lisp,
  38. basicstyle=\ttfamily\small,
  39. morekeywords={seq,assign,program,block,define,lambda,match,goto,if,else,then,struct,Integer,Boolean,Vector,Void,Any,while,begin,define,public,override,class},
  40. deletekeywords={read,mapping,vector},
  41. escapechar=|,
  42. columns=flexible,
  43. moredelim=[is][\color{red}]{~}{~},
  44. showstringspaces=false
  45. }
  46. \fi
  47. \if\edition\pythonEd
  48. \lstset{%
  49. language=Python,
  50. basicstyle=\ttfamily\small,
  51. morekeywords={match,case,bool,int},
  52. deletekeywords={},
  53. escapechar=|,
  54. columns=flexible,
  55. moredelim=[is][\color{red}]{~}{~},
  56. showstringspaces=false
  57. }
  58. \fi
  59. %%% Any shortcut own defined macros place here
  60. %% sample of author macro:
  61. \input{defs}
  62. \newtheorem{exercise}[theorem]{Exercise}
  63. % Adjusted settings
  64. \setlength{\columnsep}{4pt}
  65. %% \begingroup
  66. %% \setlength{\intextsep}{0pt}%
  67. %% \setlength{\columnsep}{0pt}%
  68. %% \begin{wrapfigure}{r}{0.5\textwidth}
  69. %% \centering\includegraphics[width=\linewidth]{example-image-a}
  70. %% \caption{Basic layout}
  71. %% \end{wrapfigure}
  72. %% \lipsum[1]
  73. %% \endgroup
  74. \newbox\oiintbox
  75. \setbox\oiintbox=\hbox{$\lower2pt\hbox{\huge$\displaystyle\circ$}
  76. \hskip-13pt\displaystyle\int\hskip-7pt\int_{S}\ $}
  77. \def\oiint{\copy\oiintbox}
  78. \def\boldnabla{\hbox{\boldmath$\displaystyle\nabla$}}
  79. %\usepackage{showframe}
  80. \def\ShowFrameLinethickness{0.125pt}
  81. \addbibresource{book.bib}
  82. \begin{document}
  83. \frontmatter
  84. \HalfTitle{Essentials of Compilation, \python{Python}\racket{Racket} Edition}
  85. \halftitlepage
  86. \Title{Essentials of Compilation, \python{Python}\racket{Racket} Edition}
  87. \Booksubtitle{The Incremental, Nano-Pass Approach}
  88. %\edition{First Edition}
  89. \BookAuthor{Jeremy G. Siek}
  90. \imprint{The MIT Press\\
  91. Cambridge, Massachusetts\\
  92. London, England}
  93. \begin{copyrightpage}
  94. \textcopyright\ 2021 Jeremy G. Siek. Available for free viewing
  95. or personal downloading under the
  96. \href{https://creativecommons.org/licenses/by-nc-nd/2.0/uk/}{CC-BY-NC-ND}
  97. license.
  98. Copyright in this monograph has been licensed exclusively to The MIT
  99. Press, \url{http://mitpress.mit.edu}, which will be releasing the final
  100. version to the public in 2022. All inquiries regarding rights should
  101. be addressed to The MIT Press, Rights and Permissions Department.
  102. %% \textcopyright\ [YEAR] Massachusetts Institute of Technology
  103. %% All rights reserved. No part of this book may be reproduced in any
  104. %% form by any electronic or mechanical means (including photocopying,
  105. %% recording, or information storage and retrieval) without permission in
  106. %% writing from the publisher.
  107. %% This book was set in LaTeX by Jeremy G. Siek. Printed and bound in the
  108. %% United States of America.
  109. %% Library of Congress Cataloging-in-Publication Data is available.
  110. %% ISBN:
  111. %% 10\quad9\quad8\quad7\quad6\quad5\quad4\quad3\quad2\quad1
  112. \end{copyrightpage}
  113. \dedication{This book is dedicated to the programming language wonks
  114. at Indiana University.}
  115. %% \begin{epigraphpage}
  116. %% \epigraph{First Epigraph line goes here}{Mention author name if any,
  117. %% \textit{Book Name if any}}
  118. %% \epigraph{Second Epigraph line goes here}{Mention author name if any}
  119. %% \end{epigraphpage}
  120. \tableofcontents
  121. %\listoffigures
  122. %\listoftables
  123. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  124. \chapter*{Preface}
  125. \addcontentsline{toc}{fmbm}{Preface}
  126. There is a magical moment when a programmer presses the ``run'' button
  127. and the software begins to execute. Somehow a program written in a
  128. high-level language is running on a computer that is only capable of
  129. shuffling bits. Here we reveal the wizardry that makes that moment
  130. possible. Beginning with the ground breaking work of Backus and
  131. colleagues in the 1950s, computer scientists discovered techniques for
  132. constructing programs, called \emph{compilers}, that automatically
  133. translate high-level programs into machine code.
  134. We take you on a journey by constructing your own compiler for a small
  135. but powerful language. Along the way we explain the essential
  136. concepts, algorithms, and data structures that underlie compilers. We
  137. develop your understanding of how programs are mapped onto computer
  138. hardware, which is helpful when reasoning about properties at the
  139. junction between hardware and software such as execution time,
  140. software errors, and security vulnerabilities. For those interested
  141. in pursuing compiler construction, our goal is to provide a
  142. stepping-stone to advanced topics such as just-in-time compilation,
  143. program analysis, and program optimization. For those interested in
  144. designing and implementing programming languages, we connect
  145. language design choices to their impact on the compiler and the generated
  146. code.
  147. A compiler is typically organized as a sequence of stages that
  148. progressively translate a program to code that runs on hardware. We
  149. take this approach to the extreme by partitioning our compiler into a
  150. large number of \emph{nanopasses}, each of which performs a single
  151. task. This allows us to test the output of each pass in isolation, and
  152. furthermore, allows us to focus our attention which makes the compiler
  153. far easier to understand.
  154. The most familiar approach to describing compilers is with one pass
  155. per chapter. The problem with that approach is it obfuscates how
  156. language features motivate design choices in a compiler. We take an
  157. \emph{incremental} approach in which we build a complete compiler in
  158. each chapter, starting with a small input language that includes only
  159. arithmetic and variables and we add new language features in
  160. subsequent chapters.
  161. Our choice of language features is designed to elicit the fundamental
  162. concepts and algorithms used in compilers.
  163. \begin{itemize}
  164. \item We begin with integer arithmetic and local variables in
  165. Chapters~\ref{ch:trees-recur} and \ref{ch:Lvar}, where we introduce
  166. the fundamental tools of compiler construction: \emph{abstract
  167. syntax trees} and \emph{recursive functions}.
  168. \item In Chapter~\ref{ch:register-allocation-Lvar} we apply
  169. \emph{graph coloring} to assign variables to machine registers.
  170. \item Chapter~\ref{ch:Lif} adds \code{if} expressions, which motivates
  171. an elegant recursive algorithm for translating them into conditional
  172. \code{goto}'s.
  173. \item Chapter~\ref{ch:Rwhile} fleshes out support for imperative
  174. programming languages with the addition of loops\racket{ and mutable
  175. variables}. This elicits the need for \emph{dataflow
  176. analysis} in the register allocator.
  177. \item Chapter~\ref{ch:Rvec} adds heap-allocated tuples, motivating
  178. \emph{garbage collection}.
  179. \item Chapter~\ref{ch:Rfun} adds functions that are first-class values
  180. but lack lexical scoping, similar to the C programming
  181. language~\citep{Kernighan:1988nx} except that we generate efficient
  182. tail calls. The reader learns about the procedure call stack,
  183. \emph{calling conventions}, and their interaction with register
  184. allocation and garbage collection.
  185. \item Chapter~\ref{ch:Rlam} adds anonymous functions with lexical
  186. scoping, i.e., \emph{lambda abstraction}. The reader learns about
  187. \emph{closure conversion}, in which lambdas are translated into a
  188. combination of functions and tuples.
  189. % Chapter about classes and objects?
  190. \item Chapter~\ref{ch:Rdyn} adds \emph{dynamic typing}. Prior to this
  191. point the input languages are statically typed. The reader extends
  192. the statically typed language with an \code{Any} type which serves
  193. as a target for compiling the dynamically typed language.
  194. {\if\edition\pythonEd
  195. \item Chapter~\ref{ch:Robject} adds support for \emph{objects} and
  196. \emph{classes}.
  197. \fi}
  198. \item Chapter~\ref{ch:Rgrad} uses the \code{Any} type of
  199. Chapter~\ref{ch:Rdyn} to implement a \emph{gradually typed language}
  200. in which different regions of a program may be static or dynamically
  201. typed. The reader implements runtime support for \emph{proxies} that
  202. allow values to safely move between regions.
  203. \item Chapter~\ref{ch:Rpoly} adds \emph{generics} with autoboxing,
  204. leveraging the \code{Any} type and type casts developed in Chapters
  205. \ref{ch:Rdyn} and \ref{ch:Rgrad}.
  206. \end{itemize}
  207. There are many language features that we do not include. Our choices
  208. balance the incidental complexity of a feature versus the fundamental
  209. concepts that it exposes. For example, we include tuples and not
  210. records because they both elicit the study of heap allocation and
  211. garbage collection but records come with more incidental complexity.
  212. Since 2009 drafts of this book have served as the textbook for 16-week
  213. compiler courses for upper-level undergraduates and first-year
  214. graduate students at the University of Colorado and Indiana
  215. University.
  216. %
  217. Students come into the course having learned the basics of
  218. programming, data structures and algorithms, and discrete
  219. mathematics.
  220. %
  221. At the beginning of the course, students form groups of 2-4 people.
  222. The groups complete one chapter every two weeks, starting with
  223. Chapter~\ref{ch:Lvar}. Many chapters include a challenge problem that
  224. we assign to the graduate students. The last two weeks of the course
  225. involve a final project in which students design and implement a
  226. compiler extension of their choosing. Chapters~\ref{ch:Rgrad} and
  227. \ref{ch:Rpoly} can be used in support of these projects or they can
  228. replace some of the other chapters. For example, a course with an
  229. emphasis on statically-typed imperative languages could include
  230. Chapter~\ref{ch:Rpoly} but skip Chapter~\ref{ch:Rdyn}. For compiler
  231. courses at universities on the quarter system, with 10 weeks, we
  232. recommend completing up through Chapter~\ref{ch:Rfun}. (If pressed
  233. for time, one can skip Chapter~\ref{ch:Rvec} but still include
  234. Chapter~\ref{ch:Rfun} by limiting the number of parameters allowed in
  235. functions.) Figure~\ref{fig:chapter-dependences} depicts the
  236. dependencies between chapters.
  237. This book has also been used in compiler courses at California
  238. Polytechnic State University, Portland State University, Rose–Hulman
  239. Institute of Technology, University of Massachusetts Lowell, and the
  240. University of Vermont.
  241. \begin{figure}[tp]
  242. {\if\edition\racketEd
  243. \begin{tikzpicture}[baseline=(current bounding box.center)]
  244. \node (C1) at (0,1.5) {\small Ch.~\ref{ch:trees-recur} Preliminaries};
  245. \node (C2) at (4,1.5) {\small Ch.~\ref{ch:Lvar} Variables};
  246. \node (C3) at (8,1.5) {\small Ch.~\ref{ch:register-allocation-Lvar} Registers};
  247. \node (C4) at (0,0) {\small Ch.~\ref{ch:Lif} Conditionals};
  248. \node (C5) at (4,0) {\small Ch.~\ref{ch:Rvec} Tuples};
  249. \node (C6) at (8,0) {\small Ch.~\ref{ch:Rfun} Functions};
  250. \node (C9) at (0,-1.5) {\small Ch.~\ref{ch:Rwhile} Loops};
  251. \node (C8) at (4,-1.5) {\small Ch.~\ref{ch:Rdyn} Dynamic};
  252. \node (C7) at (8,-1.5) {\small Ch.~\ref{ch:Rlam} Lambda};
  253. \node (C10) at (4,-3) {\small Ch.~\ref{ch:Rgrad} Gradual Typing};
  254. \node (C11) at (8,-3) {\small Ch.~\ref{ch:Rpoly} Generics};
  255. \path[->] (C1) edge [above] node {} (C2);
  256. \path[->] (C2) edge [above] node {} (C3);
  257. \path[->] (C3) edge [above] node {} (C4);
  258. \path[->] (C4) edge [above] node {} (C5);
  259. \path[->] (C5) edge [above] node {} (C6);
  260. \path[->] (C6) edge [above] node {} (C7);
  261. \path[->] (C4) edge [above] node {} (C8);
  262. \path[->] (C4) edge [above] node {} (C9);
  263. \path[->] (C8) edge [above] node {} (C10);
  264. \path[->] (C10) edge [above] node {} (C11);
  265. \end{tikzpicture}
  266. \fi}
  267. {\if\edition\pythonEd
  268. \begin{tikzpicture}[baseline=(current bounding box.center)]
  269. \node (C1) at (0,1.5) {\small Ch.~\ref{ch:trees-recur} Preliminaries};
  270. \node (C2) at (4,1.5) {\small Ch.~\ref{ch:Lvar} Variables};
  271. \node (C3) at (8,1.5) {\small Ch.~\ref{ch:register-allocation-Lvar} Registers};
  272. \node (C4) at (0,0) {\small Ch.~\ref{ch:Lif} Conditionals};
  273. \node (C5) at (4,0) {\small Ch.~\ref{ch:Rvec} Tuples};
  274. \node (C6) at (8,0) {\small Ch.~\ref{ch:Rfun} Functions};
  275. \node (C9) at (0,-1.5) {\small Ch.~\ref{ch:Rwhile} Loops};
  276. \node (C8) at (4,-1.5) {\small Ch.~\ref{ch:Rdyn} Dynamic};
  277. \node (CO) at (0,-3) {\small Ch.~\ref{ch:Robject} Objects};
  278. \node (C7) at (8,-1.5) {\small Ch.~\ref{ch:Rlam} Lambda};
  279. \node (C10) at (4,-3) {\small Ch.~\ref{ch:Rgrad} Gradual Typing};
  280. \node (C11) at (8,-3) {\small Ch.~\ref{ch:Rpoly} Generics};
  281. \path[->] (C1) edge [above] node {} (C2);
  282. \path[->] (C2) edge [above] node {} (C3);
  283. \path[->] (C3) edge [above] node {} (C4);
  284. \path[->] (C4) edge [above] node {} (C5);
  285. \path[->] (C5) edge [above] node {} (C6);
  286. \path[->] (C6) edge [above] node {} (C7);
  287. \path[->] (C4) edge [above] node {} (C8);
  288. \path[->] (C4) edge [above] node {} (C9);
  289. \path[->] (C8) edge [above] node {} (C10);
  290. \path[->] (C8) edge [above] node {} (CO);
  291. \path[->] (C10) edge [above] node {} (C11);
  292. \end{tikzpicture}
  293. \fi}
  294. \caption{Diagram of chapter dependencies.}
  295. \label{fig:chapter-dependences}
  296. \end{figure}
  297. \racket{
  298. We use the \href{https://racket-lang.org/}{Racket} language both for
  299. the implementation of the compiler and for the input language, so the
  300. reader should be proficient with Racket or Scheme. There are many
  301. excellent resources for learning Scheme and
  302. Racket~\citep{Dybvig:1987aa,Abelson:1996uq,Friedman:1996aa,Felleisen:2001aa,Felleisen:2013aa,Flatt:2014aa}.
  303. }
  304. \python{
  305. This edition of the book uses \href{https://www.python.org/}{Python}
  306. both for the implementation of the compiler and for the input language, so the
  307. reader should be proficient with Python. There are many
  308. excellent resources for learning Python~\citep{Lutz:2013vp,Barry:2016vj,Sweigart:2019vn,Matthes:2019vs}.
  309. }
  310. The support code for this book is in the \code{github} repository at
  311. the following URL:
  312. \if\edition\racketEd
  313. \begin{center}\small
  314. \url{https://github.com/IUCompilerCourse/public-student-support-code}
  315. \end{center}
  316. \fi
  317. \if\edition\pythonEd
  318. \begin{center}\small
  319. \url{https://github.com/IUCompilerCourse/}
  320. \end{center}
  321. \fi
  322. The compiler targets x86 assembly language~\citep{Intel:2015aa}, so it
  323. is helpful but not necessary for the reader to have taken a computer
  324. systems course~\citep{Bryant:2010aa}. This book introduces the parts
  325. of x86-64 assembly language that are needed.
  326. %
  327. We follow the System V calling
  328. conventions~\citep{Bryant:2005aa,Matz:2013aa}, so the assembly code
  329. that we generate works with the runtime system (written in C) when it
  330. is compiled using the GNU C compiler (\code{gcc}) on Linux and MacOS
  331. operating systems on Intel hardware.
  332. %
  333. On the Windows operating system, \code{gcc} uses the Microsoft x64
  334. calling convention~\citep{Microsoft:2018aa,Microsoft:2020aa}. So the
  335. assembly code that we generate does \emph{not} work with the runtime
  336. system on Windows. One workaround is to use a virtual machine with
  337. Linux as the guest operating system.
  338. \section*{Acknowledgments}
  339. The tradition of compiler construction at Indiana University goes back
  340. to research and courses on programming languages by Daniel Friedman in
  341. the 1970's and 1980's. One of his students, Kent Dybvig, implemented
  342. Chez Scheme~\citep{Dybvig:2006aa}, an efficient, production-quality
  343. compiler for Scheme. Throughout the 1990's and 2000's, Dybvig taught
  344. the compiler course and continued the development of Chez Scheme.
  345. %
  346. The compiler course evolved to incorporate novel pedagogical ideas
  347. while also including elements of real-world compilers. One of
  348. Friedman's ideas was to split the compiler into many small
  349. passes. Another idea, called ``the game'', was to test the code
  350. generated by each pass using interpreters.
  351. Dybvig, with help from his students Dipanwita Sarkar and Andrew Keep,
  352. developed infrastructure to support this approach and evolved the
  353. course to use even smaller
  354. nanopasses~\citep{Sarkar:2004fk,Keep:2012aa}. Many of the compiler
  355. design decisions in this book are inspired by the assignment
  356. descriptions of \citet{Dybvig:2010aa}. In the mid 2000's a student of
  357. Dybvig's named Abdulaziz Ghuloum observed that the front-to-back
  358. organization of the course made it difficult for students to
  359. understand the rationale for the compiler design. Ghuloum proposed the
  360. incremental approach~\citep{Ghuloum:2006bh} that this book is based
  361. on.
  362. We thank the many students who served as teaching assistants for the
  363. compiler course at IU and made suggestions for improving the book
  364. including Carl Factora, Ryan Scott, and Cameron Swords. We especially
  365. thank Andre Kuhlenschmidt for his work on the garbage collector,
  366. Michael Vollmer for his work on efficient tail calls, and Michael
  367. Vitousek for his help running the first offering of the incremental
  368. compiler course at IU.
  369. We thank professors Bor-Yuh Chang, John Clements, Jay McCarthy, Joseph
  370. Near, Ryan Newton, Nate Nystrom, Andrew Tolmach, and Michael Wollowski
  371. for teaching courses based on drafts of this book and for their
  372. invaluable feedback.
  373. We thank Ronald Garcia for helping Jeremy survive Dybvig's compiler
  374. course in the early 2000's and especially for finding the bug that
  375. sent our garbage collector on a wild goose chase!
  376. \mbox{}\\
  377. \noindent Jeremy G. Siek \\
  378. Bloomington, Indiana
  379. \mainmatter
  380. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  381. \chapter{Preliminaries}
  382. \label{ch:trees-recur}
  383. In this chapter we review the basic tools that are needed to implement
  384. a compiler. Programs are typically input by a programmer as text,
  385. i.e., a sequence of characters. The program-as-text representation is
  386. called \emph{concrete syntax}. We use concrete syntax to concisely
  387. write down and talk about programs. Inside the compiler, we use
  388. \emph{abstract syntax trees} (ASTs) to represent programs in a way
  389. that efficiently supports the operations that the compiler needs to
  390. perform.\index{subject}{concrete syntax}\index{subject}{abstract syntax}\index{subject}{abstract
  391. syntax tree}\index{subject}{AST}\index{subject}{program}\index{subject}{parse} The translation
  392. from concrete syntax to abstract syntax is a process called
  393. \emph{parsing}~\citep{Aho:1986qf}. We do not cover the theory and
  394. implementation of parsing in this book.
  395. %
  396. \racket{A parser is provided in the support code for translating from
  397. concrete to abstract syntax.}
  398. %
  399. \python{We use Python's \code{ast} module to translate from concrete
  400. to abstract syntax.}
  401. ASTs can be represented in many different ways inside the compiler,
  402. depending on the programming language used to write the compiler.
  403. %
  404. \racket{We use Racket's
  405. \href{https://docs.racket-lang.org/guide/define-struct.html}{\code{struct}}
  406. feature to represent ASTs (Section~\ref{sec:ast}).}
  407. %
  408. \python{We use Python classes and objects to represent ASTs, especially the
  409. classes defined in the standard \code{ast} module for the Python
  410. source language.}
  411. %
  412. We use grammars to define the abstract syntax of programming languages
  413. (Section~\ref{sec:grammar}) and pattern matching to inspect individual
  414. nodes in an AST (Section~\ref{sec:pattern-matching}). We use
  415. recursive functions to construct and deconstruct ASTs
  416. (Section~\ref{sec:recursion}). This chapter provides an brief
  417. introduction to these ideas.
  418. \racket{\index{subject}{struct}}
  419. \python{\index{subject}{class}\index{subject}{object}}
  420. \section{Abstract Syntax Trees}
  421. \label{sec:ast}
  422. Compilers use abstract syntax trees to represent programs because they
  423. often need to ask questions like: for a given part of a program, what
  424. kind of language feature is it? What are its sub-parts? Consider the
  425. program on the left and its AST on the right. This program is an
  426. addition operation and it has two sub-parts, a
  427. \racket{read}\python{input} operation and a negation. The negation has
  428. another sub-part, the integer constant \code{8}. By using a tree to
  429. represent the program, we can easily follow the links to go from one
  430. part of a program to its sub-parts.
  431. \begin{center}
  432. \begin{minipage}{0.4\textwidth}
  433. \if\edition\racketEd
  434. \begin{lstlisting}
  435. (+ (read) (- 8))
  436. \end{lstlisting}
  437. \fi
  438. \if\edition\pythonEd
  439. \begin{lstlisting}
  440. input_int() + -8
  441. \end{lstlisting}
  442. \fi
  443. \end{minipage}
  444. \begin{minipage}{0.4\textwidth}
  445. \begin{equation}
  446. \begin{tikzpicture}
  447. \node[draw] (plus) at (0 , 0) {\key{+}};
  448. \node[draw] (read) at (-1, -1.5) {{\if\edition\racketEd\footnotesize\key{read}\fi\if\edition\pythonEd\key{input\_int()}\fi}};
  449. \node[draw] (minus) at (1 , -1.5) {$\key{-}$};
  450. \node[draw] (8) at (1 , -3) {\key{8}};
  451. \draw[->] (plus) to (read);
  452. \draw[->] (plus) to (minus);
  453. \draw[->] (minus) to (8);
  454. \end{tikzpicture}
  455. \label{eq:arith-prog}
  456. \end{equation}
  457. \end{minipage}
  458. \end{center}
  459. We use the standard terminology for trees to describe ASTs: each
  460. rectangle above is called a \emph{node}. The arrows connect a node to its
  461. \emph{children} (which are also nodes). The top-most node is the
  462. \emph{root}. Every node except for the root has a \emph{parent} (the
  463. node it is the child of). If a node has no children, it is a
  464. \emph{leaf} node. Otherwise it is an \emph{internal} node.
  465. \index{subject}{node}
  466. \index{subject}{children}
  467. \index{subject}{root}
  468. \index{subject}{parent}
  469. \index{subject}{leaf}
  470. \index{subject}{internal node}
  471. %% Recall that an \emph{symbolic expression} (S-expression) is either
  472. %% \begin{enumerate}
  473. %% \item an atom, or
  474. %% \item a pair of two S-expressions, written $(e_1 \key{.} e_2)$,
  475. %% where $e_1$ and $e_2$ are each an S-expression.
  476. %% \end{enumerate}
  477. %% An \emph{atom} can be a symbol, such as \code{`hello}, a number, the
  478. %% null value \code{'()}, etc. We can create an S-expression in Racket
  479. %% simply by writing a backquote (called a quasi-quote in Racket)
  480. %% followed by the textual representation of the S-expression. It is
  481. %% quite common to use S-expressions to represent a list, such as $a, b
  482. %% ,c$ in the following way:
  483. %% \begin{lstlisting}
  484. %% `(a . (b . (c . ())))
  485. %% \end{lstlisting}
  486. %% Each element of the list is in the first slot of a pair, and the
  487. %% second slot is either the rest of the list or the null value, to mark
  488. %% the end of the list. Such lists are so common that Racket provides
  489. %% special notation for them that removes the need for the periods
  490. %% and so many parenthesis:
  491. %% \begin{lstlisting}
  492. %% `(a b c)
  493. %% \end{lstlisting}
  494. %% The following expression creates an S-expression that represents AST
  495. %% \eqref{eq:arith-prog}.
  496. %% \begin{lstlisting}
  497. %% `(+ (read) (- 8))
  498. %% \end{lstlisting}
  499. %% When using S-expressions to represent ASTs, the convention is to
  500. %% represent each AST node as a list and to put the operation symbol at
  501. %% the front of the list. The rest of the list contains the children. So
  502. %% in the above case, the root AST node has operation \code{`+} and its
  503. %% two children are \code{`(read)} and \code{`(- 8)}, just as in the
  504. %% diagram \eqref{eq:arith-prog}.
  505. %% To build larger S-expressions one often needs to splice together
  506. %% several smaller S-expressions. Racket provides the comma operator to
  507. %% splice an S-expression into a larger one. For example, instead of
  508. %% creating the S-expression for AST \eqref{eq:arith-prog} all at once,
  509. %% we could have first created an S-expression for AST
  510. %% \eqref{eq:arith-neg8} and then spliced that into the addition
  511. %% S-expression.
  512. %% \begin{lstlisting}
  513. %% (define ast1.4 `(- 8))
  514. %% (define ast1_1 `(+ (read) ,ast1.4))
  515. %% \end{lstlisting}
  516. %% In general, the Racket expression that follows the comma (splice)
  517. %% can be any expression that produces an S-expression.
  518. {\if\edition\racketEd\color{olive}
  519. We define a Racket \code{struct} for each kind of node. For this
  520. chapter we require just two kinds of nodes: one for integer constants
  521. and one for primitive operations. The following is the \code{struct}
  522. definition for integer constants.
  523. \begin{lstlisting}
  524. (struct Int (value))
  525. \end{lstlisting}
  526. An integer node includes just one thing: the integer value.
  527. To create an AST node for the integer $8$, we write \INT{8}.
  528. \begin{lstlisting}
  529. (define eight (Int 8))
  530. \end{lstlisting}
  531. We say that the value created by \INT{8} is an
  532. \emph{instance} of the
  533. \code{Int} structure.
  534. The following is the \code{struct} definition for primitive operations.
  535. \begin{lstlisting}
  536. (struct Prim (op args))
  537. \end{lstlisting}
  538. A primitive operation node includes an operator symbol \code{op} and a
  539. list of child \code{args}. For example, to create an AST that negates
  540. the number $8$, we write \code{(Prim '- (list eight))}.
  541. \begin{lstlisting}
  542. (define neg-eight (Prim '- (list eight)))
  543. \end{lstlisting}
  544. Primitive operations may have zero or more children. The \code{read}
  545. operator has zero children:
  546. \begin{lstlisting}
  547. (define rd (Prim 'read '()))
  548. \end{lstlisting}
  549. whereas the addition operator has two children:
  550. \begin{lstlisting}
  551. (define ast1_1 (Prim '+ (list rd neg-eight)))
  552. \end{lstlisting}
  553. We have made a design choice regarding the \code{Prim} structure.
  554. Instead of using one structure for many different operations
  555. (\code{read}, \code{+}, and \code{-}), we could have instead defined a
  556. structure for each operation, as follows.
  557. \begin{lstlisting}
  558. (struct Read ())
  559. (struct Add (left right))
  560. (struct Neg (value))
  561. \end{lstlisting}
  562. The reason we choose to use just one structure is that in many parts
  563. of the compiler the code for the different primitive operators is the
  564. same, so we might as well just write that code once, which is enabled
  565. by using a single structure.
  566. \fi}
  567. {\if\edition\pythonEd
  568. We use a Python \code{class} for each kind of node.
  569. The following is the class definition for constants.
  570. \begin{lstlisting}
  571. class Constant:
  572. def __init__(self, value):
  573. self.value = value
  574. \end{lstlisting}
  575. An integer constant node includes just one thing: the integer value.
  576. To create an AST node for the integer $8$, we write \INT{8}.
  577. \begin{lstlisting}
  578. eight = Constant(8)
  579. \end{lstlisting}
  580. We say that the value created by \INT{8} is an
  581. \emph{instance} of the \code{Constant} class.
  582. The following is the class definition for unary operators.
  583. \begin{lstlisting}
  584. class UnaryOp:
  585. def __init__(self, op, operand):
  586. self.op = op
  587. self.operand = operand
  588. \end{lstlisting}
  589. The specific operation is specified by the \code{op} parameter. For
  590. example, the class \code{USub} is for unary subtraction. (More unary
  591. operators are introduced in later chapters.) To create an AST that
  592. negates the number $8$, we write the following.
  593. \begin{lstlisting}
  594. neg_eight = UnaryOp(USub(), eight)
  595. \end{lstlisting}
  596. The call to the \code{input\_int} function is represented by the
  597. \code{Call} and \code{Name} classes.
  598. \begin{lstlisting}
  599. class Call:
  600. def __init__(self, func, args):
  601. self.func = func
  602. self.args = args
  603. class Name:
  604. def __init__(self, id):
  605. self.id = id
  606. \end{lstlisting}
  607. To create an AST node that calls \code{input\_int}, we write
  608. \begin{lstlisting}
  609. read = Call(Name('input_int'), [])
  610. \end{lstlisting}
  611. Finally, to represent the addition in \eqref{eq:arith-prog}, we use
  612. the \code{BinOp} class for binary operators.
  613. \begin{lstlisting}
  614. class BinOp:
  615. def __init__(self, left, op, right):
  616. self.op = op
  617. self.left = left
  618. self.right = right
  619. \end{lstlisting}
  620. Similar to \code{UnaryOp}, the specific operation is specified by the
  621. \code{op} parameter, which for now is just an instance of the
  622. \code{Add} class. So to create the AST node that adds negative eight
  623. to some user input, we write the following.
  624. \begin{lstlisting}
  625. ast1_1 = BinOp(read, Add(), neg_eight)
  626. \end{lstlisting}
  627. \fi}
  628. When compiling a program such as \eqref{eq:arith-prog}, we need to
  629. know that the operation associated with the root node is addition and
  630. we need to be able to access its two children. \racket{Racket}\python{Python}
  631. provides pattern matching to support these kinds of queries, as we see in
  632. Section~\ref{sec:pattern-matching}.
  633. In this book, we often write down the concrete syntax of a program
  634. even when we really have in mind the AST because the concrete syntax
  635. is more concise. We recommend that, in your mind, you always think of
  636. programs as abstract syntax trees.
  637. \section{Grammars}
  638. \label{sec:grammar}
  639. \index{subject}{integer}
  640. \index{subject}{literal}
  641. \index{subject}{constant}
  642. A programming language can be thought of as a \emph{set} of programs.
  643. The set is typically infinite (one can always create larger and larger
  644. programs), so one cannot simply describe a language by listing all of
  645. the programs in the language. Instead we write down a set of rules, a
  646. \emph{grammar}, for building programs. Grammars are often used to
  647. define the concrete syntax of a language, but they can also be used to
  648. describe the abstract syntax. We write our rules in a variant of
  649. Backus-Naur Form (BNF)~\citep{Backus:1960aa,Knuth:1964aa}.
  650. \index{subject}{Backus-Naur Form}\index{subject}{BNF}
  651. As an example, we describe a small language, named \LangInt{}, that consists of
  652. integers and arithmetic operations.
  653. \index{subject}{grammar}
  654. The first grammar rule for the abstract syntax of \LangInt{} says that an
  655. instance of the \racket{\code{Int} structure}\python{\code{Constant} class} is an expression:
  656. \begin{equation}
  657. \Exp ::= \INT{\Int} \label{eq:arith-int}
  658. \end{equation}
  659. %
  660. Each rule has a left-hand-side and a right-hand-side.
  661. If you have an AST node that matches the
  662. right-hand-side, then you can categorize it according to the
  663. left-hand-side.
  664. %
  665. A name such as $\Exp$ that is defined by the grammar rules is a
  666. \emph{non-terminal}. \index{subject}{non-terminal}
  667. %
  668. The name $\Int$ is also a non-terminal, but instead of defining it
  669. with a grammar rule, we define it with the following explanation. An
  670. $\Int$ is a sequence of decimals ($0$ to $9$), possibly starting with
  671. $-$ (for negative integers), such that the sequence of decimals
  672. represent an integer in range $-2^{62}$ to $2^{62}-1$. This enables
  673. the representation of integers using 63 bits, which simplifies several
  674. aspects of compilation. \racket{Thus, these integers corresponds to
  675. the Racket \texttt{fixnum} datatype on a 64-bit machine.}
  676. \python{In contrast, integers in Python have unlimited precision, but
  677. the techniques need to handle unlimited precision fall outside the
  678. scope of this book.}
  679. The second grammar rule is the \READOP{} operation that receives an
  680. input integer from the user of the program.
  681. \begin{equation}
  682. \Exp ::= \READ{} \label{eq:arith-read}
  683. \end{equation}
  684. The third rule says that, given an $\Exp$ node, the negation of that
  685. node is also an $\Exp$.
  686. \begin{equation}
  687. \Exp ::= \NEG{\Exp} \label{eq:arith-neg}
  688. \end{equation}
  689. Symbols in typewriter font are \emph{terminal} symbols and must
  690. literally appear in the program for the rule to be applicable.
  691. \index{subject}{terminal}
  692. We can apply these rules to categorize the ASTs that are in the
  693. \LangInt{} language. For example, by rule \eqref{eq:arith-int}
  694. \INT{8} is an $\Exp$, then by rule \eqref{eq:arith-neg} the
  695. following AST is an $\Exp$.
  696. \begin{center}
  697. \begin{minipage}{0.5\textwidth}
  698. \NEG{\INT{\code{8}}}
  699. \end{minipage}
  700. \begin{minipage}{0.25\textwidth}
  701. \begin{equation}
  702. \begin{tikzpicture}
  703. \node[draw, circle] (minus) at (0, 0) {$\text{--}$};
  704. \node[draw, circle] (8) at (0, -1.2) {$8$};
  705. \draw[->] (minus) to (8);
  706. \end{tikzpicture}
  707. \label{eq:arith-neg8}
  708. \end{equation}
  709. \end{minipage}
  710. \end{center}
  711. The next grammar rule is for addition expressions:
  712. \begin{equation}
  713. \Exp ::= \ADD{\Exp}{\Exp} \label{eq:arith-add}
  714. \end{equation}
  715. We can now justify that the AST \eqref{eq:arith-prog} is an $\Exp$ in
  716. \LangInt{}. We know that \READ{} is an $\Exp$ by rule
  717. \eqref{eq:arith-read} and we have already categorized
  718. \NEG{\INT{\code{8}}} as an $\Exp$, so we apply rule \eqref{eq:arith-add}
  719. to show that
  720. \[
  721. \ADD{\READ{}}{\NEG{\INT{\code{8}}}}
  722. \]
  723. is an $\Exp$ in the \LangInt{} language.
  724. If you have an AST for which the above rules do not apply, then the
  725. AST is not in \LangInt{}. For example, the program \racket{\code{(-
  726. (read) 8)}} \python{\code{input\_int() - 8}} is not in \LangInt{}
  727. because there are no rules for the \key{-} operator with two
  728. arguments. Whenever we define a language with a grammar, the language
  729. only includes those programs that are justified by the grammar rules.
  730. {\if\edition\pythonEd
  731. The language \LangInt{} includes a second non-terminal $\Stmt$ for statements.
  732. There is a statement for printing the value of an expression
  733. \[
  734. \Stmt{} ::= \PRINT{\Exp}
  735. \]
  736. and a statement that evaluates an expression but ignores the result.
  737. \[
  738. \Stmt{} ::= \EXPR{\Exp}
  739. \]
  740. \fi}
  741. {\if\edition\racketEd\color{olive}
  742. The last grammar rule for \LangInt{} states that there is a
  743. \code{Program} node to mark the top of the whole program:
  744. \[
  745. \LangInt{} ::= \PROGRAM{\code{'()}}{\Exp}
  746. \]
  747. The \code{Program} structure is defined as follows
  748. \begin{lstlisting}
  749. (struct Program (info body))
  750. \end{lstlisting}
  751. where \code{body} is an expression. In later chapters, the \code{info}
  752. part will be used to store auxiliary information but for now it is
  753. just the empty list.
  754. \fi}
  755. {\if\edition\pythonEd
  756. The last grammar rule for \LangInt{} states that there is a
  757. \code{Module} node to mark the top of the whole program:
  758. \[
  759. \LangInt{} ::= \PROGRAM{}{\Stmt^{*}}
  760. \]
  761. The asterisk symbol $*$ indicates a list of the preceding grammar item, in
  762. this case, a list of statements.
  763. %
  764. The \code{Module} class is defined as follows
  765. \begin{lstlisting}
  766. class Module:
  767. def __init__(self, body):
  768. self.body = body
  769. \end{lstlisting}
  770. where \code{body} is a list of statements.
  771. \fi}
  772. It is common to have many grammar rules with the same left-hand side
  773. but different right-hand sides, such as the rules for $\Exp$ in the
  774. grammar of \LangInt{}. As a short-hand, a vertical bar can be used to
  775. combine several right-hand-sides into a single rule.
  776. We collect all of the grammar rules for the abstract syntax of \LangInt{}
  777. in Figure~\ref{fig:r0-syntax}. The concrete syntax for \LangInt{} is
  778. defined in Figure~\ref{fig:r0-concrete-syntax}.
  779. \racket{The \code{read-program} function provided in
  780. \code{utilities.rkt} of the support code reads a program in from a
  781. file (the sequence of characters in the concrete syntax of Racket)
  782. and parses it into an abstract syntax tree. See the description of
  783. \code{read-program} in Appendix~\ref{appendix:utilities} for more
  784. details.}
  785. \python{The \code{parse} function in Python's \code{ast} module
  786. converts the concrete syntax (represented as a string) into an
  787. abstract syntax tree.}
  788. \begin{figure}[tp]
  789. \fbox{
  790. \begin{minipage}{0.96\textwidth}
  791. {\if\edition\racketEd\color{olive}
  792. \[
  793. \begin{array}{rcl}
  794. \Exp &::=& \Int \MID \LP\key{read}\RP \MID \LP\key{-}\;\Exp\RP \MID \LP\key{+} \; \Exp\;\Exp\RP\\
  795. \LangInt{} &::=& \Exp
  796. \end{array}
  797. \]
  798. \fi}
  799. {\if\edition\pythonEd
  800. \[
  801. \begin{array}{rcl}
  802. \Exp &::=& \Int \MID \key{input\_int}\LP\RP \MID \key{-}\;\Exp \MID \Exp \; \key{+} \; \Exp\\
  803. \Stmt &::=& \key{print}\LP \Exp \RP \MID \Exp\\
  804. \LangInt{} &::=& \Stmt^{*}
  805. \end{array}
  806. \]
  807. \fi}
  808. \end{minipage}
  809. }
  810. \caption{The concrete syntax of \LangInt{}.}
  811. \label{fig:r0-concrete-syntax}
  812. \end{figure}
  813. \begin{figure}[tp]
  814. \fbox{
  815. \begin{minipage}{0.96\textwidth}
  816. {\if\edition\racketEd\color{olive}
  817. \[
  818. \begin{array}{rcl}
  819. \Exp &::=& \INT{\Int} \MID \READ{} \MID \NEG{\Exp} \\
  820. &\MID& \ADD{\Exp}{\Exp} \\
  821. \LangInt{} &::=& \PROGRAM{\code{'()}}{\Exp}
  822. \end{array}
  823. \]
  824. \fi}
  825. {\if\edition\pythonEd
  826. \[
  827. \begin{array}{rcl}
  828. \Exp{} &::=& \INT{\Int} \MID \READ{} \\
  829. &\MID& \NEG{\Exp} \MID \ADD{\Exp}{\Exp} \\
  830. \Stmt{} &::=& \PRINT{\Exp} \MID \EXPR{\Exp} \\
  831. \LangInt{} &::=& \PROGRAM{}{\Stmt^{*}}
  832. \end{array}
  833. \]
  834. \fi}
  835. \end{minipage}
  836. }
  837. \caption{The abstract syntax of \LangInt{}.}
  838. \label{fig:r0-syntax}
  839. \end{figure}
  840. \section{Pattern Matching}
  841. \label{sec:pattern-matching}
  842. As mentioned in Section~\ref{sec:ast}, compilers often need to access
  843. the parts of an AST node. \racket{Racket}\python{As of version 3.10, Python} provides the
  844. \texttt{match} feature to access the parts of a value.
  845. Consider the following example. \index{subject}{match} \index{subject}{pattern matching}
  846. \begin{center}
  847. \begin{minipage}{0.5\textwidth}
  848. {\if\edition\racketEd\color{olive}
  849. \begin{lstlisting}
  850. (match ast1_1
  851. [(Prim op (list child1 child2))
  852. (print op)])
  853. \end{lstlisting}
  854. \fi}
  855. {\if\edition\pythonEd
  856. \begin{lstlisting}
  857. match ast1_1:
  858. case BinOp(child1, op, child2):
  859. print(op)
  860. \end{lstlisting}
  861. \fi}
  862. \end{minipage}
  863. \end{center}
  864. {\if\edition\racketEd\color{olive}
  865. %
  866. In the above example, the \texttt{match} form checks whether the AST
  867. \eqref{eq:arith-prog} is a binary operator and binds its parts to the
  868. three pattern variables \texttt{op}, \texttt{child1}, and
  869. \texttt{child2}, and then prints out the operator. In general, a match
  870. clause consists of a \emph{pattern} and a
  871. \emph{body}.\index{subject}{pattern} Patterns are recursively defined
  872. to be either a pattern variable, a structure name followed by a
  873. pattern for each of the structure's arguments, or an S-expression
  874. (symbols, lists, etc.). (See Chapter 12 of The Racket
  875. Guide\footnote{\url{https://docs.racket-lang.org/guide/match.html}}
  876. and Chapter 9 of The Racket
  877. Reference\footnote{\url{https://docs.racket-lang.org/reference/match.html}}
  878. for a complete description of \code{match}.)
  879. %
  880. The body of a match clause may contain arbitrary Racket code. The
  881. pattern variables can be used in the scope of the body, such as
  882. \code{op} in \code{(print op)}.
  883. %
  884. \fi}
  885. %
  886. %
  887. {\if\edition\pythonEd
  888. %
  889. In the above example, the \texttt{match} form checks whether the AST
  890. \eqref{eq:arith-prog} is a binary operator and binds its parts to the
  891. three pattern variables \texttt{child1}, \texttt{op}, and
  892. \texttt{child2}, and then prints out the operator. In general, each
  893. \code{case} consists of a \emph{pattern} and a
  894. \emph{body}.\index{subject}{pattern} Patterns are recursively defined
  895. to be either a pattern variable, a class name followed by a pattern
  896. for each of its constructor's arguments, or other literals such as
  897. strings, lists, etc.
  898. %
  899. The body of each \code{case} may contain arbitrary Python code. The
  900. pattern variables can be used in the body, such as \code{op} in
  901. \code{print(op)}.
  902. %
  903. \fi}
  904. A \code{match} form may contain several clauses, as in the following
  905. function \code{leaf} that recognizes when an \LangInt{} node is a leaf in
  906. the AST. The \code{match} proceeds through the clauses in order,
  907. checking whether the pattern can match the input AST. The body of the
  908. first clause that matches is executed. The output of \code{leaf} for
  909. several ASTs is shown on the right.
  910. \begin{center}
  911. \begin{minipage}{0.6\textwidth}
  912. {\if\edition\racketEd\color{olive}
  913. \begin{lstlisting}
  914. (define (leaf arith)
  915. (match arith
  916. [(Int n) #t]
  917. [(Prim 'read '()) #t]
  918. [(Prim '- (list e1)) #f]
  919. [(Prim '+ (list e1 e2)) #f]))
  920. (leaf (Prim 'read '()))
  921. (leaf (Prim '- (list (Int 8))))
  922. (leaf (Int 8))
  923. \end{lstlisting}
  924. \fi}
  925. {\if\edition\pythonEd
  926. \begin{lstlisting}
  927. def leaf(arith):
  928. match arith:
  929. case Constant(n):
  930. return True
  931. case Call(Name('input_int'), []):
  932. return True
  933. case UnaryOp(USub(), e1):
  934. return False
  935. case BinOp(e1, Add(), e2):
  936. return False
  937. print(leaf(Call(Name('input_int'), [])))
  938. print(leaf(UnaryOp(USub(), eight)))
  939. print(leaf(Constant(8)))
  940. \end{lstlisting}
  941. \fi}
  942. \end{minipage}
  943. \vrule
  944. \begin{minipage}{0.25\textwidth}
  945. {\if\edition\racketEd\color{olive}
  946. \begin{lstlisting}
  947. #t
  948. #f
  949. #t
  950. \end{lstlisting}
  951. \fi}
  952. {\if\edition\pythonEd
  953. \begin{lstlisting}
  954. True
  955. False
  956. True
  957. \end{lstlisting}
  958. \fi}
  959. \end{minipage}
  960. \end{center}
  961. When writing a \code{match}, we refer to the grammar definition to
  962. identify which non-terminal we are expecting to match against, then we
  963. make sure that 1) we have one \racket{clause}\python{case} for each alternative of that
  964. non-terminal and 2) that the pattern in each \racket{clause}\python{case} corresponds to the
  965. corresponding right-hand side of a grammar rule. For the \code{match}
  966. in the \code{leaf} function, we refer to the grammar for \LangInt{} in
  967. Figure~\ref{fig:r0-syntax}. The $\Exp$ non-terminal has 4
  968. alternatives, so the \code{match} has 4 \racket{clauses}\python{cases}.
  969. The pattern in each \racket{clause}\python{case} corresponds to the right-hand side
  970. of a grammar rule. For example, the pattern \ADD{\code{e1}}{\code{e2}} corresponds to the
  971. right-hand side $\ADD{\Exp}{\Exp}$. When translating from grammars to
  972. patterns, replace non-terminals such as $\Exp$ with pattern variables
  973. of your choice (e.g. \code{e1} and \code{e2}).
  974. \section{Recursive Functions}
  975. \label{sec:recursion}
  976. \index{subject}{recursive function}
  977. Programs are inherently recursive. For example, an expression is often
  978. made of smaller expressions. Thus, the natural way to process an
  979. entire program is with a recursive function. As a first example of
  980. such a recursive function, we define the function \code{exp} in
  981. Figure~\ref{fig:exp-predicate}, which takes an arbitrary value and
  982. determines whether or not it is an expression in \LangInt{}.
  983. %
  984. We say that a function is defined by \emph{structural recursion} when
  985. it is defined using a sequence of match \racket{clauses}\python{cases}
  986. that correspond to a grammar, and the body of each \racket{clause}\python{case}
  987. makes a recursive call on each
  988. child node.\footnote{This principle of structuring code according to
  989. the data definition is advocated in the book \emph{How to Design
  990. Programs} \url{https://htdp.org/2020-8-1/Book/index.html}.}.
  991. \python{We define a second function, named \code{stmt}, that recognizes
  992. whether a value is a \LangInt{} statement.}
  993. \python{Finally, }
  994. Figure~\ref{fig:exp-predicate} \racket{also} defines \code{Lint}, which
  995. determines whether an AST is a program in \LangInt{}. In general we can
  996. expect to write one recursive function to handle each non-terminal in
  997. a grammar.\index{subject}{structural recursion}
  998. \begin{figure}[tp]
  999. {\if\edition\racketEd\color{olive}
  1000. \begin{minipage}{0.7\textwidth}
  1001. \begin{lstlisting}
  1002. (define (exp ast)
  1003. (match ast
  1004. [(Int n) #t]
  1005. [(Prim 'read '()) #t]
  1006. [(Prim '- (list e)) (exp e)]
  1007. [(Prim '+ (list e1 e2))
  1008. (and (exp e1) (exp e2))]
  1009. [else #f]))
  1010. (define (Lint ast)
  1011. (match ast
  1012. [(Program '() e) (exp e)]
  1013. [else #f]))
  1014. (Lint (Program '() ast1_1)
  1015. (Lint (Program '()
  1016. (Prim '- (list (Prim 'read '())
  1017. (Prim '+ (list (Num 8)))))))
  1018. \end{lstlisting}
  1019. \end{minipage}
  1020. \vrule
  1021. \begin{minipage}{0.25\textwidth}
  1022. \begin{lstlisting}
  1023. #t
  1024. #f
  1025. \end{lstlisting}
  1026. \end{minipage}
  1027. \fi}
  1028. {\if\edition\pythonEd
  1029. \begin{minipage}{0.7\textwidth}
  1030. \begin{lstlisting}
  1031. def exp(e):
  1032. match e:
  1033. case Constant(n):
  1034. return True
  1035. case Call(Name('input_int'), []):
  1036. return True
  1037. case UnaryOp(USub(), e1):
  1038. return exp(e1)
  1039. case BinOp(e1, Add(), e2):
  1040. return exp(e1) and exp(e2)
  1041. case _:
  1042. return False
  1043. def stmt(s):
  1044. match s:
  1045. case Call(Name('print'), [e]):
  1046. return exp(e)
  1047. case Expr(e):
  1048. return exp(e)
  1049. case _:
  1050. return False
  1051. def Lint(p):
  1052. match p:
  1053. case Module(body):
  1054. return all([stmt(s) for s in body])
  1055. case _:
  1056. return False
  1057. print(Lint(Module([Expr(ast1_1)])))
  1058. print(Lint(Module([Expr(BinOp(read, Sub(),
  1059. UnaryOp(Add(), Constant(8))))])))
  1060. \end{lstlisting}
  1061. \end{minipage}
  1062. \vrule
  1063. \begin{minipage}{0.25\textwidth}
  1064. \begin{lstlisting}
  1065. True
  1066. False
  1067. \end{lstlisting}
  1068. \end{minipage}
  1069. \fi}
  1070. \caption{Example of recursive functions for \LangInt{}. These functions
  1071. recognize whether an AST is in \LangInt{}.}
  1072. \label{fig:exp-predicate}
  1073. \end{figure}
  1074. %% You may be tempted to merge the two functions into one, like this:
  1075. %% \begin{center}
  1076. %% \begin{minipage}{0.5\textwidth}
  1077. %% \begin{lstlisting}
  1078. %% (define (Lint ast)
  1079. %% (match ast
  1080. %% [(Int n) #t]
  1081. %% [(Prim 'read '()) #t]
  1082. %% [(Prim '- (list e)) (Lint e)]
  1083. %% [(Prim '+ (list e1 e2)) (and (Lint e1) (Lint e2))]
  1084. %% [(Program '() e) (Lint e)]
  1085. %% [else #f]))
  1086. %% \end{lstlisting}
  1087. %% \end{minipage}
  1088. %% \end{center}
  1089. %% %
  1090. %% Sometimes such a trick will save a few lines of code, especially when
  1091. %% it comes to the \code{Program} wrapper. Yet this style is generally
  1092. %% \emph{not} recommended because it can get you into trouble.
  1093. %% %
  1094. %% For example, the above function is subtly wrong:
  1095. %% \lstinline{(Lint (Program '() (Program '() (Int 3))))}
  1096. %% returns true when it should return false.
  1097. \section{Interpreters}
  1098. \label{sec:interp_Lint}
  1099. \index{subject}{interpreter}
  1100. The behavior of a program is defined by the specification of the
  1101. programming language.
  1102. %
  1103. \racket{For example, the Scheme language is defined in the report by
  1104. \cite{SPERBER:2009aa}. The Racket language is defined in its
  1105. reference manual~\citep{plt-tr}.}
  1106. %
  1107. \python{For example, the Python language is defined in the Python
  1108. Language Reference~\citep{PSF21:python_ref} and the CPython interpreter~\citep{PSF21:cpython}.}
  1109. %
  1110. In this book we use interpreters
  1111. to specify each language that we consider. An interpreter that is
  1112. designated as the definition of a language is called a
  1113. \emph{definitional interpreter}~\citep{reynolds72:_def_interp}.
  1114. \index{subject}{definitional interpreter} We warm up by creating a
  1115. definitional interpreter for the \LangInt{} language, which serves as
  1116. a second example of structural recursion. The \code{interp\_Lint}
  1117. function is defined in Figure~\ref{fig:interp_Lint}.
  1118. %
  1119. \racket{The body of the function is a match on the input program
  1120. followed by a call to the \lstinline{interp_exp} helper function,
  1121. which in turn has one match clause per grammar rule for \LangInt{}
  1122. expressions.}
  1123. %
  1124. \python{The body of the function matches on the \code{Module} AST node
  1125. and then invokes \code{interp\_stmt} on each statement in the
  1126. module. The \code{interp\_stmt} function includes a case for each
  1127. grammar rule of the \Stmt{} non-terminal and it calls
  1128. \code{interp\_exp} on each subexpression. The \code{interp\_exp}
  1129. function includes a case for each grammar rule of the \Exp{}
  1130. non-terminal.}
  1131. \begin{figure}[tp]
  1132. {\if\edition\racketEd\color{olive}
  1133. \begin{lstlisting}
  1134. (define (interp_exp e)
  1135. (match e
  1136. [(Int n) n]
  1137. [(Prim 'read '())
  1138. (define r (read))
  1139. (cond [(fixnum? r) r]
  1140. [else (error 'interp_exp "read expected an integer" r)])]
  1141. [(Prim '- (list e))
  1142. (define v (interp_exp e))
  1143. (fx- 0 v)]
  1144. [(Prim '+ (list e1 e2))
  1145. (define v1 (interp_exp e1))
  1146. (define v2 (interp_exp e2))
  1147. (fx+ v1 v2)]))
  1148. (define (interp_Lint p)
  1149. (match p
  1150. [(Program '() e) (interp_exp e)]))
  1151. \end{lstlisting}
  1152. \fi}
  1153. {\if\edition\pythonEd
  1154. \begin{lstlisting}
  1155. def interp_exp(e):
  1156. match e:
  1157. case BinOp(left, Add(), right):
  1158. l = interp_exp(left)
  1159. r = interp_exp(right)
  1160. return l + r
  1161. case UnaryOp(USub(), v):
  1162. return - interp_exp(v)
  1163. case Constant(value):
  1164. return value
  1165. case Call(Name('input_int'), []):
  1166. return int(input())
  1167. def interp_stmt(s):
  1168. match s:
  1169. case Expr(Call(Name('print'), [arg])):
  1170. print(interp_exp(arg))
  1171. case Expr(value):
  1172. interp_exp(value)
  1173. def interp_Lint(p):
  1174. match p:
  1175. case Module(body):
  1176. for s in body:
  1177. interp_stmt(s)
  1178. \end{lstlisting}
  1179. \fi}
  1180. \caption{Interpreter for the \LangInt{} language.}
  1181. \label{fig:interp_Lint}
  1182. \end{figure}
  1183. Let us consider the result of interpreting a few \LangInt{} programs. The
  1184. following program adds two integers.
  1185. {\if\edition\racketEd\color{olive}
  1186. \begin{lstlisting}
  1187. (+ 10 32)
  1188. \end{lstlisting}
  1189. \fi}
  1190. {\if\edition\pythonEd
  1191. \begin{lstlisting}
  1192. print(10 + 32)
  1193. \end{lstlisting}
  1194. \fi}
  1195. The result is \key{42}, the answer to life, the universe, and
  1196. everything: \code{42}!\footnote{\emph{The Hitchhiker's Guide to the
  1197. Galaxy} by Douglas Adams.}.
  1198. %
  1199. We wrote the above program in concrete syntax whereas the parsed
  1200. abstract syntax is:
  1201. {\if\edition\racketEd\color{olive}
  1202. \begin{lstlisting}
  1203. (Program '() (Prim '+ (list (Int 10) (Int 32))))
  1204. \end{lstlisting}
  1205. \fi}
  1206. {\if\edition\pythonEd
  1207. \begin{lstlisting}
  1208. Module([Expr(Call(Name('print'), [BinOp(Constant(10), Add(), Constant(32))]))])
  1209. \end{lstlisting}
  1210. \fi}
  1211. The next example demonstrates that expressions may be nested within
  1212. each other, in this case nesting several additions and negations.
  1213. {\if\edition\racketEd\color{olive}
  1214. \begin{lstlisting}
  1215. (+ 10 (- (+ 12 20)))
  1216. \end{lstlisting}
  1217. \fi}
  1218. {\if\edition\pythonEd
  1219. \begin{lstlisting}
  1220. print(10 + -(12 + 20))
  1221. \end{lstlisting}
  1222. \fi}
  1223. %
  1224. \noindent What is the result of the above program?
  1225. {\if\edition\racketEd\color{olive}
  1226. As mentioned previously, the \LangInt{} language does not support
  1227. arbitrarily-large integers, but only $63$-bit integers, so we
  1228. interpret the arithmetic operations of \LangInt{} using fixnum arithmetic
  1229. in Racket.
  1230. Suppose
  1231. \[
  1232. n = 999999999999999999
  1233. \]
  1234. which indeed fits in $63$-bits. What happens when we run the
  1235. following program in our interpreter?
  1236. \begin{lstlisting}
  1237. (+ (+ (+ |$n$| |$n$|) (+ |$n$| |$n$|)) (+ (+ |$n$| |$n$|) (+ |$n$| |$n$|)))))
  1238. \end{lstlisting}
  1239. It produces an error:
  1240. \begin{lstlisting}
  1241. fx+: result is not a fixnum
  1242. \end{lstlisting}
  1243. We establish the convention that if running the definitional
  1244. interpreter on a program produces an error then the meaning of that
  1245. program is \emph{unspecified}\index{subject}{unspecified behavior}, unless the
  1246. error is a \code{trapped-error}. A compiler for the language is under
  1247. no obligations regarding programs with unspecified behavior; it does
  1248. not have to produce an executable, and if it does, that executable can
  1249. do anything. On the other hand, if the error is a
  1250. \code{trapped-error}, then the compiler must produce an executable and
  1251. it is required to report that an error occurred. To signal an error,
  1252. exit with a return code of \code{255}. The interpreters in chapters
  1253. \ref{ch:Rdyn} and \ref{ch:Rgrad} use
  1254. \code{trapped-error}.
  1255. \fi}
  1256. % TODO: how to deal with too-large integers in the Python interpreter?
  1257. %% This convention applies to the languages defined in this
  1258. %% book, as a way to simplify the student's task of implementing them,
  1259. %% but this convention is not applicable to all programming languages.
  1260. %%
  1261. Moving on to the last feature of the \LangInt{} language, the
  1262. \READOP{} operation prompts the user of the program for an integer.
  1263. Recall that program \eqref{eq:arith-prog} requests an integer input
  1264. and then subtracts \code{8}. So if we run
  1265. {\if\edition\racketEd\color{olive}
  1266. \begin{lstlisting}
  1267. (interp_Lint (Program '() ast1_1))
  1268. \end{lstlisting}
  1269. \fi}
  1270. {\if\edition\pythonEd
  1271. \begin{lstlisting}
  1272. interp_Lint(Module([Expr(Call(Name('print'), [ast1_1]))]))
  1273. \end{lstlisting}
  1274. \fi}
  1275. \noindent and if the input is \code{50}, the result is \code{42}.
  1276. We include the \READOP{} operation in \LangInt{} so a clever student
  1277. cannot implement a compiler for \LangInt{} that simply runs the interpreter
  1278. during compilation to obtain the output and then generates the trivial
  1279. code to produce the output.\footnote{Yes, a clever student did this in the
  1280. first instance of this course!}
  1281. The job of a compiler is to translate a program in one language into a
  1282. program in another language so that the output program behaves the
  1283. same way as the input program. This idea is depicted in the
  1284. following diagram. Suppose we have two languages, $\mathcal{L}_1$ and
  1285. $\mathcal{L}_2$, and a definitional interpreter for each language.
  1286. Given a compiler that translates from language $\mathcal{L}_1$ to
  1287. $\mathcal{L}_2$ and given any program $P_1$ in $\mathcal{L}_1$, the
  1288. compiler must translate it into some program $P_2$ such that
  1289. interpreting $P_1$ and $P_2$ on their respective interpreters with
  1290. same input $i$ yields the same output $o$.
  1291. \begin{equation} \label{eq:compile-correct}
  1292. \begin{tikzpicture}[baseline=(current bounding box.center)]
  1293. \node (p1) at (0, 0) {$P_1$};
  1294. \node (p2) at (3, 0) {$P_2$};
  1295. \node (o) at (3, -2.5) {$o$};
  1296. \path[->] (p1) edge [above] node {compile} (p2);
  1297. \path[->] (p2) edge [right] node {interp\_$\mathcal{L}_2$($i$)} (o);
  1298. \path[->] (p1) edge [left] node {interp\_$\mathcal{L}_1$($i$)} (o);
  1299. \end{tikzpicture}
  1300. \end{equation}
  1301. In the next section we see our first example of a compiler.
  1302. \section{Example Compiler: a Partial Evaluator}
  1303. \label{sec:partial-evaluation}
  1304. In this section we consider a compiler that translates \LangInt{}
  1305. programs into \LangInt{} programs that may be more efficient. The
  1306. compiler eagerly computes the parts of the program that do not depend
  1307. on any inputs, a process known as \emph{partial
  1308. evaluation}~\citep{Jones:1993uq}. \index{subject}{partial evaluation}
  1309. For example, given the following program
  1310. {\if\edition\racketEd\color{olive}
  1311. \begin{lstlisting}
  1312. (+ (read) (- (+ 5 3)))
  1313. \end{lstlisting}
  1314. \fi}
  1315. {\if\edition\pythonEd
  1316. \begin{lstlisting}
  1317. print(input_int() + -(5 + 3) )
  1318. \end{lstlisting}
  1319. \fi}
  1320. \noindent our compiler translates it into the program
  1321. {\if\edition\racketEd\color{olive}
  1322. \begin{lstlisting}
  1323. (+ (read) -8)
  1324. \end{lstlisting}
  1325. \fi}
  1326. {\if\edition\pythonEd
  1327. \begin{lstlisting}
  1328. print(input_int() + -8)
  1329. \end{lstlisting}
  1330. \fi}
  1331. Figure~\ref{fig:pe-arith} gives the code for a simple partial
  1332. evaluator for the \LangInt{} language. The output of the partial evaluator
  1333. is a program in \LangInt{}. In Figure~\ref{fig:pe-arith}, the structural
  1334. recursion over $\Exp$ is captured in the \code{pe\_exp} function
  1335. whereas the code for partially evaluating the negation and addition
  1336. operations is factored into two auxiliary functions:
  1337. \code{pe\_neg} and \code{pe\_add}. The input to these
  1338. functions is the output of partially evaluating the children.
  1339. The \code{pe\_neg} and \code{pe\_add} functions check whether their
  1340. arguments are integers and if they are, perform the appropriate
  1341. arithmetic. Otherwise, they create an AST node for the arithmetic
  1342. operation.
  1343. \begin{figure}[tp]
  1344. {\if\edition\racketEd\color{olive}
  1345. \begin{lstlisting}
  1346. (define (pe_neg r)
  1347. (match r
  1348. [(Int n) (Int (fx- 0 n))]
  1349. [else (Prim '- (list r))]))
  1350. (define (pe_add r1 r2)
  1351. (match* (r1 r2)
  1352. [((Int n1) (Int n2)) (Int (fx+ n1 n2))]
  1353. [(_ _) (Prim '+ (list r1 r2))]))
  1354. (define (pe_exp e)
  1355. (match e
  1356. [(Int n) (Int n)]
  1357. [(Prim 'read '()) (Prim 'read '())]
  1358. [(Prim '- (list e1)) (pe_neg (pe_exp e1))]
  1359. [(Prim '+ (list e1 e2)) (pe_add (pe_exp e1) (pe_exp e2))]))
  1360. (define (pe_Lint p)
  1361. (match p
  1362. [(Program '() e) (Program '() (pe_exp e))]))
  1363. \end{lstlisting}
  1364. \fi}
  1365. {\if\edition\pythonEd
  1366. \begin{lstlisting}
  1367. def pe_neg(r):
  1368. match r:
  1369. case Constant(n):
  1370. return Constant(-n)
  1371. case _:
  1372. return UnaryOp(USub(), r)
  1373. def pe_add(r1, r2):
  1374. match (r1, r2):
  1375. case (Constant(n1), Constant(n2)):
  1376. return Constant(n1 + n2)
  1377. case _:
  1378. return BinOp(r1, Add(), r2)
  1379. def pe_exp(e):
  1380. match e:
  1381. case BinOp(left, Add(), right):
  1382. return pe_add(pe_exp(left), pe_exp(right))
  1383. case UnaryOp(USub(), v):
  1384. return pe_neg(pe_exp(v))
  1385. case Constant(value):
  1386. return e
  1387. case Call(Name('input_int'), []):
  1388. return e
  1389. def pe_stmt(s):
  1390. match s:
  1391. case Expr(Call(Name('print'), [arg])):
  1392. return Expr(Call(Name('print'), [pe_exp(arg)]))
  1393. case Expr(value):
  1394. return Expr(pe_exp(value))
  1395. def pe_P_int(p):
  1396. match p:
  1397. case Module(body):
  1398. new_body = [pe_stmt(s) for s in body]
  1399. return Module(new_body)
  1400. \end{lstlisting}
  1401. \fi}
  1402. \caption{A partial evaluator for \LangInt{}.}
  1403. \label{fig:pe-arith}
  1404. \end{figure}
  1405. To gain some confidence that the partial evaluator is correct, we can
  1406. test whether it produces programs that get the same result as the
  1407. input programs. That is, we can test whether it satisfies Diagram
  1408. \ref{eq:compile-correct}.
  1409. %
  1410. {\if\edition\racketEd\color{olive}
  1411. The following code runs the partial evaluator on several examples and
  1412. tests the output program. The \texttt{parse-program} and
  1413. \texttt{assert} functions are defined in
  1414. Appendix~\ref{appendix:utilities}.\\
  1415. \begin{minipage}{1.0\textwidth}
  1416. \begin{lstlisting}
  1417. (define (test_pe p)
  1418. (assert "testing pe_Lint"
  1419. (equal? (interp_Lint p) (interp_Lint (pe_Lint p)))))
  1420. (test_pe (parse-program `(program () (+ 10 (- (+ 5 3))))))
  1421. (test_pe (parse-program `(program () (+ 1 (+ 3 1)))))
  1422. (test_pe (parse-program `(program () (- (+ 3 (- 5))))))
  1423. \end{lstlisting}
  1424. \end{minipage}
  1425. \fi}
  1426. % TODO: python version of testing the PE
  1427. \begin{exercise}\normalfont
  1428. Create three programs in the \LangInt{} language and test whether
  1429. partially evaluating them with \code{pe\_Lint} and then
  1430. interpreting them with \code{interp\_Lint} gives the same result
  1431. as directly interpreting them with \code{interp\_Lint}.
  1432. \end{exercise}
  1433. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  1434. \chapter{Integers and Variables}
  1435. \label{ch:Lvar}
  1436. This chapter is about compiling a subset of
  1437. \racket{Racket}\python{Python} to x86-64 assembly
  1438. code~\citep{Intel:2015aa}. The subset, named \LangVar{}, includes
  1439. integer arithmetic and local variables. We often refer to x86-64
  1440. simply as x86. The chapter begins with a description of the
  1441. \LangVar{} language (Section~\ref{sec:s0}) followed by an introduction
  1442. to x86 assembly (Section~\ref{sec:x86}). The x86 assembly language is
  1443. large so we discuss only the instructions needed for compiling
  1444. \LangVar{}. We introduce more x86 instructions in later chapters.
  1445. After introducing \LangVar{} and x86, we reflect on their differences
  1446. and come up with a plan to break down the translation from \LangVar{}
  1447. to x86 into a handful of steps (Section~\ref{sec:plan-s0-x86}). The
  1448. rest of the sections in this chapter give detailed hints regarding
  1449. each step. We hope to give enough hints that the well-prepared
  1450. reader, together with a few friends, can implement a compiler from
  1451. \LangVar{} to x86 in a couple weeks. To give the reader a feeling for
  1452. the scale of this first compiler, the instructor solution for the
  1453. \LangVar{} compiler is approximately \racket{500}\python{300} lines of
  1454. code.
  1455. \section{The \LangVar{} Language}
  1456. \label{sec:s0}
  1457. \index{subject}{variable}
  1458. The \LangVar{} language extends the \LangInt{} language with
  1459. variables. The concrete syntax of the \LangVar{} language is defined
  1460. by the grammar in Figure~\ref{fig:Lvar-concrete-syntax} and the
  1461. abstract syntax is defined in Figure~\ref{fig:Lvar-syntax}. The
  1462. non-terminal \Var{} may be any \racket{Racket}\python{Python} identifier.
  1463. As in \LangInt{}, \READOP{} is a nullary operator, \key{-} is a unary operator, and
  1464. \key{+} is a binary operator. Similar to \LangInt{}, the abstract
  1465. syntax of \LangVar{} includes the \racket{\key{Program}
  1466. struct}\python{\key{Module} instance} to mark the top of the
  1467. program.
  1468. %% The $\itm{info}$
  1469. %% field of the \key{Program} structure contains an \emph{association
  1470. %% list} (a list of key-value pairs) that is used to communicate
  1471. %% auxiliary data from one compiler pass the next.
  1472. Despite the simplicity of the \LangVar{} language, it is rich enough to
  1473. exhibit several compilation techniques.
  1474. \begin{figure}[tp]
  1475. \centering
  1476. \fbox{
  1477. \begin{minipage}{0.96\textwidth}
  1478. {\if\edition\racketEd\color{olive}
  1479. \[
  1480. \begin{array}{rcl}
  1481. \Exp &::=& \Int{} \MID \CREAD{} \MID \CNEG{\Exp} \MID \CADD{\Exp}{\Exp}\\
  1482. &\MID& \Var{} \MID \CLET{\Var}{\Exp}{\Exp} \\
  1483. \LangVarM{} &::=& \Exp
  1484. \end{array}
  1485. \]
  1486. \fi}
  1487. {\if\edition\pythonEd
  1488. \[
  1489. \begin{array}{rcl}
  1490. \Exp &::=& \Int \MID \key{input\_int}\LP\RP \MID \key{-}\;\Exp \MID \Exp \; \key{+} \; \Exp \MID \Var{} \\
  1491. \Stmt &::=& \key{print}\LP \Exp \RP \MID \Exp \MID \Var\mathop{\key{=}}\Exp\\
  1492. \LangVarM{} &::=& \Stmt^{*}
  1493. \end{array}
  1494. \]
  1495. \fi}
  1496. \end{minipage}
  1497. }
  1498. \caption{The concrete syntax of \LangVar{}.}
  1499. \label{fig:Lvar-concrete-syntax}
  1500. \end{figure}
  1501. \begin{figure}[tp]
  1502. \centering
  1503. \fbox{
  1504. \begin{minipage}{0.96\textwidth}
  1505. {\if\edition\racketEd\color{olive}
  1506. \[
  1507. \begin{array}{rcl}
  1508. \Exp &::=& \INT{\Int} \MID \READ{} \\
  1509. &\MID& \NEG{\Exp} \MID \ADD{\Exp}{\Exp} \\
  1510. &\MID& \VAR{\Var} \MID \LET{\Var}{\Exp}{\Exp} \\
  1511. \LangVarM{} &::=& \PROGRAM{\code{'()}}{\Exp}
  1512. \end{array}
  1513. \]
  1514. \fi}
  1515. {\if\edition\pythonEd
  1516. \[
  1517. \begin{array}{rcl}
  1518. \Exp{} &::=& \INT{\Int} \MID \READ{} \\
  1519. &\MID& \NEG{\Exp} \MID \ADD{\Exp}{\Exp} \MID \VAR{\Var{}} \\
  1520. \Stmt{} &::=& \PRINT{\Exp} \MID \EXPR{\Exp} \\
  1521. &\MID& \ASSIGN{\VAR{\Var}}{\Exp}\\
  1522. \LangVarM{} &::=& \PROGRAM{}{\Stmt^{*}}
  1523. \end{array}
  1524. \]
  1525. \fi}
  1526. \end{minipage}
  1527. }
  1528. \caption{The abstract syntax of \LangVar{}.}
  1529. \label{fig:Lvar-syntax}
  1530. \end{figure}
  1531. {\if\edition\racketEd\color{olive}
  1532. Let us dive further into the syntax and semantics of the \LangVar{}
  1533. language. The \key{let} feature defines a variable for use within its
  1534. body and initializes the variable with the value of an expression.
  1535. The abstract syntax for \key{let} is defined in
  1536. Figure~\ref{fig:Lvar-syntax}. The concrete syntax for \key{let} is
  1537. \begin{lstlisting}
  1538. (let ([|$\itm{var}$| |$\itm{exp}$|]) |$\itm{exp}$|)
  1539. \end{lstlisting}
  1540. For example, the following program initializes \code{x} to $32$ and then
  1541. evaluates the body \code{(+ 10 x)}, producing $42$.
  1542. \begin{lstlisting}
  1543. (let ([x (+ 12 20)]) (+ 10 x))
  1544. \end{lstlisting}
  1545. \fi}
  1546. %
  1547. {\if\edition\pythonEd
  1548. %
  1549. The \LangVar{} language includes assignment statements, which define a
  1550. variable for use in later statements and initializes the variable with
  1551. the value of an expression. The abstract syntax for assignment is
  1552. defined in Figure~\ref{fig:Lvar-syntax}. The concrete syntax for
  1553. assignment is
  1554. \begin{lstlisting}
  1555. |$\itm{var}$| = |$\itm{exp}$|
  1556. \end{lstlisting}
  1557. For example, the following program initializes the variable \code{x}
  1558. to $32$ and then prints the result of \code{10 + x}, producing $42$.
  1559. \begin{lstlisting}
  1560. x = 12 + 20
  1561. print(10 + x)
  1562. \end{lstlisting}
  1563. \fi}
  1564. {\if\edition\racketEd\color{olive}
  1565. %
  1566. When there are multiple \key{let}'s for the same variable, the closest
  1567. enclosing \key{let} is used. That is, variable definitions overshadow
  1568. prior definitions. Consider the following program with two \key{let}'s
  1569. that define variables named \code{x}. Can you figure out the result?
  1570. \begin{lstlisting}
  1571. (let ([x 32]) (+ (let ([x 10]) x) x))
  1572. \end{lstlisting}
  1573. For the purposes of depicting which variable uses correspond to which
  1574. definitions, the following shows the \code{x}'s annotated with
  1575. subscripts to distinguish them. Double check that your answer for the
  1576. above is the same as your answer for this annotated version of the
  1577. program.
  1578. \begin{lstlisting}
  1579. (let ([x|$_1$| 32]) (+ (let ([x|$_2$| 10]) x|$_2$|) x|$_1$|))
  1580. \end{lstlisting}
  1581. The initializing expression is always evaluated before the body of the
  1582. \key{let}, so in the following, the \key{read} for \code{x} is
  1583. performed before the \key{read} for \code{y}. Given the input
  1584. $52$ then $10$, the following produces $42$ (not $-42$).
  1585. \begin{lstlisting}
  1586. (let ([x (read)]) (let ([y (read)]) (+ x (- y))))
  1587. \end{lstlisting}
  1588. \fi}
  1589. \subsection{Extensible Interpreters via Method Overriding}
  1590. \label{sec:extensible-interp}
  1591. To prepare for discussing the interpreter for \LangVar{}, we
  1592. explain why we to implement the interpreter using
  1593. object-oriented programming, that is, as a collection of methods
  1594. inside of a class. Throughout this book we define many interpreters,
  1595. one for each of the languages that we study. Because each language
  1596. builds on the prior one, there is a lot of commonality between these
  1597. interpreters. We want to write down the common parts just once
  1598. instead of many times. A naive approach would be to have, for example,
  1599. the interpreter for \LangIf{} handle all of the new features in that
  1600. language and then have a default case that dispatches to the
  1601. interpreter for \LangVar{}. The following code sketches this idea.
  1602. \begin{center}
  1603. {\if\edition\racketEd\color{olive}
  1604. \begin{minipage}{0.45\textwidth}
  1605. \begin{lstlisting}
  1606. (define (interp_Lvar_exp e)
  1607. (match e
  1608. [(Prim '- (list e1))
  1609. (fx- 0 (interp_Lvar_exp e1))]
  1610. ...))
  1611. \end{lstlisting}
  1612. \end{minipage}
  1613. \begin{minipage}{0.45\textwidth}
  1614. \begin{lstlisting}
  1615. (define (interp_Lif_exp e)
  1616. (match e
  1617. [(If cnd thn els)
  1618. (match (interp_Lif_exp cnd)
  1619. [#t (interp_Lif_exp thn)]
  1620. [#f (interp_Lif_exp els)])]
  1621. ...
  1622. [else (interp_Lvar_exp e)]))
  1623. \end{lstlisting}
  1624. \end{minipage}
  1625. \fi}
  1626. {\if\edition\pythonEd
  1627. \begin{minipage}{0.45\textwidth}
  1628. \begin{lstlisting}
  1629. def interp_Lvar_exp(e):
  1630. match e:
  1631. case UnaryOp(USub(), e1):
  1632. return - interp_Lvar_exp(e1)
  1633. ...
  1634. \end{lstlisting}
  1635. \end{minipage}
  1636. \begin{minipage}{0.45\textwidth}
  1637. \begin{lstlisting}
  1638. def interp_Lif_exp(e):
  1639. match e:
  1640. case IfExp(cnd, thn, els):
  1641. match interp_Lif_exp(cnd):
  1642. case True:
  1643. return interp_Lif_exp(thn)
  1644. case False:
  1645. return interp_Lif_exp(els)
  1646. ...
  1647. case _:
  1648. return interp_Lvar_exp(e)
  1649. \end{lstlisting}
  1650. \end{minipage}
  1651. \fi}
  1652. \end{center}
  1653. The problem with this approach is that it does not handle situations
  1654. in which an \LangIf{} feature, such as a conditional expression, is
  1655. nested inside an \LangVar{} feature, like the \code{-} operator, as in
  1656. the following program.
  1657. {\if\edition\racketEd\color{olive}
  1658. \begin{lstlisting}
  1659. (Prim '- (list (If (Bool #t) (Int 42) (Int 0))))
  1660. \end{lstlisting}
  1661. \fi}
  1662. {\if\edition\pythonEd
  1663. \begin{lstlisting}
  1664. print(-(42 if True else 0))
  1665. \end{lstlisting}
  1666. \fi}
  1667. %
  1668. If we invoke \code{interp\_Lif\_exp} on this program, it dispatches to
  1669. \code{interp\_Lvar\_exp} to handle the \code{-} operator, but then it
  1670. recursively calls \code{interp\_Lvar\_exp} again on the argument of
  1671. \code{-}, which is an \code{If}. But there is no case for \code{If}
  1672. in \code{interp\_Lvar\_exp} so we get an error!
  1673. To make our interpreters extensible we need something called
  1674. \emph{open recursion}\index{subject}{open recursion}, where the tying of the
  1675. recursive knot is delayed to when the functions are
  1676. composed. Object-oriented languages provide open recursion via
  1677. method overriding\index{subject}{method overriding}. The
  1678. following code uses method overriding to interpret \LangVar{} and
  1679. \LangIf{} using
  1680. %
  1681. \racket{the
  1682. \href{https://docs.racket-lang.org/guide/classes.html}{\code{class}}
  1683. \index{subject}{class} feature of Racket}
  1684. %
  1685. \python{a Python \code{class} definition}.
  1686. %
  1687. We define one class for each language and define a method for
  1688. interpreting expressions inside each class. The class for \LangIf{}
  1689. inherits from the class for \LangVar{} and the method
  1690. \code{interp\_exp} in \LangIf{} overrides the \code{interp\_exp} in
  1691. \LangVar{}. Note that the default case of \code{interp\_exp} in
  1692. \LangIf{} uses \code{super} to invoke \code{interp\_exp}, and because
  1693. \LangIf{} inherits from \LangVar{}, that dispatches to the
  1694. \code{interp\_exp} in \LangVar{}.
  1695. \begin{center}
  1696. {\if\edition\racketEd\color{olive}
  1697. \begin{minipage}{0.45\textwidth}
  1698. \begin{lstlisting}
  1699. (define interp_Lvar_class
  1700. (class object%
  1701. (define/public (interp_exp e)
  1702. (match e
  1703. [(Prim '- (list e))
  1704. (fx- 0 (interp_exp e))]
  1705. ...))
  1706. ...))
  1707. \end{lstlisting}
  1708. \end{minipage}
  1709. \begin{minipage}{0.45\textwidth}
  1710. \begin{lstlisting}
  1711. (define interp_Lif_class
  1712. (class interp_Lvar_class
  1713. (define/override (interp_exp e)
  1714. (match e
  1715. [(If cnd thn els)
  1716. (match (interp_exp cnd)
  1717. [#t (interp_exp thn)]
  1718. [#f (interp_exp els)])]
  1719. ...
  1720. [else (super interp_exp e)]))
  1721. ...
  1722. ))
  1723. \end{lstlisting}
  1724. \end{minipage}
  1725. \fi}
  1726. {\if\edition\pythonEd
  1727. \begin{minipage}{0.45\textwidth}
  1728. \begin{lstlisting}
  1729. class InterpLvar:
  1730. def interp_exp(e):
  1731. match e:
  1732. case UnaryOp(USub(), e1):
  1733. return -self.interp_exp(e1)
  1734. ...
  1735. ...
  1736. \end{lstlisting}
  1737. \end{minipage}
  1738. \begin{minipage}{0.45\textwidth}
  1739. \begin{lstlisting}
  1740. def InterpLif(InterpRVar):
  1741. def interp_exp(e):
  1742. match e:
  1743. case IfExp(cnd, thn, els):
  1744. match self.interp_exp(cnd):
  1745. case True:
  1746. return self.interp_exp(thn)
  1747. case False:
  1748. return self.interp_exp(els)
  1749. ...
  1750. case _:
  1751. return super().interp_exp(e)
  1752. ...
  1753. \end{lstlisting}
  1754. \end{minipage}
  1755. \fi}
  1756. \end{center}
  1757. Getting back to the troublesome example, repeated here:
  1758. {\if\edition\racketEd\color{olive}
  1759. \begin{lstlisting}
  1760. (define e0 (Prim '- (list (If (Bool #t) (Int 42) (Int 0)))))
  1761. \end{lstlisting}
  1762. \fi}
  1763. {\if\edition\pythonEd
  1764. \begin{lstlisting}
  1765. -(42 if True else 0)
  1766. \end{lstlisting}
  1767. \fi}
  1768. \noindent We can invoke the \code{interp\_exp} method for \LangIf{} on this
  1769. expression, call it \code{e0}, by creating an object of the \LangIf{} class
  1770. and calling the \code{interp\_exp} method.
  1771. {\if\edition\racketEd\color{olive}
  1772. \begin{lstlisting}
  1773. (send (new interp_Lif_class) interp_exp e0)
  1774. \end{lstlisting}
  1775. \fi}
  1776. {\if\edition\pythonEd
  1777. \begin{lstlisting}
  1778. InterpLif().interp_exp(e0)
  1779. \end{lstlisting}
  1780. \fi}
  1781. \noindent The default case of \code{interp\_exp} in \LangIf{} handles it by
  1782. dispatching to the \code{interp\_exp} method in \LangVar{}, which
  1783. handles the \code{-} operator. But then for the recursive method call,
  1784. it dispatches back to \code{interp\_exp} in \LangIf{}, where the
  1785. \code{If} is handled correctly. Thus, method overriding gives us the
  1786. open recursion that we need to implement our interpreters in an
  1787. extensible way.
  1788. \subsection{Definitional Interpreter for \LangVar{}}
  1789. {\if\edition\racketEd\color{olive}
  1790. \begin{figure}[tp]
  1791. %\begin{wrapfigure}[26]{r}[0.75in]{0.55\textwidth}
  1792. \small
  1793. \begin{tcolorbox}[title=Association Lists as Dictionaries]
  1794. An \emph{association list} (alist) is a list of key-value pairs.
  1795. For example, we can map people to their ages with an alist.
  1796. \index{subject}{alist}\index{subject}{association list}
  1797. \begin{lstlisting}[basicstyle=\ttfamily]
  1798. (define ages '((jane . 25) (sam . 24) (kate . 45)))
  1799. \end{lstlisting}
  1800. The \emph{dictionary} interface is for mapping keys to values.
  1801. Every alist implements this interface. \index{subject}{dictionary} The package
  1802. \href{https://docs.racket-lang.org/reference/dicts.html}{\code{racket/dict}}
  1803. provides many functions for working with dictionaries. Here
  1804. are a few of them:
  1805. \begin{description}
  1806. \item[$\LP\key{dict-ref}\,\itm{dict}\,\itm{key}\RP$]
  1807. returns the value associated with the given $\itm{key}$.
  1808. \item[$\LP\key{dict-set}\,\itm{dict}\,\itm{key}\,\itm{val}\RP$]
  1809. returns a new dictionary that maps $\itm{key}$ to $\itm{val}$
  1810. but otherwise is the same as $\itm{dict}$.
  1811. \item[$\LP\code{in-dict}\,\itm{dict}\RP$] returns the
  1812. \href{https://docs.racket-lang.org/reference/sequences.html}{sequence}
  1813. of keys and values in $\itm{dict}$. For example, the following
  1814. creates a new alist in which the ages are incremented.
  1815. \end{description}
  1816. \vspace{-10pt}
  1817. \begin{lstlisting}[basicstyle=\ttfamily]
  1818. (for/list ([(k v) (in-dict ages)])
  1819. (cons k (add1 v)))
  1820. \end{lstlisting}
  1821. \end{tcolorbox}
  1822. %\end{wrapfigure}
  1823. \caption{Association lists implement the dictionary interface.}
  1824. \label{fig:alist}
  1825. \end{figure}
  1826. \fi}
  1827. Having justified the use of classes and methods to implement
  1828. interpreters, we turn to the definitional interpreter for \LangVar{}
  1829. in Figure~\ref{fig:interp-Lvar}. It is similar to the interpreter for
  1830. \LangInt{} but adds two new \key{match} cases for variables and
  1831. \racket{\key{let}}\python{assignment}. For
  1832. \racket{\key{let}}\python{assignment} we need a way to communicate the
  1833. value bound to a variable to all the uses of the variable. To
  1834. accomplish this, we maintain a mapping from variables to
  1835. values. Throughout the compiler we often need to map variables to
  1836. information about them. We refer to these mappings as
  1837. \emph{environments}\index{subject}{environment}.\footnote{Another
  1838. common term for environment in the compiler literature is \emph{symbol
  1839. table}\index{subject}{symbol table}.}
  1840. %
  1841. We use%
  1842. %
  1843. \racket{an association list (alist)}
  1844. %
  1845. \python{a Python \href{https://docs.python.org/3.10/library/stdtypes.html\#mapping-types-dict}{dictionary}}
  1846. to represent the environment.
  1847. %
  1848. \racket{Figure~\ref{fig:alist} gives a brief introduction to alists
  1849. and the \code{racket/dict} package.}
  1850. %
  1851. The \code{interp\_exp} function takes the current environment,
  1852. \code{env}, as an extra parameter. When the interpreter encounters a
  1853. variable, it looks up the corresponding value in the dictionary.
  1854. %
  1855. \racket{When the interpreter encounters a \key{Let}, it evaluates the
  1856. initializing expression, extends the environment with the result
  1857. value bound to the variable, using \code{dict-set}, then evaluates
  1858. the body of the \key{Let}.}
  1859. %
  1860. \python{When the interpreter encounters an assignment, it evaluates
  1861. the initializing expression and then associates the resulting value
  1862. with the variable in the environment.}
  1863. \begin{figure}[tp]
  1864. {\if\edition\racketEd
  1865. \begin{lstlisting}
  1866. (define interp_Lvar_class
  1867. (class object%
  1868. (super-new)
  1869. (define/public ((interp_exp env) e)
  1870. (match e
  1871. [(Int n) n]
  1872. [(Prim 'read '())
  1873. (define r (read))
  1874. (cond [(fixnum? r) r]
  1875. [else (error 'interp_exp "expected an integer" r)])]
  1876. [(Prim '- (list e)) (fx- 0 ((interp_exp env) e))]
  1877. [(Prim '+ (list e1 e2))
  1878. (fx+ ((interp_exp env) e1) ((interp_exp env) e2))]
  1879. [(Var x) (dict-ref env x)]
  1880. [(Let x e body)
  1881. (define new-env (dict-set env x ((interp_exp env) e)))
  1882. ((interp_exp new-env) body)]))
  1883. (define/public (interp_program p)
  1884. (match p
  1885. [(Program '() e) ((interp_exp '()) e)]))
  1886. ))
  1887. (define (interp_Lvar p)
  1888. (send (new interp_Lvar_class) interp_program p))
  1889. \end{lstlisting}
  1890. \fi}
  1891. {\if\edition\pythonEd
  1892. \begin{lstlisting}
  1893. class InterpLvar:
  1894. def interp_exp(self, e, env):
  1895. match e:
  1896. case BinOp(left, Add(), right):
  1897. return self.interp_exp(left, env) + self.interp_exp(right, env)
  1898. case UnaryOp(USub(), v):
  1899. return - self.interp_exp(v, env)
  1900. case Name(id):
  1901. return env[id]
  1902. case Constant(value):
  1903. return value
  1904. case Call(Name('input_int'), []):
  1905. return int(input())
  1906. def interp_stmts(self, ss, env):
  1907. if len(ss) == 0:
  1908. return
  1909. match ss[0]:
  1910. case Assign([lhs], value):
  1911. env[lhs.id] = self.interp_exp(value, env)
  1912. return self.interp_stmts(ss[1:], env)
  1913. case Expr(Call(Name('print'), [arg])):
  1914. print(self.interp_exp(arg, env), end='')
  1915. return self.interp_stmts(ss[1:], env)
  1916. case Expr(value):
  1917. self.interp_exp(value, env)
  1918. return self.interp_stmts(ss[1:], env)
  1919. def interp_P(self, p):
  1920. match p:
  1921. case Module(body):
  1922. self.interp_stmts(body, {})
  1923. \end{lstlisting}
  1924. \fi}
  1925. \caption{Interpreter for the \LangVar{} language.}
  1926. \label{fig:interp-Lvar}
  1927. \end{figure}
  1928. The goal for this chapter is to implement a compiler that translates
  1929. any program $P_1$ written in the \LangVar{} language into an x86 assembly
  1930. program $P_2$ such that $P_2$ exhibits the same behavior when run on a
  1931. computer as the $P_1$ program interpreted by \code{interp\_Lvar}.
  1932. That is, they output the same integer $n$. We depict this correctness
  1933. criteria in the following diagram.
  1934. \[
  1935. \begin{tikzpicture}[baseline=(current bounding box.center)]
  1936. \node (p1) at (0, 0) {$P_1$};
  1937. \node (p2) at (4, 0) {$P_2$};
  1938. \node (o) at (4, -2) {$n$};
  1939. \path[->] (p1) edge [above] node {\footnotesize compile} (p2);
  1940. \path[->] (p1) edge [left] node {\footnotesize\code{interp\_Lvar}} (o);
  1941. \path[->] (p2) edge [right] node {\footnotesize\code{interp\_x86int}} (o);
  1942. \end{tikzpicture}
  1943. \]
  1944. In the next section we introduce the \LangXInt{} subset of x86 that
  1945. suffices for compiling \LangVar{}.
  1946. \section{The \LangXInt{} Assembly Language}
  1947. \label{sec:x86}
  1948. \index{subject}{x86}
  1949. Figure~\ref{fig:x86-int-concrete} defines the concrete syntax for
  1950. \LangXInt{}. We use the AT\&T syntax expected by the GNU
  1951. assembler.
  1952. %
  1953. A program begins with a \code{main} label followed by a sequence of
  1954. instructions. The \key{globl} directive says that the \key{main}
  1955. procedure is externally visible, which is necessary so that the
  1956. operating system can call it.
  1957. %
  1958. An x86 program is stored in the computer's memory. For our purposes,
  1959. the computer's memory is a mapping of 64-bit addresses to 64-bit
  1960. values. The computer has a \emph{program counter} (PC)\index{subject}{program
  1961. counter}\index{subject}{PC} stored in the \code{rip} register that points to
  1962. the address of the next instruction to be executed. For most
  1963. instructions, the program counter is incremented after the instruction
  1964. is executed, so it points to the next instruction in memory. Most x86
  1965. instructions take two operands, where each operand is either an
  1966. integer constant (called an \emph{immediate value}\index{subject}{immediate
  1967. value}), a \emph{register}\index{subject}{register}, or a memory location.
  1968. \newcommand{\allregisters}{\key{rsp} \MID \key{rbp} \MID \key{rax} \MID \key{rbx} \MID \key{rcx}
  1969. \MID \key{rdx} \MID \key{rsi} \MID \key{rdi} \MID \\
  1970. && \key{r8} \MID \key{r9} \MID \key{r10}
  1971. \MID \key{r11} \MID \key{r12} \MID \key{r13}
  1972. \MID \key{r14} \MID \key{r15}}
  1973. \begin{figure}[tp]
  1974. \fbox{
  1975. \begin{minipage}{0.96\textwidth}
  1976. {\if\edition\racketEd
  1977. \[
  1978. \begin{array}{lcl}
  1979. \Reg &::=& \allregisters{} \\
  1980. \Arg &::=& \key{\$}\Int \MID \key{\%}\Reg \MID \Int\key{(}\key{\%}\Reg\key{)}\\
  1981. \Instr &::=& \key{addq} \; \Arg\key{,} \Arg \MID
  1982. \key{subq} \; \Arg\key{,} \Arg \MID
  1983. \key{negq} \; \Arg \MID \key{movq} \; \Arg\key{,} \Arg \MID \\
  1984. && \key{callq} \; \mathit{label} \MID
  1985. \key{pushq}\;\Arg \MID \key{popq}\;\Arg \MID \key{retq} \MID \key{jmp}\,\itm{label} \\
  1986. && \itm{label}\key{:}\; \Instr \\
  1987. \LangXIntM{} &::= & \key{.globl main}\\
  1988. & & \key{main:} \; \Instr\ldots
  1989. \end{array}
  1990. \]
  1991. \fi}
  1992. {\if\edition\pythonEd
  1993. \[
  1994. \begin{array}{lcl}
  1995. \Reg &::=& \allregisters{} \\
  1996. \Arg &::=& \key{\$}\Int \MID \key{\%}\Reg \MID \Int\key{(}\key{\%}\Reg\key{)}\\
  1997. \Instr &::=& \key{addq} \; \Arg\key{,} \Arg \MID
  1998. \key{subq} \; \Arg\key{,} \Arg \MID
  1999. \key{negq} \; \Arg \MID \key{movq} \; \Arg\key{,} \Arg \MID \\
  2000. && \key{callq} \; \mathit{label} \MID
  2001. \key{pushq}\;\Arg \MID \key{popq}\;\Arg \MID \key{retq} \\
  2002. \LangXIntM{} &::= & \key{.globl main}\\
  2003. & & \key{main:} \; \Instr^{*}
  2004. \end{array}
  2005. \]
  2006. \fi}
  2007. \end{minipage}
  2008. }
  2009. \caption{The syntax of the \LangXInt{} assembly language (AT\&T syntax).}
  2010. \label{fig:x86-int-concrete}
  2011. \end{figure}
  2012. A register is a special kind of variable that holds a 64-bit
  2013. value. There are 16 general-purpose registers in the computer and
  2014. their names are given in Figure~\ref{fig:x86-int-concrete}. A register
  2015. is written with a \key{\%} followed by the register name, such as
  2016. \key{\%rax}.
  2017. An immediate value is written using the notation \key{\$}$n$ where $n$
  2018. is an integer.
  2019. %
  2020. %
  2021. An access to memory is specified using the syntax $n(\key{\%}r)$,
  2022. which obtains the address stored in register $r$ and then adds $n$
  2023. bytes to the address. The resulting address is used to load or store
  2024. to memory depending on whether it occurs as a source or destination
  2025. argument of an instruction.
  2026. An arithmetic instruction such as $\key{addq}\,s\key{,}\,d$ reads from the
  2027. source $s$ and destination $d$, applies the arithmetic operation, then
  2028. writes the result back to the destination $d$. \index{subject}{instruction}
  2029. %
  2030. The move instruction $\key{movq}\,s\key{,}\,d$ reads from $s$ and
  2031. stores the result in $d$.
  2032. %
  2033. The $\key{callq}\,\itm{label}$ instruction jumps to the procedure
  2034. specified by the label and $\key{retq}$ returns from a procedure to
  2035. its caller.
  2036. %
  2037. We discuss procedure calls in more detail later in this chapter and in
  2038. Chapter~\ref{ch:Rfun}.
  2039. %
  2040. \racket{The instruction $\key{jmp}\,\itm{label}$ updates the program
  2041. counter to the address of the instruction after the specified
  2042. label.}
  2043. Appendix~\ref{sec:x86-quick-reference} contains a quick-reference for
  2044. all of the x86 instructions used in this book.
  2045. Figure~\ref{fig:p0-x86} depicts an x86 program that computes
  2046. \racket{\code{(+ 10 32)}}\python{10 + 32}. The instruction
  2047. \lstinline{movq $10, %rax}
  2048. puts $10$ into register \key{rax} and then \lstinline{addq $32, %rax}
  2049. adds $32$ to the $10$ in \key{rax} and
  2050. puts the result, $42$, back into \key{rax}.
  2051. %
  2052. The last instruction, \key{retq}, finishes the \key{main} function by
  2053. returning the integer in \key{rax} to the operating system. The
  2054. operating system interprets this integer as the program's exit
  2055. code. By convention, an exit code of 0 indicates that a program
  2056. completed successfully, and all other exit codes indicate various
  2057. errors.
  2058. %
  2059. \racket{Nevertheless, in this book we return the result of the program
  2060. as the exit code.}
  2061. \begin{figure}[tbp]
  2062. \begin{lstlisting}
  2063. .globl main
  2064. main:
  2065. movq $10, %rax
  2066. addq $32, %rax
  2067. retq
  2068. \end{lstlisting}
  2069. \caption{An x86 program that computes
  2070. \racket{\code{(+ 10 32)}}\python{10 + 32}.}
  2071. \label{fig:p0-x86}
  2072. \end{figure}
  2073. We exhibit the use of memory for storing intermediate results in the
  2074. next example. Figure~\ref{fig:p1-x86} lists an x86 program that
  2075. computes \racket{\code{(+ 52 (- 10))}}\python{52 + -10}. This program
  2076. uses a region of memory called the \emph{procedure call stack} (or
  2077. \emph{stack} for
  2078. short). \index{subject}{stack}\index{subject}{procedure call stack}
  2079. The stack consists of a separate \emph{frame}\index{subject}{frame}
  2080. for each procedure call. The memory layout for an individual frame is
  2081. shown in Figure~\ref{fig:frame}. The register \key{rsp} is called the
  2082. \emph{stack pointer}\index{subject}{stack pointer} and points to the
  2083. item at the top of the stack. The stack grows downward in memory, so
  2084. we increase the size of the stack by subtracting from the stack
  2085. pointer. In the context of a procedure call, the \emph{return
  2086. address}\index{subject}{return address} is the instruction after the
  2087. call instruction on the caller side. The function call instruction,
  2088. \code{callq}, pushes the return address onto the stack prior to
  2089. jumping to the procedure. The register \key{rbp} is the \emph{base
  2090. pointer}\index{subject}{base pointer} and is used to access variables
  2091. that are stored in the frame of the current procedure call. The base
  2092. pointer of the caller is store after the return address. In
  2093. Figure~\ref{fig:frame} we number the variables from $1$ to
  2094. $n$. Variable $1$ is stored at address $-8\key{(\%rbp)}$, variable $2$
  2095. at $-16\key{(\%rbp)}$, etc.
  2096. \begin{figure}[tbp]
  2097. {\if\edition\racketEd
  2098. \begin{lstlisting}
  2099. start:
  2100. movq $10, -8(%rbp)
  2101. negq -8(%rbp)
  2102. movq -8(%rbp), %rax
  2103. addq $52, %rax
  2104. jmp conclusion
  2105. .globl main
  2106. main:
  2107. pushq %rbp
  2108. movq %rsp, %rbp
  2109. subq $16, %rsp
  2110. jmp start
  2111. conclusion:
  2112. addq $16, %rsp
  2113. popq %rbp
  2114. retq
  2115. \end{lstlisting}
  2116. \fi}
  2117. {\if\edition\pythonEd
  2118. \begin{lstlisting}
  2119. .globl main
  2120. main:
  2121. pushq %rbp
  2122. movq %rsp, %rbp
  2123. subq $16, %rsp
  2124. movq $10, -8(%rbp)
  2125. negq -8(%rbp)
  2126. movq -8(%rbp), %rax
  2127. addq $52, %rax
  2128. addq $16, %rsp
  2129. popq %rbp
  2130. retq
  2131. \end{lstlisting}
  2132. \fi}
  2133. \caption{An x86 program that computes
  2134. \racket{\code{(+ 52 (- 10))}}\python{52 + -10}.}
  2135. \label{fig:p1-x86}
  2136. \end{figure}
  2137. \begin{figure}[tbp]
  2138. \centering
  2139. \begin{tabular}{|r|l|} \hline
  2140. Position & Contents \\ \hline
  2141. 8(\key{\%rbp}) & return address \\
  2142. 0(\key{\%rbp}) & old \key{rbp} \\
  2143. -8(\key{\%rbp}) & variable $1$ \\
  2144. -16(\key{\%rbp}) & variable $2$ \\
  2145. \ldots & \ldots \\
  2146. 0(\key{\%rsp}) & variable $n$\\ \hline
  2147. \end{tabular}
  2148. \caption{Memory layout of a frame.}
  2149. \label{fig:frame}
  2150. \end{figure}
  2151. Getting back to the program in Figure~\ref{fig:p1-x86}, consider how
  2152. control is transferred from the operating system to the \code{main}
  2153. function. The operating system issues a \code{callq main} instruction
  2154. which pushes its return address on the stack and then jumps to
  2155. \code{main}. In x86-64, the stack pointer \code{rsp} must be divisible
  2156. by 16 bytes prior to the execution of any \code{callq} instruction, so
  2157. when control arrives at \code{main}, the \code{rsp} is 8 bytes out of
  2158. alignment (because the \code{callq} pushed the return address). The
  2159. first three instructions are the typical \emph{prelude}\index{subject}{prelude}
  2160. for a procedure. The instruction \code{pushq \%rbp} saves the base
  2161. pointer for the caller onto the stack and subtracts $8$ from the stack
  2162. pointer. The next instruction \code{movq \%rsp, \%rbp} sets the
  2163. base pointer to the current stack pointer, which is pointing at the location
  2164. of the old base pointer. The instruction \code{subq \$16, \%rsp} moves the stack
  2165. pointer down to make enough room for storing variables. This program
  2166. needs one variable ($8$ bytes) but we round up to 16 bytes so that
  2167. \code{rsp} is 16-byte aligned and we're ready to make calls to other
  2168. functions.
  2169. \racket{The last instruction of the prelude is \code{jmp start},
  2170. which transfers control to the instructions that were generated from
  2171. the expression \racket{\code{(+ 52 (- 10))}}\python{52 + -10}.}
  2172. \racket{The first instruction under the \code{start} label is}
  2173. %
  2174. \python{The first instruction after the prelude is}
  2175. %
  2176. \code{movq \$10, -8(\%rbp)}, which stores $10$ in variable $1$.
  2177. %
  2178. The instruction \code{negq -8(\%rbp)} changes variable $1$ to $-10$.
  2179. %
  2180. The next instruction moves the $-10$ from variable $1$ into the
  2181. \code{rax} register. Finally, \code{addq \$52, \%rax} adds $52$ to
  2182. the value in \code{rax}, updating its contents to $42$.
  2183. \racket{The three instructions under the label \code{conclusion} are the
  2184. typical \emph{conclusion}\index{subject}{conclusion} of a procedure.}
  2185. %
  2186. \python{The \emph{conclusion}\index{subject}{conclusion} of the
  2187. \code{main} function consists of the last three instructions.}
  2188. %
  2189. The first two restore the \code{rsp} and \code{rbp} registers to the
  2190. state they were in at the beginning of the procedure. In particular,
  2191. \key{addq \$16, \%rsp} moves the stack pointer back to point at the
  2192. old base pointer. Then \key{popq \%rbp} returns the old base pointer
  2193. to \key{rbp} and adds $8$ to the stack pointer. The last instruction,
  2194. \key{retq}, jumps back to the procedure that called this one and adds
  2195. $8$ to the stack pointer.
  2196. Our compiler needs a convenient representation for manipulating x86
  2197. programs, so we define an abstract syntax for x86 in
  2198. Figure~\ref{fig:x86-int-ast}. We refer to this language as
  2199. \LangXInt{}.
  2200. %
  2201. {\if\edition\racketEd\color{olive}
  2202. The main difference compared to the concrete syntax of \LangXInt{}
  2203. (Figure~\ref{fig:x86-int-concrete}) is that labels are not allowed in
  2204. front of every instruction. Instead instructions are grouped into
  2205. \emph{blocks}\index{subject}{block}\index{subject}{basic block} with a
  2206. label associated with every block, which is why the \key{X86Program}
  2207. struct includes an alist mapping labels to blocks. The reason for this
  2208. organization becomes apparent in Chapter~\ref{ch:Lif} when we
  2209. introduce conditional branching. The \code{Block} structure includes
  2210. an $\itm{info}$ field that is not needed for this chapter, but becomes
  2211. useful in Chapter~\ref{ch:register-allocation-Lvar}. For now, the
  2212. $\itm{info}$ field should contain an empty list.
  2213. \fi}
  2214. %
  2215. Regarding the abstract syntax for \code{callq}, the \code{Callq} AST
  2216. node includes an integer for representing the arity of the function,
  2217. i.e., the number of arguments, which is helpful to know during
  2218. register allocation (Chapter~\ref{ch:register-allocation-Lvar}).
  2219. \begin{figure}[tp]
  2220. \fbox{
  2221. \begin{minipage}{0.98\textwidth}
  2222. \small
  2223. {\if\edition\racketEd\color{olive}
  2224. \[
  2225. \begin{array}{lcl}
  2226. \Reg &::=& \allregisters{} \\
  2227. \Arg &::=& \IMM{\Int} \MID \REG{\Reg}
  2228. \MID \DEREF{\Reg}{\Int} \\
  2229. \Instr &::=& \BININSTR{\code{addq}}{\Arg}{\Arg}
  2230. \MID \BININSTR{\code{subq}}{\Arg}{\Arg} \\
  2231. &\MID& \BININSTR{\code{movq}}{\Arg}{\Arg}
  2232. \MID \UNIINSTR{\code{negq}}{\Arg}\\
  2233. &\MID& \CALLQ{\itm{label}}{\itm{int}} \MID \RETQ{}
  2234. \MID \PUSHQ{\Arg} \MID \POPQ{\Arg} \MID \JMP{\itm{label}} \\
  2235. \Block &::= & \BLOCK{\itm{info}}{\LP\Instr\ldots\RP} \\
  2236. \LangXIntM{} &::= & \XPROGRAM{\itm{info}}{\LP\LP\itm{label} \,\key{.}\, \Block \RP\ldots\RP}
  2237. \end{array}
  2238. \]
  2239. \fi}
  2240. {\if\edition\pythonEd
  2241. \[
  2242. \begin{array}{lcl}
  2243. \Reg &::=& \allregisters{} \\
  2244. \Arg &::=& \IMM{\Int} \MID \REG{\Reg}
  2245. \MID \DEREF{\Reg}{\Int} \\
  2246. \Instr &::=& \BININSTR{\code{addq}}{\Arg}{\Arg}
  2247. \MID \BININSTR{\code{subq}}{\Arg}{\Arg} \\
  2248. &\MID& \BININSTR{\code{movq}}{\Arg}{\Arg}
  2249. \MID \UNIINSTR{\code{negq}}{\Arg}\\
  2250. &\MID& \CALLQ{\itm{label}}{\itm{int}} \MID \RETQ{}
  2251. \MID \PUSHQ{\Arg} \MID \POPQ{\Arg} \MID \JMP{\itm{label}} \\
  2252. \LangXIntM{} &::= & \XPROGRAM{}{\Instr^{*}}{}
  2253. \end{array}
  2254. \]
  2255. \fi}
  2256. \end{minipage}
  2257. }
  2258. \caption{The abstract syntax of \LangXInt{} assembly.}
  2259. \label{fig:x86-int-ast}
  2260. \end{figure}
  2261. \section{Planning the trip to x86}
  2262. \label{sec:plan-s0-x86}
  2263. To compile one language to another it helps to focus on the
  2264. differences between the two languages because the compiler will need
  2265. to bridge those differences. What are the differences between \LangVar{}
  2266. and x86 assembly? Here are some of the most important ones:
  2267. \begin{enumerate}
  2268. \item x86 arithmetic instructions typically have two arguments
  2269. and update the second argument in place. In contrast, \LangVar{}
  2270. arithmetic operations take two arguments and produce a new value.
  2271. An x86 instruction may have at most one memory-accessing argument.
  2272. Furthermore, some instructions place special restrictions on their
  2273. arguments.
  2274. \item An argument of an \LangVar{} operator can be a deeply-nested
  2275. expression, whereas x86 instructions restrict their arguments to be
  2276. integer constants, registers, and memory locations.
  2277. {\if\edition\racketEd\color{olive}
  2278. \item[(c)] The order of execution in x86 is explicit in the syntax: a
  2279. sequence of instructions and jumps to labeled positions, whereas in
  2280. \LangVar{} the order of evaluation is a left-to-right depth-first
  2281. traversal of the abstract syntax tree.
  2282. \fi}
  2283. \item A program in \LangVar{} can have any number of variables
  2284. whereas x86 has 16 registers and the procedure call stack.
  2285. {\if\edition\racketEd\color{olive}
  2286. \item Variables in \LangVar{} can shadow other variables with the
  2287. same name. In x86, registers have unique names and memory locations
  2288. have unique addresses.
  2289. \fi}
  2290. \end{enumerate}
  2291. We ease the challenge of compiling from \LangVar{} to x86 by breaking down
  2292. the problem into several steps, dealing with the above differences one
  2293. at a time. Each of these steps is called a \emph{pass} of the
  2294. compiler.\index{subject}{pass}\index{subject}{compiler pass}
  2295. %
  2296. This terminology comes from the way each step passes over the AST of
  2297. the program.
  2298. %
  2299. We begin by sketching how we might implement each pass, and give them
  2300. names. We then figure out an ordering of the passes and the
  2301. input/output language for each pass. The very first pass has
  2302. \LangVar{} as its input language and the last pass has \LangXInt{} as
  2303. its output language. In between we can choose whichever language is
  2304. most convenient for expressing the output of each pass, whether that
  2305. be \LangVar{}, \LangXInt{}, or new \emph{intermediate languages} of
  2306. our own design. Finally, to implement each pass we write one
  2307. recursive function per non-terminal in the grammar of the input
  2308. language of the pass. \index{subject}{intermediate language}
  2309. \begin{description}
  2310. {\if\edition\racketEd\color{olive}
  2311. \item[\key{uniquify}] deals with the shadowing of variables by
  2312. renaming every variable to a unique name.
  2313. \fi}
  2314. \item[\key{remove\_complex\_operands}] ensures that each subexpression
  2315. of a primitive operation or function call is a variable or integer,
  2316. that is, an \emph{atomic} expression. We refer to non-atomic
  2317. expressions as \emph{complex}. This pass introduces temporary
  2318. variables to hold the results of complex
  2319. subexpressions.\index{subject}{atomic
  2320. expression}\index{subject}{complex expression}%
  2321. {\if\edition\racketEd\color{olive}
  2322. \item[\key{explicate\_control}] makes the execution order of the
  2323. program explicit. It convert the abstract syntax tree representation
  2324. into a control-flow graph in which each node contains a sequence of
  2325. statements and the edges between nodes say which nodes contain jumps
  2326. to other nodes.
  2327. \fi}
  2328. \item[\key{select\_instructions}] handles the difference between
  2329. \LangVar{} operations and x86 instructions. This pass converts each
  2330. \LangVar{} operation to a short sequence of instructions that
  2331. accomplishes the same task.
  2332. \item[\key{assign\_homes}] replaces the variables in \LangVar{} with
  2333. registers or stack locations in x86.
  2334. \end{description}
  2335. The next question is: in what order should we apply these passes? This
  2336. question can be challenging because it is difficult to know ahead of
  2337. time which orderings will be better (easier to implement, produce more
  2338. efficient code, etc.) so oftentimes trial-and-error is
  2339. involved. Nevertheless, we can try to plan ahead and make educated
  2340. choices regarding the ordering.
  2341. \racket{What should be the ordering of \key{explicate\_control} with respect to
  2342. \key{uniquify}? The \key{uniquify} pass should come first because
  2343. \key{explicate\_control} changes all the \key{let}-bound variables to
  2344. become local variables whose scope is the entire program, which would
  2345. confuse variables with the same name.}
  2346. %
  2347. \racket{We place \key{remove\_complex\_opera*} before \key{explicate\_control}
  2348. because the later removes the \key{let} form, but it is convenient to
  2349. use \key{let} in the output of \key{remove\_complex\_opera*}.}
  2350. %
  2351. \racket{The ordering of \key{uniquify} with respect to
  2352. \key{remove\_complex\_opera*} does not matter so we arbitrarily choose
  2353. \key{uniquify} to come first.}
  2354. The \key{select\_instructions} and \key{assign\_homes} passes are
  2355. intertwined.
  2356. %
  2357. In Chapter~\ref{ch:Rfun} we learn that, in x86, registers are used for
  2358. passing arguments to functions and it is preferable to assign
  2359. parameters to their corresponding registers. This suggests that it
  2360. would be better to start with the \key{select\_instructions} pass,
  2361. which generates the instructions for argument passing, before
  2362. performing register allocation.
  2363. %
  2364. On the other hand, by selecting instructions first we may run into a
  2365. dead end in \key{assign\_homes}. Recall that only one argument of an
  2366. x86 instruction may be a memory access but \key{assign\_homes} might
  2367. be forced to assign both arguments to memory locations.
  2368. %
  2369. A sophisticated approach is to iteratively repeat the two passes until
  2370. a solution is found. However, to reduce implementation complexity we
  2371. recommend a simpler approach in which \key{select\_instructions} comes
  2372. first, followed by the \key{assign\_homes}, then a third pass named
  2373. \key{patch\_instructions} that uses a reserved register to fix
  2374. outstanding problems.
  2375. \begin{figure}[tbp]
  2376. {\if\edition\racketEd\color{olive}
  2377. \begin{tikzpicture}[baseline=(current bounding box.center)]
  2378. \node (Lvar) at (0,2) {\large \LangVar{}};
  2379. \node (Lvar-2) at (3,2) {\large \LangVar{}};
  2380. \node (Lvar-3) at (6,2) {\large \LangVarANF{}};
  2381. %\node (Cvar-1) at (6,0) {\large \LangCVar{}};
  2382. \node (Cvar-2) at (3,0) {\large \LangCVar{}};
  2383. \node (x86-2) at (3,-2) {\large \LangXVar{}};
  2384. \node (x86-3) at (6,-2) {\large \LangXVar{}};
  2385. \node (x86-4) at (9,-2) {\large \LangXInt{}};
  2386. \node (x86-5) at (12,-2) {\large \LangXInt{}};
  2387. \path[->,bend left=15] (Lvar) edge [above] node {\ttfamily\footnotesize uniquify} (Lvar-2);
  2388. \path[->,bend left=15] (Lvar-2) edge [above] node {\ttfamily\footnotesize remove\_complex.} (Lvar-3);
  2389. \path[->,bend left=15] (Lvar-3) edge [right] node {\ttfamily\footnotesize explicate\_control} (Cvar-2);
  2390. \path[->,bend right=15] (Cvar-2) edge [left] node {\ttfamily\footnotesize select\_instr.} (x86-2);
  2391. \path[->,bend left=15] (x86-2) edge [above] node {\ttfamily\footnotesize assign\_homes} (x86-3);
  2392. \path[->,bend left=15] (x86-3) edge [above] node {\ttfamily\footnotesize patch\_instr.} (x86-4);
  2393. \path[->,bend left=15] (x86-4) edge [above] node {\ttfamily\footnotesize print\_x86} (x86-5);
  2394. \end{tikzpicture}
  2395. \fi}
  2396. {\if\edition\pythonEd
  2397. \begin{tikzpicture}[baseline=(current bounding box.center)]
  2398. \node (Lvar) at (0,2) {\large \LangVar{}};
  2399. \node (Lvar-2) at (3,2) {\large \LangVar{}};
  2400. \node (x86-1) at (3,0) {\large \LangXVar{}};
  2401. \node (x86-2) at (6,0) {\large \LangXVar{}};
  2402. \node (x86-3) at (9,0) {\large \LangXInt{}};
  2403. \node (x86-4) at (12,0) {\large \LangXInt{}};
  2404. \path[->,bend left=15] (Lvar) edge [above] node {\ttfamily\footnotesize remove\_complex.} (Lvar-2);
  2405. \path[->,bend right=15] (Lvar-2) edge [left] node {\ttfamily\footnotesize select\_instr.} (x86-1);
  2406. \path[->,bend right=15] (x86-1) edge [below] node {\ttfamily\footnotesize assign\_homes} (x86-2);
  2407. \path[->,bend left=15] (x86-2) edge [above] node {\ttfamily\footnotesize patch\_instr.} (x86-3);
  2408. \path[->,bend right=15] (x86-3) edge [below] node {\ttfamily\footnotesize print\_x86} (x86-4);
  2409. \end{tikzpicture}
  2410. \fi}
  2411. \caption{Diagram of the passes for compiling \LangVar{}. }
  2412. \label{fig:Lvar-passes}
  2413. \end{figure}
  2414. Figure~\ref{fig:Lvar-passes} presents the ordering of the compiler
  2415. passes and identifies the input and output language of each pass.
  2416. %
  2417. The output of the \key{select\_instructions} pass is the \LangXVar{}
  2418. language, which extends \LangXInt{} with an unbounded number of
  2419. program-scope variables and removes the restrictions regarding
  2420. instruction arguments.
  2421. %
  2422. The last pass, \key{print\_x86}, converts from the abstract syntax of
  2423. \LangXInt{} to the concrete syntax.
  2424. %
  2425. \racket{In the following section we discuss the \LangCVar{}
  2426. intermediate language.}
  2427. %
  2428. The remainder of this chapter provides guidance on the implementation
  2429. of each of the compiler passes in Figure~\ref{fig:Lvar-passes}.
  2430. %% The output of \key{uniquify} and \key{remove-complex-opera*}
  2431. %% are programs that are still in the \LangVar{} language, though the
  2432. %% output of the later is a subset of \LangVar{} named \LangVarANF{}
  2433. %% (Section~\ref{sec:remove-complex-opera-Lvar}).
  2434. %% %
  2435. %% The output of \code{explicate\_control} is in an intermediate language
  2436. %% \LangCVar{} designed to make the order of evaluation explicit in its
  2437. %% syntax, which we introduce in the next section. The
  2438. %% \key{select-instruction} pass translates from \LangCVar{} to
  2439. %% \LangXVar{}. The \key{assign-homes} and
  2440. %% \key{patch-instructions}
  2441. %% passes input and output variants of x86 assembly.
  2442. {\if\edition\racketEd\color{olive}
  2443. \subsection{The \LangCVar{} Intermediate Language}
  2444. The output of \code{explicate\_control} is similar to the $C$
  2445. language~\citep{Kernighan:1988nx} in that it has separate syntactic
  2446. categories for expressions and statements, so we name it \LangCVar{}. The
  2447. abstract syntax for \LangCVar{} is defined in Figure~\ref{fig:c0-syntax}.
  2448. \racket{(The concrete syntax for \LangCVar{} is in the Appendix,
  2449. Figure~\ref{fig:c0-concrete-syntax}.)}
  2450. %
  2451. The \LangCVar{} language supports the same operators as \LangVar{} but
  2452. the arguments of operators are restricted to atomic
  2453. expressions. Instead of \key{let} expressions, \LangCVar{} has
  2454. assignment statements which can be executed in sequence using the
  2455. \key{Seq} form. A sequence of statements always ends with
  2456. \key{Return}, a guarantee that is baked into the grammar rules for
  2457. \itm{tail}. The naming of this non-terminal comes from the term
  2458. \emph{tail position}\index{subject}{tail position}, which refers to an
  2459. expression that is the last one to execute within a function.
  2460. A \LangCVar{} program consists of a control-flow graph represented as
  2461. an alist mapping labels to tails. This is more general than necessary
  2462. for the present chapter, as we do not yet introduce \key{goto} for
  2463. jumping to labels, but it saves us from having to change the syntax in
  2464. Chapter~\ref{ch:Lif}. For now there will be just one label,
  2465. \key{start}, and the whole program is its tail.
  2466. %
  2467. The $\itm{info}$ field of the \key{CProgram} form, after the
  2468. \code{explicate\_control} pass, contains a mapping from the symbol
  2469. \key{locals} to a list of variables, that is, a list of all the
  2470. variables used in the program. At the start of the program, these
  2471. variables are uninitialized; they become initialized on their first
  2472. assignment.
  2473. \begin{figure}[tbp]
  2474. \fbox{
  2475. \begin{minipage}{0.96\textwidth}
  2476. \[
  2477. \begin{array}{lcl}
  2478. \Atm &::=& \INT{\Int} \MID \VAR{\Var} \\
  2479. \Exp &::=& \Atm \MID \READ{} \MID \NEG{\Atm} \\
  2480. &\MID& \ADD{\Atm}{\Atm}\\
  2481. \Stmt &::=& \ASSIGN{\VAR{\Var}}{\Exp} \\
  2482. \Tail &::= & \RETURN{\Exp} \MID \SEQ{\Stmt}{\Tail} \\
  2483. \LangCVarM{} & ::= & \CPROGRAM{\itm{info}}{\LP\LP\itm{label}\,\key{.}\,\Tail\RP\ldots\RP}
  2484. \end{array}
  2485. \]
  2486. \end{minipage}
  2487. }
  2488. \caption{The abstract syntax of the \LangCVar{} intermediate language.}
  2489. \label{fig:c0-syntax}
  2490. \end{figure}
  2491. The definitional interpreter for \LangCVar{} is in the support code,
  2492. in the file \code{interp-Cvar.rkt}.
  2493. \fi}
  2494. {\if\edition\racketEd\color{olive}
  2495. \section{Uniquify Variables}
  2496. \label{sec:uniquify-Lvar}
  2497. The \code{uniquify} pass compiles \LangVar{} programs into \LangVar{}
  2498. programs in which every \key{let} binds a unique variable name. For
  2499. example, the \code{uniquify} pass should translate the program on the
  2500. left into the program on the right.
  2501. \begin{transformation}
  2502. \begin{lstlisting}
  2503. (let ([x 32])
  2504. (+ (let ([x 10]) x) x))
  2505. \end{lstlisting}
  2506. \compilesto
  2507. \begin{lstlisting}
  2508. (let ([x.1 32])
  2509. (+ (let ([x.2 10]) x.2) x.1))
  2510. \end{lstlisting}
  2511. \end{transformation}
  2512. The following is another example translation, this time of a program
  2513. with a \key{let} nested inside the initializing expression of another
  2514. \key{let}.
  2515. \begin{transformation}
  2516. \begin{lstlisting}
  2517. (let ([x (let ([x 4])
  2518. (+ x 1))])
  2519. (+ x 2))
  2520. \end{lstlisting}
  2521. \compilesto
  2522. \begin{lstlisting}
  2523. (let ([x.2 (let ([x.1 4])
  2524. (+ x.1 1))])
  2525. (+ x.2 2))
  2526. \end{lstlisting}
  2527. \end{transformation}
  2528. We recommend implementing \code{uniquify} by creating a structurally
  2529. recursive function named \code{uniquify-exp} that mostly just copies
  2530. an expression. However, when encountering a \key{let}, it should
  2531. generate a unique name for the variable and associate the old name
  2532. with the new name in an alist.\footnote{The Racket function
  2533. \code{gensym} is handy for generating unique variable names.} The
  2534. \code{uniquify-exp} function needs to access this alist when it gets
  2535. to a variable reference, so we add a parameter to \code{uniquify-exp}
  2536. for the alist.
  2537. The skeleton of the \code{uniquify-exp} function is shown in
  2538. Figure~\ref{fig:uniquify-Lvar}. The function is curried so that it is
  2539. convenient to partially apply it to an alist and then apply it to
  2540. different expressions, as in the last case for primitive operations in
  2541. Figure~\ref{fig:uniquify-Lvar}. The
  2542. %
  2543. \href{https://docs.racket-lang.org/reference/for.html#%28form._%28%28lib._racket%2Fprivate%2Fbase..rkt%29._for%2Flist%29%29}{\key{for/list}}
  2544. %
  2545. form of Racket is useful for transforming each element of a list to
  2546. produce a new list.\index{subject}{for/list}
  2547. \begin{figure}[tbp]
  2548. \begin{lstlisting}
  2549. (define (uniquify-exp env)
  2550. (lambda (e)
  2551. (match e
  2552. [(Var x) ___]
  2553. [(Int n) (Int n)]
  2554. [(Let x e body) ___]
  2555. [(Prim op es)
  2556. (Prim op (for/list ([e es]) ((uniquify-exp env) e)))])))
  2557. (define (uniquify p)
  2558. (match p
  2559. [(Program '() e) (Program '() ((uniquify-exp '()) e))]))
  2560. \end{lstlisting}
  2561. \caption{Skeleton for the \key{uniquify} pass.}
  2562. \label{fig:uniquify-Lvar}
  2563. \end{figure}
  2564. \begin{exercise}
  2565. \normalfont % I don't like the italics for exercises. -Jeremy
  2566. Complete the \code{uniquify} pass by filling in the blanks in
  2567. Figure~\ref{fig:uniquify-Lvar}, that is, implement the cases for
  2568. variables and for the \key{let} form in the file \code{compiler.rkt}
  2569. in the support code.
  2570. \end{exercise}
  2571. \begin{exercise}
  2572. \normalfont % I don't like the italics for exercises. -Jeremy
  2573. \label{ex:Lvar}
  2574. Create five \LangVar{} programs that exercise the most interesting
  2575. parts of the \key{uniquify} pass, that is, the programs should include
  2576. \key{let} forms, variables, and variables that shadow each other.
  2577. The five programs should be placed in the subdirectory named
  2578. \key{tests} and the file names should start with \code{var\_test\_}
  2579. followed by a unique integer and end with the file extension
  2580. \key{.rkt}.
  2581. %
  2582. The \key{run-tests.rkt} script in the support code checks whether the
  2583. output programs produce the same result as the input programs. The
  2584. script uses the \key{interp-tests} function
  2585. (Appendix~\ref{appendix:utilities}) from \key{utilities.rkt} to test
  2586. your \key{uniquify} pass on the example programs. The \code{passes}
  2587. parameter of \key{interp-tests} is a list that should have one entry
  2588. for each pass in your compiler. For now, define \code{passes} to
  2589. contain just one entry for \code{uniquify} as shown below.
  2590. \begin{lstlisting}
  2591. (define passes
  2592. (list (list "uniquify" uniquify interp_Lvar type-check-Lvar)))
  2593. \end{lstlisting}
  2594. Run the \key{run-tests.rkt} script in the support code to check
  2595. whether the output programs produce the same result as the input
  2596. programs.
  2597. \end{exercise}
  2598. \fi}
  2599. \section{Remove Complex Operands}
  2600. \label{sec:remove-complex-opera-Lvar}
  2601. The \code{remove\_complex\_operands} pass compiles \LangVar{} programs
  2602. into a restricted form in which the arguments of operations are atomic
  2603. expressions. Put another way, this pass removes complex
  2604. operands\index{subject}{complex operand}, such as the expression
  2605. \racket{\code{(- 10)}}\python{\code{-10}}
  2606. in the program below. This is accomplished by introducing a new
  2607. temporary variable, assigning the complex operand to the new
  2608. variable, and then using the new variable in place of the complex
  2609. operand, as shown in the output of \code{remove\_complex\_operands} on the
  2610. right.
  2611. {\if\edition\racketEd\color{olive}
  2612. \begin{transformation}
  2613. % var_test_19.rkt
  2614. \begin{lstlisting}
  2615. (let ([x (+ 42 (- 10))])
  2616. (+ x 10))
  2617. \end{lstlisting}
  2618. \compilesto
  2619. \begin{lstlisting}
  2620. (let ([x (let ([tmp.1 (- 10)])
  2621. (+ 42 tmp.1))])
  2622. (+ x 10))
  2623. \end{lstlisting}
  2624. \end{transformation}
  2625. \fi}
  2626. {\if\edition\pythonEd
  2627. \begin{transformation}
  2628. \begin{lstlisting}
  2629. x = 42 + -10
  2630. print(x + 10)
  2631. \end{lstlisting}
  2632. \compilesto
  2633. \begin{lstlisting}
  2634. tmp_0 = -10
  2635. x = 42 + tmp_0
  2636. tmp_1 = x + 10
  2637. print(tmp_1)
  2638. \end{lstlisting}
  2639. \end{transformation}
  2640. \fi}
  2641. \begin{figure}[tp]
  2642. \centering
  2643. \fbox{
  2644. \begin{minipage}{0.96\textwidth}
  2645. {\if\edition\racketEd\color{olive}
  2646. \[
  2647. \begin{array}{rcl}
  2648. \Atm &::=& \INT{\Int} \MID \VAR{\Var} \\
  2649. \Exp &::=& \Atm \MID \READ{} \\
  2650. &\MID& \NEG{\Atm} \MID \ADD{\Atm}{\Atm} \\
  2651. &\MID& \LET{\Var}{\Exp}{\Exp} \\
  2652. \LangVarANFM{} &::=& \PROGRAM{\code{'()}}{\Exp}
  2653. \end{array}
  2654. \]
  2655. \fi}
  2656. {\if\edition\pythonEd
  2657. \[
  2658. \begin{array}{rcl}
  2659. \Atm &::=& \INT{\Int} \MID \VAR{\Var} \\
  2660. \Exp{} &::=& \Atm \MID \READ{} \\
  2661. &\MID& \NEG{\Atm} \MID \ADD{\Atm}{\Atm} \\
  2662. \Stmt{} &::=& \PRINT{\Atm} \MID \EXPR{\Exp} \\
  2663. &\MID& \ASSIGN{\VAR{\Var}}{\Exp}\\
  2664. \LangVarANFM{} &::=& \PROGRAM{}{\Stmt^{*}}
  2665. \end{array}
  2666. \]
  2667. \fi}
  2668. \end{minipage}
  2669. }
  2670. \caption{\LangVarANF{} is \LangVar{} with operands restricted to
  2671. atomic expressions, like administrative normal form (ANF).}
  2672. \label{fig:Lvar-anf-syntax}
  2673. \end{figure}
  2674. Figure~\ref{fig:Lvar-anf-syntax} presents the grammar for the output of
  2675. this pass, the language \LangVarANF{}. The only difference is that
  2676. operator arguments are restricted to be atomic expressions that are
  2677. defined by the \Atm{} non-terminal. In particular, integer constants
  2678. and variables are atomic. In the literature, restricting arguments to
  2679. be atomic expressions is one of the ideas in \emph{administrative
  2680. normal form}, or ANF for short~\citep{Danvy:1991fk,Flanagan:1993cg}.
  2681. \index{subject}{administrative normal form} \index{subject}{ANF}
  2682. {\if\edition\racketEd\color{olive}
  2683. We recommend implementing this pass with two mutually recursive
  2684. functions, \code{rco\_atom} and \code{rco\_exp}. The idea is to apply
  2685. \code{rco\_atom} to subexpressions that need to become atomic and to
  2686. apply \code{rco\_exp} to subexpressions that do not. Both functions
  2687. take an \LangVar{} expression as input. The \code{rco\_exp} function
  2688. returns an expression. The \code{rco\_atom} function returns two
  2689. things: an atomic expression and an alist mapping temporary variables to
  2690. complex subexpressions. You can return multiple things from a function
  2691. using Racket's \key{values} form and you can receive multiple things
  2692. from a function call using the \key{define-values} form.
  2693. Also, the
  2694. \href{https://docs.racket-lang.org/reference/for.html#%28form._%28%28lib._racket%2Fprivate%2Fbase..rkt%29._for%2Flists%29%29}{\code{for/lists}}
  2695. form is useful for applying a function to each element of a list, in
  2696. the case where the function returns multiple values.
  2697. \index{subject}{for/lists}
  2698. \fi}
  2699. %
  2700. {\if\edition\pythonEd
  2701. %
  2702. We recommend implementing this pass with an auxiliary method named
  2703. \code{rco\_exp} with two parameters: an \LangVar{} expression and a
  2704. Boolean that specifies whether the expression needs to become atomic
  2705. or not. The \code{rco\_exp} method should return a pair consisting of
  2706. the new expression and a list of pairs, associating new temporary
  2707. variables with their initializing expressions.
  2708. %
  2709. \fi}
  2710. {\if\edition\racketEd\color{olive}
  2711. Returning to the example program with the expression \code{(+ 42 (-
  2712. 10))}, the subexpression \code{(- 10)} should be processed using the
  2713. \code{rco\_atom} function because it is an argument of the \code{+} and
  2714. therefore needs to become atomic. The output of \code{rco\_atom}
  2715. applied to \code{(- 10)} is as follows.
  2716. \begin{transformation}
  2717. \begin{lstlisting}
  2718. (- 10)
  2719. \end{lstlisting}
  2720. \compilesto
  2721. \begin{lstlisting}
  2722. tmp.1
  2723. ((tmp.1 . (- 10)))
  2724. \end{lstlisting}
  2725. \end{transformation}
  2726. \fi}
  2727. %
  2728. {\if\edition\pythonEd
  2729. %
  2730. Returning to the example program with the expression \code{42 + -10},
  2731. the subexpression \code{-10} should be processed using the
  2732. \code{rco\_exp} function with \code{True} as the second argument
  2733. because \code{-10} is an argument of the \code{+} operator and
  2734. therefore needs to become atomic. The output of \code{rco\_exp}
  2735. applied to \code{-10} is as follows.
  2736. \begin{transformation}
  2737. \begin{lstlisting}
  2738. -10
  2739. \end{lstlisting}
  2740. \compilesto
  2741. \begin{lstlisting}
  2742. tmp_1
  2743. [(tmp_1, -10)]
  2744. \end{lstlisting}
  2745. \end{transformation}
  2746. %
  2747. \fi}
  2748. Take special care of programs such as the following that
  2749. %
  2750. \racket{bind a variable to an atomic expression}
  2751. %
  2752. \python{assign an atomic expression to a variable}.
  2753. %
  2754. You should leave such \racket{variable bindings}\python{assignments}
  2755. unchanged, as shown in the program on the right\\
  2756. %
  2757. {\if\edition\racketEd\color{olive}
  2758. \begin{transformation}
  2759. % var_test_20.rkt
  2760. \begin{lstlisting}
  2761. (let ([a 42])
  2762. (let ([b a])
  2763. b))
  2764. \end{lstlisting}
  2765. \compilesto
  2766. \begin{lstlisting}
  2767. (let ([a 42])
  2768. (let ([b a])
  2769. b))
  2770. \end{lstlisting}
  2771. \end{transformation}
  2772. \fi}
  2773. {\if\edition\pythonEd
  2774. \begin{transformation}
  2775. \begin{lstlisting}
  2776. a = 42
  2777. b = a
  2778. print(b)
  2779. \end{lstlisting}
  2780. \compilesto
  2781. \begin{lstlisting}
  2782. a = 42
  2783. b = a
  2784. print(b)
  2785. \end{lstlisting}
  2786. \end{transformation}
  2787. \fi}
  2788. %
  2789. \noindent A careless implementation might produce the following output with
  2790. unnecessary temporary variables.
  2791. \begin{center}
  2792. \begin{minipage}{0.4\textwidth}
  2793. {\if\edition\racketEd\color{olive}
  2794. \begin{lstlisting}
  2795. (let ([tmp.1 42])
  2796. (let ([a tmp.1])
  2797. (let ([tmp.2 a])
  2798. (let ([b tmp.2])
  2799. b))))
  2800. \end{lstlisting}
  2801. \fi}
  2802. {\if\edition\pythonEd
  2803. \begin{lstlisting}
  2804. tmp_1 = 42
  2805. a = tmp_1
  2806. tmp_2 = a
  2807. b = tmp_2
  2808. print(b)
  2809. \end{lstlisting}
  2810. \fi}
  2811. \end{minipage}
  2812. \end{center}
  2813. \begin{exercise}
  2814. \normalfont
  2815. {\if\edition\racketEd\color{olive}
  2816. Implement the \code{remove\_complex\_operands} function in
  2817. \code{compiler.rkt}.
  2818. %
  2819. Create three new \LangVar{} programs that exercise the interesting
  2820. code in the \code{remove\_complex\_operands} pass. Follow the guidelines
  2821. regarding file names described in Exercise~\ref{ex:Lvar}.
  2822. %
  2823. In the \code{run-tests.rkt} script, add the following entry to the
  2824. list of \code{passes} and then run the script to test your compiler.
  2825. \begin{lstlisting}
  2826. (list "remove-complex" remove-complex-opera* interp_Lvar type-check-Lvar)
  2827. \end{lstlisting}
  2828. While debugging your compiler, it is often useful to see the
  2829. intermediate programs that are output from each pass. To print the
  2830. intermediate programs, place \lstinline{(debug-level 1)} before the call to
  2831. \code{interp-tests} in \code{run-tests.rkt}.
  2832. \fi}
  2833. %
  2834. {\if\edition\pythonEd
  2835. Implement the \code{remove\_complex\_operands} pass in
  2836. \code{compiler.py}, creating auxiliary functions for each
  2837. non-terminal in the grammar, i.e., \code{rco\_exp}
  2838. and \code{rco\_stmt}.
  2839. \fi}
  2840. \end{exercise}
  2841. {\if\edition\pythonEd
  2842. \begin{exercise}
  2843. \normalfont % I don't like the italics for exercises. -Jeremy
  2844. \label{ex:Lvar}
  2845. Create five \LangVar{} programs that exercise the most interesting
  2846. parts of the \code{remove\_complex\_operands} pass. The five programs
  2847. should be placed in the subdirectory named \key{tests} and the file
  2848. names should start with \code{var\_test\_} followed by a unique
  2849. integer and end with the file extension \key{.py}.
  2850. %% The \key{run-tests.rkt} script in the support code checks whether the
  2851. %% output programs produce the same result as the input programs. The
  2852. %% script uses the \key{interp-tests} function
  2853. %% (Appendix~\ref{appendix:utilities}) from \key{utilities.rkt} to test
  2854. %% your \key{uniquify} pass on the example programs. The \code{passes}
  2855. %% parameter of \key{interp-tests} is a list that should have one entry
  2856. %% for each pass in your compiler. For now, define \code{passes} to
  2857. %% contain just one entry for \code{uniquify} as shown below.
  2858. %% \begin{lstlisting}
  2859. %% (define passes
  2860. %% (list (list "uniquify" uniquify interp_Lvar type-check-Lvar)))
  2861. %% \end{lstlisting}
  2862. Run the \key{run-tests.py} script in the support code to check
  2863. whether the output programs produce the same result as the input
  2864. programs.
  2865. \end{exercise}
  2866. \fi}
  2867. {\if\edition\racketEd\color{olive}
  2868. \section{Explicate Control}
  2869. \label{sec:explicate-control-Lvar}
  2870. The \code{explicate\_control} pass compiles \LangVar{} programs into \LangCVar{}
  2871. programs that make the order of execution explicit in their
  2872. syntax. For now this amounts to flattening \key{let} constructs into a
  2873. sequence of assignment statements. For example, consider the following
  2874. \LangVar{} program.\\
  2875. % var_test_11.rkt
  2876. \begin{minipage}{0.96\textwidth}
  2877. \begin{lstlisting}
  2878. (let ([y (let ([x 20])
  2879. (+ x (let ([x 22]) x)))])
  2880. y)
  2881. \end{lstlisting}
  2882. \end{minipage}\\
  2883. %
  2884. The output of the previous pass and of \code{explicate\_control} is
  2885. shown below. Recall that the right-hand-side of a \key{let} executes
  2886. before its body, so the order of evaluation for this program is to
  2887. assign \code{20} to \code{x.1}, \code{22} to \code{x.2}, and
  2888. \code{(+ x.1 x.2)} to \code{y}, then return \code{y}. Indeed, the
  2889. output of \code{explicate\_control} makes this ordering explicit.
  2890. \begin{transformation}
  2891. \begin{lstlisting}
  2892. (let ([y (let ([x.1 20])
  2893. (let ([x.2 22])
  2894. (+ x.1 x.2)))])
  2895. y)
  2896. \end{lstlisting}
  2897. \compilesto
  2898. \begin{lstlisting}[language=C]
  2899. start:
  2900. x.1 = 20;
  2901. x.2 = 22;
  2902. y = (+ x.1 x.2);
  2903. return y;
  2904. \end{lstlisting}
  2905. \end{transformation}
  2906. \begin{figure}[tbp]
  2907. \begin{lstlisting}
  2908. (define (explicate-tail e)
  2909. (match e
  2910. [(Var x) ___]
  2911. [(Int n) (Return (Int n))]
  2912. [(Let x rhs body) ___]
  2913. [(Prim op es) ___]
  2914. [else (error "explicate-tail unhandled case" e)]))
  2915. (define (explicate-assign e x cont)
  2916. (match e
  2917. [(Var x) ___]
  2918. [(Int n) (Seq (Assign (Var x) (Int n)) cont)]
  2919. [(Let y rhs body) ___]
  2920. [(Prim op es) ___]
  2921. [else (error "explicate-assign unhandled case" e)]))
  2922. (define (explicate-control p)
  2923. (match p
  2924. [(Program info body) ___]))
  2925. \end{lstlisting}
  2926. \caption{Skeleton for the \code{explicate\_control} pass.}
  2927. \label{fig:explicate-control-Lvar}
  2928. \end{figure}
  2929. The organization of this pass depends on the notion of tail position
  2930. that we have alluded to earlier.
  2931. \begin{definition}
  2932. The following rules define when an expression is in \textbf{\emph{tail
  2933. position}}\index{subject}{tail position} for the language \LangVar{}.
  2934. \begin{enumerate}
  2935. \item In $\PROGRAM{\code{()}}{e}$, expression $e$ is in tail position.
  2936. \item If $\LET{x}{e_1}{e_2}$ is in tail position, then so is $e_2$.
  2937. \end{enumerate}
  2938. \end{definition}
  2939. We recommend implementing \code{explicate\_control} using two mutually
  2940. recursive functions, \code{explicate-tail} and
  2941. \code{explicate-assign}, as suggested in the skeleton code in
  2942. Figure~\ref{fig:explicate-control-Lvar}. The \code{explicate-tail}
  2943. function should be applied to expressions in tail position whereas the
  2944. \code{explicate-assign} should be applied to expressions that occur on
  2945. the right-hand-side of a \key{let}.
  2946. %
  2947. The \code{explicate-tail} function takes an \Exp{} in \LangVar{} as
  2948. input and produces a \Tail{} in \LangCVar{} (see
  2949. Figure~\ref{fig:c0-syntax}).
  2950. %
  2951. The \code{explicate-assign} function takes an \Exp{} in \LangVar{},
  2952. the variable that it is to be assigned to, and a \Tail{} in
  2953. \LangCVar{} for the code that comes after the assignment. The
  2954. \code{explicate-assign} function returns a $\Tail$ in \LangCVar{}.
  2955. The \code{explicate-assign} function is in accumulator-passing style:
  2956. the \code{cont} parameter is used for accumulating the output. This
  2957. accumulator-passing style plays an important role in how we generate
  2958. high-quality code for conditional expressions in Chapter~\ref{ch:Lif}.
  2959. \begin{exercise}\normalfont
  2960. %
  2961. Implement the \code{explicate\_control} function in
  2962. \code{compiler.rkt}. Create three new \LangInt{} programs that
  2963. exercise the code in \code{explicate\_control}.
  2964. %
  2965. In the \code{run-tests.rkt} script, add the following entry to the
  2966. list of \code{passes} and then run the script to test your compiler.
  2967. \begin{lstlisting}
  2968. (list "explicate control" explicate-control interp_Cvar type-check-Cvar)
  2969. \end{lstlisting}
  2970. \end{exercise}
  2971. \fi}
  2972. \section{Select Instructions}
  2973. \label{sec:select-Lvar}
  2974. \index{subject}{instruction selection}
  2975. In the \code{select\_instructions} pass we begin the work of
  2976. translating \racket{from \LangCVar{}} to \LangXVar{}. The target
  2977. language of this pass is a variant of x86 that still uses variables,
  2978. so we add an AST node of the form $\VAR{\itm{var}}$ to the \Arg{}
  2979. non-terminal of the \LangXInt{} abstract syntax
  2980. (Figure~\ref{fig:x86-int-ast}).
  2981. \racket{We recommend implementing the
  2982. \code{select\_instructions} with three auxiliary functions, one for
  2983. each of the non-terminals of \LangCVar{}: $\Atm$, $\Stmt$, and
  2984. $\Tail$.}
  2985. \python{We recommend implementing an auxiliary function
  2986. named \code{select\_stmt} for the $\Stmt$ non-terminal.}
  2987. \racket{
  2988. The cases for $\Atm$ are straightforward; variables stay
  2989. the same and integer constants change to immediates:
  2990. $\INT{n}$ changes to $\IMM{n}$.}
  2991. We consider the cases for the $\Stmt$ non-terminal, starting with
  2992. arithmetic operations. For example, consider the addition operation
  2993. below, on the left side. There is an \key{addq} instruction in x86,
  2994. but it performs an in-place update. So we could move $\Arg_1$
  2995. into the left-hand side \itm{var} and then add $\Arg_2$ to
  2996. \itm{var}, where $\Arg_1$ and $\Arg_2$ are the translations of
  2997. $\Atm_1$ and $\Atm_2$ respectively.
  2998. \begin{transformation}
  2999. {\if\edition\racketEd\color{olive}
  3000. \begin{lstlisting}
  3001. |$\itm{var}$| = (+ |$\Atm_1$| |$\Atm_2$|);
  3002. \end{lstlisting}
  3003. \fi}
  3004. {\if\edition\pythonEd
  3005. \begin{lstlisting}
  3006. |$\itm{var}$| = |$\Atm_1$| + |$\Atm_2$|
  3007. \end{lstlisting}
  3008. \fi}
  3009. \compilesto
  3010. \begin{lstlisting}
  3011. movq |$\Arg_1$|, |$\itm{var}$|
  3012. addq |$\Arg_2$|, |$\itm{var}$|
  3013. \end{lstlisting}
  3014. \end{transformation}
  3015. There are also cases that require special care to avoid generating
  3016. needlessly complicated code. For example, if one of the arguments of
  3017. the addition is the same variable as the left-hand side of the
  3018. assignment, as shown below, then there is no need for the extra move
  3019. instruction. The assignment statement can be translated into a single
  3020. \key{addq} instruction as follows.
  3021. \begin{transformation}
  3022. {\if\edition\racketEd\color{olive}
  3023. \begin{lstlisting}
  3024. |$\itm{var}$| = (+ |$\Atm_1$| |$\itm{var}$|);
  3025. \end{lstlisting}
  3026. \fi}
  3027. {\if\edition\pythonEd
  3028. \begin{lstlisting}
  3029. |$\itm{var}$| = |$\Atm_1$| + |$\itm{var}$|
  3030. \end{lstlisting}
  3031. \fi}
  3032. \compilesto
  3033. \begin{lstlisting}
  3034. addq |$\Arg_1$|, |$\itm{var}$|
  3035. \end{lstlisting}
  3036. \end{transformation}
  3037. The \READOP{} operation does not have a direct counterpart in x86
  3038. assembly, so we provide this functionality with the function
  3039. \code{read\_int} in the file \code{runtime.c}, written in
  3040. C~\citep{Kernighan:1988nx}. In general, we refer to all of the
  3041. functionality in this file as the \emph{runtime system}\index{subject}{runtime
  3042. system}, or simply the \emph{runtime} for short. When compiling your
  3043. generated x86 assembly code, you need to compile \code{runtime.c} to
  3044. \code{runtime.o} (an ``object file'', using \code{gcc} with option
  3045. \code{-c}) and link it into the executable. For our purposes of code
  3046. generation, all you need to do is translate an assignment of
  3047. \READOP{} into a call to the \code{read\_int} function followed by a
  3048. move from \code{rax} to the left-hand-side variable. (Recall that the
  3049. return value of a function goes into \code{rax}.)
  3050. \begin{transformation}
  3051. {\if\edition\racketEd\color{olive}
  3052. \begin{lstlisting}
  3053. |$\itm{var}$| = (read);
  3054. \end{lstlisting}
  3055. \fi}
  3056. {\if\edition\pythonEd
  3057. \begin{lstlisting}
  3058. |$\itm{var}$| = input_int();
  3059. \end{lstlisting}
  3060. \fi}
  3061. \compilesto
  3062. \begin{lstlisting}
  3063. callq read_int
  3064. movq %rax, |$\itm{var}$|
  3065. \end{lstlisting}
  3066. \end{transformation}
  3067. {\if\edition\pythonEd
  3068. %
  3069. Similarly, we translate the \code{print} operation, shown below, into
  3070. a call to the \code{print\_int} function defined in \code{runtime.c}.
  3071. In x86, the first six arguments to functions are passed in registers,
  3072. with the first argument passed in register \code{rdi}. So we move the
  3073. $\Arg$ into \code{rdi} and then call \code{print\_int} using the
  3074. \code{callq} instruction.
  3075. \begin{transformation}
  3076. \begin{lstlisting}
  3077. print(|$\Atm$|)
  3078. \end{lstlisting}
  3079. \compilesto
  3080. \begin{lstlisting}
  3081. movq |$\Arg$|, %rdi
  3082. callq print_int
  3083. \end{lstlisting}
  3084. \end{transformation}
  3085. %
  3086. \fi}
  3087. {\if\edition\racketEd\color{olive}
  3088. There are two cases for the $\Tail$ non-terminal: \key{Return} and
  3089. \key{Seq}. Regarding \key{Return}, we recommend treating it as an
  3090. assignment to the \key{rax} register followed by a jump to the
  3091. conclusion of the program (so the conclusion needs to be labeled).
  3092. For $\SEQ{s}{t}$, you can translate the statement $s$ and tail $t$
  3093. recursively and then append the resulting instructions.
  3094. \fi}
  3095. \begin{exercise}
  3096. \normalfont
  3097. {\if\edition\racketEd\color{olive}
  3098. Implement the \key{select-instructions} pass in
  3099. \code{compiler.rkt}. Create three new example programs that are
  3100. designed to exercise all of the interesting cases in this pass.
  3101. %
  3102. In the \code{run-tests.rkt} script, add the following entry to the
  3103. list of \code{passes} and then run the script to test your compiler.
  3104. \begin{lstlisting}
  3105. (list "instruction selection" select-instructions interp_pseudo-x86-0)
  3106. \end{lstlisting}
  3107. \fi}
  3108. {\if\edition\pythonEd
  3109. Implement the \key{select\_instructions} pass in
  3110. \code{compiler.py}. Create three new example programs that are
  3111. designed to exercise all of the interesting cases in this pass.
  3112. Run the \code{run-tests.py} script to to check
  3113. whether the output programs produce the same result as the input
  3114. programs.
  3115. \fi}
  3116. \end{exercise}
  3117. \section{Assign Homes}
  3118. \label{sec:assign-Lvar}
  3119. The \key{assign\_homes} pass compiles \LangXVar{} programs to
  3120. \LangXVar{} programs that no longer use program variables.
  3121. Thus, the \key{assign-homes} pass is responsible for placing all of
  3122. the program variables in registers or on the stack. For runtime
  3123. efficiency, it is better to place variables in registers, but as there
  3124. are only 16 registers, some programs must necessarily resort to
  3125. placing some variables on the stack. In this chapter we focus on the
  3126. mechanics of placing variables on the stack. We study an algorithm for
  3127. placing variables in registers in
  3128. Chapter~\ref{ch:register-allocation-Lvar}.
  3129. Consider again the following \LangVar{} program from
  3130. Section~\ref{sec:remove-complex-opera-Lvar}.
  3131. % var_test_20.rkt
  3132. {\if\edition\racketEd\color{olive}
  3133. \begin{lstlisting}
  3134. (let ([a 42])
  3135. (let ([b a])
  3136. b))
  3137. \end{lstlisting}
  3138. \fi}
  3139. {\if\edition\pythonEd
  3140. \begin{lstlisting}
  3141. a = 42
  3142. b = a
  3143. print(b)
  3144. \end{lstlisting}
  3145. \fi}
  3146. %
  3147. The output of \code{select\_instructions} is shown below, on the left,
  3148. and the output of \code{assign\_homes} is on the right. In this
  3149. example, we assign variable \code{a} to stack location
  3150. \code{-8(\%rbp)} and variable \code{b} to location \code{-16(\%rbp)}.
  3151. \begin{transformation}
  3152. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  3153. movq $42, a
  3154. movq a, b
  3155. movq b, %rax
  3156. \end{lstlisting}
  3157. \compilesto
  3158. %stack-space: 16
  3159. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  3160. movq $42, -8(%rbp)
  3161. movq -8(%rbp), -16(%rbp)
  3162. movq -16(%rbp), %rax
  3163. \end{lstlisting}
  3164. \end{transformation}
  3165. \racket{The \code{locals-types} entry in the $\itm{info}$ of the
  3166. \code{X86Program} node is an alist mapping all the variables in the
  3167. program to their types (for now just \code{Integer}). The
  3168. \code{assign\_homes} pass should replace all uses of those variables
  3169. with stack locations. As an aside, the \code{locals-types} entry is
  3170. computed by \code{type-check-Cvar} in the support code, which
  3171. installs it in the $\itm{info}$ field of the \code{CProgram} node,
  3172. which should be propagated to the \code{X86Program} node.}
  3173. %
  3174. \python{The \code{assign\_homes} pass should replace all uses of
  3175. variables with stack locations.}
  3176. %
  3177. In the process of assigning variables to stack locations, it is
  3178. convenient for you to compute and store the size of the frame (in
  3179. bytes) in%
  3180. \racket{the $\itm{info}$ field of the \key{X86Program} node, with the key \code{stack-space}}
  3181. %
  3182. \python{the field \code{stack\_space} of the \key{X86Program} node},
  3183. which is needed later to generate the conclusion of the \code{main}
  3184. procedure. The x86-64 standard requires the frame size to be a
  3185. multiple of 16 bytes.\index{subject}{frame}
  3186. % TODO: store the number of variables instead? -Jeremy
  3187. \begin{exercise}\normalfont
  3188. Implement the \key{assign\_homes} pass in
  3189. \racket{\code{compiler.rkt}}\python{\code{compiler.py}}, defining
  3190. auxiliary functions for each of the non-terminals in the \LangXVar{}
  3191. grammar. We recommend that the auxiliary functions take an extra
  3192. parameter that maps variable names to homes (stack locations for now).
  3193. %
  3194. {\if\edition\racketEd\color{olive}
  3195. In the \code{run-tests.rkt} script, add the following entry to the
  3196. list of \code{passes} and then run the script to test your compiler.
  3197. \begin{lstlisting}
  3198. (list "assign homes" assign-homes interp_x86-0)
  3199. \end{lstlisting}
  3200. \fi}
  3201. {\if\edition\pythonEd
  3202. Run the \code{run-tests.py} script to to check
  3203. whether the output programs produce the same result as the input
  3204. programs.
  3205. \fi}
  3206. \end{exercise}
  3207. \section{Patch Instructions}
  3208. \label{sec:patch-s0}
  3209. The \code{patch\_instructions} pass compiles from \LangXVar{} to
  3210. \LangXInt{} by making sure that each instruction adheres to the
  3211. restriction that at most one argument of an instruction may be a
  3212. memory reference.
  3213. We return to the following example.\\
  3214. \begin{minipage}{0.5\textwidth}
  3215. % var_test_20.rkt
  3216. {\if\edition\racketEd\color{olive}
  3217. \begin{lstlisting}
  3218. (let ([a 42])
  3219. (let ([b a])
  3220. b))
  3221. \end{lstlisting}
  3222. \fi}
  3223. {\if\edition\pythonEd
  3224. \begin{lstlisting}
  3225. a = 42
  3226. b = a
  3227. print(b)
  3228. \end{lstlisting}
  3229. \fi}
  3230. \end{minipage}\\
  3231. The \key{assign\_homes} pass produces the following translation. \\
  3232. \begin{minipage}{0.5\textwidth}
  3233. {\if\edition\racketEd\color{olive}
  3234. \begin{lstlisting}
  3235. movq $42, -8(%rbp)
  3236. movq -8(%rbp), -16(%rbp)
  3237. movq -16(%rbp), %rax
  3238. \end{lstlisting}
  3239. \fi}
  3240. {\if\edition\pythonEd
  3241. \begin{lstlisting}
  3242. movq 42, -8(%rbp)
  3243. movq -8(%rbp), -16(%rbp)
  3244. movq -16(%rbp), %rdi
  3245. callq print_int
  3246. \end{lstlisting}
  3247. \fi}
  3248. \end{minipage}\\
  3249. The second \key{movq} instruction is problematic because both
  3250. arguments are stack locations. We suggest fixing this problem by
  3251. moving from the source location to the register \key{rax} and then
  3252. from \key{rax} to the destination location, as follows.
  3253. \begin{lstlisting}
  3254. movq -8(%rbp), %rax
  3255. movq %rax, -16(%rbp)
  3256. \end{lstlisting}
  3257. \begin{exercise}
  3258. \normalfont Implement the \key{patch\_instructions} pass in
  3259. \racket{\code{compiler.rkt}}\python{\code{compiler.py}}.
  3260. Create three new example programs that are
  3261. designed to exercise all of the interesting cases in this pass.
  3262. %
  3263. {\if\edition\racketEd\color{olive}
  3264. In the \code{run-tests.rkt} script, add the following entry to the
  3265. list of \code{passes} and then run the script to test your compiler.
  3266. \begin{lstlisting}
  3267. (list "patch instructions" patch-instructions interp_x86-0)
  3268. \end{lstlisting}
  3269. \fi}
  3270. {\if\edition\pythonEd
  3271. Run the \code{run-tests.py} script to to check
  3272. whether the output programs produce the same result as the input
  3273. programs.
  3274. \fi}
  3275. \end{exercise}
  3276. \section{Print x86}
  3277. \label{sec:print-x86}
  3278. The last step of the compiler from \LangVar{} to x86 is to convert the
  3279. \LangXInt{} AST (defined in Figure~\ref{fig:x86-int-ast}) to the
  3280. string representation (defined in
  3281. Figure~\ref{fig:x86-int-concrete}).
  3282. %
  3283. \racket{The Racket \key{format} and \key{string-append} functions are
  3284. useful in this regard.}
  3285. %
  3286. This pass creates the \key{main} function and the standard
  3287. instructions for its prelude and conclusion, as shown in
  3288. Figure~\ref{fig:p1-x86} of Section~\ref{sec:x86}. You will need to
  3289. know the amount of space needed for the stack frame, which you can
  3290. obtain from the
  3291. %
  3292. \racket{\code{stack-space} entry in the $\itm{info}$ field}
  3293. %
  3294. \python{\code{stack\_space} field}
  3295. %
  3296. of the \key{X86Program} node.
  3297. When running on Mac OS X, your compiler should prefix an underscore to
  3298. all labels, e.g., changing \key{main} to \key{\_main}.
  3299. %
  3300. \racket{The Racket call \code{(system-type 'os)} is useful for
  3301. determining which operating system the compiler is running on. It
  3302. returns \code{'macosx}, \code{'unix}, or \code{'windows}.}
  3303. %
  3304. \python{The Python \code{platform} library includes a \code{system()}
  3305. function that returns \code{'Linux'}, \code{'Windows'}, or
  3306. \code{'Darwin'} (for Mac).}
  3307. \begin{exercise}\normalfont
  3308. %
  3309. Implement the \key{print\_x86} pass in \racket{\code{compiler.rkt}}\python{\code{compiler.py}}.
  3310. %
  3311. {\if\edition\racketEd\color{olive}
  3312. In the \code{run-tests.rkt} script, add the following entry to the
  3313. list of \code{passes} and then run the script to test your compiler.
  3314. \begin{lstlisting}
  3315. (list "print x86" print-x86 #f)
  3316. \end{lstlisting}
  3317. %
  3318. Uncomment the call to the \key{compiler-tests} function
  3319. (Appendix~\ref{appendix:utilities}), which tests your complete
  3320. compiler by executing the generated x86 code. Compile the provided
  3321. \key{runtime.c} file to \key{runtime.o} using \key{gcc}. Run the
  3322. script to test your compiler.
  3323. \fi}
  3324. {\if\edition\pythonEd
  3325. Run the \code{run-tests.py} script to to check
  3326. whether the output programs produce the same result as the input
  3327. programs.
  3328. \fi}
  3329. \end{exercise}
  3330. \section{Challenge: Partial Evaluator for \LangVar{}}
  3331. \label{sec:pe-Lvar}
  3332. \index{subject}{partial evaluation}
  3333. This section describes two optional challenge exercises that involve
  3334. adapting and improving the partial evaluator for \LangInt{} that was
  3335. introduced in Section~\ref{sec:partial-evaluation}.
  3336. \begin{exercise}\label{ex:pe-Lvar}
  3337. \normalfont
  3338. Adapt the partial evaluator from Section~\ref{sec:partial-evaluation}
  3339. (Figure~\ref{fig:pe-arith}) so that it applies to \LangVar{} programs
  3340. instead of \LangInt{} programs. Recall that \LangVar{} adds variables and
  3341. %
  3342. \racket{\key{let} binding}\python{assignment}
  3343. %
  3344. to the \LangInt{} language, so you will need to add cases for them in
  3345. the \code{pe\_exp}
  3346. %
  3347. \racket{function}
  3348. %
  3349. \python{and \code{pe\_stmt} functions}.
  3350. %
  3351. Once complete, add the partial evaluation pass to the front of your
  3352. compiler and make sure that your compiler still passes all of the
  3353. tests.
  3354. \end{exercise}
  3355. \begin{exercise}
  3356. \normalfont
  3357. Improve on the partial evaluator by replacing the \code{pe\_neg} and
  3358. \code{pe\_add} auxiliary functions with functions that know more about
  3359. arithmetic. For example, your partial evaluator should translate
  3360. {\if\edition\racketEd\color{olive}
  3361. \[
  3362. \code{(+ 1 (+ (read) 1))} \qquad \text{into} \qquad
  3363. \code{(+ 2 (read))}
  3364. \]
  3365. \fi}
  3366. {\if\edition\pythonEd
  3367. \[
  3368. \code{1 + (input\_int() + 1)} \qquad \text{into} \qquad
  3369. \code{2 + input\_int()}
  3370. \]
  3371. \fi}
  3372. To accomplish this, the \code{pe\_exp} function should produce output
  3373. in the form of the $\itm{residual}$ non-terminal of the following
  3374. grammar. The idea is that when processing an addition expression, we
  3375. can always produce either 1) an integer constant, 2) an addition
  3376. expression with an integer constant on the left-hand side but not the
  3377. right-hand side, or 3) or an addition expression in which neither
  3378. subexpression is a constant.
  3379. {\if\edition\racketEd\color{olive}
  3380. \[
  3381. \begin{array}{lcl}
  3382. \itm{inert} &::=& \Var
  3383. \MID \LP\key{read}\RP
  3384. \MID \LP\key{-} ~\Var\RP
  3385. \MID \LP\key{-} ~\LP\key{read}\RP\RP
  3386. \MID \LP\key{+} ~ \itm{inert} ~ \itm{inert}\RP\\
  3387. &\MID& \LP\key{let}~\LP\LS\Var~\itm{residual}\RS\RP~ \itm{residual} \RP \\
  3388. \itm{residual} &::=& \Int
  3389. \MID \LP\key{+}~ \Int~ \itm{inert}\RP
  3390. \MID \itm{inert}
  3391. \end{array}
  3392. \]
  3393. \fi}
  3394. {\if\edition\pythonEd
  3395. \[
  3396. \begin{array}{lcl}
  3397. \itm{inert} &::=& \Var
  3398. \MID \key{input\_int}\LP\RP
  3399. \MID \key{-} \Var
  3400. \MID \key{-} \key{input\_int}\LP\RP
  3401. \MID \itm{inert} ~ \key{+} ~ \itm{inert}\\
  3402. \itm{residual} &::=& \Int
  3403. \MID \LP\key{+}~ \Int~ \itm{inert}\RP
  3404. \MID \itm{inert}
  3405. \end{array}
  3406. \]
  3407. \fi}
  3408. The \code{pe\_add} and \code{pe\_neg} functions may assume that their
  3409. inputs are $\itm{residual}$ expressions and they should return
  3410. $\itm{residual}$ expressions. Once the improvements are complete,
  3411. make sure that your compiler still passes all of the tests. After
  3412. all, fast code is useless if it produces incorrect results!
  3413. \end{exercise}
  3414. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  3415. \chapter{Register Allocation}
  3416. \label{ch:register-allocation-Lvar}
  3417. \index{subject}{register allocation}
  3418. In Chapter~\ref{ch:Lvar} we learned how to store variables on the
  3419. stack. In this chapter we learn how to improve the performance of the
  3420. generated code by assigning some variables to registers. The CPU can
  3421. access a register in a single cycle, whereas accessing the stack can
  3422. take 10s to 100s of cycles. The program in Figure~\ref{fig:reg-eg}
  3423. serves as a running example. The source program is on the left and the
  3424. output of instruction selection is on the right. The program is almost
  3425. in the x86 assembly language but it still uses variables.
  3426. \begin{figure}
  3427. \begin{minipage}{0.45\textwidth}
  3428. Example \LangVar{} program:
  3429. % var_test_28.rkt
  3430. {\if\edition\racketEd\color{olive}
  3431. \begin{lstlisting}
  3432. (let ([v 1])
  3433. (let ([w 42])
  3434. (let ([x (+ v 7)])
  3435. (let ([y x])
  3436. (let ([z (+ x w)])
  3437. (+ z (- y)))))))
  3438. \end{lstlisting}
  3439. \fi}
  3440. {\if\edition\pythonEd
  3441. \begin{lstlisting}
  3442. v = 1
  3443. w = 42
  3444. x = v + 7
  3445. y = x
  3446. z = x + w
  3447. print(z + (- y))
  3448. \end{lstlisting}
  3449. \fi}
  3450. \end{minipage}
  3451. \begin{minipage}{0.45\textwidth}
  3452. After instruction selection:
  3453. {\if\edition\racketEd\color{olive}
  3454. \begin{lstlisting}
  3455. locals-types:
  3456. x : Integer, y : Integer,
  3457. z : Integer, t : Integer,
  3458. v : Integer, w : Integer
  3459. start:
  3460. movq $1, v
  3461. movq $42, w
  3462. movq v, x
  3463. addq $7, x
  3464. movq x, y
  3465. movq x, z
  3466. addq w, z
  3467. movq y, t
  3468. negq t
  3469. movq z, %rax
  3470. addq t, %rax
  3471. jmp conclusion
  3472. \end{lstlisting}
  3473. \fi}
  3474. {\if\edition\pythonEd
  3475. \begin{lstlisting}
  3476. movq $1, v
  3477. movq $42, w
  3478. movq v, x
  3479. addq $7, x
  3480. movq x, y
  3481. movq x, z
  3482. addq w, z
  3483. movq y, tmp_0
  3484. negq tmp_0
  3485. movq z, tmp_1
  3486. addq tmp_0, tmp_1
  3487. movq tmp_1, %rdi
  3488. callq print_int
  3489. \end{lstlisting}
  3490. \fi}
  3491. \end{minipage}
  3492. \caption{A running example for register allocation.}
  3493. \label{fig:reg-eg}
  3494. \end{figure}
  3495. The goal of register allocation is to fit as many variables into
  3496. registers as possible. Some programs have more variables than
  3497. registers so we cannot always map each variable to a different
  3498. register. Fortunately, it is common for different variables to be
  3499. needed during different periods of time during program execution, and
  3500. in such cases several variables can be mapped to the same register.
  3501. Consider variables \code{x} and \code{z} in Figure~\ref{fig:reg-eg}.
  3502. After the variable \code{x} is moved to \code{z} it is no longer
  3503. needed. Variable \code{z}, on the other hand, is used only after this
  3504. point, so \code{x} and \code{z} could share the same register. The
  3505. topic of Section~\ref{sec:liveness-analysis-Lvar} is how to compute
  3506. where a variable is needed. Once we have that information, we compute
  3507. which variables are needed at the same time, i.e., which ones
  3508. \emph{interfere} with each other, and represent this relation as an
  3509. undirected graph whose vertices are variables and edges indicate when
  3510. two variables interfere (Section~\ref{sec:build-interference}). We
  3511. then model register allocation as a graph coloring problem
  3512. (Section~\ref{sec:graph-coloring}).
  3513. If we run out of registers despite these efforts, we place the
  3514. remaining variables on the stack, similar to what we did in
  3515. Chapter~\ref{ch:Lvar}. It is common to use the verb \emph{spill} for
  3516. assigning a variable to a stack location. The decision to spill a
  3517. variable is handled as part of the graph coloring process.
  3518. We make the simplifying assumption that each variable is assigned to
  3519. one location (a register or stack address). A more sophisticated
  3520. approach is to assign a variable to one or more locations in different
  3521. regions of the program. For example, if a variable is used many times
  3522. in short sequence and then only used again after many other
  3523. instructions, it could be more efficient to assign the variable to a
  3524. register during the initial sequence and then move it to the stack for
  3525. the rest of its lifetime. We refer the interested reader to
  3526. \citet{Cooper:2011aa} Chapter 13 for more information about that
  3527. approach.
  3528. % discuss prioritizing variables based on how much they are used.
  3529. \section{Registers and Calling Conventions}
  3530. \label{sec:calling-conventions}
  3531. \index{subject}{calling conventions}
  3532. As we perform register allocation, we need to be aware of the
  3533. \emph{calling conventions} \index{subject}{calling conventions} that govern how
  3534. functions calls are performed in x86.
  3535. %
  3536. Even though \LangVar{} does not include programmer-defined functions,
  3537. our generated code includes a \code{main} function that is called by
  3538. the operating system and our generated code contains calls to the
  3539. \code{read\_int} function.
  3540. Function calls require coordination between two pieces of code that
  3541. may be written by different programmers or generated by different
  3542. compilers. Here we follow the System V calling conventions that are
  3543. used by the GNU C compiler on Linux and
  3544. MacOS~\citep{Bryant:2005aa,Matz:2013aa}.
  3545. %
  3546. The calling conventions include rules about how functions share the
  3547. use of registers. In particular, the caller is responsible for freeing
  3548. up some registers prior to the function call for use by the callee.
  3549. These are called the \emph{caller-saved registers}
  3550. \index{subject}{caller-saved registers}
  3551. and they are
  3552. \begin{lstlisting}
  3553. rax rcx rdx rsi rdi r8 r9 r10 r11
  3554. \end{lstlisting}
  3555. On the other hand, the callee is responsible for preserving the values
  3556. of the \emph{callee-saved registers}, \index{subject}{callee-saved registers}
  3557. which are
  3558. \begin{lstlisting}
  3559. rsp rbp rbx r12 r13 r14 r15
  3560. \end{lstlisting}
  3561. We can think about this caller/callee convention from two points of
  3562. view, the caller view and the callee view:
  3563. \begin{itemize}
  3564. \item The caller should assume that all the caller-saved registers get
  3565. overwritten with arbitrary values by the callee. On the other hand,
  3566. the caller can safely assume that all the callee-saved registers
  3567. contain the same values after the call that they did before the
  3568. call.
  3569. \item The callee can freely use any of the caller-saved registers.
  3570. However, if the callee wants to use a callee-saved register, the
  3571. callee must arrange to put the original value back in the register
  3572. prior to returning to the caller. This can be accomplished by saving
  3573. the value to the stack in the prelude of the function and restoring
  3574. the value in the conclusion of the function.
  3575. \end{itemize}
  3576. In x86, registers are also used for passing arguments to a function
  3577. and for the return value. In particular, the first six arguments to a
  3578. function are passed in the following six registers, in this order.
  3579. \begin{lstlisting}
  3580. rdi rsi rdx rcx r8 r9
  3581. \end{lstlisting}
  3582. If there are more than six arguments, then the convention is to use
  3583. space on the frame of the caller for the rest of the
  3584. arguments. However, in Chapter~\ref{ch:Rfun} we arrange never to
  3585. need more than six arguments.
  3586. %
  3587. \racket{For now, the only function we care about is \code{read\_int}
  3588. and it takes zero arguments.}
  3589. %
  3590. \python{For now, the only functions we care about are \code{read\_int}
  3591. and \code{print\_int}, which take zero and one argument, respectively.}
  3592. %
  3593. The register \code{rax} is used for the return value of a function.
  3594. The next question is how these calling conventions impact register
  3595. allocation. Consider the \LangVar{} program in
  3596. Figure~\ref{fig:example-calling-conventions}. We first analyze this
  3597. example from the caller point of view and then from the callee point
  3598. of view.
  3599. The program makes two calls to \READOP{}. Also, the variable \code{x}
  3600. is in use during the second call to \READOP{}, so we need to make sure
  3601. that the value in \code{x} does not get accidentally wiped out by the
  3602. call to \READOP{}. One obvious approach is to save all the values in
  3603. caller-saved registers to the stack prior to each function call, and
  3604. restore them after each call. That way, if the register allocator
  3605. chooses to assign \code{x} to a caller-saved register, its value will
  3606. be preserved across the call to \READOP{}. However, saving and
  3607. restoring to the stack is relatively slow. If \code{x} is not used
  3608. many times, it may be better to assign \code{x} to a stack location in
  3609. the first place. Or better yet, if we can arrange for \code{x} to be
  3610. placed in a callee-saved register, then it won't need to be saved and
  3611. restored during function calls.
  3612. The approach that we recommend for variables that are in use during a
  3613. function call is to either assign them to callee-saved registers or to
  3614. spill them to the stack. On the other hand, for variables that are not
  3615. in use during a function call, we try the following alternatives in
  3616. order 1) look for an available caller-saved register (to leave room
  3617. for other variables in the callee-saved register), 2) look for a
  3618. callee-saved register, and 3) spill the variable to the stack.
  3619. It is straightforward to implement this approach in a graph coloring
  3620. register allocator. First, we know which variables are in use during
  3621. every function call because we compute that information for every
  3622. instruction (Section~\ref{sec:liveness-analysis-Lvar}). Second, when
  3623. we build the interference graph
  3624. (Section~\ref{sec:build-interference}), we can place an edge between
  3625. each of these call-live variables and the caller-saved registers in
  3626. the interference graph. This will prevent the graph coloring algorithm
  3627. from assigning them to caller-saved registers.
  3628. Returning to the example in
  3629. Figure~\ref{fig:example-calling-conventions}, let us analyze the
  3630. generated x86 code on the right-hand side. Notice that variable
  3631. \code{x} is assigned to \code{rbx}, a callee-saved register. Thus, it
  3632. is already in a safe place during the second call to
  3633. \code{read\_int}. Next, notice that variable \code{y} is assigned to
  3634. \code{rcx}, a caller-saved register, because there are no function
  3635. calls in the remainder of the block.
  3636. Next we analyze the example from the callee point of view, focusing on
  3637. the prelude and conclusion of the \code{main} function. As usual the
  3638. prelude begins with saving the \code{rbp} register to the stack and
  3639. setting the \code{rbp} to the current stack pointer. We now know why
  3640. it is necessary to save the \code{rbp}: it is a callee-saved register.
  3641. The prelude then pushes \code{rbx} to the stack because 1) \code{rbx}
  3642. is a callee-saved register and 2) \code{rbx} is assigned to a variable
  3643. (\code{x}). The other callee-saved registers are not saved in the
  3644. prelude because they are not used. The prelude subtracts 8 bytes from
  3645. the \code{rsp} to make it 16-byte aligned. Shifting attention to the
  3646. conclusion, we see that \code{rbx} is restored from the stack with a
  3647. \code{popq} instruction.
  3648. \index{subject}{prelude}\index{subject}{conclusion}
  3649. \begin{figure}[tp]
  3650. \begin{minipage}{0.45\textwidth}
  3651. Example \LangVar{} program:
  3652. %var_test_14.rkt
  3653. {\if\edition\racketEd\color{olive}
  3654. \begin{lstlisting}
  3655. (let ([x (read)])
  3656. (let ([y (read)])
  3657. (+ (+ x y) 42)))
  3658. \end{lstlisting}
  3659. \fi}
  3660. {\if\edition\pythonEd
  3661. \begin{lstlisting}
  3662. x = input_int()
  3663. y = input_int()
  3664. print((x + y) + 42)
  3665. \end{lstlisting}
  3666. \fi}
  3667. \end{minipage}
  3668. \begin{minipage}{0.45\textwidth}
  3669. Generated x86 assembly:
  3670. {\if\edition\racketEd\color{olive}
  3671. \begin{lstlisting}
  3672. start:
  3673. callq read_int
  3674. movq %rax, %rbx
  3675. callq read_int
  3676. movq %rax, %rcx
  3677. addq %rcx, %rbx
  3678. movq %rbx, %rax
  3679. addq $42, %rax
  3680. jmp _conclusion
  3681. .globl main
  3682. main:
  3683. pushq %rbp
  3684. movq %rsp, %rbp
  3685. pushq %rbx
  3686. subq $8, %rsp
  3687. jmp start
  3688. conclusion:
  3689. addq $8, %rsp
  3690. popq %rbx
  3691. popq %rbp
  3692. retq
  3693. \end{lstlisting}
  3694. \fi}
  3695. {\if\edition\pythonEd
  3696. \begin{lstlisting}
  3697. .globl main
  3698. main:
  3699. pushq %rbp
  3700. movq %rsp, %rbp
  3701. pushq %rbx
  3702. subq $8, %rsp
  3703. callq read_int
  3704. movq %rax, %rbx
  3705. callq read_int
  3706. movq %rax, %rcx
  3707. movq %rbx, %rdx
  3708. addq %rcx, %rdx
  3709. movq %rdx, %rcx
  3710. addq $42, %rcx
  3711. movq %rcx, %rdi
  3712. callq print_int
  3713. addq $8, %rsp
  3714. popq %rbx
  3715. popq %rbp
  3716. retq
  3717. \end{lstlisting}
  3718. \fi}
  3719. \end{minipage}
  3720. \caption{An example with function calls.}
  3721. \label{fig:example-calling-conventions}
  3722. \end{figure}
  3723. %\clearpage
  3724. \section{Liveness Analysis}
  3725. \label{sec:liveness-analysis-Lvar}
  3726. \index{subject}{liveness analysis}
  3727. The \code{uncover\_live} \racket{pass}\python{function}
  3728. performs \emph{liveness analysis}, that
  3729. is, it discovers which variables are in-use in different regions of a
  3730. program.
  3731. %
  3732. A variable or register is \emph{live} at a program point if its
  3733. current value is used at some later point in the program. We refer to
  3734. variables, stack locations, and registers collectively as
  3735. \emph{locations}.
  3736. %
  3737. Consider the following code fragment in which there are two writes to
  3738. \code{b}. Are \code{a} and \code{b} both live at the same time?
  3739. \begin{center}
  3740. \begin{minipage}{0.96\textwidth}
  3741. \begin{lstlisting}[numbers=left,numberstyle=\tiny]
  3742. movq $5, a
  3743. movq $30, b
  3744. movq a, c
  3745. movq $10, b
  3746. addq b, c
  3747. \end{lstlisting}
  3748. \end{minipage}
  3749. \end{center}
  3750. The answer is no because \code{a} is live from line 1 to 3 and
  3751. \code{b} is live from line 4 to 5. The integer written to \code{b} on
  3752. line 2 is never used because it is overwritten (line 4) before the
  3753. next read (line 5).
  3754. The live locations can be computed by traversing the instruction
  3755. sequence back to front (i.e., backwards in execution order). Let
  3756. $I_1,\ldots, I_n$ be the instruction sequence. We write
  3757. $L_{\mathsf{after}}(k)$ for the set of live locations after
  3758. instruction $I_k$ and $L_{\mathsf{before}}(k)$ for the set of live
  3759. locations before instruction $I_k$.
  3760. \racket{We recommend representing these
  3761. sets with the Racket \code{set} data structure described in
  3762. Figure~\ref{fig:set}.}
  3763. \python{We recommend representing these sets with the Python
  3764. \href{https://docs.python.org/3.10/library/stdtypes.html\#set-types-set-frozenset}{\code{set}}
  3765. data structure.}
  3766. {\if\edition\racketEd\color{olive}
  3767. \begin{figure}[tp]
  3768. %\begin{wrapfigure}[19]{l}[0.75in]{0.55\textwidth}
  3769. \small
  3770. \begin{tcolorbox}[title=\href{https://docs.racket-lang.org/reference/sets.html}{The Racket Set Package}]
  3771. A \emph{set} is an unordered collection of elements without duplicates.
  3772. Here are some of the operations defined on sets.
  3773. \index{subject}{set}
  3774. \begin{description}
  3775. \item[$\LP\code{set}~v~\ldots\RP$] constructs a set containing the specified elements.
  3776. \item[$\LP\code{set-union}~set_1~set_2\RP$] returns the union of the two sets.
  3777. \item[$\LP\code{set-subtract}~set_1~set_2\RP$] returns the set
  3778. difference of the two sets.
  3779. \item[$\LP\code{set-member?}~set~v\RP$] answers whether element $v$ is in $set$.
  3780. \item[$\LP\code{set-count}~set\RP$] returns the number of unique elements in $set$.
  3781. \item[$\LP\code{set->list}~set\RP$] converts $set$ to a list.
  3782. \end{description}
  3783. \end{tcolorbox}
  3784. %\end{wrapfigure}
  3785. \caption{The \code{set} data structure.}
  3786. \label{fig:set}
  3787. \end{figure}
  3788. \fi}
  3789. The live locations after an instruction are always the same as the
  3790. live locations before the next instruction.
  3791. \index{subject}{live-after} \index{subject}{live-before}
  3792. \begin{equation} \label{eq:live-after-before-next}
  3793. L_{\mathsf{after}}(k) = L_{\mathsf{before}}(k+1)
  3794. \end{equation}
  3795. To start things off, there are no live locations after the last
  3796. instruction, so
  3797. \begin{equation}\label{eq:live-last-empty}
  3798. L_{\mathsf{after}}(n) = \emptyset
  3799. \end{equation}
  3800. We then apply the following rule repeatedly, traversing the
  3801. instruction sequence back to front.
  3802. \begin{equation}\label{eq:live-before-after-minus-writes-plus-reads}
  3803. L_{\mathtt{before}}(k) = (L_{\mathtt{after}}(k) - W(k)) \cup R(k),
  3804. \end{equation}
  3805. where $W(k)$ are the locations written to by instruction $I_k$ and
  3806. $R(k)$ are the locations read by instruction $I_k$.
  3807. {\if\edition\racketEd\color{olive}
  3808. There is a special case for \code{jmp} instructions. The locations
  3809. that are live before a \code{jmp} should be the locations in
  3810. $L_{\mathtt{before}}$ at the target of the jump. So we recommend
  3811. maintaining an alist named \code{label->live} that maps each label to
  3812. the $L_{\mathtt{before}}$ for the first instruction in its block. For
  3813. now the only \code{jmp} in a \LangXVar{} program is the one at the
  3814. end, to the conclusion. (For example, see Figure~\ref{fig:reg-eg}.)
  3815. The conclusion reads from \ttm{rax} and \ttm{rsp}, so the alist should
  3816. map \code{conclusion} to the set $\{\ttm{rax},\ttm{rsp}\}$.
  3817. \fi}
  3818. Let us walk through the above example, applying these formulas
  3819. starting with the instruction on line 5. We collect the answers in
  3820. Figure~\ref{fig:liveness-example-0}. The $L_{\mathsf{after}}$ for the
  3821. \code{addq b, c} instruction is $\emptyset$ because it is the last
  3822. instruction (formula~\ref{eq:live-last-empty}). The
  3823. $L_{\mathsf{before}}$ for this instruction is $\{\ttm{b},\ttm{c}\}$
  3824. because it reads from variables \code{b} and \code{c}
  3825. (formula~\ref{eq:live-before-after-minus-writes-plus-reads}), that is
  3826. \[
  3827. L_{\mathsf{before}}(5) = (\emptyset - \{\ttm{c}\}) \cup \{ \ttm{b}, \ttm{c} \} = \{ \ttm{b}, \ttm{c} \}
  3828. \]
  3829. Moving on the the instruction \code{movq \$10, b} at line 4, we copy
  3830. the live-before set from line 5 to be the live-after set for this
  3831. instruction (formula~\ref{eq:live-after-before-next}).
  3832. \[
  3833. L_{\mathsf{after}}(4) = \{ \ttm{b}, \ttm{c} \}
  3834. \]
  3835. This move instruction writes to \code{b} and does not read from any
  3836. variables, so we have the following live-before set
  3837. (formula~\ref{eq:live-before-after-minus-writes-plus-reads}).
  3838. \[
  3839. L_{\mathsf{before}}(4) = (\{\ttm{b},\ttm{c}\} - \{\ttm{b}\}) \cup \emptyset = \{ \ttm{c} \}
  3840. \]
  3841. The live-before for instruction \code{movq a, c}
  3842. is $\{\ttm{a}\}$ because it writes to $\{\ttm{c}\}$ and reads from $\{\ttm{a}\}$
  3843. (formula~\ref{eq:live-before-after-minus-writes-plus-reads}). The
  3844. live-before for \code{movq \$30, b} is $\{\ttm{a}\}$ because it writes to a
  3845. variable that is not live and does not read from a variable.
  3846. Finally, the live-before for \code{movq \$5, a} is $\emptyset$
  3847. because it writes to variable \code{a}.
  3848. \begin{figure}[tbp]
  3849. \begin{minipage}{0.45\textwidth}
  3850. \begin{lstlisting}[numbers=left,numberstyle=\tiny]
  3851. movq $5, a
  3852. movq $30, b
  3853. movq a, c
  3854. movq $10, b
  3855. addq b, c
  3856. \end{lstlisting}
  3857. \end{minipage}
  3858. \vrule\hspace{10pt}
  3859. \begin{minipage}{0.45\textwidth}
  3860. \begin{align*}
  3861. L_{\mathsf{before}}(1)= \emptyset,
  3862. L_{\mathsf{after}}(1)= \{\ttm{a}\}\\
  3863. L_{\mathsf{before}}(2)= \{\ttm{a}\},
  3864. L_{\mathsf{after}}(2)= \{\ttm{a}\}\\
  3865. L_{\mathsf{before}}(3)= \{\ttm{a}\},
  3866. L_{\mathsf{after}}(2)= \{\ttm{c}\}\\
  3867. L_{\mathsf{before}}(4)= \{\ttm{c}\},
  3868. L_{\mathsf{after}}(4)= \{\ttm{b},\ttm{c}\}\\
  3869. L_{\mathsf{before}}(5)= \{\ttm{b},\ttm{c}\},
  3870. L_{\mathsf{after}}(5)= \emptyset
  3871. \end{align*}
  3872. \end{minipage}
  3873. \caption{Example output of liveness analysis on a short example.}
  3874. \label{fig:liveness-example-0}
  3875. \end{figure}
  3876. \begin{exercise}\normalfont
  3877. Perform liveness analysis on the running example in
  3878. Figure~\ref{fig:reg-eg}, computing the live-before and live-after
  3879. sets for each instruction. Compare your answers to the solution
  3880. shown in Figure~\ref{fig:live-eg}.
  3881. \end{exercise}
  3882. \begin{figure}[tp]
  3883. \hspace{20pt}
  3884. \begin{minipage}{0.45\textwidth}
  3885. {\if\edition\racketEd\color{olive}
  3886. \begin{lstlisting}
  3887. |$\{\ttm{rsp}\}$|
  3888. movq $1, v
  3889. |$\{\ttm{v},\ttm{rsp}\}$|
  3890. movq $42, w
  3891. |$\{\ttm{v},\ttm{w},\ttm{rsp}\}$|
  3892. movq v, x
  3893. |$\{\ttm{w},\ttm{x},\ttm{rsp}\}$|
  3894. addq $7, x
  3895. |$\{\ttm{w},\ttm{x},\ttm{rsp}\}$|
  3896. movq x, y
  3897. |$\{\ttm{w},\ttm{x},\ttm{y},\ttm{rsp}\}$|
  3898. movq x, z
  3899. |$\{\ttm{w},\ttm{y},\ttm{z},\ttm{rsp}\}$|
  3900. addq w, z
  3901. |$\{\ttm{y},\ttm{z},\ttm{rsp}\}$|
  3902. movq y, t
  3903. |$\{\ttm{t},\ttm{z},\ttm{rsp}\}$|
  3904. negq t
  3905. |$\{\ttm{t},\ttm{z},\ttm{rsp}\}$|
  3906. movq z, %rax
  3907. |$\{\ttm{rax},\ttm{t},\ttm{rsp}\}$|
  3908. addq t, %rax
  3909. |$\{\ttm{rax},\ttm{rsp}\}$|
  3910. jmp conclusion
  3911. \end{lstlisting}
  3912. \fi}
  3913. {\if\edition\pythonEd
  3914. \begin{lstlisting}
  3915. movq $1, v
  3916. |$\{\ttm{v}\}$|
  3917. movq $42, w
  3918. |$\{\ttm{w}, \ttm{v}\}$|
  3919. movq v, x
  3920. |$\{\ttm{w}, \ttm{x}\}$|
  3921. addq $7, x
  3922. |$\{\ttm{w}, \ttm{x}\}$|
  3923. movq x, y
  3924. |$\{\ttm{w}, \ttm{x}, \ttm{y}\}$|
  3925. movq x, z
  3926. |$\{\ttm{w}, \ttm{y}, \ttm{z}\}$|
  3927. addq w, z
  3928. |$\{\ttm{y}, \ttm{z}\}$|
  3929. movq y, tmp_0
  3930. |$\{\ttm{tmp\_0}, \ttm{z}\}$|
  3931. negq tmp_0
  3932. |$\{\ttm{tmp\_0}, \ttm{z}\}$|
  3933. movq z, tmp_1
  3934. |$\{\ttm{tmp\_0}, \ttm{tmp\_1}\}$|
  3935. addq tmp_0, tmp_1
  3936. |$\{\ttm{tmp\_1}\}$|
  3937. movq tmp_1, %rdi
  3938. |$\{\ttm{rdi}\}$|
  3939. callq print_int
  3940. |$\{\}$|
  3941. \end{lstlisting}
  3942. \fi}
  3943. \end{minipage}
  3944. \caption{The running example annotated with live-after sets.}
  3945. \label{fig:live-eg}
  3946. \end{figure}
  3947. \begin{exercise}\normalfont
  3948. Implement the \code{uncover\_live} \racket{pass}\python{function}.
  3949. %
  3950. \racket{Store the sequence of live-after sets in the $\itm{info}$
  3951. field of the \code{Block} structure.}
  3952. %
  3953. \python{Return a dictionary that maps each instruction to its
  3954. live-after set.}
  3955. %
  3956. \racket{We recommend creating an auxiliary function that takes a list
  3957. of instructions and an initial live-after set (typically empty) and
  3958. returns the list of live-after sets.}
  3959. %
  3960. We recommend creating auxiliary functions to 1) compute the set
  3961. of locations that appear in an \Arg{}, 2) compute the locations read
  3962. by an instruction (the $R$ function), and 3) the locations written by
  3963. an instruction (the $W$ function). The \code{callq} instruction should
  3964. include all of the caller-saved registers in its write-set $W$ because
  3965. the calling convention says that those registers may be written to
  3966. during the function call. Likewise, the \code{callq} instruction
  3967. should include the appropriate argument-passing registers in its
  3968. read-set $R$, depending on the arity of the function being
  3969. called. (This is why the abstract syntax for \code{callq} includes the
  3970. arity.)
  3971. \end{exercise}
  3972. %\clearpage
  3973. \section{Build the Interference Graph}
  3974. \label{sec:build-interference}
  3975. {\if\edition\racketEd\color{olive}
  3976. \begin{figure}[tp]
  3977. %\begin{wrapfigure}[23]{r}[0.75in]{0.55\textwidth}
  3978. \small
  3979. \begin{tcolorbox}[title=\href{https://docs.racket-lang.org/graph/index.html}{The Racket Graph Library}]
  3980. A \emph{graph} is a collection of vertices and edges where each
  3981. edge connects two vertices. A graph is \emph{directed} if each
  3982. edge points from a source to a target. Otherwise the graph is
  3983. \emph{undirected}.
  3984. \index{subject}{graph}\index{subject}{directed graph}\index{subject}{undirected graph}
  3985. \begin{description}
  3986. %% We currently don't use directed graphs. We instead use
  3987. %% directed multi-graphs. -Jeremy
  3988. \item[$\LP\code{directed-graph}\,\itm{edges}\RP$] constructs a
  3989. directed graph from a list of edges. Each edge is a list
  3990. containing the source and target vertex.
  3991. \item[$\LP\code{undirected-graph}\,\itm{edges}\RP$] constructs a
  3992. undirected graph from a list of edges. Each edge is represented by
  3993. a list containing two vertices.
  3994. \item[$\LP\code{add-vertex!}\,\itm{graph}\,\itm{vertex}\RP$]
  3995. inserts a vertex into the graph.
  3996. \item[$\LP\code{add-edge!}\,\itm{graph}\,\itm{source}\,\itm{target}\RP$]
  3997. inserts an edge between the two vertices.
  3998. \item[$\LP\code{in-neighbors}\,\itm{graph}\,\itm{vertex}\RP$]
  3999. returns a sequence of vertices adjacent to the vertex.
  4000. \item[$\LP\code{in-vertices}\,\itm{graph}\RP$]
  4001. returns a sequence of all vertices in the graph.
  4002. \end{description}
  4003. \end{tcolorbox}
  4004. %\end{wrapfigure}
  4005. \caption{The Racket \code{graph} package.}
  4006. \label{fig:graph}
  4007. \end{figure}
  4008. \fi}
  4009. Based on the liveness analysis, we know where each location is live.
  4010. However, during register allocation, we need to answer questions of
  4011. the specific form: are locations $u$ and $v$ live at the same time?
  4012. (And therefore cannot be assigned to the same register.) To make this
  4013. question more efficient to answer, we create an explicit data
  4014. structure, an \emph{interference graph}\index{subject}{interference
  4015. graph}. An interference graph is an undirected graph that has an
  4016. edge between two locations if they are live at the same time, that is,
  4017. if they interfere with each other.
  4018. %
  4019. \racket{We recommend using the Racket \code{graph} package
  4020. (Figure~\ref{fig:graph}) to represent the interference graph.}
  4021. %
  4022. \python{We provide implementations of directed and undirected graph
  4023. data structures in the file \code{graph.py} of the support code.}
  4024. A straightforward way to compute the interference graph is to look at
  4025. the set of live locations between each instruction and add an edge to
  4026. the graph for every pair of variables in the same set. This approach
  4027. is less than ideal for two reasons. First, it can be expensive because
  4028. it takes $O(n^2)$ time to consider at every pair in a set of $n$ live
  4029. locations. Second, in the special case where two locations hold the
  4030. same value (because one was assigned to the other), they can be live
  4031. at the same time without interfering with each other.
  4032. A better way to compute the interference graph is to focus on
  4033. writes~\citep{Appel:2003fk}. The writes performed by an instruction
  4034. must not overwrite something in a live location. So for each
  4035. instruction, we create an edge between the locations being written to
  4036. and the live locations. (Except that one should not create self
  4037. edges.) Note that for the \key{callq} instruction, we consider all of
  4038. the caller-saved registers as being written to, so an edge is added
  4039. between every live variable and every caller-saved register. Also, for
  4040. \key{movq} there is the above-mentioned special case to deal with. If
  4041. a live variable $v$ is the same as the source of the \key{movq}, then
  4042. there is no need to add an edge between $v$ and the destination,
  4043. because they both hold the same value.
  4044. %
  4045. So we have the following two rules.
  4046. \begin{enumerate}
  4047. \item If instruction $I_k$ is a move instruction, \key{movq} $s$\key{,}
  4048. $d$, then add the edge $(d,v)$ for every $v \in
  4049. L_{\mathsf{after}}(k)$ unless $v = d$ or $v = s$.
  4050. \item For any other instruction $I_k$, for every $d \in W(k)$
  4051. add an edge $(d,v)$ for every $v \in L_{\mathsf{after}}(k)$ unless $v = d$.
  4052. %% \item If instruction $I_k$ is an arithmetic instruction such as
  4053. %% \code{addq} $s$\key{,} $d$, then add the edge $(d,v)$ for every $v \in
  4054. %% L_{\mathsf{after}}(k)$ unless $v = d$.
  4055. %% \item If instruction $I_k$ is of the form \key{callq}
  4056. %% $\mathit{label}$, then add an edge $(r,v)$ for every caller-saved
  4057. %% register $r$ and every variable $v \in L_{\mathsf{after}}(k)$.
  4058. \end{enumerate}
  4059. Working from the top to bottom of Figure~\ref{fig:live-eg}, we apply
  4060. the above rules to each instruction. We highlight a few of the
  4061. instructions. \racket{The first instruction is \lstinline{movq $1, v}
  4062. and the live-after set is $\{\ttm{v},\ttm{rsp}\}$. Rule 1 applies,
  4063. so \code{v} interferes with \code{rsp}.}
  4064. %
  4065. \python{The first instruction is \lstinline{movq $1, v} and the
  4066. live-after set is $\{\ttm{v}\}$. Rule 1 applies but there is
  4067. no interference because $\ttm{v}$ is the destination of the move.}
  4068. %
  4069. \racket{The fourth instruction is \lstinline{addq $7, x} and the
  4070. live-after set is $\{\ttm{w},\ttm{x},\ttm{rsp}\}$. Rule 2 applies so
  4071. $\ttm{x}$ interferes with \ttm{w} and \ttm{rsp}.}
  4072. %
  4073. \python{The fourth instruction is \lstinline{addq $7, x} and the
  4074. live-after set is $\{\ttm{w},\ttm{x}\}$. Rule 2 applies so
  4075. $\ttm{x}$ interferes with \ttm{w}.}
  4076. %
  4077. \racket{The next instruction is \lstinline{movq x, y} and the
  4078. live-after set is $\{\ttm{w},\ttm{x},\ttm{y},\ttm{rsp}\}$. Rule 1
  4079. applies, so \ttm{y} interferes with \ttm{w} and \ttm{rsp} but not
  4080. \ttm{x} because \ttm{x} is the source of the move and therefore
  4081. \ttm{x} and \ttm{y} hold the same value.}
  4082. %
  4083. \python{The next instruction is \lstinline{movq x, y} and the
  4084. live-after set is $\{\ttm{w},\ttm{x},\ttm{y}\}$. Rule 1
  4085. applies, so \ttm{y} interferes with \ttm{w} but not
  4086. \ttm{x} because \ttm{x} is the source of the move and therefore
  4087. \ttm{x} and \ttm{y} hold the same value.}
  4088. %
  4089. Figure~\ref{fig:interference-results} lists the interference results
  4090. for all of the instructions and the resulting interference graph is
  4091. shown in Figure~\ref{fig:interfere}.
  4092. \begin{figure}[tbp]
  4093. \begin{quote}
  4094. {\if\edition\racketEd\color{olive}
  4095. \begin{tabular}{ll}
  4096. \lstinline!movq $1, v!& \ttm{v} interferes with \ttm{rsp},\\
  4097. \lstinline!movq $42, w!& \ttm{w} interferes with \ttm{v} and \ttm{rsp},\\
  4098. \lstinline!movq v, x!& \ttm{x} interferes with \ttm{w} and \ttm{rsp},\\
  4099. \lstinline!addq $7, x!& \ttm{x} interferes with \ttm{w} and \ttm{rsp},\\
  4100. \lstinline!movq x, y!& \ttm{y} interferes with \ttm{w} and \ttm{rsp} but not \ttm{x},\\
  4101. \lstinline!movq x, z!& \ttm{z} interferes with \ttm{w}, \ttm{y}, and \ttm{rsp},\\
  4102. \lstinline!addq w, z!& \ttm{z} interferes with \ttm{y} and \ttm{rsp}, \\
  4103. \lstinline!movq y, t!& \ttm{t} interferes with \ttm{z} and \ttm{rsp}, \\
  4104. \lstinline!negq t!& \ttm{t} interferes with \ttm{z} and \ttm{rsp}, \\
  4105. \lstinline!movq z, %rax! & \ttm{rax} interferes with \ttm{t} and \ttm{rsp}, \\
  4106. \lstinline!addq t, %rax! & \ttm{rax} interferes with \ttm{rsp}. \\
  4107. \lstinline!jmp conclusion!& no interference.
  4108. \end{tabular}
  4109. \fi}
  4110. {\if\edition\pythonEd
  4111. \begin{tabular}{ll}
  4112. \lstinline!movq $1, v!& no interference\\
  4113. \lstinline!movq $42, w!& \ttm{w} interferes with \ttm{v}\\
  4114. \lstinline!movq v, x!& \ttm{x} interferes with \ttm{w}\\
  4115. \lstinline!addq $7, x!& \ttm{x} interferes with \ttm{w}\\
  4116. \lstinline!movq x, y!& \ttm{y} interferes with \ttm{w} but not \ttm{x}\\
  4117. \lstinline!movq x, z!& \ttm{z} interferes with \ttm{w} and \ttm{y}\\
  4118. \lstinline!addq w, z!& \ttm{z} interferes with \ttm{y} \\
  4119. \lstinline!movq y, tmp_0!& \ttm{t} interferes with \ttm{z} \\
  4120. \lstinline!negq tmp_0!& \ttm{t} interferes with \ttm{z} \\
  4121. \lstinline!movq z, tmp_1! & \ttm{tmp\_0} interferes with \ttm{tmp\_1} \\
  4122. \lstinline!addq tmp_0, tmp_1! & no interference\\
  4123. \lstinline!movq tmp_1, %rdi! & no interference \\
  4124. \lstinline!callq print_int!& no interference.
  4125. \end{tabular}
  4126. \fi}
  4127. \end{quote}
  4128. \caption{Interference results for the running example.}
  4129. \label{fig:interference-results}
  4130. \end{figure}
  4131. \begin{figure}[tbp]
  4132. \large
  4133. {\if\edition\racketEd\color{olive}
  4134. \[
  4135. \begin{tikzpicture}[baseline=(current bounding box.center)]
  4136. \node (rax) at (0,0) {$\ttm{rax}$};
  4137. \node (rsp) at (9,2) {$\ttm{rsp}$};
  4138. \node (t1) at (0,2) {$\ttm{t}$};
  4139. \node (z) at (3,2) {$\ttm{z}$};
  4140. \node (x) at (6,2) {$\ttm{x}$};
  4141. \node (y) at (3,0) {$\ttm{y}$};
  4142. \node (w) at (6,0) {$\ttm{w}$};
  4143. \node (v) at (9,0) {$\ttm{v}$};
  4144. \draw (t1) to (rax);
  4145. \draw (t1) to (z);
  4146. \draw (z) to (y);
  4147. \draw (z) to (w);
  4148. \draw (x) to (w);
  4149. \draw (y) to (w);
  4150. \draw (v) to (w);
  4151. \draw (v) to (rsp);
  4152. \draw (w) to (rsp);
  4153. \draw (x) to (rsp);
  4154. \draw (y) to (rsp);
  4155. \path[-.,bend left=15] (z) edge node {} (rsp);
  4156. \path[-.,bend left=10] (t1) edge node {} (rsp);
  4157. \draw (rax) to (rsp);
  4158. \end{tikzpicture}
  4159. \]
  4160. \fi}
  4161. {\if\edition\pythonEd
  4162. \[
  4163. \begin{tikzpicture}[baseline=(current bounding box.center)]
  4164. \node (t0) at (0,2) {$\ttm{tmp\_0}$};
  4165. \node (t1) at (0,0) {$\ttm{tmp\_1}$};
  4166. \node (z) at (3,2) {$\ttm{z}$};
  4167. \node (x) at (6,2) {$\ttm{x}$};
  4168. \node (y) at (3,0) {$\ttm{y}$};
  4169. \node (w) at (6,0) {$\ttm{w}$};
  4170. \node (v) at (9,0) {$\ttm{v}$};
  4171. \draw (t0) to (t1);
  4172. \draw (t0) to (z);
  4173. \draw (z) to (y);
  4174. \draw (z) to (w);
  4175. \draw (x) to (w);
  4176. \draw (y) to (w);
  4177. \draw (v) to (w);
  4178. \end{tikzpicture}
  4179. \]
  4180. \fi}
  4181. \caption{The interference graph of the example program.}
  4182. \label{fig:interfere}
  4183. \end{figure}
  4184. %% Our next concern is to choose a data structure for representing the
  4185. %% interference graph. There are many choices for how to represent a
  4186. %% graph, for example, \emph{adjacency matrix}, \emph{adjacency list},
  4187. %% and \emph{edge set}~\citep{Cormen:2001uq}. The right way to choose a
  4188. %% data structure is to study the algorithm that uses the data structure,
  4189. %% determine what operations need to be performed, and then choose the
  4190. %% data structure that provide the most efficient implementations of
  4191. %% those operations. Often times the choice of data structure can have an
  4192. %% effect on the time complexity of the algorithm, as it does here. If
  4193. %% you skim the next section, you will see that the register allocation
  4194. %% algorithm needs to ask the graph for all of its vertices and, given a
  4195. %% vertex, it needs to known all of the adjacent vertices. Thus, the
  4196. %% correct choice of graph representation is that of an adjacency
  4197. %% list. There are helper functions in \code{utilities.rkt} for
  4198. %% representing graphs using the adjacency list representation:
  4199. %% \code{make-graph}, \code{add-edge}, and \code{adjacent}
  4200. %% (Appendix~\ref{appendix:utilities}).
  4201. %% %
  4202. %% \margincomment{\footnotesize To do: change to use the
  4203. %% Racket graph library. \\ --Jeremy}
  4204. %% %
  4205. %% In particular, those functions use a hash table to map each vertex to
  4206. %% the set of adjacent vertices, and the sets are represented using
  4207. %% Racket's \key{set}, which is also a hash table.
  4208. \begin{exercise}\normalfont
  4209. \racket{Implement the compiler pass named \code{build\_interference} according
  4210. to the algorithm suggested above. We recommend using the Racket
  4211. \code{graph} package to create and inspect the interference graph.
  4212. The output graph of this pass should be stored in the $\itm{info}$ field of
  4213. the program, under the key \code{conflicts}.}
  4214. %
  4215. \python{Implement a function named \code{build\_interference}
  4216. according to the algorithm suggested above that
  4217. returns the interference graph.}
  4218. \end{exercise}
  4219. \section{Graph Coloring via Sudoku}
  4220. \label{sec:graph-coloring}
  4221. \index{subject}{graph coloring}
  4222. \index{subject}{Sudoku}
  4223. \index{subject}{color}
  4224. We come to the main event, mapping variables to registers and stack
  4225. locations. Variables that interfere with each other must be mapped to
  4226. different locations. In terms of the interference graph, this means
  4227. that adjacent vertices must be mapped to different locations. If we
  4228. think of locations as colors, the register allocation problem becomes
  4229. the graph coloring problem~\citep{Balakrishnan:1996ve,Rosen:2002bh}.
  4230. The reader may be more familiar with the graph coloring problem than he
  4231. or she realizes; the popular game of Sudoku is an instance of the
  4232. graph coloring problem. The following describes how to build a graph
  4233. out of an initial Sudoku board.
  4234. \begin{itemize}
  4235. \item There is one vertex in the graph for each Sudoku square.
  4236. \item There is an edge between two vertices if the corresponding squares
  4237. are in the same row, in the same column, or if the squares are in
  4238. the same $3\times 3$ region.
  4239. \item Choose nine colors to correspond to the numbers $1$ to $9$.
  4240. \item Based on the initial assignment of numbers to squares in the
  4241. Sudoku board, assign the corresponding colors to the corresponding
  4242. vertices in the graph.
  4243. \end{itemize}
  4244. If you can color the remaining vertices in the graph with the nine
  4245. colors, then you have also solved the corresponding game of Sudoku.
  4246. Figure~\ref{fig:sudoku-graph} shows an initial Sudoku game board and
  4247. the corresponding graph with colored vertices. We map the Sudoku
  4248. number 1 to black, 2 to white, and 3 to gray. We only show edges for a
  4249. sampling of the vertices (the colored ones) because showing edges for
  4250. all of the vertices would make the graph unreadable.
  4251. \begin{figure}[tbp]
  4252. \includegraphics[width=0.45\textwidth]{figs/sudoku}
  4253. \includegraphics[width=0.5\textwidth]{figs/sudoku-graph-bw}
  4254. \caption{A Sudoku game board and the corresponding colored graph.}
  4255. \label{fig:sudoku-graph}
  4256. \end{figure}
  4257. Some techniques for playing Sudoku correspond to heuristics used in
  4258. graph coloring algorithms. For example, one of the basic techniques
  4259. for Sudoku is called Pencil Marks. The idea is to use a process of
  4260. elimination to determine what numbers are no longer available for a
  4261. square and write down those numbers in the square (writing very
  4262. small). For example, if the number $1$ is assigned to a square, then
  4263. write the pencil mark $1$ in all the squares in the same row, column,
  4264. and region to indicate that $1$ is no longer an option for those other
  4265. squares.
  4266. %
  4267. The Pencil Marks technique corresponds to the notion of
  4268. \emph{saturation}\index{subject}{saturation} due to \cite{Brelaz:1979eu}. The
  4269. saturation of a vertex, in Sudoku terms, is the set of numbers that
  4270. are no longer available. In graph terminology, we have the following
  4271. definition:
  4272. \begin{equation*}
  4273. \mathrm{saturation}(u) = \{ c \;|\; \exists v. v \in \mathrm{adjacent}(u)
  4274. \text{ and } \mathrm{color}(v) = c \}
  4275. \end{equation*}
  4276. where $\mathrm{adjacent}(u)$ is the set of vertices that share an
  4277. edge with $u$.
  4278. The Pencil Marks technique leads to a simple strategy for filling in
  4279. numbers: if there is a square with only one possible number left, then
  4280. choose that number! But what if there are no squares with only one
  4281. possibility left? One brute-force approach is to try them all: choose
  4282. the first one and if that ultimately leads to a solution, great. If
  4283. not, backtrack and choose the next possibility. One good thing about
  4284. Pencil Marks is that it reduces the degree of branching in the search
  4285. tree. Nevertheless, backtracking can be terribly time consuming. One
  4286. way to reduce the amount of backtracking is to use the
  4287. most-constrained-first heuristic (aka. minimum remaining
  4288. values)~\citep{Russell2003}. That is, when choosing a square, always
  4289. choose one with the fewest possibilities left (the vertex with the
  4290. highest saturation). The idea is that choosing highly constrained
  4291. squares earlier rather than later is better because later on there may
  4292. not be any possibilities left in the highly saturated squares.
  4293. However, register allocation is easier than Sudoku because the
  4294. register allocator can fall back to assigning variables to stack
  4295. locations when the registers run out. Thus, it makes sense to replace
  4296. backtracking with greedy search: make the best choice at the time and
  4297. keep going. We still wish to minimize the number of colors needed, so
  4298. we use the most-constrained-first heuristic in the greedy search.
  4299. Figure~\ref{fig:satur-algo} gives the pseudo-code for a simple greedy
  4300. algorithm for register allocation based on saturation and the
  4301. most-constrained-first heuristic. It is roughly equivalent to the
  4302. DSATUR graph coloring algorithm~\citep{Brelaz:1979eu}.
  4303. %,Gebremedhin:1999fk,Omari:2006uq
  4304. Just as in Sudoku, the algorithm represents colors with integers. The
  4305. integers $0$ through $k-1$ correspond to the $k$ registers that we use
  4306. for register allocation. The integers $k$ and larger correspond to
  4307. stack locations. The registers that are not used for register
  4308. allocation, such as \code{rax}, are assigned to negative integers. In
  4309. particular, we assign $-1$ to \code{rax} and $-2$ to \code{rsp}.
  4310. %% One might wonder why we include registers at all in the liveness
  4311. %% analysis and interference graph. For example, we never allocate a
  4312. %% variable to \code{rax} and \code{rsp}, so it would be harmless to
  4313. %% leave them out. As we see in Chapter~\ref{ch:Rvec}, when we begin
  4314. %% to use register for passing arguments to functions, it will be
  4315. %% necessary for those registers to appear in the interference graph
  4316. %% because those registers will also be assigned to variables, and we
  4317. %% don't want those two uses to encroach on each other. Regarding
  4318. %% registers such as \code{rax} and \code{rsp} that are not used for
  4319. %% variables, we could omit them from the interference graph but that
  4320. %% would require adding special cases to our algorithm, which would
  4321. %% complicate the logic for little gain.
  4322. \begin{figure}[btp]
  4323. \centering
  4324. \begin{lstlisting}[basicstyle=\rmfamily,deletekeywords={for,from,with,is,not,in,find},morekeywords={while},columns=fullflexible]
  4325. Algorithm: DSATUR
  4326. Input: a graph |$G$|
  4327. Output: an assignment |$\mathrm{color}[v]$| for each vertex |$v \in G$|
  4328. |$W \gets \mathrm{vertices}(G)$|
  4329. while |$W \neq \emptyset$| do
  4330. pick a vertex |$u$| from |$W$| with the highest saturation,
  4331. breaking ties randomly
  4332. find the lowest color |$c$| that is not in |$\{ \mathrm{color}[v] \;:\; v \in \mathrm{adjacent}(u)\}$|
  4333. |$\mathrm{color}[u] \gets c$|
  4334. |$W \gets W - \{u\}$|
  4335. \end{lstlisting}
  4336. \caption{The saturation-based greedy graph coloring algorithm.}
  4337. \label{fig:satur-algo}
  4338. \end{figure}
  4339. {\if\edition\racketEd\color{olive}
  4340. With the DSATUR algorithm in hand, let us return to the running
  4341. example and consider how to color the interference graph in
  4342. Figure~\ref{fig:interfere}.
  4343. %
  4344. We start by assigning the register nodes to their own color. For
  4345. example, \code{rax} is assigned the color $-1$ and \code{rsp} is
  4346. assigned $-2$. The variables are not yet colored, so they are
  4347. annotated with a dash. We then update the saturation for vertices that
  4348. are adjacent to a register, obtaining the following annotated
  4349. graph. For example, the saturation for \code{t} is $\{-1,-2\}$ because
  4350. it interferes with both \code{rax} and \code{rsp}.
  4351. \[
  4352. \begin{tikzpicture}[baseline=(current bounding box.center)]
  4353. \node (rax) at (0,0) {$\ttm{rax}:-1,\{-2\}$};
  4354. \node (rsp) at (10,2) {$\ttm{rsp}:-2,\{-1\}$};
  4355. \node (t1) at (0,2) {$\ttm{t}:-,\{-1,-2\}$};
  4356. \node (z) at (3,2) {$\ttm{z}:-,\{-2\}$};
  4357. \node (x) at (6,2) {$\ttm{x}:-,\{-2\}$};
  4358. \node (y) at (3,0) {$\ttm{y}:-,\{-2\}$};
  4359. \node (w) at (6,0) {$\ttm{w}:-,\{-2\}$};
  4360. \node (v) at (10,0) {$\ttm{v}:-,\{-2\}$};
  4361. \draw (t1) to (rax);
  4362. \draw (t1) to (z);
  4363. \draw (z) to (y);
  4364. \draw (z) to (w);
  4365. \draw (x) to (w);
  4366. \draw (y) to (w);
  4367. \draw (v) to (w);
  4368. \draw (v) to (rsp);
  4369. \draw (w) to (rsp);
  4370. \draw (x) to (rsp);
  4371. \draw (y) to (rsp);
  4372. \path[-.,bend left=15] (z) edge node {} (rsp);
  4373. \path[-.,bend left=10] (t1) edge node {} (rsp);
  4374. \draw (rax) to (rsp);
  4375. \end{tikzpicture}
  4376. \]
  4377. The algorithm says to select a maximally saturated vertex. So we pick
  4378. $\ttm{t}$ and color it with the first available integer, which is
  4379. $0$. We mark $0$ as no longer available for $\ttm{z}$, $\ttm{rax}$,
  4380. and \ttm{rsp} because they interfere with $\ttm{t}$.
  4381. \[
  4382. \begin{tikzpicture}[baseline=(current bounding box.center)]
  4383. \node (rax) at (0,0) {$\ttm{rax}:-1,\{0,-2\}$};
  4384. \node (rsp) at (10,2) {$\ttm{rsp}:-2,\{-1,0\}$};
  4385. \node (t1) at (0,2) {$\ttm{t}:0,\{-1,-2\}$};
  4386. \node (z) at (3,2) {$\ttm{z}:-,\{0,-2\}$};
  4387. \node (x) at (6,2) {$\ttm{x}:-,\{-2\}$};
  4388. \node (y) at (3,0) {$\ttm{y}:-,\{-2\}$};
  4389. \node (w) at (6,0) {$\ttm{w}:-,\{-2\}$};
  4390. \node (v) at (10,0) {$\ttm{v}:-,\{-2\}$};
  4391. \draw (t1) to (rax);
  4392. \draw (t1) to (z);
  4393. \draw (z) to (y);
  4394. \draw (z) to (w);
  4395. \draw (x) to (w);
  4396. \draw (y) to (w);
  4397. \draw (v) to (w);
  4398. \draw (v) to (rsp);
  4399. \draw (w) to (rsp);
  4400. \draw (x) to (rsp);
  4401. \draw (y) to (rsp);
  4402. \path[-.,bend left=15] (z) edge node {} (rsp);
  4403. \path[-.,bend left=10] (t1) edge node {} (rsp);
  4404. \draw (rax) to (rsp);
  4405. \end{tikzpicture}
  4406. \]
  4407. We repeat the process, selecting a maximally saturated vertex,
  4408. choosing is \code{z}, and color it with the first available number, which
  4409. is $1$. We add $1$ to the saturation for the neighboring vertices
  4410. \code{t}, \code{y}, \code{w}, and \code{rsp}.
  4411. \[
  4412. \begin{tikzpicture}[baseline=(current bounding box.center)]
  4413. \node (rax) at (0,0) {$\ttm{rax}:-1,\{0,-2\}$};
  4414. \node (rsp) at (10,2) {$\ttm{rsp}:-2,\{-1,0,1\}$};
  4415. \node (t1) at (0,2) {$\ttm{t}:0,\{-1,1,-2\}$};
  4416. \node (z) at (3,2) {$\ttm{z}:1,\{0,-2\}$};
  4417. \node (x) at (6,2) {$\ttm{x}:-,\{-2\}$};
  4418. \node (y) at (3,0) {$\ttm{y}:-,\{1,-2\}$};
  4419. \node (w) at (6,0) {$\ttm{w}:-,\{1,-2\}$};
  4420. \node (v) at (10,0) {$\ttm{v}:-,\{-2\}$};
  4421. \draw (t1) to (rax);
  4422. \draw (t1) to (z);
  4423. \draw (z) to (y);
  4424. \draw (z) to (w);
  4425. \draw (x) to (w);
  4426. \draw (y) to (w);
  4427. \draw (v) to (w);
  4428. \draw (v) to (rsp);
  4429. \draw (w) to (rsp);
  4430. \draw (x) to (rsp);
  4431. \draw (y) to (rsp);
  4432. \path[-.,bend left=15] (z) edge node {} (rsp);
  4433. \path[-.,bend left=10] (t1) edge node {} (rsp);
  4434. \draw (rax) to (rsp);
  4435. \end{tikzpicture}
  4436. \]
  4437. The most saturated vertices are now \code{w} and \code{y}. We color
  4438. \code{w} with the first available color, which is $0$.
  4439. \[
  4440. \begin{tikzpicture}[baseline=(current bounding box.center)]
  4441. \node (rax) at (0,0) {$\ttm{rax}:-1,\{0,-2\}$};
  4442. \node (rsp) at (10,2) {$\ttm{rsp}:-2,\{-1,0,1\}$};
  4443. \node (t1) at (0,2) {$\ttm{t}:0,\{-1,1,-2\}$};
  4444. \node (z) at (3,2) {$\ttm{z}:1,\{0,-2\}$};
  4445. \node (x) at (6,2) {$\ttm{x}:-,\{0,-2\}$};
  4446. \node (y) at (3,0) {$\ttm{y}:-,\{0,1,-2\}$};
  4447. \node (w) at (6,0) {$\ttm{w}:0,\{1,-2\}$};
  4448. \node (v) at (10,0) {$\ttm{v}:-,\{0,-2\}$};
  4449. \draw (t1) to (rax);
  4450. \draw (t1) to (z);
  4451. \draw (z) to (y);
  4452. \draw (z) to (w);
  4453. \draw (x) to (w);
  4454. \draw (y) to (w);
  4455. \draw (v) to (w);
  4456. \draw (v) to (rsp);
  4457. \draw (w) to (rsp);
  4458. \draw (x) to (rsp);
  4459. \draw (y) to (rsp);
  4460. \path[-.,bend left=15] (z) edge node {} (rsp);
  4461. \path[-.,bend left=10] (t1) edge node {} (rsp);
  4462. \draw (rax) to (rsp);
  4463. \end{tikzpicture}
  4464. \]
  4465. Vertex \code{y} is now the most highly saturated, so we color \code{y}
  4466. with $2$. We cannot choose $0$ or $1$ because those numbers are in
  4467. \code{y}'s saturation set. Indeed, \code{y} interferes with \code{w}
  4468. and \code{z}, whose colors are $0$ and $1$ respectively.
  4469. \[
  4470. \begin{tikzpicture}[baseline=(current bounding box.center)]
  4471. \node (rax) at (0,0) {$\ttm{rax}:-1,\{0,-2\}$};
  4472. \node (rsp) at (10,2) {$\ttm{rsp}:-2,\{-1,0,1,2\}$};
  4473. \node (t1) at (0,2) {$\ttm{t}:0,\{-1,1,-2\}$};
  4474. \node (z) at (3,2) {$\ttm{z}:1,\{0,2,-2\}$};
  4475. \node (x) at (6,2) {$\ttm{x}:-,\{0,-2\}$};
  4476. \node (y) at (3,0) {$\ttm{y}:2,\{0,1,-2\}$};
  4477. \node (w) at (6,0) {$\ttm{w}:0,\{1,2,-2\}$};
  4478. \node (v) at (10,0) {$\ttm{v}:-,\{0,-2\}$};
  4479. \draw (t1) to (rax);
  4480. \draw (t1) to (z);
  4481. \draw (z) to (y);
  4482. \draw (z) to (w);
  4483. \draw (x) to (w);
  4484. \draw (y) to (w);
  4485. \draw (v) to (w);
  4486. \draw (v) to (rsp);
  4487. \draw (w) to (rsp);
  4488. \draw (x) to (rsp);
  4489. \draw (y) to (rsp);
  4490. \path[-.,bend left=15] (z) edge node {} (rsp);
  4491. \path[-.,bend left=10] (t1) edge node {} (rsp);
  4492. \draw (rax) to (rsp);
  4493. \end{tikzpicture}
  4494. \]
  4495. Now \code{x} and \code{v} are the most saturated, so we color \code{v} with $1$.
  4496. \[
  4497. \begin{tikzpicture}[baseline=(current bounding box.center)]
  4498. \node (rax) at (0,0) {$\ttm{rax}:-1,\{0,-2\}$};
  4499. \node (rsp) at (10,2) {$\ttm{rsp}:-2,\{-1,0,1,2\}$};
  4500. \node (t1) at (0,2) {$\ttm{t}:0,\{-1,1,-2\}$};
  4501. \node (z) at (3,2) {$\ttm{z}:1,\{0,2,-2\}$};
  4502. \node (x) at (6,2) {$\ttm{x}:-,\{0,-2\}$};
  4503. \node (y) at (3,0) {$\ttm{y}:2,\{0,1,-2\}$};
  4504. \node (w) at (6,0) {$\ttm{w}:0,\{1,2,-2\}$};
  4505. \node (v) at (10,0) {$\ttm{v}:1,\{0,-2\}$};
  4506. \draw (t1) to (rax);
  4507. \draw (t1) to (z);
  4508. \draw (z) to (y);
  4509. \draw (z) to (w);
  4510. \draw (x) to (w);
  4511. \draw (y) to (w);
  4512. \draw (v) to (w);
  4513. \draw (v) to (rsp);
  4514. \draw (w) to (rsp);
  4515. \draw (x) to (rsp);
  4516. \draw (y) to (rsp);
  4517. \path[-.,bend left=15] (z) edge node {} (rsp);
  4518. \path[-.,bend left=10] (t1) edge node {} (rsp);
  4519. \draw (rax) to (rsp);
  4520. \end{tikzpicture}
  4521. \]
  4522. In the last step of the algorithm, we color \code{x} with $1$.
  4523. \[
  4524. \begin{tikzpicture}[baseline=(current bounding box.center)]
  4525. \node (rax) at (0,0) {$\ttm{rax}:-1,\{0,-2\}$};
  4526. \node (rsp) at (10,2) {$\ttm{rsp}:-2,\{-1,0,1,2\}$};
  4527. \node (t1) at (0,2) {$\ttm{t}:0,\{-1,1,-2\}$};
  4528. \node (z) at (3,2) {$\ttm{z}:1,\{0,2,-2\}$};
  4529. \node (x) at (6,2) {$\ttm{x}:1,\{0,-2\}$};
  4530. \node (y) at (3,0) {$\ttm{y}:2,\{0,1,-2\}$};
  4531. \node (w) at (6,0) {$\ttm{w}:0,\{1,2,-2\}$};
  4532. \node (v) at (10,0) {$\ttm{v}:1,\{0,-2\}$};
  4533. \draw (t1) to (rax);
  4534. \draw (t1) to (z);
  4535. \draw (z) to (y);
  4536. \draw (z) to (w);
  4537. \draw (x) to (w);
  4538. \draw (y) to (w);
  4539. \draw (v) to (w);
  4540. \draw (v) to (rsp);
  4541. \draw (w) to (rsp);
  4542. \draw (x) to (rsp);
  4543. \draw (y) to (rsp);
  4544. \path[-.,bend left=15] (z) edge node {} (rsp);
  4545. \path[-.,bend left=10] (t1) edge node {} (rsp);
  4546. \draw (rax) to (rsp);
  4547. \end{tikzpicture}
  4548. \]
  4549. So we obtain the following coloring:
  4550. \[
  4551. \{
  4552. \ttm{rax} \mapsto -1,
  4553. \ttm{rsp} \mapsto -2,
  4554. \ttm{t} \mapsto 0,
  4555. \ttm{z} \mapsto 1,
  4556. \ttm{x} \mapsto 1,
  4557. \ttm{y} \mapsto 2,
  4558. \ttm{w} \mapsto 0,
  4559. \ttm{v} \mapsto 1
  4560. \}
  4561. \]
  4562. \fi}
  4563. %
  4564. {\if\edition\pythonEd
  4565. %
  4566. With the DSATUR algorithm in hand, let us return to the running
  4567. example and consider how to color the interference graph in
  4568. Figure~\ref{fig:interfere}. We annotate each variable node with a dash
  4569. to indicate that it has not yet been assigned a color. The saturation
  4570. sets are also shown for each node; all of them start as the empty set.
  4571. (We do not include the register nodes in the graph below because there
  4572. were no interference edges involving registers in this program, but in
  4573. general there can be.)
  4574. %
  4575. \[
  4576. \begin{tikzpicture}[baseline=(current bounding box.center)]
  4577. \node (t0) at (0,2) {$\ttm{tmp\_0}: -, \{\}$};
  4578. \node (t1) at (0,0) {$\ttm{tmp\_1}: -, \{\}$};
  4579. \node (z) at (3,2) {$\ttm{z}: -, \{\}$};
  4580. \node (x) at (6,2) {$\ttm{x}: -, \{\}$};
  4581. \node (y) at (3,0) {$\ttm{y}: -, \{\}$};
  4582. \node (w) at (6,0) {$\ttm{w}: -, \{\}$};
  4583. \node (v) at (9,0) {$\ttm{v}: -, \{\}$};
  4584. \draw (t0) to (t1);
  4585. \draw (t0) to (z);
  4586. \draw (z) to (y);
  4587. \draw (z) to (w);
  4588. \draw (x) to (w);
  4589. \draw (y) to (w);
  4590. \draw (v) to (w);
  4591. \end{tikzpicture}
  4592. \]
  4593. The algorithm says to select a maximally saturated vertex, but they
  4594. are all equally saturated. So we flip a coin and pick $\ttm{tmp\_0}$
  4595. then color it with the first available integer, which is $0$. We mark
  4596. $0$ as no longer available for $\ttm{tmp\_1}$ and $\ttm{z}$ because
  4597. they interfere with $\ttm{tmp\_0}$.
  4598. \[
  4599. \begin{tikzpicture}[baseline=(current bounding box.center)]
  4600. \node (t0) at (0,2) {$\ttm{tmp\_0}: 0, \{\}$};
  4601. \node (t1) at (0,0) {$\ttm{tmp\_1}: -, \{0\}$};
  4602. \node (z) at (3,2) {$\ttm{z}: -, \{0\}$};
  4603. \node (x) at (6,2) {$\ttm{x}: -, \{\}$};
  4604. \node (y) at (3,0) {$\ttm{y}: -, \{\}$};
  4605. \node (w) at (6,0) {$\ttm{w}: -, \{\}$};
  4606. \node (v) at (9,0) {$\ttm{v}: -, \{\}$};
  4607. \draw (t0) to (t1);
  4608. \draw (t0) to (z);
  4609. \draw (z) to (y);
  4610. \draw (z) to (w);
  4611. \draw (x) to (w);
  4612. \draw (y) to (w);
  4613. \draw (v) to (w);
  4614. \end{tikzpicture}
  4615. \]
  4616. We repeat the process. The most saturated vertices are \code{z} and
  4617. \code{tmp\_1}, so we choose \code{z} and color it with the first
  4618. available number, which is $1$. We add $1$ to the saturation for the
  4619. neighboring vertices \code{tmp\_0}, \code{y}, and \code{w}.
  4620. \[
  4621. \begin{tikzpicture}[baseline=(current bounding box.center)]
  4622. \node (t0) at (0,2) {$\ttm{tmp\_0}: 0, \{1\}$};
  4623. \node (t1) at (0,0) {$\ttm{tmp\_1}: -, \{0\}$};
  4624. \node (z) at (3,2) {$\ttm{z}: 1, \{0\}$};
  4625. \node (x) at (6,2) {$\ttm{x}: -, \{\}$};
  4626. \node (y) at (3,0) {$\ttm{y}: -, \{1\}$};
  4627. \node (w) at (6,0) {$\ttm{w}: -, \{1\}$};
  4628. \node (v) at (9,0) {$\ttm{v}: -, \{\}$};
  4629. \draw (t0) to (t1);
  4630. \draw (t0) to (z);
  4631. \draw (z) to (y);
  4632. \draw (z) to (w);
  4633. \draw (x) to (w);
  4634. \draw (y) to (w);
  4635. \draw (v) to (w);
  4636. \end{tikzpicture}
  4637. \]
  4638. The most saturated vertices are now \code{tmp\_1}, \code{w}, and
  4639. \code{y}. We color \code{w} with the first available color, which
  4640. is $0$.
  4641. \[
  4642. \begin{tikzpicture}[baseline=(current bounding box.center)]
  4643. \node (t0) at (0,2) {$\ttm{tmp\_0}: 0, \{1\}$};
  4644. \node (t1) at (0,0) {$\ttm{tmp\_1}: -, \{0\}$};
  4645. \node (z) at (3,2) {$\ttm{z}: 1, \{0\}$};
  4646. \node (x) at (6,2) {$\ttm{x}: -, \{0\}$};
  4647. \node (y) at (3,0) {$\ttm{y}: -, \{0,1\}$};
  4648. \node (w) at (6,0) {$\ttm{w}: 0, \{1\}$};
  4649. \node (v) at (9,0) {$\ttm{v}: -, \{0\}$};
  4650. \draw (t0) to (t1);
  4651. \draw (t0) to (z);
  4652. \draw (z) to (y);
  4653. \draw (z) to (w);
  4654. \draw (x) to (w);
  4655. \draw (y) to (w);
  4656. \draw (v) to (w);
  4657. \end{tikzpicture}
  4658. \]
  4659. Now \code{y} is the most saturated, so we color it with $2$.
  4660. \[
  4661. \begin{tikzpicture}[baseline=(current bounding box.center)]
  4662. \node (t0) at (0,2) {$\ttm{tmp\_0}: 0, \{1\}$};
  4663. \node (t1) at (0,0) {$\ttm{tmp\_1}: -, \{0\}$};
  4664. \node (z) at (3,2) {$\ttm{z}: 1, \{0,2\}$};
  4665. \node (x) at (6,2) {$\ttm{x}: -, \{0\}$};
  4666. \node (y) at (3,0) {$\ttm{y}: 2, \{0,1\}$};
  4667. \node (w) at (6,0) {$\ttm{w}: 0, \{1,2\}$};
  4668. \node (v) at (9,0) {$\ttm{v}: -, \{0\}$};
  4669. \draw (t0) to (t1);
  4670. \draw (t0) to (z);
  4671. \draw (z) to (y);
  4672. \draw (z) to (w);
  4673. \draw (x) to (w);
  4674. \draw (y) to (w);
  4675. \draw (v) to (w);
  4676. \end{tikzpicture}
  4677. \]
  4678. The most saturated vertices are \code{tmp\_1}, \code{x}, and \code{v}.
  4679. We choose to color \code{v} with $1$.
  4680. \[
  4681. \begin{tikzpicture}[baseline=(current bounding box.center)]
  4682. \node (t0) at (0,2) {$\ttm{tmp\_0}: 0, \{1\}$};
  4683. \node (t1) at (0,0) {$\ttm{tmp\_1}: -, \{0\}$};
  4684. \node (z) at (3,2) {$\ttm{z}: 1, \{0,2\}$};
  4685. \node (x) at (6,2) {$\ttm{x}: -, \{0\}$};
  4686. \node (y) at (3,0) {$\ttm{y}: 2, \{0,1\}$};
  4687. \node (w) at (6,0) {$\ttm{w}: 0, \{1,2\}$};
  4688. \node (v) at (9,0) {$\ttm{v}: 1, \{0\}$};
  4689. \draw (t0) to (t1);
  4690. \draw (t0) to (z);
  4691. \draw (z) to (y);
  4692. \draw (z) to (w);
  4693. \draw (x) to (w);
  4694. \draw (y) to (w);
  4695. \draw (v) to (w);
  4696. \end{tikzpicture}
  4697. \]
  4698. We color the remaining two variables, \code{tmp\_1} and \code{x}, with $1$.
  4699. \[
  4700. \begin{tikzpicture}[baseline=(current bounding box.center)]
  4701. \node (t0) at (0,2) {$\ttm{tmp\_0}: 0, \{1\}$};
  4702. \node (t1) at (0,0) {$\ttm{tmp\_1}: 1, \{0\}$};
  4703. \node (z) at (3,2) {$\ttm{z}: 1, \{0,2\}$};
  4704. \node (x) at (6,2) {$\ttm{x}: 1, \{0\}$};
  4705. \node (y) at (3,0) {$\ttm{y}: 2, \{0,1\}$};
  4706. \node (w) at (6,0) {$\ttm{w}: 0, \{1,2\}$};
  4707. \node (v) at (9,0) {$\ttm{v}: 1, \{0\}$};
  4708. \draw (t0) to (t1);
  4709. \draw (t0) to (z);
  4710. \draw (z) to (y);
  4711. \draw (z) to (w);
  4712. \draw (x) to (w);
  4713. \draw (y) to (w);
  4714. \draw (v) to (w);
  4715. \end{tikzpicture}
  4716. \]
  4717. So we obtain the following coloring:
  4718. \[
  4719. \{ \ttm{tmp\_0} \mapsto 0,
  4720. \ttm{tmp\_1} \mapsto 1,
  4721. \ttm{z} \mapsto 1,
  4722. \ttm{x} \mapsto 1,
  4723. \ttm{y} \mapsto 2,
  4724. \ttm{w} \mapsto 0,
  4725. \ttm{v} \mapsto 1 \}
  4726. \]
  4727. \fi}
  4728. We recommend creating an auxiliary function named \code{color\_graph}
  4729. that takes an interference graph and a list of all the variables in
  4730. the program. This function should return a mapping of variables to
  4731. their colors (represented as natural numbers). By creating this helper
  4732. function, you will be able to reuse it in Chapter~\ref{ch:Rfun}
  4733. when we add support for functions.
  4734. To prioritize the processing of highly saturated nodes inside the
  4735. \code{color\_graph} function, we recommend using the priority queue
  4736. data structure \racket{described in Figure~\ref{fig:priority-queue}}\python{in the file \code{priority\_queue.py} of the support code}. \racket{In
  4737. addition, you will need to maintain a mapping from variables to their
  4738. ``handles'' in the priority queue so that you can notify the priority
  4739. queue when their saturation changes.}
  4740. {\if\edition\racketEd\color{olive}
  4741. \begin{figure}[tp]
  4742. %\begin{wrapfigure}[25]{r}[0.75in]{0.55\textwidth}
  4743. \small
  4744. \begin{tcolorbox}[title=Priority Queue]
  4745. A \emph{priority queue} is a collection of items in which the
  4746. removal of items is governed by priority. In a ``min'' queue,
  4747. lower priority items are removed first. An implementation is in
  4748. \code{priority\_queue.rkt} of the support code. \index{subject}{priority
  4749. queue} \index{subject}{minimum priority queue}
  4750. \begin{description}
  4751. \item[$\LP\code{make-pqueue}\,\itm{cmp}\RP$] constructs an empty
  4752. priority queue that uses the $\itm{cmp}$ predicate to determine
  4753. whether its first argument has lower or equal priority to its
  4754. second argument.
  4755. \item[$\LP\code{pqueue-count}\,\itm{queue}\RP$] returns the number of
  4756. items in the queue.
  4757. \item[$\LP\code{pqueue-push!}\,\itm{queue}\,\itm{item}\RP$] inserts
  4758. the item into the queue and returns a handle for the item in the
  4759. queue.
  4760. \item[$\LP\code{pqueue-pop!}\,\itm{queue}\RP$] returns the item with
  4761. the lowest priority.
  4762. \item[$\LP\code{pqueue-decrease-key!}\,\itm{queue}\,\itm{handle}\RP$]
  4763. notifies the queue that the priority has decreased for the item
  4764. associated with the given handle.
  4765. \end{description}
  4766. \end{tcolorbox}
  4767. %\end{wrapfigure}
  4768. \caption{The priority queue data structure.}
  4769. \label{fig:priority-queue}
  4770. \end{figure}
  4771. \fi}
  4772. With the coloring complete, we finalize the assignment of variables to
  4773. registers and stack locations. We map the first $k$ colors to the $k$
  4774. registers and the rest of the colors to stack locations. Suppose for
  4775. the moment that we have just one register to use for register
  4776. allocation, \key{rcx}. Then we have the following map from colors to
  4777. locations.
  4778. \[
  4779. \{ 0 \mapsto \key{\%rcx}, \; 1 \mapsto \key{-8(\%rbp)}, \; 2 \mapsto \key{-16(\%rbp)} \}
  4780. \]
  4781. Composing this mapping with the coloring, we arrive at the following
  4782. assignment of variables to locations.
  4783. {\if\edition\racketEd\color{olive}
  4784. \begin{gather*}
  4785. \{ \ttm{v} \mapsto \key{-8(\%rbp)}, \,
  4786. \ttm{w} \mapsto \key{\%rcx}, \,
  4787. \ttm{x} \mapsto \key{-8(\%rbp)}, \,
  4788. \ttm{y} \mapsto \key{-16(\%rbp)}, \\
  4789. \ttm{z} \mapsto \key{-8(\%rbp)}, \,
  4790. \ttm{t} \mapsto \key{\%rcx} \}
  4791. \end{gather*}
  4792. \fi}
  4793. {\if\edition\pythonEd
  4794. \begin{gather*}
  4795. \{ \ttm{v} \mapsto \key{-8(\%rbp)}, \,
  4796. \ttm{w} \mapsto \key{\%rcx}, \,
  4797. \ttm{x} \mapsto \key{-8(\%rbp)}, \,
  4798. \ttm{y} \mapsto \key{-16(\%rbp)}, \\
  4799. \ttm{z} \mapsto \key{-8(\%rbp)}, \,
  4800. \ttm{tmp\_0} \mapsto \key{\%rcx}, \,
  4801. \ttm{tmp\_1} \mapsto \key{-8(\%rbp)} \}
  4802. \end{gather*}
  4803. \fi}
  4804. Adapt the code from the \code{assign\_homes} pass
  4805. (Section~\ref{sec:assign-Lvar}) to replace the variables with their
  4806. assigned location. Applying the above assignment to our running
  4807. example, on the left, yields the program on the right.
  4808. % why frame size of 32? -JGS
  4809. \begin{center}
  4810. {\if\edition\racketEd\color{olive}
  4811. \begin{minipage}{0.3\textwidth}
  4812. \begin{lstlisting}
  4813. movq $1, v
  4814. movq $42, w
  4815. movq v, x
  4816. addq $7, x
  4817. movq x, y
  4818. movq x, z
  4819. addq w, z
  4820. movq y, t
  4821. negq t
  4822. movq z, %rax
  4823. addq t, %rax
  4824. jmp conclusion
  4825. \end{lstlisting}
  4826. \end{minipage}
  4827. $\Rightarrow\qquad$
  4828. \begin{minipage}{0.45\textwidth}
  4829. \begin{lstlisting}
  4830. movq $1, -8(%rbp)
  4831. movq $42, %rcx
  4832. movq -8(%rbp), -8(%rbp)
  4833. addq $7, -8(%rbp)
  4834. movq -8(%rbp), -16(%rbp)
  4835. movq -8(%rbp), -8(%rbp)
  4836. addq %rcx, -8(%rbp)
  4837. movq -16(%rbp), %rcx
  4838. negq %rcx
  4839. movq -8(%rbp), %rax
  4840. addq %rcx, %rax
  4841. jmp conclusion
  4842. \end{lstlisting}
  4843. \end{minipage}
  4844. \fi}
  4845. {\if\edition\pythonEd
  4846. \begin{minipage}{0.3\textwidth}
  4847. \begin{lstlisting}
  4848. movq $1, v
  4849. movq $42, w
  4850. movq v, x
  4851. addq $7, x
  4852. movq x, y
  4853. movq x, z
  4854. addq w, z
  4855. movq y, tmp_0
  4856. negq tmp_0
  4857. movq z, tmp_1
  4858. addq tmp_0, tmp_1
  4859. movq tmp_1, %rdi
  4860. callq print_int
  4861. \end{lstlisting}
  4862. \end{minipage}
  4863. $\Rightarrow\qquad$
  4864. \begin{minipage}{0.45\textwidth}
  4865. \begin{lstlisting}
  4866. movq $1, -8(%rbp)
  4867. movq $42, %rcx
  4868. movq -8(%rbp), -8(%rbp)
  4869. addq $7, -8(%rbp)
  4870. movq -8(%rbp), -16(%rbp)
  4871. movq -8(%rbp), -8(%rbp)
  4872. addq %rcx, -8(%rbp)
  4873. movq -16(%rbp), %rcx
  4874. negq %rcx
  4875. movq -8(%rbp), -8(%rbp)
  4876. addq %rcx, -8(%rbp)
  4877. movq -8(%rbp), %rdi
  4878. callq print_int
  4879. \end{lstlisting}
  4880. \end{minipage}
  4881. \fi}
  4882. \end{center}
  4883. \begin{exercise}\normalfont
  4884. %
  4885. Implement the compiler pass \code{allocate\_registers}.
  4886. %
  4887. Create five programs that exercise all aspects of the register
  4888. allocation algorithm, including spilling variables to the stack.
  4889. %
  4890. \racket{Replace \code{assign\_homes} in the list of \code{passes} in the
  4891. \code{run-tests.rkt} script with the three new passes:
  4892. \code{uncover\_live}, \code{build\_interference}, and
  4893. \code{allocate\_registers}.
  4894. %
  4895. Temporarily remove the \code{print\_x86} pass from the list of passes
  4896. and the call to \code{compiler-tests}.
  4897. Run the script to test the register allocator.
  4898. }
  4899. %
  4900. \python{Run the \code{run-tests.py} script to to check whether the
  4901. output programs produce the same result as the input programs.}
  4902. \end{exercise}
  4903. \section{Patch Instructions}
  4904. \label{sec:patch-instructions}
  4905. The remaining step in the compilation to x86 is to ensure that the
  4906. instructions have at most one argument that is a memory access.
  4907. %
  4908. In the running example, the instruction \code{movq -8(\%rbp),
  4909. -16(\%rbp)} is problematic. Recall from Section~\ref{sec:patch-s0}
  4910. that the fix is to first move \code{-8(\%rbp)} into \code{rax} and
  4911. then move \code{rax} into \code{-16(\%rbp)}.
  4912. %
  4913. The moves from \code{-8(\%rbp)} to \code{-8(\%rbp)} are also
  4914. problematic, but they can simply be deleted. In general, we recommend
  4915. deleting all the trivial moves whose source and destination are the
  4916. same location.
  4917. %
  4918. The following is the output of \code{patch\_instructions} on the
  4919. running example.
  4920. \begin{center}
  4921. {\if\edition\racketEd\color{olive}
  4922. \begin{minipage}{0.4\textwidth}
  4923. \begin{lstlisting}
  4924. movq $1, -8(%rbp)
  4925. movq $42, %rcx
  4926. movq -8(%rbp), -8(%rbp)
  4927. addq $7, -8(%rbp)
  4928. movq -8(%rbp), -16(%rbp)
  4929. movq -8(%rbp), -8(%rbp)
  4930. addq %rcx, -8(%rbp)
  4931. movq -16(%rbp), %rcx
  4932. negq %rcx
  4933. movq -8(%rbp), %rax
  4934. addq %rcx, %rax
  4935. jmp conclusion
  4936. \end{lstlisting}
  4937. \end{minipage}
  4938. $\Rightarrow\qquad$
  4939. \begin{minipage}{0.45\textwidth}
  4940. \begin{lstlisting}
  4941. movq $1, -8(%rbp)
  4942. movq $42, %rcx
  4943. addq $7, -8(%rbp)
  4944. movq -8(%rbp), %rax
  4945. movq %rax, -16(%rbp)
  4946. addq %rcx, -8(%rbp)
  4947. movq -16(%rbp), %rcx
  4948. negq %rcx
  4949. movq -8(%rbp), %rax
  4950. addq %rcx, %rax
  4951. jmp conclusion
  4952. \end{lstlisting}
  4953. \end{minipage}
  4954. \fi}
  4955. {\if\edition\pythonEd
  4956. \begin{minipage}{0.4\textwidth}
  4957. \begin{lstlisting}
  4958. movq $1, -8(%rbp)
  4959. movq $42, %rcx
  4960. movq -8(%rbp), -8(%rbp)
  4961. addq $7, -8(%rbp)
  4962. movq -8(%rbp), -16(%rbp)
  4963. movq -8(%rbp), -8(%rbp)
  4964. addq %rcx, -8(%rbp)
  4965. movq -16(%rbp), %rcx
  4966. negq %rcx
  4967. movq -8(%rbp), -8(%rbp)
  4968. addq %rcx, -8(%rbp)
  4969. movq -8(%rbp), %rdi
  4970. callq print_int
  4971. \end{lstlisting}
  4972. \end{minipage}
  4973. $\Rightarrow\qquad$
  4974. \begin{minipage}{0.45\textwidth}
  4975. \begin{lstlisting}
  4976. movq $1, -8(%rbp)
  4977. movq $42, %rcx
  4978. addq $7, -8(%rbp)
  4979. movq -8(%rbp), %rax
  4980. movq %rax, -16(%rbp)
  4981. addq %rcx, -8(%rbp)
  4982. movq -16(%rbp), %rcx
  4983. negq %rcx
  4984. addq %rcx, -8(%rbp)
  4985. movq -8(%rbp), %rdi
  4986. callq print_int
  4987. \end{lstlisting}
  4988. \end{minipage}
  4989. \fi}
  4990. \end{center}
  4991. \begin{exercise}\normalfont
  4992. %
  4993. Update the \code{patch\_instructions} compiler pass to delete trivial moves.
  4994. %
  4995. %Insert it after \code{allocate\_registers} in the list of \code{passes}
  4996. %in the \code{run-tests.rkt} script.
  4997. %
  4998. Run the script to test the \code{patch\_instructions} pass.
  4999. \end{exercise}
  5000. \section{Print x86}
  5001. \label{sec:print-x86-reg-alloc}
  5002. \index{subject}{calling conventions}
  5003. \index{subject}{prelude}\index{subject}{conclusion}
  5004. Recall that the \code{print\_x86} pass generates the prelude and
  5005. conclusion instructions to satisfy the x86 calling conventions
  5006. (Section~\ref{sec:calling-conventions}). With the addition of the
  5007. register allocator, the callee-saved registers used by the register
  5008. allocator must be saved in the prelude and restored in the conclusion.
  5009. In the \code{allocate\_registers} pass,
  5010. %
  5011. \racket{add an entry to the \itm{info}
  5012. of \code{X86Program} named \code{used\_callee}}
  5013. %
  5014. \python{add a field named \code{used\_callee} to the \code{X86Program} AST node}
  5015. %
  5016. that stores the set of
  5017. callee-saved registers that were assigned to variables. The
  5018. \code{print\_x86} pass can then access this information to decide which
  5019. callee-saved registers need to be saved and restored.
  5020. %
  5021. When calculating the size of the frame to adjust the \code{rsp} in the
  5022. prelude, make sure to take into account the space used for saving the
  5023. callee-saved registers. Also, don't forget that the frame needs to be
  5024. a multiple of 16 bytes!
  5025. \racket{An overview of all of the passes involved in register
  5026. allocation is shown in Figure~\ref{fig:reg-alloc-passes}.}
  5027. {\if\edition\racketEd\color{olive}
  5028. \begin{figure}[tbp]
  5029. \begin{tikzpicture}[baseline=(current bounding box.center)]
  5030. \node (Lvar) at (0,2) {\large \LangVar{}};
  5031. \node (Lvar-2) at (3,2) {\large \LangVar{}};
  5032. \node (Lvar-3) at (6,2) {\large \LangVar{}};
  5033. \node (Cvar-1) at (3,0) {\large \LangCVar{}};
  5034. \node (x86-2) at (3,-2) {\large \LangXVar{}};
  5035. \node (x86-3) at (6,-2) {\large \LangXVar{}};
  5036. \node (x86-4) at (9,-2) {\large \LangXInt{}};
  5037. \node (x86-5) at (9,-4) {\large \LangXInt{}};
  5038. \node (x86-2-1) at (3,-4) {\large \LangXVar{}};
  5039. \node (x86-2-2) at (6,-4) {\large \LangXVar{}};
  5040. \path[->,bend left=15] (Lvar) edge [above] node {\ttfamily\footnotesize uniquify} (Lvar-2);
  5041. \path[->,bend left=15] (Lvar-2) edge [above] node {\ttfamily\footnotesize remove\_complex.} (Lvar-3);
  5042. \path[->,bend left=15] (Lvar-3) edge [right] node {\ttfamily\footnotesize explicate\_control} (Cvar-1);
  5043. \path[->,bend right=15] (Cvar-1) edge [left] node {\ttfamily\footnotesize select\_instr.} (x86-2);
  5044. \path[->,bend left=15] (x86-2) edge [right] node {\ttfamily\footnotesize uncover\_live} (x86-2-1);
  5045. \path[->,bend right=15] (x86-2-1) edge [below] node {\ttfamily\footnotesize build\_inter.} (x86-2-2);
  5046. \path[->,bend right=15] (x86-2-2) edge [right] node {\ttfamily\footnotesize allocate\_reg.} (x86-3);
  5047. \path[->,bend left=15] (x86-3) edge [above] node {\ttfamily\footnotesize patch\_instr.} (x86-4);
  5048. \path[->,bend left=15] (x86-4) edge [right] node {\ttfamily\footnotesize print\_x86} (x86-5);
  5049. \end{tikzpicture}
  5050. \caption{Diagram of the passes for \LangVar{} with register allocation.}
  5051. \label{fig:reg-alloc-passes}
  5052. \end{figure}
  5053. \fi}
  5054. Figure~\ref{fig:running-example-x86} shows the x86 code generated for
  5055. the running example (Figure~\ref{fig:reg-eg}). To demonstrate both the
  5056. use of registers and the stack, we limit the register allocator for
  5057. this example to use just two registers: \code{rbx} and \code{rcx}. In
  5058. the prelude\index{subject}{prelude} of the \code{main} function, we
  5059. push \code{rbx} onto the stack because it is a callee-saved register
  5060. and it was assigned to variable by the register allocator. We
  5061. subtract \code{8} from the \code{rsp} at the end of the prelude to
  5062. reserve space for the one spilled variable. After that subtraction,
  5063. the \code{rsp} is aligned to 16 bytes.
  5064. Moving on to the program proper, we see how the registers were
  5065. allocated.
  5066. %
  5067. \racket{Variables \code{v}, \code{x}, and \code{y} were assigned to
  5068. \code{rbx} and variable \code{z} was assigned to \code{rcx}.}
  5069. %
  5070. \python{Variables \code{v}, \code{x}, \code{y}, and \code{tmp\_0}
  5071. were assigned to \code{rcx} and variables \code{w} and \code{tmp\_1}
  5072. were assigned to \code{rbx}.}
  5073. %
  5074. Variable \racket{\code{w}}\python{\code{z}} was spilled to the stack
  5075. location \code{-16(\%rbp)}. Recall that the prelude saved the
  5076. callee-save register \code{rbx} onto the stack. The spilled variables
  5077. must be placed lower on the stack than the saved callee-save
  5078. registers, so in this case \racket{\code{w}}\python{z} is placed at
  5079. \code{-16(\%rbp)}.
  5080. In the conclusion\index{subject}{conclusion}, we undo the work that was
  5081. done in the prelude. We move the stack pointer up by \code{8} bytes
  5082. (the room for spilled variables), then we pop the old values of
  5083. \code{rbx} and \code{rbp} (callee-saved registers), and finish with
  5084. \code{retq} to return control to the operating system.
  5085. \begin{figure}[tbp]
  5086. % var_test_28.rkt
  5087. % (use-minimal-set-of-registers! #t)
  5088. % and only rbx rcx
  5089. % tmp 0 rbx
  5090. % z 1 rcx
  5091. % y 0 rbx
  5092. % w 2 16(%rbp)
  5093. % v 0 rbx
  5094. % x 0 rbx
  5095. {\if\edition\racketEd\color{olive}
  5096. \begin{lstlisting}
  5097. start:
  5098. movq $1, %rbx
  5099. movq $42, -16(%rbp)
  5100. addq $7, %rbx
  5101. movq %rbx, %rcx
  5102. addq -16(%rbp), %rcx
  5103. negq %rbx
  5104. movq %rcx, %rax
  5105. addq %rbx, %rax
  5106. jmp conclusion
  5107. .globl main
  5108. main:
  5109. pushq %rbp
  5110. movq %rsp, %rbp
  5111. pushq %rbx
  5112. subq $8, %rsp
  5113. jmp start
  5114. conclusion:
  5115. addq $8, %rsp
  5116. popq %rbx
  5117. popq %rbp
  5118. retq
  5119. \end{lstlisting}
  5120. \fi}
  5121. {\if\edition\pythonEd
  5122. %{v: %rcx, x: %rcx, z: -16(%rbp), w: %rbx, tmp_1: %rbx, y: %rcx, tmp_0: %rcx}
  5123. \begin{lstlisting}
  5124. .globl main
  5125. main:
  5126. pushq %rbp
  5127. movq %rsp, %rbp
  5128. pushq %rbx
  5129. subq $8, %rsp
  5130. movq $1, %rcx
  5131. movq $42, %rbx
  5132. addq $7, %rcx
  5133. movq %rcx, -16(%rbp)
  5134. addq %rbx, -16(%rbp)
  5135. negq %rcx
  5136. movq -16(%rbp), %rbx
  5137. addq %rcx, %rbx
  5138. movq %rbx, %rdi
  5139. callq print_int
  5140. addq $8, %rsp
  5141. popq %rbx
  5142. popq %rbp
  5143. retq
  5144. \end{lstlisting}
  5145. \fi}
  5146. \caption{The x86 output from the running example
  5147. (Figure~\ref{fig:reg-eg}), limiting allocation to just \code{rbx}
  5148. and \code{rcx}.}
  5149. \label{fig:running-example-x86}
  5150. \end{figure}
  5151. \begin{exercise}\normalfont
  5152. Update the \code{print\_x86} pass as described in this section.
  5153. %
  5154. \racket{
  5155. In the \code{run-tests.rkt} script, reinstate \code{print\_x86} in the
  5156. list of passes and the call to \code{compiler-tests}.}
  5157. %
  5158. Run the script to test the complete compiler for \LangVar{} that
  5159. performs register allocation.
  5160. \end{exercise}
  5161. \section{Challenge: Move Biasing}
  5162. \label{sec:move-biasing}
  5163. \index{subject}{move biasing}
  5164. This section describes an enhancement to the register allocator,
  5165. called move biasing, for students who are looking for an extra
  5166. challenge.
  5167. {\if\edition\racketEd\color{olive}
  5168. To motivate the need for move biasing we return to the running example
  5169. but this time use all of the general purpose registers. So we have
  5170. the following mapping of color numbers to registers.
  5171. \[
  5172. \{ 0 \mapsto \key{\%rcx}, \; 1 \mapsto \key{\%rdx}, \; 2 \mapsto \key{\%rsi} \}
  5173. \]
  5174. Using the same assignment of variables to color numbers that was
  5175. produced by the register allocator described in the last section, we
  5176. get the following program.
  5177. \begin{center}
  5178. \begin{minipage}{0.3\textwidth}
  5179. \begin{lstlisting}
  5180. movq $1, v
  5181. movq $42, w
  5182. movq v, x
  5183. addq $7, x
  5184. movq x, y
  5185. movq x, z
  5186. addq w, z
  5187. movq y, t
  5188. negq t
  5189. movq z, %rax
  5190. addq t, %rax
  5191. jmp conclusion
  5192. \end{lstlisting}
  5193. \end{minipage}
  5194. $\Rightarrow\qquad$
  5195. \begin{minipage}{0.45\textwidth}
  5196. \begin{lstlisting}
  5197. movq $1, %rdx
  5198. movq $42, %rcx
  5199. movq %rdx, %rdx
  5200. addq $7, %rdx
  5201. movq %rdx, %rsi
  5202. movq %rdx, %rdx
  5203. addq %rcx, %rdx
  5204. movq %rsi, %rcx
  5205. negq %rcx
  5206. movq %rdx, %rax
  5207. addq %rcx, %rax
  5208. jmp conclusion
  5209. \end{lstlisting}
  5210. \end{minipage}
  5211. \end{center}
  5212. In the above output code there are two \key{movq} instructions that
  5213. can be removed because their source and target are the same. However,
  5214. if we had put \key{t}, \key{v}, \key{x}, and \key{y} into the same
  5215. register, we could instead remove three \key{movq} instructions. We
  5216. can accomplish this by taking into account which variables appear in
  5217. \key{movq} instructions with which other variables.
  5218. \fi}
  5219. {\if\edition\pythonEd
  5220. %
  5221. To motivate the need for move biasing we return to the running example
  5222. and recall that in Section~\ref{sec:patch-instructions} we were able to
  5223. remove three trivial move instructions from the running
  5224. example. However, we could remove another trivial move if we were able
  5225. to allocate \code{y} and \code{tmp\_0} to the same register. \fi}
  5226. We say that two variables $p$ and $q$ are \emph{move
  5227. related}\index{subject}{move related} if they participate together in
  5228. a \key{movq} instruction, that is, \key{movq} $p$\key{,} $q$ or
  5229. \key{movq} $q$\key{,} $p$. When deciding which variable to color next,
  5230. when there are multiple variables with the same saturation, prefer
  5231. variables that can be assigned to a color that is the same as the
  5232. color of a move related variable. Furthermore, when the register
  5233. allocator chooses a color for a variable, it should prefer a color
  5234. that has already been used for a move-related variable (assuming that
  5235. they do not interfere). Of course, this preference should not override
  5236. the preference for registers over stack locations. So this preference
  5237. should be used as a tie breaker when choosing between registers or
  5238. when choosing between stack locations.
  5239. We recommend representing the move relationships in a graph, similar
  5240. to how we represented interference. The following is the \emph{move
  5241. graph} for our running example.
  5242. {\if\edition\racketEd\color{olive}
  5243. \[
  5244. \begin{tikzpicture}[baseline=(current bounding box.center)]
  5245. \node (rax) at (0,0) {$\ttm{rax}$};
  5246. \node (rsp) at (9,2) {$\ttm{rsp}$};
  5247. \node (t) at (0,2) {$\ttm{t}$};
  5248. \node (z) at (3,2) {$\ttm{z}$};
  5249. \node (x) at (6,2) {$\ttm{x}$};
  5250. \node (y) at (3,0) {$\ttm{y}$};
  5251. \node (w) at (6,0) {$\ttm{w}$};
  5252. \node (v) at (9,0) {$\ttm{v}$};
  5253. \draw (v) to (x);
  5254. \draw (x) to (y);
  5255. \draw (x) to (z);
  5256. \draw (y) to (t);
  5257. \end{tikzpicture}
  5258. \]
  5259. \fi}
  5260. %
  5261. {\if\edition\pythonEd
  5262. \[
  5263. \begin{tikzpicture}[baseline=(current bounding box.center)]
  5264. \node (t0) at (0,2) {$\ttm{tmp\_0}$};
  5265. \node (t1) at (0,0) {$\ttm{tmp\_1}$};
  5266. \node (z) at (3,2) {$\ttm{z}$};
  5267. \node (x) at (6,2) {$\ttm{x}$};
  5268. \node (y) at (3,0) {$\ttm{y}$};
  5269. \node (w) at (6,0) {$\ttm{w}$};
  5270. \node (v) at (9,0) {$\ttm{v}$};
  5271. \draw (y) to (t0);
  5272. \draw (z) to (x);
  5273. \draw (z) to (t1);
  5274. \draw (x) to (y);
  5275. \draw (x) to (v);
  5276. \end{tikzpicture}
  5277. \]
  5278. \fi}
  5279. {\if\edition\racketEd\color{olive}
  5280. Now we replay the graph coloring, pausing to see the coloring of
  5281. \code{y}. Recall the following configuration. The most saturated vertices
  5282. were \code{w} and \code{y}.
  5283. \[
  5284. \begin{tikzpicture}[baseline=(current bounding box.center)]
  5285. \node (rax) at (0,0) {$\ttm{rax}:-1,\{0,-2\}$};
  5286. \node (rsp) at (9,2) {$\ttm{rsp}:-2,\{-1,0,1,2\}$};
  5287. \node (t1) at (0,2) {$\ttm{t}:0,\{1,-2\}$};
  5288. \node (z) at (3,2) {$\ttm{z}:1,\{0,-2\}$};
  5289. \node (x) at (6,2) {$\ttm{x}:-,\{-2\}$};
  5290. \node (y) at (3,0) {$\ttm{y}:-,\{1,-2\}$};
  5291. \node (w) at (6,0) {$\ttm{w}:-,\{1,-2\}$};
  5292. \node (v) at (9,0) {$\ttm{v}:-,\{-2\}$};
  5293. \draw (t1) to (rax);
  5294. \draw (t1) to (z);
  5295. \draw (z) to (y);
  5296. \draw (z) to (w);
  5297. \draw (x) to (w);
  5298. \draw (y) to (w);
  5299. \draw (v) to (w);
  5300. \draw (v) to (rsp);
  5301. \draw (w) to (rsp);
  5302. \draw (x) to (rsp);
  5303. \draw (y) to (rsp);
  5304. \path[-.,bend left=15] (z) edge node {} (rsp);
  5305. \path[-.,bend left=10] (t1) edge node {} (rsp);
  5306. \draw (rax) to (rsp);
  5307. \end{tikzpicture}
  5308. \]
  5309. %
  5310. Last time we chose to color \code{w} with $0$. But this time we see
  5311. that \code{w} is not move related to any vertex, but \code{y} is move
  5312. related to \code{t}. So we choose to color \code{y} the same color as
  5313. \code{t}, $0$.
  5314. \[
  5315. \begin{tikzpicture}[baseline=(current bounding box.center)]
  5316. \node (rax) at (0,0) {$\ttm{rax}:-1,\{0,-2\}$};
  5317. \node (rsp) at (9,2) {$\ttm{rsp}:-2,\{-1,0,1,2\}$};
  5318. \node (t1) at (0,2) {$\ttm{t}:0,\{1,-2\}$};
  5319. \node (z) at (3,2) {$\ttm{z}:1,\{0,-2\}$};
  5320. \node (x) at (6,2) {$\ttm{x}:-,\{-2\}$};
  5321. \node (y) at (3,0) {$\ttm{y}:0,\{1,-2\}$};
  5322. \node (w) at (6,0) {$\ttm{w}:-,\{0,1,-2\}$};
  5323. \node (v) at (9,0) {$\ttm{v}:-,\{-2\}$};
  5324. \draw (t1) to (rax);
  5325. \draw (t1) to (z);
  5326. \draw (z) to (y);
  5327. \draw (z) to (w);
  5328. \draw (x) to (w);
  5329. \draw (y) to (w);
  5330. \draw (v) to (w);
  5331. \draw (v) to (rsp);
  5332. \draw (w) to (rsp);
  5333. \draw (x) to (rsp);
  5334. \draw (y) to (rsp);
  5335. \path[-.,bend left=15] (z) edge node {} (rsp);
  5336. \path[-.,bend left=10] (t1) edge node {} (rsp);
  5337. \draw (rax) to (rsp);
  5338. \end{tikzpicture}
  5339. \]
  5340. Now \code{w} is the most saturated, so we color it $2$.
  5341. \[
  5342. \begin{tikzpicture}[baseline=(current bounding box.center)]
  5343. \node (rax) at (0,0) {$\ttm{rax}:-1,\{0,-2\}$};
  5344. \node (rsp) at (9,2) {$\ttm{rsp}:-2,\{-1,0,1,2\}$};
  5345. \node (t1) at (0,2) {$\ttm{t}:0,\{1,-2\}$};
  5346. \node (z) at (3,2) {$\ttm{z}:1,\{0,2,-2\}$};
  5347. \node (x) at (6,2) {$\ttm{x}:-,\{2,-2\}$};
  5348. \node (y) at (3,0) {$\ttm{y}:0,\{1,2,-2\}$};
  5349. \node (w) at (6,0) {$\ttm{w}:2,\{0,1,-2\}$};
  5350. \node (v) at (9,0) {$\ttm{v}:-,\{2,-2\}$};
  5351. \draw (t1) to (rax);
  5352. \draw (t1) to (z);
  5353. \draw (z) to (y);
  5354. \draw (z) to (w);
  5355. \draw (x) to (w);
  5356. \draw (y) to (w);
  5357. \draw (v) to (w);
  5358. \draw (v) to (rsp);
  5359. \draw (w) to (rsp);
  5360. \draw (x) to (rsp);
  5361. \draw (y) to (rsp);
  5362. \path[-.,bend left=15] (z) edge node {} (rsp);
  5363. \path[-.,bend left=10] (t1) edge node {} (rsp);
  5364. \draw (rax) to (rsp);
  5365. \end{tikzpicture}
  5366. \]
  5367. At this point, vertices \code{x} and \code{v} are most saturated, but
  5368. \code{x} is move related to \code{y} and \code{z}, so we color
  5369. \code{x} to $0$ to match \code{y}. Finally, we color \code{v} to $0$.
  5370. \[
  5371. \begin{tikzpicture}[baseline=(current bounding box.center)]
  5372. \node (rax) at (0,0) {$\ttm{rax}:-1,\{0,-2\}$};
  5373. \node (rsp) at (9,2) {$\ttm{rsp}:-2,\{-1,0,1,2\}$};
  5374. \node (t) at (0,2) {$\ttm{t}:0,\{1,-2\}$};
  5375. \node (z) at (3,2) {$\ttm{z}:1,\{0,2,-2\}$};
  5376. \node (x) at (6,2) {$\ttm{x}:0,\{2,-2\}$};
  5377. \node (y) at (3,0) {$\ttm{y}:0,\{1,2,-2\}$};
  5378. \node (w) at (6,0) {$\ttm{w}:2,\{0,1,-2\}$};
  5379. \node (v) at (9,0) {$\ttm{v}:0,\{2,-2\}$};
  5380. \draw (t1) to (rax);
  5381. \draw (t) to (z);
  5382. \draw (z) to (y);
  5383. \draw (z) to (w);
  5384. \draw (x) to (w);
  5385. \draw (y) to (w);
  5386. \draw (v) to (w);
  5387. \draw (v) to (rsp);
  5388. \draw (w) to (rsp);
  5389. \draw (x) to (rsp);
  5390. \draw (y) to (rsp);
  5391. \path[-.,bend left=15] (z) edge node {} (rsp);
  5392. \path[-.,bend left=10] (t1) edge node {} (rsp);
  5393. \draw (rax) to (rsp);
  5394. \end{tikzpicture}
  5395. \]
  5396. \fi}
  5397. %
  5398. {\if\edition\pythonEd
  5399. Now we replay the graph coloring, pausing before the coloring of
  5400. \code{w}. Recall the following configuration. The most saturated vertices
  5401. were \code{tmp\_1}, \code{w}, and \code{y}.
  5402. \[
  5403. \begin{tikzpicture}[baseline=(current bounding box.center)]
  5404. \node (t0) at (0,2) {$\ttm{tmp\_0}: 0, \{1\}$};
  5405. \node (t1) at (0,0) {$\ttm{tmp\_1}: -, \{0\}$};
  5406. \node (z) at (3,2) {$\ttm{z}: 1, \{0\}$};
  5407. \node (x) at (6,2) {$\ttm{x}: -, \{\}$};
  5408. \node (y) at (3,0) {$\ttm{y}: -, \{1\}$};
  5409. \node (w) at (6,0) {$\ttm{w}: -, \{1\}$};
  5410. \node (v) at (9,0) {$\ttm{v}: -, \{\}$};
  5411. \draw (t0) to (t1);
  5412. \draw (t0) to (z);
  5413. \draw (z) to (y);
  5414. \draw (z) to (w);
  5415. \draw (x) to (w);
  5416. \draw (y) to (w);
  5417. \draw (v) to (w);
  5418. \end{tikzpicture}
  5419. \]
  5420. We have arbitrarily chosen to color \code{w} instead of \code{tmp\_1}
  5421. or \code{y}, but note that \code{w} is not move related to any
  5422. variables, whereas \code{y} and \code{tmp\_1} are move related to
  5423. \code{tmp\_0} and \code{z}, respectively. If we instead choose
  5424. \code{y} and color it $0$, we can delete another move instruction.
  5425. \[
  5426. \begin{tikzpicture}[baseline=(current bounding box.center)]
  5427. \node (t0) at (0,2) {$\ttm{tmp\_0}: 0, \{1\}$};
  5428. \node (t1) at (0,0) {$\ttm{tmp\_1}: -, \{0\}$};
  5429. \node (z) at (3,2) {$\ttm{z}: 1, \{0\}$};
  5430. \node (x) at (6,2) {$\ttm{x}: -, \{\}$};
  5431. \node (y) at (3,0) {$\ttm{y}: 0, \{1\}$};
  5432. \node (w) at (6,0) {$\ttm{w}: -, \{0,1\}$};
  5433. \node (v) at (9,0) {$\ttm{v}: -, \{\}$};
  5434. \draw (t0) to (t1);
  5435. \draw (t0) to (z);
  5436. \draw (z) to (y);
  5437. \draw (z) to (w);
  5438. \draw (x) to (w);
  5439. \draw (y) to (w);
  5440. \draw (v) to (w);
  5441. \end{tikzpicture}
  5442. \]
  5443. Now \code{w} is the most saturated, so we color it $2$.
  5444. \[
  5445. \begin{tikzpicture}[baseline=(current bounding box.center)]
  5446. \node (t0) at (0,2) {$\ttm{tmp\_0}: 0, \{1\}$};
  5447. \node (t1) at (0,0) {$\ttm{tmp\_1}: -, \{0\}$};
  5448. \node (z) at (3,2) {$\ttm{z}: 1, \{0\}$};
  5449. \node (x) at (6,2) {$\ttm{x}: -, \{2\}$};
  5450. \node (y) at (3,0) {$\ttm{y}: 0, \{1,2\}$};
  5451. \node (w) at (6,0) {$\ttm{w}: 2, \{0,1\}$};
  5452. \node (v) at (9,0) {$\ttm{v}: -, \{2\}$};
  5453. \draw (t0) to (t1);
  5454. \draw (t0) to (z);
  5455. \draw (z) to (y);
  5456. \draw (z) to (w);
  5457. \draw (x) to (w);
  5458. \draw (y) to (w);
  5459. \draw (v) to (w);
  5460. \end{tikzpicture}
  5461. \]
  5462. To finish the coloring, \code{x} and \code{v} get $0$ and
  5463. \code{tmp\_1} gets $1$.
  5464. \[
  5465. \begin{tikzpicture}[baseline=(current bounding box.center)]
  5466. \node (t0) at (0,2) {$\ttm{tmp\_0}: 0, \{1\}$};
  5467. \node (t1) at (0,0) {$\ttm{tmp\_1}: 1, \{0\}$};
  5468. \node (z) at (3,2) {$\ttm{z}: 1, \{0\}$};
  5469. \node (x) at (6,2) {$\ttm{x}: 0, \{2\}$};
  5470. \node (y) at (3,0) {$\ttm{y}: 0, \{1,2\}$};
  5471. \node (w) at (6,0) {$\ttm{w}: 2, \{0,1\}$};
  5472. \node (v) at (9,0) {$\ttm{v}: 0, \{2\}$};
  5473. \draw (t0) to (t1);
  5474. \draw (t0) to (z);
  5475. \draw (z) to (y);
  5476. \draw (z) to (w);
  5477. \draw (x) to (w);
  5478. \draw (y) to (w);
  5479. \draw (v) to (w);
  5480. \end{tikzpicture}
  5481. \]
  5482. \fi}
  5483. So we have the following assignment of variables to registers.
  5484. {\if\edition\racketEd\color{olive}
  5485. \begin{gather*}
  5486. \{ \ttm{v} \mapsto \key{\%rcx}, \,
  5487. \ttm{w} \mapsto \key{\%rsi}, \,
  5488. \ttm{x} \mapsto \key{\%rcx}, \,
  5489. \ttm{y} \mapsto \key{\%rcx}, \,
  5490. \ttm{z} \mapsto \key{\%rdx}, \,
  5491. \ttm{t} \mapsto \key{\%rcx} \}
  5492. \end{gather*}
  5493. \fi}
  5494. {\if\edition\pythonEd
  5495. \begin{gather*}
  5496. \{ \ttm{v} \mapsto \key{\%rcx}, \,
  5497. \ttm{w} \mapsto \key{-16(\%rbp)}, \,
  5498. \ttm{x} \mapsto \key{\%rcx}, \,
  5499. \ttm{y} \mapsto \key{\%rcx}, \\
  5500. \ttm{z} \mapsto \key{-8(\%rbp)}, \,
  5501. \ttm{tmp\_0} \mapsto \key{\%rcx}, \,
  5502. \ttm{tmp\_1} \mapsto \key{-8(\%rbp)} \}
  5503. \end{gather*}
  5504. \fi}
  5505. We apply this register assignment to the running example, on the left,
  5506. to obtain the code in the middle. The \code{patch\_instructions} then
  5507. deletes the trivial moves to obtain the code on the right.
  5508. {\if\edition\racketEd\color{olive}
  5509. \begin{minipage}{0.25\textwidth}
  5510. \begin{lstlisting}
  5511. movq $1, v
  5512. movq $42, w
  5513. movq v, x
  5514. addq $7, x
  5515. movq x, y
  5516. movq x, z
  5517. addq w, z
  5518. movq y, t
  5519. negq t
  5520. movq z, %rax
  5521. addq t, %rax
  5522. jmp conclusion
  5523. \end{lstlisting}
  5524. \end{minipage}
  5525. $\Rightarrow\qquad$
  5526. \begin{minipage}{0.25\textwidth}
  5527. \begin{lstlisting}
  5528. movq $1, %rcx
  5529. movq $42, %rsi
  5530. movq %rcx, %rcx
  5531. addq $7, %rcx
  5532. movq %rcx, %rcx
  5533. movq %rcx, %rdx
  5534. addq %rsi, %rdx
  5535. movq %rcx, %rcx
  5536. negq %rcx
  5537. movq %rdx, %rax
  5538. addq %rcx, %rax
  5539. jmp conclusion
  5540. \end{lstlisting}
  5541. \end{minipage}
  5542. $\Rightarrow\qquad$
  5543. \begin{minipage}{0.25\textwidth}
  5544. \begin{lstlisting}
  5545. movq $1, %rcx
  5546. movq $42, %rsi
  5547. addq $7, %rcx
  5548. movq %rcx, %rdx
  5549. addq %rsi, %rdx
  5550. negq %rcx
  5551. movq %rdx, %rax
  5552. addq %rcx, %rax
  5553. jmp conclusion
  5554. \end{lstlisting}
  5555. \end{minipage}
  5556. \fi}
  5557. {\if\edition\pythonEd
  5558. \begin{minipage}{0.20\textwidth}
  5559. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  5560. movq $1, v
  5561. movq $42, w
  5562. movq v, x
  5563. addq $7, x
  5564. movq x, y
  5565. movq x, z
  5566. addq w, z
  5567. movq y, tmp_0
  5568. negq tmp_0
  5569. movq z, tmp_1
  5570. addq tmp_0, tmp_1
  5571. movq tmp_1, %rdi
  5572. callq _print_int
  5573. \end{lstlisting}
  5574. \end{minipage}
  5575. ${\Rightarrow\qquad}$
  5576. \begin{minipage}{0.30\textwidth}
  5577. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  5578. movq $1, %rcx
  5579. movq $42, -16(%rbp)
  5580. movq %rcx, %rcx
  5581. addq $7, %rcx
  5582. movq %rcx, %rcx
  5583. movq %rcx, -8(%rbp)
  5584. addq -16(%rbp), -8(%rbp)
  5585. movq %rcx, %rcx
  5586. negq %rcx
  5587. movq -8(%rbp), -8(%rbp)
  5588. addq %rcx, -8(%rbp)
  5589. movq -8(%rbp), %rdi
  5590. callq _print_int
  5591. \end{lstlisting}
  5592. \end{minipage}
  5593. ${\Rightarrow\qquad}$
  5594. \begin{minipage}{0.20\textwidth}
  5595. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  5596. movq $1, %rcx
  5597. movq $42, -16(%rbp)
  5598. addq $7, %rcx
  5599. movq %rcx, -8(%rbp)
  5600. movq -16(%rbp), %rax
  5601. addq %rax, -8(%rbp)
  5602. negq %rcx
  5603. addq %rcx, -8(%rbp)
  5604. movq -8(%rbp), %rdi
  5605. callq print_int
  5606. \end{lstlisting}
  5607. \end{minipage}
  5608. \fi}
  5609. \begin{exercise}\normalfont
  5610. Change your implementation of \code{allocate\_registers} to take move
  5611. biasing into account. Create two new tests that include at least one
  5612. opportunity for move biasing and visually inspect the output x86
  5613. programs to make sure that your move biasing is working properly. Make
  5614. sure that your compiler still passes all of the tests.
  5615. \end{exercise}
  5616. %To do: another neat challenge would be to do
  5617. % live range splitting~\citep{Cooper:1998ly}. \\ --Jeremy
  5618. %% \subsection{Output of the Running Example}
  5619. %% \label{sec:reg-alloc-output}
  5620. % challenge: prioritize variables based on execution frequencies
  5621. % and the number of uses of a variable
  5622. % challenge: enhance the coloring algorithm using Chaitin's
  5623. % approach of prioritizing high-degree variables
  5624. % by removing low-degree variables (coloring them later)
  5625. % from the interference graph
  5626. \section{Further Reading}
  5627. \label{sec:register-allocation-further-reading}
  5628. Early register allocation algorithms were developed for Fortran
  5629. compilers in the 1950s~\citep{Horwitz:1966aa,Backus:1978aa}. The use
  5630. of graph coloring began in the late 1970s and early 1980s with the
  5631. work of \citet{Chaitin:1981vl} on an optimizing compiler for PL/I. The
  5632. algorithm is based on the following observation of
  5633. \citet{Kempe:1879aa}. If a graph $G$ has a vertex $v$ with degree
  5634. lower than $k$, then $G$ is $k$ colorable if the subgraph of $G$ with
  5635. $v$ removed is also $k$ colorable. To see why, suppose that the
  5636. subgraph is $k$ colorable. At worst the neighbors of $v$ are assigned
  5637. different colors, but since there are less than $k$ neighbors, there
  5638. will be one or more colors left over to use for coloring $v$ in $G$.
  5639. The algorithm of \citet{Chaitin:1981vl} removes a vertex $v$ of degree
  5640. less than $k$ from the graph and recursively colors the rest of the
  5641. graph. Upon returning from the recursion, it colors $v$ with one of
  5642. the available colors and returns. \citet{Chaitin:1982vn} augments
  5643. this algorithm to handle spilling as follows. If there are no vertices
  5644. of degree lower than $k$ then pick a vertex at random, spill it,
  5645. remove it from the graph, and proceed recursively to color the rest of
  5646. the graph.
  5647. Prior to coloring, \citet{Chaitin:1981vl} merge variables that are
  5648. move-related and that don't interfere with each other, a process
  5649. called \emph{coalescing}. While coalescing decreases the number of
  5650. moves, it can make the graph more difficult to
  5651. color. \citet{Briggs:1994kx} propose \emph{conservative coalescing} in
  5652. which two variables are merged only if they have fewer than $k$
  5653. neighbors of high degree. \citet{George:1996aa} observe that
  5654. conservative coalescing is sometimes too conservative and make it more
  5655. aggressive by iterating the coalescing with the removal of low-degree
  5656. vertices.
  5657. %
  5658. Attacking the problem from a different angle, \citet{Briggs:1994kx}
  5659. also propose \emph{biased coloring} in which a variable is assigned to
  5660. the same color as another move-related variable if possible, as
  5661. discussed in Section~\ref{sec:move-biasing}.
  5662. %
  5663. The algorithm of \citet{Chaitin:1981vl} and its successors iteratively
  5664. performs coalescing, graph coloring, and spill code insertion until
  5665. all variables have been assigned a location.
  5666. \citet{Briggs:1994kx} observes that \citet{Chaitin:1982vn} sometimes
  5667. spills variables that don't have to be: a high-degree variable can be
  5668. colorable if many of its neighbors are assigned the same color.
  5669. \citet{Briggs:1994kx} propose \emph{optimistic coloring}, in which a
  5670. high-degree vertex is not immediately spilled. Instead the decision is
  5671. deferred until after the recursive call, at which point it is apparent
  5672. whether there is actually an available color or not. We observe that
  5673. this algorithm is equivalent to the smallest-last ordering
  5674. algorithm~\citep{Matula:1972aa} if one takes the first $k$ colors to
  5675. be registers and the rest to be stack locations.
  5676. %% biased coloring
  5677. Earlier editions of the compiler course at Indiana University
  5678. \citep{Dybvig:2010aa} were based on the algorithm of
  5679. \citet{Briggs:1994kx}.
  5680. The smallest-last ordering algorithm is one of many \emph{greedy}
  5681. coloring algorithms. A greedy coloring algorithm visits all the
  5682. vertices in a particular order and assigns each one the first
  5683. available color. An \emph{offline} greedy algorithm chooses the
  5684. ordering up-front, prior to assigning colors. The algorithm of
  5685. \citet{Chaitin:1981vl} should be considered offline because the vertex
  5686. ordering does not depend on the colors assigned. Other orderings are
  5687. possible. For example, \citet{Chow:1984ys} order variables according
  5688. to an estimate of runtime cost.
  5689. An \emph{online} greedy coloring algorithm uses information about the
  5690. current assignment of colors to influence the order in which the
  5691. remaining vertices are colored. The saturation-based algorithm
  5692. described in this chapter is one such algorithm. We choose to use
  5693. saturation-based coloring because it is fun to introduce graph
  5694. coloring via Sudoku!
  5695. A register allocator may choose to map each variable to just one
  5696. location, as in \citet{Chaitin:1981vl}, or it may choose to map a
  5697. variable to one or more locations. The later can be achieved by
  5698. \emph{live range splitting}, where a variable is replaced by several
  5699. variables that each handle part of its live
  5700. range~\citep{Chow:1984ys,Briggs:1994kx,Cooper:1998ly}.
  5701. %% 1950s, Sheldon Best, Fortran \cite{Backus:1978aa}, Belady's page
  5702. %% replacement algorithm, bottom-up local
  5703. %% \citep{Horwitz:1966aa} straight-line programs, single basic block,
  5704. %% Cooper: top-down (priority bassed), bottom-up
  5705. %% top-down
  5706. %% order variables by priority (estimated cost)
  5707. %% caveat: split variables into two groups:
  5708. %% constrained (>k neighbors) and unconstrained (<k neighbors)
  5709. %% color the constrained ones first
  5710. %% \citet{Schwartz:1975aa} graph-coloring, no spill
  5711. %% cite J. Cocke for an algorithm that colors variables
  5712. %% in a high-degree first ordering
  5713. %Register Allocation via Usage Counts, Freiburghouse CACM
  5714. \citet{Palsberg:2007si} observe that many of the interference graphs
  5715. that arise from Java programs in the JoeQ compiler are \emph{chordal},
  5716. that is, every cycle with four or more edges has an edge which is not
  5717. part of the cycle but which connects two vertices on the cycle. Such
  5718. graphs can be optimally colored by the greedy algorithm with a vertex
  5719. ordering determined by maximum cardinality search.
  5720. In situations where compile time is of utmost importance, such as in
  5721. just-in-time compilers, graph coloring algorithms can be too expensive
  5722. and the linear scan algorithm of \citet{Poletto:1999uq} may be more
  5723. appropriate.
  5724. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  5725. \chapter{Booleans and Conditionals}
  5726. \label{ch:Lif}
  5727. \index{subject}{Boolean}
  5728. \index{subject}{control flow}
  5729. \index{subject}{conditional expression}
  5730. The \LangInt{} and \LangVar{} languages only have a single kind of
  5731. value, the integers. In this chapter we add a second kind of value,
  5732. the Booleans, to create the \LangIf{} language. The Boolean values
  5733. \emph{true} and \emph{false} are written \TRUE{} and \FALSE{}
  5734. respectively in \racket{Racket}\python{Python}. The \LangIf{}
  5735. language includes several operations that involve Booleans (\key{and},
  5736. \key{not}, \racket{\key{eq?}}\python{==}, \key{<}, etc.) and the
  5737. \key{if} expression \python{and statement}. With the addition of
  5738. \key{if}, programs can have non-trivial control flow which
  5739. %
  5740. \racket{impacts \code{explicate\_control} and liveness analysis}
  5741. %
  5742. \python{impacts liveness analysis and motivates a new pass named
  5743. \code{explicate\_control}}.
  5744. %
  5745. Also, because we now have two kinds of values, we need to handle
  5746. programs that apply an operation to the wrong kind of value, such as
  5747. \racket{\code{(not 1)}}\python{\code{not 1}}.
  5748. There are two language design options for such situations. One option
  5749. is to signal an error and the other is to provide a wider
  5750. interpretation of the operation. \racket{The Racket
  5751. language}\python{Python} uses a mixture of these two options,
  5752. depending on the operation and the kind of value. For example, the
  5753. result of \racket{\code{(not 1)}}\python{\code{not 1}} is
  5754. \racket{\code{\#f}}\python{False} because \racket{Racket}\python{Python}
  5755. treats non-zero integers as if they were \racket{\code{\#t}}\python{\code{True}}.
  5756. %
  5757. \racket{On the other hand, \code{(car 1)} results in a run-time error
  5758. in Racket because \code{car} expects a pair.}
  5759. %
  5760. \python{On the other hand, \code{1[0]} results in a run-time error
  5761. in Python because an ``\code{int} object is not subscriptable''.}
  5762. \racket{Typed Racket}\python{The MyPy type checker} makes similar
  5763. design choices as \racket{Racket}\python{Python}, except much of the
  5764. error detection happens at compile time instead of run
  5765. time\python{~\citep{Lehtosalo2021:MyPy}}. \racket{Typed Racket}\python{MyPy}
  5766. accepts \racket{\code{(not 1)}}\python{\code{not 1}}. But in the case
  5767. of \racket{\code{(car 1)}}\python{\code{1[0]}}, \racket{Typed
  5768. Racket}\python{MyPy} reports a compile-time error
  5769. %
  5770. \racket{because Racket expects the type of the argument to be of the form
  5771. \code{(Listof T)} or \code{(Pairof T1 T2)}.}
  5772. %
  5773. \python{stating that a ``value of type \code{int} is not indexable''.}
  5774. The \LangIf{} language performs type checking during compilation like
  5775. \racket{Typed Racket}\python{MyPy}. In Chapter~\ref{ch:Rdyn} we study the
  5776. alternative choice, that is, a dynamically typed language like
  5777. \racket{Racket}\python{Python}.
  5778. The \LangIf{} language is a subset of \racket{Typed Racket}\python{MyPy};
  5779. for some operations we are more restrictive, for example, rejecting
  5780. \racket{\code{(not 1)}}\python{\code{not 1}}.
  5781. This chapter is organized as follows. We begin by defining the syntax
  5782. and interpreter for the \LangIf{} language
  5783. (Section~\ref{sec:lang-if}). We then introduce the idea of type
  5784. checking and build a type checker for \LangIf{}
  5785. (Section~\ref{sec:type-check-Lif}).
  5786. %
  5787. \racket{To compile \LangIf{} we need to enlarge the intermediate
  5788. language \LangCVar{} into \LangCIf{} (Section~\ref{sec:Cif}) and
  5789. \LangXInt{} into \LangXIf{} (Section~\ref{sec:x86-if}).}
  5790. %
  5791. The remaining sections of this chapter discuss how the addition of
  5792. Booleans and conditional control flow to the language requires changes
  5793. to the existing compiler passes and the addition of new ones. In
  5794. particular, we introduce the \code{shrink} pass to translates some
  5795. operators into others, thereby reducing the number of operators that
  5796. need to be handled in later passes.
  5797. %
  5798. The main event of this chapter is the \code{explicate\_control} pass
  5799. that is responsible for translating \code{if}'s into conditional
  5800. \code{goto}'s (Section~\ref{sec:explicate-control-Lif}).
  5801. %
  5802. Regarding register allocation, there is the interesting question of
  5803. how to handle conditional \code{goto}'s during liveness analysis.
  5804. \section{The \LangIf{} Language}
  5805. \label{sec:lang-if}
  5806. The concrete syntax of the \LangIf{} language is defined in
  5807. Figure~\ref{fig:Lif-concrete-syntax} and the abstract syntax is defined
  5808. in Figure~\ref{fig:Lif-syntax}. The \LangIf{} language includes all of
  5809. \LangVar{}\racket{(shown in gray)}, the Boolean literals \TRUE{} and
  5810. \FALSE{}, and the \code{if} expression \python{and statement}. We expand the
  5811. operators to include
  5812. \begin{enumerate}
  5813. \item subtraction on integers,
  5814. \item the logical operators \key{and}, \key{or} and \key{not},
  5815. \item the \racket{\key{eq?} operation}\python{\key{==} and \key{!=} operations}
  5816. for comparing integers or Booleans for equality, and
  5817. \item the \key{<}, \key{<=}, \key{>}, and \key{>=} operations for
  5818. comparing integers.
  5819. \end{enumerate}
  5820. \racket{We reorganize the abstract syntax for the primitive
  5821. operations in Figure~\ref{fig:Lif-syntax}, using only one grammar
  5822. rule for all of them. This means that the grammar no longer checks
  5823. whether the arity of an operators matches the number of
  5824. arguments. That responsibility is moved to the type checker for
  5825. \LangIf{}, which we introduce in Section~\ref{sec:type-check-Lif}.}
  5826. \begin{figure}[tp]
  5827. \centering
  5828. \fbox{
  5829. \begin{minipage}{0.96\textwidth}
  5830. {\if\edition\racketEd\color{olive}
  5831. \[
  5832. \begin{array}{lcl}
  5833. \itm{bool} &::=& \TRUE \MID \FALSE \\
  5834. \itm{cmp} &::= & \key{eq?} \MID \key{<} \MID \key{<=} \MID \key{>} \MID \key{>=} \\
  5835. \Exp &::=& \gray{ \Int \MID \CREAD{} \MID \CNEG{\Exp} \MID \CADD{\Exp}{\Exp} } \MID \CSUB{\Exp}{\Exp} \\
  5836. &\MID& \gray{ \Var \MID \CLET{\Var}{\Exp}{\Exp} } \\
  5837. &\MID& \itm{bool}
  5838. \MID (\key{and}\;\Exp\;\Exp) \MID (\key{or}\;\Exp\;\Exp)
  5839. \MID (\key{not}\;\Exp) \\
  5840. &\MID& (\itm{cmp}\;\Exp\;\Exp) \MID \CIF{\Exp}{\Exp}{\Exp} \\
  5841. \LangIfM{} &::=& \Exp
  5842. \end{array}
  5843. \]
  5844. \fi}
  5845. {\if\edition\pythonEd
  5846. \[
  5847. \begin{array}{rcl}
  5848. \itm{binop} &::= & \key{+} \MID \key{-} \MID \key{==} \MID \key{!=} \MID \key{<} \MID \key{<=} \MID \key{>} \MID \key{>=} \\
  5849. \itm{uniop} &::= & \key{-} \MID \key{not} \\
  5850. \Exp &::=& \Int \MID \key{input\_int}\LP\RP \MID \CUNIOP{\itm{uniop}}{\Exp} \MID \CBINOP{\itm{binop}}{\Exp}{\Exp} \MID \Var{} \\
  5851. &\MID& \TRUE \MID \FALSE \MID \CIF{\Exp}{\Exp}{\Exp} \\
  5852. \Stmt &::=& \key{print}\LP \Exp \RP \MID \Exp \MID \CASSIGN{\Var}{\Exp}
  5853. \MID \key{if}~ \Exp \key{:}~ \Stmt^{+} ~\key{else:}~ \Stmt^{+}\\
  5854. \LangVarM{} &::=& \Stmt^{*}
  5855. \end{array}
  5856. \]
  5857. \fi}
  5858. \end{minipage}
  5859. }
  5860. \caption{The concrete syntax of \LangIf{}, extending \LangVar{}
  5861. (Figure~\ref{fig:Lvar-concrete-syntax}) with Booleans and conditionals.}
  5862. \label{fig:Lif-concrete-syntax}
  5863. \end{figure}
  5864. \begin{figure}[tp]
  5865. \centering
  5866. \fbox{
  5867. \begin{minipage}{0.96\textwidth}
  5868. {\if\edition\racketEd\color{olive}
  5869. \[
  5870. \begin{array}{lcl}
  5871. \itm{bool} &::=& \code{\#t} \MID \code{\#f} \\
  5872. \itm{cmp} &::= & \code{eq?} \MID \code{<} \MID \code{<=} \MID \code{>} \MID \code{>=} \\
  5873. \itm{op} &::= & \itm{cmp} \MID \code{read} \MID \code{+} \MID \code{-}
  5874. \MID \code{and} \MID \code{or} \MID \code{not} \\
  5875. \Exp &::=& \gray{ \INT{\Int} \MID \VAR{\Var} \MID \LET{\Var}{\Exp}{\Exp} } \\
  5876. &\MID& \PRIM{\itm{op}}{\Exp\ldots}\\
  5877. &\MID& \BOOL{\itm{bool}} \MID \IF{\Exp}{\Exp}{\Exp} \\
  5878. \LangIfM{} &::=& \PROGRAM{\code{'()}}{\Exp}
  5879. \end{array}
  5880. \]
  5881. \fi}
  5882. {\if\edition\pythonEd
  5883. \[
  5884. \begin{array}{lcl}
  5885. \itm{binop} &::=& \code{Add()} \MID \code{Sub()} \\
  5886. \itm{uniop} &::=& \code{USub()} \MID \code{Not()} \\
  5887. \itm{bool} &::=& \code{True} \MID \code{False} \\
  5888. \itm{boolop} &::=& \code{And()} \MID \code{Or()} \\
  5889. \itm{cmp} &::= & \code{Eq()} \MID \code{NotEq()} \MID \code{Lt()} \MID \code{LtE()} \MID \code{Gt()} \MID \code{GtE()} \\
  5890. \Exp &::=& \INT{\Int} \MID \READ{} \MID \VAR{\Var} \\
  5891. &\MID& \BINOP{\Exp}{\itm{binop}}{\Exp}
  5892. \MID \UNIOP{\itm{uniop}}{\Exp}\\
  5893. &\MID& \CMP{\Exp}{\itm{cmp}}{\Exp}
  5894. \MID \BOOLOP{\itm{boolop}}{\Exp}{\Exp}\\
  5895. &\MID& \BOOL{\itm{bool}} \MID \IF{\Exp}{\Exp}{\Exp} \\
  5896. \Stmt{} &::=& \PRINT{\Exp} \MID \EXPR{\Exp} \\
  5897. &\MID& \ASSIGN{\VAR{\Var}}{\Exp} \MID \IFSTMT{\Exp}{\Stmt^{*}}{\Stmt^{*}}\\
  5898. \LangIfM{} &::=& \PROGRAM{\code{'()}}{\Stmt^{*}}
  5899. \end{array}
  5900. \]
  5901. \fi}
  5902. \end{minipage}
  5903. }
  5904. \caption{The abstract syntax of \LangIf{}.}
  5905. \label{fig:Lif-syntax}
  5906. \end{figure}
  5907. Figure~\ref{fig:interp-Lif} defines the interpreter for \LangIf{},
  5908. which inherits from the interpreter for \LangVar{}
  5909. (Figure~\ref{fig:interp-Lvar}). The literals \TRUE{} and \FALSE{}
  5910. evaluate to the corresponding Boolean values. The conditional
  5911. expression $(\CIF{e_1}{e_2}{\itm{e_3}})$ evaluates expression $e_1$
  5912. and then either evaluates $e_2$ or $e_3$ depending on whether
  5913. $e_1$ produced \TRUE{} or \FALSE{}. The logical operations
  5914. \code{and}, \code{or}, and \code{not} behave as you might expect, but
  5915. note that the \code{and} and \code{or} operations are
  5916. short-circuiting.
  5917. %
  5918. That is, given the expression $\CAND{e_1}{e_2}$, the expression $e_2$
  5919. is not evaluated if $e_1$ evaluates to \FALSE{}.
  5920. %
  5921. Similarly, given $\COR{e_1}{e_2}$, the expression $e_2$ is not
  5922. evaluated if $e_1$ evaluates to \TRUE{}.
  5923. \racket{With the increase in the number of primitive operations, the
  5924. interpreter would become repetitive without some care. We refactor
  5925. the case for \code{Prim}, moving the code that differs with each
  5926. operation into the \code{interp\_op} method shown in in
  5927. Figure~\ref{fig:interp-op-Lif}. We handle the \code{and} operation
  5928. separately because of its short-circuiting behavior.}
  5929. \begin{figure}[tbp]
  5930. {\if\edition\racketEd\color{olive}
  5931. \begin{lstlisting}
  5932. (define interp_Lif_class
  5933. (class interp_Lvar_class
  5934. (super-new)
  5935. (define/public (interp_op op) ...)
  5936. (define/override ((interp_exp env) e)
  5937. (define recur (interp_exp env))
  5938. (match e
  5939. [(Bool b) b]
  5940. [(If cnd thn els)
  5941. (match (recur cnd)
  5942. [#t (recur thn)]
  5943. [#f (recur els)])]
  5944. [(Prim 'and (list e1 e2))
  5945. (match (recur e1)
  5946. [#t (match (recur e2) [#t #t] [#f #f])]
  5947. [#f #f])]
  5948. [(Prim op args)
  5949. (apply (interp_op op) (for/list ([e args]) (recur e)))]
  5950. [else ((super interp_exp env) e)]))
  5951. ))
  5952. (define (interp_Lif p)
  5953. (send (new interp_Lif_class) interp_program p))
  5954. \end{lstlisting}
  5955. \fi}
  5956. {\if\edition\pythonEd
  5957. \begin{lstlisting}
  5958. class InterpLif(InterpLvar):
  5959. def interp_exp(self, e, env):
  5960. match e:
  5961. case IfExp(test, body, orelse):
  5962. if self.interp_exp(test, env):
  5963. return self.interp_exp(body, env)
  5964. else:
  5965. return self.interp_exp(orelse, env)
  5966. case BinOp(left, Sub(), right):
  5967. return self.interp_exp(left, env) - self.interp_exp(right, env)
  5968. case UnaryOp(Not(), v):
  5969. return not self.interp_exp(v, env)
  5970. case BoolOp(And(), values):
  5971. if self.interp_exp(values[0], env):
  5972. return self.interp_exp(values[0], env)
  5973. else:
  5974. return False
  5975. case BoolOp(Or(), values):
  5976. if self.interp_exp(values[0], env):
  5977. return True
  5978. else:
  5979. return self.interp_exp(values[1], env)
  5980. case Compare(left, [cmp], [right]):
  5981. l = self.interp_exp(left, env)
  5982. r = self.interp_exp(right, env)
  5983. return self.interp_cmp(cmp)(l, r)
  5984. case _:
  5985. return super().interp_exp(e, env)
  5986. def interp_stmts(self, ss, env):
  5987. if len(ss) == 0:
  5988. return
  5989. match ss[0]:
  5990. case If(test, body, orelse):
  5991. if self.interp_exp(test, env):
  5992. return self.interp_stmts(body + ss[1:], env)
  5993. else:
  5994. return self.interp_stmts(orelse + ss[1:], env)
  5995. case _:
  5996. return super().interp_stmts(ss, env)
  5997. ...
  5998. \end{lstlisting}
  5999. \fi}
  6000. \caption{Interpreter for the \LangIf{} language. \racket{(See
  6001. Figure~\ref{fig:interp-op-Lif} for \code{interp-op}.)}
  6002. \python{(See Figure~\ref{fig:interp-cmp-Lif} for \code{interp\_cmp}.)}}
  6003. \label{fig:interp-Lif}
  6004. \end{figure}
  6005. {\if\edition\racketEd\color{olive}
  6006. \begin{figure}[tbp]
  6007. \begin{lstlisting}
  6008. (define/public (interp_op op)
  6009. (match op
  6010. ['+ fx+]
  6011. ['- fx-]
  6012. ['read read-fixnum]
  6013. ['not (lambda (v) (match v [#t #f] [#f #t]))]
  6014. ['or (lambda (v1 v2)
  6015. (cond [(and (boolean? v1) (boolean? v2))
  6016. (or v1 v2)]))]
  6017. ['eq? (lambda (v1 v2)
  6018. (cond [(or (and (fixnum? v1) (fixnum? v2))
  6019. (and (boolean? v1) (boolean? v2))
  6020. (and (vector? v1) (vector? v2)))
  6021. (eq? v1 v2)]))]
  6022. ['< (lambda (v1 v2)
  6023. (cond [(and (fixnum? v1) (fixnum? v2))
  6024. (< v1 v2)]))]
  6025. ['<= (lambda (v1 v2)
  6026. (cond [(and (fixnum? v1) (fixnum? v2))
  6027. (<= v1 v2)]))]
  6028. ['> (lambda (v1 v2)
  6029. (cond [(and (fixnum? v1) (fixnum? v2))
  6030. (> v1 v2)]))]
  6031. ['>= (lambda (v1 v2)
  6032. (cond [(and (fixnum? v1) (fixnum? v2))
  6033. (>= v1 v2)]))]
  6034. [else (error 'interp_op "unknown operator")]))
  6035. \end{lstlisting}
  6036. \caption{Interpreter for the primitive operators in the \LangIf{} language.}
  6037. \label{fig:interp-op-Lif}
  6038. \end{figure}
  6039. \fi}
  6040. {\if\edition\pythonEd
  6041. \begin{figure}
  6042. \begin{lstlisting}
  6043. class InterpLif(InterpLvar):
  6044. ...
  6045. def interp_cmp(self, cmp):
  6046. match cmp:
  6047. case Lt():
  6048. return lambda x, y: x < y
  6049. case LtE():
  6050. return lambda x, y: x <= y
  6051. case Gt():
  6052. return lambda x, y: x > y
  6053. case GtE():
  6054. return lambda x, y: x >= y
  6055. case Eq():
  6056. return lambda x, y: x == y
  6057. case NotEq():
  6058. return lambda x, y: x != y
  6059. \end{lstlisting}
  6060. \caption{Interpreter for the comparison operators in the \LangIf{} language.}
  6061. \label{fig:interp-cmp-Lif}
  6062. \end{figure}
  6063. \fi}
  6064. \section{Type Checking \LangIf{} Programs}
  6065. \label{sec:type-check-Lif}
  6066. \index{subject}{type checking}
  6067. \index{subject}{semantic analysis}
  6068. It is helpful to think about type checking in two complementary
  6069. ways. A type checker predicts the type of value that will be produced
  6070. by each expression in the program. For \LangIf{}, we have just two types,
  6071. \INTTY{} and \BOOLTY{}. So a type checker should predict that
  6072. {\if\edition\racketEd\color{olive}
  6073. \begin{lstlisting}
  6074. (+ 10 (- (+ 12 20)))
  6075. \end{lstlisting}
  6076. \fi}
  6077. {\if\edition\pythonEd
  6078. \begin{lstlisting}
  6079. 10 + -(12 + 20)
  6080. \end{lstlisting}
  6081. \fi}
  6082. \noindent produces a value of type \INTTY{} while
  6083. {\if\edition\racketEd\color{olive}
  6084. \begin{lstlisting}
  6085. (and (not #f) #t)
  6086. \end{lstlisting}
  6087. \fi}
  6088. {\if\edition\pythonEd
  6089. \begin{lstlisting}
  6090. (not False) and True
  6091. \end{lstlisting}
  6092. \fi}
  6093. \noindent produces a value of type \BOOLTY{}.
  6094. A second way to think about type checking is that it enforces a set of
  6095. rules about which operators can be applied to which kinds of
  6096. values. For example, our type checker for \LangIf{} signals an error
  6097. for the below expression {\if\edition\racketEd\color{olive}
  6098. \begin{lstlisting}
  6099. (not (+ 10 (- (+ 12 20))))
  6100. \end{lstlisting}
  6101. \fi}
  6102. {\if\edition\pythonEd
  6103. \begin{lstlisting}
  6104. not (10 + -(12 + 20))
  6105. \end{lstlisting}
  6106. \fi}
  6107. The subexpression
  6108. \racket{\code{(+ 10 (- (+ 12 20)))}}\python{\code{(10 + -(12 + 20))}}
  6109. has type \INTTY{} but the type checker enforces the rule that the argument of
  6110. \code{not} must be an expression of type \BOOLTY{}.
  6111. We implement type checking using classes and methods because they
  6112. provide the open recursion needed to reuse code as we extend the type
  6113. checker in later chapters, analogous to the use of classes and methods
  6114. for the interpreters (Section~\ref{sec:extensible-interp}).
  6115. We separate the type checker for the \LangVar{} subset into its own
  6116. class, shown in Figure~\ref{fig:type-check-Lvar}. The type checker for
  6117. \LangIf{} is shown in Figure~\ref{fig:type-check-Lif} and it inherits
  6118. from the type checker for \LangVar{}. These type checkers are in the
  6119. files
  6120. \racket{\code{type-check-Lvar.rkt}}\python{\code{type\_check\_Lvar.py}}
  6121. and
  6122. \racket{\code{type-check-Lif.rkt}}\python{\code{type\_check\_Lif.py}}
  6123. of the support code.
  6124. %
  6125. Each type checker is a structurally recursive function over the AST.
  6126. Given an input expression \code{e}, the type checker either signals an
  6127. error or returns \racket{an expression and} its type (\INTTY{} or
  6128. \BOOLTY{}).
  6129. %
  6130. \racket{It returns an expression because there are situations in which
  6131. we want to change or update the expression.}
  6132. Next we discuss the \code{type\_check\_exp} function of \LangVar{} in
  6133. Figure~\ref{fig:type-check-Lvar}. The type of an integer constant is
  6134. \INTTY{}. To handle variables, the type checker uses the environment
  6135. \code{env} to map variables to types.
  6136. %
  6137. \racket{Consider the case for \key{let}. We type check the
  6138. initializing expression to obtain its type \key{T} and then
  6139. associate type \code{T} with the variable \code{x} in the
  6140. environment used to type check the body of the \key{let}. Thus,
  6141. when the type checker encounters a use of variable \code{x}, it can
  6142. find its type in the environment.}
  6143. %
  6144. \python{Consider the case for assignment. We type check the
  6145. initializing expression to obtain its type \key{t}. If the variable
  6146. \code{lhs.id} is already in the environment because there was a
  6147. prior assignment, we check that this initializer has the same type
  6148. as the prior one. If this is the first assignment to the variable,
  6149. we associate type \code{t} with the variable \code{lhs.id} in the
  6150. environment. Thus, when the type checker encounters a use of
  6151. variable \code{x}, it can find its type in the environment.}
  6152. %
  6153. \racket{Regarding primitive operators, we recursively analyze the
  6154. arguments and then invoke \code{type\_check\_op} to check whether
  6155. the argument types are allowed.}
  6156. %
  6157. \python{Regarding addition and negation, we recursively analyze the
  6158. arguments, check that they have type \INT{}, and return \INT{}.}
  6159. \racket{Several auxiliary methods are used in the type checker. The
  6160. method \code{operator-types} defines a dictionary that maps the
  6161. operator names to their parameter and return types. The
  6162. \code{type-equal?} method determines whether two types are equal,
  6163. which for now simply dispatches to \code{equal?} (deep
  6164. equality). The \code{check-type-equal?} method triggers an error if
  6165. the two types are not equal. The \code{type-check-op} method looks
  6166. up the operator in the \code{operator-types} dictionary and then
  6167. checks whether the argument types are equal to the parameter types.
  6168. The result is the return type of the operator.}
  6169. %
  6170. \python{The auxiliary method \code{check\_type\_equal} method triggers
  6171. an error if the two types are not equal.}
  6172. \begin{figure}[tbp]
  6173. {\if\edition\racketEd\color{olive}
  6174. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  6175. (define type-check-Lvar_class
  6176. (class object%
  6177. (super-new)
  6178. (define/public (operator-types)
  6179. '((+ . ((Integer Integer) . Integer))
  6180. (- . ((Integer) . Integer))
  6181. (read . (() . Integer))))
  6182. (define/public (type-equal? t1 t2) (equal? t1 t2))
  6183. (define/public (check-type-equal? t1 t2 e)
  6184. (unless (type-equal? t1 t2)
  6185. (error 'type-check "~a != ~a\nin ~v" t1 t2 e)))
  6186. (define/public (type-check-op op arg-types e)
  6187. (match (dict-ref (operator-types) op)
  6188. [`(,param-types . ,return-type)
  6189. (for ([at arg-types] [pt param-types])
  6190. (check-type-equal? at pt e))
  6191. return-type]
  6192. [else (error 'type-check-op "unrecognized ~a" op)]))
  6193. (define/public (type-check-exp env)
  6194. (lambda (e)
  6195. (match e
  6196. [(Int n) (values (Int n) 'Integer)]
  6197. [(Var x) (values (Var x) (dict-ref env x))]
  6198. [(Let x e body)
  6199. (define-values (e^ Te) ((type-check-exp env) e))
  6200. (define-values (b Tb) ((type-check-exp (dict-set env x Te)) body))
  6201. (values (Let x e^ b) Tb)]
  6202. [(Prim op es)
  6203. (define-values (new-es ts)
  6204. (for/lists (exprs types) ([e es]) ((type-check-exp env) e)))
  6205. (values (Prim op new-es) (type-check-op op ts e))]
  6206. [else (error 'type-check-exp "couldn't match" e)])))
  6207. (define/public (type-check-program e)
  6208. (match e
  6209. [(Program info body)
  6210. (define-values (body^ Tb) ((type-check-exp '()) body))
  6211. (check-type-equal? Tb 'Integer body)
  6212. (Program info body^)]
  6213. [else (error 'type-check-Lvar "couldn't match ~a" e)]))
  6214. ))
  6215. (define (type-check-Lvar p)
  6216. (send (new type-check-Lvar_class) type-check-program p))
  6217. \end{lstlisting}
  6218. \fi}
  6219. {\if\edition\pythonEd
  6220. \begin{lstlisting}
  6221. class TypeCheckLvar:
  6222. def check_type_equal(self, t1, t2, e):
  6223. if t1 != t2:
  6224. msg = 'error: ' + repr(t1) + ' != ' + repr(t2) + ' in ' + repr(e)
  6225. raise Exception(msg)
  6226. def type_check_exp(self, e, env):
  6227. match e:
  6228. case BinOp(left, Add(), right):
  6229. l = self.type_check_exp(left, env)
  6230. check_type_equal(l, int, left)
  6231. r = self.type_check_exp(right, env)
  6232. check_type_equal(r, int, right)
  6233. return int
  6234. case UnaryOp(USub(), v):
  6235. t = self.type_check_exp(v, env)
  6236. check_type_equal(t, int, v)
  6237. return int
  6238. case Name(id):
  6239. return env[id]
  6240. case Constant(value) if isinstance(value, int):
  6241. return int
  6242. case Call(Name('input_int'), []):
  6243. return int
  6244. def type_check_stmts(self, ss, env):
  6245. if len(ss) == 0:
  6246. return
  6247. match ss[0]:
  6248. case Assign([lhs], value):
  6249. t = self.type_check_exp(value, env)
  6250. if lhs.id in env:
  6251. check_type_equal(env[lhs.id], t, value)
  6252. else:
  6253. env[lhs.id] = t
  6254. return self.type_check_stmts(ss[1:], env)
  6255. case Expr(Call(Name('print'), [arg])):
  6256. t = self.type_check_exp(arg, env)
  6257. check_type_equal(t, int, arg)
  6258. return self.type_check_stmts(ss[1:], env)
  6259. case Expr(value):
  6260. self.type_check_exp(value, env)
  6261. return self.type_check_stmts(ss[1:], env)
  6262. def type_check_P(self, p):
  6263. match p:
  6264. case Module(body):
  6265. self.type_check_stmts(body, {})
  6266. \end{lstlisting}
  6267. \fi}
  6268. \caption{Type checker for the \LangVar{} language.}
  6269. \label{fig:type-check-Lvar}
  6270. \end{figure}
  6271. \begin{figure}[tbp]
  6272. {\if\edition\racketEd\color{olive}
  6273. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  6274. (define type-check-Lif_class
  6275. (class type-check-Lvar_class
  6276. (super-new)
  6277. (inherit check-type-equal?)
  6278. (define/override (operator-types)
  6279. (append '((- . ((Integer Integer) . Integer))
  6280. (and . ((Boolean Boolean) . Boolean))
  6281. (or . ((Boolean Boolean) . Boolean))
  6282. (< . ((Integer Integer) . Boolean))
  6283. (<= . ((Integer Integer) . Boolean))
  6284. (> . ((Integer Integer) . Boolean))
  6285. (>= . ((Integer Integer) . Boolean))
  6286. (not . ((Boolean) . Boolean))
  6287. )
  6288. (super operator-types)))
  6289. (define/override (type-check-exp env)
  6290. (lambda (e)
  6291. (match e
  6292. [(Bool b) (values (Bool b) 'Boolean)]
  6293. [(Prim 'eq? (list e1 e2))
  6294. (define-values (e1^ T1) ((type-check-exp env) e1))
  6295. (define-values (e2^ T2) ((type-check-exp env) e2))
  6296. (check-type-equal? T1 T2 e)
  6297. (values (Prim 'eq? (list e1^ e2^)) 'Boolean)]
  6298. [(If cnd thn els)
  6299. (define-values (cnd^ Tc) ((type-check-exp env) cnd))
  6300. (define-values (thn^ Tt) ((type-check-exp env) thn))
  6301. (define-values (els^ Te) ((type-check-exp env) els))
  6302. (check-type-equal? Tc 'Boolean e)
  6303. (check-type-equal? Tt Te e)
  6304. (values (If cnd^ thn^ els^) Te)]
  6305. [else ((super type-check-exp env) e)])))
  6306. ))
  6307. (define (type-check-Lif p)
  6308. (send (new type-check-Lif_class) type-check-program p))
  6309. \end{lstlisting}
  6310. \fi}
  6311. {\if\edition\pythonEd
  6312. \begin{lstlisting}
  6313. class TypeCheckLif(TypeCheckLvar):
  6314. def type_check_exp(self, e, env):
  6315. match e:
  6316. case Constant(value) if isinstance(value, bool):
  6317. return bool
  6318. case BinOp(left, Sub(), right):
  6319. l = self.type_check_exp(left, env); check_type_equal(l, int, left)
  6320. r = self.type_check_exp(right, env); check_type_equal(r, int, right)
  6321. return int
  6322. case UnaryOp(Not(), v):
  6323. t = self.type_check_exp(v, env); check_type_equal(t, bool, v)
  6324. return bool
  6325. case BoolOp(op, values):
  6326. left = values[0] ; right = values[1]
  6327. l = self.type_check_exp(left, env); check_type_equal(l, bool, left)
  6328. r = self.type_check_exp(right, env); check_type_equal(r, bool, right)
  6329. return bool
  6330. case Compare(left, [cmp], [right]) if isinstance(cmp, Eq) \
  6331. or isinstance(cmp, NotEq):
  6332. l = self.type_check_exp(left, env)
  6333. r = self.type_check_exp(right, env)
  6334. check_type_equal(l, r, e)
  6335. return bool
  6336. case Compare(left, [cmp], [right]):
  6337. l = self.type_check_exp(left, env); check_type_equal(l, int, left)
  6338. r = self.type_check_exp(right, env); check_type_equal(r, int, right)
  6339. return bool
  6340. case IfExp(test, body, orelse):
  6341. t = self.type_check_exp(test, env); check_type_equal(bool, t, test)
  6342. b = self.type_check_exp(body, env)
  6343. o = self.type_check_exp(orelse, env)
  6344. check_type_equal(b, o, e)
  6345. return b
  6346. case _:
  6347. return super().type_check_exp(e, env)
  6348. def type_check_stmts(self, ss, env):
  6349. if len(ss) == 0:
  6350. return
  6351. match ss[0]:
  6352. case If(test, body, orelse):
  6353. t = self.type_check_exp(test, env); check_type_equal(bool, t, test)
  6354. b = self.type_check_stmts(body, env)
  6355. o = self.type_check_stmts(orelse, env)
  6356. check_type_equal(b, o, ss[0])
  6357. return self.type_check_stmts(ss[1:], env)
  6358. case _:
  6359. return super().type_check_stmts(ss, env)
  6360. \end{lstlisting}
  6361. \fi}
  6362. \caption{Type checker for the \LangIf{} language.}
  6363. \label{fig:type-check-Lif}
  6364. \end{figure}
  6365. We shift our focus to Figure~\ref{fig:type-check-Lif}, the type
  6366. checker for \LangIf{}.
  6367. %
  6368. The type of a Boolean constant is \BOOLTY{}.
  6369. %
  6370. \racket{The \code{operator-types} function adds dictionary entries for
  6371. the other new operators.}
  6372. %
  6373. \python{Subtraction requires its arguments to be of type \INTTY{} and produces
  6374. an \INTTY{}. Negation requires its argument to be a \BOOLTY{} and
  6375. produces a \BOOLTY{}. Similarly for logical-and and logical-or. }
  6376. %
  6377. The equality operators requires the two arguments to have the same
  6378. type.
  6379. %
  6380. \python{The other comparisons (less-than, etc.) require their
  6381. arguments to be of type \INTTY{} and they produce a \BOOLTY{}.}
  6382. %
  6383. The condition of an \code{if} must
  6384. be of \BOOLTY{} type and the two branches must have the same type.
  6385. \begin{exercise}\normalfont
  6386. Create 10 new test programs in \LangIf{}. Half of the programs should
  6387. have a type error. For those programs, create an empty file with the
  6388. same base name but with file extension \code{.tyerr}. For example, if
  6389. the test
  6390. \racket{\code{cond\_test\_14.rkt}}\python{\code{cond\_test\_14.py}}
  6391. is expected to error, then create
  6392. an empty file named \code{cond\_test\_14.tyerr}.
  6393. %
  6394. \racket{This indicates to \code{interp-tests} and
  6395. \code{compiler-tests} that a type error is expected. }
  6396. %
  6397. \racket{This indicates to the \code{run-tests.py} scripts that a type
  6398. error is expected.}
  6399. %
  6400. The other half of the test programs should not have type errors.
  6401. %
  6402. \racket{In the \code{run-tests.rkt} script, change the second argument
  6403. of \code{interp-tests} and \code{compiler-tests} to
  6404. \code{type-check-Lif}, which causes the type checker to run prior to
  6405. the compiler passes. Temporarily change the \code{passes} to an
  6406. empty list and run the script, thereby checking that the new test
  6407. programs either type check or not as intended.}
  6408. %
  6409. Run the test script to check that these test programs type check as
  6410. expected.
  6411. \end{exercise}
  6412. \clearpage
  6413. \section{The \LangCIf{} Intermediate Language}
  6414. \label{sec:Cif}
  6415. \racket{
  6416. Figure~\ref{fig:c1-syntax} defines the abstract syntax of the
  6417. \LangCIf{} intermediate language. (The concrete syntax is in the
  6418. Appendix, Figure~\ref{fig:c1-concrete-syntax}.) Compared to
  6419. \LangCVar{}, the \LangCIf{} language adds logical and comparison
  6420. operators to the \Exp{} non-terminal and the literals \TRUE{} and
  6421. \FALSE{} to the \Arg{} non-terminal.
  6422. Regarding control flow, \LangCIf{} adds \key{goto} and \code{if}
  6423. statements to the \Tail{} non-terminal. The condition of an \code{if}
  6424. statement is a comparison operation and the branches are \code{goto}
  6425. statements, making it straightforward to compile \code{if} statements
  6426. to x86.
  6427. }
  6428. %
  6429. {\if\edition\pythonEd
  6430. %
  6431. The output of \key{explicate\_control} is a language similar to the
  6432. $C$ language~\citep{Kernighan:1988nx} in that it has labels and
  6433. \code{goto} statements, so we name it \LangCIf{}. The abstract syntax
  6434. for \LangCIf{} is defined in Figure~\ref{fig:c1-syntax}.
  6435. \racket{(The concrete syntax for \LangCIf{} is in the Appendix,
  6436. Figure~\ref{fig:c1-concrete-syntax}.)}
  6437. %
  6438. The \LangCIf{} language supports the same operators as \LangIf{} but
  6439. the arguments of operators are restricted to atomic expressions. The
  6440. \LangCIf{} language does not include \code{if} expressions but it does
  6441. include a restricted form of \code{if} statment. The condition must be
  6442. a comparison and the two branches may only contain \code{goto}
  6443. statements. These restrictions make it easier to translate \code{if}
  6444. statements to x86.
  6445. %
  6446. \fi}
  6447. %
  6448. The \key{CProgram} construct contains
  6449. %
  6450. \racket{an alist}\python{a dictionary}
  6451. %
  6452. mapping labels to \emph{basic blocks}, where each basic block is
  6453. %
  6454. \racket{represented by the $\Tail$ non-terminal}
  6455. %
  6456. \python{a list of statements}.
  6457. \begin{figure}[tp]
  6458. \fbox{
  6459. \begin{minipage}{0.96\textwidth}
  6460. \small
  6461. {\if\edition\racketEd\color{olive}
  6462. \[
  6463. \begin{array}{lcl}
  6464. \Atm &::=& \gray{\INT{\Int} \MID \VAR{\Var}} \MID \BOOL{\itm{bool}} \\
  6465. \itm{cmp} &::= & \key{eq?} \MID \key{<} \\
  6466. \Exp &::= & \gray{ \Atm \MID \READ{} }\\
  6467. &\MID& \gray{ \NEG{\Atm} \MID \ADD{\Atm}{\Atm} } \\
  6468. &\MID& \UNIOP{\key{'not}}{\Atm}
  6469. \MID \BINOP{\key{'}\itm{cmp}}{\Atm}{\Atm} \\
  6470. \Stmt &::=& \gray{ \ASSIGN{\VAR{\Var}}{\Exp} } \\
  6471. \Tail &::= & \gray{\RETURN{\Exp} \MID \SEQ{\Stmt}{\Tail} }
  6472. \MID \GOTO{\itm{label}} \\
  6473. &\MID& \IFSTMT{\BINOP{\itm{cmp}}{\Atm}{\Atm}}{\GOTO{\itm{label}}}{\GOTO{\itm{label}}} \\
  6474. \LangCIfM{} & ::= & \gray{\CPROGRAM{\itm{info}}{\LP\LP\itm{label}\,\key{.}\,\Tail\RP\ldots\RP}}
  6475. \end{array}
  6476. \]
  6477. \fi}
  6478. {\if\edition\pythonEd
  6479. \[
  6480. \begin{array}{lcl}
  6481. \Atm &::=& \INT{\Int} \MID \VAR{\Var} \MID \BOOL{\itm{bool}} \\
  6482. \Exp &::= & \Atm \MID \READ{} \\
  6483. &\MID& \BINOP{\Atm}{\itm{binop}}{\Atm}
  6484. \MID \UNIOP{\itm{uniop}}{\Atm} \\
  6485. &\MID& \CMP{\Atm}{\itm{cmp}}{\Atm}
  6486. \MID \BOOLOP{\itm{boolop}}{\Atm}{\Atm} \\
  6487. \Stmt &::=& \PRINT{\Exp} \MID \EXPR{\Exp} \\
  6488. &\MID& \ASSIGN{\VAR{\Var}}{\Exp}
  6489. \MID \RETURN{\Exp} \MID \GOTO{\itm{label}} \\
  6490. &\MID& \IFSTMT{\CMP{\Atm}{\itm{cmp}}{\Atm}}{\LS\GOTO{\itm{label}}\RS}{\LS\GOTO{\itm{label}}\RS} \\
  6491. \LangCIfM{} & ::= & \CPROGRAM{\itm{info}}{\LC\itm{label}\,\key{:}\,\Stmt^{*}, \ldots \RC}
  6492. \end{array}
  6493. \]
  6494. \fi}
  6495. \end{minipage}
  6496. }
  6497. \caption{The abstract syntax of \LangCIf{}\racket{, an extension of \LangCVar{}
  6498. (Figure~\ref{fig:c0-syntax})}.}
  6499. \label{fig:c1-syntax}
  6500. \end{figure}
  6501. \section{The \LangXIf{} Language}
  6502. \label{sec:x86-if}
  6503. \index{subject}{x86} To implement the new logical operations, the comparison
  6504. operations, and the \key{if} expression, we need to delve further into
  6505. the x86 language. Figures~\ref{fig:x86-1-concrete} and \ref{fig:x86-1}
  6506. define the concrete and abstract syntax for the \LangXIf{} subset
  6507. of x86, which includes instructions for logical operations,
  6508. comparisons, and \racket{conditional} jumps.
  6509. One challenge is that x86 does not provide an instruction that
  6510. directly implements logical negation (\code{not} in \LangIf{} and
  6511. \LangCIf{}). However, the \code{xorq} instruction can be used to
  6512. encode \code{not}. The \key{xorq} instruction takes two arguments,
  6513. performs a pairwise exclusive-or ($\mathrm{XOR}$) operation on each
  6514. bit of its arguments, and writes the results into its second argument.
  6515. Recall the truth table for exclusive-or:
  6516. \begin{center}
  6517. \begin{tabular}{l|cc}
  6518. & 0 & 1 \\ \hline
  6519. 0 & 0 & 1 \\
  6520. 1 & 1 & 0
  6521. \end{tabular}
  6522. \end{center}
  6523. For example, applying $\mathrm{XOR}$ to each bit of the binary numbers
  6524. $0011$ and $0101$ yields $0110$. Notice that in the row of the table
  6525. for the bit $1$, the result is the opposite of the second bit. Thus,
  6526. the \code{not} operation can be implemented by \code{xorq} with $1$ as
  6527. the first argument as follows, where $\Arg$ is the translation of
  6528. $\Atm$.
  6529. \[
  6530. \CASSIGN{\Var}{\CUNIOP{\key{not}}{\Atm}}
  6531. \qquad\Rightarrow\qquad
  6532. \begin{array}{l}
  6533. \key{movq}~ \Arg\key{,} \Var\\
  6534. \key{xorq}~ \key{\$1,} \Var
  6535. \end{array}
  6536. \]
  6537. \begin{figure}[tp]
  6538. \fbox{
  6539. \begin{minipage}{0.96\textwidth}
  6540. \[
  6541. \begin{array}{lcl}
  6542. \itm{bytereg} &::=& \key{ah} \MID \key{al} \MID \key{bh} \MID \key{bl}
  6543. \MID \key{ch} \MID \key{cl} \MID \key{dh} \MID \key{dl} \\
  6544. \Arg &::=& \gray{ \key{\$}\Int \MID \key{\%}\Reg \MID \Int\key{(}\key{\%}\Reg\key{)} } \MID \key{\%}\itm{bytereg}\\
  6545. \itm{cc} & ::= & \key{e} \MID \key{l} \MID \key{le} \MID \key{g} \MID \key{ge} \\
  6546. \Instr &::=& \gray{ \key{addq} \; \Arg\key{,} \Arg \MID
  6547. \key{subq} \; \Arg\key{,} \Arg \MID
  6548. \key{negq} \; \Arg \MID \key{movq} \; \Arg\key{,} \Arg \MID } \\
  6549. && \gray{ \key{callq} \; \itm{label} \MID
  6550. \key{pushq}\;\Arg \MID \key{popq}\;\Arg \MID \key{retq} \MID \racket{\key{jmp}\,\itm{label} \MID} } \python{\key{jmp}\,\itm{label} \MID} \\
  6551. && \racket{\gray{ \itm{label}\key{:}\; \Instr }}\python{\itm{label}\key{:}\; \Instr}
  6552. \MID \key{xorq}~\Arg\key{,}~\Arg
  6553. \MID \key{cmpq}~\Arg\key{,}~\Arg \MID \\
  6554. && \key{set}cc~\Arg
  6555. \MID \key{movzbq}~\Arg\key{,}~\Arg
  6556. \MID \key{j}cc~\itm{label}
  6557. \\
  6558. \LangXIfM{} &::= & \gray{ \key{.globl main} }\\
  6559. & & \gray{ \key{main:} \; \Instr\ldots }
  6560. \end{array}
  6561. \]
  6562. \end{minipage}
  6563. }
  6564. \caption{The concrete syntax of \LangXIf{} (extends \LangXInt{} of Figure~\ref{fig:x86-int-concrete}).}
  6565. \label{fig:x86-1-concrete}
  6566. \end{figure}
  6567. \begin{figure}[tp]
  6568. \fbox{
  6569. \begin{minipage}{0.98\textwidth}
  6570. \small
  6571. {\if\edition\racketEd\color{olive}
  6572. \[
  6573. \begin{array}{lcl}
  6574. \itm{bytereg} &::=& \key{ah} \MID \key{al} \MID \key{bh} \MID \key{bl}
  6575. \MID \key{ch} \MID \key{cl} \MID \key{dh} \MID \key{dl} \\
  6576. \Arg &::=& \gray{\IMM{\Int} \MID \REG{\Reg} \MID \DEREF{\Reg}{\Int}}
  6577. \MID \BYTEREG{\itm{bytereg}} \\
  6578. \itm{cc} & ::= & \key{e} \MID \key{l} \MID \key{le} \MID \key{g} \MID \key{ge} \\
  6579. \Instr &::=& \gray{ \BININSTR{\code{addq}}{\Arg}{\Arg}
  6580. \MID \BININSTR{\code{subq}}{\Arg}{\Arg} } \\
  6581. &\MID& \gray{ \BININSTR{\code{'movq}}{\Arg}{\Arg}
  6582. \MID \UNIINSTR{\code{negq}}{\Arg} } \\
  6583. &\MID& \gray{ \CALLQ{\itm{label}}{\itm{int}} \MID \RETQ{}
  6584. \MID \PUSHQ{\Arg} \MID \POPQ{\Arg} \MID \JMP{\itm{label}} } \\
  6585. &\MID& \BININSTR{\code{xorq}}{\Arg}{\Arg}
  6586. \MID \BININSTR{\code{cmpq}}{\Arg}{\Arg}\\
  6587. &\MID& \BININSTR{\code{set}}{\itm{cc}}{\Arg}
  6588. \MID \BININSTR{\code{movzbq}}{\Arg}{\Arg}\\
  6589. &\MID& \JMPIF{'\itm{cc}'}{\itm{label}} \\
  6590. \Block &::= & \gray{\BLOCK{\itm{info}}{\LP\Instr\ldots\RP}} \\
  6591. \LangXIfM{} &::= & \gray{\XPROGRAM{\itm{info}}{\LP\LP\itm{label} \,\key{.}\, \Block \RP\ldots\RP}}
  6592. \end{array}
  6593. \]
  6594. \fi}
  6595. %
  6596. {\if\edition\pythonEd
  6597. \[
  6598. \begin{array}{lcl}
  6599. \itm{bytereg} &::=& \key{ah} \MID \key{al} \MID \key{bh} \MID \key{bl}
  6600. \MID \key{ch} \MID \key{cl} \MID \key{dh} \MID \key{dl} \\
  6601. \Arg &::=& \gray{\IMM{\Int} \MID \REG{\Reg} \MID \DEREF{\Reg}{\Int}}
  6602. \MID \BYTEREG{\itm{bytereg}} \\
  6603. \itm{cc} & ::= & \key{e} \MID \key{l} \MID \key{le} \MID \key{g} \MID \key{ge} \\
  6604. \Instr &::=& \gray{ \BININSTR{\code{addq}}{\Arg}{\Arg}
  6605. \MID \BININSTR{\code{subq}}{\Arg}{\Arg} } \\
  6606. &\MID& \gray{ \BININSTR{\code{movq}}{\Arg}{\Arg}
  6607. \MID \UNIINSTR{\code{negq}}{\Arg} } \\
  6608. &\MID& \gray{ \CALLQ{\itm{label}}{\itm{int}} \MID \RETQ{}
  6609. \MID \PUSHQ{\Arg} \MID \POPQ{\Arg} \MID \racket{\JMP{\itm{label}}} } \python{\JMP{\itm{label}}}\\
  6610. &\MID& \BININSTR{\code{xorq}}{\Arg}{\Arg}
  6611. \MID \BININSTR{\code{cmpq}}{\Arg}{\Arg}\\
  6612. &\MID& \BININSTR{\code{set}}{\itm{cc}}{\Arg}
  6613. \MID \BININSTR{\code{movzbq}}{\Arg}{\Arg}\\
  6614. &\MID& \JMPIF{\key{'}\itm{cc}\key{'}}{\itm{label}} \\
  6615. \LangXIfM{} &::= & \XPROGRAM{\itm{info}}{\LC\itm{label} \,\key{:}\, \Instr^{*} \key{,} \ldots \RC }
  6616. \end{array}
  6617. \]
  6618. \fi}
  6619. \end{minipage}
  6620. }
  6621. \caption{The abstract syntax of \LangXIf{} (extends \LangXInt{} of Figure~\ref{fig:x86-int-ast}).}
  6622. \label{fig:x86-1}
  6623. \end{figure}
  6624. Next we consider the x86 instructions that are relevant for compiling
  6625. the comparison operations. The \key{cmpq} instruction compares its two
  6626. arguments to determine whether one argument is less than, equal, or
  6627. greater than the other argument. The \key{cmpq} instruction is unusual
  6628. regarding the order of its arguments and where the result is
  6629. placed. The argument order is backwards: if you want to test whether
  6630. $x < y$, then write \code{cmpq} $y$\code{,} $x$. The result of
  6631. \key{cmpq} is placed in the special EFLAGS register. This register
  6632. cannot be accessed directly but it can be queried by a number of
  6633. instructions, including the \key{set} instruction. The instruction
  6634. $\key{set}cc~d$ puts a \key{1} or \key{0} into the destination $d$
  6635. depending on whether the comparison comes out according to the
  6636. condition code \itm{cc} (\key{e} for equal, \key{l} for less, \key{le}
  6637. for less-or-equal, \key{g} for greater, \key{ge} for
  6638. greater-or-equal). The \key{set} instruction has a quirk in
  6639. that its destination argument must be single byte register, such as
  6640. \code{al} (L for lower bits) or \code{ah} (H for higher bits), which
  6641. are part of the \code{rax} register. Thankfully, the \key{movzbq}
  6642. instruction can be used to move from a single byte register to a
  6643. normal 64-bit register. The abstract syntax for the \code{set}
  6644. instruction differs from the concrete syntax in that it separates the
  6645. instruction name from the condition code.
  6646. \python{The x86 instructions for jumping are relevant to the
  6647. compilation of \key{if} expressions.}
  6648. %
  6649. \python{The instruction $\key{jmp}\,\itm{label}$ updates the program
  6650. counter to the address of the instruction after the specified
  6651. label.}
  6652. %
  6653. \racket{The x86 instruction for conditional jump is relevant to the
  6654. compilation of \key{if} expressions.}
  6655. %
  6656. The instruction $\key{j}\itm{cc}~\itm{label}$ updates the program
  6657. counter to point to the instruction after \itm{label} depending on
  6658. whether the result in the EFLAGS register matches the condition code
  6659. \itm{cc}, otherwise the jump instruction falls through to the next
  6660. instruction. Like the abstract syntax for \code{set}, the abstract
  6661. syntax for conditional jump separates the instruction name from the
  6662. condition code. For example, \JMPIF{\key{'le'}}{\key{foo}} corresponds
  6663. to \code{jle foo}. Because the conditional jump instruction relies on
  6664. the EFLAGS register, it is common for it to be immediately preceded by
  6665. a \key{cmpq} instruction to set the EFLAGS register.
  6666. \section{Shrink the \LangIf{} Language}
  6667. \label{sec:shrink-Lif}
  6668. The \LangIf{} language includes several features that are easily
  6669. expressible with other features. For example, \code{and} and \code{or}
  6670. are expressible using \code{if} as follows.
  6671. \begin{align*}
  6672. \CAND{e_1}{e_2} & \quad \Rightarrow \quad \CIF{e_1}{e_2}{\FALSE{}}\\
  6673. \COR{e_1}{e_2} & \quad \Rightarrow \quad \CIF{e_1}{\TRUE{}}{e_2}
  6674. \end{align*}
  6675. By performing these translations in the front-end of the compiler, the
  6676. later passes of the compiler do not need to deal with these features,
  6677. making the passes shorter.
  6678. %% For example, subtraction is
  6679. %% expressible using addition and negation.
  6680. %% \[
  6681. %% \key{(-}\; e_1 \; e_2\key{)} \quad \Rightarrow \quad \LP\key{+} \; e_1 \; \LP\key{-} \; e_2\RP\RP
  6682. %% \]
  6683. %% Several of the comparison operations are expressible using less-than
  6684. %% and logical negation.
  6685. %% \[
  6686. %% \LP\key{<=}\; e_1 \; e_2\RP \quad \Rightarrow \quad
  6687. %% \LP\key{let}~\LP\LS\key{tmp.1}~e_1\RS\RP~\LP\key{not}\;\LP\key{<}\;e_2\;\key{tmp.1})\RP\RP
  6688. %% \]
  6689. %% The \key{let} is needed in the above translation to ensure that
  6690. %% expression $e_1$ is evaluated before $e_2$.
  6691. On the other hand, sometimes translations reduce the efficiency of the
  6692. generated code by increasing the number of instructions. For example,
  6693. expressing subtraction in terms of negation
  6694. \[
  6695. \CBINOP{\key{-}}{e_1}{e_2} \quad \Rightarrow \quad
  6696. \CBINOP{\key{+}}{e_1}{ \CUNIOP{\key{-}}{e_2} }
  6697. \]
  6698. produces code with two x86 instructions (\code{negq} and \code{addq})
  6699. instead of just one (\code{subq}).
  6700. %% However,
  6701. %% these differences typically do not affect the number of accesses to
  6702. %% memory, which is the primary factor that determines execution time on
  6703. %% modern computer architectures.
  6704. \begin{exercise}\normalfont
  6705. %
  6706. Implement the pass \code{shrink} to remove \key{and} and \key{or} from
  6707. the language by translating them to \code{if} expressions in \LangIf{}.
  6708. %
  6709. Create four test programs that involve these operators.
  6710. %
  6711. {\if\edition\racketEd\color{olive}
  6712. In the \code{run-tests.rkt} script, add the following entry for
  6713. \code{shrink} to the list of passes (it should be the only pass at
  6714. this point).
  6715. \begin{lstlisting}
  6716. (list "shrink" shrink interp_Lif type-check-Lif)
  6717. \end{lstlisting}
  6718. This instructs \code{interp-tests} to run the intepreter
  6719. \code{interp\_Lif} and the type checker \code{type-check-Lif} on the
  6720. output of \code{shrink}.
  6721. \fi}
  6722. %
  6723. Run the script to test your compiler on all the test programs.
  6724. \end{exercise}
  6725. {\if\edition\racketEd\color{olive}
  6726. \section{Uniquify Variables}
  6727. \label{sec:uniquify-Lif}
  6728. Add cases to \code{uniquify-exp} to handle Boolean constants and
  6729. \code{if} expressions.
  6730. \begin{exercise}\normalfont
  6731. Update the \code{uniquify\_exp} for \LangIf{} and add the following
  6732. entry to the list of \code{passes} in the \code{run-tests.rkt} script.
  6733. \begin{lstlisting}
  6734. (list "uniquify" uniquify interp_Lif type_check_Lif)
  6735. \end{lstlisting}
  6736. Run the script to test your compiler.
  6737. \end{exercise}
  6738. \fi}
  6739. \section{Remove Complex Operands}
  6740. \label{sec:remove-complex-opera-Lif}
  6741. The output language of \code{remove\_complex\_operands} is \LangIfANF{}
  6742. (Figure~\ref{fig:Lif-anf-syntax}), the administrative normal form of
  6743. \LangIf{}. A Boolean constant is an atomic expressions but the
  6744. \code{if} expression is not.
  6745. All three sub-expressions of an
  6746. \code{if} are allowed to be complex expressions but the operands of
  6747. \code{not} and the comparisons must be atomic.
  6748. %
  6749. \python{We add a new language form, the \code{Let} expression, to aid
  6750. in the translation of \code{if} expressions. The
  6751. $\LET{x}{e_1}{e_2}$ form is like an assignment statement, but can be
  6752. used as an expression. It assigns the result of $e_1$ to the
  6753. variable $x$, an then evaluates $e_2$, which may reference $x$.}
  6754. Add cases for Boolean constants, \python{comparisons,} and \code{if}
  6755. expressions to the \code{rco\_exp} and \code{rco\_atom} functions
  6756. according to whether the output needs to be \Exp{} or \Atm{} as
  6757. specified in the grammar for \LangIfANF{}. Regarding \code{if}, it is
  6758. particularly important to \textbf{not} replace its condition with a
  6759. temporary variable because that would interfere with the generation of
  6760. high-quality output in the \code{explicate\_control} pass.
  6761. \begin{figure}[tp]
  6762. \centering
  6763. \fbox{
  6764. \begin{minipage}{0.96\textwidth}
  6765. {\if\edition\racketEd\color{olive}
  6766. \[
  6767. \begin{array}{rcl}
  6768. \Atm &::=& \gray{ \INT{\Int} \MID \VAR{\Var} } \MID \BOOL{\itm{bool}}\\
  6769. \Exp &::=& \gray{ \Atm \MID \READ{} } \\
  6770. &\MID& \gray{ \NEG{\Atm} \MID \ADD{\Atm}{\Atm} } \\
  6771. &\MID& \gray{ \LET{\Var}{\Exp}{\Exp} } \\
  6772. &\MID& \UNIOP{\key{not}}{\Atm} \\
  6773. &\MID& \BINOP{\itm{cmp}}{\Atm}{\Atm} \MID \IF{\Exp}{\Exp}{\Exp} \\
  6774. R^{\mathsf{ANF}}_{\mathsf{if}} &::=& \PROGRAM{\code{()}}{\Exp}
  6775. \end{array}
  6776. \]
  6777. \fi}
  6778. {\if\edition\pythonEd
  6779. \[
  6780. \begin{array}{rcl}
  6781. \Atm &::=& \INT{\Int} \MID \VAR{\Var} \MID \BOOL{\itm{bool}}\\
  6782. \Exp &::=& \Atm \MID \READ{} \\
  6783. &\MID& \BINOP{\itm{binop}}{\Atm}{\Atm} \MID \UNIOP{\key{uniop}}{\Atm} \\
  6784. &\MID& \CMP{\Atm}{\itm{cmp}}{\Atm} \MID \IF{\Exp}{\Exp}{\Exp} \\
  6785. &\MID& \LET{\Var}{\Exp}{\Exp}\\
  6786. \Stmt{} &::=& \PRINT{\Atm} \MID \EXPR{\Exp} \\
  6787. &\MID& \ASSIGN{\VAR{\Var}}{\Exp} \MID \IFSTMT{\Exp}{\Stmt^{*}}{\Stmt^{*}}\\
  6788. P^{\mathsf{ANF}}_{\mathsf{if}} &::=& \PROGRAM{\code{()}}{\Stmt^{*}}
  6789. \end{array}
  6790. \]
  6791. \fi}
  6792. \end{minipage}
  6793. }
  6794. \caption{\LangIfANF{} is \LangIf{} in administrative normal form (ANF).}
  6795. \label{fig:Lif-anf-syntax}
  6796. \end{figure}
  6797. \begin{exercise}\normalfont
  6798. %
  6799. Add cases for Boolean constants and \code{if} to the \code{rco\_atom}
  6800. and \code{rco\_exp} functions in \code{compiler.rkt}.
  6801. %
  6802. Create three new \LangInt{} programs that exercise the interesting
  6803. code in this pass.
  6804. %
  6805. {\if\edition\racketEd\color{olive}
  6806. In the \code{run-tests.rkt} script, add the following entry to the
  6807. list of \code{passes} and then run the script to test your compiler.
  6808. \begin{lstlisting}
  6809. (list "remove-complex" remove-complex-opera* interp-Lif type-check-Lif)
  6810. \end{lstlisting}
  6811. \fi}
  6812. \end{exercise}
  6813. \section{Explicate Control}
  6814. \label{sec:explicate-control-Lif}
  6815. \racket{Recall that the purpose of \code{explicate\_control} is to
  6816. make the order of evaluation explicit in the syntax of the program.
  6817. With the addition of \key{if} this get more interesting.}
  6818. %
  6819. The \code{explicate\_control} pass translates from \LangIf{} to \LangCIf{}.
  6820. %
  6821. The main challenge to overcome is that the condition of an \key{if}
  6822. can be an arbitrary expression in \LangIf{} whereas in \LangCIf{} the
  6823. condition must be a comparison.
  6824. As a motivating example, consider the following program that has an
  6825. \key{if} expression nested in the condition of another \key{if}.
  6826. % cond_test_41.rkt, if_lt_eq.py
  6827. \begin{center}
  6828. \begin{minipage}{0.96\textwidth}
  6829. {\if\edition\racketEd\color{olive}
  6830. \begin{lstlisting}
  6831. (let ([x (read)])
  6832. (let ([y (read)])
  6833. (if (if (< x 1) (eq? x 0) (eq? x 2))
  6834. (+ y 2)
  6835. (+ y 10))))
  6836. \end{lstlisting}
  6837. \fi}
  6838. {\if\edition\pythonEd
  6839. \begin{lstlisting}
  6840. x = input_int()
  6841. y = input_int()
  6842. print(y + 2 if (x == 0 if x < 1 else x == 2) else y + 10)
  6843. \end{lstlisting}
  6844. \fi}
  6845. \end{minipage}
  6846. \end{center}
  6847. %
  6848. The naive way to compile \key{if} and the comparison operations would
  6849. be to handle each of them in isolation, regardless of their context.
  6850. Each comparison would be translated into a \key{cmpq} instruction
  6851. followed by a couple instructions to move the result from the EFLAGS
  6852. register into a general purpose register or stack location. Each
  6853. \key{if} would be translated into a \key{cmpq} instruction followed by
  6854. a conditional jump. The generated code for the inner \key{if} in the
  6855. above example would be as follows.
  6856. \begin{center}
  6857. \begin{minipage}{0.96\textwidth}
  6858. \begin{lstlisting}
  6859. cmpq $1, x
  6860. setl %al
  6861. movzbq %al, tmp
  6862. cmpq $1, tmp
  6863. je then_branch_1
  6864. jmp else_branch_1
  6865. \end{lstlisting}
  6866. \end{minipage}
  6867. \end{center}
  6868. However, if we take context into account we can do better and reduce
  6869. the use of \key{cmpq} instructions for accessing the EFLAG register.
  6870. Our goal will be to compile \key{if} expressions so that the relevant
  6871. comparison instruction appears directly before the conditional jump.
  6872. For example, we want to generate the following code for the inner
  6873. \code{if}.
  6874. \begin{center}
  6875. \begin{minipage}{0.96\textwidth}
  6876. \begin{lstlisting}
  6877. cmpq $1, x
  6878. je then_branch_1
  6879. jmp else_branch_1
  6880. \end{lstlisting}
  6881. \end{minipage}
  6882. \end{center}
  6883. One way to achieve this is to reorganize the code at the level of
  6884. \LangIf{}, pushing the outer \key{if} inside the inner one, yielding
  6885. the following code.
  6886. \begin{center}
  6887. \begin{minipage}{0.96\textwidth}
  6888. {\if\edition\racketEd\color{olive}
  6889. \begin{lstlisting}
  6890. (let ([x (read)])
  6891. (let ([y (read)])
  6892. (if (< x 1)
  6893. (if (eq? x 0)
  6894. (+ y 2)
  6895. (+ y 10))
  6896. (if (eq? x 2)
  6897. (+ y 2)
  6898. (+ y 10)))))
  6899. \end{lstlisting}
  6900. \fi}
  6901. {\if\edition\pythonEd
  6902. \begin{lstlisting}
  6903. x = input_int()
  6904. y = intput_int()
  6905. print(((y + 2) if x == 0 else (y + 10)) \
  6906. if (x < 1) \
  6907. else ((y + 2) if (x == 2) else (y + 10)))
  6908. \end{lstlisting}
  6909. \fi}
  6910. \end{minipage}
  6911. \end{center}
  6912. Unfortunately, this approach duplicates the two branches from the
  6913. outer \code{if} and a compiler must never duplicate code! After all,
  6914. the two branches could have been very large expressions.
  6915. We need a way to perform the above transformation but without
  6916. duplicating code. That is, we need a way for different parts of a
  6917. program to refer to the same piece of code.
  6918. %
  6919. Put another way, we need to move away from abstract syntax
  6920. \emph{trees} and instead use \emph{graphs}.
  6921. %
  6922. At the level of x86 assembly this is straightforward because we can
  6923. label the code for each branch and insert jumps in all the places that
  6924. need to execute the branch.
  6925. %
  6926. Likewise, our language \LangCIf{} provides the ability to label a
  6927. sequence of code and to jump to a label via \code{goto}.
  6928. %
  6929. %% In particular, we use a standard program representation called a
  6930. %% \emph{control flow graph} (CFG), due to Frances Elizabeth
  6931. %% \citet{Allen:1970uq}. \index{subject}{control-flow graph} Each vertex
  6932. %% is a labeled sequence of code, called a \emph{basic block}, and each
  6933. %% edge represents a jump to another block.
  6934. %
  6935. %% The nice thing about the output of \code{explicate\_control} is that
  6936. %% there are no unnecessary comparisons and every comparison is part of a
  6937. %% conditional jump.
  6938. %% The down-side of this output is that it includes
  6939. %% trivial blocks, such as the blocks labeled \code{block92} through
  6940. %% \code{block95}, that only jump to another block. We discuss a solution
  6941. %% to this problem in Section~\ref{sec:opt-jumps}.
  6942. {\if\edition\racketEd\color{olive}
  6943. %
  6944. Recall that in Section~\ref{sec:explicate-control-Lvar} we implement
  6945. \code{explicate\_control} for \LangVar{} using two mutually recursive
  6946. functions, \code{explicate-tail} and \code{explicate-assign}. The
  6947. former function translates expressions in tail position whereas the
  6948. later function translates expressions on the right-hand-side of a
  6949. \key{let}. With the addition of \key{if} expression in \LangIf{} we
  6950. have a new kind of position to deal with: the predicate position of
  6951. the \key{if}. We need another function, \code{explicate-pred}, that
  6952. takes an \LangIf{} expression and two blocks for the then-branch and
  6953. else-branch. The output of \code{explicate-pred} is a block. In the
  6954. following paragraphs we discuss specific cases in the
  6955. \code{explicate\_pred} function as well as additions to the
  6956. \code{explicate\_tail} and \code{explicate\_assign} functions.
  6957. %
  6958. \fi}
  6959. %
  6960. {\if\edition\pythonEd
  6961. %
  6962. We recommend implementing \code{explicate\_control} using the
  6963. following four auxiliary functions.
  6964. \begin{description}
  6965. \item[\code{explicate\_effect}] generates code for expressions as
  6966. statements, so their result is ignored and only their side effects
  6967. matter.
  6968. \item[\code{explicate\_assign}] generates code for expressions
  6969. on the right-hand side of an assignment.
  6970. \item[\code{explicate\_pred}] generates code for an \code{if}
  6971. expression or statement by analyzing the condition expression.
  6972. \item[\code{explicate\_stmt}] generates code for statements.
  6973. \end{description}
  6974. These four functions should build the dictionary of basic blocks. The
  6975. following auxiliary function can be used to create a new basic block
  6976. from a list of statements. It returns a \code{goto} statement that
  6977. jumps to the new basic block.
  6978. \begin{center}
  6979. \begin{minipage}{\textwidth}
  6980. \begin{lstlisting}
  6981. def create_block(stmts, basic_blocks):
  6982. label = label_name(generate_name('block'))
  6983. basic_blocks[label] = stmts
  6984. return Goto(label)
  6985. \end{lstlisting}
  6986. \end{minipage}
  6987. \end{center}
  6988. Figure~\ref{fig:explicate-control-Lif} provides a skeleton for the
  6989. \code{explicate\_control} pass.
  6990. The \code{explicate\_effect} function has three parameters: 1) the
  6991. expression to be compiled, 2) the already-compiled code for this
  6992. expression's \emph{continuation}, that is, the list of statements that
  6993. should execute after this expression, and 3) the dictionary of
  6994. generated basic blocks. The \code{explicate\_effect} function returns
  6995. a list of \LangCIf{} statements and it may add to the dictionary of
  6996. basic blocks.
  6997. %
  6998. Let's consider a few of the cases for the expression to be compiled.
  6999. If the expression to be compiled is a constant, then it can be
  7000. discarded because it has no side effects. If it's a \CREAD{}, then it
  7001. has a side-effect and should be preserved. So the exprssion should be
  7002. translated into a statement using the \code{Expr} AST class. If the
  7003. expression to be compiled is an \code{if} expression, we translate the
  7004. two branches using \code{explicate\_effect} and then translate the
  7005. condition expression using \code{explicate\_pred}, which generates
  7006. code for the entire \code{if}.
  7007. The \code{explicate\_assign} function has four parameters: 1) the
  7008. right-hand-side of the assignment, 2) the left-hand-side of the
  7009. assignment (the variable), 3) the continuation, and 4) the dictionary
  7010. of basic blocks. The \code{explicate\_assign} function returns a list
  7011. of \LangCIf{} statements and it may add to the dictionary of basic
  7012. blocks.
  7013. When the right-hand-side is an \code{if} expression, there is some
  7014. work to do. In particular, the two branches should be translated using
  7015. \code{explicate\_assign} and the condition expression should be
  7016. translated using \code{explicate\_pred}. Otherwise we can simply
  7017. generate an assignment statement, with the given left and right-hand
  7018. sides, concatenated with its continuation.
  7019. \begin{figure}[tbp]
  7020. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  7021. def explicate_effect(e, cont, basic_blocks):
  7022. match e:
  7023. case IfExp(test, body, orelse):
  7024. ...
  7025. case Call(func, args):
  7026. ...
  7027. case Let(var, rhs, body):
  7028. ...
  7029. case _:
  7030. ...
  7031. def explicate_assign(rhs, lhs, cont, basic_blocks):
  7032. match rhs:
  7033. case IfExp(test, body, orelse):
  7034. ...
  7035. case Let(var, rhs, body):
  7036. ...
  7037. case _:
  7038. return [Assign([lhs], rhs)] + cont
  7039. def explicate_pred(cnd, thn, els, basic_blocks):
  7040. match cnd:
  7041. case Compare(left, [op], [right]):
  7042. goto_thn = create_block(thn, basic_blocks)
  7043. goto_els = create_block(els, basic_blocks)
  7044. return [If(cnd, [goto_thn], [goto_els])]
  7045. case Constant(True):
  7046. return thn;
  7047. case Constant(False):
  7048. return els;
  7049. case UnaryOp(Not(), operand):
  7050. ...
  7051. case IfExp(test, body, orelse):
  7052. ...
  7053. case Let(var, rhs, body):
  7054. ...
  7055. case _:
  7056. return [If(Compare(cnd, [Eq()], [Constant(False)]),
  7057. [create_block(els, basic_blocks)],
  7058. [create_block(thn, basic_blocks)])]
  7059. def explicate_stmt(s, cont, basic_blocks):
  7060. match s:
  7061. case Assign([lhs], rhs):
  7062. return explicate_assign(rhs, lhs, cont, basic_blocks)
  7063. case Expr(value):
  7064. return explicate_effect(value, cont, basic_blocks)
  7065. case If(test, body, orelse):
  7066. ...
  7067. def explicate_control(p):
  7068. match p:
  7069. case Module(body):
  7070. new_body = [Return(Constant(0))]
  7071. basic_blocks = {}
  7072. for s in reversed(body):
  7073. new_body = explicate_stmt(s, new_body, basic_blocks)
  7074. basic_blocks[label_name('start')] = new_body
  7075. return CProgram(basic_blocks)
  7076. \end{lstlisting}
  7077. \caption{Skeleton for the \code{explicate\_control} pass.}
  7078. \label{fig:explicate-control-Lif}
  7079. \end{figure}
  7080. \fi}
  7081. {\if\edition\racketEd\color{olive}
  7082. \begin{figure}[tbp]
  7083. \begin{lstlisting}
  7084. (define (explicate-pred cnd thn els)
  7085. (match cnd
  7086. [(Var x) ___]
  7087. [(Let x rhs body) ___]
  7088. [(Prim 'not (list e)) ___]
  7089. [(Prim op es) #:when (or (eq? op 'eq?) (eq? op '<))
  7090. (IfStmt (Prim op arg*) (force (block->goto thn))
  7091. (force (block->goto els)))]
  7092. [(Bool b) (if b thn els)]
  7093. [(If cnd^ thn^ els^) ___]
  7094. [else (error "explicate-pred unhandled case" cnd)]))
  7095. \end{lstlisting}
  7096. \caption{Skeleton for the \key{explicate-pred} auxiliary function.}
  7097. \label{fig:explicate-pred}
  7098. \end{figure}
  7099. \fi}
  7100. \racket{The skeleton for the \code{explicate\_pred} function is given
  7101. in Figure~\ref{fig:explicate-pred}. It has a case for every
  7102. expression that can have type \code{Boolean}. We detail a few cases
  7103. here and leave the rest for the reader. The input to this function
  7104. is an expression and two blocks, \code{thn} and \code{els}, for the
  7105. two branches of the enclosing \key{if}.}
  7106. %
  7107. \python{The \code{explicate\_pred} function has four parameters: 1)
  7108. the condition expession, 2) the generated statements for the
  7109. ``then'' branch, 3) the generated statements for the ``else''
  7110. branch, and 4) the dictionary of basic blocks. The
  7111. \code{explicate\_pred} function returns a list of \LangCIf{}
  7112. statements and it may add to the dictionary of basic blocks.}
  7113. %
  7114. Consider the case for comparison operators. We translate the
  7115. comparison to an \code{if} statement whose branches are \code{goto}
  7116. statements created by applying \code{create\_block} to the \code{thn}
  7117. and \code{els} branches.
  7118. %
  7119. Next consider the case for Boolean constants. We perform a kind of
  7120. partial evaluation\index{subject}{partial evaluation} and output
  7121. either the \code{thn} or \code{els} branch depending on whether the
  7122. constant is \TRUE{} or \FALSE{}. This case demonstrates that we
  7123. sometimes discard the \code{thn} or \code{els} blocks that are input
  7124. to \code{explicate\_pred}.
  7125. The case for \key{if} expressions in \code{explicate\_pred} is
  7126. particularly illuminating because it deals with the challenges we
  7127. discussed above regarding nested \key{if} expressions
  7128. (Figure~\ref{fig:explicate-control-s1-38}). The
  7129. \racket{\lstinline{thn^}}\python{\code{body}} and
  7130. \racket{\lstinline{els^}}\python{\code{orlese}} branches of the
  7131. \key{if} inherit their context from the current one, that is,
  7132. predicate context. So you should recursively apply
  7133. \code{explicate\_pred} to the
  7134. \racket{\lstinline{thn^}}\python{\code{body}} and
  7135. \racket{\lstinline{els^}}\python{\code{orelse}} branches. For both of
  7136. those recursive calls, pass \code{thn} and \code{els} as the extra
  7137. parameters. Thus, \code{thn} and \code{els} may get used twice, once
  7138. inside each recursive call. As discussed above, to avoid duplicating
  7139. code, we need to add them to the dictionary of basic blocks so that we
  7140. can instead refer to them by name and execute them with a \key{goto}.
  7141. {\if\edition\pythonEd
  7142. %
  7143. The last of the auxiliary functions is \code{explicate\_stmt}. It has
  7144. three parameters: 1) the statement to be compiled, 2) the code for its
  7145. continuation, and 3) the dictionary of basic blocks. The
  7146. \code{explicate\_stmt} returns a list of statements and it may add to
  7147. the dictionary of basic blocks. The cases for assignment and an
  7148. expression-statement are given in full in the skeleton code: they
  7149. simply dispatch to \code{explicate\_assign} and
  7150. \code{explicate\_effect}, respectively. The case for \code{if}
  7151. statements is not given, and is similar to the case for \code{if}
  7152. expressions.
  7153. The \code{explicate\_control} function itself is given in
  7154. Figure~\ref{fig:explicate-control-Lif}. It applies
  7155. \code{explicate\_stmt} to each statement in the program, from back to
  7156. front. Thus, the result so-far, stored in \code{new\_body}, can be
  7157. used as the continuation parameter in the next call to
  7158. \code{explicate\_stmt}. The \code{new\_body} is initialized to a
  7159. \code{Return} statement. Once complete, we add the \code{new\_body} to
  7160. the dictionary of basic blocks, labeling it as the ``start'' block.
  7161. %
  7162. \fi}
  7163. %% Getting back to the case for \code{if} in \code{explicate-pred}, we
  7164. %% make the recursive calls to \code{explicate-pred} on the ``then'' and
  7165. %% ``else'' branches with the arguments \code{(block->goto} $B_1$\code{)}
  7166. %% and \code{(block->goto} $B_2$\code{)}. Let $B_3$ and $B_4$ be the
  7167. %% results from the two recursive calls. We complete the case for
  7168. %% \code{if} by recursively apply \code{explicate-pred} to the condition
  7169. %% of the \code{if} with the promised blocks $B_3$ and $B_4$ to obtain
  7170. %% the result $B_5$.
  7171. %% \[
  7172. %% (\key{if}\; \itm{cnd}\; \itm{thn}\; \itm{els})
  7173. %% \quad\Rightarrow\quad
  7174. %% B_5
  7175. %% \]
  7176. \racket{The \code{explicate\_tail} and \code{explicate\_assign}
  7177. functions need additional cases for Boolean constants and \key{if}.
  7178. In the cases for \code{if}, the two branches inherit the current
  7179. context, so in \code{explicate\_tail} they are in tail position and
  7180. in \code{explicate\_assign} they are in assignment position. The
  7181. \code{cont} parameter of \code{explicate\_assign} is used in both
  7182. recursive calls, so make sure to use \code{block->goto} on it.}
  7183. %% In the case for \code{if} in \code{explicate-tail}, the two branches
  7184. %% inherit the current context, so they are in tail position. Thus, the
  7185. %% recursive calls on the ``then'' and ``else'' branch should be calls to
  7186. %% \code{explicate-tail}.
  7187. %% %
  7188. %% We need to pass $B_0$ as the accumulator argument for both of these
  7189. %% recursive calls, but we need to be careful not to duplicate $B_0$.
  7190. %% Thus, we first apply \code{block->goto} to $B_0$ so that it gets added
  7191. %% to the control-flow graph and obtain a promised goto $G_0$.
  7192. %% %
  7193. %% Let $B_1$ be the result of \code{explicate-tail} on the ``then''
  7194. %% branch and $G_0$ and let $B_2$ be the result of \code{explicate-tail}
  7195. %% on the ``else'' branch and $G_0$. Let $B_3$ be the result of applying
  7196. %% \code{explicate-pred} to the condition of the \key{if}, $B_1$, and
  7197. %% $B_2$. Then the \key{if} as a whole translates to promise $B_3$.
  7198. %% \[
  7199. %% (\key{if}\; \itm{cnd}\; \itm{thn}\; \itm{els}) \quad\Rightarrow\quad B_3
  7200. %% \]
  7201. %% In the above discussion, we use the metavariables $B_1$, $B_2$, and
  7202. %% $B_3$ to refer to blocks for the purposes of our discussion, but they
  7203. %% should not be confused with the labels for the blocks that appear in
  7204. %% the generated code. We initially construct unlabeled blocks; we only
  7205. %% attach labels to blocks when we add them to the control-flow graph, as
  7206. %% we see in the next case.
  7207. %% Next consider the case for \key{if} in the \code{explicate-assign}
  7208. %% function. The context of the \key{if} is an assignment to some
  7209. %% variable $x$ and then the control continues to some promised block
  7210. %% $B_1$. The code that we generate for both the ``then'' and ``else''
  7211. %% branches needs to continue to $B_1$, so to avoid duplicating $B_1$ we
  7212. %% apply \code{block->goto} to it and obtain a promised goto $G_1$. The
  7213. %% branches of the \key{if} inherit the current context, so they are in
  7214. %% assignment positions. Let $B_2$ be the result of applying
  7215. %% \code{explicate-assign} to the ``then'' branch, variable $x$, and
  7216. %% $G_1$. Let $B_3$ be the result of applying \code{explicate-assign} to
  7217. %% the ``else'' branch, variable $x$, and $G_1$. Finally, let $B_4$ be
  7218. %% the result of applying \code{explicate-pred} to the predicate
  7219. %% $\itm{cnd}$ and the promises $B_2$ and $B_3$. The \key{if} as a whole
  7220. %% translates to the promise $B_4$.
  7221. %% \[
  7222. %% (\key{if}\; \itm{cnd}\; \itm{thn}\; \itm{els}) \quad\Rightarrow\quad B_4
  7223. %% \]
  7224. %% This completes the description of \code{explicate\_control} for \LangIf{}.
  7225. Figure~\ref{fig:explicate-control-s1-38} shows the output of the
  7226. \code{remove\_complex\_operands} pass and then the
  7227. \code{explicate\_control} pass on the example program. We walk through
  7228. the output program.
  7229. %
  7230. Following the order of evaluation in the output of
  7231. \code{remove\_complex\_operands}, we first have two calls to \CREAD{}
  7232. and then the comparison \racket{\code{(< x 1)}}\python{\code{x < 1}}
  7233. in the predicate of the inner \key{if}. In the output of
  7234. \code{explicate\_control}, in the
  7235. block labeled \code{start}, are two assignment statements followed by a
  7236. \code{if} statement that branches to \code{block\_8} or
  7237. \code{block\_9}. The blocks associated with those labels contain the
  7238. translations of the code
  7239. \racket{\code{(eq? x 0)}}\python{\code{x == 0}}
  7240. and
  7241. \racket{\code{(eq? x 2)}}\python{\code{x == 2}},
  7242. respectively. In particular, we start \code{block\_8} with the
  7243. comparison
  7244. \racket{\code{(eq? x 0)}}\python{\code{x == 0}}
  7245. and then branch to \code{block\_4} or \code{block\_5}.
  7246. Here was see that our algorithm sometimes inserts unnecessary blocks:
  7247. \code{block\_4} is just a \code{goto} to \code{block\_2}
  7248. and \code{block\_5} is just a \code{goto} to \code{block\_3}.
  7249. It would be better to skip blocks \code{block\_4} and \code{block\_5}
  7250. and go directly to \code{block\_2} and \code{block\_3},
  7251. which we investigate doing in Section~\ref{sec:opt-jumps}.
  7252. Getting back to the example, \code{block\_2} and \code{block\_3},
  7253. corresponds to the two branches of the outer \key{if}, i.e.,
  7254. \racket{\code{(+ y 2)}}\python{\code{y + 2}} and
  7255. \racket{\code{(+ y 10)}}\python{\code{y + 10}}.
  7256. %
  7257. The story for \code{block\_9} is similar to that of \code{block\_8}.
  7258. %
  7259. \python{The \code{block\_1} corresponds to the \code{print} statment
  7260. at the end of the program.}
  7261. \begin{figure}[tbp]
  7262. {\if\edition\racketEd\color{olive}
  7263. \begin{tabular}{lll}
  7264. \begin{minipage}{0.4\textwidth}
  7265. % cond_test_41.rkt
  7266. \begin{lstlisting}
  7267. (let ([x (read)])
  7268. (let ([y (read)])
  7269. (if (if (< x 1)
  7270. (eq? x 0)
  7271. (eq? x 2))
  7272. (+ y 2)
  7273. (+ y 10))))
  7274. \end{lstlisting}
  7275. \end{minipage}
  7276. &
  7277. $\Rightarrow$
  7278. &
  7279. \begin{minipage}{0.55\textwidth}
  7280. TODO: replace with non-optimized version. -Jeremy
  7281. \begin{lstlisting}
  7282. start:
  7283. x = (read);
  7284. y = (read);
  7285. if (< x 1) goto block40;
  7286. else goto block41;
  7287. block40:
  7288. if (eq? x 0) goto block38;
  7289. else goto block39;
  7290. block41:
  7291. if (eq? x 2) goto block38;
  7292. else goto block39;
  7293. block38:
  7294. return (+ y 2);
  7295. block39:
  7296. return (+ y 10);
  7297. \end{lstlisting}
  7298. \end{minipage}
  7299. \end{tabular}
  7300. \fi}
  7301. {\if\edition\pythonEd
  7302. \begin{tabular}{lll}
  7303. \begin{minipage}{0.4\textwidth}
  7304. % cond_test_41.rkt
  7305. \begin{lstlisting}
  7306. x = input_int()
  7307. y = input_int()
  7308. print(y + 2 \
  7309. if (x == 0 \
  7310. if x < 1 \
  7311. else x == 2) \
  7312. else y + 10)
  7313. \end{lstlisting}
  7314. \end{minipage}
  7315. &
  7316. $\Rightarrow$
  7317. &
  7318. \begin{minipage}{0.55\textwidth}
  7319. \begin{lstlisting}
  7320. start:
  7321. x = input_int()
  7322. y = input_int()
  7323. if x < 1:
  7324. goto block_8
  7325. else:
  7326. goto block_9
  7327. block_8:
  7328. if x == 0:
  7329. goto block_4
  7330. else:
  7331. goto block_5
  7332. block_9:
  7333. if x == 2:
  7334. goto block_6
  7335. else:
  7336. goto block_7
  7337. block_4:
  7338. goto block_2
  7339. block_5:
  7340. goto block_3
  7341. block_6:
  7342. goto block_2
  7343. block_7:
  7344. goto block_3
  7345. block_2:
  7346. tmp_0 = y + 2
  7347. goto block_1
  7348. block_3:
  7349. tmp_0 = y + 10
  7350. goto block_1
  7351. block_1:
  7352. print(tmp_0)
  7353. return 0
  7354. \end{lstlisting}
  7355. \end{minipage}
  7356. \end{tabular}
  7357. \fi}
  7358. \caption{Translation from \LangIf{} to \LangCIf{}
  7359. via the \code{explicate\_control}.}
  7360. \label{fig:explicate-control-s1-38}
  7361. \end{figure}
  7362. {\if\edition\racketEd\color{olive}
  7363. The way in which the \code{shrink} pass transforms logical operations
  7364. such as \code{and} and \code{or} can impact the quality of code
  7365. generated by \code{explicate\_control}. For example, consider the
  7366. following program.
  7367. % cond_test_21.rkt, and_eq_input.py
  7368. \begin{lstlisting}
  7369. (if (and (eq? (read) 0) (eq? (read) 1))
  7370. 0
  7371. 42)
  7372. \end{lstlisting}
  7373. The \code{and} operation should transform into something that the
  7374. \code{explicate-pred} function can still analyze and descend through to
  7375. reach the underlying \code{eq?} conditions. Ideally, your
  7376. \code{explicate\_control} pass should generate code similar to the
  7377. following for the above program.
  7378. \begin{center}
  7379. \begin{lstlisting}
  7380. start:
  7381. tmp1 = (read);
  7382. if (eq? tmp1 0) goto block40;
  7383. else goto block39;
  7384. block40:
  7385. tmp2 = (read);
  7386. if (eq? tmp2 1) goto block38;
  7387. else goto block39;
  7388. block38:
  7389. return 0;
  7390. block39:
  7391. return 42;
  7392. \end{lstlisting}
  7393. \end{center}
  7394. \fi}
  7395. \begin{exercise}\normalfont
  7396. \racket{
  7397. Implement the pass \code{explicate\_control} by adding the cases for
  7398. Boolean constants and \key{if} to the \code{explicate-tail} and
  7399. \code{explicate-assign}. Implement the auxiliary function
  7400. \code{explicate-pred} for predicate contexts.}
  7401. \python{Implement \code{explicate\_control} pass with its
  7402. four auxiliary functions.}
  7403. %
  7404. Create test cases that exercise all of the new cases in the code for
  7405. this pass.
  7406. %
  7407. {\if\edition\racketEd\color{olive}
  7408. Add the following entry to the list of \code{passes} in
  7409. \code{run-tests.rkt} and then run this script to test your compiler.
  7410. \begin{lstlisting}
  7411. (list "explicate-control" explicate-control interp-Cif type-check-Cif)
  7412. \end{lstlisting}
  7413. \fi}
  7414. \end{exercise}
  7415. \clearpage
  7416. \section{Select Instructions}
  7417. \label{sec:select-Lif}
  7418. \index{subject}{instruction selection}
  7419. The \code{select\_instructions} pass translates \LangCIf{} to
  7420. \LangXIfVar{}.
  7421. %
  7422. \racket{Recall that we implement this pass using three auxiliary
  7423. functions, one for each of the non-terminals $\Atm$, $\Stmt$, and
  7424. $\Tail$.}
  7425. %
  7426. \racket{For $\Atm$, we have new cases for the Booleans.}
  7427. %
  7428. \python{We begin with the Boolean constants.}
  7429. We take the usual approach of encoding them as integers.
  7430. \[
  7431. \TRUE{} \quad\Rightarrow\quad \key{1}
  7432. \qquad\qquad
  7433. \FALSE{} \quad\Rightarrow\quad \key{0}
  7434. \]
  7435. For translating statements, we discuss a couple cases. The \code{not}
  7436. operation can be implemented in terms of \code{xorq} as we discussed
  7437. at the beginning of this section. Given an assignment, if the
  7438. left-hand side variable is the same as the argument of \code{not},
  7439. then just the \code{xorq} instruction suffices.
  7440. \[
  7441. \CASSIGN{\Var}{ \CUNIOP{\key{not}}{\Var} }
  7442. \quad\Rightarrow\quad
  7443. \key{xorq}~\key{\$}1\key{,}~\Var
  7444. \]
  7445. Otherwise, a \key{movq} is needed to adapt to the update-in-place
  7446. semantics of x86. In the following translation, let $\Arg$ be the
  7447. result of translating $\Atm$ to x86.
  7448. \[
  7449. \CASSIGN{\Var}{ \CUNIOP{\key{not}}{\Atm} }
  7450. \quad\Rightarrow\quad
  7451. \begin{array}{l}
  7452. \key{movq}~\Arg\key{,}~\Var\\
  7453. \key{xorq}~\key{\$}1\key{,}~\Var
  7454. \end{array}
  7455. \]
  7456. Next consider the cases for equality. Translating this operation to
  7457. x86 is slightly involved due to the unusual nature of the \key{cmpq}
  7458. instruction discussed above. We recommend translating an assignment
  7459. with an equality on the right-hand side into a sequence of three
  7460. instructions. \\
  7461. \begin{tabular}{lll}
  7462. \begin{minipage}{0.4\textwidth}
  7463. \begin{lstlisting}
  7464. |$\CASSIGN{\Var}{ \LP\CEQ{\Atm_1}{\Atm_2} \RP }$|
  7465. \end{lstlisting}
  7466. \end{minipage}
  7467. &
  7468. $\Rightarrow$
  7469. &
  7470. \begin{minipage}{0.4\textwidth}
  7471. \begin{lstlisting}
  7472. cmpq |$\Arg_2$|, |$\Arg_1$|
  7473. sete %al
  7474. movzbq %al, |$\Var$|
  7475. \end{lstlisting}
  7476. \end{minipage}
  7477. \end{tabular} \\
  7478. The translations for the other comparison operators are similar to the
  7479. above but use different suffixes for the \code{set} instruction.
  7480. \racket{Regarding the $\Tail$ non-terminal, we have two new cases:
  7481. \key{goto} and \key{if} statements. Both are straightforward to
  7482. translate to x86.}
  7483. %
  7484. A \key{goto} statement becomes a jump instruction.
  7485. \[
  7486. \key{goto}\; \ell\racket{\key{;}} \quad \Rightarrow \quad \key{jmp}\;\ell
  7487. \]
  7488. %
  7489. An \key{if} statement becomes a compare instruction followed by a
  7490. conditional jump (for the ``then'' branch) and the fall-through is to
  7491. a regular jump (for the ``else'' branch).\\
  7492. \begin{tabular}{lll}
  7493. \begin{minipage}{0.4\textwidth}
  7494. \begin{lstlisting}
  7495. if |$\CEQ{\Atm_1}{\Atm_2}$||$\python{\key{:}}$|
  7496. goto |$\ell_1$||$\racket{\key{;}}$|
  7497. else|$\python{\key{:}}$|
  7498. goto |$\ell_2$||$\racket{\key{;}}$|
  7499. \end{lstlisting}
  7500. \end{minipage}
  7501. &
  7502. $\Rightarrow$
  7503. &
  7504. \begin{minipage}{0.4\textwidth}
  7505. \begin{lstlisting}
  7506. cmpq |$\Arg_2$|, |$\Arg_1$|
  7507. je |$\ell_1$|
  7508. jmp |$\ell_2$|
  7509. \end{lstlisting}
  7510. \end{minipage}
  7511. \end{tabular} \\
  7512. Again, the translations for the other comparison operators are similar to the
  7513. above but use different suffixes for the conditional jump instruction.
  7514. \python{Regarding the \key{return} statement, we recommend treating it
  7515. as an assignment to the \key{rax} register followed by a jump to the
  7516. conclusion of the \code{main} function.}
  7517. \begin{exercise}\normalfont
  7518. Expand your \code{select\_instructions} pass to handle the new
  7519. features of the \LangIf{} language.
  7520. %
  7521. {\if\edition\racketEd\color{olive}
  7522. Add the following entry to the list of \code{passes} in
  7523. \code{run-tests.rkt}
  7524. \begin{lstlisting}
  7525. (list "select-instructions" select-instructions interp-pseudo-x86-1)
  7526. \end{lstlisting}
  7527. \fi}
  7528. %
  7529. Run the script to test your compiler on all the test programs.
  7530. \end{exercise}
  7531. \section{Register Allocation}
  7532. \label{sec:register-allocation-Lif}
  7533. \index{subject}{register allocation}
  7534. The changes required for \LangIf{} affect liveness analysis, building the
  7535. interference graph, and assigning homes, but the graph coloring
  7536. algorithm itself does not change.
  7537. \subsection{Liveness Analysis}
  7538. \label{sec:liveness-analysis-Lif}
  7539. \index{subject}{liveness analysis}
  7540. Recall that for \LangVar{} we implemented liveness analysis for a
  7541. single basic block (Section~\ref{sec:liveness-analysis-Lvar}). With
  7542. the addition of \key{if} expressions to \LangIf{},
  7543. \code{explicate\_control} produces many basic blocks.
  7544. %% We recommend that you create a new auxiliary function named
  7545. %% \code{uncover\_live\_CFG} that applies liveness analysis to a
  7546. %% control-flow graph.
  7547. The first question is: what order should we process the basic blocks?
  7548. Recall that to perform liveness analysis on a basic block we need to
  7549. know the live-after set for the last instruction in the block. If a
  7550. basic block has no successors (i.e. contains no jumps to other
  7551. blocks), then it has an empty live-after set and we can immediately
  7552. apply liveness analysis to it. If a basic block has some successors,
  7553. then we need to complete liveness analysis on those blocks
  7554. first. These ordering contraints are the reverse of a
  7555. \emph{topological order}\index{subject}{topological order} on the
  7556. control-flow graph of the program~\citep{Allen:1970uq}. In a
  7557. \emph{control flow graph} (CFG), each node represents a \emph{basic
  7558. block} and each edge represents a jump from one block to another
  7559. \index{subject}{control-flow graph}. It is straightforward to
  7560. generate a CFG from the dictionary of basic blocks. One then needs to
  7561. transpose the CFG and apply the topological sort algorithm.
  7562. %
  7563. %
  7564. \racket{We recommend using the \code{tsort} and \code{transpose}
  7565. functions of the Racket \code{graph} package to accomplish this.}
  7566. %
  7567. \python{We provide implementations of \code{topological\_sort} and
  7568. \code{transpose} in the file \code{graph.py} of the support code.}
  7569. %
  7570. As an aside, a topological ordering is only guaranteed to exist if the
  7571. graph does not contain any cycles. That is indeed the case for the
  7572. control-flow graphs that we generate from \LangIf{} programs.
  7573. However, in Chapter~\ref{ch:Rwhile} we add loops to create \LangLoop{}
  7574. and learn how to handle cycles in the control-flow graph.
  7575. \racket{You'll need to construct a directed graph to represent the
  7576. control-flow graph. Do not use the \code{directed-graph} of the
  7577. \code{graph} package because that only allows at most one edge
  7578. between each pair of vertices, but a control-flow graph may have
  7579. multiple edges between a pair of vertices. The \code{multigraph.rkt}
  7580. file in the support code implements a graph representation that
  7581. allows multiple edges between a pair of vertices.}
  7582. {\if\edition\racketEd\color{olive}
  7583. The next question is how to analyze jump instructions. Recall that in
  7584. Section~\ref{sec:liveness-analysis-Lvar} we maintain an alist named
  7585. \code{label->live} that maps each label to the set of live locations
  7586. at the beginning of its block. We use \code{label->live} to determine
  7587. the live-before set for each $\JMP{\itm{label}}$ instruction. Now
  7588. that we have many basic blocks, \code{label->live} needs to be updated
  7589. as we process the blocks. In particular, after performing liveness
  7590. analysis on a block, we take the live-before set of its first
  7591. instruction and associate that with the block's label in the
  7592. \code{label->live}.
  7593. \fi}
  7594. %
  7595. {\if\edition\pythonEd
  7596. %
  7597. The next question is how to analyze jump instructions. The locations
  7598. that are live before a \code{jmp} should be the locations in
  7599. $L_{\mathtt{before}}$ at the target of the jump. So we recommend
  7600. maintaining a dictionary named \code{live\_before\_block} that maps each
  7601. label to the $L_{\mathtt{before}}$ for the first instruction in its
  7602. block. After performing liveness analysis on each block, we take the
  7603. live-before set of its first instruction and associate that with the
  7604. block's label in the \code{live\_before\_block} dictionary.
  7605. %
  7606. \fi}
  7607. In \LangXIfVar{} we also have the conditional jump
  7608. $\JMPIF{\itm{cc}}{\itm{label}}$ to deal with. Liveness analysis for
  7609. this instruction is particularly interesting because, during
  7610. compilation, we do not know which way a conditional jump will go. So
  7611. we do not know whether to use the live-before set for the following
  7612. instruction or the live-before set for the block associated with the
  7613. $\itm{label}$. However, there is no harm to the correctness of the
  7614. generated code if we classify more locations as live than the ones
  7615. that are truly live during one particular execution of the
  7616. instruction. Thus, we can take the union of the live-before sets from
  7617. the following instruction and from the mapping for $\itm{label}$ in
  7618. \racket{\code{label->live}}\python{\code{live\_before\_block}}.
  7619. The auxiliary functions for computing the variables in an
  7620. instruction's argument and for computing the variables read-from ($R$)
  7621. or written-to ($W$) by an instruction need to be updated to handle the
  7622. new kinds of arguments and instructions in \LangXIfVar{}.
  7623. \begin{exercise}\normalfont
  7624. {\if\edition\racketEd\color{olive}
  7625. %
  7626. Update the \code{uncover\_live} pass and implement the
  7627. \code{uncover-live-CFG} auxiliary function to apply liveness analysis
  7628. to the control-flow graph.
  7629. %
  7630. Add the following entry to the list of \code{passes} in the
  7631. \code{run-tests.rkt} script.
  7632. \begin{lstlisting}
  7633. (list "uncover-live" uncover-live interp-pseudo-x86-1)
  7634. \end{lstlisting}
  7635. \fi}
  7636. {\if\edition\pythonEd
  7637. %
  7638. Update the \code{uncover\_live} function to perform liveness analysis,
  7639. in reverse topological order, on all of the basic blocks in the
  7640. program.
  7641. %
  7642. \fi}
  7643. % Check that the live-after sets that you generate for
  7644. % example X matches the following... -Jeremy
  7645. \end{exercise}
  7646. \subsection{Build the Interference Graph}
  7647. \label{sec:build-interference-Lif}
  7648. Many of the new instructions in \LangXIfVar{} can be handled in the
  7649. same way as the instructions in \LangXVar{}. Thus, if your code was
  7650. already quite general, it will not need to be changed to handle the
  7651. new instructions. If you code is not general enough, we recommend that
  7652. you change your code to be more general. For example, you can factor
  7653. out the computing of the the read and write sets for each kind of
  7654. instruction into auxiliary functions.
  7655. Note that the \key{movzbq} instruction requires some special care,
  7656. similar to the \key{movq} instruction. See rule number 1 in
  7657. Section~\ref{sec:build-interference}.
  7658. \begin{exercise}\normalfont
  7659. Update the \code{build\_interference} pass for \LangXIfVar{}.
  7660. {\if\edition\racketEd\color{olive}
  7661. Add the following entries to the list of \code{passes} in the
  7662. \code{run-tests.rkt} script.
  7663. \begin{lstlisting}
  7664. (list "build-interference" build-interference interp-pseudo-x86-1)
  7665. (list "allocate-registers" allocate-registers interp-x86-1)
  7666. \end{lstlisting}
  7667. \fi}
  7668. % Check that the interference graph that you generate for
  7669. % example X matches the following graph G... -Jeremy
  7670. \end{exercise}
  7671. \section{Patch Instructions}
  7672. The new instructions \key{cmpq} and \key{movzbq} have some special
  7673. restrictions that need to be handled in the \code{patch\_instructions}
  7674. pass.
  7675. %
  7676. The second argument of the \key{cmpq} instruction must not be an
  7677. immediate value (such as an integer). So if you are comparing two
  7678. immediates, we recommend inserting a \key{movq} instruction to put the
  7679. second argument in \key{rax}. As usual, \key{cmpq} may have at most
  7680. one memory reference.
  7681. %
  7682. The second argument of the \key{movzbq} must be a register.
  7683. \begin{exercise}\normalfont
  7684. %
  7685. Update \code{patch-instructions} pass for \LangXIfVar{}.
  7686. %
  7687. {\if\edition\racketEd\color{olive}
  7688. Add the following entry to the list of \code{passes} in
  7689. \code{run-tests.rkt} and then run this script to test your compiler.
  7690. \begin{lstlisting}
  7691. (list "patch-instructions" patch-instructions interp-x86-1)
  7692. \end{lstlisting}
  7693. \fi}
  7694. \end{exercise}
  7695. {\if\edition\pythonEd
  7696. \section{Print x86}
  7697. \label{sec:print-x86-cond}
  7698. The generation of the \code{main} function with its prelude and
  7699. conclusion must change to accomodate how the program now consists of
  7700. one or more basic blocks. After the prelude in \code{main}, jump to
  7701. the \code{start} block. Place the conclusion in a basic block labelled
  7702. with \code{conclusion}.
  7703. \fi}
  7704. Figure~\ref{fig:if-example-x86} shows a simple example program in
  7705. \LangIf{} translated to x86, showing the results of
  7706. \code{explicate\_control}, \code{select\_instructions}, and the final
  7707. x86 assembly.
  7708. \begin{figure}[tbp]
  7709. {\if\edition\racketEd\color{olive}
  7710. \begin{tabular}{lll}
  7711. \begin{minipage}{0.4\textwidth}
  7712. % cond_test_20.rkt, eq_input.py
  7713. \begin{lstlisting}
  7714. (if (eq? (read) 1) 42 0)
  7715. \end{lstlisting}
  7716. $\Downarrow$
  7717. \begin{lstlisting}
  7718. start:
  7719. tmp7951 = (read);
  7720. if (eq? tmp7951 1)
  7721. goto block7952;
  7722. else
  7723. goto block7953;
  7724. block7952:
  7725. return 42;
  7726. block7953:
  7727. return 0;
  7728. \end{lstlisting}
  7729. $\Downarrow$
  7730. \begin{lstlisting}
  7731. start:
  7732. callq read_int
  7733. movq %rax, tmp7951
  7734. cmpq $1, tmp7951
  7735. je block7952
  7736. jmp block7953
  7737. block7953:
  7738. movq $0, %rax
  7739. jmp conclusion
  7740. block7952:
  7741. movq $42, %rax
  7742. jmp conclusion
  7743. \end{lstlisting}
  7744. \end{minipage}
  7745. &
  7746. $\Rightarrow\qquad$
  7747. \begin{minipage}{0.4\textwidth}
  7748. \begin{lstlisting}
  7749. start:
  7750. callq read_int
  7751. movq %rax, %rcx
  7752. cmpq $1, %rcx
  7753. je block7952
  7754. jmp block7953
  7755. block7953:
  7756. movq $0, %rax
  7757. jmp conclusion
  7758. block7952:
  7759. movq $42, %rax
  7760. jmp conclusion
  7761. .globl main
  7762. main:
  7763. pushq %rbp
  7764. movq %rsp, %rbp
  7765. pushq %r13
  7766. pushq %r12
  7767. pushq %rbx
  7768. pushq %r14
  7769. subq $0, %rsp
  7770. jmp start
  7771. conclusion:
  7772. addq $0, %rsp
  7773. popq %r14
  7774. popq %rbx
  7775. popq %r12
  7776. popq %r13
  7777. popq %rbp
  7778. retq
  7779. \end{lstlisting}
  7780. \end{minipage}
  7781. \end{tabular}
  7782. \fi}
  7783. {\if\edition\pythonEd
  7784. \begin{tabular}{lll}
  7785. \begin{minipage}{0.4\textwidth}
  7786. % cond_test_20.rkt, eq_input.py
  7787. \begin{lstlisting}
  7788. print(42 if input_int() == 1 else 0)
  7789. \end{lstlisting}
  7790. $\Downarrow$
  7791. \begin{lstlisting}
  7792. start:
  7793. tmp_0 = input_int()
  7794. if tmp_0 == 1:
  7795. goto block_3
  7796. else:
  7797. goto block_4
  7798. block_3:
  7799. tmp_1 = 42
  7800. goto block_2
  7801. block_4:
  7802. tmp_1 = 0
  7803. goto block_2
  7804. block_2:
  7805. print(tmp_1)
  7806. return 0
  7807. \end{lstlisting}
  7808. $\Downarrow$
  7809. \begin{lstlisting}
  7810. start:
  7811. callq read_int
  7812. movq %rax, tmp_0
  7813. cmpq 1, tmp_0
  7814. je block_3
  7815. jmp block_4
  7816. block_3:
  7817. movq 42, tmp_1
  7818. jmp block_2
  7819. block_4:
  7820. movq 0, tmp_1
  7821. jmp block_2
  7822. block_2:
  7823. movq tmp_1, %rdi
  7824. callq print_int
  7825. movq 0, %rax
  7826. jmp conclusion
  7827. \end{lstlisting}
  7828. \end{minipage}
  7829. &
  7830. $\Rightarrow\qquad$
  7831. \begin{minipage}{0.4\textwidth}
  7832. \begin{lstlisting}
  7833. .globl main
  7834. main:
  7835. pushq %rbp
  7836. movq %rsp, %rbp
  7837. subq $0, %rsp
  7838. jmp start
  7839. start:
  7840. callq read_int
  7841. movq %rax, %rcx
  7842. cmpq $1, %rcx
  7843. je block_3
  7844. jmp block_4
  7845. block_3:
  7846. movq $42, %rcx
  7847. jmp block_2
  7848. block_4:
  7849. movq $0, %rcx
  7850. jmp block_2
  7851. block_2:
  7852. movq %rcx, %rdi
  7853. callq print_int
  7854. movq $0, %rax
  7855. jmp conclusion
  7856. conclusion:
  7857. addq $0, %rsp
  7858. popq %rbp
  7859. retq
  7860. \end{lstlisting}
  7861. \end{minipage}
  7862. \end{tabular}
  7863. \fi}
  7864. \caption{Example compilation of an \key{if} expression to x86, showing
  7865. the results of \code{explicate\_control},
  7866. \code{select\_instructions}, and the final x86 assembly code. }
  7867. \label{fig:if-example-x86}
  7868. \end{figure}
  7869. \begin{figure}[tbp]
  7870. {\if\edition\racketEd\color{olive}
  7871. \begin{tikzpicture}[baseline=(current bounding box.center)]
  7872. \node (Lif) at (0,2) {\large \LangIf{}};
  7873. \node (Lif-2) at (3,2) {\large \LangIf{}};
  7874. \node (Lif-3) at (6,2) {\large \LangIf{}};
  7875. \node (Lif-4) at (9,2) {\large \LangIf{}};
  7876. \node (Lif-5) at (12,2) {\large \LangIf{}};
  7877. \node (C1-1) at (3,0) {\large \LangCIf{}};
  7878. \node (x86-2) at (3,-2) {\large \LangXIfVar{}};
  7879. \node (x86-2-1) at (3,-4) {\large \LangXIfVar{}};
  7880. \node (x86-2-2) at (6,-4) {\large \LangXIfVar{}};
  7881. \node (x86-3) at (6,-2) {\large \LangXIfVar{}};
  7882. \node (x86-4) at (9,-2) {\large \LangXIf{}};
  7883. \node (x86-5) at (9,-4) {\large \LangXIf{}};
  7884. \path[->,bend left=15] (Lif) edge [above] node {\ttfamily\footnotesize type-check} (Lif-2);
  7885. \path[->,bend left=15] (Lif-2) edge [above] node {\ttfamily\footnotesize shrink} (Lif-3);
  7886. \path[->,bend left=15] (Lif-3) edge [above] node {\ttfamily\footnotesize uniquify} (Lif-4);
  7887. \path[->,bend left=15] (Lif-4) edge [above] node {\ttfamily\footnotesize remove-complex.} (Lif-5);
  7888. \path[->,bend left=15] (Lif-5) edge [left] node {\ttfamily\footnotesize explicate-control} (C1-1);
  7889. \path[->,bend right=15] (C1-1) edge [left] node {\ttfamily\footnotesize select-instructions} (x86-2);
  7890. \path[->,bend left=15] (x86-2) edge [right] node {\ttfamily\footnotesize uncover-live} (x86-2-1);
  7891. \path[->,bend right=15] (x86-2-1) edge [below] node {\ttfamily\footnotesize build-inter.} (x86-2-2);
  7892. \path[->,bend right=15] (x86-2-2) edge [right] node {\ttfamily\footnotesize allocate-reg.} (x86-3);
  7893. \path[->,bend left=15] (x86-3) edge [above] node {\ttfamily\footnotesize patch-instr.} (x86-4);
  7894. \path[->,bend left=15] (x86-4) edge [right] node {\ttfamily\footnotesize print-x86 } (x86-5);
  7895. \end{tikzpicture}
  7896. \fi}
  7897. {\if\edition\pythonEd
  7898. \begin{tikzpicture}[baseline=(current bounding box.center)]
  7899. \node (Lif-1) at (0,2) {\large \LangIf{}};
  7900. \node (Lif-2) at (3,2) {\large \LangIf{}};
  7901. \node (Lif-3) at (6,2) {\large \LangIf{}};
  7902. \node (C-1) at (3,0) {\large \LangCIf{}};
  7903. \node (x86-1) at (3,-2) {\large \LangXIfVar{}};
  7904. \node (x86-2) at (6,-2) {\large \LangXIfVar{}};
  7905. \node (x86-3) at (9,-2) {\large \LangXIf{}};
  7906. \node (x86-4) at (12,-2) {\large \LangXIf{}};
  7907. \path[->,bend left=15] (Lif-1) edge [above] node {\ttfamily\footnotesize shrink} (Lif-2);
  7908. \path[->,bend left=15] (Lif-2) edge [above] node {\ttfamily\footnotesize remove\_complex.} (Lif-3);
  7909. \path[->,bend left=15] (Lif-3) edge [right] node {\ttfamily\footnotesize explicate\_control} (C-1);
  7910. \path[->,bend right=15] (C-1) edge [left] node {\ttfamily\footnotesize select\_instr.} (x86-1);
  7911. \path[->,bend right=15] (x86-1) edge [below] node {\ttfamily\footnotesize assign\_homes} (x86-2);
  7912. \path[->,bend left=15] (x86-2) edge [above] node {\ttfamily\footnotesize patch\_instr.} (x86-3);
  7913. \path[->,bend right=15] (x86-3) edge [below] node {\ttfamily\footnotesize print\_x86 } (x86-4);
  7914. \end{tikzpicture}
  7915. \fi}
  7916. \caption{Diagram of the passes for \LangIf{}, a language with conditionals.}
  7917. \label{fig:Lif-passes}
  7918. \end{figure}
  7919. Figure~\ref{fig:Lif-passes} lists all the passes needed for the
  7920. compilation of \LangIf{}.
  7921. \section{Challenge: Optimize Blocks and Remove Jumps}
  7922. \label{sec:opt-jumps}
  7923. We discuss two optional challenges that involve optimizing the
  7924. control-flow of the program.
  7925. \subsection{Optimize Blocks}
  7926. The algorithm for \code{explicate\_control} that we discussed in
  7927. Section~\ref{sec:explicate-control-Lif} sometimes generates too many
  7928. blocks. It does so in two different ways.
  7929. %
  7930. First, recall how in Figure~\ref{fig:explicate-control-s1-38},
  7931. \code{block\_4} consists of just a jump to \code{block\_2}. We created
  7932. a new basic block from a single \code{goto} statement, whereas we
  7933. could have simply returned the \code{goto} statement. We can solve
  7934. this problem by modifying the \code{create\_block} function to
  7935. recognize this situation.
  7936. Second, \code{explicate\_control} creates a basic block whenever a
  7937. continuation \emph{might} get used more than once (wheneven a
  7938. continuation is passed into two or more recursive calls). However,
  7939. just because a continuation might get used more than once, doesn't
  7940. mean it will. In fact, some continuation parameters may not be used
  7941. at all because we sometimes ignore them. For example, consider the
  7942. case for the constant \TRUE{} in \code{explicate\_pred}, where we
  7943. discard the \code{els} branch. So the question is how can we decide
  7944. whether to create a basic block?
  7945. The solution to this conundrum is to use \emph{lazy
  7946. evaluation}\index{subject}{lazy evaluation}~\citep{Friedman:1976aa}
  7947. to delay creating a basic block until the point in time where we know
  7948. it will be used.
  7949. %
  7950. {\if\edition\racketEd\color{olive}
  7951. %
  7952. Racket provides support for
  7953. lazy evaluation with the
  7954. \href{https://docs.racket-lang.org/reference/Delayed_Evaluation.html}{\code{racket/promise}}
  7955. package. The expression \key{(delay} $e_1 \ldots e_n$\key{)}
  7956. \index{subject}{delay} creates a
  7957. \emph{promise}\index{subject}{promise} in which the evaluation of the
  7958. expressions is postponed. When \key{(force}
  7959. $p$\key{)}\index{subject}{force} is applied to a promise $p$ for the
  7960. first time, the expressions $e_1 \ldots e_n$ are evaluated and the
  7961. result of $e_n$ is cached in the promise and returned. If \code{force}
  7962. is applied again to the same promise, then the cached result is
  7963. returned. If \code{force} is applied to an argument that is not a
  7964. promise, \code{force} simply returns the argument.
  7965. %
  7966. \fi}
  7967. %
  7968. {\if\edition\pythonEd
  7969. %
  7970. While Python does not provide direct support for lazy evaluation, it
  7971. is easy to mimic. We can \emph{delay} the evaluation of a computation
  7972. by wrapping it inside a function with no parameters. We can
  7973. \emph{force} its evaluation by calling the function. However, in some
  7974. cases of \code{explicate\_pred}, etc., we will return a list of
  7975. statements and in other cases we will return a function that computes
  7976. a list of statements. We use the term \emph{promise} to refer to a
  7977. value that may or may not be delayed. To uniformly deal with
  7978. promises, we define the following \code{force} function that checks
  7979. whether its input is delayed (i.e. whether it is a function) and then
  7980. either 1) calls the function, or 2) returns the input.
  7981. \begin{lstlisting}
  7982. def force(promise):
  7983. if isinstance(promise, types.FunctionType):
  7984. return promise()
  7985. else:
  7986. return promise
  7987. \end{lstlisting}
  7988. %
  7989. \fi}
  7990. We use promises for the input and output of the functions
  7991. \code{explicate\_pred}, \code{explicate\_assign},
  7992. %
  7993. \racket{ and \code{explicate\_tail}}\python{ \code{explicate\_effect}, and \code{explicate\_stmt}}.
  7994. %
  7995. So instead of taking and returning lists of statments, they take and
  7996. return promises. Furthermore, when we come to a situation in which a
  7997. continuation might be used more than once, as in the case for
  7998. \code{if} in \code{explicate\_pred}, we create a delayed computation
  7999. that creates a basic block for each continuation (if there is not
  8000. already one) and then returns a \code{goto} statement to that basic
  8001. block.
  8002. %
  8003. {\if\edition\racketEd\color{olive}
  8004. %
  8005. The following auxiliary function named \code{block->goto} accomplishes
  8006. this task. It begins with \code{delay} to create a promise. When
  8007. forced, this promise will force the original promise. If that returns
  8008. a \code{goto} (because the block was already added to the control-flow
  8009. graph), then we return the \code{goto}. Otherwise we add the block to
  8010. the control-flow graph with another auxiliary function named
  8011. \code{add-node}. That function returns the label for the new block,
  8012. which we use to create a \code{goto}.
  8013. \begin{lstlisting}
  8014. (define (block->goto block)
  8015. (delay
  8016. (define b (force block))
  8017. (match b
  8018. [(Goto label) (Goto label)]
  8019. [else (Goto (add-node b))])))
  8020. \end{lstlisting}
  8021. \fi}
  8022. {\if\edition\pythonEd
  8023. %
  8024. Here's the new version of the \code{create\_block} auxiliary function
  8025. that works on promises and that checks whether the block consists of a
  8026. solitary \code{goto} statement.\\
  8027. \begin{minipage}{\textwidth}
  8028. \begin{lstlisting}
  8029. def create_block(promise, basic_blocks):
  8030. stmts = force(promise)
  8031. match stmts:
  8032. case [Goto(l)]:
  8033. return Goto(l)
  8034. case _:
  8035. label = label_name(generate_name('block'))
  8036. basic_blocks[label] = stmts
  8037. return Goto(label)
  8038. \end{lstlisting}
  8039. \end{minipage}
  8040. \fi}
  8041. Figure~\ref{fig:explicate-control-challenge} shows the output of
  8042. \code{explicate\_control} on the example of the nested \code{if}
  8043. expressions with the two improvements discussed above. As you can
  8044. see, the number of basic blocks has been reduced from 10 blocks (see
  8045. Figure~\ref{fig:explicate-control-s1-38}) down to 6 blocks.
  8046. \begin{figure}[tbp]
  8047. {\if\edition\racketEd\color{olive}
  8048. \begin{tabular}{lll}
  8049. \begin{minipage}{0.4\textwidth}
  8050. % cond_test_41.rkt
  8051. \begin{lstlisting}
  8052. (let ([x (read)])
  8053. (let ([y (read)])
  8054. (if (if (< x 1)
  8055. (eq? x 0)
  8056. (eq? x 2))
  8057. (+ y 2)
  8058. (+ y 10))))
  8059. \end{lstlisting}
  8060. \end{minipage}
  8061. &
  8062. $\Rightarrow$
  8063. &
  8064. \begin{minipage}{0.55\textwidth}
  8065. \begin{lstlisting}
  8066. start:
  8067. x = (read);
  8068. y = (read);
  8069. if (< x 1) goto block40;
  8070. else goto block41;
  8071. block40:
  8072. if (eq? x 0) goto block38;
  8073. else goto block39;
  8074. block41:
  8075. if (eq? x 2) goto block38;
  8076. else goto block39;
  8077. block38:
  8078. return (+ y 2);
  8079. block39:
  8080. return (+ y 10);
  8081. \end{lstlisting}
  8082. \end{minipage}
  8083. \end{tabular}
  8084. \fi}
  8085. {\if\edition\pythonEd
  8086. \begin{tabular}{lll}
  8087. \begin{minipage}{0.4\textwidth}
  8088. % cond_test_41.rkt
  8089. \begin{lstlisting}
  8090. x = input_int()
  8091. y = input_int()
  8092. print(y + 2 \
  8093. if (x == 0 \
  8094. if x < 1 \
  8095. else x == 2) \
  8096. else y + 10)
  8097. \end{lstlisting}
  8098. \end{minipage}
  8099. &
  8100. $\Rightarrow$
  8101. &
  8102. \begin{minipage}{0.55\textwidth}
  8103. \begin{lstlisting}
  8104. start:
  8105. x = input_int()
  8106. y = input_int()
  8107. if x < 1:
  8108. goto block_4
  8109. else:
  8110. goto block_5
  8111. block_4:
  8112. if x == 0:
  8113. goto block_2
  8114. else:
  8115. goto block_3
  8116. block_5:
  8117. if x == 2:
  8118. goto block_2
  8119. else:
  8120. goto block_3
  8121. block_2:
  8122. tmp_0 = y + 2
  8123. goto block_1
  8124. block_3:
  8125. tmp_0 = y + 10
  8126. goto block_1
  8127. block_1:
  8128. print(tmp_0)
  8129. return 0
  8130. \end{lstlisting}
  8131. \end{minipage}
  8132. \end{tabular}
  8133. \fi}
  8134. \caption{Translation from \LangIf{} to \LangCIf{}
  8135. via the improved \code{explicate\_control}.}
  8136. \label{fig:explicate-control-challenge}
  8137. \end{figure}
  8138. %% Recall that in the example output of \code{explicate\_control} in
  8139. %% Figure~\ref{fig:explicate-control-s1-38}, \code{block57} through
  8140. %% \code{block60} are trivial blocks, they do nothing but jump to another
  8141. %% block. The first goal of this challenge assignment is to remove those
  8142. %% blocks. Figure~\ref{fig:optimize-jumps} repeats the result of
  8143. %% \code{explicate\_control} on the left and shows the result of bypassing
  8144. %% the trivial blocks on the right. Let us focus on \code{block61}. The
  8145. %% \code{then} branch jumps to \code{block57}, which in turn jumps to
  8146. %% \code{block55}. The optimized code on the right of
  8147. %% Figure~\ref{fig:optimize-jumps} bypasses \code{block57}, with the
  8148. %% \code{then} branch jumping directly to \code{block55}. The story is
  8149. %% similar for the \code{else} branch, as well as for the two branches in
  8150. %% \code{block62}. After the jumps in \code{block61} and \code{block62}
  8151. %% have been optimized in this way, there are no longer any jumps to
  8152. %% blocks \code{block57} through \code{block60}, so they can be removed.
  8153. %% \begin{figure}[tbp]
  8154. %% \begin{tabular}{lll}
  8155. %% \begin{minipage}{0.4\textwidth}
  8156. %% \begin{lstlisting}
  8157. %% block62:
  8158. %% tmp54 = (read);
  8159. %% if (eq? tmp54 2) then
  8160. %% goto block59;
  8161. %% else
  8162. %% goto block60;
  8163. %% block61:
  8164. %% tmp53 = (read);
  8165. %% if (eq? tmp53 0) then
  8166. %% goto block57;
  8167. %% else
  8168. %% goto block58;
  8169. %% block60:
  8170. %% goto block56;
  8171. %% block59:
  8172. %% goto block55;
  8173. %% block58:
  8174. %% goto block56;
  8175. %% block57:
  8176. %% goto block55;
  8177. %% block56:
  8178. %% return (+ 700 77);
  8179. %% block55:
  8180. %% return (+ 10 32);
  8181. %% start:
  8182. %% tmp52 = (read);
  8183. %% if (eq? tmp52 1) then
  8184. %% goto block61;
  8185. %% else
  8186. %% goto block62;
  8187. %% \end{lstlisting}
  8188. %% \end{minipage}
  8189. %% &
  8190. %% $\Rightarrow$
  8191. %% &
  8192. %% \begin{minipage}{0.55\textwidth}
  8193. %% \begin{lstlisting}
  8194. %% block62:
  8195. %% tmp54 = (read);
  8196. %% if (eq? tmp54 2) then
  8197. %% goto block55;
  8198. %% else
  8199. %% goto block56;
  8200. %% block61:
  8201. %% tmp53 = (read);
  8202. %% if (eq? tmp53 0) then
  8203. %% goto block55;
  8204. %% else
  8205. %% goto block56;
  8206. %% block56:
  8207. %% return (+ 700 77);
  8208. %% block55:
  8209. %% return (+ 10 32);
  8210. %% start:
  8211. %% tmp52 = (read);
  8212. %% if (eq? tmp52 1) then
  8213. %% goto block61;
  8214. %% else
  8215. %% goto block62;
  8216. %% \end{lstlisting}
  8217. %% \end{minipage}
  8218. %% \end{tabular}
  8219. %% \caption{Optimize jumps by removing trivial blocks.}
  8220. %% \label{fig:optimize-jumps}
  8221. %% \end{figure}
  8222. %% The name of this pass is \code{optimize-jumps}. We recommend
  8223. %% implementing this pass in two phases. The first phrase builds a hash
  8224. %% table that maps labels to possibly improved labels. The second phase
  8225. %% changes the target of each \code{goto} to use the improved label. If
  8226. %% the label is for a trivial block, then the hash table should map the
  8227. %% label to the first non-trivial block that can be reached from this
  8228. %% label by jumping through trivial blocks. If the label is for a
  8229. %% non-trivial block, then the hash table should map the label to itself;
  8230. %% we do not want to change jumps to non-trivial blocks.
  8231. %% The first phase can be accomplished by constructing an empty hash
  8232. %% table, call it \code{short-cut}, and then iterating over the control
  8233. %% flow graph. Each time you encouter a block that is just a \code{goto},
  8234. %% then update the hash table, mapping the block's source to the target
  8235. %% of the \code{goto}. Also, the hash table may already have mapped some
  8236. %% labels to the block's source, to you must iterate through the hash
  8237. %% table and update all of those so that they instead map to the target
  8238. %% of the \code{goto}.
  8239. %% For the second phase, we recommend iterating through the $\Tail$ of
  8240. %% each block in the program, updating the target of every \code{goto}
  8241. %% according to the mapping in \code{short-cut}.
  8242. \begin{exercise}\normalfont
  8243. Implement the improvements to the \code{explicate\_control} pass.
  8244. Check that it removes trivial blocks in a few example programs. Then
  8245. check that your compiler still passes all of your tests.
  8246. \end{exercise}
  8247. \subsection{Remove Jumps}
  8248. There is an opportunity for removing jumps that is apparent in the
  8249. example of Figure~\ref{fig:if-example-x86}. The \code{start} block
  8250. ends with a jump to \code{block\_4} and there are no other jumps to
  8251. \code{block\_4} in the rest of the program. In this situation we can
  8252. avoid the runtime overhead of this jump by merging \code{block\_4}
  8253. into the preceding block, in this case the \code{start} block.
  8254. Figure~\ref{fig:remove-jumps} shows the output of
  8255. \code{select\_instructions} on the left and the result of this
  8256. optimization on the right.
  8257. \begin{figure}[tbp]
  8258. {\if\edition\racketEd\color{olive}
  8259. \begin{tabular}{lll}
  8260. \begin{minipage}{0.5\textwidth}
  8261. % cond_test_20.rkt
  8262. \begin{lstlisting}
  8263. start:
  8264. callq read_int
  8265. movq %rax, tmp7951
  8266. cmpq $1, tmp7951
  8267. je block7952
  8268. jmp block7953
  8269. block7953:
  8270. movq $0, %rax
  8271. jmp conclusion
  8272. block7952:
  8273. movq $42, %rax
  8274. jmp conclusion
  8275. \end{lstlisting}
  8276. \end{minipage}
  8277. &
  8278. $\Rightarrow\qquad$
  8279. \begin{minipage}{0.4\textwidth}
  8280. \begin{lstlisting}
  8281. start:
  8282. callq read_int
  8283. movq %rax, tmp7951
  8284. cmpq $1, tmp7951
  8285. je block7952
  8286. movq $0, %rax
  8287. jmp conclusion
  8288. block7952:
  8289. movq $42, %rax
  8290. jmp conclusion
  8291. \end{lstlisting}
  8292. \end{minipage}
  8293. \end{tabular}
  8294. \fi}
  8295. {\if\edition\pythonEd
  8296. \begin{tabular}{lll}
  8297. \begin{minipage}{0.5\textwidth}
  8298. % cond_test_20.rkt
  8299. \begin{lstlisting}
  8300. start:
  8301. callq read_int
  8302. movq %rax, tmp_0
  8303. cmpq 1, tmp_0
  8304. je block_3
  8305. jmp block_4
  8306. block_3:
  8307. movq 42, tmp_1
  8308. jmp block_2
  8309. block_4:
  8310. movq 0, tmp_1
  8311. jmp block_2
  8312. block_2:
  8313. movq tmp_1, %rdi
  8314. callq print_int
  8315. movq 0, %rax
  8316. jmp conclusion
  8317. \end{lstlisting}
  8318. \end{minipage}
  8319. &
  8320. $\Rightarrow\qquad$
  8321. \begin{minipage}{0.4\textwidth}
  8322. \begin{lstlisting}
  8323. start:
  8324. callq read_int
  8325. movq %rax, tmp_0
  8326. cmpq 1, tmp_0
  8327. je block_3
  8328. movq 0, tmp_1
  8329. jmp block_2
  8330. block_3:
  8331. movq 42, tmp_1
  8332. jmp block_2
  8333. block_2:
  8334. movq tmp_1, %rdi
  8335. callq print_int
  8336. movq 0, %rax
  8337. jmp conclusion
  8338. \end{lstlisting}
  8339. \end{minipage}
  8340. \end{tabular}
  8341. \fi}
  8342. \caption{Merging basic blocks by removing unnecessary jumps.}
  8343. \label{fig:remove-jumps}
  8344. \end{figure}
  8345. \begin{exercise}\normalfont
  8346. %
  8347. Implement a pass named \code{remove\_jumps} that merges basic blocks
  8348. into their preceding basic block, when there is only one preceding
  8349. block. The pass should translate from \LangXIfVar{} to \LangXIfVar{}.
  8350. %
  8351. {\if\edition\racketEd\color{olive}
  8352. In the \code{run-tests.rkt} script, add the following entry to the
  8353. list of \code{passes} between \code{allocate-registers}
  8354. and \code{patch-instructions}.
  8355. \begin{lstlisting}
  8356. (list "remove-jumps" remove-jumps interp-pseudo-x86-1)
  8357. \end{lstlisting}
  8358. \fi}
  8359. %
  8360. Run the script to test your compiler.
  8361. %
  8362. Check that \code{remove\_jumps} accomplishes the goal of merging basic
  8363. blocks on several test programs.
  8364. \end{exercise}
  8365. \section{Further Reading}
  8366. \label{sec:cond-further-reading}
  8367. The algorithm for the \code{explicate\_control} pass comes from the
  8368. course notes of \citet{Dybvig:2010aa}. The use of lazy evaluation in
  8369. Section~\ref{sec:opt-jumps} to optimize basic blocks is new. There
  8370. are algorithms similar to \code{explicate\_control} in the literature,
  8371. such as the case-of-case transformation of \citet{PeytonJones:1998}.
  8372. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  8373. \chapter{Loops and Dataflow Analysis}
  8374. \label{ch:Rwhile}
  8375. % TODO: define R'_8
  8376. % TODO: multi-graph
  8377. \if\edition\racketEd
  8378. [UNDER CONSTRUCTION: This chapter was just moved to this position in
  8379. the book and needs to be updated with that in mind. For example, 1)
  8380. the assignment conversion stuff needs to be moved into the chapter on
  8381. lexically scoped functions and 2) the challenge section on arrays
  8382. needs to be moved to the chapter on tuples. --Jeremy]
  8383. In this chapter we study two features that are the hallmarks of
  8384. imperative programming languages: loops and assignments to local
  8385. variables. The following example demonstrates these new features by
  8386. computing the sum of the first five positive integers.
  8387. % similar to loop_test_1.rkt
  8388. \begin{lstlisting}
  8389. (let ([sum 0])
  8390. (let ([i 5])
  8391. (begin
  8392. (while (> i 0)
  8393. (begin
  8394. (set! sum (+ sum i))
  8395. (set! i (- i 1))))
  8396. sum)))
  8397. \end{lstlisting}
  8398. The \code{while} loop consists of a condition and a body.
  8399. %
  8400. The \code{set!} consists of a variable and a right-hand-side expression.
  8401. %
  8402. The primary purpose of both the \code{while} loop and \code{set!} is
  8403. to cause side effects, so it is convenient to also include in a
  8404. language feature for sequencing side effects: the \code{begin}
  8405. expression. It consists of one or more subexpressions that are
  8406. evaluated left-to-right.
  8407. \section{The \LangLoop{} Language}
  8408. \begin{figure}[tp]
  8409. \centering
  8410. \fbox{
  8411. \begin{minipage}{0.96\textwidth}
  8412. \small
  8413. \[
  8414. \begin{array}{lcl}
  8415. \Exp &::=& \gray{ \Int \MID \CREAD{} \MID \CNEG{\Exp}
  8416. \MID \CADD{\Exp}{\Exp} \MID \CSUB{\Exp}{\Exp} } \\
  8417. &\MID& \gray{ \Var \MID \CLET{\Var}{\Exp}{\Exp} }\\
  8418. &\MID& \gray{\key{\#t} \MID \key{\#f}
  8419. \MID (\key{and}\;\Exp\;\Exp)
  8420. \MID (\key{or}\;\Exp\;\Exp)
  8421. \MID (\key{not}\;\Exp) } \\
  8422. &\MID& \gray{ (\key{eq?}\;\Exp\;\Exp) \MID \CIF{\Exp}{\Exp}{\Exp} } \\
  8423. &\MID& \gray{ (\key{vector}\;\Exp\ldots) \MID
  8424. (\key{vector-ref}\;\Exp\;\Int)} \\
  8425. &\MID& \gray{(\key{vector-set!}\;\Exp\;\Int\;\Exp)\MID (\key{void})
  8426. \MID (\Exp \; \Exp\ldots) } \\
  8427. &\MID& \gray{ \LP \key{procedure-arity}~\Exp\RP
  8428. \MID \CLAMBDA{\LP\LS\Var \key{:} \Type\RS\ldots\RP}{\Type}{\Exp} } \\
  8429. &\MID& \CSETBANG{\Var}{\Exp}
  8430. \MID \CBEGIN{\Exp\ldots}{\Exp}
  8431. \MID \CWHILE{\Exp}{\Exp} \\
  8432. \Def &::=& \gray{ \CDEF{\Var}{\LS\Var \key{:} \Type\RS\ldots}{\Type}{\Exp} } \\
  8433. \LangLoopM{} &::=& \gray{\Def\ldots \; \Exp}
  8434. \end{array}
  8435. \]
  8436. \end{minipage}
  8437. }
  8438. \caption{The concrete syntax of \LangLoop{}, extending \LangAny{} (Figure~\ref{fig:Rany-concrete-syntax}).}
  8439. \label{fig:Rwhile-concrete-syntax}
  8440. \end{figure}
  8441. \begin{figure}[tp]
  8442. \centering
  8443. \fbox{
  8444. \begin{minipage}{0.96\textwidth}
  8445. \small
  8446. \[
  8447. \begin{array}{lcl}
  8448. \Exp &::=& \gray{ \INT{\Int} \VAR{\Var} \MID \LET{\Var}{\Exp}{\Exp} } \\
  8449. &\MID& \gray{ \PRIM{\itm{op}}{\Exp\ldots} }\\
  8450. &\MID& \gray{ \BOOL{\itm{bool}}
  8451. \MID \IF{\Exp}{\Exp}{\Exp} } \\
  8452. &\MID& \gray{ \VOID{} \MID \LP\key{HasType}~\Exp~\Type \RP
  8453. \MID \APPLY{\Exp}{\Exp\ldots} }\\
  8454. &\MID& \gray{ \LAMBDA{\LP\LS\Var\code{:}\Type\RS\ldots\RP}{\Type}{\Exp} }\\
  8455. &\MID& \SETBANG{\Var}{\Exp} \MID \BEGIN{\LP\Exp\ldots\RP}{\Exp}
  8456. \MID \WHILE{\Exp}{\Exp} \\
  8457. \Def &::=& \gray{ \FUNDEF{\Var}{\LP\LS\Var \code{:} \Type\RS\ldots\RP}{\Type}{\code{'()}}{\Exp} }\\
  8458. \LangLoopM{} &::=& \gray{ \PROGRAMDEFSEXP{\code{'()}}{\LP\Def\ldots\RP}{\Exp} }
  8459. \end{array}
  8460. \]
  8461. \end{minipage}
  8462. }
  8463. \caption{The abstract syntax of \LangLoop{}, extending \LangAny{} (Figure~\ref{fig:Rany-syntax}).}
  8464. \label{fig:Rwhile-syntax}
  8465. \end{figure}
  8466. The concrete syntax of \LangLoop{} is defined in
  8467. Figure~\ref{fig:Rwhile-concrete-syntax} and its abstract syntax is defined
  8468. in Figure~\ref{fig:Rwhile-syntax}.
  8469. %
  8470. The definitional interpreter for \LangLoop{} is shown in
  8471. Figure~\ref{fig:interp-Rwhile}. We add three new cases for \code{SetBang},
  8472. \code{WhileLoop}, and \code{Begin} and we make changes to the cases
  8473. for \code{Var}, \code{Let}, and \code{Apply} regarding variables. To
  8474. support assignment to variables and to make their lifetimes indefinite
  8475. (see the second example in Section~\ref{sec:assignment-scoping}), we
  8476. box the value that is bound to each variable (in \code{Let}) and
  8477. function parameter (in \code{Apply}). The case for \code{Var} unboxes
  8478. the value.
  8479. %
  8480. Now to discuss the new cases. For \code{SetBang}, we lookup the
  8481. variable in the environment to obtain a boxed value and then we change
  8482. it using \code{set-box!} to the result of evaluating the right-hand
  8483. side. The result value of a \code{SetBang} is \code{void}.
  8484. %
  8485. For the \code{WhileLoop}, we repeatedly 1) evaluate the condition, and
  8486. if the result is true, 2) evaluate the body.
  8487. The result value of a \code{while} loop is also \code{void}.
  8488. %
  8489. Finally, the $\BEGIN{\itm{es}}{\itm{body}}$ expression evaluates the
  8490. subexpressions \itm{es} for their effects and then evaluates
  8491. and returns the result from \itm{body}.
  8492. \begin{figure}[tbp]
  8493. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  8494. (define interp-Rwhile_class
  8495. (class interp-Rany_class
  8496. (super-new)
  8497. (define/override ((interp-exp env) e)
  8498. (define recur (interp-exp env))
  8499. (match e
  8500. [(SetBang x rhs)
  8501. (set-box! (lookup x env) (recur rhs))]
  8502. [(WhileLoop cnd body)
  8503. (define (loop)
  8504. (cond [(recur cnd) (recur body) (loop)]
  8505. [else (void)]))
  8506. (loop)]
  8507. [(Begin es body)
  8508. (for ([e es]) (recur e))
  8509. (recur body)]
  8510. [else ((super interp-exp env) e)]))
  8511. ))
  8512. (define (interp-Rwhile p)
  8513. (send (new interp-Rwhile_class) interp-program p))
  8514. \end{lstlisting}
  8515. \caption{Interpreter for \LangLoop{}.}
  8516. \label{fig:interp-Rwhile}
  8517. \end{figure}
  8518. The type checker for \LangLoop{} is define in
  8519. Figure~\ref{fig:type-check-Rwhile}. For \code{SetBang}, the type of the
  8520. variable and the right-hand-side must agree. The result type is
  8521. \code{Void}. For the \code{WhileLoop}, the condition must be a
  8522. \code{Boolean}. The result type is also \code{Void}. For
  8523. \code{Begin}, the result type is the type of its last subexpression.
  8524. \begin{figure}[tbp]
  8525. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  8526. (define type-check-Rwhile_class
  8527. (class type-check-Rany_class
  8528. (super-new)
  8529. (inherit check-type-equal?)
  8530. (define/override (type-check-exp env)
  8531. (lambda (e)
  8532. (define recur (type-check-exp env))
  8533. (match e
  8534. [(SetBang x rhs)
  8535. (define-values (rhs^ rhsT) (recur rhs))
  8536. (define varT (dict-ref env x))
  8537. (check-type-equal? rhsT varT e)
  8538. (values (SetBang x rhs^) 'Void)]
  8539. [(WhileLoop cnd body)
  8540. (define-values (cnd^ Tc) (recur cnd))
  8541. (check-type-equal? Tc 'Boolean e)
  8542. (define-values (body^ Tbody) ((type-check-exp env) body))
  8543. (values (WhileLoop cnd^ body^) 'Void)]
  8544. [(Begin es body)
  8545. (define-values (es^ ts)
  8546. (for/lists (l1 l2) ([e es]) (recur e)))
  8547. (define-values (body^ Tbody) (recur body))
  8548. (values (Begin es^ body^) Tbody)]
  8549. [else ((super type-check-exp env) e)])))
  8550. ))
  8551. (define (type-check-Rwhile p)
  8552. (send (new type-check-Rwhile_class) type-check-program p))
  8553. \end{lstlisting}
  8554. \caption{Type checking \key{SetBang}, \key{WhileLoop},
  8555. and \code{Begin} in \LangLoop{}.}
  8556. \label{fig:type-check-Rwhile}
  8557. \end{figure}
  8558. At first glance, the translation of these language features to x86
  8559. seems straightforward because the \LangCFun{} intermediate language already
  8560. supports all of the ingredients that we need: assignment, \code{goto},
  8561. conditional branching, and sequencing. However, there are two
  8562. complications that arise which we discuss in the next two
  8563. sections. After that we introduce one new compiler pass and the
  8564. changes necessary to the existing passes.
  8565. \section{Assignment and Lexically Scoped Functions}
  8566. \label{sec:assignment-scoping}
  8567. The addition of assignment raises a problem with our approach to
  8568. implementing lexically-scoped functions. Consider the following
  8569. example in which function \code{f} has a free variable \code{x} that
  8570. is changed after \code{f} is created but before the call to \code{f}.
  8571. % loop_test_11.rkt
  8572. \begin{lstlisting}
  8573. (let ([x 0])
  8574. (let ([y 0])
  8575. (let ([z 20])
  8576. (let ([f (lambda: ([a : Integer]) : Integer (+ a (+ x z)))])
  8577. (begin
  8578. (set! x 10)
  8579. (set! y 12)
  8580. (f y))))))
  8581. \end{lstlisting}
  8582. The correct output for this example is \code{42} because the call to
  8583. \code{f} is required to use the current value of \code{x} (which is
  8584. \code{10}). Unfortunately, the closure conversion pass
  8585. (Section~\ref{sec:closure-conversion}) generates code for the
  8586. \code{lambda} that copies the old value of \code{x} into a
  8587. closure. Thus, if we naively add support for assignment to our current
  8588. compiler, the output of this program would be \code{32}.
  8589. A first attempt at solving this problem would be to save a pointer to
  8590. \code{x} in the closure and change the occurrences of \code{x} inside
  8591. the lambda to dereference the pointer. Of course, this would require
  8592. assigning \code{x} to the stack and not to a register. However, the
  8593. problem goes a bit deeper. Consider the following example in which we
  8594. create a counter abstraction by creating a pair of functions that
  8595. share the free variable \code{x}.
  8596. % similar to loop_test_10.rkt
  8597. \begin{lstlisting}
  8598. (define (f [x : Integer]) : (Vector ( -> Integer) ( -> Void))
  8599. (vector
  8600. (lambda: () : Integer x)
  8601. (lambda: () : Void (set! x (+ 1 x)))))
  8602. (let ([counter (f 0)])
  8603. (let ([get (vector-ref counter 0)])
  8604. (let ([inc (vector-ref counter 1)])
  8605. (begin
  8606. (inc)
  8607. (get)))))
  8608. \end{lstlisting}
  8609. In this example, the lifetime of \code{x} extends beyond the lifetime
  8610. of the call to \code{f}. Thus, if we were to store \code{x} on the
  8611. stack frame for the call to \code{f}, it would be gone by the time we
  8612. call \code{inc} and \code{get}, leaving us with dangling pointers for
  8613. \code{x}. This example demonstrates that when a variable occurs free
  8614. inside a \code{lambda}, its lifetime becomes indefinite. Thus, the
  8615. value of the variable needs to live on the heap. The verb ``box'' is
  8616. often used for allocating a single value on the heap, producing a
  8617. pointer, and ``unbox'' for dereferencing the pointer.
  8618. We recommend solving these problems by ``boxing'' the local variables
  8619. that are in the intersection of 1) variables that appear on the
  8620. left-hand-side of a \code{set!} and 2) variables that occur free
  8621. inside a \code{lambda}. We shall introduce a new pass named
  8622. \code{convert-assignments} in Section~\ref{sec:convert-assignments} to
  8623. perform this translation. But before diving into the compiler passes,
  8624. we one more problem to discuss.
  8625. \section{Cyclic Control Flow and Dataflow Analysis}
  8626. \label{sec:dataflow-analysis}
  8627. Up until this point the control-flow graphs generated in
  8628. \code{explicate\_control} were guaranteed to be acyclic. However, each
  8629. \code{while} loop introduces a cycle in the control-flow graph.
  8630. But does that matter?
  8631. %
  8632. Indeed it does. Recall that for register allocation, the compiler
  8633. performs liveness analysis to determine which variables can share the
  8634. same register. In Section~\ref{sec:liveness-analysis-Lif} we analyze
  8635. the control-flow graph in reverse topological order, but topological
  8636. order is only well-defined for acyclic graphs.
  8637. Let us return to the example of computing the sum of the first five
  8638. positive integers. Here is the program after instruction selection but
  8639. before register allocation.
  8640. \begin{center}
  8641. \begin{minipage}{0.45\textwidth}
  8642. \begin{lstlisting}
  8643. (define (main) : Integer
  8644. mainstart:
  8645. movq $0, sum1
  8646. movq $5, i2
  8647. jmp block5
  8648. block5:
  8649. movq i2, tmp3
  8650. cmpq tmp3, $0
  8651. jl block7
  8652. jmp block8
  8653. \end{lstlisting}
  8654. \end{minipage}
  8655. \begin{minipage}{0.45\textwidth}
  8656. \begin{lstlisting}
  8657. block7:
  8658. addq i2, sum1
  8659. movq $1, tmp4
  8660. negq tmp4
  8661. addq tmp4, i2
  8662. jmp block5
  8663. block8:
  8664. movq $27, %rax
  8665. addq sum1, %rax
  8666. jmp mainconclusion
  8667. )
  8668. \end{lstlisting}
  8669. \end{minipage}
  8670. \end{center}
  8671. Recall that liveness analysis works backwards, starting at the end
  8672. of each function. For this example we could start with \code{block8}
  8673. because we know what is live at the beginning of the conclusion,
  8674. just \code{rax} and \code{rsp}. So the live-before set
  8675. for \code{block8} is $\{\ttm{rsp},\ttm{sum1}\}$.
  8676. %
  8677. Next we might try to analyze \code{block5} or \code{block7}, but
  8678. \code{block5} jumps to \code{block7} and vice versa, so it seems that
  8679. we are stuck.
  8680. The way out of this impasse comes from the realization that one can
  8681. perform liveness analysis starting with an empty live-after set to
  8682. compute an under-approximation of the live-before set. By
  8683. \emph{under-approximation}, we mean that the set only contains
  8684. variables that are really live, but it may be missing some. Next, the
  8685. under-approximations for each block can be improved by 1) updating the
  8686. live-after set for each block using the approximate live-before sets
  8687. from the other blocks and 2) perform liveness analysis again on each
  8688. block. In fact, by iterating this process, the under-approximations
  8689. eventually become the correct solutions!
  8690. %
  8691. This approach of iteratively analyzing a control-flow graph is
  8692. applicable to many static analysis problems and goes by the name
  8693. \emph{dataflow analysis}\index{subject}{dataflow analysis}. It was invented by
  8694. \citet{Kildall:1973vn} in his Ph.D. thesis at the University of
  8695. Washington.
  8696. Let us apply this approach to the above example. We use the empty set
  8697. for the initial live-before set for each block. Let $m_0$ be the
  8698. following mapping from label names to sets of locations (variables and
  8699. registers).
  8700. \begin{center}
  8701. \begin{lstlisting}
  8702. mainstart: {}
  8703. block5: {}
  8704. block7: {}
  8705. block8: {}
  8706. \end{lstlisting}
  8707. \end{center}
  8708. Using the above live-before approximations, we determine the
  8709. live-after for each block and then apply liveness analysis to each
  8710. block. This produces our next approximation $m_1$ of the live-before
  8711. sets.
  8712. \begin{center}
  8713. \begin{lstlisting}
  8714. mainstart: {}
  8715. block5: {i2}
  8716. block7: {i2, sum1}
  8717. block8: {rsp, sum1}
  8718. \end{lstlisting}
  8719. \end{center}
  8720. For the second round, the live-after for \code{mainstart} is the
  8721. current live-before for \code{block5}, which is \code{\{i2\}}. So the
  8722. liveness analysis for \code{mainstart} computes the empty set. The
  8723. live-after for \code{block5} is the union of the live-before sets for
  8724. \code{block7} and \code{block8}, which is \code{\{i2 , rsp, sum1\}}.
  8725. So the liveness analysis for \code{block5} computes \code{\{i2 , rsp,
  8726. sum1\}}. The live-after for \code{block7} is the live-before for
  8727. \code{block5} (from the previous iteration), which is \code{\{i2\}}.
  8728. So the liveness analysis for \code{block7} remains \code{\{i2,
  8729. sum1\}}. Together these yield the following approximation $m_2$ of
  8730. the live-before sets.
  8731. \begin{center}
  8732. \begin{lstlisting}
  8733. mainstart: {}
  8734. block5: {i2, rsp, sum1}
  8735. block7: {i2, sum1}
  8736. block8: {rsp, sum1}
  8737. \end{lstlisting}
  8738. \end{center}
  8739. In the preceding iteration, only \code{block5} changed, so we can
  8740. limit our attention to \code{mainstart} and \code{block7}, the two
  8741. blocks that jump to \code{block5}. As a result, the live-before sets
  8742. for \code{mainstart} and \code{block7} are updated to include
  8743. \code{rsp}, yielding the following approximation $m_3$.
  8744. \begin{center}
  8745. \begin{lstlisting}
  8746. mainstart: {rsp}
  8747. block5: {i2, rsp, sum1}
  8748. block7: {i2, rsp, sum1}
  8749. block8: {rsp, sum1}
  8750. \end{lstlisting}
  8751. \end{center}
  8752. Because \code{block7} changed, we analyze \code{block5} once more, but
  8753. its live-before set remains \code{\{ i2, rsp, sum1 \}}. At this point
  8754. our approximations have converged, so $m_3$ is the solution.
  8755. This iteration process is guaranteed to converge to a solution by the
  8756. Kleene Fixed-Point Theorem, a general theorem about functions on
  8757. lattices~\citep{Kleene:1952aa}. Roughly speaking, a \emph{lattice} is
  8758. any collection that comes with a partial ordering $\sqsubseteq$ on its
  8759. elements, a least element $\bot$ (pronounced bottom), and a join
  8760. operator $\sqcup$.\index{subject}{lattice}\index{subject}{bottom}\index{subject}{partial
  8761. ordering}\index{subject}{join}\footnote{Technically speaking, we will be
  8762. working with join semi-lattices.} When two elements are ordered $m_i
  8763. \sqsubseteq m_j$, it means that $m_j$ contains at least as much
  8764. information as $m_i$, so we can think of $m_j$ as a better-or-equal
  8765. approximation than $m_i$. The bottom element $\bot$ represents the
  8766. complete lack of information, i.e., the worst approximation. The join
  8767. operator takes two lattice elements and combines their information,
  8768. i.e., it produces the least upper bound of the two.\index{subject}{least upper
  8769. bound}
  8770. A dataflow analysis typically involves two lattices: one lattice to
  8771. represent abstract states and another lattice that aggregates the
  8772. abstract states of all the blocks in the control-flow graph. For
  8773. liveness analysis, an abstract state is a set of locations. We form
  8774. the lattice $L$ by taking its elements to be sets of locations, the
  8775. ordering to be set inclusion ($\subseteq$), the bottom to be the empty
  8776. set, and the join operator to be set union.
  8777. %
  8778. We form a second lattice $M$ by taking its elements to be mappings
  8779. from the block labels to sets of locations (elements of $L$). We
  8780. order the mappings point-wise, using the ordering of $L$. So given any
  8781. two mappings $m_i$ and $m_j$, $m_i \sqsubseteq_M m_j$ when $m_i(\ell)
  8782. \subseteq m_j(\ell)$ for every block label $\ell$ in the program. The
  8783. bottom element of $M$ is the mapping $\bot_M$ that sends every label
  8784. to the empty set, i.e., $\bot_M(\ell) = \emptyset$.
  8785. We can think of one iteration of liveness analysis as being a function
  8786. $f$ on the lattice $M$. It takes a mapping as input and computes a new
  8787. mapping.
  8788. \[
  8789. f(m_i) = m_{i+1}
  8790. \]
  8791. Next let us think for a moment about what a final solution $m_s$
  8792. should look like. If we perform liveness analysis using the solution
  8793. $m_s$ as input, we should get $m_s$ again as the output. That is, the
  8794. solution should be a \emph{fixed point} of the function $f$.\index{subject}{fixed point}
  8795. \[
  8796. f(m_s) = m_s
  8797. \]
  8798. Furthermore, the solution should only include locations that are
  8799. forced to be there by performing liveness analysis on the program, so
  8800. the solution should be the \emph{least} fixed point.\index{subject}{least fixed point}
  8801. The Kleene Fixed-Point Theorem states that if a function $f$ is
  8802. monotone (better inputs produce better outputs), then the least fixed
  8803. point of $f$ is the least upper bound of the \emph{ascending Kleene
  8804. chain} obtained by starting at $\bot$ and iterating $f$ as
  8805. follows.\index{subject}{Kleene Fixed-Point Theorem}
  8806. \[
  8807. \bot \sqsubseteq f(\bot) \sqsubseteq f(f(\bot)) \sqsubseteq \cdots
  8808. \sqsubseteq f^n(\bot) \sqsubseteq \cdots
  8809. \]
  8810. When a lattice contains only finitely-long ascending chains, then
  8811. every Kleene chain tops out at some fixed point after a number of
  8812. iterations of $f$. So that fixed point is also a least upper
  8813. bound of the chain.
  8814. \[
  8815. \bot \sqsubseteq f(\bot) \sqsubseteq f(f(\bot)) \sqsubseteq \cdots
  8816. \sqsubseteq f^k(\bot) = f^{k+1}(\bot) = m_s
  8817. \]
  8818. The liveness analysis is indeed a monotone function and the lattice
  8819. $M$ only has finitely-long ascending chains because there are only a
  8820. finite number of variables and blocks in the program. Thus we are
  8821. guaranteed that iteratively applying liveness analysis to all blocks
  8822. in the program will eventually produce the least fixed point solution.
  8823. Next let us consider dataflow analysis in general and discuss the
  8824. generic work list algorithm (Figure~\ref{fig:generic-dataflow}).
  8825. %
  8826. The algorithm has four parameters: the control-flow graph \code{G}, a
  8827. function \code{transfer} that applies the analysis to one block, the
  8828. \code{bottom} and \code{join} operator for the lattice of abstract
  8829. states. The algorithm begins by creating the bottom mapping,
  8830. represented by a hash table. It then pushes all of the nodes in the
  8831. control-flow graph onto the work list (a queue). The algorithm repeats
  8832. the \code{while} loop as long as there are items in the work list. In
  8833. each iteration, a node is popped from the work list and processed. The
  8834. \code{input} for the node is computed by taking the join of the
  8835. abstract states of all the predecessor nodes. The \code{transfer}
  8836. function is then applied to obtain the \code{output} abstract
  8837. state. If the output differs from the previous state for this block,
  8838. the mapping for this block is updated and its successor nodes are
  8839. pushed onto the work list.
  8840. \begin{figure}[tb]
  8841. \begin{lstlisting}
  8842. (define (analyze-dataflow G transfer bottom join)
  8843. (define mapping (make-hash))
  8844. (for ([v (in-vertices G)])
  8845. (dict-set! mapping v bottom))
  8846. (define worklist (make-queue))
  8847. (for ([v (in-vertices G)])
  8848. (enqueue! worklist v))
  8849. (define trans-G (transpose G))
  8850. (while (not (queue-empty? worklist))
  8851. (define node (dequeue! worklist))
  8852. (define input (for/fold ([state bottom])
  8853. ([pred (in-neighbors trans-G node)])
  8854. (join state (dict-ref mapping pred))))
  8855. (define output (transfer node input))
  8856. (cond [(not (equal? output (dict-ref mapping node)))
  8857. (dict-set! mapping node output)
  8858. (for ([v (in-neighbors G node)])
  8859. (enqueue! worklist v))]))
  8860. mapping)
  8861. \end{lstlisting}
  8862. \caption{Generic work list algorithm for dataflow analysis}
  8863. \label{fig:generic-dataflow}
  8864. \end{figure}
  8865. Having discussed the two complications that arise from adding support
  8866. for assignment and loops, we turn to discussing the one new compiler
  8867. pass and the significant changes to existing passes.
  8868. \section{Convert Assignments}
  8869. \label{sec:convert-assignments}
  8870. Recall that in Section~\ref{sec:assignment-scoping} we learned that
  8871. the combination of assignments and lexically-scoped functions requires
  8872. that we box those variables that are both assigned-to and that appear
  8873. free inside a \code{lambda}. The purpose of the
  8874. \code{convert-assignments} pass is to carry out that transformation.
  8875. We recommend placing this pass after \code{uniquify} but before
  8876. \code{reveal-functions}.
  8877. Consider again the first example from
  8878. Section~\ref{sec:assignment-scoping}:
  8879. \begin{lstlisting}
  8880. (let ([x 0])
  8881. (let ([y 0])
  8882. (let ([z 20])
  8883. (let ([f (lambda: ([a : Integer]) : Integer (+ a (+ x z)))])
  8884. (begin
  8885. (set! x 10)
  8886. (set! y 12)
  8887. (f y))))))
  8888. \end{lstlisting}
  8889. The variables \code{x} and \code{y} are assigned-to. The variables
  8890. \code{x} and \code{z} occur free inside the \code{lambda}. Thus,
  8891. variable \code{x} needs to be boxed but not \code{y} and \code{z}.
  8892. The boxing of \code{x} consists of three transformations: initialize
  8893. \code{x} with a vector, replace reads from \code{x} with
  8894. \code{vector-ref}'s, and replace each \code{set!} on \code{x} with a
  8895. \code{vector-set!}. The output of \code{convert-assignments} for this
  8896. example is as follows.
  8897. \begin{lstlisting}
  8898. (define (main) : Integer
  8899. (let ([x0 (vector 0)])
  8900. (let ([y1 0])
  8901. (let ([z2 20])
  8902. (let ([f4 (lambda: ([a3 : Integer]) : Integer
  8903. (+ a3 (+ (vector-ref x0 0) z2)))])
  8904. (begin
  8905. (vector-set! x0 0 10)
  8906. (set! y1 12)
  8907. (f4 y1)))))))
  8908. \end{lstlisting}
  8909. \paragraph{Assigned \& Free}
  8910. We recommend defining an auxiliary function named
  8911. \code{assigned\&free} that takes an expression and simultaneously
  8912. computes 1) a set of assigned variables $A$, 2) a set $F$ of variables
  8913. that occur free within lambda's, and 3) a new version of the
  8914. expression that records which bound variables occurred in the
  8915. intersection of $A$ and $F$. You can use the struct
  8916. \code{AssignedFree} to do this. Consider the case for
  8917. $\LET{x}{\itm{rhs}}{\itm{body}}$. Suppose the the recursive call on
  8918. $\itm{rhs}$ produces $\itm{rhs}'$, $A_r$, and $F_r$ and the recursive
  8919. call on the $\itm{body}$ produces $\itm{body}'$, $A_b$, and $F_b$. If
  8920. $x$ is in $A_b\cap F_b$, then transforms the \code{Let} as follows.
  8921. \begin{lstlisting}
  8922. (Let |$x$| |$rhs$| |$body$|)
  8923. |$\Rightarrow$|
  8924. (Let (AssignedFree |$x$|) |$rhs'$| |$body'$|)
  8925. \end{lstlisting}
  8926. If $x$ is not in $A_b\cap F_b$ then omit the use of \code{AssignedFree}.
  8927. The set of assigned variables for this \code{Let} is
  8928. $A_r \cup (A_b - \{x\})$
  8929. and the set of variables free in lambda's is
  8930. $F_r \cup (F_b - \{x\})$.
  8931. The case for $\SETBANG{x}{\itm{rhs}}$ is straightforward but
  8932. important. Recursively process \itm{rhs} to obtain \itm{rhs'}, $A_r$,
  8933. and $F_r$. The result is $\SETBANG{x}{\itm{rhs'}}$, $\{x\} \cup A_r$,
  8934. and $F_r$.
  8935. The case for $\LAMBDA{\itm{params}}{T}{\itm{body}}$ is a bit more
  8936. involved. Let \itm{body'}, $A_b$, and $F_b$ be the result of
  8937. recursively processing \itm{body}. Wrap each of parameter that occurs
  8938. in $A_b \cap F_b$ with \code{AssignedFree} to produce \itm{params'}.
  8939. Let $P$ be the set of parameter names in \itm{params}. The result is
  8940. $\LAMBDA{\itm{params'}}{T}{\itm{body'}}$, $A_b - P$, and $(F_b \cup
  8941. \mathrm{FV}(\itm{body})) - P$, where $\mathrm{FV}$ computes the free
  8942. variables of an expression (see Chapter~\ref{ch:Rlam}).
  8943. \paragraph{Convert Assignments}
  8944. Next we discuss the \code{convert-assignment} pass with its auxiliary
  8945. functions for expressions and definitions. The function for
  8946. expressions, \code{cnvt-assign-exp}, should take an expression and a
  8947. set of assigned-and-free variables (obtained from the result of
  8948. \code{assigned\&free}. In the case for $\VAR{x}$, if $x$ is
  8949. assigned-and-free, then unbox it by translating $\VAR{x}$ to a
  8950. \code{vector-ref}.
  8951. \begin{lstlisting}
  8952. (Var |$x$|)
  8953. |$\Rightarrow$|
  8954. (Prim 'vector-ref (list (Var |$x$|) (Int 0)))
  8955. \end{lstlisting}
  8956. %
  8957. In the case for $\LET{\LP\code{AssignedFree}\,
  8958. x\RP}{\itm{rhs}}{\itm{body}}$, recursively process \itm{rhs} to
  8959. obtain \itm{rhs'}. Next, recursively process \itm{body} to obtain
  8960. \itm{body'} but with $x$ added to the set of assigned-and-free
  8961. variables. Translate the let-expression as follows to bind $x$ to a
  8962. boxed value.
  8963. \begin{lstlisting}
  8964. (Let (AssignedFree |$x$|) |$rhs$| |$body$|)
  8965. |$\Rightarrow$|
  8966. (Let |$x$| (Prim 'vector (list |$rhs'$|)) |$body'$|)
  8967. \end{lstlisting}
  8968. %
  8969. In the case for $\SETBANG{x}{\itm{rhs}}$, recursively process
  8970. \itm{rhs} to obtain \itm{rhs'}. If $x$ is in the assigned-and-free
  8971. variables, translate the \code{set!} into a \code{vector-set!}
  8972. as follows.
  8973. \begin{lstlisting}
  8974. (SetBang |$x$| |$\itm{rhs}$|)
  8975. |$\Rightarrow$|
  8976. (Prim 'vector-set! (list (Var |$x$|) (Int 0) |$\itm{rhs'}$|))
  8977. \end{lstlisting}
  8978. %
  8979. The case for \code{Lambda} is non-trivial, but it is similar to the
  8980. case for function definitions, which we discuss next.
  8981. The auxiliary function for definitions, \code{cnvt-assign-def},
  8982. applies assignment conversion to function definitions.
  8983. We translate a function definition as follows.
  8984. \begin{lstlisting}
  8985. (Def |$f$| |$\itm{params}$| |$T$| |$\itm{info}$| |$\itm{body_1}$|)
  8986. |$\Rightarrow$|
  8987. (Def |$f$| |$\itm{params'}$| |$T$| |$\itm{info}$| |$\itm{body_4}$|)
  8988. \end{lstlisting}
  8989. So it remains to explain \itm{params'} and $\itm{body}_4$.
  8990. Let \itm{body_2}, $A_b$, and $F_b$ be the result of
  8991. \code{assigned\&free} on $\itm{body_1}$.
  8992. Let $P$ be the parameter names in \itm{params}.
  8993. We then apply \code{cnvt-assign-exp} to $\itm{body_2}$ to
  8994. obtain \itm{body_3}, passing $A_b \cap F_b \cap P$
  8995. as the set of assigned-and-free variables.
  8996. Finally, we obtain \itm{body_4} by wrapping \itm{body_3}
  8997. in a sequence of let-expressions that box the parameters
  8998. that are in $A_b \cap F_b$.
  8999. %
  9000. Regarding \itm{params'}, change the names of the parameters that are
  9001. in $A_b \cap F_b$ to maintain uniqueness (and so the let-bound
  9002. variables can retain the original names). Recall the second example in
  9003. Section~\ref{sec:assignment-scoping} involving a counter
  9004. abstraction. The following is the output of assignment version for
  9005. function \code{f}.
  9006. \begin{lstlisting}
  9007. (define (f0 [x1 : Integer]) : (Vector ( -> Integer) ( -> Void))
  9008. (vector
  9009. (lambda: () : Integer x1)
  9010. (lambda: () : Void (set! x1 (+ 1 x1)))))
  9011. |$\Rightarrow$|
  9012. (define (f0 [param_x1 : Integer]) : (Vector (-> Integer) (-> Void))
  9013. (let ([x1 (vector param_x1)])
  9014. (vector (lambda: () : Integer (vector-ref x1 0))
  9015. (lambda: () : Void
  9016. (vector-set! x1 0 (+ 1 (vector-ref x1 0)))))))
  9017. \end{lstlisting}
  9018. \section{Remove Complex Operands}
  9019. \label{sec:rco-loop}
  9020. The three new language forms, \code{while}, \code{set!}, and
  9021. \code{begin} are all complex expressions and their subexpressions are
  9022. allowed to be complex. Figure~\ref{fig:Rfun-anf-syntax} defines the
  9023. output language \LangFunANF{} of this pass.
  9024. \begin{figure}[tp]
  9025. \centering
  9026. \fbox{
  9027. \begin{minipage}{0.96\textwidth}
  9028. \small
  9029. \[
  9030. \begin{array}{rcl}
  9031. \Atm &::=& \gray{ \INT{\Int} \MID \VAR{\Var} \MID \BOOL{\itm{bool}}
  9032. \MID \VOID{} } \\
  9033. \Exp &::=& \ldots \MID \gray{ \LET{\Var}{\Exp}{\Exp} } \\
  9034. &\MID& \WHILE{\Exp}{\Exp} \MID \SETBANG{\Var}{\Exp}
  9035. \MID \BEGIN{\LP\Exp\ldots\RP}{\Exp} \\
  9036. \Def &::=& \gray{ \FUNDEF{\Var}{([\Var \code{:} \Type]\ldots)}{\Type}{\code{'()}}{\Exp} }\\
  9037. R^{\dagger}_8 &::=& \gray{ \PROGRAMDEFS{\code{'()}}{\Def} }
  9038. \end{array}
  9039. \]
  9040. \end{minipage}
  9041. }
  9042. \caption{\LangLoopANF{} is \LangLoop{} in administrative normal form (ANF).}
  9043. \label{fig:Rwhile-anf-syntax}
  9044. \end{figure}
  9045. As usual, when a complex expression appears in a grammar position that
  9046. needs to be atomic, such as the argument of a primitive operator, we
  9047. must introduce a temporary variable and bind it to the complex
  9048. expression. This approach applies, unchanged, to handle the new
  9049. language forms. For example, in the following code there are two
  9050. \code{begin} expressions appearing as arguments to \code{+}. The
  9051. output of \code{rco-exp} is shown below, in which the \code{begin}
  9052. expressions have been bound to temporary variables. Recall that
  9053. \code{let} expressions in \LangLoopANF{} are allowed to have
  9054. arbitrary expressions in their right-hand-side expression, so it is
  9055. fine to place \code{begin} there.
  9056. \begin{lstlisting}
  9057. (let ([x0 10])
  9058. (let ([y1 0])
  9059. (+ (+ (begin (set! y1 (read)) x0)
  9060. (begin (set! x0 (read)) y1))
  9061. x0)))
  9062. |$\Rightarrow$|
  9063. (let ([x0 10])
  9064. (let ([y1 0])
  9065. (let ([tmp2 (begin (set! y1 (read)) x0)])
  9066. (let ([tmp3 (begin (set! x0 (read)) y1)])
  9067. (let ([tmp4 (+ tmp2 tmp3)])
  9068. (+ tmp4 x0))))))
  9069. \end{lstlisting}
  9070. \section{Explicate Control and \LangCLoop{}}
  9071. \label{sec:explicate-loop}
  9072. Recall that in the \code{explicate\_control} pass we define one helper
  9073. function for each kind of position in the program. For the \LangVar{}
  9074. language of integers and variables we needed kinds of positions:
  9075. assignment and tail. The \code{if} expressions of \LangIf{} introduced
  9076. predicate positions. For \LangLoop{}, the \code{begin} expression introduces
  9077. yet another kind of position: effect position. Except for the last
  9078. subexpression, the subexpressions inside a \code{begin} are evaluated
  9079. only for their effect. Their result values are discarded. We can
  9080. generate better code by taking this fact into account.
  9081. The output language of \code{explicate\_control} is \LangCLoop{}
  9082. (Figure~\ref{fig:c7-syntax}), which is nearly identical to
  9083. \LangCLam{}. The only syntactic difference is that \code{Call},
  9084. \code{vector-set!}, and \code{read} may also appear as statements.
  9085. The most significant difference between \LangCLam{} and \LangCLoop{}
  9086. is that the control-flow graphs of the later may contain cycles.
  9087. \begin{figure}[tp]
  9088. \fbox{
  9089. \begin{minipage}{0.96\textwidth}
  9090. \small
  9091. \[
  9092. \begin{array}{lcl}
  9093. \Stmt &::=& \gray{ \ASSIGN{\VAR{\Var}}{\Exp}
  9094. \MID \LP\key{Collect} \,\itm{int}\RP } \\
  9095. &\MID& \CALL{\Atm}{\LP\Atm\ldots\RP} \MID \READ{}\\
  9096. &\MID& \LP\key{Prim}~\key{'vector-set!}\,\LP\key{list}\,\Atm\,\INT{\Int}\,\Atm\RP\RP \\
  9097. \Def &::=& \DEF{\itm{label}}{\LP\LS\Var\key{:}\Type\RS\ldots\RP}{\Type}{\itm{info}}{\LP\LP\itm{label}\,\key{.}\,\Tail\RP\ldots\RP}\\
  9098. \LangCLoopM{} & ::= & \PROGRAMDEFS{\itm{info}}{\LP\Def\ldots\RP}
  9099. \end{array}
  9100. \]
  9101. \end{minipage}
  9102. }
  9103. \caption{The abstract syntax of \LangCLoop{}, extending \LangCLam{} (Figure~\ref{fig:c4-syntax}).}
  9104. \label{fig:c7-syntax}
  9105. \end{figure}
  9106. The new auxiliary function \code{explicate-effect} takes an expression
  9107. (in an effect position) and a promise of a continuation block. The
  9108. function returns a promise for a $\Tail$ that includes the generated
  9109. code for the input expression followed by the continuation block. If
  9110. the expression is obviously pure, that is, never causes side effects,
  9111. then the expression can be removed, so the result is just the
  9112. continuation block.
  9113. %
  9114. The $\WHILE{\itm{cnd}}{\itm{body}}$ expression is the most interesting
  9115. case. First, you will need a fresh label $\itm{loop}$ for the top of
  9116. the loop. Recursively process the \itm{body} (in effect position)
  9117. with the a \code{goto} to $\itm{loop}$ as the continuation, producing
  9118. \itm{body'}. Next, process the \itm{cnd} (in predicate position) with
  9119. \itm{body'} as the then-branch and the continuation block as the
  9120. else-branch. The result should be added to the control-flow graph with
  9121. the label \itm{loop}. The result for the whole \code{while} loop is a
  9122. \code{goto} to the \itm{loop} label. Note that the loop should only be
  9123. added to the control-flow graph if the loop is indeed used, which can
  9124. be accomplished using \code{delay}.
  9125. The auxiliary functions for tail, assignment, and predicate positions
  9126. need to be updated. The three new language forms, \code{while},
  9127. \code{set!}, and \code{begin}, can appear in assignment and tail
  9128. positions. Only \code{begin} may appear in predicate positions; the
  9129. other two have result type \code{Void}.
  9130. \section{Select Instructions}
  9131. \label{sec:select-instructions-loop}
  9132. Only three small additions are needed in the
  9133. \code{select-instructions} pass to handle the changes to \LangCLoop{}. That
  9134. is, \code{Call}, \code{read}, and \code{vector-set!} may now appear as
  9135. stand-alone statements instead of only appearing on the right-hand
  9136. side of an assignment statement. The code generation is nearly
  9137. identical; just leave off the instruction for moving the result into
  9138. the left-hand side.
  9139. \section{Register Allocation}
  9140. \label{sec:register-allocation-loop}
  9141. As discussed in Section~\ref{sec:dataflow-analysis}, the presence of
  9142. loops in \LangLoop{} means that the control-flow graphs may contain cycles,
  9143. which complicates the liveness analysis needed for register
  9144. allocation.
  9145. \subsection{Liveness Analysis}
  9146. \label{sec:liveness-analysis-r8}
  9147. We recommend using the generic \code{analyze-dataflow} function that
  9148. was presented at the end of Section~\ref{sec:dataflow-analysis} to
  9149. perform liveness analysis, replacing the code in
  9150. \code{uncover-live-CFG} that processed the basic blocks in topological
  9151. order (Section~\ref{sec:liveness-analysis-Lif}).
  9152. The \code{analyze-dataflow} function has four parameters.
  9153. \begin{enumerate}
  9154. \item The first parameter \code{G} should be a directed graph from the
  9155. \code{racket/graph} package (see the sidebar in
  9156. Section~\ref{sec:build-interference}) that represents the
  9157. control-flow graph.
  9158. \item The second parameter \code{transfer} is a function that applies
  9159. liveness analysis to a basic block. It takes two parameters: the
  9160. label for the block to analyze and the live-after set for that
  9161. block. The transfer function should return the live-before set for
  9162. the block. Also, as a side-effect, it should update the block's
  9163. $\itm{info}$ with the liveness information for each instruction. To
  9164. implement the \code{transfer} function, you should be able to reuse
  9165. the code you already have for analyzing basic blocks.
  9166. \item The third and fourth parameters of \code{analyze-dataflow} are
  9167. \code{bottom} and \code{join} for the lattice of abstract states,
  9168. i.e. sets of locations. The bottom of the lattice is the empty set
  9169. \code{(set)} and the join operator is \code{set-union}.
  9170. \end{enumerate}
  9171. \begin{figure}[p]
  9172. \begin{tikzpicture}[baseline=(current bounding box.center)]
  9173. \node (Rfun) at (0,2) {\large \LangLoop{}};
  9174. \node (Rfun-2) at (3,2) {\large \LangLoop{}};
  9175. \node (Rfun-3) at (6,2) {\large \LangLoop{}};
  9176. \node (Rfun-4) at (9,2) {\large \LangLoopFunRef{}};
  9177. \node (F1-1) at (12,0) {\large \LangLoopFunRef{}};
  9178. \node (F1-2) at (9,0) {\large \LangLoopFunRef{}};
  9179. \node (F1-3) at (6,0) {\large \LangLoopFunRef{}};
  9180. \node (F1-4) at (3,0) {\large \LangLoopAlloc{}};
  9181. \node (F1-5) at (0,0) {\large \LangLoopAlloc{}};
  9182. \node (C3-2) at (3,-2) {\large \LangCLoop{}};
  9183. \node (x86-2) at (3,-4) {\large \LangXIndCallVar{}};
  9184. \node (x86-2-1) at (3,-6) {\large \LangXIndCallVar{}};
  9185. \node (x86-2-2) at (6,-6) {\large \LangXIndCallVar{}};
  9186. \node (x86-3) at (6,-4) {\large \LangXIndCallVar{}};
  9187. \node (x86-4) at (9,-4) {\large \LangXIndCall{}};
  9188. \node (x86-5) at (9,-6) {\large \LangXIndCall{}};
  9189. %% \path[->,bend left=15] (Rfun) edge [above] node
  9190. %% {\ttfamily\footnotesize type-check} (Rfun-2);
  9191. \path[->,bend left=15] (Rfun) edge [above] node
  9192. {\ttfamily\footnotesize shrink} (Rfun-2);
  9193. \path[->,bend left=15] (Rfun-2) edge [above] node
  9194. {\ttfamily\footnotesize uniquify} (Rfun-3);
  9195. \path[->,bend left=15] (Rfun-3) edge [above] node
  9196. {\ttfamily\footnotesize reveal-functions} (Rfun-4);
  9197. \path[->,bend left=15] (Rfun-4) edge [right] node
  9198. {\ttfamily\footnotesize convert-assignments} (F1-1);
  9199. \path[->,bend left=15] (F1-1) edge [below] node
  9200. {\ttfamily\footnotesize convert-to-clos.} (F1-2);
  9201. \path[->,bend right=15] (F1-2) edge [above] node
  9202. {\ttfamily\footnotesize limit-fun.} (F1-3);
  9203. \path[->,bend right=15] (F1-3) edge [above] node
  9204. {\ttfamily\footnotesize expose-alloc.} (F1-4);
  9205. \path[->,bend right=15] (F1-4) edge [above] node
  9206. {\ttfamily\footnotesize remove-complex.} (F1-5);
  9207. \path[->,bend right=15] (F1-5) edge [right] node
  9208. {\ttfamily\footnotesize explicate-control} (C3-2);
  9209. \path[->,bend left=15] (C3-2) edge [left] node
  9210. {\ttfamily\footnotesize select-instr.} (x86-2);
  9211. \path[->,bend right=15] (x86-2) edge [left] node
  9212. {\ttfamily\footnotesize uncover-live} (x86-2-1);
  9213. \path[->,bend right=15] (x86-2-1) edge [below] node
  9214. {\ttfamily\footnotesize build-inter.} (x86-2-2);
  9215. \path[->,bend right=15] (x86-2-2) edge [left] node
  9216. {\ttfamily\footnotesize allocate-reg.} (x86-3);
  9217. \path[->,bend left=15] (x86-3) edge [above] node
  9218. {\ttfamily\footnotesize patch-instr.} (x86-4);
  9219. \path[->,bend left=15] (x86-4) edge [right] node {\ttfamily\footnotesize print-x86} (x86-5);
  9220. \end{tikzpicture}
  9221. \caption{Diagram of the passes for \LangLoop{} (loops and assignment).}
  9222. \label{fig:Rwhile-passes}
  9223. \end{figure}
  9224. Figure~\ref{fig:Rwhile-passes} provides an overview of all the passes needed
  9225. for the compilation of \LangLoop{}.
  9226. \section{Challenge: Arrays}
  9227. \label{sec:arrays}
  9228. In Chapter~\ref{ch:Rvec} we studied tuples, that is, sequences of
  9229. elements whose length is determined at compile-time and where each
  9230. element of a tuple may have a different type (they are
  9231. heterogeous). This challenge is also about sequences, but this time
  9232. the length is determined at run-time and all the elements have the same
  9233. type (they are homogeneous). We use the term ``array'' for this later
  9234. kind of sequence.
  9235. The Racket language does not distinguish between tuples and arrays,
  9236. they are both represented by vectors. However, Typed Racket
  9237. distinguishes between tuples and arrays: the \code{Vector} type is for
  9238. tuples and the \code{Vectorof} type is for arrays.
  9239. %
  9240. Figure~\ref{fig:Rvecof-concrete-syntax} defines the concrete syntax
  9241. for \LangArray{}, extending \LangLoop{} with the \code{Vectorof} type
  9242. and the \code{make-vector} primitive operator for creating an array,
  9243. whose arguments are the length of the array and an initial value for
  9244. all the elements in the array. The \code{vector-length},
  9245. \code{vector-ref}, and \code{vector-ref!} operators that we defined
  9246. for tuples become overloaded for use with arrays.
  9247. %
  9248. We also include integer multiplication in \LangArray{}, as it is
  9249. useful in many examples involving arrays such as computing the
  9250. inner-product of two arrays (Figure~\ref{fig:inner-product}).
  9251. \begin{figure}[tp]
  9252. \centering
  9253. \fbox{
  9254. \begin{minipage}{0.96\textwidth}
  9255. \small
  9256. \[
  9257. \begin{array}{lcl}
  9258. \Type &::=& \ldots \MID \LP \key{Vectorof}~\Type \RP \\
  9259. \Exp &::=& \gray{ \Int \MID \CREAD{} \MID \CNEG{\Exp}
  9260. \MID \CADD{\Exp}{\Exp} \MID \CSUB{\Exp}{\Exp} } \MID \CMUL{\Exp}{\Exp}\\
  9261. &\MID& \gray{ \Var \MID \CLET{\Var}{\Exp}{\Exp} }\\
  9262. &\MID& \gray{\key{\#t} \MID \key{\#f}
  9263. \MID \LP\key{and}\;\Exp\;\Exp\RP
  9264. \MID \LP\key{or}\;\Exp\;\Exp\RP
  9265. \MID \LP\key{not}\;\Exp\RP } \\
  9266. &\MID& \gray{ \LP\key{eq?}\;\Exp\;\Exp\RP \MID \CIF{\Exp}{\Exp}{\Exp} } \\
  9267. &\MID& \gray{ \LP\key{vector}\;\Exp\ldots\RP \MID
  9268. \LP\key{vector-ref}\;\Exp\;\Int\RP} \\
  9269. &\MID& \gray{\LP\key{vector-set!}\;\Exp\;\Int\;\Exp\RP\MID \LP\key{void}\RP
  9270. \MID \LP\Exp \; \Exp\ldots\RP } \\
  9271. &\MID& \gray{ \LP \key{procedure-arity}~\Exp\RP
  9272. \MID \CLAMBDA{\LP\LS\Var \key{:} \Type\RS\ldots\RP}{\Type}{\Exp} } \\
  9273. &\MID& \gray{ \CSETBANG{\Var}{\Exp}
  9274. \MID \CBEGIN{\Exp\ldots}{\Exp}
  9275. \MID \CWHILE{\Exp}{\Exp} } \\
  9276. &\MID& \CMAKEVEC{\Exp}{\Exp} \\
  9277. \Def &::=& \gray{ \CDEF{\Var}{\LS\Var \key{:} \Type\RS\ldots}{\Type}{\Exp} } \\
  9278. \LangArray{} &::=& \gray{\Def\ldots \; \Exp}
  9279. \end{array}
  9280. \]
  9281. \end{minipage}
  9282. }
  9283. \caption{The concrete syntax of \LangArray{}, extending \LangLoop{} (Figure~\ref{fig:Rwhile-concrete-syntax}).}
  9284. \label{fig:Rvecof-concrete-syntax}
  9285. \end{figure}
  9286. \begin{figure}[tp]
  9287. \begin{lstlisting}
  9288. (define (inner-product [A : (Vectorof Integer)] [B : (Vectorof Integer)]
  9289. [n : Integer]) : Integer
  9290. (let ([i 0])
  9291. (let ([prod 0])
  9292. (begin
  9293. (while (< i n)
  9294. (begin
  9295. (set! prod (+ prod (* (vector-ref A i)
  9296. (vector-ref B i))))
  9297. (set! i (+ i 1))
  9298. ))
  9299. prod))))
  9300. (let ([A (make-vector 2 2)])
  9301. (let ([B (make-vector 2 3)])
  9302. (+ (inner-product A B 2)
  9303. 30)))
  9304. \end{lstlisting}
  9305. \caption{Example program that computes the inner-product.}
  9306. \label{fig:inner-product}
  9307. \end{figure}
  9308. The type checker for \LangArray{} is define in
  9309. Figure~\ref{fig:type-check-Rvecof}. The result type of
  9310. \code{make-vector} is \code{(Vectorof T)} where \code{T} is the type
  9311. of the intializing expression. The length expression is required to
  9312. have type \code{Integer}. The type checking of the operators
  9313. \code{vector-length}, \code{vector-ref}, and \code{vector-set!} is
  9314. updated to handle the situation where the vector has type
  9315. \code{Vectorof}. In these cases we translate the operators to their
  9316. \code{vectorof} form so that later passes can easily distinguish
  9317. between operations on tuples versus arrays. We override the
  9318. \code{operator-types} method to provide the type signature for
  9319. multiplication: it takes two integers and returns an integer. To
  9320. support injection and projection of arrays to the \code{Any} type
  9321. (Section~\ref{sec:Rany-lang}), we also override the \code{flat-ty?}
  9322. predicate.
  9323. \begin{figure}[tbp]
  9324. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  9325. (define type-check-Rvecof_class
  9326. (class type-check-Rwhile_class
  9327. (super-new)
  9328. (inherit check-type-equal?)
  9329. (define/override (flat-ty? ty)
  9330. (match ty
  9331. ['(Vectorof Any) #t]
  9332. [else (super flat-ty? ty)]))
  9333. (define/override (operator-types)
  9334. (append '((* . ((Integer Integer) . Integer)))
  9335. (super operator-types)))
  9336. (define/override (type-check-exp env)
  9337. (lambda (e)
  9338. (define recur (type-check-exp env))
  9339. (match e
  9340. [(Prim 'make-vector (list e1 e2))
  9341. (define-values (e1^ t1) (recur e1))
  9342. (define-values (e2^ elt-type) (recur e2))
  9343. (define vec-type `(Vectorof ,elt-type))
  9344. (values (HasType (Prim 'make-vector (list e1^ e2^)) vec-type)
  9345. vec-type)]
  9346. [(Prim 'vector-ref (list e1 e2))
  9347. (define-values (e1^ t1) (recur e1))
  9348. (define-values (e2^ t2) (recur e2))
  9349. (match* (t1 t2)
  9350. [(`(Vectorof ,elt-type) 'Integer)
  9351. (values (Prim 'vectorof-ref (list e1^ e2^)) elt-type)]
  9352. [(other wise) ((super type-check-exp env) e)])]
  9353. [(Prim 'vector-set! (list e1 e2 e3) )
  9354. (define-values (e-vec t-vec) (recur e1))
  9355. (define-values (e2^ t2) (recur e2))
  9356. (define-values (e-arg^ t-arg) (recur e3))
  9357. (match t-vec
  9358. [`(Vectorof ,elt-type)
  9359. (check-type-equal? elt-type t-arg e)
  9360. (values (Prim 'vectorof-set! (list e-vec e2^ e-arg^)) 'Void)]
  9361. [else ((super type-check-exp env) e)])]
  9362. [(Prim 'vector-length (list e1))
  9363. (define-values (e1^ t1) (recur e1))
  9364. (match t1
  9365. [`(Vectorof ,t)
  9366. (values (Prim 'vectorof-length (list e1^)) 'Integer)]
  9367. [else ((super type-check-exp env) e)])]
  9368. [else ((super type-check-exp env) e)])))
  9369. ))
  9370. (define (type-check-Rvecof p)
  9371. (send (new type-check-Rvecof_class) type-check-program p))
  9372. \end{lstlisting}
  9373. \caption{Type checker for the \LangArray{} language.}
  9374. \label{fig:type-check-Rvecof}
  9375. \end{figure}
  9376. The interpreter for \LangArray{} is defined in
  9377. Figure~\ref{fig:interp-Rvecof}. The \code{make-vector} operator is
  9378. implemented with Racket's \code{make-vector} function and
  9379. multiplication is \code{fx*}, multiplication for \code{fixnum}
  9380. integers.
  9381. \begin{figure}[tbp]
  9382. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  9383. (define interp-Rvecof_class
  9384. (class interp-Rwhile_class
  9385. (super-new)
  9386. (define/override (interp-op op)
  9387. (verbose "Rvecof/interp-op" op)
  9388. (match op
  9389. ['make-vector make-vector]
  9390. ['* fx*]
  9391. [else (super interp-op op)]))
  9392. ))
  9393. (define (interp-Rvecof p)
  9394. (send (new interp-Rvecof_class) interp-program p))
  9395. \end{lstlisting}
  9396. \caption{Interpreter for \LangArray{}.}
  9397. \label{fig:interp-Rvecof}
  9398. \end{figure}
  9399. \subsection{Data Representation}
  9400. \label{sec:array-rep}
  9401. Just like tuples, we store arrays on the heap which means that the
  9402. garbage collector will need to inspect arrays. An immediate thought is
  9403. to use the same representation for arrays that we use for tuples.
  9404. However, we limit tuples to a length of $50$ so that their length and
  9405. pointer mask can fit into the 64-bit tag at the beginning of each
  9406. tuple (Section~\ref{sec:data-rep-gc}). We intend arrays to allow
  9407. millions of elements, so we need more bits to store the length.
  9408. However, because arrays are homogeneous, we only need $1$ bit for the
  9409. pointer mask instead of one bit per array elements. Finally, the
  9410. garbage collector will need to be able to distinguish between tuples
  9411. and arrays, so we need to reserve $1$ bit for that purpose. So we
  9412. arrive at the following layout for the 64-bit tag at the beginning of
  9413. an array:
  9414. \begin{itemize}
  9415. \item The right-most bit is the forwarding bit, just like in a tuple.
  9416. A $0$ indicates it is a forwarding pointer and a $1$ indicates
  9417. it is not.
  9418. \item The next bit to the left is the pointer mask. A $0$ indicates
  9419. that none of the elements are pointers to the heap and a $1$
  9420. indicates that all of the elements are pointers.
  9421. \item The next $61$ bits store the length of the array.
  9422. \item The left-most bit distinguishes between a tuple ($0$) versus an
  9423. array ($1$).
  9424. \end{itemize}
  9425. Recall that in Chapter~\ref{ch:Rdyn}, we use a $3$-bit tag to
  9426. differentiate the kinds of values that have been injected into the
  9427. \code{Any} type. We use the bit pattern \code{110} (or $6$ in decimal)
  9428. to indicate that the value is an array.
  9429. In the following subsections we provide hints regarding how to update
  9430. the passes to handle arrays.
  9431. \subsection{Reveal Casts}
  9432. The array-access operators \code{vectorof-ref} and
  9433. \code{vectorof-set!} are similar to the \code{any-vector-ref} and
  9434. \code{any-vector-set!} operators of Chapter~\ref{ch:Rdyn} in
  9435. that the type checker cannot tell whether the index will be in bounds,
  9436. so the bounds check must be performed at run time. Recall that the
  9437. \code{reveal-casts} pass (Section~\ref{sec:reveal-casts-Rany}) wraps
  9438. an \code{If} arround a vector reference for update to check whether
  9439. the index is less than the length. You should do the same for
  9440. \code{vectorof-ref} and \code{vectorof-set!} .
  9441. In addition, the handling of the \code{any-vector} operators in
  9442. \code{reveal-casts} needs to be updated to account for arrays that are
  9443. injected to \code{Any}. For the \code{any-vector-length} operator, the
  9444. generated code should test whether the tag is for tuples (\code{010})
  9445. or arrays (\code{110}) and then dispatch to either
  9446. \code{any-vector-length} or \code{any-vectorof-length}. For the later
  9447. we add a case in \code{select-instructions} to generate the
  9448. appropriate instructions for accessing the array length from the
  9449. header of an array.
  9450. For the \code{any-vector-ref} and \code{any-vector-set!} operators,
  9451. the generated code needs to check that the index is less than the
  9452. vector length, so like the code for \code{any-vector-length}, check
  9453. the tag to determine whether to use \code{any-vector-length} or
  9454. \code{any-vectorof-length} for this purpose. Once the bounds checking
  9455. is complete, the generated code can use \code{any-vector-ref} and
  9456. \code{any-vector-set!} for both tuples and arrays because the
  9457. instructions used for those operators do not look at the tag at the
  9458. front of the tuple or array.
  9459. \subsection{Expose Allocation}
  9460. This pass should translate the \code{make-vector} operator into
  9461. lower-level operations. In particular, the new AST node
  9462. $\LP\key{AllocateArray}~\Exp~\Type\RP$ allocates an array of the
  9463. length specified by the $\Exp$, but does not initialize the elements
  9464. of the array. (Analogous to the \code{Allocate} AST node for tuples.)
  9465. The $\Type$ argument must be $\LP\key{Vectorof}~T\RP$ where $T$ is the
  9466. element type for the array. Regarding the initialization of the array,
  9467. we recommend generated a \code{while} loop that uses
  9468. \code{vector-set!} to put the initializing value into every element of
  9469. the array.
  9470. \subsection{Remove Complex Operands}
  9471. Add cases in the \code{rco-atom} and \code{rco-exp} for
  9472. \code{AllocateArray}. In particular, an \code{AllocateArray} node is
  9473. complex and its subexpression must be atomic.
  9474. \subsection{Explicate Control}
  9475. Add cases for \code{AllocateArray} to \code{explicate-tail} and
  9476. \code{explicate-assign}.
  9477. \subsection{Select Instructions}
  9478. Generate instructions for \code{AllocateArray} similar to those for
  9479. \code{Allocate} in Section~\ref{sec:select-instructions-gc} except
  9480. that the tag at the front of the array should instead use the
  9481. representation discussed in Section~\ref{sec:array-rep}.
  9482. Regarding \code{vectorof-length}, extract the length from the tag
  9483. according to the representation discussed in
  9484. Section~\ref{sec:array-rep}.
  9485. The instructions generated for \code{vectorof-ref} differ from those
  9486. for \code{vector-ref} (Section~\ref{sec:select-instructions-gc}) in
  9487. that the index is not a constant so the offset must be computed at
  9488. runtime, similar to the instructions generated for
  9489. \code{any-vector-of-ref} (Section~\ref{sec:select-Rany}). The same is
  9490. true for \code{vectorof-set!}. Also, the \code{vectorof-set!} may
  9491. appear in an assignment and as a stand-alone statement, so make sure
  9492. to handle both situations in this pass.
  9493. Finally, the instructions for \code{any-vectorof-length} should be
  9494. similar to those for \code{vectorof-length}, except that one must
  9495. first project the array by writing zeroes into the $3$-bit tag
  9496. \begin{exercise}\normalfont
  9497. Implement a compiler for the \LangArray{} language by extending your
  9498. compiler for \LangLoop{}. Test your compiler on a half dozen new
  9499. programs, including the one in Figure~\ref{fig:inner-product} and also
  9500. a program that multiplies two matrices. Note that matrices are
  9501. 2-dimensional arrays, but those can be encoded into 1-dimensional
  9502. arrays by laying out each row in the array, one after the next.
  9503. \end{exercise}
  9504. % Further Reading: dataflow analysis
  9505. \fi
  9506. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  9507. \chapter{Tuples and Garbage Collection}
  9508. \label{ch:Rvec}
  9509. \index{subject}{tuple}
  9510. \index{subject}{vector}
  9511. \if\edition\racketEd
  9512. %% \margincomment{\scriptsize To do: Flesh out this chapter, e.g., make sure
  9513. %% all the IR grammars are spelled out! \\ --Jeremy}
  9514. %% \margincomment{\scriptsize Be more explicit about how to deal with
  9515. %% the root stack. \\ --Jeremy}
  9516. In this chapter we study the implementation of mutable tuples, called
  9517. vectors in Racket. This language feature is the first to use the
  9518. computer's \emph{heap}\index{subject}{heap} because the lifetime of a
  9519. Racket tuple is indefinite, that is, a tuple lives forever from the
  9520. programmer's viewpoint. Of course, from an implementer's viewpoint, it
  9521. is important to reclaim the space associated with a tuple when it is
  9522. no longer needed, which is why we also study \emph{garbage
  9523. collection} \index{garbage collection} techniques in this chapter.
  9524. Section~\ref{sec:r3} introduces the \LangVec{} language including its
  9525. interpreter and type checker. The \LangVec{} language extends the \LangIf{}
  9526. language of Chapter~\ref{ch:Lif} with vectors and Racket's
  9527. \code{void} value. The reason for including the later is that the
  9528. \code{vector-set!} operation returns a value of type
  9529. \code{Void}\footnote{Racket's \code{Void} type corresponds to what is
  9530. called the \code{Unit} type in the programming languages
  9531. literature. Racket's \code{Void} type is inhabited by a single value
  9532. \code{void} which corresponds to \code{unit} or \code{()} in the
  9533. literature~\citep{Pierce:2002hj}.}.
  9534. Section~\ref{sec:GC} describes a garbage collection algorithm based on
  9535. copying live objects back and forth between two halves of the
  9536. heap. The garbage collector requires coordination with the compiler so
  9537. that it can see all of the \emph{root} pointers, that is, pointers in
  9538. registers or on the procedure call stack.
  9539. Sections~\ref{sec:expose-allocation} through \ref{sec:print-x86-gc}
  9540. discuss all the necessary changes and additions to the compiler
  9541. passes, including a new compiler pass named \code{expose-allocation}.
  9542. \section{The \LangVec{} Language}
  9543. \label{sec:r3}
  9544. Figure~\ref{fig:Rvec-concrete-syntax} defines the concrete syntax for
  9545. \LangVec{} and Figure~\ref{fig:Rvec-syntax} defines the abstract syntax. The
  9546. \LangVec{} language includes three new forms: \code{vector} for creating a
  9547. tuple, \code{vector-ref} for reading an element of a tuple, and
  9548. \code{vector-set!} for writing to an element of a tuple. The program
  9549. in Figure~\ref{fig:vector-eg} shows the usage of tuples in Racket. We
  9550. create a 3-tuple \code{t} and a 1-tuple that is stored at index $2$ of
  9551. the 3-tuple, demonstrating that tuples are first-class values. The
  9552. element at index $1$ of \code{t} is \code{\#t}, so the ``then'' branch
  9553. of the \key{if} is taken. The element at index $0$ of \code{t} is
  9554. \code{40}, to which we add \code{2}, the element at index $0$ of the
  9555. 1-tuple. So the result of the program is \code{42}.
  9556. \begin{figure}[tbp]
  9557. \centering
  9558. \fbox{
  9559. \begin{minipage}{0.96\textwidth}
  9560. \[
  9561. \begin{array}{lcl}
  9562. \Type &::=& \gray{\key{Integer} \MID \key{Boolean}}
  9563. \MID \LP\key{Vector}\;\Type\ldots\RP \MID \key{Void}\\
  9564. \Exp &::=& \gray{ \Int \MID \CREAD{} \MID \CNEG{\Exp} \MID \CADD{\Exp}{\Exp} \MID \CSUB{\Exp}{\Exp} } \\
  9565. &\MID& \gray{ \Var \MID \CLET{\Var}{\Exp}{\Exp} }\\
  9566. &\MID& \gray{ \key{\#t} \MID \key{\#f}
  9567. \MID \LP\key{and}\;\Exp\;\Exp\RP
  9568. \MID \LP\key{or}\;\Exp\;\Exp\RP
  9569. \MID \LP\key{not}\;\Exp\RP } \\
  9570. &\MID& \gray{ \LP\itm{cmp}\;\Exp\;\Exp\RP
  9571. \MID \CIF{\Exp}{\Exp}{\Exp} } \\
  9572. &\MID& \LP\key{vector}\;\Exp\ldots\RP
  9573. \MID \LP\key{vector-length}\;\Exp\RP \\
  9574. &\MID& \LP\key{vector-ref}\;\Exp\;\Int\RP
  9575. \MID \LP\key{vector-set!}\;\Exp\;\Int\;\Exp\RP \\
  9576. &\MID& \LP\key{void}\RP \MID \LP\key{has-type}~\Exp~\Type\RP\\
  9577. \LangVecM{} &::=& \Exp
  9578. \end{array}
  9579. \]
  9580. \end{minipage}
  9581. }
  9582. \caption{The concrete syntax of \LangVec{}, extending \LangIf{}
  9583. (Figure~\ref{fig:Lif-concrete-syntax}).}
  9584. \label{fig:Rvec-concrete-syntax}
  9585. \end{figure}
  9586. \begin{figure}[tbp]
  9587. \begin{lstlisting}
  9588. (let ([t (vector 40 #t (vector 2))])
  9589. (if (vector-ref t 1)
  9590. (+ (vector-ref t 0)
  9591. (vector-ref (vector-ref t 2) 0))
  9592. 44))
  9593. \end{lstlisting}
  9594. \caption{Example program that creates tuples and reads from them.}
  9595. \label{fig:vector-eg}
  9596. \end{figure}
  9597. \begin{figure}[tp]
  9598. \centering
  9599. \fbox{
  9600. \begin{minipage}{0.96\textwidth}
  9601. \[
  9602. \begin{array}{lcl}
  9603. \itm{op} &::=& \ldots \MID \code{vector} \MID \code{vector-length} \\
  9604. \Exp &::=& \gray{ \INT{\Int} \MID \VAR{\Var} \MID \LET{\Var}{\Exp}{\Exp} } \\
  9605. &\MID& \gray{ \PRIM{\itm{op}}{\Exp\ldots}
  9606. \MID \BOOL{\itm{bool}}
  9607. \MID \IF{\Exp}{\Exp}{\Exp} } \\
  9608. &\MID& \VECREF{\Exp}{\INT{\Int}}\\
  9609. &\MID& \VECSET{\Exp}{\INT{\Int}}{\Exp} \\
  9610. &\MID& \VOID{} \MID \LP\key{HasType}~\Exp~\Type \RP \\
  9611. \LangVecM{} &::=& \PROGRAM{\key{'()}}{\Exp}
  9612. \end{array}
  9613. \]
  9614. \end{minipage}
  9615. }
  9616. \caption{The abstract syntax of \LangVec{}.}
  9617. \label{fig:Rvec-syntax}
  9618. \end{figure}
  9619. \index{subject}{allocate}
  9620. \index{subject}{heap allocate}
  9621. Tuples are our first encounter with heap-allocated data, which raises
  9622. several interesting issues. First, variable binding performs a
  9623. shallow-copy when dealing with tuples, which means that different
  9624. variables can refer to the same tuple, that is, different variables
  9625. can be \emph{aliases} for the same entity. Consider the following
  9626. example in which both \code{t1} and \code{t2} refer to the same tuple.
  9627. Thus, the mutation through \code{t2} is visible when referencing the
  9628. tuple from \code{t1}, so the result of this program is \code{42}.
  9629. \index{subject}{alias}\index{subject}{mutation}
  9630. \begin{center}
  9631. \begin{minipage}{0.96\textwidth}
  9632. \begin{lstlisting}
  9633. (let ([t1 (vector 3 7)])
  9634. (let ([t2 t1])
  9635. (let ([_ (vector-set! t2 0 42)])
  9636. (vector-ref t1 0))))
  9637. \end{lstlisting}
  9638. \end{minipage}
  9639. \end{center}
  9640. The next issue concerns the lifetime of tuples. Of course, they are
  9641. created by the \code{vector} form, but when does their lifetime end?
  9642. Notice that \LangVec{} does not include an operation for deleting
  9643. tuples. Furthermore, the lifetime of a tuple is not tied to any notion
  9644. of static scoping. For example, the following program returns
  9645. \code{42} even though the variable \code{w} goes out of scope prior to
  9646. the \code{vector-ref} that reads from the vector it was bound to.
  9647. \begin{center}
  9648. \begin{minipage}{0.96\textwidth}
  9649. \begin{lstlisting}
  9650. (let ([v (vector (vector 44))])
  9651. (let ([x (let ([w (vector 42)])
  9652. (let ([_ (vector-set! v 0 w)])
  9653. 0))])
  9654. (+ x (vector-ref (vector-ref v 0) 0))))
  9655. \end{lstlisting}
  9656. \end{minipage}
  9657. \end{center}
  9658. From the perspective of programmer-observable behavior, tuples live
  9659. forever. Of course, if they really lived forever, then many programs
  9660. would run out of memory.\footnote{The \LangVec{} language does not have
  9661. looping or recursive functions, so it is nigh impossible to write a
  9662. program in \LangVec{} that will run out of memory. However, we add
  9663. recursive functions in the next Chapter!} A Racket implementation
  9664. must therefore perform automatic garbage collection.
  9665. Figure~\ref{fig:interp-Rvec} shows the definitional interpreter for the
  9666. \LangVec{} language. We define the \code{vector}, \code{vector-length},
  9667. \code{vector-ref}, and \code{vector-set!} operations for \LangVec{} in
  9668. terms of the corresponding operations in Racket. One subtle point is
  9669. that the \code{vector-set!} operation returns the \code{\#<void>}
  9670. value. The \code{\#<void>} value can be passed around just like other
  9671. values inside an \LangVec{} program and a \code{\#<void>} value can be
  9672. compared for equality with another \code{\#<void>} value. However,
  9673. there are no other operations specific to the the \code{\#<void>}
  9674. value in \LangVec{}. In contrast, Racket defines the \code{void?} predicate
  9675. that returns \code{\#t} when applied to \code{\#<void>} and \code{\#f}
  9676. otherwise.
  9677. \begin{figure}[tbp]
  9678. \begin{lstlisting}
  9679. (define interp-Rvec_class
  9680. (class interp-Lif_class
  9681. (super-new)
  9682. (define/override (interp-op op)
  9683. (match op
  9684. ['eq? (lambda (v1 v2)
  9685. (cond [(or (and (fixnum? v1) (fixnum? v2))
  9686. (and (boolean? v1) (boolean? v2))
  9687. (and (vector? v1) (vector? v2))
  9688. (and (void? v1) (void? v2)))
  9689. (eq? v1 v2)]))]
  9690. ['vector vector]
  9691. ['vector-length vector-length]
  9692. ['vector-ref vector-ref]
  9693. ['vector-set! vector-set!]
  9694. [else (super interp-op op)]
  9695. ))
  9696. (define/override ((interp-exp env) e)
  9697. (define recur (interp-exp env))
  9698. (match e
  9699. [(HasType e t) (recur e)]
  9700. [(Void) (void)]
  9701. [else ((super interp-exp env) e)]
  9702. ))
  9703. ))
  9704. (define (interp-Rvec p)
  9705. (send (new interp-Rvec_class) interp-program p))
  9706. \end{lstlisting}
  9707. \caption{Interpreter for the \LangVec{} language.}
  9708. \label{fig:interp-Rvec}
  9709. \end{figure}
  9710. Figure~\ref{fig:type-check-Rvec} shows the type checker for \LangVec{}, which
  9711. deserves some explanation. When allocating a vector, we need to know
  9712. which elements of the vector are pointers (i.e. are also vectors). We
  9713. can obtain this information during type checking. The type checker in
  9714. Figure~\ref{fig:type-check-Rvec} not only computes the type of an
  9715. expression, it also wraps every \key{vector} creation with the form
  9716. $(\key{HasType}~e~T)$, where $T$ is the vector's type.
  9717. %
  9718. To create the s-expression for the \code{Vector} type in
  9719. Figure~\ref{fig:type-check-Rvec}, we use the
  9720. \href{https://docs.racket-lang.org/reference/quasiquote.html}{unquote-splicing
  9721. operator} \code{,@} to insert the list \code{t*} without its usual
  9722. start and end parentheses. \index{subject}{unquote-slicing}
  9723. \begin{figure}[tp]
  9724. \begin{lstlisting}[basicstyle=\ttfamily\scriptsize]
  9725. (define type-check-Rvec_class
  9726. (class type-check-Lif_class
  9727. (super-new)
  9728. (inherit check-type-equal?)
  9729. (define/override (type-check-exp env)
  9730. (lambda (e)
  9731. (define recur (type-check-exp env))
  9732. (match e
  9733. [(Void) (values (Void) 'Void)]
  9734. [(Prim 'vector es)
  9735. (define-values (e* t*) (for/lists (e* t*) ([e es]) (recur e)))
  9736. (define t `(Vector ,@t*))
  9737. (values (HasType (Prim 'vector e*) t) t)]
  9738. [(Prim 'vector-ref (list e1 (Int i)))
  9739. (define-values (e1^ t) (recur e1))
  9740. (match t
  9741. [`(Vector ,ts ...)
  9742. (unless (and (0 . <= . i) (i . < . (length ts)))
  9743. (error 'type-check "index ~a out of bounds\nin ~v" i e))
  9744. (values (Prim 'vector-ref (list e1^ (Int i))) (list-ref ts i))]
  9745. [else (error 'type-check "expect Vector, not ~a\nin ~v" t e)])]
  9746. [(Prim 'vector-set! (list e1 (Int i) arg) )
  9747. (define-values (e-vec t-vec) (recur e1))
  9748. (define-values (e-arg^ t-arg) (recur arg))
  9749. (match t-vec
  9750. [`(Vector ,ts ...)
  9751. (unless (and (0 . <= . i) (i . < . (length ts)))
  9752. (error 'type-check "index ~a out of bounds\nin ~v" i e))
  9753. (check-type-equal? (list-ref ts i) t-arg e)
  9754. (values (Prim 'vector-set! (list e-vec (Int i) e-arg^)) 'Void)]
  9755. [else (error 'type-check "expect Vector, not ~a\nin ~v" t-vec e)])]
  9756. [(Prim 'vector-length (list e))
  9757. (define-values (e^ t) (recur e))
  9758. (match t
  9759. [`(Vector ,ts ...)
  9760. (values (Prim 'vector-length (list e^)) 'Integer)]
  9761. [else (error 'type-check "expect Vector, not ~a\nin ~v" t e)])]
  9762. [(Prim 'eq? (list arg1 arg2))
  9763. (define-values (e1 t1) (recur arg1))
  9764. (define-values (e2 t2) (recur arg2))
  9765. (match* (t1 t2)
  9766. [(`(Vector ,ts1 ...) `(Vector ,ts2 ...)) (void)]
  9767. [(other wise) (check-type-equal? t1 t2 e)])
  9768. (values (Prim 'eq? (list e1 e2)) 'Boolean)]
  9769. [(HasType (Prim 'vector es) t)
  9770. ((type-check-exp env) (Prim 'vector es))]
  9771. [(HasType e1 t)
  9772. (define-values (e1^ t^) (recur e1))
  9773. (check-type-equal? t t^ e)
  9774. (values (HasType e1^ t) t)]
  9775. [else ((super type-check-exp env) e)]
  9776. )))
  9777. ))
  9778. (define (type-check-Rvec p)
  9779. (send (new type-check-Rvec_class) type-check-program p))
  9780. \end{lstlisting}
  9781. \caption{Type checker for the \LangVec{} language.}
  9782. \label{fig:type-check-Rvec}
  9783. \end{figure}
  9784. \section{Garbage Collection}
  9785. \label{sec:GC}
  9786. Here we study a relatively simple algorithm for garbage collection
  9787. that is the basis of state-of-the-art garbage
  9788. collectors~\citep{Lieberman:1983aa,Ungar:1984aa,Jones:1996aa,Detlefs:2004aa,Dybvig:2006aa,Tene:2011kx}. In
  9789. particular, we describe a two-space copying
  9790. collector~\citep{Wilson:1992fk} that uses Cheney's algorithm to
  9791. perform the
  9792. copy~\citep{Cheney:1970aa}.
  9793. \index{subject}{copying collector}
  9794. \index{subject}{two-space copying collector}
  9795. Figure~\ref{fig:copying-collector} gives a
  9796. coarse-grained depiction of what happens in a two-space collector,
  9797. showing two time steps, prior to garbage collection (on the top) and
  9798. after garbage collection (on the bottom). In a two-space collector,
  9799. the heap is divided into two parts named the FromSpace and the
  9800. ToSpace. Initially, all allocations go to the FromSpace until there is
  9801. not enough room for the next allocation request. At that point, the
  9802. garbage collector goes to work to make more room.
  9803. \index{subject}{ToSpace}
  9804. \index{subject}{FromSpace}
  9805. The garbage collector must be careful not to reclaim tuples that will
  9806. be used by the program in the future. Of course, it is impossible in
  9807. general to predict what a program will do, but we can over approximate
  9808. the will-be-used tuples by preserving all tuples that could be
  9809. accessed by \emph{any} program given the current computer state. A
  9810. program could access any tuple whose address is in a register or on
  9811. the procedure call stack. These addresses are called the \emph{root
  9812. set}\index{subject}{root set}. In addition, a program could access any tuple that is
  9813. transitively reachable from the root set. Thus, it is safe for the
  9814. garbage collector to reclaim the tuples that are not reachable in this
  9815. way.
  9816. So the goal of the garbage collector is twofold:
  9817. \begin{enumerate}
  9818. \item preserve all tuple that are reachable from the root set via a
  9819. path of pointers, that is, the \emph{live} tuples, and
  9820. \item reclaim the memory of everything else, that is, the
  9821. \emph{garbage}.
  9822. \end{enumerate}
  9823. A copying collector accomplishes this by copying all of the live
  9824. objects from the FromSpace into the ToSpace and then performs a sleight
  9825. of hand, treating the ToSpace as the new FromSpace and the old
  9826. FromSpace as the new ToSpace. In the example of
  9827. Figure~\ref{fig:copying-collector}, there are three pointers in the
  9828. root set, one in a register and two on the stack. All of the live
  9829. objects have been copied to the ToSpace (the right-hand side of
  9830. Figure~\ref{fig:copying-collector}) in a way that preserves the
  9831. pointer relationships. For example, the pointer in the register still
  9832. points to a 2-tuple whose first element is a 3-tuple and whose second
  9833. element is a 2-tuple. There are four tuples that are not reachable
  9834. from the root set and therefore do not get copied into the ToSpace.
  9835. The exact situation in Figure~\ref{fig:copying-collector} cannot be
  9836. created by a well-typed program in \LangVec{} because it contains a
  9837. cycle. However, creating cycles will be possible once we get to \LangAny{}.
  9838. We design the garbage collector to deal with cycles to begin with so
  9839. we will not need to revisit this issue.
  9840. \begin{figure}[tbp]
  9841. \centering
  9842. \includegraphics[width=\textwidth]{figs/copy-collect-1} \\[5ex]
  9843. \includegraphics[width=\textwidth]{figs/copy-collect-2}
  9844. \caption{A copying collector in action.}
  9845. \label{fig:copying-collector}
  9846. \end{figure}
  9847. There are many alternatives to copying collectors (and their bigger
  9848. siblings, the generational collectors) when its comes to garbage
  9849. collection, such as mark-and-sweep~\citep{McCarthy:1960dz} and
  9850. reference counting~\citep{Collins:1960aa}. The strengths of copying
  9851. collectors are that allocation is fast (just a comparison and pointer
  9852. increment), there is no fragmentation, cyclic garbage is collected,
  9853. and the time complexity of collection only depends on the amount of
  9854. live data, and not on the amount of garbage~\citep{Wilson:1992fk}. The
  9855. main disadvantages of a two-space copying collector is that it uses a
  9856. lot of space and takes a long time to perform the copy, though these
  9857. problems are ameliorated in generational collectors. Racket and
  9858. Scheme programs tend to allocate many small objects and generate a lot
  9859. of garbage, so copying and generational collectors are a good fit.
  9860. Garbage collection is an active research topic, especially concurrent
  9861. garbage collection~\citep{Tene:2011kx}. Researchers are continuously
  9862. developing new techniques and revisiting old
  9863. trade-offs~\citep{Blackburn:2004aa,Jones:2011aa,Shahriyar:2013aa,Cutler:2015aa,Shidal:2015aa,Osterlund:2016aa,Jacek:2019aa,Gamari:2020aa}. Researchers
  9864. meet every year at the International Symposium on Memory Management to
  9865. present these findings.
  9866. \subsection{Graph Copying via Cheney's Algorithm}
  9867. \label{sec:cheney}
  9868. \index{subject}{Cheney's algorithm}
  9869. Let us take a closer look at the copying of the live objects. The
  9870. allocated objects and pointers can be viewed as a graph and we need to
  9871. copy the part of the graph that is reachable from the root set. To
  9872. make sure we copy all of the reachable vertices in the graph, we need
  9873. an exhaustive graph traversal algorithm, such as depth-first search or
  9874. breadth-first search~\citep{Moore:1959aa,Cormen:2001uq}. Recall that
  9875. such algorithms take into account the possibility of cycles by marking
  9876. which vertices have already been visited, so as to ensure termination
  9877. of the algorithm. These search algorithms also use a data structure
  9878. such as a stack or queue as a to-do list to keep track of the vertices
  9879. that need to be visited. We use breadth-first search and a trick
  9880. due to \citet{Cheney:1970aa} for simultaneously representing the queue
  9881. and copying tuples into the ToSpace.
  9882. Figure~\ref{fig:cheney} shows several snapshots of the ToSpace as the
  9883. copy progresses. The queue is represented by a chunk of contiguous
  9884. memory at the beginning of the ToSpace, using two pointers to track
  9885. the front and the back of the queue. The algorithm starts by copying
  9886. all tuples that are immediately reachable from the root set into the
  9887. ToSpace to form the initial queue. When we copy a tuple, we mark the
  9888. old tuple to indicate that it has been visited. We discuss how this
  9889. marking is accomplish in Section~\ref{sec:data-rep-gc}. Note that any
  9890. pointers inside the copied tuples in the queue still point back to the
  9891. FromSpace. Once the initial queue has been created, the algorithm
  9892. enters a loop in which it repeatedly processes the tuple at the front
  9893. of the queue and pops it off the queue. To process a tuple, the
  9894. algorithm copies all the tuple that are directly reachable from it to
  9895. the ToSpace, placing them at the back of the queue. The algorithm then
  9896. updates the pointers in the popped tuple so they point to the newly
  9897. copied tuples.
  9898. \begin{figure}[tbp]
  9899. \centering \includegraphics[width=0.9\textwidth]{figs/cheney}
  9900. \caption{Depiction of the Cheney algorithm copying the live tuples.}
  9901. \label{fig:cheney}
  9902. \end{figure}
  9903. Getting back to Figure~\ref{fig:cheney}, in the first step we copy the
  9904. tuple whose second element is $42$ to the back of the queue. The other
  9905. pointer goes to a tuple that has already been copied, so we do not
  9906. need to copy it again, but we do need to update the pointer to the new
  9907. location. This can be accomplished by storing a \emph{forwarding
  9908. pointer} to the new location in the old tuple, back when we initially
  9909. copied the tuple into the ToSpace. This completes one step of the
  9910. algorithm. The algorithm continues in this way until the front of the
  9911. queue is empty, that is, until the front catches up with the back.
  9912. \subsection{Data Representation}
  9913. \label{sec:data-rep-gc}
  9914. The garbage collector places some requirements on the data
  9915. representations used by our compiler. First, the garbage collector
  9916. needs to distinguish between pointers and other kinds of data. There
  9917. are several ways to accomplish this.
  9918. \begin{enumerate}
  9919. \item Attached a tag to each object that identifies what type of
  9920. object it is~\citep{McCarthy:1960dz}.
  9921. \item Store different types of objects in different
  9922. regions~\citep{Steele:1977ab}.
  9923. \item Use type information from the program to either generate
  9924. type-specific code for collecting or to generate tables that can
  9925. guide the
  9926. collector~\citep{Appel:1989aa,Goldberg:1991aa,Diwan:1992aa}.
  9927. \end{enumerate}
  9928. Dynamically typed languages, such as Lisp, need to tag objects
  9929. anyways, so option 1 is a natural choice for those languages.
  9930. However, \LangVec{} is a statically typed language, so it would be
  9931. unfortunate to require tags on every object, especially small and
  9932. pervasive objects like integers and Booleans. Option 3 is the
  9933. best-performing choice for statically typed languages, but comes with
  9934. a relatively high implementation complexity. To keep this chapter
  9935. within a 2-week time budget, we recommend a combination of options 1
  9936. and 2, using separate strategies for the stack and the heap.
  9937. Regarding the stack, we recommend using a separate stack for pointers,
  9938. which we call a \emph{root stack}\index{subject}{root stack} (a.k.a. ``shadow
  9939. stack'')~\citep{Siebert:2001aa,Henderson:2002aa,Baker:2009aa}. That
  9940. is, when a local variable needs to be spilled and is of type
  9941. \code{(Vector $\Type_1 \ldots \Type_n$)}, then we put it on the root
  9942. stack instead of the normal procedure call stack. Furthermore, we
  9943. always spill vector-typed variables if they are live during a call to
  9944. the collector, thereby ensuring that no pointers are in registers
  9945. during a collection. Figure~\ref{fig:shadow-stack} reproduces the
  9946. example from Figure~\ref{fig:copying-collector} and contrasts it with
  9947. the data layout using a root stack. The root stack contains the two
  9948. pointers from the regular stack and also the pointer in the second
  9949. register.
  9950. \begin{figure}[tbp]
  9951. \centering \includegraphics[width=0.60\textwidth]{figs/root-stack}
  9952. \caption{Maintaining a root stack to facilitate garbage collection.}
  9953. \label{fig:shadow-stack}
  9954. \end{figure}
  9955. The problem of distinguishing between pointers and other kinds of data
  9956. also arises inside of each tuple on the heap. We solve this problem by
  9957. attaching a tag, an extra 64-bits, to each
  9958. tuple. Figure~\ref{fig:tuple-rep} zooms in on the tags for two of the
  9959. tuples in the example from Figure~\ref{fig:copying-collector}. Note
  9960. that we have drawn the bits in a big-endian way, from right-to-left,
  9961. with bit location 0 (the least significant bit) on the far right,
  9962. which corresponds to the direction of the x86 shifting instructions
  9963. \key{salq} (shift left) and \key{sarq} (shift right). Part of each tag
  9964. is dedicated to specifying which elements of the tuple are pointers,
  9965. the part labeled ``pointer mask''. Within the pointer mask, a 1 bit
  9966. indicates there is a pointer and a 0 bit indicates some other kind of
  9967. data. The pointer mask starts at bit location 7. We have limited
  9968. tuples to a maximum size of 50 elements, so we just need 50 bits for
  9969. the pointer mask. The tag also contains two other pieces of
  9970. information. The length of the tuple (number of elements) is stored in
  9971. bits location 1 through 6. Finally, the bit at location 0 indicates
  9972. whether the tuple has yet to be copied to the ToSpace. If the bit has
  9973. value 1, then this tuple has not yet been copied. If the bit has
  9974. value 0 then the entire tag is a forwarding pointer. (The lower 3 bits
  9975. of a pointer are always zero anyways because our tuples are 8-byte
  9976. aligned.)
  9977. \begin{figure}[tbp]
  9978. \centering \includegraphics[width=0.8\textwidth]{figs/tuple-rep}
  9979. \caption{Representation of tuples in the heap.}
  9980. \label{fig:tuple-rep}
  9981. \end{figure}
  9982. \subsection{Implementation of the Garbage Collector}
  9983. \label{sec:organize-gz}
  9984. \index{subject}{prelude}
  9985. An implementation of the copying collector is provided in the
  9986. \code{runtime.c} file. Figure~\ref{fig:gc-header} defines the
  9987. interface to the garbage collector that is used by the compiler. The
  9988. \code{initialize} function creates the FromSpace, ToSpace, and root
  9989. stack and should be called in the prelude of the \code{main}
  9990. function. The arguments of \code{initialize} are the root stack size
  9991. and the heap size. Both need to be multiples of $64$ and $16384$ is a
  9992. good choice for both. The \code{initialize} function puts the address
  9993. of the beginning of the FromSpace into the global variable
  9994. \code{free\_ptr}. The global variable \code{fromspace\_end} points to
  9995. the address that is 1-past the last element of the FromSpace. (We use
  9996. half-open intervals to represent chunks of
  9997. memory~\citep{Dijkstra:1982aa}.) The \code{rootstack\_begin} variable
  9998. points to the first element of the root stack.
  9999. As long as there is room left in the FromSpace, your generated code
  10000. can allocate tuples simply by moving the \code{free\_ptr} forward.
  10001. %
  10002. The amount of room left in FromSpace is the difference between the
  10003. \code{fromspace\_end} and the \code{free\_ptr}. The \code{collect}
  10004. function should be called when there is not enough room left in the
  10005. FromSpace for the next allocation. The \code{collect} function takes
  10006. a pointer to the current top of the root stack (one past the last item
  10007. that was pushed) and the number of bytes that need to be
  10008. allocated. The \code{collect} function performs the copying collection
  10009. and leaves the heap in a state such that the next allocation will
  10010. succeed.
  10011. \begin{figure}[tbp]
  10012. \begin{lstlisting}
  10013. void initialize(uint64_t rootstack_size, uint64_t heap_size);
  10014. void collect(int64_t** rootstack_ptr, uint64_t bytes_requested);
  10015. int64_t* free_ptr;
  10016. int64_t* fromspace_begin;
  10017. int64_t* fromspace_end;
  10018. int64_t** rootstack_begin;
  10019. \end{lstlisting}
  10020. \caption{The compiler's interface to the garbage collector.}
  10021. \label{fig:gc-header}
  10022. \end{figure}
  10023. %% \begin{exercise}
  10024. %% In the file \code{runtime.c} you will find the implementation of
  10025. %% \code{initialize} and a partial implementation of \code{collect}.
  10026. %% The \code{collect} function calls another function, \code{cheney},
  10027. %% to perform the actual copy, and that function is left to the reader
  10028. %% to implement. The following is the prototype for \code{cheney}.
  10029. %% \begin{lstlisting}
  10030. %% static void cheney(int64_t** rootstack_ptr);
  10031. %% \end{lstlisting}
  10032. %% The parameter \code{rootstack\_ptr} is a pointer to the top of the
  10033. %% rootstack (which is an array of pointers). The \code{cheney} function
  10034. %% also communicates with \code{collect} through the global
  10035. %% variables \code{fromspace\_begin} and \code{fromspace\_end}
  10036. %% mentioned in Figure~\ref{fig:gc-header} as well as the pointers for
  10037. %% the ToSpace:
  10038. %% \begin{lstlisting}
  10039. %% static int64_t* tospace_begin;
  10040. %% static int64_t* tospace_end;
  10041. %% \end{lstlisting}
  10042. %% The job of the \code{cheney} function is to copy all the live
  10043. %% objects (reachable from the root stack) into the ToSpace, update
  10044. %% \code{free\_ptr} to point to the next unused spot in the ToSpace,
  10045. %% update the root stack so that it points to the objects in the
  10046. %% ToSpace, and finally to swap the global pointers for the FromSpace
  10047. %% and ToSpace.
  10048. %% \end{exercise}
  10049. %% \section{Compiler Passes}
  10050. %% \label{sec:code-generation-gc}
  10051. The introduction of garbage collection has a non-trivial impact on our
  10052. compiler passes. We introduce a new compiler pass named
  10053. \code{expose-allocation}. We make
  10054. significant changes to \code{select-instructions},
  10055. \code{build-interference}, \code{allocate-registers}, and
  10056. \code{print\_x86} and make minor changes in several more passes. The
  10057. following program will serve as our running example. It creates two
  10058. tuples, one nested inside the other. Both tuples have length one. The
  10059. program accesses the element in the inner tuple tuple via two vector
  10060. references.
  10061. % tests/s2_17.rkt
  10062. \begin{lstlisting}
  10063. (vector-ref (vector-ref (vector (vector 42)) 0) 0)
  10064. \end{lstlisting}
  10065. \section{Shrink}
  10066. \label{sec:shrink-Rvec}
  10067. Recall that the \code{shrink} pass translates the primitives operators
  10068. into a smaller set of primitives. Because this pass comes after type
  10069. checking, but before the passes that require the type information in
  10070. the \code{HasType} AST nodes, the \code{shrink} pass must be modified
  10071. to wrap \code{HasType} around each AST node that it generates.
  10072. \section{Expose Allocation}
  10073. \label{sec:expose-allocation}
  10074. The pass \code{expose-allocation} lowers the \code{vector} creation
  10075. form into a conditional call to the collector followed by the
  10076. allocation. We choose to place the \code{expose-allocation} pass
  10077. before \code{remove\_complex\_operands} because the code generated by
  10078. \code{expose-allocation} contains complex operands. We also place
  10079. \code{expose-allocation} before \code{explicate\_control} because
  10080. \code{expose-allocation} introduces new variables using \code{let},
  10081. but \code{let} is gone after \code{explicate\_control}.
  10082. The output of \code{expose-allocation} is a language \LangAlloc{} that
  10083. extends \LangVec{} with the three new forms that we use in the translation
  10084. of the \code{vector} form.
  10085. \[
  10086. \begin{array}{lcl}
  10087. \Exp &::=& \cdots
  10088. \MID (\key{collect} \,\itm{int})
  10089. \MID (\key{allocate} \,\itm{int}\,\itm{type})
  10090. \MID (\key{global-value} \,\itm{name})
  10091. \end{array}
  10092. \]
  10093. The $(\key{collect}\,n)$ form runs the garbage collector, requesting
  10094. $n$ bytes. It will become a call to the \code{collect} function in
  10095. \code{runtime.c} in \code{select-instructions}. The
  10096. $(\key{allocate}\,n\,T)$ form creates an tuple of $n$ elements.
  10097. \index{subject}{allocate}
  10098. The $T$ parameter is the type of the tuple: \code{(Vector $\Type_1 \ldots
  10099. \Type_n$)} where $\Type_i$ is the type of the $i$th element in the
  10100. tuple. The $(\key{global-value}\,\itm{name})$ form reads the value of
  10101. a global variable, such as \code{free\_ptr}.
  10102. In the following, we show the transformation for the \code{vector}
  10103. form into 1) a sequence of let-bindings for the initializing
  10104. expressions, 2) a conditional call to \code{collect}, 3) a call to
  10105. \code{allocate}, and 4) the initialization of the vector. In the
  10106. following, \itm{len} refers to the length of the vector and
  10107. \itm{bytes} is how many total bytes need to be allocated for the
  10108. vector, which is 8 for the tag plus \itm{len} times 8.
  10109. \begin{lstlisting}
  10110. (has-type (vector |$e_0 \ldots e_{n-1}$|) |\itm{type}|)
  10111. |$\Longrightarrow$|
  10112. (let ([|$x_0$| |$e_0$|]) ... (let ([|$x_{n-1}$| |$e_{n-1}$|])
  10113. (let ([_ (if (< (+ (global-value free_ptr) |\itm{bytes}|)
  10114. (global-value fromspace_end))
  10115. (void)
  10116. (collect |\itm{bytes}|))])
  10117. (let ([|$v$| (allocate |\itm{len}| |\itm{type}|)])
  10118. (let ([_ (vector-set! |$v$| |$0$| |$x_0$|)]) ...
  10119. (let ([_ (vector-set! |$v$| |$n-1$| |$x_{n-1}$|)])
  10120. |$v$|) ... )))) ...)
  10121. \end{lstlisting}
  10122. In the above, we suppressed all of the \code{has-type} forms in the
  10123. output for the sake of readability. The placement of the initializing
  10124. expressions $e_0,\ldots,e_{n-1}$ prior to the \code{allocate} and the
  10125. sequence of \code{vector-set!} is important, as those expressions may
  10126. trigger garbage collection and we cannot have an allocated but
  10127. uninitialized tuple on the heap during a collection.
  10128. Figure~\ref{fig:expose-alloc-output} shows the output of the
  10129. \code{expose-allocation} pass on our running example.
  10130. \begin{figure}[tbp]
  10131. % tests/s2_17.rkt
  10132. \begin{lstlisting}
  10133. (vector-ref
  10134. (vector-ref
  10135. (let ([vecinit7976
  10136. (let ([vecinit7972 42])
  10137. (let ([collectret7974
  10138. (if (< (+ (global-value free_ptr) 16)
  10139. (global-value fromspace_end))
  10140. (void)
  10141. (collect 16)
  10142. )])
  10143. (let ([alloc7971 (allocate 1 (Vector Integer))])
  10144. (let ([initret7973 (vector-set! alloc7971 0 vecinit7972)])
  10145. alloc7971)
  10146. )
  10147. )
  10148. )
  10149. ])
  10150. (let ([collectret7978
  10151. (if (< (+ (global-value free_ptr) 16)
  10152. (global-value fromspace_end))
  10153. (void)
  10154. (collect 16)
  10155. )])
  10156. (let ([alloc7975 (allocate 1 (Vector (Vector Integer)))])
  10157. (let ([initret7977 (vector-set! alloc7975 0 vecinit7976)])
  10158. alloc7975)
  10159. )
  10160. )
  10161. )
  10162. 0)
  10163. 0)
  10164. \end{lstlisting}
  10165. \caption{Output of the \code{expose-allocation} pass, minus
  10166. all of the \code{has-type} forms.}
  10167. \label{fig:expose-alloc-output}
  10168. \end{figure}
  10169. \section{Remove Complex Operands}
  10170. \label{sec:remove-complex-opera-Rvec}
  10171. The new forms \code{collect}, \code{allocate}, and \code{global-value}
  10172. should all be treated as complex operands.
  10173. %% A new case for
  10174. %% \code{HasType} is needed and the case for \code{Prim} needs to be
  10175. %% handled carefully to prevent the \code{Prim} node from being separated
  10176. %% from its enclosing \code{HasType}.
  10177. Figure~\ref{fig:Rvec-anf-syntax}
  10178. shows the grammar for the output language \LangVecANF{} of this
  10179. pass, which is \LangVec{} in administrative normal form.
  10180. \begin{figure}[tp]
  10181. \centering
  10182. \fbox{
  10183. \begin{minipage}{0.96\textwidth}
  10184. \small
  10185. \[
  10186. \begin{array}{rcl}
  10187. \Atm &::=& \gray{ \INT{\Int} \MID \VAR{\Var} \MID \BOOL{\itm{bool}} }
  10188. \MID \VOID{} \\
  10189. \Exp &::=& \gray{ \Atm \MID \READ{} } \\
  10190. &\MID& \gray{ \NEG{\Atm} \MID \ADD{\Atm}{\Atm} } \\
  10191. &\MID& \gray{ \LET{\Var}{\Exp}{\Exp} } \\
  10192. &\MID& \gray{ \UNIOP{\key{'not}}{\Atm} } \\
  10193. &\MID& \gray{ \BINOP{\itm{cmp}}{\Atm}{\Atm} \MID \IF{\Exp}{\Exp}{\Exp} }\\
  10194. &\MID& \LP\key{Collect}~\Int\RP \MID \LP\key{Allocate}~\Int~\Type\RP
  10195. \MID \LP\key{GlobalValue}~\Var\RP\\
  10196. % &\MID& \LP\key{HasType}~\Exp~\Type\RP \\
  10197. \LangVecANFM{} &::=& \gray{ \PROGRAM{\code{'()}}{\Exp} }
  10198. \end{array}
  10199. \]
  10200. \end{minipage}
  10201. }
  10202. \caption{\LangVecANF{} is \LangVec{} in administrative normal form (ANF).}
  10203. \label{fig:Rvec-anf-syntax}
  10204. \end{figure}
  10205. \section{Explicate Control and the \LangCVec{} language}
  10206. \label{sec:explicate-control-r3}
  10207. \begin{figure}[tp]
  10208. \fbox{
  10209. \begin{minipage}{0.96\textwidth}
  10210. \small
  10211. \[
  10212. \begin{array}{lcl}
  10213. \Atm &::=& \gray{ \INT{\Int} \MID \VAR{\Var} \MID \BOOL{\itm{bool}} }\\
  10214. \itm{cmp} &::= & \gray{ \key{eq?} \MID \key{<} } \\
  10215. \Exp &::= & \gray{ \Atm \MID \READ{} } \\
  10216. &\MID& \gray{ \NEG{\Atm} \MID \ADD{\Atm}{\Atm} }\\
  10217. &\MID& \gray{ \UNIOP{\key{not}}{\Atm} \MID \BINOP{\itm{cmp}}{\Atm}{\Atm} } \\
  10218. &\MID& \LP\key{Allocate} \,\itm{int}\,\itm{type}\RP \\
  10219. &\MID& \BINOP{\key{'vector-ref}}{\Atm}{\INT{\Int}} \\
  10220. &\MID& \LP\key{Prim}~\key{'vector-set!}\,\LP\Atm\,\INT{\Int}\,\Atm\RP\RP\\
  10221. &\MID& \LP\key{GlobalValue} \,\Var\RP \MID \LP\key{Void}\RP\\
  10222. \Stmt &::=& \gray{ \ASSIGN{\VAR{\Var}}{\Exp} }
  10223. \MID \LP\key{Collect} \,\itm{int}\RP \\
  10224. \Tail &::= & \gray{ \RETURN{\Exp} \MID \SEQ{\Stmt}{\Tail}
  10225. \MID \GOTO{\itm{label}} } \\
  10226. &\MID& \gray{ \IFSTMT{\BINOP{\itm{cmp}}{\Atm}{\Atm}}{\GOTO{\itm{label}}}{\GOTO{\itm{label}}} }\\
  10227. \LangCVecM{} & ::= & \gray{ \CPROGRAM{\itm{info}}{\LP\LP\itm{label}\,\key{.}\,\Tail\RP\ldots\RP} }
  10228. \end{array}
  10229. \]
  10230. \end{minipage}
  10231. }
  10232. \caption{The abstract syntax of \LangCVec{}, extending \LangCIf{}
  10233. (Figure~\ref{fig:c1-syntax}).}
  10234. \label{fig:c2-syntax}
  10235. \end{figure}
  10236. The output of \code{explicate\_control} is a program in the
  10237. intermediate language \LangCVec{}, whose abstract syntax is defined in
  10238. Figure~\ref{fig:c2-syntax}. (The concrete syntax is defined in
  10239. Figure~\ref{fig:c2-concrete-syntax} of the Appendix.) The new forms
  10240. of \LangCVec{} include the \key{allocate}, \key{vector-ref}, and
  10241. \key{vector-set!}, and \key{global-value} expressions and the
  10242. \code{collect} statement. The \code{explicate\_control} pass can treat
  10243. these new forms much like the other expression forms that we've
  10244. already encoutered.
  10245. \section{Select Instructions and the \LangXGlobal{} Language}
  10246. \label{sec:select-instructions-gc}
  10247. \index{subject}{instruction selection}
  10248. %% void (rep as zero)
  10249. %% allocate
  10250. %% collect (callq collect)
  10251. %% vector-ref
  10252. %% vector-set!
  10253. %% global (postpone)
  10254. In this pass we generate x86 code for most of the new operations that
  10255. were needed to compile tuples, including \code{Allocate},
  10256. \code{Collect}, \code{vector-ref}, \code{vector-set!}, and
  10257. \code{void}. We compile \code{GlobalValue} to \code{Global} because
  10258. the later has a different concrete syntax (see
  10259. Figures~\ref{fig:x86-2-concrete} and \ref{fig:x86-2}).
  10260. \index{subject}{x86}
  10261. The \code{vector-ref} and \code{vector-set!} forms translate into
  10262. \code{movq} instructions. (The plus one in the offset is to get past
  10263. the tag at the beginning of the tuple representation.)
  10264. \begin{lstlisting}
  10265. |$\itm{lhs}$| = (vector-ref |$\itm{vec}$| |$n$|);
  10266. |$\Longrightarrow$|
  10267. movq |$\itm{vec}'$|, %r11
  10268. movq |$8(n+1)$|(%r11), |$\itm{lhs'}$|
  10269. |$\itm{lhs}$| = (vector-set! |$\itm{vec}$| |$n$| |$\itm{arg}$|);
  10270. |$\Longrightarrow$|
  10271. movq |$\itm{vec}'$|, %r11
  10272. movq |$\itm{arg}'$|, |$8(n+1)$|(%r11)
  10273. movq $0, |$\itm{lhs'}$|
  10274. \end{lstlisting}
  10275. The $\itm{lhs}'$, $\itm{vec}'$, and $\itm{arg}'$ are obtained by
  10276. translating $\itm{vec}$ and $\itm{arg}$ to x86. The move of $\itm{vec}'$ to
  10277. register \code{r11} ensures that offset expression
  10278. \code{$-8(n+1)$(\%r11)} contains a register operand. This requires
  10279. removing \code{r11} from consideration by the register allocating.
  10280. Why not use \code{rax} instead of \code{r11}? Suppose we instead used
  10281. \code{rax}. Then the generated code for \code{vector-set!} would be
  10282. \begin{lstlisting}
  10283. movq |$\itm{vec}'$|, %rax
  10284. movq |$\itm{arg}'$|, |$8(n+1)$|(%rax)
  10285. movq $0, |$\itm{lhs}'$|
  10286. \end{lstlisting}
  10287. Next, suppose that $\itm{arg}'$ ends up as a stack location, so
  10288. \code{patch-instructions} would insert a move through \code{rax}
  10289. as follows.
  10290. \begin{lstlisting}
  10291. movq |$\itm{vec}'$|, %rax
  10292. movq |$\itm{arg}'$|, %rax
  10293. movq %rax, |$8(n+1)$|(%rax)
  10294. movq $0, |$\itm{lhs}'$|
  10295. \end{lstlisting}
  10296. But the above sequence of instructions does not work because we're
  10297. trying to use \code{rax} for two different values ($\itm{vec}'$ and
  10298. $\itm{arg}'$) at the same time!
  10299. We compile the \code{allocate} form to operations on the
  10300. \code{free\_ptr}, as shown below. The address in the \code{free\_ptr}
  10301. is the next free address in the FromSpace, so we copy it into
  10302. \code{r11} and then move it forward by enough space for the tuple
  10303. being allocated, which is $8(\itm{len}+1)$ bytes because each element
  10304. is 8 bytes (64 bits) and we use 8 bytes for the tag. We then
  10305. initialize the \itm{tag} and finally copy the address in \code{r11} to
  10306. the left-hand-side. Refer to Figure~\ref{fig:tuple-rep} to see how the
  10307. tag is organized. We recommend using the Racket operations
  10308. \code{bitwise-ior} and \code{arithmetic-shift} to compute the tag
  10309. during compilation. The type annotation in the \code{vector} form is
  10310. used to determine the pointer mask region of the tag.
  10311. \begin{lstlisting}
  10312. |$\itm{lhs}$| = (allocate |$\itm{len}$| (Vector |$\itm{type} \ldots$|));
  10313. |$\Longrightarrow$|
  10314. movq free_ptr(%rip), %r11
  10315. addq |$8(\itm{len}+1)$|, free_ptr(%rip)
  10316. movq $|$\itm{tag}$|, 0(%r11)
  10317. movq %r11, |$\itm{lhs}'$|
  10318. \end{lstlisting}
  10319. The \code{collect} form is compiled to a call to the \code{collect}
  10320. function in the runtime. The arguments to \code{collect} are 1) the
  10321. top of the root stack and 2) the number of bytes that need to be
  10322. allocated. We use another dedicated register, \code{r15}, to
  10323. store the pointer to the top of the root stack. So \code{r15} is not
  10324. available for use by the register allocator.
  10325. \begin{lstlisting}
  10326. (collect |$\itm{bytes}$|)
  10327. |$\Longrightarrow$|
  10328. movq %r15, %rdi
  10329. movq $|\itm{bytes}|, %rsi
  10330. callq collect
  10331. \end{lstlisting}
  10332. \begin{figure}[tp]
  10333. \fbox{
  10334. \begin{minipage}{0.96\textwidth}
  10335. \[
  10336. \begin{array}{lcl}
  10337. \Arg &::=& \gray{ \key{\$}\Int \MID \key{\%}\Reg \MID \Int\key{(}\key{\%}\Reg\key{)} \MID \key{\%}\itm{bytereg} } \MID \Var \key{(\%rip)} \\
  10338. \LangXGlobalM{} &::= & \gray{ \key{.globl main} }\\
  10339. & & \gray{ \key{main:} \; \Instr\ldots }
  10340. \end{array}
  10341. \]
  10342. \end{minipage}
  10343. }
  10344. \caption{The concrete syntax of \LangXGlobal{} (extends \LangXIf{} of Figure~\ref{fig:x86-1-concrete}).}
  10345. \label{fig:x86-2-concrete}
  10346. \end{figure}
  10347. \begin{figure}[tp]
  10348. \fbox{
  10349. \begin{minipage}{0.96\textwidth}
  10350. \small
  10351. \[
  10352. \begin{array}{lcl}
  10353. \Arg &::=& \gray{ \INT{\Int} \MID \REG{\Reg} \MID \DEREF{\Reg}{\Int}
  10354. \MID \BYTEREG{\Reg}} \\
  10355. &\MID& (\key{Global}~\Var) \\
  10356. \LangXGlobalM{} &::= & \gray{ \XPROGRAM{\itm{info}}{\LP\LP\itm{label} \,\key{.}\, \Block \RP\ldots\RP} }
  10357. \end{array}
  10358. \]
  10359. \end{minipage}
  10360. }
  10361. \caption{The abstract syntax of \LangXGlobal{} (extends \LangXIf{} of Figure~\ref{fig:x86-1}).}
  10362. \label{fig:x86-2}
  10363. \end{figure}
  10364. The concrete and abstract syntax of the \LangXGlobal{} language is
  10365. defined in Figures~\ref{fig:x86-2-concrete} and \ref{fig:x86-2}. It
  10366. differs from \LangXIf{} just in the addition of the form for global
  10367. variables.
  10368. %
  10369. Figure~\ref{fig:select-instr-output-gc} shows the output of the
  10370. \code{select-instructions} pass on the running example.
  10371. \begin{figure}[tbp]
  10372. \centering
  10373. % tests/s2_17.rkt
  10374. \begin{minipage}[t]{0.5\textwidth}
  10375. \begin{lstlisting}[basicstyle=\ttfamily\scriptsize]
  10376. block35:
  10377. movq free_ptr(%rip), alloc9024
  10378. addq $16, free_ptr(%rip)
  10379. movq alloc9024, %r11
  10380. movq $131, 0(%r11)
  10381. movq alloc9024, %r11
  10382. movq vecinit9025, 8(%r11)
  10383. movq $0, initret9026
  10384. movq alloc9024, %r11
  10385. movq 8(%r11), tmp9034
  10386. movq tmp9034, %r11
  10387. movq 8(%r11), %rax
  10388. jmp conclusion
  10389. block36:
  10390. movq $0, collectret9027
  10391. jmp block35
  10392. block38:
  10393. movq free_ptr(%rip), alloc9020
  10394. addq $16, free_ptr(%rip)
  10395. movq alloc9020, %r11
  10396. movq $3, 0(%r11)
  10397. movq alloc9020, %r11
  10398. movq vecinit9021, 8(%r11)
  10399. movq $0, initret9022
  10400. movq alloc9020, vecinit9025
  10401. movq free_ptr(%rip), tmp9031
  10402. movq tmp9031, tmp9032
  10403. addq $16, tmp9032
  10404. movq fromspace_end(%rip), tmp9033
  10405. cmpq tmp9033, tmp9032
  10406. jl block36
  10407. jmp block37
  10408. block37:
  10409. movq %r15, %rdi
  10410. movq $16, %rsi
  10411. callq 'collect
  10412. jmp block35
  10413. block39:
  10414. movq $0, collectret9023
  10415. jmp block38
  10416. \end{lstlisting}
  10417. \end{minipage}
  10418. \begin{minipage}[t]{0.45\textwidth}
  10419. \begin{lstlisting}[basicstyle=\ttfamily\scriptsize]
  10420. start:
  10421. movq $42, vecinit9021
  10422. movq free_ptr(%rip), tmp9028
  10423. movq tmp9028, tmp9029
  10424. addq $16, tmp9029
  10425. movq fromspace_end(%rip), tmp9030
  10426. cmpq tmp9030, tmp9029
  10427. jl block39
  10428. jmp block40
  10429. block40:
  10430. movq %r15, %rdi
  10431. movq $16, %rsi
  10432. callq 'collect
  10433. jmp block38
  10434. \end{lstlisting}
  10435. \end{minipage}
  10436. \caption{Output of the \code{select-instructions} pass.}
  10437. \label{fig:select-instr-output-gc}
  10438. \end{figure}
  10439. \clearpage
  10440. \section{Register Allocation}
  10441. \label{sec:reg-alloc-gc}
  10442. \index{subject}{register allocation}
  10443. As discussed earlier in this chapter, the garbage collector needs to
  10444. access all the pointers in the root set, that is, all variables that
  10445. are vectors. It will be the responsibility of the register allocator
  10446. to make sure that:
  10447. \begin{enumerate}
  10448. \item the root stack is used for spilling vector-typed variables, and
  10449. \item if a vector-typed variable is live during a call to the
  10450. collector, it must be spilled to ensure it is visible to the
  10451. collector.
  10452. \end{enumerate}
  10453. The later responsibility can be handled during construction of the
  10454. interference graph, by adding interference edges between the call-live
  10455. vector-typed variables and all the callee-saved registers. (They
  10456. already interfere with the caller-saved registers.) The type
  10457. information for variables is in the \code{Program} form, so we
  10458. recommend adding another parameter to the \code{build-interference}
  10459. function to communicate this alist.
  10460. The spilling of vector-typed variables to the root stack can be
  10461. handled after graph coloring, when choosing how to assign the colors
  10462. (integers) to registers and stack locations. The \code{Program} output
  10463. of this pass changes to also record the number of spills to the root
  10464. stack.
  10465. % build-interference
  10466. %
  10467. % callq
  10468. % extra parameter for var->type assoc. list
  10469. % update 'program' and 'if'
  10470. % allocate-registers
  10471. % allocate spilled vectors to the rootstack
  10472. % don't change color-graph
  10473. \section{Print x86}
  10474. \label{sec:print-x86-gc}
  10475. \index{subject}{prelude}\index{subject}{conclusion}
  10476. Figure~\ref{fig:print-x86-output-gc} shows the output of the
  10477. \code{print\_x86} pass on the running example. In the prelude and
  10478. conclusion of the \code{main} function, we treat the root stack very
  10479. much like the regular stack in that we move the root stack pointer
  10480. (\code{r15}) to make room for the spills to the root stack, except
  10481. that the root stack grows up instead of down. For the running
  10482. example, there was just one spill so we increment \code{r15} by 8
  10483. bytes. In the conclusion we decrement \code{r15} by 8 bytes.
  10484. One issue that deserves special care is that there may be a call to
  10485. \code{collect} prior to the initializing assignments for all the
  10486. variables in the root stack. We do not want the garbage collector to
  10487. accidentally think that some uninitialized variable is a pointer that
  10488. needs to be followed. Thus, we zero-out all locations on the root
  10489. stack in the prelude of \code{main}. In
  10490. Figure~\ref{fig:print-x86-output-gc}, the instruction
  10491. %
  10492. \lstinline{movq $0, (%r15)}
  10493. %
  10494. accomplishes this task. The garbage collector tests each root to see
  10495. if it is null prior to dereferencing it.
  10496. \begin{figure}[htbp]
  10497. \begin{minipage}[t]{0.5\textwidth}
  10498. \begin{lstlisting}[basicstyle=\ttfamily\scriptsize]
  10499. block35:
  10500. movq free_ptr(%rip), %rcx
  10501. addq $16, free_ptr(%rip)
  10502. movq %rcx, %r11
  10503. movq $131, 0(%r11)
  10504. movq %rcx, %r11
  10505. movq -8(%r15), %rax
  10506. movq %rax, 8(%r11)
  10507. movq $0, %rdx
  10508. movq %rcx, %r11
  10509. movq 8(%r11), %rcx
  10510. movq %rcx, %r11
  10511. movq 8(%r11), %rax
  10512. jmp conclusion
  10513. block36:
  10514. movq $0, %rcx
  10515. jmp block35
  10516. block38:
  10517. movq free_ptr(%rip), %rcx
  10518. addq $16, free_ptr(%rip)
  10519. movq %rcx, %r11
  10520. movq $3, 0(%r11)
  10521. movq %rcx, %r11
  10522. movq %rbx, 8(%r11)
  10523. movq $0, %rdx
  10524. movq %rcx, -8(%r15)
  10525. movq free_ptr(%rip), %rcx
  10526. addq $16, %rcx
  10527. movq fromspace_end(%rip), %rdx
  10528. cmpq %rdx, %rcx
  10529. jl block36
  10530. movq %r15, %rdi
  10531. movq $16, %rsi
  10532. callq collect
  10533. jmp block35
  10534. block39:
  10535. movq $0, %rcx
  10536. jmp block38
  10537. \end{lstlisting}
  10538. \end{minipage}
  10539. \begin{minipage}[t]{0.45\textwidth}
  10540. \begin{lstlisting}[basicstyle=\ttfamily\scriptsize]
  10541. start:
  10542. movq $42, %rbx
  10543. movq free_ptr(%rip), %rdx
  10544. addq $16, %rdx
  10545. movq fromspace_end(%rip), %rcx
  10546. cmpq %rcx, %rdx
  10547. jl block39
  10548. movq %r15, %rdi
  10549. movq $16, %rsi
  10550. callq collect
  10551. jmp block38
  10552. .globl main
  10553. main:
  10554. pushq %rbp
  10555. movq %rsp, %rbp
  10556. pushq %r13
  10557. pushq %r12
  10558. pushq %rbx
  10559. pushq %r14
  10560. subq $0, %rsp
  10561. movq $16384, %rdi
  10562. movq $16384, %rsi
  10563. callq initialize
  10564. movq rootstack_begin(%rip), %r15
  10565. movq $0, (%r15)
  10566. addq $8, %r15
  10567. jmp start
  10568. conclusion:
  10569. subq $8, %r15
  10570. addq $0, %rsp
  10571. popq %r14
  10572. popq %rbx
  10573. popq %r12
  10574. popq %r13
  10575. popq %rbp
  10576. retq
  10577. \end{lstlisting}
  10578. \end{minipage}
  10579. \caption{Output of the \code{print\_x86} pass.}
  10580. \label{fig:print-x86-output-gc}
  10581. \end{figure}
  10582. \begin{figure}[p]
  10583. \begin{tikzpicture}[baseline=(current bounding box.center)]
  10584. \node (Rvec) at (0,2) {\large \LangVec{}};
  10585. \node (Rvec-2) at (3,2) {\large \LangVec{}};
  10586. \node (Rvec-3) at (6,2) {\large \LangVec{}};
  10587. \node (Rvec-4) at (9,2) {\large \LangVec{}};
  10588. \node (Rvec-5) at (12,2) {\large \LangAlloc{}};
  10589. \node (C2-4) at (3,0) {\large \LangCVec{}};
  10590. \node (x86-2) at (3,-2) {\large \LangXGlobalVar{}};
  10591. \node (x86-2-1) at (3,-4) {\large \LangXGlobalVar{}};
  10592. \node (x86-2-2) at (6,-4) {\large \LangXGlobalVar{}};
  10593. \node (x86-3) at (6,-2) {\large \LangXGlobalVar{}};
  10594. \node (x86-4) at (9,-2) {\large \LangXGlobal{}};
  10595. \node (x86-5) at (9,-4) {\large \LangXGlobal{}};
  10596. %\path[->,bend left=15] (Rvec) edge [above] node {\ttfamily\footnotesize type-check} (Rvec-2);
  10597. \path[->,bend left=15] (Rvec) edge [above] node {\ttfamily\footnotesize shrink} (Rvec-2);
  10598. \path[->,bend left=15] (Rvec-2) edge [above] node {\ttfamily\footnotesize uniquify} (Rvec-3);
  10599. \path[->,bend left=15] (Rvec-3) edge [above] node {\ttfamily\footnotesize expose-alloc.} (Rvec-4);
  10600. \path[->,bend left=15] (Rvec-4) edge [above] node {\ttfamily\footnotesize remove-complex.} (Rvec-5);
  10601. \path[->,bend left=20] (Rvec-5) edge [left] node {\ttfamily\footnotesize explicate-control} (C2-4);
  10602. \path[->,bend left=15] (C2-4) edge [right] node {\ttfamily\footnotesize select-instr.} (x86-2);
  10603. \path[->,bend right=15] (x86-2) edge [left] node {\ttfamily\footnotesize uncover-live} (x86-2-1);
  10604. \path[->,bend right=15] (x86-2-1) edge [below] node {\ttfamily\footnotesize build-inter.} (x86-2-2);
  10605. \path[->,bend right=15] (x86-2-2) edge [right] node {\ttfamily\footnotesize allocate-reg.} (x86-3);
  10606. \path[->,bend left=15] (x86-3) edge [above] node {\ttfamily\footnotesize patch-instr.} (x86-4);
  10607. \path[->,bend left=15] (x86-4) edge [right] node {\ttfamily\footnotesize print-x86} (x86-5);
  10608. \end{tikzpicture}
  10609. \caption{Diagram of the passes for \LangVec{}, a language with tuples.}
  10610. \label{fig:Rvec-passes}
  10611. \end{figure}
  10612. Figure~\ref{fig:Rvec-passes} gives an overview of all the passes needed
  10613. for the compilation of \LangVec{}.
  10614. \section{Challenge: Simple Structures}
  10615. \label{sec:simple-structures}
  10616. \index{subject}{struct}
  10617. \index{subject}{structure}
  10618. Figure~\ref{fig:r3s-concrete-syntax} defines the concrete syntax for
  10619. \LangStruct{}, which extends \LangVec{} with support for simple structures.
  10620. Recall that a \code{struct} in Typed Racket is a user-defined data
  10621. type that contains named fields and that is heap allocated, similar to
  10622. a vector. The following is an example of a structure definition, in
  10623. this case the definition of a \code{point} type.
  10624. \begin{lstlisting}
  10625. (struct point ([x : Integer] [y : Integer]) #:mutable)
  10626. \end{lstlisting}
  10627. \begin{figure}[tbp]
  10628. \centering
  10629. \fbox{
  10630. \begin{minipage}{0.96\textwidth}
  10631. \[
  10632. \begin{array}{lcl}
  10633. \Type &::=& \gray{\key{Integer} \MID \key{Boolean}
  10634. \MID (\key{Vector}\;\Type \ldots) \MID \key{Void} } \MID \Var \\
  10635. \itm{cmp} &::= & \gray{ \key{eq?} \MID \key{<} \MID \key{<=} \MID \key{>} \MID \key{>=} } \\
  10636. \Exp &::=& \gray{ \Int \MID (\key{read}) \MID (\key{-}\;\Exp) \MID (\key{+} \; \Exp\;\Exp) \MID (\key{-}\;\Exp\;\Exp) } \\
  10637. &\MID& \gray{ \Var \MID (\key{let}~([\Var~\Exp])~\Exp) }\\
  10638. &\MID& \gray{ \key{\#t} \MID \key{\#f}
  10639. \MID (\key{and}\;\Exp\;\Exp)
  10640. \MID (\key{or}\;\Exp\;\Exp)
  10641. \MID (\key{not}\;\Exp) } \\
  10642. &\MID& \gray{ (\itm{cmp}\;\Exp\;\Exp)
  10643. \MID (\key{if}~\Exp~\Exp~\Exp) } \\
  10644. &\MID& \gray{ (\key{vector}\;\Exp \ldots)
  10645. \MID (\key{vector-ref}\;\Exp\;\Int) } \\
  10646. &\MID& \gray{ (\key{vector-set!}\;\Exp\;\Int\;\Exp) }\\
  10647. &\MID& \gray{ (\key{void}) } \MID (\Var\;\Exp \ldots)\\
  10648. \Def &::=& (\key{struct}\; \Var \; ([\Var \,\key{:}\, \Type] \ldots)\; \code{\#:mutable})\\
  10649. \LangStruct{} &::=& \Def \ldots \; \Exp
  10650. \end{array}
  10651. \]
  10652. \end{minipage}
  10653. }
  10654. \caption{The concrete syntax of \LangStruct{}, extending \LangVec{}
  10655. (Figure~\ref{fig:Rvec-concrete-syntax}).}
  10656. \label{fig:r3s-concrete-syntax}
  10657. \end{figure}
  10658. An instance of a structure is created using function call syntax, with
  10659. the name of the structure in the function position:
  10660. \begin{lstlisting}
  10661. (point 7 12)
  10662. \end{lstlisting}
  10663. Function-call syntax is also used to read the value in a field of a
  10664. structure. The function name is formed by the structure name, a dash,
  10665. and the field name. The following example uses \code{point-x} and
  10666. \code{point-y} to access the \code{x} and \code{y} fields of two point
  10667. instances.
  10668. \begin{center}
  10669. \begin{lstlisting}
  10670. (let ([pt1 (point 7 12)])
  10671. (let ([pt2 (point 4 3)])
  10672. (+ (- (point-x pt1) (point-x pt2))
  10673. (- (point-y pt1) (point-y pt2)))))
  10674. \end{lstlisting}
  10675. \end{center}
  10676. Similarly, to write to a field of a structure, use its set function,
  10677. whose name starts with \code{set-}, followed by the structure name,
  10678. then a dash, then the field name, and concluded with an exclamation
  10679. mark. The following example uses \code{set-point-x!} to change the
  10680. \code{x} field from \code{7} to \code{42}.
  10681. \begin{center}
  10682. \begin{lstlisting}
  10683. (let ([pt (point 7 12)])
  10684. (let ([_ (set-point-x! pt 42)])
  10685. (point-x pt)))
  10686. \end{lstlisting}
  10687. \end{center}
  10688. \begin{exercise}\normalfont
  10689. Extend your compiler with support for simple structures, compiling
  10690. \LangStruct{} to x86 assembly code. Create five new test cases that use
  10691. structures and test your compiler.
  10692. \end{exercise}
  10693. \section{Challenge: Generational Collection}
  10694. The copying collector described in Section~\ref{sec:GC} can incur
  10695. significant runtime overhead because the call to \code{collect} takes
  10696. time proportional to all of the live data. One way to reduce this
  10697. overhead is to reduce how much data is inspected in each call to
  10698. \code{collect}. In particular, researchers have observed that recently
  10699. allocated data is more likely to become garbage then data that has
  10700. survived one or more previous calls to \code{collect}. This insight
  10701. motivated the creation of \emph{generational garbage collectors}
  10702. \index{subject}{generational garbage collector} that
  10703. 1) segregates data according to its age into two or more generations,
  10704. 2) allocates less space for younger generations, so collecting them is
  10705. faster, and more space for the older generations, and 3) performs
  10706. collection on the younger generations more frequently then for older
  10707. generations~\citep{Wilson:1992fk}.
  10708. For this challenge assignment, the goal is to adapt the copying
  10709. collector implemented in \code{runtime.c} to use two generations, one
  10710. for young data and one for old data. Each generation consists of a
  10711. FromSpace and a ToSpace. The following is a sketch of how to adapt the
  10712. \code{collect} function to use the two generations.
  10713. \begin{enumerate}
  10714. \item Copy the young generation's FromSpace to its ToSpace then switch
  10715. the role of the ToSpace and FromSpace
  10716. \item If there is enough space for the requested number of bytes in
  10717. the young FromSpace, then return from \code{collect}.
  10718. \item If there is not enough space in the young FromSpace for the
  10719. requested bytes, then move the data from the young generation to the
  10720. old one with the following steps:
  10721. \begin{enumerate}
  10722. \item If there is enough room in the old FromSpace, copy the young
  10723. FromSpace to the old FromSpace and then return.
  10724. \item If there is not enough room in the old FromSpace, then collect
  10725. the old generation by copying the old FromSpace to the old ToSpace
  10726. and swap the roles of the old FromSpace and ToSpace.
  10727. \item If there is enough room now, copy the young FromSpace to the
  10728. old FromSpace and return. Otherwise, allocate a larger FromSpace
  10729. and ToSpace for the old generation. Copy the young FromSpace and
  10730. the old FromSpace into the larger FromSpace for the old
  10731. generation and then return.
  10732. \end{enumerate}
  10733. \end{enumerate}
  10734. We recommend that you generalize the \code{cheney} function so that it
  10735. can be used for all the copies mentioned above: between the young
  10736. FromSpace and ToSpace, between the old FromSpace and ToSpace, and
  10737. between the young FromSpace and old FromSpace. This can be
  10738. accomplished by adding parameters to \code{cheney} that replace its
  10739. use of the global variables \code{fromspace\_begin},
  10740. \code{fromspace\_end}, \code{tospace\_begin}, and \code{tospace\_end}.
  10741. Note that the collection of the young generation does not traverse the
  10742. old generation. This introduces a potential problem: there may be
  10743. young data that is only reachable through pointers in the old
  10744. generation. If these pointers are not taken into account, the
  10745. collector could throw away young data that is live! One solution,
  10746. called \emph{pointer recording}, is to maintain a set of all the
  10747. pointers from the old generation into the new generation and consider
  10748. this set as part of the root set. To maintain this set, the compiler
  10749. must insert extra instructions around every \code{vector-set!}. If the
  10750. vector being modified is in the old generation, and if the value being
  10751. written is a pointer into the new generation, than that pointer must
  10752. be added to the set. Also, if the value being overwritten was a
  10753. pointer into the new generation, then that pointer should be removed
  10754. from the set.
  10755. \begin{exercise}\normalfont
  10756. Adapt the \code{collect} function in \code{runtime.c} to implement
  10757. generational garbage collection, as outlined in this section.
  10758. Update the code generation for \code{vector-set!} to implement
  10759. pointer recording. Make sure that your new compiler and runtime
  10760. passes your test suite.
  10761. \end{exercise}
  10762. % Further Reading
  10763. \fi % racketEd
  10764. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  10765. \chapter{Functions}
  10766. \label{ch:Rfun}
  10767. \index{subject}{function}
  10768. \if\edition\racketEd
  10769. This chapter studies the compilation of functions similar to those
  10770. found in the C language. This corresponds to a subset of Typed Racket
  10771. in which only top-level function definitions are allowed. This kind of
  10772. function is an important stepping stone to implementing
  10773. lexically-scoped functions, that is, \key{lambda} abstractions, which
  10774. is the topic of Chapter~\ref{ch:Rlam}.
  10775. \section{The \LangFun{} Language}
  10776. The concrete and abstract syntax for function definitions and function
  10777. application is shown in Figures~\ref{fig:Rfun-concrete-syntax} and
  10778. \ref{fig:Rfun-syntax}, where we define the \LangFun{} language. Programs in
  10779. \LangFun{} begin with zero or more function definitions. The function
  10780. names from these definitions are in-scope for the entire program,
  10781. including all other function definitions (so the ordering of function
  10782. definitions does not matter). The concrete syntax for function
  10783. application\index{subject}{function application} is $(\Exp \; \Exp \ldots)$
  10784. where the first expression must
  10785. evaluate to a function and the rest are the arguments.
  10786. The abstract syntax for function application is
  10787. $\APPLY{\Exp}{\Exp\ldots}$.
  10788. %% The syntax for function application does not include an explicit
  10789. %% keyword, which is error prone when using \code{match}. To alleviate
  10790. %% this problem, we translate the syntax from $(\Exp \; \Exp \ldots)$ to
  10791. %% $(\key{app}\; \Exp \; \Exp \ldots)$ during type checking.
  10792. Functions are first-class in the sense that a function pointer
  10793. \index{subject}{function pointer} is data and can be stored in memory or passed
  10794. as a parameter to another function. Thus, we introduce a function
  10795. type, written
  10796. \begin{lstlisting}
  10797. (|$\Type_1$| |$\cdots$| |$\Type_n$| -> |$\Type_r$|)
  10798. \end{lstlisting}
  10799. for a function whose $n$ parameters have the types $\Type_1$ through
  10800. $\Type_n$ and whose return type is $\Type_r$. The main limitation of
  10801. these functions (with respect to Racket functions) is that they are
  10802. not lexically scoped. That is, the only external entities that can be
  10803. referenced from inside a function body are other globally-defined
  10804. functions. The syntax of \LangFun{} prevents functions from being nested
  10805. inside each other.
  10806. \begin{figure}[tp]
  10807. \centering
  10808. \fbox{
  10809. \begin{minipage}{0.96\textwidth}
  10810. \small
  10811. \[
  10812. \begin{array}{lcl}
  10813. \Type &::=& \gray{ \key{Integer} \MID \key{Boolean}
  10814. \MID (\key{Vector}\;\Type\ldots) \MID \key{Void} } \MID (\Type \ldots \; \key{->}\; \Type) \\
  10815. \itm{cmp} &::= & \gray{ \key{eq?} \MID \key{<} \MID \key{<=} \MID \key{>} \MID \key{>=} } \\
  10816. \Exp &::=& \gray{ \Int \MID \CREAD{} \MID \CNEG{\Exp} \MID \CADD{\Exp}{\Exp} \MID \CSUB{\Exp}{\Exp} } \\
  10817. &\MID& \gray{ \Var \MID \CLET{\Var}{\Exp}{\Exp} }\\
  10818. &\MID& \gray{ \key{\#t} \MID \key{\#f}
  10819. \MID (\key{and}\;\Exp\;\Exp)
  10820. \MID (\key{or}\;\Exp\;\Exp)
  10821. \MID (\key{not}\;\Exp)} \\
  10822. &\MID& \gray{(\itm{cmp}\;\Exp\;\Exp) \MID \CIF{\Exp}{\Exp}{\Exp} } \\
  10823. &\MID& \gray{(\key{vector}\;\Exp\ldots) \MID
  10824. (\key{vector-ref}\;\Exp\;\Int)} \\
  10825. &\MID& \gray{(\key{vector-set!}\;\Exp\;\Int\;\Exp)\MID (\key{void})
  10826. \MID \LP\key{has-type}~\Exp~\Type\RP } \\
  10827. &\MID& \LP\Exp \; \Exp \ldots\RP \\
  10828. \Def &::=& \CDEF{\Var}{\LS\Var \key{:} \Type\RS \ldots}{\Type}{\Exp} \\
  10829. \LangFunM{} &::=& \Def \ldots \; \Exp
  10830. \end{array}
  10831. \]
  10832. \end{minipage}
  10833. }
  10834. \caption{The concrete syntax of \LangFun{}, extending \LangVec{} (Figure~\ref{fig:Rvec-concrete-syntax}).}
  10835. \label{fig:Rfun-concrete-syntax}
  10836. \end{figure}
  10837. \begin{figure}[tp]
  10838. \centering
  10839. \fbox{
  10840. \begin{minipage}{0.96\textwidth}
  10841. \small
  10842. \[
  10843. \begin{array}{lcl}
  10844. \Exp &::=& \gray{ \INT{\Int} \MID \VAR{\Var} \MID \LET{\Var}{\Exp}{\Exp} } \\
  10845. &\MID& \gray{ \PRIM{\itm{op}}{\Exp\ldots} }\\
  10846. &\MID& \gray{ \BOOL{\itm{bool}}
  10847. \MID \IF{\Exp}{\Exp}{\Exp} } \\
  10848. &\MID& \gray{ \VOID{} \MID \LP\key{HasType}~\Exp~\Type \RP }
  10849. \MID \APPLY{\Exp}{\Exp\ldots}\\
  10850. \Def &::=& \FUNDEF{\Var}{\LP[\Var \code{:} \Type]\ldots\RP}{\Type}{\code{'()}}{\Exp}\\
  10851. \LangFunM{} &::=& \PROGRAMDEFSEXP{\code{'()}}{\LP\Def\ldots\RP)}{\Exp}
  10852. \end{array}
  10853. \]
  10854. \end{minipage}
  10855. }
  10856. \caption{The abstract syntax of \LangFun{}, extending \LangVec{} (Figure~\ref{fig:Rvec-syntax}).}
  10857. \label{fig:Rfun-syntax}
  10858. \end{figure}
  10859. The program in Figure~\ref{fig:Rfun-function-example} is a
  10860. representative example of defining and using functions in \LangFun{}. We
  10861. define a function \code{map-vec} that applies some other function
  10862. \code{f} to both elements of a vector and returns a new
  10863. vector containing the results. We also define a function \code{add1}.
  10864. The program applies
  10865. \code{map-vec} to \code{add1} and \code{(vector 0 41)}. The result is
  10866. \code{(vector 1 42)}, from which we return the \code{42}.
  10867. \begin{figure}[tbp]
  10868. \begin{lstlisting}
  10869. (define (map-vec [f : (Integer -> Integer)]
  10870. [v : (Vector Integer Integer)])
  10871. : (Vector Integer Integer)
  10872. (vector (f (vector-ref v 0)) (f (vector-ref v 1))))
  10873. (define (add1 [x : Integer]) : Integer
  10874. (+ x 1))
  10875. (vector-ref (map-vec add1 (vector 0 41)) 1)
  10876. \end{lstlisting}
  10877. \caption{Example of using functions in \LangFun{}.}
  10878. \label{fig:Rfun-function-example}
  10879. \end{figure}
  10880. The definitional interpreter for \LangFun{} is in
  10881. Figure~\ref{fig:interp-Rfun}. The case for the \code{ProgramDefsExp} form is
  10882. responsible for setting up the mutual recursion between the top-level
  10883. function definitions. We use the classic back-patching \index{subject}{back-patching}
  10884. approach that uses mutable variables and makes two passes over the function
  10885. definitions~\citep{Kelsey:1998di}. In the first pass we set up the
  10886. top-level environment using a mutable cons cell for each function
  10887. definition. Note that the \code{lambda} value for each function is
  10888. incomplete; it does not yet include the environment. Once the
  10889. top-level environment is constructed, we then iterate over it and
  10890. update the \code{lambda} values to use the top-level environment.
  10891. \begin{figure}[tp]
  10892. \begin{lstlisting}
  10893. (define interp-Rfun_class
  10894. (class interp-Rvec_class
  10895. (super-new)
  10896. (define/override ((interp-exp env) e)
  10897. (define recur (interp-exp env))
  10898. (match e
  10899. [(Var x) (unbox (dict-ref env x))]
  10900. [(Let x e body)
  10901. (define new-env (dict-set env x (box (recur e))))
  10902. ((interp-exp new-env) body)]
  10903. [(Apply fun args)
  10904. (define fun-val (recur fun))
  10905. (define arg-vals (for/list ([e args]) (recur e)))
  10906. (match fun-val
  10907. [`(function (,xs ...) ,body ,fun-env)
  10908. (define params-args (for/list ([x xs] [arg arg-vals])
  10909. (cons x (box arg))))
  10910. (define new-env (append params-args fun-env))
  10911. ((interp-exp new-env) body)]
  10912. [else (error 'interp-exp "expected function, not ~a" fun-val)])]
  10913. [else ((super interp-exp env) e)]
  10914. ))
  10915. (define/public (interp-def d)
  10916. (match d
  10917. [(Def f (list `[,xs : ,ps] ...) rt _ body)
  10918. (cons f (box `(function ,xs ,body ())))]))
  10919. (define/override (interp-program p)
  10920. (match p
  10921. [(ProgramDefsExp info ds body)
  10922. (let ([top-level (for/list ([d ds]) (interp-def d))])
  10923. (for/list ([f (in-dict-values top-level)])
  10924. (set-box! f (match (unbox f)
  10925. [`(function ,xs ,body ())
  10926. `(function ,xs ,body ,top-level)])))
  10927. ((interp-exp top-level) body))]))
  10928. ))
  10929. (define (interp-Rfun p)
  10930. (send (new interp-Rfun_class) interp-program p))
  10931. \end{lstlisting}
  10932. \caption{Interpreter for the \LangFun{} language.}
  10933. \label{fig:interp-Rfun}
  10934. \end{figure}
  10935. %\margincomment{TODO: explain type checker}
  10936. The type checker for \LangFun{} is in Figure~\ref{fig:type-check-Rfun}.
  10937. \begin{figure}[tp]
  10938. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  10939. (define type-check-Rfun_class
  10940. (class type-check-Rvec_class
  10941. (super-new)
  10942. (inherit check-type-equal?)
  10943. (define/public (type-check-apply env e es)
  10944. (define-values (e^ ty) ((type-check-exp env) e))
  10945. (define-values (e* ty*) (for/lists (e* ty*) ([e (in-list es)])
  10946. ((type-check-exp env) e)))
  10947. (match ty
  10948. [`(,ty^* ... -> ,rt)
  10949. (for ([arg-ty ty*] [param-ty ty^*])
  10950. (check-type-equal? arg-ty param-ty (Apply e es)))
  10951. (values e^ e* rt)]))
  10952. (define/override (type-check-exp env)
  10953. (lambda (e)
  10954. (match e
  10955. [(FunRef f)
  10956. (values (FunRef f) (dict-ref env f))]
  10957. [(Apply e es)
  10958. (define-values (e^ es^ rt) (type-check-apply env e es))
  10959. (values (Apply e^ es^) rt)]
  10960. [(Call e es)
  10961. (define-values (e^ es^ rt) (type-check-apply env e es))
  10962. (values (Call e^ es^) rt)]
  10963. [else ((super type-check-exp env) e)])))
  10964. (define/public (type-check-def env)
  10965. (lambda (e)
  10966. (match e
  10967. [(Def f (and p:t* (list `[,xs : ,ps] ...)) rt info body)
  10968. (define new-env (append (map cons xs ps) env))
  10969. (define-values (body^ ty^) ((type-check-exp new-env) body))
  10970. (check-type-equal? ty^ rt body)
  10971. (Def f p:t* rt info body^)])))
  10972. (define/public (fun-def-type d)
  10973. (match d
  10974. [(Def f (list `[,xs : ,ps] ...) rt info body) `(,@ps -> ,rt)]))
  10975. (define/override (type-check-program e)
  10976. (match e
  10977. [(ProgramDefsExp info ds body)
  10978. (define new-env (for/list ([d ds])
  10979. (cons (Def-name d) (fun-def-type d))))
  10980. (define ds^ (for/list ([d ds]) ((type-check-def new-env) d)))
  10981. (define-values (body^ ty) ((type-check-exp new-env) body))
  10982. (check-type-equal? ty 'Integer body)
  10983. (ProgramDefsExp info ds^ body^)]))))
  10984. (define (type-check-Rfun p)
  10985. (send (new type-check-Rfun_class) type-check-program p))
  10986. \end{lstlisting}
  10987. \caption{Type checker for the \LangFun{} language.}
  10988. \label{fig:type-check-Rfun}
  10989. \end{figure}
  10990. \section{Functions in x86}
  10991. \label{sec:fun-x86}
  10992. %% \margincomment{\tiny Make sure callee-saved registers are discussed
  10993. %% in enough depth, especially updating Fig 6.4 \\ --Jeremy }
  10994. %% \margincomment{\tiny Talk about the return address on the
  10995. %% stack and what callq and retq does.\\ --Jeremy }
  10996. The x86 architecture provides a few features to support the
  10997. implementation of functions. We have already seen that x86 provides
  10998. labels so that one can refer to the location of an instruction, as is
  10999. needed for jump instructions. Labels can also be used to mark the
  11000. beginning of the instructions for a function. Going further, we can
  11001. obtain the address of a label by using the \key{leaq} instruction and
  11002. PC-relative addressing. For example, the following puts the
  11003. address of the \code{add1} label into the \code{rbx} register.
  11004. \begin{lstlisting}
  11005. leaq add1(%rip), %rbx
  11006. \end{lstlisting}
  11007. The instruction pointer register \key{rip} (aka. the program counter
  11008. \index{subject}{program counter}) always points to the next instruction to be
  11009. executed. When combined with an label, as in \code{add1(\%rip)}, the
  11010. linker computes the distance $d$ between the address of \code{add1}
  11011. and where the \code{rip} would be at that moment and then changes
  11012. \code{add1(\%rip)} to \code{$d$(\%rip)}, which at runtime will compute
  11013. the address of \code{add1}.
  11014. In Section~\ref{sec:x86} we used of the \code{callq} instruction to
  11015. jump to a function whose location is given by a label. To support
  11016. function calls in this chapter we instead will be jumping to a
  11017. function whose location is given by an address in a register, that is,
  11018. we need to make an \emph{indirect function call}. The x86 syntax for
  11019. this is a \code{callq} instruction but with an asterisk before the
  11020. register name.\index{subject}{indirect function call}
  11021. \begin{lstlisting}
  11022. callq *%rbx
  11023. \end{lstlisting}
  11024. \subsection{Calling Conventions}
  11025. \index{subject}{calling conventions}
  11026. The \code{callq} instruction provides partial support for implementing
  11027. functions: it pushes the return address on the stack and it jumps to
  11028. the target. However, \code{callq} does not handle
  11029. \begin{enumerate}
  11030. \item parameter passing,
  11031. \item pushing frames on the procedure call stack and popping them off,
  11032. or
  11033. \item determining how registers are shared by different functions.
  11034. \end{enumerate}
  11035. Regarding (1) parameter passing, recall that the following six
  11036. registers are used to pass arguments to a function, in this order.
  11037. \begin{lstlisting}
  11038. rdi rsi rdx rcx r8 r9
  11039. \end{lstlisting}
  11040. If there are
  11041. more than six arguments, then the convention is to use space on the
  11042. frame of the caller for the rest of the arguments. However, to ease
  11043. the implementation of efficient tail calls
  11044. (Section~\ref{sec:tail-call}), we arrange never to need more than six
  11045. arguments.
  11046. %
  11047. Also recall that the register \code{rax} is for the return value of
  11048. the function.
  11049. \index{subject}{prelude}\index{subject}{conclusion}
  11050. Regarding (2) frames \index{subject}{frame} and the procedure call stack,
  11051. \index{subject}{procedure call stack} recall from Section~\ref{sec:x86} that
  11052. the stack grows down, with each function call using a chunk of space
  11053. called a frame. The caller sets the stack pointer, register
  11054. \code{rsp}, to the last data item in its frame. The callee must not
  11055. change anything in the caller's frame, that is, anything that is at or
  11056. above the stack pointer. The callee is free to use locations that are
  11057. below the stack pointer.
  11058. Recall that we are storing variables of vector type on the root stack.
  11059. So the prelude needs to move the root stack pointer \code{r15} up and
  11060. the conclusion needs to move the root stack pointer back down. Also,
  11061. the prelude must initialize to \code{0} this frame's slots in the root
  11062. stack to signal to the garbage collector that those slots do not yet
  11063. contain a pointer to a vector. Otherwise the garbage collector will
  11064. interpret the garbage bits in those slots as memory addresses and try
  11065. to traverse them, causing serious mayhem!
  11066. Regarding (3) the sharing of registers between different functions,
  11067. recall from Section~\ref{sec:calling-conventions} that the registers
  11068. are divided into two groups, the caller-saved registers and the
  11069. callee-saved registers. The caller should assume that all the
  11070. caller-saved registers get overwritten with arbitrary values by the
  11071. callee. That is why we recommend in
  11072. Section~\ref{sec:calling-conventions} that variables that are live
  11073. during a function call should not be assigned to caller-saved
  11074. registers.
  11075. On the flip side, if the callee wants to use a callee-saved register,
  11076. the callee must save the contents of those registers on their stack
  11077. frame and then put them back prior to returning to the caller. That
  11078. is why we recommended in Section~\ref{sec:calling-conventions} that if
  11079. the register allocator assigns a variable to a callee-saved register,
  11080. then the prelude of the \code{main} function must save that register
  11081. to the stack and the conclusion of \code{main} must restore it. This
  11082. recommendation now generalizes to all functions.
  11083. Also recall that the base pointer, register \code{rbp}, is used as a
  11084. point-of-reference within a frame, so that each local variable can be
  11085. accessed at a fixed offset from the base pointer
  11086. (Section~\ref{sec:x86}).
  11087. %
  11088. Figure~\ref{fig:call-frames} shows the general layout of the caller
  11089. and callee frames.
  11090. \begin{figure}[tbp]
  11091. \centering
  11092. \begin{tabular}{r|r|l|l} \hline
  11093. Caller View & Callee View & Contents & Frame \\ \hline
  11094. 8(\key{\%rbp}) & & return address & \multirow{5}{*}{Caller}\\
  11095. 0(\key{\%rbp}) & & old \key{rbp} \\
  11096. -8(\key{\%rbp}) & & callee-saved $1$ \\
  11097. \ldots & & \ldots \\
  11098. $-8j$(\key{\%rbp}) & & callee-saved $j$ \\
  11099. $-8(j+1)$(\key{\%rbp}) & & local variable $1$ \\
  11100. \ldots & & \ldots \\
  11101. $-8(j+k)$(\key{\%rbp}) & & local variable $k$ \\
  11102. %% & & \\
  11103. %% $8n-8$\key{(\%rsp)} & $8n+8$(\key{\%rbp})& argument $n$ \\
  11104. %% & \ldots & \ldots \\
  11105. %% 0\key{(\%rsp)} & 16(\key{\%rbp}) & argument $1$ & \\
  11106. \hline
  11107. & 8(\key{\%rbp}) & return address & \multirow{5}{*}{Callee}\\
  11108. & 0(\key{\%rbp}) & old \key{rbp} \\
  11109. & -8(\key{\%rbp}) & callee-saved $1$ \\
  11110. & \ldots & \ldots \\
  11111. & $-8n$(\key{\%rbp}) & callee-saved $n$ \\
  11112. & $-8(n+1)$(\key{\%rbp}) & local variable $1$ \\
  11113. & \ldots & \ldots \\
  11114. & $-8(n+m)$(\key{\%rsp}) & local variable $m$\\ \hline
  11115. \end{tabular}
  11116. \caption{Memory layout of caller and callee frames.}
  11117. \label{fig:call-frames}
  11118. \end{figure}
  11119. %% Recall from Section~\ref{sec:x86} that the stack is also used for
  11120. %% local variables and for storing the values of callee-saved registers
  11121. %% (we shall refer to all of these collectively as ``locals''), and that
  11122. %% at the beginning of a function we move the stack pointer \code{rsp}
  11123. %% down to make room for them.
  11124. %% We recommend storing the local variables
  11125. %% first and then the callee-saved registers, so that the local variables
  11126. %% can be accessed using \code{rbp} the same as before the addition of
  11127. %% functions.
  11128. %% To make additional room for passing arguments, we shall
  11129. %% move the stack pointer even further down. We count how many stack
  11130. %% arguments are needed for each function call that occurs inside the
  11131. %% body of the function and find their maximum. Adding this number to the
  11132. %% number of locals gives us how much the \code{rsp} should be moved at
  11133. %% the beginning of the function. In preparation for a function call, we
  11134. %% offset from \code{rsp} to set up the stack arguments. We put the first
  11135. %% stack argument in \code{0(\%rsp)}, the second in \code{8(\%rsp)}, and
  11136. %% so on.
  11137. %% Upon calling the function, the stack arguments are retrieved by the
  11138. %% callee using the base pointer \code{rbp}. The address \code{16(\%rbp)}
  11139. %% is the location of the first stack argument, \code{24(\%rbp)} is the
  11140. %% address of the second, and so on. Figure~\ref{fig:call-frames} shows
  11141. %% the layout of the caller and callee frames. Notice how important it is
  11142. %% that we correctly compute the maximum number of arguments needed for
  11143. %% function calls; if that number is too small then the arguments and
  11144. %% local variables will smash into each other!
  11145. \subsection{Efficient Tail Calls}
  11146. \label{sec:tail-call}
  11147. In general, the amount of stack space used by a program is determined
  11148. by the longest chain of nested function calls. That is, if function
  11149. $f_1$ calls $f_2$, $f_2$ calls $f_3$, $\ldots$, and $f_{n-1}$ calls
  11150. $f_n$, then the amount of stack space is bounded by $O(n)$. The depth
  11151. $n$ can grow quite large in the case of recursive or mutually
  11152. recursive functions. However, in some cases we can arrange to use only
  11153. constant space, i.e. $O(1)$, instead of $O(n)$.
  11154. If a function call is the last action in a function body, then that
  11155. call is said to be a \emph{tail call}\index{subject}{tail call}.
  11156. For example, in the following
  11157. program, the recursive call to \code{tail-sum} is a tail call.
  11158. \begin{center}
  11159. \begin{lstlisting}
  11160. (define (tail-sum [n : Integer] [r : Integer]) : Integer
  11161. (if (eq? n 0)
  11162. r
  11163. (tail-sum (- n 1) (+ n r))))
  11164. (+ (tail-sum 5 0) 27)
  11165. \end{lstlisting}
  11166. \end{center}
  11167. At a tail call, the frame of the caller is no longer needed, so we
  11168. can pop the caller's frame before making the tail call. With this
  11169. approach, a recursive function that only makes tail calls will only
  11170. use $O(1)$ stack space. Functional languages like Racket typically
  11171. rely heavily on recursive functions, so they typically guarantee that
  11172. all tail calls will be optimized in this way.
  11173. \index{subject}{frame}
  11174. However, some care is needed with regards to argument passing in tail
  11175. calls. As mentioned above, for arguments beyond the sixth, the
  11176. convention is to use space in the caller's frame for passing
  11177. arguments. But for a tail call we pop the caller's frame and can no
  11178. longer use it. Another alternative is to use space in the callee's
  11179. frame for passing arguments. However, this option is also problematic
  11180. because the caller and callee's frame overlap in memory. As we begin
  11181. to copy the arguments from their sources in the caller's frame, the
  11182. target locations in the callee's frame might overlap with the sources
  11183. for later arguments! We solve this problem by using the heap instead
  11184. of the stack for passing more than six arguments, as we describe in
  11185. the Section~\ref{sec:limit-functions-r4}.
  11186. As mentioned above, for a tail call we pop the caller's frame prior to
  11187. making the tail call. The instructions for popping a frame are the
  11188. instructions that we usually place in the conclusion of a
  11189. function. Thus, we also need to place such code immediately before
  11190. each tail call. These instructions include restoring the callee-saved
  11191. registers, so it is good that the argument passing registers are all
  11192. caller-saved registers.
  11193. One last note regarding which instruction to use to make the tail
  11194. call. When the callee is finished, it should not return to the current
  11195. function, but it should return to the function that called the current
  11196. one. Thus, the return address that is already on the stack is the
  11197. right one, and we should not use \key{callq} to make the tail call, as
  11198. that would unnecessarily overwrite the return address. Instead we can
  11199. simply use the \key{jmp} instruction. Like the indirect function call,
  11200. we write an \emph{indirect jump}\index{subject}{indirect jump} with a register
  11201. prefixed with an asterisk. We recommend using \code{rax} to hold the
  11202. jump target because the preceding conclusion overwrites just about
  11203. everything else.
  11204. \begin{lstlisting}
  11205. jmp *%rax
  11206. \end{lstlisting}
  11207. \section{Shrink \LangFun{}}
  11208. \label{sec:shrink-r4}
  11209. The \code{shrink} pass performs a minor modification to ease the
  11210. later passes. This pass introduces an explicit \code{main} function
  11211. and changes the top \code{ProgramDefsExp} form to
  11212. \code{ProgramDefs} as follows.
  11213. \begin{lstlisting}
  11214. (ProgramDefsExp |$\itm{info}$| (|$\Def\ldots$|) |$\Exp$|)
  11215. |$\Rightarrow$| (ProgramDefs |$\itm{info}$| (|$\Def\ldots$| |$\itm{mainDef}$|))
  11216. \end{lstlisting}
  11217. where $\itm{mainDef}$ is
  11218. \begin{lstlisting}
  11219. (Def 'main '() 'Integer '() |$\Exp'$|)
  11220. \end{lstlisting}
  11221. \section{Reveal Functions and the \LangFunRef{} language}
  11222. \label{sec:reveal-functions-r4}
  11223. The syntax of \LangFun{} is inconvenient for purposes of compilation in one
  11224. respect: it conflates the use of function names and local
  11225. variables. This is a problem because we need to compile the use of a
  11226. function name differently than the use of a local variable; we need to
  11227. use \code{leaq} to convert the function name (a label in x86) to an
  11228. address in a register. Thus, it is a good idea to create a new pass
  11229. that changes function references from just a symbol $f$ to
  11230. $\FUNREF{f}$. This pass is named \code{reveal-functions} and the
  11231. output language, \LangFunRef{}, is defined in Figure~\ref{fig:f1-syntax}.
  11232. The concrete syntax for a function reference is $\CFUNREF{f}$.
  11233. \begin{figure}[tp]
  11234. \centering
  11235. \fbox{
  11236. \begin{minipage}{0.96\textwidth}
  11237. \[
  11238. \begin{array}{lcl}
  11239. \Exp &::=& \ldots \MID \FUNREF{\Var}\\
  11240. \Def &::=& \gray{ \FUNDEF{\Var}{([\Var \code{:} \Type]\ldots)}{\Type}{\code{'()}}{\Exp} }\\
  11241. \LangFunRefM{} &::=& \PROGRAMDEFS{\code{'()}}{\LP \Def\ldots \RP}
  11242. \end{array}
  11243. \]
  11244. \end{minipage}
  11245. }
  11246. \caption{The abstract syntax \LangFunRef{}, an extension of \LangFun{}
  11247. (Figure~\ref{fig:Rfun-syntax}).}
  11248. \label{fig:f1-syntax}
  11249. \end{figure}
  11250. %% Distinguishing between calls in tail position and non-tail position
  11251. %% requires the pass to have some notion of context. We recommend using
  11252. %% two mutually recursive functions, one for processing expressions in
  11253. %% tail position and another for the rest.
  11254. Placing this pass after \code{uniquify} will make sure that there are
  11255. no local variables and functions that share the same name. On the
  11256. other hand, \code{reveal-functions} needs to come before the
  11257. \code{explicate\_control} pass because that pass helps us compile
  11258. \code{FunRef} forms into assignment statements.
  11259. \section{Limit Functions}
  11260. \label{sec:limit-functions-r4}
  11261. Recall that we wish to limit the number of function parameters to six
  11262. so that we do not need to use the stack for argument passing, which
  11263. makes it easier to implement efficient tail calls. However, because
  11264. the input language \LangFun{} supports arbitrary numbers of function
  11265. arguments, we have some work to do!
  11266. This pass transforms functions and function calls that involve more
  11267. than six arguments to pass the first five arguments as usual, but it
  11268. packs the rest of the arguments into a vector and passes it as the
  11269. sixth argument.
  11270. Each function definition with too many parameters is transformed as
  11271. follows.
  11272. \begin{lstlisting}
  11273. (Def |$f$| ([|$x_1$|:|$T_1$|] |$\ldots$| [|$x_n$|:|$T_n$|]) |$T_r$| |$\itm{info}$| |$\itm{body}$|)
  11274. |$\Rightarrow$|
  11275. (Def |$f$| ([|$x_1$|:|$T_1$|] |$\ldots$| [|$x_5$|:|$T_5$|] [vec : (Vector |$T_6 \ldots T_n$|)]) |$T_r$| |$\itm{info}$| |$\itm{body}'$|)
  11276. \end{lstlisting}
  11277. where the $\itm{body}$ is transformed into $\itm{body}'$ by replacing
  11278. the occurrences of the later parameters with vector references.
  11279. \begin{lstlisting}
  11280. (Var |$x_i$|) |$\Rightarrow$| (Prim 'vector-ref (list vec (Int |$(i - 6)$|)))
  11281. \end{lstlisting}
  11282. For function calls with too many arguments, the \code{limit-functions}
  11283. pass transforms them in the following way.
  11284. \begin{tabular}{lll}
  11285. \begin{minipage}{0.2\textwidth}
  11286. \begin{lstlisting}
  11287. (|$e_0$| |$e_1$| |$\ldots$| |$e_n$|)
  11288. \end{lstlisting}
  11289. \end{minipage}
  11290. &
  11291. $\Rightarrow$
  11292. &
  11293. \begin{minipage}{0.4\textwidth}
  11294. \begin{lstlisting}
  11295. (|$e_0$| |$e_1 \ldots e_5$| (vector |$e_6 \ldots e_n$|))
  11296. \end{lstlisting}
  11297. \end{minipage}
  11298. \end{tabular}
  11299. \section{Remove Complex Operands}
  11300. \label{sec:rco-r4}
  11301. The primary decisions to make for this pass is whether to classify
  11302. \code{FunRef} and \code{Apply} as either atomic or complex
  11303. expressions. Recall that a simple expression will eventually end up as
  11304. just an immediate argument of an x86 instruction. Function
  11305. application will be translated to a sequence of instructions, so
  11306. \code{Apply} must be classified as complex expression.
  11307. On the other hand, the arguments of \code{Apply} should be
  11308. atomic expressions.
  11309. %
  11310. Regarding \code{FunRef}, as discussed above, the function label needs
  11311. to be converted to an address using the \code{leaq} instruction. Thus,
  11312. even though \code{FunRef} seems rather simple, it needs to be
  11313. classified as a complex expression so that we generate an assignment
  11314. statement with a left-hand side that can serve as the target of the
  11315. \code{leaq}. Figure~\ref{fig:Rfun-anf-syntax} defines the
  11316. output language \LangFunANF{} of this pass.
  11317. \begin{figure}[tp]
  11318. \centering
  11319. \fbox{
  11320. \begin{minipage}{0.96\textwidth}
  11321. \small
  11322. \[
  11323. \begin{array}{rcl}
  11324. \Atm &::=& \gray{ \INT{\Int} \MID \VAR{\Var} \MID \BOOL{\itm{bool}}
  11325. \MID \VOID{} } \\
  11326. \Exp &::=& \gray{ \Atm \MID \READ{} } \\
  11327. &\MID& \gray{ \NEG{\Atm} \MID \ADD{\Atm}{\Atm} } \\
  11328. &\MID& \gray{ \LET{\Var}{\Exp}{\Exp} } \\
  11329. &\MID& \gray{ \UNIOP{\key{'not}}{\Atm} } \\
  11330. &\MID& \gray{ \BINOP{\itm{cmp}}{\Atm}{\Atm} \MID \IF{\Exp}{\Exp}{\Exp} }\\
  11331. &\MID& \gray{ \LP\key{Collect}~\Int\RP \MID \LP\key{Allocate}~\Int~\Type\RP
  11332. \MID \LP\key{GlobalValue}~\Var\RP }\\
  11333. &\MID& \FUNREF{\Var} \MID \APPLY{\Atm}{\Atm\ldots}\\
  11334. \Def &::=& \gray{ \FUNDEF{\Var}{([\Var \code{:} \Type]\ldots)}{\Type}{\code{'()}}{\Exp} }\\
  11335. R^{\dagger}_4 &::=& \gray{ \PROGRAMDEFS{\code{'()}}{\Def} }
  11336. \end{array}
  11337. \]
  11338. \end{minipage}
  11339. }
  11340. \caption{\LangFunANF{} is \LangFun{} in administrative normal form (ANF).}
  11341. \label{fig:Rfun-anf-syntax}
  11342. \end{figure}
  11343. \section{Explicate Control and the \LangCFun{} language}
  11344. \label{sec:explicate-control-r4}
  11345. Figure~\ref{fig:c3-syntax} defines the abstract syntax for \LangCFun{}, the
  11346. output of \code{explicate\_control}. (The concrete syntax is given in
  11347. Figure~\ref{fig:c3-concrete-syntax} of the Appendix.) The auxiliary
  11348. functions for assignment and tail contexts should be updated with
  11349. cases for \code{Apply} and \code{FunRef} and the function for
  11350. predicate context should be updated for \code{Apply} but not
  11351. \code{FunRef}. (A \code{FunRef} can't be a Boolean.) In assignment
  11352. and predicate contexts, \code{Apply} becomes \code{Call}, whereas in
  11353. tail position \code{Apply} becomes \code{TailCall}. We recommend
  11354. defining a new auxiliary function for processing function definitions.
  11355. This code is similar to the case for \code{Program} in \LangVec{}. The
  11356. top-level \code{explicate\_control} function that handles the
  11357. \code{ProgramDefs} form of \LangFun{} can then apply this new function to
  11358. all the function definitions.
  11359. \begin{figure}[tp]
  11360. \fbox{
  11361. \begin{minipage}{0.96\textwidth}
  11362. \small
  11363. \[
  11364. \begin{array}{lcl}
  11365. \Atm &::=& \gray{ \INT{\Int} \MID \VAR{\Var} \MID \BOOL{\itm{bool}} }\\
  11366. \itm{cmp} &::= & \gray{ \key{eq?} \MID \key{<} } \\
  11367. \Exp &::= & \gray{ \Atm \MID \READ{} } \\
  11368. &\MID& \gray{ \NEG{\Atm} \MID \ADD{\Atm}{\Atm} }\\
  11369. &\MID& \gray{ \UNIOP{\key{not}}{\Atm} \MID \BINOP{\itm{cmp}}{\Atm}{\Atm} } \\
  11370. &\MID& \gray{ \LP\key{Allocate} \,\itm{int}\,\itm{type}\RP } \\
  11371. &\MID& \gray{ \BINOP{\key{'vector-ref}}{\Atm}{\INT{\Int}} }\\
  11372. &\MID& \gray{ \LP\key{Prim}~\key{'vector-set!}\,\LP\key{list}\,\Atm\,\INT{\Int}\,\Atm\RP\RP }\\
  11373. &\MID& \gray{ \LP\key{GlobalValue} \,\Var\RP \MID \LP\key{Void}\RP }\\
  11374. &\MID& \FUNREF{\itm{label}} \MID \CALL{\Atm}{\LP\Atm\ldots\RP} \\
  11375. \Stmt &::=& \gray{ \ASSIGN{\VAR{\Var}}{\Exp}
  11376. \MID \LP\key{Collect} \,\itm{int}\RP } \\
  11377. \Tail &::= & \gray{ \RETURN{\Exp} \MID \SEQ{\Stmt}{\Tail}
  11378. \MID \GOTO{\itm{label}} } \\
  11379. &\MID& \gray{ \IFSTMT{\BINOP{\itm{cmp}}{\Atm}{\Atm}}{\GOTO{\itm{label}}}{\GOTO{\itm{label}}} }\\
  11380. &\MID& \TAILCALL{\Atm}{\Atm\ldots} \\
  11381. \Def &::=& \DEF{\itm{label}}{\LP[\Var\key{:}\Type]\ldots\RP}{\Type}{\itm{info}}{\LP\LP\itm{label}\,\key{.}\,\Tail\RP\ldots\RP}\\
  11382. \LangCFunM{} & ::= & \PROGRAMDEFS{\itm{info}}{\LP\Def\ldots\RP}
  11383. \end{array}
  11384. \]
  11385. \end{minipage}
  11386. }
  11387. \caption{The abstract syntax of \LangCFun{}, extending \LangCVec{} (Figure~\ref{fig:c2-syntax}).}
  11388. \label{fig:c3-syntax}
  11389. \end{figure}
  11390. \section{Select Instructions and the \LangXIndCall{} Language}
  11391. \label{sec:select-r4}
  11392. \index{subject}{instruction selection}
  11393. The output of select instructions is a program in the \LangXIndCall{}
  11394. language, whose syntax is defined in Figure~\ref{fig:x86-3}.
  11395. \index{subject}{x86}
  11396. \begin{figure}[tp]
  11397. \fbox{
  11398. \begin{minipage}{0.96\textwidth}
  11399. \small
  11400. \[
  11401. \begin{array}{lcl}
  11402. \Arg &::=& \gray{ \key{\$}\Int \MID \key{\%}\Reg \MID \Int\key{(}\key{\%}\Reg\key{)} \MID \key{\%}\itm{bytereg} } \MID \Var \key{(\%rip)}
  11403. \MID \LP\key{fun-ref}\; \itm{label}\RP\\
  11404. \itm{cc} & ::= & \gray{ \key{e} \MID \key{l} \MID \key{le} \MID \key{g} \MID \key{ge} } \\
  11405. \Instr &::=& \ldots
  11406. \MID \key{callq}\;\key{*}\Arg \MID \key{tailjmp}\;\Arg
  11407. \MID \key{leaq}\;\Arg\key{,}\;\key{\%}\Reg \\
  11408. \Block &::= & \Instr\ldots \\
  11409. \Def &::= & \LP\key{define} \; \LP\itm{label}\RP \;\LP\LP\itm{label} \,\key{.}\, \Block\RP\ldots\RP\RP\\
  11410. \LangXIndCallM{} &::= & \Def\ldots
  11411. \end{array}
  11412. \]
  11413. \end{minipage}
  11414. }
  11415. \caption{The concrete syntax of \LangXIndCall{} (extends \LangXGlobal{} of Figure~\ref{fig:x86-2-concrete}).}
  11416. \label{fig:x86-3-concrete}
  11417. \end{figure}
  11418. \begin{figure}[tp]
  11419. \fbox{
  11420. \begin{minipage}{0.96\textwidth}
  11421. \small
  11422. \[
  11423. \begin{array}{lcl}
  11424. \Arg &::=& \gray{ \INT{\Int} \MID \REG{\Reg} \MID \DEREF{\Reg}{\Int}
  11425. \MID \BYTEREG{\Reg} } \\
  11426. &\MID& \gray{ (\key{Global}~\Var) } \MID \FUNREF{\itm{label}} \\
  11427. \Instr &::=& \ldots \MID \INDCALLQ{\Arg}{\itm{int}}
  11428. \MID \TAILJMP{\Arg}{\itm{int}}\\
  11429. &\MID& \BININSTR{\code{'leaq}}{\Arg}{\REG{\Reg}}\\
  11430. \Block &::= & \BLOCK{\itm{info}}{\LP\Instr\ldots\RP}\\
  11431. \Def &::= & \DEF{\itm{label}}{\code{'()}}{\Type}{\itm{info}}{\LP\LP\itm{label}\,\key{.}\,\Block\RP\ldots\RP} \\
  11432. \LangXIndCallM{} &::= & \PROGRAMDEFS{\itm{info}}{\LP\Def\ldots\RP}
  11433. \end{array}
  11434. \]
  11435. \end{minipage}
  11436. }
  11437. \caption{The abstract syntax of \LangXIndCall{} (extends
  11438. \LangXGlobal{} of Figure~\ref{fig:x86-2}).}
  11439. \label{fig:x86-3}
  11440. \end{figure}
  11441. An assignment of a function reference to a variable becomes a
  11442. load-effective-address instruction as follows, where $\itm{lhs}'$
  11443. is the translation of $\itm{lhs}$ from \Atm{} in \LangCFun{}
  11444. to \Arg{} in \LangXIndCallVar{}. \\
  11445. \begin{tabular}{lcl}
  11446. \begin{minipage}{0.35\textwidth}
  11447. \begin{lstlisting}
  11448. |$\itm{lhs}$| = (fun-ref |$f$|);
  11449. \end{lstlisting}
  11450. \end{minipage}
  11451. &
  11452. $\Rightarrow$\qquad\qquad
  11453. &
  11454. \begin{minipage}{0.3\textwidth}
  11455. \begin{lstlisting}
  11456. leaq (fun-ref |$f$|), |$\itm{lhs}'$|
  11457. \end{lstlisting}
  11458. \end{minipage}
  11459. \end{tabular} \\
  11460. Regarding function definitions, we need to remove the parameters and
  11461. instead perform parameter passing using the conventions discussed in
  11462. Section~\ref{sec:fun-x86}. That is, the arguments are passed in
  11463. registers. We recommend turning the parameters into local variables
  11464. and generating instructions at the beginning of the function to move
  11465. from the argument passing registers to these local variables.
  11466. \begin{lstlisting}
  11467. (Def |$f$| '([|$x_1$| : |$T_1$|] [|$x_2$| : |$T_2$|] |$\ldots$| ) |$T_r$| |$\itm{info}$| |$G$|)
  11468. |$\Rightarrow$|
  11469. (Def |$f$| '() 'Integer |$\itm{info}'$| |$G'$|)
  11470. \end{lstlisting}
  11471. The $G'$ control-flow graph is the same as $G$ except that the
  11472. \code{start} block is modified to add the instructions for moving from
  11473. the argument registers to the parameter variables. So the \code{start}
  11474. block of $G$ shown on the left is changed to the code on the right.
  11475. \begin{center}
  11476. \begin{minipage}{0.3\textwidth}
  11477. \begin{lstlisting}
  11478. start:
  11479. |$\itm{instr}_1$|
  11480. |$\vdots$|
  11481. |$\itm{instr}_n$|
  11482. \end{lstlisting}
  11483. \end{minipage}
  11484. $\Rightarrow$
  11485. \begin{minipage}{0.3\textwidth}
  11486. \begin{lstlisting}
  11487. start:
  11488. movq %rdi, |$x_1$|
  11489. movq %rsi, |$x_2$|
  11490. |$\vdots$|
  11491. |$\itm{instr}_1$|
  11492. |$\vdots$|
  11493. |$\itm{instr}_n$|
  11494. \end{lstlisting}
  11495. \end{minipage}
  11496. \end{center}
  11497. By changing the parameters to local variables, we are giving the
  11498. register allocator control over which registers or stack locations to
  11499. use for them. If you implemented the move-biasing challenge
  11500. (Section~\ref{sec:move-biasing}), the register allocator will try to
  11501. assign the parameter variables to the corresponding argument register,
  11502. in which case the \code{patch-instructions} pass will remove the
  11503. \code{movq} instruction. This happens in the example translation in
  11504. Figure~\ref{fig:add-fun} of Section~\ref{sec:functions-example}, in
  11505. the \code{add} function.
  11506. %
  11507. Also, note that the register allocator will perform liveness analysis
  11508. on this sequence of move instructions and build the interference
  11509. graph. So, for example, $x_1$ will be marked as interfering with
  11510. \code{rsi} and that will prevent the assignment of $x_1$ to
  11511. \code{rsi}, which is good, because that would overwrite the argument
  11512. that needs to move into $x_2$.
  11513. Next, consider the compilation of function calls. In the mirror image
  11514. of handling the parameters of function definitions, the arguments need
  11515. to be moved to the argument passing registers. The function call
  11516. itself is performed with an indirect function call. The return value
  11517. from the function is stored in \code{rax}, so it needs to be moved
  11518. into the \itm{lhs}.
  11519. \begin{lstlisting}
  11520. |\itm{lhs}| = (call |\itm{fun}| |$\itm{arg}_1~\itm{arg}_2\ldots$|));
  11521. |$\Rightarrow$|
  11522. movq |$\itm{arg}_1$|, %rdi
  11523. movq |$\itm{arg}_2$|, %rsi
  11524. |$\vdots$|
  11525. callq *|\itm{fun}|
  11526. movq %rax, |\itm{lhs}|
  11527. \end{lstlisting}
  11528. The \code{IndirectCallq} AST node includes an integer for the arity of
  11529. the function, i.e., the number of parameters. That information is
  11530. useful in the \code{uncover-live} pass for determining which
  11531. argument-passing registers are potentially read during the call.
  11532. For tail calls, the parameter passing is the same as non-tail calls:
  11533. generate instructions to move the arguments into to the argument
  11534. passing registers. After that we need to pop the frame from the
  11535. procedure call stack. However, we do not yet know how big the frame
  11536. is; that gets determined during register allocation. So instead of
  11537. generating those instructions here, we invent a new instruction that
  11538. means ``pop the frame and then do an indirect jump'', which we name
  11539. \code{TailJmp}. The abstract syntax for this instruction includes an
  11540. argument that specifies where to jump and an integer that represents
  11541. the arity of the function being called.
  11542. Recall that in Section~\ref{sec:explicate-control-Lvar} we recommended
  11543. using the label \code{start} for the initial block of a program, and
  11544. in Section~\ref{sec:select-Lvar} we recommended labeling the conclusion
  11545. of the program with \code{conclusion}, so that $(\key{Return}\;\Arg)$
  11546. can be compiled to an assignment to \code{rax} followed by a jump to
  11547. \code{conclusion}. With the addition of function definitions, we will
  11548. have a starting block and conclusion for each function, but their
  11549. labels need to be unique. We recommend prepending the function's name
  11550. to \code{start} and \code{conclusion}, respectively, to obtain unique
  11551. labels. (Alternatively, one could \code{gensym} labels for the start
  11552. and conclusion and store them in the $\itm{info}$ field of the
  11553. function definition.)
  11554. \section{Register Allocation}
  11555. \label{sec:register-allocation-r4}
  11556. \subsection{Liveness Analysis}
  11557. \label{sec:liveness-analysis-r4}
  11558. \index{subject}{liveness analysis}
  11559. %% The rest of the passes need only minor modifications to handle the new
  11560. %% kinds of AST nodes: \code{fun-ref}, \code{indirect-callq}, and
  11561. %% \code{leaq}.
  11562. The \code{IndirectCallq} instruction should be treated like
  11563. \code{Callq} regarding its written locations $W$, in that they should
  11564. include all the caller-saved registers. Recall that the reason for
  11565. that is to force call-live variables to be assigned to callee-saved
  11566. registers or to be spilled to the stack.
  11567. Regarding the set of read locations $R$ the arity field of
  11568. \code{TailJmp} and \code{IndirectCallq} determines how many of the
  11569. argument-passing registers should be considered as read by those
  11570. instructions.
  11571. \subsection{Build Interference Graph}
  11572. \label{sec:build-interference-r4}
  11573. With the addition of function definitions, we compute an interference
  11574. graph for each function (not just one for the whole program).
  11575. Recall that in Section~\ref{sec:reg-alloc-gc} we discussed the need to
  11576. spill vector-typed variables that are live during a call to the
  11577. \code{collect}. With the addition of functions to our language, we
  11578. need to revisit this issue. Many functions perform allocation and
  11579. therefore have calls to the collector inside of them. Thus, we should
  11580. not only spill a vector-typed variable when it is live during a call
  11581. to \code{collect}, but we should spill the variable if it is live
  11582. during any function call. Thus, in the \code{build-interference} pass,
  11583. we recommend adding interference edges between call-live vector-typed
  11584. variables and the callee-saved registers (in addition to the usual
  11585. addition of edges between call-live variables and the caller-saved
  11586. registers).
  11587. \subsection{Allocate Registers}
  11588. The primary change to the \code{allocate-registers} pass is adding an
  11589. auxiliary function for handling definitions (the \Def{} non-terminal
  11590. in Figure~\ref{fig:x86-3}) with one case for function definitions. The
  11591. logic is the same as described in
  11592. Chapter~\ref{ch:register-allocation-Lvar}, except now register
  11593. allocation is performed many times, once for each function definition,
  11594. instead of just once for the whole program.
  11595. \section{Patch Instructions}
  11596. In \code{patch-instructions}, you should deal with the x86
  11597. idiosyncrasy that the destination argument of \code{leaq} must be a
  11598. register. Additionally, you should ensure that the argument of
  11599. \code{TailJmp} is \itm{rax}, our reserved register---this is to make
  11600. code generation more convenient, because we trample many registers
  11601. before the tail call (as explained in the next section).
  11602. \section{Print x86}
  11603. For the \code{print\_x86} pass, the cases for \code{FunRef} and
  11604. \code{IndirectCallq} are straightforward: output their concrete
  11605. syntax.
  11606. \begin{lstlisting}
  11607. (FunRef |\itm{label}|) |$\Rightarrow$| |\itm{label}|(%rip)
  11608. (IndirectCallq |\itm{arg}| |\itm{int}|) |$\Rightarrow$| callq *|\itm{arg}'|
  11609. \end{lstlisting}
  11610. The \code{TailJmp} node requires a bit work. A straightforward
  11611. translation of \code{TailJmp} would be \code{jmp *$\itm{arg}$}, but
  11612. before the jump we need to pop the current frame. This sequence of
  11613. instructions is the same as the code for the conclusion of a function,
  11614. except the \code{retq} is replaced with \code{jmp *$\itm{arg}$}.
  11615. Regarding function definitions, you will need to generate a prelude
  11616. and conclusion for each one. This code is similar to the prelude and
  11617. conclusion that you generated for the \code{main} function in
  11618. Chapter~\ref{ch:Rvec}. To review, the prelude of every function
  11619. should carry out the following steps.
  11620. \begin{enumerate}
  11621. \item Start with \code{.global} and \code{.align} directives followed
  11622. by the label for the function. (See Figure~\ref{fig:add-fun} for an
  11623. example.)
  11624. \item Push \code{rbp} to the stack and set \code{rbp} to current stack
  11625. pointer.
  11626. \item Push to the stack all of the callee-saved registers that were
  11627. used for register allocation.
  11628. \item Move the stack pointer \code{rsp} down by the size of the stack
  11629. frame for this function, which depends on the number of regular
  11630. spills. (Aligned to 16 bytes.)
  11631. \item Move the root stack pointer \code{r15} up by the size of the
  11632. root-stack frame for this function, which depends on the number of
  11633. spilled vectors. \label{root-stack-init}
  11634. \item Initialize to zero all of the entries in the root-stack frame.
  11635. \item Jump to the start block.
  11636. \end{enumerate}
  11637. The prelude of the \code{main} function has one additional task: call
  11638. the \code{initialize} function to set up the garbage collector and
  11639. move the value of the global \code{rootstack\_begin} in
  11640. \code{r15}. This should happen before step \ref{root-stack-init}
  11641. above, which depends on \code{r15}.
  11642. The conclusion of every function should do the following.
  11643. \begin{enumerate}
  11644. \item Move the stack pointer back up by the size of the stack frame
  11645. for this function.
  11646. \item Restore the callee-saved registers by popping them from the
  11647. stack.
  11648. \item Move the root stack pointer back down by the size of the
  11649. root-stack frame for this function.
  11650. \item Restore \code{rbp} by popping it from the stack.
  11651. \item Return to the caller with the \code{retq} instruction.
  11652. \end{enumerate}
  11653. \begin{exercise}\normalfont
  11654. Expand your compiler to handle \LangFun{} as outlined in this chapter.
  11655. Create 5 new programs that use functions, including examples that pass
  11656. functions and return functions from other functions, recursive
  11657. functions, functions that create vectors, and functions that make tail
  11658. calls. Test your compiler on these new programs and all of your
  11659. previously created test programs.
  11660. \end{exercise}
  11661. \begin{figure}[tbp]
  11662. \begin{tikzpicture}[baseline=(current bounding box.center)]
  11663. \node (Rfun) at (0,2) {\large \LangFun{}};
  11664. \node (Rfun-1) at (3,2) {\large \LangFun{}};
  11665. \node (Rfun-2) at (6,2) {\large \LangFun{}};
  11666. \node (F1-1) at (12,0) {\large \LangFunRef{}};
  11667. \node (F1-2) at (9,0) {\large \LangFunRef{}};
  11668. \node (F1-3) at (6,0) {\large \LangFunRefAlloc{}};
  11669. \node (F1-4) at (3,0) {\large \LangFunRefAlloc{}};
  11670. \node (C3-2) at (3,-2) {\large \LangCFun{}};
  11671. \node (x86-2) at (3,-4) {\large \LangXIndCallVar{}};
  11672. \node (x86-3) at (6,-4) {\large \LangXIndCallVar{}};
  11673. \node (x86-4) at (9,-4) {\large \LangXIndCall{}};
  11674. \node (x86-5) at (9,-6) {\large \LangXIndCall{}};
  11675. \node (x86-2-1) at (3,-6) {\large \LangXIndCallVar{}};
  11676. \node (x86-2-2) at (6,-6) {\large \LangXIndCallVar{}};
  11677. \path[->,bend left=15] (Rfun) edge [above] node
  11678. {\ttfamily\footnotesize shrink} (Rfun-1);
  11679. \path[->,bend left=15] (Rfun-1) edge [above] node
  11680. {\ttfamily\footnotesize uniquify} (Rfun-2);
  11681. \path[->,bend left=15] (Rfun-2) edge [right] node
  11682. {\ttfamily\footnotesize ~~reveal-functions} (F1-1);
  11683. \path[->,bend left=15] (F1-1) edge [below] node
  11684. {\ttfamily\footnotesize limit-functions} (F1-2);
  11685. \path[->,bend right=15] (F1-2) edge [above] node
  11686. {\ttfamily\footnotesize expose-alloc.} (F1-3);
  11687. \path[->,bend right=15] (F1-3) edge [above] node
  11688. {\ttfamily\footnotesize remove-complex.} (F1-4);
  11689. \path[->,bend left=15] (F1-4) edge [right] node
  11690. {\ttfamily\footnotesize explicate-control} (C3-2);
  11691. \path[->,bend right=15] (C3-2) edge [left] node
  11692. {\ttfamily\footnotesize select-instr.} (x86-2);
  11693. \path[->,bend left=15] (x86-2) edge [left] node
  11694. {\ttfamily\footnotesize uncover-live} (x86-2-1);
  11695. \path[->,bend right=15] (x86-2-1) edge [below] node
  11696. {\ttfamily\footnotesize build-inter.} (x86-2-2);
  11697. \path[->,bend right=15] (x86-2-2) edge [left] node
  11698. {\ttfamily\footnotesize allocate-reg.} (x86-3);
  11699. \path[->,bend left=15] (x86-3) edge [above] node
  11700. {\ttfamily\footnotesize patch-instr.} (x86-4);
  11701. \path[->,bend right=15] (x86-4) edge [left] node {\ttfamily\footnotesize print-x86} (x86-5);
  11702. \end{tikzpicture}
  11703. \caption{Diagram of the passes for \LangFun{}, a language with functions.}
  11704. \label{fig:Rfun-passes}
  11705. \end{figure}
  11706. Figure~\ref{fig:Rfun-passes} gives an overview of the passes for
  11707. compiling \LangFun{} to x86.
  11708. \section{An Example Translation}
  11709. \label{sec:functions-example}
  11710. Figure~\ref{fig:add-fun} shows an example translation of a simple
  11711. function in \LangFun{} to x86. The figure also includes the results of the
  11712. \code{explicate\_control} and \code{select-instructions} passes.
  11713. \begin{figure}[htbp]
  11714. \begin{tabular}{ll}
  11715. \begin{minipage}{0.5\textwidth}
  11716. % s3_2.rkt
  11717. \begin{lstlisting}[basicstyle=\ttfamily\scriptsize]
  11718. (define (add [x : Integer] [y : Integer])
  11719. : Integer
  11720. (+ x y))
  11721. (add 40 2)
  11722. \end{lstlisting}
  11723. $\Downarrow$
  11724. \begin{lstlisting}[basicstyle=\ttfamily\scriptsize]
  11725. (define (add86 [x87 : Integer]
  11726. [y88 : Integer]) : Integer
  11727. add86start:
  11728. return (+ x87 y88);
  11729. )
  11730. (define (main) : Integer ()
  11731. mainstart:
  11732. tmp89 = (fun-ref add86);
  11733. (tail-call tmp89 40 2)
  11734. )
  11735. \end{lstlisting}
  11736. \end{minipage}
  11737. &
  11738. $\Rightarrow$
  11739. \begin{minipage}{0.5\textwidth}
  11740. \begin{lstlisting}[basicstyle=\ttfamily\scriptsize]
  11741. (define (add86) : Integer
  11742. add86start:
  11743. movq %rdi, x87
  11744. movq %rsi, y88
  11745. movq x87, %rax
  11746. addq y88, %rax
  11747. jmp add11389conclusion
  11748. )
  11749. (define (main) : Integer
  11750. mainstart:
  11751. leaq (fun-ref add86), tmp89
  11752. movq $40, %rdi
  11753. movq $2, %rsi
  11754. tail-jmp tmp89
  11755. )
  11756. \end{lstlisting}
  11757. $\Downarrow$
  11758. \end{minipage}
  11759. \end{tabular}
  11760. \begin{tabular}{ll}
  11761. \begin{minipage}{0.3\textwidth}
  11762. \begin{lstlisting}[basicstyle=\ttfamily\scriptsize]
  11763. .globl add86
  11764. .align 16
  11765. add86:
  11766. pushq %rbp
  11767. movq %rsp, %rbp
  11768. jmp add86start
  11769. add86start:
  11770. movq %rdi, %rax
  11771. addq %rsi, %rax
  11772. jmp add86conclusion
  11773. add86conclusion:
  11774. popq %rbp
  11775. retq
  11776. \end{lstlisting}
  11777. \end{minipage}
  11778. &
  11779. \begin{minipage}{0.5\textwidth}
  11780. \begin{lstlisting}[basicstyle=\ttfamily\scriptsize]
  11781. .globl main
  11782. .align 16
  11783. main:
  11784. pushq %rbp
  11785. movq %rsp, %rbp
  11786. movq $16384, %rdi
  11787. movq $16384, %rsi
  11788. callq initialize
  11789. movq rootstack_begin(%rip), %r15
  11790. jmp mainstart
  11791. mainstart:
  11792. leaq add86(%rip), %rcx
  11793. movq $40, %rdi
  11794. movq $2, %rsi
  11795. movq %rcx, %rax
  11796. popq %rbp
  11797. jmp *%rax
  11798. mainconclusion:
  11799. popq %rbp
  11800. retq
  11801. \end{lstlisting}
  11802. \end{minipage}
  11803. \end{tabular}
  11804. \caption{Example compilation of a simple function to x86.}
  11805. \label{fig:add-fun}
  11806. \end{figure}
  11807. % Challenge idea: inlining! (simple version)
  11808. % Further Reading
  11809. \fi % racketEd
  11810. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  11811. \chapter{Lexically Scoped Functions}
  11812. \label{ch:Rlam}
  11813. \index{subject}{lambda}
  11814. \index{subject}{lexical scoping}
  11815. \if\edition\racketEd
  11816. This chapter studies lexically scoped functions as they appear in
  11817. functional languages such as Racket. By lexical scoping we mean that a
  11818. function's body may refer to variables whose binding site is outside
  11819. of the function, in an enclosing scope.
  11820. %
  11821. Consider the example in Figure~\ref{fig:lexical-scoping} written in
  11822. \LangLam{}, which extends \LangFun{} with anonymous functions using the
  11823. \key{lambda} form. The body of the \key{lambda}, refers to three
  11824. variables: \code{x}, \code{y}, and \code{z}. The binding sites for
  11825. \code{x} and \code{y} are outside of the \key{lambda}. Variable
  11826. \code{y} is bound by the enclosing \key{let} and \code{x} is a
  11827. parameter of function \code{f}. The \key{lambda} is returned from the
  11828. function \code{f}. The main expression of the program includes two
  11829. calls to \code{f} with different arguments for \code{x}, first
  11830. \code{5} then \code{3}. The functions returned from \code{f} are bound
  11831. to variables \code{g} and \code{h}. Even though these two functions
  11832. were created by the same \code{lambda}, they are really different
  11833. functions because they use different values for \code{x}. Applying
  11834. \code{g} to \code{11} produces \code{20} whereas applying \code{h} to
  11835. \code{15} produces \code{22}. The result of this program is \code{42}.
  11836. \begin{figure}[btp]
  11837. % s4_6.rkt
  11838. \begin{lstlisting}
  11839. (define (f [x : Integer]) : (Integer -> Integer)
  11840. (let ([y 4])
  11841. (lambda: ([z : Integer]) : Integer
  11842. (+ x (+ y z)))))
  11843. (let ([g (f 5)])
  11844. (let ([h (f 3)])
  11845. (+ (g 11) (h 15))))
  11846. \end{lstlisting}
  11847. \caption{Example of a lexically scoped function.}
  11848. \label{fig:lexical-scoping}
  11849. \end{figure}
  11850. The approach that we take for implementing lexically scoped
  11851. functions is to compile them into top-level function definitions,
  11852. translating from \LangLam{} into \LangFun{}. However, the compiler will need to
  11853. provide special treatment for variable occurrences such as \code{x}
  11854. and \code{y} in the body of the \code{lambda} of
  11855. Figure~\ref{fig:lexical-scoping}. After all, an \LangFun{} function may not
  11856. refer to variables defined outside of it. To identify such variable
  11857. occurrences, we review the standard notion of free variable.
  11858. \begin{definition}
  11859. A variable is \emph{free in expression} $e$ if the variable occurs
  11860. inside $e$ but does not have an enclosing binding in $e$.\index{subject}{free
  11861. variable}
  11862. \end{definition}
  11863. For example, in the expression \code{(+ x (+ y z))} the variables
  11864. \code{x}, \code{y}, and \code{z} are all free. On the other hand,
  11865. only \code{x} and \code{y} are free in the following expression
  11866. because \code{z} is bound by the \code{lambda}.
  11867. \begin{lstlisting}
  11868. (lambda: ([z : Integer]) : Integer
  11869. (+ x (+ y z)))
  11870. \end{lstlisting}
  11871. So the free variables of a \code{lambda} are the ones that will need
  11872. special treatment. We need to arrange for some way to transport, at
  11873. runtime, the values of those variables from the point where the
  11874. \code{lambda} was created to the point where the \code{lambda} is
  11875. applied. An efficient solution to the problem, due to
  11876. \citet{Cardelli:1983aa}, is to bundle into a vector the values of the
  11877. free variables together with the function pointer for the lambda's
  11878. code, an arrangement called a \emph{flat closure} (which we shorten to
  11879. just ``closure''). \index{subject}{closure}\index{subject}{flat closure} Fortunately,
  11880. we have all the ingredients to make closures, Chapter~\ref{ch:Rvec}
  11881. gave us vectors and Chapter~\ref{ch:Rfun} gave us function
  11882. pointers. The function pointer resides at index $0$ and the
  11883. values for the free variables will fill in the rest of the vector.
  11884. Let us revisit the example in Figure~\ref{fig:lexical-scoping} to see
  11885. how closures work. It's a three-step dance. The program first calls
  11886. function \code{f}, which creates a closure for the \code{lambda}. The
  11887. closure is a vector whose first element is a pointer to the top-level
  11888. function that we will generate for the \code{lambda}, the second
  11889. element is the value of \code{x}, which is \code{5}, and the third
  11890. element is \code{4}, the value of \code{y}. The closure does not
  11891. contain an element for \code{z} because \code{z} is not a free
  11892. variable of the \code{lambda}. Creating the closure is step 1 of the
  11893. dance. The closure is returned from \code{f} and bound to \code{g}, as
  11894. shown in Figure~\ref{fig:closures}.
  11895. %
  11896. The second call to \code{f} creates another closure, this time with
  11897. \code{3} in the second slot (for \code{x}). This closure is also
  11898. returned from \code{f} but bound to \code{h}, which is also shown in
  11899. Figure~\ref{fig:closures}.
  11900. \begin{figure}[tbp]
  11901. \centering \includegraphics[width=0.6\textwidth]{figs/closures}
  11902. \caption{Example closure representation for the \key{lambda}'s
  11903. in Figure~\ref{fig:lexical-scoping}.}
  11904. \label{fig:closures}
  11905. \end{figure}
  11906. Continuing with the example, consider the application of \code{g} to
  11907. \code{11} in Figure~\ref{fig:lexical-scoping}. To apply a closure, we
  11908. obtain the function pointer in the first element of the closure and
  11909. call it, passing in the closure itself and then the regular arguments,
  11910. in this case \code{11}. This technique for applying a closure is step
  11911. 2 of the dance.
  11912. %
  11913. But doesn't this \code{lambda} only take 1 argument, for parameter
  11914. \code{z}? The third and final step of the dance is generating a
  11915. top-level function for a \code{lambda}. We add an additional
  11916. parameter for the closure and we insert a \code{let} at the beginning
  11917. of the function for each free variable, to bind those variables to the
  11918. appropriate elements from the closure parameter.
  11919. %
  11920. This three-step dance is known as \emph{closure conversion}. We
  11921. discuss the details of closure conversion in
  11922. Section~\ref{sec:closure-conversion} and the code generated from the
  11923. example in Section~\ref{sec:example-lambda}. But first we define the
  11924. syntax and semantics of \LangLam{} in Section~\ref{sec:r5}.
  11925. \section{The \LangLam{} Language}
  11926. \label{sec:r5}
  11927. The concrete and abstract syntax for \LangLam{}, a language with anonymous
  11928. functions and lexical scoping, is defined in
  11929. Figures~\ref{fig:Rlam-concrete-syntax} and ~\ref{fig:Rlam-syntax}. It adds
  11930. the \key{lambda} form to the grammar for \LangFun{}, which already has
  11931. syntax for function application.
  11932. \begin{figure}[tp]
  11933. \centering
  11934. \fbox{
  11935. \begin{minipage}{0.96\textwidth}
  11936. \small
  11937. \[
  11938. \begin{array}{lcl}
  11939. \Type &::=& \gray{\key{Integer} \MID \key{Boolean}
  11940. \MID (\key{Vector}\;\Type\ldots) \MID \key{Void}
  11941. \MID (\Type\ldots \; \key{->}\; \Type)} \\
  11942. \Exp &::=& \gray{ \Int \MID \CREAD{} \MID \CNEG{\Exp}
  11943. \MID \CADD{\Exp}{\Exp} \MID \CSUB{\Exp}{\Exp} } \\
  11944. &\MID& \gray{ \Var \MID \CLET{\Var}{\Exp}{\Exp} }\\
  11945. &\MID& \gray{\key{\#t} \MID \key{\#f}
  11946. \MID (\key{and}\;\Exp\;\Exp)
  11947. \MID (\key{or}\;\Exp\;\Exp)
  11948. \MID (\key{not}\;\Exp) } \\
  11949. &\MID& \gray{ (\key{eq?}\;\Exp\;\Exp) \MID \CIF{\Exp}{\Exp}{\Exp} } \\
  11950. &\MID& \gray{ (\key{vector}\;\Exp\ldots) \MID
  11951. (\key{vector-ref}\;\Exp\;\Int)} \\
  11952. &\MID& \gray{(\key{vector-set!}\;\Exp\;\Int\;\Exp)\MID (\key{void})
  11953. \MID (\Exp \; \Exp\ldots) } \\
  11954. &\MID& \LP \key{procedure-arity}~\Exp\RP \\
  11955. &\MID& \CLAMBDA{\LP\LS\Var \key{:} \Type\RS\ldots\RP}{\Type}{\Exp} \\
  11956. \Def &::=& \gray{ \CDEF{\Var}{\LS\Var \key{:} \Type\RS\ldots}{\Type}{\Exp} } \\
  11957. \LangLamM{} &::=& \gray{\Def\ldots \; \Exp}
  11958. \end{array}
  11959. \]
  11960. \end{minipage}
  11961. }
  11962. \caption{The concrete syntax of \LangLam{}, extending \LangFun{} (Figure~\ref{fig:Rfun-concrete-syntax})
  11963. with \key{lambda}.}
  11964. \label{fig:Rlam-concrete-syntax}
  11965. \end{figure}
  11966. \begin{figure}[tp]
  11967. \centering
  11968. \fbox{
  11969. \begin{minipage}{0.96\textwidth}
  11970. \small
  11971. \[
  11972. \begin{array}{lcl}
  11973. \itm{op} &::=& \ldots \MID \code{procedure-arity} \\
  11974. \Exp &::=& \gray{ \INT{\Int} \VAR{\Var} \MID \LET{\Var}{\Exp}{\Exp} } \\
  11975. &\MID& \gray{ \PRIM{\itm{op}}{\Exp\ldots} }\\
  11976. &\MID& \gray{ \BOOL{\itm{bool}}
  11977. \MID \IF{\Exp}{\Exp}{\Exp} } \\
  11978. &\MID& \gray{ \VOID{} \MID \LP\key{HasType}~\Exp~\Type \RP
  11979. \MID \APPLY{\Exp}{\Exp\ldots} }\\
  11980. &\MID& \LAMBDA{\LP\LS\Var\code{:}\Type\RS\ldots\RP}{\Type}{\Exp}\\
  11981. \Def &::=& \gray{ \FUNDEF{\Var}{\LP\LS\Var \code{:} \Type\RS\ldots\RP}{\Type}{\code{'()}}{\Exp} }\\
  11982. \LangLamM{} &::=& \gray{ \PROGRAMDEFSEXP{\code{'()}}{\LP\Def\ldots\RP}{\Exp} }
  11983. \end{array}
  11984. \]
  11985. \end{minipage}
  11986. }
  11987. \caption{The abstract syntax of \LangLam{}, extending \LangFun{} (Figure~\ref{fig:Rfun-syntax}).}
  11988. \label{fig:Rlam-syntax}
  11989. \end{figure}
  11990. \index{subject}{interpreter}
  11991. \label{sec:interp-Rlambda}
  11992. Figure~\ref{fig:interp-Rlambda} shows the definitional interpreter for
  11993. \LangLam{}. The case for \key{lambda} saves the current environment
  11994. inside the returned \key{lambda}. Then the case for \key{Apply} uses
  11995. the environment from the \key{lambda}, the \code{lam-env}, when
  11996. interpreting the body of the \key{lambda}. The \code{lam-env}
  11997. environment is extended with the mapping of parameters to argument
  11998. values.
  11999. \begin{figure}[tbp]
  12000. \begin{lstlisting}
  12001. (define interp-Rlambda_class
  12002. (class interp-Rfun_class
  12003. (super-new)
  12004. (define/override (interp-op op)
  12005. (match op
  12006. ['procedure-arity
  12007. (lambda (v)
  12008. (match v
  12009. [`(function (,xs ...) ,body ,lam-env) (length xs)]
  12010. [else (error 'interp-op "expected a function, not ~a" v)]))]
  12011. [else (super interp-op op)]))
  12012. (define/override ((interp-exp env) e)
  12013. (define recur (interp-exp env))
  12014. (match e
  12015. [(Lambda (list `[,xs : ,Ts] ...) rT body)
  12016. `(function ,xs ,body ,env)]
  12017. [else ((super interp-exp env) e)]))
  12018. ))
  12019. (define (interp-Rlambda p)
  12020. (send (new interp-Rlambda_class) interp-program p))
  12021. \end{lstlisting}
  12022. \caption{Interpreter for \LangLam{}.}
  12023. \label{fig:interp-Rlambda}
  12024. \end{figure}
  12025. \label{sec:type-check-r5}
  12026. \index{subject}{type checking}
  12027. Figure~\ref{fig:type-check-Rlambda} shows how to type check the new
  12028. \key{lambda} form. The body of the \key{lambda} is checked in an
  12029. environment that includes the current environment (because it is
  12030. lexically scoped) and also includes the \key{lambda}'s parameters. We
  12031. require the body's type to match the declared return type.
  12032. \begin{figure}[tbp]
  12033. \begin{lstlisting}
  12034. (define (type-check-Rlambda env)
  12035. (lambda (e)
  12036. (match e
  12037. [(Lambda (and params `([,xs : ,Ts] ...)) rT body)
  12038. (define-values (new-body bodyT)
  12039. ((type-check-exp (append (map cons xs Ts) env)) body))
  12040. (define ty `(,@Ts -> ,rT))
  12041. (cond
  12042. [(equal? rT bodyT)
  12043. (values (HasType (Lambda params rT new-body) ty) ty)]
  12044. [else
  12045. (error "mismatch in return type" bodyT rT)])]
  12046. ...
  12047. )))
  12048. \end{lstlisting}
  12049. \caption{Type checking the \key{lambda}'s in \LangLam{}.}
  12050. \label{fig:type-check-Rlambda}
  12051. \end{figure}
  12052. \section{Reveal Functions and the $F_2$ language}
  12053. \label{sec:reveal-functions-r5}
  12054. To support the \code{procedure-arity} operator we need to communicate
  12055. the arity of a function to the point of closure creation. We can
  12056. accomplish this by replacing the $\FUNREF{\Var}$ struct with one that
  12057. has a second field for the arity: $\FUNREFARITY{\Var}{\Int}$. The
  12058. output of this pass is the language $F_2$, whose syntax is defined in
  12059. Figure~\ref{fig:f2-syntax}.
  12060. \begin{figure}[tp]
  12061. \centering
  12062. \fbox{
  12063. \begin{minipage}{0.96\textwidth}
  12064. \[
  12065. \begin{array}{lcl}
  12066. \Exp &::=& \ldots \MID \FUNREFARITY{\Var}{\Int}\\
  12067. \Def &::=& \gray{ \FUNDEF{\Var}{([\Var \code{:} \Type]\ldots)}{\Type}{\code{'()}}{\Exp} }\\
  12068. F_2 &::=& \gray{\PROGRAMDEFS{\code{'()}}{\LP \Def\ldots \RP}}
  12069. \end{array}
  12070. \]
  12071. \end{minipage}
  12072. }
  12073. \caption{The abstract syntax $F_2$, an extension of \LangLam{}
  12074. (Figure~\ref{fig:Rlam-syntax}).}
  12075. \label{fig:f2-syntax}
  12076. \end{figure}
  12077. \section{Closure Conversion}
  12078. \label{sec:closure-conversion}
  12079. \index{subject}{closure conversion}
  12080. The compiling of lexically-scoped functions into top-level function
  12081. definitions is accomplished in the pass \code{convert-to-closures}
  12082. that comes after \code{reveal-functions} and before
  12083. \code{limit-functions}.
  12084. As usual, we implement the pass as a recursive function over the
  12085. AST. All of the action is in the cases for \key{Lambda} and
  12086. \key{Apply}. We transform a \key{Lambda} expression into an expression
  12087. that creates a closure, that is, a vector whose first element is a
  12088. function pointer and the rest of the elements are the free variables
  12089. of the \key{Lambda}. We use the struct \code{Closure} here instead of
  12090. using \code{vector} so that we can distinguish closures from vectors
  12091. in Section~\ref{sec:optimize-closures} and to record the arity. In
  12092. the generated code below, the \itm{name} is a unique symbol generated
  12093. to identify the function and the \itm{arity} is the number of
  12094. parameters (the length of \itm{ps}).
  12095. \begin{lstlisting}
  12096. (Lambda |\itm{ps}| |\itm{rt}| |\itm{body}|)
  12097. |$\Rightarrow$|
  12098. (Closure |\itm{arity}| (cons (FunRef |\itm{name}|) |\itm{fvs}|))
  12099. \end{lstlisting}
  12100. In addition to transforming each \key{Lambda} into a \key{Closure}, we
  12101. create a top-level function definition for each \key{Lambda}, as
  12102. shown below.\\
  12103. \begin{minipage}{0.8\textwidth}
  12104. \begin{lstlisting}
  12105. (Def |\itm{name}| ([clos : (Vector _ |\itm{fvts}| ...)] |\itm{ps'}| ...) |\itm{rt'}|
  12106. (Let |$\itm{fvs}_1$| (Prim 'vector-ref (list (Var clos) (Int 1)))
  12107. ...
  12108. (Let |$\itm{fvs}_n$| (Prim 'vector-ref (list (Var clos) (Int |$n$|)))
  12109. |\itm{body'}|)...))
  12110. \end{lstlisting}
  12111. \end{minipage}\\
  12112. The \code{clos} parameter refers to the closure. Translate the type
  12113. annotations in \itm{ps} and the return type \itm{rt}, as discussed in
  12114. the next paragraph, to obtain \itm{ps'} and \itm{rt'}. The types
  12115. $\itm{fvts}$ are the types of the free variables in the lambda and the
  12116. underscore \code{\_} is a dummy type that we use because it is rather
  12117. difficult to give a type to the function in the closure's
  12118. type.\footnote{To give an accurate type to a closure, we would need to
  12119. add existential types to the type checker~\citep{Minamide:1996ys}.}
  12120. The dummy type is considered to be equal to any other type during type
  12121. checking. The sequence of \key{Let} forms bind the free variables to
  12122. their values obtained from the closure.
  12123. Closure conversion turns functions into vectors, so the type
  12124. annotations in the program must also be translated. We recommend
  12125. defining a auxiliary recursive function for this purpose. Function
  12126. types should be translated as follows.
  12127. \begin{lstlisting}
  12128. (|$T_1, \ldots, T_n$| -> |$T_r$|)
  12129. |$\Rightarrow$|
  12130. (Vector ((Vector _) |$T'_1, \ldots, T'_n$| -> |$T'_r$|))
  12131. \end{lstlisting}
  12132. The above type says that the first thing in the vector is a function
  12133. pointer. The first parameter of the function pointer is a vector (a
  12134. closure) and the rest of the parameters are the ones from the original
  12135. function, with types $T'_1, \ldots, T'_n$. The \code{Vector} type for
  12136. the closure omits the types of the free variables because 1) those
  12137. types are not available in this context and 2) we do not need them in
  12138. the code that is generated for function application.
  12139. We transform function application into code that retrieves the
  12140. function pointer from the closure and then calls the function, passing
  12141. in the closure as the first argument. We bind $e'$ to a temporary
  12142. variable to avoid code duplication.
  12143. \begin{lstlisting}
  12144. (Apply |$e$| |\itm{es}|)
  12145. |$\Rightarrow$|
  12146. (Let |\itm{tmp}| |$e'$|
  12147. (Apply (Prim 'vector-ref (list (Var |\itm{tmp}|) (Int 0))) (cons |\itm{tmp}| |\itm{es'}|)))
  12148. \end{lstlisting}
  12149. There is also the question of what to do with references top-level
  12150. function definitions. To maintain a uniform translation of function
  12151. application, we turn function references into closures.
  12152. \begin{tabular}{lll}
  12153. \begin{minipage}{0.3\textwidth}
  12154. \begin{lstlisting}
  12155. (FunRefArity |$f$| |$n$|)
  12156. \end{lstlisting}
  12157. \end{minipage}
  12158. &
  12159. $\Rightarrow$
  12160. &
  12161. \begin{minipage}{0.5\textwidth}
  12162. \begin{lstlisting}
  12163. (Closure |$n$| (FunRef |$f$|) '())
  12164. \end{lstlisting}
  12165. \end{minipage}
  12166. \end{tabular} \\
  12167. %
  12168. The top-level function definitions need to be updated as well to take
  12169. an extra closure parameter.
  12170. \section{An Example Translation}
  12171. \label{sec:example-lambda}
  12172. Figure~\ref{fig:lexical-functions-example} shows the result of
  12173. \code{reveal-functions} and \code{convert-to-closures} for the example
  12174. program demonstrating lexical scoping that we discussed at the
  12175. beginning of this chapter.
  12176. \begin{figure}[tbp]
  12177. \begin{minipage}{0.8\textwidth}
  12178. % tests/lambda_test_6.rkt
  12179. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  12180. (define (f6 [x7 : Integer]) : (Integer -> Integer)
  12181. (let ([y8 4])
  12182. (lambda: ([z9 : Integer]) : Integer
  12183. (+ x7 (+ y8 z9)))))
  12184. (define (main) : Integer
  12185. (let ([g0 ((fun-ref-arity f6 1) 5)])
  12186. (let ([h1 ((fun-ref-arity f6 1) 3)])
  12187. (+ (g0 11) (h1 15)))))
  12188. \end{lstlisting}
  12189. $\Rightarrow$
  12190. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  12191. (define (f6 [fvs4 : _] [x7 : Integer]) : (Vector ((Vector _) Integer -> Integer))
  12192. (let ([y8 4])
  12193. (closure 1 (list (fun-ref lambda2) x7 y8))))
  12194. (define (lambda2 [fvs3 : (Vector _ Integer Integer)] [z9 : Integer]) : Integer
  12195. (let ([x7 (vector-ref fvs3 1)])
  12196. (let ([y8 (vector-ref fvs3 2)])
  12197. (+ x7 (+ y8 z9)))))
  12198. (define (main) : Integer
  12199. (let ([g0 (let ([clos5 (closure 1 (list (fun-ref f6)))])
  12200. ((vector-ref clos5 0) clos5 5))])
  12201. (let ([h1 (let ([clos6 (closure 1 (list (fun-ref f6)))])
  12202. ((vector-ref clos6 0) clos6 3))])
  12203. (+ ((vector-ref g0 0) g0 11) ((vector-ref h1 0) h1 15)))))
  12204. \end{lstlisting}
  12205. \end{minipage}
  12206. \caption{Example of closure conversion.}
  12207. \label{fig:lexical-functions-example}
  12208. \end{figure}
  12209. \begin{exercise}\normalfont
  12210. Expand your compiler to handle \LangLam{} as outlined in this chapter.
  12211. Create 5 new programs that use \key{lambda} functions and make use of
  12212. lexical scoping. Test your compiler on these new programs and all of
  12213. your previously created test programs.
  12214. \end{exercise}
  12215. \section{Expose Allocation}
  12216. \label{sec:expose-allocation-r5}
  12217. Compile the $\CLOSURE{\itm{arity}}{\LP\Exp\ldots\RP}$ form into code
  12218. that allocates and initializes a vector, similar to the translation of
  12219. the \code{vector} operator in Section~\ref{sec:expose-allocation}.
  12220. The only difference is replacing the use of
  12221. \ALLOC{\itm{len}}{\itm{type}} with
  12222. \ALLOCCLOS{\itm{len}}{\itm{type}}{\itm{arity}}.
  12223. \section{Explicate Control and \LangCLam{}}
  12224. \label{sec:explicate-r5}
  12225. The output language of \code{explicate\_control} is \LangCLam{} whose
  12226. abstract syntax is defined in Figure~\ref{fig:c4-syntax}. The only
  12227. difference with respect to \LangCFun{} is the addition of the
  12228. \code{AllocateClosure} form to the grammar for $\Exp$. The handling
  12229. of \code{AllocateClosure} in the \code{explicate\_control} pass is
  12230. similar to the handling of other expressions such as primitive
  12231. operators.
  12232. \begin{figure}[tp]
  12233. \fbox{
  12234. \begin{minipage}{0.96\textwidth}
  12235. \small
  12236. \[
  12237. \begin{array}{lcl}
  12238. \Exp &::= & \ldots
  12239. \MID \ALLOCCLOS{\Int}{\Type}{\Int} \\
  12240. \Stmt &::=& \gray{ \ASSIGN{\VAR{\Var}}{\Exp}
  12241. \MID \LP\key{Collect} \,\itm{int}\RP } \\
  12242. \Tail &::= & \gray{ \RETURN{\Exp} \MID \SEQ{\Stmt}{\Tail}
  12243. \MID \GOTO{\itm{label}} } \\
  12244. &\MID& \gray{ \IFSTMT{\BINOP{\itm{cmp}}{\Atm}{\Atm}}{\GOTO{\itm{label}}}{\GOTO{\itm{label}}} }\\
  12245. &\MID& \gray{ \TAILCALL{\Atm}{\Atm\ldots} } \\
  12246. \Def &::=& \gray{ \DEF{\itm{label}}{\LP[\Var\key{:}\Type]\ldots\RP}{\Type}{\itm{info}}{\LP\LP\itm{label}\,\key{.}\,\Tail\RP\ldots\RP} }\\
  12247. \LangCLamM{} & ::= & \gray{ \PROGRAMDEFS{\itm{info}}{\LP\Def\ldots\RP} }
  12248. \end{array}
  12249. \]
  12250. \end{minipage}
  12251. }
  12252. \caption{The abstract syntax of \LangCLam{}, extending \LangCFun{} (Figure~\ref{fig:c3-syntax}).}
  12253. \label{fig:c4-syntax}
  12254. \end{figure}
  12255. \section{Select Instructions}
  12256. \label{sec:select-instructions-Rlambda}
  12257. Compile \ALLOCCLOS{\itm{len}}{\itm{type}}{\itm{arity}} in almost the
  12258. same way as the \ALLOC{\itm{len}}{\itm{type}} form
  12259. (Section~\ref{sec:select-instructions-gc}). The only difference is
  12260. that you should place the \itm{arity} in the tag that is stored at
  12261. position $0$ of the vector. Recall that in
  12262. Section~\ref{sec:select-instructions-gc} a portion of the 64-bit tag
  12263. was not used. We store the arity in the $5$ bits starting at position
  12264. $58$.
  12265. Compile the \code{procedure-arity} operator into a sequence of
  12266. instructions that access the tag from position $0$ of the vector and
  12267. extract the $5$-bits starting at position $58$ from the tag.
  12268. \begin{figure}[p]
  12269. \begin{tikzpicture}[baseline=(current bounding box.center)]
  12270. \node (Rfun) at (0,2) {\large \LangFun{}};
  12271. \node (Rfun-2) at (3,2) {\large \LangFun{}};
  12272. \node (Rfun-3) at (6,2) {\large \LangFun{}};
  12273. \node (F1-1) at (12,0) {\large \LangFunRef{}};
  12274. \node (F1-2) at (9,0) {\large \LangFunRef{}};
  12275. \node (F1-3) at (6,0) {\large $F_1$};
  12276. \node (F1-4) at (3,0) {\large $F_1$};
  12277. \node (F1-5) at (0,0) {\large $F_1$};
  12278. \node (C3-2) at (3,-2) {\large \LangCFun{}};
  12279. \node (x86-2) at (3,-4) {\large \LangXIndCallVar{}};
  12280. \node (x86-2-1) at (3,-6) {\large \LangXIndCallVar{}};
  12281. \node (x86-2-2) at (6,-6) {\large \LangXIndCallVar{}};
  12282. \node (x86-3) at (6,-4) {\large \LangXIndCallVar{}};
  12283. \node (x86-4) at (9,-4) {\large \LangXIndCall{}};
  12284. \node (x86-5) at (9,-6) {\large \LangXIndCall{}};
  12285. \path[->,bend left=15] (Rfun) edge [above] node
  12286. {\ttfamily\footnotesize shrink} (Rfun-2);
  12287. \path[->,bend left=15] (Rfun-2) edge [above] node
  12288. {\ttfamily\footnotesize uniquify} (Rfun-3);
  12289. \path[->,bend left=15] (Rfun-3) edge [right] node
  12290. {\ttfamily\footnotesize reveal-functions} (F1-1);
  12291. \path[->,bend left=15] (F1-1) edge [below] node
  12292. {\ttfamily\footnotesize convert-to-clos.} (F1-2);
  12293. \path[->,bend right=15] (F1-2) edge [above] node
  12294. {\ttfamily\footnotesize limit-fun.} (F1-3);
  12295. \path[->,bend right=15] (F1-3) edge [above] node
  12296. {\ttfamily\footnotesize expose-alloc.} (F1-4);
  12297. \path[->,bend right=15] (F1-4) edge [above] node
  12298. {\ttfamily\footnotesize remove-complex.} (F1-5);
  12299. \path[->,bend right=15] (F1-5) edge [right] node
  12300. {\ttfamily\footnotesize explicate-control} (C3-2);
  12301. \path[->,bend left=15] (C3-2) edge [left] node
  12302. {\ttfamily\footnotesize select-instr.} (x86-2);
  12303. \path[->,bend right=15] (x86-2) edge [left] node
  12304. {\ttfamily\footnotesize uncover-live} (x86-2-1);
  12305. \path[->,bend right=15] (x86-2-1) edge [below] node
  12306. {\ttfamily\footnotesize build-inter.} (x86-2-2);
  12307. \path[->,bend right=15] (x86-2-2) edge [left] node
  12308. {\ttfamily\footnotesize allocate-reg.} (x86-3);
  12309. \path[->,bend left=15] (x86-3) edge [above] node
  12310. {\ttfamily\footnotesize patch-instr.} (x86-4);
  12311. \path[->,bend left=15] (x86-4) edge [right] node
  12312. {\ttfamily\footnotesize print-x86} (x86-5);
  12313. \end{tikzpicture}
  12314. \caption{Diagram of the passes for \LangLam{}, a language with lexically-scoped
  12315. functions.}
  12316. \label{fig:Rlambda-passes}
  12317. \end{figure}
  12318. Figure~\ref{fig:Rlambda-passes} provides an overview of all the passes needed
  12319. for the compilation of \LangLam{}.
  12320. \clearpage
  12321. \section{Challenge: Optimize Closures}
  12322. \label{sec:optimize-closures}
  12323. In this chapter we compiled lexically-scoped functions into a
  12324. relatively efficient representation: flat closures. However, even this
  12325. representation comes with some overhead. For example, consider the
  12326. following program with a function \code{tail-sum} that does not have
  12327. any free variables and where all the uses of \code{tail-sum} are in
  12328. applications where we know that only \code{tail-sum} is being applied
  12329. (and not any other functions).
  12330. \begin{center}
  12331. \begin{minipage}{0.95\textwidth}
  12332. \begin{lstlisting}
  12333. (define (tail-sum [n : Integer] [r : Integer]) : Integer
  12334. (if (eq? n 0)
  12335. r
  12336. (tail-sum (- n 1) (+ n r))))
  12337. (+ (tail-sum 5 0) 27)
  12338. \end{lstlisting}
  12339. \end{minipage}
  12340. \end{center}
  12341. As described in this chapter, we uniformly apply closure conversion to
  12342. all functions, obtaining the following output for this program.
  12343. \begin{center}
  12344. \begin{minipage}{0.95\textwidth}
  12345. \begin{lstlisting}
  12346. (define (tail_sum1 [fvs5 : _] [n2 : Integer] [r3 : Integer]) : Integer
  12347. (if (eq? n2 0)
  12348. r3
  12349. (let ([clos4 (closure (list (fun-ref tail_sum1)))])
  12350. ((vector-ref clos4 0) clos4 (+ n2 -1) (+ n2 r3)))))
  12351. (define (main) : Integer
  12352. (+ (let ([clos6 (closure (list (fun-ref tail_sum1)))])
  12353. ((vector-ref clos6 0) clos6 5 0)) 27))
  12354. \end{lstlisting}
  12355. \end{minipage}
  12356. \end{center}
  12357. In the previous Chapter, there would be no allocation in the program
  12358. and the calls to \code{tail-sum} would be direct calls. In contrast,
  12359. the above program allocates memory for each \code{closure} and the
  12360. calls to \code{tail-sum} are indirect. These two differences incur
  12361. considerable overhead in a program such as this one, where the
  12362. allocations and indirect calls occur inside a tight loop.
  12363. One might think that this problem is trivial to solve: can't we just
  12364. recognize calls of the form \code{((fun-ref $f$) $e_1 \ldots e_n$)}
  12365. and compile them to direct calls \code{((fun-ref $f$) $e'_1 \ldots
  12366. e'_n$)} instead of treating it like a call to a closure? We would
  12367. also drop the \code{fvs5} parameter of \code{tail\_sum1}.
  12368. %
  12369. However, this problem is not so trivial because a global function may
  12370. ``escape'' and become involved in applications that also involve
  12371. closures. Consider the following example in which the application
  12372. \code{(f 41)} needs to be compiled into a closure application, because
  12373. the \code{lambda} may get bound to \code{f}, but the \code{add1}
  12374. function might also get bound to \code{f}.
  12375. \begin{lstlisting}
  12376. (define (add1 [x : Integer]) : Integer
  12377. (+ x 1))
  12378. (let ([y (read)])
  12379. (let ([f (if (eq? (read) 0)
  12380. add1
  12381. (lambda: ([x : Integer]) : Integer (- x y)))])
  12382. (f 41)))
  12383. \end{lstlisting}
  12384. If a global function name is used in any way other than as the
  12385. operator in a direct call, then we say that the function
  12386. \emph{escapes}. If a global function does not escape, then we do not
  12387. need to perform closure conversion on the function.
  12388. \begin{exercise}\normalfont
  12389. Implement an auxiliary function for detecting which global
  12390. functions escape. Using that function, implement an improved version
  12391. of closure conversion that does not apply closure conversion to
  12392. global functions that do not escape but instead compiles them as
  12393. regular functions. Create several new test cases that check whether
  12394. you properly detect whether global functions escape or not.
  12395. \end{exercise}
  12396. So far we have reduced the overhead of calling global functions, but
  12397. it would also be nice to reduce the overhead of calling a
  12398. \code{lambda} when we can determine at compile time which
  12399. \code{lambda} will be called. We refer to such calls as \emph{known
  12400. calls}. Consider the following example in which a \code{lambda} is
  12401. bound to \code{f} and then applied.
  12402. \begin{lstlisting}
  12403. (let ([y (read)])
  12404. (let ([f (lambda: ([x : Integer]) : Integer
  12405. (+ x y))])
  12406. (f 21)))
  12407. \end{lstlisting}
  12408. Closure conversion compiles \code{(f 21)} into an indirect call:
  12409. \begin{lstlisting}
  12410. (define (lambda5 [fvs6 : (Vector _ Integer)] [x3 : Integer]) : Integer
  12411. (let ([y2 (vector-ref fvs6 1)])
  12412. (+ x3 y2)))
  12413. (define (main) : Integer
  12414. (let ([y2 (read)])
  12415. (let ([f4 (Closure 1 (list (fun-ref lambda5) y2))])
  12416. ((vector-ref f4 0) f4 21))))
  12417. \end{lstlisting}
  12418. but we can instead compile the application \code{(f 21)} into a direct call
  12419. to \code{lambda5}:
  12420. \begin{lstlisting}
  12421. (define (main) : Integer
  12422. (let ([y2 (read)])
  12423. (let ([f4 (Closure 1 (list (fun-ref lambda5) y2))])
  12424. ((fun-ref lambda5) f4 21))))
  12425. \end{lstlisting}
  12426. The problem of determining which lambda will be called from a
  12427. particular application is quite challenging in general and the topic
  12428. of considerable research~\citep{Shivers:1988aa,Gilray:2016aa}. For the
  12429. following exercise we recommend that you compile an application to a
  12430. direct call when the operator is a variable and the variable is
  12431. \code{let}-bound to a closure. This can be accomplished by maintaining
  12432. an environment mapping \code{let}-bound variables to function names.
  12433. Extend the environment whenever you encounter a closure on the
  12434. right-hand side of a \code{let}, mapping the \code{let}-bound variable
  12435. to the name of the global function for the closure. This pass should
  12436. come after closure conversion.
  12437. \begin{exercise}\normalfont
  12438. Implement a compiler pass, named \code{optimize-known-calls}, that
  12439. compiles known calls into direct calls. Verify that your compiler is
  12440. successful in this regard on several example programs.
  12441. \end{exercise}
  12442. These exercises only scratches the surface of optimizing of
  12443. closures. A good next step for the interested reader is to look at the
  12444. work of \citet{Keep:2012ab}.
  12445. \section{Further Reading}
  12446. The notion of lexically scoped anonymous functions predates modern
  12447. computers by about a decade. They were invented by
  12448. \citet{Church:1932aa}, who proposed the $\lambda$ calculus as a
  12449. foundation for logic. Anonymous functions were included in the
  12450. LISP~\citep{McCarthy:1960dz} programming language but were initially
  12451. dynamically scoped. The Scheme dialect of LISP adopted lexical scoping
  12452. and \citet{Guy-L.-Steele:1978yq} demonstrated how to efficiently
  12453. compile Scheme programs. However, environments were represented as
  12454. linked lists, so variable lookup was linear in the size of the
  12455. environment. In this chapter we represent environments using flat
  12456. closures, which were invented by
  12457. \citet{Cardelli:1983aa,Cardelli:1984aa} for the purposes of compiling
  12458. the ML language~\citep{Gordon:1978aa,Milner:1990fk}. With flat
  12459. closures, variable lookup is constant time but the time to create a
  12460. closure is proportional to the number of its free variables. Flat
  12461. closures were reinvented by \citet{Dybvig:1987ab} in his Ph.D. thesis
  12462. and used in Chez Scheme version 1~\citep{Dybvig:2006aa}.
  12463. \fi
  12464. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  12465. \chapter{Dynamic Typing}
  12466. \label{ch:Rdyn}
  12467. \index{subject}{dynamic typing}
  12468. \if\edition\racketEd
  12469. In this chapter we discuss the compilation of \LangDyn{}, a dynamically
  12470. typed language that is a subset of Racket. This is in contrast to the
  12471. previous chapters, which have studied the compilation of Typed
  12472. Racket. In dynamically typed languages such as \LangDyn{}, a given
  12473. expression may produce a value of a different type each time it is
  12474. executed. Consider the following example with a conditional \code{if}
  12475. expression that may return a Boolean or an integer depending on the
  12476. input to the program.
  12477. % part of dynamic_test_25.rkt
  12478. \begin{lstlisting}
  12479. (not (if (eq? (read) 1) #f 0))
  12480. \end{lstlisting}
  12481. Languages that allow expressions to produce different kinds of values
  12482. are called \emph{polymorphic}, a word composed of the Greek roots
  12483. ``poly'', meaning ``many'', and ``morph'', meaning ``shape''. There
  12484. are several kinds of polymorphism in programming languages, such as
  12485. subtype polymorphism and parametric
  12486. polymorphism~\citep{Cardelli:1985kx}. The kind of polymorphism we
  12487. study in this chapter does not have a special name but it is the kind
  12488. that arises in dynamically typed languages.
  12489. Another characteristic of dynamically typed languages is that
  12490. primitive operations, such as \code{not}, are often defined to operate
  12491. on many different types of values. In fact, in Racket, the \code{not}
  12492. operator produces a result for any kind of value: given \code{\#f} it
  12493. returns \code{\#t} and given anything else it returns \code{\#f}.
  12494. Furthermore, even when primitive operations restrict their inputs to
  12495. values of a certain type, this restriction is enforced at runtime
  12496. instead of during compilation. For example, the following vector
  12497. reference results in a run-time contract violation because the index
  12498. must be in integer, not a Boolean such as \code{\#t}.
  12499. \begin{lstlisting}
  12500. (vector-ref (vector 42) #t)
  12501. \end{lstlisting}
  12502. \begin{figure}[tp]
  12503. \centering
  12504. \fbox{
  12505. \begin{minipage}{0.97\textwidth}
  12506. \[
  12507. \begin{array}{rcl}
  12508. \itm{cmp} &::= & \key{eq?} \MID \key{<} \MID \key{<=} \MID \key{>} \MID \key{>=} \\
  12509. \Exp &::=& \Int \MID \CREAD{} \MID \CNEG{\Exp}
  12510. \MID \CADD{\Exp}{\Exp} \MID \CSUB{\Exp}{\Exp} \\
  12511. &\MID& \Var \MID \CLET{\Var}{\Exp}{\Exp} \\
  12512. &\MID& \key{\#t} \MID \key{\#f}
  12513. \MID \CBINOP{\key{and}}{\Exp}{\Exp}
  12514. \MID \CBINOP{\key{or}}{\Exp}{\Exp}
  12515. \MID \CUNIOP{\key{not}}{\Exp} \\
  12516. &\MID& \LP\itm{cmp}\;\Exp\;\Exp\RP \MID \CIF{\Exp}{\Exp}{\Exp} \\
  12517. &\MID& \LP\key{vector}\;\Exp\ldots\RP \MID
  12518. \LP\key{vector-ref}\;\Exp\;\Exp\RP \\
  12519. &\MID& \LP\key{vector-set!}\;\Exp\;\Exp\;\Exp\RP \MID \LP\key{void}\RP \\
  12520. &\MID& \LP\Exp \; \Exp\ldots\RP
  12521. \MID \LP\key{lambda}\;\LP\Var\ldots\RP\;\Exp\RP \\
  12522. & \MID & \LP\key{boolean?}\;\Exp\RP \MID \LP\key{integer?}\;\Exp\RP\\
  12523. & \MID & \LP\key{vector?}\;\Exp\RP \MID \LP\key{procedure?}\;\Exp\RP \MID \LP\key{void?}\;\Exp\RP \\
  12524. \Def &::=& \LP\key{define}\; \LP\Var \; \Var\ldots\RP \; \Exp\RP \\
  12525. \LangDynM{} &::=& \Def\ldots\; \Exp
  12526. \end{array}
  12527. \]
  12528. \end{minipage}
  12529. }
  12530. \caption{Syntax of \LangDyn{}, an untyped language (a subset of Racket).}
  12531. \label{fig:r7-concrete-syntax}
  12532. \end{figure}
  12533. \begin{figure}[tp]
  12534. \centering
  12535. \fbox{
  12536. \begin{minipage}{0.96\textwidth}
  12537. \small
  12538. \[
  12539. \begin{array}{lcl}
  12540. \Exp &::=& \INT{\Int} \MID \VAR{\Var} \MID \LET{\Var}{\Exp}{\Exp} \\
  12541. &\MID& \PRIM{\itm{op}}{\Exp\ldots} \\
  12542. &\MID& \BOOL{\itm{bool}}
  12543. \MID \IF{\Exp}{\Exp}{\Exp} \\
  12544. &\MID& \VOID{} \MID \APPLY{\Exp}{\Exp\ldots} \\
  12545. &\MID& \LAMBDA{\LP\Var\ldots\RP}{\code{'Any}}{\Exp}\\
  12546. \Def &::=& \FUNDEF{\Var}{\LP\Var\ldots\RP}{\code{'Any}}{\code{'()}}{\Exp} \\
  12547. \LangDynM{} &::=& \PROGRAMDEFSEXP{\code{'()}}{\LP\Def\ldots\RP}{\Exp}
  12548. \end{array}
  12549. \]
  12550. \end{minipage}
  12551. }
  12552. \caption{The abstract syntax of \LangDyn{}.}
  12553. \label{fig:r7-syntax}
  12554. \end{figure}
  12555. The concrete and abstract syntax of \LangDyn{}, our subset of Racket, is
  12556. defined in Figures~\ref{fig:r7-concrete-syntax} and
  12557. \ref{fig:r7-syntax}.
  12558. %
  12559. There is no type checker for \LangDyn{} because it is not a statically
  12560. typed language (it's dynamically typed!).
  12561. The definitional interpreter for \LangDyn{} is presented in
  12562. Figure~\ref{fig:interp-Rdyn} and its auxiliary functions are defined i
  12563. Figure~\ref{fig:interp-Rdyn-aux}. Consider the match case for
  12564. \code{(Int n)}. Instead of simply returning the integer \code{n} (as
  12565. in the interpreter for \LangVar{} in Figure~\ref{fig:interp-Lvar}), the
  12566. interpreter for \LangDyn{} creates a \emph{tagged value}\index{subject}{tagged
  12567. value} that combines an underlying value with a tag that identifies
  12568. what kind of value it is. We define the following struct
  12569. to represented tagged values.
  12570. \begin{lstlisting}
  12571. (struct Tagged (value tag) #:transparent)
  12572. \end{lstlisting}
  12573. The tags are \code{Integer}, \code{Boolean}, \code{Void},
  12574. \code{Vector}, and \code{Procedure}. Tags are closely related to types
  12575. but don't always capture all the information that a type does. For
  12576. example, a vector of type \code{(Vector Any Any)} is tagged with
  12577. \code{Vector} and a procedure of type \code{(Any Any -> Any)}
  12578. is tagged with \code{Procedure}.
  12579. Next consider the match case for \code{vector-ref}. The
  12580. \code{check-tag} auxiliary function (Figure~\ref{fig:interp-Rdyn-aux})
  12581. is used to ensure that the first argument is a vector and the second
  12582. is an integer. If they are not, a \code{trapped-error} is raised.
  12583. Recall from Section~\ref{sec:interp_Lint} that when a definition
  12584. interpreter raises a \code{trapped-error} error, the compiled code
  12585. must also signal an error by exiting with return code \code{255}. A
  12586. \code{trapped-error} is also raised if the index is not less than
  12587. length of the vector.
  12588. \begin{figure}[tbp]
  12589. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  12590. (define ((interp-Rdyn-exp env) ast)
  12591. (define recur (interp-Rdyn-exp env))
  12592. (match ast
  12593. [(Var x) (lookup x env)]
  12594. [(Int n) (Tagged n 'Integer)]
  12595. [(Bool b) (Tagged b 'Boolean)]
  12596. [(Lambda xs rt body)
  12597. (Tagged `(function ,xs ,body ,env) 'Procedure)]
  12598. [(Prim 'vector es)
  12599. (Tagged (apply vector (for/list ([e es]) (recur e))) 'Vector)]
  12600. [(Prim 'vector-ref (list e1 e2))
  12601. (define vec (recur e1)) (define i (recur e2))
  12602. (check-tag vec 'Vector ast) (check-tag i 'Integer ast)
  12603. (unless (< (Tagged-value i) (vector-length (Tagged-value vec)))
  12604. (error 'trapped-error "index ~a too big\nin ~v" (Tagged-value i) ast))
  12605. (vector-ref (Tagged-value vec) (Tagged-value i))]
  12606. [(Prim 'vector-set! (list e1 e2 e3))
  12607. (define vec (recur e1)) (define i (recur e2)) (define arg (recur e3))
  12608. (check-tag vec 'Vector ast) (check-tag i 'Integer ast)
  12609. (unless (< (Tagged-value i) (vector-length (Tagged-value vec)))
  12610. (error 'trapped-error "index ~a too big\nin ~v" (Tagged-value i) ast))
  12611. (vector-set! (Tagged-value vec) (Tagged-value i) arg)
  12612. (Tagged (void) 'Void)]
  12613. [(Let x e body) ((interp-Rdyn-exp (cons (cons x (recur e)) env)) body)]
  12614. [(Prim 'and (list e1 e2)) (recur (If e1 e2 (Bool #f)))]
  12615. [(Prim 'or (list e1 e2))
  12616. (define v1 (recur e1))
  12617. (match (Tagged-value v1) [#f (recur e2)] [else v1])]
  12618. [(Prim 'eq? (list l r)) (Tagged (equal? (recur l) (recur r)) 'Boolean)]
  12619. [(Prim op (list e1))
  12620. #:when (set-member? type-predicates op)
  12621. (tag-value ((interp-op op) (Tagged-value (recur e1))))]
  12622. [(Prim op es)
  12623. (define args (map recur es))
  12624. (define tags (for/list ([arg args]) (Tagged-tag arg)))
  12625. (unless (for/or ([expected-tags (op-tags op)])
  12626. (equal? expected-tags tags))
  12627. (error 'trapped-error "illegal argument tags ~a\nin ~v" tags ast))
  12628. (tag-value
  12629. (apply (interp-op op) (for/list ([a args]) (Tagged-value a))))]
  12630. [(If q t f)
  12631. (match (Tagged-value (recur q)) [#f (recur f)] [else (recur t)])]
  12632. [(Apply f es)
  12633. (define new-f (recur f)) (define args (map recur es))
  12634. (check-tag new-f 'Procedure ast) (define f-val (Tagged-value new-f))
  12635. (match f-val
  12636. [`(function ,xs ,body ,lam-env)
  12637. (unless (eq? (length xs) (length args))
  12638. (error 'trapped-error "~a != ~a\nin ~v" (length args) (length xs) ast))
  12639. (define new-env (append (map cons xs args) lam-env))
  12640. ((interp-Rdyn-exp new-env) body)]
  12641. [else (error "interp-Rdyn-exp, expected function, not" f-val)])]))
  12642. \end{lstlisting}
  12643. \caption{Interpreter for the \LangDyn{} language.}
  12644. \label{fig:interp-Rdyn}
  12645. \end{figure}
  12646. \begin{figure}[tbp]
  12647. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  12648. (define (interp-op op)
  12649. (match op
  12650. ['+ fx+]
  12651. ['- fx-]
  12652. ['read read-fixnum]
  12653. ['not (lambda (v) (match v [#t #f] [#f #t]))]
  12654. ['< (lambda (v1 v2)
  12655. (cond [(and (fixnum? v1) (fixnum? v2)) (< v1 v2)]))]
  12656. ['<= (lambda (v1 v2)
  12657. (cond [(and (fixnum? v1) (fixnum? v2)) (<= v1 v2)]))]
  12658. ['> (lambda (v1 v2)
  12659. (cond [(and (fixnum? v1) (fixnum? v2)) (> v1 v2)]))]
  12660. ['>= (lambda (v1 v2)
  12661. (cond [(and (fixnum? v1) (fixnum? v2)) (>= v1 v2)]))]
  12662. ['boolean? boolean?]
  12663. ['integer? fixnum?]
  12664. ['void? void?]
  12665. ['vector? vector?]
  12666. ['vector-length vector-length]
  12667. ['procedure? (match-lambda
  12668. [`(functions ,xs ,body ,env) #t] [else #f])]
  12669. [else (error 'interp-op "unknown operator" op)]))
  12670. (define (op-tags op)
  12671. (match op
  12672. ['+ '((Integer Integer))]
  12673. ['- '((Integer Integer) (Integer))]
  12674. ['read '(())]
  12675. ['not '((Boolean))]
  12676. ['< '((Integer Integer))]
  12677. ['<= '((Integer Integer))]
  12678. ['> '((Integer Integer))]
  12679. ['>= '((Integer Integer))]
  12680. ['vector-length '((Vector))]))
  12681. (define type-predicates
  12682. (set 'boolean? 'integer? 'vector? 'procedure? 'void?))
  12683. (define (tag-value v)
  12684. (cond [(boolean? v) (Tagged v 'Boolean)]
  12685. [(fixnum? v) (Tagged v 'Integer)]
  12686. [(procedure? v) (Tagged v 'Procedure)]
  12687. [(vector? v) (Tagged v 'Vector)]
  12688. [(void? v) (Tagged v 'Void)]
  12689. [else (error 'tag-value "unidentified value ~a" v)]))
  12690. (define (check-tag val expected ast)
  12691. (define tag (Tagged-tag val))
  12692. (unless (eq? tag expected)
  12693. (error 'trapped-error "expected ~a, not ~a\nin ~v" expected tag ast)))
  12694. \end{lstlisting}
  12695. \caption{Auxiliary functions for the \LangDyn{} interpreter.}
  12696. \label{fig:interp-Rdyn-aux}
  12697. \end{figure}
  12698. \clearpage
  12699. \section{Representation of Tagged Values}
  12700. The interpreter for \LangDyn{} introduced a new kind of value, a tagged
  12701. value. To compile \LangDyn{} to x86 we must decide how to represent tagged
  12702. values at the bit level. Because almost every operation in \LangDyn{}
  12703. involves manipulating tagged values, the representation must be
  12704. efficient. Recall that all of our values are 64 bits. We shall steal
  12705. the 3 right-most bits to encode the tag. We use $001$ to identify
  12706. integers, $100$ for Booleans, $010$ for vectors, $011$ for procedures,
  12707. and $101$ for the void value. We define the following auxiliary
  12708. function for mapping types to tag codes.
  12709. \begin{align*}
  12710. \itm{tagof}(\key{Integer}) &= 001 \\
  12711. \itm{tagof}(\key{Boolean}) &= 100 \\
  12712. \itm{tagof}((\key{Vector} \ldots)) &= 010 \\
  12713. \itm{tagof}((\ldots \key{->} \ldots)) &= 011 \\
  12714. \itm{tagof}(\key{Void}) &= 101
  12715. \end{align*}
  12716. This stealing of 3 bits comes at some price: our integers are reduced
  12717. to ranging from $-2^{60}$ to $2^{60}$. The stealing does not adversely
  12718. affect vectors and procedures because those values are addresses, and
  12719. our addresses are 8-byte aligned so the rightmost 3 bits are unused,
  12720. they are always $000$. Thus, we do not lose information by overwriting
  12721. the rightmost 3 bits with the tag and we can simply zero-out the tag
  12722. to recover the original address.
  12723. To make tagged values into first-class entities, we can give them a
  12724. type, called \code{Any}, and define operations such as \code{Inject}
  12725. and \code{Project} for creating and using them, yielding the \LangAny{}
  12726. intermediate language. We describe how to compile \LangDyn{} to \LangAny{} in
  12727. Section~\ref{sec:compile-r7} but first we describe the \LangAny{} language
  12728. in greater detail.
  12729. \section{The \LangAny{} Language}
  12730. \label{sec:Rany-lang}
  12731. \begin{figure}[tp]
  12732. \centering
  12733. \fbox{
  12734. \begin{minipage}{0.96\textwidth}
  12735. \small
  12736. \[
  12737. \begin{array}{lcl}
  12738. \Type &::= & \ldots \MID \key{Any} \\
  12739. \itm{op} &::= & \ldots \MID \code{any-vector-length}
  12740. \MID \code{any-vector-ref} \MID \code{any-vector-set!}\\
  12741. &\MID& \code{boolean?} \MID \code{integer?} \MID \code{vector?}
  12742. \MID \code{procedure?} \MID \code{void?} \\
  12743. \Exp &::=& \ldots
  12744. \MID \gray{ \PRIM{\itm{op}}{\Exp\ldots} } \\
  12745. &\MID& \INJECT{\Exp}{\FType} \MID \PROJECT{\Exp}{\FType} \\
  12746. \Def &::=& \gray{ \FUNDEF{\Var}{\LP[\Var \code{:} \Type]\ldots\RP}{\Type}{\code{'()}}{\Exp} }\\
  12747. \LangAnyM{} &::=& \gray{ \PROGRAMDEFSEXP{\code{'()}}{\LP\Def\ldots\RP}{\Exp} }
  12748. \end{array}
  12749. \]
  12750. \end{minipage}
  12751. }
  12752. \caption{The abstract syntax of \LangAny{}, extending \LangLam{} (Figure~\ref{fig:Rlam-syntax}).}
  12753. \label{fig:Rany-syntax}
  12754. \end{figure}
  12755. The abstract syntax of \LangAny{} is defined in Figure~\ref{fig:Rany-syntax}.
  12756. (The concrete syntax of \LangAny{} is in the Appendix,
  12757. Figure~\ref{fig:Rany-concrete-syntax}.) The $\INJECT{e}{T}$ form
  12758. converts the value produced by expression $e$ of type $T$ into a
  12759. tagged value. The $\PROJECT{e}{T}$ form converts the tagged value
  12760. produced by expression $e$ into a value of type $T$ or else halts the
  12761. program if the type tag is not equivalent to $T$.
  12762. %
  12763. Note that in both \code{Inject} and \code{Project}, the type $T$ is
  12764. restricted to a flat type $\FType$, which simplifies the
  12765. implementation and corresponds with what is needed for compiling \LangDyn{}.
  12766. The \code{any-vector} operators adapt the vector operations so that
  12767. they can be applied to a value of type \code{Any}. They also
  12768. generalize the vector operations in that the index is not restricted
  12769. to be a literal integer in the grammar but is allowed to be any
  12770. expression.
  12771. The type predicates such as \key{boolean?} expect their argument to
  12772. produce a tagged value; they return \key{\#t} if the tag corresponds
  12773. to the predicate and they return \key{\#f} otherwise.
  12774. The type checker for \LangAny{} is shown in
  12775. Figures~\ref{fig:type-check-Rany-part-1} and
  12776. \ref{fig:type-check-Rany-part-2} and uses the auxiliary functions in
  12777. Figure~\ref{fig:type-check-Rany-aux}.
  12778. %
  12779. The interpreter for \LangAny{} is in Figure~\ref{fig:interp-Rany} and the
  12780. auxiliary functions \code{apply-inject} and \code{apply-project} are
  12781. in Figure~\ref{fig:apply-project}.
  12782. \begin{figure}[btp]
  12783. \begin{lstlisting}[basicstyle=\ttfamily\small]
  12784. (define type-check-Rany_class
  12785. (class type-check-Rlambda_class
  12786. (super-new)
  12787. (inherit check-type-equal?)
  12788. (define/override (type-check-exp env)
  12789. (lambda (e)
  12790. (define recur (type-check-exp env))
  12791. (match e
  12792. [(Inject e1 ty)
  12793. (unless (flat-ty? ty)
  12794. (error 'type-check "may only inject from flat type, not ~a" ty))
  12795. (define-values (new-e1 e-ty) (recur e1))
  12796. (check-type-equal? e-ty ty e)
  12797. (values (Inject new-e1 ty) 'Any)]
  12798. [(Project e1 ty)
  12799. (unless (flat-ty? ty)
  12800. (error 'type-check "may only project to flat type, not ~a" ty))
  12801. (define-values (new-e1 e-ty) (recur e1))
  12802. (check-type-equal? e-ty 'Any e)
  12803. (values (Project new-e1 ty) ty)]
  12804. [(Prim 'any-vector-length (list e1))
  12805. (define-values (e1^ t1) (recur e1))
  12806. (check-type-equal? t1 'Any e)
  12807. (values (Prim 'any-vector-length (list e1^)) 'Integer)]
  12808. [(Prim 'any-vector-ref (list e1 e2))
  12809. (define-values (e1^ t1) (recur e1))
  12810. (define-values (e2^ t2) (recur e2))
  12811. (check-type-equal? t1 'Any e)
  12812. (check-type-equal? t2 'Integer e)
  12813. (values (Prim 'any-vector-ref (list e1^ e2^)) 'Any)]
  12814. [(Prim 'any-vector-set! (list e1 e2 e3))
  12815. (define-values (e1^ t1) (recur e1))
  12816. (define-values (e2^ t2) (recur e2))
  12817. (define-values (e3^ t3) (recur e3))
  12818. (check-type-equal? t1 'Any e)
  12819. (check-type-equal? t2 'Integer e)
  12820. (check-type-equal? t3 'Any e)
  12821. (values (Prim 'any-vector-set! (list e1^ e2^ e3^)) 'Void)]
  12822. \end{lstlisting}
  12823. \caption{Type checker for the \LangAny{} language, part 1.}
  12824. \label{fig:type-check-Rany-part-1}
  12825. \end{figure}
  12826. \begin{figure}[btp]
  12827. \begin{lstlisting}[basicstyle=\ttfamily\small]
  12828. [(ValueOf e ty)
  12829. (define-values (new-e e-ty) (recur e))
  12830. (values (ValueOf new-e ty) ty)]
  12831. [(Prim pred (list e1))
  12832. #:when (set-member? (type-predicates) pred)
  12833. (define-values (new-e1 e-ty) (recur e1))
  12834. (check-type-equal? e-ty 'Any e)
  12835. (values (Prim pred (list new-e1)) 'Boolean)]
  12836. [(If cnd thn els)
  12837. (define-values (cnd^ Tc) (recur cnd))
  12838. (define-values (thn^ Tt) (recur thn))
  12839. (define-values (els^ Te) (recur els))
  12840. (check-type-equal? Tc 'Boolean cnd)
  12841. (check-type-equal? Tt Te e)
  12842. (values (If cnd^ thn^ els^) (combine-types Tt Te))]
  12843. [(Exit) (values (Exit) '_)]
  12844. [(Prim 'eq? (list arg1 arg2))
  12845. (define-values (e1 t1) (recur arg1))
  12846. (define-values (e2 t2) (recur arg2))
  12847. (match* (t1 t2)
  12848. [(`(Vector ,ts1 ...) `(Vector ,ts2 ...)) (void)]
  12849. [(other wise) (check-type-equal? t1 t2 e)])
  12850. (values (Prim 'eq? (list e1 e2)) 'Boolean)]
  12851. [else ((super type-check-exp env) e)])))
  12852. ))
  12853. \end{lstlisting}
  12854. \caption{Type checker for the \LangAny{} language, part 2.}
  12855. \label{fig:type-check-Rany-part-2}
  12856. \end{figure}
  12857. \begin{figure}[tbp]
  12858. \begin{lstlisting}
  12859. (define/override (operator-types)
  12860. (append
  12861. '((integer? . ((Any) . Boolean))
  12862. (vector? . ((Any) . Boolean))
  12863. (procedure? . ((Any) . Boolean))
  12864. (void? . ((Any) . Boolean))
  12865. (tag-of-any . ((Any) . Integer))
  12866. (make-any . ((_ Integer) . Any))
  12867. )
  12868. (super operator-types)))
  12869. (define/public (type-predicates)
  12870. (set 'boolean? 'integer? 'vector? 'procedure? 'void?))
  12871. (define/public (combine-types t1 t2)
  12872. (match (list t1 t2)
  12873. [(list '_ t2) t2]
  12874. [(list t1 '_) t1]
  12875. [(list `(Vector ,ts1 ...)
  12876. `(Vector ,ts2 ...))
  12877. `(Vector ,@(for/list ([t1 ts1] [t2 ts2])
  12878. (combine-types t1 t2)))]
  12879. [(list `(,ts1 ... -> ,rt1)
  12880. `(,ts2 ... -> ,rt2))
  12881. `(,@(for/list ([t1 ts1] [t2 ts2])
  12882. (combine-types t1 t2))
  12883. -> ,(combine-types rt1 rt2))]
  12884. [else t1]))
  12885. (define/public (flat-ty? ty)
  12886. (match ty
  12887. [(or `Integer `Boolean '_ `Void) #t]
  12888. [`(Vector ,ts ...) (for/and ([t ts]) (eq? t 'Any))]
  12889. [`(,ts ... -> ,rt)
  12890. (and (eq? rt 'Any) (for/and ([t ts]) (eq? t 'Any)))]
  12891. [else #f]))
  12892. \end{lstlisting}
  12893. \caption{Auxiliary methods for type checking \LangAny{}.}
  12894. \label{fig:type-check-Rany-aux}
  12895. \end{figure}
  12896. \begin{figure}[btp]
  12897. \begin{lstlisting}
  12898. (define interp-Rany_class
  12899. (class interp-Rlambda_class
  12900. (super-new)
  12901. (define/override (interp-op op)
  12902. (match op
  12903. ['boolean? (match-lambda
  12904. [`(tagged ,v1 ,tg) (equal? tg (any-tag 'Boolean))]
  12905. [else #f])]
  12906. ['integer? (match-lambda
  12907. [`(tagged ,v1 ,tg) (equal? tg (any-tag 'Integer))]
  12908. [else #f])]
  12909. ['vector? (match-lambda
  12910. [`(tagged ,v1 ,tg) (equal? tg (any-tag `(Vector Any)))]
  12911. [else #f])]
  12912. ['procedure? (match-lambda
  12913. [`(tagged ,v1 ,tg) (equal? tg (any-tag `(Any -> Any)))]
  12914. [else #f])]
  12915. ['eq? (match-lambda*
  12916. [`((tagged ,v1^ ,tg1) (tagged ,v2^ ,tg2))
  12917. (and (eq? v1^ v2^) (equal? tg1 tg2))]
  12918. [ls (apply (super interp-op op) ls)])]
  12919. ['any-vector-ref (lambda (v i)
  12920. (match v [`(tagged ,v^ ,tg) (vector-ref v^ i)]))]
  12921. ['any-vector-set! (lambda (v i a)
  12922. (match v [`(tagged ,v^ ,tg) (vector-set! v^ i a)]))]
  12923. ['any-vector-length (lambda (v)
  12924. (match v [`(tagged ,v^ ,tg) (vector-length v^)]))]
  12925. [else (super interp-op op)]))
  12926. (define/override ((interp-exp env) e)
  12927. (define recur (interp-exp env))
  12928. (match e
  12929. [(Inject e ty) `(tagged ,(recur e) ,(any-tag ty))]
  12930. [(Project e ty2) (apply-project (recur e) ty2)]
  12931. [else ((super interp-exp env) e)]))
  12932. ))
  12933. (define (interp-Rany p)
  12934. (send (new interp-Rany_class) interp-program p))
  12935. \end{lstlisting}
  12936. \caption{Interpreter for \LangAny{}.}
  12937. \label{fig:interp-Rany}
  12938. \end{figure}
  12939. \begin{figure}[tbp]
  12940. \begin{lstlisting}
  12941. (define/public (apply-inject v tg) (Tagged v tg))
  12942. (define/public (apply-project v ty2)
  12943. (define tag2 (any-tag ty2))
  12944. (match v
  12945. [(Tagged v1 tag1)
  12946. (cond
  12947. [(eq? tag1 tag2)
  12948. (match ty2
  12949. [`(Vector ,ts ...)
  12950. (define l1 ((interp-op 'vector-length) v1))
  12951. (cond
  12952. [(eq? l1 (length ts)) v1]
  12953. [else (error 'apply-project "vector length mismatch, ~a != ~a"
  12954. l1 (length ts))])]
  12955. [`(,ts ... -> ,rt)
  12956. (match v1
  12957. [`(function ,xs ,body ,env)
  12958. (cond [(eq? (length xs) (length ts)) v1]
  12959. [else
  12960. (error 'apply-project "arity mismatch ~a != ~a"
  12961. (length xs) (length ts))])]
  12962. [else (error 'apply-project "expected function not ~a" v1)])]
  12963. [else v1])]
  12964. [else (error 'apply-project "tag mismatch ~a != ~a" tag1 tag2)])]
  12965. [else (error 'apply-project "expected tagged value, not ~a" v)]))
  12966. \end{lstlisting}
  12967. \caption{Auxiliary functions for injection and projection.}
  12968. \label{fig:apply-project}
  12969. \end{figure}
  12970. \clearpage
  12971. \section{Cast Insertion: Compiling \LangDyn{} to \LangAny{}}
  12972. \label{sec:compile-r7}
  12973. The \code{cast-insert} pass compiles from \LangDyn{} to \LangAny{}.
  12974. Figure~\ref{fig:compile-r7-Rany} shows the compilation of many of the
  12975. \LangDyn{} forms into \LangAny{}. An important invariant of this pass is that
  12976. given a subexpression $e$ in the \LangDyn{} program, the pass will produce
  12977. an expression $e'$ in \LangAny{} that has type \key{Any}. For example, the
  12978. first row in Figure~\ref{fig:compile-r7-Rany} shows the compilation of
  12979. the Boolean \code{\#t}, which must be injected to produce an
  12980. expression of type \key{Any}.
  12981. %
  12982. The second row of Figure~\ref{fig:compile-r7-Rany}, the compilation of
  12983. addition, is representative of compilation for many primitive
  12984. operations: the arguments have type \key{Any} and must be projected to
  12985. \key{Integer} before the addition can be performed.
  12986. The compilation of \key{lambda} (third row of
  12987. Figure~\ref{fig:compile-r7-Rany}) shows what happens when we need to
  12988. produce type annotations: we simply use \key{Any}.
  12989. %
  12990. The compilation of \code{if} and \code{eq?} demonstrate how this pass
  12991. has to account for some differences in behavior between \LangDyn{} and
  12992. \LangAny{}. The \LangDyn{} language is more permissive than \LangAny{} regarding what
  12993. kind of values can be used in various places. For example, the
  12994. condition of an \key{if} does not have to be a Boolean. For \key{eq?},
  12995. the arguments need not be of the same type (in that case the
  12996. result is \code{\#f}).
  12997. \begin{figure}[btp]
  12998. \centering
  12999. \begin{tabular}{|lll|} \hline
  13000. \begin{minipage}{0.27\textwidth}
  13001. \begin{lstlisting}
  13002. #t
  13003. \end{lstlisting}
  13004. \end{minipage}
  13005. &
  13006. $\Rightarrow$
  13007. &
  13008. \begin{minipage}{0.65\textwidth}
  13009. \begin{lstlisting}
  13010. (inject #t Boolean)
  13011. \end{lstlisting}
  13012. \end{minipage}
  13013. \\[2ex]\hline
  13014. \begin{minipage}{0.27\textwidth}
  13015. \begin{lstlisting}
  13016. (+ |$e_1$| |$e_2$|)
  13017. \end{lstlisting}
  13018. \end{minipage}
  13019. &
  13020. $\Rightarrow$
  13021. &
  13022. \begin{minipage}{0.65\textwidth}
  13023. \begin{lstlisting}
  13024. (inject
  13025. (+ (project |$e'_1$| Integer)
  13026. (project |$e'_2$| Integer))
  13027. Integer)
  13028. \end{lstlisting}
  13029. \end{minipage}
  13030. \\[2ex]\hline
  13031. \begin{minipage}{0.27\textwidth}
  13032. \begin{lstlisting}
  13033. (lambda (|$x_1 \ldots x_n$|) |$e$|)
  13034. \end{lstlisting}
  13035. \end{minipage}
  13036. &
  13037. $\Rightarrow$
  13038. &
  13039. \begin{minipage}{0.65\textwidth}
  13040. \begin{lstlisting}
  13041. (inject
  13042. (lambda: ([|$x_1$|:Any]|$\ldots$|[|$x_n$|:Any]):Any |$e'$|)
  13043. (Any|$\ldots$|Any -> Any))
  13044. \end{lstlisting}
  13045. \end{minipage}
  13046. \\[2ex]\hline
  13047. \begin{minipage}{0.27\textwidth}
  13048. \begin{lstlisting}
  13049. (|$e_0$| |$e_1 \ldots e_n$|)
  13050. \end{lstlisting}
  13051. \end{minipage}
  13052. &
  13053. $\Rightarrow$
  13054. &
  13055. \begin{minipage}{0.65\textwidth}
  13056. \begin{lstlisting}
  13057. ((project |$e'_0$| (Any|$\ldots$|Any -> Any)) |$e'_1 \ldots e'_n$|)
  13058. \end{lstlisting}
  13059. \end{minipage}
  13060. \\[2ex]\hline
  13061. \begin{minipage}{0.27\textwidth}
  13062. \begin{lstlisting}
  13063. (vector-ref |$e_1$| |$e_2$|)
  13064. \end{lstlisting}
  13065. \end{minipage}
  13066. &
  13067. $\Rightarrow$
  13068. &
  13069. \begin{minipage}{0.65\textwidth}
  13070. \begin{lstlisting}
  13071. (any-vector-ref |$e_1'$| |$e_2'$|)
  13072. \end{lstlisting}
  13073. \end{minipage}
  13074. \\[2ex]\hline
  13075. \begin{minipage}{0.27\textwidth}
  13076. \begin{lstlisting}
  13077. (if |$e_1$| |$e_2$| |$e_3$|)
  13078. \end{lstlisting}
  13079. \end{minipage}
  13080. &
  13081. $\Rightarrow$
  13082. &
  13083. \begin{minipage}{0.65\textwidth}
  13084. \begin{lstlisting}
  13085. (if (eq? |$e'_1$| (inject #f Boolean)) |$e'_3$| |$e'_2$|)
  13086. \end{lstlisting}
  13087. \end{minipage}
  13088. \\[2ex]\hline
  13089. \begin{minipage}{0.27\textwidth}
  13090. \begin{lstlisting}
  13091. (eq? |$e_1$| |$e_2$|)
  13092. \end{lstlisting}
  13093. \end{minipage}
  13094. &
  13095. $\Rightarrow$
  13096. &
  13097. \begin{minipage}{0.65\textwidth}
  13098. \begin{lstlisting}
  13099. (inject (eq? |$e'_1$| |$e'_2$|) Boolean)
  13100. \end{lstlisting}
  13101. \end{minipage}
  13102. \\[2ex]\hline
  13103. \begin{minipage}{0.27\textwidth}
  13104. \begin{lstlisting}
  13105. (not |$e_1$|)
  13106. \end{lstlisting}
  13107. \end{minipage}
  13108. &
  13109. $\Rightarrow$
  13110. &
  13111. \begin{minipage}{0.65\textwidth}
  13112. \begin{lstlisting}
  13113. (if (eq? |$e'_1$| (inject #f Boolean))
  13114. (inject #t Boolean) (inject #f Boolean))
  13115. \end{lstlisting}
  13116. \end{minipage}
  13117. \\[2ex]\hline
  13118. \end{tabular}
  13119. \caption{Cast Insertion}
  13120. \label{fig:compile-r7-Rany}
  13121. \end{figure}
  13122. \section{Reveal Casts}
  13123. \label{sec:reveal-casts-Rany}
  13124. % TODO: define R'_6
  13125. In the \code{reveal-casts} pass we recommend compiling \code{project}
  13126. into an \code{if} expression that checks whether the value's tag
  13127. matches the target type; if it does, the value is converted to a value
  13128. of the target type by removing the tag; if it does not, the program
  13129. exits. To perform these actions we need a new primitive operation,
  13130. \code{tag-of-any}, and two new forms, \code{ValueOf} and \code{Exit}.
  13131. The \code{tag-of-any} operation retrieves the type tag from a tagged
  13132. value of type \code{Any}. The \code{ValueOf} form retrieves the
  13133. underlying value from a tagged value. The \code{ValueOf} form
  13134. includes the type for the underlying value which is used by the type
  13135. checker. Finally, the \code{Exit} form ends the execution of the
  13136. program.
  13137. If the target type of the projection is \code{Boolean} or
  13138. \code{Integer}, then \code{Project} can be translated as follows.
  13139. \begin{center}
  13140. \begin{minipage}{1.0\textwidth}
  13141. \begin{lstlisting}
  13142. (Project |$e$| |$\FType$|)
  13143. |$\Rightarrow$|
  13144. (Let |$\itm{tmp}$| |$e'$|
  13145. (If (Prim 'eq? (list (Prim 'tag-of-any (list (Var |$\itm{tmp}$|)))
  13146. (Int |$\itm{tagof}(\FType)$|)))
  13147. (ValueOf |$\itm{tmp}$| |$\FType$|)
  13148. (Exit)))
  13149. \end{lstlisting}
  13150. \end{minipage}
  13151. \end{center}
  13152. If the target type of the projection is a vector or function type,
  13153. then there is a bit more work to do. For vectors, check that the
  13154. length of the vector type matches the length of the vector (using the
  13155. \code{vector-length} primitive). For functions, check that the number
  13156. of parameters in the function type matches the function's arity (using
  13157. \code{procedure-arity}).
  13158. Regarding \code{inject}, we recommend compiling it to a slightly
  13159. lower-level primitive operation named \code{make-any}. This operation
  13160. takes a tag instead of a type.
  13161. \begin{center}
  13162. \begin{minipage}{1.0\textwidth}
  13163. \begin{lstlisting}
  13164. (Inject |$e$| |$\FType$|)
  13165. |$\Rightarrow$|
  13166. (Prim 'make-any (list |$e'$| (Int |$\itm{tagof}(\FType)$|)))
  13167. \end{lstlisting}
  13168. \end{minipage}
  13169. \end{center}
  13170. The type predicates (\code{boolean?}, etc.) can be translated into
  13171. uses of \code{tag-of-any} and \code{eq?} in a similar way as in the
  13172. translation of \code{Project}.
  13173. The \code{any-vector-ref} and \code{any-vector-set!} operations
  13174. combine the projection action with the vector operation. Also, the
  13175. read and write operations allow arbitrary expressions for the index so
  13176. the type checker for \LangAny{} (Figure~\ref{fig:type-check-Rany-part-1})
  13177. cannot guarantee that the index is within bounds. Thus, we insert code
  13178. to perform bounds checking at runtime. The translation for
  13179. \code{any-vector-ref} is as follows and the other two operations are
  13180. translated in a similar way.
  13181. \begin{lstlisting}
  13182. (Prim 'any-vector-ref (list |$e_1$| |$e_2$|))
  13183. |$\Rightarrow$|
  13184. (Let |$v$| |$e'_1$|
  13185. (Let |$i$| |$e'_2$|
  13186. (If (Prim 'eq? (list (Prim 'tag-of-any (list (Var |$v$|))) (Int 2)))
  13187. (If (Prim '< (list (Var |$i$|)
  13188. (Prim 'any-vector-length (list (Var |$v$|)))))
  13189. (Prim 'any-vector-ref (list (Var |$v$|) (Var |$i$|)))
  13190. (Exit))))
  13191. \end{lstlisting}
  13192. \section{Remove Complex Operands}
  13193. \label{sec:rco-Rany}
  13194. The \code{ValueOf} and \code{Exit} forms are both complex expressions.
  13195. The subexpression of \code{ValueOf} must be atomic.
  13196. \section{Explicate Control and \LangCAny{}}
  13197. \label{sec:explicate-Rany}
  13198. The output of \code{explicate\_control} is the \LangCAny{} language whose
  13199. syntax is defined in Figure~\ref{fig:c5-syntax}. The \code{ValueOf}
  13200. form that we added to \LangAny{} remains an expression and the \code{Exit}
  13201. expression becomes a $\Tail$. Also, note that the index argument of
  13202. \code{vector-ref} and \code{vector-set!} is an $\Atm$ instead
  13203. of an integer, as in \LangCVec{} (Figure~\ref{fig:c2-syntax}).
  13204. \begin{figure}[tp]
  13205. \fbox{
  13206. \begin{minipage}{0.96\textwidth}
  13207. \small
  13208. \[
  13209. \begin{array}{lcl}
  13210. \Exp &::= & \ldots
  13211. \MID \BINOP{\key{'any-vector-ref}}{\Atm}{\Atm} \\
  13212. &\MID& (\key{Prim}~\key{'any-vector-set!}\,(\key{list}\,\Atm\,\Atm\,\Atm))\\
  13213. &\MID& \VALUEOF{\Exp}{\FType} \\
  13214. \Stmt &::=& \gray{ \ASSIGN{\VAR{\Var}}{\Exp}
  13215. \MID \LP\key{Collect} \,\itm{int}\RP }\\
  13216. \Tail &::= & \gray{ \RETURN{\Exp} \MID \SEQ{\Stmt}{\Tail}
  13217. \MID \GOTO{\itm{label}} } \\
  13218. &\MID& \gray{ \IFSTMT{\BINOP{\itm{cmp}}{\Atm}{\Atm}}{\GOTO{\itm{label}}}{\GOTO{\itm{label}}} }\\
  13219. &\MID& \gray{ \TAILCALL{\Atm}{\Atm\ldots} }
  13220. \MID \LP\key{Exit}\RP \\
  13221. \Def &::=& \gray{ \DEF{\itm{label}}{\LP[\Var\key{:}\Type]\ldots\RP}{\Type}{\itm{info}}{\LP\LP\itm{label}\,\key{.}\,\Tail\RP\ldots\RP} }\\
  13222. \LangCAnyM{} & ::= & \gray{ \PROGRAMDEFS{\itm{info}}{\LP\Def\ldots\RP} }
  13223. \end{array}
  13224. \]
  13225. \end{minipage}
  13226. }
  13227. \caption{The abstract syntax of \LangCAny{}, extending \LangCLam{} (Figure~\ref{fig:c4-syntax}).}
  13228. \label{fig:c5-syntax}
  13229. \end{figure}
  13230. \section{Select Instructions}
  13231. \label{sec:select-Rany}
  13232. In the \code{select-instructions} pass we translate the primitive
  13233. operations on the \code{Any} type to x86 instructions that involve
  13234. manipulating the 3 tag bits of the tagged value.
  13235. \paragraph{Make-any}
  13236. We recommend compiling the \key{make-any} primitive as follows if the
  13237. tag is for \key{Integer} or \key{Boolean}. The \key{salq} instruction
  13238. shifts the destination to the left by the number of bits specified its
  13239. source argument (in this case $3$, the length of the tag) and it
  13240. preserves the sign of the integer. We use the \key{orq} instruction to
  13241. combine the tag and the value to form the tagged value. \\
  13242. \begin{lstlisting}
  13243. (Assign |\itm{lhs}| (Prim 'make-any (list |$e$| (Int |$\itm{tag}$|))))
  13244. |$\Rightarrow$|
  13245. movq |$e'$|, |\itm{lhs'}|
  13246. salq $3, |\itm{lhs'}|
  13247. orq $|$\itm{tag}$|, |\itm{lhs'}|
  13248. \end{lstlisting}
  13249. The instruction selection for vectors and procedures is different
  13250. because their is no need to shift them to the left. The rightmost 3
  13251. bits are already zeros as described at the beginning of this
  13252. chapter. So we just combine the value and the tag using \key{orq}. \\
  13253. \begin{lstlisting}
  13254. (Assign |\itm{lhs}| (Prim 'make-any (list |$e$| (Int |$\itm{tag}$|))))
  13255. |$\Rightarrow$|
  13256. movq |$e'$|, |\itm{lhs'}|
  13257. orq $|$\itm{tag}$|, |\itm{lhs'}|
  13258. \end{lstlisting}
  13259. \paragraph{Tag-of-any}
  13260. Recall that the \code{tag-of-any} operation extracts the type tag from
  13261. a value of type \code{Any}. The type tag is the bottom three bits, so
  13262. we obtain the tag by taking the bitwise-and of the value with $111$
  13263. ($7$ in decimal).
  13264. \begin{lstlisting}
  13265. (Assign |\itm{lhs}| (Prim 'tag-of-any (list |$e$|)))
  13266. |$\Rightarrow$|
  13267. movq |$e'$|, |\itm{lhs'}|
  13268. andq $7, |\itm{lhs'}|
  13269. \end{lstlisting}
  13270. \paragraph{ValueOf}
  13271. Like \key{make-any}, the instructions for \key{ValueOf} are different
  13272. depending on whether the type $T$ is a pointer (vector or procedure)
  13273. or not (Integer or Boolean). The following shows the instruction
  13274. selection for Integer and Boolean. We produce an untagged value by
  13275. shifting it to the right by 3 bits.
  13276. \begin{lstlisting}
  13277. (Assign |\itm{lhs}| (ValueOf |$e$| |$T$|))
  13278. |$\Rightarrow$|
  13279. movq |$e'$|, |\itm{lhs'}|
  13280. sarq $3, |\itm{lhs'}|
  13281. \end{lstlisting}
  13282. %
  13283. In the case for vectors and procedures, there is no need to
  13284. shift. Instead we just need to zero-out the rightmost 3 bits. We
  13285. accomplish this by creating the bit pattern $\ldots 0111$ ($7$ in
  13286. decimal) and apply \code{bitwise-not} to obtain $\ldots 11111000$ (-8
  13287. in decimal) which we \code{movq} into the destination $\itm{lhs}$. We
  13288. then apply \code{andq} with the tagged value to get the desired
  13289. result. \\
  13290. \begin{lstlisting}
  13291. (Assign |\itm{lhs}| (ValueOf |$e$| |$T$|))
  13292. |$\Rightarrow$|
  13293. movq $|$-8$|, |\itm{lhs'}|
  13294. andq |$e'$|, |\itm{lhs'}|
  13295. \end{lstlisting}
  13296. %% \paragraph{Type Predicates} We leave it to the reader to
  13297. %% devise a sequence of instructions to implement the type predicates
  13298. %% \key{boolean?}, \key{integer?}, \key{vector?}, and \key{procedure?}.
  13299. \paragraph{Any-vector-length}
  13300. \begin{lstlisting}
  13301. (Assign |$\itm{lhs}$| (Prim 'any-vector-length (list |$a_1$|)))
  13302. |$\Longrightarrow$|
  13303. movq |$\neg 111$|, %r11
  13304. andq |$a_1'$|, %r11
  13305. movq 0(%r11), %r11
  13306. andq $126, %r11
  13307. sarq $1, %r11
  13308. movq %r11, |$\itm{lhs'}$|
  13309. \end{lstlisting}
  13310. \paragraph{Any-vector-ref}
  13311. The index may be an arbitrary atom so instead of computing the offset
  13312. at compile time, instructions need to be generated to compute the
  13313. offset at runtime as follows. Note the use of the new instruction
  13314. \code{imulq}.
  13315. \begin{center}
  13316. \begin{minipage}{0.96\textwidth}
  13317. \begin{lstlisting}
  13318. (Assign |$\itm{lhs}$| (Prim 'any-vector-ref (list |$a_1$| |$a_2$|)))
  13319. |$\Longrightarrow$|
  13320. movq |$\neg 111$|, %r11
  13321. andq |$a_1'$|, %r11
  13322. movq |$a_2'$|, %rax
  13323. addq $1, %rax
  13324. imulq $8, %rax
  13325. addq %rax, %r11
  13326. movq 0(%r11) |$\itm{lhs'}$|
  13327. \end{lstlisting}
  13328. \end{minipage}
  13329. \end{center}
  13330. \paragraph{Any-vector-set!}
  13331. The code generation for \code{any-vector-set!} is similar to the other
  13332. \code{any-vector} operations.
  13333. \section{Register Allocation for \LangAny{}}
  13334. \label{sec:register-allocation-Rany}
  13335. \index{subject}{register allocation}
  13336. There is an interesting interaction between tagged values and garbage
  13337. collection that has an impact on register allocation. A variable of
  13338. type \code{Any} might refer to a vector and therefore it might be a
  13339. root that needs to be inspected and copied during garbage
  13340. collection. Thus, we need to treat variables of type \code{Any} in a
  13341. similar way to variables of type \code{Vector} for purposes of
  13342. register allocation. In particular,
  13343. \begin{itemize}
  13344. \item If a variable of type \code{Any} is live during a function call,
  13345. then it must be spilled. This can be accomplished by changing
  13346. \code{build-interference} to mark all variables of type \code{Any}
  13347. that are live after a \code{callq} as interfering with all the
  13348. registers.
  13349. \item If a variable of type \code{Any} is spilled, it must be spilled
  13350. to the root stack instead of the normal procedure call stack.
  13351. \end{itemize}
  13352. Another concern regarding the root stack is that the garbage collector
  13353. needs to differentiate between (1) plain old pointers to tuples, (2) a
  13354. tagged value that points to a tuple, and (3) a tagged value that is
  13355. not a tuple. We enable this differentiation by choosing not to use the
  13356. tag $000$ in the $\itm{tagof}$ function. Instead, that bit pattern is
  13357. reserved for identifying plain old pointers to tuples. That way, if
  13358. one of the first three bits is set, then we have a tagged value and
  13359. inspecting the tag can differentiation between vectors ($010$) and the
  13360. other kinds of values.
  13361. \begin{exercise}\normalfont
  13362. Expand your compiler to handle \LangAny{} as discussed in the last few
  13363. sections. Create 5 new programs that use the \code{Any} type and the
  13364. new operations (\code{inject}, \code{project}, \code{boolean?},
  13365. etc.). Test your compiler on these new programs and all of your
  13366. previously created test programs.
  13367. \end{exercise}
  13368. \begin{exercise}\normalfont
  13369. Expand your compiler to handle \LangDyn{} as outlined in this chapter.
  13370. Create tests for \LangDyn{} by adapting ten of your previous test programs
  13371. by removing type annotations. Add 5 more tests programs that
  13372. specifically rely on the language being dynamically typed. That is,
  13373. they should not be legal programs in a statically typed language, but
  13374. nevertheless, they should be valid \LangDyn{} programs that run to
  13375. completion without error.
  13376. \end{exercise}
  13377. \begin{figure}[p]
  13378. \begin{tikzpicture}[baseline=(current bounding box.center)]
  13379. \node (Rfun) at (0,4) {\large \LangDyn{}};
  13380. \node (Rfun-2) at (3,4) {\large \LangDyn{}};
  13381. \node (Rfun-3) at (6,4) {\large \LangDyn{}};
  13382. \node (Rfun-4) at (9,4) {\large \LangDynFunRef{}};
  13383. \node (Rfun-5) at (9,2) {\large \LangAnyFunRef{}};
  13384. \node (Rfun-6) at (12,2) {\large \LangAnyFunRef{}};
  13385. \node (Rfun-7) at (12,0) {\large \LangAnyFunRef{}};
  13386. \node (F1-2) at (9,0) {\large \LangAnyFunRef{}};
  13387. \node (F1-3) at (6,0) {\large \LangAnyFunRef{}};
  13388. \node (F1-4) at (3,0) {\large \LangAnyAlloc{}};
  13389. \node (F1-5) at (0,0) {\large \LangAnyAlloc{}};
  13390. \node (C3-2) at (3,-2) {\large \LangCAny{}};
  13391. \node (x86-2) at (3,-4) {\large \LangXIndCallVar{}};
  13392. \node (x86-2-1) at (3,-6) {\large \LangXIndCallVar{}};
  13393. \node (x86-2-2) at (6,-6) {\large \LangXIndCallVar{}};
  13394. \node (x86-3) at (6,-4) {\large \LangXIndCallVar{}};
  13395. \node (x86-4) at (9,-4) {\large \LangXIndCall{}};
  13396. \node (x86-5) at (9,-6) {\large \LangXIndCall{}};
  13397. \path[->,bend left=15] (Rfun) edge [above] node
  13398. {\ttfamily\footnotesize shrink} (Rfun-2);
  13399. \path[->,bend left=15] (Rfun-2) edge [above] node
  13400. {\ttfamily\footnotesize uniquify} (Rfun-3);
  13401. \path[->,bend left=15] (Rfun-3) edge [above] node
  13402. {\ttfamily\footnotesize reveal-functions} (Rfun-4);
  13403. \path[->,bend right=15] (Rfun-4) edge [left] node
  13404. {\ttfamily\footnotesize cast-insert} (Rfun-5);
  13405. \path[->,bend left=15] (Rfun-5) edge [above] node
  13406. {\ttfamily\footnotesize check-bounds} (Rfun-6);
  13407. \path[->,bend left=15] (Rfun-6) edge [left] node
  13408. {\ttfamily\footnotesize reveal-casts} (Rfun-7);
  13409. \path[->,bend left=15] (Rfun-7) edge [below] node
  13410. {\ttfamily\footnotesize convert-to-clos.} (F1-2);
  13411. \path[->,bend right=15] (F1-2) edge [above] node
  13412. {\ttfamily\footnotesize limit-fun.} (F1-3);
  13413. \path[->,bend right=15] (F1-3) edge [above] node
  13414. {\ttfamily\footnotesize expose-alloc.} (F1-4);
  13415. \path[->,bend right=15] (F1-4) edge [above] node
  13416. {\ttfamily\footnotesize remove-complex.} (F1-5);
  13417. \path[->,bend right=15] (F1-5) edge [right] node
  13418. {\ttfamily\footnotesize explicate-control} (C3-2);
  13419. \path[->,bend left=15] (C3-2) edge [left] node
  13420. {\ttfamily\footnotesize select-instr.} (x86-2);
  13421. \path[->,bend right=15] (x86-2) edge [left] node
  13422. {\ttfamily\footnotesize uncover-live} (x86-2-1);
  13423. \path[->,bend right=15] (x86-2-1) edge [below] node
  13424. {\ttfamily\footnotesize build-inter.} (x86-2-2);
  13425. \path[->,bend right=15] (x86-2-2) edge [left] node
  13426. {\ttfamily\footnotesize allocate-reg.} (x86-3);
  13427. \path[->,bend left=15] (x86-3) edge [above] node
  13428. {\ttfamily\footnotesize patch-instr.} (x86-4);
  13429. \path[->,bend left=15] (x86-4) edge [right] node
  13430. {\ttfamily\footnotesize print-x86} (x86-5);
  13431. \end{tikzpicture}
  13432. \caption{Diagram of the passes for \LangDyn{}, a dynamically typed language.}
  13433. \label{fig:Rdyn-passes}
  13434. \end{figure}
  13435. Figure~\ref{fig:Rdyn-passes} provides an overview of all the passes needed
  13436. for the compilation of \LangDyn{}.
  13437. % Further Reading
  13438. \fi % racketEd
  13439. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  13440. \chapter{Objects}
  13441. \label{ch:Robject}
  13442. \index{subject}{objects}
  13443. \index{subject}{classes}
  13444. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  13445. \chapter{Gradual Typing}
  13446. \label{ch:Rgrad}
  13447. \index{subject}{gradual typing}
  13448. \if\edition\racketEd
  13449. This chapter studies a language, \LangGrad{}, in which the programmer
  13450. can choose between static and dynamic type checking in different parts
  13451. of a program, thereby mixing the statically typed \LangLoop{} language
  13452. with the dynamically typed \LangDyn{}. There are several approaches to
  13453. mixing static and dynamic typing, including multi-language
  13454. integration~\citep{Tobin-Hochstadt:2006fk,Matthews:2007zr} and hybrid
  13455. type checking~\citep{Flanagan:2006mn,Gronski:2006uq}. In this chapter
  13456. we focus on \emph{gradual typing}\index{subject}{gradual typing}, in which the
  13457. programmer controls the amount of static versus dynamic checking by
  13458. adding or removing type annotations on parameters and
  13459. variables~\citep{Anderson:2002kd,Siek:2006bh}.
  13460. %
  13461. The concrete syntax of \LangGrad{} is defined in
  13462. Figure~\ref{fig:Rgrad-concrete-syntax} and its abstract syntax is defined
  13463. in Figure~\ref{fig:Rgrad-syntax}. The main syntactic difference between
  13464. \LangLoop{} and \LangGrad{} is the additional \itm{param} and \itm{ret}
  13465. non-terminals that make type annotations optional. The return types
  13466. are not optional in the abstract syntax; the parser fills in
  13467. \code{Any} when the return type is not specified in the concrete
  13468. syntax.
  13469. \begin{figure}[tp]
  13470. \centering
  13471. \fbox{
  13472. \begin{minipage}{0.96\textwidth}
  13473. \small
  13474. \[
  13475. \begin{array}{lcl}
  13476. \itm{param} &::=& \Var \MID \LS\Var \key{:} \Type\RS \\
  13477. \itm{ret} &::=& \epsilon \MID \key{:} \Type \\
  13478. \Exp &::=& \gray{ \Int \MID \CREAD{} \MID \CNEG{\Exp}
  13479. \MID \CADD{\Exp}{\Exp} \MID \CSUB{\Exp}{\Exp} } \\
  13480. &\MID& \gray{ \Var \MID \CLET{\Var}{\Exp}{\Exp} }\\
  13481. &\MID& \gray{\key{\#t} \MID \key{\#f}
  13482. \MID (\key{and}\;\Exp\;\Exp)
  13483. \MID (\key{or}\;\Exp\;\Exp)
  13484. \MID (\key{not}\;\Exp) } \\
  13485. &\MID& \gray{ (\key{eq?}\;\Exp\;\Exp) \MID \CIF{\Exp}{\Exp}{\Exp} } \\
  13486. &\MID& \gray{ (\key{vector}\;\Exp\ldots) \MID
  13487. (\key{vector-ref}\;\Exp\;\Int)} \\
  13488. &\MID& \gray{(\key{vector-set!}\;\Exp\;\Int\;\Exp)\MID (\key{void})
  13489. \MID (\Exp \; \Exp\ldots) } \\
  13490. &\MID& \gray{ \LP \key{procedure-arity}~\Exp\RP }
  13491. \MID \CGLAMBDA{\LP\itm{param}\ldots\RP}{\itm{ret}}{\Exp} \\
  13492. &\MID& \gray{ \CSETBANG{\Var}{\Exp}
  13493. \MID \CBEGIN{\Exp\ldots}{\Exp}
  13494. \MID \CWHILE{\Exp}{\Exp} } \\
  13495. \Def &::=& \CGDEF{\Var}{\itm{param}\ldots}{\itm{ret}}{\Exp} \\
  13496. \LangGradM{} &::=& \gray{\Def\ldots \; \Exp}
  13497. \end{array}
  13498. \]
  13499. \end{minipage}
  13500. }
  13501. \caption{The concrete syntax of \LangGrad{}, extending \LangLoop{} (Figure~\ref{fig:Rwhile-concrete-syntax}).}
  13502. \label{fig:Rgrad-concrete-syntax}
  13503. \end{figure}
  13504. \begin{figure}[tp]
  13505. \centering
  13506. \fbox{
  13507. \begin{minipage}{0.96\textwidth}
  13508. \small
  13509. \[
  13510. \begin{array}{lcl}
  13511. \itm{param} &::=& \Var \MID \LS\Var \key{:} \Type\RS \\
  13512. \Exp &::=& \gray{ \INT{\Int} \VAR{\Var} \MID \LET{\Var}{\Exp}{\Exp} } \\
  13513. &\MID& \gray{ \PRIM{\itm{op}}{\Exp\ldots} }\\
  13514. &\MID& \gray{ \BOOL{\itm{bool}}
  13515. \MID \IF{\Exp}{\Exp}{\Exp} } \\
  13516. &\MID& \gray{ \VOID{} \MID \LP\key{HasType}~\Exp~\Type \RP
  13517. \MID \APPLY{\Exp}{\Exp\ldots} }\\
  13518. &\MID& \LAMBDA{\LP\itm{param}\ldots\RP}{\Type}{\Exp} \\
  13519. &\MID& \gray{ \SETBANG{\Var}{\Exp} \MID \BEGIN{\LP\Exp\ldots\RP}{\Exp} } \\
  13520. &\MID& \gray{ \WHILE{\Exp}{\Exp} } \\
  13521. \Def &::=& \FUNDEF{\Var}{\LP\itm{param}\ldots\RP}{\Type}{\code{'()}}{\Exp} \\
  13522. \LangGradM{} &::=& \gray{ \PROGRAMDEFSEXP{\code{'()}}{\LP\Def\ldots\RP}{\Exp} }
  13523. \end{array}
  13524. \]
  13525. \end{minipage}
  13526. }
  13527. \caption{The abstract syntax of \LangGrad{}, extending \LangLoop{} (Figure~\ref{fig:Rwhile-syntax}).}
  13528. \label{fig:Rgrad-syntax}
  13529. \end{figure}
  13530. Both the type checker and the interpreter for \LangGrad{} require some
  13531. interesting changes to enable gradual typing, which we discuss in the
  13532. next two sections in the context of the \code{map-vec} example from
  13533. Chapter~\ref{ch:Rfun}. In Figure~\ref{fig:gradual-map-vec} we
  13534. revised the \code{map-vec} example, omitting the type annotations from
  13535. the \code{add1} function.
  13536. \begin{figure}[btp]
  13537. % gradual_test_9.rkt
  13538. \begin{lstlisting}
  13539. (define (map-vec [f : (Integer -> Integer)]
  13540. [v : (Vector Integer Integer)])
  13541. : (Vector Integer Integer)
  13542. (vector (f (vector-ref v 0)) (f (vector-ref v 1))))
  13543. (define (add1 x) (+ x 1))
  13544. (vector-ref (map-vec add1 (vector 0 41)) 1)
  13545. \end{lstlisting}
  13546. \caption{A partially-typed version of the \code{map-vec} example.}
  13547. \label{fig:gradual-map-vec}
  13548. \end{figure}
  13549. \section{Type Checking \LangGrad{} and \LangCast{}}
  13550. \label{sec:gradual-type-check}
  13551. The type checker for \LangGrad{} uses the \code{Any} type for missing
  13552. parameter and return types. For example, the \code{x} parameter of
  13553. \code{add1} in Figure~\ref{fig:gradual-map-vec} is given the type
  13554. \code{Any} and the return type of \code{add1} is \code{Any}. Next
  13555. consider the \code{+} operator inside \code{add1}. It expects both
  13556. arguments to have type \code{Integer}, but its first argument \code{x}
  13557. has type \code{Any}. In a gradually typed language, such differences
  13558. are allowed so long as the types are \emph{consistent}, that is, they
  13559. are equal except in places where there is an \code{Any} type. The type
  13560. \code{Any} is consistent with every other type.
  13561. Figure~\ref{fig:consistent} defines the \code{consistent?} predicate.
  13562. \begin{figure}[tbp]
  13563. \begin{lstlisting}
  13564. (define/public (consistent? t1 t2)
  13565. (match* (t1 t2)
  13566. [('Integer 'Integer) #t]
  13567. [('Boolean 'Boolean) #t]
  13568. [('Void 'Void) #t]
  13569. [('Any t2) #t]
  13570. [(t1 'Any) #t]
  13571. [(`(Vector ,ts1 ...) `(Vector ,ts2 ...))
  13572. (for/and ([t1 ts1] [t2 ts2]) (consistent? t1 t2))]
  13573. [(`(,ts1 ... -> ,rt1) `(,ts2 ... -> ,rt2))
  13574. (and (for/and ([t1 ts1] [t2 ts2]) (consistent? t1 t2))
  13575. (consistent? rt1 rt2))]
  13576. [(other wise) #f]))
  13577. \end{lstlisting}
  13578. \caption{The consistency predicate on types.}
  13579. \label{fig:consistent}
  13580. \end{figure}
  13581. Returning to the \code{map-vec} example of
  13582. Figure~\ref{fig:gradual-map-vec}, the \code{add1} function has type
  13583. \code{(Any -> Any)} but parameter \code{f} of \code{map-vec} has type
  13584. \code{(Integer -> Integer)}. The type checker for \LangGrad{} allows this
  13585. because the two types are consistent. In particular, \code{->} is
  13586. equal to \code{->} and because \code{Any} is consistent with
  13587. \code{Integer}.
  13588. Next consider a program with an error, such as applying the
  13589. \code{map-vec} to a function that sometimes returns a Boolean, as
  13590. shown in Figure~\ref{fig:map-vec-maybe-add1}. The type checker for
  13591. \LangGrad{} accepts this program because the type of \code{maybe-add1} is
  13592. consistent with the type of parameter \code{f} of \code{map-vec}, that
  13593. is, \code{(Any -> Any)} is consistent with \code{(Integer ->
  13594. Integer)}. One might say that a gradual type checker is optimistic
  13595. in that it accepts programs that might execute without a runtime type
  13596. error.
  13597. %
  13598. Unfortunately, running this program with input \code{1} triggers an
  13599. error when the \code{maybe-add1} function returns \code{\#t}. \LangGrad{}
  13600. performs checking at runtime to ensure the integrity of the static
  13601. types, such as the \code{(Integer -> Integer)} annotation on parameter
  13602. \code{f} of \code{map-vec}. This runtime checking is carried out by a
  13603. new \code{Cast} form that is inserted by the type checker. Thus, the
  13604. output of the type checker is a program in the \LangCast{} language, which
  13605. adds \code{Cast} to \LangLoop{}, as shown in
  13606. Figure~\ref{fig:Rgrad-prime-syntax}.
  13607. \begin{figure}[tp]
  13608. \centering
  13609. \fbox{
  13610. \begin{minipage}{0.96\textwidth}
  13611. \small
  13612. \[
  13613. \begin{array}{lcl}
  13614. \Exp &::=& \ldots \MID \CAST{\Exp}{\Type}{\Type} \\
  13615. \LangCastM{} &::=& \gray{ \PROGRAMDEFSEXP{\code{'()}}{\LP\Def\ldots\RP}{\Exp} }
  13616. \end{array}
  13617. \]
  13618. \end{minipage}
  13619. }
  13620. \caption{The abstract syntax of \LangCast{}, extending \LangLoop{} (Figure~\ref{fig:Rwhile-syntax}).}
  13621. \label{fig:Rgrad-prime-syntax}
  13622. \end{figure}
  13623. \begin{figure}[tbp]
  13624. \begin{lstlisting}
  13625. (define (map-vec [f : (Integer -> Integer)]
  13626. [v : (Vector Integer Integer)])
  13627. : (Vector Integer Integer)
  13628. (vector (f (vector-ref v 0)) (f (vector-ref v 1))))
  13629. (define (add1 x) (+ x 1))
  13630. (define (true) #t)
  13631. (define (maybe-add1 x) (if (eq? 0 (read)) (add1 x) (true)))
  13632. (vector-ref (map-vec maybe-add1 (vector 0 41)) 0)
  13633. \end{lstlisting}
  13634. \caption{A variant of the \code{map-vec} example with an error.}
  13635. \label{fig:map-vec-maybe-add1}
  13636. \end{figure}
  13637. Figure~\ref{fig:map-vec-cast} shows the output of the type checker for
  13638. \code{map-vec} and \code{maybe-add1}. The idea is that \code{Cast} is
  13639. inserted every time the type checker sees two types that are
  13640. consistent but not equal. In the \code{add1} function, \code{x} is
  13641. cast to \code{Integer} and the result of the \code{+} is cast to
  13642. \code{Any}. In the call to \code{map-vec}, the \code{add1} argument
  13643. is cast from \code{(Any -> Any)} to \code{(Integer -> Integer)}.
  13644. \begin{figure}[btp]
  13645. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  13646. (define (map-vec [f : (Integer -> Integer)] [v : (Vector Integer Integer)])
  13647. : (Vector Integer Integer)
  13648. (vector (f (vector-ref v 0)) (f (vector-ref v 1))))
  13649. (define (add1 [x : Any]) : Any
  13650. (cast (+ (cast x Any Integer) 1) Integer Any))
  13651. (define (true) : Any (cast #t Boolean Any))
  13652. (define (maybe-add1 [x : Any]) : Any
  13653. (if (eq? 0 (read)) (add1 x) (true)))
  13654. (vector-ref (map-vec (cast maybe-add1 (Any -> Any) (Integer -> Integer))
  13655. (vector 0 41)) 0)
  13656. \end{lstlisting}
  13657. \caption{Output of type checking \code{map-vec}
  13658. and \code{maybe-add1}.}
  13659. \label{fig:map-vec-cast}
  13660. \end{figure}
  13661. The type checker for \LangGrad{} is defined in
  13662. Figures~\ref{fig:type-check-Rgradual-1}, \ref{fig:type-check-Rgradual-2},
  13663. and \ref{fig:type-check-Rgradual-3}.
  13664. \begin{figure}[tbp]
  13665. \begin{lstlisting}[basicstyle=\ttfamily\scriptsize]
  13666. (define type-check-gradual_class
  13667. (class type-check-Rwhile_class
  13668. (super-new)
  13669. (inherit operator-types type-predicates)
  13670. (define/override (type-check-exp env)
  13671. (lambda (e)
  13672. (define recur (type-check-exp env))
  13673. (match e
  13674. [(Prim 'vector-length (list e1))
  13675. (define-values (e1^ t) (recur e1))
  13676. (match t
  13677. [`(Vector ,ts ...)
  13678. (values (Prim 'vector-length (list e1^)) 'Integer)]
  13679. ['Any (values (Prim 'any-vector-length (list e1^)) 'Integer)])]
  13680. [(Prim 'vector-ref (list e1 e2))
  13681. (define-values (e1^ t1) (recur e1))
  13682. (define-values (e2^ t2) (recur e2))
  13683. (check-consistent? t2 'Integer e)
  13684. (match t1
  13685. [`(Vector ,ts ...)
  13686. (match e2^
  13687. [(Int i)
  13688. (unless (and (0 . <= . i) (i . < . (length ts)))
  13689. (error 'type-check "invalid index ~a in ~a" i e))
  13690. (values (Prim 'vector-ref (list e1^ (Int i))) (list-ref ts i))]
  13691. [else (define e1^^ (make-cast e1^ t1 'Any))
  13692. (define e2^^ (make-cast e2^ t2 'Integer))
  13693. (values (Prim 'any-vector-ref (list e1^^ e2^^)) 'Any)])]
  13694. ['Any
  13695. (define e2^^ (make-cast e2^ t2 'Integer))
  13696. (values (Prim 'any-vector-ref (list e1^ e2^^)) 'Any)]
  13697. [else (error 'type-check "expected vector not ~a\nin ~v" t1 e)])]
  13698. [(Prim 'vector-set! (list e1 e2 e3) )
  13699. (define-values (e1^ t1) (recur e1))
  13700. (define-values (e2^ t2) (recur e2))
  13701. (define-values (e3^ t3) (recur e3))
  13702. (check-consistent? t2 'Integer e)
  13703. (match t1
  13704. [`(Vector ,ts ...)
  13705. (match e2^
  13706. [(Int i)
  13707. (unless (and (0 . <= . i) (i . < . (length ts)))
  13708. (error 'type-check "invalid index ~a in ~a" i e))
  13709. (check-consistent? (list-ref ts i) t3 e)
  13710. (define e3^^ (make-cast e3^ t3 (list-ref ts i)))
  13711. (values (Prim 'vector-set! (list e1^ (Int i) e3^^)) 'Void)]
  13712. [else
  13713. (define e1^^ (make-cast e1^ t1 'Any))
  13714. (define e2^^ (make-cast e2^ t2 'Integer))
  13715. (define e3^^ (make-cast e3^ t3 'Any))
  13716. (values (Prim 'any-vector-set! (list e1^^ e2^^ e3^^)) 'Void)])]
  13717. ['Any
  13718. (define e2^^ (make-cast e2^ t2 'Integer))
  13719. (define e3^^ (make-cast e3^ t3 'Any))
  13720. (values (Prim 'any-vector-set! (list e1^ e2^^ e3^^)) 'Void)]
  13721. [else (error 'type-check "expected vector not ~a\nin ~v" t1 e)])]
  13722. \end{lstlisting}
  13723. \caption{Type checker for the \LangGrad{} language, part 1.}
  13724. \label{fig:type-check-Rgradual-1}
  13725. \end{figure}
  13726. \begin{figure}[tbp]
  13727. \begin{lstlisting}[basicstyle=\ttfamily\scriptsize]
  13728. [(Prim 'eq? (list e1 e2))
  13729. (define-values (e1^ t1) (recur e1))
  13730. (define-values (e2^ t2) (recur e2))
  13731. (check-consistent? t1 t2 e)
  13732. (define T (meet t1 t2))
  13733. (values (Prim 'eq? (list (make-cast e1^ t1 T) (make-cast e2^ t2 T)))
  13734. 'Boolean)]
  13735. [(Prim 'not (list e1))
  13736. (define-values (e1^ t1) (recur e1))
  13737. (match t1
  13738. ['Any
  13739. (recur (If (Prim 'eq? (list e1 (Inject (Bool #f) 'Boolean)))
  13740. (Bool #t) (Bool #f)))]
  13741. [else
  13742. (define-values (t-ret new-es^)
  13743. (type-check-op 'not (list t1) (list e1^) e))
  13744. (values (Prim 'not new-es^) t-ret)])]
  13745. [(Prim 'and (list e1 e2))
  13746. (recur (If e1 e2 (Bool #f)))]
  13747. [(Prim 'or (list e1 e2))
  13748. (define tmp (gensym 'tmp))
  13749. (recur (Let tmp e1 (If (Var tmp) (Var tmp) e2)))]
  13750. [(Prim op es)
  13751. #:when (not (set-member? explicit-prim-ops op))
  13752. (define-values (new-es ts)
  13753. (for/lists (exprs types) ([e es])
  13754. (recur e)))
  13755. (define-values (t-ret new-es^) (type-check-op op ts new-es e))
  13756. (values (Prim op new-es^) t-ret)]
  13757. [(If e1 e2 e3)
  13758. (define-values (e1^ T1) (recur e1))
  13759. (define-values (e2^ T2) (recur e2))
  13760. (define-values (e3^ T3) (recur e3))
  13761. (check-consistent? T2 T3 e)
  13762. (match T1
  13763. ['Boolean
  13764. (define Tif (join T2 T3))
  13765. (values (If e1^ (make-cast e2^ T2 Tif)
  13766. (make-cast e3^ T3 Tif)) Tif)]
  13767. ['Any
  13768. (define Tif (meet T2 T3))
  13769. (values (If (Prim 'eq? (list e1^ (Inject (Bool #f) 'Boolean)))
  13770. (make-cast e3^ T3 Tif) (make-cast e2^ T2 Tif))
  13771. Tif)]
  13772. [else (error 'type-check "expected Boolean not ~a\nin ~v" T1 e)])]
  13773. [(HasType e1 T)
  13774. (define-values (e1^ T1) (recur e1))
  13775. (check-consistent? T1 T)
  13776. (values (make-cast e1^ T1 T) T)]
  13777. [(SetBang x e1)
  13778. (define-values (e1^ T1) (recur e1))
  13779. (define varT (dict-ref env x))
  13780. (check-consistent? T1 varT e)
  13781. (values (SetBang x (make-cast e1^ T1 varT)) 'Void)]
  13782. [(WhileLoop e1 e2)
  13783. (define-values (e1^ T1) (recur e1))
  13784. (check-consistent? T1 'Boolean e)
  13785. (define-values (e2^ T2) ((type-check-exp env) e2))
  13786. (values (WhileLoop (make-cast e1^ T1 'Boolean) e2^) 'Void)]
  13787. \end{lstlisting}
  13788. \caption{Type checker for the \LangGrad{} language, part 2.}
  13789. \label{fig:type-check-Rgradual-2}
  13790. \end{figure}
  13791. \begin{figure}[tbp]
  13792. \begin{lstlisting}[basicstyle=\ttfamily\scriptsize]
  13793. [(Apply e1 e2s)
  13794. (define-values (e1^ T1) (recur e1))
  13795. (define-values (e2s^ T2s) (for/lists (e* ty*) ([e2 e2s]) (recur e2)))
  13796. (match T1
  13797. [`(,T1ps ... -> ,T1rt)
  13798. (for ([T2 T2s] [Tp T1ps])
  13799. (check-consistent? T2 Tp e))
  13800. (define e2s^^ (for/list ([e2 e2s^] [src T2s] [tgt T1ps])
  13801. (make-cast e2 src tgt)))
  13802. (values (Apply e1^ e2s^^) T1rt)]
  13803. [`Any
  13804. (define e1^^ (make-cast e1^ 'Any
  13805. `(,@(for/list ([e e2s]) 'Any) -> Any)))
  13806. (define e2s^^ (for/list ([e2 e2s^] [src T2s])
  13807. (make-cast e2 src 'Any)))
  13808. (values (Apply e1^^ e2s^^) 'Any)]
  13809. [else (error 'type-check "expected function not ~a\nin ~v" T1 e)])]
  13810. [(Lambda params Tr e1)
  13811. (define-values (xs Ts) (for/lists (l1 l2) ([p params])
  13812. (match p
  13813. [`[,x : ,T] (values x T)]
  13814. [(? symbol? x) (values x 'Any)])))
  13815. (define-values (e1^ T1)
  13816. ((type-check-exp (append (map cons xs Ts) env)) e1))
  13817. (check-consistent? Tr T1 e)
  13818. (values (Lambda (for/list ([x xs] [T Ts]) `[,x : ,T]) Tr
  13819. (make-cast e1^ T1 Tr)) `(,@Ts -> ,Tr))]
  13820. [else ((super type-check-exp env) e)]
  13821. )))
  13822. \end{lstlisting}
  13823. \caption{Type checker for the \LangGrad{} language, part 3.}
  13824. \label{fig:type-check-Rgradual-3}
  13825. \end{figure}
  13826. \begin{figure}[tbp]
  13827. \begin{lstlisting}[basicstyle=\ttfamily\scriptsize]
  13828. (define/public (join t1 t2)
  13829. (match* (t1 t2)
  13830. [('Integer 'Integer) 'Integer]
  13831. [('Boolean 'Boolean) 'Boolean]
  13832. [('Void 'Void) 'Void]
  13833. [('Any t2) t2]
  13834. [(t1 'Any) t1]
  13835. [(`(Vector ,ts1 ...) `(Vector ,ts2 ...))
  13836. `(Vector ,@(for/list ([t1 ts1] [t2 ts2]) (join t1 t2)))]
  13837. [(`(,ts1 ... -> ,rt1) `(,ts2 ... -> ,rt2))
  13838. `(,@(for/list ([t1 ts1] [t2 ts2]) (join t1 t2))
  13839. -> ,(join rt1 rt2))]))
  13840. (define/public (meet t1 t2)
  13841. (match* (t1 t2)
  13842. [('Integer 'Integer) 'Integer]
  13843. [('Boolean 'Boolean) 'Boolean]
  13844. [('Void 'Void) 'Void]
  13845. [('Any t2) 'Any]
  13846. [(t1 'Any) 'Any]
  13847. [(`(Vector ,ts1 ...) `(Vector ,ts2 ...))
  13848. `(Vector ,@(for/list ([t1 ts1] [t2 ts2]) (meet t1 t2)))]
  13849. [(`(,ts1 ... -> ,rt1) `(,ts2 ... -> ,rt2))
  13850. `(,@(for/list ([t1 ts1] [t2 ts2]) (meet t1 t2))
  13851. -> ,(meet rt1 rt2))]))
  13852. (define/public (make-cast e src tgt)
  13853. (cond [(equal? src tgt) e] [else (Cast e src tgt)]))
  13854. (define/public (check-consistent? t1 t2 e)
  13855. (unless (consistent? t1 t2)
  13856. (error 'type-check "~a is inconsistent with ~a\nin ~v" t1 t2 e)))
  13857. (define/override (type-check-op op arg-types args e)
  13858. (match (dict-ref (operator-types) op)
  13859. [`(,param-types . ,return-type)
  13860. (for ([at arg-types] [pt param-types])
  13861. (check-consistent? at pt e))
  13862. (values return-type
  13863. (for/list ([e args] [s arg-types] [t param-types])
  13864. (make-cast e s t)))]
  13865. [else (error 'type-check-op "unrecognized ~a" op)]))
  13866. (define explicit-prim-ops
  13867. (set-union
  13868. (type-predicates)
  13869. (set 'procedure-arity 'eq?
  13870. 'vector 'vector-length 'vector-ref 'vector-set!
  13871. 'any-vector-length 'any-vector-ref 'any-vector-set!)))
  13872. (define/override (fun-def-type d)
  13873. (match d
  13874. [(Def f params rt info body)
  13875. (define ps
  13876. (for/list ([p params])
  13877. (match p
  13878. [`[,x : ,T] T]
  13879. [(? symbol?) 'Any]
  13880. [else (error 'fun-def-type "unmatched parameter ~a" p)])))
  13881. `(,@ps -> ,rt)]
  13882. [else (error 'fun-def-type "ill-formed function definition in ~a" d)]))
  13883. \end{lstlisting}
  13884. \caption{Auxiliary functions for type checking \LangGrad{}.}
  13885. \label{fig:type-check-Rgradual-aux}
  13886. \end{figure}
  13887. \clearpage
  13888. \section{Interpreting \LangCast{}}
  13889. \label{sec:interp-casts}
  13890. The runtime behavior of first-order casts is straightforward, that is,
  13891. casts involving simple types such as \code{Integer} and
  13892. \code{Boolean}. For example, a cast from \code{Integer} to \code{Any}
  13893. can be accomplished with the \code{Inject} operator of \LangAny{}, which
  13894. puts the integer into a tagged value
  13895. (Figure~\ref{fig:interp-Rany}). Similarly, a cast from \code{Any} to
  13896. \code{Integer} is accomplished with the \code{Project} operator, that
  13897. is, by checking the value's tag and either retrieving the underlying
  13898. integer or signaling an error if it the tag is not the one for
  13899. integers (Figure~\ref{fig:apply-project}).
  13900. %
  13901. Things get more interesting for higher-order casts, that is, casts
  13902. involving function or vector types.
  13903. Consider the cast of the function \code{maybe-add1} from \code{(Any ->
  13904. Any)} to \code{(Integer -> Integer)}. When a function flows through
  13905. this cast at runtime, we can't know in general whether the function
  13906. will always return an integer.\footnote{Predicting the return value of
  13907. a function is equivalent to the halting problem, which is
  13908. undecidable.} The \LangCast{} interpreter therefore delays the checking
  13909. of the cast until the function is applied. This is accomplished by
  13910. wrapping \code{maybe-add1} in a new function that casts its parameter
  13911. from \code{Integer} to \code{Any}, applies \code{maybe-add1}, and then
  13912. casts the return value from \code{Any} to \code{Integer}.
  13913. Turning our attention to casts involving vector types, we consider the
  13914. example in Figure~\ref{fig:map-vec-bang} that defines a
  13915. partially-typed version of \code{map-vec} whose parameter \code{v} has
  13916. type \code{(Vector Any Any)} and that updates \code{v} in place
  13917. instead of returning a new vector. So we name this function
  13918. \code{map-vec!}. We apply \code{map-vec!} to a vector of integers, so
  13919. the type checker inserts a cast from \code{(Vector Integer Integer)}
  13920. to \code{(Vector Any Any)}. A naive way for the \LangCast{} interpreter to
  13921. cast between vector types would be a build a new vector whose elements
  13922. are the result of casting each of the original elements to the
  13923. appropriate target type. However, this approach is only valid for
  13924. immutable vectors; and our vectors are mutable. In the example of
  13925. Figure~\ref{fig:map-vec-bang}, if the cast created a new vector, then
  13926. the updates inside of \code{map-vec!} would happen to the new vector
  13927. and not the original one.
  13928. \begin{figure}[tbp]
  13929. % gradual_test_11.rkt
  13930. \begin{lstlisting}
  13931. (define (map-vec! [f : (Any -> Any)]
  13932. [v : (Vector Any Any)]) : Void
  13933. (begin
  13934. (vector-set! v 0 (f (vector-ref v 0)))
  13935. (vector-set! v 1 (f (vector-ref v 1)))))
  13936. (define (add1 x) (+ x 1))
  13937. (let ([v (vector 0 41)])
  13938. (begin (map-vec! add1 v) (vector-ref v 1)))
  13939. \end{lstlisting}
  13940. \caption{An example involving casts on vectors.}
  13941. \label{fig:map-vec-bang}
  13942. \end{figure}
  13943. Instead the interpreter needs to create a new kind of value, a
  13944. \emph{vector proxy}, that intercepts every vector operation. On a
  13945. read, the proxy reads from the underlying vector and then applies a
  13946. cast to the resulting value. On a write, the proxy casts the argument
  13947. value and then performs the write to the underlying vector. For the
  13948. first \code{(vector-ref v 0)} in \code{map-vec!}, the proxy casts
  13949. \code{0} from \code{Integer} to \code{Any}. For the first
  13950. \code{vector-set!}, the proxy casts a tagged \code{1} from \code{Any}
  13951. to \code{Integer}.
  13952. The final category of cast that we need to consider are casts between
  13953. the \code{Any} type and either a function or a vector
  13954. type. Figure~\ref{fig:map-vec-any} shows a variant of \code{map-vec!}
  13955. in which parameter \code{v} does not have a type annotation, so it is
  13956. given type \code{Any}. In the call to \code{map-vec!}, the vector has
  13957. type \code{(Vector Integer Integer)} so the type checker inserts a
  13958. cast from \code{(Vector Integer Integer)} to \code{Any}. A first
  13959. thought is to use \code{Inject}, but that doesn't work because
  13960. \code{(Vector Integer Integer)} is not a flat type. Instead, we must
  13961. first cast to \code{(Vector Any Any)} (which is flat) and then inject
  13962. to \code{Any}.
  13963. \begin{figure}[tbp]
  13964. \begin{lstlisting}
  13965. (define (map-vec! [f : (Any -> Any)] v) : Void
  13966. (begin
  13967. (vector-set! v 0 (f (vector-ref v 0)))
  13968. (vector-set! v 1 (f (vector-ref v 1)))))
  13969. (define (add1 x) (+ x 1))
  13970. (let ([v (vector 0 41)])
  13971. (begin (map-vec! add1 v) (vector-ref v 1)))
  13972. \end{lstlisting}
  13973. \caption{Casting a vector to \code{Any}.}
  13974. \label{fig:map-vec-any}
  13975. \end{figure}
  13976. The \LangCast{} interpreter uses an auxiliary function named
  13977. \code{apply-cast} to cast a value from a source type to a target type,
  13978. shown in Figure~\ref{fig:apply-cast}. You'll find that it handles all
  13979. of the kinds of casts that we've discussed in this section.
  13980. \begin{figure}[tbp]
  13981. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  13982. (define/public (apply-cast v s t)
  13983. (match* (s t)
  13984. [(t1 t2) #:when (equal? t1 t2) v]
  13985. [('Any t2)
  13986. (match t2
  13987. [`(,ts ... -> ,rt)
  13988. (define any->any `(,@(for/list ([t ts]) 'Any) -> Any))
  13989. (define v^ (apply-project v any->any))
  13990. (apply-cast v^ any->any `(,@ts -> ,rt))]
  13991. [`(Vector ,ts ...)
  13992. (define vec-any `(Vector ,@(for/list ([t ts]) 'Any)))
  13993. (define v^ (apply-project v vec-any))
  13994. (apply-cast v^ vec-any `(Vector ,@ts))]
  13995. [else (apply-project v t2)])]
  13996. [(t1 'Any)
  13997. (match t1
  13998. [`(,ts ... -> ,rt)
  13999. (define any->any `(,@(for/list ([t ts]) 'Any) -> Any))
  14000. (define v^ (apply-cast v `(,@ts -> ,rt) any->any))
  14001. (apply-inject v^ (any-tag any->any))]
  14002. [`(Vector ,ts ...)
  14003. (define vec-any `(Vector ,@(for/list ([t ts]) 'Any)))
  14004. (define v^ (apply-cast v `(Vector ,@ts) vec-any))
  14005. (apply-inject v^ (any-tag vec-any))]
  14006. [else (apply-inject v (any-tag t1))])]
  14007. [(`(Vector ,ts1 ...) `(Vector ,ts2 ...))
  14008. (define x (gensym 'x))
  14009. (define cast-reads (for/list ([t1 ts1] [t2 ts2])
  14010. `(function (,x) ,(Cast (Var x) t1 t2) ())))
  14011. (define cast-writes
  14012. (for/list ([t1 ts1] [t2 ts2])
  14013. `(function (,x) ,(Cast (Var x) t2 t1) ())))
  14014. `(vector-proxy ,(vector v (apply vector cast-reads)
  14015. (apply vector cast-writes)))]
  14016. [(`(,ts1 ... -> ,rt1) `(,ts2 ... -> ,rt2))
  14017. (define xs (for/list ([t2 ts2]) (gensym 'x)))
  14018. `(function ,xs ,(Cast
  14019. (Apply (Value v)
  14020. (for/list ([x xs][t1 ts1][t2 ts2])
  14021. (Cast (Var x) t2 t1)))
  14022. rt1 rt2) ())]
  14023. ))
  14024. \end{lstlisting}
  14025. \caption{The \code{apply-cast} auxiliary method.}
  14026. \label{fig:apply-cast}
  14027. \end{figure}
  14028. The interpreter for \LangCast{} is defined in
  14029. Figure~\ref{fig:interp-Rcast}, with the case for \code{Cast}
  14030. dispatching to \code{apply-cast}. To handle the addition of vector
  14031. proxies, we update the vector primitives in \code{interp-op} using the
  14032. functions in Figure~\ref{fig:guarded-vector}.
  14033. \begin{figure}[tbp]
  14034. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  14035. (define interp-Rcast_class
  14036. (class interp-Rwhile_class
  14037. (super-new)
  14038. (inherit apply-fun apply-inject apply-project)
  14039. (define/override (interp-op op)
  14040. (match op
  14041. ['vector-length guarded-vector-length]
  14042. ['vector-ref guarded-vector-ref]
  14043. ['vector-set! guarded-vector-set!]
  14044. ['any-vector-ref (lambda (v i)
  14045. (match v [`(tagged ,v^ ,tg)
  14046. (guarded-vector-ref v^ i)]))]
  14047. ['any-vector-set! (lambda (v i a)
  14048. (match v [`(tagged ,v^ ,tg)
  14049. (guarded-vector-set! v^ i a)]))]
  14050. ['any-vector-length (lambda (v)
  14051. (match v [`(tagged ,v^ ,tg)
  14052. (guarded-vector-length v^)]))]
  14053. [else (super interp-op op)]
  14054. ))
  14055. (define/override ((interp-exp env) e)
  14056. (define (recur e) ((interp-exp env) e))
  14057. (match e
  14058. [(Value v) v]
  14059. [(Cast e src tgt) (apply-cast (recur e) src tgt)]
  14060. [else ((super interp-exp env) e)]))
  14061. ))
  14062. (define (interp-Rcast p)
  14063. (send (new interp-Rcast_class) interp-program p))
  14064. \end{lstlisting}
  14065. \caption{The interpreter for \LangCast{}.}
  14066. \label{fig:interp-Rcast}
  14067. \end{figure}
  14068. \begin{figure}[tbp]
  14069. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  14070. (define (guarded-vector-ref vec i)
  14071. (match vec
  14072. [`(vector-proxy ,proxy)
  14073. (define val (guarded-vector-ref (vector-ref proxy 0) i))
  14074. (define rd (vector-ref (vector-ref proxy 1) i))
  14075. (apply-fun rd (list val) 'guarded-vector-ref)]
  14076. [else (vector-ref vec i)]))
  14077. (define (guarded-vector-set! vec i arg)
  14078. (match vec
  14079. [`(vector-proxy ,proxy)
  14080. (define wr (vector-ref (vector-ref proxy 2) i))
  14081. (define arg^ (apply-fun wr (list arg) 'guarded-vector-set!))
  14082. (guarded-vector-set! (vector-ref proxy 0) i arg^)]
  14083. [else (vector-set! vec i arg)]))
  14084. (define (guarded-vector-length vec)
  14085. (match vec
  14086. [`(vector-proxy ,proxy)
  14087. (guarded-vector-length (vector-ref proxy 0))]
  14088. [else (vector-length vec)]))
  14089. \end{lstlisting}
  14090. \caption{The guarded-vector auxiliary functions.}
  14091. \label{fig:guarded-vector}
  14092. \end{figure}
  14093. \section{Lower Casts}
  14094. \label{sec:lower-casts}
  14095. The next step in the journey towards x86 is the \code{lower-casts}
  14096. pass that translates the casts in \LangCast{} to the lower-level
  14097. \code{Inject} and \code{Project} operators and a new operator for
  14098. creating vector proxies, extending the \LangLoop{} language to create
  14099. \LangProxy{}. We recommend creating an auxiliary function named
  14100. \code{lower-cast} that takes an expression (in \LangCast{}), a source type,
  14101. and a target type, and translates it to expression in \LangProxy{} that has
  14102. the same behavior as casting the expression from the source to the
  14103. target type in the interpreter.
  14104. The \code{lower-cast} function can follow a code structure similar to
  14105. the \code{apply-cast} function (Figure~\ref{fig:apply-cast}) used in
  14106. the interpreter for \LangCast{} because it must handle the same cases as
  14107. \code{apply-cast} and it needs to mimic the behavior of
  14108. \code{apply-cast}. The most interesting cases are those concerning the
  14109. casts between two vector types and between two function types.
  14110. As mentioned in Section~\ref{sec:interp-casts}, a cast from one vector
  14111. type to another vector type is accomplished by creating a proxy that
  14112. intercepts the operations on the underlying vector. Here we make the
  14113. creation of the proxy explicit with the \code{vector-proxy} primitive
  14114. operation. It takes three arguments, the first is an expression for
  14115. the vector, the second is a vector of functions for casting an element
  14116. that is being read from the vector, and the third is a vector of
  14117. functions for casting an element that is being written to the vector.
  14118. You can create the functions using \code{Lambda}. Also, as we shall
  14119. see in the next section, we need to differentiate these vectors from
  14120. the user-created ones, so we recommend using a new primitive operator
  14121. named \code{raw-vector} instead of \code{vector} to create these
  14122. vectors of functions. Figure~\ref{fig:map-vec-bang-lower-cast} shows
  14123. the output of \code{lower-casts} on the example in
  14124. Figure~\ref{fig:map-vec-bang} that involved casting a vector of
  14125. integers to a vector of \code{Any}.
  14126. \begin{figure}[tbp]
  14127. \begin{lstlisting}
  14128. (define (map-vec! [f : (Any -> Any)] [v : (Vector Any Any)]) : Void
  14129. (begin
  14130. (vector-set! v 0 (f (vector-ref v 0)))
  14131. (vector-set! v 1 (f (vector-ref v 1)))))
  14132. (define (add1 [x : Any]) : Any
  14133. (inject (+ (project x Integer) 1) Integer))
  14134. (let ([v (vector 0 41)])
  14135. (begin
  14136. (map-vec! add1 (vector-proxy v
  14137. (raw-vector (lambda: ([x9 : Integer]) : Any
  14138. (inject x9 Integer))
  14139. (lambda: ([x9 : Integer]) : Any
  14140. (inject x9 Integer)))
  14141. (raw-vector (lambda: ([x9 : Any]) : Integer
  14142. (project x9 Integer))
  14143. (lambda: ([x9 : Any]) : Integer
  14144. (project x9 Integer)))))
  14145. (vector-ref v 1)))
  14146. \end{lstlisting}
  14147. \caption{Output of \code{lower-casts} on the example in
  14148. Figure~\ref{fig:map-vec-bang}.}
  14149. \label{fig:map-vec-bang-lower-cast}
  14150. \end{figure}
  14151. A cast from one function type to another function type is accomplished
  14152. by generating a \code{Lambda} whose parameter and return types match
  14153. the target function type. The body of the \code{Lambda} should cast
  14154. the parameters from the target type to the source type (yes,
  14155. backwards! functions are contravariant\index{subject}{contravariant} in the
  14156. parameters), then call the underlying function, and finally cast the
  14157. result from the source return type to the target return type.
  14158. Figure~\ref{fig:map-vec-lower-cast} shows the output of the
  14159. \code{lower-casts} pass on the \code{map-vec} example in
  14160. Figure~\ref{fig:gradual-map-vec}. Note that the \code{add1} argument
  14161. in the call to \code{map-vec} is wrapped in a \code{lambda}.
  14162. \begin{figure}[tbp]
  14163. \begin{lstlisting}
  14164. (define (map-vec [f : (Integer -> Integer)]
  14165. [v : (Vector Integer Integer)])
  14166. : (Vector Integer Integer)
  14167. (vector (f (vector-ref v 0)) (f (vector-ref v 1))))
  14168. (define (add1 [x : Any]) : Any
  14169. (inject (+ (project x Integer) 1) Integer))
  14170. (vector-ref (map-vec (lambda: ([x9 : Integer]) : Integer
  14171. (project (add1 (inject x9 Integer)) Integer))
  14172. (vector 0 41)) 1)
  14173. \end{lstlisting}
  14174. \caption{Output of \code{lower-casts} on the example in
  14175. Figure~\ref{fig:gradual-map-vec}.}
  14176. \label{fig:map-vec-lower-cast}
  14177. \end{figure}
  14178. \section{Differentiate Proxies}
  14179. \label{sec:differentiate-proxies}
  14180. So far the job of differentiating vectors and vector proxies has been
  14181. the job of the interpreter. For example, the interpreter for \LangCast{}
  14182. implements \code{vector-ref} using the \code{guarded-vector-ref}
  14183. function in Figure~\ref{fig:guarded-vector}. In the
  14184. \code{differentiate-proxies} pass we shift this responsibility to the
  14185. generated code.
  14186. We begin by designing the output language $R^p_8$. In
  14187. \LangGrad{} we used the type \code{Vector} for both real vectors and vector
  14188. proxies. In $R^p_8$ we return the \code{Vector} type to
  14189. its original meaning, as the type of real vectors, and we introduce a
  14190. new type, \code{PVector}, whose values can be either real vectors or
  14191. vector proxies. This new type comes with a suite of new primitive
  14192. operations for creating and using values of type \code{PVector}. We
  14193. don't need to introduce a new type to represent vector proxies. A
  14194. proxy is represented by a vector containing three things: 1) the
  14195. underlying vector, 2) a vector of functions for casting elements that
  14196. are read from the vector, and 3) a vector of functions for casting
  14197. values to be written to the vector. So we define the following
  14198. abbreviation for the type of a vector proxy:
  14199. \[
  14200. \itm{Proxy} (T\ldots \Rightarrow T'\ldots)
  14201. = (\ttm{Vector}~(\ttm{PVector}~ T\ldots) ~R~ W)
  14202. \to (\key{PVector}~ T' \ldots)
  14203. \]
  14204. where $R = (\ttm{Vector}~(T\to T') \ldots)$ and
  14205. $W = (\ttm{Vector}~(T'\to T) \ldots)$.
  14206. %
  14207. Next we describe each of the new primitive operations.
  14208. \begin{description}
  14209. \item[\code{inject-vector} : (\key{Vector} $T \ldots$) $\to$
  14210. (\key{PVector} $T \ldots$)]\ \\
  14211. %
  14212. This operation brands a vector as a value of the \code{PVector} type.
  14213. \item[\code{inject-proxy} : $\itm{Proxy}(T\ldots \Rightarrow T'\ldots)$
  14214. $\to$ (\key{PVector} $T' \ldots$)]\ \\
  14215. %
  14216. This operation brands a vector proxy as value of the \code{PVector} type.
  14217. \item[\code{proxy?} : (\key{PVector} $T \ldots$) $\to$
  14218. \code{Boolean}] \ \\
  14219. %
  14220. returns true if the value is a vector proxy and false if it is a
  14221. real vector.
  14222. \item[\code{project-vector} : (\key{PVector} $T \ldots$) $\to$
  14223. (\key{Vector} $T \ldots$)]\ \\
  14224. %
  14225. Assuming that the input is a vector (and not a proxy), this
  14226. operation returns the vector.
  14227. \item[\code{proxy-vector-length} : (\key{PVector} $T \ldots$)
  14228. $\to$ \code{Boolean}]\ \\
  14229. %
  14230. Given a vector proxy, this operation returns the length of the
  14231. underlying vector.
  14232. \item[\code{proxy-vector-ref} : (\key{PVector} $T \ldots$)
  14233. $\to$ ($i$ : \code{Integer}) $\to$ $T_i$]\ \\
  14234. %
  14235. Given a vector proxy, this operation returns the $i$th element of
  14236. the underlying vector.
  14237. \item[\code{proxy-vector-set!} : (\key{PVector} $T \ldots$) $\to$ ($i$
  14238. : \code{Integer}) $\to$ $T_i$ $\to$ \key{Void}]\ \\ Given a vector
  14239. proxy, this operation writes a value to the $i$th element of the
  14240. underlying vector.
  14241. \end{description}
  14242. Now to discuss the translation that differentiates vectors from
  14243. proxies. First, every type annotation in the program must be
  14244. translated (recursively) to replace \code{Vector} with \code{PVector}.
  14245. Next, we must insert uses of \code{PVector} operations in the
  14246. appropriate places. For example, we wrap every vector creation with an
  14247. \code{inject-vector}.
  14248. \begin{lstlisting}
  14249. (vector |$e_1 \ldots e_n$|)
  14250. |$\Rightarrow$|
  14251. (inject-vector (vector |$e'_1 \ldots e'_n$|))
  14252. \end{lstlisting}
  14253. The \code{raw-vector} operator that we introduced in the previous
  14254. section does not get injected.
  14255. \begin{lstlisting}
  14256. (raw-vector |$e_1 \ldots e_n$|)
  14257. |$\Rightarrow$|
  14258. (vector |$e'_1 \ldots e'_n$|)
  14259. \end{lstlisting}
  14260. The \code{vector-proxy} primitive translates as follows.
  14261. \begin{lstlisting}
  14262. (vector-proxy |$e_1~e_2~e_3$|)
  14263. |$\Rightarrow$|
  14264. (inject-proxy (vector |$e'_1~e'_2~e'_3$|))
  14265. \end{lstlisting}
  14266. We translate the vector operations into conditional expressions that
  14267. check whether the value is a proxy and then dispatch to either the
  14268. appropriate proxy vector operation or the regular vector operation.
  14269. For example, the following is the translation for \code{vector-ref}.
  14270. \begin{lstlisting}
  14271. (vector-ref |$e_1$| |$i$|)
  14272. |$\Rightarrow$|
  14273. (let ([|$v~e_1$|])
  14274. (if (proxy? |$v$|)
  14275. (proxy-vector-ref |$v$| |$i$|)
  14276. (vector-ref (project-vector |$v$|) |$i$|)
  14277. \end{lstlisting}
  14278. Note in the case of a real vector, we must apply \code{project-vector}
  14279. before the \code{vector-ref}.
  14280. \section{Reveal Casts}
  14281. \label{sec:reveal-casts-gradual}
  14282. Recall that the \code{reveal-casts} pass
  14283. (Section~\ref{sec:reveal-casts-Rany}) is responsible for lowering
  14284. \code{Inject} and \code{Project} into lower-level operations. In
  14285. particular, \code{Project} turns into a conditional expression that
  14286. inspects the tag and retrieves the underlying value. Here we need to
  14287. augment the translation of \code{Project} to handle the situation when
  14288. the target type is \code{PVector}. Instead of using
  14289. \code{vector-length} we need to use \code{proxy-vector-length}.
  14290. \begin{lstlisting}
  14291. (project |$e$| (PVector Any|$_1$| |$\ldots$| Any|$_n$|))
  14292. |$\Rightarrow$|
  14293. (let |$\itm{tmp}$| |$e'$|
  14294. (if (eq? (tag-of-any |$\itm{tmp}$| 2))
  14295. (let |$\itm{vec}$| (value-of |$\itm{tmp}$| (PVector Any |$\ldots$| Any))
  14296. (if (eq? (proxy-vector-length |$\itm{vec}$|) |$n$|) |$\itm{vec}$| (exit)))
  14297. (exit)))
  14298. \end{lstlisting}
  14299. \section{Closure Conversion}
  14300. \label{sec:closure-conversion-gradual}
  14301. The closure conversion pass only requires one minor adjustment. The
  14302. auxiliary function that translates type annotations needs to be
  14303. updated to handle the \code{PVector} type.
  14304. \section{Explicate Control}
  14305. \label{sec:explicate-control-gradual}
  14306. Update the \code{explicate\_control} pass to handle the new primitive
  14307. operations on the \code{PVector} type.
  14308. \section{Select Instructions}
  14309. \label{sec:select-instructions-gradual}
  14310. Recall that the \code{select-instructions} pass is responsible for
  14311. lowering the primitive operations into x86 instructions. So we need
  14312. to translate the new \code{PVector} operations to x86. To do so, the
  14313. first question we need to answer is how will we differentiate the two
  14314. kinds of values (vectors and proxies) that can inhabit \code{PVector}.
  14315. We need just one bit to accomplish this, and use the bit in position
  14316. $57$ of the 64-bit tag at the front of every vector (see
  14317. Figure~\ref{fig:tuple-rep}). So far, this bit has been set to $0$, so
  14318. for \code{inject-vector} we leave it that way.
  14319. \begin{lstlisting}
  14320. (Assign |$\itm{lhs}$| (Prim 'inject-vector (list |$e_1$|)))
  14321. |$\Rightarrow$|
  14322. movq |$e'_1$|, |$\itm{lhs'}$|
  14323. \end{lstlisting}
  14324. On the other hand, \code{inject-proxy} sets bit $57$ to $1$.
  14325. \begin{lstlisting}
  14326. (Assign |$\itm{lhs}$| (Prim 'inject-proxy (list |$e_1$|)))
  14327. |$\Rightarrow$|
  14328. movq |$e'_1$|, %r11
  14329. movq |$(1 << 57)$|, %rax
  14330. orq 0(%r11), %rax
  14331. movq %rax, 0(%r11)
  14332. movq %r11, |$\itm{lhs'}$|
  14333. \end{lstlisting}
  14334. The \code{proxy?} operation consumes the information so carefully
  14335. stashed away by \code{inject-vector} and \code{inject-proxy}. It
  14336. isolates the $57$th bit to tell whether the value is a real vector or
  14337. a proxy.
  14338. \begin{lstlisting}
  14339. (Assign |$\itm{lhs}$| (Prim 'proxy? (list e)))
  14340. |$\Rightarrow$|
  14341. movq |$e_1'$|, %r11
  14342. movq 0(%r11), %rax
  14343. sarq $57, %rax
  14344. andq $1, %rax
  14345. movq %rax, |$\itm{lhs'}$|
  14346. \end{lstlisting}
  14347. The \code{project-vector} operation is straightforward to translate,
  14348. so we leave it up to the reader.
  14349. Regarding the \code{proxy-vector} operations, the runtime provides
  14350. procedures that implement them (they are recursive functions!) so
  14351. here we simply need to translate these vector operations into the
  14352. appropriate function call. For example, here is the translation for
  14353. \code{proxy-vector-ref}.
  14354. \begin{lstlisting}
  14355. (Assign |$\itm{lhs}$| (Prim 'proxy-vector-ref (list |$e_1$| |$e_2$|)))
  14356. |$\Rightarrow$|
  14357. movq |$e_1'$|, %rdi
  14358. movq |$e_2'$|, %rsi
  14359. callq proxy_vector_ref
  14360. movq %rax, |$\itm{lhs'}$|
  14361. \end{lstlisting}
  14362. We have another batch of vector operations to deal with, those for the
  14363. \code{Any} type. Recall that the type checker for \LangGrad{} generates an
  14364. \code{any-vector-ref} when there is a \code{vector-ref} on something
  14365. of type \code{Any}, and similarly for \code{any-vector-set!} and
  14366. \code{any-vector-length} (Figure~\ref{fig:type-check-Rgradual-1}). In
  14367. Section~\ref{sec:select-Rany} we selected instructions for these
  14368. operations based on the idea that the underlying value was a real
  14369. vector. But in the current setting, the underlying value is of type
  14370. \code{PVector}. So \code{any-vector-ref} can be translates to
  14371. pseudo-x86 as follows. We begin by projecting the underlying value out
  14372. of the tagged value and then call the \code{proxy\_vector\_ref}
  14373. procedure in the runtime.
  14374. \begin{lstlisting}
  14375. (Assign |$\itm{lhs}$| (Prim 'any-vector-ref (list |$e_1$| |$e_2$|)))
  14376. movq |$\neg 111$|, %rdi
  14377. andq |$e_1'$|, %rdi
  14378. movq |$e_2'$|, %rsi
  14379. callq proxy_vector_ref
  14380. movq %rax, |$\itm{lhs'}$|
  14381. \end{lstlisting}
  14382. The \code{any-vector-set!} and \code{any-vector-length} operators can
  14383. be translated in a similar way.
  14384. \begin{exercise}\normalfont
  14385. Implement a compiler for the gradually-typed \LangGrad{} language by
  14386. extending and adapting your compiler for \LangLoop{}. Create 10 new
  14387. partially-typed test programs. In addition to testing with these
  14388. new programs, also test your compiler on all the tests for \LangLoop{}
  14389. and tests for \LangDyn{}. Sometimes you may get a type checking error
  14390. on the \LangDyn{} programs but you can adapt them by inserting
  14391. a cast to the \code{Any} type around each subexpression
  14392. causing a type error. While \LangDyn{} doesn't have explicit casts,
  14393. you can induce one by wrapping the subexpression \code{e}
  14394. with a call to an un-annotated identity function, like this:
  14395. \code{((lambda (x) x) e)}.
  14396. \end{exercise}
  14397. \begin{figure}[p]
  14398. \begin{tikzpicture}[baseline=(current bounding box.center)]
  14399. \node (Rgradual) at (6,4) {\large \LangGrad{}};
  14400. \node (Rgradualp) at (3,4) {\large \LangCast{}};
  14401. \node (Rwhilepp) at (0,4) {\large \LangProxy{}};
  14402. \node (Rwhileproxy) at (0,2) {\large \LangPVec{}};
  14403. \node (Rwhileproxy-2) at (3,2) {\large \LangPVec{}};
  14404. \node (Rwhileproxy-3) at (6,2) {\large \LangPVec{}};
  14405. \node (Rwhileproxy-4) at (9,2) {\large \LangPVecFunRef{}};
  14406. \node (Rwhileproxy-5) at (12,2) {\large \LangPVecFunRef{}};
  14407. \node (F1-1) at (12,0) {\large \LangPVecFunRef{}};
  14408. \node (F1-2) at (9,0) {\large \LangPVecFunRef{}};
  14409. \node (F1-3) at (6,0) {\large \LangPVecFunRef{}};
  14410. \node (F1-4) at (3,0) {\large \LangPVecAlloc{}};
  14411. \node (F1-5) at (0,0) {\large \LangPVecAlloc{}};
  14412. \node (C3-2) at (3,-2) {\large \LangCLoopPVec{}};
  14413. \node (x86-2) at (3,-4) {\large \LangXIndCallVar{}};
  14414. \node (x86-2-1) at (3,-6) {\large \LangXIndCallVar{}};
  14415. \node (x86-2-2) at (6,-6) {\large \LangXIndCallVar{}};
  14416. \node (x86-3) at (6,-4) {\large \LangXIndCallVar{}};
  14417. \node (x86-4) at (9,-4) {\large \LangXIndCall{}};
  14418. \node (x86-5) at (9,-6) {\large \LangXIndCall{}};
  14419. \path[->,bend right=15] (Rgradual) edge [above] node
  14420. {\ttfamily\footnotesize type-check} (Rgradualp);
  14421. \path[->,bend right=15] (Rgradualp) edge [above] node
  14422. {\ttfamily\footnotesize lower-casts} (Rwhilepp);
  14423. \path[->,bend right=15] (Rwhilepp) edge [right] node
  14424. {\ttfamily\footnotesize differentiate-proxies} (Rwhileproxy);
  14425. \path[->,bend left=15] (Rwhileproxy) edge [above] node
  14426. {\ttfamily\footnotesize shrink} (Rwhileproxy-2);
  14427. \path[->,bend left=15] (Rwhileproxy-2) edge [above] node
  14428. {\ttfamily\footnotesize uniquify} (Rwhileproxy-3);
  14429. \path[->,bend left=15] (Rwhileproxy-3) edge [above] node
  14430. {\ttfamily\footnotesize reveal-functions} (Rwhileproxy-4);
  14431. \path[->,bend left=15] (Rwhileproxy-4) edge [above] node
  14432. {\ttfamily\footnotesize reveal-casts} (Rwhileproxy-5);
  14433. \path[->,bend left=15] (Rwhileproxy-5) edge [left] node
  14434. {\ttfamily\footnotesize convert-assignments} (F1-1);
  14435. \path[->,bend left=15] (F1-1) edge [below] node
  14436. {\ttfamily\footnotesize convert-to-clos.} (F1-2);
  14437. \path[->,bend right=15] (F1-2) edge [above] node
  14438. {\ttfamily\footnotesize limit-fun.} (F1-3);
  14439. \path[->,bend right=15] (F1-3) edge [above] node
  14440. {\ttfamily\footnotesize expose-alloc.} (F1-4);
  14441. \path[->,bend right=15] (F1-4) edge [above] node
  14442. {\ttfamily\footnotesize remove-complex.} (F1-5);
  14443. \path[->,bend right=15] (F1-5) edge [right] node
  14444. {\ttfamily\footnotesize explicate-control} (C3-2);
  14445. \path[->,bend left=15] (C3-2) edge [left] node
  14446. {\ttfamily\footnotesize select-instr.} (x86-2);
  14447. \path[->,bend right=15] (x86-2) edge [left] node
  14448. {\ttfamily\footnotesize uncover-live} (x86-2-1);
  14449. \path[->,bend right=15] (x86-2-1) edge [below] node
  14450. {\ttfamily\footnotesize build-inter.} (x86-2-2);
  14451. \path[->,bend right=15] (x86-2-2) edge [left] node
  14452. {\ttfamily\footnotesize allocate-reg.} (x86-3);
  14453. \path[->,bend left=15] (x86-3) edge [above] node
  14454. {\ttfamily\footnotesize patch-instr.} (x86-4);
  14455. \path[->,bend left=15] (x86-4) edge [right] node {\ttfamily\footnotesize print-x86} (x86-5);
  14456. \end{tikzpicture}
  14457. \caption{Diagram of the passes for \LangGrad{} (gradual typing).}
  14458. \label{fig:Rgradual-passes}
  14459. \end{figure}
  14460. Figure~\ref{fig:Rgradual-passes} provides an overview of all the passes needed
  14461. for the compilation of \LangGrad{}.
  14462. \section{Further Reading}
  14463. This chapter just scratches the surface of gradual typing. The basic
  14464. approach described here is missing two key ingredients that one would
  14465. want in a implementation of gradual typing: blame
  14466. tracking~\citep{Tobin-Hochstadt:2006fk,Wadler:2009qv} and
  14467. space-efficient casts~\citep{Herman:2006uq,Herman:2010aa}. The
  14468. problem addressed by blame tracking is that when a cast on a
  14469. higher-order value fails, it often does so at a point in the program
  14470. that is far removed from the original cast. Blame tracking is a
  14471. technique for propagating extra information through casts and proxies
  14472. so that when a cast fails, the error message can point back to the
  14473. original location of the cast in the source program.
  14474. The problem addressed by space-efficient casts also relates to
  14475. higher-order casts. It turns out that in partially typed programs, a
  14476. function or vector can flow through very-many casts at runtime. With
  14477. the approach described in this chapter, each cast adds another
  14478. \code{lambda} wrapper or a vector proxy. Not only does this take up
  14479. considerable space, but it also makes the function calls and vector
  14480. operations slow. For example, a partially-typed version of quicksort
  14481. could, in the worst case, build a chain of proxies of length $O(n)$
  14482. around the vector, changing the overall time complexity of the
  14483. algorithm from $O(n^2)$ to $O(n^3)$! \citet{Herman:2006uq} suggested a
  14484. solution to this problem by representing casts using the coercion
  14485. calculus of \citet{Henglein:1994nz}, which prevents the creation of
  14486. long chains of proxies by compressing them into a concise normal
  14487. form. \citet{Siek:2015ab} give and algorithm for compressing coercions
  14488. and \citet{Kuhlenschmidt:2019aa} show how to implement these ideas in
  14489. the Grift compiler.
  14490. \begin{center}
  14491. \url{https://github.com/Gradual-Typing/Grift}
  14492. \end{center}
  14493. There are also interesting interactions between gradual typing and
  14494. other language features, such as parametetric polymorphism,
  14495. information-flow types, and type inference, to name a few. We
  14496. recommend the reader to the online gradual typing bibliography:
  14497. \begin{center}
  14498. \url{http://samth.github.io/gradual-typing-bib/}
  14499. \end{center}
  14500. % TODO: challenge problem:
  14501. % type analysis and type specialization?
  14502. % coercions?
  14503. \fi
  14504. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  14505. \chapter{Parametric Polymorphism}
  14506. \label{ch:Rpoly}
  14507. \index{subject}{parametric polymorphism}
  14508. \index{subject}{generics}
  14509. \if\edition\racketEd
  14510. This chapter studies the compilation of parametric
  14511. polymorphism\index{subject}{parametric polymorphism}
  14512. (aka. generics\index{subject}{generics}) in the subset \LangPoly{} of Typed
  14513. Racket. Parametric polymorphism enables improved code reuse by
  14514. parameterizing functions and data structures with respect to the types
  14515. that they operate on. For example, Figure~\ref{fig:map-vec-poly}
  14516. revisits the \code{map-vec} example but this time gives it a more
  14517. fitting type. This \code{map-vec} function is parameterized with
  14518. respect to the element type of the vector. The type of \code{map-vec}
  14519. is the following polymorphic type as specified by the \code{All} and
  14520. the type parameter \code{a}.
  14521. \begin{lstlisting}
  14522. (All (a) ((a -> a) (Vector a a) -> (Vector a a)))
  14523. \end{lstlisting}
  14524. The idea is that \code{map-vec} can be used at \emph{all} choices of a
  14525. type for parameter \code{a}. In Figure~\ref{fig:map-vec-poly} we apply
  14526. \code{map-vec} to a vector of integers, a choice of \code{Integer} for
  14527. \code{a}, but we could have just as well applied \code{map-vec} to a
  14528. vector of Booleans (and a function on Booleans).
  14529. \begin{figure}[tbp]
  14530. % poly_test_2.rkt
  14531. \begin{lstlisting}
  14532. (: map-vec (All (a) ((a -> a) (Vector a a) -> (Vector a a))))
  14533. (define (map-vec f v)
  14534. (vector (f (vector-ref v 0)) (f (vector-ref v 1))))
  14535. (define (add1 [x : Integer]) : Integer (+ x 1))
  14536. (vector-ref (map-vec add1 (vector 0 41)) 1)
  14537. \end{lstlisting}
  14538. \caption{The \code{map-vec} example using parametric polymorphism.}
  14539. \label{fig:map-vec-poly}
  14540. \end{figure}
  14541. Figure~\ref{fig:Rpoly-concrete-syntax} defines the concrete syntax of
  14542. \LangPoly{} and Figure~\ref{fig:Rpoly-syntax} defines the abstract
  14543. syntax. We add a second form for function definitions in which a type
  14544. declaration comes before the \code{define}. In the abstract syntax,
  14545. the return type in the \code{Def} is \code{Any}, but that should be
  14546. ignored in favor of the return type in the type declaration. (The
  14547. \code{Any} comes from using the same parser as in
  14548. Chapter~\ref{ch:Rdyn}.) The presence of a type declaration
  14549. enables the use of an \code{All} type for a function, thereby making
  14550. it polymorphic. The grammar for types is extended to include
  14551. polymorphic types and type variables.
  14552. \begin{figure}[tp]
  14553. \centering
  14554. \fbox{
  14555. \begin{minipage}{0.96\textwidth}
  14556. \small
  14557. \[
  14558. \begin{array}{lcl}
  14559. \Type &::=& \ldots \MID \LP\key{All}~\LP\Var\ldots\RP~ \Type\RP \MID \Var \\
  14560. \Def &::=& \gray{ \CDEF{\Var}{\LS\Var \key{:} \Type\RS \ldots}{\Type}{\Exp} } \\
  14561. &\MID& \LP\key{:}~\Var~\Type\RP \\
  14562. && \LP\key{define}~ \LP\Var ~ \Var\ldots\RP ~ \Exp\RP \\
  14563. \LangPoly{} &::=& \gray{ \Def \ldots ~ \Exp }
  14564. \end{array}
  14565. \]
  14566. \end{minipage}
  14567. }
  14568. \caption{The concrete syntax of \LangPoly{}, extending \LangLoop{}
  14569. (Figure~\ref{fig:Rwhile-concrete-syntax}).}
  14570. \label{fig:Rpoly-concrete-syntax}
  14571. \end{figure}
  14572. \begin{figure}[tp]
  14573. \centering
  14574. \fbox{
  14575. \begin{minipage}{0.96\textwidth}
  14576. \small
  14577. \[
  14578. \begin{array}{lcl}
  14579. \Type &::=& \ldots \MID \LP\key{All}~\LP\Var\ldots\RP~ \Type\RP \MID \Var \\
  14580. \Def &::=& \gray{ \DEF{\Var}{\LP\LS\Var \key{:} \Type\RS \ldots\RP}{\Type}{\code{'()}}{\Exp} } \\
  14581. &\MID& \DECL{\Var}{\Type} \\
  14582. && \DEF{\Var}{\LP\Var \ldots\RP}{\key{'Any}}{\code{'()}}{\Exp} \\
  14583. \LangPoly{} &::=& \gray{ \PROGRAMDEFSEXP{\code{'()}}{\LP\Def\ldots\RP}{\Exp} }
  14584. \end{array}
  14585. \]
  14586. \end{minipage}
  14587. }
  14588. \caption{The abstract syntax of \LangPoly{}, extending \LangLoop{}
  14589. (Figure~\ref{fig:Rwhile-syntax}).}
  14590. \label{fig:Rpoly-syntax}
  14591. \end{figure}
  14592. By including polymorphic types in the $\Type$ non-terminal we choose
  14593. to make them first-class which has interesting repercussions on the
  14594. compiler. Many languages with polymorphism, such as
  14595. C++~\citep{stroustrup88:_param_types} and Standard
  14596. ML~\citep{Milner:1990fk}, only support second-class polymorphism, so
  14597. it is useful to see an example of first-class polymorphism. In
  14598. Figure~\ref{fig:apply-twice} we define a function \code{apply-twice}
  14599. whose parameter is a polymorphic function. The occurrence of a
  14600. polymorphic type underneath a function type is enabled by the normal
  14601. recursive structure of the grammar for $\Type$ and the categorization
  14602. of the \code{All} type as a $\Type$. The body of \code{apply-twice}
  14603. applies the polymorphic function to a Boolean and to an integer.
  14604. \begin{figure}[tbp]
  14605. \begin{lstlisting}
  14606. (: apply-twice ((All (b) (b -> b)) -> Integer))
  14607. (define (apply-twice f)
  14608. (if (f #t) (f 42) (f 777)))
  14609. (: id (All (a) (a -> a)))
  14610. (define (id x) x)
  14611. (apply-twice id)
  14612. \end{lstlisting}
  14613. \caption{An example illustrating first-class polymorphism.}
  14614. \label{fig:apply-twice}
  14615. \end{figure}
  14616. The type checker for \LangPoly{} in Figure~\ref{fig:type-check-Lvar0} has
  14617. three new responsibilities (compared to \LangLoop{}). The type checking of
  14618. function application is extended to handle the case where the operator
  14619. expression is a polymorphic function. In that case the type arguments
  14620. are deduced by matching the type of the parameters with the types of
  14621. the arguments.
  14622. %
  14623. The \code{match-types} auxiliary function carries out this deduction
  14624. by recursively descending through a parameter type \code{pt} and the
  14625. corresponding argument type \code{at}, making sure that they are equal
  14626. except when there is a type parameter on the left (in the parameter
  14627. type). If it's the first time that the type parameter has been
  14628. encountered, then the algorithm deduces an association of the type
  14629. parameter to the corresponding type on the right (in the argument
  14630. type). If it's not the first time that the type parameter has been
  14631. encountered, the algorithm looks up its deduced type and makes sure
  14632. that it is equal to the type on the right.
  14633. %
  14634. Once the type arguments are deduced, the operator expression is
  14635. wrapped in an \code{Inst} AST node (for instantiate) that records the
  14636. type of the operator, but more importantly, records the deduced type
  14637. arguments. The return type of the application is the return type of
  14638. the polymorphic function, but with the type parameters replaced by the
  14639. deduced type arguments, using the \code{subst-type} function.
  14640. The second responsibility of the type checker is extending the
  14641. function \code{type-equal?} to handle the \code{All} type. This is
  14642. not quite a simple as equal on other types, such as function and
  14643. vector types, because two polymorphic types can be syntactically
  14644. different even though they are equivalent types. For example,
  14645. \code{(All (a) (a -> a))} is equivalent to \code{(All (b) (b -> b))}.
  14646. Two polymorphic types should be considered equal if they differ only
  14647. in the choice of the names of the type parameters. The
  14648. \code{type-equal?} function in Figure~\ref{fig:type-check-Lvar0-aux}
  14649. renames the type parameters of the first type to match the type
  14650. parameters of the second type.
  14651. The third responsibility of the type checker is making sure that only
  14652. defined type variables appear in type annotations. The
  14653. \code{check-well-formed} function defined in
  14654. Figure~\ref{fig:well-formed-types} recursively inspects a type, making
  14655. sure that each type variable has been defined.
  14656. The output language of the type checker is \LangInst{}, defined in
  14657. Figure~\ref{fig:Rpoly-prime-syntax}. The type checker combines the type
  14658. declaration and polymorphic function into a single definition, using
  14659. the \code{Poly} form, to make polymorphic functions more convenient to
  14660. process in next pass of the compiler.
  14661. \begin{figure}[tp]
  14662. \centering
  14663. \fbox{
  14664. \begin{minipage}{0.96\textwidth}
  14665. \small
  14666. \[
  14667. \begin{array}{lcl}
  14668. \Type &::=& \ldots \MID \LP\key{All}~\LP\Var\ldots\RP~ \Type\RP \MID \Var \\
  14669. \Exp &::=& \ldots \MID \INST{\Exp}{\Type}{\LP\Type\ldots\RP} \\
  14670. \Def &::=& \gray{ \DEF{\Var}{\LP\LS\Var \key{:} \Type\RS \ldots\RP}{\Type}{\code{'()}}{\Exp} } \\
  14671. &\MID& \LP\key{Poly}~\LP\Var\ldots\RP~ \DEF{\Var}{\LP\LS\Var \key{:} \Type\RS \ldots\RP}{\Type}{\code{'()}}{\Exp}\RP \\
  14672. \LangInst{} &::=& \gray{ \PROGRAMDEFSEXP{\code{'()}}{\LP\Def\ldots\RP}{\Exp} }
  14673. \end{array}
  14674. \]
  14675. \end{minipage}
  14676. }
  14677. \caption{The abstract syntax of \LangInst{}, extending \LangLoop{}
  14678. (Figure~\ref{fig:Rwhile-syntax}).}
  14679. \label{fig:Rpoly-prime-syntax}
  14680. \end{figure}
  14681. The output of the type checker on the polymorphic \code{map-vec}
  14682. example is listed in Figure~\ref{fig:map-vec-type-check}.
  14683. \begin{figure}[tbp]
  14684. % poly_test_2.rkt
  14685. \begin{lstlisting}
  14686. (poly (a) (define (map-vec [f : (a -> a)] [v : (Vector a a)]) : (Vector a a)
  14687. (vector (f (vector-ref v 0)) (f (vector-ref v 1)))))
  14688. (define (add1 [x : Integer]) : Integer (+ x 1))
  14689. (vector-ref ((inst map-vec (All (a) ((a -> a) (Vector a a) -> (Vector a a)))
  14690. (Integer))
  14691. add1 (vector 0 41)) 1)
  14692. \end{lstlisting}
  14693. \caption{Output of the type checker on the \code{map-vec} example.}
  14694. \label{fig:map-vec-type-check}
  14695. \end{figure}
  14696. \begin{figure}[tbp]
  14697. \begin{lstlisting}[basicstyle=\ttfamily\scriptsize]
  14698. (define type-check-poly-class
  14699. (class type-check-Rwhile-class
  14700. (super-new)
  14701. (inherit check-type-equal?)
  14702. (define/override (type-check-apply env e1 es)
  14703. (define-values (e^ ty) ((type-check-exp env) e1))
  14704. (define-values (es^ ty*) (for/lists (es^ ty*) ([e (in-list es)])
  14705. ((type-check-exp env) e)))
  14706. (match ty
  14707. [`(,ty^* ... -> ,rt)
  14708. (for ([arg-ty ty*] [param-ty ty^*])
  14709. (check-type-equal? arg-ty param-ty (Apply e1 es)))
  14710. (values e^ es^ rt)]
  14711. [`(All ,xs (,tys ... -> ,rt))
  14712. (define env^ (append (for/list ([x xs]) (cons x 'Type)) env))
  14713. (define env^^ (for/fold ([env^^ env^]) ([arg-ty ty*] [param-ty tys])
  14714. (match-types env^^ param-ty arg-ty)))
  14715. (define targs
  14716. (for/list ([x xs])
  14717. (match (dict-ref env^^ x (lambda () #f))
  14718. [#f (error 'type-check "type variable ~a not deduced\nin ~v"
  14719. x (Apply e1 es))]
  14720. [ty ty])))
  14721. (values (Inst e^ ty targs) es^ (subst-type env^^ rt))]
  14722. [else (error 'type-check "expected a function, not ~a" ty)]))
  14723. (define/override ((type-check-exp env) e)
  14724. (match e
  14725. [(Lambda `([,xs : ,Ts] ...) rT body)
  14726. (for ([T Ts]) ((check-well-formed env) T))
  14727. ((check-well-formed env) rT)
  14728. ((super type-check-exp env) e)]
  14729. [(HasType e1 ty)
  14730. ((check-well-formed env) ty)
  14731. ((super type-check-exp env) e)]
  14732. [else ((super type-check-exp env) e)]))
  14733. (define/override ((type-check-def env) d)
  14734. (verbose 'type-check "poly/def" d)
  14735. (match d
  14736. [(Generic ts (Def f (and p:t* (list `[,xs : ,ps] ...)) rt info body))
  14737. (define ts-env (for/list ([t ts]) (cons t 'Type)))
  14738. (for ([p ps]) ((check-well-formed ts-env) p))
  14739. ((check-well-formed ts-env) rt)
  14740. (define new-env (append ts-env (map cons xs ps) env))
  14741. (define-values (body^ ty^) ((type-check-exp new-env) body))
  14742. (check-type-equal? ty^ rt body)
  14743. (Generic ts (Def f p:t* rt info body^))]
  14744. [else ((super type-check-def env) d)]))
  14745. (define/override (type-check-program p)
  14746. (match p
  14747. [(Program info body)
  14748. (type-check-program (ProgramDefsExp info '() body))]
  14749. [(ProgramDefsExp info ds body)
  14750. (define ds^ (combine-decls-defs ds))
  14751. (define new-env (for/list ([d ds^])
  14752. (cons (def-name d) (fun-def-type d))))
  14753. (define ds^^ (for/list ([d ds^]) ((type-check-def new-env) d)))
  14754. (define-values (body^ ty) ((type-check-exp new-env) body))
  14755. (check-type-equal? ty 'Integer body)
  14756. (ProgramDefsExp info ds^^ body^)]))
  14757. ))
  14758. \end{lstlisting}
  14759. \caption{Type checker for the \LangPoly{} language.}
  14760. \label{fig:type-check-Lvar0}
  14761. \end{figure}
  14762. \begin{figure}[tbp]
  14763. \begin{lstlisting}[basicstyle=\ttfamily\scriptsize]
  14764. (define/override (type-equal? t1 t2)
  14765. (match* (t1 t2)
  14766. [(`(All ,xs ,T1) `(All ,ys ,T2))
  14767. (define env (map cons xs ys))
  14768. (type-equal? (subst-type env T1) T2)]
  14769. [(other wise)
  14770. (super type-equal? t1 t2)]))
  14771. (define/public (match-types env pt at)
  14772. (match* (pt at)
  14773. [('Integer 'Integer) env] [('Boolean 'Boolean) env]
  14774. [('Void 'Void) env] [('Any 'Any) env]
  14775. [(`(Vector ,pts ...) `(Vector ,ats ...))
  14776. (for/fold ([env^ env]) ([pt1 pts] [at1 ats])
  14777. (match-types env^ pt1 at1))]
  14778. [(`(,pts ... -> ,prt) `(,ats ... -> ,art))
  14779. (define env^ (match-types env prt art))
  14780. (for/fold ([env^^ env^]) ([pt1 pts] [at1 ats])
  14781. (match-types env^^ pt1 at1))]
  14782. [(`(All ,pxs ,pt1) `(All ,axs ,at1))
  14783. (define env^ (append (map cons pxs axs) env))
  14784. (match-types env^ pt1 at1)]
  14785. [((? symbol? x) at)
  14786. (match (dict-ref env x (lambda () #f))
  14787. [#f (error 'type-check "undefined type variable ~a" x)]
  14788. ['Type (cons (cons x at) env)]
  14789. [t^ (check-type-equal? at t^ 'matching) env])]
  14790. [(other wise) (error 'type-check "mismatch ~a != a" pt at)]))
  14791. (define/public (subst-type env pt)
  14792. (match pt
  14793. ['Integer 'Integer] ['Boolean 'Boolean]
  14794. ['Void 'Void] ['Any 'Any]
  14795. [`(Vector ,ts ...)
  14796. `(Vector ,@(for/list ([t ts]) (subst-type env t)))]
  14797. [`(,ts ... -> ,rt)
  14798. `(,@(for/list ([t ts]) (subst-type env t)) -> ,(subst-type env rt))]
  14799. [`(All ,xs ,t)
  14800. `(All ,xs ,(subst-type (append (map cons xs xs) env) t))]
  14801. [(? symbol? x) (dict-ref env x)]
  14802. [else (error 'type-check "expected a type not ~a" pt)]))
  14803. (define/public (combine-decls-defs ds)
  14804. (match ds
  14805. ['() '()]
  14806. [`(,(Decl name type) . (,(Def f params _ info body) . ,ds^))
  14807. (unless (equal? name f)
  14808. (error 'type-check "name mismatch, ~a != ~a" name f))
  14809. (match type
  14810. [`(All ,xs (,ps ... -> ,rt))
  14811. (define params^ (for/list ([x params] [T ps]) `[,x : ,T]))
  14812. (cons (Generic xs (Def name params^ rt info body))
  14813. (combine-decls-defs ds^))]
  14814. [`(,ps ... -> ,rt)
  14815. (define params^ (for/list ([x params] [T ps]) `[,x : ,T]))
  14816. (cons (Def name params^ rt info body) (combine-decls-defs ds^))]
  14817. [else (error 'type-check "expected a function type, not ~a" type) ])]
  14818. [`(,(Def f params rt info body) . ,ds^)
  14819. (cons (Def f params rt info body) (combine-decls-defs ds^))]))
  14820. \end{lstlisting}
  14821. \caption{Auxiliary functions for type checking \LangPoly{}.}
  14822. \label{fig:type-check-Lvar0-aux}
  14823. \end{figure}
  14824. \begin{figure}[tbp]
  14825. \begin{lstlisting}%[basicstyle=\ttfamily\scriptsize]
  14826. (define/public ((check-well-formed env) ty)
  14827. (match ty
  14828. ['Integer (void)]
  14829. ['Boolean (void)]
  14830. ['Void (void)]
  14831. [(? symbol? a)
  14832. (match (dict-ref env a (lambda () #f))
  14833. ['Type (void)]
  14834. [else (error 'type-check "undefined type variable ~a" a)])]
  14835. [`(Vector ,ts ...)
  14836. (for ([t ts]) ((check-well-formed env) t))]
  14837. [`(,ts ... -> ,t)
  14838. (for ([t ts]) ((check-well-formed env) t))
  14839. ((check-well-formed env) t)]
  14840. [`(All ,xs ,t)
  14841. (define env^ (append (for/list ([x xs]) (cons x 'Type)) env))
  14842. ((check-well-formed env^) t)]
  14843. [else (error 'type-check "unrecognized type ~a" ty)]))
  14844. \end{lstlisting}
  14845. \caption{Well-formed types.}
  14846. \label{fig:well-formed-types}
  14847. \end{figure}
  14848. % TODO: interpreter for R'_10
  14849. \section{Compiling Polymorphism}
  14850. \label{sec:compiling-poly}
  14851. Broadly speaking, there are four approaches to compiling parametric
  14852. polymorphism, which we describe below.
  14853. \begin{description}
  14854. \item[Monomorphization] generates a different version of a polymorphic
  14855. function for each set of type arguments that it is used with,
  14856. producing type-specialized code. This approach results in the most
  14857. efficient code but requires whole-program compilation (no separate
  14858. compilation) and increases code size. For our current purposes
  14859. monomorphization is a non-starter because, with first-class
  14860. polymorphism, it is sometimes not possible to determine which
  14861. generic functions are used with which type arguments during
  14862. compilation. (It can be done at runtime, with just-in-time
  14863. compilation.) This approach is used to compile C++
  14864. templates~\citep{stroustrup88:_param_types} and polymorphic
  14865. functions in NESL~\citep{Blelloch:1993aa} and
  14866. ML~\citep{Weeks:2006aa}.
  14867. \item[Uniform representation] generates one version of each
  14868. polymorphic function but requires all values have a common ``boxed''
  14869. format, such as the tagged values of type \code{Any} in
  14870. \LangAny{}. Non-polymorphic code (i.e. monomorphic code) is compiled
  14871. similarly to code in a dynamically typed language (like \LangDyn{}),
  14872. in which primitive operators require their arguments to be projected
  14873. from \code{Any} and their results are injected into \code{Any}. (In
  14874. object-oriented languages, the projection is accomplished via
  14875. virtual method dispatch.) The uniform representation approach is
  14876. compatible with separate compilation and with first-class
  14877. polymorphism. However, it produces the least-efficient code because
  14878. it introduces overhead in the entire program, including
  14879. non-polymorphic code. This approach is used in implementations of
  14880. CLU~\cite{liskov79:_clu_ref,Liskov:1993dk},
  14881. ML~\citep{Cardelli:1984aa,Appel:1987aa}, and
  14882. Java~\citep{Bracha:1998fk}.
  14883. \item[Mixed representation] generates one version of each polymorphic
  14884. function, using a boxed representation for type
  14885. variables. Monomorphic code is compiled as usual (as in \LangLoop{})
  14886. and conversions are performed at the boundaries between monomorphic
  14887. and polymorphic (e.g. when a polymorphic function is instantiated
  14888. and called). This approach is compatible with separate compilation
  14889. and first-class polymorphism and maintains the efficiency of
  14890. monomorphic code. The tradeoff is increased overhead at the boundary
  14891. between monomorphic and polymorphic code. This approach is used in
  14892. implementations of ML~\citep{Leroy:1992qb} and Java, starting in
  14893. Java 5 with the addition of autoboxing.
  14894. \item[Type passing] uses the unboxed representation in both
  14895. monomorphic and polymorphic code. Each polymorphic function is
  14896. compiled to a single function with extra parameters that describe
  14897. the type arguments. The type information is used by the generated
  14898. code to know how to access the unboxed values at runtime. This
  14899. approach is used in implementation of the Napier88
  14900. language~\citep{Morrison:1991aa} and ML~\citep{Harper:1995um}. Type
  14901. passing is compatible with separate compilation and first-class
  14902. polymorphism and maintains the efficiency for monomorphic
  14903. code. There is runtime overhead in polymorphic code from dispatching
  14904. on type information.
  14905. \end{description}
  14906. In this chapter we use the mixed representation approach, partly
  14907. because of its favorable attributes, and partly because it is
  14908. straightforward to implement using the tools that we have already
  14909. built to support gradual typing. To compile polymorphic functions, we
  14910. add just one new pass, \code{erase-types}, to compile \LangInst{} to
  14911. \LangCast{}.
  14912. \section{Erase Types}
  14913. \label{sec:erase-types}
  14914. We use the \code{Any} type from Chapter~\ref{ch:Rdyn} to
  14915. represent type variables. For example, Figure~\ref{fig:map-vec-erase}
  14916. shows the output of the \code{erase-types} pass on the polymorphic
  14917. \code{map-vec} (Figure~\ref{fig:map-vec-poly}). The occurrences of
  14918. type parameter \code{a} are replaced by \code{Any} and the polymorphic
  14919. \code{All} types are removed from the type of \code{map-vec}.
  14920. \begin{figure}[tbp]
  14921. \begin{lstlisting}
  14922. (define (map-vec [f : (Any -> Any)] [v : (Vector Any Any)])
  14923. : (Vector Any Any)
  14924. (vector (f (vector-ref v 0)) (f (vector-ref v 1))))
  14925. (define (add1 [x : Integer]) : Integer (+ x 1))
  14926. (vector-ref ((cast map-vec
  14927. ((Any -> Any) (Vector Any Any) -> (Vector Any Any))
  14928. ((Integer -> Integer) (Vector Integer Integer)
  14929. -> (Vector Integer Integer)))
  14930. add1 (vector 0 41)) 1)
  14931. \end{lstlisting}
  14932. \caption{The polymorphic \code{map-vec} example after type erasure.}
  14933. \label{fig:map-vec-erase}
  14934. \end{figure}
  14935. This process of type erasure creates a challenge at points of
  14936. instantiation. For example, consider the instantiation of
  14937. \code{map-vec} in Figure~\ref{fig:map-vec-type-check}.
  14938. The type of \code{map-vec} is
  14939. \begin{lstlisting}
  14940. (All (a) ((a -> a) (Vector a a) -> (Vector a a)))
  14941. \end{lstlisting}
  14942. and it is instantiated to
  14943. \begin{lstlisting}
  14944. ((Integer -> Integer) (Vector Integer Integer)
  14945. -> (Vector Integer Integer))
  14946. \end{lstlisting}
  14947. After erasure, the type of \code{map-vec} is
  14948. \begin{lstlisting}
  14949. ((Any -> Any) (Vector Any Any) -> (Vector Any Any))
  14950. \end{lstlisting}
  14951. but we need to convert it to the instantiated type. This is easy to
  14952. do in the target language \LangCast{} with a single \code{cast}. In
  14953. Figure~\ref{fig:map-vec-erase}, the instantiation of \code{map-vec}
  14954. has been compiled to a \code{cast} from the type of \code{map-vec} to
  14955. the instantiated type. The source and target type of a cast must be
  14956. consistent (Figure~\ref{fig:consistent}), which indeed is the case
  14957. because both the source and target are obtained from the same
  14958. polymorphic type of \code{map-vec}, replacing the type parameters with
  14959. \code{Any} in the former and with the deduced type arguments in the
  14960. later. (Recall that the \code{Any} type is consistent with any type.)
  14961. To implement the \code{erase-types} pass, we recommend defining a
  14962. recursive auxiliary function named \code{erase-type} that applies the
  14963. following two transformations. It replaces type variables with
  14964. \code{Any}
  14965. \begin{lstlisting}
  14966. |$x$|
  14967. |$\Rightarrow$|
  14968. Any
  14969. \end{lstlisting}
  14970. and it removes the polymorphic \code{All} types.
  14971. \begin{lstlisting}
  14972. (All |$xs$| |$T_1$|)
  14973. |$\Rightarrow$|
  14974. |$T'_1$|
  14975. \end{lstlisting}
  14976. Apply the \code{erase-type} function to all of the type annotations in
  14977. the program.
  14978. Regarding the translation of expressions, the case for \code{Inst} is
  14979. the interesting one. We translate it into a \code{Cast}, as shown
  14980. below. The type of the subexpression $e$ is the polymorphic type
  14981. $\LP\key{All} xs T\RP$. The source type of the cast is the erasure of
  14982. $T$, the type $T'$. The target type $T''$ is the result of
  14983. substituting the arguments types $ts$ for the type parameters $xs$ in
  14984. $T$ followed by doing type erasure.
  14985. \begin{lstlisting}
  14986. (Inst |$e$| (All |$xs$| |$T$|) |$ts$|)
  14987. |$\Rightarrow$|
  14988. (Cast |$e'$| |$T'$| |$T''$|)
  14989. \end{lstlisting}
  14990. where $T'' = \LP\code{erase-type}~\LP\code{subst-type}~s~T\RP\RP$
  14991. and $s = \LP\code{map}~\code{cons}~xs~ts\RP$.
  14992. Finally, each polymorphic function is translated to a regular
  14993. functions in which type erasure has been applied to all the type
  14994. annotations and the body.
  14995. \begin{lstlisting}
  14996. (Poly |$ts$| (Def |$f$| ([|$x_1$| : |$T_1$|] |$\ldots$|) |$T_r$| |$\itm{info}$| |$e$|))
  14997. |$\Rightarrow$|
  14998. (Def |$f$| ([|$x_1$| : |$T'_1$|] |$\ldots$|) |$T'_r$| |$\itm{info}$| |$e'$|)
  14999. \end{lstlisting}
  15000. \begin{exercise}\normalfont
  15001. Implement a compiler for the polymorphic language \LangPoly{} by
  15002. extending and adapting your compiler for \LangGrad{}. Create 6 new test
  15003. programs that use polymorphic functions. Some of them should make
  15004. use of first-class polymorphism.
  15005. \end{exercise}
  15006. \begin{figure}[p]
  15007. \begin{tikzpicture}[baseline=(current bounding box.center)]
  15008. \node (Rpoly) at (9,4) {\large \LangPoly{}};
  15009. \node (Rpolyp) at (6,4) {\large \LangInst{}};
  15010. \node (Rgradualp) at (3,4) {\large \LangCast{}};
  15011. \node (Rwhilepp) at (0,4) {\large \LangProxy{}};
  15012. \node (Rwhileproxy) at (0,2) {\large \LangPVec{}};
  15013. \node (Rwhileproxy-2) at (3,2) {\large \LangPVec{}};
  15014. \node (Rwhileproxy-3) at (6,2) {\large \LangPVec{}};
  15015. \node (Rwhileproxy-4) at (9,2) {\large \LangPVecFunRef{}};
  15016. \node (Rwhileproxy-5) at (12,2) {\large \LangPVecFunRef{}};
  15017. \node (F1-1) at (12,0) {\large \LangPVecFunRef{}};
  15018. \node (F1-2) at (9,0) {\large \LangPVecFunRef{}};
  15019. \node (F1-3) at (6,0) {\large \LangPVecFunRef{}};
  15020. \node (F1-4) at (3,0) {\large \LangPVecAlloc{}};
  15021. \node (F1-5) at (0,0) {\large \LangPVecAlloc{}};
  15022. \node (C3-2) at (3,-2) {\large \LangCLoopPVec{}};
  15023. \node (x86-2) at (3,-4) {\large \LangXIndCallVar{}};
  15024. \node (x86-2-1) at (3,-6) {\large \LangXIndCallVar{}};
  15025. \node (x86-2-2) at (6,-6) {\large \LangXIndCallVar{}};
  15026. \node (x86-3) at (6,-4) {\large \LangXIndCallVar{}};
  15027. \node (x86-4) at (9,-4) {\large \LangXIndCall{}};
  15028. \node (x86-5) at (9,-6) {\large \LangXIndCall{}};
  15029. \path[->,bend right=15] (Rpoly) edge [above] node
  15030. {\ttfamily\footnotesize type-check} (Rpolyp);
  15031. \path[->,bend right=15] (Rpolyp) edge [above] node
  15032. {\ttfamily\footnotesize erase-types} (Rgradualp);
  15033. \path[->,bend right=15] (Rgradualp) edge [above] node
  15034. {\ttfamily\footnotesize lower-casts} (Rwhilepp);
  15035. \path[->,bend right=15] (Rwhilepp) edge [right] node
  15036. {\ttfamily\footnotesize differentiate-proxies} (Rwhileproxy);
  15037. \path[->,bend left=15] (Rwhileproxy) edge [above] node
  15038. {\ttfamily\footnotesize shrink} (Rwhileproxy-2);
  15039. \path[->,bend left=15] (Rwhileproxy-2) edge [above] node
  15040. {\ttfamily\footnotesize uniquify} (Rwhileproxy-3);
  15041. \path[->,bend left=15] (Rwhileproxy-3) edge [above] node
  15042. {\ttfamily\footnotesize reveal-functions} (Rwhileproxy-4);
  15043. \path[->,bend left=15] (Rwhileproxy-4) edge [above] node
  15044. {\ttfamily\footnotesize reveal-casts} (Rwhileproxy-5);
  15045. \path[->,bend left=15] (Rwhileproxy-5) edge [left] node
  15046. {\ttfamily\footnotesize convert-assignments} (F1-1);
  15047. \path[->,bend left=15] (F1-1) edge [below] node
  15048. {\ttfamily\footnotesize convert-to-clos.} (F1-2);
  15049. \path[->,bend right=15] (F1-2) edge [above] node
  15050. {\ttfamily\footnotesize limit-fun.} (F1-3);
  15051. \path[->,bend right=15] (F1-3) edge [above] node
  15052. {\ttfamily\footnotesize expose-alloc.} (F1-4);
  15053. \path[->,bend right=15] (F1-4) edge [above] node
  15054. {\ttfamily\footnotesize remove-complex.} (F1-5);
  15055. \path[->,bend right=15] (F1-5) edge [right] node
  15056. {\ttfamily\footnotesize explicate-control} (C3-2);
  15057. \path[->,bend left=15] (C3-2) edge [left] node
  15058. {\ttfamily\footnotesize select-instr.} (x86-2);
  15059. \path[->,bend right=15] (x86-2) edge [left] node
  15060. {\ttfamily\footnotesize uncover-live} (x86-2-1);
  15061. \path[->,bend right=15] (x86-2-1) edge [below] node
  15062. {\ttfamily\footnotesize build-inter.} (x86-2-2);
  15063. \path[->,bend right=15] (x86-2-2) edge [left] node
  15064. {\ttfamily\footnotesize allocate-reg.} (x86-3);
  15065. \path[->,bend left=15] (x86-3) edge [above] node
  15066. {\ttfamily\footnotesize patch-instr.} (x86-4);
  15067. \path[->,bend left=15] (x86-4) edge [right] node {\ttfamily\footnotesize print-x86} (x86-5);
  15068. \end{tikzpicture}
  15069. \caption{Diagram of the passes for \LangPoly{} (parametric polymorphism).}
  15070. \label{fig:Rpoly-passes}
  15071. \end{figure}
  15072. Figure~\ref{fig:Rpoly-passes} provides an overview of all the passes needed
  15073. for the compilation of \LangPoly{}.
  15074. % TODO: challenge problem: specialization of instantiations
  15075. % Further Reading
  15076. \fi
  15077. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  15078. \clearpage
  15079. \appendix
  15080. \chapter{Appendix}
  15081. \if\edition\racketEd
  15082. \section{Interpreters}
  15083. \label{appendix:interp}
  15084. \index{subject}{interpreter}
  15085. We provide interpreters for each of the source languages \LangInt{},
  15086. \LangVar{}, $\ldots$ in the files \code{interp\_Lint.rkt},
  15087. \code{interp-Lvar.rkt}, etc. The interpreters for the intermediate
  15088. languages \LangCVar{} and \LangCIf{} are in \code{interp-Cvar.rkt} and
  15089. \code{interp-C1.rkt}. The interpreters for \LangCVec{}, \LangCFun{}, pseudo-x86,
  15090. and x86 are in the \key{interp.rkt} file.
  15091. \section{Utility Functions}
  15092. \label{appendix:utilities}
  15093. The utility functions described in this section are in the
  15094. \key{utilities.rkt} file of the support code.
  15095. \paragraph{\code{interp-tests}}
  15096. The \key{interp-tests} function runs the compiler passes and the
  15097. interpreters on each of the specified tests to check whether each pass
  15098. is correct. The \key{interp-tests} function has the following
  15099. parameters:
  15100. \begin{description}
  15101. \item[name (a string)] a name to identify the compiler,
  15102. \item[typechecker] a function of exactly one argument that either
  15103. raises an error using the \code{error} function when it encounters a
  15104. type error, or returns \code{\#f} when it encounters a type
  15105. error. If there is no type error, the type checker returns the
  15106. program.
  15107. \item[passes] a list with one entry per pass. An entry is a list with
  15108. four things:
  15109. \begin{enumerate}
  15110. \item a string giving the name of the pass,
  15111. \item the function that implements the pass (a translator from AST
  15112. to AST),
  15113. \item a function that implements the interpreter (a function from
  15114. AST to result value) for the output language,
  15115. \item and a type checker for the output language. Type checkers for
  15116. the $R$ and $C$ languages are provided in the support code. For
  15117. example, the type checkers for \LangVar{} and \LangCVar{} are in
  15118. \code{type-check-Lvar.rkt} and \code{type-check-Cvar.rkt}. The
  15119. type checker entry is optional. The support code does not provide
  15120. type checkers for the x86 languages.
  15121. \end{enumerate}
  15122. \item[source-interp] an interpreter for the source language. The
  15123. interpreters from Appendix~\ref{appendix:interp} make a good choice.
  15124. \item[test-family (a string)] for example, \code{"r1"}, \code{"r2"}, etc.
  15125. \item[tests] a list of test numbers that specifies which tests to
  15126. run. (see below)
  15127. \end{description}
  15128. %
  15129. The \key{interp-tests} function assumes that the subdirectory
  15130. \key{tests} has a collection of Racket programs whose names all start
  15131. with the family name, followed by an underscore and then the test
  15132. number, ending with the file extension \key{.rkt}. Also, for each test
  15133. program that calls \code{read} one or more times, there is a file with
  15134. the same name except that the file extension is \key{.in} that
  15135. provides the input for the Racket program. If the test program is
  15136. expected to fail type checking, then there should be an empty file of
  15137. the same name but with extension \key{.tyerr}.
  15138. \paragraph{\code{compiler-tests}}
  15139. runs the compiler passes to generate x86 (a \key{.s} file) and then
  15140. runs the GNU C compiler (gcc) to generate machine code. It runs the
  15141. machine code and checks that the output is $42$. The parameters to the
  15142. \code{compiler-tests} function are similar to those of the
  15143. \code{interp-tests} function, and consist of
  15144. \begin{itemize}
  15145. \item a compiler name (a string),
  15146. \item a type checker,
  15147. \item description of the passes,
  15148. \item name of a test-family, and
  15149. \item a list of test numbers.
  15150. \end{itemize}
  15151. \paragraph{\code{compile-file}}
  15152. takes a description of the compiler passes (see the comment for
  15153. \key{interp-tests}) and returns a function that, given a program file
  15154. name (a string ending in \key{.rkt}), applies all of the passes and
  15155. writes the output to a file whose name is the same as the program file
  15156. name but with \key{.rkt} replaced with \key{.s}.
  15157. \paragraph{\code{read-program}}
  15158. takes a file path and parses that file (it must be a Racket program)
  15159. into an abstract syntax tree.
  15160. \paragraph{\code{parse-program}}
  15161. takes an S-expression representation of an abstract syntax tree and converts it into
  15162. the struct-based representation.
  15163. \paragraph{\code{assert}}
  15164. takes two parameters, a string (\code{msg}) and Boolean (\code{bool}),
  15165. and displays the message \key{msg} if the Boolean \key{bool} is false.
  15166. \paragraph{\code{lookup}}
  15167. % remove discussion of lookup? -Jeremy
  15168. takes a key and an alist, and returns the first value that is
  15169. associated with the given key, if there is one. If not, an error is
  15170. triggered. The alist may contain both immutable pairs (built with
  15171. \key{cons}) and mutable pairs (built with \key{mcons}).
  15172. %The \key{map2} function ...
  15173. \fi %\racketEd
  15174. \section{x86 Instruction Set Quick-Reference}
  15175. \label{sec:x86-quick-reference}
  15176. \index{subject}{x86}
  15177. Table~\ref{tab:x86-instr} lists some x86 instructions and what they
  15178. do. We write $A \to B$ to mean that the value of $A$ is written into
  15179. location $B$. Address offsets are given in bytes. The instruction
  15180. arguments $A, B, C$ can be immediate constants (such as \code{\$4}),
  15181. registers (such as \code{\%rax}), or memory references (such as
  15182. \code{-4(\%ebp)}). Most x86 instructions only allow at most one memory
  15183. reference per instruction. Other operands must be immediates or
  15184. registers.
  15185. \begin{table}[tbp]
  15186. \centering
  15187. \begin{tabular}{l|l}
  15188. \textbf{Instruction} & \textbf{Operation} \\ \hline
  15189. \texttt{addq} $A$, $B$ & $A + B \to B$\\
  15190. \texttt{negq} $A$ & $- A \to A$ \\
  15191. \texttt{subq} $A$, $B$ & $B - A \to B$\\
  15192. \texttt{imulq} $A$, $B$ & $A \times B \to B$\\
  15193. \texttt{callq} $L$ & Pushes the return address and jumps to label $L$ \\
  15194. \texttt{callq} \texttt{*}$A$ & Calls the function at the address $A$. \\
  15195. %\texttt{leave} & $\texttt{ebp} \to \texttt{esp};$ \texttt{popl \%ebp} \\
  15196. \texttt{retq} & Pops the return address and jumps to it \\
  15197. \texttt{popq} $A$ & $*\mathtt{rsp} \to A; \mathtt{rsp} + 8 \to \mathtt{rsp}$ \\
  15198. \texttt{pushq} $A$ & $\texttt{rsp} - 8 \to \texttt{rsp}; A \to *\texttt{rsp}$\\
  15199. \texttt{leaq} $A$,$B$ & $A \to B$ ($B$ must be a register) \\
  15200. \texttt{cmpq} $A$, $B$ & compare $A$ and $B$ and set the flag register ($B$ must not
  15201. be an immediate) \\
  15202. \texttt{je} $L$ & \multirow{5}{3.7in}{Jump to label $L$ if the flag register
  15203. matches the condition code of the instruction, otherwise go to the
  15204. next instructions. The condition codes are \key{e} for ``equal'',
  15205. \key{l} for ``less'', \key{le} for ``less or equal'', \key{g}
  15206. for ``greater'', and \key{ge} for ``greater or equal''.} \\
  15207. \texttt{jl} $L$ & \\
  15208. \texttt{jle} $L$ & \\
  15209. \texttt{jg} $L$ & \\
  15210. \texttt{jge} $L$ & \\
  15211. \texttt{jmp} $L$ & Jump to label $L$ \\
  15212. \texttt{movq} $A$, $B$ & $A \to B$ \\
  15213. \texttt{movzbq} $A$, $B$ &
  15214. \multirow{3}{3.7in}{$A \to B$, \text{where } $A$ is a single-byte register
  15215. (e.g., \texttt{al} or \texttt{cl}), $B$ is a 8-byte register,
  15216. and the extra bytes of $B$ are set to zero.} \\
  15217. & \\
  15218. & \\
  15219. \texttt{notq} $A$ & $\sim A \to A$ \qquad (bitwise complement)\\
  15220. \texttt{orq} $A$, $B$ & $A | B \to B$ \qquad (bitwise-or)\\
  15221. \texttt{andq} $A$, $B$ & $A \& B \to B$ \qquad (bitwise-and)\\
  15222. \texttt{salq} $A$, $B$ & $B$ \texttt{<<} $A \to B$ (arithmetic shift left, where $A$ is a constant)\\
  15223. \texttt{sarq} $A$, $B$ & $B$ \texttt{>>} $A \to B$ (arithmetic shift right, where $A$ is a constant)\\
  15224. \texttt{sete} $A$ & \multirow{5}{3.7in}{If the flag matches the condition code,
  15225. then $1 \to A$, else $0 \to A$. Refer to \texttt{je} above for the
  15226. description of the condition codes. $A$ must be a single byte register
  15227. (e.g., \texttt{al} or \texttt{cl}).} \\
  15228. \texttt{setl} $A$ & \\
  15229. \texttt{setle} $A$ & \\
  15230. \texttt{setg} $A$ & \\
  15231. \texttt{setge} $A$ &
  15232. \end{tabular}
  15233. \vspace{5pt}
  15234. \caption{Quick-reference for the x86 instructions used in this book.}
  15235. \label{tab:x86-instr}
  15236. \end{table}
  15237. \if\edition\racketEd
  15238. \cleardoublepage
  15239. \section{Concrete Syntax for Intermediate Languages}
  15240. The concrete syntax of \LangAny{} is defined in
  15241. Figure~\ref{fig:Rany-concrete-syntax}.
  15242. \begin{figure}[tp]
  15243. \centering
  15244. \fbox{
  15245. \begin{minipage}{0.97\textwidth}\small
  15246. \[
  15247. \begin{array}{lcl}
  15248. \Type &::=& \gray{\key{Integer} \MID \key{Boolean}
  15249. \MID \LP\key{Vector}\;\Type\ldots\RP \MID \key{Void}} \\
  15250. &\MID& \gray{\LP\Type\ldots \; \key{->}\; \Type\RP} \MID \key{Any} \\
  15251. \FType &::=& \key{Integer} \MID \key{Boolean} \MID \key{Void}
  15252. \MID \LP\key{Vector}\; \key{Any}\ldots\RP \\
  15253. &\MID& \LP\key{Any}\ldots \; \key{->}\; \key{Any}\RP\\
  15254. \Exp &::=& \ldots \CINJECT{\Exp}{\FType}\RP \MID \CPROJECT{\Exp}{\FType}\\
  15255. &\MID& \LP\key{any-vector-length}\;\Exp\RP
  15256. \MID \LP\key{any-vector-ref}\;\Exp\;\Exp\RP \\
  15257. &\MID& \LP\key{any-vector-set!}\;\Exp\;\Exp\;\Exp\RP\\
  15258. &\MID& \LP\key{boolean?}\;\Exp\RP \MID \LP\key{integer?}\;\Exp\RP
  15259. \MID \LP\key{void?}\;\Exp\RP \\
  15260. &\MID& \LP\key{vector?}\;\Exp\RP \MID \LP\key{procedure?}\;\Exp\RP \\
  15261. \Def &::=& \gray{ \CDEF{\Var}{\LS\Var \key{:} \Type\RS\ldots}{\Type}{\Exp} } \\
  15262. \LangAnyM{} &::=& \gray{\Def\ldots \; \Exp}
  15263. \end{array}
  15264. \]
  15265. \end{minipage}
  15266. }
  15267. \caption{The concrete syntax of \LangAny{}, extending \LangLam{}
  15268. (Figure~\ref{fig:Rlam-syntax}).}
  15269. \label{fig:Rany-concrete-syntax}
  15270. \end{figure}
  15271. The concrete syntax for \LangCVar{}, \LangCIf{}, \LangCVec{} and \LangCFun{} is
  15272. defined in Figures~\ref{fig:c0-concrete-syntax},
  15273. \ref{fig:c1-concrete-syntax}, \ref{fig:c2-concrete-syntax},
  15274. and \ref{fig:c3-concrete-syntax}, respectively.
  15275. \begin{figure}[tbp]
  15276. \fbox{
  15277. \begin{minipage}{0.96\textwidth}
  15278. \[
  15279. \begin{array}{lcl}
  15280. \Atm &::=& \Int \MID \Var \\
  15281. \Exp &::=& \Atm \MID \key{(read)} \MID \key{(-}~\Atm\key{)} \MID \key{(+}~\Atm~\Atm\key{)}\\
  15282. \Stmt &::=& \Var~\key{=}~\Exp\key{;} \\
  15283. \Tail &::= & \key{return}~\Exp\key{;} \MID \Stmt~\Tail \\
  15284. \LangCVarM{} & ::= & (\itm{label}\key{:}~ \Tail)\ldots
  15285. \end{array}
  15286. \]
  15287. \end{minipage}
  15288. }
  15289. \caption{The concrete syntax of the \LangCVar{} intermediate language.}
  15290. \label{fig:c0-concrete-syntax}
  15291. \end{figure}
  15292. \begin{figure}[tbp]
  15293. \fbox{
  15294. \begin{minipage}{0.96\textwidth}
  15295. \small
  15296. \[
  15297. \begin{array}{lcl}
  15298. \Atm &::=& \gray{ \Int \MID \Var } \MID \itm{bool} \\
  15299. \itm{cmp} &::= & \key{eq?} \MID \key{<} \\
  15300. \Exp &::=& \gray{ \Atm \MID \key{(read)} \MID \key{(-}~\Atm\key{)} \MID \key{(+}~\Atm~\Atm\key{)} } \\
  15301. &\MID& \LP \key{not}~\Atm \RP \MID \LP \itm{cmp}~\Atm~\Atm\RP \\
  15302. \Stmt &::=& \gray{ \Var~\key{=}~\Exp\key{;} } \\
  15303. \Tail &::= & \gray{ \key{return}~\Exp\key{;} \MID \Stmt~\Tail }
  15304. \MID \key{goto}~\itm{label}\key{;}\\
  15305. &\MID& \key{if}~\LP \itm{cmp}~\Atm~\Atm \RP~ \key{goto}~\itm{label}\key{;} ~\key{else}~\key{goto}~\itm{label}\key{;} \\
  15306. \LangCIfM{} & ::= & \gray{ (\itm{label}\key{:}~ \Tail)\ldots }
  15307. \end{array}
  15308. \]
  15309. \end{minipage}
  15310. }
  15311. \caption{The concrete syntax of the \LangCIf{} intermediate language.}
  15312. \label{fig:c1-concrete-syntax}
  15313. \end{figure}
  15314. \begin{figure}[tbp]
  15315. \fbox{
  15316. \begin{minipage}{0.96\textwidth}
  15317. \small
  15318. \[
  15319. \begin{array}{lcl}
  15320. \Atm &::=& \gray{ \Int \MID \Var \MID \itm{bool} } \\
  15321. \itm{cmp} &::= & \gray{ \key{eq?} \MID \key{<} } \\
  15322. \Exp &::=& \gray{ \Atm \MID \key{(read)} \MID \key{(-}~\Atm\key{)} \MID \key{(+}~\Atm~\Atm\key{)} } \\
  15323. &\MID& \gray{ \LP \key{not}~\Atm \RP \MID \LP \itm{cmp}~\Atm~\Atm\RP } \\
  15324. &\MID& \LP \key{allocate}~\Int~\Type \RP \\
  15325. &\MID& (\key{vector-ref}\;\Atm\;\Int) \MID (\key{vector-set!}\;\Atm\;\Int\;\Atm)\\
  15326. &\MID& \LP \key{global-value}~\Var \RP \MID \LP \key{void} \RP \\
  15327. \Stmt &::=& \gray{ \Var~\key{=}~\Exp\key{;} } \MID \LP\key{collect}~\Int \RP\\
  15328. \Tail &::= & \gray{ \key{return}~\Exp\key{;} \MID \Stmt~\Tail }
  15329. \MID \gray{ \key{goto}~\itm{label}\key{;} }\\
  15330. &\MID& \gray{ \key{if}~\LP \itm{cmp}~\Atm~\Atm \RP~ \key{goto}~\itm{label}\key{;} ~\key{else}~\key{goto}~\itm{label}\key{;} } \\
  15331. \LangCVecM{} & ::= & \gray{ (\itm{label}\key{:}~ \Tail)\ldots }
  15332. \end{array}
  15333. \]
  15334. \end{minipage}
  15335. }
  15336. \caption{The concrete syntax of the \LangCVec{} intermediate language.}
  15337. \label{fig:c2-concrete-syntax}
  15338. \end{figure}
  15339. \begin{figure}[tp]
  15340. \fbox{
  15341. \begin{minipage}{0.96\textwidth}
  15342. \small
  15343. \[
  15344. \begin{array}{lcl}
  15345. \Atm &::=& \gray{ \Int \MID \Var \MID \key{\#t} \MID \key{\#f} }
  15346. \\
  15347. \itm{cmp} &::= & \gray{ \key{eq?} \MID \key{<} } \\
  15348. \Exp &::= & \gray{ \Atm \MID \LP\key{read}\RP \MID \LP\key{-}\;\Atm\RP \MID \LP\key{+} \; \Atm\;\Atm\RP
  15349. \MID \LP\key{not}\;\Atm\RP \MID \LP\itm{cmp}\;\Atm\;\Atm\RP } \\
  15350. &\MID& \gray{ \LP\key{allocate}\,\Int\,\Type\RP
  15351. \MID \LP\key{vector-ref}\, \Atm\, \Int\RP } \\
  15352. &\MID& \gray{ \LP\key{vector-set!}\,\Atm\,\Int\,\Atm\RP \MID \LP\key{global-value} \,\itm{name}\RP \MID \LP\key{void}\RP } \\
  15353. &\MID& \LP\key{fun-ref}~\itm{label}\RP \MID \LP\key{call} \,\Atm\,\Atm\ldots\RP \\
  15354. \Stmt &::=& \gray{ \ASSIGN{\Var}{\Exp} \MID \RETURN{\Exp}
  15355. \MID \LP\key{collect} \,\itm{int}\RP }\\
  15356. \Tail &::= & \gray{\RETURN{\Exp} \MID \LP\key{seq}\;\Stmt\;\Tail\RP} \\
  15357. &\MID& \gray{\LP\key{goto}\,\itm{label}\RP
  15358. \MID \IF{\LP\itm{cmp}\, \Atm\,\Atm\RP}{\LP\key{goto}\,\itm{label}\RP}{\LP\key{goto}\,\itm{label}\RP}} \\
  15359. &\MID& \LP\key{tail-call}\,\Atm\,\Atm\ldots\RP \\
  15360. \Def &::=& \LP\key{define}\; \LP\itm{label} \; [\Var \key{:} \Type]\ldots\RP \key{:} \Type \; \LP\LP\itm{label}\,\key{.}\,\Tail\RP\ldots\RP\RP \\
  15361. \LangCFunM{} & ::= & \Def\ldots
  15362. \end{array}
  15363. \]
  15364. \end{minipage}
  15365. }
  15366. \caption{The \LangCFun{} language, extending \LangCVec{} (Figure~\ref{fig:c2-concrete-syntax}) with functions.}
  15367. \label{fig:c3-concrete-syntax}
  15368. \end{figure}
  15369. \fi % racketEd
  15370. \backmatter
  15371. \addtocontents{toc}{\vspace{11pt}}
  15372. %% \addtocontents{toc}{\vspace{11pt}}
  15373. %% \nocite{*} is a way to get all the entries in the .bib file to print in the bibliography:
  15374. \nocite{*}\let\bibname\refname
  15375. \addcontentsline{toc}{fmbm}{\refname}
  15376. \printbibliography
  15377. \printindex{authors}{Author Index}
  15378. \printindex{subject}{Subject Index}
  15379. \end{document}
  15380. % LocalWords: Nano Siek CC NC ISBN wonks wizardry Backus nanopasses
  15381. % LocalWords: dataflow nx generics autoboxing Hulman Ch CO Dybvig aa
  15382. % LocalWords: Abelson uq Felleisen Flatt Lutz vp vj Sweigart vn Matz
  15383. % LocalWords: Matthes github gcc MacOS Chez Friedman's Dipanwita fk
  15384. % LocalWords: Sarkar Dybvig's Abdulaziz Ghuloum bh IU Factora Bor qf
  15385. % LocalWords: Cameron Kuhlenschmidt Vollmer Vitousek Yuh Nystrom AST
  15386. % LocalWords: Tolmach Wollowski ASTs Aho ast struct int backquote op
  15387. % LocalWords: args neg def init UnaryOp USub func BinOp Naur BNF rkt
  15388. % LocalWords: fixnum datatype structure's arith exp stmt Num Expr tr
  15389. % LocalWords: plt PSF ref CPython cpython reynolds interp cond fx pe
  15390. % LocalWords: arg Hitchhiker's TODO nullary Lvar Lif cnd thn var sam
  15391. % LocalWords: IfExp Bool InterpLvar InterpLif InterpRVar alist jane
  15392. % LocalWords: basicstyle kate dict alists env stmts ss len lhs globl
  15393. % LocalWords: rsp rbp rax rbx rcx rdx rsi rdi movq retq callq jmp es
  15394. % LocalWords: pushq subq popq negq addq arity uniquify Cvar instr cg
  15395. % LocalWords: Seq CProgram gensym lib Fprivate Flist tmp ANF Danvy
  15396. % LocalWords: rco Flists py rhs unhandled cont immediates lstlisting
  15397. % LocalWords: numberstyle Cormen Sudoku Balakrishnan ve aka DSATUR
  15398. % LocalWords: Brelaz eu Gebremedhin Omari deletekeywords min JGS
  15399. % LocalWords: morekeywords fullflexible