book.tex 507 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137613861396140614161426143614461456146614761486149615061516152615361546155615661576158615961606161616261636164616561666167616861696170617161726173617461756176617761786179618061816182618361846185618661876188618961906191619261936194619561966197619861996200620162026203620462056206620762086209621062116212621362146215621662176218621962206221622262236224622562266227622862296230623162326233623462356236623762386239624062416242624362446245624662476248624962506251625262536254625562566257625862596260626162626263626462656266626762686269627062716272627362746275627662776278627962806281628262836284628562866287628862896290629162926293629462956296629762986299630063016302630363046305630663076308630963106311631263136314631563166317631863196320632163226323632463256326632763286329633063316332633363346335633663376338633963406341634263436344634563466347634863496350635163526353635463556356635763586359636063616362636363646365636663676368636963706371637263736374637563766377637863796380638163826383638463856386638763886389639063916392639363946395639663976398639964006401640264036404640564066407640864096410641164126413641464156416641764186419642064216422642364246425642664276428642964306431643264336434643564366437643864396440644164426443644464456446644764486449645064516452645364546455645664576458645964606461646264636464646564666467646864696470647164726473647464756476647764786479648064816482648364846485648664876488648964906491649264936494649564966497649864996500650165026503650465056506650765086509651065116512651365146515651665176518651965206521652265236524652565266527652865296530653165326533653465356536653765386539654065416542654365446545654665476548654965506551655265536554655565566557655865596560656165626563656465656566656765686569657065716572657365746575657665776578657965806581658265836584658565866587658865896590659165926593659465956596659765986599660066016602660366046605660666076608660966106611661266136614661566166617661866196620662166226623662466256626662766286629663066316632663366346635663666376638663966406641664266436644664566466647664866496650665166526653665466556656665766586659666066616662666366646665666666676668666966706671667266736674667566766677667866796680668166826683668466856686668766886689669066916692669366946695669666976698669967006701670267036704670567066707670867096710671167126713671467156716671767186719672067216722672367246725672667276728672967306731673267336734673567366737673867396740674167426743674467456746674767486749675067516752675367546755675667576758675967606761676267636764676567666767676867696770677167726773677467756776677767786779678067816782678367846785678667876788678967906791679267936794679567966797679867996800680168026803680468056806680768086809681068116812681368146815681668176818681968206821682268236824682568266827682868296830683168326833683468356836683768386839684068416842684368446845684668476848684968506851685268536854685568566857685868596860686168626863686468656866686768686869687068716872687368746875687668776878687968806881688268836884688568866887688868896890689168926893689468956896689768986899690069016902690369046905690669076908690969106911691269136914691569166917691869196920692169226923692469256926692769286929693069316932693369346935693669376938693969406941694269436944694569466947694869496950695169526953695469556956695769586959696069616962696369646965696669676968696969706971697269736974697569766977697869796980698169826983698469856986698769886989699069916992699369946995699669976998699970007001700270037004700570067007700870097010701170127013701470157016701770187019702070217022702370247025702670277028702970307031703270337034703570367037703870397040704170427043704470457046704770487049705070517052705370547055705670577058705970607061706270637064706570667067706870697070707170727073707470757076707770787079708070817082708370847085708670877088708970907091709270937094709570967097709870997100710171027103710471057106710771087109711071117112711371147115711671177118711971207121712271237124712571267127712871297130713171327133713471357136713771387139714071417142714371447145714671477148714971507151715271537154715571567157715871597160716171627163716471657166716771687169717071717172717371747175717671777178717971807181718271837184718571867187718871897190719171927193719471957196719771987199720072017202720372047205720672077208720972107211721272137214721572167217721872197220722172227223722472257226722772287229723072317232723372347235723672377238723972407241724272437244724572467247724872497250725172527253725472557256725772587259726072617262726372647265726672677268726972707271727272737274727572767277727872797280728172827283728472857286728772887289729072917292729372947295729672977298729973007301730273037304730573067307730873097310731173127313731473157316731773187319732073217322732373247325732673277328732973307331733273337334733573367337733873397340734173427343734473457346734773487349735073517352735373547355735673577358735973607361736273637364736573667367736873697370737173727373737473757376737773787379738073817382738373847385738673877388738973907391739273937394739573967397739873997400740174027403740474057406740774087409741074117412741374147415741674177418741974207421742274237424742574267427742874297430743174327433743474357436743774387439744074417442744374447445744674477448744974507451745274537454745574567457745874597460746174627463746474657466746774687469747074717472747374747475747674777478747974807481748274837484748574867487748874897490749174927493749474957496749774987499750075017502750375047505750675077508750975107511751275137514751575167517751875197520752175227523752475257526752775287529753075317532753375347535753675377538753975407541754275437544754575467547754875497550755175527553755475557556755775587559756075617562756375647565756675677568756975707571757275737574757575767577757875797580758175827583758475857586758775887589759075917592759375947595759675977598759976007601760276037604760576067607760876097610761176127613761476157616761776187619762076217622762376247625762676277628762976307631763276337634763576367637763876397640764176427643764476457646764776487649765076517652765376547655765676577658765976607661766276637664766576667667766876697670767176727673767476757676767776787679768076817682768376847685768676877688768976907691769276937694769576967697769876997700770177027703770477057706770777087709771077117712771377147715771677177718771977207721772277237724772577267727772877297730773177327733773477357736773777387739774077417742774377447745774677477748774977507751775277537754775577567757775877597760776177627763776477657766776777687769777077717772777377747775777677777778777977807781778277837784778577867787778877897790779177927793779477957796779777987799780078017802780378047805780678077808780978107811781278137814781578167817781878197820782178227823782478257826782778287829783078317832783378347835783678377838783978407841784278437844784578467847784878497850785178527853785478557856785778587859786078617862786378647865786678677868786978707871787278737874787578767877787878797880788178827883788478857886788778887889789078917892789378947895789678977898789979007901790279037904790579067907790879097910791179127913791479157916791779187919792079217922792379247925792679277928792979307931793279337934793579367937793879397940794179427943794479457946794779487949795079517952795379547955795679577958795979607961796279637964796579667967796879697970797179727973797479757976797779787979798079817982798379847985798679877988798979907991799279937994799579967997799879998000800180028003800480058006800780088009801080118012801380148015801680178018801980208021802280238024802580268027802880298030803180328033803480358036803780388039804080418042804380448045804680478048804980508051805280538054805580568057805880598060806180628063806480658066806780688069807080718072807380748075807680778078807980808081808280838084808580868087808880898090809180928093809480958096809780988099810081018102810381048105810681078108810981108111811281138114811581168117811881198120812181228123812481258126812781288129813081318132813381348135813681378138813981408141814281438144814581468147814881498150815181528153815481558156815781588159816081618162816381648165816681678168816981708171817281738174817581768177817881798180818181828183818481858186818781888189819081918192819381948195819681978198819982008201820282038204820582068207820882098210821182128213821482158216821782188219822082218222822382248225822682278228822982308231823282338234823582368237823882398240824182428243824482458246824782488249825082518252825382548255825682578258825982608261826282638264826582668267826882698270827182728273827482758276827782788279828082818282828382848285828682878288828982908291829282938294829582968297829882998300830183028303830483058306830783088309831083118312831383148315831683178318831983208321832283238324832583268327832883298330833183328333833483358336833783388339834083418342834383448345834683478348834983508351835283538354835583568357835883598360836183628363836483658366836783688369837083718372837383748375837683778378837983808381838283838384838583868387838883898390839183928393839483958396839783988399840084018402840384048405840684078408840984108411841284138414841584168417841884198420842184228423842484258426842784288429843084318432843384348435843684378438843984408441844284438444844584468447844884498450845184528453845484558456845784588459846084618462846384648465846684678468846984708471847284738474847584768477847884798480848184828483848484858486848784888489849084918492849384948495849684978498849985008501850285038504850585068507850885098510851185128513851485158516851785188519852085218522852385248525852685278528852985308531853285338534853585368537853885398540854185428543854485458546854785488549855085518552855385548555855685578558855985608561856285638564856585668567856885698570857185728573857485758576857785788579858085818582858385848585858685878588858985908591859285938594859585968597859885998600860186028603860486058606860786088609861086118612861386148615861686178618861986208621862286238624862586268627862886298630863186328633863486358636863786388639864086418642864386448645864686478648864986508651865286538654865586568657865886598660866186628663866486658666866786688669867086718672867386748675867686778678867986808681868286838684868586868687868886898690869186928693869486958696869786988699870087018702870387048705870687078708870987108711871287138714871587168717871887198720872187228723872487258726872787288729873087318732873387348735873687378738873987408741874287438744874587468747874887498750875187528753875487558756875787588759876087618762876387648765876687678768876987708771877287738774877587768777877887798780878187828783878487858786878787888789879087918792879387948795879687978798879988008801880288038804880588068807880888098810881188128813881488158816881788188819882088218822882388248825882688278828882988308831883288338834883588368837883888398840884188428843884488458846884788488849885088518852885388548855885688578858885988608861886288638864886588668867886888698870887188728873887488758876887788788879888088818882888388848885888688878888888988908891889288938894889588968897889888998900890189028903890489058906890789088909891089118912891389148915891689178918891989208921892289238924892589268927892889298930893189328933893489358936893789388939894089418942894389448945894689478948894989508951895289538954895589568957895889598960896189628963896489658966896789688969897089718972897389748975897689778978897989808981898289838984898589868987898889898990899189928993899489958996899789988999900090019002900390049005900690079008900990109011901290139014901590169017901890199020902190229023902490259026902790289029903090319032903390349035903690379038903990409041904290439044904590469047904890499050905190529053905490559056905790589059906090619062906390649065906690679068906990709071907290739074907590769077907890799080908190829083908490859086908790889089909090919092909390949095909690979098909991009101910291039104910591069107910891099110911191129113911491159116911791189119912091219122912391249125912691279128912991309131913291339134913591369137913891399140914191429143914491459146914791489149915091519152915391549155915691579158915991609161916291639164916591669167916891699170917191729173917491759176917791789179918091819182918391849185918691879188918991909191919291939194919591969197919891999200920192029203920492059206920792089209921092119212921392149215921692179218921992209221922292239224922592269227922892299230923192329233923492359236923792389239924092419242924392449245924692479248924992509251925292539254925592569257925892599260926192629263926492659266926792689269927092719272927392749275927692779278927992809281928292839284928592869287928892899290929192929293929492959296929792989299930093019302930393049305930693079308930993109311931293139314931593169317931893199320932193229323932493259326932793289329933093319332933393349335933693379338933993409341934293439344934593469347934893499350935193529353935493559356935793589359936093619362936393649365936693679368936993709371937293739374937593769377937893799380938193829383938493859386938793889389939093919392939393949395939693979398939994009401940294039404940594069407940894099410941194129413941494159416941794189419942094219422942394249425942694279428942994309431943294339434943594369437943894399440944194429443944494459446944794489449945094519452945394549455945694579458945994609461946294639464946594669467946894699470947194729473947494759476947794789479948094819482948394849485948694879488948994909491949294939494949594969497949894999500950195029503950495059506950795089509951095119512951395149515951695179518951995209521952295239524952595269527952895299530953195329533953495359536953795389539954095419542954395449545954695479548954995509551955295539554955595569557955895599560956195629563956495659566956795689569957095719572957395749575957695779578957995809581958295839584958595869587958895899590959195929593959495959596959795989599960096019602960396049605960696079608960996109611961296139614961596169617961896199620962196229623962496259626962796289629963096319632963396349635963696379638963996409641964296439644964596469647964896499650965196529653965496559656965796589659966096619662966396649665966696679668966996709671967296739674967596769677967896799680968196829683968496859686968796889689969096919692969396949695969696979698969997009701970297039704970597069707970897099710971197129713971497159716971797189719972097219722972397249725972697279728972997309731973297339734973597369737973897399740974197429743974497459746974797489749975097519752975397549755975697579758975997609761976297639764976597669767976897699770977197729773977497759776977797789779978097819782978397849785978697879788978997909791979297939794979597969797979897999800980198029803980498059806980798089809981098119812981398149815981698179818981998209821982298239824982598269827982898299830983198329833983498359836983798389839984098419842984398449845984698479848984998509851985298539854985598569857985898599860986198629863986498659866986798689869987098719872987398749875987698779878987998809881988298839884988598869887988898899890989198929893989498959896989798989899990099019902990399049905990699079908990999109911991299139914991599169917991899199920992199229923992499259926992799289929993099319932993399349935993699379938993999409941994299439944994599469947994899499950995199529953995499559956995799589959996099619962996399649965996699679968996999709971997299739974997599769977997899799980998199829983998499859986998799889989999099919992999399949995999699979998999910000100011000210003100041000510006100071000810009100101001110012100131001410015100161001710018100191002010021100221002310024100251002610027100281002910030100311003210033100341003510036100371003810039100401004110042100431004410045100461004710048100491005010051100521005310054100551005610057100581005910060100611006210063100641006510066100671006810069100701007110072100731007410075100761007710078100791008010081100821008310084100851008610087100881008910090100911009210093100941009510096100971009810099101001010110102101031010410105101061010710108101091011010111101121011310114101151011610117101181011910120101211012210123101241012510126101271012810129101301013110132101331013410135101361013710138101391014010141101421014310144101451014610147101481014910150101511015210153101541015510156101571015810159101601016110162101631016410165101661016710168101691017010171101721017310174101751017610177101781017910180101811018210183101841018510186101871018810189101901019110192101931019410195101961019710198101991020010201102021020310204102051020610207102081020910210102111021210213102141021510216102171021810219102201022110222102231022410225102261022710228102291023010231102321023310234102351023610237102381023910240102411024210243102441024510246102471024810249102501025110252102531025410255102561025710258102591026010261102621026310264102651026610267102681026910270102711027210273102741027510276102771027810279102801028110282102831028410285102861028710288102891029010291102921029310294102951029610297102981029910300103011030210303103041030510306103071030810309103101031110312103131031410315103161031710318103191032010321103221032310324103251032610327103281032910330103311033210333103341033510336103371033810339103401034110342103431034410345103461034710348103491035010351103521035310354103551035610357103581035910360103611036210363103641036510366103671036810369103701037110372103731037410375103761037710378103791038010381103821038310384103851038610387103881038910390103911039210393103941039510396103971039810399104001040110402104031040410405104061040710408104091041010411104121041310414104151041610417104181041910420104211042210423104241042510426104271042810429104301043110432104331043410435104361043710438104391044010441104421044310444104451044610447104481044910450104511045210453104541045510456104571045810459104601046110462104631046410465104661046710468104691047010471104721047310474104751047610477104781047910480104811048210483104841048510486104871048810489104901049110492104931049410495104961049710498104991050010501105021050310504105051050610507105081050910510105111051210513105141051510516105171051810519105201052110522105231052410525105261052710528105291053010531105321053310534105351053610537105381053910540105411054210543105441054510546105471054810549105501055110552105531055410555105561055710558105591056010561105621056310564105651056610567105681056910570105711057210573105741057510576105771057810579105801058110582105831058410585105861058710588105891059010591105921059310594105951059610597105981059910600106011060210603106041060510606106071060810609106101061110612106131061410615106161061710618106191062010621106221062310624106251062610627106281062910630106311063210633106341063510636106371063810639106401064110642106431064410645106461064710648106491065010651106521065310654106551065610657106581065910660106611066210663106641066510666106671066810669106701067110672106731067410675106761067710678106791068010681106821068310684106851068610687106881068910690106911069210693106941069510696106971069810699107001070110702107031070410705107061070710708107091071010711107121071310714107151071610717107181071910720107211072210723107241072510726107271072810729107301073110732107331073410735107361073710738107391074010741107421074310744107451074610747107481074910750107511075210753107541075510756107571075810759107601076110762107631076410765107661076710768107691077010771107721077310774107751077610777107781077910780107811078210783107841078510786107871078810789107901079110792107931079410795107961079710798107991080010801108021080310804108051080610807108081080910810108111081210813108141081510816108171081810819108201082110822108231082410825108261082710828108291083010831108321083310834108351083610837108381083910840108411084210843108441084510846108471084810849108501085110852108531085410855108561085710858108591086010861108621086310864108651086610867108681086910870108711087210873108741087510876108771087810879108801088110882108831088410885108861088710888108891089010891108921089310894108951089610897108981089910900109011090210903109041090510906109071090810909109101091110912109131091410915109161091710918109191092010921109221092310924109251092610927109281092910930109311093210933109341093510936109371093810939109401094110942109431094410945109461094710948109491095010951109521095310954109551095610957109581095910960109611096210963109641096510966109671096810969109701097110972109731097410975109761097710978109791098010981109821098310984109851098610987109881098910990109911099210993109941099510996109971099810999110001100111002110031100411005110061100711008110091101011011110121101311014110151101611017110181101911020110211102211023110241102511026110271102811029110301103111032110331103411035110361103711038110391104011041110421104311044110451104611047110481104911050110511105211053110541105511056110571105811059110601106111062110631106411065110661106711068110691107011071110721107311074110751107611077110781107911080110811108211083110841108511086110871108811089110901109111092110931109411095110961109711098110991110011101111021110311104111051110611107111081110911110111111111211113111141111511116111171111811119111201112111122111231112411125111261112711128111291113011131111321113311134111351113611137111381113911140111411114211143111441114511146111471114811149111501115111152111531115411155111561115711158111591116011161111621116311164111651116611167111681116911170111711117211173111741117511176111771117811179111801118111182111831118411185111861118711188111891119011191111921119311194111951119611197111981119911200112011120211203112041120511206112071120811209112101121111212112131121411215112161121711218112191122011221112221122311224112251122611227112281122911230112311123211233112341123511236112371123811239112401124111242112431124411245112461124711248112491125011251112521125311254112551125611257112581125911260112611126211263112641126511266112671126811269112701127111272112731127411275112761127711278112791128011281112821128311284112851128611287112881128911290112911129211293112941129511296112971129811299113001130111302113031130411305113061130711308113091131011311113121131311314113151131611317113181131911320113211132211323113241132511326113271132811329113301133111332113331133411335113361133711338113391134011341113421134311344113451134611347113481134911350113511135211353113541135511356113571135811359113601136111362113631136411365113661136711368113691137011371113721137311374113751137611377113781137911380113811138211383113841138511386113871138811389113901139111392113931139411395113961139711398113991140011401114021140311404114051140611407114081140911410114111141211413114141141511416114171141811419114201142111422114231142411425114261142711428114291143011431114321143311434114351143611437114381143911440114411144211443114441144511446114471144811449114501145111452114531145411455114561145711458114591146011461114621146311464114651146611467114681146911470114711147211473114741147511476114771147811479114801148111482114831148411485114861148711488114891149011491114921149311494114951149611497114981149911500115011150211503115041150511506115071150811509115101151111512115131151411515115161151711518115191152011521115221152311524115251152611527115281152911530115311153211533115341153511536115371153811539115401154111542115431154411545115461154711548115491155011551115521155311554115551155611557115581155911560115611156211563115641156511566115671156811569115701157111572115731157411575115761157711578115791158011581115821158311584115851158611587115881158911590115911159211593115941159511596115971159811599116001160111602116031160411605116061160711608116091161011611116121161311614116151161611617116181161911620116211162211623116241162511626116271162811629116301163111632116331163411635116361163711638116391164011641116421164311644116451164611647116481164911650116511165211653116541165511656116571165811659116601166111662116631166411665116661166711668116691167011671116721167311674116751167611677116781167911680116811168211683116841168511686116871168811689116901169111692116931169411695116961169711698116991170011701117021170311704117051170611707117081170911710117111171211713117141171511716117171171811719117201172111722117231172411725117261172711728117291173011731117321173311734117351173611737117381173911740117411174211743117441174511746117471174811749117501175111752117531175411755117561175711758117591176011761117621176311764117651176611767117681176911770117711177211773117741177511776117771177811779117801178111782117831178411785117861178711788117891179011791117921179311794117951179611797117981179911800118011180211803118041180511806118071180811809118101181111812118131181411815118161181711818118191182011821118221182311824118251182611827118281182911830118311183211833118341183511836118371183811839118401184111842118431184411845118461184711848118491185011851118521185311854118551185611857118581185911860118611186211863118641186511866118671186811869118701187111872118731187411875118761187711878118791188011881118821188311884118851188611887118881188911890118911189211893118941189511896118971189811899119001190111902119031190411905119061190711908119091191011911119121191311914119151191611917119181191911920119211192211923119241192511926119271192811929119301193111932119331193411935119361193711938119391194011941119421194311944119451194611947119481194911950119511195211953119541195511956119571195811959119601196111962119631196411965119661196711968119691197011971119721197311974119751197611977119781197911980119811198211983119841198511986119871198811989119901199111992119931199411995119961199711998119991200012001120021200312004120051200612007120081200912010120111201212013120141201512016120171201812019120201202112022120231202412025120261202712028120291203012031120321203312034120351203612037120381203912040120411204212043120441204512046120471204812049120501205112052120531205412055120561205712058120591206012061120621206312064120651206612067120681206912070120711207212073120741207512076120771207812079120801208112082120831208412085120861208712088120891209012091120921209312094120951209612097120981209912100121011210212103121041210512106121071210812109121101211112112121131211412115121161211712118121191212012121121221212312124121251212612127121281212912130121311213212133121341213512136121371213812139121401214112142121431214412145121461214712148121491215012151121521215312154121551215612157121581215912160121611216212163121641216512166121671216812169121701217112172121731217412175121761217712178121791218012181121821218312184121851218612187121881218912190121911219212193121941219512196121971219812199122001220112202122031220412205122061220712208122091221012211122121221312214122151221612217122181221912220122211222212223122241222512226122271222812229122301223112232122331223412235122361223712238122391224012241122421224312244122451224612247122481224912250122511225212253122541225512256122571225812259122601226112262122631226412265122661226712268122691227012271122721227312274122751227612277122781227912280122811228212283122841228512286122871228812289122901229112292122931229412295122961229712298122991230012301123021230312304123051230612307123081230912310123111231212313123141231512316123171231812319123201232112322123231232412325123261232712328123291233012331123321233312334123351233612337123381233912340123411234212343123441234512346123471234812349123501235112352123531235412355123561235712358123591236012361123621236312364123651236612367123681236912370123711237212373123741237512376123771237812379123801238112382123831238412385123861238712388123891239012391123921239312394123951239612397123981239912400124011240212403124041240512406124071240812409124101241112412124131241412415124161241712418124191242012421124221242312424124251242612427124281242912430124311243212433124341243512436124371243812439124401244112442124431244412445124461244712448124491245012451124521245312454124551245612457124581245912460124611246212463124641246512466124671246812469124701247112472124731247412475124761247712478124791248012481124821248312484124851248612487124881248912490124911249212493124941249512496124971249812499125001250112502125031250412505125061250712508125091251012511125121251312514125151251612517125181251912520125211252212523125241252512526125271252812529125301253112532125331253412535125361253712538125391254012541125421254312544125451254612547125481254912550125511255212553125541255512556125571255812559125601256112562125631256412565125661256712568125691257012571125721257312574125751257612577125781257912580125811258212583125841258512586125871258812589125901259112592125931259412595125961259712598125991260012601126021260312604126051260612607126081260912610126111261212613126141261512616126171261812619126201262112622126231262412625126261262712628126291263012631126321263312634126351263612637126381263912640126411264212643126441264512646126471264812649126501265112652126531265412655126561265712658126591266012661126621266312664126651266612667126681266912670126711267212673126741267512676126771267812679126801268112682126831268412685126861268712688126891269012691126921269312694126951269612697126981269912700127011270212703127041270512706127071270812709127101271112712127131271412715127161271712718127191272012721127221272312724127251272612727127281272912730127311273212733127341273512736127371273812739127401274112742127431274412745127461274712748127491275012751127521275312754127551275612757127581275912760127611276212763127641276512766127671276812769127701277112772127731277412775127761277712778127791278012781127821278312784127851278612787127881278912790127911279212793127941279512796127971279812799128001280112802128031280412805128061280712808128091281012811128121281312814128151281612817128181281912820128211282212823128241282512826128271282812829128301283112832128331283412835128361283712838128391284012841128421284312844128451284612847128481284912850128511285212853128541285512856128571285812859128601286112862128631286412865128661286712868128691287012871128721287312874128751287612877128781287912880128811288212883128841288512886128871288812889128901289112892128931289412895128961289712898128991290012901129021290312904129051290612907129081290912910129111291212913129141291512916129171291812919129201292112922129231292412925129261292712928129291293012931129321293312934129351293612937129381293912940129411294212943129441294512946129471294812949129501295112952129531295412955129561295712958129591296012961129621296312964129651296612967129681296912970129711297212973129741297512976129771297812979129801298112982129831298412985129861298712988129891299012991129921299312994129951299612997129981299913000130011300213003130041300513006130071300813009130101301113012130131301413015130161301713018130191302013021130221302313024130251302613027130281302913030130311303213033130341303513036130371303813039130401304113042130431304413045130461304713048130491305013051130521305313054130551305613057130581305913060130611306213063130641306513066130671306813069130701307113072130731307413075130761307713078130791308013081130821308313084130851308613087130881308913090130911309213093130941309513096130971309813099131001310113102131031310413105131061310713108131091311013111131121311313114131151311613117131181311913120131211312213123131241312513126131271312813129131301313113132131331313413135131361313713138131391314013141131421314313144131451314613147131481314913150131511315213153131541315513156131571315813159131601316113162131631316413165131661316713168131691317013171131721317313174131751317613177
  1. % Why direct style instead of continuation passing style?
  2. %% Student project ideas:
  3. %% * high-level optimizations like procedure inlining, etc.
  4. %% * closure optimization
  5. %% * adding letrec to the language
  6. %% (Thought: in the book and regular course, replace top-level defines
  7. %% with letrec.)
  8. %% * alternative back ends (ARM!, LLVM)
  9. %% * alternative calling convention (a la Dybvig)
  10. %% * lazy evaluation
  11. %% * continuations (frames in heap a la SML or segmented stack a la Dybvig)
  12. %% * exceptions
  13. %% * self hosting
  14. %% * I/O
  15. %% * foreign function interface
  16. %% * quasi-quote and unquote
  17. %% * macros (too difficult?)
  18. %% * alternative garbage collector
  19. %% * alternative register allocator
  20. %% * type classes
  21. %% * loop optimization (fusion, etc.)
  22. %% * deforestation
  23. %% * records with subtyping
  24. %% * object-oriented features
  25. %% - objects, object types, and structural subtyping (e.g. Abadi & Cardelli)
  26. %% - class-based objects and nominal subtyping (e.g. Featherweight Java)
  27. %% * multi-threading, fork join, futures, implicit parallelism
  28. %% * type analysis and specialization
  29. \documentclass[11pt]{book}
  30. \usepackage[T1]{fontenc}
  31. \usepackage[utf8]{inputenc}
  32. \usepackage{lmodern}
  33. \usepackage{hyperref}
  34. \usepackage{graphicx}
  35. \usepackage[english]{babel}
  36. \usepackage{listings}
  37. \usepackage{amsmath}
  38. \usepackage{amsthm}
  39. \usepackage{amssymb}
  40. \usepackage{natbib}
  41. \usepackage{stmaryrd}
  42. \usepackage{xypic}
  43. \usepackage{semantic}
  44. \usepackage{wrapfig}
  45. \usepackage{tcolorbox}
  46. \usepackage{multirow}
  47. \usepackage{color}
  48. \usepackage{upquote}
  49. \usepackage{makeidx}
  50. \makeindex
  51. \definecolor{lightgray}{gray}{1}
  52. \newcommand{\black}[1]{{\color{black} #1}}
  53. %\newcommand{\gray}[1]{{\color{lightgray} #1}}
  54. \newcommand{\gray}[1]{{\color{gray} #1}}
  55. %% For pictures
  56. \usepackage{tikz}
  57. \usetikzlibrary{arrows.meta}
  58. \tikzset{baseline=(current bounding box.center), >/.tip={Triangle[scale=1.4]}}
  59. % Computer Modern is already the default. -Jeremy
  60. %\renewcommand{\ttdefault}{cmtt}
  61. \definecolor{comment-red}{rgb}{0.8,0,0}
  62. \if01
  63. \newcommand{\rn}[1]{{\color{comment-red}{(RRN: #1)}}}
  64. \newcommand{\margincomment}[1]{\marginpar{\color{comment-red}\tiny #1}}
  65. \else
  66. \newcommand{\rn}[1]{}
  67. \newcommand{\margincomment}[1]{}
  68. \fi
  69. \lstset{%
  70. language=Lisp,
  71. basicstyle=\ttfamily\small,
  72. morekeywords={seq,assign,program,block,define,lambda,match,goto,if,else,then,struct,Integer,Boolean,Vector,Void,Any,while,begin,define,public,override,class},
  73. deletekeywords={read,mapping,vector},
  74. escapechar=|,
  75. columns=flexible,
  76. moredelim=[is][\color{red}]{~}{~},
  77. showstringspaces=false
  78. }
  79. \newtheorem{theorem}{Theorem}
  80. \newtheorem{lemma}[theorem]{Lemma}
  81. \newtheorem{corollary}[theorem]{Corollary}
  82. \newtheorem{proposition}[theorem]{Proposition}
  83. \newtheorem{constraint}[theorem]{Constraint}
  84. \newtheorem{definition}[theorem]{Definition}
  85. \newtheorem{exercise}[theorem]{Exercise}
  86. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  87. % 'dedication' environment: To add a dedication paragraph at the start of book %
  88. % Source: http://www.tug.org/pipermail/texhax/2010-June/015184.html %
  89. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  90. \newenvironment{dedication}
  91. {
  92. \cleardoublepage
  93. \thispagestyle{empty}
  94. \vspace*{\stretch{1}}
  95. \hfill\begin{minipage}[t]{0.66\textwidth}
  96. \raggedright
  97. }
  98. {
  99. \end{minipage}
  100. \vspace*{\stretch{3}}
  101. \clearpage
  102. }
  103. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  104. % Chapter quote at the start of chapter %
  105. % Source: http://tex.stackexchange.com/a/53380 %
  106. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  107. \makeatletter
  108. \renewcommand{\@chapapp}{}% Not necessary...
  109. \newenvironment{chapquote}[2][2em]
  110. {\setlength{\@tempdima}{#1}%
  111. \def\chapquote@author{#2}%
  112. \parshape 1 \@tempdima \dimexpr\textwidth-2\@tempdima\relax%
  113. \itshape}
  114. {\par\normalfont\hfill--\ \chapquote@author\hspace*{\@tempdima}\par\bigskip}
  115. \makeatother
  116. \input{defs}
  117. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  118. \title{\Huge \textbf{Essentials of Compilation} \\
  119. \huge The Incremental, Nano-Pass Approach}
  120. \author{\textsc{Jeremy G. Siek} \\
  121. %\thanks{\url{http://homes.soic.indiana.edu/jsiek/}} \\
  122. Indiana University \\
  123. \\
  124. with contributions from: \\
  125. Carl Factora \\
  126. Andre Kuhlenschmidt \\
  127. Ryan R. Newton \\
  128. Ryan Scott \\
  129. Cameron Swords \\
  130. Michael M. Vitousek \\
  131. Michael Vollmer
  132. }
  133. \begin{document}
  134. \frontmatter
  135. \maketitle
  136. \begin{dedication}
  137. This book is dedicated to the programming language wonks at Indiana
  138. University.
  139. \end{dedication}
  140. \tableofcontents
  141. \listoffigures
  142. %\listoftables
  143. \mainmatter
  144. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  145. \chapter*{Preface}
  146. The tradition of compiler writing at Indiana University goes back to
  147. research and courses on programming languages by Professor Daniel
  148. Friedman in the 1970's and 1980's. Friedman conducted research on lazy
  149. evaluation~\citep{Friedman:1976aa} in the context of
  150. Lisp~\citep{McCarthy:1960dz} and then studied
  151. continuations~\citep{Felleisen:kx} and
  152. macros~\citep{Kohlbecker:1986dk} in the context of the
  153. Scheme~\citep{Sussman:1975ab}, a dialect of Lisp. One of the students
  154. of those courses, Kent Dybvig, went on to build Chez
  155. Scheme~\citep{Dybvig:2006aa}, a production-quality and efficient
  156. compiler for Scheme. After completing his Ph.D. at the University of
  157. North Carolina, he returned to teach at Indiana University.
  158. Throughout the 1990's and 2000's, Professor Dybvig continued
  159. development of Chez Scheme and taught the compiler course.
  160. The compiler course evolved to incorporate novel pedagogical ideas
  161. while also including elements of effective real-world compilers. One
  162. of Friedman's ideas was to split the compiler into many small
  163. ``passes'' so that the code for each pass would be easy to understood
  164. in isolation. In contrast, most compilers of the time were organized
  165. into only a few monolithic passes for reasons of compile-time
  166. efficiency. Another idea, called ``the game'', was to test the code
  167. generated by each pass on interpreters for each intermediate language,
  168. thereby helping to pinpoint errors in individual passes.
  169. %
  170. Dybvig, with later help from his students Dipanwita Sarkar and Andrew
  171. Keep, developed infrastructure to support this approach and evolved
  172. the course, first to use smaller micro-passes and then into even
  173. smaller nano-passes~\citep{Sarkar:2004fk,Keep:2012aa}. I was a student
  174. in this compiler course in the early 2000's as part of my
  175. Ph.D. studies at Indiana University. Needless to say, I enjoyed the
  176. course immensely!
  177. During that time, another graduate student named Abdulaziz Ghuloum
  178. observed that the front-to-back organization of the course made it
  179. difficult for students to understand the rationale for the compiler
  180. design. Ghuloum proposed an incremental approach in which the students
  181. build the compiler in stages; they start by implementing a complete
  182. compiler for a very small subset of the input language and in each
  183. subsequent stage they add a language feature and add or modify passes
  184. to handle the new feature~\citep{Ghuloum:2006bh}. In this way, the
  185. students see how the language features motivate aspects of the
  186. compiler design.
  187. After graduating from Indiana University in 2005, I went on to teach
  188. at the University of Colorado. I adapted the nano-pass and incremental
  189. approaches to compiling a subset of the Python
  190. language~\citep{Siek:2012ab}. Python and Scheme are quite different
  191. on the surface but there is a large overlap in the compiler techniques
  192. required for the two languages. Thus, I was able to teach much of the
  193. same content from the Indiana compiler course. I very much enjoyed
  194. teaching the course organized in this way, and even better, many of
  195. the students learned a lot and got excited about compilers.
  196. I returned to Indiana University in 2013. In my absence the compiler
  197. course had switched from the front-to-back organization to a
  198. back-to-front~\cite{Dybvig:2010aa}. While that organization also works
  199. well, I prefer the incremental approach and started porting and
  200. adapting the structure of the Colorado course back into the land of
  201. Scheme. In the meantime Indiana University had moved on from Scheme to
  202. Racket~\citep{plt-tr}, so the course is now about compiling a subset
  203. of Racket (and Typed Racket) to the x86 assembly language.
  204. This is the textbook for the incremental version of the compiler
  205. course at Indiana University (Spring 2016 - present). With this book
  206. I hope to make the Indiana compiler course available to people that
  207. have not had the chance to study compilers at Indiana University.
  208. %% I have captured what
  209. %% I think are the most important topics from \cite{Dybvig:2010aa} but
  210. %% have omitted topics that are less interesting conceptually. I have
  211. %% also made simplifications to reduce complexity. In this way, this
  212. %% book leans more towards pedagogy than towards the efficiency of the
  213. %% generated code. Also, the book differs in places where we I the
  214. %% opportunity to make the topics more fun, such as in relating register
  215. %% allocation to Sudoku (Chapter~\ref{ch:register-allocation-r1}).
  216. \section*{Prerequisites}
  217. The material in this book is challenging but rewarding. It is meant to
  218. prepare students for a lifelong career in programming languages.
  219. The book uses the Racket language both for the implementation of the
  220. compiler and for the language that is compiled, so a student should be
  221. proficient with Racket (or Scheme) prior to reading this book. There
  222. are many excellent resources for learning Scheme and
  223. Racket~\citep{Dybvig:1987aa,Abelson:1996uq,Friedman:1996aa,Felleisen:2001aa,Felleisen:2013aa,Flatt:2014aa}.
  224. It is helpful but not necessary for the student to have prior exposure
  225. to the x86 assembly language~\citep{Intel:2015aa}, as one might obtain
  226. from a computer systems
  227. course~\citep{Bryant:2010aa}. This book introduces the
  228. parts of x86-64 assembly language that are needed.
  229. %
  230. We follow the System V calling
  231. conventions~\citep{Bryant:2005aa,Matz:2013aa}, which means that the
  232. assembly code that we generate will work properly with our runtime
  233. system (written in C) when it is compiled using the GNU C compiler
  234. (\code{gcc}) on the Linux and MacOS operating systems. (Minor
  235. adjustments are needed for MacOS which we note as they arise.)
  236. %
  237. When running on the Microsoft Windows operating system, the GNU C
  238. compiler follows the Microsoft x64 calling
  239. convention~\citep{Microsoft:2018aa,Microsoft:2020aa}. So the assembly
  240. code that we generate will \emph{not} work properly with our runtime
  241. system on Windows. One option to consider for using a Windows computer
  242. is to run a virtual machine with Linux as the guest operating system.
  243. %\section*{Structure of book}
  244. % You might want to add short description about each chapter in this book.
  245. %\section*{About the companion website}
  246. %The website\footnote{\url{https://github.com/amberj/latex-book-template}} for %this file contains:
  247. %\begin{itemize}
  248. % \item A link to (freely downlodable) latest version of this document.
  249. % \item Link to download LaTeX source for this document.
  250. % \item Miscellaneous material (e.g. suggested readings etc).
  251. %\end{itemize}
  252. \section*{Acknowledgments}
  253. Many people have contributed to the ideas, techniques, and
  254. organization of this book and have taught courses based on it. Many
  255. of the compiler design decisions in this book are drawn from the
  256. assignment descriptions of \cite{Dybvig:2010aa}. We also would like
  257. to thank John Clements, Bor-Yuh Evan Chang, Daniel P. Friedman, Ronald
  258. Garcia, Abdulaziz Ghuloum, Jay McCarthy, Nate Nystrom, Dipanwita
  259. Sarkar, Oscar Waddell, and Michael Wollowski.
  260. \mbox{}\\
  261. \noindent Jeremy G. Siek \\
  262. \noindent \url{http://homes.soic.indiana.edu/jsiek} \\
  263. %\noindent Spring 2016
  264. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  265. \chapter{Preliminaries}
  266. \label{ch:trees-recur}
  267. In this chapter we review the basic tools that are needed to implement
  268. a compiler. Programs are typically input by a programmer as text,
  269. i.e., a sequence of characters. The program-as-text representation is
  270. called \emph{concrete syntax}. We use concrete syntax to concisely
  271. write down and talk about programs. Inside the compiler, we use
  272. \emph{abstract syntax trees} (ASTs) to represent programs in a way
  273. that efficiently supports the operations that the compiler needs to
  274. perform.\index{concrete syntax}\index{abstract syntax}\index{abstract
  275. syntax tree}\index{AST}\index{program}\index{parse} The translation
  276. from concrete syntax to abstract syntax is a process called
  277. \emph{parsing}~\citep{Aho:1986qf}. We do not cover the theory and
  278. implementation of parsing in this book. A parser is provided in the
  279. supporting materials for translating from concrete to abstract syntax.
  280. ASTs can be represented in many different ways inside the compiler,
  281. depending on the programming language used to write the compiler.
  282. %
  283. We use Racket's
  284. \href{https://docs.racket-lang.org/guide/define-struct.html}{\code{struct}}
  285. feature to represent ASTs (Section~\ref{sec:ast}). We use grammars to
  286. define the abstract syntax of programming languages
  287. (Section~\ref{sec:grammar}) and pattern matching to inspect individual
  288. nodes in an AST (Section~\ref{sec:pattern-matching}). We use
  289. recursive functions to construct and deconstruct entire ASTs
  290. (Section~\ref{sec:recursion}). This chapter provides an brief
  291. introduction to these ideas. \index{struct}
  292. \section{Abstract Syntax Trees and Racket Structures}
  293. \label{sec:ast}
  294. Compilers use abstract syntax trees to represent programs because they
  295. often need to ask questions like: for a given part of a program, what
  296. kind of language feature is it? What are its sub-parts? Consider the
  297. program on the left and its AST on the right. This program is an
  298. addition and it has two sub-parts, a read operation and a
  299. negation. The negation has another sub-part, the integer constant
  300. \code{8}. By using a tree to represent the program, we can easily
  301. follow the links to go from one part of a program to its sub-parts.
  302. \begin{center}
  303. \begin{minipage}{0.4\textwidth}
  304. \begin{lstlisting}
  305. (+ (read) (- 8))
  306. \end{lstlisting}
  307. \end{minipage}
  308. \begin{minipage}{0.4\textwidth}
  309. \begin{equation}
  310. \begin{tikzpicture}
  311. \node[draw, circle] (plus) at (0 , 0) {\key{+}};
  312. \node[draw, circle] (read) at (-1, -1.5) {{\footnotesize\key{read}}};
  313. \node[draw, circle] (minus) at (1 , -1.5) {$\key{-}$};
  314. \node[draw, circle] (8) at (1 , -3) {\key{8}};
  315. \draw[->] (plus) to (read);
  316. \draw[->] (plus) to (minus);
  317. \draw[->] (minus) to (8);
  318. \end{tikzpicture}
  319. \label{eq:arith-prog}
  320. \end{equation}
  321. \end{minipage}
  322. \end{center}
  323. We use the standard terminology for trees to describe ASTs: each
  324. circle above is called a \emph{node}. The arrows connect a node to its
  325. \emph{children} (which are also nodes). The top-most node is the
  326. \emph{root}. Every node except for the root has a \emph{parent} (the
  327. node it is the child of). If a node has no children, it is a
  328. \emph{leaf} node. Otherwise it is an \emph{internal} node.
  329. \index{node}
  330. \index{children}
  331. \index{root}
  332. \index{parent}
  333. \index{leaf}
  334. \index{internal node}
  335. %% Recall that an \emph{symbolic expression} (S-expression) is either
  336. %% \begin{enumerate}
  337. %% \item an atom, or
  338. %% \item a pair of two S-expressions, written $(e_1 \key{.} e_2)$,
  339. %% where $e_1$ and $e_2$ are each an S-expression.
  340. %% \end{enumerate}
  341. %% An \emph{atom} can be a symbol, such as \code{`hello}, a number, the
  342. %% null value \code{'()}, etc. We can create an S-expression in Racket
  343. %% simply by writing a backquote (called a quasi-quote in Racket)
  344. %% followed by the textual representation of the S-expression. It is
  345. %% quite common to use S-expressions to represent a list, such as $a, b
  346. %% ,c$ in the following way:
  347. %% \begin{lstlisting}
  348. %% `(a . (b . (c . ())))
  349. %% \end{lstlisting}
  350. %% Each element of the list is in the first slot of a pair, and the
  351. %% second slot is either the rest of the list or the null value, to mark
  352. %% the end of the list. Such lists are so common that Racket provides
  353. %% special notation for them that removes the need for the periods
  354. %% and so many parenthesis:
  355. %% \begin{lstlisting}
  356. %% `(a b c)
  357. %% \end{lstlisting}
  358. %% The following expression creates an S-expression that represents AST
  359. %% \eqref{eq:arith-prog}.
  360. %% \begin{lstlisting}
  361. %% `(+ (read) (- 8))
  362. %% \end{lstlisting}
  363. %% When using S-expressions to represent ASTs, the convention is to
  364. %% represent each AST node as a list and to put the operation symbol at
  365. %% the front of the list. The rest of the list contains the children. So
  366. %% in the above case, the root AST node has operation \code{`+} and its
  367. %% two children are \code{`(read)} and \code{`(- 8)}, just as in the
  368. %% diagram \eqref{eq:arith-prog}.
  369. %% To build larger S-expressions one often needs to splice together
  370. %% several smaller S-expressions. Racket provides the comma operator to
  371. %% splice an S-expression into a larger one. For example, instead of
  372. %% creating the S-expression for AST \eqref{eq:arith-prog} all at once,
  373. %% we could have first created an S-expression for AST
  374. %% \eqref{eq:arith-neg8} and then spliced that into the addition
  375. %% S-expression.
  376. %% \begin{lstlisting}
  377. %% (define ast1.4 `(- 8))
  378. %% (define ast1.1 `(+ (read) ,ast1.4))
  379. %% \end{lstlisting}
  380. %% In general, the Racket expression that follows the comma (splice)
  381. %% can be any expression that produces an S-expression.
  382. We define a Racket \code{struct} for each kind of node. For this
  383. chapter we require just two kinds of nodes: one for integer constants
  384. and one for primitive operations. The following is the \code{struct}
  385. definition for integer constants.
  386. \begin{lstlisting}
  387. (struct Int (value))
  388. \end{lstlisting}
  389. An integer node includes just one thing: the integer value.
  390. To create a AST node for the integer $8$, we write \code{(Int 8)}.
  391. \begin{lstlisting}
  392. (define eight (Int 8))
  393. \end{lstlisting}
  394. We say that the value created by \code{(Int 8)} is an
  395. \emph{instance} of the \code{Int} structure.
  396. The following is the \code{struct} definition for primitives operations.
  397. \begin{lstlisting}
  398. (struct Prim (op args))
  399. \end{lstlisting}
  400. A primitive operation node includes an operator symbol \code{op}
  401. and a list of children \code{args}. For example, to create
  402. an AST that negates the number $8$, we write \code{(Prim '- (list eight))}.
  403. \begin{lstlisting}
  404. (define neg-eight (Prim '- (list eight)))
  405. \end{lstlisting}
  406. Primitive operations may have zero or more children. The \code{read}
  407. operator has zero children:
  408. \begin{lstlisting}
  409. (define rd (Prim 'read '()))
  410. \end{lstlisting}
  411. whereas the addition operator has two children:
  412. \begin{lstlisting}
  413. (define ast1.1 (Prim '+ (list rd neg-eight)))
  414. \end{lstlisting}
  415. We have made a design choice regarding the \code{Prim} structure.
  416. Instead of using one structure for many different operations
  417. (\code{read}, \code{+}, and \code{-}), we could have instead defined a
  418. structure for each operation, as follows.
  419. \begin{lstlisting}
  420. (struct Read ())
  421. (struct Add (left right))
  422. (struct Neg (value))
  423. \end{lstlisting}
  424. The reason we choose to use just one structure is that in many parts
  425. of the compiler the code for the different primitive operators is the
  426. same, so we might as well just write that code once, which is enabled
  427. by using a single structure.
  428. When compiling a program such as \eqref{eq:arith-prog}, we need to
  429. know that the operation associated with the root node is addition and
  430. we need to be able to access its two children. Racket provides pattern
  431. matching over structures to support these kinds of queries, as we
  432. see in Section~\ref{sec:pattern-matching}.
  433. In this book, we often write down the concrete syntax of a program
  434. even when we really have in mind the AST because the concrete syntax
  435. is more concise. We recommend that, in your mind, you always think of
  436. programs as abstract syntax trees.
  437. \section{Grammars}
  438. \label{sec:grammar}
  439. \index{integer}
  440. \index{literal}
  441. \index{constant}
  442. A programming language can be thought of as a \emph{set} of programs.
  443. The set is typically infinite (one can always create larger and larger
  444. programs), so one cannot simply describe a language by listing all of
  445. the programs in the language. Instead we write down a set of rules, a
  446. \emph{grammar}, for building programs. Grammars are often used to
  447. define the concrete syntax of a language, but they can also be used to
  448. describe the abstract syntax. We write our rules in a variant of
  449. Backus-Naur Form (BNF)~\citep{Backus:1960aa,Knuth:1964aa}.
  450. \index{Backus-Naur Form}\index{BNF}
  451. As an example, we describe a small language, named $R_0$, that consists of
  452. integers and arithmetic operations.
  453. \index{grammar}
  454. The first grammar rule for the abstract syntax of $R_0$ says that an
  455. instance of the \code{Int} structure is an expression:
  456. \begin{equation}
  457. \Exp ::= \INT{\Int} \label{eq:arith-int}
  458. \end{equation}
  459. %
  460. Each rule has a left-hand-side and a right-hand-side. The way to read
  461. a rule is that if you have an AST node that matches the
  462. right-hand-side, then you can categorize it according to the
  463. left-hand-side.
  464. %
  465. A name such as $\Exp$ that is defined by the grammar rules is a
  466. \emph{non-terminal}. \index{non-terminal}
  467. %
  468. The name $\Int$ is a also a non-terminal, but instead of defining it
  469. with a grammar rule, we define it with the following explanation. We
  470. make the simplifying design decision that all of the languages in this
  471. book only handle machine-representable integers. On most modern
  472. machines this corresponds to integers represented with 64-bits, i.e.,
  473. the in range $-2^{63}$ to $2^{63}-1$. We restrict this range further
  474. to match the Racket \texttt{fixnum} datatype, which allows 63-bit
  475. integers on a 64-bit machine. So an $\Int$ is a sequence of decimals
  476. ($0$ to $9$), possibly starting with $-$ (for negative integers), such
  477. that the sequence of decimals represent an integer in range $-2^{62}$
  478. to $2^{62}-1$.
  479. The second grammar rule is the \texttt{read} operation that receives
  480. an input integer from the user of the program.
  481. \begin{equation}
  482. \Exp ::= \READ{} \label{eq:arith-read}
  483. \end{equation}
  484. The third rule says that, given an $\Exp$ node, you can build another
  485. $\Exp$ node by negating it.
  486. \begin{equation}
  487. \Exp ::= \NEG{\Exp} \label{eq:arith-neg}
  488. \end{equation}
  489. Symbols in typewriter font such as \key{-} and \key{read} are
  490. \emph{terminal} symbols and must literally appear in the program for
  491. the rule to be applicable.
  492. \index{terminal}
  493. We can apply these rules to build ASTs in the $R_0$ language. By rule
  494. \eqref{eq:arith-int}, \texttt{(Int 8)} is an $\Exp$, then by rule
  495. \eqref{eq:arith-neg}, the following AST is an $\Exp$.
  496. \begin{center}
  497. \begin{minipage}{0.4\textwidth}
  498. \begin{lstlisting}
  499. (Prim '- (list (Int 8)))
  500. \end{lstlisting}
  501. \end{minipage}
  502. \begin{minipage}{0.25\textwidth}
  503. \begin{equation}
  504. \begin{tikzpicture}
  505. \node[draw, circle] (minus) at (0, 0) {$\text{--}$};
  506. \node[draw, circle] (8) at (0, -1.2) {$8$};
  507. \draw[->] (minus) to (8);
  508. \end{tikzpicture}
  509. \label{eq:arith-neg8}
  510. \end{equation}
  511. \end{minipage}
  512. \end{center}
  513. The next grammar rule defines addition expressions:
  514. \begin{equation}
  515. \Exp ::= \ADD{\Exp}{\Exp} \label{eq:arith-add}
  516. \end{equation}
  517. We can now justify that the AST \eqref{eq:arith-prog} is an $\Exp$ in
  518. $R_0$. We know that \lstinline{(Prim 'read '())} is an $\Exp$ by rule
  519. \eqref{eq:arith-read} and we have already categorized \code{(Prim '-
  520. (list (Int 8)))} as an $\Exp$, so we apply rule \eqref{eq:arith-add}
  521. to show that
  522. \begin{lstlisting}
  523. (Prim '+ (list (Prim 'read '()) (Prim '- (list (Int 8)))))
  524. \end{lstlisting}
  525. is an $\Exp$ in the $R_0$ language.
  526. If you have an AST for which the above rules do not apply, then the
  527. AST is not in $R_0$. For example, the program \code{(- (read) (+ 8))}
  528. is not in $R_0$ because there are no rules for \code{+} with only one
  529. argument, nor for \key{-} with two arguments. Whenever we define a
  530. language with a grammar, the language only includes those programs
  531. that are justified by the rules.
  532. The last grammar rule for $R_0$ states that there is a \code{Program}
  533. node to mark the top of the whole program:
  534. \[
  535. R_0 ::= \PROGRAM{\code{'()}}{\Exp}
  536. \]
  537. The \code{Program} structure is defined as follows
  538. \begin{lstlisting}
  539. (struct Program (info body))
  540. \end{lstlisting}
  541. where \code{body} is an expression. In later chapters, the \code{info}
  542. part will be used to store auxiliary information but for now it is
  543. just the empty list.
  544. It is common to have many grammar rules with the same left-hand side
  545. but different right-hand sides, such as the rules for $\Exp$ in the
  546. grammar of $R_0$. As a short-hand, a vertical bar can be used to
  547. combine several right-hand-sides into a single rule.
  548. We collect all of the grammar rules for the abstract syntax of $R_0$
  549. in Figure~\ref{fig:r0-syntax}. The concrete syntax for $R_0$ is
  550. defined in Figure~\ref{fig:r0-concrete-syntax}.
  551. The \code{read-program} function provided in \code{utilities.rkt} of
  552. the support materials reads a program in from a file (the sequence of
  553. characters in the concrete syntax of Racket) and parses it into an
  554. abstract syntax tree. See the description of \code{read-program} in
  555. Appendix~\ref{appendix:utilities} for more details.
  556. \begin{figure}[tp]
  557. \fbox{
  558. \begin{minipage}{0.96\textwidth}
  559. \[
  560. \begin{array}{rcl}
  561. \begin{array}{rcl}
  562. \Exp &::=& \Int \mid \LP\key{read}\RP \mid \LP\key{-}\;\Exp\RP \mid \LP\key{+} \; \Exp\;\Exp\RP\\
  563. R_0 &::=& \Exp
  564. \end{array}
  565. \end{array}
  566. \]
  567. \end{minipage}
  568. }
  569. \caption{The concrete syntax of $R_0$.}
  570. \label{fig:r0-concrete-syntax}
  571. \end{figure}
  572. \begin{figure}[tp]
  573. \fbox{
  574. \begin{minipage}{0.96\textwidth}
  575. \[
  576. \begin{array}{rcl}
  577. \Exp &::=& \INT{\Int} \mid \READ{} \mid \NEG{\Exp} \\
  578. &\mid& \ADD{\Exp}{\Exp} \\
  579. R_0 &::=& \PROGRAM{\code{'()}}{\Exp}
  580. \end{array}
  581. \]
  582. \end{minipage}
  583. }
  584. \caption{The abstract syntax of $R_0$.}
  585. \label{fig:r0-syntax}
  586. \end{figure}
  587. \section{Pattern Matching}
  588. \label{sec:pattern-matching}
  589. As mentioned in Section~\ref{sec:ast}, compilers often need to access
  590. the parts of an AST node. Racket provides the \texttt{match} form to
  591. access the parts of a structure. Consider the following example and
  592. the output on the right. \index{match} \index{pattern matching}
  593. \begin{center}
  594. \begin{minipage}{0.5\textwidth}
  595. \begin{lstlisting}
  596. (match ast1.1
  597. [(Prim op (list child1 child2))
  598. (print op)])
  599. \end{lstlisting}
  600. \end{minipage}
  601. \vrule
  602. \begin{minipage}{0.25\textwidth}
  603. \begin{lstlisting}
  604. '+
  605. \end{lstlisting}
  606. \end{minipage}
  607. \end{center}
  608. In the above example, the \texttt{match} form takes the AST
  609. \eqref{eq:arith-prog} and binds its parts to the three pattern
  610. variables \texttt{op}, \texttt{child1}, and \texttt{child2}. In
  611. general, a match clause consists of a \emph{pattern} and a
  612. \emph{body}.
  613. \index{pattern}
  614. Patterns are recursively defined to be either a pattern
  615. variable, a structure name followed by a pattern for each of the
  616. structure's arguments, or an S-expression (symbols, lists, etc.).
  617. (See Chapter 12 of The Racket
  618. Guide\footnote{\url{https://docs.racket-lang.org/guide/match.html}}
  619. and Chapter 9 of The Racket
  620. Reference\footnote{\url{https://docs.racket-lang.org/reference/match.html}}
  621. for a complete description of \code{match}.)
  622. %
  623. The body of a match clause may contain arbitrary Racket code. The
  624. pattern variables can be used in the scope of the body, such as
  625. \code{op} in \code{(print op)}.
  626. A \code{match} form may contain several clauses, as in the following
  627. function \code{leaf?} that recognizes when an $R_0$ node is a leaf in
  628. the AST. The \code{match} proceeds through the clauses in order,
  629. checking whether the pattern can match the input AST. The body of the
  630. first clause that matches is executed. The output of \code{leaf?} for
  631. several ASTs is shown on the right.
  632. \begin{center}
  633. \begin{minipage}{0.6\textwidth}
  634. \begin{lstlisting}
  635. (define (leaf? arith)
  636. (match arith
  637. [(Int n) #t]
  638. [(Prim 'read '()) #t]
  639. [(Prim '- (list e1)) #f]
  640. [(Prim '+ (list e1 e2)) #f]))
  641. (leaf? (Prim 'read '()))
  642. (leaf? (Prim '- (list (Int 8))))
  643. (leaf? (Int 8))
  644. \end{lstlisting}
  645. \end{minipage}
  646. \vrule
  647. \begin{minipage}{0.25\textwidth}
  648. \begin{lstlisting}
  649. #t
  650. #f
  651. #t
  652. \end{lstlisting}
  653. \end{minipage}
  654. \end{center}
  655. When writing a \code{match}, we refer to the grammar definition to
  656. identify which non-terminal we are expecting to match against, then we
  657. make sure that 1) we have one clause for each alternative of that
  658. non-terminal and 2) that the pattern in each clause corresponds to the
  659. corresponding right-hand side of a grammar rule. For the \code{match}
  660. in the \code{leaf?} function, we refer to the grammar for $R_0$ in
  661. Figure~\ref{fig:r0-syntax}. The $\Exp$ non-terminal has 4
  662. alternatives, so the \code{match} has 4 clauses. The pattern in each
  663. clause corresponds to the right-hand side of a grammar rule. For
  664. example, the pattern \code{(Prim '+ (list e1 e2))} corresponds to the
  665. right-hand side $\ADD{\Exp}{\Exp}$. When translating from grammars to
  666. patterns, replace non-terminals such as $\Exp$ with pattern variables
  667. of your choice (e.g. \code{e1} and \code{e2}).
  668. \section{Recursive Functions}
  669. \label{sec:recursion}
  670. \index{recursive function}
  671. Programs are inherently recursive. For example, an $R_0$ expression is
  672. often made of smaller expressions. Thus, the natural way to process an
  673. entire program is with a recursive function. As a first example of
  674. such a recursive function, we define \texttt{exp?} below, which takes
  675. an arbitrary value and determines whether or not it is an $R_0$
  676. expression.
  677. %
  678. We say that a function is defined by \emph{structural recursion} when
  679. it is defined using a sequence of match clauses that correspond to a
  680. grammar, and the body of each clause makes a recursive call on each
  681. child node.\footnote{This principle of structuring code according to
  682. the data definition is advocated in the book \emph{How to Design
  683. Programs}\url{http://www.ccs.neu.edu/home/matthias/HtDP2e/}.}.
  684. Below we also define a second function, named \code{R0?}, that
  685. determines whether an AST is an $R_0$ program. In general we can
  686. expect to write one recursive function to handle each non-terminal in
  687. a grammar.\index{structural recursion}
  688. %
  689. \begin{center}
  690. \begin{minipage}{0.7\textwidth}
  691. \begin{lstlisting}
  692. (define (exp? ast)
  693. (match ast
  694. [(Int n) #t]
  695. [(Prim 'read '()) #t]
  696. [(Prim '- (list e)) (exp? e)]
  697. [(Prim '+ (list e1 e2))
  698. (and (exp? e1) (exp? e2))]
  699. [else #f]))
  700. (define (R0? ast)
  701. (match ast
  702. [(Program '() e) (exp? e)]
  703. [else #f]))
  704. (R0? (Program '() ast1.1)
  705. (R0? (Program '()
  706. (Prim '- (list (Prim 'read '())
  707. (Prim '+ (list (Num 8)))))))
  708. \end{lstlisting}
  709. \end{minipage}
  710. \vrule
  711. \begin{minipage}{0.25\textwidth}
  712. \begin{lstlisting}
  713. #t
  714. #f
  715. \end{lstlisting}
  716. \end{minipage}
  717. \end{center}
  718. You may be tempted to merge the two functions into one, like this:
  719. \begin{center}
  720. \begin{minipage}{0.5\textwidth}
  721. \begin{lstlisting}
  722. (define (R0? ast)
  723. (match ast
  724. [(Int n) #t]
  725. [(Prim 'read '()) #t]
  726. [(Prim '- (list e)) (R0? e)]
  727. [(Prim '+ (list e1 e2)) (and (R0? e1) (R0? e2))]
  728. [(Program '() e) (R0? e)]
  729. [else #f]))
  730. \end{lstlisting}
  731. \end{minipage}
  732. \end{center}
  733. %
  734. Sometimes such a trick will save a few lines of code, especially when
  735. it comes to the \code{Program} wrapper. Yet this style is generally
  736. \emph{not} recommended because it can get you into trouble.
  737. %
  738. For example, the above function is subtly wrong:
  739. \lstinline{(R0? (Program '() (Program '() (Int 3))))}
  740. would return true, when it should return false.
  741. \section{Interpreters}
  742. \label{sec:interp-R0}
  743. \index{interpreter}
  744. In general, the intended behavior of a program is defined by the
  745. specification of the language. For example, the Scheme language is
  746. defined in the report by \cite{SPERBER:2009aa}. The Racket language is
  747. defined in its reference manual~\citep{plt-tr}. In this book we use
  748. interpreters to specify each language that we consider. An interpreter
  749. that is designated as the definition of a language is called a
  750. \emph{definitional interpreter}~\citep{reynolds72:_def_interp}.
  751. \index{definitional interpreter} We warm up by creating a definitional
  752. interpreter for the $R_0$ language, which serves as a second example
  753. of structural recursion. The \texttt{interp-R0} function is defined in
  754. Figure~\ref{fig:interp-R0}. The body of the function is a match on the
  755. input program followed by a call to the \lstinline{interp-exp} helper
  756. function, which in turn has one match clause per grammar rule for
  757. $R_0$ expressions.
  758. \begin{figure}[tp]
  759. \begin{lstlisting}
  760. (define (interp-exp e)
  761. (match e
  762. [(Int n) n]
  763. [(Prim 'read '())
  764. (define r (read))
  765. (cond [(fixnum? r) r]
  766. [else (error 'interp-R0 "expected an integer" r)])]
  767. [(Prim '- (list e))
  768. (define v (interp-exp e))
  769. (fx- 0 v)]
  770. [(Prim '+ (list e1 e2))
  771. (define v1 (interp-exp e1))
  772. (define v2 (interp-exp e2))
  773. (fx+ v1 v2)]
  774. ))
  775. (define (interp-R0 p)
  776. (match p
  777. [(Program '() e) (interp-exp e)]
  778. ))
  779. \end{lstlisting}
  780. \caption{Interpreter for the $R_0$ language.}
  781. \label{fig:interp-R0}
  782. \end{figure}
  783. Let us consider the result of interpreting a few $R_0$ programs. The
  784. following program adds two integers.
  785. \begin{lstlisting}
  786. (+ 10 32)
  787. \end{lstlisting}
  788. The result is \key{42}. We wrote the above program in concrete syntax,
  789. whereas the parsed abstract syntax is:
  790. \begin{lstlisting}
  791. (Program '() (Prim '+ (list (Int 10) (Int 32))))
  792. \end{lstlisting}
  793. The next example demonstrates that expressions may be nested within
  794. each other, in this case nesting several additions and negations.
  795. \begin{lstlisting}
  796. (+ 10 (- (+ 12 20)))
  797. \end{lstlisting}
  798. What is the result of the above program?
  799. As mentioned previously, the $R_0$ language does not support
  800. arbitrarily-large integers, but only $63$-bit integers, so we
  801. interpret the arithmetic operations of $R_0$ using fixnum arithmetic
  802. in Racket.
  803. Suppose
  804. \[
  805. n = 999999999999999999
  806. \]
  807. which indeed fits in $63$-bits. What happens when we run the
  808. following program in our interpreter?
  809. \begin{lstlisting}
  810. (+ (+ (+ |$n$| |$n$|) (+ |$n$| |$n$|)) (+ (+ |$n$| |$n$|) (+ |$n$| |$n$|)))))
  811. \end{lstlisting}
  812. It produces an error:
  813. \begin{lstlisting}
  814. fx+: result is not a fixnum
  815. \end{lstlisting}
  816. We establish the convention that if running the definitional
  817. interpreter on a program produces an error other than
  818. \code{trapped-error}, then the meaning of that program is
  819. \emph{unspecified}\index{unspecified behavior}. That means a compiler
  820. for the language is under no obligations regarding that program; it
  821. may or may not produce an executable, and if it does, that executable
  822. can do anything. On the other hand, if the error is a
  823. \code{trapped-error}, then the compiled program is also required to
  824. report that an error occurred. To signal an error, exit with a return
  825. code of \code{255}. The interpreters in chapters
  826. \ref{ch:type-dynamic} and \ref{ch:gradual-typing} use
  827. \code{trapped-error}.
  828. %% This convention applies to the languages defined in this
  829. %% book, as a way to simplify the student's task of implementing them,
  830. %% but this convention is not applicable to all programming languages.
  831. %%
  832. Moving on to the last feature of the $R_0$ language, the \key{read}
  833. operation prompts the user of the program for an integer. Recall that
  834. program \eqref{eq:arith-prog} performs a \key{read} and then subtracts
  835. \code{8}. So if we run
  836. \begin{lstlisting}
  837. (interp-R0 (Program '() ast1.1))
  838. \end{lstlisting}
  839. and if the input is \code{50}, then we get the answer to life, the
  840. universe, and everything: \code{42}!\footnote{\emph{The Hitchhiker's
  841. Guide to the Galaxy} by Douglas Adams.}
  842. We include the \key{read} operation in $R_0$ so a clever student
  843. cannot implement a compiler for $R_0$ that simply runs the interpreter
  844. during compilation to obtain the output and then generates the trivial
  845. code to produce the output. (Yes, a clever student did this in the
  846. first instance of this course.)
  847. The job of a compiler is to translate a program in one language into a
  848. program in another language so that the output program behaves the
  849. same way as the input program does according to its definitional
  850. interpreter. This idea is depicted in the following diagram. Suppose
  851. we have two languages, $\mathcal{L}_1$ and $\mathcal{L}_2$, and an
  852. interpreter for each language. Suppose that the compiler translates
  853. program $P_1$ in language $\mathcal{L}_1$ into program $P_2$ in
  854. language $\mathcal{L}_2$. Then interpreting $P_1$ and $P_2$ on their
  855. respective interpreters with input $i$ should yield the same output
  856. $o$.
  857. \begin{equation} \label{eq:compile-correct}
  858. \begin{tikzpicture}[baseline=(current bounding box.center)]
  859. \node (p1) at (0, 0) {$P_1$};
  860. \node (p2) at (3, 0) {$P_2$};
  861. \node (o) at (3, -2.5) {$o$};
  862. \path[->] (p1) edge [above] node {compile} (p2);
  863. \path[->] (p2) edge [right] node {interp-$\mathcal{L}_2$($i$)} (o);
  864. \path[->] (p1) edge [left] node {interp-$\mathcal{L}_1$($i$)} (o);
  865. \end{tikzpicture}
  866. \end{equation}
  867. In the next section we see our first example of a compiler.
  868. \section{Example Compiler: a Partial Evaluator}
  869. \label{sec:partial-evaluation}
  870. In this section we consider a compiler that translates $R_0$ programs
  871. into $R_0$ programs that may be more efficient, that is, this compiler
  872. is an optimizer. This optimizer eagerly computes the parts of the
  873. program that do not depend on any inputs, a process known as
  874. \emph{partial evaluation}~\cite{Jones:1993uq}.
  875. \index{partial evaluation}
  876. For example, given the following program
  877. \begin{lstlisting}
  878. (+ (read) (- (+ 5 3)))
  879. \end{lstlisting}
  880. our compiler will translate it into the program
  881. \begin{lstlisting}
  882. (+ (read) -8)
  883. \end{lstlisting}
  884. Figure~\ref{fig:pe-arith} gives the code for a simple partial
  885. evaluator for the $R_0$ language. The output of the partial evaluator
  886. is an $R_0$ program. In Figure~\ref{fig:pe-arith}, the structural
  887. recursion over $\Exp$ is captured in the \code{pe-exp} function
  888. whereas the code for partially evaluating the negation and addition
  889. operations is factored into two separate helper functions:
  890. \code{pe-neg} and \code{pe-add}. The input to these helper
  891. functions is the output of partially evaluating the children.
  892. \begin{figure}[tp]
  893. \begin{lstlisting}
  894. (define (pe-neg r)
  895. (match r
  896. [(Int n) (Int (fx- 0 n))]
  897. [else (Prim '- (list r))]))
  898. (define (pe-add r1 r2)
  899. (match* (r1 r2)
  900. [((Int n1) (Int n2)) (Int (fx+ n1 n2))]
  901. [(_ _) (Prim '+ (list r1 r2))]))
  902. (define (pe-exp e)
  903. (match e
  904. [(Int n) (Int n)]
  905. [(Prim 'read '()) (Prim 'read '())]
  906. [(Prim '- (list e1)) (pe-neg (pe-exp e1))]
  907. [(Prim '+ (list e1 e2)) (pe-add (pe-exp e1) (pe-exp e2))]
  908. ))
  909. (define (pe-R0 p)
  910. (match p
  911. [(Program '() e) (Program '() (pe-exp e))]
  912. ))
  913. \end{lstlisting}
  914. \caption{A partial evaluator for $R_0$ expressions.}
  915. \label{fig:pe-arith}
  916. \end{figure}
  917. The \texttt{pe-neg} and \texttt{pe-add} functions check whether their
  918. arguments are integers and if they are, perform the appropriate
  919. arithmetic. Otherwise, they create an AST node for the operation
  920. (either negation or addition).
  921. To gain some confidence that the partial evaluator is correct, we can
  922. test whether it produces programs that get the same result as the
  923. input programs. That is, we can test whether it satisfies Diagram
  924. \eqref{eq:compile-correct}. The following code runs the partial
  925. evaluator on several examples and tests the output program. The
  926. \texttt{parse-program} and \texttt{assert} functions are defined in
  927. Appendix~\ref{appendix:utilities}.\\
  928. \begin{minipage}{1.0\textwidth}
  929. \begin{lstlisting}
  930. (define (test-pe p)
  931. (assert "testing pe-R0"
  932. (equal? (interp-R0 p) (interp-R0 (pe-R0 p)))))
  933. (test-pe (parse-program `(program () (+ 10 (- (+ 5 3))))))
  934. (test-pe (parse-program `(program () (+ 1 (+ 3 1)))))
  935. (test-pe (parse-program `(program () (- (+ 3 (- 5))))))
  936. \end{lstlisting}
  937. \end{minipage}
  938. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  939. \chapter{Integers and Variables}
  940. \label{ch:int-exp}
  941. This chapter is about compiling a subset of Racket named $R_1$, that
  942. includes integer arithmetic and local variable binding, to x86-64
  943. assembly code~\citep{Intel:2015aa}. Henceforth we refer to x86-64
  944. simply as x86. The chapter begins with a description of the $R_1$
  945. language (Section~\ref{sec:s0}) followed by a description of x86
  946. (Section~\ref{sec:x86}). The x86 assembly language is large so we
  947. discuss only what is needed for compiling $R_1$. We introduce more of
  948. x86 in later chapters. Once we have introduced $R_1$ and x86, we
  949. reflect on their differences and come up with a plan to break down the
  950. translation from $R_1$ to x86 into a handful of steps
  951. (Section~\ref{sec:plan-s0-x86}). The rest of the sections in this
  952. chapter give detailed hints regarding each step
  953. (Sections~\ref{sec:uniquify-s0} through \ref{sec:patch-s0}). We hope
  954. to give enough hints that the well-prepared reader, together with a
  955. few friends, can implement a compiler from $R_1$ to x86 in a couple
  956. weeks. To give the reader a feeling for the scale of this first
  957. compiler, the instructor solution for the $R_1$ compiler is
  958. approximately 500 lines of code.
  959. \section{The $R_1$ Language}
  960. \label{sec:s0}
  961. \index{variable}
  962. The $R_1$ language extends the $R_0$ language with variable
  963. definitions. The concrete syntax of the $R_1$ language is defined by
  964. the grammar in Figure~\ref{fig:r1-concrete-syntax} and the abstract
  965. syntax is defined in Figure~\ref{fig:r1-syntax}. The non-terminal
  966. \Var{} may be any Racket identifier. As in $R_0$, \key{read} is a
  967. nullary operator, \key{-} is a unary operator, and \key{+} is a binary
  968. operator. Similar to $R_0$, the abstract syntax of $R_1$ includes the
  969. \key{Program} struct to mark the top of the program.
  970. %% The $\itm{info}$
  971. %% field of the \key{Program} structure contains an \emph{association
  972. %% list} (a list of key-value pairs) that is used to communicate
  973. %% auxiliary data from one compiler pass the next.
  974. Despite the simplicity of the $R_1$ language, it is rich enough to
  975. exhibit several compilation techniques.
  976. \begin{figure}[tp]
  977. \centering
  978. \fbox{
  979. \begin{minipage}{0.96\textwidth}
  980. \[
  981. \begin{array}{rcl}
  982. \Exp &::=& \Int \mid \CREAD{} \mid \CNEG{\Exp} \mid \CADD{\Exp}{\Exp}\\
  983. &\mid& \Var \mid \CLET{\Var}{\Exp}{\Exp} \\
  984. R_1 &::=& \Exp
  985. \end{array}
  986. \]
  987. \end{minipage}
  988. }
  989. \caption{The concrete syntax of $R_1$.}
  990. \label{fig:r1-concrete-syntax}
  991. \end{figure}
  992. \begin{figure}[tp]
  993. \centering
  994. \fbox{
  995. \begin{minipage}{0.96\textwidth}
  996. \[
  997. \begin{array}{rcl}
  998. \Exp &::=& \INT{\Int} \mid \READ{} \\
  999. &\mid& \NEG{\Exp} \mid \ADD{\Exp}{\Exp} \\
  1000. &\mid& \VAR{\Var} \mid \LET{\Var}{\Exp}{\Exp} \\
  1001. R_1 &::=& \PROGRAM{\code{'()}}{\Exp}
  1002. \end{array}
  1003. \]
  1004. \end{minipage}
  1005. }
  1006. \caption{The abstract syntax of $R_1$.}
  1007. \label{fig:r1-syntax}
  1008. \end{figure}
  1009. Let us dive further into the syntax and semantics of the $R_1$
  1010. language. The \key{Let} feature defines a variable for use within its
  1011. body and initializes the variable with the value of an expression.
  1012. The abstract syntax for \key{Let} is defined in Figure~\ref{fig:r1-syntax}.
  1013. The concrete syntax for \key{Let} is
  1014. \begin{lstlisting}
  1015. (let ([|$\itm{var}$| |$\itm{exp}$|]) |$\itm{exp}$|)
  1016. \end{lstlisting}
  1017. For example, the following program initializes \code{x} to $32$ and then
  1018. evaluates the body \code{(+ 10 x)}, producing $42$.
  1019. \begin{lstlisting}
  1020. (let ([x (+ 12 20)]) (+ 10 x))
  1021. \end{lstlisting}
  1022. When there are multiple \key{let}'s for the same variable, the closest
  1023. enclosing \key{let} is used. That is, variable definitions overshadow
  1024. prior definitions. Consider the following program with two \key{let}'s
  1025. that define variables named \code{x}. Can you figure out the result?
  1026. \begin{lstlisting}
  1027. (let ([x 32]) (+ (let ([x 10]) x) x))
  1028. \end{lstlisting}
  1029. For the purposes of depicting which variable uses correspond to which
  1030. definitions, the following shows the \code{x}'s annotated with
  1031. subscripts to distinguish them. Double check that your answer for the
  1032. above is the same as your answer for this annotated version of the
  1033. program.
  1034. \begin{lstlisting}
  1035. (let ([x|$_1$| 32]) (+ (let ([x|$_2$| 10]) x|$_2$|) x|$_1$|))
  1036. \end{lstlisting}
  1037. The initializing expression is always evaluated before the body of the
  1038. \key{let}, so in the following, the \key{read} for \code{x} is
  1039. performed before the \key{read} for \code{y}. Given the input
  1040. $52$ then $10$, the following produces $42$ (not $-42$).
  1041. \begin{lstlisting}
  1042. (let ([x (read)]) (let ([y (read)]) (+ x (- y))))
  1043. \end{lstlisting}
  1044. \subsection{Extensible Interpreters via Method Overriding}
  1045. To prepare for discussing the interpreter for $R_1$, we need to
  1046. explain why we choose to implement the interpreter using
  1047. object-oriented programming, that is, as a collection of methods
  1048. inside of a class. Throughout this book we define many interpreters,
  1049. one for each of the languages that we study. Because each language
  1050. builds on the prior one, there is a lot of commonality between their
  1051. interpreters. We want to write down those common parts just once
  1052. instead of many times. A naive approach would be to have, for example,
  1053. the interpreter for $R_2$ handle all of the new features in that
  1054. language and then have a default case that dispatches to the
  1055. interpreter for $R_1$. The following code sketches this idea.
  1056. \begin{center}
  1057. \begin{minipage}{0.45\textwidth}
  1058. \begin{lstlisting}
  1059. (define (interp-R1 e)
  1060. (match e
  1061. [(Prim '- (list e))
  1062. (define v (interp-R1 e))
  1063. (fx- 0 v)]
  1064. ...
  1065. ))
  1066. \end{lstlisting}
  1067. \end{minipage}
  1068. \begin{minipage}{0.45\textwidth}
  1069. \begin{lstlisting}
  1070. (define (interp-R2 e)
  1071. (match e
  1072. [(If cnd thn els)
  1073. (define b (interp-R2 cnd))
  1074. (match b
  1075. [#t (interp-R2 thn)]
  1076. [#f (interp-R2 els)])]
  1077. ...
  1078. [else (interp-R1 e)]
  1079. ))
  1080. \end{lstlisting}
  1081. \end{minipage}
  1082. \end{center}
  1083. The problem with this approach is that it does not handle situations
  1084. in which an $R_2$ feature, like \code{If}, is nested inside an $R_1$
  1085. feature, like the \code{-} operator, as in the following program.
  1086. \begin{lstlisting}
  1087. (Prim '- (list (If (Bool #t) (Int 42) (Int 0))))
  1088. \end{lstlisting}
  1089. If we invoke \code{interp-R2} on this program, it dispatches to
  1090. \code{interp-R1} to handle the \code{-} operator, but then it
  1091. recurisvely calls \code{interp-R1} again on the argument of \code{-},
  1092. which is an \code{If}. But there is no case for \code{If} in
  1093. \code{interp-R1}, so we get an error!
  1094. To make our intepreters extensible we need something called \emph{open
  1095. recursion}\index{open recursion}. That is, a recursive call should
  1096. always invoke the ``top'' interpreter, even if the recursive call is
  1097. made from interpreters that are lower down. Object-oriented languages
  1098. provide open recursion in the form of method overriding\index{method
  1099. overriding}. The following code sketches this idea for interpreting
  1100. $R_1$ and $R_2$ using the
  1101. \href{https://docs.racket-lang.org/guide/classes.html}{\code{class}}
  1102. \index{class} feature of Racket. We define one class for each
  1103. language and define a method for interpreting expressions inside each
  1104. class. The class for $R_2$ inherits from the class for $R_1$ and the
  1105. method \code{interp-exp} for $R_2$ overrides the \code{interp-exp} for
  1106. $R_1$. Note that the default case in \code{interp-exp} for $R_2$ uses
  1107. \code{super} to invoke \code{interp-exp}, and because $R_2$ inherits
  1108. from $R_1$, that dispatches to the \code{interp-exp} for $R_1$.
  1109. \begin{center}
  1110. \begin{minipage}{0.45\textwidth}
  1111. \begin{lstlisting}
  1112. (define interp-R1-class
  1113. (class object%
  1114. (define/public (interp-exp e)
  1115. (match e
  1116. [(Prim '- (list e))
  1117. (define v (interp-exp e))
  1118. (fx- 0 v)]
  1119. ...
  1120. ))
  1121. ...
  1122. ))
  1123. \end{lstlisting}
  1124. \end{minipage}
  1125. \begin{minipage}{0.45\textwidth}
  1126. \begin{lstlisting}
  1127. (define interp-R2-class
  1128. (class interp-R1-class
  1129. (define/override (interp-exp e)
  1130. (match e
  1131. [(If cnd thn els)
  1132. (define b (interp-exp cnd))
  1133. (match b
  1134. [#t (interp-exp thn)]
  1135. [#f (interp-exp els)])]
  1136. ...
  1137. [else (super interp-exp e)]
  1138. ))
  1139. ...
  1140. ))
  1141. \end{lstlisting}
  1142. \end{minipage}
  1143. \end{center}
  1144. Getting back to the troublesome example, repeated here:
  1145. \begin{lstlisting}
  1146. (define e0 (Prim '- (list (If (Bool #t) (Int 42) (Int 0)))))
  1147. \end{lstlisting}
  1148. We can invoke the \code{interp-exp} method for $R_2$ on this
  1149. expression by creating an object of the $R_2$ class and sending it the
  1150. \code{interp-exp} method with the argument \code{e0}.
  1151. \begin{lstlisting}
  1152. (send (new interp-R2-class) interp-exp e0)
  1153. \end{lstlisting}
  1154. This will again hit the default case of \code{interp-exp} in $R_2$ and
  1155. dispatch to the \code{interp-exp} method for $R_1$, which will handle
  1156. the \code{-} operator. But then for the recursive method call, it will
  1157. dispatch back to \code{interp-exp} for $R_2$, where the \code{If} will
  1158. be correctly handled. Thus, method overriding gives us the open
  1159. recursion that we need to implement our interpreters in an extensible
  1160. way.
  1161. \newpage
  1162. \subsection{Definitional Interpreter for $R_1$}
  1163. \begin{wrapfigure}[25]{r}[1.0in]{0.6\textwidth}
  1164. \small
  1165. \begin{tcolorbox}[title=Association Lists as Dictionaries]
  1166. An \emph{association list} (alist) is a list of key-value pairs.
  1167. For example, we can map people to their ages with an alist.
  1168. \index{alist}\index{association list}
  1169. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  1170. (define ages
  1171. '((jane . 25) (sam . 24) (kate . 45)))
  1172. \end{lstlisting}
  1173. The \emph{dictionary} interface is for mapping keys to values.
  1174. Every alist implements this interface. \index{dictionary} The package
  1175. \href{https://docs.racket-lang.org/reference/dicts.html}{\code{racket/dict}}
  1176. provides many functions for working with dictionaries. Here
  1177. are a few of them:
  1178. \begin{description}
  1179. \item[$\LP\key{dict-ref}\,\itm{dict}\,\itm{key}\RP$]
  1180. returns the value associated with the given $\itm{key}$.
  1181. \item[$\LP\key{dict-set}\,\itm{dict}\,\itm{key}\,\itm{val}\RP$]
  1182. returns a new dictionary that maps $\itm{key}$ to $\itm{val}$
  1183. but otherwise is the same as $\itm{dict}$.
  1184. \item[$\LP\code{in-dict}\,\itm{dict}\RP$] returns the
  1185. \href{https://docs.racket-lang.org/reference/sequences.html}{sequence}
  1186. of keys and values in $\itm{dict}$. For example, the following
  1187. creates a new alist in which the ages are incremented.
  1188. \end{description}
  1189. \vspace{-10pt}
  1190. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  1191. (for/list ([(k v) (in-dict ages)])
  1192. (cons k (add1 v)))
  1193. \end{lstlisting}
  1194. \end{tcolorbox}
  1195. \end{wrapfigure}
  1196. Now that we have explained why we use classes and methods to implement
  1197. interpreters, we turn to the discussion of the actual interpreter for
  1198. $R_1$. Figure~\ref{fig:interp-R1} shows the definitional interpreter
  1199. for the $R_1$ language. It is similar to the interpreter for $R_0$ but
  1200. it adds two new \key{match} clauses for variables and for \key{let}.
  1201. For \key{let}, we need a way to communicate the value of a variable to
  1202. all the uses of a variable. To accomplish this, we maintain a mapping
  1203. from variables to values. Throughout the compiler we often need to map
  1204. variables to information about them. We refer to these mappings as
  1205. \emph{environments}\index{environment}
  1206. \footnote{Another common term for environment in the compiler
  1207. literature is \emph{symbol table}\index{symbol table}.}.
  1208. For simplicity, we use an
  1209. association list (alist) to represent the environment. The sidebar to
  1210. the right gives a brief introduction to alists and the
  1211. \code{racket/dict} package. The \code{interp-R1} function takes the
  1212. current environment, \code{env}, as an extra parameter. When the
  1213. interpreter encounters a variable, it finds the corresponding value
  1214. using the \code{dict-ref} function. When the interpreter encounters a
  1215. \key{Let}, it evaluates the initializing expression, extends the
  1216. environment with the result value bound to the variable, using
  1217. \code{dict-set}, then evaluates the body of the \key{Let}.
  1218. \begin{figure}[tp]
  1219. \begin{lstlisting}
  1220. (define interp-R1-class
  1221. (class object%
  1222. (super-new)
  1223. (define/public ((interp-exp env) e)
  1224. (match e
  1225. [(Int n) n]
  1226. [(Prim 'read '())
  1227. (define r (read))
  1228. (cond [(fixnum? r) r]
  1229. [else (error 'interp-exp "expected an integer" r)])]
  1230. [(Prim '- (list e))
  1231. (define v ((interp-exp env) e))
  1232. (fx- 0 v)]
  1233. [(Prim '+ (list e1 e2))
  1234. (define v1 ((interp-exp env) e1))
  1235. (define v2 ((interp-exp env) e2))
  1236. (fx+ v1 v2)]
  1237. [(Var x) (dict-ref env x)]
  1238. [(Let x e body)
  1239. (define new-env (dict-set env x ((interp-exp env) e)))
  1240. ((interp-exp new-env) body)]
  1241. ))
  1242. (define/public (interp-program p)
  1243. (match p
  1244. [(Program '() e) ((interp-exp '()) e)]
  1245. ))
  1246. ))
  1247. (define (interp-R1 p)
  1248. (send (new interp-R1-class) interp-program p))
  1249. \end{lstlisting}
  1250. \caption{Interpreter for the $R_1$ language.}
  1251. \label{fig:interp-R1}
  1252. \end{figure}
  1253. The goal for this chapter is to implement a compiler that translates
  1254. any program $P_1$ written in the $R_1$ language into an x86 assembly
  1255. program $P_2$ such that $P_2$ exhibits the same behavior when run on a
  1256. computer as the $P_1$ program interpreted by \code{interp-R1}. That
  1257. is, they output the same integer $n$. We depict this correctness
  1258. criteria in the following diagram.
  1259. \[
  1260. \begin{tikzpicture}[baseline=(current bounding box.center)]
  1261. \node (p1) at (0, 0) {$P_1$};
  1262. \node (p2) at (4, 0) {$P_2$};
  1263. \node (o) at (4, -2) {$n$};
  1264. \path[->] (p1) edge [above] node {\footnotesize compile} (p2);
  1265. \path[->] (p1) edge [left] node {\footnotesize interp-$R_1$} (o);
  1266. \path[->] (p2) edge [right] node {\footnotesize interp-x86} (o);
  1267. \end{tikzpicture}
  1268. \]
  1269. In the next section we introduce enough of the x86 assembly
  1270. language to compile $R_1$.
  1271. \section{The x86$_0$ Assembly Language}
  1272. \label{sec:x86}
  1273. \index{x86}
  1274. Figure~\ref{fig:x86-0-concrete} defines the concrete syntax for the subset of
  1275. the x86 assembly language needed for this chapter, which we call x86$_0$.
  1276. %
  1277. An x86 program begins with a \code{main} label followed by a sequence
  1278. of instructions. In the grammar, ellipses such as $\ldots$ are used to
  1279. indicate a sequence of items, e.g., $\Instr \ldots$ is a sequence of
  1280. instructions.\index{instruction}
  1281. %
  1282. An x86 program is stored in the computer's memory and the computer has
  1283. a \emph{program counter} (PC)\index{program counter}\index{PC}
  1284. that points to the address of the next
  1285. instruction to be executed. For most instructions, once the
  1286. instruction is executed, the program counter is incremented to point
  1287. to the immediately following instruction in memory. Most x86
  1288. instructions take two operands, where each operand is either an
  1289. integer constant (called \emph{immediate value}\index{immediate value}),
  1290. a \emph{register}\index{register}, or a memory location.
  1291. A register is a special kind of variable. Each
  1292. one holds a 64-bit value; there are 16 registers in the computer and
  1293. their names are given in Figure~\ref{fig:x86-0-concrete}. The computer's memory
  1294. as a mapping of 64-bit addresses to 64-bit values%
  1295. \footnote{This simple story suffices for describing how sequential
  1296. programs access memory but is not sufficient for multi-threaded
  1297. programs. However, multi-threaded execution is beyond the scope of
  1298. this book.}.
  1299. %
  1300. We use the AT\&T syntax expected by the GNU assembler, which comes
  1301. with the \key{gcc} compiler that we use for compiling assembly code to
  1302. machine code.
  1303. %
  1304. Appendix~\ref{sec:x86-quick-reference} is a quick-reference for all of
  1305. the x86 instructions used in this book.
  1306. % to do: finish treatment of imulq
  1307. % it's needed for vector's in R6/R7
  1308. \newcommand{\allregisters}{\key{rsp} \mid \key{rbp} \mid \key{rax} \mid \key{rbx} \mid \key{rcx}
  1309. \mid \key{rdx} \mid \key{rsi} \mid \key{rdi} \mid \\
  1310. && \key{r8} \mid \key{r9} \mid \key{r10}
  1311. \mid \key{r11} \mid \key{r12} \mid \key{r13}
  1312. \mid \key{r14} \mid \key{r15}}
  1313. \begin{figure}[tp]
  1314. \fbox{
  1315. \begin{minipage}{0.96\textwidth}
  1316. \[
  1317. \begin{array}{lcl}
  1318. \Reg &::=& \allregisters{} \\
  1319. \Arg &::=& \key{\$}\Int \mid \key{\%}\Reg \mid \Int\key{(}\key{\%}\Reg\key{)}\\
  1320. \Instr &::=& \key{addq} \; \Arg\key{,} \Arg \mid
  1321. \key{subq} \; \Arg\key{,} \Arg \mid
  1322. \key{negq} \; \Arg \mid \key{movq} \; \Arg\key{,} \Arg \mid \\
  1323. && \key{callq} \; \mathit{label} \mid
  1324. \key{pushq}\;\Arg \mid \key{popq}\;\Arg \mid \key{retq} \mid \key{jmp}\,\itm{label} \\
  1325. && \itm{label}\key{:}\; \Instr \\
  1326. x86_0 &::= & \key{.globl main}\\
  1327. & & \key{main:} \; \Instr\ldots
  1328. \end{array}
  1329. \]
  1330. \end{minipage}
  1331. }
  1332. \caption{The syntax of the x86$_0$ assembly language (AT\&T syntax).}
  1333. \label{fig:x86-0-concrete}
  1334. \end{figure}
  1335. An immediate value is written using the notation \key{\$}$n$ where $n$
  1336. is an integer.
  1337. %
  1338. A register is written with a \key{\%} followed by the register name,
  1339. such as \key{\%rax}.
  1340. %
  1341. An access to memory is specified using the syntax $n(\key{\%}r)$,
  1342. which obtains the address stored in register $r$ and then adds $n$
  1343. bytes to the address. The resulting address is used to either load or
  1344. store to memory depending on whether it occurs as a source or
  1345. destination argument of an instruction.
  1346. An arithmetic instruction such as $\key{addq}\,s\key{,}\,d$ reads from the
  1347. source $s$ and destination $d$, applies the arithmetic operation, then
  1348. writes the result back to the destination $d$.
  1349. %
  1350. The move instruction $\key{movq}\,s\key{,}\,d$ reads from $s$ and
  1351. stores the result in $d$.
  1352. %
  1353. The $\key{callq}\,\itm{label}$ instruction jumps to the procedure
  1354. specified by the label and $\key{retq}$ returns from a procedure to
  1355. its caller.
  1356. %
  1357. We discuss procedure calls in more detail later in this
  1358. chapter and in Chapter~\ref{ch:functions}. The
  1359. $\key{jmp}\,\itm{label}$ instruction updates the program counter to
  1360. the address of the instruction after the specified label.
  1361. Figure~\ref{fig:p0-x86} depicts an x86 program that is equivalent
  1362. to \code{(+ 10 32)}. The \key{globl} directive says that the
  1363. \key{main} procedure is externally visible, which is necessary so
  1364. that the operating system can call it. The label \key{main:}
  1365. indicates the beginning of the \key{main} procedure which is where
  1366. the operating system starts executing this program. The instruction
  1367. \lstinline{movq $10, %rax} puts $10$ into register \key{rax}. The
  1368. following instruction \lstinline{addq $32, %rax} adds $32$ to the
  1369. $10$ in \key{rax} and puts the result, $42$, back into
  1370. \key{rax}.
  1371. %
  1372. The last instruction, \key{retq}, finishes the \key{main} function by
  1373. returning the integer in \key{rax} to the operating system. The
  1374. operating system interprets this integer as the program's exit
  1375. code. By convention, an exit code of 0 indicates that a program
  1376. completed successfully, and all other exit codes indicate various
  1377. errors. Nevertheless, we return the result of the program as the exit
  1378. code.
  1379. %\begin{wrapfigure}{r}{2.25in}
  1380. \begin{figure}[tbp]
  1381. \begin{lstlisting}
  1382. .globl main
  1383. main:
  1384. movq $10, %rax
  1385. addq $32, %rax
  1386. retq
  1387. \end{lstlisting}
  1388. \caption{An x86 program equivalent to \code{(+ 10 32)}.}
  1389. \label{fig:p0-x86}
  1390. %\end{wrapfigure}
  1391. \end{figure}
  1392. Unfortunately, x86 varies in a couple ways depending on what operating
  1393. system it is assembled in. The code examples shown here are correct on
  1394. Linux and most Unix-like platforms, but when assembled on Mac OS X,
  1395. labels like \key{main} must be prefixed with an underscore, as in
  1396. \key{\_main}.
  1397. We exhibit the use of memory for storing intermediate results in the
  1398. next example. Figure~\ref{fig:p1-x86} lists an x86 program that is
  1399. equivalent to \code{(+ 52 (- 10))}. This program uses a region of
  1400. memory called the \emph{procedure call stack} (or \emph{stack} for
  1401. short). \index{stack}\index{procedure call stack} The stack consists
  1402. of a separate \emph{frame}\index{frame} for each procedure call. The
  1403. memory layout for an individual frame is shown in
  1404. Figure~\ref{fig:frame}. The register \key{rsp} is called the
  1405. \emph{stack pointer}\index{stack pointer} and points to the item at
  1406. the top of the stack. The stack grows downward in memory, so we
  1407. increase the size of the stack by subtracting from the stack pointer.
  1408. In the context of a procedure call, the \emph{return
  1409. address}\index{return address} is the instruction after the call
  1410. instruction on the caller side. The function call instruction,
  1411. \code{callq}, pushes the return address onto the stack prior to
  1412. jumping to the procedure. The register \key{rbp} is the \emph{base
  1413. pointer}\index{base pointer} and is used to access variables that
  1414. are stored in the frame of the current procedure call. The base
  1415. pointer of the caller is pushed onto the stack after the return
  1416. address. In Figure~\ref{fig:frame} we number the variables from $1$ to
  1417. $n$. Variable $1$ is stored at address $-8\key{(\%rbp)}$, variable $2$
  1418. at $-16\key{(\%rbp)}$, etc.
  1419. \begin{figure}[tbp]
  1420. \begin{lstlisting}
  1421. start:
  1422. movq $10, -8(%rbp)
  1423. negq -8(%rbp)
  1424. movq -8(%rbp), %rax
  1425. addq $52, %rax
  1426. jmp conclusion
  1427. .globl main
  1428. main:
  1429. pushq %rbp
  1430. movq %rsp, %rbp
  1431. subq $16, %rsp
  1432. jmp start
  1433. conclusion:
  1434. addq $16, %rsp
  1435. popq %rbp
  1436. retq
  1437. \end{lstlisting}
  1438. \caption{An x86 program equivalent to \code{(+ 10 32)}.}
  1439. \label{fig:p1-x86}
  1440. \end{figure}
  1441. \begin{figure}[tbp]
  1442. \centering
  1443. \begin{tabular}{|r|l|} \hline
  1444. Position & Contents \\ \hline
  1445. 8(\key{\%rbp}) & return address \\
  1446. 0(\key{\%rbp}) & old \key{rbp} \\
  1447. -8(\key{\%rbp}) & variable $1$ \\
  1448. -16(\key{\%rbp}) & variable $2$ \\
  1449. \ldots & \ldots \\
  1450. 0(\key{\%rsp}) & variable $n$\\ \hline
  1451. \end{tabular}
  1452. \caption{Memory layout of a frame.}
  1453. \label{fig:frame}
  1454. \end{figure}
  1455. Getting back to the program in Figure~\ref{fig:p1-x86}, consider how
  1456. control is transferred from the operating system to the \code{main}
  1457. function. The operating system issues a \code{callq main} instruction
  1458. which pushes its return address on the stack and then jumps to
  1459. \code{main}. In x86-64, the stack pointer \code{rsp} must be divisible
  1460. by 16 bytes prior to the execution of any \code{callq} instruction, so
  1461. when control arrives at \code{main}, the \code{rsp} is 8 bytes out of
  1462. alignment (because the \code{callq} pushed the return address). The
  1463. first three instructions are the typical \emph{prelude}\index{prelude}
  1464. for a procedure. The instruction \code{pushq \%rbp} saves the base
  1465. pointer for the caller onto the stack and subtracts $8$ from the stack
  1466. pointer. At this point the stack pointer is back to being 16-byte
  1467. aligned. The second instruction \code{movq \%rsp, \%rbp} changes the
  1468. base pointer so that it points the location of the old base
  1469. pointer. The instruction \code{subq \$16, \%rsp} moves the stack
  1470. pointer down to make enough room for storing variables. This program
  1471. needs one variable ($8$ bytes) but we round up to 16 bytes to maintain
  1472. the 16-byte alignment of the \code{rsp}. With the \code{rsp} aligned,
  1473. we are ready to make calls to other functions. The last instruction of
  1474. the prelude is \code{jmp start}, which transfers control to the
  1475. instructions that were generated from the Racket expression \code{(+
  1476. 10 32)}.
  1477. The four instructions under the label \code{start} carry out the work
  1478. of computing \code{(+ 52 (- 10)))}.
  1479. %
  1480. The first instruction \code{movq \$10, -8(\%rbp)} stores $10$ in
  1481. variable $1$.
  1482. %
  1483. The instruction \code{negq -8(\%rbp)} changes variable $1$ to $-10$.
  1484. %
  1485. The following instruction moves the $-10$ from variable $1$ into the
  1486. \code{rax} register. Finally, \code{addq \$52, \%rax} adds $52$ to
  1487. the value in \code{rax}, updating its contents to $42$.
  1488. The three instructions under the label \code{conclusion} are the
  1489. typical \emph{conclusion}\index{conclusion} of a procedure. The first
  1490. two instructions are necessary to get the state of the machine back to
  1491. where it was at the beginning of the procedure. The instruction
  1492. \key{addq \$16, \%rsp} moves the stack pointer back to point at the
  1493. old base pointer. The amount added here needs to match the amount that
  1494. was subtracted in the prelude of the procedure. Then \key{popq \%rbp}
  1495. returns the old base pointer to \key{rbp} and adds $8$ to the stack
  1496. pointer. The last instruction, \key{retq}, jumps back to the
  1497. procedure that called this one and adds 8 to the stack pointer, which
  1498. returns the stack pointer to where it was prior to the procedure call.
  1499. The compiler needs a convenient representation for manipulating x86
  1500. programs, so we define an abstract syntax for x86 in
  1501. Figure~\ref{fig:x86-0-ast}. We refer to this language as x86$_0$ with
  1502. a subscript $0$ because later we introduce extended versions of this
  1503. assembly language. The main difference compared to the concrete syntax
  1504. of x86 (Figure~\ref{fig:x86-0-concrete}) is that it does not allow
  1505. labeled instructions to appear anywhere, but instead organizes
  1506. instructions into a group called a
  1507. \emph{block}\index{block}\index{basic block} and associates a label
  1508. with every block, which is why the \key{CFG} struct (for control-flow
  1509. graph) includes an alist mapping labels to blocks. The reason for
  1510. using blocks and a control-flow graph becomes apparent in
  1511. Chapter~\ref{ch:bool-types} when we introduce conditional
  1512. branching. The \code{Block} structure includes an $\itm{info}$ field
  1513. that is not needed for this chapter, but will become useful in
  1514. Chapter~\ref{ch:register-allocation-r1}. For now, the $\itm{info}$
  1515. field should just contain an empty list. Also, regarding the abstract
  1516. syntax for \code{callq}, the \code{Callq} struct includes an integer
  1517. for representing the arity of the function, i.e., the number of
  1518. arguments, which is helpful to know during register allocation
  1519. (Chapter~\ref{ch:register-allocation-r1}).
  1520. \begin{figure}[tp]
  1521. \fbox{
  1522. \begin{minipage}{0.96\textwidth}
  1523. \small
  1524. \[
  1525. \begin{array}{lcl}
  1526. \Reg &::=& \allregisters{} \\
  1527. \Arg &::=& \IMM{\Int} \mid \REG{\Reg}
  1528. \mid \DEREF{\Reg}{\Int} \\
  1529. \Instr &::=& \BININSTR{\code{'addq}}{\Arg}{\Arg}
  1530. \mid \BININSTR{\code{'subq}}{\Arg}{\Arg} \\
  1531. &\mid& \BININSTR{\code{'movq}}{\Arg}{\Arg}
  1532. \mid \UNIINSTR{\code{'negq}}{\Arg}\\
  1533. &\mid& \CALLQ{\itm{label}}{\itm{int}} \mid \RETQ{}
  1534. \mid \PUSHQ{\Arg} \mid \POPQ{\Arg} \mid \JMP{\itm{label}} \\
  1535. \Block &::= & \BLOCK{\itm{info}}{\Instr\ldots} \\
  1536. x86_0 &::= & \PROGRAM{\itm{info}}{\CFG{\key{(}\itm{label} \,\key{.}\, \Block \key{)}\ldots}}
  1537. \end{array}
  1538. \]
  1539. \end{minipage}
  1540. }
  1541. \caption{The abstract syntax of x86$_0$ assembly.}
  1542. \label{fig:x86-0-ast}
  1543. \end{figure}
  1544. \section{Planning the trip to x86 via the $C_0$ language}
  1545. \label{sec:plan-s0-x86}
  1546. To compile one language to another it helps to focus on the
  1547. differences between the two languages because the compiler will need
  1548. to bridge those differences. What are the differences between $R_1$
  1549. and x86 assembly? Here are some of the most important ones:
  1550. \begin{enumerate}
  1551. \item[(a)] x86 arithmetic instructions typically have two arguments
  1552. and update the second argument in place. In contrast, $R_1$
  1553. arithmetic operations take two arguments and produce a new value.
  1554. An x86 instruction may have at most one memory-accessing argument.
  1555. Furthermore, some instructions place special restrictions on their
  1556. arguments.
  1557. \item[(b)] An argument of an $R_1$ operator can be a deeply-nested
  1558. expression, whereas x86 instructions restrict their arguments to be
  1559. integers constants, registers, and memory locations.
  1560. \item[(c)] The order of execution in x86 is explicit in the syntax: a
  1561. sequence of instructions and jumps to labeled positions, whereas in
  1562. $R_1$ the order of evaluation is a left-to-right depth-first
  1563. traversal of the abstract syntax tree.
  1564. \item[(d)] An $R_1$ program can have any number of variables whereas
  1565. x86 has 16 registers and the procedure calls stack.
  1566. \item[(e)] Variables in $R_1$ can overshadow other variables with the
  1567. same name. In x86, registers have unique names and memory locations
  1568. have unique addresses.
  1569. \end{enumerate}
  1570. We ease the challenge of compiling from $R_1$ to x86 by breaking down
  1571. the problem into several steps, dealing with the above differences one
  1572. at a time. Each of these steps is called a \emph{pass} of the
  1573. compiler.\index{pass}\index{compiler pass}
  1574. %
  1575. This terminology comes from each step passing over the AST of the
  1576. program.
  1577. %
  1578. We begin by sketching how we might implement each pass, and give them
  1579. names. We then figure out an ordering of the passes and the
  1580. input/output language for each pass. The very first pass has $R_1$ as
  1581. its input language and the last pass has x86 as its output
  1582. language. In between we can choose whichever language is most
  1583. convenient for expressing the output of each pass, whether that be
  1584. $R_1$, x86, or new \emph{intermediate languages} of our own design.
  1585. Finally, to implement each pass we write one recursive function per
  1586. non-terminal in the grammar of the input language of the pass.
  1587. \index{intermediate language}
  1588. \begin{description}
  1589. \item[Pass \key{select-instructions}] handles the difference between
  1590. $R_1$ operations and x86 instructions we convert each $R_1$
  1591. operation to a short sequence of instructions that accomplishes the
  1592. same task.
  1593. \item[Pass \key{remove-complex-opera*}] ensures that each
  1594. subexpression (i.e. operator and operand, and hence the name
  1595. \key{opera*}) is an \emph{atomic} expression (a variable or
  1596. integer), we introduce temporary variables to hold the results
  1597. of subexpressions.\index{atomic expression}
  1598. \item[Pass \key{explicate-control}] makes the execution order of the
  1599. program explicit, we convert from the abstract syntax tree
  1600. representation into a control-flow graph in which each node contains
  1601. a sequence of statements and the edges between nodes say which nodes
  1602. contain jumps to other nodes.
  1603. \item[Pass \key{assign-homes}] assigns the variables in $R_1$ to
  1604. registers or stack locations in x86.
  1605. \item[Pass \key{uniquify}] deals with the shadowing of variables by
  1606. renaming every variable to a unique name.
  1607. \end{description}
  1608. The next question is: in what order should we apply these passes? This
  1609. question can be challenging because it is difficult to know ahead of
  1610. time which orders will be better (easier to implement, produce more
  1611. efficient code, etc.) so oftentimes trial-and-error is
  1612. involved. Nevertheless, we can try to plan ahead and make educated
  1613. choices regarding the ordering.
  1614. %% Let us consider the ordering of \key{uniquify} and
  1615. %% \key{remove-complex-opera*}. The assignment of subexpressions to
  1616. %% temporary variables involves introducing new variables and moving
  1617. %% subexpressions, which might change the shadowing of variables and
  1618. %% inadvertently change the behavior of the program. But if we apply
  1619. %% \key{uniquify} first, this will not be an issue. Of course, this means
  1620. %% that in \key{remove-complex-opera*}, we need to ensure that the
  1621. %% temporary variables that it creates are unique.
  1622. What should be the ordering of \key{explicate-control} with respect to
  1623. \key{uniquify}? The \key{uniquify} pass should come first because
  1624. \key{explicate-control} changes all the \key{let}-bound variables to
  1625. become local variables whose scope is the entire program, which would
  1626. confuse variables with the same name.
  1627. %
  1628. Likewise, we place \key{remove-complex-opera*} before
  1629. \key{explicate-control} because \key{explicate-control} removes the
  1630. \key{let} form, but it is convenient to use \key{let} in the output of
  1631. \key{remove-complex-opera*}.
  1632. %
  1633. The ordering of \key{uniquify} and \key{remove-complex-opera*} does
  1634. not matter, so we arbitrarily choose \key{uniquify} to come first.
  1635. %% Regarding \key{assign-homes}, it is helpful to place
  1636. %% \key{explicate-control} first because \key{explicate-control} changes
  1637. %% \key{let}-bound variables into program-scope variables. This means
  1638. %% that the \key{assign-homes} pass can read off the variables from the
  1639. %% $\itm{info}$ of the \key{Program} AST node instead of traversing the
  1640. %% entire program in search of \key{let}-bound variables.
  1641. Last, we consider \key{select-instructions} and \key{assign-homes}.
  1642. These two passes are intertwined, creating a Gordian Knot. To do a
  1643. good job of assigning homes, it is helpful to have already determined
  1644. which instructions will be used, because x86 instructions have
  1645. restrictions about which of their arguments can be registers versus
  1646. stack locations. One might want to give preferential treatment to
  1647. variables that occur in register-argument positions. On the other
  1648. hand, it may turn out to be impossible to make sure that all such
  1649. variables are assigned to registers, and then one must redo the
  1650. selection of instructions. A sophisticated solution to this problem is
  1651. to iteratively repeat the two passes until a good solution is found.
  1652. To reduce implementation complexity, we recommend a simpler approach
  1653. in which \key{select-instructions} comes first, followed by the
  1654. \key{assign-homes}, then a third pass named \key{patch-instructions}
  1655. that uses a reserved register to patch-up outstanding problems
  1656. regarding instructions with too many memory accesses.
  1657. %% The disadvantage of this approach is some programs may not execute
  1658. %% as efficiently as they would if we used the iterative approach and
  1659. %% used all of the registers for variables.
  1660. \begin{figure}[tbp]
  1661. \begin{tikzpicture}[baseline=(current bounding box.center)]
  1662. \node (R1) at (0,2) {\large $R_1$};
  1663. \node (R1-2) at (3,2) {\large $R_1$};
  1664. \node (R1-3) at (6,2) {\large $R_1^{\dagger}$};
  1665. %\node (C0-1) at (6,0) {\large $C_0$};
  1666. \node (C0-2) at (3,0) {\large $C_0$};
  1667. \node (x86-2) at (3,-2) {\large $\text{x86}^{*}_0$};
  1668. \node (x86-3) at (6,-2) {\large $\text{x86}^{*}_0$};
  1669. \node (x86-4) at (9,-2) {\large $\text{x86}_0$};
  1670. \node (x86-5) at (12,-2) {\large $\text{x86}^{\dagger}_0$};
  1671. \path[->,bend left=15] (R1) edge [above] node {\ttfamily\footnotesize uniquify} (R1-2);
  1672. \path[->,bend left=15] (R1-2) edge [above] node {\ttfamily\footnotesize remove-complex.} (R1-3);
  1673. \path[->,bend left=15] (R1-3) edge [right] node {\ttfamily\footnotesize explicate-control} (C0-2);
  1674. \path[->,bend right=15] (C0-2) edge [left] node {\ttfamily\footnotesize select-instr.} (x86-2);
  1675. \path[->,bend left=15] (x86-2) edge [above] node {\ttfamily\footnotesize assign-homes} (x86-3);
  1676. \path[->,bend left=15] (x86-3) edge [above] node {\ttfamily\footnotesize patch-instr.} (x86-4);
  1677. \path[->,bend left=15] (x86-4) edge [above] node {\ttfamily\footnotesize print-x86} (x86-5);
  1678. \end{tikzpicture}
  1679. \caption{Overview of the passes for compiling $R_1$. }
  1680. \label{fig:R1-passes}
  1681. \end{figure}
  1682. Figure~\ref{fig:R1-passes} presents the ordering of the compiler
  1683. passes in the form of a graph. Each pass is an edge and the
  1684. input/output language of each pass is a node in the graph. The output
  1685. of \key{uniquify} and \key{remove-complex-opera*} are programs that
  1686. are still in the $R_1$ language, through the output of the later is a
  1687. subset of $R_1$, a language we name $R^\dagger_1$ and describe in
  1688. Section~\ref{sec:remove-complex-opera-R1}.
  1689. %
  1690. The output of \key{explicate-control} is in an intermediate language
  1691. $C_0$ designed to make the order of evaluation explicit in its syntax,
  1692. which we introduce in the next section. The \key{select-instruction}
  1693. pass translates from $C_0$ to a variant of x86. The \key{assign-homes}
  1694. and \key{patch-instructions} passes input and output variants of x86
  1695. assembly. The last pass in Figure~\ref{fig:R1-passes} is
  1696. \key{print-x86}, which converts from the abstract syntax of
  1697. $\text{x86}_0$ to the concrete syntax of x86.
  1698. In the next sections we discuss the $C_0$ language and the
  1699. $\text{x86}^{*}_0$ and $\text{x86}^{\dagger}_0$ dialects of x86. The
  1700. remainder of this chapter gives hints regarding the implementation of
  1701. each of the compiler passes in Figure~\ref{fig:R1-passes}.
  1702. \subsection{The $C_0$ Intermediate Language}
  1703. The output of \key{explicate-control} is similar to the $C$
  1704. language~\citep{Kernighan:1988nx} in that it has separate syntactic
  1705. categories for expressions and statements, so we name it $C_0$. The
  1706. abstract syntax for $C_0$ is defined in Figure~\ref{fig:c0-syntax}.
  1707. (The concrete syntax for $C_0$ is in the Appendix,
  1708. Figure~\ref{fig:c0-concrete-syntax}.)
  1709. %
  1710. The $C_0$ language supports the same operators as $R_1$ but the
  1711. arguments of operators are restricted to atomic expressions (variables
  1712. and integers), thanks to the \key{remove-complex-opera*} pass. Instead
  1713. of \key{Let} expressions, $C_0$ has assignment statements which can be
  1714. executed in sequence using the \key{Seq} form. A sequence of
  1715. statements always ends with \key{Return}, a guarantee that is baked
  1716. into the grammar rules for the \itm{tail} non-terminal. The naming of
  1717. this non-terminal comes from the term \emph{tail position}\index{tail position},
  1718. which refers to an expression that is the last one to execute within a
  1719. function. (An expression in tail position may contain subexpressions,
  1720. and those may or may not be in tail position depending on the kind of
  1721. expression.)
  1722. A $C_0$ program consists of a control-flow graph (represented as an
  1723. alist mapping labels to tails). This is more general than
  1724. necessary for the present chapter, as we do not yet need to introduce
  1725. \key{goto} for jumping to labels, but it saves us from having to
  1726. change the syntax of the program construct in
  1727. Chapter~\ref{ch:bool-types}. For now there will be just one label,
  1728. \key{start}, and the whole program is its tail.
  1729. %
  1730. The $\itm{info}$ field of the \key{Program} form, after the
  1731. \key{explicate-control} pass, contains a mapping from the symbol
  1732. \key{locals} to a list of variables, that is, a list of all the
  1733. variables used in the program. At the start of the program, these
  1734. variables are uninitialized; they become initialized on their first
  1735. assignment.
  1736. \begin{figure}[tbp]
  1737. \fbox{
  1738. \begin{minipage}{0.96\textwidth}
  1739. \[
  1740. \begin{array}{lcl}
  1741. \Atm &::=& \INT{\Int} \mid \VAR{\Var} \\
  1742. \Exp &::=& \Atm \mid \READ{} \mid \NEG{\Atm} \\
  1743. &\mid& \ADD{\Atm}{\Atm}\\
  1744. \Stmt &::=& \ASSIGN{\VAR{\Var}}{\Exp} \\
  1745. \Tail &::= & \RETURN{\Exp} \mid \SEQ{\Stmt}{\Tail} \\
  1746. C_0 & ::= & \PROGRAM{\itm{info}}{\CFG{\key{(}\itm{label}\,\key{.}\,\Tail\key{)}\ldots}}
  1747. \end{array}
  1748. \]
  1749. \end{minipage}
  1750. }
  1751. \caption{The abstract syntax of the $C_0$ intermediate language.}
  1752. \label{fig:c0-syntax}
  1753. \end{figure}
  1754. \subsection{The dialects of x86}
  1755. The x86$^{*}_0$ language, pronounced ``pseudo x86'', is the output of
  1756. the pass \key{select-instructions}. It extends x86$_0$ with an
  1757. unbounded number of program-scope variables and it does not have
  1758. special-case rules regarding instruction arguments. The
  1759. x86$^{\dagger}$ language, the output of \key{print-x86}, is the
  1760. concrete syntax for x86.
  1761. \section{Uniquify Variables}
  1762. \label{sec:uniquify-s0}
  1763. The \code{uniquify} pass compiles $R_1$ programs into $R_1$ programs
  1764. in which every \key{let} uses a unique variable name. For example, the
  1765. \code{uniquify} pass should translate the program on the left into the
  1766. program on the right. \\
  1767. \begin{tabular}{lll}
  1768. \begin{minipage}{0.4\textwidth}
  1769. \begin{lstlisting}
  1770. (let ([x 32])
  1771. (+ (let ([x 10]) x) x))
  1772. \end{lstlisting}
  1773. \end{minipage}
  1774. &
  1775. $\Rightarrow$
  1776. &
  1777. \begin{minipage}{0.4\textwidth}
  1778. \begin{lstlisting}
  1779. (let ([x.1 32])
  1780. (+ (let ([x.2 10]) x.2) x.1))
  1781. \end{lstlisting}
  1782. \end{minipage}
  1783. \end{tabular} \\
  1784. %
  1785. The following is another example translation, this time of a program
  1786. with a \key{let} nested inside the initializing expression of another
  1787. \key{let}.\\
  1788. \begin{tabular}{lll}
  1789. \begin{minipage}{0.4\textwidth}
  1790. \begin{lstlisting}
  1791. (let ([x (let ([x 4])
  1792. (+ x 1))])
  1793. (+ x 2))
  1794. \end{lstlisting}
  1795. \end{minipage}
  1796. &
  1797. $\Rightarrow$
  1798. &
  1799. \begin{minipage}{0.4\textwidth}
  1800. \begin{lstlisting}
  1801. (let ([x.2 (let ([x.1 4])
  1802. (+ x.1 1))])
  1803. (+ x.2 2))
  1804. \end{lstlisting}
  1805. \end{minipage}
  1806. \end{tabular}
  1807. We recommend implementing \code{uniquify} by creating a structurally
  1808. recursive function function named \code{uniquify-exp} that mostly just
  1809. copies the input program. However, when encountering a \key{let}, it
  1810. should generate a unique name for the variable (the Racket function
  1811. \code{gensym} is handy for this) and associate the old name with the
  1812. new unique name in an alist. The \code{uniquify-exp} function will
  1813. need to access this alist when it gets to a variable reference, so we
  1814. add another parameter to \code{uniquify-exp} for the alist.
  1815. The skeleton of the \code{uniquify-exp} function is shown in
  1816. Figure~\ref{fig:uniquify-s0}. The function is curried so that it is
  1817. convenient to partially apply it to an alist and then apply it to
  1818. different expressions, as in the last clause for primitive operations
  1819. in Figure~\ref{fig:uniquify-s0}. The
  1820. \href{https://docs.racket-lang.org/reference/for.html#%28form._%28%28lib._racket%2Fprivate%2Fbase..rkt%29._for%2Flist%29%29}{\key{for/list}}
  1821. form is useful for applying a function to each element of a list to
  1822. produce a new list. \index{for/list}
  1823. \begin{exercise}
  1824. \normalfont % I don't like the italics for exercises. -Jeremy
  1825. Complete the \code{uniquify} pass by filling in the blanks, that is,
  1826. implement the clauses for variables and for the \key{let} form.
  1827. \end{exercise}
  1828. \begin{figure}[tbp]
  1829. \begin{lstlisting}
  1830. (define (uniquify-exp env)
  1831. (lambda (e)
  1832. (match e
  1833. [(Var x) ___]
  1834. [(Int n) (Int n)]
  1835. [(Let x e body) ___]
  1836. [(Prim op es)
  1837. (Prim op (for/list ([e es]) ((uniquify-exp env) e)))]
  1838. )))
  1839. (define (uniquify p)
  1840. (match p
  1841. [(Program '() e) (Program '() ((uniquify-exp '()) e))]))
  1842. \end{lstlisting}
  1843. \caption{Skeleton for the \key{uniquify} pass.}
  1844. \label{fig:uniquify-s0}
  1845. \end{figure}
  1846. \begin{exercise}
  1847. \normalfont % I don't like the italics for exercises. -Jeremy
  1848. Test your \key{uniquify} pass by creating five example $R_1$ programs.
  1849. Check whether the output programs produce the same result as the input
  1850. programs. The $R_1$ programs should be designed to test the most
  1851. interesting parts of the \key{uniquify} pass, that is, the programs
  1852. should include \key{let} forms, variables, and variables that
  1853. overshadow each other. The five programs should be in a subdirectory
  1854. named \key{tests} and they should have the same file name except for a
  1855. different integer at the end of the name, followed by the ending
  1856. \key{.rkt}. Use the \key{interp-tests} function
  1857. (Appendix~\ref{appendix:utilities}) from \key{utilities.rkt} to test
  1858. your \key{uniquify} pass on the example programs. See the
  1859. \key{run-tests.rkt} script in the support code for an example of how
  1860. to use \key{interp-tests}. The support code is in a \code{github}
  1861. repository at the following URL:
  1862. \begin{center}\footnotesize
  1863. \url{https://github.com/IUCompilerCourse/public-student-support-code}
  1864. \end{center}
  1865. \end{exercise}
  1866. \section{Remove Complex Operands}
  1867. \label{sec:remove-complex-opera-R1}
  1868. The \code{remove-complex-opera*} pass compiles $R_1$ programs into
  1869. $R_1$ programs in which the arguments of operations are atomic
  1870. expressions. Put another way, this pass removes complex
  1871. operands\index{complex operand}, such as the expression \code{(- 10)}
  1872. in the program below. This is accomplished by introducing a new
  1873. \key{let}-bound variable, binding the complex operand to the new
  1874. variable, and then using the new variable in place of the complex
  1875. operand, as shown in the output of \code{remove-complex-opera*} on the
  1876. right.\\
  1877. \begin{tabular}{lll}
  1878. \begin{minipage}{0.4\textwidth}
  1879. % s0_19.rkt
  1880. \begin{lstlisting}
  1881. (+ 52 (- 10))
  1882. \end{lstlisting}
  1883. \end{minipage}
  1884. &
  1885. $\Rightarrow$
  1886. &
  1887. \begin{minipage}{0.4\textwidth}
  1888. \begin{lstlisting}
  1889. (let ([tmp.1 (- 10)])
  1890. (+ 52 tmp.1))
  1891. \end{lstlisting}
  1892. \end{minipage}
  1893. \end{tabular}
  1894. \begin{figure}[tp]
  1895. \centering
  1896. \fbox{
  1897. \begin{minipage}{0.96\textwidth}
  1898. \[
  1899. \begin{array}{rcl}
  1900. \Atm &::=& \INT{\Int} \mid \VAR{\Var} \\
  1901. \Exp &::=& \Atm \mid \READ{} \\
  1902. &\mid& \NEG{\Atm} \mid \ADD{\Atm}{\Atm} \\
  1903. &\mid& \LET{\Var}{\Exp}{\Exp} \\
  1904. R^{\dagger}_1 &::=& \PROGRAM{\code{'()}}{\Exp}
  1905. \end{array}
  1906. \]
  1907. \end{minipage}
  1908. }
  1909. \caption{$R_1^{\dagger}$ is $R_1$ in administrative normal form (ANF).}
  1910. \label{fig:r1-anf-syntax}
  1911. \end{figure}
  1912. Figure~\ref{fig:r1-anf-syntax} presents the grammar for the output of
  1913. this pass, the language $R_1^{\dagger}$. The main difference is that
  1914. operator arguments are required to be atomic expressions. In the
  1915. literature, this is called \emph{administrative normal form}, or ANF
  1916. for short~\citep{Danvy:1991fk,Flanagan:1993cg}. \index{administrative
  1917. normal form} \index{ANF}
  1918. We recommend implementing this pass with two mutually recursive
  1919. functions, \code{rco-atom} and \code{rco-exp}. The idea is to apply
  1920. \code{rco-atom} to subexpressions that are required to be atomic and
  1921. to apply \code{rco-exp} to subexpressions that can be atomic or
  1922. complex (see Figure~\ref{fig:r1-anf-syntax}). Both functions take an
  1923. $R_1$ expression as input. The \code{rco-exp} function returns an
  1924. expression. The \code{rco-atom} function returns two things: an
  1925. atomic expression and alist mapping temporary variables to complex
  1926. subexpressions. You can return multiple things from a function using
  1927. Racket's \key{values} form and you can receive multiple things from a
  1928. function call using the \key{define-values} form. If you are not
  1929. familiar with these features, review the Racket documentation. Also,
  1930. the \href{https://docs.racket-lang.org/reference/for.html#%28form._%28%28lib._racket%2Fprivate%2Fbase..rkt%29._for%2Flists%29%29}{\code{for/lists}}
  1931. form is useful for applying a function to each
  1932. element of a list, in the case where the function returns multiple
  1933. values.
  1934. \index{for/lists}
  1935. The following shows the output of \code{rco-atom} on the expression
  1936. \code{(- 10)} (using concrete syntax to be concise).
  1937. \begin{tabular}{lll}
  1938. \begin{minipage}{0.4\textwidth}
  1939. \begin{lstlisting}
  1940. (- 10)
  1941. \end{lstlisting}
  1942. \end{minipage}
  1943. &
  1944. $\Rightarrow$
  1945. &
  1946. \begin{minipage}{0.4\textwidth}
  1947. \begin{lstlisting}
  1948. tmp.1
  1949. ((tmp.1 . (- 10)))
  1950. \end{lstlisting}
  1951. \end{minipage}
  1952. \end{tabular}
  1953. Take special care of programs such as the next one that \key{let}-bind
  1954. variables with integers or other variables. You should leave them
  1955. unchanged, as shown in to the program on the right \\
  1956. \begin{tabular}{lll}
  1957. \begin{minipage}{0.4\textwidth}
  1958. % s0_20.rkt
  1959. \begin{lstlisting}
  1960. (let ([a 42])
  1961. (let ([b a])
  1962. b))
  1963. \end{lstlisting}
  1964. \end{minipage}
  1965. &
  1966. $\Rightarrow$
  1967. &
  1968. \begin{minipage}{0.4\textwidth}
  1969. \begin{lstlisting}
  1970. (let ([a 42])
  1971. (let ([b a])
  1972. b))
  1973. \end{lstlisting}
  1974. \end{minipage}
  1975. \end{tabular} \\
  1976. A careless implementation of \key{rco-exp} and \key{rco-atom} might
  1977. produce the following output.\\
  1978. \begin{minipage}{0.4\textwidth}
  1979. \begin{lstlisting}
  1980. (let ([tmp.1 42])
  1981. (let ([a tmp.1])
  1982. (let ([tmp.2 a])
  1983. (let ([b tmp.2])
  1984. b))))
  1985. \end{lstlisting}
  1986. \end{minipage}
  1987. \begin{exercise}
  1988. \normalfont Implement the \code{remove-complex-opera*} pass.
  1989. Test the new pass on all of the example programs that you created to test the
  1990. \key{uniquify} pass and create three new example programs that are
  1991. designed to exercise the interesting code in the
  1992. \code{remove-complex-opera*} pass. Use the \key{interp-tests} function
  1993. (Appendix~\ref{appendix:utilities}) from \key{utilities.rkt} to test
  1994. your passes on the example programs.
  1995. \end{exercise}
  1996. \section{Explicate Control}
  1997. \label{sec:explicate-control-r1}
  1998. The \code{explicate-control} pass compiles $R_1$ programs into $C_0$
  1999. programs that make the order of execution explicit in their
  2000. syntax. For now this amounts to flattening \key{let} constructs into a
  2001. sequence of assignment statements. For example, consider the following
  2002. $R_1$ program.\\
  2003. % s0_11.rkt
  2004. \begin{minipage}{0.96\textwidth}
  2005. \begin{lstlisting}
  2006. (let ([y (let ([x 20])
  2007. (+ x (let ([x 22]) x)))])
  2008. y)
  2009. \end{lstlisting}
  2010. \end{minipage}\\
  2011. %
  2012. The output of the previous pass and of \code{explicate-control} is
  2013. shown below. Recall that the right-hand-side of a \key{let} executes
  2014. before its body, so the order of evaluation for this program is to
  2015. assign \code{20} to \code{x.1}, assign \code{22} to \code{x.2}, assign
  2016. \code{(+ x.1 x.2)} to \code{y}, then return \code{y}. Indeed, the
  2017. output of \code{explicate-control} makes this ordering explicit.\\
  2018. \begin{tabular}{lll}
  2019. \begin{minipage}{0.4\textwidth}
  2020. \begin{lstlisting}
  2021. (let ([y (let ([x.1 20])
  2022. (let ([x.2 22])
  2023. (+ x.1 x.2)))])
  2024. y)
  2025. \end{lstlisting}
  2026. \end{minipage}
  2027. &
  2028. $\Rightarrow$
  2029. &
  2030. \begin{minipage}{0.4\textwidth}
  2031. \begin{lstlisting}
  2032. start:
  2033. x.1 = 20;
  2034. x.2 = 22;
  2035. y = (+ x.1 x.2);
  2036. return y;
  2037. \end{lstlisting}
  2038. \end{minipage}
  2039. \end{tabular}
  2040. We recommend implementing \code{explicate-control} using two mutually
  2041. recursive functions: \code{explicate-tail} and
  2042. \code{explicate-assign}. The first function should be applied to
  2043. expressions in tail position whereas the second should be applied to
  2044. expressions that occur on the right-hand-side of a \key{let}.
  2045. %
  2046. The \code{explicate-tail} function takes an $R_1$ expression as input
  2047. and produces a $C_0$ $\Tail$ (see Figure~\ref{fig:c0-syntax}).
  2048. %
  2049. The \code{explicate-assign} function takes an $R_1$ expression, the
  2050. variable that it is to be assigned to, and $C_0$ code (a $\Tail$) that
  2051. should come after the assignment (e.g., the code generated for the
  2052. body of the \key{let}) and returns a $\Tail$. The
  2053. \code{explicate-assign} function is in accumulator-passing style in
  2054. that its third parameter is some $C_0$ code that it adds to and
  2055. returns. The reader might be tempted to instead organize
  2056. \code{explicate-assign} in a more direct fashion, without the third
  2057. parameter and perhaps using \code{append} to combine statements. We
  2058. warn against that alternative because the accumulator-passing style is
  2059. key to how we generate high-quality code for conditional expressions
  2060. in Chapter~\ref{ch:bool-types}.
  2061. The top-level \code{explicate-control} function should invoke
  2062. \code{explicate-tail} on the body of the \key{Program} AST node.
  2063. \section{Select Instructions}
  2064. \label{sec:select-r1}
  2065. \index{instruction selection}
  2066. In the \code{select-instructions} pass we begin the work of
  2067. translating from $C_0$ to $\text{x86}^{*}_0$. The target language of
  2068. this pass is a variant of x86 that still uses variables, so we add an
  2069. AST node of the form $\VAR{\itm{var}}$ to the $\text{x86}_0$ abstract
  2070. syntax of Figure~\ref{fig:x86-0-ast}. We recommend implementing the
  2071. \code{select-instructions} in terms of three auxiliary functions, one
  2072. for each of the non-terminals of $C_0$: $\Atm$, $\Stmt$, and $\Tail$.
  2073. The cases for $\Atm$ are straightforward, variables stay
  2074. the same and integer constants are changed to immediates:
  2075. $\INT{n}$ changes to $\IMM{n}$.
  2076. Next we consider the cases for $\Stmt$, starting with arithmetic
  2077. operations. For example, in $C_0$ an addition operation can take the
  2078. form below, to the left of the $\Rightarrow$. To translate to x86, we
  2079. need to use the \key{addq} instruction which does an in-place
  2080. update. So we must first move \code{10} to \code{x}. \\
  2081. \begin{tabular}{lll}
  2082. \begin{minipage}{0.4\textwidth}
  2083. \begin{lstlisting}
  2084. x = (+ 10 32);
  2085. \end{lstlisting}
  2086. \end{minipage}
  2087. &
  2088. $\Rightarrow$
  2089. &
  2090. \begin{minipage}{0.4\textwidth}
  2091. \begin{lstlisting}
  2092. movq $10, x
  2093. addq $32, x
  2094. \end{lstlisting}
  2095. \end{minipage}
  2096. \end{tabular} \\
  2097. %
  2098. There are cases that require special care to avoid generating
  2099. needlessly complicated code. If one of the arguments of the addition
  2100. is the same as the left-hand side of the assignment, then there is no
  2101. need for the extra move instruction. For example, the following
  2102. assignment statement can be translated into a single \key{addq}
  2103. instruction.\\
  2104. \begin{tabular}{lll}
  2105. \begin{minipage}{0.4\textwidth}
  2106. \begin{lstlisting}
  2107. x = (+ 10 x);
  2108. \end{lstlisting}
  2109. \end{minipage}
  2110. &
  2111. $\Rightarrow$
  2112. &
  2113. \begin{minipage}{0.4\textwidth}
  2114. \begin{lstlisting}
  2115. addq $10, x
  2116. \end{lstlisting}
  2117. \end{minipage}
  2118. \end{tabular} \\
  2119. The \key{read} operation does not have a direct counterpart in x86
  2120. assembly, so we have instead implemented this functionality in the C
  2121. language~\citep{Kernighan:1988nx}, with the function \code{read\_int}
  2122. in the file \code{runtime.c}. In general, we refer to all of the
  2123. functionality in this file as the \emph{runtime system}\index{runtime system},
  2124. or simply the \emph{runtime} for short. When compiling your generated x86
  2125. assembly code, you need to compile \code{runtime.c} to \code{runtime.o} (an
  2126. ``object file'', using \code{gcc} option \code{-c}) and link it into
  2127. the executable. For our purposes of code generation, all you need to
  2128. do is translate an assignment of \key{read} into some variable
  2129. $\itm{lhs}$ (for left-hand side) into a call to the \code{read\_int}
  2130. function followed by a move from \code{rax} to the left-hand side.
  2131. The move from \code{rax} is needed because the return value from
  2132. \code{read\_int} goes into \code{rax}, as is the case in general. \\
  2133. \begin{tabular}{lll}
  2134. \begin{minipage}{0.3\textwidth}
  2135. \begin{lstlisting}
  2136. |$\itm{var}$| = (read);
  2137. \end{lstlisting}
  2138. \end{minipage}
  2139. &
  2140. $\Rightarrow$
  2141. &
  2142. \begin{minipage}{0.3\textwidth}
  2143. \begin{lstlisting}
  2144. callq read_int
  2145. movq %rax, |$\itm{var}$|
  2146. \end{lstlisting}
  2147. \end{minipage}
  2148. \end{tabular} \\
  2149. There are two cases for the $\Tail$ non-terminal: \key{Return} and
  2150. \key{Seq}. Regarding \key{Return}, we recommend treating it as an
  2151. assignment to the \key{rax} register followed by a jump to the
  2152. conclusion of the program (so the conclusion needs to be labeled).
  2153. For $\SEQ{s}{t}$, you can translate the statement $s$ and tail $t$
  2154. recursively and append the resulting instructions.
  2155. \begin{exercise}
  2156. \normalfont
  2157. Implement the \key{select-instructions} pass and test it on all of the
  2158. example programs that you created for the previous passes and create
  2159. three new example programs that are designed to exercise all of the
  2160. interesting code in this pass. Use the \key{interp-tests} function
  2161. (Appendix~\ref{appendix:utilities}) from \key{utilities.rkt} to test
  2162. your passes on the example programs.
  2163. \end{exercise}
  2164. \section{Assign Homes}
  2165. \label{sec:assign-r1}
  2166. The \key{assign-homes} pass compiles $\text{x86}^{*}_0$ programs to
  2167. $\text{x86}^{*}_0$ programs that no longer use program variables.
  2168. Thus, the \key{assign-homes} pass is responsible for placing all of
  2169. the program variables in registers or on the stack. For runtime
  2170. efficiency, it is better to place variables in registers, but as there
  2171. are only 16 registers, some programs must necessarily resort to
  2172. placing some variables on the stack. In this chapter we focus on the
  2173. mechanics of placing variables on the stack. We study an algorithm for
  2174. placing variables in registers in
  2175. Chapter~\ref{ch:register-allocation-r1}.
  2176. Consider again the following $R_1$ program.
  2177. % s0_20.rkt
  2178. \begin{lstlisting}
  2179. (let ([a 42])
  2180. (let ([b a])
  2181. b))
  2182. \end{lstlisting}
  2183. For reference, we repeat the output of \code{select-instructions} on
  2184. the left and show the output of \code{assign-homes} on the right.
  2185. %
  2186. %% Recall that \key{explicate-control} associated the list of
  2187. %% variables with the \code{locals} symbol in the program's $\itm{info}$
  2188. %% field, so \code{assign-homes} has convenient access to the them.
  2189. %
  2190. In this example, we assign variable \code{a} to stack location
  2191. \code{-8(\%rbp)} and variable \code{b} to location
  2192. \code{-16(\%rbp)}.\\
  2193. \begin{tabular}{l}
  2194. \begin{minipage}{0.4\textwidth}
  2195. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  2196. locals-types:
  2197. a : 'Integer, b : 'Integer
  2198. start:
  2199. movq $42, a
  2200. movq a, b
  2201. movq b, %rax
  2202. jmp conclusion
  2203. \end{lstlisting}
  2204. \end{minipage}
  2205. {$\Rightarrow$}
  2206. \begin{minipage}{0.4\textwidth}
  2207. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  2208. stack-space: 16
  2209. start:
  2210. movq $42, -8(%rbp)
  2211. movq -8(%rbp), -16(%rbp)
  2212. movq -16(%rbp), %rax
  2213. jmp conclusion
  2214. \end{lstlisting}
  2215. \end{minipage}
  2216. \end{tabular} \\
  2217. In the output of \code{select-instructions}, there is a entry for
  2218. \code{locals-types} in the $\itm{info}$ of the \code{Program} node,
  2219. which is needed here so that we have the list of variables that should
  2220. be assigned to homes. The support code computes the
  2221. \code{locals-types} entry. In particular, \code{type-check-C0}
  2222. installs it in the $\itm{info}$ field of the \code{Program} node.
  2223. When using \code{interp-tests} or \code{compiler-tests} (see Appendix,
  2224. Section~\ref{appendix:utilities}), specify \code{type-check-C0} as the
  2225. type checker to use after \code{explicate-control}.
  2226. In the process of assigning variables to stack locations, it is
  2227. convenient for you to compute and store the size of the frame (in
  2228. bytes) in the $\itm{info}$ field of the \key{Program} node, with the
  2229. key \code{stack-space}, which is needed later to generate the
  2230. conclusion of the \code{main} procedure. The x86-64 standard requires
  2231. the frame size to be a multiple of 16 bytes. \index{frame}
  2232. \begin{exercise}
  2233. \normalfont Implement the \key{assign-homes} pass and test it on all
  2234. of the example programs that you created for the previous passes pass.
  2235. We recommend that \key{assign-homes} take an extra parameter that is a
  2236. mapping of variable names to homes (stack locations for now). Use the
  2237. \key{interp-tests} function (Appendix~\ref{appendix:utilities}) from
  2238. \key{utilities.rkt} to test your passes on the example programs.
  2239. \end{exercise}
  2240. \section{Patch Instructions}
  2241. \label{sec:patch-s0}
  2242. The \code{patch-instructions} pass compiles $\text{x86}^{*}_0$
  2243. programs to $\text{x86}_0$ programs by making sure that each
  2244. instruction adheres to the restrictions of the x86 assembly language.
  2245. In particular, at most one argument of an instruction may be a memory
  2246. reference.
  2247. We return to the following running example.
  2248. % s0_20.rkt
  2249. \begin{lstlisting}
  2250. (let ([a 42])
  2251. (let ([b a])
  2252. b))
  2253. \end{lstlisting}
  2254. After the \key{assign-homes} pass, the above program has been translated to
  2255. the following. \\
  2256. \begin{minipage}{0.5\textwidth}
  2257. \begin{lstlisting}
  2258. stack-space: 16
  2259. start:
  2260. movq $42, -8(%rbp)
  2261. movq -8(%rbp), -16(%rbp)
  2262. movq -16(%rbp), %rax
  2263. jmp conclusion
  2264. \end{lstlisting}
  2265. \end{minipage}\\
  2266. The second \key{movq} instruction is problematic because both
  2267. arguments are stack locations. We suggest fixing this problem by
  2268. moving from the source location to the register \key{rax} and then
  2269. from \key{rax} to the destination location, as follows.
  2270. \begin{lstlisting}
  2271. movq -8(%rbp), %rax
  2272. movq %rax, -16(%rbp)
  2273. \end{lstlisting}
  2274. \begin{exercise}
  2275. \normalfont
  2276. Implement the \key{patch-instructions} pass and test it on all of the
  2277. example programs that you created for the previous passes and create
  2278. three new example programs that are designed to exercise all of the
  2279. interesting code in this pass. Use the \key{interp-tests} function
  2280. (Appendix~\ref{appendix:utilities}) from \key{utilities.rkt} to test
  2281. your passes on the example programs.
  2282. \end{exercise}
  2283. \section{Print x86}
  2284. \label{sec:print-x86}
  2285. The last step of the compiler from $R_1$ to x86 is to convert the
  2286. $\text{x86}_0$ AST (defined in Figure~\ref{fig:x86-0-ast}) to the
  2287. string representation (defined in Figure~\ref{fig:x86-0-concrete}). The Racket
  2288. \key{format} and \key{string-append} functions are useful in this
  2289. regard. The main work that this step needs to perform is to create the
  2290. \key{main} function and the standard instructions for its prelude and
  2291. conclusion, as shown in Figure~\ref{fig:p1-x86} of
  2292. Section~\ref{sec:x86}. You need to know the number of stack-allocated
  2293. variables, so we suggest computing it in the \key{assign-homes} pass
  2294. (Section~\ref{sec:assign-r1}) and storing it in the $\itm{info}$ field
  2295. of the \key{program} node.
  2296. %% Your compiled code should print the result of the program's execution
  2297. %% by using the \code{print\_int} function provided in
  2298. %% \code{runtime.c}. If your compiler has been implemented correctly so
  2299. %% far, this final result should be stored in the \key{rax} register.
  2300. %% We'll talk more about how to perform function calls with arguments in
  2301. %% general later on, but for now, place the following after the compiled
  2302. %% code for the $R_1$ program but before the conclusion:
  2303. %% \begin{lstlisting}
  2304. %% movq %rax, %rdi
  2305. %% callq print_int
  2306. %% \end{lstlisting}
  2307. %% These lines move the value in \key{rax} into the \key{rdi} register, which
  2308. %% stores the first argument to be passed into \key{print\_int}.
  2309. If you want your program to run on Mac OS X, your code needs to
  2310. determine whether or not it is running on a Mac, and prefix
  2311. underscores to labels like \key{main}. You can determine the platform
  2312. with the Racket call \code{(system-type 'os)}, which returns
  2313. \code{'macosx}, \code{'unix}, or \code{'windows}.
  2314. %% In addition to
  2315. %% placing underscores on \key{main}, you need to put them in front of
  2316. %% \key{callq} labels (so \code{callq print\_int} becomes \code{callq
  2317. %% \_print\_int}).
  2318. \begin{exercise}
  2319. \normalfont Implement the \key{print-x86} pass and test it on all of
  2320. the example programs that you created for the previous passes. Use the
  2321. \key{compiler-tests} function (Appendix~\ref{appendix:utilities}) from
  2322. \key{utilities.rkt} to test your complete compiler on the example
  2323. programs. See the \key{run-tests.rkt} script in the student support
  2324. code for an example of how to use \key{compiler-tests}. Also, remember
  2325. to compile the provided \key{runtime.c} file to \key{runtime.o} using
  2326. \key{gcc}.
  2327. \end{exercise}
  2328. \section{Challenge: Partial Evaluator for $R_1$}
  2329. \label{sec:pe-R1}
  2330. \index{partial evaluation}
  2331. This section describes optional challenge exercises that involve
  2332. adapting and improving the partial evaluator for $R_0$ that was
  2333. introduced in Section~\ref{sec:partial-evaluation}.
  2334. \begin{exercise}\label{ex:pe-R1}
  2335. \normalfont
  2336. Adapt the partial evaluator from Section~\ref{sec:partial-evaluation}
  2337. (Figure~\ref{fig:pe-arith}) so that it applies to $R_1$ programs
  2338. instead of $R_0$ programs. Recall that $R_1$ adds \key{let} binding
  2339. and variables to the $R_0$ language, so you will need to add cases for
  2340. them in the \code{pe-exp} function. Once complete, add the partial
  2341. evaluation pass to the front of your compiler and make sure that your
  2342. compiler still passes all of the tests.
  2343. \end{exercise}
  2344. The next exercise builds on Exercise~\ref{ex:pe-R1}.
  2345. \begin{exercise}
  2346. \normalfont
  2347. Improve on the partial evaluator by replacing the \code{pe-neg} and
  2348. \code{pe-add} auxiliary functions with functions that know more about
  2349. arithmetic. For example, your partial evaluator should translate
  2350. \[
  2351. \code{(+ 1 (+ (read) 1))} \qquad \text{into} \qquad
  2352. \code{(+ 2 (read))}
  2353. \]
  2354. To accomplish this, the \code{pe-exp} function should produce output
  2355. in the form of the $\itm{residual}$ non-terminal of the following
  2356. grammar.
  2357. \[
  2358. \begin{array}{lcl}
  2359. \itm{inert} &::=& \Var \mid \LP\key{read}\RP \mid \LP\key{-} \;\Var\RP
  2360. \mid \LP\key{-} \;\LP\key{read}\RP\RP
  2361. \mid \LP\key{+} \; \itm{inert} \; \itm{inert}\RP\\
  2362. &\mid& \LP\key{let}~\LP\LS\Var~\itm{inert}\RS\RP~ \itm{inert} \RP \\
  2363. \itm{residual} &::=& \Int \mid \LP\key{+}\; \Int\; \itm{inert}\RP \mid \itm{inert}
  2364. \end{array}
  2365. \]
  2366. The \code{pe-add} and \code{pe-neg} functions may therefore assume
  2367. that their inputs are $\itm{residual}$ expressions and they should
  2368. return $\itm{residual}$ expressions. Once the improvements are
  2369. complete, make sure that your compiler still passes all of the tests.
  2370. After all, fast code is useless if it produces incorrect results!
  2371. \end{exercise}
  2372. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  2373. \chapter{Register Allocation}
  2374. \label{ch:register-allocation-r1}
  2375. \index{register allocation}
  2376. In Chapter~\ref{ch:int-exp} we placed all variables on the stack to
  2377. make our life easier. However, we can improve the performance of the
  2378. generated code if we instead place some variables into registers. The
  2379. CPU can access a register in a single cycle, whereas accessing the
  2380. stack takes many cycles if the relevant data is in cache or many more
  2381. to access main memory if the data is not in cache.
  2382. Figure~\ref{fig:reg-eg} shows a program with four variables that
  2383. serves as a running example. We show the source program and also the
  2384. output of instruction selection. At that point the program is almost
  2385. x86 assembly but not quite; it still contains variables instead of
  2386. stack locations or registers.
  2387. \begin{figure}
  2388. \begin{minipage}{0.45\textwidth}
  2389. Example $R_1$ program:
  2390. % s0_28.rkt
  2391. \begin{lstlisting}
  2392. (let ([v 1])
  2393. (let ([w 42])
  2394. (let ([x (+ v 7)])
  2395. (let ([y x])
  2396. (let ([z (+ x w)])
  2397. (+ z (- y)))))))
  2398. \end{lstlisting}
  2399. \end{minipage}
  2400. \begin{minipage}{0.45\textwidth}
  2401. After instruction selection:
  2402. \begin{lstlisting}
  2403. locals-types:
  2404. x : Integer, y : Integer,
  2405. z : Integer, t : Integer,
  2406. v : Integer, w : Integer
  2407. start:
  2408. movq $1, v
  2409. movq $42, w
  2410. movq v, x
  2411. addq $7, x
  2412. movq x, y
  2413. movq x, z
  2414. addq w, z
  2415. movq y, t
  2416. negq t
  2417. movq z, %rax
  2418. addq t, %rax
  2419. jmp conclusion
  2420. \end{lstlisting}
  2421. \end{minipage}
  2422. \caption{A running example program for register allocation.}
  2423. \label{fig:reg-eg}
  2424. \end{figure}
  2425. The goal of register allocation is to fit as many variables into
  2426. registers as possible. A program sometimes has more variables than
  2427. registers, so we cannot always map each variable to a different
  2428. register. Fortunately, it is common for different variables to be
  2429. needed during different periods of time during program execution, and
  2430. in such cases several variables can be mapped to the same register.
  2431. Consider variables \code{x} and \code{y} in Figure~\ref{fig:reg-eg}.
  2432. After the variable \code{x} is moved to \code{z} it is no longer
  2433. needed. Variable \code{y}, on the other hand, is used only after this
  2434. point, so \code{x} and \code{y} could share the same register. The
  2435. topic of Section~\ref{sec:liveness-analysis-r1} is how to compute
  2436. where a variable is needed. Once we have that information, we compute
  2437. which variables are needed at the same time, i.e., which ones
  2438. \emph{interfere} with each other, and represent this relation as an
  2439. undirected graph whose vertices are variables and edges indicate when
  2440. two variables interfere (Section~\ref{sec:build-interference}). We
  2441. then model register allocation as a graph coloring problem, which we
  2442. discuss in Section~\ref{sec:graph-coloring}.
  2443. If we run out of registers despite these efforts, we place the
  2444. remaining variables on the stack, similar to what we did in
  2445. Chapter~\ref{ch:int-exp}. It is common to use the verb \emph{spill}
  2446. for assigning a variable to a stack location. The decision to spill a
  2447. variable is handled as part of the graph coloring process described in
  2448. Section~\ref{sec:graph-coloring}.
  2449. We make the simplifying assumption that each variable is assigned to
  2450. one location (a register or stack address). A more sophisticated
  2451. approach is to assign a variable to one or more locations in different
  2452. regions of the program. For example, if a variable is used many times
  2453. in short sequence and then only used again after many other
  2454. instructions, it could be more efficient to assign the variable to a
  2455. register during the initial sequence and then move it to the stack for
  2456. the rest of its lifetime. We refer the interested reader to
  2457. \citet{Cooper:1998ly} and \citet{Cooper:2011aa} for more information
  2458. about that approach.
  2459. % discuss prioritizing variables based on how much they are used.
  2460. \section{Registers and Calling Conventions}
  2461. \label{sec:calling-conventions}
  2462. \index{calling conventions}
  2463. As we perform register allocation, we need to be aware of the
  2464. \emph{calling conventions} \index{calling conventions} that govern how
  2465. functions calls are performed in x86. Function calls require
  2466. coordination between the caller and the callee, which is often
  2467. assembly code written by different programmers or generated by
  2468. different compilers. Here we follow the System V calling conventions
  2469. that are used by the \code{gcc} compiler on Linux and
  2470. MacOS~\citep{Bryant:2005aa,Matz:2013aa}.
  2471. %
  2472. Even though $R_1$ does not include programmer-defined functions, our
  2473. generated code will 1) include a \code{main} function that the
  2474. operating system will call to initiate execution, and 2) make calls to
  2475. the \code{read\_int} function in our runtime system.
  2476. The calling conventions include rules about how functions share the
  2477. use of registers. In particular, the caller is responsible for freeing
  2478. up some registers prior to the function call for use by the callee.
  2479. These are called the \emph{caller-saved registers}
  2480. \index{caller-saved registers}
  2481. and they are
  2482. \begin{lstlisting}
  2483. rax rcx rdx rsi rdi r8 r9 r10 r11
  2484. \end{lstlisting}
  2485. On the other hand, the callee is responsible for preserving the values
  2486. of the \emph{callee-saved registers}, \index{callee-saved registers}
  2487. which are
  2488. \begin{lstlisting}
  2489. rsp rbp rbx r12 r13 r14 r15
  2490. \end{lstlisting}
  2491. We can think about this caller/callee convention from two points of
  2492. view, the caller view and the callee view:
  2493. \begin{itemize}
  2494. \item The caller should assume that all the caller-saved registers get
  2495. overwritten with arbitrary values by the callee. On the other hand,
  2496. the caller can safely assume that all the callee-saved registers
  2497. contain the same values after the call that they did before the
  2498. call.
  2499. \item The callee can freely use any of the caller-saved registers.
  2500. However, if the callee wants to use a callee-saved register, the
  2501. callee must arrange to put the original value back in the register
  2502. prior to returning to the caller, which is usually accomplished by
  2503. saving the value to the stack in the prelude of the function and
  2504. restoring the value in the conclusion of the function.
  2505. \end{itemize}
  2506. In x86, registers are also used for passing arguments to a function
  2507. and for the return value. In particular, the first six arguments of a
  2508. function are passed in the following six registers, in the order
  2509. given.
  2510. \begin{lstlisting}
  2511. rdi rsi rdx rcx r8 r9
  2512. \end{lstlisting}
  2513. If there are more than six arguments, then the convention is to use
  2514. space on the frame of the caller for the rest of the
  2515. arguments. However, in Chapter~\ref{ch:functions} we arrange to never
  2516. need more than six arguments. For now, the only function we care about
  2517. is \code{read\_int} and it takes zero argument.
  2518. %
  2519. The register \code{rax} is for the return value of a function.
  2520. The next question is how these calling conventions impact register
  2521. allocation. Consider the $R_1$ program in
  2522. Figure~\ref{fig:example-calling-conventions}. We first analyze this
  2523. example from the caller point of view and then from the callee point
  2524. of view.
  2525. The program makes two calls to the \code{read} function. Also, the
  2526. variable \code{x} is in-use during the second call to \code{read}, so
  2527. we need to make sure that the value in \code{x} does not get
  2528. accidentally wiped out by the call to \code{read}. One obvious
  2529. approach is to save all the values in caller-saved registers to the
  2530. stack prior to each function call, and restore them after each
  2531. call. That way, if the register allocator chooses to assign \code{x}
  2532. to a caller-saved register, its value will be preserved across the
  2533. call to \code{read}. However, the disadvantage of this approach is
  2534. that saving and restoring to the stack is relatively slow. If \code{x}
  2535. is not used many times, it may be better to assign \code{x} to a stack
  2536. location in the first place. Or better yet, if we can arrange for
  2537. \code{x} to be placed in a callee-saved register, then it won't need
  2538. to be saved and restored during function calls.
  2539. The approach that we recommend for variables that are in-use during a
  2540. function call is to either assign them to callee-saved registers or to
  2541. spill them to the stack. On the other hand, for variables that are not
  2542. in-use during a function call, we try the following alternatives in
  2543. order 1) look for an available caller-saved register (to leave room
  2544. for other variables in the callee-saved register), 2) look for a
  2545. callee-saved register, and 3) spill the variable to the stack.
  2546. It is straightforward to implement this approach in a graph coloring
  2547. register allocator. First, we know which variables are in-use during
  2548. every function call because we compute that information for every
  2549. instruction (Section~\ref{sec:liveness-analysis-r1}). Second, when we
  2550. build the interference graph (Section~\ref{sec:build-interference}),
  2551. we can place an edge between each of these variables and the
  2552. caller-saved registers in the interference graph. This will prevent
  2553. the graph coloring algorithm from assigning those variables to
  2554. caller-saved registers.
  2555. Returning to the example in
  2556. Figure~\ref{fig:example-calling-conventions}, let us analyze the
  2557. generated x86 code on the right-hand side, focusing on the
  2558. \code{start} block. Notice that variable \code{x} is assigned to
  2559. \code{rbx}, a callee-saved register. Thus, it is already in a safe
  2560. place during the second call to \code{read\_int}. Next, notice that
  2561. variable \code{y} is assigned to \code{rcx}, a caller-saved register,
  2562. because there are no function calls in the remainder of the block.
  2563. Next we analyze the example from the callee point of view, focusing on
  2564. the prelude and conclusion of the \code{main} function. As usual the
  2565. prelude begins with saving the \code{rbp} register to the stack and
  2566. setting the \code{rbp} to the current stack pointer. We now know why
  2567. it is necessary to save the \code{rbp}: it is a callee-saved register.
  2568. The prelude then pushes \code{rbx} to the stack because 1) \code{rbx}
  2569. is also a callee-saved register and 2) \code{rbx} is assigned to a
  2570. variable (\code{x}). There are several more callee-saved register that
  2571. are not saved in the prelude because they were not assigned to
  2572. variables. The prelude subtracts 8 bytes from the \code{rsp} to make
  2573. it 16-byte aligned and then jumps to the \code{start} block. Shifting
  2574. attention to the \code{conclusion}, we see that \code{rbx} is restored
  2575. from the stack with a \code{popq} instruction.
  2576. \index{prelude}\index{conclusion}
  2577. \begin{figure}[tp]
  2578. \begin{minipage}{0.45\textwidth}
  2579. Example $R_1$ program:
  2580. %s0_14.rkt
  2581. \begin{lstlisting}
  2582. (let ([x (read)])
  2583. (let ([y (read)])
  2584. (+ (+ x y) 42)))
  2585. \end{lstlisting}
  2586. \end{minipage}
  2587. \begin{minipage}{0.45\textwidth}
  2588. Generated x86 assembly:
  2589. \begin{lstlisting}
  2590. start:
  2591. callq read_int
  2592. movq %rax, %rbx
  2593. callq read_int
  2594. movq %rax, %rcx
  2595. addq %rcx, %rbx
  2596. movq %rbx, %rax
  2597. addq $42, %rax
  2598. jmp _conclusion
  2599. .globl main
  2600. main:
  2601. pushq %rbp
  2602. movq %rsp, %rbp
  2603. pushq %rbx
  2604. subq $8, %rsp
  2605. jmp start
  2606. conclusion:
  2607. addq $8, %rsp
  2608. popq %rbx
  2609. popq %rbp
  2610. retq
  2611. \end{lstlisting}
  2612. \end{minipage}
  2613. \caption{An example with function calls.}
  2614. \label{fig:example-calling-conventions}
  2615. \end{figure}
  2616. \section{Liveness Analysis}
  2617. \label{sec:liveness-analysis-r1}
  2618. \index{liveness analysis}
  2619. A variable or register is \emph{live} at a program point if its
  2620. current value is used at some later point in the program. We
  2621. refer to variables and registers collectively as \emph{locations}.
  2622. %
  2623. Consider the following code fragment in which there are two writes to
  2624. \code{b}. Are \code{a} and \code{b} both live at the same time?
  2625. \begin{lstlisting}[numbers=left,numberstyle=\tiny]
  2626. movq $5, a
  2627. movq $30, b
  2628. movq a, c
  2629. movq $10, b
  2630. addq b, c
  2631. \end{lstlisting}
  2632. The answer is no because the integer \code{30} written to \code{b} on
  2633. line 2 is never used. The variable \code{b} is read on line 5 and
  2634. there is an intervening write to \code{b} on line 4, so the read on
  2635. line 5 receives the value written on line 4, not line 2.
  2636. \begin{wrapfigure}[19]{l}[1.0in]{0.6\textwidth}
  2637. \small
  2638. \begin{tcolorbox}[title=\href{https://docs.racket-lang.org/reference/sets.html}{The Racket Set Package}]
  2639. A \emph{set} is an unordered collection of elements without duplicates.
  2640. \index{set}
  2641. \begin{description}
  2642. \item[$\LP\code{set}\,v\,\ldots\RP$] constructs a set containing the specified elements.
  2643. \item[$\LP\code{set-union}\,set_1\,set_2\RP$] returns the union of the two sets.
  2644. \item[$\LP\code{set-subtract}\,set_1\,set_2\RP$] returns the difference of the two sets.
  2645. \item[$\LP\code{set-member?}\,set\,v\RP$] is element $v$ in $set$?
  2646. \item[$\LP\code{set-count}\,set\RP$] how many unique elements are in $set$?
  2647. \item[$\LP\code{set->list}\,set\RP$] converts the set to a list.
  2648. \end{description}
  2649. \end{tcolorbox}
  2650. \end{wrapfigure}
  2651. The live locations can be computed by traversing the instruction
  2652. sequence back to front (i.e., backwards in execution order). Let
  2653. $I_1,\ldots, I_n$ be the instruction sequence. We write
  2654. $L_{\mathsf{after}}(k)$ for the set of live locations after
  2655. instruction $I_k$ and $L_{\mathsf{before}}(k)$ for the set of live
  2656. locations before instruction $I_k$. The live locations after an
  2657. instruction are always the same as the live locations before the next
  2658. instruction. \index{live-after} \index{live-before}
  2659. \begin{equation} \label{eq:live-after-before-next}
  2660. L_{\mathsf{after}}(k) = L_{\mathsf{before}}(k+1)
  2661. \end{equation}
  2662. To start things off, there are no live locations after the last
  2663. instruction\footnote{Technically, the \code{rax} register is live
  2664. but we do not use it for register allocation.}, so
  2665. \begin{equation}\label{eq:live-last-empty}
  2666. L_{\mathsf{after}}(n) = \emptyset
  2667. \end{equation}
  2668. We then apply the following rule repeatedly, traversing the
  2669. instruction sequence back to front.
  2670. \begin{equation}\label{eq:live-before-after-minus-writes-plus-reads}
  2671. L_{\mathtt{before}}(k) = (L_{\mathtt{after}}(k) - W(k)) \cup R(k),
  2672. \end{equation}
  2673. where $W(k)$ are the locations written to by instruction $I_k$ and
  2674. $R(k)$ are the locations read by instruction $I_k$.
  2675. There is a special case for \code{jmp} instructions. The locations
  2676. that are live before a \code{jmp} should be the locations that are
  2677. live before the instruction that follows the target label. So we
  2678. recommend maintaining an alist, perhaps called \code{label->live},
  2679. that maps each label to a set of such locations. Recall that for now,
  2680. the only \code{jmp} in a pseudo-x86 program is the one at the end, to
  2681. the \code{conclusion}. (For example, see Figure~\ref{fig:reg-eg}.) So
  2682. the alist should map \code{conclusion} to the set
  2683. $\{\ttm{rax},\ttm{rsp}\}$.
  2684. Let us walk through the above example, applying these formulas
  2685. starting with the instruction on line 5. We collect the answers in the
  2686. below listing. The $L_{\mathsf{after}}$ for the \code{addq b, c}
  2687. instruction is $\emptyset$ because it is the last instruction
  2688. (formula~\ref{eq:live-last-empty}). The $L_{\mathsf{before}}$ for
  2689. this instruction is $\{\ttm{b},\ttm{c}\}$ because it reads from
  2690. variables \code{b} and \code{c}
  2691. (formula~\ref{eq:live-before-after-minus-writes-plus-reads}), that is
  2692. \[
  2693. L_{\mathsf{before}}(5) = (\emptyset - \{\ttm{c}\}) \cup \{ \ttm{b}, \ttm{c} \} = \{ \ttm{b}, \ttm{c} \}
  2694. \]
  2695. Moving on the the instruction \code{movq \$10, b} at line 4, we copy
  2696. the live-before set from line 5 to be the live-after set for this
  2697. instruction (formula~\ref{eq:live-after-before-next}).
  2698. \[
  2699. L_{\mathsf{after}}(4) = \{ \ttm{b}, \ttm{c} \}
  2700. \]
  2701. This move instruction writes to \code{b} and does not read from any
  2702. variables, so we have the following live-before set
  2703. (formula~\ref{eq:live-before-after-minus-writes-plus-reads}).
  2704. \[
  2705. L_{\mathsf{before}}(4) = (\{\ttm{b},\ttm{c}\} - \{\ttm{b}\}) \cup \emptyset = \{ \ttm{c} \}
  2706. \]
  2707. The live-before for instruction \code{movq a, c}
  2708. is $\{\ttm{a}\}$ because it writes to $\{\ttm{c}\}$ and reads from $\{\ttm{a}\}$
  2709. (formula~\ref{eq:live-before-after-minus-writes-plus-reads}). The
  2710. live-before for \code{movq \$30, b} is $\{\ttm{a}\}$ because it writes to a
  2711. variable that is not live and does not read from a variable.
  2712. Finally, the live-before for \code{movq \$5, a} is $\emptyset$
  2713. because it writes to variable \code{a}.
  2714. \begin{center}
  2715. \begin{minipage}{0.45\textwidth}
  2716. \begin{lstlisting}[numbers=left,numberstyle=\tiny]
  2717. movq $5, a
  2718. movq $30, b
  2719. movq a, c
  2720. movq $10, b
  2721. addq b, c
  2722. \end{lstlisting}
  2723. \end{minipage}
  2724. \vrule\hspace{10pt}
  2725. \begin{minipage}{0.45\textwidth}
  2726. \begin{align*}
  2727. L_{\mathsf{before}}(1)= \emptyset,
  2728. L_{\mathsf{after}}(1)= \{\ttm{a}\}\\
  2729. L_{\mathsf{before}}(2)= \{\ttm{a}\},
  2730. L_{\mathsf{after}}(2)= \{\ttm{a}\}\\
  2731. L_{\mathsf{before}}(3)= \{\ttm{a}\},
  2732. L_{\mathsf{after}}(2)= \{\ttm{c}\}\\
  2733. L_{\mathsf{before}}(4)= \{\ttm{c}\},
  2734. L_{\mathsf{after}}(4)= \{\ttm{b},\ttm{c}\}\\
  2735. L_{\mathsf{before}}(5)= \{\ttm{b},\ttm{c}\},
  2736. L_{\mathsf{after}}(5)= \emptyset
  2737. \end{align*}
  2738. \end{minipage}
  2739. \end{center}
  2740. Figure~\ref{fig:live-eg} shows the results of liveness analysis for
  2741. the running example program, with the live-before and live-after sets
  2742. shown between each instruction to make the figure easy to read.
  2743. \begin{figure}[tp]
  2744. \hspace{20pt}
  2745. \begin{minipage}{0.45\textwidth}
  2746. \begin{lstlisting}
  2747. |$\{\ttm{rsp}\}$|
  2748. movq $1, v
  2749. |$\{\ttm{v},\ttm{rsp}\}$|
  2750. movq $42, w
  2751. |$\{\ttm{v},\ttm{w},\ttm{rsp}\}$|
  2752. movq v, x
  2753. |$\{\ttm{w},\ttm{x},\ttm{rsp}\}$|
  2754. addq $7, x
  2755. |$\{\ttm{w},\ttm{x},\ttm{rsp}\}$|
  2756. movq x, y
  2757. |$\{\ttm{w},\ttm{x},\ttm{y},\ttm{rsp}\}$|
  2758. movq x, z
  2759. |$\{\ttm{w},\ttm{y},\ttm{z},\ttm{rsp}\}$|
  2760. addq w, z
  2761. |$\{\ttm{y},\ttm{z},\ttm{rsp}\}$|
  2762. movq y, t
  2763. |$\{\ttm{t},\ttm{z},\ttm{rsp}\}$|
  2764. negq t
  2765. |$\{\ttm{t},\ttm{z},\ttm{rsp}\}$|
  2766. movq z, %rax
  2767. |$\{\ttm{rax},\ttm{t},\ttm{rsp}\}$|
  2768. addq t, %rax
  2769. |$\{\ttm{rax},\ttm{rsp}\}$|
  2770. jmp conclusion
  2771. \end{lstlisting}
  2772. \end{minipage}
  2773. \caption{The running example annotated with live-after sets.}
  2774. \label{fig:live-eg}
  2775. \end{figure}
  2776. \begin{exercise}\normalfont
  2777. Implement the compiler pass named \code{uncover-live} that computes
  2778. the live-after sets. We recommend storing the live-after sets (a list
  2779. of a set of variables) in the $\itm{info}$ field of the \code{Block}
  2780. structure.
  2781. %
  2782. We recommend organizing your code to use a helper function that takes
  2783. a list of instructions and an initial live-after set (typically empty)
  2784. and returns the list of live-after sets.
  2785. %
  2786. We recommend creating helper functions to 1) compute the set of
  2787. locations that appear in an argument (of an instruction), 2) compute
  2788. the locations read by an instruction which corresponds to the $R$
  2789. function discussed above, and 3) the locations written by an
  2790. instruction which corresponds to $W$. The \code{callq} instruction
  2791. should include all of the caller-saved registers in its write-set $W$
  2792. because the calling convention says that those registers may be
  2793. written to during the function call. Likewise, the \code{callq}
  2794. instruction should include the appropriate number of argument passing
  2795. registers in its read-set $R$, depending on the arity of the function
  2796. being called. (This is why the abstract syntax for \code{callq}
  2797. includes the arity.)
  2798. \end{exercise}
  2799. \section{Building the Interference Graph}
  2800. \label{sec:build-interference}
  2801. \begin{wrapfigure}[27]{r}[1.0in]{0.6\textwidth}
  2802. \small
  2803. \begin{tcolorbox}[title=\href{https://docs.racket-lang.org/graph/index.html}{The Racket Graph Library}]
  2804. A \emph{graph} is a collection of vertices and edges where each
  2805. edge connects two vertices. A graph is \emph{directed} if each
  2806. edge points from a source to a target. Otherwise the graph is
  2807. \emph{undirected}.
  2808. \index{graph}\index{directed graph}\index{undirected graph}
  2809. \begin{description}
  2810. \item[$\LP\code{directed-graph}\,\itm{edges}\RP$] constructs a
  2811. directed graph from a list of edges. Each edge is a list
  2812. containing the source and target vertex.
  2813. \item[$\LP\code{undirected-graph}\,\itm{edges}\RP$] constructs a
  2814. undirected graph from a list of edges. Each edge is represented by
  2815. a list containing two vertices.
  2816. \item[$\LP\code{add-vertex!}\,\itm{graph}\,\itm{vertex}\RP$]
  2817. inserts a vertex into the graph.
  2818. \item[$\LP\code{add-edge!}\,\itm{graph}\,\itm{source}\,\itm{target}\RP$]
  2819. inserts an edge between the two vertices into the graph.
  2820. \item[$\LP\code{in-neighbors}\,\itm{graph}\,\itm{vertex}\RP$]
  2821. returns a sequence of all the neighbors of the given vertex.
  2822. \item[$\LP\code{in-vertices}\,\itm{graph}\RP$]
  2823. returns a sequence of all the vertices in the graph.
  2824. \end{description}
  2825. \end{tcolorbox}
  2826. \end{wrapfigure}
  2827. Based on the liveness analysis, we know where each location is used
  2828. (read from). However, during register allocation, we need to answer
  2829. questions of the specific form: are locations $u$ and $v$ live at the
  2830. same time? (And therefore cannot be assigned to the same register.)
  2831. To make this question easier to answer, we create an explicit data
  2832. structure, an \emph{interference graph}\index{interference graph}. An
  2833. interference graph is an undirected graph that has an edge between two
  2834. locations if they are live at the same time, that is, if they
  2835. interfere with each other.
  2836. The most obvious way to compute the interference graph is to look at
  2837. the set of live location between each statement in the program and add
  2838. an edge to the graph for every pair of variables in the same set.
  2839. This approach is less than ideal for two reasons. First, it can be
  2840. expensive because it takes $O(n^2)$ time to look at every pair in a
  2841. set of $n$ live locations. Second, there is a special case in which
  2842. two locations that are live at the same time do not actually interfere
  2843. with each other: when they both contain the same value because we have
  2844. assigned one to the other.
  2845. A better way to compute the interference graph is to focus on the
  2846. writes~\cite{Appel:2003fk}. We do not want the writes performed by an
  2847. instruction to overwrite something in a live location. So for each
  2848. instruction, we create an edge between the locations being written to
  2849. and all the other live locations. (Except that one should not create
  2850. self edges.) Recall that for a \key{callq} instruction, we consider
  2851. all of the caller-saved registers as being written to, so an edge will
  2852. be added between every live variable and every caller-saved
  2853. register. For \key{movq}, we deal with the above-mentioned special
  2854. case by not adding an edge between a live variable $v$ and destination
  2855. $d$ if $v$ matches the source of the move. So we have the following
  2856. two rules.
  2857. \begin{enumerate}
  2858. \item If instruction $I_k$ is a move such as \key{movq} $s$\key{,}
  2859. $d$, then add the edge $(d,v)$ for every $v \in
  2860. L_{\mathsf{after}}(k)$ unless $v = d$ or $v = s$.
  2861. \item For any other instruction $I_k$, for every $d \in W(k)$
  2862. add an edge $(d,v)$ for every $v \in L_{\mathsf{after}}(k)$ unless $v = d$.
  2863. %% \item If instruction $I_k$ is an arithmetic instruction such as
  2864. %% \code{addq} $s$\key{,} $d$, then add the edge $(d,v)$ for every $v \in
  2865. %% L_{\mathsf{after}}(k)$ unless $v = d$.
  2866. %% \item If instruction $I_k$ is of the form \key{callq}
  2867. %% $\mathit{label}$, then add an edge $(r,v)$ for every caller-saved
  2868. %% register $r$ and every variable $v \in L_{\mathsf{after}}(k)$.
  2869. \end{enumerate}
  2870. Working from the top to bottom of Figure~\ref{fig:live-eg}, we apply
  2871. the above rules to each instruction. We highlight a few of the
  2872. instructions and then refer the reader to
  2873. Figure~\ref{fig:interference-results} for all the interference
  2874. results. The first instruction is \lstinline{movq $1, v}, so rule 3
  2875. applies, and the live-after set is $\{\ttm{v}\}$. We do not add any
  2876. interference edges because the one live variable \code{v} is also the
  2877. destination of this instruction.
  2878. %
  2879. For the second instruction, \lstinline{movq $42, w}, so rule 3 applies
  2880. again, and the live-after set is $\{\ttm{v},\ttm{w}\}$. So the target
  2881. $\ttm{w}$ of \key{movq} interferes with $\ttm{v}$.
  2882. %
  2883. Next we skip forward to the instruction \lstinline{movq x, y}.
  2884. \begin{figure}[tbp]
  2885. \begin{quote}
  2886. \begin{tabular}{ll}
  2887. \lstinline!movq $1, v!& \ttm{v} interferes with \ttm{rsp},\\
  2888. \lstinline!movq $42, w!& \ttm{w} interferes with \ttm{v} and \ttm{rsp},\\
  2889. \lstinline!movq v, x!& \ttm{x} interferes with \ttm{w} and \ttm{rsp},\\
  2890. \lstinline!addq $7, x!& \ttm{x} interferes with \ttm{w} and \ttm{rsp},\\
  2891. \lstinline!movq x, y!& \ttm{y} interferes with \ttm{w} and \ttm{rsp} but not \ttm{x},\\
  2892. \lstinline!movq x, z!& \ttm{z} interferes with \ttm{w}, \ttm{y}, and \ttm{rsp},\\
  2893. \lstinline!addq w, z!& \ttm{z} interferes with \ttm{y} and \ttm{rsp}, \\
  2894. \lstinline!movq y, t!& \ttm{t} interferes with \ttm{z} and \ttm{rsp}, \\
  2895. \lstinline!negq t!& \ttm{t} interferes with \ttm{z} and \ttm{rsp}, \\
  2896. \lstinline!movq z, %rax! & \ttm{rax} interferes with \ttm{t} and \ttm{rsp}, \\
  2897. \lstinline!addq t, %rax! & \ttm{rax} interferes with \ttm{rsp}. \\
  2898. \lstinline!jmp conclusion!& no interference.
  2899. \end{tabular}
  2900. \end{quote}
  2901. \caption{Interference results for the running example.}
  2902. \label{fig:interference-results}
  2903. \end{figure}
  2904. The resulting interference graph is shown in
  2905. Figure~\ref{fig:interfere}.
  2906. \begin{figure}[tbp]
  2907. \large
  2908. \[
  2909. \begin{tikzpicture}[baseline=(current bounding box.center)]
  2910. \node (rax) at (0,0) {$\ttm{rax}$};
  2911. \node (rsp) at (9,2) {$\ttm{rsp}$};
  2912. \node (t1) at (0,2) {$\ttm{t}$};
  2913. \node (z) at (3,2) {$\ttm{z}$};
  2914. \node (x) at (6,2) {$\ttm{x}$};
  2915. \node (y) at (3,0) {$\ttm{y}$};
  2916. \node (w) at (6,0) {$\ttm{w}$};
  2917. \node (v) at (9,0) {$\ttm{v}$};
  2918. \draw (t1) to (rax);
  2919. \draw (t1) to (z);
  2920. \draw (z) to (y);
  2921. \draw (z) to (w);
  2922. \draw (x) to (w);
  2923. \draw (y) to (w);
  2924. \draw (v) to (w);
  2925. \draw (v) to (rsp);
  2926. \draw (w) to (rsp);
  2927. \draw (x) to (rsp);
  2928. \draw (y) to (rsp);
  2929. \path[-.,bend left=15] (z) edge node {} (rsp);
  2930. \path[-.,bend left=10] (t1) edge node {} (rsp);
  2931. \draw (rax) to (rsp);
  2932. \end{tikzpicture}
  2933. \]
  2934. \caption{The interference graph of the example program.}
  2935. \label{fig:interfere}
  2936. \end{figure}
  2937. %% Our next concern is to choose a data structure for representing the
  2938. %% interference graph. There are many choices for how to represent a
  2939. %% graph, for example, \emph{adjacency matrix}, \emph{adjacency list},
  2940. %% and \emph{edge set}~\citep{Cormen:2001uq}. The right way to choose a
  2941. %% data structure is to study the algorithm that uses the data structure,
  2942. %% determine what operations need to be performed, and then choose the
  2943. %% data structure that provide the most efficient implementations of
  2944. %% those operations. Often times the choice of data structure can have an
  2945. %% effect on the time complexity of the algorithm, as it does here. If
  2946. %% you skim the next section, you will see that the register allocation
  2947. %% algorithm needs to ask the graph for all of its vertices and, given a
  2948. %% vertex, it needs to known all of the adjacent vertices. Thus, the
  2949. %% correct choice of graph representation is that of an adjacency
  2950. %% list. There are helper functions in \code{utilities.rkt} for
  2951. %% representing graphs using the adjacency list representation:
  2952. %% \code{make-graph}, \code{add-edge}, and \code{adjacent}
  2953. %% (Appendix~\ref{appendix:utilities}).
  2954. %% %
  2955. %% \margincomment{\footnotesize To do: change to use the
  2956. %% Racket graph library. \\ --Jeremy}
  2957. %% %
  2958. %% In particular, those functions use a hash table to map each vertex to
  2959. %% the set of adjacent vertices, and the sets are represented using
  2960. %% Racket's \key{set}, which is also a hash table.
  2961. \begin{exercise}\normalfont
  2962. Implement the compiler pass named \code{build-interference} according
  2963. to the algorithm suggested above. We recommend using the \code{graph}
  2964. package to create and inspect the interference graph. The output
  2965. graph of this pass should be stored in the $\itm{info}$ field of the
  2966. program, under the key \code{conflicts}.
  2967. \end{exercise}
  2968. \section{Graph Coloring via Sudoku}
  2969. \label{sec:graph-coloring}
  2970. \index{graph coloring}
  2971. \index{Sudoku}
  2972. \index{color}
  2973. We come to the main event, mapping variables to registers (or to stack
  2974. locations in the event that we run out of registers). We need to make
  2975. sure that two variables do not get mapped to the same register if the
  2976. two variables interfere with each other. Thinking about the
  2977. interference graph, this means that adjacent vertices must be mapped
  2978. to different registers. If we think of registers as colors, the
  2979. register allocation problem becomes the widely-studied graph coloring
  2980. problem~\citep{Balakrishnan:1996ve,Rosen:2002bh}.
  2981. The reader may be more familiar with the graph coloring problem than he
  2982. or she realizes; the popular game of Sudoku is an instance of the
  2983. graph coloring problem. The following describes how to build a graph
  2984. out of an initial Sudoku board.
  2985. \begin{itemize}
  2986. \item There is one vertex in the graph for each Sudoku square.
  2987. \item There is an edge between two vertices if the corresponding squares
  2988. are in the same row, in the same column, or if the squares are in
  2989. the same $3\times 3$ region.
  2990. \item Choose nine colors to correspond to the numbers $1$ to $9$.
  2991. \item Based on the initial assignment of numbers to squares in the
  2992. Sudoku board, assign the corresponding colors to the corresponding
  2993. vertices in the graph.
  2994. \end{itemize}
  2995. If you can color the remaining vertices in the graph with the nine
  2996. colors, then you have also solved the corresponding game of Sudoku.
  2997. Figure~\ref{fig:sudoku-graph} shows an initial Sudoku game board and
  2998. the corresponding graph with colored vertices. We map the Sudoku
  2999. number 1 to blue, 2 to yellow, and 3 to red. We only show edges for a
  3000. sampling of the vertices (the colored ones) because showing edges for
  3001. all of the vertices would make the graph unreadable.
  3002. \begin{figure}[tbp]
  3003. \includegraphics[width=0.45\textwidth]{figs/sudoku}
  3004. \includegraphics[width=0.5\textwidth]{figs/sudoku-graph}
  3005. \caption{A Sudoku game board and the corresponding colored graph.}
  3006. \label{fig:sudoku-graph}
  3007. \end{figure}
  3008. Given that Sudoku is an instance of graph coloring, one can use Sudoku
  3009. strategies to come up with an algorithm for allocating registers. For
  3010. example, one of the basic techniques for Sudoku is called Pencil
  3011. Marks. The idea is to use a process of elimination to determine what
  3012. numbers no longer make sense for a square and write down those
  3013. numbers in the square (writing very small). For example, if the number
  3014. $1$ is assigned to a square, then by process of elimination, you can
  3015. write the pencil mark $1$ in all the squares in the same row, column,
  3016. and region. Many Sudoku computer games provide automatic support for
  3017. Pencil Marks.
  3018. %
  3019. The Pencil Marks technique corresponds to the notion of
  3020. \emph{saturation}\index{saturation} due to \cite{Brelaz:1979eu}.
  3021. The saturation of a
  3022. vertex, in Sudoku terms, is the set of numbers that are no longer
  3023. available. In graph terminology, we have the following definition:
  3024. \begin{equation*}
  3025. \mathrm{saturation}(u) = \{ c \;|\; \exists v. v \in \mathrm{neighbors}(u)
  3026. \text{ and } \mathrm{color}(v) = c \}
  3027. \end{equation*}
  3028. where $\mathrm{neighbors}(u)$ is the set of vertices that share an
  3029. edge with $u$.
  3030. Using the Pencil Marks technique leads to a simple strategy for
  3031. filling in numbers: if there is a square with only one possible number
  3032. left, then choose that number! But what if there are no squares with
  3033. only one possibility left? One brute-force approach is to try them
  3034. all: choose the first and if it ultimately leads to a solution,
  3035. great. If not, backtrack and choose the next possibility. One good
  3036. thing about Pencil Marks is that it reduces the degree of branching in
  3037. the search tree. Nevertheless, backtracking can be horribly time
  3038. consuming. One way to reduce the amount of backtracking is to use the
  3039. most-constrained-first heuristic. That is, when choosing a square,
  3040. always choose one with the fewest possibilities left (the vertex with
  3041. the highest saturation). The idea is that choosing highly constrained
  3042. squares earlier rather than later is better because later on there may
  3043. not be any possibilities left for those squares.
  3044. However, register allocation is easier than Sudoku because the
  3045. register allocator can map variables to stack locations when the
  3046. registers run out. Thus, it makes sense to drop backtracking in favor
  3047. of greedy search, that is, make the best choice at the time and keep
  3048. going. We still wish to minimize the number of colors needed, so
  3049. keeping the most-constrained-first heuristic is a good idea.
  3050. Figure~\ref{fig:satur-algo} gives the pseudo-code for a simple greedy
  3051. algorithm for register allocation based on saturation and the
  3052. most-constrained-first heuristic. It is roughly equivalent to the
  3053. DSATUR algorithm of \cite{Brelaz:1979eu} (also known as saturation
  3054. degree ordering~\citep{Gebremedhin:1999fk,Omari:2006uq}). Just as in
  3055. Sudoku, the algorithm represents colors with integers. The integers
  3056. $0$ through $k-1$ correspond to the $k$ registers that we use for
  3057. register allocation. The integers $k$ and larger correspond to stack
  3058. locations. The registers that are not used for register allocation,
  3059. such as \code{rax}, are assigned to negative integers. In particular,
  3060. we assign $-1$ to \code{rax} and $-2$ to \code{rsp}.
  3061. One might wonder why we include registers at all in the liveness
  3062. analysis and interference graph, for example, we never allocate a
  3063. variable to \code{rax} and \code{rsp}, so it would be harmless to
  3064. leave them out. As we see in Chapter~\ref{ch:tuples}, when we begin
  3065. to use register for passing arguments to functions, it will be
  3066. necessary for those registers to appear in the interference graph
  3067. because those registers will also be assigned to variables, and we
  3068. don't want those two uses to encroach on each other. Regarding
  3069. registers such as \code{rax} and \code{rsp} that are not used for
  3070. variables, we could omit them from the interference graph but that
  3071. would require adding special cases to our algorithm, which would
  3072. complicate the logic for little gain.
  3073. \begin{figure}[btp]
  3074. \centering
  3075. \begin{lstlisting}[basicstyle=\rmfamily,deletekeywords={for,from,with,is,not,in,find},morekeywords={while},columns=fullflexible]
  3076. Algorithm: DSATUR
  3077. Input: a graph |$G$|
  3078. Output: an assignment |$\mathrm{color}[v]$| for each vertex |$v \in G$|
  3079. |$W \gets \mathrm{vertices}(G)$|
  3080. while |$W \neq \emptyset$| do
  3081. pick a vertex |$u$| from |$W$| with the highest saturation,
  3082. breaking ties randomly
  3083. find the lowest color |$c$| that is not in |$\{ \mathrm{color}[v] \;:\; v \in \mathrm{adjacent}(u)\}$|
  3084. |$\mathrm{color}[u] \gets c$|
  3085. |$W \gets W - \{u\}$|
  3086. \end{lstlisting}
  3087. \caption{The saturation-based greedy graph coloring algorithm.}
  3088. \label{fig:satur-algo}
  3089. \end{figure}
  3090. With the DSATUR algorithm in hand, let us return to the running
  3091. example and consider how to color the interference graph in
  3092. Figure~\ref{fig:interfere}.
  3093. %
  3094. We color the vertices for registers with their own color. For example,
  3095. \code{rax} is assigned the color $-1$ and \code{rsp} is assigned $-2$.
  3096. The vertices for variables are not yet colored, so they annotated with
  3097. a dash. We then update the saturation for vertices that are adjacent
  3098. to a register. For example, the saturation for \code{t} is $\{-1,-2\}$
  3099. because it interferes with both \code{rax} and \code{rsp}.
  3100. \[
  3101. \begin{tikzpicture}[baseline=(current bounding box.center)]
  3102. \node (rax) at (0,0) {$\ttm{rax}:-1,\{-2\}$};
  3103. \node (rsp) at (10,2) {$\ttm{rsp}:-2,\{-1\}$};
  3104. \node (t1) at (0,2) {$\ttm{t}:-,\{-1,-2\}$};
  3105. \node (z) at (3,2) {$\ttm{z}:-,\{-2\}$};
  3106. \node (x) at (6,2) {$\ttm{x}:-,\{-2\}$};
  3107. \node (y) at (3,0) {$\ttm{y}:-,\{-2\}$};
  3108. \node (w) at (6,0) {$\ttm{w}:-,\{-2\}$};
  3109. \node (v) at (10,0) {$\ttm{v}:-,\{-2\}$};
  3110. \draw (t1) to (rax);
  3111. \draw (t1) to (z);
  3112. \draw (z) to (y);
  3113. \draw (z) to (w);
  3114. \draw (x) to (w);
  3115. \draw (y) to (w);
  3116. \draw (v) to (w);
  3117. \draw (v) to (rsp);
  3118. \draw (w) to (rsp);
  3119. \draw (x) to (rsp);
  3120. \draw (y) to (rsp);
  3121. \path[-.,bend left=15] (z) edge node {} (rsp);
  3122. \path[-.,bend left=10] (t1) edge node {} (rsp);
  3123. \draw (rax) to (rsp);
  3124. \end{tikzpicture}
  3125. \]
  3126. The algorithm says to select a maximally saturated vertex. So we pick
  3127. $\ttm{t}$ and color it with the first available integer, which is
  3128. $0$. We mark $0$ as no longer available for $\ttm{z}$, $\ttm{rax}$,
  3129. and \ttm{rsp} because they interfere with $\ttm{t}$.
  3130. \[
  3131. \begin{tikzpicture}[baseline=(current bounding box.center)]
  3132. \node (rax) at (0,0) {$\ttm{rax}:-1,\{0,-2\}$};
  3133. \node (rsp) at (10,2) {$\ttm{rsp}:-2,\{-1,0\}$};
  3134. \node (t1) at (0,2) {$\ttm{t}:0,\{-1,-2\}$};
  3135. \node (z) at (3,2) {$\ttm{z}:-,\{0,-2\}$};
  3136. \node (x) at (6,2) {$\ttm{x}:-,\{-2\}$};
  3137. \node (y) at (3,0) {$\ttm{y}:-,\{-2\}$};
  3138. \node (w) at (6,0) {$\ttm{w}:-,\{-2\}$};
  3139. \node (v) at (10,0) {$\ttm{v}:-,\{-2\}$};
  3140. \draw (t1) to (rax);
  3141. \draw (t1) to (z);
  3142. \draw (z) to (y);
  3143. \draw (z) to (w);
  3144. \draw (x) to (w);
  3145. \draw (y) to (w);
  3146. \draw (v) to (w);
  3147. \draw (v) to (rsp);
  3148. \draw (w) to (rsp);
  3149. \draw (x) to (rsp);
  3150. \draw (y) to (rsp);
  3151. \path[-.,bend left=15] (z) edge node {} (rsp);
  3152. \path[-.,bend left=10] (t1) edge node {} (rsp);
  3153. \draw (rax) to (rsp);
  3154. \end{tikzpicture}
  3155. \]
  3156. We repeat the process, selecting another maximally saturated
  3157. vertex, which is \code{z}, and color it with the first available
  3158. number, which is $1$. We add $1$ to the saturation for the
  3159. neighboring vertices \code{t}, \code{y}, \code{w}, and \code{rsp}.
  3160. \[
  3161. \begin{tikzpicture}[baseline=(current bounding box.center)]
  3162. \node (rax) at (0,0) {$\ttm{rax}:-1,\{0,-2\}$};
  3163. \node (rsp) at (10,2) {$\ttm{rsp}:-2,\{-1,0,1\}$};
  3164. \node (t1) at (0,2) {$\ttm{t}:0,\{-1,1,-2\}$};
  3165. \node (z) at (3,2) {$\ttm{z}:1,\{0,-2\}$};
  3166. \node (x) at (6,2) {$\ttm{x}:-,\{-2\}$};
  3167. \node (y) at (3,0) {$\ttm{y}:-,\{1,-2\}$};
  3168. \node (w) at (6,0) {$\ttm{w}:-,\{1,-2\}$};
  3169. \node (v) at (10,0) {$\ttm{v}:-,\{-2\}$};
  3170. \draw (t1) to (rax);
  3171. \draw (t1) to (z);
  3172. \draw (z) to (y);
  3173. \draw (z) to (w);
  3174. \draw (x) to (w);
  3175. \draw (y) to (w);
  3176. \draw (v) to (w);
  3177. \draw (v) to (rsp);
  3178. \draw (w) to (rsp);
  3179. \draw (x) to (rsp);
  3180. \draw (y) to (rsp);
  3181. \path[-.,bend left=15] (z) edge node {} (rsp);
  3182. \path[-.,bend left=10] (t1) edge node {} (rsp);
  3183. \draw (rax) to (rsp);
  3184. \end{tikzpicture}
  3185. \]
  3186. The most saturated vertices are now \code{w} and \code{y}. We color
  3187. \code{w} with the first available color, which is $0$.
  3188. \[
  3189. \begin{tikzpicture}[baseline=(current bounding box.center)]
  3190. \node (rax) at (0,0) {$\ttm{rax}:-1,\{0,-2\}$};
  3191. \node (rsp) at (10,2) {$\ttm{rsp}:-2,\{-1,0,1\}$};
  3192. \node (t1) at (0,2) {$\ttm{t}:0,\{-1,1,-2\}$};
  3193. \node (z) at (3,2) {$\ttm{z}:1,\{0,-2\}$};
  3194. \node (x) at (6,2) {$\ttm{x}:-,\{0,-2\}$};
  3195. \node (y) at (3,0) {$\ttm{y}:-,\{0,1,-2\}$};
  3196. \node (w) at (6,0) {$\ttm{w}:0,\{1,-2\}$};
  3197. \node (v) at (10,0) {$\ttm{v}:-,\{0,-2\}$};
  3198. \draw (t1) to (rax);
  3199. \draw (t1) to (z);
  3200. \draw (z) to (y);
  3201. \draw (z) to (w);
  3202. \draw (x) to (w);
  3203. \draw (y) to (w);
  3204. \draw (v) to (w);
  3205. \draw (v) to (rsp);
  3206. \draw (w) to (rsp);
  3207. \draw (x) to (rsp);
  3208. \draw (y) to (rsp);
  3209. \path[-.,bend left=15] (z) edge node {} (rsp);
  3210. \path[-.,bend left=10] (t1) edge node {} (rsp);
  3211. \draw (rax) to (rsp);
  3212. \end{tikzpicture}
  3213. \]
  3214. Vertex \code{y} is now the most highly saturated, so we color \code{y}
  3215. with $2$. We cannot choose $0$ or $1$ because those numbers are in
  3216. \code{y}'s saturation set. Indeed, \code{y} interferes with \code{w}
  3217. and \code{z}, whose colors are $0$ and $1$ respectively.
  3218. \[
  3219. \begin{tikzpicture}[baseline=(current bounding box.center)]
  3220. \node (rax) at (0,0) {$\ttm{rax}:-1,\{0,-2\}$};
  3221. \node (rsp) at (10,2) {$\ttm{rsp}:-2,\{-1,0,1,2\}$};
  3222. \node (t1) at (0,2) {$\ttm{t}:0,\{-1,1,-2\}$};
  3223. \node (z) at (3,2) {$\ttm{z}:1,\{0,2,-2\}$};
  3224. \node (x) at (6,2) {$\ttm{x}:-,\{0,-2\}$};
  3225. \node (y) at (3,0) {$\ttm{y}:2,\{0,1,-2\}$};
  3226. \node (w) at (6,0) {$\ttm{w}:0,\{1,2,-2\}$};
  3227. \node (v) at (10,0) {$\ttm{v}:-,\{0,-2\}$};
  3228. \draw (t1) to (rax);
  3229. \draw (t1) to (z);
  3230. \draw (z) to (y);
  3231. \draw (z) to (w);
  3232. \draw (x) to (w);
  3233. \draw (y) to (w);
  3234. \draw (v) to (w);
  3235. \draw (v) to (rsp);
  3236. \draw (w) to (rsp);
  3237. \draw (x) to (rsp);
  3238. \draw (y) to (rsp);
  3239. \path[-.,bend left=15] (z) edge node {} (rsp);
  3240. \path[-.,bend left=10] (t1) edge node {} (rsp);
  3241. \draw (rax) to (rsp);
  3242. \end{tikzpicture}
  3243. \]
  3244. Now \code{x} and \code{v} are the most saturated, so we color \code{v} with $1$.
  3245. \[
  3246. \begin{tikzpicture}[baseline=(current bounding box.center)]
  3247. \node (rax) at (0,0) {$\ttm{rax}:-1,\{0,-2\}$};
  3248. \node (rsp) at (10,2) {$\ttm{rsp}:-2,\{-1,0,1,2\}$};
  3249. \node (t1) at (0,2) {$\ttm{t}:0,\{-1,1,-2\}$};
  3250. \node (z) at (3,2) {$\ttm{z}:1,\{0,2,-2\}$};
  3251. \node (x) at (6,2) {$\ttm{x}:-,\{0,-2\}$};
  3252. \node (y) at (3,0) {$\ttm{y}:2,\{0,1,-2\}$};
  3253. \node (w) at (6,0) {$\ttm{w}:0,\{1,2,-2\}$};
  3254. \node (v) at (10,0) {$\ttm{v}:1,\{0,-2\}$};
  3255. \draw (t1) to (rax);
  3256. \draw (t1) to (z);
  3257. \draw (z) to (y);
  3258. \draw (z) to (w);
  3259. \draw (x) to (w);
  3260. \draw (y) to (w);
  3261. \draw (v) to (w);
  3262. \draw (v) to (rsp);
  3263. \draw (w) to (rsp);
  3264. \draw (x) to (rsp);
  3265. \draw (y) to (rsp);
  3266. \path[-.,bend left=15] (z) edge node {} (rsp);
  3267. \path[-.,bend left=10] (t1) edge node {} (rsp);
  3268. \draw (rax) to (rsp);
  3269. \end{tikzpicture}
  3270. \]
  3271. In the last step of the algorithm, we color \code{x} with $1$.
  3272. \[
  3273. \begin{tikzpicture}[baseline=(current bounding box.center)]
  3274. \node (rax) at (0,0) {$\ttm{rax}:-1,\{0,-2\}$};
  3275. \node (rsp) at (10,2) {$\ttm{rsp}:-2,\{-1,0,1,2\}$};
  3276. \node (t1) at (0,2) {$\ttm{t}:0,\{-1,1,-2\}$};
  3277. \node (z) at (3,2) {$\ttm{z}:1,\{0,2,-2\}$};
  3278. \node (x) at (6,2) {$\ttm{x}:1,\{0,-2\}$};
  3279. \node (y) at (3,0) {$\ttm{y}:2,\{0,1,-2\}$};
  3280. \node (w) at (6,0) {$\ttm{w}:0,\{1,2,-2\}$};
  3281. \node (v) at (10,0) {$\ttm{v}:1,\{0,-2\}$};
  3282. \draw (t1) to (rax);
  3283. \draw (t1) to (z);
  3284. \draw (z) to (y);
  3285. \draw (z) to (w);
  3286. \draw (x) to (w);
  3287. \draw (y) to (w);
  3288. \draw (v) to (w);
  3289. \draw (v) to (rsp);
  3290. \draw (w) to (rsp);
  3291. \draw (x) to (rsp);
  3292. \draw (y) to (rsp);
  3293. \path[-.,bend left=15] (z) edge node {} (rsp);
  3294. \path[-.,bend left=10] (t1) edge node {} (rsp);
  3295. \draw (rax) to (rsp);
  3296. \end{tikzpicture}
  3297. \]
  3298. With the coloring complete, we finalize the assignment of variables to
  3299. registers and stack locations. Recall that if we have $k$ registers to
  3300. use for allocation, we map the first $k$ colors to registers and the
  3301. rest to stack locations. Suppose for the moment that we have just one
  3302. register to use for register allocation, \key{rcx}. Then the following
  3303. maps of colors to registers and stack allocations.
  3304. \[
  3305. \{ 0 \mapsto \key{\%rcx}, \; 1 \mapsto \key{-8(\%rbp)}, \; 2 \mapsto \key{-16(\%rbp)} \}
  3306. \]
  3307. Putting this mapping together with the above coloring of the
  3308. variables, we arrive at the following assignment.
  3309. \begin{gather*}
  3310. \{ \ttm{v} \mapsto \key{\%rcx}, \,
  3311. \ttm{w} \mapsto \key{\%rcx}, \,
  3312. \ttm{x} \mapsto \key{-8(\%rbp)}, \,
  3313. \ttm{y} \mapsto \key{-16(\%rbp)}, \\
  3314. \ttm{z} \mapsto \key{-8(\%rbp)}, \,
  3315. \ttm{t} \mapsto \key{\%rcx} \}
  3316. \end{gather*}
  3317. Applying this assignment to our running example, on the left, yields
  3318. the program on the right.
  3319. % why frame size of 32? -JGS
  3320. \begin{center}
  3321. \begin{minipage}{0.3\textwidth}
  3322. \begin{lstlisting}
  3323. movq $1, v
  3324. movq $42, w
  3325. movq v, x
  3326. addq $7, x
  3327. movq x, y
  3328. movq x, z
  3329. addq w, z
  3330. movq y, t
  3331. negq t
  3332. movq z, %rax
  3333. addq t, %rax
  3334. jmp conclusion
  3335. \end{lstlisting}
  3336. \end{minipage}
  3337. $\Rightarrow\qquad$
  3338. \begin{minipage}{0.45\textwidth}
  3339. \begin{lstlisting}
  3340. movq $1, %rcx
  3341. movq $42, %rcx
  3342. movq %rcx, -8(%rbp)
  3343. addq $7, -8(%rbp)
  3344. movq -8(%rbp), -16(%rbp)
  3345. movq -8(%rbp), -8(%rbp)
  3346. addq %rcx, -8(%rbp)
  3347. movq -16(%rbp), %rcx
  3348. negq %rcx
  3349. movq -8(%rbp), %rax
  3350. addq %rcx, %rax
  3351. jmp conclusion
  3352. \end{lstlisting}
  3353. \end{minipage}
  3354. \end{center}
  3355. The resulting program is almost an x86 program. The remaining step is
  3356. the patch instructions pass. In this example, the trivial move of
  3357. \code{-8(\%rbp)} to itself is deleted and the addition of
  3358. \code{-8(\%rbp)} to \key{-16(\%rbp)} is fixed by going through
  3359. \code{rax} as follows.
  3360. \begin{lstlisting}
  3361. movq -8(%rbp), %rax
  3362. addq %rax, -16(%rbp)
  3363. \end{lstlisting}
  3364. We recommend creating a helper function named \code{color-graph} that
  3365. takes an interference graph and a list of all the variables in the
  3366. program. This function should return a mapping of variables to their
  3367. colors (represented as natural numbers). By creating this helper
  3368. function, you will be able to reuse it in Chapter~\ref{ch:functions}
  3369. when you add support for functions. To prioritize the processing of
  3370. highly saturated nodes inside your \code{color-graph} function, we
  3371. recommend using the priority queue data structure (see the side bar on
  3372. the right). Note that you will also need to maintain a mapping from
  3373. variables to their ``handles'' in the priority queue so that you can
  3374. notify the priority queue when their saturation changes.
  3375. \begin{wrapfigure}[23]{r}[1.0in]{0.6\textwidth}
  3376. \small
  3377. \begin{tcolorbox}[title=Priority Queue]
  3378. A \emph{priority queue} is a collection of items in which the
  3379. removal of items is governed by priority. In a ``min'' queue,
  3380. lower priority items are removed first. An implementation is in
  3381. \code{priority\_queue.rkt} of the support code. \index{priority
  3382. queue} \index{minimum priority queue}
  3383. \begin{description}
  3384. \item[$\LP\code{make-pqueue}\,\itm{cmp}\RP$] constructs an empty
  3385. priority queue that uses the $\itm{cmp}$ predicate to determine
  3386. whether its first argument has lower or equal priority to its
  3387. second argument.
  3388. \item[$\LP\code{pqueue-count}\,\itm{queue}\RP$] returns the number of
  3389. items in the queue.
  3390. \item[$\LP\code{pqueue-push!}\,\itm{queue}\,\itm{item}\RP$] inserts
  3391. the item into the queue and returns a handle for the item in the
  3392. queue.
  3393. \item[$\LP\code{pqueue-pop!}\,\itm{queue}\RP$] returns the item with
  3394. the lowest priority.
  3395. \item[$\LP\code{pqueue-decrease-key!}\,\itm{queue}\,\itm{handle}\RP$]
  3396. notifies the queue that the priority has decreased for the item
  3397. associated with the given handle.
  3398. \end{description}
  3399. \end{tcolorbox}
  3400. \end{wrapfigure}
  3401. Once you have obtained the coloring from \code{color-graph}, you can
  3402. assign the variables to registers or stack locations and then reuse
  3403. code from the \code{assign-homes} pass from
  3404. Section~\ref{sec:assign-r1} to replace the variables with their
  3405. assigned location.
  3406. \begin{exercise}\normalfont
  3407. Implement the compiler pass \code{allocate-registers}, which should
  3408. come after the \code{build-interference} pass. The three new passes
  3409. described in this chapter replace the \code{assign-homes} pass of
  3410. Section~\ref{sec:assign-r1}.
  3411. %
  3412. Test your updated compiler by creating new example programs that
  3413. exercise all of the register allocation algorithm, such as forcing
  3414. variables to be spilled to the stack.
  3415. \end{exercise}
  3416. \section{Print x86}
  3417. \label{sec:print-x86-reg-alloc}
  3418. \index{calling conventions}
  3419. \index{prelude}\index{conclusion}
  3420. Recall that the \code{print-x86} pass generates the prelude and
  3421. conclusion instructions for the \code{main} function.
  3422. %
  3423. The prelude saved the values in \code{rbp} and \code{rsp} and the
  3424. conclusion returned those values to \code{rbp} and \code{rsp}. The
  3425. reason for this is that our \code{main} function must adhere to the
  3426. x86 calling conventions that we described in
  3427. Section~\ref{sec:calling-conventions}. Furthermore, if your register
  3428. allocator assigned variables to other callee-saved registers
  3429. (e.g. \code{rbx}, \code{r12}, etc.), then those variables must also be
  3430. saved to the stack in the prelude and restored in the conclusion. The
  3431. simplest approach is to save and restore all of the callee-saved
  3432. registers. The more efficient approach is to keep track of which
  3433. callee-saved registers were used and only save and restore
  3434. them. Either way, make sure to take this use of stack space into
  3435. account when you are calculating the size of the frame and adjusting
  3436. the \code{rsp} in the prelude. Also, don't forget that the size of the
  3437. frame needs to be a multiple of 16 bytes!
  3438. An overview of all of the passes involved in register allocation is
  3439. shown in Figure~\ref{fig:reg-alloc-passes}.
  3440. \begin{figure}[tbp]
  3441. \begin{tikzpicture}[baseline=(current bounding box.center)]
  3442. \node (R1) at (0,2) {\large $R_1$};
  3443. \node (R1-2) at (3,2) {\large $R_1$};
  3444. \node (R1-3) at (6,2) {\large $R_1$};
  3445. \node (C0-1) at (3,0) {\large $C_0$};
  3446. \node (x86-2) at (3,-2) {\large $\text{x86}^{*}$};
  3447. \node (x86-3) at (6,-2) {\large $\text{x86}^{*}$};
  3448. \node (x86-4) at (9,-2) {\large $\text{x86}$};
  3449. \node (x86-5) at (9,-4) {\large $\text{x86}^{\dagger}$};
  3450. \node (x86-2-1) at (3,-4) {\large $\text{x86}^{*}$};
  3451. \node (x86-2-2) at (6,-4) {\large $\text{x86}^{*}$};
  3452. \path[->,bend left=15] (R1) edge [above] node {\ttfamily\footnotesize uniquify} (R1-2);
  3453. \path[->,bend left=15] (R1-2) edge [above] node {\ttfamily\footnotesize remove-complex.} (R1-3);
  3454. \path[->,bend left=15] (R1-3) edge [right] node {\ttfamily\footnotesize explicate-control} (C0-1);
  3455. \path[->,bend right=15] (C0-1) edge [left] node {\ttfamily\footnotesize select-instr.} (x86-2);
  3456. \path[->,bend left=15] (x86-2) edge [right] node {\ttfamily\footnotesize uncover-live} (x86-2-1);
  3457. \path[->,bend right=15] (x86-2-1) edge [below] node {\ttfamily\footnotesize build-inter.} (x86-2-2);
  3458. \path[->,bend right=15] (x86-2-2) edge [right] node {\ttfamily\footnotesize allocate-reg.} (x86-3);
  3459. \path[->,bend left=15] (x86-3) edge [above] node {\ttfamily\footnotesize patch-instr.} (x86-4);
  3460. \path[->,bend left=15] (x86-4) edge [right] node {\ttfamily\footnotesize print-x86} (x86-5);
  3461. \end{tikzpicture}
  3462. \caption{Diagram of the passes for $R_1$ with register allocation.}
  3463. \label{fig:reg-alloc-passes}
  3464. \end{figure}
  3465. \section{Challenge: Move Biasing}
  3466. \label{sec:move-biasing}
  3467. \index{move biasing}
  3468. This section describes an optional enhancement to register allocation
  3469. for those students who are looking for an extra challenge or who have
  3470. a deeper interest in register allocation.
  3471. We return to the running example, but we remove the supposition that
  3472. we only have one register to use. So we have the following mapping of
  3473. color numbers to registers.
  3474. \[
  3475. \{ 0 \mapsto \key{\%rbx}, \; 1 \mapsto \key{\%rcx}, \; 2 \mapsto \key{\%rdx} \}
  3476. \]
  3477. Using the same assignment of variables to color numbers that was
  3478. produced by the register allocator described in the last section, we
  3479. get the following program.
  3480. \begin{minipage}{0.3\textwidth}
  3481. \begin{lstlisting}
  3482. movq $1, v
  3483. movq $42, w
  3484. movq v, x
  3485. addq $7, x
  3486. movq x, y
  3487. movq x, z
  3488. addq w, z
  3489. movq y, t
  3490. negq t
  3491. movq z, %rax
  3492. addq t, %rax
  3493. jmp conclusion
  3494. \end{lstlisting}
  3495. \end{minipage}
  3496. $\Rightarrow\qquad$
  3497. \begin{minipage}{0.45\textwidth}
  3498. \begin{lstlisting}
  3499. movq $1, %rcx
  3500. movq $42, $rbx
  3501. movq %rcx, %rcx
  3502. addq $7, %rcx
  3503. movq %rcx, %rdx
  3504. movq %rcx, %rcx
  3505. addq %rbx, %rcx
  3506. movq %rdx, %rbx
  3507. negq %rbx
  3508. movq %rcx, %rax
  3509. addq %rbx, %rax
  3510. jmp conclusion
  3511. \end{lstlisting}
  3512. \end{minipage}
  3513. In the above output code there are two \key{movq} instructions that
  3514. can be removed because their source and target are the same. However,
  3515. if we had put \key{t}, \key{v}, \key{x}, and \key{y} into the same
  3516. register, we could instead remove three \key{movq} instructions. We
  3517. can accomplish this by taking into account which variables appear in
  3518. \key{movq} instructions with which other variables.
  3519. We say that two variables $p$ and $q$ are \emph{move
  3520. related}\index{move related} if they participate together in a
  3521. \key{movq} instruction, that is, \key{movq} $p$\key{,} $q$ or
  3522. \key{movq} $q$\key{,} $p$. When the register allocator chooses a color
  3523. for a variable, it should prefer a color that has already been used
  3524. for a move-related variable (assuming that they do not interfere). Of
  3525. course, this preference should not override the preference for
  3526. registers over stack locations. This preference should be used as a
  3527. tie breaker when choosing between registers or when choosing between
  3528. stack locations.
  3529. We recommend representing the move relationships in a graph, similar
  3530. to how we represented interference. The following is the \emph{move
  3531. graph} for our running example.
  3532. \[
  3533. \begin{tikzpicture}[baseline=(current bounding box.center)]
  3534. \node (rax) at (0,0) {$\ttm{rax}$};
  3535. \node (rsp) at (9,2) {$\ttm{rsp}$};
  3536. \node (t) at (0,2) {$\ttm{t}$};
  3537. \node (z) at (3,2) {$\ttm{z}$};
  3538. \node (x) at (6,2) {$\ttm{x}$};
  3539. \node (y) at (3,0) {$\ttm{y}$};
  3540. \node (w) at (6,0) {$\ttm{w}$};
  3541. \node (v) at (9,0) {$\ttm{v}$};
  3542. \draw (v) to (x);
  3543. \draw (x) to (y);
  3544. \draw (x) to (z);
  3545. \draw (y) to (t);
  3546. \end{tikzpicture}
  3547. \]
  3548. Now we replay the graph coloring, pausing to see the coloring of
  3549. \code{y}. Recall the following configuration. The most saturated vertices
  3550. were \code{w} and \code{y}.
  3551. \[
  3552. \begin{tikzpicture}[baseline=(current bounding box.center)]
  3553. \node (rax) at (0,0) {$\ttm{rax}:-1,\{0,-2\}$};
  3554. \node (rsp) at (9,2) {$\ttm{rsp}:-2,\{-1,0,1,2\}$};
  3555. \node (t1) at (0,2) {$\ttm{t}:0,\{1,-2\}$};
  3556. \node (z) at (3,2) {$\ttm{z}:1,\{0,-2\}$};
  3557. \node (x) at (6,2) {$\ttm{x}:-,\{-2\}$};
  3558. \node (y) at (3,0) {$\ttm{y}:-,\{1,-2\}$};
  3559. \node (w) at (6,0) {$\ttm{w}:-,\{1,-2\}$};
  3560. \node (v) at (9,0) {$\ttm{v}:-,\{-2\}$};
  3561. \draw (t1) to (rax);
  3562. \draw (t1) to (z);
  3563. \draw (z) to (y);
  3564. \draw (z) to (w);
  3565. \draw (x) to (w);
  3566. \draw (y) to (w);
  3567. \draw (v) to (w);
  3568. \draw (v) to (rsp);
  3569. \draw (w) to (rsp);
  3570. \draw (x) to (rsp);
  3571. \draw (y) to (rsp);
  3572. \path[-.,bend left=15] (z) edge node {} (rsp);
  3573. \path[-.,bend left=10] (t1) edge node {} (rsp);
  3574. \draw (rax) to (rsp);
  3575. \end{tikzpicture}
  3576. \]
  3577. %
  3578. Last time we chose to color \code{w} with $0$. But this time we see
  3579. that \code{w} is not move related to any vertex, but \code{y} is move
  3580. related to \code{t}. So we choose to color \code{y} the same color as
  3581. \code{t}, $0$.
  3582. \[
  3583. \begin{tikzpicture}[baseline=(current bounding box.center)]
  3584. \node (rax) at (0,0) {$\ttm{rax}:-1,\{0,-2\}$};
  3585. \node (rsp) at (9,2) {$\ttm{rsp}:-2,\{-1,0,1,2\}$};
  3586. \node (t1) at (0,2) {$\ttm{t}:0,\{1,-2\}$};
  3587. \node (z) at (3,2) {$\ttm{z}:1,\{0,-2\}$};
  3588. \node (x) at (6,2) {$\ttm{x}:-,\{-2\}$};
  3589. \node (y) at (3,0) {$\ttm{y}:0,\{1,-2\}$};
  3590. \node (w) at (6,0) {$\ttm{w}:-,\{0,1,-2\}$};
  3591. \node (v) at (9,0) {$\ttm{v}:-,\{-2\}$};
  3592. \draw (t1) to (rax);
  3593. \draw (t1) to (z);
  3594. \draw (z) to (y);
  3595. \draw (z) to (w);
  3596. \draw (x) to (w);
  3597. \draw (y) to (w);
  3598. \draw (v) to (w);
  3599. \draw (v) to (rsp);
  3600. \draw (w) to (rsp);
  3601. \draw (x) to (rsp);
  3602. \draw (y) to (rsp);
  3603. \path[-.,bend left=15] (z) edge node {} (rsp);
  3604. \path[-.,bend left=10] (t1) edge node {} (rsp);
  3605. \draw (rax) to (rsp);
  3606. \end{tikzpicture}
  3607. \]
  3608. Now \code{w} is the most saturated, so we color it $2$.
  3609. \[
  3610. \begin{tikzpicture}[baseline=(current bounding box.center)]
  3611. \node (rax) at (0,0) {$\ttm{rax}:-1,\{0,-2\}$};
  3612. \node (rsp) at (9,2) {$\ttm{rsp}:-2,\{-1,0,1,2\}$};
  3613. \node (t1) at (0,2) {$\ttm{t}:0,\{1,-2\}$};
  3614. \node (z) at (3,2) {$\ttm{z}:1,\{0,2,-2\}$};
  3615. \node (x) at (6,2) {$\ttm{x}:-,\{2,-2\}$};
  3616. \node (y) at (3,0) {$\ttm{y}:0,\{1,2,-2\}$};
  3617. \node (w) at (6,0) {$\ttm{w}:2,\{0,1,-2\}$};
  3618. \node (v) at (9,0) {$\ttm{v}:-,\{2,-2\}$};
  3619. \draw (t1) to (rax);
  3620. \draw (t1) to (z);
  3621. \draw (z) to (y);
  3622. \draw (z) to (w);
  3623. \draw (x) to (w);
  3624. \draw (y) to (w);
  3625. \draw (v) to (w);
  3626. \draw (v) to (rsp);
  3627. \draw (w) to (rsp);
  3628. \draw (x) to (rsp);
  3629. \draw (y) to (rsp);
  3630. \path[-.,bend left=15] (z) edge node {} (rsp);
  3631. \path[-.,bend left=10] (t1) edge node {} (rsp);
  3632. \draw (rax) to (rsp);
  3633. \end{tikzpicture}
  3634. \]
  3635. At this point, vertices \code{x} and \code{v} are most saturated, but
  3636. \code{x} is move related to \code{y} and \code{z}, so we color
  3637. \code{x} to $0$ to match \code{y}. Finally, we color \code{v} to $0$.
  3638. \[
  3639. \begin{tikzpicture}[baseline=(current bounding box.center)]
  3640. \node (rax) at (0,0) {$\ttm{rax}:-1,\{0,-2\}$};
  3641. \node (rsp) at (9,2) {$\ttm{rsp}:-2,\{-1,0,1,2\}$};
  3642. \node (t) at (0,2) {$\ttm{t}:0,\{1,-2\}$};
  3643. \node (z) at (3,2) {$\ttm{z}:1,\{0,2,-2\}$};
  3644. \node (x) at (6,2) {$\ttm{x}:0,\{2,-2\}$};
  3645. \node (y) at (3,0) {$\ttm{y}:0,\{1,2,-2\}$};
  3646. \node (w) at (6,0) {$\ttm{w}:2,\{0,1,-2\}$};
  3647. \node (v) at (9,0) {$\ttm{v}:0,\{2,-2\}$};
  3648. \draw (t1) to (rax);
  3649. \draw (t) to (z);
  3650. \draw (z) to (y);
  3651. \draw (z) to (w);
  3652. \draw (x) to (w);
  3653. \draw (y) to (w);
  3654. \draw (v) to (w);
  3655. \draw (v) to (rsp);
  3656. \draw (w) to (rsp);
  3657. \draw (x) to (rsp);
  3658. \draw (y) to (rsp);
  3659. \path[-.,bend left=15] (z) edge node {} (rsp);
  3660. \path[-.,bend left=10] (t1) edge node {} (rsp);
  3661. \draw (rax) to (rsp);
  3662. \end{tikzpicture}
  3663. \]
  3664. So we have the following assignment of variables to registers.
  3665. \begin{gather*}
  3666. \{ \ttm{v} \mapsto \key{\%rbx}, \,
  3667. \ttm{w} \mapsto \key{\%rdx}, \,
  3668. \ttm{x} \mapsto \key{\%rbx}, \,
  3669. \ttm{y} \mapsto \key{\%rbx}, \,
  3670. \ttm{z} \mapsto \key{\%rcx}, \,
  3671. \ttm{t} \mapsto \key{\%rbx} \}
  3672. \end{gather*}
  3673. We apply this register assignment to the running example, on the left,
  3674. to obtain the code in the middle. The \code{patch-instructions} then
  3675. removes the three trivial moves from \key{rbx} to \key{rbx} to obtain
  3676. the code on the right.
  3677. \begin{minipage}{0.25\textwidth}
  3678. \begin{lstlisting}
  3679. movq $1, v
  3680. movq $42, w
  3681. movq v, x
  3682. addq $7, x
  3683. movq x, y
  3684. movq x, z
  3685. addq w, z
  3686. movq y, t
  3687. negq t
  3688. movq z, %rax
  3689. addq t, %rax
  3690. jmp conclusion
  3691. \end{lstlisting}
  3692. \end{minipage}
  3693. $\Rightarrow\qquad$
  3694. \begin{minipage}{0.25\textwidth}
  3695. \begin{lstlisting}
  3696. movq $1, %rbx
  3697. movq $42, %rdx
  3698. movq %rbx, %rbx
  3699. addq $7, %rbx
  3700. movq %rbx, %rbx
  3701. movq %rbx, %rcx
  3702. addq %rdx, %rcx
  3703. movq %rbx, %rbx
  3704. negq %rbx
  3705. movq %rcx, %rax
  3706. addq %rbx, %rax
  3707. jmp conclusion
  3708. \end{lstlisting}
  3709. \end{minipage}
  3710. $\Rightarrow\qquad$
  3711. \begin{minipage}{0.25\textwidth}
  3712. \begin{lstlisting}
  3713. movq $1, %rbx
  3714. movq $42, %rdx
  3715. addq $7, %rbx
  3716. movq %rbx, %rcx
  3717. addq %rdx, %rcx
  3718. negq %rbx
  3719. movq %rcx, %rax
  3720. addq %rbx, %rax
  3721. jmp conclusion
  3722. \end{lstlisting}
  3723. \end{minipage}
  3724. \begin{exercise}\normalfont
  3725. Change your implementation of \code{allocate-registers} to take move
  3726. biasing into account. Make sure that your compiler still passes all of
  3727. the previous tests. Create two new tests that include at least one
  3728. opportunity for move biasing and visually inspect the output x86
  3729. programs to make sure that your move biasing is working properly.
  3730. \end{exercise}
  3731. \margincomment{\footnotesize To do: another neat challenge would be to do
  3732. live range splitting~\citep{Cooper:1998ly}. \\ --Jeremy}
  3733. \section{Output of the Running Example}
  3734. \label{sec:reg-alloc-output}
  3735. \index{prelude}\index{conclusion}
  3736. Figure~\ref{fig:running-example-x86} shows the x86 code generated for
  3737. the running example (Figure~\ref{fig:reg-eg}) with register allocation
  3738. and move biasing. To demonstrate both the use of registers and the
  3739. stack, we have limited the register allocator to use just two
  3740. registers: \code{rbx} and \code{rcx}. In the prelude of the
  3741. \code{main} function, we push \code{rbx} onto the stack because it is
  3742. a callee-saved register and it was assigned to variable by the
  3743. register allocator. We subtract \code{8} from the \code{rsp} at the
  3744. end of the prelude to reserve space for the one spilled variable.
  3745. After that subtraction, the \code{rsp} is aligned to 16 bytes.
  3746. Moving on the the \code{start} block, we see how the registers were
  3747. allocated. Variables \code{v}, \code{x}, and \code{y} were assigned to
  3748. \code{rbx} and variable \code{z} was assigned to \code{rcx}. Variable
  3749. \code{w} was spilled to the stack location \code{-16(\%rbp)}. Recall
  3750. that the prelude saved the callee-save register \code{rbx} onto the
  3751. stack. The spilled variables must be placed lower on the stack than
  3752. the saved callee-save registers, so in this case \code{w} is placed at
  3753. \code{-16(\%rbp)}.
  3754. In the \code{conclusion}, we undo the work that was done in the
  3755. prelude. We move the stack pointer up by \code{8} bytes (the room for
  3756. spilled variables), then we pop the old values of \code{rbx} and
  3757. \code{rbp} (callee-saved registers), and finish with \code{retq} to
  3758. return control to the operating system.
  3759. \begin{figure}[tbp]
  3760. % s0_28.rkt
  3761. % (use-minimal-set-of-registers! #t)
  3762. % and only rbx rcx
  3763. % tmp 0 rbx
  3764. % z 1 rcx
  3765. % y 0 rbx
  3766. % w 2 16(%rbp)
  3767. % v 0 rbx
  3768. % x 0 rbx
  3769. \begin{lstlisting}
  3770. start:
  3771. movq $1, %rbx
  3772. movq $42, -16(%rbp)
  3773. addq $7, %rbx
  3774. movq %rbx, %rcx
  3775. addq -16(%rbp), %rcx
  3776. negq %rbx
  3777. movq %rcx, %rax
  3778. addq %rbx, %rax
  3779. jmp conclusion
  3780. .globl main
  3781. main:
  3782. pushq %rbp
  3783. movq %rsp, %rbp
  3784. pushq %rbx
  3785. subq $8, %rsp
  3786. jmp start
  3787. conclusion:
  3788. addq $8, %rsp
  3789. popq %rbx
  3790. popq %rbp
  3791. retq
  3792. \end{lstlisting}
  3793. \caption{The x86 output from the running example (Figure~\ref{fig:reg-eg}).}
  3794. \label{fig:running-example-x86}
  3795. \end{figure}
  3796. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  3797. \chapter{Booleans and Control Flow}
  3798. \label{ch:bool-types}
  3799. \index{Boolean}
  3800. \index{control flow}
  3801. \index{conditional expression}
  3802. The $R_0$ and $R_1$ languages only have a single kind of value, the
  3803. integers. In this chapter we add a second kind of value, the Booleans,
  3804. to create the $R_2$ language. The Boolean values \emph{true} and
  3805. \emph{false} are written \key{\#t} and \key{\#f} respectively in
  3806. Racket. The $R_2$ language includes several operations that involve
  3807. Booleans (\key{and}, \key{not}, \key{eq?}, \key{<}, etc.) and the
  3808. conditional \key{if} expression. With the addition of \key{if}
  3809. expressions, programs can have non-trivial control flow which which
  3810. significantly impacts the \code{explicate-control} and the liveness
  3811. analysis for register allocation. Also, because we now have two kinds
  3812. of values, we need to handle programs that apply an operation to the
  3813. wrong kind of value, such as \code{(not 1)}.
  3814. There are two language design options for such situations. One option
  3815. is to signal an error and the other is to provide a wider
  3816. interpretation of the operation. The Racket language uses a mixture of
  3817. these two options, depending on the operation and the kind of
  3818. value. For example, the result of \code{(not 1)} in Racket is
  3819. \code{\#f} because Racket treats non-zero integers as if they were
  3820. \code{\#t}. On the other hand, \code{(car 1)} results in a run-time
  3821. error in Racket stating that \code{car} expects a pair.
  3822. The Typed Racket language makes similar design choices as Racket,
  3823. except much of the error detection happens at compile time instead of
  3824. run time. Like Racket, Typed Racket accepts and runs \code{(not 1)},
  3825. producing \code{\#f}. But in the case of \code{(car 1)}, Typed Racket
  3826. reports a compile-time error because Typed Racket expects the type of
  3827. the argument to be of the form \code{(Listof T)} or \code{(Pairof T1 T2)}.
  3828. For the $R_2$ language we choose to be more like Typed Racket in that
  3829. we perform type checking during compilation. In
  3830. Chapter~\ref{ch:type-dynamic} we study the alternative choice, that
  3831. is, how to compile a dynamically typed language like Racket. The
  3832. $R_2$ language is a subset of Typed Racket but by no means includes
  3833. all of Typed Racket. For many operations we take a narrower
  3834. interpretation than Typed Racket, for example, rejecting \code{(not 1)}.
  3835. This chapter is organized as follows. We begin by defining the syntax
  3836. and interpreter for the $R_2$ language (Section~\ref{sec:r2-lang}). We
  3837. then introduce the idea of type checking and build a type checker for
  3838. $R_2$ (Section~\ref{sec:type-check-r2}). To compile $R_2$ we need to
  3839. enlarge the intermediate language $C_0$ into $C_1$, which we do in
  3840. Section~\ref{sec:c1}. The remaining sections of this chapter discuss
  3841. how our compiler passes need to change to accommodate Booleans and
  3842. conditional control flow.
  3843. \section{The $R_2$ Language}
  3844. \label{sec:r2-lang}
  3845. The concrete syntax of the $R_2$ language is defined in
  3846. Figure~\ref{fig:r2-concrete-syntax} and the abstract syntax is defined
  3847. in Figure~\ref{fig:r2-syntax}. The $R_2$ language includes all of
  3848. $R_1$ (shown in gray), the Boolean literals \code{\#t} and \code{\#f},
  3849. and the conditional \code{if} expression. Also, we expand the
  3850. operators to include
  3851. \begin{enumerate}
  3852. \item subtraction on integers,
  3853. \item the logical operators \key{and}, \key{or} and \key{not},
  3854. \item the \key{eq?} operation for comparing two integers or two Booleans, and
  3855. \item the \key{<}, \key{<=}, \key{>}, and \key{>=} operations for
  3856. comparing integers.
  3857. \end{enumerate}
  3858. We reorganize the abstract syntax for the primitive operations in
  3859. Figure~\ref{fig:r2-syntax}, using only one grammar rule for all of
  3860. them. This means that the grammar no longer checks whether the arity
  3861. of an operators matches the number of arguments. That responsibility
  3862. is moved to the type checker for $R_2$, which we introduce in
  3863. Section~\ref{sec:type-check-r2}.
  3864. \begin{figure}[tp]
  3865. \centering
  3866. \fbox{
  3867. \begin{minipage}{0.96\textwidth}
  3868. \[
  3869. \begin{array}{lcl}
  3870. \itm{bool} &::=& \key{\#t} \mid \key{\#f} \\
  3871. \itm{cmp} &::= & \key{eq?} \mid \key{<} \mid \key{<=} \mid \key{>} \mid \key{>=} \\
  3872. \Exp &::=& \gray{ \Int \mid \CREAD{} \mid \CNEG{\Exp} \mid \CADD{\Exp}{\Exp} } \mid \CSUB{\Exp}{\Exp} \\
  3873. &\mid& \gray{ \Var \mid \CLET{\Var}{\Exp}{\Exp} } \\
  3874. &\mid& \itm{bool}
  3875. \mid (\key{and}\;\Exp\;\Exp) \mid (\key{or}\;\Exp\;\Exp)
  3876. \mid (\key{not}\;\Exp) \\
  3877. &\mid& (\itm{cmp}\;\Exp\;\Exp) \mid \CIF{\Exp}{\Exp}{\Exp} \\
  3878. R_2 &::=& \Exp
  3879. \end{array}
  3880. \]
  3881. \end{minipage}
  3882. }
  3883. \caption{The concrete syntax of $R_2$, extending $R_1$
  3884. (Figure~\ref{fig:r1-concrete-syntax}) with Booleans and conditionals.}
  3885. \label{fig:r2-concrete-syntax}
  3886. \end{figure}
  3887. \begin{figure}[tp]
  3888. \centering
  3889. \fbox{
  3890. \begin{minipage}{0.96\textwidth}
  3891. \[
  3892. \begin{array}{lcl}
  3893. \itm{bool} &::=& \code{\#t} \mid \code{\#f} \\
  3894. \itm{cmp} &::= & \code{eq?} \mid \code{<} \mid \code{<=} \mid \code{>} \mid \code{>=} \\
  3895. \itm{op} &::= & \itm{cmp} \mid \code{read} \mid \code{+} \mid \code{-}
  3896. \mid \code{and} \mid \code{or} \mid \code{not} \\
  3897. \Exp &::=& \gray{ \INT{\Int} \mid \VAR{\Var} \mid \LET{\Var}{\Exp}{\Exp} } \\
  3898. &\mid& \PRIM{\itm{op}}{\Exp\ldots}\\
  3899. &\mid& \BOOL{\itm{bool}} \mid \IF{\Exp}{\Exp}{\Exp} \\
  3900. R_2 &::=& \PROGRAM{\code{'()}}{\Exp}
  3901. \end{array}
  3902. \]
  3903. \end{minipage}
  3904. }
  3905. \caption{The abstract syntax of $R_2$.}
  3906. \label{fig:r2-syntax}
  3907. \end{figure}
  3908. Figure~\ref{fig:interp-R2} defines the interpreter for $R_2$,
  3909. inheriting from the interpreter for $R_1$
  3910. (Figure~\ref{fig:interp-R1}). The literals \code{\#t} and \code{\#f}
  3911. evaluate to the corresponding Boolean values. The conditional
  3912. expression $(\key{if}\, \itm{cnd}\,\itm{thn}\,\itm{els})$ evaluates
  3913. the Boolean expression \itm{cnd} and then either evaluates \itm{thn}
  3914. or \itm{els} depending on whether \itm{cnd} produced \code{\#t} or
  3915. \code{\#f}. The logical operations \code{not} and \code{and} behave as
  3916. you might expect, but note that the \code{and} operation is
  3917. short-circuiting. That is, given the expression
  3918. $(\key{and}\,e_1\,e_2)$, the expression $e_2$ is not evaluated if
  3919. $e_1$ evaluates to \code{\#f}.
  3920. With the increase in the number of primitive operations, the
  3921. interpreter code for them could become repetitive without some
  3922. care. We factor out the different parts of the code for primitive
  3923. operations into the \code{interp-op} method shown in in
  3924. Figure~\ref{fig:interp-op-R2}. The match clause for \code{Prim} makes
  3925. the recursive calls to interpret the arguments and then passes the
  3926. resulting values to \code{interp-op}. We do not use \code{interp-op}
  3927. for the \code{and} operation because of its short-circuiting behavior.
  3928. \begin{figure}[tbp]
  3929. \begin{lstlisting}
  3930. (define interp-R2-class
  3931. (class interp-R1-class
  3932. (super-new)
  3933. (define/public (interp-op op) ...)
  3934. (define/override ((interp-exp env) e)
  3935. (define recur (interp-exp env))
  3936. (match e
  3937. [(Bool b) b]
  3938. [(If cnd thn els)
  3939. (define b (recur cnd))
  3940. (match b
  3941. [#t (recur thn)]
  3942. [#f (recur els)])]
  3943. [(Prim 'and (list e1 e2))
  3944. (define v1 (recur e1))
  3945. (match v1
  3946. [#t (match (recur e2) [#t #t] [#f #f])]
  3947. [#f #f])]
  3948. [(Prim op args)
  3949. (apply (interp-op op) (for/list ([e args]) (recur e)))]
  3950. [else ((super interp-exp env) e)]
  3951. ))
  3952. ))
  3953. (define (interp-R2 p)
  3954. (send (new interp-R2-class) interp-program p))
  3955. \end{lstlisting}
  3956. \caption{Interpreter for the $R_2$ language. (See
  3957. Figure~\ref{fig:interp-op-R2} for \code{interp-op}.)}
  3958. \label{fig:interp-R2}
  3959. \end{figure}
  3960. \begin{figure}[tbp]
  3961. \begin{lstlisting}
  3962. (define/public (interp-op op)
  3963. (match op
  3964. ['+ fx+]
  3965. ['- fx-]
  3966. ['read read-fixnum]
  3967. ['not (lambda (v) (match v [#t #f] [#f #t]))]
  3968. ['or (lambda (v1 v2)
  3969. (cond [(and (boolean? v1) (boolean? v2))
  3970. (or v1 v2)]))]
  3971. ['eq? (lambda (v1 v2)
  3972. (cond [(or (and (fixnum? v1) (fixnum? v2))
  3973. (and (boolean? v1) (boolean? v2))
  3974. (and (vector? v1) (vector? v2)))
  3975. (eq? v1 v2)]))]
  3976. ['< (lambda (v1 v2)
  3977. (cond [(and (fixnum? v1) (fixnum? v2))
  3978. (< v1 v2)]))]
  3979. ['<= (lambda (v1 v2)
  3980. (cond [(and (fixnum? v1) (fixnum? v2))
  3981. (<= v1 v2)]))]
  3982. ['> (lambda (v1 v2)
  3983. (cond [(and (fixnum? v1) (fixnum? v2))
  3984. (> v1 v2)]))]
  3985. ['>= (lambda (v1 v2)
  3986. (cond [(and (fixnum? v1) (fixnum? v2))
  3987. (>= v1 v2)]))]
  3988. [else (error 'interp-op "unknown operator")]
  3989. ))
  3990. \end{lstlisting}
  3991. \caption{Interpreter for the primitive operators in the $R_2$ language.}
  3992. \label{fig:interp-op-R2}
  3993. \end{figure}
  3994. \section{Type Checking $R_2$ Programs}
  3995. \label{sec:type-check-r2}
  3996. \index{type checking}
  3997. \index{semantic analysis}
  3998. It is helpful to think about type checking in two complementary
  3999. ways. A type checker predicts the type of value that will be produced
  4000. by each expression in the program. For $R_2$, we have just two types,
  4001. \key{Integer} and \key{Boolean}. So a type checker should predict that
  4002. \begin{lstlisting}
  4003. (+ 10 (- (+ 12 20)))
  4004. \end{lstlisting}
  4005. produces an \key{Integer} while
  4006. \begin{lstlisting}
  4007. (and (not #f) #t)
  4008. \end{lstlisting}
  4009. produces a \key{Boolean}.
  4010. Another way to think about type checking is that it enforces a set of
  4011. rules about which operators can be applied to which kinds of
  4012. values. For example, our type checker for $R_2$ will signal an error
  4013. for the below expression because, as we have seen above, the
  4014. expression \code{(+ 10 ...)} has type \key{Integer} but the type
  4015. checker enforces the rule that the argument of \code{not} must be a
  4016. \key{Boolean}.
  4017. \begin{lstlisting}
  4018. (not (+ 10 (- (+ 12 20))))
  4019. \end{lstlisting}
  4020. We implement type checking using classes and method overriding for the
  4021. same reason that we use them to implement the interpreters. We
  4022. separate the type checker for the $R_1$ fragment into its own class,
  4023. shown in Figure~\ref{fig:type-check-R1}. The type checker for $R_2$ is
  4024. shown in Figure~\ref{fig:type-check-R2}; inherits from the one for
  4025. $R_1$. The code for these type checkers are in the files
  4026. \code{type-check-R1.rkt} and \code{type-check-R2.rkt} of the support
  4027. code.
  4028. %
  4029. Each type checker is a structurally recursive function over the AST.
  4030. Given an input expression \code{e}, the type checker either signals an
  4031. error or returns an expression and its type (\key{Integer} or
  4032. \key{Boolean}). There are situations in which we want to change or
  4033. update the expression.
  4034. %
  4035. The type of an integer literal is \code{Integer} and
  4036. the type of a Boolean literal is \code{Boolean}. To handle variables,
  4037. the type checker uses the environment \code{env} to map variables to
  4038. types. Consider the clause for \key{let}. We type check the
  4039. initializing expression to obtain its type \key{T} and then associate
  4040. type \code{T} with the variable \code{x} in the environment used to
  4041. type check the body of the \key{let}. Thus, when the type checker
  4042. encounters a use of variable \code{x}, it can find its type in the
  4043. environment.
  4044. \begin{figure}[tbp]
  4045. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  4046. (define type-check-R1-class
  4047. (class object%
  4048. (super-new)
  4049. (define/public (operator-types)
  4050. '((+ . ((Integer Integer) . Integer))
  4051. (- . ((Integer) . Integer))
  4052. (read . (() . Integer))))
  4053. (define/public (type-equal? t1 t2) (equal? t1 t2))
  4054. (define/public (check-type-equal? t1 t2 e)
  4055. (unless (type-equal? t1 t2)
  4056. (error 'type-check "~a != ~a\nin ~v" t1 t2 e)))
  4057. (define/public (type-check-op op arg-types e)
  4058. (match (dict-ref (operator-types) op)
  4059. [`(,param-types . ,return-type)
  4060. (for ([at arg-types] [pt param-types])
  4061. (check-type-equal? at pt e))
  4062. return-type]
  4063. [else (error 'type-check-op "unrecognized ~a" op)]))
  4064. (define/public (type-check-exp env)
  4065. (lambda (e)
  4066. (debug 'type-check-exp "R1" e)
  4067. (match e
  4068. [(Var x) (values (Var x) (dict-ref env x))]
  4069. [(Int n) (values (Int n) 'Integer)]
  4070. [(Let x e body)
  4071. (define-values (e^ Te) ((type-check-exp env) e))
  4072. (define-values (b Tb) ((type-check-exp (dict-set env x Te)) body))
  4073. (values (Let x e^ b) Tb)]
  4074. [(Prim op es)
  4075. (define-values (new-es ts)
  4076. (for/lists (exprs types) ([e es]) ((type-check-exp env) e)))
  4077. (values (Prim op new-es) (type-check-op op ts e))]
  4078. [else (error 'type-check-exp "couldn't match" e)])))
  4079. (define/public (type-check-program e)
  4080. (match e
  4081. [(Program info body)
  4082. (define-values (body^ Tb) ((type-check-exp '()) body))
  4083. (check-type-equal? Tb 'Integer body)
  4084. (Program info body^)]
  4085. [else (error 'type-check-R1 "couldn't match ~a" e)]))
  4086. ))
  4087. (define (type-check-R1 p)
  4088. (send (new type-check-R1-class) type-check-program p))
  4089. \end{lstlisting}
  4090. \caption{Type checker for the $R_1$ fragment of $R_2$.}
  4091. \label{fig:type-check-R1}
  4092. \end{figure}
  4093. \begin{figure}[tbp]
  4094. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  4095. (define type-check-R2-class
  4096. (class type-check-R1-class
  4097. (super-new)
  4098. (inherit check-type-equal?)
  4099. (define/override (operator-types)
  4100. (append '((- . ((Integer Integer) . Integer))
  4101. (and . ((Boolean Boolean) . Boolean))
  4102. (or . ((Boolean Boolean) . Boolean))
  4103. (< . ((Integer Integer) . Boolean))
  4104. (<= . ((Integer Integer) . Boolean))
  4105. (> . ((Integer Integer) . Boolean))
  4106. (>= . ((Integer Integer) . Boolean))
  4107. (not . ((Boolean) . Boolean))
  4108. )
  4109. (super operator-types)))
  4110. (define/override (type-check-exp env)
  4111. (lambda (e)
  4112. (match e
  4113. [(Bool b) (values (Bool b) 'Boolean)]
  4114. [(If cnd thn els)
  4115. (define-values (cnd^ Tc) ((type-check-exp env) cnd))
  4116. (define-values (thn^ Tt) ((type-check-exp env) thn))
  4117. (define-values (els^ Te) ((type-check-exp env) els))
  4118. (check-type-equal? Tc 'Boolean e)
  4119. (check-type-equal? Tt Te e)
  4120. (values (If cnd^ thn^ els^) Te)]
  4121. [(Prim 'eq? (list e1 e2))
  4122. (define-values (e1^ T1) ((type-check-exp env) e1))
  4123. (define-values (e2^ T2) ((type-check-exp env) e2))
  4124. (check-type-equal? T1 T2 e)
  4125. (values (Prim 'eq? (list e1^ e2^)) 'Boolean)]
  4126. [else ((super type-check-exp env) e)])))
  4127. ))
  4128. (define (type-check-R2 p)
  4129. (send (new type-check-R2-class) type-check-program p))
  4130. \end{lstlisting}
  4131. \caption{Type checker for the $R_2$ language.}
  4132. \label{fig:type-check-R2}
  4133. \end{figure}
  4134. Three auxiliary methods are used in the type checker. The method
  4135. \code{operator-types} defines a dictionary that maps the operator
  4136. names to their parameter and return types. The \code{type-equal?}
  4137. method determines whether two types are equal, which for now simply
  4138. dispatches to \code{equal?} (deep equality). The \code{type-check-op}
  4139. method looks up the operator in the \code{operator-types} dictionary
  4140. and then checks whether the argument types are equal to the parameter
  4141. types. The result is the return type of the operator.
  4142. \begin{exercise}\normalfont
  4143. Create 10 new example programs in $R_2$. Half of the example programs
  4144. should have a type error. For those programs, to signal that a type
  4145. error is expected, create an empty file with the same base name but
  4146. with file extension \code{.tyerr}. For example, if the test
  4147. \code{r2\_14.rkt} is expected to error, then create an empty file
  4148. named \code{r2\_14.tyerr}. The other half of the example programs
  4149. should not have type errors. Note that if the type checker does not
  4150. signal an error for a program, then interpreting that program should
  4151. not encounter an error.
  4152. \end{exercise}
  4153. \section{Shrink the $R_2$ Language}
  4154. \label{sec:shrink-r2}
  4155. The $R_2$ language includes several operators that are easily
  4156. expressible in terms of other operators. For example, subtraction is
  4157. expressible in terms of addition and negation.
  4158. \[
  4159. \key{(-}\; e_1 \; e_2\key{)} \quad \Rightarrow \quad \LP\key{+} \; e_1 \; \LP\key{-} \; e_2\RP\RP
  4160. \]
  4161. Several of the comparison operations are expressible in terms of
  4162. less-than and logical negation.
  4163. \[
  4164. \LP\key{<=}\; e_1 \; e_2\RP \quad \Rightarrow \quad
  4165. \LP\key{let}~\LP\LS\key{tmp.1}~e_1\RS\RP~\LP\key{not}\;\LP\key{<}\;e_2\;\key{tmp.1})\RP\RP
  4166. \]
  4167. The \key{let} is needed in the above translation to ensure that
  4168. expression $e_1$ is evaluated before $e_2$.
  4169. By performing these translations near the front-end of the compiler,
  4170. the later passes of the compiler do not need to deal with these
  4171. constructs, making those passes shorter. On the other hand, sometimes
  4172. these translations make it more difficult to generate the most
  4173. efficient code with respect to the number of instructions. However,
  4174. these differences typically do not affect the number of accesses to
  4175. memory, which is the primary factor that determines execution time on
  4176. modern computer architectures.
  4177. \begin{exercise}\normalfont
  4178. Implement the pass \code{shrink} that removes subtraction,
  4179. \key{and}, \key{or}, \key{<=}, \key{>}, and \key{>=} from the language
  4180. by translating them to other constructs in $R_2$. Create tests to
  4181. make sure that the behavior of all of these constructs stays the
  4182. same after translation.
  4183. \end{exercise}
  4184. \section{The x86$_1$ Language}
  4185. \label{sec:x86-1}
  4186. \index{x86}
  4187. To implement the new logical operations, the comparison operations,
  4188. and the \key{if} expression, we need to delve further into the x86
  4189. language. Figures~\ref{fig:x86-1-concrete} and \ref{fig:x86-1} define
  4190. the concrete and abstract syntax for a larger subset of x86 that
  4191. includes instructions for logical operations, comparisons, and
  4192. conditional jumps.
  4193. One small challenge is that x86 does not provide an instruction that
  4194. directly implements logical negation (\code{not} in $R_2$ and $C_1$).
  4195. However, the \code{xorq} instruction can be used to encode \code{not}.
  4196. The \key{xorq} instruction takes two arguments, performs a pairwise
  4197. exclusive-or ($\mathrm{XOR}$) operation on each bit of its arguments,
  4198. and writes the results into its second argument. Recall the truth
  4199. table for exclusive-or:
  4200. \begin{center}
  4201. \begin{tabular}{l|cc}
  4202. & 0 & 1 \\ \hline
  4203. 0 & 0 & 1 \\
  4204. 1 & 1 & 0
  4205. \end{tabular}
  4206. \end{center}
  4207. For example, applying $\mathrm{XOR}$ to each bit of the binary numbers
  4208. $0011$ and $0101$ yields $0110$. Notice that in the row of the table
  4209. for the bit $1$, the result is the opposite of the second bit. Thus,
  4210. the \code{not} operation can be implemented by \code{xorq} with $1$ as
  4211. the first argument:
  4212. \[
  4213. \Var~ \key{=}~ \LP\key{not}~\Arg\RP\key{;}
  4214. \qquad\Rightarrow\qquad
  4215. \begin{array}{l}
  4216. \key{movq}~ \Arg\key{,} \Var\\
  4217. \key{xorq}~ \key{\$1,} \Var
  4218. \end{array}
  4219. \]
  4220. \begin{figure}[tp]
  4221. \fbox{
  4222. \begin{minipage}{0.96\textwidth}
  4223. \[
  4224. \begin{array}{lcl}
  4225. \itm{bytereg} &::=& \key{ah} \mid \key{al} \mid \key{bh} \mid \key{bl}
  4226. \mid \key{ch} \mid \key{cl} \mid \key{dh} \mid \key{dl} \\
  4227. \Arg &::=& \gray{ \key{\$}\Int \mid \key{\%}\Reg \mid \Int\key{(}\key{\%}\Reg\key{)} } \mid \key{\%}\itm{bytereg}\\
  4228. \itm{cc} & ::= & \key{e} \mid \key{l} \mid \key{le} \mid \key{g} \mid \key{ge} \\
  4229. \Instr &::=& \gray{ \key{addq} \; \Arg\key{,} \Arg \mid
  4230. \key{subq} \; \Arg\key{,} \Arg \mid
  4231. \key{negq} \; \Arg \mid \key{movq} \; \Arg\key{,} \Arg \mid } \\
  4232. && \gray{ \key{callq} \; \itm{label} \mid
  4233. \key{pushq}\;\Arg \mid \key{popq}\;\Arg \mid \key{retq} \mid \key{jmp}\,\itm{label} } \\
  4234. && \gray{ \itm{label}\key{:}\; \Instr }
  4235. \mid \key{xorq}~\Arg\key{,}~\Arg
  4236. \mid \key{cmpq}~\Arg\key{,}~\Arg \mid \\
  4237. && \key{set}cc~\Arg
  4238. \mid \key{movzbq}~\Arg\key{,}~\Arg
  4239. \mid \key{j}cc~\itm{label}
  4240. \\
  4241. x86_1 &::= & \gray{ \key{.globl main} }\\
  4242. & & \gray{ \key{main:} \; \Instr\ldots }
  4243. \end{array}
  4244. \]
  4245. \end{minipage}
  4246. }
  4247. \caption{The concrete syntax of x86$_1$ (extends x86$_0$ of Figure~\ref{fig:x86-0-concrete}).}
  4248. \label{fig:x86-1-concrete}
  4249. \end{figure}
  4250. \begin{figure}[tp]
  4251. \fbox{
  4252. \begin{minipage}{0.96\textwidth}
  4253. \small
  4254. \[
  4255. \begin{array}{lcl}
  4256. \itm{bytereg} &::=& \key{ah} \mid \key{al} \mid \key{bh} \mid \key{bl}
  4257. \mid \key{ch} \mid \key{cl} \mid \key{dh} \mid \key{dl} \\
  4258. \Arg &::=& \gray{\IMM{\Int} \mid \REG{\Reg} \mid \DEREF{\Reg}{\Int}}
  4259. \mid \BYTEREG{\itm{bytereg}} \\
  4260. \itm{cc} & ::= & \key{e} \mid \key{l} \mid \key{le} \mid \key{g} \mid \key{ge} \\
  4261. \Instr &::=& \gray{ \BININSTR{\code{'addq}}{\Arg}{\Arg}
  4262. \mid \BININSTR{\code{'subq}}{\Arg}{\Arg} } \\
  4263. &\mid& \gray{ \BININSTR{\code{'movq}}{\Arg}{\Arg}
  4264. \mid \UNIINSTR{\code{'negq}}{\Arg} } \\
  4265. &\mid& \gray{ \CALLQ{\itm{label}}{\itm{int}} \mid \RETQ{}
  4266. \mid \PUSHQ{\Arg} \mid \POPQ{\Arg} \mid \JMP{\itm{label}} } \\
  4267. &\mid& \BININSTR{\code{'xorq}}{\Arg}{\Arg}
  4268. \mid \BININSTR{\code{'cmpq}}{\Arg}{\Arg}\\
  4269. &\mid& \BININSTR{\code{'set}}{\itm{cc}}{\Arg}
  4270. \mid \BININSTR{\code{'movzbq}}{\Arg}{\Arg}\\
  4271. &\mid& \JMPIF{\itm{cc}}{\itm{label}} \\
  4272. \Block &::= & \gray{\BLOCK{\itm{info}}{\Instr\ldots}} \\
  4273. x86_1 &::= & \gray{\PROGRAM{\itm{info}}{\CFG{\key{(}\itm{label} \,\key{.}\, \Block \key{)}\ldots}}}
  4274. \end{array}
  4275. \]
  4276. \end{minipage}
  4277. }
  4278. \caption{The abstract syntax of x86$_1$ (extends x86$_0$ of Figure~\ref{fig:x86-0-ast}).}
  4279. \label{fig:x86-1}
  4280. \end{figure}
  4281. Next we consider the x86 instructions that are relevant for compiling
  4282. the comparison operations. The \key{cmpq} instruction compares its two
  4283. arguments to determine whether one argument is less than, equal, or
  4284. greater than the other argument. The \key{cmpq} instruction is unusual
  4285. regarding the order of its arguments and where the result is
  4286. placed. The argument order is backwards: if you want to test whether
  4287. $x < y$, then write \code{cmpq} $y$\code{,} $x$. The result of
  4288. \key{cmpq} is placed in the special EFLAGS register. This register
  4289. cannot be accessed directly but it can be queried by a number of
  4290. instructions, including the \key{set} instruction. The \key{set}
  4291. instruction puts a \key{1} or \key{0} into its destination depending
  4292. on whether the comparison came out according to the condition code
  4293. \itm{cc} (\key{e} for equal, \key{l} for less, \key{le} for
  4294. less-or-equal, \key{g} for greater, \key{ge} for greater-or-equal).
  4295. The \key{set} instruction has an annoying quirk in that its
  4296. destination argument must be single byte register, such as \code{al}
  4297. (L for lower bits) or \code{ah} (H for higher bits), which are part of
  4298. the \code{rax} register. Thankfully, the \key{movzbq} instruction can
  4299. then be used to move from a single byte register to a normal 64-bit
  4300. register.
  4301. The x86 instruction for conditional jump are relevant to the
  4302. compilation of \key{if} expressions. The \key{JmpIf} instruction
  4303. updates the program counter to point to the instruction after the
  4304. indicated label depending on whether the result in the EFLAGS register
  4305. matches the condition code \itm{cc}, otherwise the \key{JmpIf}
  4306. instruction falls through to the next instruction. The abstract
  4307. syntax for \key{JmpIf} differs from the concrete syntax for x86 in
  4308. that it separates the instruction name from the condition code. For
  4309. example, \code{(JmpIf le foo)} corresponds to \code{jle foo}. Because
  4310. the \key{JmpIf} instruction relies on the EFLAGS register, it is
  4311. common for the \key{JmpIf} to be immediately preceded by a \key{cmpq}
  4312. instruction to set the EFLAGS register.
  4313. \section{The $C_1$ Intermediate Language}
  4314. \label{sec:c1}
  4315. As with $R_1$, we compile $R_2$ to a C-like intermediate language, but
  4316. we need to grow that intermediate language to handle the new features
  4317. in $R_2$: Booleans and conditional expressions.
  4318. Figure~\ref{fig:c1-syntax} defines the abstract syntax of $C_1$. (The
  4319. concrete syntax is in the Appendix,
  4320. Figure~\ref{fig:c1-concrete-syntax}.) The $C_1$ language adds logical
  4321. and comparison operators to the $\Exp$ non-terminal and the literals
  4322. \key{\#t} and \key{\#f} to the $\Arg$ non-terminal. Regarding control
  4323. flow, $C_1$ differs considerably from $R_2$. Instead of \key{if}
  4324. expressions, $C_1$ has \key{goto} and conditional \key{goto} in the
  4325. grammar for $\Tail$. This means that a sequence of statements may now
  4326. end with a \code{goto} or a conditional \code{goto}. The conditional
  4327. \code{goto} jumps to one of two labels depending on the outcome of the
  4328. comparison. In Section~\ref{sec:explicate-control-r2} we discuss how
  4329. to translate from $R_2$ to $C_1$, bridging this gap between \key{if}
  4330. expressions and \key{goto}'s.
  4331. \begin{figure}[tp]
  4332. \fbox{
  4333. \begin{minipage}{0.96\textwidth}
  4334. \small
  4335. \[
  4336. \begin{array}{lcl}
  4337. \Atm &::=& \gray{\INT{\Int} \mid \VAR{\Var}} \mid \BOOL{\itm{bool}} \\
  4338. \itm{cmp} &::= & \key{eq?} \mid \key{<} \\
  4339. \Exp &::= & \gray{ \Atm \mid \READ{} }\\
  4340. &\mid& \gray{ \NEG{\Atm} \mid \ADD{\Atm}{\Atm} } \\
  4341. &\mid& \UNIOP{\key{'not}}{\Atm}
  4342. \mid \BINOP{\key{'}\itm{cmp}}{\Atm}{\Atm} \\
  4343. \Stmt &::=& \gray{ \ASSIGN{\VAR{\Var}}{\Exp} } \\
  4344. \Tail &::= & \gray{\RETURN{\Exp} \mid \SEQ{\Stmt}{\Tail} }
  4345. \mid \GOTO{\itm{label}} \\
  4346. &\mid& \IFSTMT{\BINOP{\itm{cmp}}{\Atm}{\Atm}}{\GOTO{\itm{label}}}{\GOTO{\itm{label}}} \\
  4347. C_1 & ::= & \gray{\PROGRAM{\itm{info}}{\CFG{\key{(}\itm{label}\,\key{.}\,\Tail\key{)}\ldots}}}
  4348. \end{array}
  4349. \]
  4350. \end{minipage}
  4351. }
  4352. \caption{The abstract syntax of $C_1$, an extension of $C_0$
  4353. (Figure~\ref{fig:c0-syntax}).}
  4354. \label{fig:c1-syntax}
  4355. \end{figure}
  4356. \clearpage
  4357. \section{Remove Complex Operands}
  4358. \label{sec:remove-complex-opera-R2}
  4359. Add cases for \code{Bool} and \code{If} to the \code{rco-exp} and
  4360. \code{rco-atom} functions according to the definition of the output
  4361. language for this pass, $R_2^{\dagger}$, the administrative normal
  4362. form of $R_2$, which is defined in Figure~\ref{fig:r2-anf-syntax}. The
  4363. \code{Bool} form is an atomic expressions but \code{If} is not. All
  4364. three sub-expressions of an \code{If} are allowed to be complex
  4365. expressions in the output of \code{remove-complex-opera*}, but the
  4366. operands of \code{not} and the comparisons must be atoms. Regarding
  4367. the \code{If} form, it is particularly important to \textbf{not}
  4368. replace its condition with a temporary variable because that would
  4369. interfere with the generation of high-quality output in the
  4370. \code{explicate-control} pass.
  4371. \begin{figure}[tp]
  4372. \centering
  4373. \fbox{
  4374. \begin{minipage}{0.96\textwidth}
  4375. \[
  4376. \begin{array}{rcl}
  4377. \Atm &::=& \gray{ \INT{\Int} \mid \VAR{\Var} } \mid \BOOL{\itm{bool}}\\
  4378. \Exp &::=& \gray{ \Atm \mid \READ{} } \\
  4379. &\mid& \gray{ \NEG{\Atm} \mid \ADD{\Atm}{\Atm} } \\
  4380. &\mid& \gray{ \LET{\Var}{\Exp}{\Exp} } \\
  4381. &\mid& \UNIOP{\key{'not}}{\Atm} \\
  4382. &\mid& \BINOP{\itm{cmp}}{\Atm}{\Atm} \mid \IF{\Exp}{\Exp}{\Exp} \\
  4383. R^{\dagger}_2 &::=& \PROGRAM{\code{'()}}{\Exp}
  4384. \end{array}
  4385. \]
  4386. \end{minipage}
  4387. }
  4388. \caption{$R_2^{\dagger}$ is $R_2$ in administrative normal form (ANF).}
  4389. \label{fig:r2-anf-syntax}
  4390. \end{figure}
  4391. \section{Explicate Control}
  4392. \label{sec:explicate-control-r2}
  4393. Recall that the purpose of \code{explicate-control} is to make the
  4394. order of evaluation explicit in the syntax of the program. With the
  4395. addition of \key{if} in $R_2$ this get more interesting.
  4396. As a motivating example, consider the following program that has an
  4397. \key{if} expression nested in the predicate of another \key{if}.
  4398. % s1_41.rkt
  4399. \begin{center}
  4400. \begin{minipage}{0.96\textwidth}
  4401. \begin{lstlisting}
  4402. (let ([x (read)])
  4403. (let ([y (read)])
  4404. (if (if (< x 1) (eq? x 0) (eq? x 2))
  4405. (+ y 2)
  4406. (+ y 10))))
  4407. \end{lstlisting}
  4408. \end{minipage}
  4409. \end{center}
  4410. %
  4411. The naive way to compile \key{if} and the comparison would be to
  4412. handle each of them in isolation, regardless of their context. Each
  4413. comparison would be translated into a \key{cmpq} instruction followed
  4414. by a couple instructions to move the result from the EFLAGS register
  4415. into a general purpose register or stack location. Each \key{if} would
  4416. be translated into the combination of a \key{cmpq} and a conditional
  4417. jump. The generated code for the inner \key{if} in the above example
  4418. would be as follows.
  4419. \begin{center}
  4420. \begin{minipage}{0.96\textwidth}
  4421. \begin{lstlisting}
  4422. ...
  4423. cmpq $1, x ;; (< x 1)
  4424. setl %al
  4425. movzbq %al, tmp
  4426. cmpq $1, tmp ;; (if (< x 1) ...)
  4427. je then_branch_1
  4428. jmp else_branch_1
  4429. ...
  4430. \end{lstlisting}
  4431. \end{minipage}
  4432. \end{center}
  4433. However, if we take context into account we can do better and reduce
  4434. the use of \key{cmpq} and EFLAG-accessing instructions.
  4435. One idea is to try and reorganize the code at the level of $R_2$,
  4436. pushing the outer \key{if} inside the inner one. This would yield the
  4437. following code.
  4438. \begin{center}
  4439. \begin{minipage}{0.96\textwidth}
  4440. \begin{lstlisting}
  4441. (let ([x (read)])
  4442. (let ([y (read)])
  4443. (if (< x 1)
  4444. (if (eq? x 0)
  4445. (+ y 2)
  4446. (+ y 10))
  4447. (if (eq? x 2)
  4448. (+ y 2)
  4449. (+ y 10)))))
  4450. \end{lstlisting}
  4451. \end{minipage}
  4452. \end{center}
  4453. Unfortunately, this approach duplicates the two branches, and a
  4454. compiler must never duplicate code!
  4455. We need a way to perform the above transformation, but without
  4456. duplicating code. That is, we need a way for different parts of a
  4457. program to refer to the same piece of code, that is, to \emph{share}
  4458. code. At the level of x86 assembly this is straightforward because we
  4459. can label the code for each of the branches and insert jumps in all
  4460. the places that need to execute the branches. At the higher level of
  4461. our intermediate languages, we need to move away from abstract syntax
  4462. \emph{trees} and instead use \emph{graphs}. In particular, we use a
  4463. standard program representation called a \emph{control flow graph}
  4464. (CFG), due to Frances Elizabeth \citet{Allen:1970uq}.
  4465. \index{control-flow graph} Each vertex is a labeled sequence of code,
  4466. called a \emph{basic block}, and each edge represents a jump to
  4467. another block. The \key{Program} construct of $C_0$ and $C_1$ contains
  4468. a control flow graph represented as an alist mapping labels to basic
  4469. blocks. Each basic block is represented by the $\Tail$ non-terminal.
  4470. Figure~\ref{fig:explicate-control-s1-38} shows the output of the
  4471. \code{remove-complex-opera*} pass and then the
  4472. \code{explicate-control} pass on the example program. We walk through
  4473. the output program and then discuss the algorithm.
  4474. %
  4475. Following the order of evaluation in the output of
  4476. \code{remove-complex-opera*}, we first have two calls to \code{(read)}
  4477. and then the less-than-comparison to \code{1} in the predicate of the
  4478. inner \key{if}. In the output of \code{explicate-control}, in the
  4479. block labeled \code{start}, this becomes two assignment statements
  4480. followed by a conditional \key{goto} to label \code{block40} or
  4481. \code{block41}. The blocks associated with those labels contain the
  4482. translations of the code \code{(eq? x 0)} and \code{(eq? x 2)},
  4483. respectively. Regarding the block labeled with \code{block40}, we
  4484. start with the comparison to \code{0} and then have a conditional
  4485. goto, either to label \code{block38} or label \code{block39}, which
  4486. are the two branches of the outer \key{if}, i.e., \code{(+ y 2)} and
  4487. \code{(+ y 10)}. The story for the block labeled \code{block41} is
  4488. similar.
  4489. \begin{figure}[tbp]
  4490. \begin{tabular}{lll}
  4491. \begin{minipage}{0.4\textwidth}
  4492. % s1_41.rkt
  4493. \begin{lstlisting}
  4494. (let ([x (read)])
  4495. (let ([y (read)])
  4496. (if (if (< x 1)
  4497. (eq? x 0)
  4498. (eq? x 2))
  4499. (+ y 2)
  4500. (+ y 10))))
  4501. \end{lstlisting}
  4502. \hspace{40pt}$\Downarrow$
  4503. \begin{lstlisting}
  4504. (let ([x (read)])
  4505. (let ([y (read)])
  4506. (if (if (< x 1)
  4507. (eq? x 0)
  4508. (eq? x 2))
  4509. (+ y 2)
  4510. (+ y 10))))
  4511. \end{lstlisting}
  4512. \end{minipage}
  4513. &
  4514. $\Rightarrow$
  4515. &
  4516. \begin{minipage}{0.55\textwidth}
  4517. \begin{lstlisting}
  4518. start:
  4519. x = (read);
  4520. y = (read);
  4521. if (< x 1)
  4522. goto block40;
  4523. else
  4524. goto block41;
  4525. block40:
  4526. if (eq? x 0)
  4527. goto block38;
  4528. else
  4529. goto block39;
  4530. block41:
  4531. if (eq? x 2)
  4532. goto block38;
  4533. else
  4534. goto block39;
  4535. block38:
  4536. return (+ y 2);
  4537. block39:
  4538. return (+ y 10);
  4539. \end{lstlisting}
  4540. \end{minipage}
  4541. \end{tabular}
  4542. \caption{Translation from $R_2$ to $C_1$
  4543. via the \code{explicate-control}.}
  4544. \label{fig:explicate-control-s1-38}
  4545. \end{figure}
  4546. %% The nice thing about the output of \code{explicate-control} is that
  4547. %% there are no unnecessary comparisons and every comparison is part of a
  4548. %% conditional jump.
  4549. %% The down-side of this output is that it includes
  4550. %% trivial blocks, such as the blocks labeled \code{block92} through
  4551. %% \code{block95}, that only jump to another block. We discuss a solution
  4552. %% to this problem in Section~\ref{sec:opt-jumps}.
  4553. Recall that in Section~\ref{sec:explicate-control-r1} we implement
  4554. \code{explicate-control} for $R_1$ using two mutually recursive
  4555. functions, \code{explicate-tail} and \code{explicate-assign}. The
  4556. former function translates expressions in tail position whereas the
  4557. later function translates expressions on the right-hand-side of a
  4558. \key{let}. With the addition of \key{if} expression in $R_2$ we have a
  4559. new kind of context to deal with: the predicate position of the
  4560. \key{if}. We need another function, \code{explicate-pred}, that takes
  4561. an $R_2$ expression and two blocks for the then-branch and
  4562. else-branch. The output of \code{explicate-pred} is a block.
  4563. %
  4564. %% Note that the three explicate functions need to construct a
  4565. %% control-flow graph, which we recommend they do via updates to a global
  4566. %% variable.
  4567. %
  4568. In the following paragraphs we discuss specific cases in the
  4569. \code{explicate-pred} function as well as the additions to the
  4570. \code{explicate-tail} and \code{explicate-assign} functions.
  4571. The function \code{explicate-pred} will need a case for every
  4572. expression that can have type \code{Boolean}. We detail a few cases
  4573. here and leave the rest for the reader. The input to this function is
  4574. an expression and two blocks, $B_1$ and $B_2$, for the two branches of
  4575. the enclosing \key{if}, though some care will be needed regarding how
  4576. we represent the blocks. Suppose the expression is the Boolean
  4577. \code{\#t}. Then we can perform a kind of partial evaluation
  4578. \index{partial evaluation} and translate it to the ``then'' branch
  4579. $B_1$. Likewise, we translate \code{\#f} to the ``else`` branch $B_2$.
  4580. \[
  4581. \key{\#t} \quad\Rightarrow\quad B_1,
  4582. \qquad\qquad\qquad
  4583. \key{\#f} \quad\Rightarrow\quad B_2
  4584. \]
  4585. These two cases demonstrate that we sometimes discard one of the
  4586. blocks that are input to \code{explicate-pred}. We will need to
  4587. arrange for the blocks that we actually use to appear in the resulting
  4588. control-flow graph, but not the discarded blocks.
  4589. The case for \key{if} in \code{explicate-pred} is particularly
  4590. illuminating as it deals with the challenges that we discussed above
  4591. regarding the example of the nested \key{if} expressions. The
  4592. ``then'' and ``else'' branches of the current \key{if} inherit their
  4593. context from the current one, that is, predicate context. So we
  4594. recursively apply \code{explicate-pred} to the ``then'' and ``else''
  4595. branches. For both of those recursive calls, we shall pass the blocks
  4596. $B_1$ and $B_2$. Thus, $B_1$ may get used twice, once inside each
  4597. recursive call, and likewise for $B_2$. As discussed above, to avoid
  4598. duplicating code, we need to add these blocks to the control-flow
  4599. graph so that we can instead refer to them by name and execute them
  4600. with a \key{goto}. However, as we saw in the cases above for \key{\#t}
  4601. and \key{\#f}, the blocks $B_1$ or $B_2$ may not get used at all and
  4602. we don't want to prematurely add them to the control-flow graph if
  4603. they end up being discarded.
  4604. The solution to this conundrum is to use \emph{lazy evaluation} to
  4605. delay adding the blocks to the control-flow graph until the points
  4606. where we know they will be used~\citep{Friedman:1976aa}.\index{lazy
  4607. evaluation} Racket provides support for lazy evaluation with the
  4608. \href{https://docs.racket-lang.org/reference/Delayed_Evaluation.html}{\code{racket/promise}}
  4609. package. The expression \key{(delay} $e_1 \ldots e_n$\key{)}
  4610. \index{delay} creates a \emph{promise}\index{promise} in which the
  4611. evaluation of the expressions is postponed. When \key{(force}
  4612. $p$\key{)}\index{force} is applied to a promise $p$ for the first
  4613. time, the expressions $e_1 \ldots e_n$ are evaluated and the result of
  4614. $e_n$ is cached in the promise and returned. If \code{force} is
  4615. applied again to the same promise, then the cached result is returned.
  4616. We use lazy evaluation for the input and output blocks of the
  4617. functions \code{explicate-pred} and \code{explicate-assign} and for
  4618. the output block of \code{explicate-tail}. So instead of taking and
  4619. returning blocks, they take and return promised blocks. Furthermore,
  4620. when we come to a situation in which we a block might be used more
  4621. than once, as in the case for \code{if} above, we transform the
  4622. promise into a new promise that will add the block to the control-flow
  4623. graph and return a \code{goto}. The following auxiliary function
  4624. accomplishes this task. It begins with \code{delay} to create a
  4625. promise. When forced, this promise will force the input block. If that
  4626. block is already a \code{goto} (because it was already added to the
  4627. control-flow graph), then we return that \code{goto}. Otherwise we add
  4628. the block to the control-flow graph with another auxiliary function
  4629. named \code{add-node} that returns the new label, and then return the
  4630. \code{goto}.
  4631. \begin{lstlisting}
  4632. (define (block->goto block)
  4633. (delay
  4634. (define b (force block))
  4635. (match b
  4636. [(Goto label) (Goto label)]
  4637. [else (Goto (add-node b))]
  4638. )))
  4639. \end{lstlisting}
  4640. Getting back to the case for \code{if} in \code{explicate-pred}, we
  4641. make the recursive calls to \code{explicate-pred} on the ``then'' and
  4642. ``else'' branches with the arguments \code{(block->goto} $B_1$\code{)}
  4643. and \code{(block->goto} $B_2$\code{)}. Let $B_3$ and $B_4$ be the
  4644. results from the two recursive calls. We complete the case for
  4645. \code{if} by recursively apply \code{explicate-pred} to the condition
  4646. of the \code{if} with the promised blocks $B_3$ and $B_4$ to obtain
  4647. the result $B_5$.
  4648. \[
  4649. (\key{if}\; \itm{cnd}\; \itm{thn}\; \itm{els})
  4650. \quad\Rightarrow\quad
  4651. B_5
  4652. \]
  4653. Next, consider the case for a less-than comparison in
  4654. \code{explicate-pred}. We translate it to an \code{if} statement,
  4655. whose two branches are required to be \code{goto}'s. So we apply
  4656. \code{block->goto} to $B_1$ and $B_2$ to obtain two promised goto's,
  4657. which we can \code{force} to obtain the two actual goto's $G_1$ and
  4658. $G_2$. The translation of the less-than comparison is as follows.
  4659. \[
  4660. (\key{<}~e_1~e_2) \quad\Rightarrow\quad
  4661. \begin{array}{l}
  4662. \key{if}~(\key{<}~e_1~e_2) \; G_1\\
  4663. \key{else} \; G_2
  4664. \end{array}
  4665. \]
  4666. The \code{explicate-tail} function needs to be updated to use lazy
  4667. evaluation and it needs an additional case for \key{if}. Each of the
  4668. cases that return an AST node need use \code{delay} to instead return
  4669. a promise of an AST node. Recall that \code{explicate-tail} has an
  4670. accumulator parameter that is a block, which now becomes a promise of
  4671. a block, which we refer to as $B_0$.
  4672. In the case for \code{if} in \code{explicate-tail}, the two branches
  4673. inherit the current context, so they are in tail position. Thus, the
  4674. recursive calls on the ``then'' and ``else'' branch should be calls to
  4675. \code{explicate-tail}.
  4676. %
  4677. We need to pass $B_0$ as the accumulator argument for both of these
  4678. recursive calls, but we need to be careful not to duplicate $B_0$.
  4679. Thus, we first apply \code{block->goto} to $B_0$ so that it gets added
  4680. to the control-flow graph and obtain a promised goto $G_0$.
  4681. %
  4682. Let $B_1$ be the result of \code{explicate-tail} on the ``then''
  4683. branch and $G_0$ and let $B_2$ be the result of \code{explicate-tail}
  4684. on the ``else'' branch and $G_0$. Let $B_3$ be the result of applying
  4685. \code{explicate-pred} to the condition of the \key{if}, $B_1$, and
  4686. $B_2$. Then the \key{if} as a whole translates to promise $B_3$.
  4687. \[
  4688. (\key{if}\; \itm{cnd}\; \itm{thn}\; \itm{els}) \quad\Rightarrow\quad B_3
  4689. \]
  4690. %% In the above discussion, we use the metavariables $B_1$, $B_2$, and
  4691. %% $B_3$ to refer to blocks for the purposes of our discussion, but they
  4692. %% should not be confused with the labels for the blocks that appear in
  4693. %% the generated code. We initially construct unlabeled blocks; we only
  4694. %% attach labels to blocks when we add them to the control-flow graph, as
  4695. %% we see in the next case.
  4696. Next consider the case for \key{if} in the \code{explicate-assign}
  4697. function. The context of the \key{if} is an assignment to some
  4698. variable $x$ and then the control continues to some promised block
  4699. $B_1$. The code that we generate for both the ``then'' and ``else''
  4700. branches needs to continue to $B_1$, so to avoid duplicating $B_1$ we
  4701. apply \code{block->goto} to it and obtain a promised goto $G_1$. The
  4702. branches of the \key{if} inherit the current context, so they are in
  4703. assignment positions. Let $B_2$ be the result of applying
  4704. \code{explicate-assign} to the ``then'' branch, variable $x$, and
  4705. $G_1$. Let $B_3$ be the result of applying \code{explicate-assign} to
  4706. the ``else'' branch, variable $x$, and $G_1$. Finally, let $B_4$ be
  4707. the result of applying \code{explicate-pred} to the predicate
  4708. $\itm{cnd}$ and the promises $B_2$ and $B_3$. The \key{if} as a whole
  4709. translates to the promise $B_4$.
  4710. \[
  4711. (\key{if}\; \itm{cnd}\; \itm{thn}\; \itm{els}) \quad\Rightarrow\quad B_4
  4712. \]
  4713. This completes the description of \code{explicate-control} for $R_2$.
  4714. The way in which the \code{shrink} pass transforms logical operations
  4715. such as \code{and} and \code{or} can impact the quality of code
  4716. generated by \code{explicate-control}. For example, consider the
  4717. following program.
  4718. % s1_21.rkt
  4719. \begin{lstlisting}
  4720. (if (and (eq? (read) 0) (eq? (read) 1))
  4721. 0
  4722. 42)
  4723. \end{lstlisting}
  4724. The \code{and} operation should transform into something that the
  4725. \code{explicate-pred} function can still analyze and descend through to
  4726. reach the underlying \code{eq?} conditions. Ideally, your
  4727. \code{explicate-control} pass should generate code similar to the
  4728. following for the above program.
  4729. \begin{center}
  4730. \begin{lstlisting}
  4731. start:
  4732. tmp1 = (read);
  4733. if (eq? tmp1 0)
  4734. goto block40;
  4735. else
  4736. goto block39;
  4737. block40:
  4738. tmp2 = (read);
  4739. if (eq? tmp2 1)
  4740. goto block38;
  4741. else
  4742. goto block39;
  4743. block38:
  4744. return 0;
  4745. block39:
  4746. return 42;
  4747. \end{lstlisting}
  4748. \end{center}
  4749. \begin{exercise}\normalfont
  4750. Implement the pass \code{explicate-control} by adding the cases for
  4751. \key{if} to the functions for tail and assignment contexts, and
  4752. implement \code{explicate-pred} for predicate contexts. Create test
  4753. cases that exercise all of the new cases in the code for this pass.
  4754. \end{exercise}
  4755. \section{Select Instructions}
  4756. \label{sec:select-r2}
  4757. \index{instruction selection}
  4758. Recall that the \code{select-instructions} pass lowers from our
  4759. $C$-like intermediate representation to the pseudo-x86 language, which
  4760. is suitable for conducting register allocation. The pass is
  4761. implemented using three auxiliary functions, one for each of the
  4762. non-terminals $\Atm$, $\Stmt$, and $\Tail$.
  4763. For $\Atm$, we have new cases for the Booleans. We take the usual
  4764. approach of encoding them as integers, with true as 1 and false as 0.
  4765. \[
  4766. \key{\#t} \Rightarrow \key{1}
  4767. \qquad
  4768. \key{\#f} \Rightarrow \key{0}
  4769. \]
  4770. For $\Stmt$, we discuss a couple cases. The \code{not} operation can
  4771. be implemented in terms of \code{xorq} as we discussed at the
  4772. beginning of this section. Given an assignment
  4773. $\itm{var}$ \key{=} \key{(not} $\Atm$\key{);},
  4774. if the left-hand side $\itm{var}$ is
  4775. the same as $\Atm$, then just the \code{xorq} suffices.
  4776. \[
  4777. \Var~\key{=}~ \key{(not}\; \Var\key{);}
  4778. \quad\Rightarrow\quad
  4779. \key{xorq}~\key{\$}1\key{,}~\Var
  4780. \]
  4781. Otherwise, a \key{movq} is needed to adapt to the update-in-place
  4782. semantics of x86. Let $\Arg$ be the result of translating $\Atm$ to
  4783. x86. Then we have
  4784. \[
  4785. \Var~\key{=}~ \key{(not}\; \Atm\key{);}
  4786. \quad\Rightarrow\quad
  4787. \begin{array}{l}
  4788. \key{movq}~\Arg\key{,}~\Var\\
  4789. \key{xorq}~\key{\$}1\key{,}~\Var
  4790. \end{array}
  4791. \]
  4792. Next consider the cases for \code{eq?} and less-than comparison.
  4793. Translating these operations to x86 is slightly involved due to the
  4794. unusual nature of the \key{cmpq} instruction discussed above. We
  4795. recommend translating an assignment from \code{eq?} into the following
  4796. sequence of three instructions. \\
  4797. \begin{tabular}{lll}
  4798. \begin{minipage}{0.4\textwidth}
  4799. \begin{lstlisting}
  4800. |$\Var$| = (eq? |$\Atm_1$| |$\Atm_2$|);
  4801. \end{lstlisting}
  4802. \end{minipage}
  4803. &
  4804. $\Rightarrow$
  4805. &
  4806. \begin{minipage}{0.4\textwidth}
  4807. \begin{lstlisting}
  4808. cmpq |$\Arg_2$|, |$\Arg_1$|
  4809. sete %al
  4810. movzbq %al, |$\Var$|
  4811. \end{lstlisting}
  4812. \end{minipage}
  4813. \end{tabular} \\
  4814. Regarding the $\Tail$ non-terminal, we have two new cases: \key{goto}
  4815. and conditional \key{goto}. Both are straightforward to handle. A
  4816. \key{goto} becomes a jump instruction.
  4817. \[
  4818. \key{goto}\; \ell\key{;} \quad \Rightarrow \quad \key{jmp}\;\ell
  4819. \]
  4820. A conditional \key{goto} becomes a compare instruction followed
  4821. by a conditional jump (for ``then'') and the fall-through is
  4822. to a regular jump (for ``else'').\\
  4823. \begin{tabular}{lll}
  4824. \begin{minipage}{0.4\textwidth}
  4825. \begin{lstlisting}
  4826. if (eq? |$\Atm_1$| |$\Atm_2$|)
  4827. goto |$\ell_1$|;
  4828. else
  4829. goto |$\ell_2$|;
  4830. \end{lstlisting}
  4831. \end{minipage}
  4832. &
  4833. $\Rightarrow$
  4834. &
  4835. \begin{minipage}{0.4\textwidth}
  4836. \begin{lstlisting}
  4837. cmpq |$\Arg_2$|, |$\Arg_1$|
  4838. je |$\ell_1$|
  4839. jmp |$\ell_2$|
  4840. \end{lstlisting}
  4841. \end{minipage}
  4842. \end{tabular} \\
  4843. \begin{exercise}\normalfont
  4844. Expand your \code{select-instructions} pass to handle the new features
  4845. of the $R_2$ language. Test the pass on all the examples you have
  4846. created and make sure that you have some test programs that use the
  4847. \code{eq?} and \code{<} operators, creating some if necessary. Test
  4848. the output using the \code{interp-x86} interpreter
  4849. (Appendix~\ref{appendix:interp}).
  4850. \end{exercise}
  4851. \section{Register Allocation}
  4852. \label{sec:register-allocation-r2}
  4853. \index{register allocation}
  4854. The changes required for $R_2$ affect liveness analysis, building the
  4855. interference graph, and assigning homes, but the graph coloring
  4856. algorithm itself does not change.
  4857. \subsection{Liveness Analysis}
  4858. \label{sec:liveness-analysis-r2}
  4859. \index{liveness analysis}
  4860. Recall that for $R_1$ we implemented liveness analysis for a single
  4861. basic block (Section~\ref{sec:liveness-analysis-r1}). With the
  4862. addition of \key{if} expressions to $R_2$, \code{explicate-control}
  4863. produces many basic blocks arranged in a control-flow graph. We
  4864. recommend that you create a new auxiliary function named
  4865. \code{uncover-live-CFG} that applies liveness analysis to a
  4866. control-flow graph.
  4867. The first question we need to consider is: what order should we
  4868. process the basic blocks in the control-flow graph? To perform
  4869. liveness analysis on a basic block, we need to know its live-after
  4870. set. If a basic block has no successor blocks (i.e. no out-edges in
  4871. the control flow graph), then it has an empty live-after set and we
  4872. can immediately apply liveness analysis to it. If a basic block has
  4873. some successors, then we need to complete liveness analysis on those
  4874. blocks first. Thankfully, the control flow graph does not contain any
  4875. cycles because $R_2$ does not include loops. (In
  4876. Chapter~\ref{ch:loop} we add loops and study how to handle cycles in
  4877. the control-flow graph.)
  4878. %
  4879. Returning to the question of what order should we process the basic
  4880. blocks, the answer is reverse topological order. We recommend using
  4881. the \code{tsort} (topological sort) and \code{transpose} functions of
  4882. the Racket \code{graph} package to obtain this ordering.
  4883. \index{topological order}
  4884. \index{topological sort}
  4885. The next question is how to analyze the jump instructions. In
  4886. Section~\ref{sec:liveness-analysis-r1} we recommended that you
  4887. maintain an alist named \code{label->live} that maps each label to the
  4888. set of live locations at the beginning of the associated block. Now
  4889. that we have many basic blocks, the alist needs to be extended as we
  4890. process the blocks. In particular, after performing liveness analysis
  4891. on a block, we can take the live-before set for its first instruction
  4892. and associate that with the block's label in the alist.
  4893. %
  4894. As discussed in Section~\ref{sec:liveness-analysis-r1}, the
  4895. live-before set for a $\JMP{\itm{label}}$ instruction is given by the
  4896. mapping for $\itm{label}$ in \code{label->live}.
  4897. Now for $x86_1$ we also have the conditional jump
  4898. $\JMPIF{\itm{cc}}{\itm{label}}$ to deal with. This one is
  4899. particularly interesting because during compilation we do not know, in
  4900. general, which way a conditional jump will go, so we do not know
  4901. whether to use the live-before set for the following instruction or
  4902. the live-before set for $\itm{label}$. The solution to this challenge
  4903. is based on the observation that there is no harm to the correctness
  4904. of the compiler if we classify more locations as live than the ones
  4905. that are truly live during a particular execution of the
  4906. instruction. Thus, we can take the union of the live-before sets from
  4907. the following instruction and from the mapping fro $\itm{label}$ in
  4908. \code{label->live}.
  4909. The helper functions for computing the variables in an instruction's
  4910. argument and for computing the variables read-from ($R$) or written-to
  4911. ($W$) by an instruction need to be updated to handle the new kinds of
  4912. arguments and instructions in x86$_1$.
  4913. \subsection{Build Interference}
  4914. \label{sec:build-interference-r2}
  4915. Many of the new instructions in x86$_1$ can be handled in the same way
  4916. as the instructions in x86$_0$. Thus, if your code was already quite
  4917. general, it will not need to be changed to handle the new
  4918. instructions. If you code is not general enough, I recommend that you
  4919. change your code to be more general. For example, you can factor out
  4920. the computing of the the read and write sets for each kind of
  4921. instruction into two auxiliary functions.
  4922. Note that the \key{movzbq} instruction requires some special care,
  4923. just like the \key{movq} instruction. See rule number 3 in
  4924. Section~\ref{sec:build-interference}.
  4925. %% \subsection{Assign Homes}
  4926. %% \label{sec:assign-homes-r2}
  4927. %% The \code{assign-homes} function (Section~\ref{sec:assign-r1}) needs
  4928. %% to be updated to handle the \key{if} statement, simply by recursively
  4929. %% processing the child nodes. Hopefully your code already handles the
  4930. %% other new instructions, but if not, you can generalize your code.
  4931. \begin{exercise}\normalfont
  4932. Update the \code{register-allocation} pass so that it works for $R_2$
  4933. and test your compiler using your previously created programs on the
  4934. \code{interp-x86} interpreter (Appendix~\ref{appendix:interp}).
  4935. \end{exercise}
  4936. \section{Patch Instructions}
  4937. The second argument of the \key{cmpq} instruction must not be an
  4938. immediate value (such as an integer). So if you are comparing two
  4939. immediates, we recommend inserting a \key{movq} instruction to put the
  4940. second argument in \key{rax}. Also, recall that instructions may have
  4941. at most one memory reference.
  4942. %
  4943. The second argument of the \key{movzbq} must be a register.
  4944. %
  4945. There are no special restrictions on the x86 instructions \key{JmpIf}
  4946. and \key{Jmp}.
  4947. \begin{exercise}\normalfont
  4948. Update \code{patch-instructions} to handle the new x86 instructions.
  4949. Test your compiler using your previously created programs on the
  4950. \code{interp-x86} interpreter (Appendix~\ref{appendix:interp}).
  4951. \end{exercise}
  4952. \begin{figure}[tbp]
  4953. \begin{tikzpicture}[baseline=(current bounding box.center)]
  4954. \node (R2) at (0,2) {\large $R_2$};
  4955. \node (R2-2) at (3,2) {\large $R_2$};
  4956. \node (R2-3) at (6,2) {\large $R_2$};
  4957. \node (R2-4) at (9,2) {\large $R_2$};
  4958. \node (R2-5) at (12,2) {\large $R_2$};
  4959. \node (C1-1) at (3,0) {\large $C_1$};
  4960. \node (x86-2) at (3,-2) {\large $\text{x86}^{*}_1$};
  4961. \node (x86-3) at (6,-2) {\large $\text{x86}^{*}_1$};
  4962. \node (x86-4) at (9,-2) {\large $\text{x86}^{*}_1$};
  4963. \node (x86-5) at (9,-4) {\large $\text{x86}^{\dagger}_1$};
  4964. \node (x86-2-1) at (3,-4) {\large $\text{x86}^{*}_1$};
  4965. \node (x86-2-2) at (6,-4) {\large $\text{x86}^{*}_1$};
  4966. \path[->,bend left=15] (R2) edge [above] node {\ttfamily\footnotesize type-check} (R2-2);
  4967. \path[->,bend left=15] (R2-2) edge [above] node {\ttfamily\footnotesize shrink} (R2-3);
  4968. \path[->,bend left=15] (R2-3) edge [above] node {\ttfamily\footnotesize uniquify} (R2-4);
  4969. \path[->,bend left=15] (R2-4) edge [above] node {\ttfamily\footnotesize remove-complex.} (R2-5);
  4970. \path[->,bend left=15] (R2-5) edge [left] node {\ttfamily\footnotesize explicate-control} (C1-1);
  4971. \path[->,bend right=15] (C1-1) edge [left] node {\ttfamily\footnotesize select-instructions} (x86-2);
  4972. \path[->,bend left=15] (x86-2) edge [right] node {\ttfamily\footnotesize uncover-live} (x86-2-1);
  4973. \path[->,bend right=15] (x86-2-1) edge [below] node {\ttfamily\footnotesize build-inter.} (x86-2-2);
  4974. \path[->,bend right=15] (x86-2-2) edge [right] node {\ttfamily\footnotesize allocate-reg.} (x86-3);
  4975. \path[->,bend left=15] (x86-3) edge [above] node {\ttfamily\footnotesize patch-instr.} (x86-4);
  4976. \path[->,bend left=15] (x86-4) edge [right] node {\ttfamily\footnotesize print-x86 } (x86-5);
  4977. \end{tikzpicture}
  4978. \caption{Diagram of the passes for $R_2$, a language with conditionals.}
  4979. \label{fig:R2-passes}
  4980. \end{figure}
  4981. Figure~\ref{fig:R2-passes} lists all the passes needed for the
  4982. compilation of $R_2$.
  4983. \section{An Example Translation}
  4984. Figure~\ref{fig:if-example-x86} shows a simple example program in
  4985. $R_2$ translated to x86, showing the results of
  4986. \code{explicate-control}, \code{select-instructions}, and the final
  4987. x86 assembly code.
  4988. \begin{figure}[tbp]
  4989. \begin{tabular}{lll}
  4990. \begin{minipage}{0.5\textwidth}
  4991. % s1_20.rkt
  4992. \begin{lstlisting}
  4993. (if (eq? (read) 1) 42 0)
  4994. \end{lstlisting}
  4995. $\Downarrow$
  4996. \begin{lstlisting}
  4997. start:
  4998. tmp7951 = (read);
  4999. if (eq? tmp7951 1) then
  5000. goto block7952;
  5001. else
  5002. goto block7953;
  5003. block7952:
  5004. return 42;
  5005. block7953:
  5006. return 0;
  5007. \end{lstlisting}
  5008. $\Downarrow$
  5009. \begin{lstlisting}
  5010. start:
  5011. callq read_int
  5012. movq %rax, tmp7951
  5013. cmpq $1, tmp7951
  5014. je block7952
  5015. jmp block7953
  5016. block7953:
  5017. movq $0, %rax
  5018. jmp conclusion
  5019. block7952:
  5020. movq $42, %rax
  5021. jmp conclusion
  5022. \end{lstlisting}
  5023. \end{minipage}
  5024. &
  5025. $\Rightarrow\qquad$
  5026. \begin{minipage}{0.4\textwidth}
  5027. \begin{lstlisting}
  5028. start:
  5029. callq read_int
  5030. movq %rax, %rcx
  5031. cmpq $1, %rcx
  5032. je block7952
  5033. jmp block7953
  5034. block7953:
  5035. movq $0, %rax
  5036. jmp conclusion
  5037. block7952:
  5038. movq $42, %rax
  5039. jmp conclusion
  5040. .globl main
  5041. main:
  5042. pushq %rbp
  5043. movq %rsp, %rbp
  5044. pushq %r13
  5045. pushq %r12
  5046. pushq %rbx
  5047. pushq %r14
  5048. subq $0, %rsp
  5049. jmp start
  5050. conclusion:
  5051. addq $0, %rsp
  5052. popq %r14
  5053. popq %rbx
  5054. popq %r12
  5055. popq %r13
  5056. popq %rbp
  5057. retq
  5058. \end{lstlisting}
  5059. \end{minipage}
  5060. \end{tabular}
  5061. \caption{Example compilation of an \key{if} expression to x86.}
  5062. \label{fig:if-example-x86}
  5063. \end{figure}
  5064. \section{Challenge: Remove Jumps}
  5065. \label{sec:opt-jumps}
  5066. %% Recall that in the example output of \code{explicate-control} in
  5067. %% Figure~\ref{fig:explicate-control-s1-38}, \code{block57} through
  5068. %% \code{block60} are trivial blocks, they do nothing but jump to another
  5069. %% block. The first goal of this challenge assignment is to remove those
  5070. %% blocks. Figure~\ref{fig:optimize-jumps} repeats the result of
  5071. %% \code{explicate-control} on the left and shows the result of bypassing
  5072. %% the trivial blocks on the right. Let us focus on \code{block61}. The
  5073. %% \code{then} branch jumps to \code{block57}, which in turn jumps to
  5074. %% \code{block55}. The optimized code on the right of
  5075. %% Figure~\ref{fig:optimize-jumps} bypasses \code{block57}, with the
  5076. %% \code{then} branch jumping directly to \code{block55}. The story is
  5077. %% similar for the \code{else} branch, as well as for the two branches in
  5078. %% \code{block62}. After the jumps in \code{block61} and \code{block62}
  5079. %% have been optimized in this way, there are no longer any jumps to
  5080. %% blocks \code{block57} through \code{block60}, so they can be removed.
  5081. %% \begin{figure}[tbp]
  5082. %% \begin{tabular}{lll}
  5083. %% \begin{minipage}{0.4\textwidth}
  5084. %% \begin{lstlisting}
  5085. %% block62:
  5086. %% tmp54 = (read);
  5087. %% if (eq? tmp54 2) then
  5088. %% goto block59;
  5089. %% else
  5090. %% goto block60;
  5091. %% block61:
  5092. %% tmp53 = (read);
  5093. %% if (eq? tmp53 0) then
  5094. %% goto block57;
  5095. %% else
  5096. %% goto block58;
  5097. %% block60:
  5098. %% goto block56;
  5099. %% block59:
  5100. %% goto block55;
  5101. %% block58:
  5102. %% goto block56;
  5103. %% block57:
  5104. %% goto block55;
  5105. %% block56:
  5106. %% return (+ 700 77);
  5107. %% block55:
  5108. %% return (+ 10 32);
  5109. %% start:
  5110. %% tmp52 = (read);
  5111. %% if (eq? tmp52 1) then
  5112. %% goto block61;
  5113. %% else
  5114. %% goto block62;
  5115. %% \end{lstlisting}
  5116. %% \end{minipage}
  5117. %% &
  5118. %% $\Rightarrow$
  5119. %% &
  5120. %% \begin{minipage}{0.55\textwidth}
  5121. %% \begin{lstlisting}
  5122. %% block62:
  5123. %% tmp54 = (read);
  5124. %% if (eq? tmp54 2) then
  5125. %% goto block55;
  5126. %% else
  5127. %% goto block56;
  5128. %% block61:
  5129. %% tmp53 = (read);
  5130. %% if (eq? tmp53 0) then
  5131. %% goto block55;
  5132. %% else
  5133. %% goto block56;
  5134. %% block56:
  5135. %% return (+ 700 77);
  5136. %% block55:
  5137. %% return (+ 10 32);
  5138. %% start:
  5139. %% tmp52 = (read);
  5140. %% if (eq? tmp52 1) then
  5141. %% goto block61;
  5142. %% else
  5143. %% goto block62;
  5144. %% \end{lstlisting}
  5145. %% \end{minipage}
  5146. %% \end{tabular}
  5147. %% \caption{Optimize jumps by removing trivial blocks.}
  5148. %% \label{fig:optimize-jumps}
  5149. %% \end{figure}
  5150. %% The name of this pass is \code{optimize-jumps}. We recommend
  5151. %% implementing this pass in two phases. The first phrase builds a hash
  5152. %% table that maps labels to possibly improved labels. The second phase
  5153. %% changes the target of each \code{goto} to use the improved label. If
  5154. %% the label is for a trivial block, then the hash table should map the
  5155. %% label to the first non-trivial block that can be reached from this
  5156. %% label by jumping through trivial blocks. If the label is for a
  5157. %% non-trivial block, then the hash table should map the label to itself;
  5158. %% we do not want to change jumps to non-trivial blocks.
  5159. %% The first phase can be accomplished by constructing an empty hash
  5160. %% table, call it \code{short-cut}, and then iterating over the control
  5161. %% flow graph. Each time you encouter a block that is just a \code{goto},
  5162. %% then update the hash table, mapping the block's source to the target
  5163. %% of the \code{goto}. Also, the hash table may already have mapped some
  5164. %% labels to the block's source, to you must iterate through the hash
  5165. %% table and update all of those so that they instead map to the target
  5166. %% of the \code{goto}.
  5167. %% For the second phase, we recommend iterating through the $\Tail$ of
  5168. %% each block in the program, updating the target of every \code{goto}
  5169. %% according to the mapping in \code{short-cut}.
  5170. %% \begin{exercise}\normalfont
  5171. %% Implement the \code{optimize-jumps} pass as a transformation from
  5172. %% $C_1$ to $C_1$, coming after the \code{explicate-control} pass.
  5173. %% Check that \code{optimize-jumps} removes trivial blocks in a few
  5174. %% example programs. Then check that your compiler still passes all of
  5175. %% your tests.
  5176. %% \end{exercise}
  5177. There is an opportunity for optimizing jumps that is apparent in the
  5178. example of Figure~\ref{fig:if-example-x86}. The \code{start} block end
  5179. with a jump to \code{block7953} and there are no other jumps to
  5180. \code{block7953} in the rest of the program. In this situation we can
  5181. avoid the runtime overhead of this jump by merging \code{block7953}
  5182. into the preceding block, in this case the \code{start} block.
  5183. Figure~\ref{fig:remove-jumps} shows the output of
  5184. \code{select-instructions} on the left and the result of this
  5185. optimization on the right.
  5186. \begin{figure}[tbp]
  5187. \begin{tabular}{lll}
  5188. \begin{minipage}{0.5\textwidth}
  5189. % s1_20.rkt
  5190. \begin{lstlisting}
  5191. start:
  5192. callq read_int
  5193. movq %rax, tmp7951
  5194. cmpq $1, tmp7951
  5195. je block7952
  5196. jmp block7953
  5197. block7953:
  5198. movq $0, %rax
  5199. jmp conclusion
  5200. block7952:
  5201. movq $42, %rax
  5202. jmp conclusion
  5203. \end{lstlisting}
  5204. \end{minipage}
  5205. &
  5206. $\Rightarrow\qquad$
  5207. \begin{minipage}{0.4\textwidth}
  5208. \begin{lstlisting}
  5209. start:
  5210. callq read_int
  5211. movq %rax, tmp7951
  5212. cmpq $1, tmp7951
  5213. je block7952
  5214. movq $0, %rax
  5215. jmp conclusion
  5216. block7952:
  5217. movq $42, %rax
  5218. jmp conclusion
  5219. \end{lstlisting}
  5220. \end{minipage}
  5221. \end{tabular}
  5222. \caption{Merging basic blocks by removing unnecessary jumps.}
  5223. \label{fig:remove-jumps}
  5224. \end{figure}
  5225. \begin{exercise}\normalfont
  5226. Implement a pass named \code{remove-jumps} that merges basic blocks
  5227. into their preceding basic block, when there is only one preceding
  5228. block. The pass should translate from pseudo $x86_1$ to pseudo
  5229. $x86_1$ and it should come immediately after
  5230. \code{select-instructions}. Check that \code{remove-jumps}
  5231. accomplishes the goal of merging basic blocks on several test
  5232. programs and check that your compiler passes all of your tests.
  5233. \end{exercise}
  5234. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  5235. \chapter{Tuples and Garbage Collection}
  5236. \label{ch:tuples}
  5237. \index{tuple}
  5238. \index{vector}
  5239. \margincomment{\scriptsize To do: challenge assignments: mark-and-sweep,
  5240. add simple structures. \\ --Jeremy}
  5241. \margincomment{\scriptsize To do: look through Andre's code comments for extra
  5242. things to discuss in this chapter. \\ --Jeremy}
  5243. \margincomment{\scriptsize To do: Flesh out this chapter, e.g., make sure
  5244. all the IR grammars are spelled out! \\ --Jeremy}
  5245. \margincomment{\scriptsize Introduce has-type, but after flatten, remove it,
  5246. but keep type annotations on vector creation and local variables, function
  5247. parameters, etc. \\ --Jeremy}
  5248. \margincomment{\scriptsize Be more explicit about how to deal with
  5249. the root stack. \\ --Jeremy}
  5250. In this chapter we study the implementation of mutable tuples (called
  5251. ``vectors'' in Racket). This language feature is the first to use the
  5252. computer's \emph{heap}\index{heap} because the lifetime of a Racket tuple is
  5253. indefinite, that is, a tuple lives forever from the programmer's
  5254. viewpoint. Of course, from an implementer's viewpoint, it is important
  5255. to reclaim the space associated with a tuple when it is no longer
  5256. needed, which is why we also study \emph{garbage collection}
  5257. \emph{garbage collection}
  5258. techniques in this chapter.
  5259. Section~\ref{sec:r3} introduces the $R_3$ language including its
  5260. interpreter and type checker. The $R_3$ language extends the $R_2$
  5261. language of Chapter~\ref{ch:bool-types} with vectors and Racket's
  5262. \code{void} value. The reason for including the later is that the
  5263. \code{vector-set!} operation returns a value of type
  5264. \code{Void}\footnote{Racket's \code{Void} type corresponds to what is
  5265. called the \code{Unit} type in the programming languages
  5266. literature. Racket's \code{Void} type is inhabited by a single value
  5267. \code{void} which corresponds to \code{unit} or \code{()} in the
  5268. literature~\citep{Pierce:2002hj}.}.
  5269. Section~\ref{sec:GC} describes a garbage collection algorithm based on
  5270. copying live objects back and forth between two halves of the
  5271. heap. The garbage collector requires coordination with the compiler so
  5272. that it can see all of the \emph{root} pointers, that is, pointers in
  5273. registers or on the procedure call stack.
  5274. Sections~\ref{sec:expose-allocation} through \ref{sec:print-x86-gc}
  5275. discuss all the necessary changes and additions to the compiler
  5276. passes, including a new compiler pass named \code{expose-allocation}.
  5277. \section{The $R_3$ Language}
  5278. \label{sec:r3}
  5279. Figure~\ref{fig:r3-concrete-syntax} defines the concrete syntax for
  5280. $R_3$ and Figure~\ref{fig:r3-syntax} defines the abstract syntax. The
  5281. $R_3$ language includes three new forms: \code{vector} for creating a
  5282. tuple, \code{vector-ref} for reading an element of a tuple, and
  5283. \code{vector-set!} for writing to an element of a tuple. The program
  5284. in Figure~\ref{fig:vector-eg} shows the usage of tuples in Racket. We
  5285. create a 3-tuple \code{t} and a 1-tuple that is stored at index $2$ of
  5286. the 3-tuple, demonstrating that tuples are first-class values. The
  5287. element at index $1$ of \code{t} is \code{\#t}, so the ``then'' branch
  5288. of the \key{if} is taken. The element at index $0$ of \code{t} is
  5289. \code{40}, to which we add \code{2}, the element at index $0$ of the
  5290. 1-tuple. So the result of the program is \code{42}.
  5291. \begin{figure}[tbp]
  5292. \centering
  5293. \fbox{
  5294. \begin{minipage}{0.96\textwidth}
  5295. \[
  5296. \begin{array}{lcl}
  5297. \Type &::=& \gray{\key{Integer} \mid \key{Boolean}}
  5298. \mid \LP\key{Vector}\;\Type\ldots\RP \mid \key{Void}\\
  5299. \Exp &::=& \gray{ \Int \mid \CREAD{} \mid \CNEG{\Exp} \mid \CADD{\Exp}{\Exp} \mid \CSUB{\Exp}{\Exp} } \\
  5300. &\mid& \gray{ \Var \mid \CLET{\Var}{\Exp}{\Exp} }\\
  5301. &\mid& \gray{ \key{\#t} \mid \key{\#f}
  5302. \mid \LP\key{and}\;\Exp\;\Exp\RP
  5303. \mid \LP\key{or}\;\Exp\;\Exp\RP
  5304. \mid \LP\key{not}\;\Exp\RP } \\
  5305. &\mid& \gray{ \LP\itm{cmp}\;\Exp\;\Exp\RP
  5306. \mid \CIF{\Exp}{\Exp}{\Exp} } \\
  5307. &\mid& \LP\key{vector}\;\Exp\ldots\RP
  5308. \mid \LP\key{vector-length}\;\Exp\RP \\
  5309. &\mid& \LP\key{vector-ref}\;\Exp\;\Int\RP
  5310. \mid \LP\key{vector-set!}\;\Exp\;\Int\;\Exp\RP \\
  5311. &\mid& \LP\key{void}\RP \mid \LP\key{has-type}~\Exp~\Type\RP\\
  5312. R_3 &::=& \Exp
  5313. \end{array}
  5314. \]
  5315. \end{minipage}
  5316. }
  5317. \caption{The concrete syntax of $R_3$, extending $R_2$
  5318. (Figure~\ref{fig:r2-concrete-syntax}).}
  5319. \label{fig:r3-concrete-syntax}
  5320. \end{figure}
  5321. \begin{figure}[tbp]
  5322. \begin{lstlisting}
  5323. (let ([t (vector 40 #t (vector 2))])
  5324. (if (vector-ref t 1)
  5325. (+ (vector-ref t 0)
  5326. (vector-ref (vector-ref t 2) 0))
  5327. 44))
  5328. \end{lstlisting}
  5329. \caption{Example program that creates tuples and reads from them.}
  5330. \label{fig:vector-eg}
  5331. \end{figure}
  5332. \begin{figure}[tp]
  5333. \centering
  5334. \fbox{
  5335. \begin{minipage}{0.96\textwidth}
  5336. \[
  5337. \begin{array}{lcl}
  5338. \itm{op} &::=& \ldots \mid \code{vector} \mid \code{vector-length} \\
  5339. \Exp &::=& \gray{ \INT{\Int} \mid \VAR{\Var} \mid \LET{\Var}{\Exp}{\Exp} } \\
  5340. &\mid& \gray{ \PRIM{\itm{op}}{\Exp\ldots}
  5341. \mid \BOOL{\itm{bool}}
  5342. \mid \IF{\Exp}{\Exp}{\Exp} } \\
  5343. &\mid& \VECREF{\Exp}{\INT{\Int}}\\
  5344. &\mid& \VECSET{\Exp}{\INT{\Int}}{\Exp} \\
  5345. &\mid& \VOID{} \mid \LP\key{HasType}~\Exp~\Type \RP \\
  5346. R_3 &::=& \PROGRAM{\key{'()}}{\Exp}
  5347. \end{array}
  5348. \]
  5349. \end{minipage}
  5350. }
  5351. \caption{The abstract syntax of $R_3$.}
  5352. \label{fig:r3-syntax}
  5353. \end{figure}
  5354. \index{allocate}
  5355. \index{heap allocate}
  5356. Tuples are our first encounter with heap-allocated data, which raises
  5357. several interesting issues. First, variable binding performs a
  5358. shallow-copy when dealing with tuples, which means that different
  5359. variables can refer to the same tuple, that is, different variables
  5360. can be \emph{aliases} for the same entity. Consider the following
  5361. example in which both \code{t1} and \code{t2} refer to the same tuple.
  5362. Thus, the mutation through \code{t2} is visible when referencing the
  5363. tuple from \code{t1}, so the result of this program is \code{42}.
  5364. \index{alias}\index{mutation}
  5365. \begin{center}
  5366. \begin{minipage}{0.96\textwidth}
  5367. \begin{lstlisting}
  5368. (let ([t1 (vector 3 7)])
  5369. (let ([t2 t1])
  5370. (let ([_ (vector-set! t2 0 42)])
  5371. (vector-ref t1 0))))
  5372. \end{lstlisting}
  5373. \end{minipage}
  5374. \end{center}
  5375. The next issue concerns the lifetime of tuples. Of course, they are
  5376. created by the \code{vector} form, but when does their lifetime end?
  5377. Notice that $R_3$ does not include an operation for deleting
  5378. tuples. Furthermore, the lifetime of a tuple is not tied to any notion
  5379. of static scoping. For example, the following program returns
  5380. \code{42} even though the variable \code{w} goes out of scope prior to
  5381. the \code{vector-ref} that reads from the vector it was bound to.
  5382. \begin{center}
  5383. \begin{minipage}{0.96\textwidth}
  5384. \begin{lstlisting}
  5385. (let ([v (vector (vector 44))])
  5386. (let ([x (let ([w (vector 42)])
  5387. (let ([_ (vector-set! v 0 w)])
  5388. 0))])
  5389. (+ x (vector-ref (vector-ref v 0) 0))))
  5390. \end{lstlisting}
  5391. \end{minipage}
  5392. \end{center}
  5393. From the perspective of programmer-observable behavior, tuples live
  5394. forever. Of course, if they really lived forever, then many programs
  5395. would run out of memory.\footnote{The $R_3$ language does not have
  5396. looping or recursive functions, so it is nigh impossible to write a
  5397. program in $R_3$ that will run out of memory. However, we add
  5398. recursive functions in the next Chapter!} A Racket implementation
  5399. must therefore perform automatic garbage collection.
  5400. Figure~\ref{fig:interp-R3} shows the definitional interpreter for the
  5401. $R_3$ language. We define the \code{vector}, \code{vector-length},
  5402. \code{vector-ref}, and \code{vector-set!} operations for $R_3$ in
  5403. terms of the corresponding operations in Racket. One subtle point is
  5404. that the \code{vector-set!} operation returns the \code{\#<void>}
  5405. value. The \code{\#<void>} value can be passed around just like other
  5406. values inside an $R_3$ program and a \code{\#<void>} value can be
  5407. compared for equality with another \code{\#<void>} value. However,
  5408. there are no other operations specific to the the \code{\#<void>}
  5409. value in $R_3$. In contrast, Racket defines the \code{void?} predicate
  5410. that returns \code{\#t} when applied to \code{\#<void>} and \code{\#f}
  5411. otherwise.
  5412. \begin{figure}[tbp]
  5413. \begin{lstlisting}
  5414. (define interp-R3-class
  5415. (class interp-R2-class
  5416. (super-new)
  5417. (define/override (interp-op op)
  5418. (match op
  5419. ['eq? (lambda (v1 v2)
  5420. (cond [(or (and (fixnum? v1) (fixnum? v2))
  5421. (and (boolean? v1) (boolean? v2))
  5422. (and (vector? v1) (vector? v2))
  5423. (and (void? v1) (void? v2)))
  5424. (eq? v1 v2)]))]
  5425. ['vector vector]
  5426. ['vector-length vector-length]
  5427. ['vector-ref vector-ref]
  5428. ['vector-set! vector-set!]
  5429. [else (super interp-op op)]
  5430. ))
  5431. (define/override ((interp-exp env) e)
  5432. (define recur (interp-exp env))
  5433. (match e
  5434. [(HasType e t) (recur e)]
  5435. [(Void) (void)]
  5436. [else ((super interp-exp env) e)]
  5437. ))
  5438. ))
  5439. (define (interp-R3 p)
  5440. (send (new interp-R3-class) interp-program p))
  5441. \end{lstlisting}
  5442. \caption{Interpreter for the $R_3$ language.}
  5443. \label{fig:interp-R3}
  5444. \end{figure}
  5445. Figure~\ref{fig:type-check-R3} shows the type checker for $R_3$, which
  5446. deserves some explanation. When allocating a vector, we need to know
  5447. which elements of the vector are pointers (i.e. are also vectors). We
  5448. can obtain this information during type checking. The type checker in
  5449. Figure~\ref{fig:type-check-R3} not only computes the type of an
  5450. expression, it also wraps every \key{vector} creation with the form
  5451. $(\key{HasType}~e~T)$, where $T$ is the vector's type.
  5452. %
  5453. To create the s-expression for the \code{Vector} type in
  5454. Figure~\ref{fig:type-check-R3}, we use the
  5455. \href{https://docs.racket-lang.org/reference/quasiquote.html}{unquote-splicing
  5456. operator} \code{,@} to insert the list \code{t*} without its usual
  5457. start and end parentheses. \index{unquote-slicing}
  5458. \begin{figure}[tp]
  5459. \begin{lstlisting}[basicstyle=\ttfamily\scriptsize]
  5460. (define type-check-R3-class
  5461. (class type-check-R2-class
  5462. (super-new)
  5463. (inherit check-type-equal?)
  5464. (define/override (type-check-exp env)
  5465. (lambda (e)
  5466. (define recur (type-check-exp env))
  5467. (match e
  5468. [(Void) (values (Void) 'Void)]
  5469. [(Prim 'vector es)
  5470. (define-values (e* t*) (for/lists (e* t*) ([e es]) (recur e)))
  5471. (define t `(Vector ,@t*))
  5472. (values (HasType (Prim 'vector e*) t) t)]
  5473. [(Prim 'vector-ref (list e1 (Int i)))
  5474. (define-values (e1^ t) (recur e1))
  5475. (match t
  5476. [`(Vector ,ts ...)
  5477. (unless (and (0 . <= . i) (i . < . (length ts)))
  5478. (error 'type-check "index ~a out of bounds\nin ~v" i e))
  5479. (values (Prim 'vector-ref (list e1^ (Int i))) (list-ref ts i))]
  5480. [else (error 'type-check "expect Vector, not ~a\nin ~v" t e)])]
  5481. [(Prim 'vector-set! (list e1 (Int i) arg) )
  5482. (define-values (e-vec t-vec) (recur e1))
  5483. (define-values (e-arg^ t-arg) (recur arg))
  5484. (match t-vec
  5485. [`(Vector ,ts ...)
  5486. (unless (and (0 . <= . i) (i . < . (length ts)))
  5487. (error 'type-check "index ~a out of bounds\nin ~v" i e))
  5488. (check-type-equal? (list-ref ts i) t-arg e)
  5489. (values (Prim 'vector-set! (list e-vec (Int i) e-arg^)) 'Void)]
  5490. [else (error 'type-check "expect Vector, not ~a\nin ~v" t-vec e)])]
  5491. [(Prim 'vector-length (list e))
  5492. (define-values (e^ t) (recur e))
  5493. (match t
  5494. [`(Vector ,ts ...)
  5495. (values (Prim 'vector-length (list e^)) 'Integer)]
  5496. [else (error 'type-check "expect Vector, not ~a\nin ~v" t e)])]
  5497. [(Prim 'eq? (list arg1 arg2))
  5498. (define-values (e1 t1) (recur arg1))
  5499. (define-values (e2 t2) (recur arg2))
  5500. (match* (t1 t2)
  5501. [(`(Vector ,ts1 ...) `(Vector ,ts2 ...)) (void)]
  5502. [(other wise) (check-type-equal? t1 t2 e)])
  5503. (values (Prim 'eq? (list e1 e2)) 'Boolean)]
  5504. [(HasType (Prim 'vector es) t)
  5505. ((type-check-exp env) (Prim 'vector es))]
  5506. [(HasType e1 t)
  5507. (define-values (e1^ t^) (recur e1))
  5508. (check-type-equal? t t^ e)
  5509. (values (HasType e1^ t) t)]
  5510. [else ((super type-check-exp env) e)]
  5511. )))
  5512. ))
  5513. (define (type-check-R3 p)
  5514. (send (new type-check-R3-class) type-check-program p))
  5515. \end{lstlisting}
  5516. \caption{Type checker for the $R_3$ language.}
  5517. \label{fig:type-check-R3}
  5518. \end{figure}
  5519. \section{Garbage Collection}
  5520. \label{sec:GC}
  5521. Here we study a relatively simple algorithm for garbage collection
  5522. that is the basis of state-of-the-art garbage
  5523. collectors~\citep{Lieberman:1983aa,Ungar:1984aa,Jones:1996aa,Detlefs:2004aa,Dybvig:2006aa,Tene:2011kx}. In
  5524. particular, we describe a two-space copying
  5525. collector~\citep{Wilson:1992fk} that uses Cheney's algorithm to
  5526. perform the
  5527. copy~\citep{Cheney:1970aa}.
  5528. \index{copying collector}
  5529. \index{two-space copying collector}
  5530. Figure~\ref{fig:copying-collector} gives a
  5531. coarse-grained depiction of what happens in a two-space collector,
  5532. showing two time steps, prior to garbage collection (on the top) and
  5533. after garbage collection (on the bottom). In a two-space collector,
  5534. the heap is divided into two parts named the FromSpace and the
  5535. ToSpace. Initially, all allocations go to the FromSpace until there is
  5536. not enough room for the next allocation request. At that point, the
  5537. garbage collector goes to work to make more room.
  5538. \index{ToSpace}
  5539. \index{FromSpace}
  5540. The garbage collector must be careful not to reclaim tuples that will
  5541. be used by the program in the future. Of course, it is impossible in
  5542. general to predict what a program will do, but we can over approximate
  5543. the will-be-used tuples by preserving all tuples that could be
  5544. accessed by \emph{any} program given the current computer state. A
  5545. program could access any tuple whose address is in a register or on
  5546. the procedure call stack. These addresses are called the \emph{root
  5547. set}\index{root set}. In addition, a program could access any tuple that is
  5548. transitively reachable from the root set. Thus, it is safe for the
  5549. garbage collector to reclaim the tuples that are not reachable in this
  5550. way.
  5551. So the goal of the garbage collector is twofold:
  5552. \begin{enumerate}
  5553. \item preserve all tuple that are reachable from the root set via a
  5554. path of pointers, that is, the \emph{live} tuples, and
  5555. \item reclaim the memory of everything else, that is, the
  5556. \emph{garbage}.
  5557. \end{enumerate}
  5558. A copying collector accomplishes this by copying all of the live
  5559. objects from the FromSpace into the ToSpace and then performs a slight
  5560. of hand, treating the ToSpace as the new FromSpace and the old
  5561. FromSpace as the new ToSpace. In the example of
  5562. Figure~\ref{fig:copying-collector}, there are three pointers in the
  5563. root set, one in a register and two on the stack. All of the live
  5564. objects have been copied to the ToSpace (the right-hand side of
  5565. Figure~\ref{fig:copying-collector}) in a way that preserves the
  5566. pointer relationships. For example, the pointer in the register still
  5567. points to a 2-tuple whose first element is a 3-tuple and whose second
  5568. element is a 2-tuple. There are four tuples that are not reachable
  5569. from the root set and therefore do not get copied into the ToSpace.
  5570. The exact situation in Figure~\ref{fig:copying-collector} cannot be
  5571. created by a well-typed program in $R_3$ because it contains a
  5572. cycle. However, creating cycles will be possible once we get to $R_6$.
  5573. We design the garbage collector to deal with cycles to begin with so
  5574. we will not need to revisit this issue.
  5575. \begin{figure}[tbp]
  5576. \centering
  5577. \includegraphics[width=\textwidth]{figs/copy-collect-1} \\[5ex]
  5578. \includegraphics[width=\textwidth]{figs/copy-collect-2}
  5579. \caption{A copying collector in action.}
  5580. \label{fig:copying-collector}
  5581. \end{figure}
  5582. There are many alternatives to copying collectors (and their bigger
  5583. siblings, the generational collectors) when its comes to garbage
  5584. collection, such as mark-and-sweep~\citep{McCarthy:1960dz} and
  5585. reference counting~\citep{Collins:1960aa}. The strengths of copying
  5586. collectors are that allocation is fast (just a comparison and pointer
  5587. increment), there is no fragmentation, cyclic garbage is collected,
  5588. and the time complexity of collection only depends on the amount of
  5589. live data, and not on the amount of garbage~\citep{Wilson:1992fk}. The
  5590. main disadvantages of a two-space copying collector is that it uses a
  5591. lot of space and takes a long time to perform the copy, though these
  5592. problems are ameliorated in generational collectors. Racket and
  5593. Scheme programs tend to allocate many small objects and generate a lot
  5594. of garbage, so copying and generational collectors are a good fit.
  5595. Garbage collection is an active research topic, especially concurrent
  5596. garbage collection~\citep{Tene:2011kx}. Researchers are continuously
  5597. developing new techniques and revisiting old
  5598. trade-offs~\citep{Blackburn:2004aa,Jones:2011aa,Shahriyar:2013aa,Cutler:2015aa,Shidal:2015aa,Osterlund:2016aa,Jacek:2019aa,Gamari:2020aa}. Researchers
  5599. meet every year at the International Symposium on Memory Management to
  5600. present these findings.
  5601. \subsection{Graph Copying via Cheney's Algorithm}
  5602. \label{sec:cheney}
  5603. \index{Cheney's algorithm}
  5604. Let us take a closer look at the copying of the live objects. The
  5605. allocated objects and pointers can be viewed as a graph and we need to
  5606. copy the part of the graph that is reachable from the root set. To
  5607. make sure we copy all of the reachable vertices in the graph, we need
  5608. an exhaustive graph traversal algorithm, such as depth-first search or
  5609. breadth-first search~\citep{Moore:1959aa,Cormen:2001uq}. Recall that
  5610. such algorithms take into account the possibility of cycles by marking
  5611. which vertices have already been visited, so as to ensure termination
  5612. of the algorithm. These search algorithms also use a data structure
  5613. such as a stack or queue as a to-do list to keep track of the vertices
  5614. that need to be visited. We use breadth-first search and a trick
  5615. due to \citet{Cheney:1970aa} for simultaneously representing the queue
  5616. and copying tuples into the ToSpace.
  5617. Figure~\ref{fig:cheney} shows several snapshots of the ToSpace as the
  5618. copy progresses. The queue is represented by a chunk of contiguous
  5619. memory at the beginning of the ToSpace, using two pointers to track
  5620. the front and the back of the queue. The algorithm starts by copying
  5621. all tuples that are immediately reachable from the root set into the
  5622. ToSpace to form the initial queue. When we copy a tuple, we mark the
  5623. old tuple to indicate that it has been visited. We discuss how this
  5624. marking is accomplish in Section~\ref{sec:data-rep-gc}. Note that any
  5625. pointers inside the copied tuples in the queue still point back to the
  5626. FromSpace. Once the initial queue has been created, the algorithm
  5627. enters a loop in which it repeatedly processes the tuple at the front
  5628. of the queue and pops it off the queue. To process a tuple, the
  5629. algorithm copies all the tuple that are directly reachable from it to
  5630. the ToSpace, placing them at the back of the queue. The algorithm then
  5631. updates the pointers in the popped tuple so they point to the newly
  5632. copied tuples.
  5633. \begin{figure}[tbp]
  5634. \centering \includegraphics[width=0.9\textwidth]{figs/cheney}
  5635. \caption{Depiction of the Cheney algorithm copying the live tuples.}
  5636. \label{fig:cheney}
  5637. \end{figure}
  5638. Getting back to Figure~\ref{fig:cheney}, in the first step we copy the
  5639. tuple whose second element is $42$ to the back of the queue. The other
  5640. pointer goes to a tuple that has already been copied, so we do not
  5641. need to copy it again, but we do need to update the pointer to the new
  5642. location. This can be accomplished by storing a \emph{forwarding
  5643. pointer} to the new location in the old tuple, back when we initially
  5644. copied the tuple into the ToSpace. This completes one step of the
  5645. algorithm. The algorithm continues in this way until the front of the
  5646. queue is empty, that is, until the front catches up with the back.
  5647. \subsection{Data Representation}
  5648. \label{sec:data-rep-gc}
  5649. The garbage collector places some requirements on the data
  5650. representations used by our compiler. First, the garbage collector
  5651. needs to distinguish between pointers and other kinds of data. There
  5652. are several ways to accomplish this.
  5653. \begin{enumerate}
  5654. \item Attached a tag to each object that identifies what type of
  5655. object it is~\citep{McCarthy:1960dz}.
  5656. \item Store different types of objects in different
  5657. regions~\citep{Steele:1977ab}.
  5658. \item Use type information from the program to either generate
  5659. type-specific code for collecting or to generate tables that can
  5660. guide the
  5661. collector~\citep{Appel:1989aa,Goldberg:1991aa,Diwan:1992aa}.
  5662. \end{enumerate}
  5663. Dynamically typed languages, such as Lisp, need to tag objects
  5664. anyways, so option 1 is a natural choice for those languages.
  5665. However, $R_3$ is a statically typed language, so it would be
  5666. unfortunate to require tags on every object, especially small and
  5667. pervasive objects like integers and Booleans. Option 3 is the
  5668. best-performing choice for statically typed languages, but comes with
  5669. a relatively high implementation complexity. To keep this chapter
  5670. within a 2-week time budget, we recommend a combination of options 1
  5671. and 2, using separate strategies for the stack and the heap.
  5672. Regarding the stack, we recommend using a separate stack for pointers,
  5673. which we call a \emph{root stack}\index{root stack} (a.k.a. ``shadow
  5674. stack'')~\citep{Siebert:2001aa,Henderson:2002aa,Baker:2009aa}. That
  5675. is, when a local variable needs to be spilled and is of type
  5676. \code{(Vector $\Type_1 \ldots \Type_n$)}, then we put it on the root
  5677. stack instead of the normal procedure call stack. Furthermore, we
  5678. always spill vector-typed variables if they are live during a call to
  5679. the collector, thereby ensuring that no pointers are in registers
  5680. during a collection. Figure~\ref{fig:shadow-stack} reproduces the
  5681. example from Figure~\ref{fig:copying-collector} and contrasts it with
  5682. the data layout using a root stack. The root stack contains the two
  5683. pointers from the regular stack and also the pointer in the second
  5684. register.
  5685. \begin{figure}[tbp]
  5686. \centering \includegraphics[width=0.60\textwidth]{figs/root-stack}
  5687. \caption{Maintaining a root stack to facilitate garbage collection.}
  5688. \label{fig:shadow-stack}
  5689. \end{figure}
  5690. The problem of distinguishing between pointers and other kinds of data
  5691. also arises inside of each tuple on the heap. We solve this problem by
  5692. attaching a tag, an extra 64-bits, to each
  5693. tuple. Figure~\ref{fig:tuple-rep} zooms in on the tags for two of the
  5694. tuples in the example from Figure~\ref{fig:copying-collector}. Note
  5695. that we have drawn the bits in a big-endian way, from right-to-left,
  5696. with bit location 0 (the least significant bit) on the far right,
  5697. which corresponds to the direction of the x86 shifting instructions
  5698. \key{salq} (shift left) and \key{sarq} (shift right). Part of each tag
  5699. is dedicated to specifying which elements of the tuple are pointers,
  5700. the part labeled ``pointer mask''. Within the pointer mask, a 1 bit
  5701. indicates there is a pointer and a 0 bit indicates some other kind of
  5702. data. The pointer mask starts at bit location 7. We have limited
  5703. tuples to a maximum size of 50 elements, so we just need 50 bits for
  5704. the pointer mask. The tag also contains two other pieces of
  5705. information. The length of the tuple (number of elements) is stored in
  5706. bits location 1 through 6. Finally, the bit at location 0 indicates
  5707. whether the tuple has yet to be copied to the ToSpace. If the bit has
  5708. value 1, then this tuple has not yet been copied. If the bit has
  5709. value 0 then the entire tag is a forwarding pointer. (The lower 3 bits
  5710. of a pointer are always zero anyways because our tuples are 8-byte
  5711. aligned.)
  5712. \begin{figure}[tbp]
  5713. \centering \includegraphics[width=0.8\textwidth]{figs/tuple-rep}
  5714. \caption{Representation of tuples in the heap.}
  5715. \label{fig:tuple-rep}
  5716. \end{figure}
  5717. \subsection{Implementation of the Garbage Collector}
  5718. \label{sec:organize-gz}
  5719. \index{prelude}
  5720. An implementation of the copying collector is provided in the
  5721. \code{runtime.c} file. Figure~\ref{fig:gc-header} defines the
  5722. interface to the garbage collector that is used by the compiler. The
  5723. \code{initialize} function creates the FromSpace, ToSpace, and root
  5724. stack and should be called in the prelude of the \code{main}
  5725. function. The arguments of \code{initialize} are the root stack size
  5726. and the heap size. Both need to be multiples of $64$ and $16384$ is a
  5727. good choice for both. The \code{initialize} function puts the address
  5728. of the beginning of the FromSpace into the global variable
  5729. \code{free\_ptr}. The global variable \code{fromspace\_end} points to
  5730. the address that is 1-past the last element of the FromSpace. (We use
  5731. half-open intervals to represent chunks of
  5732. memory~\citep{Dijkstra:1982aa}.) The \code{rootstack\_begin} variable
  5733. points to the first element of the root stack.
  5734. As long as there is room left in the FromSpace, your generated code
  5735. can allocate tuples simply by moving the \code{free\_ptr} forward.
  5736. %
  5737. The amount of room left in FromSpace is the difference between the
  5738. \code{fromspace\_end} and the \code{free\_ptr}. The \code{collect}
  5739. function should be called when there is not enough room left in the
  5740. FromSpace for the next allocation. The \code{collect} function takes
  5741. a pointer to the current top of the root stack (one past the last item
  5742. that was pushed) and the number of bytes that need to be
  5743. allocated. The \code{collect} function performs the copying collection
  5744. and leaves the heap in a state such that the next allocation will
  5745. succeed.
  5746. \begin{figure}[tbp]
  5747. \begin{lstlisting}
  5748. void initialize(uint64_t rootstack_size, uint64_t heap_size);
  5749. void collect(int64_t** rootstack_ptr, uint64_t bytes_requested);
  5750. int64_t* free_ptr;
  5751. int64_t* fromspace_begin;
  5752. int64_t* fromspace_end;
  5753. int64_t** rootstack_begin;
  5754. \end{lstlisting}
  5755. \caption{The compiler's interface to the garbage collector.}
  5756. \label{fig:gc-header}
  5757. \end{figure}
  5758. %% \begin{exercise}
  5759. %% In the file \code{runtime.c} you will find the implementation of
  5760. %% \code{initialize} and a partial implementation of \code{collect}.
  5761. %% The \code{collect} function calls another function, \code{cheney},
  5762. %% to perform the actual copy, and that function is left to the reader
  5763. %% to implement. The following is the prototype for \code{cheney}.
  5764. %% \begin{lstlisting}
  5765. %% static void cheney(int64_t** rootstack_ptr);
  5766. %% \end{lstlisting}
  5767. %% The parameter \code{rootstack\_ptr} is a pointer to the top of the
  5768. %% rootstack (which is an array of pointers). The \code{cheney} function
  5769. %% also communicates with \code{collect} through the global
  5770. %% variables \code{fromspace\_begin} and \code{fromspace\_end}
  5771. %% mentioned in Figure~\ref{fig:gc-header} as well as the pointers for
  5772. %% the ToSpace:
  5773. %% \begin{lstlisting}
  5774. %% static int64_t* tospace_begin;
  5775. %% static int64_t* tospace_end;
  5776. %% \end{lstlisting}
  5777. %% The job of the \code{cheney} function is to copy all the live
  5778. %% objects (reachable from the root stack) into the ToSpace, update
  5779. %% \code{free\_ptr} to point to the next unused spot in the ToSpace,
  5780. %% update the root stack so that it points to the objects in the
  5781. %% ToSpace, and finally to swap the global pointers for the FromSpace
  5782. %% and ToSpace.
  5783. %% \end{exercise}
  5784. %% \section{Compiler Passes}
  5785. %% \label{sec:code-generation-gc}
  5786. The introduction of garbage collection has a non-trivial impact on our
  5787. compiler passes. We introduce a new compiler pass named
  5788. \code{expose-allocation}. We make
  5789. significant changes to \code{select-instructions},
  5790. \code{build-interference}, \code{allocate-registers}, and
  5791. \code{print-x86} and make minor changes in several more passes. The
  5792. following program will serve as our running example. It creates two
  5793. tuples, one nested inside the other. Both tuples have length one. The
  5794. program accesses the element in the inner tuple tuple via two vector
  5795. references.
  5796. % tests/s2_17.rkt
  5797. \begin{lstlisting}
  5798. (vector-ref (vector-ref (vector (vector 42)) 0) 0)
  5799. \end{lstlisting}
  5800. \section{Shrink}
  5801. \label{sec:shrink-R3}
  5802. Recall that the \code{shrink} pass translates the primitives operators
  5803. into a smaller set of primitives. Because this pass comes after type
  5804. checking, but before the passes that require the type information in
  5805. the \code{HasType} AST nodes, the \code{shrink} pass must be modified
  5806. to wrap \code{HasType} around each AST node that it generates.
  5807. \section{Expose Allocation}
  5808. \label{sec:expose-allocation}
  5809. The pass \code{expose-allocation} lowers the \code{vector} creation
  5810. form into a conditional call to the collector followed by the
  5811. allocation. We choose to place the \code{expose-allocation} pass
  5812. before \code{remove-complex-opera*} because the code generated by
  5813. \code{expose-allocation} contains complex operands. We also place
  5814. \code{expose-allocation} before \code{explicate-control} because
  5815. \code{expose-allocation} introduces new variables using \code{let},
  5816. but \code{let} is gone after \code{explicate-control}.
  5817. The output of \code{expose-allocation} is a language $R'_3$ that
  5818. extends $R_3$ with the three new forms that we use in the translation
  5819. of the \code{vector} form.
  5820. \[
  5821. \begin{array}{lcl}
  5822. \Exp &::=& \cdots
  5823. \mid (\key{collect} \,\itm{int})
  5824. \mid (\key{allocate} \,\itm{int}\,\itm{type})
  5825. \mid (\key{global-value} \,\itm{name})
  5826. \end{array}
  5827. \]
  5828. The $(\key{collect}\,n)$ form runs the garbage collector, requesting
  5829. $n$ bytes. It will become a call to the \code{collect} function in
  5830. \code{runtime.c} in \code{select-instructions}. The
  5831. $(\key{allocate}\,n\,T)$ form creates an tuple of $n$ elements.
  5832. \index{allocate}
  5833. The $T$ parameter is the type of the tuple: \code{(Vector $\Type_1 \ldots
  5834. \Type_n$)} where $\Type_i$ is the type of the $i$th element in the
  5835. tuple. The $(\key{global-value}\,\itm{name})$ form reads the value of
  5836. a global variable, such as \code{free\_ptr}.
  5837. In the following, we show the transformation for the \code{vector}
  5838. form into 1) a sequence of let-bindings for the initializing
  5839. expressions, 2) a conditional call to \code{collect}, 3) a call to
  5840. \code{allocate}, and 4) the initialization of the vector. In the
  5841. following, \itm{len} refers to the length of the vector and
  5842. \itm{bytes} is how many total bytes need to be allocated for the
  5843. vector, which is 8 for the tag plus \itm{len} times 8.
  5844. \begin{lstlisting}
  5845. (has-type (vector |$e_0 \ldots e_{n-1}$|) |\itm{type}|)
  5846. |$\Longrightarrow$|
  5847. (let ([|$x_0$| |$e_0$|]) ... (let ([|$x_{n-1}$| |$e_{n-1}$|])
  5848. (let ([_ (if (< (+ (global-value free_ptr) |\itm{bytes}|)
  5849. (global-value fromspace_end))
  5850. (void)
  5851. (collect |\itm{bytes}|))])
  5852. (let ([|$v$| (allocate |\itm{len}| |\itm{type}|)])
  5853. (let ([_ (vector-set! |$v$| |$0$| |$x_0$|)]) ...
  5854. (let ([_ (vector-set! |$v$| |$n-1$| |$x_{n-1}$|)])
  5855. |$v$|) ... )))) ...)
  5856. \end{lstlisting}
  5857. In the above, we suppressed all of the \code{has-type} forms in the
  5858. output for the sake of readability. The placement of the initializing
  5859. expressions $e_0,\ldots,e_{n-1}$ prior to the \code{allocate} and the
  5860. sequence of \code{vector-set!} is important, as those expressions may
  5861. trigger garbage collection and we cannot have an allocated but
  5862. uninitialized tuple on the heap during a collection.
  5863. Figure~\ref{fig:expose-alloc-output} shows the output of the
  5864. \code{expose-allocation} pass on our running example.
  5865. \begin{figure}[tbp]
  5866. % tests/s2_17.rkt
  5867. \begin{lstlisting}
  5868. (vector-ref
  5869. (vector-ref
  5870. (let ([vecinit7976
  5871. (let ([vecinit7972 42])
  5872. (let ([collectret7974
  5873. (if (< (+ (global-value free_ptr) 16)
  5874. (global-value fromspace_end))
  5875. (void)
  5876. (collect 16)
  5877. )])
  5878. (let ([alloc7971 (allocate 1 (Vector Integer))])
  5879. (let ([initret7973 (vector-set! alloc7971 0 vecinit7972)])
  5880. alloc7971)
  5881. )
  5882. )
  5883. )
  5884. ])
  5885. (let ([collectret7978
  5886. (if (< (+ (global-value free_ptr) 16)
  5887. (global-value fromspace_end))
  5888. (void)
  5889. (collect 16)
  5890. )])
  5891. (let ([alloc7975 (allocate 1 (Vector (Vector Integer)))])
  5892. (let ([initret7977 (vector-set! alloc7975 0 vecinit7976)])
  5893. alloc7975)
  5894. )
  5895. )
  5896. )
  5897. 0)
  5898. 0)
  5899. \end{lstlisting}
  5900. \caption{Output of the \code{expose-allocation} pass, minus
  5901. all of the \code{has-type} forms.}
  5902. \label{fig:expose-alloc-output}
  5903. \end{figure}
  5904. \section{Remove Complex Operands}
  5905. \label{sec:remove-complex-opera-R3}
  5906. The new forms \code{collect}, \code{allocate}, and \code{global-value}
  5907. should all be treated as complex operands.
  5908. %% A new case for
  5909. %% \code{HasType} is needed and the case for \code{Prim} needs to be
  5910. %% handled carefully to prevent the \code{Prim} node from being separated
  5911. %% from its enclosing \code{HasType}.
  5912. Figure~\ref{fig:r3-anf-syntax}
  5913. shows the grammar for the output language $R_3^{\dagger}$ of this
  5914. pass, which is $R_3$ in administrative normal form.
  5915. \begin{figure}[tp]
  5916. \centering
  5917. \fbox{
  5918. \begin{minipage}{0.96\textwidth}
  5919. \small
  5920. \[
  5921. \begin{array}{rcl}
  5922. \Atm &::=& \gray{ \INT{\Int} \mid \VAR{\Var} \mid \BOOL{\itm{bool}} }
  5923. \mid \VOID{} \\
  5924. \Exp &::=& \gray{ \Atm \mid \READ{} } \\
  5925. &\mid& \gray{ \NEG{\Atm} \mid \ADD{\Atm}{\Atm} } \\
  5926. &\mid& \gray{ \LET{\Var}{\Exp}{\Exp} } \\
  5927. &\mid& \gray{ \UNIOP{\key{'not}}{\Atm} } \\
  5928. &\mid& \gray{ \BINOP{\itm{cmp}}{\Atm}{\Atm} \mid \IF{\Exp}{\Exp}{\Exp} }\\
  5929. &\mid& \LP\key{Collect}~\Int\RP \mid \LP\key{Allocate}~\Int~\Type\RP
  5930. \mid \LP\key{GlobalValue}~\Var\RP\\
  5931. % &\mid& \LP\key{HasType}~\Exp~\Type\RP \\
  5932. R^{\dagger}_3 &::=& \gray{ \PROGRAM{\code{'()}}{\Exp} }
  5933. \end{array}
  5934. \]
  5935. \end{minipage}
  5936. }
  5937. \caption{$R_3^{\dagger}$ is $R_3$ in administrative normal form (ANF).}
  5938. \label{fig:r3-anf-syntax}
  5939. \end{figure}
  5940. \section{Explicate Control and the $C_2$ language}
  5941. \label{sec:explicate-control-r3}
  5942. \begin{figure}[tp]
  5943. \fbox{
  5944. \begin{minipage}{0.96\textwidth}
  5945. \small
  5946. \[
  5947. \begin{array}{lcl}
  5948. \Atm &::=& \gray{ \INT{\Int} \mid \VAR{\Var} \mid \BOOL{\itm{bool}} }\\
  5949. \itm{cmp} &::= & \gray{ \key{eq?} \mid \key{<} } \\
  5950. \Exp &::= & \gray{ \Atm \mid \READ{} } \\
  5951. &\mid& \gray{ \NEG{\Atm} \mid \ADD{\Atm}{\Atm} }\\
  5952. &\mid& \gray{ \UNIOP{\key{not}}{\Atm} \mid \BINOP{\itm{cmp}}{\Atm}{\Atm} } \\
  5953. &\mid& (\key{Allocate} \,\itm{int}\,\itm{type}) \\
  5954. &\mid& \BINOP{\key{'vector-ref}}{\Atm}{\INT{\Int}} \\
  5955. &\mid& (\key{Prim}~\key{'vector-set!}\,(\key{list}\,\Atm\,\INT{\Int}\,\Atm))\\
  5956. &\mid& (\key{GlobalValue} \,\Var) \mid (\key{Void})\\
  5957. \Stmt &::=& \gray{ \ASSIGN{\VAR{\Var}}{\Exp} }
  5958. \mid (\key{Collect} \,\itm{int}) \\
  5959. \Tail &::= & \gray{ \RETURN{\Exp} \mid \SEQ{\Stmt}{\Tail}
  5960. \mid \GOTO{\itm{label}} } \\
  5961. &\mid& \gray{ \IFSTMT{\BINOP{\itm{cmp}}{\Atm}{\Atm}}{\GOTO{\itm{label}}}{\GOTO{\itm{label}}} }\\
  5962. C_2 & ::= & \gray{ \PROGRAM{\itm{info}}{\CFG{(\itm{label}\,\key{.}\,\Tail)\ldots}} }
  5963. \end{array}
  5964. \]
  5965. \end{minipage}
  5966. }
  5967. \caption{The abstract syntax of $C_2$, extending $C_1$
  5968. (Figure~\ref{fig:c1-syntax}).}
  5969. \label{fig:c2-syntax}
  5970. \end{figure}
  5971. The output of \code{explicate-control} is a program in the
  5972. intermediate language $C_2$, whose abstract syntax is defined in
  5973. Figure~\ref{fig:c2-syntax}. (The concrete syntax is defined in
  5974. Figure~\ref{fig:c2-concrete-syntax} of the Appendix.) The new forms
  5975. of $C_2$ include the \key{allocate}, \key{vector-ref}, and
  5976. \key{vector-set!}, and \key{global-value} expressions and the
  5977. \code{collect} statement. The \code{explicate-control} pass can treat
  5978. these new forms much like the other expression forms that we've
  5979. already encoutered.
  5980. \section{Select Instructions and the x86$_2$ Language}
  5981. \label{sec:select-instructions-gc}
  5982. \index{instruction selection}
  5983. %% void (rep as zero)
  5984. %% allocate
  5985. %% collect (callq collect)
  5986. %% vector-ref
  5987. %% vector-set!
  5988. %% global (postpone)
  5989. In this pass we generate x86 code for most of the new operations that
  5990. were needed to compile tuples, including \code{Allocate},
  5991. \code{Collect}, \code{vector-ref}, \code{vector-set!}, and
  5992. \code{void}. We compile \code{GlobalValue} to \code{Global} because
  5993. the later has a different concrete syntax (see
  5994. Figures~\ref{fig:x86-2-concrete} and \ref{fig:x86-2}).
  5995. \index{x86}
  5996. The \code{vector-ref} and \code{vector-set!} forms translate into
  5997. \code{movq} instructions. (The plus one in the offset is to get past
  5998. the tag at the beginning of the tuple representation.)
  5999. \begin{lstlisting}
  6000. |$\itm{lhs}$| = (vector-ref |$\itm{vec}$| |$n$|);
  6001. |$\Longrightarrow$|
  6002. movq |$\itm{vec}'$|, %r11
  6003. movq |$8(n+1)$|(%r11), |$\itm{lhs'}$|
  6004. |$\itm{lhs}$| = (vector-set! |$\itm{vec}$| |$n$| |$\itm{arg}$|);
  6005. |$\Longrightarrow$|
  6006. movq |$\itm{vec}'$|, %r11
  6007. movq |$\itm{arg}'$|, |$8(n+1)$|(%r11)
  6008. movq $0, |$\itm{lhs'}$|
  6009. \end{lstlisting}
  6010. The $\itm{lhs}'$, $\itm{vec}'$, and $\itm{arg}'$ are obtained by
  6011. translating $\itm{vec}$ and $\itm{arg}$ to x86. The move of $\itm{vec}'$ to
  6012. register \code{r11} ensures that offset expression
  6013. \code{$-8(n+1)$(\%r11)} contains a register operand. This requires
  6014. removing \code{r11} from consideration by the register allocating.
  6015. Why not use \code{rax} instead of \code{r11}? Suppose we instead used
  6016. \code{rax}. Then the generated code for \code{vector-set!} would be
  6017. \begin{lstlisting}
  6018. movq |$\itm{vec}'$|, %rax
  6019. movq |$\itm{arg}'$|, |$8(n+1)$|(%rax)
  6020. movq $0, |$\itm{lhs}'$|
  6021. \end{lstlisting}
  6022. Next, suppose that $\itm{arg}'$ ends up as a stack location, so
  6023. \code{patch-instructions} would insert a move through \code{rax}
  6024. as follows.
  6025. \begin{lstlisting}
  6026. movq |$\itm{vec}'$|, %rax
  6027. movq |$\itm{arg}'$|, %rax
  6028. movq %rax, |$8(n+1)$|(%rax)
  6029. movq $0, |$\itm{lhs}'$|
  6030. \end{lstlisting}
  6031. But the above sequence of instructions does not work because we're
  6032. trying to use \code{rax} for two different values ($\itm{vec}'$ and
  6033. $\itm{arg}'$) at the same time!
  6034. We compile the \code{allocate} form to operations on the
  6035. \code{free\_ptr}, as shown below. The address in the \code{free\_ptr}
  6036. is the next free address in the FromSpace, so we copy it into
  6037. \code{r11} and then move it forward by enough space for the tuple
  6038. being allocated, which is $8(\itm{len}+1)$ bytes because each element
  6039. is 8 bytes (64 bits) and we use 8 bytes for the tag. We then
  6040. initialize the \itm{tag} and finally copy the address in \code{r11} to
  6041. the left-hand-side. Refer to Figure~\ref{fig:tuple-rep} to see how the
  6042. tag is organized. We recommend using the Racket operations
  6043. \code{bitwise-ior} and \code{arithmetic-shift} to compute the tag
  6044. during compilation. The type annotation in the \code{vector} form is
  6045. used to determine the pointer mask region of the tag.
  6046. \begin{lstlisting}
  6047. |$\itm{lhs}$| = (allocate |$\itm{len}$| (Vector |$\itm{type} \ldots$|));
  6048. |$\Longrightarrow$|
  6049. movq free_ptr(%rip), %r11
  6050. addq |$8(\itm{len}+1)$|, free_ptr(%rip)
  6051. movq $|$\itm{tag}$|, 0(%r11)
  6052. movq %r11, |$\itm{lhs}'$|
  6053. \end{lstlisting}
  6054. The \code{collect} form is compiled to a call to the \code{collect}
  6055. function in the runtime. The arguments to \code{collect} are 1) the
  6056. top of the root stack and 2) the number of bytes that need to be
  6057. allocated. We use another dedicated register, \code{r15}, to
  6058. store the pointer to the top of the root stack. So \code{r15} is not
  6059. available for use by the register allocator.
  6060. \begin{lstlisting}
  6061. (collect |$\itm{bytes}$|)
  6062. |$\Longrightarrow$|
  6063. movq %r15, %rdi
  6064. movq $|\itm{bytes}|, %rsi
  6065. callq collect
  6066. \end{lstlisting}
  6067. \begin{figure}[tp]
  6068. \fbox{
  6069. \begin{minipage}{0.96\textwidth}
  6070. \[
  6071. \begin{array}{lcl}
  6072. \Arg &::=& \gray{ \key{\$}\Int \mid \key{\%}\Reg \mid \Int\key{(}\key{\%}\Reg\key{)} \mid \key{\%}\itm{bytereg} } \mid \Var \key{(\%rip)} \\
  6073. x86_1 &::= & \gray{ \key{.globl main} }\\
  6074. & & \gray{ \key{main:} \; \Instr\ldots }
  6075. \end{array}
  6076. \]
  6077. \end{minipage}
  6078. }
  6079. \caption{The concrete syntax of x86$_2$ (extends x86$_1$ of Figure~\ref{fig:x86-1-concrete}).}
  6080. \label{fig:x86-2-concrete}
  6081. \end{figure}
  6082. \begin{figure}[tp]
  6083. \fbox{
  6084. \begin{minipage}{0.96\textwidth}
  6085. \small
  6086. \[
  6087. \begin{array}{lcl}
  6088. \Arg &::=& \gray{ \INT{\Int} \mid \REG{\Reg} \mid \DEREF{\Reg}{\Int}
  6089. \mid \BYTEREG{\Reg}} \\
  6090. &\mid& (\key{Global}~\Var) \\
  6091. x86_2 &::= & \gray{ \PROGRAM{\itm{info}}{\CFG{\key{(}\itm{label} \,\key{.}\, \Block \key{)}\ldots}} }
  6092. \end{array}
  6093. \]
  6094. \end{minipage}
  6095. }
  6096. \caption{The abstract syntax of x86$_2$ (extends x86$_1$ of Figure~\ref{fig:x86-1}).}
  6097. \label{fig:x86-2}
  6098. \end{figure}
  6099. The concrete and abstract syntax of the $x86_2$ language is defined in
  6100. Figures~\ref{fig:x86-2-concrete} and \ref{fig:x86-2}. It differs from
  6101. x86$_1$ just in the addition of the form for global variables.
  6102. %
  6103. Figure~\ref{fig:select-instr-output-gc} shows the output of the
  6104. \code{select-instructions} pass on the running example.
  6105. \begin{figure}[tbp]
  6106. \centering
  6107. % tests/s2_17.rkt
  6108. \begin{minipage}[t]{0.5\textwidth}
  6109. \begin{lstlisting}[basicstyle=\ttfamily\scriptsize]
  6110. block35:
  6111. movq free_ptr(%rip), alloc9024
  6112. addq $16, free_ptr(%rip)
  6113. movq alloc9024, %r11
  6114. movq $131, 0(%r11)
  6115. movq alloc9024, %r11
  6116. movq vecinit9025, 8(%r11)
  6117. movq $0, initret9026
  6118. movq alloc9024, %r11
  6119. movq 8(%r11), tmp9034
  6120. movq tmp9034, %r11
  6121. movq 8(%r11), %rax
  6122. jmp conclusion
  6123. block36:
  6124. movq $0, collectret9027
  6125. jmp block35
  6126. block38:
  6127. movq free_ptr(%rip), alloc9020
  6128. addq $16, free_ptr(%rip)
  6129. movq alloc9020, %r11
  6130. movq $3, 0(%r11)
  6131. movq alloc9020, %r11
  6132. movq vecinit9021, 8(%r11)
  6133. movq $0, initret9022
  6134. movq alloc9020, vecinit9025
  6135. movq free_ptr(%rip), tmp9031
  6136. movq tmp9031, tmp9032
  6137. addq $16, tmp9032
  6138. movq fromspace_end(%rip), tmp9033
  6139. cmpq tmp9033, tmp9032
  6140. jl block36
  6141. jmp block37
  6142. block37:
  6143. movq %r15, %rdi
  6144. movq $16, %rsi
  6145. callq 'collect
  6146. jmp block35
  6147. block39:
  6148. movq $0, collectret9023
  6149. jmp block38
  6150. \end{lstlisting}
  6151. \end{minipage}
  6152. \begin{minipage}[t]{0.45\textwidth}
  6153. \begin{lstlisting}[basicstyle=\ttfamily\scriptsize]
  6154. start:
  6155. movq $42, vecinit9021
  6156. movq free_ptr(%rip), tmp9028
  6157. movq tmp9028, tmp9029
  6158. addq $16, tmp9029
  6159. movq fromspace_end(%rip), tmp9030
  6160. cmpq tmp9030, tmp9029
  6161. jl block39
  6162. jmp block40
  6163. block40:
  6164. movq %r15, %rdi
  6165. movq $16, %rsi
  6166. callq 'collect
  6167. jmp block38
  6168. \end{lstlisting}
  6169. \end{minipage}
  6170. \caption{Output of the \code{select-instructions} pass.}
  6171. \label{fig:select-instr-output-gc}
  6172. \end{figure}
  6173. \clearpage
  6174. \section{Register Allocation}
  6175. \label{sec:reg-alloc-gc}
  6176. \index{register allocation}
  6177. As discussed earlier in this chapter, the garbage collector needs to
  6178. access all the pointers in the root set, that is, all variables that
  6179. are vectors. It will be the responsibility of the register allocator
  6180. to make sure that:
  6181. \begin{enumerate}
  6182. \item the root stack is used for spilling vector-typed variables, and
  6183. \item if a vector-typed variable is live during a call to the
  6184. collector, it must be spilled to ensure it is visible to the
  6185. collector.
  6186. \end{enumerate}
  6187. The later responsibility can be handled during construction of the
  6188. interference graph, by adding interference edges between the call-live
  6189. vector-typed variables and all the callee-saved registers. (They
  6190. already interfere with the caller-saved registers.) The type
  6191. information for variables is in the \code{Program} form, so we
  6192. recommend adding another parameter to the \code{build-interference}
  6193. function to communicate this alist.
  6194. The spilling of vector-typed variables to the root stack can be
  6195. handled after graph coloring, when choosing how to assign the colors
  6196. (integers) to registers and stack locations. The \code{Program} output
  6197. of this pass changes to also record the number of spills to the root
  6198. stack.
  6199. % build-interference
  6200. %
  6201. % callq
  6202. % extra parameter for var->type assoc. list
  6203. % update 'program' and 'if'
  6204. % allocate-registers
  6205. % allocate spilled vectors to the rootstack
  6206. % don't change color-graph
  6207. \section{Print x86}
  6208. \label{sec:print-x86-gc}
  6209. \index{prelude}\index{conclusion}
  6210. Figure~\ref{fig:print-x86-output-gc} shows the output of the
  6211. \code{print-x86} pass on the running example. In the prelude and
  6212. conclusion of the \code{main} function, we treat the root stack very
  6213. much like the regular stack in that we move the root stack pointer
  6214. (\code{r15}) to make room for the spills to the root stack, except
  6215. that the root stack grows up instead of down. For the running
  6216. example, there was just one spill so we increment \code{r15} by 8
  6217. bytes. In the conclusion we decrement \code{r15} by 8 bytes.
  6218. One issue that deserves special care is that there may be a call to
  6219. \code{collect} prior to the initializing assignments for all the
  6220. variables in the root stack. We do not want the garbage collector to
  6221. accidentally think that some uninitialized variable is a pointer that
  6222. needs to be followed. Thus, we zero-out all locations on the root
  6223. stack in the prelude of \code{main}. In
  6224. Figure~\ref{fig:print-x86-output-gc}, the instruction
  6225. %
  6226. \lstinline{movq $0, (%r15)}
  6227. %
  6228. accomplishes this task. The garbage collector tests each root to see
  6229. if it is null prior to dereferencing it.
  6230. \begin{figure}[htbp]
  6231. \begin{minipage}[t]{0.5\textwidth}
  6232. \begin{lstlisting}[basicstyle=\ttfamily\scriptsize]
  6233. block35:
  6234. movq free_ptr(%rip), %rcx
  6235. addq $16, free_ptr(%rip)
  6236. movq %rcx, %r11
  6237. movq $131, 0(%r11)
  6238. movq %rcx, %r11
  6239. movq -8(%r15), %rax
  6240. movq %rax, 8(%r11)
  6241. movq $0, %rdx
  6242. movq %rcx, %r11
  6243. movq 8(%r11), %rcx
  6244. movq %rcx, %r11
  6245. movq 8(%r11), %rax
  6246. jmp conclusion
  6247. block36:
  6248. movq $0, %rcx
  6249. jmp block35
  6250. block38:
  6251. movq free_ptr(%rip), %rcx
  6252. addq $16, free_ptr(%rip)
  6253. movq %rcx, %r11
  6254. movq $3, 0(%r11)
  6255. movq %rcx, %r11
  6256. movq %rbx, 8(%r11)
  6257. movq $0, %rdx
  6258. movq %rcx, -8(%r15)
  6259. movq free_ptr(%rip), %rcx
  6260. addq $16, %rcx
  6261. movq fromspace_end(%rip), %rdx
  6262. cmpq %rdx, %rcx
  6263. jl block36
  6264. movq %r15, %rdi
  6265. movq $16, %rsi
  6266. callq collect
  6267. jmp block35
  6268. block39:
  6269. movq $0, %rcx
  6270. jmp block38
  6271. \end{lstlisting}
  6272. \end{minipage}
  6273. \begin{minipage}[t]{0.45\textwidth}
  6274. \begin{lstlisting}[basicstyle=\ttfamily\scriptsize]
  6275. start:
  6276. movq $42, %rbx
  6277. movq free_ptr(%rip), %rdx
  6278. addq $16, %rdx
  6279. movq fromspace_end(%rip), %rcx
  6280. cmpq %rcx, %rdx
  6281. jl block39
  6282. movq %r15, %rdi
  6283. movq $16, %rsi
  6284. callq collect
  6285. jmp block38
  6286. .globl main
  6287. main:
  6288. pushq %rbp
  6289. movq %rsp, %rbp
  6290. pushq %r13
  6291. pushq %r12
  6292. pushq %rbx
  6293. pushq %r14
  6294. subq $0, %rsp
  6295. movq $16384, %rdi
  6296. movq $16384, %rsi
  6297. callq initialize
  6298. movq rootstack_begin(%rip), %r15
  6299. movq $0, (%r15)
  6300. addq $8, %r15
  6301. jmp start
  6302. conclusion:
  6303. subq $8, %r15
  6304. addq $0, %rsp
  6305. popq %r14
  6306. popq %rbx
  6307. popq %r12
  6308. popq %r13
  6309. popq %rbp
  6310. retq
  6311. \end{lstlisting}
  6312. \end{minipage}
  6313. \caption{Output of the \code{print-x86} pass.}
  6314. \label{fig:print-x86-output-gc}
  6315. \end{figure}
  6316. \begin{figure}[p]
  6317. \begin{tikzpicture}[baseline=(current bounding box.center)]
  6318. \node (R3) at (0,2) {\large $R_3$};
  6319. \node (R3-2) at (3,2) {\large $R_3$};
  6320. \node (R3-3) at (6,2) {\large $R_3$};
  6321. \node (R3-4) at (9,2) {\large $R_3$};
  6322. \node (R3-5) at (12,2) {\large $R'_3$};
  6323. \node (C2-4) at (3,0) {\large $C_2$};
  6324. \node (x86-2) at (3,-2) {\large $\text{x86}^{*}_2$};
  6325. \node (x86-3) at (6,-2) {\large $\text{x86}^{*}_2$};
  6326. \node (x86-4) at (9,-2) {\large $\text{x86}^{*}_2$};
  6327. \node (x86-5) at (9,-4) {\large $\text{x86}^{\dagger}_2$};
  6328. \node (x86-2-1) at (3,-4) {\large $\text{x86}^{*}_2$};
  6329. \node (x86-2-2) at (6,-4) {\large $\text{x86}^{*}_2$};
  6330. %\path[->,bend left=15] (R3) edge [above] node {\ttfamily\footnotesize type-check} (R3-2);
  6331. \path[->,bend left=15] (R3) edge [above] node {\ttfamily\footnotesize shrink} (R3-2);
  6332. \path[->,bend left=15] (R3-2) edge [above] node {\ttfamily\footnotesize uniquify} (R3-3);
  6333. \path[->,bend left=15] (R3-3) edge [above] node {\ttfamily\footnotesize expose-alloc.} (R3-4);
  6334. \path[->,bend left=15] (R3-4) edge [above] node {\ttfamily\footnotesize remove-complex.} (R3-5);
  6335. \path[->,bend left=20] (R3-5) edge [left] node {\ttfamily\footnotesize explicate-control} (C2-4);
  6336. \path[->,bend left=15] (C2-4) edge [right] node {\ttfamily\footnotesize select-instr.} (x86-2);
  6337. \path[->,bend right=15] (x86-2) edge [left] node {\ttfamily\footnotesize uncover-live} (x86-2-1);
  6338. \path[->,bend right=15] (x86-2-1) edge [below] node {\ttfamily\footnotesize build-inter.} (x86-2-2);
  6339. \path[->,bend right=15] (x86-2-2) edge [right] node {\ttfamily\footnotesize allocate-reg.} (x86-3);
  6340. \path[->,bend left=15] (x86-3) edge [above] node {\ttfamily\footnotesize patch-instr.} (x86-4);
  6341. \path[->,bend left=15] (x86-4) edge [right] node {\ttfamily\footnotesize print-x86} (x86-5);
  6342. \end{tikzpicture}
  6343. \caption{Diagram of the passes for $R_3$, a language with tuples.}
  6344. \label{fig:R3-passes}
  6345. \end{figure}
  6346. Figure~\ref{fig:R3-passes} gives an overview of all the passes needed
  6347. for the compilation of $R_3$.
  6348. \section{Challenge: Simple Structures}
  6349. \label{sec:simple-structures}
  6350. \index{struct}
  6351. \index{structure}
  6352. Figure~\ref{fig:r3s-concrete-syntax} defines the concrete syntax for
  6353. $R^s_3$, which extends $R^3$ with support for simple structures.
  6354. Recall that a \code{struct} in Typed Racket is a user-defined data
  6355. type that contains named fields and that is heap allocated, similar to
  6356. a vector. The following is an example of a structure definition, in
  6357. this case the definition of a \code{point} type.
  6358. \begin{lstlisting}
  6359. (struct point ([x : Integer] [y : Integer]) #:mutable)
  6360. \end{lstlisting}
  6361. \begin{figure}[tbp]
  6362. \centering
  6363. \fbox{
  6364. \begin{minipage}{0.96\textwidth}
  6365. \[
  6366. \begin{array}{lcl}
  6367. \Type &::=& \gray{\key{Integer} \mid \key{Boolean}
  6368. \mid (\key{Vector}\;\Type \ldots) \mid \key{Void} } \mid \Var \\
  6369. \itm{cmp} &::= & \gray{ \key{eq?} \mid \key{<} \mid \key{<=} \mid \key{>} \mid \key{>=} } \\
  6370. \Exp &::=& \gray{ \Int \mid (\key{read}) \mid (\key{-}\;\Exp) \mid (\key{+} \; \Exp\;\Exp) \mid (\key{-}\;\Exp\;\Exp) } \\
  6371. &\mid& \gray{ \Var \mid (\key{let}~([\Var~\Exp])~\Exp) }\\
  6372. &\mid& \gray{ \key{\#t} \mid \key{\#f}
  6373. \mid (\key{and}\;\Exp\;\Exp)
  6374. \mid (\key{or}\;\Exp\;\Exp)
  6375. \mid (\key{not}\;\Exp) } \\
  6376. &\mid& \gray{ (\itm{cmp}\;\Exp\;\Exp)
  6377. \mid (\key{if}~\Exp~\Exp~\Exp) } \\
  6378. &\mid& \gray{ (\key{vector}\;\Exp \ldots)
  6379. \mid (\key{vector-ref}\;\Exp\;\Int) } \\
  6380. &\mid& \gray{ (\key{vector-set!}\;\Exp\;\Int\;\Exp) }\\
  6381. &\mid& \gray{ (\key{void}) } \mid (\Var\;\Exp \ldots)\\
  6382. \Def &::=& (\key{struct}\; \Var \; ([\Var \,\key{:}\, \Type] \ldots)\; \code{\#:mutable})\\
  6383. R_3 &::=& \Def \ldots \; \Exp
  6384. \end{array}
  6385. \]
  6386. \end{minipage}
  6387. }
  6388. \caption{The concrete syntax of $R^s_3$, extending $R_3$
  6389. (Figure~\ref{fig:r3-concrete-syntax}).}
  6390. \label{fig:r3s-concrete-syntax}
  6391. \end{figure}
  6392. An instance of a structure is created using function call syntax, with
  6393. the name of the structure in the function position:
  6394. \begin{lstlisting}
  6395. (point 7 12)
  6396. \end{lstlisting}
  6397. Function-call syntax is also used to read the value in a field of a
  6398. structure. The function name is formed by the structure name, a dash,
  6399. and the field name. The following example uses \code{point-x} and
  6400. \code{point-y} to access the \code{x} and \code{y} fields of two point
  6401. instances.
  6402. \begin{center}
  6403. \begin{lstlisting}
  6404. (let ([pt1 (point 7 12)])
  6405. (let ([pt2 (point 4 3)])
  6406. (+ (- (point-x pt1) (point-x pt2))
  6407. (- (point-y pt1) (point-y pt2)))))
  6408. \end{lstlisting}
  6409. \end{center}
  6410. Similarly, to write to a field of a structure, use its set function,
  6411. whose name starts with \code{set-}, followed by the structure name,
  6412. then a dash, then the field name, and concluded with an exclamation
  6413. mark. The following example uses \code{set-point-x!} to change the
  6414. \code{x} field from \code{7} to \code{42}.
  6415. \begin{center}
  6416. \begin{lstlisting}
  6417. (let ([pt (point 7 12)])
  6418. (let ([_ (set-point-x! pt 42)])
  6419. (point-x pt)))
  6420. \end{lstlisting}
  6421. \end{center}
  6422. \begin{exercise}\normalfont
  6423. Extend your compiler with support for simple structures, compiling
  6424. $R^s_3$ to x86 assembly code. Create five new test cases that use
  6425. structures and test your compiler.
  6426. \end{exercise}
  6427. \section{Challenge: Generational Collection}
  6428. The copying collector described in Section~\ref{sec:GC} can incur
  6429. significant runtime overhead because the call to \code{collect} takes
  6430. time proportional to all of the live data. One way to reduce this
  6431. overhead is to reduce how much data is inspected in each call to
  6432. \code{collect}. In particular, researchers have observed that recently
  6433. allocated data is more likely to become garbage then data that has
  6434. survived one or more previous calls to \code{collect}. This insight
  6435. motivated the creation of \emph{generational garbage collectors}
  6436. \index{generational garbage collector} that
  6437. 1) segregates data according to its age into two or more generations,
  6438. 2) allocates less space for younger generations, so collecting them is
  6439. faster, and more space for the older generations, and 3) performs
  6440. collection on the younger generations more frequently then for older
  6441. generations~\citep{Wilson:1992fk}.
  6442. For this challenge assignment, the goal is to adapt the copying
  6443. collector implemented in \code{runtime.c} to use two generations, one
  6444. for young data and one for old data. Each generation consists of a
  6445. FromSpace and a ToSpace. The following is a sketch of how to adapt the
  6446. \code{collect} function to use the two generations.
  6447. \begin{enumerate}
  6448. \item Copy the young generation's FromSpace to its ToSpace then switch
  6449. the role of the ToSpace and FromSpace
  6450. \item If there is enough space for the requested number of bytes in
  6451. the young FromSpace, then return from \code{collect}.
  6452. \item If there is not enough space in the young FromSpace for the
  6453. requested bytes, then move the data from the young generation to the
  6454. old one with the following steps:
  6455. \begin{enumerate}
  6456. \item If there is enough room in the old FromSpace, copy the young
  6457. FromSpace to the old FromSpace and then return.
  6458. \item If there is not enough room in the old FromSpace, then collect
  6459. the old generation by copying the old FromSpace to the old ToSpace
  6460. and swap the roles of the old FromSpace and ToSpace.
  6461. \item If there is enough room now, copy the young FromSpace to the
  6462. old FromSpace and return. Otherwise, allocate a larger FromSpace
  6463. and ToSpace for the old generation. Copy the young FromSpace and
  6464. the old FromSpace into the larger FromSpace for the old
  6465. generation and then return.
  6466. \end{enumerate}
  6467. \end{enumerate}
  6468. We recommend that you generalize the \code{cheney} function so that it
  6469. can be used for all the copies mentioned above: between the young
  6470. FromSpace and ToSpace, between the old FromSpace and ToSpace, and
  6471. between the young FromSpace and old FromSpace. This can be
  6472. accomplished by adding parameters to \code{cheney} that replace its
  6473. use of the global variables \code{fromspace\_begin},
  6474. \code{fromspace\_end}, \code{tospace\_begin}, and \code{tospace\_end}.
  6475. Note that the collection of the young generation does not traverse the
  6476. old generation. This introduces a potential problem: there may be
  6477. young data that is only reachable through pointers in the old
  6478. generation. If these pointers are not taken into account, the
  6479. collector could throw away young data that is live! One solution,
  6480. called \emph{pointer recording}, is to maintain a set of all the
  6481. pointers from the old generation into the new generation and consider
  6482. this set as part of the root set. To maintain this set, the compiler
  6483. must insert extra instructions around every \code{vector-set!}. If the
  6484. vector being modified is in the old generation, and if the value being
  6485. written is a pointer into the new generation, than that pointer must
  6486. be added to the set. Also, if the value being overwritten was a
  6487. pointer into the new generation, then that pointer should be removed
  6488. from the set.
  6489. \begin{exercise}\normalfont
  6490. Adapt the \code{collect} function in \code{runtime.c} to implement
  6491. generational garbage collection, as outlined in this section.
  6492. Update the code generation for \code{vector-set!} to implement
  6493. pointer recording. Make sure that your new compiler and runtime
  6494. passes your test suite.
  6495. \end{exercise}
  6496. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  6497. \chapter{Functions}
  6498. \label{ch:functions}
  6499. \index{function}
  6500. This chapter studies the compilation of functions similar to those
  6501. found in the C language. This corresponds to a subset of Typed Racket
  6502. in which only top-level function definitions are allowed. This kind of
  6503. function is an important stepping stone to implementing
  6504. lexically-scoped functions, that is, \key{lambda} abstractions, which
  6505. is the topic of Chapter~\ref{ch:lambdas}.
  6506. \section{The $R_4$ Language}
  6507. The concrete and abstract syntax for function definitions and function
  6508. application is shown in Figures~\ref{fig:r4-concrete-syntax} and
  6509. \ref{fig:r4-syntax}, where we define the $R_4$ language. Programs in
  6510. $R_4$ begin with zero or more function definitions. The function
  6511. names from these definitions are in-scope for the entire program,
  6512. including all other function definitions (so the ordering of function
  6513. definitions does not matter). The concrete syntax for function
  6514. application\index{function application} is $(\Exp \; \Exp \ldots)$
  6515. where the first expression must
  6516. evaluate to a function and the rest are the arguments.
  6517. The abstract syntax for function application is
  6518. $\APPLY{\Exp}{\Exp\ldots}$.
  6519. %% The syntax for function application does not include an explicit
  6520. %% keyword, which is error prone when using \code{match}. To alleviate
  6521. %% this problem, we translate the syntax from $(\Exp \; \Exp \ldots)$ to
  6522. %% $(\key{app}\; \Exp \; \Exp \ldots)$ during type checking.
  6523. Functions are first-class in the sense that a function pointer
  6524. \index{function pointer} is data and can be stored in memory or passed
  6525. as a parameter to another function. Thus, we introduce a function
  6526. type, written
  6527. \begin{lstlisting}
  6528. (|$\Type_1$| |$\cdots$| |$\Type_n$| -> |$\Type_r$|)
  6529. \end{lstlisting}
  6530. for a function whose $n$ parameters have the types $\Type_1$ through
  6531. $\Type_n$ and whose return type is $\Type_r$. The main limitation of
  6532. these functions (with respect to Racket functions) is that they are
  6533. not lexically scoped. That is, the only external entities that can be
  6534. referenced from inside a function body are other globally-defined
  6535. functions. The syntax of $R_4$ prevents functions from being nested
  6536. inside each other.
  6537. \begin{figure}[tp]
  6538. \centering
  6539. \fbox{
  6540. \begin{minipage}{0.96\textwidth}
  6541. \small
  6542. \[
  6543. \begin{array}{lcl}
  6544. \Type &::=& \gray{ \key{Integer} \mid \key{Boolean}
  6545. \mid (\key{Vector}\;\Type\ldots) \mid \key{Void} } \mid (\Type \ldots \; \key{->}\; \Type) \\
  6546. \itm{cmp} &::= & \gray{ \key{eq?} \mid \key{<} \mid \key{<=} \mid \key{>} \mid \key{>=} } \\
  6547. \Exp &::=& \gray{ \Int \mid \CREAD{} \mid \CNEG{\Exp} \mid \CADD{\Exp}{\Exp} \mid \CSUB{\Exp}{\Exp} } \\
  6548. &\mid& \gray{ \Var \mid \CLET{\Var}{\Exp}{\Exp} }\\
  6549. &\mid& \gray{ \key{\#t} \mid \key{\#f}
  6550. \mid (\key{and}\;\Exp\;\Exp)
  6551. \mid (\key{or}\;\Exp\;\Exp)
  6552. \mid (\key{not}\;\Exp)} \\
  6553. &\mid& \gray{(\itm{cmp}\;\Exp\;\Exp) \mid \CIF{\Exp}{\Exp}{\Exp} } \\
  6554. &\mid& \gray{(\key{vector}\;\Exp\ldots) \mid
  6555. (\key{vector-ref}\;\Exp\;\Int)} \\
  6556. &\mid& \gray{(\key{vector-set!}\;\Exp\;\Int\;\Exp)\mid (\key{void})
  6557. \mid \LP\key{has-type}~\Exp~\Type\RP } \\
  6558. &\mid& \LP\Exp \; \Exp \ldots\RP \\
  6559. \Def &::=& \CDEF{\Var}{\LS\Var \key{:} \Type\RS \ldots}{\Type}{\Exp} \\
  6560. R_4 &::=& \Def \ldots \; \Exp
  6561. \end{array}
  6562. \]
  6563. \end{minipage}
  6564. }
  6565. \caption{The concrete syntax of $R_4$, extending $R_3$ (Figure~\ref{fig:r3-concrete-syntax}).}
  6566. \label{fig:r4-concrete-syntax}
  6567. \end{figure}
  6568. \begin{figure}[tp]
  6569. \centering
  6570. \fbox{
  6571. \begin{minipage}{0.96\textwidth}
  6572. \small
  6573. \[
  6574. \begin{array}{lcl}
  6575. \Exp &::=& \gray{ \INT{\Int} \VAR{\Var} \mid \LET{\Var}{\Exp}{\Exp} } \\
  6576. &\mid& \gray{ \PRIM{\itm{op}}{\Exp\ldots} }\\
  6577. &\mid& \gray{ \BOOL{\itm{bool}}
  6578. \mid \IF{\Exp}{\Exp}{\Exp} } \\
  6579. &\mid& \gray{ \VOID{} \mid \LP\key{HasType}~\Exp~\Type \RP }
  6580. \mid \APPLY{\Exp}{\Exp\ldots}\\
  6581. \Def &::=& \FUNDEF{\Var}{\LP[\Var \code{:} \Type]\ldots\RP}{\Type}{\code{'()}}{\Exp}\\
  6582. R_4 &::=& \PROGRAMDEFSEXP{\code{'()}}{\LP\Def\ldots\RP)}{\Exp}
  6583. \end{array}
  6584. \]
  6585. \end{minipage}
  6586. }
  6587. \caption{The abstract syntax of $R_4$, extending $R_3$ (Figure~\ref{fig:r3-syntax}).}
  6588. \label{fig:r4-syntax}
  6589. \end{figure}
  6590. The program in Figure~\ref{fig:r4-function-example} is a
  6591. representative example of defining and using functions in $R_4$. We
  6592. define a function \code{map-vec} that applies some other function
  6593. \code{f} to both elements of a vector and returns a new
  6594. vector containing the results. We also define a function \code{add1}.
  6595. The program applies
  6596. \code{map-vec} to \code{add1} and \code{(vector 0 41)}. The result is
  6597. \code{(vector 1 42)}, from which we return the \code{42}.
  6598. \begin{figure}[tbp]
  6599. \begin{lstlisting}
  6600. (define (map-vec [f : (Integer -> Integer)]
  6601. [v : (Vector Integer Integer)])
  6602. : (Vector Integer Integer)
  6603. (vector (f (vector-ref v 0)) (f (vector-ref v 1))))
  6604. (define (add1 [x : Integer]) : Integer
  6605. (+ x 1))
  6606. (vector-ref (map-vec add1 (vector 0 41)) 1)
  6607. \end{lstlisting}
  6608. \caption{Example of using functions in $R_4$.}
  6609. \label{fig:r4-function-example}
  6610. \end{figure}
  6611. The definitional interpreter for $R_4$ is in
  6612. Figure~\ref{fig:interp-R4}. The case for the \code{ProgramDefsExp} form is
  6613. responsible for setting up the mutual recursion between the top-level
  6614. function definitions. We use the classic back-patching \index{back-patching}
  6615. approach that uses mutable variables and makes two passes over the function
  6616. definitions~\citep{Kelsey:1998di}. In the first pass we set up the
  6617. top-level environment using a mutable cons cell for each function
  6618. definition. Note that the \code{lambda} value for each function is
  6619. incomplete; it does not yet include the environment. Once the
  6620. top-level environment is constructed, we then iterate over it and
  6621. update the \code{lambda} values to use the top-level environment.
  6622. \begin{figure}[tp]
  6623. \begin{lstlisting}
  6624. (define interp-R4-class
  6625. (class interp-R3-class
  6626. (super-new)
  6627. (define/override ((interp-exp env) e)
  6628. (define recur (interp-exp env))
  6629. (match e
  6630. [(Var x) (unbox (dict-ref env x))]
  6631. [(Let x e body)
  6632. (define new-env (dict-set env x (box (recur e))))
  6633. ((interp-exp new-env) body)]
  6634. [(Apply fun args)
  6635. (define fun-val (recur fun))
  6636. (define arg-vals (for/list ([e args]) (recur e)))
  6637. (match fun-val
  6638. [`(function (,xs ...) ,body ,fun-env)
  6639. (define params-args (for/list ([x xs] [arg arg-vals])
  6640. (cons x (box arg))))
  6641. (define new-env (append params-args fun-env))
  6642. ((interp-exp new-env) body)]
  6643. [else (error 'interp-exp "expected function, not ~a" fun-val)])]
  6644. [else ((super interp-exp env) e)]
  6645. ))
  6646. (define/public (interp-def d)
  6647. (match d
  6648. [(Def f (list `[,xs : ,ps] ...) rt _ body)
  6649. (cons f (box `(function ,xs ,body ())))]))
  6650. (define/override (interp-program p)
  6651. (match p
  6652. [(ProgramDefsExp info ds body)
  6653. (let ([top-level (for/list ([d ds]) (interp-def d))])
  6654. (for/list ([f (in-dict-values top-level)])
  6655. (set-box! f (match (unbox f)
  6656. [`(function ,xs ,body ())
  6657. `(function ,xs ,body ,top-level)])))
  6658. ((interp-exp top-level) body))]))
  6659. ))
  6660. (define (interp-R4 p)
  6661. (send (new interp-R4-class) interp-program p))
  6662. \end{lstlisting}
  6663. \caption{Interpreter for the $R_4$ language.}
  6664. \label{fig:interp-R4}
  6665. \end{figure}
  6666. \margincomment{TODO: explain type checker}
  6667. The type checker for $R_4$ is is in Figure~\ref{fig:type-check-R4}.
  6668. \begin{figure}[tp]
  6669. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  6670. (define type-check-R4-class
  6671. (class type-check-R3-class
  6672. (super-new)
  6673. (inherit check-type-equal?)
  6674. (define/public (type-check-apply env e es)
  6675. (define-values (e^ ty) ((type-check-exp env) e))
  6676. (define-values (e* ty*) (for/lists (e* ty*) ([e (in-list es)])
  6677. ((type-check-exp env) e)))
  6678. (match ty
  6679. [`(,ty^* ... -> ,rt)
  6680. (for ([arg-ty ty*] [param-ty ty^*])
  6681. (check-type-equal? arg-ty param-ty (Apply e es)))
  6682. (values e^ e* rt)]))
  6683. (define/override (type-check-exp env)
  6684. (lambda (e)
  6685. (match e
  6686. [(FunRef f)
  6687. (values (FunRef f) (dict-ref env f))]
  6688. [(Apply e es)
  6689. (define-values (e^ es^ rt) (type-check-apply env e es))
  6690. (values (Apply e^ es^) rt)]
  6691. [(Call e es)
  6692. (define-values (e^ es^ rt) (type-check-apply env e es))
  6693. (values (Call e^ es^) rt)]
  6694. [else ((super type-check-exp env) e)])))
  6695. (define/public (type-check-def env)
  6696. (lambda (e)
  6697. (match e
  6698. [(Def f (and p:t* (list `[,xs : ,ps] ...)) rt info body)
  6699. (define new-env (append (map cons xs ps) env))
  6700. (define-values (body^ ty^) ((type-check-exp new-env) body))
  6701. (check-type-equal? ty^ rt body)
  6702. (Def f p:t* rt info body^)])))
  6703. (define/public (fun-def-type d)
  6704. (match d
  6705. [(Def f (list `[,xs : ,ps] ...) rt info body) `(,@ps -> ,rt)]))
  6706. (define/override (type-check-program e)
  6707. (match e
  6708. [(ProgramDefsExp info ds body)
  6709. (define new-env (for/list ([d ds])
  6710. (cons (Def-name d) (fun-def-type d))))
  6711. (define ds^ (for/list ([d ds]) ((type-check-def new-env) d)))
  6712. (define-values (body^ ty) ((type-check-exp new-env) body))
  6713. (check-type-equal? ty 'Integer body)
  6714. (ProgramDefsExp info ds^ body^)]))))
  6715. (define (type-check-R4 p)
  6716. (send (new type-check-R4-class) type-check-program p))
  6717. \end{lstlisting}
  6718. \caption{Type checker for the $R_4$ language.}
  6719. \label{fig:type-check-R4}
  6720. \end{figure}
  6721. \section{Functions in x86}
  6722. \label{sec:fun-x86}
  6723. \margincomment{\tiny Make sure callee-saved registers are discussed
  6724. in enough depth, especially updating Fig 6.4 \\ --Jeremy }
  6725. \margincomment{\tiny Talk about the return address on the
  6726. stack and what callq and retq does.\\ --Jeremy }
  6727. The x86 architecture provides a few features to support the
  6728. implementation of functions. We have already seen that x86 provides
  6729. labels so that one can refer to the location of an instruction, as is
  6730. needed for jump instructions. Labels can also be used to mark the
  6731. beginning of the instructions for a function. Going further, we can
  6732. obtain the address of a label by using the \key{leaq} instruction and
  6733. PC-relative addressing. For example, the following puts the
  6734. address of the \code{add1} label into the \code{rbx} register.
  6735. \begin{lstlisting}
  6736. leaq add1(%rip), %rbx
  6737. \end{lstlisting}
  6738. The instruction pointer register \key{rip} (aka. the program counter
  6739. \index{program counter}) always points to the next instruction to be
  6740. executed. When combined with an label, as in \code{add1(\%rip)}, the
  6741. linker computes the distance $d$ between the address of \code{add1}
  6742. and where the \code{rip} would be at that moment and then changes
  6743. \code{add1(\%rip)} to \code{$d$(\%rip)}, which at runtime will compute
  6744. the address of \code{add1}.
  6745. In Section~\ref{sec:x86} we used of the \code{callq} instruction to
  6746. jump to a function whose location is given by a label. To support
  6747. function calls in this chapter we instead will be jumping to a
  6748. function whose location is given by an address in a register, that is,
  6749. we need to make an \emph{indirect function call}. The x86 syntax for
  6750. this is a \code{callq} instruction but with an asterisk before the
  6751. register name.\index{indirect function call}
  6752. \begin{lstlisting}
  6753. callq *%rbx
  6754. \end{lstlisting}
  6755. \subsection{Calling Conventions}
  6756. \index{calling conventions}
  6757. The \code{callq} instruction provides partial support for implementing
  6758. functions: it pushes the return address on the stack and it jumps to
  6759. the target. However, \code{callq} does not handle
  6760. \begin{enumerate}
  6761. \item parameter passing,
  6762. \item pushing frames on the procedure call stack and popping them off,
  6763. or
  6764. \item determining how registers are shared by different functions.
  6765. \end{enumerate}
  6766. Regarding (1) parameter passing, recall that the following six
  6767. registers are used to pass arguments to a function, in this order.
  6768. \begin{lstlisting}
  6769. rdi rsi rdx rcx r8 r9
  6770. \end{lstlisting}
  6771. If there are
  6772. more than six arguments, then the convention is to use space on the
  6773. frame of the caller for the rest of the arguments. However, to ease
  6774. the implementation of efficient tail calls
  6775. (Section~\ref{sec:tail-call}), we arrange to never need more than six
  6776. arguments.
  6777. %
  6778. Also recall that the register \code{rax} is for the return value of
  6779. the function.
  6780. \index{prelude}\index{conclusion}
  6781. Regarding (2) frames \index{frame} and the procedure call stack,
  6782. \index{procedure call stack} recall from Section~\ref{sec:x86} that
  6783. the stack grows down, with each function call using a chunk of space
  6784. called a frame. The caller sets the stack pointer, register
  6785. \code{rsp}, to the last data item in its frame. The callee must not
  6786. change anything in the caller's frame, that is, anything that is at or
  6787. above the stack pointer. The callee is free to use locations that are
  6788. below the stack pointer.
  6789. Recall that we are storing variables of vector type on the root stack.
  6790. So the prelude needs to move the root stack pointer \code{r15} up and
  6791. the conclusion needs to move the root stack pointer back down. Also,
  6792. the prelude must initialize to \code{0} this frame's slots in the root
  6793. stack to signal to the garbage collector that those slots do not yet
  6794. contain a pointer to a vector. Otherwise the garbage collector will
  6795. interpret the garbage bits in those slots as memory addresses and try
  6796. to traverse them, causing serious mayhem!
  6797. Regarding (3) the sharing of registers between different functions,
  6798. recall from Section~\ref{sec:calling-conventions} that the registers
  6799. are divided into two groups, the caller-saved registers and the
  6800. callee-saved registers. The caller should assume that all the
  6801. caller-saved registers get overwritten with arbitrary values by the
  6802. callee. That is why we recommend in
  6803. Section~\ref{sec:calling-conventions} that variables that are live
  6804. during a function call should not be assigned to caller-saved
  6805. registers.
  6806. On the flip side, if the callee wants to use a callee-saved register,
  6807. the callee must save the contents of those registers on their stack
  6808. frame and then put them back prior to returning to the caller. That
  6809. is why we recommended in Section~\ref{sec:calling-conventions} that if
  6810. the register allocator assigns a variable to a callee-saved register,
  6811. then the prelude of the \code{main} function must save that register
  6812. to the stack and the conclusion of \code{main} must restore it. This
  6813. recommendation now generalizes to all functions.
  6814. Also recall that the base pointer, register \code{rbp}, is used as a
  6815. point-of-reference within a frame, so that each local variable can be
  6816. accessed at a fixed offset from the base pointer
  6817. (Section~\ref{sec:x86}).
  6818. %
  6819. Figure~\ref{fig:call-frames} shows the general layout of the caller
  6820. and callee frames.
  6821. \begin{figure}[tbp]
  6822. \centering
  6823. \begin{tabular}{r|r|l|l} \hline
  6824. Caller View & Callee View & Contents & Frame \\ \hline
  6825. 8(\key{\%rbp}) & & return address & \multirow{5}{*}{Caller}\\
  6826. 0(\key{\%rbp}) & & old \key{rbp} \\
  6827. -8(\key{\%rbp}) & & callee-saved $1$ \\
  6828. \ldots & & \ldots \\
  6829. $-8j$(\key{\%rbp}) & & callee-saved $j$ \\
  6830. $-8(j+1)$(\key{\%rbp}) & & local variable $1$ \\
  6831. \ldots & & \ldots \\
  6832. $-8(j+k)$(\key{\%rbp}) & & local variable $k$ \\
  6833. %% & & \\
  6834. %% $8n-8$\key{(\%rsp)} & $8n+8$(\key{\%rbp})& argument $n$ \\
  6835. %% & \ldots & \ldots \\
  6836. %% 0\key{(\%rsp)} & 16(\key{\%rbp}) & argument $1$ & \\
  6837. \hline
  6838. & 8(\key{\%rbp}) & return address & \multirow{5}{*}{Callee}\\
  6839. & 0(\key{\%rbp}) & old \key{rbp} \\
  6840. & -8(\key{\%rbp}) & callee-saved $1$ \\
  6841. & \ldots & \ldots \\
  6842. & $-8n$(\key{\%rbp}) & callee-saved $n$ \\
  6843. & $-8(n+1)$(\key{\%rbp}) & local variable $1$ \\
  6844. & \ldots & \ldots \\
  6845. & $-8(n+m)$(\key{\%rsp}) & local variable $m$\\ \hline
  6846. \end{tabular}
  6847. \caption{Memory layout of caller and callee frames.}
  6848. \label{fig:call-frames}
  6849. \end{figure}
  6850. %% Recall from Section~\ref{sec:x86} that the stack is also used for
  6851. %% local variables and for storing the values of callee-saved registers
  6852. %% (we shall refer to all of these collectively as ``locals''), and that
  6853. %% at the beginning of a function we move the stack pointer \code{rsp}
  6854. %% down to make room for them.
  6855. %% We recommend storing the local variables
  6856. %% first and then the callee-saved registers, so that the local variables
  6857. %% can be accessed using \code{rbp} the same as before the addition of
  6858. %% functions.
  6859. %% To make additional room for passing arguments, we shall
  6860. %% move the stack pointer even further down. We count how many stack
  6861. %% arguments are needed for each function call that occurs inside the
  6862. %% body of the function and find their maximum. Adding this number to the
  6863. %% number of locals gives us how much the \code{rsp} should be moved at
  6864. %% the beginning of the function. In preparation for a function call, we
  6865. %% offset from \code{rsp} to set up the stack arguments. We put the first
  6866. %% stack argument in \code{0(\%rsp)}, the second in \code{8(\%rsp)}, and
  6867. %% so on.
  6868. %% Upon calling the function, the stack arguments are retrieved by the
  6869. %% callee using the base pointer \code{rbp}. The address \code{16(\%rbp)}
  6870. %% is the location of the first stack argument, \code{24(\%rbp)} is the
  6871. %% address of the second, and so on. Figure~\ref{fig:call-frames} shows
  6872. %% the layout of the caller and callee frames. Notice how important it is
  6873. %% that we correctly compute the maximum number of arguments needed for
  6874. %% function calls; if that number is too small then the arguments and
  6875. %% local variables will smash into each other!
  6876. \subsection{Efficient Tail Calls}
  6877. \label{sec:tail-call}
  6878. In general, the amount of stack space used by a program is determined
  6879. by the longest chain of nested function calls. That is, if function
  6880. $f_1$ calls $f_2$, $f_2$ calls $f_3$, $\ldots$, and $f_{n-1}$ calls
  6881. $f_n$, then the amount of stack space is bounded by $O(n)$. The depth
  6882. $n$ can grow quite large in the case of recursive or mutually
  6883. recursive functions. However, in some cases we can arrange to use only
  6884. constant space, i.e. $O(1)$, instead of $O(n)$.
  6885. If a function call is the last action in a function body, then that
  6886. call is said to be a \emph{tail call}\index{tail call}.
  6887. For example, in the following
  6888. program, the recursive call to \code{tail-sum} is a tail call.
  6889. \begin{center}
  6890. \begin{lstlisting}
  6891. (define (tail-sum [n : Integer] [r : Integer]) : Integer
  6892. (if (eq? n 0)
  6893. r
  6894. (tail-sum (- n 1) (+ n r))))
  6895. (+ (tail-sum 5 0) 27)
  6896. \end{lstlisting}
  6897. \end{center}
  6898. At a tail call, the frame of the caller is no longer needed, so we
  6899. can pop the caller's frame before making the tail call. With this
  6900. approach, a recursive function that only makes tail calls will only
  6901. use $O(1)$ stack space. Functional languages like Racket typically
  6902. rely heavily on recursive functions, so they typically guarantee that
  6903. all tail calls will be optimized in this way.
  6904. \index{frame}
  6905. However, some care is needed with regards to argument passing in tail
  6906. calls. As mentioned above, for arguments beyond the sixth, the
  6907. convention is to use space in the caller's frame for passing
  6908. arguments. But for a tail call we pop the caller's frame and can no
  6909. longer use it. Another alternative is to use space in the callee's
  6910. frame for passing arguments. However, this option is also problematic
  6911. because the caller and callee's frame overlap in memory. As we begin
  6912. to copy the arguments from their sources in the caller's frame, the
  6913. target locations in the callee's frame might overlap with the sources
  6914. for later arguments! We solve this problem by not using the stack for
  6915. passing more than six arguments but instead using the heap, as we
  6916. describe in the Section~\ref{sec:limit-functions-r4}.
  6917. As mentioned above, for a tail call we pop the caller's frame prior to
  6918. making the tail call. The instructions for popping a frame are the
  6919. instructions that we usually place in the conclusion of a
  6920. function. Thus, we also need to place such code immediately before
  6921. each tail call. These instructions include restoring the callee-saved
  6922. registers, so it is good that the argument passing registers are all
  6923. caller-saved registers.
  6924. One last note regarding which instruction to use to make the tail
  6925. call. When the callee is finished, it should not return to the current
  6926. function, but it should return to the function that called the current
  6927. one. Thus, the return address that is already on the stack is the
  6928. right one, and we should not use \key{callq} to make the tail call, as
  6929. that would unnecessarily overwrite the return address. Instead we can
  6930. simply use the \key{jmp} instruction. Like the indirect function call,
  6931. we write an \emph{indirect jump}\index{indirect jump} with a register
  6932. prefixed with an asterisk. We recommend using \code{rax} to hold the
  6933. jump target because the preceding conclusion overwrites just about
  6934. everything else.
  6935. \begin{lstlisting}
  6936. jmp *%rax
  6937. \end{lstlisting}
  6938. \section{Shrink $R_4$}
  6939. \label{sec:shrink-r4}
  6940. The \code{shrink} pass performs a minor modification to ease the
  6941. later passes. This pass introduces an explicit \code{main} function
  6942. and changes the top \code{ProgramDefsExp} form to
  6943. \code{ProgramDefs} as follows.
  6944. \begin{lstlisting}
  6945. (ProgramDefsExp |$\itm{info}$| (|$\Def\ldots$|) |$\Exp$|)
  6946. |$\Rightarrow$| (ProgramDefs |$\itm{info}$| (|$\Def\ldots$| |$\itm{mainDef}$|))
  6947. \end{lstlisting}
  6948. where $\itm{mainDef}$ is
  6949. \begin{lstlisting}
  6950. (Def 'main '() 'Integer '() |$\Exp'$|)
  6951. \end{lstlisting}
  6952. \section{Reveal Functions and the $F_1$ language}
  6953. \label{sec:reveal-functions-r4}
  6954. The syntax of $R_4$ is inconvenient for purposes of compilation in one
  6955. respect: it conflates the use of function names and local
  6956. variables. This is a problem because we need to compile the use of a
  6957. function name differently than the use of a local variable; we need to
  6958. use \code{leaq} to convert the function name (a label in x86) to an
  6959. address in a register. Thus, it is a good idea to create a new pass
  6960. that changes function references from just a symbol $f$ to
  6961. $\FUNREF{f}$. This pass is named \code{reveal-functions} and the
  6962. output language, $F_1$, is defined in Figure~\ref{fig:f1-syntax}.
  6963. The concrete syntax for a function reference is $\CFUNREF{f}$.
  6964. \begin{figure}[tp]
  6965. \centering
  6966. \fbox{
  6967. \begin{minipage}{0.96\textwidth}
  6968. \[
  6969. \begin{array}{lcl}
  6970. \Exp &::=& \ldots \mid \FUNREF{\Var}\\
  6971. \Def &::=& \gray{ \FUNDEF{\Var}{([\Var \code{:} \Type]\ldots)}{\Type}{\code{'()}}{\Exp} }\\
  6972. F_1 &::=& \PROGRAMDEFS{\code{'()}}{\LP \Def\ldots \RP}
  6973. \end{array}
  6974. \]
  6975. \end{minipage}
  6976. }
  6977. \caption{The abstract syntax $F_1$, an extension of $R_4$
  6978. (Figure~\ref{fig:r4-syntax}).}
  6979. \label{fig:f1-syntax}
  6980. \end{figure}
  6981. % TODO: rename $F_1$ to $R'_4$
  6982. %% Distinguishing between calls in tail position and non-tail position
  6983. %% requires the pass to have some notion of context. We recommend using
  6984. %% two mutually recursive functions, one for processing expressions in
  6985. %% tail position and another for the rest.
  6986. Placing this pass after \code{uniquify} will make sure that there are
  6987. no local variables and functions that share the same name. On the
  6988. other hand, \code{reveal-functions} needs to come before the
  6989. \code{explicate-control} pass because that pass helps us compile
  6990. \code{FunRef} forms into assignment statements.
  6991. \section{Limit Functions}
  6992. \label{sec:limit-functions-r4}
  6993. Recall that we wish to limit the number of function parameters to six
  6994. so that we do not need to use the stack for argument passing, which
  6995. makes it easier to implement efficient tail calls. However, because
  6996. the input language $R_4$ supports arbitrary numbers of function
  6997. arguments, we have some work to do!
  6998. This pass transforms functions and function calls that involve more
  6999. than six arguments to pass the first five arguments as usual, but it
  7000. packs the rest of the arguments into a vector and passes it as the
  7001. sixth argument.
  7002. Each function definition with too many parameters is transformed as
  7003. follows.
  7004. \begin{lstlisting}
  7005. (Def |$f$| ([|$x_1$|:|$T_1$|] |$\ldots$| [|$x_n$|:|$T_n$|]) |$T_r$| |$\itm{info}$| |$\itm{body}$|)
  7006. |$\Rightarrow$|
  7007. (Def |$f$| ([|$x_1$|:|$T_1$|] |$\ldots$| [|$x_5$|:|$T_5$|] [vec : (Vector |$T_6 \ldots T_n$|)]) |$T_r$| |$\itm{info}$| |$\itm{body}'$|)
  7008. \end{lstlisting}
  7009. where the $\itm{body}$ is transformed into $\itm{body}'$ by replacing
  7010. the occurrences of the later parameters with vector references.
  7011. \begin{lstlisting}
  7012. (Var |$x_i$|) |$\Rightarrow$| (Prim 'vector-ref (list vec (Int |$(i - 6)$|)))
  7013. \end{lstlisting}
  7014. For function calls with too many arguments, the \code{limit-functions}
  7015. pass transforms them in the following way.
  7016. \begin{tabular}{lll}
  7017. \begin{minipage}{0.2\textwidth}
  7018. \begin{lstlisting}
  7019. (|$e_0$| |$e_1$| |$\ldots$| |$e_n$|)
  7020. \end{lstlisting}
  7021. \end{minipage}
  7022. &
  7023. $\Rightarrow$
  7024. &
  7025. \begin{minipage}{0.4\textwidth}
  7026. \begin{lstlisting}
  7027. (|$e_0$| |$e_1 \ldots e_5$| (vector |$e_6 \ldots e_n$|))
  7028. \end{lstlisting}
  7029. \end{minipage}
  7030. \end{tabular}
  7031. \section{Remove Complex Operands}
  7032. \label{sec:rco-r4}
  7033. The primary decisions to make for this pass is whether to classify
  7034. \code{FunRef} and \code{Apply} as either atomic or complex
  7035. expressions. Recall that a simple expression will eventually end up as
  7036. just an immediate argument of an x86 instruction. Function
  7037. application will be translated to a sequence of instructions, so
  7038. \code{Apply} must be classified as complex expression.
  7039. On the other hand, the arguments of \code{Apply} should be
  7040. atomic expressions.
  7041. %
  7042. Regarding \code{FunRef}, as discussed above, the function label needs
  7043. to be converted to an address using the \code{leaq} instruction. Thus,
  7044. even though \code{FunRef} seems rather simple, it needs to be
  7045. classified as a complex expression so that we generate an assignment
  7046. statement with a left-hand side that can serve as the target of the
  7047. \code{leaq}. Figure~\ref{fig:r4-anf-syntax} defines the
  7048. output language $R_4^{\dagger}$ of this pass.
  7049. \begin{figure}[tp]
  7050. \centering
  7051. \fbox{
  7052. \begin{minipage}{0.96\textwidth}
  7053. \small
  7054. \[
  7055. \begin{array}{rcl}
  7056. \Atm &::=& \gray{ \INT{\Int} \mid \VAR{\Var} \mid \BOOL{\itm{bool}}
  7057. \mid \VOID{} } \\
  7058. \Exp &::=& \gray{ \Atm \mid \READ{} } \\
  7059. &\mid& \gray{ \NEG{\Atm} \mid \ADD{\Atm}{\Atm} } \\
  7060. &\mid& \gray{ \LET{\Var}{\Exp}{\Exp} } \\
  7061. &\mid& \gray{ \UNIOP{\key{'not}}{\Atm} } \\
  7062. &\mid& \gray{ \BINOP{\itm{cmp}}{\Atm}{\Atm} \mid \IF{\Exp}{\Exp}{\Exp} }\\
  7063. &\mid& \gray{ \LP\key{Collect}~\Int\RP \mid \LP\key{Allocate}~\Int~\Type\RP
  7064. \mid \LP\key{GlobalValue}~\Var\RP }\\
  7065. &\mid& \FUNREF{\Var} \mid \APPLY{\Atm}{\Atm\ldots}\\
  7066. \Def &::=& \gray{ \FUNDEF{\Var}{([\Var \code{:} \Type]\ldots)}{\Type}{\code{'()}}{\Exp} }\\
  7067. R^{\dagger}_4 &::=& \gray{ \PROGRAMDEFS{\code{'()}}{\Def} }
  7068. \end{array}
  7069. \]
  7070. \end{minipage}
  7071. }
  7072. \caption{$R_4^{\dagger}$ is $R_4$ in administrative normal form (ANF).}
  7073. \label{fig:r4-anf-syntax}
  7074. \end{figure}
  7075. \section{Explicate Control and the $C_3$ language}
  7076. \label{sec:explicate-control-r4}
  7077. Figure~\ref{fig:c3-syntax} defines the abstract syntax for $C_3$, the
  7078. output of \key{explicate-control}. (The concrete syntax is given in
  7079. Figure~\ref{fig:c3-concrete-syntax} of the Appendix.) The auxiliary
  7080. functions for assignment and tail contexts should be updated with
  7081. cases for \code{Apply} and \code{FunRef} and the function for
  7082. predicate context should be updated for \code{Apply} but not
  7083. \code{FunRef}. (A \code{FunRef} can't be a Boolean.) In assignment
  7084. and predicate contexts, \code{Apply} becomes \code{Call}, whereas in
  7085. tail position \code{Apply} becomes \code{TailCall}. We recommend
  7086. defining a new auxiliary function for processing function definitions.
  7087. This code is similar to the case for \code{Program} in $R_3$. The
  7088. top-level \code{explicate-control} function that handles the
  7089. \code{ProgramDefs} form of $R_4$ can then apply this new function to
  7090. all the function definitions.
  7091. \begin{figure}[tp]
  7092. \fbox{
  7093. \begin{minipage}{0.96\textwidth}
  7094. \small
  7095. \[
  7096. \begin{array}{lcl}
  7097. \Atm &::=& \gray{ \INT{\Int} \mid \VAR{\Var} \mid \BOOL{\itm{bool}} }\\
  7098. \itm{cmp} &::= & \gray{ \key{eq?} \mid \key{<} } \\
  7099. \Exp &::= & \gray{ \Atm \mid \READ{} } \\
  7100. &\mid& \gray{ \NEG{\Atm} \mid \ADD{\Atm}{\Atm} }\\
  7101. &\mid& \gray{ \UNIOP{\key{not}}{\Atm} \mid \BINOP{\itm{cmp}}{\Atm}{\Atm} } \\
  7102. &\mid& \gray{ \LP\key{Allocate} \,\itm{int}\,\itm{type}\RP } \\
  7103. &\mid& \gray{ \BINOP{\key{'vector-ref}}{\Atm}{\INT{\Int}} }\\
  7104. &\mid& \gray{ \LP\key{Prim}~\key{'vector-set!}\,\LP\key{list}\,\Atm\,\INT{\Int}\,\Atm\RP\RP }\\
  7105. &\mid& \gray{ \LP\key{GlobalValue} \,\Var\RP \mid \LP\key{Void}\RP }\\
  7106. &\mid& \FUNREF{\itm{label}} \mid \CALL{\Atm}{\LP\Atm\ldots\RP} \\
  7107. \Stmt &::=& \gray{ \ASSIGN{\VAR{\Var}}{\Exp}
  7108. \mid \LP\key{Collect} \,\itm{int}\RP } \\
  7109. \Tail &::= & \gray{ \RETURN{\Exp} \mid \SEQ{\Stmt}{\Tail}
  7110. \mid \GOTO{\itm{label}} } \\
  7111. &\mid& \gray{ \IFSTMT{\BINOP{\itm{cmp}}{\Atm}{\Atm}}{\GOTO{\itm{label}}}{\GOTO{\itm{label}}} }\\
  7112. &\mid& \TAILCALL{\Atm}{\Atm\ldots} \\
  7113. \Def &::=& \DEF{\itm{label}}{\LP[\Var\key{:}\Type]\ldots\RP}{\Type}{\itm{info}}{\LP\LP\itm{label}\,\key{.}\,\Tail\RP\ldots\RP}\\
  7114. C_3 & ::= & \PROGRAMDEFS{\itm{info}}{\LP\Def\ldots\RP}
  7115. \end{array}
  7116. \]
  7117. \end{minipage}
  7118. }
  7119. \caption{The abstract syntax of $C_3$, extending $C_2$ (Figure~\ref{fig:c2-syntax}).}
  7120. \label{fig:c3-syntax}
  7121. \end{figure}
  7122. \section{Select Instructions and the x86$_3$ Language}
  7123. \label{sec:select-r4}
  7124. \index{instruction selection}
  7125. The output of select instructions is a program in the x86$_3$
  7126. language, whose syntax is defined in Figure~\ref{fig:x86-3}.
  7127. \index{x86}
  7128. \begin{figure}[tp]
  7129. \fbox{
  7130. \begin{minipage}{0.96\textwidth}
  7131. \small
  7132. \[
  7133. \begin{array}{lcl}
  7134. \Arg &::=& \gray{ \key{\$}\Int \mid \key{\%}\Reg \mid \Int\key{(}\key{\%}\Reg\key{)} \mid \key{\%}\itm{bytereg} } \mid \Var \key{(\%rip)}
  7135. \mid \LP\key{fun-ref}\; \itm{label}\RP\\
  7136. \itm{cc} & ::= & \gray{ \key{e} \mid \key{l} \mid \key{le} \mid \key{g} \mid \key{ge} } \\
  7137. \Instr &::=& \ldots
  7138. \mid \key{callq}\;\key{*}\Arg \mid \key{tailjmp}\;\Arg
  7139. \mid \key{leaq}\;\Arg\key{,}\;\key{\%}\Reg \\
  7140. \Block &::= & \Instr\ldots \\
  7141. \Def &::= & \LP\key{define} \; \LP\itm{label}\RP \;\LP\LP\itm{label} \,\key{.}\, \Block\RP\ldots\RP\RP\\
  7142. x86_3 &::= & \Def\ldots
  7143. \end{array}
  7144. \]
  7145. \end{minipage}
  7146. }
  7147. \caption{The concrete syntax of x86$_3$ (extends x86$_2$ of Figure~\ref{fig:x86-2-concrete}).}
  7148. \label{fig:x86-3-concrete}
  7149. \end{figure}
  7150. \begin{figure}[tp]
  7151. \fbox{
  7152. \begin{minipage}{0.96\textwidth}
  7153. \small
  7154. \[
  7155. \begin{array}{lcl}
  7156. \Arg &::=& \gray{ \INT{\Int} \mid \REG{\Reg} \mid \DEREF{\Reg}{\Int}
  7157. \mid \BYTEREG{\Reg} } \\
  7158. &\mid& \gray{ (\key{Global}~\Var) } \mid \FUNREF{\itm{label}} \\
  7159. \Instr &::=& \ldots \mid \INDCALLQ{\Arg}{\itm{int}}
  7160. \mid \TAILJMP{\Arg}{\itm{int}}\\
  7161. &\mid& \BININSTR{\code{'leaq}}{\Arg}{\REG{\Reg}}\\
  7162. \Block &::= & \BLOCK{\itm{info}}{\LP\Instr\ldots\RP}\\
  7163. \Def &::= & \DEF{\itm{label}}{\code{'()}}{\Type}{\itm{info}}{\LP\LP\itm{label}\,\key{.}\,\Block\RP\ldots\RP} \\
  7164. x86_3 &::= & \PROGRAMDEFS{\itm{info}}{\LP\Def\ldots\RP}
  7165. \end{array}
  7166. \]
  7167. \end{minipage}
  7168. }
  7169. \caption{The abstract syntax of x86$_3$ (extends x86$_2$ of Figure~\ref{fig:x86-2}).}
  7170. \label{fig:x86-3}
  7171. \end{figure}
  7172. An assignment of a function reference to a variable becomes a
  7173. load-effective-address instruction as follows: \\
  7174. \begin{tabular}{lcl}
  7175. \begin{minipage}{0.35\textwidth}
  7176. \begin{lstlisting}
  7177. |$\itm{lhs}$| = (fun-ref |$f$|);
  7178. \end{lstlisting}
  7179. \end{minipage}
  7180. &
  7181. $\Rightarrow$\qquad\qquad
  7182. &
  7183. \begin{minipage}{0.3\textwidth}
  7184. \begin{lstlisting}
  7185. leaq (fun-ref |$f$|), |$\itm{lhs}'$|
  7186. \end{lstlisting}
  7187. \end{minipage}
  7188. \end{tabular} \\
  7189. Regarding function definitions, we need to remove the parameters and
  7190. instead perform parameter passing using the conventions discussed in
  7191. Section~\ref{sec:fun-x86}. That is, the arguments are passed in
  7192. registers. We recommend turning the parameters into local variables
  7193. and generating instructions at the beginning of the function to move
  7194. from the argument passing registers to these local variables.
  7195. \begin{lstlisting}
  7196. (Def |$f$| '([|$x_1$| : |$T_1$|] [|$x_2$| : |$T_2$|] |$\ldots$| ) |$T_r$| |$\itm{info}$| |$G$|)
  7197. |$\Rightarrow$|
  7198. (Def |$f$| '() 'Integer |$\itm{info}'$| |$G'$|)
  7199. \end{lstlisting}
  7200. The $G'$ control-flow graph is the same as $G$ except that the
  7201. \code{start} block is modified to add the instructions for moving from
  7202. the argument registers to the parameter variables. So the \code{start}
  7203. block of $G$ shown on the left is changed to the code on the right.
  7204. \begin{center}
  7205. \begin{minipage}{0.3\textwidth}
  7206. \begin{lstlisting}
  7207. start:
  7208. |$\itm{instr}_1$|
  7209. |$\vdots$|
  7210. |$\itm{instr}_n$|
  7211. \end{lstlisting}
  7212. \end{minipage}
  7213. $\Rightarrow$
  7214. \begin{minipage}{0.3\textwidth}
  7215. \begin{lstlisting}
  7216. start:
  7217. movq %rdi, |$x_1$|
  7218. movq %rsi, |$x_2$|
  7219. |$\vdots$|
  7220. |$\itm{instr}_1$|
  7221. |$\vdots$|
  7222. |$\itm{instr}_n$|
  7223. \end{lstlisting}
  7224. \end{minipage}
  7225. \end{center}
  7226. By changing the parameters to local variables, we are giving the
  7227. register allocator control over which registers or stack locations to
  7228. use for them. If you implemented the move-biasing challenge
  7229. (Section~\ref{sec:move-biasing}), the register allocator will try to
  7230. assign the parameter variables to the corresponding argument register,
  7231. in which case the \code{patch-instructions} pass will remove the
  7232. \code{movq} instruction. This happens in the example translation in
  7233. Figure~\ref{fig:add-fun} of Section~\ref{sec:functions-example}, in
  7234. the \code{add} function.
  7235. %
  7236. Also, note that the register allocator will perform liveness analysis
  7237. on this sequence of move instructions and build the interference
  7238. graph. So, for example, $x_1$ will be marked as interfering with
  7239. \code{rsi} and that will prevent the assignment of $x_1$ to
  7240. \code{rsi}, which is good, because that would overwrite the argument
  7241. that needs to move into $x_2$.
  7242. Next, consider the compilation of function calls. In the mirror image
  7243. of handling the parameters of function definitions, the arguments need
  7244. to be moved to the argument passing registers. The function call
  7245. itself is performed with an indirect function call. The return value
  7246. from the function is stored in \code{rax}, so it needs to be moved
  7247. into the \itm{lhs}.
  7248. \begin{lstlisting}
  7249. |\itm{lhs}| = (call |\itm{fun}| |$\itm{arg}_1~\itm{arg}_2\ldots$|));
  7250. |$\Rightarrow$|
  7251. movq |$\itm{arg}_1$|, %rdi
  7252. movq |$\itm{arg}_2$|, %rsi
  7253. |$\vdots$|
  7254. callq *|\itm{fun}|
  7255. movq %rax, |\itm{lhs}|
  7256. \end{lstlisting}
  7257. The \code{IndirectCallq} AST node includes an integer for the arity of
  7258. the function, i.e., the number of parameters. That information is
  7259. useful in the \code{uncover-live} pass for determining which
  7260. argument-passing registers are potentially read during the call.
  7261. For tail calls, the parameter passing is the same as non-tail calls:
  7262. generate instructions to move the arguments into to the argument
  7263. passing registers. After that we need to pop the frame from the
  7264. procedure call stack. However, we do not yet know how big the frame
  7265. is; that gets determined during register allocation. So instead of
  7266. generating those instructions here, we invent a new instruction that
  7267. means ``pop the frame and then do an indirect jump'', which we name
  7268. \code{TailJmp}. The abstract syntax for this instruction includes an
  7269. argument that specifies where to jump and an integer that represents
  7270. the arity of the function being called.
  7271. Recall that in Section~\ref{sec:explicate-control-r1} we recommended
  7272. using the label \code{start} for the initial block of a program, and
  7273. in Section~\ref{sec:select-r1} we recommended labeling the conclusion
  7274. of the program with \code{conclusion}, so that $(\key{Return}\;\Arg)$
  7275. can be compiled to an assignment to \code{rax} followed by a jump to
  7276. \code{conclusion}. With the addition of function definitions, we will
  7277. have a starting block and conclusion for each function, but their
  7278. labels need to be unique. We recommend prepending the function's name
  7279. to \code{start} and \code{conclusion}, respectively, to obtain unique
  7280. labels. (Alternatively, one could \code{gensym} labels for the start
  7281. and conclusion and store them in the $\itm{info}$ field of the
  7282. function definition.)
  7283. \section{Register Allocation}
  7284. \label{sec:register-allocation-r4}
  7285. \subsection{Liveness Analysis}
  7286. \label{sec:liveness-analysis-r4}
  7287. \index{liveness analysis}
  7288. %% The rest of the passes need only minor modifications to handle the new
  7289. %% kinds of AST nodes: \code{fun-ref}, \code{indirect-callq}, and
  7290. %% \code{leaq}.
  7291. The \code{IndirectCallq} instruction should be treated like
  7292. \code{Callq} regarding its written locations $W$, in that they should
  7293. include all the caller-saved registers. Recall that the reason for
  7294. that is to force call-live variables to be assigned to callee-saved
  7295. registers or to be spilled to the stack.
  7296. Regarding the set of read locations $R$ the arity field of
  7297. \code{TailJmp} and \code{IndirectCallq} determines how many of the
  7298. argument-passing registers should be considered as read by those
  7299. instructions.
  7300. \subsection{Build Interference Graph}
  7301. \label{sec:build-interference-r4}
  7302. With the addition of function definitions, we compute an interference
  7303. graph for each function (not just one for the whole program).
  7304. Recall that in Section~\ref{sec:reg-alloc-gc} we discussed the need to
  7305. spill vector-typed variables that are live during a call to the
  7306. \code{collect}. With the addition of functions to our language, we
  7307. need to revisit this issue. Many functions perform allocation and
  7308. therefore have calls to the collector inside of them. Thus, we should
  7309. not only spill a vector-typed variable when it is live during a call
  7310. to \code{collect}, but we should spill the variable if it is live
  7311. during any function call. Thus, in the \code{build-interference} pass,
  7312. we recommend adding interference edges between call-live vector-typed
  7313. variables and the callee-saved registers (in addition to the usual
  7314. addition of edges between call-live variables and the caller-saved
  7315. registers).
  7316. \subsection{Allocate Registers}
  7317. The primary change to the \code{allocate-registers} pass is adding an
  7318. auxiliary function for handling definitions (the \Def{} non-terminal
  7319. in Figure~\ref{fig:x86-3}) with one case for function definitions. The
  7320. logic is the same as described in
  7321. Chapter~\ref{ch:register-allocation-r1}, except now register
  7322. allocation is performed many times, once for each function definition,
  7323. instead of just once for the whole program.
  7324. \section{Patch Instructions}
  7325. In \code{patch-instructions}, you should deal with the x86
  7326. idiosyncrasy that the destination argument of \code{leaq} must be a
  7327. register. Additionally, you should ensure that the argument of
  7328. \code{TailJmp} is \itm{rax}, our reserved register---this is to make
  7329. code generation more convenient, because we trample many registers
  7330. before the tail call (as explained in the next section).
  7331. \section{Print x86}
  7332. For the \code{print-x86} pass, the cases for \code{FunRef} and
  7333. \code{IndirectCallq} are straightforward: output their concrete
  7334. syntax.
  7335. \begin{lstlisting}
  7336. (FunRef |\itm{label}|) |$\Rightarrow$| |\itm{label}|(%rip)
  7337. (IndirectCallq |\itm{arg}| |\itm{int}|) |$\Rightarrow$| callq *|\itm{arg}'|
  7338. \end{lstlisting}
  7339. The \code{TailJmp} node requires a bit work. A straightforward
  7340. translation of \code{TailJmp} would be \code{jmp *$\itm{arg}$}, but
  7341. before the jump we need to pop the current frame. This sequence of
  7342. instructions is the same as the code for the conclusion of a function,
  7343. except the \code{retq} is replaced with \code{jmp *$\itm{arg}$}.
  7344. Regarding function definitions, you will need to generate a prelude
  7345. and conclusion for each one. This code is similar to the prelude and
  7346. conclusion that you generated for the \code{main} function in
  7347. Chapter~\ref{ch:tuples}. To review, the prelude of every function
  7348. should carry out the following steps.
  7349. \begin{enumerate}
  7350. \item Start with \code{.global} and \code{.align} directives followed
  7351. by the label for the function. (See Figure~\ref{fig:add-fun} for an
  7352. example.)
  7353. \item Push \code{rbp} to the stack and set \code{rbp} to current stack
  7354. pointer.
  7355. \item Push to the stack all of the callee-saved registers that were
  7356. used for register allocation.
  7357. \item Move the stack pointer \code{rsp} down by the size of the stack
  7358. frame for this function, which depends on the number of regular
  7359. spills. (Aligned to 16 bytes.)
  7360. \item Move the root stack pointer \code{r15} up by the size of the
  7361. root-stack frame for this function, which depends on the number of
  7362. spilled vectors. \label{root-stack-init}
  7363. \item Initialize to zero all of the entries in the root-stack frame.
  7364. \item Jump to the start block.
  7365. \end{enumerate}
  7366. The prelude of the \code{main} function has one additional task: call
  7367. the \code{initialize} function to set up the garbage collector and
  7368. move the value of the global \code{rootstack\_begin} in
  7369. \code{r15}. This should happen before step \ref{root-stack-init}
  7370. above, which depends on \code{r15}.
  7371. The conclusion of every function should do the following.
  7372. \begin{enumerate}
  7373. \item Move the stack pointer back up by the size of the stack frame
  7374. for this function.
  7375. \item Restore the callee-saved registers by popping them from the
  7376. stack.
  7377. \item Move the root stack pointer back down by the size of the
  7378. root-stack frame for this function.
  7379. \item Restore \code{rbp} by popping it from the stack.
  7380. \item Return to the caller with the \code{retq} instruction.
  7381. \end{enumerate}
  7382. \begin{exercise}\normalfont
  7383. Expand your compiler to handle $R_4$ as outlined in this chapter.
  7384. Create 5 new programs that use functions, including examples that pass
  7385. functions and return functions from other functions, recursive
  7386. functions, functions that create vectors, and functions that make tail
  7387. calls. Test your compiler on these new programs and all of your
  7388. previously created test programs.
  7389. \end{exercise}
  7390. \begin{figure}[tbp]
  7391. \begin{tikzpicture}[baseline=(current bounding box.center)]
  7392. \node (R4) at (0,2) {\large $R_4$};
  7393. \node (R4-1) at (3,2) {\large $R_4$};
  7394. \node (R4-2) at (6,2) {\large $R_4$};
  7395. \node (F1-1) at (12,0) {\large $F_1$};
  7396. \node (F1-2) at (9,0) {\large $F_1$};
  7397. \node (F1-3) at (6,0) {\large $F_1$};
  7398. \node (F1-4) at (3,0) {\large $F_1$};
  7399. \node (C3-2) at (3,-2) {\large $C_3$};
  7400. \node (x86-2) at (3,-4) {\large $\text{x86}^{*}_3$};
  7401. \node (x86-3) at (6,-4) {\large $\text{x86}^{*}_3$};
  7402. \node (x86-4) at (9,-4) {\large $\text{x86}_3$};
  7403. \node (x86-5) at (9,-6) {\large $\text{x86}^{\dagger}_3$};
  7404. \node (x86-2-1) at (3,-6) {\large $\text{x86}^{*}_3$};
  7405. \node (x86-2-2) at (6,-6) {\large $\text{x86}^{*}_3$};
  7406. \path[->,bend left=15] (R4) edge [above] node
  7407. {\ttfamily\footnotesize shrink} (R4-1);
  7408. \path[->,bend left=15] (R4-1) edge [above] node
  7409. {\ttfamily\footnotesize uniquify} (R4-2);
  7410. \path[->,bend left=15] (R4-2) edge [right] node
  7411. {\ttfamily\footnotesize ~~reveal-functions} (F1-1);
  7412. \path[->,bend left=15] (F1-1) edge [below] node
  7413. {\ttfamily\footnotesize limit-functions} (F1-2);
  7414. \path[->,bend right=15] (F1-2) edge [above] node
  7415. {\ttfamily\footnotesize expose-alloc.} (F1-3);
  7416. \path[->,bend right=15] (F1-3) edge [above] node
  7417. {\ttfamily\footnotesize remove-complex.} (F1-4);
  7418. \path[->,bend left=15] (F1-4) edge [right] node
  7419. {\ttfamily\footnotesize explicate-control} (C3-2);
  7420. \path[->,bend right=15] (C3-2) edge [left] node
  7421. {\ttfamily\footnotesize select-instr.} (x86-2);
  7422. \path[->,bend left=15] (x86-2) edge [left] node
  7423. {\ttfamily\footnotesize uncover-live} (x86-2-1);
  7424. \path[->,bend right=15] (x86-2-1) edge [below] node
  7425. {\ttfamily\footnotesize build-inter.} (x86-2-2);
  7426. \path[->,bend right=15] (x86-2-2) edge [left] node
  7427. {\ttfamily\footnotesize allocate-reg.} (x86-3);
  7428. \path[->,bend left=15] (x86-3) edge [above] node
  7429. {\ttfamily\footnotesize patch-instr.} (x86-4);
  7430. \path[->,bend right=15] (x86-4) edge [left] node {\ttfamily\footnotesize print-x86} (x86-5);
  7431. \end{tikzpicture}
  7432. \caption{Diagram of the passes for $R_4$, a language with functions.}
  7433. \label{fig:R4-passes}
  7434. \end{figure}
  7435. Figure~\ref{fig:R4-passes} gives an overview of the passes for
  7436. compiling $R_4$ to x86.
  7437. \section{An Example Translation}
  7438. \label{sec:functions-example}
  7439. Figure~\ref{fig:add-fun} shows an example translation of a simple
  7440. function in $R_4$ to x86. The figure also includes the results of the
  7441. \code{explicate-control} and \code{select-instructions} passes.
  7442. \begin{figure}[htbp]
  7443. \begin{tabular}{ll}
  7444. \begin{minipage}{0.5\textwidth}
  7445. % s3_2.rkt
  7446. \begin{lstlisting}[basicstyle=\ttfamily\scriptsize]
  7447. (define (add [x : Integer] [y : Integer])
  7448. : Integer
  7449. (+ x y))
  7450. (add 40 2)
  7451. \end{lstlisting}
  7452. $\Downarrow$
  7453. \begin{lstlisting}[basicstyle=\ttfamily\scriptsize]
  7454. (define (add86 [x87 : Integer]
  7455. [y88 : Integer]) : Integer
  7456. add86start:
  7457. return (+ x87 y88);
  7458. )
  7459. (define (main) : Integer ()
  7460. mainstart:
  7461. tmp89 = (fun-ref add86);
  7462. (tail-call tmp89 40 2)
  7463. )
  7464. \end{lstlisting}
  7465. \end{minipage}
  7466. &
  7467. $\Rightarrow$
  7468. \begin{minipage}{0.5\textwidth}
  7469. \begin{lstlisting}[basicstyle=\ttfamily\scriptsize]
  7470. (define (add86) : Integer
  7471. add86start:
  7472. movq %rdi, x87
  7473. movq %rsi, y88
  7474. movq x87, %rax
  7475. addq y88, %rax
  7476. jmp add11389conclusion
  7477. )
  7478. (define (main) : Integer
  7479. mainstart:
  7480. leaq (fun-ref add86), tmp89
  7481. movq $40, %rdi
  7482. movq $2, %rsi
  7483. tail-jmp tmp89
  7484. )
  7485. \end{lstlisting}
  7486. $\Downarrow$
  7487. \end{minipage}
  7488. \end{tabular}
  7489. \begin{tabular}{ll}
  7490. \begin{minipage}{0.3\textwidth}
  7491. \begin{lstlisting}[basicstyle=\ttfamily\scriptsize]
  7492. .globl add86
  7493. .align 16
  7494. add86:
  7495. pushq %rbp
  7496. movq %rsp, %rbp
  7497. jmp add86start
  7498. add86start:
  7499. movq %rdi, %rax
  7500. addq %rsi, %rax
  7501. jmp add86conclusion
  7502. add86conclusion:
  7503. popq %rbp
  7504. retq
  7505. \end{lstlisting}
  7506. \end{minipage}
  7507. &
  7508. \begin{minipage}{0.5\textwidth}
  7509. \begin{lstlisting}[basicstyle=\ttfamily\scriptsize]
  7510. .globl main
  7511. .align 16
  7512. main:
  7513. pushq %rbp
  7514. movq %rsp, %rbp
  7515. movq $16384, %rdi
  7516. movq $16384, %rsi
  7517. callq initialize
  7518. movq rootstack_begin(%rip), %r15
  7519. jmp mainstart
  7520. mainstart:
  7521. leaq add86(%rip), %rcx
  7522. movq $40, %rdi
  7523. movq $2, %rsi
  7524. movq %rcx, %rax
  7525. popq %rbp
  7526. jmp *%rax
  7527. mainconclusion:
  7528. popq %rbp
  7529. retq
  7530. \end{lstlisting}
  7531. \end{minipage}
  7532. \end{tabular}
  7533. \caption{Example compilation of a simple function to x86.}
  7534. \label{fig:add-fun}
  7535. \end{figure}
  7536. % Challenge idea: inlining! (simple version)
  7537. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  7538. \chapter{Lexically Scoped Functions}
  7539. \label{ch:lambdas}
  7540. \index{lambda}
  7541. \index{lexical scoping}
  7542. This chapter studies lexically scoped functions as they appear in
  7543. functional languages such as Racket. By lexical scoping we mean that a
  7544. function's body may refer to variables whose binding site is outside
  7545. of the function, in an enclosing scope.
  7546. %
  7547. Consider the example in Figure~\ref{fig:lexical-scoping} written in
  7548. $R_5$, which extends $R_4$ with anonymous functions using the
  7549. \key{lambda} form. The body of the \key{lambda}, refers to three
  7550. variables: \code{x}, \code{y}, and \code{z}. The binding sites for
  7551. \code{x} and \code{y} are outside of the \key{lambda}. Variable
  7552. \code{y} is bound by the enclosing \key{let} and \code{x} is a
  7553. parameter of function \code{f}. The \key{lambda} is returned from the
  7554. function \code{f}. The main expression of the program includes two
  7555. calls to \code{f} with different arguments for \code{x}, first
  7556. \code{5} then \code{3}. The functions returned from \code{f} are bound
  7557. to variables \code{g} and \code{h}. Even though these two functions
  7558. were created by the same \code{lambda}, they are really different
  7559. functions because they use different values for \code{x}. Applying
  7560. \code{g} to \code{11} produces \code{20} whereas applying \code{h} to
  7561. \code{15} produces \code{22}. The result of this program is \code{42}.
  7562. \begin{figure}[btp]
  7563. % s4_6.rkt
  7564. \begin{lstlisting}
  7565. (define (f [x : Integer]) : (Integer -> Integer)
  7566. (let ([y 4])
  7567. (lambda: ([z : Integer]) : Integer
  7568. (+ x (+ y z)))))
  7569. (let ([g (f 5)])
  7570. (let ([h (f 3)])
  7571. (+ (g 11) (h 15))))
  7572. \end{lstlisting}
  7573. \caption{Example of a lexically scoped function.}
  7574. \label{fig:lexical-scoping}
  7575. \end{figure}
  7576. The approach that we take for implementing lexically scoped
  7577. functions is to compile them into top-level function definitions,
  7578. translating from $R_5$ into $R_4$. However, the compiler will need to
  7579. provide special treatment for variable occurrences such as \code{x}
  7580. and \code{y} in the body of the \code{lambda} of
  7581. Figure~\ref{fig:lexical-scoping}. After all, an $R_4$ function may not
  7582. refer to variables defined outside of it. To identify such variable
  7583. occurrences, we review the standard notion of free variable.
  7584. \begin{definition}
  7585. A variable is \emph{free in expression} $e$ if the variable occurs
  7586. inside $e$ but does not have an enclosing binding in $e$.\index{free
  7587. variable}
  7588. \end{definition}
  7589. For example, in the expression \code{(+ x (+ y z))} the variables
  7590. \code{x}, \code{y}, and \code{z} are all free. On the other hand,
  7591. only \code{x} and \code{y} are free in the following expression
  7592. because \code{z} is bound by the \code{lambda}.
  7593. \begin{lstlisting}
  7594. (lambda: ([z : Integer]) : Integer
  7595. (+ x (+ y z)))
  7596. \end{lstlisting}
  7597. So the free variables of a \code{lambda} are the ones that will need
  7598. special treatment. We need to arrange for some way to transport, at
  7599. runtime, the values of those variables from the point where the
  7600. \code{lambda} was created to the point where the \code{lambda} is
  7601. applied. An efficient solution to the problem, due to
  7602. \citet{Cardelli:1983aa}, is to bundle into a vector the values of the
  7603. free variables together with the function pointer for the lambda's
  7604. code, an arrangement called a \emph{flat closure} (which we shorten to
  7605. just ``closure''). \index{closure}\index{flat closure} Fortunately,
  7606. we have all the ingredients to make closures, Chapter~\ref{ch:tuples}
  7607. gave us vectors and Chapter~\ref{ch:functions} gave us function
  7608. pointers. The function pointer resides at index $0$ and the
  7609. values for the free variables will fill in the rest of the vector.
  7610. Let us revisit the example in Figure~\ref{fig:lexical-scoping} to see
  7611. how closures work. It's a three-step dance. The program first calls
  7612. function \code{f}, which creates a closure for the \code{lambda}. The
  7613. closure is a vector whose first element is a pointer to the top-level
  7614. function that we will generate for the \code{lambda}, the second
  7615. element is the value of \code{x}, which is \code{5}, and the third
  7616. element is \code{4}, the value of \code{y}. The closure does not
  7617. contain an element for \code{z} because \code{z} is not a free
  7618. variable of the \code{lambda}. Creating the closure is step 1 of the
  7619. dance. The closure is returned from \code{f} and bound to \code{g}, as
  7620. shown in Figure~\ref{fig:closures}.
  7621. %
  7622. The second call to \code{f} creates another closure, this time with
  7623. \code{3} in the second slot (for \code{x}). This closure is also
  7624. returned from \code{f} but bound to \code{h}, which is also shown in
  7625. Figure~\ref{fig:closures}.
  7626. \begin{figure}[tbp]
  7627. \centering \includegraphics[width=0.6\textwidth]{figs/closures}
  7628. \caption{Example closure representation for the \key{lambda}'s
  7629. in Figure~\ref{fig:lexical-scoping}.}
  7630. \label{fig:closures}
  7631. \end{figure}
  7632. Continuing with the example, consider the application of \code{g} to
  7633. \code{11} in Figure~\ref{fig:lexical-scoping}. To apply a closure, we
  7634. obtain the function pointer in the first element of the closure and
  7635. call it, passing in the closure itself and then the regular arguments,
  7636. in this case \code{11}. This technique for applying a closure is step
  7637. 2 of the dance.
  7638. %
  7639. But doesn't this \code{lambda} only take 1 argument, for parameter
  7640. \code{z}? The third and final step of the dance is generating a
  7641. top-level function for a \code{lambda}. We add an additional
  7642. parameter for the closure and we insert a \code{let} at the beginning
  7643. of the function for each free variable, to bind those variables to the
  7644. appropriate elements from the closure parameter.
  7645. %
  7646. This three-step dance is known as \emph{closure conversion}. We
  7647. discuss the details of closure conversion in
  7648. Section~\ref{sec:closure-conversion} and the code generated from the
  7649. example in Section~\ref{sec:example-lambda}. But first we define the
  7650. syntax and semantics of $R_5$ in Section~\ref{sec:r5}.
  7651. \section{The $R_5$ Language}
  7652. \label{sec:r5}
  7653. The concrete and abstract syntax for $R_5$, a language with anonymous
  7654. functions and lexical scoping, is defined in
  7655. Figures~\ref{fig:r5-concrete-syntax} and ~\ref{fig:r5-syntax}. It adds
  7656. the \key{lambda} form to the grammar for $R_4$, which already has
  7657. syntax for function application.
  7658. \begin{figure}[tp]
  7659. \centering
  7660. \fbox{
  7661. \begin{minipage}{0.96\textwidth}
  7662. \small
  7663. \[
  7664. \begin{array}{lcl}
  7665. \Type &::=& \gray{\key{Integer} \mid \key{Boolean}
  7666. \mid (\key{Vector}\;\Type\ldots) \mid \key{Void}
  7667. \mid (\Type\ldots \; \key{->}\; \Type)} \\
  7668. \Exp &::=& \gray{ \Int \mid \CREAD{} \mid \CNEG{\Exp}
  7669. \mid \CADD{\Exp}{\Exp} \mid \CSUB{\Exp}{\Exp} } \\
  7670. &\mid& \gray{ \Var \mid \CLET{\Var}{\Exp}{\Exp} }\\
  7671. &\mid& \gray{\key{\#t} \mid \key{\#f}
  7672. \mid (\key{and}\;\Exp\;\Exp)
  7673. \mid (\key{or}\;\Exp\;\Exp)
  7674. \mid (\key{not}\;\Exp) } \\
  7675. &\mid& \gray{ (\key{eq?}\;\Exp\;\Exp) \mid \CIF{\Exp}{\Exp}{\Exp} } \\
  7676. &\mid& \gray{ (\key{vector}\;\Exp\ldots) \mid
  7677. (\key{vector-ref}\;\Exp\;\Int)} \\
  7678. &\mid& \gray{(\key{vector-set!}\;\Exp\;\Int\;\Exp)\mid (\key{void})
  7679. \mid (\Exp \; \Exp\ldots) } \\
  7680. &\mid& \LP \key{procedure-arity}~\Exp\RP \\
  7681. &\mid& \CLAMBDA{\LP\LS\Var \key{:} \Type\RS\ldots\RP}{\Type}{\Exp} \\
  7682. \Def &::=& \gray{ \CDEF{\Var}{\LS\Var \key{:} \Type\RS\ldots}{\Type}{\Exp} } \\
  7683. R_5 &::=& \gray{\Def\ldots \; \Exp}
  7684. \end{array}
  7685. \]
  7686. \end{minipage}
  7687. }
  7688. \caption{The concrete syntax of $R_5$, extending $R_4$ (Figure~\ref{fig:r4-concrete-syntax})
  7689. with \key{lambda}.}
  7690. \label{fig:r5-concrete-syntax}
  7691. \end{figure}
  7692. \begin{figure}[tp]
  7693. \centering
  7694. \fbox{
  7695. \begin{minipage}{0.96\textwidth}
  7696. \small
  7697. \[
  7698. \begin{array}{lcl}
  7699. \itm{op} &::=& \ldots \mid \code{procedure-arity} \\
  7700. \Exp &::=& \gray{ \INT{\Int} \VAR{\Var} \mid \LET{\Var}{\Exp}{\Exp} } \\
  7701. &\mid& \gray{ \PRIM{\itm{op}}{\Exp\ldots} }\\
  7702. &\mid& \gray{ \BOOL{\itm{bool}}
  7703. \mid \IF{\Exp}{\Exp}{\Exp} } \\
  7704. &\mid& \gray{ \VOID{} \mid \LP\key{HasType}~\Exp~\Type \RP
  7705. \mid \APPLY{\Exp}{\Exp\ldots} }\\
  7706. &\mid& \LAMBDA{\LP\LS\Var\code{:}\Type\RS\ldots\RP}{\Type}{\Exp}\\
  7707. \Def &::=& \gray{ \FUNDEF{\Var}{\LP\LS\Var \code{:} \Type\RS\ldots\RP}{\Type}{\code{'()}}{\Exp} }\\
  7708. R_5 &::=& \gray{ \PROGRAMDEFSEXP{\code{'()}}{\LP\Def\ldots\RP}{\Exp} }
  7709. \end{array}
  7710. \]
  7711. \end{minipage}
  7712. }
  7713. \caption{The abstract syntax of $R_5$, extending $R_4$ (Figure~\ref{fig:r4-syntax}).}
  7714. \label{fig:r5-syntax}
  7715. \end{figure}
  7716. \index{interpreter}
  7717. \label{sec:interp-R5}
  7718. Figure~\ref{fig:interp-R5} shows the definitional interpreter for
  7719. $R_5$. The clause for \key{lambda} saves the current environment
  7720. inside the returned \key{lambda}. Then the clause for \key{Apply} uses
  7721. the environment from the \key{lambda}, the \code{lam-env}, when
  7722. interpreting the body of the \key{lambda}. The \code{lam-env}
  7723. environment is extended with the mapping of parameters to argument
  7724. values.
  7725. \begin{figure}[tbp]
  7726. \begin{lstlisting}
  7727. (define interp-R5-class
  7728. (class interp-R4-class
  7729. (super-new)
  7730. (define/override (interp-op op)
  7731. (match op
  7732. ['procedure-arity
  7733. (lambda (v)
  7734. (match v
  7735. [`(function (,xs ...) ,body ,lam-env) (length xs)]
  7736. [else (error 'interp-op "expected a function, not ~a" v)]))]
  7737. [else (super interp-op op)]))
  7738. (define/override ((interp-exp env) e)
  7739. (define recur (interp-exp env))
  7740. (match e
  7741. [(Lambda (list `[,xs : ,Ts] ...) rT body)
  7742. `(function ,xs ,body ,env)]
  7743. [else ((super interp-exp env) e)]))
  7744. ))
  7745. (define (interp-R5 p)
  7746. (send (new interp-R5-class) interp-program p))
  7747. \end{lstlisting}
  7748. \caption{Interpreter for $R_5$.}
  7749. \label{fig:interp-R5}
  7750. \end{figure}
  7751. \label{sec:type-check-r5}
  7752. \index{type checking}
  7753. Figure~\ref{fig:type-check-R5} shows how to type check the new
  7754. \key{lambda} form. The body of the \key{lambda} is checked in an
  7755. environment that includes the current environment (because it is
  7756. lexically scoped) and also includes the \key{lambda}'s parameters. We
  7757. require the body's type to match the declared return type.
  7758. \begin{figure}[tbp]
  7759. \begin{lstlisting}
  7760. (define (type-check-R5 env)
  7761. (lambda (e)
  7762. (match e
  7763. [(Lambda (and params `([,xs : ,Ts] ...)) rT body)
  7764. (define-values (new-body bodyT)
  7765. ((type-check-exp (append (map cons xs Ts) env)) body))
  7766. (define ty `(,@Ts -> ,rT))
  7767. (cond
  7768. [(equal? rT bodyT)
  7769. (values (HasType (Lambda params rT new-body) ty) ty)]
  7770. [else
  7771. (error "mismatch in return type" bodyT rT)])]
  7772. ...
  7773. )))
  7774. \end{lstlisting}
  7775. \caption{Type checking the \key{lambda}'s in $R_5$.}
  7776. \label{fig:type-check-R5}
  7777. \end{figure}
  7778. \section{Reveal Functions and the $F_2$ language}
  7779. \label{sec:reveal-functions-r5}
  7780. To support the \code{procedure-arity} operator we need to communicate
  7781. the arity of a function to the point of closure creation. We can
  7782. accomplish this by replacing the $\FUNREF{\Var}$ struct with one that
  7783. has a second field for the arity: $\FUNREFARITY{\Var}{\Int}$. The
  7784. output of this pass is the language $F_2$, whose syntax is defined in
  7785. Figure~\ref{fig:f2-syntax}.
  7786. \begin{figure}[tp]
  7787. \centering
  7788. \fbox{
  7789. \begin{minipage}{0.96\textwidth}
  7790. \[
  7791. \begin{array}{lcl}
  7792. \Exp &::=& \ldots \mid \FUNREFARITY{\Var}{\Int}\\
  7793. \Def &::=& \gray{ \FUNDEF{\Var}{([\Var \code{:} \Type]\ldots)}{\Type}{\code{'()}}{\Exp} }\\
  7794. F_2 &::=& \gray{\PROGRAMDEFS{\code{'()}}{\LP \Def\ldots \RP}}
  7795. \end{array}
  7796. \]
  7797. \end{minipage}
  7798. }
  7799. \caption{The abstract syntax $F_2$, an extension of $R_5$
  7800. (Figure~\ref{fig:r5-syntax}).}
  7801. \label{fig:f2-syntax}
  7802. \end{figure}
  7803. \section{Closure Conversion}
  7804. \label{sec:closure-conversion}
  7805. \index{closure conversion}
  7806. The compiling of lexically-scoped functions into top-level function
  7807. definitions is accomplished in the pass \code{convert-to-closures}
  7808. that comes after \code{reveal-functions} and before
  7809. \code{limit-functions}.
  7810. As usual, we implement the pass as a recursive function over the
  7811. AST. All of the action is in the clauses for \key{Lambda} and
  7812. \key{Apply}. We transform a \key{Lambda} expression into an expression
  7813. that creates a closure, that is, a vector whose first element is a
  7814. function pointer and the rest of the elements are the free variables
  7815. of the \key{Lambda}. We use the struct \code{Closure} here instead of
  7816. using \code{vector} so that we can distinguish closures from vectors
  7817. in Section~\ref{sec:optimize-closures} and to record the arity. In
  7818. the generated code below, the \itm{name} is a unique symbol generated
  7819. to identify the function and the \itm{arity} is the number of
  7820. parameters (the length of \itm{ps}).
  7821. \begin{lstlisting}
  7822. (Lambda |\itm{ps}| |\itm{rt}| |\itm{body}|)
  7823. |$\Rightarrow$|
  7824. (Closure |\itm{arity}| (cons (FunRef |\itm{name}|) |\itm{fvs}|))
  7825. \end{lstlisting}
  7826. In addition to transforming each \key{Lambda} into a \key{Closure}, we
  7827. create a top-level function definition for each \key{Lambda}, as
  7828. shown below.\\
  7829. \begin{minipage}{0.8\textwidth}
  7830. \begin{lstlisting}
  7831. (Def |\itm{name}| ([clos : (Vector _ |\itm{fvts}| ...)] |\itm{ps'}| ...) |\itm{rt'}|
  7832. (Let |$\itm{fvs}_1$| (Prim 'vector-ref (list (Var clos) (Int 1)))
  7833. ...
  7834. (Let |$\itm{fvs}_n$| (Prim 'vector-ref (list (Var clos) (Int |$n$|)))
  7835. |\itm{body'}|)...))
  7836. \end{lstlisting}
  7837. \end{minipage}\\
  7838. The \code{clos} parameter refers to the closure. Translate the type
  7839. annotations in \itm{ps} and the return type \itm{rt}, as discussed in
  7840. the next paragraph, to obtain \itm{ps'} and \itm{rt'}. The types
  7841. $\itm{fvts}$ are the types of the free variables in the lambda and the
  7842. underscore \code{\_} is a dummy type that we use because it is rather
  7843. difficult to give a type to the function in the closure's
  7844. type.\footnote{To give an accurate type to a closure, we would need to
  7845. add existential types to the type checker~\citep{Minamide:1996ys}.}
  7846. The dummy type is considered to be equal to any other type during type
  7847. checking. The sequence of \key{Let} forms bind the free variables to
  7848. their values obtained from the closure.
  7849. Closure conversion turns functions into vectors, so the type
  7850. annotations in the program must also be translated. We recommend
  7851. defining a auxiliary recursive function for this purpose. Function
  7852. types should be translated as follows.
  7853. \begin{lstlisting}
  7854. (|$T_1, \ldots, T_n$| -> |$T_r$|)
  7855. |$\Rightarrow$|
  7856. (Vector ((Vector _) |$T'_1, \ldots, T'_n$| -> |$T'_r$|))
  7857. \end{lstlisting}
  7858. The above type says that the first thing in the vector is a function
  7859. pointer. The first parameter of the function pointer is a vector (a
  7860. closure) and the rest of the parameters are the ones from the original
  7861. function, with types $T'_1, \ldots, T'_n$. The \code{Vector} type for
  7862. the closure omits the types of the free variables because 1) those
  7863. types are not available in this context and 2) we do not need them in
  7864. the code that is generated for function application.
  7865. We transform function application into code that retrieves the
  7866. function pointer from the closure and then calls the function, passing
  7867. in the closure as the first argument. We bind $e'$ to a temporary
  7868. variable to avoid code duplication.
  7869. \begin{lstlisting}
  7870. (Apply |$e$| |\itm{es}|)
  7871. |$\Rightarrow$|
  7872. (Let |\itm{tmp}| |$e'$|
  7873. (Apply (Prim 'vector-ref (list (Var |\itm{tmp}|) (Int 0))) (cons |\itm{tmp}| |\itm{es'}|)))
  7874. \end{lstlisting}
  7875. There is also the question of what to do with references top-level
  7876. function definitions. To maintain a uniform translation of function
  7877. application, we turn function references into closures.
  7878. \begin{tabular}{lll}
  7879. \begin{minipage}{0.3\textwidth}
  7880. \begin{lstlisting}
  7881. (FunRefArity |$f$| |$n$|)
  7882. \end{lstlisting}
  7883. \end{minipage}
  7884. &
  7885. $\Rightarrow$
  7886. &
  7887. \begin{minipage}{0.5\textwidth}
  7888. \begin{lstlisting}
  7889. (Closure |$n$| (FunRef |$f$|) '())
  7890. \end{lstlisting}
  7891. \end{minipage}
  7892. \end{tabular} \\
  7893. %
  7894. The top-level function definitions need to be updated as well to take
  7895. an extra closure parameter.
  7896. \section{An Example Translation}
  7897. \label{sec:example-lambda}
  7898. Figure~\ref{fig:lexical-functions-example} shows the result of
  7899. \code{reveal-functions} and \code{convert-to-closures} for the example
  7900. program demonstrating lexical scoping that we discussed at the
  7901. beginning of this chapter.
  7902. \begin{figure}[tbp]
  7903. \begin{minipage}{0.8\textwidth}
  7904. % tests/lambda_test_6.rkt
  7905. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  7906. (define (f6 [x7 : Integer]) : (Integer -> Integer)
  7907. (let ([y8 4])
  7908. (lambda: ([z9 : Integer]) : Integer
  7909. (+ x7 (+ y8 z9)))))
  7910. (define (main) : Integer
  7911. (let ([g0 ((fun-ref-arity f6 1) 5)])
  7912. (let ([h1 ((fun-ref-arity f6 1) 3)])
  7913. (+ (g0 11) (h1 15)))))
  7914. \end{lstlisting}
  7915. $\Rightarrow$
  7916. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  7917. (define (f6 [fvs4 : _] [x7 : Integer]) : (Vector ((Vector _) Integer -> Integer))
  7918. (let ([y8 4])
  7919. (closure 1 (list (fun-ref lambda2) x7 y8))))
  7920. (define (lambda2 [fvs3 : (Vector _ Integer Integer)] [z9 : Integer]) : Integer
  7921. (let ([x7 (vector-ref fvs3 1)])
  7922. (let ([y8 (vector-ref fvs3 2)])
  7923. (+ x7 (+ y8 z9)))))
  7924. (define (main) : Integer
  7925. (let ([g0 (let ([clos5 (closure 1 (list (fun-ref f6)))])
  7926. ((vector-ref clos5 0) clos5 5))])
  7927. (let ([h1 (let ([clos6 (closure 1 (list (fun-ref f6)))])
  7928. ((vector-ref clos6 0) clos6 3))])
  7929. (+ ((vector-ref g0 0) g0 11) ((vector-ref h1 0) h1 15)))))
  7930. \end{lstlisting}
  7931. \end{minipage}
  7932. \caption{Example of closure conversion.}
  7933. \label{fig:lexical-functions-example}
  7934. \end{figure}
  7935. \begin{exercise}\normalfont
  7936. Expand your compiler to handle $R_5$ as outlined in this chapter.
  7937. Create 5 new programs that use \key{lambda} functions and make use of
  7938. lexical scoping. Test your compiler on these new programs and all of
  7939. your previously created test programs.
  7940. \end{exercise}
  7941. \section{Expose Allocation}
  7942. \label{sec:expose-allocation-r5}
  7943. Compile the $\CLOSURE{\itm{arity}}{\LP\Exp\ldots\RP}$ form into code
  7944. that allocates and initializes a vector, similar to the translation of
  7945. the \code{vector} operator in Section~\ref{sec:expose-allocation}.
  7946. The only difference is replacing the use of
  7947. \ALLOC{\itm{len}}{\itm{type}} with
  7948. \ALLOCCLOS{\itm{len}}{\itm{type}}{\itm{arity}}.
  7949. \section{Explicate Control and $C_4$}
  7950. \label{sec:explicate-r5}
  7951. The output language of \code{explicate-control} is $C_4$ whose
  7952. abstract syntax is defined in Figure~\ref{fig:c4-syntax}. The only
  7953. difference with respect to $C_3$ is the addition of the
  7954. \code{AllocateClosure} form to the grammar for $\Exp$. The handling
  7955. of \code{AllocateClosure} in the \code{explicate-control} pass is
  7956. similar to the handling of other expressions such as primitive
  7957. operators.
  7958. \begin{figure}[tp]
  7959. \fbox{
  7960. \begin{minipage}{0.96\textwidth}
  7961. \small
  7962. \[
  7963. \begin{array}{lcl}
  7964. \Exp &::= & \ldots
  7965. \mid \ALLOCCLOS{\Int}{\Type}{\Int} \\
  7966. \Stmt &::=& \gray{ \ASSIGN{\VAR{\Var}}{\Exp}
  7967. \mid \LP\key{Collect} \,\itm{int}\RP } \\
  7968. \Tail &::= & \gray{ \RETURN{\Exp} \mid \SEQ{\Stmt}{\Tail}
  7969. \mid \GOTO{\itm{label}} } \\
  7970. &\mid& \gray{ \IFSTMT{\BINOP{\itm{cmp}}{\Atm}{\Atm}}{\GOTO{\itm{label}}}{\GOTO{\itm{label}}} }\\
  7971. &\mid& \gray{ \TAILCALL{\Atm}{\Atm\ldots} } \\
  7972. \Def &::=& \gray{ \DEF{\itm{label}}{\LP[\Var\key{:}\Type]\ldots\RP}{\Type}{\itm{info}}{\LP\LP\itm{label}\,\key{.}\,\Tail\RP\ldots\RP} }\\
  7973. C_4 & ::= & \gray{ \PROGRAMDEFS{\itm{info}}{\LP\Def\ldots\RP} }
  7974. \end{array}
  7975. \]
  7976. \end{minipage}
  7977. }
  7978. \caption{The abstract syntax of $C_4$, extending $C_3$ (Figure~\ref{fig:c3-syntax}).}
  7979. \label{fig:c4-syntax}
  7980. \end{figure}
  7981. \section{Select Instructions}
  7982. \label{sec:select-instructions-R5}
  7983. Compile \ALLOCCLOS{\itm{len}}{\itm{type}}{\itm{arity}} in almost the
  7984. same way as the \ALLOC{\itm{len}}{\itm{type}} form
  7985. (Section~\ref{sec:select-instructions-gc}). The only difference is
  7986. that you should place the \itm{arity} in the tag that is stored at
  7987. position $0$ of the vector. Recall that in
  7988. Section~\ref{sec:select-instructions-gc} we used the first $56$ bits
  7989. of the 64-bit tag, but that the rest were unused. So the arity goes
  7990. into the tag in bit positions $57$ through $63$.
  7991. Compile the \code{procedure-arity} operator into a sequence of
  7992. instructions that access the tag from position $0$ of the vector and
  7993. shift it by $57$ bits to the right.
  7994. \begin{figure}[p]
  7995. \begin{tikzpicture}[baseline=(current bounding box.center)]
  7996. \node (R4) at (0,2) {\large $R_4$};
  7997. \node (R4-2) at (3,2) {\large $R_4$};
  7998. \node (R4-3) at (6,2) {\large $R_4$};
  7999. \node (F1-1) at (12,0) {\large $F_1$};
  8000. \node (F1-2) at (9,0) {\large $F_1$};
  8001. \node (F1-3) at (6,0) {\large $F_1$};
  8002. \node (F1-4) at (3,0) {\large $F_1$};
  8003. \node (F1-5) at (0,0) {\large $F_1$};
  8004. \node (C3-2) at (3,-2) {\large $C_3$};
  8005. \node (x86-2) at (3,-4) {\large $\text{x86}^{*}_3$};
  8006. \node (x86-3) at (6,-4) {\large $\text{x86}^{*}_3$};
  8007. \node (x86-4) at (9,-4) {\large $\text{x86}^{*}_3$};
  8008. \node (x86-5) at (9,-6) {\large $\text{x86}^{\dagger}_3$};
  8009. \node (x86-2-1) at (3,-6) {\large $\text{x86}^{*}_3$};
  8010. \node (x86-2-2) at (6,-6) {\large $\text{x86}^{*}_3$};
  8011. \path[->,bend left=15] (R4) edge [above] node
  8012. {\ttfamily\footnotesize shrink} (R4-2);
  8013. \path[->,bend left=15] (R4-2) edge [above] node
  8014. {\ttfamily\footnotesize uniquify} (R4-3);
  8015. \path[->,bend left=15] (R4-3) edge [right] node
  8016. {\ttfamily\footnotesize reveal-functions} (F1-1);
  8017. \path[->,bend left=15] (F1-1) edge [below] node
  8018. {\ttfamily\footnotesize convert-to-clos.} (F1-2);
  8019. \path[->,bend right=15] (F1-2) edge [above] node
  8020. {\ttfamily\footnotesize limit-fun.} (F1-3);
  8021. \path[->,bend right=15] (F1-3) edge [above] node
  8022. {\ttfamily\footnotesize expose-alloc.} (F1-4);
  8023. \path[->,bend right=15] (F1-4) edge [above] node
  8024. {\ttfamily\footnotesize remove-complex.} (F1-5);
  8025. \path[->,bend right=15] (F1-5) edge [right] node
  8026. {\ttfamily\footnotesize explicate-control} (C3-2);
  8027. \path[->,bend left=15] (C3-2) edge [left] node
  8028. {\ttfamily\footnotesize select-instr.} (x86-2);
  8029. \path[->,bend right=15] (x86-2) edge [left] node
  8030. {\ttfamily\footnotesize uncover-live} (x86-2-1);
  8031. \path[->,bend right=15] (x86-2-1) edge [below] node
  8032. {\ttfamily\footnotesize build-inter.} (x86-2-2);
  8033. \path[->,bend right=15] (x86-2-2) edge [left] node
  8034. {\ttfamily\footnotesize allocate-reg.} (x86-3);
  8035. \path[->,bend left=15] (x86-3) edge [above] node
  8036. {\ttfamily\footnotesize patch-instr.} (x86-4);
  8037. \path[->,bend left=15] (x86-4) edge [right] node
  8038. {\ttfamily\footnotesize print-x86} (x86-5);
  8039. \end{tikzpicture}
  8040. \caption{Diagram of the passes for $R_5$, a language with lexically-scoped
  8041. functions.}
  8042. \label{fig:R5-passes}
  8043. \end{figure}
  8044. Figure~\ref{fig:R5-passes} provides an overview of all the passes needed
  8045. for the compilation of $R_5$.
  8046. \clearpage
  8047. \section{Challenge: Optimize Closures}
  8048. \label{sec:optimize-closures}
  8049. In this chapter we compiled lexically-scoped functions into a
  8050. relatively efficient representation: flat closures. However, even this
  8051. representation comes with some overhead. For example, consider the
  8052. following program with a function \code{tail-sum} that does not have
  8053. any free variables and where all the uses of \code{tail-sum} are in
  8054. applications where we know that only \code{tail-sum} is being applied
  8055. (and not any other functions).
  8056. \begin{center}
  8057. \begin{minipage}{0.95\textwidth}
  8058. \begin{lstlisting}
  8059. (define (tail-sum [n : Integer] [r : Integer]) : Integer
  8060. (if (eq? n 0)
  8061. r
  8062. (tail-sum (- n 1) (+ n r))))
  8063. (+ (tail-sum 5 0) 27)
  8064. \end{lstlisting}
  8065. \end{minipage}
  8066. \end{center}
  8067. As described in this chapter, we uniformly apply closure conversion to
  8068. all functions, obtaining the following output for this program.
  8069. \begin{center}
  8070. \begin{minipage}{0.95\textwidth}
  8071. \begin{lstlisting}
  8072. (define (tail_sum1 [fvs5 : _] [n2 : Integer] [r3 : Integer]) : Integer
  8073. (if (eq? n2 0)
  8074. r3
  8075. (let ([clos4 (closure (list (fun-ref tail_sum1)))])
  8076. ((vector-ref clos4 0) clos4 (+ n2 -1) (+ n2 r3)))))
  8077. (define (main) : Integer
  8078. (+ (let ([clos6 (closure (list (fun-ref tail_sum1)))])
  8079. ((vector-ref clos6 0) clos6 5 0)) 27))
  8080. \end{lstlisting}
  8081. \end{minipage}
  8082. \end{center}
  8083. In the previous Chapter, there would be no allocation in the program
  8084. and the calls to \code{tail-sum} would be direct calls. In contrast,
  8085. the above program allocates memory for each \code{closure} and the
  8086. calls to \code{tail-sum} are indirect. These two differences incur
  8087. considerable overhead in a program such as this one, where the
  8088. allocations and indirect calls occur inside a tight loop.
  8089. One might think that this problem is trivial to solve: can't we just
  8090. recognize calls of the form \code{((fun-ref $f$) $e_1 \ldots e_n$)}
  8091. and compile them to direct calls \code{((fun-ref $f$) $e'_1 \ldots
  8092. e'_n$)} instead of treating it like a call to a closure? We would
  8093. also drop the \code{fvs5} parameter of \code{tail\_sum1}.
  8094. %
  8095. However, this problem is not so trivial because a global function may
  8096. ``escape'' and become involved in applications that also involve
  8097. closures. Consider the following example in which the application
  8098. \code{(f 41)} needs to be compiled into a closure application, because
  8099. the \code{lambda} may get bound to \code{f}, but the \code{add1}
  8100. function might also get bound to \code{f}.
  8101. \begin{lstlisting}
  8102. (define (add1 [x : Integer]) : Integer
  8103. (+ x 1))
  8104. (let ([y (read)])
  8105. (let ([f (if (eq? (read) 0)
  8106. add1
  8107. (lambda: ([x : Integer]) : Integer (- x y)))])
  8108. (f 41)))
  8109. \end{lstlisting}
  8110. If a global function name is used in any way other than as the
  8111. operator in a direct call, then we say that the function
  8112. \emph{escapes}. If a global function does not escape, then we do not
  8113. need to perform closure conversion on the function.
  8114. \begin{exercise}\normalfont
  8115. Implement an auxiliary function for detecting which global
  8116. functions escape. Using that function, implement an improved version
  8117. of closure conversion that does not apply closure conversion to
  8118. global functions that do not escape but instead compiles them as
  8119. regular functions. Create several new test cases that check whether
  8120. you properly detect whether global functions escape or not.
  8121. \end{exercise}
  8122. So far we have reduced the overhead of calling global functions, but
  8123. it would also be nice to reduce the overhead of calling a
  8124. \code{lambda} when we can determine at compile time which
  8125. \code{lambda} will be called. We refer to such calls as \emph{known
  8126. calls}. Consider the following example in which a \code{lambda} is
  8127. bound to \code{f} and then applied.
  8128. \begin{lstlisting}
  8129. (let ([y (read)])
  8130. (let ([f (lambda: ([x : Integer]) : Integer
  8131. (+ x y))])
  8132. (f 21)))
  8133. \end{lstlisting}
  8134. Closure conversion compiles \code{(f 21)} into an indirect call:
  8135. \begin{lstlisting}
  8136. (define (lambda5 [fvs6 : (Vector _ Integer)] [x3 : Integer]) : Integer
  8137. (let ([y2 (vector-ref fvs6 1)])
  8138. (+ x3 y2)))
  8139. (define (main) : Integer
  8140. (let ([y2 (read)])
  8141. (let ([f4 (Closure 1 (list (fun-ref lambda5) y2))])
  8142. ((vector-ref f4 0) f4 21))))
  8143. \end{lstlisting}
  8144. but we can instead compile the application \code{(f 21)} into a direct call
  8145. to \code{lambda5}:
  8146. \begin{lstlisting}
  8147. (define (main) : Integer
  8148. (let ([y2 (read)])
  8149. (let ([f4 (Closure 1 (list (fun-ref lambda5) y2))])
  8150. ((fun-ref lambda5) f4 21))))
  8151. \end{lstlisting}
  8152. The problem of determining which lambda will be called from a
  8153. particular application is quite challenging in general and the topic
  8154. of considerable research~\citep{Shivers:1988aa,Gilray:2016aa}. For the
  8155. following exercise we recommend that you compile an application to a
  8156. direct call when the operator is a variable and the variable is
  8157. \code{let}-bound to a closure. This can be accomplished by maintaining
  8158. an environment mapping \code{let}-bound variables to function names.
  8159. Extend the environment whenever you encounter a closure on the
  8160. right-hand side of a \code{let}, mapping the \code{let}-bound variable
  8161. to the name of the global function for the closure. This pass should
  8162. come after closure conversion.
  8163. \begin{exercise}\normalfont
  8164. Implement a compiler pass, named \code{optimize-known-calls}, that
  8165. compiles known calls into direct calls. Verify that your compiler is
  8166. successful in this regard on several example programs.
  8167. \end{exercise}
  8168. These exercises only scratches the surface of optimizing of
  8169. closures. A good next step for the interested reader is to look at the
  8170. work of \citet{Keep:2012ab}.
  8171. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  8172. \chapter{Dynamic Typing}
  8173. \label{ch:type-dynamic}
  8174. \index{dynamic typing}
  8175. In this chapter we discuss the compilation of $R_7$, a dynamically
  8176. typed language that is a subset of Racket. This is in contrast to the
  8177. previous chapters, which have studied the compilation of Typed
  8178. Racket. In dynamically typed languages such as $R_7$, a given
  8179. expression may produce a value of a different type each time it is
  8180. executed. Consider the following example with a conditional \code{if}
  8181. expression that may return a Boolean or an integer depending on the
  8182. input to the program.
  8183. % part of dynamic_test_25.rkt
  8184. \begin{lstlisting}
  8185. (not (if (eq? (read) 1) #f 0))
  8186. \end{lstlisting}
  8187. Languages that allow expressions to produce different kinds of values
  8188. are called \emph{polymorphic}, a word composed of the Greek roots
  8189. ``poly'', meaning ``many'', and ``morph'', meaning ``shape''. There
  8190. are several kinds of polymorphism in programming languages, such as
  8191. subtype polymorphism and parametric
  8192. polymorphism~\citep{Cardelli:1985kx}. The kind of polymorphism we
  8193. study in this chapter does not have a special name but it is the kind
  8194. that arises in dynamically typed languages.
  8195. Another characteristic of dynamically typed languages is that
  8196. primitive operations, such as \code{not}, are often defined to operate
  8197. on many different types of values. In fact, in Racket, the \code{not}
  8198. operator produces a result for any kind of value: given \code{\#f} it
  8199. returns \code{\#t} and given anything else it returns \code{\#f}.
  8200. Furthermore, even when primitive operations restrict their inputs to
  8201. values of a certain type, this restriction is enforced at runtime
  8202. instead of during compilation. For example, the following vector
  8203. reference results in a run-time contract violation because the index
  8204. must be in integer, not a Boolean such as \code{\#t}.
  8205. \begin{lstlisting}
  8206. (vector-ref (vector 42) #t)
  8207. \end{lstlisting}
  8208. \begin{figure}[tp]
  8209. \centering
  8210. \fbox{
  8211. \begin{minipage}{0.97\textwidth}
  8212. \[
  8213. \begin{array}{rcl}
  8214. \itm{cmp} &::= & \key{eq?} \mid \key{<} \mid \key{<=} \mid \key{>} \mid \key{>=} \\
  8215. \Exp &::=& \Int \mid \CREAD{} \mid \CNEG{\Exp}
  8216. \mid \CADD{\Exp}{\Exp} \mid \CSUB{\Exp}{\Exp} \\
  8217. &\mid& \Var \mid \CLET{\Var}{\Exp}{\Exp} \\
  8218. &\mid& \key{\#t} \mid \key{\#f}
  8219. \mid \CBINOP{\key{and}}{\Exp}{\Exp}
  8220. \mid \CBINOP{\key{or}}{\Exp}{\Exp}
  8221. \mid \CUNIOP{\key{not}}{\Exp} \\
  8222. &\mid& \LP\itm{cmp}\;\Exp\;\Exp\RP \mid \CIF{\Exp}{\Exp}{\Exp} \\
  8223. &\mid& \LP\key{vector}\;\Exp\ldots\RP \mid
  8224. \LP\key{vector-ref}\;\Exp\;\Exp\RP \\
  8225. &\mid& \LP\key{vector-set!}\;\Exp\;\Exp\;\Exp\RP \mid \LP\key{void}\RP \\
  8226. &\mid& \LP\Exp \; \Exp\ldots\RP
  8227. \mid \LP\key{lambda}\;\LP\Var\ldots\RP\;\Exp\RP \\
  8228. & \mid & \LP\key{boolean?}\;\Exp\RP \mid \LP\key{integer?}\;\Exp\RP\\
  8229. & \mid & \LP\key{vector?}\;\Exp\RP \mid \LP\key{procedure?}\;\Exp\RP \mid \LP\key{void?}\;\Exp\RP \\
  8230. \Def &::=& \LP\key{define}\; \LP\Var \; \Var\ldots\RP \; \Exp\RP \\
  8231. R_7 &::=& \Def\ldots\; \Exp
  8232. \end{array}
  8233. \]
  8234. \end{minipage}
  8235. }
  8236. \caption{Syntax of $R_7$, an untyped language (a subset of Racket).}
  8237. \label{fig:r7-concrete-syntax}
  8238. \end{figure}
  8239. \begin{figure}[tp]
  8240. \centering
  8241. \fbox{
  8242. \begin{minipage}{0.96\textwidth}
  8243. \small
  8244. \[
  8245. \begin{array}{lcl}
  8246. \Exp &::=& \INT{\Int} \mid \VAR{\Var} \mid \LET{\Var}{\Exp}{\Exp} \\
  8247. &\mid& \PRIM{\itm{op}}{\Exp\ldots} \\
  8248. &\mid& \BOOL{\itm{bool}}
  8249. \mid \IF{\Exp}{\Exp}{\Exp} \\
  8250. &\mid& \VOID{} \mid \APPLY{\Exp}{\Exp\ldots} \\
  8251. &\mid& \LAMBDA{\LP\Var\ldots\RP}{\code{'Any}}{\Exp}\\
  8252. \Def &::=& \FUNDEF{\Var}{\LP\Var\ldots\RP}{\code{'Any}}{\code{'()}}{\Exp} \\
  8253. R_7 &::=& \PROGRAMDEFSEXP{\code{'()}}{\LP\Def\ldots\RP}{\Exp}
  8254. \end{array}
  8255. \]
  8256. \end{minipage}
  8257. }
  8258. \caption{The abstract syntax of $R_7$.}
  8259. \label{fig:r7-syntax}
  8260. \end{figure}
  8261. The concrete and abstract syntax of $R_7$, our subset of Racket, is
  8262. defined in Figures~\ref{fig:r7-concrete-syntax} and
  8263. \ref{fig:r7-syntax}.
  8264. %
  8265. There is no type checker for $R_7$ because it is not a statically
  8266. typed language (it's dynamically typed!).
  8267. The definitional interpreter for $R_7$ is presented in
  8268. Figure~\ref{fig:interp-R7} and its auxiliary functions are defined in
  8269. Figure~\ref{fig:interp-R7-aux}. Consider the match clause for
  8270. \code{(Int n)}. Instead of simply returning the integer \code{n} (as
  8271. in the interpreter for $R_1$ in Figure~\ref{fig:interp-R1}), the
  8272. interpreter for $R_7$ creates a \emph{tagged value}\index{tagged
  8273. value} that combines an underlying value with a tag that identifies
  8274. what kind of value it is. We define the following struct
  8275. to represented tagged values.
  8276. \begin{lstlisting}
  8277. (struct Tagged (value tag) #:transparent)
  8278. \end{lstlisting}
  8279. The tags are \code{Integer}, \code{Boolean}, \code{Void},
  8280. \code{Vector}, and \code{Procedure}. Tags are closely related to types
  8281. but don't always capture all the information that a type does. For
  8282. example, a vector of type \code{(Vector Any Any)} is tagged with
  8283. \code{Vector} and a procedure of type \code{(Any Any -> Any)}
  8284. is tagged with \code{Procedure}.
  8285. Next consider the match clause for \code{vector-ref}. The
  8286. \code{check-tag} auxiliary function (Figure~\ref{fig:interp-R7-aux})
  8287. is used to ensure that the first argument is a vector and the second
  8288. is an integer. If they are not, a \code{trapped-error} is raised.
  8289. Recall from Section~\ref{sec:interp-R0} that when a definition
  8290. interpreter raises a \code{trapped-error} error, the compiled code
  8291. must also signal an error by exiting with return code \code{255}. A
  8292. \code{trapped-error} is also raised if the index is not less than
  8293. length of the vector.
  8294. \begin{figure}[tbp]
  8295. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  8296. (define ((interp-R7-exp env) ast)
  8297. (define recur (interp-R7-exp env))
  8298. (match ast
  8299. [(Var x) (lookup x env)]
  8300. [(Int n) (Tagged n 'Integer)]
  8301. [(Bool b) (Tagged b 'Boolean)]
  8302. [(Lambda xs rt body)
  8303. (Tagged `(function ,xs ,body ,env) 'Procedure)]
  8304. [(Prim 'vector es)
  8305. (Tagged (apply vector (for/list ([e es]) (recur e))) 'Vector)]
  8306. [(Prim 'vector-ref (list e1 e2))
  8307. (define vec (recur e1)) (define i (recur e2))
  8308. (check-tag vec 'Vector ast) (check-tag i 'Integer ast)
  8309. (unless (< (Tagged-value i) (vector-length (Tagged-value vec)))
  8310. (error 'trapped-error "index ~a too big\nin ~v" (Tagged-value i) ast))
  8311. (vector-ref (Tagged-value vec) (Tagged-value i))]
  8312. [(Prim 'vector-set! (list e1 e2 e3))
  8313. (define vec (recur e1)) (define i (recur e2)) (define arg (recur e3))
  8314. (check-tag vec 'Vector ast) (check-tag i 'Integer ast)
  8315. (unless (< (Tagged-value i) (vector-length (Tagged-value vec)))
  8316. (error 'trapped-error "index ~a too big\nin ~v" (Tagged-value i) ast))
  8317. (vector-set! (Tagged-value vec) (Tagged-value i) arg)
  8318. (Tagged (void) 'Void)]
  8319. [(Let x e body) ((interp-R7-exp (cons (cons x (recur e)) env)) body)]
  8320. [(Prim 'and (list e1 e2)) (recur (If e1 e2 (Bool #f)))]
  8321. [(Prim 'or (list e1 e2))
  8322. (define v1 (recur e1))
  8323. (match (Tagged-value v1) [#f (recur e2)] [else v1])]
  8324. [(Prim 'eq? (list l r)) (Tagged (equal? (recur l) (recur r)) 'Boolean)]
  8325. [(Prim op (list e1))
  8326. #:when (set-member? type-predicates op)
  8327. (tag-value ((interp-op op) (Tagged-value (recur e1))))]
  8328. [(Prim op es)
  8329. (define args (map recur es))
  8330. (define tags (for/list ([arg args]) (Tagged-tag arg)))
  8331. (unless (for/or ([expected-tags (op-tags op)])
  8332. (equal? expected-tags tags))
  8333. (error 'trapped-error "illegal argument tags ~a\nin ~v" tags ast))
  8334. (tag-value
  8335. (apply (interp-op op) (for/list ([a args]) (Tagged-value a))))]
  8336. [(If q t f)
  8337. (match (Tagged-value (recur q)) [#f (recur f)] [else (recur t)])]
  8338. [(Apply f es)
  8339. (define new-f (recur f)) (define args (map recur es))
  8340. (check-tag new-f 'Procedure ast) (define f-val (Tagged-value new-f))
  8341. (match f-val
  8342. [`(function ,xs ,body ,lam-env)
  8343. (unless (eq? (length xs) (length args))
  8344. (error 'trapped-error "~a != ~a\nin ~v" (length args) (length xs) ast))
  8345. (define new-env (append (map cons xs args) lam-env))
  8346. ((interp-R7-exp new-env) body)]
  8347. [else (error "interp-R7-exp, expected function, not" f-val)])]))
  8348. \end{lstlisting}
  8349. \caption{Interpreter for the $R_7$ language.}
  8350. \label{fig:interp-R7}
  8351. \end{figure}
  8352. \begin{figure}[tbp]
  8353. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  8354. (define (interp-op op)
  8355. (match op
  8356. ['+ fx+]
  8357. ['- fx-]
  8358. ['read read-fixnum]
  8359. ['not (lambda (v) (match v [#t #f] [#f #t]))]
  8360. ['< (lambda (v1 v2)
  8361. (cond [(and (fixnum? v1) (fixnum? v2)) (< v1 v2)]))]
  8362. ['<= (lambda (v1 v2)
  8363. (cond [(and (fixnum? v1) (fixnum? v2)) (<= v1 v2)]))]
  8364. ['> (lambda (v1 v2)
  8365. (cond [(and (fixnum? v1) (fixnum? v2)) (> v1 v2)]))]
  8366. ['>= (lambda (v1 v2)
  8367. (cond [(and (fixnum? v1) (fixnum? v2)) (>= v1 v2)]))]
  8368. ['boolean? boolean?]
  8369. ['integer? fixnum?]
  8370. ['void? void?]
  8371. ['vector? vector?]
  8372. ['vector-length vector-length]
  8373. ['procedure? (match-lambda
  8374. [`(functions ,xs ,body ,env) #t] [else #f])]
  8375. [else (error 'interp-op "unknown operator" op)]))
  8376. (define (op-tags op)
  8377. (match op
  8378. ['+ '((Integer Integer))]
  8379. ['- '((Integer Integer) (Integer))]
  8380. ['read '(())]
  8381. ['not '((Boolean))]
  8382. ['< '((Integer Integer))]
  8383. ['<= '((Integer Integer))]
  8384. ['> '((Integer Integer))]
  8385. ['>= '((Integer Integer))]
  8386. ['vector-length '((Vector))]))
  8387. (define type-predicates
  8388. (set 'boolean? 'integer? 'vector? 'procedure? 'void?))
  8389. (define (tag-value v)
  8390. (cond [(boolean? v) (Tagged v 'Boolean)]
  8391. [(fixnum? v) (Tagged v 'Integer)]
  8392. [(procedure? v) (Tagged v 'Procedure)]
  8393. [(vector? v) (Tagged v 'Vector)]
  8394. [(void? v) (Tagged v 'Void)]
  8395. [else (error 'tag-value "unidentified value ~a" v)]))
  8396. (define (check-tag val expected ast)
  8397. (define tag (Tagged-tag val))
  8398. (unless (eq? tag expected)
  8399. (error 'trapped-error "expected ~a, not ~a\nin ~v" expected tag ast)))
  8400. \end{lstlisting}
  8401. \caption{Auxiliary functions for the $R_7$ interpreter.}
  8402. \label{fig:interp-R7-aux}
  8403. \end{figure}
  8404. \clearpage
  8405. \section{Representation of Tagged Values}
  8406. The interpreter for $R_7$ introduced a new kind of value, a tagged
  8407. value. To compile $R_7$ to x86 we must decide how to represent tagged
  8408. values at the bit level. Because almost every operation in $R_7$
  8409. involves manipulating tagged values, the representation must be
  8410. efficient. Recall that all of our values are 64 bits. We shall steal
  8411. the 3 right-most bits to encode the tag. We use $001$ to identify
  8412. integers, $100$ for Booleans, $010$ for vectors, $011$ for procedures,
  8413. and $101$ for the void value. We define the following auxiliary
  8414. function for mapping types to tag codes.
  8415. \begin{align*}
  8416. \itm{tagof}(\key{Integer}) &= 001 \\
  8417. \itm{tagof}(\key{Boolean}) &= 100 \\
  8418. \itm{tagof}((\key{Vector} \ldots)) &= 010 \\
  8419. \itm{tagof}((\ldots \key{->} \ldots)) &= 011 \\
  8420. \itm{tagof}(\key{Void}) &= 101
  8421. \end{align*}
  8422. This stealing of 3 bits comes at some price: our integers are reduced
  8423. to ranging from $-2^{60}$ to $2^{60}$. The stealing does not adversely
  8424. affect vectors and procedures because those values are addresses, and
  8425. our addresses are 8-byte aligned so the rightmost 3 bits are unused,
  8426. they are always $000$. Thus, we do not lose information by overwriting
  8427. the rightmost 3 bits with the tag and we can simply zero-out the tag
  8428. to recover the original address.
  8429. To make tagged values into first-class entities, we can give them a
  8430. type, called \code{Any}, and define operations such as \code{Inject}
  8431. and \code{Project} for creating and using them, yielding the $R_6$
  8432. intermediate language. We describe how to compile $R_7$ to $R_6$ in
  8433. Section~\ref{sec:compile-r7} but first we describe the $R_6$ language
  8434. in greater detail.
  8435. \section{The $R_6$ Language}
  8436. \label{sec:r6-lang}
  8437. \begin{figure}[tp]
  8438. \centering
  8439. \fbox{
  8440. \begin{minipage}{0.96\textwidth}
  8441. \small
  8442. \[
  8443. \begin{array}{lcl}
  8444. \Type &::= & \ldots \mid \key{Any} \\
  8445. \itm{op} &::= & \ldots \mid \code{any-vector-length}
  8446. \mid \code{any-vector-ref} \mid \code{any-vector-set!}\\
  8447. &\mid& \code{boolean?} \mid \code{integer?} \mid \code{vector?}
  8448. \mid \code{procedure?} \mid \code{void?} \\
  8449. \Exp &::=& \ldots
  8450. \mid \gray{ \PRIM{\itm{op}}{\Exp\ldots} } \\
  8451. &\mid& \INJECT{\Exp}{\FType} \mid \PROJECT{\Exp}{\FType} \\
  8452. \Def &::=& \gray{ \FUNDEF{\Var}{\LP[\Var \code{:} \Type]\ldots\RP}{\Type}{\code{'()}}{\Exp} }\\
  8453. R_6 &::=& \gray{ \PROGRAMDEFSEXP{\code{'()}}{\LP\Def\ldots\RP}{\Exp} }
  8454. \end{array}
  8455. \]
  8456. \end{minipage}
  8457. }
  8458. \caption{The abstract syntax of $R_6$, extending $R_5$ (Figure~\ref{fig:r5-syntax}).}
  8459. \label{fig:r6-syntax}
  8460. \end{figure}
  8461. The abstract syntax of $R_6$ is defined in Figure~\ref{fig:r6-syntax}.
  8462. (The concrete syntax of $R_6$ is in the Appendix,
  8463. Figure~\ref{fig:r6-concrete-syntax}.) The $\INJECT{e}{T}$ form
  8464. converts the value produced by expression $e$ of type $T$ into a
  8465. tagged value. The $\PROJECT{e}{T}$ form converts the tagged value
  8466. produced by expression $e$ into a value of type $T$ or else halts the
  8467. program if the type tag is not equivalent to $T$.
  8468. %
  8469. Note that in both \code{Inject} and \code{Project}, the type $T$ is
  8470. restricted to a flat type $\FType$, which simplifies the
  8471. implementation and corresponds with what is needed for compiling $R_7$.
  8472. The \code{any-vector} operators adapt the vector operations so that
  8473. they can be applied to a value of type \code{Any}. They also
  8474. generalize the vector operations in that the index is not restricted
  8475. to be a literal integer in the grammar but is allowed to be any
  8476. expression.
  8477. The type predicates such as \key{boolean?} expect their argument to
  8478. produce a tagged value; they return \key{\#t} if the tag corresponds
  8479. to the predicate and they return \key{\#f} otherwise.
  8480. The type checker for $R_6$ is shown in
  8481. Figures~\ref{fig:type-check-R6-part-1} and
  8482. \ref{fig:type-check-R6-part-2} and uses the auxiliary functions in
  8483. Figure~\ref{fig:type-check-R6-aux}.
  8484. %
  8485. The interpreter for $R_6$ is in Figure~\ref{fig:interp-R6} and the
  8486. auxiliary functions \code{apply-inject} and \code{apply-project} are
  8487. in Figure~\ref{fig:apply-project}.
  8488. \begin{figure}[btp]
  8489. \begin{lstlisting}[basicstyle=\ttfamily\small]
  8490. (define type-check-R6-class
  8491. (class type-check-R5-class
  8492. (super-new)
  8493. (inherit check-type-equal?)
  8494. (define/override (type-check-exp env)
  8495. (lambda (e)
  8496. (define recur (type-check-exp env))
  8497. (match e
  8498. [(Inject e1 ty)
  8499. (unless (flat-ty? ty)
  8500. (error 'type-check "may only inject from flat type, not ~a" ty))
  8501. (define-values (new-e1 e-ty) (recur e1))
  8502. (check-type-equal? e-ty ty e)
  8503. (values (Inject new-e1 ty) 'Any)]
  8504. [(Project e1 ty)
  8505. (unless (flat-ty? ty)
  8506. (error 'type-check "may only project to flat type, not ~a" ty))
  8507. (define-values (new-e1 e-ty) (recur e1))
  8508. (check-type-equal? e-ty 'Any e)
  8509. (values (Project new-e1 ty) ty)]
  8510. [(Prim 'any-vector-length (list e1))
  8511. (define-values (e1^ t1) (recur e1))
  8512. (check-type-equal? t1 'Any e)
  8513. (values (Prim 'any-vector-length (list e1^)) 'Integer)]
  8514. [(Prim 'any-vector-ref (list e1 e2))
  8515. (define-values (e1^ t1) (recur e1))
  8516. (define-values (e2^ t2) (recur e2))
  8517. (check-type-equal? t1 'Any e)
  8518. (check-type-equal? t2 'Integer e)
  8519. (values (Prim 'any-vector-ref (list e1^ e2^)) 'Any)]
  8520. [(Prim 'any-vector-set! (list e1 e2 e3))
  8521. (define-values (e1^ t1) (recur e1))
  8522. (define-values (e2^ t2) (recur e2))
  8523. (define-values (e3^ t3) (recur e3))
  8524. (check-type-equal? t1 'Any e)
  8525. (check-type-equal? t2 'Integer e)
  8526. (check-type-equal? t3 'Any e)
  8527. (values (Prim 'any-vector-set! (list e1^ e2^ e3^)) 'Void)]
  8528. \end{lstlisting}
  8529. \caption{Type checker for the $R_6$ language, part 1.}
  8530. \label{fig:type-check-R6-part-1}
  8531. \end{figure}
  8532. \begin{figure}[btp]
  8533. \begin{lstlisting}[basicstyle=\ttfamily\small]
  8534. [(ValueOf e ty)
  8535. (define-values (new-e e-ty) (recur e))
  8536. (values (ValueOf new-e ty) ty)]
  8537. [(Prim pred (list e1))
  8538. #:when (set-member? (type-predicates) pred)
  8539. (define-values (new-e1 e-ty) (recur e1))
  8540. (check-type-equal? e-ty 'Any e)
  8541. (values (Prim pred (list new-e1)) 'Boolean)]
  8542. [(If cnd thn els)
  8543. (define-values (cnd^ Tc) (recur cnd))
  8544. (define-values (thn^ Tt) (recur thn))
  8545. (define-values (els^ Te) (recur els))
  8546. (check-type-equal? Tc 'Boolean cnd)
  8547. (check-type-equal? Tt Te e)
  8548. (values (If cnd^ thn^ els^) (combine-types Tt Te))]
  8549. [(Exit) (values (Exit) '_)]
  8550. [(Prim 'eq? (list arg1 arg2))
  8551. (define-values (e1 t1) (recur arg1))
  8552. (define-values (e2 t2) (recur arg2))
  8553. (match* (t1 t2)
  8554. [(`(Vector ,ts1 ...) `(Vector ,ts2 ...)) (void)]
  8555. [(other wise) (check-type-equal? t1 t2 e)])
  8556. (values (Prim 'eq? (list e1 e2)) 'Boolean)]
  8557. [else ((super type-check-exp env) e)])))
  8558. ))
  8559. \end{lstlisting}
  8560. \caption{Type checker for the $R_6$ language, part 2.}
  8561. \label{fig:type-check-R6-part-2}
  8562. \end{figure}
  8563. \begin{figure}[tbp]
  8564. \begin{lstlisting}
  8565. (define/override (operator-types)
  8566. (append
  8567. '((integer? . ((Any) . Boolean))
  8568. (vector? . ((Any) . Boolean))
  8569. (procedure? . ((Any) . Boolean))
  8570. (void? . ((Any) . Boolean))
  8571. (tag-of-any . ((Any) . Integer))
  8572. (make-any . ((_ Integer) . Any))
  8573. )
  8574. (super operator-types)))
  8575. (define/public (type-predicates)
  8576. (set 'boolean? 'integer? 'vector? 'procedure? 'void?))
  8577. (define/public (combine-types t1 t2)
  8578. (match (list t1 t2)
  8579. [(list '_ t2) t2]
  8580. [(list t1 '_) t1]
  8581. [(list `(Vector ,ts1 ...)
  8582. `(Vector ,ts2 ...))
  8583. `(Vector ,@(for/list ([t1 ts1] [t2 ts2])
  8584. (combine-types t1 t2)))]
  8585. [(list `(,ts1 ... -> ,rt1)
  8586. `(,ts2 ... -> ,rt2))
  8587. `(,@(for/list ([t1 ts1] [t2 ts2])
  8588. (combine-types t1 t2))
  8589. -> ,(combine-types rt1 rt2))]
  8590. [else t1]))
  8591. (define/public (flat-ty? ty)
  8592. (match ty
  8593. [(or `Integer `Boolean '_ `Void) #t]
  8594. [`(Vector ,ts ...) (for/and ([t ts]) (eq? t 'Any))]
  8595. [`(,ts ... -> ,rt)
  8596. (and (eq? rt 'Any) (for/and ([t ts]) (eq? t 'Any)))]
  8597. [else #f]))
  8598. \end{lstlisting}
  8599. \caption{Auxiliary methods for type checking $R_6$.}
  8600. \label{fig:type-check-R6-aux}
  8601. \end{figure}
  8602. \begin{figure}[btp]
  8603. \begin{lstlisting}
  8604. (define interp-R6-class
  8605. (class interp-R5-class
  8606. (super-new)
  8607. (define/override (interp-op op)
  8608. (match op
  8609. ['boolean? (match-lambda
  8610. [`(tagged ,v1 ,tg) (equal? tg (any-tag 'Boolean))]
  8611. [else #f])]
  8612. ['integer? (match-lambda
  8613. [`(tagged ,v1 ,tg) (equal? tg (any-tag 'Integer))]
  8614. [else #f])]
  8615. ['vector? (match-lambda
  8616. [`(tagged ,v1 ,tg) (equal? tg (any-tag `(Vector Any)))]
  8617. [else #f])]
  8618. ['procedure? (match-lambda
  8619. [`(tagged ,v1 ,tg) (equal? tg (any-tag `(Any -> Any)))]
  8620. [else #f])]
  8621. ['eq? (match-lambda*
  8622. [`((tagged ,v1^ ,tg1) (tagged ,v2^ ,tg2))
  8623. (and (eq? v1^ v2^) (equal? tg1 tg2))]
  8624. [ls (apply (super interp-op op) ls)])]
  8625. ['any-vector-ref (lambda (v i)
  8626. (match v [`(tagged ,v^ ,tg) (vector-ref v^ i)]))]
  8627. ['any-vector-set! (lambda (v i a)
  8628. (match v [`(tagged ,v^ ,tg) (vector-set! v^ i a)]))]
  8629. ['any-vector-length (lambda (v)
  8630. (match v [`(tagged ,v^ ,tg) (vector-length v^)]))]
  8631. [else (super interp-op op)]))
  8632. (define/override ((interp-exp env) e)
  8633. (define recur (interp-exp env))
  8634. (match e
  8635. [(Inject e ty) `(tagged ,(recur e) ,(any-tag ty))]
  8636. [(Project e ty2) (apply-project (recur e) ty2)]
  8637. [else ((super interp-exp env) e)]))
  8638. ))
  8639. (define (interp-R6 p)
  8640. (send (new interp-R6-class) interp-program p))
  8641. \end{lstlisting}
  8642. \caption{Interpreter for $R_6$.}
  8643. \label{fig:interp-R6}
  8644. \end{figure}
  8645. \begin{figure}[tbp]
  8646. \begin{lstlisting}
  8647. (define/public (apply-inject v tg) (Tagged v tg))
  8648. (define/public (apply-project v ty2)
  8649. (define tag2 (any-tag ty2))
  8650. (match v
  8651. [(Tagged v1 tag1)
  8652. (cond
  8653. [(eq? tag1 tag2)
  8654. (match ty2
  8655. [`(Vector ,ts ...)
  8656. (define l1 ((interp-op 'vector-length) v1))
  8657. (cond
  8658. [(eq? l1 (length ts)) v1]
  8659. [else (error 'apply-project "vector length mismatch, ~a != ~a"
  8660. l1 (length ts))])]
  8661. [`(,ts ... -> ,rt)
  8662. (match v1
  8663. [`(function ,xs ,body ,env)
  8664. (cond [(eq? (length xs) (length ts)) v1]
  8665. [else
  8666. (error 'apply-project "arity mismatch ~a != ~a"
  8667. (length xs) (length ts))])]
  8668. [else (error 'apply-project "expected function not ~a" v1)])]
  8669. [else v1])]
  8670. [else (error 'apply-project "tag mismatch ~a != ~a" tag1 tag2)])]
  8671. [else (error 'apply-project "expected tagged value, not ~a" v)]))
  8672. \end{lstlisting}
  8673. \caption{Auxiliary functions for injection and projection.}
  8674. \label{fig:apply-project}
  8675. \end{figure}
  8676. \clearpage
  8677. \section{Cast Insertion: Compiling $R_7$ to $R_6$}
  8678. \label{sec:compile-r7}
  8679. The \code{cast-insert} pass compiles from $R_7$ to $R_6$.
  8680. Figure~\ref{fig:compile-r7-r6} shows the compilation of many of the
  8681. $R_7$ forms into $R_6$. An important invariant of this pass is that
  8682. given a subexpression $e$ in the $R_7$ program, the pass will produce
  8683. an expression $e'$ in $R_6$ that has type \key{Any}. For example, the
  8684. first row in Figure~\ref{fig:compile-r7-r6} shows the compilation of
  8685. the Boolean \code{\#t}, which must be injected to produce an
  8686. expression of type \key{Any}.
  8687. %
  8688. The second row of Figure~\ref{fig:compile-r7-r6}, the compilation of
  8689. addition, is representative of compilation for many primitive
  8690. operations: the arguments have type \key{Any} and must be projected to
  8691. \key{Integer} before the addition can be performed.
  8692. The compilation of \key{lambda} (third row of
  8693. Figure~\ref{fig:compile-r7-r6}) shows what happens when we need to
  8694. produce type annotations: we simply use \key{Any}.
  8695. %
  8696. The compilation of \code{if} and \code{eq?} demonstrate how this pass
  8697. has to account for some differences in behavior between $R_7$ and
  8698. $R_6$. The $R_7$ language is more permissive than $R_6$ regarding what
  8699. kind of values can be used in various places. For example, the
  8700. condition of an \key{if} does not have to be a Boolean. For \key{eq?},
  8701. the arguments need not be of the same type (in that case the
  8702. result is \code{\#f}).
  8703. \begin{figure}[btp]
  8704. \centering
  8705. \begin{tabular}{|lll|} \hline
  8706. \begin{minipage}{0.27\textwidth}
  8707. \begin{lstlisting}
  8708. #t
  8709. \end{lstlisting}
  8710. \end{minipage}
  8711. &
  8712. $\Rightarrow$
  8713. &
  8714. \begin{minipage}{0.65\textwidth}
  8715. \begin{lstlisting}
  8716. (inject #t Boolean)
  8717. \end{lstlisting}
  8718. \end{minipage}
  8719. \\[2ex]\hline
  8720. \begin{minipage}{0.27\textwidth}
  8721. \begin{lstlisting}
  8722. (+ |$e_1$| |$e_2$|)
  8723. \end{lstlisting}
  8724. \end{minipage}
  8725. &
  8726. $\Rightarrow$
  8727. &
  8728. \begin{minipage}{0.65\textwidth}
  8729. \begin{lstlisting}
  8730. (inject
  8731. (+ (project |$e'_1$| Integer)
  8732. (project |$e'_2$| Integer))
  8733. Integer)
  8734. \end{lstlisting}
  8735. \end{minipage}
  8736. \\[2ex]\hline
  8737. \begin{minipage}{0.27\textwidth}
  8738. \begin{lstlisting}
  8739. (lambda (|$x_1 \ldots x_n$|) |$e$|)
  8740. \end{lstlisting}
  8741. \end{minipage}
  8742. &
  8743. $\Rightarrow$
  8744. &
  8745. \begin{minipage}{0.65\textwidth}
  8746. \begin{lstlisting}
  8747. (inject
  8748. (lambda: ([|$x_1$|:Any]|$\ldots$|[|$x_n$|:Any]):Any |$e'$|)
  8749. (Any|$\ldots$|Any -> Any))
  8750. \end{lstlisting}
  8751. \end{minipage}
  8752. \\[2ex]\hline
  8753. \begin{minipage}{0.27\textwidth}
  8754. \begin{lstlisting}
  8755. (|$e_0$| |$e_1 \ldots e_n$|)
  8756. \end{lstlisting}
  8757. \end{minipage}
  8758. &
  8759. $\Rightarrow$
  8760. &
  8761. \begin{minipage}{0.65\textwidth}
  8762. \begin{lstlisting}
  8763. ((project |$e'_0$| (Any|$\ldots$|Any -> Any)) |$e'_1 \ldots e'_n$|)
  8764. \end{lstlisting}
  8765. \end{minipage}
  8766. \\[2ex]\hline
  8767. \begin{minipage}{0.27\textwidth}
  8768. \begin{lstlisting}
  8769. (vector-ref |$e_1$| |$e_2$|)
  8770. \end{lstlisting}
  8771. \end{minipage}
  8772. &
  8773. $\Rightarrow$
  8774. &
  8775. \begin{minipage}{0.65\textwidth}
  8776. \begin{lstlisting}
  8777. (any-vector-ref |$e_1'$| |$e_2'$|)
  8778. \end{lstlisting}
  8779. \end{minipage}
  8780. \\[2ex]\hline
  8781. \begin{minipage}{0.27\textwidth}
  8782. \begin{lstlisting}
  8783. (if |$e_1$| |$e_2$| |$e_3$|)
  8784. \end{lstlisting}
  8785. \end{minipage}
  8786. &
  8787. $\Rightarrow$
  8788. &
  8789. \begin{minipage}{0.65\textwidth}
  8790. \begin{lstlisting}
  8791. (if (eq? |$e'_1$| (inject #f Boolean)) |$e'_3$| |$e'_2$|)
  8792. \end{lstlisting}
  8793. \end{minipage}
  8794. \\[2ex]\hline
  8795. \begin{minipage}{0.27\textwidth}
  8796. \begin{lstlisting}
  8797. (eq? |$e_1$| |$e_2$|)
  8798. \end{lstlisting}
  8799. \end{minipage}
  8800. &
  8801. $\Rightarrow$
  8802. &
  8803. \begin{minipage}{0.65\textwidth}
  8804. \begin{lstlisting}
  8805. (inject (eq? |$e'_1$| |$e'_2$|) Boolean)
  8806. \end{lstlisting}
  8807. \end{minipage}
  8808. \\[2ex]\hline
  8809. \begin{minipage}{0.27\textwidth}
  8810. \begin{lstlisting}
  8811. (not |$e_1$|)
  8812. \end{lstlisting}
  8813. \end{minipage}
  8814. &
  8815. $\Rightarrow$
  8816. &
  8817. \begin{minipage}{0.65\textwidth}
  8818. \begin{lstlisting}
  8819. (if (eq? |$e'_1$| (inject #f Boolean))
  8820. (inject #t Boolean) (inject #f Boolean))
  8821. \end{lstlisting}
  8822. \end{minipage}
  8823. \\[2ex]\hline
  8824. \end{tabular}
  8825. \caption{Cast Insertion}
  8826. \label{fig:compile-r7-r6}
  8827. \end{figure}
  8828. \section{Reveal Casts}
  8829. \label{sec:reveal-casts-r6}
  8830. % TODO: define R'_6
  8831. In the \code{reveal-casts} pass we recommend compiling \code{project}
  8832. into an \code{if} expression that checks whether the value's tag
  8833. matches the target type; if it does, the value is converted to a value
  8834. of the target type by removing the tag; if it does not, the program
  8835. exits. To perform these actions we need a new primitive operation,
  8836. \code{tag-of-any}, and two new forms, \code{ValueOf} and \code{Exit}.
  8837. The \code{tag-of-any} operation retrieves the type tag from a tagged
  8838. value of type \code{Any}. The \code{ValueOf} form retrieves the
  8839. underlying value from a tagged value. The \code{ValueOf} form
  8840. includes the type for the underlying value which is used by the type
  8841. checker. Finally, the \code{Exit} form ends the execution of the
  8842. program.
  8843. If the target type of the projection is \code{Boolean} or
  8844. \code{Integer}, then \code{Project} can be translated as follows.
  8845. \begin{center}
  8846. \begin{minipage}{1.0\textwidth}
  8847. \begin{lstlisting}
  8848. (Project |$e$| |$\FType$|)
  8849. |$\Rightarrow$|
  8850. (Let |$\itm{tmp}$| |$e'$|
  8851. (If (Prim 'eq? (list (Prim 'tag-of-any (list (Var |$\itm{tmp}$|)))
  8852. (Int |$\itm{tagof}(\FType)$|)))
  8853. (ValueOf |$\itm{tmp}$| |$\FType$|)
  8854. (Exit)))
  8855. \end{lstlisting}
  8856. \end{minipage}
  8857. \end{center}
  8858. If the target type of the projection is a vector or function type,
  8859. then there is a bit more work to do. For vectors, check that the
  8860. length of the vector type matches the length of the vector (using the
  8861. \code{vector-length} primitive). For functions, check that the number
  8862. of parameters in the function type matches the function's arity (using
  8863. \code{procedure-arity}).
  8864. Regarding \code{inject}, we recommend compiling it to a slightly
  8865. lower-level primitive operation named \code{make-any}. This operation
  8866. takes a tag instead of a type.
  8867. \begin{center}
  8868. \begin{minipage}{1.0\textwidth}
  8869. \begin{lstlisting}
  8870. (Inject |$e$| |$\FType$|)
  8871. |$\Rightarrow$|
  8872. (Prim 'make-any (list |$e'$| (Int |$\itm{tagof}(\FType)$|)))
  8873. \end{lstlisting}
  8874. \end{minipage}
  8875. \end{center}
  8876. The type predicates (\code{boolean?}, etc.) can be translated into
  8877. uses of \code{tag-of-any} and \code{eq?} in a similar way as in the
  8878. translation of \code{Project}.
  8879. The \code{any-vector-ref} and \code{any-vector-set!} operations
  8880. combine the projection action with the vector operation. Also, the
  8881. read and write operations allow arbitrary expressions for the index so
  8882. the type checker for $R_6$ (Figure~\ref{fig:type-check-R6-part-1})
  8883. cannot guarantee that the index is within bounds. Thus, we insert code
  8884. to perform bounds checking at runtime. The translation for
  8885. \code{any-vector-ref} is as follows and the other two operations are
  8886. translated in a similar way.
  8887. \begin{lstlisting}
  8888. (Prim 'any-vector-ref (list |$e_1$| |$e_2$|))
  8889. |$\Rightarrow$|
  8890. (Let |$v$| |$e'_1$|
  8891. (Let |$i$| |$e'_2$|
  8892. (If (Prim 'eq? (list (Prim 'tag-of-any (list (Var |$v$|))) (Int 2)))
  8893. (If (Prim '< (list (Var |$i$|)
  8894. (Prim 'any-vector-length (list (Var |$v$|)))))
  8895. (Prim 'any-vector-ref (list (Var |$v$|) (Var |$i$|)))
  8896. (Exit))))
  8897. \end{lstlisting}
  8898. \section{Remove Complex Operands}
  8899. \label{sec:rco-r6}
  8900. The \code{ValueOf} and \code{Exit} forms are both complex expressions.
  8901. The subexpression of \code{ValueOf} must be atomic.
  8902. \section{Explicate Control and $C_5$}
  8903. \label{sec:explicate-r6}
  8904. The output of \code{explicate-control} is the $C_5$ language whose
  8905. syntax is defined in Figure~\ref{fig:c5-syntax}. The \code{ValueOf}
  8906. form that we added to $R_6$ remains an expression and the \code{Exit}
  8907. expression becomes a $\Tail$. Also, note that the index argument of
  8908. \code{vector-ref} and \code{vector-set!} is an $\Atm$ instead
  8909. of an integer, as in $C_2$ (Figure~\ref{fig:c2-syntax}).
  8910. \begin{figure}[tp]
  8911. \fbox{
  8912. \begin{minipage}{0.96\textwidth}
  8913. \small
  8914. \[
  8915. \begin{array}{lcl}
  8916. \Exp &::= & \ldots
  8917. \mid \BINOP{\key{'any-vector-ref}}{\Atm}{\Atm} \\
  8918. &\mid& (\key{Prim}~\key{'any-vector-set!}\,(\key{list}\,\Atm\,\Atm\,\Atm))\\
  8919. &\mid& \VALUEOF{\Exp}{\FType} \\
  8920. \Stmt &::=& \gray{ \ASSIGN{\VAR{\Var}}{\Exp}
  8921. \mid \LP\key{Collect} \,\itm{int}\RP }\\
  8922. \Tail &::= & \gray{ \RETURN{\Exp} \mid \SEQ{\Stmt}{\Tail}
  8923. \mid \GOTO{\itm{label}} } \\
  8924. &\mid& \gray{ \IFSTMT{\BINOP{\itm{cmp}}{\Atm}{\Atm}}{\GOTO{\itm{label}}}{\GOTO{\itm{label}}} }\\
  8925. &\mid& \gray{ \TAILCALL{\Atm}{\Atm\ldots} }
  8926. \mid \LP\key{Exit}\RP \\
  8927. \Def &::=& \gray{ \DEF{\itm{label}}{\LP[\Var\key{:}\Type]\ldots\RP}{\Type}{\itm{info}}{\LP\LP\itm{label}\,\key{.}\,\Tail\RP\ldots\RP} }\\
  8928. C_4 & ::= & \gray{ \PROGRAMDEFS{\itm{info}}{\LP\Def\ldots\RP} }
  8929. \end{array}
  8930. \]
  8931. \end{minipage}
  8932. }
  8933. \caption{The abstract syntax of $C_5$, extending $C_4$ (Figure~\ref{fig:c4-syntax}).}
  8934. \label{fig:c5-syntax}
  8935. \end{figure}
  8936. \section{Select Instructions}
  8937. \label{sec:select-r6}
  8938. In the \code{select-instructions} pass we translate the primitive
  8939. operations on the \code{Any} type to x86 instructions that involve
  8940. manipulating the 3 tag bits of the tagged value.
  8941. \paragraph{Make-any}
  8942. We recommend compiling the \key{make-any} primitive as follows if the
  8943. tag is for \key{Integer} or \key{Boolean}. The \key{salq} instruction
  8944. shifts the destination to the left by the number of bits specified its
  8945. source argument (in this case $3$, the length of the tag) and it
  8946. preserves the sign of the integer. We use the \key{orq} instruction to
  8947. combine the tag and the value to form the tagged value. \\
  8948. \begin{lstlisting}
  8949. (Assign |\itm{lhs}| (Prim 'make-any (list |$e$| (Int |$\itm{tag}$|))))
  8950. |$\Rightarrow$|
  8951. movq |$e'$|, |\itm{lhs'}|
  8952. salq $3, |\itm{lhs'}|
  8953. orq $|$\itm{tag}$|, |\itm{lhs'}|
  8954. \end{lstlisting}
  8955. The instruction selection for vectors and procedures is different
  8956. because their is no need to shift them to the left. The rightmost 3
  8957. bits are already zeros as described at the beginning of this
  8958. chapter. So we just combine the value and the tag using \key{orq}. \\
  8959. \begin{lstlisting}
  8960. (Assign |\itm{lhs}| (Prim 'make-any (list |$e$| (Int |$\itm{tag}$|))))
  8961. |$\Rightarrow$|
  8962. movq |$e'$|, |\itm{lhs'}|
  8963. orq $|$\itm{tag}$|, |\itm{lhs'}|
  8964. \end{lstlisting}
  8965. \paragraph{Tag-of-any}
  8966. Recall that the \code{tag-of-any} operation extracts the type tag from
  8967. a value of type \code{Any}. The type tag is the bottom three bits, so
  8968. we obtain the tag by taking the bitwise-and of the value with $111$
  8969. ($7$ in decimal).
  8970. \begin{lstlisting}
  8971. (Assign |\itm{lhs}| (Prim 'tag-of-any (list |$e$|)))
  8972. |$\Rightarrow$|
  8973. movq |$e'$|, |\itm{lhs'}|
  8974. andq $7, |\itm{lhs'}|
  8975. \end{lstlisting}
  8976. \paragraph{ValueOf}
  8977. Like \key{make-any}, the instructions for \key{ValueOf} are different
  8978. depending on whether the type $T$ is a pointer (vector or procedure)
  8979. or not (Integer or Boolean). The following shows the instruction
  8980. selection for Integer and Boolean. We produce an untagged value by
  8981. shifting it to the right by 3 bits.
  8982. \begin{lstlisting}
  8983. (Assign |\itm{lhs}| (ValueOf |$e$| |$T$|))
  8984. |$\Rightarrow$|
  8985. movq |$e'$|, |\itm{lhs'}|
  8986. sarq $3, |\itm{lhs'}|
  8987. \end{lstlisting}
  8988. %
  8989. In the case for vectors and procedures, there is no need to
  8990. shift. Instead we just need to zero-out the rightmost 3 bits. We
  8991. accomplish this by creating the bit pattern $\ldots 0111$ ($7$ in
  8992. decimal) and apply \code{bitwise-not} to obtain $\ldots 11111000$ (-8
  8993. in decimal) which we \code{movq} into the destination $\itm{lhs}$. We
  8994. then apply \code{andq} with the tagged value to get the desired
  8995. result. \\
  8996. \begin{lstlisting}
  8997. (Assign |\itm{lhs}| (ValueOf |$e$| |$T$|))
  8998. |$\Rightarrow$|
  8999. movq $|$-8$|, |\itm{lhs'}|
  9000. andq |$e'$|, |\itm{lhs'}|
  9001. \end{lstlisting}
  9002. %% \paragraph{Type Predicates} We leave it to the reader to
  9003. %% devise a sequence of instructions to implement the type predicates
  9004. %% \key{boolean?}, \key{integer?}, \key{vector?}, and \key{procedure?}.
  9005. \paragraph{Any-vector-length}
  9006. \begin{lstlisting}
  9007. (Assign |$\itm{lhs}$| (Prim 'any-vector-length (list |$a_1$|)))
  9008. |$\Longrightarrow$|
  9009. movq |$\neg 111$|, %r11
  9010. andq |$a_1'$|, %r11
  9011. movq 0(%r11), %r11
  9012. andq $126, %r11
  9013. sarq $1, %r11
  9014. movq %r11, |$\itm{lhs'}$|
  9015. \end{lstlisting}
  9016. \paragraph{Any-vector-ref}
  9017. The index may be an arbitrary atom so instead of computing the offset
  9018. at compile time, instructions need to be generated to compute the
  9019. offset at runtime as follows. Note the use of the new instruction
  9020. \code{imulq}.
  9021. \begin{center}
  9022. \begin{minipage}{0.96\textwidth}
  9023. \begin{lstlisting}
  9024. (Assign |$\itm{lhs}$| (Prim 'any-vector-ref (list |$a_1$| |$a_2$|)))
  9025. |$\Longrightarrow$|
  9026. movq |$\neg 111$|, %r11
  9027. andq |$a_1'$|, %r11
  9028. movq |$a_2'$|, %rax
  9029. addq $1, %rax
  9030. imulq $8, %rax
  9031. addq %rax, %r11
  9032. movq 0(%r11) |$\itm{lhs'}$|
  9033. \end{lstlisting}
  9034. \end{minipage}
  9035. \end{center}
  9036. \paragraph{Any-vector-set!}
  9037. The code generation for \code{any-vector-set!} is similar to the other
  9038. \code{any-vector} operations.
  9039. \section{Register Allocation for $R_6$}
  9040. \label{sec:register-allocation-r6}
  9041. \index{register allocation}
  9042. There is an interesting interaction between tagged values and garbage
  9043. collection that has an impact on register allocation. A variable of
  9044. type \code{Any} might refer to a vector and therefore it might be a
  9045. root that needs to be inspected and copied during garbage
  9046. collection. Thus, we need to treat variables of type \code{Any} in a
  9047. similar way to variables of type \code{Vector} for purposes of
  9048. register allocation. In particular,
  9049. \begin{itemize}
  9050. \item If a variable of type \code{Any} is live during a function call,
  9051. then it must be spilled. This can be accomplished by changing
  9052. \code{build-interference} to mark all variables of type \code{Any}
  9053. that are live after a \code{callq} as interfering with all the
  9054. registers.
  9055. \item If a variable of type \code{Any} is spilled, it must be spilled
  9056. to the root stack instead of the normal procedure call stack.
  9057. \end{itemize}
  9058. Another concern regarding the root stack is that the garbage collector
  9059. needs to differentiate between (1) plain old pointers to tuples, (2) a
  9060. tagged value that points to a tuple, and (3) a tagged value that is
  9061. not a tuple. We enable this differentiation by choosing not to use the
  9062. tag $000$ in the $\itm{tagof}$ function. Instead, that bit pattern is
  9063. reserved for identifying plain old pointers to tuples. That way, if
  9064. one of the first three bits is set, then we have a tagged value and
  9065. inspecting the tag can differentiation between vectors ($010$) and the
  9066. other kinds of values.
  9067. \begin{exercise}\normalfont
  9068. Expand your compiler to handle $R_6$ as discussed in the last few
  9069. sections. Create 5 new programs that use the \code{Any} type and the
  9070. new operations (\code{inject}, \code{project}, \code{boolean?},
  9071. etc.). Test your compiler on these new programs and all of your
  9072. previously created test programs.
  9073. \end{exercise}
  9074. \begin{exercise}\normalfont
  9075. Expand your compiler to handle $R_7$ as outlined in this chapter.
  9076. Create tests for $R_7$ by adapting ten of your previous test programs
  9077. by removing type annotations. Add 5 more tests programs that
  9078. specifically rely on the language being dynamically typed. That is,
  9079. they should not be legal programs in a statically typed language, but
  9080. nevertheless, they should be valid $R_7$ programs that run to
  9081. completion without error.
  9082. \end{exercise}
  9083. \begin{figure}[p]
  9084. \begin{tikzpicture}[baseline=(current bounding box.center)]
  9085. \node (R4) at (0,4) {\large $R_7$};
  9086. \node (R4-2) at (3,4) {\large $R_7$};
  9087. \node (R4-3) at (6,4) {\large $R_7$};
  9088. \node (R4-4) at (9,4) {\large $R'_7$};
  9089. \node (R4-5) at (9,2) {\large $R'_6$};
  9090. \node (R4-6) at (12,2) {\large $R'_6$};
  9091. \node (R4-7) at (12,0) {\large $R'_6$};
  9092. \node (F1-2) at (9,0) {\large $R'_6$};
  9093. \node (F1-3) at (6,0) {\large $R'_6$};
  9094. \node (F1-4) at (3,0) {\large $R'_6$};
  9095. \node (F1-5) at (0,0) {\large $R'_6$};
  9096. \node (C3-2) at (3,-2) {\large $C_3$};
  9097. \node (x86-2) at (3,-4) {\large $\text{x86}^{*}_3$};
  9098. \node (x86-3) at (6,-4) {\large $\text{x86}^{*}_3$};
  9099. \node (x86-4) at (9,-4) {\large $\text{x86}^{*}_3$};
  9100. \node (x86-5) at (9,-6) {\large $\text{x86}^{\dagger}_3$};
  9101. \node (x86-2-1) at (3,-6) {\large $\text{x86}^{*}_3$};
  9102. \node (x86-2-2) at (6,-6) {\large $\text{x86}^{*}_3$};
  9103. \path[->,bend left=15] (R4) edge [above] node
  9104. {\ttfamily\footnotesize shrink} (R4-2);
  9105. \path[->,bend left=15] (R4-2) edge [above] node
  9106. {\ttfamily\footnotesize uniquify} (R4-3);
  9107. \path[->,bend left=15] (R4-3) edge [above] node
  9108. {\ttfamily\footnotesize reveal-functions} (R4-4);
  9109. \path[->,bend right=15] (R4-4) edge [left] node
  9110. {\ttfamily\footnotesize cast-insert} (R4-5);
  9111. \path[->,bend left=15] (R4-5) edge [above] node
  9112. {\ttfamily\footnotesize check-bounds} (R4-6);
  9113. \path[->,bend left=15] (R4-6) edge [left] node
  9114. {\ttfamily\footnotesize reveal-casts} (R4-7);
  9115. \path[->,bend left=15] (R4-7) edge [below] node
  9116. {\ttfamily\footnotesize convert-to-clos.} (F1-2);
  9117. \path[->,bend right=15] (F1-2) edge [above] node
  9118. {\ttfamily\footnotesize limit-fun.} (F1-3);
  9119. \path[->,bend right=15] (F1-3) edge [above] node
  9120. {\ttfamily\footnotesize expose-alloc.} (F1-4);
  9121. \path[->,bend right=15] (F1-4) edge [above] node
  9122. {\ttfamily\footnotesize remove-complex.} (F1-5);
  9123. \path[->,bend right=15] (F1-5) edge [right] node
  9124. {\ttfamily\footnotesize explicate-control} (C3-2);
  9125. \path[->,bend left=15] (C3-2) edge [left] node
  9126. {\ttfamily\footnotesize select-instr.} (x86-2);
  9127. \path[->,bend right=15] (x86-2) edge [left] node
  9128. {\ttfamily\footnotesize uncover-live} (x86-2-1);
  9129. \path[->,bend right=15] (x86-2-1) edge [below] node
  9130. {\ttfamily\footnotesize build-inter.} (x86-2-2);
  9131. \path[->,bend right=15] (x86-2-2) edge [left] node
  9132. {\ttfamily\footnotesize allocate-reg.} (x86-3);
  9133. \path[->,bend left=15] (x86-3) edge [above] node
  9134. {\ttfamily\footnotesize patch-instr.} (x86-4);
  9135. \path[->,bend left=15] (x86-4) edge [right] node
  9136. {\ttfamily\footnotesize print-x86} (x86-5);
  9137. \end{tikzpicture}
  9138. \caption{Diagram of the passes for $R_7$, a dynamically typed language.}
  9139. \label{fig:R7-passes}
  9140. \end{figure}
  9141. Figure~\ref{fig:R7-passes} provides an overview of all the passes needed
  9142. for the compilation of $R_7$.
  9143. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  9144. \chapter{Loops and Assignment}
  9145. \label{ch:loop}
  9146. % todo: define R'_8
  9147. In this chapter we study two features that are the hallmarks of
  9148. imperative programming languages: loops and assignments to local
  9149. variables. The following example demonstrates these new features by
  9150. computing the sum of the first five positive integers.
  9151. % similar to loop_test_1.rkt
  9152. \begin{lstlisting}
  9153. (let ([sum 0])
  9154. (let ([i 5])
  9155. (begin
  9156. (while (> i 0)
  9157. (begin
  9158. (set! sum (+ sum i))
  9159. (set! i (- i 1))))
  9160. sum)))
  9161. \end{lstlisting}
  9162. The \code{while} loop consists of a condition and a body.
  9163. %
  9164. The \code{set!} consists of a variable and a right-hand-side expression.
  9165. %
  9166. The primary purpose of both the \code{while} loop and \code{set!} is
  9167. to cause side effects, so it is convenient to also include in a
  9168. language feature for sequencing side effects: the \code{begin}
  9169. expression. It consists of one or more subexpressions that are
  9170. evaluated left-to-right.
  9171. \section{The $R_8$ Language}
  9172. \begin{figure}[tp]
  9173. \centering
  9174. \fbox{
  9175. \begin{minipage}{0.96\textwidth}
  9176. \small
  9177. \[
  9178. \begin{array}{lcl}
  9179. \Exp &::=& \gray{ \Int \mid \CREAD{} \mid \CNEG{\Exp}
  9180. \mid \CADD{\Exp}{\Exp} \mid \CSUB{\Exp}{\Exp} } \\
  9181. &\mid& \gray{ \Var \mid \CLET{\Var}{\Exp}{\Exp} }\\
  9182. &\mid& \gray{\key{\#t} \mid \key{\#f}
  9183. \mid (\key{and}\;\Exp\;\Exp)
  9184. \mid (\key{or}\;\Exp\;\Exp)
  9185. \mid (\key{not}\;\Exp) } \\
  9186. &\mid& \gray{ (\key{eq?}\;\Exp\;\Exp) \mid \CIF{\Exp}{\Exp}{\Exp} } \\
  9187. &\mid& \gray{ (\key{vector}\;\Exp\ldots) \mid
  9188. (\key{vector-ref}\;\Exp\;\Int)} \\
  9189. &\mid& \gray{(\key{vector-set!}\;\Exp\;\Int\;\Exp)\mid (\key{void})
  9190. \mid (\Exp \; \Exp\ldots) } \\
  9191. &\mid& \gray{ \LP \key{procedure-arity}~\Exp\RP
  9192. \mid \CLAMBDA{\LP\LS\Var \key{:} \Type\RS\ldots\RP}{\Type}{\Exp} } \\
  9193. &\mid& \CSETBANG{\Var}{\Exp}
  9194. \mid \CBEGIN{\Exp\ldots}{\Exp}
  9195. \mid \CWHILE{\Exp}{\Exp} \\
  9196. \Def &::=& \gray{ \CDEF{\Var}{\LS\Var \key{:} \Type\RS\ldots}{\Type}{\Exp} } \\
  9197. R_8 &::=& \gray{\Def\ldots \; \Exp}
  9198. \end{array}
  9199. \]
  9200. \end{minipage}
  9201. }
  9202. \caption{The concrete syntax of $R_8$, extending $R_6$ (Figure~\ref{fig:r6-concrete-syntax}).}
  9203. \label{fig:r8-concrete-syntax}
  9204. \end{figure}
  9205. \begin{figure}[tp]
  9206. \centering
  9207. \fbox{
  9208. \begin{minipage}{0.96\textwidth}
  9209. \small
  9210. \[
  9211. \begin{array}{lcl}
  9212. \Exp &::=& \gray{ \INT{\Int} \VAR{\Var} \mid \LET{\Var}{\Exp}{\Exp} } \\
  9213. &\mid& \gray{ \PRIM{\itm{op}}{\Exp\ldots} }\\
  9214. &\mid& \gray{ \BOOL{\itm{bool}}
  9215. \mid \IF{\Exp}{\Exp}{\Exp} } \\
  9216. &\mid& \gray{ \VOID{} \mid \LP\key{HasType}~\Exp~\Type \RP
  9217. \mid \APPLY{\Exp}{\Exp\ldots} }\\
  9218. &\mid& \gray{ \LAMBDA{\LP\LS\Var\code{:}\Type\RS\ldots\RP}{\Type}{\Exp} }\\
  9219. &\mid& \SETBANG{\Var}{\Exp} \mid \BEGIN{\LP\Exp\ldots\RP}{\Exp}
  9220. \mid \WHILE{\Exp}{\Exp} \\
  9221. \Def &::=& \gray{ \FUNDEF{\Var}{\LP\LS\Var \code{:} \Type\RS\ldots\RP}{\Type}{\code{'()}}{\Exp} }\\
  9222. R_8 &::=& \gray{ \PROGRAMDEFSEXP{\code{'()}}{\LP\Def\ldots\RP}{\Exp} }
  9223. \end{array}
  9224. \]
  9225. \end{minipage}
  9226. }
  9227. \caption{The abstract syntax of $R_8$, extending $R_6$ (Figure~\ref{fig:r6-syntax}).}
  9228. \label{fig:r8-syntax}
  9229. \end{figure}
  9230. The concrete syntax of $R_8$ is defined in
  9231. Figure~\ref{fig:r8-concrete-syntax} and its abstract syntax is defined
  9232. in Figure~\ref{fig:r8-syntax}.
  9233. %
  9234. The definitional interpreter for $R_8$ is shown in
  9235. Figure~\ref{fig:interp-R8}. We add three new cases for \code{SetBang},
  9236. \code{WhileLoop}, and \code{Begin} and we make changes to the cases
  9237. for \code{Var}, \code{Let}, and \code{Apply} regarding variables. To
  9238. support assignment to variables and to make their lifetimes indefinite
  9239. (see the second example in Section~\ref{sec:assignment-scoping}), we
  9240. box the value that is bound to each variable (in \code{Let}) and
  9241. function parameter (in \code{Apply}). The case for \code{Var} unboxes
  9242. the value.
  9243. %
  9244. Now to discuss the new cases. For \code{SetBang}, we lookup the
  9245. variable in the environment to obtain a boxed value and then we change
  9246. it using \code{set-box!} to the result of evaluating the right-hand
  9247. side. The result value of a \code{SetBang} is \code{void}.
  9248. %
  9249. For the \code{WhileLoop}, we repeatedly 1) evaluate the condition, and
  9250. if the result is true, 2) evaluate the body.
  9251. The result value of a \code{while} loop is also \code{void}.
  9252. %
  9253. Finally, the $\BEGIN{\itm{es}}{\itm{body}}$ expression evaluates the
  9254. subexpressions \itm{es} for their effects and then evaluates
  9255. and returns the result from \itm{body}.
  9256. \begin{figure}[tbp]
  9257. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  9258. (define interp-R8-class
  9259. (class interp-R6-class
  9260. (super-new)
  9261. (define/override ((interp-exp env) e)
  9262. (define recur (interp-exp env))
  9263. (match e
  9264. [(SetBang x rhs)
  9265. (set-box! (lookup x env) (recur rhs))]
  9266. [(WhileLoop cnd body)
  9267. (define (loop)
  9268. (cond [(recur cnd) (recur body) (loop)]
  9269. [else (void)]))
  9270. (loop)]
  9271. [(Begin es body)
  9272. (for ([e es]) (recur e))
  9273. (recur body)]
  9274. [else ((super interp-exp env) e)]))
  9275. ))
  9276. (define (interp-R8 p)
  9277. (send (new interp-R8-class) interp-program p))
  9278. \end{lstlisting}
  9279. \caption{Interpreter for $R_8$.}
  9280. \label{fig:interp-R8}
  9281. \end{figure}
  9282. The type checker for $R_8$ is define in
  9283. Figure~\ref{fig:type-check-R8}. For \code{SetBang}, the type of the
  9284. variable and the right-hand-side must agree. The result type is
  9285. \code{Void}. For the \code{WhileLoop}, the condition must be a
  9286. \code{Boolean}. The result type is also \code{Void}. For
  9287. \code{Begin}, the result type is the type of its last subexpression.
  9288. \begin{figure}[tbp]
  9289. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  9290. (define type-check-R8-class
  9291. (class type-check-R6-class
  9292. (super-new)
  9293. (inherit check-type-equal?)
  9294. (define/override (type-check-exp env)
  9295. (lambda (e)
  9296. (define recur (type-check-exp env))
  9297. (match e
  9298. [(SetBang x rhs)
  9299. (define-values (rhs^ rhsT) (recur rhs))
  9300. (define varT (dict-ref env x))
  9301. (check-type-equal? rhsT varT e)
  9302. (values (SetBang x rhs^) 'Void)]
  9303. [(WhileLoop cnd body)
  9304. (define-values (cnd^ Tc) (recur cnd))
  9305. (check-type-equal? Tc 'Boolean e)
  9306. (define-values (body^ Tbody) ((type-check-exp env) body))
  9307. (values (WhileLoop cnd^ body^) 'Void)]
  9308. [(Begin es body)
  9309. (define-values (es^ ts)
  9310. (for/lists (l1 l2) ([e es]) (recur e)))
  9311. (define-values (body^ Tbody) (recur body))
  9312. (values (Begin es^ body^) Tbody)]
  9313. [else ((super type-check-exp env) e)])))
  9314. ))
  9315. (define (type-check-R8 p)
  9316. (send (new type-check-R8-class) type-check-program p))
  9317. \end{lstlisting}
  9318. \caption{Type checking \key{SetBang}, \key{WhileLoop},
  9319. and \code{Begin} in $R_8$.}
  9320. \label{fig:type-check-R8}
  9321. \end{figure}
  9322. At first glance, the translation of these language features to x86
  9323. seems straightforward because the $C_3$ intermediate language already
  9324. supports all of the ingredients that we need: assignment, \code{goto},
  9325. conditional branching, and sequencing. However, there are two
  9326. complications that arise which we discuss in the next two
  9327. sections. After that we introduce one new compiler pass and the
  9328. changes necessary to the existing passes.
  9329. \section{Assignment and Lexically Scoped Functions}
  9330. \label{sec:assignment-scoping}
  9331. The addition of assignment raises a problem with our approach to
  9332. implementing lexically-scoped functions. Consider the following
  9333. example in which function \code{f} has a free variable \code{x} that
  9334. is changed after \code{f} is created but before the call to \code{f}.
  9335. % loop_test_11.rkt
  9336. \begin{lstlisting}
  9337. (let ([x 0])
  9338. (let ([y 0])
  9339. (let ([z 20])
  9340. (let ([f (lambda: ([a : Integer]) : Integer (+ a (+ x z)))])
  9341. (begin
  9342. (set! x 10)
  9343. (set! y 12)
  9344. (f y))))))
  9345. \end{lstlisting}
  9346. The correct output for this example is \code{42} because the call to
  9347. \code{f} is required to use the current value of \code{x} (which is
  9348. \code{10}). Unfortunately, the closure conversion pass
  9349. (Section~\ref{sec:closure-conversion}) generates code for the
  9350. \code{lambda} that copies the old value of \code{x} into a
  9351. closure. Thus, if we naively add support for assignment to our current
  9352. compiler, the output of this program would be \code{32}.
  9353. A first attempt at solving this problem would be to save a pointer to
  9354. \code{x} in the closure and change the occurrences of \code{x} inside
  9355. the lambda to dereference the pointer. Of course, this would require
  9356. assigning \code{x} to the stack and not to a register. However, the
  9357. problem goes a bit deeper. Consider the following example in which we
  9358. create a counter abstraction by creating a pair of functions that
  9359. share the free variable \code{x}.
  9360. % similar to loop_test_10.rkt
  9361. \begin{lstlisting}
  9362. (define (f [x : Integer]) : (Vector ( -> Integer) ( -> Void))
  9363. (vector
  9364. (lambda: () : Integer x)
  9365. (lambda: () : Void (set! x (+ 1 x)))))
  9366. (let ([counter (f 0)])
  9367. (let ([get (vector-ref counter 0)])
  9368. (let ([inc (vector-ref counter 1)])
  9369. (begin
  9370. (inc)
  9371. (get)))))
  9372. \end{lstlisting}
  9373. In this example, the lifetime of \code{x} extends beyond the lifetime
  9374. of the call to \code{f}. Thus, if we were to store \code{x} on the
  9375. stack frame for the call to \code{f}, it would be gone by the time we
  9376. call \code{inc} and \code{get}, leaving us with dangling pointers for
  9377. \code{x}. This example demonstrates that when a variable occurs free
  9378. inside a \code{lambda}, its lifetime becomes indefinite. Thus, the
  9379. value of the variable needs to live on the heap. The verb ``box'' is
  9380. often used for allocating a single value on the heap, producing a
  9381. pointer, and ``unbox'' for dereferencing the pointer.
  9382. We recommend solving these problems by ``boxing'' the local variables
  9383. that are in the intersection of 1) variables that appear on the
  9384. left-hand-side of a \code{set!} and 2) variables that occur free
  9385. inside a \code{lambda}. We shall introduce a new pass named
  9386. \code{convert-assignments} in Section~\ref{sec:convert-assignments} to
  9387. perform this translation. But before diving into the compiler passes,
  9388. we one more problem to discuss.
  9389. \section{Cyclic Control Flow and Dataflow Analysis}
  9390. \label{sec:dataflow-analysis}
  9391. Up until this point the control-flow graphs generated in
  9392. \code{explicate-control} were guaranteed to be acyclic. However, each
  9393. \code{while} loop introduces a cycle in the control-flow graph.
  9394. But does that matter?
  9395. %
  9396. Indeed it does. Recall that for register allocation, the compiler
  9397. performs liveness analysis to determine which variables can share the
  9398. same register. In Section~\ref{sec:liveness-analysis-r2} we analyze
  9399. the control-flow graph in reverse topological order, but topological
  9400. order is only well-defined for acyclic graphs.
  9401. Let us return to the example of computing the sum of the first five
  9402. positive integers. Here is the program after instruction selection but
  9403. before register allocation.
  9404. \begin{center}
  9405. \begin{minipage}{0.45\textwidth}
  9406. \begin{lstlisting}
  9407. (define (main) : Integer
  9408. mainstart:
  9409. movq $0, sum1
  9410. movq $5, i2
  9411. jmp block5
  9412. block5:
  9413. movq i2, tmp3
  9414. cmpq tmp3, $0
  9415. jl block7
  9416. jmp block8
  9417. \end{lstlisting}
  9418. \end{minipage}
  9419. \begin{minipage}{0.45\textwidth}
  9420. \begin{lstlisting}
  9421. block7:
  9422. addq i2, sum1
  9423. movq $1, tmp4
  9424. negq tmp4
  9425. addq tmp4, i2
  9426. jmp block5
  9427. block8:
  9428. movq $27, %rax
  9429. addq sum1, %rax
  9430. jmp mainconclusion
  9431. )
  9432. \end{lstlisting}
  9433. \end{minipage}
  9434. \end{center}
  9435. Recall that liveness analysis works backwards, starting at the end
  9436. of each function. For this example we could start with \code{block8}
  9437. because we know what is live at the beginning of the conclusion,
  9438. just \code{rax} and \code{rsp}. So the live-before set
  9439. for \code{block8} is $\{\ttm{rsp},\ttm{sum1}\}$.
  9440. %
  9441. Next we might try to analyze \code{block5} or \code{block7}, but
  9442. \code{block5} jumps to \code{block7} and vice versa, so it seems that
  9443. we are stuck.
  9444. The way out of this impasse comes from the realization that one can
  9445. perform liveness analysis starting with an empty live-after set to
  9446. compute an under-approximation of the live-before set. By
  9447. \emph{under-approximation}, we mean that the set only contains
  9448. variables that are really live, but it may be missing some. Next, the
  9449. under-approximations for each block can be improved by 1) updating the
  9450. live-after set for each block using the approximate live-before sets
  9451. from the other blocks and 2) perform liveness analysis again on each
  9452. block. In fact, by iterating this process, the under-approximations
  9453. eventually become the correct solutions!
  9454. %
  9455. This approach of iteratively analyzing a control-flow graph is
  9456. applicable to many static analysis problems and goes by the name
  9457. \emph{dataflow analysis}\index{dataflow analysis}. It was invented by
  9458. \citet{Kildall:1973vn} in his Ph.D. thesis at the University of
  9459. Washington.
  9460. Let us apply this approach to the above example. We use the empty set
  9461. for the initial live-before set for each block. Let $m_0$ be the
  9462. following mapping from label names to sets of locations (variables and
  9463. registers).
  9464. \begin{center}
  9465. \begin{lstlisting}
  9466. mainstart: {}
  9467. block5: {}
  9468. block7: {}
  9469. block8: {}
  9470. \end{lstlisting}
  9471. \end{center}
  9472. Using the above live-before approximations, we determine the
  9473. live-after for each block and then apply liveness analysis to each
  9474. block. This produces our next approximation $m_1$ of the live-before
  9475. sets.
  9476. \begin{center}
  9477. \begin{lstlisting}
  9478. mainstart: {}
  9479. block5: {i2}
  9480. block7: {i2, sum1}
  9481. block8: {rsp, sum1}
  9482. \end{lstlisting}
  9483. \end{center}
  9484. For the second round, the live-after for \code{mainstart} is the
  9485. current live-before for \code{block5}, which is \code{\{i2\}}. So the
  9486. liveness analysis for \code{mainstart} computes the empty set. The
  9487. live-after for \code{block5} is the union of the live-before sets for
  9488. \code{block7} and \code{block8}, which is \code{\{i2 , rsp, sum1\}}.
  9489. So the liveness analysis for \code{block5} computes \code{\{i2 , rsp,
  9490. sum1\}}. The live-after for \code{block7} is the live-before for
  9491. \code{block5} (from the previous iteration), which is \code{\{i2\}}.
  9492. So the liveness analysis for \code{block7} remains \code{\{i2,
  9493. sum1\}}. Together these yield the following approximation $m_2$ of
  9494. the live-before sets.
  9495. \begin{center}
  9496. \begin{lstlisting}
  9497. mainstart: {}
  9498. block5: {i2, rsp, sum1}
  9499. block7: {i2, sum1}
  9500. block8: {rsp, sum1}
  9501. \end{lstlisting}
  9502. \end{center}
  9503. In the preceding iteration, only \code{block5} changed, so we can
  9504. limit our attention to \code{mainstart} and \code{block7}, the two
  9505. blocks that jump to \code{block5}. As a result, the live-before sets
  9506. for \code{mainstart} and \code{block7} are updated to include
  9507. \code{rsp}, yielding the following approximation $m_3$.
  9508. \begin{center}
  9509. \begin{lstlisting}
  9510. mainstart: {rsp}
  9511. block5: {i2, rsp, sum1}
  9512. block7: {i2, rsp, sum1}
  9513. block8: {rsp, sum1}
  9514. \end{lstlisting}
  9515. \end{center}
  9516. Because \code{block7} changed, we analyze \code{block5} once more, but
  9517. its live-before set remains \code{\{ i2, rsp, sum1 \}}. At this point
  9518. our approximations have converged, so $m_3$ is the solution.
  9519. This iteration process is guaranteed to converge to a solution by the
  9520. Kleene Fixed-Point Theorem, a general theorem about functions on
  9521. lattices~\citep{Kleene:1952aa}. Roughly speaking, a \emph{lattice} is
  9522. any collection that comes with a partial ordering $\sqsubseteq$ on its
  9523. elements, a least element $\bot$ (pronounced bottom), and a join
  9524. operator $\sqcup$.\index{lattice}\index{bottom}\index{partial
  9525. ordering}\index{join}\footnote{Technically speaking, we will be
  9526. working with join semi-lattices.} When two elements are ordered $m_i
  9527. \sqsubseteq m_j$, it means that $m_j$ contains at least as much
  9528. information as $m_i$, so we can think of $m_j$ as a better-or-equal
  9529. approximation than $m_i$. The bottom element $\bot$ represents the
  9530. complete lack of information, i.e., the worst approximation. The join
  9531. operator takes two lattice elements and combines their information,
  9532. i.e., it produces the least upper bound of the two.\index{least upper
  9533. bound}
  9534. A dataflow analysis typically involves two lattices: one lattice to
  9535. represent abstract states and another lattice that aggregates the
  9536. abstract states of all the blocks in the control-flow graph. For
  9537. liveness analysis, an abstract state is a set of locations. We form
  9538. the lattice $L$ by taking its elements to be sets of locations, the
  9539. ordering to be set inclusion ($\subseteq$), the bottom to be the empty
  9540. set, and the join operator to be set union.
  9541. %
  9542. We form a second lattice $M$ by taking its elements to be mappings
  9543. from the block labels to sets of locations (elements of $L$). We
  9544. order the mappings point-wise, using the ordering of $L$. So given any
  9545. two mappings $m_i$ and $m_j$, $m_i \sqsubseteq_M m_j$ when $m_i(\ell)
  9546. \subseteq m_j(\ell)$ for every block label $\ell$ in the program. The
  9547. bottom element of $M$ is the mapping $\bot_M$ that sends every label
  9548. to the empty set, i.e., $\bot_M(\ell) = \emptyset$.
  9549. We can think of one iteration of liveness analysis as being a function
  9550. $f$ on the lattice $M$. It takes a mapping as input and computes a new
  9551. mapping.
  9552. \[
  9553. f(m_i) = m_{i+1}
  9554. \]
  9555. Next let us think for a moment about what a final solution $m_s$
  9556. should look like. If we perform liveness analysis using the solution
  9557. $m_s$ as input, we should get $m_s$ again as the output. That is, the
  9558. solution should be a \emph{fixed point} of the function $f$.\index{fixed point}
  9559. \[
  9560. f(m_s) = m_s
  9561. \]
  9562. Furthermore, the solution should only include locations that are
  9563. forced to be there by performing liveness analysis on the program, so
  9564. the solution should be the \emph{least} fixed point.\index{least fixed point}
  9565. The Kleene Fixed-Point Theorem states that if a function $f$ is
  9566. monotone (better inputs produce better outputs), then the least fixed
  9567. point of $f$ is the least upper bound of the \emph{ascending Kleene
  9568. chain} obtained by starting at $\bot$ and iterating $f$ as
  9569. follows.\index{Kleene Fixed-Point Theorem}
  9570. \[
  9571. \bot \sqsubseteq f(\bot) \sqsubseteq f(f(\bot)) \sqsubseteq \cdots
  9572. \sqsubseteq f^n(\bot) \sqsubseteq \cdots
  9573. \]
  9574. When a lattice contains only finitely-long ascending chains, then
  9575. every Kleene chain tops out at some fixed point after a number of
  9576. iterations of $f$. So that fixed point is also a least upper
  9577. bound of the chain.
  9578. \[
  9579. \bot \sqsubseteq f(\bot) \sqsubseteq f(f(\bot)) \sqsubseteq \cdots
  9580. \sqsubseteq f^k(\bot) = f^{k+1}(\bot) = m_s
  9581. \]
  9582. The liveness analysis is indeed a monotone function and the lattice
  9583. $M$ only has finitely-long ascending chains because there are only a
  9584. finite number of variables and blocks in the program. Thus we are
  9585. guaranteed that iteratively applying liveness analysis to all blocks
  9586. in the program will eventually produce the least fixed point solution.
  9587. Next let us consider dataflow analysis in general and discuss the
  9588. generic work list algorithm (Figure~\ref{fig:generic-dataflow}).
  9589. %
  9590. The algorithm has four parameters: the control-flow graph \code{G}, a
  9591. function \code{transfer} that applies the analysis to one block, the
  9592. \code{bottom} and \code{join} operator for the lattice of abstract
  9593. states. The algorithm begins by creating the bottom mapping,
  9594. represented by a hash table. It then pushes all of the nodes in the
  9595. control-flow graph onto the work list (a queue). The algorithm repeats
  9596. the \code{while} loop as long as there are items in the work list. In
  9597. each iteration, a node is popped from the work list and processed. The
  9598. \code{input} for the node is computed by taking the join of the
  9599. abstract states of all the predecessor nodes. The \code{transfer}
  9600. function is then applied to obtain the \code{output} abstract
  9601. state. If the output differs from the previous state for this block,
  9602. the mapping for this block is updated and its successor nodes are
  9603. pushed onto the work list.
  9604. \begin{figure}[tb]
  9605. \begin{lstlisting}
  9606. (define (analyze-dataflow G transfer bottom join)
  9607. (define mapping (make-hash))
  9608. (for ([v (in-vertices G)])
  9609. (dict-set! mapping v bottom))
  9610. (define worklist (make-queue))
  9611. (for ([v (in-vertices G)])
  9612. (enqueue! worklist v))
  9613. (define trans-G (transpose G))
  9614. (while (not (queue-empty? worklist))
  9615. (define node (dequeue! worklist))
  9616. (define input (for/fold ([state bottom])
  9617. ([pred (in-neighbors trans-G node)])
  9618. (join state (dict-ref mapping pred))))
  9619. (define output (transfer node input))
  9620. (cond [(not (equal? output (dict-ref mapping node)))
  9621. (dict-set! mapping node output)
  9622. (for ([v (in-neighbors G node)])
  9623. (enqueue! worklist v))]))
  9624. mapping)
  9625. \end{lstlisting}
  9626. \caption{Generic work list algorithm for dataflow analysis}
  9627. \label{fig:generic-dataflow}
  9628. \end{figure}
  9629. Having discussed the two complications that arise from adding support
  9630. for assignment and loops, we turn to discussing the one new compiler
  9631. pass and the significant changes to existing passes.
  9632. \section{Convert Assignments}
  9633. \label{sec:convert-assignments}
  9634. Recall that in Section~\ref{sec:assignment-scoping} we learned that
  9635. the combination of assignments and lexically-scoped functions requires
  9636. that we box those variables that are both assigned-to and that appear
  9637. free inside a \code{lambda}. The purpose of the
  9638. \code{convert-assignments} pass is to carry out that transformation.
  9639. We recommend placing this pass after \code{uniquify} but before
  9640. \code{reveal-functions}.
  9641. Consider again the first example from
  9642. Section~\ref{sec:assignment-scoping}:
  9643. \begin{lstlisting}
  9644. (let ([x 0])
  9645. (let ([y 0])
  9646. (let ([z 20])
  9647. (let ([f (lambda: ([a : Integer]) : Integer (+ a (+ x z)))])
  9648. (begin
  9649. (set! x 10)
  9650. (set! y 12)
  9651. (f y))))))
  9652. \end{lstlisting}
  9653. The variables \code{x} and \code{y} are assigned-to. The variables
  9654. \code{x} and \code{z} occur free inside the \code{lambda}. Thus,
  9655. variable \code{x} needs to be boxed but not \code{y} and \code{z}.
  9656. The boxing of \code{x} consists of three transformations: initialize
  9657. \code{x} with a vector, replace reads from \code{x} with
  9658. \code{vector-ref}'s, and replace each \code{set!} on \code{x} with a
  9659. \code{vector-set!}. The output of \code{convert-assignments} for this
  9660. example is as follows.
  9661. \begin{lstlisting}
  9662. (define (main) : Integer
  9663. (let ([x0 (vector 0)])
  9664. (let ([y1 0])
  9665. (let ([z2 20])
  9666. (let ([f4 (lambda: ([a3 : Integer]) : Integer
  9667. (+ a3 (+ (vector-ref x0 0) z2)))])
  9668. (begin
  9669. (vector-set! x0 0 10)
  9670. (set! y1 12)
  9671. (f4 y1)))))))
  9672. \end{lstlisting}
  9673. \paragraph{Assigned \& Free}
  9674. We recommend defining an auxiliary function named
  9675. \code{assigned\&free} that takes an expression and simultaneously
  9676. computes 1) a set of assigned variables $A$, 2) a set $F$ of variables
  9677. that occur free within lambda's, and 3) a new version of the
  9678. expression that records which bound variables occurred in the
  9679. intersection of $A$ and $F$. You can use the struct
  9680. \code{AssignedFree} to do this. Consider the case for
  9681. $\LET{x}{\itm{rhs}}{\itm{body}}$. Suppose the the recursive call on
  9682. $\itm{rhs}$ produces $\itm{rhs}'$, $A_r$, and $F_r$ and the recursive
  9683. call on the $\itm{body}$ produces $\itm{body}'$, $A_b$, and $F_b$. If
  9684. $x$ is in $A_b\cap F_b$, then transforms the \code{Let} as follows.
  9685. \begin{lstlisting}
  9686. (Let |$x$| |$rhs$| |$body$|)
  9687. |$\Rightarrow$|
  9688. (Let (AssignedFree |$x$|) |$rhs'$| |$body'$|)
  9689. \end{lstlisting}
  9690. If $x$ is not in $A_b\cap F_b$ then omit the use of \code{AssignedFree}.
  9691. The set of assigned variables for this \code{Let} is
  9692. $A_r \cup (A_b - \{x\})$
  9693. and the set of variables free in lambda's is
  9694. $F_r \cup (F_b - \{x\})$.
  9695. The case for $\SETBANG{x}{\itm{rhs}}$ is straightforward but
  9696. important. Recursively process \itm{rhs} to obtain \itm{rhs'}, $A_r$,
  9697. and $F_r$. The result is $\SETBANG{x}{\itm{rhs'}}$, $\{x\} \cup A_r$,
  9698. and $F_r$.
  9699. The case for $\LAMBDA{\itm{params}}{T}{\itm{body}}$ is a bit more
  9700. involved. Let \itm{body'}, $A_b$, and $F_b$ be the result of
  9701. recursively processing \itm{body}. Wrap each of parameter that occurs
  9702. in $A_b \cap F_b$ with \code{AssignedFree} to produce \itm{params'}.
  9703. Let $P$ be the set of parameter names in \itm{params}. The result is
  9704. $\LAMBDA{\itm{params'}}{T}{\itm{body'}}$, $A_b - P$, and $(F_b \cup
  9705. \mathrm{FV}(\itm{body})) - P$, where $\mathrm{FV}$ computes the free
  9706. variables of an expression (see Chapter~\ref{ch:lambdas}).
  9707. \paragraph{Convert Assignments}
  9708. Next we discuss the \code{convert-assignment} pass with its auxiliary
  9709. functions for expressions and definitions. The function for
  9710. expressions, \code{cnvt-assign-exp}, should take an expression and a
  9711. set of assigned-and-free variables (obtained from the result of
  9712. \code{assigned\&free}. In the case for $\VAR{x}$, if $x$ is
  9713. assigned-and-free, then unbox it by translating $\VAR{x}$ to a
  9714. \code{vector-ref}.
  9715. \begin{lstlisting}
  9716. (Var |$x$|)
  9717. |$\Rightarrow$|
  9718. (Prim 'vector-ref (list (Var |$x$|) (Int 0)))
  9719. \end{lstlisting}
  9720. %
  9721. In the case for $\LET{\LP\code{AssignedFree}\,
  9722. x\RP}{\itm{rhs}}{\itm{body}}$, recursively process \itm{rhs} to
  9723. obtain \itm{rhs'}. Next, recursively process \itm{body} to obtain
  9724. \itm{body'} but with $x$ added to the set of assigned-and-free
  9725. variables. Translate the let-expression as follows to bind $x$ to a
  9726. boxed value.
  9727. \begin{lstlisting}
  9728. (Let (AssignedFree |$x$|) |$rhs$| |$body$|)
  9729. |$\Rightarrow$|
  9730. (Let |$x$| (Prim 'vector (list |$rhs'$|)) |$body'$|)
  9731. \end{lstlisting}
  9732. %
  9733. In the case for $\SETBANG{x}{\itm{rhs}}$, recursively process
  9734. \itm{rhs} to obtain \itm{rhs'}. If $x$ is in the assigned-and-free
  9735. variables, translate the \code{set!} into a \code{vector-set!}
  9736. as follows.
  9737. \begin{lstlisting}
  9738. (SetBang |$x$| |$\itm{rhs}$|)
  9739. |$\Rightarrow$|
  9740. (Prim 'vector-set! (list (Var |$x$|) (Int 0) |$\itm{rhs'}$|))
  9741. \end{lstlisting}
  9742. %
  9743. The case for \code{Lambda} is non-trivial, but it is similar to the
  9744. case for function definitions, which we discuss next.
  9745. The auxiliary function for definitions, \code{cnvt-assign-def},
  9746. applies assignment conversion to function definitions.
  9747. We translate a function definition as follows.
  9748. \begin{lstlisting}
  9749. (Def |$f$| |$\itm{params}$| |$T$| |$\itm{info}$| |$\itm{body_1}$|)
  9750. |$\Rightarrow$|
  9751. (Def |$f$| |$\itm{params'}$| |$T$| |$\itm{info}$| |$\itm{body_4}$|)
  9752. \end{lstlisting}
  9753. So it remains to explain \itm{params'} and $\itm{body}_4$.
  9754. Let \itm{body_2}, $A_b$, and $F_b$ be the result of
  9755. \code{assigned\&free} on $\itm{body_1}$.
  9756. Let $P$ be the parameter names in \itm{params}.
  9757. We then apply \code{cnvt-assign-exp} to $\itm{body_2}$ to
  9758. obtain \itm{body_3}, passing $A_b \cap F_b \cap P$
  9759. as the set of assigned-and-free variables.
  9760. Finally, we obtain \itm{body_4} by wrapping \itm{body_3}
  9761. in a sequence of let-expressions that box the parameters
  9762. that are in $A_b \cap F_b$.
  9763. %
  9764. Regarding \itm{params'}, change the names of the parameters that are
  9765. in $A_b \cap F_b$ to maintain uniqueness (and so the let-bound
  9766. variables can retain the original names). Recall the second example in
  9767. Section~\ref{sec:assignment-scoping} involving a counter
  9768. abstraction. The following is the output of assignment version for
  9769. function \code{f}.
  9770. \begin{lstlisting}
  9771. (define (f0 [x1 : Integer]) : (Vector ( -> Integer) ( -> Void))
  9772. (vector
  9773. (lambda: () : Integer x1)
  9774. (lambda: () : Void (set! x1 (+ 1 x1)))))
  9775. |$\Rightarrow$|
  9776. (define (f0 [param_x1 : Integer]) : (Vector (-> Integer) (-> Void))
  9777. (let ([x1 (vector param_x1)])
  9778. (vector (lambda: () : Integer (vector-ref x1 0))
  9779. (lambda: () : Void
  9780. (vector-set! x1 0 (+ 1 (vector-ref x1 0)))))))
  9781. \end{lstlisting}
  9782. \section{Remove Complex Operands}
  9783. \label{sec:rco-loop}
  9784. The three new language forms, \code{while}, \code{set!}, and
  9785. \code{begin} are all complex expressions and their subexpressions are
  9786. allowed to be complex. Figure~\ref{fig:r4-anf-syntax} defines the
  9787. output language $R_4^{\dagger}$ of this pass.
  9788. \begin{figure}[tp]
  9789. \centering
  9790. \fbox{
  9791. \begin{minipage}{0.96\textwidth}
  9792. \small
  9793. \[
  9794. \begin{array}{rcl}
  9795. \Atm &::=& \gray{ \INT{\Int} \mid \VAR{\Var} \mid \BOOL{\itm{bool}}
  9796. \mid \VOID{} } \\
  9797. \Exp &::=& \ldots \mid \gray{ \LET{\Var}{\Exp}{\Exp} } \\
  9798. &\mid& \WHILE{\Exp}{\Exp} \mid \SETBANG{\Var}{\Exp}
  9799. \mid \BEGIN{\LP\Exp\ldots\RP}{\Exp} \\
  9800. \Def &::=& \gray{ \FUNDEF{\Var}{([\Var \code{:} \Type]\ldots)}{\Type}{\code{'()}}{\Exp} }\\
  9801. R^{\dagger}_8 &::=& \gray{ \PROGRAMDEFS{\code{'()}}{\Def} }
  9802. \end{array}
  9803. \]
  9804. \end{minipage}
  9805. }
  9806. \caption{$R_8^{\dagger}$ is $R_8$ in administrative normal form (ANF).}
  9807. \label{fig:r8-anf-syntax}
  9808. \end{figure}
  9809. As usual, when a complex expression appears in a grammar position that
  9810. needs to be atomic, such as the argument of a primitive operator, we
  9811. must introduce a temporary variable and bind it to the complex
  9812. expression. This approach applies, unchanged, to handle the new
  9813. language forms. For example, in the following code there are two
  9814. \code{begin} expressions appearing as arguments to \code{+}. The
  9815. output of \code{rco-exp} is shown below, in which the \code{begin}
  9816. expressions have been bound to temporary variables. Recall that
  9817. \code{let} expressions in $R_8^{\dagger}$ are allowed to have
  9818. arbitrary expressions in their right-hand-side expression, so it is
  9819. fine to place \code{begin} there.
  9820. \begin{lstlisting}
  9821. (let ([x0 10])
  9822. (let ([y1 0])
  9823. (+ (+ (begin (set! y1 (read)) x0)
  9824. (begin (set! x0 (read)) y1))
  9825. x0)))
  9826. |$\Rightarrow$|
  9827. (let ([x0 10])
  9828. (let ([y1 0])
  9829. (let ([tmp2 (begin (set! y1 (read)) x0)])
  9830. (let ([tmp3 (begin (set! x0 (read)) y1)])
  9831. (let ([tmp4 (+ tmp2 tmp3)])
  9832. (+ tmp4 x0))))))
  9833. \end{lstlisting}
  9834. \section{Explicate Control and $C_7$}
  9835. \label{sec:explicate-loop}
  9836. Recall that in the \code{explicate-control} pass we define one helper
  9837. function for each kind of position in the program. For the $R_1$
  9838. language of integers and variables we needed kinds of positions:
  9839. assignment and tail. The \code{if} expressions of $R_2$ introduced
  9840. predicate positions. For $R_8$, the \code{begin} expression introduces
  9841. yet another kind of position: effect position. Except for the last
  9842. subexpression, the subexpressions inside a \code{begin} are evaluated
  9843. only for their effect. Their result values are discarded. We can
  9844. generate better code by taking this fact into account.
  9845. The output language of \code{explicate-control} is $C_7$
  9846. (Figure~\ref{fig:c7-syntax}), which is nearly identical to $C_4$. The
  9847. only difference is that \code{Call}, \code{vector-set!}, and
  9848. \code{read} may also appear as statements.
  9849. \begin{figure}[tp]
  9850. \fbox{
  9851. \begin{minipage}{0.96\textwidth}
  9852. \small
  9853. \[
  9854. \begin{array}{lcl}
  9855. \Stmt &::=& \gray{ \ASSIGN{\VAR{\Var}}{\Exp}
  9856. \mid \LP\key{Collect} \,\itm{int}\RP } \\
  9857. &\mid& \CALL{\Atm}{\LP\Atm\ldots\RP} \mid \READ{}\\
  9858. &\mid& \LP\key{Prim}~\key{'vector-set!}\,\LP\key{list}\,\Atm\,\INT{\Int}\,\Atm\RP\RP \\
  9859. \Def &::=& \DEF{\itm{label}}{\LP\LS\Var\key{:}\Type\RS\ldots\RP}{\Type}{\itm{info}}{\LP\LP\itm{label}\,\key{.}\,\Tail\RP\ldots\RP}\\
  9860. C_7 & ::= & \PROGRAMDEFS{\itm{info}}{\LP\Def\ldots\RP}
  9861. \end{array}
  9862. \]
  9863. \end{minipage}
  9864. }
  9865. \caption{The abstract syntax of $C_7$, extending $C_4$ (Figure~\ref{fig:c4-syntax}).}
  9866. \label{fig:c7-syntax}
  9867. \end{figure}
  9868. The new auxiliary function \code{explicate-effect} takes an expression
  9869. (in an effect position) and a promise of a continuation block. The
  9870. function returns a promise for a $\Tail$ that includes the generated
  9871. code for the input expression followed by the continuation block. If
  9872. the expression is obviously pure, that is, never causes side effects,
  9873. then the expression can be removed, so the result is just the
  9874. continuation block.
  9875. %
  9876. The $\WHILE{\itm{cnd}}{\itm{body}}$ expression is the most interesting
  9877. case. First, you will need a fresh label $\itm{loop}$ for the top of
  9878. the loop. Recursively process the \itm{body} (in effect position)
  9879. with the a \code{goto} to $\itm{loop}$ as the continuation, producing
  9880. \itm{body'}. Next, process the \itm{cnd} (in predicate position) with
  9881. \itm{body'} as the then-branch and the continuation block as the
  9882. else-branch. The result should be added to the control-flow graph with
  9883. the label \itm{loop}. The result for the whole \code{while} loop is a
  9884. \code{goto} to the \itm{loop} label. Note that the loop should only be
  9885. added to the control-flow graph if the loop is indeed used, which can
  9886. be accomplished using \code{delay}.
  9887. The auxiliary functions for tail, assignment, and predicate positions
  9888. need to be updated. The three new language forms, \code{while},
  9889. \code{set!}, and \code{begin}, can appear in assignment and tail
  9890. positions. Only \code{begin} may appear in predicate positions; the
  9891. other two have result type \code{Void}.
  9892. \section{Select Instructions}
  9893. \label{sec:select-instructions-loop}
  9894. Only three small additions are needed in the
  9895. \code{select-instructions} pass to handle the changes to $C_7$. That
  9896. is, \code{Call}, \code{read}, and \code{vector-set!} may now appear as
  9897. stand-alone statements instead of only appearing on the right-hand
  9898. side of an assignment statement. The code generation is nearly
  9899. identical; just leave off the instruction for moving the result into
  9900. the left-hand side.
  9901. \section{Register Allocation}
  9902. \label{sec:register-allocation-loop}
  9903. As discussed in Section~\ref{sec:dataflow-analysis}, the presence of
  9904. loops in $R_8$ means that the control-flow graphs may contain cycles,
  9905. which complicates the liveness analysis needed for register
  9906. allocation.
  9907. \subsection{Liveness Analysis}
  9908. \label{sec:liveness-analysis-r8}
  9909. We recommend using the generic \code{analyze-dataflow} function that
  9910. was presented at the end of Section~\ref{sec:dataflow-analysis} to
  9911. perform liveness analysis, replacing the code in
  9912. \code{uncover-live-CFG} that processed the basic blocks in topological
  9913. order (Section~\ref{sec:liveness-analysis-r2}).
  9914. The \code{analyze-dataflow} function has four parameters.
  9915. \begin{enumerate}
  9916. \item The first parameter \code{G} should be a directed graph from the
  9917. \code{racket/graph} package (see the sidebar in
  9918. Section~\ref{sec:build-interference}) that represents the
  9919. control-flow graph.
  9920. \item The second parameter \code{transfer} is a function that applies
  9921. liveness analysis to a basic block. It takes two parameters: the
  9922. label for the block to analyze and the live-after set for that
  9923. block. The transfer function should return the live-before set for
  9924. the block. Also, as a side-effect, it should update the block's
  9925. $\itm{info}$ with the liveness information for each instruction. To
  9926. implement the \code{transfer} function, you should be able to reuse
  9927. the code you already have for analyzing basic blocks.
  9928. \item The third and fourth parameters of \code{analyze-dataflow} are
  9929. \code{bottom} and \code{join} for the lattice of abstract states,
  9930. i.e. sets of locations. The bottom of the lattice is the empty set
  9931. \code{(set)} and the join operator is \code{set-union}.
  9932. \end{enumerate}
  9933. \begin{figure}[p]
  9934. \begin{tikzpicture}[baseline=(current bounding box.center)]
  9935. \node (R4) at (0,2) {\large $R_8$};
  9936. \node (R4-2) at (3,2) {\large $R_8$};
  9937. \node (R4-3) at (6,2) {\large $R_8$};
  9938. \node (R4-4) at (9,2) {\large $R'_8$};
  9939. \node (F1-1) at (12,0) {\large $R'_8$};
  9940. \node (F1-2) at (9,0) {\large $R'_8$};
  9941. \node (F1-3) at (6,0) {\large $R'_8$};
  9942. \node (F1-4) at (3,0) {\large $R'_8$};
  9943. \node (F1-5) at (0,0) {\large $R'_8$};
  9944. \node (C3-2) at (3,-2) {\large $C_3$};
  9945. \node (x86-2) at (3,-4) {\large $\text{x86}^{*}_3$};
  9946. \node (x86-3) at (6,-4) {\large $\text{x86}^{*}_3$};
  9947. \node (x86-4) at (9,-4) {\large $\text{x86}^{*}_3$};
  9948. \node (x86-5) at (9,-6) {\large $\text{x86}^{\dagger}_3$};
  9949. \node (x86-2-1) at (3,-6) {\large $\text{x86}^{*}_3$};
  9950. \node (x86-2-2) at (6,-6) {\large $\text{x86}^{*}_3$};
  9951. %% \path[->,bend left=15] (R4) edge [above] node
  9952. %% {\ttfamily\footnotesize type-check} (R4-2);
  9953. \path[->,bend left=15] (R4) edge [above] node
  9954. {\ttfamily\footnotesize shrink} (R4-2);
  9955. \path[->,bend left=15] (R4-2) edge [above] node
  9956. {\ttfamily\footnotesize uniquify} (R4-3);
  9957. \path[->,bend left=15] (R4-3) edge [above] node
  9958. {\ttfamily\footnotesize reveal-functions} (R4-4);
  9959. \path[->,bend left=15] (R4-4) edge [right] node
  9960. {\ttfamily\footnotesize convert-assignments} (F1-1);
  9961. \path[->,bend left=15] (F1-1) edge [below] node
  9962. {\ttfamily\footnotesize convert-to-clos.} (F1-2);
  9963. \path[->,bend right=15] (F1-2) edge [above] node
  9964. {\ttfamily\footnotesize limit-fun.} (F1-3);
  9965. \path[->,bend right=15] (F1-3) edge [above] node
  9966. {\ttfamily\footnotesize expose-alloc.} (F1-4);
  9967. \path[->,bend right=15] (F1-4) edge [above] node
  9968. {\ttfamily\footnotesize remove-complex.} (F1-5);
  9969. \path[->,bend right=15] (F1-5) edge [right] node
  9970. {\ttfamily\footnotesize explicate-control} (C3-2);
  9971. \path[->,bend left=15] (C3-2) edge [left] node
  9972. {\ttfamily\footnotesize select-instr.} (x86-2);
  9973. \path[->,bend right=15] (x86-2) edge [left] node
  9974. {\ttfamily\footnotesize uncover-live} (x86-2-1);
  9975. \path[->,bend right=15] (x86-2-1) edge [below] node
  9976. {\ttfamily\footnotesize build-inter.} (x86-2-2);
  9977. \path[->,bend right=15] (x86-2-2) edge [left] node
  9978. {\ttfamily\footnotesize allocate-reg.} (x86-3);
  9979. \path[->,bend left=15] (x86-3) edge [above] node
  9980. {\ttfamily\footnotesize patch-instr.} (x86-4);
  9981. \path[->,bend left=15] (x86-4) edge [right] node {\ttfamily\footnotesize print-x86} (x86-5);
  9982. \end{tikzpicture}
  9983. \caption{Diagram of the passes for $R_8$ (loops and assignment).}
  9984. \label{fig:R8-passes}
  9985. \end{figure}
  9986. Figure~\ref{fig:R8-passes} provides an overview of all the passes needed
  9987. for the compilation of $R_8$.
  9988. % TODO: challenge assignment
  9989. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  9990. \chapter{Gradual Typing}
  9991. \label{ch:gradual-typing}
  9992. \index{gradual typing}
  9993. This chapter studies a language, $R_9$, in which the programmer can
  9994. choose between static and dynamic type checking for different regions
  9995. of a program, thereby mixing the statically typed $R_8$ language with
  9996. the dynamically typed $R_7$. There are several approaches to mixing
  9997. static and dynamic typing, including multi-language
  9998. integration~\citep{Tobin-Hochstadt:2006fk,Matthews:2007zr} and hybrid
  9999. type checking~\citep{Flanagan:2006mn,Gronski:2006uq}. In this chapter
  10000. we focus on \emph{gradual typing}\index{gradual typing}, in which the
  10001. programmer controls the amount of static versus dynamic checking by
  10002. adding or removing type annotations on parameters and
  10003. variables~\citep{Anderson:2002kd,Siek:2006bh}.
  10004. %
  10005. The concrete syntax of $R_9$ is defined in
  10006. Figure~\ref{fig:r9-concrete-syntax} and its abstract syntax is defined
  10007. in Figure~\ref{fig:r9-syntax}. The main syntactic difference between
  10008. $R_8$ and $R_9$ is the additional \itm{param} and \itm{ret}
  10009. non-terminals that make type annotations optional. The return types
  10010. are not optional in the abstract syntax; the parser fills in
  10011. \code{Any} when the return type is not specified in the concrete
  10012. syntax.
  10013. \begin{figure}[tp]
  10014. \centering
  10015. \fbox{
  10016. \begin{minipage}{0.96\textwidth}
  10017. \small
  10018. \[
  10019. \begin{array}{lcl}
  10020. \itm{param} &::=& \Var \mid \LS\Var \key{:} \Type\RS \\
  10021. \itm{ret} &::=& \epsilon \mid \key{:} \Type \\
  10022. \Exp &::=& \gray{ \Int \mid \CREAD{} \mid \CNEG{\Exp}
  10023. \mid \CADD{\Exp}{\Exp} \mid \CSUB{\Exp}{\Exp} } \\
  10024. &\mid& \gray{ \Var \mid \CLET{\Var}{\Exp}{\Exp} }\\
  10025. &\mid& \gray{\key{\#t} \mid \key{\#f}
  10026. \mid (\key{and}\;\Exp\;\Exp)
  10027. \mid (\key{or}\;\Exp\;\Exp)
  10028. \mid (\key{not}\;\Exp) } \\
  10029. &\mid& \gray{ (\key{eq?}\;\Exp\;\Exp) \mid \CIF{\Exp}{\Exp}{\Exp} } \\
  10030. &\mid& \gray{ (\key{vector}\;\Exp\ldots) \mid
  10031. (\key{vector-ref}\;\Exp\;\Int)} \\
  10032. &\mid& \gray{(\key{vector-set!}\;\Exp\;\Int\;\Exp)\mid (\key{void})
  10033. \mid (\Exp \; \Exp\ldots) } \\
  10034. &\mid& \gray{ \LP \key{procedure-arity}~\Exp\RP }
  10035. \mid \CGLAMBDA{\LP\itm{param}\ldots\RP}{\itm{ret}}{\Exp} \\
  10036. &\mid& \gray{ \CSETBANG{\Var}{\Exp}
  10037. \mid \CBEGIN{\Exp\ldots}{\Exp}
  10038. \mid \CWHILE{\Exp}{\Exp} } \\
  10039. \Def &::=& \CGDEF{\Var}{\itm{param}\ldots}{\itm{ret}}{\Exp} \\
  10040. R_9 &::=& \gray{\Def\ldots \; \Exp}
  10041. \end{array}
  10042. \]
  10043. \end{minipage}
  10044. }
  10045. \caption{The concrete syntax of $R_9$, extending $R_8$ (Figure~\ref{fig:r8-concrete-syntax}).}
  10046. \label{fig:r9-concrete-syntax}
  10047. \end{figure}
  10048. \begin{figure}[tp]
  10049. \centering
  10050. \fbox{
  10051. \begin{minipage}{0.96\textwidth}
  10052. \small
  10053. \[
  10054. \begin{array}{lcl}
  10055. \itm{param} &::=& \Var \mid \LS\Var \key{:} \Type\RS \\
  10056. \Exp &::=& \gray{ \INT{\Int} \VAR{\Var} \mid \LET{\Var}{\Exp}{\Exp} } \\
  10057. &\mid& \gray{ \PRIM{\itm{op}}{\Exp\ldots} }\\
  10058. &\mid& \gray{ \BOOL{\itm{bool}}
  10059. \mid \IF{\Exp}{\Exp}{\Exp} } \\
  10060. &\mid& \gray{ \VOID{} \mid \LP\key{HasType}~\Exp~\Type \RP
  10061. \mid \APPLY{\Exp}{\Exp\ldots} }\\
  10062. &\mid& \LAMBDA{\LP\itm{param}\ldots\RP}{\Type}{\Exp} \\
  10063. &\mid& \gray{ \SETBANG{\Var}{\Exp} \mid \BEGIN{\LP\Exp\ldots\RP}{\Exp} } \\
  10064. &\mid& \gray{ \WHILE{\Exp}{\Exp} } \\
  10065. \Def &::=& \FUNDEF{\Var}{\LP\itm{param}\ldots\RP}{\Type}{\code{'()}}{\Exp} \\
  10066. R_9 &::=& \gray{ \PROGRAMDEFSEXP{\code{'()}}{\LP\Def\ldots\RP}{\Exp} }
  10067. \end{array}
  10068. \]
  10069. \end{minipage}
  10070. }
  10071. \caption{The abstract syntax of $R_9$, extending $R_8$ (Figure~\ref{fig:r8-syntax}).}
  10072. \label{fig:r9-syntax}
  10073. \end{figure}
  10074. Both the type checker and the interpreter for $R_9$ require some
  10075. interesting changes to enable gradual typing, which we discuss in the
  10076. next two sections while revisiting the \code{map-vec} example from
  10077. Chapter~\ref{ch:functions}. In Figure~\ref{fig:gradual-map-vec} we
  10078. present the example again but this time we leave off the type
  10079. annotations from the \code{add1} function.
  10080. \begin{figure}[btp]
  10081. % gradual_test_9.rkt
  10082. \begin{lstlisting}
  10083. (define (map-vec [f : (Integer -> Integer)]
  10084. [v : (Vector Integer Integer)])
  10085. : (Vector Integer Integer)
  10086. (vector (f (vector-ref v 0)) (f (vector-ref v 1))))
  10087. (define (add1 x) (+ x 1))
  10088. (vector-ref (map-vec add1 (vector 0 41)) 1)
  10089. \end{lstlisting}
  10090. \caption{A partially-typed version of the \code{map-vec} example.}
  10091. \label{fig:gradual-map-vec}
  10092. \end{figure}
  10093. \section{Type Checking $R_9$, Casts, and $R'_9$}
  10094. \label{sec:gradual-type-check}
  10095. The type checker for $R_9$ uses the \code{Any} type for missing
  10096. parameter and return types. For example, the \code{x} parameter of
  10097. \code{add1} in Figure~\ref{fig:gradual-map-vec} is given the type
  10098. \code{Any} and the return type of \code{add1} is \code{Any}. Next
  10099. consider the \code{+} operator inside \code{add1}. It expects both
  10100. arguments to have type \code{Integer}, but its first argument \code{x}
  10101. has type \code{Any}. In a gradually typed language, such differences
  10102. are allowed so long as the types are \emph{consistent}, that is, they
  10103. are equal except in places where there is an \code{Any} type. The type
  10104. \code{Any} is consistent with every other type.
  10105. Figure~\ref{fig:consistent} defines the \code{consistent?} predicate.
  10106. \begin{figure}[tbp]
  10107. \begin{lstlisting}
  10108. (define/public (consistent? t1 t2)
  10109. (match* (t1 t2)
  10110. [('Integer 'Integer) #t]
  10111. [('Boolean 'Boolean) #t]
  10112. [('Void 'Void) #t]
  10113. [('Any t2) #t]
  10114. [(t1 'Any) #t]
  10115. [(`(Vector ,ts1 ...) `(Vector ,ts2 ...))
  10116. (for/and ([t1 ts1] [t2 ts2]) (consistent? t1 t2))]
  10117. [(`(,ts1 ... -> ,rt1) `(,ts2 ... -> ,rt2))
  10118. (and (for/and ([t1 ts1] [t2 ts2]) (consistent? t1 t2))
  10119. (consistent? rt1 rt2))]
  10120. [(other wise) #f]))
  10121. \end{lstlisting}
  10122. \caption{The consistency predicate on types, a method in
  10123. \code{type-check-gradual-class}.}
  10124. \label{fig:consistent}
  10125. \end{figure}
  10126. Returning to the \code{map-vec} example of
  10127. Figure~\ref{fig:gradual-map-vec}, the \code{add1} function has type
  10128. \code{(Any -> Any)} but parameter \code{f} of \code{map-vec} has type
  10129. \code{(Integer -> Integer)}. The type checker for $R_9$ allows this
  10130. because the two types are consistent. In particular, \code{->} is
  10131. equal to \code{->} and because \code{Any} is consistent with
  10132. \code{Integer}.
  10133. Next consider a program with an error, such as applying the
  10134. \code{map-vec} to a function that sometimes returns a Boolean, as
  10135. shown in Figure~\ref{fig:map-vec-maybe-add1}. The type checker for
  10136. $R_9$ accepts this program because the type of \code{maybe-add1} is
  10137. consistent with the type of parameter \code{f} of \code{map-vec}, that
  10138. is, \code{(Any -> Any)} is consistent with \code{(Integer ->
  10139. Integer)}. One might say that a gradual type checker is optimistic
  10140. in that it accepts programs that might execute without a runtime type
  10141. error.
  10142. %
  10143. Unfortunately, running this program with input \code{1} triggers an
  10144. error when the \code{maybe-add1} function returns \code{\#t}. $R_9$
  10145. performs checking at runtime to ensure the integrity of the static
  10146. types, such as the \code{(Integer -> Integer)} annotation on parameter
  10147. \code{f} of \code{map-vec}. This runtime checking is carried out by a
  10148. new \code{Cast} form that is inserted by the type checker. Thus, the
  10149. output of the type checker is a program in the $R'_9$ language, which
  10150. adds \code{Cast} to $R_8$, as shown in
  10151. Figure~\ref{fig:r9-prime-syntax}.
  10152. \begin{figure}[tp]
  10153. \centering
  10154. \fbox{
  10155. \begin{minipage}{0.96\textwidth}
  10156. \small
  10157. \[
  10158. \begin{array}{lcl}
  10159. \Exp &::=& \ldots \mid \CAST{\Exp}{\Type}{\Type} \\
  10160. R'_9 &::=& \gray{ \PROGRAMDEFSEXP{\code{'()}}{\LP\Def\ldots\RP}{\Exp} }
  10161. \end{array}
  10162. \]
  10163. \end{minipage}
  10164. }
  10165. \caption{The abstract syntax of $R'_9$, extending $R_8$ (Figure~\ref{fig:r8-syntax}).}
  10166. \label{fig:r9-prime-syntax}
  10167. \end{figure}
  10168. \begin{figure}[tbp]
  10169. \begin{lstlisting}
  10170. (define (map-vec [f : (Integer -> Integer)]
  10171. [v : (Vector Integer Integer)])
  10172. : (Vector Integer Integer)
  10173. (vector (f (vector-ref v 0)) (f (vector-ref v 1))))
  10174. (define (add1 x) (+ x 1))
  10175. (define (true) #t)
  10176. (define (maybe-add1 x) (if (eq? 0 (read)) (add1 x) (true)))
  10177. (vector-ref (map-vec maybe-add1 (vector 0 41)) 0)
  10178. \end{lstlisting}
  10179. \caption{A variant of the \code{map-vec} example with an error.}
  10180. \label{fig:map-vec-maybe-add1}
  10181. \end{figure}
  10182. Figure~\ref{fig:map-vec-cast} shows the output of the type checker for
  10183. \code{map-vec} and \code{maybe-add1}. The idea is that \code{Cast} is
  10184. inserted every time the type checker sees two types that are
  10185. consistent but not equal. In the \code{add1} function, \code{x} is
  10186. cast to \code{Integer} and the result of the \code{+} is cast to
  10187. \code{Any}. In the call to \code{map-vec}, the \code{add1} argument
  10188. is cast from \code{(Any -> Any)} to \code{(Integer -> Integer)}.
  10189. \begin{figure}[btp]
  10190. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  10191. (define (map-vec [f : (Integer -> Integer)] [v : (Vector Integer Integer)])
  10192. : (Vector Integer Integer)
  10193. (vector (f (vector-ref v 0)) (f (vector-ref v 1))))
  10194. (define (add1 [x : Any]) : Any
  10195. (cast (+ (cast x Any Integer) 1) Integer Any))
  10196. (define (true) : Any (cast #t Boolean Any))
  10197. (define (maybe-add1 [x : Any]) : Any
  10198. (if (eq? 0 (read)) (add1 x) (true)))
  10199. (vector-ref (map-vec (cast maybe-add1 (Any -> Any) (Integer -> Integer))
  10200. (vector 0 41)) 0)
  10201. \end{lstlisting}
  10202. \caption{Output of type checking \code{map-vec}
  10203. and \code{maybe-add1}.}
  10204. \label{fig:map-vec-cast}
  10205. \end{figure}
  10206. The type checker for $R_9$ is defined in
  10207. Figures~\ref{fig:type-check-R9-1}, \ref{fig:type-check-R9-2},
  10208. and \ref{fig:type-check-R9-3}.
  10209. \begin{figure}[tbp]
  10210. \begin{lstlisting}[basicstyle=\ttfamily\scriptsize]
  10211. (define type-check-gradual-class
  10212. (class type-check-R8-class
  10213. (super-new)
  10214. (inherit operator-types type-predicates)
  10215. (define/override (type-check-exp env)
  10216. (lambda (e)
  10217. (define recur (type-check-exp env))
  10218. (match e
  10219. [(Prim 'vector-length (list e1))
  10220. (define-values (e1^ t) (recur e1))
  10221. (match t
  10222. [`(Vector ,ts ...)
  10223. (values (Prim 'vector-length (list e1^)) 'Integer)]
  10224. ['Any (values (Prim 'any-vector-length (list e1^)) 'Integer)])]
  10225. [(Prim 'vector-ref (list e1 e2))
  10226. (define-values (e1^ t1) (recur e1))
  10227. (define-values (e2^ t2) (recur e2))
  10228. (check-consistent? t2 'Integer e)
  10229. (match t1
  10230. [`(Vector ,ts ...)
  10231. (match e2^
  10232. [(Int i)
  10233. (unless (and (0 . <= . i) (i . < . (length ts)))
  10234. (error 'type-check "invalid index ~a in ~a" i e))
  10235. (values (Prim 'vector-ref (list e1^ (Int i))) (list-ref ts i))]
  10236. [else (define e1^^ (make-cast e1^ t1 'Any))
  10237. (define e2^^ (make-cast e2^ t2 'Integer))
  10238. (values (Prim 'any-vector-ref (list e1^^ e2^^)) 'Any)])]
  10239. ['Any
  10240. (define e2^^ (make-cast e2^ t2 'Integer))
  10241. (values (Prim 'any-vector-ref (list e1^ e2^^)) 'Any)]
  10242. [else (error 'type-check "expected vector not ~a\nin ~v" t1 e)])]
  10243. [(Prim 'vector-set! (list e1 e2 e3) )
  10244. (define-values (e1^ t1) (recur e1))
  10245. (define-values (e2^ t2) (recur e2))
  10246. (define-values (e3^ t3) (recur e3))
  10247. (check-consistent? t2 'Integer e)
  10248. (match t1
  10249. [`(Vector ,ts ...)
  10250. (match e2^
  10251. [(Int i)
  10252. (unless (and (0 . <= . i) (i . < . (length ts)))
  10253. (error 'type-check "invalid index ~a in ~a" i e))
  10254. (check-consistent? (list-ref ts i) t3 e)
  10255. (define e3^^ (make-cast e3^ t3 (list-ref ts i)))
  10256. (values (Prim 'vector-set! (list e1^ (Int i) e3^^)) 'Void)]
  10257. [else
  10258. (define e1^^ (make-cast e1^ t1 'Any))
  10259. (define e2^^ (make-cast e2^ t2 'Integer))
  10260. (define e3^^ (make-cast e3^ t3 'Any))
  10261. (values (Prim 'any-vector-set! (list e1^^ e2^^ e3^^)) 'Void)])]
  10262. ['Any
  10263. (define e2^^ (make-cast e2^ t2 'Integer))
  10264. (define e3^^ (make-cast e3^ t3 'Any))
  10265. (values (Prim 'any-vector-set! (list e1^ e2^^ e3^^)) 'Void)]
  10266. [else (error 'type-check "expected vector not ~a\nin ~v" t1 e)])]
  10267. \end{lstlisting}
  10268. \caption{Type checker for the $R_9$ language, part 1.}
  10269. \label{fig:type-check-R9-1}
  10270. \end{figure}
  10271. \begin{figure}[tbp]
  10272. \begin{lstlisting}[basicstyle=\ttfamily\scriptsize]
  10273. [(Prim 'eq? (list e1 e2))
  10274. (define-values (e1^ t1) (recur e1))
  10275. (define-values (e2^ t2) (recur e2))
  10276. (check-consistent? t1 t2 e)
  10277. (define T (meet t1 t2))
  10278. (values (Prim 'eq? (list (make-cast e1^ t1 T) (make-cast e2^ t2 T)))
  10279. 'Boolean)]
  10280. [(Prim 'not (list e1))
  10281. (recur (If (Prim 'eq? (list e1 (Inject (Bool #f) 'Boolean)))
  10282. (Bool #t) (Bool #f)))]
  10283. [(Prim 'and (list e1 e2))
  10284. (recur (If e1 e2 (Bool #f)))]
  10285. [(Prim 'or (list e1 e2))
  10286. (define tmp (gensym 'tmp))
  10287. (recur (Let tmp e1 (If (Var tmp) (Var tmp) e2)))]
  10288. [(Prim op es)
  10289. #:when (not (set-member? explicit-prim-ops op))
  10290. (define-values (new-es ts)
  10291. (for/lists (exprs types) ([e es])
  10292. (recur e)))
  10293. (define-values (t-ret new-es^) (type-check-op op ts new-es e))
  10294. (values (Prim op new-es^) t-ret)]
  10295. [(If e1 e2 e3)
  10296. (define-values (e1^ T1) (recur e1))
  10297. (define-values (e2^ T2) (recur e2))
  10298. (define-values (e3^ T3) (recur e3))
  10299. (check-consistent? T2 T3 e)
  10300. (match T1
  10301. ['Boolean
  10302. (define Tif (join T2 T3))
  10303. (values (If e1^ (make-cast e2^ T2 Tif)
  10304. (make-cast e3^ T3 Tif)) Tif)]
  10305. ['Any
  10306. (define Tif (meet T2 T3))
  10307. (values (If (Prim 'eq? (list e1^ (Inject (Bool #f) 'Boolean)))
  10308. (make-cast e3^ T3 Tif) (make-cast e2^ T2 Tif))
  10309. Tif)]
  10310. [else (error 'type-check "expected Boolean not ~a\nin ~v" T1 e)])]
  10311. [(HasType e1 T)
  10312. (define-values (e1^ T1) (recur e1))
  10313. (check-consistent? T1 T)
  10314. (values (make-cast e1^ T1 T) T)]
  10315. [(SetBang x e1)
  10316. (define-values (e1^ T1) (recur e1))
  10317. (define varT (dict-ref env x))
  10318. (check-consistent? T1 varT e)
  10319. (values (SetBang x (make-cast e1^ T1 varT)) 'Void)]
  10320. [(WhileLoop e1 e2)
  10321. (define-values (e1^ T1) (recur e1))
  10322. (check-consistent? T1 'Boolean e)
  10323. (define-values (e2^ T2) ((type-check-exp env) e2))
  10324. (values (WhileLoop (make-cast e1^ T1 'Boolean) e2^) 'Void)]
  10325. \end{lstlisting}
  10326. \caption{Type checker for the $R_9$ language, part 2.}
  10327. \label{fig:type-check-R9-2}
  10328. \end{figure}
  10329. \begin{figure}[tbp]
  10330. \begin{lstlisting}[basicstyle=\ttfamily\scriptsize]
  10331. [(Apply e1 e2s)
  10332. (define-values (e1^ T1) (recur e1))
  10333. (define-values (e2s^ T2s) (for/lists (e* ty*) ([e2 e2s]) (recur e2)))
  10334. (match T1
  10335. [`(,T1ps ... -> ,T1rt)
  10336. (for ([T2 T2s] [Tp T1ps])
  10337. (check-consistent? T2 Tp e))
  10338. (define e2s^^ (for/list ([e2 e2s^] [src T2s] [tgt T1ps])
  10339. (make-cast e2 src tgt)))
  10340. (values (Apply e1^ e2s^^) T1rt)]
  10341. [`Any
  10342. (define e1^^ (make-cast e1^ 'Any
  10343. `(,@(for/list ([e e2s]) 'Any) -> Any)))
  10344. (define e2s^^ (for/list ([e2 e2s^] [src T2s])
  10345. (make-cast e2 src 'Any)))
  10346. (values (Apply e1^^ e2s^^) 'Any)]
  10347. [else (error 'type-check "expected function not ~a\nin ~v" T1 e)])]
  10348. [(Lambda params Tr e1)
  10349. (define-values (xs Ts) (for/lists (l1 l2) ([p params])
  10350. (match p
  10351. [`[,x : ,T] (values x T)]
  10352. [(? symbol? x) (values x 'Any)])))
  10353. (define-values (e1^ T1)
  10354. ((type-check-exp (append (map cons xs Ts) env)) e1))
  10355. (check-consistent? Tr T1 e)
  10356. (values (Lambda (for/list ([x xs] [T Ts]) `[,x : ,T]) Tr
  10357. (make-cast e1^ T1 Tr)) `(,@Ts -> ,Tr))]
  10358. [else ((super type-check-exp env) e)]
  10359. )))
  10360. \end{lstlisting}
  10361. \caption{Type checker for the $R_9$ language, part 3.}
  10362. \label{fig:type-check-R9-3}
  10363. \end{figure}
  10364. \begin{figure}[tbp]
  10365. \begin{lstlisting}[basicstyle=\ttfamily\scriptsize]
  10366. (define/public (join t1 t2)
  10367. (match* (t1 t2)
  10368. [('Integer 'Integer) 'Integer]
  10369. [('Boolean 'Boolean) 'Boolean]
  10370. [('Void 'Void) 'Void]
  10371. [('Any t2) t2]
  10372. [(t1 'Any) t1]
  10373. [(`(Vector ,ts1 ...) `(Vector ,ts2 ...))
  10374. `(Vector ,@(for/list ([t1 ts1] [t2 ts2]) (join t1 t2)))]
  10375. [(`(,ts1 ... -> ,rt1) `(,ts2 ... -> ,rt2))
  10376. `(,@(for/list ([t1 ts1] [t2 ts2]) (join t1 t2))
  10377. -> ,(join rt1 rt2))]))
  10378. (define/public (meet t1 t2)
  10379. (match* (t1 t2)
  10380. [('Integer 'Integer) 'Integer]
  10381. [('Boolean 'Boolean) 'Boolean]
  10382. [('Void 'Void) 'Void]
  10383. [('Any t2) 'Any]
  10384. [(t1 'Any) 'Any]
  10385. [(`(Vector ,ts1 ...) `(Vector ,ts2 ...))
  10386. `(Vector ,@(for/list ([t1 ts1] [t2 ts2]) (meet t1 t2)))]
  10387. [(`(,ts1 ... -> ,rt1) `(,ts2 ... -> ,rt2))
  10388. `(,@(for/list ([t1 ts1] [t2 ts2]) (meet t1 t2))
  10389. -> ,(meet rt1 rt2))]))
  10390. (define/public (make-cast e src tgt)
  10391. (cond [(equal? src tgt) e] [else (Cast e src tgt)]))
  10392. (define/public (check-consistent? t1 t2 e)
  10393. (unless (consistent? t1 t2)
  10394. (error 'type-check "~a is inconsistent with ~a\nin ~v" t1 t2 e)))
  10395. (define/override (type-check-op op arg-types args e)
  10396. (match (dict-ref (operator-types) op)
  10397. [`(,param-types . ,return-type)
  10398. (for ([at arg-types] [pt param-types])
  10399. (check-consistent? at pt e))
  10400. (values return-type
  10401. (for/list ([e args] [s arg-types] [t param-types])
  10402. (make-cast e s t)))]
  10403. [else (error 'type-check-op "unrecognized ~a" op)]))
  10404. (define explicit-prim-ops
  10405. (set-union
  10406. (type-predicates)
  10407. (set 'procedure-arity 'eq?
  10408. 'vector 'vector-length 'vector-ref 'vector-set!
  10409. 'any-vector-length 'any-vector-ref 'any-vector-set!)))
  10410. (define/override (fun-def-type d)
  10411. (match d
  10412. [(Def f params rt info body)
  10413. (define ps
  10414. (for/list ([p params])
  10415. (match p
  10416. [`[,x : ,T] T]
  10417. [(? symbol?) 'Any]
  10418. [else (error 'fun-def-type "unmatched parameter ~a" p)])))
  10419. `(,@ps -> ,rt)]
  10420. [else (error 'fun-def-type "ill-formed function definition in ~a" d)]))
  10421. \end{lstlisting}
  10422. \caption{Auxiliary functions for type checking $R_9$.}
  10423. \label{fig:type-check-R9-aux}
  10424. \end{figure}
  10425. \clearpage
  10426. \section{Interpreting $R'_9$}
  10427. \label{sec:interp-casts}
  10428. The runtime behavior of first-order casts is straightforward, that is,
  10429. casts involving simple types such as \code{Integer} and
  10430. \code{Boolean}. For example, a cast from \code{Integer} to \code{Any}
  10431. can be accomplished with the \code{Inject} operator of $R_6$, which
  10432. puts the integer into a tagged value
  10433. (Figure~\ref{fig:interp-R6}). Similarly, a cast from \code{Any} to
  10434. \code{Integer} is accomplished with the \code{Project} operator, that
  10435. is, by checking the value's tag and either retrieving the underlying
  10436. integer or signaling an error if it the tag is not the one for
  10437. integers (Figure~\ref{fig:apply-project}).
  10438. %
  10439. Things get more interesting for higher-order casts, that is, casts
  10440. involving function or vector types.
  10441. Consider the cast of the function \code{maybe-add1} from \code{(Any ->
  10442. Any)} to \code{(Integer -> Integer)}. When a function flows through
  10443. this cast at runtime, we can't know in general whether the function
  10444. will always return an integer.\footnote{Predicting the return value of
  10445. a function is equivalent to the halting problem, which is
  10446. undecidable.} The $R'_9$ interpreter therefore delays the checking
  10447. of the cast until the function is applied. This is accomplished by
  10448. wrapping \code{maybe-add1} in a new function that casts its parameter
  10449. from \code{Integer} to \code{Any}, applies \code{maybe-add1}, and then
  10450. casts the return value from \code{Any} to \code{Integer}.
  10451. Turning our attention to casts involving vector types, we consider the
  10452. example in Figure~\ref{fig:map-vec-bang} that defines a
  10453. partially-typed version of \code{map-vec} whose parameter \code{v} has
  10454. type \code{(Vector Any Any)} and that updates \code{v} in place
  10455. instead of returning a new vector. So we name this function
  10456. \code{map-vec!}. We apply \code{map-vec!} to a vector of integers, so
  10457. the type checker inserts a cast from \code{(Vector Integer Integer)}
  10458. to \code{(Vector Any Any)}. A naive way for the $R'_9$ interpreter to
  10459. cast between vector types would be a build a new vector whose elements
  10460. are the result of casting each of the original elements to the
  10461. appropriate target type. However, this approach is only valid for
  10462. immutable vectors; and our vectors are mutable. In the example of
  10463. Figure~\ref{fig:map-vec-bang}, if the cast created a new vector, then
  10464. the updates inside of \code{map-vec!} would happen to the new vector
  10465. and not the original one.
  10466. \begin{figure}[tbp]
  10467. % gradual_test_11.rkt
  10468. \begin{lstlisting}
  10469. (define (map-vec! [f : (Any -> Any)]
  10470. [v : (Vector Any Any)]) : Void
  10471. (begin
  10472. (vector-set! v 0 (f (vector-ref v 0)))
  10473. (vector-set! v 1 (f (vector-ref v 1)))))
  10474. (define (add1 x) (+ x 1))
  10475. (let ([v (vector 0 41)])
  10476. (begin (map-vec! add1 v) (vector-ref v 1)))
  10477. \end{lstlisting}
  10478. \caption{An example involving casts on vectors.}
  10479. \label{fig:map-vec-bang}
  10480. \end{figure}
  10481. Instead the interpreter needs to create a new kind of value, a
  10482. \emph{vector proxy}, that intercepts every vector operation. On a
  10483. read, the proxy reads from the underlying vector and then applies a
  10484. cast to the resulting value. On a write, the proxy casts the argument
  10485. value and then performs the write to the underlying vector. For the
  10486. first \code{(vector-ref v 0)} in \code{map-vec!}, the proxy casts
  10487. \code{0} from \code{Integer} to \code{Any}. For the first
  10488. \code{vector-set!}, the proxy casts a tagged \code{1} from \code{Any}
  10489. to \code{Integer}.
  10490. The final category of cast that we need to consider are casts between
  10491. the \code{Any} type and either a function or a vector
  10492. type. Figure~\ref{fig:map-vec-any} shows a variant of \code{map-vec!}
  10493. in which parameter \code{v} does not have a type annotation, so it is
  10494. given type \code{Any}. In the call to \code{map-vec!}, the vector has
  10495. type \code{(Vector Integer Integer)} so the type checker inserts a
  10496. cast from \code{(Vector Integer Integer)} to \code{Any}. A first
  10497. thought is to use \code{Inject}, but that doesn't work because
  10498. \code{(Vector Integer Integer)} is not a flat type. Instead, we must
  10499. first cast to \code{(Vector Any Any)} (which is flat) and then inject
  10500. to \code{Any}.
  10501. \begin{figure}[tbp]
  10502. \begin{lstlisting}
  10503. (define (map-vec! [f : (Any -> Any)] v) : Void
  10504. (begin
  10505. (vector-set! v 0 (f (vector-ref v 0)))
  10506. (vector-set! v 1 (f (vector-ref v 1)))))
  10507. (define (add1 x) (+ x 1))
  10508. (let ([v (vector 0 41)])
  10509. (begin (map-vec! add1 v) (vector-ref v 1)))
  10510. \end{lstlisting}
  10511. \caption{Casting a vector to \code{Any}.}
  10512. \label{fig:map-vec-any}
  10513. \end{figure}
  10514. The $R'_9$ interpreter uses an auxiliary function named
  10515. \code{apply-cast} to cast a value from a source type to a target type,
  10516. shown in Figure~\ref{fig:apply-cast}. You'll find that it handles all
  10517. of the kinds of casts that we've discussed in this section.
  10518. \begin{figure}[tbp]
  10519. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  10520. (define/public (apply-cast v s t)
  10521. (match* (s t)
  10522. [(t1 t2) #:when (equal? t1 t2) v]
  10523. [('Any t2)
  10524. (match t2
  10525. [`(,ts ... -> ,rt)
  10526. (define any->any `(,@(for/list ([t ts]) 'Any) -> Any))
  10527. (define v^ (apply-project v any->any))
  10528. (apply-cast v^ any->any `(,@ts -> ,rt))]
  10529. [`(Vector ,ts ...)
  10530. (define vec-any `(Vector ,@(for/list ([t ts]) 'Any)))
  10531. (define v^ (apply-project v vec-any))
  10532. (apply-cast v^ vec-any `(Vector ,@ts))]
  10533. [else (apply-project v t2)])]
  10534. [(t1 'Any)
  10535. (match t1
  10536. [`(,ts ... -> ,rt)
  10537. (define any->any `(,@(for/list ([t ts]) 'Any) -> Any))
  10538. (define v^ (apply-cast v `(,@ts -> ,rt) any->any))
  10539. (apply-inject v^ (any-tag any->any))]
  10540. [`(Vector ,ts ...)
  10541. (define vec-any `(Vector ,@(for/list ([t ts]) 'Any)))
  10542. (define v^ (apply-cast v `(Vector ,@ts) vec-any))
  10543. (apply-inject v^ (any-tag vec-any))]
  10544. [else (apply-inject v (any-tag t1))])]
  10545. [(`(Vector ,ts1 ...) `(Vector ,ts2 ...))
  10546. (define x (gensym 'x))
  10547. (define cast-reads (for/list ([t1 ts1] [t2 ts2])
  10548. `(function (,x) ,(Cast (Var x) t1 t2) ())))
  10549. (define cast-writes
  10550. (for/list ([t1 ts1] [t2 ts2])
  10551. `(function (,x) ,(Cast (Var x) t2 t1) ())))
  10552. `(vector-proxy ,(vector v (apply vector cast-reads)
  10553. (apply vector cast-writes)))]
  10554. [(`(,ts1 ... -> ,rt1) `(,ts2 ... -> ,rt2))
  10555. (define xs (for/list ([t2 ts2]) (gensym 'x)))
  10556. `(function ,xs ,(Cast
  10557. (Apply (Value v)
  10558. (for/list ([x xs][t1 ts1][t2 ts2])
  10559. (Cast (Var x) t2 t1)))
  10560. rt1 rt2) ())]
  10561. ))
  10562. \end{lstlisting}
  10563. \caption{The \code{apply-cast} auxiliary method.}
  10564. \label{fig:apply-cast}
  10565. \end{figure}
  10566. The interpreter for $R'_9$ is defined in
  10567. Figure~\ref{fig:interp-R9-prime}, with the case for \code{Cast}
  10568. dispatching to \code{apply-cast}. To handle the addition of vector
  10569. proxies, we update the vector primitives in \code{interp-op} using the
  10570. functions in Figure~\ref{fig:guarded-vector}.
  10571. \begin{figure}[tbp]
  10572. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  10573. (define interp-R9-prime-class
  10574. (class interp-R8-class
  10575. (super-new)
  10576. (inherit apply-fun apply-inject apply-project)
  10577. (define/override (interp-op op)
  10578. (match op
  10579. ['vector-length guarded-vector-length]
  10580. ['vector-ref guarded-vector-ref]
  10581. ['vector-set! guarded-vector-set!]
  10582. ['any-vector-ref (lambda (v i)
  10583. (match v [`(tagged ,v^ ,tg)
  10584. (guarded-vector-ref v^ i)]))]
  10585. ['any-vector-set! (lambda (v i a)
  10586. (match v [`(tagged ,v^ ,tg)
  10587. (guarded-vector-set! v^ i a)]))]
  10588. ['any-vector-length (lambda (v)
  10589. (match v [`(tagged ,v^ ,tg)
  10590. (guarded-vector-length v^)]))]
  10591. [else (super interp-op op)]
  10592. ))
  10593. (define/override ((interp-exp env) e)
  10594. (define (recur e) ((interp-exp env) e))
  10595. (match e
  10596. [(Value v) v]
  10597. [(Cast e src tgt) (apply-cast (recur e) src tgt)]
  10598. [else ((super interp-exp env) e)]))
  10599. ))
  10600. (define (interp-R9-prime p)
  10601. (send (new interp-R9-prime-class) interp-program p))
  10602. \end{lstlisting}
  10603. \caption{The interpreter for $R'_9$.}
  10604. \label{fig:interp-R9-prime}
  10605. \end{figure}
  10606. \begin{figure}[tbp]
  10607. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  10608. (define (guarded-vector-ref vec i)
  10609. (match vec
  10610. [`(vector-proxy ,proxy)
  10611. (define val (guarded-vector-ref (vector-ref proxy 0) i))
  10612. (define rd (vector-ref (vector-ref proxy 1) i))
  10613. (apply-fun rd (list val) 'guarded-vector-ref)]
  10614. [else (vector-ref vec i)]))
  10615. (define (guarded-vector-set! vec i arg)
  10616. (match vec
  10617. [`(vector-proxy ,proxy)
  10618. (define wr (vector-ref (vector-ref proxy 2) i))
  10619. (define arg^ (apply-fun wr (list arg) 'guarded-vector-set!))
  10620. (guarded-vector-set! (vector-ref proxy 0) i arg^)]
  10621. [else (vector-set! vec i arg)]))
  10622. (define (guarded-vector-length vec)
  10623. (match vec
  10624. [`(vector-proxy ,proxy)
  10625. (guarded-vector-length (vector-ref proxy 0))]
  10626. [else (vector-length vec)]))
  10627. \end{lstlisting}
  10628. \caption{The guarded-vector auxiliary functions.}
  10629. \label{fig:guarded-vector}
  10630. \end{figure}
  10631. \section{Lower Casts}
  10632. \label{sec:lower-casts}
  10633. The next step in the journey towards x86 is the \code{lower-casts}
  10634. pass that translates the casts in $R'_9$ to the lower-level
  10635. \code{Inject} and \code{Project} operators and a new operator for
  10636. creating vector proxies, extending the $R'_8$ language to create
  10637. $R''_8$. We recommend creating an auxiliary function named
  10638. \code{lower-cast} that takes an expression (in $R'_9$), a source type,
  10639. and a target type, and translates it to expression in $R''_8$ that has
  10640. the same behavior as casting the expression from the source to the
  10641. target type in the interpreter.
  10642. The \code{lower-cast} function can follow a code structure similar to
  10643. the \code{apply-cast} function (Figure~\ref{fig:apply-cast}) used in
  10644. the interpreter for $R'_9$ because it must handle the same cases as
  10645. \code{apply-cast} and it needs to mimic the behavior of
  10646. \code{apply-cast}. The most interesting cases are those concerning the
  10647. casts between two vector types and between two function types.
  10648. As mentioned in Section~\ref{sec:interp-casts}, a cast from one vector
  10649. type to another vector type is accomplished by creating a proxy that
  10650. intercepts the operations on the underlying vector. Here we make the
  10651. creation of the proxy explicit with the \code{vector-proxy} primitive
  10652. operation. It takes three arguments, the first is an expression for
  10653. the vector, the second is a vector of functions for casting an element
  10654. that is being read from the vector, and the third is a vector of
  10655. functions for casting an element that is being written to the vector.
  10656. You can create the functions using \code{Lambda}. Also, as we shall
  10657. see in the next section, we need to differentiate these vectors from
  10658. the user-created ones, so we recommend using a new primitive operator
  10659. named \code{raw-vector} instead of \code{vector} to create these
  10660. vectors of functions. Figure~\ref{fig:map-vec-bang-lower-cast} shows
  10661. the output of \code{lower-casts} on the example in
  10662. Figure~\ref{fig:map-vec-bang} that involved casting a vector of
  10663. integers to a vector of \code{Any}.
  10664. \begin{figure}[tbp]
  10665. \begin{lstlisting}
  10666. (define (map-vec! [f : (Any -> Any)] [v : (Vector Any Any)]) : Void
  10667. (begin
  10668. (vector-set! v 0 (f (vector-ref v 0)))
  10669. (vector-set! v 1 (f (vector-ref v 1)))))
  10670. (define (add1 [x : Any]) : Any
  10671. (inject (+ (project x Integer) 1) Integer))
  10672. (let ([v (vector 0 41)])
  10673. (begin
  10674. (map-vec! add1 (vector-proxy v
  10675. (raw-vector (lambda: ([x9 : Integer]) : Any
  10676. (inject x9 Integer))
  10677. (lambda: ([x9 : Integer]) : Any
  10678. (inject x9 Integer)))
  10679. (raw-vector (lambda: ([x9 : Any]) : Integer
  10680. (project x9 Integer))
  10681. (lambda: ([x9 : Any]) : Integer
  10682. (project x9 Integer)))))
  10683. (vector-ref v 1)))
  10684. \end{lstlisting}
  10685. \caption{Output of \code{lower-casts} on the example in
  10686. Figure~\ref{fig:map-vec-bang}.}
  10687. \label{fig:map-vec-bang-lower-cast}
  10688. \end{figure}
  10689. A cast from one function type to another function type is accomplished
  10690. by generating a \code{Lambda} whose parameter and return types match
  10691. the target function type. The body of the \code{Lambda} should cast
  10692. the parameters from the target type to the source type (yes,
  10693. backwards! functions are contravariant\index{contravariant} in the
  10694. parameters), then call the underlying function, and finally cast the
  10695. result from the source return type to the target return type.
  10696. Figure~\ref{fig:map-vec-lower-cast} shows the output of the
  10697. \code{lower-casts} pass on the \code{map-vec} example in
  10698. Figure~\ref{fig:gradual-map-vec}. Note that the \code{add1} argument
  10699. in the call to \code{map-vec} is wrapped in a \code{lambda}.
  10700. \begin{figure}[tbp]
  10701. \begin{lstlisting}
  10702. (define (map-vec [f : (Integer -> Integer)]
  10703. [v : (Vector Integer Integer)])
  10704. : (Vector Integer Integer)
  10705. (vector (f (vector-ref v 0)) (f (vector-ref v 1))))
  10706. (define (add1 [x : Any]) : Any
  10707. (inject (+ (project x Integer) 1) Integer))
  10708. (vector-ref (map-vec (lambda: ([x9 : Integer]) : Integer
  10709. (project (add1 (inject x9 Integer)) Integer))
  10710. (vector 0 41)) 1)
  10711. \end{lstlisting}
  10712. \caption{Output of \code{lower-casts} on the example in
  10713. Figure~\ref{fig:gradual-map-vec}.}
  10714. \label{fig:map-vec-lower-cast}
  10715. \end{figure}
  10716. \section{Differentiate Proxies}
  10717. \label{sec:differentiate-proxies}
  10718. So far the job of differentiating vectors and vector proxies has been
  10719. the job of the interpreter. For example, the interpreter for $R'_9$
  10720. implements \code{vector-ref} using the \code{guarded-vector-ref}
  10721. function in Figure~\ref{fig:guarded-vector}. In the
  10722. \code{differentiate-proxies} pass we shift this responsibility to the
  10723. generated code.
  10724. We begin by designing the output language $R^p_8$. In
  10725. $R_9$ we used the type \code{Vector} for both real vectors and vector
  10726. proxies. In $R^p_8$ we return the \code{Vector} type to
  10727. its original meaning, as the type of real vectors, and we introduce a
  10728. new type, \code{PVector}, whose values can be either real vectors or
  10729. vector proxies. This new type comes with a suite of new primitive
  10730. operations for creating and using values of type \code{PVector}. We
  10731. don't need to introduce a new type to represent vector proxies. A
  10732. proxy is represented by a vector containing three things: 1) the
  10733. underlying vector, 2) a vector of functions for casting elements that
  10734. are read from the vector, and 3) a vector of functions for casting
  10735. values to be written to the vector. So we define the following
  10736. abbreviation for the type of a vector proxy:
  10737. \[
  10738. \itm{Proxy} (T\ldots \Rightarrow T'\ldots)
  10739. = (\ttm{Vector}~(\ttm{PVector}~ T\ldots) ~R~ W)
  10740. \to (\key{PVector}~ T' \ldots)
  10741. \]
  10742. where $R = (\ttm{Vector}~(T\to T') \ldots)$ and
  10743. $W = (\ttm{Vector}~(T'\to T) \ldots)$.
  10744. %
  10745. Next we describe each of the new primitive operations.
  10746. \begin{description}
  10747. \item[\code{inject-vector} : (\key{Vector} $T \ldots$) $\to$
  10748. (\key{PVector} $T \ldots$)]\ \\
  10749. %
  10750. This operation brands a vector as a value of the \code{PVector} type.
  10751. \item[\code{inject-proxy} : $\itm{Proxy}(T\ldots \Rightarrow T'\ldots)$
  10752. $\to$ (\key{PVector} $T' \ldots$)]\ \\
  10753. %
  10754. This operation brands a vector proxy as value of the \code{PVector} type.
  10755. \item[\code{proxy?} : (\key{PVector} $T \ldots$) $\to$
  10756. \code{Boolean}] \ \\
  10757. %
  10758. returns true if the value is a vector proxy and false if it is a
  10759. real vector.
  10760. \item[\code{project-vector} : (\key{PVector} $T \ldots$) $\to$
  10761. (\key{Vector} $T \ldots$)]\ \\
  10762. %
  10763. Assuming that the input is a vector (and not a proxy), this
  10764. operation returns the vector.
  10765. \item[\code{proxy-vector-length} : (\key{PVector} $T \ldots$)
  10766. $\to$ \code{Boolean}]\ \\
  10767. %
  10768. Given a vector proxy, this operation returns the length of the
  10769. underlying vector.
  10770. \item[\code{proxy-vector-ref} : (\key{PVector} $T \ldots$)
  10771. $\to$ ($i$ : \code{Integer}) $\to$ $T_i$]\ \\
  10772. %
  10773. Given a vector proxy, this operation returns the $i$th element of
  10774. the underlying vector.
  10775. \item[\code{proxy-vector-set!} : (\key{PVector} $T \ldots$) $\to$ ($i$
  10776. : \code{Integer}) $\to$ $T_i$ $\to$ \key{Void}]\ \\ Given a vector
  10777. proxy, this operation writes a value to the $i$th element of the
  10778. underlying vector.
  10779. \end{description}
  10780. Now to discuss the translation that differentiates vectors from
  10781. proxies. First, every type annotation in the program must be
  10782. translated (recursively) to replace \code{Vector} with \code{PVector}.
  10783. Next, we must insert uses of \code{PVector} operations in the
  10784. appropriate places. For example, we wrap every vector creation with an
  10785. \code{inject-vector}.
  10786. \begin{lstlisting}
  10787. (vector |$e_1 \ldots e_n$|)
  10788. |$\Rightarrow$|
  10789. (inject-vector (vector |$e'_1 \ldots e'_n$|))
  10790. \end{lstlisting}
  10791. The \code{raw-vector} operator that we introduced in the previous
  10792. section does not get injected.
  10793. \begin{lstlisting}
  10794. (raw-vector |$e_1 \ldots e_n$|)
  10795. |$\Rightarrow$|
  10796. (vector |$e'_1 \ldots e'_n$|)
  10797. \end{lstlisting}
  10798. The \code{vector-proxy} primitive translates as follows.
  10799. \begin{lstlisting}
  10800. (vector-proxy |$e_1~e_2~e_3$|)
  10801. |$\Rightarrow$|
  10802. (inject-proxy (vector |$e'_1~e'_2~e'_3$|))
  10803. \end{lstlisting}
  10804. We translate the vector operations into conditional expressions that
  10805. check whether the value is a proxy and then dispatch to either the
  10806. appropriate proxy vector operation or the regular vector operation.
  10807. For example, the following is the translation for \code{vector-ref}.
  10808. \begin{lstlisting}
  10809. (vector-ref |$e_1$| |$i$|)
  10810. |$\Rightarrow$|
  10811. (let ([|$v~e_1$|])
  10812. (if (proxy? |$v$|)
  10813. (proxy-vector-ref |$v$| |$i$|)
  10814. (vector-ref (project-vector |$v$|) |$i$|)
  10815. \end{lstlisting}
  10816. Note in the case of a real vector, we must apply \code{project-vector}
  10817. before the \code{vector-ref}.
  10818. \section{Reveal Casts}
  10819. \label{sec:reveal-casts-gradual}
  10820. Recall that the \code{reveal-casts} pass
  10821. (Section~\ref{sec:reveal-casts-r6}) is responsible for lowering
  10822. \code{Inject} and \code{Project} into lower-level operations. In
  10823. particular, \code{Project} turns into a conditional expression that
  10824. inspects the tag and retrieves the underlying value. Here we need to
  10825. augment the translation of \code{Project} to handle the situation when
  10826. the target type is \code{PVector}. Instead of using
  10827. \code{vector-length} we need to use \code{proxy-vector-length}.
  10828. \begin{lstlisting}
  10829. (project |$e$| (PVector Any|$_1$| |$\ldots$| Any|$_n$|))
  10830. |$\Rightarrow$|
  10831. (let |$\itm{tmp}$| |$e'$|
  10832. (if (eq? (tag-of-any |$\itm{tmp}$| 2))
  10833. (let |$\itm{vec}$| (value-of |$\itm{tmp}$| (PVector Any |$\ldots$| Any))
  10834. (if (eq? (proxy-vector-length |$\itm{vec}$|) |$n$|) |$\itm{vec}$| (exit)))
  10835. (exit)))
  10836. \end{lstlisting}
  10837. \section{Closure Conversion}
  10838. \label{sec:closure-conversion-gradual}
  10839. The closure conversion pass only requires one minor adjustment. The
  10840. auxiliary function that translates type annotations needs to be
  10841. updated to handle the \code{PVector} type.
  10842. \section{Explicate Control}
  10843. \label{sec:explicate-control-gradual}
  10844. Update the \code{explicate-control} pass to handle the new primitive
  10845. operations on the \code{PVector} type.
  10846. \section{Select Instructions}
  10847. \label{sec:select-instructions-gradual}
  10848. Recall that the \code{select-instructions} pass is responsible for
  10849. lowering the primitive operations into x86 instructions. So we need
  10850. to translate the new \code{PVector} operations to x86. To do so, the
  10851. first question we need to answer is how will we differentiate the two
  10852. kinds of values (vectors and proxies) that can inhabit \code{PVector}.
  10853. We need just one bit to accomplish this, so we use the $57$th bit of
  10854. the 64-bit tag at the front of every vector (see
  10855. Figure~\ref{fig:tuple-rep}). So far, this bit has been set to $0$, so
  10856. for \code{inject-vector} we leave it that way.
  10857. \begin{lstlisting}
  10858. (Assign |$\itm{lhs}$| (Prim 'inject-vector (list |$e_1$|)))
  10859. |$\Rightarrow$|
  10860. movq |$e'_1$|, |$\itm{lhs'}$|
  10861. \end{lstlisting}
  10862. On the other hand, \code{inject-proxy} sets the $57$th bit to $1$.
  10863. \begin{lstlisting}
  10864. (Assign |$\itm{lhs}$| (Prim 'inject-proxy (list |$e_1$|)))
  10865. |$\Rightarrow$|
  10866. movq |$e'_1$|, %r11
  10867. movq |$(1 << 57)$|, %rax
  10868. orq 0(%r11), %rax
  10869. movq %rax, 0(%r11)
  10870. movq %r11, |$\itm{lhs'}$|
  10871. \end{lstlisting}
  10872. The \code{proxy?} operation consumes the information so carefully
  10873. stashed away by \code{inject-vector} and \code{inject-proxy}. It
  10874. isolates the $57$th bit to tell whether the value is a real vector or
  10875. a proxy.
  10876. \begin{lstlisting}
  10877. (Assign |$\itm{lhs}$| (Prim 'proxy? (list e)))
  10878. |$\Rightarrow$|
  10879. movq |$e_1'$|, %r11
  10880. movq 0(%r11), %rax
  10881. sarq $57, %rax
  10882. andq $1, %rax
  10883. movq %rax, |$\itm{lhs'}$|
  10884. \end{lstlisting}
  10885. The \code{project-vector} operation is straightforward to translate,
  10886. so we leave it up to the reader.
  10887. Regarding the \code{proxy-vector} operations, the runtime provides
  10888. procedures that implement them (they are recursive functions!) so
  10889. here we simply need to translate these vector operations into the
  10890. appropriate function call. For example, here is the translation for
  10891. \code{proxy-vector-ref}.
  10892. \begin{lstlisting}
  10893. (Assign |$\itm{lhs}$| (Prim 'proxy-vector-ref (list |$e_1$| |$e_2$|)))
  10894. |$\Rightarrow$|
  10895. movq |$e_1'$|, %rdi
  10896. movq |$e_2'$|, %rsi
  10897. callq proxy_vector_ref
  10898. movq %rax, |$\itm{lhs'}$|
  10899. \end{lstlisting}
  10900. We have another batch of vector operations to deal with, those for the
  10901. \code{Any} type. Recall that the type checker for $R_9$ generates an
  10902. \code{any-vector-ref} when there is a \code{vector-ref} on something
  10903. of type \code{Any}, and similarly for \code{any-vector-set!} and
  10904. \code{any-vector-length} (Figure~\ref{fig:type-check-R9-1}). In
  10905. Section~\ref{sec:select-r6} we selected instructions for these
  10906. operations based on the idea that the underlying value was a real
  10907. vector. But in the current setting, the underlying value is of type
  10908. \code{PVector}. So \code{any-vector-ref} can be translates to
  10909. pseudo-x86 as follows. We begin by projecting the underlying value out
  10910. of the tagged value and then call the \code{proxy\_vector\_ref}
  10911. procedure in the runtime.
  10912. \begin{lstlisting}
  10913. (Assign |$\itm{lhs}$| (Prim 'any-vector-ref (list |$e_1$| |$e_2$|)))
  10914. movq |$\neg 111$|, %rdi
  10915. andq |$e_1'$|, %rdi
  10916. movq |$e_2'$|, %rsi
  10917. callq proxy_vector_ref
  10918. movq %rax, |$\itm{lhs'}$|
  10919. \end{lstlisting}
  10920. The \code{any-vector-set!} and \code{any-vector-length} operators can
  10921. be translated in a similar way.
  10922. \begin{exercise}\normalfont
  10923. Implement a compiler for the gradually-typed $R_9$ language by
  10924. extending and adapting your compiler for $R_8$. Create 10 new
  10925. partially-typed test programs. In addition to testing with these
  10926. new programs, also test your compiler on all the tests for $R_8$
  10927. and tests for $R_7$. Sometimes you may get a type checking error
  10928. on the $R_7$ programs but you can adapt them by inserting
  10929. a cast to the \code{Any} type around each subexpression
  10930. causing a type error. While $R_7$ doesn't have explicit casts,
  10931. you can induce one by wrapping the subexpression \code{e}
  10932. with a call to an un-annotated identity function, like this:
  10933. \code{((lambda (x) x) e)}.
  10934. \end{exercise}
  10935. \begin{figure}[p]
  10936. \begin{tikzpicture}[baseline=(current bounding box.center)]
  10937. \node (R9) at (6,4) {\large $R_9$};
  10938. \node (R9p) at (3,4) {\large $R'_9$};
  10939. \node (R8pp) at (0,4) {\large $R''_8$};
  10940. \node (R8proxy) at (0,2) {\large $R^p_8$};
  10941. \node (R8proxy-2) at (3,2) {\large $R^p_8$};
  10942. \node (R8proxy-3) at (6,2) {\large $R^p_8$};
  10943. \node (R8proxy-4) at (9,2) {\large $R^p_8$};
  10944. \node (R8proxy-5) at (12,2) {\large $R^p_8$};
  10945. \node (F1-1) at (12,0) {\large $R^p_8$};
  10946. \node (F1-2) at (9,0) {\large $R^p_8$};
  10947. \node (F1-3) at (6,0) {\large $R^p_8$};
  10948. \node (F1-4) at (3,0) {\large $R^p_8$};
  10949. \node (F1-5) at (0,0) {\large $R^p_8$};
  10950. \node (C3-2) at (3,-2) {\large $C^p_7$};
  10951. \node (x86-2) at (3,-4) {\large $\text{x86}^{*}_3$};
  10952. \node (x86-3) at (6,-4) {\large $\text{x86}^{*}_3$};
  10953. \node (x86-4) at (9,-4) {\large $\text{x86}^{*}_3$};
  10954. \node (x86-5) at (9,-6) {\large $\text{x86}^{\dagger}_3$};
  10955. \node (x86-2-1) at (3,-6) {\large $\text{x86}^{*}_3$};
  10956. \node (x86-2-2) at (6,-6) {\large $\text{x86}^{*}_3$};
  10957. \path[->,bend right=15] (R9) edge [above] node
  10958. {\ttfamily\footnotesize type-check} (R9p);
  10959. \path[->,bend right=15] (R9p) edge [above] node
  10960. {\ttfamily\footnotesize lower-casts} (R8pp);
  10961. \path[->,bend right=15] (R8pp) edge [right] node
  10962. {\ttfamily\footnotesize differentiate-proxies} (R8proxy);
  10963. \path[->,bend left=15] (R8proxy) edge [above] node
  10964. {\ttfamily\footnotesize shrink} (R8proxy-2);
  10965. \path[->,bend left=15] (R8proxy-2) edge [above] node
  10966. {\ttfamily\footnotesize uniquify} (R8proxy-3);
  10967. \path[->,bend left=15] (R8proxy-3) edge [above] node
  10968. {\ttfamily\footnotesize reveal-functions} (R8proxy-4);
  10969. \path[->,bend left=15] (R8proxy-4) edge [above] node
  10970. {\ttfamily\footnotesize reveal-casts} (R8proxy-5);
  10971. \path[->,bend left=15] (R8proxy-5) edge [left] node
  10972. {\ttfamily\footnotesize convert-assignments} (F1-1);
  10973. \path[->,bend left=15] (F1-1) edge [below] node
  10974. {\ttfamily\footnotesize convert-to-clos.} (F1-2);
  10975. \path[->,bend right=15] (F1-2) edge [above] node
  10976. {\ttfamily\footnotesize limit-fun.} (F1-3);
  10977. \path[->,bend right=15] (F1-3) edge [above] node
  10978. {\ttfamily\footnotesize expose-alloc.} (F1-4);
  10979. \path[->,bend right=15] (F1-4) edge [above] node
  10980. {\ttfamily\footnotesize remove-complex.} (F1-5);
  10981. \path[->,bend right=15] (F1-5) edge [right] node
  10982. {\ttfamily\footnotesize explicate-control} (C3-2);
  10983. \path[->,bend left=15] (C3-2) edge [left] node
  10984. {\ttfamily\footnotesize select-instr.} (x86-2);
  10985. \path[->,bend right=15] (x86-2) edge [left] node
  10986. {\ttfamily\footnotesize uncover-live} (x86-2-1);
  10987. \path[->,bend right=15] (x86-2-1) edge [below] node
  10988. {\ttfamily\footnotesize build-inter.} (x86-2-2);
  10989. \path[->,bend right=15] (x86-2-2) edge [left] node
  10990. {\ttfamily\footnotesize allocate-reg.} (x86-3);
  10991. \path[->,bend left=15] (x86-3) edge [above] node
  10992. {\ttfamily\footnotesize patch-instr.} (x86-4);
  10993. \path[->,bend left=15] (x86-4) edge [right] node {\ttfamily\footnotesize print-x86} (x86-5);
  10994. \end{tikzpicture}
  10995. \caption{Diagram of the passes for $R_9$ (gradual typing).}
  10996. \label{fig:R9-passes}
  10997. \end{figure}
  10998. Figure~\ref{fig:R9-passes} provides an overview of all the passes needed
  10999. for the compilation of $R_9$.
  11000. \section{Further Reading}
  11001. This chapter just scratches the surface of gradual typing. The basic
  11002. approach described here is missing two key ingredients that one would
  11003. want in a implementation of gradual typing: blame
  11004. tracking~\citep{Tobin-Hochstadt:2006fk,Wadler:2009qv} and
  11005. space-efficient casts~\citep{Herman:2006uq,Herman:2010aa}. The
  11006. problem addressed by blame tracking is that when a cast on a
  11007. higher-order value fails, it often does so at a point in the program
  11008. that is far removed from the original cast. Blame tracking is a
  11009. technique for propagating extra information through casts and proxies
  11010. so that when a cast fails, the error message can point back to the
  11011. original location of the cast in the source program.
  11012. The problem addressed by space-efficient casts also relates to
  11013. higher-order casts. It turns out that in partially typed programs, a
  11014. function or vector can flow through very-many casts at runtime. With
  11015. the approach described in this chapter, each cast adds another
  11016. \code{lambda} wrapper or a vector proxy. Not only does this take up
  11017. considerable space, but it also makes the function calls and vector
  11018. operations slow. For example, a partially-typed version of quicksort
  11019. could, in the worst case, build a chain of proxies of length $O(n)$
  11020. around the vector, changing the overall time complexity of the
  11021. algorithm from $O(n^2)$ to $O(n^3)$! \citet{Herman:2006uq} suggested a
  11022. solution to this problem by representing casts using the coercion
  11023. calculus of \citet{Henglein:1994nz}, which prevents the creation of
  11024. long chains of proxies by compressing them into a concise normal
  11025. form. \citet{Siek:2015ab} give and algorithm for compressing coercions
  11026. and \citet{Kuhlenschmidt:2019aa} show how to implement these ideas in
  11027. the Grift compiler.
  11028. \begin{center}
  11029. \url{https://github.com/Gradual-Typing/Grift}
  11030. \end{center}
  11031. There are also interesting interactions between gradual typing and
  11032. other language features, such as parametetric polymorphism,
  11033. information-flow types, and type inference, to name a few. We
  11034. recommend the reader to the online gradual typing bibliography:
  11035. \begin{center}
  11036. \url{http://samth.github.io/gradual-typing-bib/}
  11037. \end{center}
  11038. % TODO: challenge problem:
  11039. % type analysis and type specialization?
  11040. % coercions?
  11041. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  11042. \chapter{Parametric Polymorphism}
  11043. \label{ch:parametric-polymorphism}
  11044. \index{parametric polymorphism}
  11045. \index{generics}
  11046. This chapter studies the compilation of parametric
  11047. polymorphism\index{parametric polymorphism}
  11048. (aka. generics\index{generics}) in the subset $R_{10}$ of Typed
  11049. Racket. Parametric polymorphism enables improved code reuse by
  11050. parameterizing functions and data structures with respect to the types
  11051. that they operate on. For example, Figure~\ref{fig:map-vec-poly}
  11052. revisits the \code{map-vec} example but this time gives it a more
  11053. fitting type. This \code{map-vec} function is parameterized with
  11054. respect to the element type of the vector. The type of \code{map-vec}
  11055. is the following polymorphic type as specified by the \code{All} and
  11056. the type parameter \code{a}.
  11057. \begin{lstlisting}
  11058. (All (a) ((a -> a) (Vector a a) -> (Vector a a)))
  11059. \end{lstlisting}
  11060. The idea is that \code{map-vec} can be used at \emph{all} choices of a
  11061. type for parameter \code{a}. In Figure~\ref{fig:map-vec-poly} we apply
  11062. \code{map-vec} to a vector of integers, a choice of \code{Integer} for
  11063. \code{a}, but we could have just as well applied \code{map-vec} to a
  11064. vector of Booleans (and a function on Booleans).
  11065. \begin{figure}[tbp]
  11066. % poly_test_2.rkt
  11067. \begin{lstlisting}
  11068. (: map-vec (All (a) ((a -> a) (Vector a a) -> (Vector a a))))
  11069. (define (map-vec f v)
  11070. (vector (f (vector-ref v 0)) (f (vector-ref v 1))))
  11071. (define (add1 [x : Integer]) : Integer (+ x 1))
  11072. (vector-ref (map-vec add1 (vector 0 41)) 1)
  11073. \end{lstlisting}
  11074. \caption{The \code{map-vec} example using parametric polymorphism.}
  11075. \label{fig:map-vec-poly}
  11076. \end{figure}
  11077. Figure~\ref{fig:r10-concrete-syntax} defines the concrete syntax of
  11078. $R_{10}$ and Figure~\ref{fig:r10-syntax} defines the abstract
  11079. syntax. We add a second form for function definitions in which a type
  11080. declaration comes before the \code{define}. In the abstract syntax,
  11081. the return type in the \code{Def} is \code{Any}, but that should be
  11082. ignored in favor of the return type in the type declaration. (The
  11083. \code{Any} comes from using the same parser as in
  11084. Chapter~\ref{ch:type-dynamic}.) The presence of a type declaration
  11085. enables the use of an \code{All} type for a function, thereby making
  11086. it polymorphic. The grammar for types is extended to include
  11087. polymorphic types and type variables.
  11088. \begin{figure}[tp]
  11089. \centering
  11090. \fbox{
  11091. \begin{minipage}{0.96\textwidth}
  11092. \small
  11093. \[
  11094. \begin{array}{lcl}
  11095. \Type &::=& \ldots \mid \LP\key{All}~\LP\Var\ldots\RP~ \Type\RP \mid \Var \\
  11096. \Def &::=& \gray{ \CDEF{\Var}{\LS\Var \key{:} \Type\RS \ldots}{\Type}{\Exp} } \\
  11097. &\mid& \LP\key{:}~\Var~\Type\RP \\
  11098. && \LP\key{define}~ \LP\Var ~ \Var\ldots\RP ~ \Exp\RP \\
  11099. R_{10} &::=& \gray{ \Def \ldots ~ \Exp }
  11100. \end{array}
  11101. \]
  11102. \end{minipage}
  11103. }
  11104. \caption{The concrete syntax of $R_{10}$, extending $R_8$
  11105. (Figure~\ref{fig:r8-concrete-syntax}).}
  11106. \label{fig:r10-concrete-syntax}
  11107. \end{figure}
  11108. \begin{figure}[tp]
  11109. \centering
  11110. \fbox{
  11111. \begin{minipage}{0.96\textwidth}
  11112. \small
  11113. \[
  11114. \begin{array}{lcl}
  11115. \Type &::=& \ldots \mid \LP\key{All}~\LP\Var\ldots\RP~ \Type\RP \mid \Var \\
  11116. \Def &::=& \gray{ \DEF{\Var}{\LP\LS\Var \key{:} \Type\RS \ldots\RP}{\Type}{\code{'()}}{\Exp} } \\
  11117. &\mid& \DECL{\Var}{\Type} \\
  11118. && \DEF{\Var}{\LP\Var \ldots\RP}{\key{'Any}}{\code{'()}}{\Exp} \\
  11119. R_{10} &::=& \gray{ \PROGRAMDEFSEXP{\code{'()}}{\LP\Def\ldots\RP}{\Exp} }
  11120. \end{array}
  11121. \]
  11122. \end{minipage}
  11123. }
  11124. \caption{The abstract syntax of $R_{10}$, extending $R_8$
  11125. (Figure~\ref{fig:r8-syntax}).}
  11126. \label{fig:r10-syntax}
  11127. \end{figure}
  11128. By including polymorphic types in the $\Type$ non-terminal we choose
  11129. to make them first-class which has interesting repercussions on the
  11130. compiler. Many languages with polymorphism, such as
  11131. C++~\citep{stroustrup88:_param_types} and Standard
  11132. ML~\citep{Milner:1990fk}, only support second-class polymorphism, so
  11133. it is useful to see an example of first-class polymorphism. In
  11134. Figure~\ref{fig:apply-twice} we define a function \code{apply-twice}
  11135. whose parameter is a polymorphic function. The occurrence of a
  11136. polymorphic type underneath a function type is enabled by the normal
  11137. recursive structure of the grammar for $\Type$ and the categorization
  11138. of the \code{All} type as a $\Type$. The body of \code{apply-twice}
  11139. applies the polymorphic function to a Boolean and to an integer.
  11140. \begin{figure}[tbp]
  11141. \begin{lstlisting}
  11142. (: apply-twice ((All (b) (b -> b)) -> Integer))
  11143. (define (apply-twice f)
  11144. (if (f #t) (f 42) (f 777)))
  11145. (: id (All (a) (a -> a)))
  11146. (define (id x) x)
  11147. (apply-twice id)
  11148. \end{lstlisting}
  11149. \caption{An example illustrating first-class polymorphism.}
  11150. \label{fig:apply-twice}
  11151. \end{figure}
  11152. The type checker for $R_{10}$ in Figure~\ref{fig:type-check-R10} has
  11153. three new responsibilities (compared to $R_8$). The type checking of
  11154. function application is extended to handle the case where the operator
  11155. expression is a polymorphic function. In that case the type arguments
  11156. are deduced by matching the type of the parameters with the types of
  11157. the arguments.
  11158. %
  11159. The \code{match-types} auxiliary function carries out this deduction
  11160. by recursively descending through a parameter type \code{pt} and the
  11161. corresponding argument type \code{at}, making sure that they are equal
  11162. except when there is a type parameter on the left (in the parameter
  11163. type). If it's the first time that the type parameter has been
  11164. encountered, then the algorithm deduces an association of the type
  11165. parameter to the corresponding type on the right (in the argument
  11166. type). If it's not the first time that the type parameter has been
  11167. encountered, the algorithm looks up its deduced type and makes sure
  11168. that it is equal to the type on the right.
  11169. %
  11170. Once the type arguments are deduced, the operator expression is
  11171. wrapped in an \code{Inst} AST node (for instantiate) that records the
  11172. type of the operator, but more importantly, records the deduced type
  11173. arguments. The return type of the application is the return type of
  11174. the polymorphic function, but with the type parameters replaced by the
  11175. deduced type arguments, using the \code{subst-type} function.
  11176. The second responsibility of the type checker is extending the
  11177. function \code{type-equal?} to handle the \code{All} type. This is
  11178. not quite a simple as equal on other types, such as function and
  11179. vector types, because two polymorphic types can be syntactically
  11180. different even though they are equivalent types. For example,
  11181. \code{(All (a) (a -> a))} is equivalent to \code{(All (b) (b -> b))}.
  11182. Two polymorphic types should be considered equal if they differ only
  11183. in the choice of the names of the type parameters. The
  11184. \code{type-equal?} function in Figure~\ref{fig:type-check-R10-aux}
  11185. renames the type parameters of the first type to match the type
  11186. parameters of the second type.
  11187. The third responsibility of the type checker is making sure that only
  11188. defined type variables appear in type annotations. The
  11189. \code{check-well-formed} function defined in
  11190. Figure~\ref{fig:well-formed-types} recursively inspects a type, making
  11191. sure that each type variable has been defined.
  11192. The output language of the type checker is $R'_{10}$, defined in
  11193. Figure~\ref{fig:r10-prime-syntax}. The type checker combines the type
  11194. declaration and polymorphic function into a single definition, using
  11195. the \code{Poly} form, to make polymorphic functions more convenient to
  11196. process in next pass of the compiler.
  11197. \begin{figure}[tp]
  11198. \centering
  11199. \fbox{
  11200. \begin{minipage}{0.96\textwidth}
  11201. \small
  11202. \[
  11203. \begin{array}{lcl}
  11204. \Type &::=& \ldots \mid \LP\key{All}~\LP\Var\ldots\RP~ \Type\RP \mid \Var \\
  11205. \Exp &::=& \ldots \mid \INST{\Exp}{\Type}{\LP\Type\ldots\RP} \\
  11206. \Def &::=& \gray{ \DEF{\Var}{\LP\LS\Var \key{:} \Type\RS \ldots\RP}{\Type}{\code{'()}}{\Exp} } \\
  11207. &\mid& \LP\key{Poly}~\LP\Var\ldots\RP~ \DEF{\Var}{\LP\LS\Var \key{:} \Type\RS \ldots\RP}{\Type}{\code{'()}}{\Exp}\RP \\
  11208. R'_{10} &::=& \gray{ \PROGRAMDEFSEXP{\code{'()}}{\LP\Def\ldots\RP}{\Exp} }
  11209. \end{array}
  11210. \]
  11211. \end{minipage}
  11212. }
  11213. \caption{The abstract syntax of $R'_{10}$, extending $R_8$
  11214. (Figure~\ref{fig:r8-syntax}).}
  11215. \label{fig:r10-prime-syntax}
  11216. \end{figure}
  11217. The output of the type checker on the polymorphic \code{map-vec}
  11218. example is listed in Figure~\ref{fig:map-vec-type-check}.
  11219. \begin{figure}[tbp]
  11220. % poly_test_2.rkt
  11221. \begin{lstlisting}
  11222. (poly (a) (define (map-vec [f : (a -> a)] [v : (Vector a a)]) : (Vector a a)
  11223. (vector (f (vector-ref v 0)) (f (vector-ref v 1)))))
  11224. (define (add1 [x : Integer]) : Integer (+ x 1))
  11225. (vector-ref ((inst map-vec (All (a) ((a -> a) (Vector a a) -> (Vector a a)))
  11226. (Integer))
  11227. add1 (vector 0 41)) 1)
  11228. \end{lstlisting}
  11229. \caption{Output of the type checker on the \code{map-vec} example.}
  11230. \label{fig:map-vec-type-check}
  11231. \end{figure}
  11232. \begin{figure}[tbp]
  11233. \begin{lstlisting}[basicstyle=\ttfamily\scriptsize]
  11234. (define type-check-poly-class
  11235. (class type-check-R8-class
  11236. (super-new)
  11237. (inherit check-type-equal?)
  11238. (define/override (type-check-apply env e1 es)
  11239. (define-values (e^ ty) ((type-check-exp env) e1))
  11240. (define-values (es^ ty*) (for/lists (es^ ty*) ([e (in-list es)])
  11241. ((type-check-exp env) e)))
  11242. (match ty
  11243. [`(,ty^* ... -> ,rt)
  11244. (for ([arg-ty ty*] [param-ty ty^*])
  11245. (check-type-equal? arg-ty param-ty (Apply e1 es)))
  11246. (values e^ es^ rt)]
  11247. [`(All ,xs (,tys ... -> ,rt))
  11248. (define env^ (append (for/list ([x xs]) (cons x 'Type)) env))
  11249. (define env^^ (for/fold ([env^^ env^]) ([arg-ty ty*] [param-ty tys])
  11250. (match-types env^^ param-ty arg-ty)))
  11251. (define targs
  11252. (for/list ([x xs])
  11253. (match (dict-ref env^^ x (lambda () #f))
  11254. [#f (error 'type-check "type variable ~a not deduced\nin ~v"
  11255. x (Apply e1 es))]
  11256. [ty ty])))
  11257. (values (Inst e^ ty targs) es^ (subst-type env^^ rt))]
  11258. [else (error 'type-check "expected a function, not ~a" ty)]))
  11259. (define/override ((type-check-exp env) e)
  11260. (match e
  11261. [(Lambda `([,xs : ,Ts] ...) rT body)
  11262. (for ([T Ts]) ((check-well-formed env) T))
  11263. ((check-well-formed env) rT)
  11264. ((super type-check-exp env) e)]
  11265. [(HasType e1 ty)
  11266. ((check-well-formed env) ty)
  11267. ((super type-check-exp env) e)]
  11268. [else ((super type-check-exp env) e)]))
  11269. (define/override ((type-check-def env) d)
  11270. (verbose 'type-check "poly/def" d)
  11271. (match d
  11272. [(Generic ts (Def f (and p:t* (list `[,xs : ,ps] ...)) rt info body))
  11273. (define ts-env (for/list ([t ts]) (cons t 'Type)))
  11274. (for ([p ps]) ((check-well-formed ts-env) p))
  11275. ((check-well-formed ts-env) rt)
  11276. (define new-env (append ts-env (map cons xs ps) env))
  11277. (define-values (body^ ty^) ((type-check-exp new-env) body))
  11278. (check-type-equal? ty^ rt body)
  11279. (Generic ts (Def f p:t* rt info body^))]
  11280. [else ((super type-check-def env) d)]))
  11281. (define/override (type-check-program p)
  11282. (match p
  11283. [(Program info body)
  11284. (type-check-program (ProgramDefsExp info '() body))]
  11285. [(ProgramDefsExp info ds body)
  11286. (define ds^ (combine-decls-defs ds))
  11287. (define new-env (for/list ([d ds^])
  11288. (cons (def-name d) (fun-def-type d))))
  11289. (define ds^^ (for/list ([d ds^]) ((type-check-def new-env) d)))
  11290. (define-values (body^ ty) ((type-check-exp new-env) body))
  11291. (check-type-equal? ty 'Integer body)
  11292. (ProgramDefsExp info ds^^ body^)]))
  11293. ))
  11294. \end{lstlisting}
  11295. \caption{Type checker for the $R_{10}$ language.}
  11296. \label{fig:type-check-R10}
  11297. \end{figure}
  11298. \begin{figure}[tbp]
  11299. \begin{lstlisting}[basicstyle=\ttfamily\scriptsize]
  11300. (define/override (type-equal? t1 t2)
  11301. (match* (t1 t2)
  11302. [(`(All ,xs ,T1) `(All ,ys ,T2))
  11303. (define env (map cons xs ys))
  11304. (type-equal? (subst-type env T1) T2)]
  11305. [(other wise)
  11306. (super type-equal? t1 t2)]))
  11307. (define/public (match-types env pt at)
  11308. (match* (pt at)
  11309. [('Integer 'Integer) env] [('Boolean 'Boolean) env]
  11310. [('Void 'Void) env] [('Any 'Any) env]
  11311. [(`(Vector ,pts ...) `(Vector ,ats ...))
  11312. (for/fold ([env^ env]) ([pt1 pts] [at1 ats])
  11313. (match-types env^ pt1 at1))]
  11314. [(`(,pts ... -> ,prt) `(,ats ... -> ,art))
  11315. (define env^ (match-types env prt art))
  11316. (for/fold ([env^^ env^]) ([pt1 pts] [at1 ats])
  11317. (match-types env^^ pt1 at1))]
  11318. [(`(All ,pxs ,pt1) `(All ,axs ,at1))
  11319. (define env^ (append (map cons pxs axs) env))
  11320. (match-types env^ pt1 at1)]
  11321. [((? symbol? x) at)
  11322. (match (dict-ref env x (lambda () #f))
  11323. [#f (error 'type-check "undefined type variable ~a" x)]
  11324. ['Type (cons (cons x at) env)]
  11325. [t^ (check-type-equal? at t^ 'matching) env])]
  11326. [(other wise) (error 'type-check "mismatch ~a != a" pt at)]))
  11327. (define/public (subst-type env pt)
  11328. (match pt
  11329. ['Integer 'Integer] ['Boolean 'Boolean]
  11330. ['Void 'Void] ['Any 'Any]
  11331. [`(Vector ,ts ...)
  11332. `(Vector ,@(for/list ([t ts]) (subst-type env t)))]
  11333. [`(,ts ... -> ,rt)
  11334. `(,@(for/list ([t ts]) (subst-type env t)) -> ,(subst-type env rt))]
  11335. [`(All ,xs ,t)
  11336. `(All ,xs ,(subst-type (append (map cons xs xs) env) t))]
  11337. [(? symbol? x) (dict-ref env x)]
  11338. [else (error 'type-check "expected a type not ~a" pt)]))
  11339. (define/public (combine-decls-defs ds)
  11340. (match ds
  11341. ['() '()]
  11342. [`(,(Decl name type) . (,(Def f params _ info body) . ,ds^))
  11343. (unless (equal? name f)
  11344. (error 'type-check "name mismatch, ~a != ~a" name f))
  11345. (match type
  11346. [`(All ,xs (,ps ... -> ,rt))
  11347. (define params^ (for/list ([x params] [T ps]) `[,x : ,T]))
  11348. (cons (Generic xs (Def name params^ rt info body))
  11349. (combine-decls-defs ds^))]
  11350. [`(,ps ... -> ,rt)
  11351. (define params^ (for/list ([x params] [T ps]) `[,x : ,T]))
  11352. (cons (Def name params^ rt info body) (combine-decls-defs ds^))]
  11353. [else (error 'type-check "expected a function type, not ~a" type) ])]
  11354. [`(,(Def f params rt info body) . ,ds^)
  11355. (cons (Def f params rt info body) (combine-decls-defs ds^))]))
  11356. \end{lstlisting}
  11357. \caption{Auxiliary functions for type checking $R_{10}$.}
  11358. \label{fig:type-check-R10-aux}
  11359. \end{figure}
  11360. \begin{figure}[tbp]
  11361. \begin{lstlisting}%[basicstyle=\ttfamily\scriptsize]
  11362. (define/public ((check-well-formed env) ty)
  11363. (match ty
  11364. ['Integer (void)]
  11365. ['Boolean (void)]
  11366. ['Void (void)]
  11367. [(? symbol? a)
  11368. (match (dict-ref env a (lambda () #f))
  11369. ['Type (void)]
  11370. [else (error 'type-check "undefined type variable ~a" a)])]
  11371. [`(Vector ,ts ...)
  11372. (for ([t ts]) ((check-well-formed env) t))]
  11373. [`(,ts ... -> ,t)
  11374. (for ([t ts]) ((check-well-formed env) t))
  11375. ((check-well-formed env) t)]
  11376. [`(All ,xs ,t)
  11377. (define env^ (append (for/list ([x xs]) (cons x 'Type)) env))
  11378. ((check-well-formed env^) t)]
  11379. [else (error 'type-check "unrecognized type ~a" ty)]))
  11380. \end{lstlisting}
  11381. \caption{Well-formed types.}
  11382. \label{fig:well-formed-types}
  11383. \end{figure}
  11384. % TODO: interpreter for R'_10
  11385. \section{Compiling Polymorphism}
  11386. \label{sec:compiling-poly}
  11387. Broadly speaking, there are four approaches to compiling parametric
  11388. polymorphism, which we describe below.
  11389. \begin{description}
  11390. \item[Monomorphization] generates a different version of a polymorphic
  11391. function for each set of type arguments that it is used with,
  11392. producing type-specialized code. This approach results in the most
  11393. efficient code but requires whole-program compilation (no separate
  11394. compilation) and increases code size. For our current purposes
  11395. monomorphization is a non-starter because, with first-class
  11396. polymorphism, it is sometimes not possible to determine which
  11397. generic functions are used with which type arguments during
  11398. compilation. (It can be done at runtime, with just-in-time
  11399. compilation.) This approach is used to compile C++
  11400. templates~\citep{stroustrup88:_param_types} and polymorphic
  11401. functions in NESL~\citep{Blelloch:1993aa} and
  11402. ML~\citep{Weeks:2006aa}.
  11403. \item[Uniform representation] generates one version of each
  11404. polymorphic function but requires all values have a common ``boxed''
  11405. format, such as the tagged values of type \code{Any} in
  11406. $R_6$. Non-polymorphic code (i.e. monomorphic code) is compiled
  11407. similarly to code in a dynamically typed language (like $R_7$), in
  11408. which primitive operators require their arguments to be projected
  11409. from \code{Any} and their results are injected into \code{Any}. (In
  11410. object-oriented languages, the projection is accomplished via
  11411. virtual method dispatch.) The uniform representation approach is
  11412. compatible with separate compilation and with first-class
  11413. polymorphism. However, it produces the least-efficient code because
  11414. it introduces overhead in the entire program, including
  11415. non-polymorphic code. This approach is used in the implementation of
  11416. CLU~\cite{liskov79:_clu_ref,Liskov:1993dk},
  11417. ML~\citep{Cardelli:1984aa,Appel:1987aa}, and
  11418. Java~\citep{Bracha:1998fk}.
  11419. \item[Mixed representation] generates one version of each polymorphic
  11420. function, using a boxed representation for type
  11421. variables. Monomorphic code is compiled as usual (as in $R_8$) and
  11422. conversions are performed at the boundaries between monomorphic and
  11423. polymorphic (e.g. when a polymorphic function is instantiated and
  11424. called). This approach is compatible with separate compilation and
  11425. first-class polymorphism and maintains the efficiency for
  11426. monomorphic code. The tradeoff is increased overhead at the boundary
  11427. between monomorphic and polymorphic code. This approach is used in
  11428. compilers for variants of ML~\citep{Leroy:1992qb} and starting in
  11429. Java 5 with the addition of autoboxing.
  11430. \item[Type passing] uses the unboxed representation in both
  11431. monomorphic and polymorphic code. Each polymorphic function is
  11432. compiled to a single function with extra parameters that describe
  11433. the type arguments. The type information is used by the generated
  11434. code to direct access of the unboxed values at runtime. This
  11435. approach is used in compilers for the Napier88
  11436. language~\citep{Morrison:1991aa} and ML~\citep{Harper:1995um}. This
  11437. approach is compatible with separate compilation and first-class
  11438. polymorphism and maintains the efficiency for monomorphic
  11439. code. There is runtime overhead in polymorphic code from dispatching
  11440. on type information.
  11441. \end{description}
  11442. In this chapter we use the mixed representation approach, partly
  11443. because of its favorable attributes, and partly because it is
  11444. straightforward to implement using the tools that we have already
  11445. built to support gradual typing. To compile polymorphic functions, we
  11446. add just one new pass, \code{erase-types}, to compile $R'_{10}$ to
  11447. $R'_9$.
  11448. \section{Erase Types}
  11449. \label{sec:erase-types}
  11450. We use the \code{Any} type from Chapter~\ref{ch:type-dynamic} to
  11451. represent type variables. For example, Figure~\ref{fig:map-vec-erase}
  11452. shows the output of the \code{erase-types} pass on the polymorphic
  11453. \code{map-vec} (Figure~\ref{fig:map-vec-poly}). The occurrences of
  11454. type parameter \code{a} are replaced by \code{Any} and the polymorphic
  11455. \code{All} types are removed from the type of \code{map-vec}.
  11456. \begin{figure}[tbp]
  11457. \begin{lstlisting}
  11458. (define (map-vec [f : (Any -> Any)] [v : (Vector Any Any)])
  11459. : (Vector Any Any)
  11460. (vector (f (vector-ref v 0)) (f (vector-ref v 1))))
  11461. (define (add1 [x : Integer]) : Integer (+ x 1))
  11462. (vector-ref ((cast map-vec
  11463. ((Any -> Any) (Vector Any Any) -> (Vector Any Any))
  11464. ((Integer -> Integer) (Vector Integer Integer)
  11465. -> (Vector Integer Integer)))
  11466. add1 (vector 0 41)) 1)
  11467. \end{lstlisting}
  11468. \caption{The polymorphic \code{map-vec} example after type erasure.}
  11469. \label{fig:map-vec-erase}
  11470. \end{figure}
  11471. This process of type erasure creates a challenge at points of
  11472. instantiation. For example, consider the instantiation of
  11473. \code{map-vec} in Figure~\ref{fig:map-vec-type-check}.
  11474. The type of \code{map-vec} is
  11475. \begin{lstlisting}
  11476. (All (a) ((a -> a) (Vector a a) -> (Vector a a)))
  11477. \end{lstlisting}
  11478. and it is instantiated to
  11479. \begin{lstlisting}
  11480. ((Integer -> Integer) (Vector Integer Integer)
  11481. -> (Vector Integer Integer))
  11482. \end{lstlisting}
  11483. After erasure, the type of \code{map-vec} is
  11484. \begin{lstlisting}
  11485. ((Any -> Any) (Vector Any Any) -> (Vector Any Any))
  11486. \end{lstlisting}
  11487. but we need to convert it to the instantiated type. This is easy to
  11488. do in the target language $R'_9$ with a single \code{cast}. In
  11489. Figure~\ref{fig:map-vec-erase}, the instantiation of \code{map-vec}
  11490. has been compiled to a \code{cast} from the type of \code{map-vec} to
  11491. the instantiated type. The source and target type of a cast must be
  11492. consistent (Figure~\ref{fig:consistent}), which indeed is the case
  11493. because both the source and target are obtained from the same
  11494. polymorphic type of \code{map-vec}, replacing the type parameters with
  11495. \code{Any} in the former and with the deduced type arguments in the
  11496. later. (Recall that the \code{Any} type is consistent with any type.)
  11497. To implement the \code{erase-types} pass, we recommend defining a
  11498. recursive auxiliary function named \code{erase-type} that applies the
  11499. following two transformations. It replaces type variables with
  11500. \code{Any}
  11501. \begin{lstlisting}
  11502. |$x$|
  11503. |$\Rightarrow$|
  11504. Any
  11505. \end{lstlisting}
  11506. and it removes the polymorphic \code{All} types.
  11507. \begin{lstlisting}
  11508. (All |$xs$| |$T_1$|)
  11509. |$\Rightarrow$|
  11510. |$T'_1$|
  11511. \end{lstlisting}
  11512. Apply the \code{erase-type} function to all of the type annotations in
  11513. the program.
  11514. Regarding the translation of expressions, the case for \code{Inst} is
  11515. the interesting one. We translate it into a \code{Cast}, as shown
  11516. below. The type of the subexpression $e$ is the polymorphic type
  11517. $\LP\key{All} xs T\RP$. The source type of the cast is the erasure of
  11518. $T$, the type $T'$. The target type $T''$ is the result of
  11519. substituting the arguments types $ts$ for the type parameters $xs$ in
  11520. $T$ followed by doing type erasure.
  11521. \begin{lstlisting}
  11522. (Inst |$e$| (All |$xs$| |$T$|) |$ts$|)
  11523. |$\Rightarrow$|
  11524. (Cast |$e'$| |$T'$| |$T''$|)
  11525. \end{lstlisting}
  11526. where $T'' = \LP\code{erase-type}~\LP\code{subst-type}~s~T\RP\RP$
  11527. and $s = \LP\code{map}~\code{cons}~xs~ts\RP$.
  11528. Finally, each polymorphic function is translated to a regular
  11529. functions in which type erasure has been applied to all the type
  11530. annotations and the body.
  11531. \begin{lstlisting}
  11532. (Poly |$ts$| (Def |$f$| ([|$x_1$| : |$T_1$|] |$\ldots$|) |$T_r$| |$\itm{info}$| |$e$|))
  11533. |$\Rightarrow$|
  11534. (Def |$f$| ([|$x_1$| : |$T'_1$|] |$\ldots$|) |$T'_r$| |$\itm{info}$| |$e'$|)
  11535. \end{lstlisting}
  11536. \begin{exercise}\normalfont
  11537. Implement a compiler for the polymorphic language $R_{10}$ by
  11538. extending and adapting your compiler for $R_9$. Create 6 new test
  11539. programs that use polymorphic functions. Some of them should make
  11540. use of first-class polymorphism.
  11541. \end{exercise}
  11542. \begin{figure}[p]
  11543. \begin{tikzpicture}[baseline=(current bounding box.center)]
  11544. \node (R10) at (9,4) {\large $R_{10}$};
  11545. \node (R10p) at (6,4) {\large $R'_{10}$};
  11546. \node (R9p) at (3,4) {\large $R'_9$};
  11547. \node (R8pp) at (0,4) {\large $R''_8$};
  11548. \node (R8proxy) at (0,2) {\large $R^p_8$};
  11549. \node (R8proxy-2) at (3,2) {\large $R^p_8$};
  11550. \node (R8proxy-3) at (6,2) {\large $R^p_8$};
  11551. \node (R8proxy-4) at (9,2) {\large $R^p_8$};
  11552. \node (R8proxy-5) at (12,2) {\large $R^p_8$};
  11553. \node (F1-1) at (12,0) {\large $R^p_8$};
  11554. \node (F1-2) at (9,0) {\large $R^p_8$};
  11555. \node (F1-3) at (6,0) {\large $R^p_8$};
  11556. \node (F1-4) at (3,0) {\large $R^p_8$};
  11557. \node (F1-5) at (0,0) {\large $R^p_8$};
  11558. \node (C3-2) at (3,-2) {\large $C^p_7$};
  11559. \node (x86-2) at (3,-4) {\large $\text{x86}^{*}_3$};
  11560. \node (x86-3) at (6,-4) {\large $\text{x86}^{*}_3$};
  11561. \node (x86-4) at (9,-4) {\large $\text{x86}^{*}_3$};
  11562. \node (x86-5) at (9,-6) {\large $\text{x86}^{\dagger}_3$};
  11563. \node (x86-2-1) at (3,-6) {\large $\text{x86}^{*}_3$};
  11564. \node (x86-2-2) at (6,-6) {\large $\text{x86}^{*}_3$};
  11565. \path[->,bend right=15] (R10) edge [above] node
  11566. {\ttfamily\footnotesize type-check} (R10p);
  11567. \path[->,bend right=15] (R10p) edge [above] node
  11568. {\ttfamily\footnotesize erase-types} (R9p);
  11569. \path[->,bend right=15] (R9p) edge [above] node
  11570. {\ttfamily\footnotesize lower-casts} (R8pp);
  11571. \path[->,bend right=15] (R8pp) edge [right] node
  11572. {\ttfamily\footnotesize differentiate-proxies} (R8proxy);
  11573. \path[->,bend left=15] (R8proxy) edge [above] node
  11574. {\ttfamily\footnotesize shrink} (R8proxy-2);
  11575. \path[->,bend left=15] (R8proxy-2) edge [above] node
  11576. {\ttfamily\footnotesize uniquify} (R8proxy-3);
  11577. \path[->,bend left=15] (R8proxy-3) edge [above] node
  11578. {\ttfamily\footnotesize reveal-functions} (R8proxy-4);
  11579. \path[->,bend left=15] (R8proxy-4) edge [above] node
  11580. {\ttfamily\footnotesize reveal-casts} (R8proxy-5);
  11581. \path[->,bend left=15] (R8proxy-5) edge [left] node
  11582. {\ttfamily\footnotesize convert-assignments} (F1-1);
  11583. \path[->,bend left=15] (F1-1) edge [below] node
  11584. {\ttfamily\footnotesize convert-to-clos.} (F1-2);
  11585. \path[->,bend right=15] (F1-2) edge [above] node
  11586. {\ttfamily\footnotesize limit-fun.} (F1-3);
  11587. \path[->,bend right=15] (F1-3) edge [above] node
  11588. {\ttfamily\footnotesize expose-alloc.} (F1-4);
  11589. \path[->,bend right=15] (F1-4) edge [above] node
  11590. {\ttfamily\footnotesize remove-complex.} (F1-5);
  11591. \path[->,bend right=15] (F1-5) edge [right] node
  11592. {\ttfamily\footnotesize explicate-control} (C3-2);
  11593. \path[->,bend left=15] (C3-2) edge [left] node
  11594. {\ttfamily\footnotesize select-instr.} (x86-2);
  11595. \path[->,bend right=15] (x86-2) edge [left] node
  11596. {\ttfamily\footnotesize uncover-live} (x86-2-1);
  11597. \path[->,bend right=15] (x86-2-1) edge [below] node
  11598. {\ttfamily\footnotesize build-inter.} (x86-2-2);
  11599. \path[->,bend right=15] (x86-2-2) edge [left] node
  11600. {\ttfamily\footnotesize allocate-reg.} (x86-3);
  11601. \path[->,bend left=15] (x86-3) edge [above] node
  11602. {\ttfamily\footnotesize patch-instr.} (x86-4);
  11603. \path[->,bend left=15] (x86-4) edge [right] node {\ttfamily\footnotesize print-x86} (x86-5);
  11604. \end{tikzpicture}
  11605. \caption{Diagram of the passes for $R_{10}$ (parametric polymorphism).}
  11606. \label{fig:R10-passes}
  11607. \end{figure}
  11608. Figure~\ref{fig:R10-passes} provides an overview of all the passes needed
  11609. for the compilation of $R_{10}$.
  11610. % TODO: challenge problem: specialization of instantiations
  11611. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  11612. \chapter{Appendix}
  11613. \section{Interpreters}
  11614. \label{appendix:interp}
  11615. \index{interpreter}
  11616. We provide interpreters for each of the source languages $R_0$, $R_1$,
  11617. $\ldots$ in the files \code{interp-R0.rkt}, \code{interp-R1.rkt}, etc.
  11618. The interpreters for the intermediate languages $C_0$ and $C_1$ are in
  11619. \code{interp-C0.rkt} and \code{interp-C1.rkt}. The interpreters for
  11620. $C_2$, $C_3$, pseudo-x86, and x86 are in the \key{interp.rkt} file.
  11621. \section{Utility Functions}
  11622. \label{appendix:utilities}
  11623. The utility functions described in this section are in the
  11624. \key{utilities.rkt} file of the support code.
  11625. \paragraph{\code{interp-tests}}
  11626. The \key{interp-tests} function runs the compiler passes and the
  11627. interpreters on each of the specified tests to check whether each pass
  11628. is correct. The \key{interp-tests} function has the following
  11629. parameters:
  11630. \begin{description}
  11631. \item[name (a string)] a name to identify the compiler,
  11632. \item[typechecker] a function of exactly one argument that either
  11633. raises an error using the \code{error} function when it encounters a
  11634. type error, or returns \code{\#f} when it encounters a type
  11635. error. If there is no type error, the type checker returns the
  11636. program.
  11637. \item[passes] a list with one entry per pass. An entry is a list with
  11638. four things:
  11639. \begin{enumerate}
  11640. \item a string giving the name of the pass,
  11641. \item the function that implements the pass (a translator from AST
  11642. to AST),
  11643. \item a function that implements the interpreter (a function from
  11644. AST to result value) for the output language,
  11645. \item and a type checker for the output language. Type checkers for
  11646. the $R$ and $C$ languages are provided in the support code. For
  11647. example, the type checkers for $R_1$ and $C_0$ are in
  11648. \code{type-check-R1.rkt}. The type checker entry is optional. The
  11649. support code does not provide type checkers for the x86 languages.
  11650. \end{enumerate}
  11651. \item[source-interp] an interpreter for the source language. The
  11652. interpreters from Appendix~\ref{appendix:interp} make a good choice.
  11653. \item[test-family (a string)] for example, \code{"r1"}, \code{"r2"}, etc.
  11654. \item[tests] a list of test numbers that specifies which tests to
  11655. run. (see below)
  11656. \end{description}
  11657. %
  11658. The \key{interp-tests} function assumes that the subdirectory
  11659. \key{tests} has a collection of Racket programs whose names all start
  11660. with the family name, followed by an underscore and then the test
  11661. number, ending with the file extension \key{.rkt}. Also, for each test
  11662. program that calls \code{read} one or more times, there is a file with
  11663. the same name except that the file extension is \key{.in} that
  11664. provides the input for the Racket program. If the test program is
  11665. expected to fail type checking, then there should be an empty file of
  11666. the same name but with extension \key{.tyerr}.
  11667. \paragraph{\code{compiler-tests}}
  11668. runs the compiler passes to generate x86 (a \key{.s} file) and then
  11669. runs the GNU C compiler (gcc) to generate machine code. It runs the
  11670. machine code and checks that the output is $42$. The parameters to the
  11671. \code{compiler-tests} function are similar to those of the
  11672. \code{interp-tests} function, and consist of
  11673. \begin{itemize}
  11674. \item a compiler name (a string),
  11675. \item a type checker,
  11676. \item description of the passes,
  11677. \item name of a test-family, and
  11678. \item a list of test numbers.
  11679. \end{itemize}
  11680. \paragraph{\code{compile-file}}
  11681. takes a description of the compiler passes (see the comment for
  11682. \key{interp-tests}) and returns a function that, given a program file
  11683. name (a string ending in \key{.rkt}), applies all of the passes and
  11684. writes the output to a file whose name is the same as the program file
  11685. name but with \key{.rkt} replaced with \key{.s}.
  11686. \paragraph{\code{read-program}}
  11687. takes a file path and parses that file (it must be a Racket program)
  11688. into an abstract syntax tree.
  11689. \paragraph{\code{parse-program}}
  11690. takes an S-expression representation of an abstract syntax tree and converts it into
  11691. the struct-based representation.
  11692. \paragraph{\code{assert}}
  11693. takes two parameters, a string (\code{msg}) and Boolean (\code{bool}),
  11694. and displays the message \key{msg} if the Boolean \key{bool} is false.
  11695. \paragraph{\code{lookup}}
  11696. % remove discussion of lookup? -Jeremy
  11697. takes a key and an alist, and returns the first value that is
  11698. associated with the given key, if there is one. If not, an error is
  11699. triggered. The alist may contain both immutable pairs (built with
  11700. \key{cons}) and mutable pairs (built with \key{mcons}).
  11701. %The \key{map2} function ...
  11702. \section{x86 Instruction Set Quick-Reference}
  11703. \label{sec:x86-quick-reference}
  11704. \index{x86}
  11705. Table~\ref{tab:x86-instr} lists some x86 instructions and what they
  11706. do. We write $A \to B$ to mean that the value of $A$ is written into
  11707. location $B$. Address offsets are given in bytes. The instruction
  11708. arguments $A, B, C$ can be immediate constants (such as \code{\$4}),
  11709. registers (such as \code{\%rax}), or memory references (such as
  11710. \code{-4(\%ebp)}). Most x86 instructions only allow at most one memory
  11711. reference per instruction. Other operands must be immediates or
  11712. registers.
  11713. \begin{table}[tbp]
  11714. \centering
  11715. \begin{tabular}{l|l}
  11716. \textbf{Instruction} & \textbf{Operation} \\ \hline
  11717. \texttt{addq} $A$, $B$ & $A + B \to B$\\
  11718. \texttt{negq} $A$ & $- A \to A$ \\
  11719. \texttt{subq} $A$, $B$ & $B - A \to B$\\
  11720. \texttt{callq} $L$ & Pushes the return address and jumps to label $L$ \\
  11721. \texttt{callq} \texttt{*}$A$ & Calls the function at the address $A$. \\
  11722. %\texttt{leave} & $\texttt{ebp} \to \texttt{esp};$ \texttt{popl \%ebp} \\
  11723. \texttt{retq} & Pops the return address and jumps to it \\
  11724. \texttt{popq} $A$ & $*\mathtt{rsp} \to A; \mathtt{rsp} + 8 \to \mathtt{rsp}$ \\
  11725. \texttt{pushq} $A$ & $\texttt{rsp} - 8 \to \texttt{rsp}; A \to *\texttt{rsp}$\\
  11726. \texttt{leaq} $A$,$B$ & $A \to B$ ($B$ must be a register) \\
  11727. \texttt{cmpq} $A$, $B$ & compare $A$ and $B$ and set the flag register ($B$ must not
  11728. be an immediate) \\
  11729. \texttt{je} $L$ & \multirow{5}{3.7in}{Jump to label $L$ if the flag register
  11730. matches the condition code of the instruction, otherwise go to the
  11731. next instructions. The condition codes are \key{e} for ``equal'',
  11732. \key{l} for ``less'', \key{le} for ``less or equal'', \key{g}
  11733. for ``greater'', and \key{ge} for ``greater or equal''.} \\
  11734. \texttt{jl} $L$ & \\
  11735. \texttt{jle} $L$ & \\
  11736. \texttt{jg} $L$ & \\
  11737. \texttt{jge} $L$ & \\
  11738. \texttt{jmp} $L$ & Jump to label $L$ \\
  11739. \texttt{movq} $A$, $B$ & $A \to B$ \\
  11740. \texttt{movzbq} $A$, $B$ &
  11741. \multirow{3}{3.7in}{$A \to B$, \text{where } $A$ is a single-byte register
  11742. (e.g., \texttt{al} or \texttt{cl}), $B$ is a 8-byte register,
  11743. and the extra bytes of $B$ are set to zero.} \\
  11744. & \\
  11745. & \\
  11746. \texttt{notq} $A$ & $\sim A \to A$ \qquad (bitwise complement)\\
  11747. \texttt{orq} $A$, $B$ & $A | B \to B$ \qquad (bitwise-or)\\
  11748. \texttt{andq} $A$, $B$ & $A \& B \to B$ \qquad (bitwise-and)\\
  11749. \texttt{salq} $A$, $B$ & $B$ \texttt{<<} $A \to B$ (arithmetic shift left, where $A$ is a constant)\\
  11750. \texttt{sarq} $A$, $B$ & $B$ \texttt{>>} $A \to B$ (arithmetic shift right, where $A$ is a constant)\\
  11751. \texttt{sete} $A$ & \multirow{5}{3.7in}{If the flag matches the condition code,
  11752. then $1 \to A$, else $0 \to A$. Refer to \texttt{je} above for the
  11753. description of the condition codes. $A$ must be a single byte register
  11754. (e.g., \texttt{al} or \texttt{cl}).} \\
  11755. \texttt{setl} $A$ & \\
  11756. \texttt{setle} $A$ & \\
  11757. \texttt{setg} $A$ & \\
  11758. \texttt{setge} $A$ &
  11759. \end{tabular}
  11760. \vspace{5pt}
  11761. \caption{Quick-reference for the x86 instructions used in this book.}
  11762. \label{tab:x86-instr}
  11763. \end{table}
  11764. \cleardoublepage
  11765. \section{Concrete Syntax for Intermediate Languages}
  11766. The concrete syntax of $R_6$ is defined in
  11767. Figure~\ref{fig:r6-concrete-syntax}.
  11768. \begin{figure}[tp]
  11769. \centering
  11770. \fbox{
  11771. \begin{minipage}{0.97\textwidth}\small
  11772. \[
  11773. \begin{array}{lcl}
  11774. \Type &::=& \gray{\key{Integer} \mid \key{Boolean}
  11775. \mid \LP\key{Vector}\;\Type\ldots\RP \mid \key{Void}} \\
  11776. &\mid& \gray{\LP\Type\ldots \; \key{->}\; \Type\RP} \mid \key{Any} \\
  11777. \FType &::=& \key{Integer} \mid \key{Boolean} \mid \key{Void}
  11778. \mid \LP\key{Vector}\; \key{Any}\ldots\RP \\
  11779. &\mid& \LP\key{Any}\ldots \; \key{->}\; \key{Any}\RP\\
  11780. \Exp &::=& \ldots \CINJECT{\Exp}{\FType}\RP \mid \CPROJECT{\Exp}{\FType}\\
  11781. &\mid& \LP\key{any-vector-length}\;\Exp\RP
  11782. \mid \LP\key{any-vector-ref}\;\Exp\;\Exp\RP \\
  11783. &\mid& \LP\key{any-vector-set!}\;\Exp\;\Exp\;\Exp\RP\\
  11784. &\mid& \LP\key{boolean?}\;\Exp\RP \mid \LP\key{integer?}\;\Exp\RP
  11785. \mid \LP\key{void?}\;\Exp\RP \\
  11786. &\mid& \LP\key{vector?}\;\Exp\RP \mid \LP\key{procedure?}\;\Exp\RP \\
  11787. \Def &::=& \gray{ \CDEF{\Var}{\LS\Var \key{:} \Type\RS\ldots}{\Type}{\Exp} } \\
  11788. R_6 &::=& \gray{\Def\ldots \; \Exp}
  11789. \end{array}
  11790. \]
  11791. \end{minipage}
  11792. }
  11793. \caption{The concrete syntax of $R_6$, extending $R_5$ (Figure~\ref{fig:r5-syntax})
  11794. with \key{Any}.}
  11795. \label{fig:r6-concrete-syntax}
  11796. \end{figure}
  11797. The concrete syntax for $C_0$, $C_1$, $C_2$ and $C_3$ is
  11798. defined in Figures~\ref{fig:c0-concrete-syntax},
  11799. \ref{fig:c1-concrete-syntax}, \ref{fig:c2-concrete-syntax},
  11800. and \ref{fig:c3-concrete-syntax}, respectively.
  11801. \begin{figure}[tbp]
  11802. \fbox{
  11803. \begin{minipage}{0.96\textwidth}
  11804. \[
  11805. \begin{array}{lcl}
  11806. \Atm &::=& \Int \mid \Var \\
  11807. \Exp &::=& \Atm \mid \key{(read)} \mid \key{(-}~\Atm\key{)} \mid \key{(+}~\Atm~\Atm\key{)}\\
  11808. \Stmt &::=& \Var~\key{=}~\Exp\key{;} \\
  11809. \Tail &::= & \key{return}~\Exp\key{;} \mid \Stmt~\Tail \\
  11810. C_0 & ::= & (\itm{label}\key{:}~ \Tail)\ldots
  11811. \end{array}
  11812. \]
  11813. \end{minipage}
  11814. }
  11815. \caption{The concrete syntax of the $C_0$ intermediate language.}
  11816. \label{fig:c0-concrete-syntax}
  11817. \end{figure}
  11818. \begin{figure}[tbp]
  11819. \fbox{
  11820. \begin{minipage}{0.96\textwidth}
  11821. \small
  11822. \[
  11823. \begin{array}{lcl}
  11824. \Atm &::=& \gray{ \Int \mid \Var } \mid \itm{bool} \\
  11825. \itm{cmp} &::= & \key{eq?} \mid \key{<} \\
  11826. \Exp &::=& \gray{ \Atm \mid \key{(read)} \mid \key{(-}~\Atm\key{)} \mid \key{(+}~\Atm~\Atm\key{)} } \\
  11827. &\mid& \LP \key{not}~\Atm \RP \mid \LP \itm{cmp}~\Atm~\Atm\RP \\
  11828. \Stmt &::=& \gray{ \Var~\key{=}~\Exp\key{;} } \\
  11829. \Tail &::= & \gray{ \key{return}~\Exp\key{;} \mid \Stmt~\Tail }
  11830. \mid \key{goto}~\itm{label}\key{;}\\
  11831. &\mid& \key{if}~\LP \itm{cmp}~\Atm~\Atm \RP~ \key{goto}~\itm{label}\key{;} ~\key{else}~\key{goto}~\itm{label}\key{;} \\
  11832. C_1 & ::= & \gray{ (\itm{label}\key{:}~ \Tail)\ldots }
  11833. \end{array}
  11834. \]
  11835. \end{minipage}
  11836. }
  11837. \caption{The concrete syntax of the $C_1$ intermediate language.}
  11838. \label{fig:c1-concrete-syntax}
  11839. \end{figure}
  11840. \begin{figure}[tbp]
  11841. \fbox{
  11842. \begin{minipage}{0.96\textwidth}
  11843. \small
  11844. \[
  11845. \begin{array}{lcl}
  11846. \Atm &::=& \gray{ \Int \mid \Var \mid \itm{bool} } \\
  11847. \itm{cmp} &::= & \gray{ \key{eq?} \mid \key{<} } \\
  11848. \Exp &::=& \gray{ \Atm \mid \key{(read)} \mid \key{(-}~\Atm\key{)} \mid \key{(+}~\Atm~\Atm\key{)} } \\
  11849. &\mid& \gray{ \LP \key{not}~\Atm \RP \mid \LP \itm{cmp}~\Atm~\Atm\RP } \\
  11850. &\mid& \LP \key{allocate}~\Int~\Type \RP \\
  11851. &\mid& (\key{vector-ref}\;\Atm\;\Int) \mid (\key{vector-set!}\;\Atm\;\Int\;\Atm)\\
  11852. &\mid& \LP \key{global-value}~\Var \RP \mid \LP \key{void} \RP \\
  11853. \Stmt &::=& \gray{ \Var~\key{=}~\Exp\key{;} } \mid \LP\key{collect}~\Int \RP\\
  11854. \Tail &::= & \gray{ \key{return}~\Exp\key{;} \mid \Stmt~\Tail }
  11855. \mid \gray{ \key{goto}~\itm{label}\key{;} }\\
  11856. &\mid& \gray{ \key{if}~\LP \itm{cmp}~\Atm~\Atm \RP~ \key{goto}~\itm{label}\key{;} ~\key{else}~\key{goto}~\itm{label}\key{;} } \\
  11857. C_2 & ::= & \gray{ (\itm{label}\key{:}~ \Tail)\ldots }
  11858. \end{array}
  11859. \]
  11860. \end{minipage}
  11861. }
  11862. \caption{The concrete syntax of the $C_2$ intermediate language.}
  11863. \label{fig:c2-concrete-syntax}
  11864. \end{figure}
  11865. \begin{figure}[tp]
  11866. \fbox{
  11867. \begin{minipage}{0.96\textwidth}
  11868. \small
  11869. \[
  11870. \begin{array}{lcl}
  11871. \Atm &::=& \gray{ \Int \mid \Var \mid \key{\#t} \mid \key{\#f} }
  11872. \\
  11873. \itm{cmp} &::= & \gray{ \key{eq?} \mid \key{<} } \\
  11874. \Exp &::= & \gray{ \Atm \mid \LP\key{read}\RP \mid \LP\key{-}\;\Atm\RP \mid \LP\key{+} \; \Atm\;\Atm\RP
  11875. \mid \LP\key{not}\;\Atm\RP \mid \LP\itm{cmp}\;\Atm\;\Atm\RP } \\
  11876. &\mid& \gray{ \LP\key{allocate}\,\Int\,\Type\RP
  11877. \mid \LP\key{vector-ref}\, \Atm\, \Int\RP } \\
  11878. &\mid& \gray{ \LP\key{vector-set!}\,\Atm\,\Int\,\Atm\RP \mid \LP\key{global-value} \,\itm{name}\RP \mid \LP\key{void}\RP } \\
  11879. &\mid& \LP\key{fun-ref}~\itm{label}\RP \mid \LP\key{call} \,\Atm\,\Atm\ldots\RP \\
  11880. \Stmt &::=& \gray{ \ASSIGN{\Var}{\Exp} \mid \RETURN{\Exp}
  11881. \mid \LP\key{collect} \,\itm{int}\RP }\\
  11882. \Tail &::= & \gray{\RETURN{\Exp} \mid \LP\key{seq}\;\Stmt\;\Tail\RP} \\
  11883. &\mid& \gray{\LP\key{goto}\,\itm{label}\RP
  11884. \mid \IF{\LP\itm{cmp}\, \Atm\,\Atm\RP}{\LP\key{goto}\,\itm{label}\RP}{\LP\key{goto}\,\itm{label}\RP}} \\
  11885. &\mid& \LP\key{tail-call}\,\Atm\,\Atm\ldots\RP \\
  11886. \Def &::=& \LP\key{define}\; \LP\itm{label} \; [\Var \key{:} \Type]\ldots\RP \key{:} \Type \; \LP\LP\itm{label}\,\key{.}\,\Tail\RP\ldots\RP\RP \\
  11887. C_3 & ::= & \Def\ldots
  11888. \end{array}
  11889. \]
  11890. \end{minipage}
  11891. }
  11892. \caption{The $C_3$ language, extending $C_2$ (Figure~\ref{fig:c2-concrete-syntax}) with functions.}
  11893. \label{fig:c3-concrete-syntax}
  11894. \end{figure}
  11895. \cleardoublepage
  11896. \addcontentsline{toc}{chapter}{Index}
  11897. \printindex
  11898. \cleardoublepage
  11899. \bibliographystyle{plainnat}
  11900. \bibliography{all}
  11901. \addcontentsline{toc}{chapter}{Bibliography}
  11902. \end{document}
  11903. %% LocalWords: Dybvig Waddell Abdulaziz Ghuloum Dipanwita Sussman
  11904. %% LocalWords: Sarkar lcl Matz aa representable Chez Ph Dan's nano
  11905. %% LocalWords: fk bh Siek plt uq Felleisen Bor Yuh ASTs AST Naur eq
  11906. %% LocalWords: BNF fixnum datatype arith prog backquote quasiquote
  11907. %% LocalWords: ast Reynold's reynolds interp cond fx evaluator jane
  11908. %% LocalWords: quasiquotes pe nullary unary rcl env lookup gcc rax
  11909. %% LocalWords: addq movq callq rsp rbp rbx rcx rdx rsi rdi subq nx
  11910. %% LocalWords: negq pushq popq retq globl Kernighan uniquify lll ve
  11911. %% LocalWords: allocator gensym env subdirectory scm rkt tmp lhs Tt
  11912. %% LocalWords: runtime Liveness liveness undirected Balakrishnan je
  11913. %% LocalWords: Rosen DSATUR SDO Gebremedhin Omari morekeywords cnd
  11914. %% LocalWords: fullflexible vertices Booleans Listof Pairof thn els
  11915. %% LocalWords: boolean type-check notq cmpq sete movzbq jmp al xorq
  11916. %% LocalWords: EFLAGS thns elss elselabel endlabel Tuples tuples os
  11917. %% LocalWords: tuple args lexically leaq Polymorphism msg bool nums
  11918. %% LocalWords: macosx unix Cormen vec callee xs maxStack numParams
  11919. %% LocalWords: arg bitwise XOR'd thenlabel immediates optimizations
  11920. %% LocalWords: deallocating Ungar Detlefs Tene kx FromSpace ToSpace
  11921. %% LocalWords: Appel Diwan Siebert ptr fromspace rootstack typedef
  11922. %% LocalWords: len prev rootlen heaplen setl lt Kohlbecker dk multi
  11923. % LocalWords: Bloomington Wollowski definitional whitespace deref JM
  11924. % LocalWords: subexpression subexpressions iteratively ANF Danvy rco
  11925. % LocalWords: goto stmt JS ly cmp ty le ge jle goto's EFLAG CFG pred
  11926. % LocalWords: acyclic worklist Aho qf tsort implementer's hj Shidal
  11927. % LocalWords: nonnegative Shahriyar endian salq sarq uint cheney ior
  11928. % LocalWords: tospace vecinit collectret alloc initret decrement jl
  11929. % LocalWords: dereferencing GC di vals ps mcons ds mcdr callee's th
  11930. % LocalWords: mainDef tailcall prepending mainstart num params rT qb
  11931. % LocalWords: mainconclusion Cardelli bodyT fvs clos fvts subtype uj
  11932. % LocalWords: polymorphism untyped elts tys tagof Vectorof tyeq orq
  11933. % LocalWords: andq untagged Shao inlining ebp jge setle setg setge
  11934. % LocalWords: struct Friedman's MacOS Nystrom alist sam kate
  11935. % LocalWords: alists arity github unordered pqueue exprs ret param
  11936. % LocalWords: tyerr bytereg dh dl JmpIf HasType Osterlund Jacek TODO
  11937. % LocalWords: Gamari GlobalValue ProgramDefsExp prm ProgramDefs vn
  11938. % LocalWords: FunRef TailCall tailjmp IndirectCallq TailJmp Gilray
  11939. % LocalWords: dereference unbox Dataflow versa dataflow Kildall rhs
  11940. % LocalWords: Kleene enqueue dequeue AssignedFree FV cnvt SetBang tg
  11941. % LocalWords: ValueOf typechecker