book.tex 751 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137613861396140614161426143614461456146614761486149615061516152615361546155615661576158615961606161616261636164616561666167616861696170617161726173617461756176617761786179618061816182618361846185618661876188618961906191619261936194619561966197619861996200620162026203620462056206620762086209621062116212621362146215621662176218621962206221622262236224622562266227622862296230623162326233623462356236623762386239624062416242624362446245624662476248624962506251625262536254625562566257625862596260626162626263626462656266626762686269627062716272627362746275627662776278627962806281628262836284628562866287628862896290629162926293629462956296629762986299630063016302630363046305630663076308630963106311631263136314631563166317631863196320632163226323632463256326632763286329633063316332633363346335633663376338633963406341634263436344634563466347634863496350635163526353635463556356635763586359636063616362636363646365636663676368636963706371637263736374637563766377637863796380638163826383638463856386638763886389639063916392639363946395639663976398639964006401640264036404640564066407640864096410641164126413641464156416641764186419642064216422642364246425642664276428642964306431643264336434643564366437643864396440644164426443644464456446644764486449645064516452645364546455645664576458645964606461646264636464646564666467646864696470647164726473647464756476647764786479648064816482648364846485648664876488648964906491649264936494649564966497649864996500650165026503650465056506650765086509651065116512651365146515651665176518651965206521652265236524652565266527652865296530653165326533653465356536653765386539654065416542654365446545654665476548654965506551655265536554655565566557655865596560656165626563656465656566656765686569657065716572657365746575657665776578657965806581658265836584658565866587658865896590659165926593659465956596659765986599660066016602660366046605660666076608660966106611661266136614661566166617661866196620662166226623662466256626662766286629663066316632663366346635663666376638663966406641664266436644664566466647664866496650665166526653665466556656665766586659666066616662666366646665666666676668666966706671667266736674667566766677667866796680668166826683668466856686668766886689669066916692669366946695669666976698669967006701670267036704670567066707670867096710671167126713671467156716671767186719672067216722672367246725672667276728672967306731673267336734673567366737673867396740674167426743674467456746674767486749675067516752675367546755675667576758675967606761676267636764676567666767676867696770677167726773677467756776677767786779678067816782678367846785678667876788678967906791679267936794679567966797679867996800680168026803680468056806680768086809681068116812681368146815681668176818681968206821682268236824682568266827682868296830683168326833683468356836683768386839684068416842684368446845684668476848684968506851685268536854685568566857685868596860686168626863686468656866686768686869687068716872687368746875687668776878687968806881688268836884688568866887688868896890689168926893689468956896689768986899690069016902690369046905690669076908690969106911691269136914691569166917691869196920692169226923692469256926692769286929693069316932693369346935693669376938693969406941694269436944694569466947694869496950695169526953695469556956695769586959696069616962696369646965696669676968696969706971697269736974697569766977697869796980698169826983698469856986698769886989699069916992699369946995699669976998699970007001700270037004700570067007700870097010701170127013701470157016701770187019702070217022702370247025702670277028702970307031703270337034703570367037703870397040704170427043704470457046704770487049705070517052705370547055705670577058705970607061706270637064706570667067706870697070707170727073707470757076707770787079708070817082708370847085708670877088708970907091709270937094709570967097709870997100710171027103710471057106710771087109711071117112711371147115711671177118711971207121712271237124712571267127712871297130713171327133713471357136713771387139714071417142714371447145714671477148714971507151715271537154715571567157715871597160716171627163716471657166716771687169717071717172717371747175717671777178717971807181718271837184718571867187718871897190719171927193719471957196719771987199720072017202720372047205720672077208720972107211721272137214721572167217721872197220722172227223722472257226722772287229723072317232723372347235723672377238723972407241724272437244724572467247724872497250725172527253725472557256725772587259726072617262726372647265726672677268726972707271727272737274727572767277727872797280728172827283728472857286728772887289729072917292729372947295729672977298729973007301730273037304730573067307730873097310731173127313731473157316731773187319732073217322732373247325732673277328732973307331733273337334733573367337733873397340734173427343734473457346734773487349735073517352735373547355735673577358735973607361736273637364736573667367736873697370737173727373737473757376737773787379738073817382738373847385738673877388738973907391739273937394739573967397739873997400740174027403740474057406740774087409741074117412741374147415741674177418741974207421742274237424742574267427742874297430743174327433743474357436743774387439744074417442744374447445744674477448744974507451745274537454745574567457745874597460746174627463746474657466746774687469747074717472747374747475747674777478747974807481748274837484748574867487748874897490749174927493749474957496749774987499750075017502750375047505750675077508750975107511751275137514751575167517751875197520752175227523752475257526752775287529753075317532753375347535753675377538753975407541754275437544754575467547754875497550755175527553755475557556755775587559756075617562756375647565756675677568756975707571757275737574757575767577757875797580758175827583758475857586758775887589759075917592759375947595759675977598759976007601760276037604760576067607760876097610761176127613761476157616761776187619762076217622762376247625762676277628762976307631763276337634763576367637763876397640764176427643764476457646764776487649765076517652765376547655765676577658765976607661766276637664766576667667766876697670767176727673767476757676767776787679768076817682768376847685768676877688768976907691769276937694769576967697769876997700770177027703770477057706770777087709771077117712771377147715771677177718771977207721772277237724772577267727772877297730773177327733773477357736773777387739774077417742774377447745774677477748774977507751775277537754775577567757775877597760776177627763776477657766776777687769777077717772777377747775777677777778777977807781778277837784778577867787778877897790779177927793779477957796779777987799780078017802780378047805780678077808780978107811781278137814781578167817781878197820782178227823782478257826782778287829783078317832783378347835783678377838783978407841784278437844784578467847784878497850785178527853785478557856785778587859786078617862786378647865786678677868786978707871787278737874787578767877787878797880788178827883788478857886788778887889789078917892789378947895789678977898789979007901790279037904790579067907790879097910791179127913791479157916791779187919792079217922792379247925792679277928792979307931793279337934793579367937793879397940794179427943794479457946794779487949795079517952795379547955795679577958795979607961796279637964796579667967796879697970797179727973797479757976797779787979798079817982798379847985798679877988798979907991799279937994799579967997799879998000800180028003800480058006800780088009801080118012801380148015801680178018801980208021802280238024802580268027802880298030803180328033803480358036803780388039804080418042804380448045804680478048804980508051805280538054805580568057805880598060806180628063806480658066806780688069807080718072807380748075807680778078807980808081808280838084808580868087808880898090809180928093809480958096809780988099810081018102810381048105810681078108810981108111811281138114811581168117811881198120812181228123812481258126812781288129813081318132813381348135813681378138813981408141814281438144814581468147814881498150815181528153815481558156815781588159816081618162816381648165816681678168816981708171817281738174817581768177817881798180818181828183818481858186818781888189819081918192819381948195819681978198819982008201820282038204820582068207820882098210821182128213821482158216821782188219822082218222822382248225822682278228822982308231823282338234823582368237823882398240824182428243824482458246824782488249825082518252825382548255825682578258825982608261826282638264826582668267826882698270827182728273827482758276827782788279828082818282828382848285828682878288828982908291829282938294829582968297829882998300830183028303830483058306830783088309831083118312831383148315831683178318831983208321832283238324832583268327832883298330833183328333833483358336833783388339834083418342834383448345834683478348834983508351835283538354835583568357835883598360836183628363836483658366836783688369837083718372837383748375837683778378837983808381838283838384838583868387838883898390839183928393839483958396839783988399840084018402840384048405840684078408840984108411841284138414841584168417841884198420842184228423842484258426842784288429843084318432843384348435843684378438843984408441844284438444844584468447844884498450845184528453845484558456845784588459846084618462846384648465846684678468846984708471847284738474847584768477847884798480848184828483848484858486848784888489849084918492849384948495849684978498849985008501850285038504850585068507850885098510851185128513851485158516851785188519852085218522852385248525852685278528852985308531853285338534853585368537853885398540854185428543854485458546854785488549855085518552855385548555855685578558855985608561856285638564856585668567856885698570857185728573857485758576857785788579858085818582858385848585858685878588858985908591859285938594859585968597859885998600860186028603860486058606860786088609861086118612861386148615861686178618861986208621862286238624862586268627862886298630863186328633863486358636863786388639864086418642864386448645864686478648864986508651865286538654865586568657865886598660866186628663866486658666866786688669867086718672867386748675867686778678867986808681868286838684868586868687868886898690869186928693869486958696869786988699870087018702870387048705870687078708870987108711871287138714871587168717871887198720872187228723872487258726872787288729873087318732873387348735873687378738873987408741874287438744874587468747874887498750875187528753875487558756875787588759876087618762876387648765876687678768876987708771877287738774877587768777877887798780878187828783878487858786878787888789879087918792879387948795879687978798879988008801880288038804880588068807880888098810881188128813881488158816881788188819882088218822882388248825882688278828882988308831883288338834883588368837883888398840884188428843884488458846884788488849885088518852885388548855885688578858885988608861886288638864886588668867886888698870887188728873887488758876887788788879888088818882888388848885888688878888888988908891889288938894889588968897889888998900890189028903890489058906890789088909891089118912891389148915891689178918891989208921892289238924892589268927892889298930893189328933893489358936893789388939894089418942894389448945894689478948894989508951895289538954895589568957895889598960896189628963896489658966896789688969897089718972897389748975897689778978897989808981898289838984898589868987898889898990899189928993899489958996899789988999900090019002900390049005900690079008900990109011901290139014901590169017901890199020902190229023902490259026902790289029903090319032903390349035903690379038903990409041904290439044904590469047904890499050905190529053905490559056905790589059906090619062906390649065906690679068906990709071907290739074907590769077907890799080908190829083908490859086908790889089909090919092909390949095909690979098909991009101910291039104910591069107910891099110911191129113911491159116911791189119912091219122912391249125912691279128912991309131913291339134913591369137913891399140914191429143914491459146914791489149915091519152915391549155915691579158915991609161916291639164916591669167916891699170917191729173917491759176917791789179918091819182918391849185918691879188918991909191919291939194919591969197919891999200920192029203920492059206920792089209921092119212921392149215921692179218921992209221922292239224922592269227922892299230923192329233923492359236923792389239924092419242924392449245924692479248924992509251925292539254925592569257925892599260926192629263926492659266926792689269927092719272927392749275927692779278927992809281928292839284928592869287928892899290929192929293929492959296929792989299930093019302930393049305930693079308930993109311931293139314931593169317931893199320932193229323932493259326932793289329933093319332933393349335933693379338933993409341934293439344934593469347934893499350935193529353935493559356935793589359936093619362936393649365936693679368936993709371937293739374937593769377937893799380938193829383938493859386938793889389939093919392939393949395939693979398939994009401940294039404940594069407940894099410941194129413941494159416941794189419942094219422942394249425942694279428942994309431943294339434943594369437943894399440944194429443944494459446944794489449945094519452945394549455945694579458945994609461946294639464946594669467946894699470947194729473947494759476947794789479948094819482948394849485948694879488948994909491949294939494949594969497949894999500950195029503950495059506950795089509951095119512951395149515951695179518951995209521952295239524952595269527952895299530953195329533953495359536953795389539954095419542954395449545954695479548954995509551955295539554955595569557955895599560956195629563956495659566956795689569957095719572957395749575957695779578957995809581958295839584958595869587958895899590959195929593959495959596959795989599960096019602960396049605960696079608960996109611961296139614961596169617961896199620962196229623962496259626962796289629963096319632963396349635963696379638963996409641964296439644964596469647964896499650965196529653965496559656965796589659966096619662966396649665966696679668966996709671967296739674967596769677967896799680968196829683968496859686968796889689969096919692969396949695969696979698969997009701970297039704970597069707970897099710971197129713971497159716971797189719972097219722972397249725972697279728972997309731973297339734973597369737973897399740974197429743974497459746974797489749975097519752975397549755975697579758975997609761976297639764976597669767976897699770977197729773977497759776977797789779978097819782978397849785978697879788978997909791979297939794979597969797979897999800980198029803980498059806980798089809981098119812981398149815981698179818981998209821982298239824982598269827982898299830983198329833983498359836983798389839984098419842984398449845984698479848984998509851985298539854985598569857985898599860986198629863986498659866986798689869987098719872987398749875987698779878987998809881988298839884988598869887988898899890989198929893989498959896989798989899990099019902990399049905990699079908990999109911991299139914991599169917991899199920992199229923992499259926992799289929993099319932993399349935993699379938993999409941994299439944994599469947994899499950995199529953995499559956995799589959996099619962996399649965996699679968996999709971997299739974997599769977997899799980998199829983998499859986998799889989999099919992999399949995999699979998999910000100011000210003100041000510006100071000810009100101001110012100131001410015100161001710018100191002010021100221002310024100251002610027100281002910030100311003210033100341003510036100371003810039100401004110042100431004410045100461004710048100491005010051100521005310054100551005610057100581005910060100611006210063100641006510066100671006810069100701007110072100731007410075100761007710078100791008010081100821008310084100851008610087100881008910090100911009210093100941009510096100971009810099101001010110102101031010410105101061010710108101091011010111101121011310114101151011610117101181011910120101211012210123101241012510126101271012810129101301013110132101331013410135101361013710138101391014010141101421014310144101451014610147101481014910150101511015210153101541015510156101571015810159101601016110162101631016410165101661016710168101691017010171101721017310174101751017610177101781017910180101811018210183101841018510186101871018810189101901019110192101931019410195101961019710198101991020010201102021020310204102051020610207102081020910210102111021210213102141021510216102171021810219102201022110222102231022410225102261022710228102291023010231102321023310234102351023610237102381023910240102411024210243102441024510246102471024810249102501025110252102531025410255102561025710258102591026010261102621026310264102651026610267102681026910270102711027210273102741027510276102771027810279102801028110282102831028410285102861028710288102891029010291102921029310294102951029610297102981029910300103011030210303103041030510306103071030810309103101031110312103131031410315103161031710318103191032010321103221032310324103251032610327103281032910330103311033210333103341033510336103371033810339103401034110342103431034410345103461034710348103491035010351103521035310354103551035610357103581035910360103611036210363103641036510366103671036810369103701037110372103731037410375103761037710378103791038010381103821038310384103851038610387103881038910390103911039210393103941039510396103971039810399104001040110402104031040410405104061040710408104091041010411104121041310414104151041610417104181041910420104211042210423104241042510426104271042810429104301043110432104331043410435104361043710438104391044010441104421044310444104451044610447104481044910450104511045210453104541045510456104571045810459104601046110462104631046410465104661046710468104691047010471104721047310474104751047610477104781047910480104811048210483104841048510486104871048810489104901049110492104931049410495104961049710498104991050010501105021050310504105051050610507105081050910510105111051210513105141051510516105171051810519105201052110522105231052410525105261052710528105291053010531105321053310534105351053610537105381053910540105411054210543105441054510546105471054810549105501055110552105531055410555105561055710558105591056010561105621056310564105651056610567105681056910570105711057210573105741057510576105771057810579105801058110582105831058410585105861058710588105891059010591105921059310594105951059610597105981059910600106011060210603106041060510606106071060810609106101061110612106131061410615106161061710618106191062010621106221062310624106251062610627106281062910630106311063210633106341063510636106371063810639106401064110642106431064410645106461064710648106491065010651106521065310654106551065610657106581065910660106611066210663106641066510666106671066810669106701067110672106731067410675106761067710678106791068010681106821068310684106851068610687106881068910690106911069210693106941069510696106971069810699107001070110702107031070410705107061070710708107091071010711107121071310714107151071610717107181071910720107211072210723107241072510726107271072810729107301073110732107331073410735107361073710738107391074010741107421074310744107451074610747107481074910750107511075210753107541075510756107571075810759107601076110762107631076410765107661076710768107691077010771107721077310774107751077610777107781077910780107811078210783107841078510786107871078810789107901079110792107931079410795107961079710798107991080010801108021080310804108051080610807108081080910810108111081210813108141081510816108171081810819108201082110822108231082410825108261082710828108291083010831108321083310834108351083610837108381083910840108411084210843108441084510846108471084810849108501085110852108531085410855108561085710858108591086010861108621086310864108651086610867108681086910870108711087210873108741087510876108771087810879108801088110882108831088410885108861088710888108891089010891108921089310894108951089610897108981089910900109011090210903109041090510906109071090810909109101091110912109131091410915109161091710918109191092010921109221092310924109251092610927109281092910930109311093210933109341093510936109371093810939109401094110942109431094410945109461094710948109491095010951109521095310954109551095610957109581095910960109611096210963109641096510966109671096810969109701097110972109731097410975109761097710978109791098010981109821098310984109851098610987109881098910990109911099210993109941099510996109971099810999110001100111002110031100411005110061100711008110091101011011110121101311014110151101611017110181101911020110211102211023110241102511026110271102811029110301103111032110331103411035110361103711038110391104011041110421104311044110451104611047110481104911050110511105211053110541105511056110571105811059110601106111062110631106411065110661106711068110691107011071110721107311074110751107611077110781107911080110811108211083110841108511086110871108811089110901109111092110931109411095110961109711098110991110011101111021110311104111051110611107111081110911110111111111211113111141111511116111171111811119111201112111122111231112411125111261112711128111291113011131111321113311134111351113611137111381113911140111411114211143111441114511146111471114811149111501115111152111531115411155111561115711158111591116011161111621116311164111651116611167111681116911170111711117211173111741117511176111771117811179111801118111182111831118411185111861118711188111891119011191111921119311194111951119611197111981119911200112011120211203112041120511206112071120811209112101121111212112131121411215112161121711218112191122011221112221122311224112251122611227112281122911230112311123211233112341123511236112371123811239112401124111242112431124411245112461124711248112491125011251112521125311254112551125611257112581125911260112611126211263112641126511266112671126811269112701127111272112731127411275112761127711278112791128011281112821128311284112851128611287112881128911290112911129211293112941129511296112971129811299113001130111302113031130411305113061130711308113091131011311113121131311314113151131611317113181131911320113211132211323113241132511326113271132811329113301133111332113331133411335113361133711338113391134011341113421134311344113451134611347113481134911350113511135211353113541135511356113571135811359113601136111362113631136411365113661136711368113691137011371113721137311374113751137611377113781137911380113811138211383113841138511386113871138811389113901139111392113931139411395113961139711398113991140011401114021140311404114051140611407114081140911410114111141211413114141141511416114171141811419114201142111422114231142411425114261142711428114291143011431114321143311434114351143611437114381143911440114411144211443114441144511446114471144811449114501145111452114531145411455114561145711458114591146011461114621146311464114651146611467114681146911470114711147211473114741147511476114771147811479114801148111482114831148411485114861148711488114891149011491114921149311494114951149611497114981149911500115011150211503115041150511506115071150811509115101151111512115131151411515115161151711518115191152011521115221152311524115251152611527115281152911530115311153211533115341153511536115371153811539115401154111542115431154411545115461154711548115491155011551115521155311554115551155611557115581155911560115611156211563115641156511566115671156811569115701157111572115731157411575115761157711578115791158011581115821158311584115851158611587115881158911590115911159211593115941159511596115971159811599116001160111602116031160411605116061160711608116091161011611116121161311614116151161611617116181161911620116211162211623116241162511626116271162811629116301163111632116331163411635116361163711638116391164011641116421164311644116451164611647116481164911650116511165211653116541165511656116571165811659116601166111662116631166411665116661166711668116691167011671116721167311674116751167611677116781167911680116811168211683116841168511686116871168811689116901169111692116931169411695116961169711698116991170011701117021170311704117051170611707117081170911710117111171211713117141171511716117171171811719117201172111722117231172411725117261172711728117291173011731117321173311734117351173611737117381173911740117411174211743117441174511746117471174811749117501175111752117531175411755117561175711758117591176011761117621176311764117651176611767117681176911770117711177211773117741177511776117771177811779117801178111782117831178411785117861178711788117891179011791117921179311794117951179611797117981179911800118011180211803118041180511806118071180811809118101181111812118131181411815118161181711818118191182011821118221182311824118251182611827118281182911830118311183211833118341183511836118371183811839118401184111842118431184411845118461184711848118491185011851118521185311854118551185611857118581185911860118611186211863118641186511866118671186811869118701187111872118731187411875118761187711878118791188011881118821188311884118851188611887118881188911890118911189211893118941189511896118971189811899119001190111902119031190411905119061190711908119091191011911119121191311914119151191611917119181191911920119211192211923119241192511926119271192811929119301193111932119331193411935119361193711938119391194011941119421194311944119451194611947119481194911950119511195211953119541195511956119571195811959119601196111962119631196411965119661196711968119691197011971119721197311974119751197611977119781197911980119811198211983119841198511986119871198811989119901199111992119931199411995119961199711998119991200012001120021200312004120051200612007120081200912010120111201212013120141201512016120171201812019120201202112022120231202412025120261202712028120291203012031120321203312034120351203612037120381203912040120411204212043120441204512046120471204812049120501205112052120531205412055120561205712058120591206012061120621206312064120651206612067120681206912070120711207212073120741207512076120771207812079120801208112082120831208412085120861208712088120891209012091120921209312094120951209612097120981209912100121011210212103121041210512106121071210812109121101211112112121131211412115121161211712118121191212012121121221212312124121251212612127121281212912130121311213212133121341213512136121371213812139121401214112142121431214412145121461214712148121491215012151121521215312154121551215612157121581215912160121611216212163121641216512166121671216812169121701217112172121731217412175121761217712178121791218012181121821218312184121851218612187121881218912190121911219212193121941219512196121971219812199122001220112202122031220412205122061220712208122091221012211122121221312214122151221612217122181221912220122211222212223122241222512226122271222812229122301223112232122331223412235122361223712238122391224012241122421224312244122451224612247122481224912250122511225212253122541225512256122571225812259122601226112262122631226412265122661226712268122691227012271122721227312274122751227612277122781227912280122811228212283122841228512286122871228812289122901229112292122931229412295122961229712298122991230012301123021230312304123051230612307123081230912310123111231212313123141231512316123171231812319123201232112322123231232412325123261232712328123291233012331123321233312334123351233612337123381233912340123411234212343123441234512346123471234812349123501235112352123531235412355123561235712358123591236012361123621236312364123651236612367123681236912370123711237212373123741237512376123771237812379123801238112382123831238412385123861238712388123891239012391123921239312394123951239612397123981239912400124011240212403124041240512406124071240812409124101241112412124131241412415124161241712418124191242012421124221242312424124251242612427124281242912430124311243212433124341243512436124371243812439124401244112442124431244412445124461244712448124491245012451124521245312454124551245612457124581245912460124611246212463124641246512466124671246812469124701247112472124731247412475124761247712478124791248012481124821248312484124851248612487124881248912490124911249212493124941249512496124971249812499125001250112502125031250412505125061250712508125091251012511125121251312514125151251612517125181251912520125211252212523125241252512526125271252812529125301253112532125331253412535125361253712538125391254012541125421254312544125451254612547125481254912550125511255212553125541255512556125571255812559125601256112562125631256412565125661256712568125691257012571125721257312574125751257612577125781257912580125811258212583125841258512586125871258812589125901259112592125931259412595125961259712598125991260012601126021260312604126051260612607126081260912610126111261212613126141261512616126171261812619126201262112622126231262412625126261262712628126291263012631126321263312634126351263612637126381263912640126411264212643126441264512646126471264812649126501265112652126531265412655126561265712658126591266012661126621266312664126651266612667126681266912670126711267212673126741267512676126771267812679126801268112682126831268412685126861268712688126891269012691126921269312694126951269612697126981269912700127011270212703127041270512706127071270812709127101271112712127131271412715127161271712718127191272012721127221272312724127251272612727127281272912730127311273212733127341273512736127371273812739127401274112742127431274412745127461274712748127491275012751127521275312754127551275612757127581275912760127611276212763127641276512766127671276812769127701277112772127731277412775127761277712778127791278012781127821278312784127851278612787127881278912790127911279212793127941279512796127971279812799128001280112802128031280412805128061280712808128091281012811128121281312814128151281612817128181281912820128211282212823128241282512826128271282812829128301283112832128331283412835128361283712838128391284012841128421284312844128451284612847128481284912850128511285212853128541285512856128571285812859128601286112862128631286412865128661286712868128691287012871128721287312874128751287612877128781287912880128811288212883128841288512886128871288812889128901289112892128931289412895128961289712898128991290012901129021290312904129051290612907129081290912910129111291212913129141291512916129171291812919129201292112922129231292412925129261292712928129291293012931129321293312934129351293612937129381293912940129411294212943129441294512946129471294812949129501295112952129531295412955129561295712958129591296012961129621296312964129651296612967129681296912970129711297212973129741297512976129771297812979129801298112982129831298412985129861298712988129891299012991129921299312994129951299612997129981299913000130011300213003130041300513006130071300813009130101301113012130131301413015130161301713018130191302013021130221302313024130251302613027130281302913030130311303213033130341303513036130371303813039130401304113042130431304413045130461304713048130491305013051130521305313054130551305613057130581305913060130611306213063130641306513066130671306813069130701307113072130731307413075130761307713078130791308013081130821308313084130851308613087130881308913090130911309213093130941309513096130971309813099131001310113102131031310413105131061310713108131091311013111131121311313114131151311613117131181311913120131211312213123131241312513126131271312813129131301313113132131331313413135131361313713138131391314013141131421314313144131451314613147131481314913150131511315213153131541315513156131571315813159131601316113162131631316413165131661316713168131691317013171131721317313174131751317613177131781317913180131811318213183131841318513186131871318813189131901319113192131931319413195131961319713198131991320013201132021320313204132051320613207132081320913210132111321213213132141321513216132171321813219132201322113222132231322413225132261322713228132291323013231132321323313234132351323613237132381323913240132411324213243132441324513246132471324813249132501325113252132531325413255132561325713258132591326013261132621326313264132651326613267132681326913270132711327213273132741327513276132771327813279132801328113282132831328413285132861328713288132891329013291132921329313294132951329613297132981329913300133011330213303133041330513306133071330813309133101331113312133131331413315133161331713318133191332013321133221332313324133251332613327133281332913330133311333213333133341333513336133371333813339133401334113342133431334413345133461334713348133491335013351133521335313354133551335613357133581335913360133611336213363133641336513366133671336813369133701337113372133731337413375133761337713378133791338013381133821338313384133851338613387133881338913390133911339213393133941339513396133971339813399134001340113402134031340413405134061340713408134091341013411134121341313414134151341613417134181341913420134211342213423134241342513426134271342813429134301343113432134331343413435134361343713438134391344013441134421344313444134451344613447134481344913450134511345213453134541345513456134571345813459134601346113462134631346413465134661346713468134691347013471134721347313474134751347613477134781347913480134811348213483134841348513486134871348813489134901349113492134931349413495134961349713498134991350013501135021350313504135051350613507135081350913510135111351213513135141351513516135171351813519135201352113522135231352413525135261352713528135291353013531135321353313534135351353613537135381353913540135411354213543135441354513546135471354813549135501355113552135531355413555135561355713558135591356013561135621356313564135651356613567135681356913570135711357213573135741357513576135771357813579135801358113582135831358413585135861358713588135891359013591135921359313594135951359613597135981359913600136011360213603136041360513606136071360813609136101361113612136131361413615136161361713618136191362013621136221362313624136251362613627136281362913630136311363213633136341363513636136371363813639136401364113642136431364413645136461364713648136491365013651136521365313654136551365613657136581365913660136611366213663136641366513666136671366813669136701367113672136731367413675136761367713678136791368013681136821368313684136851368613687136881368913690136911369213693136941369513696136971369813699137001370113702137031370413705137061370713708137091371013711137121371313714137151371613717137181371913720137211372213723137241372513726137271372813729137301373113732137331373413735137361373713738137391374013741137421374313744137451374613747137481374913750137511375213753137541375513756137571375813759137601376113762137631376413765137661376713768137691377013771137721377313774137751377613777137781377913780137811378213783137841378513786137871378813789137901379113792137931379413795137961379713798137991380013801138021380313804138051380613807138081380913810138111381213813138141381513816138171381813819138201382113822138231382413825138261382713828138291383013831138321383313834138351383613837138381383913840138411384213843138441384513846138471384813849138501385113852138531385413855138561385713858138591386013861138621386313864138651386613867138681386913870138711387213873138741387513876138771387813879138801388113882138831388413885138861388713888138891389013891138921389313894138951389613897138981389913900139011390213903139041390513906139071390813909139101391113912139131391413915139161391713918139191392013921139221392313924139251392613927139281392913930139311393213933139341393513936139371393813939139401394113942139431394413945139461394713948139491395013951139521395313954139551395613957139581395913960139611396213963139641396513966139671396813969139701397113972139731397413975139761397713978139791398013981139821398313984139851398613987139881398913990139911399213993139941399513996139971399813999140001400114002140031400414005140061400714008140091401014011140121401314014140151401614017140181401914020140211402214023140241402514026140271402814029140301403114032140331403414035140361403714038140391404014041140421404314044140451404614047140481404914050140511405214053140541405514056140571405814059140601406114062140631406414065140661406714068140691407014071140721407314074140751407614077140781407914080140811408214083140841408514086140871408814089140901409114092140931409414095140961409714098140991410014101141021410314104141051410614107141081410914110141111411214113141141411514116141171411814119141201412114122141231412414125141261412714128141291413014131141321413314134141351413614137141381413914140141411414214143141441414514146141471414814149141501415114152141531415414155141561415714158141591416014161141621416314164141651416614167141681416914170141711417214173141741417514176141771417814179141801418114182141831418414185141861418714188141891419014191141921419314194141951419614197141981419914200142011420214203142041420514206142071420814209142101421114212142131421414215142161421714218142191422014221142221422314224142251422614227142281422914230142311423214233142341423514236142371423814239142401424114242142431424414245142461424714248142491425014251142521425314254142551425614257142581425914260142611426214263142641426514266142671426814269142701427114272142731427414275142761427714278142791428014281142821428314284142851428614287142881428914290142911429214293142941429514296142971429814299143001430114302143031430414305143061430714308143091431014311143121431314314143151431614317143181431914320143211432214323143241432514326143271432814329143301433114332143331433414335143361433714338143391434014341143421434314344143451434614347143481434914350143511435214353143541435514356143571435814359143601436114362143631436414365143661436714368143691437014371143721437314374143751437614377143781437914380143811438214383143841438514386143871438814389143901439114392143931439414395143961439714398143991440014401144021440314404144051440614407144081440914410144111441214413144141441514416144171441814419144201442114422144231442414425144261442714428144291443014431144321443314434144351443614437144381443914440144411444214443144441444514446144471444814449144501445114452144531445414455144561445714458144591446014461144621446314464144651446614467144681446914470144711447214473144741447514476144771447814479144801448114482144831448414485144861448714488144891449014491144921449314494144951449614497144981449914500145011450214503145041450514506145071450814509145101451114512145131451414515145161451714518145191452014521145221452314524145251452614527145281452914530145311453214533145341453514536145371453814539145401454114542145431454414545145461454714548145491455014551145521455314554145551455614557145581455914560145611456214563145641456514566145671456814569145701457114572145731457414575145761457714578145791458014581145821458314584145851458614587145881458914590145911459214593145941459514596145971459814599146001460114602146031460414605146061460714608146091461014611146121461314614146151461614617146181461914620146211462214623146241462514626146271462814629146301463114632146331463414635146361463714638146391464014641146421464314644146451464614647146481464914650146511465214653146541465514656146571465814659146601466114662146631466414665146661466714668146691467014671146721467314674146751467614677146781467914680146811468214683146841468514686146871468814689146901469114692146931469414695146961469714698146991470014701147021470314704147051470614707147081470914710147111471214713147141471514716147171471814719147201472114722147231472414725147261472714728147291473014731147321473314734147351473614737147381473914740147411474214743147441474514746147471474814749147501475114752147531475414755147561475714758147591476014761147621476314764147651476614767147681476914770147711477214773147741477514776147771477814779147801478114782147831478414785147861478714788147891479014791147921479314794147951479614797147981479914800148011480214803148041480514806148071480814809148101481114812148131481414815148161481714818148191482014821148221482314824148251482614827148281482914830148311483214833148341483514836148371483814839148401484114842148431484414845148461484714848148491485014851148521485314854148551485614857148581485914860148611486214863148641486514866148671486814869148701487114872148731487414875148761487714878148791488014881148821488314884148851488614887148881488914890148911489214893148941489514896148971489814899149001490114902149031490414905149061490714908149091491014911149121491314914149151491614917149181491914920149211492214923149241492514926149271492814929149301493114932149331493414935149361493714938149391494014941149421494314944149451494614947149481494914950149511495214953149541495514956149571495814959149601496114962149631496414965149661496714968149691497014971149721497314974149751497614977149781497914980149811498214983149841498514986149871498814989149901499114992149931499414995149961499714998149991500015001150021500315004150051500615007150081500915010150111501215013150141501515016150171501815019150201502115022150231502415025150261502715028150291503015031150321503315034150351503615037150381503915040150411504215043150441504515046150471504815049150501505115052150531505415055150561505715058150591506015061150621506315064150651506615067150681506915070150711507215073150741507515076150771507815079150801508115082150831508415085150861508715088150891509015091150921509315094150951509615097150981509915100151011510215103151041510515106151071510815109151101511115112151131511415115151161511715118151191512015121151221512315124151251512615127151281512915130151311513215133151341513515136151371513815139151401514115142151431514415145151461514715148151491515015151151521515315154151551515615157151581515915160151611516215163151641516515166151671516815169151701517115172151731517415175151761517715178151791518015181151821518315184151851518615187151881518915190151911519215193151941519515196151971519815199152001520115202152031520415205152061520715208152091521015211152121521315214152151521615217152181521915220152211522215223152241522515226152271522815229152301523115232152331523415235152361523715238152391524015241152421524315244152451524615247152481524915250152511525215253152541525515256152571525815259152601526115262152631526415265152661526715268152691527015271152721527315274152751527615277152781527915280152811528215283152841528515286152871528815289152901529115292152931529415295152961529715298152991530015301153021530315304153051530615307153081530915310153111531215313153141531515316153171531815319153201532115322153231532415325153261532715328153291533015331153321533315334153351533615337153381533915340153411534215343153441534515346153471534815349153501535115352153531535415355153561535715358153591536015361153621536315364153651536615367153681536915370153711537215373153741537515376153771537815379153801538115382153831538415385153861538715388153891539015391153921539315394153951539615397153981539915400154011540215403154041540515406154071540815409154101541115412154131541415415154161541715418154191542015421154221542315424154251542615427154281542915430154311543215433154341543515436154371543815439154401544115442154431544415445154461544715448154491545015451154521545315454154551545615457154581545915460154611546215463154641546515466154671546815469154701547115472154731547415475154761547715478154791548015481154821548315484154851548615487154881548915490154911549215493154941549515496154971549815499155001550115502155031550415505155061550715508155091551015511155121551315514155151551615517155181551915520155211552215523155241552515526155271552815529155301553115532155331553415535155361553715538155391554015541155421554315544155451554615547155481554915550155511555215553155541555515556155571555815559155601556115562155631556415565155661556715568155691557015571155721557315574155751557615577155781557915580155811558215583155841558515586155871558815589155901559115592155931559415595155961559715598155991560015601156021560315604156051560615607156081560915610156111561215613156141561515616156171561815619156201562115622156231562415625156261562715628156291563015631156321563315634156351563615637156381563915640156411564215643156441564515646156471564815649156501565115652156531565415655156561565715658156591566015661156621566315664156651566615667156681566915670156711567215673156741567515676156771567815679156801568115682156831568415685156861568715688156891569015691156921569315694156951569615697156981569915700157011570215703157041570515706157071570815709157101571115712157131571415715157161571715718157191572015721157221572315724157251572615727157281572915730157311573215733157341573515736157371573815739157401574115742157431574415745157461574715748157491575015751157521575315754157551575615757157581575915760157611576215763157641576515766157671576815769157701577115772157731577415775157761577715778157791578015781157821578315784157851578615787157881578915790157911579215793157941579515796157971579815799158001580115802158031580415805158061580715808158091581015811158121581315814158151581615817158181581915820158211582215823158241582515826158271582815829158301583115832158331583415835158361583715838158391584015841158421584315844158451584615847158481584915850158511585215853158541585515856158571585815859158601586115862158631586415865158661586715868158691587015871158721587315874158751587615877158781587915880158811588215883158841588515886158871588815889158901589115892158931589415895158961589715898158991590015901159021590315904159051590615907159081590915910159111591215913159141591515916159171591815919159201592115922159231592415925159261592715928159291593015931159321593315934159351593615937159381593915940159411594215943159441594515946159471594815949159501595115952159531595415955159561595715958159591596015961159621596315964159651596615967159681596915970159711597215973159741597515976159771597815979159801598115982159831598415985159861598715988159891599015991159921599315994159951599615997159981599916000160011600216003160041600516006160071600816009160101601116012160131601416015160161601716018160191602016021160221602316024160251602616027160281602916030160311603216033160341603516036160371603816039160401604116042160431604416045160461604716048160491605016051160521605316054160551605616057160581605916060160611606216063160641606516066160671606816069160701607116072160731607416075160761607716078160791608016081160821608316084160851608616087160881608916090160911609216093160941609516096160971609816099161001610116102161031610416105161061610716108161091611016111161121611316114161151611616117161181611916120161211612216123161241612516126161271612816129161301613116132161331613416135161361613716138161391614016141161421614316144161451614616147161481614916150161511615216153161541615516156161571615816159161601616116162161631616416165161661616716168161691617016171161721617316174161751617616177161781617916180161811618216183161841618516186161871618816189161901619116192161931619416195161961619716198161991620016201162021620316204162051620616207162081620916210162111621216213162141621516216162171621816219162201622116222162231622416225162261622716228162291623016231162321623316234162351623616237162381623916240162411624216243162441624516246162471624816249162501625116252162531625416255162561625716258162591626016261162621626316264162651626616267162681626916270162711627216273162741627516276162771627816279162801628116282162831628416285162861628716288162891629016291162921629316294162951629616297162981629916300163011630216303163041630516306163071630816309163101631116312163131631416315163161631716318163191632016321163221632316324163251632616327163281632916330163311633216333163341633516336163371633816339163401634116342163431634416345163461634716348163491635016351163521635316354163551635616357163581635916360163611636216363163641636516366163671636816369163701637116372163731637416375163761637716378163791638016381163821638316384163851638616387163881638916390163911639216393163941639516396163971639816399164001640116402164031640416405164061640716408164091641016411164121641316414164151641616417164181641916420164211642216423164241642516426164271642816429164301643116432164331643416435164361643716438164391644016441164421644316444164451644616447164481644916450164511645216453164541645516456164571645816459164601646116462164631646416465164661646716468164691647016471164721647316474164751647616477164781647916480164811648216483164841648516486164871648816489164901649116492164931649416495164961649716498164991650016501165021650316504165051650616507165081650916510165111651216513165141651516516165171651816519165201652116522165231652416525165261652716528165291653016531165321653316534165351653616537165381653916540165411654216543165441654516546165471654816549165501655116552165531655416555165561655716558165591656016561165621656316564165651656616567165681656916570165711657216573165741657516576165771657816579165801658116582165831658416585165861658716588165891659016591165921659316594165951659616597165981659916600166011660216603166041660516606166071660816609166101661116612166131661416615166161661716618166191662016621166221662316624166251662616627166281662916630166311663216633166341663516636166371663816639166401664116642166431664416645166461664716648166491665016651166521665316654166551665616657166581665916660166611666216663166641666516666166671666816669166701667116672166731667416675166761667716678166791668016681166821668316684166851668616687166881668916690166911669216693166941669516696166971669816699167001670116702167031670416705167061670716708167091671016711167121671316714167151671616717167181671916720167211672216723167241672516726167271672816729167301673116732167331673416735167361673716738167391674016741167421674316744167451674616747167481674916750167511675216753167541675516756167571675816759167601676116762167631676416765167661676716768167691677016771167721677316774167751677616777167781677916780167811678216783167841678516786167871678816789167901679116792167931679416795167961679716798167991680016801168021680316804168051680616807168081680916810168111681216813168141681516816168171681816819168201682116822168231682416825168261682716828168291683016831168321683316834168351683616837168381683916840168411684216843168441684516846168471684816849168501685116852168531685416855168561685716858168591686016861168621686316864168651686616867168681686916870168711687216873168741687516876168771687816879168801688116882168831688416885168861688716888168891689016891168921689316894168951689616897168981689916900169011690216903169041690516906169071690816909169101691116912169131691416915169161691716918169191692016921169221692316924169251692616927169281692916930169311693216933169341693516936169371693816939169401694116942169431694416945169461694716948169491695016951169521695316954169551695616957169581695916960169611696216963169641696516966169671696816969169701697116972169731697416975169761697716978169791698016981169821698316984169851698616987169881698916990169911699216993169941699516996169971699816999170001700117002170031700417005170061700717008170091701017011170121701317014170151701617017170181701917020170211702217023170241702517026170271702817029170301703117032170331703417035170361703717038170391704017041170421704317044170451704617047170481704917050170511705217053170541705517056170571705817059170601706117062170631706417065170661706717068170691707017071170721707317074170751707617077170781707917080170811708217083170841708517086170871708817089170901709117092170931709417095170961709717098170991710017101171021710317104171051710617107171081710917110171111711217113171141711517116171171711817119171201712117122171231712417125171261712717128171291713017131171321713317134171351713617137171381713917140171411714217143171441714517146171471714817149171501715117152171531715417155171561715717158171591716017161171621716317164171651716617167171681716917170171711717217173171741717517176171771717817179171801718117182171831718417185171861718717188171891719017191171921719317194171951719617197171981719917200172011720217203172041720517206172071720817209172101721117212172131721417215172161721717218172191722017221172221722317224172251722617227172281722917230172311723217233172341723517236172371723817239172401724117242172431724417245172461724717248172491725017251172521725317254172551725617257172581725917260172611726217263172641726517266172671726817269172701727117272172731727417275172761727717278172791728017281172821728317284172851728617287172881728917290172911729217293172941729517296172971729817299173001730117302173031730417305173061730717308173091731017311173121731317314173151731617317173181731917320173211732217323173241732517326173271732817329173301733117332173331733417335173361733717338173391734017341173421734317344173451734617347173481734917350173511735217353173541735517356173571735817359173601736117362173631736417365173661736717368173691737017371173721737317374173751737617377173781737917380173811738217383173841738517386173871738817389173901739117392173931739417395173961739717398173991740017401174021740317404174051740617407174081740917410174111741217413174141741517416174171741817419174201742117422174231742417425174261742717428174291743017431174321743317434174351743617437174381743917440174411744217443174441744517446174471744817449174501745117452174531745417455174561745717458174591746017461174621746317464174651746617467174681746917470174711747217473174741747517476174771747817479174801748117482174831748417485174861748717488174891749017491174921749317494174951749617497174981749917500175011750217503175041750517506175071750817509175101751117512175131751417515175161751717518175191752017521175221752317524175251752617527175281752917530175311753217533175341753517536175371753817539175401754117542175431754417545175461754717548175491755017551175521755317554175551755617557175581755917560175611756217563175641756517566175671756817569175701757117572175731757417575175761757717578175791758017581175821758317584175851758617587175881758917590175911759217593175941759517596175971759817599176001760117602176031760417605176061760717608176091761017611176121761317614176151761617617176181761917620176211762217623176241762517626176271762817629176301763117632176331763417635176361763717638176391764017641176421764317644176451764617647176481764917650176511765217653176541765517656176571765817659176601766117662176631766417665176661766717668176691767017671176721767317674176751767617677176781767917680176811768217683176841768517686176871768817689176901769117692176931769417695176961769717698176991770017701177021770317704177051770617707177081770917710177111771217713177141771517716177171771817719177201772117722177231772417725177261772717728177291773017731177321773317734177351773617737177381773917740177411774217743177441774517746177471774817749177501775117752177531775417755177561775717758177591776017761177621776317764177651776617767177681776917770177711777217773177741777517776177771777817779177801778117782177831778417785177861778717788177891779017791177921779317794177951779617797177981779917800178011780217803178041780517806178071780817809178101781117812178131781417815178161781717818178191782017821178221782317824178251782617827178281782917830178311783217833178341783517836178371783817839178401784117842178431784417845178461784717848178491785017851178521785317854178551785617857178581785917860178611786217863178641786517866178671786817869178701787117872178731787417875178761787717878178791788017881178821788317884178851788617887178881788917890178911789217893178941789517896178971789817899179001790117902179031790417905179061790717908179091791017911179121791317914179151791617917179181791917920179211792217923179241792517926179271792817929179301793117932179331793417935179361793717938179391794017941179421794317944179451794617947179481794917950179511795217953179541795517956179571795817959179601796117962179631796417965179661796717968179691797017971179721797317974179751797617977179781797917980179811798217983179841798517986179871798817989179901799117992179931799417995179961799717998179991800018001180021800318004180051800618007180081800918010180111801218013180141801518016180171801818019180201802118022180231802418025180261802718028180291803018031180321803318034180351803618037180381803918040180411804218043180441804518046180471804818049180501805118052180531805418055180561805718058180591806018061180621806318064180651806618067180681806918070180711807218073180741807518076180771807818079180801808118082180831808418085180861808718088180891809018091180921809318094180951809618097180981809918100181011810218103181041810518106181071810818109181101811118112181131811418115181161811718118181191812018121181221812318124181251812618127181281812918130181311813218133181341813518136181371813818139181401814118142181431814418145181461814718148181491815018151181521815318154181551815618157181581815918160181611816218163181641816518166181671816818169181701817118172181731817418175181761817718178181791818018181181821818318184181851818618187181881818918190181911819218193181941819518196181971819818199182001820118202182031820418205182061820718208182091821018211182121821318214182151821618217182181821918220182211822218223182241822518226182271822818229182301823118232182331823418235182361823718238182391824018241182421824318244182451824618247182481824918250182511825218253182541825518256182571825818259182601826118262182631826418265182661826718268182691827018271182721827318274182751827618277182781827918280182811828218283182841828518286182871828818289182901829118292182931829418295182961829718298182991830018301183021830318304183051830618307183081830918310183111831218313183141831518316183171831818319183201832118322183231832418325183261832718328183291833018331183321833318334183351833618337183381833918340183411834218343183441834518346183471834818349183501835118352183531835418355183561835718358183591836018361183621836318364183651836618367183681836918370183711837218373183741837518376183771837818379183801838118382183831838418385183861838718388183891839018391183921839318394183951839618397183981839918400184011840218403184041840518406184071840818409184101841118412184131841418415184161841718418184191842018421184221842318424184251842618427184281842918430184311843218433184341843518436184371843818439184401844118442184431844418445184461844718448184491845018451184521845318454184551845618457184581845918460184611846218463184641846518466184671846818469184701847118472184731847418475184761847718478184791848018481184821848318484184851848618487184881848918490184911849218493184941849518496184971849818499185001850118502185031850418505185061850718508185091851018511185121851318514185151851618517185181851918520185211852218523185241852518526185271852818529185301853118532185331853418535185361853718538185391854018541185421854318544185451854618547185481854918550185511855218553185541855518556185571855818559185601856118562185631856418565185661856718568185691857018571185721857318574185751857618577185781857918580185811858218583185841858518586185871858818589185901859118592185931859418595185961859718598185991860018601186021860318604186051860618607186081860918610186111861218613186141861518616186171861818619186201862118622186231862418625186261862718628186291863018631186321863318634186351863618637186381863918640186411864218643186441864518646186471864818649186501865118652186531865418655186561865718658186591866018661186621866318664186651866618667186681866918670186711867218673186741867518676186771867818679186801868118682186831868418685186861868718688186891869018691186921869318694186951869618697186981869918700187011870218703187041870518706187071870818709187101871118712187131871418715187161871718718187191872018721187221872318724187251872618727187281872918730187311873218733187341873518736187371873818739187401874118742187431874418745187461874718748187491875018751187521875318754187551875618757187581875918760187611876218763187641876518766187671876818769187701877118772187731877418775187761877718778187791878018781187821878318784187851878618787187881878918790187911879218793187941879518796187971879818799188001880118802188031880418805188061880718808188091881018811188121881318814188151881618817188181881918820188211882218823188241882518826188271882818829188301883118832188331883418835188361883718838188391884018841188421884318844188451884618847188481884918850188511885218853188541885518856188571885818859188601886118862188631886418865188661886718868188691887018871188721887318874188751887618877188781887918880188811888218883188841888518886188871888818889188901889118892188931889418895188961889718898188991890018901189021890318904189051890618907189081890918910189111891218913189141891518916189171891818919189201892118922189231892418925189261892718928189291893018931189321893318934189351893618937189381893918940189411894218943189441894518946189471894818949189501895118952189531895418955189561895718958189591896018961189621896318964189651896618967189681896918970189711897218973189741897518976189771897818979189801898118982189831898418985189861898718988189891899018991189921899318994189951899618997189981899919000190011900219003190041900519006190071900819009190101901119012190131901419015190161901719018190191902019021190221902319024190251902619027190281902919030190311903219033190341903519036190371903819039190401904119042190431904419045190461904719048190491905019051190521905319054190551905619057190581905919060190611906219063190641906519066190671906819069190701907119072190731907419075190761907719078190791908019081190821908319084190851908619087190881908919090190911909219093190941909519096190971909819099191001910119102191031910419105191061910719108191091911019111191121911319114191151911619117191181911919120191211912219123191241912519126191271912819129191301913119132191331913419135191361913719138191391914019141191421914319144191451914619147191481914919150191511915219153191541915519156191571915819159191601916119162191631916419165191661916719168191691917019171191721917319174191751917619177191781917919180191811918219183191841918519186191871918819189191901919119192191931919419195191961919719198191991920019201192021920319204192051920619207192081920919210192111921219213192141921519216192171921819219192201922119222192231922419225192261922719228192291923019231192321923319234192351923619237192381923919240192411924219243192441924519246192471924819249192501925119252192531925419255192561925719258192591926019261192621926319264192651926619267192681926919270192711927219273192741927519276192771927819279192801928119282192831928419285192861928719288192891929019291192921929319294192951929619297192981929919300193011930219303193041930519306193071930819309193101931119312193131931419315193161931719318193191932019321193221932319324193251932619327193281932919330193311933219333193341933519336193371933819339193401934119342193431934419345193461934719348193491935019351193521935319354193551935619357193581935919360193611936219363193641936519366193671936819369193701937119372193731937419375193761937719378193791938019381193821938319384193851938619387193881938919390193911939219393193941939519396193971939819399194001940119402194031940419405194061940719408194091941019411194121941319414194151941619417194181941919420194211942219423194241942519426194271942819429194301943119432194331943419435194361943719438194391944019441194421944319444194451944619447194481944919450194511945219453194541945519456194571945819459194601946119462194631946419465194661946719468194691947019471194721947319474194751947619477194781947919480194811948219483194841948519486194871948819489194901949119492194931949419495194961949719498194991950019501195021950319504195051950619507195081950919510195111951219513195141951519516195171951819519195201952119522195231952419525195261952719528195291953019531195321953319534195351953619537195381953919540195411954219543195441954519546195471954819549195501955119552195531955419555195561955719558195591956019561195621956319564195651956619567195681956919570195711957219573195741957519576195771957819579195801958119582195831958419585195861958719588195891959019591195921959319594195951959619597195981959919600196011960219603196041960519606196071960819609196101961119612196131961419615196161961719618196191962019621196221962319624196251962619627196281962919630196311963219633196341963519636196371963819639196401964119642196431964419645196461964719648196491965019651196521965319654196551965619657196581965919660196611966219663196641966519666196671966819669196701967119672196731967419675196761967719678196791968019681196821968319684196851968619687196881968919690196911969219693196941969519696196971969819699197001970119702197031970419705197061970719708197091971019711197121971319714197151971619717197181971919720197211972219723197241972519726197271972819729197301973119732197331973419735197361973719738197391974019741197421974319744197451974619747197481974919750197511975219753197541975519756197571975819759197601976119762197631976419765197661976719768197691977019771197721977319774197751977619777197781977919780197811978219783197841978519786197871978819789197901979119792197931979419795197961979719798197991980019801198021980319804198051980619807198081980919810198111981219813198141981519816198171981819819198201982119822198231982419825198261982719828198291983019831198321983319834198351983619837198381983919840198411984219843198441984519846198471984819849198501985119852198531985419855198561985719858198591986019861198621986319864198651986619867198681986919870198711987219873198741987519876198771987819879198801988119882198831988419885198861988719888198891989019891198921989319894198951989619897198981989919900199011990219903199041990519906199071990819909199101991119912199131991419915199161991719918199191992019921199221992319924199251992619927199281992919930199311993219933199341993519936199371993819939199401994119942199431994419945199461994719948199491995019951199521995319954199551995619957199581995919960199611996219963199641996519966199671996819969199701997119972199731997419975199761997719978199791998019981199821998319984199851998619987199881998919990199911999219993199941999519996199971999819999200002000120002200032000420005200062000720008200092001020011200122001320014200152001620017200182001920020200212002220023200242002520026200272002820029200302003120032200332003420035200362003720038200392004020041200422004320044200452004620047200482004920050200512005220053200542005520056200572005820059200602006120062200632006420065200662006720068200692007020071200722007320074200752007620077200782007920080200812008220083200842008520086200872008820089200902009120092200932009420095200962009720098200992010020101201022010320104201052010620107201082010920110201112011220113201142011520116201172011820119201202012120122201232012420125201262012720128201292013020131201322013320134201352013620137201382013920140201412014220143201442014520146201472014820149201502015120152201532015420155201562015720158201592016020161201622016320164201652016620167201682016920170201712017220173201742017520176201772017820179201802018120182201832018420185201862018720188201892019020191201922019320194201952019620197201982019920200202012020220203202042020520206202072020820209202102021120212202132021420215202162021720218202192022020221202222022320224202252022620227202282022920230202312023220233202342023520236202372023820239202402024120242202432024420245202462024720248202492025020251202522025320254202552025620257202582025920260202612026220263202642026520266202672026820269202702027120272202732027420275202762027720278202792028020281202822028320284202852028620287202882028920290202912029220293202942029520296202972029820299203002030120302203032030420305203062030720308203092031020311203122031320314203152031620317203182031920320203212032220323203242032520326203272032820329203302033120332203332033420335203362033720338203392034020341203422034320344203452034620347203482034920350203512035220353203542035520356203572035820359203602036120362203632036420365203662036720368203692037020371203722037320374203752037620377203782037920380203812038220383203842038520386203872038820389203902039120392203932039420395203962039720398203992040020401204022040320404204052040620407204082040920410204112041220413204142041520416204172041820419204202042120422204232042420425204262042720428204292043020431204322043320434204352043620437204382043920440204412044220443204442044520446204472044820449204502045120452204532045420455204562045720458204592046020461204622046320464204652046620467204682046920470204712047220473204742047520476204772047820479204802048120482204832048420485204862048720488204892049020491204922049320494204952049620497204982049920500205012050220503205042050520506205072050820509205102051120512205132051420515205162051720518205192052020521205222052320524205252052620527205282052920530205312053220533205342053520536205372053820539205402054120542205432054420545205462054720548205492055020551205522055320554205552055620557205582055920560205612056220563205642056520566205672056820569205702057120572205732057420575205762057720578205792058020581205822058320584205852058620587205882058920590205912059220593205942059520596205972059820599206002060120602206032060420605206062060720608206092061020611206122061320614206152061620617206182061920620206212062220623206242062520626206272062820629206302063120632206332063420635206362063720638206392064020641206422064320644206452064620647206482064920650206512065220653206542065520656206572065820659206602066120662206632066420665206662066720668206692067020671206722067320674206752067620677206782067920680206812068220683206842068520686206872068820689206902069120692206932069420695206962069720698206992070020701207022070320704207052070620707207082070920710207112071220713207142071520716207172071820719207202072120722207232072420725207262072720728207292073020731207322073320734207352073620737207382073920740207412074220743207442074520746207472074820749207502075120752207532075420755207562075720758207592076020761207622076320764207652076620767207682076920770207712077220773207742077520776207772077820779207802078120782207832078420785207862078720788207892079020791207922079320794207952079620797207982079920800208012080220803208042080520806208072080820809208102081120812208132081420815208162081720818208192082020821208222082320824208252082620827208282082920830208312083220833208342083520836208372083820839208402084120842208432084420845208462084720848208492085020851208522085320854208552085620857208582085920860208612086220863208642086520866208672086820869208702087120872208732087420875208762087720878208792088020881208822088320884208852088620887208882088920890208912089220893208942089520896208972089820899209002090120902209032090420905209062090720908209092091020911209122091320914209152091620917209182091920920209212092220923209242092520926209272092820929209302093120932209332093420935209362093720938209392094020941209422094320944209452094620947209482094920950209512095220953209542095520956209572095820959209602096120962209632096420965209662096720968209692097020971209722097320974209752097620977209782097920980209812098220983209842098520986209872098820989209902099120992209932099420995209962099720998209992100021001210022100321004210052100621007210082100921010210112101221013210142101521016210172101821019210202102121022210232102421025210262102721028210292103021031210322103321034210352103621037210382103921040210412104221043210442104521046210472104821049210502105121052210532105421055210562105721058210592106021061210622106321064210652106621067210682106921070210712107221073210742107521076210772107821079210802108121082210832108421085210862108721088210892109021091210922109321094210952109621097210982109921100211012110221103211042110521106211072110821109211102111121112211132111421115211162111721118211192112021121211222112321124211252112621127211282112921130211312113221133211342113521136211372113821139211402114121142211432114421145211462114721148211492115021151211522115321154211552115621157211582115921160211612116221163211642116521166211672116821169211702117121172211732117421175211762117721178211792118021181211822118321184211852118621187211882118921190211912119221193211942119521196211972119821199212002120121202212032120421205212062120721208212092121021211212122121321214212152121621217212182121921220212212122221223212242122521226212272122821229212302123121232212332123421235212362123721238212392124021241212422124321244212452124621247212482124921250212512125221253212542125521256212572125821259212602126121262212632126421265212662126721268212692127021271212722127321274212752127621277212782127921280212812128221283212842128521286212872128821289212902129121292212932129421295212962129721298212992130021301213022130321304213052130621307213082130921310213112131221313213142131521316213172131821319213202132121322213232132421325213262132721328213292133021331213322133321334213352133621337213382133921340213412134221343213442134521346213472134821349213502135121352213532135421355213562135721358213592136021361213622136321364213652136621367213682136921370213712137221373213742137521376213772137821379213802138121382213832138421385213862138721388213892139021391213922139321394213952139621397213982139921400214012140221403214042140521406214072140821409214102141121412214132141421415214162141721418214192142021421214222142321424214252142621427214282142921430214312143221433214342143521436214372143821439214402144121442214432144421445214462144721448214492145021451214522145321454214552145621457214582145921460214612146221463214642146521466214672146821469214702147121472214732147421475214762147721478214792148021481214822148321484214852148621487214882148921490214912149221493214942149521496214972149821499215002150121502215032150421505215062150721508215092151021511215122151321514215152151621517215182151921520215212152221523215242152521526215272152821529215302153121532215332153421535215362153721538215392154021541215422154321544215452154621547215482154921550215512155221553215542155521556215572155821559215602156121562215632156421565215662156721568215692157021571215722157321574215752157621577215782157921580215812158221583215842158521586215872158821589215902159121592215932159421595215962159721598215992160021601216022160321604216052160621607216082160921610216112161221613216142161521616216172161821619216202162121622216232162421625216262162721628216292163021631216322163321634216352163621637216382163921640216412164221643216442164521646216472164821649216502165121652216532165421655216562165721658216592166021661216622166321664216652166621667216682166921670216712167221673216742167521676216772167821679216802168121682216832168421685216862168721688216892169021691216922169321694216952169621697216982169921700217012170221703217042170521706217072170821709217102171121712217132171421715217162171721718217192172021721217222172321724217252172621727217282172921730217312173221733217342173521736217372173821739217402174121742217432174421745217462174721748217492175021751217522175321754217552175621757217582175921760217612176221763217642176521766217672176821769217702177121772217732177421775217762177721778217792178021781217822178321784217852178621787217882178921790217912179221793217942179521796217972179821799218002180121802218032180421805218062180721808218092181021811218122181321814
  1. \documentclass[7x10,nocrop]{TimesAPriori_MIT}%%7x10
  2. % TODO:
  3. % move binary subtraction from Lif to Lint
  4. \usepackage[utf8]{inputenc}
  5. %% \usepackage{setspace}
  6. %% \doublespacing
  7. \usepackage{listings}
  8. \usepackage{verbatim}
  9. \usepackage{amssymb}
  10. \usepackage{lmodern} % better typewriter font for code
  11. %\usepackage{wrapfig}
  12. \usepackage{multirow}
  13. \usepackage{tcolorbox}
  14. \usepackage{color}
  15. %\usepackage{ifthen}
  16. \usepackage{upquote}
  17. \usepackage[all]{xy}
  18. \definecolor{lightgray}{gray}{1}
  19. \newcommand{\black}[1]{{\color{black} #1}}
  20. %\newcommand{\gray}[1]{{\color{lightgray} #1}}
  21. \newcommand{\gray}[1]{{\color{gray} #1}}
  22. \def\racketEd{0}
  23. \def\pythonEd{1}
  24. \def\edition{1}
  25. % material that is specific to the Racket edition of the book
  26. \newcommand{\racket}[1]{{\if\edition\racketEd{#1}\fi}}
  27. % would like a command for: \if\edition\racketEd\color{olive}
  28. % and : \fi\color{black}
  29. % material that is specific to the Python edition of the book
  30. \newcommand{\python}[1]{{\if\edition\pythonEd #1\fi}}
  31. %% For multiple indices:
  32. %\usepackage{multind} moved this to the file TimesAPriori_MIT.cls. -Jeremy
  33. \makeindex{subject}
  34. %\makeindex{authors}
  35. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  36. \if\edition\racketEd
  37. \lstset{%
  38. language=Lisp,
  39. basicstyle=\ttfamily\small,
  40. morekeywords={seq,assign,program,block,define,lambda,match,goto,if,else,then,struct,Integer,Boolean,Vector,Void,Any,while,begin,define,public,override,class},
  41. deletekeywords={read,mapping,vector},
  42. escapechar=|,
  43. columns=flexible,
  44. moredelim=[is][\color{red}]{~}{~},
  45. showstringspaces=false
  46. }
  47. \fi
  48. \if\edition\pythonEd
  49. \lstset{%
  50. language=Python,
  51. basicstyle=\ttfamily\small,
  52. morekeywords={match,case,bool,int,let},
  53. deletekeywords={},
  54. escapechar=|,
  55. columns=flexible,
  56. moredelim=[is][\color{red}]{~}{~},
  57. showstringspaces=false
  58. }
  59. \fi
  60. %%% Any shortcut own defined macros place here
  61. %% sample of author macro:
  62. \input{defs}
  63. \newtheorem{exercise}[theorem]{Exercise}
  64. % Adjusted settings
  65. \setlength{\columnsep}{4pt}
  66. %% \begingroup
  67. %% \setlength{\intextsep}{0pt}%
  68. %% \setlength{\columnsep}{0pt}%
  69. %% \begin{wrapfigure}{r}{0.5\textwidth}
  70. %% \centering\includegraphics[width=\linewidth]{example-image-a}
  71. %% \caption{Basic layout}
  72. %% \end{wrapfigure}
  73. %% \lipsum[1]
  74. %% \endgroup
  75. \newbox\oiintbox
  76. \setbox\oiintbox=\hbox{$\lower2pt\hbox{\huge$\displaystyle\circ$}
  77. \hskip-13pt\displaystyle\int\hskip-7pt\int_{S}\ $}
  78. \def\oiint{\copy\oiintbox}
  79. \def\boldnabla{\hbox{\boldmath$\displaystyle\nabla$}}
  80. %\usepackage{showframe}
  81. \def\ShowFrameLinethickness{0.125pt}
  82. \addbibresource{book.bib}
  83. \begin{document}
  84. \frontmatter
  85. \HalfTitle{Essentials of Compilation \\ An Incremental Approach in \python{Python}\racket{Racket}}
  86. \halftitlepage
  87. \Title{Essentials of Compilation}
  88. \Booksubtitle{An Incremental Approach in \python{Python}\racket{Racket}}
  89. %\edition{First Edition}
  90. \BookAuthor{Jeremy G. Siek}
  91. \imprint{The MIT Press\\
  92. Cambridge, Massachusetts\\
  93. London, England}
  94. \begin{copyrightpage}
  95. \textcopyright\ 2022 Massachusetts Institute of Technology Press \\[2ex]
  96. This work is subject to a Creative Commons CC-BY-ND-NC license. \\[2ex]
  97. Subject to such license, all rights are reserved. \\[2ex]
  98. \includegraphics{CCBY-logo}
  99. The MIT Press would like to thank the anonymous peer reviewers who
  100. provided comments on drafts of this book. The generous work of
  101. academic experts is essential for establishing the authority and
  102. quality of our publications. We acknowledge with gratitude the
  103. contributions of these otherwise uncredited readers.
  104. This book was set in Times LT Std Roman by the author. Printed and
  105. bound in the United States of America.
  106. Library of Congress Cataloging-in-Publication Data is available.
  107. ISBN:
  108. 10 9 8 7 6 5 4 3 2 1
  109. %% Jeremy G. Siek. Available for free viewing
  110. %% or personal downloading under the
  111. %% \href{https://creativecommons.org/licenses/by-nc-nd/2.0/uk/}{CC-BY-NC-ND}
  112. %% license.
  113. %% Copyright in this monograph has been licensed exclusively to The MIT
  114. %% Press, \url{http://mitpress.mit.edu}, which will be releasing the final
  115. %% version to the public in 2022. All inquiries regarding rights should
  116. %% be addressed to The MIT Press, Rights and Permissions Department.
  117. %% \textcopyright\ [YEAR] Massachusetts Institute of Technology
  118. %% All rights reserved. No part of this book may be reproduced in any
  119. %% form by any electronic or mechanical means (including photocopying,
  120. %% recording, or information storage and retrieval) without permission in
  121. %% writing from the publisher.
  122. %% This book was set in LaTeX by Jeremy G. Siek. Printed and bound in the
  123. %% United States of America.
  124. %% Library of Congress Cataloging-in-Publication Data is available.
  125. %% ISBN:
  126. %% 10\quad9\quad8\quad7\quad6\quad5\quad4\quad3\quad2\quad1
  127. \end{copyrightpage}
  128. \dedication{This book is dedicated to the programming language wonks
  129. at Indiana University.}
  130. %% \begin{epigraphpage}
  131. %% \epigraph{First Epigraph line goes here}{Mention author name if any,
  132. %% \textit{Book Name if any}}
  133. %% \epigraph{Second Epigraph line goes here}{Mention author name if any}
  134. %% \end{epigraphpage}
  135. \tableofcontents
  136. %\listoffigures
  137. %\listoftables
  138. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  139. \chapter*{Preface}
  140. \addcontentsline{toc}{fmbm}{Preface}
  141. There is a magical moment when a programmer presses the ``run'' button
  142. and the software begins to execute. Somehow a program written in a
  143. high-level language is running on a computer that is only capable of
  144. shuffling bits. Here we reveal the wizardry that makes that moment
  145. possible. Beginning with the groundbreaking work of Backus and
  146. colleagues in the 1950s, computer scientists discovered techniques for
  147. constructing programs, called \emph{compilers}, that automatically
  148. translate high-level programs into machine code.
  149. We take you on a journey of constructing your own compiler for a small
  150. but powerful language. Along the way we explain the essential
  151. concepts, algorithms, and data structures that underlie compilers. We
  152. develop your understanding of how programs are mapped onto computer
  153. hardware, which is helpful when reasoning about properties at the
  154. junction between hardware and software such as execution time,
  155. software errors, and security vulnerabilities. For those interested
  156. in pursuing compiler construction as a career, our goal is to provide a
  157. stepping-stone to advanced topics such as just-in-time compilation,
  158. program analysis, and program optimization. For those interested in
  159. designing and implementing programming languages, we connect
  160. language design choices to their impact on the compiler and the generated
  161. code.
  162. A compiler is typically organized as a sequence of stages that
  163. progressively translate a program to the code that runs on
  164. hardware. We take this approach to the extreme by partitioning our
  165. compiler into a large number of \emph{nanopasses}, each of which
  166. performs a single task. This enables the testing of each pass in
  167. isolation and focuses our attention, making the compiler far easier to
  168. understand.
  169. The most familiar approach to describing compilers is with each
  170. chapter dedicated to one pass. The problem with that approach is it
  171. obfuscates how language features motivate design choices in a
  172. compiler. We instead take an \emph{incremental} approach in which we
  173. build a complete compiler in each chapter, starting with a small input
  174. language that includes only arithmetic and variables. We add new
  175. language features in subsequent chapters, extending the compiler as
  176. necessary.
  177. Our choice of language features is designed to elicit fundamental
  178. concepts and algorithms used in compilers.
  179. \begin{itemize}
  180. \item We begin with integer arithmetic and local variables in
  181. Chapters~\ref{ch:trees-recur} and \ref{ch:Lvar}, where we introduce
  182. the fundamental tools of compiler construction: \emph{abstract
  183. syntax trees} and \emph{recursive functions}.
  184. \item In Chapter~\ref{ch:register-allocation-Lvar} we apply
  185. \emph{graph coloring} to assign variables to machine registers.
  186. \item Chapter~\ref{ch:Lif} adds conditional expressions, which
  187. motivates an elegant recursive algorithm for translating them into
  188. conditional \code{goto}'s.
  189. \item Chapter~\ref{ch:Lwhile} adds loops\racket{ and mutable
  190. variables}. This elicits the need for \emph{dataflow
  191. analysis} in the register allocator.
  192. \item Chapter~\ref{ch:Lvec} adds heap-allocated tuples, motivating
  193. \emph{garbage collection}.
  194. \item Chapter~\ref{ch:Lfun} adds functions as first-class values but
  195. without lexical scoping, similar to functions in the C programming
  196. language~\citep{Kernighan:1988nx}. The reader learns about the
  197. procedure call stack and \emph{calling conventions} and how they interact
  198. with register allocation and garbage collection. The chapter also
  199. describes how to generate efficient tail calls.
  200. \item Chapter~\ref{ch:Llambda} adds anonymous functions with lexical
  201. scoping, i.e., \emph{lambda} expressions. The reader learns about
  202. \emph{closure conversion}, in which lambdas are translated into a
  203. combination of functions and tuples.
  204. % Chapter about classes and objects?
  205. \item Chapter~\ref{ch:Ldyn} adds \emph{dynamic typing}. Prior to this
  206. point the input languages are statically typed. The reader extends
  207. the statically typed language with an \code{Any} type which serves
  208. as a target for compiling the dynamically typed language.
  209. {\if\edition\pythonEd
  210. \item Chapter~\ref{ch:Lobject} adds support for \emph{objects} and
  211. \emph{classes}.
  212. \fi}
  213. \item Chapter~\ref{ch:Lgrad} uses the \code{Any} type of
  214. Chapter~\ref{ch:Ldyn} to implement a \emph{gradually typed language}
  215. in which different regions of a program may be static or dynamically
  216. typed. The reader implements runtime support for \emph{proxies} that
  217. allow values to safely move between regions.
  218. \item Chapter~\ref{ch:Lpoly} adds \emph{generics} with autoboxing,
  219. leveraging the \code{Any} type and type casts developed in Chapters
  220. \ref{ch:Ldyn} and \ref{ch:Lgrad}.
  221. \end{itemize}
  222. There are many language features that we do not include. Our choices
  223. balance the incidental complexity of a feature versus the fundamental
  224. concepts that it exposes. For example, we include tuples and not
  225. records because they both elicit the study of heap allocation and
  226. garbage collection but records come with more incidental complexity.
  227. Since 2009 drafts of this book have served as the textbook for 16-week
  228. compiler courses for upper-level undergraduates and first-year
  229. graduate students at the University of Colorado and Indiana
  230. University.
  231. %
  232. Students come into the course having learned the basics of
  233. programming, data structures and algorithms, and discrete
  234. mathematics.
  235. %
  236. At the beginning of the course, students form groups of 2-4 people.
  237. The groups complete one chapter every two weeks, starting with
  238. Chapter~\ref{ch:Lvar} and finishing with
  239. Chapter~\ref{ch:Llambda}. Many chapters include a challenge problem
  240. that we assign to the graduate students. The last two weeks of the
  241. course involve a final project in which students design and implement
  242. a compiler extension of their choosing. The later chapters can be
  243. used in support of these projects. For compiler courses at
  244. universities on the quarter system (about 10 weeks in length), we
  245. recommend completing up through Chapter~\ref{ch:Lvec} or
  246. Chapter~\ref{ch:Lfun} and providing some scaffolding code to the
  247. students for each compiler pass.
  248. %
  249. The course can be adapted to emphasize functional languages by
  250. skipping Chapter~\ref{ch:Lwhile} (loops) and including
  251. Chapter~\ref{ch:Llambda} (lambda). The course can be adapted to
  252. dynamically typed languages by including Chapter~\ref{ch:Ldyn}.
  253. %
  254. \python{A course that emphasizes object-oriented languages would
  255. include Chapter~\ref{ch:Lobject}.}
  256. %
  257. Figure~\ref{fig:chapter-dependences} depicts the dependencies between
  258. chapters. Chapter~\ref{ch:Lfun} (functions) depends on
  259. Chapter~\ref{ch:Lvec} (tuples) only in the implementation of efficient
  260. tail calls.
  261. This book has been used in compiler courses at California Polytechnic
  262. State University, Portland State University, Rose–Hulman Institute of
  263. Technology, University of Freiburg, University of Massachusetts
  264. Lowell, and the University of Vermont.
  265. \begin{figure}[tp]
  266. \begin{tcolorbox}[colback=white]
  267. {\if\edition\racketEd
  268. \begin{tikzpicture}[baseline=(current bounding box.center)]
  269. \node (C1) at (0,1.5) {\small Ch.~\ref{ch:trees-recur} Preliminaries};
  270. \node (C2) at (4,1.5) {\small Ch.~\ref{ch:Lvar} Variables};
  271. \node (C3) at (8,1.5) {\small Ch.~\ref{ch:register-allocation-Lvar} Registers};
  272. \node (C4) at (0,0) {\small Ch.~\ref{ch:Lif} Conditionals};
  273. \node (C5) at (4,0) {\small Ch.~\ref{ch:Lvec} Tuples};
  274. \node (C6) at (8,0) {\small Ch.~\ref{ch:Lfun} Functions};
  275. \node (C9) at (0,-1.5) {\small Ch.~\ref{ch:Lwhile} Loops};
  276. \node (C8) at (4,-1.5) {\small Ch.~\ref{ch:Ldyn} Dynamic};
  277. \node (C7) at (8,-1.5) {\small Ch.~\ref{ch:Llambda} Lambda};
  278. \node (C10) at (4,-3) {\small Ch.~\ref{ch:Lgrad} Gradual Typing};
  279. \node (C11) at (8,-3) {\small Ch.~\ref{ch:Lpoly} Generics};
  280. \path[->] (C1) edge [above] node {} (C2);
  281. \path[->] (C2) edge [above] node {} (C3);
  282. \path[->] (C3) edge [above] node {} (C4);
  283. \path[->] (C4) edge [above] node {} (C5);
  284. \path[->,style=dotted] (C5) edge [above] node {} (C6);
  285. \path[->] (C5) edge [above] node {} (C7);
  286. \path[->] (C6) edge [above] node {} (C7);
  287. \path[->] (C4) edge [above] node {} (C8);
  288. \path[->] (C4) edge [above] node {} (C9);
  289. \path[->] (C7) edge [above] node {} (C10);
  290. \path[->] (C8) edge [above] node {} (C10);
  291. \path[->] (C10) edge [above] node {} (C11);
  292. \end{tikzpicture}
  293. \fi}
  294. {\if\edition\pythonEd
  295. \begin{tikzpicture}[baseline=(current bounding box.center)]
  296. \node (C1) at (0,1.5) {\small Ch.~\ref{ch:trees-recur} Preliminaries};
  297. \node (C2) at (4,1.5) {\small Ch.~\ref{ch:Lvar} Variables};
  298. \node (C3) at (8,1.5) {\small Ch.~\ref{ch:register-allocation-Lvar} Registers};
  299. \node (C4) at (0,0) {\small Ch.~\ref{ch:Lif} Conditionals};
  300. \node (C5) at (4,0) {\small Ch.~\ref{ch:Lvec} Tuples};
  301. \node (C6) at (8,0) {\small Ch.~\ref{ch:Lfun} Functions};
  302. \node (C9) at (0,-1.5) {\small Ch.~\ref{ch:Lwhile} Loops};
  303. \node (C8) at (4,-1.5) {\small Ch.~\ref{ch:Ldyn} Dynamic};
  304. \node (CO) at (0,-3) {\small Ch.~\ref{ch:Lobject} Objects};
  305. \node (C7) at (8,-1.5) {\small Ch.~\ref{ch:Llambda} Lambda};
  306. \node (C10) at (4,-3) {\small Ch.~\ref{ch:Lgrad} Gradual Typing};
  307. \node (C11) at (8,-3) {\small Ch.~\ref{ch:Lpoly} Generics};
  308. \path[->] (C1) edge [above] node {} (C2);
  309. \path[->] (C2) edge [above] node {} (C3);
  310. \path[->] (C3) edge [above] node {} (C4);
  311. \path[->] (C4) edge [above] node {} (C5);
  312. \path[->,style=dotted] (C5) edge [above] node {} (C6);
  313. \path[->] (C5) edge [above] node {} (C7);
  314. \path[->] (C6) edge [above] node {} (C7);
  315. \path[->] (C4) edge [above] node {} (C8);
  316. \path[->] (C4) edge [above] node {} (C9);
  317. \path[->] (C7) edge [above] node {} (C10);
  318. \path[->] (C8) edge [above] node {} (C10);
  319. \path[->] (C8) edge [above] node {} (CO);
  320. \path[->] (C10) edge [above] node {} (C11);
  321. \end{tikzpicture}
  322. \fi}
  323. \end{tcolorbox}
  324. \caption{Diagram of chapter dependencies.}
  325. \label{fig:chapter-dependences}
  326. \end{figure}
  327. \racket{
  328. We use the \href{https://racket-lang.org/}{Racket} language both for
  329. the implementation of the compiler and for the input language, so the
  330. reader should be proficient with Racket or Scheme. There are many
  331. excellent resources for learning Scheme and
  332. Racket~\citep{Dybvig:1987aa,Abelson:1996uq,Friedman:1996aa,Felleisen:2001aa,Felleisen:2013aa,Flatt:2014aa}.
  333. }
  334. \python{
  335. This edition of the book uses \href{https://www.python.org/}{Python}
  336. both for the implementation of the compiler and for the input language, so the
  337. reader should be proficient with Python. There are many
  338. excellent resources for learning Python~\citep{Lutz:2013vp,Barry:2016vj,Sweigart:2019vn,Matthes:2019vs}.
  339. }
  340. The support code for this book is in the github repository at
  341. the following location:
  342. \if\edition\racketEd
  343. \begin{center}\small
  344. \url{https://github.com/IUCompilerCourse/public-student-support-code}
  345. \end{center}
  346. \fi
  347. \if\edition\pythonEd
  348. \begin{center}\small
  349. \url{https://github.com/IUCompilerCourse/}
  350. \end{center}
  351. \fi
  352. The compiler targets x86 assembly language~\citep{Intel:2015aa}, so it
  353. is helpful but not necessary for the reader to have taken a computer
  354. systems course~\citep{Bryant:2010aa}. We introduce the parts of x86-64
  355. assembly language that are needed in the compiler.
  356. %
  357. We follow the System V calling
  358. conventions~\citep{Bryant:2005aa,Matz:2013aa}, so the assembly code
  359. that we generate works with the runtime system (written in C) when it
  360. is compiled using the GNU C compiler (\code{gcc}) on Linux and MacOS
  361. operating systems on Intel hardware.
  362. %
  363. On the Windows operating system, \code{gcc} uses the Microsoft x64
  364. calling convention~\citep{Microsoft:2018aa,Microsoft:2020aa}. So the
  365. assembly code that we generate does \emph{not} work with the runtime
  366. system on Windows. One workaround is to use a virtual machine with
  367. Linux as the guest operating system.
  368. \section*{Acknowledgments}
  369. The tradition of compiler construction at Indiana University goes back
  370. to research and courses on programming languages by Daniel Friedman in
  371. the 1970's and 1980's. One of his students, Kent Dybvig, implemented
  372. Chez Scheme~\citep{Dybvig:2006aa}, an efficient, production-quality
  373. compiler for Scheme. Throughout the 1990's and 2000's, Dybvig taught
  374. the compiler course and continued the development of Chez Scheme.
  375. %
  376. The compiler course evolved to incorporate novel pedagogical ideas
  377. while also including elements of real-world compilers. One of
  378. Friedman's ideas was to split the compiler into many small
  379. passes. Another idea, called ``the game'', was to test the code
  380. generated by each pass using interpreters.
  381. Dybvig, with help from his students Dipanwita Sarkar and Andrew Keep,
  382. developed infrastructure to support this approach and evolved the
  383. course to use even smaller
  384. nanopasses~\citep{Sarkar:2004fk,Keep:2012aa}. Many of the compiler
  385. design decisions in this book are inspired by the assignment
  386. descriptions of \citet{Dybvig:2010aa}. In the mid 2000's a student of
  387. Dybvig's named Abdulaziz Ghuloum observed that the front-to-back
  388. organization of the course made it difficult for students to
  389. understand the rationale for the compiler design. Ghuloum proposed the
  390. incremental approach~\citep{Ghuloum:2006bh} that this book is based
  391. on.
  392. We thank the many students who served as teaching assistants for the
  393. compiler course at IU including Carl Factora, Ryan Scott, Cameron
  394. Swords, and Chris Wailes. We thank Andre Kuhlenschmidt for work on the
  395. garbage collector and x86 interpreter, Michael Vollmer for work on
  396. efficient tail calls, and Michael Vitousek for help with the first
  397. offering of the incremental compiler course at IU.
  398. We thank professors Bor-Yuh Chang, John Clements, Jay McCarthy, Joseph
  399. Near, Ryan Newton, Nate Nystrom, Peter Thiemann, Andrew Tolmach, and
  400. Michael Wollowski for teaching courses based on drafts of this book
  401. and for their feedback.
  402. We thank Ronald Garcia for helping Jeremy survive Dybvig's compiler
  403. course in the early 2000's and especially for finding the bug that
  404. sent our garbage collector on a wild goose chase!
  405. \mbox{}\\
  406. \noindent Jeremy G. Siek \\
  407. Bloomington, Indiana
  408. \mainmatter
  409. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  410. \chapter{Preliminaries}
  411. \label{ch:trees-recur}
  412. In this chapter we review the basic tools that are needed to implement
  413. a compiler. Programs are typically input by a programmer as text,
  414. i.e., a sequence of characters. The program-as-text representation is
  415. called \emph{concrete syntax}. We use concrete syntax to concisely
  416. write down and talk about programs. Inside the compiler, we use
  417. \emph{abstract syntax trees} (ASTs) to represent programs in a way
  418. that efficiently supports the operations that the compiler needs to
  419. perform.\index{subject}{concrete syntax}\index{subject}{abstract syntax}\index{subject}{abstract syntax tree}\index{subject}{AST}\index{subject}{program}\index{subject}{parse}
  420. The translation from concrete syntax to abstract syntax is a process called
  421. \emph{parsing}~\citep{Aho:2006wb}. We do not cover the theory and
  422. implementation of parsing in this book.
  423. %
  424. \racket{A parser is provided in the support code for translating from
  425. concrete to abstract syntax.}
  426. %
  427. \python{We use Python's \code{ast} module to translate from concrete
  428. to abstract syntax.}
  429. ASTs can be represented in many different ways inside the compiler,
  430. depending on the programming language used to write the compiler.
  431. %
  432. \racket{We use Racket's
  433. \href{https://docs.racket-lang.org/guide/define-struct.html}{\code{struct}}
  434. feature to represent ASTs (Section~\ref{sec:ast}).}
  435. %
  436. \python{We use Python classes and objects to represent ASTs, especially the
  437. classes defined in the standard \code{ast} module for the Python
  438. source language.}
  439. %
  440. We use grammars to define the abstract syntax of programming languages
  441. (Section~\ref{sec:grammar}) and pattern matching to inspect individual
  442. nodes in an AST (Section~\ref{sec:pattern-matching}). We use
  443. recursive functions to construct and deconstruct ASTs
  444. (Section~\ref{sec:recursion}). This chapter provides an brief
  445. introduction to these ideas.
  446. \racket{\index{subject}{struct}}
  447. \python{\index{subject}{class}\index{subject}{object}}
  448. \section{Abstract Syntax Trees}
  449. \label{sec:ast}
  450. Compilers use abstract syntax trees to represent programs because they
  451. often need to ask questions like: for a given part of a program, what
  452. kind of language feature is it? What are its sub-parts? Consider the
  453. program on the left and its AST on the right. This program is an
  454. addition operation and it has two sub-parts, a
  455. \racket{read}\python{input} operation and a negation. The negation has
  456. another sub-part, the integer constant \code{8}. By using a tree to
  457. represent the program, we can easily follow the links to go from one
  458. part of a program to its sub-parts.
  459. \begin{center}
  460. \begin{minipage}{0.4\textwidth}
  461. \if\edition\racketEd
  462. \begin{lstlisting}
  463. (+ (read) (- 8))
  464. \end{lstlisting}
  465. \fi
  466. \if\edition\pythonEd
  467. \begin{lstlisting}
  468. input_int() + -8
  469. \end{lstlisting}
  470. \fi
  471. \end{minipage}
  472. \begin{minipage}{0.4\textwidth}
  473. \begin{equation}
  474. \begin{tikzpicture}
  475. \node[draw] (plus) at (0 , 0) {\key{+}};
  476. \node[draw] (read) at (-1, -1.5) {{\if\edition\racketEd\footnotesize\key{read}\fi\if\edition\pythonEd\key{input\_int()}\fi}};
  477. \node[draw] (minus) at (1 , -1.5) {$\key{-}$};
  478. \node[draw] (8) at (1 , -3) {\key{8}};
  479. \draw[->] (plus) to (read);
  480. \draw[->] (plus) to (minus);
  481. \draw[->] (minus) to (8);
  482. \end{tikzpicture}
  483. \label{eq:arith-prog}
  484. \end{equation}
  485. \end{minipage}
  486. \end{center}
  487. We use the standard terminology for trees to describe ASTs: each
  488. rectangle above is called a \emph{node}. The arrows connect a node to its
  489. \emph{children} (which are also nodes). The top-most node is the
  490. \emph{root}. Every node except for the root has a \emph{parent} (the
  491. node it is the child of). If a node has no children, it is a
  492. \emph{leaf} node. Otherwise it is an \emph{internal} node.
  493. \index{subject}{node}
  494. \index{subject}{children}
  495. \index{subject}{root}
  496. \index{subject}{parent}
  497. \index{subject}{leaf}
  498. \index{subject}{internal node}
  499. %% Recall that an \emph{symbolic expression} (S-expression) is either
  500. %% \begin{enumerate}
  501. %% \item an atom, or
  502. %% \item a pair of two S-expressions, written $(e_1 \key{.} e_2)$,
  503. %% where $e_1$ and $e_2$ are each an S-expression.
  504. %% \end{enumerate}
  505. %% An \emph{atom} can be a symbol, such as \code{`hello}, a number, the
  506. %% null value \code{'()}, etc. We can create an S-expression in Racket
  507. %% simply by writing a backquote (called a quasi-quote in Racket)
  508. %% followed by the textual representation of the S-expression. It is
  509. %% quite common to use S-expressions to represent a list, such as $a, b
  510. %% ,c$ in the following way:
  511. %% \begin{lstlisting}
  512. %% `(a . (b . (c . ())))
  513. %% \end{lstlisting}
  514. %% Each element of the list is in the first slot of a pair, and the
  515. %% second slot is either the rest of the list or the null value, to mark
  516. %% the end of the list. Such lists are so common that Racket provides
  517. %% special notation for them that removes the need for the periods
  518. %% and so many parenthesis:
  519. %% \begin{lstlisting}
  520. %% `(a b c)
  521. %% \end{lstlisting}
  522. %% The following expression creates an S-expression that represents AST
  523. %% \eqref{eq:arith-prog}.
  524. %% \begin{lstlisting}
  525. %% `(+ (read) (- 8))
  526. %% \end{lstlisting}
  527. %% When using S-expressions to represent ASTs, the convention is to
  528. %% represent each AST node as a list and to put the operation symbol at
  529. %% the front of the list. The rest of the list contains the children. So
  530. %% in the above case, the root AST node has operation \code{`+} and its
  531. %% two children are \code{`(read)} and \code{`(- 8)}, just as in the
  532. %% diagram \eqref{eq:arith-prog}.
  533. %% To build larger S-expressions one often needs to splice together
  534. %% several smaller S-expressions. Racket provides the comma operator to
  535. %% splice an S-expression into a larger one. For example, instead of
  536. %% creating the S-expression for AST \eqref{eq:arith-prog} all at once,
  537. %% we could have first created an S-expression for AST
  538. %% \eqref{eq:arith-neg8} and then spliced that into the addition
  539. %% S-expression.
  540. %% \begin{lstlisting}
  541. %% (define ast1.4 `(- 8))
  542. %% (define ast1_1 `(+ (read) ,ast1.4))
  543. %% \end{lstlisting}
  544. %% In general, the Racket expression that follows the comma (splice)
  545. %% can be any expression that produces an S-expression.
  546. {\if\edition\racketEd
  547. We define a Racket \code{struct} for each kind of node. For this
  548. chapter we require just two kinds of nodes: one for integer constants
  549. and one for primitive operations. The following is the \code{struct}
  550. definition for integer constants.\footnote{All of the AST structures are
  551. defined in the file \code{utilities.rkt} in the support code.}
  552. \begin{lstlisting}
  553. (struct Int (value))
  554. \end{lstlisting}
  555. An integer node includes just one thing: the integer value.
  556. To create an AST node for the integer $8$, we write \INT{8}.
  557. \begin{lstlisting}
  558. (define eight (Int 8))
  559. \end{lstlisting}
  560. We say that the value created by \INT{8} is an
  561. \emph{instance} of the
  562. \code{Int} structure.
  563. The following is the \code{struct} definition for primitive operations.
  564. \begin{lstlisting}
  565. (struct Prim (op args))
  566. \end{lstlisting}
  567. A primitive operation node includes an operator symbol \code{op} and a
  568. list of child \code{args}. For example, to create an AST that negates
  569. the number $8$, we write the following.
  570. \begin{lstlisting}
  571. (define neg-eight (Prim '- (list eight)))
  572. \end{lstlisting}
  573. Primitive operations may have zero or more children. The \code{read}
  574. operator has zero:
  575. \begin{lstlisting}
  576. (define rd (Prim 'read '()))
  577. \end{lstlisting}
  578. The addition operator has two children:
  579. \begin{lstlisting}
  580. (define ast1_1 (Prim '+ (list rd neg-eight)))
  581. \end{lstlisting}
  582. We have made a design choice regarding the \code{Prim} structure.
  583. Instead of using one structure for many different operations
  584. (\code{read}, \code{+}, and \code{-}), we could have instead defined a
  585. structure for each operation, as follows.
  586. \begin{lstlisting}
  587. (struct Read ())
  588. (struct Add (left right))
  589. (struct Neg (value))
  590. \end{lstlisting}
  591. The reason we choose to use just one structure is that in many parts
  592. of the compiler the code for the different primitive operators is the
  593. same, so we might as well just write that code once, which is enabled
  594. by using a single structure.
  595. \fi}
  596. {\if\edition\pythonEd
  597. We use a Python \code{class} for each kind of node.
  598. The following is the class definition for
  599. constants.
  600. \begin{lstlisting}
  601. class Constant:
  602. def __init__(self, value):
  603. self.value = value
  604. \end{lstlisting}
  605. An integer constant node includes just one thing: the integer value.
  606. To create an AST node for the integer $8$, we write \INT{8}.
  607. \begin{lstlisting}
  608. eight = Constant(8)
  609. \end{lstlisting}
  610. We say that the value created by \INT{8} is an
  611. \emph{instance} of the \code{Constant} class.
  612. The following is the class definition for unary operators.
  613. \begin{lstlisting}
  614. class UnaryOp:
  615. def __init__(self, op, operand):
  616. self.op = op
  617. self.operand = operand
  618. \end{lstlisting}
  619. The specific operation is specified by the \code{op} parameter. For
  620. example, the class \code{USub} is for unary subtraction.
  621. (More unary operators are introduced in later chapters.) To create an AST that
  622. negates the number $8$, we write the following.
  623. \begin{lstlisting}
  624. neg_eight = UnaryOp(USub(), eight)
  625. \end{lstlisting}
  626. The call to the \code{input\_int} function is represented by the
  627. \code{Call} and \code{Name} classes.
  628. \begin{lstlisting}
  629. class Call:
  630. def __init__(self, func, args):
  631. self.func = func
  632. self.args = args
  633. class Name:
  634. def __init__(self, id):
  635. self.id = id
  636. \end{lstlisting}
  637. To create an AST node that calls \code{input\_int}, we write
  638. \begin{lstlisting}
  639. read = Call(Name('input_int'), [])
  640. \end{lstlisting}
  641. Finally, to represent the addition in \eqref{eq:arith-prog}, we use
  642. the \code{BinOp} class for binary operators.
  643. \begin{lstlisting}
  644. class BinOp:
  645. def __init__(self, left, op, right):
  646. self.op = op
  647. self.left = left
  648. self.right = right
  649. \end{lstlisting}
  650. Similar to \code{UnaryOp}, the specific operation is specified by the
  651. \code{op} parameter, which for now is just an instance of the
  652. \code{Add} class. So to create the AST
  653. node that adds negative eight to some user input, we write the following.
  654. \begin{lstlisting}
  655. ast1_1 = BinOp(read, Add(), neg_eight)
  656. \end{lstlisting}
  657. \fi}
  658. When compiling a program such as \eqref{eq:arith-prog}, we need to
  659. know that the operation associated with the root node is addition and
  660. we need to be able to access its two children. \racket{Racket}\python{Python}
  661. provides pattern matching to support these kinds of queries, as we see in
  662. Section~\ref{sec:pattern-matching}.
  663. We often write down the concrete syntax of a program even when we
  664. really have in mind the AST because the concrete syntax is more
  665. concise. We recommend that, in your mind, you always think of
  666. programs as abstract syntax trees.
  667. \section{Grammars}
  668. \label{sec:grammar}
  669. \index{subject}{integer}
  670. \index{subject}{literal}
  671. %\index{subject}{constant}
  672. A programming language can be thought of as a \emph{set} of programs.
  673. The set is typically infinite (one can always create larger and larger
  674. programs) so one cannot simply describe a language by listing all of
  675. the programs in the language. Instead we write down a set of rules, a
  676. \emph{grammar}, for building programs. Grammars are often used to
  677. define the concrete syntax of a language but they can also be used to
  678. describe the abstract syntax. We write our rules in a variant of
  679. Backus-Naur Form (BNF)~\citep{Backus:1960aa,Knuth:1964aa}.
  680. \index{subject}{Backus-Naur Form}\index{subject}{BNF}
  681. As an example, we describe a small language, named \LangInt{}, that consists of
  682. integers and arithmetic operations.
  683. \index{subject}{grammar}
  684. The first grammar rule for the abstract syntax of \LangInt{} says that an
  685. instance of the \racket{\code{Int} structure}\python{\code{Constant} class} is an expression:
  686. \begin{equation}
  687. \Exp ::= \INT{\Int} \label{eq:arith-int}
  688. \end{equation}
  689. %
  690. Each rule has a left-hand-side and a right-hand-side.
  691. If you have an AST node that matches the
  692. right-hand-side, then you can categorize it according to the
  693. left-hand-side.
  694. %
  695. Symbols in typewriter font are \emph{terminal} symbols and must
  696. literally appear in the program for the rule to be applicable.
  697. \index{subject}{terminal}
  698. %
  699. Our grammars do not mention \emph{white-space}, that is, separating characters
  700. like spaces, tabulators, and newlines. White-space may be inserted
  701. between symbols for disambiguation and to improve readability.
  702. \index{subject}{white-space}
  703. %
  704. A name such as $\Exp$ that is defined by the grammar rules is a
  705. \emph{non-terminal}. \index{subject}{non-terminal}
  706. %
  707. The name $\Int$ is also a non-terminal, but instead of defining it
  708. with a grammar rule, we define it with the following explanation. An
  709. $\Int$ is a sequence of decimals ($0$ to $9$), possibly starting with
  710. $-$ (for negative integers), such that the sequence of decimals
  711. represent an integer in range $-2^{62}$ to $2^{62}-1$. This enables
  712. the representation of integers using 63 bits, which simplifies several
  713. aspects of compilation. \racket{Thus, these integers correspond to
  714. the Racket \texttt{fixnum} datatype on a 64-bit machine.}
  715. \python{In contrast, integers in Python have unlimited precision, but
  716. the techniques needed to handle unlimited precision fall outside the
  717. scope of this book.}
  718. The second grammar rule is the \READOP{} operation that receives an
  719. input integer from the user of the program.
  720. \begin{equation}
  721. \Exp ::= \READ{} \label{eq:arith-read}
  722. \end{equation}
  723. The third rule categorizes the negation of an $\Exp$ node as an
  724. $\Exp$.
  725. \begin{equation}
  726. \Exp ::= \NEG{\Exp} \label{eq:arith-neg}
  727. \end{equation}
  728. We can apply these rules to categorize the ASTs that are in the
  729. \LangInt{} language. For example, by rule \eqref{eq:arith-int}
  730. \INT{8} is an $\Exp$, then by rule \eqref{eq:arith-neg} the
  731. following AST is an $\Exp$.
  732. \begin{center}
  733. \begin{minipage}{0.5\textwidth}
  734. \NEG{\INT{\code{8}}}
  735. \end{minipage}
  736. \begin{minipage}{0.25\textwidth}
  737. \begin{equation}
  738. \begin{tikzpicture}
  739. \node[draw, circle] (minus) at (0, 0) {$\text{--}$};
  740. \node[draw, circle] (8) at (0, -1.2) {$8$};
  741. \draw[->] (minus) to (8);
  742. \end{tikzpicture}
  743. \label{eq:arith-neg8}
  744. \end{equation}
  745. \end{minipage}
  746. \end{center}
  747. The next grammar rules are for addition and subtraction expressions:
  748. \begin{align}
  749. \Exp &::= \ADD{\Exp}{\Exp} \label{eq:arith-add}\\
  750. \Exp &::= \SUB{\Exp}{\Exp} \label{eq:arith-sub}
  751. \end{align}
  752. We can now justify that the AST \eqref{eq:arith-prog} is an $\Exp$ in
  753. \LangInt{}. We know that \READ{} is an $\Exp$ by rule
  754. \eqref{eq:arith-read} and we have already categorized
  755. \NEG{\INT{\code{8}}} as an $\Exp$, so we apply rule \eqref{eq:arith-add}
  756. to show that
  757. \[
  758. \ADD{\READ{}}{\NEG{\INT{\code{8}}}}
  759. \]
  760. is an $\Exp$ in the \LangInt{} language.
  761. If you have an AST for which the above rules do not apply, then the
  762. AST is not in \LangInt{}. For example, the program \racket{\code{(*
  763. (read) 8)}} \python{\code{input\_int() * 8}} is not in \LangInt{}
  764. because there is no rule for the \key{*} operator. Whenever we
  765. define a language with a grammar, the language only includes those
  766. programs that are justified by the grammar rules.
  767. {\if\edition\pythonEd
  768. The language \LangInt{} includes a second non-terminal $\Stmt$ for statements.
  769. There is a statement for printing the value of an expression
  770. \[
  771. \Stmt{} ::= \PRINT{\Exp}
  772. \]
  773. and a statement that evaluates an expression but ignores the result.
  774. \[
  775. \Stmt{} ::= \EXPR{\Exp}
  776. \]
  777. \fi}
  778. {\if\edition\racketEd
  779. The last grammar rule for \LangInt{} states that there is a
  780. \code{Program} node to mark the top of the whole program:
  781. \[
  782. \LangInt{} ::= \PROGRAM{\code{'()}}{\Exp}
  783. \]
  784. The \code{Program} structure is defined as follows
  785. \begin{lstlisting}
  786. (struct Program (info body))
  787. \end{lstlisting}
  788. where \code{body} is an expression. In later chapters, the \code{info}
  789. part will be used to store auxiliary information but for now it is
  790. just the empty list.
  791. \fi}
  792. {\if\edition\pythonEd
  793. The last grammar rule for \LangInt{} states that there is a
  794. \code{Module} node to mark the top of the whole program:
  795. \[
  796. \LangInt{} ::= \PROGRAM{}{\Stmt^{*}}
  797. \]
  798. The asterisk symbol $*$ indicates a list of the preceding grammar item, in
  799. this case, a list of statements.
  800. %
  801. The \code{Module} class is defined as follows
  802. \begin{lstlisting}
  803. class Module:
  804. def __init__(self, body):
  805. self.body = body
  806. \end{lstlisting}
  807. where \code{body} is a list of statements.
  808. \fi}
  809. It is common to have many grammar rules with the same left-hand side
  810. but different right-hand sides, such as the rules for $\Exp$ in the
  811. grammar of \LangInt{}. As a short-hand, a vertical bar can be used to
  812. combine several right-hand-sides into a single rule.
  813. We collect all of the grammar rules for the abstract syntax of \LangInt{}
  814. in Figure~\ref{fig:r0-syntax}. The concrete syntax for \LangInt{} is
  815. defined in Figure~\ref{fig:r0-concrete-syntax}.
  816. \racket{The \code{read-program} function provided in
  817. \code{utilities.rkt} of the support code reads a program in from a
  818. file (the sequence of characters in the concrete syntax of Racket)
  819. and parses it into an abstract syntax tree. See the description of
  820. \code{read-program} in Appendix~\ref{appendix:utilities} for more
  821. details.}
  822. \python{The \code{parse} function in Python's \code{ast} module
  823. converts the concrete syntax (represented as a string) into an
  824. abstract syntax tree.}
  825. \newcommand{\LintGrammarRacket}{
  826. \begin{array}{rcl}
  827. \Type &::=& \key{Integer} \\
  828. \Exp{} &::=& \Int{} \MID \CREAD \MID \CNEG{\Exp} \MID \CADD{\Exp}{\Exp}
  829. \MID \CSUB{\Exp}{\Exp}
  830. \end{array}
  831. }
  832. \newcommand{\LintASTRacket}{
  833. \begin{array}{rcl}
  834. \Type &::=& \key{Integer} \\
  835. \Exp{} &::=& \INT{\Int} \MID \READ{} \\
  836. &\MID& \NEG{\Exp} \MID \ADD{\Exp}{\Exp} \MID \SUB{\Exp}{\Exp}
  837. \end{array}
  838. }
  839. \newcommand{\LintGrammarPython}{
  840. \begin{array}{rcl}
  841. \Exp &::=& \Int \MID \key{input\_int}\LP\RP \MID \key{-}\;\Exp \MID \Exp \; \key{+} \; \Exp \MID \Exp \; \key{-} \; \Exp \MID \LP\Exp\RP \\
  842. \Stmt &::=& \key{print}\LP \Exp \RP \MID \Exp
  843. \end{array}
  844. }
  845. \newcommand{\LintASTPython}{
  846. \begin{array}{rcl}
  847. \itm{binaryop} &::= & \code{Add()} \MID \code{Sub()} \\
  848. \itm{unaryop} &::= & \code{USub()} \\
  849. \Exp{} &::=& \INT{\Int} \MID \READ{} \\
  850. &\MID& \UNIOP{\itm{unaryop}}{\Exp} \MID \BINOP{\itm{binaryop}}{\Exp}{\Exp} \\
  851. \Stmt{} &::=& \PRINT{\Exp} \MID \EXPR{\Exp}
  852. \end{array}
  853. }
  854. \begin{figure}[tp]
  855. \begin{tcolorbox}[colback=white]
  856. {\if\edition\racketEd
  857. \[
  858. \begin{array}{l}
  859. \LintGrammarRacket \\
  860. \begin{array}{rcl}
  861. \LangInt{} &::=& \Exp
  862. \end{array}
  863. \end{array}
  864. \]
  865. \fi}
  866. {\if\edition\pythonEd
  867. \[
  868. \begin{array}{l}
  869. \LintGrammarPython \\
  870. \begin{array}{rcl}
  871. \LangInt{} &::=& \Stmt^{*}
  872. \end{array}
  873. \end{array}
  874. \]
  875. \fi}
  876. \end{tcolorbox}
  877. \caption{The concrete syntax of \LangInt{}.}
  878. \label{fig:r0-concrete-syntax}
  879. \end{figure}
  880. \begin{figure}[tp]
  881. \begin{tcolorbox}[colback=white]
  882. {\if\edition\racketEd
  883. \[
  884. \begin{array}{l}
  885. \LintASTRacket{} \\
  886. \begin{array}{rcl}
  887. \LangInt{} &::=& \PROGRAM{\code{'()}}{\Exp}
  888. \end{array}
  889. \end{array}
  890. \]
  891. \fi}
  892. {\if\edition\pythonEd
  893. \[
  894. \begin{array}{l}
  895. \LintASTPython\\
  896. \begin{array}{rcl}
  897. \LangInt{} &::=& \PROGRAM{}{\Stmt^{*}}
  898. \end{array}
  899. \end{array}
  900. \]
  901. \fi}
  902. \end{tcolorbox}
  903. \python{
  904. \index{subject}{Constant@\texttt{Constant}}
  905. \index{subject}{UnaryOp@\texttt{UnaryOp}}
  906. \index{subject}{USub@\texttt{USub}}
  907. \index{subject}{inputint@\texttt{input\_int}}
  908. \index{subject}{Call@\texttt{Call}}
  909. \index{subject}{Name@\texttt{Name}}
  910. \index{subject}{BinOp@\texttt{BinOp}}
  911. \index{subject}{Add@\texttt{Add}}
  912. \index{subject}{Sub@\texttt{Sub}}
  913. \index{subject}{print@\texttt{print}}
  914. \index{subject}{Expr@\texttt{Expr}}
  915. \index{subject}{Module@\texttt{Module}}
  916. }
  917. \caption{The abstract syntax of \LangInt{}.}
  918. \label{fig:r0-syntax}
  919. \end{figure}
  920. \section{Pattern Matching}
  921. \label{sec:pattern-matching}
  922. As mentioned in Section~\ref{sec:ast}, compilers often need to access
  923. the parts of an AST node. \racket{Racket}\python{As of version 3.10, Python} provides the
  924. \texttt{match} feature to access the parts of a value.
  925. Consider the following example. \index{subject}{match} \index{subject}{pattern matching}
  926. \begin{center}
  927. \begin{minipage}{0.5\textwidth}
  928. {\if\edition\racketEd
  929. \begin{lstlisting}
  930. (match ast1_1
  931. [(Prim op (list child1 child2))
  932. (print op)])
  933. \end{lstlisting}
  934. \fi}
  935. {\if\edition\pythonEd
  936. \begin{lstlisting}
  937. match ast1_1:
  938. case BinOp(child1, op, child2):
  939. print(op)
  940. \end{lstlisting}
  941. \fi}
  942. \end{minipage}
  943. \end{center}
  944. {\if\edition\racketEd
  945. %
  946. In the above example, the \texttt{match} form checks whether the AST
  947. \eqref{eq:arith-prog} is a binary operator and binds its parts to the
  948. three pattern variables \texttt{op}, \texttt{child1}, and
  949. \texttt{child2}. In general, a match clause consists of a
  950. \emph{pattern} and a \emph{body}.\index{subject}{pattern} Patterns are
  951. recursively defined to be either a pattern variable, a structure name
  952. followed by a pattern for each of the structure's arguments, or an
  953. S-expression (symbols, lists, etc.). (See Chapter 12 of The Racket
  954. Guide\footnote{\url{https://docs.racket-lang.org/guide/match.html}}
  955. and Chapter 9 of The Racket
  956. Reference\footnote{\url{https://docs.racket-lang.org/reference/match.html}}
  957. for complete descriptions of \code{match}.)
  958. %
  959. The body of a match clause may contain arbitrary Racket code. The
  960. pattern variables can be used in the scope of the body, such as
  961. \code{op} in \code{(print op)}.
  962. %
  963. \fi}
  964. %
  965. %
  966. {\if\edition\pythonEd
  967. %
  968. In the above example, the \texttt{match} form checks whether the AST
  969. \eqref{eq:arith-prog} is a binary operator and binds its parts to the
  970. three pattern variables \texttt{child1}, \texttt{op}, and
  971. \texttt{child2}, and then prints out the operator. In general, each
  972. \code{case} consists of a \emph{pattern} and a
  973. \emph{body}.\index{subject}{pattern} Patterns are recursively defined
  974. to be either a pattern variable, a class name followed by a pattern
  975. for each of its constructor's arguments, or other literals such as
  976. strings, lists, etc.
  977. %
  978. The body of each \code{case} may contain arbitrary Python code. The
  979. pattern variables can be used in the body, such as \code{op} in
  980. \code{print(op)}.
  981. %
  982. \fi}
  983. A \code{match} form may contain several clauses, as in the following
  984. function \code{leaf} that recognizes when an \LangInt{} node is a leaf in
  985. the AST. The \code{match} proceeds through the clauses in order,
  986. checking whether the pattern can match the input AST. The body of the
  987. first clause that matches is executed. The output of \code{leaf} for
  988. several ASTs is shown on the right.
  989. \begin{center}
  990. \begin{minipage}{0.6\textwidth}
  991. {\if\edition\racketEd
  992. \begin{lstlisting}
  993. (define (leaf arith)
  994. (match arith
  995. [(Int n) #t]
  996. [(Prim 'read '()) #t]
  997. [(Prim '- (list e1)) #f]
  998. [(Prim '+ (list e1 e2)) #f]
  999. [(Prim '- (list e1 e2)) #f]))
  1000. (leaf (Prim 'read '()))
  1001. (leaf (Prim '- (list (Int 8))))
  1002. (leaf (Int 8))
  1003. \end{lstlisting}
  1004. \fi}
  1005. {\if\edition\pythonEd
  1006. \begin{lstlisting}
  1007. def leaf(arith):
  1008. match arith:
  1009. case Constant(n):
  1010. return True
  1011. case Call(Name('input_int'), []):
  1012. return True
  1013. case UnaryOp(USub(), e1):
  1014. return False
  1015. case BinOp(e1, Add(), e2):
  1016. return False
  1017. case BinOp(e1, Sub(), e2):
  1018. return False
  1019. print(leaf(Call(Name('input_int'), [])))
  1020. print(leaf(UnaryOp(USub(), eight)))
  1021. print(leaf(Constant(8)))
  1022. \end{lstlisting}
  1023. \fi}
  1024. \end{minipage}
  1025. \vrule
  1026. \begin{minipage}{0.25\textwidth}
  1027. {\if\edition\racketEd
  1028. \begin{lstlisting}
  1029. #t
  1030. #f
  1031. #t
  1032. \end{lstlisting}
  1033. \fi}
  1034. {\if\edition\pythonEd
  1035. \begin{lstlisting}
  1036. True
  1037. False
  1038. True
  1039. \end{lstlisting}
  1040. \fi}
  1041. \end{minipage}
  1042. \end{center}
  1043. When constructing a \code{match} expression, we refer to the grammar
  1044. definition to identify which non-terminal we are expecting to match
  1045. against, then we make sure that 1) we have one
  1046. \racket{clause}\python{case} for each alternative of that non-terminal
  1047. and 2) that the pattern in each \racket{clause}\python{case}
  1048. corresponds to the corresponding right-hand side of a grammar
  1049. rule. For the \code{match} in the \code{leaf} function, we refer to
  1050. the grammar for \LangInt{} in Figure~\ref{fig:r0-syntax}. The $\Exp$
  1051. non-terminal has 4 alternatives, so the \code{match} has 4
  1052. \racket{clauses}\python{cases}. The pattern in each
  1053. \racket{clause}\python{case} corresponds to the right-hand side of a
  1054. grammar rule. For example, the pattern \ADDP{\code{e1}}{\code{e2}}
  1055. corresponds to the right-hand side $\ADD{\Exp}{\Exp}$. When
  1056. translating from grammars to patterns, replace non-terminals such as
  1057. $\Exp$ with pattern variables of your choice (e.g. \code{e1} and
  1058. \code{e2}).
  1059. \section{Recursive Functions}
  1060. \label{sec:recursion}
  1061. \index{subject}{recursive function}
  1062. Programs are inherently recursive. For example, an expression is often
  1063. made of smaller expressions. Thus, the natural way to process an
  1064. entire program is with a recursive function. As a first example of
  1065. such a recursive function, we define the function \code{is\_exp} in
  1066. Figure~\ref{fig:exp-predicate}, which takes an arbitrary value and
  1067. determines whether or not it is an expression in \LangInt{}.
  1068. %
  1069. We say that a function is defined by \emph{structural recursion} when
  1070. it is defined using a sequence of match \racket{clauses}\python{cases}
  1071. that correspond to a grammar, and the body of each
  1072. \racket{clause}\python{case} makes a recursive call on each child
  1073. node.\footnote{This principle of structuring code according to the
  1074. data definition is advocated in the book \emph{How to Design
  1075. Programs} by \citet{Felleisen:2001aa}.} \python{We define a
  1076. second function, named \code{stmt}, that recognizes whether a value
  1077. is a \LangInt{} statement.} \python{Finally, }
  1078. Figure~\ref{fig:exp-predicate} \racket{also} defines \code{is\_Lint},
  1079. which determines whether an AST is a program in \LangInt{}. In
  1080. general we can write one recursive function to handle each
  1081. non-terminal in a grammar.\index{subject}{structural recursion} Of the
  1082. two examples at the bottom of the figure, the first is in
  1083. \LangInt{} and the second is not.
  1084. \begin{figure}[tp]
  1085. \begin{tcolorbox}[colback=white]
  1086. {\if\edition\racketEd
  1087. \begin{lstlisting}
  1088. (define (is_exp ast)
  1089. (match ast
  1090. [(Int n) #t]
  1091. [(Prim 'read '()) #t]
  1092. [(Prim '- (list e)) (is_exp e)]
  1093. [(Prim '+ (list e1 e2))
  1094. (and (is_exp e1) (is_exp e2))]
  1095. [(Prim '- (list e1 e2))
  1096. (and (is_exp e1) (is_exp e2))]
  1097. [else #f]))
  1098. (define (is_Lint ast)
  1099. (match ast
  1100. [(Program '() e) (is_exp e)]
  1101. [else #f]))
  1102. (is_Lint (Program '() ast1_1)
  1103. (is_Lint (Program '()
  1104. (Prim '* (list (Prim 'read '())
  1105. (Prim '+ (list (Int 8)))))))
  1106. \end{lstlisting}
  1107. \fi}
  1108. {\if\edition\pythonEd
  1109. \begin{lstlisting}
  1110. def is_exp(e):
  1111. match e:
  1112. case Constant(n):
  1113. return True
  1114. case Call(Name('input_int'), []):
  1115. return True
  1116. case UnaryOp(USub(), e1):
  1117. return is_exp(e1)
  1118. case BinOp(e1, Add(), e2):
  1119. return is_exp(e1) and is_exp(e2)
  1120. case BinOp(e1, Sub(), e2):
  1121. return is_exp(e1) and is_exp(e2)
  1122. case _:
  1123. return False
  1124. def stmt(s):
  1125. match s:
  1126. case Expr(Call(Name('print'), [e])):
  1127. return is_exp(e)
  1128. case Expr(e):
  1129. return is_exp(e)
  1130. case _:
  1131. return False
  1132. def is_Lint(p):
  1133. match p:
  1134. case Module(body):
  1135. return all([stmt(s) for s in body])
  1136. case _:
  1137. return False
  1138. print(is_Lint(Module([Expr(ast1_1)])))
  1139. print(is_Lint(Module([Expr(BinOp(read, Sub(),
  1140. UnaryOp(Add(), Constant(8))))])))
  1141. \end{lstlisting}
  1142. \fi}
  1143. \end{tcolorbox}
  1144. \caption{Example of recursive functions for \LangInt{}. These functions
  1145. recognize whether an AST is in \LangInt{}.}
  1146. \label{fig:exp-predicate}
  1147. \end{figure}
  1148. %% You may be tempted to merge the two functions into one, like this:
  1149. %% \begin{center}
  1150. %% \begin{minipage}{0.5\textwidth}
  1151. %% \begin{lstlisting}
  1152. %% (define (Lint ast)
  1153. %% (match ast
  1154. %% [(Int n) #t]
  1155. %% [(Prim 'read '()) #t]
  1156. %% [(Prim '- (list e)) (Lint e)]
  1157. %% [(Prim '+ (list e1 e2)) (and (Lint e1) (Lint e2))]
  1158. %% [(Program '() e) (Lint e)]
  1159. %% [else #f]))
  1160. %% \end{lstlisting}
  1161. %% \end{minipage}
  1162. %% \end{center}
  1163. %% %
  1164. %% Sometimes such a trick will save a few lines of code, especially when
  1165. %% it comes to the \code{Program} wrapper. Yet this style is generally
  1166. %% \emph{not} recommended because it can get you into trouble.
  1167. %% %
  1168. %% For example, the above function is subtly wrong:
  1169. %% \lstinline{(Lint (Program '() (Program '() (Int 3))))}
  1170. %% returns true when it should return false.
  1171. \section{Interpreters}
  1172. \label{sec:interp_Lint}
  1173. \index{subject}{interpreter}
  1174. The behavior of a program is defined by the specification of the
  1175. programming language.
  1176. %
  1177. \racket{For example, the Scheme language is defined in the report by
  1178. \cite{SPERBER:2009aa}. The Racket language is defined in its
  1179. reference manual~\citep{plt-tr}.}
  1180. %
  1181. \python{For example, the Python language is defined in the Python
  1182. Language Reference~\citep{PSF21:python_ref} and the CPython interpreter~\citep{PSF21:cpython}.}
  1183. %
  1184. In this book we use interpreters to specify each language that we
  1185. consider. An interpreter that is designated as the definition of a
  1186. language is called a \emph{definitional
  1187. interpreter}~\citep{reynolds72:_def_interp}.
  1188. \index{subject}{definitional interpreter} We warm up by creating a
  1189. definitional interpreter for the \LangInt{} language. This interpreter
  1190. serves as a second example of structural recursion. The
  1191. \code{interp\_Lint} function is defined in
  1192. Figure~\ref{fig:interp_Lint}.
  1193. %
  1194. \racket{The body of the function is a match on the input program
  1195. followed by a call to the \lstinline{interp_exp} helper function,
  1196. which in turn has one match clause per grammar rule for \LangInt{}
  1197. expressions.}
  1198. %
  1199. \python{The body of the function matches on the \code{Module} AST node
  1200. and then invokes \code{interp\_stmt} on each statement in the
  1201. module. The \code{interp\_stmt} function includes a case for each
  1202. grammar rule of the \Stmt{} non-terminal and it calls
  1203. \code{interp\_exp} on each subexpression. The \code{interp\_exp}
  1204. function includes a case for each grammar rule of the \Exp{}
  1205. non-terminal.}
  1206. \begin{figure}[tp]
  1207. \begin{tcolorbox}[colback=white]
  1208. {\if\edition\racketEd
  1209. \begin{lstlisting}
  1210. (define (interp_exp e)
  1211. (match e
  1212. [(Int n) n]
  1213. [(Prim 'read '())
  1214. (define r (read))
  1215. (cond [(fixnum? r) r]
  1216. [else (error 'interp_exp "read expected an integer" r)])]
  1217. [(Prim '- (list e))
  1218. (define v (interp_exp e))
  1219. (fx- 0 v)]
  1220. [(Prim '+ (list e1 e2))
  1221. (define v1 (interp_exp e1))
  1222. (define v2 (interp_exp e2))
  1223. (fx+ v1 v2)]
  1224. [(Prim '- (list e1 e2))
  1225. (define v1 ((interp-exp env) e1))
  1226. (define v2 ((interp-exp env) e2))
  1227. (fx- v1 v2)]))
  1228. (define (interp_Lint p)
  1229. (match p
  1230. [(Program '() e) (interp_exp e)]))
  1231. \end{lstlisting}
  1232. \fi}
  1233. {\if\edition\pythonEd
  1234. \begin{lstlisting}
  1235. def interp_exp(e):
  1236. match e:
  1237. case BinOp(left, Add(), right):
  1238. l = interp_exp(left); r = interp_exp(right)
  1239. return l + r
  1240. case BinOp(left, Sub(), right):
  1241. l = interp_exp(left); r = interp_exp(right)
  1242. return l - r
  1243. case UnaryOp(USub(), v):
  1244. return - interp_exp(v)
  1245. case Constant(value):
  1246. return value
  1247. case Call(Name('input_int'), []):
  1248. return int(input())
  1249. def interp_stmt(s):
  1250. match s:
  1251. case Expr(Call(Name('print'), [arg])):
  1252. print(interp_exp(arg))
  1253. case Expr(value):
  1254. interp_exp(value)
  1255. def interp_Lint(p):
  1256. match p:
  1257. case Module(body):
  1258. for s in body:
  1259. interp_stmt(s)
  1260. \end{lstlisting}
  1261. \fi}
  1262. \end{tcolorbox}
  1263. \caption{Interpreter for the \LangInt{} language.}
  1264. \label{fig:interp_Lint}
  1265. \end{figure}
  1266. Let us consider the result of interpreting a few \LangInt{} programs. The
  1267. following program adds two integers.
  1268. {\if\edition\racketEd
  1269. \begin{lstlisting}
  1270. (+ 10 32)
  1271. \end{lstlisting}
  1272. \fi}
  1273. {\if\edition\pythonEd
  1274. \begin{lstlisting}
  1275. print(10 + 32)
  1276. \end{lstlisting}
  1277. \fi}
  1278. %
  1279. \noindent The result is \key{42}, the answer to life, the universe,
  1280. and everything: \code{42}!\footnote{\emph{The Hitchhiker's Guide to
  1281. the Galaxy} by Douglas Adams.}
  1282. %
  1283. We wrote the above program in concrete syntax whereas the parsed
  1284. abstract syntax is:
  1285. {\if\edition\racketEd
  1286. \begin{lstlisting}
  1287. (Program '() (Prim '+ (list (Int 10) (Int 32))))
  1288. \end{lstlisting}
  1289. \fi}
  1290. {\if\edition\pythonEd
  1291. \begin{lstlisting}
  1292. Module([Expr(Call(Name('print'), [BinOp(Constant(10), Add(), Constant(32))]))])
  1293. \end{lstlisting}
  1294. \fi}
  1295. The next example demonstrates that expressions may be nested within
  1296. each other, in this case nesting several additions and negations.
  1297. {\if\edition\racketEd
  1298. \begin{lstlisting}
  1299. (+ 10 (- (+ 12 20)))
  1300. \end{lstlisting}
  1301. \fi}
  1302. {\if\edition\pythonEd
  1303. \begin{lstlisting}
  1304. print(10 + -(12 + 20))
  1305. \end{lstlisting}
  1306. \fi}
  1307. %
  1308. \noindent What is the result of the above program?
  1309. {\if\edition\racketEd
  1310. As mentioned previously, the \LangInt{} language does not support
  1311. arbitrarily-large integers, but only $63$-bit integers, so we
  1312. interpret the arithmetic operations of \LangInt{} using fixnum arithmetic
  1313. in Racket.
  1314. Suppose
  1315. \[
  1316. n = 999999999999999999
  1317. \]
  1318. which indeed fits in $63$-bits. What happens when we run the
  1319. following program in our interpreter?
  1320. \begin{lstlisting}
  1321. (+ (+ (+ |$n$| |$n$|) (+ |$n$| |$n$|)) (+ (+ |$n$| |$n$|) (+ |$n$| |$n$|)))))
  1322. \end{lstlisting}
  1323. It produces an error:
  1324. \begin{lstlisting}
  1325. fx+: result is not a fixnum
  1326. \end{lstlisting}
  1327. We establish the convention that if running the definitional
  1328. interpreter on a program produces an error then the meaning of that
  1329. program is \emph{unspecified}\index{subject}{unspecified behavior}, unless the
  1330. error is a \code{trapped-error}. A compiler for the language is under
  1331. no obligations regarding programs with unspecified behavior; it does
  1332. not have to produce an executable, and if it does, that executable can
  1333. do anything. On the other hand, if the error is a
  1334. \code{trapped-error}, then the compiler must produce an executable and
  1335. it is required to report that an error occurred. To signal an error,
  1336. exit with a return code of \code{255}. The interpreters in chapters
  1337. \ref{ch:Ldyn} and \ref{ch:Lgrad} use
  1338. \code{trapped-error}.
  1339. \fi}
  1340. % TODO: how to deal with too-large integers in the Python interpreter?
  1341. %% This convention applies to the languages defined in this
  1342. %% book, as a way to simplify the student's task of implementing them,
  1343. %% but this convention is not applicable to all programming languages.
  1344. %%
  1345. Moving on to the last feature of the \LangInt{} language, the
  1346. \READOP{} operation prompts the user of the program for an integer.
  1347. Recall that program \eqref{eq:arith-prog} requests an integer input
  1348. and then subtracts \code{8}. So if we run
  1349. {\if\edition\racketEd
  1350. \begin{lstlisting}
  1351. (interp_Lint (Program '() ast1_1))
  1352. \end{lstlisting}
  1353. \fi}
  1354. {\if\edition\pythonEd
  1355. \begin{lstlisting}
  1356. interp_Lint(Module([Expr(Call(Name('print'), [ast1_1]))]))
  1357. \end{lstlisting}
  1358. \fi}
  1359. \noindent and if the input is \code{50}, the result is \code{42}.
  1360. We include the \READOP{} operation in \LangInt{} so a clever student
  1361. cannot implement a compiler for \LangInt{} that simply runs the interpreter
  1362. during compilation to obtain the output and then generates the trivial
  1363. code to produce the output.\footnote{Yes, a clever student did this in the
  1364. first instance of this course!}
  1365. The job of a compiler is to translate a program in one language into a
  1366. program in another language so that the output program behaves the
  1367. same way as the input program. This idea is depicted in the
  1368. following diagram. Suppose we have two languages, $\mathcal{L}_1$ and
  1369. $\mathcal{L}_2$, and a definitional interpreter for each language.
  1370. Given a compiler that translates from language $\mathcal{L}_1$ to
  1371. $\mathcal{L}_2$ and given any program $P_1$ in $\mathcal{L}_1$, the
  1372. compiler must translate it into some program $P_2$ such that
  1373. interpreting $P_1$ and $P_2$ on their respective interpreters with
  1374. same input $i$ yields the same output $o$.
  1375. \begin{equation} \label{eq:compile-correct}
  1376. \begin{tikzpicture}[baseline=(current bounding box.center)]
  1377. \node (p1) at (0, 0) {$P_1$};
  1378. \node (p2) at (3, 0) {$P_2$};
  1379. \node (o) at (3, -2.5) {$o$};
  1380. \path[->] (p1) edge [above] node {compile} (p2);
  1381. \path[->] (p2) edge [right] node {interp\_$\mathcal{L}_2$($i$)} (o);
  1382. \path[->] (p1) edge [left] node {interp\_$\mathcal{L}_1$($i$)} (o);
  1383. \end{tikzpicture}
  1384. \end{equation}
  1385. In the next section we see our first example of a compiler.
  1386. \section{Example Compiler: a Partial Evaluator}
  1387. \label{sec:partial-evaluation}
  1388. In this section we consider a compiler that translates \LangInt{}
  1389. programs into \LangInt{} programs that may be more efficient. The
  1390. compiler eagerly computes the parts of the program that do not depend
  1391. on any inputs, a process known as \emph{partial
  1392. evaluation}~\citep{Jones:1993uq}. \index{subject}{partial evaluation}
  1393. For example, given the following program
  1394. {\if\edition\racketEd
  1395. \begin{lstlisting}
  1396. (+ (read) (- (+ 5 3)))
  1397. \end{lstlisting}
  1398. \fi}
  1399. {\if\edition\pythonEd
  1400. \begin{lstlisting}
  1401. print(input_int() + -(5 + 3) )
  1402. \end{lstlisting}
  1403. \fi}
  1404. \noindent our compiler translates it into the program
  1405. {\if\edition\racketEd
  1406. \begin{lstlisting}
  1407. (+ (read) -8)
  1408. \end{lstlisting}
  1409. \fi}
  1410. {\if\edition\pythonEd
  1411. \begin{lstlisting}
  1412. print(input_int() + -8)
  1413. \end{lstlisting}
  1414. \fi}
  1415. Figure~\ref{fig:pe-arith} gives the code for a simple partial
  1416. evaluator for the \LangInt{} language. The output of the partial evaluator
  1417. is a program in \LangInt{}. In Figure~\ref{fig:pe-arith}, the structural
  1418. recursion over $\Exp$ is captured in the \code{pe\_exp} function
  1419. whereas the code for partially evaluating the negation and addition
  1420. operations is factored into three auxiliary functions:
  1421. \code{pe\_neg}, \code{pe\_add} and \code{pe\_sub}. The input to these
  1422. functions is the output of partially evaluating the children.
  1423. The \code{pe\_neg}, \code{pe\_add} and \code{pe\_sub} functions check whether their
  1424. arguments are integers and if they are, perform the appropriate
  1425. arithmetic. Otherwise, they create an AST node for the arithmetic
  1426. operation.
  1427. \begin{figure}[tp]
  1428. \begin{tcolorbox}[colback=white]
  1429. {\if\edition\racketEd
  1430. \begin{lstlisting}
  1431. (define (pe_neg r)
  1432. (match r
  1433. [(Int n) (Int (fx- 0 n))]
  1434. [else (Prim '- (list r))]))
  1435. (define (pe_add r1 r2)
  1436. (match* (r1 r2)
  1437. [((Int n1) (Int n2)) (Int (fx+ n1 n2))]
  1438. [(_ _) (Prim '+ (list r1 r2))]))
  1439. (define (pe_sub r1 r2)
  1440. (match* (r1 r2)
  1441. [((Int n1) (Int n2)) (Int (fx- n1 n2))]
  1442. [(_ _) (Prim '- (list r1 r2))]))
  1443. (define (pe_exp e)
  1444. (match e
  1445. [(Int n) (Int n)]
  1446. [(Prim 'read '()) (Prim 'read '())]
  1447. [(Prim '- (list e1)) (pe_neg (pe_exp e1))]
  1448. [(Prim '+ (list e1 e2)) (pe_add (pe_exp e1) (pe_exp e2))]
  1449. [(Prim '- (list e1 e2)) (pe_sub (pe_exp e1) (pe_exp e2))]))
  1450. (define (pe_Lint p)
  1451. (match p
  1452. [(Program '() e) (Program '() (pe_exp e))]))
  1453. \end{lstlisting}
  1454. \fi}
  1455. {\if\edition\pythonEd
  1456. \begin{lstlisting}
  1457. def pe_neg(r):
  1458. match r:
  1459. case Constant(n):
  1460. return Constant(-n)
  1461. case _:
  1462. return UnaryOp(USub(), r)
  1463. def pe_add(r1, r2):
  1464. match (r1, r2):
  1465. case (Constant(n1), Constant(n2)):
  1466. return Constant(n1 + n2)
  1467. case _:
  1468. return BinOp(r1, Add(), r2)
  1469. def pe_sub(r1, r2):
  1470. match (r1, r2):
  1471. case (Constant(n1), Constant(n2)):
  1472. return Constant(n1 - n2)
  1473. case _:
  1474. return BinOp(r1, Sub(), r2)
  1475. def pe_exp(e):
  1476. match e:
  1477. case BinOp(left, Add(), right):
  1478. return pe_add(pe_exp(left), pe_exp(right))
  1479. case BinOp(left, Sub(), right):
  1480. return pe_sub(pe_exp(left), pe_exp(right))
  1481. case UnaryOp(USub(), v):
  1482. return pe_neg(pe_exp(v))
  1483. case Constant(value):
  1484. return e
  1485. case Call(Name('input_int'), []):
  1486. return e
  1487. def pe_stmt(s):
  1488. match s:
  1489. case Expr(Call(Name('print'), [arg])):
  1490. return Expr(Call(Name('print'), [pe_exp(arg)]))
  1491. case Expr(value):
  1492. return Expr(pe_exp(value))
  1493. def pe_P_int(p):
  1494. match p:
  1495. case Module(body):
  1496. new_body = [pe_stmt(s) for s in body]
  1497. return Module(new_body)
  1498. \end{lstlisting}
  1499. \fi}
  1500. \end{tcolorbox}
  1501. \caption{A partial evaluator for \LangInt{}.}
  1502. \label{fig:pe-arith}
  1503. \end{figure}
  1504. To gain some confidence that the partial evaluator is correct, we can
  1505. test whether it produces programs that produce the same result as the
  1506. input programs. That is, we can test whether it satisfies Diagram
  1507. \ref{eq:compile-correct}.
  1508. %
  1509. {\if\edition\racketEd
  1510. The following code runs the partial evaluator on several examples and
  1511. tests the output program. The \texttt{parse-program} and
  1512. \texttt{assert} functions are defined in
  1513. Appendix~\ref{appendix:utilities}.\\
  1514. \begin{minipage}{1.0\textwidth}
  1515. \begin{lstlisting}
  1516. (define (test_pe p)
  1517. (assert "testing pe_Lint"
  1518. (equal? (interp_Lint p) (interp_Lint (pe_Lint p)))))
  1519. (test_pe (parse-program `(program () (+ 10 (- (+ 5 3))))))
  1520. (test_pe (parse-program `(program () (+ 1 (+ 3 1)))))
  1521. (test_pe (parse-program `(program () (- (+ 3 (- 5))))))
  1522. \end{lstlisting}
  1523. \end{minipage}
  1524. \fi}
  1525. % TODO: python version of testing the PE
  1526. \begin{exercise}\normalfont\normalsize
  1527. Create three programs in the \LangInt{} language and test whether
  1528. partially evaluating them with \code{pe\_Lint} and then
  1529. interpreting them with \code{interp\_Lint} gives the same result
  1530. as directly interpreting them with \code{interp\_Lint}.
  1531. \end{exercise}
  1532. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  1533. \chapter{Integers and Variables}
  1534. \label{ch:Lvar}
  1535. This chapter is about compiling a subset of
  1536. \racket{Racket}\python{Python} to x86-64 assembly
  1537. code~\citep{Intel:2015aa}. The subset, named \LangVar{}, includes
  1538. integer arithmetic and local variables. We often refer to x86-64
  1539. simply as x86. The chapter begins with a description of the
  1540. \LangVar{} language (Section~\ref{sec:s0}) followed by an introduction
  1541. to x86 assembly (Section~\ref{sec:x86}). The x86 assembly language is
  1542. large so we discuss only the instructions needed for compiling
  1543. \LangVar{}. We introduce more x86 instructions in later chapters.
  1544. After introducing \LangVar{} and x86, we reflect on their differences
  1545. and come up with a plan to break down the translation from \LangVar{}
  1546. to x86 into a handful of steps (Section~\ref{sec:plan-s0-x86}). The
  1547. rest of the sections in this chapter give detailed hints regarding
  1548. each step. We hope to give enough hints that the well-prepared
  1549. reader, together with a few friends, can implement a compiler from
  1550. \LangVar{} to x86 in a short time. To give the reader a feeling for
  1551. the scale of this first compiler, the instructor solution for the
  1552. \LangVar{} compiler is approximately \racket{500}\python{300} lines of
  1553. code.
  1554. \section{The \LangVar{} Language}
  1555. \label{sec:s0}
  1556. \index{subject}{variable}
  1557. The \LangVar{} language extends the \LangInt{} language with
  1558. variables. The concrete syntax of the \LangVar{} language is defined
  1559. by the grammar in Figure~\ref{fig:Lvar-concrete-syntax} and the
  1560. abstract syntax is defined in Figure~\ref{fig:Lvar-syntax}. The
  1561. non-terminal \Var{} may be any \racket{Racket}\python{Python} identifier.
  1562. As in \LangInt{}, \READOP{} is a nullary operator, \key{-} is a unary operator, and
  1563. \key{+} is a binary operator. Similar to \LangInt{}, the abstract
  1564. syntax of \LangVar{} includes the \racket{\key{Program}
  1565. struct}\python{\key{Module} instance} to mark the top of the
  1566. program.
  1567. %% The $\itm{info}$
  1568. %% field of the \key{Program} structure contains an \emph{association
  1569. %% list} (a list of key-value pairs) that is used to communicate
  1570. %% auxiliary data from one compiler pass the next.
  1571. Despite the simplicity of the \LangVar{} language, it is rich enough to
  1572. exhibit several compilation techniques.
  1573. \newcommand{\LvarGrammarRacket}{
  1574. \begin{array}{rcl}
  1575. \Exp &::=& \Var \MID \CLET{\Var}{\Exp}{\Exp}
  1576. \end{array}
  1577. }
  1578. \newcommand{\LvarASTRacket}{
  1579. \begin{array}{rcl}
  1580. \Exp &::=& \VAR{\Var} \MID \LET{\Var}{\Exp}{\Exp}
  1581. \end{array}
  1582. }
  1583. \newcommand{\LvarGrammarPython}{
  1584. \begin{array}{rcl}
  1585. \Exp &::=& \Var{} \\
  1586. \Stmt &::=& \Var\mathop{\key{=}}\Exp
  1587. \end{array}
  1588. }
  1589. \newcommand{\LvarASTPython}{
  1590. \begin{array}{rcl}
  1591. \Exp{} &::=& \VAR{\Var{}} \\
  1592. \Stmt{} &::=& \ASSIGN{\VAR{\Var}}{\Exp}
  1593. \end{array}
  1594. }
  1595. \begin{figure}[tp]
  1596. \centering
  1597. \begin{tcolorbox}[colback=white]
  1598. {\if\edition\racketEd
  1599. \[
  1600. \begin{array}{l}
  1601. \gray{\LintGrammarRacket{}} \\ \hline
  1602. \LvarGrammarRacket{} \\
  1603. \begin{array}{rcl}
  1604. \LangVarM{} &::=& \Exp
  1605. \end{array}
  1606. \end{array}
  1607. \]
  1608. \fi}
  1609. {\if\edition\pythonEd
  1610. \[
  1611. \begin{array}{l}
  1612. \gray{\LintGrammarPython} \\ \hline
  1613. \LvarGrammarPython \\
  1614. \begin{array}{rcl}
  1615. \LangVarM{} &::=& \Stmt^{*}
  1616. \end{array}
  1617. \end{array}
  1618. \]
  1619. \fi}
  1620. \end{tcolorbox}
  1621. \caption{The concrete syntax of \LangVar{}.}
  1622. \label{fig:Lvar-concrete-syntax}
  1623. \end{figure}
  1624. \begin{figure}[tp]
  1625. \centering
  1626. \begin{tcolorbox}[colback=white]
  1627. {\if\edition\racketEd
  1628. \[
  1629. \begin{array}{l}
  1630. \gray{\LintASTRacket{}} \\ \hline
  1631. \LvarASTRacket \\
  1632. \begin{array}{rcl}
  1633. \LangVarM{} &::=& \PROGRAM{\code{'()}}{\Exp}
  1634. \end{array}
  1635. \end{array}
  1636. \]
  1637. \fi}
  1638. {\if\edition\pythonEd
  1639. \[
  1640. \begin{array}{l}
  1641. \gray{\LintASTPython}\\ \hline
  1642. \LvarASTPython \\
  1643. \begin{array}{rcl}
  1644. \LangVarM{} &::=& \PROGRAM{}{\Stmt^{*}}
  1645. \end{array}
  1646. \end{array}
  1647. \]
  1648. \fi}
  1649. \end{tcolorbox}
  1650. \caption{The abstract syntax of \LangVar{}.}
  1651. \label{fig:Lvar-syntax}
  1652. \end{figure}
  1653. {\if\edition\racketEd
  1654. Let us dive further into the syntax and semantics of the \LangVar{}
  1655. language. The \key{let} feature defines a variable for use within its
  1656. body and initializes the variable with the value of an expression.
  1657. The abstract syntax for \key{let} is defined in
  1658. Figure~\ref{fig:Lvar-syntax}. The concrete syntax for \key{let} is
  1659. \begin{lstlisting}
  1660. (let ([|$\itm{var}$| |$\itm{exp}$|]) |$\itm{exp}$|)
  1661. \end{lstlisting}
  1662. For example, the following program initializes \code{x} to $32$ and then
  1663. evaluates the body \code{(+ 10 x)}, producing $42$.
  1664. \begin{lstlisting}
  1665. (let ([x (+ 12 20)]) (+ 10 x))
  1666. \end{lstlisting}
  1667. \fi}
  1668. %
  1669. {\if\edition\pythonEd
  1670. %
  1671. The \LangVar{} language includes assignment statements, which define a
  1672. variable for use in later statements and initializes the variable with
  1673. the value of an expression. The abstract syntax for assignment is
  1674. defined in Figure~\ref{fig:Lvar-syntax}. The concrete syntax for
  1675. assignment is \index{subject}{Assign@\texttt{Assign}}
  1676. \begin{lstlisting}
  1677. |$\itm{var}$| = |$\itm{exp}$|
  1678. \end{lstlisting}
  1679. For example, the following program initializes the variable \code{x}
  1680. to $32$ and then prints the result of \code{10 + x}, producing $42$.
  1681. \begin{lstlisting}
  1682. x = 12 + 20
  1683. print(10 + x)
  1684. \end{lstlisting}
  1685. \fi}
  1686. {\if\edition\racketEd
  1687. %
  1688. When there are multiple \key{let}'s for the same variable, the closest
  1689. enclosing \key{let} is used. That is, variable definitions overshadow
  1690. prior definitions. Consider the following program with two \key{let}'s
  1691. that define two variables named \code{x}. Can you figure out the
  1692. result?
  1693. \begin{lstlisting}
  1694. (let ([x 32]) (+ (let ([x 10]) x) x))
  1695. \end{lstlisting}
  1696. For the purposes of depicting which variable occurrences correspond to
  1697. which definitions, the following shows the \code{x}'s annotated with
  1698. subscripts to distinguish them. Double check that your answer for the
  1699. above is the same as your answer for this annotated version of the
  1700. program.
  1701. \begin{lstlisting}
  1702. (let ([x|$_1$| 32]) (+ (let ([x|$_2$| 10]) x|$_2$|) x|$_1$|))
  1703. \end{lstlisting}
  1704. The initializing expression is always evaluated before the body of the
  1705. \key{let}, so in the following, the \key{read} for \code{x} is
  1706. performed before the \key{read} for \code{y}. Given the input
  1707. $52$ then $10$, the following produces $42$ (not $-42$).
  1708. \begin{lstlisting}
  1709. (let ([x (read)]) (let ([y (read)]) (+ x (- y))))
  1710. \end{lstlisting}
  1711. \fi}
  1712. \subsection{Extensible Interpreters via Method Overriding}
  1713. \label{sec:extensible-interp}
  1714. To prepare for discussing the interpreter of \LangVar{}, we explain
  1715. why we implement it in an object-oriented style. Throughout this book
  1716. we define many interpreters, one for each of language that we
  1717. study. Because each language builds on the prior one, there is a lot
  1718. of commonality between these interpreters. We want to write down the
  1719. common parts just once instead of many times. A naive
  1720. interpreter for \LangVar{} would handle the
  1721. \racket{cases for variables and \code{let}}
  1722. \python{case for variables}
  1723. but dispatch to an interpreter for \LangInt{}
  1724. in the rest of the cases. The following code sketches this idea. (We
  1725. explain the \code{env} parameter soon, in
  1726. Section~\ref{sec:interp-Lvar}.)
  1727. \begin{center}
  1728. {\if\edition\racketEd
  1729. \begin{minipage}{0.45\textwidth}
  1730. \begin{lstlisting}
  1731. (define ((interp_Lint env) e)
  1732. (match e
  1733. [(Prim '- (list e1))
  1734. (fx- 0 ((interp_Lint env) e1))]
  1735. ...))
  1736. \end{lstlisting}
  1737. \end{minipage}
  1738. \begin{minipage}{0.45\textwidth}
  1739. \begin{lstlisting}
  1740. (define ((interp_Lvar env) e)
  1741. (match e
  1742. [(Var x)
  1743. (dict-ref env x)]
  1744. [(Let x e body)
  1745. (define v ((interp_exp env) e))
  1746. (define env^ (dict-set env x v))
  1747. ((interp_exp env^) body)]
  1748. [else ((interp_Lint env) e)]))
  1749. \end{lstlisting}
  1750. \end{minipage}
  1751. \fi}
  1752. {\if\edition\pythonEd
  1753. \begin{minipage}{0.45\textwidth}
  1754. \begin{lstlisting}
  1755. def interp_Lint(e, env):
  1756. match e:
  1757. case UnaryOp(USub(), e1):
  1758. return - interp_Lint(e1, env)
  1759. ...
  1760. \end{lstlisting}
  1761. \end{minipage}
  1762. \begin{minipage}{0.45\textwidth}
  1763. \begin{lstlisting}
  1764. def interp_Lvar(e, env):
  1765. match e:
  1766. case Name(id):
  1767. return env[id]
  1768. case _:
  1769. return interp_Lint(e, env)
  1770. \end{lstlisting}
  1771. \end{minipage}
  1772. \fi}
  1773. \end{center}
  1774. The problem with this naive approach is that it does not handle
  1775. situations in which an \LangVar{} feature, such as a variable, is
  1776. nested inside an \LangInt{} feature, like the \code{-} operator, as in
  1777. the following program.
  1778. %
  1779. {\if\edition\racketEd
  1780. \begin{lstlisting}
  1781. (Let 'y (Int 10) (Prim '- (list (Var 'y))))
  1782. \end{lstlisting}
  1783. \fi}
  1784. {\if\edition\pythonEd
  1785. \begin{lstlisting}
  1786. y = 10
  1787. print(-y)
  1788. \end{lstlisting}
  1789. \fi}
  1790. %
  1791. \noindent If we invoke \code{interp\_Lvar} on this program, it
  1792. dispatches to \code{interp\_Lint} to handle the \code{-} operator, but
  1793. then it recursively calls \code{interp\_Lint} again on its argument.
  1794. But there is no case for \code{Var} in \code{interp\_Lint} so we get
  1795. an error!
  1796. To make our interpreters extensible we need something called
  1797. \emph{open recursion}\index{subject}{open recursion}, where the tying of the
  1798. recursive knot is delayed to when the functions are
  1799. composed. Object-oriented languages provide open recursion via
  1800. method overriding\index{subject}{method overriding}. The
  1801. following code uses method overriding to interpret \LangInt{} and
  1802. \LangVar{} using
  1803. %
  1804. \racket{the
  1805. \href{https://docs.racket-lang.org/guide/classes.html}{\code{class}}
  1806. \index{subject}{class} feature of Racket.}
  1807. %
  1808. \python{a Python \code{class} definition.}
  1809. %
  1810. We define one class for each language and define a method for
  1811. interpreting expressions inside each class. The class for \LangVar{}
  1812. inherits from the class for \LangInt{} and the method
  1813. \code{interp\_exp} in \LangVar{} overrides the \code{interp\_exp} in
  1814. \LangInt{}. Note that the default case of \code{interp\_exp} in
  1815. \LangVar{} uses \code{super} to invoke \code{interp\_exp}, and because
  1816. \LangVar{} inherits from \LangInt{}, that dispatches to the
  1817. \code{interp\_exp} in \LangInt{}.
  1818. \begin{center}
  1819. \hspace{-20pt}
  1820. {\if\edition\racketEd
  1821. \begin{minipage}{0.45\textwidth}
  1822. \begin{lstlisting}
  1823. (define interp-Lint-class
  1824. (class object%
  1825. (define/public ((interp_exp env) e)
  1826. (match e
  1827. [(Prim '- (list e))
  1828. (fx- 0 ((interp_exp env) e))]
  1829. ...))
  1830. ...))
  1831. \end{lstlisting}
  1832. \end{minipage}
  1833. \begin{minipage}{0.45\textwidth}
  1834. \begin{lstlisting}
  1835. (define interp-Lvar-class
  1836. (class interp-Lint-class
  1837. (define/override ((interp_exp env) e)
  1838. (match e
  1839. [(Var x)
  1840. (dict-ref env x)]
  1841. [(Let x e body)
  1842. (define v ((interp_exp env) e))
  1843. (define env^ (dict-set env x v))
  1844. ((interp_exp env^) body)]
  1845. [else
  1846. (super (interp_exp env) e)]))
  1847. ...
  1848. ))
  1849. \end{lstlisting}
  1850. \end{minipage}
  1851. \fi}
  1852. {\if\edition\pythonEd
  1853. \begin{minipage}{0.45\textwidth}
  1854. \begin{lstlisting}
  1855. class InterpLint:
  1856. def interp_exp(e):
  1857. match e:
  1858. case UnaryOp(USub(), e1):
  1859. return -self.interp_exp(e1)
  1860. ...
  1861. ...
  1862. \end{lstlisting}
  1863. \end{minipage}
  1864. \begin{minipage}{0.45\textwidth}
  1865. \begin{lstlisting}
  1866. def InterpLvar(InterpLint):
  1867. def interp_exp(e):
  1868. match e:
  1869. case Name(id):
  1870. return env[id]
  1871. case _:
  1872. return super().interp_exp(e)
  1873. ...
  1874. \end{lstlisting}
  1875. \end{minipage}
  1876. \fi}
  1877. \end{center}
  1878. Getting back to the troublesome example, repeated here:
  1879. {\if\edition\racketEd
  1880. \begin{lstlisting}
  1881. (Let 'y (Int 10) (Prim '- (Var 'y)))
  1882. \end{lstlisting}
  1883. \fi}
  1884. {\if\edition\pythonEd
  1885. \begin{lstlisting}
  1886. y = 10
  1887. print(-y)
  1888. \end{lstlisting}
  1889. \fi}
  1890. \noindent We can invoke the \code{interp\_exp} method for \LangVar{}
  1891. \racket{on this expression,}
  1892. \python{on the \code{-y} expression,}
  1893. %
  1894. call it \code{e0}, by creating an object of the \LangVar{} class
  1895. and calling the \code{interp\_exp} method.
  1896. {\if\edition\racketEd
  1897. \begin{lstlisting}
  1898. ((send (new interp-Lvar-class) interp_exp '()) e0)
  1899. \end{lstlisting}
  1900. \fi}
  1901. {\if\edition\pythonEd
  1902. \begin{lstlisting}
  1903. InterpLvar().interp_exp(e0)
  1904. \end{lstlisting}
  1905. \fi}
  1906. \noindent To process the \code{-} operator, the default case of
  1907. \code{interp\_exp} in \LangVar{} dispatches to the \code{interp\_exp}
  1908. method in \LangInt{}. But then for the recursive method call, it
  1909. dispatches back to \code{interp\_exp} in \LangVar{}, where the
  1910. \code{Var} node is handled correctly. Thus, method overriding gives us
  1911. the open recursion that we need to implement our interpreters in an
  1912. extensible way.
  1913. \subsection{Definitional Interpreter for \LangVar{}}
  1914. \label{sec:interp-Lvar}
  1915. {\if\edition\racketEd
  1916. \begin{figure}[tp]
  1917. %\begin{wrapfigure}[26]{r}[0.75in]{0.55\textwidth}
  1918. \small
  1919. \begin{tcolorbox}[title=Association Lists as Dictionaries]
  1920. An \emph{association list} (alist) is a list of key-value pairs.
  1921. For example, we can map people to their ages with an alist.
  1922. \index{subject}{alist}\index{subject}{association list}
  1923. \begin{lstlisting}[basicstyle=\ttfamily]
  1924. (define ages '((jane . 25) (sam . 24) (kate . 45)))
  1925. \end{lstlisting}
  1926. The \emph{dictionary} interface is for mapping keys to values.
  1927. Every alist implements this interface. \index{subject}{dictionary} The package
  1928. \href{https://docs.racket-lang.org/reference/dicts.html}{\code{racket/dict}}
  1929. provides many functions for working with dictionaries. Here
  1930. are a few of them:
  1931. \begin{description}
  1932. \item[$\LP\key{dict-ref}\,\itm{dict}\,\itm{key}\RP$]
  1933. returns the value associated with the given $\itm{key}$.
  1934. \item[$\LP\key{dict-set}\,\itm{dict}\,\itm{key}\,\itm{val}\RP$]
  1935. returns a new dictionary that maps $\itm{key}$ to $\itm{val}$
  1936. but otherwise is the same as $\itm{dict}$.
  1937. \item[$\LP\code{in-dict}\,\itm{dict}\RP$] returns the
  1938. \href{https://docs.racket-lang.org/reference/sequences.html}{sequence}
  1939. of keys and values in $\itm{dict}$. For example, the following
  1940. creates a new alist in which the ages are incremented.
  1941. \end{description}
  1942. \vspace{-10pt}
  1943. \begin{lstlisting}[basicstyle=\ttfamily]
  1944. (for/list ([(k v) (in-dict ages)])
  1945. (cons k (add1 v)))
  1946. \end{lstlisting}
  1947. \end{tcolorbox}
  1948. %\end{wrapfigure}
  1949. \caption{Association lists implement the dictionary interface.}
  1950. \label{fig:alist}
  1951. \end{figure}
  1952. \fi}
  1953. Having justified the use of classes and methods to implement
  1954. interpreters, we revisit the definitional interpreter for \LangInt{}
  1955. in Figure~\ref{fig:interp-Lint-class} and then extend it to create an
  1956. interpreter for \LangVar{} in Figure~\ref{fig:interp-Lvar}. The
  1957. interpreter for \LangVar{} adds two new \key{match} cases for
  1958. variables and \racket{\key{let}}\python{assignment}. For
  1959. \racket{\key{let}}\python{assignment} we need a way to communicate the
  1960. value bound to a variable to all the uses of the variable. To
  1961. accomplish this, we maintain a mapping from variables to values
  1962. called an \emph{environment}\index{subject}{environment}.
  1963. %
  1964. We use
  1965. %
  1966. \racket{an association list (alist) }%
  1967. %
  1968. \python{a Python \href{https://docs.python.org/3.10/library/stdtypes.html\#mapping-types-dict}{dictionary} }%
  1969. %
  1970. to represent the environment.
  1971. %
  1972. \racket{Figure~\ref{fig:alist} gives a brief introduction to alists
  1973. and the \code{racket/dict} package.}
  1974. %
  1975. The \code{interp\_exp} function takes the current environment,
  1976. \code{env}, as an extra parameter. When the interpreter encounters a
  1977. variable, it looks up the corresponding value in the dictionary.
  1978. %
  1979. \racket{When the interpreter encounters a \key{Let}, it evaluates the
  1980. initializing expression, extends the environment with the result
  1981. value bound to the variable, using \code{dict-set}, then evaluates
  1982. the body of the \key{Let}.}
  1983. %
  1984. \python{When the interpreter encounters an assignment, it evaluates
  1985. the initializing expression and then associates the resulting value
  1986. with the variable in the environment.}
  1987. \begin{figure}[tp]
  1988. \begin{tcolorbox}[colback=white]
  1989. {\if\edition\racketEd
  1990. \begin{lstlisting}
  1991. (define interp-Lint-class
  1992. (class object%
  1993. (super-new)
  1994. (define/public ((interp_exp env) e)
  1995. (match e
  1996. [(Int n) n]
  1997. [(Prim 'read '())
  1998. (define r (read))
  1999. (cond [(fixnum? r) r]
  2000. [else (error 'interp_exp "expected an integer" r)])]
  2001. [(Prim '- (list e)) (fx- 0 ((interp_exp env) e))]
  2002. [(Prim '+ (list e1 e2))
  2003. (fx+ ((interp_exp env) e1) ((interp_exp env) e2))]
  2004. [(Prim '- (list e1 e2))
  2005. (fx- ((interp_exp env) e1) ((interp_exp env) e2))]))
  2006. (define/public (interp_program p)
  2007. (match p
  2008. [(Program '() e) ((interp_exp '()) e)]))
  2009. ))
  2010. \end{lstlisting}
  2011. \fi}
  2012. {\if\edition\pythonEd
  2013. \begin{lstlisting}
  2014. class InterpLint:
  2015. def interp_exp(self, e, env):
  2016. match e:
  2017. case BinOp(left, Add(), right):
  2018. return self.interp_exp(left, env) + self.interp_exp(right, env)
  2019. case BinOp(left, Sub(), right):
  2020. return self.interp_exp(left, env) - self.interp_exp(right, env)
  2021. case UnaryOp(USub(), v):
  2022. return - self.interp_exp(v, env)
  2023. case Constant(value):
  2024. return value
  2025. case Call(Name('input_int'), []):
  2026. return int(input())
  2027. def interp_stmts(self, ss, env):
  2028. if len(ss) == 0:
  2029. return
  2030. match ss[0]:
  2031. case Expr(Call(Name('print'), [arg])):
  2032. print(self.interp_exp(arg, env), end='')
  2033. return self.interp_stmts(ss[1:], env)
  2034. case Expr(value):
  2035. self.interp_exp(value, env)
  2036. return self.interp_stmts(ss[1:], env)
  2037. def interp(self, p):
  2038. match p:
  2039. case Module(body):
  2040. self.interp_stmts(body, {})
  2041. def interp_Lint(p):
  2042. return InterpLint().interp(p)
  2043. \end{lstlisting}
  2044. \fi}
  2045. \end{tcolorbox}
  2046. \caption{Interpreter for \LangInt{} as a class.}
  2047. \label{fig:interp-Lint-class}
  2048. \end{figure}
  2049. \begin{figure}[tp]
  2050. \begin{tcolorbox}[colback=white]
  2051. {\if\edition\racketEd
  2052. \begin{lstlisting}
  2053. (define interp-Lvar-class
  2054. (class interp-Lint-class
  2055. (super-new)
  2056. (define/override ((interp_exp env) e)
  2057. (match e
  2058. [(Var x) (dict-ref env x)]
  2059. [(Let x e body)
  2060. (define new-env (dict-set env x ((interp_exp env) e)))
  2061. ((interp_exp new-env) body)]
  2062. [else ((super interp-exp env) e)]))
  2063. ))
  2064. (define (interp_Lvar p)
  2065. (send (new interp-Lvar-class) interp_program p))
  2066. \end{lstlisting}
  2067. \fi}
  2068. {\if\edition\pythonEd
  2069. \begin{lstlisting}
  2070. class InterpLvar(InterpLint):
  2071. def interp_exp(self, e, env):
  2072. match e:
  2073. case Name(id):
  2074. return env[id]
  2075. case _:
  2076. return super().interp_exp(e, env)
  2077. def interp_stmts(self, ss, env):
  2078. if len(ss) == 0:
  2079. return
  2080. match ss[0]:
  2081. case Assign([lhs], value):
  2082. env[lhs.id] = self.interp_exp(value, env)
  2083. return self.interp_stmts(ss[1:], env)
  2084. case _:
  2085. return super().interp_stmts(ss, env)
  2086. def interp_Lvar(p):
  2087. return InterpLvar().interp(p)
  2088. \end{lstlisting}
  2089. \fi}
  2090. \end{tcolorbox}
  2091. \caption{Interpreter for the \LangVar{} language.}
  2092. \label{fig:interp-Lvar}
  2093. \end{figure}
  2094. The goal for this chapter is to implement a compiler that translates
  2095. any program $P_1$ written in the \LangVar{} language into an x86 assembly
  2096. program $P_2$ such that $P_2$ exhibits the same behavior when run on a
  2097. computer as the $P_1$ program interpreted by \code{interp\_Lvar}.
  2098. That is, they output the same integer $n$. We depict this correctness
  2099. criteria in the following diagram.
  2100. \[
  2101. \begin{tikzpicture}[baseline=(current bounding box.center)]
  2102. \node (p1) at (0, 0) {$P_1$};
  2103. \node (p2) at (4, 0) {$P_2$};
  2104. \node (o) at (4, -2) {$n$};
  2105. \path[->] (p1) edge [above] node {\footnotesize compile} (p2);
  2106. \path[->] (p1) edge [left] node {\footnotesize\code{interp\_Lvar}} (o);
  2107. \path[->] (p2) edge [right] node {\footnotesize\code{interp\_x86int}} (o);
  2108. \end{tikzpicture}
  2109. \]
  2110. Next we introduce the \LangXInt{} subset of x86 that suffices for
  2111. compiling \LangVar{}.
  2112. \section{The \LangXInt{} Assembly Language}
  2113. \label{sec:x86}
  2114. \index{subject}{x86}
  2115. Figure~\ref{fig:x86-int-concrete} defines the concrete syntax for
  2116. \LangXInt{}. We use the AT\&T syntax expected by the GNU
  2117. assembler.
  2118. %
  2119. A program begins with a \code{main} label followed by a sequence of
  2120. instructions. The \key{globl} directive says that the \key{main}
  2121. procedure is externally visible, which is necessary so that the
  2122. operating system can call it.
  2123. %
  2124. An x86 program is stored in the computer's memory. For our purposes,
  2125. the computer's memory is a mapping of 64-bit addresses to 64-bit
  2126. values. The computer has a \emph{program counter} (PC)\index{subject}{program
  2127. counter}\index{subject}{PC} stored in the \code{rip} register that points to
  2128. the address of the next instruction to be executed. For most
  2129. instructions, the program counter is incremented after the instruction
  2130. is executed, so it points to the next instruction in memory. Most x86
  2131. instructions take two operands, where each operand is either an
  2132. integer constant (called an \emph{immediate value}\index{subject}{immediate
  2133. value}), a \emph{register}\index{subject}{register}, or a memory location.
  2134. \newcommand{\allregisters}{\key{rsp} \MID \key{rbp} \MID \key{rax} \MID \key{rbx} \MID \key{rcx}
  2135. \MID \key{rdx} \MID \key{rsi} \MID \key{rdi} \MID \\
  2136. && \key{r8} \MID \key{r9} \MID \key{r10}
  2137. \MID \key{r11} \MID \key{r12} \MID \key{r13}
  2138. \MID \key{r14} \MID \key{r15}}
  2139. \newcommand{\GrammarXInt}{
  2140. \begin{array}{rcl}
  2141. \Reg &::=& \allregisters{} \\
  2142. \Arg &::=& \key{\$}\Int \MID \key{\%}\Reg \MID \Int\key{(}\key{\%}\Reg\key{)}\\
  2143. \Instr &::=& \key{addq} \; \Arg\key{,} \Arg \MID
  2144. \key{subq} \; \Arg\key{,} \Arg \MID
  2145. \key{negq} \; \Arg \MID \key{movq} \; \Arg\key{,} \Arg \MID \\
  2146. && \key{pushq}\;\Arg \MID \key{popq}\;\Arg \MID
  2147. \key{callq} \; \mathit{label} \MID
  2148. \key{retq} \MID
  2149. \key{jmp}\,\itm{label} \MID \\
  2150. && \itm{label}\key{:}\; \Instr
  2151. \end{array}
  2152. }
  2153. \begin{figure}[tp]
  2154. \begin{tcolorbox}[colback=white]
  2155. {\if\edition\racketEd
  2156. \[
  2157. \begin{array}{l}
  2158. \GrammarXInt \\
  2159. \begin{array}{lcl}
  2160. \LangXIntM{} &::= & \key{.globl main}\\
  2161. & & \key{main:} \; \Instr\ldots
  2162. \end{array}
  2163. \end{array}
  2164. \]
  2165. \fi}
  2166. {\if\edition\pythonEd
  2167. \[
  2168. \begin{array}{lcl}
  2169. \Reg &::=& \allregisters{} \\
  2170. \Arg &::=& \key{\$}\Int \MID \key{\%}\Reg \MID \Int\key{(}\key{\%}\Reg\key{)}\\
  2171. \Instr &::=& \key{addq} \; \Arg\key{,} \Arg \MID
  2172. \key{subq} \; \Arg\key{,} \Arg \MID
  2173. \key{negq} \; \Arg \MID \key{movq} \; \Arg\key{,} \Arg \MID \\
  2174. && \key{callq} \; \mathit{label} \MID
  2175. \key{pushq}\;\Arg \MID \key{popq}\;\Arg \MID \key{retq} \\
  2176. \LangXIntM{} &::= & \key{.globl main}\\
  2177. & & \key{main:} \; \Instr^{*}
  2178. \end{array}
  2179. \]
  2180. \fi}
  2181. \end{tcolorbox}
  2182. \caption{The syntax of the \LangXInt{} assembly language (AT\&T syntax).}
  2183. \label{fig:x86-int-concrete}
  2184. \end{figure}
  2185. A register is a special kind of variable that holds a 64-bit
  2186. value. There are 16 general-purpose registers in the computer and
  2187. their names are given in Figure~\ref{fig:x86-int-concrete}. A register
  2188. is written with a \key{\%} followed by the register name, such as
  2189. \key{\%rax}.
  2190. An immediate value is written using the notation \key{\$}$n$ where $n$
  2191. is an integer.
  2192. %
  2193. %
  2194. An access to memory is specified using the syntax $n(\key{\%}r)$,
  2195. which obtains the address stored in register $r$ and then adds $n$
  2196. bytes to the address. The resulting address is used to load or store
  2197. to memory depending on whether it occurs as a source or destination
  2198. argument of an instruction.
  2199. An arithmetic instruction such as $\key{addq}\,s\key{,}\,d$ reads from the
  2200. source $s$ and destination $d$, applies the arithmetic operation, then
  2201. writes the result back to the destination $d$. \index{subject}{instruction}
  2202. %
  2203. The move instruction $\key{movq}\,s\key{,}\,d$ reads from $s$ and
  2204. stores the result in $d$.
  2205. %
  2206. The $\key{callq}\,\itm{label}$ instruction jumps to the procedure
  2207. specified by the label and $\key{retq}$ returns from a procedure to
  2208. its caller.
  2209. %
  2210. We discuss procedure calls in more detail later in this chapter and in
  2211. Chapter~\ref{ch:Lfun}.
  2212. %
  2213. The last letter \key{q} indicates that these instructions operate on
  2214. quadwords, i.e., 64-bit values.
  2215. %
  2216. \racket{The instruction $\key{jmp}\,\itm{label}$ updates the program
  2217. counter to the address of the instruction after the specified
  2218. label.}
  2219. Appendix~\ref{sec:x86-quick-reference} contains a quick-reference for
  2220. all of the x86 instructions used in this book.
  2221. Figure~\ref{fig:p0-x86} depicts an x86 program that computes
  2222. \racket{\code{(+ 10 32)}}\python{10 + 32}. The instruction
  2223. \lstinline{movq $10, %rax}
  2224. puts $10$ into register \key{rax} and then \lstinline{addq $32, %rax}
  2225. adds $32$ to the $10$ in \key{rax} and
  2226. puts the result, $42$, back into \key{rax}.
  2227. %
  2228. The last instruction \key{retq} finishes the \key{main} function by
  2229. returning the integer in \key{rax} to the operating system. The
  2230. operating system interprets this integer as the program's exit
  2231. code. By convention, an exit code of 0 indicates that a program
  2232. completed successfully, and all other exit codes indicate various
  2233. errors.
  2234. %
  2235. \racket{Nevertheless, in this book we return the result of the program
  2236. as the exit code.}
  2237. \begin{figure}[tbp]
  2238. \begin{minipage}{0.45\textwidth}
  2239. \begin{tcolorbox}[colback=white]
  2240. \begin{lstlisting}
  2241. .globl main
  2242. main:
  2243. movq $10, %rax
  2244. addq $32, %rax
  2245. retq
  2246. \end{lstlisting}
  2247. \end{tcolorbox}
  2248. \end{minipage}
  2249. \caption{An x86 program that computes
  2250. \racket{\code{(+ 10 32)}}\python{10 + 32}.}
  2251. \label{fig:p0-x86}
  2252. \end{figure}
  2253. We exhibit the use of memory for storing intermediate results in the
  2254. next example. Figure~\ref{fig:p1-x86} lists an x86 program that
  2255. computes \racket{\code{(+ 52 (- 10))}}\python{52 + -10}. This program
  2256. uses a region of memory called the \emph{procedure call stack} (or
  2257. \emph{stack} for
  2258. short). \index{subject}{stack}\index{subject}{procedure call stack}
  2259. The stack consists of a separate \emph{frame}\index{subject}{frame}
  2260. for each procedure call. The memory layout for an individual frame is
  2261. shown in Figure~\ref{fig:frame}. The register \key{rsp} is called the
  2262. \emph{stack pointer}\index{subject}{stack pointer} and it contains the
  2263. address of the item at the top of the stack. In general, we use the
  2264. term \emph{pointer}\index{subject}{pointer} for something that
  2265. contains an address. The stack grows downward in memory, so we
  2266. increase the size of the stack by subtracting from the stack pointer.
  2267. In the context of a procedure call, the \emph{return
  2268. address}\index{subject}{return address} is the instruction after the
  2269. call instruction on the caller side. The function call instruction,
  2270. \code{callq}, pushes the return address onto the stack prior to
  2271. jumping to the procedure. The register \key{rbp} is the \emph{base
  2272. pointer}\index{subject}{base pointer} and is used to access
  2273. variables that are stored in the frame of the current procedure call.
  2274. The base pointer of the caller is stored after the return address. In
  2275. Figure~\ref{fig:frame} we number the variables from $1$ to
  2276. $n$. Variable $1$ is stored at address $-8\key{(\%rbp)}$, variable $2$
  2277. at $-16\key{(\%rbp)}$, etc.
  2278. \begin{figure}[tbp]
  2279. \begin{minipage}{0.66\textwidth}
  2280. \begin{tcolorbox}[colback=white]
  2281. {\if\edition\racketEd
  2282. \begin{lstlisting}
  2283. start:
  2284. movq $10, -8(%rbp)
  2285. negq -8(%rbp)
  2286. movq -8(%rbp), %rax
  2287. addq $52, %rax
  2288. jmp conclusion
  2289. .globl main
  2290. main:
  2291. pushq %rbp
  2292. movq %rsp, %rbp
  2293. subq $16, %rsp
  2294. jmp start
  2295. conclusion:
  2296. addq $16, %rsp
  2297. popq %rbp
  2298. retq
  2299. \end{lstlisting}
  2300. \fi}
  2301. {\if\edition\pythonEd
  2302. \begin{lstlisting}
  2303. .globl main
  2304. main:
  2305. pushq %rbp
  2306. movq %rsp, %rbp
  2307. subq $16, %rsp
  2308. movq $10, -8(%rbp)
  2309. negq -8(%rbp)
  2310. movq -8(%rbp), %rax
  2311. addq $52, %rax
  2312. addq $16, %rsp
  2313. popq %rbp
  2314. retq
  2315. \end{lstlisting}
  2316. \fi}
  2317. \end{tcolorbox}
  2318. \end{minipage}
  2319. \caption{An x86 program that computes
  2320. \racket{\code{(+ 52 (- 10))}}\python{52 + -10}.}
  2321. \label{fig:p1-x86}
  2322. \end{figure}
  2323. \begin{figure}[tbp]
  2324. \centering
  2325. \begin{tabular}{|r|l|} \hline
  2326. Position & Contents \\ \hline
  2327. 8(\key{\%rbp}) & return address \\
  2328. 0(\key{\%rbp}) & old \key{rbp} \\
  2329. -8(\key{\%rbp}) & variable $1$ \\
  2330. -16(\key{\%rbp}) & variable $2$ \\
  2331. \ldots & \ldots \\
  2332. 0(\key{\%rsp}) & variable $n$\\ \hline
  2333. \end{tabular}
  2334. \caption{Memory layout of a frame.}
  2335. \label{fig:frame}
  2336. \end{figure}
  2337. Getting back to the program in Figure~\ref{fig:p1-x86}, consider how
  2338. control is transferred from the operating system to the \code{main}
  2339. function. The operating system issues a \code{callq main} instruction
  2340. which pushes its return address on the stack and then jumps to
  2341. \code{main}. In x86-64, the stack pointer \code{rsp} must be divisible
  2342. by 16 bytes prior to the execution of any \code{callq} instruction, so
  2343. when control arrives at \code{main}, the \code{rsp} is 8 bytes out of
  2344. alignment (because the \code{callq} pushed the return address). The
  2345. first three instructions are the typical
  2346. \emph{prelude}\index{subject}{prelude} for a procedure. The
  2347. instruction \code{pushq \%rbp} first subtracts $8$ from the stack
  2348. pointer \code{rsp} and then saves the base pointer of the caller at
  2349. address \code{rsp} on the stack. The next instruction \code{movq
  2350. \%rsp, \%rbp} sets the base pointer to the current stack pointer,
  2351. which is pointing at the location of the old base pointer. The
  2352. instruction \code{subq \$16, \%rsp} moves the stack pointer down to
  2353. make enough room for storing variables. This program needs one
  2354. variable ($8$ bytes) but we round up to 16 bytes so that \code{rsp} is
  2355. 16-byte aligned and we're ready to make calls to other functions.
  2356. \racket{The last instruction of the prelude is \code{jmp start}, which
  2357. transfers control to the instructions that were generated from the
  2358. expression \racket{\code{(+ 52 (- 10))}}\python{52 + -10}.}
  2359. \racket{The first instruction under the \code{start} label is}
  2360. %
  2361. \python{The first instruction after the prelude is}
  2362. %
  2363. \code{movq \$10, -8(\%rbp)}, which stores $10$ in variable $1$.
  2364. %
  2365. The instruction \code{negq -8(\%rbp)} changes the contents of variable
  2366. $1$ to $-10$.
  2367. %
  2368. The next instruction moves the $-10$ from variable $1$ into the
  2369. \code{rax} register. Finally, \code{addq \$52, \%rax} adds $52$ to
  2370. the value in \code{rax}, updating its contents to $42$.
  2371. \racket{The three instructions under the label \code{conclusion} are the
  2372. typical \emph{conclusion}\index{subject}{conclusion} of a procedure.}
  2373. %
  2374. \python{The \emph{conclusion}\index{subject}{conclusion} of the
  2375. \code{main} function consists of the last three instructions.}
  2376. %
  2377. The first two restore the \code{rsp} and \code{rbp} registers to the
  2378. state they were in at the beginning of the procedure. In particular,
  2379. \key{addq \$16, \%rsp} moves the stack pointer back to point at the
  2380. old base pointer. Then \key{popq \%rbp} restores the old base pointer
  2381. to \key{rbp} and adds $8$ to the stack pointer. The last instruction,
  2382. \key{retq}, jumps back to the procedure that called this one and adds
  2383. $8$ to the stack pointer.
  2384. Our compiler needs a convenient representation for manipulating x86
  2385. programs, so we define an abstract syntax for x86 in
  2386. Figure~\ref{fig:x86-int-ast}. We refer to this language as
  2387. \LangXInt{}.
  2388. %
  2389. {\if\edition\pythonEd%
  2390. The main difference compared to the concrete syntax of \LangXInt{}
  2391. (Figure~\ref{fig:x86-int-concrete}) is that labels, instruction
  2392. names, and register names are explicitly represented by strings.
  2393. \fi} %
  2394. {\if\edition\racketEd
  2395. The main difference compared to the concrete syntax of \LangXInt{}
  2396. (Figure~\ref{fig:x86-int-concrete}) is that labels are not allowed in
  2397. front of every instruction. Instead instructions are grouped into
  2398. \emph{basic blocks}\index{subject}{basic block} with a
  2399. label associated with every basic block, which is why the \key{X86Program}
  2400. struct includes an alist mapping labels to basic blocks. The reason for this
  2401. organization becomes apparent in Chapter~\ref{ch:Lif} when we
  2402. introduce conditional branching. The \code{Block} structure includes
  2403. an $\itm{info}$ field that is not needed for this chapter but becomes
  2404. useful in Chapter~\ref{ch:register-allocation-Lvar}. For now, the
  2405. $\itm{info}$ field should contain an empty list.
  2406. \fi}
  2407. %
  2408. Regarding the abstract syntax for \code{callq}, the \code{Callq} AST
  2409. node includes an integer for representing the arity of the function,
  2410. i.e., the number of arguments, which is helpful to know during
  2411. register allocation (Chapter~\ref{ch:register-allocation-Lvar}).
  2412. \newcommand{\allastregisters}{\skey{rsp} \MID \skey{rbp} \MID \skey{rax} \MID \skey{rbx} \MID \skey{rcx}
  2413. \MID \skey{rdx} \MID \skey{rsi} \MID \skey{rdi} \MID \\
  2414. && \skey{r8} \MID \skey{r9} \MID \skey{r10}
  2415. \MID \skey{r11} \MID \skey{r12} \MID \skey{r13}
  2416. \MID \skey{r14} \MID \skey{r15}}
  2417. \newcommand{\ASTXIntRacket}{
  2418. \begin{array}{lcl}
  2419. \Reg &::=& \allregisters{} \\
  2420. \Arg &::=& \IMM{\Int} \MID \REG{\Reg}
  2421. \MID \DEREF{\Reg}{\Int} \\
  2422. \Instr &::=& \BININSTR{\code{addq}}{\Arg}{\Arg}
  2423. \MID \BININSTR{\code{subq}}{\Arg}{\Arg}
  2424. \MID \UNIINSTR{\code{negq}}{\Arg}\\
  2425. &\MID& \BININSTR{\code{movq}}{\Arg}{\Arg}
  2426. \MID \PUSHQ{\Arg}
  2427. \MID \POPQ{\Arg} \\
  2428. &\MID& \CALLQ{\itm{label}}{\itm{int}}
  2429. \MID \RETQ{}
  2430. \MID \JMP{\itm{label}} \\
  2431. \Block &::= & \BLOCK{\itm{info}}{\LP\Instr\ldots\RP}
  2432. \end{array}
  2433. }
  2434. \begin{figure}[tp]
  2435. \begin{tcolorbox}[colback=white]
  2436. \small
  2437. {\if\edition\racketEd
  2438. \[\arraycolsep=3pt
  2439. \begin{array}{l}
  2440. \ASTXIntRacket \\
  2441. \begin{array}{lcl}
  2442. \LangXIntM{} &::= & \XPROGRAM{\itm{info}}{\LP\LP\itm{label} \,\key{.}\, \Block \RP\ldots\RP}
  2443. \end{array}
  2444. \end{array}
  2445. \]
  2446. \fi}
  2447. {\if\edition\pythonEd
  2448. \[
  2449. \begin{array}{lcl}
  2450. \Reg &::=& \allastregisters{} \\
  2451. \Arg &::=& \IMM{\Int} \MID \REG{\Reg}
  2452. \MID \DEREF{\Reg}{\Int} \\
  2453. \Instr &::=& \BININSTR{\scode{addq}}{\Arg}{\Arg}
  2454. \MID \BININSTR{\scode{subq}}{\Arg}{\Arg} \\
  2455. &\MID& \BININSTR{\scode{movq}}{\Arg}{\Arg}
  2456. \MID \UNIINSTR{\scode{negq}}{\Arg}\\
  2457. &\MID& \PUSHQ{\Arg} \MID \POPQ{\Arg} \\
  2458. &\MID& \CALLQ{\itm{label}}{\itm{int}} \MID \RETQ{} \MID \JMP{\itm{label}} \\
  2459. \LangXIntM{} &::= & \XPROGRAM{}{\Instr^{*}}{}
  2460. \end{array}
  2461. \]
  2462. \fi}
  2463. \end{tcolorbox}
  2464. \caption{The abstract syntax of \LangXInt{} assembly.}
  2465. \label{fig:x86-int-ast}
  2466. \end{figure}
  2467. \section{Planning the trip to x86}
  2468. \label{sec:plan-s0-x86}
  2469. To compile one language to another it helps to focus on the
  2470. differences between the two languages because the compiler will need
  2471. to bridge those differences. What are the differences between \LangVar{}
  2472. and x86 assembly? Here are some of the most important ones:
  2473. \begin{enumerate}
  2474. \item x86 arithmetic instructions typically have two arguments and
  2475. update the second argument in place. In contrast, \LangVar{}
  2476. arithmetic operations take two arguments and produce a new value.
  2477. An x86 instruction may have at most one memory-accessing argument.
  2478. Furthermore, some x86 instructions place special restrictions on
  2479. their arguments.
  2480. \item An argument of an \LangVar{} operator can be a deeply-nested
  2481. expression, whereas x86 instructions restrict their arguments to be
  2482. integer constants, registers, and memory locations.
  2483. {\if\edition\racketEd
  2484. \item The order of execution in x86 is explicit in the syntax: a
  2485. sequence of instructions and jumps to labeled positions, whereas in
  2486. \LangVar{} the order of evaluation is a left-to-right depth-first
  2487. traversal of the abstract syntax tree.
  2488. \fi}
  2489. \item A program in \LangVar{} can have any number of variables
  2490. whereas x86 has 16 registers and the procedure call stack.
  2491. {\if\edition\racketEd
  2492. \item Variables in \LangVar{} can shadow other variables with the
  2493. same name. In x86, registers have unique names and memory locations
  2494. have unique addresses.
  2495. \fi}
  2496. \end{enumerate}
  2497. We ease the challenge of compiling from \LangVar{} to x86 by breaking
  2498. down the problem into several steps, dealing with the above
  2499. differences one at a time. Each of these steps is called a \emph{pass}
  2500. of the compiler.\index{subject}{pass}\index{subject}{compiler pass}
  2501. %
  2502. This terminology comes from the way each step passes over, or
  2503. traverses, the AST of the program.
  2504. %
  2505. Furthermore, we follow the nanopass approach, which means we strive
  2506. for each pass to accomplish one clear objective (not two or three at
  2507. the same time).
  2508. %
  2509. We begin by sketching how we might implement each pass, and give them
  2510. names. We then figure out an ordering of the passes and the
  2511. input/output language for each pass. The very first pass has
  2512. \LangVar{} as its input language and the last pass has \LangXInt{} as
  2513. its output language. In between we can choose whichever language is
  2514. most convenient for expressing the output of each pass, whether that
  2515. be \LangVar{}, \LangXInt{}, or new \emph{intermediate languages} of
  2516. our own design. Finally, to implement each pass we write one
  2517. recursive function per non-terminal in the grammar of the input
  2518. language of the pass. \index{subject}{intermediate language}
  2519. Our compiler for \LangVar{} consists of the following passes.
  2520. %
  2521. \begin{description}
  2522. {\if\edition\racketEd
  2523. \item[\key{uniquify}] deals with the shadowing of variables by
  2524. renaming every variable to a unique name.
  2525. \fi}
  2526. \item[\key{remove\_complex\_operands}] ensures that each subexpression
  2527. of a primitive operation or function call is a variable or integer,
  2528. that is, an \emph{atomic} expression. We refer to non-atomic
  2529. expressions as \emph{complex}. This pass introduces temporary
  2530. variables to hold the results of complex
  2531. subexpressions.\index{subject}{atomic
  2532. expression}\index{subject}{complex expression}%
  2533. {\if\edition\racketEd
  2534. \item[\key{explicate\_control}] makes the execution order of the
  2535. program explicit. It converts the abstract syntax tree
  2536. representation into a graph in which each node is a labeled sequence
  2537. of statements and the edges are \code{goto} statements.
  2538. \fi}
  2539. \item[\key{select\_instructions}] handles the difference between
  2540. \LangVar{} operations and x86 instructions. This pass converts each
  2541. \LangVar{} operation to a short sequence of instructions that
  2542. accomplishes the same task.
  2543. \item[\key{assign\_homes}] replaces variables with registers or stack
  2544. locations.
  2545. \end{description}
  2546. %
  2547. {\if\edition\racketEd
  2548. %
  2549. Our treatment of \code{remove\_complex\_operands} and
  2550. \code{explicate\_control} as separate passes is an example of the
  2551. nanopass approach\footnote{For analogous decompositions of the
  2552. translation into continuation passing style, see the work of
  2553. \citet{Lawall:1993} and \citet{Hatcliff:1994ea}.}. The traditional
  2554. approach is to combine them into a single step~\citep{Aho:2006wb}.
  2555. %
  2556. \fi}
  2557. The next question is: in what order should we apply these passes? This
  2558. question can be challenging because it is difficult to know ahead of
  2559. time which orderings will be better (easier to implement, produce more
  2560. efficient code, etc.) so oftentimes trial-and-error is
  2561. involved. Nevertheless, we can plan ahead and make educated choices
  2562. regarding the ordering.
  2563. \racket{What should be the ordering of \key{explicate\_control} with respect to
  2564. \key{uniquify}? The \key{uniquify} pass should come first because
  2565. \key{explicate\_control} changes all the \key{let}-bound variables to
  2566. become local variables whose scope is the entire program, which would
  2567. confuse variables with the same name.}
  2568. %
  2569. \racket{We place \key{remove\_complex\_operands} before \key{explicate\_control}
  2570. because the later removes the \key{let} form, but it is convenient to
  2571. use \key{let} in the output of \key{remove\_complex\_operands}.}
  2572. %
  2573. \racket{The ordering of \key{uniquify} with respect to
  2574. \key{remove\_complex\_operands} does not matter so we arbitrarily choose
  2575. \key{uniquify} to come first.}
  2576. The \key{select\_instructions} and \key{assign\_homes} passes are
  2577. intertwined.
  2578. %
  2579. In Chapter~\ref{ch:Lfun} we learn that, in x86, registers are used for
  2580. passing arguments to functions and it is preferable to assign
  2581. parameters to their corresponding registers. This suggests that it
  2582. would be better to start with the \key{select\_instructions} pass,
  2583. which generates the instructions for argument passing, before
  2584. performing register allocation.
  2585. %
  2586. On the other hand, by selecting instructions first we may run into a
  2587. dead end in \key{assign\_homes}. Recall that only one argument of an
  2588. x86 instruction may be a memory access but \key{assign\_homes} might
  2589. be forced to assign both arguments to memory locations.
  2590. %
  2591. A sophisticated approach is to repeat the two passes until a solution
  2592. is found. However, to reduce implementation complexity we recommend
  2593. placing \key{select\_instructions} first, followed by the
  2594. \key{assign\_homes}, then a third pass named \key{patch\_instructions}
  2595. that uses a reserved register to fix outstanding problems.
  2596. \begin{figure}[tbp]
  2597. \begin{tcolorbox}[colback=white]
  2598. {\if\edition\racketEd
  2599. \begin{tikzpicture}[baseline=(current bounding box.center),scale=0.90]
  2600. \node (Lvar) at (0,2) {\large \LangVar{}};
  2601. \node (Lvar-2) at (3,2) {\large \LangVar{}};
  2602. \node (Lvar-3) at (6,2) {\large \LangVarANF{}};
  2603. %\node (Cvar-1) at (6,0) {\large \LangCVar{}};
  2604. \node (Cvar-2) at (3,0) {\large \LangCVar{}};
  2605. \node (x86-2) at (3,-2) {\large \LangXVar{}};
  2606. \node (x86-3) at (6,-2) {\large \LangXVar{}};
  2607. \node (x86-4) at (9,-2) {\large \LangXInt{}};
  2608. \node (x86-5) at (12,-2) {\large \LangXInt{}};
  2609. \path[->,bend left=15] (Lvar) edge [above] node {\ttfamily\footnotesize uniquify} (Lvar-2);
  2610. \path[->,bend left=15] (Lvar-2) edge [above] node {\ttfamily\footnotesize remove\_complex.} (Lvar-3);
  2611. \path[->,bend left=15] (Lvar-3) edge [right] node {\ttfamily\footnotesize explicate\_control} (Cvar-2);
  2612. \path[->,bend right=15] (Cvar-2) edge [left] node {\ttfamily\footnotesize select\_instr.} (x86-2);
  2613. \path[->,bend left=15] (x86-2) edge [above] node {\ttfamily\footnotesize assign\_homes} (x86-3);
  2614. \path[->,bend left=15] (x86-3) edge [above] node {\ttfamily\footnotesize patch\_instr.} (x86-4);
  2615. \path[->,bend left=15] (x86-4) edge [above] node {\ttfamily\footnotesize prelude\_and\_concl.} (x86-5);
  2616. \end{tikzpicture}
  2617. \fi}
  2618. {\if\edition\pythonEd
  2619. \begin{tikzpicture}[baseline=(current bounding box.center),scale=0.90]
  2620. \node (Lvar) at (0,2) {\large \LangVar{}};
  2621. \node (Lvar-2) at (3,2) {\large \LangVarANF{}};
  2622. \node (x86-1) at (3,0) {\large \LangXVar{}};
  2623. \node (x86-2) at (6,0) {\large \LangXVar{}};
  2624. \node (x86-3) at (9,0) {\large \LangXInt{}};
  2625. \node (x86-4) at (12,0) {\large \LangXInt{}};
  2626. \path[->,bend left=15] (Lvar) edge [above] node {\ttfamily\footnotesize remove\_complex.} (Lvar-2);
  2627. \path[->,bend right=15] (Lvar-2) edge [left] node {\ttfamily\footnotesize select\_instr.} (x86-1);
  2628. \path[->,bend right=15] (x86-1) edge [below] node {\ttfamily\footnotesize assign\_homes} (x86-2);
  2629. \path[->,bend left=15] (x86-2) edge [above] node {\ttfamily\footnotesize patch\_instr.} (x86-3);
  2630. \path[->,bend right=15] (x86-3) edge [below] node {\ttfamily\footnotesize prelude\_and\_concl.} (x86-4);
  2631. \end{tikzpicture}
  2632. \fi}
  2633. \end{tcolorbox}
  2634. \caption{Diagram of the passes for compiling \LangVar{}. }
  2635. \label{fig:Lvar-passes}
  2636. \end{figure}
  2637. Figure~\ref{fig:Lvar-passes} presents the ordering of the compiler
  2638. passes and identifies the input and output language of each pass.
  2639. %
  2640. The output of the \key{select\_instructions} pass is the \LangXVar{}
  2641. language, which extends \LangXInt{} with an unbounded number of
  2642. program-scope variables and removes the restrictions regarding
  2643. instruction arguments.
  2644. %
  2645. The last pass, \key{prelude\_and\_conclusion}, places the program
  2646. instructions inside a \code{main} function with instructions for the
  2647. prelude and conclusion.
  2648. %
  2649. \racket{In the next section we discuss the \LangCVar{} intermediate
  2650. language that serves as the output of \code{explicate\_control}.}
  2651. %
  2652. The remainder of this chapter provides guidance on the implementation
  2653. of each of the compiler passes in Figure~\ref{fig:Lvar-passes}.
  2654. %% The output of \key{uniquify} and \key{remove-complex-operands}
  2655. %% are programs that are still in the \LangVar{} language, though the
  2656. %% output of the later is a subset of \LangVar{} named \LangVarANF{}
  2657. %% (Section~\ref{sec:remove-complex-opera-Lvar}).
  2658. %% %
  2659. %% The output of \code{explicate\_control} is in an intermediate language
  2660. %% \LangCVar{} designed to make the order of evaluation explicit in its
  2661. %% syntax, which we introduce in the next section. The
  2662. %% \key{select-instruction} pass translates from \LangCVar{} to
  2663. %% \LangXVar{}. The \key{assign-homes} and
  2664. %% \key{patch-instructions}
  2665. %% passes input and output variants of x86 assembly.
  2666. \newcommand{\CvarGrammarRacket}{
  2667. \begin{array}{lcl}
  2668. \Atm &::=& \Int \MID \Var \\
  2669. \Exp &::=& \Atm \MID \CREAD{} \MID \CNEG{\Atm} \MID \CADD{\Atm}{\Atm} \MID \CSUB{\Atm}{\Atm}\\
  2670. \Stmt &::=& \CASSIGN{\Var}{\Exp} \\
  2671. \Tail &::= & \CRETURN{\Exp} \MID \Stmt~\Tail
  2672. \end{array}
  2673. }
  2674. \newcommand{\CvarASTRacket}{
  2675. \begin{array}{lcl}
  2676. \Atm &::=& \INT{\Int} \MID \VAR{\Var} \\
  2677. \Exp &::=& \Atm \MID \READ{} \MID \NEG{\Atm} \\
  2678. &\MID& \ADD{\Atm}{\Atm} \MID \SUB{\Atm}{\Atm}\\
  2679. \Stmt &::=& \ASSIGN{\VAR{\Var}}{\Exp} \\
  2680. \Tail &::= & \RETURN{\Exp} \MID \SEQ{\Stmt}{\Tail}
  2681. \end{array}
  2682. }
  2683. {\if\edition\racketEd
  2684. \subsection{The \LangCVar{} Intermediate Language}
  2685. The output of \code{explicate\_control} is similar to the $C$
  2686. language~\citep{Kernighan:1988nx} in that it has separate syntactic
  2687. categories for expressions and statements, so we name it \LangCVar{}.
  2688. This style of intermediate language is also known as
  2689. \emph{three-address code}, to emphasize that the typical form of a
  2690. statement such as \CASSIGN{\key{x}}{\CADD{\key{y}}{\key{z}}} involves three
  2691. addresses: \code{x}, \code{y}, and \code{z}~\citep{Aho:2006wb}.
  2692. The concrete syntax for \LangCVar{} is defined in
  2693. Figure~\ref{fig:c0-concrete-syntax} and the abstract syntax for
  2694. \LangCVar{} is defined in Figure~\ref{fig:c0-syntax}.
  2695. %
  2696. The \LangCVar{} language supports the same operators as \LangVar{} but
  2697. the arguments of operators are restricted to atomic
  2698. expressions. Instead of \key{let} expressions, \LangCVar{} has
  2699. assignment statements which can be executed in sequence using the
  2700. \key{Seq} form. A sequence of statements always ends with
  2701. \key{Return}, a guarantee that is baked into the grammar rules for
  2702. \itm{tail}. The naming of this non-terminal comes from the term
  2703. \emph{tail position}\index{subject}{tail position}, which refers to an
  2704. expression that is the last one to execute within a function or
  2705. program.
  2706. A \LangCVar{} program consists of an alist mapping labels to
  2707. tails. This is more general than necessary for the present chapter, as
  2708. we do not yet introduce \key{goto} for jumping to labels, but it saves
  2709. us from having to change the syntax in Chapter~\ref{ch:Lif}. For now
  2710. there will be just one label, \key{start}, and the whole program is
  2711. its tail.
  2712. %
  2713. The $\itm{info}$ field of the \key{CProgram} form, after the
  2714. \code{explicate\_control} pass, contains a mapping from the symbol
  2715. \key{locals} to a list of variables, that is, a list of all the
  2716. variables used in the program. At the start of the program, these
  2717. variables are uninitialized; they become initialized on their first
  2718. assignment.
  2719. \begin{figure}[tbp]
  2720. \begin{tcolorbox}[colback=white]
  2721. \[
  2722. \begin{array}{l}
  2723. \CvarGrammarRacket \\
  2724. \begin{array}{lcl}
  2725. \LangCVarM{} & ::= & (\itm{label}\key{:}~ \Tail)\ldots
  2726. \end{array}
  2727. \end{array}
  2728. \]
  2729. \end{tcolorbox}
  2730. \caption{The concrete syntax of the \LangCVar{} intermediate language.}
  2731. \label{fig:c0-concrete-syntax}
  2732. \end{figure}
  2733. \begin{figure}[tbp]
  2734. \begin{tcolorbox}[colback=white]
  2735. \[
  2736. \begin{array}{l}
  2737. \CvarASTRacket \\
  2738. \begin{array}{lcl}
  2739. \LangCVarM{} & ::= & \CPROGRAM{\itm{info}}{\LP\LP\itm{label}\,\key{.}\,\Tail\RP\ldots\RP}
  2740. \end{array}
  2741. \end{array}
  2742. \]
  2743. \end{tcolorbox}
  2744. \caption{The abstract syntax of the \LangCVar{} intermediate language.}
  2745. \label{fig:c0-syntax}
  2746. \end{figure}
  2747. The definitional interpreter for \LangCVar{} is in the support code,
  2748. in the file \code{interp-Cvar.rkt}.
  2749. \fi}
  2750. {\if\edition\racketEd
  2751. \section{Uniquify Variables}
  2752. \label{sec:uniquify-Lvar}
  2753. The \code{uniquify} pass compiles \LangVar{} programs into \LangVar{}
  2754. programs in which every \key{let} binds a unique variable name. For
  2755. example, the \code{uniquify} pass should translate the program on the
  2756. left into the program on the right.
  2757. \begin{transformation}
  2758. \begin{lstlisting}
  2759. (let ([x 32])
  2760. (+ (let ([x 10]) x) x))
  2761. \end{lstlisting}
  2762. \compilesto
  2763. \begin{lstlisting}
  2764. (let ([x.1 32])
  2765. (+ (let ([x.2 10]) x.2) x.1))
  2766. \end{lstlisting}
  2767. \end{transformation}
  2768. The following is another example translation, this time of a program
  2769. with a \key{let} nested inside the initializing expression of another
  2770. \key{let}.
  2771. \begin{transformation}
  2772. \begin{lstlisting}
  2773. (let ([x (let ([x 4])
  2774. (+ x 1))])
  2775. (+ x 2))
  2776. \end{lstlisting}
  2777. \compilesto
  2778. \begin{lstlisting}
  2779. (let ([x.2 (let ([x.1 4])
  2780. (+ x.1 1))])
  2781. (+ x.2 2))
  2782. \end{lstlisting}
  2783. \end{transformation}
  2784. We recommend implementing \code{uniquify} by creating a structurally
  2785. recursive function named \code{uniquify\_exp} that mostly just copies
  2786. an expression. However, when encountering a \key{let}, it should
  2787. generate a unique name for the variable and associate the old name
  2788. with the new name in an alist.\footnote{The Racket function
  2789. \code{gensym} is handy for generating unique variable names.} The
  2790. \code{uniquify\_exp} function needs to access this alist when it gets
  2791. to a variable reference, so we add a parameter to \code{uniquify\_exp}
  2792. for the alist.
  2793. The skeleton of the \code{uniquify\_exp} function is shown in
  2794. Figure~\ref{fig:uniquify-Lvar}.
  2795. %% The function is curried so that it is
  2796. %% convenient to partially apply it to an alist and then apply it to
  2797. %% different expressions, as in the last case for primitive operations in
  2798. %% Figure~\ref{fig:uniquify-Lvar}.
  2799. The
  2800. %
  2801. \href{https://docs.racket-lang.org/reference/for.html#%28form._%28%28lib._racket%2Fprivate%2Fbase..rkt%29._for%2Flist%29%29}{\key{for/list}}
  2802. %
  2803. form of Racket is useful for transforming the element of a list to
  2804. produce a new list.\index{subject}{for/list}
  2805. \begin{figure}[tbp]
  2806. \begin{tcolorbox}[colback=white]
  2807. \begin{lstlisting}
  2808. (define (uniquify_exp env)
  2809. (lambda (e)
  2810. (match e
  2811. [(Var x) ___]
  2812. [(Int n) (Int n)]
  2813. [(Let x e body) ___]
  2814. [(Prim op es)
  2815. (Prim op (for/list ([e es]) ((uniquify_exp env) e)))])))
  2816. (define (uniquify p)
  2817. (match p
  2818. [(Program '() e) (Program '() ((uniquify_exp '()) e))]))
  2819. \end{lstlisting}
  2820. \end{tcolorbox}
  2821. \caption{Skeleton for the \key{uniquify} pass.}
  2822. \label{fig:uniquify-Lvar}
  2823. \end{figure}
  2824. \begin{exercise}
  2825. \normalfont\normalsize % I don't like the italics for exercises. -Jeremy
  2826. Complete the \code{uniquify} pass by filling in the blanks in
  2827. Figure~\ref{fig:uniquify-Lvar}, that is, implement the cases for
  2828. variables and for the \key{let} form in the file \code{compiler.rkt}
  2829. in the support code.
  2830. \end{exercise}
  2831. \begin{exercise}
  2832. \normalfont\normalsize
  2833. \label{ex:Lvar}
  2834. Create five \LangVar{} programs that exercise the most interesting
  2835. parts of the \key{uniquify} pass, that is, the programs should include
  2836. \key{let} forms, variables, and variables that shadow each other.
  2837. The five programs should be placed in the subdirectory named
  2838. \key{tests} and the file names should start with \code{var\_test\_}
  2839. followed by a unique integer and end with the file extension
  2840. \key{.rkt}.
  2841. %
  2842. The \key{run-tests.rkt} script in the support code checks whether the
  2843. output programs produce the same result as the input programs. The
  2844. script uses the \key{interp-tests} function
  2845. (Appendix~\ref{appendix:utilities}) from \key{utilities.rkt} to test
  2846. your \key{uniquify} pass on the example programs. The \code{passes}
  2847. parameter of \key{interp-tests} is a list that should have one entry
  2848. for each pass in your compiler. For now, define \code{passes} to
  2849. contain just one entry for \code{uniquify} as shown below.
  2850. \begin{lstlisting}
  2851. (define passes
  2852. (list (list "uniquify" uniquify interp_Lvar type-check-Lvar)))
  2853. \end{lstlisting}
  2854. Run the \key{run-tests.rkt} script in the support code to check
  2855. whether the output programs produce the same result as the input
  2856. programs.
  2857. \end{exercise}
  2858. \fi}
  2859. \section{Remove Complex Operands}
  2860. \label{sec:remove-complex-opera-Lvar}
  2861. The \code{remove\_complex\_operands} pass compiles \LangVar{} programs
  2862. into a restricted form in which the arguments of operations are atomic
  2863. expressions. Put another way, this pass removes complex
  2864. operands\index{subject}{complex operand}, such as the expression
  2865. \racket{\code{(- 10)}}\python{\code{-10}}
  2866. in the program below. This is accomplished by introducing a new
  2867. temporary variable, assigning the complex operand to the new
  2868. variable, and then using the new variable in place of the complex
  2869. operand, as shown in the output of \code{remove\_complex\_operands} on the
  2870. right.
  2871. {\if\edition\racketEd
  2872. \begin{transformation}
  2873. % var_test_19.rkt
  2874. \begin{lstlisting}
  2875. (let ([x (+ 42 (- 10))])
  2876. (+ x 10))
  2877. \end{lstlisting}
  2878. \compilesto
  2879. \begin{lstlisting}
  2880. (let ([x (let ([tmp.1 (- 10)])
  2881. (+ 42 tmp.1))])
  2882. (+ x 10))
  2883. \end{lstlisting}
  2884. \end{transformation}
  2885. \fi}
  2886. {\if\edition\pythonEd
  2887. \begin{transformation}
  2888. \begin{lstlisting}
  2889. x = 42 + -10
  2890. print(x + 10)
  2891. \end{lstlisting}
  2892. \compilesto
  2893. \begin{lstlisting}
  2894. tmp_0 = -10
  2895. x = 42 + tmp_0
  2896. tmp_1 = x + 10
  2897. print(tmp_1)
  2898. \end{lstlisting}
  2899. \end{transformation}
  2900. \fi}
  2901. \newcommand{\LvarMonadASTRacket}{
  2902. \begin{array}{rcl}
  2903. \Atm &::=& \INT{\Int} \MID \VAR{\Var} \\
  2904. \Exp &::=& \Atm \MID \READ{} \\
  2905. &\MID& \NEG{\Atm} \MID \ADD{\Atm}{\Atm} \MID \SUB{\Atm}{\Atm} \\
  2906. &\MID& \LET{\Var}{\Exp}{\Exp} \\
  2907. \end{array}
  2908. }
  2909. \newcommand{\LvarMonadASTPython}{
  2910. \begin{array}{rcl}
  2911. \Atm &::=& \INT{\Int} \MID \VAR{\Var} \\
  2912. \Exp{} &::=& \Atm \MID \READ{} \\
  2913. &\MID& \UNIOP{\itm{unaryop}}{\Atm} \MID \BINOP{\Atm}{\itm{binaryop}}{\Atm} \\
  2914. \Stmt{} &::=& \PRINT{\Atm} \MID \EXPR{\Exp} \\
  2915. &\MID& \ASSIGN{\VAR{\Var}}{\Exp}
  2916. \end{array}
  2917. }
  2918. \begin{figure}[tp]
  2919. \centering
  2920. \begin{tcolorbox}[colback=white]
  2921. {\if\edition\racketEd
  2922. \[
  2923. \begin{array}{l}
  2924. \LvarMonadASTRacket \\
  2925. \begin{array}{rcl}
  2926. \LangVarANFM{} &::=& \PROGRAM{\code{'()}}{\Exp}
  2927. \end{array}
  2928. \end{array}
  2929. \]
  2930. \fi}
  2931. {\if\edition\pythonEd
  2932. \[
  2933. \begin{array}{l}
  2934. \LvarMonadASTPython \\
  2935. \begin{array}{rcl}
  2936. \LangVarANFM{} &::=& \PROGRAM{}{\Stmt^{*}}
  2937. \end{array}
  2938. \end{array}
  2939. \]
  2940. \fi}
  2941. \end{tcolorbox}
  2942. \caption{\LangVarANF{} is \LangVar{} with operands restricted to
  2943. atomic expressions.}
  2944. \label{fig:Lvar-anf-syntax}
  2945. \end{figure}
  2946. Figure~\ref{fig:Lvar-anf-syntax} presents the grammar for the output
  2947. of this pass, the language \LangVarANF{}. The only difference is that
  2948. operator arguments are restricted to be atomic expressions that are
  2949. defined by the \Atm{} non-terminal. In particular, integer constants
  2950. and variables are atomic.
  2951. The atomic expressions are pure (they do not cause or depend on
  2952. side-effects) whereas complex expressions may have side effects, such
  2953. as \READ{}. A language with this separation between pure versus
  2954. side-effecting expressions is said to be in monadic normal
  2955. form~\citep{Moggi:1991in,Danvy:2003fk} which explains the \textit{mon}
  2956. in the name \LangVarANF{}. An important invariant of the
  2957. \code{remove\_complex\_operands} pass is that the relative ordering
  2958. among complex expressions is not changed, but the relative ordering
  2959. between atomic expressions and complex expressions can change and
  2960. often does. The reason that these changes are behavior preserving is
  2961. that the atomic expressions are pure.
  2962. Another well-known form for intermediate languages is the
  2963. \emph{administrative normal form}
  2964. (ANF)~\citep{Danvy:1991fk,Flanagan:1993cg}.
  2965. \index{subject}{administrative normal form} \index{subject}{ANF}
  2966. %
  2967. The \LangVarANF{} language is not quite in ANF because we allow the
  2968. right-hand side of a \code{let} to be a complex expression.
  2969. {\if\edition\racketEd
  2970. We recommend implementing this pass with two mutually recursive
  2971. functions, \code{rco\_atom} and \code{rco\_exp}. The idea is to apply
  2972. \code{rco\_atom} to subexpressions that need to become atomic and to
  2973. apply \code{rco\_exp} to subexpressions that do not. Both functions
  2974. take an \LangVar{} expression as input. The \code{rco\_exp} function
  2975. returns an expression. The \code{rco\_atom} function returns two
  2976. things: an atomic expression and an alist mapping temporary variables to
  2977. complex subexpressions. You can return multiple things from a function
  2978. using Racket's \key{values} form and you can receive multiple things
  2979. from a function call using the \key{define-values} form.
  2980. \fi}
  2981. %
  2982. {\if\edition\pythonEd
  2983. %
  2984. We recommend implementing this pass with an auxiliary method named
  2985. \code{rco\_exp} with two parameters: an \LangVar{} expression and a
  2986. Boolean that specifies whether the expression needs to become atomic
  2987. or not. The \code{rco\_exp} method should return a pair consisting of
  2988. the new expression and a list of pairs, associating new temporary
  2989. variables with their initializing expressions.
  2990. %
  2991. \fi}
  2992. {\if\edition\racketEd
  2993. %
  2994. Returning to the example program with the expression \code{(+ 42 (-
  2995. 10))}, the subexpression \code{(- 10)} should be processed using the
  2996. \code{rco\_atom} function because it is an argument of the \code{+}
  2997. operator and therefore needs to become atomic. The output of
  2998. \code{rco\_atom} applied to \code{(- 10)} is as follows.
  2999. \begin{transformation}
  3000. \begin{lstlisting}
  3001. (- 10)
  3002. \end{lstlisting}
  3003. \compilesto
  3004. \begin{lstlisting}
  3005. tmp.1
  3006. ((tmp.1 . (- 10)))
  3007. \end{lstlisting}
  3008. \end{transformation}
  3009. \fi}
  3010. %
  3011. {\if\edition\pythonEd
  3012. %
  3013. Returning to the example program with the expression \code{42 + -10},
  3014. the subexpression \code{-10} should be processed using the
  3015. \code{rco\_exp} function with \code{True} as the second argument
  3016. because \code{-10} is an argument of the \code{+} operator and
  3017. therefore needs to become atomic. The output of \code{rco\_exp}
  3018. applied to \code{-10} is as follows.
  3019. \begin{transformation}
  3020. \begin{lstlisting}
  3021. -10
  3022. \end{lstlisting}
  3023. \compilesto
  3024. \begin{lstlisting}
  3025. tmp_1
  3026. [(tmp_1, -10)]
  3027. \end{lstlisting}
  3028. \end{transformation}
  3029. %
  3030. \fi}
  3031. Take special care of programs such as the following that
  3032. %
  3033. \racket{bind a variable to an atomic expression.}
  3034. %
  3035. \python{assign an atomic expression to a variable.}
  3036. %
  3037. You should leave such \racket{variable bindings}\python{assignments}
  3038. unchanged, as shown in the program on the right\\
  3039. %
  3040. {\if\edition\racketEd
  3041. \begin{transformation}
  3042. % var_test_20.rkt
  3043. \begin{lstlisting}
  3044. (let ([a 42])
  3045. (let ([b a])
  3046. b))
  3047. \end{lstlisting}
  3048. \compilesto
  3049. \begin{lstlisting}
  3050. (let ([a 42])
  3051. (let ([b a])
  3052. b))
  3053. \end{lstlisting}
  3054. \end{transformation}
  3055. \fi}
  3056. {\if\edition\pythonEd
  3057. \begin{transformation}
  3058. \begin{lstlisting}
  3059. a = 42
  3060. b = a
  3061. print(b)
  3062. \end{lstlisting}
  3063. \compilesto
  3064. \begin{lstlisting}
  3065. a = 42
  3066. b = a
  3067. print(b)
  3068. \end{lstlisting}
  3069. \end{transformation}
  3070. \fi}
  3071. %
  3072. \noindent A careless implementation might produce the following output with
  3073. unnecessary temporary variables.
  3074. \begin{center}
  3075. \begin{minipage}{0.4\textwidth}
  3076. {\if\edition\racketEd
  3077. \begin{lstlisting}
  3078. (let ([tmp.1 42])
  3079. (let ([a tmp.1])
  3080. (let ([tmp.2 a])
  3081. (let ([b tmp.2])
  3082. b))))
  3083. \end{lstlisting}
  3084. \fi}
  3085. {\if\edition\pythonEd
  3086. \begin{lstlisting}
  3087. tmp_1 = 42
  3088. a = tmp_1
  3089. tmp_2 = a
  3090. b = tmp_2
  3091. print(b)
  3092. \end{lstlisting}
  3093. \fi}
  3094. \end{minipage}
  3095. \end{center}
  3096. \begin{exercise}
  3097. \normalfont\normalsize
  3098. {\if\edition\racketEd
  3099. Implement the \code{remove\_complex\_operands} function in
  3100. \code{compiler.rkt}.
  3101. %
  3102. Create three new \LangVar{} programs that exercise the interesting
  3103. code in the \code{remove\_complex\_operands} pass. Follow the guidelines
  3104. regarding file names described in Exercise~\ref{ex:Lvar}.
  3105. %
  3106. In the \code{run-tests.rkt} script, add the following entry to the
  3107. list of \code{passes} and then run the script to test your compiler.
  3108. \begin{lstlisting}
  3109. (list "remove-complex" remove_complex_operands interp_Lvar type-check-Lvar)
  3110. \end{lstlisting}
  3111. While debugging your compiler, it is often useful to see the
  3112. intermediate programs that are output from each pass. To print the
  3113. intermediate programs, place \lstinline{(debug-level 1)} before the call to
  3114. \code{interp-tests} in \code{run-tests.rkt}.
  3115. \fi}
  3116. %
  3117. {\if\edition\pythonEd
  3118. Implement the \code{remove\_complex\_operands} pass in
  3119. \code{compiler.py}, creating auxiliary functions for each
  3120. non-terminal in the grammar, i.e., \code{rco\_exp}
  3121. and \code{rco\_stmt}. We recommend you use the function
  3122. \code{utils.generate\_name()} to generate fresh names from a stub string.
  3123. \fi}
  3124. \end{exercise}
  3125. {\if\edition\pythonEd
  3126. \begin{exercise}
  3127. \normalfont\normalsize
  3128. \label{ex:Lvar}
  3129. Create five \LangVar{} programs that exercise the most interesting
  3130. parts of the \code{remove\_complex\_operands} pass. The five programs
  3131. should be placed in the subdirectory named \key{tests} and the file
  3132. names should start with \code{var\_test\_} followed by a unique
  3133. integer and end with the file extension \key{.py}.
  3134. %% The \key{run-tests.rkt} script in the support code checks whether the
  3135. %% output programs produce the same result as the input programs. The
  3136. %% script uses the \key{interp-tests} function
  3137. %% (Appendix~\ref{appendix:utilities}) from \key{utilities.rkt} to test
  3138. %% your \key{uniquify} pass on the example programs. The \code{passes}
  3139. %% parameter of \key{interp-tests} is a list that should have one entry
  3140. %% for each pass in your compiler. For now, define \code{passes} to
  3141. %% contain just one entry for \code{uniquify} as shown below.
  3142. %% \begin{lstlisting}
  3143. %% (define passes
  3144. %% (list (list "uniquify" uniquify interp_Lvar type-check-Lvar)))
  3145. %% \end{lstlisting}
  3146. Run the \key{run-tests.py} script in the support code to check
  3147. whether the output programs produce the same result as the input
  3148. programs.
  3149. \end{exercise}
  3150. \fi}
  3151. {\if\edition\racketEd
  3152. \section{Explicate Control}
  3153. \label{sec:explicate-control-Lvar}
  3154. The \code{explicate\_control} pass compiles \LangVar{} programs into \LangCVar{}
  3155. programs that make the order of execution explicit in their
  3156. syntax. For now this amounts to flattening \key{let} constructs into a
  3157. sequence of assignment statements. For example, consider the following
  3158. \LangVar{} program.\\
  3159. % var_test_11.rkt
  3160. \begin{minipage}{0.96\textwidth}
  3161. \begin{lstlisting}
  3162. (let ([y (let ([x 20])
  3163. (+ x (let ([x 22]) x)))])
  3164. y)
  3165. \end{lstlisting}
  3166. \end{minipage}\\
  3167. %
  3168. The output of the previous pass is shown below, on the left, and the
  3169. output of \code{explicate\_control} is on the right. Recall that the
  3170. right-hand-side of a \key{let} executes before its body, so the order
  3171. of evaluation for this program is to assign \code{20} to \code{x.1},
  3172. \code{22} to \code{x.2}, and \code{(+ x.1 x.2)} to \code{y}, then
  3173. return \code{y}. Indeed, the output of \code{explicate\_control} makes
  3174. this ordering explicit.
  3175. \begin{transformation}
  3176. \begin{lstlisting}
  3177. (let ([y (let ([x.1 20])
  3178. (let ([x.2 22])
  3179. (+ x.1 x.2)))])
  3180. y)
  3181. \end{lstlisting}
  3182. \compilesto
  3183. \begin{lstlisting}[language=C]
  3184. start:
  3185. x.1 = 20;
  3186. x.2 = 22;
  3187. y = (+ x.1 x.2);
  3188. return y;
  3189. \end{lstlisting}
  3190. \end{transformation}
  3191. \begin{figure}[tbp]
  3192. \begin{tcolorbox}[colback=white]
  3193. \begin{lstlisting}
  3194. (define (explicate_tail e)
  3195. (match e
  3196. [(Var x) ___]
  3197. [(Int n) (Return (Int n))]
  3198. [(Let x rhs body) ___]
  3199. [(Prim op es) ___]
  3200. [else (error "explicate_tail unhandled case" e)]))
  3201. (define (explicate_assign e x cont)
  3202. (match e
  3203. [(Var x) ___]
  3204. [(Int n) (Seq (Assign (Var x) (Int n)) cont)]
  3205. [(Let y rhs body) ___]
  3206. [(Prim op es) ___]
  3207. [else (error "explicate_assign unhandled case" e)]))
  3208. (define (explicate_control p)
  3209. (match p
  3210. [(Program info body) ___]))
  3211. \end{lstlisting}
  3212. \end{tcolorbox}
  3213. \caption{Skeleton for the \code{explicate\_control} pass.}
  3214. \label{fig:explicate-control-Lvar}
  3215. \end{figure}
  3216. The organization of this pass depends on the notion of tail position
  3217. that we have alluded to earlier. Here is the definition.
  3218. \begin{definition}
  3219. The following rules define when an expression is in \textbf{\emph{tail
  3220. position}}\index{subject}{tail position} for the language \LangVar{}.
  3221. \begin{enumerate}
  3222. \item In $\PROGRAM{\code{()}}{e}$, expression $e$ is in tail position.
  3223. \item If $\LET{x}{e_1}{e_2}$ is in tail position, then so is $e_2$.
  3224. \end{enumerate}
  3225. \end{definition}
  3226. We recommend implementing \code{explicate\_control} using two
  3227. recursive functions, \code{explicate\_tail} and
  3228. \code{explicate\_assign}, as suggested in the skeleton code in
  3229. Figure~\ref{fig:explicate-control-Lvar}. The \code{explicate\_tail}
  3230. function should be applied to expressions in tail position whereas the
  3231. \code{explicate\_assign} should be applied to expressions that occur on
  3232. the right-hand-side of a \key{let}.
  3233. %
  3234. The \code{explicate\_tail} function takes an \Exp{} in \LangVar{} as
  3235. input and produces a \Tail{} in \LangCVar{} (see
  3236. Figure~\ref{fig:c0-syntax}).
  3237. %
  3238. The \code{explicate\_assign} function takes an \Exp{} in \LangVar{},
  3239. the variable that it is to be assigned to, and a \Tail{} in
  3240. \LangCVar{} for the code that comes after the assignment. The
  3241. \code{explicate\_assign} function returns a $\Tail$ in \LangCVar{}.
  3242. The \code{explicate\_assign} function is in accumulator-passing style:
  3243. the \code{cont} parameter is used for accumulating the output. This
  3244. accumulator-passing style plays an important role in how we generate
  3245. high-quality code for conditional expressions in Chapter~\ref{ch:Lif}.
  3246. The abbreviation \code{cont} is for continuation because it contains
  3247. the generated code that should come after the current assignment.
  3248. This code organization is also related to continuation-passing style,
  3249. except that \code{cont} is not what happens next during compilation,
  3250. but what happens next in the generated code.
  3251. \begin{exercise}\normalfont\normalsize
  3252. %
  3253. Implement the \code{explicate\_control} function in
  3254. \code{compiler.rkt}. Create three new \LangInt{} programs that
  3255. exercise the code in \code{explicate\_control}.
  3256. %
  3257. In the \code{run-tests.rkt} script, add the following entry to the
  3258. list of \code{passes} and then run the script to test your compiler.
  3259. \begin{lstlisting}
  3260. (list "explicate control" explicate_control interp_Cvar type-check-Cvar)
  3261. \end{lstlisting}
  3262. \end{exercise}
  3263. \fi}
  3264. \section{Select Instructions}
  3265. \label{sec:select-Lvar}
  3266. \index{subject}{instruction selection}
  3267. In the \code{select\_instructions} pass we begin the work of
  3268. translating \racket{from \LangCVar{}} to \LangXVar{}. The target
  3269. language of this pass is a variant of x86 that still uses variables,
  3270. so we add an AST node of the form $\VAR{\itm{var}}$ to the \Arg{}
  3271. non-terminal of the \LangXInt{} abstract syntax
  3272. (Figure~\ref{fig:x86-int-ast}).
  3273. \racket{We recommend implementing the
  3274. \code{select\_instructions} with three auxiliary functions, one for
  3275. each of the non-terminals of \LangCVar{}: $\Atm$, $\Stmt$, and
  3276. $\Tail$.}
  3277. \python{We recommend implementing an auxiliary function
  3278. named \code{select\_stmt} for the $\Stmt$ non-terminal.}
  3279. \racket{The cases for $\Atm$ are straightforward; variables stay the
  3280. same and integer constants change to immediates, that is, $\INT{n}$
  3281. changes to $\IMM{n}$.}
  3282. Next consider the cases for the $\Stmt$ non-terminal, starting with
  3283. arithmetic operations. For example, consider the addition operation
  3284. below, on the left side. There is an \key{addq} instruction in x86,
  3285. but it performs an in-place update. So we could move $\Arg_1$
  3286. into the left-hand side \itm{var} and then add $\Arg_2$ to
  3287. \itm{var}, where $\Arg_1$ and $\Arg_2$ are the translations of
  3288. $\Atm_1$ and $\Atm_2$ respectively.
  3289. \begin{transformation}
  3290. {\if\edition\racketEd
  3291. \begin{lstlisting}
  3292. |$\itm{var}$| = (+ |$\Atm_1$| |$\Atm_2$|);
  3293. \end{lstlisting}
  3294. \fi}
  3295. {\if\edition\pythonEd
  3296. \begin{lstlisting}
  3297. |$\itm{var}$| = |$\Atm_1$| + |$\Atm_2$|
  3298. \end{lstlisting}
  3299. \fi}
  3300. \compilesto
  3301. \begin{lstlisting}
  3302. movq |$\Arg_1$|, |$\itm{var}$|
  3303. addq |$\Arg_2$|, |$\itm{var}$|
  3304. \end{lstlisting}
  3305. \end{transformation}
  3306. There are also cases that require special care to avoid generating
  3307. needlessly complicated code. For example, if one of the arguments of
  3308. the addition is the same variable as the left-hand side of the
  3309. assignment, as shown below, then there is no need for the extra move
  3310. instruction. The assignment statement can be translated into a single
  3311. \key{addq} instruction as follows.
  3312. \begin{transformation}
  3313. {\if\edition\racketEd
  3314. \begin{lstlisting}
  3315. |$\itm{var}$| = (+ |$\Atm_1$| |$\itm{var}$|);
  3316. \end{lstlisting}
  3317. \fi}
  3318. {\if\edition\pythonEd
  3319. \begin{lstlisting}
  3320. |$\itm{var}$| = |$\Atm_1$| + |$\itm{var}$|
  3321. \end{lstlisting}
  3322. \fi}
  3323. \compilesto
  3324. \begin{lstlisting}
  3325. addq |$\Arg_1$|, |$\itm{var}$|
  3326. \end{lstlisting}
  3327. \end{transformation}
  3328. The \READOP{} operation does not have a direct counterpart in x86
  3329. assembly, so we provide this functionality with the function
  3330. \code{read\_int} in the file \code{runtime.c}, written in
  3331. C~\citep{Kernighan:1988nx}. In general, we refer to all of the
  3332. functionality in this file as the \emph{runtime system}\index{subject}{runtime
  3333. system}, or simply the \emph{runtime} for short. When compiling your
  3334. generated x86 assembly code, you need to compile \code{runtime.c} to
  3335. \code{runtime.o} (an ``object file'', using \code{gcc} with option
  3336. \code{-c}) and link it into the executable. For our purposes of code
  3337. generation, all you need to do is translate an assignment of
  3338. \READOP{} into a call to the \code{read\_int} function followed by a
  3339. move from \code{rax} to the left-hand-side variable. (Recall that the
  3340. return value of a function goes into \code{rax}.)
  3341. \begin{transformation}
  3342. {\if\edition\racketEd
  3343. \begin{lstlisting}
  3344. |$\itm{var}$| = (read);
  3345. \end{lstlisting}
  3346. \fi}
  3347. {\if\edition\pythonEd
  3348. \begin{lstlisting}
  3349. |$\itm{var}$| = input_int();
  3350. \end{lstlisting}
  3351. \fi}
  3352. \compilesto
  3353. \begin{lstlisting}
  3354. callq read_int
  3355. movq %rax, |$\itm{var}$|
  3356. \end{lstlisting}
  3357. \end{transformation}
  3358. {\if\edition\pythonEd
  3359. %
  3360. Similarly, we translate the \code{print} operation, shown below, into
  3361. a call to the \code{print\_int} function defined in \code{runtime.c}.
  3362. In x86, the first six arguments to functions are passed in registers,
  3363. with the first argument passed in register \code{rdi}. So we move the
  3364. $\Arg$ into \code{rdi} and then call \code{print\_int} using the
  3365. \code{callq} instruction.
  3366. \begin{transformation}
  3367. \begin{lstlisting}
  3368. print(|$\Atm$|)
  3369. \end{lstlisting}
  3370. \compilesto
  3371. \begin{lstlisting}
  3372. movq |$\Arg$|, %rdi
  3373. callq print_int
  3374. \end{lstlisting}
  3375. \end{transformation}
  3376. %
  3377. \fi}
  3378. {\if\edition\racketEd
  3379. There are two cases for the $\Tail$ non-terminal: \key{Return} and
  3380. \key{Seq}. Regarding \key{Return}, we recommend treating it as an
  3381. assignment to the \key{rax} register followed by a jump to the
  3382. conclusion of the program (so the conclusion needs to be labeled).
  3383. For $\SEQ{s}{t}$, you can translate the statement $s$ and tail $t$
  3384. recursively and then append the resulting instructions.
  3385. \fi}
  3386. {\if\edition\pythonEd
  3387. We recommend that you use the function \code{utils.label\_name()} to
  3388. transform a string into an label argument suitably suitable for, e.g.,
  3389. the target of the \code{callq} instruction. This practice makes your
  3390. compiler portable across Linus and Mac OS X, which requires an underscore prefixed to
  3391. all labels.
  3392. \fi}
  3393. \begin{exercise}
  3394. \normalfont\normalsize
  3395. {\if\edition\racketEd
  3396. Implement the \code{select\_instructions} pass in
  3397. \code{compiler.rkt}. Create three new example programs that are
  3398. designed to exercise all of the interesting cases in this pass.
  3399. %
  3400. In the \code{run-tests.rkt} script, add the following entry to the
  3401. list of \code{passes} and then run the script to test your compiler.
  3402. \begin{lstlisting}
  3403. (list "instruction selection" select_instructions interp_pseudo-x86-0)
  3404. \end{lstlisting}
  3405. \fi}
  3406. {\if\edition\pythonEd
  3407. Implement the \key{select\_instructions} pass in
  3408. \code{compiler.py}. Create three new example programs that are
  3409. designed to exercise all of the interesting cases in this pass.
  3410. Run the \code{run-tests.py} script to to check
  3411. whether the output programs produce the same result as the input
  3412. programs.
  3413. \fi}
  3414. \end{exercise}
  3415. \section{Assign Homes}
  3416. \label{sec:assign-Lvar}
  3417. The \code{assign\_homes} pass compiles \LangXVar{} programs to
  3418. \LangXVar{} programs that no longer use program variables.
  3419. Thus, the \code{assign\_homes} pass is responsible for placing all of
  3420. the program variables in registers or on the stack. For runtime
  3421. efficiency, it is better to place variables in registers, but as there
  3422. are only 16 registers, some programs must necessarily resort to
  3423. placing some variables on the stack. In this chapter we focus on the
  3424. mechanics of placing variables on the stack. We study an algorithm for
  3425. placing variables in registers in
  3426. Chapter~\ref{ch:register-allocation-Lvar}.
  3427. Consider again the following \LangVar{} program from
  3428. Section~\ref{sec:remove-complex-opera-Lvar}.
  3429. % var_test_20.rkt
  3430. {\if\edition\racketEd
  3431. \begin{lstlisting}
  3432. (let ([a 42])
  3433. (let ([b a])
  3434. b))
  3435. \end{lstlisting}
  3436. \fi}
  3437. {\if\edition\pythonEd
  3438. \begin{lstlisting}
  3439. a = 42
  3440. b = a
  3441. print(b)
  3442. \end{lstlisting}
  3443. \fi}
  3444. %
  3445. The output of \code{select\_instructions} is shown below, on the left,
  3446. and the output of \code{assign\_homes} is on the right. In this
  3447. example, we assign variable \code{a} to stack location
  3448. \code{-8(\%rbp)} and variable \code{b} to location \code{-16(\%rbp)}.
  3449. \begin{transformation}
  3450. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  3451. movq $42, a
  3452. movq a, b
  3453. movq b, %rax
  3454. \end{lstlisting}
  3455. \compilesto
  3456. %stack-space: 16
  3457. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  3458. movq $42, -8(%rbp)
  3459. movq -8(%rbp), -16(%rbp)
  3460. movq -16(%rbp), %rax
  3461. \end{lstlisting}
  3462. \end{transformation}
  3463. \racket{
  3464. The \code{assign\_homes} pass should replace all variables
  3465. with stack locations.
  3466. The list of variables can be obtain from
  3467. the \code{locals-types} entry in the $\itm{info}$ of the
  3468. \code{X86Program} node. The \code{locals-types} entry is an alist
  3469. mapping all the variables in the program to their types
  3470. (for now just \code{Integer}).
  3471. As an aside, the \code{locals-types} entry is
  3472. computed by \code{type-check-Cvar} in the support code, which
  3473. installs it in the $\itm{info}$ field of the \code{CProgram} node,
  3474. which you should propagate to the \code{X86Program} node.}
  3475. %
  3476. \python{The \code{assign\_homes} pass should replace all uses of
  3477. variables with stack locations.}
  3478. %
  3479. In the process of assigning variables to stack locations, it is
  3480. convenient for you to compute and store the size of the frame (in
  3481. bytes) in
  3482. \racket{the $\itm{info}$ field of the \key{X86Program} node, with the key \code{stack-space},}
  3483. %
  3484. \python{the field \code{stack\_space} of the \key{X86Program} node,}
  3485. %
  3486. which is needed later to generate the conclusion of the \code{main}
  3487. procedure. The x86-64 standard requires the frame size to be a
  3488. multiple of 16 bytes.\index{subject}{frame}
  3489. % TODO: store the number of variables instead? -Jeremy
  3490. \begin{exercise}\normalfont\normalsize
  3491. Implement the \code{assign\_homes} pass in
  3492. \racket{\code{compiler.rkt}}\python{\code{compiler.py}}, defining
  3493. auxiliary functions for each of the non-terminals in the \LangXVar{}
  3494. grammar. We recommend that the auxiliary functions take an extra
  3495. parameter that maps variable names to homes (stack locations for now).
  3496. %
  3497. {\if\edition\racketEd
  3498. In the \code{run-tests.rkt} script, add the following entry to the
  3499. list of \code{passes} and then run the script to test your compiler.
  3500. \begin{lstlisting}
  3501. (list "assign homes" assign-homes interp_x86-0)
  3502. \end{lstlisting}
  3503. \fi}
  3504. {\if\edition\pythonEd
  3505. Run the \code{run-tests.py} script to to check
  3506. whether the output programs produce the same result as the input
  3507. programs.
  3508. \fi}
  3509. \end{exercise}
  3510. \section{Patch Instructions}
  3511. \label{sec:patch-s0}
  3512. The \code{patch\_instructions} pass compiles from \LangXVar{} to
  3513. \LangXInt{} by making sure that each instruction adheres to the
  3514. restriction that at most one argument of an instruction may be a
  3515. memory reference.
  3516. We return to the following example.\\
  3517. \begin{minipage}{0.5\textwidth}
  3518. % var_test_20.rkt
  3519. {\if\edition\racketEd
  3520. \begin{lstlisting}
  3521. (let ([a 42])
  3522. (let ([b a])
  3523. b))
  3524. \end{lstlisting}
  3525. \fi}
  3526. {\if\edition\pythonEd
  3527. \begin{lstlisting}
  3528. a = 42
  3529. b = a
  3530. print(b)
  3531. \end{lstlisting}
  3532. \fi}
  3533. \end{minipage}\\
  3534. The \code{assign\_homes} pass produces the following translation. \\
  3535. \begin{minipage}{0.5\textwidth}
  3536. {\if\edition\racketEd
  3537. \begin{lstlisting}
  3538. movq $42, -8(%rbp)
  3539. movq -8(%rbp), -16(%rbp)
  3540. movq -16(%rbp), %rax
  3541. \end{lstlisting}
  3542. \fi}
  3543. {\if\edition\pythonEd
  3544. \begin{lstlisting}
  3545. movq 42, -8(%rbp)
  3546. movq -8(%rbp), -16(%rbp)
  3547. movq -16(%rbp), %rdi
  3548. callq print_int
  3549. \end{lstlisting}
  3550. \fi}
  3551. \end{minipage}\\
  3552. The second \key{movq} instruction is problematic because both
  3553. arguments are stack locations. We suggest fixing this problem by
  3554. moving from the source location to the register \key{rax} and then
  3555. from \key{rax} to the destination location, as follows.
  3556. \begin{lstlisting}
  3557. movq -8(%rbp), %rax
  3558. movq %rax, -16(%rbp)
  3559. \end{lstlisting}
  3560. \begin{exercise}
  3561. \normalfont\normalsize Implement the \key{patch\_instructions} pass in
  3562. \racket{\code{compiler.rkt}}\python{\code{compiler.py}}.
  3563. Create three new example programs that are
  3564. designed to exercise all of the interesting cases in this pass.
  3565. %
  3566. {\if\edition\racketEd
  3567. In the \code{run-tests.rkt} script, add the following entry to the
  3568. list of \code{passes} and then run the script to test your compiler.
  3569. \begin{lstlisting}
  3570. (list "patch instructions" patch_instructions interp_x86-0)
  3571. \end{lstlisting}
  3572. \fi}
  3573. {\if\edition\pythonEd
  3574. Run the \code{run-tests.py} script to to check
  3575. whether the output programs produce the same result as the input
  3576. programs.
  3577. \fi}
  3578. \end{exercise}
  3579. \section{Generate Prelude and Conclusion}
  3580. \label{sec:print-x86}
  3581. \index{subject}{prelude}\index{subject}{conclusion}
  3582. The last step of the compiler from \LangVar{} to x86 is to generate
  3583. the \code{main} function with a prelude and conclusion wrapped around
  3584. the rest of the program, as shown in Figure~\ref{fig:p1-x86} and
  3585. discussed in Section~\ref{sec:x86}.
  3586. When running on Mac OS X, your compiler should prefix an underscore to
  3587. all labels, e.g., changing \key{main} to \key{\_main}.
  3588. %
  3589. \racket{The Racket call \code{(system-type 'os)} is useful for
  3590. determining which operating system the compiler is running on. It
  3591. returns \code{'macosx}, \code{'unix}, or \code{'windows}.}
  3592. %
  3593. \python{The Python \code{platform} library includes a \code{system()}
  3594. function that returns \code{'Linux'}, \code{'Windows'}, or
  3595. \code{'Darwin'} (for Mac).}
  3596. \begin{exercise}\normalfont\normalsize
  3597. %
  3598. Implement the \key{prelude\_and\_conclusion} pass in
  3599. \racket{\code{compiler.rkt}}\python{\code{compiler.py}}.
  3600. %
  3601. {\if\edition\racketEd
  3602. In the \code{run-tests.rkt} script, add the following entry to the
  3603. list of \code{passes} and then run the script to test your compiler.
  3604. \begin{lstlisting}
  3605. (list "prelude and conclusion" prelude-and-conclusion interp_x86-0)
  3606. \end{lstlisting}
  3607. %
  3608. Uncomment the call to the \key{compiler-tests} function
  3609. (Appendix~\ref{appendix:utilities}), which tests your complete
  3610. compiler by executing the generated x86 code. It translates the x86
  3611. AST that you produce into a string by invoking the \code{print-x86}
  3612. method of the \code{print-x86-class} in \code{utilities.rkt}. Compile
  3613. the provided \key{runtime.c} file to \key{runtime.o} using
  3614. \key{gcc}. Run the script to test your compiler.
  3615. %
  3616. \fi}
  3617. {\if\edition\pythonEd
  3618. %
  3619. Run the \code{run-tests.py} script to to check whether the output
  3620. programs produce the same result as the input programs. That script
  3621. translates the x86 AST that you produce into a string by invoking the
  3622. \code{repr} method that is implemented by the x86 AST classes in
  3623. \code{x86\_ast.py}.
  3624. %
  3625. \fi}
  3626. \end{exercise}
  3627. \section{Challenge: Partial Evaluator for \LangVar{}}
  3628. \label{sec:pe-Lvar}
  3629. \index{subject}{partial evaluation}
  3630. This section describes two optional challenge exercises that involve
  3631. adapting and improving the partial evaluator for \LangInt{} that was
  3632. introduced in Section~\ref{sec:partial-evaluation}.
  3633. \begin{exercise}\label{ex:pe-Lvar}
  3634. \normalfont\normalsize
  3635. Adapt the partial evaluator from Section~\ref{sec:partial-evaluation}
  3636. (Figure~\ref{fig:pe-arith}) so that it applies to \LangVar{} programs
  3637. instead of \LangInt{} programs. Recall that \LangVar{} adds variables and
  3638. %
  3639. \racket{\key{let} binding}\python{assignment}
  3640. %
  3641. to the \LangInt{} language, so you will need to add cases for them in
  3642. the \code{pe\_exp}
  3643. %
  3644. \racket{function.}
  3645. %
  3646. \python{and \code{pe\_stmt} functions.}
  3647. %
  3648. Once complete, add the partial evaluation pass to the front of your
  3649. compiler and make sure that your compiler still passes all of the
  3650. tests.
  3651. \end{exercise}
  3652. \begin{exercise}
  3653. \normalfont\normalsize
  3654. Improve on the partial evaluator by replacing the \code{pe\_neg} and
  3655. \code{pe\_add} auxiliary functions with functions that know more about
  3656. arithmetic. For example, your partial evaluator should translate
  3657. {\if\edition\racketEd
  3658. \[
  3659. \code{(+ 1 (+ (read) 1))} \qquad \text{into} \qquad
  3660. \code{(+ 2 (read))}
  3661. \]
  3662. \fi}
  3663. {\if\edition\pythonEd
  3664. \[
  3665. \code{1 + (input\_int() + 1)} \qquad \text{into} \qquad
  3666. \code{2 + input\_int()}
  3667. \]
  3668. \fi}
  3669. To accomplish this, the \code{pe\_exp} function should produce output
  3670. in the form of the $\itm{residual}$ non-terminal of the following
  3671. grammar. The idea is that when processing an addition expression, we
  3672. can always produce either 1) an integer constant, 2) an addition
  3673. expression with an integer constant on the left-hand side but not the
  3674. right-hand side, or 3) or an addition expression in which neither
  3675. subexpression is a constant.
  3676. {\if\edition\racketEd
  3677. \[
  3678. \begin{array}{lcl}
  3679. \itm{inert} &::=& \Var
  3680. \MID \LP\key{read}\RP
  3681. \MID \LP\key{-} ~\Var\RP
  3682. \MID \LP\key{-} ~\LP\key{read}\RP\RP
  3683. \MID \LP\key{+} ~ \itm{inert} ~ \itm{inert}\RP\\
  3684. &\MID& \LP\key{let}~\LP\LS\Var~\itm{residual}\RS\RP~ \itm{residual} \RP \\
  3685. \itm{residual} &::=& \Int
  3686. \MID \LP\key{+}~ \Int~ \itm{inert}\RP
  3687. \MID \itm{inert}
  3688. \end{array}
  3689. \]
  3690. \fi}
  3691. {\if\edition\pythonEd
  3692. \[
  3693. \begin{array}{lcl}
  3694. \itm{inert} &::=& \Var
  3695. \MID \key{input\_int}\LP\RP
  3696. \MID \key{-} \Var
  3697. \MID \key{-} \key{input\_int}\LP\RP
  3698. \MID \itm{inert} ~ \key{+} ~ \itm{inert}\\
  3699. \itm{residual} &::=& \Int
  3700. \MID \Int ~ \key{+} ~ \itm{inert}
  3701. \MID \itm{inert}
  3702. \end{array}
  3703. \]
  3704. \fi}
  3705. The \code{pe\_add} and \code{pe\_neg} functions may assume that their
  3706. inputs are $\itm{residual}$ expressions and they should return
  3707. $\itm{residual}$ expressions. Once the improvements are complete,
  3708. make sure that your compiler still passes all of the tests. After
  3709. all, fast code is useless if it produces incorrect results!
  3710. \end{exercise}
  3711. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  3712. \chapter{Register Allocation}
  3713. \label{ch:register-allocation-Lvar}
  3714. \index{subject}{register allocation}
  3715. In Chapter~\ref{ch:Lvar} we compiled \LangVar{} to x86, storing
  3716. variables on the procedure call stack. It can take 10s to 100s of
  3717. cycles for the CPU to access locations on the stack whereas accessing
  3718. a register takes only a single cycle. In this chapter we improve the
  3719. efficiency of our generated code by storing some variables in
  3720. registers. The goal of register allocation is to fit as many variables
  3721. into registers as possible. Some programs have more variables than
  3722. registers so we cannot always map each variable to a different
  3723. register. Fortunately, it is common for different variables to be
  3724. in-use during different periods of time during program execution, and
  3725. in those cases we can map multiple variables to the same register.
  3726. The program in Figure~\ref{fig:reg-eg} serves as a running
  3727. example. The source program is on the left and the output of
  3728. instruction selection is on the right. The program is almost in the
  3729. x86 assembly language but it still uses variables. Consider variables
  3730. \code{x} and \code{z}. After the variable \code{x} is moved to
  3731. \code{z} it is no longer in-use. Variable \code{z}, on the other
  3732. hand, is used only after this point, so \code{x} and \code{z} could
  3733. share the same register.
  3734. \begin{figure}
  3735. \begin{tcolorbox}[colback=white]
  3736. \begin{minipage}{0.45\textwidth}
  3737. Example \LangVar{} program:
  3738. % var_test_28.rkt
  3739. {\if\edition\racketEd
  3740. \begin{lstlisting}
  3741. (let ([v 1])
  3742. (let ([w 42])
  3743. (let ([x (+ v 7)])
  3744. (let ([y x])
  3745. (let ([z (+ x w)])
  3746. (+ z (- y)))))))
  3747. \end{lstlisting}
  3748. \fi}
  3749. {\if\edition\pythonEd
  3750. \begin{lstlisting}
  3751. v = 1
  3752. w = 42
  3753. x = v + 7
  3754. y = x
  3755. z = x + w
  3756. print(z + (- y))
  3757. \end{lstlisting}
  3758. \fi}
  3759. \end{minipage}
  3760. \begin{minipage}{0.45\textwidth}
  3761. After instruction selection:
  3762. {\if\edition\racketEd
  3763. \begin{lstlisting}
  3764. locals-types:
  3765. x : Integer, y : Integer,
  3766. z : Integer, t : Integer,
  3767. v : Integer, w : Integer
  3768. start:
  3769. movq $1, v
  3770. movq $42, w
  3771. movq v, x
  3772. addq $7, x
  3773. movq x, y
  3774. movq x, z
  3775. addq w, z
  3776. movq y, t
  3777. negq t
  3778. movq z, %rax
  3779. addq t, %rax
  3780. jmp conclusion
  3781. \end{lstlisting}
  3782. \fi}
  3783. {\if\edition\pythonEd
  3784. \begin{lstlisting}
  3785. movq $1, v
  3786. movq $42, w
  3787. movq v, x
  3788. addq $7, x
  3789. movq x, y
  3790. movq x, z
  3791. addq w, z
  3792. movq y, tmp_0
  3793. negq tmp_0
  3794. movq z, tmp_1
  3795. addq tmp_0, tmp_1
  3796. movq tmp_1, %rdi
  3797. callq print_int
  3798. \end{lstlisting}
  3799. \fi}
  3800. \end{minipage}
  3801. \end{tcolorbox}
  3802. \caption{A running example for register allocation.}
  3803. \label{fig:reg-eg}
  3804. \end{figure}
  3805. The topic of Section~\ref{sec:liveness-analysis-Lvar} is how to
  3806. compute where a variable is in-use. Once we have that information, we
  3807. compute which variables are in-use at the same time, i.e., which ones
  3808. \emph{interfere}\index{subject}{interfere} with each other, and
  3809. represent this relation as an undirected graph whose vertices are
  3810. variables and edges indicate when two variables interfere
  3811. (Section~\ref{sec:build-interference}). We then model register
  3812. allocation as a graph coloring problem
  3813. (Section~\ref{sec:graph-coloring}).
  3814. If we run out of registers despite these efforts, we place the
  3815. remaining variables on the stack, similar to what we did in
  3816. Chapter~\ref{ch:Lvar}. It is common to use the verb
  3817. \emph{spill}\index{subject}{spill} for assigning a variable to a stack
  3818. location. The decision to spill a variable is handled as part of the
  3819. graph coloring process.
  3820. We make the simplifying assumption that each variable is assigned to
  3821. one location (a register or stack address). A more sophisticated
  3822. approach is to assign a variable to one or more locations in different
  3823. regions of the program. For example, if a variable is used many times
  3824. in short sequence and then only used again after many other
  3825. instructions, it could be more efficient to assign the variable to a
  3826. register during the initial sequence and then move it to the stack for
  3827. the rest of its lifetime. We refer the interested reader to
  3828. \citet{Cooper:2011aa} (Chapter 13) for more information about that
  3829. approach.
  3830. % discuss prioritizing variables based on how much they are used.
  3831. \section{Registers and Calling Conventions}
  3832. \label{sec:calling-conventions}
  3833. \index{subject}{calling conventions}
  3834. As we perform register allocation, we must be aware of the
  3835. \emph{calling conventions} \index{subject}{calling conventions} that
  3836. govern how functions calls are performed in x86.
  3837. %
  3838. Even though \LangVar{} does not include programmer-defined functions,
  3839. our generated code includes a \code{main} function that is called by
  3840. the operating system and our generated code contains calls to the
  3841. \code{read\_int} function.
  3842. Function calls require coordination between two pieces of code that
  3843. may be written by different programmers or generated by different
  3844. compilers. Here we follow the System V calling conventions that are
  3845. used by the GNU C compiler on Linux and
  3846. MacOS~\citep{Bryant:2005aa,Matz:2013aa}.
  3847. %
  3848. The calling conventions include rules about how functions share the
  3849. use of registers. In particular, the caller is responsible for freeing
  3850. up some registers prior to the function call for use by the callee.
  3851. These are called the \emph{caller-saved registers}
  3852. \index{subject}{caller-saved registers}
  3853. and they are
  3854. \begin{lstlisting}
  3855. rax rcx rdx rsi rdi r8 r9 r10 r11
  3856. \end{lstlisting}
  3857. On the other hand, the callee is responsible for preserving the values
  3858. of the \emph{callee-saved registers}, \index{subject}{callee-saved registers}
  3859. which are
  3860. \begin{lstlisting}
  3861. rsp rbp rbx r12 r13 r14 r15
  3862. \end{lstlisting}
  3863. We can think about this caller/callee convention from two points of
  3864. view, the caller view and the callee view:
  3865. \begin{itemize}
  3866. \item The caller should assume that all the caller-saved registers get
  3867. overwritten with arbitrary values by the callee. On the other hand,
  3868. the caller can safely assume that all the callee-saved registers
  3869. retain their original values.
  3870. \item The callee can freely use any of the caller-saved registers.
  3871. However, if the callee wants to use a callee-saved register, the
  3872. callee must arrange to put the original value back in the register
  3873. prior to returning to the caller. This can be accomplished by saving
  3874. the value to the stack in the prelude of the function and restoring
  3875. the value in the conclusion of the function.
  3876. \end{itemize}
  3877. In x86, registers are also used for passing arguments to a function
  3878. and for the return value. In particular, the first six arguments of a
  3879. function are passed in the following six registers, in this order.
  3880. \index{subject}{argument-passing registers}
  3881. \index{subject}{parameter-passing registers}
  3882. \begin{lstlisting}
  3883. rdi rsi rdx rcx r8 r9
  3884. \end{lstlisting}
  3885. If there are more than six arguments, then the convention is to use
  3886. space on the frame of the caller for the rest of the
  3887. arguments. However, in Chapter~\ref{ch:Lfun} we arrange never to
  3888. need more than six arguments.
  3889. %
  3890. \racket{For now, the only function we care about is \code{read\_int}
  3891. and it takes zero arguments.}
  3892. %
  3893. \python{For now, the only functions we care about are \code{read\_int}
  3894. and \code{print\_int}, which take zero and one argument, respectively.}
  3895. %
  3896. The register \code{rax} is used for the return value of a function.
  3897. The next question is how these calling conventions impact register
  3898. allocation. Consider the \LangVar{} program in
  3899. Figure~\ref{fig:example-calling-conventions}. We first analyze this
  3900. example from the caller point of view and then from the callee point
  3901. of view. We refer to a variable that is in-use during a function call
  3902. as being a \emph{call-live variable}\index{subject}{call-live
  3903. variable}.
  3904. The program makes two calls to \READOP{}. The variable \code{x} is
  3905. call-live because it is in-use during the second call to \READOP{}; we
  3906. must ensure that the value in \code{x} does not get overwritten during
  3907. the call to \READOP{}. One obvious approach is to save all the values
  3908. that reside in caller-saved registers to the stack prior to each
  3909. function call, and restore them after each call. That way, if the
  3910. register allocator chooses to assign \code{x} to a caller-saved
  3911. register, its value will be preserved across the call to \READOP{}.
  3912. However, saving and restoring to the stack is relatively slow. If
  3913. \code{x} is not used many times, it may be better to assign \code{x}
  3914. to a stack location in the first place. Or better yet, if we can
  3915. arrange for \code{x} to be placed in a callee-saved register, then it
  3916. won't need to be saved and restored during function calls.
  3917. The approach that we recommend for call-live variables is to either
  3918. assign them to callee-saved registers or to spill them to the
  3919. stack. On the other hand, for variables that are not call-live, we try
  3920. the following alternatives in order 1) look for an available
  3921. caller-saved register (to leave room for other variables in the
  3922. callee-saved register), 2) look for a callee-saved register, and 3)
  3923. spill the variable to the stack.
  3924. It is straightforward to implement this approach in a graph coloring
  3925. register allocator. First, we know which variables are call-live
  3926. because we already need to compute which variables are in-use at every
  3927. instruction (Section~\ref{sec:liveness-analysis-Lvar}). Second, when
  3928. we build the interference graph
  3929. (Section~\ref{sec:build-interference}), we can place an edge between
  3930. each of the call-live variables and the caller-saved registers in the
  3931. interference graph. This will prevent the graph coloring algorithm
  3932. from assigning them to caller-saved registers.
  3933. Returning to the example in
  3934. Figure~\ref{fig:example-calling-conventions}, let us analyze the
  3935. generated x86 code on the right-hand side. Notice that variable
  3936. \code{x} is assigned to \code{rbx}, a callee-saved register. Thus, it
  3937. is already in a safe place during the second call to
  3938. \code{read\_int}. Next, notice that variable \code{y} is assigned to
  3939. \code{rcx}, a caller-saved register, because \code{y} is not a
  3940. call-live variable.
  3941. Next we analyze the example from the callee point of view, focusing on
  3942. the prelude and conclusion of the \code{main} function. As usual the
  3943. prelude begins with saving the \code{rbp} register to the stack and
  3944. setting the \code{rbp} to the current stack pointer. We now know why
  3945. it is necessary to save the \code{rbp}: it is a callee-saved register.
  3946. The prelude then pushes \code{rbx} to the stack because 1) \code{rbx}
  3947. is a callee-saved register and 2) \code{rbx} is assigned to a variable
  3948. (\code{x}). The other callee-saved registers are not saved in the
  3949. prelude because they are not used. The prelude subtracts 8 bytes from
  3950. the \code{rsp} to make it 16-byte aligned. Shifting attention to the
  3951. conclusion, we see that \code{rbx} is restored from the stack with a
  3952. \code{popq} instruction.
  3953. \index{subject}{prelude}\index{subject}{conclusion}
  3954. \begin{figure}[tp]
  3955. \begin{tcolorbox}[colback=white]
  3956. \begin{minipage}{0.45\textwidth}
  3957. Example \LangVar{} program:
  3958. %var_test_14.rkt
  3959. {\if\edition\racketEd
  3960. \begin{lstlisting}
  3961. (let ([x (read)])
  3962. (let ([y (read)])
  3963. (+ (+ x y) 42)))
  3964. \end{lstlisting}
  3965. \fi}
  3966. {\if\edition\pythonEd
  3967. \begin{lstlisting}
  3968. x = input_int()
  3969. y = input_int()
  3970. print((x + y) + 42)
  3971. \end{lstlisting}
  3972. \fi}
  3973. \end{minipage}
  3974. \begin{minipage}{0.45\textwidth}
  3975. Generated x86 assembly:
  3976. {\if\edition\racketEd
  3977. \begin{lstlisting}
  3978. start:
  3979. callq read_int
  3980. movq %rax, %rbx
  3981. callq read_int
  3982. movq %rax, %rcx
  3983. addq %rcx, %rbx
  3984. movq %rbx, %rax
  3985. addq $42, %rax
  3986. jmp _conclusion
  3987. .globl main
  3988. main:
  3989. pushq %rbp
  3990. movq %rsp, %rbp
  3991. pushq %rbx
  3992. subq $8, %rsp
  3993. jmp start
  3994. conclusion:
  3995. addq $8, %rsp
  3996. popq %rbx
  3997. popq %rbp
  3998. retq
  3999. \end{lstlisting}
  4000. \fi}
  4001. {\if\edition\pythonEd
  4002. \begin{lstlisting}
  4003. .globl main
  4004. main:
  4005. pushq %rbp
  4006. movq %rsp, %rbp
  4007. pushq %rbx
  4008. subq $8, %rsp
  4009. callq read_int
  4010. movq %rax, %rbx
  4011. callq read_int
  4012. movq %rax, %rcx
  4013. movq %rbx, %rdx
  4014. addq %rcx, %rdx
  4015. movq %rdx, %rcx
  4016. addq $42, %rcx
  4017. movq %rcx, %rdi
  4018. callq print_int
  4019. addq $8, %rsp
  4020. popq %rbx
  4021. popq %rbp
  4022. retq
  4023. \end{lstlisting}
  4024. \fi}
  4025. \end{minipage}
  4026. \end{tcolorbox}
  4027. \caption{An example with function calls.}
  4028. \label{fig:example-calling-conventions}
  4029. \end{figure}
  4030. %\clearpage
  4031. \section{Liveness Analysis}
  4032. \label{sec:liveness-analysis-Lvar}
  4033. \index{subject}{liveness analysis}
  4034. The \code{uncover\_live} \racket{pass}\python{function} performs
  4035. \emph{liveness analysis}, that is, it discovers which variables are
  4036. in-use in different regions of a program.
  4037. %
  4038. A variable or register is \emph{live} at a program point if its
  4039. current value is used at some later point in the program. We refer to
  4040. variables, stack locations, and registers collectively as
  4041. \emph{locations}.
  4042. %
  4043. Consider the following code fragment in which there are two writes to
  4044. \code{b}. Are variables \code{a} and \code{b} both live at the same
  4045. time?
  4046. \begin{center}
  4047. \begin{minipage}{0.96\textwidth}
  4048. \begin{lstlisting}[numbers=left,numberstyle=\tiny]
  4049. movq $5, a
  4050. movq $30, b
  4051. movq a, c
  4052. movq $10, b
  4053. addq b, c
  4054. \end{lstlisting}
  4055. \end{minipage}
  4056. \end{center}
  4057. The answer is no because \code{a} is live from line 1 to 3 and
  4058. \code{b} is live from line 4 to 5. The integer written to \code{b} on
  4059. line 2 is never used because it is overwritten (line 4) before the
  4060. next read (line 5).
  4061. The live locations for each instruction can be computed by traversing
  4062. the instruction sequence back to front (i.e., backwards in execution
  4063. order). Let $I_1,\ldots, I_n$ be the instruction sequence. We write
  4064. $L_{\mathsf{after}}(k)$ for the set of live locations after
  4065. instruction $I_k$ and $L_{\mathsf{before}}(k)$ for the set of live
  4066. locations before instruction $I_k$. \racket{We recommend representing
  4067. these sets with the Racket \code{set} data structure described in
  4068. Figure~\ref{fig:set}.} \python{We recommend representing these sets
  4069. with the Python
  4070. \href{https://docs.python.org/3.10/library/stdtypes.html\#set-types-set-frozenset}{\code{set}}
  4071. data structure.}
  4072. {\if\edition\racketEd
  4073. \begin{figure}[tp]
  4074. %\begin{wrapfigure}[19]{l}[0.75in]{0.55\textwidth}
  4075. \small
  4076. \begin{tcolorbox}[title=\href{https://docs.racket-lang.org/reference/sets.html}{The Racket Set Package}]
  4077. A \emph{set} is an unordered collection of elements without duplicates.
  4078. Here are some of the operations defined on sets.
  4079. \index{subject}{set}
  4080. \begin{description}
  4081. \item[$\LP\code{set}~v~\ldots\RP$] constructs a set containing the specified elements.
  4082. \item[$\LP\code{set-union}~set_1~set_2\RP$] returns the union of the two sets.
  4083. \item[$\LP\code{set-subtract}~set_1~set_2\RP$] returns the set
  4084. difference of the two sets.
  4085. \item[$\LP\code{set-member?}~set~v\RP$] answers whether element $v$ is in $set$.
  4086. \item[$\LP\code{set-count}~set\RP$] returns the number of unique elements in $set$.
  4087. \item[$\LP\code{set->list}~set\RP$] converts $set$ to a list.
  4088. \end{description}
  4089. \end{tcolorbox}
  4090. %\end{wrapfigure}
  4091. \caption{The \code{set} data structure.}
  4092. \label{fig:set}
  4093. \end{figure}
  4094. \fi}
  4095. The live locations after an instruction are always the same as the
  4096. live locations before the next instruction.
  4097. \index{subject}{live-after} \index{subject}{live-before}
  4098. \begin{equation} \label{eq:live-after-before-next}
  4099. L_{\mathsf{after}}(k) = L_{\mathsf{before}}(k+1)
  4100. \end{equation}
  4101. To start things off, there are no live locations after the last
  4102. instruction, so
  4103. \begin{equation}\label{eq:live-last-empty}
  4104. L_{\mathsf{after}}(n) = \emptyset
  4105. \end{equation}
  4106. We then apply the following rule repeatedly, traversing the
  4107. instruction sequence back to front.
  4108. \begin{equation}\label{eq:live-before-after-minus-writes-plus-reads}
  4109. L_{\mathtt{before}}(k) = (L_{\mathtt{after}}(k) - W(k)) \cup R(k),
  4110. \end{equation}
  4111. where $W(k)$ are the locations written to by instruction $I_k$ and
  4112. $R(k)$ are the locations read by instruction $I_k$.
  4113. {\if\edition\racketEd
  4114. %
  4115. There is a special case for \code{jmp} instructions. The locations
  4116. that are live before a \code{jmp} should be the locations in
  4117. $L_{\mathtt{before}}$ at the target of the jump. So we recommend
  4118. maintaining an alist named \code{label->live} that maps each label to
  4119. the $L_{\mathtt{before}}$ for the first instruction in its block. For
  4120. now the only \code{jmp} in a \LangXVar{} program is the jump to the
  4121. conclusion. (For example, see Figure~\ref{fig:reg-eg}.) The
  4122. conclusion reads from \ttm{rax} and \ttm{rsp}, so the alist should map
  4123. \code{conclusion} to the set $\{\ttm{rax},\ttm{rsp}\}$.
  4124. %
  4125. \fi}
  4126. Let us walk through the above example, applying these formulas
  4127. starting with the instruction on line 5. We collect the answers in
  4128. Figure~\ref{fig:liveness-example-0}. The $L_{\mathsf{after}}$ for the
  4129. \code{addq b, c} instruction is $\emptyset$ because it is the last
  4130. instruction (formula~\ref{eq:live-last-empty}). The
  4131. $L_{\mathsf{before}}$ for this instruction is $\{\ttm{b},\ttm{c}\}$
  4132. because it reads from variables \code{b} and \code{c}
  4133. (formula~\ref{eq:live-before-after-minus-writes-plus-reads}), that is
  4134. \[
  4135. L_{\mathsf{before}}(5) = (\emptyset - \{\ttm{c}\}) \cup \{ \ttm{b}, \ttm{c} \} = \{ \ttm{b}, \ttm{c} \}
  4136. \]
  4137. Moving on the the instruction \code{movq \$10, b} at line 4, we copy
  4138. the live-before set from line 5 to be the live-after set for this
  4139. instruction (formula~\ref{eq:live-after-before-next}).
  4140. \[
  4141. L_{\mathsf{after}}(4) = \{ \ttm{b}, \ttm{c} \}
  4142. \]
  4143. This move instruction writes to \code{b} and does not read from any
  4144. variables, so we have the following live-before set
  4145. (formula~\ref{eq:live-before-after-minus-writes-plus-reads}).
  4146. \[
  4147. L_{\mathsf{before}}(4) = (\{\ttm{b},\ttm{c}\} - \{\ttm{b}\}) \cup \emptyset = \{ \ttm{c} \}
  4148. \]
  4149. The live-before for instruction \code{movq a, c}
  4150. is $\{\ttm{a}\}$ because it writes to $\{\ttm{c}\}$ and reads from $\{\ttm{a}\}$
  4151. (formula~\ref{eq:live-before-after-minus-writes-plus-reads}). The
  4152. live-before for \code{movq \$30, b} is $\{\ttm{a}\}$ because it writes to a
  4153. variable that is not live and does not read from a variable.
  4154. Finally, the live-before for \code{movq \$5, a} is $\emptyset$
  4155. because it writes to variable \code{a}.
  4156. \begin{figure}[tbp]
  4157. \centering
  4158. \begin{tcolorbox}[colback=white]
  4159. \hspace{10pt}
  4160. \begin{minipage}{0.4\textwidth}
  4161. \begin{lstlisting}[numbers=left,numberstyle=\tiny]
  4162. movq $5, a
  4163. movq $30, b
  4164. movq a, c
  4165. movq $10, b
  4166. addq b, c
  4167. \end{lstlisting}
  4168. \end{minipage}
  4169. \vrule\hspace{10pt}
  4170. \begin{minipage}{0.45\textwidth}
  4171. \begin{align*}
  4172. L_{\mathsf{before}}(1)= \emptyset,
  4173. L_{\mathsf{after}}(1)= \{\ttm{a}\}\\
  4174. L_{\mathsf{before}}(2)= \{\ttm{a}\},
  4175. L_{\mathsf{after}}(2)= \{\ttm{a}\}\\
  4176. L_{\mathsf{before}}(3)= \{\ttm{a}\},
  4177. L_{\mathsf{after}}(2)= \{\ttm{c}\}\\
  4178. L_{\mathsf{before}}(4)= \{\ttm{c}\},
  4179. L_{\mathsf{after}}(4)= \{\ttm{b},\ttm{c}\}\\
  4180. L_{\mathsf{before}}(5)= \{\ttm{b},\ttm{c}\},
  4181. L_{\mathsf{after}}(5)= \emptyset
  4182. \end{align*}
  4183. \end{minipage}
  4184. \end{tcolorbox}
  4185. \caption{Example output of liveness analysis on a short example.}
  4186. \label{fig:liveness-example-0}
  4187. \end{figure}
  4188. \begin{exercise}\normalfont\normalsize
  4189. Perform liveness analysis by hand on the running example in
  4190. Figure~\ref{fig:reg-eg}, computing the live-before and live-after
  4191. sets for each instruction. Compare your answers to the solution
  4192. shown in Figure~\ref{fig:live-eg}.
  4193. \end{exercise}
  4194. \begin{figure}[tp]
  4195. \hspace{20pt}
  4196. \begin{minipage}{0.55\textwidth}
  4197. \begin{tcolorbox}[colback=white]
  4198. {\if\edition\racketEd
  4199. \begin{lstlisting}
  4200. |$\{\ttm{rsp}\}$|
  4201. movq $1, v
  4202. |$\{\ttm{v},\ttm{rsp}\}$|
  4203. movq $42, w
  4204. |$\{\ttm{v},\ttm{w},\ttm{rsp}\}$|
  4205. movq v, x
  4206. |$\{\ttm{w},\ttm{x},\ttm{rsp}\}$|
  4207. addq $7, x
  4208. |$\{\ttm{w},\ttm{x},\ttm{rsp}\}$|
  4209. movq x, y
  4210. |$\{\ttm{w},\ttm{x},\ttm{y},\ttm{rsp}\}$|
  4211. movq x, z
  4212. |$\{\ttm{w},\ttm{y},\ttm{z},\ttm{rsp}\}$|
  4213. addq w, z
  4214. |$\{\ttm{y},\ttm{z},\ttm{rsp}\}$|
  4215. movq y, t
  4216. |$\{\ttm{t},\ttm{z},\ttm{rsp}\}$|
  4217. negq t
  4218. |$\{\ttm{t},\ttm{z},\ttm{rsp}\}$|
  4219. movq z, %rax
  4220. |$\{\ttm{rax},\ttm{t},\ttm{rsp}\}$|
  4221. addq t, %rax
  4222. |$\{\ttm{rax},\ttm{rsp}\}$|
  4223. jmp conclusion
  4224. \end{lstlisting}
  4225. \fi}
  4226. {\if\edition\pythonEd
  4227. \begin{lstlisting}
  4228. movq $1, v
  4229. |$\{\ttm{v}\}$|
  4230. movq $42, w
  4231. |$\{\ttm{w}, \ttm{v}\}$|
  4232. movq v, x
  4233. |$\{\ttm{w}, \ttm{x}\}$|
  4234. addq $7, x
  4235. |$\{\ttm{w}, \ttm{x}\}$|
  4236. movq x, y
  4237. |$\{\ttm{w}, \ttm{x}, \ttm{y}\}$|
  4238. movq x, z
  4239. |$\{\ttm{w}, \ttm{y}, \ttm{z}\}$|
  4240. addq w, z
  4241. |$\{\ttm{y}, \ttm{z}\}$|
  4242. movq y, tmp_0
  4243. |$\{\ttm{tmp\_0}, \ttm{z}\}$|
  4244. negq tmp_0
  4245. |$\{\ttm{tmp\_0}, \ttm{z}\}$|
  4246. movq z, tmp_1
  4247. |$\{\ttm{tmp\_0}, \ttm{tmp\_1}\}$|
  4248. addq tmp_0, tmp_1
  4249. |$\{\ttm{tmp\_1}\}$|
  4250. movq tmp_1, %rdi
  4251. |$\{\ttm{rdi}\}$|
  4252. callq print_int
  4253. |$\{\}$|
  4254. \end{lstlisting}
  4255. \fi}
  4256. \end{tcolorbox}
  4257. \end{minipage}
  4258. \caption{The running example annotated with live-after sets.}
  4259. \label{fig:live-eg}
  4260. \end{figure}
  4261. \begin{exercise}\normalfont\normalsize
  4262. Implement the \code{uncover\_live} \racket{pass}\python{function}.
  4263. %
  4264. \racket{Store the sequence of live-after sets in the $\itm{info}$
  4265. field of the \code{Block} structure.}
  4266. %
  4267. \python{Return a dictionary that maps each instruction to its
  4268. live-after set.}
  4269. %
  4270. \racket{We recommend creating an auxiliary function that takes a list
  4271. of instructions and an initial live-after set (typically empty) and
  4272. returns the list of live-after sets.}
  4273. %
  4274. We recommend creating auxiliary functions to 1) compute the set
  4275. of locations that appear in an \Arg{}, 2) compute the locations read
  4276. by an instruction (the $R$ function), and 3) the locations written by
  4277. an instruction (the $W$ function). The \code{callq} instruction should
  4278. include all of the caller-saved registers in its write-set $W$ because
  4279. the calling convention says that those registers may be written to
  4280. during the function call. Likewise, the \code{callq} instruction
  4281. should include the appropriate argument-passing registers in its
  4282. read-set $R$, depending on the arity of the function being
  4283. called. (This is why the abstract syntax for \code{callq} includes the
  4284. arity.)
  4285. \end{exercise}
  4286. %\clearpage
  4287. \section{Build the Interference Graph}
  4288. \label{sec:build-interference}
  4289. {\if\edition\racketEd
  4290. \begin{figure}[tp]
  4291. %\begin{wrapfigure}[23]{r}[0.75in]{0.55\textwidth}
  4292. \small
  4293. \begin{tcolorbox}[title=\href{https://docs.racket-lang.org/graph/index.html}{The Racket Graph Library}]
  4294. A \emph{graph} is a collection of vertices and edges where each
  4295. edge connects two vertices. A graph is \emph{directed} if each
  4296. edge points from a source to a target. Otherwise the graph is
  4297. \emph{undirected}.
  4298. \index{subject}{graph}\index{subject}{directed graph}\index{subject}{undirected graph}
  4299. \begin{description}
  4300. %% We currently don't use directed graphs. We instead use
  4301. %% directed multi-graphs. -Jeremy
  4302. \item[$\LP\code{directed-graph}\,\itm{edges}\RP$] constructs a
  4303. directed graph from a list of edges. Each edge is a list
  4304. containing the source and target vertex.
  4305. \item[$\LP\code{undirected-graph}\,\itm{edges}\RP$] constructs a
  4306. undirected graph from a list of edges. Each edge is represented by
  4307. a list containing two vertices.
  4308. \item[$\LP\code{add-vertex!}\,\itm{graph}\,\itm{vertex}\RP$]
  4309. inserts a vertex into the graph.
  4310. \item[$\LP\code{add-edge!}\,\itm{graph}\,\itm{source}\,\itm{target}\RP$]
  4311. inserts an edge between the two vertices.
  4312. \item[$\LP\code{in-neighbors}\,\itm{graph}\,\itm{vertex}\RP$]
  4313. returns a sequence of vertices adjacent to the vertex.
  4314. \item[$\LP\code{in-vertices}\,\itm{graph}\RP$]
  4315. returns a sequence of all vertices in the graph.
  4316. \end{description}
  4317. \end{tcolorbox}
  4318. %\end{wrapfigure}
  4319. \caption{The Racket \code{graph} package.}
  4320. \label{fig:graph}
  4321. \end{figure}
  4322. \fi}
  4323. Based on the liveness analysis, we know where each location is live.
  4324. However, during register allocation, we need to answer questions of
  4325. the specific form: are locations $u$ and $v$ live at the same time?
  4326. (And therefore cannot be assigned to the same register.) To make this
  4327. question more efficient to answer, we create an explicit data
  4328. structure, an \emph{interference graph}\index{subject}{interference
  4329. graph}. An interference graph is an undirected graph that has an
  4330. edge between two locations if they are live at the same time, that is,
  4331. if they interfere with each other.
  4332. %
  4333. \racket{We recommend using the Racket \code{graph} package
  4334. (Figure~\ref{fig:graph}) to represent the interference graph.}
  4335. %
  4336. \python{We provide implementations of directed and undirected graph
  4337. data structures in the file \code{graph.py} of the support code.}
  4338. A straightforward way to compute the interference graph is to look at
  4339. the set of live locations between each instruction and add an edge to
  4340. the graph for every pair of variables in the same set. This approach
  4341. is less than ideal for two reasons. First, it can be expensive because
  4342. it takes $O(n^2)$ time to consider every pair in a set of $n$ live
  4343. locations. Second, in the special case where two locations hold the
  4344. same value (because one was assigned to the other), they can be live
  4345. at the same time without interfering with each other.
  4346. A better way to compute the interference graph is to focus on
  4347. writes~\citep{Appel:2003fk}. The writes performed by an instruction
  4348. must not overwrite something in a live location. So for each
  4349. instruction, we create an edge between the locations being written to
  4350. and the live locations. (Except that a location never interferes with
  4351. itself.) For the \key{callq} instruction, we consider all of the
  4352. caller-saved registers as being written to, so an edge is added
  4353. between every live variable and every caller-saved register. Also, for
  4354. \key{movq} there is the special case of two variables holding the same
  4355. value. If a live variable $v$ is the same as the source of the
  4356. \key{movq}, then there is no need to add an edge between $v$ and the
  4357. destination, because they both hold the same value.
  4358. %
  4359. So we have the following two rules.
  4360. \begin{enumerate}
  4361. \item If instruction $I_k$ is a move instruction of the form
  4362. \key{movq} $s$\key{,} $d$, then for every $v \in
  4363. L_{\mathsf{after}}(k)$, if $v \neq d$ and $v \neq s$, add the edge
  4364. $(d,v)$.
  4365. \item For any other instruction $I_k$, for every $d \in W(k)$ and
  4366. every $v \in L_{\mathsf{after}}(k)$, if $v \neq d$, add the edge
  4367. $(d,v)$.
  4368. \end{enumerate}
  4369. Working from the top to bottom of Figure~\ref{fig:live-eg}, we apply
  4370. the above rules to each instruction. We highlight a few of the
  4371. instructions. \racket{The first instruction is \lstinline{movq $1, v}
  4372. and the live-after set is $\{\ttm{v},\ttm{rsp}\}$. Rule 1 applies,
  4373. so \code{v} interferes with \code{rsp}.}
  4374. %
  4375. \python{The first instruction is \lstinline{movq $1, v} and the
  4376. live-after set is $\{\ttm{v}\}$. Rule 1 applies but there is
  4377. no interference because $\ttm{v}$ is the destination of the move.}
  4378. %
  4379. \racket{The fourth instruction is \lstinline{addq $7, x} and the
  4380. live-after set is $\{\ttm{w},\ttm{x},\ttm{rsp}\}$. Rule 2 applies so
  4381. $\ttm{x}$ interferes with \ttm{w} and \ttm{rsp}.}
  4382. %
  4383. \python{The fourth instruction is \lstinline{addq $7, x} and the
  4384. live-after set is $\{\ttm{w},\ttm{x}\}$. Rule 2 applies so
  4385. $\ttm{x}$ interferes with \ttm{w}.}
  4386. %
  4387. \racket{The next instruction is \lstinline{movq x, y} and the
  4388. live-after set is $\{\ttm{w},\ttm{x},\ttm{y},\ttm{rsp}\}$. Rule 1
  4389. applies, so \ttm{y} interferes with \ttm{w} and \ttm{rsp} but not
  4390. \ttm{x} because \ttm{x} is the source of the move and therefore
  4391. \ttm{x} and \ttm{y} hold the same value.}
  4392. %
  4393. \python{The next instruction is \lstinline{movq x, y} and the
  4394. live-after set is $\{\ttm{w},\ttm{x},\ttm{y}\}$. Rule 1
  4395. applies, so \ttm{y} interferes with \ttm{w} but not
  4396. \ttm{x} because \ttm{x} is the source of the move and therefore
  4397. \ttm{x} and \ttm{y} hold the same value.}
  4398. %
  4399. Figure~\ref{fig:interference-results} lists the interference results
  4400. for all of the instructions and the resulting interference graph is
  4401. shown in Figure~\ref{fig:interfere}.
  4402. \begin{figure}[tbp]
  4403. \begin{tcolorbox}[colback=white]
  4404. \begin{quote}
  4405. {\if\edition\racketEd
  4406. \begin{tabular}{ll}
  4407. \lstinline!movq $1, v!& \ttm{v} interferes with \ttm{rsp},\\
  4408. \lstinline!movq $42, w!& \ttm{w} interferes with \ttm{v} and \ttm{rsp},\\
  4409. \lstinline!movq v, x!& \ttm{x} interferes with \ttm{w} and \ttm{rsp},\\
  4410. \lstinline!addq $7, x!& \ttm{x} interferes with \ttm{w} and \ttm{rsp},\\
  4411. \lstinline!movq x, y!& \ttm{y} interferes with \ttm{w} and \ttm{rsp} but not \ttm{x},\\
  4412. \lstinline!movq x, z!& \ttm{z} interferes with \ttm{w}, \ttm{y}, and \ttm{rsp},\\
  4413. \lstinline!addq w, z!& \ttm{z} interferes with \ttm{y} and \ttm{rsp}, \\
  4414. \lstinline!movq y, t!& \ttm{t} interferes with \ttm{z} and \ttm{rsp}, \\
  4415. \lstinline!negq t!& \ttm{t} interferes with \ttm{z} and \ttm{rsp}, \\
  4416. \lstinline!movq z, %rax! & \ttm{rax} interferes with \ttm{t} and \ttm{rsp}, \\
  4417. \lstinline!addq t, %rax! & \ttm{rax} interferes with \ttm{rsp}. \\
  4418. \lstinline!jmp conclusion!& no interference.
  4419. \end{tabular}
  4420. \fi}
  4421. {\if\edition\pythonEd
  4422. \begin{tabular}{ll}
  4423. \lstinline!movq $1, v!& no interference\\
  4424. \lstinline!movq $42, w!& \ttm{w} interferes with \ttm{v}\\
  4425. \lstinline!movq v, x!& \ttm{x} interferes with \ttm{w}\\
  4426. \lstinline!addq $7, x!& \ttm{x} interferes with \ttm{w}\\
  4427. \lstinline!movq x, y!& \ttm{y} interferes with \ttm{w} but not \ttm{x}\\
  4428. \lstinline!movq x, z!& \ttm{z} interferes with \ttm{w} and \ttm{y}\\
  4429. \lstinline!addq w, z!& \ttm{z} interferes with \ttm{y} \\
  4430. \lstinline!movq y, tmp_0!& \ttm{tmp\_0} interferes with \ttm{z} \\
  4431. \lstinline!negq tmp_0!& \ttm{tmp\_0} interferes with \ttm{z} \\
  4432. \lstinline!movq z, tmp_1! & \ttm{tmp\_0} interferes with \ttm{tmp\_1} \\
  4433. \lstinline!addq tmp_0, tmp_1! & no interference\\
  4434. \lstinline!movq tmp_1, %rdi! & no interference \\
  4435. \lstinline!callq print_int!& no interference.
  4436. \end{tabular}
  4437. \fi}
  4438. \end{quote}
  4439. \end{tcolorbox}
  4440. \caption{Interference results for the running example.}
  4441. \label{fig:interference-results}
  4442. \end{figure}
  4443. \begin{figure}[tbp]
  4444. \begin{tcolorbox}[colback=white]
  4445. \large
  4446. {\if\edition\racketEd
  4447. \[
  4448. \begin{tikzpicture}[baseline=(current bounding box.center)]
  4449. \node (rax) at (0,0) {$\ttm{rax}$};
  4450. \node (rsp) at (9,2) {$\ttm{rsp}$};
  4451. \node (t1) at (0,2) {$\ttm{t}$};
  4452. \node (z) at (3,2) {$\ttm{z}$};
  4453. \node (x) at (6,2) {$\ttm{x}$};
  4454. \node (y) at (3,0) {$\ttm{y}$};
  4455. \node (w) at (6,0) {$\ttm{w}$};
  4456. \node (v) at (9,0) {$\ttm{v}$};
  4457. \draw (t1) to (rax);
  4458. \draw (t1) to (z);
  4459. \draw (z) to (y);
  4460. \draw (z) to (w);
  4461. \draw (x) to (w);
  4462. \draw (y) to (w);
  4463. \draw (v) to (w);
  4464. \draw (v) to (rsp);
  4465. \draw (w) to (rsp);
  4466. \draw (x) to (rsp);
  4467. \draw (y) to (rsp);
  4468. \path[-.,bend left=15] (z) edge node {} (rsp);
  4469. \path[-.,bend left=10] (t1) edge node {} (rsp);
  4470. \draw (rax) to (rsp);
  4471. \end{tikzpicture}
  4472. \]
  4473. \fi}
  4474. {\if\edition\pythonEd
  4475. \[
  4476. \begin{tikzpicture}[baseline=(current bounding box.center)]
  4477. \node (t0) at (0,2) {$\ttm{tmp\_0}$};
  4478. \node (t1) at (0,0) {$\ttm{tmp\_1}$};
  4479. \node (z) at (3,2) {$\ttm{z}$};
  4480. \node (x) at (6,2) {$\ttm{x}$};
  4481. \node (y) at (3,0) {$\ttm{y}$};
  4482. \node (w) at (6,0) {$\ttm{w}$};
  4483. \node (v) at (9,0) {$\ttm{v}$};
  4484. \draw (t0) to (t1);
  4485. \draw (t0) to (z);
  4486. \draw (z) to (y);
  4487. \draw (z) to (w);
  4488. \draw (x) to (w);
  4489. \draw (y) to (w);
  4490. \draw (v) to (w);
  4491. \end{tikzpicture}
  4492. \]
  4493. \fi}
  4494. \end{tcolorbox}
  4495. \caption{The interference graph of the example program.}
  4496. \label{fig:interfere}
  4497. \end{figure}
  4498. %% Our next concern is to choose a data structure for representing the
  4499. %% interference graph. There are many choices for how to represent a
  4500. %% graph, for example, \emph{adjacency matrix}, \emph{adjacency list},
  4501. %% and \emph{edge set}~\citep{Cormen:2001uq}. The right way to choose a
  4502. %% data structure is to study the algorithm that uses the data structure,
  4503. %% determine what operations need to be performed, and then choose the
  4504. %% data structure that provide the most efficient implementations of
  4505. %% those operations. Often times the choice of data structure can have an
  4506. %% effect on the time complexity of the algorithm, as it does here. If
  4507. %% you skim the next section, you will see that the register allocation
  4508. %% algorithm needs to ask the graph for all of its vertices and, given a
  4509. %% vertex, it needs to known all of the adjacent vertices. Thus, the
  4510. %% correct choice of graph representation is that of an adjacency
  4511. %% list. There are helper functions in \code{utilities.rkt} for
  4512. %% representing graphs using the adjacency list representation:
  4513. %% \code{make-graph}, \code{add-edge}, and \code{adjacent}
  4514. %% (Appendix~\ref{appendix:utilities}).
  4515. %% %
  4516. %% \margincomment{\footnotesize To do: change to use the
  4517. %% Racket graph library. \\ --Jeremy}
  4518. %% %
  4519. %% In particular, those functions use a hash table to map each vertex to
  4520. %% the set of adjacent vertices, and the sets are represented using
  4521. %% Racket's \key{set}, which is also a hash table.
  4522. \begin{exercise}\normalfont\normalsize
  4523. \racket{Implement the compiler pass named \code{build\_interference} according
  4524. to the algorithm suggested above. We recommend using the Racket
  4525. \code{graph} package to create and inspect the interference graph.
  4526. The output graph of this pass should be stored in the $\itm{info}$ field of
  4527. the program, under the key \code{conflicts}.}
  4528. %
  4529. \python{Implement a function named \code{build\_interference}
  4530. according to the algorithm suggested above that
  4531. returns the interference graph.}
  4532. \end{exercise}
  4533. \section{Graph Coloring via Sudoku}
  4534. \label{sec:graph-coloring}
  4535. \index{subject}{graph coloring}
  4536. \index{subject}{Sudoku}
  4537. \index{subject}{color}
  4538. We come to the main event of this chapter, mapping variables to
  4539. registers and stack locations. Variables that interfere with each
  4540. other must be mapped to different locations. In terms of the
  4541. interference graph, this means that adjacent vertices must be mapped
  4542. to different locations. If we think of locations as colors, the
  4543. register allocation problem becomes the graph coloring
  4544. problem~\citep{Balakrishnan:1996ve,Rosen:2002bh}.
  4545. The reader may be more familiar with the graph coloring problem than he
  4546. or she realizes; the popular game of Sudoku is an instance of the
  4547. graph coloring problem. The following describes how to build a graph
  4548. out of an initial Sudoku board.
  4549. \begin{itemize}
  4550. \item There is one vertex in the graph for each Sudoku square.
  4551. \item There is an edge between two vertices if the corresponding squares
  4552. are in the same row, in the same column, or if the squares are in
  4553. the same $3\times 3$ region.
  4554. \item Choose nine colors to correspond to the numbers $1$ to $9$.
  4555. \item Based on the initial assignment of numbers to squares in the
  4556. Sudoku board, assign the corresponding colors to the corresponding
  4557. vertices in the graph.
  4558. \end{itemize}
  4559. If you can color the remaining vertices in the graph with the nine
  4560. colors, then you have also solved the corresponding game of Sudoku.
  4561. Figure~\ref{fig:sudoku-graph} shows an initial Sudoku game board and
  4562. the corresponding graph with colored vertices. We map the Sudoku
  4563. number 1 to black, 2 to white, and 3 to gray. We only show edges for a
  4564. sampling of the vertices (the colored ones) because showing edges for
  4565. all of the vertices would make the graph unreadable.
  4566. \begin{figure}[tbp]
  4567. \begin{tcolorbox}[colback=white]
  4568. \includegraphics[width=0.5\textwidth]{figs/sudoku}
  4569. \includegraphics[width=0.5\textwidth]{figs/sudoku-graph-bw}
  4570. \end{tcolorbox}
  4571. \caption{A Sudoku game board and the corresponding colored graph.}
  4572. \label{fig:sudoku-graph}
  4573. \end{figure}
  4574. Some techniques for playing Sudoku correspond to heuristics used in
  4575. graph coloring algorithms. For example, one of the basic techniques
  4576. for Sudoku is called Pencil Marks. The idea is to use a process of
  4577. elimination to determine what numbers are no longer available for a
  4578. square and write down those numbers in the square (writing very
  4579. small). For example, if the number $1$ is assigned to a square, then
  4580. write the pencil mark $1$ in all the squares in the same row, column,
  4581. and region to indicate that $1$ is no longer an option for those other
  4582. squares.
  4583. %
  4584. The Pencil Marks technique corresponds to the notion of
  4585. \emph{saturation}\index{subject}{saturation} due to \cite{Brelaz:1979eu}. The
  4586. saturation of a vertex, in Sudoku terms, is the set of numbers that
  4587. are no longer available. In graph terminology, we have the following
  4588. definition:
  4589. \begin{equation*}
  4590. \mathrm{saturation}(u) = \{ c \;|\; \exists v. v \in \mathrm{adjacent}(u)
  4591. \text{ and } \mathrm{color}(v) = c \}
  4592. \end{equation*}
  4593. where $\mathrm{adjacent}(u)$ is the set of vertices that share an
  4594. edge with $u$.
  4595. The Pencil Marks technique leads to a simple strategy for filling in
  4596. numbers: if there is a square with only one possible number left, then
  4597. choose that number! But what if there are no squares with only one
  4598. possibility left? One brute-force approach is to try them all: choose
  4599. the first one and if that ultimately leads to a solution, great. If
  4600. not, backtrack and choose the next possibility. One good thing about
  4601. Pencil Marks is that it reduces the degree of branching in the search
  4602. tree. Nevertheless, backtracking can be terribly time consuming. One
  4603. way to reduce the amount of backtracking is to use the
  4604. most-constrained-first heuristic (aka. minimum remaining
  4605. values)~\citep{Russell2003}. That is, when choosing a square, always
  4606. choose one with the fewest possibilities left (the vertex with the
  4607. highest saturation). The idea is that choosing highly constrained
  4608. squares earlier rather than later is better because later on there may
  4609. not be any possibilities left in the highly saturated squares.
  4610. However, register allocation is easier than Sudoku because the
  4611. register allocator can fall back to assigning variables to stack
  4612. locations when the registers run out. Thus, it makes sense to replace
  4613. backtracking with greedy search: make the best choice at the time and
  4614. keep going. We still wish to minimize the number of colors needed, so
  4615. we use the most-constrained-first heuristic in the greedy search.
  4616. Figure~\ref{fig:satur-algo} gives the pseudo-code for a simple greedy
  4617. algorithm for register allocation based on saturation and the
  4618. most-constrained-first heuristic. It is roughly equivalent to the
  4619. DSATUR graph coloring algorithm~\citep{Brelaz:1979eu}.
  4620. %,Gebremedhin:1999fk,Omari:2006uq
  4621. Just as in Sudoku, the algorithm represents colors with integers. The
  4622. integers $0$ through $k-1$ correspond to the $k$ registers that we use
  4623. for register allocation. The integers $k$ and larger correspond to
  4624. stack locations. The registers that are not used for register
  4625. allocation, such as \code{rax}, are assigned to negative integers. In
  4626. particular, we assign $-1$ to \code{rax} and $-2$ to \code{rsp}.
  4627. %% One might wonder why we include registers at all in the liveness
  4628. %% analysis and interference graph. For example, we never allocate a
  4629. %% variable to \code{rax} and \code{rsp}, so it would be harmless to
  4630. %% leave them out. As we see in Chapter~\ref{ch:Lvec}, when we begin
  4631. %% to use register for passing arguments to functions, it will be
  4632. %% necessary for those registers to appear in the interference graph
  4633. %% because those registers will also be assigned to variables, and we
  4634. %% don't want those two uses to encroach on each other. Regarding
  4635. %% registers such as \code{rax} and \code{rsp} that are not used for
  4636. %% variables, we could omit them from the interference graph but that
  4637. %% would require adding special cases to our algorithm, which would
  4638. %% complicate the logic for little gain.
  4639. \begin{figure}[btp]
  4640. \begin{tcolorbox}[colback=white]
  4641. \centering
  4642. \begin{lstlisting}[basicstyle=\rmfamily,deletekeywords={for,from,with,is,not,in,find},morekeywords={while},columns=fullflexible]
  4643. Algorithm: DSATUR
  4644. Input: a graph |$G$|
  4645. Output: an assignment |$\mathrm{color}[v]$| for each vertex |$v \in G$|
  4646. |$W \gets \mathrm{vertices}(G)$|
  4647. while |$W \neq \emptyset$| do
  4648. pick a vertex |$u$| from |$W$| with the highest saturation,
  4649. breaking ties randomly
  4650. find the lowest color |$c$| that is not in |$\{ \mathrm{color}[v] \;:\; v \in \mathrm{adjacent}(u)\}$|
  4651. |$\mathrm{color}[u] \gets c$|
  4652. |$W \gets W - \{u\}$|
  4653. \end{lstlisting}
  4654. \end{tcolorbox}
  4655. \caption{The saturation-based greedy graph coloring algorithm.}
  4656. \label{fig:satur-algo}
  4657. \end{figure}
  4658. {\if\edition\racketEd
  4659. With the DSATUR algorithm in hand, let us return to the running
  4660. example and consider how to color the interference graph in
  4661. Figure~\ref{fig:interfere}.
  4662. %
  4663. We start by assigning the register nodes to their own color. For
  4664. example, \code{rax} is assigned the color $-1$ and \code{rsp} is
  4665. assigned $-2$. The variables are not yet colored, so they are
  4666. annotated with a dash. We then update the saturation for vertices that
  4667. are adjacent to a register, obtaining the following annotated
  4668. graph. For example, the saturation for \code{t} is $\{-1,-2\}$ because
  4669. it interferes with both \code{rax} and \code{rsp}.
  4670. \[
  4671. \begin{tikzpicture}[baseline=(current bounding box.center)]
  4672. \node (rax) at (0,0) {$\ttm{rax}:-1,\{-2\}$};
  4673. \node (rsp) at (10,2) {$\ttm{rsp}:-2,\{-1\}$};
  4674. \node (t1) at (0,2) {$\ttm{t}:-,\{-1,-2\}$};
  4675. \node (z) at (3,2) {$\ttm{z}:-,\{-2\}$};
  4676. \node (x) at (6,2) {$\ttm{x}:-,\{-2\}$};
  4677. \node (y) at (3,0) {$\ttm{y}:-,\{-2\}$};
  4678. \node (w) at (6,0) {$\ttm{w}:-,\{-2\}$};
  4679. \node (v) at (10,0) {$\ttm{v}:-,\{-2\}$};
  4680. \draw (t1) to (rax);
  4681. \draw (t1) to (z);
  4682. \draw (z) to (y);
  4683. \draw (z) to (w);
  4684. \draw (x) to (w);
  4685. \draw (y) to (w);
  4686. \draw (v) to (w);
  4687. \draw (v) to (rsp);
  4688. \draw (w) to (rsp);
  4689. \draw (x) to (rsp);
  4690. \draw (y) to (rsp);
  4691. \path[-.,bend left=15] (z) edge node {} (rsp);
  4692. \path[-.,bend left=10] (t1) edge node {} (rsp);
  4693. \draw (rax) to (rsp);
  4694. \end{tikzpicture}
  4695. \]
  4696. The algorithm says to select a maximally saturated vertex. So we pick
  4697. $\ttm{t}$ and color it with the first available integer, which is
  4698. $0$. We mark $0$ as no longer available for $\ttm{z}$, $\ttm{rax}$,
  4699. and \ttm{rsp} because they interfere with $\ttm{t}$.
  4700. \[
  4701. \begin{tikzpicture}[baseline=(current bounding box.center)]
  4702. \node (rax) at (0,0) {$\ttm{rax}:-1,\{0,-2\}$};
  4703. \node (rsp) at (10,2) {$\ttm{rsp}:-2,\{-1,0\}$};
  4704. \node (t1) at (0,2) {$\ttm{t}:0,\{-1,-2\}$};
  4705. \node (z) at (3,2) {$\ttm{z}:-,\{0,-2\}$};
  4706. \node (x) at (6,2) {$\ttm{x}:-,\{-2\}$};
  4707. \node (y) at (3,0) {$\ttm{y}:-,\{-2\}$};
  4708. \node (w) at (6,0) {$\ttm{w}:-,\{-2\}$};
  4709. \node (v) at (10,0) {$\ttm{v}:-,\{-2\}$};
  4710. \draw (t1) to (rax);
  4711. \draw (t1) to (z);
  4712. \draw (z) to (y);
  4713. \draw (z) to (w);
  4714. \draw (x) to (w);
  4715. \draw (y) to (w);
  4716. \draw (v) to (w);
  4717. \draw (v) to (rsp);
  4718. \draw (w) to (rsp);
  4719. \draw (x) to (rsp);
  4720. \draw (y) to (rsp);
  4721. \path[-.,bend left=15] (z) edge node {} (rsp);
  4722. \path[-.,bend left=10] (t1) edge node {} (rsp);
  4723. \draw (rax) to (rsp);
  4724. \end{tikzpicture}
  4725. \]
  4726. We repeat the process, selecting a maximally saturated vertex,
  4727. choosing is \code{z}, and color it with the first available number, which
  4728. is $1$. We add $1$ to the saturation for the neighboring vertices
  4729. \code{t}, \code{y}, \code{w}, and \code{rsp}.
  4730. \[
  4731. \begin{tikzpicture}[baseline=(current bounding box.center)]
  4732. \node (rax) at (0,0) {$\ttm{rax}:-1,\{0,-2\}$};
  4733. \node (rsp) at (10,2) {$\ttm{rsp}:-2,\{-1,0,1\}$};
  4734. \node (t1) at (0,2) {$\ttm{t}:0,\{-1,1,-2\}$};
  4735. \node (z) at (3,2) {$\ttm{z}:1,\{0,-2\}$};
  4736. \node (x) at (6,2) {$\ttm{x}:-,\{-2\}$};
  4737. \node (y) at (3,0) {$\ttm{y}:-,\{1,-2\}$};
  4738. \node (w) at (6,0) {$\ttm{w}:-,\{1,-2\}$};
  4739. \node (v) at (10,0) {$\ttm{v}:-,\{-2\}$};
  4740. \draw (t1) to (rax);
  4741. \draw (t1) to (z);
  4742. \draw (z) to (y);
  4743. \draw (z) to (w);
  4744. \draw (x) to (w);
  4745. \draw (y) to (w);
  4746. \draw (v) to (w);
  4747. \draw (v) to (rsp);
  4748. \draw (w) to (rsp);
  4749. \draw (x) to (rsp);
  4750. \draw (y) to (rsp);
  4751. \path[-.,bend left=15] (z) edge node {} (rsp);
  4752. \path[-.,bend left=10] (t1) edge node {} (rsp);
  4753. \draw (rax) to (rsp);
  4754. \end{tikzpicture}
  4755. \]
  4756. The most saturated vertices are now \code{w} and \code{y}. We color
  4757. \code{w} with the first available color, which is $0$.
  4758. \[
  4759. \begin{tikzpicture}[baseline=(current bounding box.center)]
  4760. \node (rax) at (0,0) {$\ttm{rax}:-1,\{0,-2\}$};
  4761. \node (rsp) at (10,2) {$\ttm{rsp}:-2,\{-1,0,1\}$};
  4762. \node (t1) at (0,2) {$\ttm{t}:0,\{-1,1,-2\}$};
  4763. \node (z) at (3,2) {$\ttm{z}:1,\{0,-2\}$};
  4764. \node (x) at (6,2) {$\ttm{x}:-,\{0,-2\}$};
  4765. \node (y) at (3,0) {$\ttm{y}:-,\{0,1,-2\}$};
  4766. \node (w) at (6,0) {$\ttm{w}:0,\{1,-2\}$};
  4767. \node (v) at (10,0) {$\ttm{v}:-,\{0,-2\}$};
  4768. \draw (t1) to (rax);
  4769. \draw (t1) to (z);
  4770. \draw (z) to (y);
  4771. \draw (z) to (w);
  4772. \draw (x) to (w);
  4773. \draw (y) to (w);
  4774. \draw (v) to (w);
  4775. \draw (v) to (rsp);
  4776. \draw (w) to (rsp);
  4777. \draw (x) to (rsp);
  4778. \draw (y) to (rsp);
  4779. \path[-.,bend left=15] (z) edge node {} (rsp);
  4780. \path[-.,bend left=10] (t1) edge node {} (rsp);
  4781. \draw (rax) to (rsp);
  4782. \end{tikzpicture}
  4783. \]
  4784. Vertex \code{y} is now the most highly saturated, so we color \code{y}
  4785. with $2$. We cannot choose $0$ or $1$ because those numbers are in
  4786. \code{y}'s saturation set. Indeed, \code{y} interferes with \code{w}
  4787. and \code{z}, whose colors are $0$ and $1$ respectively.
  4788. \[
  4789. \begin{tikzpicture}[baseline=(current bounding box.center)]
  4790. \node (rax) at (0,0) {$\ttm{rax}:-1,\{0,-2\}$};
  4791. \node (rsp) at (10,2) {$\ttm{rsp}:-2,\{-1,0,1,2\}$};
  4792. \node (t1) at (0,2) {$\ttm{t}:0,\{-1,1,-2\}$};
  4793. \node (z) at (3,2) {$\ttm{z}:1,\{0,2,-2\}$};
  4794. \node (x) at (6,2) {$\ttm{x}:-,\{0,-2\}$};
  4795. \node (y) at (3,0) {$\ttm{y}:2,\{0,1,-2\}$};
  4796. \node (w) at (6,0) {$\ttm{w}:0,\{1,2,-2\}$};
  4797. \node (v) at (10,0) {$\ttm{v}:-,\{0,-2\}$};
  4798. \draw (t1) to (rax);
  4799. \draw (t1) to (z);
  4800. \draw (z) to (y);
  4801. \draw (z) to (w);
  4802. \draw (x) to (w);
  4803. \draw (y) to (w);
  4804. \draw (v) to (w);
  4805. \draw (v) to (rsp);
  4806. \draw (w) to (rsp);
  4807. \draw (x) to (rsp);
  4808. \draw (y) to (rsp);
  4809. \path[-.,bend left=15] (z) edge node {} (rsp);
  4810. \path[-.,bend left=10] (t1) edge node {} (rsp);
  4811. \draw (rax) to (rsp);
  4812. \end{tikzpicture}
  4813. \]
  4814. Now \code{x} and \code{v} are the most saturated, so we color \code{v} with $1$.
  4815. \[
  4816. \begin{tikzpicture}[baseline=(current bounding box.center)]
  4817. \node (rax) at (0,0) {$\ttm{rax}:-1,\{0,-2\}$};
  4818. \node (rsp) at (10,2) {$\ttm{rsp}:-2,\{-1,0,1,2\}$};
  4819. \node (t1) at (0,2) {$\ttm{t}:0,\{-1,1,-2\}$};
  4820. \node (z) at (3,2) {$\ttm{z}:1,\{0,2,-2\}$};
  4821. \node (x) at (6,2) {$\ttm{x}:-,\{0,-2\}$};
  4822. \node (y) at (3,0) {$\ttm{y}:2,\{0,1,-2\}$};
  4823. \node (w) at (6,0) {$\ttm{w}:0,\{1,2,-2\}$};
  4824. \node (v) at (10,0) {$\ttm{v}:1,\{0,-2\}$};
  4825. \draw (t1) to (rax);
  4826. \draw (t1) to (z);
  4827. \draw (z) to (y);
  4828. \draw (z) to (w);
  4829. \draw (x) to (w);
  4830. \draw (y) to (w);
  4831. \draw (v) to (w);
  4832. \draw (v) to (rsp);
  4833. \draw (w) to (rsp);
  4834. \draw (x) to (rsp);
  4835. \draw (y) to (rsp);
  4836. \path[-.,bend left=15] (z) edge node {} (rsp);
  4837. \path[-.,bend left=10] (t1) edge node {} (rsp);
  4838. \draw (rax) to (rsp);
  4839. \end{tikzpicture}
  4840. \]
  4841. In the last step of the algorithm, we color \code{x} with $1$.
  4842. \[
  4843. \begin{tikzpicture}[baseline=(current bounding box.center)]
  4844. \node (rax) at (0,0) {$\ttm{rax}:-1,\{0,-2\}$};
  4845. \node (rsp) at (10,2) {$\ttm{rsp}:-2,\{-1,0,1,2\}$};
  4846. \node (t1) at (0,2) {$\ttm{t}:0,\{-1,1,-2\}$};
  4847. \node (z) at (3,2) {$\ttm{z}:1,\{0,2,-2\}$};
  4848. \node (x) at (6,2) {$\ttm{x}:1,\{0,-2\}$};
  4849. \node (y) at (3,0) {$\ttm{y}:2,\{0,1,-2\}$};
  4850. \node (w) at (6,0) {$\ttm{w}:0,\{1,2,-2\}$};
  4851. \node (v) at (10,0) {$\ttm{v}:1,\{0,-2\}$};
  4852. \draw (t1) to (rax);
  4853. \draw (t1) to (z);
  4854. \draw (z) to (y);
  4855. \draw (z) to (w);
  4856. \draw (x) to (w);
  4857. \draw (y) to (w);
  4858. \draw (v) to (w);
  4859. \draw (v) to (rsp);
  4860. \draw (w) to (rsp);
  4861. \draw (x) to (rsp);
  4862. \draw (y) to (rsp);
  4863. \path[-.,bend left=15] (z) edge node {} (rsp);
  4864. \path[-.,bend left=10] (t1) edge node {} (rsp);
  4865. \draw (rax) to (rsp);
  4866. \end{tikzpicture}
  4867. \]
  4868. So we obtain the following coloring:
  4869. \[
  4870. \{
  4871. \ttm{rax} \mapsto -1,
  4872. \ttm{rsp} \mapsto -2,
  4873. \ttm{t} \mapsto 0,
  4874. \ttm{z} \mapsto 1,
  4875. \ttm{x} \mapsto 1,
  4876. \ttm{y} \mapsto 2,
  4877. \ttm{w} \mapsto 0,
  4878. \ttm{v} \mapsto 1
  4879. \}
  4880. \]
  4881. \fi}
  4882. %
  4883. {\if\edition\pythonEd
  4884. %
  4885. With the DSATUR algorithm in hand, let us return to the running
  4886. example and consider how to color the interference graph in
  4887. Figure~\ref{fig:interfere}. We annotate each variable node with a dash
  4888. to indicate that it has not yet been assigned a color. The saturation
  4889. sets are also shown for each node; all of them start as the empty set.
  4890. (We do not include the register nodes in the graph below because there
  4891. were no interference edges involving registers in this program, but in
  4892. general there can be.)
  4893. %
  4894. \[
  4895. \begin{tikzpicture}[baseline=(current bounding box.center)]
  4896. \node (t0) at (0,2) {$\ttm{tmp\_0}: -, \{\}$};
  4897. \node (t1) at (0,0) {$\ttm{tmp\_1}: -, \{\}$};
  4898. \node (z) at (3,2) {$\ttm{z}: -, \{\}$};
  4899. \node (x) at (6,2) {$\ttm{x}: -, \{\}$};
  4900. \node (y) at (3,0) {$\ttm{y}: -, \{\}$};
  4901. \node (w) at (6,0) {$\ttm{w}: -, \{\}$};
  4902. \node (v) at (9,0) {$\ttm{v}: -, \{\}$};
  4903. \draw (t0) to (t1);
  4904. \draw (t0) to (z);
  4905. \draw (z) to (y);
  4906. \draw (z) to (w);
  4907. \draw (x) to (w);
  4908. \draw (y) to (w);
  4909. \draw (v) to (w);
  4910. \end{tikzpicture}
  4911. \]
  4912. The algorithm says to select a maximally saturated vertex, but they
  4913. are all equally saturated. So we flip a coin and pick $\ttm{tmp\_0}$
  4914. then color it with the first available integer, which is $0$. We mark
  4915. $0$ as no longer available for $\ttm{tmp\_1}$ and $\ttm{z}$ because
  4916. they interfere with $\ttm{tmp\_0}$.
  4917. \[
  4918. \begin{tikzpicture}[baseline=(current bounding box.center)]
  4919. \node (t0) at (0,2) {$\ttm{tmp\_0}: 0, \{\}$};
  4920. \node (t1) at (0,0) {$\ttm{tmp\_1}: -, \{0\}$};
  4921. \node (z) at (3,2) {$\ttm{z}: -, \{0\}$};
  4922. \node (x) at (6,2) {$\ttm{x}: -, \{\}$};
  4923. \node (y) at (3,0) {$\ttm{y}: -, \{\}$};
  4924. \node (w) at (6,0) {$\ttm{w}: -, \{\}$};
  4925. \node (v) at (9,0) {$\ttm{v}: -, \{\}$};
  4926. \draw (t0) to (t1);
  4927. \draw (t0) to (z);
  4928. \draw (z) to (y);
  4929. \draw (z) to (w);
  4930. \draw (x) to (w);
  4931. \draw (y) to (w);
  4932. \draw (v) to (w);
  4933. \end{tikzpicture}
  4934. \]
  4935. We repeat the process. The most saturated vertices are \code{z} and
  4936. \code{tmp\_1}, so we choose \code{z} and color it with the first
  4937. available number, which is $1$. We add $1$ to the saturation for the
  4938. neighboring vertices \code{tmp\_0}, \code{y}, and \code{w}.
  4939. \[
  4940. \begin{tikzpicture}[baseline=(current bounding box.center)]
  4941. \node (t0) at (0,2) {$\ttm{tmp\_0}: 0, \{1\}$};
  4942. \node (t1) at (0,0) {$\ttm{tmp\_1}: -, \{0\}$};
  4943. \node (z) at (3,2) {$\ttm{z}: 1, \{0\}$};
  4944. \node (x) at (6,2) {$\ttm{x}: -, \{\}$};
  4945. \node (y) at (3,0) {$\ttm{y}: -, \{1\}$};
  4946. \node (w) at (6,0) {$\ttm{w}: -, \{1\}$};
  4947. \node (v) at (9,0) {$\ttm{v}: -, \{\}$};
  4948. \draw (t0) to (t1);
  4949. \draw (t0) to (z);
  4950. \draw (z) to (y);
  4951. \draw (z) to (w);
  4952. \draw (x) to (w);
  4953. \draw (y) to (w);
  4954. \draw (v) to (w);
  4955. \end{tikzpicture}
  4956. \]
  4957. The most saturated vertices are now \code{tmp\_1}, \code{w}, and
  4958. \code{y}. We color \code{w} with the first available color, which
  4959. is $0$.
  4960. \[
  4961. \begin{tikzpicture}[baseline=(current bounding box.center)]
  4962. \node (t0) at (0,2) {$\ttm{tmp\_0}: 0, \{1\}$};
  4963. \node (t1) at (0,0) {$\ttm{tmp\_1}: -, \{0\}$};
  4964. \node (z) at (3,2) {$\ttm{z}: 1, \{0\}$};
  4965. \node (x) at (6,2) {$\ttm{x}: -, \{0\}$};
  4966. \node (y) at (3,0) {$\ttm{y}: -, \{0,1\}$};
  4967. \node (w) at (6,0) {$\ttm{w}: 0, \{1\}$};
  4968. \node (v) at (9,0) {$\ttm{v}: -, \{0\}$};
  4969. \draw (t0) to (t1);
  4970. \draw (t0) to (z);
  4971. \draw (z) to (y);
  4972. \draw (z) to (w);
  4973. \draw (x) to (w);
  4974. \draw (y) to (w);
  4975. \draw (v) to (w);
  4976. \end{tikzpicture}
  4977. \]
  4978. Now \code{y} is the most saturated, so we color it with $2$.
  4979. \[
  4980. \begin{tikzpicture}[baseline=(current bounding box.center)]
  4981. \node (t0) at (0,2) {$\ttm{tmp\_0}: 0, \{1\}$};
  4982. \node (t1) at (0,0) {$\ttm{tmp\_1}: -, \{0\}$};
  4983. \node (z) at (3,2) {$\ttm{z}: 1, \{0,2\}$};
  4984. \node (x) at (6,2) {$\ttm{x}: -, \{0\}$};
  4985. \node (y) at (3,0) {$\ttm{y}: 2, \{0,1\}$};
  4986. \node (w) at (6,0) {$\ttm{w}: 0, \{1,2\}$};
  4987. \node (v) at (9,0) {$\ttm{v}: -, \{0\}$};
  4988. \draw (t0) to (t1);
  4989. \draw (t0) to (z);
  4990. \draw (z) to (y);
  4991. \draw (z) to (w);
  4992. \draw (x) to (w);
  4993. \draw (y) to (w);
  4994. \draw (v) to (w);
  4995. \end{tikzpicture}
  4996. \]
  4997. The most saturated vertices are \code{tmp\_1}, \code{x}, and \code{v}.
  4998. We choose to color \code{v} with $1$.
  4999. \[
  5000. \begin{tikzpicture}[baseline=(current bounding box.center)]
  5001. \node (t0) at (0,2) {$\ttm{tmp\_0}: 0, \{1\}$};
  5002. \node (t1) at (0,0) {$\ttm{tmp\_1}: -, \{0\}$};
  5003. \node (z) at (3,2) {$\ttm{z}: 1, \{0,2\}$};
  5004. \node (x) at (6,2) {$\ttm{x}: -, \{0\}$};
  5005. \node (y) at (3,0) {$\ttm{y}: 2, \{0,1\}$};
  5006. \node (w) at (6,0) {$\ttm{w}: 0, \{1,2\}$};
  5007. \node (v) at (9,0) {$\ttm{v}: 1, \{0\}$};
  5008. \draw (t0) to (t1);
  5009. \draw (t0) to (z);
  5010. \draw (z) to (y);
  5011. \draw (z) to (w);
  5012. \draw (x) to (w);
  5013. \draw (y) to (w);
  5014. \draw (v) to (w);
  5015. \end{tikzpicture}
  5016. \]
  5017. We color the remaining two variables, \code{tmp\_1} and \code{x}, with $1$.
  5018. \[
  5019. \begin{tikzpicture}[baseline=(current bounding box.center)]
  5020. \node (t0) at (0,2) {$\ttm{tmp\_0}: 0, \{1\}$};
  5021. \node (t1) at (0,0) {$\ttm{tmp\_1}: 1, \{0\}$};
  5022. \node (z) at (3,2) {$\ttm{z}: 1, \{0,2\}$};
  5023. \node (x) at (6,2) {$\ttm{x}: 1, \{0\}$};
  5024. \node (y) at (3,0) {$\ttm{y}: 2, \{0,1\}$};
  5025. \node (w) at (6,0) {$\ttm{w}: 0, \{1,2\}$};
  5026. \node (v) at (9,0) {$\ttm{v}: 1, \{0\}$};
  5027. \draw (t0) to (t1);
  5028. \draw (t0) to (z);
  5029. \draw (z) to (y);
  5030. \draw (z) to (w);
  5031. \draw (x) to (w);
  5032. \draw (y) to (w);
  5033. \draw (v) to (w);
  5034. \end{tikzpicture}
  5035. \]
  5036. So we obtain the following coloring:
  5037. \[
  5038. \{ \ttm{tmp\_0} \mapsto 0,
  5039. \ttm{tmp\_1} \mapsto 1,
  5040. \ttm{z} \mapsto 1,
  5041. \ttm{x} \mapsto 1,
  5042. \ttm{y} \mapsto 2,
  5043. \ttm{w} \mapsto 0,
  5044. \ttm{v} \mapsto 1 \}
  5045. \]
  5046. \fi}
  5047. We recommend creating an auxiliary function named \code{color\_graph}
  5048. that takes an interference graph and a list of all the variables in
  5049. the program. This function should return a mapping of variables to
  5050. their colors (represented as natural numbers). By creating this helper
  5051. function, you will be able to reuse it in Chapter~\ref{ch:Lfun}
  5052. when we add support for functions.
  5053. To prioritize the processing of highly saturated nodes inside the
  5054. \code{color\_graph} function, we recommend using the priority queue
  5055. data structure \racket{described in Figure~\ref{fig:priority-queue}}\python{in the file \code{priority\_queue.py} of the support code}. \racket{In
  5056. addition, you will need to maintain a mapping from variables to their
  5057. ``handles'' in the priority queue so that you can notify the priority
  5058. queue when their saturation changes.}
  5059. {\if\edition\racketEd
  5060. \begin{figure}[tp]
  5061. %\begin{wrapfigure}[25]{r}[0.75in]{0.55\textwidth}
  5062. \small
  5063. \begin{tcolorbox}[title=Priority Queue]
  5064. A \emph{priority queue} is a collection of items in which the
  5065. removal of items is governed by priority. In a ``min'' queue,
  5066. lower priority items are removed first. An implementation is in
  5067. \code{priority\_queue.rkt} of the support code. \index{subject}{priority
  5068. queue} \index{subject}{minimum priority queue}
  5069. \begin{description}
  5070. \item[$\LP\code{make-pqueue}\,\itm{cmp}\RP$] constructs an empty
  5071. priority queue that uses the $\itm{cmp}$ predicate to determine
  5072. whether its first argument has lower or equal priority to its
  5073. second argument.
  5074. \item[$\LP\code{pqueue-count}\,\itm{queue}\RP$] returns the number of
  5075. items in the queue.
  5076. \item[$\LP\code{pqueue-push!}\,\itm{queue}\,\itm{item}\RP$] inserts
  5077. the item into the queue and returns a handle for the item in the
  5078. queue.
  5079. \item[$\LP\code{pqueue-pop!}\,\itm{queue}\RP$] returns the item with
  5080. the lowest priority.
  5081. \item[$\LP\code{pqueue-decrease-key!}\,\itm{queue}\,\itm{handle}\RP$]
  5082. notifies the queue that the priority has decreased for the item
  5083. associated with the given handle.
  5084. \end{description}
  5085. \end{tcolorbox}
  5086. %\end{wrapfigure}
  5087. \caption{The priority queue data structure.}
  5088. \label{fig:priority-queue}
  5089. \end{figure}
  5090. \fi}
  5091. With the coloring complete, we finalize the assignment of variables to
  5092. registers and stack locations. We map the first $k$ colors to the $k$
  5093. registers and the rest of the colors to stack locations. Suppose for
  5094. the moment that we have just one register to use for register
  5095. allocation, \key{rcx}. Then we have the following map from colors to
  5096. locations.
  5097. \[
  5098. \{ 0 \mapsto \key{\%rcx}, \; 1 \mapsto \key{-8(\%rbp)}, \; 2 \mapsto \key{-16(\%rbp)} \}
  5099. \]
  5100. Composing this mapping with the coloring, we arrive at the following
  5101. assignment of variables to locations.
  5102. {\if\edition\racketEd
  5103. \begin{gather*}
  5104. \{ \ttm{v} \mapsto \key{-8(\%rbp)}, \,
  5105. \ttm{w} \mapsto \key{\%rcx}, \,
  5106. \ttm{x} \mapsto \key{-8(\%rbp)}, \,
  5107. \ttm{y} \mapsto \key{-16(\%rbp)}, \\
  5108. \ttm{z} \mapsto \key{-8(\%rbp)}, \,
  5109. \ttm{t} \mapsto \key{\%rcx} \}
  5110. \end{gather*}
  5111. \fi}
  5112. {\if\edition\pythonEd
  5113. \begin{gather*}
  5114. \{ \ttm{v} \mapsto \key{-8(\%rbp)}, \,
  5115. \ttm{w} \mapsto \key{\%rcx}, \,
  5116. \ttm{x} \mapsto \key{-8(\%rbp)}, \,
  5117. \ttm{y} \mapsto \key{-16(\%rbp)}, \\
  5118. \ttm{z} \mapsto \key{-8(\%rbp)}, \,
  5119. \ttm{tmp\_0} \mapsto \key{\%rcx}, \,
  5120. \ttm{tmp\_1} \mapsto \key{-8(\%rbp)} \}
  5121. \end{gather*}
  5122. \fi}
  5123. Adapt the code from the \code{assign\_homes} pass
  5124. (Section~\ref{sec:assign-Lvar}) to replace the variables with their
  5125. assigned location. Applying the above assignment to our running
  5126. example, on the left, yields the program on the right.
  5127. % why frame size of 32? -JGS
  5128. \begin{center}
  5129. {\if\edition\racketEd
  5130. \begin{minipage}{0.3\textwidth}
  5131. \begin{lstlisting}
  5132. movq $1, v
  5133. movq $42, w
  5134. movq v, x
  5135. addq $7, x
  5136. movq x, y
  5137. movq x, z
  5138. addq w, z
  5139. movq y, t
  5140. negq t
  5141. movq z, %rax
  5142. addq t, %rax
  5143. jmp conclusion
  5144. \end{lstlisting}
  5145. \end{minipage}
  5146. $\Rightarrow\qquad$
  5147. \begin{minipage}{0.45\textwidth}
  5148. \begin{lstlisting}
  5149. movq $1, -8(%rbp)
  5150. movq $42, %rcx
  5151. movq -8(%rbp), -8(%rbp)
  5152. addq $7, -8(%rbp)
  5153. movq -8(%rbp), -16(%rbp)
  5154. movq -8(%rbp), -8(%rbp)
  5155. addq %rcx, -8(%rbp)
  5156. movq -16(%rbp), %rcx
  5157. negq %rcx
  5158. movq -8(%rbp), %rax
  5159. addq %rcx, %rax
  5160. jmp conclusion
  5161. \end{lstlisting}
  5162. \end{minipage}
  5163. \fi}
  5164. {\if\edition\pythonEd
  5165. \begin{minipage}{0.3\textwidth}
  5166. \begin{lstlisting}
  5167. movq $1, v
  5168. movq $42, w
  5169. movq v, x
  5170. addq $7, x
  5171. movq x, y
  5172. movq x, z
  5173. addq w, z
  5174. movq y, tmp_0
  5175. negq tmp_0
  5176. movq z, tmp_1
  5177. addq tmp_0, tmp_1
  5178. movq tmp_1, %rdi
  5179. callq print_int
  5180. \end{lstlisting}
  5181. \end{minipage}
  5182. $\Rightarrow\qquad$
  5183. \begin{minipage}{0.45\textwidth}
  5184. \begin{lstlisting}
  5185. movq $1, -8(%rbp)
  5186. movq $42, %rcx
  5187. movq -8(%rbp), -8(%rbp)
  5188. addq $7, -8(%rbp)
  5189. movq -8(%rbp), -16(%rbp)
  5190. movq -8(%rbp), -8(%rbp)
  5191. addq %rcx, -8(%rbp)
  5192. movq -16(%rbp), %rcx
  5193. negq %rcx
  5194. movq -8(%rbp), -8(%rbp)
  5195. addq %rcx, -8(%rbp)
  5196. movq -8(%rbp), %rdi
  5197. callq print_int
  5198. \end{lstlisting}
  5199. \end{minipage}
  5200. \fi}
  5201. \end{center}
  5202. \begin{exercise}\normalfont\normalsize
  5203. Implement the \code{allocate\_registers} pass.
  5204. Create five programs that exercise all aspects of the register
  5205. allocation algorithm, including spilling variables to the stack.
  5206. %
  5207. {\if\edition\racketEd
  5208. Replace \code{assign\_homes} in the list of \code{passes} in the
  5209. \code{run-tests.rkt} script with the three new passes:
  5210. \code{uncover\_live}, \code{build\_interference}, and
  5211. \code{allocate\_registers}.
  5212. Temporarily remove the call to \code{compiler-tests}.
  5213. Run the script to test the register allocator.
  5214. \fi}
  5215. %
  5216. {\if\edition\pythonEd
  5217. Run the \code{run-tests.py} script to to check whether the
  5218. output programs produce the same result as the input programs.
  5219. \fi}
  5220. \end{exercise}
  5221. \section{Patch Instructions}
  5222. \label{sec:patch-instructions}
  5223. The remaining step in the compilation to x86 is to ensure that the
  5224. instructions have at most one argument that is a memory access.
  5225. %
  5226. In the running example, the instruction \code{movq -8(\%rbp),
  5227. -16(\%rbp)} is problematic. Recall from Section~\ref{sec:patch-s0}
  5228. that the fix is to first move \code{-8(\%rbp)} into \code{rax} and
  5229. then move \code{rax} into \code{-16(\%rbp)}.
  5230. %
  5231. The moves from \code{-8(\%rbp)} to \code{-8(\%rbp)} are also
  5232. problematic, but they can simply be deleted. In general, we recommend
  5233. deleting all the trivial moves whose source and destination are the
  5234. same location.
  5235. %
  5236. The following is the output of \code{patch\_instructions} on the
  5237. running example.
  5238. \begin{center}
  5239. {\if\edition\racketEd
  5240. \begin{minipage}{0.4\textwidth}
  5241. \begin{lstlisting}
  5242. movq $1, -8(%rbp)
  5243. movq $42, %rcx
  5244. movq -8(%rbp), -8(%rbp)
  5245. addq $7, -8(%rbp)
  5246. movq -8(%rbp), -16(%rbp)
  5247. movq -8(%rbp), -8(%rbp)
  5248. addq %rcx, -8(%rbp)
  5249. movq -16(%rbp), %rcx
  5250. negq %rcx
  5251. movq -8(%rbp), %rax
  5252. addq %rcx, %rax
  5253. jmp conclusion
  5254. \end{lstlisting}
  5255. \end{minipage}
  5256. $\Rightarrow\qquad$
  5257. \begin{minipage}{0.45\textwidth}
  5258. \begin{lstlisting}
  5259. movq $1, -8(%rbp)
  5260. movq $42, %rcx
  5261. addq $7, -8(%rbp)
  5262. movq -8(%rbp), %rax
  5263. movq %rax, -16(%rbp)
  5264. addq %rcx, -8(%rbp)
  5265. movq -16(%rbp), %rcx
  5266. negq %rcx
  5267. movq -8(%rbp), %rax
  5268. addq %rcx, %rax
  5269. jmp conclusion
  5270. \end{lstlisting}
  5271. \end{minipage}
  5272. \fi}
  5273. {\if\edition\pythonEd
  5274. \begin{minipage}{0.4\textwidth}
  5275. \begin{lstlisting}
  5276. movq $1, -8(%rbp)
  5277. movq $42, %rcx
  5278. movq -8(%rbp), -8(%rbp)
  5279. addq $7, -8(%rbp)
  5280. movq -8(%rbp), -16(%rbp)
  5281. movq -8(%rbp), -8(%rbp)
  5282. addq %rcx, -8(%rbp)
  5283. movq -16(%rbp), %rcx
  5284. negq %rcx
  5285. movq -8(%rbp), -8(%rbp)
  5286. addq %rcx, -8(%rbp)
  5287. movq -8(%rbp), %rdi
  5288. callq print_int
  5289. \end{lstlisting}
  5290. \end{minipage}
  5291. $\Rightarrow\qquad$
  5292. \begin{minipage}{0.45\textwidth}
  5293. \begin{lstlisting}
  5294. movq $1, -8(%rbp)
  5295. movq $42, %rcx
  5296. addq $7, -8(%rbp)
  5297. movq -8(%rbp), %rax
  5298. movq %rax, -16(%rbp)
  5299. addq %rcx, -8(%rbp)
  5300. movq -16(%rbp), %rcx
  5301. negq %rcx
  5302. addq %rcx, -8(%rbp)
  5303. movq -8(%rbp), %rdi
  5304. callq print_int
  5305. \end{lstlisting}
  5306. \end{minipage}
  5307. \fi}
  5308. \end{center}
  5309. \begin{exercise}\normalfont\normalsize
  5310. %
  5311. Update the \code{patch\_instructions} compiler pass to delete trivial moves.
  5312. %
  5313. %Insert it after \code{allocate\_registers} in the list of \code{passes}
  5314. %in the \code{run-tests.rkt} script.
  5315. %
  5316. Run the script to test the \code{patch\_instructions} pass.
  5317. \end{exercise}
  5318. \section{Prelude and Conclusion}
  5319. \label{sec:print-x86-reg-alloc}
  5320. \index{subject}{calling conventions}
  5321. \index{subject}{prelude}\index{subject}{conclusion}
  5322. Recall that this pass generates the prelude and conclusion
  5323. instructions to satisfy the x86 calling conventions
  5324. (Section~\ref{sec:calling-conventions}). With the addition of the
  5325. register allocator, the callee-saved registers used by the register
  5326. allocator must be saved in the prelude and restored in the conclusion.
  5327. In the \code{allocate\_registers} pass,
  5328. %
  5329. \racket{add an entry to the \itm{info}
  5330. of \code{X86Program} named \code{used\_callee}}
  5331. %
  5332. \python{add a field named \code{used\_callee} to the \code{X86Program} AST node}
  5333. %
  5334. that stores the set of callee-saved registers that were assigned to
  5335. variables. The \code{prelude\_and\_conclusion} pass can then access
  5336. this information to decide which callee-saved registers need to be
  5337. saved and restored.
  5338. %
  5339. When calculating the amount to adjust the \code{rsp} in the prelude,
  5340. make sure to take into account the space used for saving the
  5341. callee-saved registers. Also, don't forget that the frame needs to be
  5342. a multiple of 16 bytes! We recommend using the following equation for
  5343. the amount $A$ to subtract from the \code{rsp}. Let $S$ be the number
  5344. of spilled variables and $C$ be the number of callee-saved registers
  5345. that were allocated to variables. The $\itm{align}$ function rounds a
  5346. number up to the nearest 16 bytes.
  5347. \[
  5348. \itm{A} = \itm{align}(8\itm{S} + 8\itm{C}) - 8\itm{C}
  5349. \]
  5350. The reason we subtract $8\itm{C}$ in the above equation is because the
  5351. prelude uses \code{pushq} to save each of the callee-saved registers,
  5352. and \code{pushq} subtracts $8$ from the \code{rsp}.
  5353. \racket{An overview of all of the passes involved in register
  5354. allocation is shown in Figure~\ref{fig:reg-alloc-passes}.}
  5355. {\if\edition\racketEd
  5356. \begin{figure}[tbp]
  5357. \begin{tcolorbox}[colback=white]
  5358. \begin{tikzpicture}[baseline=(current bounding box.center)]
  5359. \node (Lvar) at (0,2) {\large \LangVar{}};
  5360. \node (Lvar-2) at (3,2) {\large \LangVar{}};
  5361. \node (Lvar-3) at (6,2) {\large \LangVarANF{}};
  5362. \node (Cvar-1) at (3,0) {\large \LangCVar{}};
  5363. \node (x86-2) at (3,-2) {\large \LangXVar{}};
  5364. \node (x86-3) at (6,-2) {\large \LangXVar{}};
  5365. \node (x86-4) at (9,-2) {\large \LangXInt{}};
  5366. \node (x86-5) at (9,-4) {\large \LangXInt{}};
  5367. \node (x86-2-1) at (3,-4) {\large \LangXVar{}};
  5368. \node (x86-2-2) at (6,-4) {\large \LangXVar{}};
  5369. \path[->,bend left=15] (Lvar) edge [above] node {\ttfamily\footnotesize uniquify} (Lvar-2);
  5370. \path[->,bend left=15] (Lvar-2) edge [above] node {\ttfamily\footnotesize remove\_complex.} (Lvar-3);
  5371. \path[->,bend left=15] (Lvar-3) edge [right] node {\ttfamily\footnotesize explicate\_control} (Cvar-1);
  5372. \path[->,bend right=15] (Cvar-1) edge [left] node {\ttfamily\footnotesize select\_instr.} (x86-2);
  5373. \path[->,bend left=15] (x86-2) edge [left] node {\ttfamily\footnotesize uncover\_live} (x86-2-1);
  5374. \path[->,bend right=15] (x86-2-1) edge [below] node {\ttfamily\footnotesize build\_inter.} (x86-2-2);
  5375. \path[->,bend right=15] (x86-2-2) edge [left] node {\ttfamily\footnotesize allocate\_reg.} (x86-3);
  5376. \path[->,bend left=15] (x86-3) edge [above] node {\ttfamily\footnotesize patch\_instr.} (x86-4);
  5377. \path[->,bend left=15] (x86-4) edge [left] node {\ttfamily\footnotesize prelude\_and\_concl.} (x86-5);
  5378. \end{tikzpicture}
  5379. \end{tcolorbox}
  5380. \caption{Diagram of the passes for \LangVar{} with register allocation.}
  5381. \label{fig:reg-alloc-passes}
  5382. \end{figure}
  5383. \fi}
  5384. Figure~\ref{fig:running-example-x86} shows the x86 code generated for
  5385. the running example (Figure~\ref{fig:reg-eg}). To demonstrate both the
  5386. use of registers and the stack, we limit the register allocator for
  5387. this example to use just two registers: \code{rbx} and \code{rcx}. In
  5388. the prelude\index{subject}{prelude} of the \code{main} function, we
  5389. push \code{rbx} onto the stack because it is a callee-saved register
  5390. and it was assigned to a variable by the register allocator. We
  5391. subtract \code{8} from the \code{rsp} at the end of the prelude to
  5392. reserve space for the one spilled variable. After that subtraction,
  5393. the \code{rsp} is aligned to 16 bytes.
  5394. Moving on to the program proper, we see how the registers were
  5395. allocated.
  5396. %
  5397. \racket{Variables \code{v}, \code{x}, and \code{y} were assigned to
  5398. \code{rbx} and variable \code{z} was assigned to \code{rcx}.}
  5399. %
  5400. \python{Variables \code{v}, \code{x}, \code{y}, and \code{tmp\_0}
  5401. were assigned to \code{rcx} and variables \code{w} and \code{tmp\_1}
  5402. were assigned to \code{rbx}.}
  5403. %
  5404. Variable \racket{\code{w}}\python{\code{z}} was spilled to the stack
  5405. location \code{-16(\%rbp)}. Recall that the prelude saved the
  5406. callee-save register \code{rbx} onto the stack. The spilled variables
  5407. must be placed lower on the stack than the saved callee-save
  5408. registers, so in this case \racket{\code{w}}\python{z} is placed at
  5409. \code{-16(\%rbp)}.
  5410. In the conclusion\index{subject}{conclusion}, we undo the work that was
  5411. done in the prelude. We move the stack pointer up by \code{8} bytes
  5412. (the room for spilled variables), then we pop the old values of
  5413. \code{rbx} and \code{rbp} (callee-saved registers), and finish with
  5414. \code{retq} to return control to the operating system.
  5415. \begin{figure}[tbp]
  5416. \begin{minipage}{0.55\textwidth}
  5417. \begin{tcolorbox}[colback=white]
  5418. % var_test_28.rkt
  5419. % (use-minimal-set-of-registers! #t)
  5420. % and only rbx rcx
  5421. % tmp 0 rbx
  5422. % z 1 rcx
  5423. % y 0 rbx
  5424. % w 2 16(%rbp)
  5425. % v 0 rbx
  5426. % x 0 rbx
  5427. {\if\edition\racketEd
  5428. \begin{lstlisting}
  5429. start:
  5430. movq $1, %rbx
  5431. movq $42, -16(%rbp)
  5432. addq $7, %rbx
  5433. movq %rbx, %rcx
  5434. addq -16(%rbp), %rcx
  5435. negq %rbx
  5436. movq %rcx, %rax
  5437. addq %rbx, %rax
  5438. jmp conclusion
  5439. .globl main
  5440. main:
  5441. pushq %rbp
  5442. movq %rsp, %rbp
  5443. pushq %rbx
  5444. subq $8, %rsp
  5445. jmp start
  5446. conclusion:
  5447. addq $8, %rsp
  5448. popq %rbx
  5449. popq %rbp
  5450. retq
  5451. \end{lstlisting}
  5452. \fi}
  5453. {\if\edition\pythonEd
  5454. %{v: %rcx, x: %rcx, z: -16(%rbp), w: %rbx, tmp_1: %rbx, y: %rcx, tmp_0: %rcx}
  5455. \begin{lstlisting}
  5456. .globl main
  5457. main:
  5458. pushq %rbp
  5459. movq %rsp, %rbp
  5460. pushq %rbx
  5461. subq $8, %rsp
  5462. movq $1, %rcx
  5463. movq $42, %rbx
  5464. addq $7, %rcx
  5465. movq %rcx, -16(%rbp)
  5466. addq %rbx, -16(%rbp)
  5467. negq %rcx
  5468. movq -16(%rbp), %rbx
  5469. addq %rcx, %rbx
  5470. movq %rbx, %rdi
  5471. callq print_int
  5472. addq $8, %rsp
  5473. popq %rbx
  5474. popq %rbp
  5475. retq
  5476. \end{lstlisting}
  5477. \fi}
  5478. \end{tcolorbox}
  5479. \end{minipage}
  5480. \caption{The x86 output from the running example
  5481. (Figure~\ref{fig:reg-eg}), limiting allocation to just \code{rbx}
  5482. and \code{rcx}.}
  5483. \label{fig:running-example-x86}
  5484. \end{figure}
  5485. \begin{exercise}\normalfont\normalsize
  5486. Update the \code{prelude\_and\_conclusion} pass as described in this section.
  5487. %
  5488. \racket{
  5489. In the \code{run-tests.rkt} script, add \code{prelude\_and\_conclusion} to the
  5490. list of passes and the call to \code{compiler-tests}.}
  5491. %
  5492. Run the script to test the complete compiler for \LangVar{} that
  5493. performs register allocation.
  5494. \end{exercise}
  5495. \section{Challenge: Move Biasing}
  5496. \label{sec:move-biasing}
  5497. \index{subject}{move biasing}
  5498. This section describes an enhancement to the register allocator,
  5499. called move biasing, for students who are looking for an extra
  5500. challenge.
  5501. {\if\edition\racketEd
  5502. To motivate the need for move biasing we return to the running example
  5503. but this time we use all of the general purpose registers. So we have
  5504. the following mapping of color numbers to registers.
  5505. \[
  5506. \{ 0 \mapsto \key{\%rcx}, \; 1 \mapsto \key{\%rdx}, \; 2 \mapsto \key{\%rsi}, \ldots \}
  5507. \]
  5508. Using the same assignment of variables to color numbers that was
  5509. produced by the register allocator described in the last section, we
  5510. get the following program.
  5511. \begin{center}
  5512. \begin{minipage}{0.3\textwidth}
  5513. \begin{lstlisting}
  5514. movq $1, v
  5515. movq $42, w
  5516. movq v, x
  5517. addq $7, x
  5518. movq x, y
  5519. movq x, z
  5520. addq w, z
  5521. movq y, t
  5522. negq t
  5523. movq z, %rax
  5524. addq t, %rax
  5525. jmp conclusion
  5526. \end{lstlisting}
  5527. \end{minipage}
  5528. $\Rightarrow\qquad$
  5529. \begin{minipage}{0.45\textwidth}
  5530. \begin{lstlisting}
  5531. movq $1, %rdx
  5532. movq $42, %rcx
  5533. movq %rdx, %rdx
  5534. addq $7, %rdx
  5535. movq %rdx, %rsi
  5536. movq %rdx, %rdx
  5537. addq %rcx, %rdx
  5538. movq %rsi, %rcx
  5539. negq %rcx
  5540. movq %rdx, %rax
  5541. addq %rcx, %rax
  5542. jmp conclusion
  5543. \end{lstlisting}
  5544. \end{minipage}
  5545. \end{center}
  5546. In the above output code there are two \key{movq} instructions that
  5547. can be removed because their source and target are the same. However,
  5548. if we had put \key{t}, \key{v}, \key{x}, and \key{y} into the same
  5549. register, we could instead remove three \key{movq} instructions. We
  5550. can accomplish this by taking into account which variables appear in
  5551. \key{movq} instructions with which other variables.
  5552. \fi}
  5553. {\if\edition\pythonEd
  5554. %
  5555. To motivate the need for move biasing we return to the running example
  5556. and recall that in Section~\ref{sec:patch-instructions} we were able to
  5557. remove three trivial move instructions from the running
  5558. example. However, we could remove another trivial move if we were able
  5559. to allocate \code{y} and \code{tmp\_0} to the same register. \fi}
  5560. We say that two variables $p$ and $q$ are \emph{move
  5561. related}\index{subject}{move related} if they participate together in
  5562. a \key{movq} instruction, that is, \key{movq} $p$\key{,} $q$ or
  5563. \key{movq} $q$\key{,} $p$. When deciding which variable to color next,
  5564. when there are multiple variables with the same saturation, prefer
  5565. variables that can be assigned to a color that is the same as the
  5566. color of a move related variable. Furthermore, when the register
  5567. allocator chooses a color for a variable, it should prefer a color
  5568. that has already been used for a move-related variable (assuming that
  5569. they do not interfere). Of course, this preference should not override
  5570. the preference for registers over stack locations. So this preference
  5571. should be used as a tie breaker when choosing between registers or
  5572. when choosing between stack locations.
  5573. We recommend representing the move relationships in a graph, similar
  5574. to how we represented interference. The following is the \emph{move
  5575. graph} for our running example.
  5576. {\if\edition\racketEd
  5577. \[
  5578. \begin{tikzpicture}[baseline=(current bounding box.center)]
  5579. \node (rax) at (0,0) {$\ttm{rax}$};
  5580. \node (rsp) at (9,2) {$\ttm{rsp}$};
  5581. \node (t) at (0,2) {$\ttm{t}$};
  5582. \node (z) at (3,2) {$\ttm{z}$};
  5583. \node (x) at (6,2) {$\ttm{x}$};
  5584. \node (y) at (3,0) {$\ttm{y}$};
  5585. \node (w) at (6,0) {$\ttm{w}$};
  5586. \node (v) at (9,0) {$\ttm{v}$};
  5587. \draw (v) to (x);
  5588. \draw (x) to (y);
  5589. \draw (x) to (z);
  5590. \draw (y) to (t);
  5591. \end{tikzpicture}
  5592. \]
  5593. \fi}
  5594. %
  5595. {\if\edition\pythonEd
  5596. \[
  5597. \begin{tikzpicture}[baseline=(current bounding box.center)]
  5598. \node (t0) at (0,2) {$\ttm{tmp\_0}$};
  5599. \node (t1) at (0,0) {$\ttm{tmp\_1}$};
  5600. \node (z) at (3,2) {$\ttm{z}$};
  5601. \node (x) at (6,2) {$\ttm{x}$};
  5602. \node (y) at (3,0) {$\ttm{y}$};
  5603. \node (w) at (6,0) {$\ttm{w}$};
  5604. \node (v) at (9,0) {$\ttm{v}$};
  5605. \draw (y) to (t0);
  5606. \draw (z) to (x);
  5607. \draw (z) to (t1);
  5608. \draw (x) to (y);
  5609. \draw (x) to (v);
  5610. \end{tikzpicture}
  5611. \]
  5612. \fi}
  5613. {\if\edition\racketEd
  5614. Now we replay the graph coloring, pausing to see the coloring of
  5615. \code{y}. Recall the following configuration. The most saturated vertices
  5616. were \code{w} and \code{y}.
  5617. \[
  5618. \begin{tikzpicture}[baseline=(current bounding box.center)]
  5619. \node (rax) at (0,0) {$\ttm{rax}:-1,\{0,-2\}$};
  5620. \node (rsp) at (9,2) {$\ttm{rsp}:-2,\{-1,0,1,2\}$};
  5621. \node (t1) at (0,2) {$\ttm{t}:0,\{1,-2\}$};
  5622. \node (z) at (3,2) {$\ttm{z}:1,\{0,-2\}$};
  5623. \node (x) at (6,2) {$\ttm{x}:-,\{-2\}$};
  5624. \node (y) at (3,0) {$\ttm{y}:-,\{1,-2\}$};
  5625. \node (w) at (6,0) {$\ttm{w}:-,\{1,-2\}$};
  5626. \node (v) at (9,0) {$\ttm{v}:-,\{-2\}$};
  5627. \draw (t1) to (rax);
  5628. \draw (t1) to (z);
  5629. \draw (z) to (y);
  5630. \draw (z) to (w);
  5631. \draw (x) to (w);
  5632. \draw (y) to (w);
  5633. \draw (v) to (w);
  5634. \draw (v) to (rsp);
  5635. \draw (w) to (rsp);
  5636. \draw (x) to (rsp);
  5637. \draw (y) to (rsp);
  5638. \path[-.,bend left=15] (z) edge node {} (rsp);
  5639. \path[-.,bend left=10] (t1) edge node {} (rsp);
  5640. \draw (rax) to (rsp);
  5641. \end{tikzpicture}
  5642. \]
  5643. %
  5644. Last time we chose to color \code{w} with $0$. But this time we see
  5645. that \code{w} is not move related to any vertex, but \code{y} is move
  5646. related to \code{t}. So we choose to color \code{y} with $0$, the
  5647. same color as \code{t}.
  5648. \[
  5649. \begin{tikzpicture}[baseline=(current bounding box.center)]
  5650. \node (rax) at (0,0) {$\ttm{rax}:-1,\{0,-2\}$};
  5651. \node (rsp) at (9,2) {$\ttm{rsp}:-2,\{-1,0,1,2\}$};
  5652. \node (t1) at (0,2) {$\ttm{t}:0,\{1,-2\}$};
  5653. \node (z) at (3,2) {$\ttm{z}:1,\{0,-2\}$};
  5654. \node (x) at (6,2) {$\ttm{x}:-,\{-2\}$};
  5655. \node (y) at (3,0) {$\ttm{y}:0,\{1,-2\}$};
  5656. \node (w) at (6,0) {$\ttm{w}:-,\{0,1,-2\}$};
  5657. \node (v) at (9,0) {$\ttm{v}:-,\{-2\}$};
  5658. \draw (t1) to (rax);
  5659. \draw (t1) to (z);
  5660. \draw (z) to (y);
  5661. \draw (z) to (w);
  5662. \draw (x) to (w);
  5663. \draw (y) to (w);
  5664. \draw (v) to (w);
  5665. \draw (v) to (rsp);
  5666. \draw (w) to (rsp);
  5667. \draw (x) to (rsp);
  5668. \draw (y) to (rsp);
  5669. \path[-.,bend left=15] (z) edge node {} (rsp);
  5670. \path[-.,bend left=10] (t1) edge node {} (rsp);
  5671. \draw (rax) to (rsp);
  5672. \end{tikzpicture}
  5673. \]
  5674. Now \code{w} is the most saturated, so we color it $2$.
  5675. \[
  5676. \begin{tikzpicture}[baseline=(current bounding box.center)]
  5677. \node (rax) at (0,0) {$\ttm{rax}:-1,\{0,-2\}$};
  5678. \node (rsp) at (9,2) {$\ttm{rsp}:-2,\{-1,0,1,2\}$};
  5679. \node (t1) at (0,2) {$\ttm{t}:0,\{1,-2\}$};
  5680. \node (z) at (3,2) {$\ttm{z}:1,\{0,2,-2\}$};
  5681. \node (x) at (6,2) {$\ttm{x}:-,\{2,-2\}$};
  5682. \node (y) at (3,0) {$\ttm{y}:0,\{1,2,-2\}$};
  5683. \node (w) at (6,0) {$\ttm{w}:2,\{0,1,-2\}$};
  5684. \node (v) at (9,0) {$\ttm{v}:-,\{2,-2\}$};
  5685. \draw (t1) to (rax);
  5686. \draw (t1) to (z);
  5687. \draw (z) to (y);
  5688. \draw (z) to (w);
  5689. \draw (x) to (w);
  5690. \draw (y) to (w);
  5691. \draw (v) to (w);
  5692. \draw (v) to (rsp);
  5693. \draw (w) to (rsp);
  5694. \draw (x) to (rsp);
  5695. \draw (y) to (rsp);
  5696. \path[-.,bend left=15] (z) edge node {} (rsp);
  5697. \path[-.,bend left=10] (t1) edge node {} (rsp);
  5698. \draw (rax) to (rsp);
  5699. \end{tikzpicture}
  5700. \]
  5701. At this point, vertices \code{x} and \code{v} are most saturated, but
  5702. \code{x} is move related to \code{y} and \code{z}, so we color
  5703. \code{x} to $0$ to match \code{y}. Finally, we color \code{v} to $0$.
  5704. \[
  5705. \begin{tikzpicture}[baseline=(current bounding box.center)]
  5706. \node (rax) at (0,0) {$\ttm{rax}:-1,\{0,-2\}$};
  5707. \node (rsp) at (9,2) {$\ttm{rsp}:-2,\{-1,0,1,2\}$};
  5708. \node (t) at (0,2) {$\ttm{t}:0,\{1,-2\}$};
  5709. \node (z) at (3,2) {$\ttm{z}:1,\{0,2,-2\}$};
  5710. \node (x) at (6,2) {$\ttm{x}:0,\{2,-2\}$};
  5711. \node (y) at (3,0) {$\ttm{y}:0,\{1,2,-2\}$};
  5712. \node (w) at (6,0) {$\ttm{w}:2,\{0,1,-2\}$};
  5713. \node (v) at (9,0) {$\ttm{v}:0,\{2,-2\}$};
  5714. \draw (t1) to (rax);
  5715. \draw (t) to (z);
  5716. \draw (z) to (y);
  5717. \draw (z) to (w);
  5718. \draw (x) to (w);
  5719. \draw (y) to (w);
  5720. \draw (v) to (w);
  5721. \draw (v) to (rsp);
  5722. \draw (w) to (rsp);
  5723. \draw (x) to (rsp);
  5724. \draw (y) to (rsp);
  5725. \path[-.,bend left=15] (z) edge node {} (rsp);
  5726. \path[-.,bend left=10] (t1) edge node {} (rsp);
  5727. \draw (rax) to (rsp);
  5728. \end{tikzpicture}
  5729. \]
  5730. \fi}
  5731. %
  5732. {\if\edition\pythonEd
  5733. Now we replay the graph coloring, pausing before the coloring of
  5734. \code{w}. Recall the following configuration. The most saturated vertices
  5735. were \code{tmp\_1}, \code{w}, and \code{y}.
  5736. \[
  5737. \begin{tikzpicture}[baseline=(current bounding box.center)]
  5738. \node (t0) at (0,2) {$\ttm{tmp\_0}: 0, \{1\}$};
  5739. \node (t1) at (0,0) {$\ttm{tmp\_1}: -, \{0\}$};
  5740. \node (z) at (3,2) {$\ttm{z}: 1, \{0\}$};
  5741. \node (x) at (6,2) {$\ttm{x}: -, \{\}$};
  5742. \node (y) at (3,0) {$\ttm{y}: -, \{1\}$};
  5743. \node (w) at (6,0) {$\ttm{w}: -, \{1\}$};
  5744. \node (v) at (9,0) {$\ttm{v}: -, \{\}$};
  5745. \draw (t0) to (t1);
  5746. \draw (t0) to (z);
  5747. \draw (z) to (y);
  5748. \draw (z) to (w);
  5749. \draw (x) to (w);
  5750. \draw (y) to (w);
  5751. \draw (v) to (w);
  5752. \end{tikzpicture}
  5753. \]
  5754. We have arbitrarily chosen to color \code{w} instead of \code{tmp\_1}
  5755. or \code{y}, but note that \code{w} is not move related to any
  5756. variables, whereas \code{y} and \code{tmp\_1} are move related to
  5757. \code{tmp\_0} and \code{z}, respectively. If we instead choose
  5758. \code{y} and color it $0$, we can delete another move instruction.
  5759. \[
  5760. \begin{tikzpicture}[baseline=(current bounding box.center)]
  5761. \node (t0) at (0,2) {$\ttm{tmp\_0}: 0, \{1\}$};
  5762. \node (t1) at (0,0) {$\ttm{tmp\_1}: -, \{0\}$};
  5763. \node (z) at (3,2) {$\ttm{z}: 1, \{0\}$};
  5764. \node (x) at (6,2) {$\ttm{x}: -, \{\}$};
  5765. \node (y) at (3,0) {$\ttm{y}: 0, \{1\}$};
  5766. \node (w) at (6,0) {$\ttm{w}: -, \{0,1\}$};
  5767. \node (v) at (9,0) {$\ttm{v}: -, \{\}$};
  5768. \draw (t0) to (t1);
  5769. \draw (t0) to (z);
  5770. \draw (z) to (y);
  5771. \draw (z) to (w);
  5772. \draw (x) to (w);
  5773. \draw (y) to (w);
  5774. \draw (v) to (w);
  5775. \end{tikzpicture}
  5776. \]
  5777. Now \code{w} is the most saturated, so we color it $2$.
  5778. \[
  5779. \begin{tikzpicture}[baseline=(current bounding box.center)]
  5780. \node (t0) at (0,2) {$\ttm{tmp\_0}: 0, \{1\}$};
  5781. \node (t1) at (0,0) {$\ttm{tmp\_1}: -, \{0\}$};
  5782. \node (z) at (3,2) {$\ttm{z}: 1, \{0\}$};
  5783. \node (x) at (6,2) {$\ttm{x}: -, \{2\}$};
  5784. \node (y) at (3,0) {$\ttm{y}: 0, \{1,2\}$};
  5785. \node (w) at (6,0) {$\ttm{w}: 2, \{0,1\}$};
  5786. \node (v) at (9,0) {$\ttm{v}: -, \{2\}$};
  5787. \draw (t0) to (t1);
  5788. \draw (t0) to (z);
  5789. \draw (z) to (y);
  5790. \draw (z) to (w);
  5791. \draw (x) to (w);
  5792. \draw (y) to (w);
  5793. \draw (v) to (w);
  5794. \end{tikzpicture}
  5795. \]
  5796. To finish the coloring, \code{x} and \code{v} get $0$ and
  5797. \code{tmp\_1} gets $1$.
  5798. \[
  5799. \begin{tikzpicture}[baseline=(current bounding box.center)]
  5800. \node (t0) at (0,2) {$\ttm{tmp\_0}: 0, \{1\}$};
  5801. \node (t1) at (0,0) {$\ttm{tmp\_1}: 1, \{0\}$};
  5802. \node (z) at (3,2) {$\ttm{z}: 1, \{0\}$};
  5803. \node (x) at (6,2) {$\ttm{x}: 0, \{2\}$};
  5804. \node (y) at (3,0) {$\ttm{y}: 0, \{1,2\}$};
  5805. \node (w) at (6,0) {$\ttm{w}: 2, \{0,1\}$};
  5806. \node (v) at (9,0) {$\ttm{v}: 0, \{2\}$};
  5807. \draw (t0) to (t1);
  5808. \draw (t0) to (z);
  5809. \draw (z) to (y);
  5810. \draw (z) to (w);
  5811. \draw (x) to (w);
  5812. \draw (y) to (w);
  5813. \draw (v) to (w);
  5814. \end{tikzpicture}
  5815. \]
  5816. \fi}
  5817. So we have the following assignment of variables to registers.
  5818. {\if\edition\racketEd
  5819. \begin{gather*}
  5820. \{ \ttm{v} \mapsto \key{\%rcx}, \,
  5821. \ttm{w} \mapsto \key{\%rsi}, \,
  5822. \ttm{x} \mapsto \key{\%rcx}, \,
  5823. \ttm{y} \mapsto \key{\%rcx}, \,
  5824. \ttm{z} \mapsto \key{\%rdx}, \,
  5825. \ttm{t} \mapsto \key{\%rcx} \}
  5826. \end{gather*}
  5827. \fi}
  5828. {\if\edition\pythonEd
  5829. \begin{gather*}
  5830. \{ \ttm{v} \mapsto \key{\%rcx}, \,
  5831. \ttm{w} \mapsto \key{-16(\%rbp)}, \,
  5832. \ttm{x} \mapsto \key{\%rcx}, \,
  5833. \ttm{y} \mapsto \key{\%rcx}, \\
  5834. \ttm{z} \mapsto \key{-8(\%rbp)}, \,
  5835. \ttm{tmp\_0} \mapsto \key{\%rcx}, \,
  5836. \ttm{tmp\_1} \mapsto \key{-8(\%rbp)} \}
  5837. \end{gather*}
  5838. \fi}
  5839. We apply this register assignment to the running example, on the left,
  5840. to obtain the code in the middle. The \code{patch\_instructions} then
  5841. deletes the trivial moves to obtain the code on the right.
  5842. {\if\edition\racketEd
  5843. \begin{minipage}{0.25\textwidth}
  5844. \begin{lstlisting}
  5845. movq $1, v
  5846. movq $42, w
  5847. movq v, x
  5848. addq $7, x
  5849. movq x, y
  5850. movq x, z
  5851. addq w, z
  5852. movq y, t
  5853. negq t
  5854. movq z, %rax
  5855. addq t, %rax
  5856. jmp conclusion
  5857. \end{lstlisting}
  5858. \end{minipage}
  5859. $\Rightarrow\qquad$
  5860. \begin{minipage}{0.25\textwidth}
  5861. \begin{lstlisting}
  5862. movq $1, %rcx
  5863. movq $42, %rsi
  5864. movq %rcx, %rcx
  5865. addq $7, %rcx
  5866. movq %rcx, %rcx
  5867. movq %rcx, %rdx
  5868. addq %rsi, %rdx
  5869. movq %rcx, %rcx
  5870. negq %rcx
  5871. movq %rdx, %rax
  5872. addq %rcx, %rax
  5873. jmp conclusion
  5874. \end{lstlisting}
  5875. \end{minipage}
  5876. $\Rightarrow\qquad$
  5877. \begin{minipage}{0.25\textwidth}
  5878. \begin{lstlisting}
  5879. movq $1, %rcx
  5880. movq $42, %rsi
  5881. addq $7, %rcx
  5882. movq %rcx, %rdx
  5883. addq %rsi, %rdx
  5884. negq %rcx
  5885. movq %rdx, %rax
  5886. addq %rcx, %rax
  5887. jmp conclusion
  5888. \end{lstlisting}
  5889. \end{minipage}
  5890. \fi}
  5891. {\if\edition\pythonEd
  5892. \begin{minipage}{0.20\textwidth}
  5893. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  5894. movq $1, v
  5895. movq $42, w
  5896. movq v, x
  5897. addq $7, x
  5898. movq x, y
  5899. movq x, z
  5900. addq w, z
  5901. movq y, tmp_0
  5902. negq tmp_0
  5903. movq z, tmp_1
  5904. addq tmp_0, tmp_1
  5905. movq tmp_1, %rdi
  5906. callq _print_int
  5907. \end{lstlisting}
  5908. \end{minipage}
  5909. ${\Rightarrow\qquad}$
  5910. \begin{minipage}{0.30\textwidth}
  5911. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  5912. movq $1, %rcx
  5913. movq $42, -16(%rbp)
  5914. movq %rcx, %rcx
  5915. addq $7, %rcx
  5916. movq %rcx, %rcx
  5917. movq %rcx, -8(%rbp)
  5918. addq -16(%rbp), -8(%rbp)
  5919. movq %rcx, %rcx
  5920. negq %rcx
  5921. movq -8(%rbp), -8(%rbp)
  5922. addq %rcx, -8(%rbp)
  5923. movq -8(%rbp), %rdi
  5924. callq _print_int
  5925. \end{lstlisting}
  5926. \end{minipage}
  5927. ${\Rightarrow\qquad}$
  5928. \begin{minipage}{0.20\textwidth}
  5929. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  5930. movq $1, %rcx
  5931. movq $42, -16(%rbp)
  5932. addq $7, %rcx
  5933. movq %rcx, -8(%rbp)
  5934. movq -16(%rbp), %rax
  5935. addq %rax, -8(%rbp)
  5936. negq %rcx
  5937. addq %rcx, -8(%rbp)
  5938. movq -8(%rbp), %rdi
  5939. callq print_int
  5940. \end{lstlisting}
  5941. \end{minipage}
  5942. \fi}
  5943. \begin{exercise}\normalfont\normalsize
  5944. Change your implementation of \code{allocate\_registers} to take move
  5945. biasing into account. Create two new tests that include at least one
  5946. opportunity for move biasing and visually inspect the output x86
  5947. programs to make sure that your move biasing is working properly. Make
  5948. sure that your compiler still passes all of the tests.
  5949. \end{exercise}
  5950. %To do: another neat challenge would be to do
  5951. % live range splitting~\citep{Cooper:1998ly}. \\ --Jeremy
  5952. %% \subsection{Output of the Running Example}
  5953. %% \label{sec:reg-alloc-output}
  5954. % challenge: prioritize variables based on execution frequencies
  5955. % and the number of uses of a variable
  5956. % challenge: enhance the coloring algorithm using Chaitin's
  5957. % approach of prioritizing high-degree variables
  5958. % by removing low-degree variables (coloring them later)
  5959. % from the interference graph
  5960. \section{Further Reading}
  5961. \label{sec:register-allocation-further-reading}
  5962. Early register allocation algorithms were developed for Fortran
  5963. compilers in the 1950s~\citep{Horwitz:1966aa,Backus:1978aa}. The use
  5964. of graph coloring began in the late 1970s and early 1980s with the
  5965. work of \citet{Chaitin:1981vl} on an optimizing compiler for PL/I. The
  5966. algorithm is based on the following observation of
  5967. \citet{Kempe:1879aa}. If a graph $G$ has a vertex $v$ with degree
  5968. lower than $k$, then $G$ is $k$ colorable if the subgraph of $G$ with
  5969. $v$ removed is also $k$ colorable. To see why, suppose that the
  5970. subgraph is $k$ colorable. At worst the neighbors of $v$ are assigned
  5971. different colors, but since there are less than $k$ neighbors, there
  5972. will be one or more colors left over to use for coloring $v$ in $G$.
  5973. The algorithm of \citet{Chaitin:1981vl} removes a vertex $v$ of degree
  5974. less than $k$ from the graph and recursively colors the rest of the
  5975. graph. Upon returning from the recursion, it colors $v$ with one of
  5976. the available colors and returns. \citet{Chaitin:1982vn} augments
  5977. this algorithm to handle spilling as follows. If there are no vertices
  5978. of degree lower than $k$ then pick a vertex at random, spill it,
  5979. remove it from the graph, and proceed recursively to color the rest of
  5980. the graph.
  5981. Prior to coloring, \citet{Chaitin:1981vl} merge variables that are
  5982. move-related and that don't interfere with each other, a process
  5983. called \emph{coalescing}. While coalescing decreases the number of
  5984. moves, it can make the graph more difficult to
  5985. color. \citet{Briggs:1994kx} propose \emph{conservative coalescing} in
  5986. which two variables are merged only if they have fewer than $k$
  5987. neighbors of high degree. \citet{George:1996aa} observe that
  5988. conservative coalescing is sometimes too conservative and make it more
  5989. aggressive by iterating the coalescing with the removal of low-degree
  5990. vertices.
  5991. %
  5992. Attacking the problem from a different angle, \citet{Briggs:1994kx}
  5993. also propose \emph{biased coloring} in which a variable is assigned to
  5994. the same color as another move-related variable if possible, as
  5995. discussed in Section~\ref{sec:move-biasing}.
  5996. %
  5997. The algorithm of \citet{Chaitin:1981vl} and its successors iteratively
  5998. performs coalescing, graph coloring, and spill code insertion until
  5999. all variables have been assigned a location.
  6000. \citet{Briggs:1994kx} observes that \citet{Chaitin:1982vn} sometimes
  6001. spills variables that don't have to be: a high-degree variable can be
  6002. colorable if many of its neighbors are assigned the same color.
  6003. \citet{Briggs:1994kx} propose \emph{optimistic coloring}, in which a
  6004. high-degree vertex is not immediately spilled. Instead the decision is
  6005. deferred until after the recursive call, at which point it is apparent
  6006. whether there is actually an available color or not. We observe that
  6007. this algorithm is equivalent to the smallest-last ordering
  6008. algorithm~\citep{Matula:1972aa} if one takes the first $k$ colors to
  6009. be registers and the rest to be stack locations.
  6010. %% biased coloring
  6011. Earlier editions of the compiler course at Indiana University
  6012. \citep{Dybvig:2010aa} were based on the algorithm of
  6013. \citet{Briggs:1994kx}.
  6014. The smallest-last ordering algorithm is one of many \emph{greedy}
  6015. coloring algorithms. A greedy coloring algorithm visits all the
  6016. vertices in a particular order and assigns each one the first
  6017. available color. An \emph{offline} greedy algorithm chooses the
  6018. ordering up-front, prior to assigning colors. The algorithm of
  6019. \citet{Chaitin:1981vl} should be considered offline because the vertex
  6020. ordering does not depend on the colors assigned. Other orderings are
  6021. possible. For example, \citet{Chow:1984ys} order variables according
  6022. to an estimate of runtime cost.
  6023. An \emph{online} greedy coloring algorithm uses information about the
  6024. current assignment of colors to influence the order in which the
  6025. remaining vertices are colored. The saturation-based algorithm
  6026. described in this chapter is one such algorithm. We choose to use
  6027. saturation-based coloring because it is fun to introduce graph
  6028. coloring via Sudoku!
  6029. A register allocator may choose to map each variable to just one
  6030. location, as in \citet{Chaitin:1981vl}, or it may choose to map a
  6031. variable to one or more locations. The later can be achieved by
  6032. \emph{live range splitting}, where a variable is replaced by several
  6033. variables that each handle part of its live
  6034. range~\citep{Chow:1984ys,Briggs:1994kx,Cooper:1998ly}.
  6035. %% 1950s, Sheldon Best, Fortran \cite{Backus:1978aa}, Belady's page
  6036. %% replacement algorithm, bottom-up local
  6037. %% \citep{Horwitz:1966aa} straight-line programs, single basic block,
  6038. %% Cooper: top-down (priority bassed), bottom-up
  6039. %% top-down
  6040. %% order variables by priority (estimated cost)
  6041. %% caveat: split variables into two groups:
  6042. %% constrained (>k neighbors) and unconstrained (<k neighbors)
  6043. %% color the constrained ones first
  6044. %% \citet{Schwartz:1975aa} graph-coloring, no spill
  6045. %% cite J. Cocke for an algorithm that colors variables
  6046. %% in a high-degree first ordering
  6047. %Register Allocation via Usage Counts, Freiburghouse CACM
  6048. \citet{Palsberg:2007si} observe that many of the interference graphs
  6049. that arise from Java programs in the JoeQ compiler are \emph{chordal},
  6050. that is, every cycle with four or more edges has an edge which is not
  6051. part of the cycle but which connects two vertices on the cycle. Such
  6052. graphs can be optimally colored by the greedy algorithm with a vertex
  6053. ordering determined by maximum cardinality search.
  6054. In situations where compile time is of utmost importance, such as in
  6055. just-in-time compilers, graph coloring algorithms can be too expensive
  6056. and the linear scan algorithm of \citet{Poletto:1999uq} may be more
  6057. appropriate.
  6058. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  6059. \chapter{Booleans and Conditionals}
  6060. \label{ch:Lif}
  6061. \index{subject}{Boolean}
  6062. \index{subject}{control flow}
  6063. \index{subject}{conditional expression}
  6064. The \LangVar{} language only has a single kind of value, the
  6065. integers. In this chapter we add a second kind of value, the Booleans,
  6066. to create the \LangIf{} language. The Boolean values \emph{true} and
  6067. \emph{false} are written \TRUE{} and \FALSE{} respectively in
  6068. \racket{Racket}\python{Python}. The \LangIf{} language includes
  6069. several operations that involve Booleans (\key{and}, \key{not},
  6070. \racket{\key{eq?}}\python{==}, \key{<}, etc.) and the \key{if}
  6071. expression \python{and statement}. With the addition of \key{if},
  6072. programs can have non-trivial control flow which
  6073. %
  6074. \racket{impacts \code{explicate\_control} and liveness analysis}
  6075. %
  6076. \python{impacts liveness analysis and motivates a new pass named
  6077. \code{explicate\_control}}.
  6078. %
  6079. Also, because we now have two kinds of values, we need to handle
  6080. programs that apply an operation to the wrong kind of value, such as
  6081. \racket{\code{(not 1)}}\python{\code{not 1}}.
  6082. There are two language design options for such situations. One option
  6083. is to signal an error and the other is to provide a wider
  6084. interpretation of the operation. \racket{The Racket
  6085. language}\python{Python} uses a mixture of these two options,
  6086. depending on the operation and the kind of value. For example, the
  6087. result of \racket{\code{(not 1)}}\python{\code{not 1}} is
  6088. \racket{\code{\#f}}\python{False} because \racket{Racket}\python{Python}
  6089. treats non-zero integers as if they were \racket{\code{\#t}}\python{\code{True}}.
  6090. %
  6091. \racket{On the other hand, \code{(car 1)} results in a run-time error
  6092. in Racket because \code{car} expects a pair.}
  6093. %
  6094. \python{On the other hand, \code{1[0]} results in a run-time error
  6095. in Python because an ``\code{int} object is not subscriptable''.}
  6096. \racket{Typed Racket}\python{The MyPy type checker} makes similar
  6097. design choices as \racket{Racket}\python{Python}, except much of the
  6098. error detection happens at compile time instead of run
  6099. time\python{~\citep{Lehtosalo2021:MyPy}}. \racket{Typed Racket}\python{MyPy}
  6100. accepts \racket{\code{(not 1)}}\python{\code{not 1}}. But in the case
  6101. of \racket{\code{(car 1)}}\python{\code{1[0]}}, \racket{Typed
  6102. Racket}\python{MyPy} reports a compile-time error
  6103. %
  6104. \racket{because Racket expects the type of the argument to be of the form
  6105. \code{(Listof T)} or \code{(Pairof T1 T2)}.}
  6106. %
  6107. \python{stating that a ``value of type \code{int} is not indexable''.}
  6108. The \LangIf{} language performs type checking during compilation like
  6109. \racket{Typed Racket}\python{MyPy}. In Chapter~\ref{ch:Ldyn} we study
  6110. the alternative choice, that is, a dynamically typed language like
  6111. \racket{Racket}\python{Python}. The \LangIf{} language is a subset of
  6112. \racket{Typed Racket}\python{MyPy}; for some operations we are more
  6113. restrictive, for example, rejecting \racket{\code{(not
  6114. 1)}}\python{\code{not 1}}. We keep the type checker for \LangIf{}
  6115. fairly simple because the focus of this book is on compilation, not
  6116. type systems, about which there are already several excellent
  6117. books~\citep{Pierce:2002hj,Pierce:2004fk,Harper2016,Pierce:SF2}.
  6118. This chapter is organized as follows. We begin by defining the syntax
  6119. and interpreter for the \LangIf{} language
  6120. (Section~\ref{sec:lang-if}). We then introduce the idea of type
  6121. checking and define a type checker for \LangIf{}
  6122. (Section~\ref{sec:type-check-Lif}).
  6123. %
  6124. \racket{To compile \LangIf{} we need to enlarge the intermediate
  6125. language \LangCVar{} into \LangCIf{} (Section~\ref{sec:Cif}) and
  6126. \LangXInt{} into \LangXIf{} (Section~\ref{sec:x86-if}).}
  6127. %
  6128. The remaining sections of this chapter discuss how Booleans and
  6129. conditional control flow require changes to the existing compiler
  6130. passes and the addition of new ones. We introduce the \code{shrink}
  6131. pass to translates some operators into others, thereby reducing the
  6132. number of operators that need to be handled in later passes.
  6133. %
  6134. The main event of this chapter is the \code{explicate\_control} pass
  6135. that is responsible for translating \code{if}'s into conditional
  6136. \code{goto}'s (Section~\ref{sec:explicate-control-Lif}).
  6137. %
  6138. Regarding register allocation, there is the interesting question of
  6139. how to handle conditional \code{goto}'s during liveness analysis.
  6140. \section{The \LangIf{} Language}
  6141. \label{sec:lang-if}
  6142. The concrete and abstract syntax of the \LangIf{} language are defined in
  6143. Figures~\ref{fig:Lif-concrete-syntax} and~\ref{fig:Lif-syntax},
  6144. respectively. The \LangIf{} language includes all of
  6145. \LangVar{} {(shown in gray)}, the Boolean literals \TRUE{} and
  6146. \FALSE{}, \racket{and} the \code{if} expression%
  6147. \python{, and the \code{if} statement}.
  6148. We expand the set of operators to include
  6149. \begin{enumerate}
  6150. \item the logical operators \key{and}, \key{or}, and \key{not},
  6151. \item the \racket{\key{eq?} operation}\python{\key{==} and \key{!=} operations}
  6152. for comparing integers or Booleans for equality, and
  6153. \item the \key{<}, \key{<=}, \key{>}, and \key{>=} operations for
  6154. comparing integers.
  6155. \end{enumerate}
  6156. \racket{We reorganize the abstract syntax for the primitive
  6157. operations in Figure~\ref{fig:Lif-syntax}, using only one grammar
  6158. rule for all of them. This means that the grammar no longer checks
  6159. whether the arity of an operators matches the number of
  6160. arguments. That responsibility is moved to the type checker for
  6161. \LangIf{} (Section~\ref{sec:type-check-Lif}).}
  6162. \newcommand{\LifGrammarRacket}{
  6163. \begin{array}{lcl}
  6164. \Type &::=& \key{Boolean} \\
  6165. \itm{bool} &::=& \TRUE \MID \FALSE \\
  6166. \itm{cmp} &::= & \key{eq?} \MID \key{<} \MID \key{<=} \MID \key{>} \MID \key{>=} \\
  6167. \Exp &::=& \itm{bool}
  6168. \MID (\key{and}\;\Exp\;\Exp) \MID (\key{or}\;\Exp\;\Exp)
  6169. \MID (\key{not}\;\Exp) \\
  6170. &\MID& (\itm{cmp}\;\Exp\;\Exp) \MID \CIF{\Exp}{\Exp}{\Exp}
  6171. \end{array}
  6172. }
  6173. \newcommand{\LifASTRacket}{
  6174. \begin{array}{lcl}
  6175. \Type &::=& \key{Boolean} \\
  6176. \itm{bool} &::=& \code{\#t} \MID \code{\#f} \\
  6177. \itm{cmp} &::= & \code{eq?} \MID \code{<} \MID \code{<=} \MID \code{>} \MID \code{>=} \\
  6178. \itm{op} &::= & \itm{cmp} \MID \code{and} \MID \code{or} \MID \code{not} \\
  6179. \Exp &::=& \BOOL{\itm{bool}} \MID \IF{\Exp}{\Exp}{\Exp}
  6180. \end{array}
  6181. }
  6182. \newcommand{\LintOpAST}{
  6183. \begin{array}{rcl}
  6184. \Type &::=& \key{Integer} \\
  6185. \itm{op} &::= & \code{read} \MID \code{+} \MID \code{-}\\
  6186. \Exp{} &::=& \INT{\Int} \MID \PRIM{\itm{op}}{\Exp\ldots}
  6187. \end{array}
  6188. }
  6189. \newcommand{\LifGrammarPython}{
  6190. \begin{array}{rcl}
  6191. \itm{cmp} &::= & \key{==} \MID \key{!=} \MID \key{<} \MID \key{<=} \MID \key{>} \MID \key{>=} \\
  6192. \Exp &::=& \TRUE \MID \FALSE \MID \CAND{\Exp}{\Exp} \MID \COR{\Exp}{\Exp}
  6193. \MID \key{not}~\Exp \\
  6194. &\MID& \CCMP{\itm{cmp}}{\Exp}{\Exp}
  6195. \MID \CIF{\Exp}{\Exp}{\Exp} \\
  6196. \Stmt &::=& \key{if}~ \Exp \key{:}~ \Stmt^{+} ~\key{else:}~ \Stmt^{+}
  6197. \end{array}
  6198. }
  6199. \newcommand{\LifASTPython}{
  6200. \begin{array}{lcl}
  6201. \itm{boolop} &::=& \code{And()} \MID \code{Or()} \\
  6202. \itm{unaryop} &::=& \code{Not()} \\
  6203. \itm{cmp} &::= & \code{Eq()} \MID \code{NotEq()} \MID \code{Lt()} \MID \code{LtE()} \MID \code{Gt()} \MID \code{GtE()} \\
  6204. \itm{bool} &::=& \code{True} \MID \code{False} \\
  6205. \Exp &::=& \BOOL{\itm{bool}}
  6206. \MID \BOOLOP{\itm{boolop}}{\Exp}{\Exp}\\
  6207. &\MID& \CMP{\Exp}{\itm{cmp}}{\Exp} \MID \IF{\Exp}{\Exp}{\Exp} \\
  6208. \Stmt{} &::=& \IFSTMT{\Exp}{\Stmt^{+}}{\Stmt^{+}}
  6209. \end{array}
  6210. }
  6211. \begin{figure}[tp]
  6212. \centering
  6213. \begin{tcolorbox}[colback=white]
  6214. {\if\edition\racketEd
  6215. \[
  6216. \begin{array}{l}
  6217. \gray{\LintGrammarRacket{}} \\ \hline
  6218. \gray{\LvarGrammarRacket{}} \\ \hline
  6219. \LifGrammarRacket{} \\
  6220. \begin{array}{lcl}
  6221. \LangIfM{} &::=& \Exp
  6222. \end{array}
  6223. \end{array}
  6224. \]
  6225. \fi}
  6226. {\if\edition\pythonEd
  6227. \[
  6228. \begin{array}{l}
  6229. \gray{\LintGrammarPython} \\ \hline
  6230. \gray{\LvarGrammarPython} \\ \hline
  6231. \LifGrammarPython \\
  6232. \begin{array}{rcl}
  6233. \LangIfM{} &::=& \Stmt^{*}
  6234. \end{array}
  6235. \end{array}
  6236. \]
  6237. \fi}
  6238. \end{tcolorbox}
  6239. \caption{The concrete syntax of \LangIf{}, extending \LangVar{}
  6240. (Figure~\ref{fig:Lvar-concrete-syntax}) with Booleans and conditionals.}
  6241. \label{fig:Lif-concrete-syntax}
  6242. \end{figure}
  6243. \begin{figure}[tp]
  6244. %\begin{minipage}{0.66\textwidth}
  6245. \begin{tcolorbox}[colback=white]
  6246. \centering
  6247. {\if\edition\racketEd
  6248. \[
  6249. \begin{array}{l}
  6250. \gray{\LintOpAST} \\ \hline
  6251. \gray{\LvarASTRacket{}} \\ \hline
  6252. \LifASTRacket{} \\
  6253. \begin{array}{lcl}
  6254. \LangIfM{} &::=& \PROGRAM{\code{'()}}{\Exp}
  6255. \end{array}
  6256. \end{array}
  6257. \]
  6258. \fi}
  6259. {\if\edition\pythonEd
  6260. \[
  6261. \begin{array}{l}
  6262. \gray{\LintASTPython} \\ \hline
  6263. \gray{\LvarASTPython} \\ \hline
  6264. \LifASTPython \\
  6265. \begin{array}{lcl}
  6266. \LangIfM{} &::=& \PROGRAM{\code{'()}}{\Stmt^{*}}
  6267. \end{array}
  6268. \end{array}
  6269. \]
  6270. \fi}
  6271. \end{tcolorbox}
  6272. %\end{minipage}
  6273. \index{subject}{True@\TRUE{}}\index{subject}{False@\FALSE{}}
  6274. \index{subject}{IfExp@\IFNAME{}}
  6275. \python{\index{subject}{IfStmt@\IFSTMTNAME{}}}
  6276. \index{subject}{and@\ANDNAME{}}
  6277. \index{subject}{or@\ORNAME{}}
  6278. \index{subject}{not@\NOTNAME{}}
  6279. \index{subject}{equal@\EQNAME{}}
  6280. \python{\index{subject}{not equal@\NOTEQNAME{}}}
  6281. \racket{
  6282. \index{subject}{lessthan@\texttt{<}}
  6283. \index{subject}{lessthaneq@\texttt{<=}}
  6284. \index{subject}{greaterthan@\texttt{>}}
  6285. \index{subject}{greaterthaneq@\texttt{>=}}
  6286. }
  6287. \python{
  6288. \index{subject}{BoolOp@\texttt{BoolOp}}
  6289. \index{subject}{Compare@\texttt{Compare}}
  6290. \index{subject}{Lt@\texttt{Lt}}
  6291. \index{subject}{LtE@\texttt{LtE}}
  6292. \index{subject}{Gt@\texttt{Gt}}
  6293. \index{subject}{GtE@\texttt{GtE}}
  6294. }
  6295. \caption{The abstract syntax of \LangIf{}.}
  6296. \label{fig:Lif-syntax}
  6297. \end{figure}
  6298. Figure~\ref{fig:interp-Lif} defines the interpreter for \LangIf{},
  6299. which inherits from the interpreter for \LangVar{}
  6300. (Figure~\ref{fig:interp-Lvar}). The literals \TRUE{} and \FALSE{}
  6301. evaluate to the corresponding Boolean values. The conditional
  6302. expression $\CIF{e_1}{e_2}{\itm{e_3}}$ evaluates expression $e_1$
  6303. and then either evaluates $e_2$ or $e_3$ depending on whether
  6304. $e_1$ produced \TRUE{} or \FALSE{}. The logical operations
  6305. \code{and}, \code{or}, and \code{not} behave according to
  6306. propositional logic. In addition, the \code{and} and \code{or}
  6307. operations perform \emph{short-circuit evaluation}.
  6308. %
  6309. That is, given the expression $\CAND{e_1}{e_2}$, the expression $e_2$
  6310. is not evaluated if $e_1$ evaluates to \FALSE{}.
  6311. %
  6312. Similarly, given $\COR{e_1}{e_2}$, the expression $e_2$ is not
  6313. evaluated if $e_1$ evaluates to \TRUE{}.
  6314. \racket{With the increase in the number of primitive operations, the
  6315. interpreter would become repetitive without some care. We refactor
  6316. the case for \code{Prim}, moving the code that differs with each
  6317. operation into the \code{interp\_op} method shown in in
  6318. Figure~\ref{fig:interp-op-Lif}. We handle the \code{and} and
  6319. \code{or} operations separately because of their short-circuiting
  6320. behavior.}
  6321. \begin{figure}[tbp]
  6322. \begin{tcolorbox}[colback=white]
  6323. {\if\edition\racketEd
  6324. \begin{lstlisting}
  6325. (define interp-Lif-class
  6326. (class interp-Lvar-class
  6327. (super-new)
  6328. (define/public (interp_op op) ...)
  6329. (define/override ((interp_exp env) e)
  6330. (define recur (interp_exp env))
  6331. (match e
  6332. [(Bool b) b]
  6333. [(If cnd thn els)
  6334. (match (recur cnd)
  6335. [#t (recur thn)]
  6336. [#f (recur els)])]
  6337. [(Prim 'and (list e1 e2))
  6338. (match (recur e1)
  6339. [#t (match (recur e2) [#t #t] [#f #f])]
  6340. [#f #f])]
  6341. [(Prim 'or (list e1 e2))
  6342. (define v1 (recur e1))
  6343. (match v1
  6344. [#t #t]
  6345. [#f (match (recur e2) [#t #t] [#f #f])])]
  6346. [(Prim op args)
  6347. (apply (interp_op op) (for/list ([e args]) (recur e)))]
  6348. [else ((super interp_exp env) e)]))
  6349. ))
  6350. (define (interp_Lif p)
  6351. (send (new interp-Lif-class) interp_program p))
  6352. \end{lstlisting}
  6353. \fi}
  6354. {\if\edition\pythonEd
  6355. \begin{lstlisting}
  6356. class InterpLif(InterpLvar):
  6357. def interp_exp(self, e, env):
  6358. match e:
  6359. case IfExp(test, body, orelse):
  6360. if self.interp_exp(test, env):
  6361. return self.interp_exp(body, env)
  6362. else:
  6363. return self.interp_exp(orelse, env)
  6364. case UnaryOp(Not(), v):
  6365. return not self.interp_exp(v, env)
  6366. case BoolOp(And(), values):
  6367. if self.interp_exp(values[0], env):
  6368. return self.interp_exp(values[1], env)
  6369. else:
  6370. return False
  6371. case BoolOp(Or(), values):
  6372. if self.interp_exp(values[0], env):
  6373. return True
  6374. else:
  6375. return self.interp_exp(values[1], env)
  6376. case Compare(left, [cmp], [right]):
  6377. l = self.interp_exp(left, env)
  6378. r = self.interp_exp(right, env)
  6379. return self.interp_cmp(cmp)(l, r)
  6380. case _:
  6381. return super().interp_exp(e, env)
  6382. def interp_stmts(self, ss, env):
  6383. if len(ss) == 0:
  6384. return
  6385. match ss[0]:
  6386. case If(test, body, orelse):
  6387. if self.interp_exp(test, env):
  6388. return self.interp_stmts(body + ss[1:], env)
  6389. else:
  6390. return self.interp_stmts(orelse + ss[1:], env)
  6391. case _:
  6392. return super().interp_stmts(ss, env)
  6393. ...
  6394. \end{lstlisting}
  6395. \fi}
  6396. \end{tcolorbox}
  6397. \caption{Interpreter for the \LangIf{} language. \racket{(See
  6398. Figure~\ref{fig:interp-op-Lif} for \code{interp-op}.)}
  6399. \python{(See Figure~\ref{fig:interp-cmp-Lif} for \code{interp\_cmp}.)}}
  6400. \label{fig:interp-Lif}
  6401. \end{figure}
  6402. {\if\edition\racketEd
  6403. \begin{figure}[tbp]
  6404. \begin{tcolorbox}[colback=white]
  6405. \begin{lstlisting}
  6406. (define/public (interp_op op)
  6407. (match op
  6408. ['+ fx+]
  6409. ['- fx-]
  6410. ['read read-fixnum]
  6411. ['not (lambda (v) (match v [#t #f] [#f #t]))]
  6412. ['eq? (lambda (v1 v2)
  6413. (cond [(or (and (fixnum? v1) (fixnum? v2))
  6414. (and (boolean? v1) (boolean? v2))
  6415. (and (vector? v1) (vector? v2)))
  6416. (eq? v1 v2)]))]
  6417. ['< (lambda (v1 v2)
  6418. (cond [(and (fixnum? v1) (fixnum? v2))
  6419. (< v1 v2)]))]
  6420. ['<= (lambda (v1 v2)
  6421. (cond [(and (fixnum? v1) (fixnum? v2))
  6422. (<= v1 v2)]))]
  6423. ['> (lambda (v1 v2)
  6424. (cond [(and (fixnum? v1) (fixnum? v2))
  6425. (> v1 v2)]))]
  6426. ['>= (lambda (v1 v2)
  6427. (cond [(and (fixnum? v1) (fixnum? v2))
  6428. (>= v1 v2)]))]
  6429. [else (error 'interp_op "unknown operator")]))
  6430. \end{lstlisting}
  6431. \end{tcolorbox}
  6432. \caption{Interpreter for the primitive operators in the \LangIf{} language.}
  6433. \label{fig:interp-op-Lif}
  6434. \end{figure}
  6435. \fi}
  6436. {\if\edition\pythonEd
  6437. \begin{figure}
  6438. \begin{tcolorbox}[colback=white]
  6439. \begin{lstlisting}
  6440. class InterpLif(InterpLvar):
  6441. ...
  6442. def interp_cmp(self, cmp):
  6443. match cmp:
  6444. case Lt():
  6445. return lambda x, y: x < y
  6446. case LtE():
  6447. return lambda x, y: x <= y
  6448. case Gt():
  6449. return lambda x, y: x > y
  6450. case GtE():
  6451. return lambda x, y: x >= y
  6452. case Eq():
  6453. return lambda x, y: x == y
  6454. case NotEq():
  6455. return lambda x, y: x != y
  6456. \end{lstlisting}
  6457. \end{tcolorbox}
  6458. \caption{Interpreter for the comparison operators in the \LangIf{} language.}
  6459. \label{fig:interp-cmp-Lif}
  6460. \end{figure}
  6461. \fi}
  6462. \section{Type Checking \LangIf{} Programs}
  6463. \label{sec:type-check-Lif}
  6464. \index{subject}{type checking}
  6465. \index{subject}{semantic analysis}
  6466. It is helpful to think about type checking in two complementary
  6467. ways. A type checker predicts the type of value that will be produced
  6468. by each expression in the program. For \LangIf{}, we have just two types,
  6469. \INTTY{} and \BOOLTY{}. So a type checker should predict that
  6470. {\if\edition\racketEd
  6471. \begin{lstlisting}
  6472. (+ 10 (- (+ 12 20)))
  6473. \end{lstlisting}
  6474. \fi}
  6475. {\if\edition\pythonEd
  6476. \begin{lstlisting}
  6477. 10 + -(12 + 20)
  6478. \end{lstlisting}
  6479. \fi}
  6480. \noindent produces a value of type \INTTY{} while
  6481. {\if\edition\racketEd
  6482. \begin{lstlisting}
  6483. (and (not #f) #t)
  6484. \end{lstlisting}
  6485. \fi}
  6486. {\if\edition\pythonEd
  6487. \begin{lstlisting}
  6488. (not False) and True
  6489. \end{lstlisting}
  6490. \fi}
  6491. \noindent produces a value of type \BOOLTY{}.
  6492. A second way to think about type checking is that it enforces a set of
  6493. rules about which operators can be applied to which kinds of
  6494. values. For example, our type checker for \LangIf{} signals an error
  6495. for the below expression {\if\edition\racketEd
  6496. \begin{lstlisting}
  6497. (not (+ 10 (- (+ 12 20))))
  6498. \end{lstlisting}
  6499. \fi}
  6500. {\if\edition\pythonEd
  6501. \begin{lstlisting}
  6502. not (10 + -(12 + 20))
  6503. \end{lstlisting}
  6504. \fi}
  6505. \noindent The subexpression
  6506. \racket{\code{(+ 10 (- (+ 12 20)))}}
  6507. \python{\code{(10 + -(12 + 20))}}
  6508. has type \INTTY{} but the type checker enforces the rule that the
  6509. argument of \code{not} must be an expression of type \BOOLTY{}.
  6510. We implement type checking using classes and methods because they
  6511. provide the open recursion needed to reuse code as we extend the type
  6512. checker in later chapters, analogous to the use of classes and methods
  6513. for the interpreters (Section~\ref{sec:extensible-interp}).
  6514. We separate the type checker for the \LangVar{} subset into its own
  6515. class, shown in Figure~\ref{fig:type-check-Lvar}. The type checker for
  6516. \LangIf{} is shown in Figure~\ref{fig:type-check-Lif} and it inherits
  6517. from the type checker for \LangVar{}. These type checkers are in the
  6518. files
  6519. \racket{\code{type-check-Lvar.rkt}}\python{\code{type\_check\_Lvar.py}}
  6520. and
  6521. \racket{\code{type-check-Lif.rkt}}\python{\code{type\_check\_Lif.py}}
  6522. of the support code.
  6523. %
  6524. Each type checker is a structurally recursive function over the AST.
  6525. Given an input expression \code{e}, the type checker either signals an
  6526. error or returns \racket{an expression and} its type.
  6527. %
  6528. \racket{It returns an expression because there are situations in which
  6529. we want to change or update the expression.}
  6530. Next we discuss the \code{type\_check\_exp} function of \LangVar{} in
  6531. Figure~\ref{fig:type-check-Lvar}. The type of an integer constant is
  6532. \INTTY{}. To handle variables, the type checker uses the environment
  6533. \code{env} to map variables to types.
  6534. %
  6535. \racket{Consider the case for \key{let}. We type check the
  6536. initializing expression to obtain its type \key{T} and then
  6537. associate type \code{T} with the variable \code{x} in the
  6538. environment used to type check the body of the \key{let}. Thus,
  6539. when the type checker encounters a use of variable \code{x}, it can
  6540. find its type in the environment.}
  6541. %
  6542. \python{Consider the case for assignment. We type check the
  6543. initializing expression to obtain its type \key{t}. If the variable
  6544. \code{lhs.id} is already in the environment because there was a
  6545. prior assignment, we check that this initializer has the same type
  6546. as the prior one. If this is the first assignment to the variable,
  6547. we associate type \code{t} with the variable \code{lhs.id} in the
  6548. environment. Thus, when the type checker encounters a use of
  6549. variable \code{x}, it can find its type in the environment.}
  6550. %
  6551. \racket{Regarding primitive operators, we recursively analyze the
  6552. arguments and then invoke \code{type\_check\_op} to check whether
  6553. the argument types are allowed.}
  6554. %
  6555. \python{Regarding addition, subtraction, and negation, we recursively analyze the
  6556. arguments, check that they have type \INTTY{}, and return \INTTY{}.}
  6557. \racket{Several auxiliary methods are used in the type checker. The
  6558. method \code{operator-types} defines a dictionary that maps the
  6559. operator names to their parameter and return types. The
  6560. \code{type-equal?} method determines whether two types are equal,
  6561. which for now simply dispatches to \code{equal?} (deep
  6562. equality). The \code{check-type-equal?} method triggers an error if
  6563. the two types are not equal. The \code{type-check-op} method looks
  6564. up the operator in the \code{operator-types} dictionary and then
  6565. checks whether the argument types are equal to the parameter types.
  6566. The result is the return type of the operator.}
  6567. %
  6568. \python{The auxiliary method \code{check\_type\_equal} triggers
  6569. an error if the two types are not equal.}
  6570. \begin{figure}[tbp]
  6571. \begin{tcolorbox}[colback=white]
  6572. {\if\edition\racketEd
  6573. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  6574. (define type-check-Lvar-class
  6575. (class object%
  6576. (super-new)
  6577. (define/public (operator-types)
  6578. '((+ . ((Integer Integer) . Integer))
  6579. (- . ((Integer Integer) . Integer))
  6580. (read . (() . Integer))))
  6581. (define/public (type-equal? t1 t2) (equal? t1 t2))
  6582. (define/public (check-type-equal? t1 t2 e)
  6583. (unless (type-equal? t1 t2)
  6584. (error 'type-check "~a != ~a\nin ~v" t1 t2 e)))
  6585. (define/public (type-check-op op arg-types e)
  6586. (match (dict-ref (operator-types) op)
  6587. [`(,param-types . ,return-type)
  6588. (for ([at arg-types] [pt param-types])
  6589. (check-type-equal? at pt e))
  6590. return-type]
  6591. [else (error 'type-check-op "unrecognized ~a" op)]))
  6592. (define/public (type-check-exp env)
  6593. (lambda (e)
  6594. (match e
  6595. [(Int n) (values (Int n) 'Integer)]
  6596. [(Var x) (values (Var x) (dict-ref env x))]
  6597. [(Let x e body)
  6598. (define-values (e^ Te) ((type-check-exp env) e))
  6599. (define-values (b Tb) ((type-check-exp (dict-set env x Te)) body))
  6600. (values (Let x e^ b) Tb)]
  6601. [(Prim op es)
  6602. (define-values (new-es ts)
  6603. (for/lists (exprs types) ([e es]) ((type-check-exp env) e)))
  6604. (values (Prim op new-es) (type-check-op op ts e))]
  6605. [else (error 'type-check-exp "couldn't match" e)])))
  6606. (define/public (type-check-program e)
  6607. (match e
  6608. [(Program info body)
  6609. (define-values (body^ Tb) ((type-check-exp '()) body))
  6610. (check-type-equal? Tb 'Integer body)
  6611. (Program info body^)]
  6612. [else (error 'type-check-Lvar "couldn't match ~a" e)]))
  6613. ))
  6614. (define (type-check-Lvar p)
  6615. (send (new type-check-Lvar-class) type-check-program p))
  6616. \end{lstlisting}
  6617. \fi}
  6618. {\if\edition\pythonEd
  6619. \begin{lstlisting}[escapechar=`]
  6620. class TypeCheckLvar:
  6621. def check_type_equal(self, t1, t2, e):
  6622. if t1 != t2:
  6623. msg = 'error: ' + repr(t1) + ' != ' + repr(t2) + ' in ' + repr(e)
  6624. raise Exception(msg)
  6625. def type_check_exp(self, e, env):
  6626. match e:
  6627. case BinOp(left, (Add() | Sub()), right):
  6628. l = self.type_check_exp(left, env)
  6629. check_type_equal(l, int, left)
  6630. r = self.type_check_exp(right, env)
  6631. check_type_equal(r, int, right)
  6632. return int
  6633. case UnaryOp(USub(), v):
  6634. t = self.type_check_exp(v, env)
  6635. check_type_equal(t, int, v)
  6636. return int
  6637. case Name(id):
  6638. return env[id]
  6639. case Constant(value) if isinstance(value, int):
  6640. return int
  6641. case Call(Name('input_int'), []):
  6642. return int
  6643. def type_check_stmts(self, ss, env):
  6644. if len(ss) == 0:
  6645. return
  6646. match ss[0]:
  6647. case Assign([lhs], value):
  6648. t = self.type_check_exp(value, env)
  6649. if lhs.id in env:
  6650. check_type_equal(env[lhs.id], t, value)
  6651. else:
  6652. env[lhs.id] = t
  6653. return self.type_check_stmts(ss[1:], env)
  6654. case Expr(Call(Name('print'), [arg])):
  6655. t = self.type_check_exp(arg, env)
  6656. check_type_equal(t, int, arg)
  6657. return self.type_check_stmts(ss[1:], env)
  6658. case Expr(value):
  6659. self.type_check_exp(value, env)
  6660. return self.type_check_stmts(ss[1:], env)
  6661. def type_check_P(self, p):
  6662. match p:
  6663. case Module(body):
  6664. self.type_check_stmts(body, {})
  6665. \end{lstlisting}
  6666. \fi}
  6667. \end{tcolorbox}
  6668. \caption{Type checker for the \LangVar{} language.}
  6669. \label{fig:type-check-Lvar}
  6670. \end{figure}
  6671. \begin{figure}[tbp]
  6672. \begin{tcolorbox}[colback=white]
  6673. {\if\edition\racketEd
  6674. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  6675. (define type-check-Lif-class
  6676. (class type-check-Lvar-class
  6677. (super-new)
  6678. (inherit check-type-equal?)
  6679. (define/override (operator-types)
  6680. (append '((and . ((Boolean Boolean) . Boolean))
  6681. (or . ((Boolean Boolean) . Boolean))
  6682. (< . ((Integer Integer) . Boolean))
  6683. (<= . ((Integer Integer) . Boolean))
  6684. (> . ((Integer Integer) . Boolean))
  6685. (>= . ((Integer Integer) . Boolean))
  6686. (not . ((Boolean) . Boolean)))
  6687. (super operator-types)))
  6688. (define/override (type-check-exp env)
  6689. (lambda (e)
  6690. (match e
  6691. [(Bool b) (values (Bool b) 'Boolean)]
  6692. [(Prim 'eq? (list e1 e2))
  6693. (define-values (e1^ T1) ((type-check-exp env) e1))
  6694. (define-values (e2^ T2) ((type-check-exp env) e2))
  6695. (check-type-equal? T1 T2 e)
  6696. (values (Prim 'eq? (list e1^ e2^)) 'Boolean)]
  6697. [(If cnd thn els)
  6698. (define-values (cnd^ Tc) ((type-check-exp env) cnd))
  6699. (define-values (thn^ Tt) ((type-check-exp env) thn))
  6700. (define-values (els^ Te) ((type-check-exp env) els))
  6701. (check-type-equal? Tc 'Boolean e)
  6702. (check-type-equal? Tt Te e)
  6703. (values (If cnd^ thn^ els^) Te)]
  6704. [else ((super type-check-exp env) e)])))
  6705. ))
  6706. (define (type-check-Lif p)
  6707. (send (new type-check-Lif-class) type-check-program p))
  6708. \end{lstlisting}
  6709. \fi}
  6710. {\if\edition\pythonEd
  6711. \begin{lstlisting}
  6712. class TypeCheckLif(TypeCheckLvar):
  6713. def type_check_exp(self, e, env):
  6714. match e:
  6715. case Constant(value) if isinstance(value, bool):
  6716. return bool
  6717. case BinOp(left, Sub(), right):
  6718. l = self.type_check_exp(left, env); check_type_equal(l, int, left)
  6719. r = self.type_check_exp(right, env); check_type_equal(r, int, right)
  6720. return int
  6721. case UnaryOp(Not(), v):
  6722. t = self.type_check_exp(v, env); check_type_equal(t, bool, v)
  6723. return bool
  6724. case BoolOp(op, values):
  6725. left = values[0] ; right = values[1]
  6726. l = self.type_check_exp(left, env); check_type_equal(l, bool, left)
  6727. r = self.type_check_exp(right, env); check_type_equal(r, bool, right)
  6728. return bool
  6729. case Compare(left, [cmp], [right]) if isinstance(cmp, Eq) \
  6730. or isinstance(cmp, NotEq):
  6731. l = self.type_check_exp(left, env)
  6732. r = self.type_check_exp(right, env)
  6733. check_type_equal(l, r, e)
  6734. return bool
  6735. case Compare(left, [cmp], [right]):
  6736. l = self.type_check_exp(left, env); check_type_equal(l, int, left)
  6737. r = self.type_check_exp(right, env); check_type_equal(r, int, right)
  6738. return bool
  6739. case IfExp(test, body, orelse):
  6740. t = self.type_check_exp(test, env); check_type_equal(bool, t, test)
  6741. b = self.type_check_exp(body, env)
  6742. o = self.type_check_exp(orelse, env)
  6743. check_type_equal(b, o, e)
  6744. return b
  6745. case _:
  6746. return super().type_check_exp(e, env)
  6747. def type_check_stmts(self, ss, env):
  6748. if len(ss) == 0:
  6749. return
  6750. match ss[0]:
  6751. case If(test, body, orelse):
  6752. t = self.type_check_exp(test, env); check_type_equal(bool, t, test)
  6753. b = self.type_check_stmts(body, env)
  6754. o = self.type_check_stmts(orelse, env)
  6755. check_type_equal(b, o, ss[0])
  6756. return self.type_check_stmts(ss[1:], env)
  6757. case _:
  6758. return super().type_check_stmts(ss, env)
  6759. \end{lstlisting}
  6760. \fi}
  6761. \end{tcolorbox}
  6762. \caption{Type checker for the \LangIf{} language.}
  6763. \label{fig:type-check-Lif}
  6764. \end{figure}
  6765. The type checker for \LangIf{} is defined in
  6766. Figure~\ref{fig:type-check-Lif}.
  6767. %
  6768. The type of a Boolean constant is \BOOLTY{}.
  6769. %
  6770. \racket{The \code{operator-types} function adds dictionary entries for
  6771. the new operators.}
  6772. %
  6773. \python{Logical not requires its argument to be a \BOOLTY{} and
  6774. produces a \BOOLTY{}. Similarly for logical and and logical or. }
  6775. %
  6776. The equality operator requires the two arguments to have the same type
  6777. and therefore we handle it separately from the other operators.
  6778. %
  6779. \python{The other comparisons (less-than, etc.) require their
  6780. arguments to be of type \INTTY{} and they produce a \BOOLTY{}.}
  6781. %
  6782. The condition of an \code{if} must
  6783. be of \BOOLTY{} type and the two branches must have the same type.
  6784. \begin{exercise}\normalfont\normalsize
  6785. Create 10 new test programs in \LangIf{}. Half of the programs should
  6786. have a type error. For those programs, create an empty file with the
  6787. same base name but with file extension \code{.tyerr}. For example, if
  6788. the test
  6789. \racket{\code{cond\_test\_14.rkt}}\python{\code{cond\_test\_14.py}}
  6790. is expected to error, then create
  6791. an empty file named \code{cond\_test\_14.tyerr}.
  6792. %
  6793. \racket{This indicates to \code{interp-tests} and
  6794. \code{compiler-tests} that a type error is expected. }
  6795. %
  6796. The other half of the test programs should not have type errors.
  6797. %
  6798. \racket{In the \code{run-tests.rkt} script, change the second argument
  6799. of \code{interp-tests} and \code{compiler-tests} to
  6800. \code{type-check-Lif}, which causes the type checker to run prior to
  6801. the compiler passes. Temporarily change the \code{passes} to an
  6802. empty list and run the script, thereby checking that the new test
  6803. programs either type check or not as intended.}
  6804. %
  6805. Run the test script to check that these test programs type check as
  6806. expected.
  6807. \end{exercise}
  6808. \clearpage
  6809. \section{The \LangCIf{} Intermediate Language}
  6810. \label{sec:Cif}
  6811. {\if\edition\racketEd
  6812. %
  6813. The \LangCIf{} language builds on \LangCVar{} by adding logical and
  6814. comparison operators to the \Exp{} non-terminal and the literals
  6815. \TRUE{} and \FALSE{} to the \Arg{} non-terminal. Regarding control
  6816. flow, \LangCIf{} adds \key{goto} and \code{if} statements to the
  6817. \Tail{} non-terminal. The condition of an \code{if} statement is a
  6818. comparison operation and the branches are \code{goto} statements,
  6819. making it straightforward to compile \code{if} statements to x86. The
  6820. \key{CProgram} construct contains an alist mapping labels to $\Tail$
  6821. expressions. A \code{goto} statement transfers control to the $\Tail$
  6822. expression corresponding to its label.
  6823. %
  6824. Figure~\ref{fig:c1-concrete-syntax} defines the concrete syntax of the
  6825. \LangCIf{} intermediate language and Figure~\ref{fig:c1-syntax}
  6826. defines its abstract syntax.
  6827. %
  6828. \fi}
  6829. %
  6830. {\if\edition\pythonEd
  6831. %
  6832. The output of \key{explicate\_control} is a language similar to the
  6833. $C$ language~\citep{Kernighan:1988nx} in that it has labels and
  6834. \code{goto} statements, so we name it \LangCIf{}.
  6835. %
  6836. The \LangCIf{} language supports the same operators as \LangIf{} but
  6837. the arguments of operators are restricted to atomic expressions. The
  6838. \LangCIf{} language does not include \code{if} expressions but it does
  6839. include a restricted form of \code{if} statement. The condition must be
  6840. a comparison and the two branches may only contain \code{goto}
  6841. statements. These restrictions make it easier to translate \code{if}
  6842. statements to x86. The \LangCIf{} language also adds a \code{return}
  6843. statement to finish the program with a specified value.
  6844. %
  6845. The \key{CProgram} construct contains a dictionary mapping labels to
  6846. lists of statements that end with a \code{return} statement, a
  6847. \code{goto}, or a conditional \code{goto}.
  6848. %% Statement lists of this
  6849. %% form are called \emph{basic blocks}\index{subject}{basic block}: there
  6850. %% is a control transfer at the end and control only enters at the
  6851. %% beginning of the list, which is marked by the label.
  6852. %
  6853. A \code{goto} statement transfers control to the sequence of statements
  6854. associated with its label.
  6855. %
  6856. The concrete syntax for \LangCIf{} is defined in
  6857. Figure~\ref{fig:c1-concrete-syntax} and the abstract syntax is defined
  6858. in Figure~\ref{fig:c1-syntax}.
  6859. %
  6860. \fi}
  6861. %
  6862. \newcommand{\CifGrammarRacket}{
  6863. \begin{array}{lcl}
  6864. \Atm &::=& \itm{bool} \\
  6865. \itm{cmp} &::= & \code{eq?} \MID \code{<} \MID \code{<=} \MID \code{>} \MID \code{>=} \\
  6866. \Exp &::=& \CNOT{\Atm} \MID \LP \itm{cmp}~\Atm~\Atm\RP \\
  6867. \Tail &::= & \key{goto}~\itm{label}\key{;}\\
  6868. &\MID& \key{if}~\LP \itm{cmp}~\Atm~\Atm \RP~ \key{goto}~\itm{label}\key{;} ~\key{else}~\key{goto}~\itm{label}\key{;}
  6869. \end{array}
  6870. }
  6871. \newcommand{\CifASTRacket}{
  6872. \begin{array}{lcl}
  6873. \Atm &::=& \BOOL{\itm{bool}} \\
  6874. \itm{cmp} &::= & \code{eq?} \MID \code{<} \MID \code{<=} \MID \code{>} \MID \code{>=} \\
  6875. \Exp &::= & \UNIOP{\key{'not}}{\Atm} \MID \BINOP{\key{'}\itm{cmp}}{\Atm}{\Atm} \\
  6876. \Tail &::= & \GOTO{\itm{label}} \\
  6877. &\MID& \IFSTMT{\BINOP{\itm{cmp}}{\Atm}{\Atm}}{\GOTO{\itm{label}}}{\GOTO{\itm{label}}}
  6878. \end{array}
  6879. }
  6880. \newcommand{\CifGrammarPython}{
  6881. \begin{array}{lcl}
  6882. \Atm &::=& \Int \MID \Var \MID \itm{bool} \\
  6883. \Exp &::= & \Atm \MID \CREAD{}
  6884. \MID \CBINOP{\itm{binaryop}}{\Atm}{\Atm}
  6885. \MID \CUNIOP{\itm{unaryop}}{\Atm} \\
  6886. &\MID& \CCMP{\itm{cmp}}{\Atm}{\Atm} \\
  6887. \Stmt &::=& \CPRINT{\Atm} \MID \Exp \\
  6888. &\MID& \CASSIGN{\Var}{\Exp}
  6889. \MID \CRETURN{\Exp} \MID \CGOTO{\itm{label}} \\
  6890. &\MID& \CIFSTMT{\CCMP{\itm{cmp}}{\Atm}{\Atm}}{\CGOTO{\itm{label}}}{\CGOTO{\itm{label}}}
  6891. \end{array}
  6892. }
  6893. \newcommand{\CifASTPython}{
  6894. \begin{array}{lcl}
  6895. \Atm &::=& \INT{\Int} \MID \VAR{\Var} \MID \BOOL{\itm{bool}} \\
  6896. \Exp &::= & \Atm \MID \READ{} \\
  6897. &\MID& \BINOP{\Atm}{\itm{binaryop}}{\Atm}
  6898. \MID \UNIOP{\itm{unaryop}}{\Atm} \\
  6899. &\MID& \CMP{\Atm}{\itm{cmp}}{\Atm} \\
  6900. \Stmt &::=& \PRINT{\Atm} \MID \EXPR{\Exp} \\
  6901. &\MID& \ASSIGN{\VAR{\Var}}{\Exp}
  6902. \MID \RETURN{\Exp} \MID \GOTO{\itm{label}} \\
  6903. &\MID& \IFSTMT{\CMP{\Atm}{\itm{cmp}}{\Atm}}{\LS\GOTO{\itm{label}}\RS}{\LS\GOTO{\itm{label}}\RS}
  6904. \end{array}
  6905. }
  6906. \begin{figure}[tbp]
  6907. \begin{tcolorbox}[colback=white]
  6908. \small
  6909. {\if\edition\racketEd
  6910. \[
  6911. \begin{array}{l}
  6912. \gray{\CvarGrammarRacket} \\ \hline
  6913. \CifGrammarRacket \\
  6914. \begin{array}{lcl}
  6915. \LangCIfM{} & ::= & (\itm{label}\key{:}~ \Tail)\ldots
  6916. \end{array}
  6917. \end{array}
  6918. \]
  6919. \fi}
  6920. {\if\edition\pythonEd
  6921. \[
  6922. \begin{array}{l}
  6923. \CifGrammarPython \\
  6924. \begin{array}{lcl}
  6925. \LangCIfM{} & ::= & (\itm{label}\code{:}~\Stmt^{*}) \ldots
  6926. \end{array}
  6927. \end{array}
  6928. \]
  6929. \fi}
  6930. \end{tcolorbox}
  6931. \caption{The concrete syntax of the \LangCIf{} intermediate language%
  6932. \racket{, an extension of \LangCVar{} (Figure~\ref{fig:c0-concrete-syntax})}.}
  6933. \label{fig:c1-concrete-syntax}
  6934. \end{figure}
  6935. \begin{figure}[tp]
  6936. \begin{tcolorbox}[colback=white]
  6937. \small
  6938. {\if\edition\racketEd
  6939. \[
  6940. \begin{array}{l}
  6941. \gray{\CvarASTRacket} \\ \hline
  6942. \CifASTRacket \\
  6943. \begin{array}{lcl}
  6944. \LangCIfM{} & ::= & \CPROGRAM{\itm{info}}{\LP\LP\itm{label}\,\key{.}\,\Tail\RP\ldots\RP}
  6945. \end{array}
  6946. \end{array}
  6947. \]
  6948. \fi}
  6949. {\if\edition\pythonEd
  6950. \[
  6951. \begin{array}{l}
  6952. \CifASTPython \\
  6953. \begin{array}{lcl}
  6954. \LangCIfM{} & ::= & \CPROGRAM{\itm{info}}{\LC\itm{label}\key{:}\,\Stmt^{*}, \ldots \RC}
  6955. \end{array}
  6956. \end{array}
  6957. \]
  6958. \fi}
  6959. \end{tcolorbox}
  6960. \racket{
  6961. \index{subject}{IfStmt@\IFSTMTNAME{}}
  6962. }
  6963. \index{subject}{Goto@\texttt{Goto}}
  6964. \index{subject}{Return@\texttt{Return}}
  6965. \caption{The abstract syntax of \LangCIf{}\racket{, an extension of \LangCVar{}
  6966. (Figure~\ref{fig:c0-syntax})}.}
  6967. \label{fig:c1-syntax}
  6968. \end{figure}
  6969. \section{The \LangXIf{} Language}
  6970. \label{sec:x86-if}
  6971. \index{subject}{x86} To implement the new logical operations, the
  6972. comparison operations, and the \key{if} expression\python{ and
  6973. statement}, we delve further into the x86
  6974. language. Figures~\ref{fig:x86-1-concrete} and \ref{fig:x86-1} define
  6975. the concrete and abstract syntax for the \LangXIf{} subset of x86,
  6976. which includes instructions for logical operations, comparisons, and
  6977. \racket{conditional} jumps.
  6978. %
  6979. \python{The abstract syntax for an \LangXIf{} program contains a
  6980. dictionary mapping labels to sequences of instructions, each of
  6981. which we refer to as a \emph{basic block}\index{subject}{basic
  6982. block}.}
  6983. One challenge is that x86 does not provide an instruction that
  6984. directly implements logical negation (\code{not} in \LangIf{} and
  6985. \LangCIf{}). However, the \code{xorq} instruction can be used to
  6986. encode \code{not}. The \key{xorq} instruction takes two arguments,
  6987. performs a pairwise exclusive-or ($\mathrm{XOR}$) operation on each
  6988. bit of its arguments, and writes the results into its second argument.
  6989. Recall the truth table for exclusive-or:
  6990. \begin{center}
  6991. \begin{tabular}{l|cc}
  6992. & 0 & 1 \\ \hline
  6993. 0 & 0 & 1 \\
  6994. 1 & 1 & 0
  6995. \end{tabular}
  6996. \end{center}
  6997. For example, applying $\mathrm{XOR}$ to each bit of the binary numbers
  6998. $0011$ and $0101$ yields $0110$. Notice that in the row of the table
  6999. for the bit $1$, the result is the opposite of the second bit. Thus,
  7000. the \code{not} operation can be implemented by \code{xorq} with $1$ as
  7001. the first argument as follows, where $\Arg$ is the translation of
  7002. $\Atm$ to x86.
  7003. \[
  7004. \CASSIGN{\Var}{\CUNIOP{\key{not}}{\Atm}}
  7005. \qquad\Rightarrow\qquad
  7006. \begin{array}{l}
  7007. \key{movq}~ \Arg\key{,} \Var\\
  7008. \key{xorq}~ \key{\$1,} \Var
  7009. \end{array}
  7010. \]
  7011. \newcommand{\GrammarXIf}{
  7012. \begin{array}{lcl}
  7013. \itm{bytereg} &::=& \key{ah} \MID \key{al} \MID \key{bh} \MID \key{bl}
  7014. \MID \key{ch} \MID \key{cl} \MID \key{dh} \MID \key{dl} \\
  7015. \Arg &::=& \key{\%}\itm{bytereg}\\
  7016. \itm{cc} & ::= & \key{e} \MID \key{ne} \MID \key{l} \MID \key{le} \MID \key{g} \MID \key{ge} \\
  7017. \Instr &::=& \key{xorq}~\Arg\key{,}~\Arg
  7018. \MID \key{cmpq}~\Arg\key{,}~\Arg
  7019. \MID \key{set}cc~\Arg
  7020. \MID \key{movzbq}~\Arg\key{,}~\Arg \\
  7021. &\MID& \key{j}cc~\itm{label} \\
  7022. \end{array}
  7023. }
  7024. \begin{figure}[tp]
  7025. \begin{tcolorbox}[colback=white]
  7026. \[
  7027. \begin{array}{l}
  7028. \gray{\GrammarXInt} \\ \hline
  7029. \GrammarXIf \\
  7030. \begin{array}{lcl}
  7031. \LangXIfM{} &::= & \key{.globl main} \\
  7032. & & \key{main:} \; \Instr\ldots
  7033. \end{array}
  7034. \end{array}
  7035. \]
  7036. \end{tcolorbox}
  7037. \caption{The concrete syntax of \LangXIf{} (extends \LangXInt{} of Figure~\ref{fig:x86-int-concrete}).}
  7038. \label{fig:x86-1-concrete}
  7039. \end{figure}
  7040. \newcommand{\ASTXIfRacket}{
  7041. \begin{array}{lcl}
  7042. \itm{bytereg} &::=& \key{ah} \MID \key{al} \MID \key{bh} \MID \key{bl}
  7043. \MID \key{ch} \MID \key{cl} \MID \key{dh} \MID \key{dl} \\
  7044. \Arg &::=& \BYTEREG{\itm{bytereg}} \\
  7045. \itm{cc} & ::= & \key{e} \MID \key{l} \MID \key{le} \MID \key{g} \MID \key{ge} \\
  7046. \Instr &::=& \BININSTR{\code{xorq}}{\Arg}{\Arg}
  7047. \MID \BININSTR{\code{cmpq}}{\Arg}{\Arg}\\
  7048. &\MID& \BININSTR{\code{set}}{\itm{cc}}{\Arg}
  7049. \MID \BININSTR{\code{movzbq}}{\Arg}{\Arg}\\
  7050. &\MID& \JMPIF{'\itm{cc}'}{\itm{label}}
  7051. \end{array}
  7052. }
  7053. \begin{figure}[tp]
  7054. \begin{tcolorbox}[colback=white]
  7055. \small
  7056. {\if\edition\racketEd
  7057. \[\arraycolsep=3pt
  7058. \begin{array}{l}
  7059. \gray{\ASTXIntRacket} \\ \hline
  7060. \ASTXIfRacket \\
  7061. \begin{array}{lcl}
  7062. \LangXIfM{} &::= & \XPROGRAM{\itm{info}}{\LP\LP\itm{label} \,\key{.}\, \Block \RP\ldots\RP}
  7063. \end{array}
  7064. \end{array}
  7065. \]
  7066. \fi}
  7067. %
  7068. {\if\edition\pythonEd
  7069. \[
  7070. \begin{array}{lcl}
  7071. \itm{bytereg} &::=& \skey{ah} \MID \skey{al} \MID \skey{bh} \MID \skey{bl}
  7072. \MID \skey{ch} \MID \skey{cl} \MID \skey{dh} \MID \skey{dl} \\
  7073. \Arg &::=& \gray{\IMM{\Int} \MID \REG{\Reg} \MID \DEREF{\Reg}{\Int}}
  7074. \MID \BYTEREG{\itm{bytereg}} \\
  7075. \itm{cc} & ::= & \skey{e} \MID \skey{ne} \MID \skey{l} \MID \skey{le} \MID \skey{g} \MID \skey{ge} \\
  7076. \Instr &::=& \gray{ \BININSTR{\scode{addq}}{\Arg}{\Arg}
  7077. \MID \BININSTR{\scode{subq}}{\Arg}{\Arg} } \\
  7078. &\MID& \gray{ \BININSTR{\scode{movq}}{\Arg}{\Arg}
  7079. \MID \UNIINSTR{\scode{negq}}{\Arg} } \\
  7080. &\MID& \gray{ \CALLQ{\itm{label}}{\itm{int}} \MID \RETQ{}
  7081. \MID \PUSHQ{\Arg}} \\
  7082. &\MID& \gray{ \POPQ{\Arg} \MID \racket{\JMP{\itm{label}}} } \python{\JMP{\itm{label}}}\\
  7083. &\MID& \BININSTR{\scode{xorq}}{\Arg}{\Arg}
  7084. \MID \BININSTR{\scode{cmpq}}{\Arg}{\Arg}\\
  7085. &\MID& \BININSTR{\scode{set}}{\itm{cc}}{\Arg}
  7086. \MID \BININSTR{\scode{movzbq}}{\Arg}{\Arg}\\
  7087. &\MID& \JMPIF{\itm{cc}}{\itm{label}} \\
  7088. \Block &::= & \Instr^{+} \\
  7089. \LangXIfM{} &::= & \XPROGRAM{\itm{info}}{\LC\itm{label} \,\key{:}\, \Block \key{,} \ldots \RC }
  7090. \end{array}
  7091. \]
  7092. \fi}
  7093. \end{tcolorbox}
  7094. \caption{The abstract syntax of \LangXIf{} (extends \LangXInt{} of Figure~\ref{fig:x86-int-ast}).}
  7095. \label{fig:x86-1}
  7096. \end{figure}
  7097. Next we consider the x86 instructions that are relevant for compiling
  7098. the comparison operations. The \key{cmpq} instruction compares its two
  7099. arguments to determine whether one argument is less than, equal, or
  7100. greater than the other argument. The \key{cmpq} instruction is unusual
  7101. regarding the order of its arguments and where the result is
  7102. placed. The argument order is backwards: if you want to test whether
  7103. $x < y$, then write \code{cmpq} $y$\code{,} $x$. The result of
  7104. \key{cmpq} is placed in the special EFLAGS register. This register
  7105. cannot be accessed directly but it can be queried by a number of
  7106. instructions, including the \key{set} instruction. The instruction
  7107. $\key{set}cc~d$ puts a \key{1} or \key{0} into the destination $d$
  7108. depending on whether the contents of the EFLAGS register matches the
  7109. condition code \itm{cc}: \key{e} for equal, \key{l} for less, \key{le}
  7110. for less-or-equal, \key{g} for greater, \key{ge} for greater-or-equal.
  7111. The \key{set} instruction has a quirk in that its destination argument
  7112. must be single byte register, such as \code{al} (L for lower bits) or
  7113. \code{ah} (H for higher bits), which are part of the \code{rax}
  7114. register. Thankfully, the \key{movzbq} instruction can be used to
  7115. move from a single byte register to a normal 64-bit register. The
  7116. abstract syntax for the \code{set} instruction differs from the
  7117. concrete syntax in that it separates the instruction name from the
  7118. condition code.
  7119. \python{The x86 instructions for jumping are relevant to the
  7120. compilation of \key{if} expressions.}
  7121. %
  7122. \python{The instruction $\key{jmp}\,\itm{label}$ updates the program
  7123. counter to the address of the instruction after the specified
  7124. label.}
  7125. %
  7126. \racket{The x86 instruction for conditional jump is relevant to the
  7127. compilation of \key{if} expressions.}
  7128. %
  7129. The instruction $\key{j}\itm{cc}~\itm{label}$ updates the program
  7130. counter to point to the instruction after \itm{label} depending on
  7131. whether the result in the EFLAGS register matches the condition code
  7132. \itm{cc}, otherwise the jump instruction falls through to the next
  7133. instruction. Like the abstract syntax for \code{set}, the abstract
  7134. syntax for conditional jump separates the instruction name from the
  7135. condition code. For example, \JMPIF{\QUOTE{\code{le}}}{\QUOTE{\code{foo}}}
  7136. corresponds to \code{jle foo}. Because the conditional jump instruction
  7137. relies on the EFLAGS register, it is common for it to be immediately preceded by
  7138. a \key{cmpq} instruction to set the EFLAGS register.
  7139. \section{Shrink the \LangIf{} Language}
  7140. \label{sec:shrink-Lif}
  7141. The \LangIf{} language includes several features that are easily
  7142. expressible with other features. For example, \code{and} and \code{or}
  7143. are expressible using \code{if} as follows.
  7144. \begin{align*}
  7145. \CAND{e_1}{e_2} & \quad \Rightarrow \quad \CIF{e_1}{e_2}{\FALSE{}}\\
  7146. \COR{e_1}{e_2} & \quad \Rightarrow \quad \CIF{e_1}{\TRUE{}}{e_2}
  7147. \end{align*}
  7148. By performing these translations in the front-end of the compiler,
  7149. subsequent passes of the compiler do not need to deal with these features,
  7150. making the passes shorter.
  7151. On the other hand, sometimes translations reduce the efficiency of the
  7152. generated code by increasing the number of instructions. For example,
  7153. expressing subtraction in terms of negation
  7154. \[
  7155. \CBINOP{\key{-}}{e_1}{e_2} \quad \Rightarrow \quad
  7156. \CBINOP{\key{+}}{e_1}{ \CUNIOP{\key{-}}{e_2} }
  7157. \]
  7158. produces code with two x86 instructions (\code{negq} and \code{addq})
  7159. instead of just one (\code{subq}).
  7160. \begin{exercise}\normalfont\normalsize
  7161. %
  7162. Implement the pass \code{shrink} to remove \key{and} and \key{or} from
  7163. the language by translating them to \code{if} expressions in \LangIf{}.
  7164. %
  7165. Create four test programs that involve these operators.
  7166. %
  7167. {\if\edition\racketEd
  7168. In the \code{run-tests.rkt} script, add the following entry for
  7169. \code{shrink} to the list of passes (it should be the only pass at
  7170. this point).
  7171. \begin{lstlisting}
  7172. (list "shrink" shrink interp_Lif type-check-Lif)
  7173. \end{lstlisting}
  7174. This instructs \code{interp-tests} to run the interpreter
  7175. \code{interp\_Lif} and the type checker \code{type-check-Lif} on the
  7176. output of \code{shrink}.
  7177. \fi}
  7178. %
  7179. Run the script to test your compiler on all the test programs.
  7180. \end{exercise}
  7181. {\if\edition\racketEd
  7182. \section{Uniquify Variables}
  7183. \label{sec:uniquify-Lif}
  7184. Add cases to \code{uniquify\_exp} to handle Boolean constants and
  7185. \code{if} expressions.
  7186. \begin{exercise}\normalfont\normalsize
  7187. Update the \code{uniquify\_exp} for \LangIf{} and add the following
  7188. entry to the list of \code{passes} in the \code{run-tests.rkt} script.
  7189. \begin{lstlisting}
  7190. (list "uniquify" uniquify interp_Lif type_check_Lif)
  7191. \end{lstlisting}
  7192. Run the script to test your compiler.
  7193. \end{exercise}
  7194. \fi}
  7195. \section{Remove Complex Operands}
  7196. \label{sec:remove-complex-opera-Lif}
  7197. The output language of \code{remove\_complex\_operands} is
  7198. \LangIfANF{} (Figure~\ref{fig:Lif-anf-syntax}), the monadic
  7199. normal form of \LangIf{}. A Boolean constant is an atomic expressions
  7200. but the \code{if} expression is not. All three sub-expressions of an
  7201. \code{if} are allowed to be complex expressions but the operands of
  7202. \code{not} and the comparisons must be atomic.
  7203. %
  7204. \python{We add a new language form, the \code{Begin} expression, to aid
  7205. in the translation of \code{if} expressions. When we recursively
  7206. process the two branches of the \code{if}, we generate temporary
  7207. variables and their initializing expressions. However, these
  7208. expressions may contain side effects and should only be executed
  7209. when the condition of the \code{if} is true (for the ``then''
  7210. branch) or false (for the ``else'' branch). The \code{Begin} provides
  7211. a way to initialize the temporary variables within the two branches
  7212. of the \code{if} expression. In general, the $\BEGIN{ss}{e}$
  7213. form execute the statements $ss$ and then returns the result of
  7214. expression $e$.}
  7215. Add cases to the \code{rco\_exp} and \code{rco\_atom} functions for
  7216. the new features in \LangIf{}. When recursively processing
  7217. subexpressions, recall that you should invoke \code{rco\_atom} when
  7218. the output needs to be an \Atm{} (as specified in the grammar for
  7219. \LangIfANF{}) and invoke \code{rco\_exp} when the output should be
  7220. \Exp{}. Regarding \code{if}, it is particularly important to
  7221. \textbf{not} replace its condition with a temporary variable because
  7222. that would interfere with the generation of high-quality output in the
  7223. upcoming \code{explicate\_control} pass.
  7224. \newcommand{\LifMonadASTRacket}{
  7225. \begin{array}{rcl}
  7226. \Atm &::=& \BOOL{\itm{bool}}\\
  7227. \Exp &::=& \UNIOP{\key{not}}{\Atm}
  7228. \MID \BINOP{\itm{cmp}}{\Atm}{\Atm}
  7229. \MID \IF{\Exp}{\Exp}{\Exp}
  7230. \end{array}
  7231. }
  7232. \newcommand{\LifMonadASTPython}{
  7233. \begin{array}{rcl}
  7234. %% \itm{binaryop} &::=& \code{Add()} \MID \code{Sub()} \\
  7235. %% \itm{cmp} &::= & \code{Eq()} \MID \code{NotEq()} \MID \code{Lt()} \MID \code{LtE()} \MID \code{Gt()} \MID \code{GtE()} \\
  7236. %% \itm{unaryop} &::=& \code{USub()} \MID \code{Not()} \\
  7237. %% \itm{bool} &::=& \code{True} \MID \code{False} \\
  7238. \Atm &::=& \BOOL{\itm{bool}}\\
  7239. \Exp &::=& \CMP{\Atm}{\itm{cmp}}{\Atm} \MID \IF{\Exp}{\Exp}{\Exp} \\
  7240. &\MID& \BEGIN{\Stmt^{*}}{\Exp}\\
  7241. \Stmt{} &::=& \IFSTMT{\Exp}{\Stmt^{*}}{\Stmt^{*}}
  7242. \end{array}
  7243. }
  7244. \begin{figure}[tp]
  7245. \centering
  7246. \begin{tcolorbox}[colback=white]
  7247. {\if\edition\racketEd
  7248. \[
  7249. \begin{array}{l}
  7250. \gray{\LvarMonadASTRacket} \\ \hline
  7251. \LifMonadASTRacket \\
  7252. \begin{array}{rcl}
  7253. \LangIfANF &::=& \PROGRAM{\code{()}}{\Exp}
  7254. \end{array}
  7255. \end{array}
  7256. \]
  7257. \fi}
  7258. {\if\edition\pythonEd
  7259. \[
  7260. \begin{array}{l}
  7261. \gray{\LvarMonadASTPython} \\ \hline
  7262. \LifMonadASTPython \\
  7263. \begin{array}{rcl}
  7264. \LangIfANF &::=& \PROGRAM{\code{()}}{\Stmt^{*}}
  7265. \end{array}
  7266. \end{array}
  7267. \]
  7268. \fi}
  7269. \end{tcolorbox}
  7270. \python{\index{subject}{Begin@\texttt{Begin}}}
  7271. \caption{\LangIfANF{} is \LangIf{} in monadic normal form
  7272. (extends \LangVarANF in Figure~\ref{fig:Lvar-anf-syntax}).}
  7273. \label{fig:Lif-anf-syntax}
  7274. \end{figure}
  7275. \begin{exercise}\normalfont\normalsize
  7276. %
  7277. Add cases for Boolean constants and \code{if} to the \code{rco\_atom}
  7278. and \code{rco\_exp} functions in \code{compiler.rkt}.
  7279. %
  7280. Create three new \LangIf{} programs that exercise the interesting
  7281. code in this pass.
  7282. %
  7283. {\if\edition\racketEd
  7284. In the \code{run-tests.rkt} script, add the following entry to the
  7285. list of \code{passes} and then run the script to test your compiler.
  7286. \begin{lstlisting}
  7287. (list "remove-complex" remove_complex_operands interp-Lif type-check-Lif)
  7288. \end{lstlisting}
  7289. \fi}
  7290. \end{exercise}
  7291. \section{Explicate Control}
  7292. \label{sec:explicate-control-Lif}
  7293. \racket{Recall that the purpose of \code{explicate\_control} is to
  7294. make the order of evaluation explicit in the syntax of the program.
  7295. With the addition of \key{if} this gets more interesting.}
  7296. %
  7297. The \code{explicate\_control} pass translates from \LangIf{} to \LangCIf{}.
  7298. %
  7299. The main challenge to overcome is that the condition of an \key{if}
  7300. can be an arbitrary expression in \LangIf{} whereas in \LangCIf{} the
  7301. condition must be a comparison.
  7302. As a motivating example, consider the following program that has an
  7303. \key{if} expression nested in the condition of another \key{if}.%
  7304. \python{\footnote{Programmers rarely write nested \code{if}
  7305. expressions, but it is not uncommon for the condition of an
  7306. \code{if} statement to be a call of a function that also contains an
  7307. \code{if} statement. When such a function is inlined, the result is
  7308. a nested \code{if} that requires the techniques discussed in this
  7309. section.}}
  7310. % cond_test_41.rkt, if_lt_eq.py
  7311. \begin{center}
  7312. \begin{minipage}{0.96\textwidth}
  7313. {\if\edition\racketEd
  7314. \begin{lstlisting}
  7315. (let ([x (read)])
  7316. (let ([y (read)])
  7317. (if (if (< x 1) (eq? x 0) (eq? x 2))
  7318. (+ y 2)
  7319. (+ y 10))))
  7320. \end{lstlisting}
  7321. \fi}
  7322. {\if\edition\pythonEd
  7323. \begin{lstlisting}
  7324. x = input_int()
  7325. y = input_int()
  7326. print(y + 2 if (x == 0 if x < 1 else x == 2) else y + 10)
  7327. \end{lstlisting}
  7328. \fi}
  7329. \end{minipage}
  7330. \end{center}
  7331. %
  7332. The naive way to compile \key{if} and the comparison operations would
  7333. be to handle each of them in isolation, regardless of their context.
  7334. Each comparison would be translated into a \key{cmpq} instruction
  7335. followed by several instructions to move the result from the EFLAGS
  7336. register into a general purpose register or stack location. Each
  7337. \key{if} would be translated into a \key{cmpq} instruction followed by
  7338. a conditional jump. The generated code for the inner \key{if} in the
  7339. above example would be as follows.
  7340. \begin{center}
  7341. \begin{minipage}{0.96\textwidth}
  7342. \begin{lstlisting}
  7343. cmpq $1, x
  7344. setl %al
  7345. movzbq %al, tmp
  7346. cmpq $1, tmp
  7347. je then_branch_1
  7348. jmp else_branch_1
  7349. \end{lstlisting}
  7350. \end{minipage}
  7351. \end{center}
  7352. Notice that the three instructions starting with \code{setl} are
  7353. redundant: the conditional jump could come immediately after the first
  7354. \code{cmpq}.
  7355. Our goal will be to compile \key{if} expressions so that the relevant
  7356. comparison instruction appears directly before the conditional jump.
  7357. For example, we want to generate the following code for the inner
  7358. \code{if}.
  7359. \begin{center}
  7360. \begin{minipage}{0.96\textwidth}
  7361. \begin{lstlisting}
  7362. cmpq $1, x
  7363. jl then_branch_1
  7364. jmp else_branch_1
  7365. \end{lstlisting}
  7366. \end{minipage}
  7367. \end{center}
  7368. One way to achieve this goal is to reorganize the code at the level of
  7369. \LangIf{}, pushing the outer \key{if} inside the inner one, yielding
  7370. the following code.
  7371. \begin{center}
  7372. \begin{minipage}{0.96\textwidth}
  7373. {\if\edition\racketEd
  7374. \begin{lstlisting}
  7375. (let ([x (read)])
  7376. (let ([y (read)])
  7377. (if (< x 1)
  7378. (if (eq? x 0)
  7379. (+ y 2)
  7380. (+ y 10))
  7381. (if (eq? x 2)
  7382. (+ y 2)
  7383. (+ y 10)))))
  7384. \end{lstlisting}
  7385. \fi}
  7386. {\if\edition\pythonEd
  7387. \begin{lstlisting}
  7388. x = input_int()
  7389. y = input_int()
  7390. print(((y + 2) if x == 0 else (y + 10)) \
  7391. if (x < 1) \
  7392. else ((y + 2) if (x == 2) else (y + 10)))
  7393. \end{lstlisting}
  7394. \fi}
  7395. \end{minipage}
  7396. \end{center}
  7397. Unfortunately, this approach duplicates the two branches from the
  7398. outer \code{if} and a compiler must never duplicate code! After all,
  7399. the two branches could be very large expressions.
  7400. How can we apply the above transformation but without duplicating
  7401. code? In other words, how can two different parts of a program refer
  7402. to one piece of code.
  7403. %
  7404. The answer is that we must move away from abstract syntax \emph{trees}
  7405. and instead use \emph{graphs}.
  7406. %
  7407. At the level of x86 assembly this is straightforward because we can
  7408. label the code for each branch and insert jumps in all the places that
  7409. need to execute the branch. In this way, jump instructions are edges
  7410. in the graph and the basic blocks are the nodes.
  7411. %
  7412. Likewise, our language \LangCIf{} provides the ability to label a
  7413. sequence of statements and to jump to a label via \code{goto}.
  7414. As a preview of what \code{explicate\_control} will do,
  7415. Figure~\ref{fig:explicate-control-s1-38} shows the output of
  7416. \code{explicate\_control} on the above example. Note how the condition
  7417. of every \code{if} is a comparison operation and that we have not
  7418. duplicated any code, but instead used labels and \code{goto} to enable
  7419. sharing of code.
  7420. \begin{figure}[tbp]
  7421. \begin{tcolorbox}[colback=white]
  7422. {\if\edition\racketEd
  7423. \begin{tabular}{lll}
  7424. \begin{minipage}{0.4\textwidth}
  7425. % cond_test_41.rkt
  7426. \begin{lstlisting}
  7427. (let ([x (read)])
  7428. (let ([y (read)])
  7429. (if (if (< x 1)
  7430. (eq? x 0)
  7431. (eq? x 2))
  7432. (+ y 2)
  7433. (+ y 10))))
  7434. \end{lstlisting}
  7435. \end{minipage}
  7436. &
  7437. $\Rightarrow$
  7438. &
  7439. \begin{minipage}{0.55\textwidth}
  7440. \begin{lstlisting}
  7441. start:
  7442. x = (read);
  7443. y = (read);
  7444. if (< x 1)
  7445. goto block_4;
  7446. else
  7447. goto block_5;
  7448. block_4:
  7449. if (eq? x 0)
  7450. goto block_2;
  7451. else
  7452. goto block_3;
  7453. block_5:
  7454. if (eq? x 2)
  7455. goto block_2;
  7456. else
  7457. goto block_3;
  7458. block_2:
  7459. return (+ y 2);
  7460. block_3:
  7461. return (+ y 10);
  7462. \end{lstlisting}
  7463. \end{minipage}
  7464. \end{tabular}
  7465. \fi}
  7466. {\if\edition\pythonEd
  7467. \begin{tabular}{lll}
  7468. \begin{minipage}{0.4\textwidth}
  7469. % cond_test_41.rkt
  7470. \begin{lstlisting}
  7471. x = input_int()
  7472. y = input_int()
  7473. print(y + 2 \
  7474. if (x == 0 \
  7475. if x < 1 \
  7476. else x == 2) \
  7477. else y + 10)
  7478. \end{lstlisting}
  7479. \end{minipage}
  7480. &
  7481. $\Rightarrow$
  7482. &
  7483. \begin{minipage}{0.55\textwidth}
  7484. \begin{lstlisting}
  7485. start:
  7486. x = input_int()
  7487. y = input_int()
  7488. if x < 1:
  7489. goto block_8
  7490. else:
  7491. goto block_9
  7492. block_8:
  7493. if x == 0:
  7494. goto block_4
  7495. else:
  7496. goto block_5
  7497. block_9:
  7498. if x == 2:
  7499. goto block_6
  7500. else:
  7501. goto block_7
  7502. block_4:
  7503. goto block_2
  7504. block_5:
  7505. goto block_3
  7506. block_6:
  7507. goto block_2
  7508. block_7:
  7509. goto block_3
  7510. block_2:
  7511. tmp_0 = y + 2
  7512. goto block_1
  7513. block_3:
  7514. tmp_0 = y + 10
  7515. goto block_1
  7516. block_1:
  7517. print(tmp_0)
  7518. return 0
  7519. \end{lstlisting}
  7520. \end{minipage}
  7521. \end{tabular}
  7522. \fi}
  7523. \end{tcolorbox}
  7524. \caption{Translation from \LangIf{} to \LangCIf{}
  7525. via the \code{explicate\_control}.}
  7526. \label{fig:explicate-control-s1-38}
  7527. \end{figure}
  7528. {\if\edition\racketEd
  7529. %
  7530. Recall that in Section~\ref{sec:explicate-control-Lvar} we implement
  7531. \code{explicate\_control} for \LangVar{} using two recursive
  7532. functions, \code{explicate\_tail} and \code{explicate\_assign}. The
  7533. former function translates expressions in tail position whereas the
  7534. later function translates expressions on the right-hand-side of a
  7535. \key{let}. With the addition of \key{if} expression to \LangIf{} we
  7536. have a new kind of position to deal with: the predicate position of
  7537. the \key{if}. We need another function, \code{explicate\_pred}, that
  7538. decides how to compile an \key{if} by analyzing its condition. So
  7539. \code{explicate\_pred} takes an \LangIf{} expression and two
  7540. \LangCIf{} tails for the then-branch and else-branch and outputs a
  7541. tail. In the following paragraphs we discuss specific cases in the
  7542. \code{explicate\_tail}, \code{explicate\_assign}, and
  7543. \code{explicate\_pred} functions.
  7544. %
  7545. \fi}
  7546. %
  7547. {\if\edition\pythonEd
  7548. %
  7549. We recommend implementing \code{explicate\_control} using the
  7550. following four auxiliary functions.
  7551. \begin{description}
  7552. \item[\code{explicate\_effect}] generates code for expressions as
  7553. statements, so their result is ignored and only their side effects
  7554. matter.
  7555. \item[\code{explicate\_assign}] generates code for expressions
  7556. on the right-hand side of an assignment.
  7557. \item[\code{explicate\_pred}] generates code for an \code{if}
  7558. expression or statement by analyzing the condition expression.
  7559. \item[\code{explicate\_stmt}] generates code for statements.
  7560. \end{description}
  7561. These four functions should build the dictionary of basic blocks. The
  7562. following auxiliary function can be used to create a new basic block
  7563. from a list of statements. It returns a \code{goto} statement that
  7564. jumps to the new basic block.
  7565. \begin{center}
  7566. \begin{minipage}{\textwidth}
  7567. \begin{lstlisting}
  7568. def create_block(stmts, basic_blocks):
  7569. label = label_name(generate_name('block'))
  7570. basic_blocks[label] = stmts
  7571. return Goto(label)
  7572. \end{lstlisting}
  7573. \end{minipage}
  7574. \end{center}
  7575. Figure~\ref{fig:explicate-control-Lif} provides a skeleton for the
  7576. \code{explicate\_control} pass.
  7577. The \code{explicate\_effect} function has three parameters: 1) the
  7578. expression to be compiled, 2) the already-compiled code for this
  7579. expression's \emph{continuation}, that is, the list of statements that
  7580. should execute after this expression, and 3) the dictionary of
  7581. generated basic blocks. The \code{explicate\_effect} function returns
  7582. a list of \LangCIf{} statements and it may add to the dictionary of
  7583. basic blocks.
  7584. %
  7585. Let's consider a few of the cases for the expression to be compiled.
  7586. If the expression to be compiled is a constant, then it can be
  7587. discarded because it has no side effects. If it's a \CREAD{}, then it
  7588. has a side-effect and should be preserved. So the expression should be
  7589. translated into a statement using the \code{Expr} AST class. If the
  7590. expression to be compiled is an \code{if} expression, we translate the
  7591. two branches using \code{explicate\_effect} and then translate the
  7592. condition expression using \code{explicate\_pred}, which generates
  7593. code for the entire \code{if}.
  7594. The \code{explicate\_assign} function has four parameters: 1) the
  7595. right-hand-side of the assignment, 2) the left-hand-side of the
  7596. assignment (the variable), 3) the continuation, and 4) the dictionary
  7597. of basic blocks. The \code{explicate\_assign} function returns a list
  7598. of \LangCIf{} statements and it may add to the dictionary of basic
  7599. blocks.
  7600. When the right-hand-side is an \code{if} expression, there is some
  7601. work to do. In particular, the two branches should be translated using
  7602. \code{explicate\_assign} and the condition expression should be
  7603. translated using \code{explicate\_pred}. Otherwise we can simply
  7604. generate an assignment statement, with the given left and right-hand
  7605. sides, concatenated with its continuation.
  7606. \begin{figure}[tbp]
  7607. \begin{tcolorbox}[colback=white]
  7608. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  7609. def explicate_effect(e, cont, basic_blocks):
  7610. match e:
  7611. case IfExp(test, body, orelse):
  7612. ...
  7613. case Call(func, args):
  7614. ...
  7615. case Begin(body, result):
  7616. ...
  7617. case _:
  7618. ...
  7619. def explicate_assign(rhs, lhs, cont, basic_blocks):
  7620. match rhs:
  7621. case IfExp(test, body, orelse):
  7622. ...
  7623. case Begin(body, result):
  7624. ...
  7625. case _:
  7626. return [Assign([lhs], rhs)] + cont
  7627. def explicate_pred(cnd, thn, els, basic_blocks):
  7628. match cnd:
  7629. case Compare(left, [op], [right]):
  7630. goto_thn = create_block(thn, basic_blocks)
  7631. goto_els = create_block(els, basic_blocks)
  7632. return [If(cnd, [goto_thn], [goto_els])]
  7633. case Constant(True):
  7634. return thn;
  7635. case Constant(False):
  7636. return els;
  7637. case UnaryOp(Not(), operand):
  7638. ...
  7639. case IfExp(test, body, orelse):
  7640. ...
  7641. case Begin(body, result):
  7642. ...
  7643. case _:
  7644. return [If(Compare(cnd, [Eq()], [Constant(False)]),
  7645. [create_block(els, basic_blocks)],
  7646. [create_block(thn, basic_blocks)])]
  7647. def explicate_stmt(s, cont, basic_blocks):
  7648. match s:
  7649. case Assign([lhs], rhs):
  7650. return explicate_assign(rhs, lhs, cont, basic_blocks)
  7651. case Expr(value):
  7652. return explicate_effect(value, cont, basic_blocks)
  7653. case If(test, body, orelse):
  7654. ...
  7655. def explicate_control(p):
  7656. match p:
  7657. case Module(body):
  7658. new_body = [Return(Constant(0))]
  7659. basic_blocks = {}
  7660. for s in reversed(body):
  7661. new_body = explicate_stmt(s, new_body, basic_blocks)
  7662. basic_blocks[label_name('start')] = new_body
  7663. return CProgram(basic_blocks)
  7664. \end{lstlisting}
  7665. \end{tcolorbox}
  7666. \caption{Skeleton for the \code{explicate\_control} pass.}
  7667. \label{fig:explicate-control-Lif}
  7668. \end{figure}
  7669. \fi}
  7670. {\if\edition\racketEd
  7671. \subsection{Explicate Tail and Assign}
  7672. The \code{explicate\_tail} and \code{explicate\_assign} functions need
  7673. additional cases for Boolean constants and \key{if}. The cases for
  7674. \code{if} should recursively compile the two branches using either
  7675. \code{explicate\_tail} or \code{explicate\_assign}, respectively. The
  7676. cases should then invoke \code{explicate\_pred} on the condition
  7677. expression, passing in the generated code for the two branches. For
  7678. example, consider the following program with an \code{if} in tail
  7679. position.
  7680. % cond_test_6.rkt
  7681. \begin{lstlisting}
  7682. (let ([x (read)])
  7683. (if (eq? x 0) 42 777))
  7684. \end{lstlisting}
  7685. The two branches are recursively compiled to return statements. We
  7686. then delegate to \code{explicate\_pred}, passing the condition
  7687. \code{(eq? x 0)} and the two return statements. We return to this
  7688. example shortly when we discuss \code{explicate\_pred}.
  7689. Next let us consider a program with an \code{if} on the right-hand
  7690. side of a \code{let}.
  7691. \begin{lstlisting}
  7692. (let ([y (read)])
  7693. (let ([x (if (eq? y 0) 40 777)])
  7694. (+ x 2)))
  7695. \end{lstlisting}
  7696. Note that the body of the inner \code{let} will have already been
  7697. compiled to \code{return (+ x 2);} and passed as the \code{cont}
  7698. parameter of \code{explicate\_assign}. We'll need to use \code{cont}
  7699. to recursively process both branches of the \code{if}, and we do not
  7700. want to duplicate code, so we generate the following block using an
  7701. auxiliary function named \code{create\_block} that we discuss below.
  7702. \begin{lstlisting}
  7703. block_6:
  7704. return (+ x 2)
  7705. \end{lstlisting}
  7706. We then use \code{goto block\_6;} as the \code{cont} argument for
  7707. compiling the branches. So the two branches compile to
  7708. \begin{center}
  7709. \begin{minipage}{0.2\textwidth}
  7710. \begin{lstlisting}
  7711. x = 40;
  7712. goto block_6;
  7713. \end{lstlisting}
  7714. \end{minipage}
  7715. \hspace{0.5in} and \hspace{0.5in}
  7716. \begin{minipage}{0.2\textwidth}
  7717. \begin{lstlisting}
  7718. x = 777;
  7719. goto block_6;
  7720. \end{lstlisting}
  7721. \end{minipage}
  7722. \end{center}
  7723. Finally, we delegate to \code{explicate\_pred}, passing the condition
  7724. \code{(eq? y 0)} and the above code for the branches.
  7725. \subsection{Create Block}
  7726. We recommend implementing the \code{create\_block} auxiliary function
  7727. as follows, using a global variable \code{basic-blocks} to store a
  7728. dictionary that maps labels to $\Tail$ expressions. The main idea is
  7729. that \code{create\_block} generates a new label and then associates
  7730. the given \code{tail} with the new label in the \code{basic-blocks}
  7731. dictionary. The result of \code{create\_block} is a \code{Goto} to the
  7732. new label. However, if the given \code{tail} is already a \code{Goto},
  7733. then there is no need to generate a new label and entry in
  7734. \code{basic-blocks}; we can simply return that \code{Goto}.
  7735. %
  7736. \begin{lstlisting}
  7737. (define (create_block tail)
  7738. (match tail
  7739. [(Goto label) (Goto label)]
  7740. [else
  7741. (let ([label (gensym 'block)])
  7742. (set! basic-blocks (cons (cons label tail) basic-blocks))
  7743. (Goto label))]))
  7744. \end{lstlisting}
  7745. \fi}
  7746. {\if\edition\racketEd
  7747. \subsection{Explicate Predicate}
  7748. \begin{figure}[tbp]
  7749. \begin{tcolorbox}[colback=white]
  7750. \begin{lstlisting}
  7751. (define (explicate_pred cnd thn els)
  7752. (match cnd
  7753. [(Var x) ___]
  7754. [(Let x rhs body) ___]
  7755. [(Prim 'not (list e)) ___]
  7756. [(Prim op es) #:when (or (eq? op 'eq?) (eq? op '<))
  7757. (IfStmt (Prim op es) (create_block thn)
  7758. (create_block els))]
  7759. [(Bool b) (if b thn els)]
  7760. [(If cnd^ thn^ els^) ___]
  7761. [else (error "explicate_pred unhandled case" cnd)]))
  7762. \end{lstlisting}
  7763. \end{tcolorbox}
  7764. \caption{Skeleton for the \key{explicate\_pred} auxiliary function.}
  7765. \label{fig:explicate-pred}
  7766. \end{figure}
  7767. \fi}
  7768. \racket{The skeleton for the \code{explicate\_pred} function is given
  7769. in Figure~\ref{fig:explicate-pred}. It takes three parameters:
  7770. 1) \code{cnd}, the condition expression of the \code{if},
  7771. 2) \code{thn}, the code generated by explicate for the ``then'' branch,
  7772. and 3) \code{els}, the code generated by
  7773. explicate for the ``else'' branch. The \code{explicate\_pred}
  7774. function should match on \code{cnd} with a case for
  7775. every kind of expression that can have type \BOOLTY{}.}
  7776. %
  7777. \python{The \code{explicate\_pred} function has four parameters: 1)
  7778. the condition expression, 2) the generated statements for the
  7779. ``then'' branch, 3) the generated statements for the ``else''
  7780. branch, and 4) the dictionary of basic blocks. The
  7781. \code{explicate\_pred} function returns a list of \LangCIf{}
  7782. statements and it may add to the dictionary of basic blocks.}
  7783. Consider the case for comparison operators. We translate the
  7784. comparison to an \code{if} statement whose branches are \code{goto}
  7785. statements created by applying \code{create\_block} to the code
  7786. generated for the \code{thn} and \code{els} branches. Let us
  7787. illustrate this translation by returning to the program with an
  7788. \code{if} expression in tail position, shown again below. We invoke
  7789. \code{explicate\_pred} on its condition \racket{\code{(eq? x 0)}}
  7790. \python{\code{x == 0}}.
  7791. %
  7792. {\if\edition\racketEd
  7793. \begin{lstlisting}
  7794. (let ([x (read)])
  7795. (if (eq? x 0) 42 777))
  7796. \end{lstlisting}
  7797. \fi}
  7798. %
  7799. {\if\edition\pythonEd
  7800. \begin{lstlisting}
  7801. x = input_int()
  7802. 42 if x == 0 else 777
  7803. \end{lstlisting}
  7804. \fi}
  7805. %
  7806. \noindent The two branches \code{42} and \code{777} were already
  7807. compiled to \code{return} statements, from which we now create the
  7808. following blocks.
  7809. %
  7810. \begin{center}
  7811. \begin{minipage}{\textwidth}
  7812. \begin{lstlisting}
  7813. block_1:
  7814. return 42;
  7815. block_2:
  7816. return 777;
  7817. \end{lstlisting}
  7818. \end{minipage}
  7819. \end{center}
  7820. %
  7821. After that, \code{explicate\_pred} compiles the comparison
  7822. \racket{\code{(eq? x 0)}}
  7823. \python{\code{x == 0}}
  7824. to the following \code{if} statement.
  7825. %
  7826. {\if\edition\racketEd
  7827. \begin{center}
  7828. \begin{minipage}{\textwidth}
  7829. \begin{lstlisting}
  7830. if (eq? x 0)
  7831. goto block_1;
  7832. else
  7833. goto block_2;
  7834. \end{lstlisting}
  7835. \end{minipage}
  7836. \end{center}
  7837. \fi}
  7838. {\if\edition\pythonEd
  7839. \begin{center}
  7840. \begin{minipage}{\textwidth}
  7841. \begin{lstlisting}
  7842. if x == 0:
  7843. goto block_1;
  7844. else
  7845. goto block_2;
  7846. \end{lstlisting}
  7847. \end{minipage}
  7848. \end{center}
  7849. \fi}
  7850. Next consider the case for Boolean constants. We perform a kind of
  7851. partial evaluation\index{subject}{partial evaluation} and output
  7852. either the \code{thn} or \code{els} branch depending on whether the
  7853. constant is \TRUE{} or \FALSE{}. Let us illustrate this with the
  7854. following program.
  7855. {\if\edition\racketEd
  7856. \begin{lstlisting}
  7857. (if #t 42 777)
  7858. \end{lstlisting}
  7859. \fi}
  7860. {\if\edition\pythonEd
  7861. \begin{lstlisting}
  7862. 42 if True else 777
  7863. \end{lstlisting}
  7864. \fi}
  7865. %
  7866. \noindent Again, the two branches \code{42} and \code{777} were
  7867. compiled to \code{return} statements, so \code{explicate\_pred}
  7868. compiles the constant \racket{\code{\#t}} \python{\code{True}} to the
  7869. code for the ``then'' branch.
  7870. \begin{lstlisting}
  7871. return 42;
  7872. \end{lstlisting}
  7873. This case demonstrates that we sometimes discard the \code{thn} or
  7874. \code{els} blocks that are input to \code{explicate\_pred}.
  7875. The case for \key{if} expressions in \code{explicate\_pred} is
  7876. particularly illuminating because it deals with the challenges we
  7877. discussed above regarding nested \key{if} expressions
  7878. (Figure~\ref{fig:explicate-control-s1-38}). The
  7879. \racket{\lstinline{thn^}}\python{\code{body}} and
  7880. \racket{\lstinline{els^}}\python{\code{orelse}} branches of the
  7881. \key{if} inherit their context from the current one, that is,
  7882. predicate context. So you should recursively apply
  7883. \code{explicate\_pred} to the
  7884. \racket{\lstinline{thn^}}\python{\code{body}} and
  7885. \racket{\lstinline{els^}}\python{\code{orelse}} branches. For both of
  7886. those recursive calls, pass \code{thn} and \code{els} as the extra
  7887. parameters. Thus, \code{thn} and \code{els} may get used twice, once
  7888. inside each recursive call. As discussed above, to avoid duplicating
  7889. code, we need to add them to the dictionary of basic blocks so that we
  7890. can instead refer to them by name and execute them with a \key{goto}.
  7891. {\if\edition\pythonEd
  7892. %
  7893. The last of the auxiliary functions is \code{explicate\_stmt}. It has
  7894. three parameters: 1) the statement to be compiled, 2) the code for its
  7895. continuation, and 3) the dictionary of basic blocks. The
  7896. \code{explicate\_stmt} returns a list of statements and it may add to
  7897. the dictionary of basic blocks. The cases for assignment and an
  7898. expression-statement are given in full in the skeleton code: they
  7899. simply dispatch to \code{explicate\_assign} and
  7900. \code{explicate\_effect}, respectively. The case for \code{if}
  7901. statements is not given, and is similar to the case for \code{if}
  7902. expressions.
  7903. The \code{explicate\_control} function itself is given in
  7904. Figure~\ref{fig:explicate-control-Lif}. It applies
  7905. \code{explicate\_stmt} to each statement in the program, from back to
  7906. front. Thus, the result so-far, stored in \code{new\_body}, can be
  7907. used as the continuation parameter in the next call to
  7908. \code{explicate\_stmt}. The \code{new\_body} is initialized to a
  7909. \code{Return} statement. Once complete, we add the \code{new\_body} to
  7910. the dictionary of basic blocks, labeling it as the ``start'' block.
  7911. %
  7912. \fi}
  7913. %% Getting back to the case for \code{if} in \code{explicate\_pred}, we
  7914. %% make the recursive calls to \code{explicate\_pred} on the ``then'' and
  7915. %% ``else'' branches with the arguments \code{(create_block} $B_1$\code{)}
  7916. %% and \code{(create_block} $B_2$\code{)}. Let $B_3$ and $B_4$ be the
  7917. %% results from the two recursive calls. We complete the case for
  7918. %% \code{if} by recursively apply \code{explicate\_pred} to the condition
  7919. %% of the \code{if} with the promised blocks $B_3$ and $B_4$ to obtain
  7920. %% the result $B_5$.
  7921. %% \[
  7922. %% (\key{if}\; \itm{cnd}\; \itm{thn}\; \itm{els})
  7923. %% \quad\Rightarrow\quad
  7924. %% B_5
  7925. %% \]
  7926. %% In the case for \code{if} in \code{explicate\_tail}, the two branches
  7927. %% inherit the current context, so they are in tail position. Thus, the
  7928. %% recursive calls on the ``then'' and ``else'' branch should be calls to
  7929. %% \code{explicate\_tail}.
  7930. %% %
  7931. %% We need to pass $B_0$ as the accumulator argument for both of these
  7932. %% recursive calls, but we need to be careful not to duplicate $B_0$.
  7933. %% Thus, we first apply \code{create_block} to $B_0$ so that it gets added
  7934. %% to the control-flow graph and obtain a promised goto $G_0$.
  7935. %% %
  7936. %% Let $B_1$ be the result of \code{explicate\_tail} on the ``then''
  7937. %% branch and $G_0$ and let $B_2$ be the result of \code{explicate\_tail}
  7938. %% on the ``else'' branch and $G_0$. Let $B_3$ be the result of applying
  7939. %% \code{explicate\_pred} to the condition of the \key{if}, $B_1$, and
  7940. %% $B_2$. Then the \key{if} as a whole translates to promise $B_3$.
  7941. %% \[
  7942. %% (\key{if}\; \itm{cnd}\; \itm{thn}\; \itm{els}) \quad\Rightarrow\quad B_3
  7943. %% \]
  7944. %% In the above discussion, we use the metavariables $B_1$, $B_2$, and
  7945. %% $B_3$ to refer to blocks for the purposes of our discussion, but they
  7946. %% should not be confused with the labels for the blocks that appear in
  7947. %% the generated code. We initially construct unlabeled blocks; we only
  7948. %% attach labels to blocks when we add them to the control-flow graph, as
  7949. %% we see in the next case.
  7950. %% Next consider the case for \key{if} in the \code{explicate\_assign}
  7951. %% function. The context of the \key{if} is an assignment to some
  7952. %% variable $x$ and then the control continues to some promised block
  7953. %% $B_1$. The code that we generate for both the ``then'' and ``else''
  7954. %% branches needs to continue to $B_1$, so to avoid duplicating $B_1$ we
  7955. %% apply \code{create_block} to it and obtain a promised goto $G_1$. The
  7956. %% branches of the \key{if} inherit the current context, so they are in
  7957. %% assignment positions. Let $B_2$ be the result of applying
  7958. %% \code{explicate\_assign} to the ``then'' branch, variable $x$, and
  7959. %% $G_1$. Let $B_3$ be the result of applying \code{explicate\_assign} to
  7960. %% the ``else'' branch, variable $x$, and $G_1$. Finally, let $B_4$ be
  7961. %% the result of applying \code{explicate\_pred} to the predicate
  7962. %% $\itm{cnd}$ and the promises $B_2$ and $B_3$. The \key{if} as a whole
  7963. %% translates to the promise $B_4$.
  7964. %% \[
  7965. %% (\key{if}\; \itm{cnd}\; \itm{thn}\; \itm{els}) \quad\Rightarrow\quad B_4
  7966. %% \]
  7967. %% This completes the description of \code{explicate\_control} for \LangIf{}.
  7968. Figure~\ref{fig:explicate-control-s1-38} shows the output of the
  7969. \code{remove\_complex\_operands} pass and then the
  7970. \code{explicate\_control} pass on the example program. We walk through
  7971. the output program.
  7972. %
  7973. Following the order of evaluation in the output of
  7974. \code{remove\_complex\_operands}, we first have two calls to \CREAD{}
  7975. and then the comparison \racket{\code{(< x 1)}}\python{\code{x < 1}}
  7976. in the predicate of the inner \key{if}. In the output of
  7977. \code{explicate\_control}, in the
  7978. block labeled \code{start}, are two assignment statements followed by a
  7979. \code{if} statement that branches to \code{block\_4} or
  7980. \code{block\_5}. The blocks associated with those labels contain the
  7981. translations of the code
  7982. \racket{\code{(eq? x 0)}}\python{\code{x == 0}}
  7983. and
  7984. \racket{\code{(eq? x 2)}}\python{\code{x == 2}},
  7985. respectively. In particular, we start \code{block\_4} with the
  7986. comparison
  7987. \racket{\code{(eq? x 0)}}\python{\code{x == 0}}
  7988. and then branch to \code{block\_2} or \code{block\_3},
  7989. which correspond to the two branches of the outer \key{if}, i.e.,
  7990. \racket{\code{(+ y 2)}}\python{\code{y + 2}} and
  7991. \racket{\code{(+ y 10)}}\python{\code{y + 10}}.
  7992. %
  7993. The story for \code{block\_5} is similar to that of \code{block\_4}.
  7994. %
  7995. \python{The \code{block\_1} corresponds to the \code{print} statement
  7996. at the end of the program.}
  7997. {\if\edition\racketEd
  7998. \subsection{Interactions between Explicate and Shrink}
  7999. The way in which the \code{shrink} pass transforms logical operations
  8000. such as \code{and} and \code{or} can impact the quality of code
  8001. generated by \code{explicate\_control}. For example, consider the
  8002. following program.
  8003. % cond_test_21.rkt, and_eq_input.py
  8004. \begin{lstlisting}
  8005. (if (and (eq? (read) 0) (eq? (read) 1))
  8006. 0
  8007. 42)
  8008. \end{lstlisting}
  8009. The \code{and} operation should transform into something that the
  8010. \code{explicate\_pred} function can still analyze and descend through to
  8011. reach the underlying \code{eq?} conditions. Ideally, your
  8012. \code{explicate\_control} pass should generate code similar to the
  8013. following for the above program.
  8014. \begin{center}
  8015. \begin{lstlisting}
  8016. start:
  8017. tmp1 = (read);
  8018. if (eq? tmp1 0) goto block40;
  8019. else goto block39;
  8020. block40:
  8021. tmp2 = (read);
  8022. if (eq? tmp2 1) goto block38;
  8023. else goto block39;
  8024. block38:
  8025. return 0;
  8026. block39:
  8027. return 42;
  8028. \end{lstlisting}
  8029. \end{center}
  8030. \fi}
  8031. \begin{exercise}\normalfont\normalsize
  8032. \racket{
  8033. Implement the pass \code{explicate\_control} by adding the cases for
  8034. Boolean constants and \key{if} to the \code{explicate\_tail} and
  8035. \code{explicate\_assign} functions. Implement the auxiliary function
  8036. \code{explicate\_pred} for predicate contexts.}
  8037. \python{Implement \code{explicate\_control} pass with its
  8038. four auxiliary functions.}
  8039. %
  8040. Create test cases that exercise all of the new cases in the code for
  8041. this pass.
  8042. %
  8043. {\if\edition\racketEd
  8044. Add the following entry to the list of \code{passes} in
  8045. \code{run-tests.rkt} and then run this script to test your compiler.
  8046. \begin{lstlisting}
  8047. (list "explicate_control" explicate_control interp-Cif type-check-Cif)
  8048. \end{lstlisting}
  8049. \fi}
  8050. \end{exercise}
  8051. \clearpage
  8052. \section{Select Instructions}
  8053. \label{sec:select-Lif}
  8054. \index{subject}{instruction selection}
  8055. The \code{select\_instructions} pass translates \LangCIf{} to
  8056. \LangXIfVar{}.
  8057. %
  8058. \racket{Recall that we implement this pass using three auxiliary
  8059. functions, one for each of the non-terminals $\Atm$, $\Stmt$, and
  8060. $\Tail$ in \LangCIf{} (Figure~\ref{fig:c1-syntax}).}
  8061. %
  8062. \racket{For $\Atm$, we have new cases for the Booleans.}
  8063. %
  8064. \python{We begin with the Boolean constants.}
  8065. We take the usual approach of encoding them as integers.
  8066. \[
  8067. \TRUE{} \quad\Rightarrow\quad \key{1}
  8068. \qquad\qquad
  8069. \FALSE{} \quad\Rightarrow\quad \key{0}
  8070. \]
  8071. For translating statements, we discuss some of the cases. The
  8072. \code{not} operation can be implemented in terms of \code{xorq} as we
  8073. discussed at the beginning of this section. Given an assignment, if
  8074. the left-hand side variable is the same as the argument of \code{not},
  8075. then just the \code{xorq} instruction suffices.
  8076. \[
  8077. \CASSIGN{\Var}{ \CUNIOP{\key{not}}{\Var} }
  8078. \quad\Rightarrow\quad
  8079. \key{xorq}~\key{\$}1\key{,}~\Var
  8080. \]
  8081. Otherwise, a \key{movq} is needed to adapt to the update-in-place
  8082. semantics of x86. In the following translation, let $\Arg$ be the
  8083. result of translating $\Atm$ to x86.
  8084. \[
  8085. \CASSIGN{\Var}{ \CUNIOP{\key{not}}{\Atm} }
  8086. \quad\Rightarrow\quad
  8087. \begin{array}{l}
  8088. \key{movq}~\Arg\key{,}~\Var\\
  8089. \key{xorq}~\key{\$}1\key{,}~\Var
  8090. \end{array}
  8091. \]
  8092. Next consider the cases for equality comparisons. Translating this
  8093. operation to x86 is slightly involved due to the unusual nature of the
  8094. \key{cmpq} instruction that we discussed in Section~\ref{sec:x86-if}.
  8095. We recommend translating an assignment with an equality on the
  8096. right-hand side into a sequence of three instructions. \\
  8097. \begin{tabular}{lll}
  8098. \begin{minipage}{0.4\textwidth}
  8099. \begin{lstlisting}
  8100. |$\CASSIGN{\Var}{ \LP\CEQ{\Atm_1}{\Atm_2} \RP }$|
  8101. \end{lstlisting}
  8102. \end{minipage}
  8103. &
  8104. $\Rightarrow$
  8105. &
  8106. \begin{minipage}{0.4\textwidth}
  8107. \begin{lstlisting}
  8108. cmpq |$\Arg_2$|, |$\Arg_1$|
  8109. sete %al
  8110. movzbq %al, |$\Var$|
  8111. \end{lstlisting}
  8112. \end{minipage}
  8113. \end{tabular} \\
  8114. The translations for the other comparison operators are similar to the
  8115. above but use different condition codes for the \code{set} instruction.
  8116. \racket{Regarding the $\Tail$ non-terminal, we have two new cases:
  8117. \key{goto} and \key{if} statements. Both are straightforward to
  8118. translate to x86.}
  8119. %
  8120. A \key{goto} statement becomes a jump instruction.
  8121. \[
  8122. \key{goto}\; \ell\racket{\key{;}} \quad \Rightarrow \quad \key{jmp}\;\ell
  8123. \]
  8124. %
  8125. An \key{if} statement becomes a compare instruction followed by a
  8126. conditional jump (for the ``then'' branch) and the fall-through is to
  8127. a regular jump (for the ``else'' branch).\\
  8128. \begin{tabular}{lll}
  8129. \begin{minipage}{0.4\textwidth}
  8130. \begin{lstlisting}
  8131. if |$\CEQ{\Atm_1}{\Atm_2}$||$\python{\key{:}}$|
  8132. goto |$\ell_1$||$\racket{\key{;}}$|
  8133. else|$\python{\key{:}}$|
  8134. goto |$\ell_2$||$\racket{\key{;}}$|
  8135. \end{lstlisting}
  8136. \end{minipage}
  8137. &
  8138. $\Rightarrow$
  8139. &
  8140. \begin{minipage}{0.4\textwidth}
  8141. \begin{lstlisting}
  8142. cmpq |$\Arg_2$|, |$\Arg_1$|
  8143. je |$\ell_1$|
  8144. jmp |$\ell_2$|
  8145. \end{lstlisting}
  8146. \end{minipage}
  8147. \end{tabular} \\
  8148. Again, the translations for the other comparison operators are similar to the
  8149. above but use different condition codes for the conditional jump instruction.
  8150. \python{Regarding the \key{return} statement, we recommend treating it
  8151. as an assignment to the \key{rax} register followed by a jump to the
  8152. conclusion of the \code{main} function.}
  8153. \begin{exercise}\normalfont\normalsize
  8154. Expand your \code{select\_instructions} pass to handle the new
  8155. features of the \LangCIf{} language.
  8156. %
  8157. {\if\edition\racketEd
  8158. Add the following entry to the list of \code{passes} in
  8159. \code{run-tests.rkt}
  8160. \begin{lstlisting}
  8161. (list "select_instructions" select_instructions interp-pseudo-x86-1)
  8162. \end{lstlisting}
  8163. \fi}
  8164. %
  8165. Run the script to test your compiler on all the test programs.
  8166. \end{exercise}
  8167. \section{Register Allocation}
  8168. \label{sec:register-allocation-Lif}
  8169. \index{subject}{register allocation}
  8170. The changes required for compiling \LangIf{} affect liveness analysis,
  8171. building the interference graph, and assigning homes, but the graph
  8172. coloring algorithm itself does not change.
  8173. \subsection{Liveness Analysis}
  8174. \label{sec:liveness-analysis-Lif}
  8175. \index{subject}{liveness analysis}
  8176. Recall that for \LangVar{} we implemented liveness analysis for a
  8177. single basic block (Section~\ref{sec:liveness-analysis-Lvar}). With
  8178. the addition of \key{if} expressions to \LangIf{},
  8179. \code{explicate\_control} produces many basic blocks.
  8180. %% We recommend that you create a new auxiliary function named
  8181. %% \code{uncover\_live\_CFG} that applies liveness analysis to a
  8182. %% control-flow graph.
  8183. The first question is: in what order should we process the basic blocks?
  8184. Recall that to perform liveness analysis on a basic block we need to
  8185. know the live-after set for the last instruction in the block. If a
  8186. basic block has no successors (i.e. contains no jumps to other
  8187. blocks), then it has an empty live-after set and we can immediately
  8188. apply liveness analysis to it. If a basic block has some successors,
  8189. then we need to complete liveness analysis on those blocks
  8190. first. These ordering constraints are the reverse of a
  8191. \emph{topological order}\index{subject}{topological order} on a graph
  8192. representation of the program. In particular, the \emph{control flow
  8193. graph} (CFG)\index{subject}{control-flow graph}~\citep{Allen:1970uq}
  8194. of a program has a node for each basic block and an edge for each jump
  8195. from one block to another. It is straightforward to generate a CFG
  8196. from the dictionary of basic blocks. One then transposes the CFG and
  8197. applies the topological sort algorithm.
  8198. %
  8199. %
  8200. \racket{We recommend using the \code{tsort} and \code{transpose}
  8201. functions of the Racket \code{graph} package to accomplish this.}
  8202. %
  8203. \python{We provide implementations of \code{topological\_sort} and
  8204. \code{transpose} in the file \code{graph.py} of the support code.}
  8205. %
  8206. As an aside, a topological ordering is only guaranteed to exist if the
  8207. graph does not contain any cycles. This is the case for the
  8208. control-flow graphs that we generate from \LangIf{} programs.
  8209. However, in Chapter~\ref{ch:Lwhile} we add loops to create \LangLoop{}
  8210. and learn how to handle cycles in the control-flow graph.
  8211. \racket{You'll need to construct a directed graph to represent the
  8212. control-flow graph. Do not use the \code{directed-graph} of the
  8213. \code{graph} package because that only allows at most one edge
  8214. between each pair of vertices, but a control-flow graph may have
  8215. multiple edges between a pair of vertices. The \code{multigraph.rkt}
  8216. file in the support code implements a graph representation that
  8217. allows multiple edges between a pair of vertices.}
  8218. {\if\edition\racketEd
  8219. The next question is how to analyze jump instructions. Recall that in
  8220. Section~\ref{sec:liveness-analysis-Lvar} we maintain an alist named
  8221. \code{label->live} that maps each label to the set of live locations
  8222. at the beginning of its block. We use \code{label->live} to determine
  8223. the live-before set for each $\JMP{\itm{label}}$ instruction. Now
  8224. that we have many basic blocks, \code{label->live} needs to be updated
  8225. as we process the blocks. In particular, after performing liveness
  8226. analysis on a block, we take the live-before set of its first
  8227. instruction and associate that with the block's label in the
  8228. \code{label->live} alist.
  8229. \fi}
  8230. %
  8231. {\if\edition\pythonEd
  8232. %
  8233. The next question is how to analyze jump instructions. The locations
  8234. that are live before a \code{jmp} should be the locations in
  8235. $L_{\mathtt{before}}$ at the target of the jump. So we recommend
  8236. maintaining a dictionary named \code{live\_before\_block} that maps each
  8237. label to the $L_{\mathtt{before}}$ for the first instruction in its
  8238. block. After performing liveness analysis on each block, we take the
  8239. live-before set of its first instruction and associate that with the
  8240. block's label in the \code{live\_before\_block} dictionary.
  8241. %
  8242. \fi}
  8243. In \LangXIfVar{} we also have the conditional jump
  8244. $\JMPIF{\itm{cc}}{\itm{label}}$ to deal with. Liveness analysis for
  8245. this instruction is particularly interesting because, during
  8246. compilation, we do not know which way a conditional jump will go. So
  8247. we do not know whether to use the live-before set for the block
  8248. associated with the $\itm{label}$ or the live-before set for the
  8249. following instruction. However, there is no harm to the correctness
  8250. of the generated code if we classify more locations as live than the
  8251. ones that are truly live during one particular execution of the
  8252. instruction. Thus, we can take the union of the live-before sets from
  8253. the following instruction and from the mapping for $\itm{label}$ in
  8254. \racket{\code{label->live}}\python{\code{live\_before\_block}}.
  8255. The auxiliary functions for computing the variables in an
  8256. instruction's argument and for computing the variables read-from ($R$)
  8257. or written-to ($W$) by an instruction need to be updated to handle the
  8258. new kinds of arguments and instructions in \LangXIfVar{}.
  8259. \begin{exercise}\normalfont\normalsize
  8260. {\if\edition\racketEd
  8261. %
  8262. Update the \code{uncover\_live} pass to apply liveness analysis to
  8263. every basic block in the program.
  8264. %
  8265. Add the following entry to the list of \code{passes} in the
  8266. \code{run-tests.rkt} script.
  8267. \begin{lstlisting}
  8268. (list "uncover_live" uncover_live interp-pseudo-x86-1)
  8269. \end{lstlisting}
  8270. \fi}
  8271. {\if\edition\pythonEd
  8272. %
  8273. Update the \code{uncover\_live} function to perform liveness analysis,
  8274. in reverse topological order, on all of the basic blocks in the
  8275. program.
  8276. %
  8277. \fi}
  8278. % Check that the live-after sets that you generate for
  8279. % example X matches the following... -Jeremy
  8280. \end{exercise}
  8281. \subsection{Build the Interference Graph}
  8282. \label{sec:build-interference-Lif}
  8283. Many of the new instructions in \LangXIfVar{} can be handled in the
  8284. same way as the instructions in \LangXVar{}.
  8285. % Thus, if your code was
  8286. % already quite general, it will not need to be changed to handle the
  8287. % new instructions. If your code is not general enough, we recommend that
  8288. % you change your code to be more general. For example, you can factor
  8289. % out the computing of the the read and write sets for each kind of
  8290. % instruction into auxiliary functions.
  8291. %
  8292. Some instructions, e.g., the \key{movzbq} instruction, require special care,
  8293. similar to the \key{movq} instruction. See rule number 1 in
  8294. Section~\ref{sec:build-interference}.
  8295. \begin{exercise}\normalfont\normalsize
  8296. Update the \code{build\_interference} pass for \LangXIfVar{}.
  8297. {\if\edition\racketEd
  8298. Add the following entries to the list of \code{passes} in the
  8299. \code{run-tests.rkt} script.
  8300. \begin{lstlisting}
  8301. (list "build_interference" build_interference interp-pseudo-x86-1)
  8302. (list "allocate_registers" allocate_registers interp-pseudo-x86-1)
  8303. \end{lstlisting}
  8304. \fi}
  8305. % Check that the interference graph that you generate for
  8306. % example X matches the following graph G... -Jeremy
  8307. \end{exercise}
  8308. \section{Patch Instructions}
  8309. The new instructions \key{cmpq} and \key{movzbq} have some special
  8310. restrictions that need to be handled in the \code{patch\_instructions}
  8311. pass.
  8312. %
  8313. The second argument of the \key{cmpq} instruction must not be an
  8314. immediate value (such as an integer). So if you are comparing two
  8315. immediates, we recommend inserting a \key{movq} instruction to put the
  8316. second argument in \key{rax}. As usual, \key{cmpq} may have at most
  8317. one memory reference.
  8318. %
  8319. The second argument of the \key{movzbq} must be a register.
  8320. \begin{exercise}\normalfont\normalsize
  8321. %
  8322. Update \code{patch\_instructions} pass for \LangXIfVar{}.
  8323. %
  8324. {\if\edition\racketEd
  8325. Add the following entry to the list of \code{passes} in
  8326. \code{run-tests.rkt} and then run this script to test your compiler.
  8327. \begin{lstlisting}
  8328. (list "patch_instructions" patch_instructions interp-x86-1)
  8329. \end{lstlisting}
  8330. \fi}
  8331. \end{exercise}
  8332. {\if\edition\pythonEd
  8333. \section{Prelude and Conclusion}
  8334. \label{sec:prelude-conclusion-cond}
  8335. The generation of the \code{main} function with its prelude and
  8336. conclusion must change to accommodate how the program now consists of
  8337. one or more basic blocks. After the prelude in \code{main}, jump to
  8338. the \code{start} block. Place the conclusion in a basic block labeled
  8339. with \code{conclusion}.
  8340. \fi}
  8341. Figure~\ref{fig:if-example-x86} shows a simple example program in
  8342. \LangIf{} translated to x86, showing the results of
  8343. \code{explicate\_control}, \code{select\_instructions}, and the final
  8344. x86 assembly.
  8345. \begin{figure}[tbp]
  8346. \begin{tcolorbox}[colback=white]
  8347. {\if\edition\racketEd
  8348. \begin{tabular}{lll}
  8349. \begin{minipage}{0.4\textwidth}
  8350. % cond_test_20.rkt, eq_input.py
  8351. \begin{lstlisting}
  8352. (if (eq? (read) 1) 42 0)
  8353. \end{lstlisting}
  8354. $\Downarrow$
  8355. \begin{lstlisting}
  8356. start:
  8357. tmp7951 = (read);
  8358. if (eq? tmp7951 1)
  8359. goto block7952;
  8360. else
  8361. goto block7953;
  8362. block7952:
  8363. return 42;
  8364. block7953:
  8365. return 0;
  8366. \end{lstlisting}
  8367. $\Downarrow$
  8368. \begin{lstlisting}
  8369. start:
  8370. callq read_int
  8371. movq %rax, tmp7951
  8372. cmpq $1, tmp7951
  8373. je block7952
  8374. jmp block7953
  8375. block7953:
  8376. movq $0, %rax
  8377. jmp conclusion
  8378. block7952:
  8379. movq $42, %rax
  8380. jmp conclusion
  8381. \end{lstlisting}
  8382. \end{minipage}
  8383. &
  8384. $\Rightarrow\qquad$
  8385. \begin{minipage}{0.4\textwidth}
  8386. \begin{lstlisting}
  8387. start:
  8388. callq read_int
  8389. movq %rax, %rcx
  8390. cmpq $1, %rcx
  8391. je block7952
  8392. jmp block7953
  8393. block7953:
  8394. movq $0, %rax
  8395. jmp conclusion
  8396. block7952:
  8397. movq $42, %rax
  8398. jmp conclusion
  8399. .globl main
  8400. main:
  8401. pushq %rbp
  8402. movq %rsp, %rbp
  8403. pushq %r13
  8404. pushq %r12
  8405. pushq %rbx
  8406. pushq %r14
  8407. subq $0, %rsp
  8408. jmp start
  8409. conclusion:
  8410. addq $0, %rsp
  8411. popq %r14
  8412. popq %rbx
  8413. popq %r12
  8414. popq %r13
  8415. popq %rbp
  8416. retq
  8417. \end{lstlisting}
  8418. \end{minipage}
  8419. \end{tabular}
  8420. \fi}
  8421. {\if\edition\pythonEd
  8422. \begin{tabular}{lll}
  8423. \begin{minipage}{0.4\textwidth}
  8424. % cond_test_20.rkt, eq_input.py
  8425. \begin{lstlisting}
  8426. print(42 if input_int() == 1 else 0)
  8427. \end{lstlisting}
  8428. $\Downarrow$
  8429. \begin{lstlisting}
  8430. start:
  8431. tmp_0 = input_int()
  8432. if tmp_0 == 1:
  8433. goto block_3
  8434. else:
  8435. goto block_4
  8436. block_3:
  8437. tmp_1 = 42
  8438. goto block_2
  8439. block_4:
  8440. tmp_1 = 0
  8441. goto block_2
  8442. block_2:
  8443. print(tmp_1)
  8444. return 0
  8445. \end{lstlisting}
  8446. $\Downarrow$
  8447. \begin{lstlisting}
  8448. start:
  8449. callq read_int
  8450. movq %rax, tmp_0
  8451. cmpq 1, tmp_0
  8452. je block_3
  8453. jmp block_4
  8454. block_3:
  8455. movq 42, tmp_1
  8456. jmp block_2
  8457. block_4:
  8458. movq 0, tmp_1
  8459. jmp block_2
  8460. block_2:
  8461. movq tmp_1, %rdi
  8462. callq print_int
  8463. movq 0, %rax
  8464. jmp conclusion
  8465. \end{lstlisting}
  8466. \end{minipage}
  8467. &
  8468. $\Rightarrow\qquad$
  8469. \begin{minipage}{0.4\textwidth}
  8470. \begin{lstlisting}
  8471. .globl main
  8472. main:
  8473. pushq %rbp
  8474. movq %rsp, %rbp
  8475. subq $0, %rsp
  8476. jmp start
  8477. start:
  8478. callq read_int
  8479. movq %rax, %rcx
  8480. cmpq $1, %rcx
  8481. je block_3
  8482. jmp block_4
  8483. block_3:
  8484. movq $42, %rcx
  8485. jmp block_2
  8486. block_4:
  8487. movq $0, %rcx
  8488. jmp block_2
  8489. block_2:
  8490. movq %rcx, %rdi
  8491. callq print_int
  8492. movq $0, %rax
  8493. jmp conclusion
  8494. conclusion:
  8495. addq $0, %rsp
  8496. popq %rbp
  8497. retq
  8498. \end{lstlisting}
  8499. \end{minipage}
  8500. \end{tabular}
  8501. \fi}
  8502. \end{tcolorbox}
  8503. \caption{Example compilation of an \key{if} expression to x86, showing
  8504. the results of \code{explicate\_control},
  8505. \code{select\_instructions}, and the final x86 assembly code. }
  8506. \label{fig:if-example-x86}
  8507. \end{figure}
  8508. \begin{figure}[tbp]
  8509. \begin{tcolorbox}[colback=white]
  8510. {\if\edition\racketEd
  8511. \begin{tikzpicture}[baseline=(current bounding box.center)]
  8512. \node (Lif) at (0,2) {\large \LangIf{}};
  8513. \node (Lif-2) at (3,2) {\large \LangIf{}};
  8514. \node (Lif-3) at (6,2) {\large \LangIf{}};
  8515. \node (Lif-4) at (9,2) {\large \LangIf{}};
  8516. \node (Lif-5) at (9,0) {\large \LangIfANF{}};
  8517. \node (C1-1) at (3,0) {\large \LangCIf{}};
  8518. \node (x86-2) at (3,-2) {\large \LangXIfVar{}};
  8519. \node (x86-2-1) at (3,-4) {\large \LangXIfVar{}};
  8520. \node (x86-2-2) at (6,-4) {\large \LangXIfVar{}};
  8521. \node (x86-3) at (6,-2) {\large \LangXIfVar{}};
  8522. \node (x86-4) at (9,-2) {\large \LangXIf{}};
  8523. \node (x86-5) at (9,-4) {\large \LangXIf{}};
  8524. \path[->,bend left=15] (Lif) edge [above] node {\ttfamily\footnotesize type\_check} (Lif-2);
  8525. \path[->,bend left=15] (Lif-2) edge [above] node {\ttfamily\footnotesize shrink} (Lif-3);
  8526. \path[->,bend left=15] (Lif-3) edge [above] node {\ttfamily\footnotesize uniquify} (Lif-4);
  8527. \path[->,bend left=15] (Lif-4) edge [right] node {\ttfamily\footnotesize remove\_complex.} (Lif-5);
  8528. \path[->,bend right=15] (Lif-5) edge [above] node {\ttfamily\footnotesize explicate\_control} (C1-1);
  8529. \path[->,bend right=15] (C1-1) edge [left] node {\ttfamily\footnotesize select\_instr.} (x86-2);
  8530. \path[->,bend left=15] (x86-2) edge [right] node {\ttfamily\footnotesize uncover\_live} (x86-2-1);
  8531. \path[->,bend right=15] (x86-2-1) edge [below] node {\ttfamily\footnotesize build\_inter.} (x86-2-2);
  8532. \path[->,bend right=15] (x86-2-2) edge [right] node {\ttfamily\footnotesize allocate\_reg.} (x86-3);
  8533. \path[->,bend left=15] (x86-3) edge [above] node {\ttfamily\footnotesize patch\_instr.} (x86-4);
  8534. \path[->,bend left=15] (x86-4) edge [right] node {\ttfamily\footnotesize print\_x86 } (x86-5);
  8535. \end{tikzpicture}
  8536. \fi}
  8537. {\if\edition\pythonEd
  8538. \begin{tikzpicture}[baseline=(current bounding box.center),scale=0.90]
  8539. \node (Lif-1) at (0,2) {\large \LangIf{}};
  8540. \node (Lif-2) at (3,2) {\large \LangIf{}};
  8541. \node (Lif-3) at (6,2) {\large \LangIfANF{}};
  8542. \node (C-1) at (3,0) {\large \LangCIf{}};
  8543. \node (x86-1) at (3,-2) {\large \LangXIfVar{}};
  8544. \node (x86-2) at (6,-2) {\large \LangXIfVar{}};
  8545. \node (x86-3) at (9,-2) {\large \LangXIf{}};
  8546. \node (x86-4) at (12,-2) {\large \LangXIf{}};
  8547. \path[->,bend left=15] (Lif-1) edge [above] node {\ttfamily\footnotesize shrink} (Lif-2);
  8548. \path[->,bend left=15] (Lif-2) edge [above] node {\ttfamily\footnotesize remove\_complex.} (Lif-3);
  8549. \path[->,bend left=15] (Lif-3) edge [right] node {\ttfamily\footnotesize explicate\_control} (C-1);
  8550. \path[->,bend right=15] (C-1) edge [left] node {\ttfamily\footnotesize select\_instr.} (x86-1);
  8551. \path[->,bend right=15] (x86-1) edge [below] node {\ttfamily\footnotesize assign\_homes} (x86-2);
  8552. \path[->,bend left=15] (x86-2) edge [above] node {\ttfamily\footnotesize patch\_instr.} (x86-3);
  8553. \path[->,bend right=15] (x86-3) edge [below] node {\ttfamily\footnotesize prelude\_and\_concl. } (x86-4);
  8554. \end{tikzpicture}
  8555. \fi}
  8556. \end{tcolorbox}
  8557. \caption{Diagram of the passes for \LangIf{}, a language with conditionals.}
  8558. \label{fig:Lif-passes}
  8559. \end{figure}
  8560. Figure~\ref{fig:Lif-passes} lists all the passes needed for the
  8561. compilation of \LangIf{}.
  8562. \section{Challenge: Optimize Blocks and Remove Jumps}
  8563. \label{sec:opt-jumps}
  8564. We discuss two optional challenges that involve optimizing the
  8565. control-flow of the program.
  8566. \subsection{Optimize Blocks}
  8567. The algorithm for \code{explicate\_control} that we discussed in
  8568. Section~\ref{sec:explicate-control-Lif} sometimes generates too many
  8569. blocks. It creates a basic block whenever a continuation \emph{might}
  8570. get used more than once (e.g., whenever the \code{cont} parameter is
  8571. passed into two or more recursive calls). However, some continuation
  8572. arguments may not be used at all. For example, consider the case for
  8573. the constant \TRUE{} in \code{explicate\_pred}, where we discard the
  8574. \code{els} continuation.
  8575. %
  8576. {\if\edition\racketEd
  8577. The following example program falls into this
  8578. case, and it creates two unused blocks.
  8579. \begin{center}
  8580. \begin{tabular}{lll}
  8581. \begin{minipage}{0.4\textwidth}
  8582. % cond_test_82.rkt
  8583. \begin{lstlisting}
  8584. (let ([y (if #t
  8585. (read)
  8586. (if (eq? (read) 0)
  8587. 777
  8588. (let ([x (read)])
  8589. (+ 1 x))))])
  8590. (+ y 2))
  8591. \end{lstlisting}
  8592. \end{minipage}
  8593. &
  8594. $\Rightarrow$
  8595. &
  8596. \begin{minipage}{0.55\textwidth}
  8597. \begin{lstlisting}
  8598. start:
  8599. y = (read);
  8600. goto block_5;
  8601. block_5:
  8602. return (+ y 2);
  8603. block_6:
  8604. y = 777;
  8605. goto block_5;
  8606. block_7:
  8607. x = (read);
  8608. y = (+ 1 x2);
  8609. goto block_5;
  8610. \end{lstlisting}
  8611. \end{minipage}
  8612. \end{tabular}
  8613. \end{center}
  8614. \fi}
  8615. So the question is how can we decide whether to create a basic block?
  8616. \emph{Lazy evaluation}\index{subject}{lazy
  8617. evaluation}~\citep{Friedman:1976aa} can solve this conundrum by
  8618. delaying the creation of a basic block until the point in time where
  8619. we know it will be used.
  8620. %
  8621. {\if\edition\racketEd
  8622. %
  8623. Racket provides support for
  8624. lazy evaluation with the
  8625. \href{https://docs.racket-lang.org/reference/Delayed_Evaluation.html}{\code{racket/promise}}
  8626. package. The expression \key{(delay} $e_1 \ldots e_n$\key{)}
  8627. \index{subject}{delay} creates a
  8628. \emph{promise}\index{subject}{promise} in which the evaluation of the
  8629. expressions is postponed. When \key{(force}
  8630. $p$\key{)}\index{subject}{force} is applied to a promise $p$ for the
  8631. first time, the expressions $e_1 \ldots e_n$ are evaluated and the
  8632. result of $e_n$ is cached in the promise and returned. If \code{force}
  8633. is applied again to the same promise, then the cached result is
  8634. returned. If \code{force} is applied to an argument that is not a
  8635. promise, \code{force} simply returns the argument.
  8636. %
  8637. \fi}
  8638. %
  8639. {\if\edition\pythonEd
  8640. %
  8641. While Python does not provide direct support for lazy evaluation, it
  8642. is easy to mimic. We can \emph{delay} the evaluation of a computation
  8643. by wrapping it inside a function with no parameters. We can
  8644. \emph{force} its evaluation by calling the function. However, in some
  8645. cases of \code{explicate\_pred}, etc., we will return a list of
  8646. statements and in other cases we will return a function that computes
  8647. a list of statements. We use the term \emph{promise} to refer to a
  8648. value that may be delayed. To uniformly deal with
  8649. promises, we define the following \code{force} function that checks
  8650. whether its input is delayed (i.e., whether it is a function) and then
  8651. either 1) calls the function, or 2) returns the input.
  8652. \begin{lstlisting}
  8653. def force(promise):
  8654. if isinstance(promise, types.FunctionType):
  8655. return promise()
  8656. else:
  8657. return promise
  8658. \end{lstlisting}
  8659. %
  8660. \fi}
  8661. We use promises for the input and output of the functions
  8662. \code{explicate\_pred}, \code{explicate\_assign},
  8663. %
  8664. \racket{ and \code{explicate\_tail}}\python{ \code{explicate\_effect}, and \code{explicate\_stmt}}.
  8665. %
  8666. So instead of taking and returning \racket{$\Tail$
  8667. expressions}\python{lists of statements}, they take and return
  8668. promises. Furthermore, when we come to a situation in which a
  8669. continuation might be used more than once, as in the case for
  8670. \code{if} in \code{explicate\_pred}, we create a delayed computation
  8671. that creates a basic block for each continuation (if there is not
  8672. already one) and then returns a \code{goto} statement to that basic
  8673. block. When we come to a situation where we have a promise but need an
  8674. actual piece of code, e.g. to create a larger piece of code with a
  8675. constructor such as \code{Seq}, then insert a call to \code{force}.
  8676. %
  8677. {\if\edition\racketEd
  8678. %
  8679. Also we must modify the \code{create\_block} function to begin with
  8680. \code{delay} to create a promise. When forced, this promise forces the
  8681. original promise. If that returns a \code{Goto} (because the block was
  8682. already added to \code{basic-blocks}), then we return the
  8683. \code{Goto}. Otherwise we add the block to \code{basic-blocks} and
  8684. return a \code{Goto} to the new label.
  8685. \begin{center}
  8686. \begin{minipage}{\textwidth}
  8687. \begin{lstlisting}
  8688. (define (create_block tail)
  8689. (delay
  8690. (define t (force tail))
  8691. (match t
  8692. [(Goto label) (Goto label)]
  8693. [else
  8694. (let ([label (gensym 'block)])
  8695. (set! basic-blocks (cons (cons label tail) basic-blocks))
  8696. (Goto label))]))
  8697. \end{lstlisting}
  8698. \end{minipage}
  8699. \end{center}
  8700. \fi}
  8701. {\if\edition\pythonEd
  8702. %
  8703. Here is the new version of the \code{create\_block} auxiliary function
  8704. that works on promises and that checks whether the block consists of a
  8705. solitary \code{goto} statement.\\
  8706. \begin{minipage}{\textwidth}
  8707. \begin{lstlisting}
  8708. def create_block(promise, basic_blocks):
  8709. stmts = force(promise)
  8710. match stmts:
  8711. case [Goto(l)]:
  8712. return Goto(l)
  8713. case _:
  8714. label = label_name(generate_name('block'))
  8715. basic_blocks[label] = stmts
  8716. return Goto(label)
  8717. \end{lstlisting}
  8718. \end{minipage}
  8719. \fi}
  8720. Figure~\ref{fig:explicate-control-challenge} shows the output of
  8721. improved \code{explicate\_control} on the above example. As you can
  8722. see, the number of basic blocks has been reduced from 4 blocks (see
  8723. Figure~\ref{fig:explicate-control-s1-38}) down to 2 blocks.
  8724. \begin{figure}[tbp]
  8725. \begin{tcolorbox}[colback=white]
  8726. {\if\edition\racketEd
  8727. \begin{tabular}{lll}
  8728. \begin{minipage}{0.4\textwidth}
  8729. % cond_test_82.rkt
  8730. \begin{lstlisting}
  8731. (let ([y (if #t
  8732. (read)
  8733. (if (eq? (read) 0)
  8734. 777
  8735. (let ([x (read)])
  8736. (+ 1 x))))])
  8737. (+ y 2))
  8738. \end{lstlisting}
  8739. \end{minipage}
  8740. &
  8741. $\Rightarrow$
  8742. &
  8743. \begin{minipage}{0.55\textwidth}
  8744. \begin{lstlisting}
  8745. start:
  8746. y = (read);
  8747. goto block_5;
  8748. block_5:
  8749. return (+ y 2);
  8750. \end{lstlisting}
  8751. \end{minipage}
  8752. \end{tabular}
  8753. \fi}
  8754. {\if\edition\pythonEd
  8755. \begin{tabular}{lll}
  8756. \begin{minipage}{0.4\textwidth}
  8757. % cond_test_41.rkt
  8758. \begin{lstlisting}
  8759. x = input_int()
  8760. y = input_int()
  8761. print(y + 2 \
  8762. if (x == 0 \
  8763. if x < 1 \
  8764. else x == 2) \
  8765. else y + 10)
  8766. \end{lstlisting}
  8767. \end{minipage}
  8768. &
  8769. $\Rightarrow$
  8770. &
  8771. \begin{minipage}{0.55\textwidth}
  8772. \begin{lstlisting}
  8773. start:
  8774. x = input_int()
  8775. y = input_int()
  8776. if x < 1:
  8777. goto block_4
  8778. else:
  8779. goto block_5
  8780. block_4:
  8781. if x == 0:
  8782. goto block_2
  8783. else:
  8784. goto block_3
  8785. block_5:
  8786. if x == 2:
  8787. goto block_2
  8788. else:
  8789. goto block_3
  8790. block_2:
  8791. tmp_0 = y + 2
  8792. goto block_1
  8793. block_3:
  8794. tmp_0 = y + 10
  8795. goto block_1
  8796. block_1:
  8797. print(tmp_0)
  8798. return 0
  8799. \end{lstlisting}
  8800. \end{minipage}
  8801. \end{tabular}
  8802. \fi}
  8803. \end{tcolorbox}
  8804. \caption{Translation from \LangIf{} to \LangCIf{}
  8805. via the improved \code{explicate\_control}.}
  8806. \label{fig:explicate-control-challenge}
  8807. \end{figure}
  8808. %% Recall that in the example output of \code{explicate\_control} in
  8809. %% Figure~\ref{fig:explicate-control-s1-38}, \code{block57} through
  8810. %% \code{block60} are trivial blocks, they do nothing but jump to another
  8811. %% block. The first goal of this challenge assignment is to remove those
  8812. %% blocks. Figure~\ref{fig:optimize-jumps} repeats the result of
  8813. %% \code{explicate\_control} on the left and shows the result of bypassing
  8814. %% the trivial blocks on the right. Let us focus on \code{block61}. The
  8815. %% \code{then} branch jumps to \code{block57}, which in turn jumps to
  8816. %% \code{block55}. The optimized code on the right of
  8817. %% Figure~\ref{fig:optimize-jumps} bypasses \code{block57}, with the
  8818. %% \code{then} branch jumping directly to \code{block55}. The story is
  8819. %% similar for the \code{else} branch, as well as for the two branches in
  8820. %% \code{block62}. After the jumps in \code{block61} and \code{block62}
  8821. %% have been optimized in this way, there are no longer any jumps to
  8822. %% blocks \code{block57} through \code{block60}, so they can be removed.
  8823. %% \begin{figure}[tbp]
  8824. %% \begin{tabular}{lll}
  8825. %% \begin{minipage}{0.4\textwidth}
  8826. %% \begin{lstlisting}
  8827. %% block62:
  8828. %% tmp54 = (read);
  8829. %% if (eq? tmp54 2) then
  8830. %% goto block59;
  8831. %% else
  8832. %% goto block60;
  8833. %% block61:
  8834. %% tmp53 = (read);
  8835. %% if (eq? tmp53 0) then
  8836. %% goto block57;
  8837. %% else
  8838. %% goto block58;
  8839. %% block60:
  8840. %% goto block56;
  8841. %% block59:
  8842. %% goto block55;
  8843. %% block58:
  8844. %% goto block56;
  8845. %% block57:
  8846. %% goto block55;
  8847. %% block56:
  8848. %% return (+ 700 77);
  8849. %% block55:
  8850. %% return (+ 10 32);
  8851. %% start:
  8852. %% tmp52 = (read);
  8853. %% if (eq? tmp52 1) then
  8854. %% goto block61;
  8855. %% else
  8856. %% goto block62;
  8857. %% \end{lstlisting}
  8858. %% \end{minipage}
  8859. %% &
  8860. %% $\Rightarrow$
  8861. %% &
  8862. %% \begin{minipage}{0.55\textwidth}
  8863. %% \begin{lstlisting}
  8864. %% block62:
  8865. %% tmp54 = (read);
  8866. %% if (eq? tmp54 2) then
  8867. %% goto block55;
  8868. %% else
  8869. %% goto block56;
  8870. %% block61:
  8871. %% tmp53 = (read);
  8872. %% if (eq? tmp53 0) then
  8873. %% goto block55;
  8874. %% else
  8875. %% goto block56;
  8876. %% block56:
  8877. %% return (+ 700 77);
  8878. %% block55:
  8879. %% return (+ 10 32);
  8880. %% start:
  8881. %% tmp52 = (read);
  8882. %% if (eq? tmp52 1) then
  8883. %% goto block61;
  8884. %% else
  8885. %% goto block62;
  8886. %% \end{lstlisting}
  8887. %% \end{minipage}
  8888. %% \end{tabular}
  8889. %% \caption{Optimize jumps by removing trivial blocks.}
  8890. %% \label{fig:optimize-jumps}
  8891. %% \end{figure}
  8892. %% The name of this pass is \code{optimize-jumps}. We recommend
  8893. %% implementing this pass in two phases. The first phrase builds a hash
  8894. %% table that maps labels to possibly improved labels. The second phase
  8895. %% changes the target of each \code{goto} to use the improved label. If
  8896. %% the label is for a trivial block, then the hash table should map the
  8897. %% label to the first non-trivial block that can be reached from this
  8898. %% label by jumping through trivial blocks. If the label is for a
  8899. %% non-trivial block, then the hash table should map the label to itself;
  8900. %% we do not want to change jumps to non-trivial blocks.
  8901. %% The first phase can be accomplished by constructing an empty hash
  8902. %% table, call it \code{short-cut}, and then iterating over the control
  8903. %% flow graph. Each time you encouter a block that is just a \code{goto},
  8904. %% then update the hash table, mapping the block's source to the target
  8905. %% of the \code{goto}. Also, the hash table may already have mapped some
  8906. %% labels to the block's source, to you must iterate through the hash
  8907. %% table and update all of those so that they instead map to the target
  8908. %% of the \code{goto}.
  8909. %% For the second phase, we recommend iterating through the $\Tail$ of
  8910. %% each block in the program, updating the target of every \code{goto}
  8911. %% according to the mapping in \code{short-cut}.
  8912. \begin{exercise}\normalfont\normalsize
  8913. Implement the improvements to the \code{explicate\_control} pass.
  8914. Check that it removes trivial blocks in a few example programs. Then
  8915. check that your compiler still passes all of your tests.
  8916. \end{exercise}
  8917. \subsection{Remove Jumps}
  8918. There is an opportunity for removing jumps that is apparent in the
  8919. example of Figure~\ref{fig:if-example-x86}. The \code{start} block
  8920. ends with a jump to \code{block\_5} and there are no other jumps to
  8921. \code{block\_5} in the rest of the program. In this situation we can
  8922. avoid the runtime overhead of this jump by merging \code{block\_5}
  8923. into the preceding block, in this case the \code{start} block.
  8924. Figure~\ref{fig:remove-jumps} shows the output of
  8925. \code{allocate\_registers} on the left and the result of this
  8926. optimization on the right.
  8927. \begin{figure}[tbp]
  8928. \begin{tcolorbox}[colback=white]
  8929. {\if\edition\racketEd
  8930. \begin{tabular}{lll}
  8931. \begin{minipage}{0.5\textwidth}
  8932. % cond_test_82.rkt
  8933. \begin{lstlisting}
  8934. start:
  8935. callq read_int
  8936. movq %rax, %rcx
  8937. jmp block_5
  8938. block_5:
  8939. movq %rcx, %rax
  8940. addq $2, %rax
  8941. jmp conclusion
  8942. \end{lstlisting}
  8943. \end{minipage}
  8944. &
  8945. $\Rightarrow\qquad$
  8946. \begin{minipage}{0.4\textwidth}
  8947. \begin{lstlisting}
  8948. start:
  8949. callq read_int
  8950. movq %rax, %rcx
  8951. movq %rcx, %rax
  8952. addq $2, %rax
  8953. jmp conclusion
  8954. \end{lstlisting}
  8955. \end{minipage}
  8956. \end{tabular}
  8957. \fi}
  8958. {\if\edition\pythonEd
  8959. \begin{tabular}{lll}
  8960. \begin{minipage}{0.5\textwidth}
  8961. % cond_test_20.rkt
  8962. \begin{lstlisting}
  8963. start:
  8964. callq read_int
  8965. movq %rax, tmp_0
  8966. cmpq 1, tmp_0
  8967. je block_3
  8968. jmp block_4
  8969. block_3:
  8970. movq 42, tmp_1
  8971. jmp block_2
  8972. block_4:
  8973. movq 0, tmp_1
  8974. jmp block_2
  8975. block_2:
  8976. movq tmp_1, %rdi
  8977. callq print_int
  8978. movq 0, %rax
  8979. jmp conclusion
  8980. \end{lstlisting}
  8981. \end{minipage}
  8982. &
  8983. $\Rightarrow\qquad$
  8984. \begin{minipage}{0.4\textwidth}
  8985. \begin{lstlisting}
  8986. start:
  8987. callq read_int
  8988. movq %rax, tmp_0
  8989. cmpq 1, tmp_0
  8990. je block_3
  8991. movq 0, tmp_1
  8992. jmp block_2
  8993. block_3:
  8994. movq 42, tmp_1
  8995. jmp block_2
  8996. block_2:
  8997. movq tmp_1, %rdi
  8998. callq print_int
  8999. movq 0, %rax
  9000. jmp conclusion
  9001. \end{lstlisting}
  9002. \end{minipage}
  9003. \end{tabular}
  9004. \fi}
  9005. \end{tcolorbox}
  9006. \caption{Merging basic blocks by removing unnecessary jumps.}
  9007. \label{fig:remove-jumps}
  9008. \end{figure}
  9009. \begin{exercise}\normalfont\normalsize
  9010. %
  9011. Implement a pass named \code{remove\_jumps} that merges basic blocks
  9012. into their preceding basic block, when there is only one preceding
  9013. block. The pass should translate from \LangXIfVar{} to \LangXIfVar{}.
  9014. %
  9015. {\if\edition\racketEd
  9016. In the \code{run-tests.rkt} script, add the following entry to the
  9017. list of \code{passes} between \code{allocate\_registers}
  9018. and \code{patch\_instructions}.
  9019. \begin{lstlisting}
  9020. (list "remove-jumps" remove-jumps interp-pseudo-x86-1)
  9021. \end{lstlisting}
  9022. \fi}
  9023. %
  9024. Run the script to test your compiler.
  9025. %
  9026. Check that \code{remove\_jumps} accomplishes the goal of merging basic
  9027. blocks on several test programs.
  9028. \end{exercise}
  9029. \section{Further Reading}
  9030. \label{sec:cond-further-reading}
  9031. The algorithm for the \code{explicate\_control} pass is based on the
  9032. \code{expose-basic-blocks} pass in the course notes of
  9033. \citet{Dybvig:2010aa}.
  9034. %
  9035. It has similarities to the algorithms of \citet{Danvy:2003fk} and
  9036. \citet{Appel:2003fk}, and is related to translations into continuation
  9037. passing
  9038. style~\citep{Wijngaarden:1966,Fischer:1972,reynolds72:_def_interp,Plotkin:1975,Friedman:2001}.
  9039. %
  9040. The treatment of conditionals in the \code{explicate\_control} pass is
  9041. similar to short-cut boolean
  9042. evaluation~\citep{Logothetis:1981,Aho:2006wb,Clarke:1989,Danvy:2003fk}
  9043. and the case-of-case transformation~\citep{PeytonJones:1998}.
  9044. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  9045. \chapter{Loops and Dataflow Analysis}
  9046. \label{ch:Lwhile}
  9047. % TODO: define R'_8
  9048. % TODO: multi-graph
  9049. {\if\edition\racketEd
  9050. %
  9051. In this chapter we study two features that are the hallmarks of
  9052. imperative programming languages: loops and assignments to local
  9053. variables. The following example demonstrates these new features by
  9054. computing the sum of the first five positive integers.
  9055. % similar to loop_test_1.rkt
  9056. \begin{lstlisting}
  9057. (let ([sum 0])
  9058. (let ([i 5])
  9059. (begin
  9060. (while (> i 0)
  9061. (begin
  9062. (set! sum (+ sum i))
  9063. (set! i (- i 1))))
  9064. sum)))
  9065. \end{lstlisting}
  9066. The \code{while} loop consists of a condition and a
  9067. body\footnote{The \code{while} loop is not a built-in
  9068. feature of the Racket language, but Racket includes many looping
  9069. constructs and it is straightforward to define \code{while} as a
  9070. macro.}. The body is evaluated repeatedly so long as the condition
  9071. remains true.
  9072. %
  9073. The \code{set!} consists of a variable and a right-hand-side
  9074. expression. The \code{set!} updates value of the variable to the
  9075. value of the right-hand-side.
  9076. %
  9077. The primary purpose of both the \code{while} loop and \code{set!} is
  9078. to cause side effects, so they do not have a meaningful result
  9079. value. Instead their result is the \code{\#<void>} value. The
  9080. expression \code{(void)} is an explicit way to create the
  9081. \code{\#<void>} value and it has type \code{Void}. The
  9082. \code{\#<void>} value can be passed around just like other values
  9083. inside an \LangLoop{} program and it can be compared for equality with
  9084. another \code{\#<void>} value. However, there are no other operations
  9085. specific to the the \code{\#<void>} value in \LangLoop{}. In contrast,
  9086. Racket defines the \code{void?} predicate that returns \code{\#t}
  9087. when applied to \code{\#<void>} and \code{\#f} otherwise.%
  9088. %
  9089. \footnote{Racket's \code{Void} type corresponds to what is often
  9090. called the \code{Unit} type. Racket's \code{Void} type is inhabited
  9091. by a single value \code{\#<void>} which corresponds to \code{unit}
  9092. or \code{()} in the literature~\citep{Pierce:2002hj}.}.
  9093. %
  9094. With the addition of side-effecting features such as \code{while} loop
  9095. and \code{set!}, it is helpful to also include in a language feature
  9096. for sequencing side effects: the \code{begin} expression. It consists
  9097. of one or more subexpressions that are evaluated left-to-right.
  9098. %
  9099. \fi}
  9100. {\if\edition\pythonEd
  9101. %
  9102. In this chapter we study loops, one of the hallmarks of imperative
  9103. programming languages. The following example demonstrates the
  9104. \code{while} loop by computing the sum of the first five positive
  9105. integers.
  9106. \begin{lstlisting}
  9107. sum = 0
  9108. i = 5
  9109. while i > 0:
  9110. sum = sum + i
  9111. i = i - 1
  9112. print(sum)
  9113. \end{lstlisting}
  9114. The \code{while} loop consists of a condition expression and a body (a
  9115. sequence of statements). The body is evaluated repeatedly so long as
  9116. the condition remains true.
  9117. %
  9118. \fi}
  9119. \section{The \LangLoop{} Language}
  9120. \newcommand{\LwhileGrammarRacket}{
  9121. \begin{array}{lcl}
  9122. \Type &::=& \key{Void}\\
  9123. \Exp &::=& \CSETBANG{\Var}{\Exp}
  9124. \MID \CBEGIN{\Exp^{*}}{\Exp}
  9125. \MID \CWHILE{\Exp}{\Exp} \MID \LP\key{void}\RP
  9126. \end{array}
  9127. }
  9128. \newcommand{\LwhileASTRacket}{
  9129. \begin{array}{lcl}
  9130. \Type &::=& \key{Void}\\
  9131. \Exp &::=& \SETBANG{\Var}{\Exp}
  9132. \MID \BEGIN{\Exp^{*}}{\Exp}
  9133. \MID \WHILE{\Exp}{\Exp}
  9134. \MID \VOID{}
  9135. \end{array}
  9136. }
  9137. \newcommand{\LwhileGrammarPython}{
  9138. \begin{array}{rcl}
  9139. \Stmt &::=& \key{while}~ \Exp \key{:}~ \Stmt^{+}
  9140. \end{array}
  9141. }
  9142. \newcommand{\LwhileASTPython}{
  9143. \begin{array}{lcl}
  9144. \Stmt{} &::=& \WHILESTMT{\Exp}{\Stmt^{+}}
  9145. \end{array}
  9146. }
  9147. \begin{figure}[tp]
  9148. \centering
  9149. \begin{tcolorbox}[colback=white]
  9150. \small
  9151. {\if\edition\racketEd
  9152. \[
  9153. \begin{array}{l}
  9154. \gray{\LintGrammarRacket{}} \\ \hline
  9155. \gray{\LvarGrammarRacket{}} \\ \hline
  9156. \gray{\LifGrammarRacket{}} \\ \hline
  9157. \LwhileGrammarRacket \\
  9158. \begin{array}{lcl}
  9159. \LangLoopM{} &::=& \Exp
  9160. \end{array}
  9161. \end{array}
  9162. \]
  9163. \fi}
  9164. {\if\edition\pythonEd
  9165. \[
  9166. \begin{array}{l}
  9167. \gray{\LintGrammarPython} \\ \hline
  9168. \gray{\LvarGrammarPython} \\ \hline
  9169. \gray{\LifGrammarPython} \\ \hline
  9170. \LwhileGrammarPython \\
  9171. \begin{array}{rcl}
  9172. \LangLoopM{} &::=& \Stmt^{*}
  9173. \end{array}
  9174. \end{array}
  9175. \]
  9176. \fi}
  9177. \end{tcolorbox}
  9178. \caption{The concrete syntax of \LangLoop{}, extending \LangIf{} (Figure~\ref{fig:Lif-concrete-syntax}).}
  9179. \label{fig:Lwhile-concrete-syntax}
  9180. \end{figure}
  9181. \begin{figure}[tp]
  9182. \centering
  9183. \begin{tcolorbox}[colback=white]
  9184. \small
  9185. {\if\edition\racketEd
  9186. \[
  9187. \begin{array}{l}
  9188. \gray{\LintOpAST} \\ \hline
  9189. \gray{\LvarASTRacket{}} \\ \hline
  9190. \gray{\LifASTRacket{}} \\ \hline
  9191. \LwhileASTRacket{} \\
  9192. \begin{array}{lcl}
  9193. \LangLoopM{} &::=& \gray{ \PROGRAM{\code{'()}}{\Exp} }
  9194. \end{array}
  9195. \end{array}
  9196. \]
  9197. \fi}
  9198. {\if\edition\pythonEd
  9199. \[
  9200. \begin{array}{l}
  9201. \gray{\LintASTPython} \\ \hline
  9202. \gray{\LvarASTPython} \\ \hline
  9203. \gray{\LifASTPython} \\ \hline
  9204. \LwhileASTPython \\
  9205. \begin{array}{lcl}
  9206. \LangLoopM{} &::=& \PROGRAM{\code{'()}}{\Stmt^{*}}
  9207. \end{array}
  9208. \end{array}
  9209. \]
  9210. \fi}
  9211. \end{tcolorbox}
  9212. \python{
  9213. \index{subject}{While@\texttt{While}}
  9214. }
  9215. \caption{The abstract syntax of \LangLoop{}, extending \LangIf{} (Figure~\ref{fig:Lif-syntax}).}
  9216. \label{fig:Lwhile-syntax}
  9217. \end{figure}
  9218. The concrete syntax of \LangLoop{} is defined in
  9219. Figure~\ref{fig:Lwhile-concrete-syntax} and its abstract syntax is defined
  9220. in Figure~\ref{fig:Lwhile-syntax}.
  9221. %
  9222. The definitional interpreter for \LangLoop{} is shown in
  9223. Figure~\ref{fig:interp-Lwhile}.
  9224. %
  9225. {\if\edition\racketEd
  9226. %
  9227. We add new cases for \code{SetBang}, \code{WhileLoop}, \code{Begin},
  9228. and \code{Void} and we make changes to the cases for \code{Var} and
  9229. \code{Let} regarding variables. To support assignment to variables and
  9230. to make their lifetimes indefinite (see the second example in
  9231. Section~\ref{sec:assignment-scoping}), we box the value that is bound
  9232. to each variable (in \code{Let}). The case for \code{Var} unboxes the
  9233. value.
  9234. %
  9235. Now to discuss the new cases. For \code{SetBang}, we find the
  9236. variable in the environment to obtain a boxed value and then we change
  9237. it using \code{set-box!} to the result of evaluating the right-hand
  9238. side. The result value of a \code{SetBang} is \code{\#<void>}.
  9239. %
  9240. For the \code{WhileLoop}, we repeatedly 1) evaluate the condition, and
  9241. if the result is true, 2) evaluate the body.
  9242. The result value of a \code{while} loop is also \code{\#<void>}.
  9243. %
  9244. The $\BEGIN{\itm{es}}{\itm{body}}$ expression evaluates the
  9245. subexpressions \itm{es} for their effects and then evaluates
  9246. and returns the result from \itm{body}.
  9247. %
  9248. The $\VOID{}$ expression produces the \code{\#<void>} value.
  9249. %
  9250. \fi}
  9251. {\if\edition\pythonEd
  9252. %
  9253. We add a new case for \code{While} in the \code{interp\_stmts}
  9254. function, where we repeatedly interpret the \code{body} so long as the
  9255. \code{test} expression remains true.
  9256. %
  9257. \fi}
  9258. \begin{figure}[tbp]
  9259. \begin{tcolorbox}[colback=white]
  9260. {\if\edition\racketEd
  9261. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  9262. (define interp-Lwhile-class
  9263. (class interp-Lif-class
  9264. (super-new)
  9265. (define/override ((interp-exp env) e)
  9266. (define recur (interp-exp env))
  9267. (match e
  9268. [(Let x e body)
  9269. (define new-env (dict-set env x (box (recur e))))
  9270. ((interp-exp new-env) body)]
  9271. [(Var x) (unbox (dict-ref env x))]
  9272. [(SetBang x rhs)
  9273. (set-box! (dict-ref env x) (recur rhs))]
  9274. [(WhileLoop cnd body)
  9275. (define (loop)
  9276. (cond [(recur cnd) (recur body) (loop)]
  9277. [else (void)]))
  9278. (loop)]
  9279. [(Begin es body)
  9280. (for ([e es]) (recur e))
  9281. (recur body)]
  9282. [(Void) (void)]
  9283. [else ((super interp-exp env) e)]))
  9284. ))
  9285. (define (interp-Lwhile p)
  9286. (send (new interp-Lwhile-class) interp-program p))
  9287. \end{lstlisting}
  9288. \fi}
  9289. {\if\edition\pythonEd
  9290. \begin{lstlisting}
  9291. class InterpLwhile(InterpLif):
  9292. def interp_stmts(self, ss, env):
  9293. if len(ss) == 0:
  9294. return
  9295. match ss[0]:
  9296. case While(test, body, []):
  9297. while self.interp_exp(test, env):
  9298. self.interp_stmts(body, env)
  9299. return self.interp_stmts(ss[1:], env)
  9300. case _:
  9301. return super().interp_stmts(ss, env)
  9302. \end{lstlisting}
  9303. \fi}
  9304. \end{tcolorbox}
  9305. \caption{Interpreter for \LangLoop{}.}
  9306. \label{fig:interp-Lwhile}
  9307. \end{figure}
  9308. The type checker for \LangLoop{} is defined in
  9309. Figure~\ref{fig:type-check-Lwhile}.
  9310. %
  9311. {\if\edition\racketEd
  9312. %
  9313. The type checking of the \code{SetBang} expression requires the type
  9314. of the variable and the right-hand-side to agree. The result type is
  9315. \code{Void}. For \code{while}, the condition must be a \BOOLTY{}
  9316. and the result type is \code{Void}. For \code{Begin}, the result type
  9317. is the type of its last subexpression.
  9318. %
  9319. \fi}
  9320. %
  9321. {\if\edition\pythonEd
  9322. %
  9323. A \code{while} loop is well typed if the type of the \code{test}
  9324. expression is \code{bool} and the statements in the \code{body} are
  9325. well typed.
  9326. %
  9327. \fi}
  9328. \begin{figure}[tbp]
  9329. \begin{tcolorbox}[colback=white]
  9330. {\if\edition\racketEd
  9331. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  9332. (define type-check-Lwhile-class
  9333. (class type-check-Lif-class
  9334. (super-new)
  9335. (inherit check-type-equal?)
  9336. (define/override (type-check-exp env)
  9337. (lambda (e)
  9338. (define recur (type-check-exp env))
  9339. (match e
  9340. [(SetBang x rhs)
  9341. (define-values (rhs^ rhsT) (recur rhs))
  9342. (define varT (dict-ref env x))
  9343. (check-type-equal? rhsT varT e)
  9344. (values (SetBang x rhs^) 'Void)]
  9345. [(WhileLoop cnd body)
  9346. (define-values (cnd^ Tc) (recur cnd))
  9347. (check-type-equal? Tc 'Boolean e)
  9348. (define-values (body^ Tbody) ((type-check-exp env) body))
  9349. (values (WhileLoop cnd^ body^) 'Void)]
  9350. [(Begin es body)
  9351. (define-values (es^ ts)
  9352. (for/lists (l1 l2) ([e es]) (recur e)))
  9353. (define-values (body^ Tbody) (recur body))
  9354. (values (Begin es^ body^) Tbody)]
  9355. [else ((super type-check-exp env) e)])))
  9356. ))
  9357. (define (type-check-Lwhile p)
  9358. (send (new type-check-Lwhile-class) type-check-program p))
  9359. \end{lstlisting}
  9360. \fi}
  9361. {\if\edition\pythonEd
  9362. \begin{lstlisting}
  9363. class TypeCheckLwhile(TypeCheckLif):
  9364. def type_check_stmts(self, ss, env):
  9365. if len(ss) == 0:
  9366. return
  9367. match ss[0]:
  9368. case While(test, body, []):
  9369. test_t = self.type_check_exp(test, env)
  9370. check_type_equal(bool, test_t, test)
  9371. body_t = self.type_check_stmts(body, env)
  9372. return self.type_check_stmts(ss[1:], env)
  9373. case _:
  9374. return super().type_check_stmts(ss, env)
  9375. \end{lstlisting}
  9376. \fi}
  9377. \end{tcolorbox}
  9378. \caption{Type checker for the \LangLoop{} language.}
  9379. \label{fig:type-check-Lwhile}
  9380. \end{figure}
  9381. {\if\edition\racketEd
  9382. %
  9383. At first glance, the translation of these language features to x86
  9384. seems straightforward because the \LangCIf{} intermediate language
  9385. already supports all of the ingredients that we need: assignment,
  9386. \code{goto}, conditional branching, and sequencing. However, there are
  9387. complications that arise which we discuss in the next section. After
  9388. that we introduce the changes necessary to the existing passes.
  9389. %
  9390. \fi}
  9391. {\if\edition\pythonEd
  9392. %
  9393. At first glance, the translation of \code{while} loops to x86 seems
  9394. straightforward because the \LangCIf{} intermediate language already
  9395. supports \code{goto} and conditional branching. However, there are
  9396. complications that arise which we discuss in the next section. After
  9397. that we introduce the changes necessary to the existing passes.
  9398. %
  9399. \fi}
  9400. \section{Cyclic Control Flow and Dataflow Analysis}
  9401. \label{sec:dataflow-analysis}
  9402. Up until this point the programs generated in
  9403. \code{explicate\_control} were guaranteed to be acyclic. However, each
  9404. \code{while} loop introduces a cycle. But does that matter?
  9405. %
  9406. Indeed it does. Recall that for register allocation, the compiler
  9407. performs liveness analysis to determine which variables can share the
  9408. same register. To accomplish this we analyzed the control-flow graph
  9409. in reverse topological order
  9410. (Section~\ref{sec:liveness-analysis-Lif}), but topological order is
  9411. only well-defined for acyclic graphs.
  9412. Let us return to the example of computing the sum of the first five
  9413. positive integers. Here is the program after instruction selection but
  9414. before register allocation.
  9415. \begin{center}
  9416. {\if\edition\racketEd
  9417. \begin{minipage}{0.45\textwidth}
  9418. \begin{lstlisting}
  9419. (define (main) : Integer
  9420. mainstart:
  9421. movq $0, sum
  9422. movq $5, i
  9423. jmp block5
  9424. block5:
  9425. movq i, tmp3
  9426. cmpq tmp3, $0
  9427. jl block7
  9428. jmp block8
  9429. \end{lstlisting}
  9430. \end{minipage}
  9431. \begin{minipage}{0.45\textwidth}
  9432. \begin{lstlisting}
  9433. block7:
  9434. addq i, sum
  9435. movq $1, tmp4
  9436. negq tmp4
  9437. addq tmp4, i
  9438. jmp block5
  9439. block8:
  9440. movq $27, %rax
  9441. addq sum, %rax
  9442. jmp mainconclusion
  9443. )
  9444. \end{lstlisting}
  9445. \end{minipage}
  9446. \fi}
  9447. {\if\edition\pythonEd
  9448. \begin{minipage}{0.45\textwidth}
  9449. \begin{lstlisting}
  9450. mainstart:
  9451. movq $0, sum
  9452. movq $5, i
  9453. jmp block5
  9454. block5:
  9455. cmpq $0, i
  9456. jg block7
  9457. jmp block8
  9458. \end{lstlisting}
  9459. \end{minipage}
  9460. \begin{minipage}{0.45\textwidth}
  9461. \begin{lstlisting}
  9462. block7:
  9463. addq i, sum
  9464. subq $1, i
  9465. jmp block5
  9466. block8:
  9467. movq sum, %rdi
  9468. callq print_int
  9469. movq $0, %rax
  9470. jmp mainconclusion
  9471. \end{lstlisting}
  9472. \end{minipage}
  9473. \fi}
  9474. \end{center}
  9475. Recall that liveness analysis works backwards, starting at the end
  9476. of each function. For this example we could start with \code{block8}
  9477. because we know what is live at the beginning of the conclusion,
  9478. just \code{rax} and \code{rsp}. So the live-before set
  9479. for \code{block8} is \code{\{rsp,sum\}}.
  9480. %
  9481. Next we might try to analyze \code{block5} or \code{block7}, but
  9482. \code{block5} jumps to \code{block7} and vice versa, so it seems that
  9483. we are stuck.
  9484. The way out of this impasse is to realize that we can compute an
  9485. under-approximation of each live-before set by starting with empty
  9486. live-after sets. By \emph{under-approximation}, we mean that the set
  9487. only contains variables that are live for some execution of the
  9488. program, but the set may be missing some variables that are live.
  9489. Next, the under-approximations for each block can be improved by 1)
  9490. updating the live-after set for each block using the approximate
  9491. live-before sets from the other blocks and 2) perform liveness
  9492. analysis again on each block. In fact, by iterating this process, the
  9493. under-approximations eventually become the correct solutions!
  9494. %
  9495. This approach of iteratively analyzing a control-flow graph is
  9496. applicable to many static analysis problems and goes by the name
  9497. \emph{dataflow analysis}\index{subject}{dataflow analysis}. It was invented by
  9498. \citet{Kildall:1973vn} in his Ph.D. thesis at the University of
  9499. Washington.
  9500. Let us apply this approach to the above example. We use the empty set
  9501. for the initial live-before set for each block. Let $m_0$ be the
  9502. following mapping from label names to sets of locations (variables and
  9503. registers).
  9504. \begin{center}
  9505. \begin{lstlisting}
  9506. mainstart: {}, block5: {}, block7: {}, block8: {}
  9507. \end{lstlisting}
  9508. \end{center}
  9509. Using the above live-before approximations, we determine the
  9510. live-after for each block and then apply liveness analysis to each
  9511. block. This produces our next approximation $m_1$ of the live-before
  9512. sets.
  9513. \begin{center}
  9514. \begin{lstlisting}
  9515. mainstart: {}, block5: {i}, block7: {i, sum}, block8: {rsp, sum}
  9516. \end{lstlisting}
  9517. \end{center}
  9518. For the second round, the live-after for \code{mainstart} is the
  9519. current live-before for \code{block5}, which is \code{\{i\}}. So the
  9520. liveness analysis for \code{mainstart} computes the empty set. The
  9521. live-after for \code{block5} is the union of the live-before sets for
  9522. \code{block7} and \code{block8}, which is \code{\{i , rsp, sum\}}.
  9523. So the liveness analysis for \code{block5} computes \code{\{i , rsp,
  9524. sum\}}. The live-after for \code{block7} is the live-before for
  9525. \code{block5} (from the previous iteration), which is \code{\{i\}}.
  9526. So the liveness analysis for \code{block7} remains \code{\{i,
  9527. sum\}}. Together these yield the following approximation $m_2$ of
  9528. the live-before sets.
  9529. \begin{center}
  9530. \begin{lstlisting}
  9531. mainstart: {}, block5: {i, rsp, sum}, block7: {i, sum}, block8: {rsp, sum}
  9532. \end{lstlisting}
  9533. \end{center}
  9534. In the preceding iteration, only \code{block5} changed, so we can
  9535. limit our attention to \code{mainstart} and \code{block7}, the two
  9536. blocks that jump to \code{block5}. As a result, the live-before sets
  9537. for \code{mainstart} and \code{block7} are updated to include
  9538. \code{rsp}, yielding the following approximation $m_3$.
  9539. \begin{center}
  9540. \begin{lstlisting}
  9541. mainstart: {rsp}, block5: {i,rsp,sum}, block7: {i,rsp,sum}, block8: {rsp,sum}
  9542. \end{lstlisting}
  9543. \end{center}
  9544. Because \code{block7} changed, we analyze \code{block5} once more, but
  9545. its live-before set remains \code{\{i,rsp,sum\}}. At this point
  9546. our approximations have converged, so $m_3$ is the solution.
  9547. This iteration process is guaranteed to converge to a solution by the
  9548. Kleene Fixed-Point Theorem, a general theorem about functions on
  9549. lattices~\citep{Kleene:1952aa}. Roughly speaking, a \emph{lattice} is
  9550. any collection that comes with a partial ordering $\sqsubseteq$ on its
  9551. elements, a least element $\bot$ (pronounced bottom), and a join
  9552. operator $\sqcup$.\index{subject}{lattice}\index{subject}{bottom}\index{subject}{partial
  9553. ordering}\index{subject}{join}\footnote{Technically speaking, we will be
  9554. working with join semi-lattices.} When two elements are ordered $m_i
  9555. \sqsubseteq m_j$, it means that $m_j$ contains at least as much
  9556. information as $m_i$, so we can think of $m_j$ as a better-or-equal
  9557. approximation than $m_i$. The bottom element $\bot$ represents the
  9558. complete lack of information, i.e., the worst approximation. The join
  9559. operator takes two lattice elements and combines their information,
  9560. i.e., it produces the least upper bound of the two.\index{subject}{least upper
  9561. bound}
  9562. A dataflow analysis typically involves two lattices: one lattice to
  9563. represent abstract states and another lattice that aggregates the
  9564. abstract states of all the blocks in the control-flow graph. For
  9565. liveness analysis, an abstract state is a set of locations. We form
  9566. the lattice $L$ by taking its elements to be sets of locations, the
  9567. ordering to be set inclusion ($\subseteq$), the bottom to be the empty
  9568. set, and the join operator to be set union.
  9569. %
  9570. We form a second lattice $M$ by taking its elements to be mappings
  9571. from the block labels to sets of locations (elements of $L$). We
  9572. order the mappings point-wise, using the ordering of $L$. So given any
  9573. two mappings $m_i$ and $m_j$, $m_i \sqsubseteq_M m_j$ when $m_i(\ell)
  9574. \subseteq m_j(\ell)$ for every block label $\ell$ in the program. The
  9575. bottom element of $M$ is the mapping $\bot_M$ that sends every label
  9576. to the empty set, i.e., $\bot_M(\ell) = \emptyset$.
  9577. We can think of one iteration of liveness analysis applied to the
  9578. whole program as being a function $f$ on the lattice $M$. It takes a
  9579. mapping as input and computes a new mapping.
  9580. \[
  9581. f(m_i) = m_{i+1}
  9582. \]
  9583. Next let us think for a moment about what a final solution $m_s$
  9584. should look like. If we perform liveness analysis using the solution
  9585. $m_s$ as input, we should get $m_s$ again as the output. That is, the
  9586. solution should be a \emph{fixed point} of the function $f$.\index{subject}{fixed point}
  9587. \[
  9588. f(m_s) = m_s
  9589. \]
  9590. Furthermore, the solution should only include locations that are
  9591. forced to be there by performing liveness analysis on the program, so
  9592. the solution should be the \emph{least} fixed point.\index{subject}{least fixed point}
  9593. The Kleene Fixed-Point Theorem states that if a function $f$ is
  9594. monotone (better inputs produce better outputs), then the least fixed
  9595. point of $f$ is the least upper bound of the \emph{ascending Kleene
  9596. chain} obtained by starting at $\bot$ and iterating $f$ as
  9597. follows.\index{subject}{Kleene Fixed-Point Theorem}
  9598. \[
  9599. \bot \sqsubseteq f(\bot) \sqsubseteq f(f(\bot)) \sqsubseteq \cdots
  9600. \sqsubseteq f^n(\bot) \sqsubseteq \cdots
  9601. \]
  9602. When a lattice contains only finitely-long ascending chains, then
  9603. every Kleene chain tops out at some fixed point after some number of
  9604. iterations of $f$.
  9605. \[
  9606. \bot \sqsubseteq f(\bot) \sqsubseteq f(f(\bot)) \sqsubseteq \cdots
  9607. \sqsubseteq f^k(\bot) = f^{k+1}(\bot) = m_s
  9608. \]
  9609. The liveness analysis is indeed a monotone function and the lattice
  9610. $M$ only has finitely-long ascending chains because there are only a
  9611. finite number of variables and blocks in the program. Thus we are
  9612. guaranteed that iteratively applying liveness analysis to all blocks
  9613. in the program will eventually produce the least fixed point solution.
  9614. Next let us consider dataflow analysis in general and discuss the
  9615. generic work list algorithm (Figure~\ref{fig:generic-dataflow}).
  9616. %
  9617. The algorithm has four parameters: the control-flow graph \code{G}, a
  9618. function \code{transfer} that applies the analysis to one block, the
  9619. \code{bottom} and \code{join} operator for the lattice of abstract
  9620. states. The \code{analyze\_dataflow} function is formulated as a
  9621. \emph{forward} dataflow analysis, that is, the inputs to the transfer
  9622. function come from the predecessor nodes in the control-flow
  9623. graph. However, liveness analysis is a \emph{backward} dataflow
  9624. analysis, so in that case one must supply the \code{analyze\_dataflow}
  9625. function with the transpose of the control-flow graph.
  9626. The algorithm begins by creating the bottom mapping, represented by a
  9627. hash table. It then pushes all of the nodes in the control-flow graph
  9628. onto the work list (a queue). The algorithm repeats the \code{while}
  9629. loop as long as there are items in the work list. In each iteration, a
  9630. node is popped from the work list and processed. The \code{input} for
  9631. the node is computed by taking the join of the abstract states of all
  9632. the predecessor nodes. The \code{transfer} function is then applied to
  9633. obtain the \code{output} abstract state. If the output differs from
  9634. the previous state for this block, the mapping for this block is
  9635. updated and its successor nodes are pushed onto the work list.
  9636. \begin{figure}[tb]
  9637. \begin{tcolorbox}[colback=white]
  9638. {\if\edition\racketEd
  9639. \begin{lstlisting}
  9640. (define (analyze_dataflow G transfer bottom join)
  9641. (define mapping (make-hash))
  9642. (for ([v (in-vertices G)])
  9643. (dict-set! mapping v bottom))
  9644. (define worklist (make-queue))
  9645. (for ([v (in-vertices G)])
  9646. (enqueue! worklist v))
  9647. (define trans-G (transpose G))
  9648. (while (not (queue-empty? worklist))
  9649. (define node (dequeue! worklist))
  9650. (define input (for/fold ([state bottom])
  9651. ([pred (in-neighbors trans-G node)])
  9652. (join state (dict-ref mapping pred))))
  9653. (define output (transfer node input))
  9654. (cond [(not (equal? output (dict-ref mapping node)))
  9655. (dict-set! mapping node output)
  9656. (for ([v (in-neighbors G node)])
  9657. (enqueue! worklist v))]))
  9658. mapping)
  9659. \end{lstlisting}
  9660. \fi}
  9661. {\if\edition\pythonEd
  9662. \begin{lstlisting}
  9663. def analyze_dataflow(G, transfer, bottom, join):
  9664. trans_G = transpose(G)
  9665. mapping = dict((v, bottom) for v in G.vertices())
  9666. worklist = deque(G.vertices)
  9667. while worklist:
  9668. node = worklist.pop()
  9669. inputs = [mapping[v] for v in trans_G.adjacent(node)]
  9670. input = reduce(join, inputs, bottom)
  9671. output = transfer(node, input)
  9672. if output != mapping[node]:
  9673. mapping[node] = output
  9674. worklist.extend(G.adjacent(node))
  9675. \end{lstlisting}
  9676. \fi}
  9677. \end{tcolorbox}
  9678. \caption{Generic work list algorithm for dataflow analysis}
  9679. \label{fig:generic-dataflow}
  9680. \end{figure}
  9681. {\if\edition\racketEd
  9682. \section{Mutable Variables \& Remove Complex Operands}
  9683. There is a subtle interaction between the
  9684. \code{remove\_complex\_operands} pass, the addition of \code{set!},
  9685. and the left-to-right order of evaluation of Racket. Consider the
  9686. following example.
  9687. \begin{lstlisting}
  9688. (let ([x 2])
  9689. (+ x (begin (set! x 40) x)))
  9690. \end{lstlisting}
  9691. The result of this program is \code{42} because the first read from
  9692. \code{x} produces \code{2} and the second produces \code{40}. However,
  9693. if we naively apply the \code{remove\_complex\_operands} pass to this
  9694. example we obtain the following program whose result is \code{80}!
  9695. \begin{lstlisting}
  9696. (let ([x 2])
  9697. (let ([tmp (begin (set! x 40) x)])
  9698. (+ x tmp)))
  9699. \end{lstlisting}
  9700. The problem is that, with mutable variables, the ordering between
  9701. reads and writes is important, and the
  9702. \code{remove\_complex\_operands} pass moved the \code{set!} to happen
  9703. before the first read of \code{x}.
  9704. We recommend solving this problem by giving special treatment to reads
  9705. from mutable variables, that is, variables that occur on the left-hand
  9706. side of a \code{set!}. We mark each read from a mutable variable with
  9707. the form \code{get!} (\code{GetBang} in abstract syntax) to indicate
  9708. that the read operation is effectful in that it can produce different
  9709. results at different points in time. Let's apply this idea to the
  9710. following variation that also involves a variable that is not mutated.
  9711. % loop_test_24.rkt
  9712. \begin{lstlisting}
  9713. (let ([x 2])
  9714. (let ([y 0])
  9715. (+ y (+ x (begin (set! x 40) x)))))
  9716. \end{lstlisting}
  9717. We first analyze the above program to discover that variable \code{x}
  9718. is mutable but \code{y} is not. We then transform the program as
  9719. follows, replacing each occurrence of \code{x} with \code{(get! x)}.
  9720. \begin{lstlisting}
  9721. (let ([x 2])
  9722. (let ([y 0])
  9723. (+ y (+ (get! x) (begin (set! x 40) (get! x))))))
  9724. \end{lstlisting}
  9725. Now that we have a clear distinction between reads from mutable and
  9726. immutable variables, we can apply the \code{remove\_complex\_operands}
  9727. pass, where reads from immutable variables are still classified as
  9728. atomic expressions but reads from mutable variables are classified as
  9729. complex. Thus, \code{remove\_complex\_operands} yields the following
  9730. program.\\
  9731. \begin{minipage}{\textwidth}
  9732. \begin{lstlisting}
  9733. (let ([x 2])
  9734. (let ([y 0])
  9735. (+ y (let ([t1 (get! x)])
  9736. (let ([t2 (begin (set! x 40) (get! x))])
  9737. (+ t1 t2))))))
  9738. \end{lstlisting}
  9739. \end{minipage}
  9740. The temporary variable \code{t1} gets the value of \code{x} before the
  9741. \code{set!}, so it is \code{2}. The temporary variable \code{t2} gets
  9742. the value of \code{x} after the \code{set!}, so it is \code{40}. We
  9743. do not generate a temporary variable for the occurrence of \code{y}
  9744. because it's an immutable variable. We want to avoid such unnecessary
  9745. extra temporaries because they would needless increase the number of
  9746. variables, making it more likely for some of them to be spilled. The
  9747. result of this program is \code{42}, the same as the result prior to
  9748. \code{remove\_complex\_operands}.
  9749. The approach that we've sketched above requires only a small
  9750. modification to \code{remove\_complex\_operands} to handle
  9751. \code{get!}. However, it requires a new pass, called
  9752. \code{uncover-get!}, that we discuss in
  9753. Section~\ref{sec:uncover-get-bang}.
  9754. As an aside, this problematic interaction between \code{set!} and the
  9755. pass \code{remove\_complex\_operands} is particular to Racket and not
  9756. its predecessor, the Scheme language. The key difference is that
  9757. Scheme does not specify an order of evaluation for the arguments of an
  9758. operator or function call~\citep{SPERBER:2009aa}. Thus, a compiler for
  9759. Scheme is free to choose any ordering: both \code{42} and \code{80}
  9760. would be correct results for the example program. Interestingly,
  9761. Racket is implemented on top of the Chez Scheme
  9762. compiler~\citep{Dybvig:2006aa} and an approach similar to the one
  9763. presented in this section (using extra \code{let} bindings to control
  9764. the order of evaluation) is used in the translation from Racket to
  9765. Scheme~\citep{Flatt:2019tb}.
  9766. \fi} % racket
  9767. Having discussed the complications that arise from adding support for
  9768. assignment and loops, we turn to discussing the individual compilation
  9769. passes.
  9770. {\if\edition\racketEd
  9771. \section{Uncover \texttt{get!}}
  9772. \label{sec:uncover-get-bang}
  9773. The goal of this pass it to mark uses of mutable variables so that
  9774. \code{remove\_complex\_operands} can treat them as complex expressions
  9775. and thereby preserve their ordering relative to the side-effects in
  9776. other operands. So the first step is to collect all the mutable
  9777. variables. We recommend creating an auxiliary function for this,
  9778. named \code{collect-set!}, that recursively traverses expressions,
  9779. returning the set of all variables that occur on the left-hand side of a
  9780. \code{set!}. Here's an excerpt of its implementation.
  9781. \begin{center}
  9782. \begin{minipage}{\textwidth}
  9783. \begin{lstlisting}
  9784. (define (collect-set! e)
  9785. (match e
  9786. [(Var x) (set)]
  9787. [(Int n) (set)]
  9788. [(Let x rhs body)
  9789. (set-union (collect-set! rhs) (collect-set! body))]
  9790. [(SetBang var rhs)
  9791. (set-union (set var) (collect-set! rhs))]
  9792. ...))
  9793. \end{lstlisting}
  9794. \end{minipage}
  9795. \end{center}
  9796. By placing this pass after \code{uniquify}, we need not worry about
  9797. variable shadowing and our logic for \code{Let} can remain simple, as
  9798. in the excerpt above.
  9799. The second step is to mark the occurrences of the mutable variables
  9800. with the new \code{GetBang} AST node (\code{get!} in concrete
  9801. syntax). The following is an excerpt of the \code{uncover-get!-exp}
  9802. function, which takes two parameters: the set of mutable variables
  9803. \code{set!-vars}, and the expression \code{e} to be processed. The
  9804. case for \code{(Var x)} replaces it with \code{(GetBang x)} if it is a
  9805. mutable variable or leaves it alone if not.
  9806. \begin{center}
  9807. \begin{minipage}{\textwidth}
  9808. \begin{lstlisting}
  9809. (define ((uncover-get!-exp set!-vars) e)
  9810. (match e
  9811. [(Var x)
  9812. (if (set-member? set!-vars x)
  9813. (GetBang x)
  9814. (Var x))]
  9815. ...))
  9816. \end{lstlisting}
  9817. \end{minipage}
  9818. \end{center}
  9819. To wrap things up, define the \code{uncover-get!} function for
  9820. processing a whole program, using \code{collect-set!} to obtain the
  9821. set of mutable variables and then \code{uncover-get!-exp} to replace
  9822. their occurrences with \code{GetBang}.
  9823. \fi}
  9824. \section{Remove Complex Operands}
  9825. \label{sec:rco-loop}
  9826. {\if\edition\racketEd
  9827. %
  9828. The new language forms, \code{get!}, \code{set!}, \code{begin}, and
  9829. \code{while} are all complex expressions. The subexpressions of
  9830. \code{set!}, \code{begin}, and \code{while} are allowed to be complex.
  9831. %
  9832. \fi}
  9833. {\if\edition\pythonEd
  9834. %
  9835. The change needed for this pass is to add a case for the \code{while}
  9836. statement. The condition of a \code{while} loop is allowed to be a
  9837. complex expression, just like the condition of the \code{if}
  9838. statement.
  9839. %
  9840. \fi}
  9841. %
  9842. Figure~\ref{fig:Lwhile-anf-syntax} defines the output language
  9843. \LangLoopANF{} of this pass.
  9844. \newcommand{\LwhileMonadASTRacket}{
  9845. \begin{array}{rcl}
  9846. \Atm &::=& \VOID{} \\
  9847. \Exp &::=& \GETBANG{\Var}
  9848. \MID \SETBANG{\Var}{\Exp}
  9849. \MID \BEGIN{\LP\Exp\ldots\RP}{\Exp} \\
  9850. &\MID& \WHILE{\Exp}{\Exp}
  9851. \end{array}
  9852. }
  9853. \newcommand{\LwhileMonadASTPython}{
  9854. \begin{array}{rcl}
  9855. \Stmt{} &::=& \WHILESTMT{\Exp}{\Stmt^{+}}
  9856. \end{array}
  9857. }
  9858. \begin{figure}[tp]
  9859. \centering
  9860. \begin{tcolorbox}[colback=white]
  9861. \small
  9862. {\if\edition\racketEd
  9863. \[
  9864. \begin{array}{l}
  9865. \gray{\LvarMonadASTRacket} \\ \hline
  9866. \gray{\LifMonadASTRacket} \\ \hline
  9867. \LwhileMonadASTRacket \\
  9868. \begin{array}{rcl}
  9869. \LangLoopANF &::=& \PROGRAM{\code{'()}}{\Exp}
  9870. \end{array}
  9871. \end{array}
  9872. \]
  9873. \fi}
  9874. {\if\edition\pythonEd
  9875. \[
  9876. \begin{array}{l}
  9877. \gray{\LvarMonadASTPython} \\ \hline
  9878. \gray{\LifMonadASTPython} \\ \hline
  9879. \LwhileMonadASTPython \\
  9880. \begin{array}{rcl}
  9881. \LangLoopANF &::=& \PROGRAM{\code{()}}{\Stmt^{*}}
  9882. \end{array}
  9883. \end{array}
  9884. %% \begin{array}{rcl}
  9885. %% \Atm &::=& \INT{\Int} \MID \VAR{\Var} \MID \BOOL{\itm{bool}}\\
  9886. %% \Exp &::=& \Atm \MID \READ{} \\
  9887. %% &\MID& \BINOP{\Atm}{\itm{binaryop}}{\Atm} \MID \UNIOP{\itm{unaryop}}{\Atm} \\
  9888. %% &\MID& \CMP{\Atm}{\itm{cmp}}{\Atm} \MID \IF{\Exp}{\Exp}{\Exp} \\
  9889. %% % &\MID& \LET{\Var}{\Exp}{\Exp}\\ % Why?
  9890. %% \Stmt{} &::=& \PRINT{\Atm} \MID \EXPR{\Exp} \\
  9891. %% &\MID& \ASSIGN{\VAR{\Var}}{\Exp} \MID \IFSTMT{\Exp}{\Stmt^{+}}{\Stmt^{+}}\\
  9892. %% &\MID& \WHILESTMT{\Exp}{\Stmt^{+}} \\
  9893. %% \LangLoopANF &::=& \PROGRAM{\code{()}}{\Stmt^{*}}
  9894. %% \end{array}
  9895. \]
  9896. \fi}
  9897. \end{tcolorbox}
  9898. \caption{\LangLoopANF{} is \LangLoop{} in monadic normal form.}
  9899. \label{fig:Lwhile-anf-syntax}
  9900. \end{figure}
  9901. {\if\edition\racketEd
  9902. %
  9903. As usual, when a complex expression appears in a grammar position that
  9904. needs to be atomic, such as the argument of a primitive operator, we
  9905. must introduce a temporary variable and bind it to the complex
  9906. expression. This approach applies, unchanged, to handle the new
  9907. language forms. For example, in the following code there are two
  9908. \code{begin} expressions appearing as arguments to the \code{+}
  9909. operator. The output of \code{rco\_exp} is shown below, in which the
  9910. \code{begin} expressions have been bound to temporary
  9911. variables. Recall that \code{let} expressions in \LangLoopANF{} are
  9912. allowed to have arbitrary expressions in their right-hand-side
  9913. expression, so it is fine to place \code{begin} there.
  9914. %
  9915. \begin{center}
  9916. \begin{tabular}{lcl}
  9917. \begin{minipage}{0.4\textwidth}
  9918. \begin{lstlisting}
  9919. (let ([x2 10])
  9920. (let ([y3 0])
  9921. (+ (+ (begin
  9922. (set! y3 (read))
  9923. (get! x2))
  9924. (begin
  9925. (set! x2 (read))
  9926. (get! y3)))
  9927. (get! x2))))
  9928. \end{lstlisting}
  9929. \end{minipage}
  9930. &
  9931. $\Rightarrow$
  9932. &
  9933. \begin{minipage}{0.4\textwidth}
  9934. \begin{lstlisting}
  9935. (let ([x2 10])
  9936. (let ([y3 0])
  9937. (let ([tmp4 (begin
  9938. (set! y3 (read))
  9939. x2)])
  9940. (let ([tmp5 (begin
  9941. (set! x2 (read))
  9942. y3)])
  9943. (let ([tmp6 (+ tmp4 tmp5)])
  9944. (let ([tmp7 x2])
  9945. (+ tmp6 tmp7)))))))
  9946. \end{lstlisting}
  9947. \end{minipage}
  9948. \end{tabular}
  9949. \end{center}
  9950. \fi}
  9951. \section{Explicate Control \racket{and \LangCLoop{}}}
  9952. \label{sec:explicate-loop}
  9953. \newcommand{\CloopASTRacket}{
  9954. \begin{array}{lcl}
  9955. \Atm &::=& \VOID \\
  9956. \Stmt &::=& \READ{}
  9957. \end{array}
  9958. }
  9959. {\if\edition\racketEd
  9960. Recall that in the \code{explicate\_control} pass we define one helper
  9961. function for each kind of position in the program. For the \LangVar{}
  9962. language of integers and variables we needed assignment and tail
  9963. positions. The \code{if} expressions of \LangIf{} introduced predicate
  9964. positions. For \LangLoop{}, the \code{begin} expression introduces yet
  9965. another kind of position: effect position. Except for the last
  9966. subexpression, the subexpressions inside a \code{begin} are evaluated
  9967. only for their effect. Their result values are discarded. We can
  9968. generate better code by taking this fact into account.
  9969. The output language of \code{explicate\_control} is \LangCLoop{}
  9970. (Figure~\ref{fig:c7-syntax}), which is nearly identical to
  9971. \LangCIf{}. The only syntactic difference is the addition of \VOID{}
  9972. and that \code{read} may appear as a statement. The most significant
  9973. difference between the programs generated by \code{explicate\_control}
  9974. in Chapter~\ref{ch:Lif} versus \code{explicate\_control} in this
  9975. chapter is that the control-flow graphs of the later may contain
  9976. cycles.
  9977. \begin{figure}[tp]
  9978. \begin{tcolorbox}[colback=white]
  9979. \small
  9980. \[
  9981. \begin{array}{l}
  9982. \gray{\CvarASTRacket} \\ \hline
  9983. \gray{\CifASTRacket} \\ \hline
  9984. \CloopASTRacket \\
  9985. \begin{array}{lcl}
  9986. \LangCLoopM{} & ::= & \CPROGRAM{\itm{info}}{\LP\LP\itm{label}\,\key{.}\,\Tail\RP\ldots\RP}
  9987. \end{array}
  9988. \end{array}
  9989. \]
  9990. \end{tcolorbox}
  9991. \caption{The abstract syntax of \LangCLoop{}, extending \LangCIf{} (Figure~\ref{fig:c1-syntax}).}
  9992. \label{fig:c7-syntax}
  9993. \end{figure}
  9994. The new auxiliary function \code{explicate\_effect} takes an
  9995. expression (in an effect position) and the code for its
  9996. continuation. The function returns a $\Tail$ that includes the
  9997. generated code for the input expression followed by the
  9998. continuation. If the expression is obviously pure, that is, never
  9999. causes side effects, then the expression can be removed, so the result
  10000. is just the continuation.
  10001. %
  10002. The case for $\WHILE{\itm{cnd}}{\itm{body}}$ expressions is
  10003. interesting; the generated code is depicted in the following diagram.
  10004. \begin{center}
  10005. \begin{minipage}{0.3\textwidth}
  10006. \xymatrix{
  10007. *+[F=]{\txt{\code{goto} \itm{loop}}} \ar[r]
  10008. & *+[F]{\txt{\itm{loop}: \\ \itm{cnd'}}} \ar[r]^{else} \ar[d]^{then}
  10009. & *+[F]{\txt{\itm{cont}}} \\
  10010. & *+[F]{\txt{\itm{body'} \\ \code{goto} \itm{loop}}} \ar@/^50pt/[u]
  10011. }
  10012. \end{minipage}
  10013. \end{center}
  10014. We start by creating a fresh label $\itm{loop}$ for the top of the
  10015. loop. Next, recursively process the \itm{body} (in effect position)
  10016. with a \code{goto} to $\itm{loop}$ as the continuation, producing
  10017. \itm{body'}. Process the \itm{cnd} (in predicate position) with
  10018. \itm{body'} as the then-branch and the continuation block as the
  10019. else-branch. The result should be added to the dictionary of
  10020. \code{basic-blocks} with the label \itm{loop}. The result for the
  10021. whole \code{while} loop is a \code{goto} to the \itm{loop} label.
  10022. The auxiliary functions for tail, assignment, and predicate positions
  10023. need to be updated. The three new language forms, \code{while},
  10024. \code{set!}, and \code{begin}, can appear in assignment and tail
  10025. positions. Only \code{begin} may appear in predicate positions; the
  10026. other two have result type \code{Void}.
  10027. \fi}
  10028. %
  10029. {\if\edition\pythonEd
  10030. %
  10031. The output of this pass is the language \LangCIf{}. No new language
  10032. features are needed in the output because a \code{while} loop can be
  10033. expressed in terms of \code{goto} and \code{if} statements, which are
  10034. already in \LangCIf{}.
  10035. %
  10036. Add a case for the \code{while} statement to the
  10037. \code{explicate\_stmt} method, using \code{explicate\_pred} to process
  10038. the condition expression.
  10039. %
  10040. \fi}
  10041. {\if\edition\racketEd
  10042. \section{Select Instructions}
  10043. \label{sec:select-instructions-loop}
  10044. Only two small additions are needed in the \code{select\_instructions}
  10045. pass to handle the changes to \LangCLoop{}. First, to handle the
  10046. addition of \VOID{} we simply translate it to \code{0}. Second,
  10047. \code{read} may appear as a stand-alone statement instead of only
  10048. appearing on the right-hand side of an assignment statement. The code
  10049. generation is nearly identical to the one for assignment; just leave
  10050. off the instruction for moving the result into the left-hand side.
  10051. \fi}
  10052. \section{Register Allocation}
  10053. \label{sec:register-allocation-loop}
  10054. As discussed in Section~\ref{sec:dataflow-analysis}, the presence of
  10055. loops in \LangLoop{} means that the control-flow graphs may contain cycles,
  10056. which complicates the liveness analysis needed for register
  10057. allocation.
  10058. %
  10059. We recommend using the generic \code{analyze\_dataflow} function that
  10060. was presented at the end of Section~\ref{sec:dataflow-analysis} to
  10061. perform liveness analysis, replacing the code in
  10062. \code{uncover\_live} that processed the basic blocks in topological
  10063. order (Section~\ref{sec:liveness-analysis-Lif}).
  10064. The \code{analyze\_dataflow} function has four parameters.
  10065. \begin{enumerate}
  10066. \item The first parameter \code{G} should be passed the transpose
  10067. of the control-flow graph.
  10068. \item The second parameter \code{transfer} should be passed a function
  10069. that applies liveness analysis to a basic block. It takes two
  10070. parameters: the label for the block to analyze and the live-after
  10071. set for that block. The transfer function should return the
  10072. live-before set for the block.
  10073. %
  10074. \racket{Also, as a side-effect, it should update the block's
  10075. $\itm{info}$ with the liveness information for each instruction.}
  10076. %
  10077. \python{Also, as a side-effect, it should update the live-before and
  10078. live-after sets for each instruction.}
  10079. %
  10080. To implement the \code{transfer} function, you should be able to
  10081. reuse the code you already have for analyzing basic blocks.
  10082. \item The third and fourth parameters of \code{analyze\_dataflow} are
  10083. \code{bottom} and \code{join} for the lattice of abstract states,
  10084. i.e. sets of locations. For liveness analysis, the bottom of the
  10085. lattice is the empty set and the join operator is set union.
  10086. \end{enumerate}
  10087. \begin{figure}[p]
  10088. \begin{tcolorbox}[colback=white]
  10089. \begin{tikzpicture}[baseline=(current bounding box.center)]
  10090. \node (Lfun) at (0,2) {\large \LangLoop{}};
  10091. \node (Lfun-2) at (3,2) {\large \LangLoop{}};
  10092. %\node (Lfun-3) at (6,2) {\large \LangLoop{}};
  10093. %\node (Lfun-4) at (9,2) {\large \LangLoopFunRef{}};
  10094. %\node (F1-1) at (12,0) {\large \LangLoopFunRef{}};
  10095. %\node (F1-2) at (9,0) {\large \LangLoopFunRef{}};
  10096. %\node (F1-3) at (6,0) {\large \LangLoopFunRef{}};
  10097. \node (F1-4) at (6,2) {\large \LangLoop{}};
  10098. \node (F1-5) at (9,2) {\large \LangLoop{}};
  10099. \node (F1-6) at (9,0) {\large \LangLoopANF{}};
  10100. \node (C3-2) at (3,0) {\large \racket{\LangCLoop{}}\python{\LangCIf{}}};
  10101. \node (x86-2) at (3,-2) {\large \LangXIfVar{}};
  10102. \node (x86-2-1) at (3,-4) {\large \LangXIfVar{}};
  10103. \node (x86-2-2) at (6,-4) {\large \LangXIfVar{}};
  10104. \node (x86-3) at (6,-2) {\large \LangXIfVar{}};
  10105. \node (x86-4) at (9,-2) {\large \LangXIf{}};
  10106. \node (x86-5) at (9,-4) {\large \LangXIf{}};
  10107. %% \path[->,bend left=15] (Lfun) edge [above] node
  10108. %% {\ttfamily\footnotesize type-check} (Lfun-2);
  10109. \path[->,bend left=15] (Lfun) edge [above] node
  10110. {\ttfamily\footnotesize shrink} (Lfun-2);
  10111. \path[->,bend left=15] (Lfun-2) edge [above] node
  10112. {\ttfamily\footnotesize uniquify} (F1-4);
  10113. %% \path[->,bend left=15] (Lfun-3) edge [above] node
  10114. %% {\ttfamily\footnotesize reveal\_functions} (Lfun-4);
  10115. %% \path[->,bend left=15] (Lfun-4) edge [right] node
  10116. %% {\ttfamily\footnotesize convert\_assignments} (F1-1);
  10117. %% \path[->,bend left=15] (Lfun-4) edge [right] node
  10118. %% {\ttfamily\footnotesize convert\_to\_clos.} (F1-2);
  10119. %% \path[->,bend right=15] (F1-2) edge [above] node
  10120. %% {\ttfamily\footnotesize limit\_fun.} (F1-3);
  10121. %% \path[->,bend right=15] (F1-3) edge [above] node
  10122. %% {\ttfamily\footnotesize expose-alloc.} (F1-4);
  10123. \path[->,bend left=15] (F1-4) edge [above] node
  10124. {\ttfamily\footnotesize uncover\_get!} (F1-5);
  10125. \path[->,bend left=15] (F1-5) edge [right] node
  10126. {\ttfamily\footnotesize remove\_complex.} (F1-6);
  10127. \path[->,bend right=15] (F1-6) edge [above] node
  10128. {\ttfamily\footnotesize explicate\_control} (C3-2);
  10129. \path[->,bend left=15] (C3-2) edge [left] node
  10130. {\ttfamily\footnotesize select\_instr.} (x86-2);
  10131. \path[->,bend right=15] (x86-2) edge [left] node
  10132. {\ttfamily\footnotesize uncover\_live} (x86-2-1);
  10133. \path[->,bend right=15] (x86-2-1) edge [below] node
  10134. {\ttfamily\footnotesize build\_inter.} (x86-2-2);
  10135. \path[->,bend right=15] (x86-2-2) edge [left] node
  10136. {\ttfamily\footnotesize allocate\_reg.} (x86-3);
  10137. \path[->,bend left=15] (x86-3) edge [above] node
  10138. {\ttfamily\footnotesize patch\_instr.} (x86-4);
  10139. \path[->,bend left=15] (x86-4) edge [right] node
  10140. {\ttfamily\footnotesize pre.\_and\_concl.} (x86-5);
  10141. \end{tikzpicture}
  10142. \end{tcolorbox}
  10143. \caption{Diagram of the passes for \LangLoop{}.}
  10144. \label{fig:Lwhile-passes}
  10145. \end{figure}
  10146. Figure~\ref{fig:Lwhile-passes} provides an overview of all the passes needed
  10147. for the compilation of \LangLoop{}.
  10148. % Further Reading: dataflow analysis
  10149. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  10150. \chapter{Tuples and Garbage Collection}
  10151. \label{ch:Lvec}
  10152. \index{subject}{tuple}
  10153. \index{subject}{vector}
  10154. \index{subject}{allocate}
  10155. \index{subject}{heap allocate}
  10156. %% \margincomment{\scriptsize To do: Flesh out this chapter, e.g., make sure
  10157. %% all the IR grammars are spelled out! \\ --Jeremy}
  10158. %% \margincomment{\scriptsize Be more explicit about how to deal with
  10159. %% the root stack. \\ --Jeremy}
  10160. In this chapter we study the implementation of tuples\racket{, called
  10161. vectors in Racket}. A tuple is a fixed-length sequence of elements
  10162. where each element may have a different type.
  10163. %
  10164. This language feature is the first to use the computer's
  10165. \emph{heap}\index{subject}{heap} because the lifetime of a tuple is
  10166. indefinite, that is, a tuple lives forever from the programmer's
  10167. viewpoint. Of course, from an implementer's viewpoint, it is important
  10168. to reclaim the space associated with a tuple when it is no longer
  10169. needed, which is why we also study \emph{garbage collection}
  10170. \index{subject}{garbage collection} techniques in this chapter.
  10171. Section~\ref{sec:r3} introduces the \LangVec{} language including its
  10172. interpreter and type checker. The \LangVec{} language extends the \LangLoop{}
  10173. language of Chapter~\ref{ch:Lwhile} with tuples.
  10174. %
  10175. Section~\ref{sec:GC} describes a garbage collection algorithm based on
  10176. copying live tuples back and forth between two halves of the heap. The
  10177. garbage collector requires coordination with the compiler so that it
  10178. can find all of the live tuples.
  10179. %
  10180. Sections~\ref{sec:expose-allocation} through \ref{sec:print-x86-gc}
  10181. discuss the necessary changes and additions to the compiler passes,
  10182. including a new compiler pass named \code{expose\_allocation}.
  10183. \section{The \LangVec{} Language}
  10184. \label{sec:r3}
  10185. Figure~\ref{fig:Lvec-concrete-syntax} defines the concrete syntax for
  10186. \LangVec{} and Figure~\ref{fig:Lvec-syntax} defines the abstract syntax.
  10187. %
  10188. \racket{The \LangVec{} language includes the forms: \code{vector} for
  10189. creating a tuple, \code{vector-ref} for reading an element of a
  10190. tuple, \code{vector-set!} for writing to an element of a tuple, and
  10191. \code{vector-length} for obtaining the number of elements of a
  10192. tuple.}
  10193. %
  10194. \python{The \LangVec{} language adds 1) tuple creation via a
  10195. comma-separated list of expressions, 2) accessing an element of a
  10196. tuple with the square bracket notation, i.e., \code{t[n]} returns
  10197. the element at index \code{n} of tuple \code{t}, 3) the \code{is} comparison
  10198. operator, and 4) obtaining the number of elements (the length) of a
  10199. tuple. In this chapter, we restrict access indices to constant
  10200. integers.}
  10201. %
  10202. The program below shows an example use of tuples. It creates a tuple
  10203. \code{t} containing the elements \code{40},
  10204. \racket{\code{\#t}}\python{\code{True}}, and another tuple that
  10205. contains just \code{2}. The element at index $1$ of \code{t} is
  10206. \racket{\code{\#t}}\python{\code{True}}, so the ``then'' branch of the
  10207. \key{if} is taken. The element at index $0$ of \code{t} is \code{40},
  10208. to which we add \code{2}, the element at index $0$ of the tuple. So
  10209. the result of the program is \code{42}.
  10210. %
  10211. {\if\edition\racketEd
  10212. \begin{lstlisting}
  10213. (let ([t (vector 40 #t (vector 2))])
  10214. (if (vector-ref t 1)
  10215. (+ (vector-ref t 0)
  10216. (vector-ref (vector-ref t 2) 0))
  10217. 44))
  10218. \end{lstlisting}
  10219. \fi}
  10220. {\if\edition\pythonEd
  10221. \begin{lstlisting}
  10222. t = 40, True, (2,)
  10223. print( t[0] + t[2][0] if t[1] else 44 )
  10224. \end{lstlisting}
  10225. \fi}
  10226. \newcommand{\LtupGrammarRacket}{
  10227. \begin{array}{lcl}
  10228. \Type &::=& \LP\key{Vector}\;\Type^{*}\RP \\
  10229. \Exp &::=& \LP\key{vector}\;\Exp^{*}\RP
  10230. \MID \LP\key{vector-length}\;\Exp\RP \\
  10231. &\MID& \LP\key{vector-ref}\;\Exp\;\Int\RP
  10232. \MID \LP\key{vector-set!}\;\Exp\;\Int\;\Exp\RP
  10233. \end{array}
  10234. }
  10235. \newcommand{\LtupASTRacket}{
  10236. \begin{array}{lcl}
  10237. \Type &::=& \LP\key{Vector}\;\Type^{*}\RP \\
  10238. \itm{op} &::=& \code{vector} \MID \code{vector-length} \\
  10239. \Exp &::=& \VECREF{\Exp}{\INT{\Int}} \\
  10240. &\MID& \VECSET{\Exp}{\INT{\Int}}{\Exp} \\
  10241. &\MID& \LP\key{HasType}~\Exp~\Type \RP
  10242. \end{array}
  10243. }
  10244. \newcommand{\LtupGrammarPython}{
  10245. \begin{array}{rcl}
  10246. \itm{cmp} &::= & \key{is} \\
  10247. \Exp &::=& \Exp \key{,} \ldots \key{,} \Exp \MID \CGET{\Exp}{\Int} \MID \CLEN{\Exp}
  10248. \end{array}
  10249. }
  10250. \newcommand{\LtupASTPython}{
  10251. \begin{array}{lcl}
  10252. \itm{cmp} &::= & \code{Is()} \\
  10253. \Exp &::=& \TUPLE{\Exp^{+}} \MID \GET{\Exp}{\INT{\Int}} \\
  10254. &\MID& \LEN{\Exp}
  10255. \end{array}
  10256. }
  10257. \begin{figure}[tbp]
  10258. \centering
  10259. \begin{tcolorbox}[colback=white]
  10260. \small
  10261. {\if\edition\racketEd
  10262. \[
  10263. \begin{array}{l}
  10264. \gray{\LintGrammarRacket{}} \\ \hline
  10265. \gray{\LvarGrammarRacket{}} \\ \hline
  10266. \gray{\LifGrammarRacket{}} \\ \hline
  10267. \gray{\LwhileGrammarRacket} \\ \hline
  10268. \LtupGrammarRacket \\
  10269. \begin{array}{lcl}
  10270. \LangVecM{} &::=& \Exp
  10271. \end{array}
  10272. \end{array}
  10273. \]
  10274. \fi}
  10275. {\if\edition\pythonEd
  10276. \[
  10277. \begin{array}{l}
  10278. \gray{\LintGrammarPython{}} \\ \hline
  10279. \gray{\LvarGrammarPython{}} \\ \hline
  10280. \gray{\LifGrammarPython{}} \\ \hline
  10281. \gray{\LwhileGrammarPython} \\ \hline
  10282. \LtupGrammarPython \\
  10283. \begin{array}{rcl}
  10284. \LangVecM{} &::=& \Stmt^{*}
  10285. \end{array}
  10286. \end{array}
  10287. \]
  10288. \fi}
  10289. \end{tcolorbox}
  10290. \caption{The concrete syntax of \LangVec{}, extending \LangLoop{}
  10291. (Figure~\ref{fig:Lwhile-concrete-syntax}).}
  10292. \label{fig:Lvec-concrete-syntax}
  10293. \end{figure}
  10294. \begin{figure}[tp]
  10295. \centering
  10296. \begin{tcolorbox}[colback=white]
  10297. \small
  10298. {\if\edition\racketEd
  10299. \[
  10300. \begin{array}{l}
  10301. \gray{\LintOpAST} \\ \hline
  10302. \gray{\LvarASTRacket{}} \\ \hline
  10303. \gray{\LifASTRacket{}} \\ \hline
  10304. \gray{\LwhileASTRacket{}} \\ \hline
  10305. \LtupASTRacket{} \\
  10306. \begin{array}{lcl}
  10307. \LangVecM{} &::=& \PROGRAM{\key{'()}}{\Exp}
  10308. \end{array}
  10309. \end{array}
  10310. \]
  10311. \fi}
  10312. {\if\edition\pythonEd
  10313. \[
  10314. \begin{array}{l}
  10315. \gray{\LintASTPython} \\ \hline
  10316. \gray{\LvarASTPython} \\ \hline
  10317. \gray{\LifASTPython} \\ \hline
  10318. \gray{\LwhileASTPython} \\ \hline
  10319. \LtupASTPython \\
  10320. \begin{array}{lcl}
  10321. \LangLoopM{} &::=& \PROGRAM{\code{'()}}{\Stmt^{*}}
  10322. \end{array}
  10323. \end{array}
  10324. \]
  10325. \fi}
  10326. \end{tcolorbox}
  10327. \caption{The abstract syntax of \LangVec{}.}
  10328. \label{fig:Lvec-syntax}
  10329. \end{figure}
  10330. Tuples raise several interesting new issues. First, variable binding
  10331. performs a shallow-copy when dealing with tuples, which means that
  10332. different variables can refer to the same tuple, that is, two
  10333. variables can be \emph{aliases}\index{subject}{alias} for the same
  10334. entity. Consider the following example in which both \code{t1} and
  10335. \code{t2} refer to the same tuple value but \code{t3} refers to a
  10336. different tuple value but with equal elements. The result of the
  10337. program is \code{42}.
  10338. \begin{center}
  10339. \begin{minipage}{0.96\textwidth}
  10340. {\if\edition\racketEd
  10341. \begin{lstlisting}
  10342. (let ([t1 (vector 3 7)])
  10343. (let ([t2 t1])
  10344. (let ([t3 (vector 3 7)])
  10345. (if (and (eq? t1 t2) (not (eq? t1 t3)))
  10346. 42
  10347. 0))))
  10348. \end{lstlisting}
  10349. \fi}
  10350. {\if\edition\pythonEd
  10351. \begin{lstlisting}
  10352. t1 = 3, 7
  10353. t2 = t1
  10354. t3 = 3, 7
  10355. print( 42 if (t1 is t2) and not (t1 is t3) else 0 )
  10356. \end{lstlisting}
  10357. \fi}
  10358. \end{minipage}
  10359. \end{center}
  10360. {\if\edition\racketEd
  10361. Whether two variables are aliased or not affects what happens
  10362. when the underlying tuple is mutated\index{subject}{mutation}.
  10363. Consider the following example in which \code{t1} and \code{t2}
  10364. again refer to the same tuple value.
  10365. \begin{center}
  10366. \begin{minipage}{0.96\textwidth}
  10367. \begin{lstlisting}
  10368. (let ([t1 (vector 3 7)])
  10369. (let ([t2 t1])
  10370. (let ([_ (vector-set! t2 0 42)])
  10371. (vector-ref t1 0))))
  10372. \end{lstlisting}
  10373. \end{minipage}
  10374. \end{center}
  10375. The mutation through \code{t2} is visible when referencing the tuple
  10376. from \code{t1}, so the result of this program is \code{42}.
  10377. \fi}
  10378. The next issue concerns the lifetime of tuples. When does their
  10379. lifetime end? Notice that \LangVec{} does not include an operation
  10380. for deleting tuples. Furthermore, the lifetime of a tuple is not tied
  10381. to any notion of static scoping.
  10382. %
  10383. {\if\edition\racketEd
  10384. %
  10385. For example, the following program returns \code{42} even though the
  10386. variable \code{w} goes out of scope prior to the \code{vector-ref}
  10387. that reads from the vector it was bound to.
  10388. \begin{center}
  10389. \begin{minipage}{0.96\textwidth}
  10390. \begin{lstlisting}
  10391. (let ([v (vector (vector 44))])
  10392. (let ([x (let ([w (vector 42)])
  10393. (let ([_ (vector-set! v 0 w)])
  10394. 0))])
  10395. (+ x (vector-ref (vector-ref v 0) 0))))
  10396. \end{lstlisting}
  10397. \end{minipage}
  10398. \end{center}
  10399. \fi}
  10400. %
  10401. {\if\edition\pythonEd
  10402. %
  10403. For example, the following program returns \code{42} even though the
  10404. variable \code{x} goes out of scope when the function returns, prior
  10405. to reading the tuple element at index zero. (We study the compilation
  10406. of functions in Chapter~\ref{ch:Lfun}.)
  10407. %
  10408. \begin{center}
  10409. \begin{minipage}{0.96\textwidth}
  10410. \begin{lstlisting}
  10411. def f():
  10412. x = 42, 43
  10413. return x
  10414. t = f()
  10415. print( t[0] )
  10416. \end{lstlisting}
  10417. \end{minipage}
  10418. \end{center}
  10419. \fi}
  10420. %
  10421. From the perspective of programmer-observable behavior, tuples live
  10422. forever. However, if they really lived forever then many long-running
  10423. programs would run out of memory. To solve this problem, the
  10424. language's runtime system performs automatic garbage collection.
  10425. Figure~\ref{fig:interp-Lvec} shows the definitional interpreter for the
  10426. \LangVec{} language.
  10427. %
  10428. \racket{We define the \code{vector}, \code{vector-ref},
  10429. \code{vector-set!}, and \code{vector-length} operations for
  10430. \LangVec{} in terms of the corresponding operations in Racket. One
  10431. subtle point is that the \code{vector-set!} operation returns the
  10432. \code{\#<void>} value.}
  10433. %
  10434. \python{We represent tuples with Python lists in the interpreter
  10435. because we need to write to them
  10436. (Section~\ref{sec:expose-allocation}). (Python tuples are
  10437. immutable.) We define element access, the \code{is} operator, and
  10438. the \code{len} operator for \LangVec{} in terms of the corresponding
  10439. operations in Python.}
  10440. \begin{figure}[tbp]
  10441. \begin{tcolorbox}[colback=white]
  10442. {\if\edition\racketEd
  10443. \begin{lstlisting}
  10444. (define interp-Lvec-class
  10445. (class interp-Lwhile-class
  10446. (super-new)
  10447. (define/override (interp-op op)
  10448. (match op
  10449. ['eq? (lambda (v1 v2)
  10450. (cond [(or (and (fixnum? v1) (fixnum? v2))
  10451. (and (boolean? v1) (boolean? v2))
  10452. (and (vector? v1) (vector? v2))
  10453. (and (void? v1) (void? v2)))
  10454. (eq? v1 v2)]))]
  10455. ['vector vector]
  10456. ['vector-length vector-length]
  10457. ['vector-ref vector-ref]
  10458. ['vector-set! vector-set!]
  10459. [else (super interp-op op)]
  10460. ))
  10461. (define/override ((interp-exp env) e)
  10462. (match e
  10463. [(HasType e t) ((interp-exp env) e)]
  10464. [else ((super interp-exp env) e)]
  10465. ))
  10466. ))
  10467. (define (interp-Lvec p)
  10468. (send (new interp-Lvec-class) interp-program p))
  10469. \end{lstlisting}
  10470. \fi}
  10471. %
  10472. {\if\edition\pythonEd
  10473. \begin{lstlisting}
  10474. class InterpLtup(InterpLwhile):
  10475. def interp_cmp(self, cmp):
  10476. match cmp:
  10477. case Is():
  10478. return lambda x, y: x is y
  10479. case _:
  10480. return super().interp_cmp(cmp)
  10481. def interp_exp(self, e, env):
  10482. match e:
  10483. case Tuple(es, Load()):
  10484. return tuple([self.interp_exp(e, env) for e in es])
  10485. case Subscript(tup, index, Load()):
  10486. t = self.interp_exp(tup, env)
  10487. n = self.interp_exp(index, env)
  10488. return t[n]
  10489. case _:
  10490. return super().interp_exp(e, env)
  10491. \end{lstlisting}
  10492. \fi}
  10493. \end{tcolorbox}
  10494. \caption{Interpreter for the \LangVec{} language.}
  10495. \label{fig:interp-Lvec}
  10496. \end{figure}
  10497. Figure~\ref{fig:type-check-Lvec} shows the type checker for
  10498. \LangVec{}, which deserves some explanation. When allocating a tuple,
  10499. we need to know which elements of the tuple are themselves tuples for
  10500. the purposes of garbage collection. We can obtain this information
  10501. during type checking. The type checker in
  10502. Figure~\ref{fig:type-check-Lvec} not only computes the type of an
  10503. expression, it also
  10504. %
  10505. \racket{wraps every tuple creation with the form $(\key{HasType}~e~T)$,
  10506. where $T$ is the tuple's type.
  10507. To create the s-expression for the \code{Vector} type in
  10508. Figure~\ref{fig:type-check-Lvec}, we use the
  10509. \href{https://docs.racket-lang.org/reference/quasiquote.html}{unquote-splicing
  10510. operator} \code{,@} to insert the list \code{t*} without its usual
  10511. start and end parentheses. \index{subject}{unquote-slicing}}
  10512. %
  10513. \python{records the type of each tuple expression in a new field
  10514. named \code{has\_type}. Because the type checker has to compute the type
  10515. of each tuple access, the index must be a constant.}
  10516. \begin{figure}[tp]
  10517. \begin{tcolorbox}[colback=white]
  10518. {\if\edition\racketEd
  10519. \begin{lstlisting}[basicstyle=\ttfamily\scriptsize]
  10520. (define type-check-Lvec-class
  10521. (class type-check-Lif-class
  10522. (super-new)
  10523. (inherit check-type-equal?)
  10524. (define/override (type-check-exp env)
  10525. (lambda (e)
  10526. (define recur (type-check-exp env))
  10527. (match e
  10528. [(Prim 'vector es)
  10529. (define-values (e* t*) (for/lists (e* t*) ([e es]) (recur e)))
  10530. (define t `(Vector ,@t*))
  10531. (values (HasType (Prim 'vector e*) t) t)]
  10532. [(Prim 'vector-ref (list e1 (Int i)))
  10533. (define-values (e1^ t) (recur e1))
  10534. (match t
  10535. [`(Vector ,ts ...)
  10536. (unless (and (0 . <= . i) (i . < . (length ts)))
  10537. (error 'type-check "index ~a out of bounds\nin ~v" i e))
  10538. (values (Prim 'vector-ref (list e1^ (Int i))) (list-ref ts i))]
  10539. [else (error 'type-check "expect Vector, not ~a\nin ~v" t e)])]
  10540. [(Prim 'vector-set! (list e1 (Int i) arg) )
  10541. (define-values (e-vec t-vec) (recur e1))
  10542. (define-values (e-arg^ t-arg) (recur arg))
  10543. (match t-vec
  10544. [`(Vector ,ts ...)
  10545. (unless (and (0 . <= . i) (i . < . (length ts)))
  10546. (error 'type-check "index ~a out of bounds\nin ~v" i e))
  10547. (check-type-equal? (list-ref ts i) t-arg e)
  10548. (values (Prim 'vector-set! (list e-vec (Int i) e-arg^)) 'Void)]
  10549. [else (error 'type-check "expect Vector, not ~a\nin ~v" t-vec e)])]
  10550. [(Prim 'vector-length (list e))
  10551. (define-values (e^ t) (recur e))
  10552. (match t
  10553. [`(Vector ,ts ...)
  10554. (values (Prim 'vector-length (list e^)) 'Integer)]
  10555. [else (error 'type-check "expect Vector, not ~a\nin ~v" t e)])]
  10556. [(Prim 'eq? (list arg1 arg2))
  10557. (define-values (e1 t1) (recur arg1))
  10558. (define-values (e2 t2) (recur arg2))
  10559. (match* (t1 t2)
  10560. [(`(Vector ,ts1 ...) `(Vector ,ts2 ...)) (void)]
  10561. [(other wise) (check-type-equal? t1 t2 e)])
  10562. (values (Prim 'eq? (list e1 e2)) 'Boolean)]
  10563. [(HasType (Prim 'vector es) t)
  10564. ((type-check-exp env) (Prim 'vector es))]
  10565. [(HasType e1 t)
  10566. (define-values (e1^ t^) (recur e1))
  10567. (check-type-equal? t t^ e)
  10568. (values (HasType e1^ t) t)]
  10569. [else ((super type-check-exp env) e)]
  10570. )))
  10571. ))
  10572. (define (type-check-Lvec p)
  10573. (send (new type-check-Lvec-class) type-check-program p))
  10574. \end{lstlisting}
  10575. \fi}
  10576. {\if\edition\pythonEd
  10577. \begin{lstlisting}
  10578. class TypeCheckLtup(TypeCheckLwhile):
  10579. def type_check_exp(self, e, env):
  10580. match e:
  10581. case Compare(left, [cmp], [right]) if isinstance(cmp, Is):
  10582. l = self.type_check_exp(left, env)
  10583. r = self.type_check_exp(right, env)
  10584. check_type_equal(l, r, e)
  10585. return bool
  10586. case Tuple(es, Load()):
  10587. ts = [self.type_check_exp(e, env) for e in es]
  10588. e.has_type = tuple(ts)
  10589. return e.has_type
  10590. case Subscript(tup, Constant(index), Load()):
  10591. tup_ty = self.type_check_exp(tup, env)
  10592. index_ty = self.type_check_exp(Constant(index), env)
  10593. check_type_equal(index_ty, int, index)
  10594. match tup_ty:
  10595. case tuple(ts):
  10596. return ts[index]
  10597. case _:
  10598. raise Exception('error: expected a tuple, not ' + repr(tup_ty))
  10599. case _:
  10600. return super().type_check_exp(e, env)
  10601. \end{lstlisting}
  10602. \fi}
  10603. \end{tcolorbox}
  10604. \caption{Type checker for the \LangVec{} language.}
  10605. \label{fig:type-check-Lvec}
  10606. \end{figure}
  10607. \section{Garbage Collection}
  10608. \label{sec:GC}
  10609. Garbage collection is a runtime technique for reclaiming space on the
  10610. heap that will not be used in the future of the running program. We
  10611. use the term \emph{object}\index{subject}{object} to refer to any
  10612. value that is stored in the heap, which for now only includes
  10613. tuples.%
  10614. %
  10615. \footnote{The term ``object'' as it is used in the context of
  10616. object-oriented programming has a more specific meaning than how we
  10617. are using the term here.}
  10618. %
  10619. Unfortunately, it is impossible to know precisely which objects will
  10620. be accessed in the future and which will not. Instead, garbage
  10621. collectors over approximate the set of objects that will be accessed by
  10622. identifying which objects can possibly be accessed. The running
  10623. program can directly access objects that are in registers and on the
  10624. procedure call stack. It can also transitively access the elements of
  10625. tuples, starting with a tuple whose address is in a register or on the
  10626. procedure call stack. We define the \emph{root
  10627. set}\index{subject}{root set} to be all the tuple addresses that are
  10628. in registers or on the procedure call stack. We define the \emph{live
  10629. objects}\index{subject}{live objects} to be the objects that are
  10630. reachable from the root set. Garbage collectors reclaim the space that
  10631. is allocated to objects that are no longer live. That means that some
  10632. objects may not get reclaimed as soon as they could be, but at least
  10633. garbage collectors do not reclaim the space dedicated to objects that
  10634. will be accessed in the future! The programmer can influence which
  10635. objects get reclaimed by causing them to become unreachable.
  10636. So the goal of the garbage collector is twofold:
  10637. \begin{enumerate}
  10638. \item preserve all the live objects, and
  10639. \item reclaim the memory of everything else, that is, the \emph{garbage}.
  10640. \end{enumerate}
  10641. \subsection{Two-Space Copying Collector}
  10642. Here we study a relatively simple algorithm for garbage collection
  10643. that is the basis of many state-of-the-art garbage
  10644. collectors~\citep{Lieberman:1983aa,Ungar:1984aa,Jones:1996aa,Detlefs:2004aa,Dybvig:2006aa,Tene:2011kx}. In
  10645. particular, we describe a two-space copying
  10646. collector~\citep{Wilson:1992fk} that uses Cheney's algorithm to
  10647. perform the copy~\citep{Cheney:1970aa}. \index{subject}{copying
  10648. collector} \index{subject}{two-space copying collector}
  10649. Figure~\ref{fig:copying-collector} gives a coarse-grained depiction of
  10650. what happens in a two-space collector, showing two time steps, prior
  10651. to garbage collection (on the top) and after garbage collection (on
  10652. the bottom). In a two-space collector, the heap is divided into two
  10653. parts named the FromSpace\index{subject}{FromSpace} and the
  10654. ToSpace\index{subject}{ToSpace}. Initially, all allocations go to the
  10655. FromSpace until there is not enough room for the next allocation
  10656. request. At that point, the garbage collector goes to work to make
  10657. room for the next allocation.
  10658. A copying collector makes more room by copying all of the live objects
  10659. from the FromSpace into the ToSpace and then performs a sleight of
  10660. hand, treating the ToSpace as the new FromSpace and the old FromSpace
  10661. as the new ToSpace. In the example of
  10662. Figure~\ref{fig:copying-collector}, the root set consists of three
  10663. pointers, one in a register and two on the stack. All of the live
  10664. objects have been copied to the ToSpace (the right-hand side of
  10665. Figure~\ref{fig:copying-collector}) in a way that preserves the
  10666. pointer relationships. For example, the pointer in the register still
  10667. points to a tuple that in turn points to two other tuples. There are
  10668. four tuples that are not reachable from the root set and therefore do
  10669. not get copied into the ToSpace.
  10670. The exact situation in Figure~\ref{fig:copying-collector} cannot be
  10671. created by a well-typed program in \LangVec{} because it contains a
  10672. cycle. However, creating cycles will be possible once we get to
  10673. \LangDyn{} (Chapter~\ref{ch:Ldyn}). We design the garbage collector
  10674. to deal with cycles to begin with so we will not need to revisit this
  10675. issue.
  10676. \begin{figure}[tbp]
  10677. \centering
  10678. \begin{tcolorbox}[colback=white]
  10679. \racket{\includegraphics[width=\textwidth]{figs/copy-collect-1}}
  10680. \python{\includegraphics[width=\textwidth]{figs/copy-collect-1-python}}
  10681. \\[5ex]
  10682. \racket{\includegraphics[width=\textwidth]{figs/copy-collect-2}}
  10683. \python{\includegraphics[width=\textwidth]{figs/copy-collect-2-python}}
  10684. \end{tcolorbox}
  10685. \caption{A copying collector in action.}
  10686. \label{fig:copying-collector}
  10687. \end{figure}
  10688. \subsection{Graph Copying via Cheney's Algorithm}
  10689. \label{sec:cheney}
  10690. \index{subject}{Cheney's algorithm}
  10691. Let us take a closer look at the copying of the live objects. The
  10692. allocated objects and pointers can be viewed as a graph and we need to
  10693. copy the part of the graph that is reachable from the root set. To
  10694. make sure we copy all of the reachable vertices in the graph, we need
  10695. an exhaustive graph traversal algorithm, such as depth-first search or
  10696. breadth-first search~\citep{Moore:1959aa,Cormen:2001uq}. Recall that
  10697. such algorithms take into account the possibility of cycles by marking
  10698. which vertices have already been visited, so as to ensure termination
  10699. of the algorithm. These search algorithms also use a data structure
  10700. such as a stack or queue as a to-do list to keep track of the vertices
  10701. that need to be visited. We use breadth-first search and a trick
  10702. due to \citet{Cheney:1970aa} for simultaneously representing the queue
  10703. and copying tuples into the ToSpace.
  10704. Figure~\ref{fig:cheney} shows several snapshots of the ToSpace as the
  10705. copy progresses. The queue is represented by a chunk of contiguous
  10706. memory at the beginning of the ToSpace, using two pointers to track
  10707. the front and the back of the queue, called the \emph{free pointer}
  10708. and the \emph{scan pointer} respectively. The algorithm starts by
  10709. copying all tuples that are immediately reachable from the root set
  10710. into the ToSpace to form the initial queue. When we copy a tuple, we
  10711. mark the old tuple to indicate that it has been visited. We discuss
  10712. how this marking is accomplish in Section~\ref{sec:data-rep-gc}. Note
  10713. that any pointers inside the copied tuples in the queue still point
  10714. back to the FromSpace. Once the initial queue has been created, the
  10715. algorithm enters a loop in which it repeatedly processes the tuple at
  10716. the front of the queue and pops it off the queue. To process a tuple,
  10717. the algorithm copies all the objects that are directly reachable from it
  10718. to the ToSpace, placing them at the back of the queue. The algorithm
  10719. then updates the pointers in the popped tuple so they point to the
  10720. newly copied objects.
  10721. \begin{figure}[tbp]
  10722. \centering
  10723. \begin{tcolorbox}[colback=white]
  10724. \racket{\includegraphics[width=0.9\textwidth]{figs/cheney}}
  10725. \python{\includegraphics[width=0.9\textwidth]{figs/cheney-python}}
  10726. \end{tcolorbox}
  10727. \caption{Depiction of the Cheney algorithm copying the live tuples.}
  10728. \label{fig:cheney}
  10729. \end{figure}
  10730. Getting back to Figure~\ref{fig:cheney}, in the first step we copy the
  10731. tuple whose second element is $42$ to the back of the queue. The other
  10732. pointer goes to a tuple that has already been copied, so we do not
  10733. need to copy it again, but we do need to update the pointer to the new
  10734. location. This can be accomplished by storing a \emph{forwarding
  10735. pointer}\index{subject}{forwarding pointer} to the new location in the
  10736. old tuple, back when we initially copied the tuple into the
  10737. ToSpace. This completes one step of the algorithm. The algorithm
  10738. continues in this way until the queue is empty, that is, when the scan
  10739. pointer catches up with the free pointer.
  10740. \subsection{Data Representation}
  10741. \label{sec:data-rep-gc}
  10742. The garbage collector places some requirements on the data
  10743. representations used by our compiler. First, the garbage collector
  10744. needs to distinguish between pointers and other kinds of data such as
  10745. integers. There are several ways to accomplish this.
  10746. \begin{enumerate}
  10747. \item Attached a tag to each object that identifies what type of
  10748. object it is~\citep{McCarthy:1960dz}.
  10749. \item Store different types of objects in different
  10750. regions~\citep{Steele:1977ab}.
  10751. \item Use type information from the program to either (a) generate
  10752. type-specific code for collecting or (b) generate tables that
  10753. guide the collector~\citep{Appel:1989aa,Goldberg:1991aa,Diwan:1992aa}.
  10754. \end{enumerate}
  10755. Dynamically typed languages, such as \racket{Racket}\python{Python},
  10756. need to tag objects anyways, so option 1 is a natural choice for those
  10757. languages. However, \LangVec{} is a statically typed language, so it
  10758. would be unfortunate to require tags on every object, especially small
  10759. and pervasive objects like integers and Booleans. Option 3 is the
  10760. best-performing choice for statically typed languages, but comes with
  10761. a relatively high implementation complexity. To keep this chapter
  10762. within a reasonable time budget, we recommend a combination of options
  10763. 1 and 2, using separate strategies for the stack and the heap.
  10764. Regarding the stack, we recommend using a separate stack for pointers,
  10765. which we call the \emph{root stack}\index{subject}{root stack}
  10766. (a.k.a. ``shadow
  10767. stack'')~\citep{Siebert:2001aa,Henderson:2002aa,Baker:2009aa}. That
  10768. is, when a local variable needs to be spilled and is of type
  10769. \racket{\code{Vector}}\python{\code{TupleType}}, then we put it on the
  10770. root stack instead of putting it on the procedure call
  10771. stack. Furthermore, we always spill tuple-typed variables if they are
  10772. live during a call to the collector, thereby ensuring that no pointers
  10773. are in registers during a collection. Figure~\ref{fig:shadow-stack}
  10774. reproduces the example from Figure~\ref{fig:copying-collector} and
  10775. contrasts it with the data layout using a root stack. The root stack
  10776. contains the two pointers from the regular stack and also the pointer
  10777. in the second register.
  10778. \begin{figure}[tbp]
  10779. \centering
  10780. \begin{tcolorbox}[colback=white]
  10781. \racket{\includegraphics[width=0.60\textwidth]{figs/root-stack}}
  10782. \python{\includegraphics[width=0.60\textwidth]{figs/root-stack-python}}
  10783. \end{tcolorbox}
  10784. \caption{Maintaining a root stack to facilitate garbage collection.}
  10785. \label{fig:shadow-stack}
  10786. \end{figure}
  10787. The problem of distinguishing between pointers and other kinds of data
  10788. also arises inside of each tuple on the heap. We solve this problem by
  10789. attaching a tag, an extra 64-bits, to each
  10790. tuple. Figure~\ref{fig:tuple-rep} zooms in on the tags for two of the
  10791. tuples in the example from Figure~\ref{fig:copying-collector}. Note
  10792. that we have drawn the bits in a big-endian way, from right-to-left,
  10793. with bit location 0 (the least significant bit) on the far right,
  10794. which corresponds to the direction of the x86 shifting instructions
  10795. \key{salq} (shift left) and \key{sarq} (shift right). Part of each tag
  10796. is dedicated to specifying which elements of the tuple are pointers,
  10797. the part labeled ``pointer mask''. Within the pointer mask, a 1 bit
  10798. indicates there is a pointer and a 0 bit indicates some other kind of
  10799. data. The pointer mask starts at bit location 7. We limit tuples to a
  10800. maximum size of 50 elements, so we just need 50 bits for the pointer
  10801. mask.%
  10802. %
  10803. \footnote{A production-quality compiler would handle
  10804. arbitrary-sized tuples and use a more complex approach.}
  10805. %
  10806. The tag also contains two other pieces of information. The length of
  10807. the tuple (number of elements) is stored in bits location 1 through
  10808. 6. Finally, the bit at location 0 indicates whether the tuple has yet
  10809. to be copied to the ToSpace. If the bit has value 1, then this tuple
  10810. has not yet been copied. If the bit has value 0 then the entire tag
  10811. is a forwarding pointer. (The lower 3 bits of a pointer are always
  10812. zero anyways because our tuples are 8-byte aligned.)
  10813. \begin{figure}[tbp]
  10814. \centering
  10815. \begin{tcolorbox}[colback=white]
  10816. \includegraphics[width=0.8\textwidth]{figs/tuple-rep}
  10817. \end{tcolorbox}
  10818. \caption{Representation of tuples in the heap.}
  10819. \label{fig:tuple-rep}
  10820. \end{figure}
  10821. \subsection{Implementation of the Garbage Collector}
  10822. \label{sec:organize-gz}
  10823. \index{subject}{prelude}
  10824. An implementation of the copying collector is provided in the
  10825. \code{runtime.c} file. Figure~\ref{fig:gc-header} defines the
  10826. interface to the garbage collector that is used by the compiler. The
  10827. \code{initialize} function creates the FromSpace, ToSpace, and root
  10828. stack and should be called in the prelude of the \code{main}
  10829. function. The arguments of \code{initialize} are the root stack size
  10830. and the heap size. Both need to be multiples of $64$ and $16384$ is a
  10831. good choice for both. The \code{initialize} function puts the address
  10832. of the beginning of the FromSpace into the global variable
  10833. \code{free\_ptr}. The global variable \code{fromspace\_end} points to
  10834. the address that is 1-past the last element of the FromSpace. We use
  10835. half-open intervals to represent chunks of
  10836. memory~\citep{Dijkstra:1982aa}. The \code{rootstack\_begin} variable
  10837. points to the first element of the root stack.
  10838. As long as there is room left in the FromSpace, your generated code
  10839. can allocate tuples simply by moving the \code{free\_ptr} forward.
  10840. %
  10841. The amount of room left in the FromSpace is the difference between the
  10842. \code{fromspace\_end} and the \code{free\_ptr}. The \code{collect}
  10843. function should be called when there is not enough room left in the
  10844. FromSpace for the next allocation. The \code{collect} function takes
  10845. a pointer to the current top of the root stack (one past the last item
  10846. that was pushed) and the number of bytes that need to be
  10847. allocated. The \code{collect} function performs the copying collection
  10848. and leaves the heap in a state such that there is enough room for the
  10849. next allocation.
  10850. \begin{figure}[tbp]
  10851. \begin{tcolorbox}[colback=white]
  10852. \begin{lstlisting}
  10853. void initialize(uint64_t rootstack_size, uint64_t heap_size);
  10854. void collect(int64_t** rootstack_ptr, uint64_t bytes_requested);
  10855. int64_t* free_ptr;
  10856. int64_t* fromspace_begin;
  10857. int64_t* fromspace_end;
  10858. int64_t** rootstack_begin;
  10859. \end{lstlisting}
  10860. \end{tcolorbox}
  10861. \caption{The compiler's interface to the garbage collector.}
  10862. \label{fig:gc-header}
  10863. \end{figure}
  10864. %% \begin{exercise}
  10865. %% In the file \code{runtime.c} you will find the implementation of
  10866. %% \code{initialize} and a partial implementation of \code{collect}.
  10867. %% The \code{collect} function calls another function, \code{cheney},
  10868. %% to perform the actual copy, and that function is left to the reader
  10869. %% to implement. The following is the prototype for \code{cheney}.
  10870. %% \begin{lstlisting}
  10871. %% static void cheney(int64_t** rootstack_ptr);
  10872. %% \end{lstlisting}
  10873. %% The parameter \code{rootstack\_ptr} is a pointer to the top of the
  10874. %% rootstack (which is an array of pointers). The \code{cheney} function
  10875. %% also communicates with \code{collect} through the global
  10876. %% variables \code{fromspace\_begin} and \code{fromspace\_end}
  10877. %% mentioned in Figure~\ref{fig:gc-header} as well as the pointers for
  10878. %% the ToSpace:
  10879. %% \begin{lstlisting}
  10880. %% static int64_t* tospace_begin;
  10881. %% static int64_t* tospace_end;
  10882. %% \end{lstlisting}
  10883. %% The job of the \code{cheney} function is to copy all the live
  10884. %% objects (reachable from the root stack) into the ToSpace, update
  10885. %% \code{free\_ptr} to point to the next unused spot in the ToSpace,
  10886. %% update the root stack so that it points to the objects in the
  10887. %% ToSpace, and finally to swap the global pointers for the FromSpace
  10888. %% and ToSpace.
  10889. %% \end{exercise}
  10890. The introduction of garbage collection has a non-trivial impact on our
  10891. compiler passes. We introduce a new compiler pass named
  10892. \code{expose\_allocation} that elaborates the code for allocating
  10893. tuples. We also make significant changes to
  10894. \code{select\_instructions}, \code{build\_interference},
  10895. \code{allocate\_registers}, and \code{prelude\_and\_conclusion} and
  10896. make minor changes in several more passes.
  10897. The following program will serve as our running example. It creates
  10898. two tuples, one nested inside the other. Both tuples have length
  10899. one. The program accesses the element in the inner tuple.
  10900. % tests/vectors_test_17.rkt
  10901. {\if\edition\racketEd
  10902. \begin{lstlisting}
  10903. (vector-ref (vector-ref (vector (vector 42)) 0) 0)
  10904. \end{lstlisting}
  10905. \fi}
  10906. {\if\edition\pythonEd
  10907. \begin{lstlisting}
  10908. print( ((42,),)[0][0] )
  10909. \end{lstlisting}
  10910. \fi}
  10911. {\if\edition\racketEd
  10912. \section{Shrink}
  10913. \label{sec:shrink-Lvec}
  10914. Recall that the \code{shrink} pass translates the primitives operators
  10915. into a smaller set of primitives.
  10916. %
  10917. This pass comes after type checking and the type checker adds a
  10918. \code{HasType} AST node around each \code{vector} AST node, so you'll
  10919. need to add a case for \code{HasType} to the \code{shrink} pass.
  10920. \fi}
  10921. \section{Expose Allocation}
  10922. \label{sec:expose-allocation}
  10923. The pass \code{expose\_allocation} lowers tuple creation into a
  10924. conditional call to the collector followed by allocating the
  10925. appropriate amount of memory and initializing it. We choose to place
  10926. the \code{expose\_allocation} pass before
  10927. \code{remove\_complex\_operands} because it generates
  10928. code that contains complex operands.
  10929. The output of \code{expose\_allocation} is a language \LangAlloc{}
  10930. replaces tuple creation with new lower-level forms that we use in the
  10931. translation of tuple creation.
  10932. %
  10933. {\if\edition\racketEd
  10934. \[
  10935. \begin{array}{lcl}
  10936. \Exp &::=& \cdots
  10937. \MID (\key{collect} \,\itm{int})
  10938. \MID (\key{allocate} \,\itm{int}\,\itm{type})
  10939. \MID (\key{global-value} \,\itm{name})
  10940. \end{array}
  10941. \]
  10942. \fi}
  10943. {\if\edition\pythonEd
  10944. \[
  10945. \begin{array}{lcl}
  10946. \Exp &::=& \cdots\\
  10947. &\MID& \key{collect}(\itm{int})
  10948. \MID \key{allocate}(\itm{int},\itm{type})
  10949. \MID \key{global\_value}(\itm{name}) \\
  10950. &\MID& \key{begin:} ~ \Stmt^{*} ~ \Exp \\
  10951. \Stmt &::= & \CASSIGN{\CPUT{\Exp}{\itm{int}}}{\Exp}
  10952. \end{array}
  10953. \]
  10954. \fi}
  10955. %
  10956. The \CCOLLECT{$n$} form runs the garbage collector, requesting that it
  10957. make sure that there are $n$ bytes ready to be allocated. During
  10958. instruction selection, the \CCOLLECT{$n$} form will become a call to
  10959. the \code{collect} function in \code{runtime.c}.
  10960. %
  10961. The \CALLOCATE{$n$}{$T$} form obtains memory for $n$ elements (and
  10962. space at the front for the 64 bit tag), but the elements are not
  10963. initialized. \index{subject}{allocate} The $T$ parameter is the type
  10964. of the tuple:
  10965. %
  10966. \VECTY{\racket{$\Type_1 \ldots \Type_n$}\python{$\Type_1, \ldots, \Type_n$}}
  10967. %
  10968. where $\Type_i$ is the type of the $i$th element in the tuple. The
  10969. \CGLOBALVALUE{\itm{name}} form reads the value of a global variable, such
  10970. as \code{free\_ptr}.
  10971. %
  10972. \python{The \code{begin} form is an expression that executes a
  10973. sequence of statements and then produces the value of the expression
  10974. at the end.}
  10975. The following shows the transformation of tuple creation into 1) a
  10976. sequence of temporary variable bindings for the initializing
  10977. expressions, 2) a conditional call to \code{collect}, 3) a call to
  10978. \code{allocate}, and 4) the initialization of the tuple. The
  10979. \itm{len} placeholder refers to the length of the tuple and
  10980. \itm{bytes} is how many total bytes need to be allocated for the
  10981. tuple, which is 8 for the tag plus \itm{len} times 8.
  10982. %
  10983. \python{The \itm{type} needed for the second argument of the
  10984. \code{allocate} form can be obtained from the \code{has\_type} field
  10985. of the tuple AST node, which is stored there by running the type
  10986. checker for \LangVec{} immediately before this pass.}
  10987. %
  10988. \begin{center}
  10989. \begin{minipage}{\textwidth}
  10990. {\if\edition\racketEd
  10991. \begin{lstlisting}
  10992. (has-type (vector |$e_0 \ldots e_{n-1}$|) |\itm{type}|)
  10993. |$\Longrightarrow$|
  10994. (let ([|$x_0$| |$e_0$|]) ... (let ([|$x_{n-1}$| |$e_{n-1}$|])
  10995. (let ([_ (if (< (+ (global-value free_ptr) |\itm{bytes}|)
  10996. (global-value fromspace_end))
  10997. (void)
  10998. (collect |\itm{bytes}|))])
  10999. (let ([|$v$| (allocate |\itm{len}| |\itm{type}|)])
  11000. (let ([_ (vector-set! |$v$| |$0$| |$x_0$|)]) ...
  11001. (let ([_ (vector-set! |$v$| |$n-1$| |$x_{n-1}$|)])
  11002. |$v$|) ... )))) ...)
  11003. \end{lstlisting}
  11004. \fi}
  11005. {\if\edition\pythonEd
  11006. \begin{lstlisting}
  11007. (|$e_0$|, |$\ldots$|, |$e_{n-1}$|)
  11008. |$\Longrightarrow$|
  11009. begin:
  11010. |$x_0$| = |$e_0$|
  11011. |$\vdots$|
  11012. |$x_{n-1}$| = |$e_{n-1}$|
  11013. if global_value(free_ptr) + |\itm{bytes}| < global_value(fromspace_end):
  11014. 0
  11015. else:
  11016. collect(|\itm{bytes}|)
  11017. |$v$| = allocate(|\itm{len}|, |\itm{type}|)
  11018. |$v$|[0] = |$x_0$|
  11019. |$\vdots$|
  11020. |$v$|[|$n-1$|] = |$x_{n-1}$|
  11021. |$v$|
  11022. \end{lstlisting}
  11023. \fi}
  11024. \end{minipage}
  11025. \end{center}
  11026. %
  11027. \noindent The sequencing of the initializing expressions
  11028. $e_0,\ldots,e_{n-1}$ prior to the \code{allocate} is important, as
  11029. they may trigger garbage collection and we cannot have an allocated
  11030. but uninitialized tuple on the heap during a collection.
  11031. Figure~\ref{fig:expose-alloc-output} shows the output of the
  11032. \code{expose\_allocation} pass on our running example.
  11033. \begin{figure}[tbp]
  11034. \begin{tcolorbox}[colback=white]
  11035. % tests/s2_17.rkt
  11036. {\if\edition\racketEd
  11037. \begin{lstlisting}
  11038. (vector-ref
  11039. (vector-ref
  11040. (let ([vecinit6
  11041. (let ([_4 (if (< (+ (global-value free_ptr) 16)
  11042. (global-value fromspace_end))
  11043. (void)
  11044. (collect 16))])
  11045. (let ([alloc2 (allocate 1 (Vector Integer))])
  11046. (let ([_3 (vector-set! alloc2 0 42)])
  11047. alloc2)))])
  11048. (let ([_8 (if (< (+ (global-value free_ptr) 16)
  11049. (global-value fromspace_end))
  11050. (void)
  11051. (collect 16))])
  11052. (let ([alloc5 (allocate 1 (Vector (Vector Integer)))])
  11053. (let ([_7 (vector-set! alloc5 0 vecinit6)])
  11054. alloc5))))
  11055. 0)
  11056. 0)
  11057. \end{lstlisting}
  11058. \fi}
  11059. {\if\edition\pythonEd
  11060. \begin{lstlisting}
  11061. print( |$T_1$|[0][0] )
  11062. \end{lstlisting}
  11063. where $T_1$ is
  11064. \begin{lstlisting}
  11065. begin:
  11066. tmp.1 = |$T_2$|
  11067. if global_value(free_ptr) + 16 < global_value(fromspace_end):
  11068. 0
  11069. else:
  11070. collect(16)
  11071. tmp.2 = allocate(1, TupleType(TupleType([int])))
  11072. tmp.2[0] = tmp.1
  11073. tmp.2
  11074. \end{lstlisting}
  11075. and $T_2$ is
  11076. \begin{lstlisting}
  11077. begin:
  11078. tmp.3 = 42
  11079. if global_value(free_ptr) + 16 < global_value(fromspace_end):
  11080. 0
  11081. else:
  11082. collect(16)
  11083. tmp.4 = allocate(1, TupleType([int]))
  11084. tmp.4[0] = tmp.3
  11085. tmp.4
  11086. \end{lstlisting}
  11087. \fi}
  11088. \end{tcolorbox}
  11089. \caption{Output of the \code{expose\_allocation} pass.}
  11090. \label{fig:expose-alloc-output}
  11091. \end{figure}
  11092. \section{Remove Complex Operands}
  11093. \label{sec:remove-complex-opera-Lvec}
  11094. {\if\edition\racketEd
  11095. %
  11096. The forms \code{collect}, \code{allocate}, and \code{global\_value}
  11097. should be treated as complex operands.
  11098. %
  11099. \fi}
  11100. %
  11101. {\if\edition\pythonEd
  11102. %
  11103. The expressions \code{allocate}, \code{global\_value}, \code{begin},
  11104. and tuple access should be treated as complex operands. The
  11105. sub-expressions of tuple access must be atomic.
  11106. %
  11107. \fi}
  11108. %% A new case for
  11109. %% \code{HasType} is needed and the case for \code{Prim} needs to be
  11110. %% handled carefully to prevent the \code{Prim} node from being separated
  11111. %% from its enclosing \code{HasType}.
  11112. Figure~\ref{fig:Lvec-anf-syntax}
  11113. shows the grammar for the output language \LangAllocANF{} of this
  11114. pass, which is \LangAlloc{} in monadic normal form.
  11115. \newcommand{\LtupMonadASTRacket}{
  11116. \begin{array}{rcl}
  11117. \Exp &::=& \COLLECT{\Int} \RP \MID \ALLOCATE{\Int}{\Type}
  11118. \MID \GLOBALVALUE{\Var}
  11119. \end{array}
  11120. }
  11121. \newcommand{\LtupMonadASTPython}{
  11122. \begin{array}{rcl}
  11123. \Exp &::=& \GET{\Atm}{\Atm} \\
  11124. &\MID& \LEN{\Atm}\\
  11125. &\MID& \ALLOCATE{\Int}{\Type}
  11126. \MID \GLOBALVALUE{\Var} \\
  11127. \Stmt{} &::=& \ASSIGN{\PUT{\Atm}{\Atm}}{\Atm} \\
  11128. &\MID& \COLLECT{\Int}
  11129. \end{array}
  11130. }
  11131. \begin{figure}[tp]
  11132. \centering
  11133. \begin{tcolorbox}[colback=white]
  11134. \small
  11135. {\if\edition\racketEd
  11136. \[
  11137. \begin{array}{l}
  11138. \gray{\LvarMonadASTRacket} \\ \hline
  11139. \gray{\LifMonadASTRacket} \\ \hline
  11140. \gray{\LwhileMonadASTRacket} \\ \hline
  11141. \LtupMonadASTRacket \\
  11142. \begin{array}{rcl}
  11143. \LangAllocANFM{} &::=& \PROGRAM{\code{'()}}{\Exp}
  11144. \end{array}
  11145. \end{array}
  11146. \]
  11147. \fi}
  11148. {\if\edition\pythonEd
  11149. \[
  11150. \begin{array}{l}
  11151. \gray{\LvarMonadASTPython} \\ \hline
  11152. \gray{\LifMonadASTPython} \\ \hline
  11153. \gray{\LwhileMonadASTPython} \\ \hline
  11154. \LtupMonadASTPython \\
  11155. \begin{array}{rcl}
  11156. \LangAllocANFM{} &::=& \PROGRAM{\code{'()}}{\Stmt^{*}}
  11157. \end{array}
  11158. \end{array}
  11159. %% \begin{array}{lcl}
  11160. %% \itm{binaryop} &::=& \code{Add()} \MID \code{Sub()} \\
  11161. %% \itm{boolop} &::=& \code{And()} \MID \code{Or()} \\
  11162. %% \itm{cmp} &::= & \code{Eq()} \MID \code{NotEq()} \MID \code{Lt()} \MID \code{LtE()} \MID \code{Gt()} \MID \code{GtE()} \MID \code{Is()} \\
  11163. %% \itm{unaryop} &::=& \code{USub()} \MID \code{Not()} \\
  11164. %% \itm{bool} &::=& \code{True} \MID \code{False} \\
  11165. %% \Atm &::=& \INT{\Int} \MID \VAR{\Var} \MID \BOOL{\itm{bool}} \\
  11166. %% \Exp &::=& \Atm \MID \READ{} \MID \\
  11167. %% &\MID& \BINOP{\Atm}{\itm{binaryop}}{\Atm}
  11168. %% \MID \UNIOP{\itm{unaryop}}{\Atm}\\
  11169. %% &\MID& \CMP{\Atm}{\itm{cmp}}{\Atm} \\
  11170. %% % \MID \BOOLOP{\itm{boolop}}{\Exp}{\Exp} \\ % removed by RCO
  11171. %% &\MID& \IF{\Exp}{\Exp}{\Exp} \\
  11172. %% &\MID& \GET{\Atm}{\Atm} \\
  11173. %% &\MID& \LEN{\Exp}\\
  11174. %% &\MID& \ALLOCATE{\Int}{\Type}
  11175. %% \MID \GLOBALVALUE{\Var}\RP\\
  11176. %% &\MID& \BEGIN{\Stmt^{*}}{\Atm} \\ % can use this in place of \LET;
  11177. %% % why have \LET?
  11178. %% \Stmt{} &::=& \PRINT{\Atm} \MID \EXPR{\Exp} \\
  11179. %% &\MID& \ASSIGN{\VAR{\Var}}{\Exp} \\
  11180. %% &\MID& \ASSIGN{\PUT{\Atm}{\Atm}}{\Exp} \\
  11181. %% &\MID& \IFSTMT{\Exp}{\Stmt^{+}}{\Stmt^{+}}\\
  11182. %% &\MID& \WHILESTMT{\Exp}{\Stmt^{+}}
  11183. %% \MID \COLLECT{\Int} \\
  11184. %% \LangAllocANFM{} &::=& \PROGRAM{\code{'()}}{\Stmt^{*}}
  11185. %% \end{array}
  11186. \]
  11187. \fi}
  11188. \end{tcolorbox}
  11189. \caption{\LangAllocANF{} is \LangAlloc{} in monadic normal form.}
  11190. \label{fig:Lvec-anf-syntax}
  11191. \end{figure}
  11192. \section{Explicate Control and the \LangCVec{} language}
  11193. \label{sec:explicate-control-r3}
  11194. \newcommand{\CtupASTRacket}{
  11195. \begin{array}{lcl}
  11196. \Exp &::= & \LP\key{Allocate} \,\itm{int}\,\itm{type}\RP \\
  11197. &\MID& \VECREF{\Atm}{\INT{\Int}} \\
  11198. &\MID& \VECSET{\Atm}{\INT{\Int}}{\Atm} \\
  11199. &\MID& \VECLEN{\Atm} \\
  11200. &\MID& \GLOBALVALUE{\Var} \\
  11201. \Stmt &::=& \VECSET{\Atm}{\INT{\Int}}{\Atm} \\
  11202. &\MID& \LP\key{Collect} \,\itm{int}\RP
  11203. \end{array}
  11204. }
  11205. \newcommand{\CtupASTPython}{
  11206. \begin{array}{lcl}
  11207. \Exp &::= & \GET{\Atm}{\Atm} \MID \ALLOCATE{\Int}{\Type} \\
  11208. &\MID& \GLOBALVALUE{\Var} \MID \LEN{\Atm} \\
  11209. \Stmt &::=& \COLLECT{\Int} \\
  11210. &\MID& \ASSIGN{\PUT{\Atm}{\Atm}}{\Atm}
  11211. \end{array}
  11212. }
  11213. \begin{figure}[tp]
  11214. \begin{tcolorbox}[colback=white]
  11215. \small
  11216. {\if\edition\racketEd
  11217. \[
  11218. \begin{array}{l}
  11219. \gray{\CvarASTRacket} \\ \hline
  11220. \gray{\CifASTRacket} \\ \hline
  11221. \gray{\CloopASTRacket} \\ \hline
  11222. \CtupASTRacket \\
  11223. \begin{array}{lcl}
  11224. \LangCVecM{} & ::= & \CPROGRAM{\itm{info}}{\LP\LP\itm{label}\,\key{.}\,\Tail\RP\ldots\RP}
  11225. \end{array}
  11226. \end{array}
  11227. \]
  11228. \fi}
  11229. {\if\edition\pythonEd
  11230. \[
  11231. \begin{array}{l}
  11232. \gray{\CifASTPython} \\ \hline
  11233. \CtupASTPython \\
  11234. \begin{array}{lcl}
  11235. \LangCVecM{} & ::= & \CPROGRAM{\itm{info}}{\LC\itm{label}\key{:}\,\Stmt^{*}, \ldots \RC}
  11236. \end{array}
  11237. \end{array}
  11238. \]
  11239. \fi}
  11240. \end{tcolorbox}
  11241. \caption{The abstract syntax of \LangCVec{}, extending
  11242. \racket{\LangCLoop{} (Figure~\ref{fig:c7-syntax})}\python{\LangCIf{}
  11243. (Figure~\ref{fig:c1-syntax})}.}
  11244. \label{fig:c2-syntax}
  11245. \end{figure}
  11246. The output of \code{explicate\_control} is a program in the
  11247. intermediate language \LangCVec{}, whose abstract syntax is defined in
  11248. Figure~\ref{fig:c2-syntax}.
  11249. %
  11250. %% \racket{(The concrete syntax is defined in
  11251. %% Figure~\ref{fig:c2-concrete-syntax} of the Appendix.)}
  11252. %
  11253. The new expressions of \LangCVec{} include \key{allocate},
  11254. %
  11255. \racket{\key{vector-ref}, and \key{vector-set!},}
  11256. %
  11257. \python{accessing tuple elements,}
  11258. %
  11259. and \key{global\_value}.
  11260. %
  11261. \python{\LangCVec{} also includes the \code{collect} statement and
  11262. assignment to a tuple element.}
  11263. %
  11264. \racket{\LangCVec{} also includes the new \code{collect} statement.}
  11265. %
  11266. The \code{explicate\_control} pass can treat these new forms much like
  11267. the other forms that we've already encountered. The output of the
  11268. \code{explicate\_control} pass on the running example is shown on the
  11269. left-side of Figure~\ref{fig:select-instr-output-gc} in the next
  11270. section.
  11271. \section{Select Instructions and the \LangXGlobal{} Language}
  11272. \label{sec:select-instructions-gc}
  11273. \index{subject}{instruction selection}
  11274. %% void (rep as zero)
  11275. %% allocate
  11276. %% collect (callq collect)
  11277. %% vector-ref
  11278. %% vector-set!
  11279. %% vector-length
  11280. %% global (postpone)
  11281. In this pass we generate x86 code for most of the new operations that
  11282. were needed to compile tuples, including \code{Allocate},
  11283. \code{Collect}, and accessing tuple elements.
  11284. %
  11285. We compile \code{GlobalValue} to \code{Global} because the later has a
  11286. different concrete syntax (see Figures~\ref{fig:x86-2-concrete} and
  11287. \ref{fig:x86-2}). \index{subject}{x86}
  11288. The tuple read and write forms translate into \code{movq}
  11289. instructions. (The $+1$ in the offset is to move past the tag at the
  11290. beginning of the tuple representation.)
  11291. %
  11292. \begin{center}
  11293. \begin{minipage}{\textwidth}
  11294. {\if\edition\racketEd
  11295. \begin{lstlisting}
  11296. |$\itm{lhs}$| = (vector-ref |$\itm{tup}$| |$n$|);
  11297. |$\Longrightarrow$|
  11298. movq |$\itm{tup}'$|, %r11
  11299. movq |$8(n+1)$|(%r11), |$\itm{lhs'}$|
  11300. |$\itm{lhs}$| = (vector-set! |$\itm{tup}$| |$n$| |$\itm{rhs}$|);
  11301. |$\Longrightarrow$|
  11302. movq |$\itm{tup}'$|, %r11
  11303. movq |$\itm{rhs}'$|, |$8(n+1)$|(%r11)
  11304. movq $0, |$\itm{lhs'}$|
  11305. \end{lstlisting}
  11306. \fi}
  11307. {\if\edition\pythonEd
  11308. \begin{lstlisting}
  11309. |$\itm{lhs}$| = |$\itm{tup}$|[|$n$|]
  11310. |$\Longrightarrow$|
  11311. movq |$\itm{tup}'$|, %r11
  11312. movq |$8(n+1)$|(%r11), |$\itm{lhs'}$|
  11313. |$\itm{tup}$|[|$n$|] = |$\itm{rhs}$|
  11314. |$\Longrightarrow$|
  11315. movq |$\itm{tup}'$|, %r11
  11316. movq |$\itm{rhs}'$|, |$8(n+1)$|(%r11)
  11317. \end{lstlisting}
  11318. \fi}
  11319. \end{minipage}
  11320. \end{center}
  11321. \racket{The $\itm{lhs}'$, $\itm{tup}'$, and $\itm{rhs}'$}
  11322. \python{The $\itm{tup}'$ and $\itm{rhs}'$}
  11323. are obtained by translating from \LangCVec{} to x86.
  11324. %
  11325. The move of $\itm{tup}'$ to
  11326. register \code{r11} ensures that offset expression
  11327. \code{$8(n+1)$(\%r11)} contains a register operand. This requires
  11328. removing \code{r11} from consideration by the register allocating.
  11329. Why not use \code{rax} instead of \code{r11}? Suppose we instead used
  11330. \code{rax}. Then the generated code for tuple assignment would be
  11331. \begin{lstlisting}
  11332. movq |$\itm{tup}'$|, %rax
  11333. movq |$\itm{rhs}'$|, |$8(n+1)$|(%rax)
  11334. \end{lstlisting}
  11335. Next, suppose that $\itm{rhs}'$ ends up as a stack location, so
  11336. \code{patch\_instructions} would insert a move through \code{rax}
  11337. as follows.
  11338. \begin{lstlisting}
  11339. movq |$\itm{tup}'$|, %rax
  11340. movq |$\itm{rhs}'$|, %rax
  11341. movq %rax, |$8(n+1)$|(%rax)
  11342. \end{lstlisting}
  11343. But the above sequence of instructions does not work because we're
  11344. trying to use \code{rax} for two different values ($\itm{tup}'$ and
  11345. $\itm{rhs}'$) at the same time!
  11346. The \racket{\code{vector-length}}\python{\code{len}} operation should
  11347. be translated into a sequence of instructions that read the tag of the
  11348. tuple and extract the six bits that represent the tuple length, which
  11349. are the bits starting at index 1 and going up to and including bit 6.
  11350. The x86 instructions \code{andq} (for bitwise-and) and \code{sarq}
  11351. (shift right) can be used to accomplish this.
  11352. We compile the \code{allocate} form to operations on the
  11353. \code{free\_ptr}, as shown below. This approach is called
  11354. \emph{inline allocation} as it implements allocation without a
  11355. function call, by simply bumping the allocation pointer. It is much
  11356. more efficient than calling a function for each allocation. The
  11357. address in the \code{free\_ptr} is the next free address in the
  11358. FromSpace, so we copy it into \code{r11} and then move it forward by
  11359. enough space for the tuple being allocated, which is $8(\itm{len}+1)$
  11360. bytes because each element is 8 bytes (64 bits) and we use 8 bytes for
  11361. the tag. We then initialize the \itm{tag} and finally copy the
  11362. address in \code{r11} to the left-hand-side. Refer to
  11363. Figure~\ref{fig:tuple-rep} to see how the tag is organized.
  11364. %
  11365. \racket{We recommend using the Racket operations
  11366. \code{bitwise-ior} and \code{arithmetic-shift} to compute the tag
  11367. during compilation.}
  11368. %
  11369. \python{We recommend using the bitwise-or operator \code{|} and the
  11370. shift-left operator \code{<<} to compute the tag during
  11371. compilation.}
  11372. %
  11373. The type annotation in the \code{allocate} form is used to determine
  11374. the pointer mask region of the tag.
  11375. %
  11376. The addressing mode \verb!free_ptr(%rip)! essentially stands for the
  11377. address of the \code{free\_ptr} global variable but uses a special
  11378. instruction-pointer relative addressing mode of the x86-64 processor.
  11379. In particular, the assembler computes the distance $d$ between the
  11380. address of \code{free\_ptr} and where the \code{rip} would be at that
  11381. moment and then changes the \code{free\_ptr(\%rip)} argument to
  11382. \code{$d$(\%rip)}, which at runtime will compute the address of
  11383. \code{free\_ptr}.
  11384. %
  11385. {\if\edition\racketEd
  11386. \begin{lstlisting}
  11387. |$\itm{lhs}$| = (allocate |$\itm{len}$| (Vector |$\itm{type} \ldots$|));
  11388. |$\Longrightarrow$|
  11389. movq free_ptr(%rip), %r11
  11390. addq |$8(\itm{len}+1)$|, free_ptr(%rip)
  11391. movq $|$\itm{tag}$|, 0(%r11)
  11392. movq %r11, |$\itm{lhs}'$|
  11393. \end{lstlisting}
  11394. \fi}
  11395. {\if\edition\pythonEd
  11396. \begin{lstlisting}
  11397. |$\itm{lhs}$| = allocate(|$\itm{len}$|, TupleType([|$\itm{type}, \ldots$])|);
  11398. |$\Longrightarrow$|
  11399. movq free_ptr(%rip), %r11
  11400. addq |$8(\itm{len}+1)$|, free_ptr(%rip)
  11401. movq $|$\itm{tag}$|, 0(%r11)
  11402. movq %r11, |$\itm{lhs}'$|
  11403. \end{lstlisting}
  11404. \fi}
  11405. The \code{collect} form is compiled to a call to the \code{collect}
  11406. function in the runtime. The arguments to \code{collect} are 1) the
  11407. top of the root stack and 2) the number of bytes that need to be
  11408. allocated. We use another dedicated register, \code{r15}, to
  11409. store the pointer to the top of the root stack. So \code{r15} is not
  11410. available for use by the register allocator.
  11411. {\if\edition\racketEd
  11412. \begin{lstlisting}
  11413. (collect |$\itm{bytes}$|)
  11414. |$\Longrightarrow$|
  11415. movq %r15, %rdi
  11416. movq $|\itm{bytes}|, %rsi
  11417. callq collect
  11418. \end{lstlisting}
  11419. \fi}
  11420. {\if\edition\pythonEd
  11421. \begin{lstlisting}
  11422. collect(|$\itm{bytes}$|)
  11423. |$\Longrightarrow$|
  11424. movq %r15, %rdi
  11425. movq $|\itm{bytes}|, %rsi
  11426. callq collect
  11427. \end{lstlisting}
  11428. \fi}
  11429. \newcommand{\GrammarXGlobal}{
  11430. \begin{array}{lcl}
  11431. \Arg &::=& \itm{label} \key{(\%rip)}
  11432. \end{array}
  11433. }
  11434. \newcommand{\ASTXGlobalRacket}{
  11435. \begin{array}{lcl}
  11436. \Arg &::=& \GLOBAL{\itm{label}}
  11437. \end{array}
  11438. }
  11439. \begin{figure}[tp]
  11440. \begin{tcolorbox}[colback=white]
  11441. \[
  11442. \begin{array}{l}
  11443. \gray{\GrammarXInt} \\ \hline
  11444. \gray{\GrammarXIf} \\ \hline
  11445. \GrammarXGlobal \\
  11446. \begin{array}{lcl}
  11447. \LangXGlobalM{} &::= & \key{.globl main} \\
  11448. & & \key{main:} \; \Instr^{*}
  11449. \end{array}
  11450. \end{array}
  11451. \]
  11452. \end{tcolorbox}
  11453. \caption{The concrete syntax of \LangXGlobal{} (extends \LangXIf{} of Figure~\ref{fig:x86-1-concrete}).}
  11454. \label{fig:x86-2-concrete}
  11455. \end{figure}
  11456. \begin{figure}[tp]
  11457. \begin{tcolorbox}[colback=white]
  11458. \small
  11459. \[
  11460. \begin{array}{l}
  11461. \gray{\ASTXIntRacket} \\ \hline
  11462. \gray{\ASTXIfRacket} \\ \hline
  11463. \ASTXGlobalRacket \\
  11464. \begin{array}{lcl}
  11465. \LangXGlobalM{} &::= & \XPROGRAM{\itm{info}}{\LP\LP\itm{label} \,\key{.}\, \Block \RP\ldots\RP}
  11466. \end{array}
  11467. \end{array}
  11468. \]
  11469. \end{tcolorbox}
  11470. \caption{The abstract syntax of \LangXGlobal{} (extends \LangXIf{} of Figure~\ref{fig:x86-1}).}
  11471. \label{fig:x86-2}
  11472. \end{figure}
  11473. The concrete and abstract syntax of the \LangXGlobal{} language is
  11474. defined in Figures~\ref{fig:x86-2-concrete} and \ref{fig:x86-2}. It
  11475. differs from \LangXIf{} just in the addition of global variables.
  11476. %
  11477. Figure~\ref{fig:select-instr-output-gc} shows the output of the
  11478. \code{select\_instructions} pass on the running example.
  11479. \begin{figure}[tbp]
  11480. \centering
  11481. \begin{tcolorbox}[colback=white]
  11482. % tests/s2_17.rkt
  11483. \begin{tabular}{lll}
  11484. \begin{minipage}{0.5\textwidth}
  11485. \begin{lstlisting}[basicstyle=\ttfamily\scriptsize]
  11486. start:
  11487. tmp9 = (global-value free_ptr);
  11488. tmp0 = (+ tmp9 16);
  11489. tmp1 = (global-value fromspace_end);
  11490. if (< tmp0 tmp1)
  11491. goto block0;
  11492. else
  11493. goto block1;
  11494. block0:
  11495. _4 = (void);
  11496. goto block9;
  11497. block1:
  11498. (collect 16)
  11499. goto block9;
  11500. block9:
  11501. alloc2 = (allocate 1 (Vector Integer));
  11502. _3 = (vector-set! alloc2 0 42);
  11503. vecinit6 = alloc2;
  11504. tmp2 = (global-value free_ptr);
  11505. tmp3 = (+ tmp2 16);
  11506. tmp4 = (global-value fromspace_end);
  11507. if (< tmp3 tmp4)
  11508. goto block7;
  11509. else
  11510. goto block8;
  11511. block7:
  11512. _8 = (void);
  11513. goto block6;
  11514. block8:
  11515. (collect 16)
  11516. goto block6;
  11517. block6:
  11518. alloc5 = (allocate 1 (Vector (Vector Integer)));
  11519. _7 = (vector-set! alloc5 0 vecinit6);
  11520. tmp5 = (vector-ref alloc5 0);
  11521. return (vector-ref tmp5 0);
  11522. \end{lstlisting}
  11523. \end{minipage}
  11524. &$\Rightarrow$&
  11525. \begin{minipage}{0.4\textwidth}
  11526. \begin{lstlisting}[basicstyle=\ttfamily\scriptsize]
  11527. start:
  11528. movq free_ptr(%rip), tmp9
  11529. movq tmp9, tmp0
  11530. addq $16, tmp0
  11531. movq fromspace_end(%rip), tmp1
  11532. cmpq tmp1, tmp0
  11533. jl block0
  11534. jmp block1
  11535. block0:
  11536. movq $0, _4
  11537. jmp block9
  11538. block1:
  11539. movq %r15, %rdi
  11540. movq $16, %rsi
  11541. callq collect
  11542. jmp block9
  11543. block9:
  11544. movq free_ptr(%rip), %r11
  11545. addq $16, free_ptr(%rip)
  11546. movq $3, 0(%r11)
  11547. movq %r11, alloc2
  11548. movq alloc2, %r11
  11549. movq $42, 8(%r11)
  11550. movq $0, _3
  11551. movq alloc2, vecinit6
  11552. movq free_ptr(%rip), tmp2
  11553. movq tmp2, tmp3
  11554. addq $16, tmp3
  11555. movq fromspace_end(%rip), tmp4
  11556. cmpq tmp4, tmp3
  11557. jl block7
  11558. jmp block8
  11559. block7:
  11560. movq $0, _8
  11561. jmp block6
  11562. block8:
  11563. movq %r15, %rdi
  11564. movq $16, %rsi
  11565. callq collect
  11566. jmp block6
  11567. block6:
  11568. movq free_ptr(%rip), %r11
  11569. addq $16, free_ptr(%rip)
  11570. movq $131, 0(%r11)
  11571. movq %r11, alloc5
  11572. movq alloc5, %r11
  11573. movq vecinit6, 8(%r11)
  11574. movq $0, _7
  11575. movq alloc5, %r11
  11576. movq 8(%r11), tmp5
  11577. movq tmp5, %r11
  11578. movq 8(%r11), %rax
  11579. jmp conclusion
  11580. \end{lstlisting}
  11581. \end{minipage}
  11582. \end{tabular}
  11583. \end{tcolorbox}
  11584. \caption{Output of the \code{explicate\_control} (left)
  11585. and \code{select\_instructions} (right) passes on the running example.}
  11586. \label{fig:select-instr-output-gc}
  11587. \end{figure}
  11588. \clearpage
  11589. \section{Register Allocation}
  11590. \label{sec:reg-alloc-gc}
  11591. \index{subject}{register allocation}
  11592. As discussed earlier in this chapter, the garbage collector needs to
  11593. access all the pointers in the root set, that is, all variables that
  11594. are tuples. It will be the responsibility of the register allocator
  11595. to make sure that:
  11596. \begin{enumerate}
  11597. \item the root stack is used for spilling tuple-typed variables, and
  11598. \item if a tuple-typed variable is live during a call to the
  11599. collector, it must be spilled to ensure it is visible to the
  11600. collector.
  11601. \end{enumerate}
  11602. The later responsibility can be handled during construction of the
  11603. interference graph, by adding interference edges between the call-live
  11604. tuple-typed variables and all the callee-saved registers. (They
  11605. already interfere with the caller-saved registers.)
  11606. %
  11607. \racket{The type information for variables is in the \code{Program}
  11608. form, so we recommend adding another parameter to the
  11609. \code{build\_interference} function to communicate this alist.}
  11610. %
  11611. \python{The type information for variables is generated by the type
  11612. checker for \LangCVec{}, stored a field named \code{var\_types} in
  11613. the \code{CProgram} AST mode. You'll need to propagate that
  11614. information so that it is available in this pass.}
  11615. The spilling of tuple-typed variables to the root stack can be handled
  11616. after graph coloring, when choosing how to assign the colors
  11617. (integers) to registers and stack locations. The
  11618. \racket{\code{Program}}\python{\code{CProgram}} output of this pass
  11619. changes to also record the number of spills to the root stack.
  11620. % build-interference
  11621. %
  11622. % callq
  11623. % extra parameter for var->type assoc. list
  11624. % update 'program' and 'if'
  11625. % allocate-registers
  11626. % allocate spilled vectors to the rootstack
  11627. % don't change color-graph
  11628. % TODO:
  11629. %\section{Patch Instructions}
  11630. %[mention that global variables are memory references]
  11631. \section{Prelude and Conclusion}
  11632. \label{sec:print-x86-gc}
  11633. \label{sec:prelude-conclusion-x86-gc}
  11634. \index{subject}{prelude}\index{subject}{conclusion}
  11635. Figure~\ref{fig:print-x86-output-gc} shows the output of the
  11636. \code{prelude\_and\_conclusion} pass on the running example. In the
  11637. prelude and conclusion of the \code{main} function, we allocate space
  11638. on the root stack to make room for the spills of tuple-typed
  11639. variables. We do so by bumping the root stack pointer (\code{r15})
  11640. taking care that the root stack grows up instead of down. For the
  11641. running example, there was just one spill so we increment \code{r15}
  11642. by 8 bytes. In the conclusion we subtract 8 bytes from \code{r15}.
  11643. One issue that deserves special care is that there may be a call to
  11644. \code{collect} prior to the initializing assignments for all the
  11645. variables in the root stack. We do not want the garbage collector to
  11646. accidentally think that some uninitialized variable is a pointer that
  11647. needs to be followed. Thus, we zero-out all locations on the root
  11648. stack in the prelude of \code{main}. In
  11649. Figure~\ref{fig:print-x86-output-gc}, the instruction
  11650. %
  11651. \lstinline{movq $0, 0(%r15)}
  11652. %
  11653. is sufficient to accomplish this task because there is only one spill.
  11654. In general, we have to clear as many words as there are spills of
  11655. tuple-typed variables. The garbage collector tests each root to see
  11656. if it is null prior to dereferencing it.
  11657. \begin{figure}[htbp]
  11658. % TODO: Python Version -Jeremy
  11659. \begin{tcolorbox}[colback=white]
  11660. \begin{minipage}[t]{0.5\textwidth}
  11661. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  11662. .globl main
  11663. main:
  11664. pushq %rbp
  11665. movq %rsp, %rbp
  11666. subq $0, %rsp
  11667. movq $65536, %rdi
  11668. movq $65536, %rsi
  11669. callq initialize
  11670. movq rootstack_begin(%rip), %r15
  11671. movq $0, 0(%r15)
  11672. addq $8, %r15
  11673. jmp start
  11674. conclusion:
  11675. subq $8, %r15
  11676. addq $0, %rsp
  11677. popq %rbp
  11678. retq
  11679. \end{lstlisting}
  11680. \end{minipage}
  11681. \end{tcolorbox}
  11682. \caption{The prelude and conclusion generated by the \code{prelude\_and\_conclusion} pass for the running example.}
  11683. \label{fig:print-x86-output-gc}
  11684. \end{figure}
  11685. \begin{figure}[tbp]
  11686. \begin{tcolorbox}[colback=white]
  11687. \begin{tikzpicture}[baseline=(current bounding box.center)]
  11688. \node (Lvec) at (0,2) {\large \LangVec{}};
  11689. \node (Lvec-2) at (3,2) {\large \LangVec{}};
  11690. \node (Lvec-3) at (6,2) {\large \LangVec{}};
  11691. \node (Lvec-4) at (9,2) {\large \LangVec{}};
  11692. \node (Lvec-5) at (9,0) {\large \LangAlloc{}};
  11693. \node (Lvec-6) at (6,0) {\large \LangAllocANF{}};
  11694. \node (C2-4) at (3,0) {\large \LangCVec{}};
  11695. \node (x86-2) at (3,-2) {\large \LangXGlobalVar{}};
  11696. \node (x86-2-1) at (3,-4) {\large \LangXGlobalVar{}};
  11697. \node (x86-2-2) at (6,-4) {\large \LangXGlobalVar{}};
  11698. \node (x86-3) at (6,-2) {\large \LangXGlobalVar{}};
  11699. \node (x86-4) at (9,-2) {\large \LangXGlobal{}};
  11700. \node (x86-5) at (9,-4) {\large \LangXGlobal{}};
  11701. %\path[->,bend left=15] (Lvec) edge [above] node {\ttfamily\footnotesize type-check} (Lvec-2);
  11702. \path[->,bend left=15] (Lvec) edge [above] node {\ttfamily\footnotesize shrink} (Lvec-2);
  11703. \path[->,bend left=15] (Lvec-2) edge [above] node {\ttfamily\footnotesize uniquify} (Lvec-3);
  11704. \path[->,bend left=15] (Lvec-3) edge [above] node {\ttfamily\footnotesize expose\_alloc.} (Lvec-4);
  11705. \path[->,bend left=15] (Lvec-4) edge [right] node
  11706. {\ttfamily\footnotesize uncover\_get!} (Lvec-5);
  11707. \path[->,bend left=15] (Lvec-5) edge [below] node {\ttfamily\footnotesize remove\_complex.} (Lvec-6);
  11708. \path[->,bend right=10] (Lvec-6) edge [above] node {\ttfamily\footnotesize explicate\_control} (C2-4);
  11709. \path[->,bend left=15] (C2-4) edge [right] node {\ttfamily\footnotesize select\_instr.} (x86-2);
  11710. \path[->,bend right=15] (x86-2) edge [left] node {\ttfamily\footnotesize uncover\_live} (x86-2-1);
  11711. \path[->,bend right=15] (x86-2-1) edge [below] node {\ttfamily\footnotesize build\_inter.} (x86-2-2);
  11712. \path[->,bend right=15] (x86-2-2) edge [right] node {\ttfamily\footnotesize allocate\_reg.} (x86-3);
  11713. \path[->,bend left=15] (x86-3) edge [above] node {\ttfamily\footnotesize patch\_instr.} (x86-4);
  11714. \path[->,bend left=15] (x86-4) edge [right] node {\ttfamily\footnotesize prelude\_and\_concl.} (x86-5);
  11715. \end{tikzpicture}
  11716. \end{tcolorbox}
  11717. \caption{Diagram of the passes for \LangVec{}, a language with tuples.}
  11718. \label{fig:Lvec-passes}
  11719. \end{figure}
  11720. Figure~\ref{fig:Lvec-passes} gives an overview of all the passes needed
  11721. for the compilation of \LangVec{}.
  11722. \clearpage
  11723. {\if\edition\racketEd
  11724. \section{Challenge: Simple Structures}
  11725. \label{sec:simple-structures}
  11726. \index{subject}{struct}
  11727. \index{subject}{structure}
  11728. The language \LangStruct{} extends \LangVec{} with support for simple
  11729. structures. Its concrete syntax is defined in
  11730. Figure~\ref{fig:Lstruct-concrete-syntax} and the abstract syntax is in
  11731. Figure~\ref{fig:Lstruct-syntax}. Recall that a \code{struct} in Typed
  11732. Racket is a user-defined data type that contains named fields and that
  11733. is heap allocated, similar to a vector. The following is an example of
  11734. a structure definition, in this case the definition of a \code{point}
  11735. type.
  11736. \begin{lstlisting}
  11737. (struct point ([x : Integer] [y : Integer]) #:mutable)
  11738. \end{lstlisting}
  11739. \newcommand{\LstructGrammarRacket}{
  11740. \begin{array}{lcl}
  11741. \Type &::=& \Var \\
  11742. \Exp &::=& (\Var\;\Exp \ldots)\\
  11743. \Def &::=& (\key{struct}\; \Var \; ([\Var \,\key{:}\, \Type] \ldots)\; \code{\#:mutable})\\
  11744. \end{array}
  11745. }
  11746. \newcommand{\LstructASTRacket}{
  11747. \begin{array}{lcl}
  11748. \Type &::=& \VAR{\Var} \\
  11749. \Exp &::=& \APPLY{\Var}{\Exp\ldots} \\
  11750. \Def &::=& \LP\key{StructDef}\; \Var \; \LP\LS\Var \,\key{:}\, \Type\RS \ldots\RP\RP
  11751. \end{array}
  11752. }
  11753. \begin{figure}[tbp]
  11754. \centering
  11755. \begin{tcolorbox}[colback=white]
  11756. \[
  11757. \begin{array}{l}
  11758. \gray{\LintGrammarRacket{}} \\ \hline
  11759. \gray{\LvarGrammarRacket{}} \\ \hline
  11760. \gray{\LifGrammarRacket{}} \\ \hline
  11761. \gray{\LwhileGrammarRacket} \\ \hline
  11762. \gray{\LtupGrammarRacket} \\ \hline
  11763. \LstructGrammarRacket \\
  11764. \begin{array}{lcl}
  11765. \LangStruct{} &::=& \Def \ldots \; \Exp
  11766. \end{array}
  11767. \end{array}
  11768. \]
  11769. \end{tcolorbox}
  11770. \caption{The concrete syntax of \LangStruct{}, extending \LangVec{}
  11771. (Figure~\ref{fig:Lvec-concrete-syntax}).}
  11772. \label{fig:Lstruct-concrete-syntax}
  11773. \end{figure}
  11774. \begin{figure}[tbp]
  11775. \centering
  11776. \begin{tcolorbox}[colback=white]
  11777. \small
  11778. \[
  11779. \begin{array}{l}
  11780. \gray{\LintASTRacket{}} \\ \hline
  11781. \gray{\LvarASTRacket{}} \\ \hline
  11782. \gray{\LifASTRacket{}} \\ \hline
  11783. \gray{\LwhileASTRacket} \\ \hline
  11784. \gray{\LtupASTRacket} \\ \hline
  11785. \LstructASTRacket \\
  11786. \begin{array}{lcl}
  11787. \LangStruct{} &::=& \PROGRAMDEFSEXP{\code{'()}}{\LP\Def\ldots\RP)}{\Exp}
  11788. \end{array}
  11789. \end{array}
  11790. \]
  11791. \end{tcolorbox}
  11792. \caption{The abstract syntax of \LangStruct{}, extending \LangVec{}
  11793. (Figure~\ref{fig:Lvec-syntax}).}
  11794. \label{fig:Lstruct-syntax}
  11795. \end{figure}
  11796. An instance of a structure is created using function call syntax, with
  11797. the name of the structure in the function position:
  11798. \begin{lstlisting}
  11799. (point 7 12)
  11800. \end{lstlisting}
  11801. Function-call syntax is also used to read a field of a structure. The
  11802. function name is formed by the structure name, a dash, and the field
  11803. name. The following example uses \code{point-x} and \code{point-y} to
  11804. access the \code{x} and \code{y} fields of two point instances.
  11805. \begin{center}
  11806. \begin{lstlisting}
  11807. (let ([pt1 (point 7 12)])
  11808. (let ([pt2 (point 4 3)])
  11809. (+ (- (point-x pt1) (point-x pt2))
  11810. (- (point-y pt1) (point-y pt2)))))
  11811. \end{lstlisting}
  11812. \end{center}
  11813. Similarly, to write to a field of a structure, use its set function,
  11814. whose name starts with \code{set-}, followed by the structure name,
  11815. then a dash, then the field name, and concluded with an exclamation
  11816. mark. The following example uses \code{set-point-x!} to change the
  11817. \code{x} field from \code{7} to \code{42}.
  11818. \begin{center}
  11819. \begin{lstlisting}
  11820. (let ([pt (point 7 12)])
  11821. (let ([_ (set-point-x! pt 42)])
  11822. (point-x pt)))
  11823. \end{lstlisting}
  11824. \end{center}
  11825. \begin{exercise}\normalfont\normalsize
  11826. Create a type checker for \LangStruct{} by extending the type
  11827. checker for \LangVec{}. Extend your compiler with support for simple
  11828. structures, compiling \LangStruct{} to x86 assembly code. Create
  11829. five new test cases that use structures and test your compiler.
  11830. \end{exercise}
  11831. % TODO: create an interpreter for L_struct
  11832. \clearpage
  11833. \fi}
  11834. \section{Challenge: Arrays}
  11835. \label{sec:arrays}
  11836. In this chapter we have studied tuples, that is, a heterogeneous
  11837. sequences of elements whose length is determined at compile-time. This
  11838. challenge is also about sequences, but this time the length is
  11839. determined at run-time and all the elements have the same type (they
  11840. are homogeneous). We use the term ``array'' for this later kind of
  11841. sequence.
  11842. %
  11843. \racket{
  11844. The Racket language does not distinguish between tuples and arrays,
  11845. they are both represented by vectors. However, Typed Racket
  11846. distinguishes between tuples and arrays: the \code{Vector} type is for
  11847. tuples and the \code{Vectorof} type is for arrays.}
  11848. \python{
  11849. Arrays correspond to the \code{list} type in Python language.
  11850. }
  11851. Figure~\ref{fig:Lvecof-concrete-syntax} defines the concrete syntax
  11852. for \LangArray{} and Figure~\ref{fig:Lvecof-syntax} defines the
  11853. abstract syntax, extending \LangVec{} with the
  11854. \racket{\code{Vectorof}}\python{\code{list}} type and the
  11855. %
  11856. \racket{\code{make-vector} primitive operator for creating an array,
  11857. whose arguments are the length of the array and an initial value for
  11858. all the elements in the array.}
  11859. \python{bracket notation for creating an array literal.}
  11860. \racket{
  11861. The \code{vector-length},
  11862. \code{vector-ref}, and \code{vector-ref!} operators that we defined
  11863. for tuples become overloaded for use with arrays.}
  11864. \python{
  11865. The subscript operator becomes overloaded for use with arrays and tuples
  11866. and now may appear on the left-hand side of an assignment.
  11867. Note that the index of the subscript, when applied to an array, may be an
  11868. arbitrary expression and not just a constant integer.
  11869. The \code{len} function is also applicable to arrays.
  11870. }
  11871. %
  11872. We include integer multiplication in \LangArray{}, as it is
  11873. useful in many examples involving arrays such as computing the
  11874. inner product of two arrays (Figure~\ref{fig:inner_product}).
  11875. \newcommand{\LarrayGrammarRacket}{
  11876. \begin{array}{lcl}
  11877. \Type &::=& \LP \key{Vectorof}~\Type \RP \\
  11878. \Exp &::=& \CMUL{\Exp}{\Exp}
  11879. \MID \CMAKEVEC{\Exp}{\Exp}
  11880. \end{array}
  11881. }
  11882. \newcommand{\LarrayASTRacket}{
  11883. \begin{array}{lcl}
  11884. \Type &::=& \LP \key{Vectorof}~\Type \RP \\
  11885. \Exp &::=& \MUL{\Exp}{\Exp}
  11886. \MID \MAKEVEC{\Exp}{\Exp}
  11887. \end{array}
  11888. }
  11889. \newcommand{\LarrayGrammarPython}{
  11890. \begin{array}{lcl}
  11891. \Type &::=& \key{list}\LS\Type\RS \\
  11892. \Exp &::=& \CMUL{\Exp}{\Exp}
  11893. \MID \CGET{\Exp}{\Exp}
  11894. \MID \LS \Exp \code{,} \ldots \RS \\
  11895. \Stmt &::= & \CGET{\Exp}{\Exp} \mathop{\key{=}}\Exp
  11896. \end{array}
  11897. }
  11898. \newcommand{\LarrayASTPython}{
  11899. \begin{array}{lcl}
  11900. \Type &::=& \key{ListType}\LP\Type\RP \\
  11901. \Exp &::=& \MUL{\Exp}{\Exp}
  11902. \MID \GET{\Exp}{\Exp} \\
  11903. &\MID& \key{List}\LP \Exp \code{,} \ldots \code{, } \code{Load()} \RP \\
  11904. \Stmt &::= & \ASSIGN{ \PUT{\Exp}{\Exp} }{\Exp}
  11905. \end{array}
  11906. }
  11907. \begin{figure}[tp]
  11908. \centering
  11909. \begin{tcolorbox}[colback=white]
  11910. \small
  11911. {\if\edition\racketEd
  11912. \[
  11913. \begin{array}{l}
  11914. \gray{\LintGrammarRacket{}} \\ \hline
  11915. \gray{\LvarGrammarRacket{}} \\ \hline
  11916. \gray{\LifGrammarRacket{}} \\ \hline
  11917. \gray{\LwhileGrammarRacket} \\ \hline
  11918. \gray{\LtupGrammarRacket} \\ \hline
  11919. \LarrayGrammarRacket \\
  11920. \begin{array}{lcl}
  11921. \LangArray{} &::=& \Exp
  11922. \end{array}
  11923. \end{array}
  11924. \]
  11925. \fi}
  11926. {\if\edition\pythonEd
  11927. \[
  11928. \begin{array}{l}
  11929. \gray{\LintGrammarPython{}} \\ \hline
  11930. \gray{\LvarGrammarPython{}} \\ \hline
  11931. \gray{\LifGrammarPython{}} \\ \hline
  11932. \gray{\LwhileGrammarPython} \\ \hline
  11933. \gray{\LtupGrammarPython} \\ \hline
  11934. \LarrayGrammarPython \\
  11935. \begin{array}{rcl}
  11936. \LangArrayM{} &::=& \Stmt^{*}
  11937. \end{array}
  11938. \end{array}
  11939. \]
  11940. \fi}
  11941. \end{tcolorbox}
  11942. \caption{The concrete syntax of \LangArray{}, extending \LangVec{} (Figure~\ref{fig:Lvec-concrete-syntax}).}
  11943. \label{fig:Lvecof-concrete-syntax}
  11944. \end{figure}
  11945. \begin{figure}[tp]
  11946. \centering
  11947. \begin{tcolorbox}[colback=white]
  11948. \small
  11949. {\if\edition\racketEd
  11950. \[
  11951. \begin{array}{l}
  11952. \gray{\LintASTRacket{}} \\ \hline
  11953. \gray{\LvarASTRacket{}} \\ \hline
  11954. \gray{\LifASTRacket{}} \\ \hline
  11955. \gray{\LwhileASTRacket} \\ \hline
  11956. \gray{\LtupASTRacket} \\ \hline
  11957. \LarrayASTRacket \\
  11958. \begin{array}{lcl}
  11959. \LangArray{} &::=& \Exp
  11960. \end{array}
  11961. \end{array}
  11962. \]
  11963. \fi}
  11964. {\if\edition\pythonEd
  11965. \[
  11966. \begin{array}{l}
  11967. \gray{\LintASTPython{}} \\ \hline
  11968. \gray{\LvarASTPython{}} \\ \hline
  11969. \gray{\LifASTPython{}} \\ \hline
  11970. \gray{\LwhileASTPython} \\ \hline
  11971. \gray{\LtupASTPython} \\ \hline
  11972. \LarrayASTPython \\
  11973. \begin{array}{rcl}
  11974. \LangArrayM{} &::=& \Stmt^{*}
  11975. \end{array}
  11976. \end{array}
  11977. \]
  11978. \fi}
  11979. \end{tcolorbox}
  11980. \caption{The abstract syntax of \LangArray{}, extending \LangVec{} (Figure~\ref{fig:Lvec-syntax}).}
  11981. \label{fig:Lvecof-syntax}
  11982. \end{figure}
  11983. \begin{figure}[tp]
  11984. \begin{tcolorbox}[colback=white]
  11985. {\if\edition\racketEd
  11986. % TODO: remove the function from the following example, like the python version -Jeremy
  11987. \begin{lstlisting}
  11988. (let ([A (make-vector 2 2)])
  11989. (let ([B (make-vector 2 3)])
  11990. (let ([i 0])
  11991. (let ([prod 0])
  11992. (begin
  11993. (while (< i n)
  11994. (begin
  11995. (set! prod (+ prod (* (vector-ref A i)
  11996. (vector-ref B i))))
  11997. (set! i (+ i 1))))
  11998. prod)))))
  11999. \end{lstlisting}
  12000. \fi}
  12001. {\if\edition\pythonEd
  12002. \begin{lstlisting}
  12003. A = [2, 2]
  12004. B = [3, 3]
  12005. i = 0
  12006. prod = 0
  12007. while i != len(A):
  12008. prod = prod + A[i] * B[i]
  12009. i = i + 1
  12010. print( prod )
  12011. \end{lstlisting}
  12012. \fi}
  12013. \end{tcolorbox}
  12014. \caption{Example program that computes the inner product.}
  12015. \label{fig:inner_product}
  12016. \end{figure}
  12017. {\if\edition\racketEd
  12018. The type checker for \LangArray{} is defined in
  12019. Figure~\ref{fig:type-check-Lvecof}. The result type of
  12020. \code{make-vector} is \code{(Vectorof T)} where \code{T} is the type
  12021. of the initializing expression. The length expression is required to
  12022. have type \code{Integer}. The type checking of the operators
  12023. \code{vector-length}, \code{vector-ref}, and \code{vector-set!} is
  12024. updated to handle the situation where the vector has type
  12025. \code{Vectorof}. In these cases we translate the operators to their
  12026. \code{vectorof} form so that later passes can easily distinguish
  12027. between operations on tuples versus arrays. We override the
  12028. \code{operator-types} method to provide the type signature for
  12029. multiplication: it takes two integers and returns an integer.
  12030. \fi}
  12031. {\if\edition\pythonEd
  12032. %
  12033. The type checker for \LangArray{} is defined in
  12034. Figure~\ref{fig:type-check-Lvecof}. The result type of a list literal
  12035. is \code{list[T]} where \code{T} is the type of the initializing
  12036. expressions. The type checking of the \code{len} function and the
  12037. subscript operator is updated to handle lists. The type checker now
  12038. also handles a subscript on the left-hand side of an assignment.
  12039. Regarding multiplication, it takes two integers and returns an
  12040. integer.
  12041. %
  12042. \fi}
  12043. \begin{figure}[tbp]
  12044. \begin{tcolorbox}[colback=white]
  12045. {\if\edition\racketEd
  12046. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  12047. (define type-check-Lvecof-class
  12048. (class type-check-Lvec-class
  12049. (super-new)
  12050. (inherit check-type-equal?)
  12051. (define/override (operator-types)
  12052. (append '((* . ((Integer Integer) . Integer)))
  12053. (super operator-types)))
  12054. (define/override (type-check-exp env)
  12055. (lambda (e)
  12056. (define recur (type-check-exp env))
  12057. (match e
  12058. [(Prim 'make-vector (list e1 e2))
  12059. (define-values (e1^ t1) (recur e1))
  12060. (define-values (e2^ elt-type) (recur e2))
  12061. (define vec-type `(Vectorof ,elt-type))
  12062. (values (HasType (Prim 'make-vector (list e1^ e2^)) vec-type)
  12063. vec-type)]
  12064. [(Prim 'vector-ref (list e1 e2))
  12065. (define-values (e1^ t1) (recur e1))
  12066. (define-values (e2^ t2) (recur e2))
  12067. (match* (t1 t2)
  12068. [(`(Vectorof ,elt-type) 'Integer)
  12069. (values (Prim 'vectorof-ref (list e1^ e2^)) elt-type)]
  12070. [(other wise) ((super type-check-exp env) e)])]
  12071. [(Prim 'vector-set! (list e1 e2 e3) )
  12072. (define-values (e-vec t-vec) (recur e1))
  12073. (define-values (e2^ t2) (recur e2))
  12074. (define-values (e-arg^ t-arg) (recur e3))
  12075. (match t-vec
  12076. [`(Vectorof ,elt-type)
  12077. (check-type-equal? elt-type t-arg e)
  12078. (values (Prim 'vectorof-set! (list e-vec e2^ e-arg^)) 'Void)]
  12079. [else ((super type-check-exp env) e)])]
  12080. [(Prim 'vector-length (list e1))
  12081. (define-values (e1^ t1) (recur e1))
  12082. (match t1
  12083. [`(Vectorof ,t)
  12084. (values (Prim 'vectorof-length (list e1^)) 'Integer)]
  12085. [else ((super type-check-exp env) e)])]
  12086. [else ((super type-check-exp env) e)])))
  12087. ))
  12088. (define (type-check-Lvecof p)
  12089. (send (new type-check-Lvecof-class) type-check-program p))
  12090. \end{lstlisting}
  12091. \fi}
  12092. {\if\edition\pythonEd
  12093. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  12094. class TypeCheckLarray(TypeCheckLtup):
  12095. def type_check_exp(self, e, env):
  12096. match e:
  12097. case ast.List(es, Load()):
  12098. ts = [self.type_check_exp(e, env) for e in es]
  12099. elt_ty = ts[0]
  12100. for (ty, elt) in zip(ts, es):
  12101. self.check_type_equal(elt_ty, ty, elt)
  12102. e.has_type = ListType(elt_ty)
  12103. return e.has_type
  12104. case Call(Name('len'), [tup]):
  12105. tup_t = self.type_check_exp(tup, env)
  12106. tup.has_type = tup_t
  12107. match tup_t:
  12108. case TupleType(ts):
  12109. return IntType()
  12110. case ListType(ty):
  12111. return IntType()
  12112. case _:
  12113. raise Exception('len expected a tuple, not ' + repr(tup_t))
  12114. case Subscript(tup, index, Load()):
  12115. tup_ty = self.type_check_exp(tup, env)
  12116. index_ty = self.type_check_exp(index, env)
  12117. self.check_type_equal(index_ty, IntType(), index)
  12118. match tup_ty:
  12119. case TupleType(ts):
  12120. match index:
  12121. case Constant(i):
  12122. return ts[i]
  12123. case _:
  12124. raise Exception('subscript required constant integer index')
  12125. case ListType(ty):
  12126. return ty
  12127. case _:
  12128. raise Exception('subscript expected a tuple, not ' + repr(tup_ty))
  12129. case BinOp(left, Mult(), right):
  12130. l = self.type_check_exp(left, env)
  12131. self.check_type_equal(l, IntType(), left)
  12132. r = self.type_check_exp(right, env)
  12133. self.check_type_equal(r, IntType(), right)
  12134. return IntType()
  12135. case _:
  12136. return super().type_check_exp(e, env)
  12137. def type_check_stmts(self, ss, env):
  12138. if len(ss) == 0:
  12139. return VoidType()
  12140. match ss[0]:
  12141. case Assign([Subscript(tup, index, Store())], value):
  12142. tup_t = self.type_check_exp(tup, env)
  12143. value_t = self.type_check_exp(value, env)
  12144. index_ty = self.type_check_exp(index, env)
  12145. self.check_type_equal(index_ty, IntType(), index)
  12146. match tup_t:
  12147. case ListType(ty):
  12148. self.check_type_equal(ty, value_t, ss[0])
  12149. case _:
  12150. raise Exception('type_check_stmts: expected a list, not ' \
  12151. + repr(tup_t))
  12152. return self.type_check_stmts(ss[1:], env)
  12153. case _:
  12154. return super().type_check_stmts(ss, env)
  12155. \end{lstlisting}
  12156. \fi}
  12157. \end{tcolorbox}
  12158. \caption{Type checker for the \LangArray{} language.}
  12159. \label{fig:type-check-Lvecof}
  12160. \end{figure}
  12161. The interpreter for \LangArray{} is defined in
  12162. Figure~\ref{fig:interp-Lvecof}.
  12163. \racket{The \code{make-vector} operator is
  12164. implemented with Racket's \code{make-vector} function and
  12165. multiplication is \code{fx*}, multiplication for \code{fixnum}
  12166. integers.}
  12167. %
  12168. \python{We implement list creation with a Python list comprehension
  12169. and multiplication is implemented with Python multiplication. We
  12170. add a case to handle a subscript on the left-hand side of
  12171. assignment. Other uses of subscript can be handled by the existing
  12172. code for tuples.}
  12173. \begin{figure}[tbp]
  12174. \begin{tcolorbox}[colback=white]
  12175. {\if\edition\racketEd
  12176. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  12177. (define interp-Lvecof-class
  12178. (class interp-Lvec-class
  12179. (super-new)
  12180. (define/override (interp-op op)
  12181. (match op
  12182. ['make-vector make-vector]
  12183. ['* fx*]
  12184. [else (super interp-op op)]))
  12185. ))
  12186. (define (interp-Lvecof p)
  12187. (send (new interp-Lvecof-class) interp-program p))
  12188. \end{lstlisting}
  12189. \fi}
  12190. {\if\edition\pythonEd
  12191. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  12192. class InterpLarray(InterpLtup):
  12193. def interp_exp(self, e, env):
  12194. match e:
  12195. case ast.List(es, Load()):
  12196. return [self.interp_exp(e, env) for e in es]
  12197. case BinOp(left, Mult(), right):
  12198. l = self.interp_exp(left, env); r = self.interp_exp(right, env)
  12199. return l * r
  12200. case _:
  12201. return super().interp_exp(e, env)
  12202. def interp_stmts(self, ss, env):
  12203. if len(ss) == 0:
  12204. return
  12205. match ss[0]:
  12206. case Assign([Subscript(lst, index)], value):
  12207. lst = self.interp_exp(lst, env)
  12208. index = self.interp_exp(index, env)
  12209. lst[index] = self.interp_exp(value, env)
  12210. return self.interp_stmts(ss[1:], env)
  12211. case _:
  12212. return super().interp_stmts(ss, env)
  12213. \end{lstlisting}
  12214. \fi}
  12215. \end{tcolorbox}
  12216. \caption{Interpreter for \LangArray{}.}
  12217. \label{fig:interp-Lvecof}
  12218. \end{figure}
  12219. \subsection{Data Representation}
  12220. \label{sec:array-rep}
  12221. Just like tuples, we store arrays on the heap which means that the
  12222. garbage collector will need to inspect arrays. An immediate thought is
  12223. to use the same representation for arrays that we use for tuples.
  12224. However, we limit tuples to a length of $50$ so that their length and
  12225. pointer mask can fit into the 64-bit tag at the beginning of each
  12226. tuple (Section~\ref{sec:data-rep-gc}). We intend arrays to allow
  12227. millions of elements, so we need more bits to store the length.
  12228. However, because arrays are homogeneous, we only need $1$ bit for the
  12229. pointer mask instead of one bit per array elements. Finally, the
  12230. garbage collector will need to be able to distinguish between tuples
  12231. and arrays, so we need to reserve $1$ bit for that purpose. So we
  12232. arrive at the following layout for the 64-bit tag at the beginning of
  12233. an array:
  12234. \begin{itemize}
  12235. \item The right-most bit is the forwarding bit, just like in a tuple.
  12236. A $0$ indicates it is a forwarding pointer and a $1$ indicates
  12237. it is not.
  12238. \item The next bit to the left is the pointer mask. A $0$ indicates
  12239. that none of the elements are pointers to the heap and a $1$
  12240. indicates that all of the elements are pointers.
  12241. \item The next $60$ bits store the length of the array.
  12242. \item The bit at position $62$ distinguishes between a tuple ($0$)
  12243. versus an array ($1$).
  12244. \item The left-most bit is reserved for use in Chapter~\ref{ch:Lgrad}.
  12245. \end{itemize}
  12246. %% Recall that in Chapter~\ref{ch:Ldyn}, we use a $3$-bit tag to
  12247. %% differentiate the kinds of values that have been injected into the
  12248. %% \code{Any} type. We use the bit pattern \code{110} (or $6$ in decimal)
  12249. %% to indicate that the value is an array.
  12250. In the following subsections we provide hints regarding how to update
  12251. the passes to handle arrays.
  12252. \subsection{Overload Resolution}
  12253. \label{sec:array-resolution}
  12254. As noted above, with the addition of arrays, several operators have
  12255. become \emph{overloaded}, that is, they can be applied to values of
  12256. more than one type. In this case, the element access and \code{len}
  12257. operators can be applied to both tuples and arrays. This kind of
  12258. overloading is quite common in programming languages, so many
  12259. compilers perform \emph{overload resolution}\index{subject}{overload resolution}
  12260. to handle it. The idea is to translate each overloaded
  12261. operator into different operators for the different types.
  12262. Implement a new pass named \code{resolve}.
  12263. Translate the reading of an array element
  12264. into a call to
  12265. \racket{\code{vectorof-ref}}\python{\code{array\_load}}
  12266. and the writing of an array element to
  12267. \racket{\code{vectorof-set!}}\python{\code{array\_store}}
  12268. Translate calls to \racket{\code{vector-length}}\python{\code{len}}
  12269. into \racket{\code{vectorof-length}}\python{\code{array\_len}}.
  12270. When these operators are applied to tuples, leave them as-is.
  12271. %
  12272. \python{The type checker for \LangArray{} adds a \code{has\_type}
  12273. field which can be inspected to determine whether the operator
  12274. is applied to a tuple or an array.}
  12275. \subsection{Bounds Checking}
  12276. We recommend inserting a new pass named \code{check\_bounds} that
  12277. inserts code around each \racket{\code{vector-ref} and \code{vector-set!}}
  12278. \python{subscript} operation to ensure that the index is greater than or
  12279. equal to zero and less than the array's length.
  12280. %% \subsection{Reveal Casts}
  12281. %% The array-access operators \code{vectorof-ref} and
  12282. %% \code{vectorof-set!} are similar to the \code{any-vector-ref} and
  12283. %% \code{any-vector-set!} operators of Chapter~\ref{ch:Ldyn} in
  12284. %% that the type checker cannot tell whether the index will be in bounds,
  12285. %% so the bounds check must be performed at run time. Recall that the
  12286. %% \code{reveal-casts} pass (Section~\ref{sec:reveal-casts-Rany}) wraps
  12287. %% an \code{If} arround a vector reference for update to check whether
  12288. %% the index is less than the length. You should do the same for
  12289. %% \code{vectorof-ref} and \code{vectorof-set!} .
  12290. %% In addition, the handling of the \code{any-vector} operators in
  12291. %% \code{reveal-casts} needs to be updated to account for arrays that are
  12292. %% injected to \code{Any}. For the \code{any-vector-length} operator, the
  12293. %% generated code should test whether the tag is for tuples (\code{010})
  12294. %% or arrays (\code{110}) and then dispatch to either
  12295. %% \code{any-vector-length} or \code{any-vectorof-length}. For the later
  12296. %% we add a case in \code{select\_instructions} to generate the
  12297. %% appropriate instructions for accessing the array length from the
  12298. %% header of an array.
  12299. %% For the \code{any-vector-ref} and \code{any-vector-set!} operators,
  12300. %% the generated code needs to check that the index is less than the
  12301. %% vector length, so like the code for \code{any-vector-length}, check
  12302. %% the tag to determine whether to use \code{any-vector-length} or
  12303. %% \code{any-vectorof-length} for this purpose. Once the bounds checking
  12304. %% is complete, the generated code can use \code{any-vector-ref} and
  12305. %% \code{any-vector-set!} for both tuples and arrays because the
  12306. %% instructions used for those operators do not look at the tag at the
  12307. %% front of the tuple or array.
  12308. \subsection{Expose Allocation}
  12309. This pass should translate array creation into lower-level
  12310. operations. In particular, the new AST node \ALLOCARRAY{\Exp}{\Type}
  12311. is analogous to the \code{Allocate} AST node for tuples. The $\Type$
  12312. argument must be \ARRAYTY{T} where $T$ is the element type for the
  12313. array. The \code{AllocateArray} AST node allocates an array of the
  12314. length specified by the $\Exp$ but does not initialize the elements of
  12315. the array. Generate code in this pass to initialize the elements.
  12316. \subsection{Remove Complex Operands}
  12317. Add cases in the \code{rco\_atom} and \code{rco\_exp} for
  12318. \code{AllocateArray}. In particular, an \code{AllocateArray} node is
  12319. complex and its subexpression must be atomic.
  12320. \subsection{Explicate Control}
  12321. Add cases for \code{AllocateArray} to \code{explicate\_tail} and
  12322. \code{explicate\_assign}.
  12323. \subsection{Select Instructions}
  12324. Generate instructions for \code{AllocateArray} similar to those for
  12325. \code{Allocate} in Section~\ref{sec:select-instructions-gc} except
  12326. that the tag at the front of the array should instead use the
  12327. representation discussed in Section~\ref{sec:array-rep}.
  12328. Regarding \racket{\code{vectorof-length}}\python{\code{array\_len}},
  12329. extract the length from the tag according to the representation discussed in
  12330. Section~\ref{sec:array-rep}.
  12331. The instructions generated for accessing an element of an array differ
  12332. from those for a tuple (Section~\ref{sec:select-instructions-gc}) in
  12333. that the index is not a constant so the offset must be computed at
  12334. runtime.
  12335. %% Also, note that assignment to an array element may appear in
  12336. %% as a stand-alone statement, so make sure to handle that situation in
  12337. %% this pass.
  12338. %% Finally, the instructions for \code{any-vectorof-length} should be
  12339. %% similar to those for \code{vectorof-length}, except that one must
  12340. %% first project the array by writing zeroes into the $3$-bit tag
  12341. \begin{exercise}\normalfont\normalsize
  12342. Implement a compiler for the \LangArray{} language by extending your
  12343. compiler for \LangLoop{}. Test your compiler on a half dozen new
  12344. programs, including the one in Figure~\ref{fig:inner_product} and also
  12345. a program that multiplies two matrices. Note that although matrices
  12346. are 2-dimensional arrays, they can be encoded into 1-dimensional
  12347. arrays by laying out each row in the array, one after the next.
  12348. \end{exercise}
  12349. {\if\edition\racketEd
  12350. \section{Challenge: Generational Collection}
  12351. The copying collector described in Section~\ref{sec:GC} can incur
  12352. significant runtime overhead because the call to \code{collect} takes
  12353. time proportional to all of the live data. One way to reduce this
  12354. overhead is to reduce how much data is inspected in each call to
  12355. \code{collect}. In particular, researchers have observed that recently
  12356. allocated data is more likely to become garbage then data that has
  12357. survived one or more previous calls to \code{collect}. This insight
  12358. motivated the creation of \emph{generational garbage collectors}
  12359. \index{subject}{generational garbage collector} that
  12360. 1) segregates data according to its age into two or more generations,
  12361. 2) allocates less space for younger generations, so collecting them is
  12362. faster, and more space for the older generations, and 3) performs
  12363. collection on the younger generations more frequently then for older
  12364. generations~\citep{Wilson:1992fk}.
  12365. For this challenge assignment, the goal is to adapt the copying
  12366. collector implemented in \code{runtime.c} to use two generations, one
  12367. for young data and one for old data. Each generation consists of a
  12368. FromSpace and a ToSpace. The following is a sketch of how to adapt the
  12369. \code{collect} function to use the two generations.
  12370. \begin{enumerate}
  12371. \item Copy the young generation's FromSpace to its ToSpace then switch
  12372. the role of the ToSpace and FromSpace
  12373. \item If there is enough space for the requested number of bytes in
  12374. the young FromSpace, then return from \code{collect}.
  12375. \item If there is not enough space in the young FromSpace for the
  12376. requested bytes, then move the data from the young generation to the
  12377. old one with the following steps:
  12378. \begin{enumerate}
  12379. \item If there is enough room in the old FromSpace, copy the young
  12380. FromSpace to the old FromSpace and then return.
  12381. \item If there is not enough room in the old FromSpace, then collect
  12382. the old generation by copying the old FromSpace to the old ToSpace
  12383. and swap the roles of the old FromSpace and ToSpace.
  12384. \item If there is enough room now, copy the young FromSpace to the
  12385. old FromSpace and return. Otherwise, allocate a larger FromSpace
  12386. and ToSpace for the old generation. Copy the young FromSpace and
  12387. the old FromSpace into the larger FromSpace for the old
  12388. generation and then return.
  12389. \end{enumerate}
  12390. \end{enumerate}
  12391. We recommend that you generalize the \code{cheney} function so that it
  12392. can be used for all the copies mentioned above: between the young
  12393. FromSpace and ToSpace, between the old FromSpace and ToSpace, and
  12394. between the young FromSpace and old FromSpace. This can be
  12395. accomplished by adding parameters to \code{cheney} that replace its
  12396. use of the global variables \code{fromspace\_begin},
  12397. \code{fromspace\_end}, \code{tospace\_begin}, and \code{tospace\_end}.
  12398. Note that the collection of the young generation does not traverse the
  12399. old generation. This introduces a potential problem: there may be
  12400. young data that is only reachable through pointers in the old
  12401. generation. If these pointers are not taken into account, the
  12402. collector could throw away young data that is live! One solution,
  12403. called \emph{pointer recording}, is to maintain a set of all the
  12404. pointers from the old generation into the new generation and consider
  12405. this set as part of the root set. To maintain this set, the compiler
  12406. must insert extra instructions around every \code{vector-set!}. If the
  12407. vector being modified is in the old generation, and if the value being
  12408. written is a pointer into the new generation, than that pointer must
  12409. be added to the set. Also, if the value being overwritten was a
  12410. pointer into the new generation, then that pointer should be removed
  12411. from the set.
  12412. \begin{exercise}\normalfont\normalsize
  12413. Adapt the \code{collect} function in \code{runtime.c} to implement
  12414. generational garbage collection, as outlined in this section.
  12415. Update the code generation for \code{vector-set!} to implement
  12416. pointer recording. Make sure that your new compiler and runtime
  12417. passes your test suite.
  12418. \end{exercise}
  12419. \fi}
  12420. \section{Further Reading}
  12421. \citet{Appel90} describes many data representation approaches,
  12422. including the ones used in the compilation of Standard ML.
  12423. There are many alternatives to copying collectors (and their bigger
  12424. siblings, the generational collectors) when its comes to garbage
  12425. collection, such as mark-and-sweep~\citep{McCarthy:1960dz} and
  12426. reference counting~\citep{Collins:1960aa}. The strengths of copying
  12427. collectors are that allocation is fast (just a comparison and pointer
  12428. increment), there is no fragmentation, cyclic garbage is collected,
  12429. and the time complexity of collection only depends on the amount of
  12430. live data, and not on the amount of garbage~\citep{Wilson:1992fk}. The
  12431. main disadvantages of a two-space copying collector is that it uses a
  12432. lot of extra space and takes a long time to perform the copy, though
  12433. these problems are ameliorated in generational collectors.
  12434. \racket{Racket}\python{Object-oriented} programs tend to allocate many
  12435. small objects and generate a lot of garbage, so copying and
  12436. generational collectors are a good fit\python{~\citep{Dieckmann99}}.
  12437. Garbage collection is an active research topic, especially concurrent
  12438. garbage collection~\citep{Tene:2011kx}. Researchers are continuously
  12439. developing new techniques and revisiting old
  12440. trade-offs~\citep{Blackburn:2004aa,Jones:2011aa,Shahriyar:2013aa,Cutler:2015aa,Shidal:2015aa,Osterlund:2016aa,Jacek:2019aa,Gamari:2020aa}. Researchers
  12441. meet every year at the International Symposium on Memory Management to
  12442. present these findings.
  12443. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  12444. \chapter{Functions}
  12445. \label{ch:Lfun}
  12446. \index{subject}{function}
  12447. This chapter studies the compilation of a subset of \racket{Typed
  12448. Racket}\python{Python} in which only top-level function definitions
  12449. are allowed. This kind of function appears in the C programming
  12450. language and it serves as an important stepping stone to implementing
  12451. lexically-scoped functions in the form of \key{lambda} abstractions,
  12452. which is the topic of Chapter~\ref{ch:Llambda}.
  12453. \section{The \LangFun{} Language}
  12454. The concrete and abstract syntax for function definitions and function
  12455. application is shown in Figures~\ref{fig:Lfun-concrete-syntax} and
  12456. \ref{fig:Lfun-syntax}, where we define the \LangFun{} language.
  12457. Programs in \LangFun{} begin with zero or more function definitions.
  12458. The function names from these definitions are in-scope for the entire
  12459. program, including all of the function definitions (so the ordering of
  12460. function definitions does not matter).
  12461. %
  12462. \python{The abstract syntax for function parameters in
  12463. Figure~\ref{fig:Lfun-syntax} is a list of pairs, where each pair
  12464. consists of a parameter name and its type. This design differs from
  12465. Python's \code{ast} module, which has a more complex structure for
  12466. function parameters to handle keyword parameters,
  12467. defaults, and so on. The type checker in \code{type\_check\_Lfun} converts the
  12468. complex Python abstract syntax into the simpler syntax of
  12469. Figure~\ref{fig:Lfun-syntax}. The fourth and sixth parameters of the
  12470. \code{FunctionDef} constructor are for decorators and a type
  12471. comment, neither of which are used by our compiler. We recommend
  12472. replacing them with \code{None} in the \code{shrink} pass.
  12473. }
  12474. %
  12475. The concrete syntax for function application\index{subject}{function
  12476. application} is
  12477. \python{$\CAPPLY{\Exp}{\Exp\code{,} \ldots}$}
  12478. \racket{$\CAPPLY{\Exp}{\Exp \ldots}$}
  12479. where the first expression
  12480. must evaluate to a function and the remaining expressions are the arguments. The
  12481. abstract syntax for function application is
  12482. $\APPLY{\Exp}{\Exp^*}$.
  12483. %% The syntax for function application does not include an explicit
  12484. %% keyword, which is error prone when using \code{match}. To alleviate
  12485. %% this problem, we translate the syntax from $(\Exp \; \Exp \ldots)$ to
  12486. %% $(\key{app}\; \Exp \; \Exp \ldots)$ during type checking.
  12487. Functions are first-class in the sense that a function pointer
  12488. \index{subject}{function pointer} is data and can be stored in memory or passed
  12489. as a parameter to another function. Thus, there is a function
  12490. type, written
  12491. {\if\edition\racketEd
  12492. \begin{lstlisting}
  12493. (|$\Type_1$| |$\cdots$| |$\Type_n$| -> |$\Type_r$|)
  12494. \end{lstlisting}
  12495. \fi}
  12496. {\if\edition\pythonEd
  12497. \begin{lstlisting}
  12498. Callable[[|$\Type_1$|,|$\cdots$|,|$\Type_n$|], |$\Type_R$|]
  12499. \end{lstlisting}
  12500. \fi}
  12501. %
  12502. \noindent for a function whose $n$ parameters have the types $\Type_1$
  12503. through $\Type_n$ and whose return type is $\Type_R$. The main
  12504. limitation of these functions (with respect to
  12505. \racket{Racket}\python{Python} functions) is that they are not
  12506. lexically scoped. That is, the only external entities that can be
  12507. referenced from inside a function body are other globally-defined
  12508. functions. The syntax of \LangFun{} prevents function definitions from being
  12509. nested inside each other.
  12510. \newcommand{\LfunGrammarRacket}{
  12511. \begin{array}{lcl}
  12512. \Type &::=& (\Type \ldots \; \key{->}\; \Type) \\
  12513. \Exp &::=& \LP\Exp \; \Exp \ldots\RP \\
  12514. \Def &::=& \CDEF{\Var}{\LS\Var \key{:} \Type\RS \ldots}{\Type}{\Exp} \\
  12515. \end{array}
  12516. }
  12517. \newcommand{\LfunASTRacket}{
  12518. \begin{array}{lcl}
  12519. \Type &::=& (\Type \ldots \; \key{->}\; \Type) \\
  12520. \Exp &::=& \APPLY{\Exp}{\Exp\ldots}\\
  12521. \Def &::=& \FUNDEF{\Var}{\LP[\Var \code{:} \Type]\ldots\RP}{\Type}{\code{'()}}{\Exp}
  12522. \end{array}
  12523. }
  12524. \newcommand{\LfunGrammarPython}{
  12525. \begin{array}{lcl}
  12526. \Type &::=& \key{int}
  12527. \MID \key{bool}
  12528. \MID \key{tuple}\LS \Type^+ \RS
  12529. \MID \key{Callable}\LS \LS \Type \key{,} \ldots \RS \key{, } \Type \RS \\
  12530. \Exp &::=& \CAPPLY{\Exp}{\Exp\code{,} \ldots} \\
  12531. \Stmt &::=& \CRETURN{\Exp} \\
  12532. \Def &::=& \CDEF{\Var}{\Var \key{:} \Type\key{,} \ldots}{\Type}{\Stmt^{+}}
  12533. \end{array}
  12534. }
  12535. \newcommand{\LfunASTPython}{
  12536. \begin{array}{lcl}
  12537. \Type &::=& \key{IntType()} \MID \key{BoolType()} \key{VoidType()}
  12538. \MID \key{TupleType}\LS\Type^+\RS\\
  12539. &\MID& \key{FunctionType}\LP \Type^{*} \key{, } \Type \RP \\
  12540. \Exp &::=& \CALL{\Exp}{\Exp^{*}}\\
  12541. \Stmt &::=& \RETURN{\Exp} \\
  12542. \Params &::=& \LP\Var\key{,}\Type\RP^* \\
  12543. \Def &::=& \FUNDEF{\Var}{\Params}{\Type}{}{\Stmt^{+}}
  12544. \end{array}
  12545. }
  12546. \begin{figure}[tp]
  12547. \centering
  12548. \begin{tcolorbox}[colback=white]
  12549. \small
  12550. {\if\edition\racketEd
  12551. \[
  12552. \begin{array}{l}
  12553. \gray{\LintGrammarRacket{}} \\ \hline
  12554. \gray{\LvarGrammarRacket{}} \\ \hline
  12555. \gray{\LifGrammarRacket{}} \\ \hline
  12556. \gray{\LwhileGrammarRacket} \\ \hline
  12557. \gray{\LtupGrammarRacket} \\ \hline
  12558. \LfunGrammarRacket \\
  12559. \begin{array}{lcl}
  12560. \LangFunM{} &::=& \Def \ldots \; \Exp
  12561. \end{array}
  12562. \end{array}
  12563. \]
  12564. \fi}
  12565. {\if\edition\pythonEd
  12566. \[
  12567. \begin{array}{l}
  12568. \gray{\LintGrammarPython{}} \\ \hline
  12569. \gray{\LvarGrammarPython{}} \\ \hline
  12570. \gray{\LifGrammarPython{}} \\ \hline
  12571. \gray{\LwhileGrammarPython} \\ \hline
  12572. \gray{\LtupGrammarPython} \\ \hline
  12573. \LfunGrammarPython \\
  12574. \begin{array}{rcl}
  12575. \LangFunM{} &::=& \Def\ldots \Stmt\ldots
  12576. \end{array}
  12577. \end{array}
  12578. \]
  12579. \fi}
  12580. \end{tcolorbox}
  12581. \caption{The concrete syntax of \LangFun{}, extending \LangVec{} (Figure~\ref{fig:Lvec-concrete-syntax}).}
  12582. \label{fig:Lfun-concrete-syntax}
  12583. \end{figure}
  12584. \begin{figure}[tp]
  12585. \centering
  12586. \begin{tcolorbox}[colback=white]
  12587. \small
  12588. {\if\edition\racketEd
  12589. \[
  12590. \begin{array}{l}
  12591. \gray{\LintOpAST} \\ \hline
  12592. \gray{\LvarASTRacket{}} \\ \hline
  12593. \gray{\LifASTRacket{}} \\ \hline
  12594. \gray{\LwhileASTRacket{}} \\ \hline
  12595. \gray{\LtupASTRacket{}} \\ \hline
  12596. \LfunASTRacket \\
  12597. \begin{array}{lcl}
  12598. \LangFunM{} &::=& \PROGRAMDEFSEXP{\code{'()}}{\LP\Def\ldots\RP)}{\Exp}
  12599. \end{array}
  12600. \end{array}
  12601. \]
  12602. \fi}
  12603. {\if\edition\pythonEd
  12604. \[
  12605. \begin{array}{l}
  12606. \gray{\LintASTPython{}} \\ \hline
  12607. \gray{\LvarASTPython{}} \\ \hline
  12608. \gray{\LifASTPython{}} \\ \hline
  12609. \gray{\LwhileASTPython} \\ \hline
  12610. \gray{\LtupASTPython} \\ \hline
  12611. \LfunASTPython \\
  12612. \begin{array}{rcl}
  12613. \LangFunM{} &::=& \PROGRAM{}{\LS \Def \ldots \Stmt \ldots \RS}
  12614. \end{array}
  12615. \end{array}
  12616. \]
  12617. \fi}
  12618. \end{tcolorbox}
  12619. \caption{The abstract syntax of \LangFun{}, extending \LangVec{} (Figure~\ref{fig:Lvec-syntax}).}
  12620. \label{fig:Lfun-syntax}
  12621. \end{figure}
  12622. The program in Figure~\ref{fig:Lfun-function-example} is a
  12623. representative example of defining and using functions in \LangFun{}.
  12624. We define a function \code{map} that applies some other function
  12625. \code{f} to both elements of a tuple and returns a new tuple
  12626. containing the results. We also define a function \code{inc}. The
  12627. program applies \code{map} to \code{inc} and
  12628. %
  12629. \racket{\code{(vector 0 41)}}\python{\code{(0, 41)}}.
  12630. %
  12631. The result is \racket{\code{(vector 1 42)}}\python{\code{(1, 42)}},
  12632. %
  12633. from which we return \code{42}.
  12634. \begin{figure}[tbp]
  12635. \begin{tcolorbox}[colback=white]
  12636. {\if\edition\racketEd
  12637. \begin{lstlisting}
  12638. (define (map [f : (Integer -> Integer)] [v : (Vector Integer Integer)])
  12639. : (Vector Integer Integer)
  12640. (vector (f (vector-ref v 0)) (f (vector-ref v 1))))
  12641. (define (inc [x : Integer]) : Integer
  12642. (+ x 1))
  12643. (vector-ref (map inc (vector 0 41)) 1)
  12644. \end{lstlisting}
  12645. \fi}
  12646. {\if\edition\pythonEd
  12647. \begin{lstlisting}
  12648. def map(f : Callable[[int], int], v : tuple[int,int]) -> tuple[int,int]:
  12649. return f(v[0]), f(v[1])
  12650. def inc(x : int) -> int:
  12651. return x + 1
  12652. print( map(inc, (0, 41))[1] )
  12653. \end{lstlisting}
  12654. \fi}
  12655. \end{tcolorbox}
  12656. \caption{Example of using functions in \LangFun{}.}
  12657. \label{fig:Lfun-function-example}
  12658. \end{figure}
  12659. The definitional interpreter for \LangFun{} is in
  12660. Figure~\ref{fig:interp-Lfun}. The case for the
  12661. %
  12662. \racket{\code{ProgramDefsExp}}\python{\code{Module}}
  12663. %
  12664. AST is responsible for setting up the mutual recursion between the
  12665. top-level function definitions.
  12666. %
  12667. \racket{We use the classic back-patching
  12668. \index{subject}{back-patching} approach that uses mutable variables
  12669. and makes two passes over the function
  12670. definitions~\citep{Kelsey:1998di}. In the first pass we set up the
  12671. top-level environment using a mutable cons cell for each function
  12672. definition. Note that the \code{lambda} value for each function is
  12673. incomplete; it does not yet include the environment. Once the
  12674. top-level environment is constructed, we then iterate over it and
  12675. update the \code{lambda} values to use the top-level environment.}
  12676. %
  12677. \python{We create a dictionary named \code{env} and fill it in
  12678. by mapping each function name to a new \code{Function} value,
  12679. each of which stores a reference to the \code{env}.
  12680. (We define the class \code{Function} for this purpose.)}
  12681. %
  12682. To interpret a function \racket{application}\python{call}, we match
  12683. the result of the function expression to obtain a function value. We
  12684. then extend the function's environment with the mapping of parameters to
  12685. argument values. Finally, we interpret the body of the function in
  12686. this extended environment.
  12687. \begin{figure}[tp]
  12688. \begin{tcolorbox}[colback=white]
  12689. {\if\edition\racketEd
  12690. \begin{lstlisting}
  12691. (define interp-Lfun-class
  12692. (class interp-Lvec-class
  12693. (super-new)
  12694. (define/override ((interp-exp env) e)
  12695. (define recur (interp-exp env))
  12696. (match e
  12697. [(Apply fun args)
  12698. (define fun-val (recur fun))
  12699. (define arg-vals (for/list ([e args]) (recur e)))
  12700. (match fun-val
  12701. [`(function (,xs ...) ,body ,fun-env)
  12702. (define params-args (for/list ([x xs] [arg arg-vals])
  12703. (cons x (box arg))))
  12704. (define new-env (append params-args fun-env))
  12705. ((interp-exp new-env) body)]
  12706. [else (error 'interp-exp "expected function, not ~a" fun-val)])]
  12707. [else ((super interp-exp env) e)]
  12708. ))
  12709. (define/public (interp-def d)
  12710. (match d
  12711. [(Def f (list `[,xs : ,ps] ...) rt _ body)
  12712. (cons f (box `(function ,xs ,body ())))]))
  12713. (define/override (interp-program p)
  12714. (match p
  12715. [(ProgramDefsExp info ds body)
  12716. (let ([top-level (for/list ([d ds]) (interp-def d))])
  12717. (for/list ([f (in-dict-values top-level)])
  12718. (set-box! f (match (unbox f)
  12719. [`(function ,xs ,body ())
  12720. `(function ,xs ,body ,top-level)])))
  12721. ((interp-exp top-level) body))]))
  12722. ))
  12723. (define (interp-Lfun p)
  12724. (send (new interp-Lfun-class) interp-program p))
  12725. \end{lstlisting}
  12726. \fi}
  12727. {\if\edition\pythonEd
  12728. \begin{lstlisting}
  12729. class InterpLfun(InterpLtup):
  12730. def apply_fun(self, fun, args, e):
  12731. match fun:
  12732. case Function(name, xs, body, env):
  12733. new_env = env.copy().update(zip(xs, args))
  12734. return self.interp_stmts(body, new_env)
  12735. case _:
  12736. raise Exception('apply_fun: unexpected: ' + repr(fun))
  12737. def interp_exp(self, e, env):
  12738. match e:
  12739. case Call(Name('input_int'), []):
  12740. return super().interp_exp(e, env)
  12741. case Call(func, args):
  12742. f = self.interp_exp(func, env)
  12743. vs = [self.interp_exp(arg, env) for arg in args]
  12744. return self.apply_fun(f, vs, e)
  12745. case _:
  12746. return super().interp_exp(e, env)
  12747. def interp_stmts(self, ss, env):
  12748. if len(ss) == 0:
  12749. return
  12750. match ss[0]:
  12751. case Return(value):
  12752. return self.interp_exp(value, env)
  12753. case FunctionDef(name, params, bod, dl, returns, comment):
  12754. ps = [x for (x,t) in params]
  12755. env[name] = Function(name, ps, bod, env)
  12756. return self.interp_stmts(ss[1:], env)
  12757. case _:
  12758. return super().interp_stmts(ss, env)
  12759. def interp(self, p):
  12760. match p:
  12761. case Module(ss):
  12762. env = {}
  12763. self.interp_stmts(ss, env)
  12764. if 'main' in env.keys():
  12765. self.apply_fun(env['main'], [], None)
  12766. case _:
  12767. raise Exception('interp: unexpected ' + repr(p))
  12768. \end{lstlisting}
  12769. \fi}
  12770. \end{tcolorbox}
  12771. \caption{Interpreter for the \LangFun{} language.}
  12772. \label{fig:interp-Lfun}
  12773. \end{figure}
  12774. %\margincomment{TODO: explain type checker}
  12775. The type checker for \LangFun{} is in
  12776. Figure~\ref{fig:type-check-Lfun}.
  12777. %
  12778. \python{(We omit the code that parses function parameters into the
  12779. simpler abstract syntax.)}
  12780. %
  12781. Similar to the interpreter, the case for the
  12782. \racket{\code{ProgramDefsExp}}\python{\code{Module}}
  12783. %
  12784. AST is responsible for setting up the mutual recursion between the
  12785. top-level function definitions. We begin by create a mapping
  12786. \code{env} from every function name to its type. We then type check
  12787. the program using this mapping.
  12788. %
  12789. In the case for function \racket{application}\python{call}, we match
  12790. the type of the function expression to a function type and check that
  12791. the types of the argument expressions are equal to the function's
  12792. parameter types. The type of the \racket{application}\python{call} as
  12793. a whole is the return type from the function type.
  12794. \begin{figure}[tp]
  12795. \begin{tcolorbox}[colback=white]
  12796. {\if\edition\racketEd
  12797. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  12798. (define type-check-Lfun-class
  12799. (class type-check-Lvec-class
  12800. (super-new)
  12801. (inherit check-type-equal?)
  12802. (define/public (type-check-apply env e es)
  12803. (define-values (e^ ty) ((type-check-exp env) e))
  12804. (define-values (e* ty*) (for/lists (e* ty*) ([e (in-list es)])
  12805. ((type-check-exp env) e)))
  12806. (match ty
  12807. [`(,ty^* ... -> ,rt)
  12808. (for ([arg-ty ty*] [param-ty ty^*])
  12809. (check-type-equal? arg-ty param-ty (Apply e es)))
  12810. (values e^ e* rt)]))
  12811. (define/override (type-check-exp env)
  12812. (lambda (e)
  12813. (match e
  12814. [(FunRef f n)
  12815. (values (FunRef f n) (dict-ref env f))]
  12816. [(Apply e es)
  12817. (define-values (e^ es^ rt) (type-check-apply env e es))
  12818. (values (Apply e^ es^) rt)]
  12819. [(Call e es)
  12820. (define-values (e^ es^ rt) (type-check-apply env e es))
  12821. (values (Call e^ es^) rt)]
  12822. [else ((super type-check-exp env) e)])))
  12823. (define/public (type-check-def env)
  12824. (lambda (e)
  12825. (match e
  12826. [(Def f (and p:t* (list `[,xs : ,ps] ...)) rt info body)
  12827. (define new-env (append (map cons xs ps) env))
  12828. (define-values (body^ ty^) ((type-check-exp new-env) body))
  12829. (check-type-equal? ty^ rt body)
  12830. (Def f p:t* rt info body^)])))
  12831. (define/public (fun-def-type d)
  12832. (match d
  12833. [(Def f (list `[,xs : ,ps] ...) rt info body) `(,@ps -> ,rt)]))
  12834. (define/override (type-check-program e)
  12835. (match e
  12836. [(ProgramDefsExp info ds body)
  12837. (define env (for/list ([d ds])
  12838. (cons (Def-name d) (fun-def-type d))))
  12839. (define ds^ (for/list ([d ds]) ((type-check-def env) d)))
  12840. (define-values (body^ ty) ((type-check-exp env) body))
  12841. (check-type-equal? ty 'Integer body)
  12842. (ProgramDefsExp info ds^ body^)]))))
  12843. (define (type-check-Lfun p)
  12844. (send (new type-check-Lfun-class) type-check-program p))
  12845. \end{lstlisting}
  12846. \fi}
  12847. {\if\edition\pythonEd
  12848. \begin{lstlisting}
  12849. class TypeCheckLfun(TypeCheckLtup):
  12850. def type_check_exp(self, e, env):
  12851. match e:
  12852. case Call(Name('input_int'), []):
  12853. return super().type_check_exp(e, env)
  12854. case Call(func, args):
  12855. func_t = self.type_check_exp(func, env)
  12856. args_t = [self.type_check_exp(arg, env) for arg in args]
  12857. match func_t:
  12858. case FunctionType(params_t, return_t):
  12859. for (arg_t, param_t) in zip(args_t, params_t):
  12860. check_type_equal(param_t, arg_t, e)
  12861. return return_t
  12862. case _:
  12863. raise Exception('type_check_exp: in call, unexpected ' +
  12864. repr(func_t))
  12865. case _:
  12866. return super().type_check_exp(e, env)
  12867. def type_check_stmts(self, ss, env):
  12868. if len(ss) == 0:
  12869. return
  12870. match ss[0]:
  12871. case FunctionDef(name, params, body, dl, returns, comment):
  12872. new_env = env.copy().update(params)
  12873. rt = self.type_check_stmts(body, new_env)
  12874. check_type_equal(returns, rt, ss[0])
  12875. return self.type_check_stmts(ss[1:], env)
  12876. case Return(value):
  12877. return self.type_check_exp(value, env)
  12878. case _:
  12879. return super().type_check_stmts(ss, env)
  12880. def type_check(self, p):
  12881. match p:
  12882. case Module(body):
  12883. env = {}
  12884. for s in body:
  12885. match s:
  12886. case FunctionDef(name, params, bod, dl, returns, comment):
  12887. if name in env:
  12888. raise Exception('type_check: function ' +
  12889. repr(name) + ' defined twice')
  12890. params_t = [t for (x,t) in params]
  12891. env[name] = FunctionType(params_t, returns)
  12892. self.type_check_stmts(body, env)
  12893. case _:
  12894. raise Exception('type_check: unexpected ' + repr(p))
  12895. \end{lstlisting}
  12896. \fi}
  12897. \end{tcolorbox}
  12898. \caption{Type checker for the \LangFun{} language.}
  12899. \label{fig:type-check-Lfun}
  12900. \end{figure}
  12901. \clearpage
  12902. \section{Functions in x86}
  12903. \label{sec:fun-x86}
  12904. %% \margincomment{\tiny Make sure callee-saved registers are discussed
  12905. %% in enough depth, especially updating Fig 6.4 \\ --Jeremy }
  12906. %% \margincomment{\tiny Talk about the return address on the
  12907. %% stack and what callq and retq does.\\ --Jeremy }
  12908. The x86 architecture provides a few features to support the
  12909. implementation of functions. We have already seen that there are
  12910. labels in x86 so that one can refer to the location of an instruction,
  12911. as is needed for jump instructions. Labels can also be used to mark
  12912. the beginning of the instructions for a function. Going further, we
  12913. can obtain the address of a label by using the \key{leaq}
  12914. instruction. For example, the following puts the address of the
  12915. \code{inc} label into the \code{rbx} register.
  12916. \begin{lstlisting}
  12917. leaq inc(%rip), %rbx
  12918. \end{lstlisting}
  12919. Recall from Section~\ref{sec:select-instructions-gc} that
  12920. \verb!inc(%rip)! is an example of instruction-pointer relative
  12921. addressing. It computes the address of \code{inc}.
  12922. In Section~\ref{sec:x86} we used the \code{callq} instruction to jump
  12923. to functions whose locations were given by a label, such as
  12924. \code{read\_int}. To support function calls in this chapter we instead
  12925. will be jumping to functions whose location are given by an address in
  12926. a register, that is, we shall use \emph{indirect function calls}. The
  12927. x86 syntax for this is a \code{callq} instruction but with an asterisk
  12928. before the register name.\index{subject}{indirect function call}
  12929. \begin{lstlisting}
  12930. callq *%rbx
  12931. \end{lstlisting}
  12932. \subsection{Calling Conventions}
  12933. \label{sec:calling-conventions-fun}
  12934. \index{subject}{calling conventions}
  12935. The \code{callq} instruction provides partial support for implementing
  12936. functions: it pushes the return address on the stack and it jumps to
  12937. the target. However, \code{callq} does not handle
  12938. \begin{enumerate}
  12939. \item parameter passing,
  12940. \item pushing frames on the procedure call stack and popping them off,
  12941. or
  12942. \item determining how registers are shared by different functions.
  12943. \end{enumerate}
  12944. Regarding (1) parameter passing, recall that the x86-64 calling
  12945. convention for Unix-based system uses the following six registers to
  12946. pass arguments to a function, in this order.
  12947. \begin{lstlisting}
  12948. rdi rsi rdx rcx r8 r9
  12949. \end{lstlisting}
  12950. If there are more than six arguments, then the calling convention
  12951. mandates to use space on the frame of the caller for the rest of the
  12952. arguments. However, to ease the implementation of efficient tail calls
  12953. (Section~\ref{sec:tail-call}), we arrange never to need more than six
  12954. arguments.
  12955. %
  12956. The return value of the function is stored in register \code{rax}.
  12957. \index{subject}{prelude}\index{subject}{conclusion}
  12958. Regarding (2) frames \index{subject}{frame} and the procedure call
  12959. stack, \index{subject}{procedure call stack} recall from
  12960. Section~\ref{sec:x86} that the stack grows down and each function call
  12961. uses a chunk of space on the stack called a frame. The caller sets the
  12962. stack pointer, register \code{rsp}, to the last data item in its
  12963. frame. The callee must not change anything in the caller's frame, that
  12964. is, anything that is at or above the stack pointer. The callee is free
  12965. to use locations that are below the stack pointer.
  12966. Recall that we store variables of tuple type on the root stack. So
  12967. the prelude of a function needs to move the root stack pointer
  12968. \code{r15} up according to the number of variables of tuple type and
  12969. the conclusion needs to move the root stack pointer back down. Also,
  12970. the prelude must initialize to \code{0} this frame's slots in the root
  12971. stack to signal to the garbage collector that those slots do not yet
  12972. contain a valid pointer. Otherwise the garbage collector will
  12973. interpret the garbage bits in those slots as memory addresses and try
  12974. to traverse them, causing serious mayhem!
  12975. Regarding (3) the sharing of registers between different functions,
  12976. recall from Section~\ref{sec:calling-conventions} that the registers
  12977. are divided into two groups, the caller-saved registers and the
  12978. callee-saved registers. The caller should assume that all the
  12979. caller-saved registers get overwritten with arbitrary values by the
  12980. callee. For that reason we recommend in
  12981. Section~\ref{sec:calling-conventions} that variables that are live
  12982. during a function call should not be assigned to caller-saved
  12983. registers.
  12984. On the flip side, if the callee wants to use a callee-saved register,
  12985. the callee must save the contents of those registers on their stack
  12986. frame and then put them back prior to returning to the caller. For
  12987. that reason we recommend in Section~\ref{sec:calling-conventions} that if
  12988. the register allocator assigns a variable to a callee-saved register,
  12989. then the prelude of the \code{main} function must save that register
  12990. to the stack and the conclusion of \code{main} must restore it. This
  12991. recommendation now generalizes to all functions.
  12992. Recall that the base pointer, register \code{rbp}, is used as a
  12993. point-of-reference within a frame, so that each local variable can be
  12994. accessed at a fixed offset from the base pointer
  12995. (Section~\ref{sec:x86}).
  12996. %
  12997. Figure~\ref{fig:call-frames} shows the general layout of the caller
  12998. and callee frames.
  12999. \begin{figure}[tbp]
  13000. \centering
  13001. \begin{tcolorbox}[colback=white]
  13002. \begin{tabular}{r|r|l|l} \hline
  13003. Caller View & Callee View & Contents & Frame \\ \hline
  13004. 8(\key{\%rbp}) & & return address & \multirow{5}{*}{Caller}\\
  13005. 0(\key{\%rbp}) & & old \key{rbp} \\
  13006. -8(\key{\%rbp}) & & callee-saved $1$ \\
  13007. \ldots & & \ldots \\
  13008. $-8j$(\key{\%rbp}) & & callee-saved $j$ \\
  13009. $-8(j+1)$(\key{\%rbp}) & & local variable $1$ \\
  13010. \ldots & & \ldots \\
  13011. $-8(j+k)$(\key{\%rbp}) & & local variable $k$ \\
  13012. %% & & \\
  13013. %% $8n-8$\key{(\%rsp)} & $8n+8$(\key{\%rbp})& argument $n$ \\
  13014. %% & \ldots & \ldots \\
  13015. %% 0\key{(\%rsp)} & 16(\key{\%rbp}) & argument $1$ & \\
  13016. \hline
  13017. & 8(\key{\%rbp}) & return address & \multirow{5}{*}{Callee}\\
  13018. & 0(\key{\%rbp}) & old \key{rbp} \\
  13019. & -8(\key{\%rbp}) & callee-saved $1$ \\
  13020. & \ldots & \ldots \\
  13021. & $-8n$(\key{\%rbp}) & callee-saved $n$ \\
  13022. & $-8(n+1)$(\key{\%rbp}) & local variable $1$ \\
  13023. & \ldots & \ldots \\
  13024. & $-8(n+m)$(\key{\%rbp}) & local variable $m$\\ \hline
  13025. \end{tabular}
  13026. \end{tcolorbox}
  13027. \caption{Memory layout of caller and callee frames.}
  13028. \label{fig:call-frames}
  13029. \end{figure}
  13030. %% Recall from Section~\ref{sec:x86} that the stack is also used for
  13031. %% local variables and for storing the values of callee-saved registers
  13032. %% (we shall refer to all of these collectively as ``locals''), and that
  13033. %% at the beginning of a function we move the stack pointer \code{rsp}
  13034. %% down to make room for them.
  13035. %% We recommend storing the local variables
  13036. %% first and then the callee-saved registers, so that the local variables
  13037. %% can be accessed using \code{rbp} the same as before the addition of
  13038. %% functions.
  13039. %% To make additional room for passing arguments, we shall
  13040. %% move the stack pointer even further down. We count how many stack
  13041. %% arguments are needed for each function call that occurs inside the
  13042. %% body of the function and find their maximum. Adding this number to the
  13043. %% number of locals gives us how much the \code{rsp} should be moved at
  13044. %% the beginning of the function. In preparation for a function call, we
  13045. %% offset from \code{rsp} to set up the stack arguments. We put the first
  13046. %% stack argument in \code{0(\%rsp)}, the second in \code{8(\%rsp)}, and
  13047. %% so on.
  13048. %% Upon calling the function, the stack arguments are retrieved by the
  13049. %% callee using the base pointer \code{rbp}. The address \code{16(\%rbp)}
  13050. %% is the location of the first stack argument, \code{24(\%rbp)} is the
  13051. %% address of the second, and so on. Figure~\ref{fig:call-frames} shows
  13052. %% the layout of the caller and callee frames. Notice how important it is
  13053. %% that we correctly compute the maximum number of arguments needed for
  13054. %% function calls; if that number is too small then the arguments and
  13055. %% local variables will smash into each other!
  13056. \subsection{Efficient Tail Calls}
  13057. \label{sec:tail-call}
  13058. In general, the amount of stack space used by a program is determined
  13059. by the longest chain of nested function calls. That is, if function
  13060. $f_1$ calls $f_2$, $f_2$ calls $f_3$, and so on to $f_n$, then the
  13061. amount of stack space is linear in $n$. The depth $n$ can grow quite
  13062. large if functions are recursive. However, in some cases we can
  13063. arrange to use only a constant amount of space for a long chain of
  13064. nested function calls.
  13065. A \emph{tail call}\index{subject}{tail call} is a function call that
  13066. happens as the last action in a function body.
  13067. For example, in the following
  13068. program, the recursive call to \code{tail\_sum} is a tail call.
  13069. \begin{center}
  13070. {\if\edition\racketEd
  13071. \begin{lstlisting}
  13072. (define (tail_sum [n : Integer] [r : Integer]) : Integer
  13073. (if (eq? n 0)
  13074. r
  13075. (tail_sum (- n 1) (+ n r))))
  13076. (+ (tail_sum 3 0) 36)
  13077. \end{lstlisting}
  13078. \fi}
  13079. {\if\edition\pythonEd
  13080. \begin{lstlisting}
  13081. def tail_sum(n : int, r : int) -> int:
  13082. if n == 0:
  13083. return r
  13084. else:
  13085. return tail_sum(n - 1, n + r)
  13086. print( tail_sum(3, 0) + 36)
  13087. \end{lstlisting}
  13088. \fi}
  13089. \end{center}
  13090. At a tail call, the frame of the caller is no longer needed, so we can
  13091. pop the caller's frame before making the tail call. With this
  13092. approach, a recursive function that only makes tail calls ends up
  13093. using a constant amount of stack space. Functional languages like
  13094. Racket rely heavily on recursive functions, so the definition of
  13095. Racket \emph{requires} that all tail calls be optimized in this way.
  13096. \index{subject}{frame}
  13097. Some care is needed with regards to argument passing in tail calls.
  13098. As mentioned above, for arguments beyond the sixth, the convention is
  13099. to use space in the caller's frame for passing arguments. But for a
  13100. tail call we pop the caller's frame and can no longer use it. An
  13101. alternative is to use space in the callee's frame for passing
  13102. arguments. However, this option is also problematic because the caller
  13103. and callee's frames overlap in memory. As we begin to copy the
  13104. arguments from their sources in the caller's frame, the target
  13105. locations in the callee's frame might collide with the sources for
  13106. later arguments! We solve this problem by using the heap instead of
  13107. the stack for passing more than six arguments
  13108. (Section~\ref{sec:limit-functions-r4}).
  13109. As mentioned above, for a tail call we pop the caller's frame prior to
  13110. making the tail call. The instructions for popping a frame are the
  13111. instructions that we usually place in the conclusion of a
  13112. function. Thus, we also need to place such code immediately before
  13113. each tail call. These instructions include restoring the callee-saved
  13114. registers, so it is fortunate that the argument passing registers are
  13115. all caller-saved registers!
  13116. One last note regarding which instruction to use to make the tail
  13117. call. When the callee is finished, it should not return to the current
  13118. function, but it should return to the function that called the current
  13119. one. Thus, the return address that is already on the stack is the
  13120. right one and we should not use \key{callq} to make the tail call, as
  13121. that would overwrite the return address. Instead we simply use the
  13122. \key{jmp} instruction. Like the indirect function call, we write an
  13123. \emph{indirect jump}\index{subject}{indirect jump} with a register
  13124. prefixed with an asterisk. We recommend using \code{rax} to hold the
  13125. jump target because the conclusion can overwrite just about everything
  13126. else.
  13127. \begin{lstlisting}
  13128. jmp *%rax
  13129. \end{lstlisting}
  13130. \section{Shrink \LangFun{}}
  13131. \label{sec:shrink-r4}
  13132. The \code{shrink} pass performs a minor modification to ease the
  13133. later passes. This pass introduces an explicit \code{main} function
  13134. that gobbles up all the top-level statements of the module.
  13135. %
  13136. \racket{It also changes the top \code{ProgramDefsExp} form to
  13137. \code{ProgramDefs}.}
  13138. {\if\edition\racketEd
  13139. \begin{lstlisting}
  13140. (ProgramDefsExp |$\itm{info}$| (|$\Def\ldots$|) |$\Exp$|)
  13141. |$\Rightarrow$| (ProgramDefs |$\itm{info}$| (|$\Def\ldots$| |$\itm{mainDef}$|))
  13142. \end{lstlisting}
  13143. where $\itm{mainDef}$ is
  13144. \begin{lstlisting}
  13145. (Def 'main '() 'Integer '() |$\Exp'$|)
  13146. \end{lstlisting}
  13147. \fi}
  13148. {\if\edition\pythonEd
  13149. \begin{lstlisting}
  13150. Module(|$\Def\ldots\Stmt\ldots$|)
  13151. |$\Rightarrow$| Module(|$\Def\ldots\itm{mainDef}$|)
  13152. \end{lstlisting}
  13153. where $\itm{mainDef}$ is
  13154. \begin{lstlisting}
  13155. FunctionDef('main', [], int, None, |$\Stmt\ldots$|Return(Constant(0)), None)
  13156. \end{lstlisting}
  13157. \fi}
  13158. \section{Reveal Functions and the \LangFunRef{} language}
  13159. \label{sec:reveal-functions-r4}
  13160. The syntax of \LangFun{} is inconvenient for purposes of compilation
  13161. in that it conflates the use of function names and local
  13162. variables. This is a problem because we need to compile the use of a
  13163. function name differently than the use of a local variable. In
  13164. particular, we use \code{leaq} to convert the function name (a label
  13165. in x86) to an address in a register. Thus, we create a new pass that
  13166. changes function references from $\VAR{f}$ to $\FUNREF{f}{n}$ where
  13167. $n$ is the arity of the function.\python{\footnote{The arity is not
  13168. needed in this chapter but is used in Chapter~\ref{ch:Ldyn}.}}
  13169. This pass is named \code{reveal\_functions} and the output language
  13170. is \LangFunRef{}.
  13171. %is defined in Figure~\ref{fig:f1-syntax}.
  13172. %% The concrete syntax for a
  13173. %% function reference is $\CFUNREF{f}$.
  13174. %% \begin{figure}[tp]
  13175. %% \centering
  13176. %% \fbox{
  13177. %% \begin{minipage}{0.96\textwidth}
  13178. %% {\if\edition\racketEd
  13179. %% \[
  13180. %% \begin{array}{lcl}
  13181. %% \Exp &::=& \ldots \MID \FUNREF{\Var}{\Int}\\
  13182. %% \Def &::=& \gray{ \FUNDEF{\Var}{([\Var \code{:} \Type]\ldots)}{\Type}{\code{'()}}{\Exp} }\\
  13183. %% \LangFunRefM{} &::=& \PROGRAMDEFS{\code{'()}}{\LP \Def\ldots \RP}
  13184. %% \end{array}
  13185. %% \]
  13186. %% \fi}
  13187. %% {\if\edition\pythonEd
  13188. %% \[
  13189. %% \begin{array}{lcl}
  13190. %% \Exp &::=& \FUNREF{\Var}{\Int}\\
  13191. %% \LangFunRefM{} &::=& \PROGRAM{}{\LS \Def \code{,} \ldots \RS}
  13192. %% \end{array}
  13193. %% \]
  13194. %% \fi}
  13195. %% \end{minipage}
  13196. %% }
  13197. %% \caption{The abstract syntax \LangFunRef{}, an extension of \LangFun{}
  13198. %% (Figure~\ref{fig:Lfun-syntax}).}
  13199. %% \label{fig:f1-syntax}
  13200. %% \end{figure}
  13201. %% Distinguishing between calls in tail position and non-tail position
  13202. %% requires the pass to have some notion of context. We recommend using
  13203. %% two mutually recursive functions, one for processing expressions in
  13204. %% tail position and another for the rest.
  13205. \racket{Placing this pass after \code{uniquify} will make sure that
  13206. there are no local variables and functions that share the same
  13207. name.}
  13208. %
  13209. The \code{reveal\_functions} pass should come before the
  13210. \code{remove\_complex\_operands} pass because function references
  13211. should be categorized as complex expressions.
  13212. \section{Limit Functions}
  13213. \label{sec:limit-functions-r4}
  13214. Recall that we wish to limit the number of function parameters to six
  13215. so that we do not need to use the stack for argument passing, which
  13216. makes it easier to implement efficient tail calls. However, because
  13217. the input language \LangFun{} supports arbitrary numbers of function
  13218. arguments, we have some work to do!
  13219. This pass transforms functions and function calls that involve more
  13220. than six arguments to pass the first five arguments as usual, but it
  13221. packs the rest of the arguments into a tuple and passes it as the
  13222. sixth argument.
  13223. Each function definition with seven or more parameters is transformed as
  13224. follows.
  13225. {\if\edition\racketEd
  13226. \begin{lstlisting}
  13227. (Def |$f$| ([|$x_1$|:|$T_1$|] |$\ldots$| [|$x_n$|:|$T_n$|]) |$T_r$| |$\itm{info}$| |$\itm{body}$|)
  13228. |$\Rightarrow$|
  13229. (Def |$f$| ([|$x_1$|:|$T_1$|] |$\ldots$| [|$x_5$|:|$T_5$|] [tup : (Vector |$T_6 \ldots T_n$|)]) |$T_r$| |$\itm{info}$| |$\itm{body}'$|)
  13230. \end{lstlisting}
  13231. \fi}
  13232. {\if\edition\pythonEd
  13233. \begin{lstlisting}
  13234. FunctionDef(|$f$|, [(|$x_1$|,|$T_1$|),|$\ldots$|,(|$x_n$|,|$T_n$|)], |$T_r$|, None, |$\itm{body}$|, None)
  13235. |$\Rightarrow$|
  13236. FunctionDef(|$f$|, [(|$x_1$|,|$T_1$|),|$\ldots$|,(|$x_5$|,|$T_5$|),(tup,TupleType([|$T_6, \ldots, T_n$|]))],
  13237. |$T_r$|, None, |$\itm{body}'$|, None)
  13238. \end{lstlisting}
  13239. \fi}
  13240. %
  13241. \noindent where the $\itm{body}$ is transformed into $\itm{body}'$ by
  13242. replacing the occurrences of each parameter $x_i$ where $i > 5$ with
  13243. the $k$th element of the tuple, where $k = i - 6$.
  13244. %
  13245. {\if\edition\racketEd
  13246. \begin{lstlisting}
  13247. (Var |$x_i$|) |$\Rightarrow$| (Prim 'vector-ref (list tup (Int |$k$|)))
  13248. \end{lstlisting}
  13249. \fi}
  13250. {\if\edition\pythonEd
  13251. \begin{lstlisting}
  13252. Name(|$x_i$|) |$\Rightarrow$| Subscript(tup, Constant(|$k$|), Load())
  13253. \end{lstlisting}
  13254. \fi}
  13255. For function calls with too many arguments, the \code{limit\_functions}
  13256. pass transforms them in the following way.
  13257. \begin{tabular}{lll}
  13258. \begin{minipage}{0.3\textwidth}
  13259. {\if\edition\racketEd
  13260. \begin{lstlisting}
  13261. (|$e_0$| |$e_1$| |$\ldots$| |$e_n$|)
  13262. \end{lstlisting}
  13263. \fi}
  13264. {\if\edition\pythonEd
  13265. \begin{lstlisting}
  13266. Call(|$e_0$|, [|$e_1,\ldots,e_n$|])
  13267. \end{lstlisting}
  13268. \fi}
  13269. \end{minipage}
  13270. &
  13271. $\Rightarrow$
  13272. &
  13273. \begin{minipage}{0.5\textwidth}
  13274. {\if\edition\racketEd
  13275. \begin{lstlisting}
  13276. (|$e_0$| |$e_1 \ldots e_5$| (vector |$e_6 \ldots e_n$|))
  13277. \end{lstlisting}
  13278. \fi}
  13279. {\if\edition\pythonEd
  13280. \begin{lstlisting}
  13281. Call(|$e_0$|, [|$e_1,\ldots,e_5$|,Tuple([|$e_6,\ldots,e_n$|])])
  13282. \end{lstlisting}
  13283. \fi}
  13284. \end{minipage}
  13285. \end{tabular}
  13286. \section{Remove Complex Operands}
  13287. \label{sec:rco-r4}
  13288. The primary decisions to make for this pass are whether to classify
  13289. \code{FunRef} and \racket{\code{Apply}}\python{\code{Call}} as either
  13290. atomic or complex expressions. Recall that an atomic expression will
  13291. end up as an immediate argument of an x86 instruction. Function
  13292. application will be translated to a sequence of instructions, so
  13293. \racket{\code{Apply}}\python{\code{Call}} must be classified as
  13294. complex expression. On the other hand, the arguments of
  13295. \racket{\code{Apply}}\python{\code{Call}} should be atomic
  13296. expressions.
  13297. %
  13298. Regarding \code{FunRef}, as discussed above, the function label needs
  13299. to be converted to an address using the \code{leaq} instruction. Thus,
  13300. even though \code{FunRef} seems rather simple, it needs to be
  13301. classified as a complex expression so that we generate an assignment
  13302. statement with a left-hand side that can serve as the target of the
  13303. \code{leaq}.
  13304. The output of this pass, \LangFunANF{}, extends \LangAllocANF{}
  13305. (Figure~\ref{fig:Lvec-anf-syntax}) with \code{FunRef}
  13306. and \racket{\code{Apply}}\python{\code{Call}} in the grammar for expressions.
  13307. %
  13308. \python{Also, \LangFunANF{} adds \code{Return} to the grammar for statements.}
  13309. % TODO: Return?
  13310. %% Figure~\ref{fig:Lfun-anf-syntax} defines the output language
  13311. %% \LangFunANF{} of this pass.
  13312. %% \begin{figure}[tp]
  13313. %% \centering
  13314. %% \fbox{
  13315. %% \begin{minipage}{0.96\textwidth}
  13316. %% \small
  13317. %% \[
  13318. %% \begin{array}{rcl}
  13319. %% \Atm &::=& \gray{ \INT{\Int} \MID \VAR{\Var} \MID \BOOL{\itm{bool}}
  13320. %% \MID \VOID{} } \\
  13321. %% \Exp &::=& \gray{ \Atm \MID \READ{} } \\
  13322. %% &\MID& \gray{ \NEG{\Atm} \MID \ADD{\Atm}{\Atm} } \\
  13323. %% &\MID& \gray{ \LET{\Var}{\Exp}{\Exp} } \\
  13324. %% &\MID& \gray{ \UNIOP{\key{'not}}{\Atm} } \\
  13325. %% &\MID& \gray{ \BINOP{\itm{cmp}}{\Atm}{\Atm} \MID \IF{\Exp}{\Exp}{\Exp} }\\
  13326. %% &\MID& \gray{ \LP\key{Collect}~\Int\RP \MID \LP\key{Allocate}~\Int~\Type\RP
  13327. %% \MID \LP\key{GlobalValue}~\Var\RP }\\
  13328. %% &\MID& \FUNREF{\Var} \MID \APPLY{\Atm}{\Atm\ldots}\\
  13329. %% \Def &::=& \gray{ \FUNDEF{\Var}{([\Var \code{:} \Type]\ldots)}{\Type}{\code{'()}}{\Exp} }\\
  13330. %% R^{\dagger}_4 &::=& \gray{ \PROGRAMDEFS{\code{'()}}{\Def} }
  13331. %% \end{array}
  13332. %% \]
  13333. %% \end{minipage}
  13334. %% }
  13335. %% \caption{\LangFunANF{} is \LangFunRefAlloc{} in monadic normal form.}
  13336. %% \label{fig:Lfun-anf-syntax}
  13337. %% \end{figure}
  13338. \section{Explicate Control and the \LangCFun{} language}
  13339. \label{sec:explicate-control-r4}
  13340. Figure~\ref{fig:c3-syntax} defines the abstract syntax for \LangCFun{}, the
  13341. output of \code{explicate\_control}.
  13342. %
  13343. %% \racket{(The concrete syntax is given in
  13344. %% Figure~\ref{fig:c3-concrete-syntax} of the Appendix.)}
  13345. %
  13346. The auxiliary functions for assignment\racket{ and tail contexts} should
  13347. be updated with cases for
  13348. \racket{\code{Apply}}\python{\code{Call}} and \code{FunRef} and the
  13349. function for predicate context should be updated for
  13350. \racket{\code{Apply}}\python{\code{Call}} but not \code{FunRef}. (A
  13351. \code{FunRef} cannot be a Boolean.) In assignment and predicate
  13352. contexts, \code{Apply} becomes \code{Call}\racket{, whereas in tail position
  13353. \code{Apply} becomes \code{TailCall}}. We recommend defining a new
  13354. auxiliary function for processing function definitions. This code is
  13355. similar to the case for \code{Program} in \LangVec{}. The top-level
  13356. \code{explicate\_control} function that handles the \code{ProgramDefs}
  13357. form of \LangFun{} can then apply this new function to all the
  13358. function definitions.
  13359. {\if\edition\pythonEd
  13360. The translation of \code{Return} statements requires a new auxiliary
  13361. function to handle expressions in tail context, called
  13362. \code{explicate\_tail}. The function should take an expression and the
  13363. dictionary of basic blocks and produce a list of statements in the
  13364. \LangCFun{} language. The \code{explicate\_tail} function should
  13365. include cases for \code{Begin}, \code{IfExp}, \code{Let}, \code{Call},
  13366. and a default case for other kinds of expressions. The default case
  13367. should produce a \code{Return} statement. The case for \code{Call}
  13368. should change it into \code{TailCall}. The other cases should
  13369. recursively process their subexpressions and statements, choosing the
  13370. appropriate explicate functions for the various contexts.
  13371. \fi}
  13372. \newcommand{\CfunASTRacket}{
  13373. \begin{array}{lcl}
  13374. \Exp &::= & \FUNREF{\itm{label}}{\Int} \MID \CALL{\Atm}{\LP\Atm\ldots\RP} \\
  13375. \Tail &::= & \TAILCALL{\Atm}{\Atm\ldots} \\
  13376. \Def &::=& \DEF{\itm{label}}{\LP[\Var\key{:}\Type]\ldots\RP}{\Type}{\itm{info}}{\LP\LP\itm{label}\,\key{.}\,\Tail\RP\ldots\RP}
  13377. \end{array}
  13378. }
  13379. \newcommand{\CfunASTPython}{
  13380. \begin{array}{lcl}
  13381. \Exp &::= & \FUNREF{\itm{label}}{\Int} \MID \CALL{\Atm}{\Atm^{*}} \\
  13382. \Stmt &::= & \TAILCALL{\Atm}{\Atm^{*}} \\
  13383. \Params &::=& \LS\LP\Var\key{,}\Type\RP\code{,}\ldots\RS \\
  13384. \Block &::=& \itm{label}\key{:} \Stmt^{*} \\
  13385. \Blocks &::=& \LC\Block\code{,}\ldots\RC \\
  13386. \Def &::=& \DEF{\itm{label}}{\Params}{\Blocks}{\key{None}}{\Type}{\key{None}}
  13387. \end{array}
  13388. }
  13389. \begin{figure}[tp]
  13390. \begin{tcolorbox}[colback=white]
  13391. \small
  13392. {\if\edition\racketEd
  13393. \[
  13394. \begin{array}{l}
  13395. \gray{\CvarASTRacket} \\ \hline
  13396. \gray{\CifASTRacket} \\ \hline
  13397. \gray{\CloopASTRacket} \\ \hline
  13398. \gray{\CtupASTRacket} \\ \hline
  13399. \CfunASTRacket \\
  13400. \begin{array}{lcl}
  13401. \LangCFunM{} & ::= & \PROGRAMDEFS{\itm{info}}{\LP\Def\ldots\RP}
  13402. \end{array}
  13403. \end{array}
  13404. \]
  13405. \fi}
  13406. {\if\edition\pythonEd
  13407. \[
  13408. \begin{array}{l}
  13409. \gray{\CifASTPython} \\ \hline
  13410. \gray{\CtupASTPython} \\ \hline
  13411. \CfunASTPython \\
  13412. \begin{array}{lcl}
  13413. \LangCFunM{} & ::= & \CPROGRAMDEFS{\LS\Def\code{,}\ldots\RS}
  13414. \end{array}
  13415. \end{array}
  13416. \]
  13417. \fi}
  13418. \end{tcolorbox}
  13419. \caption{The abstract syntax of \LangCFun{}, extending \LangCVec{} (Figure~\ref{fig:c2-syntax}).}
  13420. \label{fig:c3-syntax}
  13421. \end{figure}
  13422. \clearpage
  13423. \section{Select Instructions and the \LangXIndCall{} Language}
  13424. \label{sec:select-r4}
  13425. \index{subject}{instruction selection}
  13426. The output of select instructions is a program in the \LangXIndCall{}
  13427. language, whose concrete syntax is defined in
  13428. Figure~\ref{fig:x86-3-concrete} and abstract syntax is defined in
  13429. Figure~\ref{fig:x86-3}. We use the \code{align} directive on the
  13430. labels of function definitions to make sure the bottom three bits are
  13431. zero, which we make use of in Chapter~\ref{ch:Ldyn}. We discuss the
  13432. new instructions as needed in this section. \index{subject}{x86}
  13433. \newcommand{\GrammarXIndCall}{
  13434. \begin{array}{lcl}
  13435. \Instr &::=& \key{callq}\;\key{*}\Arg \MID \key{tailjmp}\;\Arg
  13436. \MID \key{leaq}\;\Arg\key{,}\;\key{\%}\Reg \\
  13437. \Block &::= & \Instr^{+} \\
  13438. \Def &::= & \code{.globl}\,\code{.align 8}\,\itm{label}\; (\itm{label}\key{:}\, \Block)^{*}
  13439. \end{array}
  13440. }
  13441. \newcommand{\ASTXIndCallRacket}{
  13442. \begin{array}{lcl}
  13443. \Instr &::=& \INDCALLQ{\Arg}{\itm{int}}
  13444. \MID \TAILJMP{\Arg}{\itm{int}}\\
  13445. &\MID& \BININSTR{\code{'leaq}}{\Arg}{\REG{\Reg}}\\
  13446. \Block &::= & \BLOCK{\itm{info}}{\LP\Instr\ldots\RP}\\
  13447. \Def &::= & \DEF{\itm{label}}{\code{'()}}{\Type}{\itm{info}}{\LP\LP\itm{label}\,\key{.}\,\Block\RP\ldots\RP}
  13448. \end{array}
  13449. }
  13450. \begin{figure}[tp]
  13451. \begin{tcolorbox}[colback=white]
  13452. \small
  13453. \[
  13454. \begin{array}{l}
  13455. \gray{\GrammarXInt} \\ \hline
  13456. \gray{\GrammarXIf} \\ \hline
  13457. \gray{\GrammarXGlobal} \\ \hline
  13458. \GrammarXIndCall \\
  13459. \begin{array}{lcl}
  13460. \LangXIndCallM{} &::= & \Def^{*}
  13461. \end{array}
  13462. \end{array}
  13463. \]
  13464. \end{tcolorbox}
  13465. \caption{The concrete syntax of \LangXIndCall{} (extends \LangXGlobal{} of Figure~\ref{fig:x86-2-concrete}).}
  13466. \label{fig:x86-3-concrete}
  13467. \end{figure}
  13468. \begin{figure}[tp]
  13469. \begin{tcolorbox}[colback=white]
  13470. \small
  13471. {\if\edition\racketEd
  13472. \[\arraycolsep=3pt
  13473. \begin{array}{l}
  13474. \gray{\ASTXIntRacket} \\ \hline
  13475. \gray{\ASTXIfRacket} \\ \hline
  13476. \gray{\ASTXGlobalRacket} \\ \hline
  13477. \ASTXIndCallRacket \\
  13478. \begin{array}{lcl}
  13479. \LangXIndCallM{} &::= & \PROGRAMDEFS{\itm{info}}{\LP\Def\ldots\RP}
  13480. \end{array}
  13481. \end{array}
  13482. \]
  13483. \fi}
  13484. {\if\edition\pythonEd
  13485. \[
  13486. \begin{array}{lcl}
  13487. \Arg &::=& \gray{ \INT{\Int} \MID \REG{\Reg} \MID \DEREF{\Reg}{\Int}
  13488. \MID \BYTEREG{\Reg} } \\
  13489. &\MID& \gray{ \GLOBAL{\itm{label}} } \MID \FUNREF{\itm{label}}{\Int} \\
  13490. \Instr &::=& \ldots \MID \INDCALLQ{\Arg}{\itm{int}}
  13491. \MID \TAILJMP{\Arg}{\itm{int}}\\
  13492. &\MID& \BININSTR{\scode{leaq}}{\Arg}{\REG{\Reg}}\\
  13493. \Block &::=&\itm{label}\key{:}\,\Instr^{*} \\
  13494. \Blocks &::= & \LC\Block\code{,}\ldots\RC\\
  13495. \Def &::= & \DEF{\itm{label}}{\LS\RS}{\Blocks}{\_}{\Type}{\_} \\
  13496. \LangXIndCallM{} &::= & \XPROGRAMDEFS{\LS\Def\code{,}\ldots\RS}
  13497. \end{array}
  13498. \]
  13499. \fi}
  13500. \end{tcolorbox}
  13501. \caption{The abstract syntax of \LangXIndCall{} (extends
  13502. \LangXGlobal{} of Figure~\ref{fig:x86-2}).}
  13503. \label{fig:x86-3}
  13504. \end{figure}
  13505. An assignment of a function reference to a variable becomes a
  13506. load-effective-address instruction as follows, where $\itm{lhs}'$ is
  13507. the translation of $\itm{lhs}$ from \Atm{} in \LangCFun{} to \Arg{} in
  13508. \LangXIndCallVar{}. The \code{FunRef} becomes a \code{Global} AST
  13509. node, whose concrete syntax is instruction-pointer relative
  13510. addressing.
  13511. \begin{center}
  13512. \begin{tabular}{lcl}
  13513. \begin{minipage}{0.35\textwidth}
  13514. {\if\edition\racketEd
  13515. \begin{lstlisting}
  13516. |$\itm{lhs}$| = (fun-ref |$f$| |$n$|);
  13517. \end{lstlisting}
  13518. \fi}
  13519. {\if\edition\pythonEd
  13520. \begin{lstlisting}
  13521. |$\itm{lhs}$| = FunRef(|$f$| |$n$|);
  13522. \end{lstlisting}
  13523. \fi}
  13524. \end{minipage}
  13525. &
  13526. $\Rightarrow$\qquad\qquad
  13527. &
  13528. \begin{minipage}{0.3\textwidth}
  13529. \begin{lstlisting}
  13530. leaq |$f$|(%rip), |$\itm{lhs}'$|
  13531. \end{lstlisting}
  13532. \end{minipage}
  13533. \end{tabular}
  13534. \end{center}
  13535. Regarding function definitions, we need to remove the parameters and
  13536. instead perform parameter passing using the conventions discussed in
  13537. Section~\ref{sec:fun-x86}. That is, the arguments are passed in
  13538. registers. We recommend turning the parameters into local variables
  13539. and generating instructions at the beginning of the function to move
  13540. from the argument passing registers
  13541. (Section~\ref{sec:calling-conventions-fun}) to these local variables.
  13542. {\if\edition\racketEd
  13543. \begin{lstlisting}
  13544. (Def |$f$| '([|$x_1$| : |$T_1$|] [|$x_2$| : |$T_2$|] |$\ldots$| ) |$T_r$| |$\itm{info}$| |$B$|)
  13545. |$\Rightarrow$|
  13546. (Def |$f$| '() 'Integer |$\itm{info}'$| |$B'$|)
  13547. \end{lstlisting}
  13548. \fi}
  13549. {\if\edition\pythonEd
  13550. \begin{lstlisting}
  13551. FunctionDef(|$f$|, [|$(x_1,T_1),\ldots$|], |$B$|, _, |$T_r$|, _)
  13552. |$\Rightarrow$|
  13553. FunctionDef(|$f$|, [], |$B'$|, _, int, _)
  13554. \end{lstlisting}
  13555. \fi}
  13556. The basic blocks $B'$ are the same as $B$ except that the
  13557. \code{start} block is modified to add the instructions for moving from
  13558. the argument registers to the parameter variables. So the \code{start}
  13559. block of $B$ shown on the left is changed to the code on the right.
  13560. \begin{center}
  13561. \begin{minipage}{0.3\textwidth}
  13562. \begin{lstlisting}
  13563. start:
  13564. |$\itm{instr}_1$|
  13565. |$\cdots$|
  13566. |$\itm{instr}_n$|
  13567. \end{lstlisting}
  13568. \end{minipage}
  13569. $\Rightarrow$
  13570. \begin{minipage}{0.3\textwidth}
  13571. \begin{lstlisting}
  13572. start:
  13573. movq %rdi, |$x_1$|
  13574. movq %rsi, |$x_2$|
  13575. |$\cdots$|
  13576. |$\itm{instr}_1$|
  13577. |$\cdots$|
  13578. |$\itm{instr}_n$|
  13579. \end{lstlisting}
  13580. \end{minipage}
  13581. \end{center}
  13582. \racket{The interpreter for \LangXIndCall{} needs to know how many
  13583. parameters the function expects, but the parameters are no longer in
  13584. the syntax of function definitions. Instead, add an entry to
  13585. $\itm{info}$ that maps \code{num-params} to the number of parameters
  13586. to construct $\itm{info}'$.}
  13587. By changing the parameters to local variables, we are giving the
  13588. register allocator control over which registers or stack locations to
  13589. use for them. If you implemented the move-biasing challenge
  13590. (Section~\ref{sec:move-biasing}), the register allocator will try to
  13591. assign the parameter variables to the corresponding argument register,
  13592. in which case the \code{patch\_instructions} pass will remove the
  13593. \code{movq} instruction. This happens in the example translation in
  13594. Figure~\ref{fig:add-fun} of Section~\ref{sec:functions-example}, in
  13595. the \code{add} function.
  13596. %
  13597. Also, note that the register allocator will perform liveness analysis
  13598. on this sequence of move instructions and build the interference
  13599. graph. So, for example, $x_1$ will be marked as interfering with
  13600. \code{rsi} and that will prevent the assignment of $x_1$ to
  13601. \code{rsi}, which is good, because that would overwrite the argument
  13602. that needs to move into $x_2$.
  13603. Next, consider the compilation of function calls. In the mirror image
  13604. of the handling of parameters in function definitions, the arguments
  13605. are moved to the argument passing registers. Note that the function
  13606. is not given as a label, but its address is produced by the argument
  13607. $\itm{arg}_0$. So we translate the call into an indirect function
  13608. call. The return value from the function is stored in \code{rax}, so
  13609. it needs to be moved into the \itm{lhs}.
  13610. \begin{lstlisting}
  13611. |\itm{lhs}| = |$\CALL{\itm{arg}_0}{\itm{arg}_1~\itm{arg}_2 \ldots}$|
  13612. |$\Rightarrow$|
  13613. movq |$\itm{arg}_1$|, %rdi
  13614. movq |$\itm{arg}_2$|, %rsi
  13615. |$\vdots$|
  13616. callq *|$\itm{arg}_0$|
  13617. movq %rax, |$\itm{lhs}$|
  13618. \end{lstlisting}
  13619. The \code{IndirectCallq} AST node includes an integer for the arity of
  13620. the function, i.e., the number of parameters. That information is
  13621. useful in the \code{uncover\_live} pass for determining which
  13622. argument-passing registers are potentially read during the call.
  13623. For tail calls, the parameter passing is the same as non-tail calls:
  13624. generate instructions to move the arguments into the argument
  13625. passing registers. After that we need to pop the frame from the
  13626. procedure call stack. However, we do not yet know how big the frame
  13627. is; that gets determined during register allocation. So instead of
  13628. generating those instructions here, we invent a new instruction that
  13629. means ``pop the frame and then do an indirect jump'', which we name
  13630. \code{TailJmp}. The abstract syntax for this instruction includes an
  13631. argument that specifies where to jump and an integer that represents
  13632. the arity of the function being called.
  13633. Recall that we use the label \code{start} for the initial block of a
  13634. program, and in Section~\ref{sec:select-Lvar} we recommend labeling
  13635. the conclusion of the program with \code{conclusion}, so that
  13636. $\RETURN{Arg}$ can be compiled to an assignment to \code{rax} followed
  13637. by a jump to \code{conclusion}. With the addition of function
  13638. definitions, there is a start block and conclusion for each function,
  13639. but their labels need to be unique. We recommend prepending the
  13640. function's name to \code{start} and \code{conclusion}, respectively,
  13641. to obtain unique labels.
  13642. \section{Register Allocation}
  13643. \label{sec:register-allocation-r4}
  13644. The addition of functions requires some changes to all three aspects
  13645. of register allocation, which we discuss in the following subsections.
  13646. \subsection{Liveness Analysis}
  13647. \label{sec:liveness-analysis-r4}
  13648. \index{subject}{liveness analysis}
  13649. %% The rest of the passes need only minor modifications to handle the new
  13650. %% kinds of AST nodes: \code{fun-ref}, \code{indirect-callq}, and
  13651. %% \code{leaq}.
  13652. The \code{IndirectCallq} instruction should be treated like
  13653. \code{Callq} regarding its written locations $W$, in that they should
  13654. include all the caller-saved registers. Recall that the reason for
  13655. that is to force variables that are live across a function call to be assigned to callee-saved
  13656. registers or to be spilled to the stack.
  13657. Regarding the set of read locations $R$, the arity field of
  13658. \code{TailJmp} and \code{IndirectCallq} determines how many of the
  13659. argument-passing registers should be considered as read by those
  13660. instructions. Also, the target field of \code{TailJmp} and
  13661. \code{IndirectCallq} should be included in the set of read locations
  13662. $R$.
  13663. \subsection{Build Interference Graph}
  13664. \label{sec:build-interference-r4}
  13665. With the addition of function definitions, we compute a separate interference
  13666. graph for each function (not just one for the whole program).
  13667. Recall that in Section~\ref{sec:reg-alloc-gc} we discussed the need to
  13668. spill tuple-typed variables that are live during a call to
  13669. \code{collect}, the garbage collector. With the addition of functions
  13670. to our language, we need to revisit this issue. Functions that perform
  13671. allocation contain calls to the collector. Thus, we should not only
  13672. spill a tuple-typed variable when it is live during a call to
  13673. \code{collect}, but we should spill the variable if it is live during
  13674. call to any user-defined function. Thus, in the
  13675. \code{build\_interference} pass, we recommend adding interference
  13676. edges between call-live tuple-typed variables and the callee-saved
  13677. registers (in addition to the usual addition of edges between
  13678. call-live variables and the caller-saved registers).
  13679. \subsection{Allocate Registers}
  13680. The primary change to the \code{allocate\_registers} pass is adding an
  13681. auxiliary function for handling definitions (the \Def{} non-terminal
  13682. in Figure~\ref{fig:x86-3}) with one case for function definitions. The
  13683. logic is the same as described in
  13684. Chapter~\ref{ch:register-allocation-Lvar}, except now register
  13685. allocation is performed many times, once for each function definition,
  13686. instead of just once for the whole program.
  13687. \section{Patch Instructions}
  13688. In \code{patch\_instructions}, you should deal with the x86
  13689. idiosyncrasy that the destination argument of \code{leaq} must be a
  13690. register. Additionally, you should ensure that the argument of
  13691. \code{TailJmp} is \itm{rax}, our reserved register---because we
  13692. trample many other registers before the tail call (as explained in the
  13693. next section).
  13694. \section{Prelude and Conclusion}
  13695. Now that register allocation is complete, we can translate the
  13696. \code{TailJmp} into a sequence of instructions. A naive translation of
  13697. \code{TailJmp} would simply be \code{jmp *$\itm{arg}$}. However,
  13698. before the jump we need to pop the current frame to achieve efficient
  13699. tail calls. This sequence of instructions is the same as the code for
  13700. the conclusion of a function, except the \code{retq} is replaced with
  13701. \code{jmp *$\itm{arg}$}.
  13702. Regarding function definitions, we generate a prelude and conclusion
  13703. for each one. This code is similar to the prelude and conclusion
  13704. generated for the \code{main} function in Chapter~\ref{ch:Lvec}. To
  13705. review, the prelude of every function should carry out the following
  13706. steps.
  13707. % TODO: .align the functions!
  13708. \begin{enumerate}
  13709. %% \item Start with \code{.global} and \code{.align} directives followed
  13710. %% by the label for the function. (See Figure~\ref{fig:add-fun} for an
  13711. %% example.)
  13712. \item Push \code{rbp} to the stack and set \code{rbp} to current stack
  13713. pointer.
  13714. \item Push to the stack all of the callee-saved registers that were
  13715. used for register allocation.
  13716. \item Move the stack pointer \code{rsp} down to make room for the
  13717. regular spills. (Aligned to 16 bytes.)
  13718. \item Move the root stack pointer \code{r15} up by the size of the
  13719. root-stack frame for this function, which depends on the number of
  13720. spilled tuple-typed variables. \label{root-stack-init}
  13721. \item Initialize to zero all new entries in the root-stack frame.
  13722. \item Jump to the start block.
  13723. \end{enumerate}
  13724. The prelude of the \code{main} function has an additional task: call
  13725. the \code{initialize} function to set up the garbage collector and
  13726. then move the value of the global \code{rootstack\_begin} in
  13727. \code{r15}. This initialization should happen before step \ref{root-stack-init}
  13728. above, which depends on \code{r15}.
  13729. The conclusion of every function should do the following.
  13730. \begin{enumerate}
  13731. \item Move the stack pointer back up past the regular spills.
  13732. \item Restore the callee-saved registers by popping them from the
  13733. stack.
  13734. \item Move the root stack pointer back down by the size of the
  13735. root-stack frame for this function.
  13736. \item Restore \code{rbp} by popping it from the stack.
  13737. \item Return to the caller with the \code{retq} instruction.
  13738. \end{enumerate}
  13739. \begin{exercise}\normalfont\normalsize
  13740. Expand your compiler to handle \LangFun{} as outlined in this chapter.
  13741. Create 8 new programs that use functions, including examples that pass
  13742. functions and return functions from other functions, recursive
  13743. functions, functions that create vectors, and functions that make tail
  13744. calls. Test your compiler on these new programs and all of your
  13745. previously created test programs.
  13746. \end{exercise}
  13747. \begin{figure}[tbp]
  13748. \begin{tcolorbox}[colback=white]
  13749. \begin{tikzpicture}[baseline=(current bounding box.center)]
  13750. \node (Lfun) at (0,2) {\large \LangFun{}};
  13751. \node (Lfun-1) at (3,2) {\large \LangFun{}};
  13752. \node (Lfun-2) at (6,2) {\large \LangFun{}};
  13753. \node (F1-1) at (9,2) {\large \LangFunRef{}};
  13754. \node (F1-2) at (9,0) {\large \LangFunRef{}};
  13755. \node (F1-3) at (6,0) {\large \LangFunRefAlloc{}};
  13756. \node (F1-4) at (3,0) {\large \LangFunRefAlloc{}};
  13757. \node (F1-5) at (0,0) {\large \LangFunANF{}};
  13758. \node (C3-2) at (3,-2) {\large \LangCFun{}};
  13759. \node (x86-2) at (3,-4) {\large \LangXIndCallVar{}};
  13760. \node (x86-3) at (6,-4) {\large \LangXIndCallVar{}};
  13761. \node (x86-4) at (9,-4) {\large \LangXIndCall{}};
  13762. \node (x86-5) at (9,-6) {\large \LangXIndCall{}};
  13763. \node (x86-2-1) at (3,-6) {\large \LangXIndCallVar{}};
  13764. \node (x86-2-2) at (6,-6) {\large \LangXIndCallVar{}};
  13765. \path[->,bend left=15] (Lfun) edge [above] node
  13766. {\ttfamily\footnotesize shrink} (Lfun-1);
  13767. \path[->,bend left=15] (Lfun-1) edge [above] node
  13768. {\ttfamily\footnotesize uniquify} (Lfun-2);
  13769. \path[->,bend left=15] (Lfun-2) edge [above] node
  13770. {\ttfamily\footnotesize ~~reveal\_functions} (F1-1);
  13771. \path[->,bend left=15] (F1-1) edge [left] node
  13772. {\ttfamily\footnotesize limit\_functions} (F1-2);
  13773. \path[->,bend left=15] (F1-2) edge [below] node
  13774. {\ttfamily\footnotesize expose\_alloc.} (F1-3);
  13775. \path[->,bend left=15] (F1-3) edge [below] node
  13776. {\ttfamily\footnotesize uncover\_get!} (F1-4);
  13777. \path[->,bend right=15] (F1-4) edge [above] node
  13778. {\ttfamily\footnotesize remove\_complex.} (F1-5);
  13779. \path[->,bend right=15] (F1-5) edge [left] node
  13780. {\ttfamily\footnotesize explicate\_control} (C3-2);
  13781. \path[->,bend right=15] (C3-2) edge [left] node
  13782. {\ttfamily\footnotesize select\_instr.} (x86-2);
  13783. \path[->,bend left=15] (x86-2) edge [left] node
  13784. {\ttfamily\footnotesize uncover\_live} (x86-2-1);
  13785. \path[->,bend right=15] (x86-2-1) edge [below] node
  13786. {\ttfamily\footnotesize build\_inter.} (x86-2-2);
  13787. \path[->,bend right=15] (x86-2-2) edge [left] node
  13788. {\ttfamily\footnotesize allocate\_reg.} (x86-3);
  13789. \path[->,bend left=15] (x86-3) edge [above] node
  13790. {\ttfamily\footnotesize patch\_instr.} (x86-4);
  13791. \path[->,bend right=15] (x86-4) edge [left] node {\ttfamily\footnotesize prelude.} (x86-5);
  13792. \end{tikzpicture}
  13793. \end{tcolorbox}
  13794. \caption{Diagram of the passes for \LangFun{}, a language with functions.}
  13795. \label{fig:Lfun-passes}
  13796. \end{figure}
  13797. Figure~\ref{fig:Lfun-passes} gives an overview of the passes for
  13798. compiling \LangFun{} to x86.
  13799. \section{An Example Translation}
  13800. \label{sec:functions-example}
  13801. Figure~\ref{fig:add-fun} shows an example translation of a simple
  13802. function in \LangFun{} to x86. The figure also includes the results of the
  13803. \code{explicate\_control} and \code{select\_instructions} passes.
  13804. \begin{figure}[htbp]
  13805. \begin{tcolorbox}[colback=white]
  13806. \begin{tabular}{ll}
  13807. \begin{minipage}{0.4\textwidth}
  13808. % s3_2.rkt
  13809. {\if\edition\racketEd
  13810. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  13811. (define (add [x : Integer]
  13812. [y : Integer])
  13813. : Integer
  13814. (+ x y))
  13815. (add 40 2)
  13816. \end{lstlisting}
  13817. \fi}
  13818. {\if\edition\pythonEd
  13819. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  13820. def add(x:int, y:int) -> int:
  13821. return x + y
  13822. print(add(40, 2))
  13823. \end{lstlisting}
  13824. \fi}
  13825. $\Downarrow$
  13826. {\if\edition\racketEd
  13827. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  13828. (define (add86 [x87 : Integer]
  13829. [y88 : Integer])
  13830. : Integer
  13831. add86start:
  13832. return (+ x87 y88);
  13833. )
  13834. (define (main) : Integer ()
  13835. mainstart:
  13836. tmp89 = (fun-ref add86 2);
  13837. (tail-call tmp89 40 2)
  13838. )
  13839. \end{lstlisting}
  13840. \fi}
  13841. {\if\edition\pythonEd
  13842. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  13843. def add(x:int, y:int) -> int:
  13844. addstart:
  13845. return x + y
  13846. def main() -> int:
  13847. mainstart:
  13848. fun.0 = add
  13849. tmp.1 = fun.0(40, 2)
  13850. print(tmp.1)
  13851. return 0
  13852. \end{lstlisting}
  13853. \fi}
  13854. \end{minipage}
  13855. &
  13856. $\Rightarrow$
  13857. \begin{minipage}{0.5\textwidth}
  13858. {\if\edition\racketEd
  13859. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  13860. (define (add86) : Integer
  13861. add86start:
  13862. movq %rdi, x87
  13863. movq %rsi, y88
  13864. movq x87, %rax
  13865. addq y88, %rax
  13866. jmp inc1389conclusion
  13867. )
  13868. (define (main) : Integer
  13869. mainstart:
  13870. leaq (fun-ref add86 2), tmp89
  13871. movq $40, %rdi
  13872. movq $2, %rsi
  13873. tail-jmp tmp89
  13874. )
  13875. \end{lstlisting}
  13876. \fi}
  13877. {\if\edition\pythonEd
  13878. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  13879. def add() -> int:
  13880. addstart:
  13881. movq %rdi, x
  13882. movq %rsi, y
  13883. movq x, %rax
  13884. addq y, %rax
  13885. jmp addconclusion
  13886. def main() -> int:
  13887. mainstart:
  13888. leaq add, fun.0
  13889. movq $40, %rdi
  13890. movq $2, %rsi
  13891. callq *fun.0
  13892. movq %rax, tmp.1
  13893. movq tmp.1, %rdi
  13894. callq print_int
  13895. movq $0, %rax
  13896. jmp mainconclusion
  13897. \end{lstlisting}
  13898. \fi}
  13899. $\Downarrow$
  13900. \end{minipage}
  13901. \end{tabular}
  13902. \begin{tabular}{ll}
  13903. \begin{minipage}{0.3\textwidth}
  13904. {\if\edition\racketEd
  13905. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  13906. .globl add86
  13907. .align 8
  13908. add86:
  13909. pushq %rbp
  13910. movq %rsp, %rbp
  13911. jmp add86start
  13912. add86start:
  13913. movq %rdi, %rax
  13914. addq %rsi, %rax
  13915. jmp add86conclusion
  13916. add86conclusion:
  13917. popq %rbp
  13918. retq
  13919. \end{lstlisting}
  13920. \fi}
  13921. {\if\edition\pythonEd
  13922. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  13923. .align 8
  13924. add:
  13925. pushq %rbp
  13926. movq %rsp, %rbp
  13927. subq $0, %rsp
  13928. jmp addstart
  13929. addstart:
  13930. movq %rdi, %rdx
  13931. movq %rsi, %rcx
  13932. movq %rdx, %rax
  13933. addq %rcx, %rax
  13934. jmp addconclusion
  13935. addconclusion:
  13936. subq $0, %r15
  13937. addq $0, %rsp
  13938. popq %rbp
  13939. retq
  13940. \end{lstlisting}
  13941. \fi}
  13942. \end{minipage}
  13943. &
  13944. \begin{minipage}{0.5\textwidth}
  13945. {\if\edition\racketEd
  13946. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  13947. .globl main
  13948. .align 8
  13949. main:
  13950. pushq %rbp
  13951. movq %rsp, %rbp
  13952. movq $16384, %rdi
  13953. movq $16384, %rsi
  13954. callq initialize
  13955. movq rootstack_begin(%rip), %r15
  13956. jmp mainstart
  13957. mainstart:
  13958. leaq add86(%rip), %rcx
  13959. movq $40, %rdi
  13960. movq $2, %rsi
  13961. movq %rcx, %rax
  13962. popq %rbp
  13963. jmp *%rax
  13964. mainconclusion:
  13965. popq %rbp
  13966. retq
  13967. \end{lstlisting}
  13968. \fi}
  13969. {\if\edition\pythonEd
  13970. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  13971. .globl main
  13972. .align 8
  13973. main:
  13974. pushq %rbp
  13975. movq %rsp, %rbp
  13976. subq $0, %rsp
  13977. movq $65536, %rdi
  13978. movq $65536, %rsi
  13979. callq initialize
  13980. movq rootstack_begin(%rip), %r15
  13981. jmp mainstart
  13982. mainstart:
  13983. leaq add(%rip), %rcx
  13984. movq $40, %rdi
  13985. movq $2, %rsi
  13986. callq *%rcx
  13987. movq %rax, %rcx
  13988. movq %rcx, %rdi
  13989. callq print_int
  13990. movq $0, %rax
  13991. jmp mainconclusion
  13992. mainconclusion:
  13993. subq $0, %r15
  13994. addq $0, %rsp
  13995. popq %rbp
  13996. retq
  13997. \end{lstlisting}
  13998. \fi}
  13999. \end{minipage}
  14000. \end{tabular}
  14001. \end{tcolorbox}
  14002. \caption{Example compilation of a simple function to x86.}
  14003. \label{fig:add-fun}
  14004. \end{figure}
  14005. % Challenge idea: inlining! (simple version)
  14006. % Further Reading
  14007. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  14008. \chapter{Lexically Scoped Functions}
  14009. \label{ch:Llambda}
  14010. \index{subject}{lambda}
  14011. \index{subject}{lexical scoping}
  14012. This chapter studies lexically scoped functions. Lexical scoping means
  14013. that a function's body may refer to variables whose binding site is
  14014. outside of the function, in an enclosing scope.
  14015. %
  14016. Consider the example in Figure~\ref{fig:lexical-scoping} written in
  14017. \LangLam{}, which extends \LangFun{} with the \key{lambda} form for
  14018. creating lexically scoped functions. The body of the \key{lambda}
  14019. refers to three variables: \code{x}, \code{y}, and \code{z}. The
  14020. binding sites for \code{x} and \code{y} are outside of the
  14021. \key{lambda}. Variable \code{y} is \racket{bound by the enclosing
  14022. \key{let}}\python{a local variable of function \code{f}} and
  14023. \code{x} is a parameter of function \code{f}. Note that function
  14024. \code{f} returns the \key{lambda} as its result value. The main
  14025. expression of the program includes two calls to \code{f} with
  14026. different arguments for \code{x}, first \code{5} then \code{3}. The
  14027. functions returned from \code{f} are bound to variables \code{g} and
  14028. \code{h}. Even though these two functions were created by the same
  14029. \code{lambda}, they are really different functions because they use
  14030. different values for \code{x}. Applying \code{g} to \code{11} produces
  14031. \code{20} whereas applying \code{h} to \code{15} produces \code{22},
  14032. so the result of the program is \code{42}.
  14033. \begin{figure}[btp]
  14034. \begin{tcolorbox}[colback=white]
  14035. {\if\edition\racketEd
  14036. % lambda_test_21.rkt
  14037. \begin{lstlisting}
  14038. (define (f [x : Integer]) : (Integer -> Integer)
  14039. (let ([y 4])
  14040. (lambda: ([z : Integer]) : Integer
  14041. (+ x (+ y z)))))
  14042. (let ([g (f 5)])
  14043. (let ([h (f 3)])
  14044. (+ (g 11) (h 15))))
  14045. \end{lstlisting}
  14046. \fi}
  14047. {\if\edition\pythonEd
  14048. \begin{lstlisting}
  14049. def f(x : int) -> Callable[[int], int]:
  14050. y = 4
  14051. return lambda z: x + y + z
  14052. g = f(5)
  14053. h = f(3)
  14054. print( g(11) + h(15) )
  14055. \end{lstlisting}
  14056. \fi}
  14057. \end{tcolorbox}
  14058. \caption{Example of a lexically scoped function.}
  14059. \label{fig:lexical-scoping}
  14060. \end{figure}
  14061. The approach that we take for implementing lexically scoped functions
  14062. is to compile them into top-level function definitions, translating
  14063. from \LangLam{} into \LangFun{}. However, the compiler must give
  14064. special treatment to variable occurrences such as \code{x} and
  14065. \code{y} in the body of the \code{lambda} of
  14066. Figure~\ref{fig:lexical-scoping}. After all, an \LangFun{} function
  14067. may not refer to variables defined outside of it. To identify such
  14068. variable occurrences, we review the standard notion of free variable.
  14069. \begin{definition}
  14070. A variable is \textbf{free in expression} $e$ if the variable occurs
  14071. inside $e$ but does not have an enclosing definition that is also in
  14072. $e$.\index{subject}{free variable}
  14073. \end{definition}
  14074. For example, in the expression
  14075. \racket{\code{(+ x (+ y z))}}\python{\code{x + y + z}}
  14076. the variables \code{x}, \code{y}, and \code{z} are all free. On the other hand,
  14077. only \code{x} and \code{y} are free in the following expression
  14078. because \code{z} is defined by the \code{lambda}.
  14079. {\if\edition\racketEd
  14080. \begin{lstlisting}
  14081. (lambda: ([z : Integer]) : Integer
  14082. (+ x (+ y z)))
  14083. \end{lstlisting}
  14084. \fi}
  14085. {\if\edition\pythonEd
  14086. \begin{lstlisting}
  14087. lambda z: x + y + z
  14088. \end{lstlisting}
  14089. \fi}
  14090. %
  14091. So the free variables of a \code{lambda} are the ones that need
  14092. special treatment. We need to transport, at runtime, the values of
  14093. those variables from the point where the \code{lambda} was created to
  14094. the point where the \code{lambda} is applied. An efficient solution to
  14095. the problem, due to \citet{Cardelli:1983aa}, is to bundle the values
  14096. of the free variables together with a function pointer into a tuple,
  14097. an arrangement called a \emph{flat closure} (which we shorten to just
  14098. ``closure'').\index{subject}{closure}\index{subject}{flat closure}
  14099. %
  14100. By design, we have all the ingredients to make closures:
  14101. Chapter~\ref{ch:Lvec} gave us tuples and Chapter~\ref{ch:Lfun} gave us
  14102. function pointers. The function pointer resides at index $0$ and the
  14103. values for the free variables fill in the rest of the tuple.
  14104. Let us revisit the example in Figure~\ref{fig:lexical-scoping} to see
  14105. how closures work. It is a three-step dance. The program calls
  14106. function \code{f}, which creates a closure for the \code{lambda}. The
  14107. closure is a tuple whose first element is a pointer to the top-level
  14108. function that we will generate for the \code{lambda}, the second
  14109. element is the value of \code{x}, which is \code{5}, and the third
  14110. element is \code{4}, the value of \code{y}. The closure does not
  14111. contain an element for \code{z} because \code{z} is not a free
  14112. variable of the \code{lambda}. Creating the closure is step 1 of the
  14113. dance. The closure is returned from \code{f} and bound to \code{g}, as
  14114. shown in Figure~\ref{fig:closures}.
  14115. %
  14116. The second call to \code{f} creates another closure, this time with
  14117. \code{3} in the second slot (for \code{x}). This closure is also
  14118. returned from \code{f} but bound to \code{h}, which is also shown in
  14119. Figure~\ref{fig:closures}.
  14120. \begin{figure}[tbp]
  14121. \centering
  14122. \begin{minipage}{0.65\textwidth}
  14123. \begin{tcolorbox}[colback=white]
  14124. \includegraphics[width=\textwidth]{figs/closures}
  14125. \end{tcolorbox}
  14126. \end{minipage}
  14127. \caption{Flat closure representations for the two functions
  14128. produced by the \key{lambda} in Figure~\ref{fig:lexical-scoping}.}
  14129. \label{fig:closures}
  14130. \end{figure}
  14131. Continuing with the example, consider the application of \code{g} to
  14132. \code{11} in Figure~\ref{fig:lexical-scoping}. To apply a closure, we
  14133. obtain the function pointer from the first element of the closure and
  14134. call it, passing in the closure itself and then the regular arguments,
  14135. in this case \code{11}. This technique for applying a closure is step
  14136. 2 of the dance.
  14137. %
  14138. But doesn't this \code{lambda} only take 1 argument, for parameter
  14139. \code{z}? The third and final step of the dance is generating a
  14140. top-level function for a \code{lambda}. We add an additional
  14141. parameter for the closure and we insert an initialization at the beginning
  14142. of the function for each free variable, to bind those variables to the
  14143. appropriate elements from the closure parameter.
  14144. %
  14145. This three-step dance is known as \emph{closure conversion}. We
  14146. discuss the details of closure conversion in
  14147. Section~\ref{sec:closure-conversion} and show the code generated from
  14148. the example in Section~\ref{sec:example-lambda}. But first we define
  14149. the syntax and semantics of \LangLam{} in Section~\ref{sec:r5}.
  14150. \section{The \LangLam{} Language}
  14151. \label{sec:r5}
  14152. The concrete and abstract syntax for \LangLam{}, a language with anonymous
  14153. functions and lexical scoping, is defined in
  14154. Figures~\ref{fig:Llam-concrete-syntax} and \ref{fig:Llam-syntax}. It adds
  14155. the \key{lambda} form to the grammar for \LangFun{}, which already has
  14156. syntax for function application.
  14157. %
  14158. \python{The syntax also includes an assignment statement that includes
  14159. a type annotation for the variable on the left-hand side, which
  14160. facilitates the type checking of \code{lambda} expressions that we
  14161. discuss later in this section.}
  14162. %
  14163. \racket{The \code{procedure-arity} operation returns the number of parameters
  14164. of a given function, an operation that we need for the translation
  14165. of dynamic typing in Chapter~\ref{ch:Ldyn}.}
  14166. %
  14167. \python{The \code{arity} operation returns the number of parameters of
  14168. a given function, an operation that we need for the translation
  14169. of dynamic typing in Chapter~\ref{ch:Ldyn}.
  14170. The \code{arity} operation is not in Python, but the same functionality
  14171. is available in a more complex form. We include \code{arity} in the
  14172. \LangLam{} source language to enable testing.}
  14173. \newcommand{\LlambdaGrammarRacket}{
  14174. \begin{array}{lcl}
  14175. \Exp &::=& \CLAMBDA{\LP\LS\Var \key{:} \Type\RS\ldots\RP}{\Type}{\Exp} \\
  14176. &\MID& \LP \key{procedure-arity}~\Exp\RP
  14177. \end{array}
  14178. }
  14179. \newcommand{\LlambdaASTRacket}{
  14180. \begin{array}{lcl}
  14181. \Exp &::=& \LAMBDA{\LP\LS\Var\code{:}\Type\RS\ldots\RP}{\Type}{\Exp}\\
  14182. \itm{op} &::=& \code{procedure-arity}
  14183. \end{array}
  14184. }
  14185. \newcommand{\LlambdaGrammarPython}{
  14186. \begin{array}{lcl}
  14187. \Exp &::=& \CLAMBDA{\Var\code{, }\ldots}{\Exp} \MID \CARITY{\Exp} \\
  14188. \Stmt &::=& \CANNASSIGN{\Var}{\Type}{\Exp}
  14189. \end{array}
  14190. }
  14191. \newcommand{\LlambdaASTPython}{
  14192. \begin{array}{lcl}
  14193. \Exp &::=& \LAMBDA{\Var^{*}}{\Exp} \MID \ARITY{\Exp} \\
  14194. \Stmt &::=& \ANNASSIGN{\Var}{\Type}{\Exp}
  14195. \end{array}
  14196. }
  14197. % include AnnAssign in ASTPython
  14198. \begin{figure}[tp]
  14199. \centering
  14200. \begin{tcolorbox}[colback=white]
  14201. \small
  14202. {\if\edition\racketEd
  14203. \[
  14204. \begin{array}{l}
  14205. \gray{\LintGrammarRacket{}} \\ \hline
  14206. \gray{\LvarGrammarRacket{}} \\ \hline
  14207. \gray{\LifGrammarRacket{}} \\ \hline
  14208. \gray{\LwhileGrammarRacket} \\ \hline
  14209. \gray{\LtupGrammarRacket} \\ \hline
  14210. \gray{\LfunGrammarRacket} \\ \hline
  14211. \LlambdaGrammarRacket \\
  14212. \begin{array}{lcl}
  14213. \LangLamM{} &::=& \Def\ldots \; \Exp
  14214. \end{array}
  14215. \end{array}
  14216. \]
  14217. \fi}
  14218. {\if\edition\pythonEd
  14219. \[
  14220. \begin{array}{l}
  14221. \gray{\LintGrammarPython{}} \\ \hline
  14222. \gray{\LvarGrammarPython{}} \\ \hline
  14223. \gray{\LifGrammarPython{}} \\ \hline
  14224. \gray{\LwhileGrammarPython} \\ \hline
  14225. \gray{\LtupGrammarPython} \\ \hline
  14226. \gray{\LfunGrammarPython} \\ \hline
  14227. \LlambdaGrammarPython \\
  14228. \begin{array}{lcl}
  14229. \LangFunM{} &::=& \Def\ldots \Stmt\ldots
  14230. \end{array}
  14231. \end{array}
  14232. \]
  14233. \fi}
  14234. \end{tcolorbox}
  14235. \caption{The concrete syntax of \LangLam{}, extending \LangFun{} (Figure~\ref{fig:Lfun-concrete-syntax})
  14236. with \key{lambda}.}
  14237. \label{fig:Llam-concrete-syntax}
  14238. \end{figure}
  14239. \begin{figure}[tp]
  14240. \centering
  14241. \begin{tcolorbox}[colback=white]
  14242. \small
  14243. {\if\edition\racketEd
  14244. \[\arraycolsep=3pt
  14245. \begin{array}{l}
  14246. \gray{\LintOpAST} \\ \hline
  14247. \gray{\LvarASTRacket{}} \\ \hline
  14248. \gray{\LifASTRacket{}} \\ \hline
  14249. \gray{\LwhileASTRacket{}} \\ \hline
  14250. \gray{\LtupASTRacket{}} \\ \hline
  14251. \gray{\LfunASTRacket} \\ \hline
  14252. \LlambdaASTRacket \\
  14253. \begin{array}{lcl}
  14254. \LangLamM{} &::=& \PROGRAMDEFSEXP{\code{'()}}{\LP\Def\ldots\RP}{\Exp}
  14255. \end{array}
  14256. \end{array}
  14257. \]
  14258. \fi}
  14259. {\if\edition\pythonEd
  14260. \[
  14261. \begin{array}{l}
  14262. \gray{\LintASTPython} \\ \hline
  14263. \gray{\LvarASTPython{}} \\ \hline
  14264. \gray{\LifASTPython{}} \\ \hline
  14265. \gray{\LwhileASTPython{}} \\ \hline
  14266. \gray{\LtupASTPython{}} \\ \hline
  14267. \gray{\LfunASTPython} \\ \hline
  14268. \LlambdaASTPython \\
  14269. \begin{array}{lcl}
  14270. \LangLamM{} &::=& \PROGRAM{}{\LS \Def \ldots \Stmt \ldots \RS}
  14271. \end{array}
  14272. \end{array}
  14273. \]
  14274. \fi}
  14275. \end{tcolorbox}
  14276. \caption{The abstract syntax of \LangLam{}, extending \LangFun{} (Figure~\ref{fig:Lfun-syntax}).}
  14277. \label{fig:Llam-syntax}
  14278. \end{figure}
  14279. \index{subject}{interpreter}
  14280. \label{sec:interp-Llambda}
  14281. Figure~\ref{fig:interp-Llambda} shows the definitional interpreter for
  14282. \LangLam{}. The case for \key{Lambda} saves the current environment
  14283. inside the returned function value. Recall that during function
  14284. application, the environment stored in the function value, extended
  14285. with the mapping of parameters to argument values, is used to
  14286. interpret the body of the function.
  14287. \begin{figure}[tbp]
  14288. \begin{tcolorbox}[colback=white]
  14289. {\if\edition\racketEd
  14290. \begin{lstlisting}
  14291. (define interp-Llambda-class
  14292. (class interp-Lfun-class
  14293. (super-new)
  14294. (define/override (interp-op op)
  14295. (match op
  14296. ['procedure-arity
  14297. (lambda (v)
  14298. (match v
  14299. [`(function (,xs ...) ,body ,lam-env) (length xs)]
  14300. [else (error 'interp-op "expected a function, not ~a" v)]))]
  14301. [else (super interp-op op)]))
  14302. (define/override ((interp-exp env) e)
  14303. (define recur (interp-exp env))
  14304. (match e
  14305. [(Lambda (list `[,xs : ,Ts] ...) rT body)
  14306. `(function ,xs ,body ,env)]
  14307. [else ((super interp-exp env) e)]))
  14308. ))
  14309. (define (interp-Llambda p)
  14310. (send (new interp-Llambda-class) interp-program p))
  14311. \end{lstlisting}
  14312. \fi}
  14313. {\if\edition\pythonEd
  14314. \begin{lstlisting}
  14315. class InterpLlambda(InterpLfun):
  14316. def arity(self, v):
  14317. match v:
  14318. case Function(name, params, body, env):
  14319. return len(params)
  14320. case _:
  14321. raise Exception('Llambda arity unexpected ' + repr(v))
  14322. def interp_exp(self, e, env):
  14323. match e:
  14324. case Call(Name('arity'), [fun]):
  14325. f = self.interp_exp(fun, env)
  14326. return self.arity(f)
  14327. case Lambda(params, body):
  14328. return Function('lambda', params, [Return(body)], env)
  14329. case _:
  14330. return super().interp_exp(e, env)
  14331. def interp_stmts(self, ss, env):
  14332. if len(ss) == 0:
  14333. return
  14334. match ss[0]:
  14335. case AnnAssign(lhs, typ, value, simple):
  14336. env[lhs.id] = self.interp_exp(value, env)
  14337. return self.interp_stmts(ss[1:], env)
  14338. case _:
  14339. return super().interp_stmts(ss, env)
  14340. \end{lstlisting}
  14341. \fi}
  14342. \end{tcolorbox}
  14343. \caption{Interpreter for \LangLam{}.}
  14344. \label{fig:interp-Llambda}
  14345. \end{figure}
  14346. \label{sec:type-check-r5}
  14347. \index{subject}{type checking}
  14348. {\if\edition\racketEd
  14349. %
  14350. Figure~\ref{fig:type-check-Llambda} shows how to type check the new
  14351. \key{lambda} form. The body of the \key{lambda} is checked in an
  14352. environment that includes the current environment (because it is
  14353. lexically scoped) and also includes the \key{lambda}'s parameters. We
  14354. require the body's type to match the declared return type.
  14355. %
  14356. \fi}
  14357. {\if\edition\pythonEd
  14358. %
  14359. Figures~\ref{fig:type-check-Llambda} and
  14360. \ref{fig:type-check-Llambda-part2} define the type checker for
  14361. \LangLam{}, which is more complex than one might expect. The reason
  14362. for the added complexity is that the syntax of \key{lambda} does not
  14363. include type annotations for the parameters or return type. Instead
  14364. they must be inferred. There are many approaches of type inference to
  14365. choose from of varying degrees of complexity. We choose one of the
  14366. simpler approaches, bidirectional type inference~\citep{Dunfield:2021}
  14367. (aka. local type inference~\citep{Pierce:2000}), because the focus of
  14368. this book is compilation, not type inference.
  14369. The main idea of bidirectional type inference is to add an auxiliary
  14370. function, here named \code{check\_exp}, that takes an expected type
  14371. and checks whether the given expression is of that type. Thus, in
  14372. \code{check\_exp}, type information flows in a top-down manner with
  14373. respect to the AST, in contrast to the regular \code{type\_check\_exp}
  14374. function, where type information flows in a primarily bottom-up
  14375. manner.
  14376. %
  14377. The idea then is to use \code{check\_exp} in all the places where we
  14378. already know what the type of an expression should be, such as in the
  14379. \code{return} statement of a top-level function definition, or on the
  14380. right-hand side of an annotated assignment statement.
  14381. Getting back to \code{lambda}, it is straightforward to check a
  14382. \code{lambda} inside \code{check\_exp} because the expected type
  14383. provides the parameter types and the return type. On the other hand,
  14384. inside \code{type\_check\_exp} we disallow \code{lambda}, which means
  14385. that we do not allow \code{lambda} in contexts where we don't already
  14386. know its type. This restriction does not incur a loss of
  14387. expressiveness for \LangLam{} because it is straightforward to modify
  14388. a program to sidestep the restriction, for example, by using an
  14389. annotated assignment statement to assign the \code{lambda} to a
  14390. temporary variable.
  14391. Note that for the \code{Name} and \code{Lambda} AST nodes, the type
  14392. checker records their type in a \code{has\_type} field. This type
  14393. information is used later in this chapter.
  14394. %
  14395. \fi}
  14396. \begin{figure}[tbp]
  14397. \begin{tcolorbox}[colback=white]
  14398. {\if\edition\racketEd
  14399. \begin{lstlisting}
  14400. (define (type-check-Llambda env)
  14401. (lambda (e)
  14402. (match e
  14403. [(Lambda (and params `([,xs : ,Ts] ...)) rT body)
  14404. (define-values (new-body bodyT)
  14405. ((type-check-exp (append (map cons xs Ts) env)) body))
  14406. (define ty `(,@Ts -> ,rT))
  14407. (cond
  14408. [(equal? rT bodyT)
  14409. (values (HasType (Lambda params rT new-body) ty) ty)]
  14410. [else
  14411. (error "mismatch in return type" bodyT rT)])]
  14412. ...
  14413. )))
  14414. \end{lstlisting}
  14415. \fi}
  14416. {\if\edition\pythonEd
  14417. \begin{lstlisting}
  14418. class TypeCheckLlambda(TypeCheckLfun):
  14419. def type_check_exp(self, e, env):
  14420. match e:
  14421. case Name(id):
  14422. e.has_type = env[id]
  14423. return env[id]
  14424. case Lambda(params, body):
  14425. raise Exception('cannot synthesize a type for a lambda')
  14426. case Call(Name('arity'), [func]):
  14427. func_t = self.type_check_exp(func, env)
  14428. match func_t:
  14429. case FunctionType(params_t, return_t):
  14430. return IntType()
  14431. case _:
  14432. raise Exception('in arity, unexpected ' + repr(func_t))
  14433. case _:
  14434. return super().type_check_exp(e, env)
  14435. def check_exp(self, e, ty, env):
  14436. match e:
  14437. case Lambda(params, body):
  14438. e.has_type = ty
  14439. match ty:
  14440. case FunctionType(params_t, return_t):
  14441. new_env = env.copy().update(zip(params, params_t))
  14442. self.check_exp(body, return_t, new_env)
  14443. case _:
  14444. raise Exception('lambda does not have type ' + str(ty))
  14445. case Call(func, args):
  14446. func_t = self.type_check_exp(func, env)
  14447. match func_t:
  14448. case FunctionType(params_t, return_t):
  14449. for (arg, param_t) in zip(args, params_t):
  14450. self.check_exp(arg, param_t, env)
  14451. self.check_type_equal(return_t, ty, e)
  14452. case _:
  14453. raise Exception('type_check_exp: in call, unexpected ' + \
  14454. repr(func_t))
  14455. case _:
  14456. t = self.type_check_exp(e, env)
  14457. self.check_type_equal(t, ty, e)
  14458. \end{lstlisting}
  14459. \fi}
  14460. \end{tcolorbox}
  14461. \caption{Type checking \LangLam{}\python{, part 1}.}
  14462. \label{fig:type-check-Llambda}
  14463. \end{figure}
  14464. {\if\edition\pythonEd
  14465. \begin{figure}[tbp]
  14466. \begin{tcolorbox}[colback=white]
  14467. \begin{lstlisting}
  14468. def check_stmts(self, ss, return_ty, env):
  14469. if len(ss) == 0:
  14470. return
  14471. match ss[0]:
  14472. case FunctionDef(name, params, body, dl, returns, comment):
  14473. new_env = env.copy().update(params)
  14474. rt = self.check_stmts(body, returns, new_env)
  14475. self.check_stmts(ss[1:], return_ty, env)
  14476. case Return(value):
  14477. self.check_exp(value, return_ty, env)
  14478. case Assign([Name(id)], value):
  14479. if id in env:
  14480. self.check_exp(value, env[id], env)
  14481. else:
  14482. env[id] = self.type_check_exp(value, env)
  14483. self.check_stmts(ss[1:], return_ty, env)
  14484. case Assign([Subscript(tup, Constant(index), Store())], value):
  14485. tup_t = self.type_check_exp(tup, env)
  14486. match tup_t:
  14487. case TupleType(ts):
  14488. self.check_exp(value, ts[index], env)
  14489. case _:
  14490. raise Exception('expected a tuple, not ' + repr(tup_t))
  14491. self.check_stmts(ss[1:], return_ty, env)
  14492. case AnnAssign(Name(id), ty_annot, value, simple):
  14493. ss[0].annotation = ty_annot
  14494. if id in env:
  14495. self.check_type_equal(env[id], ty_annot)
  14496. else:
  14497. env[id] = ty_annot
  14498. self.check_exp(value, ty_annot, env)
  14499. self.check_stmts(ss[1:], return_ty, env)
  14500. case _:
  14501. self.type_check_stmts(ss, env)
  14502. def type_check(self, p):
  14503. match p:
  14504. case Module(body):
  14505. env = {}
  14506. for s in body:
  14507. match s:
  14508. case FunctionDef(name, params, bod, dl, returns, comment):
  14509. params_t = [t for (x,t) in params]
  14510. env[name] = FunctionType(params_t, returns)
  14511. self.check_stmts(body, int, env)
  14512. \end{lstlisting}
  14513. \end{tcolorbox}
  14514. \caption{Type checking the \key{lambda}'s in \LangLam{}, part 2.}
  14515. \label{fig:type-check-Llambda-part2}
  14516. \end{figure}
  14517. \fi}
  14518. \clearpage
  14519. \section{Assignment and Lexically Scoped Functions}
  14520. \label{sec:assignment-scoping}
  14521. The combination of lexically-scoped functions and assignment to
  14522. variables raises a challenge with the flat-closure approach to
  14523. implementing lexically-scoped functions. Consider the following
  14524. example in which function \code{f} has a free variable \code{x} that
  14525. is changed after \code{f} is created but before the call to \code{f}.
  14526. % loop_test_11.rkt
  14527. {\if\edition\racketEd
  14528. \begin{lstlisting}
  14529. (let ([x 0])
  14530. (let ([y 0])
  14531. (let ([z 20])
  14532. (let ([f (lambda: ([a : Integer]) : Integer (+ a (+ x z)))])
  14533. (begin
  14534. (set! x 10)
  14535. (set! y 12)
  14536. (f y))))))
  14537. \end{lstlisting}
  14538. \fi}
  14539. {\if\edition\pythonEd
  14540. % box_free_assign.py
  14541. \begin{lstlisting}
  14542. def g(z : int) -> int:
  14543. x = 0
  14544. y = 0
  14545. f : Callable[[int],int] = lambda a: a + x + z
  14546. x = 10
  14547. y = 12
  14548. return f(y)
  14549. print( g(20) )
  14550. \end{lstlisting}
  14551. \fi} The correct output for this example is \code{42} because the call
  14552. to \code{f} is required to use the current value of \code{x} (which is
  14553. \code{10}). Unfortunately, the closure conversion pass
  14554. (Section~\ref{sec:closure-conversion}) generates code for the
  14555. \code{lambda} that copies the old value of \code{x} into a
  14556. closure. Thus, if we naively apply closure conversion, the output of
  14557. this program would be \code{32}.
  14558. A first attempt at solving this problem would be to save a pointer to
  14559. \code{x} in the closure and change the occurrences of \code{x} inside
  14560. the lambda to dereference the pointer. Of course, this would require
  14561. assigning \code{x} to the stack and not to a register. However, the
  14562. problem goes a bit deeper.
  14563. Consider the following example that returns a function that refers to
  14564. a local variable of the enclosing function.
  14565. \begin{center}
  14566. \begin{minipage}{\textwidth}
  14567. {\if\edition\racketEd
  14568. \begin{lstlisting}
  14569. (define (f []) : Integer
  14570. (let ([x 0])
  14571. (let ([g (lambda: () : Integer x)])
  14572. (begin
  14573. (set! x 42)
  14574. g))))
  14575. ((f))
  14576. \end{lstlisting}
  14577. \fi}
  14578. {\if\edition\pythonEd
  14579. % counter.py
  14580. \begin{lstlisting}
  14581. def f():
  14582. x = 0
  14583. g = lambda: x
  14584. x = 42
  14585. return g
  14586. print( f()() )
  14587. \end{lstlisting}
  14588. \fi}
  14589. \end{minipage}
  14590. \end{center}
  14591. In this example, the lifetime of \code{x} extends beyond the lifetime
  14592. of the call to \code{f}. Thus, if we were to store \code{x} on the
  14593. stack frame for the call to \code{f}, it would be gone by the time we
  14594. call \code{g}, leaving us with dangling pointers for
  14595. \code{x}. This example demonstrates that when a variable occurs free
  14596. inside a function, its lifetime becomes indefinite. Thus, the value of
  14597. the variable needs to live on the heap. The verb
  14598. \emph{box}\index{subject}{box} is often used for allocating a single
  14599. value on the heap, producing a pointer, and
  14600. \emph{unbox}\index{subject}{unbox} for dereferencing the pointer.
  14601. %
  14602. We introduce a new pass named \code{convert\_assignments} to address
  14603. this challenge.
  14604. %
  14605. \python{But before diving into that, we have one more
  14606. problem to discuss.}
  14607. \if\edition\pythonEd
  14608. \section{Uniquify Variables}
  14609. \label{sec:uniquify-lambda}
  14610. With the addition of \code{lambda} we have a complication to deal
  14611. with: name shadowing. Consider the following program with a function
  14612. \code{f} that has a parameter \code{x}. Inside \code{f} there are two
  14613. \code{lambda} expressions. The first \code{lambda} has a parameter
  14614. that is also named \code{x}.
  14615. \begin{lstlisting}
  14616. def f(x:int, y:int) -> Callable[[int], int]:
  14617. g : Callable[[int],int] = (lambda x: x + y)
  14618. h : Callable[[int],int] = (lambda y: x + y)
  14619. x = input_int()
  14620. return g
  14621. print(f(0, 10)(32))
  14622. \end{lstlisting}
  14623. Many of our compiler passes rely on being able to connect variable
  14624. uses with their definitions using just the name of the variable,
  14625. including new passes in this chapter. However, in the above example
  14626. the name of the variable does not uniquely determine its
  14627. definition. To solve this problem we recommend implementing a pass
  14628. named \code{uniquify} that renames every variable in the program to
  14629. make sure they are all unique.
  14630. The following shows the result of \code{uniquify} for the above
  14631. example. The \code{x} parameter of \code{f} is renamed to \code{x\_0}
  14632. and the \code{x} parameter of the \code{lambda} is renamed to
  14633. \code{x\_4}.
  14634. \begin{lstlisting}
  14635. def f(x_0:int, y_1:int) -> Callable[[int], int] :
  14636. g_2 : Callable[[int], int] = (lambda x_4: x_4 + y_1)
  14637. h_3 : Callable[[int], int] = (lambda y_5: x_0 + y_5)
  14638. x_0 = input_int()
  14639. return g_2
  14640. def main() -> int :
  14641. print(f(0, 10)(32))
  14642. return 0
  14643. \end{lstlisting}
  14644. \fi
  14645. %% \section{Reveal Functions}
  14646. %% \label{sec:reveal-functions-r5}
  14647. %% \racket{To support the \code{procedure-arity} operator we need to
  14648. %% communicate the arity of a function to the point of closure
  14649. %% creation.}
  14650. %% %
  14651. %% \python{In Chapter~\ref{ch:Ldyn} we need to access the arity of a
  14652. %% function at runtime. Thus, we need to communicate the arity of a
  14653. %% function to the point of closure creation.}
  14654. %% %
  14655. %% We can accomplish this by replacing the $\FUNREF{\Var}{\Int}$ AST node with
  14656. %% one that has a second field for the arity: $\FUNREFARITY{\Var}{\Int}$.
  14657. %% \[
  14658. %% \begin{array}{lcl}
  14659. %% \Exp &::=& \FUNREFARITY{\Var}{\Int}
  14660. %% \end{array}
  14661. %% \]
  14662. \section{Assignment Conversion}
  14663. \label{sec:convert-assignments}
  14664. The purpose of the \code{convert\_assignments} pass is to address the
  14665. challenge regarding the interaction between variable assignments and
  14666. closure conversion. First we identify which variables need to be
  14667. boxed, then we transform the program to box those variables. In
  14668. general, boxing introduces runtime overhead that we would like to
  14669. avoid, so we should box as few variables as possible. We recommend
  14670. boxing the variables in the intersection of the following two sets of
  14671. variables:
  14672. \begin{enumerate}
  14673. \item The variables that are free in a \code{lambda}.
  14674. \item The variables that appear on the left-hand side of an
  14675. assignment.
  14676. \end{enumerate}
  14677. The first condition is a must but the second condition is
  14678. conservative. It is possible to develop a more liberal condition using
  14679. static program analysis.
  14680. Consider again the first example from
  14681. Section~\ref{sec:assignment-scoping}:
  14682. %
  14683. {\if\edition\racketEd
  14684. \begin{lstlisting}
  14685. (let ([x 0])
  14686. (let ([y 0])
  14687. (let ([z 20])
  14688. (let ([f (lambda: ([a : Integer]) : Integer (+ a (+ x z)))])
  14689. (begin
  14690. (set! x 10)
  14691. (set! y 12)
  14692. (f y))))))
  14693. \end{lstlisting}
  14694. \fi}
  14695. {\if\edition\pythonEd
  14696. \begin{lstlisting}
  14697. def g(z : int) -> int:
  14698. x = 0
  14699. y = 0
  14700. f : Callable[[int],int] = lambda a: a + x + z
  14701. x = 10
  14702. y = 12
  14703. return f(y)
  14704. print( g(20) )
  14705. \end{lstlisting}
  14706. \fi}
  14707. %
  14708. \noindent The variables \code{x} and \code{y} are assigned-to. The
  14709. variables \code{x} and \code{z} occur free inside the
  14710. \code{lambda}. Thus, variable \code{x} needs to be boxed but not
  14711. \code{y} or \code{z}. The boxing of \code{x} consists of three
  14712. transformations: initialize \code{x} with a tuple whose elements are uninitialized,
  14713. replace reads from \code{x} with tuple reads, and replace each assignment to \code{x}
  14714. with a tuple write. The output of \code{convert\_assignments} for
  14715. this example is as follows.
  14716. %
  14717. {\if\edition\racketEd
  14718. \begin{lstlisting}
  14719. (define (main) : Integer
  14720. (let ([x0 (vector 0)])
  14721. (let ([y1 0])
  14722. (let ([z2 20])
  14723. (let ([f4 (lambda: ([a3 : Integer]) : Integer
  14724. (+ a3 (+ (vector-ref x0 0) z2)))])
  14725. (begin
  14726. (vector-set! x0 0 10)
  14727. (set! y1 12)
  14728. (f4 y1)))))))
  14729. \end{lstlisting}
  14730. \fi}
  14731. %
  14732. {\if\edition\pythonEd
  14733. \begin{lstlisting}
  14734. def g(z : int)-> int:
  14735. x = (uninitialized(int),)
  14736. x[0] = 0
  14737. y = 0
  14738. f : Callable[[int], int] = (lambda a: a + x[0] + z)
  14739. x[0] = 10
  14740. y = 12
  14741. return f(y)
  14742. def main() -> int:
  14743. print(g(20))
  14744. return 0
  14745. \end{lstlisting}
  14746. \fi}
  14747. To compute the free variables of all the \code{lambda} expressions, we
  14748. recommend defining two auxiliary functions:
  14749. \begin{enumerate}
  14750. \item \code{free\_variables} computes the free variables of an expression, and
  14751. \item \code{free\_in\_lambda} collects all of the variables that are
  14752. free in any of the \code{lambda} expressions, using
  14753. \code{free\_variables} in the case for each \code{lambda}.
  14754. \end{enumerate}
  14755. {\if\edition\racketEd
  14756. %
  14757. To compute the variables that are assigned-to, we recommend using the
  14758. \code{collect-set!} function that we introduced in
  14759. Section~\ref{sec:uncover-get-bang}, but updated to include the new AST
  14760. forms such as \code{Lambda}.
  14761. %
  14762. \fi}
  14763. {\if\edition\pythonEd
  14764. %
  14765. To compute the variables that are assigned-to, we recommend defining
  14766. an auxiliary function named \code{assigned\_vars\_stmt} that returns
  14767. the set of variables that occur in the left-hand side of an assignment
  14768. statement, and otherwise returns the empty set.
  14769. %
  14770. \fi}
  14771. Let $\mathit{AF}$ be the intersection of the set of variables that are
  14772. free in a \code{lambda} and that are assigned-to in the enclosing
  14773. function definition.
  14774. Next we discuss the \code{convert\_assignments} pass. In the case for
  14775. $\VAR{x}$, if $x$ is in $\mathit{AF}$, then unbox it by translating
  14776. $\VAR{x}$ to a tuple read.
  14777. %
  14778. {\if\edition\racketEd
  14779. \begin{lstlisting}
  14780. (Var |$x$|)
  14781. |$\Rightarrow$|
  14782. (Prim 'vector-ref (list (Var |$x$|) (Int 0)))
  14783. \end{lstlisting}
  14784. \fi}
  14785. %
  14786. {\if\edition\pythonEd
  14787. \begin{lstlisting}
  14788. Name(|$x$|)
  14789. |$\Rightarrow$|
  14790. Subscript(Name(|$x$|), Constant(0), Load())
  14791. \end{lstlisting}
  14792. \fi}
  14793. %
  14794. \noindent In the case for assignment, recursively process the
  14795. right-hand side \itm{rhs} to obtain \itm{rhs'}. If the left-hand side
  14796. $x$ is in $\mathit{AF}$, translate the assignment into a tuple-write
  14797. as follows.
  14798. %
  14799. {\if\edition\racketEd
  14800. \begin{lstlisting}
  14801. (SetBang |$x$| |$\itm{rhs}$|)
  14802. |$\Rightarrow$|
  14803. (Prim 'vector-set! (list (Var |$x$|) (Int 0) |$\itm{rhs'}$|))
  14804. \end{lstlisting}
  14805. \fi}
  14806. {\if\edition\pythonEd
  14807. \begin{lstlisting}
  14808. Assign([Name(|$x$|)],|$\itm{rhs}$|)
  14809. |$\Rightarrow$|
  14810. Assign([Subscript(Name(|$x$|), Constant(0), Store())], |$\itm{rhs'}$|)
  14811. \end{lstlisting}
  14812. \fi}
  14813. %
  14814. {\if\edition\racketEd
  14815. The case for \code{Lambda} is non-trivial, but it is similar to the
  14816. case for function definitions, which we discuss next.
  14817. \fi}
  14818. %
  14819. To translate a function definition, we first compute $\mathit{AF}$,
  14820. the intersection of the variables that are free in a \code{lambda} and
  14821. that are assigned-to. We then apply assignment conversion to the body
  14822. of the function definition. Finally, we box the parameters of this
  14823. function definition that are in $\mathit{AF}$. For example,
  14824. the parameter \code{x} of the following function \code{g}
  14825. needs to be boxed.
  14826. {\if\edition\racketEd
  14827. \begin{lstlisting}
  14828. (define (g [x : Integer]) : Integer
  14829. (let ([f (lambda: ([a : Integer]) : Integer (+ a x))])
  14830. (begin
  14831. (set! x 10)
  14832. (f 32))))
  14833. \end{lstlisting}
  14834. \fi}
  14835. %
  14836. {\if\edition\pythonEd
  14837. \begin{lstlisting}
  14838. def g(x : int) -> int:
  14839. f : Callable[[int],int] = lambda a: a + x
  14840. x = 10
  14841. return f(32)
  14842. \end{lstlisting}
  14843. \fi}
  14844. %
  14845. \noindent We box parameter \code{x} by creating a local variable named
  14846. \code{x} that is initialized to a tuple whose contents is the value of
  14847. the parameter, which has been renamed to \code{x\_0}.
  14848. %
  14849. {\if\edition\racketEd
  14850. \begin{lstlisting}
  14851. (define (g [x_0 : Integer]) : Integer
  14852. (let ([x (vector x_0)])
  14853. (let ([f (lambda: ([a : Integer]) : Integer
  14854. (+ a (vector-ref x 0)))])
  14855. (begin
  14856. (vector-set! x 0 10)
  14857. (f 32)))))
  14858. \end{lstlisting}
  14859. \fi}
  14860. %
  14861. {\if\edition\pythonEd
  14862. \begin{lstlisting}
  14863. def g(x_0 : int)-> int:
  14864. x = (x_0,)
  14865. f : Callable[[int], int] = (lambda a: a + x[0])
  14866. x[0] = 10
  14867. return f(32)
  14868. \end{lstlisting}
  14869. \fi}
  14870. \section{Closure Conversion}
  14871. \label{sec:closure-conversion}
  14872. \index{subject}{closure conversion}
  14873. The compiling of lexically-scoped functions into top-level function
  14874. definitions and flat closures is accomplished in the pass
  14875. \code{convert\_to\_closures} that comes after \code{reveal\_functions}
  14876. and before \code{limit\_functions}.
  14877. As usual, we implement the pass as a recursive function over the
  14878. AST. The interesting cases are the ones for \key{lambda} and function
  14879. application. We transform a \key{lambda} expression into an expression
  14880. that creates a closure, that is, a tuple whose first element is a
  14881. function pointer and the rest of the elements are the values of the
  14882. free variables of the \key{lambda}.
  14883. %
  14884. However, we use the \code{Closure} AST node instead of using a tuple
  14885. so that we can record the arity.
  14886. %
  14887. In the generated code below, \itm{fvs} is the free variables of the
  14888. lambda and \itm{name} is a unique symbol generated to identify the lambda.
  14889. %
  14890. \racket{The \itm{arity} is the number of parameters (the length of
  14891. \itm{ps}).}
  14892. %
  14893. {\if\edition\racketEd
  14894. \begin{lstlisting}
  14895. (Lambda |\itm{ps}| |\itm{rt}| |\itm{body}|)
  14896. |$\Rightarrow$|
  14897. (Closure |\itm{arity}| (cons (FunRef |\itm{name}| |\itm{arity}|) |\itm{fvs}|))
  14898. \end{lstlisting}
  14899. \fi}
  14900. %
  14901. {\if\edition\pythonEd
  14902. \begin{lstlisting}
  14903. Lambda([|$x_1,\ldots,x_n$|], |\itm{body}|)
  14904. |$\Rightarrow$|
  14905. Closure(|$n$|, [FunRef(|\itm{name}|, |$n$|), |\itm{fvs}, \ldots|])
  14906. \end{lstlisting}
  14907. \fi}
  14908. %
  14909. In addition to transforming each \key{Lambda} AST node into a
  14910. tuple, we create a top-level function definition for each
  14911. \key{Lambda}, as shown below.\\
  14912. \begin{minipage}{0.8\textwidth}
  14913. {\if\edition\racketEd
  14914. \begin{lstlisting}
  14915. (Def |\itm{name}| ([clos : (Vector _ |\itm{fvts}| ...)] |\itm{ps'}| ...) |\itm{rt'}|
  14916. (Let |$\itm{fvs}_1$| (Prim 'vector-ref (list (Var clos) (Int 1)))
  14917. ...
  14918. (Let |$\itm{fvs}_n$| (Prim 'vector-ref (list (Var clos) (Int |$n$|)))
  14919. |\itm{body'}|)...))
  14920. \end{lstlisting}
  14921. \fi}
  14922. {\if\edition\pythonEd
  14923. \begin{lstlisting}
  14924. def |\itm{name}|(clos : |\itm{closTy}|, |\itm{ps'}, \ldots|) -> |\itm{rt'}|:
  14925. |$\itm{fvs}_1$| = clos[1]
  14926. |$\ldots$|
  14927. |$\itm{fvs}_n$| = clos[|$n$|]
  14928. |\itm{body'}|
  14929. \end{lstlisting}
  14930. \fi}
  14931. \end{minipage}\\
  14932. The \code{clos} parameter refers to the closure. Translate the type
  14933. annotations in \itm{ps} and the return type \itm{rt}, as discussed in
  14934. the next paragraph, to obtain \itm{ps'} and \itm{rt'}. The type
  14935. \itm{closTy} is a tuple type whose first element type is
  14936. \python{\code{Bottom()}}\racket{\code{\_} (the dummy type)} and the rest of
  14937. the element types are the types of the free variables in the
  14938. lambda. We use \python{\code{Bottom()}}\racket{\code{\_}} because it
  14939. is non-trivial to give a type to the function in the closure's type.%
  14940. %
  14941. \footnote{To give an accurate type to a closure, we would need to add
  14942. existential types to the type checker~\citep{Minamide:1996ys}.}
  14943. %
  14944. %% The dummy type is considered to be equal to any other type during type
  14945. %% checking.
  14946. The free variables become local variables that are initialized with
  14947. their values in the closure.
  14948. Closure conversion turns every function into a tuple, so the type
  14949. annotations in the program must also be translated. We recommend
  14950. defining an auxiliary recursive function for this purpose. Function
  14951. types should be translated as follows.
  14952. %
  14953. {\if\edition\racketEd
  14954. \begin{lstlisting}
  14955. (|$T_1, \ldots, T_n$| -> |$T_r$|)
  14956. |$\Rightarrow$|
  14957. (Vector ((Vector) |$T'_1, \ldots, T'_n$| -> |$T'_r$|))
  14958. \end{lstlisting}
  14959. \fi}
  14960. {\if\edition\pythonEd
  14961. \begin{lstlisting}
  14962. FunctionType([|$T_1, \ldots, T_n$|], |$T_r$|)
  14963. |$\Rightarrow$|
  14964. TupleType([FunctionType([TupleType([]), |$T'_1, \ldots, T'_n$|], |$T'_r$|)])
  14965. \end{lstlisting}
  14966. \fi}
  14967. %
  14968. The above type says that the first thing in the tuple is a
  14969. function. The first parameter of the function is a tuple (a closure)
  14970. and the rest of the parameters are the ones from the original
  14971. function, with types $T'_1, \ldots, T'_n$. The type for the closure
  14972. omits the types of the free variables because 1) those types are not
  14973. available in this context and 2) we do not need them in the code that
  14974. is generated for function application. So this type only describes the
  14975. first component of the closure tuple. At runtime the tuple may have
  14976. more components, but we ignore them at this point.
  14977. We transform function application into code that retrieves the
  14978. function from the closure and then calls the function, passing the
  14979. closure as the first argument. We place $e'$ in a temporary variable
  14980. to avoid code duplication.
  14981. \begin{center}
  14982. \begin{minipage}{\textwidth}
  14983. {\if\edition\racketEd
  14984. \begin{lstlisting}
  14985. (Apply |$e$| |$\itm{es}$|)
  14986. |$\Rightarrow$|
  14987. (Let |$\itm{tmp}$| |$e'$|
  14988. (Apply (Prim 'vector-ref (list (Var |$\itm{tmp}$|) (Int 0))) (cons (Var |$\itm{tmp}$|) |$\itm{es'}$|)))
  14989. \end{lstlisting}
  14990. \fi}
  14991. %
  14992. {\if\edition\pythonEd
  14993. \begin{lstlisting}
  14994. Call(|$e$|, [|$e_1, \ldots, e_n$|])
  14995. |$\Rightarrow$|
  14996. Begin([Assign([|$\itm{tmp}$|], |$e'$|)],
  14997. Call(Subscript(Name(|$\itm{tmp}$|), Constant(0)),
  14998. [|$\itm{tmp}$|, |$e'_1, \ldots, e'_n$|]))
  14999. \end{lstlisting}
  15000. \fi}
  15001. \end{minipage}
  15002. \end{center}
  15003. There is also the question of what to do with references to top-level
  15004. function definitions. To maintain a uniform translation of function
  15005. application, we turn function references into closures.
  15006. \begin{tabular}{lll}
  15007. \begin{minipage}{0.3\textwidth}
  15008. {\if\edition\racketEd
  15009. \begin{lstlisting}
  15010. (FunRef |$f$| |$n$|)
  15011. \end{lstlisting}
  15012. \fi}
  15013. {\if\edition\pythonEd
  15014. \begin{lstlisting}
  15015. FunRef(|$f$|, |$n$|)
  15016. \end{lstlisting}
  15017. \fi}
  15018. \end{minipage}
  15019. &
  15020. $\Rightarrow$
  15021. &
  15022. \begin{minipage}{0.5\textwidth}
  15023. {\if\edition\racketEd
  15024. \begin{lstlisting}
  15025. (Closure |$n$| (FunRef |$f$| |$n$|) '())
  15026. \end{lstlisting}
  15027. \fi}
  15028. {\if\edition\pythonEd
  15029. \begin{lstlisting}
  15030. Closure(|$n$|, [FunRef(|$f$| |$n$|)])
  15031. \end{lstlisting}
  15032. \fi}
  15033. \end{minipage}
  15034. \end{tabular} \\
  15035. We no longer need the annotated assignment statement \code{AnnAssign}
  15036. to support the type checking of \code{lambda} expressions, so we
  15037. translate it to a regular \code{Assign} statement.
  15038. The top-level function definitions need to be updated to take an extra
  15039. closure parameter but that parameter is ignored in the body of those
  15040. functions.
  15041. \section{An Example Translation}
  15042. \label{sec:example-lambda}
  15043. Figure~\ref{fig:lexical-functions-example} shows the result of
  15044. \code{reveal\_functions} and \code{convert\_to\_closures} for the example
  15045. program demonstrating lexical scoping that we discussed at the
  15046. beginning of this chapter.
  15047. \begin{figure}[tbp]
  15048. \begin{tcolorbox}[colback=white]
  15049. \begin{minipage}{0.8\textwidth}
  15050. {\if\edition\racketEd
  15051. % tests/lambda_test_6.rkt
  15052. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  15053. (define (f6 [x7 : Integer]) : (Integer -> Integer)
  15054. (let ([y8 4])
  15055. (lambda: ([z9 : Integer]) : Integer
  15056. (+ x7 (+ y8 z9)))))
  15057. (define (main) : Integer
  15058. (let ([g0 ((fun-ref f6 1) 5)])
  15059. (let ([h1 ((fun-ref f6 1) 3)])
  15060. (+ (g0 11) (h1 15)))))
  15061. \end{lstlisting}
  15062. $\Rightarrow$
  15063. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  15064. (define (f6 [fvs4 : _] [x7 : Integer]) : (Vector ((Vector _) Integer -> Integer))
  15065. (let ([y8 4])
  15066. (closure 1 (list (fun-ref lambda2 1) x7 y8))))
  15067. (define (lambda2 [fvs3 : (Vector _ Integer Integer)] [z9 : Integer]) : Integer
  15068. (let ([x7 (vector-ref fvs3 1)])
  15069. (let ([y8 (vector-ref fvs3 2)])
  15070. (+ x7 (+ y8 z9)))))
  15071. (define (main) : Integer
  15072. (let ([g0 (let ([clos5 (closure 1 (list (fun-ref f6 1)))])
  15073. ((vector-ref clos5 0) clos5 5))])
  15074. (let ([h1 (let ([clos6 (closure 1 (list (fun-ref f6 1)))])
  15075. ((vector-ref clos6 0) clos6 3))])
  15076. (+ ((vector-ref g0 0) g0 11) ((vector-ref h1 0) h1 15)))))
  15077. \end{lstlisting}
  15078. \fi}
  15079. %
  15080. {\if\edition\pythonEd
  15081. % free_var.py
  15082. \begin{lstlisting}
  15083. def f(x : int) -> Callable[[int], int]:
  15084. y = 4
  15085. return lambda z: x + y + z
  15086. g = f(5)
  15087. h = f(3)
  15088. print( g(11) + h(15) )
  15089. \end{lstlisting}
  15090. $\Rightarrow$
  15091. \begin{lstlisting}
  15092. def lambda_0(fvs_1:tuple[bot,int,tuple[int]],z:int) -> int:
  15093. x = fvs_1[1]
  15094. y = fvs_1[2]
  15095. return x + y[0] + z
  15096. def f(fvs_2:bot, x:int) -> tuple[Callable[[tuple[],int], int]]
  15097. y = (777,)
  15098. y[0] = 4
  15099. return (lambda_0, x, y)
  15100. def main() -> int:
  15101. g = (let clos_3 = (f,) in clos_3[0](clos_3, 5))
  15102. h = (let clos_4 = (f,) in clos_4[0](clos_4, 3))
  15103. print((let clos_5 = g in clos_5[0](clos_5, 11))
  15104. + (let clos_6 = h in clos_6[0](clos_6, 15)))
  15105. return 0
  15106. \end{lstlisting}
  15107. \fi}
  15108. \end{minipage}
  15109. \end{tcolorbox}
  15110. \caption{Example of closure conversion.}
  15111. \label{fig:lexical-functions-example}
  15112. \end{figure}
  15113. \begin{exercise}\normalfont\normalsize
  15114. Expand your compiler to handle \LangLam{} as outlined in this chapter.
  15115. Create 5 new programs that use \key{lambda} functions and make use of
  15116. lexical scoping. Test your compiler on these new programs and all of
  15117. your previously created test programs.
  15118. \end{exercise}
  15119. \section{Expose Allocation}
  15120. \label{sec:expose-allocation-r5}
  15121. Compile the $\CLOSURE{\itm{arity}}{\Exp^{*}}$ form into code
  15122. that allocates and initializes a tuple, similar to the translation of
  15123. the tuple creation in Section~\ref{sec:expose-allocation}.
  15124. The only difference is replacing the use of
  15125. \ALLOC{\itm{len}}{\itm{type}} with
  15126. \ALLOCCLOS{\itm{len}}{\itm{type}}{\itm{arity}}.
  15127. \section{Explicate Control and \LangCLam{}}
  15128. \label{sec:explicate-r5}
  15129. The output language of \code{explicate\_control} is \LangCLam{} whose
  15130. abstract syntax is defined in Figure~\ref{fig:Clam-syntax}.
  15131. %
  15132. \racket{The only differences with respect to \LangCFun{} is the
  15133. addition of the \code{AllocateClosure} form to the grammar for
  15134. $\Exp$ and the \code{procedure-arity} operator. The handling of
  15135. \code{AllocateClosure} in the \code{explicate\_control} pass is
  15136. similar to the handling of other expressions such as primitive
  15137. operators.}
  15138. %
  15139. \python{The differences with respect to \LangCFun{} are the
  15140. additions of \code{Uninitialized}, \code{AllocateClosure},
  15141. and \code{arity} to the grammar for $\Exp$. The handling of them in the
  15142. \code{explicate\_control} pass is similar to the handling of other
  15143. expressions such as primitive operators.}
  15144. \newcommand{\ClambdaASTRacket}{
  15145. \begin{array}{lcl}
  15146. \Exp &::= & \ALLOCCLOS{\Int}{\Type}{\Int} \\
  15147. \itm{op} &::= & \code{procedure-arity}
  15148. \end{array}
  15149. }
  15150. \newcommand{\ClambdaASTPython}{
  15151. \begin{array}{lcl}
  15152. \Exp &::=& \key{Uninitialized}\LP \Type \RP
  15153. \MID \key{AllocateClosure}\LP\itm{len},\Type, \itm{arity}\RP \\
  15154. &\MID& \ARITY{\Atm}
  15155. \end{array}
  15156. }
  15157. \begin{figure}[tp]
  15158. \begin{tcolorbox}[colback=white]
  15159. \small
  15160. {\if\edition\racketEd
  15161. \[
  15162. \begin{array}{l}
  15163. \gray{\CvarASTRacket} \\ \hline
  15164. \gray{\CifASTRacket} \\ \hline
  15165. \gray{\CloopASTRacket} \\ \hline
  15166. \gray{\CtupASTRacket} \\ \hline
  15167. \gray{\CfunASTRacket} \\ \hline
  15168. \ClambdaASTRacket \\
  15169. \begin{array}{lcl}
  15170. \LangCLamM{} & ::= & \PROGRAMDEFS{\itm{info}}{\Def^{*}}
  15171. \end{array}
  15172. \end{array}
  15173. \]
  15174. \fi}
  15175. {\if\edition\pythonEd
  15176. \[
  15177. \begin{array}{l}
  15178. \gray{\CifASTPython} \\ \hline
  15179. \gray{\CtupASTPython} \\ \hline
  15180. \gray{\CfunASTPython} \\ \hline
  15181. \ClambdaASTPython \\
  15182. \begin{array}{lcl}
  15183. \LangCLamM{} & ::= & \CPROGRAMDEFS{\LS\Def\code{,}\ldots\RS}
  15184. \end{array}
  15185. \end{array}
  15186. \]
  15187. \fi}
  15188. \end{tcolorbox}
  15189. \caption{The abstract syntax of \LangCLam{}, extending \LangCFun{} (Figure~\ref{fig:c3-syntax}).}
  15190. \label{fig:Clam-syntax}
  15191. \end{figure}
  15192. \section{Select Instructions}
  15193. \label{sec:select-instructions-Llambda}
  15194. Compile \ALLOCCLOS{\itm{len}}{\itm{type}}{\itm{arity}} in almost the
  15195. same way as the \ALLOC{\itm{len}}{\itm{type}} form
  15196. (Section~\ref{sec:select-instructions-gc}). The only difference is
  15197. that you should place the \itm{arity} in the tag that is stored at
  15198. position $0$ of the vector. Recall that in
  15199. Section~\ref{sec:select-instructions-gc} a portion of the 64-bit tag
  15200. was not used. We store the arity in the $5$ bits starting at position
  15201. $58$.
  15202. \racket{Compile the \code{procedure-arity} operator into a sequence of
  15203. instructions that access the tag from position $0$ of the vector and
  15204. extract the $5$-bits starting at position $58$ from the tag.}
  15205. %
  15206. \python{Compile a call to the \code{arity} operator to a sequence of
  15207. instructions that access the tag from position $0$ of the tuple
  15208. (representing a closure) and extract the $5$-bits starting at position
  15209. $58$ from the tag.}
  15210. \begin{figure}[p]
  15211. \begin{tcolorbox}[colback=white]
  15212. \begin{tikzpicture}[baseline=(current bounding box.center),scale=0.85]
  15213. \node (Lfun) at (0,2) {\large \LangLam{}};
  15214. \node (Lfun-2) at (3,2) {\large \LangLam{}};
  15215. \node (Lfun-3) at (6,2) {\large \LangLam{}};
  15216. \node (F1-0) at (9,2) {\large \LangLamFunRef{}};
  15217. \node (F1-1) at (12,2) {\large \LangLamFunRef{}};
  15218. \node (F1-2) at (12,0) {\large \LangFunRef{}};
  15219. \node (F1-3) at (9,0) {\large \LangFunRef{}};
  15220. \node (F1-4) at (6,0) {\large \LangFunRefAlloc{}};
  15221. \node (F1-5) at (3,0) {\large \LangFunRefAlloc{}};
  15222. \node (F1-6) at (0,0) {\large \LangFunANF{}};
  15223. \node (C3-2) at (3,-2) {\large \LangCFun{}};
  15224. \node (x86-2) at (3,-4) {\large \LangXIndCallVar{}};
  15225. \node (x86-2-1) at (3,-6) {\large \LangXIndCallVar{}};
  15226. \node (x86-2-2) at (6,-6) {\large \LangXIndCallVar{}};
  15227. \node (x86-3) at (6,-4) {\large \LangXIndCallVar{}};
  15228. \node (x86-4) at (9,-4) {\large \LangXIndCall{}};
  15229. \node (x86-5) at (9,-6) {\large \LangXIndCall{}};
  15230. \path[->,bend left=15] (Lfun) edge [above] node
  15231. {\ttfamily\footnotesize shrink} (Lfun-2);
  15232. \path[->,bend left=15] (Lfun-2) edge [above] node
  15233. {\ttfamily\footnotesize uniquify} (Lfun-3);
  15234. \path[->,bend left=15] (Lfun-3) edge [above] node
  15235. {\ttfamily\footnotesize reveal\_functions} (F1-0);
  15236. \path[->,bend left=15] (F1-0) edge [above] node
  15237. {\ttfamily\footnotesize convert\_assign.} (F1-1);
  15238. \path[->,bend left=15] (F1-1) edge [left] node
  15239. {\ttfamily\footnotesize convert\_to\_clos.} (F1-2);
  15240. \path[->,bend left=15] (F1-2) edge [below] node
  15241. {\ttfamily\footnotesize limit\_fun.} (F1-3);
  15242. \path[->,bend right=15] (F1-3) edge [above] node
  15243. {\ttfamily\footnotesize expose\_alloc.} (F1-4);
  15244. \path[->,bend left=15] (F1-4) edge [below] node
  15245. {\ttfamily\footnotesize uncover\_get!} (F1-5);
  15246. \path[->,bend right=15] (F1-5) edge [above] node
  15247. {\ttfamily\footnotesize remove\_complex.} (F1-6);
  15248. \path[->,bend right=15] (F1-6) edge [right] node
  15249. {\ttfamily\footnotesize explicate\_control} (C3-2);
  15250. \path[->,bend left=15] (C3-2) edge [left] node
  15251. {\ttfamily\footnotesize select\_instr.} (x86-2);
  15252. \path[->,bend right=15] (x86-2) edge [left] node
  15253. {\ttfamily\footnotesize uncover\_live} (x86-2-1);
  15254. \path[->,bend right=15] (x86-2-1) edge [below] node
  15255. {\ttfamily\footnotesize build\_inter.} (x86-2-2);
  15256. \path[->,bend right=15] (x86-2-2) edge [left] node
  15257. {\ttfamily\footnotesize allocate\_reg.} (x86-3);
  15258. \path[->,bend left=15] (x86-3) edge [above] node
  15259. {\ttfamily\footnotesize patch\_instr.} (x86-4);
  15260. \path[->,bend left=15] (x86-4) edge [right] node
  15261. {\ttfamily\footnotesize prelude\_and\_conc.} (x86-5);
  15262. \end{tikzpicture}
  15263. \end{tcolorbox}
  15264. \caption{Diagram of the passes for \LangLam{}, a language with lexically-scoped
  15265. functions.}
  15266. \label{fig:Llambda-passes}
  15267. \end{figure}
  15268. Figure~\ref{fig:Llambda-passes} provides an overview of the passes
  15269. needed for the compilation of \LangLam{}.
  15270. \clearpage
  15271. \section{Challenge: Optimize Closures}
  15272. \label{sec:optimize-closures}
  15273. In this chapter we compiled lexically-scoped functions into a
  15274. relatively efficient representation: flat closures. However, even this
  15275. representation comes with some overhead. For example, consider the
  15276. following program with a function \code{tail\_sum} that does not have
  15277. any free variables and where all the uses of \code{tail\_sum} are in
  15278. applications where we know that only \code{tail\_sum} is being applied
  15279. (and not any other functions).
  15280. \begin{center}
  15281. \begin{minipage}{0.95\textwidth}
  15282. {\if\edition\racketEd
  15283. \begin{lstlisting}
  15284. (define (tail_sum [n : Integer] [s : Integer]) : Integer
  15285. (if (eq? n 0)
  15286. s
  15287. (tail_sum (- n 1) (+ n s))))
  15288. (+ (tail_sum 3 0) 36)
  15289. \end{lstlisting}
  15290. \fi}
  15291. {\if\edition\pythonEd
  15292. \begin{lstlisting}
  15293. def tail_sum(n : int, s : int) -> int:
  15294. if n == 0:
  15295. return s
  15296. else:
  15297. return tail_sum(n - 1, n + s)
  15298. print( tail_sum(3, 0) + 36)
  15299. \end{lstlisting}
  15300. \fi}
  15301. \end{minipage}
  15302. \end{center}
  15303. As described in this chapter, we uniformly apply closure conversion to
  15304. all functions, obtaining the following output for this program.
  15305. \begin{center}
  15306. \begin{minipage}{0.95\textwidth}
  15307. {\if\edition\racketEd
  15308. \begin{lstlisting}
  15309. (define (tail_sum1 [fvs5 : _] [n2 : Integer] [s3 : Integer]) : Integer
  15310. (if (eq? n2 0)
  15311. s3
  15312. (let ([clos4 (closure (list (fun-ref tail_sum1 2)))])
  15313. ((vector-ref clos4 0) clos4 (+ n2 -1) (+ n2 s3)))))
  15314. (define (main) : Integer
  15315. (+ (let ([clos6 (closure (list (fun-ref tail_sum1 2)))])
  15316. ((vector-ref clos6 0) clos6 3 0)) 27))
  15317. \end{lstlisting}
  15318. \fi}
  15319. {\if\edition\pythonEd
  15320. \begin{lstlisting}
  15321. def tail_sum(fvs_3:bot,n_0:int,s_1:int) -> int :
  15322. if n_0 == 0:
  15323. return s_1
  15324. else:
  15325. return (let clos_2 = (tail_sum,)
  15326. in clos_2[0](clos_2, n_0 - 1, n_0 + s_1))
  15327. def main() -> int :
  15328. print((let clos_4 = (tail_sum,)
  15329. in clos_4[0](clos_4, 3, 0)) + 36)
  15330. return 0
  15331. \end{lstlisting}
  15332. \fi}
  15333. \end{minipage}
  15334. \end{center}
  15335. In the previous chapter, there would be no allocation in the program
  15336. and the calls to \code{tail\_sum} would be direct calls. In contrast,
  15337. the above program allocates memory for each closure and the calls to
  15338. \code{tail\_sum} are indirect. These two differences incur
  15339. considerable overhead in a program such as this one, where the
  15340. allocations and indirect calls occur inside a tight loop.
  15341. One might think that this problem is trivial to solve: can't we just
  15342. recognize calls of the form \APPLY{\FUNREF{$f$}{$n$}}{$\mathit{args}$}
  15343. and compile them to direct calls instead of treating it like a call to
  15344. a closure? We would also drop the new \code{fvs} parameter of
  15345. \code{tail\_sum}.
  15346. %
  15347. However, this problem is not so trivial because a global function may
  15348. ``escape'' and become involved in applications that also involve
  15349. closures. Consider the following example in which the application
  15350. \CAPPLY{\code{f}}{\code{41}} needs to be compiled into a closure
  15351. application, because the \code{lambda} may flow into \code{f}, but the
  15352. \code{inc} function might also flow into \code{f}.
  15353. \begin{center}
  15354. \begin{minipage}{\textwidth}
  15355. % lambda_test_30.rkt
  15356. {\if\edition\racketEd
  15357. \begin{lstlisting}
  15358. (define (inc [x : Integer]) : Integer
  15359. (+ x 1))
  15360. (let ([y (read)])
  15361. (let ([f (if (eq? (read) 0)
  15362. inc
  15363. (lambda: ([x : Integer]) : Integer (- x y)))])
  15364. (f 41)))
  15365. \end{lstlisting}
  15366. \fi}
  15367. {\if\edition\pythonEd
  15368. \begin{lstlisting}
  15369. def add1(x : int) -> int:
  15370. return x + 1
  15371. y = input_int()
  15372. g : Callable[[int], int] = lambda x: x - y
  15373. f = add1 if input_int() == 0 else g
  15374. print( f(41) )
  15375. \end{lstlisting}
  15376. \fi}
  15377. \end{minipage}
  15378. \end{center}
  15379. If a global function name is used in any way other than as the
  15380. operator in a direct call, then we say that the function
  15381. \emph{escapes}. If a global function does not escape, then we do not
  15382. need to perform closure conversion on the function.
  15383. \begin{exercise}\normalfont\normalsize
  15384. Implement an auxiliary function for detecting which global
  15385. functions escape. Using that function, implement an improved version
  15386. of closure conversion that does not apply closure conversion to
  15387. global functions that do not escape but instead compiles them as
  15388. regular functions. Create several new test cases that check whether
  15389. you properly detect whether global functions escape or not.
  15390. \end{exercise}
  15391. So far we have reduced the overhead of calling global functions, but
  15392. it would also be nice to reduce the overhead of calling a
  15393. \code{lambda} when we can determine at compile time which
  15394. \code{lambda} will be called. We refer to such calls as \emph{known
  15395. calls}. Consider the following example in which a \code{lambda} is
  15396. bound to \code{f} and then applied.
  15397. {\if\edition\racketEd
  15398. % lambda_test_9.rkt
  15399. \begin{lstlisting}
  15400. (let ([y (read)])
  15401. (let ([f (lambda: ([x : Integer]) : Integer
  15402. (+ x y))])
  15403. (f 21)))
  15404. \end{lstlisting}
  15405. \fi}
  15406. {\if\edition\pythonEd
  15407. \begin{lstlisting}
  15408. y = input_int()
  15409. f : Callable[[int],int] = lambda x: x + y
  15410. print( f(21) )
  15411. \end{lstlisting}
  15412. \fi}
  15413. %
  15414. \noindent Closure conversion compiles the application
  15415. \CAPPLY{\code{f}}{\code{21}} into an indirect call:
  15416. %
  15417. {\if\edition\racketEd
  15418. \begin{lstlisting}
  15419. (define (lambda5 [fvs6 : (Vector _ Integer)] [x3 : Integer]) : Integer
  15420. (let ([y2 (vector-ref fvs6 1)])
  15421. (+ x3 y2)))
  15422. (define (main) : Integer
  15423. (let ([y2 (read)])
  15424. (let ([f4 (Closure 1 (list (fun-ref lambda5 1) y2))])
  15425. ((vector-ref f4 0) f4 21))))
  15426. \end{lstlisting}
  15427. \fi}
  15428. {\if\edition\pythonEd
  15429. \begin{lstlisting}
  15430. def lambda_3(fvs_4:tuple[bot,tuple[int]], x_2:int) -> int:
  15431. y_1 = fvs_4[1]
  15432. return x_2 + y_1[0]
  15433. def main() -> int:
  15434. y_1 = (777,)
  15435. y_1[0] = input_int()
  15436. f_0 = (lambda_3, y_1)
  15437. print((let clos_5 = f_0 in clos_5[0](clos_5, 21)))
  15438. return 0
  15439. \end{lstlisting}
  15440. \fi}
  15441. %
  15442. \noindent but we can instead compile the application
  15443. \CAPPLY{\code{f}}{\code{21}} into a direct call:
  15444. %
  15445. {\if\edition\racketEd
  15446. \begin{lstlisting}
  15447. (define (main) : Integer
  15448. (let ([y2 (read)])
  15449. (let ([f4 (Closure 1 (list (fun-ref lambda5 1) y2))])
  15450. ((fun-ref lambda5 1) f4 21))))
  15451. \end{lstlisting}
  15452. \fi}
  15453. {\if\edition\pythonEd
  15454. \begin{lstlisting}
  15455. def main() -> int:
  15456. y_1 = (777,)
  15457. y_1[0] = input_int()
  15458. f_0 = (lambda_3, y_1)
  15459. print(lambda_3(f_0, 21))
  15460. return 0
  15461. \end{lstlisting}
  15462. \fi}
  15463. The problem of determining which \code{lambda} will be called from a
  15464. particular application is quite challenging in general and the topic
  15465. of considerable research~\citep{Shivers:1988aa,Gilray:2016aa}. For the
  15466. following exercise we recommend that you compile an application to a
  15467. direct call when the operator is a variable and \racket{the variable
  15468. is \code{let}-bound to a closure}\python{the previous assignment to
  15469. the variable is a closure}. This can be accomplished by maintaining
  15470. an environment mapping variables to function names. Extend the
  15471. environment whenever you encounter a closure on the right-hand side of
  15472. a \racket{\code{let}}\python{assignment}, mapping the variable to the
  15473. name of the global function for the closure. This pass should come
  15474. after closure conversion.
  15475. \begin{exercise}\normalfont\normalsize
  15476. Implement a compiler pass, named \code{optimize\_known\_calls}, that
  15477. compiles known calls into direct calls. Verify that your compiler is
  15478. successful in this regard on several example programs.
  15479. \end{exercise}
  15480. These exercises only scratches the surface of optimizing of
  15481. closures. A good next step for the interested reader is to look at the
  15482. work of \citet{Keep:2012ab}.
  15483. \section{Further Reading}
  15484. The notion of lexically scoped functions predates modern computers by
  15485. about a decade. They were invented by \citet{Church:1932aa}, who
  15486. proposed the lambda calculus as a foundation for logic. Anonymous
  15487. functions were included in the LISP~\citep{McCarthy:1960dz}
  15488. programming language but were initially dynamically scoped. The Scheme
  15489. dialect of LISP adopted lexical scoping and
  15490. \citet{Guy-L.-Steele:1978yq} demonstrated how to efficiently compile
  15491. Scheme programs. However, environments were represented as linked
  15492. lists, so variable look-up was linear in the size of the
  15493. environment. \citet{Appel91} gives a detailed description of several
  15494. closure representations. In this chapter we represent environments
  15495. using flat closures, which were invented by
  15496. \citet{Cardelli:1983aa,Cardelli:1984aa} for the purposes of compiling
  15497. the ML language~\citep{Gordon:1978aa,Milner:1990fk}. With flat
  15498. closures, variable look-up is constant time but the time to create a
  15499. closure is proportional to the number of its free variables. Flat
  15500. closures were reinvented by \citet{Dybvig:1987ab} in his Ph.D. thesis
  15501. and used in Chez Scheme version 1~\citep{Dybvig:2006aa}.
  15502. % todo: related work on assignment conversion (e.g. orbit and rabbit
  15503. % compilers)
  15504. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  15505. \chapter{Dynamic Typing}
  15506. \label{ch:Ldyn}
  15507. \index{subject}{dynamic typing}
  15508. In this chapter we learn how to compile \LangDyn{}, a dynamically
  15509. typed language that is a subset of \racket{Racket}\python{Python}. The
  15510. focus on dynamic typing is in contrast to the previous chapters, which
  15511. have studied the compilation of statically typed languages. In
  15512. dynamically typed languages such as \LangDyn{}, a particular
  15513. expression may produce a value of a different type each time it is
  15514. executed. Consider the following example with a conditional \code{if}
  15515. expression that may return a Boolean or an integer depending on the
  15516. input to the program.
  15517. % part of dynamic_test_25.rkt
  15518. {\if\edition\racketEd
  15519. \begin{lstlisting}
  15520. (not (if (eq? (read) 1) #f 0))
  15521. \end{lstlisting}
  15522. \fi}
  15523. {\if\edition\pythonEd
  15524. \begin{lstlisting}
  15525. not (False if input_int() == 1 else 0)
  15526. \end{lstlisting}
  15527. \fi}
  15528. Languages that allow expressions to produce different kinds of values
  15529. are called \emph{polymorphic}, a word composed of the Greek roots
  15530. ``poly'', meaning ``many'', and ``morph'', meaning ``form''. There
  15531. are several kinds of polymorphism in programming languages, such as
  15532. subtype polymorphism and parametric
  15533. polymorphism~\citep{Cardelli:1985kx}. The kind of polymorphism we
  15534. study in this chapter does not have a special name but it is the kind
  15535. that arises in dynamically typed languages.
  15536. Another characteristic of dynamically typed languages is that
  15537. primitive operations, such as \code{not}, are often defined to operate
  15538. on many different types of values. In fact, in
  15539. \racket{Racket}\python{Python}, the \code{not} operator produces a
  15540. result for any kind of value: given \FALSE{} it returns \TRUE{} and
  15541. given anything else it returns \FALSE{}.
  15542. Furthermore, even when primitive operations restrict their inputs to
  15543. values of a certain type, this restriction is enforced at runtime
  15544. instead of during compilation. For example, the tuple read
  15545. operation
  15546. \racket{\code{(vector-ref \#t 0)}}
  15547. \python{\code{True[0]}}
  15548. results in a run-time error because the first argument must
  15549. be a tuple, not a Boolean.
  15550. \section{The \LangDyn{} Language}
  15551. \newcommand{\LdynGrammarRacket}{
  15552. \begin{array}{rcl}
  15553. \Exp &::=& \LP\Exp \; \Exp\ldots\RP
  15554. \MID \LP\key{lambda}\;\LP\Var\ldots\RP\;\Exp\RP \\
  15555. & \MID & \LP\key{boolean?}\;\Exp\RP \MID \LP\key{integer?}\;\Exp\RP\\
  15556. & \MID & \LP\key{vector?}\;\Exp\RP \MID \LP\key{procedure?}\;\Exp\RP \MID \LP\key{void?}\;\Exp\RP \\
  15557. \Def &::=& \LP\key{define}\; \LP\Var \; \Var\ldots\RP \; \Exp\RP
  15558. \end{array}
  15559. }
  15560. \newcommand{\LdynASTRacket}{
  15561. \begin{array}{lcl}
  15562. \Exp &::=& \APPLY{\Exp}{\Exp\ldots}
  15563. \MID \LAMBDA{\LP\Var\ldots\RP}{\code{'Any}}{\Exp}\\
  15564. \Def &::=& \FUNDEF{\Var}{\LP\Var\ldots\RP}{\code{'Any}}{\code{'()}}{\Exp}
  15565. \end{array}
  15566. }
  15567. \begin{figure}[tp]
  15568. \centering
  15569. \begin{tcolorbox}[colback=white]
  15570. \small
  15571. {\if\edition\racketEd
  15572. \[
  15573. \begin{array}{l}
  15574. \gray{\LintGrammarRacket{}} \\ \hline
  15575. \gray{\LvarGrammarRacket{}} \\ \hline
  15576. \gray{\LifGrammarRacket{}} \\ \hline
  15577. \gray{\LwhileGrammarRacket} \\ \hline
  15578. \gray{\LtupGrammarRacket} \\ \hline
  15579. \LdynGrammarRacket \\
  15580. \begin{array}{rcl}
  15581. \LangDynM{} &::=& \Def\ldots\; \Exp
  15582. \end{array}
  15583. \end{array}
  15584. \]
  15585. \fi}
  15586. {\if\edition\pythonEd
  15587. \[
  15588. \begin{array}{rcl}
  15589. \itm{cmp} &::= & \key{==} \MID \key{!=} \MID \key{<} \MID \key{<=} \MID \key{>} \MID \key{>=} \MID \key{is} \\
  15590. \Exp &::=& \Int \MID \key{input\_int}\LP\RP \MID \key{-}\;\Exp \MID \Exp \; \key{+} \; \Exp \MID \Exp \; \key{-} \; \Exp \MID \LP\Exp\RP \\
  15591. &\MID& \Var{} \MID \TRUE \MID \FALSE \MID \CAND{\Exp}{\Exp}
  15592. \MID \COR{\Exp}{\Exp} \MID \key{not}~\Exp \\
  15593. &\MID& \CCMP{\itm{cmp}}{\Exp}{\Exp}
  15594. \MID \CIF{\Exp}{\Exp}{\Exp} \\
  15595. &\MID& \Exp \key{,} \ldots \key{,} \Exp \MID \CGET{\Exp}{\Exp}
  15596. \MID \CLEN{\Exp} \\
  15597. &\MID& \CAPPLY{\Exp}{\Exp\code{,} \ldots}
  15598. \MID \CLAMBDA{\Var\code{, }\ldots}{\Exp}\\
  15599. \Stmt &::=& \key{print}\LP \Exp \RP \MID \Exp
  15600. \MID \Var\mathop{\key{=}}\Exp \\
  15601. &\MID& \key{if}~ \Exp \key{:}~ \Stmt^{+} ~\key{else:}~ \Stmt^{+}
  15602. \MID \key{while}~ \Exp \key{:}~ \Stmt^{+} \\
  15603. &\MID& \CRETURN{\Exp} \\
  15604. \Def &::=& \CDEFU{\Var}{\Var{,} \ldots}{\Stmt^{+}} \\
  15605. \LangDynM{} &::=& \Def\ldots \Stmt\ldots
  15606. \end{array}
  15607. \]
  15608. \fi}
  15609. \end{tcolorbox}
  15610. \caption{Syntax of \LangDyn{}, an untyped language (a subset of \racket{Racket}\python{Python}).}
  15611. \label{fig:r7-concrete-syntax}
  15612. \end{figure}
  15613. \begin{figure}[tp]
  15614. \centering
  15615. \begin{tcolorbox}[colback=white]
  15616. \small
  15617. {\if\edition\racketEd
  15618. \[
  15619. \begin{array}{l}
  15620. \gray{\LintASTRacket{}} \\ \hline
  15621. \gray{\LvarASTRacket{}} \\ \hline
  15622. \gray{\LifASTRacket{}} \\ \hline
  15623. \gray{\LwhileASTRacket} \\ \hline
  15624. \gray{\LtupASTRacket} \\ \hline
  15625. \LdynASTRacket \\
  15626. \begin{array}{lcl}
  15627. \LangDynM{} &::=& \PROGRAMDEFSEXP{\code{'()}}{\LP\Def\ldots\RP}{\Exp}
  15628. \end{array}
  15629. \end{array}
  15630. \]
  15631. \fi}
  15632. {\if\edition\pythonEd
  15633. \[
  15634. \begin{array}{rcl}
  15635. \itm{binaryop} &::= & \code{Add()} \MID \code{Sub()} \\
  15636. \itm{unaryop} &::= & \code{USub()} \MID \code{Not()} \\
  15637. \itm{boolop} &::=& \code{And()} \MID \code{Or()} \\
  15638. \itm{cmp} &::= & \code{Eq()} \MID \code{NotEq()} \MID \code{Lt()}
  15639. \MID \code{LtE()} \MID \code{Gt()} \MID \code{GtE()} \\
  15640. &\MID & \code{Is()} \\
  15641. \itm{bool} &::=& \code{True} \MID \code{False} \\
  15642. \Exp{} &::=& \INT{\Int} \MID \READ{} \\
  15643. &\MID& \UNIOP{\itm{unaryop}}{\Exp}
  15644. \MID \BINOP{\Exp}{\itm{binaryop}}{\Exp}
  15645. \MID \VAR{\Var{}} \\
  15646. &\MID& \BOOL{\itm{bool}}
  15647. \MID \BOOLOP{\itm{boolop}}{\Exp}{\Exp}\\
  15648. &\MID& \CMP{\Exp}{\itm{cmp}}{\Exp} \MID \IF{\Exp}{\Exp}{\Exp} \\
  15649. &\MID& \TUPLE{\Exp^{+}} \MID \GET{\Exp}{\Exp} \\
  15650. &\MID& \LEN{\Exp} \\
  15651. &\MID& \CALL{\Exp}{\Exp^{*}} \MID \LAMBDA{\Var^{*}}{\Exp} \\
  15652. \Stmt{} &::=& \PRINT{\Exp} \MID \EXPR{\Exp} \\
  15653. &\MID& \ASSIGN{\VAR{\Var}}{\Exp}\\
  15654. &\MID& \IFSTMT{\Exp}{\Stmt^{+}}{\Stmt^{+}}
  15655. \MID \WHILESTMT{\Exp}{\Stmt^{+}}\\
  15656. &\MID& \RETURN{\Exp} \\
  15657. \Params &::=& \LP\Var\key{,}\code{AnyType()}\RP^* \\
  15658. \Def &::=& \FUNDEF{\Var}{\Params}{\code{AnyType()}}{}{\Stmt^{+}} \\
  15659. \LangDynM{} &::=& \PROGRAM{}{\LS \Def \ldots \Stmt \ldots \RS}
  15660. \end{array}
  15661. \]
  15662. \fi}
  15663. \end{tcolorbox}
  15664. \caption{The abstract syntax of \LangDyn{}.}
  15665. \label{fig:r7-syntax}
  15666. \end{figure}
  15667. The concrete and abstract syntax of \LangDyn{} is defined in
  15668. Figures~\ref{fig:r7-concrete-syntax} and \ref{fig:r7-syntax}.
  15669. %
  15670. There is no type checker for \LangDyn{} because it only checks types
  15671. at runtime.
  15672. The definitional interpreter for \LangDyn{} is presented in
  15673. \racket{Figure~\ref{fig:interp-Ldyn}}
  15674. \python{Figures~\ref{fig:interp-Ldyn} and \ref{fig:interp-Ldyn-2}}
  15675. and its auxiliary functions are defined in
  15676. Figure~\ref{fig:interp-Ldyn-aux}. Consider the match case for
  15677. \INT{n}. Instead of simply returning the integer \code{n} (as
  15678. in the interpreter for \LangVar{} in Figure~\ref{fig:interp-Lvar}), the
  15679. interpreter for \LangDyn{} creates a \emph{tagged value}\index{subject}{tagged
  15680. value} that combines an underlying value with a tag that identifies
  15681. what kind of value it is. We define the following \racket{struct}\python{class}
  15682. to represented tagged values.
  15683. %
  15684. {\if\edition\racketEd
  15685. \begin{lstlisting}
  15686. (struct Tagged (value tag) #:transparent)
  15687. \end{lstlisting}
  15688. \fi}
  15689. {\if\edition\pythonEd
  15690. \begin{minipage}{\textwidth}
  15691. \begin{lstlisting}
  15692. @dataclass(eq=True)
  15693. class Tagged(Value):
  15694. value : Value
  15695. tag : str
  15696. def __str__(self):
  15697. return str(self.value)
  15698. \end{lstlisting}
  15699. \end{minipage}
  15700. \fi}
  15701. %
  15702. \racket{The tags are \code{Integer}, \BOOLTY{}, \code{Void},
  15703. \code{Vector}, and \code{Procedure}.}
  15704. %
  15705. \python{The tags are \code{'int'}, \code{'bool'}, \code{'none'},
  15706. \code{'tuple'}, and \code{'function'}.}
  15707. %
  15708. Tags are closely related to types but don't always capture all the
  15709. information that a type does.
  15710. %
  15711. \racket{For example, a vector of type \code{(Vector Any Any)} is
  15712. tagged with \code{Vector} and a procedure of type \code{(Any Any ->
  15713. Any)} is tagged with \code{Procedure}.}
  15714. %
  15715. \python{For example, a tuple of type \code{TupleType([AnyType(),AnyType()])}
  15716. is tagged with \code{'tuple'} and a function of type
  15717. \code{FunctionType([AnyType(), AnyType()], AnyType())}
  15718. is tagged with \code{'function'}.}
  15719. Next consider the match case for accessing the element of a tuple.
  15720. The \racket{\code{check-tag}}\python{\code{untag}} auxiliary function
  15721. (Figure~\ref{fig:interp-Ldyn-aux}) is used to ensure that the first
  15722. argument is a tuple and the second is an integer.
  15723. \racket{
  15724. If they are not, a \code{trapped-error} is raised. Recall from
  15725. Section~\ref{sec:interp_Lint} that when a definition interpreter
  15726. raises a \code{trapped-error} error, the compiled code must also
  15727. signal an error by exiting with return code \code{255}. A
  15728. \code{trapped-error} is also raised if the index is not less than the
  15729. length of the vector.
  15730. }
  15731. %
  15732. \python{If they are not, an exception is raised. The compiled code
  15733. must also signal an error by exiting with return code \code{255}. A
  15734. exception is also raised if the index is not less than the length of the
  15735. tuple or if it is negative.}
  15736. \begin{figure}[tbp]
  15737. \begin{tcolorbox}[colback=white]
  15738. {\if\edition\racketEd
  15739. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  15740. (define ((interp-Ldyn-exp env) ast)
  15741. (define recur (interp-Ldyn-exp env))
  15742. (match ast
  15743. [(Var x) (dict-ref env x)]
  15744. [(Int n) (Tagged n 'Integer)]
  15745. [(Bool b) (Tagged b 'Boolean)]
  15746. [(Lambda xs rt body)
  15747. (Tagged `(function ,xs ,body ,env) 'Procedure)]
  15748. [(Prim 'vector es)
  15749. (Tagged (apply vector (for/list ([e es]) (recur e))) 'Vector)]
  15750. [(Prim 'vector-ref (list e1 e2))
  15751. (define vec (recur e1)) (define i (recur e2))
  15752. (check-tag vec 'Vector ast) (check-tag i 'Integer ast)
  15753. (unless (< (Tagged-value i) (vector-length (Tagged-value vec)))
  15754. (error 'trapped-error "index ~a too big\nin ~v" (Tagged-value i) ast))
  15755. (vector-ref (Tagged-value vec) (Tagged-value i))]
  15756. [(Prim 'vector-set! (list e1 e2 e3))
  15757. (define vec (recur e1)) (define i (recur e2)) (define arg (recur e3))
  15758. (check-tag vec 'Vector ast) (check-tag i 'Integer ast)
  15759. (unless (< (Tagged-value i) (vector-length (Tagged-value vec)))
  15760. (error 'trapped-error "index ~a too big\nin ~v" (Tagged-value i) ast))
  15761. (vector-set! (Tagged-value vec) (Tagged-value i) arg)
  15762. (Tagged (void) 'Void)]
  15763. [(Let x e body) ((interp-Ldyn-exp (cons (cons x (recur e)) env)) body)]
  15764. [(Prim 'and (list e1 e2)) (recur (If e1 e2 (Bool #f)))]
  15765. [(Prim 'or (list e1 e2))
  15766. (define v1 (recur e1))
  15767. (match (Tagged-value v1) [#f (recur e2)] [else v1])]
  15768. [(Prim 'eq? (list l r)) (Tagged (equal? (recur l) (recur r)) 'Boolean)]
  15769. [(Prim op (list e1))
  15770. #:when (set-member? type-predicates op)
  15771. (tag-value ((interp-op op) (Tagged-value (recur e1))))]
  15772. [(Prim op es)
  15773. (define args (map recur es))
  15774. (define tags (for/list ([arg args]) (Tagged-tag arg)))
  15775. (unless (for/or ([expected-tags (op-tags op)])
  15776. (equal? expected-tags tags))
  15777. (error 'trapped-error "illegal argument tags ~a\nin ~v" tags ast))
  15778. (tag-value
  15779. (apply (interp-op op) (for/list ([a args]) (Tagged-value a))))]
  15780. [(If q t f)
  15781. (match (Tagged-value (recur q)) [#f (recur f)] [else (recur t)])]
  15782. [(Apply f es)
  15783. (define new-f (recur f)) (define args (map recur es))
  15784. (check-tag new-f 'Procedure ast) (define f-val (Tagged-value new-f))
  15785. (match f-val
  15786. [`(function ,xs ,body ,lam-env)
  15787. (unless (eq? (length xs) (length args))
  15788. (error 'trapped-error "~a != ~a\nin ~v" (length args) (length xs) ast))
  15789. (define new-env (append (map cons xs args) lam-env))
  15790. ((interp-Ldyn-exp new-env) body)]
  15791. [else (error "interp-Ldyn-exp, expected function, not" f-val)])]))
  15792. \end{lstlisting}
  15793. \fi}
  15794. {\if\edition\pythonEd
  15795. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  15796. class InterpLdyn(InterpLlambda):
  15797. def interp_exp(self, e, env):
  15798. match e:
  15799. case Constant(n):
  15800. return self.tag(super().interp_exp(e, env))
  15801. case Tuple(es, Load()):
  15802. return self.tag(super().interp_exp(e, env))
  15803. case Lambda(params, body):
  15804. return self.tag(super().interp_exp(e, env))
  15805. case Call(Name('input_int'), []):
  15806. return self.tag(super().interp_exp(e, env))
  15807. case BinOp(left, Add(), right):
  15808. l = self.interp_exp(left, env); r = self.interp_exp(right, env)
  15809. return self.tag(self.untag(l, 'int', e) + self.untag(r, 'int', e))
  15810. case BinOp(left, Sub(), right):
  15811. l = self.interp_exp(left, env); r = self.interp_exp(right, env)
  15812. return self.tag(self.untag(l, 'int', e) - self.untag(r, 'int', e))
  15813. case UnaryOp(USub(), e1):
  15814. v = self.interp_exp(e1, env)
  15815. return self.tag(- self.untag(v, 'int', e))
  15816. case IfExp(test, body, orelse):
  15817. v = self.interp_exp(test, env)
  15818. if self.untag(v, 'bool', e):
  15819. return self.interp_exp(body, env)
  15820. else:
  15821. return self.interp_exp(orelse, env)
  15822. case UnaryOp(Not(), e1):
  15823. v = self.interp_exp(e1, env)
  15824. return self.tag(not self.untag(v, 'bool', e))
  15825. case BoolOp(And(), values):
  15826. left = values[0]; right = values[1]
  15827. l = self.interp_exp(left, env)
  15828. if self.untag(l, 'bool', e):
  15829. return self.interp_exp(right, env)
  15830. else:
  15831. return self.tag(False)
  15832. case BoolOp(Or(), values):
  15833. left = values[0]; right = values[1]
  15834. l = self.interp_exp(left, env)
  15835. if self.untag(l, 'bool', e):
  15836. return self.tag(True)
  15837. else:
  15838. return self.interp_exp(right, env)
  15839. case Compare(left, [cmp], [right]):
  15840. l = self.interp_exp(left, env)
  15841. r = self.interp_exp(right, env)
  15842. if l.tag == r.tag:
  15843. return self.tag(self.interp_cmp(cmp)(l.value, r.value))
  15844. else:
  15845. raise Exception('interp Compare unexpected '
  15846. + repr(l) + ' ' + repr(r))
  15847. case Subscript(tup, index, Load()):
  15848. t = self.interp_exp(tup, env)
  15849. n = self.interp_exp(index, env)
  15850. return self.untag(t, 'tuple', e)[self.untag(n, 'int', e)]
  15851. case Call(Name('len'), [tup]):
  15852. t = self.interp_exp(tup, env)
  15853. return self.tag(len(self.untag(t, 'tuple', e)))
  15854. case _:
  15855. return self.tag(super().interp_exp(e, env))
  15856. \end{lstlisting}
  15857. \fi}
  15858. \end{tcolorbox}
  15859. \caption{Interpreter for the \LangDyn{} language\python{, part 1}.}
  15860. \label{fig:interp-Ldyn}
  15861. \end{figure}
  15862. {\if\edition\pythonEd
  15863. \begin{figure}[tbp]
  15864. \begin{tcolorbox}[colback=white]
  15865. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  15866. class InterpLdyn(InterpLlambda):
  15867. def interp_stmts(self, ss, env):
  15868. if len(ss) == 0:
  15869. return
  15870. match ss[0]:
  15871. case If(test, body, orelse):
  15872. v = self.interp_exp(test, env)
  15873. if self.untag(v, 'bool', ss[0]):
  15874. return self.interp_stmts(body + ss[1:], env)
  15875. else:
  15876. return self.interp_stmts(orelse + ss[1:], env)
  15877. case While(test, body, []):
  15878. while self.untag(self.interp_exp(test, env), 'bool', ss[0]):
  15879. self.interp_stmts(body, env)
  15880. return self.interp_stmts(ss[1:], env)
  15881. case Assign([Subscript(tup, index)], value):
  15882. tup = self.interp_exp(tup, env)
  15883. index = self.interp_exp(index, env)
  15884. tup_v = self.untag(tup, 'tuple', ss[0])
  15885. index_v = self.untag(index, 'int', ss[0])
  15886. tup_v[index_v] = self.interp_exp(value, env)
  15887. return self.interp_stmts(ss[1:], env)
  15888. case FunctionDef(name, params, bod, dl, returns, comment):
  15889. ps = [x for (x,t) in params]
  15890. env[name] = self.tag(Function(name, ps, bod, env))
  15891. return self.interp_stmts(ss[1:], env)
  15892. case _:
  15893. return super().interp_stmts(ss, env)
  15894. \end{lstlisting}
  15895. \end{tcolorbox}
  15896. \caption{Interpreter for the \LangDyn{} language\python{, part 2}.}
  15897. \label{fig:interp-Ldyn-2}
  15898. \end{figure}
  15899. \fi}
  15900. \begin{figure}[tbp]
  15901. \begin{tcolorbox}[colback=white]
  15902. {\if\edition\racketEd
  15903. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  15904. (define (interp-op op)
  15905. (match op
  15906. ['+ fx+]
  15907. ['- fx-]
  15908. ['read read-fixnum]
  15909. ['not (lambda (v) (match v [#t #f] [#f #t]))]
  15910. ['< (lambda (v1 v2)
  15911. (cond [(and (fixnum? v1) (fixnum? v2)) (< v1 v2)]))]
  15912. ['<= (lambda (v1 v2)
  15913. (cond [(and (fixnum? v1) (fixnum? v2)) (<= v1 v2)]))]
  15914. ['> (lambda (v1 v2)
  15915. (cond [(and (fixnum? v1) (fixnum? v2)) (> v1 v2)]))]
  15916. ['>= (lambda (v1 v2)
  15917. (cond [(and (fixnum? v1) (fixnum? v2)) (>= v1 v2)]))]
  15918. ['boolean? boolean?]
  15919. ['integer? fixnum?]
  15920. ['void? void?]
  15921. ['vector? vector?]
  15922. ['vector-length vector-length]
  15923. ['procedure? (match-lambda
  15924. [`(functions ,xs ,body ,env) #t] [else #f])]
  15925. [else (error 'interp-op "unknown operator" op)]))
  15926. (define (op-tags op)
  15927. (match op
  15928. ['+ '((Integer Integer))]
  15929. ['- '((Integer Integer) (Integer))]
  15930. ['read '(())]
  15931. ['not '((Boolean))]
  15932. ['< '((Integer Integer))]
  15933. ['<= '((Integer Integer))]
  15934. ['> '((Integer Integer))]
  15935. ['>= '((Integer Integer))]
  15936. ['vector-length '((Vector))]))
  15937. (define type-predicates
  15938. (set 'boolean? 'integer? 'vector? 'procedure? 'void?))
  15939. (define (tag-value v)
  15940. (cond [(boolean? v) (Tagged v 'Boolean)]
  15941. [(fixnum? v) (Tagged v 'Integer)]
  15942. [(procedure? v) (Tagged v 'Procedure)]
  15943. [(vector? v) (Tagged v 'Vector)]
  15944. [(void? v) (Tagged v 'Void)]
  15945. [else (error 'tag-value "unidentified value ~a" v)]))
  15946. (define (check-tag val expected ast)
  15947. (define tag (Tagged-tag val))
  15948. (unless (eq? tag expected)
  15949. (error 'trapped-error "expected ~a, not ~a\nin ~v" expected tag ast)))
  15950. \end{lstlisting}
  15951. \fi}
  15952. {\if\edition\pythonEd
  15953. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  15954. class InterpLdyn(InterpLlambda):
  15955. def tag(self, v):
  15956. if v is True or v is False:
  15957. return Tagged(v, 'bool')
  15958. elif isinstance(v, int):
  15959. return Tagged(v, 'int')
  15960. elif isinstance(v, Function):
  15961. return Tagged(v, 'function')
  15962. elif isinstance(v, tuple):
  15963. return Tagged(v, 'tuple')
  15964. elif isinstance(v, type(None)):
  15965. return Tagged(v, 'none')
  15966. else:
  15967. raise Exception('tag: unexpected ' + repr(v))
  15968. def untag(self, v, expected_tag, ast):
  15969. match v:
  15970. case Tagged(val, tag) if tag == expected_tag:
  15971. return val
  15972. case _:
  15973. raise Exception('expected Tagged value with '
  15974. + expected_tag + ', not ' + ' ' + repr(v))
  15975. def apply_fun(self, fun, args, e):
  15976. f = self.untag(fun, 'function', e)
  15977. return super().apply_fun(f, args, e)
  15978. \end{lstlisting}
  15979. \fi}
  15980. \end{tcolorbox}
  15981. \caption{Auxiliary functions for the \LangDyn{} interpreter.}
  15982. \label{fig:interp-Ldyn-aux}
  15983. \end{figure}
  15984. \clearpage
  15985. \section{Representation of Tagged Values}
  15986. The interpreter for \LangDyn{} introduced a new kind of value, a tagged
  15987. value. To compile \LangDyn{} to x86 we must decide how to represent tagged
  15988. values at the bit level. Because almost every operation in \LangDyn{}
  15989. involves manipulating tagged values, the representation must be
  15990. efficient. Recall that all of our values are 64 bits. We shall steal
  15991. the 3 right-most bits to encode the tag. We use $001$ to identify
  15992. integers, $100$ for Booleans, $010$ for tuples, $011$ for procedures,
  15993. and $101$ for the void value\python{, \key{None}}. We define the following auxiliary
  15994. function for mapping types to tag codes.
  15995. {\if\edition\racketEd
  15996. \begin{align*}
  15997. \itm{tagof}(\key{Integer}) &= 001 \\
  15998. \itm{tagof}(\key{Boolean}) &= 100 \\
  15999. \itm{tagof}(\LP\key{Vector} \ldots\RP) &= 010 \\
  16000. \itm{tagof}(\LP\ldots \key{->} \ldots\RP) &= 011 \\
  16001. \itm{tagof}(\key{Void}) &= 101
  16002. \end{align*}
  16003. \fi}
  16004. {\if\edition\pythonEd
  16005. \begin{align*}
  16006. \itm{tagof}(\key{IntType()}) &= 001 \\
  16007. \itm{tagof}(\key{BoolType()}) &= 100 \\
  16008. \itm{tagof}(\key{TupleType(ts)}) &= 010 \\
  16009. \itm{tagof}(\key{FunctionType(ps, rt)}) &= 011 \\
  16010. \itm{tagof}(\key{type(None)}) &= 101
  16011. \end{align*}
  16012. \fi}
  16013. This stealing of 3 bits comes at some price: integers are now restricted
  16014. to the range from $-2^{60}$ to $2^{60}-1$. The stealing does not adversely
  16015. affect tuples and procedures because those values are addresses, and
  16016. our addresses are 8-byte aligned so the rightmost 3 bits are unused,
  16017. they are always $000$. Thus, we do not lose information by overwriting
  16018. the rightmost 3 bits with the tag and we can simply zero-out the tag
  16019. to recover the original address.
  16020. To make tagged values into first-class entities, we can give them a
  16021. type, called \racket{\code{Any}}\python{\code{AnyType()}}, and define
  16022. operations such as \code{Inject} and \code{Project} for creating and
  16023. using them, yielding the statically typed \LangAny{} intermediate
  16024. language. We describe how to compile \LangDyn{} to \LangAny{} in
  16025. Section~\ref{sec:compile-r7} but first we describe the \LangAny{}
  16026. language in greater detail.
  16027. \section{The \LangAny{} Language}
  16028. \label{sec:Rany-lang}
  16029. \newcommand{\LanyASTRacket}{
  16030. \begin{array}{lcl}
  16031. \Type &::= & \ANYTY \\
  16032. \FType &::=& \key{Integer} \MID \key{Boolean} \MID \key{Void}
  16033. \MID \LP\key{Vector}\; \ANYTY\ldots\RP
  16034. \MID \LP\ANYTY\ldots \; \key{->}\; \ANYTY\RP\\
  16035. \itm{op} &::= & \code{any-vector-length}
  16036. \MID \code{any-vector-ref} \MID \code{any-vector-set!}\\
  16037. &\MID& \code{boolean?} \MID \code{integer?} \MID \code{vector?}
  16038. \MID \code{procedure?} \MID \code{void?} \\
  16039. \Exp &::=& \INJECT{\Exp}{\FType} \MID \PROJECT{\Exp}{\FType}
  16040. \end{array}
  16041. }
  16042. \newcommand{\LanyASTPython}{
  16043. \begin{array}{lcl}
  16044. \Type &::= & \key{AnyType()} \\
  16045. \FType &::=& \key{IntType()} \MID \key{BoolType()} \MID \key{VoidType()}
  16046. \MID \key{TupleType}\LS\key{AnyType()}^+\RS \\
  16047. &\MID& \key{FunctionType}\LP \key{AnyType()}^{*}\key{, }\key{AnyType()}\RP \\
  16048. \Exp & ::= & \INJECT{\Exp}{\FType} \MID \PROJECT{\Exp}{\FType} \\
  16049. &\MID& \CALL{\VAR{\key{'any\_tuple\_load'}}}{\LS\Exp\key{, }\Exp\RS}\\
  16050. &\MID& \CALL{\VAR{\key{'any\_len'}}}{\LS\Exp\RS} \\
  16051. &\MID& \CALL{\VAR{\key{'arity'}}}{\LS\Exp\RS} \\
  16052. &\MID& \CALL{\VAR{\key{'make\_any'}}}{\LS\Exp\key{, }\INT{\Int}\RS}
  16053. %% &\MID& \CALL{\VAR{\key{'is\_int'}}}{\Exp}
  16054. %% \MID \CALL{\VAR{\key{'is\_bool'}}}{\Exp} \\
  16055. %% &\MID& \CALL{\VAR{\key{'is\_none'}}}{\Exp}
  16056. %% \MID \CALL{\VAR{\key{'is\_tuple'}}}{\Exp} \\
  16057. %% &\MID& \CALL{\VAR{\key{'is\_function'}}}{\Exp}
  16058. \end{array}
  16059. }
  16060. \begin{figure}[tp]
  16061. \centering
  16062. \begin{tcolorbox}[colback=white]
  16063. \small
  16064. {\if\edition\racketEd
  16065. \[
  16066. \begin{array}{l}
  16067. \gray{\LintOpAST} \\ \hline
  16068. \gray{\LvarASTRacket{}} \\ \hline
  16069. \gray{\LifASTRacket{}} \\ \hline
  16070. \gray{\LwhileASTRacket{}} \\ \hline
  16071. \gray{\LtupASTRacket{}} \\ \hline
  16072. \gray{\LfunASTRacket} \\ \hline
  16073. \gray{\LlambdaASTRacket} \\ \hline
  16074. \LanyASTRacket \\
  16075. \begin{array}{lcl}
  16076. \LangAnyM{} &::=& \PROGRAMDEFSEXP{\code{'()}}{\LP\Def\ldots\RP}{\Exp}
  16077. \end{array}
  16078. \end{array}
  16079. \]
  16080. \fi}
  16081. {\if\edition\pythonEd
  16082. \[
  16083. \begin{array}{l}
  16084. \gray{\LintASTPython} \\ \hline
  16085. \gray{\LvarASTPython{}} \\ \hline
  16086. \gray{\LifASTPython{}} \\ \hline
  16087. \gray{\LwhileASTPython{}} \\ \hline
  16088. \gray{\LtupASTPython{}} \\ \hline
  16089. \gray{\LfunASTPython} \\ \hline
  16090. \gray{\LlambdaASTPython} \\ \hline
  16091. \LanyASTPython \\
  16092. \begin{array}{lcl}
  16093. \LangAnyM{} &::=& \PROGRAM{}{\LS \Def \ldots \Stmt \ldots \RS}
  16094. \end{array}
  16095. \end{array}
  16096. \]
  16097. \fi}
  16098. \end{tcolorbox}
  16099. \caption{The abstract syntax of \LangAny{}, extending \LangLam{} (Figure~\ref{fig:Llam-syntax}).}
  16100. \label{fig:Lany-syntax}
  16101. \end{figure}
  16102. The abstract syntax of \LangAny{} is defined in Figure~\ref{fig:Lany-syntax}.
  16103. %% \racket{(The concrete syntax of \LangAny{} is in the Appendix,
  16104. %% Figure~\ref{fig:Lany-concrete-syntax}.)}
  16105. The $\INJECT{e}{T}$ form
  16106. converts the value produced by expression $e$ of type $T$ into a
  16107. tagged value. The $\PROJECT{e}{T}$ form converts the tagged value
  16108. produced by expression $e$ into a value of type $T$ or halts the
  16109. program if the type tag does not match $T$.
  16110. %
  16111. Note that in both \code{Inject} and \code{Project}, the type $T$ is
  16112. restricted to a flat type $\FType$, which simplifies the
  16113. implementation and corresponds with the needs for compiling \LangDyn{}.
  16114. The \racket{\code{any-vector}} operators
  16115. \python{\code{any\_tuple\_load} and \code{any\_len}}
  16116. adapt the tuple operations so that they can be applied to a value of
  16117. type \racket{\code{Any}}\python{\code{AnyType}}. They also generalize the
  16118. tuple operations in that the index is not restricted to be a literal
  16119. integer in the grammar but is allowed to be any expression.
  16120. \racket{The type predicates such as
  16121. \racket{\key{boolean?}}\python{\key{is\_bool}} expect their argument
  16122. to produce a tagged value; they return {\TRUE} if the tag corresponds to
  16123. the predicate and they return {\FALSE} otherwise.}
  16124. The type checker for \LangAny{} is shown in
  16125. Figure~\ref{fig:type-check-Lany}
  16126. %
  16127. \racket{ and uses the auxiliary functions in
  16128. Figure~\ref{fig:type-check-Lany-aux}}.
  16129. %
  16130. The interpreter for \LangAny{} is in Figure~\ref{fig:interp-Lany} and
  16131. its auxiliary functions are in Figure~\ref{fig:interp-Lany-aux}.
  16132. \begin{figure}[btp]
  16133. \begin{tcolorbox}[colback=white]
  16134. {\if\edition\racketEd
  16135. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  16136. (define type-check-Lany-class
  16137. (class type-check-Llambda-class
  16138. (super-new)
  16139. (inherit check-type-equal?)
  16140. (define/override (type-check-exp env)
  16141. (lambda (e)
  16142. (define recur (type-check-exp env))
  16143. (match e
  16144. [(Inject e1 ty)
  16145. (unless (flat-ty? ty)
  16146. (error 'type-check "may only inject from flat type, not ~a" ty))
  16147. (define-values (new-e1 e-ty) (recur e1))
  16148. (check-type-equal? e-ty ty e)
  16149. (values (Inject new-e1 ty) 'Any)]
  16150. [(Project e1 ty)
  16151. (unless (flat-ty? ty)
  16152. (error 'type-check "may only project to flat type, not ~a" ty))
  16153. (define-values (new-e1 e-ty) (recur e1))
  16154. (check-type-equal? e-ty 'Any e)
  16155. (values (Project new-e1 ty) ty)]
  16156. [(Prim 'any-vector-length (list e1))
  16157. (define-values (e1^ t1) (recur e1))
  16158. (check-type-equal? t1 'Any e)
  16159. (values (Prim 'any-vector-length (list e1^)) 'Integer)]
  16160. [(Prim 'any-vector-ref (list e1 e2))
  16161. (define-values (e1^ t1) (recur e1))
  16162. (define-values (e2^ t2) (recur e2))
  16163. (check-type-equal? t1 'Any e)
  16164. (check-type-equal? t2 'Integer e)
  16165. (values (Prim 'any-vector-ref (list e1^ e2^)) 'Any)]
  16166. [(Prim 'any-vector-set! (list e1 e2 e3))
  16167. (define-values (e1^ t1) (recur e1))
  16168. (define-values (e2^ t2) (recur e2))
  16169. (define-values (e3^ t3) (recur e3))
  16170. (check-type-equal? t1 'Any e)
  16171. (check-type-equal? t2 'Integer e)
  16172. (check-type-equal? t3 'Any e)
  16173. (values (Prim 'any-vector-set! (list e1^ e2^ e3^)) 'Void)]
  16174. [(Prim pred (list e1))
  16175. #:when (set-member? (type-predicates) pred)
  16176. (define-values (new-e1 e-ty) (recur e1))
  16177. (check-type-equal? e-ty 'Any e)
  16178. (values (Prim pred (list new-e1)) 'Boolean)]
  16179. [(Prim 'eq? (list arg1 arg2))
  16180. (define-values (e1 t1) (recur arg1))
  16181. (define-values (e2 t2) (recur arg2))
  16182. (match* (t1 t2)
  16183. [(`(Vector ,ts1 ...) `(Vector ,ts2 ...)) (void)]
  16184. [(other wise) (check-type-equal? t1 t2 e)])
  16185. (values (Prim 'eq? (list e1 e2)) 'Boolean)]
  16186. [else ((super type-check-exp env) e)])))
  16187. ))
  16188. \end{lstlisting}
  16189. \fi}
  16190. {\if\edition\pythonEd
  16191. \begin{lstlisting}
  16192. class TypeCheckLany(TypeCheckLlambda):
  16193. def type_check_exp(self, e, env):
  16194. match e:
  16195. case Inject(value, typ):
  16196. self.check_exp(value, typ, env)
  16197. return AnyType()
  16198. case Project(value, typ):
  16199. self.check_exp(value, AnyType(), env)
  16200. return typ
  16201. case Call(Name('any_tuple_load'), [tup, index]):
  16202. self.check_exp(tup, AnyType(), env)
  16203. self.check_exp(index, IntType(), env)
  16204. return AnyType()
  16205. case Call(Name('any_len'), [tup]):
  16206. self.check_exp(tup, AnyType(), env)
  16207. return IntType()
  16208. case Call(Name('arity'), [fun]):
  16209. ty = self.type_check_exp(fun, env)
  16210. match ty:
  16211. case FunctionType(ps, rt):
  16212. return IntType()
  16213. case TupleType([FunctionType(ps,rs)]):
  16214. return IntType()
  16215. case _:
  16216. raise Exception('type_check_exp arity unexpected ' + repr(ty))
  16217. case Call(Name('make_any'), [value, tag]):
  16218. self.type_check_exp(value, env)
  16219. self.check_exp(tag, IntType(), env)
  16220. return AnyType()
  16221. case AnnLambda(params, returns, body):
  16222. new_env = {x:t for (x,t) in env.items()}
  16223. for (x,t) in params:
  16224. new_env[x] = t
  16225. return_t = self.type_check_exp(body, new_env)
  16226. self.check_type_equal(returns, return_t, e)
  16227. return FunctionType([t for (x,t) in params], return_t)
  16228. case _:
  16229. return super().type_check_exp(e, env)
  16230. \end{lstlisting}
  16231. \fi}
  16232. \end{tcolorbox}
  16233. \caption{Type checker for the \LangAny{} language.}
  16234. \label{fig:type-check-Lany}
  16235. \end{figure}
  16236. {\if\edition\racketEd
  16237. \begin{figure}[tbp]
  16238. \begin{tcolorbox}[colback=white]
  16239. \begin{lstlisting}
  16240. (define/override (operator-types)
  16241. (append
  16242. '((integer? . ((Any) . Boolean))
  16243. (vector? . ((Any) . Boolean))
  16244. (procedure? . ((Any) . Boolean))
  16245. (void? . ((Any) . Boolean)))
  16246. (super operator-types)))
  16247. (define/public (type-predicates)
  16248. (set 'boolean? 'integer? 'vector? 'procedure? 'void?))
  16249. (define/public (flat-ty? ty)
  16250. (match ty
  16251. [(or `Integer `Boolean `Void) #t]
  16252. [`(Vector ,ts ...) (for/and ([t ts]) (eq? t 'Any))]
  16253. ['(Vectorof Any) #t]
  16254. [`(,ts ... -> ,rt)
  16255. (and (eq? rt 'Any) (for/and ([t ts]) (eq? t 'Any)))]
  16256. [else #f]))
  16257. \end{lstlisting}
  16258. \end{tcolorbox}
  16259. \caption{Auxiliary methods for type checking \LangAny{}.}
  16260. \label{fig:type-check-Lany-aux}
  16261. \end{figure}
  16262. \fi}
  16263. \begin{figure}[btp]
  16264. \begin{tcolorbox}[colback=white]
  16265. {\if\edition\racketEd
  16266. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  16267. (define interp-Lany-class
  16268. (class interp-Llambda-class
  16269. (super-new)
  16270. (define/override (interp-op op)
  16271. (match op
  16272. ['boolean? (match-lambda
  16273. [`(tagged ,v1 ,tg) (equal? tg (any-tag 'Boolean))]
  16274. [else #f])]
  16275. ['integer? (match-lambda
  16276. [`(tagged ,v1 ,tg) (equal? tg (any-tag 'Integer))]
  16277. [else #f])]
  16278. ['vector? (match-lambda
  16279. [`(tagged ,v1 ,tg) (equal? tg (any-tag `(Vector Any)))]
  16280. [else #f])]
  16281. ['procedure? (match-lambda
  16282. [`(tagged ,v1 ,tg) (equal? tg (any-tag `(Any -> Any)))]
  16283. [else #f])]
  16284. ['eq? (match-lambda*
  16285. [`((tagged ,v1^ ,tg1) (tagged ,v2^ ,tg2))
  16286. (and (eq? v1^ v2^) (equal? tg1 tg2))]
  16287. [ls (apply (super interp-op op) ls)])]
  16288. ['any-vector-ref (lambda (v i)
  16289. (match v [`(tagged ,v^ ,tg) (vector-ref v^ i)]))]
  16290. ['any-vector-set! (lambda (v i a)
  16291. (match v [`(tagged ,v^ ,tg) (vector-set! v^ i a)]))]
  16292. ['any-vector-length (lambda (v)
  16293. (match v [`(tagged ,v^ ,tg) (vector-length v^)]))]
  16294. [else (super interp-op op)]))
  16295. (define/override ((interp-exp env) e)
  16296. (define recur (interp-exp env))
  16297. (match e
  16298. [(Inject e ty) `(tagged ,(recur e) ,(any-tag ty))]
  16299. [(Project e ty2) (apply-project (recur e) ty2)]
  16300. [else ((super interp-exp env) e)]))
  16301. ))
  16302. (define (interp-Lany p)
  16303. (send (new interp-Lany-class) interp-program p))
  16304. \end{lstlisting}
  16305. \fi}
  16306. {\if\edition\pythonEd
  16307. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  16308. class InterpLany(InterpLlambda):
  16309. def interp_exp(self, e, env):
  16310. match e:
  16311. case Inject(value, typ):
  16312. v = self.interp_exp(value, env)
  16313. return Tagged(v, self.type_to_tag(typ))
  16314. case Project(value, typ):
  16315. v = self.interp_exp(value, env)
  16316. match v:
  16317. case Tagged(val, tag) if self.type_to_tag(typ) == tag:
  16318. return val
  16319. case _:
  16320. raise Exception('interp project to ' + repr(typ)
  16321. + ' unexpected ' + repr(v))
  16322. case Call(Name('any_tuple_load'), [tup, index]):
  16323. tv = self.interp_exp(tup, env)
  16324. n = self.interp_exp(index, env)
  16325. match tv:
  16326. case Tagged(v, tag):
  16327. return v[n]
  16328. case _:
  16329. raise Exception('interp any_tuple_load unexpected ' + repr(tv))
  16330. case Call(Name('any_len'), [value]):
  16331. v = self.interp_exp(value, env)
  16332. match v:
  16333. case Tagged(value, tag):
  16334. return len(value)
  16335. case _:
  16336. raise Exception('interp any_len unexpected ' + repr(v))
  16337. case Call(Name('arity'), [fun]):
  16338. f = self.interp_exp(fun, env)
  16339. return self.arity(f)
  16340. case _:
  16341. return super().interp_exp(e, env)
  16342. \end{lstlisting}
  16343. \fi}
  16344. \end{tcolorbox}
  16345. \caption{Interpreter for \LangAny{}.}
  16346. \label{fig:interp-Lany}
  16347. \end{figure}
  16348. \begin{figure}[tbp]
  16349. \begin{tcolorbox}[colback=white]
  16350. {\if\edition\racketEd
  16351. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  16352. (define/public (apply-inject v tg) (Tagged v tg))
  16353. (define/public (apply-project v ty2)
  16354. (define tag2 (any-tag ty2))
  16355. (match v
  16356. [(Tagged v1 tag1)
  16357. (cond
  16358. [(eq? tag1 tag2)
  16359. (match ty2
  16360. [`(Vector ,ts ...)
  16361. (define l1 ((interp-op 'vector-length) v1))
  16362. (cond
  16363. [(eq? l1 (length ts)) v1]
  16364. [else (error 'apply-project "vector length mismatch, ~a != ~a"
  16365. l1 (length ts))])]
  16366. [`(,ts ... -> ,rt)
  16367. (match v1
  16368. [`(function ,xs ,body ,env)
  16369. (cond [(eq? (length xs) (length ts)) v1]
  16370. [else
  16371. (error 'apply-project "arity mismatch ~a != ~a"
  16372. (length xs) (length ts))])]
  16373. [else (error 'apply-project "expected function not ~a" v1)])]
  16374. [else v1])]
  16375. [else (error 'apply-project "tag mismatch ~a != ~a" tag1 tag2)])]
  16376. [else (error 'apply-project "expected tagged value, not ~a" v)]))
  16377. \end{lstlisting}
  16378. \fi}
  16379. {\if\edition\pythonEd
  16380. \begin{lstlisting}
  16381. class InterpLany(InterpLlambda):
  16382. def type_to_tag(self, typ):
  16383. match typ:
  16384. case FunctionType(params, rt):
  16385. return 'function'
  16386. case TupleType(fields):
  16387. return 'tuple'
  16388. case t if t == int:
  16389. return 'int'
  16390. case t if t == bool:
  16391. return 'bool'
  16392. case IntType():
  16393. return 'int'
  16394. case BoolType():
  16395. return 'int'
  16396. case _:
  16397. raise Exception('type_to_tag unexpected ' + repr(typ))
  16398. def arity(self, v):
  16399. match v:
  16400. case Function(name, params, body, env):
  16401. return len(params)
  16402. case ClosureTuple(args, arity):
  16403. return arity
  16404. case _:
  16405. raise Exception('Lany arity unexpected ' + repr(v))
  16406. \end{lstlisting}
  16407. \fi}
  16408. \end{tcolorbox}
  16409. \caption{Auxiliary functions for interpreting \LangAny{}.}
  16410. \label{fig:interp-Lany-aux}
  16411. \end{figure}
  16412. \clearpage
  16413. \section{Cast Insertion: Compiling \LangDyn{} to \LangAny{}}
  16414. \label{sec:compile-r7}
  16415. The \code{cast\_insert} pass compiles from \LangDyn{} to \LangAny{}.
  16416. Figure~\ref{fig:compile-r7-Lany} shows the compilation of many of the
  16417. \LangDyn{} forms into \LangAny{}. An important invariant of this pass
  16418. is that given any subexpression $e$ in the \LangDyn{} program, the
  16419. pass will produce an expression $e'$ in \LangAny{} that has type
  16420. \ANYTY{}. For example, the first row in
  16421. Figure~\ref{fig:compile-r7-Lany} shows the compilation of the Boolean
  16422. \TRUE{}, which must be injected to produce an expression of type
  16423. \ANYTY{}.
  16424. %
  16425. The second row of Figure~\ref{fig:compile-r7-Lany}, the compilation of
  16426. addition, is representative of compilation for many primitive
  16427. operations: the arguments have type \ANYTY{} and must be projected to
  16428. \INTTYPE{} before the addition can be performed.
  16429. The compilation of \key{lambda} (third row of
  16430. Figure~\ref{fig:compile-r7-Lany}) shows what happens when we need to
  16431. produce type annotations: we simply use \ANYTY{}.
  16432. %
  16433. % TODO:update the following for python, and the tests and interpreter. -Jeremy
  16434. \racket{The compilation of \code{if} and \code{eq?} demonstrate how
  16435. this pass has to account for some differences in behavior between
  16436. \LangDyn{} and \LangAny{}. The \LangDyn{} language is more
  16437. permissive than \LangAny{} regarding what kind of values can be used
  16438. in various places. For example, the condition of an \key{if} does
  16439. not have to be a Boolean. For \key{eq?}, the arguments need not be
  16440. of the same type (in that case the result is \code{\#f}).}
  16441. \begin{figure}[btp]
  16442. \centering
  16443. \begin{tcolorbox}[colback=white]
  16444. {\if\edition\racketEd
  16445. \begin{tabular}{lll}
  16446. \begin{minipage}{0.27\textwidth}
  16447. \begin{lstlisting}
  16448. #t
  16449. \end{lstlisting}
  16450. \end{minipage}
  16451. &
  16452. $\Rightarrow$
  16453. &
  16454. \begin{minipage}{0.65\textwidth}
  16455. \begin{lstlisting}
  16456. (inject #t Boolean)
  16457. \end{lstlisting}
  16458. \end{minipage}
  16459. \\[2ex]\hline
  16460. \begin{minipage}{0.27\textwidth}
  16461. \begin{lstlisting}
  16462. (+ |$e_1$| |$e_2$|)
  16463. \end{lstlisting}
  16464. \end{minipage}
  16465. &
  16466. $\Rightarrow$
  16467. &
  16468. \begin{minipage}{0.65\textwidth}
  16469. \begin{lstlisting}
  16470. (inject
  16471. (+ (project |$e'_1$| Integer)
  16472. (project |$e'_2$| Integer))
  16473. Integer)
  16474. \end{lstlisting}
  16475. \end{minipage}
  16476. \\[2ex]\hline
  16477. \begin{minipage}{0.27\textwidth}
  16478. \begin{lstlisting}
  16479. (lambda (|$x_1 \ldots$|) |$e$|)
  16480. \end{lstlisting}
  16481. \end{minipage}
  16482. &
  16483. $\Rightarrow$
  16484. &
  16485. \begin{minipage}{0.65\textwidth}
  16486. \begin{lstlisting}
  16487. (inject
  16488. (lambda: ([|$x_1$|:Any]|$\ldots$|):Any |$e'$|)
  16489. (Any|$\ldots$|Any -> Any))
  16490. \end{lstlisting}
  16491. \end{minipage}
  16492. \\[2ex]\hline
  16493. \begin{minipage}{0.27\textwidth}
  16494. \begin{lstlisting}
  16495. (|$e_0$| |$e_1 \ldots e_n$|)
  16496. \end{lstlisting}
  16497. \end{minipage}
  16498. &
  16499. $\Rightarrow$
  16500. &
  16501. \begin{minipage}{0.65\textwidth}
  16502. \begin{lstlisting}
  16503. ((project |$e'_0$| (Any|$\ldots$|Any -> Any)) |$e'_1 \ldots e'_n$|)
  16504. \end{lstlisting}
  16505. \end{minipage}
  16506. \\[2ex]\hline
  16507. \begin{minipage}{0.27\textwidth}
  16508. \begin{lstlisting}
  16509. (vector-ref |$e_1$| |$e_2$|)
  16510. \end{lstlisting}
  16511. \end{minipage}
  16512. &
  16513. $\Rightarrow$
  16514. &
  16515. \begin{minipage}{0.65\textwidth}
  16516. \begin{lstlisting}
  16517. (any-vector-ref |$e_1'$| (project |$e'_2$| Integer))
  16518. \end{lstlisting}
  16519. \end{minipage}
  16520. \\[2ex]\hline
  16521. \begin{minipage}{0.27\textwidth}
  16522. \begin{lstlisting}
  16523. (if |$e_1$| |$e_2$| |$e_3$|)
  16524. \end{lstlisting}
  16525. \end{minipage}
  16526. &
  16527. $\Rightarrow$
  16528. &
  16529. \begin{minipage}{0.65\textwidth}
  16530. \begin{lstlisting}
  16531. (if (eq? |$e'_1$| (inject #f Boolean)) |$e'_3$| |$e'_2$|)
  16532. \end{lstlisting}
  16533. \end{minipage}
  16534. \\[2ex]\hline
  16535. \begin{minipage}{0.27\textwidth}
  16536. \begin{lstlisting}
  16537. (eq? |$e_1$| |$e_2$|)
  16538. \end{lstlisting}
  16539. \end{minipage}
  16540. &
  16541. $\Rightarrow$
  16542. &
  16543. \begin{minipage}{0.65\textwidth}
  16544. \begin{lstlisting}
  16545. (inject (eq? |$e'_1$| |$e'_2$|) Boolean)
  16546. \end{lstlisting}
  16547. \end{minipage}
  16548. \\[2ex]\hline
  16549. \begin{minipage}{0.27\textwidth}
  16550. \begin{lstlisting}
  16551. (not |$e_1$|)
  16552. \end{lstlisting}
  16553. \end{minipage}
  16554. &
  16555. $\Rightarrow$
  16556. &
  16557. \begin{minipage}{0.65\textwidth}
  16558. \begin{lstlisting}
  16559. (if (eq? |$e'_1$| (inject #f Boolean))
  16560. (inject #t Boolean) (inject #f Boolean))
  16561. \end{lstlisting}
  16562. \end{minipage}
  16563. \end{tabular}
  16564. \fi}
  16565. {\if\edition\pythonEd
  16566. \hspace{-0.8em}\begin{tabular}{|lll|} \hline
  16567. \begin{minipage}{0.23\textwidth}
  16568. \begin{lstlisting}
  16569. True
  16570. \end{lstlisting}
  16571. \end{minipage}
  16572. &
  16573. $\Rightarrow$
  16574. &
  16575. \begin{minipage}{0.7\textwidth}
  16576. \begin{lstlisting}
  16577. Inject(True, BoolType())
  16578. \end{lstlisting}
  16579. \end{minipage}
  16580. \\[2ex]\hline
  16581. \begin{minipage}{0.23\textwidth}
  16582. \begin{lstlisting}
  16583. |$e_1$| + |$e_2$|
  16584. \end{lstlisting}
  16585. \end{minipage}
  16586. &
  16587. $\Rightarrow$
  16588. &
  16589. \begin{minipage}{0.7\textwidth}
  16590. \begin{lstlisting}
  16591. Inject(Project(|$e'_1$|, IntType())
  16592. + Project(|$e'_2$|, IntType()),
  16593. IntType())
  16594. \end{lstlisting}
  16595. \end{minipage}
  16596. \\[2ex]\hline
  16597. \begin{minipage}{0.23\textwidth}
  16598. \begin{lstlisting}
  16599. lambda |$x_1 \ldots$|: |$e$|
  16600. \end{lstlisting}
  16601. \end{minipage}
  16602. &
  16603. $\Rightarrow$
  16604. &
  16605. \begin{minipage}{0.7\textwidth}
  16606. \begin{lstlisting}
  16607. Inject(Lambda([(|$x_1$|,AnyType),|$\ldots$|], |$e'$|)
  16608. FunctionType([AnyType(),|$\ldots$|], AnyType()))
  16609. \end{lstlisting}
  16610. \end{minipage}
  16611. \\[2ex]\hline
  16612. \begin{minipage}{0.23\textwidth}
  16613. \begin{lstlisting}
  16614. |$e_0$|(|$e_1 \ldots e_n$|)
  16615. \end{lstlisting}
  16616. \end{minipage}
  16617. &
  16618. $\Rightarrow$
  16619. &
  16620. \begin{minipage}{0.7\textwidth}
  16621. \begin{lstlisting}
  16622. Call(Project(|$e'_0$|, FunctionType([AnyType(),|$\ldots$|],
  16623. AnyType())), |$e'_1, \ldots, e'_n$|)
  16624. \end{lstlisting}
  16625. \end{minipage}
  16626. \\[2ex]\hline
  16627. \begin{minipage}{0.23\textwidth}
  16628. \begin{lstlisting}
  16629. |$e_1$|[|$e_2$|]
  16630. \end{lstlisting}
  16631. \end{minipage}
  16632. &
  16633. $\Rightarrow$
  16634. &
  16635. \begin{minipage}{0.7\textwidth}
  16636. \begin{lstlisting}
  16637. Call(Name('any_tuple_load'),
  16638. [|$e_1'$|, Project(|$e_2'$|, IntType())])
  16639. \end{lstlisting}
  16640. \end{minipage}
  16641. %% \begin{minipage}{0.23\textwidth}
  16642. %% \begin{lstlisting}
  16643. %% |$e_2$| if |$e_1$| else |$e_3$|
  16644. %% \end{lstlisting}
  16645. %% \end{minipage}
  16646. %% &
  16647. %% $\Rightarrow$
  16648. %% &
  16649. %% \begin{minipage}{0.7\textwidth}
  16650. %% \begin{lstlisting}
  16651. %% (if (eq? |$e'_1$| (inject #f Boolean)) |$e'_3$| |$e'_2$|)
  16652. %% \end{lstlisting}
  16653. %% \end{minipage}
  16654. %% \\[2ex]\hline
  16655. %% \begin{minipage}{0.23\textwidth}
  16656. %% \begin{lstlisting}
  16657. %% (eq? |$e_1$| |$e_2$|)
  16658. %% \end{lstlisting}
  16659. %% \end{minipage}
  16660. %% &
  16661. %% $\Rightarrow$
  16662. %% &
  16663. %% \begin{minipage}{0.7\textwidth}
  16664. %% \begin{lstlisting}
  16665. %% (inject (eq? |$e'_1$| |$e'_2$|) Boolean)
  16666. %% \end{lstlisting}
  16667. %% \end{minipage}
  16668. %% \\[2ex]\hline
  16669. %% \begin{minipage}{0.23\textwidth}
  16670. %% \begin{lstlisting}
  16671. %% (not |$e_1$|)
  16672. %% \end{lstlisting}
  16673. %% \end{minipage}
  16674. %% &
  16675. %% $\Rightarrow$
  16676. %% &
  16677. %% \begin{minipage}{0.7\textwidth}
  16678. %% \begin{lstlisting}
  16679. %% (if (eq? |$e'_1$| (inject #f Boolean))
  16680. %% (inject #t Boolean) (inject #f Boolean))
  16681. %% \end{lstlisting}
  16682. %% \end{minipage}
  16683. %% \\[2ex]\hline
  16684. \\\hline
  16685. \end{tabular}
  16686. \fi}
  16687. \end{tcolorbox}
  16688. \caption{Cast Insertion}
  16689. \label{fig:compile-r7-Lany}
  16690. \end{figure}
  16691. \section{Reveal Casts}
  16692. \label{sec:reveal-casts-Lany}
  16693. % TODO: define R'_6
  16694. In the \code{reveal\_casts} pass we recommend compiling \code{Project}
  16695. into a conditional expression that checks whether the value's tag
  16696. matches the target type; if it does, the value is converted to a value
  16697. of the target type by removing the tag; if it does not, the program
  16698. exits.
  16699. %
  16700. {\if\edition\racketEd
  16701. %
  16702. To perform these actions we need a new primitive operation,
  16703. \code{tag-of-any}, and two new forms, \code{ValueOf} and \code{Exit}.
  16704. The \code{tag-of-any} operation retrieves the type tag from a tagged
  16705. value of type \code{Any}. The \code{ValueOf} form retrieves the
  16706. underlying value from a tagged value. The \code{ValueOf} form
  16707. includes the type for the underlying value which is used by the type
  16708. checker. Finally, the \code{Exit} form ends the execution of the
  16709. program.
  16710. %
  16711. \fi}
  16712. %
  16713. {\if\edition\pythonEd
  16714. %
  16715. To perform these actions we need the \code{exit} function (from the C
  16716. standard library) and two new AST classes: \code{TagOf} and
  16717. \code{ValueOf}. The \code{exit} function ends the execution of the
  16718. program. The \code{TagOf} operation retrieves the type tag from a
  16719. tagged value of type \ANYTY{}. The \code{ValueOf} operation retrieves
  16720. the underlying value from a tagged value. The \code{ValueOf}
  16721. operation includes the type for the underlying value which is used by
  16722. the type checker.
  16723. %
  16724. \fi}
  16725. If the target type of the projection is \BOOLTY{} or \INTTY{}, then
  16726. \code{Project} can be translated as follows.
  16727. \begin{center}
  16728. \begin{minipage}{1.0\textwidth}
  16729. {\if\edition\racketEd
  16730. \begin{lstlisting}
  16731. (Project |$e$| |$\FType$|)
  16732. |$\Rightarrow$|
  16733. (Let |$\itm{tmp}$| |$e'$|
  16734. (If (Prim 'eq? (list (Prim 'tag-of-any (list (Var |$\itm{tmp}$|)))
  16735. (Int |$\itm{tagof}(\FType)$|)))
  16736. (ValueOf |$\itm{tmp}$| |$\FType$|)
  16737. (Exit)))
  16738. \end{lstlisting}
  16739. \fi}
  16740. {\if\edition\pythonEd
  16741. \begin{lstlisting}
  16742. Project(|$e$|, |$\FType$|)
  16743. |$\Rightarrow$|
  16744. Begin([Assign([|$\itm{tmp}$|], |$e'$|)],
  16745. IfExp(Compare(TagOf(|$\itm{tmp}$|),[Eq()],
  16746. [Constant(|$\itm{tagof}(\FType)$|)]),
  16747. ValueOf(|$\itm{tmp}$|, |$\FType$|)
  16748. Call(Name('exit'), [])))
  16749. \end{lstlisting}
  16750. \fi}
  16751. \end{minipage}
  16752. \end{center}
  16753. If the target type of the projection is a tuple or function type, then
  16754. there is a bit more work to do. For tuples, check that the length of
  16755. the tuple type matches the length of the tuple. For functions, check
  16756. that the number of parameters in the function type matches the
  16757. function's arity.
  16758. Regarding \code{Inject}, we recommend compiling it to a slightly
  16759. lower-level primitive operation named \racket{\code{make-any}}\python{\code{make\_any}}. This operation
  16760. takes a tag instead of a type.
  16761. \begin{center}
  16762. \begin{minipage}{1.0\textwidth}
  16763. {\if\edition\racketEd
  16764. \begin{lstlisting}
  16765. (Inject |$e$| |$\FType$|)
  16766. |$\Rightarrow$|
  16767. (Prim 'make-any (list |$e'$| (Int |$\itm{tagof}(\FType)$|)))
  16768. \end{lstlisting}
  16769. \fi}
  16770. {\if\edition\pythonEd
  16771. \begin{lstlisting}
  16772. Inject(|$e$|, |$\FType$|)
  16773. |$\Rightarrow$|
  16774. Call(Name('make_any'), [|$e'$|, Constant(|$\itm{tagof}(\FType)$|)])
  16775. \end{lstlisting}
  16776. \fi}
  16777. \end{minipage}
  16778. \end{center}
  16779. {\if\edition\pythonEd
  16780. %
  16781. The introduction of \code{make\_any} makes it difficult to use
  16782. bidirectional type checking because we no longer have an expected type
  16783. to use for type checking the expression $e'$. Thus, we run into
  16784. difficulty if $e'$ is a \code{Lambda} expression. We recommend
  16785. translating \code{Lambda} to a new AST class \code{AnnLambda} (for
  16786. annotated lambda) whose parameters have type annotations and that
  16787. records the return type.
  16788. %
  16789. \fi}
  16790. \racket{The type predicates (\code{boolean?}, etc.) can be translated into
  16791. uses of \code{tag-of-any} and \code{eq?} in a similar way as in the
  16792. translation of \code{Project}.}
  16793. {\if\edition\racketEd
  16794. The \code{any-vector-ref} and \code{any-vector-set!} operations
  16795. combine the projection action with the vector operation. Also, the
  16796. read and write operations allow arbitrary expressions for the index so
  16797. the type checker for \LangAny{} (Figure~\ref{fig:type-check-Lany})
  16798. cannot guarantee that the index is within bounds. Thus, we insert code
  16799. to perform bounds checking at runtime. The translation for
  16800. \code{any-vector-ref} is as follows and the other two operations are
  16801. translated in a similar way.
  16802. \begin{center}
  16803. \begin{minipage}{0.95\textwidth}
  16804. \begin{lstlisting}
  16805. (Prim 'any-vector-ref (list |$e_1$| |$e_2$|))
  16806. |$\Rightarrow$|
  16807. (Let |$v$| |$e'_1$|
  16808. (Let |$i$| |$e'_2$|
  16809. (If (Prim 'eq? (list (Prim 'tag-of-any (list (Var |$v$|))) (Int 2)))
  16810. (If (Prim '< (list (Var |$i$|) (Prim 'any-vector-length (list (Var |$v$|)))))
  16811. (Prim 'any-vector-ref (list (Var |$v$|) (Var |$i$|)))
  16812. (Exit))
  16813. (Exit))))
  16814. \end{lstlisting}
  16815. \end{minipage}
  16816. \end{center}
  16817. \fi}
  16818. %
  16819. {\if\edition\pythonEd
  16820. %
  16821. The \code{any\_tuple\_load} operation combines the projection action
  16822. with the load operation. Also, the load operation allows arbitrary
  16823. expressions for the index so the type checker for \LangAny{}
  16824. (Figure~\ref{fig:type-check-Lany}) cannot guarantee that the index is
  16825. within bounds. Thus, we insert code to perform bounds checking at
  16826. runtime. The translation for \code{any\_tuple\_load} is as follows.
  16827. \begin{lstlisting}
  16828. Call(Name('any_tuple_load'), [|$e_1$|,|$e_2$|])
  16829. |$\Rightarrow$|
  16830. Block([Assign([|$t$|], |$e'_1$|), Assign([|$i$|], |$e'_2$|)],
  16831. IfExp(Compare(TagOf(|$t$|), [Eq()], [Constant(2)]),
  16832. IfExp(Compare(|$i$|, [Lt()], [Call(Name('any_len'), [|$t$|])]),
  16833. Call(Name('any_tuple_load_unsafe'), [|$t$|, |$i$|]),
  16834. Call(Name('exit'), [])),
  16835. Call(Name('exit'), [])))
  16836. \end{lstlisting}
  16837. \fi}
  16838. {\if\edition\pythonEd
  16839. \section{Assignment Conversion}
  16840. \label{sec:convert-assignments-Lany}
  16841. Update this pass to handle the \code{TagOf}, \code{ValueOf}, and
  16842. \code{AnnLambda} AST classes.
  16843. \section{Closure Conversion}
  16844. \label{sec:closure-conversion-Lany}
  16845. Update this pass to handle the \code{TagOf}, \code{ValueOf}, and
  16846. \code{AnnLambda} AST classes.
  16847. \fi}
  16848. \section{Remove Complex Operands}
  16849. \label{sec:rco-Lany}
  16850. \racket{The \code{ValueOf} and \code{Exit} forms are both complex
  16851. expressions. The subexpression of \code{ValueOf} must be atomic.}
  16852. %
  16853. \python{The \code{ValueOf} and \code{TagOf} operations are both
  16854. complex expressions. Their subexpressions must be atomic.}
  16855. \section{Explicate Control and \LangCAny{}}
  16856. \label{sec:explicate-Lany}
  16857. The output of \code{explicate\_control} is the \LangCAny{} language
  16858. whose syntax is defined in Figure~\ref{fig:c5-syntax}.
  16859. %
  16860. \racket{The \code{ValueOf} form that we added to \LangAny{} remains an
  16861. expression and the \code{Exit} expression becomes a $\Tail$. Also,
  16862. note that the index argument of \code{vector-ref} and
  16863. \code{vector-set!} is an $\Atm$ instead of an integer, as it was in
  16864. \LangCVec{} (Figure~\ref{fig:c2-syntax}).}
  16865. %
  16866. \python{
  16867. Update the auxiliary functions \code{explicate\_tail}, \code{explicate\_effect},
  16868. and \code{explicate\_pred} as appropriately to handle the new expressions
  16869. in \LangCAny{}.
  16870. }
  16871. \newcommand{\CanyASTPython}{
  16872. \begin{array}{lcl}
  16873. \Exp &::=& \CALL{\VAR{\key{'make\_any'}}}{\LS \Atm,\Atm \RS}\\
  16874. &\MID& \key{TagOf}\LP \Atm \RP
  16875. \MID \key{ValueOf}\LP \Atm , \FType \RP \\
  16876. &\MID& \CALL{\VAR{\key{'any\_tuple\_load\_unsafe'}}}{\LS \Atm,\Atm \RS}\\
  16877. &\MID& \CALL{\VAR{\key{'any\_len'}}}{\LS \Atm \RS} \\
  16878. &\MID& \CALL{\VAR{\key{'exit'}}}{\LS\RS}
  16879. \end{array}
  16880. }
  16881. \newcommand{\CanyASTRacket}{
  16882. \begin{array}{lcl}
  16883. \Exp &::= & \BINOP{\key{'any-vector-ref}}{\Atm}{\Atm} \\
  16884. &\MID& (\key{Prim}~\key{'any-vector-set!}\,(\key{list}\,\Atm\,\Atm\,\Atm))\\
  16885. &\MID& \VALUEOF{\Atm}{\FType} \\
  16886. \Tail &::= & \LP\key{Exit}\RP
  16887. \end{array}
  16888. }
  16889. \begin{figure}[tp]
  16890. \begin{tcolorbox}[colback=white]
  16891. \small
  16892. {\if\edition\racketEd
  16893. \[
  16894. \begin{array}{l}
  16895. \gray{\CvarASTRacket} \\ \hline
  16896. \gray{\CifASTRacket} \\ \hline
  16897. \gray{\CloopASTRacket} \\ \hline
  16898. \gray{\CtupASTRacket} \\ \hline
  16899. \gray{\CfunASTRacket} \\ \hline
  16900. \gray{\ClambdaASTRacket} \\ \hline
  16901. \CanyASTRacket \\
  16902. \begin{array}{lcl}
  16903. \LangCAnyM{} & ::= & \PROGRAMDEFS{\itm{info}}{\LP\Def\ldots\RP}
  16904. \end{array}
  16905. \end{array}
  16906. \]
  16907. \fi}
  16908. {\if\edition\pythonEd
  16909. \[
  16910. \begin{array}{l}
  16911. \gray{\CifASTPython} \\ \hline
  16912. \gray{\CtupASTPython} \\ \hline
  16913. \gray{\CfunASTPython} \\ \hline
  16914. \gray{\ClambdaASTPython} \\ \hline
  16915. \CanyASTPython \\
  16916. \begin{array}{lcl}
  16917. \LangCAnyM{} & ::= & \CPROGRAMDEFS{\LS\Def\code{,}\ldots\RS}
  16918. \end{array}
  16919. \end{array}
  16920. \]
  16921. \fi}
  16922. \end{tcolorbox}
  16923. \caption{The abstract syntax of \LangCAny{}, extending \LangCLam{} (Figure~\ref{fig:Clam-syntax}).}
  16924. \label{fig:c5-syntax}
  16925. \end{figure}
  16926. \section{Select Instructions}
  16927. \label{sec:select-Lany}
  16928. In the \code{select\_instructions} pass we translate the primitive
  16929. operations on the \ANYTY{} type to x86 instructions that manipulate
  16930. the 3 tag bits of the tagged value. In the following descriptions,
  16931. given an atom $e$ we use a primed variable $e'$ to refer to the result
  16932. of translating $e$ into an x86 argument.
  16933. \paragraph{\racket{\code{make-any}}\python{\code{make\_any}}}
  16934. We recommend compiling the
  16935. \racket{\code{make-any}}\python{\code{make\_any}} operation as follows
  16936. if the tag is for \INTTY{} or \BOOLTY{}. The \key{salq} instruction
  16937. shifts the destination to the left by the number of bits specified its
  16938. source argument (in this case $3$, the length of the tag) and it
  16939. preserves the sign of the integer. We use the \key{orq} instruction to
  16940. combine the tag and the value to form the tagged value. \\
  16941. %
  16942. {\if\edition\racketEd
  16943. \begin{lstlisting}
  16944. (Assign |\itm{lhs}| (Prim 'make-any (list |$e$| (Int |$\itm{tag}$|))))
  16945. |$\Rightarrow$|
  16946. movq |$e'$|, |\itm{lhs'}|
  16947. salq $3, |\itm{lhs'}|
  16948. orq $|$\itm{tag}$|, |\itm{lhs'}|
  16949. \end{lstlisting}
  16950. \fi}
  16951. %
  16952. {\if\edition\pythonEd
  16953. \begin{lstlisting}
  16954. Assign([|\itm{lhs}|], Call(Name('make_any'), [|$e$|, Constant(|$\itm{tag}$|)]))
  16955. |$\Rightarrow$|
  16956. movq |$e'$|, |\itm{lhs'}|
  16957. salq $3, |\itm{lhs'}|
  16958. orq $|$\itm{tag}$|, |\itm{lhs'}|
  16959. \end{lstlisting}
  16960. \fi}
  16961. %
  16962. The instruction selection for tuples and procedures is different
  16963. because their is no need to shift them to the left. The rightmost 3
  16964. bits are already zeros so we simply combine the value and the tag
  16965. using \key{orq}. \\
  16966. %
  16967. {\if\edition\racketEd
  16968. \begin{center}
  16969. \begin{minipage}{\textwidth}
  16970. \begin{lstlisting}
  16971. (Assign |\itm{lhs}| (Prim 'make-any (list |$e$| (Int |$\itm{tag}$|))))
  16972. |$\Rightarrow$|
  16973. movq |$e'$|, |\itm{lhs'}|
  16974. orq $|$\itm{tag}$|, |\itm{lhs'}|
  16975. \end{lstlisting}
  16976. \end{minipage}
  16977. \end{center}
  16978. \fi}
  16979. %
  16980. {\if\edition\pythonEd
  16981. \begin{lstlisting}
  16982. Assign([|\itm{lhs}|], Call(Name('make_any'), [|$e$|, Constant(|$\itm{tag}$|)]))
  16983. |$\Rightarrow$|
  16984. movq |$e'$|, |\itm{lhs'}|
  16985. orq $|$\itm{tag}$|, |\itm{lhs'}|
  16986. \end{lstlisting}
  16987. \fi}
  16988. \paragraph{\racket{\code{tag-of-any}}\python{\code{TagOf}}}
  16989. Recall that the \racket{\code{tag-of-any}}\python{\code{TagOf}}
  16990. operation extracts the type tag from a value of type \ANYTY{}. The
  16991. type tag is the bottom three bits, so we obtain the tag by taking the
  16992. bitwise-and of the value with $111$ ($7$ in decimal).
  16993. %
  16994. {\if\edition\racketEd
  16995. \begin{lstlisting}
  16996. (Assign |\itm{lhs}| (Prim 'tag-of-any (list |$e$|)))
  16997. |$\Rightarrow$|
  16998. movq |$e'$|, |\itm{lhs'}|
  16999. andq $7, |\itm{lhs'}|
  17000. \end{lstlisting}
  17001. \fi}
  17002. %
  17003. {\if\edition\pythonEd
  17004. \begin{lstlisting}
  17005. Assign([|\itm{lhs}|], TagOf(|$e$|))
  17006. |$\Rightarrow$|
  17007. movq |$e'$|, |\itm{lhs'}|
  17008. andq $7, |\itm{lhs'}|
  17009. \end{lstlisting}
  17010. \fi}
  17011. \paragraph{\code{ValueOf}}
  17012. The instructions for \key{ValueOf} also differ depending on whether
  17013. the type $T$ is a pointer (tuple or function) or not (integer or
  17014. Boolean). The following shows the instruction selection for integers
  17015. and Booleans. We produce an untagged value by shifting it to the
  17016. right by 3 bits.
  17017. %
  17018. {\if\edition\racketEd
  17019. \begin{lstlisting}
  17020. (Assign |\itm{lhs}| (ValueOf |$e$| |$T$|))
  17021. |$\Rightarrow$|
  17022. movq |$e'$|, |\itm{lhs'}|
  17023. sarq $3, |\itm{lhs'}|
  17024. \end{lstlisting}
  17025. \fi}
  17026. %
  17027. {\if\edition\pythonEd
  17028. \begin{lstlisting}
  17029. Assign([|\itm{lhs}|], ValueOf(|$e$|, |$T$|))
  17030. |$\Rightarrow$|
  17031. movq |$e'$|, |\itm{lhs'}|
  17032. sarq $3, |\itm{lhs'}|
  17033. \end{lstlisting}
  17034. \fi}
  17035. %
  17036. In the case for tuples and procedures, we zero-out the rightmost 3
  17037. bits. We accomplish this by creating the bit pattern $\ldots 0111$
  17038. ($7$ in decimal) and apply bitwise-not to obtain $\ldots 11111000$ (-8
  17039. in decimal) which we \code{movq} into the destination $\itm{lhs'}$.
  17040. Finally, we apply \code{andq} with the tagged value to get the desired
  17041. result.
  17042. %
  17043. {\if\edition\racketEd
  17044. \begin{lstlisting}
  17045. (Assign |\itm{lhs}| (ValueOf |$e$| |$T$|))
  17046. |$\Rightarrow$|
  17047. movq $|$-8$|, |\itm{lhs'}|
  17048. andq |$e'$|, |\itm{lhs'}|
  17049. \end{lstlisting}
  17050. \fi}
  17051. %
  17052. {\if\edition\pythonEd
  17053. \begin{lstlisting}
  17054. Assign([|\itm{lhs}|], ValueOf(|$e$|, |$T$|))
  17055. |$\Rightarrow$|
  17056. movq $|$-8$|, |\itm{lhs'}|
  17057. andq |$e'$|, |\itm{lhs'}|
  17058. \end{lstlisting}
  17059. \fi}
  17060. %% \paragraph{Type Predicates} We leave it to the reader to
  17061. %% devise a sequence of instructions to implement the type predicates
  17062. %% \key{boolean?}, \key{integer?}, \key{vector?}, and \key{procedure?}.
  17063. \paragraph{\racket{\code{any-vector-length}}\python{\code{any\_len}}}
  17064. The \racket{\code{any-vector-length}}\python{\code{any\_len}}
  17065. operation combines the effect of \code{ValueOf} with accessing the
  17066. length of a tuple from the tag stored at the zero index of the tuple.
  17067. {\if\edition\racketEd
  17068. \begin{lstlisting}
  17069. (Assign |$\itm{lhs}$| (Prim 'any-vector-length (list |$e_1$|)))
  17070. |$\Longrightarrow$|
  17071. movq $|$-8$|, %r11
  17072. andq |$e_1'$|, %r11
  17073. movq 0(%r11), %r11
  17074. andq $126, %r11
  17075. sarq $1, %r11
  17076. movq %r11, |$\itm{lhs'}$|
  17077. \end{lstlisting}
  17078. \fi}
  17079. {\if\edition\pythonEd
  17080. \begin{lstlisting}
  17081. Assign([|$\itm{lhs}$|], Call(Name('any_len'), [|$e_1$|]))
  17082. |$\Longrightarrow$|
  17083. movq $|$-8$|, %r11
  17084. andq |$e_1'$|, %r11
  17085. movq 0(%r11), %r11
  17086. andq $126, %r11
  17087. sarq $1, %r11
  17088. movq %r11, |$\itm{lhs'}$|
  17089. \end{lstlisting}
  17090. \fi}
  17091. \paragraph{\racket{\code{any-vector-ref}}\python{\code{\code{any\_tuple\_load\_unsafe}}}}
  17092. This operation combines the effect of \code{ValueOf} with reading an
  17093. element of the tuple (see
  17094. Section~\ref{sec:select-instructions-gc}). However, the index may be
  17095. an arbitrary atom so instead of computing the offset at compile time,
  17096. we must generate instructions to compute the offset at runtime as
  17097. follows. Note the use of the new instruction \code{imulq}.
  17098. \begin{center}
  17099. \begin{minipage}{0.96\textwidth}
  17100. {\if\edition\racketEd
  17101. \begin{lstlisting}
  17102. (Assign |$\itm{lhs}$| (Prim 'any-vector-ref (list |$e_1$| |$e_2$|)))
  17103. |$\Longrightarrow$|
  17104. movq |$\neg 111$|, %r11
  17105. andq |$e_1'$|, %r11
  17106. movq |$e_2'$|, %rax
  17107. addq $1, %rax
  17108. imulq $8, %rax
  17109. addq %rax, %r11
  17110. movq 0(%r11) |$\itm{lhs'}$|
  17111. \end{lstlisting}
  17112. \fi}
  17113. %
  17114. {\if\edition\pythonEd
  17115. \begin{lstlisting}
  17116. Assign([|$\itm{lhs}$|], Call(Name('any_tuple_load_unsafe'), [|$e_1$|,|$e_2$|]))
  17117. |$\Longrightarrow$|
  17118. movq $|$-8$|, %r11
  17119. andq |$e_1'$|, %r11
  17120. movq |$e_2'$|, %rax
  17121. addq $1, %rax
  17122. imulq $8, %rax
  17123. addq %rax, %r11
  17124. movq 0(%r11) |$\itm{lhs'}$|
  17125. \end{lstlisting}
  17126. \fi}
  17127. \end{minipage}
  17128. \end{center}
  17129. % $ pacify font lock
  17130. %% \paragraph{\racket{\code{any-vector-set!}}\python{\code{any\_tuple\_store}}}
  17131. %% The code generation for
  17132. %% \racket{\code{any-vector-set!}}\python{\code{any\_tuple\_store}} is
  17133. %% analogous to the above translation for reading from a tuple.
  17134. \section{Register Allocation for \LangAny{}}
  17135. \label{sec:register-allocation-Lany}
  17136. \index{subject}{register allocation}
  17137. There is an interesting interaction between tagged values and garbage
  17138. collection that has an impact on register allocation. A variable of
  17139. type \ANYTY{} might refer to a tuple and therefore it might be a root
  17140. that needs to be inspected and copied during garbage collection. Thus,
  17141. we need to treat variables of type \ANYTY{} in a similar way to
  17142. variables of tuple type for purposes of register allocation. In
  17143. particular,
  17144. \begin{itemize}
  17145. \item If a variable of type \ANYTY{} is live during a function call,
  17146. then it must be spilled. This can be accomplished by changing
  17147. \code{build\_interference} to mark all variables of type \ANYTY{}
  17148. that are live after a \code{callq} as interfering with all the
  17149. registers.
  17150. \item If a variable of type \ANYTY{} is spilled, it must be spilled to
  17151. the root stack instead of the normal procedure call stack.
  17152. \end{itemize}
  17153. Another concern regarding the root stack is that the garbage collector
  17154. needs to differentiate between (1) plain old pointers to tuples, (2) a
  17155. tagged value that points to a tuple, and (3) a tagged value that is
  17156. not a tuple. We enable this differentiation by choosing not to use the
  17157. tag $000$ in the $\itm{tagof}$ function. Instead, that bit pattern is
  17158. reserved for identifying plain old pointers to tuples. That way, if
  17159. one of the first three bits is set, then we have a tagged value and
  17160. inspecting the tag can differentiate between tuples ($010$) and the
  17161. other kinds of values.
  17162. %% \begin{exercise}\normalfont
  17163. %% Expand your compiler to handle \LangAny{} as discussed in the last few
  17164. %% sections. Create 5 new programs that use the \ANYTY{} type and the
  17165. %% new operations (\code{Inject}, \code{Project}, etc.). Test your
  17166. %% compiler on these new programs and all of your previously created test
  17167. %% programs.
  17168. %% \end{exercise}
  17169. \begin{exercise}\normalfont\normalsize
  17170. Expand your compiler to handle \LangDyn{} as outlined in this chapter.
  17171. Create tests for \LangDyn{} by adapting ten of your previous test programs
  17172. by removing type annotations. Add 5 more tests programs that
  17173. specifically rely on the language being dynamically typed. That is,
  17174. they should not be legal programs in a statically typed language, but
  17175. nevertheless, they should be valid \LangDyn{} programs that run to
  17176. completion without error.
  17177. \end{exercise}
  17178. \begin{figure}[p]
  17179. \begin{tcolorbox}[colback=white]
  17180. \begin{tikzpicture}[baseline=(current bounding box.center),scale=0.85]
  17181. \node (Lfun) at (0,4) {\large \LangDyn{}};
  17182. \node (Lfun-2) at (3,4) {\large \LangDyn{}};
  17183. \node (Lfun-3) at (6,4) {\large \LangDyn{}};
  17184. \node (Lfun-4) at (9,4) {\large \LangDynFunRef{}};
  17185. \node (Lfun-5) at (12,2) {\large \LangAnyFunRef{}};
  17186. \node (Lfun-6) at (9,2) {\large \LangAnyFunRef{}};
  17187. \node (Lfun-7) at (6,2) {\large \LangAnyFunRef{}};
  17188. \node (F1-2) at (3,2) {\large \LangAnyFunRef{}};
  17189. \node (F1-3) at (0,2) {\large \LangAnyFunRef{}};
  17190. \node (F1-4) at (0,0) {\large \LangAnyAlloc{}};
  17191. \node (F1-5) at (3,0) {\large \LangAnyAlloc{}};
  17192. \node (F1-6) at (6,0) {\large \LangAnyAlloc{}};
  17193. \node (C3-2) at (3,-2) {\large \LangCAny{}};
  17194. \node (x86-2) at (3,-4) {\large \LangXIndCallVar{}};
  17195. \node (x86-2-1) at (3,-6) {\large \LangXIndCallVar{}};
  17196. \node (x86-2-2) at (6,-6) {\large \LangXIndCallVar{}};
  17197. \node (x86-3) at (6,-4) {\large \LangXIndCallVar{}};
  17198. \node (x86-4) at (9,-4) {\large \LangXIndCall{}};
  17199. \node (x86-5) at (9,-6) {\large \LangXIndCall{}};
  17200. \path[->,bend left=15] (Lfun) edge [above] node
  17201. {\ttfamily\footnotesize shrink} (Lfun-2);
  17202. \path[->,bend left=15] (Lfun-2) edge [above] node
  17203. {\ttfamily\footnotesize uniquify} (Lfun-3);
  17204. \path[->,bend left=15] (Lfun-3) edge [above] node
  17205. {\ttfamily\footnotesize reveal\_functions} (Lfun-4);
  17206. \path[->,bend left=15] (Lfun-4) edge [left] node
  17207. {\ttfamily\footnotesize cast\_insert} (Lfun-5);
  17208. \path[->,bend left=15] (Lfun-5) edge [below] node
  17209. {\ttfamily\footnotesize reveal\_casts} (Lfun-6);
  17210. \path[->,bend left=15] (Lfun-6) edge [below] node
  17211. {\ttfamily\footnotesize convert\_assign.} (Lfun-7);
  17212. \path[->,bend right=15] (Lfun-7) edge [above] node
  17213. {\ttfamily\footnotesize convert\_to\_clos.} (F1-2);
  17214. \path[->,bend right=15] (F1-2) edge [above] node
  17215. {\ttfamily\footnotesize limit\_fun.} (F1-3);
  17216. \path[->,bend right=15] (F1-3) edge [right] node
  17217. {\ttfamily\footnotesize expose\_alloc.} (F1-4);
  17218. \path[->,bend right=15] (F1-4) edge [below] node
  17219. {\ttfamily\footnotesize uncover\_get!} (F1-5);
  17220. \path[->,bend left=15] (F1-5) edge [above] node
  17221. {\ttfamily\footnotesize remove\_complex.} (F1-6);
  17222. \path[->,bend left=15] (F1-6) edge [right] node
  17223. {\ttfamily\footnotesize explicate\_control} (C3-2);
  17224. \path[->,bend left=15] (C3-2) edge [left] node
  17225. {\ttfamily\footnotesize select\_instr.} (x86-2);
  17226. \path[->,bend right=15] (x86-2) edge [left] node
  17227. {\ttfamily\footnotesize uncover\_live} (x86-2-1);
  17228. \path[->,bend right=15] (x86-2-1) edge [below] node
  17229. {\ttfamily\footnotesize build\_inter.} (x86-2-2);
  17230. \path[->,bend right=15] (x86-2-2) edge [left] node
  17231. {\ttfamily\footnotesize allocate\_reg.} (x86-3);
  17232. \path[->,bend left=15] (x86-3) edge [above] node
  17233. {\ttfamily\footnotesize patch\_instr.} (x86-4);
  17234. \path[->,bend left=15] (x86-4) edge [right] node
  17235. {\ttfamily\footnotesize prelude\_and\_conc.} (x86-5);
  17236. \end{tikzpicture}
  17237. \end{tcolorbox}
  17238. \caption{Diagram of the passes for \LangDyn{}, a dynamically typed language.}
  17239. \label{fig:Ldyn-passes}
  17240. \end{figure}
  17241. Figure~\ref{fig:Ldyn-passes} provides an overview of the passes needed
  17242. for the compilation of \LangDyn{}.
  17243. % Further Reading
  17244. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  17245. %% {\if\edition\pythonEd
  17246. %% \chapter{Objects}
  17247. %% \label{ch:Lobject}
  17248. %% \index{subject}{objects}
  17249. %% \index{subject}{classes}
  17250. %% \fi}
  17251. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  17252. \chapter{Gradual Typing}
  17253. \label{ch:Lgrad}
  17254. \index{subject}{gradual typing}
  17255. This chapter studies a language, \LangGrad{}, in which the programmer
  17256. can choose between static and dynamic type checking in different parts
  17257. of a program, thereby mixing the statically typed \LangLam{} language
  17258. with the dynamically typed \LangDyn{}. There are several approaches to
  17259. mixing static and dynamic typing, including multi-language
  17260. integration~\citep{Tobin-Hochstadt:2006fk,Matthews:2007zr} and hybrid
  17261. type checking~\citep{Flanagan:2006mn,Gronski:2006uq}. In this chapter
  17262. we focus on \emph{gradual typing}\index{subject}{gradual typing}, in which the
  17263. programmer controls the amount of static versus dynamic checking by
  17264. adding or removing type annotations on parameters and
  17265. variables~\citep{Anderson:2002kd,Siek:2006bh}.
  17266. %
  17267. The concrete syntax of \LangGrad{} is defined in
  17268. Figure~\ref{fig:Lgrad-concrete-syntax} and its abstract syntax is
  17269. defined in Figure~\ref{fig:Lgrad-syntax}. The main syntactic
  17270. difference between \LangLam{} and \LangGrad{} is that type annotations
  17271. are optional, which is specified in the grammar using the \Param{} and
  17272. \itm{ret} non-terminals. In the abstract syntax, type annotations are
  17273. not optional but we use the \CANYTY{} type when a type annotation is
  17274. absent.
  17275. \newcommand{\LgradGrammarRacket}{
  17276. \begin{array}{lcl}
  17277. \Type &::=& (\Type \ldots \; \key{->}\; \Type) \\
  17278. \Param &::=& \Var \MID \LS\Var \key{:} \Type\RS \\
  17279. \itm{ret} &::=& \epsilon \MID \key{:} \Type \\
  17280. \Exp &::=& \LP\Exp \; \Exp \ldots\RP
  17281. \MID \CGLAMBDA{\LP\Param\ldots\RP}{\itm{ret}}{\Exp} \\
  17282. &\MID& \LP \key{procedure-arity}~\Exp\RP \\
  17283. \Def &::=& \CGDEF{\Var}{\Param\ldots}{\itm{ret}}{\Exp}
  17284. \end{array}
  17285. }
  17286. \newcommand{\LgradASTRacket}{
  17287. \begin{array}{lcl}
  17288. \Type &::=& (\Type \ldots \; \key{->}\; \Type) \\
  17289. \Param &::=& \Var \MID \LS\Var \key{:} \Type\RS \\
  17290. \Exp &::=& \APPLY{\Exp}{\Exp\ldots}
  17291. \MID \LAMBDA{\LP\Param\ldots\RP}{\Type}{\Exp} \\
  17292. \itm{op} &::=& \code{procedure-arity} \\
  17293. \Def &::=& \FUNDEF{\Var}{\LP\Param\ldots\RP}{\Type}{\code{'()}}{\Exp}
  17294. \end{array}
  17295. }
  17296. \newcommand{\LgradGrammarPython}{
  17297. \begin{array}{lcl}
  17298. \Type &::=& \key{Any}
  17299. \MID \key{int}
  17300. \MID \key{bool}
  17301. \MID \key{tuple}\LS \Type \code{, } \ldots \RS
  17302. \MID \key{Callable}\LS \LS \Type \key{,} \ldots \RS \key{, } \Type \RS \\
  17303. \Exp &::=& \CAPPLY{\Exp}{\Exp\code{,} \ldots}
  17304. \MID \CLAMBDA{\Var\code{, }\ldots}{\Exp}
  17305. \MID \CARITY{\Exp} \\
  17306. \Stmt &::=& \CANNASSIGN{\Var}{\Type}{\Exp} \MID \CRETURN{\Exp} \\
  17307. \Param &::=& \Var \MID \Var \key{:} \Type \\
  17308. \itm{ret} &::=& \epsilon \MID \key{->}~\Type \\
  17309. \Def &::=& \CGDEF{\Var}{\Param\key{, }\ldots}{\itm{ret}}{\Stmt^{+}}
  17310. \end{array}
  17311. }
  17312. \newcommand{\LgradASTPython}{
  17313. \begin{array}{lcl}
  17314. \Type &::=& \key{AnyType()} \MID \key{IntType()} \MID \key{BoolType()} \MID \key{VoidType()}\\
  17315. &\MID& \key{TupleType}\LP\Type^{*}\RP
  17316. \MID \key{FunctionType}\LP \Type^{*} \key{, } \Type \RP \\
  17317. \Exp &::=& \CALL{\Exp}{\Exp^{*}} \MID \LAMBDA{\Var^{*}}{\Exp}\\
  17318. &\MID& \ARITY{\Exp} \\
  17319. \Stmt &::=& \ANNASSIGN{\Var}{\Type}{\Exp}
  17320. \MID \RETURN{\Exp} \\
  17321. \Param &::=& \LP\Var\key{,}\Type\RP \\
  17322. \Def &::=& \FUNDEF{\Var}{\Param^{*}}{\Type}{}{\Stmt^{+}}
  17323. \end{array}
  17324. }
  17325. \begin{figure}[tp]
  17326. \centering
  17327. \begin{tcolorbox}[colback=white]
  17328. \small
  17329. {\if\edition\racketEd
  17330. \[
  17331. \begin{array}{l}
  17332. \gray{\LintGrammarRacket{}} \\ \hline
  17333. \gray{\LvarGrammarRacket{}} \\ \hline
  17334. \gray{\LifGrammarRacket{}} \\ \hline
  17335. \gray{\LwhileGrammarRacket} \\ \hline
  17336. \gray{\LtupGrammarRacket} \\ \hline
  17337. \LgradGrammarRacket \\
  17338. \begin{array}{lcl}
  17339. \LangGradM{} &::=& \gray{\Def\ldots \; \Exp}
  17340. \end{array}
  17341. \end{array}
  17342. \]
  17343. \fi}
  17344. {\if\edition\pythonEd
  17345. \[
  17346. \begin{array}{l}
  17347. \gray{\LintGrammarPython{}} \\ \hline
  17348. \gray{\LvarGrammarPython{}} \\ \hline
  17349. \gray{\LifGrammarPython{}} \\ \hline
  17350. \gray{\LwhileGrammarPython} \\ \hline
  17351. \gray{\LtupGrammarPython} \\ \hline
  17352. \LgradGrammarPython \\
  17353. \begin{array}{lcl}
  17354. \LangGradM{} &::=& \Def\ldots \Stmt\ldots
  17355. \end{array}
  17356. \end{array}
  17357. \]
  17358. \fi}
  17359. \end{tcolorbox}
  17360. \caption{The concrete syntax of \LangGrad{}, extending \LangVec{} (Figure~\ref{fig:Lvec-concrete-syntax}).}
  17361. \label{fig:Lgrad-concrete-syntax}
  17362. \end{figure}
  17363. \begin{figure}[tp]
  17364. \centering
  17365. \begin{tcolorbox}[colback=white]
  17366. \small
  17367. {\if\edition\racketEd
  17368. \[
  17369. \begin{array}{l}
  17370. \gray{\LintOpAST} \\ \hline
  17371. \gray{\LvarASTRacket{}} \\ \hline
  17372. \gray{\LifASTRacket{}} \\ \hline
  17373. \gray{\LwhileASTRacket{}} \\ \hline
  17374. \gray{\LtupASTRacket{}} \\ \hline
  17375. \LgradASTRacket \\
  17376. \begin{array}{lcl}
  17377. \LangGradM{} &::=& \PROGRAMDEFSEXP{\code{'()}}{\LP\Def\ldots\RP}{\Exp}
  17378. \end{array}
  17379. \end{array}
  17380. \]
  17381. \fi}
  17382. {\if\edition\pythonEd
  17383. \[
  17384. \begin{array}{l}
  17385. \gray{\LintASTPython{}} \\ \hline
  17386. \gray{\LvarASTPython{}} \\ \hline
  17387. \gray{\LifASTPython{}} \\ \hline
  17388. \gray{\LwhileASTPython} \\ \hline
  17389. \gray{\LtupASTPython} \\ \hline
  17390. \LgradASTPython \\
  17391. \begin{array}{lcl}
  17392. \LangGradM{} &::=& \PROGRAM{}{\LS \Def \ldots \Stmt \ldots \RS}
  17393. \end{array}
  17394. \end{array}
  17395. \]
  17396. \fi}
  17397. \end{tcolorbox}
  17398. \caption{The abstract syntax of \LangGrad{}, extending \LangVec{} (Figure~\ref{fig:Lvec-syntax}).}
  17399. \label{fig:Lgrad-syntax}
  17400. \end{figure}
  17401. Both the type checker and the interpreter for \LangGrad{} require some
  17402. interesting changes to enable gradual typing, which we discuss in the
  17403. next two sections.
  17404. % TODO: more road map -Jeremy
  17405. %\clearpage
  17406. \section{Type Checking \LangGrad{}}
  17407. \label{sec:gradual-type-check}
  17408. We begin by discussing the type checking of a partially-typed variant
  17409. of the \code{map} example from Chapter~\ref{ch:Lfun}, shown in
  17410. Figure~\ref{fig:gradual-map}. The \code{map} function itself is
  17411. statically typed, so there is nothing special happening there with
  17412. respect to type checking. On the other hand, the \code{inc} function
  17413. does not have type annotations, so parameter \code{x} is given the
  17414. type \CANYTY{} and the return type of \code{inc} is \CANYTY{}. Now
  17415. consider the \code{+} operator inside \code{inc}. It expects both
  17416. arguments to have type \INTTY{}, but its first argument \code{x}
  17417. has type \CANYTY{}. In a gradually typed language, such differences
  17418. are allowed so long as the types are \emph{consistent}, that is, they
  17419. are equal except in places where there is an \CANYTY{} type. That is,
  17420. the type \CANYTY{} is consistent with every other type.
  17421. Figure~\ref{fig:consistent} defines the
  17422. \racket{\code{consistent?}}\python{\code{consistent}} method.
  17423. %
  17424. So the type checker allows the \code{+} operator to be applied
  17425. to \code{x} because \CANYTY{} is consistent with \INTTY{}.
  17426. %
  17427. Next consider the call to the \code{map} function in
  17428. Figure~\ref{fig:gradual-map} with the arguments \code{inc} and a
  17429. tuple. The \code{inc} function has type
  17430. \racket{\code{(Any -> Any)}}\python{\code{Callable[[Any],Any]}}
  17431. but parameter \code{f} of \code{map} has type
  17432. \racket{\code{(Integer -> Integer)}}\python{\code{Callable[[int],int]}}.
  17433. The type checker for \LangGrad{} accepts this call because the two types are
  17434. consistent.
  17435. \begin{figure}[btp]
  17436. % gradual_test_9.rkt
  17437. \begin{tcolorbox}[colback=white]
  17438. {\if\edition\racketEd
  17439. \begin{lstlisting}
  17440. (define (map [f : (Integer -> Integer)]
  17441. [v : (Vector Integer Integer)])
  17442. : (Vector Integer Integer)
  17443. (vector (f (vector-ref v 0)) (f (vector-ref v 1))))
  17444. (define (inc x) (+ x 1))
  17445. (vector-ref (map inc (vector 0 41)) 1)
  17446. \end{lstlisting}
  17447. \fi}
  17448. {\if\edition\pythonEd
  17449. \begin{lstlisting}
  17450. def map(f : Callable[[int], int], v : tuple[int,int]) -> tuple[int,int]:
  17451. return f(v[0]), f(v[1])
  17452. def inc(x):
  17453. return x + 1
  17454. t = map(inc, (0, 41))
  17455. print(t[1])
  17456. \end{lstlisting}
  17457. \fi}
  17458. \end{tcolorbox}
  17459. \caption{A partially-typed version of the \code{map} example.}
  17460. \label{fig:gradual-map}
  17461. \end{figure}
  17462. \begin{figure}[tbp]
  17463. \begin{tcolorbox}[colback=white]
  17464. {\if\edition\racketEd
  17465. \begin{lstlisting}
  17466. (define/public (consistent? t1 t2)
  17467. (match* (t1 t2)
  17468. [('Integer 'Integer) #t]
  17469. [('Boolean 'Boolean) #t]
  17470. [('Void 'Void) #t]
  17471. [('Any t2) #t]
  17472. [(t1 'Any) #t]
  17473. [(`(Vector ,ts1 ...) `(Vector ,ts2 ...))
  17474. (for/and ([t1 ts1] [t2 ts2]) (consistent? t1 t2))]
  17475. [(`(,ts1 ... -> ,rt1) `(,ts2 ... -> ,rt2))
  17476. (and (for/and ([t1 ts1] [t2 ts2]) (consistent? t1 t2))
  17477. (consistent? rt1 rt2))]
  17478. [(other wise) #f]))
  17479. \end{lstlisting}
  17480. \fi}
  17481. {\if\edition\pythonEd
  17482. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  17483. def consistent(self, t1, t2):
  17484. match (t1, t2):
  17485. case (AnyType(), _):
  17486. return True
  17487. case (_, AnyType()):
  17488. return True
  17489. case (FunctionType(ps1, rt1), FunctionType(ps2, rt2)):
  17490. return all(map(self.consistent, ps1, ps2)) and consistent(rt1, rt2)
  17491. case (TupleType(ts1), TupleType(ts2)):
  17492. return all(map(self.consistent, ts1, ts2))
  17493. case (_, _):
  17494. return t1 == t2
  17495. \end{lstlisting}
  17496. \fi}
  17497. \end{tcolorbox}
  17498. \caption{The consistency method on types.}
  17499. \label{fig:consistent}
  17500. \end{figure}
  17501. It is also helpful to consider how gradual typing handles programs with an
  17502. error, such as applying \code{map} to a function that sometimes
  17503. returns a Boolean, as shown in Figure~\ref{fig:map-maybe_inc}. The
  17504. type checker for \LangGrad{} accepts this program because the type of
  17505. \code{maybe\_inc} is consistent with the type of parameter \code{f} of
  17506. \code{map}, that is,
  17507. \racket{\code{(Any -> Any)}}\python{\code{Callable[[Any],Any]}}
  17508. is consistent with
  17509. \racket{\code{(Integer -> Integer)}}\python{\code{Callable[[int],int]}}.
  17510. One might say that a gradual type checker is optimistic in that it
  17511. accepts programs that might execute without a runtime type error.
  17512. %
  17513. The type checker for \LangGrad{} is defined in
  17514. Figures~\ref{fig:type-check-Lgradual-1}, \ref{fig:type-check-Lgradual-2},
  17515. and \ref{fig:type-check-Lgradual-3}.
  17516. %% \begin{figure}[tp]
  17517. %% \centering
  17518. %% \fbox{
  17519. %% \begin{minipage}{0.96\textwidth}
  17520. %% \small
  17521. %% \[
  17522. %% \begin{array}{lcl}
  17523. %% \Exp &::=& \ldots \MID \CAST{\Exp}{\Type}{\Type} \\
  17524. %% \LangCastM{} &::=& \gray{ \PROGRAMDEFSEXP{\code{'()}}{\LP\Def\ldots\RP}{\Exp} }
  17525. %% \end{array}
  17526. %% \]
  17527. %% \end{minipage}
  17528. %% }
  17529. %% \caption{The abstract syntax of \LangCast{}, extending \LangLam{} (Figure~\ref{fig:Lwhile-syntax}).}
  17530. %% \label{fig:Lgrad-prime-syntax}
  17531. %% \end{figure}
  17532. \begin{figure}[tbp]
  17533. \begin{tcolorbox}[colback=white]
  17534. {\if\edition\racketEd
  17535. \begin{lstlisting}
  17536. (define (map [f : (Integer -> Integer)]
  17537. [v : (Vector Integer Integer)])
  17538. : (Vector Integer Integer)
  17539. (vector (f (vector-ref v 0)) (f (vector-ref v 1))))
  17540. (define (inc x) (+ x 1))
  17541. (define (true) #t)
  17542. (define (maybe_inc x) (if (eq? 0 (read)) (inc x) (true)))
  17543. (vector-ref (map maybe_inc (vector 0 41)) 0)
  17544. \end{lstlisting}
  17545. \fi}
  17546. {\if\edition\pythonEd
  17547. \begin{lstlisting}
  17548. def map(f : Callable[[int], int], v : tuple[int,int]) -> tuple[int,int]:
  17549. return f(v[0]), f(v[1])
  17550. def inc(x):
  17551. return x + 1
  17552. def true():
  17553. return True
  17554. def maybe_inc(x):
  17555. return inc(x) if input_int() == 0 else true()
  17556. t = map(maybe_inc, (0, 41))
  17557. print( t[1] )
  17558. \end{lstlisting}
  17559. \fi}
  17560. \end{tcolorbox}
  17561. \caption{A variant of the \code{map} example with an error.}
  17562. \label{fig:map-maybe_inc}
  17563. \end{figure}
  17564. Running this program with input \code{1} triggers an
  17565. error when the \code{maybe\_inc} function returns
  17566. \racket{\code{\#t}}\python{\code{True}}. The \LangGrad{} language
  17567. performs checking at runtime to ensure the integrity of the static
  17568. types, such as the
  17569. \racket{\code{(Integer -> Integer)}}\python{\code{Callable[[int],int]}}
  17570. annotation on
  17571. parameter \code{f} of \code{map}.
  17572. Here we give a preview of how the runtime checking is accomplished;
  17573. the following sections provide the details.
  17574. The runtime checking is carried out by a new \code{Cast} AST node that
  17575. is generate in a new pass named \code{cast\_insert}. The output of
  17576. \code{cast\_insert} is a program in the \LangCast{} language, which
  17577. simply adds \code{Cast} and \CANYTY{} to \LangLam{}.
  17578. %
  17579. Figure~\ref{fig:map-cast} shows the output of \code{cast\_insert} for
  17580. \code{map} and \code{maybe\_inc}. The idea is that \code{Cast} is
  17581. inserted every time the type checker sees two types that are
  17582. consistent but not equal. In the \code{inc} function, \code{x} is
  17583. cast to \INTTY{} and the result of the \code{+} is cast to
  17584. \CANYTY{}. In the call to \code{map}, the \code{inc} argument
  17585. is cast from
  17586. \racket{\code{(Any -> Any)}}
  17587. \python{\code{Callable[[Any], Any]}}
  17588. to
  17589. \racket{\code{(Integer -> Integer)}}\python{\code{Callable[[int],int]}}.
  17590. %
  17591. In the next section we see how to interpret the \code{Cast} node.
  17592. \begin{figure}[btp]
  17593. \begin{tcolorbox}[colback=white]
  17594. {\if\edition\racketEd
  17595. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  17596. (define (map [f : (Integer -> Integer)] [v : (Vector Integer Integer)])
  17597. : (Vector Integer Integer)
  17598. (vector (f (vector-ref v 0)) (f (vector-ref v 1))))
  17599. (define (inc [x : Any]) : Any
  17600. (cast (+ (cast x Any Integer) 1) Integer Any))
  17601. (define (true) : Any (cast #t Boolean Any))
  17602. (define (maybe_inc [x : Any]) : Any
  17603. (if (eq? 0 (read)) (inc x) (true)))
  17604. (vector-ref (map (cast maybe_inc (Any -> Any) (Integer -> Integer))
  17605. (vector 0 41)) 0)
  17606. \end{lstlisting}
  17607. \fi}
  17608. {\if\edition\pythonEd
  17609. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  17610. def map(f : Callable[[int], int], v : tuple[int,int]) -> tuple[int,int]:
  17611. return f(v[0]), f(v[1])
  17612. def inc(x : Any) -> Any:
  17613. return Cast(Cast(x, Any, int) + 1, int, Any)
  17614. def true() -> Any:
  17615. return Cast(True, bool, Any)
  17616. def maybe_inc(x : Any) -> Any:
  17617. return inc(x) if input_int() == 0 else true()
  17618. t = map(Cast(maybe_inc, Callable[[Any], Any], Callable[[int], int]),
  17619. (0, 41))
  17620. print(t[1])
  17621. \end{lstlisting}
  17622. \fi}
  17623. \end{tcolorbox}
  17624. \caption{Output of the \code{cast\_insert} pass for the \code{map}
  17625. and \code{maybe\_inc} example.}
  17626. \label{fig:map-cast}
  17627. \end{figure}
  17628. {\if\edition\pythonEd
  17629. \begin{figure}[tbp]
  17630. \begin{tcolorbox}[colback=white]
  17631. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  17632. class TypeCheckLgrad(TypeCheckLlambda):
  17633. def type_check_exp(self, e, env) -> Type:
  17634. match e:
  17635. case Name(id):
  17636. return env[id]
  17637. case Constant(value) if isinstance(value, bool):
  17638. return BoolType()
  17639. case Constant(value) if isinstance(value, int):
  17640. return IntType()
  17641. case Call(Name('input_int'), []):
  17642. return IntType()
  17643. case BinOp(left, op, right):
  17644. left_type = self.type_check_exp(left, env)
  17645. self.check_consistent(left_type, IntType(), left)
  17646. right_type = self.type_check_exp(right, env)
  17647. self.check_consistent(right_type, IntType(), right)
  17648. return IntType()
  17649. case IfExp(test, body, orelse):
  17650. test_t = self.type_check_exp(test, env)
  17651. self.check_consistent(test_t, BoolType(), test)
  17652. body_t = self.type_check_exp(body, env)
  17653. orelse_t = self.type_check_exp(orelse, env)
  17654. self.check_consistent(body_t, orelse_t, e)
  17655. return self.join_types(body_t, orelse_t)
  17656. case Call(func, args):
  17657. func_t = self.type_check_exp(func, env)
  17658. args_t = [self.type_check_exp(arg, env) for arg in args]
  17659. match func_t:
  17660. case FunctionType(params_t, return_t) if len(params_t) == len(args_t):
  17661. for (arg_t, param_t) in zip(args_t, params_t):
  17662. self.check_consistent(param_t, arg_t, e)
  17663. return return_t
  17664. case AnyType():
  17665. return AnyType()
  17666. case _:
  17667. raise Exception('type_check_exp: in call, unexpected ' + repr(func_t))
  17668. ...
  17669. case _:
  17670. raise Exception('type_check_exp: unexpected ' + repr(e))
  17671. \end{lstlisting}
  17672. \end{tcolorbox}
  17673. \caption{Type checking expressions in the \LangGrad{} language.}
  17674. \label{fig:type-check-Lgradual-1}
  17675. \end{figure}
  17676. \begin{figure}[tbp]
  17677. \begin{tcolorbox}[colback=white]
  17678. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  17679. def check_exp(self, e, expected_ty, env):
  17680. match e:
  17681. case Lambda(params, body):
  17682. match expected_ty:
  17683. case FunctionType(params_t, return_t):
  17684. new_env = env.copy().update(zip(params, params_t))
  17685. e.has_type = expected_ty
  17686. body_ty = self.type_check_exp(body, new_env)
  17687. self.check_consistent(body_ty, return_t)
  17688. case AnyType():
  17689. new_env = env.copy().update((p, AnyType()) for p in params)
  17690. e.has_type = FunctionType([AnyType() for _ in params], AnyType())
  17691. body_ty = self.type_check_exp(body, new_env)
  17692. case _:
  17693. raise Exception('lambda does not have type ' + str(expected_ty))
  17694. case _:
  17695. e_ty = self.type_check_exp(e, env)
  17696. self.check_consistent(e_ty, expected_ty, e)
  17697. \end{lstlisting}
  17698. \end{tcolorbox}
  17699. \caption{Checking expressions with respect to a type in the \LangGrad{} language.}
  17700. \label{fig:type-check-Lgradual-2}
  17701. \end{figure}
  17702. \begin{figure}[tbp]
  17703. \begin{tcolorbox}[colback=white]
  17704. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  17705. def type_check_stmt(self, s, env, return_type):
  17706. match s:
  17707. case Assign([Name(id)], value):
  17708. value_ty = self.type_check_exp(value, env)
  17709. if id in env:
  17710. self.check_consistent(env[id], value_ty, value)
  17711. else:
  17712. env[id] = value_ty
  17713. ...
  17714. case _:
  17715. raise Exception('type_check_stmts: unexpected ' + repr(ss))
  17716. def type_check_stmts(self, ss, env, return_type):
  17717. for s in ss:
  17718. self.type_check_stmt(s, env, return_type)
  17719. \end{lstlisting}
  17720. \end{tcolorbox}
  17721. \caption{Type checking statements in the \LangGrad{} language.}
  17722. \label{fig:type-check-Lgradual-3}
  17723. \end{figure}
  17724. \begin{figure}[tbp]
  17725. \begin{tcolorbox}[colback=white]
  17726. \begin{lstlisting}[basicstyle=\ttfamily\scriptsize]
  17727. def join_types(self, t1, t2):
  17728. match (t1, t2):
  17729. case (AnyType(), _):
  17730. return t2
  17731. case (_, AnyType()):
  17732. return t1
  17733. case (FunctionType(ps1, rt1), FunctionType(ps2, rt2)):
  17734. return FunctionType(list(map(self.join_types, ps1, ps2)),
  17735. self.join_types(rt1,rt2))
  17736. case (TupleType(ts1), TupleType(ts2)):
  17737. return TupleType(list(map(self.join_types, ts1, ts2)))
  17738. case (_, _):
  17739. return t1
  17740. def check_consistent(self, t1, t2, e):
  17741. if not self.consistent(t1, t2):
  17742. raise Exception('error: ' + repr(t1) + ' inconsistent with ' + repr(t2) \
  17743. + ' in ' + repr(e))
  17744. \end{lstlisting}
  17745. \end{tcolorbox}
  17746. \caption{Auxiliary methods for type checking \LangGrad{}.}
  17747. \label{fig:type-check-Lgradual-aux}
  17748. \end{figure}
  17749. \fi}
  17750. {\if\edition\racketEd
  17751. \begin{figure}[tbp]
  17752. \begin{tcolorbox}[colback=white]
  17753. \begin{lstlisting}[basicstyle=\ttfamily\scriptsize]
  17754. (define type-check-gradual-class
  17755. (class type-check-Llambda-class
  17756. (super-new)
  17757. (inherit operator-types type-predicates)
  17758. (define/override (type-check-exp env)
  17759. (lambda (e)
  17760. (define recur (type-check-exp env))
  17761. (match e
  17762. [(Prim 'vector-length (list e1))
  17763. (define-values (e1^ t) (recur e1))
  17764. (match t
  17765. [`(Vector ,ts ...)
  17766. (values (Prim 'vector-length (list e1^)) 'Integer)]
  17767. ['Any (values (Prim 'any-vector-length (list e1^)) 'Integer)])]
  17768. [(Prim 'vector-ref (list e1 e2))
  17769. (define-values (e1^ t1) (recur e1))
  17770. (define-values (e2^ t2) (recur e2))
  17771. (check-consistent? t2 'Integer e)
  17772. (match t1
  17773. [`(Vector ,ts ...)
  17774. (match e2^
  17775. [(Int i)
  17776. (unless (and (0 . <= . i) (i . < . (length ts)))
  17777. (error 'type-check "invalid index ~a in ~a" i e))
  17778. (values (Prim 'vector-ref (list e1^ (Int i))) (list-ref ts i))]
  17779. [else (define e1^^ (make-cast e1^ t1 'Any))
  17780. (define e2^^ (make-cast e2^ t2 'Integer))
  17781. (values (Prim 'any-vector-ref (list e1^^ e2^^)) 'Any)])]
  17782. ['Any
  17783. (define e2^^ (make-cast e2^ t2 'Integer))
  17784. (values (Prim 'any-vector-ref (list e1^ e2^^)) 'Any)]
  17785. [else (error 'type-check "expected vector not ~a\nin ~v" t1 e)])]
  17786. [(Prim 'vector-set! (list e1 e2 e3) )
  17787. (define-values (e1^ t1) (recur e1))
  17788. (define-values (e2^ t2) (recur e2))
  17789. (define-values (e3^ t3) (recur e3))
  17790. (check-consistent? t2 'Integer e)
  17791. (match t1
  17792. [`(Vector ,ts ...)
  17793. (match e2^
  17794. [(Int i)
  17795. (unless (and (0 . <= . i) (i . < . (length ts)))
  17796. (error 'type-check "invalid index ~a in ~a" i e))
  17797. (check-consistent? (list-ref ts i) t3 e)
  17798. (define e3^^ (make-cast e3^ t3 (list-ref ts i)))
  17799. (values (Prim 'vector-set! (list e1^ (Int i) e3^^)) 'Void)]
  17800. [else
  17801. (define e1^^ (make-cast e1^ t1 'Any))
  17802. (define e2^^ (make-cast e2^ t2 'Integer))
  17803. (define e3^^ (make-cast e3^ t3 'Any))
  17804. (values (Prim 'any-vector-set! (list e1^^ e2^^ e3^^)) 'Void)])]
  17805. ['Any
  17806. (define e2^^ (make-cast e2^ t2 'Integer))
  17807. (define e3^^ (make-cast e3^ t3 'Any))
  17808. (values (Prim 'any-vector-set! (list e1^ e2^^ e3^^)) 'Void)]
  17809. [else (error 'type-check "expected vector not ~a\nin ~v" t1 e)])]
  17810. \end{lstlisting}
  17811. \end{tcolorbox}
  17812. \caption{Type checker for the \LangGrad{} language, part 1.}
  17813. \label{fig:type-check-Lgradual-1}
  17814. \end{figure}
  17815. \begin{figure}[tbp]
  17816. \begin{tcolorbox}[colback=white]
  17817. \begin{lstlisting}[basicstyle=\ttfamily\scriptsize]
  17818. [(Prim 'eq? (list e1 e2))
  17819. (define-values (e1^ t1) (recur e1))
  17820. (define-values (e2^ t2) (recur e2))
  17821. (check-consistent? t1 t2 e)
  17822. (define T (meet t1 t2))
  17823. (values (Prim 'eq? (list (make-cast e1^ t1 T) (make-cast e2^ t2 T)))
  17824. 'Boolean)]
  17825. [(Prim 'not (list e1))
  17826. (define-values (e1^ t1) (recur e1))
  17827. (match t1
  17828. ['Any
  17829. (recur (If (Prim 'eq? (list e1 (Inject (Bool #f) 'Boolean)))
  17830. (Bool #t) (Bool #f)))]
  17831. [else
  17832. (define-values (t-ret new-es^)
  17833. (type-check-op 'not (list t1) (list e1^) e))
  17834. (values (Prim 'not new-es^) t-ret)])]
  17835. [(Prim 'and (list e1 e2))
  17836. (recur (If e1 e2 (Bool #f)))]
  17837. [(Prim 'or (list e1 e2))
  17838. (define tmp (gensym 'tmp))
  17839. (recur (Let tmp e1 (If (Var tmp) (Var tmp) e2)))]
  17840. [(Prim op es)
  17841. #:when (not (set-member? explicit-prim-ops op))
  17842. (define-values (new-es ts)
  17843. (for/lists (exprs types) ([e es])
  17844. (recur e)))
  17845. (define-values (t-ret new-es^) (type-check-op op ts new-es e))
  17846. (values (Prim op new-es^) t-ret)]
  17847. [(If e1 e2 e3)
  17848. (define-values (e1^ T1) (recur e1))
  17849. (define-values (e2^ T2) (recur e2))
  17850. (define-values (e3^ T3) (recur e3))
  17851. (check-consistent? T2 T3 e)
  17852. (match T1
  17853. ['Boolean
  17854. (define Tif (join T2 T3))
  17855. (values (If e1^ (make-cast e2^ T2 Tif)
  17856. (make-cast e3^ T3 Tif)) Tif)]
  17857. ['Any
  17858. (define Tif (meet T2 T3))
  17859. (values (If (Prim 'eq? (list e1^ (Inject (Bool #f) 'Boolean)))
  17860. (make-cast e3^ T3 Tif) (make-cast e2^ T2 Tif))
  17861. Tif)]
  17862. [else (error 'type-check "expected Boolean not ~a\nin ~v" T1 e)])]
  17863. [(HasType e1 T)
  17864. (define-values (e1^ T1) (recur e1))
  17865. (check-consistent? T1 T)
  17866. (values (make-cast e1^ T1 T) T)]
  17867. [(SetBang x e1)
  17868. (define-values (e1^ T1) (recur e1))
  17869. (define varT (dict-ref env x))
  17870. (check-consistent? T1 varT e)
  17871. (values (SetBang x (make-cast e1^ T1 varT)) 'Void)]
  17872. [(WhileLoop e1 e2)
  17873. (define-values (e1^ T1) (recur e1))
  17874. (check-consistent? T1 'Boolean e)
  17875. (define-values (e2^ T2) ((type-check-exp env) e2))
  17876. (values (WhileLoop (make-cast e1^ T1 'Boolean) e2^) 'Void)]
  17877. \end{lstlisting}
  17878. \end{tcolorbox}
  17879. \caption{Type checker for the \LangGrad{} language, part 2.}
  17880. \label{fig:type-check-Lgradual-2}
  17881. \end{figure}
  17882. \begin{figure}[tbp]
  17883. \begin{tcolorbox}[colback=white]
  17884. \begin{lstlisting}[basicstyle=\ttfamily\scriptsize]
  17885. [(Apply e1 e2s)
  17886. (define-values (e1^ T1) (recur e1))
  17887. (define-values (e2s^ T2s) (for/lists (e* ty*) ([e2 e2s]) (recur e2)))
  17888. (match T1
  17889. [`(,T1ps ... -> ,T1rt)
  17890. (for ([T2 T2s] [Tp T1ps])
  17891. (check-consistent? T2 Tp e))
  17892. (define e2s^^ (for/list ([e2 e2s^] [src T2s] [tgt T1ps])
  17893. (make-cast e2 src tgt)))
  17894. (values (Apply e1^ e2s^^) T1rt)]
  17895. [`Any
  17896. (define e1^^ (make-cast e1^ 'Any
  17897. `(,@(for/list ([e e2s]) 'Any) -> Any)))
  17898. (define e2s^^ (for/list ([e2 e2s^] [src T2s])
  17899. (make-cast e2 src 'Any)))
  17900. (values (Apply e1^^ e2s^^) 'Any)]
  17901. [else (error 'type-check "expected function not ~a\nin ~v" T1 e)])]
  17902. [(Lambda params Tr e1)
  17903. (define-values (xs Ts) (for/lists (l1 l2) ([p params])
  17904. (match p
  17905. [`[,x : ,T] (values x T)]
  17906. [(? symbol? x) (values x 'Any)])))
  17907. (define-values (e1^ T1)
  17908. ((type-check-exp (append (map cons xs Ts) env)) e1))
  17909. (check-consistent? Tr T1 e)
  17910. (values (Lambda (for/list ([x xs] [T Ts]) `[,x : ,T]) Tr
  17911. (make-cast e1^ T1 Tr)) `(,@Ts -> ,Tr))]
  17912. [else ((super type-check-exp env) e)]
  17913. )))
  17914. \end{lstlisting}
  17915. \end{tcolorbox}
  17916. \caption{Type checker for the \LangGrad{} language, part 3.}
  17917. \label{fig:type-check-Lgradual-3}
  17918. \end{figure}
  17919. \begin{figure}[tbp]
  17920. \begin{tcolorbox}[colback=white]
  17921. \begin{lstlisting}[basicstyle=\ttfamily\scriptsize]
  17922. (define/public (join t1 t2)
  17923. (match* (t1 t2)
  17924. [('Integer 'Integer) 'Integer]
  17925. [('Boolean 'Boolean) 'Boolean]
  17926. [('Void 'Void) 'Void]
  17927. [('Any t2) t2]
  17928. [(t1 'Any) t1]
  17929. [(`(Vector ,ts1 ...) `(Vector ,ts2 ...))
  17930. `(Vector ,@(for/list ([t1 ts1] [t2 ts2]) (join t1 t2)))]
  17931. [(`(,ts1 ... -> ,rt1) `(,ts2 ... -> ,rt2))
  17932. `(,@(for/list ([t1 ts1] [t2 ts2]) (join t1 t2))
  17933. -> ,(join rt1 rt2))]))
  17934. (define/public (meet t1 t2)
  17935. (match* (t1 t2)
  17936. [('Integer 'Integer) 'Integer]
  17937. [('Boolean 'Boolean) 'Boolean]
  17938. [('Void 'Void) 'Void]
  17939. [('Any t2) 'Any]
  17940. [(t1 'Any) 'Any]
  17941. [(`(Vector ,ts1 ...) `(Vector ,ts2 ...))
  17942. `(Vector ,@(for/list ([t1 ts1] [t2 ts2]) (meet t1 t2)))]
  17943. [(`(,ts1 ... -> ,rt1) `(,ts2 ... -> ,rt2))
  17944. `(,@(for/list ([t1 ts1] [t2 ts2]) (meet t1 t2))
  17945. -> ,(meet rt1 rt2))]))
  17946. (define/public (make-cast e src tgt)
  17947. (cond [(equal? src tgt) e] [else (Cast e src tgt)]))
  17948. (define/public (check-consistent? t1 t2 e)
  17949. (unless (consistent? t1 t2)
  17950. (error 'type-check "~a is inconsistent with ~a\nin ~v" t1 t2 e)))
  17951. (define/override (type-check-op op arg-types args e)
  17952. (match (dict-ref (operator-types) op)
  17953. [`(,param-types . ,return-type)
  17954. (for ([at arg-types] [pt param-types])
  17955. (check-consistent? at pt e))
  17956. (values return-type
  17957. (for/list ([e args] [s arg-types] [t param-types])
  17958. (make-cast e s t)))]
  17959. [else (error 'type-check-op "unrecognized ~a" op)]))
  17960. (define explicit-prim-ops
  17961. (set-union
  17962. (type-predicates)
  17963. (set 'procedure-arity 'eq?
  17964. 'vector 'vector-length 'vector-ref 'vector-set!
  17965. 'any-vector-length 'any-vector-ref 'any-vector-set!)))
  17966. (define/override (fun-def-type d)
  17967. (match d
  17968. [(Def f params rt info body)
  17969. (define ps
  17970. (for/list ([p params])
  17971. (match p
  17972. [`[,x : ,T] T]
  17973. [(? symbol?) 'Any]
  17974. [else (error 'fun-def-type "unmatched parameter ~a" p)])))
  17975. `(,@ps -> ,rt)]
  17976. [else (error 'fun-def-type "ill-formed function definition in ~a" d)]))
  17977. \end{lstlisting}
  17978. \end{tcolorbox}
  17979. \caption{Auxiliary functions for type checking \LangGrad{}.}
  17980. \label{fig:type-check-Lgradual-aux}
  17981. \end{figure}
  17982. \fi}
  17983. \clearpage
  17984. \section{Interpreting \LangCast{}}
  17985. \label{sec:interp-casts}
  17986. The runtime behavior of casts involving simple types such as
  17987. \INTTY{} and \BOOLTY{} is straightforward. For example, a
  17988. cast from \INTTY{} to \CANYTY{} can be accomplished with the
  17989. \code{Inject} operator of \LangAny{}, which puts the integer into a
  17990. tagged value (Figure~\ref{fig:interp-Lany}). Similarly, a cast from
  17991. \CANYTY{} to \INTTY{} is accomplished with the \code{Project}
  17992. operator, that is, by checking the value's tag and either retrieving
  17993. the underlying integer or signalling an error if the tag is not the
  17994. one for integers (Figure~\ref{fig:interp-Lany-aux}).
  17995. %
  17996. Things get more interesting for casts involving function, tuple, or array
  17997. types.
  17998. Consider the cast of the function \code{maybe\_inc} from
  17999. \racket{\code{(Any -> Any)}}\python{\code{Callable[[Any], Any]}}
  18000. to
  18001. \racket{\code{(Integer -> Integer)}}\python{\code{Callable[[int], int]}}
  18002. in Figure~\ref{fig:map-maybe_inc}.
  18003. When the \code{maybe\_inc} function flows through
  18004. this cast at runtime, we don't know whether it will return
  18005. an integer, as that depends on the input from the user.
  18006. The \LangCast{} interpreter therefore delays the checking
  18007. of the cast until the function is applied. To do so it
  18008. wraps \code{maybe\_inc} in a new function that casts its parameter
  18009. from \INTTY{} to \CANYTY{}, applies \code{maybe\_inc}, and then
  18010. casts the return value from \CANYTY{} to \INTTY{}.
  18011. {\if\edition\pythonEd
  18012. %
  18013. There are further complicatons regarding casts on mutable data
  18014. such as the \code{list} type introduced in
  18015. the challenge assignment of Section~\ref{sec:arrays}.
  18016. %
  18017. \fi}
  18018. %
  18019. Consider the example in Figure~\ref{fig:map-bang} that
  18020. defines a partially-typed version of \code{map} whose parameter
  18021. \code{v} has type
  18022. \racket{\code{(Vector Any Any)}}\python{\code{list[Any]}}
  18023. and that updates \code{v} in place
  18024. instead of returning a new tuple. So we name this function
  18025. \code{map\_inplace}. We apply \code{map\_inplace} to an
  18026. \racket{tuple}\python{array} of integers, so the type checker inserts a
  18027. cast from
  18028. \racket{\code{(Vector Integer Integer)}}
  18029. \python{\code{list[int]}}
  18030. to
  18031. \racket{\code{(Vector Any Any)}}
  18032. \python{\code{list[Any]}}.
  18033. A naive way for the \LangCast{} interpreter to cast between
  18034. \racket{tuple}\python{array} types would be a build a new
  18035. \racket{tuple}\python{array}
  18036. whose elements are the result
  18037. of casting each of the original elements to the appropriate target
  18038. type.
  18039. However, this approach is not valid for mutable data structures.
  18040. In the example of Figure~\ref{fig:map-bang},
  18041. if the cast created a new \racket{tuple}\python{array}, then the updates inside of
  18042. \code{map\_inplace} would happen to the new \racket{tuple}\python{array} and not
  18043. the original one.
  18044. \begin{figure}[tbp]
  18045. \begin{tcolorbox}[colback=white]
  18046. % gradual_test_11.rkt
  18047. {\if\edition\racketEd
  18048. \begin{lstlisting}
  18049. (define (map_inplace [f : (Any -> Any)]
  18050. [v : (Vector Any Any)]) : Void
  18051. (begin
  18052. (vector-set! v 0 (f (vector-ref v 0)))
  18053. (vector-set! v 1 (f (vector-ref v 1)))))
  18054. (define (inc x) (+ x 1))
  18055. (let ([v (vector 0 41)])
  18056. (begin (map_inplace inc v) (vector-ref v 1)))
  18057. \end{lstlisting}
  18058. \fi}
  18059. {\if\edition\pythonEd
  18060. \begin{lstlisting}
  18061. def map_inplace(f : Callable[[int], int], v : list[Any]) -> None:
  18062. i = 0
  18063. while i != len(v):
  18064. v[i] = f(v[i])
  18065. i = i + 1
  18066. def inc(x : int) -> int:
  18067. return x + 1
  18068. v = [0, 41]
  18069. map_inplace(inc, v)
  18070. print( v[1] )
  18071. \end{lstlisting}
  18072. \fi}
  18073. \end{tcolorbox}
  18074. \caption{An example involving casts on arrays.}
  18075. \label{fig:map-bang}
  18076. \end{figure}
  18077. Instead the interpreter needs to create a new kind of value, a
  18078. \emph{proxy}, that intercepts every \racket{tuple}\python{array} operation.
  18079. On a read, the proxy reads from the underlying \racket{tuple}\python{array}
  18080. and then applies a
  18081. cast to the resulting value. On a write, the proxy casts the argument
  18082. value and then performs the write to the underlying \racket{tuple}\python{array}.
  18083. \racket{
  18084. For the first \code{(vector-ref v 0)} in \code{map\_inplace}, the proxy casts
  18085. \code{0} from \INTTY{} to \CANYTY{}.
  18086. For the first \code{vector-set!}, the proxy casts a tagged \code{1}
  18087. from \CANYTY{} to \INTTY{}.
  18088. }
  18089. \python{
  18090. For the subscript \code{v[i]} in \code{f([v[i])} of \code{map\_inplace},
  18091. the proxy casts the integer from \INTTY{} to \CANYTY{}.
  18092. For the subscript on the left of the assignment,
  18093. the proxy casts the tagged value from \CANYTY{} to \INTTY{}.
  18094. }
  18095. The final category of cast that we need to consider are casts between
  18096. the \CANYTY{} type and higher-order types such as functions or
  18097. \racket{tuples}\python{lists}. Figure~\ref{fig:map-any} shows a
  18098. variant of \code{map\_inplace} in which parameter \code{v} does not
  18099. have a type annotation, so it is given type \CANYTY{}. In the call to
  18100. \code{map\_inplace}, the \racket{tuple}\python{list} has type
  18101. \racket{\code{(Vector Integer Integer)}}\python{\code{list[int]}}
  18102. so the type checker inserts a cast to \CANYTY{}. A first thought is to use
  18103. \code{Inject}, but that doesn't work because
  18104. \racket{\code{(Vector Integer Integer)}}\python{\code{list[int]}} is not
  18105. a flat type. Instead, we must first cast to
  18106. \racket{\code{(Vector Any Any)}}\python{\code{list[Any]}} (which is flat)
  18107. and then inject to \CANYTY{}.
  18108. \begin{figure}[tbp]
  18109. \begin{tcolorbox}[colback=white]
  18110. {\if\edition\racketEd
  18111. \begin{lstlisting}
  18112. (define (map_inplace [f : (Any -> Any)] v) : Void
  18113. (begin
  18114. (vector-set! v 0 (f (vector-ref v 0)))
  18115. (vector-set! v 1 (f (vector-ref v 1)))))
  18116. (define (inc x) (+ x 1))
  18117. (let ([v (vector 0 41)])
  18118. (begin (map_inplace inc v) (vector-ref v 1)))
  18119. \end{lstlisting}
  18120. \fi}
  18121. {\if\edition\pythonEd
  18122. \begin{lstlisting}
  18123. def map_inplace(f : Callable[[Any], Any], v) -> None:
  18124. i = 0
  18125. while i != len(v):
  18126. v[i] = f(v[i])
  18127. i = i + 1
  18128. def inc(x):
  18129. return x + 1
  18130. v = [0, 41]
  18131. map_inplace(inc, v)
  18132. print( v[1] )
  18133. \end{lstlisting}
  18134. \fi}
  18135. \end{tcolorbox}
  18136. \caption{Casting an \racket{tuple}\python{array} to \CANYTY{}.}
  18137. \label{fig:map-any}
  18138. \end{figure}
  18139. \begin{figure}[tbp]
  18140. \begin{tcolorbox}[colback=white]
  18141. {\if\edition\racketEd
  18142. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  18143. (define/public (apply_cast v s t)
  18144. (match* (s t)
  18145. [(t1 t2) #:when (equal? t1 t2) v]
  18146. [('Any t2)
  18147. (match t2
  18148. [`(,ts ... -> ,rt)
  18149. (define any->any `(,@(for/list ([t ts]) 'Any) -> Any))
  18150. (define v^ (apply-project v any->any))
  18151. (apply_cast v^ any->any `(,@ts -> ,rt))]
  18152. [`(Vector ,ts ...)
  18153. (define vec-any `(Vector ,@(for/list ([t ts]) 'Any)))
  18154. (define v^ (apply-project v vec-any))
  18155. (apply_cast v^ vec-any `(Vector ,@ts))]
  18156. [else (apply-project v t2)])]
  18157. [(t1 'Any)
  18158. (match t1
  18159. [`(,ts ... -> ,rt)
  18160. (define any->any `(,@(for/list ([t ts]) 'Any) -> Any))
  18161. (define v^ (apply_cast v `(,@ts -> ,rt) any->any))
  18162. (apply-inject v^ (any-tag any->any))]
  18163. [`(Vector ,ts ...)
  18164. (define vec-any `(Vector ,@(for/list ([t ts]) 'Any)))
  18165. (define v^ (apply_cast v `(Vector ,@ts) vec-any))
  18166. (apply-inject v^ (any-tag vec-any))]
  18167. [else (apply-inject v (any-tag t1))])]
  18168. [(`(Vector ,ts1 ...) `(Vector ,ts2 ...))
  18169. (define x (gensym 'x))
  18170. (define cast-reads (for/list ([t1 ts1] [t2 ts2])
  18171. `(function (,x) ,(Cast (Var x) t1 t2) ())))
  18172. (define cast-writes
  18173. (for/list ([t1 ts1] [t2 ts2])
  18174. `(function (,x) ,(Cast (Var x) t2 t1) ())))
  18175. `(vector-proxy ,(vector v (apply vector cast-reads)
  18176. (apply vector cast-writes)))]
  18177. [(`(,ts1 ... -> ,rt1) `(,ts2 ... -> ,rt2))
  18178. (define xs (for/list ([t2 ts2]) (gensym 'x)))
  18179. `(function ,xs ,(Cast
  18180. (Apply (Value v)
  18181. (for/list ([x xs][t1 ts1][t2 ts2])
  18182. (Cast (Var x) t2 t1)))
  18183. rt1 rt2) ())]
  18184. ))
  18185. \end{lstlisting}
  18186. \fi}
  18187. {\if\edition\pythonEd
  18188. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  18189. def apply_cast(self, value, src, tgt):
  18190. match (src, tgt):
  18191. case (AnyType(), FunctionType(ps2, rt2)):
  18192. anyfun = FunctionType([AnyType() for p in ps2], AnyType())
  18193. return self.apply_cast(self.apply_project(value, anyfun), anyfun, tgt)
  18194. case (AnyType(), TupleType(ts2)):
  18195. anytup = TupleType([AnyType() for t1 in ts2])
  18196. return self.apply_cast(self.apply_project(value, anytup), anytup, tgt)
  18197. case (AnyType(), ListType(t2)):
  18198. anylist = ListType([AnyType() for t1 in ts2])
  18199. return self.apply_cast(self.apply_project(value, anylist), anylist, tgt)
  18200. case (AnyType(), AnyType()):
  18201. return value
  18202. case (AnyType(), _):
  18203. return self.apply_project(value, tgt)
  18204. case (FunctionType(ps1,rt1), AnyType()):
  18205. anyfun = FunctionType([AnyType() for p in ps1], AnyType())
  18206. return self.apply_inject(self.apply_cast(value, src, anyfun), anyfun)
  18207. case (TupleType(ts1), AnyType()):
  18208. anytup = TupleType([AnyType() for t1 in ts1])
  18209. return self.apply_inject(self.apply_cast(value, src, anytup), anytup)
  18210. case (ListType(t1), AnyType()):
  18211. anylist = ListType(AnyType())
  18212. return self.apply_inject(self.apply_cast(value,src,anylist), anylist)
  18213. case (_, AnyType()):
  18214. return self.apply_inject(value, src)
  18215. case (FunctionType(ps1, rt1), FunctionType(ps2, rt2)):
  18216. params = [generate_name('x') for p in ps2]
  18217. args = [Cast(Name(x), t2, t1)
  18218. for (x,t1,t2) in zip(params, ps1, ps2)]
  18219. body = Cast(Call(ValueExp(value), args), rt1, rt2)
  18220. return Function('cast', params, [Return(body)], {})
  18221. case (TupleType(ts1), TupleType(ts2)):
  18222. x = generate_name('x')
  18223. reads = [Function('cast', [x], [Return(Cast(Name(x), t1, t2))], {})
  18224. for (t1,t2) in zip(ts1,ts2)]
  18225. return ProxiedTuple(value, reads)
  18226. case (ListType(t1), ListType(t2)):
  18227. x = generate_name('x')
  18228. read = Function('cast', [x], [Return(Cast(Name(x), t1, t2))], {})
  18229. write = Function('cast', [x], [Return(Cast(Name(x), t2, t1))], {})
  18230. return ProxiedList(value, read, write)
  18231. case (t1, t2) if t1 == t2:
  18232. return value
  18233. case (t1, t2):
  18234. raise Exception('apply_cast unexpected ' + repr(src) + ' ' + repr(tgt))
  18235. def apply_inject(self, value, src):
  18236. return Tagged(value, self.type_to_tag(src))
  18237. def apply_project(self, value, tgt):
  18238. match value:
  18239. case Tagged(val, tag) if self.type_to_tag(tgt) == tag:
  18240. return val
  18241. case _:
  18242. raise Exception('apply_project, unexpected ' + repr(value))
  18243. \end{lstlisting}
  18244. \fi}
  18245. \end{tcolorbox}
  18246. \caption{The \code{apply\_cast} auxiliary method.}
  18247. \label{fig:apply_cast}
  18248. \end{figure}
  18249. The \LangCast{} interpreter uses an auxiliary function named
  18250. \code{apply\_cast} to cast a value from a source type to a target type,
  18251. shown in Figure~\ref{fig:apply_cast}. You'll find that it handles all
  18252. of the kinds of casts that we've discussed in this section.
  18253. %
  18254. The interpreter for \LangCast{} is defined in
  18255. Figure~\ref{fig:interp-Lcast}, with the case for \code{Cast}
  18256. dispatching to \code{apply\_cast}.
  18257. \racket{To handle the addition of tuple
  18258. proxies, we update the tuple primitives in \code{interp-op} using the
  18259. functions in Figure~\ref{fig:guarded-tuple}.}
  18260. Next we turn to the individual passes needed for compiling \LangGrad{}.
  18261. \begin{figure}[tbp]
  18262. \begin{tcolorbox}[colback=white]
  18263. {\if\edition\racketEd
  18264. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  18265. (define interp-Lcast-class
  18266. (class interp-Llambda-class
  18267. (super-new)
  18268. (inherit apply-fun apply-inject apply-project)
  18269. (define/override (interp-op op)
  18270. (match op
  18271. ['vector-length guarded-vector-length]
  18272. ['vector-ref guarded-vector-ref]
  18273. ['vector-set! guarded-vector-set!]
  18274. ['any-vector-ref (lambda (v i)
  18275. (match v [`(tagged ,v^ ,tg)
  18276. (guarded-vector-ref v^ i)]))]
  18277. ['any-vector-set! (lambda (v i a)
  18278. (match v [`(tagged ,v^ ,tg)
  18279. (guarded-vector-set! v^ i a)]))]
  18280. ['any-vector-length (lambda (v)
  18281. (match v [`(tagged ,v^ ,tg)
  18282. (guarded-vector-length v^)]))]
  18283. [else (super interp-op op)]
  18284. ))
  18285. (define/override ((interp-exp env) e)
  18286. (define (recur e) ((interp-exp env) e))
  18287. (match e
  18288. [(Value v) v]
  18289. [(Cast e src tgt) (apply_cast (recur e) src tgt)]
  18290. [else ((super interp-exp env) e)]))
  18291. ))
  18292. (define (interp-Lcast p)
  18293. (send (new interp-Lcast-class) interp-program p))
  18294. \end{lstlisting}
  18295. \fi}
  18296. {\if\edition\pythonEd
  18297. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  18298. class InterpLcast(InterpLany):
  18299. def interp_exp(self, e, env):
  18300. match e:
  18301. case Cast(value, src, tgt):
  18302. v = self.interp_exp(value, env)
  18303. return self.apply_cast(v, src, tgt)
  18304. case ValueExp(value):
  18305. return value
  18306. ...
  18307. case _:
  18308. return super().interp_exp(e, env)
  18309. \end{lstlisting}
  18310. \fi}
  18311. \end{tcolorbox}
  18312. \caption{The interpreter for \LangCast{}.}
  18313. \label{fig:interp-Lcast}
  18314. \end{figure}
  18315. {\if\edition\racketEd
  18316. \begin{figure}[tbp]
  18317. \begin{tcolorbox}[colback=white]
  18318. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  18319. (define (guarded-vector-ref vec i)
  18320. (match vec
  18321. [`(vector-proxy ,proxy)
  18322. (define val (guarded-vector-ref (vector-ref proxy 0) i))
  18323. (define rd (vector-ref (vector-ref proxy 1) i))
  18324. (apply-fun rd (list val) 'guarded-vector-ref)]
  18325. [else (vector-ref vec i)]))
  18326. (define (guarded-vector-set! vec i arg)
  18327. (match vec
  18328. [`(vector-proxy ,proxy)
  18329. (define wr (vector-ref (vector-ref proxy 2) i))
  18330. (define arg^ (apply-fun wr (list arg) 'guarded-vector-set!))
  18331. (guarded-vector-set! (vector-ref proxy 0) i arg^)]
  18332. [else (vector-set! vec i arg)]))
  18333. (define (guarded-vector-length vec)
  18334. (match vec
  18335. [`(vector-proxy ,proxy)
  18336. (guarded-vector-length (vector-ref proxy 0))]
  18337. [else (vector-length vec)]))
  18338. \end{lstlisting}
  18339. %% {\if\edition\pythonEd
  18340. %% \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  18341. %% UNDER CONSTRUCTION
  18342. %% \end{lstlisting}
  18343. %% \fi}
  18344. \end{tcolorbox}
  18345. \caption{The \code{guarded-vector} auxiliary functions.}
  18346. \label{fig:guarded-tuple}
  18347. \end{figure}
  18348. \fi}
  18349. {\if\edition\pythonEd
  18350. \section{Overload Resolution}
  18351. \label{sec:gradual-resolution}
  18352. Recall that when we added support for arrays in
  18353. Section~\ref{sec:arrays}, the syntax for the array operations were the
  18354. same as for tuple operations (e.g., accessing an element, getting the
  18355. length). So we performed overload resolution, with a pass named
  18356. \code{resolve}, to separate the array and tuple operations. In
  18357. particular, we introduced the primitives \code{array\_load},
  18358. \code{array\_store}, and \code{array\_len}.
  18359. For gradual typing, we further overload these operators to work on
  18360. values of type \CANYTY{}. Thus, the \code{resolve} pass should be
  18361. updated with new cases for the \CANYTY{} type, translating the element
  18362. access and length operations to the primitives \code{any\_load},
  18363. \code{any\_store}, and \code{any\_len}.
  18364. \section{Cast Insertion}
  18365. \label{sec:gradual-insert-casts}
  18366. In our discussion of type checking of \LangGrad{}, we mentioned how
  18367. the runtime aspect of type checking is carried out by the \code{Cast}
  18368. AST node, which is added to the program by a new pass named
  18369. \code{cast\_insert}. The target of this pass is the \LangCast{}
  18370. language. We now discuss the details of this pass.
  18371. The \code{cast\_insert} pass is closely related to the type checker
  18372. for \LangGrad{} (starting in Figure~\ref{fig:type-check-Lgradual-1}).
  18373. In particular, the type checker allows implicit casts between
  18374. consistent types. The job of the \code{cast\_insert} pass is to make
  18375. those casts explicit. It does so by inserting
  18376. \code{Cast} nodes into the AST.
  18377. %
  18378. For the most part, the implicit casts occur in places where the type
  18379. checker checks two types for consistency. Consider the case for
  18380. binary operators in Figure~\ref{fig:type-check-Lgradual-1}. The type
  18381. checker requires that the type of the left operand is consistent with
  18382. \INTTY{}. Thus, the \code{cast\_insert} pass should insert a
  18383. \code{Cast} around the left operand, converting from its type to
  18384. \INTTY{}. The story is similar for the right operand. It is not always
  18385. necessary to insert a cast, e.g., if the left operand already has type
  18386. \INTTY{} then there is no need for a \code{Cast}.
  18387. Some of the implicit casts are not as straightforward. One such case
  18388. arises with the
  18389. conditional expression. In Figure~\ref{fig:type-check-Lgradual-1} we
  18390. see that the type checker requires that the two branches have
  18391. consistent types and that type of the conditional expression is the
  18392. join of the branches' types. In the target language \LangCast{}, both
  18393. branches will need to have the same type, and that type
  18394. will be the type of the conditional expression. Thus, each branch requires
  18395. a \code{Cast} to convert from its type to the join type.
  18396. The case for the function call exhibits another interesting situation. If
  18397. the function expression is of type \CANYTY{}, then it needs to be cast
  18398. to a function type so that it can be used in a function call in
  18399. \LangCast{}. Which function type should it be cast to? The parameter
  18400. and return types are unknown, so we can simply use \CANYTY{} for all
  18401. of them. Futhermore, in \LangCast{} the argument types will need to
  18402. exactly match the parameter types, so we must cast all the arguments
  18403. to type \CANYTY{} (if they are not already of that type).
  18404. \fi}
  18405. \section{Lower Casts}
  18406. \label{sec:lower_casts}
  18407. The next step in the journey towards x86 is the \code{lower\_casts}
  18408. pass that translates the casts in \LangCast{} to the lower-level
  18409. \code{Inject} and \code{Project} operators and new operators for
  18410. proxies, extending the \LangLam{} language to \LangProxy{}.
  18411. The \LangProxy{} language can also be described as an extension of
  18412. \LangAny{}, with the addition of proxies. We recommend creating an
  18413. auxiliary function named \code{lower\_cast} that takes an expression
  18414. (in \LangCast{}), a source type, and a target type, and translates it
  18415. to expression in \LangProxy{}.
  18416. The \code{lower\_cast} function can follow a code structure similar to
  18417. the \code{apply\_cast} function (Figure~\ref{fig:apply_cast}) used in
  18418. the interpreter for \LangCast{} because it must handle the same cases
  18419. as \code{apply\_cast} and it needs to mimic the behavior of
  18420. \code{apply\_cast}. The most interesting cases are those concerning
  18421. the casts involving tuple, array, and function types.
  18422. As mentioned in Section~\ref{sec:interp-casts}, a cast from one array
  18423. type to another array type is accomplished by creating a proxy that
  18424. intercepts the operations on the underlying array. Here we make the
  18425. creation of the proxy explicit with the
  18426. \racket{\code{vectorof-proxy}}\python{\code{ListProxy}} AST node. It
  18427. takes fives arguments, the first is an expression for the array, the
  18428. second is a function for casting an element that is being read from
  18429. the array, the third is a function for casting an element that is
  18430. being written to the array, the fourth is the type of the underlying
  18431. array, and the fifth is the type of the proxied array. You can create
  18432. the functions for reading and writing using lambda expressions.
  18433. A cast between two tuple types can be handled in a similar manner.
  18434. We create a proxy with the
  18435. \racket{\code{vector-proxy}}\python{\code{TupleProxy}} AST node.
  18436. \python{Tuples are immutable, so there is no
  18437. need for a function to cast the value during a write.}
  18438. Because there is a separate element type for each slot in the tuple,
  18439. we need not just one function for casting during a read, but instead a tuple
  18440. of functions.
  18441. %
  18442. Also, as we shall see in the next section, we need to differentiate
  18443. these tuples from the user-created ones, so we recommend using a new
  18444. AST node named \racket{\code{raw-vector}}\python{\code{RawTuple}}
  18445. instead of \racket{\code{vector}}\python{\code{Tuple}} to create the
  18446. tuples of functions.
  18447. %
  18448. Figure~\ref{fig:map-bang-lower-cast} shows the output of
  18449. \code{lower\_casts} on the example in Figure~\ref{fig:map-bang} that
  18450. involved casting an array of integers to an array of \CANYTY{}.
  18451. \begin{figure}[tbp]
  18452. \begin{tcolorbox}[colback=white]
  18453. {\if\edition\racketEd
  18454. \begin{lstlisting}
  18455. (define (map_inplace [f : (Any -> Any)] [v : (Vector Any Any)]) : Void
  18456. (begin
  18457. (vector-set! v 0 (f (vector-ref v 0)))
  18458. (vector-set! v 1 (f (vector-ref v 1)))))
  18459. (define (inc [x : Any]) : Any
  18460. (inject (+ (project x Integer) 1) Integer))
  18461. (let ([v (vector 0 41)])
  18462. (begin
  18463. (map_inplace inc (vector-proxy v
  18464. (raw-vector (lambda: ([x9 : Integer]) : Any
  18465. (inject x9 Integer))
  18466. (lambda: ([x9 : Integer]) : Any
  18467. (inject x9 Integer)))
  18468. (raw-vector (lambda: ([x9 : Any]) : Integer
  18469. (project x9 Integer))
  18470. (lambda: ([x9 : Any]) : Integer
  18471. (project x9 Integer)))))
  18472. (vector-ref v 1)))
  18473. \end{lstlisting}
  18474. \fi}
  18475. {\if\edition\pythonEd
  18476. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  18477. def map_inplace(f : Callable[[int], int], v : list[Any]) -> void:
  18478. i = 0
  18479. while i != array_len(v):
  18480. array_store(v, i, inject(f(project(array_load(v, i), int)), int))
  18481. i = (i + 1)
  18482. def inc(x : int) -> int:
  18483. return (x + 1)
  18484. def main() -> int:
  18485. v = [0, 41]
  18486. map_inplace(inc, array_proxy(v, list[int], list[Any]))
  18487. print(array_load(v, 1))
  18488. return 0
  18489. \end{lstlisting}
  18490. \fi}
  18491. \end{tcolorbox}
  18492. \caption{Output of \code{lower\_casts} on the example in
  18493. Figure~\ref{fig:map-bang}.}
  18494. \label{fig:map-bang-lower-cast}
  18495. \end{figure}
  18496. A cast from one function type to another function type is accomplished
  18497. by generating a \code{lambda} whose parameter and return types match
  18498. the target function type. The body of the \code{lambda} should cast
  18499. the parameters from the target type to the source type. (Yes,
  18500. backwards! Functions are contravariant\index{subject}{contravariant}
  18501. in the parameters.). Afterwards, call the underlying function and then
  18502. cast the result from the source return type to the target return type.
  18503. Figure~\ref{fig:map-lower-cast} shows the output of the
  18504. \code{lower\_casts} pass on the \code{map} example in
  18505. Figure~\ref{fig:gradual-map}. Note that the \code{inc} argument in the
  18506. call to \code{map} is wrapped in a \code{lambda}.
  18507. \begin{figure}[tbp]
  18508. \begin{tcolorbox}[colback=white]
  18509. {\if\edition\racketEd
  18510. \begin{lstlisting}
  18511. (define (map [f : (Integer -> Integer)]
  18512. [v : (Vector Integer Integer)])
  18513. : (Vector Integer Integer)
  18514. (vector (f (vector-ref v 0)) (f (vector-ref v 1))))
  18515. (define (inc [x : Any]) : Any
  18516. (inject (+ (project x Integer) 1) Integer))
  18517. (vector-ref (map (lambda: ([x9 : Integer]) : Integer
  18518. (project (inc (inject x9 Integer)) Integer))
  18519. (vector 0 41)) 1)
  18520. \end{lstlisting}
  18521. \fi}
  18522. {\if\edition\pythonEd
  18523. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  18524. def map(f : Callable[[int], int], v : tuple[int,int]) -> tuple[int,int]:
  18525. return (f(v[0]), f(v[1]),)
  18526. def inc(x : any) -> any:
  18527. return inject((project(x, int) + 1), int)
  18528. def main() -> int:
  18529. t = map(lambda x: project(inc(inject(x, int)), int), (0, 41,))
  18530. print(t[1])
  18531. return 0
  18532. \end{lstlisting}
  18533. \fi}
  18534. \end{tcolorbox}
  18535. \caption{Output of \code{lower\_casts} on the example in
  18536. Figure~\ref{fig:gradual-map}.}
  18537. \label{fig:map-lower-cast}
  18538. \end{figure}
  18539. \section{Differentiate Proxies}
  18540. \label{sec:differentiate-proxies}
  18541. So far the responsibility of differentiating tuples and tuple proxies
  18542. has been the job of the interpreter.
  18543. %
  18544. \racket{For example, the interpreter for \LangCast{} implements
  18545. \code{vector-ref} using the \code{guarded-vector-ref} function in
  18546. Figure~\ref{fig:guarded-tuple}.}
  18547. %
  18548. In the \code{differentiate\_proxies} pass we shift this responsibility
  18549. to the generated code.
  18550. We begin by designing the output language \LangPVec{}. In \LangGrad{}
  18551. we used the type \TUPLETYPENAME{} for both
  18552. real tuples and tuple proxies.
  18553. \python{Similarly, we use the type \code{list} for both arrays and
  18554. array proxies.}
  18555. In \LangPVec{} we return the
  18556. \TUPLETYPENAME{} type to its original
  18557. meaning, as the type of just tuples, and we introduce a new type,
  18558. \PTUPLETYNAME{}, whose values
  18559. can be either real tuples or tuple
  18560. proxies.
  18561. Likewise, we return the
  18562. \ARRAYTYPENAME{} type to its original
  18563. meaning, as the type of arrays, and we introduce a new type,
  18564. \PARRAYTYNAME{}, whose values
  18565. can be either arrays or array proxies.
  18566. These new types come with a suite of new primitive operations.
  18567. {\if\edition\racketEd
  18568. A tuple proxy is represented by a tuple containing three things: 1) the
  18569. underlying tuple, 2) a tuple of functions for casting elements that
  18570. are read from the tuple, and 3) a tuple of functions for casting
  18571. values to be written to the tuple. So we define the following
  18572. abbreviation for the type of a tuple proxy:
  18573. \[
  18574. \itm{TupleProxy} (T\ldots \Rightarrow T'\ldots)
  18575. = (\ttm{Vector}~\PTUPLETY{T\ldots} ~R~ W) \to \PTUPLETY{T' \ldots})
  18576. \]
  18577. where $R = (\ttm{Vector}~(T\to T') \ldots)$ and
  18578. $W = (\ttm{Vector}~(T'\to T) \ldots)$.
  18579. %
  18580. Next we describe each of the new primitive operations.
  18581. \begin{description}
  18582. \item[\code{inject-vector} : (\key{Vector} $T \ldots$) $\to$
  18583. (\key{PVector} $T \ldots$)]\ \\
  18584. %
  18585. This operation brands a vector as a value of the \code{PVector} type.
  18586. \item[\code{inject-proxy} : $\itm{TupleProxy}(T\ldots \Rightarrow T'\ldots)$
  18587. $\to$ (\key{PVector} $T' \ldots$)]\ \\
  18588. %
  18589. This operation brands a vector proxy as value of the \code{PVector} type.
  18590. \item[\code{proxy?} : (\key{PVector} $T \ldots$) $\to$
  18591. \BOOLTY{}] \ \\
  18592. %
  18593. This returns true if the value is a tuple proxy and false if it is a
  18594. real tuple.
  18595. \item[\code{project-vector} : (\key{PVector} $T \ldots$) $\to$
  18596. (\key{Vector} $T \ldots$)]\ \\
  18597. %
  18598. Assuming that the input is a tuple, this operation returns the
  18599. tuple.
  18600. \item[\code{proxy-vector-length} : (\key{PVector} $T \ldots$)
  18601. $\to$ \BOOLTY{}]\ \\
  18602. %
  18603. Given a tuple proxy, this operation returns the length of the tuple.
  18604. \item[\code{proxy-vector-ref} : (\key{PVector} $T \ldots$)
  18605. $\to$ ($i$ : \code{Integer}) $\to$ $T_i$]\ \\
  18606. %
  18607. Given a tuple proxy, this operation returns the $i$th element of the
  18608. tuple.
  18609. \item[\code{proxy-vector-set!} : (\key{PVector} $T \ldots$) $\to$ ($i$
  18610. : \code{Integer}) $\to$ $T_i$ $\to$ \key{Void}]\ \\
  18611. Given a tuple proxy, this operation writes a value to the $i$th element
  18612. of the tuple.
  18613. \end{description}
  18614. \fi}
  18615. {\if\edition\pythonEd
  18616. A tuple proxy is represented by a tuple containing 1) the underlying
  18617. tuple and 2) a tuple of functions for casting elements that are read
  18618. from the tuple. The \LangPVec{} language includes the following AST
  18619. classes and primitive functions.
  18620. \begin{description}
  18621. \item[\code{InjectTuple}] \ \\
  18622. %
  18623. This AST node brands a tuple as a value of the \PTUPLETYNAME{} type.
  18624. \item[\code{InjectTupleProxy}]\ \\
  18625. %
  18626. This AST node brands a tuple proxy as value of the \PTUPLETYNAME{} type.
  18627. \item[\code{is\_tuple\_proxy}]\ \\
  18628. %
  18629. This primitive returns true if the value is a tuple proxy and false
  18630. if it is a tuple.
  18631. \item[\code{project\_tuple}]\ \\
  18632. %
  18633. Converts a tuple that is branded as \PTUPLETYNAME{}
  18634. back to a tuple.
  18635. \item[\code{proxy\_tuple\_len}]\ \\
  18636. %
  18637. Given a tuple proxy, returns the length of the underlying tuple.
  18638. \item[\code{proxy\_tuple\_load}]\ \\
  18639. %
  18640. Given a tuple proxy, returns the $i$th element of the underlying
  18641. tuple.
  18642. \end{description}
  18643. An array proxy is represented by a tuple containing 1) the underlying
  18644. array, 2) a function for casting elements that are read from the
  18645. array, and 3) a function for casting elements that are written to the
  18646. array. The \LangPVec{} language includes the following AST classes
  18647. and primitive functions.
  18648. \begin{description}
  18649. \item[\code{InjectList}]\ \\
  18650. This AST node brands an array as a value of the \PARRAYTYNAME{} type.
  18651. \item[\code{InjectListProxy}]\ \\
  18652. %
  18653. This AST node brands a array proxy as value of the \PARRAYTYNAME{} type.
  18654. \item[\code{is\_array\_proxy}]\ \\
  18655. %
  18656. Returns true if the value is a array proxy and false if it is an
  18657. array.
  18658. \item[\code{project\_array}]\ \\
  18659. %
  18660. Converts an array that is branded as \PARRAYTYNAME{} back to an
  18661. array.
  18662. \item[\code{proxy\_array\_len}]\ \\
  18663. %
  18664. Given a array proxy, returns the length of the underlying array.
  18665. \item[\code{proxy\_array\_load}]\ \\
  18666. %
  18667. Given a array proxy, returns the $i$th element of the underlying
  18668. array.
  18669. \item[\code{proxy\_array\_store}]\ \\
  18670. %
  18671. Given an array proxy, writes a value to the $i$th element of the
  18672. underlying array.
  18673. \end{description}
  18674. \fi}
  18675. Now we discuss the translation that differentiates tuples and arrays
  18676. from proxies. First, every type annotation in the program is
  18677. translated (recursively) to replace \TUPLETYPENAME{} with \PTUPLETYNAME{}.
  18678. Next, we insert uses of \PTUPLETYNAME{} operations in the appropriate
  18679. places. For example, we wrap every tuple creation with an
  18680. \racket{\code{inject-vector}}\python{\code{InjectTuple}}.
  18681. {\if\edition\racketEd
  18682. \begin{lstlisting}
  18683. (vector |$e_1 \ldots e_n$|)
  18684. |$\Rightarrow$|
  18685. (inject-vector (vector |$e'_1 \ldots e'_n$|))
  18686. \end{lstlisting}
  18687. \fi}
  18688. {\if\edition\pythonEd
  18689. \begin{lstlisting}
  18690. Tuple(|$e_1, \ldots, e_n$|)
  18691. |$\Rightarrow$|
  18692. InjectTuple(Tuple(|$e'_1, \ldots, e'_n$|))
  18693. \end{lstlisting}
  18694. \fi}
  18695. The \racket{\code{raw-vector}}\python{\code{RawTuple}}
  18696. AST node that we introduced in the previous
  18697. section does not get injected.
  18698. {\if\edition\racketEd
  18699. \begin{lstlisting}
  18700. (raw-vector |$e_1 \ldots e_n$|)
  18701. |$\Rightarrow$|
  18702. (vector |$e'_1 \ldots e'_n$|)
  18703. \end{lstlisting}
  18704. \fi}
  18705. {\if\edition\pythonEd
  18706. \begin{lstlisting}
  18707. RawTuple(|$e_1, \ldots, e_n$|)
  18708. |$\Rightarrow$|
  18709. Tuple(|$e'_1, \ldots, e'_n$|)
  18710. \end{lstlisting}
  18711. \fi}
  18712. The \racket{\code{vector-proxy}}\python{\code{TupleProxy}} AST translates as follows.
  18713. {\if\edition\racketEd
  18714. \begin{lstlisting}
  18715. (vector-proxy |$e_1~e_2~e_3$|)
  18716. |$\Rightarrow$|
  18717. (inject-proxy (vector |$e'_1~e'_2~e'_3$|))
  18718. \end{lstlisting}
  18719. \fi}
  18720. {\if\edition\pythonEd
  18721. \begin{lstlisting}
  18722. TupleProxy(|$e_1, e_2, T_1, T_2$|)
  18723. |$\Rightarrow$|
  18724. InjectTupleProxy(Tuple(|$e'_1,e'_2, T'_1, T'_2$|))
  18725. \end{lstlisting}
  18726. \fi}
  18727. We translate the element access operations into conditional
  18728. expressions that check whether the value is a proxy and then dispatch
  18729. to either the appropriate proxy tuple operation or the regular tuple
  18730. operation.
  18731. {\if\edition\racketEd
  18732. \begin{lstlisting}
  18733. (vector-ref |$e_1$| |$i$|)
  18734. |$\Rightarrow$|
  18735. (let ([|$v~e_1$|])
  18736. (if (proxy? |$v$|)
  18737. (proxy-vector-ref |$v$| |$i$|)
  18738. (vector-ref (project-vector |$v$|) |$i$|)
  18739. \end{lstlisting}
  18740. \fi}
  18741. %
  18742. Note that in the branch for a tuple, we must apply
  18743. \racket{\code{project-vector}}\python{\code{project\_tuple}} before reading
  18744. from the tuple.
  18745. The translation of array operations is similar to the ones for tuples.
  18746. \section{Reveal Casts}
  18747. \label{sec:reveal-casts-gradual}
  18748. {\if\edition\racketEd
  18749. Recall that the \code{reveal\_casts} pass
  18750. (Section~\ref{sec:reveal-casts-Lany}) is responsible for lowering
  18751. \code{Inject} and \code{Project} into lower-level operations.
  18752. %
  18753. In particular, \code{Project} turns into a conditional expression that
  18754. inspects the tag and retrieves the underlying value. Here we need to
  18755. augment the translation of \code{Project} to handle the situation when
  18756. the target type is \code{PVector}. Instead of using
  18757. \code{vector-length} we need to use \code{proxy-vector-length}.
  18758. \begin{lstlisting}
  18759. (project |$e$| (PVector Any|$_1$| |$\ldots$| Any|$_n$|))
  18760. |$\Rightarrow$|
  18761. (let |$\itm{tmp}$| |$e'$|
  18762. (if (eq? (tag-of-any |$\itm{tmp}$| 2))
  18763. (let |$\itm{tup}$| (value-of |$\itm{tmp}$| (PVector Any |$\ldots$| Any))
  18764. (if (eq? (proxy-vector-length |$\itm{tup}$|) |$n$|) |$\itm{tup}$| (exit)))
  18765. (exit)))
  18766. \end{lstlisting}
  18767. \fi}
  18768. %
  18769. {\if\edition\pythonEd
  18770. Recall that the $\itm{tagof}$ function determines the bits used to
  18771. identify values of different types and it is used in the \code{reveal\_casts}
  18772. pass in the translation of \code{Project}. The \PTUPLETYNAME{} and
  18773. \PARRAYTYNAME{} types can be mapped to $010$ in binary ($2$ is
  18774. decimal), just like the tuple and array types.
  18775. \fi}
  18776. %
  18777. Otherwise, the only other changes are adding cases that copy the new AST nodes.
  18778. \section{Closure Conversion}
  18779. \label{sec:closure-conversion-gradual}
  18780. The auxiliary function that translates type annotations needs to be
  18781. updated to handle the \PTUPLETYNAME{} and \PARRAYTYNAME{} types.
  18782. %
  18783. Otherwise, the only other changes are adding cases that copy the new AST nodes.
  18784. \section{Select Instructions}
  18785. \label{sec:select-instructions-gradual}
  18786. Recall that the \code{select\_instructions} pass is responsible for
  18787. lowering the primitive operations into x86 instructions. So we need
  18788. to translate the new operations on \PTUPLETYNAME{} and \PARRAYTYNAME{}
  18789. to x86. To do so, the first question we need to answer is how to
  18790. differentiate between tuple and tuples proxies, and likewise for
  18791. arrays and array proxies. We need just one bit to accomplish this,
  18792. and use the bit in position $63$ of the 64-bit tag at the front of
  18793. every tuple (see Figure~\ref{fig:tuple-rep}) or array
  18794. (Section~\ref{sec:array-rep}). So far, this bit has been set to $0$,
  18795. so for \racket{\code{inject-vector}}\python{\code{InjectTuple}} we leave
  18796. it that way.
  18797. {\if\edition\racketEd
  18798. \begin{lstlisting}
  18799. (Assign |$\itm{lhs}$| (Prim 'inject-vector (list |$e_1$|)))
  18800. |$\Rightarrow$|
  18801. movq |$e'_1$|, |$\itm{lhs'}$|
  18802. \end{lstlisting}
  18803. \fi}
  18804. {\if\edition\pythonEd
  18805. \begin{lstlisting}
  18806. Assign([|$\itm{lhs}$|], InjectTuple(|$e_1$|))
  18807. |$\Rightarrow$|
  18808. movq |$e'_1$|, |$\itm{lhs'}$|
  18809. \end{lstlisting}
  18810. \fi}
  18811. \python{The translation for \code{InjectList} is also a move instruction.}
  18812. \noindent On the other hand,
  18813. \racket{\code{inject-proxy}}\python{\code{InjectTupleProxy}} sets bit
  18814. $63$ to $1$.
  18815. %
  18816. {\if\edition\racketEd
  18817. \begin{lstlisting}
  18818. (Assign |$\itm{lhs}$| (Prim 'inject-proxy (list |$e_1$|)))
  18819. |$\Rightarrow$|
  18820. movq |$e'_1$|, %r11
  18821. movq |$(1 << 63)$|, %rax
  18822. orq 0(%r11), %rax
  18823. movq %rax, 0(%r11)
  18824. movq %r11, |$\itm{lhs'}$|
  18825. \end{lstlisting}
  18826. \fi}
  18827. {\if\edition\pythonEd
  18828. \begin{lstlisting}
  18829. Assign([|$\itm{lhs}$|], InjectTupleProxy(|$e_1$|))
  18830. |$\Rightarrow$|
  18831. movq |$e'_1$|, %r11
  18832. movq |$(1 << 63)$|, %rax
  18833. orq 0(%r11), %rax
  18834. movq %rax, 0(%r11)
  18835. movq %r11, |$\itm{lhs'}$|
  18836. \end{lstlisting}
  18837. \fi}
  18838. \python{\noindent The translation for \code{InjectListProxy} should set bit $63$
  18839. of the tag and also bit $62$, to differentiate between arrays and tuples.}
  18840. The \racket{\code{proxy?} operation consumes}
  18841. \python{\code{is\_tuple\_proxy} and \code{is\_array\_proxy} operations consume}
  18842. the information so carefully
  18843. stashed away by the injections. It
  18844. isolates the $63$rd bit to tell whether the value is a tuple/array or
  18845. a proxy.
  18846. %
  18847. {\if\edition\racketEd
  18848. \begin{lstlisting}
  18849. (Assign |$\itm{lhs}$| (Prim 'proxy? (list |$e_1$|)))
  18850. |$\Rightarrow$|
  18851. movq |$e_1'$|, %r11
  18852. movq 0(%r11), %rax
  18853. sarq $63, %rax
  18854. andq $1, %rax
  18855. movq %rax, |$\itm{lhs'}$|
  18856. \end{lstlisting}
  18857. \fi}%
  18858. %
  18859. {\if\edition\pythonEd
  18860. \begin{lstlisting}
  18861. Assign([|$\itm{lhs}$|], Call(Name('is_tuple_proxy'), [|$e_1$|]))
  18862. |$\Rightarrow$|
  18863. movq |$e_1'$|, %r11
  18864. movq 0(%r11), %rax
  18865. sarq $63, %rax
  18866. andq $1, %rax
  18867. movq %rax, |$\itm{lhs'}$|
  18868. \end{lstlisting}
  18869. \fi}%
  18870. %
  18871. The \racket{\code{project-vector} operation is}
  18872. \python{\code{project\_tuple} and \code{project\_array} operations are}
  18873. straightforward to translate, so we leave that to the reader.
  18874. Regarding the element access operations for tuples and arrays, the
  18875. runtime provides procedures that implement them (they are recursive
  18876. functions!) so here we simply need to translate these tuple
  18877. operations into the appropriate function call. For example, here is
  18878. the translation for
  18879. \racket{\code{proxy-vector-ref}}\python{\code{proxy\_tuple\_load}}.
  18880. {\if\edition\racketEd
  18881. \begin{lstlisting}
  18882. (Assign |$\itm{lhs}$| (Prim 'proxy-vector-ref (list |$e_1$| |$e_2$|)))
  18883. |$\Rightarrow$|
  18884. movq |$e_1'$|, %rdi
  18885. movq |$e_2'$|, %rsi
  18886. callq proxy_vector_ref
  18887. movq %rax, |$\itm{lhs'}$|
  18888. \end{lstlisting}
  18889. \fi}
  18890. {\if\edition\pythonEd
  18891. \begin{lstlisting}
  18892. Assign([|$\itm{lhs}$|], Call(Name('proxy_tuple_load'), [|$e_1$|, |$e_2$|]))
  18893. |$\Rightarrow$|
  18894. movq |$e_1'$|, %rdi
  18895. movq |$e_2'$|, %rsi
  18896. callq proxy_vector_ref
  18897. movq %rax, |$\itm{lhs'}$|
  18898. \end{lstlisting}
  18899. \fi}
  18900. We translate
  18901. \racket{\code{proxy-vectof-ref}}\python{\code{proxy\_array\_load}}
  18902. to \code{proxy\_vecof\_ref},
  18903. \racket{\code{proxy-vectof-set!}}\python{\code{proxy\_array\_store}}
  18904. to \code{proxy\_vecof\_set}, and
  18905. \racket{\code{proxy-vectof-length}}\python{\code{proxy\_array\_len}}
  18906. to \code{proxy\_vecof\_length}.
  18907. We have another batch of operations to deal with, those for the
  18908. \CANYTY{} type. Recall that overload resolution
  18909. (Section~\ref{sec:gradual-resolution}) generates an
  18910. \racket{\code{any-vector-ref}}\python{\code{any\_load\_unsafe}} when
  18911. there is a element access on something of type \CANYTY{}, and
  18912. similarly for
  18913. \racket{\code{any-vector-set!}}\python{\code{any\_store\_unsafe}} and
  18914. \racket{\code{any-vector-length}}\python{\code{any\_len}}. In
  18915. Section~\ref{sec:select-Lany} we selected instructions for these
  18916. operations based on the idea that the underlying value was a tuple or
  18917. array. But in the current setting, the underlying value is of type
  18918. \PTUPLETYNAME{} or \PARRAYTYNAME{}. We have added two runtime
  18919. functions to deal with this: \code{proxy\_vec\_ref},
  18920. \code{proxy\_vec\_set}, and
  18921. \code{proxy\_vec\_length}, that inspect bit $62$ of the tag
  18922. to determine whether the value is a tuple or array, and then
  18923. dispatches to the the appropriate function for
  18924. tuples (e.g. \code{proxy\_vector\_ref}) or arrays
  18925. (e.g. \code{proxy\_vecof\_ref}).
  18926. %
  18927. So \racket{\code{any-vector-ref}}\python{\code{any\_load\_unsafe}}
  18928. can be translated follows.
  18929. We begin by projecting the underlying value out of the tagged value and
  18930. then call the \code{proxy\_vec\_ref} procedure in the runtime.
  18931. {\if\edition\racketEd
  18932. \begin{lstlisting}
  18933. (Assign |$\itm{lhs}$| (Prim 'any-vec-ref (list |$e_1$| |$e_2$|)))
  18934. |$\Rightarrow$|
  18935. movq |$\neg 111$|, %rdi
  18936. andq |$e_1'$|, %rdi
  18937. movq |$e_2'$|, %rsi
  18938. callq proxy_vec_ref
  18939. movq %rax, |$\itm{lhs'}$|
  18940. \end{lstlisting}
  18941. \fi}
  18942. {\if\edition\pythonEd
  18943. \begin{lstlisting}
  18944. Assign([|$\itm{lhs}$|], Call(Name('any_load_unsafe'), [|$e_1$|, |$e_2$|]))
  18945. |$\Rightarrow$|
  18946. movq |$\neg 111$|, %rdi
  18947. andq |$e_1'$|, %rdi
  18948. movq |$e_2'$|, %rsi
  18949. callq proxy_vec_ref
  18950. movq %rax, |$\itm{lhs'}$|
  18951. \end{lstlisting}
  18952. \fi}
  18953. \noindent The \racket{\code{any-vector-set!}}\python{\code{any\_store\_unsafe}}
  18954. and \racket{\code{any-vector-length}}\python{\code{any\_len}} operators
  18955. are translated in a similar way. Alternatively, you could generate
  18956. instructions to open-code
  18957. the \code{proxy\_vec\_ref}, \code{proxy\_vec\_set},
  18958. and \code{proxy\_vec\_length} functions.
  18959. \begin{exercise}\normalfont\normalsize
  18960. Implement a compiler for the gradually-typed \LangGrad{} language by
  18961. extending and adapting your compiler for \LangLam{}. Create 10 new
  18962. partially-typed test programs. In addition to testing with these
  18963. new programs, also test your compiler on all the tests for \LangLam{}
  18964. and for \LangDyn{}.
  18965. %
  18966. \racket{Sometimes you may get a type checking error on the
  18967. \LangDyn{} programs but you can adapt them by inserting a cast to
  18968. the \CANYTY{} type around each subexpression causing a type
  18969. error. While \LangDyn{} does not have explicit casts, you can
  18970. induce one by wrapping the subexpression \code{e} with a call to
  18971. an un-annotated identity function, like this: \code{((lambda (x) x) e)}.}
  18972. %
  18973. \python{Sometimes you may get a type checking error on the
  18974. \LangDyn{} programs but you can adapt them by inserting a
  18975. temporary variable of type \CANYTY{} that is initialized with the
  18976. troublesome expression.}
  18977. \end{exercise}
  18978. \begin{figure}[p]
  18979. \begin{tcolorbox}[colback=white]
  18980. \begin{tikzpicture}[baseline=(current bounding box.center),scale=0.85]
  18981. \node (Lgradual) at (12,4) {\large \LangGrad{}};
  18982. \node (Lgradualr) at (9,4) {\large \LangGrad{}};
  18983. \node (Lgradualp) at (6,4) {\large \LangCast{}};
  18984. \node (Llambdapp) at (3,4) {\large \LangProxy{}};
  18985. \node (Llambdaproxy) at (0,4) {\large \LangPVec{}};
  18986. \node (Llambdaproxy-2) at (0,2) {\large \LangPVec{}};
  18987. \node (Llambdaproxy-3) at (3,2) {\large \LangPVec{}};
  18988. \node (Llambdaproxy-4) at (6,2) {\large \LangPVecFunRef{}};
  18989. \node (Llambdaproxy-5) at (9,2) {\large \LangPVecFunRef{}};
  18990. \node (F1-1) at (12,2) {\large \LangPVecFunRef{}};
  18991. \node (F1-2) at (12,0) {\large \LangPVecFunRef{}};
  18992. \node (F1-3) at (9,0) {\large \LangPVecFunRef{}};
  18993. \node (F1-4) at (6,0) {\large \LangPVecAlloc{}};
  18994. \node (F1-5) at (3,0) {\large \LangPVecAlloc{}};
  18995. \node (F1-6) at (0,0) {\large \LangPVecAlloc{}};
  18996. \node (C3-2) at (3,-2) {\large \LangCLoopPVec{}};
  18997. \node (x86-2) at (3,-4) {\large \LangXIndCallVar{}};
  18998. \node (x86-2-1) at (3,-6) {\large \LangXIndCallVar{}};
  18999. \node (x86-2-2) at (6,-6) {\large \LangXIndCallVar{}};
  19000. \node (x86-3) at (6,-4) {\large \LangXIndCallVar{}};
  19001. \node (x86-4) at (9,-4) {\large \LangXIndCall{}};
  19002. \node (x86-5) at (9,-6) {\large \LangXIndCall{}};
  19003. \path[->,bend right=15] (Lgradual) edge [above] node
  19004. {\ttfamily\footnotesize resolve} (Lgradualr);
  19005. \path[->,bend right=15] (Lgradualr) edge [above] node
  19006. {\ttfamily\footnotesize cast\_insert} (Lgradualp);
  19007. \path[->,bend right=15] (Lgradualp) edge [above] node
  19008. {\ttfamily\footnotesize lower\_casts} (Llambdapp);
  19009. \path[->,bend right=15] (Llambdapp) edge [above] node
  19010. {\ttfamily\footnotesize differentiate.} (Llambdaproxy);
  19011. \path[->,bend left=15] (Llambdaproxy) edge [left] node
  19012. {\ttfamily\footnotesize shrink} (Llambdaproxy-2);
  19013. \path[->,bend left=15] (Llambdaproxy-2) edge [above] node
  19014. {\ttfamily\footnotesize uniquify} (Llambdaproxy-3);
  19015. \path[->,bend left=15] (Llambdaproxy-3) edge [above] node
  19016. {\ttfamily\footnotesize reveal\_functions} (Llambdaproxy-4);
  19017. \path[->,bend left=15] (Llambdaproxy-4) edge [above] node
  19018. {\ttfamily\footnotesize reveal\_casts} (Llambdaproxy-5);
  19019. \path[->,bend left=15] (Llambdaproxy-5) edge [above] node
  19020. {\ttfamily\footnotesize convert\_assignments} (F1-1);
  19021. \path[->,bend left=15] (F1-1) edge [left] node
  19022. {\ttfamily\footnotesize convert\_to\_clos.} (F1-2);
  19023. \path[->,bend left=15] (F1-2) edge [below] node
  19024. {\ttfamily\footnotesize limit\_fun.} (F1-3);
  19025. \path[->,bend right=15] (F1-3) edge [above] node
  19026. {\ttfamily\footnotesize expose\_alloc.} (F1-4);
  19027. \path[->,bend right=15] (F1-4) edge [above] node
  19028. {\ttfamily\footnotesize uncover\_get!} (F1-5);
  19029. \path[->,bend right=15] (F1-5) edge [above] node
  19030. {\ttfamily\footnotesize remove\_complex.} (F1-6);
  19031. \path[->,bend right=15] (F1-6) edge [right] node
  19032. {\ttfamily\footnotesize explicate\_control} (C3-2);
  19033. \path[->,bend left=15] (C3-2) edge [left] node
  19034. {\ttfamily\footnotesize select\_instr.} (x86-2);
  19035. \path[->,bend right=15] (x86-2) edge [left] node
  19036. {\ttfamily\footnotesize uncover\_live} (x86-2-1);
  19037. \path[->,bend right=15] (x86-2-1) edge [below] node
  19038. {\ttfamily\footnotesize build\_inter.} (x86-2-2);
  19039. \path[->,bend right=15] (x86-2-2) edge [left] node
  19040. {\ttfamily\footnotesize allocate\_reg.} (x86-3);
  19041. \path[->,bend left=15] (x86-3) edge [above] node
  19042. {\ttfamily\footnotesize patch\_instr.} (x86-4);
  19043. \path[->,bend left=15] (x86-4) edge [right] node {\ttfamily\footnotesize prelude\_and\_conc.} (x86-5);
  19044. \end{tikzpicture}
  19045. \end{tcolorbox}
  19046. \caption{Diagram of the passes for \LangGrad{} (gradual typing).}
  19047. \label{fig:Lgradual-passes}
  19048. \end{figure}
  19049. Figure~\ref{fig:Lgradual-passes} provides an overview of the passes
  19050. needed for the compilation of \LangGrad{}.
  19051. \section{Further Reading}
  19052. This chapter just scratches the surface of gradual typing. The basic
  19053. approach described here is missing two key ingredients that one would
  19054. want in a implementation of gradual typing: blame
  19055. tracking~\citep{Tobin-Hochstadt:2006fk,Wadler:2009qv} and
  19056. space-efficient casts~\citep{Herman:2006uq,Herman:2010aa}. The
  19057. problem addressed by blame tracking is that when a cast on a
  19058. higher-order value fails, it often does so at a point in the program
  19059. that is far removed from the original cast. Blame tracking is a
  19060. technique for propagating extra information through casts and proxies
  19061. so that when a cast fails, the error message can point back to the
  19062. original location of the cast in the source program.
  19063. The problem addressed by space-efficient casts also relates to
  19064. higher-order casts. It turns out that in partially typed programs, a
  19065. function or tuple can flow through very many casts at runtime. With
  19066. the approach described in this chapter, each cast adds another
  19067. \code{lambda} wrapper or a tuple proxy. Not only does this take up
  19068. considerable space, but it also makes the function calls and tuple
  19069. operations slow. For example, a partially-typed version of quicksort
  19070. could, in the worst case, build a chain of proxies of length $O(n)$
  19071. around the tuple, changing the overall time complexity of the
  19072. algorithm from $O(n^2)$ to $O(n^3)$! \citet{Herman:2006uq} suggested a
  19073. solution to this problem by representing casts using the coercion
  19074. calculus of \citet{Henglein:1994nz}, which prevents the creation of
  19075. long chains of proxies by compressing them into a concise normal
  19076. form. \citet{Siek:2015ab} give an algorithm for compressing coercions
  19077. and \citet{Kuhlenschmidt:2019aa} show how to implement these ideas in
  19078. the Grift compiler.
  19079. \begin{center}
  19080. \url{https://github.com/Gradual-Typing/Grift}
  19081. \end{center}
  19082. There are also interesting interactions between gradual typing and
  19083. other language features, such as parametetric polymorphism,
  19084. information-flow types, and type inference, to name a few. We
  19085. recommend the reader to consult the online gradual typing bibliography
  19086. for more material:
  19087. \begin{center}
  19088. \url{http://samth.github.io/gradual-typing-bib/}
  19089. \end{center}
  19090. % TODO: challenge problem:
  19091. % type analysis and type specialization?
  19092. % coercions?
  19093. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  19094. \chapter{Parametric Polymorphism}
  19095. \label{ch:Lpoly}
  19096. \index{subject}{parametric polymorphism}
  19097. \index{subject}{generics}
  19098. \if\edition\pythonEd
  19099. UNDER CONSTRUCTION
  19100. \fi
  19101. \if\edition\racketEd
  19102. This chapter studies the compilation of parametric
  19103. polymorphism\index{subject}{parametric polymorphism}
  19104. (aka. generics\index{subject}{generics}), compiling the \LangPoly{}
  19105. subset of Typed Racket. Parametric polymorphism enables programmers to
  19106. make code more reusable by parameterizing functions and data
  19107. structures with respect to the types that they operate on. For
  19108. example, Figure~\ref{fig:map-poly} revisits the \code{map} example but
  19109. this time gives it a more fitting type. This \code{map} function is
  19110. parameterized with respect to the element type of the tuple. The type
  19111. of \code{map} is the following polymorphic type as specified by the
  19112. \code{All} and the type parameter \code{a}.
  19113. \begin{lstlisting}
  19114. (All (a) ((a -> a) (Vector a a) -> (Vector a a)))
  19115. \end{lstlisting}
  19116. The idea is that \code{map} can be used at \emph{all} choices of a
  19117. type for parameter \code{a}. In Figure~\ref{fig:map-poly} we apply
  19118. \code{map} to a tuple of integers, a choice of \code{Integer} for
  19119. \code{a}, but we could have just as well applied \code{map} to a tuple
  19120. of Booleans.
  19121. \begin{figure}[tbp]
  19122. % poly_test_2.rkt
  19123. \begin{tcolorbox}[colback=white]
  19124. \begin{lstlisting}
  19125. (: map (All (a) ((a -> a) (Vector a a) -> (Vector a a))))
  19126. (define (map f v)
  19127. (vector (f (vector-ref v 0)) (f (vector-ref v 1))))
  19128. (define (inc [x : Integer]) : Integer (+ x 1))
  19129. (vector-ref (map inc (vector 0 41)) 1)
  19130. \end{lstlisting}
  19131. \end{tcolorbox}
  19132. \caption{The \code{map} example using parametric polymorphism.}
  19133. \label{fig:map-poly}
  19134. \end{figure}
  19135. Figure~\ref{fig:Lpoly-concrete-syntax} defines the concrete syntax of
  19136. \LangPoly{} and Figure~\ref{fig:Lpoly-syntax} defines the abstract
  19137. syntax. We add a second form for function definitions in which a type
  19138. declaration comes before the \code{define}. In the abstract syntax,
  19139. the return type in the \code{Def} is \CANYTY{}, but that should be
  19140. ignored in favor of the return type in the type declaration. (The
  19141. \CANYTY{} comes from using the same parser as in
  19142. Chapter~\ref{ch:Ldyn}.) The presence of a type declaration
  19143. enables the use of an \code{All} type for a function, thereby making
  19144. it polymorphic. The grammar for types is extended to include
  19145. polymorphic types and type variables.
  19146. \newcommand{\LpolyGrammarRacket}{
  19147. \begin{array}{lcl}
  19148. \Type &::=& \LP\key{All}~\LP\Var\ldots\RP~ \Type\RP \MID \Var \\
  19149. \Def &::=& \LP\key{:}~\Var~\Type\RP \\
  19150. && \LP\key{define}~ \LP\Var ~ \Var\ldots\RP ~ \Exp\RP
  19151. \end{array}
  19152. }
  19153. \newcommand{\LpolyASTRacket}{
  19154. \begin{array}{lcl}
  19155. \Type &::=& \LP\key{All}~\LP\Var\ldots\RP~ \Type\RP \MID \Var \\
  19156. \Def &::=& \DECL{\Var}{\Type} \\
  19157. && \DEF{\Var}{\LP\Var \ldots\RP}{\key{'Any}}{\code{'()}}{\Exp}
  19158. \end{array}
  19159. }
  19160. \begin{figure}[tp]
  19161. \centering
  19162. \begin{tcolorbox}[colback=white]
  19163. \footnotesize
  19164. \[
  19165. \begin{array}{l}
  19166. \gray{\LintGrammarRacket{}} \\ \hline
  19167. \gray{\LvarGrammarRacket{}} \\ \hline
  19168. \gray{\LifGrammarRacket{}} \\ \hline
  19169. \gray{\LwhileGrammarRacket} \\ \hline
  19170. \gray{\LtupGrammarRacket} \\ \hline
  19171. \gray{\LfunGrammarRacket} \\ \hline
  19172. \gray{\LlambdaGrammarRacket} \\ \hline
  19173. \LpolyGrammarRacket \\
  19174. \begin{array}{lcl}
  19175. \LangPoly{} &::=& \Def \ldots ~ \Exp
  19176. \end{array}
  19177. \end{array}
  19178. \]
  19179. \end{tcolorbox}
  19180. \caption{The concrete syntax of \LangPoly{}, extending \LangLam{}
  19181. (Figure~\ref{fig:Llam-concrete-syntax}).}
  19182. \label{fig:Lpoly-concrete-syntax}
  19183. \end{figure}
  19184. \begin{figure}[tp]
  19185. \centering
  19186. \begin{tcolorbox}[colback=white]
  19187. \footnotesize
  19188. \[
  19189. \begin{array}{l}
  19190. \gray{\LintOpAST} \\ \hline
  19191. \gray{\LvarASTRacket{}} \\ \hline
  19192. \gray{\LifASTRacket{}} \\ \hline
  19193. \gray{\LwhileASTRacket{}} \\ \hline
  19194. \gray{\LtupASTRacket{}} \\ \hline
  19195. \gray{\LfunASTRacket} \\ \hline
  19196. \gray{\LlambdaASTRacket} \\ \hline
  19197. \LpolyASTRacket \\
  19198. \begin{array}{lcl}
  19199. \LangPoly{} &::=& \PROGRAMDEFSEXP{\code{'()}}{\LP\Def\ldots\RP}{\Exp}
  19200. \end{array}
  19201. \end{array}
  19202. \]
  19203. \end{tcolorbox}
  19204. \caption{The abstract syntax of \LangPoly{}, extending \LangLam{}
  19205. (Figure~\ref{fig:Llam-syntax}).}
  19206. \label{fig:Lpoly-syntax}
  19207. \end{figure}
  19208. By including polymorphic types in the $\Type$ non-terminal we choose
  19209. to make them first-class which has interesting repercussions on the
  19210. compiler. Many languages with polymorphism, such as
  19211. C++~\citep{stroustrup88:_param_types} and Standard
  19212. ML~\citep{Milner:1990fk}, only support second-class polymorphism, so
  19213. it may be helpful to see an example of first-class polymorphism in
  19214. action. In Figure~\ref{fig:apply-twice} we define a function
  19215. \code{apply-twice} whose parameter is a polymorphic function. The
  19216. occurrence of a polymorphic type underneath a function type is enabled
  19217. by the normal recursive structure of the grammar for $\Type$ and the
  19218. categorization of the \code{All} type as a $\Type$. The body of
  19219. \code{apply-twice} applies the polymorphic function to a Boolean and
  19220. to an integer.
  19221. \begin{figure}[tbp]
  19222. \begin{tcolorbox}[colback=white]
  19223. \begin{lstlisting}
  19224. (: apply-twice ((All (b) (b -> b)) -> Integer))
  19225. (define (apply-twice f)
  19226. (if (f #t) (f 42) (f 777)))
  19227. (: id (All (a) (a -> a)))
  19228. (define (id x) x)
  19229. (apply-twice id)
  19230. \end{lstlisting}
  19231. \end{tcolorbox}
  19232. \caption{An example illustrating first-class polymorphism.}
  19233. \label{fig:apply-twice}
  19234. \end{figure}
  19235. The type checker for \LangPoly{} in Figure~\ref{fig:type-check-Lvar0} has
  19236. three new responsibilities (compared to \LangLam{}). The type checking of
  19237. function application is extended to handle the case where the operator
  19238. expression is a polymorphic function. In that case the type arguments
  19239. are deduced by matching the type of the parameters with the types of
  19240. the arguments.
  19241. %
  19242. The \code{match-types} auxiliary function carries out this deduction
  19243. by recursively descending through a parameter type \code{pt} and the
  19244. corresponding argument type \code{at}, making sure that they are equal
  19245. except when there is a type parameter on the left (in the parameter
  19246. type). If it is the first time that the type parameter has been
  19247. encountered, then the algorithm deduces an association of the type
  19248. parameter to the corresponding type on the right (in the argument
  19249. type). If it is not the first time that the type parameter has been
  19250. encountered, the algorithm looks up its deduced type and makes sure
  19251. that it is equal to the type on the right.
  19252. %
  19253. Once the type arguments are deduced, the operator expression is
  19254. wrapped in an \code{Inst} AST node (for instantiate) that records the
  19255. type of the operator, but more importantly, records the deduced type
  19256. arguments. The return type of the application is the return type of
  19257. the polymorphic function, but with the type parameters replaced by the
  19258. deduced type arguments, using the \code{subst-type} function.
  19259. The second responsibility of the type checker to extend the
  19260. \code{type-equal?} function to handle the \code{All} type. This is
  19261. not quite as simple as for other types, such as function and tuple
  19262. types, because two polymorphic types can be syntactically different
  19263. even though they are equivalent types. For example, \code{(All (a) (a
  19264. -> a))} is equivalent to \code{(All (b) (b -> b))}. Two polymorphic
  19265. types should be considered equal if they differ only in the choice of
  19266. the names of the type parameters. The \code{type-equal?} function in
  19267. Figure~\ref{fig:type-check-Lvar0-aux} renames the type parameters of
  19268. the first type to match the type parameters of the second type.
  19269. The third responsibility of the type checker is to make sure that only
  19270. defined type variables appear in type annotations. The
  19271. \code{check-well-formed} function defined in
  19272. Figure~\ref{fig:well-formed-types} recursively inspects a type, making
  19273. sure that each type variable has been defined.
  19274. The output language of the type checker is \LangInst{}, defined in
  19275. Figure~\ref{fig:Lpoly-prime-syntax}. The type checker combines the type
  19276. declaration and polymorphic function into a single definition, using
  19277. the \code{Poly} form, to make polymorphic functions more convenient to
  19278. process in next pass of the compiler.
  19279. \begin{figure}[tp]
  19280. \centering
  19281. \begin{tcolorbox}[colback=white]
  19282. \small
  19283. \[
  19284. \begin{array}{lcl}
  19285. \Type &::=& \ldots \MID \LP\key{All}~\LP\Var\ldots\RP~ \Type\RP \MID \Var \\
  19286. \Exp &::=& \ldots \MID \INST{\Exp}{\Type}{\LP\Type\ldots\RP} \\
  19287. \Def &::=& \gray{ \DEF{\Var}{\LP\LS\Var \key{:} \Type\RS \ldots\RP}{\Type}{\code{'()}}{\Exp} } \\
  19288. &\MID& \LP\key{Poly}~\LP\Var\ldots\RP~ \DEF{\Var}{\LP\LS\Var \key{:} \Type\RS \ldots\RP}{\Type}{\code{'()}}{\Exp}\RP \\
  19289. \LangInst{} &::=& \PROGRAMDEFSEXP{\code{'()}}{\LP\Def\ldots\RP}{\Exp}
  19290. \end{array}
  19291. \]
  19292. \end{tcolorbox}
  19293. \caption{The abstract syntax of \LangInst{}, extending \LangLam{}
  19294. (Figure~\ref{fig:Llam-syntax}).}
  19295. \label{fig:Lpoly-prime-syntax}
  19296. \end{figure}
  19297. The output of the type checker on the polymorphic \code{map}
  19298. example is listed in Figure~\ref{fig:map-type-check}.
  19299. \begin{figure}[tbp]
  19300. % poly_test_2.rkt
  19301. \begin{tcolorbox}[colback=white]
  19302. \begin{lstlisting}
  19303. (poly (a) (define (map [f : (a -> a)] [v : (Vector a a)]) : (Vector a a)
  19304. (vector (f (vector-ref v 0)) (f (vector-ref v 1)))))
  19305. (define (inc [x : Integer]) : Integer (+ x 1))
  19306. (vector-ref ((inst map (All (a) ((a -> a) (Vector a a) -> (Vector a a)))
  19307. (Integer))
  19308. inc (vector 0 41)) 1)
  19309. \end{lstlisting}
  19310. \end{tcolorbox}
  19311. \caption{Output of the type checker on the \code{map} example.}
  19312. \label{fig:map-type-check}
  19313. \end{figure}
  19314. \begin{figure}[tbp]
  19315. \begin{tcolorbox}[colback=white]
  19316. \begin{lstlisting}[basicstyle=\ttfamily\scriptsize]
  19317. (define type-check-poly-class
  19318. (class type-check-Llambda-class
  19319. (super-new)
  19320. (inherit check-type-equal?)
  19321. (define/override (type-check-apply env e1 es)
  19322. (define-values (e^ ty) ((type-check-exp env) e1))
  19323. (define-values (es^ ty*) (for/lists (es^ ty*) ([e (in-list es)])
  19324. ((type-check-exp env) e)))
  19325. (match ty
  19326. [`(,ty^* ... -> ,rt)
  19327. (for ([arg-ty ty*] [param-ty ty^*])
  19328. (check-type-equal? arg-ty param-ty (Apply e1 es)))
  19329. (values e^ es^ rt)]
  19330. [`(All ,xs (,tys ... -> ,rt))
  19331. (define env^ (append (for/list ([x xs]) (cons x 'Type)) env))
  19332. (define env^^ (for/fold ([env^^ env^]) ([arg-ty ty*] [param-ty tys])
  19333. (match-types env^^ param-ty arg-ty)))
  19334. (define targs
  19335. (for/list ([x xs])
  19336. (match (dict-ref env^^ x (lambda () #f))
  19337. [#f (error 'type-check "type variable ~a not deduced\nin ~v"
  19338. x (Apply e1 es))]
  19339. [ty ty])))
  19340. (values (Inst e^ ty targs) es^ (subst-type env^^ rt))]
  19341. [else (error 'type-check "expected a function, not ~a" ty)]))
  19342. (define/override ((type-check-exp env) e)
  19343. (match e
  19344. [(Lambda `([,xs : ,Ts] ...) rT body)
  19345. (for ([T Ts]) ((check-well-formed env) T))
  19346. ((check-well-formed env) rT)
  19347. ((super type-check-exp env) e)]
  19348. [(HasType e1 ty)
  19349. ((check-well-formed env) ty)
  19350. ((super type-check-exp env) e)]
  19351. [else ((super type-check-exp env) e)]))
  19352. (define/override ((type-check-def env) d)
  19353. (verbose 'type-check "poly/def" d)
  19354. (match d
  19355. [(Generic ts (Def f (and p:t* (list `[,xs : ,ps] ...)) rt info body))
  19356. (define ts-env (for/list ([t ts]) (cons t 'Type)))
  19357. (for ([p ps]) ((check-well-formed ts-env) p))
  19358. ((check-well-formed ts-env) rt)
  19359. (define new-env (append ts-env (map cons xs ps) env))
  19360. (define-values (body^ ty^) ((type-check-exp new-env) body))
  19361. (check-type-equal? ty^ rt body)
  19362. (Generic ts (Def f p:t* rt info body^))]
  19363. [else ((super type-check-def env) d)]))
  19364. (define/override (type-check-program p)
  19365. (match p
  19366. [(Program info body)
  19367. (type-check-program (ProgramDefsExp info '() body))]
  19368. [(ProgramDefsExp info ds body)
  19369. (define ds^ (combine-decls-defs ds))
  19370. (define new-env (for/list ([d ds^])
  19371. (cons (def-name d) (fun-def-type d))))
  19372. (define ds^^ (for/list ([d ds^]) ((type-check-def new-env) d)))
  19373. (define-values (body^ ty) ((type-check-exp new-env) body))
  19374. (check-type-equal? ty 'Integer body)
  19375. (ProgramDefsExp info ds^^ body^)]))
  19376. ))
  19377. \end{lstlisting}
  19378. \end{tcolorbox}
  19379. \caption{Type checker for the \LangPoly{} language.}
  19380. \label{fig:type-check-Lvar0}
  19381. \end{figure}
  19382. \begin{figure}[tbp]
  19383. \begin{tcolorbox}[colback=white]
  19384. \begin{lstlisting}[basicstyle=\ttfamily\scriptsize]
  19385. (define/override (type-equal? t1 t2)
  19386. (match* (t1 t2)
  19387. [(`(All ,xs ,T1) `(All ,ys ,T2))
  19388. (define env (map cons xs ys))
  19389. (type-equal? (subst-type env T1) T2)]
  19390. [(other wise)
  19391. (super type-equal? t1 t2)]))
  19392. (define/public (match-types env pt at)
  19393. (match* (pt at)
  19394. [('Integer 'Integer) env] [('Boolean 'Boolean) env]
  19395. [('Void 'Void) env] [('Any 'Any) env]
  19396. [(`(Vector ,pts ...) `(Vector ,ats ...))
  19397. (for/fold ([env^ env]) ([pt1 pts] [at1 ats])
  19398. (match-types env^ pt1 at1))]
  19399. [(`(,pts ... -> ,prt) `(,ats ... -> ,art))
  19400. (define env^ (match-types env prt art))
  19401. (for/fold ([env^^ env^]) ([pt1 pts] [at1 ats])
  19402. (match-types env^^ pt1 at1))]
  19403. [(`(All ,pxs ,pt1) `(All ,axs ,at1))
  19404. (define env^ (append (map cons pxs axs) env))
  19405. (match-types env^ pt1 at1)]
  19406. [((? symbol? x) at)
  19407. (match (dict-ref env x (lambda () #f))
  19408. [#f (error 'type-check "undefined type variable ~a" x)]
  19409. ['Type (cons (cons x at) env)]
  19410. [t^ (check-type-equal? at t^ 'matching) env])]
  19411. [(other wise) (error 'type-check "mismatch ~a != a" pt at)]))
  19412. (define/public (subst-type env pt)
  19413. (match pt
  19414. ['Integer 'Integer] ['Boolean 'Boolean]
  19415. ['Void 'Void] ['Any 'Any]
  19416. [`(Vector ,ts ...)
  19417. `(Vector ,@(for/list ([t ts]) (subst-type env t)))]
  19418. [`(,ts ... -> ,rt)
  19419. `(,@(for/list ([t ts]) (subst-type env t)) -> ,(subst-type env rt))]
  19420. [`(All ,xs ,t)
  19421. `(All ,xs ,(subst-type (append (map cons xs xs) env) t))]
  19422. [(? symbol? x) (dict-ref env x)]
  19423. [else (error 'type-check "expected a type not ~a" pt)]))
  19424. (define/public (combine-decls-defs ds)
  19425. (match ds
  19426. ['() '()]
  19427. [`(,(Decl name type) . (,(Def f params _ info body) . ,ds^))
  19428. (unless (equal? name f)
  19429. (error 'type-check "name mismatch, ~a != ~a" name f))
  19430. (match type
  19431. [`(All ,xs (,ps ... -> ,rt))
  19432. (define params^ (for/list ([x params] [T ps]) `[,x : ,T]))
  19433. (cons (Generic xs (Def name params^ rt info body))
  19434. (combine-decls-defs ds^))]
  19435. [`(,ps ... -> ,rt)
  19436. (define params^ (for/list ([x params] [T ps]) `[,x : ,T]))
  19437. (cons (Def name params^ rt info body) (combine-decls-defs ds^))]
  19438. [else (error 'type-check "expected a function type, not ~a" type) ])]
  19439. [`(,(Def f params rt info body) . ,ds^)
  19440. (cons (Def f params rt info body) (combine-decls-defs ds^))]))
  19441. \end{lstlisting}
  19442. \end{tcolorbox}
  19443. \caption{Auxiliary functions for type checking \LangPoly{}.}
  19444. \label{fig:type-check-Lvar0-aux}
  19445. \end{figure}
  19446. \begin{figure}[tbp]
  19447. \begin{tcolorbox}[colback=white]
  19448. \begin{lstlisting}%[basicstyle=\ttfamily\scriptsize]
  19449. (define/public ((check-well-formed env) ty)
  19450. (match ty
  19451. ['Integer (void)]
  19452. ['Boolean (void)]
  19453. ['Void (void)]
  19454. [(? symbol? a)
  19455. (match (dict-ref env a (lambda () #f))
  19456. ['Type (void)]
  19457. [else (error 'type-check "undefined type variable ~a" a)])]
  19458. [`(Vector ,ts ...)
  19459. (for ([t ts]) ((check-well-formed env) t))]
  19460. [`(,ts ... -> ,t)
  19461. (for ([t ts]) ((check-well-formed env) t))
  19462. ((check-well-formed env) t)]
  19463. [`(All ,xs ,t)
  19464. (define env^ (append (for/list ([x xs]) (cons x 'Type)) env))
  19465. ((check-well-formed env^) t)]
  19466. [else (error 'type-check "unrecognized type ~a" ty)]))
  19467. \end{lstlisting}
  19468. \end{tcolorbox}
  19469. \caption{Well-formed types.}
  19470. \label{fig:well-formed-types}
  19471. \end{figure}
  19472. % TODO: interpreter for R'_10
  19473. \clearpage
  19474. \section{Compiling Polymorphism}
  19475. \label{sec:compiling-poly}
  19476. Broadly speaking, there are four approaches to compiling parametric
  19477. polymorphism, which we describe below.
  19478. \begin{description}
  19479. \item[Monomorphization] generates a different version of a polymorphic
  19480. function for each set of type arguments that it is used with,
  19481. producing type-specialized code. This approach results in the most
  19482. efficient code but requires whole-program compilation (no separate
  19483. compilation) and increases code size. For our current purposes
  19484. monomorphization is a non-starter because, with first-class
  19485. polymorphism, it is sometimes not possible to determine which
  19486. generic functions are used with which type arguments during
  19487. compilation. (It can be done at runtime, with just-in-time
  19488. compilation.) Monomorphization is used to compile C++
  19489. templates~\citep{stroustrup88:_param_types} and polymorphic
  19490. functions in NESL~\citep{Blelloch:1993aa} and
  19491. ML~\citep{Weeks:2006aa}.
  19492. \item[Uniform representation] generates one version of each
  19493. polymorphic function but requires all values to have a common
  19494. ``boxed'' format, such as the tagged values of type \CANYTY{} in
  19495. \LangAny{}. Both polymorphic and non-polymorphic (i.e. monomorphic)
  19496. code is compiled similarly to code in a dynamically typed language
  19497. (like \LangDyn{}), in which primitive operators require their
  19498. arguments to be projected from \CANYTY{} and their results are
  19499. injected into \CANYTY{}. (In object-oriented languages, the
  19500. projection is accomplished via virtual method dispatch.) The uniform
  19501. representation approach is compatible with separate compilation and
  19502. with first-class polymorphism. However, it produces the
  19503. least-efficient code because it introduces overhead in the entire
  19504. program. This approach is used in implementations of
  19505. CLU~\cite{liskov79:_clu_ref,Liskov:1993dk},
  19506. ML~\citep{Cardelli:1984aa,Appel:1987aa}, and
  19507. Java~\citep{Bracha:1998fk}.
  19508. \item[Mixed representation] generates one version of each polymorphic
  19509. function, using a boxed representation for type
  19510. variables. Monomorphic code is compiled as usual (as in \LangLam{})
  19511. and conversions are performed at the boundaries between monomorphic
  19512. and polymorphic (e.g. when a polymorphic function is instantiated
  19513. and called). This approach is compatible with separate compilation
  19514. and first-class polymorphism and maintains efficiency in monomorphic
  19515. code. The trade off is increased overhead at the boundary between
  19516. monomorphic and polymorphic code. This approach is used in
  19517. implementations of ML~\citep{Leroy:1992qb} and Java, starting in
  19518. Java 5 with the addition of autoboxing.
  19519. \item[Type passing] uses the unboxed representation in both
  19520. monomorphic and polymorphic code. Each polymorphic function is
  19521. compiled to a single function with extra parameters that describe
  19522. the type arguments. The type information is used by the generated
  19523. code to know how to access the unboxed values at runtime. This
  19524. approach is used in implementation of the Napier88
  19525. language~\citep{Morrison:1991aa} and ML~\citep{Harper:1995um}. Type
  19526. passing is compatible with separate compilation and first-class
  19527. polymorphism and maintains the efficiency for monomorphic
  19528. code. There is runtime overhead in polymorphic code from dispatching
  19529. on type information.
  19530. \end{description}
  19531. In this chapter we use the mixed representation approach, partly
  19532. because of its favorable attributes, and partly because it is
  19533. straightforward to implement using the tools that we have already
  19534. built to support gradual typing. To compile polymorphic functions, we
  19535. add just one new pass, \code{erase-types}, to compile \LangInst{} to
  19536. \LangCast{}.
  19537. \section{Erase Types}
  19538. \label{sec:erase-types}
  19539. We use the \CANYTY{} type from Chapter~\ref{ch:Ldyn} to
  19540. represent type variables. For example, Figure~\ref{fig:map-erase}
  19541. shows the output of the \code{erase-types} pass on the polymorphic
  19542. \code{map} (Figure~\ref{fig:map-poly}). The occurrences of
  19543. type parameter \code{a} are replaced by \CANYTY{} and the polymorphic
  19544. \code{All} types are removed from the type of \code{map}.
  19545. \begin{figure}[tbp]
  19546. \begin{tcolorbox}[colback=white]
  19547. \begin{lstlisting}
  19548. (define (map [f : (Any -> Any)] [v : (Vector Any Any)])
  19549. : (Vector Any Any)
  19550. (vector (f (vector-ref v 0)) (f (vector-ref v 1))))
  19551. (define (inc [x : Integer]) : Integer (+ x 1))
  19552. (vector-ref ((cast map
  19553. ((Any -> Any) (Vector Any Any) -> (Vector Any Any))
  19554. ((Integer -> Integer) (Vector Integer Integer)
  19555. -> (Vector Integer Integer)))
  19556. inc (vector 0 41)) 1)
  19557. \end{lstlisting}
  19558. \end{tcolorbox}
  19559. \caption{The polymorphic \code{map} example after type erasure.}
  19560. \label{fig:map-erase}
  19561. \end{figure}
  19562. This process of type erasure creates a challenge at points of
  19563. instantiation. For example, consider the instantiation of
  19564. \code{map} in Figure~\ref{fig:map-type-check}.
  19565. The type of \code{map} is
  19566. \begin{lstlisting}
  19567. (All (a) ((a -> a) (Vector a a) -> (Vector a a)))
  19568. \end{lstlisting}
  19569. and it is instantiated to
  19570. \begin{lstlisting}
  19571. ((Integer -> Integer) (Vector Integer Integer)
  19572. -> (Vector Integer Integer))
  19573. \end{lstlisting}
  19574. After erasure, the type of \code{map} is
  19575. \begin{lstlisting}
  19576. ((Any -> Any) (Vector Any Any) -> (Vector Any Any))
  19577. \end{lstlisting}
  19578. but we need to convert it to the instantiated type. This is easy to
  19579. do in the language \LangCast{} with a single \code{cast}. In
  19580. Figure~\ref{fig:map-erase}, the instantiation of \code{map} has been
  19581. compiled to a \code{cast} from the type of \code{map} to the
  19582. instantiated type. The source and target type of a cast must be
  19583. consistent (Figure~\ref{fig:consistent}), which indeed is the case
  19584. because both the source and target are obtained from the same
  19585. polymorphic type of \code{map}, replacing the type parameters with
  19586. \CANYTY{} in the former and with the deduced type arguments in the
  19587. later. (Recall that the \CANYTY{} type is consistent with any type.)
  19588. To implement the \code{erase-types} pass, we recommend defining a
  19589. recursive auxiliary function named \code{erase-type} that applies the
  19590. following two transformations. It replaces type variables with
  19591. \CANYTY{}
  19592. \begin{lstlisting}
  19593. |$x$|
  19594. |$\Rightarrow$|
  19595. Any
  19596. \end{lstlisting}
  19597. and it removes the polymorphic \code{All} types.
  19598. \begin{lstlisting}
  19599. (All |$xs$| |$T_1$|)
  19600. |$\Rightarrow$|
  19601. |$T'_1$|
  19602. \end{lstlisting}
  19603. Apply the \code{erase-type} function to all of the type annotations in
  19604. the program.
  19605. Regarding the translation of expressions, the case for \code{Inst} is
  19606. the interesting one. We translate it into a \code{Cast}, as shown
  19607. below. The type of the subexpression $e$ is the polymorphic type
  19608. $\LP\key{All}~\itm{xs}~T\RP$. The source type of the cast is the erasure of
  19609. $T$, the type $T'$. The target type $T''$ is the result of
  19610. substituting the argument types $ts$ for the type parameters $xs$ in
  19611. $T$ followed by doing type erasure.
  19612. \begin{lstlisting}
  19613. (Inst |$e$| (All |$xs$| |$T$|) |$ts$|)
  19614. |$\Rightarrow$|
  19615. (Cast |$e'$| |$T'$| |$T''$|)
  19616. \end{lstlisting}
  19617. where $T'' = \LP\code{erase-type}~\LP\code{subst-type}~s~T\RP\RP$
  19618. and $s = \LP\code{map}~\code{cons}~xs~ts\RP$.
  19619. Finally, each polymorphic function is translated to a regular
  19620. function in which type erasure has been applied to all the type
  19621. annotations and the body.
  19622. \begin{lstlisting}
  19623. (Poly |$ts$| (Def |$f$| ([|$x_1$| : |$T_1$|] |$\ldots$|) |$T_r$| |$\itm{info}$| |$e$|))
  19624. |$\Rightarrow$|
  19625. (Def |$f$| ([|$x_1$| : |$T'_1$|] |$\ldots$|) |$T'_r$| |$\itm{info}$| |$e'$|)
  19626. \end{lstlisting}
  19627. \begin{exercise}\normalfont\normalsize
  19628. Implement a compiler for the polymorphic language \LangPoly{} by
  19629. extending and adapting your compiler for \LangGrad{}. Create 6 new test
  19630. programs that use polymorphic functions. Some of them should make
  19631. use of first-class polymorphism.
  19632. \end{exercise}
  19633. \begin{figure}[p]
  19634. \begin{tcolorbox}[colback=white]
  19635. \begin{tikzpicture}[baseline=(current bounding box.center),scale=0.85]
  19636. \node (Lpoly) at (12,4) {\large \LangPoly{}};
  19637. \node (Lpolyp) at (9,4) {\large \LangInst{}};
  19638. \node (Lgradualp) at (6,4) {\large \LangCast{}};
  19639. \node (Llambdapp) at (3,4) {\large \LangProxy{}};
  19640. \node (Llambdaproxy) at (0,4) {\large \LangPVec{}};
  19641. \node (Llambdaproxy-2) at (0,2) {\large \LangPVec{}};
  19642. \node (Llambdaproxy-3) at (3,2) {\large \LangPVec{}};
  19643. \node (Llambdaproxy-4) at (6,2) {\large \LangPVecFunRef{}};
  19644. \node (Llambdaproxy-5) at (9,2) {\large \LangPVecFunRef{}};
  19645. \node (F1-1) at (12,2) {\large \LangPVecFunRef{}};
  19646. \node (F1-2) at (12,0) {\large \LangPVecFunRef{}};
  19647. \node (F1-3) at (9,0) {\large \LangPVecFunRef{}};
  19648. \node (F1-4) at (6,0) {\large \LangPVecAlloc{}};
  19649. \node (F1-5) at (3,0) {\large \LangPVecAlloc{}};
  19650. \node (F1-6) at (0,0) {\large \LangPVecAlloc{}};
  19651. \node (C3-2) at (3,-2) {\large \LangCLoopPVec{}};
  19652. \node (x86-2) at (3,-4) {\large \LangXIndCallVar{}};
  19653. \node (x86-2-1) at (3,-6) {\large \LangXIndCallVar{}};
  19654. \node (x86-2-2) at (6,-6) {\large \LangXIndCallVar{}};
  19655. \node (x86-3) at (6,-4) {\large \LangXIndCallVar{}};
  19656. \node (x86-4) at (9,-4) {\large \LangXIndCall{}};
  19657. \node (x86-5) at (9,-6) {\large \LangXIndCall{}};
  19658. \path[->,bend right=15] (Lpoly) edge [above] node
  19659. {\ttfamily\footnotesize type\_check} (Lpolyp);
  19660. \path[->,bend right=15] (Lpolyp) edge [above] node
  19661. {\ttfamily\footnotesize erase\_types} (Lgradualp);
  19662. \path[->,bend right=15] (Lgradualp) edge [above] node
  19663. {\ttfamily\footnotesize lower\_casts} (Llambdapp);
  19664. \path[->,bend right=15] (Llambdapp) edge [above] node
  19665. {\ttfamily\footnotesize differentiate\_proxies} (Llambdaproxy);
  19666. \path[->,bend right=15] (Llambdaproxy) edge [right] node
  19667. {\ttfamily\footnotesize shrink} (Llambdaproxy-2);
  19668. \path[->,bend left=15] (Llambdaproxy-2) edge [above] node
  19669. {\ttfamily\footnotesize uniquify} (Llambdaproxy-3);
  19670. \path[->,bend left=15] (Llambdaproxy-3) edge [above] node
  19671. {\ttfamily\footnotesize reveal\_functions} (Llambdaproxy-4);
  19672. \path[->,bend left=15] (Llambdaproxy-4) edge [above] node
  19673. {\ttfamily\footnotesize reveal\_casts} (Llambdaproxy-5);
  19674. \path[->,bend left=15] (Llambdaproxy-5) edge [above] node
  19675. {\ttfamily\footnotesize convert\_assignments} (F1-1);
  19676. \path[->,bend left=15] (F1-1) edge [left] node
  19677. {\ttfamily\footnotesize convert\_to\_clos.} (F1-2);
  19678. \path[->,bend left=15] (F1-2) edge [below] node
  19679. {\ttfamily\footnotesize limit\_fun.} (F1-3);
  19680. \path[->,bend right=15] (F1-3) edge [above] node
  19681. {\ttfamily\footnotesize expose\_alloc.} (F1-4);
  19682. \path[->,bend right=15] (F1-4) edge [above] node
  19683. {\ttfamily\footnotesize uncover\_get!} (F1-5);
  19684. \path[->,bend right=15] (F1-5) edge [above] node
  19685. {\ttfamily\footnotesize remove\_complex.} (F1-6);
  19686. \path[->,bend right=15] (F1-6) edge [right] node
  19687. {\ttfamily\footnotesize explicate\_control} (C3-2);
  19688. \path[->,bend left=15] (C3-2) edge [left] node
  19689. {\ttfamily\footnotesize select\_instr.} (x86-2);
  19690. \path[->,bend right=15] (x86-2) edge [left] node
  19691. {\ttfamily\footnotesize uncover\_live} (x86-2-1);
  19692. \path[->,bend right=15] (x86-2-1) edge [below] node
  19693. {\ttfamily\footnotesize build\_inter.} (x86-2-2);
  19694. \path[->,bend right=15] (x86-2-2) edge [left] node
  19695. {\ttfamily\footnotesize allocate\_reg.} (x86-3);
  19696. \path[->,bend left=15] (x86-3) edge [above] node
  19697. {\ttfamily\footnotesize patch\_instr.} (x86-4);
  19698. \path[->,bend left=15] (x86-4) edge [right] node {\ttfamily\footnotesize prelude\_and\_conc.} (x86-5);
  19699. \end{tikzpicture}
  19700. \end{tcolorbox}
  19701. \caption{Diagram of the passes for \LangPoly{} (parametric polymorphism).}
  19702. \label{fig:Lpoly-passes}
  19703. \end{figure}
  19704. Figure~\ref{fig:Lpoly-passes} provides an overview of the passes
  19705. needed to compile \LangPoly{}.
  19706. % TODO: challenge problem: specialization of instantiations
  19707. % Further Reading
  19708. \fi
  19709. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  19710. \clearpage
  19711. \appendix
  19712. \chapter{Appendix}
  19713. \if\edition\racketEd
  19714. \section{Interpreters}
  19715. \label{appendix:interp}
  19716. \index{subject}{interpreter}
  19717. We provide interpreters for each of the source languages \LangInt{},
  19718. \LangVar{}, $\ldots$ in the files \code{interp\_Lint.rkt},
  19719. \code{interp-Lvar.rkt}, etc. The interpreters for the intermediate
  19720. languages \LangCVar{} and \LangCIf{} are in \code{interp-Cvar.rkt} and
  19721. \code{interp-C1.rkt}. The interpreters for \LangCVec{}, \LangCFun{}, pseudo-x86,
  19722. and x86 are in the \key{interp.rkt} file.
  19723. \section{Utility Functions}
  19724. \label{appendix:utilities}
  19725. The utility functions described in this section are in the
  19726. \key{utilities.rkt} file of the support code.
  19727. \paragraph{\code{interp-tests}}
  19728. The \key{interp-tests} function runs the compiler passes and the
  19729. interpreters on each of the specified tests to check whether each pass
  19730. is correct. The \key{interp-tests} function has the following
  19731. parameters:
  19732. \begin{description}
  19733. \item[name (a string)] a name to identify the compiler,
  19734. \item[typechecker] a function of exactly one argument that either
  19735. raises an error using the \code{error} function when it encounters a
  19736. type error, or returns \code{\#f} when it encounters a type
  19737. error. If there is no type error, the type checker returns the
  19738. program.
  19739. \item[passes] a list with one entry per pass. An entry is a list with
  19740. four things:
  19741. \begin{enumerate}
  19742. \item a string giving the name of the pass,
  19743. \item the function that implements the pass (a translator from AST
  19744. to AST),
  19745. \item a function that implements the interpreter (a function from
  19746. AST to result value) for the output language,
  19747. \item and a type checker for the output language. Type checkers for
  19748. the $R$ and $C$ languages are provided in the support code. For
  19749. example, the type checkers for \LangVar{} and \LangCVar{} are in
  19750. \code{type-check-Lvar.rkt} and \code{type-check-Cvar.rkt}. The
  19751. type checker entry is optional. The support code does not provide
  19752. type checkers for the x86 languages.
  19753. \end{enumerate}
  19754. \item[source-interp] an interpreter for the source language. The
  19755. interpreters from Appendix~\ref{appendix:interp} make a good choice.
  19756. \item[test-family (a string)] for example, \code{"var"}, \code{"cond"}, etc.
  19757. \item[tests] a list of test numbers that specifies which tests to
  19758. run. (see below)
  19759. \end{description}
  19760. %
  19761. The \key{interp-tests} function assumes that the subdirectory
  19762. \key{tests} has a collection of Racket programs whose names all start
  19763. with the family name, followed by an underscore and then the test
  19764. number, ending with the file extension \key{.rkt}. Also, for each test
  19765. program that calls \code{read} one or more times, there is a file with
  19766. the same name except that the file extension is \key{.in} that
  19767. provides the input for the Racket program. If the test program is
  19768. expected to fail type checking, then there should be an empty file of
  19769. the same name but with extension \key{.tyerr}.
  19770. \paragraph{\code{compiler-tests}}
  19771. runs the compiler passes to generate x86 (a \key{.s} file) and then
  19772. runs the GNU C compiler (gcc) to generate machine code. It runs the
  19773. machine code and checks that the output is $42$. The parameters to the
  19774. \code{compiler-tests} function are similar to those of the
  19775. \code{interp-tests} function, and consist of
  19776. \begin{itemize}
  19777. \item a compiler name (a string),
  19778. \item a type checker,
  19779. \item description of the passes,
  19780. \item name of a test-family, and
  19781. \item a list of test numbers.
  19782. \end{itemize}
  19783. \paragraph{\code{compile-file}}
  19784. takes a description of the compiler passes (see the comment for
  19785. \key{interp-tests}) and returns a function that, given a program file
  19786. name (a string ending in \key{.rkt}), applies all of the passes and
  19787. writes the output to a file whose name is the same as the program file
  19788. name but with \key{.rkt} replaced with \key{.s}.
  19789. \paragraph{\code{read-program}}
  19790. takes a file path and parses that file (it must be a Racket program)
  19791. into an abstract syntax tree.
  19792. \paragraph{\code{parse-program}}
  19793. takes an S-expression representation of an abstract syntax tree and converts it into
  19794. the struct-based representation.
  19795. \paragraph{\code{assert}}
  19796. takes two parameters, a string (\code{msg}) and Boolean (\code{bool}),
  19797. and displays the message \key{msg} if the Boolean \key{bool} is false.
  19798. \paragraph{\code{lookup}}
  19799. % remove discussion of lookup? -Jeremy
  19800. takes a key and an alist, and returns the first value that is
  19801. associated with the given key, if there is one. If not, an error is
  19802. triggered. The alist may contain both immutable pairs (built with
  19803. \key{cons}) and mutable pairs (built with \key{mcons}).
  19804. %The \key{map2} function ...
  19805. \fi %\racketEd
  19806. \section{x86 Instruction Set Quick-Reference}
  19807. \label{sec:x86-quick-reference}
  19808. \index{subject}{x86}
  19809. Table~\ref{tab:x86-instr} lists some x86 instructions and what they
  19810. do. We write $A \to B$ to mean that the value of $A$ is written into
  19811. location $B$. Address offsets are given in bytes. The instruction
  19812. arguments $A, B, C$ can be immediate constants (such as \code{\$4}),
  19813. registers (such as \code{\%rax}), or memory references (such as
  19814. \code{-4(\%ebp)}). Most x86 instructions only allow at most one memory
  19815. reference per instruction. Other operands must be immediates or
  19816. registers.
  19817. \begin{table}[tbp]
  19818. \centering
  19819. \begin{tabular}{l|l}
  19820. \textbf{Instruction} & \textbf{Operation} \\ \hline
  19821. \texttt{addq} $A$, $B$ & $A + B \to B$\\
  19822. \texttt{negq} $A$ & $- A \to A$ \\
  19823. \texttt{subq} $A$, $B$ & $B - A \to B$\\
  19824. \texttt{imulq} $A$, $B$ & $A \times B \to B$\\
  19825. \texttt{callq} $L$ & Pushes the return address and jumps to label $L$ \\
  19826. \texttt{callq} \texttt{*}$A$ & Calls the function at the address $A$. \\
  19827. %\texttt{leave} & $\texttt{ebp} \to \texttt{esp};$ \texttt{popl \%ebp} \\
  19828. \texttt{retq} & Pops the return address and jumps to it \\
  19829. \texttt{popq} $A$ & $*\mathtt{rsp} \to A; \mathtt{rsp} + 8 \to \mathtt{rsp}$ \\
  19830. \texttt{pushq} $A$ & $\texttt{rsp} - 8 \to \texttt{rsp}; A \to *\texttt{rsp}$\\
  19831. \texttt{leaq} $A$,$B$ & $A \to B$ ($B$ must be a register) \\
  19832. \texttt{cmpq} $A$, $B$ & compare $A$ and $B$ and set the flag register ($B$ must not
  19833. be an immediate) \\
  19834. \texttt{je} $L$ & \multirow{5}{3.7in}{Jump to label $L$ if the flag register
  19835. matches the condition code of the instruction, otherwise go to the
  19836. next instructions. The condition codes are \key{e} for ``equal'',
  19837. \key{l} for ``less'', \key{le} for ``less or equal'', \key{g}
  19838. for ``greater'', and \key{ge} for ``greater or equal''.} \\
  19839. \texttt{jl} $L$ & \\
  19840. \texttt{jle} $L$ & \\
  19841. \texttt{jg} $L$ & \\
  19842. \texttt{jge} $L$ & \\
  19843. \texttt{jmp} $L$ & Jump to label $L$ \\
  19844. \texttt{movq} $A$, $B$ & $A \to B$ \\
  19845. \texttt{movzbq} $A$, $B$ &
  19846. \multirow{3}{3.7in}{$A \to B$, \text{where } $A$ is a single-byte register
  19847. (e.g., \texttt{al} or \texttt{cl}), $B$ is a 8-byte register,
  19848. and the extra bytes of $B$ are set to zero.} \\
  19849. & \\
  19850. & \\
  19851. \texttt{notq} $A$ & $\sim A \to A$ \qquad (bitwise complement)\\
  19852. \texttt{orq} $A$, $B$ & $A | B \to B$ \qquad (bitwise-or)\\
  19853. \texttt{andq} $A$, $B$ & $A \& B \to B$ \qquad (bitwise-and)\\
  19854. \texttt{salq} $A$, $B$ & $B$ \texttt{<<} $A \to B$ (arithmetic shift left, where $A$ is a constant)\\
  19855. \texttt{sarq} $A$, $B$ & $B$ \texttt{>>} $A \to B$ (arithmetic shift right, where $A$ is a constant)\\
  19856. \texttt{sete} $A$ & \multirow{5}{3.7in}{If the flag matches the condition code,
  19857. then $1 \to A$, else $0 \to A$. Refer to \texttt{je} above for the
  19858. description of the condition codes. $A$ must be a single byte register
  19859. (e.g., \texttt{al} or \texttt{cl}).} \\
  19860. \texttt{setl} $A$ & \\
  19861. \texttt{setle} $A$ & \\
  19862. \texttt{setg} $A$ & \\
  19863. \texttt{setge} $A$ &
  19864. \end{tabular}
  19865. \vspace{5pt}
  19866. \caption{Quick-reference for the x86 instructions used in this book.}
  19867. \label{tab:x86-instr}
  19868. \end{table}
  19869. %% \if\edition\racketEd
  19870. %% \cleardoublepage
  19871. %% \section{Concrete Syntax for Intermediate Languages}
  19872. %% The concrete syntax of \LangAny{} is defined in
  19873. %% Figure~\ref{fig:Lany-concrete-syntax}.
  19874. %% \begin{figure}[tp]
  19875. %% \centering
  19876. %% \fbox{
  19877. %% \begin{minipage}{0.97\textwidth}\small
  19878. %% \[
  19879. %% \begin{array}{lcl}
  19880. %% \Type &::=& \gray{\key{Integer} \MID \key{Boolean}
  19881. %% \MID \LP\key{Vector}\;\Type\ldots\RP \MID \key{Void}} \\
  19882. %% &\MID& \gray{\LP\Type\ldots \; \key{->}\; \Type\RP} \MID \ANYTY{} \\
  19883. %% \FType &::=& \key{Integer} \MID \key{Boolean} \MID \key{Void}
  19884. %% \MID \LP\key{Vector}\; \ANYTY{}\ldots\RP \\
  19885. %% &\MID& \LP\ANYTY{}\ldots \; \key{->}\; \ANYTY{}\RP\\
  19886. %% \Exp &::=& \ldots \CINJECT{\Exp}{\FType}\RP \MID \CPROJECT{\Exp}{\FType}\\
  19887. %% &\MID& \LP\key{any-vector-length}\;\Exp\RP
  19888. %% \MID \LP\key{any-vector-ref}\;\Exp\;\Exp\RP \\
  19889. %% &\MID& \LP\key{any-vector-set!}\;\Exp\;\Exp\;\Exp\RP\\
  19890. %% &\MID& \LP\key{boolean?}\;\Exp\RP \MID \LP\key{integer?}\;\Exp\RP
  19891. %% \MID \LP\key{void?}\;\Exp\RP \\
  19892. %% &\MID& \LP\key{vector?}\;\Exp\RP \MID \LP\key{procedure?}\;\Exp\RP \\
  19893. %% \Def &::=& \gray{ \CDEF{\Var}{\LS\Var \key{:} \Type\RS\ldots}{\Type}{\Exp} } \\
  19894. %% \LangAnyM{} &::=& \gray{\Def\ldots \; \Exp}
  19895. %% \end{array}
  19896. %% \]
  19897. %% \end{minipage}
  19898. %% }
  19899. %% \caption{The concrete syntax of \LangAny{}, extending \LangLam{}
  19900. %% (Figure~\ref{fig:Llam-syntax}).}
  19901. %% \label{fig:Lany-concrete-syntax}
  19902. %% \end{figure}
  19903. %% The concrete syntax for \LangCVar{}, \LangCIf{}, \LangCVec{} and
  19904. %% \LangCFun{} is defined in Figures~\ref{fig:c0-concrete-syntax},
  19905. %% \ref{fig:c1-concrete-syntax}, \ref{fig:c2-concrete-syntax}, and
  19906. %% \ref{fig:c3-concrete-syntax}, respectively.
  19907. %% \begin{figure}[tbp]
  19908. %% \fbox{
  19909. %% \begin{minipage}{0.96\textwidth}
  19910. %% \small
  19911. %% \[
  19912. %% \begin{array}{lcl}
  19913. %% \Atm &::=& \gray{ \Int \MID \Var \MID \itm{bool} } \\
  19914. %% \itm{cmp} &::= & \gray{ \key{eq?} \MID \key{<} } \\
  19915. %% \Exp &::=& \gray{ \Atm \MID \key{(read)} \MID \key{(-}~\Atm\key{)} \MID \key{(+}~\Atm~\Atm\key{)} } \\
  19916. %% &\MID& \gray{ \LP \key{not}~\Atm \RP \MID \LP \itm{cmp}~\Atm~\Atm\RP } \\
  19917. %% &\MID& \LP \key{allocate}~\Int~\Type \RP \\
  19918. %% &\MID& (\key{vector-ref}\;\Atm\;\Int) \MID (\key{vector-set!}\;\Atm\;\Int\;\Atm)\\
  19919. %% &\MID& \LP \key{global-value}~\Var \RP \MID \LP \key{void} \RP \\
  19920. %% \Stmt &::=& \gray{ \Var~\key{=}~\Exp\key{;} } \MID \LP\key{collect}~\Int \RP\\
  19921. %% \Tail &::= & \gray{ \key{return}~\Exp\key{;} \MID \Stmt~\Tail }
  19922. %% \MID \gray{ \key{goto}~\itm{label}\key{;} }\\
  19923. %% &\MID& \gray{ \key{if}~\LP \itm{cmp}~\Atm~\Atm \RP~ \key{goto}~\itm{label}\key{;} ~\key{else}~\key{goto}~\itm{label}\key{;} } \\
  19924. %% \LangCVecM{} & ::= & \gray{ (\itm{label}\key{:}~ \Tail)\ldots }
  19925. %% \end{array}
  19926. %% \]
  19927. %% \end{minipage}
  19928. %% }
  19929. %% \caption{The concrete syntax of the \LangCVec{} intermediate language.}
  19930. %% \label{fig:c2-concrete-syntax}
  19931. %% \end{figure}
  19932. %% \begin{figure}[tp]
  19933. %% \fbox{
  19934. %% \begin{minipage}{0.96\textwidth}
  19935. %% \small
  19936. %% \[
  19937. %% \begin{array}{lcl}
  19938. %% \Atm &::=& \gray{ \Int \MID \Var \MID \key{\#t} \MID \key{\#f} }
  19939. %% \\
  19940. %% \itm{cmp} &::= & \gray{ \key{eq?} \MID \key{<} } \\
  19941. %% \Exp &::= & \gray{ \Atm \MID \LP\key{read}\RP \MID \LP\key{-}\;\Atm\RP \MID \LP\key{+} \; \Atm\;\Atm\RP
  19942. %% \MID \LP\key{not}\;\Atm\RP \MID \LP\itm{cmp}\;\Atm\;\Atm\RP } \\
  19943. %% &\MID& \gray{ \LP\key{allocate}\,\Int\,\Type\RP
  19944. %% \MID \LP\key{vector-ref}\, \Atm\, \Int\RP } \\
  19945. %% &\MID& \gray{ \LP\key{vector-set!}\,\Atm\,\Int\,\Atm\RP \MID \LP\key{global-value} \,\itm{name}\RP \MID \LP\key{void}\RP } \\
  19946. %% &\MID& \LP\key{fun-ref}~\itm{label}~\Int\RP \MID \LP\key{call} \,\Atm\,\Atm\ldots\RP \\
  19947. %% \Stmt &::=& \gray{ \ASSIGN{\Var}{\Exp} \MID \RETURN{\Exp}
  19948. %% \MID \LP\key{collect} \,\itm{int}\RP }\\
  19949. %% \Tail &::= & \gray{\RETURN{\Exp} \MID \LP\key{seq}\;\Stmt\;\Tail\RP} \\
  19950. %% &\MID& \gray{\LP\key{goto}\,\itm{label}\RP
  19951. %% \MID \IF{\LP\itm{cmp}\, \Atm\,\Atm\RP}{\LP\key{goto}\,\itm{label}\RP}{\LP\key{goto}\,\itm{label}\RP}} \\
  19952. %% &\MID& \LP\key{tail-call}\,\Atm\,\Atm\ldots\RP \\
  19953. %% \Def &::=& \LP\key{define}\; \LP\itm{label} \; [\Var \key{:} \Type]\ldots\RP \key{:} \Type \; \LP\LP\itm{label}\,\key{.}\,\Tail\RP\ldots\RP\RP \\
  19954. %% \LangCFunM{} & ::= & \Def\ldots
  19955. %% \end{array}
  19956. %% \]
  19957. %% \end{minipage}
  19958. %% }
  19959. %% \caption{The \LangCFun{} language, extending \LangCVec{} (Figure~\ref{fig:c2-concrete-syntax}) with functions.}
  19960. %% \label{fig:c3-concrete-syntax}
  19961. %% \end{figure}
  19962. %% \fi % racketEd
  19963. \backmatter
  19964. \addtocontents{toc}{\vspace{11pt}}
  19965. %% \addtocontents{toc}{\vspace{11pt}}
  19966. %% \nocite{*} is a way to get all the entries in the .bib file to print in the bibliography:
  19967. \nocite{*}\let\bibname\refname
  19968. \addcontentsline{toc}{fmbm}{\refname}
  19969. \printbibliography
  19970. %\printindex{authors}{Author Index}
  19971. \printindex{subject}{Index}
  19972. \end{document}
  19973. % LocalWords: Nano Siek CC NC ISBN wonks wizardry Backus nanopasses
  19974. % LocalWords: dataflow nx generics autoboxing Hulman Ch CO Dybvig aa
  19975. % LocalWords: Abelson uq Felleisen Flatt Lutz vp vj Sweigart vn Matz
  19976. % LocalWords: Matthes github gcc MacOS Chez Friedman's Dipanwita fk
  19977. % LocalWords: Sarkar Dybvig's Abdulaziz Ghuloum bh IU Factora Bor qf
  19978. % LocalWords: Cameron Kuhlenschmidt Vollmer Vitousek Yuh Nystrom AST
  19979. % LocalWords: Tolmach Wollowski ASTs Aho ast struct int backquote op
  19980. % LocalWords: args neg def init UnaryOp USub func BinOp Naur BNF rkt
  19981. % LocalWords: fixnum datatype structure's arith exp stmt Num Expr tr
  19982. % LocalWords: plt PSF ref CPython cpython reynolds interp cond fx pe
  19983. % LocalWords: arg Hitchhiker's TODO nullary Lvar Lif cnd thn var sam
  19984. % LocalWords: IfExp Bool InterpLvar InterpLif InterpRVar alist jane
  19985. % LocalWords: basicstyle kate dict alists env stmts ss len lhs globl
  19986. % LocalWords: rsp rbp rax rbx rcx rdx rsi rdi movq retq callq jmp es
  19987. % LocalWords: pushq subq popq negq addq arity uniquify Cvar instr cg
  19988. % LocalWords: Seq CProgram gensym lib Fprivate Flist tmp ANF Danvy
  19989. % LocalWords: rco Flists py rhs unhandled cont immediates lstlisting
  19990. % LocalWords: numberstyle Cormen Sudoku Balakrishnan ve aka DSATUR
  19991. % LocalWords: Brelaz eu Gebremedhin Omari deletekeywords min JGS wb
  19992. % LocalWords: morekeywords fullflexible goto allocator tuples Wailes
  19993. % LocalWords: Kernighan runtime Freiburg Thiemann Bloomington unary
  19994. % LocalWords: eq prog rcl binaryop unaryop definitional Evaluator os
  19995. % LocalWords: subexpression evaluator InterpLint lcl quadwords concl
  19996. % LocalWords: nanopass subexpressions decompositions Lawall Hatcliff
  19997. % LocalWords: subdirectory monadic Moggi mon utils macosx unix repr
  19998. % LocalWords: Uncomment undirected vertices callee Liveness liveness
  19999. % LocalWords: frozenset unordered Appel Rosen pqueue cmp Fortran vl
  20000. % LocalWords: Horwitz Kempe colorable subgraph kx iteratively Matula
  20001. % LocalWords: ys ly Palsberg si JoeQ cardinality Poletto Booleans hj
  20002. % LocalWords: subscriptable MyPy Lehtosalo Listof Pairof indexable
  20003. % LocalWords: bool boolop NotEq LtE GtE refactor els orelse BoolOp
  20004. % LocalWords: boolean initializer param exprs TypeCheckLvar msg Tt
  20005. % LocalWords: isinstance TypeCheckLif tyerr xorq bytereg al dh dl ne
  20006. % LocalWords: le ge cmpq movzbq EFLAGS jle inlined setl je jl Cif
  20007. % LocalWords: lll pred IfStmt sete CFG tsort multigraph FunctionType
  20008. % LocalWords: Wijngaarden Plotkin Logothetis PeytonJones SetBang Ph
  20009. % LocalWords: WhileLoop unboxes Lwhile unbox InterpLwhile rhsT varT
  20010. % LocalWords: Tbody TypeCheckLwhile acyclic mainstart mainconclusion
  20011. % LocalWords: versa Kildall Kleene worklist enqueue dequeue deque tb
  20012. % LocalWords: GetBang effectful SPERBER Lfun tuple implementer's tup
  20013. % LocalWords: indices HasType Lvec InterpLtup tuple's vec ty Ungar
  20014. % LocalWords: TypeCheckLtup Detlefs Tene FromSpace ToSpace Diwan ptr
  20015. % LocalWords: Siebert TupleType endian salq sarq fromspace rootstack
  20016. % LocalWords: uint th vecinit alloc GlobalValue andq bitwise ior elt
  20017. % LocalWords: dereferencing StructDef Vectorof vectorof Lvecof Jacek
  20018. % LocalWords: AllocateArray cheney tospace Dieckmann Shahriyar di xs
  20019. % LocalWords: Shidal Osterlund Gamari lexically FunctionDef IntType
  20020. % LocalWords: BoolType VoidType ProgramDefsExp vals params ps ds num
  20021. % LocalWords: InterpLfun FunRef TypeCheckLfun leaq callee's mainDef
  20022. % LocalWords: ProgramDefs TailCall tailjmp IndirectCallq TailJmp rT
  20023. % LocalWords: prepending addstart addconclusion Cardelli Llambda typ
  20024. % LocalWords: Llambda InterpLlambda AnnAssign Dunfield bodyT str fvs
  20025. % LocalWords: TypeCheckLlambda annot dereference clos fvts closTy tg
  20026. % LocalWords: Minamide AllocateClosure Gilray Milner morphos subtype
  20027. % LocalWords: polymorphism untyped AnyType dataclass untag Ldyn conc
  20028. % LocalWords: lookup InterpLdyn elif tagof Lany TypeCheckLany tv orq
  20029. % LocalWords: AnnLambda InterpLany ClosureTuple ValueOf TagOf imulq
  20030. % LocalWords: untagged multi Tobin Hochstadt zr mn Gronski kd ret Tp
  20031. % LocalWords: Tif src tgt Lcast wr contravariant PVector un Lgradual
  20032. % LocalWords: Lgradualp Llambdapp Llambdaproxy Wadler qv quicksort
  20033. % LocalWords: Henglein nz coercions Grift parametetric parameterized
  20034. % LocalWords: parameterizing stroustrup subst tys targs decls defs
  20035. % LocalWords: pts ats prt pxs axs Decl Monomorphization NESL CLU qb
  20036. % LocalWords: monomorphization Blelloch monomorphic Bracha unboxed
  20037. % LocalWords: instantiation Lpoly Lpolyp typechecker mcons ebp jge
  20038. % LocalWords: notq setle setg setge