book.tex 510 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137613861396140614161426143614461456146614761486149615061516152615361546155615661576158615961606161616261636164616561666167616861696170617161726173617461756176617761786179618061816182618361846185618661876188618961906191619261936194619561966197619861996200620162026203620462056206620762086209621062116212621362146215621662176218621962206221622262236224622562266227622862296230623162326233623462356236623762386239624062416242624362446245624662476248624962506251625262536254625562566257625862596260626162626263626462656266626762686269627062716272627362746275627662776278627962806281628262836284628562866287628862896290629162926293629462956296629762986299630063016302630363046305630663076308630963106311631263136314631563166317631863196320632163226323632463256326632763286329633063316332633363346335633663376338633963406341634263436344634563466347634863496350635163526353635463556356635763586359636063616362636363646365636663676368636963706371637263736374637563766377637863796380638163826383638463856386638763886389639063916392639363946395639663976398639964006401640264036404640564066407640864096410641164126413641464156416641764186419642064216422642364246425642664276428642964306431643264336434643564366437643864396440644164426443644464456446644764486449645064516452645364546455645664576458645964606461646264636464646564666467646864696470647164726473647464756476647764786479648064816482648364846485648664876488648964906491649264936494649564966497649864996500650165026503650465056506650765086509651065116512651365146515651665176518651965206521652265236524652565266527652865296530653165326533653465356536653765386539654065416542654365446545654665476548654965506551655265536554655565566557655865596560656165626563656465656566656765686569657065716572657365746575657665776578657965806581658265836584658565866587658865896590659165926593659465956596659765986599660066016602660366046605660666076608660966106611661266136614661566166617661866196620662166226623662466256626662766286629663066316632663366346635663666376638663966406641664266436644664566466647664866496650665166526653665466556656665766586659666066616662666366646665666666676668666966706671667266736674667566766677667866796680668166826683668466856686668766886689669066916692669366946695669666976698669967006701670267036704670567066707670867096710671167126713671467156716671767186719672067216722672367246725672667276728672967306731673267336734673567366737673867396740674167426743674467456746674767486749675067516752675367546755675667576758675967606761676267636764676567666767676867696770677167726773677467756776677767786779678067816782678367846785678667876788678967906791679267936794679567966797679867996800680168026803680468056806680768086809681068116812681368146815681668176818681968206821682268236824682568266827682868296830683168326833683468356836683768386839684068416842684368446845684668476848684968506851685268536854685568566857685868596860686168626863686468656866686768686869687068716872687368746875687668776878687968806881688268836884688568866887688868896890689168926893689468956896689768986899690069016902690369046905690669076908690969106911691269136914691569166917691869196920692169226923692469256926692769286929693069316932693369346935693669376938693969406941694269436944694569466947694869496950695169526953695469556956695769586959696069616962696369646965696669676968696969706971697269736974697569766977697869796980698169826983698469856986698769886989699069916992699369946995699669976998699970007001700270037004700570067007700870097010701170127013701470157016701770187019702070217022702370247025702670277028702970307031703270337034703570367037703870397040704170427043704470457046704770487049705070517052705370547055705670577058705970607061706270637064706570667067706870697070707170727073707470757076707770787079708070817082708370847085708670877088708970907091709270937094709570967097709870997100710171027103710471057106710771087109711071117112711371147115711671177118711971207121712271237124712571267127712871297130713171327133713471357136713771387139714071417142714371447145714671477148714971507151715271537154715571567157715871597160716171627163716471657166716771687169717071717172717371747175717671777178717971807181718271837184718571867187718871897190719171927193719471957196719771987199720072017202720372047205720672077208720972107211721272137214721572167217721872197220722172227223722472257226722772287229723072317232723372347235723672377238723972407241724272437244724572467247724872497250725172527253725472557256725772587259726072617262726372647265726672677268726972707271727272737274727572767277727872797280728172827283728472857286728772887289729072917292729372947295729672977298729973007301730273037304730573067307730873097310731173127313731473157316731773187319732073217322732373247325732673277328732973307331733273337334733573367337733873397340734173427343734473457346734773487349735073517352735373547355735673577358735973607361736273637364736573667367736873697370737173727373737473757376737773787379738073817382738373847385738673877388738973907391739273937394739573967397739873997400740174027403740474057406740774087409741074117412741374147415741674177418741974207421742274237424742574267427742874297430743174327433743474357436743774387439744074417442744374447445744674477448744974507451745274537454745574567457745874597460746174627463746474657466746774687469747074717472747374747475747674777478747974807481748274837484748574867487748874897490749174927493749474957496749774987499750075017502750375047505750675077508750975107511751275137514751575167517751875197520752175227523752475257526752775287529753075317532753375347535753675377538753975407541754275437544754575467547754875497550755175527553755475557556755775587559756075617562756375647565756675677568756975707571757275737574757575767577757875797580758175827583758475857586758775887589759075917592759375947595759675977598759976007601760276037604760576067607760876097610761176127613761476157616761776187619762076217622762376247625762676277628762976307631763276337634763576367637763876397640764176427643764476457646764776487649765076517652765376547655765676577658765976607661766276637664766576667667766876697670767176727673767476757676767776787679768076817682768376847685768676877688768976907691769276937694769576967697769876997700770177027703770477057706770777087709771077117712771377147715771677177718771977207721772277237724772577267727772877297730773177327733773477357736773777387739774077417742774377447745774677477748774977507751775277537754775577567757775877597760776177627763776477657766776777687769777077717772777377747775777677777778777977807781778277837784778577867787778877897790779177927793779477957796779777987799780078017802780378047805780678077808780978107811781278137814781578167817781878197820782178227823782478257826782778287829783078317832783378347835783678377838783978407841784278437844784578467847784878497850785178527853785478557856785778587859786078617862786378647865786678677868786978707871787278737874787578767877787878797880788178827883788478857886788778887889789078917892789378947895789678977898789979007901790279037904790579067907790879097910791179127913791479157916791779187919792079217922792379247925792679277928792979307931793279337934793579367937793879397940794179427943794479457946794779487949795079517952795379547955795679577958795979607961796279637964796579667967796879697970797179727973797479757976797779787979798079817982798379847985798679877988798979907991799279937994799579967997799879998000800180028003800480058006800780088009801080118012801380148015801680178018801980208021802280238024802580268027802880298030803180328033803480358036803780388039804080418042804380448045804680478048804980508051805280538054805580568057805880598060806180628063806480658066806780688069807080718072807380748075807680778078807980808081808280838084808580868087808880898090809180928093809480958096809780988099810081018102810381048105810681078108810981108111811281138114811581168117811881198120812181228123812481258126812781288129813081318132813381348135813681378138813981408141814281438144814581468147814881498150815181528153815481558156815781588159816081618162816381648165816681678168816981708171817281738174817581768177817881798180818181828183818481858186818781888189819081918192819381948195819681978198819982008201820282038204820582068207820882098210821182128213821482158216821782188219822082218222822382248225822682278228822982308231823282338234823582368237823882398240824182428243824482458246824782488249825082518252825382548255825682578258825982608261826282638264826582668267826882698270827182728273827482758276827782788279828082818282828382848285828682878288828982908291829282938294829582968297829882998300830183028303830483058306830783088309831083118312831383148315831683178318831983208321832283238324832583268327832883298330833183328333833483358336833783388339834083418342834383448345834683478348834983508351835283538354835583568357835883598360836183628363836483658366836783688369837083718372837383748375837683778378837983808381838283838384838583868387838883898390839183928393839483958396839783988399840084018402840384048405840684078408840984108411841284138414841584168417841884198420842184228423842484258426842784288429843084318432843384348435843684378438843984408441844284438444844584468447844884498450845184528453845484558456845784588459846084618462846384648465846684678468846984708471847284738474847584768477847884798480848184828483848484858486848784888489849084918492849384948495849684978498849985008501850285038504850585068507850885098510851185128513851485158516851785188519852085218522852385248525852685278528852985308531853285338534853585368537853885398540854185428543854485458546854785488549855085518552855385548555855685578558855985608561856285638564856585668567856885698570857185728573857485758576857785788579858085818582858385848585858685878588858985908591859285938594859585968597859885998600860186028603860486058606860786088609861086118612861386148615861686178618861986208621862286238624862586268627862886298630863186328633863486358636863786388639864086418642864386448645864686478648864986508651865286538654865586568657865886598660866186628663866486658666866786688669867086718672867386748675867686778678867986808681868286838684868586868687868886898690869186928693869486958696869786988699870087018702870387048705870687078708870987108711871287138714871587168717871887198720872187228723872487258726872787288729873087318732873387348735873687378738873987408741874287438744874587468747874887498750875187528753875487558756875787588759876087618762876387648765876687678768876987708771877287738774877587768777877887798780878187828783878487858786878787888789879087918792879387948795879687978798879988008801880288038804880588068807880888098810881188128813881488158816881788188819882088218822882388248825882688278828882988308831883288338834883588368837883888398840884188428843884488458846884788488849885088518852885388548855885688578858885988608861886288638864886588668867886888698870887188728873887488758876887788788879888088818882888388848885888688878888888988908891889288938894889588968897889888998900890189028903890489058906890789088909891089118912891389148915891689178918891989208921892289238924892589268927892889298930893189328933893489358936893789388939894089418942894389448945894689478948894989508951895289538954895589568957895889598960896189628963896489658966896789688969897089718972897389748975897689778978897989808981898289838984898589868987898889898990899189928993899489958996899789988999900090019002900390049005900690079008900990109011901290139014901590169017901890199020902190229023902490259026902790289029903090319032903390349035903690379038903990409041904290439044904590469047904890499050905190529053905490559056905790589059906090619062906390649065906690679068906990709071907290739074907590769077907890799080908190829083908490859086908790889089909090919092909390949095909690979098909991009101910291039104910591069107910891099110911191129113911491159116911791189119912091219122912391249125912691279128912991309131913291339134913591369137913891399140914191429143914491459146914791489149915091519152915391549155915691579158915991609161916291639164916591669167916891699170917191729173917491759176917791789179918091819182918391849185918691879188918991909191919291939194919591969197919891999200920192029203920492059206920792089209921092119212921392149215921692179218921992209221922292239224922592269227922892299230923192329233923492359236923792389239924092419242924392449245924692479248924992509251925292539254925592569257925892599260926192629263926492659266926792689269927092719272927392749275927692779278927992809281928292839284928592869287928892899290929192929293929492959296929792989299930093019302930393049305930693079308930993109311931293139314931593169317931893199320932193229323932493259326932793289329933093319332933393349335933693379338933993409341934293439344934593469347934893499350935193529353935493559356935793589359936093619362936393649365936693679368936993709371937293739374937593769377937893799380938193829383938493859386938793889389939093919392939393949395939693979398939994009401940294039404940594069407940894099410941194129413941494159416941794189419942094219422942394249425942694279428942994309431943294339434943594369437943894399440944194429443944494459446944794489449945094519452945394549455945694579458945994609461946294639464946594669467946894699470947194729473947494759476947794789479948094819482948394849485948694879488948994909491949294939494949594969497949894999500950195029503950495059506950795089509951095119512951395149515951695179518951995209521952295239524952595269527952895299530953195329533953495359536953795389539954095419542954395449545954695479548954995509551955295539554955595569557955895599560956195629563956495659566956795689569957095719572957395749575957695779578957995809581958295839584958595869587958895899590959195929593959495959596959795989599960096019602960396049605960696079608960996109611961296139614961596169617961896199620962196229623962496259626962796289629963096319632963396349635963696379638963996409641964296439644964596469647964896499650965196529653965496559656965796589659966096619662966396649665966696679668966996709671967296739674967596769677967896799680968196829683968496859686968796889689969096919692969396949695969696979698969997009701970297039704970597069707970897099710971197129713971497159716971797189719972097219722972397249725972697279728972997309731973297339734973597369737973897399740974197429743974497459746974797489749975097519752975397549755975697579758975997609761976297639764976597669767976897699770977197729773977497759776977797789779978097819782978397849785978697879788978997909791979297939794979597969797979897999800980198029803980498059806980798089809981098119812981398149815981698179818981998209821982298239824982598269827982898299830983198329833983498359836983798389839984098419842984398449845984698479848984998509851985298539854985598569857985898599860986198629863986498659866986798689869987098719872987398749875987698779878987998809881988298839884988598869887988898899890989198929893989498959896989798989899990099019902990399049905990699079908990999109911991299139914991599169917991899199920992199229923992499259926992799289929993099319932993399349935993699379938993999409941994299439944994599469947994899499950995199529953995499559956995799589959996099619962996399649965996699679968996999709971997299739974997599769977997899799980998199829983998499859986998799889989999099919992999399949995999699979998999910000100011000210003100041000510006100071000810009100101001110012100131001410015100161001710018100191002010021100221002310024100251002610027100281002910030100311003210033100341003510036100371003810039100401004110042100431004410045100461004710048100491005010051100521005310054100551005610057100581005910060100611006210063100641006510066100671006810069100701007110072100731007410075100761007710078100791008010081100821008310084100851008610087100881008910090100911009210093100941009510096100971009810099101001010110102101031010410105101061010710108101091011010111101121011310114101151011610117101181011910120101211012210123101241012510126101271012810129101301013110132101331013410135101361013710138101391014010141101421014310144101451014610147101481014910150101511015210153101541015510156101571015810159101601016110162101631016410165101661016710168101691017010171101721017310174101751017610177101781017910180101811018210183101841018510186101871018810189101901019110192101931019410195101961019710198101991020010201102021020310204102051020610207102081020910210102111021210213102141021510216102171021810219102201022110222102231022410225102261022710228102291023010231102321023310234102351023610237102381023910240102411024210243102441024510246102471024810249102501025110252102531025410255102561025710258102591026010261102621026310264102651026610267102681026910270102711027210273102741027510276102771027810279102801028110282102831028410285102861028710288102891029010291102921029310294102951029610297102981029910300103011030210303103041030510306103071030810309103101031110312103131031410315103161031710318103191032010321103221032310324103251032610327103281032910330103311033210333103341033510336103371033810339103401034110342103431034410345103461034710348103491035010351103521035310354103551035610357103581035910360103611036210363103641036510366103671036810369103701037110372103731037410375103761037710378103791038010381103821038310384103851038610387103881038910390103911039210393103941039510396103971039810399104001040110402104031040410405104061040710408104091041010411104121041310414104151041610417104181041910420104211042210423104241042510426104271042810429104301043110432104331043410435104361043710438104391044010441104421044310444104451044610447104481044910450104511045210453104541045510456104571045810459104601046110462104631046410465104661046710468104691047010471104721047310474104751047610477104781047910480104811048210483104841048510486104871048810489104901049110492104931049410495104961049710498104991050010501105021050310504105051050610507105081050910510105111051210513105141051510516105171051810519105201052110522105231052410525105261052710528105291053010531105321053310534105351053610537105381053910540105411054210543105441054510546105471054810549105501055110552105531055410555105561055710558105591056010561105621056310564105651056610567105681056910570105711057210573105741057510576105771057810579105801058110582105831058410585105861058710588105891059010591105921059310594105951059610597105981059910600106011060210603106041060510606106071060810609106101061110612106131061410615106161061710618106191062010621106221062310624106251062610627106281062910630106311063210633106341063510636106371063810639106401064110642106431064410645106461064710648106491065010651106521065310654106551065610657106581065910660106611066210663106641066510666106671066810669106701067110672106731067410675106761067710678106791068010681106821068310684106851068610687106881068910690106911069210693106941069510696106971069810699107001070110702107031070410705107061070710708107091071010711107121071310714107151071610717107181071910720107211072210723107241072510726107271072810729107301073110732107331073410735107361073710738107391074010741107421074310744107451074610747107481074910750107511075210753107541075510756107571075810759107601076110762107631076410765107661076710768107691077010771107721077310774107751077610777107781077910780107811078210783107841078510786107871078810789107901079110792107931079410795107961079710798107991080010801108021080310804108051080610807108081080910810108111081210813108141081510816108171081810819108201082110822108231082410825108261082710828108291083010831108321083310834108351083610837108381083910840108411084210843108441084510846108471084810849108501085110852108531085410855108561085710858108591086010861108621086310864108651086610867108681086910870108711087210873108741087510876108771087810879108801088110882108831088410885108861088710888108891089010891108921089310894108951089610897108981089910900109011090210903109041090510906109071090810909109101091110912109131091410915109161091710918109191092010921109221092310924109251092610927109281092910930109311093210933109341093510936109371093810939109401094110942109431094410945109461094710948109491095010951109521095310954109551095610957109581095910960109611096210963109641096510966109671096810969109701097110972109731097410975109761097710978109791098010981109821098310984109851098610987109881098910990109911099210993109941099510996109971099810999110001100111002110031100411005110061100711008110091101011011110121101311014110151101611017110181101911020110211102211023110241102511026110271102811029110301103111032110331103411035110361103711038110391104011041110421104311044110451104611047110481104911050110511105211053110541105511056110571105811059110601106111062110631106411065110661106711068110691107011071110721107311074110751107611077110781107911080110811108211083110841108511086110871108811089110901109111092110931109411095110961109711098110991110011101111021110311104111051110611107111081110911110111111111211113111141111511116111171111811119111201112111122111231112411125111261112711128111291113011131111321113311134111351113611137111381113911140111411114211143111441114511146111471114811149111501115111152111531115411155111561115711158111591116011161111621116311164111651116611167111681116911170111711117211173111741117511176111771117811179111801118111182111831118411185111861118711188111891119011191111921119311194111951119611197111981119911200112011120211203112041120511206112071120811209112101121111212112131121411215112161121711218112191122011221112221122311224112251122611227112281122911230112311123211233112341123511236112371123811239112401124111242112431124411245112461124711248112491125011251112521125311254112551125611257112581125911260112611126211263112641126511266112671126811269112701127111272112731127411275112761127711278112791128011281112821128311284112851128611287112881128911290112911129211293112941129511296112971129811299113001130111302113031130411305113061130711308113091131011311113121131311314113151131611317113181131911320113211132211323113241132511326113271132811329113301133111332113331133411335113361133711338113391134011341113421134311344113451134611347113481134911350113511135211353113541135511356113571135811359113601136111362113631136411365113661136711368113691137011371113721137311374113751137611377113781137911380113811138211383113841138511386113871138811389113901139111392113931139411395113961139711398113991140011401114021140311404114051140611407114081140911410114111141211413114141141511416114171141811419114201142111422114231142411425114261142711428114291143011431114321143311434114351143611437114381143911440114411144211443114441144511446114471144811449114501145111452114531145411455114561145711458114591146011461114621146311464114651146611467114681146911470114711147211473114741147511476114771147811479114801148111482114831148411485114861148711488114891149011491114921149311494114951149611497114981149911500115011150211503115041150511506115071150811509115101151111512115131151411515115161151711518115191152011521115221152311524115251152611527115281152911530115311153211533115341153511536115371153811539115401154111542115431154411545115461154711548115491155011551115521155311554115551155611557115581155911560115611156211563115641156511566115671156811569115701157111572115731157411575115761157711578115791158011581115821158311584115851158611587115881158911590115911159211593115941159511596115971159811599116001160111602116031160411605116061160711608116091161011611116121161311614116151161611617116181161911620116211162211623116241162511626116271162811629116301163111632116331163411635116361163711638116391164011641116421164311644116451164611647116481164911650116511165211653116541165511656116571165811659116601166111662116631166411665116661166711668116691167011671116721167311674116751167611677116781167911680116811168211683116841168511686116871168811689116901169111692116931169411695116961169711698116991170011701117021170311704117051170611707117081170911710117111171211713117141171511716117171171811719117201172111722117231172411725117261172711728117291173011731117321173311734117351173611737117381173911740117411174211743117441174511746117471174811749117501175111752117531175411755117561175711758117591176011761117621176311764117651176611767117681176911770117711177211773117741177511776117771177811779117801178111782117831178411785117861178711788117891179011791117921179311794117951179611797117981179911800118011180211803118041180511806118071180811809118101181111812118131181411815118161181711818118191182011821118221182311824118251182611827118281182911830118311183211833118341183511836118371183811839118401184111842118431184411845118461184711848118491185011851118521185311854118551185611857118581185911860118611186211863118641186511866118671186811869118701187111872118731187411875118761187711878118791188011881118821188311884118851188611887118881188911890118911189211893118941189511896118971189811899119001190111902119031190411905119061190711908119091191011911119121191311914119151191611917119181191911920119211192211923119241192511926119271192811929119301193111932119331193411935119361193711938119391194011941119421194311944119451194611947119481194911950119511195211953119541195511956119571195811959119601196111962119631196411965119661196711968119691197011971119721197311974119751197611977119781197911980119811198211983119841198511986119871198811989119901199111992119931199411995119961199711998119991200012001120021200312004120051200612007120081200912010120111201212013120141201512016120171201812019120201202112022120231202412025120261202712028120291203012031120321203312034120351203612037120381203912040120411204212043120441204512046120471204812049120501205112052120531205412055120561205712058120591206012061120621206312064120651206612067120681206912070120711207212073120741207512076120771207812079120801208112082120831208412085120861208712088120891209012091120921209312094120951209612097120981209912100121011210212103121041210512106121071210812109121101211112112121131211412115121161211712118121191212012121121221212312124121251212612127121281212912130121311213212133121341213512136121371213812139121401214112142121431214412145121461214712148121491215012151121521215312154121551215612157121581215912160121611216212163121641216512166121671216812169121701217112172121731217412175121761217712178121791218012181121821218312184121851218612187121881218912190121911219212193121941219512196121971219812199122001220112202122031220412205122061220712208122091221012211122121221312214122151221612217122181221912220122211222212223122241222512226122271222812229122301223112232122331223412235122361223712238122391224012241122421224312244122451224612247122481224912250122511225212253122541225512256122571225812259122601226112262122631226412265122661226712268122691227012271122721227312274122751227612277122781227912280122811228212283122841228512286122871228812289122901229112292122931229412295122961229712298122991230012301123021230312304123051230612307123081230912310123111231212313123141231512316123171231812319123201232112322123231232412325123261232712328123291233012331123321233312334123351233612337123381233912340123411234212343123441234512346123471234812349123501235112352123531235412355123561235712358123591236012361123621236312364123651236612367123681236912370123711237212373123741237512376123771237812379123801238112382123831238412385123861238712388123891239012391123921239312394123951239612397123981239912400124011240212403124041240512406124071240812409124101241112412124131241412415124161241712418124191242012421124221242312424124251242612427124281242912430124311243212433124341243512436124371243812439124401244112442124431244412445124461244712448124491245012451124521245312454124551245612457124581245912460124611246212463124641246512466124671246812469124701247112472124731247412475124761247712478124791248012481124821248312484124851248612487124881248912490124911249212493124941249512496124971249812499125001250112502125031250412505125061250712508125091251012511125121251312514125151251612517125181251912520125211252212523125241252512526125271252812529125301253112532125331253412535125361253712538125391254012541125421254312544125451254612547125481254912550125511255212553125541255512556125571255812559125601256112562125631256412565125661256712568125691257012571125721257312574125751257612577125781257912580125811258212583125841258512586125871258812589125901259112592125931259412595125961259712598125991260012601126021260312604126051260612607126081260912610126111261212613126141261512616126171261812619126201262112622126231262412625126261262712628126291263012631126321263312634126351263612637126381263912640126411264212643126441264512646126471264812649126501265112652126531265412655126561265712658126591266012661126621266312664126651266612667126681266912670126711267212673126741267512676126771267812679126801268112682126831268412685126861268712688126891269012691126921269312694126951269612697126981269912700127011270212703127041270512706127071270812709127101271112712127131271412715127161271712718127191272012721127221272312724127251272612727127281272912730127311273212733127341273512736127371273812739127401274112742127431274412745127461274712748127491275012751127521275312754127551275612757127581275912760127611276212763127641276512766127671276812769127701277112772127731277412775127761277712778127791278012781127821278312784127851278612787127881278912790127911279212793127941279512796127971279812799128001280112802128031280412805128061280712808128091281012811128121281312814128151281612817128181281912820128211282212823128241282512826128271282812829128301283112832128331283412835128361283712838128391284012841128421284312844128451284612847128481284912850128511285212853128541285512856128571285812859128601286112862128631286412865128661286712868128691287012871128721287312874128751287612877128781287912880128811288212883128841288512886128871288812889128901289112892128931289412895128961289712898128991290012901129021290312904129051290612907129081290912910129111291212913129141291512916129171291812919129201292112922129231292412925129261292712928129291293012931129321293312934129351293612937129381293912940129411294212943129441294512946129471294812949129501295112952129531295412955129561295712958129591296012961129621296312964129651296612967129681296912970129711297212973129741297512976129771297812979129801298112982129831298412985129861298712988129891299012991129921299312994129951299612997129981299913000130011300213003130041300513006130071300813009130101301113012130131301413015130161301713018130191302013021130221302313024130251302613027130281302913030130311303213033130341303513036130371303813039130401304113042130431304413045130461304713048130491305013051130521305313054130551305613057130581305913060130611306213063130641306513066130671306813069130701307113072130731307413075130761307713078130791308013081130821308313084130851308613087130881308913090130911309213093130941309513096130971309813099131001310113102131031310413105131061310713108131091311013111131121311313114131151311613117131181311913120131211312213123131241312513126131271312813129131301313113132131331313413135131361313713138131391314013141131421314313144131451314613147131481314913150131511315213153131541315513156131571315813159131601316113162131631316413165131661316713168131691317013171131721317313174131751317613177
  1. % Why direct style instead of continuation passing style?
  2. %% Student project ideas:
  3. %% * high-level optimizations like procedure inlining, etc.
  4. %% * closure optimization
  5. %% * adding letrec to the language
  6. %% (Thought: in the book and regular course, replace top-level defines
  7. %% with letrec.)
  8. %% * alternative back ends (ARM!, LLVM)
  9. %% * alternative calling convention (a la Dybvig)
  10. %% * lazy evaluation
  11. %% * continuations (frames in heap a la SML or segmented stack a la Dybvig)
  12. %% * exceptions
  13. %% * self hosting
  14. %% * I/O
  15. %% * foreign function interface
  16. %% * quasi-quote and unquote
  17. %% * macros (too difficult?)
  18. %% * alternative garbage collector
  19. %% * alternative register allocator
  20. %% * type classes
  21. %% * loop optimization (fusion, etc.)
  22. %% * deforestation
  23. %% * records with subtyping
  24. %% * object-oriented features
  25. %% - objects, object types, and structural subtyping (e.g. Abadi & Cardelli)
  26. %% - class-based objects and nominal subtyping (e.g. Featherweight Java)
  27. %% * multi-threading, fork join, futures, implicit parallelism
  28. %% * type analysis and specialization
  29. \documentclass[11pt]{book}
  30. \usepackage[T1]{fontenc}
  31. \usepackage[utf8]{inputenc}
  32. \usepackage{lmodern}
  33. \usepackage{hyperref}
  34. \usepackage{graphicx}
  35. \usepackage[english]{babel}
  36. \usepackage{listings}
  37. \usepackage{amsmath}
  38. \usepackage{amsthm}
  39. \usepackage{amssymb}
  40. \usepackage[numbers]{natbib}
  41. \usepackage{stmaryrd}
  42. \usepackage{xypic}
  43. \usepackage{semantic}
  44. \usepackage{wrapfig}
  45. \usepackage{tcolorbox}
  46. \usepackage{multirow}
  47. \usepackage{color}
  48. \usepackage{upquote}
  49. \usepackage{makeidx}
  50. \makeindex
  51. \definecolor{lightgray}{gray}{1}
  52. \newcommand{\black}[1]{{\color{black} #1}}
  53. %\newcommand{\gray}[1]{{\color{lightgray} #1}}
  54. \newcommand{\gray}[1]{{\color{gray} #1}}
  55. %% For pictures
  56. \usepackage{tikz}
  57. \usetikzlibrary{arrows.meta}
  58. \tikzset{baseline=(current bounding box.center), >/.tip={Triangle[scale=1.4]}}
  59. % Computer Modern is already the default. -Jeremy
  60. %\renewcommand{\ttdefault}{cmtt}
  61. \definecolor{comment-red}{rgb}{0.8,0,0}
  62. \if01
  63. \newcommand{\rn}[1]{{\color{comment-red}{(RRN: #1)}}}
  64. \newcommand{\margincomment}[1]{\marginpar{\color{comment-red}\tiny #1}}
  65. \else
  66. \newcommand{\rn}[1]{}
  67. \newcommand{\margincomment}[1]{}
  68. \fi
  69. \lstset{%
  70. language=Lisp,
  71. basicstyle=\ttfamily\small,
  72. morekeywords={seq,assign,program,block,define,lambda,match,goto,if,else,then,struct,Integer,Boolean,Vector,Void,Any,while,begin,define,public,override,class},
  73. deletekeywords={read,mapping,vector},
  74. escapechar=|,
  75. columns=flexible,
  76. moredelim=[is][\color{red}]{~}{~},
  77. showstringspaces=false
  78. }
  79. \newtheorem{theorem}{Theorem}
  80. \newtheorem{lemma}[theorem]{Lemma}
  81. \newtheorem{corollary}[theorem]{Corollary}
  82. \newtheorem{proposition}[theorem]{Proposition}
  83. \newtheorem{constraint}[theorem]{Constraint}
  84. \newtheorem{definition}[theorem]{Definition}
  85. \newtheorem{exercise}[theorem]{Exercise}
  86. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  87. % 'dedication' environment: To add a dedication paragraph at the start of book %
  88. % Source: http://www.tug.org/pipermail/texhax/2010-June/015184.html %
  89. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  90. \newenvironment{dedication}
  91. {
  92. \cleardoublepage
  93. \thispagestyle{empty}
  94. \vspace*{\stretch{1}}
  95. \hfill\begin{minipage}[t]{0.66\textwidth}
  96. \raggedright
  97. }
  98. {
  99. \end{minipage}
  100. \vspace*{\stretch{3}}
  101. \clearpage
  102. }
  103. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  104. % Chapter quote at the start of chapter %
  105. % Source: http://tex.stackexchange.com/a/53380 %
  106. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  107. \makeatletter
  108. \renewcommand{\@chapapp}{}% Not necessary...
  109. \newenvironment{chapquote}[2][2em]
  110. {\setlength{\@tempdima}{#1}%
  111. \def\chapquote@author{#2}%
  112. \parshape 1 \@tempdima \dimexpr\textwidth-2\@tempdima\relax%
  113. \itshape}
  114. {\par\normalfont\hfill--\ \chapquote@author\hspace*{\@tempdima}\par\bigskip}
  115. \makeatother
  116. \input{defs}
  117. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  118. \title{\Huge \textbf{Essentials of Compilation} \\
  119. \huge The Incremental, Nano-Pass Approach}
  120. \author{\textsc{Jeremy G. Siek} \\
  121. %\thanks{\url{http://homes.soic.indiana.edu/jsiek/}} \\
  122. Indiana University \\
  123. \\
  124. with contributions from: \\
  125. Carl Factora \\
  126. Andre Kuhlenschmidt \\
  127. Ryan R. Newton \\
  128. Ryan Scott \\
  129. Cameron Swords \\
  130. Michael M. Vitousek \\
  131. Michael Vollmer
  132. }
  133. \begin{document}
  134. \frontmatter
  135. \maketitle
  136. \begin{dedication}
  137. This book is dedicated to the programming language wonks at Indiana
  138. University.
  139. \end{dedication}
  140. \tableofcontents
  141. \listoffigures
  142. %\listoftables
  143. \mainmatter
  144. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  145. \chapter*{Preface}
  146. The tradition of compiler writing at Indiana University goes back to
  147. research and courses on programming languages by Professor Daniel
  148. Friedman in the 1970's and 1980's. Friedman conducted research on lazy
  149. evaluation~\citep{Friedman:1976aa} in the context of
  150. Lisp~\citep{McCarthy:1960dz} and then studied
  151. continuations~\citep{Felleisen:kx} and
  152. macros~\citep{Kohlbecker:1986dk} in the context of the
  153. Scheme~\citep{Sussman:1975ab}, a dialect of Lisp. One of the students
  154. of those courses, Kent Dybvig, went on to build Chez
  155. Scheme~\citep{Dybvig:2006aa}, a production-quality and efficient
  156. compiler for Scheme. After completing his Ph.D. at the University of
  157. North Carolina, he returned to teach at Indiana University.
  158. Throughout the 1990's and 2000's, Professor Dybvig continued
  159. development of Chez Scheme and taught the compiler course.
  160. The compiler course evolved to incorporate novel pedagogical ideas
  161. while also including elements of effective real-world compilers. One
  162. of Friedman's ideas was to split the compiler into many small
  163. ``passes'' so that the code for each pass would be easy to understood
  164. in isolation. In contrast, most compilers of the time were organized
  165. into only a few monolithic passes for reasons of compile-time
  166. efficiency. Another idea, called ``the game'', was to test the code
  167. generated by each pass on interpreters for each intermediate language,
  168. thereby helping to pinpoint errors in individual passes.
  169. %
  170. Dybvig, with later help from his students Dipanwita Sarkar and Andrew
  171. Keep, developed infrastructure to support this approach and evolved
  172. the course, first to use smaller micro-passes and then into even
  173. smaller nano-passes~\citep{Sarkar:2004fk,Keep:2012aa}. I was a student
  174. in this compiler course in the early 2000's as part of my
  175. Ph.D. studies at Indiana University. Needless to say, I enjoyed the
  176. course immensely!
  177. During that time, another graduate student named Abdulaziz Ghuloum
  178. observed that the front-to-back organization of the course made it
  179. difficult for students to understand the rationale for the compiler
  180. design. Ghuloum proposed an incremental approach in which the students
  181. start by implementing a complete compiler for a very small subset of
  182. the language. In each subsequent stage they add a feature to the
  183. language and then add or modify passes to handle the new
  184. feature~\citep{Ghuloum:2006bh}. In this way, the students see how the
  185. language features motivate aspects of the compiler design.
  186. After graduating from Indiana University in 2005, I went on to teach
  187. at the University of Colorado. I adapted the nano-pass and incremental
  188. approaches to compiling a subset of the Python
  189. language~\citep{Siek:2012ab}.
  190. %% Python and Scheme are quite different
  191. %% on the surface but there is a large overlap in the compiler techniques
  192. %% required for the two languages. Thus, I was able to teach much of the
  193. %% same content from the Indiana compiler course.
  194. I very much enjoyed teaching the course organized in this way, and
  195. even better, many of the students learned a lot and got excited about
  196. compilers.
  197. I returned to Indiana University in 2013. In my absence the compiler
  198. course had switched from the front-to-back organization to a
  199. back-to-front~\citep{Dybvig:2010aa}. While that organization also works
  200. well, I prefer the incremental approach and started porting and
  201. adapting the structure of the Colorado course back into the land of
  202. Scheme. In the meantime Indiana University had moved on from Scheme to
  203. Racket~\citep{plt-tr}, so the course is now about compiling a subset
  204. of Racket (and Typed Racket) to the x86 assembly language.
  205. This is the textbook for the incremental version of the compiler
  206. course at Indiana University (Spring 2016 - present). With this book
  207. I hope to make the Indiana compiler course available to people that
  208. have not had the chance to study compilers at Indiana University.
  209. %% I have captured what
  210. %% I think are the most important topics from \cite{Dybvig:2010aa} but
  211. %% have omitted topics that are less interesting conceptually. I have
  212. %% also made simplifications to reduce complexity. In this way, this
  213. %% book leans more towards pedagogy than towards the efficiency of the
  214. %% generated code. Also, the book differs in places where we I the
  215. %% opportunity to make the topics more fun, such as in relating register
  216. %% allocation to Sudoku (Chapter~\ref{ch:register-allocation-r1}).
  217. \section*{Prerequisites}
  218. The material in this book is challenging but rewarding. It is meant to
  219. prepare students for a lifelong career in programming languages.
  220. The book uses the Racket language both for the implementation of the
  221. compiler and for the language that is compiled, so a student should be
  222. proficient with Racket or Scheme prior to reading this book. There are
  223. many excellent resources for learning Scheme and
  224. Racket~\citep{Dybvig:1987aa,Abelson:1996uq,Friedman:1996aa,Felleisen:2001aa,Felleisen:2013aa,Flatt:2014aa}.
  225. It is helpful but not necessary for the student to have prior exposure
  226. to the x86 assembly language~\citep{Intel:2015aa}, as one might obtain
  227. from a computer systems
  228. course~\citep{Bryant:2010aa}. This book introduces the
  229. parts of x86-64 assembly language that are needed.
  230. %
  231. We follow the System V calling
  232. conventions~\citep{Bryant:2005aa,Matz:2013aa}, which means that the
  233. assembly code that we generate will work properly with our runtime
  234. system (written in C) when it is compiled using the GNU C compiler
  235. (\code{gcc}) on the Linux and MacOS operating systems. (Minor
  236. adjustments are needed for MacOS which we note as they arise.)
  237. %
  238. The GNU C compiler, when running on the Microsoft Windows operating
  239. system, follows the Microsoft x64 calling
  240. convention~\citep{Microsoft:2018aa,Microsoft:2020aa}. So the assembly
  241. code that we generate will \emph{not} work properly with our runtime
  242. system on Windows. One option to consider for using a Windows computer
  243. is to run a virtual machine with Linux as the guest operating system.
  244. %\section*{Structure of book}
  245. % You might want to add short description about each chapter in this book.
  246. %\section*{About the companion website}
  247. %The website\footnote{\url{https://github.com/amberj/latex-book-template}} for %this file contains:
  248. %\begin{itemize}
  249. % \item A link to (freely downlodable) latest version of this document.
  250. % \item Link to download LaTeX source for this document.
  251. % \item Miscellaneous material (e.g. suggested readings etc).
  252. %\end{itemize}
  253. \section*{Acknowledgments}
  254. Many people have contributed to the ideas, techniques, and
  255. organization of this book and have taught courses based on it. Many
  256. of the compiler design decisions in this book are drawn from the
  257. assignment descriptions of \cite{Dybvig:2010aa}. We also would like
  258. to thank John Clements, Bor-Yuh Evan Chang, Daniel P. Friedman, Ronald
  259. Garcia, Abdulaziz Ghuloum, Jay McCarthy, Nate Nystrom, Dipanwita
  260. Sarkar, Oscar Waddell, and Michael Wollowski.
  261. \mbox{}\\
  262. \noindent Jeremy G. Siek \\
  263. \noindent \url{http://homes.soic.indiana.edu/jsiek} \\
  264. %\noindent Spring 2016
  265. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  266. \chapter{Preliminaries}
  267. \label{ch:trees-recur}
  268. In this chapter we review the basic tools that are needed to implement
  269. a compiler. Programs are typically input by a programmer as text,
  270. i.e., a sequence of characters. The program-as-text representation is
  271. called \emph{concrete syntax}. We use concrete syntax to concisely
  272. write down and talk about programs. Inside the compiler, we use
  273. \emph{abstract syntax trees} (ASTs) to represent programs in a way
  274. that efficiently supports the operations that the compiler needs to
  275. perform.\index{concrete syntax}\index{abstract syntax}\index{abstract
  276. syntax tree}\index{AST}\index{program}\index{parse} The translation
  277. from concrete syntax to abstract syntax is a process called
  278. \emph{parsing}~\citep{Aho:1986qf}. We do not cover the theory and
  279. implementation of parsing in this book. A parser is provided in the
  280. supporting materials for translating from concrete to abstract syntax.
  281. ASTs can be represented in many different ways inside the compiler,
  282. depending on the programming language used to write the compiler.
  283. %
  284. We use Racket's
  285. \href{https://docs.racket-lang.org/guide/define-struct.html}{\code{struct}}
  286. feature to represent ASTs (Section~\ref{sec:ast}). We use grammars to
  287. define the abstract syntax of programming languages
  288. (Section~\ref{sec:grammar}) and pattern matching to inspect individual
  289. nodes in an AST (Section~\ref{sec:pattern-matching}). We use
  290. recursive functions to construct and deconstruct ASTs
  291. (Section~\ref{sec:recursion}). This chapter provides an brief
  292. introduction to these ideas. \index{struct}
  293. \section{Abstract Syntax Trees and Racket Structures}
  294. \label{sec:ast}
  295. Compilers use abstract syntax trees to represent programs because they
  296. often need to ask questions like: for a given part of a program, what
  297. kind of language feature is it? What are its sub-parts? Consider the
  298. program on the left and its AST on the right. This program is an
  299. addition operation and it has two sub-parts, a read operation and a
  300. negation. The negation has another sub-part, the integer constant
  301. \code{8}. By using a tree to represent the program, we can easily
  302. follow the links to go from one part of a program to its sub-parts.
  303. \begin{center}
  304. \begin{minipage}{0.4\textwidth}
  305. \begin{lstlisting}
  306. (+ (read) (- 8))
  307. \end{lstlisting}
  308. \end{minipage}
  309. \begin{minipage}{0.4\textwidth}
  310. \begin{equation}
  311. \begin{tikzpicture}
  312. \node[draw, circle] (plus) at (0 , 0) {\key{+}};
  313. \node[draw, circle] (read) at (-1, -1.5) {{\footnotesize\key{read}}};
  314. \node[draw, circle] (minus) at (1 , -1.5) {$\key{-}$};
  315. \node[draw, circle] (8) at (1 , -3) {\key{8}};
  316. \draw[->] (plus) to (read);
  317. \draw[->] (plus) to (minus);
  318. \draw[->] (minus) to (8);
  319. \end{tikzpicture}
  320. \label{eq:arith-prog}
  321. \end{equation}
  322. \end{minipage}
  323. \end{center}
  324. We use the standard terminology for trees to describe ASTs: each
  325. circle above is called a \emph{node}. The arrows connect a node to its
  326. \emph{children} (which are also nodes). The top-most node is the
  327. \emph{root}. Every node except for the root has a \emph{parent} (the
  328. node it is the child of). If a node has no children, it is a
  329. \emph{leaf} node. Otherwise it is an \emph{internal} node.
  330. \index{node}
  331. \index{children}
  332. \index{root}
  333. \index{parent}
  334. \index{leaf}
  335. \index{internal node}
  336. %% Recall that an \emph{symbolic expression} (S-expression) is either
  337. %% \begin{enumerate}
  338. %% \item an atom, or
  339. %% \item a pair of two S-expressions, written $(e_1 \key{.} e_2)$,
  340. %% where $e_1$ and $e_2$ are each an S-expression.
  341. %% \end{enumerate}
  342. %% An \emph{atom} can be a symbol, such as \code{`hello}, a number, the
  343. %% null value \code{'()}, etc. We can create an S-expression in Racket
  344. %% simply by writing a backquote (called a quasi-quote in Racket)
  345. %% followed by the textual representation of the S-expression. It is
  346. %% quite common to use S-expressions to represent a list, such as $a, b
  347. %% ,c$ in the following way:
  348. %% \begin{lstlisting}
  349. %% `(a . (b . (c . ())))
  350. %% \end{lstlisting}
  351. %% Each element of the list is in the first slot of a pair, and the
  352. %% second slot is either the rest of the list or the null value, to mark
  353. %% the end of the list. Such lists are so common that Racket provides
  354. %% special notation for them that removes the need for the periods
  355. %% and so many parenthesis:
  356. %% \begin{lstlisting}
  357. %% `(a b c)
  358. %% \end{lstlisting}
  359. %% The following expression creates an S-expression that represents AST
  360. %% \eqref{eq:arith-prog}.
  361. %% \begin{lstlisting}
  362. %% `(+ (read) (- 8))
  363. %% \end{lstlisting}
  364. %% When using S-expressions to represent ASTs, the convention is to
  365. %% represent each AST node as a list and to put the operation symbol at
  366. %% the front of the list. The rest of the list contains the children. So
  367. %% in the above case, the root AST node has operation \code{`+} and its
  368. %% two children are \code{`(read)} and \code{`(- 8)}, just as in the
  369. %% diagram \eqref{eq:arith-prog}.
  370. %% To build larger S-expressions one often needs to splice together
  371. %% several smaller S-expressions. Racket provides the comma operator to
  372. %% splice an S-expression into a larger one. For example, instead of
  373. %% creating the S-expression for AST \eqref{eq:arith-prog} all at once,
  374. %% we could have first created an S-expression for AST
  375. %% \eqref{eq:arith-neg8} and then spliced that into the addition
  376. %% S-expression.
  377. %% \begin{lstlisting}
  378. %% (define ast1.4 `(- 8))
  379. %% (define ast1.1 `(+ (read) ,ast1.4))
  380. %% \end{lstlisting}
  381. %% In general, the Racket expression that follows the comma (splice)
  382. %% can be any expression that produces an S-expression.
  383. We define a Racket \code{struct} for each kind of node. For this
  384. chapter we require just two kinds of nodes: one for integer constants
  385. and one for primitive operations. The following is the \code{struct}
  386. definition for integer constants.
  387. \begin{lstlisting}
  388. (struct Int (value))
  389. \end{lstlisting}
  390. An integer node includes just one thing: the integer value.
  391. To create a AST node for the integer $8$, we write \code{(Int 8)}.
  392. \begin{lstlisting}
  393. (define eight (Int 8))
  394. \end{lstlisting}
  395. We say that the value created by \code{(Int 8)} is an
  396. \emph{instance} of the \code{Int} structure.
  397. The following is the \code{struct} definition for primitives operations.
  398. \begin{lstlisting}
  399. (struct Prim (op args))
  400. \end{lstlisting}
  401. A primitive operation node includes an operator symbol \code{op}
  402. and a list of children \code{args}. For example, to create
  403. an AST that negates the number $8$, we write \code{(Prim '- (list eight))}.
  404. \begin{lstlisting}
  405. (define neg-eight (Prim '- (list eight)))
  406. \end{lstlisting}
  407. Primitive operations may have zero or more children. The \code{read}
  408. operator has zero children:
  409. \begin{lstlisting}
  410. (define rd (Prim 'read '()))
  411. \end{lstlisting}
  412. whereas the addition operator has two children:
  413. \begin{lstlisting}
  414. (define ast1.1 (Prim '+ (list rd neg-eight)))
  415. \end{lstlisting}
  416. We have made a design choice regarding the \code{Prim} structure.
  417. Instead of using one structure for many different operations
  418. (\code{read}, \code{+}, and \code{-}), we could have instead defined a
  419. structure for each operation, as follows.
  420. \begin{lstlisting}
  421. (struct Read ())
  422. (struct Add (left right))
  423. (struct Neg (value))
  424. \end{lstlisting}
  425. The reason we choose to use just one structure is that in many parts
  426. of the compiler the code for the different primitive operators is the
  427. same, so we might as well just write that code once, which is enabled
  428. by using a single structure.
  429. When compiling a program such as \eqref{eq:arith-prog}, we need to
  430. know that the operation associated with the root node is addition and
  431. we need to be able to access its two children. Racket provides pattern
  432. matching to support these kinds of queries, as we see in
  433. Section~\ref{sec:pattern-matching}.
  434. In this book, we often write down the concrete syntax of a program
  435. even when we really have in mind the AST because the concrete syntax
  436. is more concise. We recommend that, in your mind, you always think of
  437. programs as abstract syntax trees.
  438. \section{Grammars}
  439. \label{sec:grammar}
  440. \index{integer}
  441. \index{literal}
  442. \index{constant}
  443. A programming language can be thought of as a \emph{set} of programs.
  444. The set is typically infinite (one can always create larger and larger
  445. programs), so one cannot simply describe a language by listing all of
  446. the programs in the language. Instead we write down a set of rules, a
  447. \emph{grammar}, for building programs. Grammars are often used to
  448. define the concrete syntax of a language, but they can also be used to
  449. describe the abstract syntax. We write our rules in a variant of
  450. Backus-Naur Form (BNF)~\citep{Backus:1960aa,Knuth:1964aa}.
  451. \index{Backus-Naur Form}\index{BNF}
  452. As an example, we describe a small language, named \LangInt{}, that consists of
  453. integers and arithmetic operations.
  454. \index{grammar}
  455. The first grammar rule for the abstract syntax of \LangInt{} says that an
  456. instance of the \code{Int} structure is an expression:
  457. \begin{equation}
  458. \Exp ::= \INT{\Int} \label{eq:arith-int}
  459. \end{equation}
  460. %
  461. Each rule has a left-hand-side and a right-hand-side. The way to read
  462. a rule is that if you have an AST node that matches the
  463. right-hand-side, then you can categorize it according to the
  464. left-hand-side.
  465. %
  466. A name such as $\Exp$ that is defined by the grammar rules is a
  467. \emph{non-terminal}. \index{non-terminal}
  468. %
  469. The name $\Int$ is a also a non-terminal, but instead of defining it
  470. with a grammar rule, we define it with the following explanation. We
  471. make the simplifying design decision that all of the languages in this
  472. book only handle machine-representable integers. On most modern
  473. machines this corresponds to integers represented with 64-bits, i.e.,
  474. the in range $-2^{63}$ to $2^{63}-1$. We restrict this range further
  475. to match the Racket \texttt{fixnum} datatype, which allows 63-bit
  476. integers on a 64-bit machine. So an $\Int$ is a sequence of decimals
  477. ($0$ to $9$), possibly starting with $-$ (for negative integers), such
  478. that the sequence of decimals represent an integer in range $-2^{62}$
  479. to $2^{62}-1$.
  480. The second grammar rule is the \texttt{read} operation that receives
  481. an input integer from the user of the program.
  482. \begin{equation}
  483. \Exp ::= \READ{} \label{eq:arith-read}
  484. \end{equation}
  485. The third rule says that, given an $\Exp$ node, the negation of that
  486. node is also an $\Exp$.
  487. \begin{equation}
  488. \Exp ::= \NEG{\Exp} \label{eq:arith-neg}
  489. \end{equation}
  490. Symbols in typewriter font such as \key{-} and \key{read} are
  491. \emph{terminal} symbols and must literally appear in the program for
  492. the rule to be applicable.
  493. \index{terminal}
  494. We can apply these rules to categorize the ASTs that are in the
  495. \LangInt{} language. For example, by rule \eqref{eq:arith-int}
  496. \texttt{(Int 8)} is an $\Exp$, then by rule \eqref{eq:arith-neg} the
  497. following AST is an $\Exp$.
  498. \begin{center}
  499. \begin{minipage}{0.4\textwidth}
  500. \begin{lstlisting}
  501. (Prim '- (list (Int 8)))
  502. \end{lstlisting}
  503. \end{minipage}
  504. \begin{minipage}{0.25\textwidth}
  505. \begin{equation}
  506. \begin{tikzpicture}
  507. \node[draw, circle] (minus) at (0, 0) {$\text{--}$};
  508. \node[draw, circle] (8) at (0, -1.2) {$8$};
  509. \draw[->] (minus) to (8);
  510. \end{tikzpicture}
  511. \label{eq:arith-neg8}
  512. \end{equation}
  513. \end{minipage}
  514. \end{center}
  515. The next grammar rule is for addition expressions:
  516. \begin{equation}
  517. \Exp ::= \ADD{\Exp}{\Exp} \label{eq:arith-add}
  518. \end{equation}
  519. We can now justify that the AST \eqref{eq:arith-prog} is an $\Exp$ in
  520. \LangInt{}. We know that \lstinline{(Prim 'read '())} is an $\Exp$ by rule
  521. \eqref{eq:arith-read} and we have already categorized \code{(Prim '-
  522. (list (Int 8)))} as an $\Exp$, so we apply rule \eqref{eq:arith-add}
  523. to show that
  524. \begin{lstlisting}
  525. (Prim '+ (list (Prim 'read '()) (Prim '- (list (Int 8)))))
  526. \end{lstlisting}
  527. is an $\Exp$ in the \LangInt{} language.
  528. If you have an AST for which the above rules do not apply, then the
  529. AST is not in \LangInt{}. For example, the program \code{(- (read) (+ 8))}
  530. is not in \LangInt{} because there are no rules for \code{+} with only one
  531. argument, nor for \key{-} with two arguments. Whenever we define a
  532. language with a grammar, the language only includes those programs
  533. that are justified by the rules.
  534. The last grammar rule for \LangInt{} states that there is a \code{Program}
  535. node to mark the top of the whole program:
  536. \[
  537. \LangInt{} ::= \PROGRAM{\code{'()}}{\Exp}
  538. \]
  539. The \code{Program} structure is defined as follows
  540. \begin{lstlisting}
  541. (struct Program (info body))
  542. \end{lstlisting}
  543. where \code{body} is an expression. In later chapters, the \code{info}
  544. part will be used to store auxiliary information but for now it is
  545. just the empty list.
  546. It is common to have many grammar rules with the same left-hand side
  547. but different right-hand sides, such as the rules for $\Exp$ in the
  548. grammar of \LangInt{}. As a short-hand, a vertical bar can be used to
  549. combine several right-hand-sides into a single rule.
  550. We collect all of the grammar rules for the abstract syntax of \LangInt{}
  551. in Figure~\ref{fig:r0-syntax}. The concrete syntax for \LangInt{} is
  552. defined in Figure~\ref{fig:r0-concrete-syntax}.
  553. The \code{read-program} function provided in \code{utilities.rkt} of
  554. the support materials reads a program in from a file (the sequence of
  555. characters in the concrete syntax of Racket) and parses it into an
  556. abstract syntax tree. See the description of \code{read-program} in
  557. Appendix~\ref{appendix:utilities} for more details.
  558. \begin{figure}[tp]
  559. \fbox{
  560. \begin{minipage}{0.96\textwidth}
  561. \[
  562. \begin{array}{rcl}
  563. \begin{array}{rcl}
  564. \Exp &::=& \Int \mid \LP\key{read}\RP \mid \LP\key{-}\;\Exp\RP \mid \LP\key{+} \; \Exp\;\Exp\RP\\
  565. \LangInt{} &::=& \Exp
  566. \end{array}
  567. \end{array}
  568. \]
  569. \end{minipage}
  570. }
  571. \caption{The concrete syntax of \LangInt{}.}
  572. \label{fig:r0-concrete-syntax}
  573. \end{figure}
  574. \begin{figure}[tp]
  575. \fbox{
  576. \begin{minipage}{0.96\textwidth}
  577. \[
  578. \begin{array}{rcl}
  579. \Exp &::=& \INT{\Int} \mid \READ{} \mid \NEG{\Exp} \\
  580. &\mid& \ADD{\Exp}{\Exp} \\
  581. \LangInt{} &::=& \PROGRAM{\code{'()}}{\Exp}
  582. \end{array}
  583. \]
  584. \end{minipage}
  585. }
  586. \caption{The abstract syntax of \LangInt{}.}
  587. \label{fig:r0-syntax}
  588. \end{figure}
  589. \section{Pattern Matching}
  590. \label{sec:pattern-matching}
  591. As mentioned in Section~\ref{sec:ast}, compilers often need to access
  592. the parts of an AST node. Racket provides the \texttt{match} form to
  593. access the parts of a structure. Consider the following example and
  594. the output on the right. \index{match} \index{pattern matching}
  595. \begin{center}
  596. \begin{minipage}{0.5\textwidth}
  597. \begin{lstlisting}
  598. (match ast1.1
  599. [(Prim op (list child1 child2))
  600. (print op)])
  601. \end{lstlisting}
  602. \end{minipage}
  603. \vrule
  604. \begin{minipage}{0.25\textwidth}
  605. \begin{lstlisting}
  606. '+
  607. \end{lstlisting}
  608. \end{minipage}
  609. \end{center}
  610. In the above example, the \texttt{match} form takes an AST
  611. \eqref{eq:arith-prog} and binds its parts to the three pattern
  612. variables \texttt{op}, \texttt{child1}, and \texttt{child2}, and then
  613. prints out the operator. In general, a match clause consists of a
  614. \emph{pattern} and a \emph{body}.\index{pattern} Patterns are
  615. recursively defined to be either a pattern variable, a structure name
  616. followed by a pattern for each of the structure's arguments, or an
  617. S-expression (symbols, lists, etc.). (See Chapter 12 of The Racket
  618. Guide\footnote{\url{https://docs.racket-lang.org/guide/match.html}}
  619. and Chapter 9 of The Racket
  620. Reference\footnote{\url{https://docs.racket-lang.org/reference/match.html}}
  621. for a complete description of \code{match}.)
  622. %
  623. The body of a match clause may contain arbitrary Racket code. The
  624. pattern variables can be used in the scope of the body, such as
  625. \code{op} in \code{(print op)}.
  626. A \code{match} form may contain several clauses, as in the following
  627. function \code{leaf?} that recognizes when an \LangInt{} node is a leaf in
  628. the AST. The \code{match} proceeds through the clauses in order,
  629. checking whether the pattern can match the input AST. The body of the
  630. first clause that matches is executed. The output of \code{leaf?} for
  631. several ASTs is shown on the right.
  632. \begin{center}
  633. \begin{minipage}{0.6\textwidth}
  634. \begin{lstlisting}
  635. (define (leaf? arith)
  636. (match arith
  637. [(Int n) #t]
  638. [(Prim 'read '()) #t]
  639. [(Prim '- (list e1)) #f]
  640. [(Prim '+ (list e1 e2)) #f]))
  641. (leaf? (Prim 'read '()))
  642. (leaf? (Prim '- (list (Int 8))))
  643. (leaf? (Int 8))
  644. \end{lstlisting}
  645. \end{minipage}
  646. \vrule
  647. \begin{minipage}{0.25\textwidth}
  648. \begin{lstlisting}
  649. #t
  650. #f
  651. #t
  652. \end{lstlisting}
  653. \end{minipage}
  654. \end{center}
  655. When writing a \code{match}, we refer to the grammar definition to
  656. identify which non-terminal we are expecting to match against, then we
  657. make sure that 1) we have one clause for each alternative of that
  658. non-terminal and 2) that the pattern in each clause corresponds to the
  659. corresponding right-hand side of a grammar rule. For the \code{match}
  660. in the \code{leaf?} function, we refer to the grammar for \LangInt{} in
  661. Figure~\ref{fig:r0-syntax}. The $\Exp$ non-terminal has 4
  662. alternatives, so the \code{match} has 4 clauses. The pattern in each
  663. clause corresponds to the right-hand side of a grammar rule. For
  664. example, the pattern \code{(Prim '+ (list e1 e2))} corresponds to the
  665. right-hand side $\ADD{\Exp}{\Exp}$. When translating from grammars to
  666. patterns, replace non-terminals such as $\Exp$ with pattern variables
  667. of your choice (e.g. \code{e1} and \code{e2}).
  668. \section{Recursive Functions}
  669. \label{sec:recursion}
  670. \index{recursive function}
  671. Programs are inherently recursive. For example, an \LangInt{} expression is
  672. often made of smaller expressions. Thus, the natural way to process an
  673. entire program is with a recursive function. As a first example of
  674. such a recursive function, we define \texttt{exp?} below, which takes
  675. an arbitrary value and determines whether or not it is an \LangInt{}
  676. expression.
  677. %
  678. We say that a function is defined by \emph{structural recursion} when
  679. it is defined using a sequence of match clauses that correspond to a
  680. grammar, and the body of each clause makes a recursive call on each
  681. child node.\footnote{This principle of structuring code according to
  682. the data definition is advocated in the book \emph{How to Design
  683. Programs} \url{http://www.ccs.neu.edu/home/matthias/HtDP2e/}.}.
  684. Below we also define a second function, named \code{Rint?}, that
  685. determines whether an AST is an \LangInt{} program. In general we can
  686. expect to write one recursive function to handle each non-terminal in
  687. a grammar.\index{structural recursion}
  688. %
  689. \begin{center}
  690. \begin{minipage}{0.7\textwidth}
  691. \begin{lstlisting}
  692. (define (exp? ast)
  693. (match ast
  694. [(Int n) #t]
  695. [(Prim 'read '()) #t]
  696. [(Prim '- (list e)) (exp? e)]
  697. [(Prim '+ (list e1 e2))
  698. (and (exp? e1) (exp? e2))]
  699. [else #f]))
  700. (define (Rint? ast)
  701. (match ast
  702. [(Program '() e) (exp? e)]
  703. [else #f]))
  704. (Rint? (Program '() ast1.1)
  705. (Rint? (Program '()
  706. (Prim '- (list (Prim 'read '())
  707. (Prim '+ (list (Num 8)))))))
  708. \end{lstlisting}
  709. \end{minipage}
  710. \vrule
  711. \begin{minipage}{0.25\textwidth}
  712. \begin{lstlisting}
  713. #t
  714. #f
  715. \end{lstlisting}
  716. \end{minipage}
  717. \end{center}
  718. You may be tempted to merge the two functions into one, like this:
  719. \begin{center}
  720. \begin{minipage}{0.5\textwidth}
  721. \begin{lstlisting}
  722. (define (Rint? ast)
  723. (match ast
  724. [(Int n) #t]
  725. [(Prim 'read '()) #t]
  726. [(Prim '- (list e)) (Rint? e)]
  727. [(Prim '+ (list e1 e2)) (and (Rint? e1) (Rint? e2))]
  728. [(Program '() e) (Rint? e)]
  729. [else #f]))
  730. \end{lstlisting}
  731. \end{minipage}
  732. \end{center}
  733. %
  734. Sometimes such a trick will save a few lines of code, especially when
  735. it comes to the \code{Program} wrapper. Yet this style is generally
  736. \emph{not} recommended because it can get you into trouble.
  737. %
  738. For example, the above function is subtly wrong:
  739. \lstinline{(Rint? (Program '() (Program '() (Int 3))))}
  740. returns true when it should return false.
  741. \section{Interpreters}
  742. \label{sec:interp-Rint}
  743. \index{interpreter}
  744. In general, the intended behavior of a program is defined by the
  745. specification of the language. For example, the Scheme language is
  746. defined in the report by \cite{SPERBER:2009aa}. The Racket language is
  747. defined in its reference manual~\citep{plt-tr}. In this book we use
  748. interpreters to specify each language that we consider. An interpreter
  749. that is designated as the definition of a language is called a
  750. \emph{definitional interpreter}~\citep{reynolds72:_def_interp}.
  751. \index{definitional interpreter} We warm up by creating a definitional
  752. interpreter for the \LangInt{} language, which serves as a second example
  753. of structural recursion. The \texttt{interp-Rint} function is defined in
  754. Figure~\ref{fig:interp-Rint}. The body of the function is a match on the
  755. input program followed by a call to the \lstinline{interp-exp} helper
  756. function, which in turn has one match clause per grammar rule for
  757. \LangInt{} expressions.
  758. \begin{figure}[tp]
  759. \begin{lstlisting}
  760. (define (interp-exp e)
  761. (match e
  762. [(Int n) n]
  763. [(Prim 'read '())
  764. (define r (read))
  765. (cond [(fixnum? r) r]
  766. [else (error 'interp-exp "read expected an integer" r)])]
  767. [(Prim '- (list e))
  768. (define v (interp-exp e))
  769. (fx- 0 v)]
  770. [(Prim '+ (list e1 e2))
  771. (define v1 (interp-exp e1))
  772. (define v2 (interp-exp e2))
  773. (fx+ v1 v2)]))
  774. (define (interp-Rint p)
  775. (match p
  776. [(Program '() e) (interp-exp e)]))
  777. \end{lstlisting}
  778. \caption{Interpreter for the \LangInt{} language.}
  779. \label{fig:interp-Rint}
  780. \end{figure}
  781. Let us consider the result of interpreting a few \LangInt{} programs. The
  782. following program adds two integers.
  783. \begin{lstlisting}
  784. (+ 10 32)
  785. \end{lstlisting}
  786. The result is \key{42}, the answer to life, the universe, and
  787. everything: \code{42}!\footnote{\emph{The Hitchhiker's Guide to the
  788. Galaxy} by Douglas Adams.}.
  789. %
  790. We wrote the above program in concrete syntax whereas the parsed
  791. abstract syntax is:
  792. \begin{lstlisting}
  793. (Program '() (Prim '+ (list (Int 10) (Int 32))))
  794. \end{lstlisting}
  795. The next example demonstrates that expressions may be nested within
  796. each other, in this case nesting several additions and negations.
  797. \begin{lstlisting}
  798. (+ 10 (- (+ 12 20)))
  799. \end{lstlisting}
  800. What is the result of the above program?
  801. As mentioned previously, the \LangInt{} language does not support
  802. arbitrarily-large integers, but only $63$-bit integers, so we
  803. interpret the arithmetic operations of \LangInt{} using fixnum arithmetic
  804. in Racket.
  805. Suppose
  806. \[
  807. n = 999999999999999999
  808. \]
  809. which indeed fits in $63$-bits. What happens when we run the
  810. following program in our interpreter?
  811. \begin{lstlisting}
  812. (+ (+ (+ |$n$| |$n$|) (+ |$n$| |$n$|)) (+ (+ |$n$| |$n$|) (+ |$n$| |$n$|)))))
  813. \end{lstlisting}
  814. It produces an error:
  815. \begin{lstlisting}
  816. fx+: result is not a fixnum
  817. \end{lstlisting}
  818. We establish the convention that if running the definitional
  819. interpreter on a program produces an error then the meaning of that
  820. program is \emph{unspecified}\index{unspecified behavior}, unless the
  821. error is a \code{trapped-error}. A compiler for the language is under
  822. no obligations regarding programs with unspecified behavior; it does
  823. not have to produce an executable, and if it does, that executable can
  824. do anything. On the other hand, if the error is a
  825. \code{trapped-error}, then the compiler must produce an executable and
  826. it is required to report that an error occurred. To signal an error,
  827. exit with a return code of \code{255}. The interpreters in chapters
  828. \ref{ch:type-dynamic} and \ref{ch:gradual-typing} use
  829. \code{trapped-error}.
  830. %% This convention applies to the languages defined in this
  831. %% book, as a way to simplify the student's task of implementing them,
  832. %% but this convention is not applicable to all programming languages.
  833. %%
  834. Moving on to the last feature of the \LangInt{} language, the \key{read}
  835. operation prompts the user of the program for an integer. Recall that
  836. program \eqref{eq:arith-prog} performs a \key{read} and then subtracts
  837. \code{8}. So if we run
  838. \begin{lstlisting}
  839. (interp-Rint (Program '() ast1.1))
  840. \end{lstlisting}
  841. and if the input is \code{50}, the result is \code{42}.
  842. We include the \key{read} operation in \LangInt{} so a clever student
  843. cannot implement a compiler for \LangInt{} that simply runs the interpreter
  844. during compilation to obtain the output and then generates the trivial
  845. code to produce the output. (Yes, a clever student did this in the
  846. first instance of this course.)
  847. The job of a compiler is to translate a program in one language into a
  848. program in another language so that the output program behaves the
  849. same way as the input program does. This idea is depicted in the
  850. following diagram. Suppose we have two languages, $\mathcal{L}_1$ and
  851. $\mathcal{L}_2$, and a definitional interpreter for each language.
  852. Given a compiler that translates from language $\mathcal{L}_1$ to
  853. $\mathcal{L}_2$ and given any program $P_1$ in $\mathcal{L}_1$, the
  854. compiler must translate it into some program $P_2$ such that
  855. interpreting $P_1$ and $P_2$ on their respective interpreters with
  856. same input $i$ yields the same output $o$.
  857. \begin{equation} \label{eq:compile-correct}
  858. \begin{tikzpicture}[baseline=(current bounding box.center)]
  859. \node (p1) at (0, 0) {$P_1$};
  860. \node (p2) at (3, 0) {$P_2$};
  861. \node (o) at (3, -2.5) {$o$};
  862. \path[->] (p1) edge [above] node {compile} (p2);
  863. \path[->] (p2) edge [right] node {interp-$\mathcal{L}_2$($i$)} (o);
  864. \path[->] (p1) edge [left] node {interp-$\mathcal{L}_1$($i$)} (o);
  865. \end{tikzpicture}
  866. \end{equation}
  867. In the next section we see our first example of a compiler.
  868. \section{Example Compiler: a Partial Evaluator}
  869. \label{sec:partial-evaluation}
  870. In this section we consider a compiler that translates \LangInt{} programs
  871. into \LangInt{} programs that may be more efficient, that is, this compiler
  872. is an optimizer. This optimizer eagerly computes the parts of the
  873. program that do not depend on any inputs, a process known as
  874. \emph{partial evaluation}~\citep{Jones:1993uq}.
  875. \index{partial evaluation}
  876. For example, given the following program
  877. \begin{lstlisting}
  878. (+ (read) (- (+ 5 3)))
  879. \end{lstlisting}
  880. our compiler will translate it into the program
  881. \begin{lstlisting}
  882. (+ (read) -8)
  883. \end{lstlisting}
  884. Figure~\ref{fig:pe-arith} gives the code for a simple partial
  885. evaluator for the \LangInt{} language. The output of the partial evaluator
  886. is an \LangInt{} program. In Figure~\ref{fig:pe-arith}, the structural
  887. recursion over $\Exp$ is captured in the \code{pe-exp} function
  888. whereas the code for partially evaluating the negation and addition
  889. operations is factored into two separate helper functions:
  890. \code{pe-neg} and \code{pe-add}. The input to these helper
  891. functions is the output of partially evaluating the children.
  892. \begin{figure}[tp]
  893. \begin{lstlisting}
  894. (define (pe-neg r)
  895. (match r
  896. [(Int n) (Int (fx- 0 n))]
  897. [else (Prim '- (list r))]))
  898. (define (pe-add r1 r2)
  899. (match* (r1 r2)
  900. [((Int n1) (Int n2)) (Int (fx+ n1 n2))]
  901. [(_ _) (Prim '+ (list r1 r2))]))
  902. (define (pe-exp e)
  903. (match e
  904. [(Int n) (Int n)]
  905. [(Prim 'read '()) (Prim 'read '())]
  906. [(Prim '- (list e1)) (pe-neg (pe-exp e1))]
  907. [(Prim '+ (list e1 e2)) (pe-add (pe-exp e1) (pe-exp e2))]))
  908. (define (pe-Rint p)
  909. (match p
  910. [(Program '() e) (Program '() (pe-exp e))]))
  911. \end{lstlisting}
  912. \caption{A partial evaluator for \LangInt{}.}
  913. \label{fig:pe-arith}
  914. \end{figure}
  915. The \texttt{pe-neg} and \texttt{pe-add} functions check whether their
  916. arguments are integers and if they are, perform the appropriate
  917. arithmetic. Otherwise, they create an AST node for the arithmetic
  918. operation.
  919. To gain some confidence that the partial evaluator is correct, we can
  920. test whether it produces programs that get the same result as the
  921. input programs. That is, we can test whether it satisfies Diagram
  922. \ref{eq:compile-correct}. The following code runs the partial
  923. evaluator on several examples and tests the output program. The
  924. \texttt{parse-program} and \texttt{assert} functions are defined in
  925. Appendix~\ref{appendix:utilities}.\\
  926. \begin{minipage}{1.0\textwidth}
  927. \begin{lstlisting}
  928. (define (test-pe p)
  929. (assert "testing pe-Rint"
  930. (equal? (interp-Rint p) (interp-Rint (pe-Rint p)))))
  931. (test-pe (parse-program `(program () (+ 10 (- (+ 5 3))))))
  932. (test-pe (parse-program `(program () (+ 1 (+ 3 1)))))
  933. (test-pe (parse-program `(program () (- (+ 3 (- 5))))))
  934. \end{lstlisting}
  935. \end{minipage}
  936. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  937. \chapter{Integers and Variables}
  938. \label{ch:int-exp}
  939. This chapter is about compiling a subset of Racket to x86-64 assembly
  940. code~\citep{Intel:2015aa}. The subset, named \LangVar{}, includes
  941. integer arithmetic and local variable binding. We often refer to
  942. x86-64 simply as x86. The chapter begins with a description of the
  943. \LangVar{} language (Section~\ref{sec:s0}) followed by an introduction
  944. to of x86 assembly (Section~\ref{sec:x86}). The x86 assembly language
  945. is large so we discuss only the instructions needed for compiling
  946. \LangVar{}. We introduce more x86 instructions in later chapters.
  947. After introducing \LangVar{} and x86, we reflect on their differences
  948. and come up with a plan to break down the translation from \LangVar{}
  949. to x86 into a handful of steps (Section~\ref{sec:plan-s0-x86}). The
  950. rest of the sections in this chapter give detailed hints regarding
  951. each step (Sections~\ref{sec:uniquify-s0} through \ref{sec:patch-s0}).
  952. We hope to give enough hints that the well-prepared reader, together
  953. with a few friends, can implement a compiler from \LangVar{} to x86 in
  954. a couple weeks. To give the reader a feeling for the scale of this
  955. first compiler, the instructor solution for the \LangVar{} compiler is
  956. approximately 500 lines of code.
  957. \section{The \LangVar{} Language}
  958. \label{sec:s0}
  959. \index{variable}
  960. The \LangVar{} language extends the \LangInt{} language with variable
  961. definitions. The concrete syntax of the \LangVar{} language is defined by
  962. the grammar in Figure~\ref{fig:r1-concrete-syntax} and the abstract
  963. syntax is defined in Figure~\ref{fig:r1-syntax}. The non-terminal
  964. \Var{} may be any Racket identifier. As in \LangInt{}, \key{read} is a
  965. nullary operator, \key{-} is a unary operator, and \key{+} is a binary
  966. operator. Similar to \LangInt{}, the abstract syntax of \LangVar{} includes the
  967. \key{Program} struct to mark the top of the program.
  968. %% The $\itm{info}$
  969. %% field of the \key{Program} structure contains an \emph{association
  970. %% list} (a list of key-value pairs) that is used to communicate
  971. %% auxiliary data from one compiler pass the next.
  972. Despite the simplicity of the \LangVar{} language, it is rich enough to
  973. exhibit several compilation techniques.
  974. \begin{figure}[tp]
  975. \centering
  976. \fbox{
  977. \begin{minipage}{0.96\textwidth}
  978. \[
  979. \begin{array}{rcl}
  980. \Exp &::=& \Int \mid \CREAD{} \mid \CNEG{\Exp} \mid \CADD{\Exp}{\Exp}\\
  981. &\mid& \Var \mid \CLET{\Var}{\Exp}{\Exp} \\
  982. \LangVar{} &::=& \Exp
  983. \end{array}
  984. \]
  985. \end{minipage}
  986. }
  987. \caption{The concrete syntax of \LangVar{}.}
  988. \label{fig:r1-concrete-syntax}
  989. \end{figure}
  990. \begin{figure}[tp]
  991. \centering
  992. \fbox{
  993. \begin{minipage}{0.96\textwidth}
  994. \[
  995. \begin{array}{rcl}
  996. \Exp &::=& \INT{\Int} \mid \READ{} \\
  997. &\mid& \NEG{\Exp} \mid \ADD{\Exp}{\Exp} \\
  998. &\mid& \VAR{\Var} \mid \LET{\Var}{\Exp}{\Exp} \\
  999. \LangVar{} &::=& \PROGRAM{\code{'()}}{\Exp}
  1000. \end{array}
  1001. \]
  1002. \end{minipage}
  1003. }
  1004. \caption{The abstract syntax of \LangVar{}.}
  1005. \label{fig:r1-syntax}
  1006. \end{figure}
  1007. Let us dive further into the syntax and semantics of the \LangVar{}
  1008. language. The \key{let} feature defines a variable for use within its
  1009. body and initializes the variable with the value of an expression.
  1010. The abstract syntax for \key{let} is defined in
  1011. Figure~\ref{fig:r1-syntax}. The concrete syntax for \key{let} is
  1012. \begin{lstlisting}
  1013. (let ([|$\itm{var}$| |$\itm{exp}$|]) |$\itm{exp}$|)
  1014. \end{lstlisting}
  1015. For example, the following program initializes \code{x} to $32$ and then
  1016. evaluates the body \code{(+ 10 x)}, producing $42$.
  1017. \begin{lstlisting}
  1018. (let ([x (+ 12 20)]) (+ 10 x))
  1019. \end{lstlisting}
  1020. When there are multiple \key{let}'s for the same variable, the closest
  1021. enclosing \key{let} is used. That is, variable definitions overshadow
  1022. prior definitions. Consider the following program with two \key{let}'s
  1023. that define variables named \code{x}. Can you figure out the result?
  1024. \begin{lstlisting}
  1025. (let ([x 32]) (+ (let ([x 10]) x) x))
  1026. \end{lstlisting}
  1027. For the purposes of depicting which variable uses correspond to which
  1028. definitions, the following shows the \code{x}'s annotated with
  1029. subscripts to distinguish them. Double check that your answer for the
  1030. above is the same as your answer for this annotated version of the
  1031. program.
  1032. \begin{lstlisting}
  1033. (let ([x|$_1$| 32]) (+ (let ([x|$_2$| 10]) x|$_2$|) x|$_1$|))
  1034. \end{lstlisting}
  1035. The initializing expression is always evaluated before the body of the
  1036. \key{let}, so in the following, the \key{read} for \code{x} is
  1037. performed before the \key{read} for \code{y}. Given the input
  1038. $52$ then $10$, the following produces $42$ (not $-42$).
  1039. \begin{lstlisting}
  1040. (let ([x (read)]) (let ([y (read)]) (+ x (- y))))
  1041. \end{lstlisting}
  1042. \subsection{Extensible Interpreters via Method Overriding}
  1043. To prepare for discussing the interpreter for \LangVar{}, we need to
  1044. explain why we choose to implement the interpreter using
  1045. object-oriented programming, that is, as a collection of methods
  1046. inside of a class. Throughout this book we define many interpreters,
  1047. one for each of the languages that we study. Because each language
  1048. builds on the prior one, there is a lot of commonality between their
  1049. interpreters. We want to write down those common parts just once
  1050. instead of many times. A naive approach would be to have, for example,
  1051. the interpreter for \LangIf{} handle all of the new features in that
  1052. language and then have a default case that dispatches to the
  1053. interpreter for \LangVar{}. The following code sketches this idea.
  1054. \begin{center}
  1055. \begin{minipage}{0.45\textwidth}
  1056. \begin{lstlisting}
  1057. (define (interp-Rvar e)
  1058. (match e
  1059. [(Prim '- (list e))
  1060. (fx- 0 (interp-Rvar e))]
  1061. ...))
  1062. \end{lstlisting}
  1063. \end{minipage}
  1064. \begin{minipage}{0.45\textwidth}
  1065. \begin{lstlisting}
  1066. (define (interp-Rif e)
  1067. (match e
  1068. [(If cnd thn els)
  1069. (match (interp-Rif cnd)
  1070. [#t (interp-Rif thn)]
  1071. [#f (interp-Rif els)])]
  1072. ...
  1073. [else (interp-Rvar e)]))
  1074. \end{lstlisting}
  1075. \end{minipage}
  1076. \end{center}
  1077. The problem with this approach is that it does not handle situations
  1078. in which an \LangIf{} feature, like \code{If}, is nested inside an \LangVar{}
  1079. feature, like the \code{-} operator, as in the following program.
  1080. \begin{lstlisting}
  1081. (Prim '- (list (If (Bool #t) (Int 42) (Int 0))))
  1082. \end{lstlisting}
  1083. If we invoke \code{interp-Rif} on this program, it dispatches to
  1084. \code{interp-Rvar} to handle the \code{-} operator, but then it
  1085. recurisvely calls \code{interp-Rvar} again on the argument of \code{-},
  1086. which is an \code{If}. But there is no case for \code{If} in
  1087. \code{interp-Rvar}, so we get an error!
  1088. To make our interpreters extensible we need something called
  1089. \emph{open recursion}\index{open recursion}, where the tying of the
  1090. recursive knot is delayed to when the functions are
  1091. composed. Object-oriented languages provide open recursion with the
  1092. late-binding of overridden methods\index{method overriding}. The
  1093. following code sketches this idea for interpreting \LangVar{} and
  1094. \LangIf{} using the
  1095. \href{https://docs.racket-lang.org/guide/classes.html}{\code{class}}
  1096. \index{class} feature of Racket. We define one class for each
  1097. language and define a method for interpreting expressions inside each
  1098. class. The class for \LangIf{} inherits from the class for \LangVar{}
  1099. and the method \code{interp-exp} in \LangIf{} overrides the
  1100. \code{interp-exp} in \LangVar{}. Note that the default case of
  1101. \code{interp-exp} in \LangIf{} uses \code{super} to invoke
  1102. \code{interp-exp}, and because \LangIf{} inherits from \LangVar{},
  1103. that dispatches to the \code{interp-exp} in \LangVar{}.
  1104. \begin{center}
  1105. \begin{minipage}{0.45\textwidth}
  1106. \begin{lstlisting}
  1107. (define interp-Rvar-class
  1108. (class object%
  1109. (define/public (interp-exp e)
  1110. (match e
  1111. [(Prim '- (list e))
  1112. (fx- 0 (interp-exp e))]
  1113. ...))
  1114. ...))
  1115. \end{lstlisting}
  1116. \end{minipage}
  1117. \begin{minipage}{0.45\textwidth}
  1118. \begin{lstlisting}
  1119. (define interp-Rif-class
  1120. (class interp-Rvar-class
  1121. (define/override (interp-exp e)
  1122. (match e
  1123. [(If cnd thn els)
  1124. (match (interp-exp cnd)
  1125. [#t (interp-exp thn)]
  1126. [#f (interp-exp els)])]
  1127. ...
  1128. [else (super interp-exp e)]))
  1129. ...
  1130. ))
  1131. \end{lstlisting}
  1132. \end{minipage}
  1133. \end{center}
  1134. Getting back to the troublesome example, repeated here:
  1135. \begin{lstlisting}
  1136. (define e0 (Prim '- (list (If (Bool #t) (Int 42) (Int 0)))))
  1137. \end{lstlisting}
  1138. We can invoke the \code{interp-exp} method for \LangIf{} on this
  1139. expression by creating an object of the \LangIf{} class and sending it the
  1140. \code{interp-exp} method with the argument \code{e0}.
  1141. \begin{lstlisting}
  1142. (send (new interp-Rif-class) interp-exp e0)
  1143. \end{lstlisting}
  1144. The default case of \code{interp-exp} in \LangIf{} handles it by
  1145. dispatching to the \code{interp-exp} method in \LangVar{}, which
  1146. handles the \code{-} operator. But then for the recursive method call,
  1147. it dispatches back to \code{interp-exp} in \LangIf{}, where the
  1148. \code{If} is handled correctly. Thus, method overriding gives us the
  1149. open recursion that we need to implement our interpreters in an
  1150. extensible way.
  1151. \newpage
  1152. \subsection{Definitional Interpreter for \LangVar{}}
  1153. \begin{wrapfigure}[25]{r}[1.0in]{0.6\textwidth}
  1154. \small
  1155. \begin{tcolorbox}[title=Association Lists as Dictionaries]
  1156. An \emph{association list} (alist) is a list of key-value pairs.
  1157. For example, we can map people to their ages with an alist.
  1158. \index{alist}\index{association list}
  1159. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  1160. (define ages
  1161. '((jane . 25) (sam . 24) (kate . 45)))
  1162. \end{lstlisting}
  1163. The \emph{dictionary} interface is for mapping keys to values.
  1164. Every alist implements this interface. \index{dictionary} The package
  1165. \href{https://docs.racket-lang.org/reference/dicts.html}{\code{racket/dict}}
  1166. provides many functions for working with dictionaries. Here
  1167. are a few of them:
  1168. \begin{description}
  1169. \item[$\LP\key{dict-ref}\,\itm{dict}\,\itm{key}\RP$]
  1170. returns the value associated with the given $\itm{key}$.
  1171. \item[$\LP\key{dict-set}\,\itm{dict}\,\itm{key}\,\itm{val}\RP$]
  1172. returns a new dictionary that maps $\itm{key}$ to $\itm{val}$
  1173. but otherwise is the same as $\itm{dict}$.
  1174. \item[$\LP\code{in-dict}\,\itm{dict}\RP$] returns the
  1175. \href{https://docs.racket-lang.org/reference/sequences.html}{sequence}
  1176. of keys and values in $\itm{dict}$. For example, the following
  1177. creates a new alist in which the ages are incremented.
  1178. \end{description}
  1179. \vspace{-10pt}
  1180. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  1181. (for/list ([(k v) (in-dict ages)])
  1182. (cons k (add1 v)))
  1183. \end{lstlisting}
  1184. \end{tcolorbox}
  1185. \end{wrapfigure}
  1186. Having justified the use of classes and methods to implement
  1187. interpreters, we turn to the definitional interpreter for \LangVar{}
  1188. in Figure~\ref{fig:interp-Rvar}. It is similar to the interpreter for
  1189. \LangInt{} but adds two new \key{match} clauses for variables and
  1190. \key{let}. For \key{let} we need a way to communicate the value bound
  1191. to a variable to all the uses of the variable. To accomplish this, we
  1192. maintain a mapping from variables to values. Throughout the compiler
  1193. we often need to map variables to information about them. We refer to
  1194. these mappings as
  1195. \emph{environments}\index{environment}.\footnote{Another common term
  1196. for environment in the compiler literature is \emph{symbol
  1197. table}\index{symbol table}.}
  1198. %
  1199. For simplicity, we use an association list (alist) to represent the
  1200. environment. The sidebar to the right gives a brief introduction to
  1201. alists and the \code{racket/dict} package. The \code{interp-exp}
  1202. function takes the current environment, \code{env}, as an extra
  1203. parameter. When the interpreter encounters a variable, it finds the
  1204. corresponding value using the \code{dict-ref} function. When the
  1205. interpreter encounters a \key{Let}, it evaluates the initializing
  1206. expression, extends the environment with the result value bound to the
  1207. variable, using \code{dict-set}, then evaluates the body of the
  1208. \key{Let}.
  1209. \begin{figure}[tp]
  1210. \begin{lstlisting}
  1211. (define interp-Rvar-class
  1212. (class object%
  1213. (super-new)
  1214. (define/public ((interp-exp env) e)
  1215. (match e
  1216. [(Int n) n]
  1217. [(Prim 'read '())
  1218. (define r (read))
  1219. (cond [(fixnum? r) r]
  1220. [else (error 'interp-exp "expected an integer" r)])]
  1221. [(Prim '- (list e)) (fx- 0 ((interp-exp env) e))]
  1222. [(Prim '+ (list e1 e2))
  1223. (fx+ ((interp-exp env) e1) ((interp-exp env) e2))]
  1224. [(Var x) (dict-ref env x)]
  1225. [(Let x e body)
  1226. (define new-env (dict-set env x ((interp-exp env) e)))
  1227. ((interp-exp new-env) body)]))
  1228. (define/public (interp-program p)
  1229. (match p
  1230. [(Program '() e) ((interp-exp '()) e)]))
  1231. ))
  1232. (define (interp-Rvar p)
  1233. (send (new interp-Rvar-class) interp-program p))
  1234. \end{lstlisting}
  1235. \caption{Interpreter for the \LangVar{} language.}
  1236. \label{fig:interp-Rvar}
  1237. \end{figure}
  1238. The goal for this chapter is to implement a compiler that translates
  1239. any program $P_1$ written in the \LangVar{} language into an x86 assembly
  1240. program $P_2$ such that $P_2$ exhibits the same behavior when run on a
  1241. computer as the $P_1$ program interpreted by \code{interp-Rvar}. That
  1242. is, they output the same integer $n$. We depict this correctness
  1243. criteria in the following diagram.
  1244. \[
  1245. \begin{tikzpicture}[baseline=(current bounding box.center)]
  1246. \node (p1) at (0, 0) {$P_1$};
  1247. \node (p2) at (4, 0) {$P_2$};
  1248. \node (o) at (4, -2) {$n$};
  1249. \path[->] (p1) edge [above] node {\footnotesize compile} (p2);
  1250. \path[->] (p1) edge [left] node {\footnotesize\code{interp-Rvar}} (o);
  1251. \path[->] (p2) edge [right] node {\footnotesize\code{interp-x86int}} (o);
  1252. \end{tikzpicture}
  1253. \]
  1254. In the next section we introduce the \LangXASTInt{} subset of x86 that
  1255. suffices for compiling \LangVar{}.
  1256. \section{The \LangXASTInt{} Assembly Language}
  1257. \label{sec:x86}
  1258. \index{x86}
  1259. Figure~\ref{fig:x86-0-concrete} defines the concrete syntax for
  1260. \LangXASTInt{}. We use the AT\&T syntax expected by the GNU
  1261. assembler.
  1262. %
  1263. A program begins with a \code{main} label followed by a sequence of
  1264. instructions. The \key{globl} directive says that the \key{main}
  1265. procedure is externally visible, which is necessary so that the
  1266. operating system can call it. In the grammar, ellipses such as
  1267. $\ldots$ are used to indicate a sequence of items, e.g., $\Instr
  1268. \ldots$ is a sequence of instructions.\index{instruction}
  1269. %
  1270. An x86 program is stored in the computer's memory. For our purposes,
  1271. the computer's memory is as a mapping of 64-bit addresses to 64-bit
  1272. values. The computer has a \emph{program counter} (PC)\index{program
  1273. counter}\index{PC} stored in the \code{rip} register that points to
  1274. the address of the next instruction to be executed. For most
  1275. instructions, the program counter is incremented after the instruction
  1276. is executed, so it points to the next instruction in memory. Most x86
  1277. instructions take two operands, where each operand is either an
  1278. integer constant (called \emph{immediate value}\index{immediate
  1279. value}), a \emph{register}\index{register}, or a memory location.
  1280. \newcommand{\allregisters}{\key{rsp} \mid \key{rbp} \mid \key{rax} \mid \key{rbx} \mid \key{rcx}
  1281. \mid \key{rdx} \mid \key{rsi} \mid \key{rdi} \mid \\
  1282. && \key{r8} \mid \key{r9} \mid \key{r10}
  1283. \mid \key{r11} \mid \key{r12} \mid \key{r13}
  1284. \mid \key{r14} \mid \key{r15}}
  1285. \begin{figure}[tp]
  1286. \fbox{
  1287. \begin{minipage}{0.96\textwidth}
  1288. \[
  1289. \begin{array}{lcl}
  1290. \Reg &::=& \allregisters{} \\
  1291. \Arg &::=& \key{\$}\Int \mid \key{\%}\Reg \mid \Int\key{(}\key{\%}\Reg\key{)}\\
  1292. \Instr &::=& \key{addq} \; \Arg\key{,} \Arg \mid
  1293. \key{subq} \; \Arg\key{,} \Arg \mid
  1294. \key{negq} \; \Arg \mid \key{movq} \; \Arg\key{,} \Arg \mid \\
  1295. && \key{callq} \; \mathit{label} \mid
  1296. \key{pushq}\;\Arg \mid \key{popq}\;\Arg \mid \key{retq} \mid \key{jmp}\,\itm{label} \\
  1297. && \itm{label}\key{:}\; \Instr \\
  1298. \LangXInt{} &::= & \key{.globl main}\\
  1299. & & \key{main:} \; \Instr\ldots
  1300. \end{array}
  1301. \]
  1302. \end{minipage}
  1303. }
  1304. \caption{The syntax of the \LangXASTInt{} assembly language (AT\&T syntax).}
  1305. \label{fig:x86-0-concrete}
  1306. \end{figure}
  1307. A register is a special kind of variable. Each one holds a 64-bit
  1308. value; there are 16 general-purpose registers in the computer and
  1309. their names are given in Figure~\ref{fig:x86-0-concrete}. A register
  1310. is written with a \key{\%} followed by the register name, such as
  1311. \key{\%rax}.
  1312. An immediate value is written using the notation \key{\$}$n$ where $n$
  1313. is an integer.
  1314. %
  1315. %
  1316. An access to memory is specified using the syntax $n(\key{\%}r)$,
  1317. which obtains the address stored in register $r$ and then adds $n$
  1318. bytes to the address. The resulting address is used to load or store
  1319. to memory depending on whether it occurs as a source or destination
  1320. argument of an instruction.
  1321. An arithmetic instruction such as $\key{addq}\,s\key{,}\,d$ reads from the
  1322. source $s$ and destination $d$, applies the arithmetic operation, then
  1323. writes the result back to the destination $d$.
  1324. %
  1325. The move instruction $\key{movq}\,s\key{,}\,d$ reads from $s$ and
  1326. stores the result in $d$.
  1327. %
  1328. The $\key{callq}\,\itm{label}$ instruction jumps to the procedure
  1329. specified by the label and $\key{retq}$ returns from a procedure to
  1330. its caller.
  1331. %
  1332. We discuss procedure calls in more detail later in this chapter and in
  1333. Chapter~\ref{ch:functions}. The instruction $\key{jmp}\,\itm{label}$
  1334. updates the program counter to the address of the instruction after
  1335. the specified label.
  1336. Appendix~\ref{sec:x86-quick-reference} contains a quick-reference for
  1337. all of the x86 instructions used in this book.
  1338. Figure~\ref{fig:p0-x86} depicts an x86 program that is equivalent to
  1339. \code{(+ 10 32)}. The instruction \lstinline{movq $10, %rax}
  1340. puts $10$ into register \key{rax} and then \lstinline{addq $32, %rax}
  1341. adds $32$ to the $10$ in \key{rax} and
  1342. puts the result, $42$, back into \key{rax}.
  1343. %
  1344. The last instruction, \key{retq}, finishes the \key{main} function by
  1345. returning the integer in \key{rax} to the operating system. The
  1346. operating system interprets this integer as the program's exit
  1347. code. By convention, an exit code of 0 indicates that a program
  1348. completed successfully, and all other exit codes indicate various
  1349. errors. Nevertheless, in this book we return the result of the program
  1350. as the exit code.
  1351. \begin{figure}[tbp]
  1352. \begin{lstlisting}
  1353. .globl main
  1354. main:
  1355. movq $10, %rax
  1356. addq $32, %rax
  1357. retq
  1358. \end{lstlisting}
  1359. \caption{An x86 program equivalent to \code{(+ 10 32)}.}
  1360. \label{fig:p0-x86}
  1361. \end{figure}
  1362. The x86 assembly language varies in a couple ways depending on what
  1363. operating system it is assembled in. The code examples shown here are
  1364. correct on Linux and most Unix-like platforms, but when assembled on
  1365. Mac OS X, labels like \key{main} must be prefixed with an underscore,
  1366. as in \key{\_main}.
  1367. We exhibit the use of memory for storing intermediate results in the
  1368. next example. Figure~\ref{fig:p1-x86} lists an x86 program that is
  1369. equivalent to \code{(+ 52 (- 10))}. This program uses a region of
  1370. memory called the \emph{procedure call stack} (or \emph{stack} for
  1371. short). \index{stack}\index{procedure call stack} The stack consists
  1372. of a separate \emph{frame}\index{frame} for each procedure call. The
  1373. memory layout for an individual frame is shown in
  1374. Figure~\ref{fig:frame}. The register \key{rsp} is called the
  1375. \emph{stack pointer}\index{stack pointer} and points to the item at
  1376. the top of the stack. The stack grows downward in memory, so we
  1377. increase the size of the stack by subtracting from the stack pointer.
  1378. In the context of a procedure call, the \emph{return
  1379. address}\index{return address} is the instruction after the call
  1380. instruction on the caller side. The function call instruction,
  1381. \code{callq}, pushes the return address onto the stack prior to
  1382. jumping to the procedure. The register \key{rbp} is the \emph{base
  1383. pointer}\index{base pointer} and is used to access variables that
  1384. are stored in the frame of the current procedure call. The base
  1385. pointer of the caller is pushed onto the stack after the return
  1386. address and then the base pointer is set to the location of the old
  1387. base pointer. In Figure~\ref{fig:frame} we number the variables from
  1388. $1$ to $n$. Variable $1$ is stored at address $-8\key{(\%rbp)}$,
  1389. variable $2$ at $-16\key{(\%rbp)}$, etc.
  1390. \begin{figure}[tbp]
  1391. \begin{lstlisting}
  1392. start:
  1393. movq $10, -8(%rbp)
  1394. negq -8(%rbp)
  1395. movq -8(%rbp), %rax
  1396. addq $52, %rax
  1397. jmp conclusion
  1398. .globl main
  1399. main:
  1400. pushq %rbp
  1401. movq %rsp, %rbp
  1402. subq $16, %rsp
  1403. jmp start
  1404. conclusion:
  1405. addq $16, %rsp
  1406. popq %rbp
  1407. retq
  1408. \end{lstlisting}
  1409. \caption{An x86 program equivalent to \code{(+ 52 (- 10))}.}
  1410. \label{fig:p1-x86}
  1411. \end{figure}
  1412. \begin{figure}[tbp]
  1413. \centering
  1414. \begin{tabular}{|r|l|} \hline
  1415. Position & Contents \\ \hline
  1416. 8(\key{\%rbp}) & return address \\
  1417. 0(\key{\%rbp}) & old \key{rbp} \\
  1418. -8(\key{\%rbp}) & variable $1$ \\
  1419. -16(\key{\%rbp}) & variable $2$ \\
  1420. \ldots & \ldots \\
  1421. 0(\key{\%rsp}) & variable $n$\\ \hline
  1422. \end{tabular}
  1423. \caption{Memory layout of a frame.}
  1424. \label{fig:frame}
  1425. \end{figure}
  1426. Getting back to the program in Figure~\ref{fig:p1-x86}, consider how
  1427. control is transferred from the operating system to the \code{main}
  1428. function. The operating system issues a \code{callq main} instruction
  1429. which pushes its return address on the stack and then jumps to
  1430. \code{main}. In x86-64, the stack pointer \code{rsp} must be divisible
  1431. by 16 bytes prior to the execution of any \code{callq} instruction, so
  1432. when control arrives at \code{main}, the \code{rsp} is 8 bytes out of
  1433. alignment (because the \code{callq} pushed the return address). The
  1434. first three instructions are the typical \emph{prelude}\index{prelude}
  1435. for a procedure. The instruction \code{pushq \%rbp} saves the base
  1436. pointer for the caller onto the stack and subtracts $8$ from the stack
  1437. pointer. The second instruction \code{movq \%rsp, \%rbp} changes the
  1438. base pointer so that it points the location of the old base
  1439. pointer. The instruction \code{subq \$16, \%rsp} moves the stack
  1440. pointer down to make enough room for storing variables. This program
  1441. needs one variable ($8$ bytes) but we round up to 16 bytes so that
  1442. \code{rsp} is 16-byte aligned and we're ready to make calls to other
  1443. functions. The last instruction of the prelude is \code{jmp start},
  1444. which transfers control to the instructions that were generated from
  1445. the Racket expression \code{(+ 52 (- 10))}.
  1446. The first instruction under the \code{start} label is
  1447. \code{movq \$10, -8(\%rbp)}, which stores $10$ in variable $1$.
  1448. %
  1449. The instruction \code{negq -8(\%rbp)} changes variable $1$ to $-10$.
  1450. %
  1451. The next instruction moves the $-10$ from variable $1$ into the
  1452. \code{rax} register. Finally, \code{addq \$52, \%rax} adds $52$ to
  1453. the value in \code{rax}, updating its contents to $42$.
  1454. The three instructions under the label \code{conclusion} are the
  1455. typical \emph{conclusion}\index{conclusion} of a procedure. The first
  1456. two instructions restore the \code{rsp} and \code{rbp} registers to
  1457. the state they were in at the beginning of the procedure. The
  1458. instruction \key{addq \$16, \%rsp} moves the stack pointer back to
  1459. point at the old base pointer. Then \key{popq \%rbp} returns the old
  1460. base pointer to \key{rbp} and adds $8$ to the stack pointer. The last
  1461. instruction, \key{retq}, jumps back to the procedure that called this
  1462. one and adds $8$ to the stack pointer.
  1463. The compiler needs a convenient representation for manipulating x86
  1464. programs, so we define an abstract syntax for x86 in
  1465. Figure~\ref{fig:x86-0-ast}. We refer to this language as
  1466. \LangXASTInt{}. The main difference compared to the concrete syntax of
  1467. \LangXInt{} (Figure~\ref{fig:x86-0-concrete}) is that labels are not
  1468. allowed in front of every instructions. Instead instructions are
  1469. grouped into \emph{blocks}\index{block}\index{basic block} with a
  1470. label associated with every block, which is why the \key{X86Program}
  1471. struct includes an alist mapping labels to blocks. The reason for this
  1472. organization becomes apparent in Chapter~\ref{ch:bool-types} when we
  1473. introduce conditional branching. The \code{Block} structure includes
  1474. an $\itm{info}$ field that is not needed for this chapter, but becomes
  1475. useful in Chapter~\ref{ch:register-allocation-r1}. For now, the
  1476. $\itm{info}$ field should contain an empty list. Also, regarding the
  1477. abstract syntax for \code{callq}, the \code{Callq} struct includes an
  1478. integer for representing the arity of the function, i.e., the number
  1479. of arguments, which is helpful to know during register allocation
  1480. (Chapter~\ref{ch:register-allocation-r1}).
  1481. \begin{figure}[tp]
  1482. \fbox{
  1483. \begin{minipage}{0.98\textwidth}
  1484. \small
  1485. \[
  1486. \begin{array}{lcl}
  1487. \Reg &::=& \allregisters{} \\
  1488. \Arg &::=& \IMM{\Int} \mid \REG{\Reg}
  1489. \mid \DEREF{\Reg}{\Int} \\
  1490. \Instr &::=& \BININSTR{\code{addq}}{\Arg}{\Arg}
  1491. \mid \BININSTR{\code{subq}}{\Arg}{\Arg} \\
  1492. &\mid& \BININSTR{\code{movq}}{\Arg}{\Arg}
  1493. \mid \UNIINSTR{\code{negq}}{\Arg}\\
  1494. &\mid& \CALLQ{\itm{label}}{\itm{int}} \mid \RETQ{}
  1495. \mid \PUSHQ{\Arg} \mid \POPQ{\Arg} \mid \JMP{\itm{label}} \\
  1496. \Block &::= & \BLOCK{\itm{info}}{\LP\Instr\ldots\RP} \\
  1497. \LangXASTInt{} &::= & \XPROGRAM{\itm{info}}{\LP\LP\itm{label} \,\key{.}\, \Block \RP\ldots\RP}
  1498. \end{array}
  1499. \]
  1500. \end{minipage}
  1501. }
  1502. \caption{The abstract syntax of \LangXASTInt{} assembly.}
  1503. \label{fig:x86-0-ast}
  1504. \end{figure}
  1505. \section{Planning the trip to x86 via the \LangCVar{} language}
  1506. \label{sec:plan-s0-x86}
  1507. To compile one language to another it helps to focus on the
  1508. differences between the two languages because the compiler will need
  1509. to bridge those differences. What are the differences between \LangVar{}
  1510. and x86 assembly? Here are some of the most important ones:
  1511. \begin{enumerate}
  1512. \item[(a)] x86 arithmetic instructions typically have two arguments
  1513. and update the second argument in place. In contrast, \LangVar{}
  1514. arithmetic operations take two arguments and produce a new value.
  1515. An x86 instruction may have at most one memory-accessing argument.
  1516. Furthermore, some instructions place special restrictions on their
  1517. arguments.
  1518. \item[(b)] An argument of an \LangVar{} operator can be a deeply-nested
  1519. expression, whereas x86 instructions restrict their arguments to be
  1520. integers constants, registers, and memory locations.
  1521. \item[(c)] The order of execution in x86 is explicit in the syntax: a
  1522. sequence of instructions and jumps to labeled positions, whereas in
  1523. \LangVar{} the order of evaluation is a left-to-right depth-first
  1524. traversal of the abstract syntax tree.
  1525. \item[(d)] A program in \LangVar{} can have any number of variables
  1526. whereas x86 has 16 registers and the procedure calls stack.
  1527. \item[(e)] Variables in \LangVar{} can overshadow other variables with the
  1528. same name. In x86, registers have unique names and memory locations
  1529. have unique addresses.
  1530. \end{enumerate}
  1531. We ease the challenge of compiling from \LangVar{} to x86 by breaking down
  1532. the problem into several steps, dealing with the above differences one
  1533. at a time. Each of these steps is called a \emph{pass} of the
  1534. compiler.\index{pass}\index{compiler pass}
  1535. %
  1536. This terminology comes from the way each step passes over the AST of
  1537. the program.
  1538. %
  1539. We begin by sketching how we might implement each pass, and give them
  1540. names. We then figure out an ordering of the passes and the
  1541. input/output language for each pass. The very first pass has
  1542. \LangVar{} as its input language and the last pass has \LangXInt{} as
  1543. its output language. In between we can choose whichever language is
  1544. most convenient for expressing the output of each pass, whether that
  1545. be \LangVar{}, \LangXInt{}, or new \emph{intermediate languages} of
  1546. our own design. Finally, to implement each pass we write one
  1547. recursive function per non-terminal in the grammar of the input
  1548. language of the pass. \index{intermediate language}
  1549. \begin{description}
  1550. \item[\key{select-instructions}] handles the difference between
  1551. \LangVar{} operations and x86 instructions. This pass converts each
  1552. \LangVar{} operation to a short sequence of instructions that
  1553. accomplishes the same task.
  1554. \item[\key{remove-complex-opera*}] ensures that each subexpression of
  1555. a primitive operation is a variable or integer, that is, an
  1556. \emph{atomic} expression. We refer to non-atomic expressions as
  1557. \emph{complex}. This pass introduces temporary variables to hold
  1558. the results of complex subexpressions.\index{atomic
  1559. expression}\index{complex expression}%
  1560. \footnote{The subexpressions of an operation are often called
  1561. operators and operands which explains the presence of
  1562. \code{opera*} in the name of this pass.}
  1563. \item[\key{explicate-control}] makes the execution order of the
  1564. program explicit. It convert the abstract syntax tree representation
  1565. into a control-flow graph in which each node contains a sequence of
  1566. statements and the edges between nodes say which nodes contain jumps
  1567. to other nodes.
  1568. \item[\key{assign-homes}] replaces the variables in \LangVar{} with
  1569. registers or stack locations in x86.
  1570. \item[\key{uniquify}] deals with the shadowing of variables by
  1571. renaming every variable to a unique name.
  1572. \end{description}
  1573. The next question is: in what order should we apply these passes? This
  1574. question can be challenging because it is difficult to know ahead of
  1575. time which orderings will be better (easier to implement, produce more
  1576. efficient code, etc.) so oftentimes trial-and-error is
  1577. involved. Nevertheless, we can try to plan ahead and make educated
  1578. choices regarding the ordering.
  1579. What should be the ordering of \key{explicate-control} with respect to
  1580. \key{uniquify}? The \key{uniquify} pass should come first because
  1581. \key{explicate-control} changes all the \key{let}-bound variables to
  1582. become local variables whose scope is the entire program, which would
  1583. confuse variables with the same name.
  1584. %
  1585. We place \key{remove-complex-opera*} before \key{explicate-control}
  1586. because the later removes the \key{let} form, but it is convenient to
  1587. use \key{let} in the output of \key{remove-complex-opera*}.
  1588. %
  1589. The ordering of \key{uniquify} with respect to
  1590. \key{remove-complex-opera*} does not matter so we arbitrarily choose
  1591. \key{uniquify} to come first.
  1592. Last, we consider \key{select-instructions} and \key{assign-homes}.
  1593. These two passes are intertwined. In Chapter~\ref{ch:functions} we
  1594. learn that, in x86, registers are used for passing arguments to
  1595. functions and it is preferable to assign parameters to their
  1596. corresponding registers. On the other hand, by selecting instructions
  1597. first we may run into a dead end in \key{assign-homes}. Recall that
  1598. only one argument of an x86 instruction may be a memory access but
  1599. \key{assign-homes} might fail to assign even one of them to a
  1600. register.
  1601. %
  1602. A sophisticated approach is to iteratively repeat the two passes until
  1603. a solution is found. However, to reduce implementation complexity we
  1604. recommend a simpler approach in which \key{select-instructions} comes
  1605. first, followed by the \key{assign-homes}, then a third pass named
  1606. \key{patch-instructions} that uses a reserved register to fix
  1607. outstanding problems.
  1608. \begin{figure}[tbp]
  1609. \begin{tikzpicture}[baseline=(current bounding box.center)]
  1610. \node (Rvar) at (0,2) {\large \LangVar{}};
  1611. \node (Rvar-2) at (3,2) {\large \LangVar{}};
  1612. \node (Rvar-3) at (6,2) {\large \LangVarANF{}};
  1613. %\node (Cvar-1) at (6,0) {\large \LangCVar{}};
  1614. \node (Cvar-2) at (3,0) {\large \LangCVar{}};
  1615. \node (x86-2) at (3,-2) {\large \LangXVar{}};
  1616. \node (x86-3) at (6,-2) {\large \LangXVar{}};
  1617. \node (x86-4) at (9,-2) {\large \LangXASTInt{}};
  1618. \node (x86-5) at (12,-2) {\large \LangXInt{}};
  1619. \path[->,bend left=15] (Rvar) edge [above] node {\ttfamily\footnotesize uniquify} (Rvar-2);
  1620. \path[->,bend left=15] (Rvar-2) edge [above] node {\ttfamily\footnotesize remove-complex.} (Rvar-3);
  1621. \path[->,bend left=15] (Rvar-3) edge [right] node {\ttfamily\footnotesize explicate-control} (Cvar-2);
  1622. \path[->,bend right=15] (Cvar-2) edge [left] node {\ttfamily\footnotesize select-instr.} (x86-2);
  1623. \path[->,bend left=15] (x86-2) edge [above] node {\ttfamily\footnotesize assign-homes} (x86-3);
  1624. \path[->,bend left=15] (x86-3) edge [above] node {\ttfamily\footnotesize patch-instr.} (x86-4);
  1625. \path[->,bend left=15] (x86-4) edge [above] node {\ttfamily\footnotesize print-x86} (x86-5);
  1626. \end{tikzpicture}
  1627. \caption{Diagram of the passes for compiling \LangVar{}. }
  1628. \label{fig:Rvar-passes}
  1629. \end{figure}
  1630. Figure~\ref{fig:Rvar-passes} presents the ordering of the compiler
  1631. passes and identifies the input and output language of each pass. The
  1632. last pass, \key{print-x86}, converts from the abstract syntax of
  1633. \LangXASTInt{} to the concrete syntax. In the following two sections
  1634. we discuss the \LangCVar{} intermediate language and the \LangXVar{}
  1635. dialect of x86. The remainder of this chapter gives hints regarding
  1636. the implementation of each of the compiler passes in
  1637. Figure~\ref{fig:Rvar-passes}.
  1638. %% The output of \key{uniquify} and \key{remove-complex-opera*}
  1639. %% are programs that are still in the \LangVar{} language, though the
  1640. %% output of the later is a subset of \LangVar{} named \LangVarANF{}
  1641. %% (Section~\ref{sec:remove-complex-opera-Rvar}).
  1642. %% %
  1643. %% The output of \key{explicate-control} is in an intermediate language
  1644. %% \LangCVar{} designed to make the order of evaluation explicit in its
  1645. %% syntax, which we introduce in the next section. The
  1646. %% \key{select-instruction} pass translates from \LangCVar{} to
  1647. %% \LangXVar{}. The \key{assign-homes} and
  1648. %% \key{patch-instructions}
  1649. %% passes input and output variants of x86 assembly.
  1650. \subsection{The \LangCVar{} Intermediate Language}
  1651. The output of \key{explicate-control} is similar to the $C$
  1652. language~\citep{Kernighan:1988nx} in that it has separate syntactic
  1653. categories for expressions and statements, so we name it \LangCVar{}. The
  1654. abstract syntax for \LangCVar{} is defined in Figure~\ref{fig:c0-syntax}.
  1655. (The concrete syntax for \LangCVar{} is in the Appendix,
  1656. Figure~\ref{fig:c0-concrete-syntax}.)
  1657. %
  1658. The \LangCVar{} language supports the same operators as \LangVar{} but
  1659. the arguments of operators are restricted to atomic
  1660. expressions. Instead of \key{let} expressions, \LangCVar{} has
  1661. assignment statements which can be executed in sequence using the
  1662. \key{Seq} form. A sequence of statements always ends with
  1663. \key{Return}, a guarantee that is baked into the grammar rules for
  1664. \itm{tail}. The naming of this non-terminal comes from the term
  1665. \emph{tail position}\index{tail position}, which refers to an
  1666. expression that is the last one to execute within a function.
  1667. A \LangCVar{} program consists of a control-flow graph represented as
  1668. an alist mapping labels to tails. This is more general than necessary
  1669. for the present chapter, as we do not yet introduce \key{goto} for
  1670. jumping to labels, but it saves us from having to change the syntax in
  1671. Chapter~\ref{ch:bool-types}. For now there will be just one label,
  1672. \key{start}, and the whole program is its tail.
  1673. %
  1674. The $\itm{info}$ field of the \key{CProgram} form, after the
  1675. \key{explicate-control} pass, contains a mapping from the symbol
  1676. \key{locals} to a list of variables, that is, a list of all the
  1677. variables used in the program. At the start of the program, these
  1678. variables are uninitialized; they become initialized on their first
  1679. assignment.
  1680. \begin{figure}[tbp]
  1681. \fbox{
  1682. \begin{minipage}{0.96\textwidth}
  1683. \[
  1684. \begin{array}{lcl}
  1685. \Atm &::=& \INT{\Int} \mid \VAR{\Var} \\
  1686. \Exp &::=& \Atm \mid \READ{} \mid \NEG{\Atm} \\
  1687. &\mid& \ADD{\Atm}{\Atm}\\
  1688. \Stmt &::=& \ASSIGN{\VAR{\Var}}{\Exp} \\
  1689. \Tail &::= & \RETURN{\Exp} \mid \SEQ{\Stmt}{\Tail} \\
  1690. \LangCVar{} & ::= & \CPROGRAM{\itm{info}}{\LP\LP\itm{label}\,\key{.}\,\Tail\RP\ldots\RP}
  1691. \end{array}
  1692. \]
  1693. \end{minipage}
  1694. }
  1695. \caption{The abstract syntax of the \LangCVar{} intermediate language.}
  1696. \label{fig:c0-syntax}
  1697. \end{figure}
  1698. The definitional interpreter for \LangCVar{} is in the support code
  1699. for this book, in the file \code{interp-Cvar.rkt}. The support code is
  1700. in a \code{github} repository at the following URL:
  1701. \begin{center}\footnotesize
  1702. \url{https://github.com/IUCompilerCourse/public-student-support-code}
  1703. \end{center}
  1704. \subsection{The \LangXVar{} dialect}
  1705. The \LangXVar{} language, which we call ``pseudo x86'', is the output
  1706. of the pass \key{select-instructions}. It extends \LangXASTInt{} with
  1707. an unbounded number of program-scope variables and removes the
  1708. restrictions regarding instruction arguments.
  1709. \section{Uniquify Variables}
  1710. \label{sec:uniquify-Rvar}
  1711. The \code{uniquify} pass compiles \LangVar{} programs into \LangVar{}
  1712. programs in which every \key{let} binds a unique variable name. For
  1713. example, the \code{uniquify} pass should translate the program on the
  1714. left into the program on the right. \\
  1715. \begin{tabular}{lll}
  1716. \begin{minipage}{0.4\textwidth}
  1717. \begin{lstlisting}
  1718. (let ([x 32])
  1719. (+ (let ([x 10]) x) x))
  1720. \end{lstlisting}
  1721. \end{minipage}
  1722. &
  1723. $\Rightarrow$
  1724. &
  1725. \begin{minipage}{0.4\textwidth}
  1726. \begin{lstlisting}
  1727. (let ([x.1 32])
  1728. (+ (let ([x.2 10]) x.2) x.1))
  1729. \end{lstlisting}
  1730. \end{minipage}
  1731. \end{tabular} \\
  1732. %
  1733. The following is another example translation, this time of a program
  1734. with a \key{let} nested inside the initializing expression of another
  1735. \key{let}.\\
  1736. \begin{tabular}{lll}
  1737. \begin{minipage}{0.4\textwidth}
  1738. \begin{lstlisting}
  1739. (let ([x (let ([x 4])
  1740. (+ x 1))])
  1741. (+ x 2))
  1742. \end{lstlisting}
  1743. \end{minipage}
  1744. &
  1745. $\Rightarrow$
  1746. &
  1747. \begin{minipage}{0.4\textwidth}
  1748. \begin{lstlisting}
  1749. (let ([x.2 (let ([x.1 4])
  1750. (+ x.1 1))])
  1751. (+ x.2 2))
  1752. \end{lstlisting}
  1753. \end{minipage}
  1754. \end{tabular}
  1755. We recommend implementing \code{uniquify} by creating a structurally
  1756. recursive function named \code{uniquify-exp} that mostly just copies
  1757. an expression. However, when encountering a \key{let}, it should
  1758. generate a unique name for the variable and associate the old name
  1759. with the new name in an alist.\footnote{The Racket function
  1760. \code{gensym} is handy for generating unique variable names.} The
  1761. \code{uniquify-exp} function needs to access this alist when it gets
  1762. to a variable reference, so we add a parameter to \code{uniquify-exp}
  1763. for the alist.
  1764. The skeleton of the \code{uniquify-exp} function is shown in
  1765. Figure~\ref{fig:uniquify-Rvar}. The function is curried so that it is
  1766. convenient to partially apply it to an alist and then apply it to
  1767. different expressions, as in the last clause for primitive operations
  1768. in Figure~\ref{fig:uniquify-Rvar}. The
  1769. %
  1770. \href{https://docs.racket-lang.org/reference/for.html#%28form._%28%28lib._racket%2Fprivate%2Fbase..rkt%29._for%2Flist%29%29}{\key{for/list}}
  1771. %
  1772. form of Racket is useful for transforming each element of a list to
  1773. produce a new list.\index{for/list}
  1774. \begin{exercise}
  1775. \normalfont % I don't like the italics for exercises. -Jeremy
  1776. Complete the \code{uniquify} pass by filling in the blanks in
  1777. Figure~\ref{fig:uniquify-Rvar}, that is, implement the clauses for
  1778. variables and for the \key{let} form in the file \code{compiler.rkt}
  1779. in the support code.
  1780. \end{exercise}
  1781. \begin{figure}[tbp]
  1782. \begin{lstlisting}
  1783. (define (uniquify-exp env)
  1784. (lambda (e)
  1785. (match e
  1786. [(Var x) ___]
  1787. [(Int n) (Int n)]
  1788. [(Let x e body) ___]
  1789. [(Prim op es)
  1790. (Prim op (for/list ([e es]) ((uniquify-exp env) e)))])))
  1791. (define (uniquify p)
  1792. (match p
  1793. [(Program '() e) (Program '() ((uniquify-exp '()) e))]))
  1794. \end{lstlisting}
  1795. \caption{Skeleton for the \key{uniquify} pass.}
  1796. \label{fig:uniquify-Rvar}
  1797. \end{figure}
  1798. \begin{exercise}
  1799. \normalfont % I don't like the italics for exercises. -Jeremy
  1800. Creating five \LangVar{} programs to test the most interesting parts
  1801. of the \key{uniquify} pass, that is, the programs should include
  1802. \key{let} forms, variables, and variables that overshadow each other.
  1803. The five programs should be placed in the subdirectory named
  1804. \key{tests} and the file names should start with \code{var\_test\_}
  1805. followed by a unique integer and end with the file extension
  1806. \key{.rkt}. Run the \key{run-tests.rkt} script in the support code to
  1807. check whether the output programs produce the same result as the input
  1808. programs. The script uses the \key{interp-tests} function
  1809. (Appendix~\ref{appendix:utilities}) from \key{utilities.rkt} to test
  1810. your \key{uniquify} pass on the example programs.
  1811. \end{exercise}
  1812. \section{Remove Complex Operands}
  1813. \label{sec:remove-complex-opera-Rvar}
  1814. The \code{remove-complex-opera*} pass compiles \LangVar{} programs into
  1815. \LangVar{} programs in which the arguments of operations are atomic
  1816. expressions. Put another way, this pass removes complex
  1817. operands\index{complex operand}, such as the expression \code{(- 10)}
  1818. in the program below. This is accomplished by introducing a new
  1819. \key{let}-bound variable, binding the complex operand to the new
  1820. variable, and then using the new variable in place of the complex
  1821. operand, as shown in the output of \code{remove-complex-opera*} on the
  1822. right.\\
  1823. \begin{tabular}{lll}
  1824. \begin{minipage}{0.4\textwidth}
  1825. % s0_19.rkt
  1826. \begin{lstlisting}
  1827. (+ 52 (- 10))
  1828. \end{lstlisting}
  1829. \end{minipage}
  1830. &
  1831. $\Rightarrow$
  1832. &
  1833. \begin{minipage}{0.4\textwidth}
  1834. \begin{lstlisting}
  1835. (let ([tmp.1 (- 10)])
  1836. (+ 52 tmp.1))
  1837. \end{lstlisting}
  1838. \end{minipage}
  1839. \end{tabular}
  1840. \begin{figure}[tp]
  1841. \centering
  1842. \fbox{
  1843. \begin{minipage}{0.96\textwidth}
  1844. \[
  1845. \begin{array}{rcl}
  1846. \Atm &::=& \INT{\Int} \mid \VAR{\Var} \\
  1847. \Exp &::=& \Atm \mid \READ{} \\
  1848. &\mid& \NEG{\Atm} \mid \ADD{\Atm}{\Atm} \\
  1849. &\mid& \LET{\Var}{\Exp}{\Exp} \\
  1850. R^{\dagger}_1 &::=& \PROGRAM{\code{'()}}{\Exp}
  1851. \end{array}
  1852. \]
  1853. \end{minipage}
  1854. }
  1855. \caption{\LangVarANF{} is \LangVar{} in administrative normal form (ANF).}
  1856. \label{fig:r1-anf-syntax}
  1857. \end{figure}
  1858. Figure~\ref{fig:r1-anf-syntax} presents the grammar for the output of
  1859. this pass, the language \LangVarANF{}. The only difference is that
  1860. operator arguments are required to be atomic expressions. In the
  1861. literature, this is called \emph{administrative normal form}, or ANF
  1862. for short~\citep{Danvy:1991fk,Flanagan:1993cg}. \index{administrative
  1863. normal form} \index{ANF}
  1864. We recommend implementing this pass with two mutually recursive
  1865. functions, \code{rco-atom} and \code{rco-exp}. The idea is to apply
  1866. \code{rco-atom} to subexpressions that are required to be atomic and
  1867. to apply \code{rco-exp} to subexpressions that can be atomic or
  1868. complex (see Figure~\ref{fig:r1-anf-syntax}). Both functions take an
  1869. \LangVar{} expression as input. The \code{rco-exp} function returns an
  1870. expression. The \code{rco-atom} function returns two things: an
  1871. atomic expression and alist mapping temporary variables to complex
  1872. subexpressions. You can return multiple things from a function using
  1873. Racket's \key{values} form and you can receive multiple things from a
  1874. function call using the \key{define-values} form. If you are not
  1875. familiar with these features, review the Racket documentation. Also,
  1876. the \href{https://docs.racket-lang.org/reference/for.html#%28form._%28%28lib._racket%2Fprivate%2Fbase..rkt%29._for%2Flists%29%29}{\code{for/lists}}
  1877. form is useful for applying a function to each
  1878. element of a list, in the case where the function returns multiple
  1879. values.
  1880. \index{for/lists}
  1881. The following shows the output of \code{rco-atom} on the expression
  1882. \code{(- 10)} (using concrete syntax to be concise).
  1883. \begin{tabular}{lll}
  1884. \begin{minipage}{0.4\textwidth}
  1885. \begin{lstlisting}
  1886. (- 10)
  1887. \end{lstlisting}
  1888. \end{minipage}
  1889. &
  1890. $\Rightarrow$
  1891. &
  1892. \begin{minipage}{0.4\textwidth}
  1893. \begin{lstlisting}
  1894. tmp.1
  1895. ((tmp.1 . (- 10)))
  1896. \end{lstlisting}
  1897. \end{minipage}
  1898. \end{tabular}
  1899. Take special care of programs such as the following one that binds a
  1900. variable to an atomic expression. You should leave such variable
  1901. bindings unchanged, as shown in to the program on the right \\
  1902. \begin{tabular}{lll}
  1903. \begin{minipage}{0.4\textwidth}
  1904. % s0_20.rkt
  1905. \begin{lstlisting}
  1906. (let ([a 42])
  1907. (let ([b a])
  1908. b))
  1909. \end{lstlisting}
  1910. \end{minipage}
  1911. &
  1912. $\Rightarrow$
  1913. &
  1914. \begin{minipage}{0.4\textwidth}
  1915. \begin{lstlisting}
  1916. (let ([a 42])
  1917. (let ([b a])
  1918. b))
  1919. \end{lstlisting}
  1920. \end{minipage}
  1921. \end{tabular} \\
  1922. A careless implementation of \key{rco-exp} and \key{rco-atom} might
  1923. produce the following output with unnecessary temporary variables.\\
  1924. \begin{minipage}{0.4\textwidth}
  1925. \begin{lstlisting}
  1926. (let ([tmp.1 42])
  1927. (let ([a tmp.1])
  1928. (let ([tmp.2 a])
  1929. (let ([b tmp.2])
  1930. b))))
  1931. \end{lstlisting}
  1932. \end{minipage}
  1933. \begin{exercise}
  1934. \normalfont Implement the \code{remove-complex-opera*} in
  1935. \code{compiler.rkt}. Create three new \LangInt{} programs that are
  1936. designed to exercise the interesting code in the
  1937. \code{remove-complex-opera*} pass (Following the same file name
  1938. guidelines as before.). In the \code{run-tests.rkt} script,
  1939. uncomment the line for this pass in the list of \code{passes} and
  1940. then run the script to test your compiler.
  1941. \end{exercise}
  1942. \section{Explicate Control}
  1943. \label{sec:explicate-control-r1}
  1944. The \code{explicate-control} pass compiles \LangVar{} programs into \LangCVar{}
  1945. programs that make the order of execution explicit in their
  1946. syntax. For now this amounts to flattening \key{let} constructs into a
  1947. sequence of assignment statements. For example, consider the following
  1948. \LangVar{} program.\\
  1949. % s0_11.rkt
  1950. \begin{minipage}{0.96\textwidth}
  1951. \begin{lstlisting}
  1952. (let ([y (let ([x 20])
  1953. (+ x (let ([x 22]) x)))])
  1954. y)
  1955. \end{lstlisting}
  1956. \end{minipage}\\
  1957. %
  1958. The output of the previous pass and of \code{explicate-control} is
  1959. shown below. Recall that the right-hand-side of a \key{let} executes
  1960. before its body, so the order of evaluation for this program is to
  1961. assign \code{20} to \code{x.1}, \code{22} to \code{x.2}, and
  1962. \code{(+ x.1 x.2)} to \code{y}, then return \code{y}. Indeed, the
  1963. output of \code{explicate-control} makes this ordering explicit.\\
  1964. \begin{tabular}{lll}
  1965. \begin{minipage}{0.4\textwidth}
  1966. \begin{lstlisting}
  1967. (let ([y (let ([x.1 20])
  1968. (let ([x.2 22])
  1969. (+ x.1 x.2)))])
  1970. y)
  1971. \end{lstlisting}
  1972. \end{minipage}
  1973. &
  1974. $\Rightarrow$
  1975. &
  1976. \begin{minipage}{0.4\textwidth}
  1977. \begin{lstlisting}[language=C]
  1978. start:
  1979. x.1 = 20;
  1980. x.2 = 22;
  1981. y = (+ x.1 x.2);
  1982. return y;
  1983. \end{lstlisting}
  1984. \end{minipage}
  1985. \end{tabular}
  1986. \begin{figure}[tbp]
  1987. \begin{lstlisting}
  1988. (define (explicate-tail e)
  1989. (match e
  1990. [(Var x) ___]
  1991. [(Int n) (Return (Int n))]
  1992. [(Let x rhs body) ___]
  1993. [(Prim op es) ___]
  1994. [else (error "explicate-tail unhandled case" e)]))
  1995. (define (explicate-assign e x cont)
  1996. (match e
  1997. [(Var x) ___]
  1998. [(Int n) (Seq (Assign (Var x) (Int n)) cont)]
  1999. [(Let y rhs body) ___]
  2000. [(Prim op es) ___]
  2001. [else (error "explicate-assign unhandled case" e)]))
  2002. (define (explicate-control p)
  2003. (match p
  2004. [(Program info body) ___]))
  2005. \end{lstlisting}
  2006. \caption{Skeleton for the \key{explicate-control} pass.}
  2007. \label{fig:explicate-control-Rvar}
  2008. \end{figure}
  2009. The organization of this pass depends on the notion of tail position
  2010. that we have alluded to earlier. Formally, \emph{tail
  2011. position}\index{tail position} in the context of \LangVar{} is
  2012. defined recursively by the following two rules.
  2013. \begin{enumerate}
  2014. \item In $\PROGRAM{\code{()}}{e}$, expression $e$ is in tail position.
  2015. \item If $\LET{x}{e_1}{e_2}$ is in tail position, then so is $e_2$.
  2016. \end{enumerate}
  2017. We recommend implementing \code{explicate-control} using two mutually
  2018. recursive functions, \code{explicate-tail} and
  2019. \code{explicate-assign}, as suggested in the skeleton code in
  2020. Figure~\ref{fig:explicate-control-Rvar}. The \code{explicate-tail}
  2021. function should be applied to expressions in tail position whereas the
  2022. \code{explicate-assign} should be applied to expressions that occur on
  2023. the right-hand-side of a \key{let}.
  2024. %
  2025. The \code{explicate-tail} function takes an \Exp{} in \LangVar{} as
  2026. input and produces a \Tail{} in \LangCVar{} (see
  2027. Figure~\ref{fig:c0-syntax}).
  2028. %
  2029. The \code{explicate-assign} function takes an \Exp{} in \LangVar{},
  2030. the variable that it is to be assigned to, and a \Tail{} in
  2031. \LangCVar{} for the code that will come after the assignment. The
  2032. \code{explicate-assign} function returns a $\Tail$ in \LangCVar{}.
  2033. The \code{explicate-assign} function is in accumulator-passing style
  2034. in that the \code{cont} parameter is used for accumulating the
  2035. output. The reader might be tempted to instead organize
  2036. \code{explicate-assign} in a more direct fashion, without the
  2037. \code{cont} parameter and perhaps using \code{append} to combine
  2038. statements. We warn against that alternative because the
  2039. accumulator-passing style is key to how we generate high-quality code
  2040. for conditional expressions in Chapter~\ref{ch:bool-types}.
  2041. \section{Select Instructions}
  2042. \label{sec:select-r1}
  2043. \index{instruction selection}
  2044. In the \code{select-instructions} pass we begin the work of
  2045. translating from \LangCVar{} to \LangXVar{}. The target language of
  2046. this pass is a variant of x86 that still uses variables, so we add an
  2047. AST node of the form $\VAR{\itm{var}}$ to the \LangXASTInt{} abstract
  2048. syntax of Figure~\ref{fig:x86-0-ast}. We recommend implementing the
  2049. \code{select-instructions} in terms of three auxiliary functions, one
  2050. for each of the non-terminals of \LangCVar{}: $\Atm$, $\Stmt$, and $\Tail$.
  2051. The cases for $\Atm$ are straightforward, variables stay
  2052. the same and integer constants are changed to immediates:
  2053. $\INT{n}$ changes to $\IMM{n}$.
  2054. Next we consider the cases for $\Stmt$, starting with arithmetic
  2055. operations. For example, in \LangCVar{} an addition operation can take the
  2056. form below, to the left of the $\Rightarrow$. To translate to x86, we
  2057. need to use the \key{addq} instruction which does an in-place
  2058. update. So we must first move \code{10} to \code{x}. \\
  2059. \begin{tabular}{lll}
  2060. \begin{minipage}{0.4\textwidth}
  2061. \begin{lstlisting}
  2062. x = (+ 10 32);
  2063. \end{lstlisting}
  2064. \end{minipage}
  2065. &
  2066. $\Rightarrow$
  2067. &
  2068. \begin{minipage}{0.4\textwidth}
  2069. \begin{lstlisting}
  2070. movq $10, x
  2071. addq $32, x
  2072. \end{lstlisting}
  2073. \end{minipage}
  2074. \end{tabular} \\
  2075. %
  2076. There are cases that require special care to avoid generating
  2077. needlessly complicated code. If one of the arguments of the addition
  2078. is the same as the left-hand side of the assignment, then there is no
  2079. need for the extra move instruction. For example, the following
  2080. assignment statement can be translated into a single \key{addq}
  2081. instruction.\\
  2082. \begin{tabular}{lll}
  2083. \begin{minipage}{0.4\textwidth}
  2084. \begin{lstlisting}
  2085. x = (+ 10 x);
  2086. \end{lstlisting}
  2087. \end{minipage}
  2088. &
  2089. $\Rightarrow$
  2090. &
  2091. \begin{minipage}{0.4\textwidth}
  2092. \begin{lstlisting}
  2093. addq $10, x
  2094. \end{lstlisting}
  2095. \end{minipage}
  2096. \end{tabular} \\
  2097. The \key{read} operation does not have a direct counterpart in x86
  2098. assembly, so we have instead implemented this functionality in the C
  2099. language~\citep{Kernighan:1988nx}, with the function \code{read\_int}
  2100. in the file \code{runtime.c}. In general, we refer to all of the
  2101. functionality in this file as the \emph{runtime system}\index{runtime system},
  2102. or simply the \emph{runtime} for short. When compiling your generated x86
  2103. assembly code, you need to compile \code{runtime.c} to \code{runtime.o} (an
  2104. ``object file'', using \code{gcc} option \code{-c}) and link it into
  2105. the executable. For our purposes of code generation, all you need to
  2106. do is translate an assignment of \key{read} into some variable
  2107. $\itm{lhs}$ (for left-hand side) into a call to the \code{read\_int}
  2108. function followed by a move from \code{rax} to the left-hand side.
  2109. The move from \code{rax} is needed because the return value from
  2110. \code{read\_int} goes into \code{rax}, as is the case in general. \\
  2111. \begin{tabular}{lll}
  2112. \begin{minipage}{0.3\textwidth}
  2113. \begin{lstlisting}
  2114. |$\itm{var}$| = (read);
  2115. \end{lstlisting}
  2116. \end{minipage}
  2117. &
  2118. $\Rightarrow$
  2119. &
  2120. \begin{minipage}{0.3\textwidth}
  2121. \begin{lstlisting}
  2122. callq read_int
  2123. movq %rax, |$\itm{var}$|
  2124. \end{lstlisting}
  2125. \end{minipage}
  2126. \end{tabular} \\
  2127. There are two cases for the $\Tail$ non-terminal: \key{Return} and
  2128. \key{Seq}. Regarding \key{Return}, we recommend treating it as an
  2129. assignment to the \key{rax} register followed by a jump to the
  2130. conclusion of the program (so the conclusion needs to be labeled).
  2131. For $\SEQ{s}{t}$, you can translate the statement $s$ and tail $t$
  2132. recursively and append the resulting instructions.
  2133. \begin{exercise}
  2134. \normalfont
  2135. Implement the \key{select-instructions} pass and test it on all of the
  2136. example programs that you created for the previous passes and create
  2137. three new example programs that are designed to exercise all of the
  2138. interesting code in this pass. Use the \key{interp-tests} function
  2139. (Appendix~\ref{appendix:utilities}) from \key{utilities.rkt} to test
  2140. your passes on the example programs.
  2141. \end{exercise}
  2142. \section{Assign Homes}
  2143. \label{sec:assign-r1}
  2144. The \key{assign-homes} pass compiles \LangXVar{} programs to
  2145. \LangXVar{} programs that no longer use program variables.
  2146. Thus, the \key{assign-homes} pass is responsible for placing all of
  2147. the program variables in registers or on the stack. For runtime
  2148. efficiency, it is better to place variables in registers, but as there
  2149. are only 16 registers, some programs must necessarily resort to
  2150. placing some variables on the stack. In this chapter we focus on the
  2151. mechanics of placing variables on the stack. We study an algorithm for
  2152. placing variables in registers in
  2153. Chapter~\ref{ch:register-allocation-r1}.
  2154. Consider again the following \LangVar{} program.
  2155. % s0_20.rkt
  2156. \begin{lstlisting}
  2157. (let ([a 42])
  2158. (let ([b a])
  2159. b))
  2160. \end{lstlisting}
  2161. For reference, we repeat the output of \code{select-instructions} on
  2162. the left and show the output of \code{assign-homes} on the right.
  2163. %
  2164. %% Recall that \key{explicate-control} associated the list of
  2165. %% variables with the \code{locals} symbol in the program's $\itm{info}$
  2166. %% field, so \code{assign-homes} has convenient access to the them.
  2167. %
  2168. In this example, we assign variable \code{a} to stack location
  2169. \code{-8(\%rbp)} and variable \code{b} to location
  2170. \code{-16(\%rbp)}.\\
  2171. \begin{tabular}{l}
  2172. \begin{minipage}{0.4\textwidth}
  2173. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  2174. locals-types:
  2175. a : 'Integer, b : 'Integer
  2176. start:
  2177. movq $42, a
  2178. movq a, b
  2179. movq b, %rax
  2180. jmp conclusion
  2181. \end{lstlisting}
  2182. \end{minipage}
  2183. {$\Rightarrow$}
  2184. \begin{minipage}{0.4\textwidth}
  2185. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  2186. stack-space: 16
  2187. start:
  2188. movq $42, -8(%rbp)
  2189. movq -8(%rbp), -16(%rbp)
  2190. movq -16(%rbp), %rax
  2191. jmp conclusion
  2192. \end{lstlisting}
  2193. \end{minipage}
  2194. \end{tabular} \\
  2195. There is a entry for \code{locals-types} in the $\itm{info}$ of the
  2196. \code{X86Program} node, which is needed here so that we have the list
  2197. of variables that should be assigned to homes. The support code
  2198. computes the \code{locals-types} entry. In particular,
  2199. \code{type-check-Cvar} installs it in the $\itm{info}$ field of the
  2200. \code{CProgram} node, which should be propagated to the
  2201. \code{X86Program} node. When using \code{interp-tests} or
  2202. \code{compiler-tests} (see Appendix,
  2203. Section~\ref{appendix:utilities}), specify \code{type-check-Cvar} as
  2204. the type checker to use after \code{explicate-control}.
  2205. In the process of assigning variables to stack locations, it is
  2206. convenient for you to compute and store the size of the frame (in
  2207. bytes) in the $\itm{info}$ field of the \key{X86Program} node, with
  2208. the key \code{stack-space}, which is needed later to generate the
  2209. conclusion of the \code{main} procedure. The x86-64 standard requires
  2210. the frame size to be a multiple of 16 bytes. \index{frame}
  2211. \begin{exercise}
  2212. \normalfont Implement the \key{assign-homes} pass and test it on all
  2213. of the example programs that you created for the previous passes pass.
  2214. We recommend that \key{assign-homes} take an extra parameter that is a
  2215. mapping of variable names to homes (stack locations for now). Use the
  2216. \key{interp-tests} function (Appendix~\ref{appendix:utilities}) from
  2217. \key{utilities.rkt} to test your passes on the example programs.
  2218. \end{exercise}
  2219. \section{Patch Instructions}
  2220. \label{sec:patch-s0}
  2221. The \code{patch-instructions} pass compiles \LangXVar{}
  2222. programs to \LangXASTInt{} programs by making sure that each
  2223. instruction adheres to the restrictions of the x86 assembly language.
  2224. In particular, at most one argument of an instruction may be a memory
  2225. reference.
  2226. We return to the following running example.
  2227. % s0_20.rkt
  2228. \begin{lstlisting}
  2229. (let ([a 42])
  2230. (let ([b a])
  2231. b))
  2232. \end{lstlisting}
  2233. After the \key{assign-homes} pass, the above program has been translated to
  2234. the following. \\
  2235. \begin{minipage}{0.5\textwidth}
  2236. \begin{lstlisting}
  2237. stack-space: 16
  2238. start:
  2239. movq $42, -8(%rbp)
  2240. movq -8(%rbp), -16(%rbp)
  2241. movq -16(%rbp), %rax
  2242. jmp conclusion
  2243. \end{lstlisting}
  2244. \end{minipage}\\
  2245. The second \key{movq} instruction is problematic because both
  2246. arguments are stack locations. We suggest fixing this problem by
  2247. moving from the source location to the register \key{rax} and then
  2248. from \key{rax} to the destination location, as follows.
  2249. \begin{lstlisting}
  2250. movq -8(%rbp), %rax
  2251. movq %rax, -16(%rbp)
  2252. \end{lstlisting}
  2253. \begin{exercise}
  2254. \normalfont
  2255. Implement the \key{patch-instructions} pass and test it on all of the
  2256. example programs that you created for the previous passes and create
  2257. three new example programs that are designed to exercise all of the
  2258. interesting code in this pass. Use the \key{interp-tests} function
  2259. (Appendix~\ref{appendix:utilities}) from \key{utilities.rkt} to test
  2260. your passes on the example programs.
  2261. \end{exercise}
  2262. \section{Print x86}
  2263. \label{sec:print-x86}
  2264. The last step of the compiler from \LangVar{} to x86 is to convert the
  2265. \LangXASTInt{} AST (defined in Figure~\ref{fig:x86-0-ast}) to the
  2266. string representation (defined in Figure~\ref{fig:x86-0-concrete}). The Racket
  2267. \key{format} and \key{string-append} functions are useful in this
  2268. regard. The main work that this step needs to perform is to create the
  2269. \key{main} function and the standard instructions for its prelude and
  2270. conclusion, as shown in Figure~\ref{fig:p1-x86} of
  2271. Section~\ref{sec:x86}. You need to know the number of stack-allocated
  2272. variables, so we suggest computing it in the \key{assign-homes} pass
  2273. (Section~\ref{sec:assign-r1}) and storing it in the $\itm{info}$ field
  2274. of the \key{program} node.
  2275. %% Your compiled code should print the result of the program's execution
  2276. %% by using the \code{print\_int} function provided in
  2277. %% \code{runtime.c}. If your compiler has been implemented correctly so
  2278. %% far, this final result should be stored in the \key{rax} register.
  2279. %% We'll talk more about how to perform function calls with arguments in
  2280. %% general later on, but for now, place the following after the compiled
  2281. %% code for the \LangVar{} program but before the conclusion:
  2282. %% \begin{lstlisting}
  2283. %% movq %rax, %rdi
  2284. %% callq print_int
  2285. %% \end{lstlisting}
  2286. %% These lines move the value in \key{rax} into the \key{rdi} register, which
  2287. %% stores the first argument to be passed into \key{print\_int}.
  2288. If you want your program to run on Mac OS X, your code needs to
  2289. determine whether or not it is running on a Mac, and prefix
  2290. underscores to labels like \key{main}. You can determine the platform
  2291. with the Racket call \code{(system-type 'os)}, which returns
  2292. \code{'macosx}, \code{'unix}, or \code{'windows}.
  2293. %% In addition to
  2294. %% placing underscores on \key{main}, you need to put them in front of
  2295. %% \key{callq} labels (so \code{callq print\_int} becomes \code{callq
  2296. %% \_print\_int}).
  2297. \begin{exercise}
  2298. \normalfont Implement the \key{print-x86} pass and test it on all of
  2299. the example programs that you created for the previous passes. Use the
  2300. \key{compiler-tests} function (Appendix~\ref{appendix:utilities}) from
  2301. \key{utilities.rkt} to test your complete compiler on the example
  2302. programs. See the \key{run-tests.rkt} script in the student support
  2303. code for an example of how to use \key{compiler-tests}. Also, remember
  2304. to compile the provided \key{runtime.c} file to \key{runtime.o} using
  2305. \key{gcc}.
  2306. \end{exercise}
  2307. \section{Challenge: Partial Evaluator for \LangVar{}}
  2308. \label{sec:pe-Rvar}
  2309. \index{partial evaluation}
  2310. This section describes optional challenge exercises that involve
  2311. adapting and improving the partial evaluator for \LangInt{} that was
  2312. introduced in Section~\ref{sec:partial-evaluation}.
  2313. \begin{exercise}\label{ex:pe-Rvar}
  2314. \normalfont
  2315. Adapt the partial evaluator from Section~\ref{sec:partial-evaluation}
  2316. (Figure~\ref{fig:pe-arith}) so that it applies to \LangVar{} programs
  2317. instead of \LangInt{} programs. Recall that \LangVar{} adds \key{let} binding
  2318. and variables to the \LangInt{} language, so you will need to add cases for
  2319. them in the \code{pe-exp} function. Once complete, add the partial
  2320. evaluation pass to the front of your compiler and make sure that your
  2321. compiler still passes all of the tests.
  2322. \end{exercise}
  2323. The next exercise builds on Exercise~\ref{ex:pe-Rvar}.
  2324. \begin{exercise}
  2325. \normalfont
  2326. Improve on the partial evaluator by replacing the \code{pe-neg} and
  2327. \code{pe-add} auxiliary functions with functions that know more about
  2328. arithmetic. For example, your partial evaluator should translate
  2329. \[
  2330. \code{(+ 1 (+ (read) 1))} \qquad \text{into} \qquad
  2331. \code{(+ 2 (read))}
  2332. \]
  2333. To accomplish this, the \code{pe-exp} function should produce output
  2334. in the form of the $\itm{residual}$ non-terminal of the following
  2335. grammar.
  2336. \[
  2337. \begin{array}{lcl}
  2338. \itm{inert} &::=& \Var \mid \LP\key{read}\RP \mid \LP\key{-} \;\Var\RP
  2339. \mid \LP\key{-} \;\LP\key{read}\RP\RP
  2340. \mid \LP\key{+} \; \itm{inert} \; \itm{inert}\RP\\
  2341. &\mid& \LP\key{let}~\LP\LS\Var~\itm{inert}\RS\RP~ \itm{inert} \RP \\
  2342. \itm{residual} &::=& \Int \mid \LP\key{+}\; \Int\; \itm{inert}\RP \mid \itm{inert}
  2343. \end{array}
  2344. \]
  2345. The \code{pe-add} and \code{pe-neg} functions may therefore assume
  2346. that their inputs are $\itm{residual}$ expressions and they should
  2347. return $\itm{residual}$ expressions. Once the improvements are
  2348. complete, make sure that your compiler still passes all of the tests.
  2349. After all, fast code is useless if it produces incorrect results!
  2350. \end{exercise}
  2351. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  2352. \chapter{Register Allocation}
  2353. \label{ch:register-allocation-r1}
  2354. \index{register allocation}
  2355. In Chapter~\ref{ch:int-exp} we placed all variables on the stack to
  2356. make our life easier. However, we can improve the performance of the
  2357. generated code if we instead place some variables into registers. The
  2358. CPU can access a register in a single cycle, whereas accessing the
  2359. stack takes many cycles if the relevant data is in cache or many more
  2360. to access main memory if the data is not in cache.
  2361. Figure~\ref{fig:reg-eg} shows a program with four variables that
  2362. serves as a running example. We show the source program and also the
  2363. output of instruction selection. At that point the program is almost
  2364. x86 assembly but not quite; it still contains variables instead of
  2365. stack locations or registers.
  2366. \begin{figure}
  2367. \begin{minipage}{0.45\textwidth}
  2368. Example \LangVar{} program:
  2369. % s0_28.rkt
  2370. \begin{lstlisting}
  2371. (let ([v 1])
  2372. (let ([w 42])
  2373. (let ([x (+ v 7)])
  2374. (let ([y x])
  2375. (let ([z (+ x w)])
  2376. (+ z (- y)))))))
  2377. \end{lstlisting}
  2378. \end{minipage}
  2379. \begin{minipage}{0.45\textwidth}
  2380. After instruction selection:
  2381. \begin{lstlisting}
  2382. locals-types:
  2383. x : Integer, y : Integer,
  2384. z : Integer, t : Integer,
  2385. v : Integer, w : Integer
  2386. start:
  2387. movq $1, v
  2388. movq $42, w
  2389. movq v, x
  2390. addq $7, x
  2391. movq x, y
  2392. movq x, z
  2393. addq w, z
  2394. movq y, t
  2395. negq t
  2396. movq z, %rax
  2397. addq t, %rax
  2398. jmp conclusion
  2399. \end{lstlisting}
  2400. \end{minipage}
  2401. \caption{A running example program for register allocation.}
  2402. \label{fig:reg-eg}
  2403. \end{figure}
  2404. The goal of register allocation is to fit as many variables into
  2405. registers as possible. A program sometimes has more variables than
  2406. registers, so we cannot always map each variable to a different
  2407. register. Fortunately, it is common for different variables to be
  2408. needed during different periods of time during program execution, and
  2409. in such cases several variables can be mapped to the same register.
  2410. Consider variables \code{x} and \code{y} in Figure~\ref{fig:reg-eg}.
  2411. After the variable \code{x} is moved to \code{z} it is no longer
  2412. needed. Variable \code{y}, on the other hand, is used only after this
  2413. point, so \code{x} and \code{y} could share the same register. The
  2414. topic of Section~\ref{sec:liveness-analysis-r1} is how to compute
  2415. where a variable is needed. Once we have that information, we compute
  2416. which variables are needed at the same time, i.e., which ones
  2417. \emph{interfere} with each other, and represent this relation as an
  2418. undirected graph whose vertices are variables and edges indicate when
  2419. two variables interfere (Section~\ref{sec:build-interference}). We
  2420. then model register allocation as a graph coloring problem, which we
  2421. discuss in Section~\ref{sec:graph-coloring}.
  2422. If we run out of registers despite these efforts, we place the
  2423. remaining variables on the stack, similar to what we did in
  2424. Chapter~\ref{ch:int-exp}. It is common to use the verb \emph{spill}
  2425. for assigning a variable to a stack location. The decision to spill a
  2426. variable is handled as part of the graph coloring process described in
  2427. Section~\ref{sec:graph-coloring}.
  2428. We make the simplifying assumption that each variable is assigned to
  2429. one location (a register or stack address). A more sophisticated
  2430. approach is to assign a variable to one or more locations in different
  2431. regions of the program. For example, if a variable is used many times
  2432. in short sequence and then only used again after many other
  2433. instructions, it could be more efficient to assign the variable to a
  2434. register during the initial sequence and then move it to the stack for
  2435. the rest of its lifetime. We refer the interested reader to
  2436. \citet{Cooper:1998ly} and \citet{Cooper:2011aa} for more information
  2437. about that approach.
  2438. % discuss prioritizing variables based on how much they are used.
  2439. \section{Registers and Calling Conventions}
  2440. \label{sec:calling-conventions}
  2441. \index{calling conventions}
  2442. As we perform register allocation, we need to be aware of the
  2443. \emph{calling conventions} \index{calling conventions} that govern how
  2444. functions calls are performed in x86. Function calls require
  2445. coordination between the caller and the callee, which is often
  2446. assembly code written by different programmers or generated by
  2447. different compilers. Here we follow the System V calling conventions
  2448. that are used by the \code{gcc} compiler on Linux and
  2449. MacOS~\citep{Bryant:2005aa,Matz:2013aa}.
  2450. %
  2451. Even though \LangVar{} does not include programmer-defined functions, our
  2452. generated code will 1) include a \code{main} function that the
  2453. operating system will call to initiate execution, and 2) make calls to
  2454. the \code{read\_int} function in our runtime system.
  2455. The calling conventions include rules about how functions share the
  2456. use of registers. In particular, the caller is responsible for freeing
  2457. up some registers prior to the function call for use by the callee.
  2458. These are called the \emph{caller-saved registers}
  2459. \index{caller-saved registers}
  2460. and they are
  2461. \begin{lstlisting}
  2462. rax rcx rdx rsi rdi r8 r9 r10 r11
  2463. \end{lstlisting}
  2464. On the other hand, the callee is responsible for preserving the values
  2465. of the \emph{callee-saved registers}, \index{callee-saved registers}
  2466. which are
  2467. \begin{lstlisting}
  2468. rsp rbp rbx r12 r13 r14 r15
  2469. \end{lstlisting}
  2470. We can think about this caller/callee convention from two points of
  2471. view, the caller view and the callee view:
  2472. \begin{itemize}
  2473. \item The caller should assume that all the caller-saved registers get
  2474. overwritten with arbitrary values by the callee. On the other hand,
  2475. the caller can safely assume that all the callee-saved registers
  2476. contain the same values after the call that they did before the
  2477. call.
  2478. \item The callee can freely use any of the caller-saved registers.
  2479. However, if the callee wants to use a callee-saved register, the
  2480. callee must arrange to put the original value back in the register
  2481. prior to returning to the caller, which is usually accomplished by
  2482. saving the value to the stack in the prelude of the function and
  2483. restoring the value in the conclusion of the function.
  2484. \end{itemize}
  2485. In x86, registers are also used for passing arguments to a function
  2486. and for the return value. In particular, the first six arguments to a
  2487. function are passed in the following six registers, in the order
  2488. given.
  2489. \begin{lstlisting}
  2490. rdi rsi rdx rcx r8 r9
  2491. \end{lstlisting}
  2492. If there are more than six arguments, then the convention is to use
  2493. space on the frame of the caller for the rest of the
  2494. arguments. However, in Chapter~\ref{ch:functions} we arrange to never
  2495. need more than six arguments. For now, the only function we care about
  2496. is \code{read\_int} and it takes zero arguments.
  2497. %
  2498. The register \code{rax} is used for the return value of a function.
  2499. The next question is how these calling conventions impact register
  2500. allocation. Consider the \LangVar{} program in
  2501. Figure~\ref{fig:example-calling-conventions}. We first analyze this
  2502. example from the caller point of view and then from the callee point
  2503. of view.
  2504. The program makes two calls to the \code{read} function. Also, the
  2505. variable \code{x} is in-use during the second call to \code{read}, so
  2506. we need to make sure that the value in \code{x} does not get
  2507. accidentally wiped out by the call to \code{read}. One obvious
  2508. approach is to save all the values in caller-saved registers to the
  2509. stack prior to each function call, and restore them after each
  2510. call. That way, if the register allocator chooses to assign \code{x}
  2511. to a caller-saved register, its value will be preserved across the
  2512. call to \code{read}. However, saving and restoring to the stack is
  2513. relatively slow. If \code{x} is not used many times, it may be better
  2514. to assign \code{x} to a stack location in the first place. Or better
  2515. yet, if we can arrange for \code{x} to be placed in a callee-saved
  2516. register, then it won't need to be saved and restored during function
  2517. calls.
  2518. The approach that we recommend for variables that are in-use during a
  2519. function call is to either assign them to callee-saved registers or to
  2520. spill them to the stack. On the other hand, for variables that are not
  2521. in-use during a function call, we try the following alternatives in
  2522. order 1) look for an available caller-saved register (to leave room
  2523. for other variables in the callee-saved register), 2) look for a
  2524. callee-saved register, and 3) spill the variable to the stack.
  2525. It is straightforward to implement this approach in a graph coloring
  2526. register allocator. First, we know which variables are in-use during
  2527. every function call because we compute that information for every
  2528. instruction (Section~\ref{sec:liveness-analysis-r1}). Second, when we
  2529. build the interference graph (Section~\ref{sec:build-interference}),
  2530. we can place an edge between each of these variables and the
  2531. caller-saved registers in the interference graph. This will prevent
  2532. the graph coloring algorithm from assigning those variables to
  2533. caller-saved registers.
  2534. Returning to the example in
  2535. Figure~\ref{fig:example-calling-conventions}, let us analyze the
  2536. generated x86 code on the right-hand side, focusing on the
  2537. \code{start} block. Notice that variable \code{x} is assigned to
  2538. \code{rbx}, a callee-saved register. Thus, it is already in a safe
  2539. place during the second call to \code{read\_int}. Next, notice that
  2540. variable \code{y} is assigned to \code{rcx}, a caller-saved register,
  2541. because there are no function calls in the remainder of the block.
  2542. Next we analyze the example from the callee point of view, focusing on
  2543. the prelude and conclusion of the \code{main} function. As usual the
  2544. prelude begins with saving the \code{rbp} register to the stack and
  2545. setting the \code{rbp} to the current stack pointer. We now know why
  2546. it is necessary to save the \code{rbp}: it is a callee-saved register.
  2547. The prelude then pushes \code{rbx} to the stack because 1) \code{rbx}
  2548. is also a callee-saved register and 2) \code{rbx} is assigned to a
  2549. variable (\code{x}). There are several more callee-saved registers
  2550. that are not saved in the prelude because they were not used. The
  2551. prelude subtracts 8 bytes from the \code{rsp} to make it 16-byte
  2552. aligned and then jumps to the \code{start} block. Shifting attention
  2553. to the \code{conclusion}, we see that \code{rbx} is restored from the
  2554. stack with a \code{popq} instruction.
  2555. \index{prelude}\index{conclusion}
  2556. \begin{figure}[tp]
  2557. \begin{minipage}{0.45\textwidth}
  2558. Example \LangVar{} program:
  2559. %s0_14.rkt
  2560. \begin{lstlisting}
  2561. (let ([x (read)])
  2562. (let ([y (read)])
  2563. (+ (+ x y) 42)))
  2564. \end{lstlisting}
  2565. \end{minipage}
  2566. \begin{minipage}{0.45\textwidth}
  2567. Generated x86 assembly:
  2568. \begin{lstlisting}
  2569. start:
  2570. callq read_int
  2571. movq %rax, %rbx
  2572. callq read_int
  2573. movq %rax, %rcx
  2574. addq %rcx, %rbx
  2575. movq %rbx, %rax
  2576. addq $42, %rax
  2577. jmp _conclusion
  2578. .globl main
  2579. main:
  2580. pushq %rbp
  2581. movq %rsp, %rbp
  2582. pushq %rbx
  2583. subq $8, %rsp
  2584. jmp start
  2585. conclusion:
  2586. addq $8, %rsp
  2587. popq %rbx
  2588. popq %rbp
  2589. retq
  2590. \end{lstlisting}
  2591. \end{minipage}
  2592. \caption{An example with function calls.}
  2593. \label{fig:example-calling-conventions}
  2594. \end{figure}
  2595. \section{Liveness Analysis}
  2596. \label{sec:liveness-analysis-r1}
  2597. \index{liveness analysis}
  2598. In this section we describe a program analysis, called \emph{liveness
  2599. analysis}, that discovers which variables are in-use in different
  2600. regions of a program.
  2601. %
  2602. A variable or register is \emph{live} at a program point if its
  2603. current value is used at some later point in the program. We
  2604. refer to variables and registers collectively as \emph{locations}.
  2605. %
  2606. Consider the following code fragment in which there are two writes to
  2607. \code{b}. Are \code{a} and \code{b} both live at the same time?
  2608. \begin{center}
  2609. \begin{minipage}{0.96\textwidth}
  2610. \begin{lstlisting}[numbers=left,numberstyle=\tiny]
  2611. movq $5, a
  2612. movq $30, b
  2613. movq a, c
  2614. movq $10, b
  2615. addq b, c
  2616. \end{lstlisting}
  2617. \end{minipage}
  2618. \end{center}
  2619. The answer is no because the integer \code{30} written to \code{b} on
  2620. line 2 is never used. The variable \code{b} is read on line 5 and
  2621. there is an intervening write to \code{b} on line 4, so the read on
  2622. line 5 receives the value written on line 4, not line 2.
  2623. \begin{wrapfigure}[19]{l}[1.0in]{0.6\textwidth}
  2624. \small
  2625. \begin{tcolorbox}[title=\href{https://docs.racket-lang.org/reference/sets.html}{The Racket Set Package}]
  2626. A \emph{set} is an unordered collection of elements without duplicates.
  2627. \index{set}
  2628. \begin{description}
  2629. \item[$\LP\code{set}\,v\,\ldots\RP$] constructs a set containing the specified elements.
  2630. \item[$\LP\code{set-union}\,set_1\,set_2\RP$] returns the union of the two sets.
  2631. \item[$\LP\code{set-subtract}\,set_1\,set_2\RP$] returns the difference of the two sets.
  2632. \item[$\LP\code{set-member?}\,set\,v\RP$] is element $v$ in $set$?
  2633. \item[$\LP\code{set-count}\,set\RP$] how many unique elements are in $set$?
  2634. \item[$\LP\code{set->list}\,set\RP$] converts the set to a list.
  2635. \end{description}
  2636. \end{tcolorbox}
  2637. \end{wrapfigure}
  2638. The live locations can be computed by traversing the instruction
  2639. sequence back to front (i.e., backwards in execution order). Let
  2640. $I_1,\ldots, I_n$ be the instruction sequence. We write
  2641. $L_{\mathsf{after}}(k)$ for the set of live locations after
  2642. instruction $I_k$ and $L_{\mathsf{before}}(k)$ for the set of live
  2643. locations before instruction $I_k$. The live locations after an
  2644. instruction are always the same as the live locations before the next
  2645. instruction. \index{live-after} \index{live-before}
  2646. \begin{equation} \label{eq:live-after-before-next}
  2647. L_{\mathsf{after}}(k) = L_{\mathsf{before}}(k+1)
  2648. \end{equation}
  2649. To start things off, there are no live locations after the last
  2650. instruction\footnote{Technically, the \code{rax} register is live
  2651. but we do not use it for register allocation.}, so
  2652. \begin{equation}\label{eq:live-last-empty}
  2653. L_{\mathsf{after}}(n) = \emptyset
  2654. \end{equation}
  2655. We then apply the following rule repeatedly, traversing the
  2656. instruction sequence back to front.
  2657. \begin{equation}\label{eq:live-before-after-minus-writes-plus-reads}
  2658. L_{\mathtt{before}}(k) = (L_{\mathtt{after}}(k) - W(k)) \cup R(k),
  2659. \end{equation}
  2660. where $W(k)$ are the locations written to by instruction $I_k$ and
  2661. $R(k)$ are the locations read by instruction $I_k$.
  2662. There is a special case for \code{jmp} instructions. The locations
  2663. that are live before a \code{jmp} should be the locations that are
  2664. live before the instruction that follows the target label. So we
  2665. recommend maintaining an alist, perhaps called \code{label->live},
  2666. that maps each label to a set of such locations. Recall that for now,
  2667. the only \code{jmp} in a pseudo-x86 program is the one at the end, to
  2668. the \code{conclusion}. (For example, see Figure~\ref{fig:reg-eg}.) So
  2669. the alist should map \code{conclusion} to the set
  2670. $\{\ttm{rax},\ttm{rsp}\}$.
  2671. Let us walk through the above example, applying these formulas
  2672. starting with the instruction on line 5. We collect the answers in the
  2673. below listing. The $L_{\mathsf{after}}$ for the \code{addq b, c}
  2674. instruction is $\emptyset$ because it is the last instruction
  2675. (formula~\ref{eq:live-last-empty}). The $L_{\mathsf{before}}$ for
  2676. this instruction is $\{\ttm{b},\ttm{c}\}$ because it reads from
  2677. variables \code{b} and \code{c}
  2678. (formula~\ref{eq:live-before-after-minus-writes-plus-reads}), that is
  2679. \[
  2680. L_{\mathsf{before}}(5) = (\emptyset - \{\ttm{c}\}) \cup \{ \ttm{b}, \ttm{c} \} = \{ \ttm{b}, \ttm{c} \}
  2681. \]
  2682. Moving on the the instruction \code{movq \$10, b} at line 4, we copy
  2683. the live-before set from line 5 to be the live-after set for this
  2684. instruction (formula~\ref{eq:live-after-before-next}).
  2685. \[
  2686. L_{\mathsf{after}}(4) = \{ \ttm{b}, \ttm{c} \}
  2687. \]
  2688. This move instruction writes to \code{b} and does not read from any
  2689. variables, so we have the following live-before set
  2690. (formula~\ref{eq:live-before-after-minus-writes-plus-reads}).
  2691. \[
  2692. L_{\mathsf{before}}(4) = (\{\ttm{b},\ttm{c}\} - \{\ttm{b}\}) \cup \emptyset = \{ \ttm{c} \}
  2693. \]
  2694. The live-before for instruction \code{movq a, c}
  2695. is $\{\ttm{a}\}$ because it writes to $\{\ttm{c}\}$ and reads from $\{\ttm{a}\}$
  2696. (formula~\ref{eq:live-before-after-minus-writes-plus-reads}). The
  2697. live-before for \code{movq \$30, b} is $\{\ttm{a}\}$ because it writes to a
  2698. variable that is not live and does not read from a variable.
  2699. Finally, the live-before for \code{movq \$5, a} is $\emptyset$
  2700. because it writes to variable \code{a}.
  2701. \begin{center}
  2702. \begin{minipage}{0.45\textwidth}
  2703. \begin{lstlisting}[numbers=left,numberstyle=\tiny]
  2704. movq $5, a
  2705. movq $30, b
  2706. movq a, c
  2707. movq $10, b
  2708. addq b, c
  2709. \end{lstlisting}
  2710. \end{minipage}
  2711. \vrule\hspace{10pt}
  2712. \begin{minipage}{0.45\textwidth}
  2713. \begin{align*}
  2714. L_{\mathsf{before}}(1)= \emptyset,
  2715. L_{\mathsf{after}}(1)= \{\ttm{a}\}\\
  2716. L_{\mathsf{before}}(2)= \{\ttm{a}\},
  2717. L_{\mathsf{after}}(2)= \{\ttm{a}\}\\
  2718. L_{\mathsf{before}}(3)= \{\ttm{a}\},
  2719. L_{\mathsf{after}}(2)= \{\ttm{c}\}\\
  2720. L_{\mathsf{before}}(4)= \{\ttm{c}\},
  2721. L_{\mathsf{after}}(4)= \{\ttm{b},\ttm{c}\}\\
  2722. L_{\mathsf{before}}(5)= \{\ttm{b},\ttm{c}\},
  2723. L_{\mathsf{after}}(5)= \emptyset
  2724. \end{align*}
  2725. \end{minipage}
  2726. \end{center}
  2727. Figure~\ref{fig:live-eg} shows the results of liveness analysis for
  2728. the running example program, with the live-before and live-after sets
  2729. shown between each instruction to make the figure easy to read.
  2730. \begin{figure}[tp]
  2731. \hspace{20pt}
  2732. \begin{minipage}{0.45\textwidth}
  2733. \begin{lstlisting}
  2734. |$\{\ttm{rsp}\}$|
  2735. movq $1, v
  2736. |$\{\ttm{v},\ttm{rsp}\}$|
  2737. movq $42, w
  2738. |$\{\ttm{v},\ttm{w},\ttm{rsp}\}$|
  2739. movq v, x
  2740. |$\{\ttm{w},\ttm{x},\ttm{rsp}\}$|
  2741. addq $7, x
  2742. |$\{\ttm{w},\ttm{x},\ttm{rsp}\}$|
  2743. movq x, y
  2744. |$\{\ttm{w},\ttm{x},\ttm{y},\ttm{rsp}\}$|
  2745. movq x, z
  2746. |$\{\ttm{w},\ttm{y},\ttm{z},\ttm{rsp}\}$|
  2747. addq w, z
  2748. |$\{\ttm{y},\ttm{z},\ttm{rsp}\}$|
  2749. movq y, t
  2750. |$\{\ttm{t},\ttm{z},\ttm{rsp}\}$|
  2751. negq t
  2752. |$\{\ttm{t},\ttm{z},\ttm{rsp}\}$|
  2753. movq z, %rax
  2754. |$\{\ttm{rax},\ttm{t},\ttm{rsp}\}$|
  2755. addq t, %rax
  2756. |$\{\ttm{rax},\ttm{rsp}\}$|
  2757. jmp conclusion
  2758. \end{lstlisting}
  2759. \end{minipage}
  2760. \caption{The running example annotated with live-after sets.}
  2761. \label{fig:live-eg}
  2762. \end{figure}
  2763. \begin{exercise}\normalfont
  2764. Implement the compiler pass named \code{uncover-live} that computes
  2765. the live-after sets. We recommend storing the live-after sets (a list
  2766. of a set of variables) in the $\itm{info}$ field of the \code{Block}
  2767. structure.
  2768. %
  2769. We recommend organizing your code to use a helper function that takes
  2770. a list of instructions and an initial live-after set (typically empty)
  2771. and returns the list of live-after sets.
  2772. %
  2773. We recommend creating helper functions to 1) compute the set of
  2774. locations that appear in an argument (of an instruction), 2) compute
  2775. the locations read by an instruction which corresponds to the $R$
  2776. function discussed above, and 3) the locations written by an
  2777. instruction which corresponds to $W$. The \code{callq} instruction
  2778. should include all of the caller-saved registers in its write-set $W$
  2779. because the calling convention says that those registers may be
  2780. written to during the function call. Likewise, the \code{callq}
  2781. instruction should include the appropriate number of argument passing
  2782. registers in its read-set $R$, depending on the arity of the function
  2783. being called. (This is why the abstract syntax for \code{callq}
  2784. includes the arity.)
  2785. \end{exercise}
  2786. \section{Building the Interference Graph}
  2787. \label{sec:build-interference}
  2788. \begin{wrapfigure}[27]{r}[1.0in]{0.6\textwidth}
  2789. \small
  2790. \begin{tcolorbox}[title=\href{https://docs.racket-lang.org/graph/index.html}{The Racket Graph Library}]
  2791. A \emph{graph} is a collection of vertices and edges where each
  2792. edge connects two vertices. A graph is \emph{directed} if each
  2793. edge points from a source to a target. Otherwise the graph is
  2794. \emph{undirected}.
  2795. \index{graph}\index{directed graph}\index{undirected graph}
  2796. \begin{description}
  2797. \item[$\LP\code{directed-graph}\,\itm{edges}\RP$] constructs a
  2798. directed graph from a list of edges. Each edge is a list
  2799. containing the source and target vertex.
  2800. \item[$\LP\code{undirected-graph}\,\itm{edges}\RP$] constructs a
  2801. undirected graph from a list of edges. Each edge is represented by
  2802. a list containing two vertices.
  2803. \item[$\LP\code{add-vertex!}\,\itm{graph}\,\itm{vertex}\RP$]
  2804. inserts a vertex into the graph.
  2805. \item[$\LP\code{add-edge!}\,\itm{graph}\,\itm{source}\,\itm{target}\RP$]
  2806. inserts an edge between the two vertices into the graph.
  2807. \item[$\LP\code{in-neighbors}\,\itm{graph}\,\itm{vertex}\RP$]
  2808. returns a sequence of all the neighbors of the given vertex.
  2809. \item[$\LP\code{in-vertices}\,\itm{graph}\RP$]
  2810. returns a sequence of all the vertices in the graph.
  2811. \end{description}
  2812. \end{tcolorbox}
  2813. \end{wrapfigure}
  2814. Based on the liveness analysis, we know where each location is used
  2815. (read from). However, during register allocation, we need to answer
  2816. questions of the specific form: are locations $u$ and $v$ live at the
  2817. same time? (And therefore cannot be assigned to the same register.)
  2818. To make this question easier to answer, we create an explicit data
  2819. structure, an \emph{interference graph}\index{interference graph}. An
  2820. interference graph is an undirected graph that has an edge between two
  2821. locations if they are live at the same time, that is, if they
  2822. interfere with each other.
  2823. The most obvious way to compute the interference graph is to look at
  2824. the set of live location between each statement in the program and add
  2825. an edge to the graph for every pair of variables in the same set.
  2826. This approach is less than ideal for two reasons. First, it can be
  2827. expensive because it takes $O(n^2)$ time to look at every pair in a
  2828. set of $n$ live locations. Second, there is a special case in which
  2829. two locations that are live at the same time do not actually interfere
  2830. with each other: when they both contain the same value because we have
  2831. assigned one to the other.
  2832. A better way to compute the interference graph is to focus on the
  2833. writes~\cite{Appel:2003fk}. We do not want the writes performed by an
  2834. instruction to overwrite something in a live location. So for each
  2835. instruction, we create an edge between the locations being written to
  2836. and all the other live locations. (Except that one should not create
  2837. self edges.) Recall that for a \key{callq} instruction, we consider
  2838. all of the caller-saved registers as being written to, so an edge will
  2839. be added between every live variable and every caller-saved
  2840. register. For \key{movq}, we deal with the above-mentioned special
  2841. case by not adding an edge between a live variable $v$ and destination
  2842. $d$ if $v$ matches the source of the move. So we have the following
  2843. two rules.
  2844. \begin{enumerate}
  2845. \item If instruction $I_k$ is a move such as \key{movq} $s$\key{,}
  2846. $d$, then add the edge $(d,v)$ for every $v \in
  2847. L_{\mathsf{after}}(k)$ unless $v = d$ or $v = s$.
  2848. \item For any other instruction $I_k$, for every $d \in W(k)$
  2849. add an edge $(d,v)$ for every $v \in L_{\mathsf{after}}(k)$ unless $v = d$.
  2850. %% \item If instruction $I_k$ is an arithmetic instruction such as
  2851. %% \code{addq} $s$\key{,} $d$, then add the edge $(d,v)$ for every $v \in
  2852. %% L_{\mathsf{after}}(k)$ unless $v = d$.
  2853. %% \item If instruction $I_k$ is of the form \key{callq}
  2854. %% $\mathit{label}$, then add an edge $(r,v)$ for every caller-saved
  2855. %% register $r$ and every variable $v \in L_{\mathsf{after}}(k)$.
  2856. \end{enumerate}
  2857. Working from the top to bottom of Figure~\ref{fig:live-eg}, we apply
  2858. the above rules to each instruction. We highlight a few of the
  2859. instructions and then refer the reader to
  2860. Figure~\ref{fig:interference-results} for all the interference
  2861. results. The first instruction is \lstinline{movq $1, v}, so rule 3
  2862. applies, and the live-after set is $\{\ttm{v}\}$. We do not add any
  2863. interference edges because the one live variable \code{v} is also the
  2864. destination of this instruction.
  2865. %
  2866. For the second instruction, \lstinline{movq $42, w}, so rule 3 applies
  2867. again, and the live-after set is $\{\ttm{v},\ttm{w}\}$. So the target
  2868. $\ttm{w}$ of \key{movq} interferes with $\ttm{v}$.
  2869. %
  2870. Next we skip forward to the instruction \lstinline{movq x, y}.
  2871. \begin{figure}[tbp]
  2872. \begin{quote}
  2873. \begin{tabular}{ll}
  2874. \lstinline!movq $1, v!& \ttm{v} interferes with \ttm{rsp},\\
  2875. \lstinline!movq $42, w!& \ttm{w} interferes with \ttm{v} and \ttm{rsp},\\
  2876. \lstinline!movq v, x!& \ttm{x} interferes with \ttm{w} and \ttm{rsp},\\
  2877. \lstinline!addq $7, x!& \ttm{x} interferes with \ttm{w} and \ttm{rsp},\\
  2878. \lstinline!movq x, y!& \ttm{y} interferes with \ttm{w} and \ttm{rsp} but not \ttm{x},\\
  2879. \lstinline!movq x, z!& \ttm{z} interferes with \ttm{w}, \ttm{y}, and \ttm{rsp},\\
  2880. \lstinline!addq w, z!& \ttm{z} interferes with \ttm{y} and \ttm{rsp}, \\
  2881. \lstinline!movq y, t!& \ttm{t} interferes with \ttm{z} and \ttm{rsp}, \\
  2882. \lstinline!negq t!& \ttm{t} interferes with \ttm{z} and \ttm{rsp}, \\
  2883. \lstinline!movq z, %rax! & \ttm{rax} interferes with \ttm{t} and \ttm{rsp}, \\
  2884. \lstinline!addq t, %rax! & \ttm{rax} interferes with \ttm{rsp}. \\
  2885. \lstinline!jmp conclusion!& no interference.
  2886. \end{tabular}
  2887. \end{quote}
  2888. \caption{Interference results for the running example.}
  2889. \label{fig:interference-results}
  2890. \end{figure}
  2891. The resulting interference graph is shown in
  2892. Figure~\ref{fig:interfere}.
  2893. \begin{figure}[tbp]
  2894. \large
  2895. \[
  2896. \begin{tikzpicture}[baseline=(current bounding box.center)]
  2897. \node (rax) at (0,0) {$\ttm{rax}$};
  2898. \node (rsp) at (9,2) {$\ttm{rsp}$};
  2899. \node (t1) at (0,2) {$\ttm{t}$};
  2900. \node (z) at (3,2) {$\ttm{z}$};
  2901. \node (x) at (6,2) {$\ttm{x}$};
  2902. \node (y) at (3,0) {$\ttm{y}$};
  2903. \node (w) at (6,0) {$\ttm{w}$};
  2904. \node (v) at (9,0) {$\ttm{v}$};
  2905. \draw (t1) to (rax);
  2906. \draw (t1) to (z);
  2907. \draw (z) to (y);
  2908. \draw (z) to (w);
  2909. \draw (x) to (w);
  2910. \draw (y) to (w);
  2911. \draw (v) to (w);
  2912. \draw (v) to (rsp);
  2913. \draw (w) to (rsp);
  2914. \draw (x) to (rsp);
  2915. \draw (y) to (rsp);
  2916. \path[-.,bend left=15] (z) edge node {} (rsp);
  2917. \path[-.,bend left=10] (t1) edge node {} (rsp);
  2918. \draw (rax) to (rsp);
  2919. \end{tikzpicture}
  2920. \]
  2921. \caption{The interference graph of the example program.}
  2922. \label{fig:interfere}
  2923. \end{figure}
  2924. %% Our next concern is to choose a data structure for representing the
  2925. %% interference graph. There are many choices for how to represent a
  2926. %% graph, for example, \emph{adjacency matrix}, \emph{adjacency list},
  2927. %% and \emph{edge set}~\citep{Cormen:2001uq}. The right way to choose a
  2928. %% data structure is to study the algorithm that uses the data structure,
  2929. %% determine what operations need to be performed, and then choose the
  2930. %% data structure that provide the most efficient implementations of
  2931. %% those operations. Often times the choice of data structure can have an
  2932. %% effect on the time complexity of the algorithm, as it does here. If
  2933. %% you skim the next section, you will see that the register allocation
  2934. %% algorithm needs to ask the graph for all of its vertices and, given a
  2935. %% vertex, it needs to known all of the adjacent vertices. Thus, the
  2936. %% correct choice of graph representation is that of an adjacency
  2937. %% list. There are helper functions in \code{utilities.rkt} for
  2938. %% representing graphs using the adjacency list representation:
  2939. %% \code{make-graph}, \code{add-edge}, and \code{adjacent}
  2940. %% (Appendix~\ref{appendix:utilities}).
  2941. %% %
  2942. %% \margincomment{\footnotesize To do: change to use the
  2943. %% Racket graph library. \\ --Jeremy}
  2944. %% %
  2945. %% In particular, those functions use a hash table to map each vertex to
  2946. %% the set of adjacent vertices, and the sets are represented using
  2947. %% Racket's \key{set}, which is also a hash table.
  2948. \begin{exercise}\normalfont
  2949. Implement the compiler pass named \code{build-interference} according
  2950. to the algorithm suggested above. We recommend using the \code{graph}
  2951. package to create and inspect the interference graph. The output
  2952. graph of this pass should be stored in the $\itm{info}$ field of the
  2953. program, under the key \code{conflicts}.
  2954. \end{exercise}
  2955. \section{Graph Coloring via Sudoku}
  2956. \label{sec:graph-coloring}
  2957. \index{graph coloring}
  2958. \index{Sudoku}
  2959. \index{color}
  2960. We come to the main event, mapping variables to registers (or to stack
  2961. locations in the event that we run out of registers). We need to make
  2962. sure that two variables do not get mapped to the same register if the
  2963. two variables interfere with each other. Thinking about the
  2964. interference graph, this means that adjacent vertices must be mapped
  2965. to different registers. If we think of registers as colors, the
  2966. register allocation problem becomes the widely-studied graph coloring
  2967. problem~\citep{Balakrishnan:1996ve,Rosen:2002bh}.
  2968. The reader may be more familiar with the graph coloring problem than he
  2969. or she realizes; the popular game of Sudoku is an instance of the
  2970. graph coloring problem. The following describes how to build a graph
  2971. out of an initial Sudoku board.
  2972. \begin{itemize}
  2973. \item There is one vertex in the graph for each Sudoku square.
  2974. \item There is an edge between two vertices if the corresponding squares
  2975. are in the same row, in the same column, or if the squares are in
  2976. the same $3\times 3$ region.
  2977. \item Choose nine colors to correspond to the numbers $1$ to $9$.
  2978. \item Based on the initial assignment of numbers to squares in the
  2979. Sudoku board, assign the corresponding colors to the corresponding
  2980. vertices in the graph.
  2981. \end{itemize}
  2982. If you can color the remaining vertices in the graph with the nine
  2983. colors, then you have also solved the corresponding game of Sudoku.
  2984. Figure~\ref{fig:sudoku-graph} shows an initial Sudoku game board and
  2985. the corresponding graph with colored vertices. We map the Sudoku
  2986. number 1 to blue, 2 to yellow, and 3 to red. We only show edges for a
  2987. sampling of the vertices (the colored ones) because showing edges for
  2988. all of the vertices would make the graph unreadable.
  2989. \begin{figure}[tbp]
  2990. \includegraphics[width=0.45\textwidth]{figs/sudoku}
  2991. \includegraphics[width=0.5\textwidth]{figs/sudoku-graph}
  2992. \caption{A Sudoku game board and the corresponding colored graph.}
  2993. \label{fig:sudoku-graph}
  2994. \end{figure}
  2995. Given that Sudoku is an instance of graph coloring, one can use Sudoku
  2996. strategies to come up with an algorithm for allocating registers. For
  2997. example, one of the basic techniques for Sudoku is called Pencil
  2998. Marks. The idea is to use a process of elimination to determine what
  2999. numbers no longer make sense for a square and write down those
  3000. numbers in the square (writing very small). For example, if the number
  3001. $1$ is assigned to a square, then by process of elimination, you can
  3002. write the pencil mark $1$ in all the squares in the same row, column,
  3003. and region. Many Sudoku computer games provide automatic support for
  3004. Pencil Marks.
  3005. %
  3006. The Pencil Marks technique corresponds to the notion of
  3007. \emph{saturation}\index{saturation} due to \cite{Brelaz:1979eu}.
  3008. The saturation of a
  3009. vertex, in Sudoku terms, is the set of numbers that are no longer
  3010. available. In graph terminology, we have the following definition:
  3011. \begin{equation*}
  3012. \mathrm{saturation}(u) = \{ c \;|\; \exists v. v \in \mathrm{neighbors}(u)
  3013. \text{ and } \mathrm{color}(v) = c \}
  3014. \end{equation*}
  3015. where $\mathrm{neighbors}(u)$ is the set of vertices that share an
  3016. edge with $u$.
  3017. Using the Pencil Marks technique leads to a simple strategy for
  3018. filling in numbers: if there is a square with only one possible number
  3019. left, then choose that number! But what if there are no squares with
  3020. only one possibility left? One brute-force approach is to try them
  3021. all: choose the first and if it ultimately leads to a solution,
  3022. great. If not, backtrack and choose the next possibility. One good
  3023. thing about Pencil Marks is that it reduces the degree of branching in
  3024. the search tree. Nevertheless, backtracking can be horribly time
  3025. consuming. One way to reduce the amount of backtracking is to use the
  3026. most-constrained-first heuristic. That is, when choosing a square,
  3027. always choose one with the fewest possibilities left (the vertex with
  3028. the highest saturation). The idea is that choosing highly constrained
  3029. squares earlier rather than later is better because later on there may
  3030. not be any possibilities left for those squares.
  3031. However, register allocation is easier than Sudoku because the
  3032. register allocator can map variables to stack locations when the
  3033. registers run out. Thus, it makes sense to drop backtracking in favor
  3034. of greedy search, that is, make the best choice at the time and keep
  3035. going. We still wish to minimize the number of colors needed, so
  3036. keeping the most-constrained-first heuristic is a good idea.
  3037. Figure~\ref{fig:satur-algo} gives the pseudo-code for a simple greedy
  3038. algorithm for register allocation based on saturation and the
  3039. most-constrained-first heuristic. It is roughly equivalent to the
  3040. DSATUR algorithm of \cite{Brelaz:1979eu} (also known as saturation
  3041. degree ordering~\citep{Gebremedhin:1999fk,Omari:2006uq}). Just as in
  3042. Sudoku, the algorithm represents colors with integers. The integers
  3043. $0$ through $k-1$ correspond to the $k$ registers that we use for
  3044. register allocation. The integers $k$ and larger correspond to stack
  3045. locations. The registers that are not used for register allocation,
  3046. such as \code{rax}, are assigned to negative integers. In particular,
  3047. we assign $-1$ to \code{rax} and $-2$ to \code{rsp}.
  3048. One might wonder why we include registers at all in the liveness
  3049. analysis and interference graph, for example, we never allocate a
  3050. variable to \code{rax} and \code{rsp}, so it would be harmless to
  3051. leave them out. As we see in Chapter~\ref{ch:tuples}, when we begin
  3052. to use register for passing arguments to functions, it will be
  3053. necessary for those registers to appear in the interference graph
  3054. because those registers will also be assigned to variables, and we
  3055. don't want those two uses to encroach on each other. Regarding
  3056. registers such as \code{rax} and \code{rsp} that are not used for
  3057. variables, we could omit them from the interference graph but that
  3058. would require adding special cases to our algorithm, which would
  3059. complicate the logic for little gain.
  3060. \begin{figure}[btp]
  3061. \centering
  3062. \begin{lstlisting}[basicstyle=\rmfamily,deletekeywords={for,from,with,is,not,in,find},morekeywords={while},columns=fullflexible]
  3063. Algorithm: DSATUR
  3064. Input: a graph |$G$|
  3065. Output: an assignment |$\mathrm{color}[v]$| for each vertex |$v \in G$|
  3066. |$W \gets \mathrm{vertices}(G)$|
  3067. while |$W \neq \emptyset$| do
  3068. pick a vertex |$u$| from |$W$| with the highest saturation,
  3069. breaking ties randomly
  3070. find the lowest color |$c$| that is not in |$\{ \mathrm{color}[v] \;:\; v \in \mathrm{adjacent}(u)\}$|
  3071. |$\mathrm{color}[u] \gets c$|
  3072. |$W \gets W - \{u\}$|
  3073. \end{lstlisting}
  3074. \caption{The saturation-based greedy graph coloring algorithm.}
  3075. \label{fig:satur-algo}
  3076. \end{figure}
  3077. With the DSATUR algorithm in hand, let us return to the running
  3078. example and consider how to color the interference graph in
  3079. Figure~\ref{fig:interfere}.
  3080. %
  3081. We color the vertices for registers with their own color. For example,
  3082. \code{rax} is assigned the color $-1$ and \code{rsp} is assigned $-2$.
  3083. The vertices for variables are not yet colored, so they annotated with
  3084. a dash. We then update the saturation for vertices that are adjacent
  3085. to a register. For example, the saturation for \code{t} is $\{-1,-2\}$
  3086. because it interferes with both \code{rax} and \code{rsp}.
  3087. \[
  3088. \begin{tikzpicture}[baseline=(current bounding box.center)]
  3089. \node (rax) at (0,0) {$\ttm{rax}:-1,\{-2\}$};
  3090. \node (rsp) at (10,2) {$\ttm{rsp}:-2,\{-1\}$};
  3091. \node (t1) at (0,2) {$\ttm{t}:-,\{-1,-2\}$};
  3092. \node (z) at (3,2) {$\ttm{z}:-,\{-2\}$};
  3093. \node (x) at (6,2) {$\ttm{x}:-,\{-2\}$};
  3094. \node (y) at (3,0) {$\ttm{y}:-,\{-2\}$};
  3095. \node (w) at (6,0) {$\ttm{w}:-,\{-2\}$};
  3096. \node (v) at (10,0) {$\ttm{v}:-,\{-2\}$};
  3097. \draw (t1) to (rax);
  3098. \draw (t1) to (z);
  3099. \draw (z) to (y);
  3100. \draw (z) to (w);
  3101. \draw (x) to (w);
  3102. \draw (y) to (w);
  3103. \draw (v) to (w);
  3104. \draw (v) to (rsp);
  3105. \draw (w) to (rsp);
  3106. \draw (x) to (rsp);
  3107. \draw (y) to (rsp);
  3108. \path[-.,bend left=15] (z) edge node {} (rsp);
  3109. \path[-.,bend left=10] (t1) edge node {} (rsp);
  3110. \draw (rax) to (rsp);
  3111. \end{tikzpicture}
  3112. \]
  3113. The algorithm says to select a maximally saturated vertex. So we pick
  3114. $\ttm{t}$ and color it with the first available integer, which is
  3115. $0$. We mark $0$ as no longer available for $\ttm{z}$, $\ttm{rax}$,
  3116. and \ttm{rsp} because they interfere with $\ttm{t}$.
  3117. \[
  3118. \begin{tikzpicture}[baseline=(current bounding box.center)]
  3119. \node (rax) at (0,0) {$\ttm{rax}:-1,\{0,-2\}$};
  3120. \node (rsp) at (10,2) {$\ttm{rsp}:-2,\{-1,0\}$};
  3121. \node (t1) at (0,2) {$\ttm{t}:0,\{-1,-2\}$};
  3122. \node (z) at (3,2) {$\ttm{z}:-,\{0,-2\}$};
  3123. \node (x) at (6,2) {$\ttm{x}:-,\{-2\}$};
  3124. \node (y) at (3,0) {$\ttm{y}:-,\{-2\}$};
  3125. \node (w) at (6,0) {$\ttm{w}:-,\{-2\}$};
  3126. \node (v) at (10,0) {$\ttm{v}:-,\{-2\}$};
  3127. \draw (t1) to (rax);
  3128. \draw (t1) to (z);
  3129. \draw (z) to (y);
  3130. \draw (z) to (w);
  3131. \draw (x) to (w);
  3132. \draw (y) to (w);
  3133. \draw (v) to (w);
  3134. \draw (v) to (rsp);
  3135. \draw (w) to (rsp);
  3136. \draw (x) to (rsp);
  3137. \draw (y) to (rsp);
  3138. \path[-.,bend left=15] (z) edge node {} (rsp);
  3139. \path[-.,bend left=10] (t1) edge node {} (rsp);
  3140. \draw (rax) to (rsp);
  3141. \end{tikzpicture}
  3142. \]
  3143. We repeat the process, selecting another maximally saturated
  3144. vertex, which is \code{z}, and color it with the first available
  3145. number, which is $1$. We add $1$ to the saturation for the
  3146. neighboring vertices \code{t}, \code{y}, \code{w}, and \code{rsp}.
  3147. \[
  3148. \begin{tikzpicture}[baseline=(current bounding box.center)]
  3149. \node (rax) at (0,0) {$\ttm{rax}:-1,\{0,-2\}$};
  3150. \node (rsp) at (10,2) {$\ttm{rsp}:-2,\{-1,0,1\}$};
  3151. \node (t1) at (0,2) {$\ttm{t}:0,\{-1,1,-2\}$};
  3152. \node (z) at (3,2) {$\ttm{z}:1,\{0,-2\}$};
  3153. \node (x) at (6,2) {$\ttm{x}:-,\{-2\}$};
  3154. \node (y) at (3,0) {$\ttm{y}:-,\{1,-2\}$};
  3155. \node (w) at (6,0) {$\ttm{w}:-,\{1,-2\}$};
  3156. \node (v) at (10,0) {$\ttm{v}:-,\{-2\}$};
  3157. \draw (t1) to (rax);
  3158. \draw (t1) to (z);
  3159. \draw (z) to (y);
  3160. \draw (z) to (w);
  3161. \draw (x) to (w);
  3162. \draw (y) to (w);
  3163. \draw (v) to (w);
  3164. \draw (v) to (rsp);
  3165. \draw (w) to (rsp);
  3166. \draw (x) to (rsp);
  3167. \draw (y) to (rsp);
  3168. \path[-.,bend left=15] (z) edge node {} (rsp);
  3169. \path[-.,bend left=10] (t1) edge node {} (rsp);
  3170. \draw (rax) to (rsp);
  3171. \end{tikzpicture}
  3172. \]
  3173. The most saturated vertices are now \code{w} and \code{y}. We color
  3174. \code{w} with the first available color, which is $0$.
  3175. \[
  3176. \begin{tikzpicture}[baseline=(current bounding box.center)]
  3177. \node (rax) at (0,0) {$\ttm{rax}:-1,\{0,-2\}$};
  3178. \node (rsp) at (10,2) {$\ttm{rsp}:-2,\{-1,0,1\}$};
  3179. \node (t1) at (0,2) {$\ttm{t}:0,\{-1,1,-2\}$};
  3180. \node (z) at (3,2) {$\ttm{z}:1,\{0,-2\}$};
  3181. \node (x) at (6,2) {$\ttm{x}:-,\{0,-2\}$};
  3182. \node (y) at (3,0) {$\ttm{y}:-,\{0,1,-2\}$};
  3183. \node (w) at (6,0) {$\ttm{w}:0,\{1,-2\}$};
  3184. \node (v) at (10,0) {$\ttm{v}:-,\{0,-2\}$};
  3185. \draw (t1) to (rax);
  3186. \draw (t1) to (z);
  3187. \draw (z) to (y);
  3188. \draw (z) to (w);
  3189. \draw (x) to (w);
  3190. \draw (y) to (w);
  3191. \draw (v) to (w);
  3192. \draw (v) to (rsp);
  3193. \draw (w) to (rsp);
  3194. \draw (x) to (rsp);
  3195. \draw (y) to (rsp);
  3196. \path[-.,bend left=15] (z) edge node {} (rsp);
  3197. \path[-.,bend left=10] (t1) edge node {} (rsp);
  3198. \draw (rax) to (rsp);
  3199. \end{tikzpicture}
  3200. \]
  3201. Vertex \code{y} is now the most highly saturated, so we color \code{y}
  3202. with $2$. We cannot choose $0$ or $1$ because those numbers are in
  3203. \code{y}'s saturation set. Indeed, \code{y} interferes with \code{w}
  3204. and \code{z}, whose colors are $0$ and $1$ respectively.
  3205. \[
  3206. \begin{tikzpicture}[baseline=(current bounding box.center)]
  3207. \node (rax) at (0,0) {$\ttm{rax}:-1,\{0,-2\}$};
  3208. \node (rsp) at (10,2) {$\ttm{rsp}:-2,\{-1,0,1,2\}$};
  3209. \node (t1) at (0,2) {$\ttm{t}:0,\{-1,1,-2\}$};
  3210. \node (z) at (3,2) {$\ttm{z}:1,\{0,2,-2\}$};
  3211. \node (x) at (6,2) {$\ttm{x}:-,\{0,-2\}$};
  3212. \node (y) at (3,0) {$\ttm{y}:2,\{0,1,-2\}$};
  3213. \node (w) at (6,0) {$\ttm{w}:0,\{1,2,-2\}$};
  3214. \node (v) at (10,0) {$\ttm{v}:-,\{0,-2\}$};
  3215. \draw (t1) to (rax);
  3216. \draw (t1) to (z);
  3217. \draw (z) to (y);
  3218. \draw (z) to (w);
  3219. \draw (x) to (w);
  3220. \draw (y) to (w);
  3221. \draw (v) to (w);
  3222. \draw (v) to (rsp);
  3223. \draw (w) to (rsp);
  3224. \draw (x) to (rsp);
  3225. \draw (y) to (rsp);
  3226. \path[-.,bend left=15] (z) edge node {} (rsp);
  3227. \path[-.,bend left=10] (t1) edge node {} (rsp);
  3228. \draw (rax) to (rsp);
  3229. \end{tikzpicture}
  3230. \]
  3231. Now \code{x} and \code{v} are the most saturated, so we color \code{v} with $1$.
  3232. \[
  3233. \begin{tikzpicture}[baseline=(current bounding box.center)]
  3234. \node (rax) at (0,0) {$\ttm{rax}:-1,\{0,-2\}$};
  3235. \node (rsp) at (10,2) {$\ttm{rsp}:-2,\{-1,0,1,2\}$};
  3236. \node (t1) at (0,2) {$\ttm{t}:0,\{-1,1,-2\}$};
  3237. \node (z) at (3,2) {$\ttm{z}:1,\{0,2,-2\}$};
  3238. \node (x) at (6,2) {$\ttm{x}:-,\{0,-2\}$};
  3239. \node (y) at (3,0) {$\ttm{y}:2,\{0,1,-2\}$};
  3240. \node (w) at (6,0) {$\ttm{w}:0,\{1,2,-2\}$};
  3241. \node (v) at (10,0) {$\ttm{v}:1,\{0,-2\}$};
  3242. \draw (t1) to (rax);
  3243. \draw (t1) to (z);
  3244. \draw (z) to (y);
  3245. \draw (z) to (w);
  3246. \draw (x) to (w);
  3247. \draw (y) to (w);
  3248. \draw (v) to (w);
  3249. \draw (v) to (rsp);
  3250. \draw (w) to (rsp);
  3251. \draw (x) to (rsp);
  3252. \draw (y) to (rsp);
  3253. \path[-.,bend left=15] (z) edge node {} (rsp);
  3254. \path[-.,bend left=10] (t1) edge node {} (rsp);
  3255. \draw (rax) to (rsp);
  3256. \end{tikzpicture}
  3257. \]
  3258. In the last step of the algorithm, we color \code{x} with $1$.
  3259. \[
  3260. \begin{tikzpicture}[baseline=(current bounding box.center)]
  3261. \node (rax) at (0,0) {$\ttm{rax}:-1,\{0,-2\}$};
  3262. \node (rsp) at (10,2) {$\ttm{rsp}:-2,\{-1,0,1,2\}$};
  3263. \node (t1) at (0,2) {$\ttm{t}:0,\{-1,1,-2\}$};
  3264. \node (z) at (3,2) {$\ttm{z}:1,\{0,2,-2\}$};
  3265. \node (x) at (6,2) {$\ttm{x}:1,\{0,-2\}$};
  3266. \node (y) at (3,0) {$\ttm{y}:2,\{0,1,-2\}$};
  3267. \node (w) at (6,0) {$\ttm{w}:0,\{1,2,-2\}$};
  3268. \node (v) at (10,0) {$\ttm{v}:1,\{0,-2\}$};
  3269. \draw (t1) to (rax);
  3270. \draw (t1) to (z);
  3271. \draw (z) to (y);
  3272. \draw (z) to (w);
  3273. \draw (x) to (w);
  3274. \draw (y) to (w);
  3275. \draw (v) to (w);
  3276. \draw (v) to (rsp);
  3277. \draw (w) to (rsp);
  3278. \draw (x) to (rsp);
  3279. \draw (y) to (rsp);
  3280. \path[-.,bend left=15] (z) edge node {} (rsp);
  3281. \path[-.,bend left=10] (t1) edge node {} (rsp);
  3282. \draw (rax) to (rsp);
  3283. \end{tikzpicture}
  3284. \]
  3285. With the coloring complete, we finalize the assignment of variables to
  3286. registers and stack locations. Recall that if we have $k$ registers to
  3287. use for allocation, we map the first $k$ colors to registers and the
  3288. rest to stack locations. Suppose for the moment that we have just one
  3289. register to use for register allocation, \key{rcx}. Then the following
  3290. maps of colors to registers and stack allocations.
  3291. \[
  3292. \{ 0 \mapsto \key{\%rcx}, \; 1 \mapsto \key{-8(\%rbp)}, \; 2 \mapsto \key{-16(\%rbp)} \}
  3293. \]
  3294. Putting this mapping together with the above coloring of the
  3295. variables, we arrive at the following assignment.
  3296. \begin{gather*}
  3297. \{ \ttm{v} \mapsto \key{\%rcx}, \,
  3298. \ttm{w} \mapsto \key{\%rcx}, \,
  3299. \ttm{x} \mapsto \key{-8(\%rbp)}, \,
  3300. \ttm{y} \mapsto \key{-16(\%rbp)}, \\
  3301. \ttm{z} \mapsto \key{-8(\%rbp)}, \,
  3302. \ttm{t} \mapsto \key{\%rcx} \}
  3303. \end{gather*}
  3304. Applying this assignment to our running example, on the left, yields
  3305. the program on the right.
  3306. % why frame size of 32? -JGS
  3307. \begin{center}
  3308. \begin{minipage}{0.3\textwidth}
  3309. \begin{lstlisting}
  3310. movq $1, v
  3311. movq $42, w
  3312. movq v, x
  3313. addq $7, x
  3314. movq x, y
  3315. movq x, z
  3316. addq w, z
  3317. movq y, t
  3318. negq t
  3319. movq z, %rax
  3320. addq t, %rax
  3321. jmp conclusion
  3322. \end{lstlisting}
  3323. \end{minipage}
  3324. $\Rightarrow\qquad$
  3325. \begin{minipage}{0.45\textwidth}
  3326. \begin{lstlisting}
  3327. movq $1, %rcx
  3328. movq $42, %rcx
  3329. movq %rcx, -8(%rbp)
  3330. addq $7, -8(%rbp)
  3331. movq -8(%rbp), -16(%rbp)
  3332. movq -8(%rbp), -8(%rbp)
  3333. addq %rcx, -8(%rbp)
  3334. movq -16(%rbp), %rcx
  3335. negq %rcx
  3336. movq -8(%rbp), %rax
  3337. addq %rcx, %rax
  3338. jmp conclusion
  3339. \end{lstlisting}
  3340. \end{minipage}
  3341. \end{center}
  3342. The resulting program is almost an x86 program. The remaining step is
  3343. the patch instructions pass. In this example, the trivial move of
  3344. \code{-8(\%rbp)} to itself is deleted and the addition of
  3345. \code{-8(\%rbp)} to \key{-16(\%rbp)} is fixed by going through
  3346. \code{rax} as follows.
  3347. \begin{lstlisting}
  3348. movq -8(%rbp), %rax
  3349. addq %rax, -16(%rbp)
  3350. \end{lstlisting}
  3351. We recommend creating a helper function named \code{color-graph} that
  3352. takes an interference graph and a list of all the variables in the
  3353. program. This function should return a mapping of variables to their
  3354. colors (represented as natural numbers). By creating this helper
  3355. function, you will be able to reuse it in Chapter~\ref{ch:functions}
  3356. when you add support for functions. To prioritize the processing of
  3357. highly saturated nodes inside your \code{color-graph} function, we
  3358. recommend using the priority queue data structure (see the side bar on
  3359. the right). Note that you will also need to maintain a mapping from
  3360. variables to their ``handles'' in the priority queue so that you can
  3361. notify the priority queue when their saturation changes.
  3362. \begin{wrapfigure}[23]{r}[1.0in]{0.6\textwidth}
  3363. \small
  3364. \begin{tcolorbox}[title=Priority Queue]
  3365. A \emph{priority queue} is a collection of items in which the
  3366. removal of items is governed by priority. In a ``min'' queue,
  3367. lower priority items are removed first. An implementation is in
  3368. \code{priority\_queue.rkt} of the support code. \index{priority
  3369. queue} \index{minimum priority queue}
  3370. \begin{description}
  3371. \item[$\LP\code{make-pqueue}\,\itm{cmp}\RP$] constructs an empty
  3372. priority queue that uses the $\itm{cmp}$ predicate to determine
  3373. whether its first argument has lower or equal priority to its
  3374. second argument.
  3375. \item[$\LP\code{pqueue-count}\,\itm{queue}\RP$] returns the number of
  3376. items in the queue.
  3377. \item[$\LP\code{pqueue-push!}\,\itm{queue}\,\itm{item}\RP$] inserts
  3378. the item into the queue and returns a handle for the item in the
  3379. queue.
  3380. \item[$\LP\code{pqueue-pop!}\,\itm{queue}\RP$] returns the item with
  3381. the lowest priority.
  3382. \item[$\LP\code{pqueue-decrease-key!}\,\itm{queue}\,\itm{handle}\RP$]
  3383. notifies the queue that the priority has decreased for the item
  3384. associated with the given handle.
  3385. \end{description}
  3386. \end{tcolorbox}
  3387. \end{wrapfigure}
  3388. Once you have obtained the coloring from \code{color-graph}, you can
  3389. assign the variables to registers or stack locations and then reuse
  3390. code from the \code{assign-homes} pass from
  3391. Section~\ref{sec:assign-r1} to replace the variables with their
  3392. assigned location.
  3393. \begin{exercise}\normalfont
  3394. Implement the compiler pass \code{allocate-registers}, which should
  3395. come after the \code{build-interference} pass. The three new passes
  3396. described in this chapter replace the \code{assign-homes} pass of
  3397. Section~\ref{sec:assign-r1}.
  3398. %
  3399. Test your updated compiler by creating new example programs that
  3400. exercise all of the register allocation algorithm, such as forcing
  3401. variables to be spilled to the stack.
  3402. \end{exercise}
  3403. \section{Print x86}
  3404. \label{sec:print-x86-reg-alloc}
  3405. \index{calling conventions}
  3406. \index{prelude}\index{conclusion}
  3407. Recall that the \code{print-x86} pass generates the prelude and
  3408. conclusion instructions for the \code{main} function.
  3409. %
  3410. The prelude saved the values in \code{rbp} and \code{rsp} and the
  3411. conclusion returned those values to \code{rbp} and \code{rsp}. The
  3412. reason for this is that our \code{main} function must adhere to the
  3413. x86 calling conventions that we described in
  3414. Section~\ref{sec:calling-conventions}. Furthermore, if your register
  3415. allocator assigned variables to other callee-saved registers
  3416. (e.g. \code{rbx}, \code{r12}, etc.), then those variables must also be
  3417. saved to the stack in the prelude and restored in the conclusion. The
  3418. simplest approach is to save and restore all of the callee-saved
  3419. registers. The more efficient approach is to keep track of which
  3420. callee-saved registers were used and only save and restore
  3421. them. Either way, make sure to take this use of stack space into
  3422. account when you are calculating the size of the frame and adjusting
  3423. the \code{rsp} in the prelude. Also, don't forget that the size of the
  3424. frame needs to be a multiple of 16 bytes!
  3425. An overview of all of the passes involved in register allocation is
  3426. shown in Figure~\ref{fig:reg-alloc-passes}.
  3427. \begin{figure}[tbp]
  3428. \begin{tikzpicture}[baseline=(current bounding box.center)]
  3429. \node (Rvar) at (0,2) {\large \LangVar{}};
  3430. \node (Rvar-2) at (3,2) {\large \LangVar{}};
  3431. \node (Rvar-3) at (6,2) {\large \LangVar{}};
  3432. \node (Cvar-1) at (3,0) {\large \LangCVar{}};
  3433. \node (x86-2) at (3,-2) {\large \LangXVar{}};
  3434. \node (x86-3) at (6,-2) {\large \LangXVar{}};
  3435. \node (x86-4) at (9,-2) {\large \LangXASTInt{}};
  3436. \node (x86-5) at (9,-4) {\large \LangXInt{}};
  3437. \node (x86-2-1) at (3,-4) {\large \LangXVar{}};
  3438. \node (x86-2-2) at (6,-4) {\large \LangXVar{}};
  3439. \path[->,bend left=15] (Rvar) edge [above] node {\ttfamily\footnotesize uniquify} (Rvar-2);
  3440. \path[->,bend left=15] (Rvar-2) edge [above] node {\ttfamily\footnotesize remove-complex.} (Rvar-3);
  3441. \path[->,bend left=15] (Rvar-3) edge [right] node {\ttfamily\footnotesize explicate-control} (Cvar-1);
  3442. \path[->,bend right=15] (Cvar-1) edge [left] node {\ttfamily\footnotesize select-instr.} (x86-2);
  3443. \path[->,bend left=15] (x86-2) edge [right] node {\ttfamily\footnotesize uncover-live} (x86-2-1);
  3444. \path[->,bend right=15] (x86-2-1) edge [below] node {\ttfamily\footnotesize build-inter.} (x86-2-2);
  3445. \path[->,bend right=15] (x86-2-2) edge [right] node {\ttfamily\footnotesize allocate-reg.} (x86-3);
  3446. \path[->,bend left=15] (x86-3) edge [above] node {\ttfamily\footnotesize patch-instr.} (x86-4);
  3447. \path[->,bend left=15] (x86-4) edge [right] node {\ttfamily\footnotesize print-x86} (x86-5);
  3448. \end{tikzpicture}
  3449. \caption{Diagram of the passes for \LangVar{} with register allocation.}
  3450. \label{fig:reg-alloc-passes}
  3451. \end{figure}
  3452. \section{Challenge: Move Biasing}
  3453. \label{sec:move-biasing}
  3454. \index{move biasing}
  3455. This section describes an optional enhancement to register allocation
  3456. for those students who are looking for an extra challenge or who have
  3457. a deeper interest in register allocation.
  3458. We return to the running example, but we remove the supposition that
  3459. we only have one register to use. So we have the following mapping of
  3460. color numbers to registers.
  3461. \[
  3462. \{ 0 \mapsto \key{\%rbx}, \; 1 \mapsto \key{\%rcx}, \; 2 \mapsto \key{\%rdx} \}
  3463. \]
  3464. Using the same assignment of variables to color numbers that was
  3465. produced by the register allocator described in the last section, we
  3466. get the following program.
  3467. \begin{minipage}{0.3\textwidth}
  3468. \begin{lstlisting}
  3469. movq $1, v
  3470. movq $42, w
  3471. movq v, x
  3472. addq $7, x
  3473. movq x, y
  3474. movq x, z
  3475. addq w, z
  3476. movq y, t
  3477. negq t
  3478. movq z, %rax
  3479. addq t, %rax
  3480. jmp conclusion
  3481. \end{lstlisting}
  3482. \end{minipage}
  3483. $\Rightarrow\qquad$
  3484. \begin{minipage}{0.45\textwidth}
  3485. \begin{lstlisting}
  3486. movq $1, %rcx
  3487. movq $42, $rbx
  3488. movq %rcx, %rcx
  3489. addq $7, %rcx
  3490. movq %rcx, %rdx
  3491. movq %rcx, %rcx
  3492. addq %rbx, %rcx
  3493. movq %rdx, %rbx
  3494. negq %rbx
  3495. movq %rcx, %rax
  3496. addq %rbx, %rax
  3497. jmp conclusion
  3498. \end{lstlisting}
  3499. \end{minipage}
  3500. In the above output code there are two \key{movq} instructions that
  3501. can be removed because their source and target are the same. However,
  3502. if we had put \key{t}, \key{v}, \key{x}, and \key{y} into the same
  3503. register, we could instead remove three \key{movq} instructions. We
  3504. can accomplish this by taking into account which variables appear in
  3505. \key{movq} instructions with which other variables.
  3506. We say that two variables $p$ and $q$ are \emph{move
  3507. related}\index{move related} if they participate together in a
  3508. \key{movq} instruction, that is, \key{movq} $p$\key{,} $q$ or
  3509. \key{movq} $q$\key{,} $p$. When the register allocator chooses a color
  3510. for a variable, it should prefer a color that has already been used
  3511. for a move-related variable (assuming that they do not interfere). Of
  3512. course, this preference should not override the preference for
  3513. registers over stack locations. This preference should be used as a
  3514. tie breaker when choosing between registers or when choosing between
  3515. stack locations.
  3516. We recommend representing the move relationships in a graph, similar
  3517. to how we represented interference. The following is the \emph{move
  3518. graph} for our running example.
  3519. \[
  3520. \begin{tikzpicture}[baseline=(current bounding box.center)]
  3521. \node (rax) at (0,0) {$\ttm{rax}$};
  3522. \node (rsp) at (9,2) {$\ttm{rsp}$};
  3523. \node (t) at (0,2) {$\ttm{t}$};
  3524. \node (z) at (3,2) {$\ttm{z}$};
  3525. \node (x) at (6,2) {$\ttm{x}$};
  3526. \node (y) at (3,0) {$\ttm{y}$};
  3527. \node (w) at (6,0) {$\ttm{w}$};
  3528. \node (v) at (9,0) {$\ttm{v}$};
  3529. \draw (v) to (x);
  3530. \draw (x) to (y);
  3531. \draw (x) to (z);
  3532. \draw (y) to (t);
  3533. \end{tikzpicture}
  3534. \]
  3535. Now we replay the graph coloring, pausing to see the coloring of
  3536. \code{y}. Recall the following configuration. The most saturated vertices
  3537. were \code{w} and \code{y}.
  3538. \[
  3539. \begin{tikzpicture}[baseline=(current bounding box.center)]
  3540. \node (rax) at (0,0) {$\ttm{rax}:-1,\{0,-2\}$};
  3541. \node (rsp) at (9,2) {$\ttm{rsp}:-2,\{-1,0,1,2\}$};
  3542. \node (t1) at (0,2) {$\ttm{t}:0,\{1,-2\}$};
  3543. \node (z) at (3,2) {$\ttm{z}:1,\{0,-2\}$};
  3544. \node (x) at (6,2) {$\ttm{x}:-,\{-2\}$};
  3545. \node (y) at (3,0) {$\ttm{y}:-,\{1,-2\}$};
  3546. \node (w) at (6,0) {$\ttm{w}:-,\{1,-2\}$};
  3547. \node (v) at (9,0) {$\ttm{v}:-,\{-2\}$};
  3548. \draw (t1) to (rax);
  3549. \draw (t1) to (z);
  3550. \draw (z) to (y);
  3551. \draw (z) to (w);
  3552. \draw (x) to (w);
  3553. \draw (y) to (w);
  3554. \draw (v) to (w);
  3555. \draw (v) to (rsp);
  3556. \draw (w) to (rsp);
  3557. \draw (x) to (rsp);
  3558. \draw (y) to (rsp);
  3559. \path[-.,bend left=15] (z) edge node {} (rsp);
  3560. \path[-.,bend left=10] (t1) edge node {} (rsp);
  3561. \draw (rax) to (rsp);
  3562. \end{tikzpicture}
  3563. \]
  3564. %
  3565. Last time we chose to color \code{w} with $0$. But this time we see
  3566. that \code{w} is not move related to any vertex, but \code{y} is move
  3567. related to \code{t}. So we choose to color \code{y} the same color as
  3568. \code{t}, $0$.
  3569. \[
  3570. \begin{tikzpicture}[baseline=(current bounding box.center)]
  3571. \node (rax) at (0,0) {$\ttm{rax}:-1,\{0,-2\}$};
  3572. \node (rsp) at (9,2) {$\ttm{rsp}:-2,\{-1,0,1,2\}$};
  3573. \node (t1) at (0,2) {$\ttm{t}:0,\{1,-2\}$};
  3574. \node (z) at (3,2) {$\ttm{z}:1,\{0,-2\}$};
  3575. \node (x) at (6,2) {$\ttm{x}:-,\{-2\}$};
  3576. \node (y) at (3,0) {$\ttm{y}:0,\{1,-2\}$};
  3577. \node (w) at (6,0) {$\ttm{w}:-,\{0,1,-2\}$};
  3578. \node (v) at (9,0) {$\ttm{v}:-,\{-2\}$};
  3579. \draw (t1) to (rax);
  3580. \draw (t1) to (z);
  3581. \draw (z) to (y);
  3582. \draw (z) to (w);
  3583. \draw (x) to (w);
  3584. \draw (y) to (w);
  3585. \draw (v) to (w);
  3586. \draw (v) to (rsp);
  3587. \draw (w) to (rsp);
  3588. \draw (x) to (rsp);
  3589. \draw (y) to (rsp);
  3590. \path[-.,bend left=15] (z) edge node {} (rsp);
  3591. \path[-.,bend left=10] (t1) edge node {} (rsp);
  3592. \draw (rax) to (rsp);
  3593. \end{tikzpicture}
  3594. \]
  3595. Now \code{w} is the most saturated, so we color it $2$.
  3596. \[
  3597. \begin{tikzpicture}[baseline=(current bounding box.center)]
  3598. \node (rax) at (0,0) {$\ttm{rax}:-1,\{0,-2\}$};
  3599. \node (rsp) at (9,2) {$\ttm{rsp}:-2,\{-1,0,1,2\}$};
  3600. \node (t1) at (0,2) {$\ttm{t}:0,\{1,-2\}$};
  3601. \node (z) at (3,2) {$\ttm{z}:1,\{0,2,-2\}$};
  3602. \node (x) at (6,2) {$\ttm{x}:-,\{2,-2\}$};
  3603. \node (y) at (3,0) {$\ttm{y}:0,\{1,2,-2\}$};
  3604. \node (w) at (6,0) {$\ttm{w}:2,\{0,1,-2\}$};
  3605. \node (v) at (9,0) {$\ttm{v}:-,\{2,-2\}$};
  3606. \draw (t1) to (rax);
  3607. \draw (t1) to (z);
  3608. \draw (z) to (y);
  3609. \draw (z) to (w);
  3610. \draw (x) to (w);
  3611. \draw (y) to (w);
  3612. \draw (v) to (w);
  3613. \draw (v) to (rsp);
  3614. \draw (w) to (rsp);
  3615. \draw (x) to (rsp);
  3616. \draw (y) to (rsp);
  3617. \path[-.,bend left=15] (z) edge node {} (rsp);
  3618. \path[-.,bend left=10] (t1) edge node {} (rsp);
  3619. \draw (rax) to (rsp);
  3620. \end{tikzpicture}
  3621. \]
  3622. At this point, vertices \code{x} and \code{v} are most saturated, but
  3623. \code{x} is move related to \code{y} and \code{z}, so we color
  3624. \code{x} to $0$ to match \code{y}. Finally, we color \code{v} to $0$.
  3625. \[
  3626. \begin{tikzpicture}[baseline=(current bounding box.center)]
  3627. \node (rax) at (0,0) {$\ttm{rax}:-1,\{0,-2\}$};
  3628. \node (rsp) at (9,2) {$\ttm{rsp}:-2,\{-1,0,1,2\}$};
  3629. \node (t) at (0,2) {$\ttm{t}:0,\{1,-2\}$};
  3630. \node (z) at (3,2) {$\ttm{z}:1,\{0,2,-2\}$};
  3631. \node (x) at (6,2) {$\ttm{x}:0,\{2,-2\}$};
  3632. \node (y) at (3,0) {$\ttm{y}:0,\{1,2,-2\}$};
  3633. \node (w) at (6,0) {$\ttm{w}:2,\{0,1,-2\}$};
  3634. \node (v) at (9,0) {$\ttm{v}:0,\{2,-2\}$};
  3635. \draw (t1) to (rax);
  3636. \draw (t) to (z);
  3637. \draw (z) to (y);
  3638. \draw (z) to (w);
  3639. \draw (x) to (w);
  3640. \draw (y) to (w);
  3641. \draw (v) to (w);
  3642. \draw (v) to (rsp);
  3643. \draw (w) to (rsp);
  3644. \draw (x) to (rsp);
  3645. \draw (y) to (rsp);
  3646. \path[-.,bend left=15] (z) edge node {} (rsp);
  3647. \path[-.,bend left=10] (t1) edge node {} (rsp);
  3648. \draw (rax) to (rsp);
  3649. \end{tikzpicture}
  3650. \]
  3651. So we have the following assignment of variables to registers.
  3652. \begin{gather*}
  3653. \{ \ttm{v} \mapsto \key{\%rbx}, \,
  3654. \ttm{w} \mapsto \key{\%rdx}, \,
  3655. \ttm{x} \mapsto \key{\%rbx}, \,
  3656. \ttm{y} \mapsto \key{\%rbx}, \,
  3657. \ttm{z} \mapsto \key{\%rcx}, \,
  3658. \ttm{t} \mapsto \key{\%rbx} \}
  3659. \end{gather*}
  3660. We apply this register assignment to the running example, on the left,
  3661. to obtain the code in the middle. The \code{patch-instructions} then
  3662. removes the three trivial moves from \key{rbx} to \key{rbx} to obtain
  3663. the code on the right.
  3664. \begin{minipage}{0.25\textwidth}
  3665. \begin{lstlisting}
  3666. movq $1, v
  3667. movq $42, w
  3668. movq v, x
  3669. addq $7, x
  3670. movq x, y
  3671. movq x, z
  3672. addq w, z
  3673. movq y, t
  3674. negq t
  3675. movq z, %rax
  3676. addq t, %rax
  3677. jmp conclusion
  3678. \end{lstlisting}
  3679. \end{minipage}
  3680. $\Rightarrow\qquad$
  3681. \begin{minipage}{0.25\textwidth}
  3682. \begin{lstlisting}
  3683. movq $1, %rbx
  3684. movq $42, %rdx
  3685. movq %rbx, %rbx
  3686. addq $7, %rbx
  3687. movq %rbx, %rbx
  3688. movq %rbx, %rcx
  3689. addq %rdx, %rcx
  3690. movq %rbx, %rbx
  3691. negq %rbx
  3692. movq %rcx, %rax
  3693. addq %rbx, %rax
  3694. jmp conclusion
  3695. \end{lstlisting}
  3696. \end{minipage}
  3697. $\Rightarrow\qquad$
  3698. \begin{minipage}{0.25\textwidth}
  3699. \begin{lstlisting}
  3700. movq $1, %rbx
  3701. movq $42, %rdx
  3702. addq $7, %rbx
  3703. movq %rbx, %rcx
  3704. addq %rdx, %rcx
  3705. negq %rbx
  3706. movq %rcx, %rax
  3707. addq %rbx, %rax
  3708. jmp conclusion
  3709. \end{lstlisting}
  3710. \end{minipage}
  3711. \begin{exercise}\normalfont
  3712. Change your implementation of \code{allocate-registers} to take move
  3713. biasing into account. Make sure that your compiler still passes all of
  3714. the previous tests. Create two new tests that include at least one
  3715. opportunity for move biasing and visually inspect the output x86
  3716. programs to make sure that your move biasing is working properly.
  3717. \end{exercise}
  3718. \margincomment{\footnotesize To do: another neat challenge would be to do
  3719. live range splitting~\citep{Cooper:1998ly}. \\ --Jeremy}
  3720. \section{Output of the Running Example}
  3721. \label{sec:reg-alloc-output}
  3722. \index{prelude}\index{conclusion}
  3723. Figure~\ref{fig:running-example-x86} shows the x86 code generated for
  3724. the running example (Figure~\ref{fig:reg-eg}) with register allocation
  3725. and move biasing. To demonstrate both the use of registers and the
  3726. stack, we have limited the register allocator to use just two
  3727. registers: \code{rbx} and \code{rcx}. In the prelude of the
  3728. \code{main} function, we push \code{rbx} onto the stack because it is
  3729. a callee-saved register and it was assigned to variable by the
  3730. register allocator. We subtract \code{8} from the \code{rsp} at the
  3731. end of the prelude to reserve space for the one spilled variable.
  3732. After that subtraction, the \code{rsp} is aligned to 16 bytes.
  3733. Moving on the the \code{start} block, we see how the registers were
  3734. allocated. Variables \code{v}, \code{x}, and \code{y} were assigned to
  3735. \code{rbx} and variable \code{z} was assigned to \code{rcx}. Variable
  3736. \code{w} was spilled to the stack location \code{-16(\%rbp)}. Recall
  3737. that the prelude saved the callee-save register \code{rbx} onto the
  3738. stack. The spilled variables must be placed lower on the stack than
  3739. the saved callee-save registers, so in this case \code{w} is placed at
  3740. \code{-16(\%rbp)}.
  3741. In the \code{conclusion}, we undo the work that was done in the
  3742. prelude. We move the stack pointer up by \code{8} bytes (the room for
  3743. spilled variables), then we pop the old values of \code{rbx} and
  3744. \code{rbp} (callee-saved registers), and finish with \code{retq} to
  3745. return control to the operating system.
  3746. \begin{figure}[tbp]
  3747. % s0_28.rkt
  3748. % (use-minimal-set-of-registers! #t)
  3749. % and only rbx rcx
  3750. % tmp 0 rbx
  3751. % z 1 rcx
  3752. % y 0 rbx
  3753. % w 2 16(%rbp)
  3754. % v 0 rbx
  3755. % x 0 rbx
  3756. \begin{lstlisting}
  3757. start:
  3758. movq $1, %rbx
  3759. movq $42, -16(%rbp)
  3760. addq $7, %rbx
  3761. movq %rbx, %rcx
  3762. addq -16(%rbp), %rcx
  3763. negq %rbx
  3764. movq %rcx, %rax
  3765. addq %rbx, %rax
  3766. jmp conclusion
  3767. .globl main
  3768. main:
  3769. pushq %rbp
  3770. movq %rsp, %rbp
  3771. pushq %rbx
  3772. subq $8, %rsp
  3773. jmp start
  3774. conclusion:
  3775. addq $8, %rsp
  3776. popq %rbx
  3777. popq %rbp
  3778. retq
  3779. \end{lstlisting}
  3780. \caption{The x86 output from the running example (Figure~\ref{fig:reg-eg}).}
  3781. \label{fig:running-example-x86}
  3782. \end{figure}
  3783. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  3784. \chapter{Booleans and Control Flow}
  3785. \label{ch:bool-types}
  3786. \index{Boolean}
  3787. \index{control flow}
  3788. \index{conditional expression}
  3789. The \LangInt{} and \LangVar{} languages only have a single kind of value, the
  3790. integers. In this chapter we add a second kind of value, the Booleans,
  3791. to create the \LangIf{} language. The Boolean values \emph{true} and
  3792. \emph{false} are written \key{\#t} and \key{\#f} respectively in
  3793. Racket. The \LangIf{} language includes several operations that involve
  3794. Booleans (\key{and}, \key{not}, \key{eq?}, \key{<}, etc.) and the
  3795. conditional \key{if} expression. With the addition of \key{if}
  3796. expressions, programs can have non-trivial control flow which which
  3797. significantly impacts the \code{explicate-control} and the liveness
  3798. analysis for register allocation. Also, because we now have two kinds
  3799. of values, we need to handle programs that apply an operation to the
  3800. wrong kind of value, such as \code{(not 1)}.
  3801. There are two language design options for such situations. One option
  3802. is to signal an error and the other is to provide a wider
  3803. interpretation of the operation. The Racket language uses a mixture of
  3804. these two options, depending on the operation and the kind of
  3805. value. For example, the result of \code{(not 1)} in Racket is
  3806. \code{\#f} because Racket treats non-zero integers as if they were
  3807. \code{\#t}. On the other hand, \code{(car 1)} results in a run-time
  3808. error in Racket stating that \code{car} expects a pair.
  3809. The Typed Racket language makes similar design choices as Racket,
  3810. except much of the error detection happens at compile time instead of
  3811. run time. Like Racket, Typed Racket accepts and runs \code{(not 1)},
  3812. producing \code{\#f}. But in the case of \code{(car 1)}, Typed Racket
  3813. reports a compile-time error because Typed Racket expects the type of
  3814. the argument to be of the form \code{(Listof T)} or \code{(Pairof T1 T2)}.
  3815. For the \LangIf{} language we choose to be more like Typed Racket in that
  3816. we perform type checking during compilation. In
  3817. Chapter~\ref{ch:type-dynamic} we study the alternative choice, that
  3818. is, how to compile a dynamically typed language like Racket. The
  3819. \LangIf{} language is a subset of Typed Racket but by no means includes
  3820. all of Typed Racket. For many operations we take a narrower
  3821. interpretation than Typed Racket, for example, rejecting \code{(not 1)}.
  3822. This chapter is organized as follows. We begin by defining the syntax
  3823. and interpreter for the \LangIf{} language
  3824. (Section~\ref{sec:r2-lang}). We then introduce the idea of type
  3825. checking and build a type checker for \LangIf{}
  3826. (Section~\ref{sec:type-check-r2}). To compile \LangIf{} we need to
  3827. enlarge the intermediate language \LangCVar{} into \LangCIf{}, which
  3828. we do in Section~\ref{sec:c1}. The remaining sections of this chapter
  3829. discuss how our compiler passes change to accommodate Booleans and
  3830. conditional control flow.
  3831. \section{The \LangIf{} Language}
  3832. \label{sec:r2-lang}
  3833. The concrete syntax of the \LangIf{} language is defined in
  3834. Figure~\ref{fig:r2-concrete-syntax} and the abstract syntax is defined
  3835. in Figure~\ref{fig:r2-syntax}. The \LangIf{} language includes all of
  3836. \LangVar{} (shown in gray), the Boolean literals \code{\#t} and \code{\#f},
  3837. and the conditional \code{if} expression. Also, we expand the
  3838. operators to include
  3839. \begin{enumerate}
  3840. \item subtraction on integers,
  3841. \item the logical operators \key{and}, \key{or} and \key{not},
  3842. \item the \key{eq?} operation for comparing two integers or two Booleans, and
  3843. \item the \key{<}, \key{<=}, \key{>}, and \key{>=} operations for
  3844. comparing integers.
  3845. \end{enumerate}
  3846. We reorganize the abstract syntax for the primitive operations in
  3847. Figure~\ref{fig:r2-syntax}, using only one grammar rule for all of
  3848. them. This means that the grammar no longer checks whether the arity
  3849. of an operators matches the number of arguments. That responsibility
  3850. is moved to the type checker for \LangIf{}, which we introduce in
  3851. Section~\ref{sec:type-check-r2}.
  3852. \begin{figure}[tp]
  3853. \centering
  3854. \fbox{
  3855. \begin{minipage}{0.96\textwidth}
  3856. \[
  3857. \begin{array}{lcl}
  3858. \itm{bool} &::=& \key{\#t} \mid \key{\#f} \\
  3859. \itm{cmp} &::= & \key{eq?} \mid \key{<} \mid \key{<=} \mid \key{>} \mid \key{>=} \\
  3860. \Exp &::=& \gray{ \Int \mid \CREAD{} \mid \CNEG{\Exp} \mid \CADD{\Exp}{\Exp} } \mid \CSUB{\Exp}{\Exp} \\
  3861. &\mid& \gray{ \Var \mid \CLET{\Var}{\Exp}{\Exp} } \\
  3862. &\mid& \itm{bool}
  3863. \mid (\key{and}\;\Exp\;\Exp) \mid (\key{or}\;\Exp\;\Exp)
  3864. \mid (\key{not}\;\Exp) \\
  3865. &\mid& (\itm{cmp}\;\Exp\;\Exp) \mid \CIF{\Exp}{\Exp}{\Exp} \\
  3866. \LangIf{} &::=& \Exp
  3867. \end{array}
  3868. \]
  3869. \end{minipage}
  3870. }
  3871. \caption{The concrete syntax of \LangIf{}, extending \LangVar{}
  3872. (Figure~\ref{fig:r1-concrete-syntax}) with Booleans and conditionals.}
  3873. \label{fig:r2-concrete-syntax}
  3874. \end{figure}
  3875. \begin{figure}[tp]
  3876. \centering
  3877. \fbox{
  3878. \begin{minipage}{0.96\textwidth}
  3879. \[
  3880. \begin{array}{lcl}
  3881. \itm{bool} &::=& \code{\#t} \mid \code{\#f} \\
  3882. \itm{cmp} &::= & \code{eq?} \mid \code{<} \mid \code{<=} \mid \code{>} \mid \code{>=} \\
  3883. \itm{op} &::= & \itm{cmp} \mid \code{read} \mid \code{+} \mid \code{-}
  3884. \mid \code{and} \mid \code{or} \mid \code{not} \\
  3885. \Exp &::=& \gray{ \INT{\Int} \mid \VAR{\Var} \mid \LET{\Var}{\Exp}{\Exp} } \\
  3886. &\mid& \PRIM{\itm{op}}{\Exp\ldots}\\
  3887. &\mid& \BOOL{\itm{bool}} \mid \IF{\Exp}{\Exp}{\Exp} \\
  3888. \LangIf{} &::=& \PROGRAM{\code{'()}}{\Exp}
  3889. \end{array}
  3890. \]
  3891. \end{minipage}
  3892. }
  3893. \caption{The abstract syntax of \LangIf{}.}
  3894. \label{fig:r2-syntax}
  3895. \end{figure}
  3896. Figure~\ref{fig:interp-Rif} defines the interpreter for \LangIf{},
  3897. inheriting from the interpreter for \LangVar{}
  3898. (Figure~\ref{fig:interp-Rvar}). The literals \code{\#t} and \code{\#f}
  3899. evaluate to the corresponding Boolean values. The conditional
  3900. expression $(\key{if}\, \itm{cnd}\,\itm{thn}\,\itm{els})$ evaluates
  3901. the Boolean expression \itm{cnd} and then either evaluates \itm{thn}
  3902. or \itm{els} depending on whether \itm{cnd} produced \code{\#t} or
  3903. \code{\#f}. The logical operations \code{not} and \code{and} behave as
  3904. you might expect, but note that the \code{and} operation is
  3905. short-circuiting. That is, given the expression
  3906. $(\key{and}\,e_1\,e_2)$, the expression $e_2$ is not evaluated if
  3907. $e_1$ evaluates to \code{\#f}.
  3908. With the increase in the number of primitive operations, the
  3909. interpreter code for them could become repetitive without some
  3910. care. We factor out the different parts of the code for primitive
  3911. operations into the \code{interp-op} method shown in in
  3912. Figure~\ref{fig:interp-op-Rif}. The match clause for \code{Prim} makes
  3913. the recursive calls to interpret the arguments and then passes the
  3914. resulting values to \code{interp-op}. We do not use \code{interp-op}
  3915. for the \code{and} operation because of its short-circuiting behavior.
  3916. \begin{figure}[tbp]
  3917. \begin{lstlisting}
  3918. (define interp-Rif-class
  3919. (class interp-Rvar-class
  3920. (super-new)
  3921. (define/public (interp-op op) ...)
  3922. (define/override ((interp-exp env) e)
  3923. (define recur (interp-exp env))
  3924. (match e
  3925. [(Bool b) b]
  3926. [(If cnd thn els)
  3927. (define b (recur cnd))
  3928. (match b
  3929. [#t (recur thn)]
  3930. [#f (recur els)])]
  3931. [(Prim 'and (list e1 e2))
  3932. (define v1 (recur e1))
  3933. (match v1
  3934. [#t (match (recur e2) [#t #t] [#f #f])]
  3935. [#f #f])]
  3936. [(Prim op args)
  3937. (apply (interp-op op) (for/list ([e args]) (recur e)))]
  3938. [else ((super interp-exp env) e)]
  3939. ))
  3940. ))
  3941. (define (interp-Rif p)
  3942. (send (new interp-Rif-class) interp-program p))
  3943. \end{lstlisting}
  3944. \caption{Interpreter for the \LangIf{} language. (See
  3945. Figure~\ref{fig:interp-op-Rif} for \code{interp-op}.)}
  3946. \label{fig:interp-Rif}
  3947. \end{figure}
  3948. \begin{figure}[tbp]
  3949. \begin{lstlisting}
  3950. (define/public (interp-op op)
  3951. (match op
  3952. ['+ fx+]
  3953. ['- fx-]
  3954. ['read read-fixnum]
  3955. ['not (lambda (v) (match v [#t #f] [#f #t]))]
  3956. ['or (lambda (v1 v2)
  3957. (cond [(and (boolean? v1) (boolean? v2))
  3958. (or v1 v2)]))]
  3959. ['eq? (lambda (v1 v2)
  3960. (cond [(or (and (fixnum? v1) (fixnum? v2))
  3961. (and (boolean? v1) (boolean? v2))
  3962. (and (vector? v1) (vector? v2)))
  3963. (eq? v1 v2)]))]
  3964. ['< (lambda (v1 v2)
  3965. (cond [(and (fixnum? v1) (fixnum? v2))
  3966. (< v1 v2)]))]
  3967. ['<= (lambda (v1 v2)
  3968. (cond [(and (fixnum? v1) (fixnum? v2))
  3969. (<= v1 v2)]))]
  3970. ['> (lambda (v1 v2)
  3971. (cond [(and (fixnum? v1) (fixnum? v2))
  3972. (> v1 v2)]))]
  3973. ['>= (lambda (v1 v2)
  3974. (cond [(and (fixnum? v1) (fixnum? v2))
  3975. (>= v1 v2)]))]
  3976. [else (error 'interp-op "unknown operator")]
  3977. ))
  3978. \end{lstlisting}
  3979. \caption{Interpreter for the primitive operators in the \LangIf{} language.}
  3980. \label{fig:interp-op-Rif}
  3981. \end{figure}
  3982. \section{Type Checking \LangIf{} Programs}
  3983. \label{sec:type-check-r2}
  3984. \index{type checking}
  3985. \index{semantic analysis}
  3986. It is helpful to think about type checking in two complementary
  3987. ways. A type checker predicts the type of value that will be produced
  3988. by each expression in the program. For \LangIf{}, we have just two types,
  3989. \key{Integer} and \key{Boolean}. So a type checker should predict that
  3990. \begin{lstlisting}
  3991. (+ 10 (- (+ 12 20)))
  3992. \end{lstlisting}
  3993. produces an \key{Integer} while
  3994. \begin{lstlisting}
  3995. (and (not #f) #t)
  3996. \end{lstlisting}
  3997. produces a \key{Boolean}.
  3998. Another way to think about type checking is that it enforces a set of
  3999. rules about which operators can be applied to which kinds of
  4000. values. For example, our type checker for \LangIf{} will signal an error
  4001. for the below expression because, as we have seen above, the
  4002. expression \code{(+ 10 ...)} has type \key{Integer} but the type
  4003. checker enforces the rule that the argument of \code{not} must be a
  4004. \key{Boolean}.
  4005. \begin{lstlisting}
  4006. (not (+ 10 (- (+ 12 20))))
  4007. \end{lstlisting}
  4008. We implement type checking using classes and method overriding for the
  4009. same reason that we use them to implement the interpreters. We
  4010. separate the type checker for the \LangVar{} fragment into its own class,
  4011. shown in Figure~\ref{fig:type-check-Rvar}. The type checker for \LangIf{} is
  4012. shown in Figure~\ref{fig:type-check-Rif}; inherits from the one for
  4013. \LangVar{}. The code for these type checkers are in the files
  4014. \code{type-check-Rvar.rkt} and \code{type-check-Rif.rkt} of the support
  4015. code.
  4016. %
  4017. Each type checker is a structurally recursive function over the AST.
  4018. Given an input expression \code{e}, the type checker either signals an
  4019. error or returns an expression and its type (\key{Integer} or
  4020. \key{Boolean}). There are situations in which we want to change or
  4021. update the expression.
  4022. %
  4023. The type of an integer literal is \code{Integer} and
  4024. the type of a Boolean literal is \code{Boolean}. To handle variables,
  4025. the type checker uses the environment \code{env} to map variables to
  4026. types. Consider the clause for \key{let}. We type check the
  4027. initializing expression to obtain its type \key{T} and then associate
  4028. type \code{T} with the variable \code{x} in the environment used to
  4029. type check the body of the \key{let}. Thus, when the type checker
  4030. encounters a use of variable \code{x}, it can find its type in the
  4031. environment.
  4032. \begin{figure}[tbp]
  4033. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  4034. (define type-check-Rvar-class
  4035. (class object%
  4036. (super-new)
  4037. (define/public (operator-types)
  4038. '((+ . ((Integer Integer) . Integer))
  4039. (- . ((Integer) . Integer))
  4040. (read . (() . Integer))))
  4041. (define/public (type-equal? t1 t2) (equal? t1 t2))
  4042. (define/public (check-type-equal? t1 t2 e)
  4043. (unless (type-equal? t1 t2)
  4044. (error 'type-check "~a != ~a\nin ~v" t1 t2 e)))
  4045. (define/public (type-check-op op arg-types e)
  4046. (match (dict-ref (operator-types) op)
  4047. [`(,param-types . ,return-type)
  4048. (for ([at arg-types] [pt param-types])
  4049. (check-type-equal? at pt e))
  4050. return-type]
  4051. [else (error 'type-check-op "unrecognized ~a" op)]))
  4052. (define/public (type-check-exp env)
  4053. (lambda (e)
  4054. (match e
  4055. [(Var x) (values (Var x) (dict-ref env x))]
  4056. [(Int n) (values (Int n) 'Integer)]
  4057. [(Let x e body)
  4058. (define-values (e^ Te) ((type-check-exp env) e))
  4059. (define-values (b Tb) ((type-check-exp (dict-set env x Te)) body))
  4060. (values (Let x e^ b) Tb)]
  4061. [(Prim op es)
  4062. (define-values (new-es ts)
  4063. (for/lists (exprs types) ([e es]) ((type-check-exp env) e)))
  4064. (values (Prim op new-es) (type-check-op op ts e))]
  4065. [else (error 'type-check-exp "couldn't match" e)])))
  4066. (define/public (type-check-program e)
  4067. (match e
  4068. [(Program info body)
  4069. (define-values (body^ Tb) ((type-check-exp '()) body))
  4070. (check-type-equal? Tb 'Integer body)
  4071. (Program info body^)]
  4072. [else (error 'type-check-Rvar "couldn't match ~a" e)]))
  4073. ))
  4074. (define (type-check-Rvar p)
  4075. (send (new type-check-Rvar-class) type-check-program p))
  4076. \end{lstlisting}
  4077. \caption{Type checker for the \LangVar{} fragment of \LangIf{}.}
  4078. \label{fig:type-check-Rvar}
  4079. \end{figure}
  4080. \begin{figure}[tbp]
  4081. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  4082. (define type-check-Rif-class
  4083. (class type-check-Rvar-class
  4084. (super-new)
  4085. (inherit check-type-equal?)
  4086. (define/override (operator-types)
  4087. (append '((- . ((Integer Integer) . Integer))
  4088. (and . ((Boolean Boolean) . Boolean))
  4089. (or . ((Boolean Boolean) . Boolean))
  4090. (< . ((Integer Integer) . Boolean))
  4091. (<= . ((Integer Integer) . Boolean))
  4092. (> . ((Integer Integer) . Boolean))
  4093. (>= . ((Integer Integer) . Boolean))
  4094. (not . ((Boolean) . Boolean))
  4095. )
  4096. (super operator-types)))
  4097. (define/override (type-check-exp env)
  4098. (lambda (e)
  4099. (match e
  4100. [(Bool b) (values (Bool b) 'Boolean)]
  4101. [(If cnd thn els)
  4102. (define-values (cnd^ Tc) ((type-check-exp env) cnd))
  4103. (define-values (thn^ Tt) ((type-check-exp env) thn))
  4104. (define-values (els^ Te) ((type-check-exp env) els))
  4105. (check-type-equal? Tc 'Boolean e)
  4106. (check-type-equal? Tt Te e)
  4107. (values (If cnd^ thn^ els^) Te)]
  4108. [(Prim 'eq? (list e1 e2))
  4109. (define-values (e1^ T1) ((type-check-exp env) e1))
  4110. (define-values (e2^ T2) ((type-check-exp env) e2))
  4111. (check-type-equal? T1 T2 e)
  4112. (values (Prim 'eq? (list e1^ e2^)) 'Boolean)]
  4113. [else ((super type-check-exp env) e)])))
  4114. ))
  4115. (define (type-check-Rif p)
  4116. (send (new type-check-Rif-class) type-check-program p))
  4117. \end{lstlisting}
  4118. \caption{Type checker for the \LangIf{} language.}
  4119. \label{fig:type-check-Rif}
  4120. \end{figure}
  4121. Three auxiliary methods are used in the type checker. The method
  4122. \code{operator-types} defines a dictionary that maps the operator
  4123. names to their parameter and return types. The \code{type-equal?}
  4124. method determines whether two types are equal, which for now simply
  4125. dispatches to \code{equal?} (deep equality). The \code{type-check-op}
  4126. method looks up the operator in the \code{operator-types} dictionary
  4127. and then checks whether the argument types are equal to the parameter
  4128. types. The result is the return type of the operator.
  4129. \begin{exercise}\normalfont
  4130. Create 10 new example programs in \LangIf{}. Half of the example programs
  4131. should have a type error. For those programs, to signal that a type
  4132. error is expected, create an empty file with the same base name but
  4133. with file extension \code{.tyerr}. For example, if the test
  4134. \code{r2\_14.rkt} is expected to error, then create an empty file
  4135. named \code{r2\_14.tyerr}. The other half of the example programs
  4136. should not have type errors. Note that if the type checker does not
  4137. signal an error for a program, then interpreting that program should
  4138. not encounter an error.
  4139. \end{exercise}
  4140. \section{Shrink the \LangIf{} Language}
  4141. \label{sec:shrink-r2}
  4142. The \LangIf{} language includes several operators that are easily
  4143. expressible in terms of other operators. For example, subtraction is
  4144. expressible in terms of addition and negation.
  4145. \[
  4146. \key{(-}\; e_1 \; e_2\key{)} \quad \Rightarrow \quad \LP\key{+} \; e_1 \; \LP\key{-} \; e_2\RP\RP
  4147. \]
  4148. Several of the comparison operations are expressible in terms of
  4149. less-than and logical negation.
  4150. \[
  4151. \LP\key{<=}\; e_1 \; e_2\RP \quad \Rightarrow \quad
  4152. \LP\key{let}~\LP\LS\key{tmp.1}~e_1\RS\RP~\LP\key{not}\;\LP\key{<}\;e_2\;\key{tmp.1})\RP\RP
  4153. \]
  4154. The \key{let} is needed in the above translation to ensure that
  4155. expression $e_1$ is evaluated before $e_2$.
  4156. By performing these translations near the front-end of the compiler,
  4157. the later passes of the compiler do not need to deal with these
  4158. constructs, making those passes shorter. On the other hand, sometimes
  4159. these translations make it more difficult to generate the most
  4160. efficient code with respect to the number of instructions. However,
  4161. these differences typically do not affect the number of accesses to
  4162. memory, which is the primary factor that determines execution time on
  4163. modern computer architectures.
  4164. \begin{exercise}\normalfont
  4165. Implement the pass \code{shrink} that removes subtraction,
  4166. \key{and}, \key{or}, \key{<=}, \key{>}, and \key{>=} from the language
  4167. by translating them to other constructs in \LangIf{}. Create tests to
  4168. make sure that the behavior of all of these constructs stays the
  4169. same after translation.
  4170. \end{exercise}
  4171. \section{The \LangXASTIf{} Language}
  4172. \label{sec:x86-1}
  4173. \index{x86}
  4174. To implement the new logical operations, the comparison operations,
  4175. and the \key{if} expression, we need to delve further into the x86
  4176. language. Figures~\ref{fig:x86-1-concrete} and \ref{fig:x86-1} define
  4177. the concrete and abstract syntax for a larger subset of x86 that
  4178. includes instructions for logical operations, comparisons, and
  4179. conditional jumps.
  4180. One small challenge is that x86 does not provide an instruction that
  4181. directly implements logical negation (\code{not} in \LangIf{} and \LangCIf{}).
  4182. However, the \code{xorq} instruction can be used to encode \code{not}.
  4183. The \key{xorq} instruction takes two arguments, performs a pairwise
  4184. exclusive-or ($\mathrm{XOR}$) operation on each bit of its arguments,
  4185. and writes the results into its second argument. Recall the truth
  4186. table for exclusive-or:
  4187. \begin{center}
  4188. \begin{tabular}{l|cc}
  4189. & 0 & 1 \\ \hline
  4190. 0 & 0 & 1 \\
  4191. 1 & 1 & 0
  4192. \end{tabular}
  4193. \end{center}
  4194. For example, applying $\mathrm{XOR}$ to each bit of the binary numbers
  4195. $0011$ and $0101$ yields $0110$. Notice that in the row of the table
  4196. for the bit $1$, the result is the opposite of the second bit. Thus,
  4197. the \code{not} operation can be implemented by \code{xorq} with $1$ as
  4198. the first argument:
  4199. \[
  4200. \Var~ \key{=}~ \LP\key{not}~\Arg\RP\key{;}
  4201. \qquad\Rightarrow\qquad
  4202. \begin{array}{l}
  4203. \key{movq}~ \Arg\key{,} \Var\\
  4204. \key{xorq}~ \key{\$1,} \Var
  4205. \end{array}
  4206. \]
  4207. \begin{figure}[tp]
  4208. \fbox{
  4209. \begin{minipage}{0.96\textwidth}
  4210. \[
  4211. \begin{array}{lcl}
  4212. \itm{bytereg} &::=& \key{ah} \mid \key{al} \mid \key{bh} \mid \key{bl}
  4213. \mid \key{ch} \mid \key{cl} \mid \key{dh} \mid \key{dl} \\
  4214. \Arg &::=& \gray{ \key{\$}\Int \mid \key{\%}\Reg \mid \Int\key{(}\key{\%}\Reg\key{)} } \mid \key{\%}\itm{bytereg}\\
  4215. \itm{cc} & ::= & \key{e} \mid \key{l} \mid \key{le} \mid \key{g} \mid \key{ge} \\
  4216. \Instr &::=& \gray{ \key{addq} \; \Arg\key{,} \Arg \mid
  4217. \key{subq} \; \Arg\key{,} \Arg \mid
  4218. \key{negq} \; \Arg \mid \key{movq} \; \Arg\key{,} \Arg \mid } \\
  4219. && \gray{ \key{callq} \; \itm{label} \mid
  4220. \key{pushq}\;\Arg \mid \key{popq}\;\Arg \mid \key{retq} \mid \key{jmp}\,\itm{label} } \\
  4221. && \gray{ \itm{label}\key{:}\; \Instr }
  4222. \mid \key{xorq}~\Arg\key{,}~\Arg
  4223. \mid \key{cmpq}~\Arg\key{,}~\Arg \mid \\
  4224. && \key{set}cc~\Arg
  4225. \mid \key{movzbq}~\Arg\key{,}~\Arg
  4226. \mid \key{j}cc~\itm{label}
  4227. \\
  4228. \LangXIf{} &::= & \gray{ \key{.globl main} }\\
  4229. & & \gray{ \key{main:} \; \Instr\ldots }
  4230. \end{array}
  4231. \]
  4232. \end{minipage}
  4233. }
  4234. \caption{The concrete syntax of \LangXIf{} (extends \LangXASTInt{} of Figure~\ref{fig:x86-0-concrete}).}
  4235. \label{fig:x86-1-concrete}
  4236. \end{figure}
  4237. \begin{figure}[tp]
  4238. \fbox{
  4239. \begin{minipage}{0.98\textwidth}
  4240. \small
  4241. \[
  4242. \begin{array}{lcl}
  4243. \itm{bytereg} &::=& \key{ah} \mid \key{al} \mid \key{bh} \mid \key{bl}
  4244. \mid \key{ch} \mid \key{cl} \mid \key{dh} \mid \key{dl} \\
  4245. \Arg &::=& \gray{\IMM{\Int} \mid \REG{\Reg} \mid \DEREF{\Reg}{\Int}}
  4246. \mid \BYTEREG{\itm{bytereg}} \\
  4247. \itm{cc} & ::= & \key{e} \mid \key{l} \mid \key{le} \mid \key{g} \mid \key{ge} \\
  4248. \Instr &::=& \gray{ \BININSTR{\code{'addq}}{\Arg}{\Arg}
  4249. \mid \BININSTR{\code{'subq}}{\Arg}{\Arg} } \\
  4250. &\mid& \gray{ \BININSTR{\code{'movq}}{\Arg}{\Arg}
  4251. \mid \UNIINSTR{\code{'negq}}{\Arg} } \\
  4252. &\mid& \gray{ \CALLQ{\itm{label}}{\itm{int}} \mid \RETQ{}
  4253. \mid \PUSHQ{\Arg} \mid \POPQ{\Arg} \mid \JMP{\itm{label}} } \\
  4254. &\mid& \BININSTR{\code{'xorq}}{\Arg}{\Arg}
  4255. \mid \BININSTR{\code{'cmpq}}{\Arg}{\Arg}\\
  4256. &\mid& \BININSTR{\code{'set}}{\itm{cc}}{\Arg}
  4257. \mid \BININSTR{\code{'movzbq}}{\Arg}{\Arg}\\
  4258. &\mid& \JMPIF{\itm{cc}}{\itm{label}} \\
  4259. \Block &::= & \gray{\BLOCK{\itm{info}}{\LP\Instr\ldots\RP}} \\
  4260. \LangXASTIf{} &::= & \gray{\XPROGRAM{\itm{info}}{\LP\LP\itm{label} \,\key{.}\, \Block \RP\ldots\RP}}
  4261. \end{array}
  4262. \]
  4263. \end{minipage}
  4264. }
  4265. \caption{The abstract syntax of \LangXASTIf{} (extends \LangXASTInt{} of Figure~\ref{fig:x86-0-ast}).}
  4266. \label{fig:x86-1}
  4267. \end{figure}
  4268. Next we consider the x86 instructions that are relevant for compiling
  4269. the comparison operations. The \key{cmpq} instruction compares its two
  4270. arguments to determine whether one argument is less than, equal, or
  4271. greater than the other argument. The \key{cmpq} instruction is unusual
  4272. regarding the order of its arguments and where the result is
  4273. placed. The argument order is backwards: if you want to test whether
  4274. $x < y$, then write \code{cmpq} $y$\code{,} $x$. The result of
  4275. \key{cmpq} is placed in the special EFLAGS register. This register
  4276. cannot be accessed directly but it can be queried by a number of
  4277. instructions, including the \key{set} instruction. The \key{set}
  4278. instruction puts a \key{1} or \key{0} into its destination depending
  4279. on whether the comparison came out according to the condition code
  4280. \itm{cc} (\key{e} for equal, \key{l} for less, \key{le} for
  4281. less-or-equal, \key{g} for greater, \key{ge} for greater-or-equal).
  4282. The \key{set} instruction has an annoying quirk in that its
  4283. destination argument must be single byte register, such as \code{al}
  4284. (L for lower bits) or \code{ah} (H for higher bits), which are part of
  4285. the \code{rax} register. Thankfully, the \key{movzbq} instruction can
  4286. then be used to move from a single byte register to a normal 64-bit
  4287. register.
  4288. The x86 instruction for conditional jump are relevant to the
  4289. compilation of \key{if} expressions. The \key{JmpIf} instruction
  4290. updates the program counter to point to the instruction after the
  4291. indicated label depending on whether the result in the EFLAGS register
  4292. matches the condition code \itm{cc}, otherwise the \key{JmpIf}
  4293. instruction falls through to the next instruction. The abstract
  4294. syntax for \key{JmpIf} differs from the concrete syntax for x86 in
  4295. that it separates the instruction name from the condition code. For
  4296. example, \code{(JmpIf le foo)} corresponds to \code{jle foo}. Because
  4297. the \key{JmpIf} instruction relies on the EFLAGS register, it is
  4298. common for the \key{JmpIf} to be immediately preceded by a \key{cmpq}
  4299. instruction to set the EFLAGS register.
  4300. \section{The \LangCIf{} Intermediate Language}
  4301. \label{sec:c1}
  4302. As with \LangVar{}, we compile \LangIf{} to a C-like intermediate language, but
  4303. we need to grow that intermediate language to handle the new features
  4304. in \LangIf{}: Booleans and conditional expressions.
  4305. Figure~\ref{fig:c1-syntax} defines the abstract syntax of \LangCIf{}. (The
  4306. concrete syntax is in the Appendix,
  4307. Figure~\ref{fig:c1-concrete-syntax}.) The \LangCIf{} language adds logical
  4308. and comparison operators to the $\Exp$ non-terminal and the literals
  4309. \key{\#t} and \key{\#f} to the $\Arg$ non-terminal. Regarding control
  4310. flow, \LangCIf{} differs considerably from \LangIf{}. Instead of \key{if}
  4311. expressions, \LangCIf{} has \key{goto} and conditional \key{goto} in the
  4312. grammar for $\Tail$. This means that a sequence of statements may now
  4313. end with a \code{goto} or a conditional \code{goto}. The conditional
  4314. \code{goto} jumps to one of two labels depending on the outcome of the
  4315. comparison. In Section~\ref{sec:explicate-control-r2} we discuss how
  4316. to translate from \LangIf{} to \LangCIf{}, bridging this gap between \key{if}
  4317. expressions and \key{goto}'s.
  4318. \begin{figure}[tp]
  4319. \fbox{
  4320. \begin{minipage}{0.96\textwidth}
  4321. \small
  4322. \[
  4323. \begin{array}{lcl}
  4324. \Atm &::=& \gray{\INT{\Int} \mid \VAR{\Var}} \mid \BOOL{\itm{bool}} \\
  4325. \itm{cmp} &::= & \key{eq?} \mid \key{<} \\
  4326. \Exp &::= & \gray{ \Atm \mid \READ{} }\\
  4327. &\mid& \gray{ \NEG{\Atm} \mid \ADD{\Atm}{\Atm} } \\
  4328. &\mid& \UNIOP{\key{'not}}{\Atm}
  4329. \mid \BINOP{\key{'}\itm{cmp}}{\Atm}{\Atm} \\
  4330. \Stmt &::=& \gray{ \ASSIGN{\VAR{\Var}}{\Exp} } \\
  4331. \Tail &::= & \gray{\RETURN{\Exp} \mid \SEQ{\Stmt}{\Tail} }
  4332. \mid \GOTO{\itm{label}} \\
  4333. &\mid& \IFSTMT{\BINOP{\itm{cmp}}{\Atm}{\Atm}}{\GOTO{\itm{label}}}{\GOTO{\itm{label}}} \\
  4334. \LangCIf{} & ::= & \gray{\CPROGRAM{\itm{info}}{\LP\LP\itm{label}\,\key{.}\,\Tail\RP\ldots\RP}}
  4335. \end{array}
  4336. \]
  4337. \end{minipage}
  4338. }
  4339. \caption{The abstract syntax of \LangCIf{}, an extension of \LangCVar{}
  4340. (Figure~\ref{fig:c0-syntax}).}
  4341. \label{fig:c1-syntax}
  4342. \end{figure}
  4343. \clearpage
  4344. \section{Remove Complex Operands}
  4345. \label{sec:remove-complex-opera-Rif}
  4346. Add cases for \code{Bool} and \code{If} to the \code{rco-exp} and
  4347. \code{rco-atom} functions according to the definition of the output
  4348. language for this pass, \LangIfANF{}, the administrative normal
  4349. form of \LangIf{}, which is defined in Figure~\ref{fig:r2-anf-syntax}. The
  4350. \code{Bool} form is an atomic expressions but \code{If} is not. All
  4351. three sub-expressions of an \code{If} are allowed to be complex
  4352. expressions in the output of \code{remove-complex-opera*}, but the
  4353. operands of \code{not} and the comparisons must be atoms. Regarding
  4354. the \code{If} form, it is particularly important to \textbf{not}
  4355. replace its condition with a temporary variable because that would
  4356. interfere with the generation of high-quality output in the
  4357. \code{explicate-control} pass.
  4358. \begin{figure}[tp]
  4359. \centering
  4360. \fbox{
  4361. \begin{minipage}{0.96\textwidth}
  4362. \[
  4363. \begin{array}{rcl}
  4364. \Atm &::=& \gray{ \INT{\Int} \mid \VAR{\Var} } \mid \BOOL{\itm{bool}}\\
  4365. \Exp &::=& \gray{ \Atm \mid \READ{} } \\
  4366. &\mid& \gray{ \NEG{\Atm} \mid \ADD{\Atm}{\Atm} } \\
  4367. &\mid& \gray{ \LET{\Var}{\Exp}{\Exp} } \\
  4368. &\mid& \UNIOP{\key{'not}}{\Atm} \\
  4369. &\mid& \BINOP{\itm{cmp}}{\Atm}{\Atm} \mid \IF{\Exp}{\Exp}{\Exp} \\
  4370. R^{\dagger}_2 &::=& \PROGRAM{\code{'()}}{\Exp}
  4371. \end{array}
  4372. \]
  4373. \end{minipage}
  4374. }
  4375. \caption{\LangIfANF{} is \LangIf{} in administrative normal form (ANF).}
  4376. \label{fig:r2-anf-syntax}
  4377. \end{figure}
  4378. \section{Explicate Control}
  4379. \label{sec:explicate-control-r2}
  4380. Recall that the purpose of \code{explicate-control} is to make the
  4381. order of evaluation explicit in the syntax of the program. With the
  4382. addition of \key{if} in \LangIf{} this get more interesting.
  4383. As a motivating example, consider the following program that has an
  4384. \key{if} expression nested in the predicate of another \key{if}.
  4385. % s1_41.rkt
  4386. \begin{center}
  4387. \begin{minipage}{0.96\textwidth}
  4388. \begin{lstlisting}
  4389. (let ([x (read)])
  4390. (let ([y (read)])
  4391. (if (if (< x 1) (eq? x 0) (eq? x 2))
  4392. (+ y 2)
  4393. (+ y 10))))
  4394. \end{lstlisting}
  4395. \end{minipage}
  4396. \end{center}
  4397. %
  4398. The naive way to compile \key{if} and the comparison would be to
  4399. handle each of them in isolation, regardless of their context. Each
  4400. comparison would be translated into a \key{cmpq} instruction followed
  4401. by a couple instructions to move the result from the EFLAGS register
  4402. into a general purpose register or stack location. Each \key{if} would
  4403. be translated into the combination of a \key{cmpq} and a conditional
  4404. jump. The generated code for the inner \key{if} in the above example
  4405. would be as follows.
  4406. \begin{center}
  4407. \begin{minipage}{0.96\textwidth}
  4408. \begin{lstlisting}
  4409. ...
  4410. cmpq $1, x ;; (< x 1)
  4411. setl %al
  4412. movzbq %al, tmp
  4413. cmpq $1, tmp ;; (if (< x 1) ...)
  4414. je then_branch_1
  4415. jmp else_branch_1
  4416. ...
  4417. \end{lstlisting}
  4418. \end{minipage}
  4419. \end{center}
  4420. However, if we take context into account we can do better and reduce
  4421. the use of \key{cmpq} and EFLAG-accessing instructions.
  4422. One idea is to try and reorganize the code at the level of \LangIf{},
  4423. pushing the outer \key{if} inside the inner one. This would yield the
  4424. following code.
  4425. \begin{center}
  4426. \begin{minipage}{0.96\textwidth}
  4427. \begin{lstlisting}
  4428. (let ([x (read)])
  4429. (let ([y (read)])
  4430. (if (< x 1)
  4431. (if (eq? x 0)
  4432. (+ y 2)
  4433. (+ y 10))
  4434. (if (eq? x 2)
  4435. (+ y 2)
  4436. (+ y 10)))))
  4437. \end{lstlisting}
  4438. \end{minipage}
  4439. \end{center}
  4440. Unfortunately, this approach duplicates the two branches, and a
  4441. compiler must never duplicate code!
  4442. We need a way to perform the above transformation, but without
  4443. duplicating code. That is, we need a way for different parts of a
  4444. program to refer to the same piece of code, that is, to \emph{share}
  4445. code. At the level of x86 assembly this is straightforward because we
  4446. can label the code for each of the branches and insert jumps in all
  4447. the places that need to execute the branches. At the higher level of
  4448. our intermediate languages, we need to move away from abstract syntax
  4449. \emph{trees} and instead use \emph{graphs}. In particular, we use a
  4450. standard program representation called a \emph{control flow graph}
  4451. (CFG), due to Frances Elizabeth \citet{Allen:1970uq}.
  4452. \index{control-flow graph} Each vertex is a labeled sequence of code,
  4453. called a \emph{basic block}, and each edge represents a jump to
  4454. another block. The \key{Program} construct of \LangCVar{} and \LangCIf{} contains
  4455. a control flow graph represented as an alist mapping labels to basic
  4456. blocks. Each basic block is represented by the $\Tail$ non-terminal.
  4457. Figure~\ref{fig:explicate-control-s1-38} shows the output of the
  4458. \code{remove-complex-opera*} pass and then the
  4459. \code{explicate-control} pass on the example program. We walk through
  4460. the output program and then discuss the algorithm.
  4461. %
  4462. Following the order of evaluation in the output of
  4463. \code{remove-complex-opera*}, we first have two calls to \code{(read)}
  4464. and then the less-than-comparison to \code{1} in the predicate of the
  4465. inner \key{if}. In the output of \code{explicate-control}, in the
  4466. block labeled \code{start}, this becomes two assignment statements
  4467. followed by a conditional \key{goto} to label \code{block40} or
  4468. \code{block41}. The blocks associated with those labels contain the
  4469. translations of the code \code{(eq? x 0)} and \code{(eq? x 2)},
  4470. respectively. Regarding the block labeled with \code{block40}, we
  4471. start with the comparison to \code{0} and then have a conditional
  4472. goto, either to label \code{block38} or label \code{block39}, which
  4473. are the two branches of the outer \key{if}, i.e., \code{(+ y 2)} and
  4474. \code{(+ y 10)}. The story for the block labeled \code{block41} is
  4475. similar.
  4476. \begin{figure}[tbp]
  4477. \begin{tabular}{lll}
  4478. \begin{minipage}{0.4\textwidth}
  4479. % s1_41.rkt
  4480. \begin{lstlisting}
  4481. (let ([x (read)])
  4482. (let ([y (read)])
  4483. (if (if (< x 1)
  4484. (eq? x 0)
  4485. (eq? x 2))
  4486. (+ y 2)
  4487. (+ y 10))))
  4488. \end{lstlisting}
  4489. \hspace{40pt}$\Downarrow$
  4490. \begin{lstlisting}
  4491. (let ([x (read)])
  4492. (let ([y (read)])
  4493. (if (if (< x 1)
  4494. (eq? x 0)
  4495. (eq? x 2))
  4496. (+ y 2)
  4497. (+ y 10))))
  4498. \end{lstlisting}
  4499. \end{minipage}
  4500. &
  4501. $\Rightarrow$
  4502. &
  4503. \begin{minipage}{0.55\textwidth}
  4504. \begin{lstlisting}
  4505. start:
  4506. x = (read);
  4507. y = (read);
  4508. if (< x 1)
  4509. goto block40;
  4510. else
  4511. goto block41;
  4512. block40:
  4513. if (eq? x 0)
  4514. goto block38;
  4515. else
  4516. goto block39;
  4517. block41:
  4518. if (eq? x 2)
  4519. goto block38;
  4520. else
  4521. goto block39;
  4522. block38:
  4523. return (+ y 2);
  4524. block39:
  4525. return (+ y 10);
  4526. \end{lstlisting}
  4527. \end{minipage}
  4528. \end{tabular}
  4529. \caption{Translation from \LangIf{} to \LangCIf{}
  4530. via the \code{explicate-control}.}
  4531. \label{fig:explicate-control-s1-38}
  4532. \end{figure}
  4533. %% The nice thing about the output of \code{explicate-control} is that
  4534. %% there are no unnecessary comparisons and every comparison is part of a
  4535. %% conditional jump.
  4536. %% The down-side of this output is that it includes
  4537. %% trivial blocks, such as the blocks labeled \code{block92} through
  4538. %% \code{block95}, that only jump to another block. We discuss a solution
  4539. %% to this problem in Section~\ref{sec:opt-jumps}.
  4540. Recall that in Section~\ref{sec:explicate-control-r1} we implement
  4541. \code{explicate-control} for \LangVar{} using two mutually recursive
  4542. functions, \code{explicate-tail} and \code{explicate-assign}. The
  4543. former function translates expressions in tail position whereas the
  4544. later function translates expressions on the right-hand-side of a
  4545. \key{let}. With the addition of \key{if} expression in \LangIf{} we have a
  4546. new kind of context to deal with: the predicate position of the
  4547. \key{if}. We need another function, \code{explicate-pred}, that takes
  4548. an \LangIf{} expression and two blocks for the then-branch and
  4549. else-branch. The output of \code{explicate-pred} is a block.
  4550. %
  4551. %% Note that the three explicate functions need to construct a
  4552. %% control-flow graph, which we recommend they do via updates to a global
  4553. %% variable.
  4554. %
  4555. In the following paragraphs we discuss specific cases in the
  4556. \code{explicate-pred} function as well as the additions to the
  4557. \code{explicate-tail} and \code{explicate-assign} functions.
  4558. The function \code{explicate-pred} will need a case for every
  4559. expression that can have type \code{Boolean}. We detail a few cases
  4560. here and leave the rest for the reader. The input to this function is
  4561. an expression and two blocks, $B_1$ and $B_2$, for the two branches of
  4562. the enclosing \key{if}, though some care will be needed regarding how
  4563. we represent the blocks. Suppose the expression is the Boolean
  4564. \code{\#t}. Then we can perform a kind of partial evaluation
  4565. \index{partial evaluation} and translate it to the ``then'' branch
  4566. $B_1$. Likewise, we translate \code{\#f} to the ``else`` branch $B_2$.
  4567. \[
  4568. \key{\#t} \quad\Rightarrow\quad B_1,
  4569. \qquad\qquad\qquad
  4570. \key{\#f} \quad\Rightarrow\quad B_2
  4571. \]
  4572. These two cases demonstrate that we sometimes discard one of the
  4573. blocks that are input to \code{explicate-pred}. We will need to
  4574. arrange for the blocks that we actually use to appear in the resulting
  4575. control-flow graph, but not the discarded blocks.
  4576. The case for \key{if} in \code{explicate-pred} is particularly
  4577. illuminating as it deals with the challenges that we discussed above
  4578. regarding the example of the nested \key{if} expressions. The
  4579. ``then'' and ``else'' branches of the current \key{if} inherit their
  4580. context from the current one, that is, predicate context. So we
  4581. recursively apply \code{explicate-pred} to the ``then'' and ``else''
  4582. branches. For both of those recursive calls, we shall pass the blocks
  4583. $B_1$ and $B_2$. Thus, $B_1$ may get used twice, once inside each
  4584. recursive call, and likewise for $B_2$. As discussed above, to avoid
  4585. duplicating code, we need to add these blocks to the control-flow
  4586. graph so that we can instead refer to them by name and execute them
  4587. with a \key{goto}. However, as we saw in the cases above for \key{\#t}
  4588. and \key{\#f}, the blocks $B_1$ or $B_2$ may not get used at all and
  4589. we don't want to prematurely add them to the control-flow graph if
  4590. they end up being discarded.
  4591. The solution to this conundrum is to use \emph{lazy evaluation} to
  4592. delay adding the blocks to the control-flow graph until the points
  4593. where we know they will be used~\citep{Friedman:1976aa}.\index{lazy
  4594. evaluation} Racket provides support for lazy evaluation with the
  4595. \href{https://docs.racket-lang.org/reference/Delayed_Evaluation.html}{\code{racket/promise}}
  4596. package. The expression \key{(delay} $e_1 \ldots e_n$\key{)}
  4597. \index{delay} creates a \emph{promise}\index{promise} in which the
  4598. evaluation of the expressions is postponed. When \key{(force}
  4599. $p$\key{)}\index{force} is applied to a promise $p$ for the first
  4600. time, the expressions $e_1 \ldots e_n$ are evaluated and the result of
  4601. $e_n$ is cached in the promise and returned. If \code{force} is
  4602. applied again to the same promise, then the cached result is returned.
  4603. We use lazy evaluation for the input and output blocks of the
  4604. functions \code{explicate-pred} and \code{explicate-assign} and for
  4605. the output block of \code{explicate-tail}. So instead of taking and
  4606. returning blocks, they take and return promised blocks. Furthermore,
  4607. when we come to a situation in which we a block might be used more
  4608. than once, as in the case for \code{if} above, we transform the
  4609. promise into a new promise that will add the block to the control-flow
  4610. graph and return a \code{goto}. The following auxiliary function
  4611. accomplishes this task. It begins with \code{delay} to create a
  4612. promise. When forced, this promise will force the input block. If that
  4613. block is already a \code{goto} (because it was already added to the
  4614. control-flow graph), then we return that \code{goto}. Otherwise we add
  4615. the block to the control-flow graph with another auxiliary function
  4616. named \code{add-node} that returns the new label, and then return the
  4617. \code{goto}.
  4618. \begin{lstlisting}
  4619. (define (block->goto block)
  4620. (delay
  4621. (define b (force block))
  4622. (match b
  4623. [(Goto label) (Goto label)]
  4624. [else (Goto (add-node b))]
  4625. )))
  4626. \end{lstlisting}
  4627. Getting back to the case for \code{if} in \code{explicate-pred}, we
  4628. make the recursive calls to \code{explicate-pred} on the ``then'' and
  4629. ``else'' branches with the arguments \code{(block->goto} $B_1$\code{)}
  4630. and \code{(block->goto} $B_2$\code{)}. Let $B_3$ and $B_4$ be the
  4631. results from the two recursive calls. We complete the case for
  4632. \code{if} by recursively apply \code{explicate-pred} to the condition
  4633. of the \code{if} with the promised blocks $B_3$ and $B_4$ to obtain
  4634. the result $B_5$.
  4635. \[
  4636. (\key{if}\; \itm{cnd}\; \itm{thn}\; \itm{els})
  4637. \quad\Rightarrow\quad
  4638. B_5
  4639. \]
  4640. Next, consider the case for a less-than comparison in
  4641. \code{explicate-pred}. We translate it to an \code{if} statement,
  4642. whose two branches are required to be \code{goto}'s. So we apply
  4643. \code{block->goto} to $B_1$ and $B_2$ to obtain two promised goto's,
  4644. which we can \code{force} to obtain the two actual goto's $G_1$ and
  4645. $G_2$. The translation of the less-than comparison is as follows.
  4646. \[
  4647. (\key{<}~e_1~e_2) \quad\Rightarrow\quad
  4648. \begin{array}{l}
  4649. \key{if}~(\key{<}~e_1~e_2) \; G_1\\
  4650. \key{else} \; G_2
  4651. \end{array}
  4652. \]
  4653. The \code{explicate-tail} function needs to be updated to use lazy
  4654. evaluation and it needs an additional case for \key{if}. Each of the
  4655. cases that return an AST node need use \code{delay} to instead return
  4656. a promise of an AST node. Recall that \code{explicate-tail} has an
  4657. accumulator parameter that is a block, which now becomes a promise of
  4658. a block, which we refer to as $B_0$.
  4659. In the case for \code{if} in \code{explicate-tail}, the two branches
  4660. inherit the current context, so they are in tail position. Thus, the
  4661. recursive calls on the ``then'' and ``else'' branch should be calls to
  4662. \code{explicate-tail}.
  4663. %
  4664. We need to pass $B_0$ as the accumulator argument for both of these
  4665. recursive calls, but we need to be careful not to duplicate $B_0$.
  4666. Thus, we first apply \code{block->goto} to $B_0$ so that it gets added
  4667. to the control-flow graph and obtain a promised goto $G_0$.
  4668. %
  4669. Let $B_1$ be the result of \code{explicate-tail} on the ``then''
  4670. branch and $G_0$ and let $B_2$ be the result of \code{explicate-tail}
  4671. on the ``else'' branch and $G_0$. Let $B_3$ be the result of applying
  4672. \code{explicate-pred} to the condition of the \key{if}, $B_1$, and
  4673. $B_2$. Then the \key{if} as a whole translates to promise $B_3$.
  4674. \[
  4675. (\key{if}\; \itm{cnd}\; \itm{thn}\; \itm{els}) \quad\Rightarrow\quad B_3
  4676. \]
  4677. %% In the above discussion, we use the metavariables $B_1$, $B_2$, and
  4678. %% $B_3$ to refer to blocks for the purposes of our discussion, but they
  4679. %% should not be confused with the labels for the blocks that appear in
  4680. %% the generated code. We initially construct unlabeled blocks; we only
  4681. %% attach labels to blocks when we add them to the control-flow graph, as
  4682. %% we see in the next case.
  4683. Next consider the case for \key{if} in the \code{explicate-assign}
  4684. function. The context of the \key{if} is an assignment to some
  4685. variable $x$ and then the control continues to some promised block
  4686. $B_1$. The code that we generate for both the ``then'' and ``else''
  4687. branches needs to continue to $B_1$, so to avoid duplicating $B_1$ we
  4688. apply \code{block->goto} to it and obtain a promised goto $G_1$. The
  4689. branches of the \key{if} inherit the current context, so they are in
  4690. assignment positions. Let $B_2$ be the result of applying
  4691. \code{explicate-assign} to the ``then'' branch, variable $x$, and
  4692. $G_1$. Let $B_3$ be the result of applying \code{explicate-assign} to
  4693. the ``else'' branch, variable $x$, and $G_1$. Finally, let $B_4$ be
  4694. the result of applying \code{explicate-pred} to the predicate
  4695. $\itm{cnd}$ and the promises $B_2$ and $B_3$. The \key{if} as a whole
  4696. translates to the promise $B_4$.
  4697. \[
  4698. (\key{if}\; \itm{cnd}\; \itm{thn}\; \itm{els}) \quad\Rightarrow\quad B_4
  4699. \]
  4700. This completes the description of \code{explicate-control} for \LangIf{}.
  4701. The way in which the \code{shrink} pass transforms logical operations
  4702. such as \code{and} and \code{or} can impact the quality of code
  4703. generated by \code{explicate-control}. For example, consider the
  4704. following program.
  4705. % s1_21.rkt
  4706. \begin{lstlisting}
  4707. (if (and (eq? (read) 0) (eq? (read) 1))
  4708. 0
  4709. 42)
  4710. \end{lstlisting}
  4711. The \code{and} operation should transform into something that the
  4712. \code{explicate-pred} function can still analyze and descend through to
  4713. reach the underlying \code{eq?} conditions. Ideally, your
  4714. \code{explicate-control} pass should generate code similar to the
  4715. following for the above program.
  4716. \begin{center}
  4717. \begin{lstlisting}
  4718. start:
  4719. tmp1 = (read);
  4720. if (eq? tmp1 0)
  4721. goto block40;
  4722. else
  4723. goto block39;
  4724. block40:
  4725. tmp2 = (read);
  4726. if (eq? tmp2 1)
  4727. goto block38;
  4728. else
  4729. goto block39;
  4730. block38:
  4731. return 0;
  4732. block39:
  4733. return 42;
  4734. \end{lstlisting}
  4735. \end{center}
  4736. \begin{exercise}\normalfont
  4737. Implement the pass \code{explicate-control} by adding the cases for
  4738. \key{if} to the functions for tail and assignment contexts, and
  4739. implement \code{explicate-pred} for predicate contexts. Create test
  4740. cases that exercise all of the new cases in the code for this pass.
  4741. \end{exercise}
  4742. \section{Select Instructions}
  4743. \label{sec:select-r2}
  4744. \index{instruction selection}
  4745. Recall that the \code{select-instructions} pass lowers from our
  4746. $C$-like intermediate representation to the pseudo-x86 language, which
  4747. is suitable for conducting register allocation. The pass is
  4748. implemented using three auxiliary functions, one for each of the
  4749. non-terminals $\Atm$, $\Stmt$, and $\Tail$.
  4750. For $\Atm$, we have new cases for the Booleans. We take the usual
  4751. approach of encoding them as integers, with true as 1 and false as 0.
  4752. \[
  4753. \key{\#t} \Rightarrow \key{1}
  4754. \qquad
  4755. \key{\#f} \Rightarrow \key{0}
  4756. \]
  4757. For $\Stmt$, we discuss a couple cases. The \code{not} operation can
  4758. be implemented in terms of \code{xorq} as we discussed at the
  4759. beginning of this section. Given an assignment
  4760. $\itm{var}$ \key{=} \key{(not} $\Atm$\key{);},
  4761. if the left-hand side $\itm{var}$ is
  4762. the same as $\Atm$, then just the \code{xorq} suffices.
  4763. \[
  4764. \Var~\key{=}~ \key{(not}\; \Var\key{);}
  4765. \quad\Rightarrow\quad
  4766. \key{xorq}~\key{\$}1\key{,}~\Var
  4767. \]
  4768. Otherwise, a \key{movq} is needed to adapt to the update-in-place
  4769. semantics of x86. Let $\Arg$ be the result of translating $\Atm$ to
  4770. x86. Then we have
  4771. \[
  4772. \Var~\key{=}~ \key{(not}\; \Atm\key{);}
  4773. \quad\Rightarrow\quad
  4774. \begin{array}{l}
  4775. \key{movq}~\Arg\key{,}~\Var\\
  4776. \key{xorq}~\key{\$}1\key{,}~\Var
  4777. \end{array}
  4778. \]
  4779. Next consider the cases for \code{eq?} and less-than comparison.
  4780. Translating these operations to x86 is slightly involved due to the
  4781. unusual nature of the \key{cmpq} instruction discussed above. We
  4782. recommend translating an assignment from \code{eq?} into the following
  4783. sequence of three instructions. \\
  4784. \begin{tabular}{lll}
  4785. \begin{minipage}{0.4\textwidth}
  4786. \begin{lstlisting}
  4787. |$\Var$| = (eq? |$\Atm_1$| |$\Atm_2$|);
  4788. \end{lstlisting}
  4789. \end{minipage}
  4790. &
  4791. $\Rightarrow$
  4792. &
  4793. \begin{minipage}{0.4\textwidth}
  4794. \begin{lstlisting}
  4795. cmpq |$\Arg_2$|, |$\Arg_1$|
  4796. sete %al
  4797. movzbq %al, |$\Var$|
  4798. \end{lstlisting}
  4799. \end{minipage}
  4800. \end{tabular} \\
  4801. Regarding the $\Tail$ non-terminal, we have two new cases: \key{goto}
  4802. and conditional \key{goto}. Both are straightforward to handle. A
  4803. \key{goto} becomes a jump instruction.
  4804. \[
  4805. \key{goto}\; \ell\key{;} \quad \Rightarrow \quad \key{jmp}\;\ell
  4806. \]
  4807. A conditional \key{goto} becomes a compare instruction followed
  4808. by a conditional jump (for ``then'') and the fall-through is
  4809. to a regular jump (for ``else'').\\
  4810. \begin{tabular}{lll}
  4811. \begin{minipage}{0.4\textwidth}
  4812. \begin{lstlisting}
  4813. if (eq? |$\Atm_1$| |$\Atm_2$|)
  4814. goto |$\ell_1$|;
  4815. else
  4816. goto |$\ell_2$|;
  4817. \end{lstlisting}
  4818. \end{minipage}
  4819. &
  4820. $\Rightarrow$
  4821. &
  4822. \begin{minipage}{0.4\textwidth}
  4823. \begin{lstlisting}
  4824. cmpq |$\Arg_2$|, |$\Arg_1$|
  4825. je |$\ell_1$|
  4826. jmp |$\ell_2$|
  4827. \end{lstlisting}
  4828. \end{minipage}
  4829. \end{tabular} \\
  4830. \begin{exercise}\normalfont
  4831. Expand your \code{select-instructions} pass to handle the new features
  4832. of the \LangIf{} language. Test the pass on all the examples you have
  4833. created and make sure that you have some test programs that use the
  4834. \code{eq?} and \code{<} operators, creating some if necessary. Test
  4835. the output using the \code{interp-x86} interpreter
  4836. (Appendix~\ref{appendix:interp}).
  4837. \end{exercise}
  4838. \section{Register Allocation}
  4839. \label{sec:register-allocation-r2}
  4840. \index{register allocation}
  4841. The changes required for \LangIf{} affect liveness analysis, building the
  4842. interference graph, and assigning homes, but the graph coloring
  4843. algorithm itself does not change.
  4844. \subsection{Liveness Analysis}
  4845. \label{sec:liveness-analysis-r2}
  4846. \index{liveness analysis}
  4847. Recall that for \LangVar{} we implemented liveness analysis for a single
  4848. basic block (Section~\ref{sec:liveness-analysis-r1}). With the
  4849. addition of \key{if} expressions to \LangIf{}, \code{explicate-control}
  4850. produces many basic blocks arranged in a control-flow graph. We
  4851. recommend that you create a new auxiliary function named
  4852. \code{uncover-live-CFG} that applies liveness analysis to a
  4853. control-flow graph.
  4854. The first question we need to consider is: what order should we
  4855. process the basic blocks in the control-flow graph? To perform
  4856. liveness analysis on a basic block, we need to know its live-after
  4857. set. If a basic block has no successor blocks (i.e. no out-edges in
  4858. the control flow graph), then it has an empty live-after set and we
  4859. can immediately apply liveness analysis to it. If a basic block has
  4860. some successors, then we need to complete liveness analysis on those
  4861. blocks first. Thankfully, the control flow graph does not contain any
  4862. cycles because \LangIf{} does not include loops. (In
  4863. Chapter~\ref{ch:loop} we add loops and study how to handle cycles in
  4864. the control-flow graph.)
  4865. %
  4866. Returning to the question of what order should we process the basic
  4867. blocks, the answer is reverse topological order. We recommend using
  4868. the \code{tsort} (topological sort) and \code{transpose} functions of
  4869. the Racket \code{graph} package to obtain this ordering.
  4870. \index{topological order}
  4871. \index{topological sort}
  4872. The next question is how to analyze the jump instructions. In
  4873. Section~\ref{sec:liveness-analysis-r1} we recommended that you
  4874. maintain an alist named \code{label->live} that maps each label to the
  4875. set of live locations at the beginning of the associated block. Now
  4876. that we have many basic blocks, the alist needs to be extended as we
  4877. process the blocks. In particular, after performing liveness analysis
  4878. on a block, we can take the live-before set for its first instruction
  4879. and associate that with the block's label in the alist.
  4880. %
  4881. As discussed in Section~\ref{sec:liveness-analysis-r1}, the
  4882. live-before set for a $\JMP{\itm{label}}$ instruction is given by the
  4883. mapping for $\itm{label}$ in \code{label->live}.
  4884. Now for $x86_1$ we also have the conditional jump
  4885. $\JMPIF{\itm{cc}}{\itm{label}}$ to deal with. This one is
  4886. particularly interesting because during compilation we do not know, in
  4887. general, which way a conditional jump will go, so we do not know
  4888. whether to use the live-before set for the following instruction or
  4889. the live-before set for $\itm{label}$. The solution to this challenge
  4890. is based on the observation that there is no harm to the correctness
  4891. of the compiler if we classify more locations as live than the ones
  4892. that are truly live during a particular execution of the
  4893. instruction. Thus, we can take the union of the live-before sets from
  4894. the following instruction and from the mapping fro $\itm{label}$ in
  4895. \code{label->live}.
  4896. The helper functions for computing the variables in an instruction's
  4897. argument and for computing the variables read-from ($R$) or written-to
  4898. ($W$) by an instruction need to be updated to handle the new kinds of
  4899. arguments and instructions in \LangXASTIf{}.
  4900. \subsection{Build Interference}
  4901. \label{sec:build-interference-r2}
  4902. Many of the new instructions in \LangXASTIf{} can be handled in the same way
  4903. as the instructions in \LangXASTInt{}. Thus, if your code was already quite
  4904. general, it will not need to be changed to handle the new
  4905. instructions. If you code is not general enough, I recommend that you
  4906. change your code to be more general. For example, you can factor out
  4907. the computing of the the read and write sets for each kind of
  4908. instruction into two auxiliary functions.
  4909. Note that the \key{movzbq} instruction requires some special care,
  4910. just like the \key{movq} instruction. See rule number 3 in
  4911. Section~\ref{sec:build-interference}.
  4912. %% \subsection{Assign Homes}
  4913. %% \label{sec:assign-homes-r2}
  4914. %% The \code{assign-homes} function (Section~\ref{sec:assign-r1}) needs
  4915. %% to be updated to handle the \key{if} statement, simply by recursively
  4916. %% processing the child nodes. Hopefully your code already handles the
  4917. %% other new instructions, but if not, you can generalize your code.
  4918. \begin{exercise}\normalfont
  4919. Update the \code{register-allocation} pass so that it works for \LangIf{}
  4920. and test your compiler using your previously created programs on the
  4921. \code{interp-x86} interpreter (Appendix~\ref{appendix:interp}).
  4922. \end{exercise}
  4923. \section{Patch Instructions}
  4924. The second argument of the \key{cmpq} instruction must not be an
  4925. immediate value (such as an integer). So if you are comparing two
  4926. immediates, we recommend inserting a \key{movq} instruction to put the
  4927. second argument in \key{rax}. Also, recall that instructions may have
  4928. at most one memory reference.
  4929. %
  4930. The second argument of the \key{movzbq} must be a register.
  4931. %
  4932. There are no special restrictions on the x86 instructions \key{JmpIf}
  4933. and \key{Jmp}.
  4934. \begin{exercise}\normalfont
  4935. Update \code{patch-instructions} to handle the new x86 instructions.
  4936. Test your compiler using your previously created programs on the
  4937. \code{interp-x86} interpreter (Appendix~\ref{appendix:interp}).
  4938. \end{exercise}
  4939. \begin{figure}[tbp]
  4940. \begin{tikzpicture}[baseline=(current bounding box.center)]
  4941. \node (Rif) at (0,2) {\large \LangIf{}};
  4942. \node (Rif-2) at (3,2) {\large \LangIf{}};
  4943. \node (Rif-3) at (6,2) {\large \LangIf{}};
  4944. \node (Rif-4) at (9,2) {\large \LangIf{}};
  4945. \node (Rif-5) at (12,2) {\large \LangIf{}};
  4946. \node (C1-1) at (3,0) {\large \LangCIf{}};
  4947. \node (x86-2) at (3,-2) {\large \LangXIfVar{}};
  4948. \node (x86-2-1) at (3,-4) {\large \LangXIfVar{}};
  4949. \node (x86-2-2) at (6,-4) {\large \LangXIfVar{}};
  4950. \node (x86-3) at (6,-2) {\large \LangXIfVar{}};
  4951. \node (x86-4) at (9,-2) {\large \LangXIf{}};
  4952. \node (x86-5) at (9,-4) {\large \LangXIf{}};
  4953. \path[->,bend left=15] (Rif) edge [above] node {\ttfamily\footnotesize type-check} (Rif-2);
  4954. \path[->,bend left=15] (Rif-2) edge [above] node {\ttfamily\footnotesize shrink} (Rif-3);
  4955. \path[->,bend left=15] (Rif-3) edge [above] node {\ttfamily\footnotesize uniquify} (Rif-4);
  4956. \path[->,bend left=15] (Rif-4) edge [above] node {\ttfamily\footnotesize remove-complex.} (Rif-5);
  4957. \path[->,bend left=15] (Rif-5) edge [left] node {\ttfamily\footnotesize explicate-control} (C1-1);
  4958. \path[->,bend right=15] (C1-1) edge [left] node {\ttfamily\footnotesize select-instructions} (x86-2);
  4959. \path[->,bend left=15] (x86-2) edge [right] node {\ttfamily\footnotesize uncover-live} (x86-2-1);
  4960. \path[->,bend right=15] (x86-2-1) edge [below] node {\ttfamily\footnotesize build-inter.} (x86-2-2);
  4961. \path[->,bend right=15] (x86-2-2) edge [right] node {\ttfamily\footnotesize allocate-reg.} (x86-3);
  4962. \path[->,bend left=15] (x86-3) edge [above] node {\ttfamily\footnotesize patch-instr.} (x86-4);
  4963. \path[->,bend left=15] (x86-4) edge [right] node {\ttfamily\footnotesize print-x86 } (x86-5);
  4964. \end{tikzpicture}
  4965. \caption{Diagram of the passes for \LangIf{}, a language with conditionals.}
  4966. \label{fig:Rif-passes}
  4967. \end{figure}
  4968. Figure~\ref{fig:Rif-passes} lists all the passes needed for the
  4969. compilation of \LangIf{}.
  4970. \section{An Example Translation}
  4971. Figure~\ref{fig:if-example-x86} shows a simple example program in
  4972. \LangIf{} translated to x86, showing the results of
  4973. \code{explicate-control}, \code{select-instructions}, and the final
  4974. x86 assembly code.
  4975. \begin{figure}[tbp]
  4976. \begin{tabular}{lll}
  4977. \begin{minipage}{0.5\textwidth}
  4978. % s1_20.rkt
  4979. \begin{lstlisting}
  4980. (if (eq? (read) 1) 42 0)
  4981. \end{lstlisting}
  4982. $\Downarrow$
  4983. \begin{lstlisting}
  4984. start:
  4985. tmp7951 = (read);
  4986. if (eq? tmp7951 1) then
  4987. goto block7952;
  4988. else
  4989. goto block7953;
  4990. block7952:
  4991. return 42;
  4992. block7953:
  4993. return 0;
  4994. \end{lstlisting}
  4995. $\Downarrow$
  4996. \begin{lstlisting}
  4997. start:
  4998. callq read_int
  4999. movq %rax, tmp7951
  5000. cmpq $1, tmp7951
  5001. je block7952
  5002. jmp block7953
  5003. block7953:
  5004. movq $0, %rax
  5005. jmp conclusion
  5006. block7952:
  5007. movq $42, %rax
  5008. jmp conclusion
  5009. \end{lstlisting}
  5010. \end{minipage}
  5011. &
  5012. $\Rightarrow\qquad$
  5013. \begin{minipage}{0.4\textwidth}
  5014. \begin{lstlisting}
  5015. start:
  5016. callq read_int
  5017. movq %rax, %rcx
  5018. cmpq $1, %rcx
  5019. je block7952
  5020. jmp block7953
  5021. block7953:
  5022. movq $0, %rax
  5023. jmp conclusion
  5024. block7952:
  5025. movq $42, %rax
  5026. jmp conclusion
  5027. .globl main
  5028. main:
  5029. pushq %rbp
  5030. movq %rsp, %rbp
  5031. pushq %r13
  5032. pushq %r12
  5033. pushq %rbx
  5034. pushq %r14
  5035. subq $0, %rsp
  5036. jmp start
  5037. conclusion:
  5038. addq $0, %rsp
  5039. popq %r14
  5040. popq %rbx
  5041. popq %r12
  5042. popq %r13
  5043. popq %rbp
  5044. retq
  5045. \end{lstlisting}
  5046. \end{minipage}
  5047. \end{tabular}
  5048. \caption{Example compilation of an \key{if} expression to x86.}
  5049. \label{fig:if-example-x86}
  5050. \end{figure}
  5051. \section{Challenge: Remove Jumps}
  5052. \label{sec:opt-jumps}
  5053. %% Recall that in the example output of \code{explicate-control} in
  5054. %% Figure~\ref{fig:explicate-control-s1-38}, \code{block57} through
  5055. %% \code{block60} are trivial blocks, they do nothing but jump to another
  5056. %% block. The first goal of this challenge assignment is to remove those
  5057. %% blocks. Figure~\ref{fig:optimize-jumps} repeats the result of
  5058. %% \code{explicate-control} on the left and shows the result of bypassing
  5059. %% the trivial blocks on the right. Let us focus on \code{block61}. The
  5060. %% \code{then} branch jumps to \code{block57}, which in turn jumps to
  5061. %% \code{block55}. The optimized code on the right of
  5062. %% Figure~\ref{fig:optimize-jumps} bypasses \code{block57}, with the
  5063. %% \code{then} branch jumping directly to \code{block55}. The story is
  5064. %% similar for the \code{else} branch, as well as for the two branches in
  5065. %% \code{block62}. After the jumps in \code{block61} and \code{block62}
  5066. %% have been optimized in this way, there are no longer any jumps to
  5067. %% blocks \code{block57} through \code{block60}, so they can be removed.
  5068. %% \begin{figure}[tbp]
  5069. %% \begin{tabular}{lll}
  5070. %% \begin{minipage}{0.4\textwidth}
  5071. %% \begin{lstlisting}
  5072. %% block62:
  5073. %% tmp54 = (read);
  5074. %% if (eq? tmp54 2) then
  5075. %% goto block59;
  5076. %% else
  5077. %% goto block60;
  5078. %% block61:
  5079. %% tmp53 = (read);
  5080. %% if (eq? tmp53 0) then
  5081. %% goto block57;
  5082. %% else
  5083. %% goto block58;
  5084. %% block60:
  5085. %% goto block56;
  5086. %% block59:
  5087. %% goto block55;
  5088. %% block58:
  5089. %% goto block56;
  5090. %% block57:
  5091. %% goto block55;
  5092. %% block56:
  5093. %% return (+ 700 77);
  5094. %% block55:
  5095. %% return (+ 10 32);
  5096. %% start:
  5097. %% tmp52 = (read);
  5098. %% if (eq? tmp52 1) then
  5099. %% goto block61;
  5100. %% else
  5101. %% goto block62;
  5102. %% \end{lstlisting}
  5103. %% \end{minipage}
  5104. %% &
  5105. %% $\Rightarrow$
  5106. %% &
  5107. %% \begin{minipage}{0.55\textwidth}
  5108. %% \begin{lstlisting}
  5109. %% block62:
  5110. %% tmp54 = (read);
  5111. %% if (eq? tmp54 2) then
  5112. %% goto block55;
  5113. %% else
  5114. %% goto block56;
  5115. %% block61:
  5116. %% tmp53 = (read);
  5117. %% if (eq? tmp53 0) then
  5118. %% goto block55;
  5119. %% else
  5120. %% goto block56;
  5121. %% block56:
  5122. %% return (+ 700 77);
  5123. %% block55:
  5124. %% return (+ 10 32);
  5125. %% start:
  5126. %% tmp52 = (read);
  5127. %% if (eq? tmp52 1) then
  5128. %% goto block61;
  5129. %% else
  5130. %% goto block62;
  5131. %% \end{lstlisting}
  5132. %% \end{minipage}
  5133. %% \end{tabular}
  5134. %% \caption{Optimize jumps by removing trivial blocks.}
  5135. %% \label{fig:optimize-jumps}
  5136. %% \end{figure}
  5137. %% The name of this pass is \code{optimize-jumps}. We recommend
  5138. %% implementing this pass in two phases. The first phrase builds a hash
  5139. %% table that maps labels to possibly improved labels. The second phase
  5140. %% changes the target of each \code{goto} to use the improved label. If
  5141. %% the label is for a trivial block, then the hash table should map the
  5142. %% label to the first non-trivial block that can be reached from this
  5143. %% label by jumping through trivial blocks. If the label is for a
  5144. %% non-trivial block, then the hash table should map the label to itself;
  5145. %% we do not want to change jumps to non-trivial blocks.
  5146. %% The first phase can be accomplished by constructing an empty hash
  5147. %% table, call it \code{short-cut}, and then iterating over the control
  5148. %% flow graph. Each time you encouter a block that is just a \code{goto},
  5149. %% then update the hash table, mapping the block's source to the target
  5150. %% of the \code{goto}. Also, the hash table may already have mapped some
  5151. %% labels to the block's source, to you must iterate through the hash
  5152. %% table and update all of those so that they instead map to the target
  5153. %% of the \code{goto}.
  5154. %% For the second phase, we recommend iterating through the $\Tail$ of
  5155. %% each block in the program, updating the target of every \code{goto}
  5156. %% according to the mapping in \code{short-cut}.
  5157. %% \begin{exercise}\normalfont
  5158. %% Implement the \code{optimize-jumps} pass as a transformation from
  5159. %% \LangCIf{} to \LangCIf{}, coming after the \code{explicate-control} pass.
  5160. %% Check that \code{optimize-jumps} removes trivial blocks in a few
  5161. %% example programs. Then check that your compiler still passes all of
  5162. %% your tests.
  5163. %% \end{exercise}
  5164. There is an opportunity for optimizing jumps that is apparent in the
  5165. example of Figure~\ref{fig:if-example-x86}. The \code{start} block end
  5166. with a jump to \code{block7953} and there are no other jumps to
  5167. \code{block7953} in the rest of the program. In this situation we can
  5168. avoid the runtime overhead of this jump by merging \code{block7953}
  5169. into the preceding block, in this case the \code{start} block.
  5170. Figure~\ref{fig:remove-jumps} shows the output of
  5171. \code{select-instructions} on the left and the result of this
  5172. optimization on the right.
  5173. \begin{figure}[tbp]
  5174. \begin{tabular}{lll}
  5175. \begin{minipage}{0.5\textwidth}
  5176. % s1_20.rkt
  5177. \begin{lstlisting}
  5178. start:
  5179. callq read_int
  5180. movq %rax, tmp7951
  5181. cmpq $1, tmp7951
  5182. je block7952
  5183. jmp block7953
  5184. block7953:
  5185. movq $0, %rax
  5186. jmp conclusion
  5187. block7952:
  5188. movq $42, %rax
  5189. jmp conclusion
  5190. \end{lstlisting}
  5191. \end{minipage}
  5192. &
  5193. $\Rightarrow\qquad$
  5194. \begin{minipage}{0.4\textwidth}
  5195. \begin{lstlisting}
  5196. start:
  5197. callq read_int
  5198. movq %rax, tmp7951
  5199. cmpq $1, tmp7951
  5200. je block7952
  5201. movq $0, %rax
  5202. jmp conclusion
  5203. block7952:
  5204. movq $42, %rax
  5205. jmp conclusion
  5206. \end{lstlisting}
  5207. \end{minipage}
  5208. \end{tabular}
  5209. \caption{Merging basic blocks by removing unnecessary jumps.}
  5210. \label{fig:remove-jumps}
  5211. \end{figure}
  5212. \begin{exercise}\normalfont
  5213. Implement a pass named \code{remove-jumps} that merges basic blocks
  5214. into their preceding basic block, when there is only one preceding
  5215. block. The pass should translate from pseudo $x86_1$ to pseudo
  5216. $x86_1$ and it should come immediately after
  5217. \code{select-instructions}. Check that \code{remove-jumps}
  5218. accomplishes the goal of merging basic blocks on several test
  5219. programs and check that your compiler passes all of your tests.
  5220. \end{exercise}
  5221. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  5222. \chapter{Tuples and Garbage Collection}
  5223. \label{ch:tuples}
  5224. \index{tuple}
  5225. \index{vector}
  5226. \margincomment{\scriptsize To do: challenge assignments: mark-and-sweep,
  5227. add simple structures. \\ --Jeremy}
  5228. \margincomment{\scriptsize To do: look through Andre's code comments for extra
  5229. things to discuss in this chapter. \\ --Jeremy}
  5230. \margincomment{\scriptsize To do: Flesh out this chapter, e.g., make sure
  5231. all the IR grammars are spelled out! \\ --Jeremy}
  5232. \margincomment{\scriptsize Introduce has-type, but after flatten, remove it,
  5233. but keep type annotations on vector creation and local variables, function
  5234. parameters, etc. \\ --Jeremy}
  5235. \margincomment{\scriptsize Be more explicit about how to deal with
  5236. the root stack. \\ --Jeremy}
  5237. In this chapter we study the implementation of mutable tuples (called
  5238. ``vectors'' in Racket). This language feature is the first to use the
  5239. computer's \emph{heap}\index{heap} because the lifetime of a Racket tuple is
  5240. indefinite, that is, a tuple lives forever from the programmer's
  5241. viewpoint. Of course, from an implementer's viewpoint, it is important
  5242. to reclaim the space associated with a tuple when it is no longer
  5243. needed, which is why we also study \emph{garbage collection}
  5244. \emph{garbage collection}
  5245. techniques in this chapter.
  5246. Section~\ref{sec:r3} introduces the \LangVec{} language including its
  5247. interpreter and type checker. The \LangVec{} language extends the \LangIf{}
  5248. language of Chapter~\ref{ch:bool-types} with vectors and Racket's
  5249. \code{void} value. The reason for including the later is that the
  5250. \code{vector-set!} operation returns a value of type
  5251. \code{Void}\footnote{Racket's \code{Void} type corresponds to what is
  5252. called the \code{Unit} type in the programming languages
  5253. literature. Racket's \code{Void} type is inhabited by a single value
  5254. \code{void} which corresponds to \code{unit} or \code{()} in the
  5255. literature~\citep{Pierce:2002hj}.}.
  5256. Section~\ref{sec:GC} describes a garbage collection algorithm based on
  5257. copying live objects back and forth between two halves of the
  5258. heap. The garbage collector requires coordination with the compiler so
  5259. that it can see all of the \emph{root} pointers, that is, pointers in
  5260. registers or on the procedure call stack.
  5261. Sections~\ref{sec:expose-allocation} through \ref{sec:print-x86-gc}
  5262. discuss all the necessary changes and additions to the compiler
  5263. passes, including a new compiler pass named \code{expose-allocation}.
  5264. \section{The \LangVec{} Language}
  5265. \label{sec:r3}
  5266. Figure~\ref{fig:r3-concrete-syntax} defines the concrete syntax for
  5267. \LangVec{} and Figure~\ref{fig:r3-syntax} defines the abstract syntax. The
  5268. \LangVec{} language includes three new forms: \code{vector} for creating a
  5269. tuple, \code{vector-ref} for reading an element of a tuple, and
  5270. \code{vector-set!} for writing to an element of a tuple. The program
  5271. in Figure~\ref{fig:vector-eg} shows the usage of tuples in Racket. We
  5272. create a 3-tuple \code{t} and a 1-tuple that is stored at index $2$ of
  5273. the 3-tuple, demonstrating that tuples are first-class values. The
  5274. element at index $1$ of \code{t} is \code{\#t}, so the ``then'' branch
  5275. of the \key{if} is taken. The element at index $0$ of \code{t} is
  5276. \code{40}, to which we add \code{2}, the element at index $0$ of the
  5277. 1-tuple. So the result of the program is \code{42}.
  5278. \begin{figure}[tbp]
  5279. \centering
  5280. \fbox{
  5281. \begin{minipage}{0.96\textwidth}
  5282. \[
  5283. \begin{array}{lcl}
  5284. \Type &::=& \gray{\key{Integer} \mid \key{Boolean}}
  5285. \mid \LP\key{Vector}\;\Type\ldots\RP \mid \key{Void}\\
  5286. \Exp &::=& \gray{ \Int \mid \CREAD{} \mid \CNEG{\Exp} \mid \CADD{\Exp}{\Exp} \mid \CSUB{\Exp}{\Exp} } \\
  5287. &\mid& \gray{ \Var \mid \CLET{\Var}{\Exp}{\Exp} }\\
  5288. &\mid& \gray{ \key{\#t} \mid \key{\#f}
  5289. \mid \LP\key{and}\;\Exp\;\Exp\RP
  5290. \mid \LP\key{or}\;\Exp\;\Exp\RP
  5291. \mid \LP\key{not}\;\Exp\RP } \\
  5292. &\mid& \gray{ \LP\itm{cmp}\;\Exp\;\Exp\RP
  5293. \mid \CIF{\Exp}{\Exp}{\Exp} } \\
  5294. &\mid& \LP\key{vector}\;\Exp\ldots\RP
  5295. \mid \LP\key{vector-length}\;\Exp\RP \\
  5296. &\mid& \LP\key{vector-ref}\;\Exp\;\Int\RP
  5297. \mid \LP\key{vector-set!}\;\Exp\;\Int\;\Exp\RP \\
  5298. &\mid& \LP\key{void}\RP \mid \LP\key{has-type}~\Exp~\Type\RP\\
  5299. \LangVec{} &::=& \Exp
  5300. \end{array}
  5301. \]
  5302. \end{minipage}
  5303. }
  5304. \caption{The concrete syntax of \LangVec{}, extending \LangIf{}
  5305. (Figure~\ref{fig:r2-concrete-syntax}).}
  5306. \label{fig:r3-concrete-syntax}
  5307. \end{figure}
  5308. \begin{figure}[tbp]
  5309. \begin{lstlisting}
  5310. (let ([t (vector 40 #t (vector 2))])
  5311. (if (vector-ref t 1)
  5312. (+ (vector-ref t 0)
  5313. (vector-ref (vector-ref t 2) 0))
  5314. 44))
  5315. \end{lstlisting}
  5316. \caption{Example program that creates tuples and reads from them.}
  5317. \label{fig:vector-eg}
  5318. \end{figure}
  5319. \begin{figure}[tp]
  5320. \centering
  5321. \fbox{
  5322. \begin{minipage}{0.96\textwidth}
  5323. \[
  5324. \begin{array}{lcl}
  5325. \itm{op} &::=& \ldots \mid \code{vector} \mid \code{vector-length} \\
  5326. \Exp &::=& \gray{ \INT{\Int} \mid \VAR{\Var} \mid \LET{\Var}{\Exp}{\Exp} } \\
  5327. &\mid& \gray{ \PRIM{\itm{op}}{\Exp\ldots}
  5328. \mid \BOOL{\itm{bool}}
  5329. \mid \IF{\Exp}{\Exp}{\Exp} } \\
  5330. &\mid& \VECREF{\Exp}{\INT{\Int}}\\
  5331. &\mid& \VECSET{\Exp}{\INT{\Int}}{\Exp} \\
  5332. &\mid& \VOID{} \mid \LP\key{HasType}~\Exp~\Type \RP \\
  5333. \LangVec{} &::=& \PROGRAM{\key{'()}}{\Exp}
  5334. \end{array}
  5335. \]
  5336. \end{minipage}
  5337. }
  5338. \caption{The abstract syntax of \LangVec{}.}
  5339. \label{fig:r3-syntax}
  5340. \end{figure}
  5341. \index{allocate}
  5342. \index{heap allocate}
  5343. Tuples are our first encounter with heap-allocated data, which raises
  5344. several interesting issues. First, variable binding performs a
  5345. shallow-copy when dealing with tuples, which means that different
  5346. variables can refer to the same tuple, that is, different variables
  5347. can be \emph{aliases} for the same entity. Consider the following
  5348. example in which both \code{t1} and \code{t2} refer to the same tuple.
  5349. Thus, the mutation through \code{t2} is visible when referencing the
  5350. tuple from \code{t1}, so the result of this program is \code{42}.
  5351. \index{alias}\index{mutation}
  5352. \begin{center}
  5353. \begin{minipage}{0.96\textwidth}
  5354. \begin{lstlisting}
  5355. (let ([t1 (vector 3 7)])
  5356. (let ([t2 t1])
  5357. (let ([_ (vector-set! t2 0 42)])
  5358. (vector-ref t1 0))))
  5359. \end{lstlisting}
  5360. \end{minipage}
  5361. \end{center}
  5362. The next issue concerns the lifetime of tuples. Of course, they are
  5363. created by the \code{vector} form, but when does their lifetime end?
  5364. Notice that \LangVec{} does not include an operation for deleting
  5365. tuples. Furthermore, the lifetime of a tuple is not tied to any notion
  5366. of static scoping. For example, the following program returns
  5367. \code{42} even though the variable \code{w} goes out of scope prior to
  5368. the \code{vector-ref} that reads from the vector it was bound to.
  5369. \begin{center}
  5370. \begin{minipage}{0.96\textwidth}
  5371. \begin{lstlisting}
  5372. (let ([v (vector (vector 44))])
  5373. (let ([x (let ([w (vector 42)])
  5374. (let ([_ (vector-set! v 0 w)])
  5375. 0))])
  5376. (+ x (vector-ref (vector-ref v 0) 0))))
  5377. \end{lstlisting}
  5378. \end{minipage}
  5379. \end{center}
  5380. From the perspective of programmer-observable behavior, tuples live
  5381. forever. Of course, if they really lived forever, then many programs
  5382. would run out of memory.\footnote{The \LangVec{} language does not have
  5383. looping or recursive functions, so it is nigh impossible to write a
  5384. program in \LangVec{} that will run out of memory. However, we add
  5385. recursive functions in the next Chapter!} A Racket implementation
  5386. must therefore perform automatic garbage collection.
  5387. Figure~\ref{fig:interp-Rvec} shows the definitional interpreter for the
  5388. \LangVec{} language. We define the \code{vector}, \code{vector-length},
  5389. \code{vector-ref}, and \code{vector-set!} operations for \LangVec{} in
  5390. terms of the corresponding operations in Racket. One subtle point is
  5391. that the \code{vector-set!} operation returns the \code{\#<void>}
  5392. value. The \code{\#<void>} value can be passed around just like other
  5393. values inside an \LangVec{} program and a \code{\#<void>} value can be
  5394. compared for equality with another \code{\#<void>} value. However,
  5395. there are no other operations specific to the the \code{\#<void>}
  5396. value in \LangVec{}. In contrast, Racket defines the \code{void?} predicate
  5397. that returns \code{\#t} when applied to \code{\#<void>} and \code{\#f}
  5398. otherwise.
  5399. \begin{figure}[tbp]
  5400. \begin{lstlisting}
  5401. (define interp-Rvec-class
  5402. (class interp-Rif-class
  5403. (super-new)
  5404. (define/override (interp-op op)
  5405. (match op
  5406. ['eq? (lambda (v1 v2)
  5407. (cond [(or (and (fixnum? v1) (fixnum? v2))
  5408. (and (boolean? v1) (boolean? v2))
  5409. (and (vector? v1) (vector? v2))
  5410. (and (void? v1) (void? v2)))
  5411. (eq? v1 v2)]))]
  5412. ['vector vector]
  5413. ['vector-length vector-length]
  5414. ['vector-ref vector-ref]
  5415. ['vector-set! vector-set!]
  5416. [else (super interp-op op)]
  5417. ))
  5418. (define/override ((interp-exp env) e)
  5419. (define recur (interp-exp env))
  5420. (match e
  5421. [(HasType e t) (recur e)]
  5422. [(Void) (void)]
  5423. [else ((super interp-exp env) e)]
  5424. ))
  5425. ))
  5426. (define (interp-Rvec p)
  5427. (send (new interp-Rvec-class) interp-program p))
  5428. \end{lstlisting}
  5429. \caption{Interpreter for the \LangVec{} language.}
  5430. \label{fig:interp-Rvec}
  5431. \end{figure}
  5432. Figure~\ref{fig:type-check-Rvec} shows the type checker for \LangVec{}, which
  5433. deserves some explanation. When allocating a vector, we need to know
  5434. which elements of the vector are pointers (i.e. are also vectors). We
  5435. can obtain this information during type checking. The type checker in
  5436. Figure~\ref{fig:type-check-Rvec} not only computes the type of an
  5437. expression, it also wraps every \key{vector} creation with the form
  5438. $(\key{HasType}~e~T)$, where $T$ is the vector's type.
  5439. %
  5440. To create the s-expression for the \code{Vector} type in
  5441. Figure~\ref{fig:type-check-Rvec}, we use the
  5442. \href{https://docs.racket-lang.org/reference/quasiquote.html}{unquote-splicing
  5443. operator} \code{,@} to insert the list \code{t*} without its usual
  5444. start and end parentheses. \index{unquote-slicing}
  5445. \begin{figure}[tp]
  5446. \begin{lstlisting}[basicstyle=\ttfamily\scriptsize]
  5447. (define type-check-Rvec-class
  5448. (class type-check-Rif-class
  5449. (super-new)
  5450. (inherit check-type-equal?)
  5451. (define/override (type-check-exp env)
  5452. (lambda (e)
  5453. (define recur (type-check-exp env))
  5454. (match e
  5455. [(Void) (values (Void) 'Void)]
  5456. [(Prim 'vector es)
  5457. (define-values (e* t*) (for/lists (e* t*) ([e es]) (recur e)))
  5458. (define t `(Vector ,@t*))
  5459. (values (HasType (Prim 'vector e*) t) t)]
  5460. [(Prim 'vector-ref (list e1 (Int i)))
  5461. (define-values (e1^ t) (recur e1))
  5462. (match t
  5463. [`(Vector ,ts ...)
  5464. (unless (and (0 . <= . i) (i . < . (length ts)))
  5465. (error 'type-check "index ~a out of bounds\nin ~v" i e))
  5466. (values (Prim 'vector-ref (list e1^ (Int i))) (list-ref ts i))]
  5467. [else (error 'type-check "expect Vector, not ~a\nin ~v" t e)])]
  5468. [(Prim 'vector-set! (list e1 (Int i) arg) )
  5469. (define-values (e-vec t-vec) (recur e1))
  5470. (define-values (e-arg^ t-arg) (recur arg))
  5471. (match t-vec
  5472. [`(Vector ,ts ...)
  5473. (unless (and (0 . <= . i) (i . < . (length ts)))
  5474. (error 'type-check "index ~a out of bounds\nin ~v" i e))
  5475. (check-type-equal? (list-ref ts i) t-arg e)
  5476. (values (Prim 'vector-set! (list e-vec (Int i) e-arg^)) 'Void)]
  5477. [else (error 'type-check "expect Vector, not ~a\nin ~v" t-vec e)])]
  5478. [(Prim 'vector-length (list e))
  5479. (define-values (e^ t) (recur e))
  5480. (match t
  5481. [`(Vector ,ts ...)
  5482. (values (Prim 'vector-length (list e^)) 'Integer)]
  5483. [else (error 'type-check "expect Vector, not ~a\nin ~v" t e)])]
  5484. [(Prim 'eq? (list arg1 arg2))
  5485. (define-values (e1 t1) (recur arg1))
  5486. (define-values (e2 t2) (recur arg2))
  5487. (match* (t1 t2)
  5488. [(`(Vector ,ts1 ...) `(Vector ,ts2 ...)) (void)]
  5489. [(other wise) (check-type-equal? t1 t2 e)])
  5490. (values (Prim 'eq? (list e1 e2)) 'Boolean)]
  5491. [(HasType (Prim 'vector es) t)
  5492. ((type-check-exp env) (Prim 'vector es))]
  5493. [(HasType e1 t)
  5494. (define-values (e1^ t^) (recur e1))
  5495. (check-type-equal? t t^ e)
  5496. (values (HasType e1^ t) t)]
  5497. [else ((super type-check-exp env) e)]
  5498. )))
  5499. ))
  5500. (define (type-check-Rvec p)
  5501. (send (new type-check-Rvec-class) type-check-program p))
  5502. \end{lstlisting}
  5503. \caption{Type checker for the \LangVec{} language.}
  5504. \label{fig:type-check-Rvec}
  5505. \end{figure}
  5506. \section{Garbage Collection}
  5507. \label{sec:GC}
  5508. Here we study a relatively simple algorithm for garbage collection
  5509. that is the basis of state-of-the-art garbage
  5510. collectors~\citep{Lieberman:1983aa,Ungar:1984aa,Jones:1996aa,Detlefs:2004aa,Dybvig:2006aa,Tene:2011kx}. In
  5511. particular, we describe a two-space copying
  5512. collector~\citep{Wilson:1992fk} that uses Cheney's algorithm to
  5513. perform the
  5514. copy~\citep{Cheney:1970aa}.
  5515. \index{copying collector}
  5516. \index{two-space copying collector}
  5517. Figure~\ref{fig:copying-collector} gives a
  5518. coarse-grained depiction of what happens in a two-space collector,
  5519. showing two time steps, prior to garbage collection (on the top) and
  5520. after garbage collection (on the bottom). In a two-space collector,
  5521. the heap is divided into two parts named the FromSpace and the
  5522. ToSpace. Initially, all allocations go to the FromSpace until there is
  5523. not enough room for the next allocation request. At that point, the
  5524. garbage collector goes to work to make more room.
  5525. \index{ToSpace}
  5526. \index{FromSpace}
  5527. The garbage collector must be careful not to reclaim tuples that will
  5528. be used by the program in the future. Of course, it is impossible in
  5529. general to predict what a program will do, but we can over approximate
  5530. the will-be-used tuples by preserving all tuples that could be
  5531. accessed by \emph{any} program given the current computer state. A
  5532. program could access any tuple whose address is in a register or on
  5533. the procedure call stack. These addresses are called the \emph{root
  5534. set}\index{root set}. In addition, a program could access any tuple that is
  5535. transitively reachable from the root set. Thus, it is safe for the
  5536. garbage collector to reclaim the tuples that are not reachable in this
  5537. way.
  5538. So the goal of the garbage collector is twofold:
  5539. \begin{enumerate}
  5540. \item preserve all tuple that are reachable from the root set via a
  5541. path of pointers, that is, the \emph{live} tuples, and
  5542. \item reclaim the memory of everything else, that is, the
  5543. \emph{garbage}.
  5544. \end{enumerate}
  5545. A copying collector accomplishes this by copying all of the live
  5546. objects from the FromSpace into the ToSpace and then performs a slight
  5547. of hand, treating the ToSpace as the new FromSpace and the old
  5548. FromSpace as the new ToSpace. In the example of
  5549. Figure~\ref{fig:copying-collector}, there are three pointers in the
  5550. root set, one in a register and two on the stack. All of the live
  5551. objects have been copied to the ToSpace (the right-hand side of
  5552. Figure~\ref{fig:copying-collector}) in a way that preserves the
  5553. pointer relationships. For example, the pointer in the register still
  5554. points to a 2-tuple whose first element is a 3-tuple and whose second
  5555. element is a 2-tuple. There are four tuples that are not reachable
  5556. from the root set and therefore do not get copied into the ToSpace.
  5557. The exact situation in Figure~\ref{fig:copying-collector} cannot be
  5558. created by a well-typed program in \LangVec{} because it contains a
  5559. cycle. However, creating cycles will be possible once we get to \LangAny{}.
  5560. We design the garbage collector to deal with cycles to begin with so
  5561. we will not need to revisit this issue.
  5562. \begin{figure}[tbp]
  5563. \centering
  5564. \includegraphics[width=\textwidth]{figs/copy-collect-1} \\[5ex]
  5565. \includegraphics[width=\textwidth]{figs/copy-collect-2}
  5566. \caption{A copying collector in action.}
  5567. \label{fig:copying-collector}
  5568. \end{figure}
  5569. There are many alternatives to copying collectors (and their bigger
  5570. siblings, the generational collectors) when its comes to garbage
  5571. collection, such as mark-and-sweep~\citep{McCarthy:1960dz} and
  5572. reference counting~\citep{Collins:1960aa}. The strengths of copying
  5573. collectors are that allocation is fast (just a comparison and pointer
  5574. increment), there is no fragmentation, cyclic garbage is collected,
  5575. and the time complexity of collection only depends on the amount of
  5576. live data, and not on the amount of garbage~\citep{Wilson:1992fk}. The
  5577. main disadvantages of a two-space copying collector is that it uses a
  5578. lot of space and takes a long time to perform the copy, though these
  5579. problems are ameliorated in generational collectors. Racket and
  5580. Scheme programs tend to allocate many small objects and generate a lot
  5581. of garbage, so copying and generational collectors are a good fit.
  5582. Garbage collection is an active research topic, especially concurrent
  5583. garbage collection~\citep{Tene:2011kx}. Researchers are continuously
  5584. developing new techniques and revisiting old
  5585. trade-offs~\citep{Blackburn:2004aa,Jones:2011aa,Shahriyar:2013aa,Cutler:2015aa,Shidal:2015aa,Osterlund:2016aa,Jacek:2019aa,Gamari:2020aa}. Researchers
  5586. meet every year at the International Symposium on Memory Management to
  5587. present these findings.
  5588. \subsection{Graph Copying via Cheney's Algorithm}
  5589. \label{sec:cheney}
  5590. \index{Cheney's algorithm}
  5591. Let us take a closer look at the copying of the live objects. The
  5592. allocated objects and pointers can be viewed as a graph and we need to
  5593. copy the part of the graph that is reachable from the root set. To
  5594. make sure we copy all of the reachable vertices in the graph, we need
  5595. an exhaustive graph traversal algorithm, such as depth-first search or
  5596. breadth-first search~\citep{Moore:1959aa,Cormen:2001uq}. Recall that
  5597. such algorithms take into account the possibility of cycles by marking
  5598. which vertices have already been visited, so as to ensure termination
  5599. of the algorithm. These search algorithms also use a data structure
  5600. such as a stack or queue as a to-do list to keep track of the vertices
  5601. that need to be visited. We use breadth-first search and a trick
  5602. due to \citet{Cheney:1970aa} for simultaneously representing the queue
  5603. and copying tuples into the ToSpace.
  5604. Figure~\ref{fig:cheney} shows several snapshots of the ToSpace as the
  5605. copy progresses. The queue is represented by a chunk of contiguous
  5606. memory at the beginning of the ToSpace, using two pointers to track
  5607. the front and the back of the queue. The algorithm starts by copying
  5608. all tuples that are immediately reachable from the root set into the
  5609. ToSpace to form the initial queue. When we copy a tuple, we mark the
  5610. old tuple to indicate that it has been visited. We discuss how this
  5611. marking is accomplish in Section~\ref{sec:data-rep-gc}. Note that any
  5612. pointers inside the copied tuples in the queue still point back to the
  5613. FromSpace. Once the initial queue has been created, the algorithm
  5614. enters a loop in which it repeatedly processes the tuple at the front
  5615. of the queue and pops it off the queue. To process a tuple, the
  5616. algorithm copies all the tuple that are directly reachable from it to
  5617. the ToSpace, placing them at the back of the queue. The algorithm then
  5618. updates the pointers in the popped tuple so they point to the newly
  5619. copied tuples.
  5620. \begin{figure}[tbp]
  5621. \centering \includegraphics[width=0.9\textwidth]{figs/cheney}
  5622. \caption{Depiction of the Cheney algorithm copying the live tuples.}
  5623. \label{fig:cheney}
  5624. \end{figure}
  5625. Getting back to Figure~\ref{fig:cheney}, in the first step we copy the
  5626. tuple whose second element is $42$ to the back of the queue. The other
  5627. pointer goes to a tuple that has already been copied, so we do not
  5628. need to copy it again, but we do need to update the pointer to the new
  5629. location. This can be accomplished by storing a \emph{forwarding
  5630. pointer} to the new location in the old tuple, back when we initially
  5631. copied the tuple into the ToSpace. This completes one step of the
  5632. algorithm. The algorithm continues in this way until the front of the
  5633. queue is empty, that is, until the front catches up with the back.
  5634. \subsection{Data Representation}
  5635. \label{sec:data-rep-gc}
  5636. The garbage collector places some requirements on the data
  5637. representations used by our compiler. First, the garbage collector
  5638. needs to distinguish between pointers and other kinds of data. There
  5639. are several ways to accomplish this.
  5640. \begin{enumerate}
  5641. \item Attached a tag to each object that identifies what type of
  5642. object it is~\citep{McCarthy:1960dz}.
  5643. \item Store different types of objects in different
  5644. regions~\citep{Steele:1977ab}.
  5645. \item Use type information from the program to either generate
  5646. type-specific code for collecting or to generate tables that can
  5647. guide the
  5648. collector~\citep{Appel:1989aa,Goldberg:1991aa,Diwan:1992aa}.
  5649. \end{enumerate}
  5650. Dynamically typed languages, such as Lisp, need to tag objects
  5651. anyways, so option 1 is a natural choice for those languages.
  5652. However, \LangVec{} is a statically typed language, so it would be
  5653. unfortunate to require tags on every object, especially small and
  5654. pervasive objects like integers and Booleans. Option 3 is the
  5655. best-performing choice for statically typed languages, but comes with
  5656. a relatively high implementation complexity. To keep this chapter
  5657. within a 2-week time budget, we recommend a combination of options 1
  5658. and 2, using separate strategies for the stack and the heap.
  5659. Regarding the stack, we recommend using a separate stack for pointers,
  5660. which we call a \emph{root stack}\index{root stack} (a.k.a. ``shadow
  5661. stack'')~\citep{Siebert:2001aa,Henderson:2002aa,Baker:2009aa}. That
  5662. is, when a local variable needs to be spilled and is of type
  5663. \code{(Vector $\Type_1 \ldots \Type_n$)}, then we put it on the root
  5664. stack instead of the normal procedure call stack. Furthermore, we
  5665. always spill vector-typed variables if they are live during a call to
  5666. the collector, thereby ensuring that no pointers are in registers
  5667. during a collection. Figure~\ref{fig:shadow-stack} reproduces the
  5668. example from Figure~\ref{fig:copying-collector} and contrasts it with
  5669. the data layout using a root stack. The root stack contains the two
  5670. pointers from the regular stack and also the pointer in the second
  5671. register.
  5672. \begin{figure}[tbp]
  5673. \centering \includegraphics[width=0.60\textwidth]{figs/root-stack}
  5674. \caption{Maintaining a root stack to facilitate garbage collection.}
  5675. \label{fig:shadow-stack}
  5676. \end{figure}
  5677. The problem of distinguishing between pointers and other kinds of data
  5678. also arises inside of each tuple on the heap. We solve this problem by
  5679. attaching a tag, an extra 64-bits, to each
  5680. tuple. Figure~\ref{fig:tuple-rep} zooms in on the tags for two of the
  5681. tuples in the example from Figure~\ref{fig:copying-collector}. Note
  5682. that we have drawn the bits in a big-endian way, from right-to-left,
  5683. with bit location 0 (the least significant bit) on the far right,
  5684. which corresponds to the direction of the x86 shifting instructions
  5685. \key{salq} (shift left) and \key{sarq} (shift right). Part of each tag
  5686. is dedicated to specifying which elements of the tuple are pointers,
  5687. the part labeled ``pointer mask''. Within the pointer mask, a 1 bit
  5688. indicates there is a pointer and a 0 bit indicates some other kind of
  5689. data. The pointer mask starts at bit location 7. We have limited
  5690. tuples to a maximum size of 50 elements, so we just need 50 bits for
  5691. the pointer mask. The tag also contains two other pieces of
  5692. information. The length of the tuple (number of elements) is stored in
  5693. bits location 1 through 6. Finally, the bit at location 0 indicates
  5694. whether the tuple has yet to be copied to the ToSpace. If the bit has
  5695. value 1, then this tuple has not yet been copied. If the bit has
  5696. value 0 then the entire tag is a forwarding pointer. (The lower 3 bits
  5697. of a pointer are always zero anyways because our tuples are 8-byte
  5698. aligned.)
  5699. \begin{figure}[tbp]
  5700. \centering \includegraphics[width=0.8\textwidth]{figs/tuple-rep}
  5701. \caption{Representation of tuples in the heap.}
  5702. \label{fig:tuple-rep}
  5703. \end{figure}
  5704. \subsection{Implementation of the Garbage Collector}
  5705. \label{sec:organize-gz}
  5706. \index{prelude}
  5707. An implementation of the copying collector is provided in the
  5708. \code{runtime.c} file. Figure~\ref{fig:gc-header} defines the
  5709. interface to the garbage collector that is used by the compiler. The
  5710. \code{initialize} function creates the FromSpace, ToSpace, and root
  5711. stack and should be called in the prelude of the \code{main}
  5712. function. The arguments of \code{initialize} are the root stack size
  5713. and the heap size. Both need to be multiples of $64$ and $16384$ is a
  5714. good choice for both. The \code{initialize} function puts the address
  5715. of the beginning of the FromSpace into the global variable
  5716. \code{free\_ptr}. The global variable \code{fromspace\_end} points to
  5717. the address that is 1-past the last element of the FromSpace. (We use
  5718. half-open intervals to represent chunks of
  5719. memory~\citep{Dijkstra:1982aa}.) The \code{rootstack\_begin} variable
  5720. points to the first element of the root stack.
  5721. As long as there is room left in the FromSpace, your generated code
  5722. can allocate tuples simply by moving the \code{free\_ptr} forward.
  5723. %
  5724. The amount of room left in FromSpace is the difference between the
  5725. \code{fromspace\_end} and the \code{free\_ptr}. The \code{collect}
  5726. function should be called when there is not enough room left in the
  5727. FromSpace for the next allocation. The \code{collect} function takes
  5728. a pointer to the current top of the root stack (one past the last item
  5729. that was pushed) and the number of bytes that need to be
  5730. allocated. The \code{collect} function performs the copying collection
  5731. and leaves the heap in a state such that the next allocation will
  5732. succeed.
  5733. \begin{figure}[tbp]
  5734. \begin{lstlisting}
  5735. void initialize(uint64_t rootstack_size, uint64_t heap_size);
  5736. void collect(int64_t** rootstack_ptr, uint64_t bytes_requested);
  5737. int64_t* free_ptr;
  5738. int64_t* fromspace_begin;
  5739. int64_t* fromspace_end;
  5740. int64_t** rootstack_begin;
  5741. \end{lstlisting}
  5742. \caption{The compiler's interface to the garbage collector.}
  5743. \label{fig:gc-header}
  5744. \end{figure}
  5745. %% \begin{exercise}
  5746. %% In the file \code{runtime.c} you will find the implementation of
  5747. %% \code{initialize} and a partial implementation of \code{collect}.
  5748. %% The \code{collect} function calls another function, \code{cheney},
  5749. %% to perform the actual copy, and that function is left to the reader
  5750. %% to implement. The following is the prototype for \code{cheney}.
  5751. %% \begin{lstlisting}
  5752. %% static void cheney(int64_t** rootstack_ptr);
  5753. %% \end{lstlisting}
  5754. %% The parameter \code{rootstack\_ptr} is a pointer to the top of the
  5755. %% rootstack (which is an array of pointers). The \code{cheney} function
  5756. %% also communicates with \code{collect} through the global
  5757. %% variables \code{fromspace\_begin} and \code{fromspace\_end}
  5758. %% mentioned in Figure~\ref{fig:gc-header} as well as the pointers for
  5759. %% the ToSpace:
  5760. %% \begin{lstlisting}
  5761. %% static int64_t* tospace_begin;
  5762. %% static int64_t* tospace_end;
  5763. %% \end{lstlisting}
  5764. %% The job of the \code{cheney} function is to copy all the live
  5765. %% objects (reachable from the root stack) into the ToSpace, update
  5766. %% \code{free\_ptr} to point to the next unused spot in the ToSpace,
  5767. %% update the root stack so that it points to the objects in the
  5768. %% ToSpace, and finally to swap the global pointers for the FromSpace
  5769. %% and ToSpace.
  5770. %% \end{exercise}
  5771. %% \section{Compiler Passes}
  5772. %% \label{sec:code-generation-gc}
  5773. The introduction of garbage collection has a non-trivial impact on our
  5774. compiler passes. We introduce a new compiler pass named
  5775. \code{expose-allocation}. We make
  5776. significant changes to \code{select-instructions},
  5777. \code{build-interference}, \code{allocate-registers}, and
  5778. \code{print-x86} and make minor changes in several more passes. The
  5779. following program will serve as our running example. It creates two
  5780. tuples, one nested inside the other. Both tuples have length one. The
  5781. program accesses the element in the inner tuple tuple via two vector
  5782. references.
  5783. % tests/s2_17.rkt
  5784. \begin{lstlisting}
  5785. (vector-ref (vector-ref (vector (vector 42)) 0) 0)
  5786. \end{lstlisting}
  5787. \section{Shrink}
  5788. \label{sec:shrink-Rvec}
  5789. Recall that the \code{shrink} pass translates the primitives operators
  5790. into a smaller set of primitives. Because this pass comes after type
  5791. checking, but before the passes that require the type information in
  5792. the \code{HasType} AST nodes, the \code{shrink} pass must be modified
  5793. to wrap \code{HasType} around each AST node that it generates.
  5794. \section{Expose Allocation}
  5795. \label{sec:expose-allocation}
  5796. The pass \code{expose-allocation} lowers the \code{vector} creation
  5797. form into a conditional call to the collector followed by the
  5798. allocation. We choose to place the \code{expose-allocation} pass
  5799. before \code{remove-complex-opera*} because the code generated by
  5800. \code{expose-allocation} contains complex operands. We also place
  5801. \code{expose-allocation} before \code{explicate-control} because
  5802. \code{expose-allocation} introduces new variables using \code{let},
  5803. but \code{let} is gone after \code{explicate-control}.
  5804. The output of \code{expose-allocation} is a language \LangAlloc{} that
  5805. extends \LangVec{} with the three new forms that we use in the translation
  5806. of the \code{vector} form.
  5807. \[
  5808. \begin{array}{lcl}
  5809. \Exp &::=& \cdots
  5810. \mid (\key{collect} \,\itm{int})
  5811. \mid (\key{allocate} \,\itm{int}\,\itm{type})
  5812. \mid (\key{global-value} \,\itm{name})
  5813. \end{array}
  5814. \]
  5815. The $(\key{collect}\,n)$ form runs the garbage collector, requesting
  5816. $n$ bytes. It will become a call to the \code{collect} function in
  5817. \code{runtime.c} in \code{select-instructions}. The
  5818. $(\key{allocate}\,n\,T)$ form creates an tuple of $n$ elements.
  5819. \index{allocate}
  5820. The $T$ parameter is the type of the tuple: \code{(Vector $\Type_1 \ldots
  5821. \Type_n$)} where $\Type_i$ is the type of the $i$th element in the
  5822. tuple. The $(\key{global-value}\,\itm{name})$ form reads the value of
  5823. a global variable, such as \code{free\_ptr}.
  5824. In the following, we show the transformation for the \code{vector}
  5825. form into 1) a sequence of let-bindings for the initializing
  5826. expressions, 2) a conditional call to \code{collect}, 3) a call to
  5827. \code{allocate}, and 4) the initialization of the vector. In the
  5828. following, \itm{len} refers to the length of the vector and
  5829. \itm{bytes} is how many total bytes need to be allocated for the
  5830. vector, which is 8 for the tag plus \itm{len} times 8.
  5831. \begin{lstlisting}
  5832. (has-type (vector |$e_0 \ldots e_{n-1}$|) |\itm{type}|)
  5833. |$\Longrightarrow$|
  5834. (let ([|$x_0$| |$e_0$|]) ... (let ([|$x_{n-1}$| |$e_{n-1}$|])
  5835. (let ([_ (if (< (+ (global-value free_ptr) |\itm{bytes}|)
  5836. (global-value fromspace_end))
  5837. (void)
  5838. (collect |\itm{bytes}|))])
  5839. (let ([|$v$| (allocate |\itm{len}| |\itm{type}|)])
  5840. (let ([_ (vector-set! |$v$| |$0$| |$x_0$|)]) ...
  5841. (let ([_ (vector-set! |$v$| |$n-1$| |$x_{n-1}$|)])
  5842. |$v$|) ... )))) ...)
  5843. \end{lstlisting}
  5844. In the above, we suppressed all of the \code{has-type} forms in the
  5845. output for the sake of readability. The placement of the initializing
  5846. expressions $e_0,\ldots,e_{n-1}$ prior to the \code{allocate} and the
  5847. sequence of \code{vector-set!} is important, as those expressions may
  5848. trigger garbage collection and we cannot have an allocated but
  5849. uninitialized tuple on the heap during a collection.
  5850. Figure~\ref{fig:expose-alloc-output} shows the output of the
  5851. \code{expose-allocation} pass on our running example.
  5852. \begin{figure}[tbp]
  5853. % tests/s2_17.rkt
  5854. \begin{lstlisting}
  5855. (vector-ref
  5856. (vector-ref
  5857. (let ([vecinit7976
  5858. (let ([vecinit7972 42])
  5859. (let ([collectret7974
  5860. (if (< (+ (global-value free_ptr) 16)
  5861. (global-value fromspace_end))
  5862. (void)
  5863. (collect 16)
  5864. )])
  5865. (let ([alloc7971 (allocate 1 (Vector Integer))])
  5866. (let ([initret7973 (vector-set! alloc7971 0 vecinit7972)])
  5867. alloc7971)
  5868. )
  5869. )
  5870. )
  5871. ])
  5872. (let ([collectret7978
  5873. (if (< (+ (global-value free_ptr) 16)
  5874. (global-value fromspace_end))
  5875. (void)
  5876. (collect 16)
  5877. )])
  5878. (let ([alloc7975 (allocate 1 (Vector (Vector Integer)))])
  5879. (let ([initret7977 (vector-set! alloc7975 0 vecinit7976)])
  5880. alloc7975)
  5881. )
  5882. )
  5883. )
  5884. 0)
  5885. 0)
  5886. \end{lstlisting}
  5887. \caption{Output of the \code{expose-allocation} pass, minus
  5888. all of the \code{has-type} forms.}
  5889. \label{fig:expose-alloc-output}
  5890. \end{figure}
  5891. \section{Remove Complex Operands}
  5892. \label{sec:remove-complex-opera-Rvec}
  5893. The new forms \code{collect}, \code{allocate}, and \code{global-value}
  5894. should all be treated as complex operands.
  5895. %% A new case for
  5896. %% \code{HasType} is needed and the case for \code{Prim} needs to be
  5897. %% handled carefully to prevent the \code{Prim} node from being separated
  5898. %% from its enclosing \code{HasType}.
  5899. Figure~\ref{fig:r3-anf-syntax}
  5900. shows the grammar for the output language \LangVecANF{} of this
  5901. pass, which is \LangVec{} in administrative normal form.
  5902. \begin{figure}[tp]
  5903. \centering
  5904. \fbox{
  5905. \begin{minipage}{0.96\textwidth}
  5906. \small
  5907. \[
  5908. \begin{array}{rcl}
  5909. \Atm &::=& \gray{ \INT{\Int} \mid \VAR{\Var} \mid \BOOL{\itm{bool}} }
  5910. \mid \VOID{} \\
  5911. \Exp &::=& \gray{ \Atm \mid \READ{} } \\
  5912. &\mid& \gray{ \NEG{\Atm} \mid \ADD{\Atm}{\Atm} } \\
  5913. &\mid& \gray{ \LET{\Var}{\Exp}{\Exp} } \\
  5914. &\mid& \gray{ \UNIOP{\key{'not}}{\Atm} } \\
  5915. &\mid& \gray{ \BINOP{\itm{cmp}}{\Atm}{\Atm} \mid \IF{\Exp}{\Exp}{\Exp} }\\
  5916. &\mid& \LP\key{Collect}~\Int\RP \mid \LP\key{Allocate}~\Int~\Type\RP
  5917. \mid \LP\key{GlobalValue}~\Var\RP\\
  5918. % &\mid& \LP\key{HasType}~\Exp~\Type\RP \\
  5919. R^{\dagger}_3 &::=& \gray{ \PROGRAM{\code{'()}}{\Exp} }
  5920. \end{array}
  5921. \]
  5922. \end{minipage}
  5923. }
  5924. \caption{\LangVecANF{} is \LangVec{} in administrative normal form (ANF).}
  5925. \label{fig:r3-anf-syntax}
  5926. \end{figure}
  5927. \section{Explicate Control and the \LangCVec{} language}
  5928. \label{sec:explicate-control-r3}
  5929. \begin{figure}[tp]
  5930. \fbox{
  5931. \begin{minipage}{0.96\textwidth}
  5932. \small
  5933. \[
  5934. \begin{array}{lcl}
  5935. \Atm &::=& \gray{ \INT{\Int} \mid \VAR{\Var} \mid \BOOL{\itm{bool}} }\\
  5936. \itm{cmp} &::= & \gray{ \key{eq?} \mid \key{<} } \\
  5937. \Exp &::= & \gray{ \Atm \mid \READ{} } \\
  5938. &\mid& \gray{ \NEG{\Atm} \mid \ADD{\Atm}{\Atm} }\\
  5939. &\mid& \gray{ \UNIOP{\key{not}}{\Atm} \mid \BINOP{\itm{cmp}}{\Atm}{\Atm} } \\
  5940. &\mid& \LP\key{Allocate} \,\itm{int}\,\itm{type}\RP \\
  5941. &\mid& \BINOP{\key{'vector-ref}}{\Atm}{\INT{\Int}} \\
  5942. &\mid& \LP\key{Prim}~\key{'vector-set!}\,\LP\Atm\,\INT{\Int}\,\Atm\RP\RP\\
  5943. &\mid& \LP\key{GlobalValue} \,\Var\RP \mid \LP\key{Void}\RP\\
  5944. \Stmt &::=& \gray{ \ASSIGN{\VAR{\Var}}{\Exp} }
  5945. \mid \LP\key{Collect} \,\itm{int}\RP \\
  5946. \Tail &::= & \gray{ \RETURN{\Exp} \mid \SEQ{\Stmt}{\Tail}
  5947. \mid \GOTO{\itm{label}} } \\
  5948. &\mid& \gray{ \IFSTMT{\BINOP{\itm{cmp}}{\Atm}{\Atm}}{\GOTO{\itm{label}}}{\GOTO{\itm{label}}} }\\
  5949. \LangCVec{} & ::= & \gray{ \CPROGRAM{\itm{info}}{\LP\LP\itm{label}\,\key{.}\,\Tail\RP\ldots\RP} }
  5950. \end{array}
  5951. \]
  5952. \end{minipage}
  5953. }
  5954. \caption{The abstract syntax of \LangCVec{}, extending \LangCIf{}
  5955. (Figure~\ref{fig:c1-syntax}).}
  5956. \label{fig:c2-syntax}
  5957. \end{figure}
  5958. The output of \code{explicate-control} is a program in the
  5959. intermediate language \LangCVec{}, whose abstract syntax is defined in
  5960. Figure~\ref{fig:c2-syntax}. (The concrete syntax is defined in
  5961. Figure~\ref{fig:c2-concrete-syntax} of the Appendix.) The new forms
  5962. of \LangCVec{} include the \key{allocate}, \key{vector-ref}, and
  5963. \key{vector-set!}, and \key{global-value} expressions and the
  5964. \code{collect} statement. The \code{explicate-control} pass can treat
  5965. these new forms much like the other expression forms that we've
  5966. already encoutered.
  5967. \section{Select Instructions and the \LangXASTGlobal{} Language}
  5968. \label{sec:select-instructions-gc}
  5969. \index{instruction selection}
  5970. %% void (rep as zero)
  5971. %% allocate
  5972. %% collect (callq collect)
  5973. %% vector-ref
  5974. %% vector-set!
  5975. %% global (postpone)
  5976. In this pass we generate x86 code for most of the new operations that
  5977. were needed to compile tuples, including \code{Allocate},
  5978. \code{Collect}, \code{vector-ref}, \code{vector-set!}, and
  5979. \code{void}. We compile \code{GlobalValue} to \code{Global} because
  5980. the later has a different concrete syntax (see
  5981. Figures~\ref{fig:x86-2-concrete} and \ref{fig:x86-2}).
  5982. \index{x86}
  5983. The \code{vector-ref} and \code{vector-set!} forms translate into
  5984. \code{movq} instructions. (The plus one in the offset is to get past
  5985. the tag at the beginning of the tuple representation.)
  5986. \begin{lstlisting}
  5987. |$\itm{lhs}$| = (vector-ref |$\itm{vec}$| |$n$|);
  5988. |$\Longrightarrow$|
  5989. movq |$\itm{vec}'$|, %r11
  5990. movq |$8(n+1)$|(%r11), |$\itm{lhs'}$|
  5991. |$\itm{lhs}$| = (vector-set! |$\itm{vec}$| |$n$| |$\itm{arg}$|);
  5992. |$\Longrightarrow$|
  5993. movq |$\itm{vec}'$|, %r11
  5994. movq |$\itm{arg}'$|, |$8(n+1)$|(%r11)
  5995. movq $0, |$\itm{lhs'}$|
  5996. \end{lstlisting}
  5997. The $\itm{lhs}'$, $\itm{vec}'$, and $\itm{arg}'$ are obtained by
  5998. translating $\itm{vec}$ and $\itm{arg}$ to x86. The move of $\itm{vec}'$ to
  5999. register \code{r11} ensures that offset expression
  6000. \code{$-8(n+1)$(\%r11)} contains a register operand. This requires
  6001. removing \code{r11} from consideration by the register allocating.
  6002. Why not use \code{rax} instead of \code{r11}? Suppose we instead used
  6003. \code{rax}. Then the generated code for \code{vector-set!} would be
  6004. \begin{lstlisting}
  6005. movq |$\itm{vec}'$|, %rax
  6006. movq |$\itm{arg}'$|, |$8(n+1)$|(%rax)
  6007. movq $0, |$\itm{lhs}'$|
  6008. \end{lstlisting}
  6009. Next, suppose that $\itm{arg}'$ ends up as a stack location, so
  6010. \code{patch-instructions} would insert a move through \code{rax}
  6011. as follows.
  6012. \begin{lstlisting}
  6013. movq |$\itm{vec}'$|, %rax
  6014. movq |$\itm{arg}'$|, %rax
  6015. movq %rax, |$8(n+1)$|(%rax)
  6016. movq $0, |$\itm{lhs}'$|
  6017. \end{lstlisting}
  6018. But the above sequence of instructions does not work because we're
  6019. trying to use \code{rax} for two different values ($\itm{vec}'$ and
  6020. $\itm{arg}'$) at the same time!
  6021. We compile the \code{allocate} form to operations on the
  6022. \code{free\_ptr}, as shown below. The address in the \code{free\_ptr}
  6023. is the next free address in the FromSpace, so we copy it into
  6024. \code{r11} and then move it forward by enough space for the tuple
  6025. being allocated, which is $8(\itm{len}+1)$ bytes because each element
  6026. is 8 bytes (64 bits) and we use 8 bytes for the tag. We then
  6027. initialize the \itm{tag} and finally copy the address in \code{r11} to
  6028. the left-hand-side. Refer to Figure~\ref{fig:tuple-rep} to see how the
  6029. tag is organized. We recommend using the Racket operations
  6030. \code{bitwise-ior} and \code{arithmetic-shift} to compute the tag
  6031. during compilation. The type annotation in the \code{vector} form is
  6032. used to determine the pointer mask region of the tag.
  6033. \begin{lstlisting}
  6034. |$\itm{lhs}$| = (allocate |$\itm{len}$| (Vector |$\itm{type} \ldots$|));
  6035. |$\Longrightarrow$|
  6036. movq free_ptr(%rip), %r11
  6037. addq |$8(\itm{len}+1)$|, free_ptr(%rip)
  6038. movq $|$\itm{tag}$|, 0(%r11)
  6039. movq %r11, |$\itm{lhs}'$|
  6040. \end{lstlisting}
  6041. The \code{collect} form is compiled to a call to the \code{collect}
  6042. function in the runtime. The arguments to \code{collect} are 1) the
  6043. top of the root stack and 2) the number of bytes that need to be
  6044. allocated. We use another dedicated register, \code{r15}, to
  6045. store the pointer to the top of the root stack. So \code{r15} is not
  6046. available for use by the register allocator.
  6047. \begin{lstlisting}
  6048. (collect |$\itm{bytes}$|)
  6049. |$\Longrightarrow$|
  6050. movq %r15, %rdi
  6051. movq $|\itm{bytes}|, %rsi
  6052. callq collect
  6053. \end{lstlisting}
  6054. \begin{figure}[tp]
  6055. \fbox{
  6056. \begin{minipage}{0.96\textwidth}
  6057. \[
  6058. \begin{array}{lcl}
  6059. \Arg &::=& \gray{ \key{\$}\Int \mid \key{\%}\Reg \mid \Int\key{(}\key{\%}\Reg\key{)} \mid \key{\%}\itm{bytereg} } \mid \Var \key{(\%rip)} \\
  6060. \LangXGlobal{} &::= & \gray{ \key{.globl main} }\\
  6061. & & \gray{ \key{main:} \; \Instr\ldots }
  6062. \end{array}
  6063. \]
  6064. \end{minipage}
  6065. }
  6066. \caption{The concrete syntax of \LangXGlobal{} (extends \LangXASTIf{} of Figure~\ref{fig:x86-1-concrete}).}
  6067. \label{fig:x86-2-concrete}
  6068. \end{figure}
  6069. \begin{figure}[tp]
  6070. \fbox{
  6071. \begin{minipage}{0.96\textwidth}
  6072. \small
  6073. \[
  6074. \begin{array}{lcl}
  6075. \Arg &::=& \gray{ \INT{\Int} \mid \REG{\Reg} \mid \DEREF{\Reg}{\Int}
  6076. \mid \BYTEREG{\Reg}} \\
  6077. &\mid& (\key{Global}~\Var) \\
  6078. \LangXASTGlobal{} &::= & \gray{ \XPROGRAM{\itm{info}}{\LP\LP\itm{label} \,\key{.}\, \Block \RP\ldots\RP} }
  6079. \end{array}
  6080. \]
  6081. \end{minipage}
  6082. }
  6083. \caption{The abstract syntax of \LangXASTGlobal{} (extends \LangXASTIf{} of Figure~\ref{fig:x86-1}).}
  6084. \label{fig:x86-2}
  6085. \end{figure}
  6086. The concrete and abstract syntax of the \LangXASTGlobal{} language is
  6087. defined in Figures~\ref{fig:x86-2-concrete} and \ref{fig:x86-2}. It
  6088. differs from \LangXASTIf{} just in the addition of the form for global
  6089. variables.
  6090. %
  6091. Figure~\ref{fig:select-instr-output-gc} shows the output of the
  6092. \code{select-instructions} pass on the running example.
  6093. \begin{figure}[tbp]
  6094. \centering
  6095. % tests/s2_17.rkt
  6096. \begin{minipage}[t]{0.5\textwidth}
  6097. \begin{lstlisting}[basicstyle=\ttfamily\scriptsize]
  6098. block35:
  6099. movq free_ptr(%rip), alloc9024
  6100. addq $16, free_ptr(%rip)
  6101. movq alloc9024, %r11
  6102. movq $131, 0(%r11)
  6103. movq alloc9024, %r11
  6104. movq vecinit9025, 8(%r11)
  6105. movq $0, initret9026
  6106. movq alloc9024, %r11
  6107. movq 8(%r11), tmp9034
  6108. movq tmp9034, %r11
  6109. movq 8(%r11), %rax
  6110. jmp conclusion
  6111. block36:
  6112. movq $0, collectret9027
  6113. jmp block35
  6114. block38:
  6115. movq free_ptr(%rip), alloc9020
  6116. addq $16, free_ptr(%rip)
  6117. movq alloc9020, %r11
  6118. movq $3, 0(%r11)
  6119. movq alloc9020, %r11
  6120. movq vecinit9021, 8(%r11)
  6121. movq $0, initret9022
  6122. movq alloc9020, vecinit9025
  6123. movq free_ptr(%rip), tmp9031
  6124. movq tmp9031, tmp9032
  6125. addq $16, tmp9032
  6126. movq fromspace_end(%rip), tmp9033
  6127. cmpq tmp9033, tmp9032
  6128. jl block36
  6129. jmp block37
  6130. block37:
  6131. movq %r15, %rdi
  6132. movq $16, %rsi
  6133. callq 'collect
  6134. jmp block35
  6135. block39:
  6136. movq $0, collectret9023
  6137. jmp block38
  6138. \end{lstlisting}
  6139. \end{minipage}
  6140. \begin{minipage}[t]{0.45\textwidth}
  6141. \begin{lstlisting}[basicstyle=\ttfamily\scriptsize]
  6142. start:
  6143. movq $42, vecinit9021
  6144. movq free_ptr(%rip), tmp9028
  6145. movq tmp9028, tmp9029
  6146. addq $16, tmp9029
  6147. movq fromspace_end(%rip), tmp9030
  6148. cmpq tmp9030, tmp9029
  6149. jl block39
  6150. jmp block40
  6151. block40:
  6152. movq %r15, %rdi
  6153. movq $16, %rsi
  6154. callq 'collect
  6155. jmp block38
  6156. \end{lstlisting}
  6157. \end{minipage}
  6158. \caption{Output of the \code{select-instructions} pass.}
  6159. \label{fig:select-instr-output-gc}
  6160. \end{figure}
  6161. \clearpage
  6162. \section{Register Allocation}
  6163. \label{sec:reg-alloc-gc}
  6164. \index{register allocation}
  6165. As discussed earlier in this chapter, the garbage collector needs to
  6166. access all the pointers in the root set, that is, all variables that
  6167. are vectors. It will be the responsibility of the register allocator
  6168. to make sure that:
  6169. \begin{enumerate}
  6170. \item the root stack is used for spilling vector-typed variables, and
  6171. \item if a vector-typed variable is live during a call to the
  6172. collector, it must be spilled to ensure it is visible to the
  6173. collector.
  6174. \end{enumerate}
  6175. The later responsibility can be handled during construction of the
  6176. interference graph, by adding interference edges between the call-live
  6177. vector-typed variables and all the callee-saved registers. (They
  6178. already interfere with the caller-saved registers.) The type
  6179. information for variables is in the \code{Program} form, so we
  6180. recommend adding another parameter to the \code{build-interference}
  6181. function to communicate this alist.
  6182. The spilling of vector-typed variables to the root stack can be
  6183. handled after graph coloring, when choosing how to assign the colors
  6184. (integers) to registers and stack locations. The \code{Program} output
  6185. of this pass changes to also record the number of spills to the root
  6186. stack.
  6187. % build-interference
  6188. %
  6189. % callq
  6190. % extra parameter for var->type assoc. list
  6191. % update 'program' and 'if'
  6192. % allocate-registers
  6193. % allocate spilled vectors to the rootstack
  6194. % don't change color-graph
  6195. \section{Print x86}
  6196. \label{sec:print-x86-gc}
  6197. \index{prelude}\index{conclusion}
  6198. Figure~\ref{fig:print-x86-output-gc} shows the output of the
  6199. \code{print-x86} pass on the running example. In the prelude and
  6200. conclusion of the \code{main} function, we treat the root stack very
  6201. much like the regular stack in that we move the root stack pointer
  6202. (\code{r15}) to make room for the spills to the root stack, except
  6203. that the root stack grows up instead of down. For the running
  6204. example, there was just one spill so we increment \code{r15} by 8
  6205. bytes. In the conclusion we decrement \code{r15} by 8 bytes.
  6206. One issue that deserves special care is that there may be a call to
  6207. \code{collect} prior to the initializing assignments for all the
  6208. variables in the root stack. We do not want the garbage collector to
  6209. accidentally think that some uninitialized variable is a pointer that
  6210. needs to be followed. Thus, we zero-out all locations on the root
  6211. stack in the prelude of \code{main}. In
  6212. Figure~\ref{fig:print-x86-output-gc}, the instruction
  6213. %
  6214. \lstinline{movq $0, (%r15)}
  6215. %
  6216. accomplishes this task. The garbage collector tests each root to see
  6217. if it is null prior to dereferencing it.
  6218. \begin{figure}[htbp]
  6219. \begin{minipage}[t]{0.5\textwidth}
  6220. \begin{lstlisting}[basicstyle=\ttfamily\scriptsize]
  6221. block35:
  6222. movq free_ptr(%rip), %rcx
  6223. addq $16, free_ptr(%rip)
  6224. movq %rcx, %r11
  6225. movq $131, 0(%r11)
  6226. movq %rcx, %r11
  6227. movq -8(%r15), %rax
  6228. movq %rax, 8(%r11)
  6229. movq $0, %rdx
  6230. movq %rcx, %r11
  6231. movq 8(%r11), %rcx
  6232. movq %rcx, %r11
  6233. movq 8(%r11), %rax
  6234. jmp conclusion
  6235. block36:
  6236. movq $0, %rcx
  6237. jmp block35
  6238. block38:
  6239. movq free_ptr(%rip), %rcx
  6240. addq $16, free_ptr(%rip)
  6241. movq %rcx, %r11
  6242. movq $3, 0(%r11)
  6243. movq %rcx, %r11
  6244. movq %rbx, 8(%r11)
  6245. movq $0, %rdx
  6246. movq %rcx, -8(%r15)
  6247. movq free_ptr(%rip), %rcx
  6248. addq $16, %rcx
  6249. movq fromspace_end(%rip), %rdx
  6250. cmpq %rdx, %rcx
  6251. jl block36
  6252. movq %r15, %rdi
  6253. movq $16, %rsi
  6254. callq collect
  6255. jmp block35
  6256. block39:
  6257. movq $0, %rcx
  6258. jmp block38
  6259. \end{lstlisting}
  6260. \end{minipage}
  6261. \begin{minipage}[t]{0.45\textwidth}
  6262. \begin{lstlisting}[basicstyle=\ttfamily\scriptsize]
  6263. start:
  6264. movq $42, %rbx
  6265. movq free_ptr(%rip), %rdx
  6266. addq $16, %rdx
  6267. movq fromspace_end(%rip), %rcx
  6268. cmpq %rcx, %rdx
  6269. jl block39
  6270. movq %r15, %rdi
  6271. movq $16, %rsi
  6272. callq collect
  6273. jmp block38
  6274. .globl main
  6275. main:
  6276. pushq %rbp
  6277. movq %rsp, %rbp
  6278. pushq %r13
  6279. pushq %r12
  6280. pushq %rbx
  6281. pushq %r14
  6282. subq $0, %rsp
  6283. movq $16384, %rdi
  6284. movq $16384, %rsi
  6285. callq initialize
  6286. movq rootstack_begin(%rip), %r15
  6287. movq $0, (%r15)
  6288. addq $8, %r15
  6289. jmp start
  6290. conclusion:
  6291. subq $8, %r15
  6292. addq $0, %rsp
  6293. popq %r14
  6294. popq %rbx
  6295. popq %r12
  6296. popq %r13
  6297. popq %rbp
  6298. retq
  6299. \end{lstlisting}
  6300. \end{minipage}
  6301. \caption{Output of the \code{print-x86} pass.}
  6302. \label{fig:print-x86-output-gc}
  6303. \end{figure}
  6304. \begin{figure}[p]
  6305. \begin{tikzpicture}[baseline=(current bounding box.center)]
  6306. \node (Rvec) at (0,2) {\large \LangVec{}};
  6307. \node (Rvec-2) at (3,2) {\large \LangVec{}};
  6308. \node (Rvec-3) at (6,2) {\large \LangVec{}};
  6309. \node (Rvec-4) at (9,2) {\large \LangVec{}};
  6310. \node (Rvec-5) at (12,2) {\large \LangAlloc{}};
  6311. \node (C2-4) at (3,0) {\large \LangCVec{}};
  6312. \node (x86-2) at (3,-2) {\large \LangXGlobalVar{}};
  6313. \node (x86-2-1) at (3,-4) {\large \LangXGlobalVar{}};
  6314. \node (x86-2-2) at (6,-4) {\large \LangXGlobalVar{}};
  6315. \node (x86-3) at (6,-2) {\large \LangXGlobalVar{}};
  6316. \node (x86-4) at (9,-2) {\large \LangXGlobal{}};
  6317. \node (x86-5) at (9,-4) {\large \LangXGlobal{}};
  6318. %\path[->,bend left=15] (Rvec) edge [above] node {\ttfamily\footnotesize type-check} (Rvec-2);
  6319. \path[->,bend left=15] (Rvec) edge [above] node {\ttfamily\footnotesize shrink} (Rvec-2);
  6320. \path[->,bend left=15] (Rvec-2) edge [above] node {\ttfamily\footnotesize uniquify} (Rvec-3);
  6321. \path[->,bend left=15] (Rvec-3) edge [above] node {\ttfamily\footnotesize expose-alloc.} (Rvec-4);
  6322. \path[->,bend left=15] (Rvec-4) edge [above] node {\ttfamily\footnotesize remove-complex.} (Rvec-5);
  6323. \path[->,bend left=20] (Rvec-5) edge [left] node {\ttfamily\footnotesize explicate-control} (C2-4);
  6324. \path[->,bend left=15] (C2-4) edge [right] node {\ttfamily\footnotesize select-instr.} (x86-2);
  6325. \path[->,bend right=15] (x86-2) edge [left] node {\ttfamily\footnotesize uncover-live} (x86-2-1);
  6326. \path[->,bend right=15] (x86-2-1) edge [below] node {\ttfamily\footnotesize build-inter.} (x86-2-2);
  6327. \path[->,bend right=15] (x86-2-2) edge [right] node {\ttfamily\footnotesize allocate-reg.} (x86-3);
  6328. \path[->,bend left=15] (x86-3) edge [above] node {\ttfamily\footnotesize patch-instr.} (x86-4);
  6329. \path[->,bend left=15] (x86-4) edge [right] node {\ttfamily\footnotesize print-x86} (x86-5);
  6330. \end{tikzpicture}
  6331. \caption{Diagram of the passes for \LangVec{}, a language with tuples.}
  6332. \label{fig:Rvec-passes}
  6333. \end{figure}
  6334. Figure~\ref{fig:Rvec-passes} gives an overview of all the passes needed
  6335. for the compilation of \LangVec{}.
  6336. \section{Challenge: Simple Structures}
  6337. \label{sec:simple-structures}
  6338. \index{struct}
  6339. \index{structure}
  6340. Figure~\ref{fig:r3s-concrete-syntax} defines the concrete syntax for
  6341. $R^s_3$, which extends $R^3$ with support for simple structures.
  6342. Recall that a \code{struct} in Typed Racket is a user-defined data
  6343. type that contains named fields and that is heap allocated, similar to
  6344. a vector. The following is an example of a structure definition, in
  6345. this case the definition of a \code{point} type.
  6346. \begin{lstlisting}
  6347. (struct point ([x : Integer] [y : Integer]) #:mutable)
  6348. \end{lstlisting}
  6349. \begin{figure}[tbp]
  6350. \centering
  6351. \fbox{
  6352. \begin{minipage}{0.96\textwidth}
  6353. \[
  6354. \begin{array}{lcl}
  6355. \Type &::=& \gray{\key{Integer} \mid \key{Boolean}
  6356. \mid (\key{Vector}\;\Type \ldots) \mid \key{Void} } \mid \Var \\
  6357. \itm{cmp} &::= & \gray{ \key{eq?} \mid \key{<} \mid \key{<=} \mid \key{>} \mid \key{>=} } \\
  6358. \Exp &::=& \gray{ \Int \mid (\key{read}) \mid (\key{-}\;\Exp) \mid (\key{+} \; \Exp\;\Exp) \mid (\key{-}\;\Exp\;\Exp) } \\
  6359. &\mid& \gray{ \Var \mid (\key{let}~([\Var~\Exp])~\Exp) }\\
  6360. &\mid& \gray{ \key{\#t} \mid \key{\#f}
  6361. \mid (\key{and}\;\Exp\;\Exp)
  6362. \mid (\key{or}\;\Exp\;\Exp)
  6363. \mid (\key{not}\;\Exp) } \\
  6364. &\mid& \gray{ (\itm{cmp}\;\Exp\;\Exp)
  6365. \mid (\key{if}~\Exp~\Exp~\Exp) } \\
  6366. &\mid& \gray{ (\key{vector}\;\Exp \ldots)
  6367. \mid (\key{vector-ref}\;\Exp\;\Int) } \\
  6368. &\mid& \gray{ (\key{vector-set!}\;\Exp\;\Int\;\Exp) }\\
  6369. &\mid& \gray{ (\key{void}) } \mid (\Var\;\Exp \ldots)\\
  6370. \Def &::=& (\key{struct}\; \Var \; ([\Var \,\key{:}\, \Type] \ldots)\; \code{\#:mutable})\\
  6371. R^s_3 &::=& \Def \ldots \; \Exp
  6372. \end{array}
  6373. \]
  6374. \end{minipage}
  6375. }
  6376. \caption{The concrete syntax of $R^s_3$, extending \LangVec{}
  6377. (Figure~\ref{fig:r3-concrete-syntax}).}
  6378. \label{fig:r3s-concrete-syntax}
  6379. \end{figure}
  6380. An instance of a structure is created using function call syntax, with
  6381. the name of the structure in the function position:
  6382. \begin{lstlisting}
  6383. (point 7 12)
  6384. \end{lstlisting}
  6385. Function-call syntax is also used to read the value in a field of a
  6386. structure. The function name is formed by the structure name, a dash,
  6387. and the field name. The following example uses \code{point-x} and
  6388. \code{point-y} to access the \code{x} and \code{y} fields of two point
  6389. instances.
  6390. \begin{center}
  6391. \begin{lstlisting}
  6392. (let ([pt1 (point 7 12)])
  6393. (let ([pt2 (point 4 3)])
  6394. (+ (- (point-x pt1) (point-x pt2))
  6395. (- (point-y pt1) (point-y pt2)))))
  6396. \end{lstlisting}
  6397. \end{center}
  6398. Similarly, to write to a field of a structure, use its set function,
  6399. whose name starts with \code{set-}, followed by the structure name,
  6400. then a dash, then the field name, and concluded with an exclamation
  6401. mark. The following example uses \code{set-point-x!} to change the
  6402. \code{x} field from \code{7} to \code{42}.
  6403. \begin{center}
  6404. \begin{lstlisting}
  6405. (let ([pt (point 7 12)])
  6406. (let ([_ (set-point-x! pt 42)])
  6407. (point-x pt)))
  6408. \end{lstlisting}
  6409. \end{center}
  6410. \begin{exercise}\normalfont
  6411. Extend your compiler with support for simple structures, compiling
  6412. $R^s_3$ to x86 assembly code. Create five new test cases that use
  6413. structures and test your compiler.
  6414. \end{exercise}
  6415. \section{Challenge: Generational Collection}
  6416. The copying collector described in Section~\ref{sec:GC} can incur
  6417. significant runtime overhead because the call to \code{collect} takes
  6418. time proportional to all of the live data. One way to reduce this
  6419. overhead is to reduce how much data is inspected in each call to
  6420. \code{collect}. In particular, researchers have observed that recently
  6421. allocated data is more likely to become garbage then data that has
  6422. survived one or more previous calls to \code{collect}. This insight
  6423. motivated the creation of \emph{generational garbage collectors}
  6424. \index{generational garbage collector} that
  6425. 1) segregates data according to its age into two or more generations,
  6426. 2) allocates less space for younger generations, so collecting them is
  6427. faster, and more space for the older generations, and 3) performs
  6428. collection on the younger generations more frequently then for older
  6429. generations~\citep{Wilson:1992fk}.
  6430. For this challenge assignment, the goal is to adapt the copying
  6431. collector implemented in \code{runtime.c} to use two generations, one
  6432. for young data and one for old data. Each generation consists of a
  6433. FromSpace and a ToSpace. The following is a sketch of how to adapt the
  6434. \code{collect} function to use the two generations.
  6435. \begin{enumerate}
  6436. \item Copy the young generation's FromSpace to its ToSpace then switch
  6437. the role of the ToSpace and FromSpace
  6438. \item If there is enough space for the requested number of bytes in
  6439. the young FromSpace, then return from \code{collect}.
  6440. \item If there is not enough space in the young FromSpace for the
  6441. requested bytes, then move the data from the young generation to the
  6442. old one with the following steps:
  6443. \begin{enumerate}
  6444. \item If there is enough room in the old FromSpace, copy the young
  6445. FromSpace to the old FromSpace and then return.
  6446. \item If there is not enough room in the old FromSpace, then collect
  6447. the old generation by copying the old FromSpace to the old ToSpace
  6448. and swap the roles of the old FromSpace and ToSpace.
  6449. \item If there is enough room now, copy the young FromSpace to the
  6450. old FromSpace and return. Otherwise, allocate a larger FromSpace
  6451. and ToSpace for the old generation. Copy the young FromSpace and
  6452. the old FromSpace into the larger FromSpace for the old
  6453. generation and then return.
  6454. \end{enumerate}
  6455. \end{enumerate}
  6456. We recommend that you generalize the \code{cheney} function so that it
  6457. can be used for all the copies mentioned above: between the young
  6458. FromSpace and ToSpace, between the old FromSpace and ToSpace, and
  6459. between the young FromSpace and old FromSpace. This can be
  6460. accomplished by adding parameters to \code{cheney} that replace its
  6461. use of the global variables \code{fromspace\_begin},
  6462. \code{fromspace\_end}, \code{tospace\_begin}, and \code{tospace\_end}.
  6463. Note that the collection of the young generation does not traverse the
  6464. old generation. This introduces a potential problem: there may be
  6465. young data that is only reachable through pointers in the old
  6466. generation. If these pointers are not taken into account, the
  6467. collector could throw away young data that is live! One solution,
  6468. called \emph{pointer recording}, is to maintain a set of all the
  6469. pointers from the old generation into the new generation and consider
  6470. this set as part of the root set. To maintain this set, the compiler
  6471. must insert extra instructions around every \code{vector-set!}. If the
  6472. vector being modified is in the old generation, and if the value being
  6473. written is a pointer into the new generation, than that pointer must
  6474. be added to the set. Also, if the value being overwritten was a
  6475. pointer into the new generation, then that pointer should be removed
  6476. from the set.
  6477. \begin{exercise}\normalfont
  6478. Adapt the \code{collect} function in \code{runtime.c} to implement
  6479. generational garbage collection, as outlined in this section.
  6480. Update the code generation for \code{vector-set!} to implement
  6481. pointer recording. Make sure that your new compiler and runtime
  6482. passes your test suite.
  6483. \end{exercise}
  6484. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  6485. \chapter{Functions}
  6486. \label{ch:functions}
  6487. \index{function}
  6488. This chapter studies the compilation of functions similar to those
  6489. found in the C language. This corresponds to a subset of Typed Racket
  6490. in which only top-level function definitions are allowed. This kind of
  6491. function is an important stepping stone to implementing
  6492. lexically-scoped functions, that is, \key{lambda} abstractions, which
  6493. is the topic of Chapter~\ref{ch:lambdas}.
  6494. \section{The \LangFun{} Language}
  6495. The concrete and abstract syntax for function definitions and function
  6496. application is shown in Figures~\ref{fig:r4-concrete-syntax} and
  6497. \ref{fig:r4-syntax}, where we define the \LangFun{} language. Programs in
  6498. \LangFun{} begin with zero or more function definitions. The function
  6499. names from these definitions are in-scope for the entire program,
  6500. including all other function definitions (so the ordering of function
  6501. definitions does not matter). The concrete syntax for function
  6502. application\index{function application} is $(\Exp \; \Exp \ldots)$
  6503. where the first expression must
  6504. evaluate to a function and the rest are the arguments.
  6505. The abstract syntax for function application is
  6506. $\APPLY{\Exp}{\Exp\ldots}$.
  6507. %% The syntax for function application does not include an explicit
  6508. %% keyword, which is error prone when using \code{match}. To alleviate
  6509. %% this problem, we translate the syntax from $(\Exp \; \Exp \ldots)$ to
  6510. %% $(\key{app}\; \Exp \; \Exp \ldots)$ during type checking.
  6511. Functions are first-class in the sense that a function pointer
  6512. \index{function pointer} is data and can be stored in memory or passed
  6513. as a parameter to another function. Thus, we introduce a function
  6514. type, written
  6515. \begin{lstlisting}
  6516. (|$\Type_1$| |$\cdots$| |$\Type_n$| -> |$\Type_r$|)
  6517. \end{lstlisting}
  6518. for a function whose $n$ parameters have the types $\Type_1$ through
  6519. $\Type_n$ and whose return type is $\Type_r$. The main limitation of
  6520. these functions (with respect to Racket functions) is that they are
  6521. not lexically scoped. That is, the only external entities that can be
  6522. referenced from inside a function body are other globally-defined
  6523. functions. The syntax of \LangFun{} prevents functions from being nested
  6524. inside each other.
  6525. \begin{figure}[tp]
  6526. \centering
  6527. \fbox{
  6528. \begin{minipage}{0.96\textwidth}
  6529. \small
  6530. \[
  6531. \begin{array}{lcl}
  6532. \Type &::=& \gray{ \key{Integer} \mid \key{Boolean}
  6533. \mid (\key{Vector}\;\Type\ldots) \mid \key{Void} } \mid (\Type \ldots \; \key{->}\; \Type) \\
  6534. \itm{cmp} &::= & \gray{ \key{eq?} \mid \key{<} \mid \key{<=} \mid \key{>} \mid \key{>=} } \\
  6535. \Exp &::=& \gray{ \Int \mid \CREAD{} \mid \CNEG{\Exp} \mid \CADD{\Exp}{\Exp} \mid \CSUB{\Exp}{\Exp} } \\
  6536. &\mid& \gray{ \Var \mid \CLET{\Var}{\Exp}{\Exp} }\\
  6537. &\mid& \gray{ \key{\#t} \mid \key{\#f}
  6538. \mid (\key{and}\;\Exp\;\Exp)
  6539. \mid (\key{or}\;\Exp\;\Exp)
  6540. \mid (\key{not}\;\Exp)} \\
  6541. &\mid& \gray{(\itm{cmp}\;\Exp\;\Exp) \mid \CIF{\Exp}{\Exp}{\Exp} } \\
  6542. &\mid& \gray{(\key{vector}\;\Exp\ldots) \mid
  6543. (\key{vector-ref}\;\Exp\;\Int)} \\
  6544. &\mid& \gray{(\key{vector-set!}\;\Exp\;\Int\;\Exp)\mid (\key{void})
  6545. \mid \LP\key{has-type}~\Exp~\Type\RP } \\
  6546. &\mid& \LP\Exp \; \Exp \ldots\RP \\
  6547. \Def &::=& \CDEF{\Var}{\LS\Var \key{:} \Type\RS \ldots}{\Type}{\Exp} \\
  6548. \LangFun{} &::=& \Def \ldots \; \Exp
  6549. \end{array}
  6550. \]
  6551. \end{minipage}
  6552. }
  6553. \caption{The concrete syntax of \LangFun{}, extending \LangVec{} (Figure~\ref{fig:r3-concrete-syntax}).}
  6554. \label{fig:r4-concrete-syntax}
  6555. \end{figure}
  6556. \begin{figure}[tp]
  6557. \centering
  6558. \fbox{
  6559. \begin{minipage}{0.96\textwidth}
  6560. \small
  6561. \[
  6562. \begin{array}{lcl}
  6563. \Exp &::=& \gray{ \INT{\Int} \VAR{\Var} \mid \LET{\Var}{\Exp}{\Exp} } \\
  6564. &\mid& \gray{ \PRIM{\itm{op}}{\Exp\ldots} }\\
  6565. &\mid& \gray{ \BOOL{\itm{bool}}
  6566. \mid \IF{\Exp}{\Exp}{\Exp} } \\
  6567. &\mid& \gray{ \VOID{} \mid \LP\key{HasType}~\Exp~\Type \RP }
  6568. \mid \APPLY{\Exp}{\Exp\ldots}\\
  6569. \Def &::=& \FUNDEF{\Var}{\LP[\Var \code{:} \Type]\ldots\RP}{\Type}{\code{'()}}{\Exp}\\
  6570. \LangFun{} &::=& \PROGRAMDEFSEXP{\code{'()}}{\LP\Def\ldots\RP)}{\Exp}
  6571. \end{array}
  6572. \]
  6573. \end{minipage}
  6574. }
  6575. \caption{The abstract syntax of \LangFun{}, extending \LangVec{} (Figure~\ref{fig:r3-syntax}).}
  6576. \label{fig:r4-syntax}
  6577. \end{figure}
  6578. The program in Figure~\ref{fig:r4-function-example} is a
  6579. representative example of defining and using functions in \LangFun{}. We
  6580. define a function \code{map-vec} that applies some other function
  6581. \code{f} to both elements of a vector and returns a new
  6582. vector containing the results. We also define a function \code{add1}.
  6583. The program applies
  6584. \code{map-vec} to \code{add1} and \code{(vector 0 41)}. The result is
  6585. \code{(vector 1 42)}, from which we return the \code{42}.
  6586. \begin{figure}[tbp]
  6587. \begin{lstlisting}
  6588. (define (map-vec [f : (Integer -> Integer)]
  6589. [v : (Vector Integer Integer)])
  6590. : (Vector Integer Integer)
  6591. (vector (f (vector-ref v 0)) (f (vector-ref v 1))))
  6592. (define (add1 [x : Integer]) : Integer
  6593. (+ x 1))
  6594. (vector-ref (map-vec add1 (vector 0 41)) 1)
  6595. \end{lstlisting}
  6596. \caption{Example of using functions in \LangFun{}.}
  6597. \label{fig:r4-function-example}
  6598. \end{figure}
  6599. The definitional interpreter for \LangFun{} is in
  6600. Figure~\ref{fig:interp-Rfun}. The case for the \code{ProgramDefsExp} form is
  6601. responsible for setting up the mutual recursion between the top-level
  6602. function definitions. We use the classic back-patching \index{back-patching}
  6603. approach that uses mutable variables and makes two passes over the function
  6604. definitions~\citep{Kelsey:1998di}. In the first pass we set up the
  6605. top-level environment using a mutable cons cell for each function
  6606. definition. Note that the \code{lambda} value for each function is
  6607. incomplete; it does not yet include the environment. Once the
  6608. top-level environment is constructed, we then iterate over it and
  6609. update the \code{lambda} values to use the top-level environment.
  6610. \begin{figure}[tp]
  6611. \begin{lstlisting}
  6612. (define interp-Rfun-class
  6613. (class interp-Rvec-class
  6614. (super-new)
  6615. (define/override ((interp-exp env) e)
  6616. (define recur (interp-exp env))
  6617. (match e
  6618. [(Var x) (unbox (dict-ref env x))]
  6619. [(Let x e body)
  6620. (define new-env (dict-set env x (box (recur e))))
  6621. ((interp-exp new-env) body)]
  6622. [(Apply fun args)
  6623. (define fun-val (recur fun))
  6624. (define arg-vals (for/list ([e args]) (recur e)))
  6625. (match fun-val
  6626. [`(function (,xs ...) ,body ,fun-env)
  6627. (define params-args (for/list ([x xs] [arg arg-vals])
  6628. (cons x (box arg))))
  6629. (define new-env (append params-args fun-env))
  6630. ((interp-exp new-env) body)]
  6631. [else (error 'interp-exp "expected function, not ~a" fun-val)])]
  6632. [else ((super interp-exp env) e)]
  6633. ))
  6634. (define/public (interp-def d)
  6635. (match d
  6636. [(Def f (list `[,xs : ,ps] ...) rt _ body)
  6637. (cons f (box `(function ,xs ,body ())))]))
  6638. (define/override (interp-program p)
  6639. (match p
  6640. [(ProgramDefsExp info ds body)
  6641. (let ([top-level (for/list ([d ds]) (interp-def d))])
  6642. (for/list ([f (in-dict-values top-level)])
  6643. (set-box! f (match (unbox f)
  6644. [`(function ,xs ,body ())
  6645. `(function ,xs ,body ,top-level)])))
  6646. ((interp-exp top-level) body))]))
  6647. ))
  6648. (define (interp-Rfun p)
  6649. (send (new interp-Rfun-class) interp-program p))
  6650. \end{lstlisting}
  6651. \caption{Interpreter for the \LangFun{} language.}
  6652. \label{fig:interp-Rfun}
  6653. \end{figure}
  6654. \margincomment{TODO: explain type checker}
  6655. The type checker for \LangFun{} is is in Figure~\ref{fig:type-check-Rfun}.
  6656. \begin{figure}[tp]
  6657. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  6658. (define type-check-Rfun-class
  6659. (class type-check-Rvec-class
  6660. (super-new)
  6661. (inherit check-type-equal?)
  6662. (define/public (type-check-apply env e es)
  6663. (define-values (e^ ty) ((type-check-exp env) e))
  6664. (define-values (e* ty*) (for/lists (e* ty*) ([e (in-list es)])
  6665. ((type-check-exp env) e)))
  6666. (match ty
  6667. [`(,ty^* ... -> ,rt)
  6668. (for ([arg-ty ty*] [param-ty ty^*])
  6669. (check-type-equal? arg-ty param-ty (Apply e es)))
  6670. (values e^ e* rt)]))
  6671. (define/override (type-check-exp env)
  6672. (lambda (e)
  6673. (match e
  6674. [(FunRef f)
  6675. (values (FunRef f) (dict-ref env f))]
  6676. [(Apply e es)
  6677. (define-values (e^ es^ rt) (type-check-apply env e es))
  6678. (values (Apply e^ es^) rt)]
  6679. [(Call e es)
  6680. (define-values (e^ es^ rt) (type-check-apply env e es))
  6681. (values (Call e^ es^) rt)]
  6682. [else ((super type-check-exp env) e)])))
  6683. (define/public (type-check-def env)
  6684. (lambda (e)
  6685. (match e
  6686. [(Def f (and p:t* (list `[,xs : ,ps] ...)) rt info body)
  6687. (define new-env (append (map cons xs ps) env))
  6688. (define-values (body^ ty^) ((type-check-exp new-env) body))
  6689. (check-type-equal? ty^ rt body)
  6690. (Def f p:t* rt info body^)])))
  6691. (define/public (fun-def-type d)
  6692. (match d
  6693. [(Def f (list `[,xs : ,ps] ...) rt info body) `(,@ps -> ,rt)]))
  6694. (define/override (type-check-program e)
  6695. (match e
  6696. [(ProgramDefsExp info ds body)
  6697. (define new-env (for/list ([d ds])
  6698. (cons (Def-name d) (fun-def-type d))))
  6699. (define ds^ (for/list ([d ds]) ((type-check-def new-env) d)))
  6700. (define-values (body^ ty) ((type-check-exp new-env) body))
  6701. (check-type-equal? ty 'Integer body)
  6702. (ProgramDefsExp info ds^ body^)]))))
  6703. (define (type-check-Rfun p)
  6704. (send (new type-check-Rfun-class) type-check-program p))
  6705. \end{lstlisting}
  6706. \caption{Type checker for the \LangFun{} language.}
  6707. \label{fig:type-check-Rfun}
  6708. \end{figure}
  6709. \section{Functions in x86}
  6710. \label{sec:fun-x86}
  6711. \margincomment{\tiny Make sure callee-saved registers are discussed
  6712. in enough depth, especially updating Fig 6.4 \\ --Jeremy }
  6713. \margincomment{\tiny Talk about the return address on the
  6714. stack and what callq and retq does.\\ --Jeremy }
  6715. The x86 architecture provides a few features to support the
  6716. implementation of functions. We have already seen that x86 provides
  6717. labels so that one can refer to the location of an instruction, as is
  6718. needed for jump instructions. Labels can also be used to mark the
  6719. beginning of the instructions for a function. Going further, we can
  6720. obtain the address of a label by using the \key{leaq} instruction and
  6721. PC-relative addressing. For example, the following puts the
  6722. address of the \code{add1} label into the \code{rbx} register.
  6723. \begin{lstlisting}
  6724. leaq add1(%rip), %rbx
  6725. \end{lstlisting}
  6726. The instruction pointer register \key{rip} (aka. the program counter
  6727. \index{program counter}) always points to the next instruction to be
  6728. executed. When combined with an label, as in \code{add1(\%rip)}, the
  6729. linker computes the distance $d$ between the address of \code{add1}
  6730. and where the \code{rip} would be at that moment and then changes
  6731. \code{add1(\%rip)} to \code{$d$(\%rip)}, which at runtime will compute
  6732. the address of \code{add1}.
  6733. In Section~\ref{sec:x86} we used of the \code{callq} instruction to
  6734. jump to a function whose location is given by a label. To support
  6735. function calls in this chapter we instead will be jumping to a
  6736. function whose location is given by an address in a register, that is,
  6737. we need to make an \emph{indirect function call}. The x86 syntax for
  6738. this is a \code{callq} instruction but with an asterisk before the
  6739. register name.\index{indirect function call}
  6740. \begin{lstlisting}
  6741. callq *%rbx
  6742. \end{lstlisting}
  6743. \subsection{Calling Conventions}
  6744. \index{calling conventions}
  6745. The \code{callq} instruction provides partial support for implementing
  6746. functions: it pushes the return address on the stack and it jumps to
  6747. the target. However, \code{callq} does not handle
  6748. \begin{enumerate}
  6749. \item parameter passing,
  6750. \item pushing frames on the procedure call stack and popping them off,
  6751. or
  6752. \item determining how registers are shared by different functions.
  6753. \end{enumerate}
  6754. Regarding (1) parameter passing, recall that the following six
  6755. registers are used to pass arguments to a function, in this order.
  6756. \begin{lstlisting}
  6757. rdi rsi rdx rcx r8 r9
  6758. \end{lstlisting}
  6759. If there are
  6760. more than six arguments, then the convention is to use space on the
  6761. frame of the caller for the rest of the arguments. However, to ease
  6762. the implementation of efficient tail calls
  6763. (Section~\ref{sec:tail-call}), we arrange to never need more than six
  6764. arguments.
  6765. %
  6766. Also recall that the register \code{rax} is for the return value of
  6767. the function.
  6768. \index{prelude}\index{conclusion}
  6769. Regarding (2) frames \index{frame} and the procedure call stack,
  6770. \index{procedure call stack} recall from Section~\ref{sec:x86} that
  6771. the stack grows down, with each function call using a chunk of space
  6772. called a frame. The caller sets the stack pointer, register
  6773. \code{rsp}, to the last data item in its frame. The callee must not
  6774. change anything in the caller's frame, that is, anything that is at or
  6775. above the stack pointer. The callee is free to use locations that are
  6776. below the stack pointer.
  6777. Recall that we are storing variables of vector type on the root stack.
  6778. So the prelude needs to move the root stack pointer \code{r15} up and
  6779. the conclusion needs to move the root stack pointer back down. Also,
  6780. the prelude must initialize to \code{0} this frame's slots in the root
  6781. stack to signal to the garbage collector that those slots do not yet
  6782. contain a pointer to a vector. Otherwise the garbage collector will
  6783. interpret the garbage bits in those slots as memory addresses and try
  6784. to traverse them, causing serious mayhem!
  6785. Regarding (3) the sharing of registers between different functions,
  6786. recall from Section~\ref{sec:calling-conventions} that the registers
  6787. are divided into two groups, the caller-saved registers and the
  6788. callee-saved registers. The caller should assume that all the
  6789. caller-saved registers get overwritten with arbitrary values by the
  6790. callee. That is why we recommend in
  6791. Section~\ref{sec:calling-conventions} that variables that are live
  6792. during a function call should not be assigned to caller-saved
  6793. registers.
  6794. On the flip side, if the callee wants to use a callee-saved register,
  6795. the callee must save the contents of those registers on their stack
  6796. frame and then put them back prior to returning to the caller. That
  6797. is why we recommended in Section~\ref{sec:calling-conventions} that if
  6798. the register allocator assigns a variable to a callee-saved register,
  6799. then the prelude of the \code{main} function must save that register
  6800. to the stack and the conclusion of \code{main} must restore it. This
  6801. recommendation now generalizes to all functions.
  6802. Also recall that the base pointer, register \code{rbp}, is used as a
  6803. point-of-reference within a frame, so that each local variable can be
  6804. accessed at a fixed offset from the base pointer
  6805. (Section~\ref{sec:x86}).
  6806. %
  6807. Figure~\ref{fig:call-frames} shows the general layout of the caller
  6808. and callee frames.
  6809. \begin{figure}[tbp]
  6810. \centering
  6811. \begin{tabular}{r|r|l|l} \hline
  6812. Caller View & Callee View & Contents & Frame \\ \hline
  6813. 8(\key{\%rbp}) & & return address & \multirow{5}{*}{Caller}\\
  6814. 0(\key{\%rbp}) & & old \key{rbp} \\
  6815. -8(\key{\%rbp}) & & callee-saved $1$ \\
  6816. \ldots & & \ldots \\
  6817. $-8j$(\key{\%rbp}) & & callee-saved $j$ \\
  6818. $-8(j+1)$(\key{\%rbp}) & & local variable $1$ \\
  6819. \ldots & & \ldots \\
  6820. $-8(j+k)$(\key{\%rbp}) & & local variable $k$ \\
  6821. %% & & \\
  6822. %% $8n-8$\key{(\%rsp)} & $8n+8$(\key{\%rbp})& argument $n$ \\
  6823. %% & \ldots & \ldots \\
  6824. %% 0\key{(\%rsp)} & 16(\key{\%rbp}) & argument $1$ & \\
  6825. \hline
  6826. & 8(\key{\%rbp}) & return address & \multirow{5}{*}{Callee}\\
  6827. & 0(\key{\%rbp}) & old \key{rbp} \\
  6828. & -8(\key{\%rbp}) & callee-saved $1$ \\
  6829. & \ldots & \ldots \\
  6830. & $-8n$(\key{\%rbp}) & callee-saved $n$ \\
  6831. & $-8(n+1)$(\key{\%rbp}) & local variable $1$ \\
  6832. & \ldots & \ldots \\
  6833. & $-8(n+m)$(\key{\%rsp}) & local variable $m$\\ \hline
  6834. \end{tabular}
  6835. \caption{Memory layout of caller and callee frames.}
  6836. \label{fig:call-frames}
  6837. \end{figure}
  6838. %% Recall from Section~\ref{sec:x86} that the stack is also used for
  6839. %% local variables and for storing the values of callee-saved registers
  6840. %% (we shall refer to all of these collectively as ``locals''), and that
  6841. %% at the beginning of a function we move the stack pointer \code{rsp}
  6842. %% down to make room for them.
  6843. %% We recommend storing the local variables
  6844. %% first and then the callee-saved registers, so that the local variables
  6845. %% can be accessed using \code{rbp} the same as before the addition of
  6846. %% functions.
  6847. %% To make additional room for passing arguments, we shall
  6848. %% move the stack pointer even further down. We count how many stack
  6849. %% arguments are needed for each function call that occurs inside the
  6850. %% body of the function and find their maximum. Adding this number to the
  6851. %% number of locals gives us how much the \code{rsp} should be moved at
  6852. %% the beginning of the function. In preparation for a function call, we
  6853. %% offset from \code{rsp} to set up the stack arguments. We put the first
  6854. %% stack argument in \code{0(\%rsp)}, the second in \code{8(\%rsp)}, and
  6855. %% so on.
  6856. %% Upon calling the function, the stack arguments are retrieved by the
  6857. %% callee using the base pointer \code{rbp}. The address \code{16(\%rbp)}
  6858. %% is the location of the first stack argument, \code{24(\%rbp)} is the
  6859. %% address of the second, and so on. Figure~\ref{fig:call-frames} shows
  6860. %% the layout of the caller and callee frames. Notice how important it is
  6861. %% that we correctly compute the maximum number of arguments needed for
  6862. %% function calls; if that number is too small then the arguments and
  6863. %% local variables will smash into each other!
  6864. \subsection{Efficient Tail Calls}
  6865. \label{sec:tail-call}
  6866. In general, the amount of stack space used by a program is determined
  6867. by the longest chain of nested function calls. That is, if function
  6868. $f_1$ calls $f_2$, $f_2$ calls $f_3$, $\ldots$, and $f_{n-1}$ calls
  6869. $f_n$, then the amount of stack space is bounded by $O(n)$. The depth
  6870. $n$ can grow quite large in the case of recursive or mutually
  6871. recursive functions. However, in some cases we can arrange to use only
  6872. constant space, i.e. $O(1)$, instead of $O(n)$.
  6873. If a function call is the last action in a function body, then that
  6874. call is said to be a \emph{tail call}\index{tail call}.
  6875. For example, in the following
  6876. program, the recursive call to \code{tail-sum} is a tail call.
  6877. \begin{center}
  6878. \begin{lstlisting}
  6879. (define (tail-sum [n : Integer] [r : Integer]) : Integer
  6880. (if (eq? n 0)
  6881. r
  6882. (tail-sum (- n 1) (+ n r))))
  6883. (+ (tail-sum 5 0) 27)
  6884. \end{lstlisting}
  6885. \end{center}
  6886. At a tail call, the frame of the caller is no longer needed, so we
  6887. can pop the caller's frame before making the tail call. With this
  6888. approach, a recursive function that only makes tail calls will only
  6889. use $O(1)$ stack space. Functional languages like Racket typically
  6890. rely heavily on recursive functions, so they typically guarantee that
  6891. all tail calls will be optimized in this way.
  6892. \index{frame}
  6893. However, some care is needed with regards to argument passing in tail
  6894. calls. As mentioned above, for arguments beyond the sixth, the
  6895. convention is to use space in the caller's frame for passing
  6896. arguments. But for a tail call we pop the caller's frame and can no
  6897. longer use it. Another alternative is to use space in the callee's
  6898. frame for passing arguments. However, this option is also problematic
  6899. because the caller and callee's frame overlap in memory. As we begin
  6900. to copy the arguments from their sources in the caller's frame, the
  6901. target locations in the callee's frame might overlap with the sources
  6902. for later arguments! We solve this problem by not using the stack for
  6903. passing more than six arguments but instead using the heap, as we
  6904. describe in the Section~\ref{sec:limit-functions-r4}.
  6905. As mentioned above, for a tail call we pop the caller's frame prior to
  6906. making the tail call. The instructions for popping a frame are the
  6907. instructions that we usually place in the conclusion of a
  6908. function. Thus, we also need to place such code immediately before
  6909. each tail call. These instructions include restoring the callee-saved
  6910. registers, so it is good that the argument passing registers are all
  6911. caller-saved registers.
  6912. One last note regarding which instruction to use to make the tail
  6913. call. When the callee is finished, it should not return to the current
  6914. function, but it should return to the function that called the current
  6915. one. Thus, the return address that is already on the stack is the
  6916. right one, and we should not use \key{callq} to make the tail call, as
  6917. that would unnecessarily overwrite the return address. Instead we can
  6918. simply use the \key{jmp} instruction. Like the indirect function call,
  6919. we write an \emph{indirect jump}\index{indirect jump} with a register
  6920. prefixed with an asterisk. We recommend using \code{rax} to hold the
  6921. jump target because the preceding conclusion overwrites just about
  6922. everything else.
  6923. \begin{lstlisting}
  6924. jmp *%rax
  6925. \end{lstlisting}
  6926. \section{Shrink \LangFun{}}
  6927. \label{sec:shrink-r4}
  6928. The \code{shrink} pass performs a minor modification to ease the
  6929. later passes. This pass introduces an explicit \code{main} function
  6930. and changes the top \code{ProgramDefsExp} form to
  6931. \code{ProgramDefs} as follows.
  6932. \begin{lstlisting}
  6933. (ProgramDefsExp |$\itm{info}$| (|$\Def\ldots$|) |$\Exp$|)
  6934. |$\Rightarrow$| (ProgramDefs |$\itm{info}$| (|$\Def\ldots$| |$\itm{mainDef}$|))
  6935. \end{lstlisting}
  6936. where $\itm{mainDef}$ is
  6937. \begin{lstlisting}
  6938. (Def 'main '() 'Integer '() |$\Exp'$|)
  6939. \end{lstlisting}
  6940. \section{Reveal Functions and the \LangFunRef{} language}
  6941. \label{sec:reveal-functions-r4}
  6942. The syntax of \LangFun{} is inconvenient for purposes of compilation in one
  6943. respect: it conflates the use of function names and local
  6944. variables. This is a problem because we need to compile the use of a
  6945. function name differently than the use of a local variable; we need to
  6946. use \code{leaq} to convert the function name (a label in x86) to an
  6947. address in a register. Thus, it is a good idea to create a new pass
  6948. that changes function references from just a symbol $f$ to
  6949. $\FUNREF{f}$. This pass is named \code{reveal-functions} and the
  6950. output language, \LangFunRef{}, is defined in Figure~\ref{fig:f1-syntax}.
  6951. The concrete syntax for a function reference is $\CFUNREF{f}$.
  6952. \begin{figure}[tp]
  6953. \centering
  6954. \fbox{
  6955. \begin{minipage}{0.96\textwidth}
  6956. \[
  6957. \begin{array}{lcl}
  6958. \Exp &::=& \ldots \mid \FUNREF{\Var}\\
  6959. \Def &::=& \gray{ \FUNDEF{\Var}{([\Var \code{:} \Type]\ldots)}{\Type}{\code{'()}}{\Exp} }\\
  6960. \LangFunRef{} &::=& \PROGRAMDEFS{\code{'()}}{\LP \Def\ldots \RP}
  6961. \end{array}
  6962. \]
  6963. \end{minipage}
  6964. }
  6965. \caption{The abstract syntax \LangFunRef{}, an extension of \LangFun{}
  6966. (Figure~\ref{fig:r4-syntax}).}
  6967. \label{fig:f1-syntax}
  6968. \end{figure}
  6969. %% Distinguishing between calls in tail position and non-tail position
  6970. %% requires the pass to have some notion of context. We recommend using
  6971. %% two mutually recursive functions, one for processing expressions in
  6972. %% tail position and another for the rest.
  6973. Placing this pass after \code{uniquify} will make sure that there are
  6974. no local variables and functions that share the same name. On the
  6975. other hand, \code{reveal-functions} needs to come before the
  6976. \code{explicate-control} pass because that pass helps us compile
  6977. \code{FunRef} forms into assignment statements.
  6978. \section{Limit Functions}
  6979. \label{sec:limit-functions-r4}
  6980. Recall that we wish to limit the number of function parameters to six
  6981. so that we do not need to use the stack for argument passing, which
  6982. makes it easier to implement efficient tail calls. However, because
  6983. the input language \LangFun{} supports arbitrary numbers of function
  6984. arguments, we have some work to do!
  6985. This pass transforms functions and function calls that involve more
  6986. than six arguments to pass the first five arguments as usual, but it
  6987. packs the rest of the arguments into a vector and passes it as the
  6988. sixth argument.
  6989. Each function definition with too many parameters is transformed as
  6990. follows.
  6991. \begin{lstlisting}
  6992. (Def |$f$| ([|$x_1$|:|$T_1$|] |$\ldots$| [|$x_n$|:|$T_n$|]) |$T_r$| |$\itm{info}$| |$\itm{body}$|)
  6993. |$\Rightarrow$|
  6994. (Def |$f$| ([|$x_1$|:|$T_1$|] |$\ldots$| [|$x_5$|:|$T_5$|] [vec : (Vector |$T_6 \ldots T_n$|)]) |$T_r$| |$\itm{info}$| |$\itm{body}'$|)
  6995. \end{lstlisting}
  6996. where the $\itm{body}$ is transformed into $\itm{body}'$ by replacing
  6997. the occurrences of the later parameters with vector references.
  6998. \begin{lstlisting}
  6999. (Var |$x_i$|) |$\Rightarrow$| (Prim 'vector-ref (list vec (Int |$(i - 6)$|)))
  7000. \end{lstlisting}
  7001. For function calls with too many arguments, the \code{limit-functions}
  7002. pass transforms them in the following way.
  7003. \begin{tabular}{lll}
  7004. \begin{minipage}{0.2\textwidth}
  7005. \begin{lstlisting}
  7006. (|$e_0$| |$e_1$| |$\ldots$| |$e_n$|)
  7007. \end{lstlisting}
  7008. \end{minipage}
  7009. &
  7010. $\Rightarrow$
  7011. &
  7012. \begin{minipage}{0.4\textwidth}
  7013. \begin{lstlisting}
  7014. (|$e_0$| |$e_1 \ldots e_5$| (vector |$e_6 \ldots e_n$|))
  7015. \end{lstlisting}
  7016. \end{minipage}
  7017. \end{tabular}
  7018. \section{Remove Complex Operands}
  7019. \label{sec:rco-r4}
  7020. The primary decisions to make for this pass is whether to classify
  7021. \code{FunRef} and \code{Apply} as either atomic or complex
  7022. expressions. Recall that a simple expression will eventually end up as
  7023. just an immediate argument of an x86 instruction. Function
  7024. application will be translated to a sequence of instructions, so
  7025. \code{Apply} must be classified as complex expression.
  7026. On the other hand, the arguments of \code{Apply} should be
  7027. atomic expressions.
  7028. %
  7029. Regarding \code{FunRef}, as discussed above, the function label needs
  7030. to be converted to an address using the \code{leaq} instruction. Thus,
  7031. even though \code{FunRef} seems rather simple, it needs to be
  7032. classified as a complex expression so that we generate an assignment
  7033. statement with a left-hand side that can serve as the target of the
  7034. \code{leaq}. Figure~\ref{fig:r4-anf-syntax} defines the
  7035. output language \LangFunANF{} of this pass.
  7036. \begin{figure}[tp]
  7037. \centering
  7038. \fbox{
  7039. \begin{minipage}{0.96\textwidth}
  7040. \small
  7041. \[
  7042. \begin{array}{rcl}
  7043. \Atm &::=& \gray{ \INT{\Int} \mid \VAR{\Var} \mid \BOOL{\itm{bool}}
  7044. \mid \VOID{} } \\
  7045. \Exp &::=& \gray{ \Atm \mid \READ{} } \\
  7046. &\mid& \gray{ \NEG{\Atm} \mid \ADD{\Atm}{\Atm} } \\
  7047. &\mid& \gray{ \LET{\Var}{\Exp}{\Exp} } \\
  7048. &\mid& \gray{ \UNIOP{\key{'not}}{\Atm} } \\
  7049. &\mid& \gray{ \BINOP{\itm{cmp}}{\Atm}{\Atm} \mid \IF{\Exp}{\Exp}{\Exp} }\\
  7050. &\mid& \gray{ \LP\key{Collect}~\Int\RP \mid \LP\key{Allocate}~\Int~\Type\RP
  7051. \mid \LP\key{GlobalValue}~\Var\RP }\\
  7052. &\mid& \FUNREF{\Var} \mid \APPLY{\Atm}{\Atm\ldots}\\
  7053. \Def &::=& \gray{ \FUNDEF{\Var}{([\Var \code{:} \Type]\ldots)}{\Type}{\code{'()}}{\Exp} }\\
  7054. R^{\dagger}_4 &::=& \gray{ \PROGRAMDEFS{\code{'()}}{\Def} }
  7055. \end{array}
  7056. \]
  7057. \end{minipage}
  7058. }
  7059. \caption{\LangFunANF{} is \LangFun{} in administrative normal form (ANF).}
  7060. \label{fig:r4-anf-syntax}
  7061. \end{figure}
  7062. \section{Explicate Control and the \LangCFun{} language}
  7063. \label{sec:explicate-control-r4}
  7064. Figure~\ref{fig:c3-syntax} defines the abstract syntax for \LangCFun{}, the
  7065. output of \key{explicate-control}. (The concrete syntax is given in
  7066. Figure~\ref{fig:c3-concrete-syntax} of the Appendix.) The auxiliary
  7067. functions for assignment and tail contexts should be updated with
  7068. cases for \code{Apply} and \code{FunRef} and the function for
  7069. predicate context should be updated for \code{Apply} but not
  7070. \code{FunRef}. (A \code{FunRef} can't be a Boolean.) In assignment
  7071. and predicate contexts, \code{Apply} becomes \code{Call}, whereas in
  7072. tail position \code{Apply} becomes \code{TailCall}. We recommend
  7073. defining a new auxiliary function for processing function definitions.
  7074. This code is similar to the case for \code{Program} in \LangVec{}. The
  7075. top-level \code{explicate-control} function that handles the
  7076. \code{ProgramDefs} form of \LangFun{} can then apply this new function to
  7077. all the function definitions.
  7078. \begin{figure}[tp]
  7079. \fbox{
  7080. \begin{minipage}{0.96\textwidth}
  7081. \small
  7082. \[
  7083. \begin{array}{lcl}
  7084. \Atm &::=& \gray{ \INT{\Int} \mid \VAR{\Var} \mid \BOOL{\itm{bool}} }\\
  7085. \itm{cmp} &::= & \gray{ \key{eq?} \mid \key{<} } \\
  7086. \Exp &::= & \gray{ \Atm \mid \READ{} } \\
  7087. &\mid& \gray{ \NEG{\Atm} \mid \ADD{\Atm}{\Atm} }\\
  7088. &\mid& \gray{ \UNIOP{\key{not}}{\Atm} \mid \BINOP{\itm{cmp}}{\Atm}{\Atm} } \\
  7089. &\mid& \gray{ \LP\key{Allocate} \,\itm{int}\,\itm{type}\RP } \\
  7090. &\mid& \gray{ \BINOP{\key{'vector-ref}}{\Atm}{\INT{\Int}} }\\
  7091. &\mid& \gray{ \LP\key{Prim}~\key{'vector-set!}\,\LP\key{list}\,\Atm\,\INT{\Int}\,\Atm\RP\RP }\\
  7092. &\mid& \gray{ \LP\key{GlobalValue} \,\Var\RP \mid \LP\key{Void}\RP }\\
  7093. &\mid& \FUNREF{\itm{label}} \mid \CALL{\Atm}{\LP\Atm\ldots\RP} \\
  7094. \Stmt &::=& \gray{ \ASSIGN{\VAR{\Var}}{\Exp}
  7095. \mid \LP\key{Collect} \,\itm{int}\RP } \\
  7096. \Tail &::= & \gray{ \RETURN{\Exp} \mid \SEQ{\Stmt}{\Tail}
  7097. \mid \GOTO{\itm{label}} } \\
  7098. &\mid& \gray{ \IFSTMT{\BINOP{\itm{cmp}}{\Atm}{\Atm}}{\GOTO{\itm{label}}}{\GOTO{\itm{label}}} }\\
  7099. &\mid& \TAILCALL{\Atm}{\Atm\ldots} \\
  7100. \Def &::=& \DEF{\itm{label}}{\LP[\Var\key{:}\Type]\ldots\RP}{\Type}{\itm{info}}{\LP\LP\itm{label}\,\key{.}\,\Tail\RP\ldots\RP}\\
  7101. \LangCFun{} & ::= & \PROGRAMDEFS{\itm{info}}{\LP\Def\ldots\RP}
  7102. \end{array}
  7103. \]
  7104. \end{minipage}
  7105. }
  7106. \caption{The abstract syntax of \LangCFun{}, extending \LangCVec{} (Figure~\ref{fig:c2-syntax}).}
  7107. \label{fig:c3-syntax}
  7108. \end{figure}
  7109. \section{Select Instructions and the \LangXIndCall{} Language}
  7110. \label{sec:select-r4}
  7111. \index{instruction selection}
  7112. The output of select instructions is a program in the \LangXIndCall{}
  7113. language, whose syntax is defined in Figure~\ref{fig:x86-3}.
  7114. \index{x86}
  7115. \begin{figure}[tp]
  7116. \fbox{
  7117. \begin{minipage}{0.96\textwidth}
  7118. \small
  7119. \[
  7120. \begin{array}{lcl}
  7121. \Arg &::=& \gray{ \key{\$}\Int \mid \key{\%}\Reg \mid \Int\key{(}\key{\%}\Reg\key{)} \mid \key{\%}\itm{bytereg} } \mid \Var \key{(\%rip)}
  7122. \mid \LP\key{fun-ref}\; \itm{label}\RP\\
  7123. \itm{cc} & ::= & \gray{ \key{e} \mid \key{l} \mid \key{le} \mid \key{g} \mid \key{ge} } \\
  7124. \Instr &::=& \ldots
  7125. \mid \key{callq}\;\key{*}\Arg \mid \key{tailjmp}\;\Arg
  7126. \mid \key{leaq}\;\Arg\key{,}\;\key{\%}\Reg \\
  7127. \Block &::= & \Instr\ldots \\
  7128. \Def &::= & \LP\key{define} \; \LP\itm{label}\RP \;\LP\LP\itm{label} \,\key{.}\, \Block\RP\ldots\RP\RP\\
  7129. \LangXIndCall{} &::= & \Def\ldots
  7130. \end{array}
  7131. \]
  7132. \end{minipage}
  7133. }
  7134. \caption{The concrete syntax of \LangXIndCall{} (extends \LangXGlobal{} of Figure~\ref{fig:x86-2-concrete}).}
  7135. \label{fig:x86-3-concrete}
  7136. \end{figure}
  7137. \begin{figure}[tp]
  7138. \fbox{
  7139. \begin{minipage}{0.96\textwidth}
  7140. \small
  7141. \[
  7142. \begin{array}{lcl}
  7143. \Arg &::=& \gray{ \INT{\Int} \mid \REG{\Reg} \mid \DEREF{\Reg}{\Int}
  7144. \mid \BYTEREG{\Reg} } \\
  7145. &\mid& \gray{ (\key{Global}~\Var) } \mid \FUNREF{\itm{label}} \\
  7146. \Instr &::=& \ldots \mid \INDCALLQ{\Arg}{\itm{int}}
  7147. \mid \TAILJMP{\Arg}{\itm{int}}\\
  7148. &\mid& \BININSTR{\code{'leaq}}{\Arg}{\REG{\Reg}}\\
  7149. \Block &::= & \BLOCK{\itm{info}}{\LP\Instr\ldots\RP}\\
  7150. \Def &::= & \DEF{\itm{label}}{\code{'()}}{\Type}{\itm{info}}{\LP\LP\itm{label}\,\key{.}\,\Block\RP\ldots\RP} \\
  7151. \LangXIndCall{} &::= & \PROGRAMDEFS{\itm{info}}{\LP\Def\ldots\RP}
  7152. \end{array}
  7153. \]
  7154. \end{minipage}
  7155. }
  7156. \caption{The abstract syntax of \LangXIndCall{} (extends \LangXASTGlobal{} of Figure~\ref{fig:x86-2}).}
  7157. \label{fig:x86-3}
  7158. \end{figure}
  7159. An assignment of a function reference to a variable becomes a
  7160. load-effective-address instruction as follows: \\
  7161. \begin{tabular}{lcl}
  7162. \begin{minipage}{0.35\textwidth}
  7163. \begin{lstlisting}
  7164. |$\itm{lhs}$| = (fun-ref |$f$|);
  7165. \end{lstlisting}
  7166. \end{minipage}
  7167. &
  7168. $\Rightarrow$\qquad\qquad
  7169. &
  7170. \begin{minipage}{0.3\textwidth}
  7171. \begin{lstlisting}
  7172. leaq (fun-ref |$f$|), |$\itm{lhs}'$|
  7173. \end{lstlisting}
  7174. \end{minipage}
  7175. \end{tabular} \\
  7176. Regarding function definitions, we need to remove the parameters and
  7177. instead perform parameter passing using the conventions discussed in
  7178. Section~\ref{sec:fun-x86}. That is, the arguments are passed in
  7179. registers. We recommend turning the parameters into local variables
  7180. and generating instructions at the beginning of the function to move
  7181. from the argument passing registers to these local variables.
  7182. \begin{lstlisting}
  7183. (Def |$f$| '([|$x_1$| : |$T_1$|] [|$x_2$| : |$T_2$|] |$\ldots$| ) |$T_r$| |$\itm{info}$| |$G$|)
  7184. |$\Rightarrow$|
  7185. (Def |$f$| '() 'Integer |$\itm{info}'$| |$G'$|)
  7186. \end{lstlisting}
  7187. The $G'$ control-flow graph is the same as $G$ except that the
  7188. \code{start} block is modified to add the instructions for moving from
  7189. the argument registers to the parameter variables. So the \code{start}
  7190. block of $G$ shown on the left is changed to the code on the right.
  7191. \begin{center}
  7192. \begin{minipage}{0.3\textwidth}
  7193. \begin{lstlisting}
  7194. start:
  7195. |$\itm{instr}_1$|
  7196. |$\vdots$|
  7197. |$\itm{instr}_n$|
  7198. \end{lstlisting}
  7199. \end{minipage}
  7200. $\Rightarrow$
  7201. \begin{minipage}{0.3\textwidth}
  7202. \begin{lstlisting}
  7203. start:
  7204. movq %rdi, |$x_1$|
  7205. movq %rsi, |$x_2$|
  7206. |$\vdots$|
  7207. |$\itm{instr}_1$|
  7208. |$\vdots$|
  7209. |$\itm{instr}_n$|
  7210. \end{lstlisting}
  7211. \end{minipage}
  7212. \end{center}
  7213. By changing the parameters to local variables, we are giving the
  7214. register allocator control over which registers or stack locations to
  7215. use for them. If you implemented the move-biasing challenge
  7216. (Section~\ref{sec:move-biasing}), the register allocator will try to
  7217. assign the parameter variables to the corresponding argument register,
  7218. in which case the \code{patch-instructions} pass will remove the
  7219. \code{movq} instruction. This happens in the example translation in
  7220. Figure~\ref{fig:add-fun} of Section~\ref{sec:functions-example}, in
  7221. the \code{add} function.
  7222. %
  7223. Also, note that the register allocator will perform liveness analysis
  7224. on this sequence of move instructions and build the interference
  7225. graph. So, for example, $x_1$ will be marked as interfering with
  7226. \code{rsi} and that will prevent the assignment of $x_1$ to
  7227. \code{rsi}, which is good, because that would overwrite the argument
  7228. that needs to move into $x_2$.
  7229. Next, consider the compilation of function calls. In the mirror image
  7230. of handling the parameters of function definitions, the arguments need
  7231. to be moved to the argument passing registers. The function call
  7232. itself is performed with an indirect function call. The return value
  7233. from the function is stored in \code{rax}, so it needs to be moved
  7234. into the \itm{lhs}.
  7235. \begin{lstlisting}
  7236. |\itm{lhs}| = (call |\itm{fun}| |$\itm{arg}_1~\itm{arg}_2\ldots$|));
  7237. |$\Rightarrow$|
  7238. movq |$\itm{arg}_1$|, %rdi
  7239. movq |$\itm{arg}_2$|, %rsi
  7240. |$\vdots$|
  7241. callq *|\itm{fun}|
  7242. movq %rax, |\itm{lhs}|
  7243. \end{lstlisting}
  7244. The \code{IndirectCallq} AST node includes an integer for the arity of
  7245. the function, i.e., the number of parameters. That information is
  7246. useful in the \code{uncover-live} pass for determining which
  7247. argument-passing registers are potentially read during the call.
  7248. For tail calls, the parameter passing is the same as non-tail calls:
  7249. generate instructions to move the arguments into to the argument
  7250. passing registers. After that we need to pop the frame from the
  7251. procedure call stack. However, we do not yet know how big the frame
  7252. is; that gets determined during register allocation. So instead of
  7253. generating those instructions here, we invent a new instruction that
  7254. means ``pop the frame and then do an indirect jump'', which we name
  7255. \code{TailJmp}. The abstract syntax for this instruction includes an
  7256. argument that specifies where to jump and an integer that represents
  7257. the arity of the function being called.
  7258. Recall that in Section~\ref{sec:explicate-control-r1} we recommended
  7259. using the label \code{start} for the initial block of a program, and
  7260. in Section~\ref{sec:select-r1} we recommended labeling the conclusion
  7261. of the program with \code{conclusion}, so that $(\key{Return}\;\Arg)$
  7262. can be compiled to an assignment to \code{rax} followed by a jump to
  7263. \code{conclusion}. With the addition of function definitions, we will
  7264. have a starting block and conclusion for each function, but their
  7265. labels need to be unique. We recommend prepending the function's name
  7266. to \code{start} and \code{conclusion}, respectively, to obtain unique
  7267. labels. (Alternatively, one could \code{gensym} labels for the start
  7268. and conclusion and store them in the $\itm{info}$ field of the
  7269. function definition.)
  7270. \section{Register Allocation}
  7271. \label{sec:register-allocation-r4}
  7272. \subsection{Liveness Analysis}
  7273. \label{sec:liveness-analysis-r4}
  7274. \index{liveness analysis}
  7275. %% The rest of the passes need only minor modifications to handle the new
  7276. %% kinds of AST nodes: \code{fun-ref}, \code{indirect-callq}, and
  7277. %% \code{leaq}.
  7278. The \code{IndirectCallq} instruction should be treated like
  7279. \code{Callq} regarding its written locations $W$, in that they should
  7280. include all the caller-saved registers. Recall that the reason for
  7281. that is to force call-live variables to be assigned to callee-saved
  7282. registers or to be spilled to the stack.
  7283. Regarding the set of read locations $R$ the arity field of
  7284. \code{TailJmp} and \code{IndirectCallq} determines how many of the
  7285. argument-passing registers should be considered as read by those
  7286. instructions.
  7287. \subsection{Build Interference Graph}
  7288. \label{sec:build-interference-r4}
  7289. With the addition of function definitions, we compute an interference
  7290. graph for each function (not just one for the whole program).
  7291. Recall that in Section~\ref{sec:reg-alloc-gc} we discussed the need to
  7292. spill vector-typed variables that are live during a call to the
  7293. \code{collect}. With the addition of functions to our language, we
  7294. need to revisit this issue. Many functions perform allocation and
  7295. therefore have calls to the collector inside of them. Thus, we should
  7296. not only spill a vector-typed variable when it is live during a call
  7297. to \code{collect}, but we should spill the variable if it is live
  7298. during any function call. Thus, in the \code{build-interference} pass,
  7299. we recommend adding interference edges between call-live vector-typed
  7300. variables and the callee-saved registers (in addition to the usual
  7301. addition of edges between call-live variables and the caller-saved
  7302. registers).
  7303. \subsection{Allocate Registers}
  7304. The primary change to the \code{allocate-registers} pass is adding an
  7305. auxiliary function for handling definitions (the \Def{} non-terminal
  7306. in Figure~\ref{fig:x86-3}) with one case for function definitions. The
  7307. logic is the same as described in
  7308. Chapter~\ref{ch:register-allocation-r1}, except now register
  7309. allocation is performed many times, once for each function definition,
  7310. instead of just once for the whole program.
  7311. \section{Patch Instructions}
  7312. In \code{patch-instructions}, you should deal with the x86
  7313. idiosyncrasy that the destination argument of \code{leaq} must be a
  7314. register. Additionally, you should ensure that the argument of
  7315. \code{TailJmp} is \itm{rax}, our reserved register---this is to make
  7316. code generation more convenient, because we trample many registers
  7317. before the tail call (as explained in the next section).
  7318. \section{Print x86}
  7319. For the \code{print-x86} pass, the cases for \code{FunRef} and
  7320. \code{IndirectCallq} are straightforward: output their concrete
  7321. syntax.
  7322. \begin{lstlisting}
  7323. (FunRef |\itm{label}|) |$\Rightarrow$| |\itm{label}|(%rip)
  7324. (IndirectCallq |\itm{arg}| |\itm{int}|) |$\Rightarrow$| callq *|\itm{arg}'|
  7325. \end{lstlisting}
  7326. The \code{TailJmp} node requires a bit work. A straightforward
  7327. translation of \code{TailJmp} would be \code{jmp *$\itm{arg}$}, but
  7328. before the jump we need to pop the current frame. This sequence of
  7329. instructions is the same as the code for the conclusion of a function,
  7330. except the \code{retq} is replaced with \code{jmp *$\itm{arg}$}.
  7331. Regarding function definitions, you will need to generate a prelude
  7332. and conclusion for each one. This code is similar to the prelude and
  7333. conclusion that you generated for the \code{main} function in
  7334. Chapter~\ref{ch:tuples}. To review, the prelude of every function
  7335. should carry out the following steps.
  7336. \begin{enumerate}
  7337. \item Start with \code{.global} and \code{.align} directives followed
  7338. by the label for the function. (See Figure~\ref{fig:add-fun} for an
  7339. example.)
  7340. \item Push \code{rbp} to the stack and set \code{rbp} to current stack
  7341. pointer.
  7342. \item Push to the stack all of the callee-saved registers that were
  7343. used for register allocation.
  7344. \item Move the stack pointer \code{rsp} down by the size of the stack
  7345. frame for this function, which depends on the number of regular
  7346. spills. (Aligned to 16 bytes.)
  7347. \item Move the root stack pointer \code{r15} up by the size of the
  7348. root-stack frame for this function, which depends on the number of
  7349. spilled vectors. \label{root-stack-init}
  7350. \item Initialize to zero all of the entries in the root-stack frame.
  7351. \item Jump to the start block.
  7352. \end{enumerate}
  7353. The prelude of the \code{main} function has one additional task: call
  7354. the \code{initialize} function to set up the garbage collector and
  7355. move the value of the global \code{rootstack\_begin} in
  7356. \code{r15}. This should happen before step \ref{root-stack-init}
  7357. above, which depends on \code{r15}.
  7358. The conclusion of every function should do the following.
  7359. \begin{enumerate}
  7360. \item Move the stack pointer back up by the size of the stack frame
  7361. for this function.
  7362. \item Restore the callee-saved registers by popping them from the
  7363. stack.
  7364. \item Move the root stack pointer back down by the size of the
  7365. root-stack frame for this function.
  7366. \item Restore \code{rbp} by popping it from the stack.
  7367. \item Return to the caller with the \code{retq} instruction.
  7368. \end{enumerate}
  7369. \begin{exercise}\normalfont
  7370. Expand your compiler to handle \LangFun{} as outlined in this chapter.
  7371. Create 5 new programs that use functions, including examples that pass
  7372. functions and return functions from other functions, recursive
  7373. functions, functions that create vectors, and functions that make tail
  7374. calls. Test your compiler on these new programs and all of your
  7375. previously created test programs.
  7376. \end{exercise}
  7377. \begin{figure}[tbp]
  7378. \begin{tikzpicture}[baseline=(current bounding box.center)]
  7379. \node (Rfun) at (0,2) {\large \LangFun{}};
  7380. \node (Rfun-1) at (3,2) {\large \LangFun{}};
  7381. \node (Rfun-2) at (6,2) {\large \LangFun{}};
  7382. \node (F1-1) at (12,0) {\large \LangFunRef{}};
  7383. \node (F1-2) at (9,0) {\large \LangFunRef{}};
  7384. \node (F1-3) at (6,0) {\large \LangFunRefAlloc{}};
  7385. \node (F1-4) at (3,0) {\large \LangFunRefAlloc{}};
  7386. \node (C3-2) at (3,-2) {\large \LangCFun{}};
  7387. \node (x86-2) at (3,-4) {\large \LangXIndCallVar{}};
  7388. \node (x86-3) at (6,-4) {\large \LangXIndCallVar{}};
  7389. \node (x86-4) at (9,-4) {\large \LangXIndCall{}};
  7390. \node (x86-5) at (9,-6) {\large \LangXIndCall{}};
  7391. \node (x86-2-1) at (3,-6) {\large \LangXIndCallVar{}};
  7392. \node (x86-2-2) at (6,-6) {\large \LangXIndCallVar{}};
  7393. \path[->,bend left=15] (Rfun) edge [above] node
  7394. {\ttfamily\footnotesize shrink} (Rfun-1);
  7395. \path[->,bend left=15] (Rfun-1) edge [above] node
  7396. {\ttfamily\footnotesize uniquify} (Rfun-2);
  7397. \path[->,bend left=15] (Rfun-2) edge [right] node
  7398. {\ttfamily\footnotesize ~~reveal-functions} (F1-1);
  7399. \path[->,bend left=15] (F1-1) edge [below] node
  7400. {\ttfamily\footnotesize limit-functions} (F1-2);
  7401. \path[->,bend right=15] (F1-2) edge [above] node
  7402. {\ttfamily\footnotesize expose-alloc.} (F1-3);
  7403. \path[->,bend right=15] (F1-3) edge [above] node
  7404. {\ttfamily\footnotesize remove-complex.} (F1-4);
  7405. \path[->,bend left=15] (F1-4) edge [right] node
  7406. {\ttfamily\footnotesize explicate-control} (C3-2);
  7407. \path[->,bend right=15] (C3-2) edge [left] node
  7408. {\ttfamily\footnotesize select-instr.} (x86-2);
  7409. \path[->,bend left=15] (x86-2) edge [left] node
  7410. {\ttfamily\footnotesize uncover-live} (x86-2-1);
  7411. \path[->,bend right=15] (x86-2-1) edge [below] node
  7412. {\ttfamily\footnotesize build-inter.} (x86-2-2);
  7413. \path[->,bend right=15] (x86-2-2) edge [left] node
  7414. {\ttfamily\footnotesize allocate-reg.} (x86-3);
  7415. \path[->,bend left=15] (x86-3) edge [above] node
  7416. {\ttfamily\footnotesize patch-instr.} (x86-4);
  7417. \path[->,bend right=15] (x86-4) edge [left] node {\ttfamily\footnotesize print-x86} (x86-5);
  7418. \end{tikzpicture}
  7419. \caption{Diagram of the passes for \LangFun{}, a language with functions.}
  7420. \label{fig:Rfun-passes}
  7421. \end{figure}
  7422. Figure~\ref{fig:Rfun-passes} gives an overview of the passes for
  7423. compiling \LangFun{} to x86.
  7424. \section{An Example Translation}
  7425. \label{sec:functions-example}
  7426. Figure~\ref{fig:add-fun} shows an example translation of a simple
  7427. function in \LangFun{} to x86. The figure also includes the results of the
  7428. \code{explicate-control} and \code{select-instructions} passes.
  7429. \begin{figure}[htbp]
  7430. \begin{tabular}{ll}
  7431. \begin{minipage}{0.5\textwidth}
  7432. % s3_2.rkt
  7433. \begin{lstlisting}[basicstyle=\ttfamily\scriptsize]
  7434. (define (add [x : Integer] [y : Integer])
  7435. : Integer
  7436. (+ x y))
  7437. (add 40 2)
  7438. \end{lstlisting}
  7439. $\Downarrow$
  7440. \begin{lstlisting}[basicstyle=\ttfamily\scriptsize]
  7441. (define (add86 [x87 : Integer]
  7442. [y88 : Integer]) : Integer
  7443. add86start:
  7444. return (+ x87 y88);
  7445. )
  7446. (define (main) : Integer ()
  7447. mainstart:
  7448. tmp89 = (fun-ref add86);
  7449. (tail-call tmp89 40 2)
  7450. )
  7451. \end{lstlisting}
  7452. \end{minipage}
  7453. &
  7454. $\Rightarrow$
  7455. \begin{minipage}{0.5\textwidth}
  7456. \begin{lstlisting}[basicstyle=\ttfamily\scriptsize]
  7457. (define (add86) : Integer
  7458. add86start:
  7459. movq %rdi, x87
  7460. movq %rsi, y88
  7461. movq x87, %rax
  7462. addq y88, %rax
  7463. jmp add11389conclusion
  7464. )
  7465. (define (main) : Integer
  7466. mainstart:
  7467. leaq (fun-ref add86), tmp89
  7468. movq $40, %rdi
  7469. movq $2, %rsi
  7470. tail-jmp tmp89
  7471. )
  7472. \end{lstlisting}
  7473. $\Downarrow$
  7474. \end{minipage}
  7475. \end{tabular}
  7476. \begin{tabular}{ll}
  7477. \begin{minipage}{0.3\textwidth}
  7478. \begin{lstlisting}[basicstyle=\ttfamily\scriptsize]
  7479. .globl add86
  7480. .align 16
  7481. add86:
  7482. pushq %rbp
  7483. movq %rsp, %rbp
  7484. jmp add86start
  7485. add86start:
  7486. movq %rdi, %rax
  7487. addq %rsi, %rax
  7488. jmp add86conclusion
  7489. add86conclusion:
  7490. popq %rbp
  7491. retq
  7492. \end{lstlisting}
  7493. \end{minipage}
  7494. &
  7495. \begin{minipage}{0.5\textwidth}
  7496. \begin{lstlisting}[basicstyle=\ttfamily\scriptsize]
  7497. .globl main
  7498. .align 16
  7499. main:
  7500. pushq %rbp
  7501. movq %rsp, %rbp
  7502. movq $16384, %rdi
  7503. movq $16384, %rsi
  7504. callq initialize
  7505. movq rootstack_begin(%rip), %r15
  7506. jmp mainstart
  7507. mainstart:
  7508. leaq add86(%rip), %rcx
  7509. movq $40, %rdi
  7510. movq $2, %rsi
  7511. movq %rcx, %rax
  7512. popq %rbp
  7513. jmp *%rax
  7514. mainconclusion:
  7515. popq %rbp
  7516. retq
  7517. \end{lstlisting}
  7518. \end{minipage}
  7519. \end{tabular}
  7520. \caption{Example compilation of a simple function to x86.}
  7521. \label{fig:add-fun}
  7522. \end{figure}
  7523. % Challenge idea: inlining! (simple version)
  7524. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  7525. \chapter{Lexically Scoped Functions}
  7526. \label{ch:lambdas}
  7527. \index{lambda}
  7528. \index{lexical scoping}
  7529. This chapter studies lexically scoped functions as they appear in
  7530. functional languages such as Racket. By lexical scoping we mean that a
  7531. function's body may refer to variables whose binding site is outside
  7532. of the function, in an enclosing scope.
  7533. %
  7534. Consider the example in Figure~\ref{fig:lexical-scoping} written in
  7535. \LangLam{}, which extends \LangFun{} with anonymous functions using the
  7536. \key{lambda} form. The body of the \key{lambda}, refers to three
  7537. variables: \code{x}, \code{y}, and \code{z}. The binding sites for
  7538. \code{x} and \code{y} are outside of the \key{lambda}. Variable
  7539. \code{y} is bound by the enclosing \key{let} and \code{x} is a
  7540. parameter of function \code{f}. The \key{lambda} is returned from the
  7541. function \code{f}. The main expression of the program includes two
  7542. calls to \code{f} with different arguments for \code{x}, first
  7543. \code{5} then \code{3}. The functions returned from \code{f} are bound
  7544. to variables \code{g} and \code{h}. Even though these two functions
  7545. were created by the same \code{lambda}, they are really different
  7546. functions because they use different values for \code{x}. Applying
  7547. \code{g} to \code{11} produces \code{20} whereas applying \code{h} to
  7548. \code{15} produces \code{22}. The result of this program is \code{42}.
  7549. \begin{figure}[btp]
  7550. % s4_6.rkt
  7551. \begin{lstlisting}
  7552. (define (f [x : Integer]) : (Integer -> Integer)
  7553. (let ([y 4])
  7554. (lambda: ([z : Integer]) : Integer
  7555. (+ x (+ y z)))))
  7556. (let ([g (f 5)])
  7557. (let ([h (f 3)])
  7558. (+ (g 11) (h 15))))
  7559. \end{lstlisting}
  7560. \caption{Example of a lexically scoped function.}
  7561. \label{fig:lexical-scoping}
  7562. \end{figure}
  7563. The approach that we take for implementing lexically scoped
  7564. functions is to compile them into top-level function definitions,
  7565. translating from \LangLam{} into \LangFun{}. However, the compiler will need to
  7566. provide special treatment for variable occurrences such as \code{x}
  7567. and \code{y} in the body of the \code{lambda} of
  7568. Figure~\ref{fig:lexical-scoping}. After all, an \LangFun{} function may not
  7569. refer to variables defined outside of it. To identify such variable
  7570. occurrences, we review the standard notion of free variable.
  7571. \begin{definition}
  7572. A variable is \emph{free in expression} $e$ if the variable occurs
  7573. inside $e$ but does not have an enclosing binding in $e$.\index{free
  7574. variable}
  7575. \end{definition}
  7576. For example, in the expression \code{(+ x (+ y z))} the variables
  7577. \code{x}, \code{y}, and \code{z} are all free. On the other hand,
  7578. only \code{x} and \code{y} are free in the following expression
  7579. because \code{z} is bound by the \code{lambda}.
  7580. \begin{lstlisting}
  7581. (lambda: ([z : Integer]) : Integer
  7582. (+ x (+ y z)))
  7583. \end{lstlisting}
  7584. So the free variables of a \code{lambda} are the ones that will need
  7585. special treatment. We need to arrange for some way to transport, at
  7586. runtime, the values of those variables from the point where the
  7587. \code{lambda} was created to the point where the \code{lambda} is
  7588. applied. An efficient solution to the problem, due to
  7589. \citet{Cardelli:1983aa}, is to bundle into a vector the values of the
  7590. free variables together with the function pointer for the lambda's
  7591. code, an arrangement called a \emph{flat closure} (which we shorten to
  7592. just ``closure''). \index{closure}\index{flat closure} Fortunately,
  7593. we have all the ingredients to make closures, Chapter~\ref{ch:tuples}
  7594. gave us vectors and Chapter~\ref{ch:functions} gave us function
  7595. pointers. The function pointer resides at index $0$ and the
  7596. values for the free variables will fill in the rest of the vector.
  7597. Let us revisit the example in Figure~\ref{fig:lexical-scoping} to see
  7598. how closures work. It's a three-step dance. The program first calls
  7599. function \code{f}, which creates a closure for the \code{lambda}. The
  7600. closure is a vector whose first element is a pointer to the top-level
  7601. function that we will generate for the \code{lambda}, the second
  7602. element is the value of \code{x}, which is \code{5}, and the third
  7603. element is \code{4}, the value of \code{y}. The closure does not
  7604. contain an element for \code{z} because \code{z} is not a free
  7605. variable of the \code{lambda}. Creating the closure is step 1 of the
  7606. dance. The closure is returned from \code{f} and bound to \code{g}, as
  7607. shown in Figure~\ref{fig:closures}.
  7608. %
  7609. The second call to \code{f} creates another closure, this time with
  7610. \code{3} in the second slot (for \code{x}). This closure is also
  7611. returned from \code{f} but bound to \code{h}, which is also shown in
  7612. Figure~\ref{fig:closures}.
  7613. \begin{figure}[tbp]
  7614. \centering \includegraphics[width=0.6\textwidth]{figs/closures}
  7615. \caption{Example closure representation for the \key{lambda}'s
  7616. in Figure~\ref{fig:lexical-scoping}.}
  7617. \label{fig:closures}
  7618. \end{figure}
  7619. Continuing with the example, consider the application of \code{g} to
  7620. \code{11} in Figure~\ref{fig:lexical-scoping}. To apply a closure, we
  7621. obtain the function pointer in the first element of the closure and
  7622. call it, passing in the closure itself and then the regular arguments,
  7623. in this case \code{11}. This technique for applying a closure is step
  7624. 2 of the dance.
  7625. %
  7626. But doesn't this \code{lambda} only take 1 argument, for parameter
  7627. \code{z}? The third and final step of the dance is generating a
  7628. top-level function for a \code{lambda}. We add an additional
  7629. parameter for the closure and we insert a \code{let} at the beginning
  7630. of the function for each free variable, to bind those variables to the
  7631. appropriate elements from the closure parameter.
  7632. %
  7633. This three-step dance is known as \emph{closure conversion}. We
  7634. discuss the details of closure conversion in
  7635. Section~\ref{sec:closure-conversion} and the code generated from the
  7636. example in Section~\ref{sec:example-lambda}. But first we define the
  7637. syntax and semantics of \LangLam{} in Section~\ref{sec:r5}.
  7638. \section{The \LangLam{} Language}
  7639. \label{sec:r5}
  7640. The concrete and abstract syntax for \LangLam{}, a language with anonymous
  7641. functions and lexical scoping, is defined in
  7642. Figures~\ref{fig:r5-concrete-syntax} and ~\ref{fig:r5-syntax}. It adds
  7643. the \key{lambda} form to the grammar for \LangFun{}, which already has
  7644. syntax for function application.
  7645. \begin{figure}[tp]
  7646. \centering
  7647. \fbox{
  7648. \begin{minipage}{0.96\textwidth}
  7649. \small
  7650. \[
  7651. \begin{array}{lcl}
  7652. \Type &::=& \gray{\key{Integer} \mid \key{Boolean}
  7653. \mid (\key{Vector}\;\Type\ldots) \mid \key{Void}
  7654. \mid (\Type\ldots \; \key{->}\; \Type)} \\
  7655. \Exp &::=& \gray{ \Int \mid \CREAD{} \mid \CNEG{\Exp}
  7656. \mid \CADD{\Exp}{\Exp} \mid \CSUB{\Exp}{\Exp} } \\
  7657. &\mid& \gray{ \Var \mid \CLET{\Var}{\Exp}{\Exp} }\\
  7658. &\mid& \gray{\key{\#t} \mid \key{\#f}
  7659. \mid (\key{and}\;\Exp\;\Exp)
  7660. \mid (\key{or}\;\Exp\;\Exp)
  7661. \mid (\key{not}\;\Exp) } \\
  7662. &\mid& \gray{ (\key{eq?}\;\Exp\;\Exp) \mid \CIF{\Exp}{\Exp}{\Exp} } \\
  7663. &\mid& \gray{ (\key{vector}\;\Exp\ldots) \mid
  7664. (\key{vector-ref}\;\Exp\;\Int)} \\
  7665. &\mid& \gray{(\key{vector-set!}\;\Exp\;\Int\;\Exp)\mid (\key{void})
  7666. \mid (\Exp \; \Exp\ldots) } \\
  7667. &\mid& \LP \key{procedure-arity}~\Exp\RP \\
  7668. &\mid& \CLAMBDA{\LP\LS\Var \key{:} \Type\RS\ldots\RP}{\Type}{\Exp} \\
  7669. \Def &::=& \gray{ \CDEF{\Var}{\LS\Var \key{:} \Type\RS\ldots}{\Type}{\Exp} } \\
  7670. \LangLam{} &::=& \gray{\Def\ldots \; \Exp}
  7671. \end{array}
  7672. \]
  7673. \end{minipage}
  7674. }
  7675. \caption{The concrete syntax of \LangLam{}, extending \LangFun{} (Figure~\ref{fig:r4-concrete-syntax})
  7676. with \key{lambda}.}
  7677. \label{fig:r5-concrete-syntax}
  7678. \end{figure}
  7679. \begin{figure}[tp]
  7680. \centering
  7681. \fbox{
  7682. \begin{minipage}{0.96\textwidth}
  7683. \small
  7684. \[
  7685. \begin{array}{lcl}
  7686. \itm{op} &::=& \ldots \mid \code{procedure-arity} \\
  7687. \Exp &::=& \gray{ \INT{\Int} \VAR{\Var} \mid \LET{\Var}{\Exp}{\Exp} } \\
  7688. &\mid& \gray{ \PRIM{\itm{op}}{\Exp\ldots} }\\
  7689. &\mid& \gray{ \BOOL{\itm{bool}}
  7690. \mid \IF{\Exp}{\Exp}{\Exp} } \\
  7691. &\mid& \gray{ \VOID{} \mid \LP\key{HasType}~\Exp~\Type \RP
  7692. \mid \APPLY{\Exp}{\Exp\ldots} }\\
  7693. &\mid& \LAMBDA{\LP\LS\Var\code{:}\Type\RS\ldots\RP}{\Type}{\Exp}\\
  7694. \Def &::=& \gray{ \FUNDEF{\Var}{\LP\LS\Var \code{:} \Type\RS\ldots\RP}{\Type}{\code{'()}}{\Exp} }\\
  7695. \LangLam{} &::=& \gray{ \PROGRAMDEFSEXP{\code{'()}}{\LP\Def\ldots\RP}{\Exp} }
  7696. \end{array}
  7697. \]
  7698. \end{minipage}
  7699. }
  7700. \caption{The abstract syntax of \LangLam{}, extending \LangFun{} (Figure~\ref{fig:r4-syntax}).}
  7701. \label{fig:r5-syntax}
  7702. \end{figure}
  7703. \index{interpreter}
  7704. \label{sec:interp-Rlambda}
  7705. Figure~\ref{fig:interp-Rlambda} shows the definitional interpreter for
  7706. \LangLam{}. The clause for \key{lambda} saves the current environment
  7707. inside the returned \key{lambda}. Then the clause for \key{Apply} uses
  7708. the environment from the \key{lambda}, the \code{lam-env}, when
  7709. interpreting the body of the \key{lambda}. The \code{lam-env}
  7710. environment is extended with the mapping of parameters to argument
  7711. values.
  7712. \begin{figure}[tbp]
  7713. \begin{lstlisting}
  7714. (define interp-Rlambda-class
  7715. (class interp-Rfun-class
  7716. (super-new)
  7717. (define/override (interp-op op)
  7718. (match op
  7719. ['procedure-arity
  7720. (lambda (v)
  7721. (match v
  7722. [`(function (,xs ...) ,body ,lam-env) (length xs)]
  7723. [else (error 'interp-op "expected a function, not ~a" v)]))]
  7724. [else (super interp-op op)]))
  7725. (define/override ((interp-exp env) e)
  7726. (define recur (interp-exp env))
  7727. (match e
  7728. [(Lambda (list `[,xs : ,Ts] ...) rT body)
  7729. `(function ,xs ,body ,env)]
  7730. [else ((super interp-exp env) e)]))
  7731. ))
  7732. (define (interp-Rlambda p)
  7733. (send (new interp-Rlambda-class) interp-program p))
  7734. \end{lstlisting}
  7735. \caption{Interpreter for \LangLam{}.}
  7736. \label{fig:interp-Rlambda}
  7737. \end{figure}
  7738. \label{sec:type-check-r5}
  7739. \index{type checking}
  7740. Figure~\ref{fig:type-check-Rlambda} shows how to type check the new
  7741. \key{lambda} form. The body of the \key{lambda} is checked in an
  7742. environment that includes the current environment (because it is
  7743. lexically scoped) and also includes the \key{lambda}'s parameters. We
  7744. require the body's type to match the declared return type.
  7745. \begin{figure}[tbp]
  7746. \begin{lstlisting}
  7747. (define (type-check-Rlambda env)
  7748. (lambda (e)
  7749. (match e
  7750. [(Lambda (and params `([,xs : ,Ts] ...)) rT body)
  7751. (define-values (new-body bodyT)
  7752. ((type-check-exp (append (map cons xs Ts) env)) body))
  7753. (define ty `(,@Ts -> ,rT))
  7754. (cond
  7755. [(equal? rT bodyT)
  7756. (values (HasType (Lambda params rT new-body) ty) ty)]
  7757. [else
  7758. (error "mismatch in return type" bodyT rT)])]
  7759. ...
  7760. )))
  7761. \end{lstlisting}
  7762. \caption{Type checking the \key{lambda}'s in \LangLam{}.}
  7763. \label{fig:type-check-Rlambda}
  7764. \end{figure}
  7765. \section{Reveal Functions and the $F_2$ language}
  7766. \label{sec:reveal-functions-r5}
  7767. To support the \code{procedure-arity} operator we need to communicate
  7768. the arity of a function to the point of closure creation. We can
  7769. accomplish this by replacing the $\FUNREF{\Var}$ struct with one that
  7770. has a second field for the arity: $\FUNREFARITY{\Var}{\Int}$. The
  7771. output of this pass is the language $F_2$, whose syntax is defined in
  7772. Figure~\ref{fig:f2-syntax}.
  7773. \begin{figure}[tp]
  7774. \centering
  7775. \fbox{
  7776. \begin{minipage}{0.96\textwidth}
  7777. \[
  7778. \begin{array}{lcl}
  7779. \Exp &::=& \ldots \mid \FUNREFARITY{\Var}{\Int}\\
  7780. \Def &::=& \gray{ \FUNDEF{\Var}{([\Var \code{:} \Type]\ldots)}{\Type}{\code{'()}}{\Exp} }\\
  7781. F_2 &::=& \gray{\PROGRAMDEFS{\code{'()}}{\LP \Def\ldots \RP}}
  7782. \end{array}
  7783. \]
  7784. \end{minipage}
  7785. }
  7786. \caption{The abstract syntax $F_2$, an extension of \LangLam{}
  7787. (Figure~\ref{fig:r5-syntax}).}
  7788. \label{fig:f2-syntax}
  7789. \end{figure}
  7790. \section{Closure Conversion}
  7791. \label{sec:closure-conversion}
  7792. \index{closure conversion}
  7793. The compiling of lexically-scoped functions into top-level function
  7794. definitions is accomplished in the pass \code{convert-to-closures}
  7795. that comes after \code{reveal-functions} and before
  7796. \code{limit-functions}.
  7797. As usual, we implement the pass as a recursive function over the
  7798. AST. All of the action is in the clauses for \key{Lambda} and
  7799. \key{Apply}. We transform a \key{Lambda} expression into an expression
  7800. that creates a closure, that is, a vector whose first element is a
  7801. function pointer and the rest of the elements are the free variables
  7802. of the \key{Lambda}. We use the struct \code{Closure} here instead of
  7803. using \code{vector} so that we can distinguish closures from vectors
  7804. in Section~\ref{sec:optimize-closures} and to record the arity. In
  7805. the generated code below, the \itm{name} is a unique symbol generated
  7806. to identify the function and the \itm{arity} is the number of
  7807. parameters (the length of \itm{ps}).
  7808. \begin{lstlisting}
  7809. (Lambda |\itm{ps}| |\itm{rt}| |\itm{body}|)
  7810. |$\Rightarrow$|
  7811. (Closure |\itm{arity}| (cons (FunRef |\itm{name}|) |\itm{fvs}|))
  7812. \end{lstlisting}
  7813. In addition to transforming each \key{Lambda} into a \key{Closure}, we
  7814. create a top-level function definition for each \key{Lambda}, as
  7815. shown below.\\
  7816. \begin{minipage}{0.8\textwidth}
  7817. \begin{lstlisting}
  7818. (Def |\itm{name}| ([clos : (Vector _ |\itm{fvts}| ...)] |\itm{ps'}| ...) |\itm{rt'}|
  7819. (Let |$\itm{fvs}_1$| (Prim 'vector-ref (list (Var clos) (Int 1)))
  7820. ...
  7821. (Let |$\itm{fvs}_n$| (Prim 'vector-ref (list (Var clos) (Int |$n$|)))
  7822. |\itm{body'}|)...))
  7823. \end{lstlisting}
  7824. \end{minipage}\\
  7825. The \code{clos} parameter refers to the closure. Translate the type
  7826. annotations in \itm{ps} and the return type \itm{rt}, as discussed in
  7827. the next paragraph, to obtain \itm{ps'} and \itm{rt'}. The types
  7828. $\itm{fvts}$ are the types of the free variables in the lambda and the
  7829. underscore \code{\_} is a dummy type that we use because it is rather
  7830. difficult to give a type to the function in the closure's
  7831. type.\footnote{To give an accurate type to a closure, we would need to
  7832. add existential types to the type checker~\citep{Minamide:1996ys}.}
  7833. The dummy type is considered to be equal to any other type during type
  7834. checking. The sequence of \key{Let} forms bind the free variables to
  7835. their values obtained from the closure.
  7836. Closure conversion turns functions into vectors, so the type
  7837. annotations in the program must also be translated. We recommend
  7838. defining a auxiliary recursive function for this purpose. Function
  7839. types should be translated as follows.
  7840. \begin{lstlisting}
  7841. (|$T_1, \ldots, T_n$| -> |$T_r$|)
  7842. |$\Rightarrow$|
  7843. (Vector ((Vector _) |$T'_1, \ldots, T'_n$| -> |$T'_r$|))
  7844. \end{lstlisting}
  7845. The above type says that the first thing in the vector is a function
  7846. pointer. The first parameter of the function pointer is a vector (a
  7847. closure) and the rest of the parameters are the ones from the original
  7848. function, with types $T'_1, \ldots, T'_n$. The \code{Vector} type for
  7849. the closure omits the types of the free variables because 1) those
  7850. types are not available in this context and 2) we do not need them in
  7851. the code that is generated for function application.
  7852. We transform function application into code that retrieves the
  7853. function pointer from the closure and then calls the function, passing
  7854. in the closure as the first argument. We bind $e'$ to a temporary
  7855. variable to avoid code duplication.
  7856. \begin{lstlisting}
  7857. (Apply |$e$| |\itm{es}|)
  7858. |$\Rightarrow$|
  7859. (Let |\itm{tmp}| |$e'$|
  7860. (Apply (Prim 'vector-ref (list (Var |\itm{tmp}|) (Int 0))) (cons |\itm{tmp}| |\itm{es'}|)))
  7861. \end{lstlisting}
  7862. There is also the question of what to do with references top-level
  7863. function definitions. To maintain a uniform translation of function
  7864. application, we turn function references into closures.
  7865. \begin{tabular}{lll}
  7866. \begin{minipage}{0.3\textwidth}
  7867. \begin{lstlisting}
  7868. (FunRefArity |$f$| |$n$|)
  7869. \end{lstlisting}
  7870. \end{minipage}
  7871. &
  7872. $\Rightarrow$
  7873. &
  7874. \begin{minipage}{0.5\textwidth}
  7875. \begin{lstlisting}
  7876. (Closure |$n$| (FunRef |$f$|) '())
  7877. \end{lstlisting}
  7878. \end{minipage}
  7879. \end{tabular} \\
  7880. %
  7881. The top-level function definitions need to be updated as well to take
  7882. an extra closure parameter.
  7883. \section{An Example Translation}
  7884. \label{sec:example-lambda}
  7885. Figure~\ref{fig:lexical-functions-example} shows the result of
  7886. \code{reveal-functions} and \code{convert-to-closures} for the example
  7887. program demonstrating lexical scoping that we discussed at the
  7888. beginning of this chapter.
  7889. \begin{figure}[tbp]
  7890. \begin{minipage}{0.8\textwidth}
  7891. % tests/lambda_test_6.rkt
  7892. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  7893. (define (f6 [x7 : Integer]) : (Integer -> Integer)
  7894. (let ([y8 4])
  7895. (lambda: ([z9 : Integer]) : Integer
  7896. (+ x7 (+ y8 z9)))))
  7897. (define (main) : Integer
  7898. (let ([g0 ((fun-ref-arity f6 1) 5)])
  7899. (let ([h1 ((fun-ref-arity f6 1) 3)])
  7900. (+ (g0 11) (h1 15)))))
  7901. \end{lstlisting}
  7902. $\Rightarrow$
  7903. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  7904. (define (f6 [fvs4 : _] [x7 : Integer]) : (Vector ((Vector _) Integer -> Integer))
  7905. (let ([y8 4])
  7906. (closure 1 (list (fun-ref lambda2) x7 y8))))
  7907. (define (lambda2 [fvs3 : (Vector _ Integer Integer)] [z9 : Integer]) : Integer
  7908. (let ([x7 (vector-ref fvs3 1)])
  7909. (let ([y8 (vector-ref fvs3 2)])
  7910. (+ x7 (+ y8 z9)))))
  7911. (define (main) : Integer
  7912. (let ([g0 (let ([clos5 (closure 1 (list (fun-ref f6)))])
  7913. ((vector-ref clos5 0) clos5 5))])
  7914. (let ([h1 (let ([clos6 (closure 1 (list (fun-ref f6)))])
  7915. ((vector-ref clos6 0) clos6 3))])
  7916. (+ ((vector-ref g0 0) g0 11) ((vector-ref h1 0) h1 15)))))
  7917. \end{lstlisting}
  7918. \end{minipage}
  7919. \caption{Example of closure conversion.}
  7920. \label{fig:lexical-functions-example}
  7921. \end{figure}
  7922. \begin{exercise}\normalfont
  7923. Expand your compiler to handle \LangLam{} as outlined in this chapter.
  7924. Create 5 new programs that use \key{lambda} functions and make use of
  7925. lexical scoping. Test your compiler on these new programs and all of
  7926. your previously created test programs.
  7927. \end{exercise}
  7928. \section{Expose Allocation}
  7929. \label{sec:expose-allocation-r5}
  7930. Compile the $\CLOSURE{\itm{arity}}{\LP\Exp\ldots\RP}$ form into code
  7931. that allocates and initializes a vector, similar to the translation of
  7932. the \code{vector} operator in Section~\ref{sec:expose-allocation}.
  7933. The only difference is replacing the use of
  7934. \ALLOC{\itm{len}}{\itm{type}} with
  7935. \ALLOCCLOS{\itm{len}}{\itm{type}}{\itm{arity}}.
  7936. \section{Explicate Control and \LangCLam{}}
  7937. \label{sec:explicate-r5}
  7938. The output language of \code{explicate-control} is \LangCLam{} whose
  7939. abstract syntax is defined in Figure~\ref{fig:c4-syntax}. The only
  7940. difference with respect to \LangCFun{} is the addition of the
  7941. \code{AllocateClosure} form to the grammar for $\Exp$. The handling
  7942. of \code{AllocateClosure} in the \code{explicate-control} pass is
  7943. similar to the handling of other expressions such as primitive
  7944. operators.
  7945. \begin{figure}[tp]
  7946. \fbox{
  7947. \begin{minipage}{0.96\textwidth}
  7948. \small
  7949. \[
  7950. \begin{array}{lcl}
  7951. \Exp &::= & \ldots
  7952. \mid \ALLOCCLOS{\Int}{\Type}{\Int} \\
  7953. \Stmt &::=& \gray{ \ASSIGN{\VAR{\Var}}{\Exp}
  7954. \mid \LP\key{Collect} \,\itm{int}\RP } \\
  7955. \Tail &::= & \gray{ \RETURN{\Exp} \mid \SEQ{\Stmt}{\Tail}
  7956. \mid \GOTO{\itm{label}} } \\
  7957. &\mid& \gray{ \IFSTMT{\BINOP{\itm{cmp}}{\Atm}{\Atm}}{\GOTO{\itm{label}}}{\GOTO{\itm{label}}} }\\
  7958. &\mid& \gray{ \TAILCALL{\Atm}{\Atm\ldots} } \\
  7959. \Def &::=& \gray{ \DEF{\itm{label}}{\LP[\Var\key{:}\Type]\ldots\RP}{\Type}{\itm{info}}{\LP\LP\itm{label}\,\key{.}\,\Tail\RP\ldots\RP} }\\
  7960. \LangCLam{} & ::= & \gray{ \PROGRAMDEFS{\itm{info}}{\LP\Def\ldots\RP} }
  7961. \end{array}
  7962. \]
  7963. \end{minipage}
  7964. }
  7965. \caption{The abstract syntax of \LangCLam{}, extending \LangCFun{} (Figure~\ref{fig:c3-syntax}).}
  7966. \label{fig:c4-syntax}
  7967. \end{figure}
  7968. \section{Select Instructions}
  7969. \label{sec:select-instructions-Rlambda}
  7970. Compile \ALLOCCLOS{\itm{len}}{\itm{type}}{\itm{arity}} in almost the
  7971. same way as the \ALLOC{\itm{len}}{\itm{type}} form
  7972. (Section~\ref{sec:select-instructions-gc}). The only difference is
  7973. that you should place the \itm{arity} in the tag that is stored at
  7974. position $0$ of the vector. Recall that in
  7975. Section~\ref{sec:select-instructions-gc} we used the first $56$ bits
  7976. of the 64-bit tag, but that the rest were unused. So the arity goes
  7977. into the tag in bit positions $57$ through $63$.
  7978. Compile the \code{procedure-arity} operator into a sequence of
  7979. instructions that access the tag from position $0$ of the vector and
  7980. shift it by $57$ bits to the right.
  7981. \begin{figure}[p]
  7982. \begin{tikzpicture}[baseline=(current bounding box.center)]
  7983. \node (Rfun) at (0,2) {\large \LangFun{}};
  7984. \node (Rfun-2) at (3,2) {\large \LangFun{}};
  7985. \node (Rfun-3) at (6,2) {\large \LangFun{}};
  7986. \node (F1-1) at (12,0) {\large \LangFunRef{}};
  7987. \node (F1-2) at (9,0) {\large \LangFunRef{}};
  7988. \node (F1-3) at (6,0) {\large $F_1$};
  7989. \node (F1-4) at (3,0) {\large $F_1$};
  7990. \node (F1-5) at (0,0) {\large $F_1$};
  7991. \node (C3-2) at (3,-2) {\large \LangCFun{}};
  7992. \node (x86-2) at (3,-4) {\large \LangXIndCallVar{}};
  7993. \node (x86-2-1) at (3,-6) {\large \LangXIndCallVar{}};
  7994. \node (x86-2-2) at (6,-6) {\large \LangXIndCallVar{}};
  7995. \node (x86-3) at (6,-4) {\large \LangXIndCallVar{}};
  7996. \node (x86-4) at (9,-4) {\large \LangXIndCall{}};
  7997. \node (x86-5) at (9,-6) {\large \LangXIndCall{}};
  7998. \path[->,bend left=15] (Rfun) edge [above] node
  7999. {\ttfamily\footnotesize shrink} (Rfun-2);
  8000. \path[->,bend left=15] (Rfun-2) edge [above] node
  8001. {\ttfamily\footnotesize uniquify} (Rfun-3);
  8002. \path[->,bend left=15] (Rfun-3) edge [right] node
  8003. {\ttfamily\footnotesize reveal-functions} (F1-1);
  8004. \path[->,bend left=15] (F1-1) edge [below] node
  8005. {\ttfamily\footnotesize convert-to-clos.} (F1-2);
  8006. \path[->,bend right=15] (F1-2) edge [above] node
  8007. {\ttfamily\footnotesize limit-fun.} (F1-3);
  8008. \path[->,bend right=15] (F1-3) edge [above] node
  8009. {\ttfamily\footnotesize expose-alloc.} (F1-4);
  8010. \path[->,bend right=15] (F1-4) edge [above] node
  8011. {\ttfamily\footnotesize remove-complex.} (F1-5);
  8012. \path[->,bend right=15] (F1-5) edge [right] node
  8013. {\ttfamily\footnotesize explicate-control} (C3-2);
  8014. \path[->,bend left=15] (C3-2) edge [left] node
  8015. {\ttfamily\footnotesize select-instr.} (x86-2);
  8016. \path[->,bend right=15] (x86-2) edge [left] node
  8017. {\ttfamily\footnotesize uncover-live} (x86-2-1);
  8018. \path[->,bend right=15] (x86-2-1) edge [below] node
  8019. {\ttfamily\footnotesize build-inter.} (x86-2-2);
  8020. \path[->,bend right=15] (x86-2-2) edge [left] node
  8021. {\ttfamily\footnotesize allocate-reg.} (x86-3);
  8022. \path[->,bend left=15] (x86-3) edge [above] node
  8023. {\ttfamily\footnotesize patch-instr.} (x86-4);
  8024. \path[->,bend left=15] (x86-4) edge [right] node
  8025. {\ttfamily\footnotesize print-x86} (x86-5);
  8026. \end{tikzpicture}
  8027. \caption{Diagram of the passes for \LangLam{}, a language with lexically-scoped
  8028. functions.}
  8029. \label{fig:Rlambda-passes}
  8030. \end{figure}
  8031. Figure~\ref{fig:Rlambda-passes} provides an overview of all the passes needed
  8032. for the compilation of \LangLam{}.
  8033. \clearpage
  8034. \section{Challenge: Optimize Closures}
  8035. \label{sec:optimize-closures}
  8036. In this chapter we compiled lexically-scoped functions into a
  8037. relatively efficient representation: flat closures. However, even this
  8038. representation comes with some overhead. For example, consider the
  8039. following program with a function \code{tail-sum} that does not have
  8040. any free variables and where all the uses of \code{tail-sum} are in
  8041. applications where we know that only \code{tail-sum} is being applied
  8042. (and not any other functions).
  8043. \begin{center}
  8044. \begin{minipage}{0.95\textwidth}
  8045. \begin{lstlisting}
  8046. (define (tail-sum [n : Integer] [r : Integer]) : Integer
  8047. (if (eq? n 0)
  8048. r
  8049. (tail-sum (- n 1) (+ n r))))
  8050. (+ (tail-sum 5 0) 27)
  8051. \end{lstlisting}
  8052. \end{minipage}
  8053. \end{center}
  8054. As described in this chapter, we uniformly apply closure conversion to
  8055. all functions, obtaining the following output for this program.
  8056. \begin{center}
  8057. \begin{minipage}{0.95\textwidth}
  8058. \begin{lstlisting}
  8059. (define (tail_sum1 [fvs5 : _] [n2 : Integer] [r3 : Integer]) : Integer
  8060. (if (eq? n2 0)
  8061. r3
  8062. (let ([clos4 (closure (list (fun-ref tail_sum1)))])
  8063. ((vector-ref clos4 0) clos4 (+ n2 -1) (+ n2 r3)))))
  8064. (define (main) : Integer
  8065. (+ (let ([clos6 (closure (list (fun-ref tail_sum1)))])
  8066. ((vector-ref clos6 0) clos6 5 0)) 27))
  8067. \end{lstlisting}
  8068. \end{minipage}
  8069. \end{center}
  8070. In the previous Chapter, there would be no allocation in the program
  8071. and the calls to \code{tail-sum} would be direct calls. In contrast,
  8072. the above program allocates memory for each \code{closure} and the
  8073. calls to \code{tail-sum} are indirect. These two differences incur
  8074. considerable overhead in a program such as this one, where the
  8075. allocations and indirect calls occur inside a tight loop.
  8076. One might think that this problem is trivial to solve: can't we just
  8077. recognize calls of the form \code{((fun-ref $f$) $e_1 \ldots e_n$)}
  8078. and compile them to direct calls \code{((fun-ref $f$) $e'_1 \ldots
  8079. e'_n$)} instead of treating it like a call to a closure? We would
  8080. also drop the \code{fvs5} parameter of \code{tail\_sum1}.
  8081. %
  8082. However, this problem is not so trivial because a global function may
  8083. ``escape'' and become involved in applications that also involve
  8084. closures. Consider the following example in which the application
  8085. \code{(f 41)} needs to be compiled into a closure application, because
  8086. the \code{lambda} may get bound to \code{f}, but the \code{add1}
  8087. function might also get bound to \code{f}.
  8088. \begin{lstlisting}
  8089. (define (add1 [x : Integer]) : Integer
  8090. (+ x 1))
  8091. (let ([y (read)])
  8092. (let ([f (if (eq? (read) 0)
  8093. add1
  8094. (lambda: ([x : Integer]) : Integer (- x y)))])
  8095. (f 41)))
  8096. \end{lstlisting}
  8097. If a global function name is used in any way other than as the
  8098. operator in a direct call, then we say that the function
  8099. \emph{escapes}. If a global function does not escape, then we do not
  8100. need to perform closure conversion on the function.
  8101. \begin{exercise}\normalfont
  8102. Implement an auxiliary function for detecting which global
  8103. functions escape. Using that function, implement an improved version
  8104. of closure conversion that does not apply closure conversion to
  8105. global functions that do not escape but instead compiles them as
  8106. regular functions. Create several new test cases that check whether
  8107. you properly detect whether global functions escape or not.
  8108. \end{exercise}
  8109. So far we have reduced the overhead of calling global functions, but
  8110. it would also be nice to reduce the overhead of calling a
  8111. \code{lambda} when we can determine at compile time which
  8112. \code{lambda} will be called. We refer to such calls as \emph{known
  8113. calls}. Consider the following example in which a \code{lambda} is
  8114. bound to \code{f} and then applied.
  8115. \begin{lstlisting}
  8116. (let ([y (read)])
  8117. (let ([f (lambda: ([x : Integer]) : Integer
  8118. (+ x y))])
  8119. (f 21)))
  8120. \end{lstlisting}
  8121. Closure conversion compiles \code{(f 21)} into an indirect call:
  8122. \begin{lstlisting}
  8123. (define (lambda5 [fvs6 : (Vector _ Integer)] [x3 : Integer]) : Integer
  8124. (let ([y2 (vector-ref fvs6 1)])
  8125. (+ x3 y2)))
  8126. (define (main) : Integer
  8127. (let ([y2 (read)])
  8128. (let ([f4 (Closure 1 (list (fun-ref lambda5) y2))])
  8129. ((vector-ref f4 0) f4 21))))
  8130. \end{lstlisting}
  8131. but we can instead compile the application \code{(f 21)} into a direct call
  8132. to \code{lambda5}:
  8133. \begin{lstlisting}
  8134. (define (main) : Integer
  8135. (let ([y2 (read)])
  8136. (let ([f4 (Closure 1 (list (fun-ref lambda5) y2))])
  8137. ((fun-ref lambda5) f4 21))))
  8138. \end{lstlisting}
  8139. The problem of determining which lambda will be called from a
  8140. particular application is quite challenging in general and the topic
  8141. of considerable research~\citep{Shivers:1988aa,Gilray:2016aa}. For the
  8142. following exercise we recommend that you compile an application to a
  8143. direct call when the operator is a variable and the variable is
  8144. \code{let}-bound to a closure. This can be accomplished by maintaining
  8145. an environment mapping \code{let}-bound variables to function names.
  8146. Extend the environment whenever you encounter a closure on the
  8147. right-hand side of a \code{let}, mapping the \code{let}-bound variable
  8148. to the name of the global function for the closure. This pass should
  8149. come after closure conversion.
  8150. \begin{exercise}\normalfont
  8151. Implement a compiler pass, named \code{optimize-known-calls}, that
  8152. compiles known calls into direct calls. Verify that your compiler is
  8153. successful in this regard on several example programs.
  8154. \end{exercise}
  8155. These exercises only scratches the surface of optimizing of
  8156. closures. A good next step for the interested reader is to look at the
  8157. work of \citet{Keep:2012ab}.
  8158. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  8159. \chapter{Dynamic Typing}
  8160. \label{ch:type-dynamic}
  8161. \index{dynamic typing}
  8162. In this chapter we discuss the compilation of \LangDyn{}, a dynamically
  8163. typed language that is a subset of Racket. This is in contrast to the
  8164. previous chapters, which have studied the compilation of Typed
  8165. Racket. In dynamically typed languages such as \LangDyn{}, a given
  8166. expression may produce a value of a different type each time it is
  8167. executed. Consider the following example with a conditional \code{if}
  8168. expression that may return a Boolean or an integer depending on the
  8169. input to the program.
  8170. % part of dynamic_test_25.rkt
  8171. \begin{lstlisting}
  8172. (not (if (eq? (read) 1) #f 0))
  8173. \end{lstlisting}
  8174. Languages that allow expressions to produce different kinds of values
  8175. are called \emph{polymorphic}, a word composed of the Greek roots
  8176. ``poly'', meaning ``many'', and ``morph'', meaning ``shape''. There
  8177. are several kinds of polymorphism in programming languages, such as
  8178. subtype polymorphism and parametric
  8179. polymorphism~\citep{Cardelli:1985kx}. The kind of polymorphism we
  8180. study in this chapter does not have a special name but it is the kind
  8181. that arises in dynamically typed languages.
  8182. Another characteristic of dynamically typed languages is that
  8183. primitive operations, such as \code{not}, are often defined to operate
  8184. on many different types of values. In fact, in Racket, the \code{not}
  8185. operator produces a result for any kind of value: given \code{\#f} it
  8186. returns \code{\#t} and given anything else it returns \code{\#f}.
  8187. Furthermore, even when primitive operations restrict their inputs to
  8188. values of a certain type, this restriction is enforced at runtime
  8189. instead of during compilation. For example, the following vector
  8190. reference results in a run-time contract violation because the index
  8191. must be in integer, not a Boolean such as \code{\#t}.
  8192. \begin{lstlisting}
  8193. (vector-ref (vector 42) #t)
  8194. \end{lstlisting}
  8195. \begin{figure}[tp]
  8196. \centering
  8197. \fbox{
  8198. \begin{minipage}{0.97\textwidth}
  8199. \[
  8200. \begin{array}{rcl}
  8201. \itm{cmp} &::= & \key{eq?} \mid \key{<} \mid \key{<=} \mid \key{>} \mid \key{>=} \\
  8202. \Exp &::=& \Int \mid \CREAD{} \mid \CNEG{\Exp}
  8203. \mid \CADD{\Exp}{\Exp} \mid \CSUB{\Exp}{\Exp} \\
  8204. &\mid& \Var \mid \CLET{\Var}{\Exp}{\Exp} \\
  8205. &\mid& \key{\#t} \mid \key{\#f}
  8206. \mid \CBINOP{\key{and}}{\Exp}{\Exp}
  8207. \mid \CBINOP{\key{or}}{\Exp}{\Exp}
  8208. \mid \CUNIOP{\key{not}}{\Exp} \\
  8209. &\mid& \LP\itm{cmp}\;\Exp\;\Exp\RP \mid \CIF{\Exp}{\Exp}{\Exp} \\
  8210. &\mid& \LP\key{vector}\;\Exp\ldots\RP \mid
  8211. \LP\key{vector-ref}\;\Exp\;\Exp\RP \\
  8212. &\mid& \LP\key{vector-set!}\;\Exp\;\Exp\;\Exp\RP \mid \LP\key{void}\RP \\
  8213. &\mid& \LP\Exp \; \Exp\ldots\RP
  8214. \mid \LP\key{lambda}\;\LP\Var\ldots\RP\;\Exp\RP \\
  8215. & \mid & \LP\key{boolean?}\;\Exp\RP \mid \LP\key{integer?}\;\Exp\RP\\
  8216. & \mid & \LP\key{vector?}\;\Exp\RP \mid \LP\key{procedure?}\;\Exp\RP \mid \LP\key{void?}\;\Exp\RP \\
  8217. \Def &::=& \LP\key{define}\; \LP\Var \; \Var\ldots\RP \; \Exp\RP \\
  8218. \LangDyn{} &::=& \Def\ldots\; \Exp
  8219. \end{array}
  8220. \]
  8221. \end{minipage}
  8222. }
  8223. \caption{Syntax of \LangDyn{}, an untyped language (a subset of Racket).}
  8224. \label{fig:r7-concrete-syntax}
  8225. \end{figure}
  8226. \begin{figure}[tp]
  8227. \centering
  8228. \fbox{
  8229. \begin{minipage}{0.96\textwidth}
  8230. \small
  8231. \[
  8232. \begin{array}{lcl}
  8233. \Exp &::=& \INT{\Int} \mid \VAR{\Var} \mid \LET{\Var}{\Exp}{\Exp} \\
  8234. &\mid& \PRIM{\itm{op}}{\Exp\ldots} \\
  8235. &\mid& \BOOL{\itm{bool}}
  8236. \mid \IF{\Exp}{\Exp}{\Exp} \\
  8237. &\mid& \VOID{} \mid \APPLY{\Exp}{\Exp\ldots} \\
  8238. &\mid& \LAMBDA{\LP\Var\ldots\RP}{\code{'Any}}{\Exp}\\
  8239. \Def &::=& \FUNDEF{\Var}{\LP\Var\ldots\RP}{\code{'Any}}{\code{'()}}{\Exp} \\
  8240. \LangDyn{} &::=& \PROGRAMDEFSEXP{\code{'()}}{\LP\Def\ldots\RP}{\Exp}
  8241. \end{array}
  8242. \]
  8243. \end{minipage}
  8244. }
  8245. \caption{The abstract syntax of \LangDyn{}.}
  8246. \label{fig:r7-syntax}
  8247. \end{figure}
  8248. The concrete and abstract syntax of \LangDyn{}, our subset of Racket, is
  8249. defined in Figures~\ref{fig:r7-concrete-syntax} and
  8250. \ref{fig:r7-syntax}.
  8251. %
  8252. There is no type checker for \LangDyn{} because it is not a statically
  8253. typed language (it's dynamically typed!).
  8254. The definitional interpreter for \LangDyn{} is presented in
  8255. Figure~\ref{fig:interp-Rdyn} and its auxiliary functions are defined in
  8256. Figure~\ref{fig:interp-Rdyn-aux}. Consider the match clause for
  8257. \code{(Int n)}. Instead of simply returning the integer \code{n} (as
  8258. in the interpreter for \LangVar{} in Figure~\ref{fig:interp-Rvar}), the
  8259. interpreter for \LangDyn{} creates a \emph{tagged value}\index{tagged
  8260. value} that combines an underlying value with a tag that identifies
  8261. what kind of value it is. We define the following struct
  8262. to represented tagged values.
  8263. \begin{lstlisting}
  8264. (struct Tagged (value tag) #:transparent)
  8265. \end{lstlisting}
  8266. The tags are \code{Integer}, \code{Boolean}, \code{Void},
  8267. \code{Vector}, and \code{Procedure}. Tags are closely related to types
  8268. but don't always capture all the information that a type does. For
  8269. example, a vector of type \code{(Vector Any Any)} is tagged with
  8270. \code{Vector} and a procedure of type \code{(Any Any -> Any)}
  8271. is tagged with \code{Procedure}.
  8272. Next consider the match clause for \code{vector-ref}. The
  8273. \code{check-tag} auxiliary function (Figure~\ref{fig:interp-Rdyn-aux})
  8274. is used to ensure that the first argument is a vector and the second
  8275. is an integer. If they are not, a \code{trapped-error} is raised.
  8276. Recall from Section~\ref{sec:interp-Rint} that when a definition
  8277. interpreter raises a \code{trapped-error} error, the compiled code
  8278. must also signal an error by exiting with return code \code{255}. A
  8279. \code{trapped-error} is also raised if the index is not less than
  8280. length of the vector.
  8281. \begin{figure}[tbp]
  8282. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  8283. (define ((interp-Rdyn-exp env) ast)
  8284. (define recur (interp-Rdyn-exp env))
  8285. (match ast
  8286. [(Var x) (lookup x env)]
  8287. [(Int n) (Tagged n 'Integer)]
  8288. [(Bool b) (Tagged b 'Boolean)]
  8289. [(Lambda xs rt body)
  8290. (Tagged `(function ,xs ,body ,env) 'Procedure)]
  8291. [(Prim 'vector es)
  8292. (Tagged (apply vector (for/list ([e es]) (recur e))) 'Vector)]
  8293. [(Prim 'vector-ref (list e1 e2))
  8294. (define vec (recur e1)) (define i (recur e2))
  8295. (check-tag vec 'Vector ast) (check-tag i 'Integer ast)
  8296. (unless (< (Tagged-value i) (vector-length (Tagged-value vec)))
  8297. (error 'trapped-error "index ~a too big\nin ~v" (Tagged-value i) ast))
  8298. (vector-ref (Tagged-value vec) (Tagged-value i))]
  8299. [(Prim 'vector-set! (list e1 e2 e3))
  8300. (define vec (recur e1)) (define i (recur e2)) (define arg (recur e3))
  8301. (check-tag vec 'Vector ast) (check-tag i 'Integer ast)
  8302. (unless (< (Tagged-value i) (vector-length (Tagged-value vec)))
  8303. (error 'trapped-error "index ~a too big\nin ~v" (Tagged-value i) ast))
  8304. (vector-set! (Tagged-value vec) (Tagged-value i) arg)
  8305. (Tagged (void) 'Void)]
  8306. [(Let x e body) ((interp-Rdyn-exp (cons (cons x (recur e)) env)) body)]
  8307. [(Prim 'and (list e1 e2)) (recur (If e1 e2 (Bool #f)))]
  8308. [(Prim 'or (list e1 e2))
  8309. (define v1 (recur e1))
  8310. (match (Tagged-value v1) [#f (recur e2)] [else v1])]
  8311. [(Prim 'eq? (list l r)) (Tagged (equal? (recur l) (recur r)) 'Boolean)]
  8312. [(Prim op (list e1))
  8313. #:when (set-member? type-predicates op)
  8314. (tag-value ((interp-op op) (Tagged-value (recur e1))))]
  8315. [(Prim op es)
  8316. (define args (map recur es))
  8317. (define tags (for/list ([arg args]) (Tagged-tag arg)))
  8318. (unless (for/or ([expected-tags (op-tags op)])
  8319. (equal? expected-tags tags))
  8320. (error 'trapped-error "illegal argument tags ~a\nin ~v" tags ast))
  8321. (tag-value
  8322. (apply (interp-op op) (for/list ([a args]) (Tagged-value a))))]
  8323. [(If q t f)
  8324. (match (Tagged-value (recur q)) [#f (recur f)] [else (recur t)])]
  8325. [(Apply f es)
  8326. (define new-f (recur f)) (define args (map recur es))
  8327. (check-tag new-f 'Procedure ast) (define f-val (Tagged-value new-f))
  8328. (match f-val
  8329. [`(function ,xs ,body ,lam-env)
  8330. (unless (eq? (length xs) (length args))
  8331. (error 'trapped-error "~a != ~a\nin ~v" (length args) (length xs) ast))
  8332. (define new-env (append (map cons xs args) lam-env))
  8333. ((interp-Rdyn-exp new-env) body)]
  8334. [else (error "interp-Rdyn-exp, expected function, not" f-val)])]))
  8335. \end{lstlisting}
  8336. \caption{Interpreter for the \LangDyn{} language.}
  8337. \label{fig:interp-Rdyn}
  8338. \end{figure}
  8339. \begin{figure}[tbp]
  8340. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  8341. (define (interp-op op)
  8342. (match op
  8343. ['+ fx+]
  8344. ['- fx-]
  8345. ['read read-fixnum]
  8346. ['not (lambda (v) (match v [#t #f] [#f #t]))]
  8347. ['< (lambda (v1 v2)
  8348. (cond [(and (fixnum? v1) (fixnum? v2)) (< v1 v2)]))]
  8349. ['<= (lambda (v1 v2)
  8350. (cond [(and (fixnum? v1) (fixnum? v2)) (<= v1 v2)]))]
  8351. ['> (lambda (v1 v2)
  8352. (cond [(and (fixnum? v1) (fixnum? v2)) (> v1 v2)]))]
  8353. ['>= (lambda (v1 v2)
  8354. (cond [(and (fixnum? v1) (fixnum? v2)) (>= v1 v2)]))]
  8355. ['boolean? boolean?]
  8356. ['integer? fixnum?]
  8357. ['void? void?]
  8358. ['vector? vector?]
  8359. ['vector-length vector-length]
  8360. ['procedure? (match-lambda
  8361. [`(functions ,xs ,body ,env) #t] [else #f])]
  8362. [else (error 'interp-op "unknown operator" op)]))
  8363. (define (op-tags op)
  8364. (match op
  8365. ['+ '((Integer Integer))]
  8366. ['- '((Integer Integer) (Integer))]
  8367. ['read '(())]
  8368. ['not '((Boolean))]
  8369. ['< '((Integer Integer))]
  8370. ['<= '((Integer Integer))]
  8371. ['> '((Integer Integer))]
  8372. ['>= '((Integer Integer))]
  8373. ['vector-length '((Vector))]))
  8374. (define type-predicates
  8375. (set 'boolean? 'integer? 'vector? 'procedure? 'void?))
  8376. (define (tag-value v)
  8377. (cond [(boolean? v) (Tagged v 'Boolean)]
  8378. [(fixnum? v) (Tagged v 'Integer)]
  8379. [(procedure? v) (Tagged v 'Procedure)]
  8380. [(vector? v) (Tagged v 'Vector)]
  8381. [(void? v) (Tagged v 'Void)]
  8382. [else (error 'tag-value "unidentified value ~a" v)]))
  8383. (define (check-tag val expected ast)
  8384. (define tag (Tagged-tag val))
  8385. (unless (eq? tag expected)
  8386. (error 'trapped-error "expected ~a, not ~a\nin ~v" expected tag ast)))
  8387. \end{lstlisting}
  8388. \caption{Auxiliary functions for the \LangDyn{} interpreter.}
  8389. \label{fig:interp-Rdyn-aux}
  8390. \end{figure}
  8391. \clearpage
  8392. \section{Representation of Tagged Values}
  8393. The interpreter for \LangDyn{} introduced a new kind of value, a tagged
  8394. value. To compile \LangDyn{} to x86 we must decide how to represent tagged
  8395. values at the bit level. Because almost every operation in \LangDyn{}
  8396. involves manipulating tagged values, the representation must be
  8397. efficient. Recall that all of our values are 64 bits. We shall steal
  8398. the 3 right-most bits to encode the tag. We use $001$ to identify
  8399. integers, $100$ for Booleans, $010$ for vectors, $011$ for procedures,
  8400. and $101$ for the void value. We define the following auxiliary
  8401. function for mapping types to tag codes.
  8402. \begin{align*}
  8403. \itm{tagof}(\key{Integer}) &= 001 \\
  8404. \itm{tagof}(\key{Boolean}) &= 100 \\
  8405. \itm{tagof}((\key{Vector} \ldots)) &= 010 \\
  8406. \itm{tagof}((\ldots \key{->} \ldots)) &= 011 \\
  8407. \itm{tagof}(\key{Void}) &= 101
  8408. \end{align*}
  8409. This stealing of 3 bits comes at some price: our integers are reduced
  8410. to ranging from $-2^{60}$ to $2^{60}$. The stealing does not adversely
  8411. affect vectors and procedures because those values are addresses, and
  8412. our addresses are 8-byte aligned so the rightmost 3 bits are unused,
  8413. they are always $000$. Thus, we do not lose information by overwriting
  8414. the rightmost 3 bits with the tag and we can simply zero-out the tag
  8415. to recover the original address.
  8416. To make tagged values into first-class entities, we can give them a
  8417. type, called \code{Any}, and define operations such as \code{Inject}
  8418. and \code{Project} for creating and using them, yielding the \LangAny{}
  8419. intermediate language. We describe how to compile \LangDyn{} to \LangAny{} in
  8420. Section~\ref{sec:compile-r7} but first we describe the \LangAny{} language
  8421. in greater detail.
  8422. \section{The \LangAny{} Language}
  8423. \label{sec:r6-lang}
  8424. \begin{figure}[tp]
  8425. \centering
  8426. \fbox{
  8427. \begin{minipage}{0.96\textwidth}
  8428. \small
  8429. \[
  8430. \begin{array}{lcl}
  8431. \Type &::= & \ldots \mid \key{Any} \\
  8432. \itm{op} &::= & \ldots \mid \code{any-vector-length}
  8433. \mid \code{any-vector-ref} \mid \code{any-vector-set!}\\
  8434. &\mid& \code{boolean?} \mid \code{integer?} \mid \code{vector?}
  8435. \mid \code{procedure?} \mid \code{void?} \\
  8436. \Exp &::=& \ldots
  8437. \mid \gray{ \PRIM{\itm{op}}{\Exp\ldots} } \\
  8438. &\mid& \INJECT{\Exp}{\FType} \mid \PROJECT{\Exp}{\FType} \\
  8439. \Def &::=& \gray{ \FUNDEF{\Var}{\LP[\Var \code{:} \Type]\ldots\RP}{\Type}{\code{'()}}{\Exp} }\\
  8440. \LangAny{} &::=& \gray{ \PROGRAMDEFSEXP{\code{'()}}{\LP\Def\ldots\RP}{\Exp} }
  8441. \end{array}
  8442. \]
  8443. \end{minipage}
  8444. }
  8445. \caption{The abstract syntax of \LangAny{}, extending \LangLam{} (Figure~\ref{fig:r5-syntax}).}
  8446. \label{fig:r6-syntax}
  8447. \end{figure}
  8448. The abstract syntax of \LangAny{} is defined in Figure~\ref{fig:r6-syntax}.
  8449. (The concrete syntax of \LangAny{} is in the Appendix,
  8450. Figure~\ref{fig:r6-concrete-syntax}.) The $\INJECT{e}{T}$ form
  8451. converts the value produced by expression $e$ of type $T$ into a
  8452. tagged value. The $\PROJECT{e}{T}$ form converts the tagged value
  8453. produced by expression $e$ into a value of type $T$ or else halts the
  8454. program if the type tag is not equivalent to $T$.
  8455. %
  8456. Note that in both \code{Inject} and \code{Project}, the type $T$ is
  8457. restricted to a flat type $\FType$, which simplifies the
  8458. implementation and corresponds with what is needed for compiling \LangDyn{}.
  8459. The \code{any-vector} operators adapt the vector operations so that
  8460. they can be applied to a value of type \code{Any}. They also
  8461. generalize the vector operations in that the index is not restricted
  8462. to be a literal integer in the grammar but is allowed to be any
  8463. expression.
  8464. The type predicates such as \key{boolean?} expect their argument to
  8465. produce a tagged value; they return \key{\#t} if the tag corresponds
  8466. to the predicate and they return \key{\#f} otherwise.
  8467. The type checker for \LangAny{} is shown in
  8468. Figures~\ref{fig:type-check-Rany-part-1} and
  8469. \ref{fig:type-check-Rany-part-2} and uses the auxiliary functions in
  8470. Figure~\ref{fig:type-check-Rany-aux}.
  8471. %
  8472. The interpreter for \LangAny{} is in Figure~\ref{fig:interp-Rany} and the
  8473. auxiliary functions \code{apply-inject} and \code{apply-project} are
  8474. in Figure~\ref{fig:apply-project}.
  8475. \begin{figure}[btp]
  8476. \begin{lstlisting}[basicstyle=\ttfamily\small]
  8477. (define type-check-Rany-class
  8478. (class type-check-Rlambda-class
  8479. (super-new)
  8480. (inherit check-type-equal?)
  8481. (define/override (type-check-exp env)
  8482. (lambda (e)
  8483. (define recur (type-check-exp env))
  8484. (match e
  8485. [(Inject e1 ty)
  8486. (unless (flat-ty? ty)
  8487. (error 'type-check "may only inject from flat type, not ~a" ty))
  8488. (define-values (new-e1 e-ty) (recur e1))
  8489. (check-type-equal? e-ty ty e)
  8490. (values (Inject new-e1 ty) 'Any)]
  8491. [(Project e1 ty)
  8492. (unless (flat-ty? ty)
  8493. (error 'type-check "may only project to flat type, not ~a" ty))
  8494. (define-values (new-e1 e-ty) (recur e1))
  8495. (check-type-equal? e-ty 'Any e)
  8496. (values (Project new-e1 ty) ty)]
  8497. [(Prim 'any-vector-length (list e1))
  8498. (define-values (e1^ t1) (recur e1))
  8499. (check-type-equal? t1 'Any e)
  8500. (values (Prim 'any-vector-length (list e1^)) 'Integer)]
  8501. [(Prim 'any-vector-ref (list e1 e2))
  8502. (define-values (e1^ t1) (recur e1))
  8503. (define-values (e2^ t2) (recur e2))
  8504. (check-type-equal? t1 'Any e)
  8505. (check-type-equal? t2 'Integer e)
  8506. (values (Prim 'any-vector-ref (list e1^ e2^)) 'Any)]
  8507. [(Prim 'any-vector-set! (list e1 e2 e3))
  8508. (define-values (e1^ t1) (recur e1))
  8509. (define-values (e2^ t2) (recur e2))
  8510. (define-values (e3^ t3) (recur e3))
  8511. (check-type-equal? t1 'Any e)
  8512. (check-type-equal? t2 'Integer e)
  8513. (check-type-equal? t3 'Any e)
  8514. (values (Prim 'any-vector-set! (list e1^ e2^ e3^)) 'Void)]
  8515. \end{lstlisting}
  8516. \caption{Type checker for the \LangAny{} language, part 1.}
  8517. \label{fig:type-check-Rany-part-1}
  8518. \end{figure}
  8519. \begin{figure}[btp]
  8520. \begin{lstlisting}[basicstyle=\ttfamily\small]
  8521. [(ValueOf e ty)
  8522. (define-values (new-e e-ty) (recur e))
  8523. (values (ValueOf new-e ty) ty)]
  8524. [(Prim pred (list e1))
  8525. #:when (set-member? (type-predicates) pred)
  8526. (define-values (new-e1 e-ty) (recur e1))
  8527. (check-type-equal? e-ty 'Any e)
  8528. (values (Prim pred (list new-e1)) 'Boolean)]
  8529. [(If cnd thn els)
  8530. (define-values (cnd^ Tc) (recur cnd))
  8531. (define-values (thn^ Tt) (recur thn))
  8532. (define-values (els^ Te) (recur els))
  8533. (check-type-equal? Tc 'Boolean cnd)
  8534. (check-type-equal? Tt Te e)
  8535. (values (If cnd^ thn^ els^) (combine-types Tt Te))]
  8536. [(Exit) (values (Exit) '_)]
  8537. [(Prim 'eq? (list arg1 arg2))
  8538. (define-values (e1 t1) (recur arg1))
  8539. (define-values (e2 t2) (recur arg2))
  8540. (match* (t1 t2)
  8541. [(`(Vector ,ts1 ...) `(Vector ,ts2 ...)) (void)]
  8542. [(other wise) (check-type-equal? t1 t2 e)])
  8543. (values (Prim 'eq? (list e1 e2)) 'Boolean)]
  8544. [else ((super type-check-exp env) e)])))
  8545. ))
  8546. \end{lstlisting}
  8547. \caption{Type checker for the \LangAny{} language, part 2.}
  8548. \label{fig:type-check-Rany-part-2}
  8549. \end{figure}
  8550. \begin{figure}[tbp]
  8551. \begin{lstlisting}
  8552. (define/override (operator-types)
  8553. (append
  8554. '((integer? . ((Any) . Boolean))
  8555. (vector? . ((Any) . Boolean))
  8556. (procedure? . ((Any) . Boolean))
  8557. (void? . ((Any) . Boolean))
  8558. (tag-of-any . ((Any) . Integer))
  8559. (make-any . ((_ Integer) . Any))
  8560. )
  8561. (super operator-types)))
  8562. (define/public (type-predicates)
  8563. (set 'boolean? 'integer? 'vector? 'procedure? 'void?))
  8564. (define/public (combine-types t1 t2)
  8565. (match (list t1 t2)
  8566. [(list '_ t2) t2]
  8567. [(list t1 '_) t1]
  8568. [(list `(Vector ,ts1 ...)
  8569. `(Vector ,ts2 ...))
  8570. `(Vector ,@(for/list ([t1 ts1] [t2 ts2])
  8571. (combine-types t1 t2)))]
  8572. [(list `(,ts1 ... -> ,rt1)
  8573. `(,ts2 ... -> ,rt2))
  8574. `(,@(for/list ([t1 ts1] [t2 ts2])
  8575. (combine-types t1 t2))
  8576. -> ,(combine-types rt1 rt2))]
  8577. [else t1]))
  8578. (define/public (flat-ty? ty)
  8579. (match ty
  8580. [(or `Integer `Boolean '_ `Void) #t]
  8581. [`(Vector ,ts ...) (for/and ([t ts]) (eq? t 'Any))]
  8582. [`(,ts ... -> ,rt)
  8583. (and (eq? rt 'Any) (for/and ([t ts]) (eq? t 'Any)))]
  8584. [else #f]))
  8585. \end{lstlisting}
  8586. \caption{Auxiliary methods for type checking \LangAny{}.}
  8587. \label{fig:type-check-Rany-aux}
  8588. \end{figure}
  8589. \begin{figure}[btp]
  8590. \begin{lstlisting}
  8591. (define interp-Rany-class
  8592. (class interp-Rlambda-class
  8593. (super-new)
  8594. (define/override (interp-op op)
  8595. (match op
  8596. ['boolean? (match-lambda
  8597. [`(tagged ,v1 ,tg) (equal? tg (any-tag 'Boolean))]
  8598. [else #f])]
  8599. ['integer? (match-lambda
  8600. [`(tagged ,v1 ,tg) (equal? tg (any-tag 'Integer))]
  8601. [else #f])]
  8602. ['vector? (match-lambda
  8603. [`(tagged ,v1 ,tg) (equal? tg (any-tag `(Vector Any)))]
  8604. [else #f])]
  8605. ['procedure? (match-lambda
  8606. [`(tagged ,v1 ,tg) (equal? tg (any-tag `(Any -> Any)))]
  8607. [else #f])]
  8608. ['eq? (match-lambda*
  8609. [`((tagged ,v1^ ,tg1) (tagged ,v2^ ,tg2))
  8610. (and (eq? v1^ v2^) (equal? tg1 tg2))]
  8611. [ls (apply (super interp-op op) ls)])]
  8612. ['any-vector-ref (lambda (v i)
  8613. (match v [`(tagged ,v^ ,tg) (vector-ref v^ i)]))]
  8614. ['any-vector-set! (lambda (v i a)
  8615. (match v [`(tagged ,v^ ,tg) (vector-set! v^ i a)]))]
  8616. ['any-vector-length (lambda (v)
  8617. (match v [`(tagged ,v^ ,tg) (vector-length v^)]))]
  8618. [else (super interp-op op)]))
  8619. (define/override ((interp-exp env) e)
  8620. (define recur (interp-exp env))
  8621. (match e
  8622. [(Inject e ty) `(tagged ,(recur e) ,(any-tag ty))]
  8623. [(Project e ty2) (apply-project (recur e) ty2)]
  8624. [else ((super interp-exp env) e)]))
  8625. ))
  8626. (define (interp-Rany p)
  8627. (send (new interp-Rany-class) interp-program p))
  8628. \end{lstlisting}
  8629. \caption{Interpreter for \LangAny{}.}
  8630. \label{fig:interp-Rany}
  8631. \end{figure}
  8632. \begin{figure}[tbp]
  8633. \begin{lstlisting}
  8634. (define/public (apply-inject v tg) (Tagged v tg))
  8635. (define/public (apply-project v ty2)
  8636. (define tag2 (any-tag ty2))
  8637. (match v
  8638. [(Tagged v1 tag1)
  8639. (cond
  8640. [(eq? tag1 tag2)
  8641. (match ty2
  8642. [`(Vector ,ts ...)
  8643. (define l1 ((interp-op 'vector-length) v1))
  8644. (cond
  8645. [(eq? l1 (length ts)) v1]
  8646. [else (error 'apply-project "vector length mismatch, ~a != ~a"
  8647. l1 (length ts))])]
  8648. [`(,ts ... -> ,rt)
  8649. (match v1
  8650. [`(function ,xs ,body ,env)
  8651. (cond [(eq? (length xs) (length ts)) v1]
  8652. [else
  8653. (error 'apply-project "arity mismatch ~a != ~a"
  8654. (length xs) (length ts))])]
  8655. [else (error 'apply-project "expected function not ~a" v1)])]
  8656. [else v1])]
  8657. [else (error 'apply-project "tag mismatch ~a != ~a" tag1 tag2)])]
  8658. [else (error 'apply-project "expected tagged value, not ~a" v)]))
  8659. \end{lstlisting}
  8660. \caption{Auxiliary functions for injection and projection.}
  8661. \label{fig:apply-project}
  8662. \end{figure}
  8663. \clearpage
  8664. \section{Cast Insertion: Compiling \LangDyn{} to \LangAny{}}
  8665. \label{sec:compile-r7}
  8666. The \code{cast-insert} pass compiles from \LangDyn{} to \LangAny{}.
  8667. Figure~\ref{fig:compile-r7-r6} shows the compilation of many of the
  8668. \LangDyn{} forms into \LangAny{}. An important invariant of this pass is that
  8669. given a subexpression $e$ in the \LangDyn{} program, the pass will produce
  8670. an expression $e'$ in \LangAny{} that has type \key{Any}. For example, the
  8671. first row in Figure~\ref{fig:compile-r7-r6} shows the compilation of
  8672. the Boolean \code{\#t}, which must be injected to produce an
  8673. expression of type \key{Any}.
  8674. %
  8675. The second row of Figure~\ref{fig:compile-r7-r6}, the compilation of
  8676. addition, is representative of compilation for many primitive
  8677. operations: the arguments have type \key{Any} and must be projected to
  8678. \key{Integer} before the addition can be performed.
  8679. The compilation of \key{lambda} (third row of
  8680. Figure~\ref{fig:compile-r7-r6}) shows what happens when we need to
  8681. produce type annotations: we simply use \key{Any}.
  8682. %
  8683. The compilation of \code{if} and \code{eq?} demonstrate how this pass
  8684. has to account for some differences in behavior between \LangDyn{} and
  8685. \LangAny{}. The \LangDyn{} language is more permissive than \LangAny{} regarding what
  8686. kind of values can be used in various places. For example, the
  8687. condition of an \key{if} does not have to be a Boolean. For \key{eq?},
  8688. the arguments need not be of the same type (in that case the
  8689. result is \code{\#f}).
  8690. \begin{figure}[btp]
  8691. \centering
  8692. \begin{tabular}{|lll|} \hline
  8693. \begin{minipage}{0.27\textwidth}
  8694. \begin{lstlisting}
  8695. #t
  8696. \end{lstlisting}
  8697. \end{minipage}
  8698. &
  8699. $\Rightarrow$
  8700. &
  8701. \begin{minipage}{0.65\textwidth}
  8702. \begin{lstlisting}
  8703. (inject #t Boolean)
  8704. \end{lstlisting}
  8705. \end{minipage}
  8706. \\[2ex]\hline
  8707. \begin{minipage}{0.27\textwidth}
  8708. \begin{lstlisting}
  8709. (+ |$e_1$| |$e_2$|)
  8710. \end{lstlisting}
  8711. \end{minipage}
  8712. &
  8713. $\Rightarrow$
  8714. &
  8715. \begin{minipage}{0.65\textwidth}
  8716. \begin{lstlisting}
  8717. (inject
  8718. (+ (project |$e'_1$| Integer)
  8719. (project |$e'_2$| Integer))
  8720. Integer)
  8721. \end{lstlisting}
  8722. \end{minipage}
  8723. \\[2ex]\hline
  8724. \begin{minipage}{0.27\textwidth}
  8725. \begin{lstlisting}
  8726. (lambda (|$x_1 \ldots x_n$|) |$e$|)
  8727. \end{lstlisting}
  8728. \end{minipage}
  8729. &
  8730. $\Rightarrow$
  8731. &
  8732. \begin{minipage}{0.65\textwidth}
  8733. \begin{lstlisting}
  8734. (inject
  8735. (lambda: ([|$x_1$|:Any]|$\ldots$|[|$x_n$|:Any]):Any |$e'$|)
  8736. (Any|$\ldots$|Any -> Any))
  8737. \end{lstlisting}
  8738. \end{minipage}
  8739. \\[2ex]\hline
  8740. \begin{minipage}{0.27\textwidth}
  8741. \begin{lstlisting}
  8742. (|$e_0$| |$e_1 \ldots e_n$|)
  8743. \end{lstlisting}
  8744. \end{minipage}
  8745. &
  8746. $\Rightarrow$
  8747. &
  8748. \begin{minipage}{0.65\textwidth}
  8749. \begin{lstlisting}
  8750. ((project |$e'_0$| (Any|$\ldots$|Any -> Any)) |$e'_1 \ldots e'_n$|)
  8751. \end{lstlisting}
  8752. \end{minipage}
  8753. \\[2ex]\hline
  8754. \begin{minipage}{0.27\textwidth}
  8755. \begin{lstlisting}
  8756. (vector-ref |$e_1$| |$e_2$|)
  8757. \end{lstlisting}
  8758. \end{minipage}
  8759. &
  8760. $\Rightarrow$
  8761. &
  8762. \begin{minipage}{0.65\textwidth}
  8763. \begin{lstlisting}
  8764. (any-vector-ref |$e_1'$| |$e_2'$|)
  8765. \end{lstlisting}
  8766. \end{minipage}
  8767. \\[2ex]\hline
  8768. \begin{minipage}{0.27\textwidth}
  8769. \begin{lstlisting}
  8770. (if |$e_1$| |$e_2$| |$e_3$|)
  8771. \end{lstlisting}
  8772. \end{minipage}
  8773. &
  8774. $\Rightarrow$
  8775. &
  8776. \begin{minipage}{0.65\textwidth}
  8777. \begin{lstlisting}
  8778. (if (eq? |$e'_1$| (inject #f Boolean)) |$e'_3$| |$e'_2$|)
  8779. \end{lstlisting}
  8780. \end{minipage}
  8781. \\[2ex]\hline
  8782. \begin{minipage}{0.27\textwidth}
  8783. \begin{lstlisting}
  8784. (eq? |$e_1$| |$e_2$|)
  8785. \end{lstlisting}
  8786. \end{minipage}
  8787. &
  8788. $\Rightarrow$
  8789. &
  8790. \begin{minipage}{0.65\textwidth}
  8791. \begin{lstlisting}
  8792. (inject (eq? |$e'_1$| |$e'_2$|) Boolean)
  8793. \end{lstlisting}
  8794. \end{minipage}
  8795. \\[2ex]\hline
  8796. \begin{minipage}{0.27\textwidth}
  8797. \begin{lstlisting}
  8798. (not |$e_1$|)
  8799. \end{lstlisting}
  8800. \end{minipage}
  8801. &
  8802. $\Rightarrow$
  8803. &
  8804. \begin{minipage}{0.65\textwidth}
  8805. \begin{lstlisting}
  8806. (if (eq? |$e'_1$| (inject #f Boolean))
  8807. (inject #t Boolean) (inject #f Boolean))
  8808. \end{lstlisting}
  8809. \end{minipage}
  8810. \\[2ex]\hline
  8811. \end{tabular}
  8812. \caption{Cast Insertion}
  8813. \label{fig:compile-r7-r6}
  8814. \end{figure}
  8815. \section{Reveal Casts}
  8816. \label{sec:reveal-casts-r6}
  8817. % TODO: define R'_6
  8818. In the \code{reveal-casts} pass we recommend compiling \code{project}
  8819. into an \code{if} expression that checks whether the value's tag
  8820. matches the target type; if it does, the value is converted to a value
  8821. of the target type by removing the tag; if it does not, the program
  8822. exits. To perform these actions we need a new primitive operation,
  8823. \code{tag-of-any}, and two new forms, \code{ValueOf} and \code{Exit}.
  8824. The \code{tag-of-any} operation retrieves the type tag from a tagged
  8825. value of type \code{Any}. The \code{ValueOf} form retrieves the
  8826. underlying value from a tagged value. The \code{ValueOf} form
  8827. includes the type for the underlying value which is used by the type
  8828. checker. Finally, the \code{Exit} form ends the execution of the
  8829. program.
  8830. If the target type of the projection is \code{Boolean} or
  8831. \code{Integer}, then \code{Project} can be translated as follows.
  8832. \begin{center}
  8833. \begin{minipage}{1.0\textwidth}
  8834. \begin{lstlisting}
  8835. (Project |$e$| |$\FType$|)
  8836. |$\Rightarrow$|
  8837. (Let |$\itm{tmp}$| |$e'$|
  8838. (If (Prim 'eq? (list (Prim 'tag-of-any (list (Var |$\itm{tmp}$|)))
  8839. (Int |$\itm{tagof}(\FType)$|)))
  8840. (ValueOf |$\itm{tmp}$| |$\FType$|)
  8841. (Exit)))
  8842. \end{lstlisting}
  8843. \end{minipage}
  8844. \end{center}
  8845. If the target type of the projection is a vector or function type,
  8846. then there is a bit more work to do. For vectors, check that the
  8847. length of the vector type matches the length of the vector (using the
  8848. \code{vector-length} primitive). For functions, check that the number
  8849. of parameters in the function type matches the function's arity (using
  8850. \code{procedure-arity}).
  8851. Regarding \code{inject}, we recommend compiling it to a slightly
  8852. lower-level primitive operation named \code{make-any}. This operation
  8853. takes a tag instead of a type.
  8854. \begin{center}
  8855. \begin{minipage}{1.0\textwidth}
  8856. \begin{lstlisting}
  8857. (Inject |$e$| |$\FType$|)
  8858. |$\Rightarrow$|
  8859. (Prim 'make-any (list |$e'$| (Int |$\itm{tagof}(\FType)$|)))
  8860. \end{lstlisting}
  8861. \end{minipage}
  8862. \end{center}
  8863. The type predicates (\code{boolean?}, etc.) can be translated into
  8864. uses of \code{tag-of-any} and \code{eq?} in a similar way as in the
  8865. translation of \code{Project}.
  8866. The \code{any-vector-ref} and \code{any-vector-set!} operations
  8867. combine the projection action with the vector operation. Also, the
  8868. read and write operations allow arbitrary expressions for the index so
  8869. the type checker for \LangAny{} (Figure~\ref{fig:type-check-Rany-part-1})
  8870. cannot guarantee that the index is within bounds. Thus, we insert code
  8871. to perform bounds checking at runtime. The translation for
  8872. \code{any-vector-ref} is as follows and the other two operations are
  8873. translated in a similar way.
  8874. \begin{lstlisting}
  8875. (Prim 'any-vector-ref (list |$e_1$| |$e_2$|))
  8876. |$\Rightarrow$|
  8877. (Let |$v$| |$e'_1$|
  8878. (Let |$i$| |$e'_2$|
  8879. (If (Prim 'eq? (list (Prim 'tag-of-any (list (Var |$v$|))) (Int 2)))
  8880. (If (Prim '< (list (Var |$i$|)
  8881. (Prim 'any-vector-length (list (Var |$v$|)))))
  8882. (Prim 'any-vector-ref (list (Var |$v$|) (Var |$i$|)))
  8883. (Exit))))
  8884. \end{lstlisting}
  8885. \section{Remove Complex Operands}
  8886. \label{sec:rco-r6}
  8887. The \code{ValueOf} and \code{Exit} forms are both complex expressions.
  8888. The subexpression of \code{ValueOf} must be atomic.
  8889. \section{Explicate Control and \LangCAny{}}
  8890. \label{sec:explicate-r6}
  8891. The output of \code{explicate-control} is the \LangCAny{} language whose
  8892. syntax is defined in Figure~\ref{fig:c5-syntax}. The \code{ValueOf}
  8893. form that we added to \LangAny{} remains an expression and the \code{Exit}
  8894. expression becomes a $\Tail$. Also, note that the index argument of
  8895. \code{vector-ref} and \code{vector-set!} is an $\Atm$ instead
  8896. of an integer, as in \LangCVec{} (Figure~\ref{fig:c2-syntax}).
  8897. \begin{figure}[tp]
  8898. \fbox{
  8899. \begin{minipage}{0.96\textwidth}
  8900. \small
  8901. \[
  8902. \begin{array}{lcl}
  8903. \Exp &::= & \ldots
  8904. \mid \BINOP{\key{'any-vector-ref}}{\Atm}{\Atm} \\
  8905. &\mid& (\key{Prim}~\key{'any-vector-set!}\,(\key{list}\,\Atm\,\Atm\,\Atm))\\
  8906. &\mid& \VALUEOF{\Exp}{\FType} \\
  8907. \Stmt &::=& \gray{ \ASSIGN{\VAR{\Var}}{\Exp}
  8908. \mid \LP\key{Collect} \,\itm{int}\RP }\\
  8909. \Tail &::= & \gray{ \RETURN{\Exp} \mid \SEQ{\Stmt}{\Tail}
  8910. \mid \GOTO{\itm{label}} } \\
  8911. &\mid& \gray{ \IFSTMT{\BINOP{\itm{cmp}}{\Atm}{\Atm}}{\GOTO{\itm{label}}}{\GOTO{\itm{label}}} }\\
  8912. &\mid& \gray{ \TAILCALL{\Atm}{\Atm\ldots} }
  8913. \mid \LP\key{Exit}\RP \\
  8914. \Def &::=& \gray{ \DEF{\itm{label}}{\LP[\Var\key{:}\Type]\ldots\RP}{\Type}{\itm{info}}{\LP\LP\itm{label}\,\key{.}\,\Tail\RP\ldots\RP} }\\
  8915. \LangCLam{} & ::= & \gray{ \PROGRAMDEFS{\itm{info}}{\LP\Def\ldots\RP} }
  8916. \end{array}
  8917. \]
  8918. \end{minipage}
  8919. }
  8920. \caption{The abstract syntax of \LangCAny{}, extending \LangCLam{} (Figure~\ref{fig:c4-syntax}).}
  8921. \label{fig:c5-syntax}
  8922. \end{figure}
  8923. \section{Select Instructions}
  8924. \label{sec:select-r6}
  8925. In the \code{select-instructions} pass we translate the primitive
  8926. operations on the \code{Any} type to x86 instructions that involve
  8927. manipulating the 3 tag bits of the tagged value.
  8928. \paragraph{Make-any}
  8929. We recommend compiling the \key{make-any} primitive as follows if the
  8930. tag is for \key{Integer} or \key{Boolean}. The \key{salq} instruction
  8931. shifts the destination to the left by the number of bits specified its
  8932. source argument (in this case $3$, the length of the tag) and it
  8933. preserves the sign of the integer. We use the \key{orq} instruction to
  8934. combine the tag and the value to form the tagged value. \\
  8935. \begin{lstlisting}
  8936. (Assign |\itm{lhs}| (Prim 'make-any (list |$e$| (Int |$\itm{tag}$|))))
  8937. |$\Rightarrow$|
  8938. movq |$e'$|, |\itm{lhs'}|
  8939. salq $3, |\itm{lhs'}|
  8940. orq $|$\itm{tag}$|, |\itm{lhs'}|
  8941. \end{lstlisting}
  8942. The instruction selection for vectors and procedures is different
  8943. because their is no need to shift them to the left. The rightmost 3
  8944. bits are already zeros as described at the beginning of this
  8945. chapter. So we just combine the value and the tag using \key{orq}. \\
  8946. \begin{lstlisting}
  8947. (Assign |\itm{lhs}| (Prim 'make-any (list |$e$| (Int |$\itm{tag}$|))))
  8948. |$\Rightarrow$|
  8949. movq |$e'$|, |\itm{lhs'}|
  8950. orq $|$\itm{tag}$|, |\itm{lhs'}|
  8951. \end{lstlisting}
  8952. \paragraph{Tag-of-any}
  8953. Recall that the \code{tag-of-any} operation extracts the type tag from
  8954. a value of type \code{Any}. The type tag is the bottom three bits, so
  8955. we obtain the tag by taking the bitwise-and of the value with $111$
  8956. ($7$ in decimal).
  8957. \begin{lstlisting}
  8958. (Assign |\itm{lhs}| (Prim 'tag-of-any (list |$e$|)))
  8959. |$\Rightarrow$|
  8960. movq |$e'$|, |\itm{lhs'}|
  8961. andq $7, |\itm{lhs'}|
  8962. \end{lstlisting}
  8963. \paragraph{ValueOf}
  8964. Like \key{make-any}, the instructions for \key{ValueOf} are different
  8965. depending on whether the type $T$ is a pointer (vector or procedure)
  8966. or not (Integer or Boolean). The following shows the instruction
  8967. selection for Integer and Boolean. We produce an untagged value by
  8968. shifting it to the right by 3 bits.
  8969. \begin{lstlisting}
  8970. (Assign |\itm{lhs}| (ValueOf |$e$| |$T$|))
  8971. |$\Rightarrow$|
  8972. movq |$e'$|, |\itm{lhs'}|
  8973. sarq $3, |\itm{lhs'}|
  8974. \end{lstlisting}
  8975. %
  8976. In the case for vectors and procedures, there is no need to
  8977. shift. Instead we just need to zero-out the rightmost 3 bits. We
  8978. accomplish this by creating the bit pattern $\ldots 0111$ ($7$ in
  8979. decimal) and apply \code{bitwise-not} to obtain $\ldots 11111000$ (-8
  8980. in decimal) which we \code{movq} into the destination $\itm{lhs}$. We
  8981. then apply \code{andq} with the tagged value to get the desired
  8982. result. \\
  8983. \begin{lstlisting}
  8984. (Assign |\itm{lhs}| (ValueOf |$e$| |$T$|))
  8985. |$\Rightarrow$|
  8986. movq $|$-8$|, |\itm{lhs'}|
  8987. andq |$e'$|, |\itm{lhs'}|
  8988. \end{lstlisting}
  8989. %% \paragraph{Type Predicates} We leave it to the reader to
  8990. %% devise a sequence of instructions to implement the type predicates
  8991. %% \key{boolean?}, \key{integer?}, \key{vector?}, and \key{procedure?}.
  8992. \paragraph{Any-vector-length}
  8993. \begin{lstlisting}
  8994. (Assign |$\itm{lhs}$| (Prim 'any-vector-length (list |$a_1$|)))
  8995. |$\Longrightarrow$|
  8996. movq |$\neg 111$|, %r11
  8997. andq |$a_1'$|, %r11
  8998. movq 0(%r11), %r11
  8999. andq $126, %r11
  9000. sarq $1, %r11
  9001. movq %r11, |$\itm{lhs'}$|
  9002. \end{lstlisting}
  9003. \paragraph{Any-vector-ref}
  9004. The index may be an arbitrary atom so instead of computing the offset
  9005. at compile time, instructions need to be generated to compute the
  9006. offset at runtime as follows. Note the use of the new instruction
  9007. \code{imulq}.
  9008. \begin{center}
  9009. \begin{minipage}{0.96\textwidth}
  9010. \begin{lstlisting}
  9011. (Assign |$\itm{lhs}$| (Prim 'any-vector-ref (list |$a_1$| |$a_2$|)))
  9012. |$\Longrightarrow$|
  9013. movq |$\neg 111$|, %r11
  9014. andq |$a_1'$|, %r11
  9015. movq |$a_2'$|, %rax
  9016. addq $1, %rax
  9017. imulq $8, %rax
  9018. addq %rax, %r11
  9019. movq 0(%r11) |$\itm{lhs'}$|
  9020. \end{lstlisting}
  9021. \end{minipage}
  9022. \end{center}
  9023. \paragraph{Any-vector-set!}
  9024. The code generation for \code{any-vector-set!} is similar to the other
  9025. \code{any-vector} operations.
  9026. \section{Register Allocation for \LangAny{}}
  9027. \label{sec:register-allocation-r6}
  9028. \index{register allocation}
  9029. There is an interesting interaction between tagged values and garbage
  9030. collection that has an impact on register allocation. A variable of
  9031. type \code{Any} might refer to a vector and therefore it might be a
  9032. root that needs to be inspected and copied during garbage
  9033. collection. Thus, we need to treat variables of type \code{Any} in a
  9034. similar way to variables of type \code{Vector} for purposes of
  9035. register allocation. In particular,
  9036. \begin{itemize}
  9037. \item If a variable of type \code{Any} is live during a function call,
  9038. then it must be spilled. This can be accomplished by changing
  9039. \code{build-interference} to mark all variables of type \code{Any}
  9040. that are live after a \code{callq} as interfering with all the
  9041. registers.
  9042. \item If a variable of type \code{Any} is spilled, it must be spilled
  9043. to the root stack instead of the normal procedure call stack.
  9044. \end{itemize}
  9045. Another concern regarding the root stack is that the garbage collector
  9046. needs to differentiate between (1) plain old pointers to tuples, (2) a
  9047. tagged value that points to a tuple, and (3) a tagged value that is
  9048. not a tuple. We enable this differentiation by choosing not to use the
  9049. tag $000$ in the $\itm{tagof}$ function. Instead, that bit pattern is
  9050. reserved for identifying plain old pointers to tuples. That way, if
  9051. one of the first three bits is set, then we have a tagged value and
  9052. inspecting the tag can differentiation between vectors ($010$) and the
  9053. other kinds of values.
  9054. \begin{exercise}\normalfont
  9055. Expand your compiler to handle \LangAny{} as discussed in the last few
  9056. sections. Create 5 new programs that use the \code{Any} type and the
  9057. new operations (\code{inject}, \code{project}, \code{boolean?},
  9058. etc.). Test your compiler on these new programs and all of your
  9059. previously created test programs.
  9060. \end{exercise}
  9061. \begin{exercise}\normalfont
  9062. Expand your compiler to handle \LangDyn{} as outlined in this chapter.
  9063. Create tests for \LangDyn{} by adapting ten of your previous test programs
  9064. by removing type annotations. Add 5 more tests programs that
  9065. specifically rely on the language being dynamically typed. That is,
  9066. they should not be legal programs in a statically typed language, but
  9067. nevertheless, they should be valid \LangDyn{} programs that run to
  9068. completion without error.
  9069. \end{exercise}
  9070. \begin{figure}[p]
  9071. \begin{tikzpicture}[baseline=(current bounding box.center)]
  9072. \node (Rfun) at (0,4) {\large \LangDyn{}};
  9073. \node (Rfun-2) at (3,4) {\large \LangDyn{}};
  9074. \node (Rfun-3) at (6,4) {\large \LangDyn{}};
  9075. \node (Rfun-4) at (9,4) {\large \LangDynFunRef{}};
  9076. \node (Rfun-5) at (9,2) {\large \LangAnyFunRef{}};
  9077. \node (Rfun-6) at (12,2) {\large \LangAnyFunRef{}};
  9078. \node (Rfun-7) at (12,0) {\large \LangAnyFunRef{}};
  9079. \node (F1-2) at (9,0) {\large \LangAnyFunRef{}};
  9080. \node (F1-3) at (6,0) {\large \LangAnyFunRef{}};
  9081. \node (F1-4) at (3,0) {\large \LangAnyAlloc{}};
  9082. \node (F1-5) at (0,0) {\large \LangAnyAlloc{}};
  9083. \node (C3-2) at (3,-2) {\large \LangCAny{}};
  9084. \node (x86-2) at (3,-4) {\large \LangXIndCallVar{}};
  9085. \node (x86-2-1) at (3,-6) {\large \LangXIndCallVar{}};
  9086. \node (x86-2-2) at (6,-6) {\large \LangXIndCallVar{}};
  9087. \node (x86-3) at (6,-4) {\large \LangXIndCallVar{}};
  9088. \node (x86-4) at (9,-4) {\large \LangXIndCall{}};
  9089. \node (x86-5) at (9,-6) {\large \LangXIndCall{}};
  9090. \path[->,bend left=15] (Rfun) edge [above] node
  9091. {\ttfamily\footnotesize shrink} (Rfun-2);
  9092. \path[->,bend left=15] (Rfun-2) edge [above] node
  9093. {\ttfamily\footnotesize uniquify} (Rfun-3);
  9094. \path[->,bend left=15] (Rfun-3) edge [above] node
  9095. {\ttfamily\footnotesize reveal-functions} (Rfun-4);
  9096. \path[->,bend right=15] (Rfun-4) edge [left] node
  9097. {\ttfamily\footnotesize cast-insert} (Rfun-5);
  9098. \path[->,bend left=15] (Rfun-5) edge [above] node
  9099. {\ttfamily\footnotesize check-bounds} (Rfun-6);
  9100. \path[->,bend left=15] (Rfun-6) edge [left] node
  9101. {\ttfamily\footnotesize reveal-casts} (Rfun-7);
  9102. \path[->,bend left=15] (Rfun-7) edge [below] node
  9103. {\ttfamily\footnotesize convert-to-clos.} (F1-2);
  9104. \path[->,bend right=15] (F1-2) edge [above] node
  9105. {\ttfamily\footnotesize limit-fun.} (F1-3);
  9106. \path[->,bend right=15] (F1-3) edge [above] node
  9107. {\ttfamily\footnotesize expose-alloc.} (F1-4);
  9108. \path[->,bend right=15] (F1-4) edge [above] node
  9109. {\ttfamily\footnotesize remove-complex.} (F1-5);
  9110. \path[->,bend right=15] (F1-5) edge [right] node
  9111. {\ttfamily\footnotesize explicate-control} (C3-2);
  9112. \path[->,bend left=15] (C3-2) edge [left] node
  9113. {\ttfamily\footnotesize select-instr.} (x86-2);
  9114. \path[->,bend right=15] (x86-2) edge [left] node
  9115. {\ttfamily\footnotesize uncover-live} (x86-2-1);
  9116. \path[->,bend right=15] (x86-2-1) edge [below] node
  9117. {\ttfamily\footnotesize build-inter.} (x86-2-2);
  9118. \path[->,bend right=15] (x86-2-2) edge [left] node
  9119. {\ttfamily\footnotesize allocate-reg.} (x86-3);
  9120. \path[->,bend left=15] (x86-3) edge [above] node
  9121. {\ttfamily\footnotesize patch-instr.} (x86-4);
  9122. \path[->,bend left=15] (x86-4) edge [right] node
  9123. {\ttfamily\footnotesize print-x86} (x86-5);
  9124. \end{tikzpicture}
  9125. \caption{Diagram of the passes for \LangDyn{}, a dynamically typed language.}
  9126. \label{fig:Rdyn-passes}
  9127. \end{figure}
  9128. Figure~\ref{fig:Rdyn-passes} provides an overview of all the passes needed
  9129. for the compilation of \LangDyn{}.
  9130. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  9131. \chapter{Loops and Assignment}
  9132. \label{ch:loop}
  9133. % todo: define R'_8
  9134. In this chapter we study two features that are the hallmarks of
  9135. imperative programming languages: loops and assignments to local
  9136. variables. The following example demonstrates these new features by
  9137. computing the sum of the first five positive integers.
  9138. % similar to loop_test_1.rkt
  9139. \begin{lstlisting}
  9140. (let ([sum 0])
  9141. (let ([i 5])
  9142. (begin
  9143. (while (> i 0)
  9144. (begin
  9145. (set! sum (+ sum i))
  9146. (set! i (- i 1))))
  9147. sum)))
  9148. \end{lstlisting}
  9149. The \code{while} loop consists of a condition and a body.
  9150. %
  9151. The \code{set!} consists of a variable and a right-hand-side expression.
  9152. %
  9153. The primary purpose of both the \code{while} loop and \code{set!} is
  9154. to cause side effects, so it is convenient to also include in a
  9155. language feature for sequencing side effects: the \code{begin}
  9156. expression. It consists of one or more subexpressions that are
  9157. evaluated left-to-right.
  9158. \section{The \LangLoop{} Language}
  9159. \begin{figure}[tp]
  9160. \centering
  9161. \fbox{
  9162. \begin{minipage}{0.96\textwidth}
  9163. \small
  9164. \[
  9165. \begin{array}{lcl}
  9166. \Exp &::=& \gray{ \Int \mid \CREAD{} \mid \CNEG{\Exp}
  9167. \mid \CADD{\Exp}{\Exp} \mid \CSUB{\Exp}{\Exp} } \\
  9168. &\mid& \gray{ \Var \mid \CLET{\Var}{\Exp}{\Exp} }\\
  9169. &\mid& \gray{\key{\#t} \mid \key{\#f}
  9170. \mid (\key{and}\;\Exp\;\Exp)
  9171. \mid (\key{or}\;\Exp\;\Exp)
  9172. \mid (\key{not}\;\Exp) } \\
  9173. &\mid& \gray{ (\key{eq?}\;\Exp\;\Exp) \mid \CIF{\Exp}{\Exp}{\Exp} } \\
  9174. &\mid& \gray{ (\key{vector}\;\Exp\ldots) \mid
  9175. (\key{vector-ref}\;\Exp\;\Int)} \\
  9176. &\mid& \gray{(\key{vector-set!}\;\Exp\;\Int\;\Exp)\mid (\key{void})
  9177. \mid (\Exp \; \Exp\ldots) } \\
  9178. &\mid& \gray{ \LP \key{procedure-arity}~\Exp\RP
  9179. \mid \CLAMBDA{\LP\LS\Var \key{:} \Type\RS\ldots\RP}{\Type}{\Exp} } \\
  9180. &\mid& \CSETBANG{\Var}{\Exp}
  9181. \mid \CBEGIN{\Exp\ldots}{\Exp}
  9182. \mid \CWHILE{\Exp}{\Exp} \\
  9183. \Def &::=& \gray{ \CDEF{\Var}{\LS\Var \key{:} \Type\RS\ldots}{\Type}{\Exp} } \\
  9184. \LangLoop{} &::=& \gray{\Def\ldots \; \Exp}
  9185. \end{array}
  9186. \]
  9187. \end{minipage}
  9188. }
  9189. \caption{The concrete syntax of \LangLoop{}, extending \LangAny{} (Figure~\ref{fig:r6-concrete-syntax}).}
  9190. \label{fig:r8-concrete-syntax}
  9191. \end{figure}
  9192. \begin{figure}[tp]
  9193. \centering
  9194. \fbox{
  9195. \begin{minipage}{0.96\textwidth}
  9196. \small
  9197. \[
  9198. \begin{array}{lcl}
  9199. \Exp &::=& \gray{ \INT{\Int} \VAR{\Var} \mid \LET{\Var}{\Exp}{\Exp} } \\
  9200. &\mid& \gray{ \PRIM{\itm{op}}{\Exp\ldots} }\\
  9201. &\mid& \gray{ \BOOL{\itm{bool}}
  9202. \mid \IF{\Exp}{\Exp}{\Exp} } \\
  9203. &\mid& \gray{ \VOID{} \mid \LP\key{HasType}~\Exp~\Type \RP
  9204. \mid \APPLY{\Exp}{\Exp\ldots} }\\
  9205. &\mid& \gray{ \LAMBDA{\LP\LS\Var\code{:}\Type\RS\ldots\RP}{\Type}{\Exp} }\\
  9206. &\mid& \SETBANG{\Var}{\Exp} \mid \BEGIN{\LP\Exp\ldots\RP}{\Exp}
  9207. \mid \WHILE{\Exp}{\Exp} \\
  9208. \Def &::=& \gray{ \FUNDEF{\Var}{\LP\LS\Var \code{:} \Type\RS\ldots\RP}{\Type}{\code{'()}}{\Exp} }\\
  9209. \LangLoop{} &::=& \gray{ \PROGRAMDEFSEXP{\code{'()}}{\LP\Def\ldots\RP}{\Exp} }
  9210. \end{array}
  9211. \]
  9212. \end{minipage}
  9213. }
  9214. \caption{The abstract syntax of \LangLoop{}, extending \LangAny{} (Figure~\ref{fig:r6-syntax}).}
  9215. \label{fig:r8-syntax}
  9216. \end{figure}
  9217. The concrete syntax of \LangLoop{} is defined in
  9218. Figure~\ref{fig:r8-concrete-syntax} and its abstract syntax is defined
  9219. in Figure~\ref{fig:r8-syntax}.
  9220. %
  9221. The definitional interpreter for \LangLoop{} is shown in
  9222. Figure~\ref{fig:interp-Rwhile}. We add three new cases for \code{SetBang},
  9223. \code{WhileLoop}, and \code{Begin} and we make changes to the cases
  9224. for \code{Var}, \code{Let}, and \code{Apply} regarding variables. To
  9225. support assignment to variables and to make their lifetimes indefinite
  9226. (see the second example in Section~\ref{sec:assignment-scoping}), we
  9227. box the value that is bound to each variable (in \code{Let}) and
  9228. function parameter (in \code{Apply}). The case for \code{Var} unboxes
  9229. the value.
  9230. %
  9231. Now to discuss the new cases. For \code{SetBang}, we lookup the
  9232. variable in the environment to obtain a boxed value and then we change
  9233. it using \code{set-box!} to the result of evaluating the right-hand
  9234. side. The result value of a \code{SetBang} is \code{void}.
  9235. %
  9236. For the \code{WhileLoop}, we repeatedly 1) evaluate the condition, and
  9237. if the result is true, 2) evaluate the body.
  9238. The result value of a \code{while} loop is also \code{void}.
  9239. %
  9240. Finally, the $\BEGIN{\itm{es}}{\itm{body}}$ expression evaluates the
  9241. subexpressions \itm{es} for their effects and then evaluates
  9242. and returns the result from \itm{body}.
  9243. \begin{figure}[tbp]
  9244. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  9245. (define interp-Rwhile-class
  9246. (class interp-Rany-class
  9247. (super-new)
  9248. (define/override ((interp-exp env) e)
  9249. (define recur (interp-exp env))
  9250. (match e
  9251. [(SetBang x rhs)
  9252. (set-box! (lookup x env) (recur rhs))]
  9253. [(WhileLoop cnd body)
  9254. (define (loop)
  9255. (cond [(recur cnd) (recur body) (loop)]
  9256. [else (void)]))
  9257. (loop)]
  9258. [(Begin es body)
  9259. (for ([e es]) (recur e))
  9260. (recur body)]
  9261. [else ((super interp-exp env) e)]))
  9262. ))
  9263. (define (interp-Rwhile p)
  9264. (send (new interp-Rwhile-class) interp-program p))
  9265. \end{lstlisting}
  9266. \caption{Interpreter for \LangLoop{}.}
  9267. \label{fig:interp-Rwhile}
  9268. \end{figure}
  9269. The type checker for \LangLoop{} is define in
  9270. Figure~\ref{fig:type-check-Rwhile}. For \code{SetBang}, the type of the
  9271. variable and the right-hand-side must agree. The result type is
  9272. \code{Void}. For the \code{WhileLoop}, the condition must be a
  9273. \code{Boolean}. The result type is also \code{Void}. For
  9274. \code{Begin}, the result type is the type of its last subexpression.
  9275. \begin{figure}[tbp]
  9276. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  9277. (define type-check-Rwhile-class
  9278. (class type-check-Rany-class
  9279. (super-new)
  9280. (inherit check-type-equal?)
  9281. (define/override (type-check-exp env)
  9282. (lambda (e)
  9283. (define recur (type-check-exp env))
  9284. (match e
  9285. [(SetBang x rhs)
  9286. (define-values (rhs^ rhsT) (recur rhs))
  9287. (define varT (dict-ref env x))
  9288. (check-type-equal? rhsT varT e)
  9289. (values (SetBang x rhs^) 'Void)]
  9290. [(WhileLoop cnd body)
  9291. (define-values (cnd^ Tc) (recur cnd))
  9292. (check-type-equal? Tc 'Boolean e)
  9293. (define-values (body^ Tbody) ((type-check-exp env) body))
  9294. (values (WhileLoop cnd^ body^) 'Void)]
  9295. [(Begin es body)
  9296. (define-values (es^ ts)
  9297. (for/lists (l1 l2) ([e es]) (recur e)))
  9298. (define-values (body^ Tbody) (recur body))
  9299. (values (Begin es^ body^) Tbody)]
  9300. [else ((super type-check-exp env) e)])))
  9301. ))
  9302. (define (type-check-Rwhile p)
  9303. (send (new type-check-Rwhile-class) type-check-program p))
  9304. \end{lstlisting}
  9305. \caption{Type checking \key{SetBang}, \key{WhileLoop},
  9306. and \code{Begin} in \LangLoop{}.}
  9307. \label{fig:type-check-Rwhile}
  9308. \end{figure}
  9309. At first glance, the translation of these language features to x86
  9310. seems straightforward because the \LangCFun{} intermediate language already
  9311. supports all of the ingredients that we need: assignment, \code{goto},
  9312. conditional branching, and sequencing. However, there are two
  9313. complications that arise which we discuss in the next two
  9314. sections. After that we introduce one new compiler pass and the
  9315. changes necessary to the existing passes.
  9316. \section{Assignment and Lexically Scoped Functions}
  9317. \label{sec:assignment-scoping}
  9318. The addition of assignment raises a problem with our approach to
  9319. implementing lexically-scoped functions. Consider the following
  9320. example in which function \code{f} has a free variable \code{x} that
  9321. is changed after \code{f} is created but before the call to \code{f}.
  9322. % loop_test_11.rkt
  9323. \begin{lstlisting}
  9324. (let ([x 0])
  9325. (let ([y 0])
  9326. (let ([z 20])
  9327. (let ([f (lambda: ([a : Integer]) : Integer (+ a (+ x z)))])
  9328. (begin
  9329. (set! x 10)
  9330. (set! y 12)
  9331. (f y))))))
  9332. \end{lstlisting}
  9333. The correct output for this example is \code{42} because the call to
  9334. \code{f} is required to use the current value of \code{x} (which is
  9335. \code{10}). Unfortunately, the closure conversion pass
  9336. (Section~\ref{sec:closure-conversion}) generates code for the
  9337. \code{lambda} that copies the old value of \code{x} into a
  9338. closure. Thus, if we naively add support for assignment to our current
  9339. compiler, the output of this program would be \code{32}.
  9340. A first attempt at solving this problem would be to save a pointer to
  9341. \code{x} in the closure and change the occurrences of \code{x} inside
  9342. the lambda to dereference the pointer. Of course, this would require
  9343. assigning \code{x} to the stack and not to a register. However, the
  9344. problem goes a bit deeper. Consider the following example in which we
  9345. create a counter abstraction by creating a pair of functions that
  9346. share the free variable \code{x}.
  9347. % similar to loop_test_10.rkt
  9348. \begin{lstlisting}
  9349. (define (f [x : Integer]) : (Vector ( -> Integer) ( -> Void))
  9350. (vector
  9351. (lambda: () : Integer x)
  9352. (lambda: () : Void (set! x (+ 1 x)))))
  9353. (let ([counter (f 0)])
  9354. (let ([get (vector-ref counter 0)])
  9355. (let ([inc (vector-ref counter 1)])
  9356. (begin
  9357. (inc)
  9358. (get)))))
  9359. \end{lstlisting}
  9360. In this example, the lifetime of \code{x} extends beyond the lifetime
  9361. of the call to \code{f}. Thus, if we were to store \code{x} on the
  9362. stack frame for the call to \code{f}, it would be gone by the time we
  9363. call \code{inc} and \code{get}, leaving us with dangling pointers for
  9364. \code{x}. This example demonstrates that when a variable occurs free
  9365. inside a \code{lambda}, its lifetime becomes indefinite. Thus, the
  9366. value of the variable needs to live on the heap. The verb ``box'' is
  9367. often used for allocating a single value on the heap, producing a
  9368. pointer, and ``unbox'' for dereferencing the pointer.
  9369. We recommend solving these problems by ``boxing'' the local variables
  9370. that are in the intersection of 1) variables that appear on the
  9371. left-hand-side of a \code{set!} and 2) variables that occur free
  9372. inside a \code{lambda}. We shall introduce a new pass named
  9373. \code{convert-assignments} in Section~\ref{sec:convert-assignments} to
  9374. perform this translation. But before diving into the compiler passes,
  9375. we one more problem to discuss.
  9376. \section{Cyclic Control Flow and Dataflow Analysis}
  9377. \label{sec:dataflow-analysis}
  9378. Up until this point the control-flow graphs generated in
  9379. \code{explicate-control} were guaranteed to be acyclic. However, each
  9380. \code{while} loop introduces a cycle in the control-flow graph.
  9381. But does that matter?
  9382. %
  9383. Indeed it does. Recall that for register allocation, the compiler
  9384. performs liveness analysis to determine which variables can share the
  9385. same register. In Section~\ref{sec:liveness-analysis-r2} we analyze
  9386. the control-flow graph in reverse topological order, but topological
  9387. order is only well-defined for acyclic graphs.
  9388. Let us return to the example of computing the sum of the first five
  9389. positive integers. Here is the program after instruction selection but
  9390. before register allocation.
  9391. \begin{center}
  9392. \begin{minipage}{0.45\textwidth}
  9393. \begin{lstlisting}
  9394. (define (main) : Integer
  9395. mainstart:
  9396. movq $0, sum1
  9397. movq $5, i2
  9398. jmp block5
  9399. block5:
  9400. movq i2, tmp3
  9401. cmpq tmp3, $0
  9402. jl block7
  9403. jmp block8
  9404. \end{lstlisting}
  9405. \end{minipage}
  9406. \begin{minipage}{0.45\textwidth}
  9407. \begin{lstlisting}
  9408. block7:
  9409. addq i2, sum1
  9410. movq $1, tmp4
  9411. negq tmp4
  9412. addq tmp4, i2
  9413. jmp block5
  9414. block8:
  9415. movq $27, %rax
  9416. addq sum1, %rax
  9417. jmp mainconclusion
  9418. )
  9419. \end{lstlisting}
  9420. \end{minipage}
  9421. \end{center}
  9422. Recall that liveness analysis works backwards, starting at the end
  9423. of each function. For this example we could start with \code{block8}
  9424. because we know what is live at the beginning of the conclusion,
  9425. just \code{rax} and \code{rsp}. So the live-before set
  9426. for \code{block8} is $\{\ttm{rsp},\ttm{sum1}\}$.
  9427. %
  9428. Next we might try to analyze \code{block5} or \code{block7}, but
  9429. \code{block5} jumps to \code{block7} and vice versa, so it seems that
  9430. we are stuck.
  9431. The way out of this impasse comes from the realization that one can
  9432. perform liveness analysis starting with an empty live-after set to
  9433. compute an under-approximation of the live-before set. By
  9434. \emph{under-approximation}, we mean that the set only contains
  9435. variables that are really live, but it may be missing some. Next, the
  9436. under-approximations for each block can be improved by 1) updating the
  9437. live-after set for each block using the approximate live-before sets
  9438. from the other blocks and 2) perform liveness analysis again on each
  9439. block. In fact, by iterating this process, the under-approximations
  9440. eventually become the correct solutions!
  9441. %
  9442. This approach of iteratively analyzing a control-flow graph is
  9443. applicable to many static analysis problems and goes by the name
  9444. \emph{dataflow analysis}\index{dataflow analysis}. It was invented by
  9445. \citet{Kildall:1973vn} in his Ph.D. thesis at the University of
  9446. Washington.
  9447. Let us apply this approach to the above example. We use the empty set
  9448. for the initial live-before set for each block. Let $m_0$ be the
  9449. following mapping from label names to sets of locations (variables and
  9450. registers).
  9451. \begin{center}
  9452. \begin{lstlisting}
  9453. mainstart: {}
  9454. block5: {}
  9455. block7: {}
  9456. block8: {}
  9457. \end{lstlisting}
  9458. \end{center}
  9459. Using the above live-before approximations, we determine the
  9460. live-after for each block and then apply liveness analysis to each
  9461. block. This produces our next approximation $m_1$ of the live-before
  9462. sets.
  9463. \begin{center}
  9464. \begin{lstlisting}
  9465. mainstart: {}
  9466. block5: {i2}
  9467. block7: {i2, sum1}
  9468. block8: {rsp, sum1}
  9469. \end{lstlisting}
  9470. \end{center}
  9471. For the second round, the live-after for \code{mainstart} is the
  9472. current live-before for \code{block5}, which is \code{\{i2\}}. So the
  9473. liveness analysis for \code{mainstart} computes the empty set. The
  9474. live-after for \code{block5} is the union of the live-before sets for
  9475. \code{block7} and \code{block8}, which is \code{\{i2 , rsp, sum1\}}.
  9476. So the liveness analysis for \code{block5} computes \code{\{i2 , rsp,
  9477. sum1\}}. The live-after for \code{block7} is the live-before for
  9478. \code{block5} (from the previous iteration), which is \code{\{i2\}}.
  9479. So the liveness analysis for \code{block7} remains \code{\{i2,
  9480. sum1\}}. Together these yield the following approximation $m_2$ of
  9481. the live-before sets.
  9482. \begin{center}
  9483. \begin{lstlisting}
  9484. mainstart: {}
  9485. block5: {i2, rsp, sum1}
  9486. block7: {i2, sum1}
  9487. block8: {rsp, sum1}
  9488. \end{lstlisting}
  9489. \end{center}
  9490. In the preceding iteration, only \code{block5} changed, so we can
  9491. limit our attention to \code{mainstart} and \code{block7}, the two
  9492. blocks that jump to \code{block5}. As a result, the live-before sets
  9493. for \code{mainstart} and \code{block7} are updated to include
  9494. \code{rsp}, yielding the following approximation $m_3$.
  9495. \begin{center}
  9496. \begin{lstlisting}
  9497. mainstart: {rsp}
  9498. block5: {i2, rsp, sum1}
  9499. block7: {i2, rsp, sum1}
  9500. block8: {rsp, sum1}
  9501. \end{lstlisting}
  9502. \end{center}
  9503. Because \code{block7} changed, we analyze \code{block5} once more, but
  9504. its live-before set remains \code{\{ i2, rsp, sum1 \}}. At this point
  9505. our approximations have converged, so $m_3$ is the solution.
  9506. This iteration process is guaranteed to converge to a solution by the
  9507. Kleene Fixed-Point Theorem, a general theorem about functions on
  9508. lattices~\citep{Kleene:1952aa}. Roughly speaking, a \emph{lattice} is
  9509. any collection that comes with a partial ordering $\sqsubseteq$ on its
  9510. elements, a least element $\bot$ (pronounced bottom), and a join
  9511. operator $\sqcup$.\index{lattice}\index{bottom}\index{partial
  9512. ordering}\index{join}\footnote{Technically speaking, we will be
  9513. working with join semi-lattices.} When two elements are ordered $m_i
  9514. \sqsubseteq m_j$, it means that $m_j$ contains at least as much
  9515. information as $m_i$, so we can think of $m_j$ as a better-or-equal
  9516. approximation than $m_i$. The bottom element $\bot$ represents the
  9517. complete lack of information, i.e., the worst approximation. The join
  9518. operator takes two lattice elements and combines their information,
  9519. i.e., it produces the least upper bound of the two.\index{least upper
  9520. bound}
  9521. A dataflow analysis typically involves two lattices: one lattice to
  9522. represent abstract states and another lattice that aggregates the
  9523. abstract states of all the blocks in the control-flow graph. For
  9524. liveness analysis, an abstract state is a set of locations. We form
  9525. the lattice $L$ by taking its elements to be sets of locations, the
  9526. ordering to be set inclusion ($\subseteq$), the bottom to be the empty
  9527. set, and the join operator to be set union.
  9528. %
  9529. We form a second lattice $M$ by taking its elements to be mappings
  9530. from the block labels to sets of locations (elements of $L$). We
  9531. order the mappings point-wise, using the ordering of $L$. So given any
  9532. two mappings $m_i$ and $m_j$, $m_i \sqsubseteq_M m_j$ when $m_i(\ell)
  9533. \subseteq m_j(\ell)$ for every block label $\ell$ in the program. The
  9534. bottom element of $M$ is the mapping $\bot_M$ that sends every label
  9535. to the empty set, i.e., $\bot_M(\ell) = \emptyset$.
  9536. We can think of one iteration of liveness analysis as being a function
  9537. $f$ on the lattice $M$. It takes a mapping as input and computes a new
  9538. mapping.
  9539. \[
  9540. f(m_i) = m_{i+1}
  9541. \]
  9542. Next let us think for a moment about what a final solution $m_s$
  9543. should look like. If we perform liveness analysis using the solution
  9544. $m_s$ as input, we should get $m_s$ again as the output. That is, the
  9545. solution should be a \emph{fixed point} of the function $f$.\index{fixed point}
  9546. \[
  9547. f(m_s) = m_s
  9548. \]
  9549. Furthermore, the solution should only include locations that are
  9550. forced to be there by performing liveness analysis on the program, so
  9551. the solution should be the \emph{least} fixed point.\index{least fixed point}
  9552. The Kleene Fixed-Point Theorem states that if a function $f$ is
  9553. monotone (better inputs produce better outputs), then the least fixed
  9554. point of $f$ is the least upper bound of the \emph{ascending Kleene
  9555. chain} obtained by starting at $\bot$ and iterating $f$ as
  9556. follows.\index{Kleene Fixed-Point Theorem}
  9557. \[
  9558. \bot \sqsubseteq f(\bot) \sqsubseteq f(f(\bot)) \sqsubseteq \cdots
  9559. \sqsubseteq f^n(\bot) \sqsubseteq \cdots
  9560. \]
  9561. When a lattice contains only finitely-long ascending chains, then
  9562. every Kleene chain tops out at some fixed point after a number of
  9563. iterations of $f$. So that fixed point is also a least upper
  9564. bound of the chain.
  9565. \[
  9566. \bot \sqsubseteq f(\bot) \sqsubseteq f(f(\bot)) \sqsubseteq \cdots
  9567. \sqsubseteq f^k(\bot) = f^{k+1}(\bot) = m_s
  9568. \]
  9569. The liveness analysis is indeed a monotone function and the lattice
  9570. $M$ only has finitely-long ascending chains because there are only a
  9571. finite number of variables and blocks in the program. Thus we are
  9572. guaranteed that iteratively applying liveness analysis to all blocks
  9573. in the program will eventually produce the least fixed point solution.
  9574. Next let us consider dataflow analysis in general and discuss the
  9575. generic work list algorithm (Figure~\ref{fig:generic-dataflow}).
  9576. %
  9577. The algorithm has four parameters: the control-flow graph \code{G}, a
  9578. function \code{transfer} that applies the analysis to one block, the
  9579. \code{bottom} and \code{join} operator for the lattice of abstract
  9580. states. The algorithm begins by creating the bottom mapping,
  9581. represented by a hash table. It then pushes all of the nodes in the
  9582. control-flow graph onto the work list (a queue). The algorithm repeats
  9583. the \code{while} loop as long as there are items in the work list. In
  9584. each iteration, a node is popped from the work list and processed. The
  9585. \code{input} for the node is computed by taking the join of the
  9586. abstract states of all the predecessor nodes. The \code{transfer}
  9587. function is then applied to obtain the \code{output} abstract
  9588. state. If the output differs from the previous state for this block,
  9589. the mapping for this block is updated and its successor nodes are
  9590. pushed onto the work list.
  9591. \begin{figure}[tb]
  9592. \begin{lstlisting}
  9593. (define (analyze-dataflow G transfer bottom join)
  9594. (define mapping (make-hash))
  9595. (for ([v (in-vertices G)])
  9596. (dict-set! mapping v bottom))
  9597. (define worklist (make-queue))
  9598. (for ([v (in-vertices G)])
  9599. (enqueue! worklist v))
  9600. (define trans-G (transpose G))
  9601. (while (not (queue-empty? worklist))
  9602. (define node (dequeue! worklist))
  9603. (define input (for/fold ([state bottom])
  9604. ([pred (in-neighbors trans-G node)])
  9605. (join state (dict-ref mapping pred))))
  9606. (define output (transfer node input))
  9607. (cond [(not (equal? output (dict-ref mapping node)))
  9608. (dict-set! mapping node output)
  9609. (for ([v (in-neighbors G node)])
  9610. (enqueue! worklist v))]))
  9611. mapping)
  9612. \end{lstlisting}
  9613. \caption{Generic work list algorithm for dataflow analysis}
  9614. \label{fig:generic-dataflow}
  9615. \end{figure}
  9616. Having discussed the two complications that arise from adding support
  9617. for assignment and loops, we turn to discussing the one new compiler
  9618. pass and the significant changes to existing passes.
  9619. \section{Convert Assignments}
  9620. \label{sec:convert-assignments}
  9621. Recall that in Section~\ref{sec:assignment-scoping} we learned that
  9622. the combination of assignments and lexically-scoped functions requires
  9623. that we box those variables that are both assigned-to and that appear
  9624. free inside a \code{lambda}. The purpose of the
  9625. \code{convert-assignments} pass is to carry out that transformation.
  9626. We recommend placing this pass after \code{uniquify} but before
  9627. \code{reveal-functions}.
  9628. Consider again the first example from
  9629. Section~\ref{sec:assignment-scoping}:
  9630. \begin{lstlisting}
  9631. (let ([x 0])
  9632. (let ([y 0])
  9633. (let ([z 20])
  9634. (let ([f (lambda: ([a : Integer]) : Integer (+ a (+ x z)))])
  9635. (begin
  9636. (set! x 10)
  9637. (set! y 12)
  9638. (f y))))))
  9639. \end{lstlisting}
  9640. The variables \code{x} and \code{y} are assigned-to. The variables
  9641. \code{x} and \code{z} occur free inside the \code{lambda}. Thus,
  9642. variable \code{x} needs to be boxed but not \code{y} and \code{z}.
  9643. The boxing of \code{x} consists of three transformations: initialize
  9644. \code{x} with a vector, replace reads from \code{x} with
  9645. \code{vector-ref}'s, and replace each \code{set!} on \code{x} with a
  9646. \code{vector-set!}. The output of \code{convert-assignments} for this
  9647. example is as follows.
  9648. \begin{lstlisting}
  9649. (define (main) : Integer
  9650. (let ([x0 (vector 0)])
  9651. (let ([y1 0])
  9652. (let ([z2 20])
  9653. (let ([f4 (lambda: ([a3 : Integer]) : Integer
  9654. (+ a3 (+ (vector-ref x0 0) z2)))])
  9655. (begin
  9656. (vector-set! x0 0 10)
  9657. (set! y1 12)
  9658. (f4 y1)))))))
  9659. \end{lstlisting}
  9660. \paragraph{Assigned \& Free}
  9661. We recommend defining an auxiliary function named
  9662. \code{assigned\&free} that takes an expression and simultaneously
  9663. computes 1) a set of assigned variables $A$, 2) a set $F$ of variables
  9664. that occur free within lambda's, and 3) a new version of the
  9665. expression that records which bound variables occurred in the
  9666. intersection of $A$ and $F$. You can use the struct
  9667. \code{AssignedFree} to do this. Consider the case for
  9668. $\LET{x}{\itm{rhs}}{\itm{body}}$. Suppose the the recursive call on
  9669. $\itm{rhs}$ produces $\itm{rhs}'$, $A_r$, and $F_r$ and the recursive
  9670. call on the $\itm{body}$ produces $\itm{body}'$, $A_b$, and $F_b$. If
  9671. $x$ is in $A_b\cap F_b$, then transforms the \code{Let} as follows.
  9672. \begin{lstlisting}
  9673. (Let |$x$| |$rhs$| |$body$|)
  9674. |$\Rightarrow$|
  9675. (Let (AssignedFree |$x$|) |$rhs'$| |$body'$|)
  9676. \end{lstlisting}
  9677. If $x$ is not in $A_b\cap F_b$ then omit the use of \code{AssignedFree}.
  9678. The set of assigned variables for this \code{Let} is
  9679. $A_r \cup (A_b - \{x\})$
  9680. and the set of variables free in lambda's is
  9681. $F_r \cup (F_b - \{x\})$.
  9682. The case for $\SETBANG{x}{\itm{rhs}}$ is straightforward but
  9683. important. Recursively process \itm{rhs} to obtain \itm{rhs'}, $A_r$,
  9684. and $F_r$. The result is $\SETBANG{x}{\itm{rhs'}}$, $\{x\} \cup A_r$,
  9685. and $F_r$.
  9686. The case for $\LAMBDA{\itm{params}}{T}{\itm{body}}$ is a bit more
  9687. involved. Let \itm{body'}, $A_b$, and $F_b$ be the result of
  9688. recursively processing \itm{body}. Wrap each of parameter that occurs
  9689. in $A_b \cap F_b$ with \code{AssignedFree} to produce \itm{params'}.
  9690. Let $P$ be the set of parameter names in \itm{params}. The result is
  9691. $\LAMBDA{\itm{params'}}{T}{\itm{body'}}$, $A_b - P$, and $(F_b \cup
  9692. \mathrm{FV}(\itm{body})) - P$, where $\mathrm{FV}$ computes the free
  9693. variables of an expression (see Chapter~\ref{ch:lambdas}).
  9694. \paragraph{Convert Assignments}
  9695. Next we discuss the \code{convert-assignment} pass with its auxiliary
  9696. functions for expressions and definitions. The function for
  9697. expressions, \code{cnvt-assign-exp}, should take an expression and a
  9698. set of assigned-and-free variables (obtained from the result of
  9699. \code{assigned\&free}. In the case for $\VAR{x}$, if $x$ is
  9700. assigned-and-free, then unbox it by translating $\VAR{x}$ to a
  9701. \code{vector-ref}.
  9702. \begin{lstlisting}
  9703. (Var |$x$|)
  9704. |$\Rightarrow$|
  9705. (Prim 'vector-ref (list (Var |$x$|) (Int 0)))
  9706. \end{lstlisting}
  9707. %
  9708. In the case for $\LET{\LP\code{AssignedFree}\,
  9709. x\RP}{\itm{rhs}}{\itm{body}}$, recursively process \itm{rhs} to
  9710. obtain \itm{rhs'}. Next, recursively process \itm{body} to obtain
  9711. \itm{body'} but with $x$ added to the set of assigned-and-free
  9712. variables. Translate the let-expression as follows to bind $x$ to a
  9713. boxed value.
  9714. \begin{lstlisting}
  9715. (Let (AssignedFree |$x$|) |$rhs$| |$body$|)
  9716. |$\Rightarrow$|
  9717. (Let |$x$| (Prim 'vector (list |$rhs'$|)) |$body'$|)
  9718. \end{lstlisting}
  9719. %
  9720. In the case for $\SETBANG{x}{\itm{rhs}}$, recursively process
  9721. \itm{rhs} to obtain \itm{rhs'}. If $x$ is in the assigned-and-free
  9722. variables, translate the \code{set!} into a \code{vector-set!}
  9723. as follows.
  9724. \begin{lstlisting}
  9725. (SetBang |$x$| |$\itm{rhs}$|)
  9726. |$\Rightarrow$|
  9727. (Prim 'vector-set! (list (Var |$x$|) (Int 0) |$\itm{rhs'}$|))
  9728. \end{lstlisting}
  9729. %
  9730. The case for \code{Lambda} is non-trivial, but it is similar to the
  9731. case for function definitions, which we discuss next.
  9732. The auxiliary function for definitions, \code{cnvt-assign-def},
  9733. applies assignment conversion to function definitions.
  9734. We translate a function definition as follows.
  9735. \begin{lstlisting}
  9736. (Def |$f$| |$\itm{params}$| |$T$| |$\itm{info}$| |$\itm{body_1}$|)
  9737. |$\Rightarrow$|
  9738. (Def |$f$| |$\itm{params'}$| |$T$| |$\itm{info}$| |$\itm{body_4}$|)
  9739. \end{lstlisting}
  9740. So it remains to explain \itm{params'} and $\itm{body}_4$.
  9741. Let \itm{body_2}, $A_b$, and $F_b$ be the result of
  9742. \code{assigned\&free} on $\itm{body_1}$.
  9743. Let $P$ be the parameter names in \itm{params}.
  9744. We then apply \code{cnvt-assign-exp} to $\itm{body_2}$ to
  9745. obtain \itm{body_3}, passing $A_b \cap F_b \cap P$
  9746. as the set of assigned-and-free variables.
  9747. Finally, we obtain \itm{body_4} by wrapping \itm{body_3}
  9748. in a sequence of let-expressions that box the parameters
  9749. that are in $A_b \cap F_b$.
  9750. %
  9751. Regarding \itm{params'}, change the names of the parameters that are
  9752. in $A_b \cap F_b$ to maintain uniqueness (and so the let-bound
  9753. variables can retain the original names). Recall the second example in
  9754. Section~\ref{sec:assignment-scoping} involving a counter
  9755. abstraction. The following is the output of assignment version for
  9756. function \code{f}.
  9757. \begin{lstlisting}
  9758. (define (f0 [x1 : Integer]) : (Vector ( -> Integer) ( -> Void))
  9759. (vector
  9760. (lambda: () : Integer x1)
  9761. (lambda: () : Void (set! x1 (+ 1 x1)))))
  9762. |$\Rightarrow$|
  9763. (define (f0 [param_x1 : Integer]) : (Vector (-> Integer) (-> Void))
  9764. (let ([x1 (vector param_x1)])
  9765. (vector (lambda: () : Integer (vector-ref x1 0))
  9766. (lambda: () : Void
  9767. (vector-set! x1 0 (+ 1 (vector-ref x1 0)))))))
  9768. \end{lstlisting}
  9769. \section{Remove Complex Operands}
  9770. \label{sec:rco-loop}
  9771. The three new language forms, \code{while}, \code{set!}, and
  9772. \code{begin} are all complex expressions and their subexpressions are
  9773. allowed to be complex. Figure~\ref{fig:r4-anf-syntax} defines the
  9774. output language \LangFunANF{} of this pass.
  9775. \begin{figure}[tp]
  9776. \centering
  9777. \fbox{
  9778. \begin{minipage}{0.96\textwidth}
  9779. \small
  9780. \[
  9781. \begin{array}{rcl}
  9782. \Atm &::=& \gray{ \INT{\Int} \mid \VAR{\Var} \mid \BOOL{\itm{bool}}
  9783. \mid \VOID{} } \\
  9784. \Exp &::=& \ldots \mid \gray{ \LET{\Var}{\Exp}{\Exp} } \\
  9785. &\mid& \WHILE{\Exp}{\Exp} \mid \SETBANG{\Var}{\Exp}
  9786. \mid \BEGIN{\LP\Exp\ldots\RP}{\Exp} \\
  9787. \Def &::=& \gray{ \FUNDEF{\Var}{([\Var \code{:} \Type]\ldots)}{\Type}{\code{'()}}{\Exp} }\\
  9788. R^{\dagger}_8 &::=& \gray{ \PROGRAMDEFS{\code{'()}}{\Def} }
  9789. \end{array}
  9790. \]
  9791. \end{minipage}
  9792. }
  9793. \caption{\LangLoopANF{} is \LangLoop{} in administrative normal form (ANF).}
  9794. \label{fig:r8-anf-syntax}
  9795. \end{figure}
  9796. As usual, when a complex expression appears in a grammar position that
  9797. needs to be atomic, such as the argument of a primitive operator, we
  9798. must introduce a temporary variable and bind it to the complex
  9799. expression. This approach applies, unchanged, to handle the new
  9800. language forms. For example, in the following code there are two
  9801. \code{begin} expressions appearing as arguments to \code{+}. The
  9802. output of \code{rco-exp} is shown below, in which the \code{begin}
  9803. expressions have been bound to temporary variables. Recall that
  9804. \code{let} expressions in \LangLoopANF{} are allowed to have
  9805. arbitrary expressions in their right-hand-side expression, so it is
  9806. fine to place \code{begin} there.
  9807. \begin{lstlisting}
  9808. (let ([x0 10])
  9809. (let ([y1 0])
  9810. (+ (+ (begin (set! y1 (read)) x0)
  9811. (begin (set! x0 (read)) y1))
  9812. x0)))
  9813. |$\Rightarrow$|
  9814. (let ([x0 10])
  9815. (let ([y1 0])
  9816. (let ([tmp2 (begin (set! y1 (read)) x0)])
  9817. (let ([tmp3 (begin (set! x0 (read)) y1)])
  9818. (let ([tmp4 (+ tmp2 tmp3)])
  9819. (+ tmp4 x0))))))
  9820. \end{lstlisting}
  9821. \section{Explicate Control and \LangCLoop{}}
  9822. \label{sec:explicate-loop}
  9823. Recall that in the \code{explicate-control} pass we define one helper
  9824. function for each kind of position in the program. For the \LangVar{}
  9825. language of integers and variables we needed kinds of positions:
  9826. assignment and tail. The \code{if} expressions of \LangIf{} introduced
  9827. predicate positions. For \LangLoop{}, the \code{begin} expression introduces
  9828. yet another kind of position: effect position. Except for the last
  9829. subexpression, the subexpressions inside a \code{begin} are evaluated
  9830. only for their effect. Their result values are discarded. We can
  9831. generate better code by taking this fact into account.
  9832. The output language of \code{explicate-control} is \LangCLoop{}
  9833. (Figure~\ref{fig:c7-syntax}), which is nearly identical to
  9834. \LangCLam{}. The only syntactic difference is that \code{Call},
  9835. \code{vector-set!}, and \code{read} may also appear as statements.
  9836. The most significant difference between \LangCLam{} and \LangCLoop{}
  9837. is that the control-flow graphs of the later may contain cycles.
  9838. \begin{figure}[tp]
  9839. \fbox{
  9840. \begin{minipage}{0.96\textwidth}
  9841. \small
  9842. \[
  9843. \begin{array}{lcl}
  9844. \Stmt &::=& \gray{ \ASSIGN{\VAR{\Var}}{\Exp}
  9845. \mid \LP\key{Collect} \,\itm{int}\RP } \\
  9846. &\mid& \CALL{\Atm}{\LP\Atm\ldots\RP} \mid \READ{}\\
  9847. &\mid& \LP\key{Prim}~\key{'vector-set!}\,\LP\key{list}\,\Atm\,\INT{\Int}\,\Atm\RP\RP \\
  9848. \Def &::=& \DEF{\itm{label}}{\LP\LS\Var\key{:}\Type\RS\ldots\RP}{\Type}{\itm{info}}{\LP\LP\itm{label}\,\key{.}\,\Tail\RP\ldots\RP}\\
  9849. \LangCLoop{} & ::= & \PROGRAMDEFS{\itm{info}}{\LP\Def\ldots\RP}
  9850. \end{array}
  9851. \]
  9852. \end{minipage}
  9853. }
  9854. \caption{The abstract syntax of \LangCLoop{}, extending \LangCLam{} (Figure~\ref{fig:c4-syntax}).}
  9855. \label{fig:c7-syntax}
  9856. \end{figure}
  9857. The new auxiliary function \code{explicate-effect} takes an expression
  9858. (in an effect position) and a promise of a continuation block. The
  9859. function returns a promise for a $\Tail$ that includes the generated
  9860. code for the input expression followed by the continuation block. If
  9861. the expression is obviously pure, that is, never causes side effects,
  9862. then the expression can be removed, so the result is just the
  9863. continuation block.
  9864. %
  9865. The $\WHILE{\itm{cnd}}{\itm{body}}$ expression is the most interesting
  9866. case. First, you will need a fresh label $\itm{loop}$ for the top of
  9867. the loop. Recursively process the \itm{body} (in effect position)
  9868. with the a \code{goto} to $\itm{loop}$ as the continuation, producing
  9869. \itm{body'}. Next, process the \itm{cnd} (in predicate position) with
  9870. \itm{body'} as the then-branch and the continuation block as the
  9871. else-branch. The result should be added to the control-flow graph with
  9872. the label \itm{loop}. The result for the whole \code{while} loop is a
  9873. \code{goto} to the \itm{loop} label. Note that the loop should only be
  9874. added to the control-flow graph if the loop is indeed used, which can
  9875. be accomplished using \code{delay}.
  9876. The auxiliary functions for tail, assignment, and predicate positions
  9877. need to be updated. The three new language forms, \code{while},
  9878. \code{set!}, and \code{begin}, can appear in assignment and tail
  9879. positions. Only \code{begin} may appear in predicate positions; the
  9880. other two have result type \code{Void}.
  9881. \section{Select Instructions}
  9882. \label{sec:select-instructions-loop}
  9883. Only three small additions are needed in the
  9884. \code{select-instructions} pass to handle the changes to \LangCLoop{}. That
  9885. is, \code{Call}, \code{read}, and \code{vector-set!} may now appear as
  9886. stand-alone statements instead of only appearing on the right-hand
  9887. side of an assignment statement. The code generation is nearly
  9888. identical; just leave off the instruction for moving the result into
  9889. the left-hand side.
  9890. \section{Register Allocation}
  9891. \label{sec:register-allocation-loop}
  9892. As discussed in Section~\ref{sec:dataflow-analysis}, the presence of
  9893. loops in \LangLoop{} means that the control-flow graphs may contain cycles,
  9894. which complicates the liveness analysis needed for register
  9895. allocation.
  9896. \subsection{Liveness Analysis}
  9897. \label{sec:liveness-analysis-r8}
  9898. We recommend using the generic \code{analyze-dataflow} function that
  9899. was presented at the end of Section~\ref{sec:dataflow-analysis} to
  9900. perform liveness analysis, replacing the code in
  9901. \code{uncover-live-CFG} that processed the basic blocks in topological
  9902. order (Section~\ref{sec:liveness-analysis-r2}).
  9903. The \code{analyze-dataflow} function has four parameters.
  9904. \begin{enumerate}
  9905. \item The first parameter \code{G} should be a directed graph from the
  9906. \code{racket/graph} package (see the sidebar in
  9907. Section~\ref{sec:build-interference}) that represents the
  9908. control-flow graph.
  9909. \item The second parameter \code{transfer} is a function that applies
  9910. liveness analysis to a basic block. It takes two parameters: the
  9911. label for the block to analyze and the live-after set for that
  9912. block. The transfer function should return the live-before set for
  9913. the block. Also, as a side-effect, it should update the block's
  9914. $\itm{info}$ with the liveness information for each instruction. To
  9915. implement the \code{transfer} function, you should be able to reuse
  9916. the code you already have for analyzing basic blocks.
  9917. \item The third and fourth parameters of \code{analyze-dataflow} are
  9918. \code{bottom} and \code{join} for the lattice of abstract states,
  9919. i.e. sets of locations. The bottom of the lattice is the empty set
  9920. \code{(set)} and the join operator is \code{set-union}.
  9921. \end{enumerate}
  9922. \begin{figure}[p]
  9923. \begin{tikzpicture}[baseline=(current bounding box.center)]
  9924. \node (Rfun) at (0,2) {\large \LangLoop{}};
  9925. \node (Rfun-2) at (3,2) {\large \LangLoop{}};
  9926. \node (Rfun-3) at (6,2) {\large \LangLoop{}};
  9927. \node (Rfun-4) at (9,2) {\large \LangLoopFunRef{}};
  9928. \node (F1-1) at (12,0) {\large \LangLoopFunRef{}};
  9929. \node (F1-2) at (9,0) {\large \LangLoopFunRef{}};
  9930. \node (F1-3) at (6,0) {\large \LangLoopFunRef{}};
  9931. \node (F1-4) at (3,0) {\large \LangLoopAlloc{}};
  9932. \node (F1-5) at (0,0) {\large \LangLoopAlloc{}};
  9933. \node (C3-2) at (3,-2) {\large \LangCLoop{}};
  9934. \node (x86-2) at (3,-4) {\large \LangXIndCallVar{}};
  9935. \node (x86-2-1) at (3,-6) {\large \LangXIndCallVar{}};
  9936. \node (x86-2-2) at (6,-6) {\large \LangXIndCallVar{}};
  9937. \node (x86-3) at (6,-4) {\large \LangXIndCallVar{}};
  9938. \node (x86-4) at (9,-4) {\large \LangXIndCall{}};
  9939. \node (x86-5) at (9,-6) {\large \LangXIndCall{}};
  9940. %% \path[->,bend left=15] (Rfun) edge [above] node
  9941. %% {\ttfamily\footnotesize type-check} (Rfun-2);
  9942. \path[->,bend left=15] (Rfun) edge [above] node
  9943. {\ttfamily\footnotesize shrink} (Rfun-2);
  9944. \path[->,bend left=15] (Rfun-2) edge [above] node
  9945. {\ttfamily\footnotesize uniquify} (Rfun-3);
  9946. \path[->,bend left=15] (Rfun-3) edge [above] node
  9947. {\ttfamily\footnotesize reveal-functions} (Rfun-4);
  9948. \path[->,bend left=15] (Rfun-4) edge [right] node
  9949. {\ttfamily\footnotesize convert-assignments} (F1-1);
  9950. \path[->,bend left=15] (F1-1) edge [below] node
  9951. {\ttfamily\footnotesize convert-to-clos.} (F1-2);
  9952. \path[->,bend right=15] (F1-2) edge [above] node
  9953. {\ttfamily\footnotesize limit-fun.} (F1-3);
  9954. \path[->,bend right=15] (F1-3) edge [above] node
  9955. {\ttfamily\footnotesize expose-alloc.} (F1-4);
  9956. \path[->,bend right=15] (F1-4) edge [above] node
  9957. {\ttfamily\footnotesize remove-complex.} (F1-5);
  9958. \path[->,bend right=15] (F1-5) edge [right] node
  9959. {\ttfamily\footnotesize explicate-control} (C3-2);
  9960. \path[->,bend left=15] (C3-2) edge [left] node
  9961. {\ttfamily\footnotesize select-instr.} (x86-2);
  9962. \path[->,bend right=15] (x86-2) edge [left] node
  9963. {\ttfamily\footnotesize uncover-live} (x86-2-1);
  9964. \path[->,bend right=15] (x86-2-1) edge [below] node
  9965. {\ttfamily\footnotesize build-inter.} (x86-2-2);
  9966. \path[->,bend right=15] (x86-2-2) edge [left] node
  9967. {\ttfamily\footnotesize allocate-reg.} (x86-3);
  9968. \path[->,bend left=15] (x86-3) edge [above] node
  9969. {\ttfamily\footnotesize patch-instr.} (x86-4);
  9970. \path[->,bend left=15] (x86-4) edge [right] node {\ttfamily\footnotesize print-x86} (x86-5);
  9971. \end{tikzpicture}
  9972. \caption{Diagram of the passes for \LangLoop{} (loops and assignment).}
  9973. \label{fig:Rwhile-passes}
  9974. \end{figure}
  9975. Figure~\ref{fig:Rwhile-passes} provides an overview of all the passes needed
  9976. for the compilation of \LangLoop{}.
  9977. % TODO: challenge assignment
  9978. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  9979. \chapter{Gradual Typing}
  9980. \label{ch:gradual-typing}
  9981. \index{gradual typing}
  9982. This chapter studies a language, \LangGrad{}, in which the programmer
  9983. can choose between static and dynamic type checking in different parts
  9984. of a program, thereby mixing the statically typed \LangLoop{} language
  9985. with the dynamically typed \LangDyn{}. There are several approaches to
  9986. mixing static and dynamic typing, including multi-language
  9987. integration~\citep{Tobin-Hochstadt:2006fk,Matthews:2007zr} and hybrid
  9988. type checking~\citep{Flanagan:2006mn,Gronski:2006uq}. In this chapter
  9989. we focus on \emph{gradual typing}\index{gradual typing}, in which the
  9990. programmer controls the amount of static versus dynamic checking by
  9991. adding or removing type annotations on parameters and
  9992. variables~\citep{Anderson:2002kd,Siek:2006bh}.
  9993. %
  9994. The concrete syntax of \LangGrad{} is defined in
  9995. Figure~\ref{fig:r9-concrete-syntax} and its abstract syntax is defined
  9996. in Figure~\ref{fig:r9-syntax}. The main syntactic difference between
  9997. \LangLoop{} and \LangGrad{} is the additional \itm{param} and \itm{ret}
  9998. non-terminals that make type annotations optional. The return types
  9999. are not optional in the abstract syntax; the parser fills in
  10000. \code{Any} when the return type is not specified in the concrete
  10001. syntax.
  10002. \begin{figure}[tp]
  10003. \centering
  10004. \fbox{
  10005. \begin{minipage}{0.96\textwidth}
  10006. \small
  10007. \[
  10008. \begin{array}{lcl}
  10009. \itm{param} &::=& \Var \mid \LS\Var \key{:} \Type\RS \\
  10010. \itm{ret} &::=& \epsilon \mid \key{:} \Type \\
  10011. \Exp &::=& \gray{ \Int \mid \CREAD{} \mid \CNEG{\Exp}
  10012. \mid \CADD{\Exp}{\Exp} \mid \CSUB{\Exp}{\Exp} } \\
  10013. &\mid& \gray{ \Var \mid \CLET{\Var}{\Exp}{\Exp} }\\
  10014. &\mid& \gray{\key{\#t} \mid \key{\#f}
  10015. \mid (\key{and}\;\Exp\;\Exp)
  10016. \mid (\key{or}\;\Exp\;\Exp)
  10017. \mid (\key{not}\;\Exp) } \\
  10018. &\mid& \gray{ (\key{eq?}\;\Exp\;\Exp) \mid \CIF{\Exp}{\Exp}{\Exp} } \\
  10019. &\mid& \gray{ (\key{vector}\;\Exp\ldots) \mid
  10020. (\key{vector-ref}\;\Exp\;\Int)} \\
  10021. &\mid& \gray{(\key{vector-set!}\;\Exp\;\Int\;\Exp)\mid (\key{void})
  10022. \mid (\Exp \; \Exp\ldots) } \\
  10023. &\mid& \gray{ \LP \key{procedure-arity}~\Exp\RP }
  10024. \mid \CGLAMBDA{\LP\itm{param}\ldots\RP}{\itm{ret}}{\Exp} \\
  10025. &\mid& \gray{ \CSETBANG{\Var}{\Exp}
  10026. \mid \CBEGIN{\Exp\ldots}{\Exp}
  10027. \mid \CWHILE{\Exp}{\Exp} } \\
  10028. \Def &::=& \CGDEF{\Var}{\itm{param}\ldots}{\itm{ret}}{\Exp} \\
  10029. \LangGrad{} &::=& \gray{\Def\ldots \; \Exp}
  10030. \end{array}
  10031. \]
  10032. \end{minipage}
  10033. }
  10034. \caption{The concrete syntax of \LangGrad{}, extending \LangLoop{} (Figure~\ref{fig:r8-concrete-syntax}).}
  10035. \label{fig:r9-concrete-syntax}
  10036. \end{figure}
  10037. \begin{figure}[tp]
  10038. \centering
  10039. \fbox{
  10040. \begin{minipage}{0.96\textwidth}
  10041. \small
  10042. \[
  10043. \begin{array}{lcl}
  10044. \itm{param} &::=& \Var \mid \LS\Var \key{:} \Type\RS \\
  10045. \Exp &::=& \gray{ \INT{\Int} \VAR{\Var} \mid \LET{\Var}{\Exp}{\Exp} } \\
  10046. &\mid& \gray{ \PRIM{\itm{op}}{\Exp\ldots} }\\
  10047. &\mid& \gray{ \BOOL{\itm{bool}}
  10048. \mid \IF{\Exp}{\Exp}{\Exp} } \\
  10049. &\mid& \gray{ \VOID{} \mid \LP\key{HasType}~\Exp~\Type \RP
  10050. \mid \APPLY{\Exp}{\Exp\ldots} }\\
  10051. &\mid& \LAMBDA{\LP\itm{param}\ldots\RP}{\Type}{\Exp} \\
  10052. &\mid& \gray{ \SETBANG{\Var}{\Exp} \mid \BEGIN{\LP\Exp\ldots\RP}{\Exp} } \\
  10053. &\mid& \gray{ \WHILE{\Exp}{\Exp} } \\
  10054. \Def &::=& \FUNDEF{\Var}{\LP\itm{param}\ldots\RP}{\Type}{\code{'()}}{\Exp} \\
  10055. \LangGrad{} &::=& \gray{ \PROGRAMDEFSEXP{\code{'()}}{\LP\Def\ldots\RP}{\Exp} }
  10056. \end{array}
  10057. \]
  10058. \end{minipage}
  10059. }
  10060. \caption{The abstract syntax of \LangGrad{}, extending \LangLoop{} (Figure~\ref{fig:r8-syntax}).}
  10061. \label{fig:r9-syntax}
  10062. \end{figure}
  10063. Both the type checker and the interpreter for \LangGrad{} require some
  10064. interesting changes to enable gradual typing, which we discuss in the
  10065. next two sections in the context of the \code{map-vec} example from
  10066. Chapter~\ref{ch:functions}. In Figure~\ref{fig:gradual-map-vec} we
  10067. revised the \code{map-vec} example, omitting the type annotations from
  10068. the \code{add1} function.
  10069. \begin{figure}[btp]
  10070. % gradual_test_9.rkt
  10071. \begin{lstlisting}
  10072. (define (map-vec [f : (Integer -> Integer)]
  10073. [v : (Vector Integer Integer)])
  10074. : (Vector Integer Integer)
  10075. (vector (f (vector-ref v 0)) (f (vector-ref v 1))))
  10076. (define (add1 x) (+ x 1))
  10077. (vector-ref (map-vec add1 (vector 0 41)) 1)
  10078. \end{lstlisting}
  10079. \caption{A partially-typed version of the \code{map-vec} example.}
  10080. \label{fig:gradual-map-vec}
  10081. \end{figure}
  10082. \section{Type Checking \LangGrad{}, Casts, and \LangCast{}}
  10083. \label{sec:gradual-type-check}
  10084. The type checker for \LangGrad{} uses the \code{Any} type for missing
  10085. parameter and return types. For example, the \code{x} parameter of
  10086. \code{add1} in Figure~\ref{fig:gradual-map-vec} is given the type
  10087. \code{Any} and the return type of \code{add1} is \code{Any}. Next
  10088. consider the \code{+} operator inside \code{add1}. It expects both
  10089. arguments to have type \code{Integer}, but its first argument \code{x}
  10090. has type \code{Any}. In a gradually typed language, such differences
  10091. are allowed so long as the types are \emph{consistent}, that is, they
  10092. are equal except in places where there is an \code{Any} type. The type
  10093. \code{Any} is consistent with every other type.
  10094. Figure~\ref{fig:consistent} defines the \code{consistent?} predicate.
  10095. \begin{figure}[tbp]
  10096. \begin{lstlisting}
  10097. (define/public (consistent? t1 t2)
  10098. (match* (t1 t2)
  10099. [('Integer 'Integer) #t]
  10100. [('Boolean 'Boolean) #t]
  10101. [('Void 'Void) #t]
  10102. [('Any t2) #t]
  10103. [(t1 'Any) #t]
  10104. [(`(Vector ,ts1 ...) `(Vector ,ts2 ...))
  10105. (for/and ([t1 ts1] [t2 ts2]) (consistent? t1 t2))]
  10106. [(`(,ts1 ... -> ,rt1) `(,ts2 ... -> ,rt2))
  10107. (and (for/and ([t1 ts1] [t2 ts2]) (consistent? t1 t2))
  10108. (consistent? rt1 rt2))]
  10109. [(other wise) #f]))
  10110. \end{lstlisting}
  10111. \caption{The consistency predicate on types, a method in
  10112. \code{type-check-gradual-class}.}
  10113. \label{fig:consistent}
  10114. \end{figure}
  10115. Returning to the \code{map-vec} example of
  10116. Figure~\ref{fig:gradual-map-vec}, the \code{add1} function has type
  10117. \code{(Any -> Any)} but parameter \code{f} of \code{map-vec} has type
  10118. \code{(Integer -> Integer)}. The type checker for \LangGrad{} allows this
  10119. because the two types are consistent. In particular, \code{->} is
  10120. equal to \code{->} and because \code{Any} is consistent with
  10121. \code{Integer}.
  10122. Next consider a program with an error, such as applying the
  10123. \code{map-vec} to a function that sometimes returns a Boolean, as
  10124. shown in Figure~\ref{fig:map-vec-maybe-add1}. The type checker for
  10125. \LangGrad{} accepts this program because the type of \code{maybe-add1} is
  10126. consistent with the type of parameter \code{f} of \code{map-vec}, that
  10127. is, \code{(Any -> Any)} is consistent with \code{(Integer ->
  10128. Integer)}. One might say that a gradual type checker is optimistic
  10129. in that it accepts programs that might execute without a runtime type
  10130. error.
  10131. %
  10132. Unfortunately, running this program with input \code{1} triggers an
  10133. error when the \code{maybe-add1} function returns \code{\#t}. \LangGrad{}
  10134. performs checking at runtime to ensure the integrity of the static
  10135. types, such as the \code{(Integer -> Integer)} annotation on parameter
  10136. \code{f} of \code{map-vec}. This runtime checking is carried out by a
  10137. new \code{Cast} form that is inserted by the type checker. Thus, the
  10138. output of the type checker is a program in the \LangCast{} language, which
  10139. adds \code{Cast} to \LangLoop{}, as shown in
  10140. Figure~\ref{fig:r9-prime-syntax}.
  10141. \begin{figure}[tp]
  10142. \centering
  10143. \fbox{
  10144. \begin{minipage}{0.96\textwidth}
  10145. \small
  10146. \[
  10147. \begin{array}{lcl}
  10148. \Exp &::=& \ldots \mid \CAST{\Exp}{\Type}{\Type} \\
  10149. \LangCast{} &::=& \gray{ \PROGRAMDEFSEXP{\code{'()}}{\LP\Def\ldots\RP}{\Exp} }
  10150. \end{array}
  10151. \]
  10152. \end{minipage}
  10153. }
  10154. \caption{The abstract syntax of \LangCast{}, extending \LangLoop{} (Figure~\ref{fig:r8-syntax}).}
  10155. \label{fig:r9-prime-syntax}
  10156. \end{figure}
  10157. \begin{figure}[tbp]
  10158. \begin{lstlisting}
  10159. (define (map-vec [f : (Integer -> Integer)]
  10160. [v : (Vector Integer Integer)])
  10161. : (Vector Integer Integer)
  10162. (vector (f (vector-ref v 0)) (f (vector-ref v 1))))
  10163. (define (add1 x) (+ x 1))
  10164. (define (true) #t)
  10165. (define (maybe-add1 x) (if (eq? 0 (read)) (add1 x) (true)))
  10166. (vector-ref (map-vec maybe-add1 (vector 0 41)) 0)
  10167. \end{lstlisting}
  10168. \caption{A variant of the \code{map-vec} example with an error.}
  10169. \label{fig:map-vec-maybe-add1}
  10170. \end{figure}
  10171. Figure~\ref{fig:map-vec-cast} shows the output of the type checker for
  10172. \code{map-vec} and \code{maybe-add1}. The idea is that \code{Cast} is
  10173. inserted every time the type checker sees two types that are
  10174. consistent but not equal. In the \code{add1} function, \code{x} is
  10175. cast to \code{Integer} and the result of the \code{+} is cast to
  10176. \code{Any}. In the call to \code{map-vec}, the \code{add1} argument
  10177. is cast from \code{(Any -> Any)} to \code{(Integer -> Integer)}.
  10178. \begin{figure}[btp]
  10179. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  10180. (define (map-vec [f : (Integer -> Integer)] [v : (Vector Integer Integer)])
  10181. : (Vector Integer Integer)
  10182. (vector (f (vector-ref v 0)) (f (vector-ref v 1))))
  10183. (define (add1 [x : Any]) : Any
  10184. (cast (+ (cast x Any Integer) 1) Integer Any))
  10185. (define (true) : Any (cast #t Boolean Any))
  10186. (define (maybe-add1 [x : Any]) : Any
  10187. (if (eq? 0 (read)) (add1 x) (true)))
  10188. (vector-ref (map-vec (cast maybe-add1 (Any -> Any) (Integer -> Integer))
  10189. (vector 0 41)) 0)
  10190. \end{lstlisting}
  10191. \caption{Output of type checking \code{map-vec}
  10192. and \code{maybe-add1}.}
  10193. \label{fig:map-vec-cast}
  10194. \end{figure}
  10195. The type checker for \LangGrad{} is defined in
  10196. Figures~\ref{fig:type-check-Rgradual-1}, \ref{fig:type-check-Rgradual-2},
  10197. and \ref{fig:type-check-Rgradual-3}.
  10198. \begin{figure}[tbp]
  10199. \begin{lstlisting}[basicstyle=\ttfamily\scriptsize]
  10200. (define type-check-gradual-class
  10201. (class type-check-Rwhile-class
  10202. (super-new)
  10203. (inherit operator-types type-predicates)
  10204. (define/override (type-check-exp env)
  10205. (lambda (e)
  10206. (define recur (type-check-exp env))
  10207. (match e
  10208. [(Prim 'vector-length (list e1))
  10209. (define-values (e1^ t) (recur e1))
  10210. (match t
  10211. [`(Vector ,ts ...)
  10212. (values (Prim 'vector-length (list e1^)) 'Integer)]
  10213. ['Any (values (Prim 'any-vector-length (list e1^)) 'Integer)])]
  10214. [(Prim 'vector-ref (list e1 e2))
  10215. (define-values (e1^ t1) (recur e1))
  10216. (define-values (e2^ t2) (recur e2))
  10217. (check-consistent? t2 'Integer e)
  10218. (match t1
  10219. [`(Vector ,ts ...)
  10220. (match e2^
  10221. [(Int i)
  10222. (unless (and (0 . <= . i) (i . < . (length ts)))
  10223. (error 'type-check "invalid index ~a in ~a" i e))
  10224. (values (Prim 'vector-ref (list e1^ (Int i))) (list-ref ts i))]
  10225. [else (define e1^^ (make-cast e1^ t1 'Any))
  10226. (define e2^^ (make-cast e2^ t2 'Integer))
  10227. (values (Prim 'any-vector-ref (list e1^^ e2^^)) 'Any)])]
  10228. ['Any
  10229. (define e2^^ (make-cast e2^ t2 'Integer))
  10230. (values (Prim 'any-vector-ref (list e1^ e2^^)) 'Any)]
  10231. [else (error 'type-check "expected vector not ~a\nin ~v" t1 e)])]
  10232. [(Prim 'vector-set! (list e1 e2 e3) )
  10233. (define-values (e1^ t1) (recur e1))
  10234. (define-values (e2^ t2) (recur e2))
  10235. (define-values (e3^ t3) (recur e3))
  10236. (check-consistent? t2 'Integer e)
  10237. (match t1
  10238. [`(Vector ,ts ...)
  10239. (match e2^
  10240. [(Int i)
  10241. (unless (and (0 . <= . i) (i . < . (length ts)))
  10242. (error 'type-check "invalid index ~a in ~a" i e))
  10243. (check-consistent? (list-ref ts i) t3 e)
  10244. (define e3^^ (make-cast e3^ t3 (list-ref ts i)))
  10245. (values (Prim 'vector-set! (list e1^ (Int i) e3^^)) 'Void)]
  10246. [else
  10247. (define e1^^ (make-cast e1^ t1 'Any))
  10248. (define e2^^ (make-cast e2^ t2 'Integer))
  10249. (define e3^^ (make-cast e3^ t3 'Any))
  10250. (values (Prim 'any-vector-set! (list e1^^ e2^^ e3^^)) 'Void)])]
  10251. ['Any
  10252. (define e2^^ (make-cast e2^ t2 'Integer))
  10253. (define e3^^ (make-cast e3^ t3 'Any))
  10254. (values (Prim 'any-vector-set! (list e1^ e2^^ e3^^)) 'Void)]
  10255. [else (error 'type-check "expected vector not ~a\nin ~v" t1 e)])]
  10256. \end{lstlisting}
  10257. \caption{Type checker for the \LangGrad{} language, part 1.}
  10258. \label{fig:type-check-Rgradual-1}
  10259. \end{figure}
  10260. \begin{figure}[tbp]
  10261. \begin{lstlisting}[basicstyle=\ttfamily\scriptsize]
  10262. [(Prim 'eq? (list e1 e2))
  10263. (define-values (e1^ t1) (recur e1))
  10264. (define-values (e2^ t2) (recur e2))
  10265. (check-consistent? t1 t2 e)
  10266. (define T (meet t1 t2))
  10267. (values (Prim 'eq? (list (make-cast e1^ t1 T) (make-cast e2^ t2 T)))
  10268. 'Boolean)]
  10269. [(Prim 'not (list e1))
  10270. (define-values (e1^ t1) (recur e1))
  10271. (match t1
  10272. ['Any
  10273. (recur (If (Prim 'eq? (list e1 (Inject (Bool #f) 'Boolean)))
  10274. (Bool #t) (Bool #f)))]
  10275. [else
  10276. (define-values (t-ret new-es^)
  10277. (type-check-op 'not (list t1) (list e1^) e))
  10278. (values (Prim 'not new-es^) t-ret)])]
  10279. [(Prim 'and (list e1 e2))
  10280. (recur (If e1 e2 (Bool #f)))]
  10281. [(Prim 'or (list e1 e2))
  10282. (define tmp (gensym 'tmp))
  10283. (recur (Let tmp e1 (If (Var tmp) (Var tmp) e2)))]
  10284. [(Prim op es)
  10285. #:when (not (set-member? explicit-prim-ops op))
  10286. (define-values (new-es ts)
  10287. (for/lists (exprs types) ([e es])
  10288. (recur e)))
  10289. (define-values (t-ret new-es^) (type-check-op op ts new-es e))
  10290. (values (Prim op new-es^) t-ret)]
  10291. [(If e1 e2 e3)
  10292. (define-values (e1^ T1) (recur e1))
  10293. (define-values (e2^ T2) (recur e2))
  10294. (define-values (e3^ T3) (recur e3))
  10295. (check-consistent? T2 T3 e)
  10296. (match T1
  10297. ['Boolean
  10298. (define Tif (join T2 T3))
  10299. (values (If e1^ (make-cast e2^ T2 Tif)
  10300. (make-cast e3^ T3 Tif)) Tif)]
  10301. ['Any
  10302. (define Tif (meet T2 T3))
  10303. (values (If (Prim 'eq? (list e1^ (Inject (Bool #f) 'Boolean)))
  10304. (make-cast e3^ T3 Tif) (make-cast e2^ T2 Tif))
  10305. Tif)]
  10306. [else (error 'type-check "expected Boolean not ~a\nin ~v" T1 e)])]
  10307. [(HasType e1 T)
  10308. (define-values (e1^ T1) (recur e1))
  10309. (check-consistent? T1 T)
  10310. (values (make-cast e1^ T1 T) T)]
  10311. [(SetBang x e1)
  10312. (define-values (e1^ T1) (recur e1))
  10313. (define varT (dict-ref env x))
  10314. (check-consistent? T1 varT e)
  10315. (values (SetBang x (make-cast e1^ T1 varT)) 'Void)]
  10316. [(WhileLoop e1 e2)
  10317. (define-values (e1^ T1) (recur e1))
  10318. (check-consistent? T1 'Boolean e)
  10319. (define-values (e2^ T2) ((type-check-exp env) e2))
  10320. (values (WhileLoop (make-cast e1^ T1 'Boolean) e2^) 'Void)]
  10321. \end{lstlisting}
  10322. \caption{Type checker for the \LangGrad{} language, part 2.}
  10323. \label{fig:type-check-Rgradual-2}
  10324. \end{figure}
  10325. \begin{figure}[tbp]
  10326. \begin{lstlisting}[basicstyle=\ttfamily\scriptsize]
  10327. [(Apply e1 e2s)
  10328. (define-values (e1^ T1) (recur e1))
  10329. (define-values (e2s^ T2s) (for/lists (e* ty*) ([e2 e2s]) (recur e2)))
  10330. (match T1
  10331. [`(,T1ps ... -> ,T1rt)
  10332. (for ([T2 T2s] [Tp T1ps])
  10333. (check-consistent? T2 Tp e))
  10334. (define e2s^^ (for/list ([e2 e2s^] [src T2s] [tgt T1ps])
  10335. (make-cast e2 src tgt)))
  10336. (values (Apply e1^ e2s^^) T1rt)]
  10337. [`Any
  10338. (define e1^^ (make-cast e1^ 'Any
  10339. `(,@(for/list ([e e2s]) 'Any) -> Any)))
  10340. (define e2s^^ (for/list ([e2 e2s^] [src T2s])
  10341. (make-cast e2 src 'Any)))
  10342. (values (Apply e1^^ e2s^^) 'Any)]
  10343. [else (error 'type-check "expected function not ~a\nin ~v" T1 e)])]
  10344. [(Lambda params Tr e1)
  10345. (define-values (xs Ts) (for/lists (l1 l2) ([p params])
  10346. (match p
  10347. [`[,x : ,T] (values x T)]
  10348. [(? symbol? x) (values x 'Any)])))
  10349. (define-values (e1^ T1)
  10350. ((type-check-exp (append (map cons xs Ts) env)) e1))
  10351. (check-consistent? Tr T1 e)
  10352. (values (Lambda (for/list ([x xs] [T Ts]) `[,x : ,T]) Tr
  10353. (make-cast e1^ T1 Tr)) `(,@Ts -> ,Tr))]
  10354. [else ((super type-check-exp env) e)]
  10355. )))
  10356. \end{lstlisting}
  10357. \caption{Type checker for the \LangGrad{} language, part 3.}
  10358. \label{fig:type-check-Rgradual-3}
  10359. \end{figure}
  10360. \begin{figure}[tbp]
  10361. \begin{lstlisting}[basicstyle=\ttfamily\scriptsize]
  10362. (define/public (join t1 t2)
  10363. (match* (t1 t2)
  10364. [('Integer 'Integer) 'Integer]
  10365. [('Boolean 'Boolean) 'Boolean]
  10366. [('Void 'Void) 'Void]
  10367. [('Any t2) t2]
  10368. [(t1 'Any) t1]
  10369. [(`(Vector ,ts1 ...) `(Vector ,ts2 ...))
  10370. `(Vector ,@(for/list ([t1 ts1] [t2 ts2]) (join t1 t2)))]
  10371. [(`(,ts1 ... -> ,rt1) `(,ts2 ... -> ,rt2))
  10372. `(,@(for/list ([t1 ts1] [t2 ts2]) (join t1 t2))
  10373. -> ,(join rt1 rt2))]))
  10374. (define/public (meet t1 t2)
  10375. (match* (t1 t2)
  10376. [('Integer 'Integer) 'Integer]
  10377. [('Boolean 'Boolean) 'Boolean]
  10378. [('Void 'Void) 'Void]
  10379. [('Any t2) 'Any]
  10380. [(t1 'Any) 'Any]
  10381. [(`(Vector ,ts1 ...) `(Vector ,ts2 ...))
  10382. `(Vector ,@(for/list ([t1 ts1] [t2 ts2]) (meet t1 t2)))]
  10383. [(`(,ts1 ... -> ,rt1) `(,ts2 ... -> ,rt2))
  10384. `(,@(for/list ([t1 ts1] [t2 ts2]) (meet t1 t2))
  10385. -> ,(meet rt1 rt2))]))
  10386. (define/public (make-cast e src tgt)
  10387. (cond [(equal? src tgt) e] [else (Cast e src tgt)]))
  10388. (define/public (check-consistent? t1 t2 e)
  10389. (unless (consistent? t1 t2)
  10390. (error 'type-check "~a is inconsistent with ~a\nin ~v" t1 t2 e)))
  10391. (define/override (type-check-op op arg-types args e)
  10392. (match (dict-ref (operator-types) op)
  10393. [`(,param-types . ,return-type)
  10394. (for ([at arg-types] [pt param-types])
  10395. (check-consistent? at pt e))
  10396. (values return-type
  10397. (for/list ([e args] [s arg-types] [t param-types])
  10398. (make-cast e s t)))]
  10399. [else (error 'type-check-op "unrecognized ~a" op)]))
  10400. (define explicit-prim-ops
  10401. (set-union
  10402. (type-predicates)
  10403. (set 'procedure-arity 'eq?
  10404. 'vector 'vector-length 'vector-ref 'vector-set!
  10405. 'any-vector-length 'any-vector-ref 'any-vector-set!)))
  10406. (define/override (fun-def-type d)
  10407. (match d
  10408. [(Def f params rt info body)
  10409. (define ps
  10410. (for/list ([p params])
  10411. (match p
  10412. [`[,x : ,T] T]
  10413. [(? symbol?) 'Any]
  10414. [else (error 'fun-def-type "unmatched parameter ~a" p)])))
  10415. `(,@ps -> ,rt)]
  10416. [else (error 'fun-def-type "ill-formed function definition in ~a" d)]))
  10417. \end{lstlisting}
  10418. \caption{Auxiliary functions for type checking \LangGrad{}.}
  10419. \label{fig:type-check-Rgradual-aux}
  10420. \end{figure}
  10421. \clearpage
  10422. \section{Interpreting \LangCast{}}
  10423. \label{sec:interp-casts}
  10424. The runtime behavior of first-order casts is straightforward, that is,
  10425. casts involving simple types such as \code{Integer} and
  10426. \code{Boolean}. For example, a cast from \code{Integer} to \code{Any}
  10427. can be accomplished with the \code{Inject} operator of \LangAny{}, which
  10428. puts the integer into a tagged value
  10429. (Figure~\ref{fig:interp-Rany}). Similarly, a cast from \code{Any} to
  10430. \code{Integer} is accomplished with the \code{Project} operator, that
  10431. is, by checking the value's tag and either retrieving the underlying
  10432. integer or signaling an error if it the tag is not the one for
  10433. integers (Figure~\ref{fig:apply-project}).
  10434. %
  10435. Things get more interesting for higher-order casts, that is, casts
  10436. involving function or vector types.
  10437. Consider the cast of the function \code{maybe-add1} from \code{(Any ->
  10438. Any)} to \code{(Integer -> Integer)}. When a function flows through
  10439. this cast at runtime, we can't know in general whether the function
  10440. will always return an integer.\footnote{Predicting the return value of
  10441. a function is equivalent to the halting problem, which is
  10442. undecidable.} The \LangCast{} interpreter therefore delays the checking
  10443. of the cast until the function is applied. This is accomplished by
  10444. wrapping \code{maybe-add1} in a new function that casts its parameter
  10445. from \code{Integer} to \code{Any}, applies \code{maybe-add1}, and then
  10446. casts the return value from \code{Any} to \code{Integer}.
  10447. Turning our attention to casts involving vector types, we consider the
  10448. example in Figure~\ref{fig:map-vec-bang} that defines a
  10449. partially-typed version of \code{map-vec} whose parameter \code{v} has
  10450. type \code{(Vector Any Any)} and that updates \code{v} in place
  10451. instead of returning a new vector. So we name this function
  10452. \code{map-vec!}. We apply \code{map-vec!} to a vector of integers, so
  10453. the type checker inserts a cast from \code{(Vector Integer Integer)}
  10454. to \code{(Vector Any Any)}. A naive way for the \LangCast{} interpreter to
  10455. cast between vector types would be a build a new vector whose elements
  10456. are the result of casting each of the original elements to the
  10457. appropriate target type. However, this approach is only valid for
  10458. immutable vectors; and our vectors are mutable. In the example of
  10459. Figure~\ref{fig:map-vec-bang}, if the cast created a new vector, then
  10460. the updates inside of \code{map-vec!} would happen to the new vector
  10461. and not the original one.
  10462. \begin{figure}[tbp]
  10463. % gradual_test_11.rkt
  10464. \begin{lstlisting}
  10465. (define (map-vec! [f : (Any -> Any)]
  10466. [v : (Vector Any Any)]) : Void
  10467. (begin
  10468. (vector-set! v 0 (f (vector-ref v 0)))
  10469. (vector-set! v 1 (f (vector-ref v 1)))))
  10470. (define (add1 x) (+ x 1))
  10471. (let ([v (vector 0 41)])
  10472. (begin (map-vec! add1 v) (vector-ref v 1)))
  10473. \end{lstlisting}
  10474. \caption{An example involving casts on vectors.}
  10475. \label{fig:map-vec-bang}
  10476. \end{figure}
  10477. Instead the interpreter needs to create a new kind of value, a
  10478. \emph{vector proxy}, that intercepts every vector operation. On a
  10479. read, the proxy reads from the underlying vector and then applies a
  10480. cast to the resulting value. On a write, the proxy casts the argument
  10481. value and then performs the write to the underlying vector. For the
  10482. first \code{(vector-ref v 0)} in \code{map-vec!}, the proxy casts
  10483. \code{0} from \code{Integer} to \code{Any}. For the first
  10484. \code{vector-set!}, the proxy casts a tagged \code{1} from \code{Any}
  10485. to \code{Integer}.
  10486. The final category of cast that we need to consider are casts between
  10487. the \code{Any} type and either a function or a vector
  10488. type. Figure~\ref{fig:map-vec-any} shows a variant of \code{map-vec!}
  10489. in which parameter \code{v} does not have a type annotation, so it is
  10490. given type \code{Any}. In the call to \code{map-vec!}, the vector has
  10491. type \code{(Vector Integer Integer)} so the type checker inserts a
  10492. cast from \code{(Vector Integer Integer)} to \code{Any}. A first
  10493. thought is to use \code{Inject}, but that doesn't work because
  10494. \code{(Vector Integer Integer)} is not a flat type. Instead, we must
  10495. first cast to \code{(Vector Any Any)} (which is flat) and then inject
  10496. to \code{Any}.
  10497. \begin{figure}[tbp]
  10498. \begin{lstlisting}
  10499. (define (map-vec! [f : (Any -> Any)] v) : Void
  10500. (begin
  10501. (vector-set! v 0 (f (vector-ref v 0)))
  10502. (vector-set! v 1 (f (vector-ref v 1)))))
  10503. (define (add1 x) (+ x 1))
  10504. (let ([v (vector 0 41)])
  10505. (begin (map-vec! add1 v) (vector-ref v 1)))
  10506. \end{lstlisting}
  10507. \caption{Casting a vector to \code{Any}.}
  10508. \label{fig:map-vec-any}
  10509. \end{figure}
  10510. The \LangCast{} interpreter uses an auxiliary function named
  10511. \code{apply-cast} to cast a value from a source type to a target type,
  10512. shown in Figure~\ref{fig:apply-cast}. You'll find that it handles all
  10513. of the kinds of casts that we've discussed in this section.
  10514. \begin{figure}[tbp]
  10515. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  10516. (define/public (apply-cast v s t)
  10517. (match* (s t)
  10518. [(t1 t2) #:when (equal? t1 t2) v]
  10519. [('Any t2)
  10520. (match t2
  10521. [`(,ts ... -> ,rt)
  10522. (define any->any `(,@(for/list ([t ts]) 'Any) -> Any))
  10523. (define v^ (apply-project v any->any))
  10524. (apply-cast v^ any->any `(,@ts -> ,rt))]
  10525. [`(Vector ,ts ...)
  10526. (define vec-any `(Vector ,@(for/list ([t ts]) 'Any)))
  10527. (define v^ (apply-project v vec-any))
  10528. (apply-cast v^ vec-any `(Vector ,@ts))]
  10529. [else (apply-project v t2)])]
  10530. [(t1 'Any)
  10531. (match t1
  10532. [`(,ts ... -> ,rt)
  10533. (define any->any `(,@(for/list ([t ts]) 'Any) -> Any))
  10534. (define v^ (apply-cast v `(,@ts -> ,rt) any->any))
  10535. (apply-inject v^ (any-tag any->any))]
  10536. [`(Vector ,ts ...)
  10537. (define vec-any `(Vector ,@(for/list ([t ts]) 'Any)))
  10538. (define v^ (apply-cast v `(Vector ,@ts) vec-any))
  10539. (apply-inject v^ (any-tag vec-any))]
  10540. [else (apply-inject v (any-tag t1))])]
  10541. [(`(Vector ,ts1 ...) `(Vector ,ts2 ...))
  10542. (define x (gensym 'x))
  10543. (define cast-reads (for/list ([t1 ts1] [t2 ts2])
  10544. `(function (,x) ,(Cast (Var x) t1 t2) ())))
  10545. (define cast-writes
  10546. (for/list ([t1 ts1] [t2 ts2])
  10547. `(function (,x) ,(Cast (Var x) t2 t1) ())))
  10548. `(vector-proxy ,(vector v (apply vector cast-reads)
  10549. (apply vector cast-writes)))]
  10550. [(`(,ts1 ... -> ,rt1) `(,ts2 ... -> ,rt2))
  10551. (define xs (for/list ([t2 ts2]) (gensym 'x)))
  10552. `(function ,xs ,(Cast
  10553. (Apply (Value v)
  10554. (for/list ([x xs][t1 ts1][t2 ts2])
  10555. (Cast (Var x) t2 t1)))
  10556. rt1 rt2) ())]
  10557. ))
  10558. \end{lstlisting}
  10559. \caption{The \code{apply-cast} auxiliary method.}
  10560. \label{fig:apply-cast}
  10561. \end{figure}
  10562. The interpreter for \LangCast{} is defined in
  10563. Figure~\ref{fig:interp-Rcast}, with the case for \code{Cast}
  10564. dispatching to \code{apply-cast}. To handle the addition of vector
  10565. proxies, we update the vector primitives in \code{interp-op} using the
  10566. functions in Figure~\ref{fig:guarded-vector}.
  10567. \begin{figure}[tbp]
  10568. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  10569. (define interp-Rcast-class
  10570. (class interp-Rwhile-class
  10571. (super-new)
  10572. (inherit apply-fun apply-inject apply-project)
  10573. (define/override (interp-op op)
  10574. (match op
  10575. ['vector-length guarded-vector-length]
  10576. ['vector-ref guarded-vector-ref]
  10577. ['vector-set! guarded-vector-set!]
  10578. ['any-vector-ref (lambda (v i)
  10579. (match v [`(tagged ,v^ ,tg)
  10580. (guarded-vector-ref v^ i)]))]
  10581. ['any-vector-set! (lambda (v i a)
  10582. (match v [`(tagged ,v^ ,tg)
  10583. (guarded-vector-set! v^ i a)]))]
  10584. ['any-vector-length (lambda (v)
  10585. (match v [`(tagged ,v^ ,tg)
  10586. (guarded-vector-length v^)]))]
  10587. [else (super interp-op op)]
  10588. ))
  10589. (define/override ((interp-exp env) e)
  10590. (define (recur e) ((interp-exp env) e))
  10591. (match e
  10592. [(Value v) v]
  10593. [(Cast e src tgt) (apply-cast (recur e) src tgt)]
  10594. [else ((super interp-exp env) e)]))
  10595. ))
  10596. (define (interp-Rcast p)
  10597. (send (new interp-Rcast-class) interp-program p))
  10598. \end{lstlisting}
  10599. \caption{The interpreter for \LangCast{}.}
  10600. \label{fig:interp-Rcast}
  10601. \end{figure}
  10602. \begin{figure}[tbp]
  10603. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  10604. (define (guarded-vector-ref vec i)
  10605. (match vec
  10606. [`(vector-proxy ,proxy)
  10607. (define val (guarded-vector-ref (vector-ref proxy 0) i))
  10608. (define rd (vector-ref (vector-ref proxy 1) i))
  10609. (apply-fun rd (list val) 'guarded-vector-ref)]
  10610. [else (vector-ref vec i)]))
  10611. (define (guarded-vector-set! vec i arg)
  10612. (match vec
  10613. [`(vector-proxy ,proxy)
  10614. (define wr (vector-ref (vector-ref proxy 2) i))
  10615. (define arg^ (apply-fun wr (list arg) 'guarded-vector-set!))
  10616. (guarded-vector-set! (vector-ref proxy 0) i arg^)]
  10617. [else (vector-set! vec i arg)]))
  10618. (define (guarded-vector-length vec)
  10619. (match vec
  10620. [`(vector-proxy ,proxy)
  10621. (guarded-vector-length (vector-ref proxy 0))]
  10622. [else (vector-length vec)]))
  10623. \end{lstlisting}
  10624. \caption{The guarded-vector auxiliary functions.}
  10625. \label{fig:guarded-vector}
  10626. \end{figure}
  10627. \section{Lower Casts}
  10628. \label{sec:lower-casts}
  10629. The next step in the journey towards x86 is the \code{lower-casts}
  10630. pass that translates the casts in \LangCast{} to the lower-level
  10631. \code{Inject} and \code{Project} operators and a new operator for
  10632. creating vector proxies, extending the \LangLoop{} language to create
  10633. \LangProxy{}. We recommend creating an auxiliary function named
  10634. \code{lower-cast} that takes an expression (in \LangCast{}), a source type,
  10635. and a target type, and translates it to expression in \LangProxy{} that has
  10636. the same behavior as casting the expression from the source to the
  10637. target type in the interpreter.
  10638. The \code{lower-cast} function can follow a code structure similar to
  10639. the \code{apply-cast} function (Figure~\ref{fig:apply-cast}) used in
  10640. the interpreter for \LangCast{} because it must handle the same cases as
  10641. \code{apply-cast} and it needs to mimic the behavior of
  10642. \code{apply-cast}. The most interesting cases are those concerning the
  10643. casts between two vector types and between two function types.
  10644. As mentioned in Section~\ref{sec:interp-casts}, a cast from one vector
  10645. type to another vector type is accomplished by creating a proxy that
  10646. intercepts the operations on the underlying vector. Here we make the
  10647. creation of the proxy explicit with the \code{vector-proxy} primitive
  10648. operation. It takes three arguments, the first is an expression for
  10649. the vector, the second is a vector of functions for casting an element
  10650. that is being read from the vector, and the third is a vector of
  10651. functions for casting an element that is being written to the vector.
  10652. You can create the functions using \code{Lambda}. Also, as we shall
  10653. see in the next section, we need to differentiate these vectors from
  10654. the user-created ones, so we recommend using a new primitive operator
  10655. named \code{raw-vector} instead of \code{vector} to create these
  10656. vectors of functions. Figure~\ref{fig:map-vec-bang-lower-cast} shows
  10657. the output of \code{lower-casts} on the example in
  10658. Figure~\ref{fig:map-vec-bang} that involved casting a vector of
  10659. integers to a vector of \code{Any}.
  10660. \begin{figure}[tbp]
  10661. \begin{lstlisting}
  10662. (define (map-vec! [f : (Any -> Any)] [v : (Vector Any Any)]) : Void
  10663. (begin
  10664. (vector-set! v 0 (f (vector-ref v 0)))
  10665. (vector-set! v 1 (f (vector-ref v 1)))))
  10666. (define (add1 [x : Any]) : Any
  10667. (inject (+ (project x Integer) 1) Integer))
  10668. (let ([v (vector 0 41)])
  10669. (begin
  10670. (map-vec! add1 (vector-proxy v
  10671. (raw-vector (lambda: ([x9 : Integer]) : Any
  10672. (inject x9 Integer))
  10673. (lambda: ([x9 : Integer]) : Any
  10674. (inject x9 Integer)))
  10675. (raw-vector (lambda: ([x9 : Any]) : Integer
  10676. (project x9 Integer))
  10677. (lambda: ([x9 : Any]) : Integer
  10678. (project x9 Integer)))))
  10679. (vector-ref v 1)))
  10680. \end{lstlisting}
  10681. \caption{Output of \code{lower-casts} on the example in
  10682. Figure~\ref{fig:map-vec-bang}.}
  10683. \label{fig:map-vec-bang-lower-cast}
  10684. \end{figure}
  10685. A cast from one function type to another function type is accomplished
  10686. by generating a \code{Lambda} whose parameter and return types match
  10687. the target function type. The body of the \code{Lambda} should cast
  10688. the parameters from the target type to the source type (yes,
  10689. backwards! functions are contravariant\index{contravariant} in the
  10690. parameters), then call the underlying function, and finally cast the
  10691. result from the source return type to the target return type.
  10692. Figure~\ref{fig:map-vec-lower-cast} shows the output of the
  10693. \code{lower-casts} pass on the \code{map-vec} example in
  10694. Figure~\ref{fig:gradual-map-vec}. Note that the \code{add1} argument
  10695. in the call to \code{map-vec} is wrapped in a \code{lambda}.
  10696. \begin{figure}[tbp]
  10697. \begin{lstlisting}
  10698. (define (map-vec [f : (Integer -> Integer)]
  10699. [v : (Vector Integer Integer)])
  10700. : (Vector Integer Integer)
  10701. (vector (f (vector-ref v 0)) (f (vector-ref v 1))))
  10702. (define (add1 [x : Any]) : Any
  10703. (inject (+ (project x Integer) 1) Integer))
  10704. (vector-ref (map-vec (lambda: ([x9 : Integer]) : Integer
  10705. (project (add1 (inject x9 Integer)) Integer))
  10706. (vector 0 41)) 1)
  10707. \end{lstlisting}
  10708. \caption{Output of \code{lower-casts} on the example in
  10709. Figure~\ref{fig:gradual-map-vec}.}
  10710. \label{fig:map-vec-lower-cast}
  10711. \end{figure}
  10712. \section{Differentiate Proxies}
  10713. \label{sec:differentiate-proxies}
  10714. So far the job of differentiating vectors and vector proxies has been
  10715. the job of the interpreter. For example, the interpreter for \LangCast{}
  10716. implements \code{vector-ref} using the \code{guarded-vector-ref}
  10717. function in Figure~\ref{fig:guarded-vector}. In the
  10718. \code{differentiate-proxies} pass we shift this responsibility to the
  10719. generated code.
  10720. We begin by designing the output language $R^p_8$. In
  10721. \LangGrad{} we used the type \code{Vector} for both real vectors and vector
  10722. proxies. In $R^p_8$ we return the \code{Vector} type to
  10723. its original meaning, as the type of real vectors, and we introduce a
  10724. new type, \code{PVector}, whose values can be either real vectors or
  10725. vector proxies. This new type comes with a suite of new primitive
  10726. operations for creating and using values of type \code{PVector}. We
  10727. don't need to introduce a new type to represent vector proxies. A
  10728. proxy is represented by a vector containing three things: 1) the
  10729. underlying vector, 2) a vector of functions for casting elements that
  10730. are read from the vector, and 3) a vector of functions for casting
  10731. values to be written to the vector. So we define the following
  10732. abbreviation for the type of a vector proxy:
  10733. \[
  10734. \itm{Proxy} (T\ldots \Rightarrow T'\ldots)
  10735. = (\ttm{Vector}~(\ttm{PVector}~ T\ldots) ~R~ W)
  10736. \to (\key{PVector}~ T' \ldots)
  10737. \]
  10738. where $R = (\ttm{Vector}~(T\to T') \ldots)$ and
  10739. $W = (\ttm{Vector}~(T'\to T) \ldots)$.
  10740. %
  10741. Next we describe each of the new primitive operations.
  10742. \begin{description}
  10743. \item[\code{inject-vector} : (\key{Vector} $T \ldots$) $\to$
  10744. (\key{PVector} $T \ldots$)]\ \\
  10745. %
  10746. This operation brands a vector as a value of the \code{PVector} type.
  10747. \item[\code{inject-proxy} : $\itm{Proxy}(T\ldots \Rightarrow T'\ldots)$
  10748. $\to$ (\key{PVector} $T' \ldots$)]\ \\
  10749. %
  10750. This operation brands a vector proxy as value of the \code{PVector} type.
  10751. \item[\code{proxy?} : (\key{PVector} $T \ldots$) $\to$
  10752. \code{Boolean}] \ \\
  10753. %
  10754. returns true if the value is a vector proxy and false if it is a
  10755. real vector.
  10756. \item[\code{project-vector} : (\key{PVector} $T \ldots$) $\to$
  10757. (\key{Vector} $T \ldots$)]\ \\
  10758. %
  10759. Assuming that the input is a vector (and not a proxy), this
  10760. operation returns the vector.
  10761. \item[\code{proxy-vector-length} : (\key{PVector} $T \ldots$)
  10762. $\to$ \code{Boolean}]\ \\
  10763. %
  10764. Given a vector proxy, this operation returns the length of the
  10765. underlying vector.
  10766. \item[\code{proxy-vector-ref} : (\key{PVector} $T \ldots$)
  10767. $\to$ ($i$ : \code{Integer}) $\to$ $T_i$]\ \\
  10768. %
  10769. Given a vector proxy, this operation returns the $i$th element of
  10770. the underlying vector.
  10771. \item[\code{proxy-vector-set!} : (\key{PVector} $T \ldots$) $\to$ ($i$
  10772. : \code{Integer}) $\to$ $T_i$ $\to$ \key{Void}]\ \\ Given a vector
  10773. proxy, this operation writes a value to the $i$th element of the
  10774. underlying vector.
  10775. \end{description}
  10776. Now to discuss the translation that differentiates vectors from
  10777. proxies. First, every type annotation in the program must be
  10778. translated (recursively) to replace \code{Vector} with \code{PVector}.
  10779. Next, we must insert uses of \code{PVector} operations in the
  10780. appropriate places. For example, we wrap every vector creation with an
  10781. \code{inject-vector}.
  10782. \begin{lstlisting}
  10783. (vector |$e_1 \ldots e_n$|)
  10784. |$\Rightarrow$|
  10785. (inject-vector (vector |$e'_1 \ldots e'_n$|))
  10786. \end{lstlisting}
  10787. The \code{raw-vector} operator that we introduced in the previous
  10788. section does not get injected.
  10789. \begin{lstlisting}
  10790. (raw-vector |$e_1 \ldots e_n$|)
  10791. |$\Rightarrow$|
  10792. (vector |$e'_1 \ldots e'_n$|)
  10793. \end{lstlisting}
  10794. The \code{vector-proxy} primitive translates as follows.
  10795. \begin{lstlisting}
  10796. (vector-proxy |$e_1~e_2~e_3$|)
  10797. |$\Rightarrow$|
  10798. (inject-proxy (vector |$e'_1~e'_2~e'_3$|))
  10799. \end{lstlisting}
  10800. We translate the vector operations into conditional expressions that
  10801. check whether the value is a proxy and then dispatch to either the
  10802. appropriate proxy vector operation or the regular vector operation.
  10803. For example, the following is the translation for \code{vector-ref}.
  10804. \begin{lstlisting}
  10805. (vector-ref |$e_1$| |$i$|)
  10806. |$\Rightarrow$|
  10807. (let ([|$v~e_1$|])
  10808. (if (proxy? |$v$|)
  10809. (proxy-vector-ref |$v$| |$i$|)
  10810. (vector-ref (project-vector |$v$|) |$i$|)
  10811. \end{lstlisting}
  10812. Note in the case of a real vector, we must apply \code{project-vector}
  10813. before the \code{vector-ref}.
  10814. \section{Reveal Casts}
  10815. \label{sec:reveal-casts-gradual}
  10816. Recall that the \code{reveal-casts} pass
  10817. (Section~\ref{sec:reveal-casts-r6}) is responsible for lowering
  10818. \code{Inject} and \code{Project} into lower-level operations. In
  10819. particular, \code{Project} turns into a conditional expression that
  10820. inspects the tag and retrieves the underlying value. Here we need to
  10821. augment the translation of \code{Project} to handle the situation when
  10822. the target type is \code{PVector}. Instead of using
  10823. \code{vector-length} we need to use \code{proxy-vector-length}.
  10824. \begin{lstlisting}
  10825. (project |$e$| (PVector Any|$_1$| |$\ldots$| Any|$_n$|))
  10826. |$\Rightarrow$|
  10827. (let |$\itm{tmp}$| |$e'$|
  10828. (if (eq? (tag-of-any |$\itm{tmp}$| 2))
  10829. (let |$\itm{vec}$| (value-of |$\itm{tmp}$| (PVector Any |$\ldots$| Any))
  10830. (if (eq? (proxy-vector-length |$\itm{vec}$|) |$n$|) |$\itm{vec}$| (exit)))
  10831. (exit)))
  10832. \end{lstlisting}
  10833. \section{Closure Conversion}
  10834. \label{sec:closure-conversion-gradual}
  10835. The closure conversion pass only requires one minor adjustment. The
  10836. auxiliary function that translates type annotations needs to be
  10837. updated to handle the \code{PVector} type.
  10838. \section{Explicate Control}
  10839. \label{sec:explicate-control-gradual}
  10840. Update the \code{explicate-control} pass to handle the new primitive
  10841. operations on the \code{PVector} type.
  10842. \section{Select Instructions}
  10843. \label{sec:select-instructions-gradual}
  10844. Recall that the \code{select-instructions} pass is responsible for
  10845. lowering the primitive operations into x86 instructions. So we need
  10846. to translate the new \code{PVector} operations to x86. To do so, the
  10847. first question we need to answer is how will we differentiate the two
  10848. kinds of values (vectors and proxies) that can inhabit \code{PVector}.
  10849. We need just one bit to accomplish this, so we use the $57$th bit of
  10850. the 64-bit tag at the front of every vector (see
  10851. Figure~\ref{fig:tuple-rep}). So far, this bit has been set to $0$, so
  10852. for \code{inject-vector} we leave it that way.
  10853. \begin{lstlisting}
  10854. (Assign |$\itm{lhs}$| (Prim 'inject-vector (list |$e_1$|)))
  10855. |$\Rightarrow$|
  10856. movq |$e'_1$|, |$\itm{lhs'}$|
  10857. \end{lstlisting}
  10858. On the other hand, \code{inject-proxy} sets the $57$th bit to $1$.
  10859. \begin{lstlisting}
  10860. (Assign |$\itm{lhs}$| (Prim 'inject-proxy (list |$e_1$|)))
  10861. |$\Rightarrow$|
  10862. movq |$e'_1$|, %r11
  10863. movq |$(1 << 57)$|, %rax
  10864. orq 0(%r11), %rax
  10865. movq %rax, 0(%r11)
  10866. movq %r11, |$\itm{lhs'}$|
  10867. \end{lstlisting}
  10868. The \code{proxy?} operation consumes the information so carefully
  10869. stashed away by \code{inject-vector} and \code{inject-proxy}. It
  10870. isolates the $57$th bit to tell whether the value is a real vector or
  10871. a proxy.
  10872. \begin{lstlisting}
  10873. (Assign |$\itm{lhs}$| (Prim 'proxy? (list e)))
  10874. |$\Rightarrow$|
  10875. movq |$e_1'$|, %r11
  10876. movq 0(%r11), %rax
  10877. sarq $57, %rax
  10878. andq $1, %rax
  10879. movq %rax, |$\itm{lhs'}$|
  10880. \end{lstlisting}
  10881. The \code{project-vector} operation is straightforward to translate,
  10882. so we leave it up to the reader.
  10883. Regarding the \code{proxy-vector} operations, the runtime provides
  10884. procedures that implement them (they are recursive functions!) so
  10885. here we simply need to translate these vector operations into the
  10886. appropriate function call. For example, here is the translation for
  10887. \code{proxy-vector-ref}.
  10888. \begin{lstlisting}
  10889. (Assign |$\itm{lhs}$| (Prim 'proxy-vector-ref (list |$e_1$| |$e_2$|)))
  10890. |$\Rightarrow$|
  10891. movq |$e_1'$|, %rdi
  10892. movq |$e_2'$|, %rsi
  10893. callq proxy_vector_ref
  10894. movq %rax, |$\itm{lhs'}$|
  10895. \end{lstlisting}
  10896. We have another batch of vector operations to deal with, those for the
  10897. \code{Any} type. Recall that the type checker for \LangGrad{} generates an
  10898. \code{any-vector-ref} when there is a \code{vector-ref} on something
  10899. of type \code{Any}, and similarly for \code{any-vector-set!} and
  10900. \code{any-vector-length} (Figure~\ref{fig:type-check-Rgradual-1}). In
  10901. Section~\ref{sec:select-r6} we selected instructions for these
  10902. operations based on the idea that the underlying value was a real
  10903. vector. But in the current setting, the underlying value is of type
  10904. \code{PVector}. So \code{any-vector-ref} can be translates to
  10905. pseudo-x86 as follows. We begin by projecting the underlying value out
  10906. of the tagged value and then call the \code{proxy\_vector\_ref}
  10907. procedure in the runtime.
  10908. \begin{lstlisting}
  10909. (Assign |$\itm{lhs}$| (Prim 'any-vector-ref (list |$e_1$| |$e_2$|)))
  10910. movq |$\neg 111$|, %rdi
  10911. andq |$e_1'$|, %rdi
  10912. movq |$e_2'$|, %rsi
  10913. callq proxy_vector_ref
  10914. movq %rax, |$\itm{lhs'}$|
  10915. \end{lstlisting}
  10916. The \code{any-vector-set!} and \code{any-vector-length} operators can
  10917. be translated in a similar way.
  10918. \begin{exercise}\normalfont
  10919. Implement a compiler for the gradually-typed \LangGrad{} language by
  10920. extending and adapting your compiler for \LangLoop{}. Create 10 new
  10921. partially-typed test programs. In addition to testing with these
  10922. new programs, also test your compiler on all the tests for \LangLoop{}
  10923. and tests for \LangDyn{}. Sometimes you may get a type checking error
  10924. on the \LangDyn{} programs but you can adapt them by inserting
  10925. a cast to the \code{Any} type around each subexpression
  10926. causing a type error. While \LangDyn{} doesn't have explicit casts,
  10927. you can induce one by wrapping the subexpression \code{e}
  10928. with a call to an un-annotated identity function, like this:
  10929. \code{((lambda (x) x) e)}.
  10930. \end{exercise}
  10931. \begin{figure}[p]
  10932. \begin{tikzpicture}[baseline=(current bounding box.center)]
  10933. \node (Rgradual) at (6,4) {\large \LangGrad{}};
  10934. \node (Rgradualp) at (3,4) {\large \LangCast{}};
  10935. \node (Rwhilepp) at (0,4) {\large \LangProxy{}};
  10936. \node (Rwhileproxy) at (0,2) {\large \LangPVec{}};
  10937. \node (Rwhileproxy-2) at (3,2) {\large \LangPVec{}};
  10938. \node (Rwhileproxy-3) at (6,2) {\large \LangPVec{}};
  10939. \node (Rwhileproxy-4) at (9,2) {\large \LangPVecFunRef{}};
  10940. \node (Rwhileproxy-5) at (12,2) {\large \LangPVecFunRef{}};
  10941. \node (F1-1) at (12,0) {\large \LangPVecFunRef{}};
  10942. \node (F1-2) at (9,0) {\large \LangPVecFunRef{}};
  10943. \node (F1-3) at (6,0) {\large \LangPVecFunRef{}};
  10944. \node (F1-4) at (3,0) {\large \LangPVecAlloc{}};
  10945. \node (F1-5) at (0,0) {\large \LangPVecAlloc{}};
  10946. \node (C3-2) at (3,-2) {\large \LangCLoopPVec{}};
  10947. \node (x86-2) at (3,-4) {\large \LangXIndCallVar{}};
  10948. \node (x86-2-1) at (3,-6) {\large \LangXIndCallVar{}};
  10949. \node (x86-2-2) at (6,-6) {\large \LangXIndCallVar{}};
  10950. \node (x86-3) at (6,-4) {\large \LangXIndCallVar{}};
  10951. \node (x86-4) at (9,-4) {\large \LangXIndCall{}};
  10952. \node (x86-5) at (9,-6) {\large \LangXIndCall{}};
  10953. \path[->,bend right=15] (Rgradual) edge [above] node
  10954. {\ttfamily\footnotesize type-check} (Rgradualp);
  10955. \path[->,bend right=15] (Rgradualp) edge [above] node
  10956. {\ttfamily\footnotesize lower-casts} (Rwhilepp);
  10957. \path[->,bend right=15] (Rwhilepp) edge [right] node
  10958. {\ttfamily\footnotesize differentiate-proxies} (Rwhileproxy);
  10959. \path[->,bend left=15] (Rwhileproxy) edge [above] node
  10960. {\ttfamily\footnotesize shrink} (Rwhileproxy-2);
  10961. \path[->,bend left=15] (Rwhileproxy-2) edge [above] node
  10962. {\ttfamily\footnotesize uniquify} (Rwhileproxy-3);
  10963. \path[->,bend left=15] (Rwhileproxy-3) edge [above] node
  10964. {\ttfamily\footnotesize reveal-functions} (Rwhileproxy-4);
  10965. \path[->,bend left=15] (Rwhileproxy-4) edge [above] node
  10966. {\ttfamily\footnotesize reveal-casts} (Rwhileproxy-5);
  10967. \path[->,bend left=15] (Rwhileproxy-5) edge [left] node
  10968. {\ttfamily\footnotesize convert-assignments} (F1-1);
  10969. \path[->,bend left=15] (F1-1) edge [below] node
  10970. {\ttfamily\footnotesize convert-to-clos.} (F1-2);
  10971. \path[->,bend right=15] (F1-2) edge [above] node
  10972. {\ttfamily\footnotesize limit-fun.} (F1-3);
  10973. \path[->,bend right=15] (F1-3) edge [above] node
  10974. {\ttfamily\footnotesize expose-alloc.} (F1-4);
  10975. \path[->,bend right=15] (F1-4) edge [above] node
  10976. {\ttfamily\footnotesize remove-complex.} (F1-5);
  10977. \path[->,bend right=15] (F1-5) edge [right] node
  10978. {\ttfamily\footnotesize explicate-control} (C3-2);
  10979. \path[->,bend left=15] (C3-2) edge [left] node
  10980. {\ttfamily\footnotesize select-instr.} (x86-2);
  10981. \path[->,bend right=15] (x86-2) edge [left] node
  10982. {\ttfamily\footnotesize uncover-live} (x86-2-1);
  10983. \path[->,bend right=15] (x86-2-1) edge [below] node
  10984. {\ttfamily\footnotesize build-inter.} (x86-2-2);
  10985. \path[->,bend right=15] (x86-2-2) edge [left] node
  10986. {\ttfamily\footnotesize allocate-reg.} (x86-3);
  10987. \path[->,bend left=15] (x86-3) edge [above] node
  10988. {\ttfamily\footnotesize patch-instr.} (x86-4);
  10989. \path[->,bend left=15] (x86-4) edge [right] node {\ttfamily\footnotesize print-x86} (x86-5);
  10990. \end{tikzpicture}
  10991. \caption{Diagram of the passes for \LangGrad{} (gradual typing).}
  10992. \label{fig:Rgradual-passes}
  10993. \end{figure}
  10994. Figure~\ref{fig:Rgradual-passes} provides an overview of all the passes needed
  10995. for the compilation of \LangGrad{}.
  10996. \section{Further Reading}
  10997. This chapter just scratches the surface of gradual typing. The basic
  10998. approach described here is missing two key ingredients that one would
  10999. want in a implementation of gradual typing: blame
  11000. tracking~\citep{Tobin-Hochstadt:2006fk,Wadler:2009qv} and
  11001. space-efficient casts~\citep{Herman:2006uq,Herman:2010aa}. The
  11002. problem addressed by blame tracking is that when a cast on a
  11003. higher-order value fails, it often does so at a point in the program
  11004. that is far removed from the original cast. Blame tracking is a
  11005. technique for propagating extra information through casts and proxies
  11006. so that when a cast fails, the error message can point back to the
  11007. original location of the cast in the source program.
  11008. The problem addressed by space-efficient casts also relates to
  11009. higher-order casts. It turns out that in partially typed programs, a
  11010. function or vector can flow through very-many casts at runtime. With
  11011. the approach described in this chapter, each cast adds another
  11012. \code{lambda} wrapper or a vector proxy. Not only does this take up
  11013. considerable space, but it also makes the function calls and vector
  11014. operations slow. For example, a partially-typed version of quicksort
  11015. could, in the worst case, build a chain of proxies of length $O(n)$
  11016. around the vector, changing the overall time complexity of the
  11017. algorithm from $O(n^2)$ to $O(n^3)$! \citet{Herman:2006uq} suggested a
  11018. solution to this problem by representing casts using the coercion
  11019. calculus of \citet{Henglein:1994nz}, which prevents the creation of
  11020. long chains of proxies by compressing them into a concise normal
  11021. form. \citet{Siek:2015ab} give and algorithm for compressing coercions
  11022. and \citet{Kuhlenschmidt:2019aa} show how to implement these ideas in
  11023. the Grift compiler.
  11024. \begin{center}
  11025. \url{https://github.com/Gradual-Typing/Grift}
  11026. \end{center}
  11027. There are also interesting interactions between gradual typing and
  11028. other language features, such as parametetric polymorphism,
  11029. information-flow types, and type inference, to name a few. We
  11030. recommend the reader to the online gradual typing bibliography:
  11031. \begin{center}
  11032. \url{http://samth.github.io/gradual-typing-bib/}
  11033. \end{center}
  11034. % TODO: challenge problem:
  11035. % type analysis and type specialization?
  11036. % coercions?
  11037. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  11038. \chapter{Parametric Polymorphism}
  11039. \label{ch:parametric-polymorphism}
  11040. \index{parametric polymorphism}
  11041. \index{generics}
  11042. This chapter studies the compilation of parametric
  11043. polymorphism\index{parametric polymorphism}
  11044. (aka. generics\index{generics}) in the subset \LangPoly{} of Typed
  11045. Racket. Parametric polymorphism enables improved code reuse by
  11046. parameterizing functions and data structures with respect to the types
  11047. that they operate on. For example, Figure~\ref{fig:map-vec-poly}
  11048. revisits the \code{map-vec} example but this time gives it a more
  11049. fitting type. This \code{map-vec} function is parameterized with
  11050. respect to the element type of the vector. The type of \code{map-vec}
  11051. is the following polymorphic type as specified by the \code{All} and
  11052. the type parameter \code{a}.
  11053. \begin{lstlisting}
  11054. (All (a) ((a -> a) (Vector a a) -> (Vector a a)))
  11055. \end{lstlisting}
  11056. The idea is that \code{map-vec} can be used at \emph{all} choices of a
  11057. type for parameter \code{a}. In Figure~\ref{fig:map-vec-poly} we apply
  11058. \code{map-vec} to a vector of integers, a choice of \code{Integer} for
  11059. \code{a}, but we could have just as well applied \code{map-vec} to a
  11060. vector of Booleans (and a function on Booleans).
  11061. \begin{figure}[tbp]
  11062. % poly_test_2.rkt
  11063. \begin{lstlisting}
  11064. (: map-vec (All (a) ((a -> a) (Vector a a) -> (Vector a a))))
  11065. (define (map-vec f v)
  11066. (vector (f (vector-ref v 0)) (f (vector-ref v 1))))
  11067. (define (add1 [x : Integer]) : Integer (+ x 1))
  11068. (vector-ref (map-vec add1 (vector 0 41)) 1)
  11069. \end{lstlisting}
  11070. \caption{The \code{map-vec} example using parametric polymorphism.}
  11071. \label{fig:map-vec-poly}
  11072. \end{figure}
  11073. Figure~\ref{fig:r10-concrete-syntax} defines the concrete syntax of
  11074. \LangPoly{} and Figure~\ref{fig:r10-syntax} defines the abstract
  11075. syntax. We add a second form for function definitions in which a type
  11076. declaration comes before the \code{define}. In the abstract syntax,
  11077. the return type in the \code{Def} is \code{Any}, but that should be
  11078. ignored in favor of the return type in the type declaration. (The
  11079. \code{Any} comes from using the same parser as in
  11080. Chapter~\ref{ch:type-dynamic}.) The presence of a type declaration
  11081. enables the use of an \code{All} type for a function, thereby making
  11082. it polymorphic. The grammar for types is extended to include
  11083. polymorphic types and type variables.
  11084. \begin{figure}[tp]
  11085. \centering
  11086. \fbox{
  11087. \begin{minipage}{0.96\textwidth}
  11088. \small
  11089. \[
  11090. \begin{array}{lcl}
  11091. \Type &::=& \ldots \mid \LP\key{All}~\LP\Var\ldots\RP~ \Type\RP \mid \Var \\
  11092. \Def &::=& \gray{ \CDEF{\Var}{\LS\Var \key{:} \Type\RS \ldots}{\Type}{\Exp} } \\
  11093. &\mid& \LP\key{:}~\Var~\Type\RP \\
  11094. && \LP\key{define}~ \LP\Var ~ \Var\ldots\RP ~ \Exp\RP \\
  11095. \LangPoly{} &::=& \gray{ \Def \ldots ~ \Exp }
  11096. \end{array}
  11097. \]
  11098. \end{minipage}
  11099. }
  11100. \caption{The concrete syntax of \LangPoly{}, extending \LangLoop{}
  11101. (Figure~\ref{fig:r8-concrete-syntax}).}
  11102. \label{fig:r10-concrete-syntax}
  11103. \end{figure}
  11104. \begin{figure}[tp]
  11105. \centering
  11106. \fbox{
  11107. \begin{minipage}{0.96\textwidth}
  11108. \small
  11109. \[
  11110. \begin{array}{lcl}
  11111. \Type &::=& \ldots \mid \LP\key{All}~\LP\Var\ldots\RP~ \Type\RP \mid \Var \\
  11112. \Def &::=& \gray{ \DEF{\Var}{\LP\LS\Var \key{:} \Type\RS \ldots\RP}{\Type}{\code{'()}}{\Exp} } \\
  11113. &\mid& \DECL{\Var}{\Type} \\
  11114. && \DEF{\Var}{\LP\Var \ldots\RP}{\key{'Any}}{\code{'()}}{\Exp} \\
  11115. \LangPoly{} &::=& \gray{ \PROGRAMDEFSEXP{\code{'()}}{\LP\Def\ldots\RP}{\Exp} }
  11116. \end{array}
  11117. \]
  11118. \end{minipage}
  11119. }
  11120. \caption{The abstract syntax of \LangPoly{}, extending \LangLoop{}
  11121. (Figure~\ref{fig:r8-syntax}).}
  11122. \label{fig:r10-syntax}
  11123. \end{figure}
  11124. By including polymorphic types in the $\Type$ non-terminal we choose
  11125. to make them first-class which has interesting repercussions on the
  11126. compiler. Many languages with polymorphism, such as
  11127. C++~\citep{stroustrup88:_param_types} and Standard
  11128. ML~\citep{Milner:1990fk}, only support second-class polymorphism, so
  11129. it is useful to see an example of first-class polymorphism. In
  11130. Figure~\ref{fig:apply-twice} we define a function \code{apply-twice}
  11131. whose parameter is a polymorphic function. The occurrence of a
  11132. polymorphic type underneath a function type is enabled by the normal
  11133. recursive structure of the grammar for $\Type$ and the categorization
  11134. of the \code{All} type as a $\Type$. The body of \code{apply-twice}
  11135. applies the polymorphic function to a Boolean and to an integer.
  11136. \begin{figure}[tbp]
  11137. \begin{lstlisting}
  11138. (: apply-twice ((All (b) (b -> b)) -> Integer))
  11139. (define (apply-twice f)
  11140. (if (f #t) (f 42) (f 777)))
  11141. (: id (All (a) (a -> a)))
  11142. (define (id x) x)
  11143. (apply-twice id)
  11144. \end{lstlisting}
  11145. \caption{An example illustrating first-class polymorphism.}
  11146. \label{fig:apply-twice}
  11147. \end{figure}
  11148. The type checker for \LangPoly{} in Figure~\ref{fig:type-check-Rvar0} has
  11149. three new responsibilities (compared to \LangLoop{}). The type checking of
  11150. function application is extended to handle the case where the operator
  11151. expression is a polymorphic function. In that case the type arguments
  11152. are deduced by matching the type of the parameters with the types of
  11153. the arguments.
  11154. %
  11155. The \code{match-types} auxiliary function carries out this deduction
  11156. by recursively descending through a parameter type \code{pt} and the
  11157. corresponding argument type \code{at}, making sure that they are equal
  11158. except when there is a type parameter on the left (in the parameter
  11159. type). If it's the first time that the type parameter has been
  11160. encountered, then the algorithm deduces an association of the type
  11161. parameter to the corresponding type on the right (in the argument
  11162. type). If it's not the first time that the type parameter has been
  11163. encountered, the algorithm looks up its deduced type and makes sure
  11164. that it is equal to the type on the right.
  11165. %
  11166. Once the type arguments are deduced, the operator expression is
  11167. wrapped in an \code{Inst} AST node (for instantiate) that records the
  11168. type of the operator, but more importantly, records the deduced type
  11169. arguments. The return type of the application is the return type of
  11170. the polymorphic function, but with the type parameters replaced by the
  11171. deduced type arguments, using the \code{subst-type} function.
  11172. The second responsibility of the type checker is extending the
  11173. function \code{type-equal?} to handle the \code{All} type. This is
  11174. not quite a simple as equal on other types, such as function and
  11175. vector types, because two polymorphic types can be syntactically
  11176. different even though they are equivalent types. For example,
  11177. \code{(All (a) (a -> a))} is equivalent to \code{(All (b) (b -> b))}.
  11178. Two polymorphic types should be considered equal if they differ only
  11179. in the choice of the names of the type parameters. The
  11180. \code{type-equal?} function in Figure~\ref{fig:type-check-Rvar0-aux}
  11181. renames the type parameters of the first type to match the type
  11182. parameters of the second type.
  11183. The third responsibility of the type checker is making sure that only
  11184. defined type variables appear in type annotations. The
  11185. \code{check-well-formed} function defined in
  11186. Figure~\ref{fig:well-formed-types} recursively inspects a type, making
  11187. sure that each type variable has been defined.
  11188. The output language of the type checker is \LangInst{}, defined in
  11189. Figure~\ref{fig:r10-prime-syntax}. The type checker combines the type
  11190. declaration and polymorphic function into a single definition, using
  11191. the \code{Poly} form, to make polymorphic functions more convenient to
  11192. process in next pass of the compiler.
  11193. \begin{figure}[tp]
  11194. \centering
  11195. \fbox{
  11196. \begin{minipage}{0.96\textwidth}
  11197. \small
  11198. \[
  11199. \begin{array}{lcl}
  11200. \Type &::=& \ldots \mid \LP\key{All}~\LP\Var\ldots\RP~ \Type\RP \mid \Var \\
  11201. \Exp &::=& \ldots \mid \INST{\Exp}{\Type}{\LP\Type\ldots\RP} \\
  11202. \Def &::=& \gray{ \DEF{\Var}{\LP\LS\Var \key{:} \Type\RS \ldots\RP}{\Type}{\code{'()}}{\Exp} } \\
  11203. &\mid& \LP\key{Poly}~\LP\Var\ldots\RP~ \DEF{\Var}{\LP\LS\Var \key{:} \Type\RS \ldots\RP}{\Type}{\code{'()}}{\Exp}\RP \\
  11204. \LangInst{} &::=& \gray{ \PROGRAMDEFSEXP{\code{'()}}{\LP\Def\ldots\RP}{\Exp} }
  11205. \end{array}
  11206. \]
  11207. \end{minipage}
  11208. }
  11209. \caption{The abstract syntax of \LangInst{}, extending \LangLoop{}
  11210. (Figure~\ref{fig:r8-syntax}).}
  11211. \label{fig:r10-prime-syntax}
  11212. \end{figure}
  11213. The output of the type checker on the polymorphic \code{map-vec}
  11214. example is listed in Figure~\ref{fig:map-vec-type-check}.
  11215. \begin{figure}[tbp]
  11216. % poly_test_2.rkt
  11217. \begin{lstlisting}
  11218. (poly (a) (define (map-vec [f : (a -> a)] [v : (Vector a a)]) : (Vector a a)
  11219. (vector (f (vector-ref v 0)) (f (vector-ref v 1)))))
  11220. (define (add1 [x : Integer]) : Integer (+ x 1))
  11221. (vector-ref ((inst map-vec (All (a) ((a -> a) (Vector a a) -> (Vector a a)))
  11222. (Integer))
  11223. add1 (vector 0 41)) 1)
  11224. \end{lstlisting}
  11225. \caption{Output of the type checker on the \code{map-vec} example.}
  11226. \label{fig:map-vec-type-check}
  11227. \end{figure}
  11228. \begin{figure}[tbp]
  11229. \begin{lstlisting}[basicstyle=\ttfamily\scriptsize]
  11230. (define type-check-poly-class
  11231. (class type-check-Rwhile-class
  11232. (super-new)
  11233. (inherit check-type-equal?)
  11234. (define/override (type-check-apply env e1 es)
  11235. (define-values (e^ ty) ((type-check-exp env) e1))
  11236. (define-values (es^ ty*) (for/lists (es^ ty*) ([e (in-list es)])
  11237. ((type-check-exp env) e)))
  11238. (match ty
  11239. [`(,ty^* ... -> ,rt)
  11240. (for ([arg-ty ty*] [param-ty ty^*])
  11241. (check-type-equal? arg-ty param-ty (Apply e1 es)))
  11242. (values e^ es^ rt)]
  11243. [`(All ,xs (,tys ... -> ,rt))
  11244. (define env^ (append (for/list ([x xs]) (cons x 'Type)) env))
  11245. (define env^^ (for/fold ([env^^ env^]) ([arg-ty ty*] [param-ty tys])
  11246. (match-types env^^ param-ty arg-ty)))
  11247. (define targs
  11248. (for/list ([x xs])
  11249. (match (dict-ref env^^ x (lambda () #f))
  11250. [#f (error 'type-check "type variable ~a not deduced\nin ~v"
  11251. x (Apply e1 es))]
  11252. [ty ty])))
  11253. (values (Inst e^ ty targs) es^ (subst-type env^^ rt))]
  11254. [else (error 'type-check "expected a function, not ~a" ty)]))
  11255. (define/override ((type-check-exp env) e)
  11256. (match e
  11257. [(Lambda `([,xs : ,Ts] ...) rT body)
  11258. (for ([T Ts]) ((check-well-formed env) T))
  11259. ((check-well-formed env) rT)
  11260. ((super type-check-exp env) e)]
  11261. [(HasType e1 ty)
  11262. ((check-well-formed env) ty)
  11263. ((super type-check-exp env) e)]
  11264. [else ((super type-check-exp env) e)]))
  11265. (define/override ((type-check-def env) d)
  11266. (verbose 'type-check "poly/def" d)
  11267. (match d
  11268. [(Generic ts (Def f (and p:t* (list `[,xs : ,ps] ...)) rt info body))
  11269. (define ts-env (for/list ([t ts]) (cons t 'Type)))
  11270. (for ([p ps]) ((check-well-formed ts-env) p))
  11271. ((check-well-formed ts-env) rt)
  11272. (define new-env (append ts-env (map cons xs ps) env))
  11273. (define-values (body^ ty^) ((type-check-exp new-env) body))
  11274. (check-type-equal? ty^ rt body)
  11275. (Generic ts (Def f p:t* rt info body^))]
  11276. [else ((super type-check-def env) d)]))
  11277. (define/override (type-check-program p)
  11278. (match p
  11279. [(Program info body)
  11280. (type-check-program (ProgramDefsExp info '() body))]
  11281. [(ProgramDefsExp info ds body)
  11282. (define ds^ (combine-decls-defs ds))
  11283. (define new-env (for/list ([d ds^])
  11284. (cons (def-name d) (fun-def-type d))))
  11285. (define ds^^ (for/list ([d ds^]) ((type-check-def new-env) d)))
  11286. (define-values (body^ ty) ((type-check-exp new-env) body))
  11287. (check-type-equal? ty 'Integer body)
  11288. (ProgramDefsExp info ds^^ body^)]))
  11289. ))
  11290. \end{lstlisting}
  11291. \caption{Type checker for the \LangPoly{} language.}
  11292. \label{fig:type-check-Rvar0}
  11293. \end{figure}
  11294. \begin{figure}[tbp]
  11295. \begin{lstlisting}[basicstyle=\ttfamily\scriptsize]
  11296. (define/override (type-equal? t1 t2)
  11297. (match* (t1 t2)
  11298. [(`(All ,xs ,T1) `(All ,ys ,T2))
  11299. (define env (map cons xs ys))
  11300. (type-equal? (subst-type env T1) T2)]
  11301. [(other wise)
  11302. (super type-equal? t1 t2)]))
  11303. (define/public (match-types env pt at)
  11304. (match* (pt at)
  11305. [('Integer 'Integer) env] [('Boolean 'Boolean) env]
  11306. [('Void 'Void) env] [('Any 'Any) env]
  11307. [(`(Vector ,pts ...) `(Vector ,ats ...))
  11308. (for/fold ([env^ env]) ([pt1 pts] [at1 ats])
  11309. (match-types env^ pt1 at1))]
  11310. [(`(,pts ... -> ,prt) `(,ats ... -> ,art))
  11311. (define env^ (match-types env prt art))
  11312. (for/fold ([env^^ env^]) ([pt1 pts] [at1 ats])
  11313. (match-types env^^ pt1 at1))]
  11314. [(`(All ,pxs ,pt1) `(All ,axs ,at1))
  11315. (define env^ (append (map cons pxs axs) env))
  11316. (match-types env^ pt1 at1)]
  11317. [((? symbol? x) at)
  11318. (match (dict-ref env x (lambda () #f))
  11319. [#f (error 'type-check "undefined type variable ~a" x)]
  11320. ['Type (cons (cons x at) env)]
  11321. [t^ (check-type-equal? at t^ 'matching) env])]
  11322. [(other wise) (error 'type-check "mismatch ~a != a" pt at)]))
  11323. (define/public (subst-type env pt)
  11324. (match pt
  11325. ['Integer 'Integer] ['Boolean 'Boolean]
  11326. ['Void 'Void] ['Any 'Any]
  11327. [`(Vector ,ts ...)
  11328. `(Vector ,@(for/list ([t ts]) (subst-type env t)))]
  11329. [`(,ts ... -> ,rt)
  11330. `(,@(for/list ([t ts]) (subst-type env t)) -> ,(subst-type env rt))]
  11331. [`(All ,xs ,t)
  11332. `(All ,xs ,(subst-type (append (map cons xs xs) env) t))]
  11333. [(? symbol? x) (dict-ref env x)]
  11334. [else (error 'type-check "expected a type not ~a" pt)]))
  11335. (define/public (combine-decls-defs ds)
  11336. (match ds
  11337. ['() '()]
  11338. [`(,(Decl name type) . (,(Def f params _ info body) . ,ds^))
  11339. (unless (equal? name f)
  11340. (error 'type-check "name mismatch, ~a != ~a" name f))
  11341. (match type
  11342. [`(All ,xs (,ps ... -> ,rt))
  11343. (define params^ (for/list ([x params] [T ps]) `[,x : ,T]))
  11344. (cons (Generic xs (Def name params^ rt info body))
  11345. (combine-decls-defs ds^))]
  11346. [`(,ps ... -> ,rt)
  11347. (define params^ (for/list ([x params] [T ps]) `[,x : ,T]))
  11348. (cons (Def name params^ rt info body) (combine-decls-defs ds^))]
  11349. [else (error 'type-check "expected a function type, not ~a" type) ])]
  11350. [`(,(Def f params rt info body) . ,ds^)
  11351. (cons (Def f params rt info body) (combine-decls-defs ds^))]))
  11352. \end{lstlisting}
  11353. \caption{Auxiliary functions for type checking \LangPoly{}.}
  11354. \label{fig:type-check-Rvar0-aux}
  11355. \end{figure}
  11356. \begin{figure}[tbp]
  11357. \begin{lstlisting}%[basicstyle=\ttfamily\scriptsize]
  11358. (define/public ((check-well-formed env) ty)
  11359. (match ty
  11360. ['Integer (void)]
  11361. ['Boolean (void)]
  11362. ['Void (void)]
  11363. [(? symbol? a)
  11364. (match (dict-ref env a (lambda () #f))
  11365. ['Type (void)]
  11366. [else (error 'type-check "undefined type variable ~a" a)])]
  11367. [`(Vector ,ts ...)
  11368. (for ([t ts]) ((check-well-formed env) t))]
  11369. [`(,ts ... -> ,t)
  11370. (for ([t ts]) ((check-well-formed env) t))
  11371. ((check-well-formed env) t)]
  11372. [`(All ,xs ,t)
  11373. (define env^ (append (for/list ([x xs]) (cons x 'Type)) env))
  11374. ((check-well-formed env^) t)]
  11375. [else (error 'type-check "unrecognized type ~a" ty)]))
  11376. \end{lstlisting}
  11377. \caption{Well-formed types.}
  11378. \label{fig:well-formed-types}
  11379. \end{figure}
  11380. % TODO: interpreter for R'_10
  11381. \section{Compiling Polymorphism}
  11382. \label{sec:compiling-poly}
  11383. Broadly speaking, there are four approaches to compiling parametric
  11384. polymorphism, which we describe below.
  11385. \begin{description}
  11386. \item[Monomorphization] generates a different version of a polymorphic
  11387. function for each set of type arguments that it is used with,
  11388. producing type-specialized code. This approach results in the most
  11389. efficient code but requires whole-program compilation (no separate
  11390. compilation) and increases code size. For our current purposes
  11391. monomorphization is a non-starter because, with first-class
  11392. polymorphism, it is sometimes not possible to determine which
  11393. generic functions are used with which type arguments during
  11394. compilation. (It can be done at runtime, with just-in-time
  11395. compilation.) This approach is used to compile C++
  11396. templates~\citep{stroustrup88:_param_types} and polymorphic
  11397. functions in NESL~\citep{Blelloch:1993aa} and
  11398. ML~\citep{Weeks:2006aa}.
  11399. \item[Uniform representation] generates one version of each
  11400. polymorphic function but requires all values have a common ``boxed''
  11401. format, such as the tagged values of type \code{Any} in
  11402. \LangAny{}. Non-polymorphic code (i.e. monomorphic code) is compiled
  11403. similarly to code in a dynamically typed language (like \LangDyn{}), in
  11404. which primitive operators require their arguments to be projected
  11405. from \code{Any} and their results are injected into \code{Any}. (In
  11406. object-oriented languages, the projection is accomplished via
  11407. virtual method dispatch.) The uniform representation approach is
  11408. compatible with separate compilation and with first-class
  11409. polymorphism. However, it produces the least-efficient code because
  11410. it introduces overhead in the entire program, including
  11411. non-polymorphic code. This approach is used in the implementation of
  11412. CLU~\cite{liskov79:_clu_ref,Liskov:1993dk},
  11413. ML~\citep{Cardelli:1984aa,Appel:1987aa}, and
  11414. Java~\citep{Bracha:1998fk}.
  11415. \item[Mixed representation] generates one version of each polymorphic
  11416. function, using a boxed representation for type
  11417. variables. Monomorphic code is compiled as usual (as in \LangLoop{}) and
  11418. conversions are performed at the boundaries between monomorphic and
  11419. polymorphic (e.g. when a polymorphic function is instantiated and
  11420. called). This approach is compatible with separate compilation and
  11421. first-class polymorphism and maintains the efficiency for
  11422. monomorphic code. The tradeoff is increased overhead at the boundary
  11423. between monomorphic and polymorphic code. This approach is used in
  11424. compilers for variants of ML~\citep{Leroy:1992qb} and starting in
  11425. Java 5 with the addition of autoboxing.
  11426. \item[Type passing] uses the unboxed representation in both
  11427. monomorphic and polymorphic code. Each polymorphic function is
  11428. compiled to a single function with extra parameters that describe
  11429. the type arguments. The type information is used by the generated
  11430. code to direct access of the unboxed values at runtime. This
  11431. approach is used in compilers for the Napier88
  11432. language~\citep{Morrison:1991aa} and ML~\citep{Harper:1995um}. This
  11433. approach is compatible with separate compilation and first-class
  11434. polymorphism and maintains the efficiency for monomorphic
  11435. code. There is runtime overhead in polymorphic code from dispatching
  11436. on type information.
  11437. \end{description}
  11438. In this chapter we use the mixed representation approach, partly
  11439. because of its favorable attributes, and partly because it is
  11440. straightforward to implement using the tools that we have already
  11441. built to support gradual typing. To compile polymorphic functions, we
  11442. add just one new pass, \code{erase-types}, to compile \LangInst{} to
  11443. \LangCast{}.
  11444. \section{Erase Types}
  11445. \label{sec:erase-types}
  11446. We use the \code{Any} type from Chapter~\ref{ch:type-dynamic} to
  11447. represent type variables. For example, Figure~\ref{fig:map-vec-erase}
  11448. shows the output of the \code{erase-types} pass on the polymorphic
  11449. \code{map-vec} (Figure~\ref{fig:map-vec-poly}). The occurrences of
  11450. type parameter \code{a} are replaced by \code{Any} and the polymorphic
  11451. \code{All} types are removed from the type of \code{map-vec}.
  11452. \begin{figure}[tbp]
  11453. \begin{lstlisting}
  11454. (define (map-vec [f : (Any -> Any)] [v : (Vector Any Any)])
  11455. : (Vector Any Any)
  11456. (vector (f (vector-ref v 0)) (f (vector-ref v 1))))
  11457. (define (add1 [x : Integer]) : Integer (+ x 1))
  11458. (vector-ref ((cast map-vec
  11459. ((Any -> Any) (Vector Any Any) -> (Vector Any Any))
  11460. ((Integer -> Integer) (Vector Integer Integer)
  11461. -> (Vector Integer Integer)))
  11462. add1 (vector 0 41)) 1)
  11463. \end{lstlisting}
  11464. \caption{The polymorphic \code{map-vec} example after type erasure.}
  11465. \label{fig:map-vec-erase}
  11466. \end{figure}
  11467. This process of type erasure creates a challenge at points of
  11468. instantiation. For example, consider the instantiation of
  11469. \code{map-vec} in Figure~\ref{fig:map-vec-type-check}.
  11470. The type of \code{map-vec} is
  11471. \begin{lstlisting}
  11472. (All (a) ((a -> a) (Vector a a) -> (Vector a a)))
  11473. \end{lstlisting}
  11474. and it is instantiated to
  11475. \begin{lstlisting}
  11476. ((Integer -> Integer) (Vector Integer Integer)
  11477. -> (Vector Integer Integer))
  11478. \end{lstlisting}
  11479. After erasure, the type of \code{map-vec} is
  11480. \begin{lstlisting}
  11481. ((Any -> Any) (Vector Any Any) -> (Vector Any Any))
  11482. \end{lstlisting}
  11483. but we need to convert it to the instantiated type. This is easy to
  11484. do in the target language \LangCast{} with a single \code{cast}. In
  11485. Figure~\ref{fig:map-vec-erase}, the instantiation of \code{map-vec}
  11486. has been compiled to a \code{cast} from the type of \code{map-vec} to
  11487. the instantiated type. The source and target type of a cast must be
  11488. consistent (Figure~\ref{fig:consistent}), which indeed is the case
  11489. because both the source and target are obtained from the same
  11490. polymorphic type of \code{map-vec}, replacing the type parameters with
  11491. \code{Any} in the former and with the deduced type arguments in the
  11492. later. (Recall that the \code{Any} type is consistent with any type.)
  11493. To implement the \code{erase-types} pass, we recommend defining a
  11494. recursive auxiliary function named \code{erase-type} that applies the
  11495. following two transformations. It replaces type variables with
  11496. \code{Any}
  11497. \begin{lstlisting}
  11498. |$x$|
  11499. |$\Rightarrow$|
  11500. Any
  11501. \end{lstlisting}
  11502. and it removes the polymorphic \code{All} types.
  11503. \begin{lstlisting}
  11504. (All |$xs$| |$T_1$|)
  11505. |$\Rightarrow$|
  11506. |$T'_1$|
  11507. \end{lstlisting}
  11508. Apply the \code{erase-type} function to all of the type annotations in
  11509. the program.
  11510. Regarding the translation of expressions, the case for \code{Inst} is
  11511. the interesting one. We translate it into a \code{Cast}, as shown
  11512. below. The type of the subexpression $e$ is the polymorphic type
  11513. $\LP\key{All} xs T\RP$. The source type of the cast is the erasure of
  11514. $T$, the type $T'$. The target type $T''$ is the result of
  11515. substituting the arguments types $ts$ for the type parameters $xs$ in
  11516. $T$ followed by doing type erasure.
  11517. \begin{lstlisting}
  11518. (Inst |$e$| (All |$xs$| |$T$|) |$ts$|)
  11519. |$\Rightarrow$|
  11520. (Cast |$e'$| |$T'$| |$T''$|)
  11521. \end{lstlisting}
  11522. where $T'' = \LP\code{erase-type}~\LP\code{subst-type}~s~T\RP\RP$
  11523. and $s = \LP\code{map}~\code{cons}~xs~ts\RP$.
  11524. Finally, each polymorphic function is translated to a regular
  11525. functions in which type erasure has been applied to all the type
  11526. annotations and the body.
  11527. \begin{lstlisting}
  11528. (Poly |$ts$| (Def |$f$| ([|$x_1$| : |$T_1$|] |$\ldots$|) |$T_r$| |$\itm{info}$| |$e$|))
  11529. |$\Rightarrow$|
  11530. (Def |$f$| ([|$x_1$| : |$T'_1$|] |$\ldots$|) |$T'_r$| |$\itm{info}$| |$e'$|)
  11531. \end{lstlisting}
  11532. \begin{exercise}\normalfont
  11533. Implement a compiler for the polymorphic language \LangPoly{} by
  11534. extending and adapting your compiler for \LangGrad{}. Create 6 new test
  11535. programs that use polymorphic functions. Some of them should make
  11536. use of first-class polymorphism.
  11537. \end{exercise}
  11538. \begin{figure}[p]
  11539. \begin{tikzpicture}[baseline=(current bounding box.center)]
  11540. \node (Rpoly) at (9,4) {\large \LangPoly{}};
  11541. \node (Rpolyp) at (6,4) {\large \LangInst{}};
  11542. \node (Rgradualp) at (3,4) {\large \LangCast{}};
  11543. \node (Rwhilepp) at (0,4) {\large \LangProxy{}};
  11544. \node (Rwhileproxy) at (0,2) {\large \LangPVec{}};
  11545. \node (Rwhileproxy-2) at (3,2) {\large \LangPVec{}};
  11546. \node (Rwhileproxy-3) at (6,2) {\large \LangPVec{}};
  11547. \node (Rwhileproxy-4) at (9,2) {\large \LangPVecFunRef{}};
  11548. \node (Rwhileproxy-5) at (12,2) {\large \LangPVecFunRef{}};
  11549. \node (F1-1) at (12,0) {\large \LangPVecFunRef{}};
  11550. \node (F1-2) at (9,0) {\large \LangPVecFunRef{}};
  11551. \node (F1-3) at (6,0) {\large \LangPVecFunRef{}};
  11552. \node (F1-4) at (3,0) {\large \LangPVecAlloc{}};
  11553. \node (F1-5) at (0,0) {\large \LangPVecAlloc{}};
  11554. \node (C3-2) at (3,-2) {\large \LangCLoopPVec{}};
  11555. \node (x86-2) at (3,-4) {\large \LangXIndCallVar{}};
  11556. \node (x86-2-1) at (3,-6) {\large \LangXIndCallVar{}};
  11557. \node (x86-2-2) at (6,-6) {\large \LangXIndCallVar{}};
  11558. \node (x86-3) at (6,-4) {\large \LangXIndCallVar{}};
  11559. \node (x86-4) at (9,-4) {\large \LangXIndCall{}};
  11560. \node (x86-5) at (9,-6) {\large \LangXIndCall{}};
  11561. \path[->,bend right=15] (Rpoly) edge [above] node
  11562. {\ttfamily\footnotesize type-check} (Rpolyp);
  11563. \path[->,bend right=15] (Rpolyp) edge [above] node
  11564. {\ttfamily\footnotesize erase-types} (Rgradualp);
  11565. \path[->,bend right=15] (Rgradualp) edge [above] node
  11566. {\ttfamily\footnotesize lower-casts} (Rwhilepp);
  11567. \path[->,bend right=15] (Rwhilepp) edge [right] node
  11568. {\ttfamily\footnotesize differentiate-proxies} (Rwhileproxy);
  11569. \path[->,bend left=15] (Rwhileproxy) edge [above] node
  11570. {\ttfamily\footnotesize shrink} (Rwhileproxy-2);
  11571. \path[->,bend left=15] (Rwhileproxy-2) edge [above] node
  11572. {\ttfamily\footnotesize uniquify} (Rwhileproxy-3);
  11573. \path[->,bend left=15] (Rwhileproxy-3) edge [above] node
  11574. {\ttfamily\footnotesize reveal-functions} (Rwhileproxy-4);
  11575. \path[->,bend left=15] (Rwhileproxy-4) edge [above] node
  11576. {\ttfamily\footnotesize reveal-casts} (Rwhileproxy-5);
  11577. \path[->,bend left=15] (Rwhileproxy-5) edge [left] node
  11578. {\ttfamily\footnotesize convert-assignments} (F1-1);
  11579. \path[->,bend left=15] (F1-1) edge [below] node
  11580. {\ttfamily\footnotesize convert-to-clos.} (F1-2);
  11581. \path[->,bend right=15] (F1-2) edge [above] node
  11582. {\ttfamily\footnotesize limit-fun.} (F1-3);
  11583. \path[->,bend right=15] (F1-3) edge [above] node
  11584. {\ttfamily\footnotesize expose-alloc.} (F1-4);
  11585. \path[->,bend right=15] (F1-4) edge [above] node
  11586. {\ttfamily\footnotesize remove-complex.} (F1-5);
  11587. \path[->,bend right=15] (F1-5) edge [right] node
  11588. {\ttfamily\footnotesize explicate-control} (C3-2);
  11589. \path[->,bend left=15] (C3-2) edge [left] node
  11590. {\ttfamily\footnotesize select-instr.} (x86-2);
  11591. \path[->,bend right=15] (x86-2) edge [left] node
  11592. {\ttfamily\footnotesize uncover-live} (x86-2-1);
  11593. \path[->,bend right=15] (x86-2-1) edge [below] node
  11594. {\ttfamily\footnotesize build-inter.} (x86-2-2);
  11595. \path[->,bend right=15] (x86-2-2) edge [left] node
  11596. {\ttfamily\footnotesize allocate-reg.} (x86-3);
  11597. \path[->,bend left=15] (x86-3) edge [above] node
  11598. {\ttfamily\footnotesize patch-instr.} (x86-4);
  11599. \path[->,bend left=15] (x86-4) edge [right] node {\ttfamily\footnotesize print-x86} (x86-5);
  11600. \end{tikzpicture}
  11601. \caption{Diagram of the passes for \LangPoly{} (parametric polymorphism).}
  11602. \label{fig:Rpoly-passes}
  11603. \end{figure}
  11604. Figure~\ref{fig:Rpoly-passes} provides an overview of all the passes needed
  11605. for the compilation of \LangPoly{}.
  11606. % TODO: challenge problem: specialization of instantiations
  11607. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  11608. \chapter{Appendix}
  11609. \section{Interpreters}
  11610. \label{appendix:interp}
  11611. \index{interpreter}
  11612. We provide interpreters for each of the source languages \LangInt{},
  11613. \LangVar{}, $\ldots$ in the files \code{interp-Rint.rkt},
  11614. \code{interp-Rvar.rkt}, etc. The interpreters for the intermediate
  11615. languages \LangCVar{} and \LangCIf{} are in \code{interp-Cvar.rkt} and
  11616. \code{interp-C1.rkt}. The interpreters for \LangCVec{}, \LangCFun{}, pseudo-x86,
  11617. and x86 are in the \key{interp.rkt} file.
  11618. \section{Utility Functions}
  11619. \label{appendix:utilities}
  11620. The utility functions described in this section are in the
  11621. \key{utilities.rkt} file of the support code.
  11622. \paragraph{\code{interp-tests}}
  11623. The \key{interp-tests} function runs the compiler passes and the
  11624. interpreters on each of the specified tests to check whether each pass
  11625. is correct. The \key{interp-tests} function has the following
  11626. parameters:
  11627. \begin{description}
  11628. \item[name (a string)] a name to identify the compiler,
  11629. \item[typechecker] a function of exactly one argument that either
  11630. raises an error using the \code{error} function when it encounters a
  11631. type error, or returns \code{\#f} when it encounters a type
  11632. error. If there is no type error, the type checker returns the
  11633. program.
  11634. \item[passes] a list with one entry per pass. An entry is a list with
  11635. four things:
  11636. \begin{enumerate}
  11637. \item a string giving the name of the pass,
  11638. \item the function that implements the pass (a translator from AST
  11639. to AST),
  11640. \item a function that implements the interpreter (a function from
  11641. AST to result value) for the output language,
  11642. \item and a type checker for the output language. Type checkers for
  11643. the $R$ and $C$ languages are provided in the support code. For
  11644. example, the type checkers for \LangVar{} and \LangCVar{} are in
  11645. \code{type-check-Rvar.rkt} and \code{type-check-Cvar.rkt}. The
  11646. type checker entry is optional. The support code does not provide
  11647. type checkers for the x86 languages.
  11648. \end{enumerate}
  11649. \item[source-interp] an interpreter for the source language. The
  11650. interpreters from Appendix~\ref{appendix:interp} make a good choice.
  11651. \item[test-family (a string)] for example, \code{"r1"}, \code{"r2"}, etc.
  11652. \item[tests] a list of test numbers that specifies which tests to
  11653. run. (see below)
  11654. \end{description}
  11655. %
  11656. The \key{interp-tests} function assumes that the subdirectory
  11657. \key{tests} has a collection of Racket programs whose names all start
  11658. with the family name, followed by an underscore and then the test
  11659. number, ending with the file extension \key{.rkt}. Also, for each test
  11660. program that calls \code{read} one or more times, there is a file with
  11661. the same name except that the file extension is \key{.in} that
  11662. provides the input for the Racket program. If the test program is
  11663. expected to fail type checking, then there should be an empty file of
  11664. the same name but with extension \key{.tyerr}.
  11665. \paragraph{\code{compiler-tests}}
  11666. runs the compiler passes to generate x86 (a \key{.s} file) and then
  11667. runs the GNU C compiler (gcc) to generate machine code. It runs the
  11668. machine code and checks that the output is $42$. The parameters to the
  11669. \code{compiler-tests} function are similar to those of the
  11670. \code{interp-tests} function, and consist of
  11671. \begin{itemize}
  11672. \item a compiler name (a string),
  11673. \item a type checker,
  11674. \item description of the passes,
  11675. \item name of a test-family, and
  11676. \item a list of test numbers.
  11677. \end{itemize}
  11678. \paragraph{\code{compile-file}}
  11679. takes a description of the compiler passes (see the comment for
  11680. \key{interp-tests}) and returns a function that, given a program file
  11681. name (a string ending in \key{.rkt}), applies all of the passes and
  11682. writes the output to a file whose name is the same as the program file
  11683. name but with \key{.rkt} replaced with \key{.s}.
  11684. \paragraph{\code{read-program}}
  11685. takes a file path and parses that file (it must be a Racket program)
  11686. into an abstract syntax tree.
  11687. \paragraph{\code{parse-program}}
  11688. takes an S-expression representation of an abstract syntax tree and converts it into
  11689. the struct-based representation.
  11690. \paragraph{\code{assert}}
  11691. takes two parameters, a string (\code{msg}) and Boolean (\code{bool}),
  11692. and displays the message \key{msg} if the Boolean \key{bool} is false.
  11693. \paragraph{\code{lookup}}
  11694. % remove discussion of lookup? -Jeremy
  11695. takes a key and an alist, and returns the first value that is
  11696. associated with the given key, if there is one. If not, an error is
  11697. triggered. The alist may contain both immutable pairs (built with
  11698. \key{cons}) and mutable pairs (built with \key{mcons}).
  11699. %The \key{map2} function ...
  11700. \section{x86 Instruction Set Quick-Reference}
  11701. \label{sec:x86-quick-reference}
  11702. \index{x86}
  11703. Table~\ref{tab:x86-instr} lists some x86 instructions and what they
  11704. do. We write $A \to B$ to mean that the value of $A$ is written into
  11705. location $B$. Address offsets are given in bytes. The instruction
  11706. arguments $A, B, C$ can be immediate constants (such as \code{\$4}),
  11707. registers (such as \code{\%rax}), or memory references (such as
  11708. \code{-4(\%ebp)}). Most x86 instructions only allow at most one memory
  11709. reference per instruction. Other operands must be immediates or
  11710. registers.
  11711. \begin{table}[tbp]
  11712. \centering
  11713. \begin{tabular}{l|l}
  11714. \textbf{Instruction} & \textbf{Operation} \\ \hline
  11715. \texttt{addq} $A$, $B$ & $A + B \to B$\\
  11716. \texttt{negq} $A$ & $- A \to A$ \\
  11717. \texttt{subq} $A$, $B$ & $B - A \to B$\\
  11718. \texttt{callq} $L$ & Pushes the return address and jumps to label $L$ \\
  11719. \texttt{callq} \texttt{*}$A$ & Calls the function at the address $A$. \\
  11720. %\texttt{leave} & $\texttt{ebp} \to \texttt{esp};$ \texttt{popl \%ebp} \\
  11721. \texttt{retq} & Pops the return address and jumps to it \\
  11722. \texttt{popq} $A$ & $*\mathtt{rsp} \to A; \mathtt{rsp} + 8 \to \mathtt{rsp}$ \\
  11723. \texttt{pushq} $A$ & $\texttt{rsp} - 8 \to \texttt{rsp}; A \to *\texttt{rsp}$\\
  11724. \texttt{leaq} $A$,$B$ & $A \to B$ ($B$ must be a register) \\
  11725. \texttt{cmpq} $A$, $B$ & compare $A$ and $B$ and set the flag register ($B$ must not
  11726. be an immediate) \\
  11727. \texttt{je} $L$ & \multirow{5}{3.7in}{Jump to label $L$ if the flag register
  11728. matches the condition code of the instruction, otherwise go to the
  11729. next instructions. The condition codes are \key{e} for ``equal'',
  11730. \key{l} for ``less'', \key{le} for ``less or equal'', \key{g}
  11731. for ``greater'', and \key{ge} for ``greater or equal''.} \\
  11732. \texttt{jl} $L$ & \\
  11733. \texttt{jle} $L$ & \\
  11734. \texttt{jg} $L$ & \\
  11735. \texttt{jge} $L$ & \\
  11736. \texttt{jmp} $L$ & Jump to label $L$ \\
  11737. \texttt{movq} $A$, $B$ & $A \to B$ \\
  11738. \texttt{movzbq} $A$, $B$ &
  11739. \multirow{3}{3.7in}{$A \to B$, \text{where } $A$ is a single-byte register
  11740. (e.g., \texttt{al} or \texttt{cl}), $B$ is a 8-byte register,
  11741. and the extra bytes of $B$ are set to zero.} \\
  11742. & \\
  11743. & \\
  11744. \texttt{notq} $A$ & $\sim A \to A$ \qquad (bitwise complement)\\
  11745. \texttt{orq} $A$, $B$ & $A | B \to B$ \qquad (bitwise-or)\\
  11746. \texttt{andq} $A$, $B$ & $A \& B \to B$ \qquad (bitwise-and)\\
  11747. \texttt{salq} $A$, $B$ & $B$ \texttt{<<} $A \to B$ (arithmetic shift left, where $A$ is a constant)\\
  11748. \texttt{sarq} $A$, $B$ & $B$ \texttt{>>} $A \to B$ (arithmetic shift right, where $A$ is a constant)\\
  11749. \texttt{sete} $A$ & \multirow{5}{3.7in}{If the flag matches the condition code,
  11750. then $1 \to A$, else $0 \to A$. Refer to \texttt{je} above for the
  11751. description of the condition codes. $A$ must be a single byte register
  11752. (e.g., \texttt{al} or \texttt{cl}).} \\
  11753. \texttt{setl} $A$ & \\
  11754. \texttt{setle} $A$ & \\
  11755. \texttt{setg} $A$ & \\
  11756. \texttt{setge} $A$ &
  11757. \end{tabular}
  11758. \vspace{5pt}
  11759. \caption{Quick-reference for the x86 instructions used in this book.}
  11760. \label{tab:x86-instr}
  11761. \end{table}
  11762. \cleardoublepage
  11763. \section{Concrete Syntax for Intermediate Languages}
  11764. The concrete syntax of \LangAny{} is defined in
  11765. Figure~\ref{fig:r6-concrete-syntax}.
  11766. \begin{figure}[tp]
  11767. \centering
  11768. \fbox{
  11769. \begin{minipage}{0.97\textwidth}\small
  11770. \[
  11771. \begin{array}{lcl}
  11772. \Type &::=& \gray{\key{Integer} \mid \key{Boolean}
  11773. \mid \LP\key{Vector}\;\Type\ldots\RP \mid \key{Void}} \\
  11774. &\mid& \gray{\LP\Type\ldots \; \key{->}\; \Type\RP} \mid \key{Any} \\
  11775. \FType &::=& \key{Integer} \mid \key{Boolean} \mid \key{Void}
  11776. \mid \LP\key{Vector}\; \key{Any}\ldots\RP \\
  11777. &\mid& \LP\key{Any}\ldots \; \key{->}\; \key{Any}\RP\\
  11778. \Exp &::=& \ldots \CINJECT{\Exp}{\FType}\RP \mid \CPROJECT{\Exp}{\FType}\\
  11779. &\mid& \LP\key{any-vector-length}\;\Exp\RP
  11780. \mid \LP\key{any-vector-ref}\;\Exp\;\Exp\RP \\
  11781. &\mid& \LP\key{any-vector-set!}\;\Exp\;\Exp\;\Exp\RP\\
  11782. &\mid& \LP\key{boolean?}\;\Exp\RP \mid \LP\key{integer?}\;\Exp\RP
  11783. \mid \LP\key{void?}\;\Exp\RP \\
  11784. &\mid& \LP\key{vector?}\;\Exp\RP \mid \LP\key{procedure?}\;\Exp\RP \\
  11785. \Def &::=& \gray{ \CDEF{\Var}{\LS\Var \key{:} \Type\RS\ldots}{\Type}{\Exp} } \\
  11786. \LangAny{} &::=& \gray{\Def\ldots \; \Exp}
  11787. \end{array}
  11788. \]
  11789. \end{minipage}
  11790. }
  11791. \caption{The concrete syntax of \LangAny{}, extending \LangLam{}
  11792. (Figure~\ref{fig:r5-syntax}) with \key{Any}.}
  11793. \label{fig:r6-concrete-syntax}
  11794. \end{figure}
  11795. The concrete syntax for \LangCVar{}, \LangCIf{}, \LangCVec{} and \LangCFun{} is
  11796. defined in Figures~\ref{fig:c0-concrete-syntax},
  11797. \ref{fig:c1-concrete-syntax}, \ref{fig:c2-concrete-syntax},
  11798. and \ref{fig:c3-concrete-syntax}, respectively.
  11799. \begin{figure}[tbp]
  11800. \fbox{
  11801. \begin{minipage}{0.96\textwidth}
  11802. \[
  11803. \begin{array}{lcl}
  11804. \Atm &::=& \Int \mid \Var \\
  11805. \Exp &::=& \Atm \mid \key{(read)} \mid \key{(-}~\Atm\key{)} \mid \key{(+}~\Atm~\Atm\key{)}\\
  11806. \Stmt &::=& \Var~\key{=}~\Exp\key{;} \\
  11807. \Tail &::= & \key{return}~\Exp\key{;} \mid \Stmt~\Tail \\
  11808. \LangCVar{} & ::= & (\itm{label}\key{:}~ \Tail)\ldots
  11809. \end{array}
  11810. \]
  11811. \end{minipage}
  11812. }
  11813. \caption{The concrete syntax of the \LangCVar{} intermediate language.}
  11814. \label{fig:c0-concrete-syntax}
  11815. \end{figure}
  11816. \begin{figure}[tbp]
  11817. \fbox{
  11818. \begin{minipage}{0.96\textwidth}
  11819. \small
  11820. \[
  11821. \begin{array}{lcl}
  11822. \Atm &::=& \gray{ \Int \mid \Var } \mid \itm{bool} \\
  11823. \itm{cmp} &::= & \key{eq?} \mid \key{<} \\
  11824. \Exp &::=& \gray{ \Atm \mid \key{(read)} \mid \key{(-}~\Atm\key{)} \mid \key{(+}~\Atm~\Atm\key{)} } \\
  11825. &\mid& \LP \key{not}~\Atm \RP \mid \LP \itm{cmp}~\Atm~\Atm\RP \\
  11826. \Stmt &::=& \gray{ \Var~\key{=}~\Exp\key{;} } \\
  11827. \Tail &::= & \gray{ \key{return}~\Exp\key{;} \mid \Stmt~\Tail }
  11828. \mid \key{goto}~\itm{label}\key{;}\\
  11829. &\mid& \key{if}~\LP \itm{cmp}~\Atm~\Atm \RP~ \key{goto}~\itm{label}\key{;} ~\key{else}~\key{goto}~\itm{label}\key{;} \\
  11830. \LangCIf{} & ::= & \gray{ (\itm{label}\key{:}~ \Tail)\ldots }
  11831. \end{array}
  11832. \]
  11833. \end{minipage}
  11834. }
  11835. \caption{The concrete syntax of the \LangCIf{} intermediate language.}
  11836. \label{fig:c1-concrete-syntax}
  11837. \end{figure}
  11838. \begin{figure}[tbp]
  11839. \fbox{
  11840. \begin{minipage}{0.96\textwidth}
  11841. \small
  11842. \[
  11843. \begin{array}{lcl}
  11844. \Atm &::=& \gray{ \Int \mid \Var \mid \itm{bool} } \\
  11845. \itm{cmp} &::= & \gray{ \key{eq?} \mid \key{<} } \\
  11846. \Exp &::=& \gray{ \Atm \mid \key{(read)} \mid \key{(-}~\Atm\key{)} \mid \key{(+}~\Atm~\Atm\key{)} } \\
  11847. &\mid& \gray{ \LP \key{not}~\Atm \RP \mid \LP \itm{cmp}~\Atm~\Atm\RP } \\
  11848. &\mid& \LP \key{allocate}~\Int~\Type \RP \\
  11849. &\mid& (\key{vector-ref}\;\Atm\;\Int) \mid (\key{vector-set!}\;\Atm\;\Int\;\Atm)\\
  11850. &\mid& \LP \key{global-value}~\Var \RP \mid \LP \key{void} \RP \\
  11851. \Stmt &::=& \gray{ \Var~\key{=}~\Exp\key{;} } \mid \LP\key{collect}~\Int \RP\\
  11852. \Tail &::= & \gray{ \key{return}~\Exp\key{;} \mid \Stmt~\Tail }
  11853. \mid \gray{ \key{goto}~\itm{label}\key{;} }\\
  11854. &\mid& \gray{ \key{if}~\LP \itm{cmp}~\Atm~\Atm \RP~ \key{goto}~\itm{label}\key{;} ~\key{else}~\key{goto}~\itm{label}\key{;} } \\
  11855. \LangCVec{} & ::= & \gray{ (\itm{label}\key{:}~ \Tail)\ldots }
  11856. \end{array}
  11857. \]
  11858. \end{minipage}
  11859. }
  11860. \caption{The concrete syntax of the \LangCVec{} intermediate language.}
  11861. \label{fig:c2-concrete-syntax}
  11862. \end{figure}
  11863. \begin{figure}[tp]
  11864. \fbox{
  11865. \begin{minipage}{0.96\textwidth}
  11866. \small
  11867. \[
  11868. \begin{array}{lcl}
  11869. \Atm &::=& \gray{ \Int \mid \Var \mid \key{\#t} \mid \key{\#f} }
  11870. \\
  11871. \itm{cmp} &::= & \gray{ \key{eq?} \mid \key{<} } \\
  11872. \Exp &::= & \gray{ \Atm \mid \LP\key{read}\RP \mid \LP\key{-}\;\Atm\RP \mid \LP\key{+} \; \Atm\;\Atm\RP
  11873. \mid \LP\key{not}\;\Atm\RP \mid \LP\itm{cmp}\;\Atm\;\Atm\RP } \\
  11874. &\mid& \gray{ \LP\key{allocate}\,\Int\,\Type\RP
  11875. \mid \LP\key{vector-ref}\, \Atm\, \Int\RP } \\
  11876. &\mid& \gray{ \LP\key{vector-set!}\,\Atm\,\Int\,\Atm\RP \mid \LP\key{global-value} \,\itm{name}\RP \mid \LP\key{void}\RP } \\
  11877. &\mid& \LP\key{fun-ref}~\itm{label}\RP \mid \LP\key{call} \,\Atm\,\Atm\ldots\RP \\
  11878. \Stmt &::=& \gray{ \ASSIGN{\Var}{\Exp} \mid \RETURN{\Exp}
  11879. \mid \LP\key{collect} \,\itm{int}\RP }\\
  11880. \Tail &::= & \gray{\RETURN{\Exp} \mid \LP\key{seq}\;\Stmt\;\Tail\RP} \\
  11881. &\mid& \gray{\LP\key{goto}\,\itm{label}\RP
  11882. \mid \IF{\LP\itm{cmp}\, \Atm\,\Atm\RP}{\LP\key{goto}\,\itm{label}\RP}{\LP\key{goto}\,\itm{label}\RP}} \\
  11883. &\mid& \LP\key{tail-call}\,\Atm\,\Atm\ldots\RP \\
  11884. \Def &::=& \LP\key{define}\; \LP\itm{label} \; [\Var \key{:} \Type]\ldots\RP \key{:} \Type \; \LP\LP\itm{label}\,\key{.}\,\Tail\RP\ldots\RP\RP \\
  11885. \LangCFun{} & ::= & \Def\ldots
  11886. \end{array}
  11887. \]
  11888. \end{minipage}
  11889. }
  11890. \caption{The \LangCFun{} language, extending \LangCVec{} (Figure~\ref{fig:c2-concrete-syntax}) with functions.}
  11891. \label{fig:c3-concrete-syntax}
  11892. \end{figure}
  11893. \cleardoublepage
  11894. \addcontentsline{toc}{chapter}{Index}
  11895. \printindex
  11896. \cleardoublepage
  11897. \bibliographystyle{plainnat}
  11898. \bibliography{all}
  11899. \addcontentsline{toc}{chapter}{Bibliography}
  11900. \end{document}
  11901. %% LocalWords: Dybvig Waddell Abdulaziz Ghuloum Dipanwita Sussman
  11902. %% LocalWords: Sarkar lcl Matz aa representable Chez Ph Dan's nano
  11903. %% LocalWords: fk bh Siek plt uq Felleisen Bor Yuh ASTs AST Naur eq
  11904. %% LocalWords: BNF fixnum datatype arith prog backquote quasiquote
  11905. %% LocalWords: ast Reynold's reynolds interp cond fx evaluator jane
  11906. %% LocalWords: quasiquotes pe nullary unary rcl env lookup gcc rax
  11907. %% LocalWords: addq movq callq rsp rbp rbx rcx rdx rsi rdi subq nx
  11908. %% LocalWords: negq pushq popq retq globl Kernighan uniquify lll ve
  11909. %% LocalWords: allocator gensym env subdirectory scm rkt tmp lhs Tt
  11910. %% LocalWords: runtime Liveness liveness undirected Balakrishnan je
  11911. %% LocalWords: Rosen DSATUR SDO Gebremedhin Omari morekeywords cnd
  11912. %% LocalWords: fullflexible vertices Booleans Listof Pairof thn els
  11913. %% LocalWords: boolean type-check notq cmpq sete movzbq jmp al xorq
  11914. %% LocalWords: EFLAGS thns elss elselabel endlabel Tuples tuples os
  11915. %% LocalWords: tuple args lexically leaq Polymorphism msg bool nums
  11916. %% LocalWords: macosx unix Cormen vec callee xs maxStack numParams
  11917. %% LocalWords: arg bitwise XOR'd thenlabel immediates optimizations
  11918. %% LocalWords: deallocating Ungar Detlefs Tene kx FromSpace ToSpace
  11919. %% LocalWords: Appel Diwan Siebert ptr fromspace rootstack typedef
  11920. %% LocalWords: len prev rootlen heaplen setl lt Kohlbecker dk multi
  11921. % LocalWords: Bloomington Wollowski definitional whitespace deref JM
  11922. % LocalWords: subexpression subexpressions iteratively ANF Danvy rco
  11923. % LocalWords: goto stmt JS ly cmp ty le ge jle goto's EFLAG CFG pred
  11924. % LocalWords: acyclic worklist Aho qf tsort implementer's hj Shidal
  11925. % LocalWords: nonnegative Shahriyar endian salq sarq uint cheney ior
  11926. % LocalWords: tospace vecinit collectret alloc initret decrement jl
  11927. % LocalWords: dereferencing GC di vals ps mcons ds mcdr callee's th
  11928. % LocalWords: mainDef tailcall prepending mainstart num params rT qb
  11929. % LocalWords: mainconclusion Cardelli bodyT fvs clos fvts subtype uj
  11930. % LocalWords: polymorphism untyped elts tys tagof Vectorof tyeq orq
  11931. % LocalWords: andq untagged Shao inlining ebp jge setle setg setge
  11932. % LocalWords: struct Friedman's MacOS Nystrom alist sam kate
  11933. % LocalWords: alists arity github unordered pqueue exprs ret param
  11934. % LocalWords: tyerr bytereg dh dl JmpIf HasType Osterlund Jacek TODO
  11935. % LocalWords: Gamari GlobalValue ProgramDefsExp prm ProgramDefs vn
  11936. % LocalWords: FunRef TailCall tailjmp IndirectCallq TailJmp Gilray
  11937. % LocalWords: dereference unbox Dataflow versa dataflow Kildall rhs
  11938. % LocalWords: Kleene enqueue dequeue AssignedFree FV cnvt SetBang tg
  11939. % LocalWords: ValueOf typechecker